diff --git "a/39320/metadata.json" "b/39320/metadata.json" new file mode 100644--- /dev/null +++ "b/39320/metadata.json" @@ -0,0 +1,59602 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "39320", + "quality_score": 0.9209, + "per_segment_quality_scores": [ + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 124.04, + "end": 126.3, + "probability": 0.7289 + }, + { + "start": 127.02, + "end": 128.78, + "probability": 0.7225 + }, + { + "start": 129.7, + "end": 131.52, + "probability": 0.9902 + }, + { + "start": 131.62, + "end": 133.1, + "probability": 0.7645 + }, + { + "start": 133.5, + "end": 137.86, + "probability": 0.9987 + }, + { + "start": 137.86, + "end": 141.9, + "probability": 0.9813 + }, + { + "start": 142.36, + "end": 144.88, + "probability": 0.9786 + }, + { + "start": 145.78, + "end": 148.12, + "probability": 0.7181 + }, + { + "start": 148.68, + "end": 150.84, + "probability": 0.7148 + }, + { + "start": 151.52, + "end": 154.08, + "probability": 0.8196 + }, + { + "start": 155.21, + "end": 158.54, + "probability": 0.9583 + }, + { + "start": 158.62, + "end": 162.26, + "probability": 0.7766 + }, + { + "start": 165.16, + "end": 167.24, + "probability": 0.6123 + }, + { + "start": 167.7, + "end": 168.36, + "probability": 0.7721 + }, + { + "start": 168.44, + "end": 170.78, + "probability": 0.7062 + }, + { + "start": 170.78, + "end": 170.92, + "probability": 0.3229 + }, + { + "start": 172.4, + "end": 173.98, + "probability": 0.8475 + }, + { + "start": 174.06, + "end": 174.76, + "probability": 0.82 + }, + { + "start": 174.9, + "end": 175.56, + "probability": 0.4533 + }, + { + "start": 175.68, + "end": 177.6, + "probability": 0.7808 + }, + { + "start": 178.48, + "end": 183.44, + "probability": 0.9185 + }, + { + "start": 183.52, + "end": 185.32, + "probability": 0.8116 + }, + { + "start": 185.4, + "end": 186.16, + "probability": 0.6286 + }, + { + "start": 186.88, + "end": 187.88, + "probability": 0.8594 + }, + { + "start": 187.98, + "end": 191.26, + "probability": 0.9907 + }, + { + "start": 192.18, + "end": 196.98, + "probability": 0.9644 + }, + { + "start": 196.98, + "end": 199.42, + "probability": 0.928 + }, + { + "start": 201.68, + "end": 203.28, + "probability": 0.7253 + }, + { + "start": 204.96, + "end": 207.66, + "probability": 0.7034 + }, + { + "start": 208.48, + "end": 210.3, + "probability": 0.8165 + }, + { + "start": 210.44, + "end": 212.66, + "probability": 0.7301 + }, + { + "start": 212.88, + "end": 215.46, + "probability": 0.9985 + }, + { + "start": 215.58, + "end": 217.5, + "probability": 0.9495 + }, + { + "start": 218.96, + "end": 220.18, + "probability": 0.7398 + }, + { + "start": 220.72, + "end": 221.61, + "probability": 0.7625 + }, + { + "start": 222.74, + "end": 229.58, + "probability": 0.8889 + }, + { + "start": 230.34, + "end": 231.35, + "probability": 0.9889 + }, + { + "start": 233.26, + "end": 241.66, + "probability": 0.7671 + }, + { + "start": 243.96, + "end": 245.16, + "probability": 0.7324 + }, + { + "start": 246.58, + "end": 248.88, + "probability": 0.9664 + }, + { + "start": 249.68, + "end": 254.86, + "probability": 0.754 + }, + { + "start": 255.08, + "end": 260.26, + "probability": 0.9664 + }, + { + "start": 260.3, + "end": 262.1, + "probability": 0.927 + }, + { + "start": 263.26, + "end": 266.2, + "probability": 0.9737 + }, + { + "start": 266.96, + "end": 267.98, + "probability": 0.7711 + }, + { + "start": 269.02, + "end": 271.18, + "probability": 0.8169 + }, + { + "start": 271.94, + "end": 272.54, + "probability": 0.6439 + }, + { + "start": 272.68, + "end": 273.12, + "probability": 0.5966 + }, + { + "start": 273.18, + "end": 273.86, + "probability": 0.6375 + }, + { + "start": 274.3, + "end": 274.92, + "probability": 0.9131 + }, + { + "start": 275.06, + "end": 276.54, + "probability": 0.8059 + }, + { + "start": 279.58, + "end": 280.82, + "probability": 0.7476 + }, + { + "start": 281.8, + "end": 282.76, + "probability": 0.5031 + }, + { + "start": 283.82, + "end": 284.96, + "probability": 0.6729 + }, + { + "start": 285.26, + "end": 288.74, + "probability": 0.9823 + }, + { + "start": 288.82, + "end": 289.42, + "probability": 0.5433 + }, + { + "start": 290.42, + "end": 293.42, + "probability": 0.7574 + }, + { + "start": 294.24, + "end": 294.82, + "probability": 0.6421 + }, + { + "start": 296.0, + "end": 297.78, + "probability": 0.9337 + }, + { + "start": 298.6, + "end": 300.32, + "probability": 0.6969 + }, + { + "start": 301.14, + "end": 308.38, + "probability": 0.9619 + }, + { + "start": 309.24, + "end": 310.88, + "probability": 0.4616 + }, + { + "start": 311.42, + "end": 317.0, + "probability": 0.625 + }, + { + "start": 317.92, + "end": 321.56, + "probability": 0.7981 + }, + { + "start": 322.1, + "end": 325.28, + "probability": 0.8237 + }, + { + "start": 326.0, + "end": 328.68, + "probability": 0.9004 + }, + { + "start": 328.96, + "end": 331.44, + "probability": 0.9986 + }, + { + "start": 331.84, + "end": 333.84, + "probability": 0.9969 + }, + { + "start": 333.94, + "end": 337.78, + "probability": 0.9203 + }, + { + "start": 338.42, + "end": 339.8, + "probability": 0.8429 + }, + { + "start": 340.52, + "end": 344.38, + "probability": 0.9868 + }, + { + "start": 344.38, + "end": 347.26, + "probability": 0.9854 + }, + { + "start": 347.32, + "end": 349.42, + "probability": 0.8389 + }, + { + "start": 349.66, + "end": 349.84, + "probability": 0.7826 + }, + { + "start": 350.5, + "end": 350.94, + "probability": 0.2883 + }, + { + "start": 351.02, + "end": 354.98, + "probability": 0.8634 + }, + { + "start": 355.32, + "end": 357.08, + "probability": 0.9621 + }, + { + "start": 357.6, + "end": 360.12, + "probability": 0.9855 + }, + { + "start": 360.68, + "end": 364.02, + "probability": 0.8365 + }, + { + "start": 364.14, + "end": 367.06, + "probability": 0.8399 + }, + { + "start": 367.82, + "end": 368.56, + "probability": 0.2829 + }, + { + "start": 368.58, + "end": 368.82, + "probability": 0.6823 + }, + { + "start": 368.88, + "end": 371.66, + "probability": 0.9873 + }, + { + "start": 371.84, + "end": 372.54, + "probability": 0.6971 + }, + { + "start": 372.62, + "end": 376.44, + "probability": 0.9028 + }, + { + "start": 377.4, + "end": 380.16, + "probability": 0.9313 + }, + { + "start": 380.28, + "end": 380.38, + "probability": 0.3436 + }, + { + "start": 380.44, + "end": 381.06, + "probability": 0.3978 + }, + { + "start": 381.08, + "end": 381.82, + "probability": 0.9605 + }, + { + "start": 381.9, + "end": 388.4, + "probability": 0.9937 + }, + { + "start": 388.48, + "end": 391.44, + "probability": 0.972 + }, + { + "start": 392.18, + "end": 394.3, + "probability": 0.9282 + }, + { + "start": 394.4, + "end": 395.68, + "probability": 0.6846 + }, + { + "start": 395.88, + "end": 397.66, + "probability": 0.9834 + }, + { + "start": 398.7, + "end": 399.76, + "probability": 0.7549 + }, + { + "start": 400.08, + "end": 404.0, + "probability": 0.9404 + }, + { + "start": 404.06, + "end": 408.48, + "probability": 0.9858 + }, + { + "start": 408.82, + "end": 410.28, + "probability": 0.8954 + }, + { + "start": 410.42, + "end": 411.18, + "probability": 0.8644 + }, + { + "start": 411.66, + "end": 413.38, + "probability": 0.9209 + }, + { + "start": 413.54, + "end": 416.42, + "probability": 0.9905 + }, + { + "start": 417.58, + "end": 419.8, + "probability": 0.6454 + }, + { + "start": 424.94, + "end": 426.74, + "probability": 0.7834 + }, + { + "start": 429.2, + "end": 433.34, + "probability": 0.9205 + }, + { + "start": 434.16, + "end": 436.42, + "probability": 0.546 + }, + { + "start": 438.24, + "end": 447.64, + "probability": 0.7838 + }, + { + "start": 449.12, + "end": 451.08, + "probability": 0.8721 + }, + { + "start": 452.02, + "end": 454.96, + "probability": 0.8026 + }, + { + "start": 455.64, + "end": 457.8, + "probability": 0.873 + }, + { + "start": 459.04, + "end": 460.62, + "probability": 0.9846 + }, + { + "start": 461.42, + "end": 465.03, + "probability": 0.9985 + }, + { + "start": 465.12, + "end": 468.32, + "probability": 0.5006 + }, + { + "start": 468.9, + "end": 473.71, + "probability": 0.9443 + }, + { + "start": 475.82, + "end": 478.62, + "probability": 0.67 + }, + { + "start": 479.42, + "end": 483.88, + "probability": 0.8734 + }, + { + "start": 484.68, + "end": 486.7, + "probability": 0.9846 + }, + { + "start": 488.46, + "end": 488.96, + "probability": 0.6685 + }, + { + "start": 493.26, + "end": 497.1, + "probability": 0.9541 + }, + { + "start": 497.84, + "end": 499.79, + "probability": 0.9865 + }, + { + "start": 500.88, + "end": 506.84, + "probability": 0.8601 + }, + { + "start": 507.76, + "end": 509.94, + "probability": 0.9922 + }, + { + "start": 510.28, + "end": 514.48, + "probability": 0.9878 + }, + { + "start": 514.58, + "end": 515.58, + "probability": 0.2371 + }, + { + "start": 516.58, + "end": 522.56, + "probability": 0.8193 + }, + { + "start": 522.72, + "end": 528.36, + "probability": 0.9949 + }, + { + "start": 528.86, + "end": 529.48, + "probability": 0.6256 + }, + { + "start": 529.76, + "end": 532.04, + "probability": 0.9426 + }, + { + "start": 532.98, + "end": 535.96, + "probability": 0.853 + }, + { + "start": 536.62, + "end": 537.48, + "probability": 0.5623 + }, + { + "start": 538.46, + "end": 540.36, + "probability": 0.5305 + }, + { + "start": 541.92, + "end": 543.06, + "probability": 0.828 + }, + { + "start": 543.14, + "end": 547.92, + "probability": 0.7905 + }, + { + "start": 548.0, + "end": 548.72, + "probability": 0.7918 + }, + { + "start": 548.72, + "end": 550.34, + "probability": 0.983 + }, + { + "start": 550.5, + "end": 553.54, + "probability": 0.7843 + }, + { + "start": 553.7, + "end": 557.88, + "probability": 0.6206 + }, + { + "start": 558.46, + "end": 559.9, + "probability": 0.9561 + }, + { + "start": 560.16, + "end": 563.96, + "probability": 0.7988 + }, + { + "start": 564.86, + "end": 568.46, + "probability": 0.9558 + }, + { + "start": 569.36, + "end": 570.28, + "probability": 0.7156 + }, + { + "start": 571.26, + "end": 577.12, + "probability": 0.6673 + }, + { + "start": 577.24, + "end": 578.26, + "probability": 0.9408 + }, + { + "start": 578.48, + "end": 578.76, + "probability": 0.7726 + }, + { + "start": 579.44, + "end": 581.9, + "probability": 0.7585 + }, + { + "start": 582.22, + "end": 582.62, + "probability": 0.5756 + }, + { + "start": 582.64, + "end": 586.43, + "probability": 0.8109 + }, + { + "start": 587.14, + "end": 588.53, + "probability": 0.6085 + }, + { + "start": 589.02, + "end": 591.82, + "probability": 0.8111 + }, + { + "start": 592.2, + "end": 596.1, + "probability": 0.7244 + }, + { + "start": 596.3, + "end": 599.1, + "probability": 0.9788 + }, + { + "start": 599.26, + "end": 600.8, + "probability": 0.979 + }, + { + "start": 600.96, + "end": 601.24, + "probability": 0.7381 + }, + { + "start": 601.38, + "end": 601.86, + "probability": 0.6733 + }, + { + "start": 602.1, + "end": 606.64, + "probability": 0.9305 + }, + { + "start": 607.52, + "end": 611.84, + "probability": 0.9271 + }, + { + "start": 611.96, + "end": 612.86, + "probability": 0.9575 + }, + { + "start": 613.52, + "end": 616.74, + "probability": 0.9348 + }, + { + "start": 617.3, + "end": 617.46, + "probability": 0.3065 + }, + { + "start": 617.7, + "end": 621.46, + "probability": 0.9503 + }, + { + "start": 622.3, + "end": 624.12, + "probability": 0.661 + }, + { + "start": 624.76, + "end": 627.18, + "probability": 0.9782 + }, + { + "start": 629.76, + "end": 631.44, + "probability": 0.7822 + }, + { + "start": 632.08, + "end": 633.6, + "probability": 0.9834 + }, + { + "start": 634.22, + "end": 636.46, + "probability": 0.6984 + }, + { + "start": 636.62, + "end": 640.32, + "probability": 0.9844 + }, + { + "start": 640.48, + "end": 642.07, + "probability": 0.9946 + }, + { + "start": 642.54, + "end": 644.24, + "probability": 0.9401 + }, + { + "start": 644.58, + "end": 648.86, + "probability": 0.7984 + }, + { + "start": 649.3, + "end": 652.74, + "probability": 0.9165 + }, + { + "start": 652.94, + "end": 653.66, + "probability": 0.842 + }, + { + "start": 654.62, + "end": 656.66, + "probability": 0.9402 + }, + { + "start": 656.82, + "end": 657.04, + "probability": 0.8016 + }, + { + "start": 657.2, + "end": 658.88, + "probability": 0.9828 + }, + { + "start": 658.96, + "end": 661.14, + "probability": 0.9801 + }, + { + "start": 661.18, + "end": 661.54, + "probability": 0.5354 + }, + { + "start": 661.58, + "end": 661.92, + "probability": 0.6482 + }, + { + "start": 662.1, + "end": 663.08, + "probability": 0.9539 + }, + { + "start": 663.1, + "end": 669.38, + "probability": 0.9496 + }, + { + "start": 669.76, + "end": 673.28, + "probability": 0.9755 + }, + { + "start": 673.28, + "end": 675.88, + "probability": 0.6181 + }, + { + "start": 676.0, + "end": 676.74, + "probability": 0.8018 + }, + { + "start": 676.9, + "end": 679.52, + "probability": 0.904 + }, + { + "start": 679.74, + "end": 682.34, + "probability": 0.984 + }, + { + "start": 682.52, + "end": 685.14, + "probability": 0.993 + }, + { + "start": 685.84, + "end": 689.78, + "probability": 0.7108 + }, + { + "start": 689.88, + "end": 692.66, + "probability": 0.9623 + }, + { + "start": 692.76, + "end": 696.06, + "probability": 0.952 + }, + { + "start": 696.18, + "end": 697.38, + "probability": 0.6659 + }, + { + "start": 697.52, + "end": 700.72, + "probability": 0.9431 + }, + { + "start": 700.82, + "end": 701.76, + "probability": 0.788 + }, + { + "start": 701.82, + "end": 703.68, + "probability": 0.9672 + }, + { + "start": 704.38, + "end": 707.34, + "probability": 0.17 + }, + { + "start": 707.34, + "end": 707.72, + "probability": 0.1792 + }, + { + "start": 707.72, + "end": 708.16, + "probability": 0.4043 + }, + { + "start": 708.34, + "end": 708.34, + "probability": 0.3041 + }, + { + "start": 708.38, + "end": 713.68, + "probability": 0.73 + }, + { + "start": 714.32, + "end": 718.12, + "probability": 0.811 + }, + { + "start": 718.12, + "end": 720.54, + "probability": 0.6673 + }, + { + "start": 721.32, + "end": 721.76, + "probability": 0.6456 + }, + { + "start": 721.88, + "end": 722.82, + "probability": 0.4753 + }, + { + "start": 722.98, + "end": 726.34, + "probability": 0.9648 + }, + { + "start": 726.62, + "end": 727.96, + "probability": 0.8176 + }, + { + "start": 728.8, + "end": 729.22, + "probability": 0.9139 + }, + { + "start": 729.36, + "end": 730.42, + "probability": 0.7557 + }, + { + "start": 730.76, + "end": 735.46, + "probability": 0.8961 + }, + { + "start": 735.92, + "end": 736.56, + "probability": 0.6063 + }, + { + "start": 737.06, + "end": 737.78, + "probability": 0.8036 + }, + { + "start": 738.86, + "end": 742.44, + "probability": 0.929 + }, + { + "start": 743.04, + "end": 744.86, + "probability": 0.6951 + }, + { + "start": 745.59, + "end": 747.2, + "probability": 0.8374 + }, + { + "start": 747.4, + "end": 748.36, + "probability": 0.9331 + }, + { + "start": 749.34, + "end": 749.84, + "probability": 0.828 + }, + { + "start": 749.94, + "end": 751.1, + "probability": 0.5447 + }, + { + "start": 751.5, + "end": 754.52, + "probability": 0.9693 + }, + { + "start": 755.34, + "end": 755.86, + "probability": 0.9889 + }, + { + "start": 756.08, + "end": 757.02, + "probability": 0.4252 + }, + { + "start": 757.26, + "end": 760.56, + "probability": 0.8674 + }, + { + "start": 760.56, + "end": 765.04, + "probability": 0.8865 + }, + { + "start": 765.62, + "end": 765.84, + "probability": 0.7838 + }, + { + "start": 766.58, + "end": 768.78, + "probability": 0.985 + }, + { + "start": 768.86, + "end": 769.92, + "probability": 0.5559 + }, + { + "start": 769.98, + "end": 771.14, + "probability": 0.9326 + }, + { + "start": 771.26, + "end": 772.1, + "probability": 0.5079 + }, + { + "start": 772.26, + "end": 774.62, + "probability": 0.8268 + }, + { + "start": 775.48, + "end": 778.98, + "probability": 0.8489 + }, + { + "start": 779.32, + "end": 781.96, + "probability": 0.9364 + }, + { + "start": 782.6, + "end": 785.86, + "probability": 0.6497 + }, + { + "start": 786.02, + "end": 787.08, + "probability": 0.9565 + }, + { + "start": 787.22, + "end": 790.62, + "probability": 0.9476 + }, + { + "start": 790.74, + "end": 793.62, + "probability": 0.9084 + }, + { + "start": 794.7, + "end": 795.39, + "probability": 0.7982 + }, + { + "start": 795.64, + "end": 795.92, + "probability": 0.9537 + }, + { + "start": 798.62, + "end": 802.04, + "probability": 0.677 + }, + { + "start": 802.78, + "end": 803.64, + "probability": 0.7196 + }, + { + "start": 803.74, + "end": 807.14, + "probability": 0.9979 + }, + { + "start": 807.14, + "end": 810.2, + "probability": 0.8516 + }, + { + "start": 810.42, + "end": 818.16, + "probability": 0.9602 + }, + { + "start": 818.72, + "end": 824.72, + "probability": 0.9819 + }, + { + "start": 825.5, + "end": 836.68, + "probability": 0.8383 + }, + { + "start": 837.26, + "end": 837.38, + "probability": 0.4241 + }, + { + "start": 837.4, + "end": 838.06, + "probability": 0.8634 + }, + { + "start": 838.26, + "end": 842.92, + "probability": 0.9456 + }, + { + "start": 842.92, + "end": 847.12, + "probability": 0.9996 + }, + { + "start": 847.34, + "end": 855.16, + "probability": 0.995 + }, + { + "start": 855.46, + "end": 858.99, + "probability": 0.998 + }, + { + "start": 859.62, + "end": 862.96, + "probability": 0.9955 + }, + { + "start": 863.36, + "end": 864.2, + "probability": 0.9672 + }, + { + "start": 865.24, + "end": 867.86, + "probability": 0.8699 + }, + { + "start": 868.12, + "end": 868.92, + "probability": 0.9709 + }, + { + "start": 869.0, + "end": 869.4, + "probability": 0.866 + }, + { + "start": 869.56, + "end": 872.48, + "probability": 0.9948 + }, + { + "start": 872.48, + "end": 878.04, + "probability": 0.9761 + }, + { + "start": 878.22, + "end": 883.32, + "probability": 0.9976 + }, + { + "start": 883.32, + "end": 889.08, + "probability": 0.9995 + }, + { + "start": 891.12, + "end": 894.3, + "probability": 0.9881 + }, + { + "start": 895.3, + "end": 897.26, + "probability": 0.8757 + }, + { + "start": 898.04, + "end": 901.96, + "probability": 0.9897 + }, + { + "start": 902.5, + "end": 906.6, + "probability": 0.9961 + }, + { + "start": 906.6, + "end": 912.26, + "probability": 0.9184 + }, + { + "start": 912.78, + "end": 917.97, + "probability": 0.9753 + }, + { + "start": 920.19, + "end": 927.12, + "probability": 0.986 + }, + { + "start": 927.32, + "end": 931.34, + "probability": 0.9769 + }, + { + "start": 931.88, + "end": 933.24, + "probability": 0.7578 + }, + { + "start": 933.34, + "end": 934.46, + "probability": 0.7693 + }, + { + "start": 934.92, + "end": 935.92, + "probability": 0.9753 + }, + { + "start": 936.26, + "end": 942.74, + "probability": 0.9607 + }, + { + "start": 942.98, + "end": 943.7, + "probability": 0.9815 + }, + { + "start": 943.86, + "end": 944.9, + "probability": 0.9396 + }, + { + "start": 945.04, + "end": 948.27, + "probability": 0.998 + }, + { + "start": 948.64, + "end": 953.07, + "probability": 0.9862 + }, + { + "start": 953.74, + "end": 960.16, + "probability": 0.984 + }, + { + "start": 961.58, + "end": 963.36, + "probability": 0.9971 + }, + { + "start": 964.3, + "end": 967.16, + "probability": 0.9506 + }, + { + "start": 967.16, + "end": 970.48, + "probability": 0.9984 + }, + { + "start": 970.48, + "end": 974.98, + "probability": 0.9995 + }, + { + "start": 975.92, + "end": 980.66, + "probability": 0.9074 + }, + { + "start": 980.94, + "end": 982.48, + "probability": 0.9535 + }, + { + "start": 982.74, + "end": 983.9, + "probability": 0.9565 + }, + { + "start": 985.3, + "end": 986.22, + "probability": 0.6773 + }, + { + "start": 986.26, + "end": 986.6, + "probability": 0.9009 + }, + { + "start": 986.66, + "end": 991.14, + "probability": 0.9948 + }, + { + "start": 991.79, + "end": 994.34, + "probability": 0.9937 + }, + { + "start": 994.44, + "end": 998.48, + "probability": 0.9362 + }, + { + "start": 999.54, + "end": 1005.92, + "probability": 0.9968 + }, + { + "start": 1006.08, + "end": 1007.98, + "probability": 0.8979 + }, + { + "start": 1008.74, + "end": 1009.7, + "probability": 0.9492 + }, + { + "start": 1009.7, + "end": 1017.98, + "probability": 0.9927 + }, + { + "start": 1018.14, + "end": 1022.46, + "probability": 0.9938 + }, + { + "start": 1022.66, + "end": 1027.78, + "probability": 0.9727 + }, + { + "start": 1027.78, + "end": 1033.14, + "probability": 0.9982 + }, + { + "start": 1034.8, + "end": 1038.36, + "probability": 0.9868 + }, + { + "start": 1038.86, + "end": 1042.72, + "probability": 0.9888 + }, + { + "start": 1042.72, + "end": 1046.71, + "probability": 0.9927 + }, + { + "start": 1046.88, + "end": 1051.48, + "probability": 0.9962 + }, + { + "start": 1051.58, + "end": 1055.24, + "probability": 0.969 + }, + { + "start": 1055.38, + "end": 1055.88, + "probability": 0.5474 + }, + { + "start": 1056.58, + "end": 1062.8, + "probability": 0.9883 + }, + { + "start": 1063.14, + "end": 1063.72, + "probability": 0.8175 + }, + { + "start": 1063.82, + "end": 1065.16, + "probability": 0.9094 + }, + { + "start": 1065.58, + "end": 1071.22, + "probability": 0.9264 + }, + { + "start": 1072.1, + "end": 1072.6, + "probability": 0.7076 + }, + { + "start": 1072.6, + "end": 1072.96, + "probability": 0.9011 + }, + { + "start": 1072.98, + "end": 1074.46, + "probability": 0.969 + }, + { + "start": 1074.54, + "end": 1077.44, + "probability": 0.983 + }, + { + "start": 1078.12, + "end": 1078.38, + "probability": 0.5342 + }, + { + "start": 1078.44, + "end": 1079.7, + "probability": 0.9225 + }, + { + "start": 1080.16, + "end": 1085.14, + "probability": 0.9868 + }, + { + "start": 1085.28, + "end": 1090.0, + "probability": 0.9907 + }, + { + "start": 1090.08, + "end": 1091.82, + "probability": 0.9867 + }, + { + "start": 1093.24, + "end": 1094.68, + "probability": 0.9268 + }, + { + "start": 1095.36, + "end": 1100.58, + "probability": 0.9507 + }, + { + "start": 1100.58, + "end": 1105.52, + "probability": 0.994 + }, + { + "start": 1106.28, + "end": 1111.76, + "probability": 0.8331 + }, + { + "start": 1112.58, + "end": 1118.26, + "probability": 0.9911 + }, + { + "start": 1118.9, + "end": 1121.28, + "probability": 0.9821 + }, + { + "start": 1121.28, + "end": 1124.52, + "probability": 0.9086 + }, + { + "start": 1125.32, + "end": 1127.9, + "probability": 0.9769 + }, + { + "start": 1127.9, + "end": 1130.68, + "probability": 0.9885 + }, + { + "start": 1131.3, + "end": 1133.68, + "probability": 0.9843 + }, + { + "start": 1133.68, + "end": 1137.36, + "probability": 0.9886 + }, + { + "start": 1138.14, + "end": 1139.54, + "probability": 0.8439 + }, + { + "start": 1139.66, + "end": 1143.16, + "probability": 0.9873 + }, + { + "start": 1143.16, + "end": 1146.5, + "probability": 0.9699 + }, + { + "start": 1147.76, + "end": 1152.08, + "probability": 0.9915 + }, + { + "start": 1152.16, + "end": 1156.61, + "probability": 0.9803 + }, + { + "start": 1157.08, + "end": 1160.59, + "probability": 0.9976 + }, + { + "start": 1161.52, + "end": 1163.64, + "probability": 0.4573 + }, + { + "start": 1164.28, + "end": 1165.84, + "probability": 0.9142 + }, + { + "start": 1166.2, + "end": 1171.53, + "probability": 0.9928 + }, + { + "start": 1172.02, + "end": 1173.11, + "probability": 0.7549 + }, + { + "start": 1173.34, + "end": 1174.66, + "probability": 0.7137 + }, + { + "start": 1175.1, + "end": 1179.3, + "probability": 0.9487 + }, + { + "start": 1180.1, + "end": 1184.52, + "probability": 0.9763 + }, + { + "start": 1184.56, + "end": 1186.04, + "probability": 0.8984 + }, + { + "start": 1186.1, + "end": 1189.64, + "probability": 0.918 + }, + { + "start": 1190.34, + "end": 1194.8, + "probability": 0.9788 + }, + { + "start": 1194.88, + "end": 1195.5, + "probability": 0.869 + }, + { + "start": 1195.54, + "end": 1197.34, + "probability": 0.9108 + }, + { + "start": 1198.6, + "end": 1201.62, + "probability": 0.9486 + }, + { + "start": 1202.02, + "end": 1205.22, + "probability": 0.8975 + }, + { + "start": 1206.02, + "end": 1208.96, + "probability": 0.8498 + }, + { + "start": 1209.78, + "end": 1210.58, + "probability": 0.6674 + }, + { + "start": 1210.76, + "end": 1217.64, + "probability": 0.9832 + }, + { + "start": 1217.82, + "end": 1219.48, + "probability": 0.963 + }, + { + "start": 1220.44, + "end": 1225.04, + "probability": 0.9702 + }, + { + "start": 1226.14, + "end": 1226.98, + "probability": 0.5762 + }, + { + "start": 1227.08, + "end": 1229.83, + "probability": 0.9515 + }, + { + "start": 1230.88, + "end": 1232.09, + "probability": 0.3291 + }, + { + "start": 1232.66, + "end": 1233.32, + "probability": 0.4889 + }, + { + "start": 1233.4, + "end": 1237.0, + "probability": 0.9731 + }, + { + "start": 1237.26, + "end": 1240.02, + "probability": 0.6017 + }, + { + "start": 1240.16, + "end": 1240.16, + "probability": 0.3309 + }, + { + "start": 1240.16, + "end": 1242.52, + "probability": 0.947 + }, + { + "start": 1244.86, + "end": 1249.18, + "probability": 0.9875 + }, + { + "start": 1249.6, + "end": 1249.66, + "probability": 0.1879 + }, + { + "start": 1249.72, + "end": 1250.74, + "probability": 0.795 + }, + { + "start": 1251.28, + "end": 1252.47, + "probability": 0.8931 + }, + { + "start": 1253.32, + "end": 1254.32, + "probability": 0.7899 + }, + { + "start": 1254.5, + "end": 1259.7, + "probability": 0.9617 + }, + { + "start": 1259.76, + "end": 1264.08, + "probability": 0.9902 + }, + { + "start": 1264.5, + "end": 1269.88, + "probability": 0.9941 + }, + { + "start": 1269.88, + "end": 1276.66, + "probability": 0.9771 + }, + { + "start": 1277.08, + "end": 1283.56, + "probability": 0.8313 + }, + { + "start": 1283.56, + "end": 1286.08, + "probability": 0.9241 + }, + { + "start": 1286.08, + "end": 1290.62, + "probability": 0.9774 + }, + { + "start": 1290.76, + "end": 1296.76, + "probability": 0.9961 + }, + { + "start": 1297.94, + "end": 1300.93, + "probability": 0.8843 + }, + { + "start": 1301.44, + "end": 1302.12, + "probability": 0.6801 + }, + { + "start": 1302.24, + "end": 1304.0, + "probability": 0.7723 + }, + { + "start": 1304.04, + "end": 1304.76, + "probability": 0.9036 + }, + { + "start": 1304.82, + "end": 1306.18, + "probability": 0.9052 + }, + { + "start": 1306.24, + "end": 1314.62, + "probability": 0.9819 + }, + { + "start": 1315.64, + "end": 1318.02, + "probability": 0.9868 + }, + { + "start": 1318.22, + "end": 1323.74, + "probability": 0.9731 + }, + { + "start": 1324.46, + "end": 1331.12, + "probability": 0.997 + }, + { + "start": 1331.12, + "end": 1337.82, + "probability": 0.9915 + }, + { + "start": 1338.76, + "end": 1341.8, + "probability": 0.7896 + }, + { + "start": 1342.24, + "end": 1346.56, + "probability": 0.9261 + }, + { + "start": 1346.82, + "end": 1351.94, + "probability": 0.9875 + }, + { + "start": 1352.74, + "end": 1354.2, + "probability": 0.9907 + }, + { + "start": 1354.26, + "end": 1355.62, + "probability": 0.5284 + }, + { + "start": 1355.62, + "end": 1357.22, + "probability": 0.8373 + }, + { + "start": 1357.26, + "end": 1361.82, + "probability": 0.9973 + }, + { + "start": 1362.36, + "end": 1365.52, + "probability": 0.9944 + }, + { + "start": 1365.52, + "end": 1368.9, + "probability": 0.999 + }, + { + "start": 1369.04, + "end": 1372.84, + "probability": 0.8755 + }, + { + "start": 1372.96, + "end": 1373.36, + "probability": 0.8019 + }, + { + "start": 1374.82, + "end": 1379.34, + "probability": 0.7651 + }, + { + "start": 1379.84, + "end": 1381.38, + "probability": 0.5413 + }, + { + "start": 1381.62, + "end": 1383.7, + "probability": 0.9967 + }, + { + "start": 1385.56, + "end": 1386.94, + "probability": 0.8512 + }, + { + "start": 1387.06, + "end": 1388.0, + "probability": 0.785 + }, + { + "start": 1388.32, + "end": 1390.46, + "probability": 0.9935 + }, + { + "start": 1391.16, + "end": 1396.06, + "probability": 0.9785 + }, + { + "start": 1396.14, + "end": 1399.82, + "probability": 0.9808 + }, + { + "start": 1400.38, + "end": 1404.08, + "probability": 0.909 + }, + { + "start": 1404.24, + "end": 1404.99, + "probability": 0.496 + }, + { + "start": 1406.0, + "end": 1410.36, + "probability": 0.9836 + }, + { + "start": 1411.38, + "end": 1412.97, + "probability": 0.9604 + }, + { + "start": 1413.38, + "end": 1417.26, + "probability": 0.9971 + }, + { + "start": 1417.38, + "end": 1417.52, + "probability": 0.0943 + }, + { + "start": 1418.48, + "end": 1422.58, + "probability": 0.8167 + }, + { + "start": 1423.08, + "end": 1426.84, + "probability": 0.9949 + }, + { + "start": 1427.36, + "end": 1429.06, + "probability": 0.9692 + }, + { + "start": 1429.24, + "end": 1430.06, + "probability": 0.931 + }, + { + "start": 1430.16, + "end": 1431.08, + "probability": 0.8057 + }, + { + "start": 1431.12, + "end": 1432.58, + "probability": 0.6122 + }, + { + "start": 1432.68, + "end": 1433.44, + "probability": 0.474 + }, + { + "start": 1433.88, + "end": 1435.46, + "probability": 0.8396 + }, + { + "start": 1452.32, + "end": 1455.18, + "probability": 0.7359 + }, + { + "start": 1457.16, + "end": 1460.72, + "probability": 0.9976 + }, + { + "start": 1462.06, + "end": 1462.88, + "probability": 0.7911 + }, + { + "start": 1464.44, + "end": 1466.28, + "probability": 0.9706 + }, + { + "start": 1468.14, + "end": 1469.4, + "probability": 0.7962 + }, + { + "start": 1471.0, + "end": 1474.36, + "probability": 0.915 + }, + { + "start": 1474.76, + "end": 1477.96, + "probability": 0.9624 + }, + { + "start": 1479.36, + "end": 1480.22, + "probability": 0.9399 + }, + { + "start": 1482.46, + "end": 1486.5, + "probability": 0.9799 + }, + { + "start": 1489.14, + "end": 1494.68, + "probability": 0.8196 + }, + { + "start": 1496.04, + "end": 1498.1, + "probability": 0.9866 + }, + { + "start": 1499.92, + "end": 1500.82, + "probability": 0.8638 + }, + { + "start": 1502.32, + "end": 1502.94, + "probability": 0.9494 + }, + { + "start": 1503.66, + "end": 1506.62, + "probability": 0.9276 + }, + { + "start": 1507.56, + "end": 1510.82, + "probability": 0.9476 + }, + { + "start": 1511.0, + "end": 1514.14, + "probability": 0.8827 + }, + { + "start": 1514.68, + "end": 1521.26, + "probability": 0.9713 + }, + { + "start": 1521.88, + "end": 1524.26, + "probability": 0.8378 + }, + { + "start": 1525.24, + "end": 1525.86, + "probability": 0.7206 + }, + { + "start": 1528.06, + "end": 1529.94, + "probability": 0.7363 + }, + { + "start": 1530.4, + "end": 1533.84, + "probability": 0.8016 + }, + { + "start": 1534.04, + "end": 1536.78, + "probability": 0.8153 + }, + { + "start": 1538.32, + "end": 1541.82, + "probability": 0.925 + }, + { + "start": 1543.12, + "end": 1545.38, + "probability": 0.9322 + }, + { + "start": 1546.58, + "end": 1549.0, + "probability": 0.991 + }, + { + "start": 1551.1, + "end": 1556.16, + "probability": 0.9866 + }, + { + "start": 1559.84, + "end": 1562.44, + "probability": 0.6427 + }, + { + "start": 1564.08, + "end": 1566.18, + "probability": 0.955 + }, + { + "start": 1567.6, + "end": 1568.56, + "probability": 0.7112 + }, + { + "start": 1569.36, + "end": 1571.16, + "probability": 0.9025 + }, + { + "start": 1572.28, + "end": 1576.72, + "probability": 0.9856 + }, + { + "start": 1577.56, + "end": 1582.32, + "probability": 0.7458 + }, + { + "start": 1583.22, + "end": 1585.0, + "probability": 0.9296 + }, + { + "start": 1586.6, + "end": 1587.34, + "probability": 0.8905 + }, + { + "start": 1588.44, + "end": 1588.72, + "probability": 0.4994 + }, + { + "start": 1589.3, + "end": 1590.4, + "probability": 0.9946 + }, + { + "start": 1593.58, + "end": 1600.26, + "probability": 0.9941 + }, + { + "start": 1601.56, + "end": 1606.24, + "probability": 0.9944 + }, + { + "start": 1607.52, + "end": 1608.9, + "probability": 0.9573 + }, + { + "start": 1609.84, + "end": 1613.5, + "probability": 0.8698 + }, + { + "start": 1614.58, + "end": 1617.13, + "probability": 0.949 + }, + { + "start": 1617.76, + "end": 1620.28, + "probability": 0.5593 + }, + { + "start": 1621.18, + "end": 1624.46, + "probability": 0.939 + }, + { + "start": 1625.18, + "end": 1626.28, + "probability": 0.9844 + }, + { + "start": 1628.12, + "end": 1629.88, + "probability": 0.8644 + }, + { + "start": 1631.1, + "end": 1634.3, + "probability": 0.861 + }, + { + "start": 1634.54, + "end": 1636.62, + "probability": 0.8071 + }, + { + "start": 1638.06, + "end": 1641.52, + "probability": 0.7949 + }, + { + "start": 1643.42, + "end": 1645.1, + "probability": 0.9662 + }, + { + "start": 1646.16, + "end": 1647.46, + "probability": 0.9755 + }, + { + "start": 1648.26, + "end": 1649.52, + "probability": 0.9264 + }, + { + "start": 1650.12, + "end": 1653.36, + "probability": 0.9736 + }, + { + "start": 1653.76, + "end": 1655.16, + "probability": 0.9972 + }, + { + "start": 1656.14, + "end": 1657.54, + "probability": 0.9775 + }, + { + "start": 1658.76, + "end": 1667.4, + "probability": 0.8915 + }, + { + "start": 1668.28, + "end": 1676.39, + "probability": 0.9707 + }, + { + "start": 1677.04, + "end": 1681.34, + "probability": 0.9171 + }, + { + "start": 1682.16, + "end": 1687.1, + "probability": 0.8983 + }, + { + "start": 1688.2, + "end": 1690.2, + "probability": 0.9836 + }, + { + "start": 1690.3, + "end": 1692.94, + "probability": 0.9014 + }, + { + "start": 1694.28, + "end": 1695.56, + "probability": 0.6711 + }, + { + "start": 1695.88, + "end": 1701.02, + "probability": 0.9718 + }, + { + "start": 1701.02, + "end": 1705.9, + "probability": 0.9556 + }, + { + "start": 1706.88, + "end": 1708.04, + "probability": 0.985 + }, + { + "start": 1708.76, + "end": 1710.86, + "probability": 0.7753 + }, + { + "start": 1711.38, + "end": 1714.3, + "probability": 0.6621 + }, + { + "start": 1714.86, + "end": 1717.14, + "probability": 0.8757 + }, + { + "start": 1717.82, + "end": 1720.64, + "probability": 0.8887 + }, + { + "start": 1721.0, + "end": 1723.1, + "probability": 0.9092 + }, + { + "start": 1723.3, + "end": 1729.38, + "probability": 0.9914 + }, + { + "start": 1729.68, + "end": 1731.12, + "probability": 0.9791 + }, + { + "start": 1732.91, + "end": 1735.34, + "probability": 0.8181 + }, + { + "start": 1735.4, + "end": 1735.68, + "probability": 0.5256 + }, + { + "start": 1735.8, + "end": 1736.88, + "probability": 0.8291 + }, + { + "start": 1736.92, + "end": 1737.48, + "probability": 0.5879 + }, + { + "start": 1737.88, + "end": 1740.02, + "probability": 0.9916 + }, + { + "start": 1740.7, + "end": 1741.52, + "probability": 0.9838 + }, + { + "start": 1741.6, + "end": 1742.75, + "probability": 0.749 + }, + { + "start": 1743.44, + "end": 1744.54, + "probability": 0.3328 + }, + { + "start": 1744.58, + "end": 1745.8, + "probability": 0.7012 + }, + { + "start": 1745.9, + "end": 1750.96, + "probability": 0.998 + }, + { + "start": 1751.04, + "end": 1753.42, + "probability": 0.6749 + }, + { + "start": 1754.0, + "end": 1757.82, + "probability": 0.8074 + }, + { + "start": 1758.28, + "end": 1760.54, + "probability": 0.7454 + }, + { + "start": 1760.72, + "end": 1761.64, + "probability": 0.108 + }, + { + "start": 1761.64, + "end": 1762.2, + "probability": 0.6251 + }, + { + "start": 1763.58, + "end": 1764.52, + "probability": 0.4961 + }, + { + "start": 1764.52, + "end": 1767.18, + "probability": 0.8863 + }, + { + "start": 1768.5, + "end": 1772.2, + "probability": 0.7985 + }, + { + "start": 1772.38, + "end": 1775.56, + "probability": 0.9802 + }, + { + "start": 1776.26, + "end": 1776.78, + "probability": 0.1398 + }, + { + "start": 1777.92, + "end": 1781.42, + "probability": 0.9986 + }, + { + "start": 1781.6, + "end": 1782.82, + "probability": 0.5741 + }, + { + "start": 1782.92, + "end": 1783.72, + "probability": 0.4808 + }, + { + "start": 1783.92, + "end": 1786.28, + "probability": 0.9232 + }, + { + "start": 1786.78, + "end": 1788.6, + "probability": 0.9855 + }, + { + "start": 1788.86, + "end": 1790.54, + "probability": 0.9805 + }, + { + "start": 1791.36, + "end": 1792.0, + "probability": 0.8286 + }, + { + "start": 1792.22, + "end": 1795.64, + "probability": 0.9973 + }, + { + "start": 1795.82, + "end": 1797.24, + "probability": 0.6325 + }, + { + "start": 1797.58, + "end": 1799.1, + "probability": 0.7198 + }, + { + "start": 1799.14, + "end": 1799.68, + "probability": 0.6846 + }, + { + "start": 1800.46, + "end": 1802.4, + "probability": 0.7787 + }, + { + "start": 1803.12, + "end": 1804.24, + "probability": 0.959 + }, + { + "start": 1806.04, + "end": 1808.2, + "probability": 0.8979 + }, + { + "start": 1808.98, + "end": 1812.4, + "probability": 0.9381 + }, + { + "start": 1813.04, + "end": 1814.06, + "probability": 0.7504 + }, + { + "start": 1815.38, + "end": 1815.88, + "probability": 0.8301 + }, + { + "start": 1818.92, + "end": 1821.8, + "probability": 0.9106 + }, + { + "start": 1823.32, + "end": 1826.56, + "probability": 0.9599 + }, + { + "start": 1828.58, + "end": 1836.27, + "probability": 0.952 + }, + { + "start": 1837.7, + "end": 1838.96, + "probability": 0.7608 + }, + { + "start": 1839.76, + "end": 1841.06, + "probability": 0.9739 + }, + { + "start": 1842.22, + "end": 1843.8, + "probability": 0.9871 + }, + { + "start": 1844.68, + "end": 1848.18, + "probability": 0.9946 + }, + { + "start": 1849.02, + "end": 1850.48, + "probability": 0.924 + }, + { + "start": 1851.24, + "end": 1855.06, + "probability": 0.979 + }, + { + "start": 1855.56, + "end": 1856.9, + "probability": 0.9917 + }, + { + "start": 1857.56, + "end": 1858.88, + "probability": 0.9614 + }, + { + "start": 1860.66, + "end": 1863.0, + "probability": 0.9233 + }, + { + "start": 1864.38, + "end": 1866.62, + "probability": 0.9589 + }, + { + "start": 1866.82, + "end": 1867.56, + "probability": 0.9415 + }, + { + "start": 1868.52, + "end": 1871.9, + "probability": 0.9917 + }, + { + "start": 1874.04, + "end": 1875.52, + "probability": 0.9771 + }, + { + "start": 1877.44, + "end": 1880.34, + "probability": 0.9705 + }, + { + "start": 1881.8, + "end": 1882.6, + "probability": 0.9763 + }, + { + "start": 1882.9, + "end": 1889.02, + "probability": 0.9601 + }, + { + "start": 1889.68, + "end": 1892.58, + "probability": 0.9873 + }, + { + "start": 1894.54, + "end": 1897.86, + "probability": 0.904 + }, + { + "start": 1898.9, + "end": 1900.74, + "probability": 0.978 + }, + { + "start": 1901.72, + "end": 1904.9, + "probability": 0.9717 + }, + { + "start": 1906.94, + "end": 1910.94, + "probability": 0.924 + }, + { + "start": 1912.0, + "end": 1912.7, + "probability": 0.8245 + }, + { + "start": 1913.7, + "end": 1914.4, + "probability": 0.9756 + }, + { + "start": 1915.56, + "end": 1919.84, + "probability": 0.9957 + }, + { + "start": 1920.46, + "end": 1921.04, + "probability": 0.9827 + }, + { + "start": 1922.58, + "end": 1927.06, + "probability": 0.8117 + }, + { + "start": 1928.54, + "end": 1930.66, + "probability": 0.9572 + }, + { + "start": 1931.38, + "end": 1933.42, + "probability": 0.9135 + }, + { + "start": 1933.98, + "end": 1938.68, + "probability": 0.9548 + }, + { + "start": 1940.92, + "end": 1944.68, + "probability": 0.9495 + }, + { + "start": 1945.94, + "end": 1950.22, + "probability": 0.9491 + }, + { + "start": 1952.34, + "end": 1955.12, + "probability": 0.9681 + }, + { + "start": 1956.86, + "end": 1958.68, + "probability": 0.6613 + }, + { + "start": 1959.3, + "end": 1962.62, + "probability": 0.9914 + }, + { + "start": 1963.56, + "end": 1965.22, + "probability": 0.6991 + }, + { + "start": 1967.26, + "end": 1971.18, + "probability": 0.9618 + }, + { + "start": 1972.54, + "end": 1975.62, + "probability": 0.8309 + }, + { + "start": 1976.5, + "end": 1976.98, + "probability": 0.1609 + }, + { + "start": 1977.84, + "end": 1980.54, + "probability": 0.811 + }, + { + "start": 1980.8, + "end": 1984.3, + "probability": 0.9066 + }, + { + "start": 1985.58, + "end": 1986.22, + "probability": 0.8954 + }, + { + "start": 1987.08, + "end": 1992.24, + "probability": 0.7156 + }, + { + "start": 1993.62, + "end": 1998.3, + "probability": 0.944 + }, + { + "start": 1999.96, + "end": 2003.76, + "probability": 0.916 + }, + { + "start": 2004.4, + "end": 2007.02, + "probability": 0.9971 + }, + { + "start": 2008.9, + "end": 2011.02, + "probability": 0.5555 + }, + { + "start": 2011.52, + "end": 2013.73, + "probability": 0.8006 + }, + { + "start": 2014.16, + "end": 2016.36, + "probability": 0.9814 + }, + { + "start": 2016.52, + "end": 2017.62, + "probability": 0.85 + }, + { + "start": 2019.36, + "end": 2021.98, + "probability": 0.7986 + }, + { + "start": 2023.12, + "end": 2028.0, + "probability": 0.9813 + }, + { + "start": 2029.46, + "end": 2034.52, + "probability": 0.9007 + }, + { + "start": 2036.4, + "end": 2038.16, + "probability": 0.7546 + }, + { + "start": 2039.1, + "end": 2041.84, + "probability": 0.9588 + }, + { + "start": 2043.04, + "end": 2047.5, + "probability": 0.9531 + }, + { + "start": 2048.78, + "end": 2049.34, + "probability": 0.9755 + }, + { + "start": 2049.36, + "end": 2054.08, + "probability": 0.9834 + }, + { + "start": 2055.2, + "end": 2057.76, + "probability": 0.9838 + }, + { + "start": 2059.26, + "end": 2063.48, + "probability": 0.7252 + }, + { + "start": 2064.22, + "end": 2068.04, + "probability": 0.8787 + }, + { + "start": 2068.62, + "end": 2071.3, + "probability": 0.5367 + }, + { + "start": 2071.94, + "end": 2073.82, + "probability": 0.9279 + }, + { + "start": 2074.88, + "end": 2079.38, + "probability": 0.9336 + }, + { + "start": 2080.16, + "end": 2085.46, + "probability": 0.9951 + }, + { + "start": 2085.46, + "end": 2090.32, + "probability": 0.9951 + }, + { + "start": 2090.88, + "end": 2092.5, + "probability": 0.8276 + }, + { + "start": 2093.92, + "end": 2096.04, + "probability": 0.8839 + }, + { + "start": 2096.08, + "end": 2096.58, + "probability": 0.7615 + }, + { + "start": 2096.82, + "end": 2100.58, + "probability": 0.9703 + }, + { + "start": 2101.32, + "end": 2102.06, + "probability": 0.6752 + }, + { + "start": 2103.04, + "end": 2107.78, + "probability": 0.9924 + }, + { + "start": 2108.3, + "end": 2108.98, + "probability": 0.7348 + }, + { + "start": 2110.1, + "end": 2111.2, + "probability": 0.8668 + }, + { + "start": 2111.9, + "end": 2113.02, + "probability": 0.8618 + }, + { + "start": 2114.66, + "end": 2115.9, + "probability": 0.858 + }, + { + "start": 2117.32, + "end": 2120.2, + "probability": 0.978 + }, + { + "start": 2121.44, + "end": 2133.06, + "probability": 0.9917 + }, + { + "start": 2134.52, + "end": 2143.9, + "probability": 0.9971 + }, + { + "start": 2144.18, + "end": 2146.14, + "probability": 0.6092 + }, + { + "start": 2146.78, + "end": 2150.52, + "probability": 0.9895 + }, + { + "start": 2150.64, + "end": 2151.76, + "probability": 0.5174 + }, + { + "start": 2153.5, + "end": 2157.94, + "probability": 0.9375 + }, + { + "start": 2159.76, + "end": 2160.54, + "probability": 0.8714 + }, + { + "start": 2160.7, + "end": 2161.38, + "probability": 0.7011 + }, + { + "start": 2162.64, + "end": 2163.96, + "probability": 0.9644 + }, + { + "start": 2167.3, + "end": 2167.98, + "probability": 0.4598 + }, + { + "start": 2168.58, + "end": 2171.72, + "probability": 0.929 + }, + { + "start": 2173.22, + "end": 2174.28, + "probability": 0.862 + }, + { + "start": 2174.28, + "end": 2176.7, + "probability": 0.9814 + }, + { + "start": 2177.22, + "end": 2178.94, + "probability": 0.7346 + }, + { + "start": 2180.14, + "end": 2183.1, + "probability": 0.8091 + }, + { + "start": 2184.7, + "end": 2186.48, + "probability": 0.9192 + }, + { + "start": 2187.74, + "end": 2189.08, + "probability": 0.8003 + }, + { + "start": 2189.52, + "end": 2190.78, + "probability": 0.8472 + }, + { + "start": 2190.86, + "end": 2191.94, + "probability": 0.0831 + }, + { + "start": 2192.02, + "end": 2193.32, + "probability": 0.8395 + }, + { + "start": 2194.0, + "end": 2199.28, + "probability": 0.9766 + }, + { + "start": 2201.68, + "end": 2205.98, + "probability": 0.9196 + }, + { + "start": 2206.88, + "end": 2206.88, + "probability": 0.1357 + }, + { + "start": 2206.88, + "end": 2210.54, + "probability": 0.8267 + }, + { + "start": 2211.16, + "end": 2212.16, + "probability": 0.6622 + }, + { + "start": 2212.5, + "end": 2214.02, + "probability": 0.8309 + }, + { + "start": 2214.1, + "end": 2217.06, + "probability": 0.972 + }, + { + "start": 2217.08, + "end": 2217.94, + "probability": 0.6712 + }, + { + "start": 2218.32, + "end": 2220.84, + "probability": 0.6958 + }, + { + "start": 2220.88, + "end": 2222.0, + "probability": 0.6123 + }, + { + "start": 2222.6, + "end": 2224.66, + "probability": 0.8673 + }, + { + "start": 2224.7, + "end": 2227.82, + "probability": 0.9092 + }, + { + "start": 2228.5, + "end": 2230.6, + "probability": 0.687 + }, + { + "start": 2231.66, + "end": 2234.46, + "probability": 0.9388 + }, + { + "start": 2235.6, + "end": 2239.4, + "probability": 0.9601 + }, + { + "start": 2239.92, + "end": 2242.12, + "probability": 0.7726 + }, + { + "start": 2242.9, + "end": 2246.52, + "probability": 0.7798 + }, + { + "start": 2247.46, + "end": 2254.06, + "probability": 0.9384 + }, + { + "start": 2254.78, + "end": 2255.42, + "probability": 0.5635 + }, + { + "start": 2256.26, + "end": 2257.62, + "probability": 0.6419 + }, + { + "start": 2258.62, + "end": 2260.82, + "probability": 0.9199 + }, + { + "start": 2261.32, + "end": 2261.9, + "probability": 0.7723 + }, + { + "start": 2261.92, + "end": 2262.72, + "probability": 0.5777 + }, + { + "start": 2263.0, + "end": 2264.21, + "probability": 0.8723 + }, + { + "start": 2264.84, + "end": 2265.5, + "probability": 0.4981 + }, + { + "start": 2265.8, + "end": 2266.6, + "probability": 0.8611 + }, + { + "start": 2267.34, + "end": 2269.5, + "probability": 0.9519 + }, + { + "start": 2269.74, + "end": 2271.98, + "probability": 0.928 + }, + { + "start": 2272.04, + "end": 2272.64, + "probability": 0.8193 + }, + { + "start": 2273.22, + "end": 2278.08, + "probability": 0.856 + }, + { + "start": 2279.44, + "end": 2281.22, + "probability": 0.8079 + }, + { + "start": 2282.66, + "end": 2284.26, + "probability": 0.8383 + }, + { + "start": 2285.42, + "end": 2286.94, + "probability": 0.9171 + }, + { + "start": 2287.98, + "end": 2288.84, + "probability": 0.8104 + }, + { + "start": 2288.92, + "end": 2289.74, + "probability": 0.7622 + }, + { + "start": 2289.96, + "end": 2295.36, + "probability": 0.9755 + }, + { + "start": 2297.4, + "end": 2301.98, + "probability": 0.8281 + }, + { + "start": 2302.1, + "end": 2304.78, + "probability": 0.9824 + }, + { + "start": 2306.58, + "end": 2307.36, + "probability": 0.6973 + }, + { + "start": 2308.16, + "end": 2317.18, + "probability": 0.884 + }, + { + "start": 2319.72, + "end": 2321.34, + "probability": 0.6606 + }, + { + "start": 2321.9, + "end": 2324.24, + "probability": 0.738 + }, + { + "start": 2325.0, + "end": 2326.04, + "probability": 0.9985 + }, + { + "start": 2328.7, + "end": 2333.76, + "probability": 0.8282 + }, + { + "start": 2335.38, + "end": 2336.08, + "probability": 0.9297 + }, + { + "start": 2337.24, + "end": 2343.32, + "probability": 0.9795 + }, + { + "start": 2343.38, + "end": 2344.16, + "probability": 0.9598 + }, + { + "start": 2344.28, + "end": 2344.82, + "probability": 0.9303 + }, + { + "start": 2344.94, + "end": 2345.9, + "probability": 0.9651 + }, + { + "start": 2346.46, + "end": 2348.26, + "probability": 0.9968 + }, + { + "start": 2349.22, + "end": 2350.38, + "probability": 0.7617 + }, + { + "start": 2352.88, + "end": 2357.34, + "probability": 0.894 + }, + { + "start": 2357.58, + "end": 2358.64, + "probability": 0.1311 + }, + { + "start": 2359.88, + "end": 2360.48, + "probability": 0.3769 + }, + { + "start": 2360.64, + "end": 2360.64, + "probability": 0.4178 + }, + { + "start": 2360.74, + "end": 2363.82, + "probability": 0.9648 + }, + { + "start": 2364.56, + "end": 2365.9, + "probability": 0.7647 + }, + { + "start": 2366.5, + "end": 2373.74, + "probability": 0.9904 + }, + { + "start": 2374.64, + "end": 2376.04, + "probability": 0.9602 + }, + { + "start": 2376.52, + "end": 2378.28, + "probability": 0.9801 + }, + { + "start": 2378.58, + "end": 2387.6, + "probability": 0.9743 + }, + { + "start": 2388.22, + "end": 2390.12, + "probability": 0.9908 + }, + { + "start": 2392.72, + "end": 2394.58, + "probability": 0.9827 + }, + { + "start": 2397.86, + "end": 2398.56, + "probability": 0.817 + }, + { + "start": 2400.44, + "end": 2401.18, + "probability": 0.886 + }, + { + "start": 2401.74, + "end": 2404.12, + "probability": 0.7054 + }, + { + "start": 2405.62, + "end": 2407.36, + "probability": 0.9604 + }, + { + "start": 2408.66, + "end": 2410.1, + "probability": 0.9867 + }, + { + "start": 2413.1, + "end": 2416.98, + "probability": 0.6567 + }, + { + "start": 2418.46, + "end": 2422.72, + "probability": 0.9116 + }, + { + "start": 2424.26, + "end": 2428.32, + "probability": 0.9934 + }, + { + "start": 2430.18, + "end": 2431.2, + "probability": 0.7496 + }, + { + "start": 2432.36, + "end": 2433.01, + "probability": 0.8037 + }, + { + "start": 2435.0, + "end": 2436.9, + "probability": 0.7436 + }, + { + "start": 2438.3, + "end": 2443.68, + "probability": 0.8806 + }, + { + "start": 2444.42, + "end": 2445.1, + "probability": 0.7568 + }, + { + "start": 2446.38, + "end": 2449.98, + "probability": 0.9113 + }, + { + "start": 2452.64, + "end": 2454.8, + "probability": 0.9216 + }, + { + "start": 2455.54, + "end": 2457.82, + "probability": 0.7556 + }, + { + "start": 2459.26, + "end": 2463.76, + "probability": 0.9483 + }, + { + "start": 2464.44, + "end": 2465.56, + "probability": 0.9263 + }, + { + "start": 2467.38, + "end": 2468.02, + "probability": 0.8925 + }, + { + "start": 2471.18, + "end": 2473.8, + "probability": 0.9553 + }, + { + "start": 2475.88, + "end": 2477.98, + "probability": 0.9958 + }, + { + "start": 2479.06, + "end": 2481.48, + "probability": 0.9903 + }, + { + "start": 2482.3, + "end": 2483.7, + "probability": 0.8507 + }, + { + "start": 2486.84, + "end": 2488.96, + "probability": 0.9947 + }, + { + "start": 2490.3, + "end": 2495.08, + "probability": 0.9551 + }, + { + "start": 2495.76, + "end": 2503.66, + "probability": 0.8882 + }, + { + "start": 2505.5, + "end": 2511.14, + "probability": 0.9635 + }, + { + "start": 2511.14, + "end": 2518.86, + "probability": 0.9289 + }, + { + "start": 2520.36, + "end": 2527.0, + "probability": 0.9829 + }, + { + "start": 2529.04, + "end": 2538.4, + "probability": 0.9954 + }, + { + "start": 2539.5, + "end": 2541.38, + "probability": 0.9976 + }, + { + "start": 2542.56, + "end": 2543.32, + "probability": 0.8169 + }, + { + "start": 2545.86, + "end": 2546.74, + "probability": 0.8015 + }, + { + "start": 2547.8, + "end": 2551.66, + "probability": 0.8919 + }, + { + "start": 2552.4, + "end": 2556.28, + "probability": 0.9556 + }, + { + "start": 2558.02, + "end": 2561.14, + "probability": 0.6225 + }, + { + "start": 2562.48, + "end": 2566.58, + "probability": 0.7812 + }, + { + "start": 2567.34, + "end": 2573.38, + "probability": 0.9375 + }, + { + "start": 2574.44, + "end": 2575.76, + "probability": 0.932 + }, + { + "start": 2578.1, + "end": 2578.9, + "probability": 0.8929 + }, + { + "start": 2579.66, + "end": 2581.68, + "probability": 0.8493 + }, + { + "start": 2581.82, + "end": 2584.4, + "probability": 0.4769 + }, + { + "start": 2584.68, + "end": 2586.1, + "probability": 0.9646 + }, + { + "start": 2586.2, + "end": 2589.58, + "probability": 0.9068 + }, + { + "start": 2590.22, + "end": 2596.42, + "probability": 0.8449 + }, + { + "start": 2597.66, + "end": 2600.47, + "probability": 0.9609 + }, + { + "start": 2602.02, + "end": 2604.08, + "probability": 0.9159 + }, + { + "start": 2604.26, + "end": 2605.66, + "probability": 0.6624 + }, + { + "start": 2606.16, + "end": 2608.44, + "probability": 0.8788 + }, + { + "start": 2608.5, + "end": 2612.48, + "probability": 0.9186 + }, + { + "start": 2613.72, + "end": 2617.28, + "probability": 0.6048 + }, + { + "start": 2617.86, + "end": 2623.6, + "probability": 0.9767 + }, + { + "start": 2623.6, + "end": 2629.84, + "probability": 0.9766 + }, + { + "start": 2632.46, + "end": 2640.85, + "probability": 0.9594 + }, + { + "start": 2642.4, + "end": 2644.38, + "probability": 0.7939 + }, + { + "start": 2645.44, + "end": 2646.88, + "probability": 0.5933 + }, + { + "start": 2647.88, + "end": 2648.26, + "probability": 0.03 + }, + { + "start": 2649.62, + "end": 2651.92, + "probability": 0.6976 + }, + { + "start": 2652.76, + "end": 2653.6, + "probability": 0.703 + }, + { + "start": 2655.08, + "end": 2656.98, + "probability": 0.9893 + }, + { + "start": 2657.16, + "end": 2660.8, + "probability": 0.9966 + }, + { + "start": 2662.82, + "end": 2665.78, + "probability": 0.9921 + }, + { + "start": 2666.3, + "end": 2667.12, + "probability": 0.7645 + }, + { + "start": 2668.58, + "end": 2671.14, + "probability": 0.824 + }, + { + "start": 2672.72, + "end": 2673.3, + "probability": 0.6635 + }, + { + "start": 2675.36, + "end": 2677.56, + "probability": 0.8882 + }, + { + "start": 2678.26, + "end": 2679.62, + "probability": 0.9914 + }, + { + "start": 2680.34, + "end": 2687.1, + "probability": 0.8851 + }, + { + "start": 2687.12, + "end": 2688.0, + "probability": 0.7425 + }, + { + "start": 2688.48, + "end": 2690.28, + "probability": 0.9414 + }, + { + "start": 2692.18, + "end": 2693.94, + "probability": 0.8506 + }, + { + "start": 2694.4, + "end": 2696.4, + "probability": 0.8239 + }, + { + "start": 2697.58, + "end": 2699.94, + "probability": 0.9455 + }, + { + "start": 2701.08, + "end": 2703.9, + "probability": 0.9587 + }, + { + "start": 2704.0, + "end": 2704.62, + "probability": 0.7833 + }, + { + "start": 2704.86, + "end": 2710.72, + "probability": 0.9095 + }, + { + "start": 2710.84, + "end": 2711.74, + "probability": 0.7368 + }, + { + "start": 2713.08, + "end": 2717.6, + "probability": 0.9873 + }, + { + "start": 2717.6, + "end": 2720.12, + "probability": 0.9204 + }, + { + "start": 2720.84, + "end": 2722.3, + "probability": 0.708 + }, + { + "start": 2724.02, + "end": 2727.1, + "probability": 0.9529 + }, + { + "start": 2728.88, + "end": 2734.64, + "probability": 0.6916 + }, + { + "start": 2735.06, + "end": 2736.88, + "probability": 0.8328 + }, + { + "start": 2737.3, + "end": 2739.1, + "probability": 0.9537 + }, + { + "start": 2739.44, + "end": 2743.54, + "probability": 0.9357 + }, + { + "start": 2743.74, + "end": 2745.1, + "probability": 0.6011 + }, + { + "start": 2748.68, + "end": 2748.72, + "probability": 0.1293 + }, + { + "start": 2748.72, + "end": 2750.6, + "probability": 0.7192 + }, + { + "start": 2751.04, + "end": 2754.36, + "probability": 0.9097 + }, + { + "start": 2756.42, + "end": 2759.54, + "probability": 0.9576 + }, + { + "start": 2760.1, + "end": 2763.6, + "probability": 0.9883 + }, + { + "start": 2763.8, + "end": 2764.48, + "probability": 0.4168 + }, + { + "start": 2764.68, + "end": 2767.64, + "probability": 0.9927 + }, + { + "start": 2768.18, + "end": 2771.88, + "probability": 0.9913 + }, + { + "start": 2772.42, + "end": 2775.92, + "probability": 0.9341 + }, + { + "start": 2776.8, + "end": 2779.32, + "probability": 0.802 + }, + { + "start": 2779.34, + "end": 2782.42, + "probability": 0.861 + }, + { + "start": 2782.5, + "end": 2783.62, + "probability": 0.9919 + }, + { + "start": 2784.62, + "end": 2789.46, + "probability": 0.9415 + }, + { + "start": 2789.46, + "end": 2790.88, + "probability": 0.7584 + }, + { + "start": 2791.02, + "end": 2793.7, + "probability": 0.7598 + }, + { + "start": 2794.2, + "end": 2796.52, + "probability": 0.9052 + }, + { + "start": 2798.36, + "end": 2800.48, + "probability": 0.5997 + }, + { + "start": 2801.42, + "end": 2804.58, + "probability": 0.5294 + }, + { + "start": 2805.56, + "end": 2806.74, + "probability": 0.9766 + }, + { + "start": 2807.76, + "end": 2809.02, + "probability": 0.9495 + }, + { + "start": 2809.98, + "end": 2814.82, + "probability": 0.9853 + }, + { + "start": 2815.36, + "end": 2816.46, + "probability": 0.8809 + }, + { + "start": 2817.36, + "end": 2818.32, + "probability": 0.9734 + }, + { + "start": 2819.18, + "end": 2819.74, + "probability": 0.8471 + }, + { + "start": 2820.56, + "end": 2822.12, + "probability": 0.9924 + }, + { + "start": 2822.96, + "end": 2828.92, + "probability": 0.9967 + }, + { + "start": 2829.52, + "end": 2833.34, + "probability": 0.9897 + }, + { + "start": 2835.02, + "end": 2838.26, + "probability": 0.9971 + }, + { + "start": 2840.74, + "end": 2844.22, + "probability": 0.7634 + }, + { + "start": 2845.42, + "end": 2847.54, + "probability": 0.8937 + }, + { + "start": 2848.1, + "end": 2850.46, + "probability": 0.8863 + }, + { + "start": 2850.58, + "end": 2851.78, + "probability": 0.844 + }, + { + "start": 2853.72, + "end": 2857.78, + "probability": 0.955 + }, + { + "start": 2861.63, + "end": 2866.32, + "probability": 0.44 + }, + { + "start": 2867.48, + "end": 2868.36, + "probability": 0.6633 + }, + { + "start": 2870.42, + "end": 2873.76, + "probability": 0.9987 + }, + { + "start": 2874.5, + "end": 2878.36, + "probability": 0.996 + }, + { + "start": 2879.14, + "end": 2880.83, + "probability": 0.8903 + }, + { + "start": 2883.3, + "end": 2888.12, + "probability": 0.9382 + }, + { + "start": 2888.14, + "end": 2889.7, + "probability": 0.4621 + }, + { + "start": 2889.94, + "end": 2891.7, + "probability": 0.8362 + }, + { + "start": 2891.82, + "end": 2892.14, + "probability": 0.9137 + }, + { + "start": 2892.58, + "end": 2893.46, + "probability": 0.782 + }, + { + "start": 2895.46, + "end": 2900.58, + "probability": 0.9938 + }, + { + "start": 2900.58, + "end": 2907.0, + "probability": 0.977 + }, + { + "start": 2907.56, + "end": 2908.54, + "probability": 0.9345 + }, + { + "start": 2909.22, + "end": 2909.92, + "probability": 0.8585 + }, + { + "start": 2910.44, + "end": 2915.76, + "probability": 0.9971 + }, + { + "start": 2916.24, + "end": 2917.66, + "probability": 0.5776 + }, + { + "start": 2918.28, + "end": 2921.44, + "probability": 0.7204 + }, + { + "start": 2922.38, + "end": 2923.68, + "probability": 0.674 + }, + { + "start": 2925.1, + "end": 2931.26, + "probability": 0.9868 + }, + { + "start": 2933.7, + "end": 2935.58, + "probability": 0.6175 + }, + { + "start": 2936.8, + "end": 2939.16, + "probability": 0.9165 + }, + { + "start": 2940.7, + "end": 2946.9, + "probability": 0.9941 + }, + { + "start": 2948.44, + "end": 2953.2, + "probability": 0.9518 + }, + { + "start": 2953.72, + "end": 2955.8, + "probability": 0.9978 + }, + { + "start": 2956.46, + "end": 2958.94, + "probability": 0.7628 + }, + { + "start": 2959.96, + "end": 2960.8, + "probability": 0.8638 + }, + { + "start": 2961.42, + "end": 2962.46, + "probability": 0.6358 + }, + { + "start": 2963.8, + "end": 2967.02, + "probability": 0.9502 + }, + { + "start": 2967.54, + "end": 2975.98, + "probability": 0.9653 + }, + { + "start": 2976.54, + "end": 2980.08, + "probability": 0.9003 + }, + { + "start": 2981.1, + "end": 2981.4, + "probability": 0.8844 + }, + { + "start": 2982.06, + "end": 2984.32, + "probability": 0.9739 + }, + { + "start": 2984.5, + "end": 2985.2, + "probability": 0.9583 + }, + { + "start": 2986.36, + "end": 2989.34, + "probability": 0.5174 + }, + { + "start": 2990.16, + "end": 2991.12, + "probability": 0.7262 + }, + { + "start": 2991.2, + "end": 2996.68, + "probability": 0.9222 + }, + { + "start": 2997.12, + "end": 3000.12, + "probability": 0.9675 + }, + { + "start": 3000.94, + "end": 3007.5, + "probability": 0.946 + }, + { + "start": 3008.58, + "end": 3009.66, + "probability": 0.4998 + }, + { + "start": 3009.8, + "end": 3012.44, + "probability": 0.9661 + }, + { + "start": 3013.4, + "end": 3015.44, + "probability": 0.9721 + }, + { + "start": 3016.0, + "end": 3017.14, + "probability": 0.8417 + }, + { + "start": 3017.58, + "end": 3018.76, + "probability": 0.9501 + }, + { + "start": 3019.08, + "end": 3020.06, + "probability": 0.9431 + }, + { + "start": 3020.42, + "end": 3021.94, + "probability": 0.96 + }, + { + "start": 3022.66, + "end": 3027.92, + "probability": 0.968 + }, + { + "start": 3028.72, + "end": 3032.32, + "probability": 0.9497 + }, + { + "start": 3032.84, + "end": 3036.58, + "probability": 0.8492 + }, + { + "start": 3037.36, + "end": 3040.72, + "probability": 0.9907 + }, + { + "start": 3041.76, + "end": 3043.08, + "probability": 0.9447 + }, + { + "start": 3044.38, + "end": 3049.1, + "probability": 0.9821 + }, + { + "start": 3050.06, + "end": 3052.54, + "probability": 0.9827 + }, + { + "start": 3053.66, + "end": 3056.06, + "probability": 0.9669 + }, + { + "start": 3056.86, + "end": 3058.86, + "probability": 0.8342 + }, + { + "start": 3059.56, + "end": 3065.08, + "probability": 0.9588 + }, + { + "start": 3065.86, + "end": 3066.4, + "probability": 0.8448 + }, + { + "start": 3067.0, + "end": 3067.88, + "probability": 0.7241 + }, + { + "start": 3069.18, + "end": 3071.56, + "probability": 0.7768 + }, + { + "start": 3072.96, + "end": 3075.38, + "probability": 0.9937 + }, + { + "start": 3075.46, + "end": 3075.84, + "probability": 0.9606 + }, + { + "start": 3075.92, + "end": 3076.26, + "probability": 0.5295 + }, + { + "start": 3078.56, + "end": 3081.94, + "probability": 0.9923 + }, + { + "start": 3101.96, + "end": 3104.46, + "probability": 0.7314 + }, + { + "start": 3105.98, + "end": 3107.92, + "probability": 0.6392 + }, + { + "start": 3108.94, + "end": 3111.04, + "probability": 0.8192 + }, + { + "start": 3111.08, + "end": 3111.76, + "probability": 0.7899 + }, + { + "start": 3111.9, + "end": 3114.62, + "probability": 0.895 + }, + { + "start": 3114.68, + "end": 3116.06, + "probability": 0.7342 + }, + { + "start": 3116.08, + "end": 3116.96, + "probability": 0.9059 + }, + { + "start": 3119.1, + "end": 3119.34, + "probability": 0.6195 + }, + { + "start": 3120.25, + "end": 3125.24, + "probability": 0.8941 + }, + { + "start": 3125.5, + "end": 3127.46, + "probability": 0.1056 + }, + { + "start": 3127.52, + "end": 3128.52, + "probability": 0.5736 + }, + { + "start": 3130.48, + "end": 3132.68, + "probability": 0.9985 + }, + { + "start": 3133.66, + "end": 3134.26, + "probability": 0.9698 + }, + { + "start": 3134.4, + "end": 3136.74, + "probability": 0.9532 + }, + { + "start": 3138.7, + "end": 3139.22, + "probability": 0.6712 + }, + { + "start": 3141.42, + "end": 3147.7, + "probability": 0.9222 + }, + { + "start": 3147.82, + "end": 3151.62, + "probability": 0.9766 + }, + { + "start": 3153.48, + "end": 3158.08, + "probability": 0.985 + }, + { + "start": 3161.14, + "end": 3163.46, + "probability": 0.8049 + }, + { + "start": 3164.86, + "end": 3166.4, + "probability": 0.8843 + }, + { + "start": 3168.54, + "end": 3171.94, + "probability": 0.9829 + }, + { + "start": 3173.8, + "end": 3175.09, + "probability": 0.4998 + }, + { + "start": 3177.58, + "end": 3179.56, + "probability": 0.8387 + }, + { + "start": 3180.48, + "end": 3181.38, + "probability": 0.6539 + }, + { + "start": 3182.96, + "end": 3186.2, + "probability": 0.6909 + }, + { + "start": 3187.16, + "end": 3188.46, + "probability": 0.7476 + }, + { + "start": 3190.34, + "end": 3191.84, + "probability": 0.7448 + }, + { + "start": 3192.86, + "end": 3193.42, + "probability": 0.4961 + }, + { + "start": 3194.64, + "end": 3196.06, + "probability": 0.5608 + }, + { + "start": 3196.24, + "end": 3198.2, + "probability": 0.7203 + }, + { + "start": 3198.36, + "end": 3201.14, + "probability": 0.9322 + }, + { + "start": 3201.56, + "end": 3201.9, + "probability": 0.7904 + }, + { + "start": 3201.92, + "end": 3203.76, + "probability": 0.9779 + }, + { + "start": 3205.48, + "end": 3208.12, + "probability": 0.9907 + }, + { + "start": 3208.24, + "end": 3209.22, + "probability": 0.9617 + }, + { + "start": 3209.32, + "end": 3213.56, + "probability": 0.7676 + }, + { + "start": 3214.52, + "end": 3217.82, + "probability": 0.9965 + }, + { + "start": 3217.96, + "end": 3219.06, + "probability": 0.6371 + }, + { + "start": 3219.56, + "end": 3226.7, + "probability": 0.9967 + }, + { + "start": 3228.84, + "end": 3230.34, + "probability": 0.99 + }, + { + "start": 3231.26, + "end": 3231.7, + "probability": 0.7107 + }, + { + "start": 3231.82, + "end": 3232.74, + "probability": 0.9864 + }, + { + "start": 3232.86, + "end": 3235.8, + "probability": 0.9865 + }, + { + "start": 3236.12, + "end": 3237.24, + "probability": 0.9454 + }, + { + "start": 3237.28, + "end": 3239.34, + "probability": 0.9523 + }, + { + "start": 3239.36, + "end": 3240.62, + "probability": 0.9633 + }, + { + "start": 3240.76, + "end": 3241.72, + "probability": 0.9832 + }, + { + "start": 3243.99, + "end": 3244.34, + "probability": 0.4851 + }, + { + "start": 3244.34, + "end": 3249.98, + "probability": 0.9355 + }, + { + "start": 3250.86, + "end": 3251.06, + "probability": 0.4997 + }, + { + "start": 3251.18, + "end": 3251.32, + "probability": 0.8136 + }, + { + "start": 3251.4, + "end": 3252.48, + "probability": 0.9291 + }, + { + "start": 3252.58, + "end": 3252.96, + "probability": 0.6878 + }, + { + "start": 3253.12, + "end": 3253.42, + "probability": 0.7347 + }, + { + "start": 3255.18, + "end": 3256.54, + "probability": 0.8931 + }, + { + "start": 3258.4, + "end": 3260.44, + "probability": 0.9474 + }, + { + "start": 3261.26, + "end": 3262.38, + "probability": 0.8824 + }, + { + "start": 3262.46, + "end": 3264.76, + "probability": 0.9937 + }, + { + "start": 3266.2, + "end": 3269.84, + "probability": 0.9889 + }, + { + "start": 3272.08, + "end": 3273.4, + "probability": 0.8958 + }, + { + "start": 3273.48, + "end": 3277.7, + "probability": 0.9922 + }, + { + "start": 3278.66, + "end": 3281.62, + "probability": 0.9671 + }, + { + "start": 3282.14, + "end": 3282.26, + "probability": 0.8708 + }, + { + "start": 3282.34, + "end": 3282.8, + "probability": 0.7903 + }, + { + "start": 3283.08, + "end": 3284.0, + "probability": 0.9466 + }, + { + "start": 3284.1, + "end": 3284.24, + "probability": 0.5053 + }, + { + "start": 3284.28, + "end": 3284.48, + "probability": 0.9676 + }, + { + "start": 3284.52, + "end": 3287.9, + "probability": 0.9609 + }, + { + "start": 3288.7, + "end": 3290.39, + "probability": 0.9688 + }, + { + "start": 3290.94, + "end": 3291.42, + "probability": 0.8185 + }, + { + "start": 3292.62, + "end": 3295.34, + "probability": 0.7081 + }, + { + "start": 3296.14, + "end": 3296.8, + "probability": 0.4709 + }, + { + "start": 3296.96, + "end": 3300.96, + "probability": 0.4653 + }, + { + "start": 3300.98, + "end": 3304.7, + "probability": 0.9657 + }, + { + "start": 3304.78, + "end": 3305.62, + "probability": 0.714 + }, + { + "start": 3305.7, + "end": 3307.35, + "probability": 0.9487 + }, + { + "start": 3308.28, + "end": 3308.4, + "probability": 0.0389 + }, + { + "start": 3308.84, + "end": 3310.9, + "probability": 0.8507 + }, + { + "start": 3310.9, + "end": 3313.64, + "probability": 0.9334 + }, + { + "start": 3315.58, + "end": 3318.74, + "probability": 0.7788 + }, + { + "start": 3319.68, + "end": 3320.72, + "probability": 0.9976 + }, + { + "start": 3321.4, + "end": 3322.78, + "probability": 0.9685 + }, + { + "start": 3323.58, + "end": 3325.3, + "probability": 0.9884 + }, + { + "start": 3325.44, + "end": 3325.92, + "probability": 0.6525 + }, + { + "start": 3325.96, + "end": 3326.96, + "probability": 0.8982 + }, + { + "start": 3327.78, + "end": 3328.26, + "probability": 0.4595 + }, + { + "start": 3328.3, + "end": 3330.9, + "probability": 0.9148 + }, + { + "start": 3331.12, + "end": 3331.5, + "probability": 0.6278 + }, + { + "start": 3331.74, + "end": 3332.1, + "probability": 0.8438 + }, + { + "start": 3332.14, + "end": 3332.8, + "probability": 0.9348 + }, + { + "start": 3333.2, + "end": 3334.02, + "probability": 0.8636 + }, + { + "start": 3334.18, + "end": 3335.72, + "probability": 0.7109 + }, + { + "start": 3335.8, + "end": 3339.21, + "probability": 0.9775 + }, + { + "start": 3339.92, + "end": 3341.6, + "probability": 0.8842 + }, + { + "start": 3341.68, + "end": 3341.92, + "probability": 0.492 + }, + { + "start": 3341.96, + "end": 3342.2, + "probability": 0.8625 + }, + { + "start": 3342.34, + "end": 3343.2, + "probability": 0.8295 + }, + { + "start": 3343.84, + "end": 3347.48, + "probability": 0.9902 + }, + { + "start": 3347.7, + "end": 3348.02, + "probability": 0.7042 + }, + { + "start": 3348.76, + "end": 3353.96, + "probability": 0.9973 + }, + { + "start": 3353.96, + "end": 3354.82, + "probability": 0.5309 + }, + { + "start": 3355.5, + "end": 3357.78, + "probability": 0.9605 + }, + { + "start": 3357.84, + "end": 3361.1, + "probability": 0.9915 + }, + { + "start": 3361.66, + "end": 3362.32, + "probability": 0.8169 + }, + { + "start": 3362.42, + "end": 3366.67, + "probability": 0.8366 + }, + { + "start": 3367.06, + "end": 3368.82, + "probability": 0.9155 + }, + { + "start": 3368.92, + "end": 3371.12, + "probability": 0.963 + }, + { + "start": 3371.94, + "end": 3374.82, + "probability": 0.958 + }, + { + "start": 3375.0, + "end": 3376.67, + "probability": 0.9939 + }, + { + "start": 3377.04, + "end": 3378.3, + "probability": 0.7187 + }, + { + "start": 3378.3, + "end": 3378.96, + "probability": 0.6659 + }, + { + "start": 3379.1, + "end": 3381.0, + "probability": 0.7409 + }, + { + "start": 3382.46, + "end": 3383.14, + "probability": 0.9012 + }, + { + "start": 3383.2, + "end": 3384.76, + "probability": 0.9426 + }, + { + "start": 3384.82, + "end": 3385.98, + "probability": 0.9883 + }, + { + "start": 3387.3, + "end": 3390.3, + "probability": 0.9225 + }, + { + "start": 3390.96, + "end": 3391.76, + "probability": 0.9434 + }, + { + "start": 3392.92, + "end": 3394.88, + "probability": 0.8208 + }, + { + "start": 3395.08, + "end": 3397.16, + "probability": 0.9423 + }, + { + "start": 3397.28, + "end": 3399.36, + "probability": 0.9684 + }, + { + "start": 3399.48, + "end": 3400.56, + "probability": 0.7666 + }, + { + "start": 3400.98, + "end": 3403.5, + "probability": 0.9851 + }, + { + "start": 3404.14, + "end": 3409.21, + "probability": 0.9953 + }, + { + "start": 3410.38, + "end": 3411.38, + "probability": 0.8864 + }, + { + "start": 3412.08, + "end": 3413.12, + "probability": 0.7879 + }, + { + "start": 3413.74, + "end": 3415.75, + "probability": 0.9844 + }, + { + "start": 3416.6, + "end": 3416.68, + "probability": 0.4278 + }, + { + "start": 3416.72, + "end": 3417.08, + "probability": 0.839 + }, + { + "start": 3417.1, + "end": 3417.52, + "probability": 0.7965 + }, + { + "start": 3417.58, + "end": 3418.98, + "probability": 0.5088 + }, + { + "start": 3420.4, + "end": 3424.48, + "probability": 0.9865 + }, + { + "start": 3425.06, + "end": 3426.25, + "probability": 0.9652 + }, + { + "start": 3427.68, + "end": 3428.46, + "probability": 0.9971 + }, + { + "start": 3430.32, + "end": 3431.66, + "probability": 0.9897 + }, + { + "start": 3432.54, + "end": 3432.78, + "probability": 0.8069 + }, + { + "start": 3432.96, + "end": 3435.02, + "probability": 0.997 + }, + { + "start": 3435.04, + "end": 3436.38, + "probability": 0.9799 + }, + { + "start": 3437.18, + "end": 3438.96, + "probability": 0.9855 + }, + { + "start": 3439.98, + "end": 3440.92, + "probability": 0.7518 + }, + { + "start": 3441.88, + "end": 3445.44, + "probability": 0.7676 + }, + { + "start": 3445.98, + "end": 3447.26, + "probability": 0.958 + }, + { + "start": 3448.36, + "end": 3449.18, + "probability": 0.9514 + }, + { + "start": 3449.32, + "end": 3450.38, + "probability": 0.8541 + }, + { + "start": 3450.76, + "end": 3452.02, + "probability": 0.7424 + }, + { + "start": 3454.7, + "end": 3457.2, + "probability": 0.9716 + }, + { + "start": 3460.0, + "end": 3462.4, + "probability": 0.998 + }, + { + "start": 3463.78, + "end": 3465.34, + "probability": 0.8804 + }, + { + "start": 3466.08, + "end": 3467.22, + "probability": 0.9044 + }, + { + "start": 3468.46, + "end": 3469.44, + "probability": 0.8572 + }, + { + "start": 3469.6, + "end": 3473.68, + "probability": 0.9924 + }, + { + "start": 3473.68, + "end": 3477.12, + "probability": 0.9476 + }, + { + "start": 3479.78, + "end": 3482.48, + "probability": 0.9556 + }, + { + "start": 3484.66, + "end": 3485.6, + "probability": 0.9825 + }, + { + "start": 3487.2, + "end": 3487.8, + "probability": 0.795 + }, + { + "start": 3491.34, + "end": 3492.12, + "probability": 0.9717 + }, + { + "start": 3494.7, + "end": 3498.68, + "probability": 0.9442 + }, + { + "start": 3499.92, + "end": 3503.9, + "probability": 0.8858 + }, + { + "start": 3505.14, + "end": 3507.34, + "probability": 0.8348 + }, + { + "start": 3507.84, + "end": 3509.78, + "probability": 0.9899 + }, + { + "start": 3510.82, + "end": 3512.52, + "probability": 0.956 + }, + { + "start": 3512.56, + "end": 3516.48, + "probability": 0.9449 + }, + { + "start": 3518.16, + "end": 3519.62, + "probability": 0.6519 + }, + { + "start": 3519.66, + "end": 3520.16, + "probability": 0.6864 + }, + { + "start": 3520.88, + "end": 3521.51, + "probability": 0.4882 + }, + { + "start": 3521.66, + "end": 3522.52, + "probability": 0.9315 + }, + { + "start": 3522.62, + "end": 3523.48, + "probability": 0.7251 + }, + { + "start": 3523.6, + "end": 3526.44, + "probability": 0.9067 + }, + { + "start": 3526.62, + "end": 3527.32, + "probability": 0.7186 + }, + { + "start": 3527.34, + "end": 3527.74, + "probability": 0.437 + }, + { + "start": 3528.49, + "end": 3532.4, + "probability": 0.7314 + }, + { + "start": 3533.26, + "end": 3535.2, + "probability": 0.9525 + }, + { + "start": 3535.24, + "end": 3536.18, + "probability": 0.9639 + }, + { + "start": 3536.42, + "end": 3542.04, + "probability": 0.8743 + }, + { + "start": 3542.04, + "end": 3545.46, + "probability": 0.9956 + }, + { + "start": 3546.78, + "end": 3547.98, + "probability": 0.9963 + }, + { + "start": 3549.34, + "end": 3551.2, + "probability": 0.9912 + }, + { + "start": 3551.46, + "end": 3553.3, + "probability": 0.9958 + }, + { + "start": 3554.3, + "end": 3556.2, + "probability": 0.9121 + }, + { + "start": 3556.46, + "end": 3559.44, + "probability": 0.9849 + }, + { + "start": 3559.98, + "end": 3561.16, + "probability": 0.8724 + }, + { + "start": 3561.52, + "end": 3562.36, + "probability": 0.9115 + }, + { + "start": 3562.46, + "end": 3563.3, + "probability": 0.9739 + }, + { + "start": 3563.56, + "end": 3564.52, + "probability": 0.7517 + }, + { + "start": 3564.92, + "end": 3566.98, + "probability": 0.745 + }, + { + "start": 3567.02, + "end": 3568.18, + "probability": 0.8007 + }, + { + "start": 3568.56, + "end": 3569.58, + "probability": 0.9797 + }, + { + "start": 3569.8, + "end": 3573.4, + "probability": 0.9967 + }, + { + "start": 3574.2, + "end": 3576.4, + "probability": 0.9384 + }, + { + "start": 3576.5, + "end": 3577.72, + "probability": 0.946 + }, + { + "start": 3578.34, + "end": 3579.12, + "probability": 0.7594 + }, + { + "start": 3580.36, + "end": 3581.44, + "probability": 0.9688 + }, + { + "start": 3584.34, + "end": 3585.54, + "probability": 0.8634 + }, + { + "start": 3587.28, + "end": 3589.07, + "probability": 0.7972 + }, + { + "start": 3589.96, + "end": 3590.88, + "probability": 0.8563 + }, + { + "start": 3591.68, + "end": 3592.57, + "probability": 0.9873 + }, + { + "start": 3594.52, + "end": 3597.74, + "probability": 0.9978 + }, + { + "start": 3598.58, + "end": 3600.22, + "probability": 0.5718 + }, + { + "start": 3602.84, + "end": 3604.16, + "probability": 0.9886 + }, + { + "start": 3605.18, + "end": 3606.58, + "probability": 0.9688 + }, + { + "start": 3606.74, + "end": 3609.96, + "probability": 0.677 + }, + { + "start": 3610.56, + "end": 3611.23, + "probability": 0.9616 + }, + { + "start": 3611.46, + "end": 3614.54, + "probability": 0.9771 + }, + { + "start": 3614.62, + "end": 3616.32, + "probability": 0.7645 + }, + { + "start": 3617.1, + "end": 3619.22, + "probability": 0.9727 + }, + { + "start": 3620.66, + "end": 3622.64, + "probability": 0.9976 + }, + { + "start": 3623.51, + "end": 3627.82, + "probability": 0.9698 + }, + { + "start": 3628.66, + "end": 3629.06, + "probability": 0.4814 + }, + { + "start": 3629.1, + "end": 3631.94, + "probability": 0.9934 + }, + { + "start": 3632.34, + "end": 3636.48, + "probability": 0.973 + }, + { + "start": 3636.92, + "end": 3638.74, + "probability": 0.6228 + }, + { + "start": 3639.62, + "end": 3640.16, + "probability": 0.8416 + }, + { + "start": 3640.44, + "end": 3641.2, + "probability": 0.5982 + }, + { + "start": 3641.34, + "end": 3643.34, + "probability": 0.5648 + }, + { + "start": 3643.66, + "end": 3647.18, + "probability": 0.9177 + }, + { + "start": 3647.4, + "end": 3648.12, + "probability": 0.8197 + }, + { + "start": 3648.18, + "end": 3648.56, + "probability": 0.7388 + }, + { + "start": 3648.6, + "end": 3649.44, + "probability": 0.9551 + }, + { + "start": 3649.48, + "end": 3650.68, + "probability": 0.9819 + }, + { + "start": 3650.76, + "end": 3651.08, + "probability": 0.8505 + }, + { + "start": 3651.12, + "end": 3653.74, + "probability": 0.9756 + }, + { + "start": 3653.82, + "end": 3655.04, + "probability": 0.9958 + }, + { + "start": 3655.18, + "end": 3655.79, + "probability": 0.9606 + }, + { + "start": 3656.34, + "end": 3657.36, + "probability": 0.8446 + }, + { + "start": 3659.2, + "end": 3660.72, + "probability": 0.9456 + }, + { + "start": 3662.36, + "end": 3663.32, + "probability": 0.6614 + }, + { + "start": 3663.38, + "end": 3665.72, + "probability": 0.925 + }, + { + "start": 3665.82, + "end": 3666.48, + "probability": 0.9647 + }, + { + "start": 3668.16, + "end": 3669.68, + "probability": 0.6694 + }, + { + "start": 3669.8, + "end": 3672.84, + "probability": 0.7672 + }, + { + "start": 3673.08, + "end": 3673.88, + "probability": 0.8058 + }, + { + "start": 3675.24, + "end": 3677.18, + "probability": 0.6575 + }, + { + "start": 3678.68, + "end": 3682.4, + "probability": 0.9957 + }, + { + "start": 3683.48, + "end": 3685.02, + "probability": 0.8844 + }, + { + "start": 3686.0, + "end": 3686.88, + "probability": 0.7031 + }, + { + "start": 3688.78, + "end": 3690.04, + "probability": 0.8259 + }, + { + "start": 3691.34, + "end": 3695.82, + "probability": 0.9976 + }, + { + "start": 3696.0, + "end": 3696.66, + "probability": 0.5021 + }, + { + "start": 3697.14, + "end": 3698.48, + "probability": 0.8238 + }, + { + "start": 3699.34, + "end": 3700.18, + "probability": 0.9856 + }, + { + "start": 3701.22, + "end": 3701.46, + "probability": 0.8057 + }, + { + "start": 3703.22, + "end": 3707.08, + "probability": 0.918 + }, + { + "start": 3709.1, + "end": 3710.46, + "probability": 0.9071 + }, + { + "start": 3712.24, + "end": 3714.46, + "probability": 0.7955 + }, + { + "start": 3714.6, + "end": 3715.66, + "probability": 0.9055 + }, + { + "start": 3719.74, + "end": 3720.32, + "probability": 0.8801 + }, + { + "start": 3723.02, + "end": 3724.08, + "probability": 0.7257 + }, + { + "start": 3725.84, + "end": 3726.67, + "probability": 0.9893 + }, + { + "start": 3727.32, + "end": 3727.92, + "probability": 0.8618 + }, + { + "start": 3728.28, + "end": 3729.44, + "probability": 0.7719 + }, + { + "start": 3733.72, + "end": 3736.72, + "probability": 0.9432 + }, + { + "start": 3738.72, + "end": 3740.16, + "probability": 0.8049 + }, + { + "start": 3740.82, + "end": 3742.32, + "probability": 0.9348 + }, + { + "start": 3742.38, + "end": 3744.38, + "probability": 0.9571 + }, + { + "start": 3744.5, + "end": 3745.15, + "probability": 0.8195 + }, + { + "start": 3746.76, + "end": 3751.22, + "probability": 0.9924 + }, + { + "start": 3752.96, + "end": 3756.64, + "probability": 0.9949 + }, + { + "start": 3756.88, + "end": 3758.82, + "probability": 0.9243 + }, + { + "start": 3761.74, + "end": 3762.29, + "probability": 0.7954 + }, + { + "start": 3763.2, + "end": 3765.1, + "probability": 0.5823 + }, + { + "start": 3766.5, + "end": 3769.76, + "probability": 0.9433 + }, + { + "start": 3771.68, + "end": 3773.1, + "probability": 0.9831 + }, + { + "start": 3773.24, + "end": 3774.2, + "probability": 0.9168 + }, + { + "start": 3774.68, + "end": 3775.34, + "probability": 0.6752 + }, + { + "start": 3777.72, + "end": 3779.17, + "probability": 0.7778 + }, + { + "start": 3780.94, + "end": 3782.84, + "probability": 0.9744 + }, + { + "start": 3782.96, + "end": 3783.88, + "probability": 0.9345 + }, + { + "start": 3785.24, + "end": 3787.11, + "probability": 0.9152 + }, + { + "start": 3788.06, + "end": 3791.88, + "probability": 0.9229 + }, + { + "start": 3794.32, + "end": 3795.36, + "probability": 0.9341 + }, + { + "start": 3795.74, + "end": 3796.92, + "probability": 0.7996 + }, + { + "start": 3797.02, + "end": 3798.06, + "probability": 0.853 + }, + { + "start": 3798.18, + "end": 3798.48, + "probability": 0.2842 + }, + { + "start": 3798.48, + "end": 3798.92, + "probability": 0.6479 + }, + { + "start": 3799.28, + "end": 3800.88, + "probability": 0.8678 + }, + { + "start": 3802.2, + "end": 3804.2, + "probability": 0.9974 + }, + { + "start": 3807.12, + "end": 3807.88, + "probability": 0.7267 + }, + { + "start": 3808.1, + "end": 3810.32, + "probability": 0.9834 + }, + { + "start": 3810.4, + "end": 3811.6, + "probability": 0.8466 + }, + { + "start": 3811.9, + "end": 3813.16, + "probability": 0.9394 + }, + { + "start": 3813.24, + "end": 3817.6, + "probability": 0.9958 + }, + { + "start": 3818.36, + "end": 3820.7, + "probability": 0.9395 + }, + { + "start": 3821.26, + "end": 3822.7, + "probability": 0.8688 + }, + { + "start": 3823.82, + "end": 3826.1, + "probability": 0.9985 + }, + { + "start": 3826.28, + "end": 3830.42, + "probability": 0.9777 + }, + { + "start": 3833.34, + "end": 3834.34, + "probability": 0.7638 + }, + { + "start": 3835.34, + "end": 3837.36, + "probability": 0.9856 + }, + { + "start": 3838.06, + "end": 3840.7, + "probability": 0.996 + }, + { + "start": 3842.56, + "end": 3843.94, + "probability": 0.9485 + }, + { + "start": 3847.42, + "end": 3848.92, + "probability": 0.99 + }, + { + "start": 3850.76, + "end": 3855.4, + "probability": 0.9933 + }, + { + "start": 3857.74, + "end": 3860.58, + "probability": 0.9919 + }, + { + "start": 3861.14, + "end": 3863.78, + "probability": 0.9751 + }, + { + "start": 3867.0, + "end": 3869.24, + "probability": 0.6755 + }, + { + "start": 3871.18, + "end": 3873.76, + "probability": 0.9961 + }, + { + "start": 3874.04, + "end": 3875.03, + "probability": 0.9917 + }, + { + "start": 3876.52, + "end": 3879.82, + "probability": 0.9969 + }, + { + "start": 3879.82, + "end": 3882.52, + "probability": 0.9772 + }, + { + "start": 3882.6, + "end": 3885.18, + "probability": 0.6784 + }, + { + "start": 3885.4, + "end": 3885.76, + "probability": 0.6613 + }, + { + "start": 3885.98, + "end": 3887.16, + "probability": 0.9608 + }, + { + "start": 3887.8, + "end": 3888.8, + "probability": 0.645 + }, + { + "start": 3890.14, + "end": 3891.42, + "probability": 0.9678 + }, + { + "start": 3891.44, + "end": 3891.82, + "probability": 0.6753 + }, + { + "start": 3891.84, + "end": 3893.86, + "probability": 0.8008 + }, + { + "start": 3894.6, + "end": 3896.96, + "probability": 0.9521 + }, + { + "start": 3897.74, + "end": 3898.64, + "probability": 0.8855 + }, + { + "start": 3898.74, + "end": 3899.6, + "probability": 0.8496 + }, + { + "start": 3899.84, + "end": 3900.22, + "probability": 0.9863 + }, + { + "start": 3900.5, + "end": 3901.26, + "probability": 0.9358 + }, + { + "start": 3907.1, + "end": 3909.7, + "probability": 0.9967 + }, + { + "start": 3911.22, + "end": 3913.5, + "probability": 0.993 + }, + { + "start": 3914.02, + "end": 3915.3, + "probability": 0.8785 + }, + { + "start": 3916.16, + "end": 3918.1, + "probability": 0.9845 + }, + { + "start": 3919.78, + "end": 3922.46, + "probability": 0.9785 + }, + { + "start": 3924.2, + "end": 3925.54, + "probability": 0.8882 + }, + { + "start": 3925.99, + "end": 3929.11, + "probability": 0.89 + }, + { + "start": 3929.34, + "end": 3929.8, + "probability": 0.7261 + }, + { + "start": 3929.98, + "end": 3930.2, + "probability": 0.6922 + }, + { + "start": 3930.28, + "end": 3932.03, + "probability": 0.9116 + }, + { + "start": 3932.64, + "end": 3933.68, + "probability": 0.9819 + }, + { + "start": 3933.94, + "end": 3935.82, + "probability": 0.9597 + }, + { + "start": 3936.44, + "end": 3939.48, + "probability": 0.9778 + }, + { + "start": 3940.88, + "end": 3942.48, + "probability": 0.8527 + }, + { + "start": 3943.54, + "end": 3945.8, + "probability": 0.9696 + }, + { + "start": 3947.36, + "end": 3948.34, + "probability": 0.9777 + }, + { + "start": 3949.68, + "end": 3950.6, + "probability": 0.7498 + }, + { + "start": 3952.86, + "end": 3954.3, + "probability": 0.8594 + }, + { + "start": 3956.7, + "end": 3957.6, + "probability": 0.991 + }, + { + "start": 3958.68, + "end": 3961.46, + "probability": 0.987 + }, + { + "start": 3962.98, + "end": 3965.54, + "probability": 0.8197 + }, + { + "start": 3966.48, + "end": 3969.89, + "probability": 0.9966 + }, + { + "start": 3970.26, + "end": 3973.46, + "probability": 0.9891 + }, + { + "start": 3974.92, + "end": 3977.22, + "probability": 0.9662 + }, + { + "start": 3977.42, + "end": 3978.36, + "probability": 0.8523 + }, + { + "start": 3979.02, + "end": 3981.56, + "probability": 0.8093 + }, + { + "start": 3983.18, + "end": 3984.2, + "probability": 0.9899 + }, + { + "start": 3985.1, + "end": 3988.84, + "probability": 0.8691 + }, + { + "start": 3990.02, + "end": 3992.88, + "probability": 0.9917 + }, + { + "start": 3994.22, + "end": 3999.04, + "probability": 0.7993 + }, + { + "start": 4000.52, + "end": 4003.48, + "probability": 0.9394 + }, + { + "start": 4005.18, + "end": 4005.96, + "probability": 0.9495 + }, + { + "start": 4006.74, + "end": 4010.3, + "probability": 0.9784 + }, + { + "start": 4010.36, + "end": 4010.58, + "probability": 0.6466 + }, + { + "start": 4011.0, + "end": 4012.22, + "probability": 0.8247 + }, + { + "start": 4012.62, + "end": 4013.14, + "probability": 0.9988 + }, + { + "start": 4013.88, + "end": 4015.24, + "probability": 0.9672 + }, + { + "start": 4017.06, + "end": 4018.22, + "probability": 0.9946 + }, + { + "start": 4019.94, + "end": 4020.28, + "probability": 0.7377 + }, + { + "start": 4021.72, + "end": 4026.92, + "probability": 0.9907 + }, + { + "start": 4026.98, + "end": 4027.92, + "probability": 0.3992 + }, + { + "start": 4029.3, + "end": 4031.72, + "probability": 0.937 + }, + { + "start": 4032.58, + "end": 4035.48, + "probability": 0.94 + }, + { + "start": 4036.96, + "end": 4037.83, + "probability": 0.9961 + }, + { + "start": 4039.64, + "end": 4040.5, + "probability": 0.9508 + }, + { + "start": 4040.58, + "end": 4043.64, + "probability": 0.998 + }, + { + "start": 4044.12, + "end": 4046.04, + "probability": 0.9523 + }, + { + "start": 4046.2, + "end": 4047.1, + "probability": 0.9995 + }, + { + "start": 4048.1, + "end": 4048.54, + "probability": 0.7531 + }, + { + "start": 4050.18, + "end": 4050.54, + "probability": 0.5857 + }, + { + "start": 4051.62, + "end": 4055.5, + "probability": 0.9949 + }, + { + "start": 4057.28, + "end": 4058.66, + "probability": 0.9625 + }, + { + "start": 4059.8, + "end": 4061.2, + "probability": 0.7181 + }, + { + "start": 4061.28, + "end": 4063.16, + "probability": 0.7167 + }, + { + "start": 4080.86, + "end": 4081.14, + "probability": 0.717 + }, + { + "start": 4081.14, + "end": 4082.12, + "probability": 0.527 + }, + { + "start": 4082.28, + "end": 4082.84, + "probability": 0.861 + }, + { + "start": 4084.32, + "end": 4086.76, + "probability": 0.5659 + }, + { + "start": 4088.4, + "end": 4093.92, + "probability": 0.9725 + }, + { + "start": 4095.42, + "end": 4101.96, + "probability": 0.9766 + }, + { + "start": 4103.7, + "end": 4105.88, + "probability": 0.967 + }, + { + "start": 4106.72, + "end": 4111.28, + "probability": 0.9998 + }, + { + "start": 4115.12, + "end": 4116.9, + "probability": 0.9498 + }, + { + "start": 4117.46, + "end": 4118.6, + "probability": 0.4857 + }, + { + "start": 4119.6, + "end": 4120.44, + "probability": 0.8898 + }, + { + "start": 4121.42, + "end": 4124.46, + "probability": 0.9043 + }, + { + "start": 4125.3, + "end": 4128.08, + "probability": 0.7674 + }, + { + "start": 4129.44, + "end": 4132.12, + "probability": 0.9966 + }, + { + "start": 4133.5, + "end": 4136.74, + "probability": 0.9103 + }, + { + "start": 4137.32, + "end": 4138.74, + "probability": 0.9958 + }, + { + "start": 4139.4, + "end": 4140.86, + "probability": 0.9758 + }, + { + "start": 4142.84, + "end": 4147.18, + "probability": 0.9987 + }, + { + "start": 4148.36, + "end": 4150.36, + "probability": 0.9722 + }, + { + "start": 4150.92, + "end": 4153.98, + "probability": 0.9755 + }, + { + "start": 4154.82, + "end": 4158.26, + "probability": 0.9836 + }, + { + "start": 4158.7, + "end": 4159.12, + "probability": 0.5997 + }, + { + "start": 4159.26, + "end": 4159.42, + "probability": 0.9581 + }, + { + "start": 4159.68, + "end": 4160.18, + "probability": 0.9606 + }, + { + "start": 4160.66, + "end": 4162.98, + "probability": 0.981 + }, + { + "start": 4164.78, + "end": 4167.86, + "probability": 0.9612 + }, + { + "start": 4169.5, + "end": 4171.9, + "probability": 0.8362 + }, + { + "start": 4173.2, + "end": 4173.52, + "probability": 0.6874 + }, + { + "start": 4175.18, + "end": 4178.58, + "probability": 0.9486 + }, + { + "start": 4179.84, + "end": 4185.42, + "probability": 0.9956 + }, + { + "start": 4185.64, + "end": 4185.74, + "probability": 0.7361 + }, + { + "start": 4187.16, + "end": 4188.1, + "probability": 0.9901 + }, + { + "start": 4190.22, + "end": 4192.9, + "probability": 0.9737 + }, + { + "start": 4193.96, + "end": 4194.5, + "probability": 0.9109 + }, + { + "start": 4195.1, + "end": 4196.4, + "probability": 0.9714 + }, + { + "start": 4197.88, + "end": 4199.24, + "probability": 0.8844 + }, + { + "start": 4200.26, + "end": 4200.86, + "probability": 0.7441 + }, + { + "start": 4202.44, + "end": 4203.04, + "probability": 0.7712 + }, + { + "start": 4204.74, + "end": 4207.78, + "probability": 0.9958 + }, + { + "start": 4209.3, + "end": 4210.46, + "probability": 0.9782 + }, + { + "start": 4211.66, + "end": 4214.34, + "probability": 0.7647 + }, + { + "start": 4215.44, + "end": 4218.34, + "probability": 0.9546 + }, + { + "start": 4218.8, + "end": 4222.24, + "probability": 0.9968 + }, + { + "start": 4222.9, + "end": 4225.4, + "probability": 0.7088 + }, + { + "start": 4225.66, + "end": 4231.42, + "probability": 0.9557 + }, + { + "start": 4232.64, + "end": 4236.58, + "probability": 0.9556 + }, + { + "start": 4236.62, + "end": 4237.14, + "probability": 0.4719 + }, + { + "start": 4237.86, + "end": 4240.24, + "probability": 0.9889 + }, + { + "start": 4240.86, + "end": 4242.46, + "probability": 0.962 + }, + { + "start": 4244.04, + "end": 4244.86, + "probability": 0.8936 + }, + { + "start": 4246.7, + "end": 4248.76, + "probability": 0.7744 + }, + { + "start": 4250.76, + "end": 4251.0, + "probability": 0.5862 + }, + { + "start": 4251.08, + "end": 4252.26, + "probability": 0.8578 + }, + { + "start": 4252.36, + "end": 4252.6, + "probability": 0.9432 + }, + { + "start": 4252.74, + "end": 4255.3, + "probability": 0.9853 + }, + { + "start": 4255.62, + "end": 4256.48, + "probability": 0.9208 + }, + { + "start": 4256.54, + "end": 4257.36, + "probability": 0.9193 + }, + { + "start": 4258.16, + "end": 4258.58, + "probability": 0.9281 + }, + { + "start": 4259.32, + "end": 4259.9, + "probability": 0.9258 + }, + { + "start": 4261.18, + "end": 4268.38, + "probability": 0.9385 + }, + { + "start": 4269.64, + "end": 4270.22, + "probability": 0.95 + }, + { + "start": 4271.02, + "end": 4271.36, + "probability": 0.239 + }, + { + "start": 4271.46, + "end": 4272.98, + "probability": 0.8394 + }, + { + "start": 4273.14, + "end": 4273.22, + "probability": 0.3105 + }, + { + "start": 4273.36, + "end": 4274.72, + "probability": 0.848 + }, + { + "start": 4274.82, + "end": 4275.44, + "probability": 0.9285 + }, + { + "start": 4277.42, + "end": 4280.3, + "probability": 0.9825 + }, + { + "start": 4282.64, + "end": 4283.74, + "probability": 0.9791 + }, + { + "start": 4284.82, + "end": 4288.2, + "probability": 0.9396 + }, + { + "start": 4289.58, + "end": 4292.58, + "probability": 0.9979 + }, + { + "start": 4294.0, + "end": 4296.3, + "probability": 0.886 + }, + { + "start": 4296.4, + "end": 4299.82, + "probability": 0.9846 + }, + { + "start": 4300.92, + "end": 4304.52, + "probability": 0.982 + }, + { + "start": 4304.96, + "end": 4306.94, + "probability": 0.9688 + }, + { + "start": 4307.32, + "end": 4310.02, + "probability": 0.9985 + }, + { + "start": 4311.02, + "end": 4313.72, + "probability": 0.9945 + }, + { + "start": 4315.1, + "end": 4315.1, + "probability": 0.3161 + }, + { + "start": 4316.5, + "end": 4317.48, + "probability": 0.919 + }, + { + "start": 4318.0, + "end": 4319.9, + "probability": 0.9961 + }, + { + "start": 4320.58, + "end": 4325.58, + "probability": 0.8995 + }, + { + "start": 4327.02, + "end": 4329.34, + "probability": 0.9939 + }, + { + "start": 4330.26, + "end": 4331.04, + "probability": 0.8055 + }, + { + "start": 4331.72, + "end": 4332.68, + "probability": 0.8879 + }, + { + "start": 4333.24, + "end": 4333.92, + "probability": 0.9828 + }, + { + "start": 4337.72, + "end": 4343.44, + "probability": 0.9954 + }, + { + "start": 4343.58, + "end": 4344.82, + "probability": 0.8563 + }, + { + "start": 4345.66, + "end": 4346.42, + "probability": 0.9861 + }, + { + "start": 4348.16, + "end": 4352.2, + "probability": 0.9768 + }, + { + "start": 4352.96, + "end": 4354.54, + "probability": 0.9981 + }, + { + "start": 4355.2, + "end": 4357.86, + "probability": 0.9922 + }, + { + "start": 4358.5, + "end": 4359.46, + "probability": 0.9888 + }, + { + "start": 4360.68, + "end": 4365.36, + "probability": 0.9966 + }, + { + "start": 4365.36, + "end": 4372.08, + "probability": 0.9908 + }, + { + "start": 4373.58, + "end": 4375.22, + "probability": 0.9901 + }, + { + "start": 4376.22, + "end": 4376.9, + "probability": 0.9383 + }, + { + "start": 4377.58, + "end": 4386.02, + "probability": 0.9835 + }, + { + "start": 4386.12, + "end": 4387.06, + "probability": 0.8299 + }, + { + "start": 4387.38, + "end": 4389.12, + "probability": 0.9762 + }, + { + "start": 4390.24, + "end": 4390.92, + "probability": 0.6974 + }, + { + "start": 4391.56, + "end": 4393.1, + "probability": 0.7565 + }, + { + "start": 4393.86, + "end": 4397.98, + "probability": 0.8094 + }, + { + "start": 4398.82, + "end": 4400.32, + "probability": 0.8606 + }, + { + "start": 4400.92, + "end": 4401.8, + "probability": 0.9912 + }, + { + "start": 4402.56, + "end": 4404.84, + "probability": 0.5385 + }, + { + "start": 4405.46, + "end": 4407.4, + "probability": 0.9873 + }, + { + "start": 4408.26, + "end": 4412.02, + "probability": 0.8228 + }, + { + "start": 4412.58, + "end": 4413.34, + "probability": 0.9038 + }, + { + "start": 4413.42, + "end": 4415.54, + "probability": 0.9848 + }, + { + "start": 4415.98, + "end": 4419.1, + "probability": 0.9834 + }, + { + "start": 4419.44, + "end": 4420.4, + "probability": 0.9619 + }, + { + "start": 4420.82, + "end": 4421.68, + "probability": 0.895 + }, + { + "start": 4421.82, + "end": 4423.78, + "probability": 0.7373 + }, + { + "start": 4423.84, + "end": 4425.3, + "probability": 0.8672 + }, + { + "start": 4426.0, + "end": 4430.86, + "probability": 0.984 + }, + { + "start": 4431.5, + "end": 4435.04, + "probability": 0.8313 + }, + { + "start": 4435.16, + "end": 4436.42, + "probability": 0.8651 + }, + { + "start": 4437.16, + "end": 4437.96, + "probability": 0.5034 + }, + { + "start": 4438.12, + "end": 4443.82, + "probability": 0.9627 + }, + { + "start": 4443.82, + "end": 4448.16, + "probability": 0.9982 + }, + { + "start": 4448.16, + "end": 4452.72, + "probability": 0.9991 + }, + { + "start": 4452.9, + "end": 4453.78, + "probability": 0.6915 + }, + { + "start": 4454.34, + "end": 4455.58, + "probability": 0.9416 + }, + { + "start": 4456.16, + "end": 4460.3, + "probability": 0.883 + }, + { + "start": 4460.74, + "end": 4462.4, + "probability": 0.7856 + }, + { + "start": 4463.2, + "end": 4469.82, + "probability": 0.9714 + }, + { + "start": 4470.5, + "end": 4473.84, + "probability": 0.9323 + }, + { + "start": 4474.42, + "end": 4476.34, + "probability": 0.9902 + }, + { + "start": 4478.22, + "end": 4479.06, + "probability": 0.7442 + }, + { + "start": 4480.66, + "end": 4480.72, + "probability": 0.8447 + }, + { + "start": 4483.5, + "end": 4491.7, + "probability": 0.999 + }, + { + "start": 4492.06, + "end": 4492.36, + "probability": 0.7875 + }, + { + "start": 4494.04, + "end": 4498.88, + "probability": 0.9988 + }, + { + "start": 4498.94, + "end": 4499.56, + "probability": 0.9518 + }, + { + "start": 4500.62, + "end": 4502.6, + "probability": 0.9908 + }, + { + "start": 4503.64, + "end": 4507.02, + "probability": 0.9971 + }, + { + "start": 4507.02, + "end": 4510.58, + "probability": 0.999 + }, + { + "start": 4510.68, + "end": 4512.24, + "probability": 0.836 + }, + { + "start": 4513.24, + "end": 4514.66, + "probability": 0.7234 + }, + { + "start": 4515.45, + "end": 4518.12, + "probability": 0.9834 + }, + { + "start": 4518.18, + "end": 4519.48, + "probability": 0.7897 + }, + { + "start": 4520.5, + "end": 4525.56, + "probability": 0.6188 + }, + { + "start": 4526.26, + "end": 4527.12, + "probability": 0.7435 + }, + { + "start": 4527.32, + "end": 4530.14, + "probability": 0.9956 + }, + { + "start": 4530.88, + "end": 4537.14, + "probability": 0.9269 + }, + { + "start": 4538.22, + "end": 4540.04, + "probability": 0.8608 + }, + { + "start": 4540.88, + "end": 4541.78, + "probability": 0.9142 + }, + { + "start": 4543.08, + "end": 4545.74, + "probability": 0.9193 + }, + { + "start": 4546.46, + "end": 4549.66, + "probability": 0.9538 + }, + { + "start": 4550.14, + "end": 4552.48, + "probability": 0.9908 + }, + { + "start": 4552.48, + "end": 4556.38, + "probability": 0.9922 + }, + { + "start": 4557.48, + "end": 4558.2, + "probability": 0.7639 + }, + { + "start": 4561.22, + "end": 4562.0, + "probability": 0.9701 + }, + { + "start": 4562.48, + "end": 4567.06, + "probability": 0.9812 + }, + { + "start": 4567.66, + "end": 4570.9, + "probability": 0.9969 + }, + { + "start": 4571.98, + "end": 4575.44, + "probability": 0.9285 + }, + { + "start": 4575.6, + "end": 4576.06, + "probability": 0.9806 + }, + { + "start": 4577.14, + "end": 4580.36, + "probability": 0.9883 + }, + { + "start": 4580.9, + "end": 4582.2, + "probability": 0.9888 + }, + { + "start": 4582.38, + "end": 4584.46, + "probability": 0.937 + }, + { + "start": 4584.88, + "end": 4586.64, + "probability": 0.8351 + }, + { + "start": 4587.16, + "end": 4588.0, + "probability": 0.9109 + }, + { + "start": 4589.22, + "end": 4590.68, + "probability": 0.814 + }, + { + "start": 4593.12, + "end": 4595.0, + "probability": 0.9877 + }, + { + "start": 4596.44, + "end": 4604.34, + "probability": 0.931 + }, + { + "start": 4605.16, + "end": 4606.32, + "probability": 0.9658 + }, + { + "start": 4607.62, + "end": 4609.38, + "probability": 0.8871 + }, + { + "start": 4610.5, + "end": 4612.66, + "probability": 0.8736 + }, + { + "start": 4612.94, + "end": 4615.02, + "probability": 0.9404 + }, + { + "start": 4615.48, + "end": 4617.37, + "probability": 0.9886 + }, + { + "start": 4619.04, + "end": 4620.58, + "probability": 0.9282 + }, + { + "start": 4621.96, + "end": 4624.14, + "probability": 0.9482 + }, + { + "start": 4625.32, + "end": 4629.98, + "probability": 0.9878 + }, + { + "start": 4630.74, + "end": 4632.4, + "probability": 0.9937 + }, + { + "start": 4632.92, + "end": 4633.8, + "probability": 0.9312 + }, + { + "start": 4636.26, + "end": 4639.8, + "probability": 0.9937 + }, + { + "start": 4640.84, + "end": 4641.96, + "probability": 0.9338 + }, + { + "start": 4642.78, + "end": 4647.32, + "probability": 0.9935 + }, + { + "start": 4647.4, + "end": 4648.26, + "probability": 0.7658 + }, + { + "start": 4649.38, + "end": 4652.58, + "probability": 0.9989 + }, + { + "start": 4652.58, + "end": 4656.0, + "probability": 0.9961 + }, + { + "start": 4656.88, + "end": 4658.04, + "probability": 0.9928 + }, + { + "start": 4659.22, + "end": 4660.8, + "probability": 0.8749 + }, + { + "start": 4660.96, + "end": 4661.04, + "probability": 0.5568 + }, + { + "start": 4661.14, + "end": 4661.78, + "probability": 0.9503 + }, + { + "start": 4662.12, + "end": 4663.32, + "probability": 0.9611 + }, + { + "start": 4663.58, + "end": 4665.0, + "probability": 0.9985 + }, + { + "start": 4665.8, + "end": 4667.3, + "probability": 0.7759 + }, + { + "start": 4668.26, + "end": 4670.5, + "probability": 0.5952 + }, + { + "start": 4671.04, + "end": 4671.04, + "probability": 0.0208 + }, + { + "start": 4671.04, + "end": 4671.04, + "probability": 0.1186 + }, + { + "start": 4671.04, + "end": 4671.32, + "probability": 0.497 + }, + { + "start": 4671.64, + "end": 4672.1, + "probability": 0.5239 + }, + { + "start": 4672.2, + "end": 4675.96, + "probability": 0.9917 + }, + { + "start": 4676.04, + "end": 4677.46, + "probability": 0.9197 + }, + { + "start": 4678.38, + "end": 4679.7, + "probability": 0.8345 + }, + { + "start": 4680.26, + "end": 4682.12, + "probability": 0.9463 + }, + { + "start": 4683.48, + "end": 4685.26, + "probability": 0.9957 + }, + { + "start": 4686.13, + "end": 4690.8, + "probability": 0.9975 + }, + { + "start": 4691.44, + "end": 4692.46, + "probability": 0.7294 + }, + { + "start": 4693.84, + "end": 4697.72, + "probability": 0.8417 + }, + { + "start": 4698.76, + "end": 4700.22, + "probability": 0.959 + }, + { + "start": 4701.08, + "end": 4705.44, + "probability": 0.9528 + }, + { + "start": 4705.56, + "end": 4706.64, + "probability": 0.7637 + }, + { + "start": 4707.5, + "end": 4709.76, + "probability": 0.9975 + }, + { + "start": 4711.14, + "end": 4714.36, + "probability": 0.9739 + }, + { + "start": 4714.36, + "end": 4717.1, + "probability": 0.9993 + }, + { + "start": 4719.08, + "end": 4721.02, + "probability": 0.9963 + }, + { + "start": 4721.74, + "end": 4724.2, + "probability": 0.9956 + }, + { + "start": 4724.72, + "end": 4727.42, + "probability": 0.9984 + }, + { + "start": 4731.08, + "end": 4731.96, + "probability": 0.696 + }, + { + "start": 4732.5, + "end": 4733.24, + "probability": 0.8268 + }, + { + "start": 4733.34, + "end": 4735.84, + "probability": 0.9958 + }, + { + "start": 4736.96, + "end": 4740.5, + "probability": 0.9837 + }, + { + "start": 4740.94, + "end": 4741.24, + "probability": 0.7233 + }, + { + "start": 4741.26, + "end": 4745.5, + "probability": 0.801 + }, + { + "start": 4746.0, + "end": 4747.5, + "probability": 0.7436 + }, + { + "start": 4748.02, + "end": 4750.34, + "probability": 0.9884 + }, + { + "start": 4751.16, + "end": 4753.56, + "probability": 0.9512 + }, + { + "start": 4754.08, + "end": 4755.5, + "probability": 0.9615 + }, + { + "start": 4757.22, + "end": 4757.72, + "probability": 0.1808 + }, + { + "start": 4757.72, + "end": 4758.5, + "probability": 0.4588 + }, + { + "start": 4758.94, + "end": 4759.82, + "probability": 0.2774 + }, + { + "start": 4759.92, + "end": 4760.02, + "probability": 0.2874 + }, + { + "start": 4760.8, + "end": 4762.24, + "probability": 0.9691 + }, + { + "start": 4762.54, + "end": 4763.88, + "probability": 0.2513 + }, + { + "start": 4763.88, + "end": 4764.0, + "probability": 0.7198 + }, + { + "start": 4764.66, + "end": 4764.8, + "probability": 0.2678 + }, + { + "start": 4764.8, + "end": 4767.44, + "probability": 0.5559 + }, + { + "start": 4768.38, + "end": 4771.58, + "probability": 0.968 + }, + { + "start": 4772.82, + "end": 4776.68, + "probability": 0.9088 + }, + { + "start": 4777.9, + "end": 4779.52, + "probability": 0.9892 + }, + { + "start": 4779.54, + "end": 4782.78, + "probability": 0.9946 + }, + { + "start": 4785.0, + "end": 4787.48, + "probability": 0.9824 + }, + { + "start": 4787.92, + "end": 4788.9, + "probability": 0.8982 + }, + { + "start": 4790.1, + "end": 4792.9, + "probability": 0.9824 + }, + { + "start": 4794.18, + "end": 4796.64, + "probability": 0.9971 + }, + { + "start": 4797.48, + "end": 4799.36, + "probability": 0.9676 + }, + { + "start": 4800.4, + "end": 4801.2, + "probability": 0.664 + }, + { + "start": 4801.66, + "end": 4803.38, + "probability": 0.9948 + }, + { + "start": 4803.48, + "end": 4804.64, + "probability": 0.974 + }, + { + "start": 4806.5, + "end": 4814.48, + "probability": 0.9843 + }, + { + "start": 4815.28, + "end": 4819.34, + "probability": 0.9932 + }, + { + "start": 4819.34, + "end": 4823.6, + "probability": 0.9989 + }, + { + "start": 4824.12, + "end": 4825.62, + "probability": 0.9886 + }, + { + "start": 4826.2, + "end": 4828.28, + "probability": 0.9255 + }, + { + "start": 4829.74, + "end": 4831.75, + "probability": 0.9909 + }, + { + "start": 4833.96, + "end": 4835.06, + "probability": 0.9634 + }, + { + "start": 4835.64, + "end": 4839.6, + "probability": 0.8707 + }, + { + "start": 4841.5, + "end": 4846.3, + "probability": 0.9946 + }, + { + "start": 4846.76, + "end": 4847.38, + "probability": 0.5874 + }, + { + "start": 4847.96, + "end": 4849.8, + "probability": 0.9912 + }, + { + "start": 4850.76, + "end": 4853.56, + "probability": 0.9867 + }, + { + "start": 4854.14, + "end": 4856.16, + "probability": 0.9264 + }, + { + "start": 4856.28, + "end": 4856.7, + "probability": 0.7867 + }, + { + "start": 4856.84, + "end": 4857.08, + "probability": 0.4886 + }, + { + "start": 4857.14, + "end": 4858.38, + "probability": 0.9412 + }, + { + "start": 4858.48, + "end": 4859.24, + "probability": 0.8247 + }, + { + "start": 4859.7, + "end": 4863.08, + "probability": 0.9897 + }, + { + "start": 4864.14, + "end": 4865.1, + "probability": 0.9232 + }, + { + "start": 4866.08, + "end": 4868.38, + "probability": 0.9993 + }, + { + "start": 4868.74, + "end": 4871.78, + "probability": 0.9345 + }, + { + "start": 4872.34, + "end": 4874.34, + "probability": 0.9956 + }, + { + "start": 4875.1, + "end": 4876.22, + "probability": 0.975 + }, + { + "start": 4876.38, + "end": 4880.08, + "probability": 0.9967 + }, + { + "start": 4880.96, + "end": 4885.2, + "probability": 0.971 + }, + { + "start": 4885.2, + "end": 4888.46, + "probability": 0.9998 + }, + { + "start": 4889.38, + "end": 4892.08, + "probability": 0.998 + }, + { + "start": 4893.7, + "end": 4894.72, + "probability": 0.7479 + }, + { + "start": 4896.42, + "end": 4898.62, + "probability": 0.995 + }, + { + "start": 4898.78, + "end": 4903.74, + "probability": 0.9589 + }, + { + "start": 4904.42, + "end": 4907.11, + "probability": 0.583 + }, + { + "start": 4907.9, + "end": 4914.78, + "probability": 0.9824 + }, + { + "start": 4914.84, + "end": 4917.72, + "probability": 0.9938 + }, + { + "start": 4919.12, + "end": 4920.9, + "probability": 0.9974 + }, + { + "start": 4920.98, + "end": 4922.04, + "probability": 0.9229 + }, + { + "start": 4923.56, + "end": 4924.02, + "probability": 0.3496 + }, + { + "start": 4924.48, + "end": 4926.56, + "probability": 0.9821 + }, + { + "start": 4927.5, + "end": 4927.98, + "probability": 0.676 + }, + { + "start": 4928.12, + "end": 4932.24, + "probability": 0.9973 + }, + { + "start": 4932.24, + "end": 4936.2, + "probability": 0.9971 + }, + { + "start": 4936.9, + "end": 4940.48, + "probability": 0.9954 + }, + { + "start": 4941.16, + "end": 4942.92, + "probability": 0.9618 + }, + { + "start": 4943.16, + "end": 4948.3, + "probability": 0.9609 + }, + { + "start": 4948.3, + "end": 4952.12, + "probability": 0.9985 + }, + { + "start": 4954.58, + "end": 4957.06, + "probability": 0.8971 + }, + { + "start": 4960.3, + "end": 4962.5, + "probability": 0.9946 + }, + { + "start": 4963.06, + "end": 4963.22, + "probability": 0.491 + }, + { + "start": 4963.34, + "end": 4965.32, + "probability": 0.6393 + }, + { + "start": 4965.54, + "end": 4966.76, + "probability": 0.915 + }, + { + "start": 4967.18, + "end": 4969.4, + "probability": 0.9161 + }, + { + "start": 4969.9, + "end": 4971.88, + "probability": 0.7106 + }, + { + "start": 4976.3, + "end": 4976.3, + "probability": 0.4959 + }, + { + "start": 4977.48, + "end": 4977.48, + "probability": 0.1895 + }, + { + "start": 4977.48, + "end": 4978.54, + "probability": 0.2547 + }, + { + "start": 4978.86, + "end": 4980.36, + "probability": 0.9741 + }, + { + "start": 4980.74, + "end": 4983.4, + "probability": 0.9616 + }, + { + "start": 4985.34, + "end": 4986.5, + "probability": 0.9961 + }, + { + "start": 4987.42, + "end": 4988.68, + "probability": 0.9976 + }, + { + "start": 4990.1, + "end": 4993.74, + "probability": 0.9666 + }, + { + "start": 4994.96, + "end": 4996.36, + "probability": 0.8099 + }, + { + "start": 4998.5, + "end": 5002.3, + "probability": 0.9642 + }, + { + "start": 5003.98, + "end": 5005.6, + "probability": 0.8074 + }, + { + "start": 5006.68, + "end": 5009.25, + "probability": 0.5354 + }, + { + "start": 5009.7, + "end": 5009.8, + "probability": 0.4709 + }, + { + "start": 5010.98, + "end": 5014.46, + "probability": 0.9281 + }, + { + "start": 5015.3, + "end": 5016.32, + "probability": 0.9033 + }, + { + "start": 5016.98, + "end": 5018.18, + "probability": 0.9454 + }, + { + "start": 5021.72, + "end": 5023.0, + "probability": 0.9829 + }, + { + "start": 5023.72, + "end": 5026.02, + "probability": 0.8975 + }, + { + "start": 5027.82, + "end": 5029.58, + "probability": 0.9761 + }, + { + "start": 5029.72, + "end": 5031.8, + "probability": 0.9946 + }, + { + "start": 5032.38, + "end": 5036.0, + "probability": 0.997 + }, + { + "start": 5037.3, + "end": 5039.28, + "probability": 0.9109 + }, + { + "start": 5040.64, + "end": 5041.58, + "probability": 0.6188 + }, + { + "start": 5043.14, + "end": 5045.54, + "probability": 0.967 + }, + { + "start": 5046.88, + "end": 5049.16, + "probability": 0.8414 + }, + { + "start": 5049.98, + "end": 5054.08, + "probability": 0.9888 + }, + { + "start": 5055.22, + "end": 5056.15, + "probability": 0.9989 + }, + { + "start": 5058.18, + "end": 5060.12, + "probability": 0.9982 + }, + { + "start": 5061.12, + "end": 5067.72, + "probability": 0.999 + }, + { + "start": 5068.3, + "end": 5071.78, + "probability": 0.9732 + }, + { + "start": 5072.3, + "end": 5073.0, + "probability": 0.7925 + }, + { + "start": 5073.64, + "end": 5077.8, + "probability": 0.9831 + }, + { + "start": 5077.8, + "end": 5081.26, + "probability": 0.9961 + }, + { + "start": 5081.42, + "end": 5082.0, + "probability": 0.8309 + }, + { + "start": 5083.22, + "end": 5084.82, + "probability": 0.5685 + }, + { + "start": 5084.94, + "end": 5086.8, + "probability": 0.9241 + }, + { + "start": 5086.88, + "end": 5087.68, + "probability": 0.8425 + }, + { + "start": 5087.88, + "end": 5091.0, + "probability": 0.9022 + }, + { + "start": 5091.3, + "end": 5091.72, + "probability": 0.9423 + }, + { + "start": 5092.56, + "end": 5092.78, + "probability": 0.6742 + }, + { + "start": 5092.78, + "end": 5094.28, + "probability": 0.9255 + }, + { + "start": 5094.54, + "end": 5095.68, + "probability": 0.7834 + }, + { + "start": 5095.8, + "end": 5096.94, + "probability": 0.3202 + }, + { + "start": 5098.18, + "end": 5098.88, + "probability": 0.703 + }, + { + "start": 5098.94, + "end": 5101.32, + "probability": 0.8875 + }, + { + "start": 5101.32, + "end": 5104.96, + "probability": 0.7479 + }, + { + "start": 5106.06, + "end": 5109.38, + "probability": 0.5874 + }, + { + "start": 5110.08, + "end": 5111.56, + "probability": 0.8784 + }, + { + "start": 5111.68, + "end": 5112.46, + "probability": 0.973 + }, + { + "start": 5112.56, + "end": 5113.88, + "probability": 0.625 + }, + { + "start": 5114.54, + "end": 5117.02, + "probability": 0.6785 + }, + { + "start": 5117.56, + "end": 5120.42, + "probability": 0.7343 + }, + { + "start": 5120.98, + "end": 5121.92, + "probability": 0.6213 + }, + { + "start": 5122.8, + "end": 5124.82, + "probability": 0.9363 + }, + { + "start": 5125.16, + "end": 5125.36, + "probability": 0.7882 + }, + { + "start": 5126.38, + "end": 5127.7, + "probability": 0.8231 + }, + { + "start": 5127.82, + "end": 5129.26, + "probability": 0.9522 + }, + { + "start": 5131.46, + "end": 5133.3, + "probability": 0.8051 + }, + { + "start": 5147.38, + "end": 5148.82, + "probability": 0.6214 + }, + { + "start": 5149.28, + "end": 5149.28, + "probability": 0.3413 + }, + { + "start": 5149.28, + "end": 5150.18, + "probability": 0.7678 + }, + { + "start": 5150.28, + "end": 5151.38, + "probability": 0.7382 + }, + { + "start": 5152.46, + "end": 5153.7, + "probability": 0.9727 + }, + { + "start": 5154.8, + "end": 5159.74, + "probability": 0.9979 + }, + { + "start": 5159.74, + "end": 5164.3, + "probability": 0.9646 + }, + { + "start": 5165.62, + "end": 5167.12, + "probability": 0.8737 + }, + { + "start": 5168.26, + "end": 5170.78, + "probability": 0.9531 + }, + { + "start": 5171.82, + "end": 5173.34, + "probability": 0.9092 + }, + { + "start": 5174.28, + "end": 5175.36, + "probability": 0.8608 + }, + { + "start": 5175.44, + "end": 5178.38, + "probability": 0.9934 + }, + { + "start": 5178.38, + "end": 5181.98, + "probability": 0.9867 + }, + { + "start": 5183.26, + "end": 5187.84, + "probability": 0.9893 + }, + { + "start": 5188.7, + "end": 5190.68, + "probability": 0.9911 + }, + { + "start": 5192.66, + "end": 5194.44, + "probability": 0.9667 + }, + { + "start": 5195.34, + "end": 5196.7, + "probability": 0.4904 + }, + { + "start": 5197.42, + "end": 5199.5, + "probability": 0.9769 + }, + { + "start": 5200.7, + "end": 5203.16, + "probability": 0.9966 + }, + { + "start": 5204.68, + "end": 5205.91, + "probability": 0.9867 + }, + { + "start": 5206.4, + "end": 5208.14, + "probability": 0.9009 + }, + { + "start": 5208.28, + "end": 5209.94, + "probability": 0.9855 + }, + { + "start": 5210.56, + "end": 5212.16, + "probability": 0.9788 + }, + { + "start": 5213.32, + "end": 5214.38, + "probability": 0.9905 + }, + { + "start": 5214.54, + "end": 5215.0, + "probability": 0.8309 + }, + { + "start": 5215.88, + "end": 5218.06, + "probability": 0.9977 + }, + { + "start": 5218.2, + "end": 5218.86, + "probability": 0.9163 + }, + { + "start": 5219.68, + "end": 5225.1, + "probability": 0.9707 + }, + { + "start": 5225.6, + "end": 5227.29, + "probability": 0.9873 + }, + { + "start": 5227.94, + "end": 5230.6, + "probability": 0.9932 + }, + { + "start": 5231.62, + "end": 5232.16, + "probability": 0.5604 + }, + { + "start": 5234.32, + "end": 5235.74, + "probability": 0.9158 + }, + { + "start": 5236.22, + "end": 5239.92, + "probability": 0.9979 + }, + { + "start": 5241.28, + "end": 5244.56, + "probability": 0.9932 + }, + { + "start": 5246.12, + "end": 5247.36, + "probability": 0.9511 + }, + { + "start": 5249.48, + "end": 5254.22, + "probability": 0.9092 + }, + { + "start": 5254.52, + "end": 5255.76, + "probability": 0.8527 + }, + { + "start": 5256.68, + "end": 5262.64, + "probability": 0.9902 + }, + { + "start": 5262.76, + "end": 5267.24, + "probability": 0.9936 + }, + { + "start": 5268.16, + "end": 5273.24, + "probability": 0.9045 + }, + { + "start": 5274.38, + "end": 5277.26, + "probability": 0.9516 + }, + { + "start": 5277.4, + "end": 5279.56, + "probability": 0.6712 + }, + { + "start": 5280.08, + "end": 5289.08, + "probability": 0.9944 + }, + { + "start": 5289.9, + "end": 5292.64, + "probability": 0.9694 + }, + { + "start": 5292.88, + "end": 5298.72, + "probability": 0.9808 + }, + { + "start": 5299.36, + "end": 5302.78, + "probability": 0.9977 + }, + { + "start": 5303.84, + "end": 5307.96, + "probability": 0.9865 + }, + { + "start": 5309.14, + "end": 5311.76, + "probability": 0.7441 + }, + { + "start": 5312.02, + "end": 5315.28, + "probability": 0.975 + }, + { + "start": 5316.94, + "end": 5321.24, + "probability": 0.9344 + }, + { + "start": 5322.2, + "end": 5327.64, + "probability": 0.9409 + }, + { + "start": 5328.42, + "end": 5329.54, + "probability": 0.8455 + }, + { + "start": 5330.14, + "end": 5333.3, + "probability": 0.9899 + }, + { + "start": 5333.74, + "end": 5337.14, + "probability": 0.9989 + }, + { + "start": 5338.0, + "end": 5339.8, + "probability": 0.9964 + }, + { + "start": 5339.9, + "end": 5341.4, + "probability": 0.8901 + }, + { + "start": 5341.6, + "end": 5341.62, + "probability": 0.5559 + }, + { + "start": 5341.78, + "end": 5342.0, + "probability": 0.9515 + }, + { + "start": 5342.08, + "end": 5343.02, + "probability": 0.9722 + }, + { + "start": 5343.08, + "end": 5344.1, + "probability": 0.9546 + }, + { + "start": 5344.48, + "end": 5345.9, + "probability": 0.9653 + }, + { + "start": 5346.72, + "end": 5349.15, + "probability": 0.9516 + }, + { + "start": 5349.24, + "end": 5349.86, + "probability": 0.9235 + }, + { + "start": 5350.0, + "end": 5350.7, + "probability": 0.284 + }, + { + "start": 5351.14, + "end": 5352.39, + "probability": 0.972 + }, + { + "start": 5353.18, + "end": 5355.08, + "probability": 0.9816 + }, + { + "start": 5355.2, + "end": 5356.78, + "probability": 0.983 + }, + { + "start": 5357.64, + "end": 5359.4, + "probability": 0.9816 + }, + { + "start": 5360.04, + "end": 5361.5, + "probability": 0.986 + }, + { + "start": 5361.62, + "end": 5363.9, + "probability": 0.9679 + }, + { + "start": 5365.82, + "end": 5368.5, + "probability": 0.9991 + }, + { + "start": 5368.82, + "end": 5373.5, + "probability": 0.9623 + }, + { + "start": 5374.1, + "end": 5377.14, + "probability": 0.9812 + }, + { + "start": 5377.84, + "end": 5381.08, + "probability": 0.9739 + }, + { + "start": 5382.18, + "end": 5382.77, + "probability": 0.9512 + }, + { + "start": 5383.58, + "end": 5388.2, + "probability": 0.9878 + }, + { + "start": 5389.04, + "end": 5391.8, + "probability": 0.8163 + }, + { + "start": 5393.88, + "end": 5394.94, + "probability": 0.777 + }, + { + "start": 5395.08, + "end": 5396.06, + "probability": 0.9518 + }, + { + "start": 5396.1, + "end": 5397.46, + "probability": 0.9293 + }, + { + "start": 5398.44, + "end": 5401.2, + "probability": 0.7146 + }, + { + "start": 5402.74, + "end": 5403.6, + "probability": 0.8204 + }, + { + "start": 5404.18, + "end": 5405.38, + "probability": 0.9309 + }, + { + "start": 5407.72, + "end": 5409.62, + "probability": 0.988 + }, + { + "start": 5410.82, + "end": 5413.08, + "probability": 0.9981 + }, + { + "start": 5413.08, + "end": 5416.28, + "probability": 0.9946 + }, + { + "start": 5416.76, + "end": 5421.98, + "probability": 0.9948 + }, + { + "start": 5423.16, + "end": 5425.28, + "probability": 0.9863 + }, + { + "start": 5425.52, + "end": 5425.76, + "probability": 0.74 + }, + { + "start": 5425.88, + "end": 5426.66, + "probability": 0.8889 + }, + { + "start": 5427.0, + "end": 5428.92, + "probability": 0.9595 + }, + { + "start": 5429.38, + "end": 5434.12, + "probability": 0.9531 + }, + { + "start": 5434.76, + "end": 5436.8, + "probability": 0.6702 + }, + { + "start": 5437.2, + "end": 5440.44, + "probability": 0.9705 + }, + { + "start": 5440.56, + "end": 5445.16, + "probability": 0.9951 + }, + { + "start": 5445.3, + "end": 5446.56, + "probability": 0.9456 + }, + { + "start": 5447.66, + "end": 5451.22, + "probability": 0.9949 + }, + { + "start": 5452.42, + "end": 5454.88, + "probability": 0.9136 + }, + { + "start": 5455.46, + "end": 5459.94, + "probability": 0.9897 + }, + { + "start": 5459.94, + "end": 5466.58, + "probability": 0.9918 + }, + { + "start": 5467.1, + "end": 5470.62, + "probability": 0.8987 + }, + { + "start": 5471.22, + "end": 5473.6, + "probability": 0.9865 + }, + { + "start": 5474.24, + "end": 5478.94, + "probability": 0.9772 + }, + { + "start": 5480.42, + "end": 5480.64, + "probability": 0.3905 + }, + { + "start": 5480.68, + "end": 5481.7, + "probability": 0.5866 + }, + { + "start": 5481.76, + "end": 5484.06, + "probability": 0.9956 + }, + { + "start": 5485.28, + "end": 5489.14, + "probability": 0.9633 + }, + { + "start": 5490.72, + "end": 5493.86, + "probability": 0.7354 + }, + { + "start": 5494.68, + "end": 5499.46, + "probability": 0.9806 + }, + { + "start": 5499.96, + "end": 5500.94, + "probability": 0.9239 + }, + { + "start": 5501.48, + "end": 5503.55, + "probability": 0.9792 + }, + { + "start": 5503.84, + "end": 5504.58, + "probability": 0.9295 + }, + { + "start": 5504.7, + "end": 5506.66, + "probability": 0.5004 + }, + { + "start": 5506.66, + "end": 5507.62, + "probability": 0.767 + }, + { + "start": 5508.66, + "end": 5511.48, + "probability": 0.6971 + }, + { + "start": 5513.2, + "end": 5513.58, + "probability": 0.6941 + }, + { + "start": 5514.6, + "end": 5516.68, + "probability": 0.9764 + }, + { + "start": 5521.14, + "end": 5523.72, + "probability": 0.9976 + }, + { + "start": 5523.86, + "end": 5525.08, + "probability": 0.949 + }, + { + "start": 5526.4, + "end": 5528.66, + "probability": 0.9993 + }, + { + "start": 5529.5, + "end": 5532.66, + "probability": 0.9968 + }, + { + "start": 5533.72, + "end": 5537.42, + "probability": 0.998 + }, + { + "start": 5538.9, + "end": 5542.86, + "probability": 0.9988 + }, + { + "start": 5543.32, + "end": 5544.6, + "probability": 0.9782 + }, + { + "start": 5545.82, + "end": 5554.06, + "probability": 0.9922 + }, + { + "start": 5554.78, + "end": 5556.38, + "probability": 0.9826 + }, + { + "start": 5557.26, + "end": 5558.46, + "probability": 0.9909 + }, + { + "start": 5559.56, + "end": 5562.16, + "probability": 0.9819 + }, + { + "start": 5562.88, + "end": 5565.72, + "probability": 0.9935 + }, + { + "start": 5567.08, + "end": 5567.54, + "probability": 0.6927 + }, + { + "start": 5567.66, + "end": 5568.56, + "probability": 0.9422 + }, + { + "start": 5568.7, + "end": 5570.52, + "probability": 0.799 + }, + { + "start": 5571.9, + "end": 5574.12, + "probability": 0.9712 + }, + { + "start": 5574.46, + "end": 5574.64, + "probability": 0.804 + }, + { + "start": 5574.8, + "end": 5575.58, + "probability": 0.8721 + }, + { + "start": 5575.66, + "end": 5580.32, + "probability": 0.9931 + }, + { + "start": 5580.52, + "end": 5583.28, + "probability": 0.9967 + }, + { + "start": 5584.48, + "end": 5586.42, + "probability": 0.5391 + }, + { + "start": 5586.52, + "end": 5586.96, + "probability": 0.9731 + }, + { + "start": 5587.88, + "end": 5590.62, + "probability": 0.9059 + }, + { + "start": 5590.62, + "end": 5593.46, + "probability": 0.9861 + }, + { + "start": 5595.54, + "end": 5600.8, + "probability": 0.9971 + }, + { + "start": 5602.68, + "end": 5608.06, + "probability": 0.9709 + }, + { + "start": 5608.64, + "end": 5610.54, + "probability": 0.9943 + }, + { + "start": 5611.52, + "end": 5614.66, + "probability": 0.9854 + }, + { + "start": 5614.74, + "end": 5615.97, + "probability": 0.9937 + }, + { + "start": 5616.88, + "end": 5620.8, + "probability": 0.9912 + }, + { + "start": 5620.96, + "end": 5622.26, + "probability": 0.9718 + }, + { + "start": 5622.38, + "end": 5623.76, + "probability": 0.9859 + }, + { + "start": 5624.36, + "end": 5625.46, + "probability": 0.9868 + }, + { + "start": 5626.78, + "end": 5627.98, + "probability": 0.84 + }, + { + "start": 5630.04, + "end": 5631.28, + "probability": 0.9973 + }, + { + "start": 5633.08, + "end": 5634.74, + "probability": 0.9961 + }, + { + "start": 5635.66, + "end": 5639.09, + "probability": 0.984 + }, + { + "start": 5639.3, + "end": 5642.94, + "probability": 0.9893 + }, + { + "start": 5644.14, + "end": 5649.9, + "probability": 0.9851 + }, + { + "start": 5650.98, + "end": 5654.66, + "probability": 0.9436 + }, + { + "start": 5655.3, + "end": 5656.36, + "probability": 0.8751 + }, + { + "start": 5657.06, + "end": 5658.16, + "probability": 0.9536 + }, + { + "start": 5658.3, + "end": 5660.48, + "probability": 0.9894 + }, + { + "start": 5661.92, + "end": 5663.64, + "probability": 0.9819 + }, + { + "start": 5664.46, + "end": 5668.16, + "probability": 0.9961 + }, + { + "start": 5669.3, + "end": 5670.2, + "probability": 0.9174 + }, + { + "start": 5671.08, + "end": 5673.25, + "probability": 0.9959 + }, + { + "start": 5673.9, + "end": 5678.98, + "probability": 0.9779 + }, + { + "start": 5680.7, + "end": 5682.68, + "probability": 0.9987 + }, + { + "start": 5683.28, + "end": 5686.26, + "probability": 0.9951 + }, + { + "start": 5687.26, + "end": 5689.9, + "probability": 0.9965 + }, + { + "start": 5690.54, + "end": 5692.2, + "probability": 0.9979 + }, + { + "start": 5693.34, + "end": 5696.5, + "probability": 0.9939 + }, + { + "start": 5697.38, + "end": 5703.4, + "probability": 0.998 + }, + { + "start": 5704.2, + "end": 5705.1, + "probability": 0.9718 + }, + { + "start": 5705.72, + "end": 5706.52, + "probability": 0.9675 + }, + { + "start": 5706.76, + "end": 5707.86, + "probability": 0.9653 + }, + { + "start": 5708.14, + "end": 5710.7, + "probability": 0.9858 + }, + { + "start": 5711.48, + "end": 5712.1, + "probability": 0.9443 + }, + { + "start": 5712.18, + "end": 5713.24, + "probability": 0.8548 + }, + { + "start": 5713.4, + "end": 5714.88, + "probability": 0.9953 + }, + { + "start": 5714.96, + "end": 5715.7, + "probability": 0.7681 + }, + { + "start": 5716.66, + "end": 5722.26, + "probability": 0.9997 + }, + { + "start": 5723.72, + "end": 5727.66, + "probability": 0.976 + }, + { + "start": 5727.82, + "end": 5733.25, + "probability": 0.9512 + }, + { + "start": 5734.3, + "end": 5735.52, + "probability": 0.8023 + }, + { + "start": 5736.2, + "end": 5738.72, + "probability": 0.9958 + }, + { + "start": 5739.2, + "end": 5742.38, + "probability": 0.9916 + }, + { + "start": 5743.18, + "end": 5744.56, + "probability": 0.8468 + }, + { + "start": 5744.6, + "end": 5745.48, + "probability": 0.6036 + }, + { + "start": 5745.68, + "end": 5748.38, + "probability": 0.9989 + }, + { + "start": 5749.58, + "end": 5753.62, + "probability": 0.9963 + }, + { + "start": 5754.82, + "end": 5756.72, + "probability": 0.9971 + }, + { + "start": 5757.1, + "end": 5757.56, + "probability": 0.8264 + }, + { + "start": 5758.12, + "end": 5759.44, + "probability": 0.7089 + }, + { + "start": 5759.44, + "end": 5762.12, + "probability": 0.8809 + }, + { + "start": 5764.52, + "end": 5767.04, + "probability": 0.7236 + }, + { + "start": 5779.04, + "end": 5779.14, + "probability": 0.831 + }, + { + "start": 5779.86, + "end": 5780.66, + "probability": 0.6671 + }, + { + "start": 5782.68, + "end": 5783.34, + "probability": 0.7591 + }, + { + "start": 5784.96, + "end": 5785.86, + "probability": 0.9023 + }, + { + "start": 5786.52, + "end": 5789.35, + "probability": 0.9857 + }, + { + "start": 5790.5, + "end": 5791.83, + "probability": 0.9329 + }, + { + "start": 5793.04, + "end": 5797.88, + "probability": 0.9931 + }, + { + "start": 5798.58, + "end": 5801.1, + "probability": 0.9989 + }, + { + "start": 5802.16, + "end": 5804.88, + "probability": 0.9894 + }, + { + "start": 5806.54, + "end": 5809.94, + "probability": 0.772 + }, + { + "start": 5810.14, + "end": 5810.98, + "probability": 0.6358 + }, + { + "start": 5811.18, + "end": 5815.3, + "probability": 0.99 + }, + { + "start": 5816.1, + "end": 5819.12, + "probability": 0.989 + }, + { + "start": 5819.86, + "end": 5825.26, + "probability": 0.7897 + }, + { + "start": 5826.0, + "end": 5828.12, + "probability": 0.8028 + }, + { + "start": 5828.8, + "end": 5830.96, + "probability": 0.9912 + }, + { + "start": 5831.64, + "end": 5835.04, + "probability": 0.932 + }, + { + "start": 5835.82, + "end": 5838.78, + "probability": 0.9877 + }, + { + "start": 5840.02, + "end": 5840.02, + "probability": 0.4077 + }, + { + "start": 5840.02, + "end": 5846.8, + "probability": 0.9707 + }, + { + "start": 5848.16, + "end": 5853.16, + "probability": 0.8617 + }, + { + "start": 5853.64, + "end": 5856.43, + "probability": 0.7823 + }, + { + "start": 5857.46, + "end": 5862.06, + "probability": 0.9957 + }, + { + "start": 5862.6, + "end": 5869.28, + "probability": 0.9777 + }, + { + "start": 5869.76, + "end": 5870.96, + "probability": 0.9762 + }, + { + "start": 5871.82, + "end": 5877.06, + "probability": 0.9941 + }, + { + "start": 5877.6, + "end": 5878.72, + "probability": 0.6509 + }, + { + "start": 5879.7, + "end": 5882.2, + "probability": 0.8293 + }, + { + "start": 5882.88, + "end": 5889.04, + "probability": 0.8825 + }, + { + "start": 5889.46, + "end": 5893.06, + "probability": 0.9884 + }, + { + "start": 5893.08, + "end": 5894.57, + "probability": 0.7996 + }, + { + "start": 5894.74, + "end": 5903.8, + "probability": 0.9914 + }, + { + "start": 5904.54, + "end": 5910.86, + "probability": 0.9913 + }, + { + "start": 5910.92, + "end": 5911.78, + "probability": 0.7842 + }, + { + "start": 5911.88, + "end": 5912.26, + "probability": 0.7204 + }, + { + "start": 5914.54, + "end": 5922.04, + "probability": 0.984 + }, + { + "start": 5923.3, + "end": 5925.98, + "probability": 0.9799 + }, + { + "start": 5926.68, + "end": 5929.8, + "probability": 0.9965 + }, + { + "start": 5930.5, + "end": 5932.96, + "probability": 0.939 + }, + { + "start": 5934.18, + "end": 5942.74, + "probability": 0.9712 + }, + { + "start": 5943.44, + "end": 5947.82, + "probability": 0.9799 + }, + { + "start": 5949.22, + "end": 5949.74, + "probability": 0.5721 + }, + { + "start": 5949.92, + "end": 5956.46, + "probability": 0.9015 + }, + { + "start": 5956.66, + "end": 5957.15, + "probability": 0.9141 + }, + { + "start": 5957.48, + "end": 5962.12, + "probability": 0.9349 + }, + { + "start": 5963.64, + "end": 5967.74, + "probability": 0.8411 + }, + { + "start": 5967.9, + "end": 5968.44, + "probability": 0.533 + }, + { + "start": 5968.52, + "end": 5969.22, + "probability": 0.3782 + }, + { + "start": 5969.3, + "end": 5974.08, + "probability": 0.9843 + }, + { + "start": 5975.14, + "end": 5981.06, + "probability": 0.9815 + }, + { + "start": 5981.86, + "end": 5985.04, + "probability": 0.5934 + }, + { + "start": 5985.12, + "end": 5986.14, + "probability": 0.8432 + }, + { + "start": 5986.36, + "end": 5990.3, + "probability": 0.9958 + }, + { + "start": 5990.88, + "end": 5994.26, + "probability": 0.9535 + }, + { + "start": 5994.34, + "end": 5996.96, + "probability": 0.964 + }, + { + "start": 5997.52, + "end": 5998.77, + "probability": 0.9456 + }, + { + "start": 5999.46, + "end": 6003.1, + "probability": 0.9949 + }, + { + "start": 6003.98, + "end": 6006.34, + "probability": 0.9959 + }, + { + "start": 6006.88, + "end": 6008.62, + "probability": 0.9989 + }, + { + "start": 6008.72, + "end": 6010.38, + "probability": 0.9932 + }, + { + "start": 6011.3, + "end": 6012.28, + "probability": 0.6576 + }, + { + "start": 6012.88, + "end": 6015.34, + "probability": 0.9486 + }, + { + "start": 6015.9, + "end": 6019.21, + "probability": 0.9919 + }, + { + "start": 6019.96, + "end": 6027.04, + "probability": 0.9696 + }, + { + "start": 6028.2, + "end": 6028.94, + "probability": 0.7388 + }, + { + "start": 6030.0, + "end": 6032.52, + "probability": 0.9919 + }, + { + "start": 6033.6, + "end": 6035.56, + "probability": 0.9935 + }, + { + "start": 6035.7, + "end": 6037.38, + "probability": 0.9547 + }, + { + "start": 6038.48, + "end": 6043.1, + "probability": 0.9648 + }, + { + "start": 6043.7, + "end": 6045.48, + "probability": 0.8338 + }, + { + "start": 6046.22, + "end": 6049.28, + "probability": 0.9885 + }, + { + "start": 6049.8, + "end": 6054.08, + "probability": 0.9868 + }, + { + "start": 6054.74, + "end": 6057.76, + "probability": 0.9431 + }, + { + "start": 6058.5, + "end": 6061.28, + "probability": 0.9837 + }, + { + "start": 6061.88, + "end": 6063.62, + "probability": 0.9577 + }, + { + "start": 6064.26, + "end": 6065.66, + "probability": 0.9668 + }, + { + "start": 6066.3, + "end": 6068.94, + "probability": 0.8639 + }, + { + "start": 6069.66, + "end": 6070.78, + "probability": 0.9541 + }, + { + "start": 6071.4, + "end": 6079.0, + "probability": 0.9865 + }, + { + "start": 6079.72, + "end": 6082.04, + "probability": 0.9512 + }, + { + "start": 6082.8, + "end": 6084.46, + "probability": 0.9067 + }, + { + "start": 6085.08, + "end": 6086.42, + "probability": 0.9775 + }, + { + "start": 6087.04, + "end": 6088.92, + "probability": 0.6405 + }, + { + "start": 6089.78, + "end": 6091.24, + "probability": 0.5998 + }, + { + "start": 6091.58, + "end": 6092.14, + "probability": 0.8975 + }, + { + "start": 6092.64, + "end": 6097.68, + "probability": 0.9805 + }, + { + "start": 6098.16, + "end": 6098.36, + "probability": 0.742 + }, + { + "start": 6098.98, + "end": 6100.36, + "probability": 0.7509 + }, + { + "start": 6100.42, + "end": 6102.33, + "probability": 0.8537 + }, + { + "start": 6103.08, + "end": 6103.88, + "probability": 0.5442 + }, + { + "start": 6104.62, + "end": 6106.44, + "probability": 0.6768 + }, + { + "start": 6127.76, + "end": 6129.02, + "probability": 0.6768 + }, + { + "start": 6131.44, + "end": 6133.7, + "probability": 0.8963 + }, + { + "start": 6135.1, + "end": 6141.5, + "probability": 0.9755 + }, + { + "start": 6142.5, + "end": 6145.78, + "probability": 0.8335 + }, + { + "start": 6146.94, + "end": 6151.52, + "probability": 0.7554 + }, + { + "start": 6152.98, + "end": 6154.42, + "probability": 0.7168 + }, + { + "start": 6155.7, + "end": 6157.42, + "probability": 0.7648 + }, + { + "start": 6158.82, + "end": 6163.42, + "probability": 0.6786 + }, + { + "start": 6165.32, + "end": 6170.96, + "probability": 0.9939 + }, + { + "start": 6172.48, + "end": 6175.52, + "probability": 0.9624 + }, + { + "start": 6176.4, + "end": 6176.68, + "probability": 0.3757 + }, + { + "start": 6176.8, + "end": 6180.74, + "probability": 0.9937 + }, + { + "start": 6180.84, + "end": 6181.38, + "probability": 0.5293 + }, + { + "start": 6183.58, + "end": 6187.14, + "probability": 0.5602 + }, + { + "start": 6189.26, + "end": 6192.66, + "probability": 0.9521 + }, + { + "start": 6195.4, + "end": 6196.74, + "probability": 0.8075 + }, + { + "start": 6198.84, + "end": 6200.68, + "probability": 0.9627 + }, + { + "start": 6201.88, + "end": 6203.18, + "probability": 0.9709 + }, + { + "start": 6204.34, + "end": 6205.52, + "probability": 0.9051 + }, + { + "start": 6207.73, + "end": 6210.56, + "probability": 0.8738 + }, + { + "start": 6211.98, + "end": 6212.42, + "probability": 0.9256 + }, + { + "start": 6213.6, + "end": 6214.48, + "probability": 0.7514 + }, + { + "start": 6215.38, + "end": 6216.82, + "probability": 0.8763 + }, + { + "start": 6217.52, + "end": 6223.42, + "probability": 0.9909 + }, + { + "start": 6224.5, + "end": 6227.16, + "probability": 0.8064 + }, + { + "start": 6227.7, + "end": 6232.88, + "probability": 0.9751 + }, + { + "start": 6233.64, + "end": 6235.22, + "probability": 0.9619 + }, + { + "start": 6236.46, + "end": 6241.48, + "probability": 0.9066 + }, + { + "start": 6242.82, + "end": 6246.4, + "probability": 0.9527 + }, + { + "start": 6247.92, + "end": 6250.16, + "probability": 0.9741 + }, + { + "start": 6251.48, + "end": 6255.08, + "probability": 0.9269 + }, + { + "start": 6256.5, + "end": 6257.94, + "probability": 0.8873 + }, + { + "start": 6258.74, + "end": 6259.6, + "probability": 0.7116 + }, + { + "start": 6261.0, + "end": 6263.52, + "probability": 0.9864 + }, + { + "start": 6265.62, + "end": 6266.55, + "probability": 0.9943 + }, + { + "start": 6268.42, + "end": 6271.56, + "probability": 0.936 + }, + { + "start": 6272.66, + "end": 6277.14, + "probability": 0.9772 + }, + { + "start": 6278.08, + "end": 6279.0, + "probability": 0.995 + }, + { + "start": 6279.76, + "end": 6281.36, + "probability": 0.7794 + }, + { + "start": 6282.58, + "end": 6285.44, + "probability": 0.779 + }, + { + "start": 6286.6, + "end": 6287.46, + "probability": 0.9878 + }, + { + "start": 6288.9, + "end": 6290.84, + "probability": 0.9243 + }, + { + "start": 6291.84, + "end": 6293.6, + "probability": 0.9953 + }, + { + "start": 6294.46, + "end": 6296.6, + "probability": 0.697 + }, + { + "start": 6297.76, + "end": 6300.2, + "probability": 0.4013 + }, + { + "start": 6300.36, + "end": 6304.72, + "probability": 0.9484 + }, + { + "start": 6305.1, + "end": 6308.06, + "probability": 0.8313 + }, + { + "start": 6308.86, + "end": 6312.14, + "probability": 0.9907 + }, + { + "start": 6313.56, + "end": 6317.12, + "probability": 0.868 + }, + { + "start": 6317.86, + "end": 6319.92, + "probability": 0.8285 + }, + { + "start": 6320.88, + "end": 6327.0, + "probability": 0.9604 + }, + { + "start": 6327.54, + "end": 6328.52, + "probability": 0.6337 + }, + { + "start": 6329.38, + "end": 6330.3, + "probability": 0.7053 + }, + { + "start": 6331.16, + "end": 6333.8, + "probability": 0.751 + }, + { + "start": 6334.82, + "end": 6340.72, + "probability": 0.9583 + }, + { + "start": 6341.86, + "end": 6344.54, + "probability": 0.9408 + }, + { + "start": 6345.72, + "end": 6347.34, + "probability": 0.7567 + }, + { + "start": 6348.64, + "end": 6349.48, + "probability": 0.6477 + }, + { + "start": 6350.86, + "end": 6351.36, + "probability": 0.9591 + }, + { + "start": 6351.94, + "end": 6352.66, + "probability": 0.9014 + }, + { + "start": 6354.02, + "end": 6355.28, + "probability": 0.6924 + }, + { + "start": 6356.22, + "end": 6357.37, + "probability": 0.8403 + }, + { + "start": 6358.9, + "end": 6359.85, + "probability": 0.408 + }, + { + "start": 6362.98, + "end": 6364.02, + "probability": 0.9135 + }, + { + "start": 6365.08, + "end": 6368.32, + "probability": 0.9469 + }, + { + "start": 6369.32, + "end": 6372.16, + "probability": 0.9893 + }, + { + "start": 6372.86, + "end": 6373.94, + "probability": 0.7803 + }, + { + "start": 6374.92, + "end": 6376.54, + "probability": 0.6332 + }, + { + "start": 6377.62, + "end": 6379.84, + "probability": 0.9978 + }, + { + "start": 6380.64, + "end": 6382.26, + "probability": 0.9419 + }, + { + "start": 6383.06, + "end": 6385.86, + "probability": 0.9598 + }, + { + "start": 6387.0, + "end": 6387.78, + "probability": 0.9403 + }, + { + "start": 6388.88, + "end": 6389.64, + "probability": 0.7274 + }, + { + "start": 6390.42, + "end": 6391.74, + "probability": 0.979 + }, + { + "start": 6393.18, + "end": 6395.26, + "probability": 0.9952 + }, + { + "start": 6396.12, + "end": 6396.5, + "probability": 0.87 + }, + { + "start": 6397.4, + "end": 6399.22, + "probability": 0.8147 + }, + { + "start": 6400.18, + "end": 6405.38, + "probability": 0.9833 + }, + { + "start": 6406.02, + "end": 6407.44, + "probability": 0.859 + }, + { + "start": 6408.0, + "end": 6413.06, + "probability": 0.9751 + }, + { + "start": 6414.28, + "end": 6415.4, + "probability": 0.7032 + }, + { + "start": 6416.18, + "end": 6417.66, + "probability": 0.7964 + }, + { + "start": 6419.04, + "end": 6420.76, + "probability": 0.9971 + }, + { + "start": 6422.0, + "end": 6423.42, + "probability": 0.9753 + }, + { + "start": 6424.66, + "end": 6425.52, + "probability": 0.9557 + }, + { + "start": 6426.64, + "end": 6429.1, + "probability": 0.9807 + }, + { + "start": 6429.18, + "end": 6438.48, + "probability": 0.9841 + }, + { + "start": 6439.96, + "end": 6440.22, + "probability": 0.423 + }, + { + "start": 6440.66, + "end": 6441.58, + "probability": 0.6508 + }, + { + "start": 6441.72, + "end": 6442.28, + "probability": 0.6631 + }, + { + "start": 6442.48, + "end": 6446.45, + "probability": 0.9441 + }, + { + "start": 6447.32, + "end": 6453.99, + "probability": 0.9406 + }, + { + "start": 6456.68, + "end": 6463.18, + "probability": 0.9928 + }, + { + "start": 6464.84, + "end": 6465.32, + "probability": 0.561 + }, + { + "start": 6466.5, + "end": 6468.6, + "probability": 0.8607 + }, + { + "start": 6468.68, + "end": 6471.02, + "probability": 0.9857 + }, + { + "start": 6471.22, + "end": 6475.15, + "probability": 0.9141 + }, + { + "start": 6476.74, + "end": 6478.96, + "probability": 0.8436 + }, + { + "start": 6479.7, + "end": 6482.42, + "probability": 0.8796 + }, + { + "start": 6483.76, + "end": 6493.4, + "probability": 0.7925 + }, + { + "start": 6494.24, + "end": 6495.78, + "probability": 0.8609 + }, + { + "start": 6496.72, + "end": 6498.1, + "probability": 0.8242 + }, + { + "start": 6498.82, + "end": 6499.34, + "probability": 0.8207 + }, + { + "start": 6500.7, + "end": 6502.32, + "probability": 0.9339 + }, + { + "start": 6502.86, + "end": 6504.34, + "probability": 0.9811 + }, + { + "start": 6505.32, + "end": 6507.34, + "probability": 0.7504 + }, + { + "start": 6508.06, + "end": 6513.95, + "probability": 0.5563 + }, + { + "start": 6514.28, + "end": 6520.14, + "probability": 0.9932 + }, + { + "start": 6521.24, + "end": 6523.24, + "probability": 0.9952 + }, + { + "start": 6523.82, + "end": 6526.78, + "probability": 0.9971 + }, + { + "start": 6528.16, + "end": 6529.3, + "probability": 0.9766 + }, + { + "start": 6530.58, + "end": 6534.7, + "probability": 0.998 + }, + { + "start": 6536.42, + "end": 6538.14, + "probability": 0.9238 + }, + { + "start": 6539.4, + "end": 6540.78, + "probability": 0.9829 + }, + { + "start": 6541.0, + "end": 6543.36, + "probability": 0.9002 + }, + { + "start": 6543.96, + "end": 6548.3, + "probability": 0.9844 + }, + { + "start": 6548.8, + "end": 6549.98, + "probability": 0.8376 + }, + { + "start": 6551.22, + "end": 6552.62, + "probability": 0.7842 + }, + { + "start": 6553.3, + "end": 6553.58, + "probability": 0.3909 + }, + { + "start": 6554.74, + "end": 6555.76, + "probability": 0.9153 + }, + { + "start": 6557.4, + "end": 6560.64, + "probability": 0.9601 + }, + { + "start": 6561.4, + "end": 6562.66, + "probability": 0.993 + }, + { + "start": 6563.76, + "end": 6566.68, + "probability": 0.9866 + }, + { + "start": 6568.26, + "end": 6569.6, + "probability": 0.998 + }, + { + "start": 6571.16, + "end": 6573.3, + "probability": 0.8618 + }, + { + "start": 6574.5, + "end": 6577.98, + "probability": 0.9885 + }, + { + "start": 6578.7, + "end": 6581.16, + "probability": 0.9925 + }, + { + "start": 6583.48, + "end": 6586.72, + "probability": 0.9855 + }, + { + "start": 6587.6, + "end": 6590.4, + "probability": 0.9857 + }, + { + "start": 6591.0, + "end": 6593.44, + "probability": 0.9956 + }, + { + "start": 6595.58, + "end": 6597.92, + "probability": 0.9751 + }, + { + "start": 6599.08, + "end": 6601.48, + "probability": 0.9511 + }, + { + "start": 6603.78, + "end": 6604.62, + "probability": 0.7708 + }, + { + "start": 6605.16, + "end": 6605.94, + "probability": 0.7274 + }, + { + "start": 6606.7, + "end": 6607.84, + "probability": 0.9104 + }, + { + "start": 6608.82, + "end": 6614.04, + "probability": 0.98 + }, + { + "start": 6614.04, + "end": 6617.88, + "probability": 0.9975 + }, + { + "start": 6620.74, + "end": 6621.62, + "probability": 0.6275 + }, + { + "start": 6623.42, + "end": 6624.06, + "probability": 0.8008 + }, + { + "start": 6624.66, + "end": 6632.38, + "probability": 0.9919 + }, + { + "start": 6633.18, + "end": 6635.14, + "probability": 0.9366 + }, + { + "start": 6636.34, + "end": 6640.94, + "probability": 0.9828 + }, + { + "start": 6641.46, + "end": 6643.24, + "probability": 0.788 + }, + { + "start": 6644.5, + "end": 6649.0, + "probability": 0.8766 + }, + { + "start": 6649.78, + "end": 6651.32, + "probability": 0.9836 + }, + { + "start": 6652.24, + "end": 6654.8, + "probability": 0.9948 + }, + { + "start": 6655.42, + "end": 6657.2, + "probability": 0.8743 + }, + { + "start": 6657.86, + "end": 6659.6, + "probability": 0.986 + }, + { + "start": 6660.5, + "end": 6661.52, + "probability": 0.9675 + }, + { + "start": 6661.64, + "end": 6666.92, + "probability": 0.9966 + }, + { + "start": 6668.12, + "end": 6674.28, + "probability": 0.9953 + }, + { + "start": 6675.98, + "end": 6678.58, + "probability": 0.8438 + }, + { + "start": 6680.26, + "end": 6681.96, + "probability": 0.9464 + }, + { + "start": 6684.9, + "end": 6687.52, + "probability": 0.6605 + }, + { + "start": 6687.92, + "end": 6692.7, + "probability": 0.9866 + }, + { + "start": 6693.48, + "end": 6694.72, + "probability": 0.9987 + }, + { + "start": 6695.24, + "end": 6698.76, + "probability": 0.931 + }, + { + "start": 6700.18, + "end": 6702.14, + "probability": 0.8359 + }, + { + "start": 6703.1, + "end": 6705.62, + "probability": 0.9937 + }, + { + "start": 6706.24, + "end": 6707.78, + "probability": 0.9513 + }, + { + "start": 6708.74, + "end": 6711.64, + "probability": 0.911 + }, + { + "start": 6712.72, + "end": 6714.5, + "probability": 0.8933 + }, + { + "start": 6715.7, + "end": 6717.74, + "probability": 0.9967 + }, + { + "start": 6718.66, + "end": 6719.54, + "probability": 0.887 + }, + { + "start": 6720.62, + "end": 6721.2, + "probability": 0.728 + }, + { + "start": 6722.0, + "end": 6725.2, + "probability": 0.9564 + }, + { + "start": 6727.78, + "end": 6730.52, + "probability": 0.996 + }, + { + "start": 6731.46, + "end": 6732.76, + "probability": 0.9935 + }, + { + "start": 6733.98, + "end": 6737.06, + "probability": 0.9988 + }, + { + "start": 6737.88, + "end": 6739.34, + "probability": 0.8099 + }, + { + "start": 6739.92, + "end": 6745.0, + "probability": 0.9594 + }, + { + "start": 6745.56, + "end": 6747.86, + "probability": 0.716 + }, + { + "start": 6750.34, + "end": 6751.83, + "probability": 0.6816 + }, + { + "start": 6754.84, + "end": 6757.32, + "probability": 0.9174 + }, + { + "start": 6758.44, + "end": 6758.92, + "probability": 0.4456 + }, + { + "start": 6759.78, + "end": 6761.86, + "probability": 0.9492 + }, + { + "start": 6763.22, + "end": 6764.26, + "probability": 0.9609 + }, + { + "start": 6765.6, + "end": 6769.7, + "probability": 0.9858 + }, + { + "start": 6771.24, + "end": 6776.98, + "probability": 0.988 + }, + { + "start": 6778.24, + "end": 6782.12, + "probability": 0.8498 + }, + { + "start": 6783.14, + "end": 6784.64, + "probability": 0.9512 + }, + { + "start": 6785.76, + "end": 6787.48, + "probability": 0.9412 + }, + { + "start": 6788.56, + "end": 6792.64, + "probability": 0.9678 + }, + { + "start": 6793.46, + "end": 6796.08, + "probability": 0.6482 + }, + { + "start": 6796.9, + "end": 6798.94, + "probability": 0.9907 + }, + { + "start": 6800.58, + "end": 6802.16, + "probability": 0.8617 + }, + { + "start": 6802.26, + "end": 6803.14, + "probability": 0.8375 + }, + { + "start": 6803.29, + "end": 6803.98, + "probability": 0.8627 + }, + { + "start": 6804.74, + "end": 6806.14, + "probability": 0.8455 + }, + { + "start": 6806.76, + "end": 6813.22, + "probability": 0.9817 + }, + { + "start": 6814.0, + "end": 6815.0, + "probability": 0.4998 + }, + { + "start": 6817.68, + "end": 6820.34, + "probability": 0.9939 + }, + { + "start": 6821.7, + "end": 6823.46, + "probability": 0.9484 + }, + { + "start": 6825.14, + "end": 6825.76, + "probability": 0.9868 + }, + { + "start": 6826.88, + "end": 6830.82, + "probability": 0.902 + }, + { + "start": 6831.34, + "end": 6831.88, + "probability": 0.7453 + }, + { + "start": 6832.92, + "end": 6835.3, + "probability": 0.9374 + }, + { + "start": 6836.4, + "end": 6836.9, + "probability": 0.9634 + }, + { + "start": 6837.2, + "end": 6840.2, + "probability": 0.9126 + }, + { + "start": 6840.66, + "end": 6842.54, + "probability": 0.7188 + }, + { + "start": 6843.8, + "end": 6846.56, + "probability": 0.9751 + }, + { + "start": 6847.86, + "end": 6849.4, + "probability": 0.8945 + }, + { + "start": 6850.5, + "end": 6851.34, + "probability": 0.7574 + }, + { + "start": 6851.94, + "end": 6853.46, + "probability": 0.8656 + }, + { + "start": 6854.16, + "end": 6856.6, + "probability": 0.9684 + }, + { + "start": 6857.2, + "end": 6860.3, + "probability": 0.9977 + }, + { + "start": 6862.12, + "end": 6869.32, + "probability": 0.9163 + }, + { + "start": 6869.98, + "end": 6874.15, + "probability": 0.9276 + }, + { + "start": 6876.02, + "end": 6880.02, + "probability": 0.9961 + }, + { + "start": 6881.04, + "end": 6882.18, + "probability": 0.8003 + }, + { + "start": 6883.12, + "end": 6885.72, + "probability": 0.9933 + }, + { + "start": 6886.7, + "end": 6888.22, + "probability": 0.9904 + }, + { + "start": 6889.26, + "end": 6890.12, + "probability": 0.5697 + }, + { + "start": 6891.64, + "end": 6895.34, + "probability": 0.9982 + }, + { + "start": 6895.34, + "end": 6899.32, + "probability": 0.9984 + }, + { + "start": 6903.24, + "end": 6904.76, + "probability": 0.8276 + }, + { + "start": 6906.3, + "end": 6907.86, + "probability": 0.6996 + }, + { + "start": 6909.78, + "end": 6912.78, + "probability": 0.9963 + }, + { + "start": 6913.12, + "end": 6913.96, + "probability": 0.497 + }, + { + "start": 6914.04, + "end": 6915.06, + "probability": 0.8719 + }, + { + "start": 6915.32, + "end": 6918.06, + "probability": 0.7063 + }, + { + "start": 6918.8, + "end": 6919.94, + "probability": 0.9087 + }, + { + "start": 6920.66, + "end": 6925.82, + "probability": 0.9717 + }, + { + "start": 6927.14, + "end": 6927.74, + "probability": 0.6618 + }, + { + "start": 6928.58, + "end": 6929.48, + "probability": 0.7102 + }, + { + "start": 6930.14, + "end": 6932.88, + "probability": 0.8745 + }, + { + "start": 6933.98, + "end": 6936.54, + "probability": 0.9279 + }, + { + "start": 6937.28, + "end": 6940.58, + "probability": 0.996 + }, + { + "start": 6941.16, + "end": 6941.64, + "probability": 0.7908 + }, + { + "start": 6943.78, + "end": 6946.32, + "probability": 0.1461 + }, + { + "start": 6947.62, + "end": 6947.94, + "probability": 0.0139 + }, + { + "start": 6947.94, + "end": 6948.04, + "probability": 0.6635 + }, + { + "start": 6948.78, + "end": 6949.68, + "probability": 0.2431 + }, + { + "start": 6950.22, + "end": 6951.9, + "probability": 0.9468 + }, + { + "start": 6952.52, + "end": 6954.7, + "probability": 0.8701 + }, + { + "start": 6955.36, + "end": 6956.68, + "probability": 0.7581 + }, + { + "start": 6956.92, + "end": 6960.34, + "probability": 0.99 + }, + { + "start": 6960.81, + "end": 6964.2, + "probability": 0.2554 + }, + { + "start": 6964.2, + "end": 6964.48, + "probability": 0.1497 + }, + { + "start": 6965.2, + "end": 6967.88, + "probability": 0.9876 + }, + { + "start": 6968.68, + "end": 6969.27, + "probability": 0.7617 + }, + { + "start": 6969.76, + "end": 6971.64, + "probability": 0.847 + }, + { + "start": 6971.74, + "end": 6975.02, + "probability": 0.9921 + }, + { + "start": 6975.02, + "end": 6975.44, + "probability": 0.562 + }, + { + "start": 6975.6, + "end": 6976.18, + "probability": 0.7631 + }, + { + "start": 6976.92, + "end": 6977.78, + "probability": 0.9742 + }, + { + "start": 6978.96, + "end": 6979.44, + "probability": 0.0215 + }, + { + "start": 6980.34, + "end": 6980.94, + "probability": 0.5941 + }, + { + "start": 6981.02, + "end": 6981.34, + "probability": 0.5539 + }, + { + "start": 6981.5, + "end": 6983.02, + "probability": 0.6181 + }, + { + "start": 6983.06, + "end": 6984.44, + "probability": 0.871 + }, + { + "start": 6984.74, + "end": 6986.34, + "probability": 0.5983 + }, + { + "start": 6987.04, + "end": 6991.66, + "probability": 0.9903 + }, + { + "start": 6992.48, + "end": 6994.52, + "probability": 0.9731 + }, + { + "start": 6995.96, + "end": 6996.82, + "probability": 0.6529 + }, + { + "start": 6998.28, + "end": 7003.88, + "probability": 0.8735 + }, + { + "start": 7004.08, + "end": 7004.66, + "probability": 0.2195 + }, + { + "start": 7004.98, + "end": 7005.46, + "probability": 0.3576 + }, + { + "start": 7006.34, + "end": 7007.04, + "probability": 0.6087 + }, + { + "start": 7007.76, + "end": 7009.0, + "probability": 0.905 + }, + { + "start": 7010.26, + "end": 7012.1, + "probability": 0.6573 + }, + { + "start": 7012.86, + "end": 7016.38, + "probability": 0.7382 + }, + { + "start": 7017.62, + "end": 7019.5, + "probability": 0.8511 + }, + { + "start": 7020.92, + "end": 7021.64, + "probability": 0.7204 + }, + { + "start": 7022.18, + "end": 7026.16, + "probability": 0.3414 + }, + { + "start": 7026.82, + "end": 7030.66, + "probability": 0.9814 + }, + { + "start": 7031.34, + "end": 7032.62, + "probability": 0.7481 + }, + { + "start": 7033.18, + "end": 7034.54, + "probability": 0.7646 + }, + { + "start": 7035.26, + "end": 7038.47, + "probability": 0.9827 + }, + { + "start": 7039.18, + "end": 7042.84, + "probability": 0.9546 + }, + { + "start": 7043.46, + "end": 7044.92, + "probability": 0.9836 + }, + { + "start": 7045.56, + "end": 7050.56, + "probability": 0.8005 + }, + { + "start": 7051.52, + "end": 7055.56, + "probability": 0.8496 + }, + { + "start": 7056.0, + "end": 7056.36, + "probability": 0.7513 + }, + { + "start": 7056.7, + "end": 7056.9, + "probability": 0.7339 + }, + { + "start": 7057.64, + "end": 7059.84, + "probability": 0.7093 + }, + { + "start": 7060.08, + "end": 7062.3, + "probability": 0.9429 + }, + { + "start": 7063.0, + "end": 7063.32, + "probability": 0.8469 + }, + { + "start": 7067.22, + "end": 7069.71, + "probability": 0.4708 + }, + { + "start": 7070.28, + "end": 7071.64, + "probability": 0.9706 + }, + { + "start": 7085.08, + "end": 7087.58, + "probability": 0.3553 + }, + { + "start": 7088.16, + "end": 7090.96, + "probability": 0.646 + }, + { + "start": 7091.02, + "end": 7095.5, + "probability": 0.8747 + }, + { + "start": 7095.82, + "end": 7097.74, + "probability": 0.8442 + }, + { + "start": 7097.8, + "end": 7099.42, + "probability": 0.8128 + }, + { + "start": 7099.62, + "end": 7103.66, + "probability": 0.9379 + }, + { + "start": 7104.5, + "end": 7106.28, + "probability": 0.4349 + }, + { + "start": 7106.48, + "end": 7111.74, + "probability": 0.979 + }, + { + "start": 7111.9, + "end": 7114.78, + "probability": 0.9858 + }, + { + "start": 7115.2, + "end": 7119.62, + "probability": 0.9855 + }, + { + "start": 7119.74, + "end": 7122.54, + "probability": 0.9858 + }, + { + "start": 7122.54, + "end": 7127.96, + "probability": 0.9237 + }, + { + "start": 7128.14, + "end": 7129.94, + "probability": 0.9036 + }, + { + "start": 7130.08, + "end": 7130.66, + "probability": 0.7963 + }, + { + "start": 7131.36, + "end": 7135.58, + "probability": 0.9893 + }, + { + "start": 7135.92, + "end": 7136.72, + "probability": 0.9806 + }, + { + "start": 7136.74, + "end": 7137.56, + "probability": 0.9816 + }, + { + "start": 7137.64, + "end": 7141.88, + "probability": 0.992 + }, + { + "start": 7141.88, + "end": 7146.54, + "probability": 0.9952 + }, + { + "start": 7147.14, + "end": 7149.5, + "probability": 0.6666 + }, + { + "start": 7149.72, + "end": 7151.64, + "probability": 0.4515 + }, + { + "start": 7151.86, + "end": 7153.68, + "probability": 0.7689 + }, + { + "start": 7154.1, + "end": 7157.96, + "probability": 0.9165 + }, + { + "start": 7175.16, + "end": 7179.32, + "probability": 0.9732 + }, + { + "start": 7179.68, + "end": 7184.84, + "probability": 0.9867 + }, + { + "start": 7184.84, + "end": 7191.04, + "probability": 0.9992 + }, + { + "start": 7191.52, + "end": 7193.54, + "probability": 0.9983 + }, + { + "start": 7193.64, + "end": 7196.63, + "probability": 0.8693 + }, + { + "start": 7197.04, + "end": 7200.76, + "probability": 0.9854 + }, + { + "start": 7200.76, + "end": 7203.48, + "probability": 0.9624 + }, + { + "start": 7203.56, + "end": 7206.3, + "probability": 0.9668 + }, + { + "start": 7206.38, + "end": 7207.62, + "probability": 0.9304 + }, + { + "start": 7207.7, + "end": 7210.56, + "probability": 0.79 + }, + { + "start": 7210.56, + "end": 7214.2, + "probability": 0.9941 + }, + { + "start": 7214.32, + "end": 7218.49, + "probability": 0.9019 + }, + { + "start": 7219.04, + "end": 7225.22, + "probability": 0.9865 + }, + { + "start": 7225.22, + "end": 7228.68, + "probability": 0.9976 + }, + { + "start": 7228.84, + "end": 7230.38, + "probability": 0.9532 + }, + { + "start": 7230.52, + "end": 7231.92, + "probability": 0.6514 + }, + { + "start": 7232.28, + "end": 7233.58, + "probability": 0.9831 + }, + { + "start": 7233.66, + "end": 7234.8, + "probability": 0.8891 + }, + { + "start": 7234.98, + "end": 7237.26, + "probability": 0.9154 + }, + { + "start": 7237.7, + "end": 7238.26, + "probability": 0.5521 + }, + { + "start": 7238.34, + "end": 7244.62, + "probability": 0.9865 + }, + { + "start": 7244.92, + "end": 7245.98, + "probability": 0.8688 + }, + { + "start": 7246.3, + "end": 7247.52, + "probability": 0.4728 + }, + { + "start": 7248.66, + "end": 7249.62, + "probability": 0.8481 + }, + { + "start": 7249.88, + "end": 7254.54, + "probability": 0.9155 + }, + { + "start": 7254.9, + "end": 7257.54, + "probability": 0.7535 + }, + { + "start": 7258.16, + "end": 7260.14, + "probability": 0.937 + }, + { + "start": 7260.14, + "end": 7263.44, + "probability": 0.9868 + }, + { + "start": 7263.56, + "end": 7267.02, + "probability": 0.9121 + }, + { + "start": 7267.06, + "end": 7269.97, + "probability": 0.8943 + }, + { + "start": 7270.38, + "end": 7272.6, + "probability": 0.9156 + }, + { + "start": 7272.78, + "end": 7277.4, + "probability": 0.9922 + }, + { + "start": 7277.74, + "end": 7278.68, + "probability": 0.7646 + }, + { + "start": 7279.22, + "end": 7286.82, + "probability": 0.8795 + }, + { + "start": 7286.94, + "end": 7290.46, + "probability": 0.8094 + }, + { + "start": 7291.06, + "end": 7292.14, + "probability": 0.6301 + }, + { + "start": 7292.4, + "end": 7292.88, + "probability": 0.9673 + }, + { + "start": 7293.14, + "end": 7299.3, + "probability": 0.9863 + }, + { + "start": 7300.12, + "end": 7303.52, + "probability": 0.9756 + }, + { + "start": 7303.98, + "end": 7306.66, + "probability": 0.8373 + }, + { + "start": 7307.02, + "end": 7312.32, + "probability": 0.8766 + }, + { + "start": 7312.44, + "end": 7316.12, + "probability": 0.9773 + }, + { + "start": 7316.52, + "end": 7320.35, + "probability": 0.8184 + }, + { + "start": 7320.82, + "end": 7323.52, + "probability": 0.8351 + }, + { + "start": 7324.18, + "end": 7325.68, + "probability": 0.9574 + }, + { + "start": 7325.86, + "end": 7330.44, + "probability": 0.738 + }, + { + "start": 7330.96, + "end": 7334.42, + "probability": 0.9281 + }, + { + "start": 7334.56, + "end": 7335.7, + "probability": 0.9097 + }, + { + "start": 7336.0, + "end": 7344.44, + "probability": 0.9379 + }, + { + "start": 7344.9, + "end": 7347.6, + "probability": 0.9886 + }, + { + "start": 7347.86, + "end": 7349.5, + "probability": 0.7382 + }, + { + "start": 7349.68, + "end": 7351.76, + "probability": 0.9614 + }, + { + "start": 7351.86, + "end": 7352.86, + "probability": 0.9629 + }, + { + "start": 7353.0, + "end": 7357.28, + "probability": 0.9966 + }, + { + "start": 7357.74, + "end": 7363.3, + "probability": 0.9973 + }, + { + "start": 7363.38, + "end": 7367.62, + "probability": 0.9929 + }, + { + "start": 7367.76, + "end": 7368.52, + "probability": 0.8905 + }, + { + "start": 7368.78, + "end": 7369.88, + "probability": 0.6037 + }, + { + "start": 7370.14, + "end": 7370.89, + "probability": 0.7607 + }, + { + "start": 7371.0, + "end": 7372.28, + "probability": 0.9726 + }, + { + "start": 7372.4, + "end": 7377.59, + "probability": 0.4922 + }, + { + "start": 7377.78, + "end": 7379.02, + "probability": 0.3185 + }, + { + "start": 7379.78, + "end": 7383.78, + "probability": 0.9766 + }, + { + "start": 7384.48, + "end": 7385.46, + "probability": 0.7208 + }, + { + "start": 7386.28, + "end": 7387.6, + "probability": 0.9288 + }, + { + "start": 7387.72, + "end": 7388.4, + "probability": 0.6922 + }, + { + "start": 7388.56, + "end": 7392.54, + "probability": 0.9205 + }, + { + "start": 7392.84, + "end": 7398.08, + "probability": 0.973 + }, + { + "start": 7398.16, + "end": 7398.94, + "probability": 0.9958 + }, + { + "start": 7399.64, + "end": 7400.15, + "probability": 0.9685 + }, + { + "start": 7400.48, + "end": 7401.23, + "probability": 0.9364 + }, + { + "start": 7401.84, + "end": 7404.44, + "probability": 0.8761 + }, + { + "start": 7404.74, + "end": 7409.98, + "probability": 0.9354 + }, + { + "start": 7410.3, + "end": 7412.4, + "probability": 0.981 + }, + { + "start": 7412.64, + "end": 7413.18, + "probability": 0.4085 + }, + { + "start": 7413.38, + "end": 7415.56, + "probability": 0.9827 + }, + { + "start": 7416.12, + "end": 7418.18, + "probability": 0.9219 + }, + { + "start": 7418.32, + "end": 7420.48, + "probability": 0.8038 + }, + { + "start": 7420.8, + "end": 7425.6, + "probability": 0.8264 + }, + { + "start": 7425.68, + "end": 7427.02, + "probability": 0.9877 + }, + { + "start": 7427.1, + "end": 7427.8, + "probability": 0.9452 + }, + { + "start": 7428.04, + "end": 7428.7, + "probability": 0.8575 + }, + { + "start": 7428.8, + "end": 7430.34, + "probability": 0.7706 + }, + { + "start": 7430.44, + "end": 7435.46, + "probability": 0.9757 + }, + { + "start": 7435.84, + "end": 7437.64, + "probability": 0.9883 + }, + { + "start": 7437.84, + "end": 7441.14, + "probability": 0.9057 + }, + { + "start": 7441.18, + "end": 7441.5, + "probability": 0.6565 + }, + { + "start": 7441.68, + "end": 7442.58, + "probability": 0.9103 + }, + { + "start": 7442.84, + "end": 7447.94, + "probability": 0.9907 + }, + { + "start": 7447.98, + "end": 7448.8, + "probability": 0.8775 + }, + { + "start": 7449.34, + "end": 7456.6, + "probability": 0.9952 + }, + { + "start": 7457.04, + "end": 7459.11, + "probability": 0.7974 + }, + { + "start": 7459.84, + "end": 7462.34, + "probability": 0.9919 + }, + { + "start": 7462.94, + "end": 7466.4, + "probability": 0.637 + }, + { + "start": 7466.98, + "end": 7468.9, + "probability": 0.826 + }, + { + "start": 7468.98, + "end": 7475.41, + "probability": 0.8618 + }, + { + "start": 7475.68, + "end": 7476.56, + "probability": 0.7825 + }, + { + "start": 7476.76, + "end": 7481.08, + "probability": 0.7273 + }, + { + "start": 7481.28, + "end": 7482.1, + "probability": 0.8 + }, + { + "start": 7482.28, + "end": 7487.36, + "probability": 0.9113 + }, + { + "start": 7487.42, + "end": 7491.78, + "probability": 0.9972 + }, + { + "start": 7491.78, + "end": 7498.38, + "probability": 0.9714 + }, + { + "start": 7498.88, + "end": 7500.62, + "probability": 0.7196 + }, + { + "start": 7500.76, + "end": 7502.44, + "probability": 0.8887 + }, + { + "start": 7502.52, + "end": 7506.22, + "probability": 0.9666 + }, + { + "start": 7506.36, + "end": 7511.76, + "probability": 0.9642 + }, + { + "start": 7511.94, + "end": 7515.38, + "probability": 0.9199 + }, + { + "start": 7515.96, + "end": 7520.18, + "probability": 0.9594 + }, + { + "start": 7520.44, + "end": 7522.02, + "probability": 0.8593 + }, + { + "start": 7522.32, + "end": 7528.78, + "probability": 0.9876 + }, + { + "start": 7528.82, + "end": 7530.42, + "probability": 0.8243 + }, + { + "start": 7530.52, + "end": 7535.06, + "probability": 0.988 + }, + { + "start": 7535.26, + "end": 7536.36, + "probability": 0.9635 + }, + { + "start": 7536.44, + "end": 7538.36, + "probability": 0.8313 + }, + { + "start": 7538.48, + "end": 7539.42, + "probability": 0.7953 + }, + { + "start": 7539.48, + "end": 7542.2, + "probability": 0.4241 + }, + { + "start": 7545.88, + "end": 7547.78, + "probability": 0.8889 + }, + { + "start": 7547.92, + "end": 7549.6, + "probability": 0.7906 + }, + { + "start": 7551.5, + "end": 7555.78, + "probability": 0.9552 + }, + { + "start": 7556.14, + "end": 7558.2, + "probability": 0.9589 + }, + { + "start": 7558.22, + "end": 7559.24, + "probability": 0.9673 + }, + { + "start": 7559.32, + "end": 7562.28, + "probability": 0.9978 + }, + { + "start": 7562.38, + "end": 7563.8, + "probability": 0.6803 + }, + { + "start": 7563.86, + "end": 7568.5, + "probability": 0.9061 + }, + { + "start": 7569.0, + "end": 7573.94, + "probability": 0.9619 + }, + { + "start": 7574.1, + "end": 7574.42, + "probability": 0.7933 + }, + { + "start": 7574.44, + "end": 7579.74, + "probability": 0.9771 + }, + { + "start": 7579.78, + "end": 7580.68, + "probability": 0.7519 + }, + { + "start": 7580.92, + "end": 7584.48, + "probability": 0.9636 + }, + { + "start": 7585.06, + "end": 7586.74, + "probability": 0.758 + }, + { + "start": 7586.92, + "end": 7590.88, + "probability": 0.9861 + }, + { + "start": 7591.02, + "end": 7591.16, + "probability": 0.4392 + }, + { + "start": 7591.24, + "end": 7593.98, + "probability": 0.9674 + }, + { + "start": 7594.14, + "end": 7595.28, + "probability": 0.6895 + }, + { + "start": 7595.4, + "end": 7596.44, + "probability": 0.8256 + }, + { + "start": 7596.6, + "end": 7596.74, + "probability": 0.2565 + }, + { + "start": 7596.88, + "end": 7598.6, + "probability": 0.9523 + }, + { + "start": 7599.0, + "end": 7600.72, + "probability": 0.5183 + }, + { + "start": 7600.82, + "end": 7602.14, + "probability": 0.8743 + }, + { + "start": 7602.18, + "end": 7605.24, + "probability": 0.9641 + }, + { + "start": 7605.72, + "end": 7611.62, + "probability": 0.908 + }, + { + "start": 7611.98, + "end": 7612.24, + "probability": 0.2601 + }, + { + "start": 7612.5, + "end": 7615.34, + "probability": 0.9548 + }, + { + "start": 7615.82, + "end": 7620.18, + "probability": 0.7699 + }, + { + "start": 7620.24, + "end": 7621.34, + "probability": 0.7699 + }, + { + "start": 7621.8, + "end": 7622.46, + "probability": 0.4802 + }, + { + "start": 7622.84, + "end": 7623.44, + "probability": 0.7017 + }, + { + "start": 7623.92, + "end": 7624.58, + "probability": 0.9789 + }, + { + "start": 7624.84, + "end": 7625.82, + "probability": 0.7452 + }, + { + "start": 7626.02, + "end": 7628.97, + "probability": 0.9119 + }, + { + "start": 7629.42, + "end": 7630.38, + "probability": 0.8726 + }, + { + "start": 7630.46, + "end": 7631.14, + "probability": 0.9292 + }, + { + "start": 7631.18, + "end": 7632.08, + "probability": 0.9806 + }, + { + "start": 7632.36, + "end": 7633.36, + "probability": 0.8042 + }, + { + "start": 7633.46, + "end": 7634.12, + "probability": 0.8296 + }, + { + "start": 7634.16, + "end": 7634.32, + "probability": 0.3717 + }, + { + "start": 7634.32, + "end": 7639.21, + "probability": 0.8564 + }, + { + "start": 7640.14, + "end": 7647.22, + "probability": 0.9976 + }, + { + "start": 7647.64, + "end": 7650.9, + "probability": 0.9622 + }, + { + "start": 7651.32, + "end": 7652.04, + "probability": 0.7455 + }, + { + "start": 7652.18, + "end": 7653.34, + "probability": 0.7865 + }, + { + "start": 7653.48, + "end": 7655.58, + "probability": 0.7642 + }, + { + "start": 7655.7, + "end": 7658.34, + "probability": 0.934 + }, + { + "start": 7658.76, + "end": 7660.9, + "probability": 0.9811 + }, + { + "start": 7661.52, + "end": 7665.44, + "probability": 0.9824 + }, + { + "start": 7665.44, + "end": 7670.32, + "probability": 0.998 + }, + { + "start": 7670.6, + "end": 7674.5, + "probability": 0.9963 + }, + { + "start": 7675.6, + "end": 7678.32, + "probability": 0.6407 + }, + { + "start": 7678.92, + "end": 7684.9, + "probability": 0.9947 + }, + { + "start": 7685.94, + "end": 7690.22, + "probability": 0.966 + }, + { + "start": 7690.86, + "end": 7692.96, + "probability": 0.9872 + }, + { + "start": 7693.1, + "end": 7695.22, + "probability": 0.8717 + }, + { + "start": 7695.78, + "end": 7696.88, + "probability": 0.0994 + }, + { + "start": 7697.12, + "end": 7698.58, + "probability": 0.5325 + }, + { + "start": 7699.38, + "end": 7705.86, + "probability": 0.9966 + }, + { + "start": 7705.86, + "end": 7712.6, + "probability": 0.9965 + }, + { + "start": 7713.76, + "end": 7720.75, + "probability": 0.9966 + }, + { + "start": 7721.2, + "end": 7721.68, + "probability": 0.8172 + }, + { + "start": 7721.7, + "end": 7728.7, + "probability": 0.9877 + }, + { + "start": 7728.78, + "end": 7731.36, + "probability": 0.9604 + }, + { + "start": 7731.4, + "end": 7732.2, + "probability": 0.8427 + }, + { + "start": 7732.3, + "end": 7739.14, + "probability": 0.9756 + }, + { + "start": 7740.32, + "end": 7741.28, + "probability": 0.7146 + }, + { + "start": 7742.32, + "end": 7751.06, + "probability": 0.9834 + }, + { + "start": 7752.02, + "end": 7753.68, + "probability": 0.585 + }, + { + "start": 7753.78, + "end": 7758.5, + "probability": 0.9917 + }, + { + "start": 7758.82, + "end": 7759.76, + "probability": 0.8994 + }, + { + "start": 7759.94, + "end": 7761.04, + "probability": 0.9884 + }, + { + "start": 7761.82, + "end": 7763.08, + "probability": 0.9956 + }, + { + "start": 7763.54, + "end": 7766.82, + "probability": 0.9312 + }, + { + "start": 7767.46, + "end": 7767.88, + "probability": 0.7958 + }, + { + "start": 7768.88, + "end": 7769.82, + "probability": 0.9483 + }, + { + "start": 7770.32, + "end": 7771.3, + "probability": 0.9636 + }, + { + "start": 7771.64, + "end": 7776.14, + "probability": 0.9095 + }, + { + "start": 7776.36, + "end": 7778.74, + "probability": 0.9224 + }, + { + "start": 7779.6, + "end": 7780.78, + "probability": 0.9261 + }, + { + "start": 7781.32, + "end": 7783.0, + "probability": 0.9956 + }, + { + "start": 7784.88, + "end": 7786.54, + "probability": 0.9553 + }, + { + "start": 7788.24, + "end": 7791.75, + "probability": 0.9902 + }, + { + "start": 7792.82, + "end": 7794.3, + "probability": 0.937 + }, + { + "start": 7794.9, + "end": 7797.52, + "probability": 0.9883 + }, + { + "start": 7797.6, + "end": 7798.45, + "probability": 0.8367 + }, + { + "start": 7800.0, + "end": 7801.1, + "probability": 0.6911 + }, + { + "start": 7801.1, + "end": 7802.78, + "probability": 0.9927 + }, + { + "start": 7803.54, + "end": 7807.8, + "probability": 0.9407 + }, + { + "start": 7807.96, + "end": 7808.22, + "probability": 0.9802 + }, + { + "start": 7808.78, + "end": 7809.28, + "probability": 0.9969 + }, + { + "start": 7810.14, + "end": 7812.54, + "probability": 0.9648 + }, + { + "start": 7813.3, + "end": 7815.62, + "probability": 0.9982 + }, + { + "start": 7815.7, + "end": 7816.42, + "probability": 0.8315 + }, + { + "start": 7816.44, + "end": 7817.84, + "probability": 0.9839 + }, + { + "start": 7818.38, + "end": 7821.18, + "probability": 0.9395 + }, + { + "start": 7821.76, + "end": 7824.08, + "probability": 0.9553 + }, + { + "start": 7824.66, + "end": 7828.58, + "probability": 0.992 + }, + { + "start": 7829.16, + "end": 7829.64, + "probability": 0.7193 + }, + { + "start": 7829.72, + "end": 7832.55, + "probability": 0.9179 + }, + { + "start": 7833.42, + "end": 7833.9, + "probability": 0.8625 + }, + { + "start": 7834.32, + "end": 7835.24, + "probability": 0.9824 + }, + { + "start": 7835.78, + "end": 7840.68, + "probability": 0.9937 + }, + { + "start": 7841.3, + "end": 7842.62, + "probability": 0.9535 + }, + { + "start": 7843.12, + "end": 7849.58, + "probability": 0.9887 + }, + { + "start": 7850.18, + "end": 7853.56, + "probability": 0.9457 + }, + { + "start": 7854.18, + "end": 7860.28, + "probability": 0.9397 + }, + { + "start": 7860.72, + "end": 7862.04, + "probability": 0.9607 + }, + { + "start": 7862.16, + "end": 7863.9, + "probability": 0.8122 + }, + { + "start": 7863.96, + "end": 7865.68, + "probability": 0.9917 + }, + { + "start": 7866.12, + "end": 7868.14, + "probability": 0.984 + }, + { + "start": 7868.48, + "end": 7869.48, + "probability": 0.5281 + }, + { + "start": 7870.14, + "end": 7872.32, + "probability": 0.7875 + }, + { + "start": 7872.66, + "end": 7873.58, + "probability": 0.7353 + }, + { + "start": 7873.94, + "end": 7876.66, + "probability": 0.9967 + }, + { + "start": 7876.66, + "end": 7880.1, + "probability": 0.9974 + }, + { + "start": 7880.44, + "end": 7881.58, + "probability": 0.9469 + }, + { + "start": 7881.92, + "end": 7883.04, + "probability": 0.9315 + }, + { + "start": 7883.14, + "end": 7884.02, + "probability": 0.7602 + }, + { + "start": 7884.4, + "end": 7885.98, + "probability": 0.8796 + }, + { + "start": 7887.34, + "end": 7889.26, + "probability": 0.9412 + }, + { + "start": 7889.38, + "end": 7891.42, + "probability": 0.9641 + }, + { + "start": 7891.8, + "end": 7894.64, + "probability": 0.9971 + }, + { + "start": 7894.72, + "end": 7901.6, + "probability": 0.9845 + }, + { + "start": 7904.56, + "end": 7907.68, + "probability": 0.8981 + }, + { + "start": 7908.36, + "end": 7909.12, + "probability": 0.9229 + }, + { + "start": 7910.42, + "end": 7911.14, + "probability": 0.8696 + }, + { + "start": 7911.88, + "end": 7914.78, + "probability": 0.8857 + }, + { + "start": 7916.46, + "end": 7917.76, + "probability": 0.7711 + }, + { + "start": 7917.9, + "end": 7920.5, + "probability": 0.9094 + }, + { + "start": 7921.22, + "end": 7925.82, + "probability": 0.9609 + }, + { + "start": 7925.82, + "end": 7931.16, + "probability": 0.9933 + }, + { + "start": 7931.22, + "end": 7938.22, + "probability": 0.986 + }, + { + "start": 7938.72, + "end": 7942.12, + "probability": 0.9814 + }, + { + "start": 7942.64, + "end": 7945.06, + "probability": 0.9747 + }, + { + "start": 7945.18, + "end": 7946.14, + "probability": 0.5273 + }, + { + "start": 7946.48, + "end": 7948.98, + "probability": 0.9681 + }, + { + "start": 7949.34, + "end": 7950.7, + "probability": 0.8086 + }, + { + "start": 7951.5, + "end": 7952.04, + "probability": 0.7585 + }, + { + "start": 7952.62, + "end": 7953.78, + "probability": 0.7663 + }, + { + "start": 7954.4, + "end": 7957.38, + "probability": 0.9874 + }, + { + "start": 7957.86, + "end": 7962.32, + "probability": 0.9964 + }, + { + "start": 7963.24, + "end": 7967.78, + "probability": 0.8781 + }, + { + "start": 7968.04, + "end": 7969.2, + "probability": 0.9832 + }, + { + "start": 7969.98, + "end": 7971.22, + "probability": 0.7449 + }, + { + "start": 7971.52, + "end": 7972.14, + "probability": 0.6054 + }, + { + "start": 7972.48, + "end": 7973.56, + "probability": 0.8848 + }, + { + "start": 7973.62, + "end": 7975.64, + "probability": 0.9919 + }, + { + "start": 7976.22, + "end": 7980.34, + "probability": 0.9923 + }, + { + "start": 7980.54, + "end": 7981.46, + "probability": 0.5804 + }, + { + "start": 7982.54, + "end": 7985.16, + "probability": 0.9492 + }, + { + "start": 7985.26, + "end": 7986.88, + "probability": 0.7071 + }, + { + "start": 7987.58, + "end": 7989.44, + "probability": 0.9829 + }, + { + "start": 7990.36, + "end": 7992.7, + "probability": 0.9784 + }, + { + "start": 7993.56, + "end": 7995.84, + "probability": 0.9934 + }, + { + "start": 7996.52, + "end": 8001.3, + "probability": 0.9775 + }, + { + "start": 8001.56, + "end": 8003.24, + "probability": 0.9912 + }, + { + "start": 8003.56, + "end": 8005.26, + "probability": 0.9941 + }, + { + "start": 8006.28, + "end": 8009.36, + "probability": 0.931 + }, + { + "start": 8010.04, + "end": 8011.2, + "probability": 0.3763 + }, + { + "start": 8011.74, + "end": 8013.7, + "probability": 0.9664 + }, + { + "start": 8014.5, + "end": 8017.14, + "probability": 0.9278 + }, + { + "start": 8017.68, + "end": 8023.92, + "probability": 0.9922 + }, + { + "start": 8024.96, + "end": 8026.06, + "probability": 0.6927 + }, + { + "start": 8027.2, + "end": 8027.3, + "probability": 0.6307 + }, + { + "start": 8029.42, + "end": 8032.32, + "probability": 0.9905 + }, + { + "start": 8033.5, + "end": 8036.18, + "probability": 0.9961 + }, + { + "start": 8037.06, + "end": 8038.24, + "probability": 0.9746 + }, + { + "start": 8038.48, + "end": 8039.62, + "probability": 0.6397 + }, + { + "start": 8039.68, + "end": 8041.2, + "probability": 0.6507 + }, + { + "start": 8041.52, + "end": 8042.12, + "probability": 0.8145 + }, + { + "start": 8042.28, + "end": 8043.93, + "probability": 0.894 + }, + { + "start": 8044.2, + "end": 8047.58, + "probability": 0.9622 + }, + { + "start": 8047.92, + "end": 8050.36, + "probability": 0.9438 + }, + { + "start": 8050.74, + "end": 8052.12, + "probability": 0.9971 + }, + { + "start": 8052.2, + "end": 8055.9, + "probability": 0.9875 + }, + { + "start": 8056.92, + "end": 8056.92, + "probability": 0.424 + }, + { + "start": 8056.92, + "end": 8059.3, + "probability": 0.8855 + }, + { + "start": 8059.76, + "end": 8064.44, + "probability": 0.999 + }, + { + "start": 8064.84, + "end": 8067.2, + "probability": 0.9956 + }, + { + "start": 8067.9, + "end": 8069.6, + "probability": 0.9974 + }, + { + "start": 8070.22, + "end": 8075.06, + "probability": 0.99 + }, + { + "start": 8076.02, + "end": 8076.5, + "probability": 0.5358 + }, + { + "start": 8079.12, + "end": 8080.64, + "probability": 0.7862 + }, + { + "start": 8081.7, + "end": 8085.04, + "probability": 0.9949 + }, + { + "start": 8086.36, + "end": 8087.22, + "probability": 0.9712 + }, + { + "start": 8088.62, + "end": 8089.14, + "probability": 0.9775 + }, + { + "start": 8089.22, + "end": 8089.94, + "probability": 0.6925 + }, + { + "start": 8090.06, + "end": 8093.62, + "probability": 0.9636 + }, + { + "start": 8093.62, + "end": 8096.24, + "probability": 0.9961 + }, + { + "start": 8096.38, + "end": 8098.12, + "probability": 0.9222 + }, + { + "start": 8098.44, + "end": 8100.54, + "probability": 0.8175 + }, + { + "start": 8100.64, + "end": 8101.9, + "probability": 0.9193 + }, + { + "start": 8103.04, + "end": 8103.56, + "probability": 0.7078 + }, + { + "start": 8104.44, + "end": 8106.94, + "probability": 0.5569 + }, + { + "start": 8107.48, + "end": 8108.52, + "probability": 0.9308 + }, + { + "start": 8108.54, + "end": 8109.2, + "probability": 0.9553 + }, + { + "start": 8109.32, + "end": 8112.43, + "probability": 0.9791 + }, + { + "start": 8113.04, + "end": 8113.58, + "probability": 0.9622 + }, + { + "start": 8114.14, + "end": 8115.88, + "probability": 0.9433 + }, + { + "start": 8115.88, + "end": 8117.0, + "probability": 0.9799 + }, + { + "start": 8117.06, + "end": 8118.34, + "probability": 0.9561 + }, + { + "start": 8118.82, + "end": 8119.8, + "probability": 0.4735 + }, + { + "start": 8119.86, + "end": 8123.48, + "probability": 0.8407 + }, + { + "start": 8123.64, + "end": 8124.14, + "probability": 0.763 + }, + { + "start": 8124.8, + "end": 8127.26, + "probability": 0.6627 + }, + { + "start": 8127.32, + "end": 8129.24, + "probability": 0.9781 + }, + { + "start": 8132.2, + "end": 8133.26, + "probability": 0.4465 + }, + { + "start": 8133.8, + "end": 8136.36, + "probability": 0.7683 + }, + { + "start": 8139.68, + "end": 8141.32, + "probability": 0.9814 + }, + { + "start": 8153.97, + "end": 8155.02, + "probability": 0.7433 + }, + { + "start": 8155.52, + "end": 8155.8, + "probability": 0.7638 + }, + { + "start": 8156.94, + "end": 8158.56, + "probability": 0.7037 + }, + { + "start": 8160.16, + "end": 8161.97, + "probability": 0.9584 + }, + { + "start": 8162.4, + "end": 8163.76, + "probability": 0.9694 + }, + { + "start": 8163.9, + "end": 8167.1, + "probability": 0.9908 + }, + { + "start": 8168.2, + "end": 8170.84, + "probability": 0.8478 + }, + { + "start": 8171.6, + "end": 8173.54, + "probability": 0.8864 + }, + { + "start": 8174.3, + "end": 8179.18, + "probability": 0.9841 + }, + { + "start": 8179.28, + "end": 8180.26, + "probability": 0.8306 + }, + { + "start": 8180.36, + "end": 8181.08, + "probability": 0.7592 + }, + { + "start": 8181.26, + "end": 8182.98, + "probability": 0.8915 + }, + { + "start": 8183.0, + "end": 8184.06, + "probability": 0.5454 + }, + { + "start": 8184.5, + "end": 8186.78, + "probability": 0.9255 + }, + { + "start": 8187.36, + "end": 8188.46, + "probability": 0.5279 + }, + { + "start": 8188.66, + "end": 8192.58, + "probability": 0.9745 + }, + { + "start": 8193.06, + "end": 8196.66, + "probability": 0.9956 + }, + { + "start": 8197.1, + "end": 8198.22, + "probability": 0.7412 + }, + { + "start": 8198.44, + "end": 8202.14, + "probability": 0.9374 + }, + { + "start": 8202.54, + "end": 8207.08, + "probability": 0.9408 + }, + { + "start": 8207.16, + "end": 8208.38, + "probability": 0.7953 + }, + { + "start": 8209.02, + "end": 8211.9, + "probability": 0.8335 + }, + { + "start": 8212.28, + "end": 8212.82, + "probability": 0.6131 + }, + { + "start": 8212.9, + "end": 8213.42, + "probability": 0.7509 + }, + { + "start": 8213.56, + "end": 8216.62, + "probability": 0.9393 + }, + { + "start": 8216.62, + "end": 8219.84, + "probability": 0.9779 + }, + { + "start": 8220.46, + "end": 8222.78, + "probability": 0.7198 + }, + { + "start": 8223.28, + "end": 8227.82, + "probability": 0.9248 + }, + { + "start": 8228.06, + "end": 8230.42, + "probability": 0.9945 + }, + { + "start": 8231.04, + "end": 8234.46, + "probability": 0.9982 + }, + { + "start": 8234.56, + "end": 8235.04, + "probability": 0.5033 + }, + { + "start": 8235.12, + "end": 8235.9, + "probability": 0.7532 + }, + { + "start": 8236.4, + "end": 8239.22, + "probability": 0.8338 + }, + { + "start": 8239.66, + "end": 8240.84, + "probability": 0.9738 + }, + { + "start": 8241.14, + "end": 8245.22, + "probability": 0.8787 + }, + { + "start": 8245.56, + "end": 8246.62, + "probability": 0.7624 + }, + { + "start": 8247.34, + "end": 8248.24, + "probability": 0.9064 + }, + { + "start": 8248.68, + "end": 8249.74, + "probability": 0.8774 + }, + { + "start": 8249.9, + "end": 8250.72, + "probability": 0.9561 + }, + { + "start": 8251.38, + "end": 8252.42, + "probability": 0.9703 + }, + { + "start": 8253.3, + "end": 8257.92, + "probability": 0.9858 + }, + { + "start": 8258.46, + "end": 8259.64, + "probability": 0.9858 + }, + { + "start": 8259.84, + "end": 8263.1, + "probability": 0.9829 + }, + { + "start": 8263.26, + "end": 8265.34, + "probability": 0.9886 + }, + { + "start": 8265.64, + "end": 8268.02, + "probability": 0.9431 + }, + { + "start": 8268.78, + "end": 8273.68, + "probability": 0.9695 + }, + { + "start": 8273.76, + "end": 8275.44, + "probability": 0.9691 + }, + { + "start": 8276.06, + "end": 8276.2, + "probability": 0.3122 + }, + { + "start": 8276.2, + "end": 8276.88, + "probability": 0.6574 + }, + { + "start": 8276.94, + "end": 8279.84, + "probability": 0.9961 + }, + { + "start": 8279.84, + "end": 8283.06, + "probability": 0.9451 + }, + { + "start": 8283.58, + "end": 8284.66, + "probability": 0.7966 + }, + { + "start": 8284.96, + "end": 8286.22, + "probability": 0.8058 + }, + { + "start": 8286.96, + "end": 8287.86, + "probability": 0.9785 + }, + { + "start": 8288.12, + "end": 8293.38, + "probability": 0.9775 + }, + { + "start": 8293.82, + "end": 8294.18, + "probability": 0.8678 + }, + { + "start": 8294.62, + "end": 8295.2, + "probability": 0.9434 + }, + { + "start": 8295.66, + "end": 8296.56, + "probability": 0.7441 + }, + { + "start": 8296.64, + "end": 8297.46, + "probability": 0.8924 + }, + { + "start": 8297.52, + "end": 8298.54, + "probability": 0.9471 + }, + { + "start": 8298.64, + "end": 8301.42, + "probability": 0.9427 + }, + { + "start": 8302.12, + "end": 8305.36, + "probability": 0.9251 + }, + { + "start": 8305.86, + "end": 8306.84, + "probability": 0.7773 + }, + { + "start": 8306.92, + "end": 8308.76, + "probability": 0.9351 + }, + { + "start": 8308.9, + "end": 8313.36, + "probability": 0.9961 + }, + { + "start": 8313.62, + "end": 8314.42, + "probability": 0.6398 + }, + { + "start": 8314.74, + "end": 8316.42, + "probability": 0.9261 + }, + { + "start": 8316.58, + "end": 8319.34, + "probability": 0.7623 + }, + { + "start": 8320.32, + "end": 8322.48, + "probability": 0.6953 + }, + { + "start": 8322.68, + "end": 8323.06, + "probability": 0.9175 + }, + { + "start": 8323.96, + "end": 8326.06, + "probability": 0.9861 + }, + { + "start": 8326.22, + "end": 8330.7, + "probability": 0.8496 + }, + { + "start": 8331.26, + "end": 8335.72, + "probability": 0.9827 + }, + { + "start": 8335.98, + "end": 8338.58, + "probability": 0.902 + }, + { + "start": 8338.74, + "end": 8341.5, + "probability": 0.9919 + }, + { + "start": 8342.5, + "end": 8343.2, + "probability": 0.7048 + }, + { + "start": 8344.16, + "end": 8345.8, + "probability": 0.8009 + }, + { + "start": 8346.82, + "end": 8349.24, + "probability": 0.8534 + }, + { + "start": 8349.46, + "end": 8354.3, + "probability": 0.9598 + }, + { + "start": 8356.26, + "end": 8360.42, + "probability": 0.9785 + }, + { + "start": 8360.54, + "end": 8363.52, + "probability": 0.9104 + }, + { + "start": 8364.02, + "end": 8368.68, + "probability": 0.9082 + }, + { + "start": 8369.94, + "end": 8371.82, + "probability": 0.7207 + }, + { + "start": 8372.32, + "end": 8375.3, + "probability": 0.9756 + }, + { + "start": 8375.3, + "end": 8378.32, + "probability": 0.9561 + }, + { + "start": 8378.9, + "end": 8382.62, + "probability": 0.9978 + }, + { + "start": 8383.86, + "end": 8386.56, + "probability": 0.8352 + }, + { + "start": 8388.26, + "end": 8388.96, + "probability": 0.8116 + }, + { + "start": 8389.1, + "end": 8392.66, + "probability": 0.9957 + }, + { + "start": 8392.8, + "end": 8393.56, + "probability": 0.9095 + }, + { + "start": 8394.94, + "end": 8395.68, + "probability": 0.9074 + }, + { + "start": 8395.94, + "end": 8398.42, + "probability": 0.7185 + }, + { + "start": 8398.6, + "end": 8401.26, + "probability": 0.8324 + }, + { + "start": 8401.58, + "end": 8404.5, + "probability": 0.915 + }, + { + "start": 8404.82, + "end": 8405.74, + "probability": 0.7685 + }, + { + "start": 8406.02, + "end": 8407.12, + "probability": 0.7837 + }, + { + "start": 8408.34, + "end": 8411.48, + "probability": 0.9922 + }, + { + "start": 8412.04, + "end": 8413.48, + "probability": 0.88 + }, + { + "start": 8413.58, + "end": 8414.7, + "probability": 0.9551 + }, + { + "start": 8415.02, + "end": 8417.7, + "probability": 0.9457 + }, + { + "start": 8417.8, + "end": 8419.02, + "probability": 0.9751 + }, + { + "start": 8419.14, + "end": 8419.49, + "probability": 0.7561 + }, + { + "start": 8420.04, + "end": 8423.54, + "probability": 0.9671 + }, + { + "start": 8423.54, + "end": 8426.14, + "probability": 0.9971 + }, + { + "start": 8426.66, + "end": 8429.36, + "probability": 0.9949 + }, + { + "start": 8430.98, + "end": 8432.82, + "probability": 0.6193 + }, + { + "start": 8432.98, + "end": 8433.68, + "probability": 0.6948 + }, + { + "start": 8433.74, + "end": 8434.54, + "probability": 0.6623 + }, + { + "start": 8434.94, + "end": 8437.0, + "probability": 0.8676 + }, + { + "start": 8438.72, + "end": 8441.01, + "probability": 0.8877 + }, + { + "start": 8441.36, + "end": 8443.9, + "probability": 0.7568 + }, + { + "start": 8444.34, + "end": 8445.16, + "probability": 0.6261 + }, + { + "start": 8445.58, + "end": 8447.28, + "probability": 0.6045 + }, + { + "start": 8448.0, + "end": 8452.1, + "probability": 0.9285 + }, + { + "start": 8452.12, + "end": 8454.12, + "probability": 0.9331 + }, + { + "start": 8454.36, + "end": 8456.32, + "probability": 0.8741 + }, + { + "start": 8456.84, + "end": 8459.74, + "probability": 0.9888 + }, + { + "start": 8459.82, + "end": 8461.32, + "probability": 0.9995 + }, + { + "start": 8461.4, + "end": 8462.14, + "probability": 0.8501 + }, + { + "start": 8462.3, + "end": 8462.64, + "probability": 0.6217 + }, + { + "start": 8462.74, + "end": 8463.96, + "probability": 0.8791 + }, + { + "start": 8464.22, + "end": 8470.3, + "probability": 0.9703 + }, + { + "start": 8470.76, + "end": 8472.64, + "probability": 0.9579 + }, + { + "start": 8472.88, + "end": 8473.28, + "probability": 0.5548 + }, + { + "start": 8473.36, + "end": 8474.06, + "probability": 0.6887 + }, + { + "start": 8474.14, + "end": 8474.72, + "probability": 0.5071 + }, + { + "start": 8474.8, + "end": 8476.0, + "probability": 0.9227 + }, + { + "start": 8476.04, + "end": 8477.26, + "probability": 0.9421 + }, + { + "start": 8477.76, + "end": 8480.18, + "probability": 0.9779 + }, + { + "start": 8480.18, + "end": 8483.66, + "probability": 0.7831 + }, + { + "start": 8483.72, + "end": 8484.63, + "probability": 0.4722 + }, + { + "start": 8485.16, + "end": 8487.86, + "probability": 0.98 + }, + { + "start": 8488.36, + "end": 8489.62, + "probability": 0.9512 + }, + { + "start": 8490.1, + "end": 8491.54, + "probability": 0.9113 + }, + { + "start": 8491.94, + "end": 8495.16, + "probability": 0.9203 + }, + { + "start": 8495.92, + "end": 8497.82, + "probability": 0.4589 + }, + { + "start": 8498.78, + "end": 8502.04, + "probability": 0.9214 + }, + { + "start": 8502.06, + "end": 8502.58, + "probability": 0.4968 + }, + { + "start": 8502.58, + "end": 8503.83, + "probability": 0.979 + }, + { + "start": 8504.08, + "end": 8504.86, + "probability": 0.91 + }, + { + "start": 8505.08, + "end": 8506.14, + "probability": 0.9067 + }, + { + "start": 8506.48, + "end": 8509.63, + "probability": 0.9749 + }, + { + "start": 8510.72, + "end": 8514.48, + "probability": 0.5408 + }, + { + "start": 8515.26, + "end": 8519.38, + "probability": 0.9444 + }, + { + "start": 8519.48, + "end": 8522.52, + "probability": 0.911 + }, + { + "start": 8522.58, + "end": 8523.54, + "probability": 0.6775 + }, + { + "start": 8523.92, + "end": 8526.5, + "probability": 0.9842 + }, + { + "start": 8526.54, + "end": 8528.5, + "probability": 0.8833 + }, + { + "start": 8528.6, + "end": 8529.64, + "probability": 0.4352 + }, + { + "start": 8529.64, + "end": 8530.13, + "probability": 0.9729 + }, + { + "start": 8531.08, + "end": 8532.56, + "probability": 0.8027 + }, + { + "start": 8535.42, + "end": 8538.44, + "probability": 0.8531 + }, + { + "start": 8545.88, + "end": 8546.78, + "probability": 0.8347 + }, + { + "start": 8546.92, + "end": 8547.4, + "probability": 0.8011 + }, + { + "start": 8547.56, + "end": 8549.08, + "probability": 0.7433 + }, + { + "start": 8549.22, + "end": 8550.3, + "probability": 0.8698 + }, + { + "start": 8551.1, + "end": 8552.02, + "probability": 0.7182 + }, + { + "start": 8553.62, + "end": 8557.52, + "probability": 0.9919 + }, + { + "start": 8557.52, + "end": 8560.02, + "probability": 0.923 + }, + { + "start": 8560.12, + "end": 8560.8, + "probability": 0.9071 + }, + { + "start": 8562.14, + "end": 8563.46, + "probability": 0.9658 + }, + { + "start": 8564.72, + "end": 8565.94, + "probability": 0.9729 + }, + { + "start": 8567.38, + "end": 8571.64, + "probability": 0.9966 + }, + { + "start": 8572.26, + "end": 8574.82, + "probability": 0.8221 + }, + { + "start": 8575.88, + "end": 8576.34, + "probability": 0.7221 + }, + { + "start": 8576.44, + "end": 8578.44, + "probability": 0.6886 + }, + { + "start": 8578.52, + "end": 8579.74, + "probability": 0.9707 + }, + { + "start": 8580.22, + "end": 8581.58, + "probability": 0.6757 + }, + { + "start": 8582.72, + "end": 8585.62, + "probability": 0.9904 + }, + { + "start": 8585.74, + "end": 8587.22, + "probability": 0.9835 + }, + { + "start": 8588.7, + "end": 8589.9, + "probability": 0.9854 + }, + { + "start": 8591.8, + "end": 8593.9, + "probability": 0.9001 + }, + { + "start": 8594.52, + "end": 8599.52, + "probability": 0.9071 + }, + { + "start": 8600.5, + "end": 8601.48, + "probability": 0.9757 + }, + { + "start": 8603.64, + "end": 8604.22, + "probability": 0.9922 + }, + { + "start": 8604.26, + "end": 8605.62, + "probability": 0.8158 + }, + { + "start": 8605.72, + "end": 8607.14, + "probability": 0.9309 + }, + { + "start": 8607.98, + "end": 8610.28, + "probability": 0.9043 + }, + { + "start": 8611.32, + "end": 8614.04, + "probability": 0.9897 + }, + { + "start": 8615.24, + "end": 8615.98, + "probability": 0.9468 + }, + { + "start": 8616.1, + "end": 8617.16, + "probability": 0.9335 + }, + { + "start": 8617.32, + "end": 8618.32, + "probability": 0.9966 + }, + { + "start": 8619.06, + "end": 8619.58, + "probability": 0.6063 + }, + { + "start": 8620.54, + "end": 8624.56, + "probability": 0.9644 + }, + { + "start": 8624.56, + "end": 8627.94, + "probability": 0.993 + }, + { + "start": 8629.56, + "end": 8630.52, + "probability": 0.9552 + }, + { + "start": 8630.6, + "end": 8631.8, + "probability": 0.9768 + }, + { + "start": 8632.5, + "end": 8634.18, + "probability": 0.9346 + }, + { + "start": 8634.34, + "end": 8635.63, + "probability": 0.9762 + }, + { + "start": 8636.14, + "end": 8637.52, + "probability": 0.9729 + }, + { + "start": 8637.62, + "end": 8638.24, + "probability": 0.5147 + }, + { + "start": 8638.78, + "end": 8644.46, + "probability": 0.9291 + }, + { + "start": 8645.4, + "end": 8646.12, + "probability": 0.8456 + }, + { + "start": 8646.66, + "end": 8650.68, + "probability": 0.636 + }, + { + "start": 8651.1, + "end": 8652.44, + "probability": 0.5132 + }, + { + "start": 8653.4, + "end": 8658.58, + "probability": 0.9097 + }, + { + "start": 8659.78, + "end": 8663.0, + "probability": 0.9253 + }, + { + "start": 8663.1, + "end": 8664.96, + "probability": 0.974 + }, + { + "start": 8665.4, + "end": 8666.14, + "probability": 0.5931 + }, + { + "start": 8668.02, + "end": 8669.24, + "probability": 0.6881 + }, + { + "start": 8670.22, + "end": 8670.64, + "probability": 0.9285 + }, + { + "start": 8671.85, + "end": 8673.24, + "probability": 0.6963 + }, + { + "start": 8674.1, + "end": 8675.2, + "probability": 0.9237 + }, + { + "start": 8676.2, + "end": 8679.3, + "probability": 0.997 + }, + { + "start": 8680.02, + "end": 8683.34, + "probability": 0.5774 + }, + { + "start": 8685.32, + "end": 8686.98, + "probability": 0.7386 + }, + { + "start": 8687.76, + "end": 8690.66, + "probability": 0.9917 + }, + { + "start": 8692.92, + "end": 8696.54, + "probability": 0.9762 + }, + { + "start": 8696.54, + "end": 8699.62, + "probability": 0.9111 + }, + { + "start": 8703.52, + "end": 8704.24, + "probability": 0.9983 + }, + { + "start": 8705.66, + "end": 8706.52, + "probability": 0.3854 + }, + { + "start": 8707.08, + "end": 8712.22, + "probability": 0.9846 + }, + { + "start": 8713.82, + "end": 8717.26, + "probability": 0.8678 + }, + { + "start": 8720.33, + "end": 8724.68, + "probability": 0.9956 + }, + { + "start": 8724.68, + "end": 8725.08, + "probability": 0.8981 + }, + { + "start": 8725.88, + "end": 8728.04, + "probability": 0.9966 + }, + { + "start": 8729.28, + "end": 8732.52, + "probability": 0.7387 + }, + { + "start": 8733.6, + "end": 8737.12, + "probability": 0.9567 + }, + { + "start": 8737.28, + "end": 8739.22, + "probability": 0.6137 + }, + { + "start": 8739.78, + "end": 8741.7, + "probability": 0.7289 + }, + { + "start": 8742.42, + "end": 8745.2, + "probability": 0.9253 + }, + { + "start": 8745.44, + "end": 8746.49, + "probability": 0.8317 + }, + { + "start": 8747.82, + "end": 8748.8, + "probability": 0.4901 + }, + { + "start": 8748.98, + "end": 8751.24, + "probability": 0.9748 + }, + { + "start": 8751.4, + "end": 8752.19, + "probability": 0.9908 + }, + { + "start": 8752.46, + "end": 8753.36, + "probability": 0.8682 + }, + { + "start": 8755.44, + "end": 8758.4, + "probability": 0.9587 + }, + { + "start": 8758.4, + "end": 8763.3, + "probability": 0.9917 + }, + { + "start": 8763.78, + "end": 8766.34, + "probability": 0.9165 + }, + { + "start": 8766.38, + "end": 8767.3, + "probability": 0.5371 + }, + { + "start": 8769.68, + "end": 8771.64, + "probability": 0.8201 + }, + { + "start": 8772.24, + "end": 8773.04, + "probability": 0.7108 + }, + { + "start": 8774.84, + "end": 8778.3, + "probability": 0.9419 + }, + { + "start": 8782.76, + "end": 8784.18, + "probability": 0.9169 + }, + { + "start": 8786.9, + "end": 8793.9, + "probability": 0.979 + }, + { + "start": 8794.04, + "end": 8794.32, + "probability": 0.0924 + }, + { + "start": 8794.58, + "end": 8796.05, + "probability": 0.5756 + }, + { + "start": 8797.08, + "end": 8799.24, + "probability": 0.9515 + }, + { + "start": 8800.96, + "end": 8803.1, + "probability": 0.8258 + }, + { + "start": 8804.24, + "end": 8805.08, + "probability": 0.5807 + }, + { + "start": 8805.64, + "end": 8807.4, + "probability": 0.8329 + }, + { + "start": 8807.6, + "end": 8808.38, + "probability": 0.9839 + }, + { + "start": 8808.52, + "end": 8811.62, + "probability": 0.9247 + }, + { + "start": 8812.16, + "end": 8815.9, + "probability": 0.939 + }, + { + "start": 8818.48, + "end": 8822.9, + "probability": 0.8344 + }, + { + "start": 8822.98, + "end": 8823.25, + "probability": 0.8774 + }, + { + "start": 8823.86, + "end": 8825.73, + "probability": 0.9043 + }, + { + "start": 8827.44, + "end": 8828.9, + "probability": 0.1732 + }, + { + "start": 8830.76, + "end": 8831.44, + "probability": 0.835 + }, + { + "start": 8831.84, + "end": 8833.76, + "probability": 0.2501 + }, + { + "start": 8834.28, + "end": 8835.66, + "probability": 0.8715 + }, + { + "start": 8836.18, + "end": 8836.94, + "probability": 0.8203 + }, + { + "start": 8838.2, + "end": 8841.06, + "probability": 0.8363 + }, + { + "start": 8841.94, + "end": 8843.12, + "probability": 0.9126 + }, + { + "start": 8843.82, + "end": 8847.48, + "probability": 0.9067 + }, + { + "start": 8848.4, + "end": 8851.38, + "probability": 0.98 + }, + { + "start": 8853.44, + "end": 8854.6, + "probability": 0.7849 + }, + { + "start": 8855.38, + "end": 8857.44, + "probability": 0.9939 + }, + { + "start": 8858.46, + "end": 8860.44, + "probability": 0.9174 + }, + { + "start": 8860.5, + "end": 8861.34, + "probability": 0.9932 + }, + { + "start": 8862.14, + "end": 8863.32, + "probability": 0.9234 + }, + { + "start": 8865.54, + "end": 8867.52, + "probability": 0.9141 + }, + { + "start": 8867.72, + "end": 8868.78, + "probability": 0.9727 + }, + { + "start": 8868.94, + "end": 8870.0, + "probability": 0.9414 + }, + { + "start": 8872.0, + "end": 8875.0, + "probability": 0.9751 + }, + { + "start": 8875.46, + "end": 8878.92, + "probability": 0.9766 + }, + { + "start": 8881.12, + "end": 8884.92, + "probability": 0.9333 + }, + { + "start": 8885.66, + "end": 8889.44, + "probability": 0.8483 + }, + { + "start": 8889.74, + "end": 8890.93, + "probability": 0.3969 + }, + { + "start": 8891.73, + "end": 8895.05, + "probability": 0.9213 + }, + { + "start": 8895.42, + "end": 8896.14, + "probability": 0.3658 + }, + { + "start": 8896.2, + "end": 8897.52, + "probability": 0.6322 + }, + { + "start": 8897.64, + "end": 8900.34, + "probability": 0.8729 + }, + { + "start": 8900.82, + "end": 8903.14, + "probability": 0.9943 + }, + { + "start": 8906.16, + "end": 8909.32, + "probability": 0.989 + }, + { + "start": 8909.34, + "end": 8911.8, + "probability": 0.9887 + }, + { + "start": 8911.88, + "end": 8913.62, + "probability": 0.9619 + }, + { + "start": 8915.56, + "end": 8916.78, + "probability": 0.9862 + }, + { + "start": 8917.3, + "end": 8923.46, + "probability": 0.9959 + }, + { + "start": 8923.46, + "end": 8928.52, + "probability": 0.9892 + }, + { + "start": 8929.6, + "end": 8931.74, + "probability": 0.886 + }, + { + "start": 8932.26, + "end": 8933.88, + "probability": 0.9265 + }, + { + "start": 8934.16, + "end": 8935.18, + "probability": 0.6069 + }, + { + "start": 8935.32, + "end": 8935.78, + "probability": 0.7337 + }, + { + "start": 8935.94, + "end": 8936.72, + "probability": 0.8478 + }, + { + "start": 8936.94, + "end": 8937.3, + "probability": 0.7729 + }, + { + "start": 8937.36, + "end": 8938.6, + "probability": 0.4691 + }, + { + "start": 8939.42, + "end": 8941.29, + "probability": 0.9316 + }, + { + "start": 8942.5, + "end": 8945.28, + "probability": 0.971 + }, + { + "start": 8946.1, + "end": 8949.9, + "probability": 0.9757 + }, + { + "start": 8950.44, + "end": 8953.14, + "probability": 0.9292 + }, + { + "start": 8953.2, + "end": 8961.18, + "probability": 0.8936 + }, + { + "start": 8962.14, + "end": 8964.4, + "probability": 0.9974 + }, + { + "start": 8964.6, + "end": 8967.4, + "probability": 0.7578 + }, + { + "start": 8967.82, + "end": 8968.98, + "probability": 0.9919 + }, + { + "start": 8972.68, + "end": 8978.44, + "probability": 0.982 + }, + { + "start": 8978.52, + "end": 8980.6, + "probability": 0.8849 + }, + { + "start": 8982.46, + "end": 8983.62, + "probability": 0.8827 + }, + { + "start": 8983.64, + "end": 8985.38, + "probability": 0.9824 + }, + { + "start": 8985.56, + "end": 8987.0, + "probability": 0.6078 + }, + { + "start": 8987.28, + "end": 8991.02, + "probability": 0.932 + }, + { + "start": 8991.32, + "end": 8992.36, + "probability": 0.7999 + }, + { + "start": 8992.58, + "end": 8993.56, + "probability": 0.911 + }, + { + "start": 8993.7, + "end": 8996.4, + "probability": 0.8417 + }, + { + "start": 8996.44, + "end": 8998.68, + "probability": 0.5266 + }, + { + "start": 9000.36, + "end": 9001.46, + "probability": 0.7264 + }, + { + "start": 9002.38, + "end": 9005.36, + "probability": 0.9873 + }, + { + "start": 9005.46, + "end": 9007.22, + "probability": 0.9618 + }, + { + "start": 9007.36, + "end": 9009.02, + "probability": 0.9315 + }, + { + "start": 9011.3, + "end": 9012.79, + "probability": 0.9897 + }, + { + "start": 9014.38, + "end": 9015.58, + "probability": 0.9847 + }, + { + "start": 9018.92, + "end": 9020.84, + "probability": 0.9171 + }, + { + "start": 9020.94, + "end": 9025.24, + "probability": 0.5238 + }, + { + "start": 9025.4, + "end": 9026.14, + "probability": 0.9072 + }, + { + "start": 9026.18, + "end": 9030.54, + "probability": 0.8683 + }, + { + "start": 9031.84, + "end": 9034.02, + "probability": 0.9927 + }, + { + "start": 9034.02, + "end": 9037.02, + "probability": 0.9912 + }, + { + "start": 9038.34, + "end": 9040.4, + "probability": 0.9882 + }, + { + "start": 9043.12, + "end": 9045.29, + "probability": 0.9277 + }, + { + "start": 9047.88, + "end": 9049.08, + "probability": 0.9958 + }, + { + "start": 9051.96, + "end": 9055.48, + "probability": 0.9985 + }, + { + "start": 9058.76, + "end": 9060.96, + "probability": 0.5876 + }, + { + "start": 9060.98, + "end": 9061.58, + "probability": 0.9056 + }, + { + "start": 9062.2, + "end": 9064.72, + "probability": 0.8493 + }, + { + "start": 9067.64, + "end": 9069.12, + "probability": 0.9846 + }, + { + "start": 9070.3, + "end": 9074.12, + "probability": 0.9064 + }, + { + "start": 9074.18, + "end": 9076.4, + "probability": 0.9497 + }, + { + "start": 9079.76, + "end": 9081.46, + "probability": 0.9551 + }, + { + "start": 9082.2, + "end": 9085.48, + "probability": 0.9508 + }, + { + "start": 9085.72, + "end": 9088.78, + "probability": 0.9283 + }, + { + "start": 9090.46, + "end": 9092.32, + "probability": 0.9575 + }, + { + "start": 9092.92, + "end": 9096.46, + "probability": 0.7764 + }, + { + "start": 9097.08, + "end": 9098.62, + "probability": 0.9795 + }, + { + "start": 9098.7, + "end": 9101.42, + "probability": 0.9915 + }, + { + "start": 9102.74, + "end": 9103.32, + "probability": 0.8921 + }, + { + "start": 9103.36, + "end": 9103.72, + "probability": 0.4796 + }, + { + "start": 9103.72, + "end": 9104.44, + "probability": 0.6302 + }, + { + "start": 9104.82, + "end": 9108.66, + "probability": 0.9962 + }, + { + "start": 9108.82, + "end": 9111.62, + "probability": 0.9504 + }, + { + "start": 9111.7, + "end": 9113.02, + "probability": 0.6075 + }, + { + "start": 9113.12, + "end": 9114.34, + "probability": 0.8447 + }, + { + "start": 9116.76, + "end": 9118.0, + "probability": 0.9165 + }, + { + "start": 9120.4, + "end": 9121.34, + "probability": 0.9507 + }, + { + "start": 9122.34, + "end": 9124.77, + "probability": 0.9368 + }, + { + "start": 9125.6, + "end": 9128.64, + "probability": 0.9712 + }, + { + "start": 9130.0, + "end": 9133.82, + "probability": 0.9431 + }, + { + "start": 9134.44, + "end": 9136.8, + "probability": 0.6653 + }, + { + "start": 9137.92, + "end": 9139.86, + "probability": 0.968 + }, + { + "start": 9141.8, + "end": 9144.32, + "probability": 0.7218 + }, + { + "start": 9145.52, + "end": 9147.92, + "probability": 0.9934 + }, + { + "start": 9148.5, + "end": 9149.66, + "probability": 0.9863 + }, + { + "start": 9150.24, + "end": 9150.92, + "probability": 0.9424 + }, + { + "start": 9151.4, + "end": 9152.1, + "probability": 0.9874 + }, + { + "start": 9152.42, + "end": 9153.26, + "probability": 0.9581 + }, + { + "start": 9153.6, + "end": 9154.42, + "probability": 0.5414 + }, + { + "start": 9154.5, + "end": 9155.12, + "probability": 0.6187 + }, + { + "start": 9155.32, + "end": 9155.94, + "probability": 0.7389 + }, + { + "start": 9156.06, + "end": 9156.56, + "probability": 0.6156 + }, + { + "start": 9156.86, + "end": 9158.18, + "probability": 0.8347 + }, + { + "start": 9158.34, + "end": 9158.94, + "probability": 0.9775 + }, + { + "start": 9158.98, + "end": 9159.26, + "probability": 0.8368 + }, + { + "start": 9159.34, + "end": 9160.4, + "probability": 0.6266 + }, + { + "start": 9160.62, + "end": 9162.7, + "probability": 0.9165 + }, + { + "start": 9163.84, + "end": 9165.94, + "probability": 0.7787 + }, + { + "start": 9167.52, + "end": 9167.52, + "probability": 0.131 + }, + { + "start": 9167.52, + "end": 9167.94, + "probability": 0.5183 + }, + { + "start": 9170.2, + "end": 9171.46, + "probability": 0.3616 + }, + { + "start": 9171.46, + "end": 9172.04, + "probability": 0.4943 + }, + { + "start": 9172.04, + "end": 9172.8, + "probability": 0.5731 + }, + { + "start": 9173.64, + "end": 9173.64, + "probability": 0.6448 + }, + { + "start": 9173.72, + "end": 9173.9, + "probability": 0.0555 + }, + { + "start": 9174.26, + "end": 9174.58, + "probability": 0.6395 + }, + { + "start": 9174.66, + "end": 9175.52, + "probability": 0.5446 + }, + { + "start": 9175.84, + "end": 9176.92, + "probability": 0.6667 + }, + { + "start": 9178.5, + "end": 9180.3, + "probability": 0.3184 + }, + { + "start": 9180.88, + "end": 9181.14, + "probability": 0.0171 + }, + { + "start": 9181.14, + "end": 9184.1, + "probability": 0.907 + }, + { + "start": 9184.86, + "end": 9186.5, + "probability": 0.8074 + }, + { + "start": 9187.12, + "end": 9189.4, + "probability": 0.9882 + }, + { + "start": 9190.34, + "end": 9191.24, + "probability": 0.7079 + }, + { + "start": 9191.46, + "end": 9192.94, + "probability": 0.5714 + }, + { + "start": 9194.34, + "end": 9194.54, + "probability": 0.017 + }, + { + "start": 9194.54, + "end": 9195.52, + "probability": 0.4255 + }, + { + "start": 9196.32, + "end": 9196.6, + "probability": 0.5344 + }, + { + "start": 9196.9, + "end": 9197.08, + "probability": 0.7528 + }, + { + "start": 9197.18, + "end": 9197.28, + "probability": 0.4228 + }, + { + "start": 9197.28, + "end": 9199.44, + "probability": 0.8089 + }, + { + "start": 9200.24, + "end": 9201.86, + "probability": 0.9459 + }, + { + "start": 9202.04, + "end": 9202.3, + "probability": 0.4448 + }, + { + "start": 9202.36, + "end": 9203.28, + "probability": 0.9828 + }, + { + "start": 9204.81, + "end": 9206.32, + "probability": 0.7894 + }, + { + "start": 9206.32, + "end": 9208.64, + "probability": 0.8348 + }, + { + "start": 9218.36, + "end": 9220.54, + "probability": 0.443 + }, + { + "start": 9220.54, + "end": 9221.5, + "probability": 0.6088 + }, + { + "start": 9221.66, + "end": 9222.62, + "probability": 0.4942 + }, + { + "start": 9222.88, + "end": 9223.7, + "probability": 0.6771 + }, + { + "start": 9223.97, + "end": 9225.72, + "probability": 0.9579 + }, + { + "start": 9225.8, + "end": 9225.98, + "probability": 0.5577 + }, + { + "start": 9226.0, + "end": 9226.84, + "probability": 0.7341 + }, + { + "start": 9227.44, + "end": 9228.12, + "probability": 0.4279 + }, + { + "start": 9228.78, + "end": 9230.64, + "probability": 0.5875 + }, + { + "start": 9231.06, + "end": 9231.28, + "probability": 0.5116 + }, + { + "start": 9231.81, + "end": 9234.08, + "probability": 0.8965 + }, + { + "start": 9234.16, + "end": 9236.18, + "probability": 0.543 + }, + { + "start": 9236.32, + "end": 9237.5, + "probability": 0.5589 + }, + { + "start": 9237.64, + "end": 9240.2, + "probability": 0.927 + }, + { + "start": 9240.28, + "end": 9241.1, + "probability": 0.9651 + }, + { + "start": 9242.3, + "end": 9244.8, + "probability": 0.9592 + }, + { + "start": 9246.54, + "end": 9248.9, + "probability": 0.7529 + }, + { + "start": 9249.96, + "end": 9253.98, + "probability": 0.8721 + }, + { + "start": 9254.08, + "end": 9255.7, + "probability": 0.9645 + }, + { + "start": 9256.5, + "end": 9259.22, + "probability": 0.9893 + }, + { + "start": 9259.84, + "end": 9262.68, + "probability": 0.9237 + }, + { + "start": 9264.16, + "end": 9273.52, + "probability": 0.9883 + }, + { + "start": 9274.54, + "end": 9276.68, + "probability": 0.7371 + }, + { + "start": 9277.56, + "end": 9279.1, + "probability": 0.9802 + }, + { + "start": 9279.14, + "end": 9282.32, + "probability": 0.9976 + }, + { + "start": 9283.14, + "end": 9289.46, + "probability": 0.9878 + }, + { + "start": 9289.46, + "end": 9295.72, + "probability": 0.9964 + }, + { + "start": 9296.62, + "end": 9302.74, + "probability": 0.7209 + }, + { + "start": 9303.26, + "end": 9304.12, + "probability": 0.2712 + }, + { + "start": 9304.8, + "end": 9306.51, + "probability": 0.9753 + }, + { + "start": 9307.78, + "end": 9311.1, + "probability": 0.9995 + }, + { + "start": 9312.38, + "end": 9313.5, + "probability": 0.9997 + }, + { + "start": 9314.44, + "end": 9315.54, + "probability": 0.9791 + }, + { + "start": 9316.82, + "end": 9318.3, + "probability": 0.9785 + }, + { + "start": 9318.78, + "end": 9324.12, + "probability": 0.9382 + }, + { + "start": 9325.02, + "end": 9330.52, + "probability": 0.9805 + }, + { + "start": 9330.7, + "end": 9332.32, + "probability": 0.9957 + }, + { + "start": 9332.8, + "end": 9337.68, + "probability": 0.9707 + }, + { + "start": 9338.52, + "end": 9340.88, + "probability": 0.7047 + }, + { + "start": 9341.86, + "end": 9345.26, + "probability": 0.9413 + }, + { + "start": 9345.52, + "end": 9347.44, + "probability": 0.9646 + }, + { + "start": 9348.08, + "end": 9348.76, + "probability": 0.9783 + }, + { + "start": 9349.02, + "end": 9350.34, + "probability": 0.9666 + }, + { + "start": 9350.4, + "end": 9353.4, + "probability": 0.5804 + }, + { + "start": 9354.66, + "end": 9358.02, + "probability": 0.915 + }, + { + "start": 9359.18, + "end": 9360.36, + "probability": 0.9427 + }, + { + "start": 9361.1, + "end": 9364.84, + "probability": 0.8481 + }, + { + "start": 9368.93, + "end": 9370.62, + "probability": 0.8741 + }, + { + "start": 9371.76, + "end": 9374.2, + "probability": 0.9179 + }, + { + "start": 9375.64, + "end": 9376.74, + "probability": 0.5799 + }, + { + "start": 9376.9, + "end": 9378.06, + "probability": 0.8944 + }, + { + "start": 9378.16, + "end": 9382.04, + "probability": 0.9815 + }, + { + "start": 9383.14, + "end": 9384.64, + "probability": 0.8535 + }, + { + "start": 9385.86, + "end": 9387.12, + "probability": 0.9631 + }, + { + "start": 9388.76, + "end": 9393.18, + "probability": 0.9141 + }, + { + "start": 9393.28, + "end": 9394.76, + "probability": 0.9921 + }, + { + "start": 9395.62, + "end": 9399.3, + "probability": 0.9753 + }, + { + "start": 9400.06, + "end": 9400.72, + "probability": 0.8751 + }, + { + "start": 9401.38, + "end": 9404.98, + "probability": 0.8846 + }, + { + "start": 9404.98, + "end": 9408.64, + "probability": 0.9733 + }, + { + "start": 9408.72, + "end": 9409.74, + "probability": 0.9912 + }, + { + "start": 9409.88, + "end": 9410.76, + "probability": 0.8973 + }, + { + "start": 9411.0, + "end": 9412.96, + "probability": 0.6641 + }, + { + "start": 9413.9, + "end": 9414.92, + "probability": 0.584 + }, + { + "start": 9415.7, + "end": 9416.46, + "probability": 0.4271 + }, + { + "start": 9416.58, + "end": 9418.94, + "probability": 0.9885 + }, + { + "start": 9418.98, + "end": 9419.74, + "probability": 0.8106 + }, + { + "start": 9419.8, + "end": 9420.18, + "probability": 0.4241 + }, + { + "start": 9420.32, + "end": 9420.6, + "probability": 0.6476 + }, + { + "start": 9421.14, + "end": 9424.52, + "probability": 0.2239 + }, + { + "start": 9425.78, + "end": 9426.72, + "probability": 0.821 + }, + { + "start": 9427.22, + "end": 9429.06, + "probability": 0.6709 + }, + { + "start": 9429.28, + "end": 9433.08, + "probability": 0.686 + }, + { + "start": 9433.54, + "end": 9433.94, + "probability": 0.8433 + }, + { + "start": 9434.02, + "end": 9436.28, + "probability": 0.9678 + }, + { + "start": 9436.46, + "end": 9440.32, + "probability": 0.873 + }, + { + "start": 9441.46, + "end": 9445.12, + "probability": 0.9572 + }, + { + "start": 9446.72, + "end": 9448.14, + "probability": 0.6726 + }, + { + "start": 9448.3, + "end": 9449.64, + "probability": 0.9652 + }, + { + "start": 9449.76, + "end": 9450.3, + "probability": 0.6146 + }, + { + "start": 9450.44, + "end": 9450.94, + "probability": 0.4827 + }, + { + "start": 9451.14, + "end": 9452.1, + "probability": 0.8823 + }, + { + "start": 9452.54, + "end": 9456.36, + "probability": 0.9588 + }, + { + "start": 9456.62, + "end": 9457.64, + "probability": 0.5253 + }, + { + "start": 9458.2, + "end": 9461.08, + "probability": 0.993 + }, + { + "start": 9461.08, + "end": 9464.18, + "probability": 0.9939 + }, + { + "start": 9464.92, + "end": 9469.9, + "probability": 0.856 + }, + { + "start": 9470.18, + "end": 9471.85, + "probability": 0.9551 + }, + { + "start": 9473.52, + "end": 9476.3, + "probability": 0.989 + }, + { + "start": 9477.1, + "end": 9480.05, + "probability": 0.7295 + }, + { + "start": 9480.78, + "end": 9483.34, + "probability": 0.9292 + }, + { + "start": 9484.72, + "end": 9485.22, + "probability": 0.6843 + }, + { + "start": 9485.28, + "end": 9486.1, + "probability": 0.8453 + }, + { + "start": 9486.2, + "end": 9489.36, + "probability": 0.8761 + }, + { + "start": 9489.62, + "end": 9490.68, + "probability": 0.9906 + }, + { + "start": 9490.8, + "end": 9495.04, + "probability": 0.8083 + }, + { + "start": 9495.36, + "end": 9496.82, + "probability": 0.8405 + }, + { + "start": 9497.06, + "end": 9497.8, + "probability": 0.9639 + }, + { + "start": 9498.06, + "end": 9498.8, + "probability": 0.8158 + }, + { + "start": 9498.96, + "end": 9499.76, + "probability": 0.9478 + }, + { + "start": 9499.98, + "end": 9500.82, + "probability": 0.5372 + }, + { + "start": 9501.12, + "end": 9502.06, + "probability": 0.9682 + }, + { + "start": 9502.98, + "end": 9504.76, + "probability": 0.9352 + }, + { + "start": 9505.74, + "end": 9508.44, + "probability": 0.9629 + }, + { + "start": 9509.06, + "end": 9511.52, + "probability": 0.8525 + }, + { + "start": 9513.34, + "end": 9517.83, + "probability": 0.9587 + }, + { + "start": 9518.96, + "end": 9519.64, + "probability": 0.5753 + }, + { + "start": 9519.88, + "end": 9521.4, + "probability": 0.9377 + }, + { + "start": 9521.9, + "end": 9524.24, + "probability": 0.9865 + }, + { + "start": 9524.82, + "end": 9528.88, + "probability": 0.929 + }, + { + "start": 9529.02, + "end": 9530.5, + "probability": 0.9942 + }, + { + "start": 9530.92, + "end": 9532.26, + "probability": 0.9902 + }, + { + "start": 9533.32, + "end": 9536.02, + "probability": 0.9415 + }, + { + "start": 9537.32, + "end": 9538.06, + "probability": 0.5808 + }, + { + "start": 9538.86, + "end": 9541.8, + "probability": 0.7278 + }, + { + "start": 9541.96, + "end": 9543.44, + "probability": 0.9667 + }, + { + "start": 9544.22, + "end": 9547.02, + "probability": 0.9186 + }, + { + "start": 9547.1, + "end": 9547.58, + "probability": 0.5422 + }, + { + "start": 9548.06, + "end": 9548.68, + "probability": 0.4385 + }, + { + "start": 9548.92, + "end": 9550.46, + "probability": 0.9771 + }, + { + "start": 9550.74, + "end": 9553.74, + "probability": 0.9619 + }, + { + "start": 9554.18, + "end": 9555.12, + "probability": 0.9568 + }, + { + "start": 9555.58, + "end": 9558.06, + "probability": 0.9881 + }, + { + "start": 9558.06, + "end": 9561.14, + "probability": 0.5586 + }, + { + "start": 9561.78, + "end": 9562.05, + "probability": 0.1411 + }, + { + "start": 9562.52, + "end": 9566.12, + "probability": 0.9569 + }, + { + "start": 9566.28, + "end": 9568.38, + "probability": 0.5495 + }, + { + "start": 9568.48, + "end": 9570.96, + "probability": 0.9503 + }, + { + "start": 9571.18, + "end": 9572.26, + "probability": 0.9956 + }, + { + "start": 9572.32, + "end": 9574.9, + "probability": 0.7604 + }, + { + "start": 9575.02, + "end": 9575.4, + "probability": 0.3263 + }, + { + "start": 9575.52, + "end": 9578.5, + "probability": 0.9066 + }, + { + "start": 9578.54, + "end": 9580.14, + "probability": 0.9457 + }, + { + "start": 9580.62, + "end": 9580.94, + "probability": 0.7108 + }, + { + "start": 9581.06, + "end": 9582.14, + "probability": 0.8547 + }, + { + "start": 9582.72, + "end": 9584.3, + "probability": 0.9083 + }, + { + "start": 9584.38, + "end": 9585.26, + "probability": 0.5185 + }, + { + "start": 9585.44, + "end": 9585.84, + "probability": 0.7217 + }, + { + "start": 9585.92, + "end": 9586.26, + "probability": 0.5757 + }, + { + "start": 9586.26, + "end": 9586.82, + "probability": 0.7551 + }, + { + "start": 9588.26, + "end": 9590.8, + "probability": 0.9604 + }, + { + "start": 9591.58, + "end": 9593.96, + "probability": 0.6853 + }, + { + "start": 9593.98, + "end": 9595.18, + "probability": 0.9032 + }, + { + "start": 9595.28, + "end": 9595.58, + "probability": 0.3903 + }, + { + "start": 9595.66, + "end": 9596.04, + "probability": 0.7495 + }, + { + "start": 9596.16, + "end": 9599.2, + "probability": 0.6444 + }, + { + "start": 9600.66, + "end": 9602.52, + "probability": 0.7353 + }, + { + "start": 9603.31, + "end": 9605.45, + "probability": 0.7858 + }, + { + "start": 9606.42, + "end": 9608.58, + "probability": 0.9531 + }, + { + "start": 9608.68, + "end": 9610.56, + "probability": 0.9569 + }, + { + "start": 9611.04, + "end": 9611.46, + "probability": 0.96 + }, + { + "start": 9612.32, + "end": 9613.26, + "probability": 0.7625 + }, + { + "start": 9613.44, + "end": 9614.86, + "probability": 0.9766 + }, + { + "start": 9615.34, + "end": 9616.56, + "probability": 0.9741 + }, + { + "start": 9617.24, + "end": 9619.58, + "probability": 0.9925 + }, + { + "start": 9620.14, + "end": 9622.1, + "probability": 0.7935 + }, + { + "start": 9622.24, + "end": 9623.86, + "probability": 0.944 + }, + { + "start": 9623.86, + "end": 9626.64, + "probability": 0.9941 + }, + { + "start": 9628.08, + "end": 9629.4, + "probability": 0.8591 + }, + { + "start": 9629.84, + "end": 9632.58, + "probability": 0.8693 + }, + { + "start": 9632.6, + "end": 9638.7, + "probability": 0.9863 + }, + { + "start": 9638.72, + "end": 9644.96, + "probability": 0.9587 + }, + { + "start": 9646.2, + "end": 9647.54, + "probability": 0.7455 + }, + { + "start": 9647.88, + "end": 9649.02, + "probability": 0.916 + }, + { + "start": 9649.16, + "end": 9649.44, + "probability": 0.7723 + }, + { + "start": 9650.12, + "end": 9650.7, + "probability": 0.6784 + }, + { + "start": 9650.76, + "end": 9651.46, + "probability": 0.8214 + }, + { + "start": 9651.64, + "end": 9654.6, + "probability": 0.7774 + }, + { + "start": 9655.18, + "end": 9659.48, + "probability": 0.9137 + }, + { + "start": 9659.8, + "end": 9663.22, + "probability": 0.9734 + }, + { + "start": 9664.04, + "end": 9666.14, + "probability": 0.782 + }, + { + "start": 9666.48, + "end": 9667.7, + "probability": 0.776 + }, + { + "start": 9667.8, + "end": 9672.6, + "probability": 0.8922 + }, + { + "start": 9673.08, + "end": 9674.6, + "probability": 0.9697 + }, + { + "start": 9675.36, + "end": 9681.88, + "probability": 0.9812 + }, + { + "start": 9682.32, + "end": 9685.42, + "probability": 0.9824 + }, + { + "start": 9685.42, + "end": 9691.1, + "probability": 0.8617 + }, + { + "start": 9691.34, + "end": 9693.63, + "probability": 0.9932 + }, + { + "start": 9694.18, + "end": 9697.28, + "probability": 0.8446 + }, + { + "start": 9697.46, + "end": 9699.56, + "probability": 0.9303 + }, + { + "start": 9700.26, + "end": 9702.0, + "probability": 0.8755 + }, + { + "start": 9702.1, + "end": 9704.52, + "probability": 0.8544 + }, + { + "start": 9704.52, + "end": 9707.7, + "probability": 0.9502 + }, + { + "start": 9707.82, + "end": 9708.94, + "probability": 0.6146 + }, + { + "start": 9709.88, + "end": 9713.1, + "probability": 0.8435 + }, + { + "start": 9713.18, + "end": 9715.06, + "probability": 0.7952 + }, + { + "start": 9716.02, + "end": 9717.19, + "probability": 0.693 + }, + { + "start": 9717.78, + "end": 9719.74, + "probability": 0.6706 + }, + { + "start": 9719.78, + "end": 9722.4, + "probability": 0.9437 + }, + { + "start": 9723.0, + "end": 9724.64, + "probability": 0.919 + }, + { + "start": 9725.52, + "end": 9727.36, + "probability": 0.8171 + }, + { + "start": 9728.3, + "end": 9731.68, + "probability": 0.7003 + }, + { + "start": 9731.9, + "end": 9733.64, + "probability": 0.7838 + }, + { + "start": 9733.76, + "end": 9735.6, + "probability": 0.8738 + }, + { + "start": 9736.28, + "end": 9737.58, + "probability": 0.9576 + }, + { + "start": 9737.9, + "end": 9741.2, + "probability": 0.9925 + }, + { + "start": 9741.36, + "end": 9742.96, + "probability": 0.9468 + }, + { + "start": 9744.16, + "end": 9744.74, + "probability": 0.9118 + }, + { + "start": 9745.56, + "end": 9748.08, + "probability": 0.9958 + }, + { + "start": 9750.28, + "end": 9755.02, + "probability": 0.991 + }, + { + "start": 9755.16, + "end": 9756.11, + "probability": 0.6768 + }, + { + "start": 9757.24, + "end": 9758.26, + "probability": 0.2388 + }, + { + "start": 9758.46, + "end": 9758.8, + "probability": 0.3937 + }, + { + "start": 9758.88, + "end": 9761.4, + "probability": 0.7162 + }, + { + "start": 9761.9, + "end": 9764.18, + "probability": 0.936 + }, + { + "start": 9764.56, + "end": 9765.94, + "probability": 0.7759 + }, + { + "start": 9766.1, + "end": 9766.7, + "probability": 0.8616 + }, + { + "start": 9767.2, + "end": 9772.84, + "probability": 0.7826 + }, + { + "start": 9774.06, + "end": 9775.32, + "probability": 0.8534 + }, + { + "start": 9775.62, + "end": 9780.54, + "probability": 0.9771 + }, + { + "start": 9781.2, + "end": 9788.82, + "probability": 0.9742 + }, + { + "start": 9789.74, + "end": 9791.4, + "probability": 0.7489 + }, + { + "start": 9791.54, + "end": 9795.1, + "probability": 0.9804 + }, + { + "start": 9795.84, + "end": 9798.64, + "probability": 0.9805 + }, + { + "start": 9799.2, + "end": 9803.56, + "probability": 0.958 + }, + { + "start": 9803.86, + "end": 9804.3, + "probability": 0.7409 + }, + { + "start": 9804.34, + "end": 9808.8, + "probability": 0.9925 + }, + { + "start": 9809.34, + "end": 9814.36, + "probability": 0.9722 + }, + { + "start": 9814.4, + "end": 9815.12, + "probability": 0.5717 + }, + { + "start": 9815.36, + "end": 9818.62, + "probability": 0.9722 + }, + { + "start": 9819.76, + "end": 9823.52, + "probability": 0.9297 + }, + { + "start": 9824.08, + "end": 9826.28, + "probability": 0.7739 + }, + { + "start": 9827.1, + "end": 9828.66, + "probability": 0.9087 + }, + { + "start": 9829.4, + "end": 9831.7, + "probability": 0.9822 + }, + { + "start": 9832.46, + "end": 9833.34, + "probability": 0.8508 + }, + { + "start": 9834.46, + "end": 9837.36, + "probability": 0.9116 + }, + { + "start": 9838.58, + "end": 9841.92, + "probability": 0.9888 + }, + { + "start": 9842.0, + "end": 9843.44, + "probability": 0.7534 + }, + { + "start": 9843.62, + "end": 9844.64, + "probability": 0.6383 + }, + { + "start": 9845.44, + "end": 9846.78, + "probability": 0.6272 + }, + { + "start": 9847.48, + "end": 9851.66, + "probability": 0.7911 + }, + { + "start": 9851.7, + "end": 9852.96, + "probability": 0.9302 + }, + { + "start": 9853.34, + "end": 9853.86, + "probability": 0.8583 + }, + { + "start": 9855.98, + "end": 9857.19, + "probability": 0.9224 + }, + { + "start": 9858.6, + "end": 9863.16, + "probability": 0.9683 + }, + { + "start": 9863.36, + "end": 9863.66, + "probability": 0.2033 + }, + { + "start": 9863.66, + "end": 9865.52, + "probability": 0.9644 + }, + { + "start": 9865.58, + "end": 9866.18, + "probability": 0.6397 + }, + { + "start": 9866.78, + "end": 9870.1, + "probability": 0.9678 + }, + { + "start": 9870.62, + "end": 9874.01, + "probability": 0.8596 + }, + { + "start": 9874.6, + "end": 9878.08, + "probability": 0.8955 + }, + { + "start": 9878.08, + "end": 9884.12, + "probability": 0.8398 + }, + { + "start": 9885.18, + "end": 9886.5, + "probability": 0.5891 + }, + { + "start": 9886.6, + "end": 9887.9, + "probability": 0.6718 + }, + { + "start": 9888.38, + "end": 9888.9, + "probability": 0.7969 + }, + { + "start": 9889.56, + "end": 9891.2, + "probability": 0.7538 + }, + { + "start": 9891.38, + "end": 9894.08, + "probability": 0.835 + }, + { + "start": 9898.46, + "end": 9902.16, + "probability": 0.8061 + }, + { + "start": 9920.94, + "end": 9923.8, + "probability": 0.5223 + }, + { + "start": 9925.56, + "end": 9926.12, + "probability": 0.9912 + }, + { + "start": 9927.08, + "end": 9927.94, + "probability": 0.8656 + }, + { + "start": 9929.78, + "end": 9932.96, + "probability": 0.9891 + }, + { + "start": 9934.1, + "end": 9940.18, + "probability": 0.998 + }, + { + "start": 9940.46, + "end": 9941.32, + "probability": 0.8794 + }, + { + "start": 9942.98, + "end": 9944.42, + "probability": 0.8794 + }, + { + "start": 9944.78, + "end": 9948.36, + "probability": 0.9814 + }, + { + "start": 9949.16, + "end": 9951.72, + "probability": 0.9575 + }, + { + "start": 9952.66, + "end": 9955.3, + "probability": 0.9989 + }, + { + "start": 9955.86, + "end": 9956.85, + "probability": 0.8834 + }, + { + "start": 9958.02, + "end": 9961.68, + "probability": 0.9623 + }, + { + "start": 9961.68, + "end": 9964.1, + "probability": 0.9993 + }, + { + "start": 9964.7, + "end": 9965.12, + "probability": 0.6715 + }, + { + "start": 9965.74, + "end": 9969.4, + "probability": 0.991 + }, + { + "start": 9971.18, + "end": 9974.52, + "probability": 0.9954 + }, + { + "start": 9976.48, + "end": 9980.76, + "probability": 0.9575 + }, + { + "start": 9980.94, + "end": 9983.18, + "probability": 0.9763 + }, + { + "start": 9985.08, + "end": 9988.04, + "probability": 0.9951 + }, + { + "start": 9988.64, + "end": 9989.78, + "probability": 0.9148 + }, + { + "start": 9991.5, + "end": 9992.66, + "probability": 0.4078 + }, + { + "start": 9992.68, + "end": 9994.94, + "probability": 0.9975 + }, + { + "start": 9995.34, + "end": 9997.34, + "probability": 0.8647 + }, + { + "start": 9997.48, + "end": 9997.68, + "probability": 0.6635 + }, + { + "start": 9997.76, + "end": 9998.1, + "probability": 0.8557 + }, + { + "start": 9998.74, + "end": 10001.86, + "probability": 0.7782 + }, + { + "start": 10002.4, + "end": 10004.74, + "probability": 0.7931 + }, + { + "start": 10005.42, + "end": 10007.18, + "probability": 0.8967 + }, + { + "start": 10009.44, + "end": 10012.18, + "probability": 0.96 + }, + { + "start": 10013.52, + "end": 10017.98, + "probability": 0.9629 + }, + { + "start": 10018.82, + "end": 10019.59, + "probability": 0.9294 + }, + { + "start": 10020.4, + "end": 10021.22, + "probability": 0.8445 + }, + { + "start": 10021.32, + "end": 10024.42, + "probability": 0.8654 + }, + { + "start": 10025.72, + "end": 10028.14, + "probability": 0.9688 + }, + { + "start": 10028.36, + "end": 10028.5, + "probability": 0.5129 + }, + { + "start": 10028.5, + "end": 10029.0, + "probability": 0.9058 + }, + { + "start": 10029.36, + "end": 10031.14, + "probability": 0.9727 + }, + { + "start": 10032.4, + "end": 10036.68, + "probability": 0.9796 + }, + { + "start": 10037.52, + "end": 10039.3, + "probability": 0.9956 + }, + { + "start": 10041.16, + "end": 10043.26, + "probability": 0.9985 + }, + { + "start": 10043.3, + "end": 10045.3, + "probability": 0.9864 + }, + { + "start": 10047.08, + "end": 10050.18, + "probability": 0.8613 + }, + { + "start": 10051.98, + "end": 10054.96, + "probability": 0.9488 + }, + { + "start": 10055.24, + "end": 10058.08, + "probability": 0.8659 + }, + { + "start": 10058.58, + "end": 10059.44, + "probability": 0.7473 + }, + { + "start": 10059.46, + "end": 10060.38, + "probability": 0.9146 + }, + { + "start": 10060.82, + "end": 10065.08, + "probability": 0.8295 + }, + { + "start": 10065.48, + "end": 10067.24, + "probability": 0.8146 + }, + { + "start": 10068.62, + "end": 10071.18, + "probability": 0.8737 + }, + { + "start": 10072.31, + "end": 10075.5, + "probability": 0.9845 + }, + { + "start": 10075.5, + "end": 10078.1, + "probability": 0.9983 + }, + { + "start": 10078.84, + "end": 10080.92, + "probability": 0.9988 + }, + { + "start": 10083.28, + "end": 10085.54, + "probability": 0.7583 + }, + { + "start": 10085.68, + "end": 10088.78, + "probability": 0.9942 + }, + { + "start": 10089.5, + "end": 10091.94, + "probability": 0.8776 + }, + { + "start": 10092.56, + "end": 10093.88, + "probability": 0.9951 + }, + { + "start": 10095.52, + "end": 10097.68, + "probability": 0.8798 + }, + { + "start": 10099.26, + "end": 10101.64, + "probability": 0.9587 + }, + { + "start": 10102.92, + "end": 10104.82, + "probability": 0.9177 + }, + { + "start": 10104.98, + "end": 10106.04, + "probability": 0.9481 + }, + { + "start": 10106.18, + "end": 10108.7, + "probability": 0.8294 + }, + { + "start": 10109.38, + "end": 10110.4, + "probability": 0.9719 + }, + { + "start": 10110.52, + "end": 10111.84, + "probability": 0.7112 + }, + { + "start": 10111.98, + "end": 10112.6, + "probability": 0.9458 + }, + { + "start": 10112.78, + "end": 10113.34, + "probability": 0.7417 + }, + { + "start": 10113.38, + "end": 10115.86, + "probability": 0.9345 + }, + { + "start": 10117.54, + "end": 10121.8, + "probability": 0.9683 + }, + { + "start": 10122.72, + "end": 10125.86, + "probability": 0.9743 + }, + { + "start": 10126.42, + "end": 10129.98, + "probability": 0.9897 + }, + { + "start": 10130.44, + "end": 10132.18, + "probability": 0.7622 + }, + { + "start": 10133.14, + "end": 10135.58, + "probability": 0.9927 + }, + { + "start": 10136.46, + "end": 10138.88, + "probability": 0.8529 + }, + { + "start": 10139.22, + "end": 10141.12, + "probability": 0.9832 + }, + { + "start": 10142.62, + "end": 10145.06, + "probability": 0.9932 + }, + { + "start": 10145.16, + "end": 10147.84, + "probability": 0.9918 + }, + { + "start": 10147.98, + "end": 10148.72, + "probability": 0.9961 + }, + { + "start": 10150.38, + "end": 10151.44, + "probability": 0.9976 + }, + { + "start": 10152.92, + "end": 10154.16, + "probability": 0.9966 + }, + { + "start": 10155.84, + "end": 10161.2, + "probability": 0.9902 + }, + { + "start": 10162.38, + "end": 10163.77, + "probability": 0.6046 + }, + { + "start": 10164.4, + "end": 10167.62, + "probability": 0.9867 + }, + { + "start": 10167.96, + "end": 10168.84, + "probability": 0.9724 + }, + { + "start": 10169.32, + "end": 10171.8, + "probability": 0.9572 + }, + { + "start": 10171.86, + "end": 10176.7, + "probability": 0.9805 + }, + { + "start": 10177.3, + "end": 10177.92, + "probability": 0.8129 + }, + { + "start": 10178.12, + "end": 10179.88, + "probability": 0.8848 + }, + { + "start": 10180.26, + "end": 10181.86, + "probability": 0.8993 + }, + { + "start": 10182.84, + "end": 10187.06, + "probability": 0.9862 + }, + { + "start": 10187.18, + "end": 10187.88, + "probability": 0.7797 + }, + { + "start": 10188.0, + "end": 10188.68, + "probability": 0.7905 + }, + { + "start": 10189.22, + "end": 10192.14, + "probability": 0.9954 + }, + { + "start": 10192.14, + "end": 10195.28, + "probability": 0.9731 + }, + { + "start": 10196.04, + "end": 10198.78, + "probability": 0.9968 + }, + { + "start": 10198.78, + "end": 10201.5, + "probability": 0.9927 + }, + { + "start": 10202.44, + "end": 10205.76, + "probability": 0.9926 + }, + { + "start": 10206.08, + "end": 10207.3, + "probability": 0.9611 + }, + { + "start": 10208.7, + "end": 10209.67, + "probability": 0.9971 + }, + { + "start": 10210.8, + "end": 10212.54, + "probability": 0.9917 + }, + { + "start": 10212.62, + "end": 10213.99, + "probability": 0.9946 + }, + { + "start": 10214.1, + "end": 10214.84, + "probability": 0.6723 + }, + { + "start": 10214.92, + "end": 10216.02, + "probability": 0.9904 + }, + { + "start": 10216.9, + "end": 10218.14, + "probability": 0.9611 + }, + { + "start": 10218.72, + "end": 10220.04, + "probability": 0.9793 + }, + { + "start": 10220.12, + "end": 10222.92, + "probability": 0.9784 + }, + { + "start": 10223.28, + "end": 10226.48, + "probability": 0.9647 + }, + { + "start": 10228.72, + "end": 10232.12, + "probability": 0.9987 + }, + { + "start": 10232.98, + "end": 10234.19, + "probability": 0.816 + }, + { + "start": 10235.08, + "end": 10236.5, + "probability": 0.8495 + }, + { + "start": 10236.62, + "end": 10239.56, + "probability": 0.9386 + }, + { + "start": 10239.86, + "end": 10241.64, + "probability": 0.9644 + }, + { + "start": 10241.66, + "end": 10242.18, + "probability": 0.8056 + }, + { + "start": 10242.6, + "end": 10244.06, + "probability": 0.9646 + }, + { + "start": 10244.24, + "end": 10246.22, + "probability": 0.9311 + }, + { + "start": 10246.68, + "end": 10247.56, + "probability": 0.8403 + }, + { + "start": 10247.58, + "end": 10252.36, + "probability": 0.9827 + }, + { + "start": 10252.96, + "end": 10255.6, + "probability": 0.9778 + }, + { + "start": 10256.02, + "end": 10258.68, + "probability": 0.9966 + }, + { + "start": 10260.0, + "end": 10260.64, + "probability": 0.9085 + }, + { + "start": 10261.7, + "end": 10264.74, + "probability": 0.9989 + }, + { + "start": 10265.48, + "end": 10268.6, + "probability": 0.9749 + }, + { + "start": 10269.92, + "end": 10271.5, + "probability": 0.8936 + }, + { + "start": 10271.62, + "end": 10273.0, + "probability": 0.999 + }, + { + "start": 10273.08, + "end": 10277.06, + "probability": 0.9971 + }, + { + "start": 10277.16, + "end": 10277.86, + "probability": 0.7715 + }, + { + "start": 10278.92, + "end": 10281.86, + "probability": 0.9165 + }, + { + "start": 10282.15, + "end": 10285.32, + "probability": 0.6631 + }, + { + "start": 10285.68, + "end": 10291.04, + "probability": 0.9964 + }, + { + "start": 10291.08, + "end": 10292.32, + "probability": 0.9971 + }, + { + "start": 10292.74, + "end": 10295.52, + "probability": 0.9985 + }, + { + "start": 10295.52, + "end": 10298.68, + "probability": 0.9846 + }, + { + "start": 10299.26, + "end": 10301.26, + "probability": 0.8261 + }, + { + "start": 10301.36, + "end": 10303.02, + "probability": 0.798 + }, + { + "start": 10303.38, + "end": 10307.8, + "probability": 0.9902 + }, + { + "start": 10308.56, + "end": 10311.04, + "probability": 0.994 + }, + { + "start": 10311.1, + "end": 10315.76, + "probability": 0.7961 + }, + { + "start": 10315.76, + "end": 10318.96, + "probability": 0.9897 + }, + { + "start": 10319.24, + "end": 10320.68, + "probability": 0.8446 + }, + { + "start": 10320.98, + "end": 10323.28, + "probability": 0.411 + }, + { + "start": 10323.28, + "end": 10323.86, + "probability": 0.6211 + }, + { + "start": 10324.68, + "end": 10327.5, + "probability": 0.928 + }, + { + "start": 10327.68, + "end": 10331.3, + "probability": 0.987 + }, + { + "start": 10331.38, + "end": 10331.94, + "probability": 0.9666 + }, + { + "start": 10333.3, + "end": 10336.74, + "probability": 0.9626 + }, + { + "start": 10337.6, + "end": 10338.48, + "probability": 0.9946 + }, + { + "start": 10338.72, + "end": 10340.14, + "probability": 0.7441 + }, + { + "start": 10340.36, + "end": 10340.64, + "probability": 0.8451 + }, + { + "start": 10340.72, + "end": 10341.16, + "probability": 0.7872 + }, + { + "start": 10341.52, + "end": 10342.84, + "probability": 0.9881 + }, + { + "start": 10343.04, + "end": 10344.12, + "probability": 0.8218 + }, + { + "start": 10344.78, + "end": 10345.92, + "probability": 0.8424 + }, + { + "start": 10346.64, + "end": 10347.0, + "probability": 0.7012 + }, + { + "start": 10347.44, + "end": 10348.82, + "probability": 0.8327 + }, + { + "start": 10348.94, + "end": 10350.16, + "probability": 0.923 + }, + { + "start": 10350.22, + "end": 10350.75, + "probability": 0.8503 + }, + { + "start": 10351.48, + "end": 10355.78, + "probability": 0.9886 + }, + { + "start": 10355.82, + "end": 10357.18, + "probability": 0.8624 + }, + { + "start": 10357.54, + "end": 10358.2, + "probability": 0.9336 + }, + { + "start": 10358.6, + "end": 10363.78, + "probability": 0.9931 + }, + { + "start": 10363.82, + "end": 10365.9, + "probability": 0.9894 + }, + { + "start": 10366.12, + "end": 10367.78, + "probability": 0.9616 + }, + { + "start": 10367.84, + "end": 10369.22, + "probability": 0.9972 + }, + { + "start": 10369.34, + "end": 10370.0, + "probability": 0.8901 + }, + { + "start": 10371.12, + "end": 10371.74, + "probability": 0.8446 + }, + { + "start": 10371.76, + "end": 10373.44, + "probability": 0.9637 + }, + { + "start": 10373.6, + "end": 10375.1, + "probability": 0.7538 + }, + { + "start": 10375.1, + "end": 10377.32, + "probability": 0.7774 + }, + { + "start": 10378.3, + "end": 10378.4, + "probability": 0.5024 + }, + { + "start": 10379.02, + "end": 10379.37, + "probability": 0.0535 + }, + { + "start": 10379.38, + "end": 10380.18, + "probability": 0.1278 + }, + { + "start": 10380.38, + "end": 10382.58, + "probability": 0.4382 + }, + { + "start": 10382.72, + "end": 10384.08, + "probability": 0.3197 + }, + { + "start": 10384.14, + "end": 10384.14, + "probability": 0.0726 + }, + { + "start": 10384.14, + "end": 10385.42, + "probability": 0.6992 + }, + { + "start": 10385.42, + "end": 10386.96, + "probability": 0.4055 + }, + { + "start": 10386.96, + "end": 10386.96, + "probability": 0.7197 + }, + { + "start": 10386.96, + "end": 10387.48, + "probability": 0.4825 + }, + { + "start": 10387.62, + "end": 10389.0, + "probability": 0.7092 + }, + { + "start": 10389.1, + "end": 10389.59, + "probability": 0.7075 + }, + { + "start": 10389.86, + "end": 10390.72, + "probability": 0.3157 + }, + { + "start": 10391.02, + "end": 10393.38, + "probability": 0.6185 + }, + { + "start": 10393.44, + "end": 10394.1, + "probability": 0.4214 + }, + { + "start": 10394.92, + "end": 10395.26, + "probability": 0.3815 + }, + { + "start": 10395.32, + "end": 10396.66, + "probability": 0.7462 + }, + { + "start": 10396.76, + "end": 10397.56, + "probability": 0.7387 + }, + { + "start": 10397.62, + "end": 10398.94, + "probability": 0.9967 + }, + { + "start": 10399.04, + "end": 10403.3, + "probability": 0.9779 + }, + { + "start": 10403.74, + "end": 10404.79, + "probability": 0.4826 + }, + { + "start": 10405.7, + "end": 10405.7, + "probability": 0.0043 + }, + { + "start": 10405.7, + "end": 10406.58, + "probability": 0.3785 + }, + { + "start": 10406.82, + "end": 10408.82, + "probability": 0.9722 + }, + { + "start": 10409.3, + "end": 10411.72, + "probability": 0.884 + }, + { + "start": 10411.88, + "end": 10413.34, + "probability": 0.9723 + }, + { + "start": 10414.18, + "end": 10414.92, + "probability": 0.6036 + }, + { + "start": 10415.66, + "end": 10418.55, + "probability": 0.8869 + }, + { + "start": 10418.9, + "end": 10419.72, + "probability": 0.768 + }, + { + "start": 10419.88, + "end": 10421.26, + "probability": 0.9889 + }, + { + "start": 10423.08, + "end": 10426.64, + "probability": 0.9035 + }, + { + "start": 10426.9, + "end": 10427.5, + "probability": 0.9335 + }, + { + "start": 10427.62, + "end": 10430.73, + "probability": 0.9968 + }, + { + "start": 10431.04, + "end": 10433.06, + "probability": 0.928 + }, + { + "start": 10433.94, + "end": 10436.42, + "probability": 0.988 + }, + { + "start": 10437.28, + "end": 10440.98, + "probability": 0.9704 + }, + { + "start": 10441.12, + "end": 10444.02, + "probability": 0.9968 + }, + { + "start": 10444.12, + "end": 10446.16, + "probability": 0.9925 + }, + { + "start": 10446.26, + "end": 10448.42, + "probability": 0.9971 + }, + { + "start": 10448.88, + "end": 10451.46, + "probability": 0.7428 + }, + { + "start": 10451.64, + "end": 10454.28, + "probability": 0.8727 + }, + { + "start": 10454.38, + "end": 10457.02, + "probability": 0.8176 + }, + { + "start": 10457.14, + "end": 10460.24, + "probability": 0.9688 + }, + { + "start": 10460.9, + "end": 10461.24, + "probability": 0.6766 + }, + { + "start": 10461.6, + "end": 10462.72, + "probability": 0.8672 + }, + { + "start": 10462.88, + "end": 10463.86, + "probability": 0.9802 + }, + { + "start": 10464.74, + "end": 10470.28, + "probability": 0.8594 + }, + { + "start": 10470.28, + "end": 10474.76, + "probability": 0.8563 + }, + { + "start": 10475.26, + "end": 10480.22, + "probability": 0.9977 + }, + { + "start": 10480.28, + "end": 10480.54, + "probability": 0.7991 + }, + { + "start": 10481.16, + "end": 10481.8, + "probability": 0.9825 + }, + { + "start": 10481.92, + "end": 10484.08, + "probability": 0.815 + }, + { + "start": 10484.46, + "end": 10491.02, + "probability": 0.9899 + }, + { + "start": 10491.64, + "end": 10494.74, + "probability": 0.6823 + }, + { + "start": 10495.32, + "end": 10498.5, + "probability": 0.979 + }, + { + "start": 10499.18, + "end": 10500.3, + "probability": 0.9714 + }, + { + "start": 10500.82, + "end": 10501.46, + "probability": 0.7284 + }, + { + "start": 10501.76, + "end": 10506.16, + "probability": 0.9907 + }, + { + "start": 10506.91, + "end": 10510.36, + "probability": 0.9925 + }, + { + "start": 10510.36, + "end": 10515.24, + "probability": 0.9975 + }, + { + "start": 10515.42, + "end": 10516.3, + "probability": 0.8421 + }, + { + "start": 10516.5, + "end": 10518.62, + "probability": 0.994 + }, + { + "start": 10520.16, + "end": 10521.42, + "probability": 0.982 + }, + { + "start": 10521.56, + "end": 10522.64, + "probability": 0.3279 + }, + { + "start": 10522.92, + "end": 10523.04, + "probability": 0.6952 + }, + { + "start": 10523.16, + "end": 10523.56, + "probability": 0.7866 + }, + { + "start": 10524.38, + "end": 10526.32, + "probability": 0.8745 + }, + { + "start": 10526.98, + "end": 10528.58, + "probability": 0.9956 + }, + { + "start": 10528.68, + "end": 10529.94, + "probability": 0.8553 + }, + { + "start": 10530.02, + "end": 10531.28, + "probability": 0.9941 + }, + { + "start": 10531.32, + "end": 10533.79, + "probability": 0.9983 + }, + { + "start": 10533.96, + "end": 10535.08, + "probability": 0.9922 + }, + { + "start": 10535.58, + "end": 10536.35, + "probability": 0.9722 + }, + { + "start": 10536.9, + "end": 10537.37, + "probability": 0.4945 + }, + { + "start": 10538.79, + "end": 10539.94, + "probability": 0.512 + }, + { + "start": 10539.94, + "end": 10541.16, + "probability": 0.6746 + }, + { + "start": 10541.62, + "end": 10544.22, + "probability": 0.917 + }, + { + "start": 10544.38, + "end": 10545.88, + "probability": 0.8294 + }, + { + "start": 10545.88, + "end": 10548.48, + "probability": 0.9902 + }, + { + "start": 10548.96, + "end": 10549.87, + "probability": 0.8389 + }, + { + "start": 10550.3, + "end": 10551.25, + "probability": 0.9882 + }, + { + "start": 10551.6, + "end": 10552.52, + "probability": 0.9131 + }, + { + "start": 10553.0, + "end": 10553.42, + "probability": 0.9501 + }, + { + "start": 10553.96, + "end": 10555.5, + "probability": 0.8058 + }, + { + "start": 10555.9, + "end": 10558.8, + "probability": 0.7493 + }, + { + "start": 10560.68, + "end": 10564.1, + "probability": 0.881 + }, + { + "start": 10564.16, + "end": 10564.6, + "probability": 0.9246 + }, + { + "start": 10566.08, + "end": 10566.98, + "probability": 0.8633 + }, + { + "start": 10567.5, + "end": 10568.64, + "probability": 0.5327 + }, + { + "start": 10568.72, + "end": 10570.38, + "probability": 0.6904 + }, + { + "start": 10571.26, + "end": 10575.48, + "probability": 0.7453 + }, + { + "start": 10575.48, + "end": 10578.92, + "probability": 0.9123 + }, + { + "start": 10579.96, + "end": 10581.1, + "probability": 0.9845 + }, + { + "start": 10582.99, + "end": 10587.4, + "probability": 0.9483 + }, + { + "start": 10587.66, + "end": 10588.9, + "probability": 0.7299 + }, + { + "start": 10589.24, + "end": 10589.24, + "probability": 0.6408 + }, + { + "start": 10589.78, + "end": 10591.58, + "probability": 0.7893 + }, + { + "start": 10591.78, + "end": 10593.98, + "probability": 0.621 + }, + { + "start": 10594.66, + "end": 10595.74, + "probability": 0.512 + }, + { + "start": 10597.08, + "end": 10598.92, + "probability": 0.8643 + }, + { + "start": 10599.52, + "end": 10600.28, + "probability": 0.9896 + }, + { + "start": 10601.28, + "end": 10603.41, + "probability": 0.9966 + }, + { + "start": 10604.68, + "end": 10605.28, + "probability": 0.8263 + }, + { + "start": 10606.48, + "end": 10609.56, + "probability": 0.976 + }, + { + "start": 10611.26, + "end": 10614.84, + "probability": 0.9237 + }, + { + "start": 10614.84, + "end": 10618.38, + "probability": 0.9861 + }, + { + "start": 10618.92, + "end": 10619.56, + "probability": 0.9569 + }, + { + "start": 10620.46, + "end": 10623.52, + "probability": 0.9899 + }, + { + "start": 10623.62, + "end": 10624.48, + "probability": 0.9513 + }, + { + "start": 10625.94, + "end": 10629.0, + "probability": 0.9669 + }, + { + "start": 10629.46, + "end": 10635.51, + "probability": 0.9427 + }, + { + "start": 10636.4, + "end": 10637.04, + "probability": 0.9693 + }, + { + "start": 10639.32, + "end": 10640.2, + "probability": 0.4879 + }, + { + "start": 10641.58, + "end": 10645.36, + "probability": 0.8758 + }, + { + "start": 10645.38, + "end": 10647.32, + "probability": 0.9426 + }, + { + "start": 10647.9, + "end": 10649.02, + "probability": 0.5056 + }, + { + "start": 10649.22, + "end": 10649.22, + "probability": 0.9326 + }, + { + "start": 10650.74, + "end": 10655.96, + "probability": 0.9993 + }, + { + "start": 10655.96, + "end": 10660.82, + "probability": 0.9941 + }, + { + "start": 10663.8, + "end": 10666.72, + "probability": 0.9708 + }, + { + "start": 10667.74, + "end": 10668.7, + "probability": 0.996 + }, + { + "start": 10669.88, + "end": 10671.28, + "probability": 0.59 + }, + { + "start": 10671.38, + "end": 10678.08, + "probability": 0.9905 + }, + { + "start": 10678.44, + "end": 10683.86, + "probability": 0.9954 + }, + { + "start": 10685.14, + "end": 10686.54, + "probability": 0.9844 + }, + { + "start": 10686.68, + "end": 10687.34, + "probability": 0.9649 + }, + { + "start": 10687.44, + "end": 10691.3, + "probability": 0.9984 + }, + { + "start": 10691.76, + "end": 10695.68, + "probability": 0.9873 + }, + { + "start": 10695.68, + "end": 10699.64, + "probability": 0.9998 + }, + { + "start": 10699.76, + "end": 10701.68, + "probability": 0.971 + }, + { + "start": 10703.12, + "end": 10703.98, + "probability": 0.8947 + }, + { + "start": 10704.22, + "end": 10705.88, + "probability": 0.996 + }, + { + "start": 10706.04, + "end": 10706.82, + "probability": 0.5023 + }, + { + "start": 10706.92, + "end": 10708.32, + "probability": 0.907 + }, + { + "start": 10709.44, + "end": 10711.96, + "probability": 0.9982 + }, + { + "start": 10713.38, + "end": 10717.42, + "probability": 0.9917 + }, + { + "start": 10718.5, + "end": 10722.46, + "probability": 0.9959 + }, + { + "start": 10722.46, + "end": 10725.32, + "probability": 0.9985 + }, + { + "start": 10725.84, + "end": 10728.96, + "probability": 0.9995 + }, + { + "start": 10729.88, + "end": 10732.1, + "probability": 0.985 + }, + { + "start": 10732.86, + "end": 10734.68, + "probability": 0.9991 + }, + { + "start": 10735.5, + "end": 10737.72, + "probability": 0.9608 + }, + { + "start": 10738.72, + "end": 10742.6, + "probability": 0.9406 + }, + { + "start": 10743.98, + "end": 10747.1, + "probability": 0.8792 + }, + { + "start": 10747.44, + "end": 10749.84, + "probability": 0.8156 + }, + { + "start": 10750.08, + "end": 10750.82, + "probability": 0.7389 + }, + { + "start": 10750.82, + "end": 10754.28, + "probability": 0.952 + }, + { + "start": 10755.44, + "end": 10757.0, + "probability": 0.9434 + }, + { + "start": 10757.1, + "end": 10759.2, + "probability": 0.983 + }, + { + "start": 10760.56, + "end": 10761.3, + "probability": 0.9465 + }, + { + "start": 10761.98, + "end": 10762.7, + "probability": 0.9852 + }, + { + "start": 10763.52, + "end": 10764.57, + "probability": 0.9915 + }, + { + "start": 10765.74, + "end": 10767.56, + "probability": 0.8681 + }, + { + "start": 10767.7, + "end": 10772.96, + "probability": 0.9992 + }, + { + "start": 10774.08, + "end": 10776.34, + "probability": 0.9993 + }, + { + "start": 10777.1, + "end": 10779.84, + "probability": 0.9961 + }, + { + "start": 10779.86, + "end": 10784.38, + "probability": 0.9954 + }, + { + "start": 10785.74, + "end": 10789.46, + "probability": 0.9486 + }, + { + "start": 10791.46, + "end": 10794.28, + "probability": 0.9068 + }, + { + "start": 10795.06, + "end": 10796.18, + "probability": 0.9775 + }, + { + "start": 10796.42, + "end": 10797.02, + "probability": 0.7291 + }, + { + "start": 10797.38, + "end": 10798.3, + "probability": 0.9375 + }, + { + "start": 10798.36, + "end": 10799.92, + "probability": 0.9976 + }, + { + "start": 10801.06, + "end": 10807.34, + "probability": 0.9868 + }, + { + "start": 10808.64, + "end": 10810.14, + "probability": 0.999 + }, + { + "start": 10810.82, + "end": 10811.31, + "probability": 0.8416 + }, + { + "start": 10812.5, + "end": 10813.84, + "probability": 0.9966 + }, + { + "start": 10814.8, + "end": 10816.26, + "probability": 0.8568 + }, + { + "start": 10817.36, + "end": 10819.6, + "probability": 0.9871 + }, + { + "start": 10819.72, + "end": 10821.48, + "probability": 0.9463 + }, + { + "start": 10822.1, + "end": 10824.0, + "probability": 0.9967 + }, + { + "start": 10824.84, + "end": 10830.26, + "probability": 0.9986 + }, + { + "start": 10830.26, + "end": 10837.72, + "probability": 0.9994 + }, + { + "start": 10838.58, + "end": 10840.53, + "probability": 0.8779 + }, + { + "start": 10841.14, + "end": 10843.42, + "probability": 0.9281 + }, + { + "start": 10844.48, + "end": 10849.54, + "probability": 0.9719 + }, + { + "start": 10850.44, + "end": 10853.14, + "probability": 0.7943 + }, + { + "start": 10854.84, + "end": 10858.26, + "probability": 0.9415 + }, + { + "start": 10859.18, + "end": 10866.2, + "probability": 0.9946 + }, + { + "start": 10867.06, + "end": 10868.91, + "probability": 0.7025 + }, + { + "start": 10870.04, + "end": 10872.1, + "probability": 0.9878 + }, + { + "start": 10872.48, + "end": 10872.64, + "probability": 0.0321 + }, + { + "start": 10873.66, + "end": 10874.6, + "probability": 0.8603 + }, + { + "start": 10875.34, + "end": 10880.74, + "probability": 0.7747 + }, + { + "start": 10881.3, + "end": 10886.08, + "probability": 0.8191 + }, + { + "start": 10887.86, + "end": 10889.46, + "probability": 0.9436 + }, + { + "start": 10889.46, + "end": 10893.28, + "probability": 0.9984 + }, + { + "start": 10893.4, + "end": 10895.34, + "probability": 0.9885 + }, + { + "start": 10895.38, + "end": 10897.16, + "probability": 0.9946 + }, + { + "start": 10897.24, + "end": 10899.3, + "probability": 0.6796 + }, + { + "start": 10900.48, + "end": 10904.58, + "probability": 0.9965 + }, + { + "start": 10905.5, + "end": 10906.2, + "probability": 0.8969 + }, + { + "start": 10906.24, + "end": 10908.86, + "probability": 0.9929 + }, + { + "start": 10909.08, + "end": 10913.1, + "probability": 0.9922 + }, + { + "start": 10913.62, + "end": 10916.3, + "probability": 0.9988 + }, + { + "start": 10916.54, + "end": 10917.89, + "probability": 0.998 + }, + { + "start": 10918.42, + "end": 10919.41, + "probability": 0.7124 + }, + { + "start": 10920.25, + "end": 10923.1, + "probability": 0.9553 + }, + { + "start": 10923.24, + "end": 10923.34, + "probability": 0.5462 + }, + { + "start": 10923.62, + "end": 10924.16, + "probability": 0.7105 + }, + { + "start": 10924.2, + "end": 10926.12, + "probability": 0.9959 + }, + { + "start": 10926.18, + "end": 10930.7, + "probability": 0.9323 + }, + { + "start": 10930.94, + "end": 10933.04, + "probability": 0.7077 + }, + { + "start": 10933.04, + "end": 10934.02, + "probability": 0.2298 + }, + { + "start": 10934.28, + "end": 10934.64, + "probability": 0.2715 + }, + { + "start": 10934.64, + "end": 10935.66, + "probability": 0.3542 + }, + { + "start": 10935.8, + "end": 10936.06, + "probability": 0.4771 + }, + { + "start": 10936.1, + "end": 10937.12, + "probability": 0.9921 + }, + { + "start": 10937.36, + "end": 10940.76, + "probability": 0.7364 + }, + { + "start": 10940.96, + "end": 10941.3, + "probability": 0.8574 + }, + { + "start": 10941.36, + "end": 10944.12, + "probability": 0.9467 + }, + { + "start": 10944.68, + "end": 10947.36, + "probability": 0.9918 + }, + { + "start": 10948.0, + "end": 10951.44, + "probability": 0.8807 + }, + { + "start": 10952.08, + "end": 10953.16, + "probability": 0.864 + }, + { + "start": 10953.28, + "end": 10957.68, + "probability": 0.986 + }, + { + "start": 10959.08, + "end": 10959.99, + "probability": 0.8424 + }, + { + "start": 10960.18, + "end": 10961.14, + "probability": 0.9818 + }, + { + "start": 10961.3, + "end": 10963.9, + "probability": 0.9946 + }, + { + "start": 10965.22, + "end": 10967.26, + "probability": 0.9444 + }, + { + "start": 10968.3, + "end": 10974.16, + "probability": 0.9339 + }, + { + "start": 10975.0, + "end": 10978.7, + "probability": 0.9397 + }, + { + "start": 10979.26, + "end": 10984.34, + "probability": 0.8532 + }, + { + "start": 10985.74, + "end": 10989.06, + "probability": 0.9374 + }, + { + "start": 10989.16, + "end": 10989.98, + "probability": 0.8778 + }, + { + "start": 10990.3, + "end": 10991.44, + "probability": 0.9195 + }, + { + "start": 10992.5, + "end": 10993.2, + "probability": 0.8404 + }, + { + "start": 10993.28, + "end": 10994.64, + "probability": 0.8933 + }, + { + "start": 10994.76, + "end": 10995.34, + "probability": 0.707 + }, + { + "start": 10995.46, + "end": 10996.92, + "probability": 0.7552 + }, + { + "start": 10996.98, + "end": 10997.46, + "probability": 0.9187 + }, + { + "start": 11000.16, + "end": 11004.18, + "probability": 0.9755 + }, + { + "start": 11004.78, + "end": 11006.9, + "probability": 0.9933 + }, + { + "start": 11009.96, + "end": 11011.06, + "probability": 0.7764 + }, + { + "start": 11025.2, + "end": 11027.72, + "probability": 0.476 + }, + { + "start": 11029.0, + "end": 11029.98, + "probability": 0.7593 + }, + { + "start": 11030.12, + "end": 11034.42, + "probability": 0.9485 + }, + { + "start": 11035.1, + "end": 11036.48, + "probability": 0.8869 + }, + { + "start": 11036.52, + "end": 11040.92, + "probability": 0.9799 + }, + { + "start": 11041.0, + "end": 11042.74, + "probability": 0.6161 + }, + { + "start": 11042.82, + "end": 11043.6, + "probability": 0.8431 + }, + { + "start": 11044.23, + "end": 11050.74, + "probability": 0.9779 + }, + { + "start": 11054.35, + "end": 11058.78, + "probability": 0.9521 + }, + { + "start": 11060.39, + "end": 11064.04, + "probability": 0.9182 + }, + { + "start": 11064.56, + "end": 11067.54, + "probability": 0.7593 + }, + { + "start": 11068.44, + "end": 11073.45, + "probability": 0.9824 + }, + { + "start": 11074.12, + "end": 11076.0, + "probability": 0.9858 + }, + { + "start": 11077.2, + "end": 11078.66, + "probability": 0.9532 + }, + { + "start": 11078.72, + "end": 11080.78, + "probability": 0.8422 + }, + { + "start": 11080.9, + "end": 11081.46, + "probability": 0.9033 + }, + { + "start": 11081.6, + "end": 11082.34, + "probability": 0.9639 + }, + { + "start": 11082.92, + "end": 11085.96, + "probability": 0.9971 + }, + { + "start": 11086.68, + "end": 11089.2, + "probability": 0.9751 + }, + { + "start": 11089.88, + "end": 11092.28, + "probability": 0.9823 + }, + { + "start": 11092.42, + "end": 11095.58, + "probability": 0.9932 + }, + { + "start": 11097.7, + "end": 11099.96, + "probability": 0.9851 + }, + { + "start": 11100.54, + "end": 11102.7, + "probability": 0.9702 + }, + { + "start": 11102.78, + "end": 11107.2, + "probability": 0.9383 + }, + { + "start": 11107.84, + "end": 11110.4, + "probability": 0.9917 + }, + { + "start": 11111.78, + "end": 11115.1, + "probability": 0.9949 + }, + { + "start": 11115.54, + "end": 11116.34, + "probability": 0.8286 + }, + { + "start": 11116.46, + "end": 11118.02, + "probability": 0.928 + }, + { + "start": 11118.54, + "end": 11119.7, + "probability": 0.9861 + }, + { + "start": 11119.82, + "end": 11120.54, + "probability": 0.9551 + }, + { + "start": 11120.58, + "end": 11124.22, + "probability": 0.8968 + }, + { + "start": 11124.4, + "end": 11125.5, + "probability": 0.8956 + }, + { + "start": 11127.76, + "end": 11137.78, + "probability": 0.9937 + }, + { + "start": 11139.38, + "end": 11141.34, + "probability": 0.9964 + }, + { + "start": 11145.26, + "end": 11147.86, + "probability": 0.9985 + }, + { + "start": 11148.72, + "end": 11150.16, + "probability": 0.8646 + }, + { + "start": 11150.32, + "end": 11151.66, + "probability": 0.9597 + }, + { + "start": 11152.02, + "end": 11155.02, + "probability": 0.9897 + }, + { + "start": 11156.32, + "end": 11157.12, + "probability": 0.984 + }, + { + "start": 11157.28, + "end": 11160.48, + "probability": 0.9926 + }, + { + "start": 11162.8, + "end": 11165.04, + "probability": 0.9819 + }, + { + "start": 11165.86, + "end": 11169.08, + "probability": 0.7674 + }, + { + "start": 11170.0, + "end": 11174.26, + "probability": 0.9683 + }, + { + "start": 11174.26, + "end": 11177.6, + "probability": 0.9989 + }, + { + "start": 11178.08, + "end": 11180.7, + "probability": 0.984 + }, + { + "start": 11181.06, + "end": 11183.84, + "probability": 0.9913 + }, + { + "start": 11183.84, + "end": 11187.42, + "probability": 0.9764 + }, + { + "start": 11188.38, + "end": 11190.34, + "probability": 0.8859 + }, + { + "start": 11191.44, + "end": 11195.44, + "probability": 0.9242 + }, + { + "start": 11195.88, + "end": 11196.16, + "probability": 0.3705 + }, + { + "start": 11196.26, + "end": 11197.32, + "probability": 0.9736 + }, + { + "start": 11198.56, + "end": 11203.86, + "probability": 0.9657 + }, + { + "start": 11204.2, + "end": 11205.18, + "probability": 0.8323 + }, + { + "start": 11205.68, + "end": 11206.18, + "probability": 0.1031 + }, + { + "start": 11206.18, + "end": 11208.64, + "probability": 0.9695 + }, + { + "start": 11209.38, + "end": 11213.46, + "probability": 0.9762 + }, + { + "start": 11213.94, + "end": 11218.18, + "probability": 0.9272 + }, + { + "start": 11218.44, + "end": 11220.28, + "probability": 0.9792 + }, + { + "start": 11220.28, + "end": 11224.26, + "probability": 0.998 + }, + { + "start": 11224.64, + "end": 11225.7, + "probability": 0.7411 + }, + { + "start": 11225.7, + "end": 11226.18, + "probability": 0.6616 + }, + { + "start": 11226.42, + "end": 11227.08, + "probability": 0.6291 + }, + { + "start": 11227.46, + "end": 11231.38, + "probability": 0.994 + }, + { + "start": 11231.72, + "end": 11232.88, + "probability": 0.9106 + }, + { + "start": 11233.56, + "end": 11236.56, + "probability": 0.9823 + }, + { + "start": 11236.58, + "end": 11242.84, + "probability": 0.9852 + }, + { + "start": 11243.24, + "end": 11244.78, + "probability": 0.9961 + }, + { + "start": 11250.44, + "end": 11251.08, + "probability": 0.5129 + }, + { + "start": 11252.82, + "end": 11257.12, + "probability": 0.8448 + }, + { + "start": 11258.28, + "end": 11262.62, + "probability": 0.9968 + }, + { + "start": 11263.78, + "end": 11265.46, + "probability": 0.971 + }, + { + "start": 11265.76, + "end": 11269.6, + "probability": 0.9948 + }, + { + "start": 11269.6, + "end": 11272.86, + "probability": 0.9974 + }, + { + "start": 11273.02, + "end": 11274.4, + "probability": 0.878 + }, + { + "start": 11275.82, + "end": 11276.84, + "probability": 0.9285 + }, + { + "start": 11276.96, + "end": 11277.69, + "probability": 0.9561 + }, + { + "start": 11277.88, + "end": 11281.2, + "probability": 0.8705 + }, + { + "start": 11281.42, + "end": 11282.02, + "probability": 0.9248 + }, + { + "start": 11282.14, + "end": 11285.55, + "probability": 0.9569 + }, + { + "start": 11286.6, + "end": 11289.44, + "probability": 0.9932 + }, + { + "start": 11289.76, + "end": 11290.48, + "probability": 0.9596 + }, + { + "start": 11291.12, + "end": 11292.38, + "probability": 0.987 + }, + { + "start": 11292.4, + "end": 11294.74, + "probability": 0.8794 + }, + { + "start": 11295.28, + "end": 11297.5, + "probability": 0.8822 + }, + { + "start": 11298.26, + "end": 11300.0, + "probability": 0.9796 + }, + { + "start": 11300.78, + "end": 11302.58, + "probability": 0.7978 + }, + { + "start": 11304.96, + "end": 11306.89, + "probability": 0.9932 + }, + { + "start": 11308.08, + "end": 11309.48, + "probability": 0.9353 + }, + { + "start": 11309.6, + "end": 11315.26, + "probability": 0.9519 + }, + { + "start": 11315.52, + "end": 11317.56, + "probability": 0.916 + }, + { + "start": 11319.1, + "end": 11321.76, + "probability": 0.9769 + }, + { + "start": 11322.7, + "end": 11323.87, + "probability": 0.9876 + }, + { + "start": 11324.08, + "end": 11326.68, + "probability": 0.9937 + }, + { + "start": 11326.78, + "end": 11329.42, + "probability": 0.9748 + }, + { + "start": 11330.14, + "end": 11331.58, + "probability": 0.9594 + }, + { + "start": 11331.76, + "end": 11332.59, + "probability": 0.8708 + }, + { + "start": 11333.1, + "end": 11335.84, + "probability": 0.9587 + }, + { + "start": 11336.46, + "end": 11340.38, + "probability": 0.9791 + }, + { + "start": 11340.38, + "end": 11343.26, + "probability": 0.9932 + }, + { + "start": 11343.48, + "end": 11344.12, + "probability": 0.8512 + }, + { + "start": 11344.46, + "end": 11345.54, + "probability": 0.8971 + }, + { + "start": 11346.2, + "end": 11346.62, + "probability": 0.3107 + }, + { + "start": 11346.76, + "end": 11350.88, + "probability": 0.8657 + }, + { + "start": 11351.38, + "end": 11351.46, + "probability": 0.4316 + }, + { + "start": 11351.5, + "end": 11354.56, + "probability": 0.8181 + }, + { + "start": 11354.58, + "end": 11355.26, + "probability": 0.5488 + }, + { + "start": 11355.3, + "end": 11355.9, + "probability": 0.9674 + }, + { + "start": 11356.72, + "end": 11358.12, + "probability": 0.7568 + }, + { + "start": 11358.52, + "end": 11360.7, + "probability": 0.875 + }, + { + "start": 11360.96, + "end": 11366.12, + "probability": 0.9528 + }, + { + "start": 11366.76, + "end": 11366.98, + "probability": 0.8093 + }, + { + "start": 11367.72, + "end": 11370.24, + "probability": 0.9045 + }, + { + "start": 11370.58, + "end": 11372.26, + "probability": 0.8798 + }, + { + "start": 11374.43, + "end": 11376.48, + "probability": 0.6897 + }, + { + "start": 11392.34, + "end": 11393.68, + "probability": 0.4362 + }, + { + "start": 11394.2, + "end": 11397.23, + "probability": 0.5812 + }, + { + "start": 11398.22, + "end": 11399.08, + "probability": 0.627 + }, + { + "start": 11400.92, + "end": 11404.54, + "probability": 0.7588 + }, + { + "start": 11405.08, + "end": 11406.44, + "probability": 0.9546 + }, + { + "start": 11406.94, + "end": 11413.06, + "probability": 0.9517 + }, + { + "start": 11413.98, + "end": 11417.62, + "probability": 0.9977 + }, + { + "start": 11418.62, + "end": 11422.24, + "probability": 0.9049 + }, + { + "start": 11422.24, + "end": 11425.76, + "probability": 0.994 + }, + { + "start": 11427.34, + "end": 11432.38, + "probability": 0.9121 + }, + { + "start": 11433.54, + "end": 11434.56, + "probability": 0.922 + }, + { + "start": 11434.88, + "end": 11438.94, + "probability": 0.98 + }, + { + "start": 11440.24, + "end": 11446.46, + "probability": 0.9676 + }, + { + "start": 11446.6, + "end": 11448.24, + "probability": 0.7544 + }, + { + "start": 11448.42, + "end": 11449.26, + "probability": 0.78 + }, + { + "start": 11452.08, + "end": 11455.96, + "probability": 0.9669 + }, + { + "start": 11457.35, + "end": 11462.76, + "probability": 0.8468 + }, + { + "start": 11462.84, + "end": 11466.22, + "probability": 0.9939 + }, + { + "start": 11467.34, + "end": 11471.9, + "probability": 0.9894 + }, + { + "start": 11471.9, + "end": 11472.5, + "probability": 0.7599 + }, + { + "start": 11472.7, + "end": 11473.44, + "probability": 0.7771 + }, + { + "start": 11473.94, + "end": 11474.76, + "probability": 0.7256 + }, + { + "start": 11475.08, + "end": 11475.52, + "probability": 0.7276 + }, + { + "start": 11476.72, + "end": 11479.8, + "probability": 0.9917 + }, + { + "start": 11479.86, + "end": 11480.56, + "probability": 0.5658 + }, + { + "start": 11480.94, + "end": 11481.5, + "probability": 0.9401 + }, + { + "start": 11481.84, + "end": 11482.42, + "probability": 0.8145 + }, + { + "start": 11483.78, + "end": 11486.64, + "probability": 0.8928 + }, + { + "start": 11487.76, + "end": 11489.14, + "probability": 0.7402 + }, + { + "start": 11489.26, + "end": 11489.8, + "probability": 0.7341 + }, + { + "start": 11490.9, + "end": 11493.12, + "probability": 0.9946 + }, + { + "start": 11494.06, + "end": 11495.66, + "probability": 0.9956 + }, + { + "start": 11495.8, + "end": 11496.3, + "probability": 0.5719 + }, + { + "start": 11496.44, + "end": 11497.52, + "probability": 0.9553 + }, + { + "start": 11497.76, + "end": 11499.72, + "probability": 0.9496 + }, + { + "start": 11500.54, + "end": 11504.2, + "probability": 0.9736 + }, + { + "start": 11504.22, + "end": 11508.9, + "probability": 0.9995 + }, + { + "start": 11510.14, + "end": 11510.8, + "probability": 0.6599 + }, + { + "start": 11511.56, + "end": 11511.84, + "probability": 0.8131 + }, + { + "start": 11512.28, + "end": 11517.26, + "probability": 0.9751 + }, + { + "start": 11517.42, + "end": 11519.34, + "probability": 0.8811 + }, + { + "start": 11519.84, + "end": 11521.8, + "probability": 0.9912 + }, + { + "start": 11522.18, + "end": 11524.84, + "probability": 0.912 + }, + { + "start": 11525.4, + "end": 11527.42, + "probability": 0.993 + }, + { + "start": 11527.58, + "end": 11530.16, + "probability": 0.9707 + }, + { + "start": 11530.74, + "end": 11533.38, + "probability": 0.9939 + }, + { + "start": 11533.86, + "end": 11537.9, + "probability": 0.9902 + }, + { + "start": 11538.38, + "end": 11541.04, + "probability": 0.8243 + }, + { + "start": 11541.28, + "end": 11546.13, + "probability": 0.9852 + }, + { + "start": 11546.96, + "end": 11548.48, + "probability": 0.954 + }, + { + "start": 11549.22, + "end": 11550.46, + "probability": 0.8256 + }, + { + "start": 11550.74, + "end": 11550.88, + "probability": 0.5224 + }, + { + "start": 11551.14, + "end": 11553.78, + "probability": 0.9559 + }, + { + "start": 11555.88, + "end": 11558.16, + "probability": 0.8747 + }, + { + "start": 11559.92, + "end": 11561.72, + "probability": 0.6536 + }, + { + "start": 11561.82, + "end": 11562.12, + "probability": 0.7931 + }, + { + "start": 11562.12, + "end": 11563.02, + "probability": 0.5013 + }, + { + "start": 11563.38, + "end": 11566.72, + "probability": 0.9664 + }, + { + "start": 11567.42, + "end": 11568.38, + "probability": 0.9435 + }, + { + "start": 11569.8, + "end": 11573.4, + "probability": 0.918 + }, + { + "start": 11573.76, + "end": 11578.66, + "probability": 0.9655 + }, + { + "start": 11580.1, + "end": 11582.92, + "probability": 0.9832 + }, + { + "start": 11583.54, + "end": 11585.44, + "probability": 0.9919 + }, + { + "start": 11586.36, + "end": 11589.54, + "probability": 0.9988 + }, + { + "start": 11590.34, + "end": 11591.11, + "probability": 0.9343 + }, + { + "start": 11591.96, + "end": 11595.58, + "probability": 0.9735 + }, + { + "start": 11596.16, + "end": 11600.38, + "probability": 0.988 + }, + { + "start": 11600.7, + "end": 11603.22, + "probability": 0.8303 + }, + { + "start": 11604.06, + "end": 11607.1, + "probability": 0.9944 + }, + { + "start": 11607.68, + "end": 11609.1, + "probability": 0.6577 + }, + { + "start": 11609.78, + "end": 11611.16, + "probability": 0.7446 + }, + { + "start": 11611.88, + "end": 11615.88, + "probability": 0.9035 + }, + { + "start": 11615.94, + "end": 11618.86, + "probability": 0.9775 + }, + { + "start": 11618.98, + "end": 11621.76, + "probability": 0.9901 + }, + { + "start": 11623.44, + "end": 11626.52, + "probability": 0.9954 + }, + { + "start": 11626.76, + "end": 11629.82, + "probability": 0.9883 + }, + { + "start": 11630.28, + "end": 11630.94, + "probability": 0.381 + }, + { + "start": 11631.36, + "end": 11632.2, + "probability": 0.5406 + }, + { + "start": 11632.78, + "end": 11635.24, + "probability": 0.9149 + }, + { + "start": 11635.46, + "end": 11636.92, + "probability": 0.6765 + }, + { + "start": 11637.2, + "end": 11640.4, + "probability": 0.9985 + }, + { + "start": 11641.38, + "end": 11644.26, + "probability": 0.9688 + }, + { + "start": 11645.22, + "end": 11646.5, + "probability": 0.8562 + }, + { + "start": 11647.5, + "end": 11648.7, + "probability": 0.9334 + }, + { + "start": 11649.7, + "end": 11650.92, + "probability": 0.9995 + }, + { + "start": 11652.12, + "end": 11656.2, + "probability": 0.9698 + }, + { + "start": 11657.04, + "end": 11659.1, + "probability": 0.8462 + }, + { + "start": 11659.22, + "end": 11662.04, + "probability": 0.9953 + }, + { + "start": 11662.15, + "end": 11665.46, + "probability": 0.9868 + }, + { + "start": 11665.46, + "end": 11666.26, + "probability": 0.7198 + }, + { + "start": 11666.44, + "end": 11667.16, + "probability": 0.7615 + }, + { + "start": 11667.82, + "end": 11668.6, + "probability": 0.814 + }, + { + "start": 11668.76, + "end": 11671.28, + "probability": 0.9121 + }, + { + "start": 11671.98, + "end": 11677.08, + "probability": 0.9939 + }, + { + "start": 11677.52, + "end": 11677.88, + "probability": 0.7227 + }, + { + "start": 11678.72, + "end": 11680.88, + "probability": 0.7643 + }, + { + "start": 11681.0, + "end": 11683.11, + "probability": 0.7257 + }, + { + "start": 11683.84, + "end": 11686.54, + "probability": 0.8229 + }, + { + "start": 11687.78, + "end": 11690.9, + "probability": 0.8909 + }, + { + "start": 11702.6, + "end": 11705.28, + "probability": 0.4708 + }, + { + "start": 11707.02, + "end": 11710.48, + "probability": 0.6176 + }, + { + "start": 11711.06, + "end": 11713.28, + "probability": 0.8369 + }, + { + "start": 11713.44, + "end": 11714.82, + "probability": 0.5609 + }, + { + "start": 11714.9, + "end": 11715.78, + "probability": 0.5916 + }, + { + "start": 11716.3, + "end": 11717.42, + "probability": 0.7399 + }, + { + "start": 11717.66, + "end": 11717.66, + "probability": 0.0019 + }, + { + "start": 11720.34, + "end": 11720.96, + "probability": 0.1971 + }, + { + "start": 11720.96, + "end": 11721.04, + "probability": 0.2867 + }, + { + "start": 11721.04, + "end": 11721.16, + "probability": 0.8101 + }, + { + "start": 11721.36, + "end": 11722.92, + "probability": 0.188 + }, + { + "start": 11723.0, + "end": 11724.18, + "probability": 0.9035 + }, + { + "start": 11724.48, + "end": 11724.48, + "probability": 0.1141 + }, + { + "start": 11724.5, + "end": 11727.78, + "probability": 0.9474 + }, + { + "start": 11729.14, + "end": 11729.48, + "probability": 0.064 + }, + { + "start": 11729.48, + "end": 11730.48, + "probability": 0.3795 + }, + { + "start": 11730.82, + "end": 11731.9, + "probability": 0.8873 + }, + { + "start": 11732.02, + "end": 11733.24, + "probability": 0.9821 + }, + { + "start": 11733.48, + "end": 11733.9, + "probability": 0.4487 + }, + { + "start": 11733.9, + "end": 11733.9, + "probability": 0.0602 + }, + { + "start": 11733.9, + "end": 11734.7, + "probability": 0.5684 + }, + { + "start": 11734.98, + "end": 11736.3, + "probability": 0.6254 + }, + { + "start": 11737.1, + "end": 11739.26, + "probability": 0.5419 + }, + { + "start": 11739.46, + "end": 11741.3, + "probability": 0.7175 + }, + { + "start": 11741.3, + "end": 11742.24, + "probability": 0.7457 + }, + { + "start": 11742.38, + "end": 11742.82, + "probability": 0.1878 + }, + { + "start": 11743.0, + "end": 11744.56, + "probability": 0.6644 + }, + { + "start": 11745.02, + "end": 11747.58, + "probability": 0.8528 + }, + { + "start": 11748.02, + "end": 11748.02, + "probability": 0.7836 + }, + { + "start": 11748.14, + "end": 11748.78, + "probability": 0.5933 + }, + { + "start": 11748.98, + "end": 11749.64, + "probability": 0.4981 + }, + { + "start": 11749.66, + "end": 11750.36, + "probability": 0.6267 + }, + { + "start": 11750.36, + "end": 11752.32, + "probability": 0.6574 + }, + { + "start": 11752.38, + "end": 11753.02, + "probability": 0.2824 + }, + { + "start": 11753.08, + "end": 11753.32, + "probability": 0.2121 + }, + { + "start": 11753.32, + "end": 11754.78, + "probability": 0.7368 + }, + { + "start": 11754.9, + "end": 11755.81, + "probability": 0.4648 + }, + { + "start": 11755.94, + "end": 11758.66, + "probability": 0.8716 + }, + { + "start": 11759.3, + "end": 11760.48, + "probability": 0.9808 + }, + { + "start": 11761.3, + "end": 11761.44, + "probability": 0.2139 + }, + { + "start": 11762.62, + "end": 11763.52, + "probability": 0.3209 + }, + { + "start": 11763.52, + "end": 11763.56, + "probability": 0.2694 + }, + { + "start": 11763.66, + "end": 11765.6, + "probability": 0.5046 + }, + { + "start": 11765.6, + "end": 11768.0, + "probability": 0.9705 + }, + { + "start": 11768.3, + "end": 11768.96, + "probability": 0.9387 + }, + { + "start": 11769.12, + "end": 11770.08, + "probability": 0.9916 + }, + { + "start": 11770.12, + "end": 11771.14, + "probability": 0.887 + }, + { + "start": 11771.42, + "end": 11772.3, + "probability": 0.9236 + }, + { + "start": 11772.78, + "end": 11774.92, + "probability": 0.9052 + }, + { + "start": 11775.16, + "end": 11775.78, + "probability": 0.0847 + }, + { + "start": 11775.78, + "end": 11775.84, + "probability": 0.1049 + }, + { + "start": 11775.84, + "end": 11780.36, + "probability": 0.9692 + }, + { + "start": 11781.16, + "end": 11781.5, + "probability": 0.5305 + }, + { + "start": 11781.54, + "end": 11782.65, + "probability": 0.0142 + }, + { + "start": 11783.0, + "end": 11784.0, + "probability": 0.8037 + }, + { + "start": 11785.55, + "end": 11788.9, + "probability": 0.3763 + }, + { + "start": 11788.9, + "end": 11789.3, + "probability": 0.0126 + }, + { + "start": 11789.34, + "end": 11791.88, + "probability": 0.8969 + }, + { + "start": 11792.78, + "end": 11797.82, + "probability": 0.657 + }, + { + "start": 11797.84, + "end": 11799.42, + "probability": 0.6584 + }, + { + "start": 11799.96, + "end": 11802.4, + "probability": 0.9418 + }, + { + "start": 11802.92, + "end": 11803.5, + "probability": 0.2139 + }, + { + "start": 11804.06, + "end": 11804.72, + "probability": 0.2752 + }, + { + "start": 11805.36, + "end": 11805.84, + "probability": 0.2663 + }, + { + "start": 11805.84, + "end": 11806.12, + "probability": 0.52 + }, + { + "start": 11806.48, + "end": 11807.54, + "probability": 0.8495 + }, + { + "start": 11807.7, + "end": 11810.92, + "probability": 0.9438 + }, + { + "start": 11811.04, + "end": 11812.04, + "probability": 0.8339 + }, + { + "start": 11812.4, + "end": 11814.34, + "probability": 0.7355 + }, + { + "start": 11814.44, + "end": 11814.86, + "probability": 0.9736 + }, + { + "start": 11815.66, + "end": 11819.9, + "probability": 0.1782 + }, + { + "start": 11820.4, + "end": 11821.84, + "probability": 0.3002 + }, + { + "start": 11822.24, + "end": 11825.0, + "probability": 0.3386 + }, + { + "start": 11825.38, + "end": 11827.44, + "probability": 0.5534 + }, + { + "start": 11827.8, + "end": 11828.2, + "probability": 0.6341 + }, + { + "start": 11828.2, + "end": 11829.44, + "probability": 0.0321 + }, + { + "start": 11829.44, + "end": 11829.44, + "probability": 0.1946 + }, + { + "start": 11829.44, + "end": 11831.28, + "probability": 0.6448 + }, + { + "start": 11831.58, + "end": 11831.86, + "probability": 0.3886 + }, + { + "start": 11831.96, + "end": 11834.76, + "probability": 0.8732 + }, + { + "start": 11835.64, + "end": 11839.34, + "probability": 0.6627 + }, + { + "start": 11840.2, + "end": 11845.08, + "probability": 0.9719 + }, + { + "start": 11846.42, + "end": 11848.62, + "probability": 0.9819 + }, + { + "start": 11850.56, + "end": 11851.64, + "probability": 0.7576 + }, + { + "start": 11852.7, + "end": 11854.12, + "probability": 0.7409 + }, + { + "start": 11854.86, + "end": 11861.06, + "probability": 0.9502 + }, + { + "start": 11861.68, + "end": 11862.98, + "probability": 0.6782 + }, + { + "start": 11864.06, + "end": 11869.4, + "probability": 0.9606 + }, + { + "start": 11870.66, + "end": 11872.22, + "probability": 0.6776 + }, + { + "start": 11872.78, + "end": 11873.9, + "probability": 0.9944 + }, + { + "start": 11875.18, + "end": 11875.76, + "probability": 0.9336 + }, + { + "start": 11877.1, + "end": 11878.28, + "probability": 0.8607 + }, + { + "start": 11879.1, + "end": 11882.18, + "probability": 0.8481 + }, + { + "start": 11882.9, + "end": 11883.48, + "probability": 0.806 + }, + { + "start": 11884.34, + "end": 11886.43, + "probability": 0.9404 + }, + { + "start": 11887.18, + "end": 11891.48, + "probability": 0.9778 + }, + { + "start": 11894.86, + "end": 11896.46, + "probability": 0.7762 + }, + { + "start": 11898.12, + "end": 11902.9, + "probability": 0.7208 + }, + { + "start": 11903.82, + "end": 11905.29, + "probability": 0.4612 + }, + { + "start": 11906.46, + "end": 11907.26, + "probability": 0.7213 + }, + { + "start": 11908.56, + "end": 11912.84, + "probability": 0.883 + }, + { + "start": 11913.0, + "end": 11914.26, + "probability": 0.9884 + }, + { + "start": 11914.36, + "end": 11915.34, + "probability": 0.9876 + }, + { + "start": 11916.86, + "end": 11920.58, + "probability": 0.9663 + }, + { + "start": 11922.68, + "end": 11922.68, + "probability": 0.2771 + }, + { + "start": 11922.68, + "end": 11924.32, + "probability": 0.8754 + }, + { + "start": 11925.36, + "end": 11927.66, + "probability": 0.7117 + }, + { + "start": 11927.74, + "end": 11928.58, + "probability": 0.3624 + }, + { + "start": 11928.58, + "end": 11929.42, + "probability": 0.7195 + }, + { + "start": 11929.42, + "end": 11930.34, + "probability": 0.2226 + }, + { + "start": 11930.78, + "end": 11932.04, + "probability": 0.5698 + }, + { + "start": 11933.02, + "end": 11934.0, + "probability": 0.6698 + }, + { + "start": 11934.06, + "end": 11937.78, + "probability": 0.8674 + }, + { + "start": 11937.9, + "end": 11938.32, + "probability": 0.6215 + }, + { + "start": 11939.3, + "end": 11939.97, + "probability": 0.9185 + }, + { + "start": 11941.34, + "end": 11942.82, + "probability": 0.9277 + }, + { + "start": 11943.94, + "end": 11944.84, + "probability": 0.8684 + }, + { + "start": 11944.88, + "end": 11945.66, + "probability": 0.6724 + }, + { + "start": 11947.06, + "end": 11951.36, + "probability": 0.8792 + }, + { + "start": 11951.36, + "end": 11952.96, + "probability": 0.9891 + }, + { + "start": 11953.02, + "end": 11954.78, + "probability": 0.7832 + }, + { + "start": 11955.46, + "end": 11956.54, + "probability": 0.9921 + }, + { + "start": 11957.82, + "end": 11959.14, + "probability": 0.9612 + }, + { + "start": 11959.24, + "end": 11961.84, + "probability": 0.8103 + }, + { + "start": 11961.9, + "end": 11963.12, + "probability": 0.7742 + }, + { + "start": 11963.18, + "end": 11963.6, + "probability": 0.363 + }, + { + "start": 11964.4, + "end": 11965.52, + "probability": 0.9434 + }, + { + "start": 11965.96, + "end": 11970.84, + "probability": 0.9089 + }, + { + "start": 11971.46, + "end": 11972.22, + "probability": 0.7096 + }, + { + "start": 11973.18, + "end": 11978.44, + "probability": 0.9699 + }, + { + "start": 11978.84, + "end": 11979.81, + "probability": 0.9526 + }, + { + "start": 11981.28, + "end": 11982.86, + "probability": 0.8934 + }, + { + "start": 11983.5, + "end": 11984.08, + "probability": 0.724 + }, + { + "start": 11984.8, + "end": 11988.84, + "probability": 0.9847 + }, + { + "start": 11990.0, + "end": 11991.76, + "probability": 0.9106 + }, + { + "start": 11992.56, + "end": 11996.52, + "probability": 0.7968 + }, + { + "start": 11997.22, + "end": 11998.26, + "probability": 0.8831 + }, + { + "start": 11999.12, + "end": 12001.48, + "probability": 0.9453 + }, + { + "start": 12002.86, + "end": 12003.9, + "probability": 0.9634 + }, + { + "start": 12005.2, + "end": 12007.04, + "probability": 0.9868 + }, + { + "start": 12007.76, + "end": 12012.34, + "probability": 0.9751 + }, + { + "start": 12013.24, + "end": 12013.82, + "probability": 0.9951 + }, + { + "start": 12015.46, + "end": 12016.28, + "probability": 0.7906 + }, + { + "start": 12016.72, + "end": 12017.65, + "probability": 0.017 + }, + { + "start": 12017.76, + "end": 12018.42, + "probability": 0.9139 + }, + { + "start": 12018.54, + "end": 12019.12, + "probability": 0.624 + }, + { + "start": 12019.3, + "end": 12021.36, + "probability": 0.642 + }, + { + "start": 12021.5, + "end": 12022.64, + "probability": 0.9224 + }, + { + "start": 12023.96, + "end": 12025.76, + "probability": 0.9834 + }, + { + "start": 12027.52, + "end": 12029.72, + "probability": 0.8898 + }, + { + "start": 12031.68, + "end": 12037.92, + "probability": 0.8233 + }, + { + "start": 12037.92, + "end": 12042.5, + "probability": 0.7056 + }, + { + "start": 12042.58, + "end": 12042.74, + "probability": 0.2826 + }, + { + "start": 12042.86, + "end": 12043.92, + "probability": 0.9115 + }, + { + "start": 12045.32, + "end": 12045.88, + "probability": 0.584 + }, + { + "start": 12045.88, + "end": 12046.18, + "probability": 0.4861 + }, + { + "start": 12047.14, + "end": 12049.98, + "probability": 0.9731 + }, + { + "start": 12050.84, + "end": 12053.76, + "probability": 0.9897 + }, + { + "start": 12054.22, + "end": 12057.28, + "probability": 0.9885 + }, + { + "start": 12058.4, + "end": 12065.74, + "probability": 0.8226 + }, + { + "start": 12065.9, + "end": 12066.69, + "probability": 0.6501 + }, + { + "start": 12068.04, + "end": 12070.14, + "probability": 0.807 + }, + { + "start": 12071.28, + "end": 12074.62, + "probability": 0.7939 + }, + { + "start": 12076.3, + "end": 12077.92, + "probability": 0.9276 + }, + { + "start": 12078.0, + "end": 12079.68, + "probability": 0.8802 + }, + { + "start": 12081.26, + "end": 12082.08, + "probability": 0.7407 + }, + { + "start": 12084.54, + "end": 12085.5, + "probability": 0.9749 + }, + { + "start": 12086.84, + "end": 12087.18, + "probability": 0.7351 + }, + { + "start": 12087.42, + "end": 12088.06, + "probability": 0.2168 + }, + { + "start": 12088.5, + "end": 12093.0, + "probability": 0.967 + }, + { + "start": 12094.68, + "end": 12095.44, + "probability": 0.6477 + }, + { + "start": 12096.46, + "end": 12099.68, + "probability": 0.9404 + }, + { + "start": 12100.66, + "end": 12103.92, + "probability": 0.9882 + }, + { + "start": 12104.96, + "end": 12109.72, + "probability": 0.9657 + }, + { + "start": 12111.28, + "end": 12111.9, + "probability": 0.7127 + }, + { + "start": 12112.92, + "end": 12114.82, + "probability": 0.8701 + }, + { + "start": 12115.6, + "end": 12117.64, + "probability": 0.9634 + }, + { + "start": 12118.56, + "end": 12120.7, + "probability": 0.9815 + }, + { + "start": 12121.54, + "end": 12122.96, + "probability": 0.9978 + }, + { + "start": 12123.86, + "end": 12126.08, + "probability": 0.8171 + }, + { + "start": 12126.4, + "end": 12127.18, + "probability": 0.9292 + }, + { + "start": 12128.0, + "end": 12132.96, + "probability": 0.9659 + }, + { + "start": 12133.96, + "end": 12136.12, + "probability": 0.9873 + }, + { + "start": 12137.58, + "end": 12139.91, + "probability": 0.8711 + }, + { + "start": 12142.6, + "end": 12144.34, + "probability": 0.6099 + }, + { + "start": 12144.7, + "end": 12149.38, + "probability": 0.981 + }, + { + "start": 12150.64, + "end": 12152.6, + "probability": 0.9074 + }, + { + "start": 12154.4, + "end": 12154.4, + "probability": 0.0165 + }, + { + "start": 12155.74, + "end": 12157.22, + "probability": 0.8055 + }, + { + "start": 12158.78, + "end": 12161.24, + "probability": 0.7993 + }, + { + "start": 12162.12, + "end": 12163.5, + "probability": 0.9119 + }, + { + "start": 12163.62, + "end": 12166.21, + "probability": 0.9797 + }, + { + "start": 12167.08, + "end": 12168.64, + "probability": 0.7973 + }, + { + "start": 12169.8, + "end": 12173.38, + "probability": 0.9211 + }, + { + "start": 12175.06, + "end": 12181.08, + "probability": 0.9818 + }, + { + "start": 12182.22, + "end": 12187.14, + "probability": 0.9874 + }, + { + "start": 12187.66, + "end": 12189.76, + "probability": 0.7485 + }, + { + "start": 12190.9, + "end": 12191.04, + "probability": 0.9915 + }, + { + "start": 12192.18, + "end": 12194.46, + "probability": 0.9933 + }, + { + "start": 12195.88, + "end": 12200.56, + "probability": 0.9897 + }, + { + "start": 12201.18, + "end": 12204.68, + "probability": 0.9629 + }, + { + "start": 12204.98, + "end": 12206.22, + "probability": 0.7797 + }, + { + "start": 12206.94, + "end": 12207.4, + "probability": 0.8121 + }, + { + "start": 12207.46, + "end": 12208.12, + "probability": 0.8694 + }, + { + "start": 12208.2, + "end": 12212.42, + "probability": 0.4811 + }, + { + "start": 12212.42, + "end": 12216.6, + "probability": 0.9458 + }, + { + "start": 12217.8, + "end": 12220.14, + "probability": 0.9865 + }, + { + "start": 12220.76, + "end": 12222.6, + "probability": 0.6656 + }, + { + "start": 12222.92, + "end": 12223.08, + "probability": 0.3878 + }, + { + "start": 12223.86, + "end": 12224.58, + "probability": 0.9532 + }, + { + "start": 12225.5, + "end": 12226.93, + "probability": 0.9014 + }, + { + "start": 12227.78, + "end": 12229.64, + "probability": 0.9506 + }, + { + "start": 12230.64, + "end": 12232.88, + "probability": 0.2015 + }, + { + "start": 12232.88, + "end": 12234.54, + "probability": 0.4796 + }, + { + "start": 12235.02, + "end": 12237.02, + "probability": 0.5196 + }, + { + "start": 12237.14, + "end": 12237.38, + "probability": 0.6145 + }, + { + "start": 12237.56, + "end": 12238.31, + "probability": 0.561 + }, + { + "start": 12238.5, + "end": 12239.32, + "probability": 0.7527 + }, + { + "start": 12240.16, + "end": 12240.66, + "probability": 0.6912 + }, + { + "start": 12241.32, + "end": 12242.5, + "probability": 0.7967 + }, + { + "start": 12242.54, + "end": 12243.38, + "probability": 0.9543 + }, + { + "start": 12243.88, + "end": 12246.54, + "probability": 0.7985 + }, + { + "start": 12246.98, + "end": 12250.62, + "probability": 0.9242 + }, + { + "start": 12251.8, + "end": 12254.18, + "probability": 0.7803 + }, + { + "start": 12255.14, + "end": 12257.18, + "probability": 0.9222 + }, + { + "start": 12257.28, + "end": 12260.52, + "probability": 0.9729 + }, + { + "start": 12260.54, + "end": 12266.9, + "probability": 0.8317 + }, + { + "start": 12271.27, + "end": 12275.84, + "probability": 0.6775 + }, + { + "start": 12278.32, + "end": 12281.28, + "probability": 0.9635 + }, + { + "start": 12282.9, + "end": 12285.04, + "probability": 0.9978 + }, + { + "start": 12286.06, + "end": 12288.2, + "probability": 0.8503 + }, + { + "start": 12289.66, + "end": 12292.64, + "probability": 0.9896 + }, + { + "start": 12293.3, + "end": 12294.18, + "probability": 0.8859 + }, + { + "start": 12294.82, + "end": 12299.3, + "probability": 0.6085 + }, + { + "start": 12300.38, + "end": 12304.16, + "probability": 0.9556 + }, + { + "start": 12305.54, + "end": 12310.56, + "probability": 0.9928 + }, + { + "start": 12311.3, + "end": 12313.7, + "probability": 0.9884 + }, + { + "start": 12314.26, + "end": 12315.1, + "probability": 0.9201 + }, + { + "start": 12316.0, + "end": 12316.94, + "probability": 0.8936 + }, + { + "start": 12317.2, + "end": 12318.46, + "probability": 0.9326 + }, + { + "start": 12319.28, + "end": 12322.0, + "probability": 0.8409 + }, + { + "start": 12323.16, + "end": 12323.7, + "probability": 0.9286 + }, + { + "start": 12323.78, + "end": 12324.7, + "probability": 0.9891 + }, + { + "start": 12326.3, + "end": 12329.72, + "probability": 0.9604 + }, + { + "start": 12330.5, + "end": 12331.38, + "probability": 0.7806 + }, + { + "start": 12331.4, + "end": 12332.4, + "probability": 0.6813 + }, + { + "start": 12332.48, + "end": 12334.04, + "probability": 0.7831 + }, + { + "start": 12335.7, + "end": 12340.4, + "probability": 0.949 + }, + { + "start": 12340.98, + "end": 12342.74, + "probability": 0.953 + }, + { + "start": 12343.84, + "end": 12345.94, + "probability": 0.9931 + }, + { + "start": 12347.48, + "end": 12349.4, + "probability": 0.9264 + }, + { + "start": 12351.04, + "end": 12353.8, + "probability": 0.8272 + }, + { + "start": 12353.94, + "end": 12354.78, + "probability": 0.431 + }, + { + "start": 12355.86, + "end": 12356.7, + "probability": 0.6144 + }, + { + "start": 12357.58, + "end": 12360.01, + "probability": 0.985 + }, + { + "start": 12361.02, + "end": 12363.16, + "probability": 0.4522 + }, + { + "start": 12364.06, + "end": 12367.44, + "probability": 0.5897 + }, + { + "start": 12368.42, + "end": 12369.13, + "probability": 0.7607 + }, + { + "start": 12370.0, + "end": 12371.76, + "probability": 0.8599 + }, + { + "start": 12372.1, + "end": 12372.36, + "probability": 0.7535 + }, + { + "start": 12372.36, + "end": 12373.18, + "probability": 0.8757 + }, + { + "start": 12374.66, + "end": 12376.64, + "probability": 0.9861 + }, + { + "start": 12377.06, + "end": 12380.34, + "probability": 0.9451 + }, + { + "start": 12381.04, + "end": 12383.68, + "probability": 0.6922 + }, + { + "start": 12384.28, + "end": 12386.3, + "probability": 0.8589 + }, + { + "start": 12386.3, + "end": 12387.22, + "probability": 0.9702 + }, + { + "start": 12388.46, + "end": 12389.22, + "probability": 0.7026 + }, + { + "start": 12389.4, + "end": 12390.2, + "probability": 0.7729 + }, + { + "start": 12390.24, + "end": 12391.02, + "probability": 0.8728 + }, + { + "start": 12391.56, + "end": 12393.26, + "probability": 0.9917 + }, + { + "start": 12394.66, + "end": 12396.88, + "probability": 0.9351 + }, + { + "start": 12398.28, + "end": 12400.92, + "probability": 0.7684 + }, + { + "start": 12401.9, + "end": 12407.2, + "probability": 0.9761 + }, + { + "start": 12408.62, + "end": 12409.78, + "probability": 0.7506 + }, + { + "start": 12410.38, + "end": 12414.84, + "probability": 0.9895 + }, + { + "start": 12415.46, + "end": 12418.92, + "probability": 0.9972 + }, + { + "start": 12419.52, + "end": 12420.08, + "probability": 0.8782 + }, + { + "start": 12421.0, + "end": 12424.22, + "probability": 0.988 + }, + { + "start": 12424.74, + "end": 12426.4, + "probability": 0.8375 + }, + { + "start": 12428.2, + "end": 12431.4, + "probability": 0.8797 + }, + { + "start": 12431.98, + "end": 12433.74, + "probability": 0.7769 + }, + { + "start": 12433.76, + "end": 12434.2, + "probability": 0.708 + }, + { + "start": 12434.48, + "end": 12434.62, + "probability": 0.4781 + }, + { + "start": 12434.84, + "end": 12435.72, + "probability": 0.9915 + }, + { + "start": 12436.44, + "end": 12436.98, + "probability": 0.907 + }, + { + "start": 12437.1, + "end": 12438.01, + "probability": 0.5651 + }, + { + "start": 12438.2, + "end": 12439.67, + "probability": 0.6688 + }, + { + "start": 12439.76, + "end": 12440.24, + "probability": 0.6503 + }, + { + "start": 12441.0, + "end": 12442.65, + "probability": 0.6697 + }, + { + "start": 12442.94, + "end": 12444.72, + "probability": 0.969 + }, + { + "start": 12445.87, + "end": 12449.42, + "probability": 0.9976 + }, + { + "start": 12450.38, + "end": 12453.9, + "probability": 0.95 + }, + { + "start": 12454.5, + "end": 12457.56, + "probability": 0.9938 + }, + { + "start": 12458.48, + "end": 12464.78, + "probability": 0.9724 + }, + { + "start": 12466.0, + "end": 12466.65, + "probability": 0.8599 + }, + { + "start": 12467.56, + "end": 12470.88, + "probability": 0.9443 + }, + { + "start": 12471.32, + "end": 12474.24, + "probability": 0.7604 + }, + { + "start": 12474.3, + "end": 12474.7, + "probability": 0.8494 + }, + { + "start": 12475.04, + "end": 12477.57, + "probability": 0.9795 + }, + { + "start": 12478.44, + "end": 12482.94, + "probability": 0.9962 + }, + { + "start": 12483.32, + "end": 12483.54, + "probability": 0.4389 + }, + { + "start": 12483.58, + "end": 12483.98, + "probability": 0.3111 + }, + { + "start": 12483.98, + "end": 12484.74, + "probability": 0.5027 + }, + { + "start": 12485.04, + "end": 12489.36, + "probability": 0.9885 + }, + { + "start": 12489.78, + "end": 12491.74, + "probability": 0.7847 + }, + { + "start": 12491.98, + "end": 12494.3, + "probability": 0.9403 + }, + { + "start": 12495.06, + "end": 12499.0, + "probability": 0.9297 + }, + { + "start": 12499.0, + "end": 12502.04, + "probability": 0.9941 + }, + { + "start": 12503.24, + "end": 12505.32, + "probability": 0.2666 + }, + { + "start": 12505.96, + "end": 12509.74, + "probability": 0.8762 + }, + { + "start": 12510.54, + "end": 12516.06, + "probability": 0.9767 + }, + { + "start": 12516.38, + "end": 12517.62, + "probability": 0.9357 + }, + { + "start": 12518.16, + "end": 12519.94, + "probability": 0.9119 + }, + { + "start": 12520.1, + "end": 12520.24, + "probability": 0.8079 + }, + { + "start": 12521.02, + "end": 12522.22, + "probability": 0.5103 + }, + { + "start": 12522.36, + "end": 12522.36, + "probability": 0.189 + }, + { + "start": 12522.5, + "end": 12523.32, + "probability": 0.7891 + }, + { + "start": 12523.4, + "end": 12524.0, + "probability": 0.8224 + }, + { + "start": 12524.28, + "end": 12526.02, + "probability": 0.507 + }, + { + "start": 12527.54, + "end": 12529.6, + "probability": 0.7374 + }, + { + "start": 12529.64, + "end": 12534.32, + "probability": 0.9914 + }, + { + "start": 12534.32, + "end": 12539.66, + "probability": 0.9943 + }, + { + "start": 12540.04, + "end": 12544.92, + "probability": 0.9863 + }, + { + "start": 12545.12, + "end": 12547.02, + "probability": 0.8691 + }, + { + "start": 12547.36, + "end": 12548.12, + "probability": 0.9929 + }, + { + "start": 12549.2, + "end": 12550.84, + "probability": 0.9167 + }, + { + "start": 12551.92, + "end": 12552.1, + "probability": 0.8922 + }, + { + "start": 12552.2, + "end": 12555.32, + "probability": 0.9822 + }, + { + "start": 12555.52, + "end": 12557.56, + "probability": 0.8403 + }, + { + "start": 12557.64, + "end": 12558.06, + "probability": 0.7263 + }, + { + "start": 12558.36, + "end": 12559.04, + "probability": 0.8418 + }, + { + "start": 12559.59, + "end": 12562.18, + "probability": 0.994 + }, + { + "start": 12562.24, + "end": 12563.22, + "probability": 0.9603 + }, + { + "start": 12563.36, + "end": 12566.74, + "probability": 0.9797 + }, + { + "start": 12566.88, + "end": 12568.72, + "probability": 0.974 + }, + { + "start": 12568.72, + "end": 12572.96, + "probability": 0.9902 + }, + { + "start": 12573.92, + "end": 12579.96, + "probability": 0.9988 + }, + { + "start": 12579.96, + "end": 12585.5, + "probability": 0.9987 + }, + { + "start": 12585.5, + "end": 12590.12, + "probability": 0.999 + }, + { + "start": 12592.3, + "end": 12597.84, + "probability": 0.7795 + }, + { + "start": 12598.26, + "end": 12600.36, + "probability": 0.9949 + }, + { + "start": 12600.74, + "end": 12602.52, + "probability": 0.8022 + }, + { + "start": 12603.16, + "end": 12605.5, + "probability": 0.9952 + }, + { + "start": 12606.24, + "end": 12611.3, + "probability": 0.9761 + }, + { + "start": 12611.84, + "end": 12613.1, + "probability": 0.8068 + }, + { + "start": 12613.18, + "end": 12614.38, + "probability": 0.9222 + }, + { + "start": 12614.74, + "end": 12616.05, + "probability": 0.9155 + }, + { + "start": 12616.66, + "end": 12620.66, + "probability": 0.8136 + }, + { + "start": 12621.28, + "end": 12623.5, + "probability": 0.9891 + }, + { + "start": 12624.02, + "end": 12626.58, + "probability": 0.998 + }, + { + "start": 12627.12, + "end": 12628.74, + "probability": 0.859 + }, + { + "start": 12629.16, + "end": 12633.16, + "probability": 0.9925 + }, + { + "start": 12633.72, + "end": 12635.18, + "probability": 0.995 + }, + { + "start": 12635.5, + "end": 12637.5, + "probability": 0.9549 + }, + { + "start": 12638.3, + "end": 12639.5, + "probability": 0.86 + }, + { + "start": 12640.6, + "end": 12641.6, + "probability": 0.6328 + }, + { + "start": 12642.1, + "end": 12644.42, + "probability": 0.9914 + }, + { + "start": 12644.52, + "end": 12645.04, + "probability": 0.4382 + }, + { + "start": 12645.28, + "end": 12647.18, + "probability": 0.8398 + }, + { + "start": 12647.24, + "end": 12650.96, + "probability": 0.9925 + }, + { + "start": 12650.96, + "end": 12654.84, + "probability": 0.9968 + }, + { + "start": 12654.96, + "end": 12658.96, + "probability": 0.8244 + }, + { + "start": 12659.04, + "end": 12660.64, + "probability": 0.9168 + }, + { + "start": 12661.12, + "end": 12664.62, + "probability": 0.8443 + }, + { + "start": 12664.76, + "end": 12666.66, + "probability": 0.9604 + }, + { + "start": 12667.16, + "end": 12668.04, + "probability": 0.7237 + }, + { + "start": 12668.2, + "end": 12669.06, + "probability": 0.7695 + }, + { + "start": 12669.08, + "end": 12671.14, + "probability": 0.9335 + }, + { + "start": 12671.28, + "end": 12671.5, + "probability": 0.7719 + }, + { + "start": 12672.77, + "end": 12676.2, + "probability": 0.9099 + }, + { + "start": 12676.48, + "end": 12680.0, + "probability": 0.9717 + }, + { + "start": 12680.72, + "end": 12682.24, + "probability": 0.8751 + }, + { + "start": 12682.7, + "end": 12683.3, + "probability": 0.9835 + }, + { + "start": 12683.6, + "end": 12684.04, + "probability": 0.9511 + }, + { + "start": 12684.54, + "end": 12687.14, + "probability": 0.9915 + }, + { + "start": 12688.26, + "end": 12689.18, + "probability": 0.8938 + }, + { + "start": 12689.36, + "end": 12689.7, + "probability": 0.4634 + }, + { + "start": 12689.84, + "end": 12693.94, + "probability": 0.969 + }, + { + "start": 12694.1, + "end": 12695.64, + "probability": 0.9303 + }, + { + "start": 12696.04, + "end": 12699.14, + "probability": 0.9844 + }, + { + "start": 12699.66, + "end": 12700.6, + "probability": 0.7503 + }, + { + "start": 12700.76, + "end": 12702.74, + "probability": 0.9968 + }, + { + "start": 12703.12, + "end": 12703.98, + "probability": 0.4451 + }, + { + "start": 12704.12, + "end": 12704.82, + "probability": 0.9346 + }, + { + "start": 12704.86, + "end": 12707.28, + "probability": 0.9503 + }, + { + "start": 12707.7, + "end": 12711.22, + "probability": 0.9682 + }, + { + "start": 12711.6, + "end": 12712.92, + "probability": 0.9888 + }, + { + "start": 12713.44, + "end": 12713.6, + "probability": 0.0178 + }, + { + "start": 12713.6, + "end": 12717.7, + "probability": 0.9878 + }, + { + "start": 12717.7, + "end": 12721.56, + "probability": 0.7495 + }, + { + "start": 12721.62, + "end": 12722.38, + "probability": 0.9808 + }, + { + "start": 12723.9, + "end": 12724.88, + "probability": 0.6423 + }, + { + "start": 12724.96, + "end": 12725.7, + "probability": 0.8855 + }, + { + "start": 12725.78, + "end": 12727.6, + "probability": 0.9834 + }, + { + "start": 12728.18, + "end": 12730.24, + "probability": 0.8098 + }, + { + "start": 12730.32, + "end": 12730.48, + "probability": 0.3059 + }, + { + "start": 12730.68, + "end": 12734.02, + "probability": 0.9961 + }, + { + "start": 12734.16, + "end": 12735.46, + "probability": 0.7497 + }, + { + "start": 12736.36, + "end": 12740.42, + "probability": 0.8246 + }, + { + "start": 12740.84, + "end": 12742.2, + "probability": 0.9589 + }, + { + "start": 12744.02, + "end": 12745.04, + "probability": 0.9845 + }, + { + "start": 12747.74, + "end": 12749.4, + "probability": 0.9652 + }, + { + "start": 12749.5, + "end": 12751.4, + "probability": 0.6763 + }, + { + "start": 12752.28, + "end": 12755.14, + "probability": 0.9941 + }, + { + "start": 12755.92, + "end": 12756.6, + "probability": 0.7477 + }, + { + "start": 12757.16, + "end": 12757.9, + "probability": 0.9047 + }, + { + "start": 12758.0, + "end": 12758.62, + "probability": 0.9102 + }, + { + "start": 12758.84, + "end": 12761.02, + "probability": 0.9765 + }, + { + "start": 12761.12, + "end": 12761.62, + "probability": 0.84 + }, + { + "start": 12761.7, + "end": 12762.8, + "probability": 0.9741 + }, + { + "start": 12763.22, + "end": 12766.02, + "probability": 0.995 + }, + { + "start": 12766.42, + "end": 12768.18, + "probability": 0.8717 + }, + { + "start": 12768.4, + "end": 12768.54, + "probability": 0.1492 + }, + { + "start": 12768.58, + "end": 12769.26, + "probability": 0.8737 + }, + { + "start": 12769.68, + "end": 12774.06, + "probability": 0.9969 + }, + { + "start": 12774.84, + "end": 12778.12, + "probability": 0.9854 + }, + { + "start": 12778.86, + "end": 12781.26, + "probability": 0.9834 + }, + { + "start": 12782.4, + "end": 12788.42, + "probability": 0.9873 + }, + { + "start": 12788.42, + "end": 12792.56, + "probability": 0.995 + }, + { + "start": 12792.96, + "end": 12796.48, + "probability": 0.9981 + }, + { + "start": 12797.52, + "end": 12799.91, + "probability": 0.9951 + }, + { + "start": 12800.06, + "end": 12801.38, + "probability": 0.98 + }, + { + "start": 12801.94, + "end": 12805.48, + "probability": 0.9968 + }, + { + "start": 12806.06, + "end": 12810.64, + "probability": 0.9883 + }, + { + "start": 12811.46, + "end": 12816.0, + "probability": 0.9869 + }, + { + "start": 12816.38, + "end": 12820.5, + "probability": 0.9888 + }, + { + "start": 12820.6, + "end": 12823.26, + "probability": 0.9368 + }, + { + "start": 12823.66, + "end": 12824.78, + "probability": 0.9595 + }, + { + "start": 12824.84, + "end": 12828.06, + "probability": 0.9962 + }, + { + "start": 12828.86, + "end": 12833.04, + "probability": 0.9636 + }, + { + "start": 12834.06, + "end": 12834.92, + "probability": 0.8416 + }, + { + "start": 12835.08, + "end": 12835.78, + "probability": 0.9784 + }, + { + "start": 12837.32, + "end": 12838.9, + "probability": 0.6809 + }, + { + "start": 12839.52, + "end": 12846.42, + "probability": 0.8627 + }, + { + "start": 12846.92, + "end": 12852.06, + "probability": 0.8897 + }, + { + "start": 12852.36, + "end": 12852.92, + "probability": 0.3145 + }, + { + "start": 12853.42, + "end": 12859.9, + "probability": 0.8607 + }, + { + "start": 12860.24, + "end": 12864.22, + "probability": 0.9932 + }, + { + "start": 12864.88, + "end": 12869.08, + "probability": 0.9964 + }, + { + "start": 12869.92, + "end": 12871.34, + "probability": 0.9894 + }, + { + "start": 12873.1, + "end": 12877.4, + "probability": 0.9167 + }, + { + "start": 12878.18, + "end": 12879.7, + "probability": 0.5008 + }, + { + "start": 12880.28, + "end": 12882.74, + "probability": 0.8448 + }, + { + "start": 12883.16, + "end": 12884.92, + "probability": 0.9918 + }, + { + "start": 12885.52, + "end": 12887.56, + "probability": 0.9824 + }, + { + "start": 12888.36, + "end": 12888.8, + "probability": 0.9282 + }, + { + "start": 12889.4, + "end": 12892.38, + "probability": 0.9318 + }, + { + "start": 12893.52, + "end": 12894.34, + "probability": 0.6364 + }, + { + "start": 12894.5, + "end": 12896.1, + "probability": 0.8937 + }, + { + "start": 12896.16, + "end": 12899.42, + "probability": 0.9755 + }, + { + "start": 12899.62, + "end": 12902.74, + "probability": 0.7834 + }, + { + "start": 12902.74, + "end": 12905.92, + "probability": 0.738 + }, + { + "start": 12906.6, + "end": 12906.72, + "probability": 0.0285 + }, + { + "start": 12906.92, + "end": 12911.68, + "probability": 0.9963 + }, + { + "start": 12912.08, + "end": 12917.06, + "probability": 0.9896 + }, + { + "start": 12917.5, + "end": 12918.68, + "probability": 0.7482 + }, + { + "start": 12918.86, + "end": 12922.48, + "probability": 0.9926 + }, + { + "start": 12922.88, + "end": 12925.3, + "probability": 0.9961 + }, + { + "start": 12926.22, + "end": 12928.96, + "probability": 0.8548 + }, + { + "start": 12929.52, + "end": 12930.24, + "probability": 0.7439 + }, + { + "start": 12930.42, + "end": 12931.92, + "probability": 0.8482 + }, + { + "start": 12932.3, + "end": 12933.5, + "probability": 0.9844 + }, + { + "start": 12933.72, + "end": 12935.36, + "probability": 0.9816 + }, + { + "start": 12936.16, + "end": 12940.32, + "probability": 0.9844 + }, + { + "start": 12940.62, + "end": 12941.54, + "probability": 0.9408 + }, + { + "start": 12942.72, + "end": 12945.24, + "probability": 0.9809 + }, + { + "start": 12945.88, + "end": 12950.2, + "probability": 0.9938 + }, + { + "start": 12950.98, + "end": 12955.28, + "probability": 0.89 + }, + { + "start": 12956.24, + "end": 12958.26, + "probability": 0.9154 + }, + { + "start": 12959.1, + "end": 12959.2, + "probability": 0.9922 + }, + { + "start": 12959.94, + "end": 12963.36, + "probability": 0.9937 + }, + { + "start": 12963.46, + "end": 12967.46, + "probability": 0.996 + }, + { + "start": 12968.94, + "end": 12971.74, + "probability": 0.9854 + }, + { + "start": 12972.36, + "end": 12974.14, + "probability": 0.9164 + }, + { + "start": 12974.84, + "end": 12976.24, + "probability": 0.9526 + }, + { + "start": 12976.36, + "end": 12980.84, + "probability": 0.9849 + }, + { + "start": 12981.08, + "end": 12982.7, + "probability": 0.8079 + }, + { + "start": 12983.06, + "end": 12986.68, + "probability": 0.9631 + }, + { + "start": 12987.52, + "end": 12992.02, + "probability": 0.9965 + }, + { + "start": 12992.46, + "end": 12995.58, + "probability": 0.9993 + }, + { + "start": 12995.7, + "end": 12996.44, + "probability": 0.7489 + }, + { + "start": 12997.76, + "end": 13000.46, + "probability": 0.8456 + }, + { + "start": 13001.34, + "end": 13005.4, + "probability": 0.9793 + }, + { + "start": 13006.06, + "end": 13010.78, + "probability": 0.99 + }, + { + "start": 13012.6, + "end": 13013.8, + "probability": 0.0408 + }, + { + "start": 13013.96, + "end": 13016.56, + "probability": 0.99 + }, + { + "start": 13016.76, + "end": 13019.52, + "probability": 0.9499 + }, + { + "start": 13022.48, + "end": 13025.2, + "probability": 0.5768 + }, + { + "start": 13025.3, + "end": 13026.5, + "probability": 0.8629 + }, + { + "start": 13026.6, + "end": 13029.26, + "probability": 0.9825 + }, + { + "start": 13029.74, + "end": 13030.26, + "probability": 0.8647 + }, + { + "start": 13030.84, + "end": 13032.98, + "probability": 0.9696 + }, + { + "start": 13034.4, + "end": 13036.0, + "probability": 0.6591 + }, + { + "start": 13036.04, + "end": 13038.22, + "probability": 0.9922 + }, + { + "start": 13038.22, + "end": 13041.08, + "probability": 0.7872 + }, + { + "start": 13041.2, + "end": 13045.42, + "probability": 0.9729 + }, + { + "start": 13046.2, + "end": 13048.42, + "probability": 0.9771 + }, + { + "start": 13048.42, + "end": 13051.18, + "probability": 0.831 + }, + { + "start": 13051.2, + "end": 13051.9, + "probability": 0.846 + }, + { + "start": 13053.78, + "end": 13056.4, + "probability": 0.1179 + }, + { + "start": 13058.56, + "end": 13060.16, + "probability": 0.3523 + }, + { + "start": 13071.22, + "end": 13074.94, + "probability": 0.6603 + }, + { + "start": 13075.58, + "end": 13076.6, + "probability": 0.8791 + }, + { + "start": 13076.94, + "end": 13080.6, + "probability": 0.9931 + }, + { + "start": 13081.28, + "end": 13082.6, + "probability": 0.7631 + }, + { + "start": 13083.06, + "end": 13084.24, + "probability": 0.7578 + }, + { + "start": 13084.96, + "end": 13086.84, + "probability": 0.8149 + }, + { + "start": 13087.38, + "end": 13090.02, + "probability": 0.9906 + }, + { + "start": 13090.18, + "end": 13091.34, + "probability": 0.863 + }, + { + "start": 13091.44, + "end": 13096.4, + "probability": 0.994 + }, + { + "start": 13096.86, + "end": 13100.04, + "probability": 0.9103 + }, + { + "start": 13100.2, + "end": 13102.44, + "probability": 0.5017 + }, + { + "start": 13102.48, + "end": 13103.06, + "probability": 0.3603 + }, + { + "start": 13103.16, + "end": 13104.7, + "probability": 0.9806 + }, + { + "start": 13105.66, + "end": 13107.82, + "probability": 0.9515 + }, + { + "start": 13108.4, + "end": 13114.22, + "probability": 0.9487 + }, + { + "start": 13114.76, + "end": 13115.88, + "probability": 0.4545 + }, + { + "start": 13117.02, + "end": 13118.88, + "probability": 0.9156 + }, + { + "start": 13119.88, + "end": 13123.54, + "probability": 0.9865 + }, + { + "start": 13123.54, + "end": 13127.66, + "probability": 0.9865 + }, + { + "start": 13128.4, + "end": 13131.98, + "probability": 0.9896 + }, + { + "start": 13132.6, + "end": 13136.36, + "probability": 0.9028 + }, + { + "start": 13137.12, + "end": 13137.91, + "probability": 0.9751 + }, + { + "start": 13138.6, + "end": 13144.66, + "probability": 0.9928 + }, + { + "start": 13145.2, + "end": 13146.9, + "probability": 0.9854 + }, + { + "start": 13147.46, + "end": 13149.46, + "probability": 0.969 + }, + { + "start": 13150.04, + "end": 13152.74, + "probability": 0.9708 + }, + { + "start": 13153.34, + "end": 13158.08, + "probability": 0.9905 + }, + { + "start": 13158.08, + "end": 13164.1, + "probability": 0.9985 + }, + { + "start": 13164.74, + "end": 13166.24, + "probability": 0.8308 + }, + { + "start": 13166.98, + "end": 13170.38, + "probability": 0.9971 + }, + { + "start": 13170.38, + "end": 13175.2, + "probability": 0.9917 + }, + { + "start": 13175.92, + "end": 13176.76, + "probability": 0.7309 + }, + { + "start": 13177.44, + "end": 13180.1, + "probability": 0.9551 + }, + { + "start": 13180.1, + "end": 13183.14, + "probability": 0.7239 + }, + { + "start": 13184.32, + "end": 13185.64, + "probability": 0.999 + }, + { + "start": 13186.42, + "end": 13189.46, + "probability": 0.9899 + }, + { + "start": 13189.46, + "end": 13193.08, + "probability": 0.999 + }, + { + "start": 13193.74, + "end": 13195.06, + "probability": 0.7187 + }, + { + "start": 13195.72, + "end": 13197.6, + "probability": 0.9956 + }, + { + "start": 13198.38, + "end": 13200.26, + "probability": 0.7696 + }, + { + "start": 13200.82, + "end": 13205.02, + "probability": 0.9445 + }, + { + "start": 13205.94, + "end": 13209.7, + "probability": 0.9767 + }, + { + "start": 13210.36, + "end": 13216.12, + "probability": 0.9449 + }, + { + "start": 13216.62, + "end": 13217.22, + "probability": 0.6094 + }, + { + "start": 13218.02, + "end": 13222.54, + "probability": 0.9975 + }, + { + "start": 13222.54, + "end": 13225.56, + "probability": 0.8666 + }, + { + "start": 13226.2, + "end": 13229.3, + "probability": 0.8333 + }, + { + "start": 13229.84, + "end": 13236.8, + "probability": 0.9492 + }, + { + "start": 13236.8, + "end": 13242.8, + "probability": 0.9919 + }, + { + "start": 13242.8, + "end": 13248.7, + "probability": 0.9834 + }, + { + "start": 13249.34, + "end": 13256.66, + "probability": 0.9842 + }, + { + "start": 13257.5, + "end": 13258.42, + "probability": 0.9021 + }, + { + "start": 13259.06, + "end": 13262.62, + "probability": 0.9834 + }, + { + "start": 13263.38, + "end": 13265.98, + "probability": 0.9978 + }, + { + "start": 13266.58, + "end": 13270.84, + "probability": 0.8524 + }, + { + "start": 13271.3, + "end": 13275.32, + "probability": 0.9946 + }, + { + "start": 13276.04, + "end": 13279.68, + "probability": 0.9391 + }, + { + "start": 13280.24, + "end": 13281.72, + "probability": 0.7975 + }, + { + "start": 13282.26, + "end": 13285.78, + "probability": 0.9985 + }, + { + "start": 13285.78, + "end": 13290.24, + "probability": 0.9832 + }, + { + "start": 13290.58, + "end": 13292.58, + "probability": 0.9982 + }, + { + "start": 13293.48, + "end": 13298.92, + "probability": 0.998 + }, + { + "start": 13298.92, + "end": 13305.58, + "probability": 0.9958 + }, + { + "start": 13306.04, + "end": 13309.0, + "probability": 0.8406 + }, + { + "start": 13309.88, + "end": 13313.5, + "probability": 0.9906 + }, + { + "start": 13313.5, + "end": 13318.12, + "probability": 0.9654 + }, + { + "start": 13318.7, + "end": 13323.92, + "probability": 0.8903 + }, + { + "start": 13323.92, + "end": 13327.28, + "probability": 0.998 + }, + { + "start": 13327.98, + "end": 13328.42, + "probability": 0.7878 + }, + { + "start": 13328.9, + "end": 13332.6, + "probability": 0.985 + }, + { + "start": 13332.66, + "end": 13336.94, + "probability": 0.9957 + }, + { + "start": 13337.24, + "end": 13339.37, + "probability": 0.9735 + }, + { + "start": 13339.94, + "end": 13340.8, + "probability": 0.736 + }, + { + "start": 13342.04, + "end": 13343.7, + "probability": 0.8165 + }, + { + "start": 13344.24, + "end": 13346.26, + "probability": 0.9896 + }, + { + "start": 13346.86, + "end": 13350.18, + "probability": 0.9767 + }, + { + "start": 13350.18, + "end": 13353.22, + "probability": 0.9981 + }, + { + "start": 13354.04, + "end": 13354.22, + "probability": 0.5606 + }, + { + "start": 13355.0, + "end": 13358.38, + "probability": 0.9678 + }, + { + "start": 13359.46, + "end": 13360.5, + "probability": 0.0405 + }, + { + "start": 13360.86, + "end": 13365.9, + "probability": 0.9946 + }, + { + "start": 13366.52, + "end": 13369.64, + "probability": 0.9948 + }, + { + "start": 13370.16, + "end": 13378.06, + "probability": 0.9925 + }, + { + "start": 13378.58, + "end": 13383.8, + "probability": 0.9933 + }, + { + "start": 13384.94, + "end": 13387.84, + "probability": 0.9978 + }, + { + "start": 13388.44, + "end": 13392.56, + "probability": 0.9978 + }, + { + "start": 13393.18, + "end": 13397.9, + "probability": 0.9856 + }, + { + "start": 13398.62, + "end": 13400.86, + "probability": 0.8506 + }, + { + "start": 13401.44, + "end": 13404.54, + "probability": 0.7274 + }, + { + "start": 13405.08, + "end": 13409.64, + "probability": 0.9968 + }, + { + "start": 13409.66, + "end": 13414.46, + "probability": 0.7914 + }, + { + "start": 13415.38, + "end": 13423.76, + "probability": 0.9921 + }, + { + "start": 13427.66, + "end": 13429.8, + "probability": 0.9153 + }, + { + "start": 13430.54, + "end": 13434.82, + "probability": 0.9868 + }, + { + "start": 13435.38, + "end": 13441.84, + "probability": 0.8474 + }, + { + "start": 13442.44, + "end": 13445.78, + "probability": 0.9836 + }, + { + "start": 13445.78, + "end": 13449.04, + "probability": 0.9916 + }, + { + "start": 13449.64, + "end": 13450.38, + "probability": 0.9605 + }, + { + "start": 13451.5, + "end": 13457.52, + "probability": 0.9814 + }, + { + "start": 13457.66, + "end": 13461.36, + "probability": 0.9979 + }, + { + "start": 13462.2, + "end": 13466.28, + "probability": 0.9928 + }, + { + "start": 13466.6, + "end": 13467.26, + "probability": 0.796 + }, + { + "start": 13467.9, + "end": 13471.44, + "probability": 0.9912 + }, + { + "start": 13471.98, + "end": 13473.06, + "probability": 0.9246 + }, + { + "start": 13473.46, + "end": 13474.4, + "probability": 0.8934 + }, + { + "start": 13474.84, + "end": 13478.74, + "probability": 0.9971 + }, + { + "start": 13480.44, + "end": 13481.34, + "probability": 0.8292 + }, + { + "start": 13481.8, + "end": 13488.66, + "probability": 0.8774 + }, + { + "start": 13489.22, + "end": 13493.16, + "probability": 0.8917 + }, + { + "start": 13493.16, + "end": 13497.2, + "probability": 0.8174 + }, + { + "start": 13497.9, + "end": 13499.9, + "probability": 0.9761 + }, + { + "start": 13500.38, + "end": 13504.9, + "probability": 0.9749 + }, + { + "start": 13504.9, + "end": 13509.56, + "probability": 0.9645 + }, + { + "start": 13510.14, + "end": 13510.82, + "probability": 0.5782 + }, + { + "start": 13511.24, + "end": 13516.46, + "probability": 0.9989 + }, + { + "start": 13516.46, + "end": 13522.42, + "probability": 0.9995 + }, + { + "start": 13522.42, + "end": 13528.46, + "probability": 0.9556 + }, + { + "start": 13528.98, + "end": 13529.54, + "probability": 0.7214 + }, + { + "start": 13529.7, + "end": 13533.42, + "probability": 0.5797 + }, + { + "start": 13534.5, + "end": 13538.98, + "probability": 0.7964 + }, + { + "start": 13539.84, + "end": 13543.46, + "probability": 0.9665 + }, + { + "start": 13544.14, + "end": 13547.24, + "probability": 0.8076 + }, + { + "start": 13547.92, + "end": 13550.84, + "probability": 0.996 + }, + { + "start": 13550.84, + "end": 13553.98, + "probability": 0.9858 + }, + { + "start": 13554.08, + "end": 13554.66, + "probability": 0.8976 + }, + { + "start": 13555.06, + "end": 13556.5, + "probability": 0.8896 + }, + { + "start": 13557.18, + "end": 13557.99, + "probability": 0.9951 + }, + { + "start": 13558.94, + "end": 13563.82, + "probability": 0.968 + }, + { + "start": 13563.92, + "end": 13565.44, + "probability": 0.7663 + }, + { + "start": 13565.82, + "end": 13569.96, + "probability": 0.9909 + }, + { + "start": 13570.42, + "end": 13573.18, + "probability": 0.9802 + }, + { + "start": 13573.18, + "end": 13576.26, + "probability": 0.9858 + }, + { + "start": 13576.36, + "end": 13577.72, + "probability": 0.7729 + }, + { + "start": 13578.44, + "end": 13578.76, + "probability": 0.6101 + }, + { + "start": 13579.62, + "end": 13584.06, + "probability": 0.9981 + }, + { + "start": 13584.6, + "end": 13586.94, + "probability": 0.9877 + }, + { + "start": 13587.5, + "end": 13592.5, + "probability": 0.8654 + }, + { + "start": 13593.08, + "end": 13598.54, + "probability": 0.9951 + }, + { + "start": 13598.69, + "end": 13605.3, + "probability": 0.9993 + }, + { + "start": 13606.18, + "end": 13607.16, + "probability": 0.9461 + }, + { + "start": 13607.7, + "end": 13610.5, + "probability": 0.8525 + }, + { + "start": 13611.06, + "end": 13614.03, + "probability": 0.9977 + }, + { + "start": 13614.74, + "end": 13615.32, + "probability": 0.8911 + }, + { + "start": 13615.86, + "end": 13619.32, + "probability": 0.9898 + }, + { + "start": 13620.06, + "end": 13621.72, + "probability": 0.9427 + }, + { + "start": 13622.4, + "end": 13624.88, + "probability": 0.9966 + }, + { + "start": 13625.4, + "end": 13629.62, + "probability": 0.9595 + }, + { + "start": 13630.74, + "end": 13635.5, + "probability": 0.997 + }, + { + "start": 13635.9, + "end": 13638.34, + "probability": 0.8204 + }, + { + "start": 13638.9, + "end": 13642.22, + "probability": 0.811 + }, + { + "start": 13642.22, + "end": 13647.0, + "probability": 0.9902 + }, + { + "start": 13647.4, + "end": 13652.6, + "probability": 0.996 + }, + { + "start": 13653.18, + "end": 13657.78, + "probability": 0.9935 + }, + { + "start": 13659.2, + "end": 13660.1, + "probability": 0.6387 + }, + { + "start": 13661.32, + "end": 13665.48, + "probability": 0.9989 + }, + { + "start": 13666.7, + "end": 13670.3, + "probability": 0.7391 + }, + { + "start": 13670.86, + "end": 13672.0, + "probability": 0.985 + }, + { + "start": 13673.3, + "end": 13678.32, + "probability": 0.9843 + }, + { + "start": 13678.98, + "end": 13680.22, + "probability": 0.978 + }, + { + "start": 13680.64, + "end": 13684.28, + "probability": 0.9893 + }, + { + "start": 13685.82, + "end": 13688.56, + "probability": 0.8504 + }, + { + "start": 13689.72, + "end": 13691.0, + "probability": 0.5755 + }, + { + "start": 13691.7, + "end": 13695.44, + "probability": 0.7441 + }, + { + "start": 13695.44, + "end": 13700.14, + "probability": 0.9733 + }, + { + "start": 13701.08, + "end": 13704.44, + "probability": 0.7655 + }, + { + "start": 13705.0, + "end": 13707.46, + "probability": 0.9977 + }, + { + "start": 13708.0, + "end": 13710.44, + "probability": 0.7787 + }, + { + "start": 13711.34, + "end": 13712.32, + "probability": 0.8841 + }, + { + "start": 13713.56, + "end": 13716.56, + "probability": 0.9424 + }, + { + "start": 13717.1, + "end": 13720.96, + "probability": 0.8665 + }, + { + "start": 13721.86, + "end": 13728.86, + "probability": 0.9751 + }, + { + "start": 13729.22, + "end": 13732.52, + "probability": 0.652 + }, + { + "start": 13733.44, + "end": 13735.5, + "probability": 0.96 + }, + { + "start": 13736.6, + "end": 13737.76, + "probability": 0.8175 + }, + { + "start": 13738.42, + "end": 13742.78, + "probability": 0.8857 + }, + { + "start": 13743.52, + "end": 13744.52, + "probability": 0.3978 + }, + { + "start": 13745.28, + "end": 13747.24, + "probability": 0.979 + }, + { + "start": 13747.64, + "end": 13748.56, + "probability": 0.8344 + }, + { + "start": 13749.9, + "end": 13750.4, + "probability": 0.8954 + }, + { + "start": 13750.48, + "end": 13754.04, + "probability": 0.9939 + }, + { + "start": 13754.48, + "end": 13759.0, + "probability": 0.9939 + }, + { + "start": 13760.12, + "end": 13765.56, + "probability": 0.8611 + }, + { + "start": 13766.84, + "end": 13769.06, + "probability": 0.9182 + }, + { + "start": 13769.06, + "end": 13772.24, + "probability": 0.9315 + }, + { + "start": 13773.6, + "end": 13774.92, + "probability": 0.939 + }, + { + "start": 13775.7, + "end": 13779.72, + "probability": 0.9896 + }, + { + "start": 13780.16, + "end": 13781.92, + "probability": 0.8345 + }, + { + "start": 13782.88, + "end": 13785.78, + "probability": 0.9705 + }, + { + "start": 13787.08, + "end": 13790.06, + "probability": 0.8604 + }, + { + "start": 13790.96, + "end": 13793.52, + "probability": 0.9843 + }, + { + "start": 13793.56, + "end": 13794.41, + "probability": 0.9932 + }, + { + "start": 13794.54, + "end": 13796.28, + "probability": 0.9839 + }, + { + "start": 13797.32, + "end": 13803.16, + "probability": 0.9419 + }, + { + "start": 13803.16, + "end": 13806.6, + "probability": 0.9792 + }, + { + "start": 13807.04, + "end": 13808.06, + "probability": 0.8066 + }, + { + "start": 13808.78, + "end": 13811.86, + "probability": 0.9886 + }, + { + "start": 13812.4, + "end": 13816.38, + "probability": 0.9971 + }, + { + "start": 13817.26, + "end": 13823.22, + "probability": 0.9504 + }, + { + "start": 13823.28, + "end": 13824.12, + "probability": 0.6805 + }, + { + "start": 13825.11, + "end": 13827.35, + "probability": 0.9907 + }, + { + "start": 13827.58, + "end": 13828.18, + "probability": 0.7607 + }, + { + "start": 13829.36, + "end": 13830.74, + "probability": 0.927 + }, + { + "start": 13831.26, + "end": 13832.32, + "probability": 0.5363 + }, + { + "start": 13832.88, + "end": 13834.16, + "probability": 0.9946 + }, + { + "start": 13835.36, + "end": 13840.28, + "probability": 0.9692 + }, + { + "start": 13840.78, + "end": 13842.4, + "probability": 0.7715 + }, + { + "start": 13843.12, + "end": 13843.46, + "probability": 0.5085 + }, + { + "start": 13843.76, + "end": 13845.16, + "probability": 0.7744 + }, + { + "start": 13846.6, + "end": 13848.16, + "probability": 0.9476 + }, + { + "start": 13848.68, + "end": 13852.82, + "probability": 0.9408 + }, + { + "start": 13853.68, + "end": 13855.06, + "probability": 0.774 + }, + { + "start": 13855.06, + "end": 13856.2, + "probability": 0.47 + }, + { + "start": 13856.84, + "end": 13859.04, + "probability": 0.9875 + }, + { + "start": 13859.36, + "end": 13860.46, + "probability": 0.9257 + }, + { + "start": 13861.08, + "end": 13862.16, + "probability": 0.4309 + }, + { + "start": 13863.22, + "end": 13865.44, + "probability": 0.9964 + }, + { + "start": 13866.0, + "end": 13866.98, + "probability": 0.6663 + }, + { + "start": 13867.74, + "end": 13868.74, + "probability": 0.866 + }, + { + "start": 13868.74, + "end": 13871.12, + "probability": 0.9709 + }, + { + "start": 13871.76, + "end": 13873.63, + "probability": 0.9551 + }, + { + "start": 13874.02, + "end": 13875.28, + "probability": 0.7101 + }, + { + "start": 13875.8, + "end": 13877.76, + "probability": 0.6087 + }, + { + "start": 13878.16, + "end": 13879.88, + "probability": 0.8914 + }, + { + "start": 13881.4, + "end": 13881.84, + "probability": 0.6903 + }, + { + "start": 13883.26, + "end": 13887.48, + "probability": 0.9873 + }, + { + "start": 13888.22, + "end": 13894.1, + "probability": 0.9929 + }, + { + "start": 13894.7, + "end": 13895.14, + "probability": 0.5141 + }, + { + "start": 13895.68, + "end": 13900.9, + "probability": 0.9935 + }, + { + "start": 13902.0, + "end": 13905.12, + "probability": 0.9891 + }, + { + "start": 13906.04, + "end": 13909.84, + "probability": 0.9513 + }, + { + "start": 13910.76, + "end": 13913.76, + "probability": 0.9988 + }, + { + "start": 13914.7, + "end": 13919.52, + "probability": 0.9835 + }, + { + "start": 13919.52, + "end": 13924.26, + "probability": 0.9761 + }, + { + "start": 13925.16, + "end": 13928.58, + "probability": 0.9953 + }, + { + "start": 13929.32, + "end": 13929.42, + "probability": 0.0001 + }, + { + "start": 13929.94, + "end": 13934.04, + "probability": 0.9849 + }, + { + "start": 13934.04, + "end": 13937.42, + "probability": 0.9977 + }, + { + "start": 13938.28, + "end": 13941.98, + "probability": 0.8791 + }, + { + "start": 13942.54, + "end": 13947.08, + "probability": 0.9449 + }, + { + "start": 13947.7, + "end": 13950.12, + "probability": 0.9964 + }, + { + "start": 13950.72, + "end": 13952.96, + "probability": 0.9959 + }, + { + "start": 13953.58, + "end": 13955.52, + "probability": 0.934 + }, + { + "start": 13955.74, + "end": 13958.24, + "probability": 0.8431 + }, + { + "start": 13958.32, + "end": 13959.96, + "probability": 0.7606 + }, + { + "start": 13960.48, + "end": 13964.38, + "probability": 0.9689 + }, + { + "start": 13965.48, + "end": 13969.26, + "probability": 0.946 + }, + { + "start": 13969.9, + "end": 13970.94, + "probability": 0.9331 + }, + { + "start": 13971.72, + "end": 13976.16, + "probability": 0.9705 + }, + { + "start": 13976.16, + "end": 13981.24, + "probability": 0.9898 + }, + { + "start": 13982.02, + "end": 13986.02, + "probability": 0.9937 + }, + { + "start": 13986.02, + "end": 13990.96, + "probability": 0.9891 + }, + { + "start": 13991.38, + "end": 13991.78, + "probability": 0.9479 + }, + { + "start": 13992.42, + "end": 13997.66, + "probability": 0.8514 + }, + { + "start": 13998.48, + "end": 13999.0, + "probability": 0.6748 + }, + { + "start": 13999.6, + "end": 14000.48, + "probability": 0.8931 + }, + { + "start": 14000.54, + "end": 14001.72, + "probability": 0.8046 + }, + { + "start": 14001.96, + "end": 14004.0, + "probability": 0.693 + }, + { + "start": 14004.7, + "end": 14010.56, + "probability": 0.9696 + }, + { + "start": 14013.22, + "end": 14015.48, + "probability": 0.9802 + }, + { + "start": 14015.7, + "end": 14020.16, + "probability": 0.9917 + }, + { + "start": 14020.82, + "end": 14024.06, + "probability": 0.9976 + }, + { + "start": 14024.84, + "end": 14025.44, + "probability": 0.969 + }, + { + "start": 14026.0, + "end": 14029.6, + "probability": 0.9774 + }, + { + "start": 14031.0, + "end": 14035.18, + "probability": 0.9906 + }, + { + "start": 14035.72, + "end": 14036.96, + "probability": 0.98 + }, + { + "start": 14037.56, + "end": 14039.3, + "probability": 0.8862 + }, + { + "start": 14040.06, + "end": 14042.1, + "probability": 0.9906 + }, + { + "start": 14043.0, + "end": 14046.16, + "probability": 0.9723 + }, + { + "start": 14046.7, + "end": 14047.52, + "probability": 0.9915 + }, + { + "start": 14048.84, + "end": 14050.72, + "probability": 0.6513 + }, + { + "start": 14051.68, + "end": 14053.34, + "probability": 0.8795 + }, + { + "start": 14053.82, + "end": 14056.48, + "probability": 0.9902 + }, + { + "start": 14057.06, + "end": 14059.24, + "probability": 0.9887 + }, + { + "start": 14061.02, + "end": 14062.58, + "probability": 0.9816 + }, + { + "start": 14063.28, + "end": 14065.82, + "probability": 0.8438 + }, + { + "start": 14066.84, + "end": 14067.52, + "probability": 0.7361 + }, + { + "start": 14068.24, + "end": 14069.6, + "probability": 0.7381 + }, + { + "start": 14070.36, + "end": 14072.82, + "probability": 0.7433 + }, + { + "start": 14073.48, + "end": 14074.28, + "probability": 0.5264 + }, + { + "start": 14074.86, + "end": 14077.66, + "probability": 0.9816 + }, + { + "start": 14078.38, + "end": 14081.02, + "probability": 0.9502 + }, + { + "start": 14081.86, + "end": 14085.34, + "probability": 0.8857 + }, + { + "start": 14085.34, + "end": 14088.26, + "probability": 0.9869 + }, + { + "start": 14088.88, + "end": 14090.88, + "probability": 0.7307 + }, + { + "start": 14091.42, + "end": 14094.9, + "probability": 0.9958 + }, + { + "start": 14095.8, + "end": 14097.66, + "probability": 0.8532 + }, + { + "start": 14098.54, + "end": 14101.4, + "probability": 0.9956 + }, + { + "start": 14102.06, + "end": 14105.12, + "probability": 0.9915 + }, + { + "start": 14105.26, + "end": 14109.62, + "probability": 0.9974 + }, + { + "start": 14110.16, + "end": 14113.16, + "probability": 0.8945 + }, + { + "start": 14113.16, + "end": 14115.7, + "probability": 0.993 + }, + { + "start": 14116.14, + "end": 14116.72, + "probability": 0.8019 + }, + { + "start": 14117.36, + "end": 14118.18, + "probability": 0.7499 + }, + { + "start": 14118.54, + "end": 14121.68, + "probability": 0.9886 + }, + { + "start": 14121.94, + "end": 14122.8, + "probability": 0.9719 + }, + { + "start": 14123.16, + "end": 14123.96, + "probability": 0.9074 + }, + { + "start": 14124.0, + "end": 14125.08, + "probability": 0.948 + }, + { + "start": 14125.4, + "end": 14126.2, + "probability": 0.8863 + }, + { + "start": 14126.42, + "end": 14129.44, + "probability": 0.9189 + }, + { + "start": 14129.8, + "end": 14134.28, + "probability": 0.9876 + }, + { + "start": 14135.04, + "end": 14137.19, + "probability": 0.9792 + }, + { + "start": 14138.34, + "end": 14141.96, + "probability": 0.9824 + }, + { + "start": 14141.96, + "end": 14145.36, + "probability": 0.947 + }, + { + "start": 14146.26, + "end": 14148.04, + "probability": 0.9992 + }, + { + "start": 14148.82, + "end": 14149.23, + "probability": 0.9472 + }, + { + "start": 14150.64, + "end": 14157.42, + "probability": 0.9983 + }, + { + "start": 14157.9, + "end": 14158.66, + "probability": 0.9811 + }, + { + "start": 14158.9, + "end": 14163.34, + "probability": 0.8721 + }, + { + "start": 14164.16, + "end": 14168.16, + "probability": 0.8845 + }, + { + "start": 14169.06, + "end": 14170.02, + "probability": 0.7983 + }, + { + "start": 14170.64, + "end": 14173.32, + "probability": 0.7905 + }, + { + "start": 14174.0, + "end": 14178.88, + "probability": 0.9877 + }, + { + "start": 14179.8, + "end": 14181.3, + "probability": 0.5769 + }, + { + "start": 14181.38, + "end": 14181.6, + "probability": 0.1547 + }, + { + "start": 14181.6, + "end": 14183.4, + "probability": 0.6159 + }, + { + "start": 14183.68, + "end": 14186.72, + "probability": 0.3368 + }, + { + "start": 14186.72, + "end": 14188.54, + "probability": 0.2292 + }, + { + "start": 14190.12, + "end": 14191.14, + "probability": 0.0387 + }, + { + "start": 14196.68, + "end": 14197.88, + "probability": 0.7261 + }, + { + "start": 14199.24, + "end": 14203.52, + "probability": 0.9958 + }, + { + "start": 14204.2, + "end": 14207.02, + "probability": 0.9957 + }, + { + "start": 14208.8, + "end": 14211.4, + "probability": 0.5013 + }, + { + "start": 14211.42, + "end": 14213.28, + "probability": 0.993 + }, + { + "start": 14213.88, + "end": 14215.94, + "probability": 0.914 + }, + { + "start": 14217.04, + "end": 14222.16, + "probability": 0.9948 + }, + { + "start": 14223.22, + "end": 14226.96, + "probability": 0.9845 + }, + { + "start": 14228.4, + "end": 14230.08, + "probability": 0.652 + }, + { + "start": 14230.82, + "end": 14234.72, + "probability": 0.8035 + }, + { + "start": 14235.7, + "end": 14239.48, + "probability": 0.9962 + }, + { + "start": 14239.94, + "end": 14242.48, + "probability": 0.9951 + }, + { + "start": 14243.74, + "end": 14246.34, + "probability": 0.9975 + }, + { + "start": 14247.02, + "end": 14248.94, + "probability": 0.6906 + }, + { + "start": 14249.64, + "end": 14253.66, + "probability": 0.9976 + }, + { + "start": 14253.7, + "end": 14259.08, + "probability": 0.9839 + }, + { + "start": 14259.08, + "end": 14264.42, + "probability": 0.9925 + }, + { + "start": 14265.36, + "end": 14270.52, + "probability": 0.9868 + }, + { + "start": 14271.06, + "end": 14271.98, + "probability": 0.9122 + }, + { + "start": 14272.12, + "end": 14273.4, + "probability": 0.6902 + }, + { + "start": 14273.62, + "end": 14274.78, + "probability": 0.8846 + }, + { + "start": 14275.3, + "end": 14282.44, + "probability": 0.9155 + }, + { + "start": 14282.68, + "end": 14284.7, + "probability": 0.9762 + }, + { + "start": 14285.38, + "end": 14287.36, + "probability": 0.9797 + }, + { + "start": 14287.92, + "end": 14292.08, + "probability": 0.9927 + }, + { + "start": 14292.76, + "end": 14293.96, + "probability": 0.9453 + }, + { + "start": 14294.7, + "end": 14299.57, + "probability": 0.9813 + }, + { + "start": 14300.4, + "end": 14302.64, + "probability": 0.821 + }, + { + "start": 14303.86, + "end": 14309.34, + "probability": 0.9474 + }, + { + "start": 14309.44, + "end": 14309.8, + "probability": 0.1636 + }, + { + "start": 14310.58, + "end": 14313.04, + "probability": 0.9683 + }, + { + "start": 14313.04, + "end": 14316.68, + "probability": 0.9972 + }, + { + "start": 14317.58, + "end": 14318.62, + "probability": 0.4561 + }, + { + "start": 14319.28, + "end": 14322.04, + "probability": 0.9941 + }, + { + "start": 14322.54, + "end": 14324.44, + "probability": 0.9941 + }, + { + "start": 14324.78, + "end": 14329.4, + "probability": 0.9873 + }, + { + "start": 14329.4, + "end": 14333.52, + "probability": 0.9631 + }, + { + "start": 14333.72, + "end": 14337.34, + "probability": 0.9468 + }, + { + "start": 14337.78, + "end": 14340.58, + "probability": 0.9679 + }, + { + "start": 14341.86, + "end": 14342.32, + "probability": 0.3666 + }, + { + "start": 14342.84, + "end": 14344.32, + "probability": 0.6505 + }, + { + "start": 14344.38, + "end": 14348.68, + "probability": 0.7655 + }, + { + "start": 14349.72, + "end": 14351.82, + "probability": 0.6844 + }, + { + "start": 14353.58, + "end": 14357.9, + "probability": 0.9625 + }, + { + "start": 14358.24, + "end": 14363.02, + "probability": 0.9919 + }, + { + "start": 14363.02, + "end": 14366.04, + "probability": 0.9991 + }, + { + "start": 14366.88, + "end": 14371.72, + "probability": 0.9799 + }, + { + "start": 14372.4, + "end": 14374.38, + "probability": 0.9829 + }, + { + "start": 14375.42, + "end": 14376.32, + "probability": 0.9077 + }, + { + "start": 14376.78, + "end": 14378.14, + "probability": 0.9829 + }, + { + "start": 14378.42, + "end": 14381.3, + "probability": 0.2466 + }, + { + "start": 14381.3, + "end": 14381.9, + "probability": 0.0864 + }, + { + "start": 14383.4, + "end": 14388.12, + "probability": 0.9915 + }, + { + "start": 14388.8, + "end": 14393.56, + "probability": 0.9968 + }, + { + "start": 14394.42, + "end": 14395.96, + "probability": 0.6841 + }, + { + "start": 14397.5, + "end": 14399.48, + "probability": 0.7119 + }, + { + "start": 14400.42, + "end": 14401.48, + "probability": 0.8658 + }, + { + "start": 14402.0, + "end": 14403.94, + "probability": 0.9609 + }, + { + "start": 14404.08, + "end": 14406.38, + "probability": 0.9962 + }, + { + "start": 14407.18, + "end": 14408.6, + "probability": 0.5399 + }, + { + "start": 14409.34, + "end": 14410.52, + "probability": 0.9235 + }, + { + "start": 14411.54, + "end": 14417.16, + "probability": 0.9255 + }, + { + "start": 14417.96, + "end": 14421.62, + "probability": 0.9512 + }, + { + "start": 14422.12, + "end": 14428.36, + "probability": 0.9751 + }, + { + "start": 14428.74, + "end": 14429.52, + "probability": 0.7957 + }, + { + "start": 14431.08, + "end": 14436.04, + "probability": 0.9623 + }, + { + "start": 14436.18, + "end": 14437.42, + "probability": 0.9226 + }, + { + "start": 14437.8, + "end": 14439.46, + "probability": 0.7055 + }, + { + "start": 14440.74, + "end": 14441.7, + "probability": 0.8199 + }, + { + "start": 14442.52, + "end": 14444.53, + "probability": 0.9224 + }, + { + "start": 14445.16, + "end": 14450.26, + "probability": 0.9887 + }, + { + "start": 14450.66, + "end": 14451.14, + "probability": 0.6897 + }, + { + "start": 14451.7, + "end": 14453.52, + "probability": 0.6605 + }, + { + "start": 14453.7, + "end": 14455.56, + "probability": 0.6775 + }, + { + "start": 14455.68, + "end": 14457.08, + "probability": 0.8457 + }, + { + "start": 14457.8, + "end": 14459.08, + "probability": 0.5453 + }, + { + "start": 14459.54, + "end": 14461.1, + "probability": 0.8204 + }, + { + "start": 14461.74, + "end": 14464.38, + "probability": 0.7008 + }, + { + "start": 14467.16, + "end": 14474.94, + "probability": 0.984 + }, + { + "start": 14476.12, + "end": 14479.72, + "probability": 0.1089 + }, + { + "start": 14479.96, + "end": 14480.69, + "probability": 0.8652 + }, + { + "start": 14481.24, + "end": 14482.66, + "probability": 0.9788 + }, + { + "start": 14483.32, + "end": 14484.72, + "probability": 0.7173 + }, + { + "start": 14485.56, + "end": 14488.44, + "probability": 0.5259 + }, + { + "start": 14489.98, + "end": 14490.94, + "probability": 0.8065 + }, + { + "start": 14491.0, + "end": 14491.36, + "probability": 0.9408 + }, + { + "start": 14491.54, + "end": 14496.58, + "probability": 0.9492 + }, + { + "start": 14496.84, + "end": 14498.34, + "probability": 0.9855 + }, + { + "start": 14498.44, + "end": 14499.6, + "probability": 0.7314 + }, + { + "start": 14500.0, + "end": 14503.74, + "probability": 0.9733 + }, + { + "start": 14507.18, + "end": 14508.64, + "probability": 0.9294 + }, + { + "start": 14509.4, + "end": 14510.46, + "probability": 0.784 + }, + { + "start": 14510.68, + "end": 14511.82, + "probability": 0.9318 + }, + { + "start": 14512.04, + "end": 14512.81, + "probability": 0.9469 + }, + { + "start": 14513.5, + "end": 14514.4, + "probability": 0.7908 + }, + { + "start": 14515.44, + "end": 14519.28, + "probability": 0.937 + }, + { + "start": 14519.56, + "end": 14520.83, + "probability": 0.7956 + }, + { + "start": 14521.26, + "end": 14523.36, + "probability": 0.8936 + }, + { + "start": 14523.52, + "end": 14524.56, + "probability": 0.8699 + }, + { + "start": 14524.62, + "end": 14526.62, + "probability": 0.9969 + }, + { + "start": 14527.28, + "end": 14527.96, + "probability": 0.8963 + }, + { + "start": 14528.16, + "end": 14530.0, + "probability": 0.9919 + }, + { + "start": 14530.1, + "end": 14533.4, + "probability": 0.9941 + }, + { + "start": 14533.8, + "end": 14535.7, + "probability": 0.941 + }, + { + "start": 14536.08, + "end": 14536.9, + "probability": 0.6961 + }, + { + "start": 14537.1, + "end": 14538.02, + "probability": 0.7822 + }, + { + "start": 14538.78, + "end": 14540.98, + "probability": 0.9661 + }, + { + "start": 14541.32, + "end": 14544.16, + "probability": 0.9944 + }, + { + "start": 14544.42, + "end": 14545.06, + "probability": 0.9856 + }, + { + "start": 14545.46, + "end": 14547.0, + "probability": 0.994 + }, + { + "start": 14547.3, + "end": 14549.68, + "probability": 0.989 + }, + { + "start": 14549.76, + "end": 14551.76, + "probability": 0.8358 + }, + { + "start": 14552.08, + "end": 14554.52, + "probability": 0.9832 + }, + { + "start": 14554.76, + "end": 14557.16, + "probability": 0.9958 + }, + { + "start": 14557.16, + "end": 14561.42, + "probability": 0.96 + }, + { + "start": 14561.7, + "end": 14564.98, + "probability": 0.9477 + }, + { + "start": 14565.52, + "end": 14566.58, + "probability": 0.6665 + }, + { + "start": 14566.76, + "end": 14570.38, + "probability": 0.9951 + }, + { + "start": 14570.62, + "end": 14572.4, + "probability": 0.9165 + }, + { + "start": 14572.86, + "end": 14574.58, + "probability": 0.7532 + }, + { + "start": 14574.76, + "end": 14575.22, + "probability": 0.597 + }, + { + "start": 14576.08, + "end": 14578.8, + "probability": 0.9576 + }, + { + "start": 14578.82, + "end": 14581.84, + "probability": 0.9873 + }, + { + "start": 14582.86, + "end": 14583.54, + "probability": 0.8608 + }, + { + "start": 14584.08, + "end": 14588.2, + "probability": 0.8786 + }, + { + "start": 14589.46, + "end": 14594.58, + "probability": 0.9436 + }, + { + "start": 14594.98, + "end": 14595.46, + "probability": 0.9272 + }, + { + "start": 14596.04, + "end": 14599.4, + "probability": 0.9974 + }, + { + "start": 14599.76, + "end": 14604.16, + "probability": 0.9604 + }, + { + "start": 14604.16, + "end": 14609.62, + "probability": 0.9958 + }, + { + "start": 14610.56, + "end": 14612.64, + "probability": 0.9914 + }, + { + "start": 14612.7, + "end": 14613.62, + "probability": 0.9853 + }, + { + "start": 14614.02, + "end": 14615.3, + "probability": 0.7917 + }, + { + "start": 14615.86, + "end": 14618.68, + "probability": 0.9673 + }, + { + "start": 14619.4, + "end": 14621.46, + "probability": 0.9945 + }, + { + "start": 14622.1, + "end": 14623.2, + "probability": 0.9783 + }, + { + "start": 14623.36, + "end": 14623.8, + "probability": 0.5352 + }, + { + "start": 14624.1, + "end": 14626.24, + "probability": 0.981 + }, + { + "start": 14628.42, + "end": 14629.72, + "probability": 0.9141 + }, + { + "start": 14630.14, + "end": 14633.34, + "probability": 0.9993 + }, + { + "start": 14633.38, + "end": 14635.4, + "probability": 0.9825 + }, + { + "start": 14635.98, + "end": 14636.38, + "probability": 0.4251 + }, + { + "start": 14636.48, + "end": 14641.24, + "probability": 0.9702 + }, + { + "start": 14641.96, + "end": 14648.46, + "probability": 0.9921 + }, + { + "start": 14648.84, + "end": 14652.1, + "probability": 0.9865 + }, + { + "start": 14652.6, + "end": 14653.54, + "probability": 0.6379 + }, + { + "start": 14653.84, + "end": 14655.02, + "probability": 0.8518 + }, + { + "start": 14655.72, + "end": 14656.1, + "probability": 0.9781 + }, + { + "start": 14657.0, + "end": 14660.68, + "probability": 0.7533 + }, + { + "start": 14661.45, + "end": 14663.42, + "probability": 0.5006 + }, + { + "start": 14664.22, + "end": 14669.25, + "probability": 0.998 + }, + { + "start": 14669.98, + "end": 14670.58, + "probability": 0.7866 + }, + { + "start": 14670.68, + "end": 14671.78, + "probability": 0.9417 + }, + { + "start": 14672.08, + "end": 14672.76, + "probability": 0.9792 + }, + { + "start": 14673.14, + "end": 14675.94, + "probability": 0.9879 + }, + { + "start": 14675.94, + "end": 14678.92, + "probability": 0.9954 + }, + { + "start": 14679.58, + "end": 14682.82, + "probability": 0.9763 + }, + { + "start": 14683.12, + "end": 14685.0, + "probability": 0.9924 + }, + { + "start": 14685.2, + "end": 14686.28, + "probability": 0.9748 + }, + { + "start": 14686.74, + "end": 14692.26, + "probability": 0.991 + }, + { + "start": 14692.34, + "end": 14693.18, + "probability": 0.9758 + }, + { + "start": 14693.7, + "end": 14696.52, + "probability": 0.9714 + }, + { + "start": 14697.22, + "end": 14697.62, + "probability": 0.5208 + }, + { + "start": 14697.72, + "end": 14702.26, + "probability": 0.9602 + }, + { + "start": 14702.26, + "end": 14704.98, + "probability": 0.9984 + }, + { + "start": 14705.42, + "end": 14705.88, + "probability": 0.377 + }, + { + "start": 14705.96, + "end": 14712.64, + "probability": 0.9846 + }, + { + "start": 14713.52, + "end": 14718.82, + "probability": 0.9733 + }, + { + "start": 14719.02, + "end": 14719.56, + "probability": 0.502 + }, + { + "start": 14719.58, + "end": 14720.68, + "probability": 0.9557 + }, + { + "start": 14721.8, + "end": 14723.7, + "probability": 0.9785 + }, + { + "start": 14724.82, + "end": 14728.56, + "probability": 0.9935 + }, + { + "start": 14728.94, + "end": 14731.4, + "probability": 0.999 + }, + { + "start": 14731.76, + "end": 14733.47, + "probability": 0.9972 + }, + { + "start": 14734.1, + "end": 14734.73, + "probability": 0.7637 + }, + { + "start": 14734.92, + "end": 14735.08, + "probability": 0.8662 + }, + { + "start": 14735.46, + "end": 14738.6, + "probability": 0.9147 + }, + { + "start": 14739.46, + "end": 14744.8, + "probability": 0.7876 + }, + { + "start": 14745.34, + "end": 14748.86, + "probability": 0.9675 + }, + { + "start": 14748.92, + "end": 14752.56, + "probability": 0.9838 + }, + { + "start": 14752.74, + "end": 14757.84, + "probability": 0.8717 + }, + { + "start": 14758.12, + "end": 14759.28, + "probability": 0.7704 + }, + { + "start": 14759.44, + "end": 14764.57, + "probability": 0.9933 + }, + { + "start": 14765.92, + "end": 14770.16, + "probability": 0.9827 + }, + { + "start": 14770.54, + "end": 14770.99, + "probability": 0.5812 + }, + { + "start": 14771.48, + "end": 14772.08, + "probability": 0.9147 + }, + { + "start": 14772.26, + "end": 14773.92, + "probability": 0.9481 + }, + { + "start": 14774.3, + "end": 14775.0, + "probability": 0.5445 + }, + { + "start": 14775.14, + "end": 14778.42, + "probability": 0.5371 + }, + { + "start": 14778.64, + "end": 14779.84, + "probability": 0.793 + }, + { + "start": 14780.22, + "end": 14782.7, + "probability": 0.9772 + }, + { + "start": 14782.98, + "end": 14784.34, + "probability": 0.9629 + }, + { + "start": 14784.84, + "end": 14789.28, + "probability": 0.9035 + }, + { + "start": 14789.88, + "end": 14792.08, + "probability": 0.7227 + }, + { + "start": 14792.66, + "end": 14793.24, + "probability": 0.4858 + }, + { + "start": 14793.32, + "end": 14795.22, + "probability": 0.9901 + }, + { + "start": 14795.3, + "end": 14796.78, + "probability": 0.8716 + }, + { + "start": 14796.94, + "end": 14799.42, + "probability": 0.9985 + }, + { + "start": 14799.42, + "end": 14803.2, + "probability": 0.9908 + }, + { + "start": 14806.47, + "end": 14807.42, + "probability": 0.0006 + }, + { + "start": 14807.42, + "end": 14808.22, + "probability": 0.3344 + }, + { + "start": 14808.24, + "end": 14809.32, + "probability": 0.8546 + }, + { + "start": 14809.54, + "end": 14813.14, + "probability": 0.9885 + }, + { + "start": 14813.18, + "end": 14814.28, + "probability": 0.8928 + }, + { + "start": 14814.72, + "end": 14816.56, + "probability": 0.974 + }, + { + "start": 14816.66, + "end": 14818.02, + "probability": 0.9679 + }, + { + "start": 14818.44, + "end": 14820.36, + "probability": 0.9893 + }, + { + "start": 14820.68, + "end": 14823.96, + "probability": 0.9586 + }, + { + "start": 14824.1, + "end": 14825.62, + "probability": 0.9922 + }, + { + "start": 14826.04, + "end": 14828.74, + "probability": 0.9672 + }, + { + "start": 14828.86, + "end": 14829.32, + "probability": 0.5796 + }, + { + "start": 14829.52, + "end": 14832.43, + "probability": 0.9877 + }, + { + "start": 14833.2, + "end": 14836.46, + "probability": 0.9644 + }, + { + "start": 14836.64, + "end": 14839.36, + "probability": 0.6889 + }, + { + "start": 14839.68, + "end": 14840.1, + "probability": 0.7179 + }, + { + "start": 14840.12, + "end": 14845.11, + "probability": 0.9958 + }, + { + "start": 14846.62, + "end": 14846.92, + "probability": 0.806 + }, + { + "start": 14846.98, + "end": 14847.7, + "probability": 0.817 + }, + { + "start": 14848.4, + "end": 14854.26, + "probability": 0.9835 + }, + { + "start": 14854.78, + "end": 14855.68, + "probability": 0.9937 + }, + { + "start": 14855.96, + "end": 14860.78, + "probability": 0.9973 + }, + { + "start": 14861.2, + "end": 14862.78, + "probability": 0.8007 + }, + { + "start": 14862.9, + "end": 14864.74, + "probability": 0.8825 + }, + { + "start": 14865.66, + "end": 14870.14, + "probability": 0.9778 + }, + { + "start": 14870.14, + "end": 14873.02, + "probability": 0.936 + }, + { + "start": 14873.32, + "end": 14873.92, + "probability": 0.9228 + }, + { + "start": 14875.02, + "end": 14880.58, + "probability": 0.9933 + }, + { + "start": 14880.76, + "end": 14884.0, + "probability": 0.9946 + }, + { + "start": 14885.18, + "end": 14885.46, + "probability": 0.9099 + }, + { + "start": 14886.72, + "end": 14887.58, + "probability": 0.936 + }, + { + "start": 14889.06, + "end": 14890.56, + "probability": 0.8311 + }, + { + "start": 14890.9, + "end": 14892.24, + "probability": 0.9542 + }, + { + "start": 14892.36, + "end": 14893.91, + "probability": 0.9878 + }, + { + "start": 14894.48, + "end": 14898.46, + "probability": 0.994 + }, + { + "start": 14898.54, + "end": 14902.98, + "probability": 0.9794 + }, + { + "start": 14903.96, + "end": 14905.74, + "probability": 0.9934 + }, + { + "start": 14905.82, + "end": 14906.46, + "probability": 0.3702 + }, + { + "start": 14906.52, + "end": 14911.42, + "probability": 0.988 + }, + { + "start": 14911.6, + "end": 14913.68, + "probability": 0.8742 + }, + { + "start": 14914.42, + "end": 14921.66, + "probability": 0.9965 + }, + { + "start": 14922.08, + "end": 14927.7, + "probability": 0.9983 + }, + { + "start": 14927.88, + "end": 14930.26, + "probability": 0.9967 + }, + { + "start": 14930.38, + "end": 14931.14, + "probability": 0.9917 + }, + { + "start": 14932.66, + "end": 14937.22, + "probability": 0.8296 + }, + { + "start": 14937.62, + "end": 14944.04, + "probability": 0.9631 + }, + { + "start": 14944.96, + "end": 14950.34, + "probability": 0.9343 + }, + { + "start": 14950.6, + "end": 14953.56, + "probability": 0.9844 + }, + { + "start": 14953.88, + "end": 14954.52, + "probability": 0.6513 + }, + { + "start": 14954.9, + "end": 14955.64, + "probability": 0.7703 + }, + { + "start": 14956.48, + "end": 14959.12, + "probability": 0.9917 + }, + { + "start": 14959.86, + "end": 14960.38, + "probability": 0.9019 + }, + { + "start": 14961.04, + "end": 14963.92, + "probability": 0.9927 + }, + { + "start": 14963.92, + "end": 14966.0, + "probability": 0.9849 + }, + { + "start": 14966.14, + "end": 14968.46, + "probability": 0.8389 + }, + { + "start": 14968.9, + "end": 14972.68, + "probability": 0.9973 + }, + { + "start": 14972.98, + "end": 14974.18, + "probability": 0.7106 + }, + { + "start": 14974.38, + "end": 14974.76, + "probability": 0.8899 + }, + { + "start": 14974.86, + "end": 14975.5, + "probability": 0.8114 + }, + { + "start": 14976.02, + "end": 14979.68, + "probability": 0.8909 + }, + { + "start": 14980.44, + "end": 14982.92, + "probability": 0.9817 + }, + { + "start": 14983.46, + "end": 14988.54, + "probability": 0.9153 + }, + { + "start": 14988.54, + "end": 14992.3, + "probability": 0.9896 + }, + { + "start": 14992.96, + "end": 14996.86, + "probability": 0.9945 + }, + { + "start": 14996.86, + "end": 14999.21, + "probability": 0.9987 + }, + { + "start": 15000.41, + "end": 15005.38, + "probability": 0.9939 + }, + { + "start": 15005.38, + "end": 15010.24, + "probability": 0.9827 + }, + { + "start": 15010.96, + "end": 15016.66, + "probability": 0.7966 + }, + { + "start": 15017.4, + "end": 15019.8, + "probability": 0.7958 + }, + { + "start": 15020.46, + "end": 15021.84, + "probability": 0.663 + }, + { + "start": 15022.18, + "end": 15024.38, + "probability": 0.986 + }, + { + "start": 15024.8, + "end": 15026.87, + "probability": 0.9795 + }, + { + "start": 15027.3, + "end": 15030.46, + "probability": 0.9355 + }, + { + "start": 15030.7, + "end": 15031.88, + "probability": 0.8432 + }, + { + "start": 15033.24, + "end": 15036.34, + "probability": 0.9717 + }, + { + "start": 15036.54, + "end": 15038.55, + "probability": 0.923 + }, + { + "start": 15039.06, + "end": 15041.78, + "probability": 0.9529 + }, + { + "start": 15041.82, + "end": 15044.74, + "probability": 0.9941 + }, + { + "start": 15045.64, + "end": 15048.84, + "probability": 0.9938 + }, + { + "start": 15048.91, + "end": 15055.5, + "probability": 0.9977 + }, + { + "start": 15055.74, + "end": 15059.2, + "probability": 0.9964 + }, + { + "start": 15059.52, + "end": 15063.26, + "probability": 0.9237 + }, + { + "start": 15064.24, + "end": 15069.28, + "probability": 0.9874 + }, + { + "start": 15069.74, + "end": 15071.5, + "probability": 0.9733 + }, + { + "start": 15073.74, + "end": 15076.5, + "probability": 0.7453 + }, + { + "start": 15077.58, + "end": 15082.5, + "probability": 0.8042 + }, + { + "start": 15083.58, + "end": 15085.06, + "probability": 0.5489 + }, + { + "start": 15086.26, + "end": 15088.48, + "probability": 0.8914 + }, + { + "start": 15088.56, + "end": 15089.04, + "probability": 0.6096 + }, + { + "start": 15089.04, + "end": 15090.6, + "probability": 0.9539 + }, + { + "start": 15091.66, + "end": 15095.94, + "probability": 0.9843 + }, + { + "start": 15096.72, + "end": 15097.32, + "probability": 0.6044 + }, + { + "start": 15098.2, + "end": 15101.28, + "probability": 0.7329 + }, + { + "start": 15102.54, + "end": 15106.32, + "probability": 0.9304 + }, + { + "start": 15106.36, + "end": 15110.88, + "probability": 0.8288 + }, + { + "start": 15111.26, + "end": 15113.56, + "probability": 0.9969 + }, + { + "start": 15114.64, + "end": 15119.24, + "probability": 0.9976 + }, + { + "start": 15119.65, + "end": 15123.08, + "probability": 0.9916 + }, + { + "start": 15123.28, + "end": 15124.7, + "probability": 0.6775 + }, + { + "start": 15124.8, + "end": 15126.44, + "probability": 0.9959 + }, + { + "start": 15126.52, + "end": 15129.88, + "probability": 0.7361 + }, + { + "start": 15130.62, + "end": 15131.76, + "probability": 0.8969 + }, + { + "start": 15132.22, + "end": 15135.02, + "probability": 0.7101 + }, + { + "start": 15135.2, + "end": 15137.14, + "probability": 0.9523 + }, + { + "start": 15139.58, + "end": 15146.84, + "probability": 0.9958 + }, + { + "start": 15146.84, + "end": 15149.66, + "probability": 0.9985 + }, + { + "start": 15149.84, + "end": 15152.1, + "probability": 0.9689 + }, + { + "start": 15152.92, + "end": 15156.24, + "probability": 0.9814 + }, + { + "start": 15156.48, + "end": 15157.14, + "probability": 0.7003 + }, + { + "start": 15157.24, + "end": 15160.8, + "probability": 0.9393 + }, + { + "start": 15161.3, + "end": 15165.66, + "probability": 0.985 + }, + { + "start": 15166.08, + "end": 15168.96, + "probability": 0.9261 + }, + { + "start": 15169.54, + "end": 15173.84, + "probability": 0.6666 + }, + { + "start": 15174.7, + "end": 15179.2, + "probability": 0.9703 + }, + { + "start": 15179.78, + "end": 15183.76, + "probability": 0.9944 + }, + { + "start": 15184.3, + "end": 15185.64, + "probability": 0.1132 + }, + { + "start": 15189.3, + "end": 15193.5, + "probability": 0.8306 + }, + { + "start": 15193.58, + "end": 15193.74, + "probability": 0.3149 + }, + { + "start": 15193.74, + "end": 15195.68, + "probability": 0.9937 + }, + { + "start": 15195.9, + "end": 15196.82, + "probability": 0.6453 + }, + { + "start": 15196.96, + "end": 15197.84, + "probability": 0.7009 + }, + { + "start": 15198.02, + "end": 15201.54, + "probability": 0.9912 + }, + { + "start": 15201.82, + "end": 15202.52, + "probability": 0.963 + }, + { + "start": 15205.87, + "end": 15206.5, + "probability": 0.0422 + }, + { + "start": 15206.5, + "end": 15208.66, + "probability": 0.7134 + }, + { + "start": 15208.82, + "end": 15210.22, + "probability": 0.8529 + }, + { + "start": 15210.38, + "end": 15211.56, + "probability": 0.9786 + }, + { + "start": 15212.06, + "end": 15212.66, + "probability": 0.9467 + }, + { + "start": 15213.0, + "end": 15213.7, + "probability": 0.9701 + }, + { + "start": 15214.06, + "end": 15215.66, + "probability": 0.9843 + }, + { + "start": 15216.04, + "end": 15220.96, + "probability": 0.9973 + }, + { + "start": 15221.34, + "end": 15223.82, + "probability": 0.9946 + }, + { + "start": 15223.82, + "end": 15226.9, + "probability": 0.8769 + }, + { + "start": 15227.04, + "end": 15228.84, + "probability": 0.8571 + }, + { + "start": 15229.16, + "end": 15232.36, + "probability": 0.9816 + }, + { + "start": 15232.36, + "end": 15236.36, + "probability": 0.983 + }, + { + "start": 15236.84, + "end": 15238.49, + "probability": 0.9954 + }, + { + "start": 15239.5, + "end": 15242.92, + "probability": 0.8592 + }, + { + "start": 15243.94, + "end": 15248.0, + "probability": 0.886 + }, + { + "start": 15248.58, + "end": 15253.42, + "probability": 0.9584 + }, + { + "start": 15255.82, + "end": 15258.36, + "probability": 0.701 + }, + { + "start": 15259.14, + "end": 15260.0, + "probability": 0.5575 + }, + { + "start": 15260.36, + "end": 15261.98, + "probability": 0.9773 + }, + { + "start": 15263.04, + "end": 15263.88, + "probability": 0.9671 + }, + { + "start": 15264.12, + "end": 15266.1, + "probability": 0.7637 + }, + { + "start": 15266.14, + "end": 15267.26, + "probability": 0.9246 + }, + { + "start": 15267.74, + "end": 15269.74, + "probability": 0.9188 + }, + { + "start": 15271.18, + "end": 15271.18, + "probability": 0.0207 + }, + { + "start": 15272.92, + "end": 15275.4, + "probability": 0.0985 + }, + { + "start": 15275.94, + "end": 15277.78, + "probability": 0.3263 + }, + { + "start": 15277.96, + "end": 15279.03, + "probability": 0.0448 + }, + { + "start": 15279.64, + "end": 15281.52, + "probability": 0.1043 + }, + { + "start": 15281.8, + "end": 15282.64, + "probability": 0.1333 + }, + { + "start": 15282.66, + "end": 15283.72, + "probability": 0.2198 + }, + { + "start": 15283.92, + "end": 15285.57, + "probability": 0.1974 + }, + { + "start": 15285.82, + "end": 15287.3, + "probability": 0.2648 + }, + { + "start": 15287.82, + "end": 15292.82, + "probability": 0.3469 + }, + { + "start": 15293.76, + "end": 15295.86, + "probability": 0.3571 + }, + { + "start": 15295.98, + "end": 15298.06, + "probability": 0.0552 + }, + { + "start": 15298.06, + "end": 15300.38, + "probability": 0.7508 + }, + { + "start": 15300.54, + "end": 15302.44, + "probability": 0.9131 + }, + { + "start": 15302.5, + "end": 15304.92, + "probability": 0.9557 + }, + { + "start": 15305.12, + "end": 15306.12, + "probability": 0.8022 + }, + { + "start": 15306.72, + "end": 15308.4, + "probability": 0.5262 + }, + { + "start": 15308.54, + "end": 15311.74, + "probability": 0.2893 + }, + { + "start": 15311.74, + "end": 15312.74, + "probability": 0.2255 + }, + { + "start": 15313.64, + "end": 15317.6, + "probability": 0.4295 + }, + { + "start": 15318.22, + "end": 15327.72, + "probability": 0.991 + }, + { + "start": 15328.36, + "end": 15331.06, + "probability": 0.9893 + }, + { + "start": 15331.5, + "end": 15332.64, + "probability": 0.8305 + }, + { + "start": 15333.8, + "end": 15336.94, + "probability": 0.9971 + }, + { + "start": 15337.36, + "end": 15338.4, + "probability": 0.9585 + }, + { + "start": 15338.68, + "end": 15339.62, + "probability": 0.9429 + }, + { + "start": 15339.74, + "end": 15340.37, + "probability": 0.8667 + }, + { + "start": 15341.02, + "end": 15345.02, + "probability": 0.9944 + }, + { + "start": 15345.14, + "end": 15346.74, + "probability": 0.9964 + }, + { + "start": 15347.2, + "end": 15351.04, + "probability": 0.9663 + }, + { + "start": 15351.08, + "end": 15355.26, + "probability": 0.9946 + }, + { + "start": 15356.04, + "end": 15359.52, + "probability": 0.9261 + }, + { + "start": 15360.38, + "end": 15361.42, + "probability": 0.8158 + }, + { + "start": 15361.48, + "end": 15365.58, + "probability": 0.9286 + }, + { + "start": 15365.76, + "end": 15367.5, + "probability": 0.987 + }, + { + "start": 15367.54, + "end": 15371.42, + "probability": 0.9938 + }, + { + "start": 15372.56, + "end": 15374.52, + "probability": 0.766 + }, + { + "start": 15375.83, + "end": 15378.34, + "probability": 0.9899 + }, + { + "start": 15378.5, + "end": 15378.72, + "probability": 0.2536 + }, + { + "start": 15378.76, + "end": 15380.86, + "probability": 0.7034 + }, + { + "start": 15381.04, + "end": 15383.86, + "probability": 0.9414 + }, + { + "start": 15384.42, + "end": 15386.98, + "probability": 0.8735 + }, + { + "start": 15387.12, + "end": 15390.02, + "probability": 0.8177 + }, + { + "start": 15390.26, + "end": 15390.84, + "probability": 0.8591 + }, + { + "start": 15391.58, + "end": 15393.98, + "probability": 0.5537 + }, + { + "start": 15394.5, + "end": 15395.08, + "probability": 0.8524 + }, + { + "start": 15395.52, + "end": 15398.18, + "probability": 0.9504 + }, + { + "start": 15398.94, + "end": 15401.52, + "probability": 0.9324 + }, + { + "start": 15402.28, + "end": 15405.1, + "probability": 0.9326 + }, + { + "start": 15405.98, + "end": 15406.92, + "probability": 0.927 + }, + { + "start": 15407.52, + "end": 15409.14, + "probability": 0.9911 + }, + { + "start": 15410.42, + "end": 15411.34, + "probability": 0.6212 + }, + { + "start": 15412.22, + "end": 15413.88, + "probability": 0.9543 + }, + { + "start": 15442.94, + "end": 15442.98, + "probability": 0.6451 + }, + { + "start": 15442.98, + "end": 15445.16, + "probability": 0.6787 + }, + { + "start": 15445.38, + "end": 15450.82, + "probability": 0.9849 + }, + { + "start": 15451.98, + "end": 15453.24, + "probability": 0.6663 + }, + { + "start": 15453.76, + "end": 15455.08, + "probability": 0.3589 + }, + { + "start": 15458.08, + "end": 15459.84, + "probability": 0.8144 + }, + { + "start": 15464.82, + "end": 15467.62, + "probability": 0.9512 + }, + { + "start": 15469.4, + "end": 15472.04, + "probability": 0.7085 + }, + { + "start": 15474.02, + "end": 15478.86, + "probability": 0.9821 + }, + { + "start": 15480.6, + "end": 15481.55, + "probability": 0.7769 + }, + { + "start": 15483.12, + "end": 15487.4, + "probability": 0.7498 + }, + { + "start": 15489.48, + "end": 15491.69, + "probability": 0.9985 + }, + { + "start": 15494.54, + "end": 15496.16, + "probability": 0.8278 + }, + { + "start": 15497.34, + "end": 15498.38, + "probability": 0.926 + }, + { + "start": 15499.66, + "end": 15500.78, + "probability": 0.8905 + }, + { + "start": 15502.88, + "end": 15505.68, + "probability": 0.9653 + }, + { + "start": 15507.04, + "end": 15511.34, + "probability": 0.9913 + }, + { + "start": 15512.28, + "end": 15515.48, + "probability": 0.9225 + }, + { + "start": 15517.44, + "end": 15518.54, + "probability": 0.7459 + }, + { + "start": 15518.82, + "end": 15520.02, + "probability": 0.555 + }, + { + "start": 15520.2, + "end": 15520.78, + "probability": 0.8366 + }, + { + "start": 15520.98, + "end": 15527.84, + "probability": 0.9162 + }, + { + "start": 15529.44, + "end": 15530.02, + "probability": 0.2554 + }, + { + "start": 15530.24, + "end": 15533.14, + "probability": 0.9746 + }, + { + "start": 15534.12, + "end": 15538.56, + "probability": 0.7808 + }, + { + "start": 15539.46, + "end": 15552.64, + "probability": 0.9626 + }, + { + "start": 15553.28, + "end": 15555.88, + "probability": 0.9894 + }, + { + "start": 15556.0, + "end": 15557.12, + "probability": 0.9412 + }, + { + "start": 15557.66, + "end": 15560.48, + "probability": 0.7335 + }, + { + "start": 15560.5, + "end": 15561.82, + "probability": 0.9567 + }, + { + "start": 15561.88, + "end": 15563.16, + "probability": 0.9033 + }, + { + "start": 15564.0, + "end": 15566.24, + "probability": 0.8958 + }, + { + "start": 15566.24, + "end": 15570.5, + "probability": 0.865 + }, + { + "start": 15571.12, + "end": 15572.58, + "probability": 0.7623 + }, + { + "start": 15573.64, + "end": 15575.62, + "probability": 0.9968 + }, + { + "start": 15576.36, + "end": 15579.8, + "probability": 0.7577 + }, + { + "start": 15579.8, + "end": 15581.9, + "probability": 0.9884 + }, + { + "start": 15583.06, + "end": 15585.66, + "probability": 0.9781 + }, + { + "start": 15586.72, + "end": 15590.28, + "probability": 0.9633 + }, + { + "start": 15591.82, + "end": 15594.54, + "probability": 0.9697 + }, + { + "start": 15595.32, + "end": 15598.0, + "probability": 0.9739 + }, + { + "start": 15599.32, + "end": 15602.06, + "probability": 0.8387 + }, + { + "start": 15602.72, + "end": 15604.24, + "probability": 0.6846 + }, + { + "start": 15604.44, + "end": 15606.52, + "probability": 0.8187 + }, + { + "start": 15606.6, + "end": 15607.3, + "probability": 0.8103 + }, + { + "start": 15608.96, + "end": 15614.94, + "probability": 0.9431 + }, + { + "start": 15615.8, + "end": 15616.86, + "probability": 0.7495 + }, + { + "start": 15617.38, + "end": 15618.52, + "probability": 0.9195 + }, + { + "start": 15619.42, + "end": 15621.08, + "probability": 0.9607 + }, + { + "start": 15622.22, + "end": 15623.42, + "probability": 0.9471 + }, + { + "start": 15624.34, + "end": 15628.68, + "probability": 0.98 + }, + { + "start": 15630.24, + "end": 15631.88, + "probability": 0.9731 + }, + { + "start": 15633.44, + "end": 15634.72, + "probability": 0.9311 + }, + { + "start": 15635.84, + "end": 15636.44, + "probability": 0.0401 + }, + { + "start": 15637.52, + "end": 15641.62, + "probability": 0.8016 + }, + { + "start": 15642.44, + "end": 15643.98, + "probability": 0.9062 + }, + { + "start": 15645.34, + "end": 15646.3, + "probability": 0.9891 + }, + { + "start": 15646.58, + "end": 15654.7, + "probability": 0.9766 + }, + { + "start": 15654.7, + "end": 15658.48, + "probability": 0.9546 + }, + { + "start": 15659.34, + "end": 15661.84, + "probability": 0.9587 + }, + { + "start": 15662.6, + "end": 15665.36, + "probability": 0.9242 + }, + { + "start": 15667.02, + "end": 15667.72, + "probability": 0.9751 + }, + { + "start": 15668.52, + "end": 15672.46, + "probability": 0.9821 + }, + { + "start": 15673.22, + "end": 15673.66, + "probability": 0.8348 + }, + { + "start": 15675.36, + "end": 15676.94, + "probability": 0.9956 + }, + { + "start": 15677.04, + "end": 15679.1, + "probability": 0.9985 + }, + { + "start": 15679.8, + "end": 15682.6, + "probability": 0.9798 + }, + { + "start": 15683.5, + "end": 15686.14, + "probability": 0.9124 + }, + { + "start": 15687.1, + "end": 15691.6, + "probability": 0.9368 + }, + { + "start": 15691.74, + "end": 15693.14, + "probability": 0.8185 + }, + { + "start": 15693.16, + "end": 15694.32, + "probability": 0.9366 + }, + { + "start": 15694.4, + "end": 15695.32, + "probability": 0.9026 + }, + { + "start": 15695.88, + "end": 15696.76, + "probability": 0.6894 + }, + { + "start": 15697.56, + "end": 15701.44, + "probability": 0.879 + }, + { + "start": 15702.14, + "end": 15705.92, + "probability": 0.9834 + }, + { + "start": 15706.66, + "end": 15707.0, + "probability": 0.6906 + }, + { + "start": 15707.6, + "end": 15712.38, + "probability": 0.9898 + }, + { + "start": 15713.06, + "end": 15713.78, + "probability": 0.5373 + }, + { + "start": 15714.0, + "end": 15715.22, + "probability": 0.9472 + }, + { + "start": 15715.36, + "end": 15719.26, + "probability": 0.9442 + }, + { + "start": 15721.0, + "end": 15722.72, + "probability": 0.9459 + }, + { + "start": 15722.76, + "end": 15725.02, + "probability": 0.9755 + }, + { + "start": 15725.08, + "end": 15725.64, + "probability": 0.9651 + }, + { + "start": 15725.72, + "end": 15726.54, + "probability": 0.9316 + }, + { + "start": 15727.0, + "end": 15728.42, + "probability": 0.9473 + }, + { + "start": 15728.98, + "end": 15732.34, + "probability": 0.9909 + }, + { + "start": 15732.8, + "end": 15733.98, + "probability": 0.7188 + }, + { + "start": 15734.16, + "end": 15734.46, + "probability": 0.5921 + }, + { + "start": 15734.98, + "end": 15736.88, + "probability": 0.9287 + }, + { + "start": 15737.16, + "end": 15739.3, + "probability": 0.8509 + }, + { + "start": 15739.36, + "end": 15740.14, + "probability": 0.9775 + }, + { + "start": 15740.66, + "end": 15741.94, + "probability": 0.9027 + }, + { + "start": 15742.3, + "end": 15745.16, + "probability": 0.98 + }, + { + "start": 15745.86, + "end": 15747.96, + "probability": 0.9937 + }, + { + "start": 15748.02, + "end": 15750.1, + "probability": 0.6459 + }, + { + "start": 15752.04, + "end": 15754.96, + "probability": 0.8645 + }, + { + "start": 15755.84, + "end": 15756.36, + "probability": 0.8656 + }, + { + "start": 15758.74, + "end": 15759.26, + "probability": 0.574 + }, + { + "start": 15759.98, + "end": 15760.8, + "probability": 0.8925 + }, + { + "start": 15773.12, + "end": 15775.2, + "probability": 0.3237 + }, + { + "start": 15775.3, + "end": 15775.32, + "probability": 0.4526 + }, + { + "start": 15775.32, + "end": 15775.88, + "probability": 0.7946 + }, + { + "start": 15775.98, + "end": 15777.1, + "probability": 0.8322 + }, + { + "start": 15777.38, + "end": 15778.36, + "probability": 0.9661 + }, + { + "start": 15779.1, + "end": 15779.84, + "probability": 0.8938 + }, + { + "start": 15779.84, + "end": 15779.84, + "probability": 0.7295 + }, + { + "start": 15780.4, + "end": 15780.98, + "probability": 0.465 + }, + { + "start": 15781.1, + "end": 15781.84, + "probability": 0.9032 + }, + { + "start": 15782.96, + "end": 15784.52, + "probability": 0.9293 + }, + { + "start": 15785.5, + "end": 15786.92, + "probability": 0.8175 + }, + { + "start": 15787.82, + "end": 15793.3, + "probability": 0.9984 + }, + { + "start": 15794.08, + "end": 15794.6, + "probability": 0.6383 + }, + { + "start": 15794.62, + "end": 15796.92, + "probability": 0.9817 + }, + { + "start": 15797.24, + "end": 15798.48, + "probability": 0.7286 + }, + { + "start": 15798.94, + "end": 15798.98, + "probability": 0.6243 + }, + { + "start": 15798.98, + "end": 15801.62, + "probability": 0.9128 + }, + { + "start": 15802.42, + "end": 15808.24, + "probability": 0.9977 + }, + { + "start": 15809.56, + "end": 15813.18, + "probability": 0.9937 + }, + { + "start": 15813.3, + "end": 15815.24, + "probability": 0.9487 + }, + { + "start": 15816.58, + "end": 15820.2, + "probability": 0.9678 + }, + { + "start": 15821.34, + "end": 15824.28, + "probability": 0.9525 + }, + { + "start": 15825.54, + "end": 15830.14, + "probability": 0.9896 + }, + { + "start": 15832.16, + "end": 15838.32, + "probability": 0.9086 + }, + { + "start": 15839.6, + "end": 15840.92, + "probability": 0.8515 + }, + { + "start": 15842.16, + "end": 15845.04, + "probability": 0.9948 + }, + { + "start": 15846.16, + "end": 15847.2, + "probability": 0.9452 + }, + { + "start": 15847.26, + "end": 15850.78, + "probability": 0.9928 + }, + { + "start": 15852.38, + "end": 15856.82, + "probability": 0.9941 + }, + { + "start": 15858.32, + "end": 15859.74, + "probability": 0.975 + }, + { + "start": 15862.32, + "end": 15864.64, + "probability": 0.9995 + }, + { + "start": 15865.72, + "end": 15866.62, + "probability": 0.9989 + }, + { + "start": 15868.24, + "end": 15870.0, + "probability": 0.9998 + }, + { + "start": 15872.34, + "end": 15874.38, + "probability": 0.9988 + }, + { + "start": 15876.2, + "end": 15879.12, + "probability": 0.9828 + }, + { + "start": 15879.2, + "end": 15882.4, + "probability": 0.9951 + }, + { + "start": 15883.18, + "end": 15885.1, + "probability": 0.9096 + }, + { + "start": 15886.6, + "end": 15889.16, + "probability": 0.7231 + }, + { + "start": 15889.28, + "end": 15891.44, + "probability": 0.9676 + }, + { + "start": 15892.2, + "end": 15894.67, + "probability": 0.9919 + }, + { + "start": 15895.37, + "end": 15899.06, + "probability": 0.957 + }, + { + "start": 15901.38, + "end": 15905.12, + "probability": 0.985 + }, + { + "start": 15905.78, + "end": 15906.42, + "probability": 0.4203 + }, + { + "start": 15907.86, + "end": 15912.12, + "probability": 0.9922 + }, + { + "start": 15912.12, + "end": 15915.22, + "probability": 0.9968 + }, + { + "start": 15916.8, + "end": 15919.06, + "probability": 0.9985 + }, + { + "start": 15919.06, + "end": 15922.3, + "probability": 0.9978 + }, + { + "start": 15923.04, + "end": 15924.68, + "probability": 0.9998 + }, + { + "start": 15925.72, + "end": 15928.04, + "probability": 0.9897 + }, + { + "start": 15929.36, + "end": 15930.42, + "probability": 0.7699 + }, + { + "start": 15930.8, + "end": 15932.08, + "probability": 0.9976 + }, + { + "start": 15933.62, + "end": 15934.26, + "probability": 0.8064 + }, + { + "start": 15934.78, + "end": 15937.96, + "probability": 0.9951 + }, + { + "start": 15942.28, + "end": 15944.16, + "probability": 0.7813 + }, + { + "start": 15944.22, + "end": 15946.14, + "probability": 0.9854 + }, + { + "start": 15946.48, + "end": 15950.24, + "probability": 0.804 + }, + { + "start": 15950.72, + "end": 15954.66, + "probability": 0.9926 + }, + { + "start": 15954.66, + "end": 15957.38, + "probability": 0.9967 + }, + { + "start": 15957.64, + "end": 15958.74, + "probability": 0.951 + }, + { + "start": 15962.0, + "end": 15965.34, + "probability": 0.9021 + }, + { + "start": 15966.0, + "end": 15968.48, + "probability": 0.9964 + }, + { + "start": 15969.56, + "end": 15972.1, + "probability": 0.8857 + }, + { + "start": 15973.32, + "end": 15975.44, + "probability": 0.9839 + }, + { + "start": 15976.1, + "end": 15977.36, + "probability": 0.8781 + }, + { + "start": 15978.62, + "end": 15980.66, + "probability": 0.8899 + }, + { + "start": 15982.04, + "end": 15986.42, + "probability": 0.9946 + }, + { + "start": 15986.52, + "end": 15988.42, + "probability": 0.9932 + }, + { + "start": 15988.42, + "end": 15989.68, + "probability": 0.9629 + }, + { + "start": 15989.76, + "end": 15990.61, + "probability": 0.8511 + }, + { + "start": 15991.42, + "end": 15993.38, + "probability": 0.8576 + }, + { + "start": 15994.44, + "end": 15995.28, + "probability": 0.1285 + }, + { + "start": 15995.28, + "end": 15995.98, + "probability": 0.6264 + }, + { + "start": 15997.82, + "end": 16001.28, + "probability": 0.9956 + }, + { + "start": 16003.52, + "end": 16007.16, + "probability": 0.9966 + }, + { + "start": 16008.68, + "end": 16012.62, + "probability": 0.9731 + }, + { + "start": 16013.94, + "end": 16017.0, + "probability": 0.9617 + }, + { + "start": 16018.1, + "end": 16019.06, + "probability": 0.6436 + }, + { + "start": 16019.22, + "end": 16019.48, + "probability": 0.8419 + }, + { + "start": 16019.62, + "end": 16020.58, + "probability": 0.9556 + }, + { + "start": 16020.78, + "end": 16026.74, + "probability": 0.9573 + }, + { + "start": 16027.43, + "end": 16034.54, + "probability": 0.9958 + }, + { + "start": 16034.54, + "end": 16038.5, + "probability": 0.9625 + }, + { + "start": 16038.58, + "end": 16040.9, + "probability": 0.9281 + }, + { + "start": 16041.72, + "end": 16044.92, + "probability": 0.976 + }, + { + "start": 16044.92, + "end": 16049.7, + "probability": 0.9952 + }, + { + "start": 16049.82, + "end": 16050.56, + "probability": 0.8504 + }, + { + "start": 16050.96, + "end": 16053.88, + "probability": 0.9873 + }, + { + "start": 16057.7, + "end": 16061.58, + "probability": 0.7226 + }, + { + "start": 16062.76, + "end": 16064.48, + "probability": 0.8233 + }, + { + "start": 16064.88, + "end": 16066.3, + "probability": 0.9474 + }, + { + "start": 16066.46, + "end": 16068.78, + "probability": 0.9775 + }, + { + "start": 16068.8, + "end": 16070.48, + "probability": 0.9434 + }, + { + "start": 16071.04, + "end": 16074.88, + "probability": 0.973 + }, + { + "start": 16076.82, + "end": 16077.68, + "probability": 0.9995 + }, + { + "start": 16078.9, + "end": 16081.28, + "probability": 0.9952 + }, + { + "start": 16083.76, + "end": 16089.49, + "probability": 0.9946 + }, + { + "start": 16090.3, + "end": 16092.94, + "probability": 0.9985 + }, + { + "start": 16093.06, + "end": 16095.18, + "probability": 0.9776 + }, + { + "start": 16096.52, + "end": 16098.72, + "probability": 0.9489 + }, + { + "start": 16099.06, + "end": 16099.38, + "probability": 0.8704 + }, + { + "start": 16099.4, + "end": 16101.22, + "probability": 0.8012 + }, + { + "start": 16101.3, + "end": 16103.18, + "probability": 0.8112 + }, + { + "start": 16104.2, + "end": 16106.66, + "probability": 0.9739 + }, + { + "start": 16107.7, + "end": 16113.46, + "probability": 0.993 + }, + { + "start": 16113.76, + "end": 16115.66, + "probability": 0.8537 + }, + { + "start": 16118.16, + "end": 16119.42, + "probability": 0.8083 + }, + { + "start": 16119.68, + "end": 16122.82, + "probability": 0.9819 + }, + { + "start": 16124.04, + "end": 16126.64, + "probability": 0.9964 + }, + { + "start": 16127.54, + "end": 16129.22, + "probability": 0.9819 + }, + { + "start": 16129.3, + "end": 16130.98, + "probability": 0.966 + }, + { + "start": 16132.7, + "end": 16133.9, + "probability": 0.8586 + }, + { + "start": 16134.36, + "end": 16135.6, + "probability": 0.857 + }, + { + "start": 16136.08, + "end": 16137.68, + "probability": 0.8863 + }, + { + "start": 16137.72, + "end": 16139.24, + "probability": 0.8318 + }, + { + "start": 16140.74, + "end": 16143.14, + "probability": 0.9539 + }, + { + "start": 16143.68, + "end": 16146.54, + "probability": 0.9536 + }, + { + "start": 16146.6, + "end": 16147.94, + "probability": 0.9651 + }, + { + "start": 16148.28, + "end": 16149.32, + "probability": 0.8913 + }, + { + "start": 16149.7, + "end": 16151.2, + "probability": 0.9406 + }, + { + "start": 16152.46, + "end": 16157.72, + "probability": 0.9807 + }, + { + "start": 16160.38, + "end": 16162.86, + "probability": 0.9963 + }, + { + "start": 16163.56, + "end": 16167.02, + "probability": 0.9974 + }, + { + "start": 16167.44, + "end": 16172.38, + "probability": 0.9805 + }, + { + "start": 16173.54, + "end": 16175.12, + "probability": 0.9938 + }, + { + "start": 16175.26, + "end": 16179.82, + "probability": 0.9873 + }, + { + "start": 16180.24, + "end": 16184.3, + "probability": 0.9816 + }, + { + "start": 16184.4, + "end": 16188.12, + "probability": 0.9971 + }, + { + "start": 16188.12, + "end": 16192.4, + "probability": 0.9769 + }, + { + "start": 16194.06, + "end": 16195.24, + "probability": 0.9966 + }, + { + "start": 16196.74, + "end": 16202.86, + "probability": 0.9878 + }, + { + "start": 16203.02, + "end": 16204.78, + "probability": 0.9431 + }, + { + "start": 16204.9, + "end": 16209.26, + "probability": 0.9971 + }, + { + "start": 16209.46, + "end": 16209.98, + "probability": 0.7065 + }, + { + "start": 16210.1, + "end": 16211.0, + "probability": 0.7351 + }, + { + "start": 16211.4, + "end": 16212.4, + "probability": 0.8376 + }, + { + "start": 16212.46, + "end": 16213.36, + "probability": 0.9366 + }, + { + "start": 16213.58, + "end": 16214.57, + "probability": 0.9583 + }, + { + "start": 16215.08, + "end": 16216.66, + "probability": 0.9512 + }, + { + "start": 16217.94, + "end": 16221.72, + "probability": 0.9972 + }, + { + "start": 16224.08, + "end": 16227.46, + "probability": 0.9989 + }, + { + "start": 16227.81, + "end": 16231.78, + "probability": 0.9964 + }, + { + "start": 16232.54, + "end": 16235.62, + "probability": 0.8903 + }, + { + "start": 16236.14, + "end": 16239.28, + "probability": 0.9972 + }, + { + "start": 16239.8, + "end": 16240.38, + "probability": 0.5824 + }, + { + "start": 16241.42, + "end": 16244.0, + "probability": 0.8641 + }, + { + "start": 16245.0, + "end": 16247.5, + "probability": 0.9724 + }, + { + "start": 16248.16, + "end": 16249.36, + "probability": 0.9937 + }, + { + "start": 16249.48, + "end": 16250.71, + "probability": 0.9973 + }, + { + "start": 16251.22, + "end": 16252.98, + "probability": 0.9967 + }, + { + "start": 16253.7, + "end": 16255.49, + "probability": 0.9692 + }, + { + "start": 16256.16, + "end": 16260.26, + "probability": 0.9964 + }, + { + "start": 16260.26, + "end": 16265.0, + "probability": 0.9985 + }, + { + "start": 16265.88, + "end": 16268.42, + "probability": 0.9957 + }, + { + "start": 16269.02, + "end": 16272.3, + "probability": 0.9954 + }, + { + "start": 16272.9, + "end": 16276.18, + "probability": 0.9957 + }, + { + "start": 16276.18, + "end": 16280.82, + "probability": 0.9986 + }, + { + "start": 16282.44, + "end": 16283.6, + "probability": 0.6783 + }, + { + "start": 16284.54, + "end": 16289.84, + "probability": 0.7781 + }, + { + "start": 16290.78, + "end": 16295.18, + "probability": 0.993 + }, + { + "start": 16295.18, + "end": 16300.54, + "probability": 0.9938 + }, + { + "start": 16301.12, + "end": 16306.86, + "probability": 0.9984 + }, + { + "start": 16308.12, + "end": 16309.36, + "probability": 0.8453 + }, + { + "start": 16309.46, + "end": 16309.92, + "probability": 0.7496 + }, + { + "start": 16309.98, + "end": 16313.58, + "probability": 0.9975 + }, + { + "start": 16314.42, + "end": 16319.02, + "probability": 0.9882 + }, + { + "start": 16320.04, + "end": 16323.2, + "probability": 0.9774 + }, + { + "start": 16324.42, + "end": 16325.04, + "probability": 0.7234 + }, + { + "start": 16325.74, + "end": 16331.32, + "probability": 0.9897 + }, + { + "start": 16332.48, + "end": 16335.54, + "probability": 0.9745 + }, + { + "start": 16336.5, + "end": 16340.26, + "probability": 0.9269 + }, + { + "start": 16340.4, + "end": 16346.1, + "probability": 0.9946 + }, + { + "start": 16346.66, + "end": 16348.94, + "probability": 0.9993 + }, + { + "start": 16349.48, + "end": 16350.86, + "probability": 0.8 + }, + { + "start": 16351.52, + "end": 16354.4, + "probability": 0.9844 + }, + { + "start": 16357.42, + "end": 16359.14, + "probability": 0.9956 + }, + { + "start": 16359.88, + "end": 16365.7, + "probability": 0.9965 + }, + { + "start": 16366.26, + "end": 16371.74, + "probability": 0.9918 + }, + { + "start": 16372.24, + "end": 16373.0, + "probability": 0.6897 + }, + { + "start": 16373.64, + "end": 16378.88, + "probability": 0.9374 + }, + { + "start": 16382.04, + "end": 16384.76, + "probability": 0.9658 + }, + { + "start": 16384.86, + "end": 16389.62, + "probability": 0.9733 + }, + { + "start": 16391.02, + "end": 16396.2, + "probability": 0.9959 + }, + { + "start": 16400.18, + "end": 16403.56, + "probability": 0.9741 + }, + { + "start": 16403.56, + "end": 16407.38, + "probability": 0.9292 + }, + { + "start": 16408.04, + "end": 16409.64, + "probability": 0.9237 + }, + { + "start": 16410.28, + "end": 16411.5, + "probability": 0.963 + }, + { + "start": 16412.14, + "end": 16416.36, + "probability": 0.9977 + }, + { + "start": 16416.96, + "end": 16421.46, + "probability": 0.9946 + }, + { + "start": 16422.42, + "end": 16426.22, + "probability": 0.9966 + }, + { + "start": 16427.5, + "end": 16429.35, + "probability": 0.9416 + }, + { + "start": 16430.0, + "end": 16433.82, + "probability": 0.9856 + }, + { + "start": 16433.82, + "end": 16437.06, + "probability": 0.8311 + }, + { + "start": 16438.24, + "end": 16439.16, + "probability": 0.9558 + }, + { + "start": 16439.32, + "end": 16440.6, + "probability": 0.9529 + }, + { + "start": 16440.98, + "end": 16443.0, + "probability": 0.9167 + }, + { + "start": 16443.84, + "end": 16449.14, + "probability": 0.9822 + }, + { + "start": 16450.02, + "end": 16454.2, + "probability": 0.9954 + }, + { + "start": 16455.36, + "end": 16458.38, + "probability": 0.9232 + }, + { + "start": 16458.46, + "end": 16461.6, + "probability": 0.9023 + }, + { + "start": 16462.18, + "end": 16464.32, + "probability": 0.7034 + }, + { + "start": 16465.42, + "end": 16468.5, + "probability": 0.9902 + }, + { + "start": 16468.62, + "end": 16471.24, + "probability": 0.9493 + }, + { + "start": 16472.0, + "end": 16474.12, + "probability": 0.9923 + }, + { + "start": 16474.96, + "end": 16476.37, + "probability": 0.9849 + }, + { + "start": 16477.1, + "end": 16480.84, + "probability": 0.9817 + }, + { + "start": 16480.84, + "end": 16484.04, + "probability": 0.984 + }, + { + "start": 16487.64, + "end": 16493.1, + "probability": 0.9819 + }, + { + "start": 16493.18, + "end": 16495.2, + "probability": 0.8939 + }, + { + "start": 16495.86, + "end": 16501.76, + "probability": 0.9816 + }, + { + "start": 16501.9, + "end": 16502.98, + "probability": 0.7561 + }, + { + "start": 16503.48, + "end": 16508.16, + "probability": 0.9897 + }, + { + "start": 16508.94, + "end": 16515.22, + "probability": 0.9976 + }, + { + "start": 16515.96, + "end": 16519.1, + "probability": 0.8465 + }, + { + "start": 16519.86, + "end": 16524.26, + "probability": 0.9662 + }, + { + "start": 16525.04, + "end": 16528.46, + "probability": 0.966 + }, + { + "start": 16528.54, + "end": 16529.12, + "probability": 0.7118 + }, + { + "start": 16530.26, + "end": 16531.44, + "probability": 0.8793 + }, + { + "start": 16532.52, + "end": 16534.44, + "probability": 0.9985 + }, + { + "start": 16537.5, + "end": 16538.98, + "probability": 0.9116 + }, + { + "start": 16539.12, + "end": 16544.38, + "probability": 0.9934 + }, + { + "start": 16548.2, + "end": 16548.68, + "probability": 0.6374 + }, + { + "start": 16548.82, + "end": 16549.14, + "probability": 0.8325 + }, + { + "start": 16549.24, + "end": 16550.44, + "probability": 0.9403 + }, + { + "start": 16550.8, + "end": 16554.92, + "probability": 0.9714 + }, + { + "start": 16556.1, + "end": 16559.8, + "probability": 0.9979 + }, + { + "start": 16561.18, + "end": 16563.86, + "probability": 0.8707 + }, + { + "start": 16564.44, + "end": 16566.06, + "probability": 0.9155 + }, + { + "start": 16566.6, + "end": 16570.42, + "probability": 0.9707 + }, + { + "start": 16570.8, + "end": 16576.08, + "probability": 0.9601 + }, + { + "start": 16576.74, + "end": 16579.92, + "probability": 0.9981 + }, + { + "start": 16580.22, + "end": 16586.44, + "probability": 0.9927 + }, + { + "start": 16587.78, + "end": 16591.13, + "probability": 0.9993 + }, + { + "start": 16592.2, + "end": 16596.0, + "probability": 0.9974 + }, + { + "start": 16596.52, + "end": 16598.92, + "probability": 0.9959 + }, + { + "start": 16602.6, + "end": 16605.56, + "probability": 0.9937 + }, + { + "start": 16605.56, + "end": 16609.88, + "probability": 0.9972 + }, + { + "start": 16610.9, + "end": 16615.46, + "probability": 0.9917 + }, + { + "start": 16618.16, + "end": 16621.04, + "probability": 0.987 + }, + { + "start": 16621.04, + "end": 16624.38, + "probability": 0.997 + }, + { + "start": 16624.98, + "end": 16626.94, + "probability": 0.8884 + }, + { + "start": 16629.54, + "end": 16631.24, + "probability": 0.9261 + }, + { + "start": 16631.56, + "end": 16633.46, + "probability": 0.9984 + }, + { + "start": 16634.3, + "end": 16636.22, + "probability": 0.9967 + }, + { + "start": 16637.06, + "end": 16639.36, + "probability": 0.8288 + }, + { + "start": 16639.54, + "end": 16643.44, + "probability": 0.6457 + }, + { + "start": 16643.44, + "end": 16644.7, + "probability": 0.1889 + }, + { + "start": 16645.44, + "end": 16648.3, + "probability": 0.9891 + }, + { + "start": 16649.32, + "end": 16650.9, + "probability": 0.975 + }, + { + "start": 16651.66, + "end": 16653.84, + "probability": 0.7281 + }, + { + "start": 16654.6, + "end": 16656.08, + "probability": 0.8669 + }, + { + "start": 16657.12, + "end": 16658.26, + "probability": 0.9795 + }, + { + "start": 16658.96, + "end": 16659.9, + "probability": 0.9059 + }, + { + "start": 16660.48, + "end": 16664.9, + "probability": 0.9857 + }, + { + "start": 16665.08, + "end": 16666.23, + "probability": 0.987 + }, + { + "start": 16667.58, + "end": 16673.04, + "probability": 0.9213 + }, + { + "start": 16673.86, + "end": 16676.42, + "probability": 0.9414 + }, + { + "start": 16677.12, + "end": 16680.74, + "probability": 0.9851 + }, + { + "start": 16680.74, + "end": 16682.76, + "probability": 0.9868 + }, + { + "start": 16683.04, + "end": 16684.84, + "probability": 0.9771 + }, + { + "start": 16685.94, + "end": 16690.9, + "probability": 0.8447 + }, + { + "start": 16691.0, + "end": 16691.64, + "probability": 0.9758 + }, + { + "start": 16692.34, + "end": 16693.12, + "probability": 0.9399 + }, + { + "start": 16693.66, + "end": 16695.7, + "probability": 0.9583 + }, + { + "start": 16696.24, + "end": 16696.66, + "probability": 0.897 + }, + { + "start": 16697.72, + "end": 16699.26, + "probability": 0.9893 + }, + { + "start": 16700.16, + "end": 16703.14, + "probability": 0.9608 + }, + { + "start": 16703.66, + "end": 16709.22, + "probability": 0.9715 + }, + { + "start": 16709.22, + "end": 16714.44, + "probability": 0.9813 + }, + { + "start": 16714.52, + "end": 16716.13, + "probability": 0.9755 + }, + { + "start": 16717.1, + "end": 16721.28, + "probability": 0.9893 + }, + { + "start": 16721.28, + "end": 16726.56, + "probability": 0.9979 + }, + { + "start": 16727.58, + "end": 16729.88, + "probability": 0.6727 + }, + { + "start": 16730.04, + "end": 16732.56, + "probability": 0.9448 + }, + { + "start": 16734.02, + "end": 16735.66, + "probability": 0.9402 + }, + { + "start": 16736.24, + "end": 16738.94, + "probability": 0.9567 + }, + { + "start": 16739.08, + "end": 16739.64, + "probability": 0.2835 + }, + { + "start": 16739.64, + "end": 16739.98, + "probability": 0.8141 + }, + { + "start": 16740.04, + "end": 16742.48, + "probability": 0.984 + }, + { + "start": 16743.94, + "end": 16746.86, + "probability": 0.9397 + }, + { + "start": 16747.3, + "end": 16750.04, + "probability": 0.8394 + }, + { + "start": 16750.64, + "end": 16755.24, + "probability": 0.9919 + }, + { + "start": 16756.88, + "end": 16759.06, + "probability": 0.9926 + }, + { + "start": 16759.12, + "end": 16760.62, + "probability": 0.981 + }, + { + "start": 16760.92, + "end": 16762.98, + "probability": 0.916 + }, + { + "start": 16763.46, + "end": 16766.56, + "probability": 0.9913 + }, + { + "start": 16768.34, + "end": 16771.12, + "probability": 0.8267 + }, + { + "start": 16772.56, + "end": 16775.68, + "probability": 0.9778 + }, + { + "start": 16776.44, + "end": 16780.28, + "probability": 0.8386 + }, + { + "start": 16780.92, + "end": 16781.88, + "probability": 0.7704 + }, + { + "start": 16782.58, + "end": 16784.54, + "probability": 0.9445 + }, + { + "start": 16786.08, + "end": 16789.8, + "probability": 0.9934 + }, + { + "start": 16790.46, + "end": 16790.96, + "probability": 0.621 + }, + { + "start": 16791.08, + "end": 16794.62, + "probability": 0.9521 + }, + { + "start": 16795.5, + "end": 16800.8, + "probability": 0.9874 + }, + { + "start": 16801.36, + "end": 16805.38, + "probability": 0.7247 + }, + { + "start": 16806.02, + "end": 16807.04, + "probability": 0.7676 + }, + { + "start": 16807.14, + "end": 16808.12, + "probability": 0.926 + }, + { + "start": 16808.18, + "end": 16812.98, + "probability": 0.9858 + }, + { + "start": 16813.92, + "end": 16817.3, + "probability": 0.9796 + }, + { + "start": 16817.9, + "end": 16821.88, + "probability": 0.9973 + }, + { + "start": 16823.1, + "end": 16824.44, + "probability": 0.8949 + }, + { + "start": 16825.1, + "end": 16827.52, + "probability": 0.9946 + }, + { + "start": 16828.82, + "end": 16832.58, + "probability": 0.9885 + }, + { + "start": 16832.86, + "end": 16835.42, + "probability": 0.9974 + }, + { + "start": 16835.88, + "end": 16839.76, + "probability": 0.9972 + }, + { + "start": 16839.82, + "end": 16843.18, + "probability": 0.9619 + }, + { + "start": 16843.9, + "end": 16848.98, + "probability": 0.9912 + }, + { + "start": 16849.92, + "end": 16854.12, + "probability": 0.9917 + }, + { + "start": 16854.7, + "end": 16857.88, + "probability": 0.9494 + }, + { + "start": 16859.04, + "end": 16862.16, + "probability": 0.9932 + }, + { + "start": 16864.2, + "end": 16865.38, + "probability": 0.9788 + }, + { + "start": 16865.5, + "end": 16866.66, + "probability": 0.6524 + }, + { + "start": 16867.02, + "end": 16868.52, + "probability": 0.9741 + }, + { + "start": 16868.86, + "end": 16873.42, + "probability": 0.9952 + }, + { + "start": 16874.06, + "end": 16875.28, + "probability": 0.9339 + }, + { + "start": 16876.4, + "end": 16877.76, + "probability": 0.9784 + }, + { + "start": 16878.02, + "end": 16879.96, + "probability": 0.9976 + }, + { + "start": 16880.78, + "end": 16883.48, + "probability": 0.9204 + }, + { + "start": 16884.02, + "end": 16884.9, + "probability": 0.9176 + }, + { + "start": 16885.0, + "end": 16889.42, + "probability": 0.9602 + }, + { + "start": 16889.46, + "end": 16890.54, + "probability": 0.9894 + }, + { + "start": 16891.36, + "end": 16892.64, + "probability": 0.9401 + }, + { + "start": 16893.84, + "end": 16898.72, + "probability": 0.9857 + }, + { + "start": 16902.58, + "end": 16905.24, + "probability": 0.8779 + }, + { + "start": 16906.44, + "end": 16907.08, + "probability": 0.9704 + }, + { + "start": 16908.44, + "end": 16913.58, + "probability": 0.9905 + }, + { + "start": 16915.5, + "end": 16919.36, + "probability": 0.9956 + }, + { + "start": 16920.66, + "end": 16923.5, + "probability": 0.9976 + }, + { + "start": 16923.5, + "end": 16926.08, + "probability": 0.989 + }, + { + "start": 16927.06, + "end": 16930.32, + "probability": 0.9868 + }, + { + "start": 16931.18, + "end": 16936.9, + "probability": 0.9929 + }, + { + "start": 16937.94, + "end": 16938.36, + "probability": 0.5103 + }, + { + "start": 16939.1, + "end": 16940.66, + "probability": 0.9926 + }, + { + "start": 16942.62, + "end": 16947.7, + "probability": 0.9938 + }, + { + "start": 16948.58, + "end": 16950.54, + "probability": 0.978 + }, + { + "start": 16951.16, + "end": 16952.28, + "probability": 0.9366 + }, + { + "start": 16952.48, + "end": 16956.76, + "probability": 0.9913 + }, + { + "start": 16957.86, + "end": 16961.28, + "probability": 0.9771 + }, + { + "start": 16961.76, + "end": 16964.82, + "probability": 0.9959 + }, + { + "start": 16964.92, + "end": 16965.22, + "probability": 0.7203 + }, + { + "start": 16966.0, + "end": 16967.18, + "probability": 0.7004 + }, + { + "start": 16967.88, + "end": 16971.44, + "probability": 0.916 + }, + { + "start": 16971.44, + "end": 16976.3, + "probability": 0.9945 + }, + { + "start": 16977.24, + "end": 16980.78, + "probability": 0.9839 + }, + { + "start": 16981.48, + "end": 16983.38, + "probability": 0.9442 + }, + { + "start": 16983.92, + "end": 16985.28, + "probability": 0.9508 + }, + { + "start": 16986.1, + "end": 16988.28, + "probability": 0.9818 + }, + { + "start": 16989.78, + "end": 16995.72, + "probability": 0.8349 + }, + { + "start": 16997.22, + "end": 16999.78, + "probability": 0.989 + }, + { + "start": 17001.68, + "end": 17004.6, + "probability": 0.9099 + }, + { + "start": 17005.64, + "end": 17006.36, + "probability": 0.9543 + }, + { + "start": 17007.12, + "end": 17008.42, + "probability": 0.982 + }, + { + "start": 17009.4, + "end": 17010.92, + "probability": 0.9113 + }, + { + "start": 17011.04, + "end": 17012.78, + "probability": 0.9741 + }, + { + "start": 17012.78, + "end": 17013.76, + "probability": 0.9136 + }, + { + "start": 17013.92, + "end": 17015.36, + "probability": 0.9968 + }, + { + "start": 17016.5, + "end": 17020.5, + "probability": 0.998 + }, + { + "start": 17020.56, + "end": 17025.56, + "probability": 0.9808 + }, + { + "start": 17028.5, + "end": 17030.12, + "probability": 0.9408 + }, + { + "start": 17031.38, + "end": 17034.04, + "probability": 0.6511 + }, + { + "start": 17035.06, + "end": 17036.4, + "probability": 0.908 + }, + { + "start": 17037.44, + "end": 17039.74, + "probability": 0.9897 + }, + { + "start": 17040.58, + "end": 17042.4, + "probability": 0.9851 + }, + { + "start": 17043.1, + "end": 17044.63, + "probability": 0.9963 + }, + { + "start": 17045.64, + "end": 17047.24, + "probability": 0.9894 + }, + { + "start": 17047.9, + "end": 17049.74, + "probability": 0.9784 + }, + { + "start": 17050.38, + "end": 17054.16, + "probability": 0.9952 + }, + { + "start": 17054.92, + "end": 17062.58, + "probability": 0.9746 + }, + { + "start": 17063.6, + "end": 17065.7, + "probability": 0.805 + }, + { + "start": 17066.34, + "end": 17067.28, + "probability": 0.9666 + }, + { + "start": 17068.22, + "end": 17070.6, + "probability": 0.9601 + }, + { + "start": 17071.82, + "end": 17073.3, + "probability": 0.93 + }, + { + "start": 17073.72, + "end": 17074.22, + "probability": 0.6819 + }, + { + "start": 17074.7, + "end": 17075.9, + "probability": 0.8923 + }, + { + "start": 17076.4, + "end": 17078.7, + "probability": 0.9879 + }, + { + "start": 17079.32, + "end": 17083.0, + "probability": 0.9879 + }, + { + "start": 17083.7, + "end": 17085.22, + "probability": 0.9861 + }, + { + "start": 17085.78, + "end": 17089.28, + "probability": 0.9977 + }, + { + "start": 17089.5, + "end": 17089.82, + "probability": 0.8035 + }, + { + "start": 17090.14, + "end": 17092.7, + "probability": 0.9094 + }, + { + "start": 17093.06, + "end": 17095.52, + "probability": 0.9607 + }, + { + "start": 17098.68, + "end": 17100.9, + "probability": 0.6773 + }, + { + "start": 17103.2, + "end": 17105.26, + "probability": 0.7174 + }, + { + "start": 17105.54, + "end": 17107.22, + "probability": 0.1053 + }, + { + "start": 17108.9, + "end": 17109.78, + "probability": 0.9114 + }, + { + "start": 17111.32, + "end": 17113.2, + "probability": 0.8721 + }, + { + "start": 17113.88, + "end": 17116.12, + "probability": 0.9573 + }, + { + "start": 17117.68, + "end": 17118.98, + "probability": 0.9679 + }, + { + "start": 17120.56, + "end": 17121.52, + "probability": 0.7992 + }, + { + "start": 17125.64, + "end": 17126.86, + "probability": 0.6736 + }, + { + "start": 17128.3, + "end": 17129.68, + "probability": 0.6492 + }, + { + "start": 17131.06, + "end": 17131.16, + "probability": 0.2171 + }, + { + "start": 17132.42, + "end": 17132.62, + "probability": 0.5602 + }, + { + "start": 17134.38, + "end": 17135.15, + "probability": 0.9397 + }, + { + "start": 17136.52, + "end": 17139.14, + "probability": 0.9611 + }, + { + "start": 17140.4, + "end": 17143.54, + "probability": 0.8467 + }, + { + "start": 17144.4, + "end": 17145.1, + "probability": 0.8474 + }, + { + "start": 17147.34, + "end": 17147.58, + "probability": 0.7164 + }, + { + "start": 17148.98, + "end": 17149.62, + "probability": 0.6538 + }, + { + "start": 17151.4, + "end": 17155.18, + "probability": 0.9286 + }, + { + "start": 17155.74, + "end": 17156.82, + "probability": 0.8976 + }, + { + "start": 17157.78, + "end": 17160.46, + "probability": 0.9897 + }, + { + "start": 17161.66, + "end": 17162.23, + "probability": 0.9197 + }, + { + "start": 17163.6, + "end": 17165.9, + "probability": 0.9937 + }, + { + "start": 17166.68, + "end": 17168.4, + "probability": 0.9807 + }, + { + "start": 17169.16, + "end": 17171.8, + "probability": 0.9062 + }, + { + "start": 17173.62, + "end": 17175.7, + "probability": 0.6586 + }, + { + "start": 17176.52, + "end": 17177.58, + "probability": 0.8758 + }, + { + "start": 17178.12, + "end": 17181.8, + "probability": 0.9774 + }, + { + "start": 17182.88, + "end": 17188.5, + "probability": 0.9644 + }, + { + "start": 17189.38, + "end": 17190.86, + "probability": 0.917 + }, + { + "start": 17191.64, + "end": 17194.58, + "probability": 0.807 + }, + { + "start": 17195.48, + "end": 17196.38, + "probability": 0.8154 + }, + { + "start": 17197.02, + "end": 17200.7, + "probability": 0.9733 + }, + { + "start": 17201.34, + "end": 17204.82, + "probability": 0.9674 + }, + { + "start": 17206.2, + "end": 17208.84, + "probability": 0.9279 + }, + { + "start": 17210.64, + "end": 17211.44, + "probability": 0.6778 + }, + { + "start": 17212.56, + "end": 17213.14, + "probability": 0.9563 + }, + { + "start": 17215.1, + "end": 17219.4, + "probability": 0.9911 + }, + { + "start": 17219.4, + "end": 17222.32, + "probability": 0.9997 + }, + { + "start": 17224.08, + "end": 17233.7, + "probability": 0.6295 + }, + { + "start": 17234.08, + "end": 17234.8, + "probability": 0.8838 + }, + { + "start": 17235.4, + "end": 17237.32, + "probability": 0.7952 + }, + { + "start": 17237.42, + "end": 17237.92, + "probability": 0.8793 + }, + { + "start": 17238.1, + "end": 17238.92, + "probability": 0.701 + }, + { + "start": 17239.4, + "end": 17240.82, + "probability": 0.6323 + }, + { + "start": 17241.12, + "end": 17241.4, + "probability": 0.8417 + }, + { + "start": 17242.62, + "end": 17243.08, + "probability": 0.8881 + }, + { + "start": 17243.44, + "end": 17245.48, + "probability": 0.9502 + }, + { + "start": 17246.56, + "end": 17247.86, + "probability": 0.8077 + }, + { + "start": 17249.08, + "end": 17249.72, + "probability": 0.7036 + }, + { + "start": 17250.76, + "end": 17253.0, + "probability": 0.9702 + }, + { + "start": 17253.58, + "end": 17256.16, + "probability": 0.9143 + }, + { + "start": 17257.02, + "end": 17262.2, + "probability": 0.9543 + }, + { + "start": 17263.78, + "end": 17265.86, + "probability": 0.8931 + }, + { + "start": 17266.5, + "end": 17274.02, + "probability": 0.9448 + }, + { + "start": 17274.9, + "end": 17276.03, + "probability": 0.9917 + }, + { + "start": 17276.76, + "end": 17277.5, + "probability": 0.5947 + }, + { + "start": 17278.24, + "end": 17279.86, + "probability": 0.9658 + }, + { + "start": 17281.16, + "end": 17284.44, + "probability": 0.7683 + }, + { + "start": 17285.38, + "end": 17289.5, + "probability": 0.8932 + }, + { + "start": 17289.68, + "end": 17290.9, + "probability": 0.7502 + }, + { + "start": 17291.28, + "end": 17295.48, + "probability": 0.9982 + }, + { + "start": 17297.06, + "end": 17297.58, + "probability": 0.5781 + }, + { + "start": 17298.46, + "end": 17301.74, + "probability": 0.9622 + }, + { + "start": 17301.88, + "end": 17303.02, + "probability": 0.8209 + }, + { + "start": 17305.02, + "end": 17305.83, + "probability": 0.8088 + }, + { + "start": 17307.38, + "end": 17310.5, + "probability": 0.9966 + }, + { + "start": 17311.2, + "end": 17314.44, + "probability": 0.9412 + }, + { + "start": 17315.44, + "end": 17319.4, + "probability": 0.9895 + }, + { + "start": 17319.98, + "end": 17321.94, + "probability": 0.9537 + }, + { + "start": 17322.64, + "end": 17325.3, + "probability": 0.9611 + }, + { + "start": 17325.44, + "end": 17326.9, + "probability": 0.9974 + }, + { + "start": 17327.58, + "end": 17331.1, + "probability": 0.9398 + }, + { + "start": 17332.58, + "end": 17332.58, + "probability": 0.5568 + }, + { + "start": 17333.16, + "end": 17335.38, + "probability": 0.8104 + }, + { + "start": 17336.06, + "end": 17339.76, + "probability": 0.9978 + }, + { + "start": 17340.06, + "end": 17344.1, + "probability": 0.9734 + }, + { + "start": 17344.38, + "end": 17345.32, + "probability": 0.9396 + }, + { + "start": 17345.86, + "end": 17347.14, + "probability": 0.8293 + }, + { + "start": 17347.42, + "end": 17349.86, + "probability": 0.9483 + }, + { + "start": 17351.08, + "end": 17352.28, + "probability": 0.8621 + }, + { + "start": 17354.12, + "end": 17357.48, + "probability": 0.8905 + }, + { + "start": 17357.74, + "end": 17358.46, + "probability": 0.5681 + }, + { + "start": 17358.58, + "end": 17359.59, + "probability": 0.9907 + }, + { + "start": 17360.46, + "end": 17362.19, + "probability": 0.9977 + }, + { + "start": 17362.62, + "end": 17363.4, + "probability": 0.8921 + }, + { + "start": 17364.84, + "end": 17366.5, + "probability": 0.6746 + }, + { + "start": 17367.3, + "end": 17371.8, + "probability": 0.986 + }, + { + "start": 17373.42, + "end": 17376.98, + "probability": 0.8344 + }, + { + "start": 17377.7, + "end": 17379.06, + "probability": 0.866 + }, + { + "start": 17379.86, + "end": 17383.2, + "probability": 0.9827 + }, + { + "start": 17383.84, + "end": 17386.5, + "probability": 0.8866 + }, + { + "start": 17387.56, + "end": 17390.54, + "probability": 0.9668 + }, + { + "start": 17391.32, + "end": 17394.2, + "probability": 0.998 + }, + { + "start": 17394.92, + "end": 17399.04, + "probability": 0.6456 + }, + { + "start": 17399.66, + "end": 17400.98, + "probability": 0.8892 + }, + { + "start": 17401.46, + "end": 17407.06, + "probability": 0.9201 + }, + { + "start": 17407.66, + "end": 17409.12, + "probability": 0.9958 + }, + { + "start": 17409.76, + "end": 17410.96, + "probability": 0.5239 + }, + { + "start": 17411.06, + "end": 17412.26, + "probability": 0.9927 + }, + { + "start": 17413.36, + "end": 17413.84, + "probability": 0.9335 + }, + { + "start": 17414.9, + "end": 17416.9, + "probability": 0.9949 + }, + { + "start": 17418.16, + "end": 17420.34, + "probability": 0.9905 + }, + { + "start": 17421.2, + "end": 17423.94, + "probability": 0.8546 + }, + { + "start": 17424.46, + "end": 17425.7, + "probability": 0.9483 + }, + { + "start": 17426.3, + "end": 17428.54, + "probability": 0.8859 + }, + { + "start": 17428.98, + "end": 17434.44, + "probability": 0.9937 + }, + { + "start": 17434.92, + "end": 17435.72, + "probability": 0.9598 + }, + { + "start": 17436.48, + "end": 17437.18, + "probability": 0.8109 + }, + { + "start": 17438.16, + "end": 17439.82, + "probability": 0.8895 + }, + { + "start": 17440.54, + "end": 17442.66, + "probability": 0.9872 + }, + { + "start": 17443.36, + "end": 17448.28, + "probability": 0.9014 + }, + { + "start": 17449.72, + "end": 17452.26, + "probability": 0.9092 + }, + { + "start": 17452.72, + "end": 17453.9, + "probability": 0.8518 + }, + { + "start": 17454.48, + "end": 17454.98, + "probability": 0.526 + }, + { + "start": 17456.38, + "end": 17457.84, + "probability": 0.8685 + }, + { + "start": 17457.96, + "end": 17458.92, + "probability": 0.8662 + }, + { + "start": 17459.52, + "end": 17465.15, + "probability": 0.3477 + }, + { + "start": 17465.36, + "end": 17467.08, + "probability": 0.7508 + }, + { + "start": 17467.26, + "end": 17472.28, + "probability": 0.915 + }, + { + "start": 17472.4, + "end": 17473.22, + "probability": 0.7687 + }, + { + "start": 17473.74, + "end": 17475.48, + "probability": 0.7538 + }, + { + "start": 17476.18, + "end": 17478.86, + "probability": 0.8592 + }, + { + "start": 17479.64, + "end": 17481.91, + "probability": 0.9313 + }, + { + "start": 17482.34, + "end": 17485.44, + "probability": 0.9719 + }, + { + "start": 17486.52, + "end": 17487.02, + "probability": 0.7982 + }, + { + "start": 17487.76, + "end": 17489.64, + "probability": 0.9753 + }, + { + "start": 17490.3, + "end": 17490.9, + "probability": 0.6788 + }, + { + "start": 17491.74, + "end": 17497.32, + "probability": 0.999 + }, + { + "start": 17498.6, + "end": 17500.8, + "probability": 0.936 + }, + { + "start": 17501.82, + "end": 17508.38, + "probability": 0.9943 + }, + { + "start": 17508.94, + "end": 17511.88, + "probability": 0.9929 + }, + { + "start": 17513.1, + "end": 17513.46, + "probability": 0.4922 + }, + { + "start": 17514.48, + "end": 17515.64, + "probability": 0.7014 + }, + { + "start": 17516.8, + "end": 17517.8, + "probability": 0.8429 + }, + { + "start": 17518.68, + "end": 17520.74, + "probability": 0.957 + }, + { + "start": 17520.98, + "end": 17524.0, + "probability": 0.9513 + }, + { + "start": 17526.04, + "end": 17527.04, + "probability": 0.7914 + }, + { + "start": 17528.04, + "end": 17529.94, + "probability": 0.864 + }, + { + "start": 17530.7, + "end": 17532.92, + "probability": 0.952 + }, + { + "start": 17533.48, + "end": 17535.04, + "probability": 0.6284 + }, + { + "start": 17535.88, + "end": 17536.1, + "probability": 0.8034 + }, + { + "start": 17537.5, + "end": 17538.5, + "probability": 0.7416 + }, + { + "start": 17539.3, + "end": 17543.14, + "probability": 0.9932 + }, + { + "start": 17543.82, + "end": 17547.28, + "probability": 0.991 + }, + { + "start": 17547.82, + "end": 17549.58, + "probability": 0.9976 + }, + { + "start": 17550.52, + "end": 17551.22, + "probability": 0.9037 + }, + { + "start": 17552.38, + "end": 17554.88, + "probability": 0.9639 + }, + { + "start": 17556.1, + "end": 17557.8, + "probability": 0.92 + }, + { + "start": 17558.62, + "end": 17564.8, + "probability": 0.9871 + }, + { + "start": 17565.6, + "end": 17566.54, + "probability": 0.9983 + }, + { + "start": 17567.42, + "end": 17568.48, + "probability": 0.8918 + }, + { + "start": 17570.36, + "end": 17572.0, + "probability": 0.9985 + }, + { + "start": 17572.96, + "end": 17576.66, + "probability": 0.9982 + }, + { + "start": 17578.53, + "end": 17580.62, + "probability": 0.9422 + }, + { + "start": 17581.22, + "end": 17582.26, + "probability": 0.8397 + }, + { + "start": 17582.86, + "end": 17583.88, + "probability": 0.5421 + }, + { + "start": 17584.56, + "end": 17585.16, + "probability": 0.8569 + }, + { + "start": 17585.84, + "end": 17588.4, + "probability": 0.9783 + }, + { + "start": 17589.12, + "end": 17590.62, + "probability": 0.9652 + }, + { + "start": 17591.32, + "end": 17593.32, + "probability": 0.9986 + }, + { + "start": 17593.84, + "end": 17594.88, + "probability": 0.9982 + }, + { + "start": 17595.66, + "end": 17596.64, + "probability": 0.851 + }, + { + "start": 17596.74, + "end": 17598.08, + "probability": 0.998 + }, + { + "start": 17598.28, + "end": 17599.38, + "probability": 0.9905 + }, + { + "start": 17600.24, + "end": 17603.54, + "probability": 0.9796 + }, + { + "start": 17604.22, + "end": 17605.78, + "probability": 0.9658 + }, + { + "start": 17606.32, + "end": 17607.38, + "probability": 0.735 + }, + { + "start": 17607.9, + "end": 17610.02, + "probability": 0.9628 + }, + { + "start": 17610.94, + "end": 17617.24, + "probability": 0.9485 + }, + { + "start": 17617.6, + "end": 17618.82, + "probability": 0.9551 + }, + { + "start": 17619.04, + "end": 17620.4, + "probability": 0.9261 + }, + { + "start": 17621.0, + "end": 17621.94, + "probability": 0.9475 + }, + { + "start": 17622.6, + "end": 17627.0, + "probability": 0.9193 + }, + { + "start": 17627.82, + "end": 17630.02, + "probability": 0.7306 + }, + { + "start": 17631.52, + "end": 17636.96, + "probability": 0.991 + }, + { + "start": 17638.02, + "end": 17639.68, + "probability": 0.7795 + }, + { + "start": 17641.4, + "end": 17644.36, + "probability": 0.9928 + }, + { + "start": 17645.24, + "end": 17646.44, + "probability": 0.9917 + }, + { + "start": 17647.58, + "end": 17648.56, + "probability": 0.4855 + }, + { + "start": 17649.2, + "end": 17649.56, + "probability": 0.9739 + }, + { + "start": 17650.28, + "end": 17650.78, + "probability": 0.7353 + }, + { + "start": 17650.8, + "end": 17651.84, + "probability": 0.9424 + }, + { + "start": 17652.3, + "end": 17654.46, + "probability": 0.8718 + }, + { + "start": 17654.94, + "end": 17659.6, + "probability": 0.7667 + }, + { + "start": 17660.56, + "end": 17662.5, + "probability": 0.7012 + }, + { + "start": 17662.82, + "end": 17664.3, + "probability": 0.7459 + }, + { + "start": 17665.36, + "end": 17665.99, + "probability": 0.8914 + }, + { + "start": 17667.4, + "end": 17672.96, + "probability": 0.9678 + }, + { + "start": 17674.48, + "end": 17674.84, + "probability": 0.5944 + }, + { + "start": 17675.94, + "end": 17677.46, + "probability": 0.66 + }, + { + "start": 17678.46, + "end": 17679.26, + "probability": 0.8236 + }, + { + "start": 17680.26, + "end": 17681.36, + "probability": 0.6916 + }, + { + "start": 17682.58, + "end": 17684.62, + "probability": 0.9808 + }, + { + "start": 17685.04, + "end": 17687.24, + "probability": 0.9859 + }, + { + "start": 17688.06, + "end": 17688.52, + "probability": 0.648 + }, + { + "start": 17689.52, + "end": 17693.42, + "probability": 0.9611 + }, + { + "start": 17693.5, + "end": 17694.54, + "probability": 0.516 + }, + { + "start": 17694.74, + "end": 17694.9, + "probability": 0.6993 + }, + { + "start": 17694.94, + "end": 17696.21, + "probability": 0.786 + }, + { + "start": 17696.38, + "end": 17697.26, + "probability": 0.8924 + }, + { + "start": 17697.98, + "end": 17699.88, + "probability": 0.9849 + }, + { + "start": 17700.6, + "end": 17701.86, + "probability": 0.5376 + }, + { + "start": 17702.3, + "end": 17702.62, + "probability": 0.7735 + }, + { + "start": 17703.3, + "end": 17704.32, + "probability": 0.9321 + }, + { + "start": 17705.74, + "end": 17706.88, + "probability": 0.9172 + }, + { + "start": 17707.74, + "end": 17714.26, + "probability": 0.9958 + }, + { + "start": 17714.96, + "end": 17715.94, + "probability": 0.8262 + }, + { + "start": 17716.06, + "end": 17717.44, + "probability": 0.9845 + }, + { + "start": 17718.1, + "end": 17718.77, + "probability": 0.9292 + }, + { + "start": 17719.66, + "end": 17721.0, + "probability": 0.7389 + }, + { + "start": 17721.5, + "end": 17727.3, + "probability": 0.9268 + }, + { + "start": 17728.64, + "end": 17729.46, + "probability": 0.4374 + }, + { + "start": 17730.42, + "end": 17730.56, + "probability": 0.2865 + }, + { + "start": 17731.3, + "end": 17734.2, + "probability": 0.8031 + }, + { + "start": 17734.46, + "end": 17735.66, + "probability": 0.938 + }, + { + "start": 17736.24, + "end": 17738.9, + "probability": 0.7024 + }, + { + "start": 17739.48, + "end": 17741.5, + "probability": 0.8792 + }, + { + "start": 17741.56, + "end": 17742.3, + "probability": 0.9666 + }, + { + "start": 17742.8, + "end": 17746.5, + "probability": 0.9062 + }, + { + "start": 17746.8, + "end": 17750.14, + "probability": 0.7797 + }, + { + "start": 17750.52, + "end": 17752.5, + "probability": 0.9586 + }, + { + "start": 17752.62, + "end": 17754.86, + "probability": 0.6979 + }, + { + "start": 17754.94, + "end": 17755.91, + "probability": 0.9546 + }, + { + "start": 17757.32, + "end": 17758.8, + "probability": 0.9444 + }, + { + "start": 17760.89, + "end": 17763.72, + "probability": 0.7373 + }, + { + "start": 17763.72, + "end": 17763.76, + "probability": 0.0307 + }, + { + "start": 17763.76, + "end": 17763.92, + "probability": 0.7333 + }, + { + "start": 17764.6, + "end": 17765.52, + "probability": 0.9692 + }, + { + "start": 17766.36, + "end": 17768.2, + "probability": 0.7188 + }, + { + "start": 17769.28, + "end": 17772.6, + "probability": 0.9614 + }, + { + "start": 17773.02, + "end": 17774.54, + "probability": 0.9541 + }, + { + "start": 17776.18, + "end": 17778.54, + "probability": 0.7111 + }, + { + "start": 17779.92, + "end": 17781.3, + "probability": 0.8801 + }, + { + "start": 17781.5, + "end": 17785.66, + "probability": 0.9979 + }, + { + "start": 17785.66, + "end": 17790.46, + "probability": 0.999 + }, + { + "start": 17791.02, + "end": 17793.64, + "probability": 0.9993 + }, + { + "start": 17795.02, + "end": 17796.22, + "probability": 0.7878 + }, + { + "start": 17798.9, + "end": 17799.44, + "probability": 0.7809 + }, + { + "start": 17800.26, + "end": 17801.82, + "probability": 0.9934 + }, + { + "start": 17804.34, + "end": 17806.44, + "probability": 0.9526 + }, + { + "start": 17809.26, + "end": 17809.78, + "probability": 0.763 + }, + { + "start": 17810.7, + "end": 17812.98, + "probability": 0.9855 + }, + { + "start": 17813.9, + "end": 17815.06, + "probability": 0.8651 + }, + { + "start": 17817.44, + "end": 17818.48, + "probability": 0.774 + }, + { + "start": 17819.02, + "end": 17820.68, + "probability": 0.9618 + }, + { + "start": 17822.2, + "end": 17824.18, + "probability": 0.5509 + }, + { + "start": 17824.6, + "end": 17826.64, + "probability": 0.9785 + }, + { + "start": 17826.7, + "end": 17828.2, + "probability": 0.6351 + }, + { + "start": 17829.0, + "end": 17832.86, + "probability": 0.9591 + }, + { + "start": 17833.62, + "end": 17836.64, + "probability": 0.9719 + }, + { + "start": 17837.16, + "end": 17838.94, + "probability": 0.9352 + }, + { + "start": 17839.54, + "end": 17844.8, + "probability": 0.8996 + }, + { + "start": 17845.48, + "end": 17846.61, + "probability": 0.998 + }, + { + "start": 17847.3, + "end": 17849.68, + "probability": 0.9739 + }, + { + "start": 17850.24, + "end": 17853.1, + "probability": 0.948 + }, + { + "start": 17853.4, + "end": 17856.4, + "probability": 0.9823 + }, + { + "start": 17856.7, + "end": 17857.84, + "probability": 0.9954 + }, + { + "start": 17858.76, + "end": 17859.18, + "probability": 0.7456 + }, + { + "start": 17859.92, + "end": 17860.6, + "probability": 0.9736 + }, + { + "start": 17861.18, + "end": 17867.0, + "probability": 0.9897 + }, + { + "start": 17867.88, + "end": 17870.6, + "probability": 0.9547 + }, + { + "start": 17870.8, + "end": 17872.02, + "probability": 0.8932 + }, + { + "start": 17872.38, + "end": 17873.7, + "probability": 0.9582 + }, + { + "start": 17873.92, + "end": 17877.24, + "probability": 0.8705 + }, + { + "start": 17877.24, + "end": 17878.2, + "probability": 0.8593 + }, + { + "start": 17878.26, + "end": 17879.12, + "probability": 0.641 + }, + { + "start": 17879.56, + "end": 17879.92, + "probability": 0.5781 + }, + { + "start": 17880.34, + "end": 17880.52, + "probability": 0.639 + }, + { + "start": 17880.64, + "end": 17881.76, + "probability": 0.5187 + }, + { + "start": 17883.58, + "end": 17883.58, + "probability": 0.0575 + }, + { + "start": 17883.58, + "end": 17884.24, + "probability": 0.9204 + }, + { + "start": 17885.5, + "end": 17887.26, + "probability": 0.831 + }, + { + "start": 17888.22, + "end": 17888.64, + "probability": 0.9471 + }, + { + "start": 17889.54, + "end": 17895.64, + "probability": 0.9712 + }, + { + "start": 17899.09, + "end": 17904.1, + "probability": 0.832 + }, + { + "start": 17904.8, + "end": 17907.86, + "probability": 0.8105 + }, + { + "start": 17908.38, + "end": 17909.8, + "probability": 0.9976 + }, + { + "start": 17910.56, + "end": 17916.28, + "probability": 0.9918 + }, + { + "start": 17916.92, + "end": 17918.6, + "probability": 0.899 + }, + { + "start": 17919.32, + "end": 17921.33, + "probability": 0.9724 + }, + { + "start": 17922.0, + "end": 17922.82, + "probability": 0.6305 + }, + { + "start": 17923.5, + "end": 17924.02, + "probability": 0.7665 + }, + { + "start": 17924.64, + "end": 17926.94, + "probability": 0.7549 + }, + { + "start": 17927.88, + "end": 17929.2, + "probability": 0.9639 + }, + { + "start": 17929.86, + "end": 17930.38, + "probability": 0.9681 + }, + { + "start": 17931.16, + "end": 17934.22, + "probability": 0.9477 + }, + { + "start": 17935.78, + "end": 17937.72, + "probability": 0.4158 + }, + { + "start": 17937.96, + "end": 17939.58, + "probability": 0.7976 + }, + { + "start": 17939.7, + "end": 17941.02, + "probability": 0.8989 + }, + { + "start": 17941.1, + "end": 17942.01, + "probability": 0.9656 + }, + { + "start": 17942.6, + "end": 17943.28, + "probability": 0.7277 + }, + { + "start": 17944.06, + "end": 17948.02, + "probability": 0.9778 + }, + { + "start": 17948.08, + "end": 17949.02, + "probability": 0.7114 + }, + { + "start": 17949.38, + "end": 17950.14, + "probability": 0.7953 + }, + { + "start": 17950.2, + "end": 17955.02, + "probability": 0.997 + }, + { + "start": 17955.12, + "end": 17957.76, + "probability": 0.9333 + }, + { + "start": 17958.46, + "end": 17960.66, + "probability": 0.7019 + }, + { + "start": 17961.22, + "end": 17962.18, + "probability": 0.9328 + }, + { + "start": 17962.78, + "end": 17963.38, + "probability": 0.6897 + }, + { + "start": 17964.36, + "end": 17966.42, + "probability": 0.9875 + }, + { + "start": 17967.72, + "end": 17969.78, + "probability": 0.9777 + }, + { + "start": 17971.0, + "end": 17972.76, + "probability": 0.7692 + }, + { + "start": 17973.5, + "end": 17975.28, + "probability": 0.969 + }, + { + "start": 17976.38, + "end": 17977.36, + "probability": 0.5187 + }, + { + "start": 17978.3, + "end": 17978.76, + "probability": 0.8606 + }, + { + "start": 17979.42, + "end": 17981.5, + "probability": 0.9669 + }, + { + "start": 17982.04, + "end": 17983.88, + "probability": 0.9745 + }, + { + "start": 17984.86, + "end": 17988.34, + "probability": 0.9967 + }, + { + "start": 17988.92, + "end": 17994.94, + "probability": 0.8976 + }, + { + "start": 17995.46, + "end": 18000.6, + "probability": 0.8354 + }, + { + "start": 18001.16, + "end": 18006.08, + "probability": 0.9865 + }, + { + "start": 18006.12, + "end": 18006.86, + "probability": 0.6683 + }, + { + "start": 18007.32, + "end": 18008.76, + "probability": 0.7493 + }, + { + "start": 18009.24, + "end": 18012.16, + "probability": 0.9337 + }, + { + "start": 18012.16, + "end": 18012.26, + "probability": 0.4572 + }, + { + "start": 18013.46, + "end": 18014.92, + "probability": 0.8113 + }, + { + "start": 18015.24, + "end": 18017.98, + "probability": 0.914 + }, + { + "start": 18018.58, + "end": 18019.78, + "probability": 0.9673 + }, + { + "start": 18020.27, + "end": 18025.08, + "probability": 0.9978 + }, + { + "start": 18025.4, + "end": 18028.9, + "probability": 0.9985 + }, + { + "start": 18029.42, + "end": 18033.58, + "probability": 0.9576 + }, + { + "start": 18033.9, + "end": 18034.64, + "probability": 0.8021 + }, + { + "start": 18034.98, + "end": 18039.4, + "probability": 0.9721 + }, + { + "start": 18039.52, + "end": 18039.76, + "probability": 0.8171 + }, + { + "start": 18040.26, + "end": 18042.48, + "probability": 0.9524 + }, + { + "start": 18042.64, + "end": 18043.84, + "probability": 0.8726 + }, + { + "start": 18045.84, + "end": 18046.6, + "probability": 0.5797 + }, + { + "start": 18052.8, + "end": 18055.16, + "probability": 0.9 + }, + { + "start": 18059.2, + "end": 18060.46, + "probability": 0.698 + }, + { + "start": 18061.62, + "end": 18064.16, + "probability": 0.6741 + }, + { + "start": 18064.22, + "end": 18065.08, + "probability": 0.5635 + }, + { + "start": 18065.16, + "end": 18065.52, + "probability": 0.7516 + }, + { + "start": 18065.64, + "end": 18065.74, + "probability": 0.8562 + }, + { + "start": 18066.78, + "end": 18066.9, + "probability": 0.0646 + }, + { + "start": 18067.32, + "end": 18069.52, + "probability": 0.3608 + }, + { + "start": 18069.52, + "end": 18069.86, + "probability": 0.4641 + }, + { + "start": 18070.04, + "end": 18071.0, + "probability": 0.1584 + }, + { + "start": 18072.44, + "end": 18072.86, + "probability": 0.2542 + }, + { + "start": 18073.4, + "end": 18075.12, + "probability": 0.8197 + }, + { + "start": 18076.46, + "end": 18080.68, + "probability": 0.9779 + }, + { + "start": 18081.3, + "end": 18083.94, + "probability": 0.8897 + }, + { + "start": 18084.62, + "end": 18087.78, + "probability": 0.9199 + }, + { + "start": 18089.08, + "end": 18090.66, + "probability": 0.6689 + }, + { + "start": 18093.78, + "end": 18094.56, + "probability": 0.96 + }, + { + "start": 18094.64, + "end": 18095.66, + "probability": 0.8174 + }, + { + "start": 18096.16, + "end": 18100.4, + "probability": 0.9894 + }, + { + "start": 18101.42, + "end": 18103.56, + "probability": 0.7279 + }, + { + "start": 18105.44, + "end": 18106.14, + "probability": 0.5407 + }, + { + "start": 18107.02, + "end": 18110.58, + "probability": 0.8599 + }, + { + "start": 18111.72, + "end": 18113.74, + "probability": 0.9785 + }, + { + "start": 18115.0, + "end": 18116.4, + "probability": 0.9922 + }, + { + "start": 18117.08, + "end": 18119.12, + "probability": 0.9745 + }, + { + "start": 18119.7, + "end": 18122.2, + "probability": 0.9827 + }, + { + "start": 18124.22, + "end": 18124.36, + "probability": 0.4448 + }, + { + "start": 18125.64, + "end": 18125.92, + "probability": 0.0439 + }, + { + "start": 18125.92, + "end": 18126.02, + "probability": 0.0373 + }, + { + "start": 18126.92, + "end": 18130.68, + "probability": 0.8686 + }, + { + "start": 18134.1, + "end": 18135.0, + "probability": 0.9331 + }, + { + "start": 18137.22, + "end": 18138.11, + "probability": 0.9579 + }, + { + "start": 18140.6, + "end": 18141.9, + "probability": 0.9559 + }, + { + "start": 18142.74, + "end": 18144.28, + "probability": 0.7216 + }, + { + "start": 18144.32, + "end": 18145.2, + "probability": 0.9173 + }, + { + "start": 18145.24, + "end": 18146.48, + "probability": 0.9681 + }, + { + "start": 18150.3, + "end": 18151.06, + "probability": 0.1248 + }, + { + "start": 18151.24, + "end": 18153.2, + "probability": 0.8434 + }, + { + "start": 18153.44, + "end": 18155.62, + "probability": 0.732 + }, + { + "start": 18155.76, + "end": 18156.76, + "probability": 0.7678 + }, + { + "start": 18157.08, + "end": 18157.88, + "probability": 0.9199 + }, + { + "start": 18158.34, + "end": 18159.46, + "probability": 0.9385 + }, + { + "start": 18159.62, + "end": 18161.1, + "probability": 0.8904 + }, + { + "start": 18161.38, + "end": 18162.22, + "probability": 0.7644 + }, + { + "start": 18162.32, + "end": 18162.4, + "probability": 0.3189 + }, + { + "start": 18162.52, + "end": 18163.12, + "probability": 0.6117 + }, + { + "start": 18163.14, + "end": 18163.68, + "probability": 0.9104 + }, + { + "start": 18163.82, + "end": 18164.88, + "probability": 0.9515 + }, + { + "start": 18165.22, + "end": 18167.8, + "probability": 0.3705 + }, + { + "start": 18168.02, + "end": 18168.82, + "probability": 0.3326 + }, + { + "start": 18168.86, + "end": 18169.72, + "probability": 0.4722 + }, + { + "start": 18169.86, + "end": 18170.4, + "probability": 0.6562 + }, + { + "start": 18170.5, + "end": 18170.5, + "probability": 0.5563 + }, + { + "start": 18170.5, + "end": 18170.5, + "probability": 0.7548 + }, + { + "start": 18170.5, + "end": 18170.5, + "probability": 0.461 + }, + { + "start": 18170.54, + "end": 18171.36, + "probability": 0.4148 + }, + { + "start": 18171.36, + "end": 18172.56, + "probability": 0.9626 + }, + { + "start": 18172.7, + "end": 18173.98, + "probability": 0.8108 + }, + { + "start": 18174.2, + "end": 18175.28, + "probability": 0.8209 + }, + { + "start": 18175.48, + "end": 18176.69, + "probability": 0.9659 + }, + { + "start": 18177.9, + "end": 18183.32, + "probability": 0.8703 + }, + { + "start": 18183.86, + "end": 18186.0, + "probability": 0.9958 + }, + { + "start": 18189.42, + "end": 18189.92, + "probability": 0.5092 + }, + { + "start": 18191.82, + "end": 18192.36, + "probability": 0.7854 + }, + { + "start": 18192.44, + "end": 18192.94, + "probability": 0.8597 + }, + { + "start": 18192.98, + "end": 18194.26, + "probability": 0.9264 + }, + { + "start": 18194.32, + "end": 18194.92, + "probability": 0.6198 + }, + { + "start": 18195.06, + "end": 18196.46, + "probability": 0.7032 + }, + { + "start": 18197.1, + "end": 18198.16, + "probability": 0.9759 + }, + { + "start": 18199.78, + "end": 18200.34, + "probability": 0.4675 + }, + { + "start": 18200.58, + "end": 18203.32, + "probability": 0.9184 + }, + { + "start": 18204.9, + "end": 18205.32, + "probability": 0.761 + }, + { + "start": 18206.08, + "end": 18208.58, + "probability": 0.845 + }, + { + "start": 18208.64, + "end": 18210.2, + "probability": 0.2103 + }, + { + "start": 18210.72, + "end": 18211.88, + "probability": 0.5194 + }, + { + "start": 18212.88, + "end": 18214.3, + "probability": 0.8493 + }, + { + "start": 18214.46, + "end": 18214.88, + "probability": 0.8452 + }, + { + "start": 18214.88, + "end": 18215.56, + "probability": 0.9556 + }, + { + "start": 18215.68, + "end": 18216.76, + "probability": 0.8592 + }, + { + "start": 18216.98, + "end": 18217.74, + "probability": 0.9902 + }, + { + "start": 18218.18, + "end": 18219.42, + "probability": 0.8467 + }, + { + "start": 18219.46, + "end": 18220.14, + "probability": 0.6037 + }, + { + "start": 18220.6, + "end": 18221.72, + "probability": 0.6952 + }, + { + "start": 18222.4, + "end": 18222.8, + "probability": 0.5396 + }, + { + "start": 18222.88, + "end": 18224.18, + "probability": 0.8568 + }, + { + "start": 18225.44, + "end": 18226.36, + "probability": 0.593 + }, + { + "start": 18226.48, + "end": 18228.58, + "probability": 0.7532 + }, + { + "start": 18228.64, + "end": 18228.8, + "probability": 0.3039 + }, + { + "start": 18228.8, + "end": 18228.9, + "probability": 0.1408 + }, + { + "start": 18229.04, + "end": 18230.6, + "probability": 0.4727 + }, + { + "start": 18231.46, + "end": 18232.13, + "probability": 0.9731 + }, + { + "start": 18232.66, + "end": 18233.4, + "probability": 0.7228 + }, + { + "start": 18233.54, + "end": 18234.36, + "probability": 0.961 + }, + { + "start": 18234.46, + "end": 18236.6, + "probability": 0.9562 + }, + { + "start": 18238.1, + "end": 18239.42, + "probability": 0.5656 + }, + { + "start": 18240.42, + "end": 18241.86, + "probability": 0.9901 + }, + { + "start": 18242.16, + "end": 18242.63, + "probability": 0.9899 + }, + { + "start": 18243.0, + "end": 18244.22, + "probability": 0.9953 + }, + { + "start": 18245.66, + "end": 18247.04, + "probability": 0.8817 + }, + { + "start": 18247.52, + "end": 18248.44, + "probability": 0.8296 + }, + { + "start": 18248.58, + "end": 18250.06, + "probability": 0.9956 + }, + { + "start": 18251.72, + "end": 18252.82, + "probability": 0.9172 + }, + { + "start": 18253.74, + "end": 18254.82, + "probability": 0.6211 + }, + { + "start": 18258.22, + "end": 18259.32, + "probability": 0.9304 + }, + { + "start": 18259.42, + "end": 18260.18, + "probability": 0.9571 + }, + { + "start": 18260.22, + "end": 18261.14, + "probability": 0.9812 + }, + { + "start": 18262.24, + "end": 18264.4, + "probability": 0.7182 + }, + { + "start": 18266.86, + "end": 18268.16, + "probability": 0.9407 + }, + { + "start": 18268.2, + "end": 18269.78, + "probability": 0.9927 + }, + { + "start": 18269.84, + "end": 18270.34, + "probability": 0.8575 + }, + { + "start": 18270.75, + "end": 18272.02, + "probability": 0.7721 + }, + { + "start": 18274.04, + "end": 18277.82, + "probability": 0.9771 + }, + { + "start": 18279.24, + "end": 18280.36, + "probability": 0.1772 + }, + { + "start": 18280.92, + "end": 18284.0, + "probability": 0.6911 + }, + { + "start": 18284.12, + "end": 18288.32, + "probability": 0.9905 + }, + { + "start": 18288.78, + "end": 18290.74, + "probability": 0.7552 + }, + { + "start": 18290.86, + "end": 18291.6, + "probability": 0.1968 + }, + { + "start": 18291.66, + "end": 18294.22, + "probability": 0.7495 + }, + { + "start": 18294.54, + "end": 18295.84, + "probability": 0.2009 + }, + { + "start": 18296.0, + "end": 18297.44, + "probability": 0.79 + }, + { + "start": 18297.76, + "end": 18298.76, + "probability": 0.6711 + }, + { + "start": 18298.98, + "end": 18302.74, + "probability": 0.9731 + }, + { + "start": 18303.6, + "end": 18307.18, + "probability": 0.9575 + }, + { + "start": 18307.38, + "end": 18308.51, + "probability": 0.9539 + }, + { + "start": 18310.48, + "end": 18311.4, + "probability": 0.9689 + }, + { + "start": 18312.12, + "end": 18314.44, + "probability": 0.9813 + }, + { + "start": 18316.16, + "end": 18319.36, + "probability": 0.9933 + }, + { + "start": 18320.52, + "end": 18321.06, + "probability": 0.3404 + }, + { + "start": 18321.18, + "end": 18321.8, + "probability": 0.8036 + }, + { + "start": 18322.32, + "end": 18324.28, + "probability": 0.9136 + }, + { + "start": 18325.24, + "end": 18325.8, + "probability": 0.7325 + }, + { + "start": 18326.08, + "end": 18326.94, + "probability": 0.843 + }, + { + "start": 18327.02, + "end": 18327.9, + "probability": 0.9551 + }, + { + "start": 18327.96, + "end": 18329.76, + "probability": 0.9138 + }, + { + "start": 18329.9, + "end": 18330.92, + "probability": 0.8551 + }, + { + "start": 18331.26, + "end": 18331.8, + "probability": 0.9784 + }, + { + "start": 18332.86, + "end": 18337.18, + "probability": 0.984 + }, + { + "start": 18337.68, + "end": 18338.1, + "probability": 0.6465 + }, + { + "start": 18338.18, + "end": 18338.72, + "probability": 0.8466 + }, + { + "start": 18340.28, + "end": 18340.86, + "probability": 0.4799 + }, + { + "start": 18342.08, + "end": 18346.48, + "probability": 0.9753 + }, + { + "start": 18347.78, + "end": 18352.02, + "probability": 0.9963 + }, + { + "start": 18353.4, + "end": 18356.4, + "probability": 0.8179 + }, + { + "start": 18356.6, + "end": 18360.02, + "probability": 0.4464 + }, + { + "start": 18360.16, + "end": 18360.34, + "probability": 0.3504 + }, + { + "start": 18361.02, + "end": 18362.12, + "probability": 0.8821 + }, + { + "start": 18362.26, + "end": 18363.34, + "probability": 0.8921 + }, + { + "start": 18364.36, + "end": 18367.46, + "probability": 0.8044 + }, + { + "start": 18367.62, + "end": 18368.38, + "probability": 0.9039 + }, + { + "start": 18368.84, + "end": 18374.3, + "probability": 0.9541 + }, + { + "start": 18374.82, + "end": 18375.6, + "probability": 0.6598 + }, + { + "start": 18375.98, + "end": 18377.66, + "probability": 0.7197 + }, + { + "start": 18378.02, + "end": 18382.44, + "probability": 0.9211 + }, + { + "start": 18383.14, + "end": 18385.7, + "probability": 0.8818 + }, + { + "start": 18386.8, + "end": 18387.78, + "probability": 0.9762 + }, + { + "start": 18388.36, + "end": 18390.6, + "probability": 0.9601 + }, + { + "start": 18391.76, + "end": 18392.82, + "probability": 0.889 + }, + { + "start": 18393.56, + "end": 18394.46, + "probability": 0.9313 + }, + { + "start": 18394.98, + "end": 18397.56, + "probability": 0.6852 + }, + { + "start": 18398.5, + "end": 18400.34, + "probability": 0.9953 + }, + { + "start": 18401.1, + "end": 18404.78, + "probability": 0.917 + }, + { + "start": 18405.42, + "end": 18407.84, + "probability": 0.6668 + }, + { + "start": 18409.1, + "end": 18412.54, + "probability": 0.8894 + }, + { + "start": 18413.58, + "end": 18417.24, + "probability": 0.9681 + }, + { + "start": 18418.26, + "end": 18421.84, + "probability": 0.9668 + }, + { + "start": 18422.42, + "end": 18427.22, + "probability": 0.6971 + }, + { + "start": 18427.38, + "end": 18427.7, + "probability": 0.4545 + }, + { + "start": 18428.12, + "end": 18428.5, + "probability": 0.9001 + }, + { + "start": 18428.6, + "end": 18429.32, + "probability": 0.791 + }, + { + "start": 18429.92, + "end": 18436.08, + "probability": 0.9722 + }, + { + "start": 18436.46, + "end": 18438.48, + "probability": 0.998 + }, + { + "start": 18441.34, + "end": 18442.14, + "probability": 0.7656 + }, + { + "start": 18443.16, + "end": 18444.1, + "probability": 0.6884 + }, + { + "start": 18445.5, + "end": 18447.28, + "probability": 0.9157 + }, + { + "start": 18448.46, + "end": 18449.42, + "probability": 0.6215 + }, + { + "start": 18449.46, + "end": 18452.46, + "probability": 0.9451 + }, + { + "start": 18452.54, + "end": 18452.86, + "probability": 0.7964 + }, + { + "start": 18454.3, + "end": 18455.88, + "probability": 0.2621 + }, + { + "start": 18456.1, + "end": 18459.48, + "probability": 0.5854 + }, + { + "start": 18459.62, + "end": 18459.74, + "probability": 0.2496 + }, + { + "start": 18459.74, + "end": 18460.9, + "probability": 0.7992 + }, + { + "start": 18461.98, + "end": 18462.96, + "probability": 0.4855 + }, + { + "start": 18463.36, + "end": 18465.12, + "probability": 0.9964 + }, + { + "start": 18465.32, + "end": 18466.04, + "probability": 0.9659 + }, + { + "start": 18466.5, + "end": 18467.42, + "probability": 0.9014 + }, + { + "start": 18467.82, + "end": 18469.74, + "probability": 0.9534 + }, + { + "start": 18471.7, + "end": 18472.64, + "probability": 0.8787 + }, + { + "start": 18474.5, + "end": 18474.86, + "probability": 0.1585 + }, + { + "start": 18474.86, + "end": 18476.56, + "probability": 0.8712 + }, + { + "start": 18478.28, + "end": 18480.26, + "probability": 0.9713 + }, + { + "start": 18482.04, + "end": 18483.46, + "probability": 0.8848 + }, + { + "start": 18484.7, + "end": 18486.24, + "probability": 0.927 + }, + { + "start": 18489.12, + "end": 18491.06, + "probability": 0.9783 + }, + { + "start": 18491.22, + "end": 18492.35, + "probability": 0.9102 + }, + { + "start": 18493.34, + "end": 18497.76, + "probability": 0.9873 + }, + { + "start": 18498.08, + "end": 18500.04, + "probability": 0.8828 + }, + { + "start": 18500.34, + "end": 18503.38, + "probability": 0.9876 + }, + { + "start": 18503.96, + "end": 18508.8, + "probability": 0.9458 + }, + { + "start": 18508.9, + "end": 18509.48, + "probability": 0.4474 + }, + { + "start": 18510.48, + "end": 18511.14, + "probability": 0.5329 + }, + { + "start": 18514.58, + "end": 18515.64, + "probability": 0.9648 + }, + { + "start": 18515.7, + "end": 18516.16, + "probability": 0.8599 + }, + { + "start": 18517.45, + "end": 18517.86, + "probability": 0.1015 + }, + { + "start": 18517.86, + "end": 18518.1, + "probability": 0.4041 + }, + { + "start": 18518.22, + "end": 18519.14, + "probability": 0.6802 + }, + { + "start": 18520.7, + "end": 18521.56, + "probability": 0.7734 + }, + { + "start": 18521.89, + "end": 18524.7, + "probability": 0.8778 + }, + { + "start": 18524.78, + "end": 18529.04, + "probability": 0.965 + }, + { + "start": 18529.16, + "end": 18529.9, + "probability": 0.5381 + }, + { + "start": 18530.56, + "end": 18531.8, + "probability": 0.7815 + }, + { + "start": 18531.94, + "end": 18533.46, + "probability": 0.9043 + }, + { + "start": 18533.58, + "end": 18534.66, + "probability": 0.6698 + }, + { + "start": 18534.74, + "end": 18537.02, + "probability": 0.6968 + }, + { + "start": 18537.08, + "end": 18538.63, + "probability": 0.5407 + }, + { + "start": 18538.86, + "end": 18542.56, + "probability": 0.589 + }, + { + "start": 18544.98, + "end": 18545.12, + "probability": 0.0117 + }, + { + "start": 18545.12, + "end": 18545.18, + "probability": 0.0741 + }, + { + "start": 18545.18, + "end": 18545.18, + "probability": 0.0369 + }, + { + "start": 18545.18, + "end": 18545.18, + "probability": 0.1701 + }, + { + "start": 18545.18, + "end": 18545.18, + "probability": 0.0201 + }, + { + "start": 18545.18, + "end": 18546.34, + "probability": 0.3902 + }, + { + "start": 18546.42, + "end": 18546.82, + "probability": 0.748 + }, + { + "start": 18548.4, + "end": 18552.78, + "probability": 0.882 + }, + { + "start": 18554.9, + "end": 18557.02, + "probability": 0.9614 + }, + { + "start": 18558.02, + "end": 18558.54, + "probability": 0.5854 + }, + { + "start": 18560.24, + "end": 18562.02, + "probability": 0.8371 + }, + { + "start": 18562.62, + "end": 18563.46, + "probability": 0.9033 + }, + { + "start": 18567.46, + "end": 18568.96, + "probability": 0.9971 + }, + { + "start": 18569.28, + "end": 18569.68, + "probability": 0.7808 + }, + { + "start": 18569.76, + "end": 18570.4, + "probability": 0.7528 + }, + { + "start": 18571.96, + "end": 18574.7, + "probability": 0.9978 + }, + { + "start": 18575.58, + "end": 18576.88, + "probability": 0.9724 + }, + { + "start": 18577.34, + "end": 18579.56, + "probability": 0.5043 + }, + { + "start": 18580.04, + "end": 18581.98, + "probability": 0.7056 + }, + { + "start": 18582.34, + "end": 18582.58, + "probability": 0.8729 + }, + { + "start": 18583.26, + "end": 18585.2, + "probability": 0.8188 + }, + { + "start": 18585.34, + "end": 18587.64, + "probability": 0.9504 + }, + { + "start": 18610.34, + "end": 18613.9, + "probability": 0.0874 + }, + { + "start": 18616.34, + "end": 18616.56, + "probability": 0.0845 + }, + { + "start": 18617.14, + "end": 18618.9, + "probability": 0.2818 + }, + { + "start": 18620.36, + "end": 18620.36, + "probability": 0.0725 + }, + { + "start": 18620.36, + "end": 18623.66, + "probability": 0.0644 + }, + { + "start": 18624.12, + "end": 18625.32, + "probability": 0.49 + }, + { + "start": 18626.38, + "end": 18628.14, + "probability": 0.812 + }, + { + "start": 18629.46, + "end": 18630.74, + "probability": 0.6182 + }, + { + "start": 18632.12, + "end": 18633.74, + "probability": 0.8813 + }, + { + "start": 18634.4, + "end": 18636.02, + "probability": 0.8688 + }, + { + "start": 18637.08, + "end": 18638.96, + "probability": 0.9236 + }, + { + "start": 18639.42, + "end": 18641.32, + "probability": 0.917 + }, + { + "start": 18641.56, + "end": 18642.82, + "probability": 0.0857 + }, + { + "start": 18643.18, + "end": 18645.25, + "probability": 0.736 + }, + { + "start": 18648.28, + "end": 18659.16, + "probability": 0.7421 + }, + { + "start": 18660.28, + "end": 18662.2, + "probability": 0.9594 + }, + { + "start": 18662.26, + "end": 18663.26, + "probability": 0.8898 + }, + { + "start": 18664.72, + "end": 18669.5, + "probability": 0.916 + }, + { + "start": 18671.2, + "end": 18674.49, + "probability": 0.899 + }, + { + "start": 18676.28, + "end": 18679.6, + "probability": 0.9961 + }, + { + "start": 18679.74, + "end": 18683.38, + "probability": 0.9959 + }, + { + "start": 18684.18, + "end": 18687.56, + "probability": 0.9287 + }, + { + "start": 18690.46, + "end": 18692.56, + "probability": 0.9272 + }, + { + "start": 18693.86, + "end": 18695.86, + "probability": 0.9958 + }, + { + "start": 18695.96, + "end": 18697.58, + "probability": 0.9751 + }, + { + "start": 18700.16, + "end": 18700.92, + "probability": 0.9756 + }, + { + "start": 18701.88, + "end": 18702.82, + "probability": 0.894 + }, + { + "start": 18703.8, + "end": 18705.66, + "probability": 0.8682 + }, + { + "start": 18706.46, + "end": 18707.24, + "probability": 0.9242 + }, + { + "start": 18707.96, + "end": 18710.46, + "probability": 0.9626 + }, + { + "start": 18711.02, + "end": 18715.64, + "probability": 0.9862 + }, + { + "start": 18716.9, + "end": 18717.8, + "probability": 0.9695 + }, + { + "start": 18720.13, + "end": 18723.04, + "probability": 0.8679 + }, + { + "start": 18724.36, + "end": 18726.16, + "probability": 0.9966 + }, + { + "start": 18726.9, + "end": 18732.8, + "probability": 0.9419 + }, + { + "start": 18733.74, + "end": 18734.5, + "probability": 0.9736 + }, + { + "start": 18736.16, + "end": 18737.38, + "probability": 0.7804 + }, + { + "start": 18739.3, + "end": 18742.48, + "probability": 0.7999 + }, + { + "start": 18743.32, + "end": 18745.23, + "probability": 0.958 + }, + { + "start": 18745.9, + "end": 18747.68, + "probability": 0.9995 + }, + { + "start": 18748.42, + "end": 18749.48, + "probability": 0.9997 + }, + { + "start": 18750.14, + "end": 18752.16, + "probability": 0.8351 + }, + { + "start": 18753.3, + "end": 18754.4, + "probability": 0.9271 + }, + { + "start": 18756.32, + "end": 18760.34, + "probability": 0.9487 + }, + { + "start": 18761.72, + "end": 18764.52, + "probability": 0.9911 + }, + { + "start": 18765.26, + "end": 18766.0, + "probability": 0.6063 + }, + { + "start": 18766.94, + "end": 18768.96, + "probability": 0.8923 + }, + { + "start": 18770.26, + "end": 18771.02, + "probability": 0.9482 + }, + { + "start": 18772.2, + "end": 18773.26, + "probability": 0.88 + }, + { + "start": 18773.66, + "end": 18774.12, + "probability": 0.8144 + }, + { + "start": 18774.48, + "end": 18775.16, + "probability": 0.882 + }, + { + "start": 18775.32, + "end": 18778.62, + "probability": 0.9883 + }, + { + "start": 18779.64, + "end": 18784.04, + "probability": 0.9949 + }, + { + "start": 18784.92, + "end": 18786.08, + "probability": 0.9997 + }, + { + "start": 18787.06, + "end": 18788.1, + "probability": 0.9958 + }, + { + "start": 18788.2, + "end": 18791.32, + "probability": 0.8859 + }, + { + "start": 18791.46, + "end": 18792.38, + "probability": 0.7273 + }, + { + "start": 18793.18, + "end": 18795.3, + "probability": 0.9955 + }, + { + "start": 18796.74, + "end": 18798.76, + "probability": 0.8577 + }, + { + "start": 18799.64, + "end": 18801.9, + "probability": 0.8206 + }, + { + "start": 18803.44, + "end": 18807.78, + "probability": 0.999 + }, + { + "start": 18808.52, + "end": 18809.84, + "probability": 0.9697 + }, + { + "start": 18810.54, + "end": 18813.7, + "probability": 0.6812 + }, + { + "start": 18815.54, + "end": 18819.65, + "probability": 0.9894 + }, + { + "start": 18819.86, + "end": 18823.36, + "probability": 0.9796 + }, + { + "start": 18824.6, + "end": 18826.74, + "probability": 0.998 + }, + { + "start": 18827.94, + "end": 18829.66, + "probability": 0.998 + }, + { + "start": 18831.7, + "end": 18832.74, + "probability": 0.9998 + }, + { + "start": 18833.86, + "end": 18834.62, + "probability": 0.946 + }, + { + "start": 18836.86, + "end": 18840.18, + "probability": 0.9503 + }, + { + "start": 18841.94, + "end": 18843.96, + "probability": 0.9688 + }, + { + "start": 18845.3, + "end": 18845.94, + "probability": 0.9654 + }, + { + "start": 18846.86, + "end": 18849.27, + "probability": 0.9858 + }, + { + "start": 18851.08, + "end": 18852.34, + "probability": 0.8958 + }, + { + "start": 18854.28, + "end": 18855.78, + "probability": 0.992 + }, + { + "start": 18857.88, + "end": 18862.12, + "probability": 0.927 + }, + { + "start": 18863.0, + "end": 18863.7, + "probability": 0.8716 + }, + { + "start": 18864.52, + "end": 18865.82, + "probability": 0.9779 + }, + { + "start": 18867.34, + "end": 18867.84, + "probability": 0.9131 + }, + { + "start": 18869.94, + "end": 18875.74, + "probability": 0.9861 + }, + { + "start": 18877.66, + "end": 18881.26, + "probability": 0.9952 + }, + { + "start": 18882.86, + "end": 18883.42, + "probability": 0.8112 + }, + { + "start": 18884.08, + "end": 18886.66, + "probability": 0.9058 + }, + { + "start": 18887.7, + "end": 18890.2, + "probability": 0.9946 + }, + { + "start": 18891.84, + "end": 18893.46, + "probability": 0.9999 + }, + { + "start": 18894.2, + "end": 18895.26, + "probability": 0.9619 + }, + { + "start": 18897.28, + "end": 18898.28, + "probability": 0.9745 + }, + { + "start": 18900.18, + "end": 18902.0, + "probability": 0.9983 + }, + { + "start": 18902.92, + "end": 18904.0, + "probability": 0.7216 + }, + { + "start": 18905.32, + "end": 18907.46, + "probability": 0.9014 + }, + { + "start": 18909.74, + "end": 18913.22, + "probability": 0.9865 + }, + { + "start": 18914.56, + "end": 18917.48, + "probability": 0.9697 + }, + { + "start": 18919.02, + "end": 18921.16, + "probability": 0.9954 + }, + { + "start": 18924.64, + "end": 18927.52, + "probability": 0.9954 + }, + { + "start": 18927.84, + "end": 18929.44, + "probability": 0.999 + }, + { + "start": 18930.4, + "end": 18931.46, + "probability": 0.9848 + }, + { + "start": 18932.06, + "end": 18932.99, + "probability": 0.9932 + }, + { + "start": 18933.84, + "end": 18934.84, + "probability": 0.9919 + }, + { + "start": 18936.4, + "end": 18937.66, + "probability": 0.9521 + }, + { + "start": 18938.68, + "end": 18940.8, + "probability": 0.9838 + }, + { + "start": 18941.4, + "end": 18943.48, + "probability": 0.9796 + }, + { + "start": 18945.32, + "end": 18946.26, + "probability": 0.8939 + }, + { + "start": 18947.04, + "end": 18948.06, + "probability": 0.9021 + }, + { + "start": 18948.3, + "end": 18950.02, + "probability": 0.9382 + }, + { + "start": 18950.18, + "end": 18952.22, + "probability": 0.9573 + }, + { + "start": 18952.7, + "end": 18955.2, + "probability": 0.9779 + }, + { + "start": 18955.36, + "end": 18957.51, + "probability": 0.9922 + }, + { + "start": 18958.62, + "end": 18959.24, + "probability": 0.635 + }, + { + "start": 18960.24, + "end": 18965.68, + "probability": 0.9929 + }, + { + "start": 18965.68, + "end": 18965.78, + "probability": 0.1804 + }, + { + "start": 18969.8, + "end": 18970.56, + "probability": 0.8473 + }, + { + "start": 18977.0, + "end": 18979.44, + "probability": 0.9939 + }, + { + "start": 18980.26, + "end": 18981.62, + "probability": 0.9861 + }, + { + "start": 18983.62, + "end": 18985.17, + "probability": 0.9995 + }, + { + "start": 18986.4, + "end": 18987.32, + "probability": 0.7786 + }, + { + "start": 18988.32, + "end": 18989.36, + "probability": 0.9944 + }, + { + "start": 18990.38, + "end": 18991.3, + "probability": 0.9617 + }, + { + "start": 18992.66, + "end": 18994.18, + "probability": 0.9982 + }, + { + "start": 18994.63, + "end": 18995.47, + "probability": 0.9365 + }, + { + "start": 18998.68, + "end": 19000.08, + "probability": 0.9946 + }, + { + "start": 19002.36, + "end": 19003.36, + "probability": 0.9966 + }, + { + "start": 19004.94, + "end": 19008.12, + "probability": 0.9993 + }, + { + "start": 19008.7, + "end": 19009.8, + "probability": 0.9804 + }, + { + "start": 19010.84, + "end": 19011.82, + "probability": 0.9843 + }, + { + "start": 19012.62, + "end": 19014.8, + "probability": 0.9836 + }, + { + "start": 19015.54, + "end": 19017.28, + "probability": 0.9963 + }, + { + "start": 19018.36, + "end": 19019.58, + "probability": 0.9553 + }, + { + "start": 19022.58, + "end": 19022.9, + "probability": 0.7654 + }, + { + "start": 19022.98, + "end": 19026.54, + "probability": 0.9603 + }, + { + "start": 19026.86, + "end": 19028.14, + "probability": 0.9394 + }, + { + "start": 19028.32, + "end": 19031.28, + "probability": 0.4888 + }, + { + "start": 19033.34, + "end": 19037.78, + "probability": 0.9127 + }, + { + "start": 19038.46, + "end": 19040.08, + "probability": 0.9716 + }, + { + "start": 19042.0, + "end": 19046.74, + "probability": 0.9945 + }, + { + "start": 19048.72, + "end": 19049.16, + "probability": 0.5233 + }, + { + "start": 19051.06, + "end": 19053.74, + "probability": 0.9998 + }, + { + "start": 19055.46, + "end": 19056.94, + "probability": 0.9268 + }, + { + "start": 19058.08, + "end": 19060.48, + "probability": 0.9213 + }, + { + "start": 19061.76, + "end": 19065.32, + "probability": 0.9698 + }, + { + "start": 19066.28, + "end": 19068.78, + "probability": 0.981 + }, + { + "start": 19070.12, + "end": 19071.52, + "probability": 0.984 + }, + { + "start": 19074.14, + "end": 19075.44, + "probability": 0.79 + }, + { + "start": 19077.58, + "end": 19079.91, + "probability": 0.991 + }, + { + "start": 19081.44, + "end": 19083.22, + "probability": 0.9449 + }, + { + "start": 19087.76, + "end": 19089.72, + "probability": 0.7737 + }, + { + "start": 19091.62, + "end": 19095.32, + "probability": 0.9736 + }, + { + "start": 19098.12, + "end": 19102.06, + "probability": 0.9128 + }, + { + "start": 19102.94, + "end": 19105.12, + "probability": 0.9676 + }, + { + "start": 19106.52, + "end": 19107.62, + "probability": 0.9508 + }, + { + "start": 19109.06, + "end": 19110.2, + "probability": 0.9981 + }, + { + "start": 19111.1, + "end": 19114.54, + "probability": 0.6432 + }, + { + "start": 19115.34, + "end": 19120.39, + "probability": 0.8833 + }, + { + "start": 19121.5, + "end": 19123.14, + "probability": 0.9976 + }, + { + "start": 19123.28, + "end": 19125.94, + "probability": 0.9866 + }, + { + "start": 19126.6, + "end": 19127.72, + "probability": 0.8517 + }, + { + "start": 19129.36, + "end": 19130.5, + "probability": 0.9536 + }, + { + "start": 19132.38, + "end": 19134.32, + "probability": 0.9386 + }, + { + "start": 19135.86, + "end": 19138.14, + "probability": 0.8066 + }, + { + "start": 19139.54, + "end": 19143.66, + "probability": 0.9058 + }, + { + "start": 19144.1, + "end": 19144.59, + "probability": 0.9742 + }, + { + "start": 19145.52, + "end": 19146.58, + "probability": 0.9955 + }, + { + "start": 19147.54, + "end": 19148.35, + "probability": 0.9888 + }, + { + "start": 19149.42, + "end": 19153.7, + "probability": 0.9874 + }, + { + "start": 19154.38, + "end": 19154.68, + "probability": 0.0847 + }, + { + "start": 19155.08, + "end": 19155.62, + "probability": 0.8265 + }, + { + "start": 19155.92, + "end": 19156.02, + "probability": 0.4601 + }, + { + "start": 19156.24, + "end": 19158.34, + "probability": 0.8921 + }, + { + "start": 19158.52, + "end": 19159.13, + "probability": 0.9396 + }, + { + "start": 19159.3, + "end": 19160.62, + "probability": 0.9922 + }, + { + "start": 19160.92, + "end": 19161.8, + "probability": 0.4149 + }, + { + "start": 19162.3, + "end": 19163.22, + "probability": 0.581 + }, + { + "start": 19164.88, + "end": 19168.44, + "probability": 0.9363 + }, + { + "start": 19168.94, + "end": 19170.8, + "probability": 0.9481 + }, + { + "start": 19171.36, + "end": 19174.02, + "probability": 0.998 + }, + { + "start": 19174.94, + "end": 19175.56, + "probability": 0.5681 + }, + { + "start": 19175.66, + "end": 19178.42, + "probability": 0.9946 + }, + { + "start": 19182.74, + "end": 19187.64, + "probability": 0.9045 + }, + { + "start": 19188.98, + "end": 19191.34, + "probability": 0.9988 + }, + { + "start": 19194.74, + "end": 19196.2, + "probability": 0.9554 + }, + { + "start": 19197.24, + "end": 19198.0, + "probability": 0.9434 + }, + { + "start": 19198.12, + "end": 19200.82, + "probability": 0.9545 + }, + { + "start": 19201.22, + "end": 19202.0, + "probability": 0.9298 + }, + { + "start": 19203.5, + "end": 19204.48, + "probability": 0.9592 + }, + { + "start": 19205.86, + "end": 19206.74, + "probability": 0.9893 + }, + { + "start": 19209.78, + "end": 19213.56, + "probability": 0.9528 + }, + { + "start": 19214.66, + "end": 19215.74, + "probability": 0.7336 + }, + { + "start": 19216.66, + "end": 19221.66, + "probability": 0.9937 + }, + { + "start": 19223.06, + "end": 19225.04, + "probability": 0.9888 + }, + { + "start": 19226.76, + "end": 19227.44, + "probability": 0.5063 + }, + { + "start": 19227.88, + "end": 19233.8, + "probability": 0.912 + }, + { + "start": 19234.6, + "end": 19237.94, + "probability": 0.9326 + }, + { + "start": 19242.1, + "end": 19243.3, + "probability": 0.3606 + }, + { + "start": 19244.0, + "end": 19247.18, + "probability": 0.8555 + }, + { + "start": 19248.12, + "end": 19248.86, + "probability": 0.9818 + }, + { + "start": 19249.1, + "end": 19249.62, + "probability": 0.9307 + }, + { + "start": 19250.5, + "end": 19255.3, + "probability": 0.9905 + }, + { + "start": 19256.56, + "end": 19259.76, + "probability": 0.9346 + }, + { + "start": 19260.28, + "end": 19263.26, + "probability": 0.9982 + }, + { + "start": 19264.84, + "end": 19268.28, + "probability": 0.9963 + }, + { + "start": 19268.84, + "end": 19270.28, + "probability": 0.998 + }, + { + "start": 19272.7, + "end": 19274.78, + "probability": 0.8754 + }, + { + "start": 19276.52, + "end": 19280.92, + "probability": 0.9926 + }, + { + "start": 19281.84, + "end": 19282.46, + "probability": 0.6188 + }, + { + "start": 19283.14, + "end": 19284.14, + "probability": 0.7356 + }, + { + "start": 19286.04, + "end": 19287.7, + "probability": 0.9521 + }, + { + "start": 19290.62, + "end": 19293.52, + "probability": 0.9146 + }, + { + "start": 19294.32, + "end": 19297.1, + "probability": 0.7131 + }, + { + "start": 19298.58, + "end": 19300.34, + "probability": 0.9733 + }, + { + "start": 19302.04, + "end": 19305.66, + "probability": 0.9313 + }, + { + "start": 19306.16, + "end": 19307.06, + "probability": 0.6461 + }, + { + "start": 19307.14, + "end": 19307.96, + "probability": 0.4831 + }, + { + "start": 19309.2, + "end": 19309.96, + "probability": 0.9624 + }, + { + "start": 19311.32, + "end": 19312.26, + "probability": 0.9862 + }, + { + "start": 19315.02, + "end": 19318.12, + "probability": 0.9045 + }, + { + "start": 19319.02, + "end": 19321.06, + "probability": 0.998 + }, + { + "start": 19322.32, + "end": 19324.26, + "probability": 0.9955 + }, + { + "start": 19326.64, + "end": 19328.64, + "probability": 0.9883 + }, + { + "start": 19329.16, + "end": 19330.22, + "probability": 0.9997 + }, + { + "start": 19331.06, + "end": 19334.3, + "probability": 0.9958 + }, + { + "start": 19334.82, + "end": 19335.72, + "probability": 0.9137 + }, + { + "start": 19336.6, + "end": 19337.58, + "probability": 0.9793 + }, + { + "start": 19340.14, + "end": 19340.14, + "probability": 0.9316 + }, + { + "start": 19343.04, + "end": 19345.71, + "probability": 0.9954 + }, + { + "start": 19347.12, + "end": 19350.4, + "probability": 0.9992 + }, + { + "start": 19350.4, + "end": 19354.56, + "probability": 0.9998 + }, + { + "start": 19355.46, + "end": 19356.4, + "probability": 0.9995 + }, + { + "start": 19356.92, + "end": 19357.62, + "probability": 0.7827 + }, + { + "start": 19361.0, + "end": 19366.06, + "probability": 0.9399 + }, + { + "start": 19368.04, + "end": 19369.14, + "probability": 0.995 + }, + { + "start": 19370.06, + "end": 19372.84, + "probability": 0.9294 + }, + { + "start": 19373.84, + "end": 19375.44, + "probability": 0.9985 + }, + { + "start": 19376.54, + "end": 19377.9, + "probability": 0.7591 + }, + { + "start": 19379.64, + "end": 19383.08, + "probability": 0.8979 + }, + { + "start": 19386.02, + "end": 19386.8, + "probability": 0.2881 + }, + { + "start": 19387.12, + "end": 19388.46, + "probability": 0.9985 + }, + { + "start": 19389.26, + "end": 19390.12, + "probability": 0.7874 + }, + { + "start": 19392.88, + "end": 19396.26, + "probability": 0.9868 + }, + { + "start": 19397.82, + "end": 19399.36, + "probability": 0.9961 + }, + { + "start": 19400.74, + "end": 19404.88, + "probability": 0.965 + }, + { + "start": 19406.94, + "end": 19408.62, + "probability": 0.9927 + }, + { + "start": 19411.28, + "end": 19413.14, + "probability": 0.9741 + }, + { + "start": 19413.98, + "end": 19415.44, + "probability": 0.9912 + }, + { + "start": 19416.44, + "end": 19420.72, + "probability": 0.9634 + }, + { + "start": 19421.3, + "end": 19422.34, + "probability": 0.9788 + }, + { + "start": 19423.96, + "end": 19427.68, + "probability": 0.9966 + }, + { + "start": 19428.16, + "end": 19429.98, + "probability": 0.8207 + }, + { + "start": 19431.36, + "end": 19432.18, + "probability": 0.8311 + }, + { + "start": 19434.18, + "end": 19435.42, + "probability": 0.9175 + }, + { + "start": 19435.62, + "end": 19437.72, + "probability": 0.8527 + }, + { + "start": 19438.36, + "end": 19442.36, + "probability": 0.9933 + }, + { + "start": 19443.02, + "end": 19446.08, + "probability": 0.8587 + }, + { + "start": 19449.78, + "end": 19452.9, + "probability": 0.9971 + }, + { + "start": 19458.74, + "end": 19464.5, + "probability": 0.9399 + }, + { + "start": 19467.02, + "end": 19467.62, + "probability": 0.8174 + }, + { + "start": 19468.66, + "end": 19469.26, + "probability": 0.9016 + }, + { + "start": 19469.9, + "end": 19472.1, + "probability": 0.9951 + }, + { + "start": 19473.36, + "end": 19475.1, + "probability": 0.968 + }, + { + "start": 19475.68, + "end": 19477.76, + "probability": 0.9577 + }, + { + "start": 19479.58, + "end": 19481.44, + "probability": 0.9695 + }, + { + "start": 19482.4, + "end": 19484.26, + "probability": 0.5423 + }, + { + "start": 19486.36, + "end": 19487.93, + "probability": 0.9975 + }, + { + "start": 19489.2, + "end": 19489.86, + "probability": 0.972 + }, + { + "start": 19490.38, + "end": 19491.26, + "probability": 0.9718 + }, + { + "start": 19491.9, + "end": 19493.1, + "probability": 0.9995 + }, + { + "start": 19496.22, + "end": 19497.34, + "probability": 0.9227 + }, + { + "start": 19498.5, + "end": 19500.74, + "probability": 0.9996 + }, + { + "start": 19504.62, + "end": 19505.4, + "probability": 0.832 + }, + { + "start": 19506.72, + "end": 19508.12, + "probability": 0.701 + }, + { + "start": 19510.84, + "end": 19513.02, + "probability": 0.7498 + }, + { + "start": 19515.76, + "end": 19517.68, + "probability": 0.9965 + }, + { + "start": 19517.78, + "end": 19523.06, + "probability": 0.9023 + }, + { + "start": 19524.78, + "end": 19526.44, + "probability": 0.7974 + }, + { + "start": 19527.88, + "end": 19531.5, + "probability": 0.9257 + }, + { + "start": 19532.28, + "end": 19533.64, + "probability": 0.7915 + }, + { + "start": 19536.14, + "end": 19538.1, + "probability": 0.8908 + }, + { + "start": 19538.9, + "end": 19539.96, + "probability": 0.8683 + }, + { + "start": 19542.18, + "end": 19544.56, + "probability": 0.9976 + }, + { + "start": 19545.8, + "end": 19549.22, + "probability": 0.9355 + }, + { + "start": 19550.2, + "end": 19551.18, + "probability": 0.9254 + }, + { + "start": 19554.04, + "end": 19554.04, + "probability": 0.5542 + }, + { + "start": 19558.2, + "end": 19559.42, + "probability": 0.9284 + }, + { + "start": 19559.72, + "end": 19560.7, + "probability": 0.9976 + }, + { + "start": 19561.76, + "end": 19563.68, + "probability": 0.6122 + }, + { + "start": 19566.4, + "end": 19567.48, + "probability": 0.9943 + }, + { + "start": 19569.02, + "end": 19570.08, + "probability": 0.967 + }, + { + "start": 19570.16, + "end": 19573.7, + "probability": 0.9175 + }, + { + "start": 19574.82, + "end": 19577.34, + "probability": 0.8167 + }, + { + "start": 19577.96, + "end": 19579.2, + "probability": 0.9628 + }, + { + "start": 19579.8, + "end": 19580.5, + "probability": 0.9148 + }, + { + "start": 19581.16, + "end": 19583.16, + "probability": 0.7273 + }, + { + "start": 19583.74, + "end": 19584.82, + "probability": 0.7793 + }, + { + "start": 19586.96, + "end": 19588.28, + "probability": 0.6903 + }, + { + "start": 19590.8, + "end": 19590.8, + "probability": 0.8838 + }, + { + "start": 19591.68, + "end": 19594.46, + "probability": 0.9833 + }, + { + "start": 19596.0, + "end": 19597.9, + "probability": 0.9987 + }, + { + "start": 19598.6, + "end": 19599.32, + "probability": 0.8884 + }, + { + "start": 19600.8, + "end": 19604.83, + "probability": 0.9961 + }, + { + "start": 19606.8, + "end": 19607.52, + "probability": 0.9967 + }, + { + "start": 19611.59, + "end": 19613.3, + "probability": 0.988 + }, + { + "start": 19615.57, + "end": 19621.65, + "probability": 0.9912 + }, + { + "start": 19622.87, + "end": 19626.09, + "probability": 0.9971 + }, + { + "start": 19626.09, + "end": 19630.89, + "probability": 0.9928 + }, + { + "start": 19632.13, + "end": 19635.75, + "probability": 0.9986 + }, + { + "start": 19637.33, + "end": 19644.53, + "probability": 0.996 + }, + { + "start": 19646.57, + "end": 19649.41, + "probability": 0.8893 + }, + { + "start": 19655.01, + "end": 19657.21, + "probability": 0.9066 + }, + { + "start": 19659.07, + "end": 19663.51, + "probability": 0.9957 + }, + { + "start": 19664.27, + "end": 19667.11, + "probability": 0.7656 + }, + { + "start": 19667.67, + "end": 19669.17, + "probability": 0.7042 + }, + { + "start": 19670.75, + "end": 19671.63, + "probability": 0.9224 + }, + { + "start": 19673.55, + "end": 19674.19, + "probability": 0.9835 + }, + { + "start": 19677.63, + "end": 19681.07, + "probability": 0.9204 + }, + { + "start": 19682.39, + "end": 19686.97, + "probability": 0.9582 + }, + { + "start": 19690.07, + "end": 19695.87, + "probability": 0.9753 + }, + { + "start": 19696.83, + "end": 19700.61, + "probability": 0.9792 + }, + { + "start": 19702.69, + "end": 19703.25, + "probability": 0.6491 + }, + { + "start": 19704.07, + "end": 19705.69, + "probability": 0.9528 + }, + { + "start": 19706.51, + "end": 19709.61, + "probability": 0.9792 + }, + { + "start": 19710.35, + "end": 19711.97, + "probability": 0.9335 + }, + { + "start": 19712.63, + "end": 19716.69, + "probability": 0.9462 + }, + { + "start": 19717.87, + "end": 19719.29, + "probability": 0.7662 + }, + { + "start": 19719.41, + "end": 19720.19, + "probability": 0.829 + }, + { + "start": 19720.35, + "end": 19722.03, + "probability": 0.9956 + }, + { + "start": 19725.03, + "end": 19727.97, + "probability": 0.7554 + }, + { + "start": 19728.81, + "end": 19731.35, + "probability": 0.9326 + }, + { + "start": 19732.15, + "end": 19733.73, + "probability": 0.9551 + }, + { + "start": 19734.67, + "end": 19737.93, + "probability": 0.6619 + }, + { + "start": 19739.51, + "end": 19743.45, + "probability": 0.8667 + }, + { + "start": 19745.57, + "end": 19747.61, + "probability": 0.8621 + }, + { + "start": 19748.83, + "end": 19750.01, + "probability": 0.6126 + }, + { + "start": 19750.23, + "end": 19752.61, + "probability": 0.7107 + }, + { + "start": 19753.75, + "end": 19760.37, + "probability": 0.9912 + }, + { + "start": 19761.37, + "end": 19763.69, + "probability": 0.9856 + }, + { + "start": 19764.39, + "end": 19764.97, + "probability": 0.9967 + }, + { + "start": 19765.61, + "end": 19766.27, + "probability": 0.9728 + }, + { + "start": 19767.23, + "end": 19767.81, + "probability": 0.8397 + }, + { + "start": 19768.33, + "end": 19769.61, + "probability": 0.9875 + }, + { + "start": 19770.31, + "end": 19773.61, + "probability": 0.7251 + }, + { + "start": 19774.27, + "end": 19775.09, + "probability": 0.4644 + }, + { + "start": 19776.49, + "end": 19777.81, + "probability": 0.9993 + }, + { + "start": 19778.55, + "end": 19782.13, + "probability": 0.9772 + }, + { + "start": 19783.09, + "end": 19785.47, + "probability": 0.8856 + }, + { + "start": 19785.73, + "end": 19786.15, + "probability": 0.87 + }, + { + "start": 19786.43, + "end": 19788.95, + "probability": 0.9792 + }, + { + "start": 19789.81, + "end": 19791.63, + "probability": 0.9724 + }, + { + "start": 19791.91, + "end": 19792.81, + "probability": 0.5525 + }, + { + "start": 19792.89, + "end": 19794.65, + "probability": 0.9749 + }, + { + "start": 19799.89, + "end": 19802.57, + "probability": 0.9537 + }, + { + "start": 19804.11, + "end": 19806.45, + "probability": 0.7561 + }, + { + "start": 19809.31, + "end": 19810.01, + "probability": 0.667 + }, + { + "start": 19811.29, + "end": 19812.43, + "probability": 0.9692 + }, + { + "start": 19812.73, + "end": 19814.19, + "probability": 0.7831 + }, + { + "start": 19814.79, + "end": 19814.89, + "probability": 0.8547 + }, + { + "start": 19816.91, + "end": 19819.46, + "probability": 0.9309 + }, + { + "start": 19820.39, + "end": 19823.33, + "probability": 0.5313 + }, + { + "start": 19825.03, + "end": 19829.5, + "probability": 0.9978 + }, + { + "start": 19829.91, + "end": 19834.47, + "probability": 0.9692 + }, + { + "start": 19835.35, + "end": 19837.95, + "probability": 0.8676 + }, + { + "start": 19839.59, + "end": 19839.77, + "probability": 0.5058 + }, + { + "start": 19840.31, + "end": 19842.81, + "probability": 0.9727 + }, + { + "start": 19844.37, + "end": 19846.93, + "probability": 0.9679 + }, + { + "start": 19849.03, + "end": 19855.95, + "probability": 0.9705 + }, + { + "start": 19856.63, + "end": 19857.63, + "probability": 0.9541 + }, + { + "start": 19857.89, + "end": 19860.93, + "probability": 0.9624 + }, + { + "start": 19861.67, + "end": 19865.19, + "probability": 0.9028 + }, + { + "start": 19866.41, + "end": 19869.49, + "probability": 0.9946 + }, + { + "start": 19871.17, + "end": 19873.59, + "probability": 0.9574 + }, + { + "start": 19873.71, + "end": 19876.17, + "probability": 0.9476 + }, + { + "start": 19876.23, + "end": 19877.47, + "probability": 0.7334 + }, + { + "start": 19878.35, + "end": 19878.95, + "probability": 0.7291 + }, + { + "start": 19879.67, + "end": 19883.91, + "probability": 0.998 + }, + { + "start": 19883.91, + "end": 19887.93, + "probability": 0.9733 + }, + { + "start": 19888.05, + "end": 19893.58, + "probability": 0.973 + }, + { + "start": 19895.27, + "end": 19897.41, + "probability": 0.9906 + }, + { + "start": 19897.87, + "end": 19899.21, + "probability": 0.6139 + }, + { + "start": 19900.05, + "end": 19901.38, + "probability": 0.9846 + }, + { + "start": 19901.79, + "end": 19903.99, + "probability": 0.9102 + }, + { + "start": 19904.07, + "end": 19905.17, + "probability": 0.7028 + }, + { + "start": 19905.27, + "end": 19906.21, + "probability": 0.8188 + }, + { + "start": 19906.37, + "end": 19908.49, + "probability": 0.8827 + }, + { + "start": 19908.93, + "end": 19909.43, + "probability": 0.7935 + }, + { + "start": 19909.53, + "end": 19911.77, + "probability": 0.996 + }, + { + "start": 19912.27, + "end": 19915.05, + "probability": 0.9911 + }, + { + "start": 19915.05, + "end": 19918.09, + "probability": 0.9774 + }, + { + "start": 19918.21, + "end": 19918.79, + "probability": 0.8864 + }, + { + "start": 19919.25, + "end": 19920.03, + "probability": 0.8844 + }, + { + "start": 19920.07, + "end": 19926.19, + "probability": 0.9575 + }, + { + "start": 19926.37, + "end": 19931.15, + "probability": 0.9367 + }, + { + "start": 19931.51, + "end": 19932.07, + "probability": 0.5724 + }, + { + "start": 19932.47, + "end": 19932.85, + "probability": 0.6753 + }, + { + "start": 19933.05, + "end": 19933.99, + "probability": 0.5648 + }, + { + "start": 19934.51, + "end": 19936.47, + "probability": 0.7914 + }, + { + "start": 19936.49, + "end": 19938.59, + "probability": 0.9565 + }, + { + "start": 19938.73, + "end": 19939.05, + "probability": 0.4671 + }, + { + "start": 19939.11, + "end": 19940.39, + "probability": 0.4161 + }, + { + "start": 19940.49, + "end": 19944.01, + "probability": 0.6131 + }, + { + "start": 19944.53, + "end": 19944.53, + "probability": 0.0317 + }, + { + "start": 19945.11, + "end": 19945.91, + "probability": 0.8942 + }, + { + "start": 19946.07, + "end": 19949.21, + "probability": 0.9958 + }, + { + "start": 19949.21, + "end": 19952.55, + "probability": 0.9939 + }, + { + "start": 19954.53, + "end": 19959.59, + "probability": 0.9915 + }, + { + "start": 19959.89, + "end": 19960.65, + "probability": 0.9639 + }, + { + "start": 19960.89, + "end": 19962.69, + "probability": 0.986 + }, + { + "start": 19965.25, + "end": 19967.45, + "probability": 0.9014 + }, + { + "start": 19968.53, + "end": 19969.61, + "probability": 0.8812 + }, + { + "start": 19970.81, + "end": 19973.61, + "probability": 0.8237 + }, + { + "start": 19974.11, + "end": 19978.79, + "probability": 0.8399 + }, + { + "start": 19980.69, + "end": 19981.25, + "probability": 0.8461 + }, + { + "start": 19982.85, + "end": 19984.07, + "probability": 0.9578 + }, + { + "start": 19985.47, + "end": 19987.63, + "probability": 0.851 + }, + { + "start": 19988.91, + "end": 19992.71, + "probability": 0.96 + }, + { + "start": 19994.77, + "end": 19995.85, + "probability": 0.9034 + }, + { + "start": 19996.05, + "end": 19997.17, + "probability": 0.9329 + }, + { + "start": 19998.53, + "end": 19999.59, + "probability": 0.9464 + }, + { + "start": 20000.21, + "end": 20000.85, + "probability": 0.8634 + }, + { + "start": 20001.63, + "end": 20002.49, + "probability": 0.9274 + }, + { + "start": 20003.23, + "end": 20004.57, + "probability": 0.7473 + }, + { + "start": 20004.67, + "end": 20005.97, + "probability": 0.9823 + }, + { + "start": 20006.03, + "end": 20008.01, + "probability": 0.928 + }, + { + "start": 20008.11, + "end": 20009.21, + "probability": 0.9961 + }, + { + "start": 20009.31, + "end": 20009.84, + "probability": 0.8529 + }, + { + "start": 20011.85, + "end": 20014.85, + "probability": 0.7655 + }, + { + "start": 20015.81, + "end": 20016.39, + "probability": 0.8171 + }, + { + "start": 20017.27, + "end": 20021.47, + "probability": 0.9954 + }, + { + "start": 20022.71, + "end": 20026.19, + "probability": 0.9951 + }, + { + "start": 20028.07, + "end": 20031.89, + "probability": 0.9969 + }, + { + "start": 20032.35, + "end": 20033.39, + "probability": 0.906 + }, + { + "start": 20034.61, + "end": 20036.09, + "probability": 0.6355 + }, + { + "start": 20036.75, + "end": 20037.11, + "probability": 0.7874 + }, + { + "start": 20038.23, + "end": 20041.51, + "probability": 0.9746 + }, + { + "start": 20041.83, + "end": 20042.27, + "probability": 0.9007 + }, + { + "start": 20044.67, + "end": 20047.45, + "probability": 0.963 + }, + { + "start": 20047.55, + "end": 20049.55, + "probability": 0.9901 + }, + { + "start": 20049.75, + "end": 20051.17, + "probability": 0.841 + }, + { + "start": 20052.41, + "end": 20053.37, + "probability": 0.9439 + }, + { + "start": 20054.65, + "end": 20057.43, + "probability": 0.9453 + }, + { + "start": 20058.89, + "end": 20059.85, + "probability": 0.7116 + }, + { + "start": 20061.49, + "end": 20064.27, + "probability": 0.9819 + }, + { + "start": 20066.81, + "end": 20073.81, + "probability": 0.9705 + }, + { + "start": 20073.89, + "end": 20075.91, + "probability": 0.7531 + }, + { + "start": 20077.09, + "end": 20078.7, + "probability": 0.6553 + }, + { + "start": 20079.01, + "end": 20081.55, + "probability": 0.9559 + }, + { + "start": 20082.59, + "end": 20085.75, + "probability": 0.9853 + }, + { + "start": 20085.81, + "end": 20086.91, + "probability": 0.9875 + }, + { + "start": 20086.91, + "end": 20087.83, + "probability": 0.6482 + }, + { + "start": 20089.05, + "end": 20089.7, + "probability": 0.9634 + }, + { + "start": 20090.83, + "end": 20093.31, + "probability": 0.7832 + }, + { + "start": 20093.47, + "end": 20097.03, + "probability": 0.9946 + }, + { + "start": 20097.57, + "end": 20100.29, + "probability": 0.998 + }, + { + "start": 20101.39, + "end": 20102.49, + "probability": 0.7637 + }, + { + "start": 20102.85, + "end": 20103.8, + "probability": 0.9307 + }, + { + "start": 20103.95, + "end": 20105.39, + "probability": 0.7883 + }, + { + "start": 20107.11, + "end": 20109.29, + "probability": 0.9425 + }, + { + "start": 20110.39, + "end": 20112.11, + "probability": 0.9721 + }, + { + "start": 20113.11, + "end": 20115.39, + "probability": 0.9989 + }, + { + "start": 20116.85, + "end": 20118.97, + "probability": 0.9868 + }, + { + "start": 20120.13, + "end": 20120.69, + "probability": 0.9694 + }, + { + "start": 20122.75, + "end": 20124.07, + "probability": 0.9951 + }, + { + "start": 20125.07, + "end": 20130.13, + "probability": 0.8937 + }, + { + "start": 20131.41, + "end": 20134.79, + "probability": 0.9553 + }, + { + "start": 20136.25, + "end": 20137.59, + "probability": 0.9948 + }, + { + "start": 20138.81, + "end": 20140.19, + "probability": 0.9502 + }, + { + "start": 20140.27, + "end": 20141.09, + "probability": 0.9481 + }, + { + "start": 20141.35, + "end": 20142.13, + "probability": 0.7576 + }, + { + "start": 20142.69, + "end": 20146.71, + "probability": 0.9904 + }, + { + "start": 20147.01, + "end": 20147.67, + "probability": 0.8278 + }, + { + "start": 20147.83, + "end": 20152.05, + "probability": 0.9976 + }, + { + "start": 20152.15, + "end": 20153.19, + "probability": 0.3974 + }, + { + "start": 20154.05, + "end": 20157.29, + "probability": 0.9937 + }, + { + "start": 20161.01, + "end": 20162.67, + "probability": 0.8694 + }, + { + "start": 20162.95, + "end": 20163.31, + "probability": 0.4416 + }, + { + "start": 20163.39, + "end": 20164.85, + "probability": 0.7299 + }, + { + "start": 20165.27, + "end": 20168.27, + "probability": 0.9778 + }, + { + "start": 20168.89, + "end": 20171.09, + "probability": 0.985 + }, + { + "start": 20171.55, + "end": 20175.05, + "probability": 0.9984 + }, + { + "start": 20176.59, + "end": 20178.39, + "probability": 0.9685 + }, + { + "start": 20179.51, + "end": 20180.93, + "probability": 0.9915 + }, + { + "start": 20181.25, + "end": 20189.03, + "probability": 0.9971 + }, + { + "start": 20193.06, + "end": 20197.87, + "probability": 0.9911 + }, + { + "start": 20198.09, + "end": 20202.43, + "probability": 0.9987 + }, + { + "start": 20202.65, + "end": 20205.22, + "probability": 0.9471 + }, + { + "start": 20206.09, + "end": 20210.57, + "probability": 0.8887 + }, + { + "start": 20211.56, + "end": 20213.11, + "probability": 0.9944 + }, + { + "start": 20215.0, + "end": 20216.53, + "probability": 0.9966 + }, + { + "start": 20216.93, + "end": 20216.93, + "probability": 0.9197 + }, + { + "start": 20216.93, + "end": 20218.54, + "probability": 0.9858 + }, + { + "start": 20218.83, + "end": 20220.97, + "probability": 0.9976 + }, + { + "start": 20220.99, + "end": 20223.13, + "probability": 0.9529 + }, + { + "start": 20223.43, + "end": 20224.71, + "probability": 0.881 + }, + { + "start": 20224.89, + "end": 20224.93, + "probability": 0.191 + }, + { + "start": 20225.13, + "end": 20226.89, + "probability": 0.9412 + }, + { + "start": 20226.99, + "end": 20227.85, + "probability": 0.8122 + }, + { + "start": 20228.59, + "end": 20229.53, + "probability": 0.8352 + }, + { + "start": 20230.11, + "end": 20232.05, + "probability": 0.6457 + }, + { + "start": 20232.59, + "end": 20234.25, + "probability": 0.6036 + }, + { + "start": 20234.85, + "end": 20235.77, + "probability": 0.9922 + }, + { + "start": 20237.71, + "end": 20238.73, + "probability": 0.8628 + }, + { + "start": 20238.81, + "end": 20239.31, + "probability": 0.6651 + }, + { + "start": 20239.43, + "end": 20240.27, + "probability": 0.9382 + }, + { + "start": 20240.69, + "end": 20242.87, + "probability": 0.9831 + }, + { + "start": 20243.15, + "end": 20247.29, + "probability": 0.832 + }, + { + "start": 20247.85, + "end": 20252.59, + "probability": 0.8754 + }, + { + "start": 20253.95, + "end": 20255.27, + "probability": 0.9149 + }, + { + "start": 20255.51, + "end": 20256.09, + "probability": 0.6655 + }, + { + "start": 20256.19, + "end": 20257.55, + "probability": 0.7523 + }, + { + "start": 20257.69, + "end": 20259.41, + "probability": 0.9147 + }, + { + "start": 20259.71, + "end": 20260.72, + "probability": 0.8552 + }, + { + "start": 20261.79, + "end": 20262.77, + "probability": 0.931 + }, + { + "start": 20264.9, + "end": 20267.15, + "probability": 0.9645 + }, + { + "start": 20267.37, + "end": 20270.27, + "probability": 0.9826 + }, + { + "start": 20271.11, + "end": 20275.35, + "probability": 0.9629 + }, + { + "start": 20276.35, + "end": 20277.35, + "probability": 0.7654 + }, + { + "start": 20277.67, + "end": 20279.47, + "probability": 0.734 + }, + { + "start": 20279.55, + "end": 20283.91, + "probability": 0.9924 + }, + { + "start": 20284.85, + "end": 20286.71, + "probability": 0.9524 + }, + { + "start": 20287.69, + "end": 20291.43, + "probability": 0.9971 + }, + { + "start": 20292.09, + "end": 20294.63, + "probability": 0.9661 + }, + { + "start": 20295.85, + "end": 20295.95, + "probability": 0.9449 + }, + { + "start": 20296.67, + "end": 20298.79, + "probability": 0.9953 + }, + { + "start": 20299.73, + "end": 20302.31, + "probability": 0.9587 + }, + { + "start": 20303.49, + "end": 20304.83, + "probability": 0.9451 + }, + { + "start": 20304.87, + "end": 20305.19, + "probability": 0.702 + }, + { + "start": 20305.27, + "end": 20305.99, + "probability": 0.982 + }, + { + "start": 20306.09, + "end": 20308.37, + "probability": 0.9933 + }, + { + "start": 20309.29, + "end": 20309.81, + "probability": 0.9762 + }, + { + "start": 20310.61, + "end": 20311.53, + "probability": 0.6122 + }, + { + "start": 20312.25, + "end": 20314.75, + "probability": 0.8752 + }, + { + "start": 20315.65, + "end": 20319.41, + "probability": 0.9893 + }, + { + "start": 20320.77, + "end": 20323.67, + "probability": 0.9033 + }, + { + "start": 20324.19, + "end": 20326.23, + "probability": 0.84 + }, + { + "start": 20326.83, + "end": 20329.87, + "probability": 0.9807 + }, + { + "start": 20329.87, + "end": 20332.41, + "probability": 0.9955 + }, + { + "start": 20333.05, + "end": 20336.11, + "probability": 0.9944 + }, + { + "start": 20336.53, + "end": 20340.39, + "probability": 0.8221 + }, + { + "start": 20341.27, + "end": 20345.13, + "probability": 0.9724 + }, + { + "start": 20345.43, + "end": 20347.43, + "probability": 0.6543 + }, + { + "start": 20348.07, + "end": 20348.79, + "probability": 0.5484 + }, + { + "start": 20348.83, + "end": 20349.47, + "probability": 0.8643 + }, + { + "start": 20351.43, + "end": 20351.79, + "probability": 0.8287 + }, + { + "start": 20352.95, + "end": 20356.65, + "probability": 0.9935 + }, + { + "start": 20357.69, + "end": 20362.03, + "probability": 0.9874 + }, + { + "start": 20362.69, + "end": 20365.91, + "probability": 0.8778 + }, + { + "start": 20366.43, + "end": 20368.71, + "probability": 0.9934 + }, + { + "start": 20369.07, + "end": 20371.41, + "probability": 0.8701 + }, + { + "start": 20371.87, + "end": 20372.81, + "probability": 0.7914 + }, + { + "start": 20372.89, + "end": 20374.47, + "probability": 0.8563 + }, + { + "start": 20374.57, + "end": 20375.07, + "probability": 0.9774 + }, + { + "start": 20375.21, + "end": 20376.43, + "probability": 0.9763 + }, + { + "start": 20376.69, + "end": 20377.59, + "probability": 0.656 + }, + { + "start": 20378.41, + "end": 20381.67, + "probability": 0.936 + }, + { + "start": 20382.23, + "end": 20382.97, + "probability": 0.6997 + }, + { + "start": 20383.07, + "end": 20384.73, + "probability": 0.9902 + }, + { + "start": 20385.09, + "end": 20385.59, + "probability": 0.5678 + }, + { + "start": 20385.91, + "end": 20386.93, + "probability": 0.7987 + }, + { + "start": 20387.07, + "end": 20388.15, + "probability": 0.5636 + }, + { + "start": 20388.53, + "end": 20392.05, + "probability": 0.9429 + }, + { + "start": 20392.95, + "end": 20393.73, + "probability": 0.7376 + }, + { + "start": 20394.29, + "end": 20394.91, + "probability": 0.7744 + }, + { + "start": 20395.63, + "end": 20397.23, + "probability": 0.9893 + }, + { + "start": 20397.33, + "end": 20399.67, + "probability": 0.946 + }, + { + "start": 20400.01, + "end": 20402.11, + "probability": 0.9198 + }, + { + "start": 20402.53, + "end": 20404.95, + "probability": 0.9543 + }, + { + "start": 20406.03, + "end": 20407.31, + "probability": 0.9961 + }, + { + "start": 20407.31, + "end": 20407.71, + "probability": 0.9845 + }, + { + "start": 20408.29, + "end": 20411.53, + "probability": 0.8489 + }, + { + "start": 20412.21, + "end": 20414.27, + "probability": 0.9707 + }, + { + "start": 20414.35, + "end": 20415.27, + "probability": 0.9794 + }, + { + "start": 20415.39, + "end": 20419.37, + "probability": 0.9935 + }, + { + "start": 20419.99, + "end": 20422.17, + "probability": 0.9932 + }, + { + "start": 20423.27, + "end": 20423.87, + "probability": 0.8425 + }, + { + "start": 20424.13, + "end": 20427.03, + "probability": 0.9893 + }, + { + "start": 20427.49, + "end": 20430.71, + "probability": 0.9915 + }, + { + "start": 20431.23, + "end": 20432.89, + "probability": 0.915 + }, + { + "start": 20433.61, + "end": 20436.15, + "probability": 0.8954 + }, + { + "start": 20436.29, + "end": 20438.79, + "probability": 0.9038 + }, + { + "start": 20438.85, + "end": 20440.21, + "probability": 0.9471 + }, + { + "start": 20441.47, + "end": 20444.35, + "probability": 0.9432 + }, + { + "start": 20445.19, + "end": 20447.43, + "probability": 0.9748 + }, + { + "start": 20447.53, + "end": 20452.39, + "probability": 0.9761 + }, + { + "start": 20452.75, + "end": 20453.81, + "probability": 0.9976 + }, + { + "start": 20453.87, + "end": 20456.47, + "probability": 0.8942 + }, + { + "start": 20456.47, + "end": 20459.97, + "probability": 0.9734 + }, + { + "start": 20460.61, + "end": 20461.63, + "probability": 0.9097 + }, + { + "start": 20462.45, + "end": 20463.07, + "probability": 0.9759 + }, + { + "start": 20464.39, + "end": 20469.26, + "probability": 0.9948 + }, + { + "start": 20469.51, + "end": 20469.97, + "probability": 0.678 + }, + { + "start": 20470.51, + "end": 20472.51, + "probability": 0.9922 + }, + { + "start": 20472.57, + "end": 20473.31, + "probability": 0.8948 + }, + { + "start": 20473.53, + "end": 20474.01, + "probability": 0.8611 + }, + { + "start": 20474.13, + "end": 20475.78, + "probability": 0.9917 + }, + { + "start": 20476.41, + "end": 20480.63, + "probability": 0.9086 + }, + { + "start": 20481.65, + "end": 20484.41, + "probability": 0.9481 + }, + { + "start": 20485.03, + "end": 20489.57, + "probability": 0.8717 + }, + { + "start": 20490.11, + "end": 20494.85, + "probability": 0.7419 + }, + { + "start": 20495.81, + "end": 20497.83, + "probability": 0.9407 + }, + { + "start": 20497.93, + "end": 20502.31, + "probability": 0.9845 + }, + { + "start": 20502.77, + "end": 20503.13, + "probability": 0.6254 + }, + { + "start": 20503.19, + "end": 20504.64, + "probability": 0.9062 + }, + { + "start": 20505.25, + "end": 20507.35, + "probability": 0.9961 + }, + { + "start": 20507.43, + "end": 20507.89, + "probability": 0.8728 + }, + { + "start": 20508.15, + "end": 20509.02, + "probability": 0.821 + }, + { + "start": 20509.17, + "end": 20509.62, + "probability": 0.8724 + }, + { + "start": 20510.35, + "end": 20512.69, + "probability": 0.9919 + }, + { + "start": 20512.77, + "end": 20513.97, + "probability": 0.988 + }, + { + "start": 20514.43, + "end": 20514.69, + "probability": 0.8636 + }, + { + "start": 20514.99, + "end": 20517.21, + "probability": 0.9039 + }, + { + "start": 20517.7, + "end": 20520.19, + "probability": 0.9863 + }, + { + "start": 20520.29, + "end": 20524.33, + "probability": 0.4965 + }, + { + "start": 20524.63, + "end": 20525.91, + "probability": 0.9138 + }, + { + "start": 20526.75, + "end": 20528.61, + "probability": 0.9309 + }, + { + "start": 20528.85, + "end": 20533.99, + "probability": 0.908 + }, + { + "start": 20534.49, + "end": 20540.33, + "probability": 0.9889 + }, + { + "start": 20540.81, + "end": 20543.17, + "probability": 0.9988 + }, + { + "start": 20544.05, + "end": 20546.07, + "probability": 0.8701 + }, + { + "start": 20546.45, + "end": 20546.94, + "probability": 0.4182 + }, + { + "start": 20547.73, + "end": 20550.19, + "probability": 0.9747 + }, + { + "start": 20550.63, + "end": 20553.19, + "probability": 0.9139 + }, + { + "start": 20553.59, + "end": 20557.49, + "probability": 0.9887 + }, + { + "start": 20557.91, + "end": 20559.81, + "probability": 0.9899 + }, + { + "start": 20560.23, + "end": 20561.91, + "probability": 0.9987 + }, + { + "start": 20562.37, + "end": 20563.19, + "probability": 0.674 + }, + { + "start": 20563.61, + "end": 20568.41, + "probability": 0.9055 + }, + { + "start": 20568.57, + "end": 20569.82, + "probability": 0.959 + }, + { + "start": 20571.35, + "end": 20574.27, + "probability": 0.8887 + }, + { + "start": 20577.5, + "end": 20583.11, + "probability": 0.9903 + }, + { + "start": 20583.11, + "end": 20588.51, + "probability": 0.9893 + }, + { + "start": 20588.75, + "end": 20590.43, + "probability": 0.9574 + }, + { + "start": 20591.43, + "end": 20596.85, + "probability": 0.9988 + }, + { + "start": 20597.49, + "end": 20598.97, + "probability": 0.6456 + }, + { + "start": 20599.97, + "end": 20606.41, + "probability": 0.8003 + }, + { + "start": 20606.63, + "end": 20607.03, + "probability": 0.7283 + }, + { + "start": 20608.25, + "end": 20612.69, + "probability": 0.9779 + }, + { + "start": 20612.81, + "end": 20614.17, + "probability": 0.9952 + }, + { + "start": 20615.57, + "end": 20617.91, + "probability": 0.9269 + }, + { + "start": 20618.63, + "end": 20619.41, + "probability": 0.9205 + }, + { + "start": 20621.51, + "end": 20622.61, + "probability": 0.9856 + }, + { + "start": 20622.75, + "end": 20624.63, + "probability": 0.9333 + }, + { + "start": 20625.53, + "end": 20630.65, + "probability": 0.9364 + }, + { + "start": 20631.17, + "end": 20632.37, + "probability": 0.9088 + }, + { + "start": 20632.41, + "end": 20638.17, + "probability": 0.9945 + }, + { + "start": 20638.37, + "end": 20639.29, + "probability": 0.8872 + }, + { + "start": 20639.91, + "end": 20640.77, + "probability": 0.9394 + }, + { + "start": 20641.13, + "end": 20642.33, + "probability": 0.9912 + }, + { + "start": 20642.43, + "end": 20644.25, + "probability": 0.9837 + }, + { + "start": 20644.67, + "end": 20646.29, + "probability": 0.9947 + }, + { + "start": 20646.39, + "end": 20647.43, + "probability": 0.9978 + }, + { + "start": 20647.75, + "end": 20648.73, + "probability": 0.5868 + }, + { + "start": 20649.03, + "end": 20651.93, + "probability": 0.9937 + }, + { + "start": 20652.41, + "end": 20652.91, + "probability": 0.2829 + }, + { + "start": 20653.15, + "end": 20653.71, + "probability": 0.9613 + }, + { + "start": 20654.09, + "end": 20655.09, + "probability": 0.9814 + }, + { + "start": 20655.19, + "end": 20655.53, + "probability": 0.4065 + }, + { + "start": 20655.87, + "end": 20659.67, + "probability": 0.8711 + }, + { + "start": 20660.57, + "end": 20661.81, + "probability": 0.9841 + }, + { + "start": 20662.97, + "end": 20667.31, + "probability": 0.9293 + }, + { + "start": 20670.13, + "end": 20674.83, + "probability": 0.9917 + }, + { + "start": 20676.25, + "end": 20677.83, + "probability": 0.9248 + }, + { + "start": 20678.91, + "end": 20684.55, + "probability": 0.9941 + }, + { + "start": 20684.91, + "end": 20689.79, + "probability": 0.96 + }, + { + "start": 20690.39, + "end": 20695.85, + "probability": 0.9939 + }, + { + "start": 20696.51, + "end": 20699.27, + "probability": 0.9944 + }, + { + "start": 20700.39, + "end": 20703.59, + "probability": 0.9827 + }, + { + "start": 20704.51, + "end": 20704.77, + "probability": 0.8527 + }, + { + "start": 20705.31, + "end": 20707.13, + "probability": 0.7468 + }, + { + "start": 20707.25, + "end": 20709.95, + "probability": 0.9644 + }, + { + "start": 20711.41, + "end": 20713.45, + "probability": 0.8484 + }, + { + "start": 20714.37, + "end": 20715.51, + "probability": 0.6418 + }, + { + "start": 20722.17, + "end": 20723.65, + "probability": 0.6779 + }, + { + "start": 20723.75, + "end": 20724.79, + "probability": 0.7497 + }, + { + "start": 20725.11, + "end": 20726.87, + "probability": 0.8958 + }, + { + "start": 20727.33, + "end": 20728.31, + "probability": 0.9337 + }, + { + "start": 20728.39, + "end": 20731.67, + "probability": 0.9457 + }, + { + "start": 20735.55, + "end": 20736.75, + "probability": 0.7421 + }, + { + "start": 20737.73, + "end": 20738.19, + "probability": 0.9041 + }, + { + "start": 20740.77, + "end": 20744.73, + "probability": 0.9945 + }, + { + "start": 20744.73, + "end": 20749.87, + "probability": 0.9717 + }, + { + "start": 20750.03, + "end": 20752.97, + "probability": 0.9773 + }, + { + "start": 20753.75, + "end": 20755.29, + "probability": 0.7188 + }, + { + "start": 20757.59, + "end": 20758.19, + "probability": 0.9434 + }, + { + "start": 20758.99, + "end": 20761.41, + "probability": 0.9485 + }, + { + "start": 20761.91, + "end": 20765.19, + "probability": 0.4986 + }, + { + "start": 20765.21, + "end": 20766.21, + "probability": 0.7298 + }, + { + "start": 20766.49, + "end": 20767.97, + "probability": 0.8902 + }, + { + "start": 20768.61, + "end": 20772.31, + "probability": 0.9814 + }, + { + "start": 20772.85, + "end": 20774.35, + "probability": 0.8577 + }, + { + "start": 20774.95, + "end": 20779.41, + "probability": 0.9954 + }, + { + "start": 20779.91, + "end": 20782.75, + "probability": 0.9424 + }, + { + "start": 20782.87, + "end": 20784.85, + "probability": 0.8457 + }, + { + "start": 20785.17, + "end": 20787.03, + "probability": 0.9896 + }, + { + "start": 20787.39, + "end": 20788.07, + "probability": 0.7593 + }, + { + "start": 20789.47, + "end": 20794.23, + "probability": 0.9621 + }, + { + "start": 20794.33, + "end": 20794.91, + "probability": 0.9971 + }, + { + "start": 20795.51, + "end": 20801.71, + "probability": 0.8853 + }, + { + "start": 20802.43, + "end": 20804.45, + "probability": 0.9133 + }, + { + "start": 20805.09, + "end": 20807.35, + "probability": 0.6467 + }, + { + "start": 20808.13, + "end": 20815.89, + "probability": 0.9808 + }, + { + "start": 20816.81, + "end": 20823.51, + "probability": 0.9334 + }, + { + "start": 20823.55, + "end": 20824.83, + "probability": 0.8187 + }, + { + "start": 20824.91, + "end": 20829.01, + "probability": 0.9779 + }, + { + "start": 20829.09, + "end": 20829.72, + "probability": 0.9332 + }, + { + "start": 20829.97, + "end": 20832.99, + "probability": 0.9932 + }, + { + "start": 20833.59, + "end": 20835.69, + "probability": 0.8462 + }, + { + "start": 20835.77, + "end": 20837.93, + "probability": 0.73 + }, + { + "start": 20837.99, + "end": 20839.09, + "probability": 0.92 + }, + { + "start": 20839.13, + "end": 20841.89, + "probability": 0.9215 + }, + { + "start": 20844.17, + "end": 20846.79, + "probability": 0.6786 + }, + { + "start": 20847.05, + "end": 20847.93, + "probability": 0.5192 + }, + { + "start": 20849.27, + "end": 20852.87, + "probability": 0.9741 + }, + { + "start": 20853.93, + "end": 20856.87, + "probability": 0.6636 + }, + { + "start": 20857.89, + "end": 20860.47, + "probability": 0.9847 + }, + { + "start": 20861.29, + "end": 20866.27, + "probability": 0.9554 + }, + { + "start": 20867.63, + "end": 20869.25, + "probability": 0.9712 + }, + { + "start": 20869.83, + "end": 20874.97, + "probability": 0.9922 + }, + { + "start": 20876.09, + "end": 20882.77, + "probability": 0.9968 + }, + { + "start": 20884.47, + "end": 20888.09, + "probability": 0.8956 + }, + { + "start": 20888.17, + "end": 20889.33, + "probability": 0.8605 + }, + { + "start": 20889.39, + "end": 20890.87, + "probability": 0.9322 + }, + { + "start": 20891.76, + "end": 20897.73, + "probability": 0.9951 + }, + { + "start": 20898.05, + "end": 20901.59, + "probability": 0.9887 + }, + { + "start": 20901.87, + "end": 20902.91, + "probability": 0.8733 + }, + { + "start": 20903.59, + "end": 20905.79, + "probability": 0.9865 + }, + { + "start": 20905.87, + "end": 20907.43, + "probability": 0.8397 + }, + { + "start": 20907.85, + "end": 20909.25, + "probability": 0.9658 + }, + { + "start": 20910.41, + "end": 20913.17, + "probability": 0.9717 + }, + { + "start": 20913.37, + "end": 20918.31, + "probability": 0.9819 + }, + { + "start": 20918.37, + "end": 20920.81, + "probability": 0.9193 + }, + { + "start": 20920.89, + "end": 20921.81, + "probability": 0.8655 + }, + { + "start": 20922.01, + "end": 20923.27, + "probability": 0.8342 + }, + { + "start": 20923.57, + "end": 20925.63, + "probability": 0.8458 + }, + { + "start": 20926.53, + "end": 20927.87, + "probability": 0.998 + }, + { + "start": 20928.77, + "end": 20931.05, + "probability": 0.8005 + }, + { + "start": 20931.11, + "end": 20934.79, + "probability": 0.9951 + }, + { + "start": 20939.35, + "end": 20942.25, + "probability": 0.9916 + }, + { + "start": 20942.77, + "end": 20946.17, + "probability": 0.8672 + }, + { + "start": 20947.09, + "end": 20949.73, + "probability": 0.988 + }, + { + "start": 20953.49, + "end": 20957.61, + "probability": 0.9866 + }, + { + "start": 20957.73, + "end": 20961.31, + "probability": 0.9783 + }, + { + "start": 20962.03, + "end": 20964.59, + "probability": 0.9015 + }, + { + "start": 20964.63, + "end": 20967.55, + "probability": 0.8528 + }, + { + "start": 20967.93, + "end": 20969.85, + "probability": 0.9795 + }, + { + "start": 20969.91, + "end": 20970.07, + "probability": 0.8586 + }, + { + "start": 20971.03, + "end": 20974.63, + "probability": 0.7966 + }, + { + "start": 20975.39, + "end": 20979.81, + "probability": 0.9727 + }, + { + "start": 20979.89, + "end": 20980.07, + "probability": 0.5208 + }, + { + "start": 20980.83, + "end": 20983.01, + "probability": 0.9067 + }, + { + "start": 20983.15, + "end": 20983.33, + "probability": 0.4543 + }, + { + "start": 20983.33, + "end": 20984.02, + "probability": 0.6417 + }, + { + "start": 20984.55, + "end": 20988.49, + "probability": 0.9888 + }, + { + "start": 20989.21, + "end": 20990.83, + "probability": 0.8744 + }, + { + "start": 20990.89, + "end": 20996.57, + "probability": 0.9858 + }, + { + "start": 20997.53, + "end": 20999.89, + "probability": 0.9924 + }, + { + "start": 20999.95, + "end": 21001.27, + "probability": 0.9209 + }, + { + "start": 21002.39, + "end": 21004.59, + "probability": 0.962 + }, + { + "start": 21005.59, + "end": 21006.13, + "probability": 0.3605 + }, + { + "start": 21006.25, + "end": 21006.91, + "probability": 0.5672 + }, + { + "start": 21006.99, + "end": 21009.85, + "probability": 0.9131 + }, + { + "start": 21010.37, + "end": 21016.27, + "probability": 0.7054 + }, + { + "start": 21016.73, + "end": 21018.17, + "probability": 0.8702 + }, + { + "start": 21019.21, + "end": 21021.03, + "probability": 0.7878 + }, + { + "start": 21021.61, + "end": 21023.99, + "probability": 0.8643 + }, + { + "start": 21025.55, + "end": 21026.85, + "probability": 0.8859 + }, + { + "start": 21027.17, + "end": 21030.63, + "probability": 0.991 + }, + { + "start": 21030.77, + "end": 21031.49, + "probability": 0.5642 + }, + { + "start": 21032.47, + "end": 21035.95, + "probability": 0.9826 + }, + { + "start": 21037.19, + "end": 21037.82, + "probability": 0.923 + }, + { + "start": 21038.93, + "end": 21042.29, + "probability": 0.8421 + }, + { + "start": 21042.37, + "end": 21042.89, + "probability": 0.9467 + }, + { + "start": 21042.95, + "end": 21043.67, + "probability": 0.4937 + }, + { + "start": 21043.67, + "end": 21046.03, + "probability": 0.9382 + }, + { + "start": 21046.37, + "end": 21050.84, + "probability": 0.9868 + }, + { + "start": 21050.89, + "end": 21054.37, + "probability": 0.8783 + }, + { + "start": 21054.49, + "end": 21055.21, + "probability": 0.5848 + }, + { + "start": 21055.87, + "end": 21057.65, + "probability": 0.9637 + }, + { + "start": 21058.17, + "end": 21058.45, + "probability": 0.6046 + }, + { + "start": 21059.07, + "end": 21062.71, + "probability": 0.9564 + }, + { + "start": 21063.95, + "end": 21064.99, + "probability": 0.6691 + }, + { + "start": 21065.07, + "end": 21069.03, + "probability": 0.8272 + }, + { + "start": 21069.31, + "end": 21074.11, + "probability": 0.416 + }, + { + "start": 21074.11, + "end": 21075.45, + "probability": 0.12 + }, + { + "start": 21075.45, + "end": 21078.45, + "probability": 0.9144 + }, + { + "start": 21079.07, + "end": 21082.31, + "probability": 0.7517 + }, + { + "start": 21082.79, + "end": 21085.37, + "probability": 0.7821 + }, + { + "start": 21085.95, + "end": 21087.09, + "probability": 0.9727 + }, + { + "start": 21087.61, + "end": 21089.83, + "probability": 0.9683 + }, + { + "start": 21090.21, + "end": 21092.95, + "probability": 0.9132 + }, + { + "start": 21093.19, + "end": 21094.29, + "probability": 0.7637 + }, + { + "start": 21095.45, + "end": 21100.47, + "probability": 0.9223 + }, + { + "start": 21100.79, + "end": 21102.13, + "probability": 0.8148 + }, + { + "start": 21102.25, + "end": 21105.01, + "probability": 0.9247 + }, + { + "start": 21105.01, + "end": 21108.55, + "probability": 0.8389 + }, + { + "start": 21110.01, + "end": 21111.85, + "probability": 0.7551 + }, + { + "start": 21113.5, + "end": 21116.29, + "probability": 0.9071 + }, + { + "start": 21116.41, + "end": 21118.49, + "probability": 0.9763 + }, + { + "start": 21118.69, + "end": 21120.37, + "probability": 0.8275 + }, + { + "start": 21121.41, + "end": 21125.15, + "probability": 0.9623 + }, + { + "start": 21128.11, + "end": 21130.51, + "probability": 0.8243 + }, + { + "start": 21131.03, + "end": 21137.85, + "probability": 0.9629 + }, + { + "start": 21139.59, + "end": 21141.03, + "probability": 0.9692 + }, + { + "start": 21141.91, + "end": 21141.99, + "probability": 0.3174 + }, + { + "start": 21142.07, + "end": 21142.59, + "probability": 0.4115 + }, + { + "start": 21142.69, + "end": 21147.23, + "probability": 0.9807 + }, + { + "start": 21147.23, + "end": 21151.45, + "probability": 0.9974 + }, + { + "start": 21152.05, + "end": 21153.53, + "probability": 0.5924 + }, + { + "start": 21154.07, + "end": 21154.77, + "probability": 0.6595 + }, + { + "start": 21154.93, + "end": 21155.5, + "probability": 0.8997 + }, + { + "start": 21155.73, + "end": 21159.01, + "probability": 0.9785 + }, + { + "start": 21159.11, + "end": 21160.04, + "probability": 0.9971 + }, + { + "start": 21160.81, + "end": 21163.83, + "probability": 0.9812 + }, + { + "start": 21163.93, + "end": 21164.85, + "probability": 0.9706 + }, + { + "start": 21165.23, + "end": 21166.79, + "probability": 0.9744 + }, + { + "start": 21166.89, + "end": 21169.49, + "probability": 0.9772 + }, + { + "start": 21169.73, + "end": 21171.63, + "probability": 0.9894 + }, + { + "start": 21172.23, + "end": 21173.81, + "probability": 0.9521 + }, + { + "start": 21173.89, + "end": 21176.47, + "probability": 0.9526 + }, + { + "start": 21176.49, + "end": 21177.37, + "probability": 0.7638 + }, + { + "start": 21177.43, + "end": 21178.45, + "probability": 0.8119 + }, + { + "start": 21178.57, + "end": 21180.81, + "probability": 0.7391 + }, + { + "start": 21181.09, + "end": 21182.93, + "probability": 0.8717 + }, + { + "start": 21183.43, + "end": 21184.97, + "probability": 0.9966 + }, + { + "start": 21185.25, + "end": 21188.73, + "probability": 0.9503 + }, + { + "start": 21190.36, + "end": 21194.01, + "probability": 0.6879 + }, + { + "start": 21194.27, + "end": 21198.57, + "probability": 0.9908 + }, + { + "start": 21199.75, + "end": 21203.21, + "probability": 0.9842 + }, + { + "start": 21204.37, + "end": 21206.67, + "probability": 0.8905 + }, + { + "start": 21207.45, + "end": 21209.19, + "probability": 0.8627 + }, + { + "start": 21211.29, + "end": 21214.03, + "probability": 0.9186 + }, + { + "start": 21215.67, + "end": 21218.23, + "probability": 0.8044 + }, + { + "start": 21218.45, + "end": 21219.33, + "probability": 0.2822 + }, + { + "start": 21219.41, + "end": 21220.39, + "probability": 0.6589 + }, + { + "start": 21221.59, + "end": 21222.53, + "probability": 0.8055 + }, + { + "start": 21222.89, + "end": 21224.05, + "probability": 0.962 + }, + { + "start": 21224.35, + "end": 21226.39, + "probability": 0.9656 + }, + { + "start": 21226.51, + "end": 21227.31, + "probability": 0.6041 + }, + { + "start": 21227.99, + "end": 21229.17, + "probability": 0.4192 + }, + { + "start": 21229.35, + "end": 21230.45, + "probability": 0.6035 + }, + { + "start": 21230.77, + "end": 21231.35, + "probability": 0.9873 + }, + { + "start": 21231.49, + "end": 21232.87, + "probability": 0.8978 + }, + { + "start": 21232.93, + "end": 21235.27, + "probability": 0.9597 + }, + { + "start": 21235.83, + "end": 21237.13, + "probability": 0.9713 + }, + { + "start": 21237.83, + "end": 21239.71, + "probability": 0.6672 + }, + { + "start": 21240.33, + "end": 21243.29, + "probability": 0.9863 + }, + { + "start": 21243.47, + "end": 21244.53, + "probability": 0.9401 + }, + { + "start": 21245.31, + "end": 21249.37, + "probability": 0.9733 + }, + { + "start": 21249.41, + "end": 21249.93, + "probability": 0.9298 + }, + { + "start": 21250.01, + "end": 21252.51, + "probability": 0.9715 + }, + { + "start": 21252.97, + "end": 21256.97, + "probability": 0.9966 + }, + { + "start": 21257.49, + "end": 21258.19, + "probability": 0.5557 + }, + { + "start": 21258.31, + "end": 21259.33, + "probability": 0.9815 + }, + { + "start": 21259.47, + "end": 21260.2, + "probability": 0.5016 + }, + { + "start": 21260.49, + "end": 21264.23, + "probability": 0.7748 + }, + { + "start": 21264.85, + "end": 21267.45, + "probability": 0.9424 + }, + { + "start": 21267.73, + "end": 21270.79, + "probability": 0.9519 + }, + { + "start": 21271.05, + "end": 21274.59, + "probability": 0.9952 + }, + { + "start": 21275.15, + "end": 21278.37, + "probability": 0.9928 + }, + { + "start": 21278.37, + "end": 21281.73, + "probability": 0.9702 + }, + { + "start": 21283.05, + "end": 21285.95, + "probability": 0.9531 + }, + { + "start": 21285.97, + "end": 21286.59, + "probability": 0.7269 + }, + { + "start": 21286.75, + "end": 21287.25, + "probability": 0.6529 + }, + { + "start": 21287.71, + "end": 21290.93, + "probability": 0.9071 + }, + { + "start": 21291.31, + "end": 21294.71, + "probability": 0.7391 + }, + { + "start": 21296.79, + "end": 21297.61, + "probability": 0.958 + }, + { + "start": 21299.09, + "end": 21301.6, + "probability": 0.7165 + }, + { + "start": 21301.89, + "end": 21303.53, + "probability": 0.7445 + }, + { + "start": 21304.93, + "end": 21306.09, + "probability": 0.9526 + }, + { + "start": 21308.63, + "end": 21309.89, + "probability": 0.9738 + }, + { + "start": 21311.01, + "end": 21313.99, + "probability": 0.7551 + }, + { + "start": 21314.23, + "end": 21316.15, + "probability": 0.7667 + }, + { + "start": 21316.69, + "end": 21318.77, + "probability": 0.8583 + }, + { + "start": 21318.93, + "end": 21323.77, + "probability": 0.9946 + }, + { + "start": 21323.83, + "end": 21325.73, + "probability": 0.9468 + }, + { + "start": 21325.89, + "end": 21326.97, + "probability": 0.7381 + }, + { + "start": 21327.03, + "end": 21329.73, + "probability": 0.9702 + }, + { + "start": 21330.29, + "end": 21330.91, + "probability": 0.8173 + }, + { + "start": 21331.23, + "end": 21332.81, + "probability": 0.9862 + }, + { + "start": 21333.23, + "end": 21334.15, + "probability": 0.7475 + }, + { + "start": 21334.53, + "end": 21335.61, + "probability": 0.9451 + }, + { + "start": 21336.09, + "end": 21338.35, + "probability": 0.7025 + }, + { + "start": 21339.09, + "end": 21340.83, + "probability": 0.9506 + }, + { + "start": 21341.43, + "end": 21343.09, + "probability": 0.9805 + }, + { + "start": 21344.45, + "end": 21346.91, + "probability": 0.9818 + }, + { + "start": 21346.99, + "end": 21349.57, + "probability": 0.9682 + }, + { + "start": 21350.43, + "end": 21351.65, + "probability": 0.7769 + }, + { + "start": 21352.65, + "end": 21354.47, + "probability": 0.8012 + }, + { + "start": 21356.23, + "end": 21359.23, + "probability": 0.2863 + }, + { + "start": 21359.77, + "end": 21360.37, + "probability": 0.7176 + }, + { + "start": 21361.26, + "end": 21362.21, + "probability": 0.7605 + }, + { + "start": 21362.33, + "end": 21363.23, + "probability": 0.3771 + }, + { + "start": 21363.33, + "end": 21363.75, + "probability": 0.8074 + }, + { + "start": 21364.15, + "end": 21364.94, + "probability": 0.7295 + }, + { + "start": 21365.33, + "end": 21366.31, + "probability": 0.8566 + }, + { + "start": 21368.07, + "end": 21369.61, + "probability": 0.8835 + }, + { + "start": 21370.35, + "end": 21373.11, + "probability": 0.9128 + }, + { + "start": 21373.57, + "end": 21374.65, + "probability": 0.9966 + }, + { + "start": 21375.27, + "end": 21375.71, + "probability": 0.7021 + }, + { + "start": 21377.65, + "end": 21381.11, + "probability": 0.9131 + }, + { + "start": 21381.19, + "end": 21385.49, + "probability": 0.9025 + }, + { + "start": 21386.29, + "end": 21388.55, + "probability": 0.7975 + }, + { + "start": 21389.63, + "end": 21391.95, + "probability": 0.4989 + }, + { + "start": 21392.65, + "end": 21393.57, + "probability": 0.8884 + }, + { + "start": 21393.95, + "end": 21397.71, + "probability": 0.9836 + }, + { + "start": 21399.19, + "end": 21399.82, + "probability": 0.9189 + }, + { + "start": 21400.11, + "end": 21401.59, + "probability": 0.9624 + }, + { + "start": 21401.79, + "end": 21403.84, + "probability": 0.989 + }, + { + "start": 21405.07, + "end": 21406.13, + "probability": 0.2129 + }, + { + "start": 21407.07, + "end": 21411.05, + "probability": 0.9445 + }, + { + "start": 21411.93, + "end": 21412.39, + "probability": 0.6308 + }, + { + "start": 21412.53, + "end": 21412.91, + "probability": 0.4075 + }, + { + "start": 21413.01, + "end": 21413.61, + "probability": 0.7989 + }, + { + "start": 21413.97, + "end": 21414.53, + "probability": 0.7857 + }, + { + "start": 21414.99, + "end": 21419.21, + "probability": 0.9771 + }, + { + "start": 21419.37, + "end": 21420.66, + "probability": 0.9893 + }, + { + "start": 21420.75, + "end": 21421.91, + "probability": 0.9162 + }, + { + "start": 21422.55, + "end": 21425.51, + "probability": 0.5372 + }, + { + "start": 21426.01, + "end": 21426.73, + "probability": 0.8806 + }, + { + "start": 21428.23, + "end": 21429.13, + "probability": 0.6609 + }, + { + "start": 21429.19, + "end": 21429.65, + "probability": 0.6985 + }, + { + "start": 21429.79, + "end": 21433.31, + "probability": 0.8121 + }, + { + "start": 21433.89, + "end": 21436.73, + "probability": 0.6885 + }, + { + "start": 21436.75, + "end": 21437.07, + "probability": 0.7455 + }, + { + "start": 21437.19, + "end": 21443.09, + "probability": 0.9919 + }, + { + "start": 21443.09, + "end": 21448.06, + "probability": 0.9955 + }, + { + "start": 21449.25, + "end": 21449.85, + "probability": 0.9205 + }, + { + "start": 21450.01, + "end": 21450.63, + "probability": 0.7735 + }, + { + "start": 21450.75, + "end": 21451.25, + "probability": 0.4389 + }, + { + "start": 21451.95, + "end": 21453.77, + "probability": 0.9381 + }, + { + "start": 21455.85, + "end": 21457.43, + "probability": 0.647 + }, + { + "start": 21457.69, + "end": 21460.09, + "probability": 0.9635 + }, + { + "start": 21460.49, + "end": 21463.61, + "probability": 0.9538 + }, + { + "start": 21464.99, + "end": 21469.39, + "probability": 0.2121 + }, + { + "start": 21469.67, + "end": 21470.43, + "probability": 0.083 + }, + { + "start": 21470.49, + "end": 21470.75, + "probability": 0.2601 + }, + { + "start": 21470.89, + "end": 21472.01, + "probability": 0.2834 + }, + { + "start": 21472.53, + "end": 21476.03, + "probability": 0.7574 + }, + { + "start": 21476.79, + "end": 21479.09, + "probability": 0.9446 + }, + { + "start": 21479.09, + "end": 21482.25, + "probability": 0.8655 + }, + { + "start": 21483.27, + "end": 21484.37, + "probability": 0.5227 + }, + { + "start": 21484.45, + "end": 21485.5, + "probability": 0.9058 + }, + { + "start": 21486.11, + "end": 21487.19, + "probability": 0.5974 + }, + { + "start": 21487.65, + "end": 21490.75, + "probability": 0.6855 + }, + { + "start": 21492.74, + "end": 21494.49, + "probability": 0.8065 + }, + { + "start": 21494.51, + "end": 21495.75, + "probability": 0.9255 + }, + { + "start": 21496.59, + "end": 21497.63, + "probability": 0.6827 + }, + { + "start": 21497.91, + "end": 21498.97, + "probability": 0.9834 + }, + { + "start": 21499.15, + "end": 21499.63, + "probability": 0.8834 + }, + { + "start": 21499.75, + "end": 21501.25, + "probability": 0.9255 + }, + { + "start": 21502.09, + "end": 21502.45, + "probability": 0.6321 + }, + { + "start": 21502.95, + "end": 21505.77, + "probability": 0.9168 + }, + { + "start": 21506.17, + "end": 21507.43, + "probability": 0.9832 + }, + { + "start": 21507.77, + "end": 21509.01, + "probability": 0.936 + }, + { + "start": 21509.47, + "end": 21517.23, + "probability": 0.989 + }, + { + "start": 21517.69, + "end": 21520.71, + "probability": 0.6703 + }, + { + "start": 21521.45, + "end": 21522.77, + "probability": 0.864 + }, + { + "start": 21522.79, + "end": 21523.45, + "probability": 0.5541 + }, + { + "start": 21523.61, + "end": 21524.18, + "probability": 0.8579 + }, + { + "start": 21525.17, + "end": 21526.49, + "probability": 0.9751 + }, + { + "start": 21527.25, + "end": 21529.51, + "probability": 0.9775 + }, + { + "start": 21529.61, + "end": 21530.31, + "probability": 0.7623 + }, + { + "start": 21530.61, + "end": 21532.13, + "probability": 0.5876 + }, + { + "start": 21532.99, + "end": 21539.57, + "probability": 0.9447 + }, + { + "start": 21540.95, + "end": 21542.69, + "probability": 0.7316 + }, + { + "start": 21542.75, + "end": 21543.2, + "probability": 0.5946 + }, + { + "start": 21543.37, + "end": 21545.87, + "probability": 0.8597 + }, + { + "start": 21546.45, + "end": 21547.95, + "probability": 0.807 + }, + { + "start": 21548.51, + "end": 21550.77, + "probability": 0.9115 + }, + { + "start": 21550.85, + "end": 21551.87, + "probability": 0.7881 + }, + { + "start": 21551.95, + "end": 21553.99, + "probability": 0.7266 + }, + { + "start": 21554.29, + "end": 21555.25, + "probability": 0.7535 + }, + { + "start": 21555.41, + "end": 21557.61, + "probability": 0.9248 + }, + { + "start": 21557.95, + "end": 21560.64, + "probability": 0.7786 + }, + { + "start": 21561.09, + "end": 21561.55, + "probability": 0.5424 + }, + { + "start": 21561.63, + "end": 21565.61, + "probability": 0.973 + }, + { + "start": 21565.89, + "end": 21567.67, + "probability": 0.8525 + }, + { + "start": 21567.89, + "end": 21569.59, + "probability": 0.5079 + }, + { + "start": 21569.81, + "end": 21571.37, + "probability": 0.947 + }, + { + "start": 21572.31, + "end": 21572.55, + "probability": 0.0127 + }, + { + "start": 21572.55, + "end": 21575.73, + "probability": 0.7859 + }, + { + "start": 21575.83, + "end": 21576.53, + "probability": 0.4353 + }, + { + "start": 21576.57, + "end": 21577.57, + "probability": 0.9571 + }, + { + "start": 21584.03, + "end": 21585.27, + "probability": 0.5244 + }, + { + "start": 21586.27, + "end": 21588.23, + "probability": 0.7473 + }, + { + "start": 21589.83, + "end": 21590.25, + "probability": 0.3657 + }, + { + "start": 21601.01, + "end": 21601.61, + "probability": 0.0045 + }, + { + "start": 21601.61, + "end": 21603.31, + "probability": 0.5359 + }, + { + "start": 21604.65, + "end": 21606.87, + "probability": 0.6429 + }, + { + "start": 21608.87, + "end": 21613.21, + "probability": 0.5706 + }, + { + "start": 21613.75, + "end": 21614.61, + "probability": 0.9512 + }, + { + "start": 21616.21, + "end": 21617.81, + "probability": 0.6681 + }, + { + "start": 21617.93, + "end": 21619.17, + "probability": 0.7065 + }, + { + "start": 21620.35, + "end": 21621.89, + "probability": 0.5976 + }, + { + "start": 21623.29, + "end": 21625.87, + "probability": 0.981 + }, + { + "start": 21626.39, + "end": 21633.49, + "probability": 0.885 + }, + { + "start": 21633.91, + "end": 21635.05, + "probability": 0.9031 + }, + { + "start": 21636.15, + "end": 21638.29, + "probability": 0.8815 + }, + { + "start": 21638.45, + "end": 21642.07, + "probability": 0.9937 + }, + { + "start": 21642.37, + "end": 21649.21, + "probability": 0.9161 + }, + { + "start": 21649.35, + "end": 21653.35, + "probability": 0.7907 + }, + { + "start": 21653.41, + "end": 21654.99, + "probability": 0.9098 + }, + { + "start": 21655.09, + "end": 21656.91, + "probability": 0.7852 + }, + { + "start": 21657.35, + "end": 21661.65, + "probability": 0.8646 + }, + { + "start": 21661.91, + "end": 21662.87, + "probability": 0.6725 + }, + { + "start": 21663.01, + "end": 21665.16, + "probability": 0.6961 + }, + { + "start": 21666.13, + "end": 21667.99, + "probability": 0.8735 + }, + { + "start": 21669.77, + "end": 21673.33, + "probability": 0.5051 + }, + { + "start": 21674.99, + "end": 21676.27, + "probability": 0.7816 + }, + { + "start": 21676.81, + "end": 21677.85, + "probability": 0.8027 + }, + { + "start": 21677.93, + "end": 21681.39, + "probability": 0.5653 + }, + { + "start": 21682.75, + "end": 21683.73, + "probability": 0.5402 + }, + { + "start": 21684.73, + "end": 21688.85, + "probability": 0.8356 + }, + { + "start": 21689.87, + "end": 21695.45, + "probability": 0.9506 + }, + { + "start": 21696.29, + "end": 21701.97, + "probability": 0.8577 + }, + { + "start": 21702.23, + "end": 21704.37, + "probability": 0.8984 + }, + { + "start": 21704.61, + "end": 21708.84, + "probability": 0.6412 + }, + { + "start": 21710.25, + "end": 21714.87, + "probability": 0.7891 + }, + { + "start": 21715.49, + "end": 21718.33, + "probability": 0.9497 + }, + { + "start": 21718.35, + "end": 21721.99, + "probability": 0.9809 + }, + { + "start": 21723.19, + "end": 21723.49, + "probability": 0.6191 + }, + { + "start": 21723.69, + "end": 21730.77, + "probability": 0.9486 + }, + { + "start": 21731.67, + "end": 21734.11, + "probability": 0.9871 + }, + { + "start": 21734.39, + "end": 21734.93, + "probability": 0.9563 + }, + { + "start": 21735.37, + "end": 21737.77, + "probability": 0.9639 + }, + { + "start": 21737.77, + "end": 21740.61, + "probability": 0.9807 + }, + { + "start": 21740.69, + "end": 21742.75, + "probability": 0.7 + }, + { + "start": 21744.23, + "end": 21747.41, + "probability": 0.9219 + }, + { + "start": 21748.29, + "end": 21753.09, + "probability": 0.9863 + }, + { + "start": 21753.31, + "end": 21757.99, + "probability": 0.9246 + }, + { + "start": 21761.15, + "end": 21762.01, + "probability": 0.5053 + }, + { + "start": 21763.01, + "end": 21765.33, + "probability": 0.8939 + }, + { + "start": 21765.89, + "end": 21766.79, + "probability": 0.4712 + }, + { + "start": 21770.01, + "end": 21773.51, + "probability": 0.9206 + }, + { + "start": 21773.57, + "end": 21774.67, + "probability": 0.8967 + }, + { + "start": 21774.77, + "end": 21779.95, + "probability": 0.6734 + }, + { + "start": 21780.17, + "end": 21781.49, + "probability": 0.7538 + }, + { + "start": 21782.35, + "end": 21786.55, + "probability": 0.8884 + }, + { + "start": 21787.15, + "end": 21790.49, + "probability": 0.9905 + }, + { + "start": 21790.63, + "end": 21791.77, + "probability": 0.9438 + }, + { + "start": 21791.81, + "end": 21793.29, + "probability": 0.8012 + }, + { + "start": 21794.13, + "end": 21794.66, + "probability": 0.775 + }, + { + "start": 21795.91, + "end": 21797.87, + "probability": 0.9319 + }, + { + "start": 21798.57, + "end": 21800.31, + "probability": 0.7003 + }, + { + "start": 21800.85, + "end": 21804.41, + "probability": 0.9438 + }, + { + "start": 21804.75, + "end": 21808.01, + "probability": 0.8567 + }, + { + "start": 21808.07, + "end": 21809.09, + "probability": 0.6853 + }, + { + "start": 21809.39, + "end": 21810.53, + "probability": 0.8852 + }, + { + "start": 21811.21, + "end": 21816.29, + "probability": 0.7072 + }, + { + "start": 21818.67, + "end": 21820.17, + "probability": 0.958 + }, + { + "start": 21821.47, + "end": 21823.57, + "probability": 0.741 + }, + { + "start": 21824.01, + "end": 21829.73, + "probability": 0.9829 + }, + { + "start": 21829.79, + "end": 21831.25, + "probability": 0.7967 + }, + { + "start": 21832.01, + "end": 21834.75, + "probability": 0.9013 + }, + { + "start": 21835.85, + "end": 21838.85, + "probability": 0.8975 + }, + { + "start": 21839.57, + "end": 21841.15, + "probability": 0.7027 + }, + { + "start": 21841.41, + "end": 21845.13, + "probability": 0.5169 + }, + { + "start": 21845.37, + "end": 21848.39, + "probability": 0.962 + }, + { + "start": 21848.89, + "end": 21851.31, + "probability": 0.4419 + }, + { + "start": 21853.41, + "end": 21853.91, + "probability": 0.9529 + }, + { + "start": 21855.93, + "end": 21856.95, + "probability": 0.9834 + }, + { + "start": 21857.05, + "end": 21858.07, + "probability": 0.97 + }, + { + "start": 21858.25, + "end": 21860.35, + "probability": 0.8492 + }, + { + "start": 21860.41, + "end": 21860.91, + "probability": 0.6529 + }, + { + "start": 21861.01, + "end": 21863.21, + "probability": 0.8727 + }, + { + "start": 21863.37, + "end": 21864.25, + "probability": 0.6556 + }, + { + "start": 21864.85, + "end": 21865.75, + "probability": 0.9409 + }, + { + "start": 21868.39, + "end": 21868.59, + "probability": 0.1776 + }, + { + "start": 21868.59, + "end": 21868.59, + "probability": 0.0789 + }, + { + "start": 21868.59, + "end": 21868.99, + "probability": 0.0548 + }, + { + "start": 21869.67, + "end": 21871.05, + "probability": 0.5831 + }, + { + "start": 21872.15, + "end": 21876.01, + "probability": 0.75 + }, + { + "start": 21876.87, + "end": 21880.11, + "probability": 0.8836 + }, + { + "start": 21880.35, + "end": 21883.59, + "probability": 0.9611 + }, + { + "start": 21883.65, + "end": 21884.42, + "probability": 0.8 + }, + { + "start": 21884.67, + "end": 21885.55, + "probability": 0.6285 + }, + { + "start": 21885.61, + "end": 21887.73, + "probability": 0.8846 + }, + { + "start": 21888.63, + "end": 21889.99, + "probability": 0.7186 + }, + { + "start": 21890.91, + "end": 21892.49, + "probability": 0.751 + }, + { + "start": 21892.53, + "end": 21893.99, + "probability": 0.5908 + }, + { + "start": 21894.59, + "end": 21897.21, + "probability": 0.9137 + }, + { + "start": 21897.21, + "end": 21899.97, + "probability": 0.8889 + }, + { + "start": 21900.25, + "end": 21901.81, + "probability": 0.7679 + }, + { + "start": 21902.27, + "end": 21903.85, + "probability": 0.9336 + }, + { + "start": 21903.99, + "end": 21905.35, + "probability": 0.9613 + }, + { + "start": 21905.93, + "end": 21907.97, + "probability": 0.6667 + }, + { + "start": 21908.51, + "end": 21910.15, + "probability": 0.9233 + }, + { + "start": 21910.79, + "end": 21914.13, + "probability": 0.8236 + }, + { + "start": 21914.39, + "end": 21917.17, + "probability": 0.9919 + }, + { + "start": 21917.17, + "end": 21919.77, + "probability": 0.9138 + }, + { + "start": 21919.91, + "end": 21920.15, + "probability": 0.3161 + }, + { + "start": 21920.55, + "end": 21920.55, + "probability": 0.3205 + }, + { + "start": 21920.57, + "end": 21921.59, + "probability": 0.3497 + }, + { + "start": 21921.65, + "end": 21923.27, + "probability": 0.92 + }, + { + "start": 21923.41, + "end": 21925.11, + "probability": 0.9768 + }, + { + "start": 21925.65, + "end": 21926.19, + "probability": 0.6865 + }, + { + "start": 21926.91, + "end": 21930.29, + "probability": 0.7933 + }, + { + "start": 21930.37, + "end": 21930.91, + "probability": 0.7572 + }, + { + "start": 21931.23, + "end": 21932.19, + "probability": 0.859 + }, + { + "start": 21932.31, + "end": 21937.33, + "probability": 0.7883 + }, + { + "start": 21937.33, + "end": 21939.5, + "probability": 0.5697 + }, + { + "start": 21939.71, + "end": 21941.23, + "probability": 0.8556 + }, + { + "start": 21942.43, + "end": 21944.91, + "probability": 0.9421 + }, + { + "start": 21945.09, + "end": 21949.85, + "probability": 0.9148 + }, + { + "start": 21949.93, + "end": 21951.09, + "probability": 0.8532 + }, + { + "start": 21951.21, + "end": 21952.73, + "probability": 0.782 + }, + { + "start": 21952.95, + "end": 21955.97, + "probability": 0.9002 + }, + { + "start": 21956.09, + "end": 21958.53, + "probability": 0.8723 + }, + { + "start": 21958.91, + "end": 21960.79, + "probability": 0.8736 + }, + { + "start": 21961.31, + "end": 21963.89, + "probability": 0.6714 + }, + { + "start": 21964.49, + "end": 21966.7, + "probability": 0.9629 + }, + { + "start": 21967.95, + "end": 21968.81, + "probability": 0.9672 + }, + { + "start": 21968.85, + "end": 21971.73, + "probability": 0.9866 + }, + { + "start": 21972.79, + "end": 21974.93, + "probability": 0.3431 + }, + { + "start": 21975.85, + "end": 21979.41, + "probability": 0.9379 + }, + { + "start": 21979.83, + "end": 21980.79, + "probability": 0.8724 + }, + { + "start": 21980.85, + "end": 21987.23, + "probability": 0.9247 + }, + { + "start": 21987.31, + "end": 21988.73, + "probability": 0.9623 + }, + { + "start": 21989.13, + "end": 21990.27, + "probability": 0.8492 + }, + { + "start": 21990.35, + "end": 21993.65, + "probability": 0.9556 + }, + { + "start": 21993.75, + "end": 21994.55, + "probability": 0.2196 + }, + { + "start": 21995.55, + "end": 21996.3, + "probability": 0.9062 + }, + { + "start": 21996.49, + "end": 21997.37, + "probability": 0.7094 + }, + { + "start": 21997.43, + "end": 22000.27, + "probability": 0.9741 + }, + { + "start": 22000.69, + "end": 22001.83, + "probability": 0.8143 + }, + { + "start": 22001.93, + "end": 22003.57, + "probability": 0.9863 + }, + { + "start": 22003.67, + "end": 22004.01, + "probability": 0.2136 + }, + { + "start": 22004.17, + "end": 22004.88, + "probability": 0.8992 + }, + { + "start": 22005.03, + "end": 22007.16, + "probability": 0.5272 + }, + { + "start": 22007.55, + "end": 22010.55, + "probability": 0.9657 + }, + { + "start": 22010.69, + "end": 22011.1, + "probability": 0.7915 + }, + { + "start": 22012.43, + "end": 22016.63, + "probability": 0.5617 + }, + { + "start": 22017.19, + "end": 22019.31, + "probability": 0.9007 + }, + { + "start": 22020.07, + "end": 22020.86, + "probability": 0.6877 + }, + { + "start": 22021.33, + "end": 22023.39, + "probability": 0.7769 + }, + { + "start": 22023.43, + "end": 22025.05, + "probability": 0.809 + }, + { + "start": 22025.11, + "end": 22027.25, + "probability": 0.6562 + }, + { + "start": 22027.77, + "end": 22029.29, + "probability": 0.2061 + }, + { + "start": 22029.93, + "end": 22032.37, + "probability": 0.765 + }, + { + "start": 22032.77, + "end": 22035.95, + "probability": 0.7657 + }, + { + "start": 22036.55, + "end": 22040.09, + "probability": 0.5359 + }, + { + "start": 22040.09, + "end": 22040.69, + "probability": 0.3575 + }, + { + "start": 22041.03, + "end": 22045.33, + "probability": 0.7404 + }, + { + "start": 22045.39, + "end": 22045.99, + "probability": 0.2557 + }, + { + "start": 22046.83, + "end": 22047.97, + "probability": 0.5585 + }, + { + "start": 22048.11, + "end": 22051.65, + "probability": 0.8118 + }, + { + "start": 22052.27, + "end": 22052.49, + "probability": 0.4677 + }, + { + "start": 22052.59, + "end": 22053.47, + "probability": 0.5928 + }, + { + "start": 22053.61, + "end": 22055.62, + "probability": 0.8032 + }, + { + "start": 22056.05, + "end": 22058.35, + "probability": 0.9684 + }, + { + "start": 22060.31, + "end": 22065.79, + "probability": 0.7476 + }, + { + "start": 22065.95, + "end": 22070.79, + "probability": 0.6013 + }, + { + "start": 22070.95, + "end": 22072.71, + "probability": 0.8499 + }, + { + "start": 22072.79, + "end": 22073.69, + "probability": 0.9494 + }, + { + "start": 22074.07, + "end": 22074.88, + "probability": 0.7242 + }, + { + "start": 22075.17, + "end": 22076.63, + "probability": 0.7033 + }, + { + "start": 22077.05, + "end": 22077.97, + "probability": 0.7211 + }, + { + "start": 22078.11, + "end": 22082.25, + "probability": 0.7857 + }, + { + "start": 22082.31, + "end": 22085.65, + "probability": 0.7228 + }, + { + "start": 22085.71, + "end": 22086.21, + "probability": 0.7918 + }, + { + "start": 22086.59, + "end": 22086.69, + "probability": 0.5806 + }, + { + "start": 22087.75, + "end": 22089.53, + "probability": 0.95 + }, + { + "start": 22089.67, + "end": 22090.71, + "probability": 0.7683 + }, + { + "start": 22091.57, + "end": 22094.89, + "probability": 0.8844 + }, + { + "start": 22094.97, + "end": 22095.67, + "probability": 0.8213 + }, + { + "start": 22095.87, + "end": 22096.53, + "probability": 0.8584 + }, + { + "start": 22096.53, + "end": 22097.09, + "probability": 0.7453 + }, + { + "start": 22097.09, + "end": 22098.41, + "probability": 0.9421 + }, + { + "start": 22098.97, + "end": 22101.61, + "probability": 0.503 + }, + { + "start": 22101.65, + "end": 22101.93, + "probability": 0.8389 + }, + { + "start": 22102.07, + "end": 22102.29, + "probability": 0.4021 + }, + { + "start": 22102.29, + "end": 22103.89, + "probability": 0.9028 + }, + { + "start": 22103.97, + "end": 22105.83, + "probability": 0.8606 + }, + { + "start": 22107.15, + "end": 22111.29, + "probability": 0.8254 + }, + { + "start": 22135.13, + "end": 22135.55, + "probability": 0.1474 + }, + { + "start": 22135.55, + "end": 22136.29, + "probability": 0.1324 + }, + { + "start": 22136.29, + "end": 22136.61, + "probability": 0.2308 + }, + { + "start": 22136.61, + "end": 22136.83, + "probability": 0.1446 + }, + { + "start": 22136.83, + "end": 22137.21, + "probability": 0.0124 + }, + { + "start": 22147.71, + "end": 22152.67, + "probability": 0.4805 + }, + { + "start": 22158.85, + "end": 22159.63, + "probability": 0.0381 + }, + { + "start": 22182.01, + "end": 22184.69, + "probability": 0.3406 + }, + { + "start": 22188.49, + "end": 22190.17, + "probability": 0.6814 + }, + { + "start": 22192.01, + "end": 22193.69, + "probability": 0.513 + }, + { + "start": 22194.77, + "end": 22204.13, + "probability": 0.9891 + }, + { + "start": 22205.17, + "end": 22205.69, + "probability": 0.6231 + }, + { + "start": 22207.17, + "end": 22210.93, + "probability": 0.9846 + }, + { + "start": 22211.85, + "end": 22214.43, + "probability": 0.9857 + }, + { + "start": 22214.91, + "end": 22217.19, + "probability": 0.9341 + }, + { + "start": 22217.27, + "end": 22218.75, + "probability": 0.9447 + }, + { + "start": 22222.63, + "end": 22225.61, + "probability": 0.9673 + }, + { + "start": 22229.63, + "end": 22234.67, + "probability": 0.9795 + }, + { + "start": 22237.39, + "end": 22238.59, + "probability": 0.8998 + }, + { + "start": 22240.15, + "end": 22244.91, + "probability": 0.9946 + }, + { + "start": 22246.83, + "end": 22249.49, + "probability": 0.9953 + }, + { + "start": 22251.77, + "end": 22253.03, + "probability": 0.9818 + }, + { + "start": 22254.41, + "end": 22256.57, + "probability": 0.7352 + }, + { + "start": 22257.51, + "end": 22263.07, + "probability": 0.8652 + }, + { + "start": 22263.69, + "end": 22269.01, + "probability": 0.9884 + }, + { + "start": 22270.09, + "end": 22271.97, + "probability": 0.9989 + }, + { + "start": 22274.07, + "end": 22276.97, + "probability": 0.9698 + }, + { + "start": 22278.59, + "end": 22281.19, + "probability": 0.667 + }, + { + "start": 22282.01, + "end": 22287.39, + "probability": 0.9722 + }, + { + "start": 22288.67, + "end": 22295.09, + "probability": 0.999 + }, + { + "start": 22298.21, + "end": 22300.09, + "probability": 0.9966 + }, + { + "start": 22300.75, + "end": 22302.63, + "probability": 0.5872 + }, + { + "start": 22303.47, + "end": 22305.19, + "probability": 0.9395 + }, + { + "start": 22306.85, + "end": 22310.39, + "probability": 0.958 + }, + { + "start": 22311.19, + "end": 22312.19, + "probability": 0.9746 + }, + { + "start": 22313.59, + "end": 22316.79, + "probability": 0.9717 + }, + { + "start": 22318.37, + "end": 22320.22, + "probability": 0.9976 + }, + { + "start": 22320.99, + "end": 22325.13, + "probability": 0.9945 + }, + { + "start": 22325.13, + "end": 22330.15, + "probability": 0.9878 + }, + { + "start": 22331.55, + "end": 22332.43, + "probability": 0.5877 + }, + { + "start": 22333.73, + "end": 22335.83, + "probability": 0.8018 + }, + { + "start": 22336.51, + "end": 22339.61, + "probability": 0.8182 + }, + { + "start": 22340.63, + "end": 22342.07, + "probability": 0.9503 + }, + { + "start": 22343.39, + "end": 22345.59, + "probability": 0.8709 + }, + { + "start": 22347.16, + "end": 22347.91, + "probability": 0.1834 + }, + { + "start": 22347.91, + "end": 22347.91, + "probability": 0.0317 + }, + { + "start": 22347.91, + "end": 22347.91, + "probability": 0.3146 + }, + { + "start": 22347.91, + "end": 22349.17, + "probability": 0.5764 + }, + { + "start": 22349.17, + "end": 22351.47, + "probability": 0.7229 + }, + { + "start": 22351.85, + "end": 22352.58, + "probability": 0.9667 + }, + { + "start": 22353.49, + "end": 22354.35, + "probability": 0.6568 + }, + { + "start": 22357.01, + "end": 22358.53, + "probability": 0.065 + }, + { + "start": 22359.75, + "end": 22360.21, + "probability": 0.0392 + }, + { + "start": 22360.21, + "end": 22360.21, + "probability": 0.0162 + }, + { + "start": 22360.21, + "end": 22361.29, + "probability": 0.8168 + }, + { + "start": 22361.85, + "end": 22362.51, + "probability": 0.8623 + }, + { + "start": 22365.03, + "end": 22370.99, + "probability": 0.989 + }, + { + "start": 22371.51, + "end": 22375.13, + "probability": 0.9656 + }, + { + "start": 22375.89, + "end": 22379.53, + "probability": 0.9714 + }, + { + "start": 22379.59, + "end": 22383.73, + "probability": 0.6999 + }, + { + "start": 22384.11, + "end": 22384.81, + "probability": 0.5735 + }, + { + "start": 22386.51, + "end": 22391.35, + "probability": 0.9917 + }, + { + "start": 22391.35, + "end": 22395.43, + "probability": 0.9814 + }, + { + "start": 22396.63, + "end": 22399.45, + "probability": 0.9753 + }, + { + "start": 22400.83, + "end": 22403.19, + "probability": 0.8547 + }, + { + "start": 22404.37, + "end": 22407.71, + "probability": 0.9912 + }, + { + "start": 22409.53, + "end": 22410.25, + "probability": 0.9929 + }, + { + "start": 22410.99, + "end": 22415.17, + "probability": 0.9833 + }, + { + "start": 22416.43, + "end": 22418.67, + "probability": 0.9673 + }, + { + "start": 22419.69, + "end": 22420.71, + "probability": 0.5471 + }, + { + "start": 22422.83, + "end": 22428.81, + "probability": 0.8608 + }, + { + "start": 22429.83, + "end": 22431.99, + "probability": 0.9918 + }, + { + "start": 22433.63, + "end": 22437.11, + "probability": 0.9747 + }, + { + "start": 22438.52, + "end": 22441.17, + "probability": 0.9756 + }, + { + "start": 22441.81, + "end": 22445.01, + "probability": 0.8585 + }, + { + "start": 22448.51, + "end": 22453.23, + "probability": 0.9969 + }, + { + "start": 22453.75, + "end": 22458.77, + "probability": 0.9558 + }, + { + "start": 22459.35, + "end": 22461.31, + "probability": 0.94 + }, + { + "start": 22461.83, + "end": 22463.45, + "probability": 0.9503 + }, + { + "start": 22464.23, + "end": 22465.89, + "probability": 0.9984 + }, + { + "start": 22466.41, + "end": 22467.61, + "probability": 0.822 + }, + { + "start": 22468.53, + "end": 22471.09, + "probability": 0.9873 + }, + { + "start": 22471.69, + "end": 22472.61, + "probability": 0.974 + }, + { + "start": 22473.29, + "end": 22475.65, + "probability": 0.9952 + }, + { + "start": 22476.31, + "end": 22477.83, + "probability": 0.9648 + }, + { + "start": 22481.37, + "end": 22482.31, + "probability": 0.6221 + }, + { + "start": 22486.43, + "end": 22488.01, + "probability": 0.7381 + }, + { + "start": 22488.75, + "end": 22491.87, + "probability": 0.9863 + }, + { + "start": 22492.61, + "end": 22494.16, + "probability": 0.9292 + }, + { + "start": 22496.33, + "end": 22503.59, + "probability": 0.979 + }, + { + "start": 22504.43, + "end": 22505.47, + "probability": 0.9001 + }, + { + "start": 22506.15, + "end": 22506.87, + "probability": 0.8835 + }, + { + "start": 22508.13, + "end": 22511.01, + "probability": 0.9835 + }, + { + "start": 22512.23, + "end": 22513.43, + "probability": 0.9978 + }, + { + "start": 22514.73, + "end": 22516.23, + "probability": 0.9722 + }, + { + "start": 22517.43, + "end": 22517.97, + "probability": 0.5002 + }, + { + "start": 22518.81, + "end": 22520.53, + "probability": 0.8355 + }, + { + "start": 22522.05, + "end": 22524.29, + "probability": 0.7939 + }, + { + "start": 22524.69, + "end": 22527.89, + "probability": 0.9795 + }, + { + "start": 22528.75, + "end": 22530.31, + "probability": 0.4752 + }, + { + "start": 22530.81, + "end": 22533.65, + "probability": 0.9639 + }, + { + "start": 22535.23, + "end": 22536.27, + "probability": 0.8748 + }, + { + "start": 22538.19, + "end": 22541.29, + "probability": 0.9707 + }, + { + "start": 22543.01, + "end": 22547.65, + "probability": 0.9932 + }, + { + "start": 22548.27, + "end": 22551.57, + "probability": 0.9559 + }, + { + "start": 22552.65, + "end": 22555.51, + "probability": 0.663 + }, + { + "start": 22556.77, + "end": 22559.93, + "probability": 0.9777 + }, + { + "start": 22560.11, + "end": 22561.61, + "probability": 0.999 + }, + { + "start": 22562.45, + "end": 22566.65, + "probability": 0.9633 + }, + { + "start": 22567.57, + "end": 22569.63, + "probability": 0.8877 + }, + { + "start": 22570.45, + "end": 22572.13, + "probability": 0.9492 + }, + { + "start": 22573.55, + "end": 22577.29, + "probability": 0.9394 + }, + { + "start": 22577.39, + "end": 22578.02, + "probability": 0.5098 + }, + { + "start": 22578.29, + "end": 22579.99, + "probability": 0.8394 + }, + { + "start": 22580.47, + "end": 22581.45, + "probability": 0.7708 + }, + { + "start": 22583.39, + "end": 22584.59, + "probability": 0.9907 + }, + { + "start": 22585.35, + "end": 22585.99, + "probability": 0.9956 + }, + { + "start": 22586.53, + "end": 22587.99, + "probability": 0.9997 + }, + { + "start": 22588.93, + "end": 22591.07, + "probability": 0.8385 + }, + { + "start": 22592.35, + "end": 22595.59, + "probability": 0.9976 + }, + { + "start": 22596.43, + "end": 22599.79, + "probability": 0.8901 + }, + { + "start": 22599.89, + "end": 22601.89, + "probability": 0.771 + }, + { + "start": 22602.83, + "end": 22603.21, + "probability": 0.3107 + }, + { + "start": 22603.47, + "end": 22604.53, + "probability": 0.9278 + }, + { + "start": 22605.97, + "end": 22606.59, + "probability": 0.7288 + }, + { + "start": 22606.69, + "end": 22609.83, + "probability": 0.8867 + }, + { + "start": 22611.03, + "end": 22612.23, + "probability": 0.9877 + }, + { + "start": 22612.93, + "end": 22614.08, + "probability": 0.9565 + }, + { + "start": 22615.39, + "end": 22615.87, + "probability": 0.9301 + }, + { + "start": 22616.39, + "end": 22619.85, + "probability": 0.9753 + }, + { + "start": 22620.33, + "end": 22623.67, + "probability": 0.9791 + }, + { + "start": 22624.57, + "end": 22626.09, + "probability": 0.5854 + }, + { + "start": 22626.69, + "end": 22632.07, + "probability": 0.9019 + }, + { + "start": 22632.53, + "end": 22634.01, + "probability": 0.9119 + }, + { + "start": 22636.63, + "end": 22638.01, + "probability": 0.7568 + }, + { + "start": 22638.65, + "end": 22639.79, + "probability": 0.9712 + }, + { + "start": 22639.99, + "end": 22641.5, + "probability": 0.8747 + }, + { + "start": 22642.13, + "end": 22643.83, + "probability": 0.9426 + }, + { + "start": 22644.59, + "end": 22646.23, + "probability": 0.7331 + }, + { + "start": 22646.41, + "end": 22647.23, + "probability": 0.9466 + }, + { + "start": 22648.11, + "end": 22655.69, + "probability": 0.9885 + }, + { + "start": 22656.43, + "end": 22657.69, + "probability": 0.9814 + }, + { + "start": 22658.75, + "end": 22659.61, + "probability": 0.7129 + }, + { + "start": 22661.09, + "end": 22662.95, + "probability": 0.5151 + }, + { + "start": 22664.37, + "end": 22667.79, + "probability": 0.9298 + }, + { + "start": 22668.39, + "end": 22669.52, + "probability": 0.99 + }, + { + "start": 22670.27, + "end": 22674.59, + "probability": 0.8945 + }, + { + "start": 22675.03, + "end": 22676.23, + "probability": 0.7754 + }, + { + "start": 22676.91, + "end": 22678.41, + "probability": 0.9971 + }, + { + "start": 22678.97, + "end": 22683.05, + "probability": 0.9833 + }, + { + "start": 22684.53, + "end": 22686.77, + "probability": 0.9517 + }, + { + "start": 22687.31, + "end": 22688.35, + "probability": 0.8333 + }, + { + "start": 22688.81, + "end": 22691.37, + "probability": 0.9506 + }, + { + "start": 22693.25, + "end": 22693.81, + "probability": 0.7764 + }, + { + "start": 22694.23, + "end": 22697.01, + "probability": 0.6916 + }, + { + "start": 22697.71, + "end": 22698.61, + "probability": 0.7948 + }, + { + "start": 22699.51, + "end": 22700.41, + "probability": 0.4596 + }, + { + "start": 22700.61, + "end": 22701.67, + "probability": 0.791 + }, + { + "start": 22702.59, + "end": 22704.15, + "probability": 0.9802 + }, + { + "start": 22705.87, + "end": 22707.63, + "probability": 0.9408 + }, + { + "start": 22708.53, + "end": 22710.77, + "probability": 0.7476 + }, + { + "start": 22711.21, + "end": 22712.73, + "probability": 0.8281 + }, + { + "start": 22712.91, + "end": 22715.21, + "probability": 0.98 + }, + { + "start": 22715.33, + "end": 22716.81, + "probability": 0.6218 + }, + { + "start": 22717.39, + "end": 22718.88, + "probability": 0.9658 + }, + { + "start": 22720.51, + "end": 22721.04, + "probability": 0.7708 + }, + { + "start": 22721.21, + "end": 22726.13, + "probability": 0.9746 + }, + { + "start": 22727.13, + "end": 22730.47, + "probability": 0.9972 + }, + { + "start": 22733.23, + "end": 22734.65, + "probability": 0.9417 + }, + { + "start": 22735.23, + "end": 22736.68, + "probability": 0.9928 + }, + { + "start": 22737.05, + "end": 22738.73, + "probability": 0.7944 + }, + { + "start": 22739.37, + "end": 22742.03, + "probability": 0.9876 + }, + { + "start": 22742.11, + "end": 22742.85, + "probability": 0.9458 + }, + { + "start": 22742.95, + "end": 22743.75, + "probability": 0.9545 + }, + { + "start": 22744.15, + "end": 22746.41, + "probability": 0.9492 + }, + { + "start": 22747.07, + "end": 22748.63, + "probability": 0.9685 + }, + { + "start": 22749.27, + "end": 22750.17, + "probability": 0.744 + }, + { + "start": 22751.05, + "end": 22754.39, + "probability": 0.9812 + }, + { + "start": 22755.99, + "end": 22760.43, + "probability": 0.9146 + }, + { + "start": 22761.07, + "end": 22763.73, + "probability": 0.9957 + }, + { + "start": 22765.03, + "end": 22766.69, + "probability": 0.9636 + }, + { + "start": 22767.31, + "end": 22768.83, + "probability": 0.9649 + }, + { + "start": 22768.97, + "end": 22770.03, + "probability": 0.4749 + }, + { + "start": 22771.91, + "end": 22772.72, + "probability": 0.9824 + }, + { + "start": 22775.11, + "end": 22776.09, + "probability": 0.8159 + }, + { + "start": 22779.59, + "end": 22782.71, + "probability": 0.5887 + }, + { + "start": 22784.01, + "end": 22785.07, + "probability": 0.9956 + }, + { + "start": 22785.83, + "end": 22787.21, + "probability": 0.9803 + }, + { + "start": 22787.69, + "end": 22791.21, + "probability": 0.9855 + }, + { + "start": 22792.45, + "end": 22793.61, + "probability": 0.3602 + }, + { + "start": 22794.95, + "end": 22795.57, + "probability": 0.9117 + }, + { + "start": 22796.61, + "end": 22798.39, + "probability": 0.7804 + }, + { + "start": 22799.15, + "end": 22801.39, + "probability": 0.8882 + }, + { + "start": 22802.43, + "end": 22804.41, + "probability": 0.9312 + }, + { + "start": 22806.51, + "end": 22809.37, + "probability": 0.9904 + }, + { + "start": 22810.95, + "end": 22814.91, + "probability": 0.9973 + }, + { + "start": 22816.03, + "end": 22817.27, + "probability": 0.697 + }, + { + "start": 22819.37, + "end": 22819.75, + "probability": 0.5405 + }, + { + "start": 22819.85, + "end": 22826.71, + "probability": 0.9932 + }, + { + "start": 22827.59, + "end": 22833.91, + "probability": 0.9971 + }, + { + "start": 22834.39, + "end": 22837.91, + "probability": 0.7476 + }, + { + "start": 22840.03, + "end": 22841.03, + "probability": 0.7791 + }, + { + "start": 22841.25, + "end": 22844.03, + "probability": 0.8545 + }, + { + "start": 22844.61, + "end": 22849.47, + "probability": 0.9536 + }, + { + "start": 22849.57, + "end": 22850.35, + "probability": 0.9149 + }, + { + "start": 22850.75, + "end": 22852.62, + "probability": 0.6556 + }, + { + "start": 22854.01, + "end": 22855.13, + "probability": 0.8893 + }, + { + "start": 22855.73, + "end": 22857.13, + "probability": 0.8132 + }, + { + "start": 22857.87, + "end": 22860.53, + "probability": 0.9631 + }, + { + "start": 22861.99, + "end": 22866.99, + "probability": 0.5988 + }, + { + "start": 22867.81, + "end": 22872.25, + "probability": 0.8951 + }, + { + "start": 22872.73, + "end": 22875.01, + "probability": 0.9941 + }, + { + "start": 22875.47, + "end": 22877.65, + "probability": 0.9883 + }, + { + "start": 22877.87, + "end": 22877.93, + "probability": 0.1035 + }, + { + "start": 22877.93, + "end": 22878.23, + "probability": 0.7805 + }, + { + "start": 22878.81, + "end": 22880.89, + "probability": 0.7308 + }, + { + "start": 22881.85, + "end": 22885.23, + "probability": 0.958 + }, + { + "start": 22886.73, + "end": 22887.87, + "probability": 0.7796 + }, + { + "start": 22888.71, + "end": 22894.29, + "probability": 0.8294 + }, + { + "start": 22897.43, + "end": 22900.03, + "probability": 0.9263 + }, + { + "start": 22900.53, + "end": 22905.21, + "probability": 0.8534 + }, + { + "start": 22906.23, + "end": 22906.79, + "probability": 0.7852 + }, + { + "start": 22907.35, + "end": 22908.55, + "probability": 0.7427 + }, + { + "start": 22908.61, + "end": 22909.99, + "probability": 0.5266 + }, + { + "start": 22910.05, + "end": 22911.24, + "probability": 0.6874 + }, + { + "start": 22912.01, + "end": 22913.15, + "probability": 0.8757 + }, + { + "start": 22914.19, + "end": 22916.89, + "probability": 0.8161 + }, + { + "start": 22917.07, + "end": 22918.39, + "probability": 0.6699 + }, + { + "start": 22919.01, + "end": 22921.39, + "probability": 0.6939 + }, + { + "start": 22921.65, + "end": 22922.59, + "probability": 0.9324 + }, + { + "start": 22923.01, + "end": 22923.63, + "probability": 0.9843 + }, + { + "start": 22924.29, + "end": 22925.99, + "probability": 0.998 + }, + { + "start": 22927.92, + "end": 22932.13, + "probability": 0.618 + }, + { + "start": 22932.35, + "end": 22933.29, + "probability": 0.6239 + }, + { + "start": 22933.53, + "end": 22935.73, + "probability": 0.9401 + }, + { + "start": 22936.19, + "end": 22937.69, + "probability": 0.5709 + }, + { + "start": 22937.83, + "end": 22940.79, + "probability": 0.9313 + }, + { + "start": 22942.15, + "end": 22946.11, + "probability": 0.8031 + }, + { + "start": 22946.93, + "end": 22948.83, + "probability": 0.72 + }, + { + "start": 22949.59, + "end": 22951.15, + "probability": 0.9188 + }, + { + "start": 22951.81, + "end": 22953.79, + "probability": 0.3059 + }, + { + "start": 22954.31, + "end": 22956.11, + "probability": 0.7143 + }, + { + "start": 22957.67, + "end": 22959.91, + "probability": 0.9963 + }, + { + "start": 22960.75, + "end": 22963.77, + "probability": 0.904 + }, + { + "start": 22964.35, + "end": 22966.73, + "probability": 0.9759 + }, + { + "start": 22967.29, + "end": 22969.33, + "probability": 0.8879 + }, + { + "start": 22971.11, + "end": 22971.69, + "probability": 0.5721 + }, + { + "start": 22971.83, + "end": 22972.87, + "probability": 0.8426 + }, + { + "start": 22973.07, + "end": 22977.15, + "probability": 0.9478 + }, + { + "start": 22978.87, + "end": 22980.91, + "probability": 0.6021 + }, + { + "start": 22982.11, + "end": 22984.15, + "probability": 0.6545 + }, + { + "start": 22984.91, + "end": 22990.59, + "probability": 0.9849 + }, + { + "start": 22991.23, + "end": 22994.33, + "probability": 0.8944 + }, + { + "start": 22994.81, + "end": 22995.89, + "probability": 0.6195 + }, + { + "start": 22995.99, + "end": 22997.07, + "probability": 0.8403 + }, + { + "start": 22997.81, + "end": 22998.75, + "probability": 0.7156 + }, + { + "start": 22999.05, + "end": 23001.53, + "probability": 0.7921 + }, + { + "start": 23001.61, + "end": 23003.95, + "probability": 0.805 + }, + { + "start": 23004.99, + "end": 23006.49, + "probability": 0.9083 + }, + { + "start": 23006.49, + "end": 23008.25, + "probability": 0.8892 + }, + { + "start": 23008.31, + "end": 23010.19, + "probability": 0.8837 + }, + { + "start": 23010.63, + "end": 23018.73, + "probability": 0.9945 + }, + { + "start": 23019.19, + "end": 23020.21, + "probability": 0.7013 + }, + { + "start": 23020.33, + "end": 23021.37, + "probability": 0.7593 + }, + { + "start": 23021.81, + "end": 23026.75, + "probability": 0.9811 + }, + { + "start": 23027.45, + "end": 23030.19, + "probability": 0.9685 + }, + { + "start": 23030.39, + "end": 23031.58, + "probability": 0.9875 + }, + { + "start": 23032.27, + "end": 23034.71, + "probability": 0.9854 + }, + { + "start": 23034.95, + "end": 23039.43, + "probability": 0.9844 + }, + { + "start": 23039.99, + "end": 23042.11, + "probability": 0.9301 + }, + { + "start": 23042.95, + "end": 23044.87, + "probability": 0.9303 + }, + { + "start": 23045.51, + "end": 23049.05, + "probability": 0.9922 + }, + { + "start": 23049.49, + "end": 23050.79, + "probability": 0.931 + }, + { + "start": 23051.21, + "end": 23057.29, + "probability": 0.9834 + }, + { + "start": 23057.71, + "end": 23059.39, + "probability": 0.9679 + }, + { + "start": 23059.87, + "end": 23063.37, + "probability": 0.9631 + }, + { + "start": 23063.55, + "end": 23064.09, + "probability": 0.6062 + }, + { + "start": 23064.99, + "end": 23065.89, + "probability": 0.7689 + }, + { + "start": 23066.41, + "end": 23067.91, + "probability": 0.8696 + }, + { + "start": 23069.15, + "end": 23070.62, + "probability": 0.9707 + }, + { + "start": 23071.79, + "end": 23072.93, + "probability": 0.8328 + }, + { + "start": 23074.07, + "end": 23075.17, + "probability": 0.9829 + }, + { + "start": 23076.25, + "end": 23080.31, + "probability": 0.9324 + }, + { + "start": 23081.09, + "end": 23083.61, + "probability": 0.8069 + }, + { + "start": 23084.25, + "end": 23084.59, + "probability": 0.3839 + }, + { + "start": 23084.65, + "end": 23087.91, + "probability": 0.8792 + }, + { + "start": 23087.95, + "end": 23093.07, + "probability": 0.9775 + }, + { + "start": 23094.81, + "end": 23097.89, + "probability": 0.8847 + }, + { + "start": 23098.73, + "end": 23100.97, + "probability": 0.9896 + }, + { + "start": 23102.77, + "end": 23104.13, + "probability": 0.7349 + }, + { + "start": 23104.81, + "end": 23107.67, + "probability": 0.8682 + }, + { + "start": 23108.47, + "end": 23112.09, + "probability": 0.9929 + }, + { + "start": 23113.17, + "end": 23116.65, + "probability": 0.5867 + }, + { + "start": 23117.09, + "end": 23120.89, + "probability": 0.9483 + }, + { + "start": 23122.09, + "end": 23125.61, + "probability": 0.963 + }, + { + "start": 23126.51, + "end": 23130.11, + "probability": 0.959 + }, + { + "start": 23130.79, + "end": 23132.33, + "probability": 0.9473 + }, + { + "start": 23132.91, + "end": 23137.77, + "probability": 0.8481 + }, + { + "start": 23138.93, + "end": 23139.91, + "probability": 0.9122 + }, + { + "start": 23140.65, + "end": 23148.49, + "probability": 0.9958 + }, + { + "start": 23149.25, + "end": 23154.17, + "probability": 0.9966 + }, + { + "start": 23154.45, + "end": 23158.25, + "probability": 0.964 + }, + { + "start": 23158.63, + "end": 23161.21, + "probability": 0.9763 + }, + { + "start": 23164.29, + "end": 23165.29, + "probability": 0.8369 + }, + { + "start": 23165.91, + "end": 23167.27, + "probability": 0.7888 + }, + { + "start": 23170.49, + "end": 23172.21, + "probability": 0.9956 + }, + { + "start": 23173.07, + "end": 23173.87, + "probability": 0.9524 + }, + { + "start": 23174.63, + "end": 23179.31, + "probability": 0.8645 + }, + { + "start": 23179.91, + "end": 23181.77, + "probability": 0.9611 + }, + { + "start": 23182.19, + "end": 23184.03, + "probability": 0.8311 + }, + { + "start": 23184.49, + "end": 23189.13, + "probability": 0.9818 + }, + { + "start": 23189.49, + "end": 23190.97, + "probability": 0.8841 + }, + { + "start": 23192.13, + "end": 23192.47, + "probability": 0.0004 + }, + { + "start": 23193.45, + "end": 23195.01, + "probability": 0.5016 + }, + { + "start": 23196.39, + "end": 23200.79, + "probability": 0.7459 + }, + { + "start": 23200.95, + "end": 23204.85, + "probability": 0.9908 + }, + { + "start": 23204.91, + "end": 23209.17, + "probability": 0.9612 + }, + { + "start": 23210.31, + "end": 23211.67, + "probability": 0.6326 + }, + { + "start": 23212.33, + "end": 23218.87, + "probability": 0.9341 + }, + { + "start": 23220.15, + "end": 23225.51, + "probability": 0.803 + }, + { + "start": 23225.73, + "end": 23227.99, + "probability": 0.8944 + }, + { + "start": 23228.39, + "end": 23229.29, + "probability": 0.6043 + }, + { + "start": 23230.17, + "end": 23232.63, + "probability": 0.9626 + }, + { + "start": 23233.25, + "end": 23235.03, + "probability": 0.9635 + }, + { + "start": 23235.57, + "end": 23240.53, + "probability": 0.8122 + }, + { + "start": 23241.11, + "end": 23245.53, + "probability": 0.9878 + }, + { + "start": 23245.53, + "end": 23248.53, + "probability": 0.9964 + }, + { + "start": 23249.03, + "end": 23250.87, + "probability": 0.7116 + }, + { + "start": 23251.05, + "end": 23252.82, + "probability": 0.3765 + }, + { + "start": 23253.23, + "end": 23255.35, + "probability": 0.9504 + }, + { + "start": 23256.87, + "end": 23260.67, + "probability": 0.924 + }, + { + "start": 23260.77, + "end": 23261.67, + "probability": 0.6231 + }, + { + "start": 23264.15, + "end": 23265.67, + "probability": 0.9863 + }, + { + "start": 23266.33, + "end": 23267.94, + "probability": 0.5499 + }, + { + "start": 23268.35, + "end": 23269.95, + "probability": 0.5012 + }, + { + "start": 23270.63, + "end": 23277.41, + "probability": 0.9898 + }, + { + "start": 23277.97, + "end": 23280.71, + "probability": 0.307 + }, + { + "start": 23281.07, + "end": 23281.63, + "probability": 0.3742 + }, + { + "start": 23281.63, + "end": 23283.71, + "probability": 0.6206 + }, + { + "start": 23284.21, + "end": 23285.41, + "probability": 0.8257 + }, + { + "start": 23285.91, + "end": 23290.89, + "probability": 0.9812 + }, + { + "start": 23292.05, + "end": 23292.99, + "probability": 0.7491 + }, + { + "start": 23293.07, + "end": 23294.33, + "probability": 0.925 + }, + { + "start": 23295.81, + "end": 23298.05, + "probability": 0.6588 + }, + { + "start": 23298.19, + "end": 23301.63, + "probability": 0.9659 + }, + { + "start": 23301.89, + "end": 23308.03, + "probability": 0.9415 + }, + { + "start": 23308.27, + "end": 23313.93, + "probability": 0.9666 + }, + { + "start": 23320.99, + "end": 23327.17, + "probability": 0.9878 + }, + { + "start": 23327.17, + "end": 23331.43, + "probability": 0.9971 + }, + { + "start": 23331.99, + "end": 23333.07, + "probability": 0.7853 + }, + { + "start": 23333.29, + "end": 23334.29, + "probability": 0.6703 + }, + { + "start": 23334.61, + "end": 23336.13, + "probability": 0.9833 + }, + { + "start": 23336.15, + "end": 23337.39, + "probability": 0.6075 + }, + { + "start": 23337.81, + "end": 23337.81, + "probability": 0.175 + }, + { + "start": 23337.81, + "end": 23337.81, + "probability": 0.2173 + }, + { + "start": 23337.87, + "end": 23338.53, + "probability": 0.9128 + }, + { + "start": 23338.53, + "end": 23341.41, + "probability": 0.9824 + }, + { + "start": 23341.47, + "end": 23345.01, + "probability": 0.9776 + }, + { + "start": 23345.11, + "end": 23347.55, + "probability": 0.9796 + }, + { + "start": 23348.15, + "end": 23351.14, + "probability": 0.5686 + }, + { + "start": 23351.45, + "end": 23352.55, + "probability": 0.9961 + }, + { + "start": 23352.65, + "end": 23355.05, + "probability": 0.8764 + }, + { + "start": 23355.13, + "end": 23355.93, + "probability": 0.685 + }, + { + "start": 23355.95, + "end": 23356.27, + "probability": 0.6321 + }, + { + "start": 23356.45, + "end": 23359.21, + "probability": 0.9402 + }, + { + "start": 23359.33, + "end": 23360.57, + "probability": 0.6102 + }, + { + "start": 23360.57, + "end": 23361.05, + "probability": 0.707 + }, + { + "start": 23361.47, + "end": 23362.41, + "probability": 0.5263 + }, + { + "start": 23363.05, + "end": 23364.49, + "probability": 0.8151 + }, + { + "start": 23364.89, + "end": 23367.12, + "probability": 0.7407 + }, + { + "start": 23367.35, + "end": 23371.51, + "probability": 0.9328 + }, + { + "start": 23371.85, + "end": 23372.59, + "probability": 0.6256 + }, + { + "start": 23372.87, + "end": 23373.29, + "probability": 0.4825 + }, + { + "start": 23373.39, + "end": 23377.25, + "probability": 0.8774 + }, + { + "start": 23377.37, + "end": 23379.55, + "probability": 0.9936 + }, + { + "start": 23379.99, + "end": 23383.51, + "probability": 0.984 + }, + { + "start": 23384.31, + "end": 23388.43, + "probability": 0.8054 + }, + { + "start": 23389.25, + "end": 23394.15, + "probability": 0.82 + }, + { + "start": 23395.01, + "end": 23398.19, + "probability": 0.9551 + }, + { + "start": 23398.93, + "end": 23402.81, + "probability": 0.8008 + }, + { + "start": 23402.93, + "end": 23403.75, + "probability": 0.6369 + }, + { + "start": 23403.93, + "end": 23406.25, + "probability": 0.8944 + }, + { + "start": 23406.35, + "end": 23409.43, + "probability": 0.9967 + }, + { + "start": 23409.75, + "end": 23412.25, + "probability": 0.6151 + }, + { + "start": 23412.39, + "end": 23415.14, + "probability": 0.9738 + }, + { + "start": 23415.37, + "end": 23416.91, + "probability": 0.6201 + }, + { + "start": 23417.13, + "end": 23419.69, + "probability": 0.7409 + }, + { + "start": 23420.15, + "end": 23421.5, + "probability": 0.9438 + }, + { + "start": 23422.23, + "end": 23424.37, + "probability": 0.9678 + }, + { + "start": 23424.45, + "end": 23426.39, + "probability": 0.979 + }, + { + "start": 23426.81, + "end": 23430.34, + "probability": 0.9365 + }, + { + "start": 23430.83, + "end": 23430.97, + "probability": 0.0078 + }, + { + "start": 23430.97, + "end": 23430.97, + "probability": 0.2177 + }, + { + "start": 23430.97, + "end": 23432.87, + "probability": 0.5309 + }, + { + "start": 23433.21, + "end": 23435.19, + "probability": 0.7559 + }, + { + "start": 23435.89, + "end": 23436.23, + "probability": 0.5705 + }, + { + "start": 23436.31, + "end": 23437.99, + "probability": 0.9495 + }, + { + "start": 23438.09, + "end": 23439.69, + "probability": 0.9236 + }, + { + "start": 23440.17, + "end": 23442.19, + "probability": 0.9891 + }, + { + "start": 23442.91, + "end": 23444.17, + "probability": 0.8595 + }, + { + "start": 23444.89, + "end": 23445.31, + "probability": 0.0126 + }, + { + "start": 23445.31, + "end": 23450.49, + "probability": 0.83 + }, + { + "start": 23450.75, + "end": 23451.23, + "probability": 0.3665 + }, + { + "start": 23451.97, + "end": 23455.89, + "probability": 0.9616 + }, + { + "start": 23455.89, + "end": 23460.65, + "probability": 0.9844 + }, + { + "start": 23461.05, + "end": 23461.41, + "probability": 0.1165 + }, + { + "start": 23461.41, + "end": 23462.01, + "probability": 0.5588 + }, + { + "start": 23462.01, + "end": 23464.83, + "probability": 0.8828 + }, + { + "start": 23465.23, + "end": 23466.47, + "probability": 0.7933 + }, + { + "start": 23467.05, + "end": 23468.29, + "probability": 0.8412 + }, + { + "start": 23468.55, + "end": 23471.29, + "probability": 0.8848 + }, + { + "start": 23471.81, + "end": 23474.67, + "probability": 0.9915 + }, + { + "start": 23475.17, + "end": 23476.73, + "probability": 0.9829 + }, + { + "start": 23477.95, + "end": 23478.39, + "probability": 0.3383 + }, + { + "start": 23478.39, + "end": 23479.28, + "probability": 0.6958 + }, + { + "start": 23480.25, + "end": 23484.41, + "probability": 0.7468 + }, + { + "start": 23485.39, + "end": 23488.65, + "probability": 0.9979 + }, + { + "start": 23488.65, + "end": 23493.01, + "probability": 0.9995 + }, + { + "start": 23494.05, + "end": 23496.11, + "probability": 0.9574 + }, + { + "start": 23497.03, + "end": 23498.19, + "probability": 0.9749 + }, + { + "start": 23498.89, + "end": 23501.0, + "probability": 0.9014 + }, + { + "start": 23501.85, + "end": 23504.71, + "probability": 0.8789 + }, + { + "start": 23505.25, + "end": 23506.37, + "probability": 0.9384 + }, + { + "start": 23507.11, + "end": 23508.17, + "probability": 0.9044 + }, + { + "start": 23508.85, + "end": 23513.13, + "probability": 0.834 + }, + { + "start": 23513.99, + "end": 23518.57, + "probability": 0.9288 + }, + { + "start": 23519.25, + "end": 23520.37, + "probability": 0.9745 + }, + { + "start": 23520.49, + "end": 23523.99, + "probability": 0.9909 + }, + { + "start": 23524.07, + "end": 23525.47, + "probability": 0.8575 + }, + { + "start": 23526.35, + "end": 23527.43, + "probability": 0.9412 + }, + { + "start": 23528.13, + "end": 23529.85, + "probability": 0.9579 + }, + { + "start": 23530.49, + "end": 23531.71, + "probability": 0.9726 + }, + { + "start": 23532.25, + "end": 23537.5, + "probability": 0.9102 + }, + { + "start": 23538.09, + "end": 23540.91, + "probability": 0.8699 + }, + { + "start": 23541.47, + "end": 23543.51, + "probability": 0.8849 + }, + { + "start": 23543.95, + "end": 23545.07, + "probability": 0.854 + }, + { + "start": 23545.51, + "end": 23552.41, + "probability": 0.9096 + }, + { + "start": 23552.85, + "end": 23553.85, + "probability": 0.7419 + }, + { + "start": 23554.43, + "end": 23555.51, + "probability": 0.6531 + }, + { + "start": 23556.31, + "end": 23559.93, + "probability": 0.6609 + }, + { + "start": 23560.43, + "end": 23563.17, + "probability": 0.9501 + }, + { + "start": 23564.73, + "end": 23570.25, + "probability": 0.9984 + }, + { + "start": 23570.33, + "end": 23576.73, + "probability": 0.9949 + }, + { + "start": 23577.21, + "end": 23580.21, + "probability": 0.9782 + }, + { + "start": 23581.25, + "end": 23582.83, + "probability": 0.9293 + }, + { + "start": 23583.37, + "end": 23585.25, + "probability": 0.9678 + }, + { + "start": 23585.67, + "end": 23587.09, + "probability": 0.9812 + }, + { + "start": 23587.17, + "end": 23588.01, + "probability": 0.7957 + }, + { + "start": 23588.25, + "end": 23588.91, + "probability": 0.9805 + }, + { + "start": 23589.03, + "end": 23590.35, + "probability": 0.7844 + }, + { + "start": 23590.81, + "end": 23597.19, + "probability": 0.8765 + }, + { + "start": 23597.65, + "end": 23598.81, + "probability": 0.6675 + }, + { + "start": 23599.01, + "end": 23600.25, + "probability": 0.8435 + }, + { + "start": 23600.97, + "end": 23602.2, + "probability": 0.9946 + }, + { + "start": 23602.43, + "end": 23605.49, + "probability": 0.9824 + }, + { + "start": 23605.91, + "end": 23606.93, + "probability": 0.8999 + }, + { + "start": 23607.41, + "end": 23609.01, + "probability": 0.9753 + }, + { + "start": 23609.31, + "end": 23611.05, + "probability": 0.9521 + }, + { + "start": 23613.46, + "end": 23616.41, + "probability": 0.9172 + }, + { + "start": 23616.45, + "end": 23618.87, + "probability": 0.7103 + }, + { + "start": 23618.99, + "end": 23620.35, + "probability": 0.671 + }, + { + "start": 23622.47, + "end": 23622.47, + "probability": 0.0056 + }, + { + "start": 23623.23, + "end": 23630.25, + "probability": 0.2754 + }, + { + "start": 23630.33, + "end": 23633.03, + "probability": 0.0289 + }, + { + "start": 23633.03, + "end": 23634.39, + "probability": 0.8172 + }, + { + "start": 23634.66, + "end": 23638.09, + "probability": 0.972 + }, + { + "start": 23638.59, + "end": 23641.15, + "probability": 0.7405 + }, + { + "start": 23641.31, + "end": 23642.59, + "probability": 0.7007 + }, + { + "start": 23652.27, + "end": 23655.19, + "probability": 0.7719 + }, + { + "start": 23655.27, + "end": 23656.45, + "probability": 0.8173 + }, + { + "start": 23656.51, + "end": 23657.19, + "probability": 0.5927 + }, + { + "start": 23658.15, + "end": 23662.15, + "probability": 0.8765 + }, + { + "start": 23663.05, + "end": 23665.99, + "probability": 0.9883 + }, + { + "start": 23665.99, + "end": 23668.75, + "probability": 0.9812 + }, + { + "start": 23669.35, + "end": 23672.73, + "probability": 0.79 + }, + { + "start": 23672.83, + "end": 23676.15, + "probability": 0.7967 + }, + { + "start": 23676.57, + "end": 23678.33, + "probability": 0.9282 + }, + { + "start": 23678.95, + "end": 23679.59, + "probability": 0.8872 + }, + { + "start": 23680.47, + "end": 23681.35, + "probability": 0.8234 + }, + { + "start": 23681.67, + "end": 23686.87, + "probability": 0.9871 + }, + { + "start": 23687.25, + "end": 23692.03, + "probability": 0.9972 + }, + { + "start": 23711.17, + "end": 23711.95, + "probability": 0.6209 + }, + { + "start": 23713.37, + "end": 23717.73, + "probability": 0.7589 + }, + { + "start": 23718.69, + "end": 23719.69, + "probability": 0.8885 + }, + { + "start": 23719.85, + "end": 23722.79, + "probability": 0.8034 + }, + { + "start": 23722.85, + "end": 23723.35, + "probability": 0.8836 + }, + { + "start": 23723.43, + "end": 23724.05, + "probability": 0.9066 + }, + { + "start": 23724.17, + "end": 23724.79, + "probability": 0.7283 + }, + { + "start": 23724.97, + "end": 23725.27, + "probability": 0.6179 + }, + { + "start": 23725.65, + "end": 23726.43, + "probability": 0.652 + }, + { + "start": 23726.51, + "end": 23727.61, + "probability": 0.4157 + }, + { + "start": 23728.23, + "end": 23729.67, + "probability": 0.4829 + }, + { + "start": 23729.67, + "end": 23730.41, + "probability": 0.6688 + }, + { + "start": 23730.49, + "end": 23731.79, + "probability": 0.5603 + }, + { + "start": 23731.89, + "end": 23733.47, + "probability": 0.6756 + }, + { + "start": 23733.99, + "end": 23735.09, + "probability": 0.9735 + }, + { + "start": 23735.67, + "end": 23735.89, + "probability": 0.1005 + }, + { + "start": 23735.89, + "end": 23736.09, + "probability": 0.0639 + }, + { + "start": 23736.19, + "end": 23736.37, + "probability": 0.326 + }, + { + "start": 23736.79, + "end": 23737.45, + "probability": 0.3341 + }, + { + "start": 23737.49, + "end": 23738.55, + "probability": 0.6019 + }, + { + "start": 23744.29, + "end": 23745.69, + "probability": 0.5867 + }, + { + "start": 23745.95, + "end": 23749.27, + "probability": 0.6301 + }, + { + "start": 23749.33, + "end": 23750.13, + "probability": 0.666 + }, + { + "start": 23752.13, + "end": 23753.53, + "probability": 0.0404 + }, + { + "start": 23753.61, + "end": 23754.63, + "probability": 0.2856 + }, + { + "start": 23755.37, + "end": 23755.57, + "probability": 0.348 + }, + { + "start": 23755.57, + "end": 23755.57, + "probability": 0.1019 + }, + { + "start": 23755.57, + "end": 23757.73, + "probability": 0.5137 + }, + { + "start": 23758.09, + "end": 23758.77, + "probability": 0.445 + }, + { + "start": 23758.77, + "end": 23759.78, + "probability": 0.8415 + }, + { + "start": 23766.05, + "end": 23767.77, + "probability": 0.8542 + }, + { + "start": 23768.17, + "end": 23770.03, + "probability": 0.7708 + }, + { + "start": 23770.23, + "end": 23771.07, + "probability": 0.7663 + }, + { + "start": 23771.23, + "end": 23771.81, + "probability": 0.8997 + }, + { + "start": 23772.21, + "end": 23773.15, + "probability": 0.7206 + }, + { + "start": 23773.31, + "end": 23773.95, + "probability": 0.4408 + }, + { + "start": 23774.05, + "end": 23775.41, + "probability": 0.9701 + }, + { + "start": 23775.55, + "end": 23775.95, + "probability": 0.5056 + }, + { + "start": 23775.95, + "end": 23777.07, + "probability": 0.9277 + }, + { + "start": 23777.55, + "end": 23778.23, + "probability": 0.452 + }, + { + "start": 23778.43, + "end": 23780.27, + "probability": 0.9536 + }, + { + "start": 23780.95, + "end": 23781.71, + "probability": 0.5711 + }, + { + "start": 23781.79, + "end": 23783.03, + "probability": 0.495 + }, + { + "start": 23783.35, + "end": 23784.23, + "probability": 0.8062 + }, + { + "start": 23784.31, + "end": 23784.85, + "probability": 0.8384 + }, + { + "start": 23784.97, + "end": 23785.85, + "probability": 0.8265 + }, + { + "start": 23786.55, + "end": 23787.83, + "probability": 0.8052 + }, + { + "start": 23787.93, + "end": 23789.05, + "probability": 0.6763 + }, + { + "start": 23789.98, + "end": 23792.57, + "probability": 0.2673 + }, + { + "start": 23794.39, + "end": 23794.97, + "probability": 0.0214 + }, + { + "start": 23810.57, + "end": 23811.25, + "probability": 0.0661 + }, + { + "start": 23811.25, + "end": 23811.25, + "probability": 0.033 + }, + { + "start": 23811.25, + "end": 23812.01, + "probability": 0.2685 + }, + { + "start": 23812.01, + "end": 23812.79, + "probability": 0.2639 + }, + { + "start": 23813.01, + "end": 23815.87, + "probability": 0.8035 + }, + { + "start": 23815.97, + "end": 23816.25, + "probability": 0.4571 + }, + { + "start": 23816.25, + "end": 23817.03, + "probability": 0.6902 + }, + { + "start": 23817.17, + "end": 23818.21, + "probability": 0.3639 + }, + { + "start": 23818.55, + "end": 23819.31, + "probability": 0.6496 + }, + { + "start": 23819.83, + "end": 23821.04, + "probability": 0.5298 + }, + { + "start": 23821.71, + "end": 23824.67, + "probability": 0.9858 + }, + { + "start": 23825.37, + "end": 23826.26, + "probability": 0.666 + }, + { + "start": 23826.91, + "end": 23828.99, + "probability": 0.9247 + }, + { + "start": 23829.89, + "end": 23835.83, + "probability": 0.9215 + }, + { + "start": 23836.03, + "end": 23837.07, + "probability": 0.444 + }, + { + "start": 23837.27, + "end": 23841.95, + "probability": 0.8666 + }, + { + "start": 23842.13, + "end": 23843.97, + "probability": 0.9699 + }, + { + "start": 23845.05, + "end": 23847.31, + "probability": 0.9869 + }, + { + "start": 23847.37, + "end": 23848.11, + "probability": 0.4788 + }, + { + "start": 23853.15, + "end": 23855.25, + "probability": 0.3164 + }, + { + "start": 23863.35, + "end": 23863.35, + "probability": 0.1287 + }, + { + "start": 23863.35, + "end": 23867.61, + "probability": 0.5083 + }, + { + "start": 23867.93, + "end": 23870.63, + "probability": 0.8913 + }, + { + "start": 23871.09, + "end": 23873.49, + "probability": 0.4884 + }, + { + "start": 23873.99, + "end": 23876.73, + "probability": 0.8868 + }, + { + "start": 23876.85, + "end": 23877.53, + "probability": 0.311 + }, + { + "start": 23877.59, + "end": 23877.59, + "probability": 0.0809 + }, + { + "start": 23877.59, + "end": 23878.37, + "probability": 0.8456 + }, + { + "start": 23879.21, + "end": 23881.15, + "probability": 0.18 + }, + { + "start": 23881.35, + "end": 23885.49, + "probability": 0.2206 + }, + { + "start": 23892.81, + "end": 23893.49, + "probability": 0.4037 + }, + { + "start": 23893.49, + "end": 23895.25, + "probability": 0.7102 + }, + { + "start": 23895.29, + "end": 23896.57, + "probability": 0.4876 + }, + { + "start": 23896.61, + "end": 23897.27, + "probability": 0.7775 + }, + { + "start": 23899.15, + "end": 23903.01, + "probability": 0.7375 + }, + { + "start": 23903.53, + "end": 23903.93, + "probability": 0.1741 + }, + { + "start": 23904.05, + "end": 23904.35, + "probability": 0.0936 + }, + { + "start": 23904.35, + "end": 23908.91, + "probability": 0.7463 + }, + { + "start": 23910.29, + "end": 23913.79, + "probability": 0.0473 + }, + { + "start": 23913.79, + "end": 23914.67, + "probability": 0.717 + }, + { + "start": 23916.33, + "end": 23917.85, + "probability": 0.7994 + }, + { + "start": 23917.85, + "end": 23918.81, + "probability": 0.1528 + }, + { + "start": 23919.83, + "end": 23920.55, + "probability": 0.0515 + }, + { + "start": 23921.51, + "end": 23921.85, + "probability": 0.2081 + }, + { + "start": 23922.39, + "end": 23922.53, + "probability": 0.7224 + }, + { + "start": 23922.53, + "end": 23925.09, + "probability": 0.9212 + }, + { + "start": 23925.75, + "end": 23927.39, + "probability": 0.572 + }, + { + "start": 23928.67, + "end": 23929.31, + "probability": 0.7051 + }, + { + "start": 23929.43, + "end": 23931.31, + "probability": 0.7241 + }, + { + "start": 23931.67, + "end": 23933.47, + "probability": 0.5974 + }, + { + "start": 23936.11, + "end": 23939.95, + "probability": 0.7876 + }, + { + "start": 23940.74, + "end": 23943.64, + "probability": 0.761 + }, + { + "start": 23944.11, + "end": 23944.75, + "probability": 0.7035 + }, + { + "start": 23944.99, + "end": 23945.59, + "probability": 0.7559 + }, + { + "start": 23945.67, + "end": 23946.13, + "probability": 0.4627 + }, + { + "start": 23946.13, + "end": 23947.49, + "probability": 0.8349 + }, + { + "start": 23947.55, + "end": 23948.83, + "probability": 0.6622 + }, + { + "start": 23949.11, + "end": 23950.95, + "probability": 0.3352 + }, + { + "start": 23951.15, + "end": 23951.67, + "probability": 0.8012 + }, + { + "start": 23952.05, + "end": 23953.09, + "probability": 0.7261 + }, + { + "start": 23953.17, + "end": 23954.91, + "probability": 0.9294 + }, + { + "start": 23955.43, + "end": 23958.65, + "probability": 0.8986 + }, + { + "start": 23959.29, + "end": 23959.37, + "probability": 0.2576 + }, + { + "start": 23959.37, + "end": 23960.15, + "probability": 0.452 + }, + { + "start": 23962.51, + "end": 23965.97, + "probability": 0.2271 + }, + { + "start": 23968.65, + "end": 23971.11, + "probability": 0.1343 + }, + { + "start": 23977.31, + "end": 23981.09, + "probability": 0.415 + }, + { + "start": 23981.51, + "end": 23985.01, + "probability": 0.7544 + }, + { + "start": 23985.85, + "end": 23988.69, + "probability": 0.8757 + }, + { + "start": 23989.15, + "end": 23993.09, + "probability": 0.6978 + }, + { + "start": 23993.15, + "end": 23993.15, + "probability": 0.5324 + }, + { + "start": 23993.17, + "end": 23993.55, + "probability": 0.4867 + }, + { + "start": 23994.05, + "end": 23995.17, + "probability": 0.2597 + }, + { + "start": 23996.73, + "end": 23998.57, + "probability": 0.5139 + }, + { + "start": 23998.69, + "end": 24000.87, + "probability": 0.6175 + }, + { + "start": 24001.85, + "end": 24002.15, + "probability": 0.0091 + }, + { + "start": 24002.25, + "end": 24003.01, + "probability": 0.7445 + }, + { + "start": 24003.13, + "end": 24004.73, + "probability": 0.8068 + }, + { + "start": 24004.81, + "end": 24005.7, + "probability": 0.6618 + }, + { + "start": 24006.03, + "end": 24006.66, + "probability": 0.5977 + }, + { + "start": 24007.09, + "end": 24008.17, + "probability": 0.5446 + }, + { + "start": 24016.73, + "end": 24019.27, + "probability": 0.0345 + }, + { + "start": 24019.27, + "end": 24019.71, + "probability": 0.1691 + }, + { + "start": 24019.75, + "end": 24020.85, + "probability": 0.2057 + }, + { + "start": 24021.51, + "end": 24022.81, + "probability": 0.5202 + }, + { + "start": 24025.33, + "end": 24026.67, + "probability": 0.549 + }, + { + "start": 24027.47, + "end": 24030.03, + "probability": 0.478 + }, + { + "start": 24030.35, + "end": 24034.53, + "probability": 0.8459 + }, + { + "start": 24034.71, + "end": 24036.15, + "probability": 0.2186 + }, + { + "start": 24036.73, + "end": 24041.17, + "probability": 0.7224 + }, + { + "start": 24041.17, + "end": 24042.47, + "probability": 0.5831 + }, + { + "start": 24042.53, + "end": 24043.83, + "probability": 0.271 + }, + { + "start": 24054.69, + "end": 24056.07, + "probability": 0.3627 + }, + { + "start": 24061.16, + "end": 24063.19, + "probability": 0.0808 + }, + { + "start": 24063.19, + "end": 24065.25, + "probability": 0.6138 + }, + { + "start": 24065.59, + "end": 24066.69, + "probability": 0.2437 + }, + { + "start": 24066.71, + "end": 24068.07, + "probability": 0.6202 + }, + { + "start": 24068.21, + "end": 24069.35, + "probability": 0.2829 + }, + { + "start": 24069.69, + "end": 24070.93, + "probability": 0.9371 + }, + { + "start": 24072.65, + "end": 24073.83, + "probability": 0.2248 + }, + { + "start": 24074.35, + "end": 24075.27, + "probability": 0.2935 + }, + { + "start": 24075.95, + "end": 24077.69, + "probability": 0.2818 + }, + { + "start": 24077.69, + "end": 24078.67, + "probability": 0.4819 + }, + { + "start": 24078.89, + "end": 24079.77, + "probability": 0.221 + }, + { + "start": 24079.77, + "end": 24080.51, + "probability": 0.2505 + }, + { + "start": 24090.53, + "end": 24095.39, + "probability": 0.0316 + }, + { + "start": 24095.69, + "end": 24096.73, + "probability": 0.5632 + }, + { + "start": 24096.91, + "end": 24097.79, + "probability": 0.4186 + }, + { + "start": 24097.85, + "end": 24098.53, + "probability": 0.2512 + }, + { + "start": 24098.59, + "end": 24099.01, + "probability": 0.7767 + }, + { + "start": 24099.01, + "end": 24100.15, + "probability": 0.5831 + }, + { + "start": 24100.61, + "end": 24101.26, + "probability": 0.6641 + }, + { + "start": 24102.01, + "end": 24103.05, + "probability": 0.6222 + }, + { + "start": 24103.83, + "end": 24104.46, + "probability": 0.5151 + }, + { + "start": 24105.43, + "end": 24106.47, + "probability": 0.5013 + }, + { + "start": 24107.01, + "end": 24107.95, + "probability": 0.4563 + }, + { + "start": 24108.77, + "end": 24111.25, + "probability": 0.4177 + }, + { + "start": 24111.49, + "end": 24113.61, + "probability": 0.5876 + }, + { + "start": 24114.41, + "end": 24116.17, + "probability": 0.9565 + }, + { + "start": 24116.17, + "end": 24117.25, + "probability": 0.8301 + }, + { + "start": 24117.99, + "end": 24118.23, + "probability": 0.081 + }, + { + "start": 24118.23, + "end": 24119.07, + "probability": 0.5892 + }, + { + "start": 24119.65, + "end": 24122.49, + "probability": 0.73 + }, + { + "start": 24122.49, + "end": 24123.07, + "probability": 0.5024 + }, + { + "start": 24123.21, + "end": 24123.97, + "probability": 0.3855 + }, + { + "start": 24127.93, + "end": 24128.41, + "probability": 0.0604 + }, + { + "start": 24130.67, + "end": 24131.21, + "probability": 0.4545 + }, + { + "start": 24131.79, + "end": 24132.43, + "probability": 0.167 + }, + { + "start": 24132.95, + "end": 24133.83, + "probability": 0.008 + }, + { + "start": 24136.69, + "end": 24138.73, + "probability": 0.0723 + }, + { + "start": 24139.35, + "end": 24139.45, + "probability": 0.0061 + }, + { + "start": 24139.45, + "end": 24143.55, + "probability": 0.356 + }, + { + "start": 24143.91, + "end": 24147.47, + "probability": 0.75 + }, + { + "start": 24147.65, + "end": 24149.27, + "probability": 0.9121 + }, + { + "start": 24150.03, + "end": 24151.33, + "probability": 0.2041 + }, + { + "start": 24151.73, + "end": 24153.25, + "probability": 0.776 + }, + { + "start": 24153.25, + "end": 24154.39, + "probability": 0.8785 + }, + { + "start": 24154.93, + "end": 24157.45, + "probability": 0.9042 + }, + { + "start": 24157.57, + "end": 24159.21, + "probability": 0.7331 + }, + { + "start": 24159.71, + "end": 24160.09, + "probability": 0.2731 + }, + { + "start": 24160.11, + "end": 24162.65, + "probability": 0.5544 + }, + { + "start": 24164.79, + "end": 24167.63, + "probability": 0.8043 + }, + { + "start": 24167.73, + "end": 24168.03, + "probability": 0.8851 + }, + { + "start": 24168.17, + "end": 24170.75, + "probability": 0.9959 + }, + { + "start": 24170.91, + "end": 24175.41, + "probability": 0.0446 + }, + { + "start": 24175.91, + "end": 24176.43, + "probability": 0.5749 + }, + { + "start": 24176.59, + "end": 24177.95, + "probability": 0.4299 + }, + { + "start": 24178.01, + "end": 24181.47, + "probability": 0.7654 + }, + { + "start": 24181.65, + "end": 24184.81, + "probability": 0.8747 + }, + { + "start": 24186.07, + "end": 24189.97, + "probability": 0.889 + }, + { + "start": 24192.76, + "end": 24201.85, + "probability": 0.3365 + }, + { + "start": 24206.93, + "end": 24211.07, + "probability": 0.4711 + }, + { + "start": 24211.59, + "end": 24216.21, + "probability": 0.8318 + }, + { + "start": 24217.55, + "end": 24219.21, + "probability": 0.8195 + }, + { + "start": 24219.79, + "end": 24223.33, + "probability": 0.7266 + }, + { + "start": 24223.45, + "end": 24224.13, + "probability": 0.1593 + }, + { + "start": 24224.91, + "end": 24224.93, + "probability": 0.115 + }, + { + "start": 24224.93, + "end": 24227.27, + "probability": 0.6252 + }, + { + "start": 24227.99, + "end": 24233.45, + "probability": 0.6268 + }, + { + "start": 24233.49, + "end": 24234.33, + "probability": 0.9372 + }, + { + "start": 24234.73, + "end": 24235.95, + "probability": 0.6707 + }, + { + "start": 24237.75, + "end": 24238.45, + "probability": 0.2017 + }, + { + "start": 24239.07, + "end": 24239.27, + "probability": 0.1286 + }, + { + "start": 24241.05, + "end": 24244.13, + "probability": 0.126 + }, + { + "start": 24248.75, + "end": 24248.93, + "probability": 0.0004 + }, + { + "start": 24248.93, + "end": 24253.37, + "probability": 0.4705 + }, + { + "start": 24253.49, + "end": 24258.63, + "probability": 0.5344 + }, + { + "start": 24261.49, + "end": 24262.05, + "probability": 0.702 + }, + { + "start": 24262.49, + "end": 24262.59, + "probability": 0.8368 + }, + { + "start": 24265.43, + "end": 24266.67, + "probability": 0.5453 + }, + { + "start": 24267.19, + "end": 24269.55, + "probability": 0.3763 + }, + { + "start": 24270.31, + "end": 24275.43, + "probability": 0.6517 + }, + { + "start": 24275.69, + "end": 24277.47, + "probability": 0.5746 + }, + { + "start": 24277.47, + "end": 24277.47, + "probability": 0.695 + }, + { + "start": 24277.77, + "end": 24281.85, + "probability": 0.5348 + }, + { + "start": 24281.85, + "end": 24282.35, + "probability": 0.4227 + }, + { + "start": 24282.43, + "end": 24283.39, + "probability": 0.3932 + }, + { + "start": 24286.36, + "end": 24288.6, + "probability": 0.1059 + }, + { + "start": 24291.35, + "end": 24295.29, + "probability": 0.0941 + }, + { + "start": 24296.85, + "end": 24301.85, + "probability": 0.5217 + }, + { + "start": 24302.29, + "end": 24305.59, + "probability": 0.9297 + }, + { + "start": 24306.93, + "end": 24308.41, + "probability": 0.4027 + }, + { + "start": 24308.83, + "end": 24312.33, + "probability": 0.3737 + }, + { + "start": 24312.67, + "end": 24312.67, + "probability": 0.4102 + }, + { + "start": 24313.15, + "end": 24316.11, + "probability": 0.8813 + }, + { + "start": 24316.63, + "end": 24319.95, + "probability": 0.6646 + }, + { + "start": 24320.07, + "end": 24321.31, + "probability": 0.8767 + }, + { + "start": 24321.67, + "end": 24324.53, + "probability": 0.9305 + }, + { + "start": 24334.33, + "end": 24335.34, + "probability": 0.2297 + }, + { + "start": 24338.91, + "end": 24339.29, + "probability": 0.1085 + }, + { + "start": 24339.51, + "end": 24339.81, + "probability": 0.2956 + }, + { + "start": 24340.41, + "end": 24340.79, + "probability": 0.2674 + }, + { + "start": 24341.65, + "end": 24343.79, + "probability": 0.7002 + }, + { + "start": 24344.89, + "end": 24348.67, + "probability": 0.9297 + }, + { + "start": 24348.73, + "end": 24349.75, + "probability": 0.9425 + }, + { + "start": 24351.77, + "end": 24357.53, + "probability": 0.8574 + }, + { + "start": 24360.85, + "end": 24367.65, + "probability": 0.723 + }, + { + "start": 24367.85, + "end": 24370.11, + "probability": 0.5975 + }, + { + "start": 24370.11, + "end": 24370.11, + "probability": 0.7003 + }, + { + "start": 24370.17, + "end": 24377.35, + "probability": 0.5721 + }, + { + "start": 24379.77, + "end": 24383.23, + "probability": 0.465 + }, + { + "start": 24383.99, + "end": 24385.11, + "probability": 0.2141 + }, + { + "start": 24385.63, + "end": 24385.63, + "probability": 0.366 + }, + { + "start": 24385.85, + "end": 24389.85, + "probability": 0.7523 + }, + { + "start": 24390.39, + "end": 24390.63, + "probability": 0.4203 + }, + { + "start": 24390.67, + "end": 24391.63, + "probability": 0.6089 + }, + { + "start": 24391.65, + "end": 24393.87, + "probability": 0.7812 + }, + { + "start": 24394.07, + "end": 24397.01, + "probability": 0.6337 + }, + { + "start": 24397.05, + "end": 24397.63, + "probability": 0.7492 + }, + { + "start": 24397.87, + "end": 24398.55, + "probability": 0.5985 + }, + { + "start": 24401.5, + "end": 24402.63, + "probability": 0.02 + }, + { + "start": 24402.83, + "end": 24409.23, + "probability": 0.1989 + }, + { + "start": 24411.03, + "end": 24414.11, + "probability": 0.6675 + }, + { + "start": 24414.81, + "end": 24417.93, + "probability": 0.3431 + }, + { + "start": 24418.09, + "end": 24421.01, + "probability": 0.8539 + }, + { + "start": 24421.23, + "end": 24421.77, + "probability": 0.5141 + }, + { + "start": 24423.39, + "end": 24426.21, + "probability": 0.9326 + }, + { + "start": 24426.33, + "end": 24427.81, + "probability": 0.9419 + }, + { + "start": 24427.97, + "end": 24428.55, + "probability": 0.7267 + }, + { + "start": 24428.69, + "end": 24430.15, + "probability": 0.9395 + }, + { + "start": 24431.25, + "end": 24434.03, + "probability": 0.629 + }, + { + "start": 24434.37, + "end": 24439.15, + "probability": 0.9136 + }, + { + "start": 24439.73, + "end": 24446.41, + "probability": 0.6886 + }, + { + "start": 24447.57, + "end": 24447.93, + "probability": 0.3183 + }, + { + "start": 24447.93, + "end": 24448.07, + "probability": 0.1505 + }, + { + "start": 24448.07, + "end": 24448.71, + "probability": 0.2199 + }, + { + "start": 24448.71, + "end": 24449.75, + "probability": 0.5632 + }, + { + "start": 24450.39, + "end": 24454.41, + "probability": 0.1454 + }, + { + "start": 24463.75, + "end": 24464.53, + "probability": 0.2952 + }, + { + "start": 24465.07, + "end": 24467.09, + "probability": 0.7253 + }, + { + "start": 24467.47, + "end": 24472.41, + "probability": 0.7434 + }, + { + "start": 24472.57, + "end": 24473.61, + "probability": 0.7444 + }, + { + "start": 24474.39, + "end": 24475.25, + "probability": 0.7369 + }, + { + "start": 24475.45, + "end": 24476.46, + "probability": 0.6239 + }, + { + "start": 24477.37, + "end": 24479.21, + "probability": 0.7629 + }, + { + "start": 24479.33, + "end": 24479.75, + "probability": 0.4502 + }, + { + "start": 24480.17, + "end": 24480.35, + "probability": 0.4244 + }, + { + "start": 24480.53, + "end": 24481.13, + "probability": 0.7311 + }, + { + "start": 24483.25, + "end": 24486.11, + "probability": 0.8142 + }, + { + "start": 24486.93, + "end": 24488.06, + "probability": 0.8474 + }, + { + "start": 24488.99, + "end": 24491.53, + "probability": 0.6122 + }, + { + "start": 24503.81, + "end": 24503.81, + "probability": 0.1803 + }, + { + "start": 24503.81, + "end": 24507.25, + "probability": 0.2721 + }, + { + "start": 24507.33, + "end": 24509.87, + "probability": 0.1783 + }, + { + "start": 24511.15, + "end": 24514.01, + "probability": 0.3997 + }, + { + "start": 24514.89, + "end": 24515.09, + "probability": 0.0742 + }, + { + "start": 24517.91, + "end": 24519.65, + "probability": 0.2732 + }, + { + "start": 24522.03, + "end": 24524.53, + "probability": 0.1672 + }, + { + "start": 24524.57, + "end": 24525.73, + "probability": 0.4978 + }, + { + "start": 24525.83, + "end": 24526.07, + "probability": 0.3002 + }, + { + "start": 24526.07, + "end": 24526.43, + "probability": 0.4936 + }, + { + "start": 24526.63, + "end": 24527.61, + "probability": 0.883 + }, + { + "start": 24528.27, + "end": 24529.35, + "probability": 0.6641 + }, + { + "start": 24530.01, + "end": 24531.95, + "probability": 0.5228 + }, + { + "start": 24533.89, + "end": 24534.11, + "probability": 0.0887 + }, + { + "start": 24548.65, + "end": 24548.85, + "probability": 0.3432 + }, + { + "start": 24548.85, + "end": 24549.41, + "probability": 0.1023 + }, + { + "start": 24549.41, + "end": 24551.52, + "probability": 0.371 + }, + { + "start": 24551.79, + "end": 24552.87, + "probability": 0.3345 + }, + { + "start": 24553.51, + "end": 24554.14, + "probability": 0.6817 + }, + { + "start": 24554.29, + "end": 24555.01, + "probability": 0.4973 + }, + { + "start": 24556.09, + "end": 24559.55, + "probability": 0.6356 + }, + { + "start": 24559.71, + "end": 24560.09, + "probability": 0.5648 + }, + { + "start": 24560.21, + "end": 24560.99, + "probability": 0.4392 + }, + { + "start": 24571.63, + "end": 24571.63, + "probability": 0.0576 + }, + { + "start": 24571.63, + "end": 24572.73, + "probability": 0.5227 + }, + { + "start": 24572.87, + "end": 24574.61, + "probability": 0.5046 + }, + { + "start": 24574.63, + "end": 24575.49, + "probability": 0.0801 + }, + { + "start": 24575.51, + "end": 24575.87, + "probability": 0.454 + }, + { + "start": 24575.87, + "end": 24577.11, + "probability": 0.6506 + }, + { + "start": 24577.23, + "end": 24578.07, + "probability": 0.6205 + }, + { + "start": 24578.29, + "end": 24580.25, + "probability": 0.285 + }, + { + "start": 24580.95, + "end": 24581.79, + "probability": 0.1957 + }, + { + "start": 24582.53, + "end": 24582.99, + "probability": 0.5751 + }, + { + "start": 24583.09, + "end": 24583.81, + "probability": 0.4324 + }, + { + "start": 24585.01, + "end": 24585.49, + "probability": 0.927 + }, + { + "start": 24586.39, + "end": 24586.87, + "probability": 0.8145 + }, + { + "start": 24586.95, + "end": 24589.11, + "probability": 0.812 + }, + { + "start": 24589.29, + "end": 24593.43, + "probability": 0.88 + }, + { + "start": 24593.99, + "end": 24595.25, + "probability": 0.6907 + }, + { + "start": 24595.47, + "end": 24595.65, + "probability": 0.3238 + }, + { + "start": 24595.87, + "end": 24597.09, + "probability": 0.5123 + }, + { + "start": 24597.23, + "end": 24598.27, + "probability": 0.7093 + }, + { + "start": 24598.37, + "end": 24603.25, + "probability": 0.7377 + }, + { + "start": 24603.31, + "end": 24603.81, + "probability": 0.6377 + }, + { + "start": 24603.87, + "end": 24604.53, + "probability": 0.5789 + }, + { + "start": 24604.59, + "end": 24605.41, + "probability": 0.9031 + }, + { + "start": 24605.45, + "end": 24606.21, + "probability": 0.7473 + }, + { + "start": 24606.25, + "end": 24606.67, + "probability": 0.2634 + }, + { + "start": 24606.81, + "end": 24607.67, + "probability": 0.1868 + }, + { + "start": 24617.85, + "end": 24617.85, + "probability": 0.0403 + }, + { + "start": 24617.85, + "end": 24621.61, + "probability": 0.4944 + }, + { + "start": 24621.67, + "end": 24624.59, + "probability": 0.7774 + }, + { + "start": 24625.03, + "end": 24626.32, + "probability": 0.8433 + }, + { + "start": 24626.53, + "end": 24627.43, + "probability": 0.5916 + }, + { + "start": 24627.53, + "end": 24627.97, + "probability": 0.7677 + }, + { + "start": 24629.11, + "end": 24631.22, + "probability": 0.8605 + }, + { + "start": 24633.71, + "end": 24634.71, + "probability": 0.3428 + }, + { + "start": 24634.71, + "end": 24635.63, + "probability": 0.6862 + }, + { + "start": 24635.63, + "end": 24638.18, + "probability": 0.744 + }, + { + "start": 24638.83, + "end": 24640.27, + "probability": 0.111 + }, + { + "start": 24641.27, + "end": 24642.91, + "probability": 0.4273 + }, + { + "start": 24643.61, + "end": 24651.07, + "probability": 0.797 + }, + { + "start": 24651.27, + "end": 24653.49, + "probability": 0.9536 + }, + { + "start": 24654.27, + "end": 24658.17, + "probability": 0.7541 + }, + { + "start": 24658.43, + "end": 24658.75, + "probability": 0.4321 + }, + { + "start": 24658.85, + "end": 24659.91, + "probability": 0.6149 + }, + { + "start": 24659.95, + "end": 24661.09, + "probability": 0.8514 + }, + { + "start": 24661.51, + "end": 24662.17, + "probability": 0.5732 + }, + { + "start": 24662.19, + "end": 24662.91, + "probability": 0.3493 + }, + { + "start": 24663.43, + "end": 24664.99, + "probability": 0.855 + }, + { + "start": 24683.45, + "end": 24687.91, + "probability": 0.047 + }, + { + "start": 24687.91, + "end": 24692.77, + "probability": 0.585 + }, + { + "start": 24692.91, + "end": 24693.89, + "probability": 0.63 + }, + { + "start": 24693.97, + "end": 24695.69, + "probability": 0.8793 + }, + { + "start": 24695.71, + "end": 24697.53, + "probability": 0.8381 + }, + { + "start": 24698.39, + "end": 24707.51, + "probability": 0.7119 + }, + { + "start": 24708.37, + "end": 24709.99, + "probability": 0.3864 + }, + { + "start": 24710.03, + "end": 24710.03, + "probability": 0.4621 + }, + { + "start": 24710.03, + "end": 24711.51, + "probability": 0.371 + }, + { + "start": 24711.75, + "end": 24712.19, + "probability": 0.3377 + }, + { + "start": 24712.49, + "end": 24715.34, + "probability": 0.5349 + }, + { + "start": 24716.11, + "end": 24717.24, + "probability": 0.7659 + }, + { + "start": 24717.25, + "end": 24718.45, + "probability": 0.5915 + }, + { + "start": 24720.93, + "end": 24721.57, + "probability": 0.7884 + }, + { + "start": 24734.15, + "end": 24735.15, + "probability": 0.0413 + }, + { + "start": 24735.15, + "end": 24735.15, + "probability": 0.553 + }, + { + "start": 24735.15, + "end": 24736.15, + "probability": 0.2296 + }, + { + "start": 24736.15, + "end": 24736.43, + "probability": 0.2976 + }, + { + "start": 24736.71, + "end": 24737.01, + "probability": 0.2837 + }, + { + "start": 24737.01, + "end": 24737.53, + "probability": 0.3914 + }, + { + "start": 24737.93, + "end": 24738.89, + "probability": 0.2362 + }, + { + "start": 24739.17, + "end": 24742.71, + "probability": 0.7574 + }, + { + "start": 24743.31, + "end": 24744.51, + "probability": 0.0762 + }, + { + "start": 24747.59, + "end": 24749.67, + "probability": 0.6868 + }, + { + "start": 24750.19, + "end": 24751.77, + "probability": 0.0695 + }, + { + "start": 24753.13, + "end": 24753.45, + "probability": 0.017 + }, + { + "start": 24760.37, + "end": 24761.51, + "probability": 0.5981 + }, + { + "start": 24761.57, + "end": 24761.75, + "probability": 0.2733 + }, + { + "start": 24762.63, + "end": 24762.63, + "probability": 0.1795 + }, + { + "start": 24762.63, + "end": 24763.77, + "probability": 0.7635 + }, + { + "start": 24764.03, + "end": 24764.83, + "probability": 0.8062 + }, + { + "start": 24764.89, + "end": 24765.49, + "probability": 0.9214 + }, + { + "start": 24765.65, + "end": 24766.43, + "probability": 0.6955 + }, + { + "start": 24766.75, + "end": 24769.79, + "probability": 0.9924 + }, + { + "start": 24769.79, + "end": 24771.97, + "probability": 0.9014 + }, + { + "start": 24772.05, + "end": 24773.01, + "probability": 0.9785 + }, + { + "start": 24773.31, + "end": 24775.95, + "probability": 0.9679 + }, + { + "start": 24777.11, + "end": 24779.71, + "probability": 0.7885 + }, + { + "start": 24779.91, + "end": 24781.19, + "probability": 0.6012 + }, + { + "start": 24781.29, + "end": 24782.44, + "probability": 0.5668 + }, + { + "start": 24782.51, + "end": 24783.17, + "probability": 0.7799 + }, + { + "start": 24783.57, + "end": 24784.45, + "probability": 0.7277 + }, + { + "start": 24784.63, + "end": 24786.75, + "probability": 0.5281 + }, + { + "start": 24787.27, + "end": 24788.07, + "probability": 0.1742 + }, + { + "start": 24789.91, + "end": 24791.23, + "probability": 0.0526 + }, + { + "start": 24794.19, + "end": 24803.43, + "probability": 0.0375 + }, + { + "start": 24804.29, + "end": 24807.27, + "probability": 0.2301 + }, + { + "start": 24807.43, + "end": 24811.11, + "probability": 0.7783 + }, + { + "start": 24811.43, + "end": 24814.35, + "probability": 0.7656 + }, + { + "start": 24814.35, + "end": 24817.91, + "probability": 0.5447 + }, + { + "start": 24817.99, + "end": 24819.25, + "probability": 0.0163 + }, + { + "start": 24819.85, + "end": 24821.19, + "probability": 0.9293 + }, + { + "start": 24821.33, + "end": 24822.67, + "probability": 0.7151 + }, + { + "start": 24822.77, + "end": 24823.25, + "probability": 0.8948 + }, + { + "start": 24823.29, + "end": 24824.45, + "probability": 0.9346 + }, + { + "start": 24824.63, + "end": 24827.85, + "probability": 0.9643 + }, + { + "start": 24827.97, + "end": 24829.69, + "probability": 0.6473 + }, + { + "start": 24829.71, + "end": 24830.19, + "probability": 0.3764 + }, + { + "start": 24830.33, + "end": 24831.57, + "probability": 0.6603 + }, + { + "start": 24846.33, + "end": 24846.33, + "probability": 0.2641 + }, + { + "start": 24846.33, + "end": 24846.33, + "probability": 0.0382 + }, + { + "start": 24846.33, + "end": 24847.15, + "probability": 0.5659 + }, + { + "start": 24847.45, + "end": 24848.85, + "probability": 0.6482 + }, + { + "start": 24848.97, + "end": 24849.75, + "probability": 0.2876 + }, + { + "start": 24849.85, + "end": 24850.55, + "probability": 0.5603 + }, + { + "start": 24851.05, + "end": 24854.27, + "probability": 0.4617 + }, + { + "start": 24854.73, + "end": 24856.62, + "probability": 0.7903 + }, + { + "start": 24857.03, + "end": 24858.83, + "probability": 0.5358 + }, + { + "start": 24859.43, + "end": 24860.41, + "probability": 0.6521 + }, + { + "start": 24860.53, + "end": 24862.55, + "probability": 0.6033 + }, + { + "start": 24862.63, + "end": 24863.25, + "probability": 0.774 + }, + { + "start": 24863.33, + "end": 24864.43, + "probability": 0.5586 + }, + { + "start": 24864.91, + "end": 24865.47, + "probability": 0.6644 + }, + { + "start": 24865.51, + "end": 24866.09, + "probability": 0.6841 + }, + { + "start": 24880.11, + "end": 24880.11, + "probability": 0.0873 + }, + { + "start": 24880.11, + "end": 24882.79, + "probability": 0.1892 + }, + { + "start": 24885.47, + "end": 24887.79, + "probability": 0.5304 + }, + { + "start": 24888.41, + "end": 24891.65, + "probability": 0.8059 + }, + { + "start": 24892.49, + "end": 24896.95, + "probability": 0.088 + }, + { + "start": 24897.73, + "end": 24898.6, + "probability": 0.7847 + }, + { + "start": 24899.57, + "end": 24900.37, + "probability": 0.6547 + }, + { + "start": 24900.37, + "end": 24901.43, + "probability": 0.3699 + }, + { + "start": 24901.43, + "end": 24902.39, + "probability": 0.7287 + }, + { + "start": 24902.47, + "end": 24902.85, + "probability": 0.7363 + }, + { + "start": 24902.97, + "end": 24903.81, + "probability": 0.8488 + }, + { + "start": 24903.87, + "end": 24908.52, + "probability": 0.6992 + }, + { + "start": 24910.17, + "end": 24913.05, + "probability": 0.7771 + }, + { + "start": 24913.33, + "end": 24917.07, + "probability": 0.8077 + }, + { + "start": 24917.25, + "end": 24918.99, + "probability": 0.9136 + }, + { + "start": 24919.39, + "end": 24919.61, + "probability": 0.4733 + }, + { + "start": 24919.81, + "end": 24920.73, + "probability": 0.5599 + }, + { + "start": 24920.85, + "end": 24921.63, + "probability": 0.9318 + }, + { + "start": 24922.53, + "end": 24925.47, + "probability": 0.0442 + }, + { + "start": 24925.69, + "end": 24925.93, + "probability": 0.9194 + }, + { + "start": 24926.23, + "end": 24926.75, + "probability": 0.9021 + }, + { + "start": 24927.03, + "end": 24927.67, + "probability": 0.7399 + }, + { + "start": 24928.71, + "end": 24928.97, + "probability": 0.9539 + }, + { + "start": 24929.13, + "end": 24929.55, + "probability": 0.9124 + }, + { + "start": 24929.93, + "end": 24930.35, + "probability": 0.792 + }, + { + "start": 24930.53, + "end": 24933.29, + "probability": 0.9797 + }, + { + "start": 24933.95, + "end": 24937.47, + "probability": 0.516 + }, + { + "start": 24937.49, + "end": 24938.07, + "probability": 0.2548 + }, + { + "start": 24938.07, + "end": 24938.73, + "probability": 0.3383 + }, + { + "start": 24940.07, + "end": 24941.51, + "probability": 0.3043 + }, + { + "start": 24942.95, + "end": 24943.19, + "probability": 0.2722 + }, + { + "start": 24946.79, + "end": 24947.95, + "probability": 0.088 + }, + { + "start": 24950.71, + "end": 24951.95, + "probability": 0.8157 + }, + { + "start": 24952.71, + "end": 24953.83, + "probability": 0.7333 + }, + { + "start": 24954.09, + "end": 24954.61, + "probability": 0.5812 + }, + { + "start": 24954.83, + "end": 24955.99, + "probability": 0.4411 + }, + { + "start": 24956.15, + "end": 24957.37, + "probability": 0.4827 + }, + { + "start": 24957.55, + "end": 24958.29, + "probability": 0.9573 + }, + { + "start": 24958.39, + "end": 24958.75, + "probability": 0.4362 + }, + { + "start": 24958.75, + "end": 24959.41, + "probability": 0.9409 + }, + { + "start": 24959.69, + "end": 24960.47, + "probability": 0.2428 + }, + { + "start": 24960.69, + "end": 24962.43, + "probability": 0.9685 + }, + { + "start": 24970.04, + "end": 24971.19, + "probability": 0.6888 + }, + { + "start": 24972.43, + "end": 24975.95, + "probability": 0.6457 + }, + { + "start": 24976.29, + "end": 24976.77, + "probability": 0.2456 + }, + { + "start": 24977.33, + "end": 24978.07, + "probability": 0.5045 + }, + { + "start": 24978.43, + "end": 24982.23, + "probability": 0.5426 + }, + { + "start": 24982.23, + "end": 24982.75, + "probability": 0.6365 + }, + { + "start": 24984.6, + "end": 24985.14, + "probability": 0.1164 + }, + { + "start": 24997.55, + "end": 24998.59, + "probability": 0.0227 + }, + { + "start": 24998.59, + "end": 25001.33, + "probability": 0.419 + }, + { + "start": 25002.05, + "end": 25004.01, + "probability": 0.7549 + }, + { + "start": 25005.27, + "end": 25009.27, + "probability": 0.9203 + }, + { + "start": 25009.51, + "end": 25013.73, + "probability": 0.9327 + }, + { + "start": 25013.81, + "end": 25016.75, + "probability": 0.5916 + }, + { + "start": 25017.09, + "end": 25018.55, + "probability": 0.9834 + }, + { + "start": 25019.41, + "end": 25019.83, + "probability": 0.5113 + }, + { + "start": 25020.37, + "end": 25021.27, + "probability": 0.7321 + }, + { + "start": 25021.29, + "end": 25021.95, + "probability": 0.5579 + }, + { + "start": 25021.99, + "end": 25022.53, + "probability": 0.5032 + }, + { + "start": 25022.53, + "end": 25023.77, + "probability": 0.6553 + }, + { + "start": 25038.03, + "end": 25038.03, + "probability": 0.0646 + }, + { + "start": 25038.03, + "end": 25039.81, + "probability": 0.4848 + }, + { + "start": 25040.37, + "end": 25040.47, + "probability": 0.8174 + }, + { + "start": 25041.01, + "end": 25042.07, + "probability": 0.6863 + }, + { + "start": 25042.21, + "end": 25044.73, + "probability": 0.9487 + }, + { + "start": 25044.81, + "end": 25052.41, + "probability": 0.9247 + }, + { + "start": 25052.99, + "end": 25054.21, + "probability": 0.8586 + }, + { + "start": 25054.81, + "end": 25059.09, + "probability": 0.4998 + }, + { + "start": 25059.47, + "end": 25061.85, + "probability": 0.874 + }, + { + "start": 25062.51, + "end": 25063.75, + "probability": 0.3991 + }, + { + "start": 25064.73, + "end": 25065.47, + "probability": 0.7503 + }, + { + "start": 25067.33, + "end": 25068.55, + "probability": 0.0003 + }, + { + "start": 25068.95, + "end": 25069.15, + "probability": 0.4373 + }, + { + "start": 25071.53, + "end": 25071.97, + "probability": 0.3773 + }, + { + "start": 25071.97, + "end": 25071.97, + "probability": 0.3743 + }, + { + "start": 25071.97, + "end": 25071.97, + "probability": 0.0327 + }, + { + "start": 25072.79, + "end": 25079.87, + "probability": 0.6225 + }, + { + "start": 25080.11, + "end": 25081.79, + "probability": 0.8184 + }, + { + "start": 25081.93, + "end": 25085.17, + "probability": 0.3694 + }, + { + "start": 25086.57, + "end": 25088.97, + "probability": 0.2204 + }, + { + "start": 25091.53, + "end": 25094.53, + "probability": 0.7213 + }, + { + "start": 25094.81, + "end": 25095.86, + "probability": 0.7646 + }, + { + "start": 25097.39, + "end": 25099.59, + "probability": 0.1727 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.0, + "end": 25218.0, + "probability": 0.0 + }, + { + "start": 25218.32, + "end": 25219.02, + "probability": 0.3917 + }, + { + "start": 25219.32, + "end": 25220.32, + "probability": 0.6505 + }, + { + "start": 25220.4, + "end": 25221.52, + "probability": 0.7776 + }, + { + "start": 25221.7, + "end": 25222.64, + "probability": 0.9222 + }, + { + "start": 25222.76, + "end": 25223.48, + "probability": 0.8397 + }, + { + "start": 25223.8, + "end": 25225.38, + "probability": 0.0001 + }, + { + "start": 25236.48, + "end": 25236.84, + "probability": 0.0725 + }, + { + "start": 25239.56, + "end": 25243.72, + "probability": 0.5491 + }, + { + "start": 25244.28, + "end": 25248.08, + "probability": 0.6482 + }, + { + "start": 25248.3, + "end": 25248.6, + "probability": 0.8559 + }, + { + "start": 25248.7, + "end": 25251.3, + "probability": 0.4925 + }, + { + "start": 25251.34, + "end": 25252.42, + "probability": 0.7247 + }, + { + "start": 25252.48, + "end": 25254.78, + "probability": 0.9182 + }, + { + "start": 25256.22, + "end": 25259.94, + "probability": 0.656 + }, + { + "start": 25259.94, + "end": 25265.16, + "probability": 0.7551 + }, + { + "start": 25265.22, + "end": 25265.76, + "probability": 0.6032 + }, + { + "start": 25265.78, + "end": 25266.88, + "probability": 0.7025 + }, + { + "start": 25268.69, + "end": 25270.05, + "probability": 0.045 + }, + { + "start": 25272.6, + "end": 25275.24, + "probability": 0.1073 + }, + { + "start": 25275.76, + "end": 25279.96, + "probability": 0.0461 + }, + { + "start": 25282.02, + "end": 25286.12, + "probability": 0.638 + }, + { + "start": 25287.3, + "end": 25295.32, + "probability": 0.8699 + }, + { + "start": 25296.4, + "end": 25298.22, + "probability": 0.1166 + }, + { + "start": 25299.04, + "end": 25300.02, + "probability": 0.6289 + }, + { + "start": 25300.62, + "end": 25303.8, + "probability": 0.9851 + }, + { + "start": 25304.14, + "end": 25305.1, + "probability": 0.6778 + }, + { + "start": 25305.44, + "end": 25305.44, + "probability": 0.113 + }, + { + "start": 25305.44, + "end": 25305.84, + "probability": 0.4581 + }, + { + "start": 25306.76, + "end": 25309.94, + "probability": 0.9197 + }, + { + "start": 25310.68, + "end": 25315.38, + "probability": 0.8779 + }, + { + "start": 25315.54, + "end": 25320.16, + "probability": 0.8647 + }, + { + "start": 25320.28, + "end": 25321.3, + "probability": 0.2229 + }, + { + "start": 25322.3, + "end": 25322.86, + "probability": 0.1547 + }, + { + "start": 25334.96, + "end": 25335.2, + "probability": 0.1189 + }, + { + "start": 25335.2, + "end": 25335.58, + "probability": 0.4182 + }, + { + "start": 25335.72, + "end": 25336.92, + "probability": 0.3076 + }, + { + "start": 25336.92, + "end": 25338.2, + "probability": 0.4464 + }, + { + "start": 25338.52, + "end": 25338.72, + "probability": 0.3026 + }, + { + "start": 25338.94, + "end": 25341.22, + "probability": 0.7942 + }, + { + "start": 25341.9, + "end": 25345.68, + "probability": 0.832 + }, + { + "start": 25346.86, + "end": 25348.98, + "probability": 0.7354 + }, + { + "start": 25349.02, + "end": 25351.9, + "probability": 0.4808 + }, + { + "start": 25352.94, + "end": 25353.92, + "probability": 0.9488 + }, + { + "start": 25354.76, + "end": 25356.3, + "probability": 0.0062 + }, + { + "start": 25356.88, + "end": 25357.86, + "probability": 0.8005 + }, + { + "start": 25358.02, + "end": 25362.14, + "probability": 0.5316 + }, + { + "start": 25363.7, + "end": 25364.5, + "probability": 0.6913 + }, + { + "start": 25366.3, + "end": 25368.9, + "probability": 0.7931 + }, + { + "start": 25368.9, + "end": 25370.4, + "probability": 0.5857 + }, + { + "start": 25370.48, + "end": 25375.32, + "probability": 0.8115 + }, + { + "start": 25375.46, + "end": 25377.14, + "probability": 0.951 + }, + { + "start": 25377.74, + "end": 25381.16, + "probability": 0.5011 + }, + { + "start": 25381.26, + "end": 25381.62, + "probability": 0.4659 + }, + { + "start": 25381.68, + "end": 25382.88, + "probability": 0.7034 + }, + { + "start": 25383.23, + "end": 25385.52, + "probability": 0.6393 + }, + { + "start": 25385.7, + "end": 25386.8, + "probability": 0.2453 + }, + { + "start": 25387.22, + "end": 25387.66, + "probability": 0.0049 + }, + { + "start": 25393.04, + "end": 25393.08, + "probability": 0.0477 + }, + { + "start": 25393.08, + "end": 25393.08, + "probability": 0.0312 + }, + { + "start": 25393.08, + "end": 25393.1, + "probability": 0.0268 + }, + { + "start": 25409.04, + "end": 25412.86, + "probability": 0.3674 + }, + { + "start": 25413.0, + "end": 25413.78, + "probability": 0.6441 + }, + { + "start": 25413.84, + "end": 25415.04, + "probability": 0.7384 + }, + { + "start": 25415.48, + "end": 25416.24, + "probability": 0.749 + }, + { + "start": 25416.3, + "end": 25416.96, + "probability": 0.824 + }, + { + "start": 25417.08, + "end": 25417.66, + "probability": 0.6968 + }, + { + "start": 25417.96, + "end": 25418.98, + "probability": 0.658 + }, + { + "start": 25419.14, + "end": 25421.02, + "probability": 0.2803 + }, + { + "start": 25421.78, + "end": 25423.98, + "probability": 0.8997 + }, + { + "start": 25424.74, + "end": 25427.71, + "probability": 0.8093 + }, + { + "start": 25427.88, + "end": 25429.86, + "probability": 0.3801 + }, + { + "start": 25430.12, + "end": 25431.14, + "probability": 0.3002 + }, + { + "start": 25431.82, + "end": 25432.98, + "probability": 0.5972 + }, + { + "start": 25433.0, + "end": 25434.28, + "probability": 0.5169 + }, + { + "start": 25434.48, + "end": 25435.7, + "probability": 0.7593 + }, + { + "start": 25435.98, + "end": 25437.96, + "probability": 0.8461 + }, + { + "start": 25438.06, + "end": 25438.22, + "probability": 0.5647 + }, + { + "start": 25438.22, + "end": 25439.0, + "probability": 0.555 + }, + { + "start": 25440.86, + "end": 25442.66, + "probability": 0.4231 + }, + { + "start": 25442.66, + "end": 25442.98, + "probability": 0.5971 + }, + { + "start": 25457.9, + "end": 25458.0, + "probability": 0.0016 + }, + { + "start": 25458.0, + "end": 25458.94, + "probability": 0.6118 + }, + { + "start": 25459.58, + "end": 25462.9, + "probability": 0.7343 + }, + { + "start": 25463.38, + "end": 25466.96, + "probability": 0.9368 + }, + { + "start": 25467.78, + "end": 25472.46, + "probability": 0.8007 + }, + { + "start": 25472.84, + "end": 25473.98, + "probability": 0.2218 + }, + { + "start": 25474.28, + "end": 25476.42, + "probability": 0.6278 + }, + { + "start": 25476.44, + "end": 25477.0, + "probability": 0.5687 + }, + { + "start": 25477.06, + "end": 25477.56, + "probability": 0.6396 + }, + { + "start": 25478.26, + "end": 25479.0, + "probability": 0.4256 + }, + { + "start": 25479.64, + "end": 25480.0, + "probability": 0.0545 + }, + { + "start": 25495.48, + "end": 25495.48, + "probability": 0.2472 + }, + { + "start": 25495.48, + "end": 25499.62, + "probability": 0.2406 + }, + { + "start": 25500.0, + "end": 25503.94, + "probability": 0.9502 + }, + { + "start": 25505.2, + "end": 25506.14, + "probability": 0.3682 + }, + { + "start": 25506.46, + "end": 25506.76, + "probability": 0.2613 + }, + { + "start": 25508.28, + "end": 25514.7, + "probability": 0.2172 + }, + { + "start": 25514.7, + "end": 25525.24, + "probability": 0.8001 + }, + { + "start": 25525.24, + "end": 25531.36, + "probability": 0.9042 + }, + { + "start": 25531.36, + "end": 25531.94, + "probability": 0.4099 + }, + { + "start": 25532.06, + "end": 25532.65, + "probability": 0.147 + }, + { + "start": 25534.6, + "end": 25535.36, + "probability": 0.0361 + }, + { + "start": 25535.54, + "end": 25541.08, + "probability": 0.4988 + }, + { + "start": 25541.52, + "end": 25545.72, + "probability": 0.6636 + }, + { + "start": 25545.72, + "end": 25546.54, + "probability": 0.6868 + }, + { + "start": 25560.92, + "end": 25560.92, + "probability": 0.1591 + }, + { + "start": 25560.92, + "end": 25565.42, + "probability": 0.3429 + }, + { + "start": 25565.9, + "end": 25569.86, + "probability": 0.9582 + }, + { + "start": 25570.42, + "end": 25575.88, + "probability": 0.9884 + }, + { + "start": 25576.42, + "end": 25577.34, + "probability": 0.5963 + }, + { + "start": 25578.52, + "end": 25579.76, + "probability": 0.7037 + }, + { + "start": 25579.78, + "end": 25580.84, + "probability": 0.6284 + }, + { + "start": 25581.53, + "end": 25583.24, + "probability": 0.6612 + }, + { + "start": 25590.16, + "end": 25590.82, + "probability": 0.0922 + }, + { + "start": 25597.3, + "end": 25601.7, + "probability": 0.4756 + }, + { + "start": 25601.8, + "end": 25605.16, + "probability": 0.71 + }, + { + "start": 25605.84, + "end": 25610.24, + "probability": 0.9312 + }, + { + "start": 25610.3, + "end": 25611.1, + "probability": 0.7692 + }, + { + "start": 25611.12, + "end": 25612.74, + "probability": 0.8557 + }, + { + "start": 25613.14, + "end": 25613.3, + "probability": 0.5122 + }, + { + "start": 25613.94, + "end": 25618.02, + "probability": 0.5188 + }, + { + "start": 25618.8, + "end": 25619.84, + "probability": 0.4687 + }, + { + "start": 25624.2, + "end": 25624.9, + "probability": 0.2822 + }, + { + "start": 25631.96, + "end": 25632.06, + "probability": 0.212 + }, + { + "start": 25632.06, + "end": 25637.28, + "probability": 0.5291 + }, + { + "start": 25637.66, + "end": 25641.82, + "probability": 0.882 + }, + { + "start": 25642.87, + "end": 25647.36, + "probability": 0.8164 + }, + { + "start": 25647.44, + "end": 25647.88, + "probability": 0.8713 + }, + { + "start": 25648.26, + "end": 25649.08, + "probability": 0.1699 + }, + { + "start": 25649.44, + "end": 25651.32, + "probability": 0.294 + }, + { + "start": 25652.58, + "end": 25654.57, + "probability": 0.3098 + }, + { + "start": 25655.34, + "end": 25659.58, + "probability": 0.7087 + }, + { + "start": 25659.68, + "end": 25659.78, + "probability": 0.3729 + }, + { + "start": 25660.54, + "end": 25662.84, + "probability": 0.3545 + }, + { + "start": 25664.36, + "end": 25665.08, + "probability": 0.2125 + }, + { + "start": 25667.12, + "end": 25667.52, + "probability": 0.3919 + }, + { + "start": 25677.92, + "end": 25679.38, + "probability": 0.0146 + }, + { + "start": 25679.68, + "end": 25681.98, + "probability": 0.3844 + }, + { + "start": 25682.86, + "end": 25683.78, + "probability": 0.0621 + }, + { + "start": 25684.14, + "end": 25684.14, + "probability": 0.2269 + }, + { + "start": 25684.14, + "end": 25684.14, + "probability": 0.2129 + }, + { + "start": 25684.14, + "end": 25684.14, + "probability": 0.0445 + }, + { + "start": 25684.14, + "end": 25684.14, + "probability": 0.0936 + }, + { + "start": 25684.14, + "end": 25684.14, + "probability": 0.046 + }, + { + "start": 25684.18, + "end": 25686.58, + "probability": 0.2115 + }, + { + "start": 25688.22, + "end": 25693.02, + "probability": 0.5323 + }, + { + "start": 25693.22, + "end": 25700.56, + "probability": 0.662 + }, + { + "start": 25701.16, + "end": 25704.62, + "probability": 0.9743 + }, + { + "start": 25705.46, + "end": 25708.1, + "probability": 0.886 + }, + { + "start": 25708.96, + "end": 25717.42, + "probability": 0.5737 + }, + { + "start": 25717.52, + "end": 25718.72, + "probability": 0.7455 + }, + { + "start": 25719.02, + "end": 25719.9, + "probability": 0.4825 + }, + { + "start": 25719.96, + "end": 25720.52, + "probability": 0.5896 + }, + { + "start": 25720.56, + "end": 25721.08, + "probability": 0.5866 + }, + { + "start": 25721.08, + "end": 25721.9, + "probability": 0.5531 + }, + { + "start": 25729.64, + "end": 25730.72, + "probability": 0.4976 + }, + { + "start": 25730.92, + "end": 25737.44, + "probability": 0.3459 + }, + { + "start": 25737.44, + "end": 25737.44, + "probability": 0.1619 + }, + { + "start": 25737.44, + "end": 25738.14, + "probability": 0.2237 + }, + { + "start": 25738.48, + "end": 25739.54, + "probability": 0.2428 + }, + { + "start": 25741.14, + "end": 25743.08, + "probability": 0.6798 + }, + { + "start": 25743.46, + "end": 25748.16, + "probability": 0.8933 + }, + { + "start": 25748.44, + "end": 25749.04, + "probability": 0.721 + }, + { + "start": 25749.16, + "end": 25750.44, + "probability": 0.6864 + }, + { + "start": 25751.86, + "end": 25754.42, + "probability": 0.9583 + }, + { + "start": 25755.16, + "end": 25758.96, + "probability": 0.6885 + }, + { + "start": 25759.5, + "end": 25762.96, + "probability": 0.1399 + }, + { + "start": 25764.46, + "end": 25765.58, + "probability": 0.7478 + }, + { + "start": 25765.8, + "end": 25767.56, + "probability": 0.0266 + }, + { + "start": 25768.72, + "end": 25769.46, + "probability": 0.6126 + }, + { + "start": 25769.62, + "end": 25772.88, + "probability": 0.8455 + }, + { + "start": 25773.16, + "end": 25776.36, + "probability": 0.6665 + }, + { + "start": 25776.98, + "end": 25782.26, + "probability": 0.8398 + }, + { + "start": 25783.06, + "end": 25787.08, + "probability": 0.7892 + }, + { + "start": 25796.88, + "end": 25800.08, + "probability": 0.1978 + }, + { + "start": 25800.08, + "end": 25801.82, + "probability": 0.2111 + }, + { + "start": 25803.0, + "end": 25806.46, + "probability": 0.739 + }, + { + "start": 25806.84, + "end": 25809.01, + "probability": 0.7666 + }, + { + "start": 25813.52, + "end": 25817.2, + "probability": 0.6785 + }, + { + "start": 25817.48, + "end": 25818.06, + "probability": 0.2178 + }, + { + "start": 25818.62, + "end": 25819.08, + "probability": 0.0405 + }, + { + "start": 25819.2, + "end": 25819.68, + "probability": 0.2096 + }, + { + "start": 25819.84, + "end": 25823.18, + "probability": 0.823 + }, + { + "start": 25823.18, + "end": 25826.44, + "probability": 0.4598 + }, + { + "start": 25826.74, + "end": 25828.56, + "probability": 0.6753 + }, + { + "start": 25828.74, + "end": 25830.16, + "probability": 0.9088 + }, + { + "start": 25830.28, + "end": 25830.28, + "probability": 0.2126 + }, + { + "start": 25830.28, + "end": 25830.35, + "probability": 0.6074 + }, + { + "start": 25832.32, + "end": 25833.24, + "probability": 0.8312 + }, + { + "start": 25833.38, + "end": 25835.76, + "probability": 0.803 + }, + { + "start": 25835.9, + "end": 25837.04, + "probability": 0.6928 + }, + { + "start": 25837.14, + "end": 25839.02, + "probability": 0.7119 + }, + { + "start": 25841.1, + "end": 25845.34, + "probability": 0.7356 + }, + { + "start": 25845.74, + "end": 25847.68, + "probability": 0.761 + }, + { + "start": 25850.04, + "end": 25851.96, + "probability": 0.6144 + }, + { + "start": 25852.06, + "end": 25854.56, + "probability": 0.6603 + }, + { + "start": 25854.78, + "end": 25856.1, + "probability": 0.7304 + }, + { + "start": 25856.86, + "end": 25858.7, + "probability": 0.3685 + }, + { + "start": 25859.32, + "end": 25860.68, + "probability": 0.7191 + }, + { + "start": 25860.76, + "end": 25863.36, + "probability": 0.9365 + }, + { + "start": 25863.36, + "end": 25865.06, + "probability": 0.7301 + }, + { + "start": 25866.1, + "end": 25867.62, + "probability": 0.0663 + }, + { + "start": 25870.32, + "end": 25871.98, + "probability": 0.2787 + }, + { + "start": 25872.5, + "end": 25873.06, + "probability": 0.3671 + }, + { + "start": 25873.9, + "end": 25874.56, + "probability": 0.4572 + }, + { + "start": 25881.18, + "end": 25883.76, + "probability": 0.924 + }, + { + "start": 25883.8, + "end": 25884.82, + "probability": 0.4069 + }, + { + "start": 25885.4, + "end": 25886.78, + "probability": 0.776 + }, + { + "start": 25887.56, + "end": 25889.54, + "probability": 0.6498 + }, + { + "start": 25890.34, + "end": 25890.44, + "probability": 0.2652 + }, + { + "start": 25890.52, + "end": 25893.28, + "probability": 0.4821 + }, + { + "start": 25893.52, + "end": 25897.26, + "probability": 0.7369 + }, + { + "start": 25900.02, + "end": 25903.9, + "probability": 0.8429 + }, + { + "start": 25906.24, + "end": 25907.52, + "probability": 0.8406 + }, + { + "start": 25907.68, + "end": 25908.62, + "probability": 0.6623 + }, + { + "start": 25908.62, + "end": 25909.98, + "probability": 0.9478 + }, + { + "start": 25911.02, + "end": 25911.38, + "probability": 0.6406 + }, + { + "start": 25921.58, + "end": 25923.24, + "probability": 0.1371 + }, + { + "start": 25923.24, + "end": 25926.78, + "probability": 0.3817 + }, + { + "start": 25926.84, + "end": 25929.26, + "probability": 0.9172 + }, + { + "start": 25929.56, + "end": 25930.76, + "probability": 0.4634 + }, + { + "start": 25932.26, + "end": 25933.0, + "probability": 0.492 + }, + { + "start": 25933.66, + "end": 25935.34, + "probability": 0.37 + }, + { + "start": 25935.82, + "end": 25936.6, + "probability": 0.8129 + }, + { + "start": 25936.66, + "end": 25941.04, + "probability": 0.7876 + }, + { + "start": 25941.1, + "end": 25941.78, + "probability": 0.8544 + }, + { + "start": 25942.2, + "end": 25943.24, + "probability": 0.3605 + }, + { + "start": 25947.84, + "end": 25948.44, + "probability": 0.8056 + }, + { + "start": 25948.48, + "end": 25949.2, + "probability": 0.6851 + }, + { + "start": 25960.64, + "end": 25962.52, + "probability": 0.1173 + }, + { + "start": 25962.86, + "end": 25966.38, + "probability": 0.5932 + }, + { + "start": 25966.72, + "end": 25970.36, + "probability": 0.9048 + }, + { + "start": 25970.56, + "end": 25972.48, + "probability": 0.9346 + }, + { + "start": 25972.72, + "end": 25973.86, + "probability": 0.673 + }, + { + "start": 25982.9, + "end": 25986.06, + "probability": 0.5558 + }, + { + "start": 25986.24, + "end": 25986.74, + "probability": 0.5857 + }, + { + "start": 25986.8, + "end": 25992.32, + "probability": 0.9202 + }, + { + "start": 25992.38, + "end": 25995.6, + "probability": 0.951 + }, + { + "start": 25995.64, + "end": 25996.46, + "probability": 0.6874 + }, + { + "start": 25996.46, + "end": 25997.62, + "probability": 0.8601 + }, + { + "start": 25998.46, + "end": 25999.22, + "probability": 0.7115 + }, + { + "start": 26001.86, + "end": 26007.4, + "probability": 0.5493 + }, + { + "start": 26012.42, + "end": 26012.42, + "probability": 0.1124 + }, + { + "start": 26012.42, + "end": 26014.7, + "probability": 0.631 + }, + { + "start": 26015.26, + "end": 26017.36, + "probability": 0.9149 + }, + { + "start": 26017.9, + "end": 26021.42, + "probability": 0.9684 + }, + { + "start": 26022.12, + "end": 26024.52, + "probability": 0.9476 + }, + { + "start": 26025.04, + "end": 26026.42, + "probability": 0.939 + }, + { + "start": 26026.6, + "end": 26027.78, + "probability": 0.797 + }, + { + "start": 26027.92, + "end": 26030.42, + "probability": 0.8289 + }, + { + "start": 26030.5, + "end": 26031.14, + "probability": 0.4314 + }, + { + "start": 26036.44, + "end": 26036.84, + "probability": 0.7056 + }, + { + "start": 26037.92, + "end": 26038.4, + "probability": 0.8497 + }, + { + "start": 26039.04, + "end": 26040.26, + "probability": 0.4446 + }, + { + "start": 26041.38, + "end": 26044.82, + "probability": 0.9956 + }, + { + "start": 26044.82, + "end": 26048.66, + "probability": 0.9082 + }, + { + "start": 26048.84, + "end": 26050.06, + "probability": 0.9236 + }, + { + "start": 26050.82, + "end": 26052.86, + "probability": 0.894 + }, + { + "start": 26054.7, + "end": 26054.74, + "probability": 0.0083 + }, + { + "start": 26054.76, + "end": 26055.94, + "probability": 0.0466 + }, + { + "start": 26056.62, + "end": 26057.66, + "probability": 0.7806 + }, + { + "start": 26057.76, + "end": 26059.27, + "probability": 0.8748 + }, + { + "start": 26059.46, + "end": 26060.78, + "probability": 0.9621 + }, + { + "start": 26060.92, + "end": 26062.58, + "probability": 0.8201 + }, + { + "start": 26062.74, + "end": 26067.82, + "probability": 0.8169 + }, + { + "start": 26067.92, + "end": 26071.14, + "probability": 0.3276 + }, + { + "start": 26071.24, + "end": 26071.78, + "probability": 0.507 + }, + { + "start": 26071.84, + "end": 26073.3, + "probability": 0.582 + }, + { + "start": 26074.17, + "end": 26078.42, + "probability": 0.7668 + }, + { + "start": 26080.98, + "end": 26081.28, + "probability": 0.2505 + }, + { + "start": 26081.28, + "end": 26081.28, + "probability": 0.0374 + }, + { + "start": 26081.86, + "end": 26082.98, + "probability": 0.2816 + }, + { + "start": 26084.04, + "end": 26084.32, + "probability": 0.4487 + }, + { + "start": 26085.8, + "end": 26091.56, + "probability": 0.3163 + }, + { + "start": 26091.56, + "end": 26092.78, + "probability": 0.5216 + }, + { + "start": 26093.12, + "end": 26093.4, + "probability": 0.5093 + }, + { + "start": 26093.72, + "end": 26096.26, + "probability": 0.8788 + }, + { + "start": 26097.06, + "end": 26098.9, + "probability": 0.2723 + }, + { + "start": 26099.08, + "end": 26101.04, + "probability": 0.9514 + }, + { + "start": 26101.1, + "end": 26102.18, + "probability": 0.9181 + }, + { + "start": 26102.36, + "end": 26104.36, + "probability": 0.0283 + }, + { + "start": 26104.36, + "end": 26109.96, + "probability": 0.6875 + }, + { + "start": 26111.48, + "end": 26112.74, + "probability": 0.6442 + }, + { + "start": 26130.02, + "end": 26135.36, + "probability": 0.9694 + }, + { + "start": 26136.04, + "end": 26137.86, + "probability": 0.9175 + }, + { + "start": 26138.56, + "end": 26140.78, + "probability": 0.9844 + }, + { + "start": 26140.96, + "end": 26141.94, + "probability": 0.8707 + }, + { + "start": 26147.5, + "end": 26148.64, + "probability": 0.8547 + }, + { + "start": 26149.28, + "end": 26151.44, + "probability": 0.6625 + }, + { + "start": 26152.58, + "end": 26155.78, + "probability": 0.7935 + }, + { + "start": 26159.0, + "end": 26161.24, + "probability": 0.9924 + }, + { + "start": 26163.82, + "end": 26166.52, + "probability": 0.9822 + }, + { + "start": 26166.74, + "end": 26167.36, + "probability": 0.9601 + }, + { + "start": 26167.56, + "end": 26168.94, + "probability": 0.9451 + }, + { + "start": 26169.7, + "end": 26173.34, + "probability": 0.9982 + }, + { + "start": 26174.16, + "end": 26177.18, + "probability": 0.8903 + }, + { + "start": 26177.76, + "end": 26179.5, + "probability": 0.9617 + }, + { + "start": 26181.06, + "end": 26184.0, + "probability": 0.4792 + }, + { + "start": 26184.08, + "end": 26186.22, + "probability": 0.9935 + }, + { + "start": 26187.4, + "end": 26189.16, + "probability": 0.9923 + }, + { + "start": 26189.36, + "end": 26190.68, + "probability": 0.9717 + }, + { + "start": 26191.04, + "end": 26195.52, + "probability": 0.9897 + }, + { + "start": 26196.92, + "end": 26201.88, + "probability": 0.9905 + }, + { + "start": 26201.96, + "end": 26203.84, + "probability": 0.9741 + }, + { + "start": 26206.4, + "end": 26209.02, + "probability": 0.34 + }, + { + "start": 26209.02, + "end": 26212.32, + "probability": 0.9631 + }, + { + "start": 26214.62, + "end": 26216.86, + "probability": 0.9203 + }, + { + "start": 26218.5, + "end": 26221.1, + "probability": 0.9919 + }, + { + "start": 26221.18, + "end": 26224.94, + "probability": 0.9976 + }, + { + "start": 26226.12, + "end": 26228.92, + "probability": 0.998 + }, + { + "start": 26229.06, + "end": 26229.64, + "probability": 0.961 + }, + { + "start": 26229.74, + "end": 26231.06, + "probability": 0.7268 + }, + { + "start": 26231.86, + "end": 26234.88, + "probability": 0.98 + }, + { + "start": 26235.94, + "end": 26238.86, + "probability": 0.9902 + }, + { + "start": 26238.94, + "end": 26240.16, + "probability": 0.8924 + }, + { + "start": 26240.32, + "end": 26243.36, + "probability": 0.9966 + }, + { + "start": 26243.36, + "end": 26247.4, + "probability": 0.9998 + }, + { + "start": 26248.4, + "end": 26252.52, + "probability": 0.8374 + }, + { + "start": 26253.48, + "end": 26255.38, + "probability": 0.9069 + }, + { + "start": 26256.08, + "end": 26258.68, + "probability": 0.9988 + }, + { + "start": 26259.2, + "end": 26259.64, + "probability": 0.8071 + }, + { + "start": 26259.84, + "end": 26260.96, + "probability": 0.996 + }, + { + "start": 26261.42, + "end": 26267.22, + "probability": 0.9895 + }, + { + "start": 26268.26, + "end": 26271.8, + "probability": 0.9983 + }, + { + "start": 26272.38, + "end": 26275.98, + "probability": 0.9897 + }, + { + "start": 26276.58, + "end": 26279.32, + "probability": 0.966 + }, + { + "start": 26280.0, + "end": 26283.36, + "probability": 0.9575 + }, + { + "start": 26284.42, + "end": 26290.48, + "probability": 0.9976 + }, + { + "start": 26290.94, + "end": 26292.06, + "probability": 0.9943 + }, + { + "start": 26293.2, + "end": 26296.38, + "probability": 0.9975 + }, + { + "start": 26296.38, + "end": 26299.68, + "probability": 0.999 + }, + { + "start": 26300.32, + "end": 26303.26, + "probability": 0.9971 + }, + { + "start": 26303.46, + "end": 26304.28, + "probability": 0.8313 + }, + { + "start": 26304.74, + "end": 26306.26, + "probability": 0.7341 + }, + { + "start": 26306.38, + "end": 26307.68, + "probability": 0.9575 + }, + { + "start": 26308.26, + "end": 26311.38, + "probability": 0.9934 + }, + { + "start": 26312.46, + "end": 26316.32, + "probability": 0.9903 + }, + { + "start": 26316.94, + "end": 26321.86, + "probability": 0.9981 + }, + { + "start": 26322.76, + "end": 26326.2, + "probability": 0.9956 + }, + { + "start": 26326.2, + "end": 26331.72, + "probability": 0.998 + }, + { + "start": 26332.46, + "end": 26336.4, + "probability": 0.9946 + }, + { + "start": 26336.46, + "end": 26337.84, + "probability": 0.8401 + }, + { + "start": 26338.58, + "end": 26339.06, + "probability": 0.5777 + }, + { + "start": 26339.22, + "end": 26345.32, + "probability": 0.989 + }, + { + "start": 26345.54, + "end": 26346.06, + "probability": 0.5051 + }, + { + "start": 26346.1, + "end": 26346.28, + "probability": 0.683 + }, + { + "start": 26346.42, + "end": 26348.0, + "probability": 0.8278 + }, + { + "start": 26348.52, + "end": 26350.5, + "probability": 0.9643 + }, + { + "start": 26351.7, + "end": 26353.16, + "probability": 0.8911 + }, + { + "start": 26353.48, + "end": 26354.88, + "probability": 0.8153 + }, + { + "start": 26355.06, + "end": 26357.26, + "probability": 0.9839 + }, + { + "start": 26358.16, + "end": 26358.7, + "probability": 0.9541 + }, + { + "start": 26359.52, + "end": 26363.37, + "probability": 0.9578 + }, + { + "start": 26364.2, + "end": 26369.1, + "probability": 0.9674 + }, + { + "start": 26369.64, + "end": 26370.7, + "probability": 0.7668 + }, + { + "start": 26370.86, + "end": 26375.52, + "probability": 0.9812 + }, + { + "start": 26375.52, + "end": 26379.18, + "probability": 0.6554 + }, + { + "start": 26379.96, + "end": 26381.32, + "probability": 0.9763 + }, + { + "start": 26381.46, + "end": 26382.66, + "probability": 0.9838 + }, + { + "start": 26382.88, + "end": 26384.14, + "probability": 0.9873 + }, + { + "start": 26384.56, + "end": 26385.32, + "probability": 0.8962 + }, + { + "start": 26385.4, + "end": 26386.04, + "probability": 0.9213 + }, + { + "start": 26386.12, + "end": 26386.72, + "probability": 0.9463 + }, + { + "start": 26386.8, + "end": 26387.56, + "probability": 0.9451 + }, + { + "start": 26388.08, + "end": 26391.7, + "probability": 0.9852 + }, + { + "start": 26391.7, + "end": 26395.4, + "probability": 0.9919 + }, + { + "start": 26396.8, + "end": 26399.4, + "probability": 0.9946 + }, + { + "start": 26399.4, + "end": 26402.66, + "probability": 0.9971 + }, + { + "start": 26402.82, + "end": 26403.64, + "probability": 0.895 + }, + { + "start": 26404.5, + "end": 26406.02, + "probability": 0.9408 + }, + { + "start": 26406.22, + "end": 26407.08, + "probability": 0.7538 + }, + { + "start": 26407.22, + "end": 26410.36, + "probability": 0.8046 + }, + { + "start": 26411.4, + "end": 26415.88, + "probability": 0.9243 + }, + { + "start": 26416.71, + "end": 26419.76, + "probability": 0.8913 + }, + { + "start": 26420.38, + "end": 26423.22, + "probability": 0.9948 + }, + { + "start": 26423.22, + "end": 26426.3, + "probability": 0.9989 + }, + { + "start": 26427.02, + "end": 26431.32, + "probability": 0.9987 + }, + { + "start": 26431.82, + "end": 26435.4, + "probability": 0.9845 + }, + { + "start": 26435.66, + "end": 26436.78, + "probability": 0.987 + }, + { + "start": 26436.82, + "end": 26438.26, + "probability": 0.9846 + }, + { + "start": 26438.76, + "end": 26439.36, + "probability": 0.904 + }, + { + "start": 26439.46, + "end": 26441.22, + "probability": 0.975 + }, + { + "start": 26441.76, + "end": 26446.66, + "probability": 0.98 + }, + { + "start": 26446.66, + "end": 26452.28, + "probability": 0.9982 + }, + { + "start": 26452.78, + "end": 26457.72, + "probability": 0.9766 + }, + { + "start": 26458.3, + "end": 26459.96, + "probability": 0.9989 + }, + { + "start": 26460.56, + "end": 26462.96, + "probability": 0.9967 + }, + { + "start": 26462.96, + "end": 26466.6, + "probability": 0.9216 + }, + { + "start": 26466.98, + "end": 26467.7, + "probability": 0.9169 + }, + { + "start": 26467.98, + "end": 26471.64, + "probability": 0.9436 + }, + { + "start": 26472.08, + "end": 26477.48, + "probability": 0.977 + }, + { + "start": 26477.62, + "end": 26480.84, + "probability": 0.9743 + }, + { + "start": 26481.7, + "end": 26487.06, + "probability": 0.9641 + }, + { + "start": 26487.54, + "end": 26491.9, + "probability": 0.9855 + }, + { + "start": 26491.9, + "end": 26496.87, + "probability": 0.9452 + }, + { + "start": 26498.34, + "end": 26501.26, + "probability": 0.9875 + }, + { + "start": 26501.44, + "end": 26503.24, + "probability": 0.9929 + }, + { + "start": 26504.22, + "end": 26505.26, + "probability": 0.725 + }, + { + "start": 26505.76, + "end": 26506.36, + "probability": 0.7682 + }, + { + "start": 26506.64, + "end": 26514.14, + "probability": 0.9873 + }, + { + "start": 26515.26, + "end": 26518.32, + "probability": 0.9556 + }, + { + "start": 26518.58, + "end": 26519.88, + "probability": 0.9844 + }, + { + "start": 26520.5, + "end": 26522.04, + "probability": 0.9259 + }, + { + "start": 26522.2, + "end": 26523.4, + "probability": 0.9766 + }, + { + "start": 26523.9, + "end": 26525.18, + "probability": 0.9705 + }, + { + "start": 26525.26, + "end": 26530.98, + "probability": 0.9881 + }, + { + "start": 26530.98, + "end": 26538.46, + "probability": 0.9992 + }, + { + "start": 26539.34, + "end": 26542.5, + "probability": 0.9951 + }, + { + "start": 26542.62, + "end": 26544.02, + "probability": 0.9953 + }, + { + "start": 26544.54, + "end": 26551.94, + "probability": 0.9011 + }, + { + "start": 26552.32, + "end": 26557.68, + "probability": 0.9976 + }, + { + "start": 26557.76, + "end": 26561.44, + "probability": 0.8492 + }, + { + "start": 26562.02, + "end": 26566.94, + "probability": 0.9884 + }, + { + "start": 26567.12, + "end": 26570.96, + "probability": 0.9972 + }, + { + "start": 26572.04, + "end": 26574.74, + "probability": 0.988 + }, + { + "start": 26574.94, + "end": 26577.28, + "probability": 0.8303 + }, + { + "start": 26578.02, + "end": 26578.72, + "probability": 0.9547 + }, + { + "start": 26578.82, + "end": 26583.88, + "probability": 0.9788 + }, + { + "start": 26583.88, + "end": 26589.78, + "probability": 0.988 + }, + { + "start": 26589.86, + "end": 26593.6, + "probability": 0.9937 + }, + { + "start": 26594.12, + "end": 26595.1, + "probability": 0.9713 + }, + { + "start": 26595.7, + "end": 26600.02, + "probability": 0.9921 + }, + { + "start": 26600.62, + "end": 26602.94, + "probability": 0.8191 + }, + { + "start": 26603.6, + "end": 26607.86, + "probability": 0.9922 + }, + { + "start": 26607.9, + "end": 26611.94, + "probability": 0.9888 + }, + { + "start": 26612.44, + "end": 26615.46, + "probability": 0.9189 + }, + { + "start": 26615.64, + "end": 26618.3, + "probability": 0.9131 + }, + { + "start": 26619.02, + "end": 26622.66, + "probability": 0.9792 + }, + { + "start": 26622.86, + "end": 26626.36, + "probability": 0.9781 + }, + { + "start": 26626.36, + "end": 26628.82, + "probability": 0.9966 + }, + { + "start": 26629.86, + "end": 26631.66, + "probability": 0.9355 + }, + { + "start": 26631.8, + "end": 26634.7, + "probability": 0.9952 + }, + { + "start": 26635.54, + "end": 26638.64, + "probability": 0.9685 + }, + { + "start": 26639.32, + "end": 26644.74, + "probability": 0.9876 + }, + { + "start": 26644.92, + "end": 26646.92, + "probability": 0.8708 + }, + { + "start": 26647.6, + "end": 26652.18, + "probability": 0.7562 + }, + { + "start": 26652.98, + "end": 26654.18, + "probability": 0.9312 + }, + { + "start": 26654.52, + "end": 26654.94, + "probability": 0.7747 + }, + { + "start": 26655.78, + "end": 26656.3, + "probability": 0.8223 + }, + { + "start": 26656.42, + "end": 26661.58, + "probability": 0.9871 + }, + { + "start": 26662.1, + "end": 26662.92, + "probability": 0.9903 + }, + { + "start": 26664.5, + "end": 26667.86, + "probability": 0.9971 + }, + { + "start": 26667.86, + "end": 26671.56, + "probability": 0.9988 + }, + { + "start": 26672.38, + "end": 26672.98, + "probability": 0.932 + }, + { + "start": 26673.46, + "end": 26677.01, + "probability": 0.9982 + }, + { + "start": 26677.28, + "end": 26678.12, + "probability": 0.9834 + }, + { + "start": 26678.24, + "end": 26679.2, + "probability": 0.904 + }, + { + "start": 26679.38, + "end": 26680.62, + "probability": 0.9562 + }, + { + "start": 26680.86, + "end": 26682.04, + "probability": 0.8348 + }, + { + "start": 26682.86, + "end": 26685.94, + "probability": 0.9882 + }, + { + "start": 26686.1, + "end": 26687.74, + "probability": 0.8014 + }, + { + "start": 26688.26, + "end": 26689.64, + "probability": 0.9961 + }, + { + "start": 26690.56, + "end": 26693.84, + "probability": 0.9731 + }, + { + "start": 26694.5, + "end": 26696.5, + "probability": 0.9729 + }, + { + "start": 26697.02, + "end": 26699.72, + "probability": 0.98 + }, + { + "start": 26700.4, + "end": 26704.04, + "probability": 0.9961 + }, + { + "start": 26704.04, + "end": 26706.48, + "probability": 0.9982 + }, + { + "start": 26706.62, + "end": 26709.88, + "probability": 0.9847 + }, + { + "start": 26709.98, + "end": 26710.66, + "probability": 0.7549 + }, + { + "start": 26711.18, + "end": 26714.82, + "probability": 0.9772 + }, + { + "start": 26714.82, + "end": 26719.08, + "probability": 0.9976 + }, + { + "start": 26719.68, + "end": 26724.08, + "probability": 0.9941 + }, + { + "start": 26724.2, + "end": 26727.82, + "probability": 0.9544 + }, + { + "start": 26727.9, + "end": 26729.06, + "probability": 0.8424 + }, + { + "start": 26730.32, + "end": 26730.78, + "probability": 0.5999 + }, + { + "start": 26731.08, + "end": 26733.96, + "probability": 0.9725 + }, + { + "start": 26734.08, + "end": 26735.84, + "probability": 0.7909 + }, + { + "start": 26736.0, + "end": 26740.48, + "probability": 0.7418 + }, + { + "start": 26741.22, + "end": 26741.78, + "probability": 0.3185 + }, + { + "start": 26741.9, + "end": 26742.12, + "probability": 0.7396 + }, + { + "start": 26742.2, + "end": 26745.95, + "probability": 0.9828 + }, + { + "start": 26746.08, + "end": 26748.38, + "probability": 0.943 + }, + { + "start": 26748.5, + "end": 26750.5, + "probability": 0.946 + }, + { + "start": 26750.66, + "end": 26751.34, + "probability": 0.8906 + }, + { + "start": 26751.94, + "end": 26752.9, + "probability": 0.9295 + }, + { + "start": 26752.94, + "end": 26760.16, + "probability": 0.9943 + }, + { + "start": 26766.32, + "end": 26767.32, + "probability": 0.7442 + }, + { + "start": 26768.58, + "end": 26769.64, + "probability": 0.705 + }, + { + "start": 26770.94, + "end": 26771.79, + "probability": 0.889 + }, + { + "start": 26771.92, + "end": 26772.92, + "probability": 0.9339 + }, + { + "start": 26773.0, + "end": 26773.32, + "probability": 0.6947 + }, + { + "start": 26773.48, + "end": 26775.08, + "probability": 0.9693 + }, + { + "start": 26775.58, + "end": 26777.48, + "probability": 0.9893 + }, + { + "start": 26778.1, + "end": 26780.98, + "probability": 0.994 + }, + { + "start": 26781.08, + "end": 26783.4, + "probability": 0.9022 + }, + { + "start": 26783.98, + "end": 26785.14, + "probability": 0.7907 + }, + { + "start": 26785.26, + "end": 26787.88, + "probability": 0.9542 + }, + { + "start": 26787.98, + "end": 26788.5, + "probability": 0.9013 + }, + { + "start": 26788.6, + "end": 26793.0, + "probability": 0.9882 + }, + { + "start": 26793.3, + "end": 26796.42, + "probability": 0.9626 + }, + { + "start": 26796.42, + "end": 26800.0, + "probability": 0.9994 + }, + { + "start": 26800.78, + "end": 26803.6, + "probability": 0.9971 + }, + { + "start": 26804.44, + "end": 26806.38, + "probability": 0.8728 + }, + { + "start": 26806.46, + "end": 26807.86, + "probability": 0.5796 + }, + { + "start": 26808.2, + "end": 26812.1, + "probability": 0.8557 + }, + { + "start": 26812.74, + "end": 26818.2, + "probability": 0.7421 + }, + { + "start": 26819.3, + "end": 26821.32, + "probability": 0.9385 + }, + { + "start": 26821.54, + "end": 26822.24, + "probability": 0.6376 + }, + { + "start": 26822.36, + "end": 26825.06, + "probability": 0.8973 + }, + { + "start": 26825.52, + "end": 26828.13, + "probability": 0.9622 + }, + { + "start": 26828.28, + "end": 26833.2, + "probability": 0.4619 + }, + { + "start": 26833.92, + "end": 26834.72, + "probability": 0.9789 + }, + { + "start": 26834.92, + "end": 26836.9, + "probability": 0.8365 + }, + { + "start": 26837.08, + "end": 26840.48, + "probability": 0.765 + }, + { + "start": 26840.58, + "end": 26842.66, + "probability": 0.7625 + }, + { + "start": 26842.84, + "end": 26848.1, + "probability": 0.9881 + }, + { + "start": 26848.9, + "end": 26849.98, + "probability": 0.7944 + }, + { + "start": 26850.08, + "end": 26854.2, + "probability": 0.9116 + }, + { + "start": 26854.82, + "end": 26856.52, + "probability": 0.9869 + }, + { + "start": 26856.64, + "end": 26857.96, + "probability": 0.9883 + }, + { + "start": 26858.04, + "end": 26860.48, + "probability": 0.9833 + }, + { + "start": 26861.28, + "end": 26863.06, + "probability": 0.818 + }, + { + "start": 26863.94, + "end": 26864.62, + "probability": 0.0974 + }, + { + "start": 26864.84, + "end": 26866.24, + "probability": 0.5628 + }, + { + "start": 26866.34, + "end": 26867.46, + "probability": 0.916 + }, + { + "start": 26867.52, + "end": 26868.51, + "probability": 0.9969 + }, + { + "start": 26869.04, + "end": 26870.26, + "probability": 0.9544 + }, + { + "start": 26872.1, + "end": 26872.66, + "probability": 0.9401 + }, + { + "start": 26873.04, + "end": 26875.74, + "probability": 0.7905 + }, + { + "start": 26876.18, + "end": 26878.58, + "probability": 0.6467 + }, + { + "start": 26880.22, + "end": 26883.18, + "probability": 0.2687 + }, + { + "start": 26883.7, + "end": 26884.2, + "probability": 0.1157 + }, + { + "start": 26884.2, + "end": 26885.7, + "probability": 0.0658 + }, + { + "start": 26885.7, + "end": 26885.82, + "probability": 0.1696 + }, + { + "start": 26885.82, + "end": 26886.5, + "probability": 0.7648 + }, + { + "start": 26887.26, + "end": 26889.8, + "probability": 0.8947 + }, + { + "start": 26890.1, + "end": 26893.72, + "probability": 0.9633 + }, + { + "start": 26894.38, + "end": 26900.52, + "probability": 0.9893 + }, + { + "start": 26901.24, + "end": 26904.54, + "probability": 0.925 + }, + { + "start": 26905.06, + "end": 26908.26, + "probability": 0.9938 + }, + { + "start": 26908.36, + "end": 26913.56, + "probability": 0.9973 + }, + { + "start": 26913.58, + "end": 26915.5, + "probability": 0.9681 + }, + { + "start": 26916.04, + "end": 26916.44, + "probability": 0.3882 + }, + { + "start": 26916.54, + "end": 26918.76, + "probability": 0.7489 + }, + { + "start": 26918.76, + "end": 26920.16, + "probability": 0.9906 + }, + { + "start": 26920.3, + "end": 26920.7, + "probability": 0.5277 + }, + { + "start": 26920.72, + "end": 26921.38, + "probability": 0.4849 + }, + { + "start": 26924.34, + "end": 26925.86, + "probability": 0.5748 + }, + { + "start": 26926.44, + "end": 26927.86, + "probability": 0.9536 + }, + { + "start": 26927.96, + "end": 26930.36, + "probability": 0.8226 + }, + { + "start": 26930.98, + "end": 26932.68, + "probability": 0.7065 + }, + { + "start": 26932.9, + "end": 26937.1, + "probability": 0.983 + }, + { + "start": 26937.24, + "end": 26938.46, + "probability": 0.8992 + }, + { + "start": 26942.1, + "end": 26943.08, + "probability": 0.0245 + }, + { + "start": 26943.08, + "end": 26943.08, + "probability": 0.2877 + }, + { + "start": 26943.08, + "end": 26943.08, + "probability": 0.0711 + }, + { + "start": 26943.08, + "end": 26945.39, + "probability": 0.9951 + }, + { + "start": 26945.8, + "end": 26946.57, + "probability": 0.9595 + }, + { + "start": 26946.74, + "end": 26947.5, + "probability": 0.9702 + }, + { + "start": 26947.64, + "end": 26948.18, + "probability": 0.9501 + }, + { + "start": 26948.92, + "end": 26949.94, + "probability": 0.8994 + }, + { + "start": 26949.96, + "end": 26950.5, + "probability": 0.9687 + }, + { + "start": 26950.54, + "end": 26953.72, + "probability": 0.9893 + }, + { + "start": 26954.92, + "end": 26957.08, + "probability": 0.9971 + }, + { + "start": 26957.08, + "end": 26961.48, + "probability": 0.9932 + }, + { + "start": 26961.76, + "end": 26963.18, + "probability": 0.4223 + }, + { + "start": 26964.16, + "end": 26965.91, + "probability": 0.2105 + }, + { + "start": 26965.96, + "end": 26967.32, + "probability": 0.1805 + }, + { + "start": 26968.34, + "end": 26973.26, + "probability": 0.1856 + }, + { + "start": 26973.26, + "end": 26973.26, + "probability": 0.3251 + }, + { + "start": 26973.26, + "end": 26976.94, + "probability": 0.3279 + }, + { + "start": 26976.94, + "end": 26977.44, + "probability": 0.0631 + }, + { + "start": 26978.58, + "end": 26980.44, + "probability": 0.957 + }, + { + "start": 26980.56, + "end": 26986.3, + "probability": 0.9764 + }, + { + "start": 26986.3, + "end": 26990.48, + "probability": 0.9363 + }, + { + "start": 26990.58, + "end": 26991.72, + "probability": 0.893 + }, + { + "start": 26992.46, + "end": 26995.42, + "probability": 0.8738 + }, + { + "start": 26995.98, + "end": 26997.12, + "probability": 0.7768 + }, + { + "start": 26997.3, + "end": 26999.86, + "probability": 0.9803 + }, + { + "start": 27001.34, + "end": 27006.64, + "probability": 0.9888 + }, + { + "start": 27006.94, + "end": 27014.12, + "probability": 0.9655 + }, + { + "start": 27014.22, + "end": 27016.02, + "probability": 0.983 + }, + { + "start": 27016.12, + "end": 27018.68, + "probability": 0.9443 + }, + { + "start": 27019.28, + "end": 27022.66, + "probability": 0.9946 + }, + { + "start": 27022.9, + "end": 27024.32, + "probability": 0.6821 + }, + { + "start": 27025.12, + "end": 27026.7, + "probability": 0.8428 + }, + { + "start": 27027.4, + "end": 27028.68, + "probability": 0.7697 + }, + { + "start": 27029.36, + "end": 27030.32, + "probability": 0.8107 + }, + { + "start": 27030.56, + "end": 27032.34, + "probability": 0.9561 + }, + { + "start": 27032.4, + "end": 27035.68, + "probability": 0.9792 + }, + { + "start": 27036.42, + "end": 27037.8, + "probability": 0.939 + }, + { + "start": 27038.68, + "end": 27039.2, + "probability": 0.7153 + }, + { + "start": 27039.2, + "end": 27041.08, + "probability": 0.9953 + }, + { + "start": 27041.16, + "end": 27041.8, + "probability": 0.4891 + }, + { + "start": 27041.96, + "end": 27044.24, + "probability": 0.9019 + }, + { + "start": 27045.18, + "end": 27049.8, + "probability": 0.8068 + }, + { + "start": 27049.84, + "end": 27051.2, + "probability": 0.9786 + }, + { + "start": 27052.56, + "end": 27057.82, + "probability": 0.8982 + }, + { + "start": 27058.1, + "end": 27059.04, + "probability": 0.931 + }, + { + "start": 27059.24, + "end": 27061.6, + "probability": 0.9664 + }, + { + "start": 27062.26, + "end": 27063.22, + "probability": 0.9102 + }, + { + "start": 27063.38, + "end": 27064.48, + "probability": 0.9663 + }, + { + "start": 27064.88, + "end": 27067.38, + "probability": 0.9041 + }, + { + "start": 27067.86, + "end": 27070.18, + "probability": 0.9849 + }, + { + "start": 27070.34, + "end": 27074.1, + "probability": 0.9858 + }, + { + "start": 27074.14, + "end": 27074.5, + "probability": 0.6083 + }, + { + "start": 27075.02, + "end": 27075.72, + "probability": 0.5904 + }, + { + "start": 27075.86, + "end": 27077.04, + "probability": 0.7712 + }, + { + "start": 27077.12, + "end": 27083.36, + "probability": 0.9615 + }, + { + "start": 27084.04, + "end": 27087.28, + "probability": 0.9239 + }, + { + "start": 27087.84, + "end": 27088.72, + "probability": 0.6882 + }, + { + "start": 27089.1, + "end": 27094.46, + "probability": 0.9399 + }, + { + "start": 27095.06, + "end": 27098.1, + "probability": 0.9692 + }, + { + "start": 27098.24, + "end": 27099.38, + "probability": 0.7477 + }, + { + "start": 27099.5, + "end": 27100.84, + "probability": 0.7933 + }, + { + "start": 27101.56, + "end": 27104.78, + "probability": 0.9922 + }, + { + "start": 27105.0, + "end": 27109.28, + "probability": 0.9888 + }, + { + "start": 27109.28, + "end": 27113.08, + "probability": 0.9038 + }, + { + "start": 27113.42, + "end": 27114.08, + "probability": 0.3402 + }, + { + "start": 27114.8, + "end": 27116.22, + "probability": 0.7879 + }, + { + "start": 27116.58, + "end": 27117.54, + "probability": 0.5862 + }, + { + "start": 27117.62, + "end": 27118.56, + "probability": 0.941 + }, + { + "start": 27118.66, + "end": 27123.02, + "probability": 0.9258 + }, + { + "start": 27123.5, + "end": 27127.46, + "probability": 0.9014 + }, + { + "start": 27128.6, + "end": 27129.74, + "probability": 0.609 + }, + { + "start": 27130.36, + "end": 27135.36, + "probability": 0.9915 + }, + { + "start": 27135.48, + "end": 27140.58, + "probability": 0.9877 + }, + { + "start": 27140.76, + "end": 27145.8, + "probability": 0.9344 + }, + { + "start": 27145.96, + "end": 27147.02, + "probability": 0.9277 + }, + { + "start": 27147.18, + "end": 27148.04, + "probability": 0.8033 + }, + { + "start": 27148.56, + "end": 27149.66, + "probability": 0.849 + }, + { + "start": 27150.16, + "end": 27155.1, + "probability": 0.9126 + }, + { + "start": 27155.48, + "end": 27156.62, + "probability": 0.9086 + }, + { + "start": 27156.66, + "end": 27157.3, + "probability": 0.7982 + }, + { + "start": 27157.5, + "end": 27161.0, + "probability": 0.729 + }, + { + "start": 27161.52, + "end": 27164.84, + "probability": 0.9857 + }, + { + "start": 27165.16, + "end": 27166.74, + "probability": 0.9205 + }, + { + "start": 27167.44, + "end": 27169.28, + "probability": 0.9468 + }, + { + "start": 27170.72, + "end": 27171.72, + "probability": 0.9944 + }, + { + "start": 27171.96, + "end": 27172.94, + "probability": 0.8973 + }, + { + "start": 27173.0, + "end": 27177.34, + "probability": 0.9456 + }, + { + "start": 27177.9, + "end": 27181.64, + "probability": 0.9873 + }, + { + "start": 27181.88, + "end": 27186.56, + "probability": 0.987 + }, + { + "start": 27186.98, + "end": 27189.92, + "probability": 0.9871 + }, + { + "start": 27190.62, + "end": 27193.32, + "probability": 0.96 + }, + { + "start": 27193.88, + "end": 27196.36, + "probability": 0.9951 + }, + { + "start": 27197.04, + "end": 27202.24, + "probability": 0.9978 + }, + { + "start": 27202.82, + "end": 27205.3, + "probability": 0.698 + }, + { + "start": 27205.82, + "end": 27210.58, + "probability": 0.9976 + }, + { + "start": 27211.24, + "end": 27213.38, + "probability": 0.9445 + }, + { + "start": 27214.08, + "end": 27215.62, + "probability": 0.9948 + }, + { + "start": 27215.84, + "end": 27216.88, + "probability": 0.9915 + }, + { + "start": 27217.02, + "end": 27218.06, + "probability": 0.9853 + }, + { + "start": 27219.54, + "end": 27226.58, + "probability": 0.9976 + }, + { + "start": 27226.68, + "end": 27227.16, + "probability": 0.7989 + }, + { + "start": 27227.3, + "end": 27227.96, + "probability": 0.9771 + }, + { + "start": 27228.1, + "end": 27229.96, + "probability": 0.9812 + }, + { + "start": 27230.52, + "end": 27233.96, + "probability": 0.9425 + }, + { + "start": 27233.96, + "end": 27238.8, + "probability": 0.9991 + }, + { + "start": 27239.48, + "end": 27240.3, + "probability": 0.5108 + }, + { + "start": 27240.5, + "end": 27241.94, + "probability": 0.8319 + }, + { + "start": 27242.42, + "end": 27246.32, + "probability": 0.9619 + }, + { + "start": 27246.5, + "end": 27246.91, + "probability": 0.9644 + }, + { + "start": 27247.32, + "end": 27247.76, + "probability": 0.8719 + }, + { + "start": 27248.3, + "end": 27250.06, + "probability": 0.8129 + }, + { + "start": 27251.32, + "end": 27254.46, + "probability": 0.9934 + }, + { + "start": 27254.7, + "end": 27257.22, + "probability": 0.889 + }, + { + "start": 27258.48, + "end": 27263.94, + "probability": 0.9153 + }, + { + "start": 27263.96, + "end": 27267.76, + "probability": 0.9615 + }, + { + "start": 27268.58, + "end": 27269.12, + "probability": 0.7193 + }, + { + "start": 27269.8, + "end": 27269.94, + "probability": 0.0744 + }, + { + "start": 27269.94, + "end": 27269.98, + "probability": 0.2735 + }, + { + "start": 27269.98, + "end": 27272.04, + "probability": 0.8568 + }, + { + "start": 27272.16, + "end": 27272.94, + "probability": 0.9543 + }, + { + "start": 27273.0, + "end": 27276.44, + "probability": 0.9838 + }, + { + "start": 27276.44, + "end": 27281.52, + "probability": 0.9941 + }, + { + "start": 27281.58, + "end": 27287.12, + "probability": 0.929 + }, + { + "start": 27287.78, + "end": 27291.18, + "probability": 0.9961 + }, + { + "start": 27291.36, + "end": 27292.1, + "probability": 0.7293 + }, + { + "start": 27292.1, + "end": 27292.1, + "probability": 0.3144 + }, + { + "start": 27292.1, + "end": 27293.68, + "probability": 0.4984 + }, + { + "start": 27293.78, + "end": 27295.45, + "probability": 0.4125 + }, + { + "start": 27296.52, + "end": 27297.14, + "probability": 0.393 + }, + { + "start": 27297.3, + "end": 27298.22, + "probability": 0.3994 + }, + { + "start": 27298.22, + "end": 27299.4, + "probability": 0.5547 + }, + { + "start": 27301.46, + "end": 27304.5, + "probability": 0.9508 + }, + { + "start": 27305.06, + "end": 27309.36, + "probability": 0.931 + }, + { + "start": 27309.5, + "end": 27313.26, + "probability": 0.9658 + }, + { + "start": 27313.82, + "end": 27315.59, + "probability": 0.9761 + }, + { + "start": 27317.26, + "end": 27317.96, + "probability": 0.5073 + }, + { + "start": 27318.46, + "end": 27318.62, + "probability": 0.02 + }, + { + "start": 27319.24, + "end": 27319.88, + "probability": 0.3987 + }, + { + "start": 27320.14, + "end": 27320.7, + "probability": 0.5628 + }, + { + "start": 27321.16, + "end": 27323.92, + "probability": 0.8617 + }, + { + "start": 27325.02, + "end": 27326.78, + "probability": 0.7451 + }, + { + "start": 27326.84, + "end": 27327.7, + "probability": 0.7443 + }, + { + "start": 27328.3, + "end": 27328.66, + "probability": 0.8047 + }, + { + "start": 27335.98, + "end": 27336.92, + "probability": 0.7192 + }, + { + "start": 27337.54, + "end": 27344.0, + "probability": 0.9282 + }, + { + "start": 27344.08, + "end": 27344.56, + "probability": 0.7718 + }, + { + "start": 27353.96, + "end": 27359.12, + "probability": 0.9814 + }, + { + "start": 27359.6, + "end": 27360.32, + "probability": 0.0643 + }, + { + "start": 27360.82, + "end": 27362.36, + "probability": 0.6401 + }, + { + "start": 27362.7, + "end": 27364.22, + "probability": 0.4546 + }, + { + "start": 27365.42, + "end": 27367.8, + "probability": 0.236 + }, + { + "start": 27367.8, + "end": 27369.08, + "probability": 0.0125 + }, + { + "start": 27369.64, + "end": 27370.6, + "probability": 0.0503 + }, + { + "start": 27395.84, + "end": 27397.0, + "probability": 0.2846 + }, + { + "start": 27397.96, + "end": 27397.96, + "probability": 0.004 + }, + { + "start": 27398.62, + "end": 27400.07, + "probability": 0.5302 + }, + { + "start": 27400.54, + "end": 27401.4, + "probability": 0.7639 + }, + { + "start": 27401.58, + "end": 27403.04, + "probability": 0.583 + }, + { + "start": 27403.16, + "end": 27403.96, + "probability": 0.9269 + }, + { + "start": 27404.06, + "end": 27404.86, + "probability": 0.8018 + }, + { + "start": 27404.94, + "end": 27405.62, + "probability": 0.894 + }, + { + "start": 27405.7, + "end": 27408.08, + "probability": 0.8047 + }, + { + "start": 27409.74, + "end": 27413.44, + "probability": 0.9183 + }, + { + "start": 27413.58, + "end": 27416.34, + "probability": 0.9775 + }, + { + "start": 27416.6, + "end": 27417.52, + "probability": 0.7912 + }, + { + "start": 27417.6, + "end": 27417.94, + "probability": 0.7258 + }, + { + "start": 27417.94, + "end": 27419.04, + "probability": 0.7715 + }, + { + "start": 27419.24, + "end": 27421.24, + "probability": 0.9725 + }, + { + "start": 27421.36, + "end": 27423.08, + "probability": 0.7561 + }, + { + "start": 27423.12, + "end": 27424.24, + "probability": 0.8056 + }, + { + "start": 27424.32, + "end": 27427.22, + "probability": 0.8644 + }, + { + "start": 27429.46, + "end": 27430.58, + "probability": 0.4548 + }, + { + "start": 27430.66, + "end": 27432.56, + "probability": 0.9892 + }, + { + "start": 27433.5, + "end": 27436.28, + "probability": 0.9768 + }, + { + "start": 27436.46, + "end": 27439.22, + "probability": 0.8839 + }, + { + "start": 27439.42, + "end": 27440.6, + "probability": 0.1602 + }, + { + "start": 27440.78, + "end": 27440.96, + "probability": 0.2901 + }, + { + "start": 27440.96, + "end": 27441.14, + "probability": 0.4615 + }, + { + "start": 27442.12, + "end": 27442.92, + "probability": 0.882 + }, + { + "start": 27443.06, + "end": 27447.84, + "probability": 0.854 + }, + { + "start": 27447.92, + "end": 27448.56, + "probability": 0.858 + }, + { + "start": 27448.64, + "end": 27449.4, + "probability": 0.9176 + }, + { + "start": 27449.4, + "end": 27450.06, + "probability": 0.6825 + }, + { + "start": 27450.22, + "end": 27451.54, + "probability": 0.7166 + }, + { + "start": 27451.72, + "end": 27452.56, + "probability": 0.1882 + }, + { + "start": 27453.46, + "end": 27455.46, + "probability": 0.9468 + }, + { + "start": 27455.46, + "end": 27455.46, + "probability": 0.0908 + }, + { + "start": 27455.46, + "end": 27456.52, + "probability": 0.4104 + }, + { + "start": 27456.8, + "end": 27457.5, + "probability": 0.6597 + }, + { + "start": 27458.48, + "end": 27458.48, + "probability": 0.8108 + }, + { + "start": 27458.56, + "end": 27461.44, + "probability": 0.8424 + }, + { + "start": 27461.44, + "end": 27462.1, + "probability": 0.6381 + }, + { + "start": 27462.38, + "end": 27462.52, + "probability": 0.5833 + }, + { + "start": 27463.1, + "end": 27463.46, + "probability": 0.3278 + }, + { + "start": 27463.46, + "end": 27464.08, + "probability": 0.2816 + }, + { + "start": 27464.58, + "end": 27465.8, + "probability": 0.9633 + }, + { + "start": 27466.94, + "end": 27469.96, + "probability": 0.8394 + }, + { + "start": 27475.1, + "end": 27478.88, + "probability": 0.3091 + }, + { + "start": 27479.35, + "end": 27481.6, + "probability": 0.2431 + }, + { + "start": 27482.3, + "end": 27483.34, + "probability": 0.4647 + }, + { + "start": 27483.4, + "end": 27486.04, + "probability": 0.816 + }, + { + "start": 27486.96, + "end": 27488.08, + "probability": 0.4876 + }, + { + "start": 27488.34, + "end": 27489.62, + "probability": 0.5321 + }, + { + "start": 27489.9, + "end": 27489.9, + "probability": 0.1859 + }, + { + "start": 27489.9, + "end": 27493.54, + "probability": 0.0288 + }, + { + "start": 27493.66, + "end": 27494.12, + "probability": 0.138 + }, + { + "start": 27494.12, + "end": 27494.56, + "probability": 0.0185 + }, + { + "start": 27495.46, + "end": 27497.52, + "probability": 0.0169 + }, + { + "start": 27507.92, + "end": 27509.94, + "probability": 0.0202 + }, + { + "start": 27512.55, + "end": 27512.9, + "probability": 0.0649 + }, + { + "start": 27512.98, + "end": 27513.62, + "probability": 0.3212 + }, + { + "start": 27513.94, + "end": 27515.42, + "probability": 0.2953 + }, + { + "start": 27515.42, + "end": 27516.4, + "probability": 0.4724 + }, + { + "start": 27516.76, + "end": 27518.2, + "probability": 0.3662 + }, + { + "start": 27519.02, + "end": 27519.62, + "probability": 0.2524 + }, + { + "start": 27527.96, + "end": 27528.68, + "probability": 0.0296 + }, + { + "start": 27538.22, + "end": 27540.96, + "probability": 0.3398 + }, + { + "start": 27541.14, + "end": 27547.7, + "probability": 0.0125 + }, + { + "start": 27547.86, + "end": 27548.98, + "probability": 0.0388 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.0, + "end": 27549.0, + "probability": 0.0 + }, + { + "start": 27549.18, + "end": 27551.62, + "probability": 0.947 + }, + { + "start": 27551.88, + "end": 27553.3, + "probability": 0.5925 + }, + { + "start": 27553.5, + "end": 27559.42, + "probability": 0.6195 + }, + { + "start": 27559.9, + "end": 27561.54, + "probability": 0.7652 + }, + { + "start": 27562.12, + "end": 27562.98, + "probability": 0.7347 + }, + { + "start": 27563.0, + "end": 27563.64, + "probability": 0.6052 + }, + { + "start": 27563.68, + "end": 27564.1, + "probability": 0.4235 + }, + { + "start": 27564.28, + "end": 27564.96, + "probability": 0.3304 + }, + { + "start": 27568.7, + "end": 27573.3, + "probability": 0.3145 + }, + { + "start": 27582.28, + "end": 27585.98, + "probability": 0.4312 + }, + { + "start": 27586.88, + "end": 27588.86, + "probability": 0.7939 + }, + { + "start": 27588.96, + "end": 27594.38, + "probability": 0.9487 + }, + { + "start": 27596.19, + "end": 27598.62, + "probability": 0.5579 + }, + { + "start": 27598.8, + "end": 27600.24, + "probability": 0.0069 + }, + { + "start": 27602.38, + "end": 27602.7, + "probability": 0.134 + }, + { + "start": 27602.7, + "end": 27604.8, + "probability": 0.0477 + }, + { + "start": 27604.94, + "end": 27605.02, + "probability": 0.0695 + }, + { + "start": 27605.02, + "end": 27605.12, + "probability": 0.119 + }, + { + "start": 27605.68, + "end": 27606.22, + "probability": 0.1169 + }, + { + "start": 27609.64, + "end": 27611.94, + "probability": 0.0406 + }, + { + "start": 27613.28, + "end": 27617.34, + "probability": 0.0128 + }, + { + "start": 27617.34, + "end": 27620.6, + "probability": 0.2298 + }, + { + "start": 27621.44, + "end": 27623.54, + "probability": 0.0039 + }, + { + "start": 27623.54, + "end": 27626.12, + "probability": 0.0654 + }, + { + "start": 27626.36, + "end": 27626.36, + "probability": 0.2212 + }, + { + "start": 27628.47, + "end": 27630.96, + "probability": 0.006 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.0, + "end": 27678.0, + "probability": 0.0 + }, + { + "start": 27678.26, + "end": 27679.88, + "probability": 0.7694 + }, + { + "start": 27680.48, + "end": 27682.6, + "probability": 0.5765 + }, + { + "start": 27683.36, + "end": 27684.24, + "probability": 0.4131 + }, + { + "start": 27685.52, + "end": 27687.92, + "probability": 0.8023 + }, + { + "start": 27687.96, + "end": 27688.68, + "probability": 0.4732 + }, + { + "start": 27690.25, + "end": 27693.16, + "probability": 0.4917 + }, + { + "start": 27693.8, + "end": 27696.26, + "probability": 0.7505 + }, + { + "start": 27696.46, + "end": 27697.98, + "probability": 0.0857 + }, + { + "start": 27698.28, + "end": 27699.66, + "probability": 0.2595 + }, + { + "start": 27699.66, + "end": 27700.9, + "probability": 0.1118 + }, + { + "start": 27710.84, + "end": 27711.2, + "probability": 0.0 + }, + { + "start": 27712.38, + "end": 27717.38, + "probability": 0.0916 + }, + { + "start": 27718.1, + "end": 27721.04, + "probability": 0.0455 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.0, + "end": 27804.0, + "probability": 0.0 + }, + { + "start": 27804.3, + "end": 27805.12, + "probability": 0.0444 + }, + { + "start": 27805.74, + "end": 27805.74, + "probability": 0.0138 + }, + { + "start": 27805.74, + "end": 27807.52, + "probability": 0.4908 + }, + { + "start": 27808.24, + "end": 27812.6, + "probability": 0.9578 + }, + { + "start": 27814.35, + "end": 27818.28, + "probability": 0.7324 + }, + { + "start": 27818.32, + "end": 27818.8, + "probability": 0.7001 + }, + { + "start": 27831.24, + "end": 27832.42, + "probability": 0.097 + }, + { + "start": 27832.42, + "end": 27833.5, + "probability": 0.2764 + }, + { + "start": 27835.64, + "end": 27840.06, + "probability": 0.5552 + }, + { + "start": 27840.6, + "end": 27844.4, + "probability": 0.4495 + }, + { + "start": 27844.74, + "end": 27844.96, + "probability": 0.429 + }, + { + "start": 27844.96, + "end": 27844.96, + "probability": 0.4147 + }, + { + "start": 27844.96, + "end": 27844.96, + "probability": 0.6983 + }, + { + "start": 27844.96, + "end": 27845.66, + "probability": 0.2507 + }, + { + "start": 27858.0, + "end": 27859.98, + "probability": 0.3094 + }, + { + "start": 27859.98, + "end": 27860.6, + "probability": 0.7893 + }, + { + "start": 27860.68, + "end": 27862.24, + "probability": 0.903 + }, + { + "start": 27862.3, + "end": 27864.06, + "probability": 0.846 + }, + { + "start": 27864.68, + "end": 27866.18, + "probability": 0.7538 + }, + { + "start": 27866.22, + "end": 27866.52, + "probability": 0.8071 + }, + { + "start": 27867.26, + "end": 27869.24, + "probability": 0.6851 + }, + { + "start": 27869.56, + "end": 27870.44, + "probability": 0.9102 + }, + { + "start": 27870.54, + "end": 27873.76, + "probability": 0.9853 + }, + { + "start": 27874.06, + "end": 27875.36, + "probability": 0.9832 + }, + { + "start": 27875.38, + "end": 27876.62, + "probability": 0.9512 + }, + { + "start": 27877.32, + "end": 27877.6, + "probability": 0.5207 + }, + { + "start": 27877.72, + "end": 27879.96, + "probability": 0.9927 + }, + { + "start": 27880.02, + "end": 27882.12, + "probability": 0.9199 + }, + { + "start": 27882.2, + "end": 27885.32, + "probability": 0.8232 + }, + { + "start": 27887.3, + "end": 27889.22, + "probability": 0.5907 + }, + { + "start": 27889.56, + "end": 27892.24, + "probability": 0.9199 + }, + { + "start": 27893.4, + "end": 27896.06, + "probability": 0.6598 + }, + { + "start": 27896.72, + "end": 27897.38, + "probability": 0.4753 + }, + { + "start": 27897.42, + "end": 27897.88, + "probability": 0.6754 + }, + { + "start": 27899.54, + "end": 27902.12, + "probability": 0.0235 + }, + { + "start": 27914.22, + "end": 27914.5, + "probability": 0.211 + }, + { + "start": 27914.5, + "end": 27914.5, + "probability": 0.0612 + }, + { + "start": 27914.5, + "end": 27917.48, + "probability": 0.2644 + }, + { + "start": 27917.68, + "end": 27918.48, + "probability": 0.5955 + }, + { + "start": 27919.64, + "end": 27921.18, + "probability": 0.5752 + }, + { + "start": 27927.64, + "end": 27930.1, + "probability": 0.2089 + }, + { + "start": 27940.92, + "end": 27944.26, + "probability": 0.2045 + }, + { + "start": 27945.2, + "end": 27946.48, + "probability": 0.0067 + }, + { + "start": 27946.54, + "end": 27947.7, + "probability": 0.0202 + }, + { + "start": 27950.34, + "end": 27951.22, + "probability": 0.3925 + }, + { + "start": 27951.82, + "end": 27957.46, + "probability": 0.1095 + }, + { + "start": 27957.46, + "end": 27963.04, + "probability": 0.0846 + }, + { + "start": 27966.44, + "end": 27966.86, + "probability": 0.1264 + }, + { + "start": 27978.74, + "end": 27980.52, + "probability": 0.0002 + }, + { + "start": 27981.54, + "end": 27982.34, + "probability": 0.113 + }, + { + "start": 27983.96, + "end": 27985.5, + "probability": 0.0158 + }, + { + "start": 27985.5, + "end": 27985.62, + "probability": 0.028 + }, + { + "start": 27985.62, + "end": 27987.2, + "probability": 0.1263 + }, + { + "start": 27987.22, + "end": 27987.22, + "probability": 0.1047 + }, + { + "start": 27987.7, + "end": 27987.84, + "probability": 0.0124 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.0, + "end": 27988.0, + "probability": 0.0 + }, + { + "start": 27988.2, + "end": 27988.42, + "probability": 0.2495 + }, + { + "start": 27988.42, + "end": 27988.42, + "probability": 0.0465 + }, + { + "start": 27988.42, + "end": 27988.42, + "probability": 0.2546 + }, + { + "start": 27988.42, + "end": 27988.42, + "probability": 0.0622 + }, + { + "start": 27988.42, + "end": 27988.42, + "probability": 0.1583 + }, + { + "start": 27988.42, + "end": 27990.16, + "probability": 0.7895 + }, + { + "start": 27990.3, + "end": 27991.82, + "probability": 0.825 + }, + { + "start": 27993.6, + "end": 27994.06, + "probability": 0.479 + }, + { + "start": 27994.1, + "end": 27997.3, + "probability": 0.5477 + }, + { + "start": 27998.22, + "end": 27999.44, + "probability": 0.6459 + }, + { + "start": 28016.36, + "end": 28018.36, + "probability": 0.11 + }, + { + "start": 28020.1, + "end": 28023.24, + "probability": 0.2801 + }, + { + "start": 28026.34, + "end": 28026.44, + "probability": 0.0545 + }, + { + "start": 28028.04, + "end": 28031.9, + "probability": 0.2247 + }, + { + "start": 28041.2, + "end": 28044.82, + "probability": 0.198 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.0, + "end": 28110.0, + "probability": 0.0 + }, + { + "start": 28110.14, + "end": 28110.82, + "probability": 0.0554 + }, + { + "start": 28110.98, + "end": 28113.18, + "probability": 0.3408 + }, + { + "start": 28113.2, + "end": 28113.46, + "probability": 0.5983 + }, + { + "start": 28113.52, + "end": 28115.6, + "probability": 0.931 + }, + { + "start": 28115.72, + "end": 28118.5, + "probability": 0.8906 + }, + { + "start": 28118.8, + "end": 28120.82, + "probability": 0.6804 + }, + { + "start": 28122.4, + "end": 28125.8, + "probability": 0.9302 + }, + { + "start": 28126.76, + "end": 28127.1, + "probability": 0.5002 + }, + { + "start": 28127.28, + "end": 28134.08, + "probability": 0.851 + }, + { + "start": 28134.08, + "end": 28134.8, + "probability": 0.36 + }, + { + "start": 28134.8, + "end": 28135.18, + "probability": 0.2511 + }, + { + "start": 28137.92, + "end": 28137.96, + "probability": 0.0685 + }, + { + "start": 28137.96, + "end": 28139.4, + "probability": 0.3467 + }, + { + "start": 28143.96, + "end": 28145.32, + "probability": 0.0139 + }, + { + "start": 28146.28, + "end": 28149.62, + "probability": 0.3907 + }, + { + "start": 28150.66, + "end": 28151.1, + "probability": 0.1994 + }, + { + "start": 28151.1, + "end": 28151.1, + "probability": 0.6185 + }, + { + "start": 28151.1, + "end": 28151.44, + "probability": 0.2741 + }, + { + "start": 28151.48, + "end": 28152.3, + "probability": 0.5296 + }, + { + "start": 28152.36, + "end": 28153.26, + "probability": 0.2847 + }, + { + "start": 28153.74, + "end": 28156.44, + "probability": 0.9042 + }, + { + "start": 28156.5, + "end": 28157.94, + "probability": 0.6488 + }, + { + "start": 28159.2, + "end": 28162.44, + "probability": 0.3212 + }, + { + "start": 28163.04, + "end": 28164.44, + "probability": 0.5169 + }, + { + "start": 28164.6, + "end": 28169.12, + "probability": 0.7163 + }, + { + "start": 28169.46, + "end": 28171.82, + "probability": 0.9892 + }, + { + "start": 28171.82, + "end": 28176.08, + "probability": 0.9621 + }, + { + "start": 28176.18, + "end": 28177.28, + "probability": 0.9788 + }, + { + "start": 28178.44, + "end": 28183.36, + "probability": 0.3619 + }, + { + "start": 28183.36, + "end": 28183.36, + "probability": 0.0005 + }, + { + "start": 28187.6, + "end": 28190.78, + "probability": 0.1141 + }, + { + "start": 28193.82, + "end": 28194.24, + "probability": 0.7224 + }, + { + "start": 28194.38, + "end": 28195.18, + "probability": 0.5967 + }, + { + "start": 28195.38, + "end": 28197.56, + "probability": 0.7317 + }, + { + "start": 28197.88, + "end": 28198.82, + "probability": 0.7176 + }, + { + "start": 28198.86, + "end": 28199.58, + "probability": 0.8789 + }, + { + "start": 28202.66, + "end": 28202.8, + "probability": 0.0475 + }, + { + "start": 28208.3, + "end": 28213.18, + "probability": 0.6352 + }, + { + "start": 28213.92, + "end": 28216.8, + "probability": 0.7001 + }, + { + "start": 28217.4, + "end": 28219.12, + "probability": 0.8105 + }, + { + "start": 28219.26, + "end": 28219.7, + "probability": 0.5584 + }, + { + "start": 28220.12, + "end": 28223.48, + "probability": 0.9729 + }, + { + "start": 28224.12, + "end": 28224.16, + "probability": 0.2432 + }, + { + "start": 28224.5, + "end": 28227.0, + "probability": 0.9888 + }, + { + "start": 28227.24, + "end": 28228.16, + "probability": 0.9812 + }, + { + "start": 28228.8, + "end": 28231.88, + "probability": 0.5753 + }, + { + "start": 28232.28, + "end": 28241.54, + "probability": 0.7941 + }, + { + "start": 28241.56, + "end": 28242.16, + "probability": 0.3353 + }, + { + "start": 28242.28, + "end": 28243.52, + "probability": 0.5994 + }, + { + "start": 28248.58, + "end": 28250.68, + "probability": 0.0669 + }, + { + "start": 28252.24, + "end": 28252.48, + "probability": 0.3951 + }, + { + "start": 28253.12, + "end": 28255.14, + "probability": 0.2822 + }, + { + "start": 28258.82, + "end": 28258.92, + "probability": 0.0247 + }, + { + "start": 28258.92, + "end": 28258.92, + "probability": 0.1158 + }, + { + "start": 28258.92, + "end": 28263.12, + "probability": 0.5163 + }, + { + "start": 28263.58, + "end": 28267.02, + "probability": 0.9546 + }, + { + "start": 28267.6, + "end": 28271.62, + "probability": 0.9751 + }, + { + "start": 28271.78, + "end": 28272.04, + "probability": 0.6551 + }, + { + "start": 28272.72, + "end": 28275.86, + "probability": 0.3369 + }, + { + "start": 28276.0, + "end": 28276.4, + "probability": 0.3962 + }, + { + "start": 28276.84, + "end": 28277.8, + "probability": 0.7122 + }, + { + "start": 28277.9, + "end": 28282.4, + "probability": 0.7694 + }, + { + "start": 28282.42, + "end": 28286.36, + "probability": 0.7222 + }, + { + "start": 28286.48, + "end": 28288.42, + "probability": 0.7041 + }, + { + "start": 28288.94, + "end": 28289.24, + "probability": 0.4937 + }, + { + "start": 28289.66, + "end": 28290.12, + "probability": 0.8219 + }, + { + "start": 28290.3, + "end": 28291.08, + "probability": 0.6759 + }, + { + "start": 28304.6, + "end": 28304.6, + "probability": 0.4153 + }, + { + "start": 28304.6, + "end": 28306.58, + "probability": 0.391 + }, + { + "start": 28307.68, + "end": 28309.84, + "probability": 0.5572 + }, + { + "start": 28311.88, + "end": 28312.64, + "probability": 0.7163 + }, + { + "start": 28313.02, + "end": 28319.48, + "probability": 0.8774 + }, + { + "start": 28320.14, + "end": 28323.02, + "probability": 0.9727 + }, + { + "start": 28323.18, + "end": 28325.34, + "probability": 0.9731 + }, + { + "start": 28325.34, + "end": 28328.68, + "probability": 0.8863 + }, + { + "start": 28328.8, + "end": 28330.1, + "probability": 0.1213 + }, + { + "start": 28330.56, + "end": 28331.32, + "probability": 0.8968 + }, + { + "start": 28331.5, + "end": 28331.94, + "probability": 0.6151 + }, + { + "start": 28332.48, + "end": 28334.85, + "probability": 0.5518 + }, + { + "start": 28335.94, + "end": 28335.94, + "probability": 0.0006 + }, + { + "start": 28337.28, + "end": 28339.06, + "probability": 0.0252 + }, + { + "start": 28339.08, + "end": 28339.1, + "probability": 0.0351 + }, + { + "start": 28339.1, + "end": 28340.68, + "probability": 0.1163 + }, + { + "start": 28348.98, + "end": 28353.9, + "probability": 0.6004 + }, + { + "start": 28354.88, + "end": 28358.46, + "probability": 0.9519 + }, + { + "start": 28359.38, + "end": 28363.02, + "probability": 0.9971 + }, + { + "start": 28363.02, + "end": 28366.12, + "probability": 0.9956 + }, + { + "start": 28366.12, + "end": 28368.52, + "probability": 0.5927 + }, + { + "start": 28368.52, + "end": 28370.34, + "probability": 0.9297 + }, + { + "start": 28370.62, + "end": 28373.58, + "probability": 0.9688 + }, + { + "start": 28374.68, + "end": 28375.72, + "probability": 0.7156 + }, + { + "start": 28375.96, + "end": 28376.96, + "probability": 0.8839 + }, + { + "start": 28376.96, + "end": 28378.38, + "probability": 0.7582 + }, + { + "start": 28378.56, + "end": 28383.18, + "probability": 0.8014 + }, + { + "start": 28383.6, + "end": 28384.88, + "probability": 0.1569 + }, + { + "start": 28385.36, + "end": 28386.78, + "probability": 0.9491 + }, + { + "start": 28386.88, + "end": 28388.56, + "probability": 0.8617 + }, + { + "start": 28389.04, + "end": 28390.64, + "probability": 0.9946 + }, + { + "start": 28390.7, + "end": 28391.52, + "probability": 0.8084 + }, + { + "start": 28391.94, + "end": 28394.54, + "probability": 0.9958 + }, + { + "start": 28397.76, + "end": 28399.26, + "probability": 0.552 + }, + { + "start": 28399.32, + "end": 28403.21, + "probability": 0.8662 + }, + { + "start": 28404.38, + "end": 28405.56, + "probability": 0.9378 + }, + { + "start": 28405.62, + "end": 28406.64, + "probability": 0.708 + }, + { + "start": 28407.1, + "end": 28409.04, + "probability": 0.8872 + }, + { + "start": 28409.14, + "end": 28414.4, + "probability": 0.6509 + }, + { + "start": 28414.48, + "end": 28419.04, + "probability": 0.9976 + }, + { + "start": 28419.04, + "end": 28422.2, + "probability": 0.9971 + }, + { + "start": 28422.6, + "end": 28424.72, + "probability": 0.8345 + }, + { + "start": 28424.86, + "end": 28428.7, + "probability": 0.9686 + }, + { + "start": 28428.7, + "end": 28432.18, + "probability": 0.9886 + }, + { + "start": 28432.38, + "end": 28432.92, + "probability": 0.6219 + }, + { + "start": 28433.04, + "end": 28435.9, + "probability": 0.9813 + }, + { + "start": 28435.9, + "end": 28437.98, + "probability": 0.9876 + }, + { + "start": 28438.22, + "end": 28439.56, + "probability": 0.9718 + }, + { + "start": 28440.34, + "end": 28444.04, + "probability": 0.7945 + }, + { + "start": 28444.62, + "end": 28447.52, + "probability": 0.7655 + }, + { + "start": 28447.68, + "end": 28451.52, + "probability": 0.9827 + }, + { + "start": 28451.52, + "end": 28454.66, + "probability": 0.9986 + }, + { + "start": 28455.26, + "end": 28457.86, + "probability": 0.9328 + }, + { + "start": 28458.54, + "end": 28459.24, + "probability": 0.3305 + }, + { + "start": 28460.18, + "end": 28460.36, + "probability": 0.2858 + }, + { + "start": 28460.46, + "end": 28463.48, + "probability": 0.9129 + }, + { + "start": 28463.6, + "end": 28466.66, + "probability": 0.8991 + }, + { + "start": 28467.62, + "end": 28469.48, + "probability": 0.8704 + }, + { + "start": 28469.6, + "end": 28471.38, + "probability": 0.841 + }, + { + "start": 28471.94, + "end": 28474.42, + "probability": 0.7899 + }, + { + "start": 28474.6, + "end": 28476.3, + "probability": 0.8782 + }, + { + "start": 28476.76, + "end": 28478.9, + "probability": 0.9626 + }, + { + "start": 28479.08, + "end": 28481.82, + "probability": 0.9865 + }, + { + "start": 28481.92, + "end": 28483.86, + "probability": 0.8837 + }, + { + "start": 28484.3, + "end": 28484.64, + "probability": 0.6536 + }, + { + "start": 28485.34, + "end": 28488.38, + "probability": 0.839 + }, + { + "start": 28488.38, + "end": 28491.92, + "probability": 0.9755 + }, + { + "start": 28492.66, + "end": 28495.42, + "probability": 0.9912 + }, + { + "start": 28495.42, + "end": 28498.36, + "probability": 0.9901 + }, + { + "start": 28498.36, + "end": 28501.48, + "probability": 0.9579 + }, + { + "start": 28502.14, + "end": 28506.74, + "probability": 0.9693 + }, + { + "start": 28506.74, + "end": 28511.52, + "probability": 0.7519 + }, + { + "start": 28511.96, + "end": 28512.86, + "probability": 0.8613 + }, + { + "start": 28513.1, + "end": 28513.56, + "probability": 0.9005 + }, + { + "start": 28513.7, + "end": 28517.98, + "probability": 0.9025 + }, + { + "start": 28518.68, + "end": 28520.24, + "probability": 0.9983 + }, + { + "start": 28520.24, + "end": 28522.5, + "probability": 0.9846 + }, + { + "start": 28522.56, + "end": 28526.14, + "probability": 0.9849 + }, + { + "start": 28527.12, + "end": 28530.04, + "probability": 0.9913 + }, + { + "start": 28530.04, + "end": 28533.32, + "probability": 0.9911 + }, + { + "start": 28533.84, + "end": 28536.9, + "probability": 0.981 + }, + { + "start": 28537.42, + "end": 28539.88, + "probability": 0.9929 + }, + { + "start": 28539.88, + "end": 28542.18, + "probability": 0.9566 + }, + { + "start": 28542.36, + "end": 28545.94, + "probability": 0.8744 + }, + { + "start": 28546.2, + "end": 28547.04, + "probability": 0.7198 + }, + { + "start": 28547.1, + "end": 28547.86, + "probability": 0.854 + }, + { + "start": 28548.12, + "end": 28549.86, + "probability": 0.9955 + }, + { + "start": 28550.3, + "end": 28554.38, + "probability": 0.984 + }, + { + "start": 28555.1, + "end": 28560.74, + "probability": 0.833 + }, + { + "start": 28561.14, + "end": 28561.92, + "probability": 0.8098 + }, + { + "start": 28562.54, + "end": 28562.8, + "probability": 0.2712 + }, + { + "start": 28562.9, + "end": 28566.54, + "probability": 0.9507 + }, + { + "start": 28566.62, + "end": 28569.56, + "probability": 0.8678 + }, + { + "start": 28570.16, + "end": 28570.54, + "probability": 0.7006 + }, + { + "start": 28570.6, + "end": 28572.76, + "probability": 0.9603 + }, + { + "start": 28572.88, + "end": 28574.5, + "probability": 0.9448 + }, + { + "start": 28574.56, + "end": 28575.22, + "probability": 0.8445 + }, + { + "start": 28575.58, + "end": 28576.94, + "probability": 0.9585 + }, + { + "start": 28577.56, + "end": 28578.1, + "probability": 0.8287 + }, + { + "start": 28578.22, + "end": 28581.4, + "probability": 0.9468 + }, + { + "start": 28582.32, + "end": 28582.52, + "probability": 0.3236 + }, + { + "start": 28582.52, + "end": 28585.1, + "probability": 0.9323 + }, + { + "start": 28585.2, + "end": 28586.0, + "probability": 0.7748 + }, + { + "start": 28586.08, + "end": 28586.9, + "probability": 0.9596 + }, + { + "start": 28587.72, + "end": 28588.26, + "probability": 0.5466 + }, + { + "start": 28588.3, + "end": 28592.74, + "probability": 0.9778 + }, + { + "start": 28592.84, + "end": 28593.16, + "probability": 0.5239 + }, + { + "start": 28593.2, + "end": 28596.48, + "probability": 0.9782 + }, + { + "start": 28596.48, + "end": 28598.42, + "probability": 0.9475 + }, + { + "start": 28599.06, + "end": 28600.4, + "probability": 0.9248 + }, + { + "start": 28600.54, + "end": 28605.0, + "probability": 0.9098 + }, + { + "start": 28605.56, + "end": 28609.22, + "probability": 0.9698 + }, + { + "start": 28609.6, + "end": 28611.0, + "probability": 0.9238 + }, + { + "start": 28611.02, + "end": 28612.9, + "probability": 0.9796 + }, + { + "start": 28613.24, + "end": 28616.18, + "probability": 0.9546 + }, + { + "start": 28616.78, + "end": 28617.9, + "probability": 0.6712 + }, + { + "start": 28618.02, + "end": 28619.36, + "probability": 0.5939 + }, + { + "start": 28619.44, + "end": 28621.08, + "probability": 0.9385 + }, + { + "start": 28621.6, + "end": 28623.4, + "probability": 0.9238 + }, + { + "start": 28623.52, + "end": 28624.98, + "probability": 0.7658 + }, + { + "start": 28625.4, + "end": 28625.76, + "probability": 0.8055 + }, + { + "start": 28625.84, + "end": 28630.26, + "probability": 0.9946 + }, + { + "start": 28630.82, + "end": 28632.3, + "probability": 0.5866 + }, + { + "start": 28632.42, + "end": 28634.74, + "probability": 0.9473 + }, + { + "start": 28634.92, + "end": 28637.67, + "probability": 0.6844 + }, + { + "start": 28638.5, + "end": 28641.42, + "probability": 0.9406 + }, + { + "start": 28642.3, + "end": 28642.86, + "probability": 0.8217 + }, + { + "start": 28643.04, + "end": 28643.8, + "probability": 0.9735 + }, + { + "start": 28643.86, + "end": 28644.26, + "probability": 0.8455 + }, + { + "start": 28644.42, + "end": 28647.3, + "probability": 0.8525 + }, + { + "start": 28647.42, + "end": 28649.4, + "probability": 0.9451 + }, + { + "start": 28649.92, + "end": 28653.1, + "probability": 0.9777 + }, + { + "start": 28653.1, + "end": 28656.4, + "probability": 0.9806 + }, + { + "start": 28657.04, + "end": 28657.82, + "probability": 0.7495 + }, + { + "start": 28657.92, + "end": 28660.56, + "probability": 0.9907 + }, + { + "start": 28660.56, + "end": 28663.42, + "probability": 0.9932 + }, + { + "start": 28664.36, + "end": 28664.84, + "probability": 0.7683 + }, + { + "start": 28664.94, + "end": 28667.58, + "probability": 0.958 + }, + { + "start": 28667.58, + "end": 28670.72, + "probability": 0.9333 + }, + { + "start": 28671.26, + "end": 28674.24, + "probability": 0.7726 + }, + { + "start": 28674.32, + "end": 28676.6, + "probability": 0.7841 + }, + { + "start": 28677.36, + "end": 28678.22, + "probability": 0.5782 + }, + { + "start": 28678.3, + "end": 28680.68, + "probability": 0.9412 + }, + { + "start": 28681.08, + "end": 28683.86, + "probability": 0.9777 + }, + { + "start": 28684.0, + "end": 28685.96, + "probability": 0.9888 + }, + { + "start": 28686.4, + "end": 28688.98, + "probability": 0.9137 + }, + { + "start": 28689.1, + "end": 28692.64, + "probability": 0.9733 + }, + { + "start": 28693.52, + "end": 28696.42, + "probability": 0.9861 + }, + { + "start": 28696.52, + "end": 28699.12, + "probability": 0.8938 + }, + { + "start": 28699.12, + "end": 28701.38, + "probability": 0.99 + }, + { + "start": 28701.46, + "end": 28703.36, + "probability": 0.7964 + }, + { + "start": 28704.24, + "end": 28704.38, + "probability": 0.3139 + }, + { + "start": 28704.5, + "end": 28706.58, + "probability": 0.9467 + }, + { + "start": 28706.64, + "end": 28710.18, + "probability": 0.9419 + }, + { + "start": 28710.76, + "end": 28713.08, + "probability": 0.9475 + }, + { + "start": 28713.32, + "end": 28713.5, + "probability": 0.2532 + }, + { + "start": 28713.54, + "end": 28717.06, + "probability": 0.9094 + }, + { + "start": 28717.24, + "end": 28719.82, + "probability": 0.6872 + }, + { + "start": 28719.82, + "end": 28722.26, + "probability": 0.9844 + }, + { + "start": 28722.36, + "end": 28724.2, + "probability": 0.9082 + }, + { + "start": 28724.48, + "end": 28724.62, + "probability": 0.661 + }, + { + "start": 28724.84, + "end": 28725.72, + "probability": 0.6326 + }, + { + "start": 28725.84, + "end": 28726.24, + "probability": 0.49 + }, + { + "start": 28726.3, + "end": 28728.52, + "probability": 0.9643 + }, + { + "start": 28729.12, + "end": 28731.8, + "probability": 0.9838 + }, + { + "start": 28731.8, + "end": 28734.44, + "probability": 0.9338 + }, + { + "start": 28735.16, + "end": 28737.7, + "probability": 0.9421 + }, + { + "start": 28738.66, + "end": 28741.76, + "probability": 0.9194 + }, + { + "start": 28741.88, + "end": 28744.12, + "probability": 0.9539 + }, + { + "start": 28744.7, + "end": 28746.68, + "probability": 0.9328 + }, + { + "start": 28746.76, + "end": 28748.14, + "probability": 0.9612 + }, + { + "start": 28748.52, + "end": 28751.38, + "probability": 0.9824 + }, + { + "start": 28752.04, + "end": 28752.56, + "probability": 0.5435 + }, + { + "start": 28752.62, + "end": 28755.64, + "probability": 0.9119 + }, + { + "start": 28756.0, + "end": 28756.2, + "probability": 0.4675 + }, + { + "start": 28756.32, + "end": 28758.6, + "probability": 0.9752 + }, + { + "start": 28758.92, + "end": 28762.48, + "probability": 0.9745 + }, + { + "start": 28763.26, + "end": 28765.66, + "probability": 0.9062 + }, + { + "start": 28765.66, + "end": 28769.0, + "probability": 0.9886 + }, + { + "start": 28769.44, + "end": 28771.36, + "probability": 0.9892 + }, + { + "start": 28772.2, + "end": 28775.76, + "probability": 0.6819 + }, + { + "start": 28775.76, + "end": 28778.78, + "probability": 0.8189 + }, + { + "start": 28779.08, + "end": 28780.06, + "probability": 0.9877 + }, + { + "start": 28780.24, + "end": 28781.26, + "probability": 0.809 + }, + { + "start": 28781.4, + "end": 28785.46, + "probability": 0.9921 + }, + { + "start": 28785.46, + "end": 28789.94, + "probability": 0.959 + }, + { + "start": 28790.06, + "end": 28792.04, + "probability": 0.8048 + }, + { + "start": 28792.2, + "end": 28795.76, + "probability": 0.9708 + }, + { + "start": 28795.9, + "end": 28799.7, + "probability": 0.8128 + }, + { + "start": 28799.78, + "end": 28804.26, + "probability": 0.8688 + }, + { + "start": 28804.36, + "end": 28804.78, + "probability": 0.7479 + }, + { + "start": 28805.46, + "end": 28808.96, + "probability": 0.9772 + }, + { + "start": 28809.34, + "end": 28810.5, + "probability": 0.6252 + }, + { + "start": 28810.58, + "end": 28811.4, + "probability": 0.9272 + }, + { + "start": 28811.52, + "end": 28814.34, + "probability": 0.995 + }, + { + "start": 28815.08, + "end": 28815.46, + "probability": 0.563 + }, + { + "start": 28815.52, + "end": 28817.98, + "probability": 0.9194 + }, + { + "start": 28817.98, + "end": 28820.74, + "probability": 0.9893 + }, + { + "start": 28820.86, + "end": 28822.54, + "probability": 0.9905 + }, + { + "start": 28823.22, + "end": 28825.88, + "probability": 0.9928 + }, + { + "start": 28826.1, + "end": 28826.7, + "probability": 0.9769 + }, + { + "start": 28827.22, + "end": 28829.28, + "probability": 0.9257 + }, + { + "start": 28829.28, + "end": 28831.24, + "probability": 0.9141 + }, + { + "start": 28831.8, + "end": 28833.22, + "probability": 0.8476 + }, + { + "start": 28833.4, + "end": 28836.42, + "probability": 0.9966 + }, + { + "start": 28836.44, + "end": 28839.72, + "probability": 0.9985 + }, + { + "start": 28840.26, + "end": 28843.38, + "probability": 0.8952 + }, + { + "start": 28843.74, + "end": 28845.8, + "probability": 0.9935 + }, + { + "start": 28846.28, + "end": 28847.9, + "probability": 0.9824 + }, + { + "start": 28849.3, + "end": 28852.76, + "probability": 0.9557 + }, + { + "start": 28852.98, + "end": 28854.18, + "probability": 0.9033 + }, + { + "start": 28854.76, + "end": 28857.62, + "probability": 0.98 + }, + { + "start": 28858.02, + "end": 28860.24, + "probability": 0.9274 + }, + { + "start": 28860.38, + "end": 28861.82, + "probability": 0.8396 + }, + { + "start": 28862.32, + "end": 28864.88, + "probability": 0.8156 + }, + { + "start": 28865.02, + "end": 28866.04, + "probability": 0.6583 + }, + { + "start": 28866.18, + "end": 28868.18, + "probability": 0.9919 + }, + { + "start": 28868.28, + "end": 28868.72, + "probability": 0.756 + }, + { + "start": 28869.38, + "end": 28871.02, + "probability": 0.9907 + }, + { + "start": 28871.1, + "end": 28874.94, + "probability": 0.986 + }, + { + "start": 28875.1, + "end": 28878.98, + "probability": 0.7789 + }, + { + "start": 28879.54, + "end": 28879.82, + "probability": 0.2641 + }, + { + "start": 28879.92, + "end": 28886.32, + "probability": 0.9945 + }, + { + "start": 28886.8, + "end": 28888.6, + "probability": 0.9081 + }, + { + "start": 28889.42, + "end": 28892.52, + "probability": 0.6659 + }, + { + "start": 28892.52, + "end": 28892.88, + "probability": 0.6489 + }, + { + "start": 28893.14, + "end": 28893.74, + "probability": 0.7487 + }, + { + "start": 28893.86, + "end": 28893.96, + "probability": 0.9314 + }, + { + "start": 28894.26, + "end": 28894.88, + "probability": 0.9544 + }, + { + "start": 28895.38, + "end": 28897.86, + "probability": 0.9993 + }, + { + "start": 28898.16, + "end": 28901.4, + "probability": 0.9612 + }, + { + "start": 28901.48, + "end": 28903.7, + "probability": 0.8936 + }, + { + "start": 28903.98, + "end": 28904.44, + "probability": 0.8656 + }, + { + "start": 28904.78, + "end": 28905.74, + "probability": 0.8299 + }, + { + "start": 28905.86, + "end": 28909.08, + "probability": 0.9175 + }, + { + "start": 28909.08, + "end": 28913.24, + "probability": 0.9783 + }, + { + "start": 28913.3, + "end": 28917.05, + "probability": 0.9856 + }, + { + "start": 28917.8, + "end": 28920.64, + "probability": 0.9102 + }, + { + "start": 28920.72, + "end": 28923.82, + "probability": 0.992 + }, + { + "start": 28923.82, + "end": 28926.12, + "probability": 0.9946 + }, + { + "start": 28926.36, + "end": 28928.9, + "probability": 0.7596 + }, + { + "start": 28929.62, + "end": 28931.38, + "probability": 0.9292 + }, + { + "start": 28931.64, + "end": 28935.92, + "probability": 0.9608 + }, + { + "start": 28936.06, + "end": 28938.48, + "probability": 0.8071 + }, + { + "start": 28938.82, + "end": 28942.48, + "probability": 0.9482 + }, + { + "start": 28942.48, + "end": 28945.3, + "probability": 0.9811 + }, + { + "start": 28945.48, + "end": 28949.82, + "probability": 0.9943 + }, + { + "start": 28950.3, + "end": 28951.18, + "probability": 0.8644 + }, + { + "start": 28951.58, + "end": 28954.74, + "probability": 0.9983 + }, + { + "start": 28954.74, + "end": 28958.96, + "probability": 0.9963 + }, + { + "start": 28959.4, + "end": 28962.4, + "probability": 0.906 + }, + { + "start": 28962.42, + "end": 28965.04, + "probability": 0.9696 + }, + { + "start": 28965.76, + "end": 28967.04, + "probability": 0.8253 + }, + { + "start": 28967.28, + "end": 28967.78, + "probability": 0.7106 + }, + { + "start": 28967.88, + "end": 28968.66, + "probability": 0.7893 + }, + { + "start": 28968.74, + "end": 28969.3, + "probability": 0.8615 + }, + { + "start": 28969.44, + "end": 28970.18, + "probability": 0.9713 + }, + { + "start": 28970.24, + "end": 28970.72, + "probability": 0.8404 + }, + { + "start": 28970.8, + "end": 28971.1, + "probability": 0.9168 + }, + { + "start": 28971.86, + "end": 28972.56, + "probability": 0.5579 + }, + { + "start": 28972.64, + "end": 28973.2, + "probability": 0.9722 + }, + { + "start": 28973.28, + "end": 28973.94, + "probability": 0.9363 + }, + { + "start": 28974.12, + "end": 28974.6, + "probability": 0.6541 + }, + { + "start": 28974.7, + "end": 28976.04, + "probability": 0.7551 + }, + { + "start": 28976.66, + "end": 28976.92, + "probability": 0.915 + }, + { + "start": 28977.14, + "end": 28979.22, + "probability": 0.8239 + }, + { + "start": 28979.42, + "end": 28980.54, + "probability": 0.9336 + }, + { + "start": 28980.64, + "end": 28982.96, + "probability": 0.949 + }, + { + "start": 28983.48, + "end": 28985.88, + "probability": 0.8772 + }, + { + "start": 28985.92, + "end": 28989.3, + "probability": 0.9896 + }, + { + "start": 28989.36, + "end": 28992.96, + "probability": 0.9623 + }, + { + "start": 28993.58, + "end": 28996.26, + "probability": 0.9833 + }, + { + "start": 28996.7, + "end": 29004.12, + "probability": 0.9805 + }, + { + "start": 29004.5, + "end": 29007.78, + "probability": 0.9946 + }, + { + "start": 29008.38, + "end": 29010.4, + "probability": 0.9849 + }, + { + "start": 29010.78, + "end": 29011.16, + "probability": 0.7675 + }, + { + "start": 29011.56, + "end": 29013.32, + "probability": 0.7737 + }, + { + "start": 29013.81, + "end": 29016.72, + "probability": 0.9769 + }, + { + "start": 29017.6, + "end": 29019.88, + "probability": 0.7964 + }, + { + "start": 29038.62, + "end": 29040.82, + "probability": 0.4563 + }, + { + "start": 29041.78, + "end": 29043.28, + "probability": 0.5668 + }, + { + "start": 29044.32, + "end": 29050.86, + "probability": 0.9411 + }, + { + "start": 29050.86, + "end": 29056.86, + "probability": 0.9828 + }, + { + "start": 29058.5, + "end": 29060.44, + "probability": 0.9773 + }, + { + "start": 29061.7, + "end": 29068.28, + "probability": 0.6939 + }, + { + "start": 29068.28, + "end": 29071.8, + "probability": 0.9963 + }, + { + "start": 29073.06, + "end": 29076.02, + "probability": 0.9945 + }, + { + "start": 29076.82, + "end": 29078.76, + "probability": 0.9974 + }, + { + "start": 29078.94, + "end": 29079.8, + "probability": 0.8455 + }, + { + "start": 29079.94, + "end": 29081.14, + "probability": 0.9543 + }, + { + "start": 29081.96, + "end": 29082.3, + "probability": 0.3666 + }, + { + "start": 29082.36, + "end": 29082.9, + "probability": 0.9435 + }, + { + "start": 29083.06, + "end": 29091.74, + "probability": 0.9661 + }, + { + "start": 29092.54, + "end": 29093.62, + "probability": 0.8762 + }, + { + "start": 29093.84, + "end": 29100.2, + "probability": 0.9933 + }, + { + "start": 29100.6, + "end": 29106.24, + "probability": 0.9517 + }, + { + "start": 29107.0, + "end": 29113.18, + "probability": 0.9847 + }, + { + "start": 29113.32, + "end": 29114.65, + "probability": 0.9824 + }, + { + "start": 29115.54, + "end": 29120.14, + "probability": 0.9907 + }, + { + "start": 29121.2, + "end": 29124.64, + "probability": 0.9341 + }, + { + "start": 29125.32, + "end": 29127.36, + "probability": 0.9862 + }, + { + "start": 29128.3, + "end": 29129.44, + "probability": 0.7573 + }, + { + "start": 29129.54, + "end": 29130.58, + "probability": 0.8663 + }, + { + "start": 29130.64, + "end": 29131.14, + "probability": 0.3975 + }, + { + "start": 29131.22, + "end": 29131.48, + "probability": 0.8898 + }, + { + "start": 29131.54, + "end": 29136.14, + "probability": 0.9951 + }, + { + "start": 29136.54, + "end": 29138.88, + "probability": 0.6271 + }, + { + "start": 29138.92, + "end": 29140.2, + "probability": 0.7533 + }, + { + "start": 29140.6, + "end": 29141.64, + "probability": 0.7911 + }, + { + "start": 29141.86, + "end": 29145.66, + "probability": 0.9833 + }, + { + "start": 29145.96, + "end": 29147.38, + "probability": 0.9235 + }, + { + "start": 29147.74, + "end": 29152.88, + "probability": 0.9882 + }, + { + "start": 29154.06, + "end": 29159.1, + "probability": 0.9912 + }, + { + "start": 29159.1, + "end": 29163.54, + "probability": 0.9974 + }, + { + "start": 29164.62, + "end": 29166.94, + "probability": 0.9491 + }, + { + "start": 29167.84, + "end": 29169.92, + "probability": 0.8522 + }, + { + "start": 29170.92, + "end": 29171.94, + "probability": 0.8137 + }, + { + "start": 29172.08, + "end": 29172.54, + "probability": 0.7338 + }, + { + "start": 29172.82, + "end": 29176.4, + "probability": 0.9246 + }, + { + "start": 29176.8, + "end": 29178.74, + "probability": 0.9492 + }, + { + "start": 29179.24, + "end": 29182.66, + "probability": 0.9761 + }, + { + "start": 29182.74, + "end": 29183.32, + "probability": 0.5441 + }, + { + "start": 29183.74, + "end": 29185.38, + "probability": 0.9863 + }, + { + "start": 29185.92, + "end": 29188.6, + "probability": 0.8779 + }, + { + "start": 29189.66, + "end": 29191.93, + "probability": 0.9219 + }, + { + "start": 29192.8, + "end": 29195.62, + "probability": 0.9247 + }, + { + "start": 29196.1, + "end": 29197.3, + "probability": 0.9842 + }, + { + "start": 29197.7, + "end": 29199.5, + "probability": 0.9795 + }, + { + "start": 29200.12, + "end": 29205.44, + "probability": 0.7893 + }, + { + "start": 29205.84, + "end": 29209.02, + "probability": 0.8414 + }, + { + "start": 29209.66, + "end": 29210.98, + "probability": 0.8041 + }, + { + "start": 29211.28, + "end": 29215.8, + "probability": 0.9813 + }, + { + "start": 29216.22, + "end": 29221.94, + "probability": 0.9957 + }, + { + "start": 29222.52, + "end": 29223.62, + "probability": 0.7795 + }, + { + "start": 29224.06, + "end": 29226.8, + "probability": 0.907 + }, + { + "start": 29227.26, + "end": 29230.5, + "probability": 0.9911 + }, + { + "start": 29230.94, + "end": 29232.54, + "probability": 0.9038 + }, + { + "start": 29232.72, + "end": 29233.54, + "probability": 0.9082 + }, + { + "start": 29233.64, + "end": 29234.7, + "probability": 0.7725 + }, + { + "start": 29235.46, + "end": 29238.06, + "probability": 0.9779 + }, + { + "start": 29238.12, + "end": 29239.46, + "probability": 0.6643 + }, + { + "start": 29239.86, + "end": 29240.72, + "probability": 0.8199 + }, + { + "start": 29241.18, + "end": 29242.5, + "probability": 0.8895 + }, + { + "start": 29242.58, + "end": 29244.4, + "probability": 0.7674 + }, + { + "start": 29244.5, + "end": 29245.24, + "probability": 0.8831 + }, + { + "start": 29245.86, + "end": 29252.48, + "probability": 0.9734 + }, + { + "start": 29255.22, + "end": 29255.42, + "probability": 0.0258 + }, + { + "start": 29255.42, + "end": 29255.42, + "probability": 0.0752 + }, + { + "start": 29255.42, + "end": 29255.42, + "probability": 0.055 + }, + { + "start": 29255.42, + "end": 29256.74, + "probability": 0.6769 + }, + { + "start": 29257.34, + "end": 29260.0, + "probability": 0.8432 + }, + { + "start": 29260.22, + "end": 29265.36, + "probability": 0.9792 + }, + { + "start": 29265.86, + "end": 29267.0, + "probability": 0.8348 + }, + { + "start": 29267.1, + "end": 29270.42, + "probability": 0.9967 + }, + { + "start": 29270.9, + "end": 29271.46, + "probability": 0.9531 + }, + { + "start": 29271.92, + "end": 29273.94, + "probability": 0.9279 + }, + { + "start": 29274.3, + "end": 29277.58, + "probability": 0.9982 + }, + { + "start": 29277.58, + "end": 29281.7, + "probability": 0.9986 + }, + { + "start": 29282.06, + "end": 29286.04, + "probability": 0.9946 + }, + { + "start": 29286.3, + "end": 29289.88, + "probability": 0.9847 + }, + { + "start": 29289.94, + "end": 29292.9, + "probability": 0.9913 + }, + { + "start": 29293.66, + "end": 29297.14, + "probability": 0.9847 + }, + { + "start": 29297.74, + "end": 29298.68, + "probability": 0.738 + }, + { + "start": 29298.8, + "end": 29300.94, + "probability": 0.9854 + }, + { + "start": 29301.02, + "end": 29303.46, + "probability": 0.9697 + }, + { + "start": 29304.16, + "end": 29310.0, + "probability": 0.9528 + }, + { + "start": 29310.14, + "end": 29311.72, + "probability": 0.7963 + }, + { + "start": 29312.74, + "end": 29314.42, + "probability": 0.6257 + }, + { + "start": 29314.48, + "end": 29315.8, + "probability": 0.669 + }, + { + "start": 29316.46, + "end": 29322.36, + "probability": 0.6016 + }, + { + "start": 29323.48, + "end": 29323.48, + "probability": 0.0599 + }, + { + "start": 29323.48, + "end": 29326.32, + "probability": 0.9452 + }, + { + "start": 29326.42, + "end": 29329.46, + "probability": 0.8817 + }, + { + "start": 29330.04, + "end": 29331.3, + "probability": 0.7344 + }, + { + "start": 29331.38, + "end": 29334.34, + "probability": 0.9676 + }, + { + "start": 29334.42, + "end": 29336.12, + "probability": 0.856 + }, + { + "start": 29336.44, + "end": 29337.86, + "probability": 0.9317 + }, + { + "start": 29338.38, + "end": 29338.66, + "probability": 0.7722 + }, + { + "start": 29338.78, + "end": 29340.2, + "probability": 0.9858 + }, + { + "start": 29340.64, + "end": 29342.88, + "probability": 0.9925 + }, + { + "start": 29343.58, + "end": 29346.84, + "probability": 0.9262 + }, + { + "start": 29347.26, + "end": 29348.5, + "probability": 0.9255 + }, + { + "start": 29348.68, + "end": 29352.04, + "probability": 0.9542 + }, + { + "start": 29352.48, + "end": 29353.52, + "probability": 0.5328 + }, + { + "start": 29353.58, + "end": 29354.16, + "probability": 0.7878 + }, + { + "start": 29354.24, + "end": 29355.08, + "probability": 0.9912 + }, + { + "start": 29355.62, + "end": 29358.64, + "probability": 0.8441 + }, + { + "start": 29358.96, + "end": 29359.76, + "probability": 0.8003 + }, + { + "start": 29360.22, + "end": 29363.94, + "probability": 0.9868 + }, + { + "start": 29364.26, + "end": 29364.94, + "probability": 0.8388 + }, + { + "start": 29365.02, + "end": 29367.32, + "probability": 0.9873 + }, + { + "start": 29367.82, + "end": 29369.22, + "probability": 0.9827 + }, + { + "start": 29369.3, + "end": 29370.46, + "probability": 0.7157 + }, + { + "start": 29370.8, + "end": 29371.32, + "probability": 0.8572 + }, + { + "start": 29371.44, + "end": 29372.64, + "probability": 0.8375 + }, + { + "start": 29373.18, + "end": 29378.4, + "probability": 0.9734 + }, + { + "start": 29379.04, + "end": 29381.46, + "probability": 0.9688 + }, + { + "start": 29382.61, + "end": 29387.48, + "probability": 0.9844 + }, + { + "start": 29388.32, + "end": 29389.26, + "probability": 0.7794 + }, + { + "start": 29390.22, + "end": 29392.86, + "probability": 0.9355 + }, + { + "start": 29393.56, + "end": 29395.22, + "probability": 0.9401 + }, + { + "start": 29395.74, + "end": 29400.24, + "probability": 0.9717 + }, + { + "start": 29400.4, + "end": 29403.2, + "probability": 0.985 + }, + { + "start": 29403.62, + "end": 29404.76, + "probability": 0.5748 + }, + { + "start": 29405.06, + "end": 29409.11, + "probability": 0.9951 + }, + { + "start": 29409.6, + "end": 29411.1, + "probability": 0.3923 + }, + { + "start": 29411.6, + "end": 29412.12, + "probability": 0.8491 + }, + { + "start": 29412.78, + "end": 29413.94, + "probability": 0.9635 + }, + { + "start": 29414.67, + "end": 29418.38, + "probability": 0.9472 + }, + { + "start": 29418.8, + "end": 29420.44, + "probability": 0.999 + }, + { + "start": 29420.76, + "end": 29421.8, + "probability": 0.8388 + }, + { + "start": 29422.2, + "end": 29425.06, + "probability": 0.922 + }, + { + "start": 29425.2, + "end": 29426.24, + "probability": 0.8516 + }, + { + "start": 29426.88, + "end": 29429.04, + "probability": 0.8774 + }, + { + "start": 29429.58, + "end": 29430.76, + "probability": 0.9976 + }, + { + "start": 29431.46, + "end": 29431.55, + "probability": 0.6304 + }, + { + "start": 29431.78, + "end": 29432.8, + "probability": 0.971 + }, + { + "start": 29432.98, + "end": 29433.55, + "probability": 0.6728 + }, + { + "start": 29434.14, + "end": 29435.5, + "probability": 0.8668 + }, + { + "start": 29435.64, + "end": 29441.46, + "probability": 0.9541 + }, + { + "start": 29441.46, + "end": 29448.94, + "probability": 0.996 + }, + { + "start": 29449.06, + "end": 29449.54, + "probability": 0.5783 + }, + { + "start": 29450.12, + "end": 29456.06, + "probability": 0.9554 + }, + { + "start": 29457.68, + "end": 29458.84, + "probability": 0.8745 + }, + { + "start": 29459.12, + "end": 29466.86, + "probability": 0.9932 + }, + { + "start": 29467.92, + "end": 29474.78, + "probability": 0.9956 + }, + { + "start": 29474.94, + "end": 29476.28, + "probability": 0.3688 + }, + { + "start": 29476.76, + "end": 29479.78, + "probability": 0.9235 + }, + { + "start": 29480.5, + "end": 29482.32, + "probability": 0.5948 + }, + { + "start": 29483.32, + "end": 29487.66, + "probability": 0.9531 + }, + { + "start": 29488.42, + "end": 29489.1, + "probability": 0.7713 + }, + { + "start": 29489.7, + "end": 29495.55, + "probability": 0.969 + }, + { + "start": 29496.52, + "end": 29497.38, + "probability": 0.471 + }, + { + "start": 29497.42, + "end": 29502.32, + "probability": 0.9673 + }, + { + "start": 29502.96, + "end": 29504.18, + "probability": 0.8008 + }, + { + "start": 29504.7, + "end": 29509.6, + "probability": 0.9778 + }, + { + "start": 29509.96, + "end": 29511.28, + "probability": 0.9448 + }, + { + "start": 29512.3, + "end": 29514.96, + "probability": 0.8251 + }, + { + "start": 29515.8, + "end": 29518.46, + "probability": 0.9935 + }, + { + "start": 29518.46, + "end": 29523.16, + "probability": 0.9973 + }, + { + "start": 29523.18, + "end": 29523.62, + "probability": 0.8054 + }, + { + "start": 29524.34, + "end": 29529.1, + "probability": 0.9722 + }, + { + "start": 29529.36, + "end": 29530.66, + "probability": 0.9675 + }, + { + "start": 29531.84, + "end": 29533.26, + "probability": 0.683 + }, + { + "start": 29533.68, + "end": 29537.42, + "probability": 0.9468 + }, + { + "start": 29538.04, + "end": 29538.77, + "probability": 0.9685 + }, + { + "start": 29538.98, + "end": 29541.5, + "probability": 0.8264 + }, + { + "start": 29543.2, + "end": 29547.08, + "probability": 0.9897 + }, + { + "start": 29547.72, + "end": 29549.9, + "probability": 0.8735 + }, + { + "start": 29551.14, + "end": 29555.22, + "probability": 0.9909 + }, + { + "start": 29557.16, + "end": 29559.06, + "probability": 0.9256 + }, + { + "start": 29560.12, + "end": 29562.18, + "probability": 0.9951 + }, + { + "start": 29565.56, + "end": 29566.44, + "probability": 0.6682 + }, + { + "start": 29567.44, + "end": 29568.54, + "probability": 0.7489 + }, + { + "start": 29569.18, + "end": 29570.44, + "probability": 0.8787 + }, + { + "start": 29571.78, + "end": 29573.34, + "probability": 0.9939 + }, + { + "start": 29573.88, + "end": 29574.96, + "probability": 0.8867 + }, + { + "start": 29575.1, + "end": 29576.06, + "probability": 0.9094 + }, + { + "start": 29576.46, + "end": 29580.6, + "probability": 0.9838 + }, + { + "start": 29581.74, + "end": 29583.54, + "probability": 0.4422 + }, + { + "start": 29584.16, + "end": 29587.38, + "probability": 0.6703 + }, + { + "start": 29587.98, + "end": 29591.12, + "probability": 0.8252 + }, + { + "start": 29591.5, + "end": 29593.8, + "probability": 0.9976 + }, + { + "start": 29594.64, + "end": 29596.14, + "probability": 0.7548 + }, + { + "start": 29597.14, + "end": 29598.06, + "probability": 0.8225 + }, + { + "start": 29598.62, + "end": 29601.48, + "probability": 0.9939 + }, + { + "start": 29604.04, + "end": 29604.9, + "probability": 0.3067 + }, + { + "start": 29605.0, + "end": 29606.24, + "probability": 0.885 + }, + { + "start": 29607.38, + "end": 29608.08, + "probability": 0.8941 + }, + { + "start": 29608.56, + "end": 29609.14, + "probability": 0.9709 + }, + { + "start": 29609.16, + "end": 29610.38, + "probability": 0.9619 + }, + { + "start": 29610.74, + "end": 29615.48, + "probability": 0.9961 + }, + { + "start": 29615.72, + "end": 29616.78, + "probability": 0.8051 + }, + { + "start": 29616.86, + "end": 29620.12, + "probability": 0.9899 + }, + { + "start": 29620.18, + "end": 29620.82, + "probability": 0.6627 + }, + { + "start": 29621.2, + "end": 29624.82, + "probability": 0.9072 + }, + { + "start": 29624.96, + "end": 29627.4, + "probability": 0.9643 + }, + { + "start": 29627.8, + "end": 29628.34, + "probability": 0.9142 + }, + { + "start": 29628.6, + "end": 29628.7, + "probability": 0.5474 + }, + { + "start": 29628.96, + "end": 29629.42, + "probability": 0.7082 + }, + { + "start": 29629.54, + "end": 29630.3, + "probability": 0.8145 + }, + { + "start": 29630.66, + "end": 29632.46, + "probability": 0.9895 + }, + { + "start": 29632.92, + "end": 29634.64, + "probability": 0.9976 + }, + { + "start": 29635.28, + "end": 29639.5, + "probability": 0.9782 + }, + { + "start": 29640.54, + "end": 29643.1, + "probability": 0.9509 + }, + { + "start": 29643.56, + "end": 29644.63, + "probability": 0.9226 + }, + { + "start": 29645.44, + "end": 29649.7, + "probability": 0.9572 + }, + { + "start": 29650.42, + "end": 29651.0, + "probability": 0.7639 + }, + { + "start": 29651.38, + "end": 29651.94, + "probability": 0.647 + }, + { + "start": 29652.14, + "end": 29654.08, + "probability": 0.538 + }, + { + "start": 29654.8, + "end": 29656.2, + "probability": 0.8062 + }, + { + "start": 29657.36, + "end": 29658.18, + "probability": 0.7901 + }, + { + "start": 29663.7, + "end": 29664.36, + "probability": 0.7625 + }, + { + "start": 29666.46, + "end": 29670.02, + "probability": 0.9613 + }, + { + "start": 29671.32, + "end": 29674.2, + "probability": 0.9817 + }, + { + "start": 29676.19, + "end": 29682.8, + "probability": 0.9922 + }, + { + "start": 29682.86, + "end": 29684.52, + "probability": 0.9529 + }, + { + "start": 29686.38, + "end": 29686.38, + "probability": 0.8203 + }, + { + "start": 29687.7, + "end": 29691.42, + "probability": 0.9992 + }, + { + "start": 29691.84, + "end": 29693.24, + "probability": 0.8484 + }, + { + "start": 29693.38, + "end": 29697.52, + "probability": 0.9604 + }, + { + "start": 29697.52, + "end": 29700.7, + "probability": 0.9873 + }, + { + "start": 29702.16, + "end": 29705.64, + "probability": 0.9943 + }, + { + "start": 29705.8, + "end": 29709.3, + "probability": 0.9049 + }, + { + "start": 29710.94, + "end": 29715.48, + "probability": 0.9946 + }, + { + "start": 29716.88, + "end": 29720.58, + "probability": 0.9969 + }, + { + "start": 29721.6, + "end": 29726.3, + "probability": 0.9868 + }, + { + "start": 29726.34, + "end": 29727.86, + "probability": 0.6938 + }, + { + "start": 29729.28, + "end": 29736.06, + "probability": 0.9377 + }, + { + "start": 29737.4, + "end": 29741.94, + "probability": 0.9784 + }, + { + "start": 29741.94, + "end": 29746.44, + "probability": 0.9985 + }, + { + "start": 29748.0, + "end": 29751.1, + "probability": 0.5648 + }, + { + "start": 29751.1, + "end": 29755.94, + "probability": 0.9357 + }, + { + "start": 29756.04, + "end": 29757.78, + "probability": 0.829 + }, + { + "start": 29757.94, + "end": 29761.2, + "probability": 0.7529 + }, + { + "start": 29762.1, + "end": 29764.3, + "probability": 0.996 + }, + { + "start": 29764.3, + "end": 29766.96, + "probability": 0.9993 + }, + { + "start": 29767.34, + "end": 29767.84, + "probability": 0.3126 + }, + { + "start": 29767.88, + "end": 29773.87, + "probability": 0.9666 + }, + { + "start": 29774.3, + "end": 29779.52, + "probability": 0.9997 + }, + { + "start": 29780.06, + "end": 29781.58, + "probability": 0.9847 + }, + { + "start": 29781.64, + "end": 29783.36, + "probability": 0.969 + }, + { + "start": 29784.06, + "end": 29786.22, + "probability": 0.845 + }, + { + "start": 29786.76, + "end": 29792.04, + "probability": 0.9456 + }, + { + "start": 29792.04, + "end": 29795.14, + "probability": 0.9935 + }, + { + "start": 29796.86, + "end": 29798.04, + "probability": 0.8632 + }, + { + "start": 29798.5, + "end": 29799.1, + "probability": 0.8259 + }, + { + "start": 29799.42, + "end": 29799.86, + "probability": 0.6238 + }, + { + "start": 29800.1, + "end": 29801.64, + "probability": 0.8948 + }, + { + "start": 29801.64, + "end": 29805.7, + "probability": 0.8835 + }, + { + "start": 29805.86, + "end": 29806.52, + "probability": 0.9299 + }, + { + "start": 29807.6, + "end": 29807.98, + "probability": 0.7136 + }, + { + "start": 29808.28, + "end": 29808.56, + "probability": 0.663 + }, + { + "start": 29810.06, + "end": 29813.14, + "probability": 0.9954 + }, + { + "start": 29813.14, + "end": 29815.86, + "probability": 0.9972 + }, + { + "start": 29815.9, + "end": 29818.28, + "probability": 0.749 + }, + { + "start": 29819.1, + "end": 29824.98, + "probability": 0.9663 + }, + { + "start": 29824.98, + "end": 29829.76, + "probability": 0.9729 + }, + { + "start": 29829.76, + "end": 29834.4, + "probability": 0.9982 + }, + { + "start": 29835.1, + "end": 29838.34, + "probability": 0.9979 + }, + { + "start": 29838.34, + "end": 29842.74, + "probability": 0.9995 + }, + { + "start": 29842.84, + "end": 29845.24, + "probability": 0.7586 + }, + { + "start": 29845.38, + "end": 29845.78, + "probability": 0.503 + }, + { + "start": 29846.42, + "end": 29851.52, + "probability": 0.9979 + }, + { + "start": 29852.02, + "end": 29856.76, + "probability": 0.985 + }, + { + "start": 29857.76, + "end": 29858.2, + "probability": 0.8069 + }, + { + "start": 29858.32, + "end": 29858.74, + "probability": 0.8137 + }, + { + "start": 29859.1, + "end": 29864.6, + "probability": 0.9321 + }, + { + "start": 29865.46, + "end": 29868.4, + "probability": 0.9233 + }, + { + "start": 29868.4, + "end": 29870.62, + "probability": 0.9976 + }, + { + "start": 29870.78, + "end": 29871.96, + "probability": 0.949 + }, + { + "start": 29872.12, + "end": 29873.03, + "probability": 0.8771 + }, + { + "start": 29873.98, + "end": 29877.64, + "probability": 0.9858 + }, + { + "start": 29878.36, + "end": 29881.38, + "probability": 0.9972 + }, + { + "start": 29881.74, + "end": 29883.18, + "probability": 0.9982 + }, + { + "start": 29883.56, + "end": 29887.9, + "probability": 0.9762 + }, + { + "start": 29888.82, + "end": 29891.24, + "probability": 0.9845 + }, + { + "start": 29891.36, + "end": 29893.36, + "probability": 0.9731 + }, + { + "start": 29893.9, + "end": 29895.04, + "probability": 0.9143 + }, + { + "start": 29895.22, + "end": 29897.48, + "probability": 0.9828 + }, + { + "start": 29898.08, + "end": 29903.1, + "probability": 0.9749 + }, + { + "start": 29903.18, + "end": 29903.8, + "probability": 0.8436 + }, + { + "start": 29903.98, + "end": 29904.88, + "probability": 0.9927 + }, + { + "start": 29904.98, + "end": 29907.16, + "probability": 0.8635 + }, + { + "start": 29908.42, + "end": 29908.96, + "probability": 0.8821 + }, + { + "start": 29909.12, + "end": 29911.7, + "probability": 0.9304 + }, + { + "start": 29911.78, + "end": 29912.5, + "probability": 0.9194 + }, + { + "start": 29912.58, + "end": 29914.62, + "probability": 0.8931 + }, + { + "start": 29915.3, + "end": 29917.72, + "probability": 0.9915 + }, + { + "start": 29917.9, + "end": 29919.38, + "probability": 0.7085 + }, + { + "start": 29920.46, + "end": 29925.24, + "probability": 0.9984 + }, + { + "start": 29925.8, + "end": 29927.64, + "probability": 0.973 + }, + { + "start": 29928.16, + "end": 29933.34, + "probability": 0.9847 + }, + { + "start": 29933.7, + "end": 29935.7, + "probability": 0.9969 + }, + { + "start": 29936.44, + "end": 29940.32, + "probability": 0.9871 + }, + { + "start": 29940.32, + "end": 29946.2, + "probability": 0.9814 + }, + { + "start": 29947.28, + "end": 29950.54, + "probability": 0.9963 + }, + { + "start": 29951.24, + "end": 29953.74, + "probability": 0.9739 + }, + { + "start": 29954.74, + "end": 29960.24, + "probability": 0.9982 + }, + { + "start": 29960.98, + "end": 29961.9, + "probability": 0.5354 + }, + { + "start": 29962.38, + "end": 29963.91, + "probability": 0.8216 + }, + { + "start": 29964.5, + "end": 29968.6, + "probability": 0.9943 + }, + { + "start": 29969.32, + "end": 29972.58, + "probability": 0.9886 + }, + { + "start": 29973.16, + "end": 29976.66, + "probability": 0.9708 + }, + { + "start": 29976.66, + "end": 29979.78, + "probability": 0.9988 + }, + { + "start": 29980.48, + "end": 29980.9, + "probability": 0.5853 + }, + { + "start": 29980.96, + "end": 29982.16, + "probability": 0.663 + }, + { + "start": 29982.56, + "end": 29986.68, + "probability": 0.9922 + }, + { + "start": 29986.68, + "end": 29990.78, + "probability": 0.9995 + }, + { + "start": 29991.64, + "end": 29992.14, + "probability": 0.7532 + }, + { + "start": 29994.2, + "end": 29996.18, + "probability": 0.7188 + }, + { + "start": 29996.32, + "end": 29998.92, + "probability": 0.826 + }, + { + "start": 30018.9, + "end": 30020.62, + "probability": 0.9534 + }, + { + "start": 30027.1, + "end": 30028.88, + "probability": 0.6529 + }, + { + "start": 30030.26, + "end": 30032.46, + "probability": 0.9921 + }, + { + "start": 30033.4, + "end": 30034.8, + "probability": 0.9151 + }, + { + "start": 30036.78, + "end": 30038.2, + "probability": 0.8382 + }, + { + "start": 30041.28, + "end": 30041.88, + "probability": 0.6344 + }, + { + "start": 30042.56, + "end": 30043.37, + "probability": 0.4971 + }, + { + "start": 30043.58, + "end": 30044.09, + "probability": 0.0363 + }, + { + "start": 30044.76, + "end": 30045.84, + "probability": 0.1894 + }, + { + "start": 30046.02, + "end": 30046.02, + "probability": 0.4308 + }, + { + "start": 30046.8, + "end": 30049.5, + "probability": 0.6349 + }, + { + "start": 30052.48, + "end": 30052.97, + "probability": 0.0759 + }, + { + "start": 30055.52, + "end": 30057.06, + "probability": 0.959 + }, + { + "start": 30058.4, + "end": 30061.54, + "probability": 0.9162 + }, + { + "start": 30061.72, + "end": 30064.4, + "probability": 0.9909 + }, + { + "start": 30065.12, + "end": 30067.06, + "probability": 0.9883 + }, + { + "start": 30067.64, + "end": 30068.55, + "probability": 0.9854 + }, + { + "start": 30069.1, + "end": 30071.14, + "probability": 0.9796 + }, + { + "start": 30072.02, + "end": 30072.98, + "probability": 0.6001 + }, + { + "start": 30074.34, + "end": 30078.48, + "probability": 0.9741 + }, + { + "start": 30079.6, + "end": 30081.7, + "probability": 0.9348 + }, + { + "start": 30082.68, + "end": 30084.62, + "probability": 0.9852 + }, + { + "start": 30085.22, + "end": 30086.52, + "probability": 0.9973 + }, + { + "start": 30088.42, + "end": 30089.42, + "probability": 0.6368 + }, + { + "start": 30090.6, + "end": 30095.32, + "probability": 0.9227 + }, + { + "start": 30095.78, + "end": 30101.06, + "probability": 0.5329 + }, + { + "start": 30102.14, + "end": 30103.7, + "probability": 0.6635 + }, + { + "start": 30104.46, + "end": 30107.32, + "probability": 0.9915 + }, + { + "start": 30108.64, + "end": 30112.4, + "probability": 0.9965 + }, + { + "start": 30112.94, + "end": 30113.72, + "probability": 0.8132 + }, + { + "start": 30114.52, + "end": 30116.75, + "probability": 0.9484 + }, + { + "start": 30117.64, + "end": 30120.02, + "probability": 0.8876 + }, + { + "start": 30120.78, + "end": 30121.52, + "probability": 0.5349 + }, + { + "start": 30121.72, + "end": 30125.06, + "probability": 0.991 + }, + { + "start": 30125.06, + "end": 30129.4, + "probability": 0.8781 + }, + { + "start": 30130.04, + "end": 30131.7, + "probability": 0.9465 + }, + { + "start": 30132.36, + "end": 30133.52, + "probability": 0.9386 + }, + { + "start": 30134.82, + "end": 30135.38, + "probability": 0.8944 + }, + { + "start": 30136.08, + "end": 30139.06, + "probability": 0.9126 + }, + { + "start": 30140.02, + "end": 30143.7, + "probability": 0.9959 + }, + { + "start": 30144.34, + "end": 30146.28, + "probability": 0.8131 + }, + { + "start": 30147.54, + "end": 30148.89, + "probability": 0.9692 + }, + { + "start": 30149.62, + "end": 30150.6, + "probability": 0.9863 + }, + { + "start": 30151.32, + "end": 30154.58, + "probability": 0.8678 + }, + { + "start": 30155.2, + "end": 30158.52, + "probability": 0.9851 + }, + { + "start": 30159.0, + "end": 30160.7, + "probability": 0.9575 + }, + { + "start": 30161.26, + "end": 30165.24, + "probability": 0.9621 + }, + { + "start": 30165.8, + "end": 30167.12, + "probability": 0.7211 + }, + { + "start": 30167.68, + "end": 30170.26, + "probability": 0.9987 + }, + { + "start": 30170.26, + "end": 30174.9, + "probability": 0.9935 + }, + { + "start": 30175.34, + "end": 30178.02, + "probability": 0.843 + }, + { + "start": 30178.42, + "end": 30182.08, + "probability": 0.9915 + }, + { + "start": 30182.64, + "end": 30183.94, + "probability": 0.9194 + }, + { + "start": 30184.2, + "end": 30185.26, + "probability": 0.9736 + }, + { + "start": 30185.6, + "end": 30187.31, + "probability": 0.9521 + }, + { + "start": 30187.74, + "end": 30191.56, + "probability": 0.7081 + }, + { + "start": 30192.0, + "end": 30193.26, + "probability": 0.6855 + }, + { + "start": 30193.8, + "end": 30195.28, + "probability": 0.6351 + }, + { + "start": 30196.16, + "end": 30197.4, + "probability": 0.7627 + }, + { + "start": 30197.92, + "end": 30199.7, + "probability": 0.8155 + }, + { + "start": 30200.06, + "end": 30200.38, + "probability": 0.421 + }, + { + "start": 30201.44, + "end": 30205.36, + "probability": 0.9083 + }, + { + "start": 30206.18, + "end": 30209.84, + "probability": 0.9824 + }, + { + "start": 30210.7, + "end": 30211.76, + "probability": 0.9785 + }, + { + "start": 30212.28, + "end": 30214.34, + "probability": 0.9935 + }, + { + "start": 30214.44, + "end": 30215.12, + "probability": 0.9906 + }, + { + "start": 30216.98, + "end": 30219.3, + "probability": 0.9961 + }, + { + "start": 30220.26, + "end": 30224.18, + "probability": 0.7346 + }, + { + "start": 30224.78, + "end": 30225.92, + "probability": 0.8688 + }, + { + "start": 30226.62, + "end": 30230.62, + "probability": 0.7292 + }, + { + "start": 30231.72, + "end": 30233.26, + "probability": 0.9674 + }, + { + "start": 30234.62, + "end": 30238.6, + "probability": 0.7356 + }, + { + "start": 30239.18, + "end": 30244.22, + "probability": 0.9978 + }, + { + "start": 30244.66, + "end": 30246.92, + "probability": 0.9863 + }, + { + "start": 30247.72, + "end": 30248.0, + "probability": 0.4216 + }, + { + "start": 30248.32, + "end": 30250.62, + "probability": 0.9954 + }, + { + "start": 30251.44, + "end": 30255.52, + "probability": 0.9978 + }, + { + "start": 30255.62, + "end": 30259.12, + "probability": 0.9502 + }, + { + "start": 30259.72, + "end": 30265.74, + "probability": 0.907 + }, + { + "start": 30266.62, + "end": 30268.12, + "probability": 0.9141 + }, + { + "start": 30268.2, + "end": 30272.06, + "probability": 0.8802 + }, + { + "start": 30272.76, + "end": 30273.33, + "probability": 0.4167 + }, + { + "start": 30274.2, + "end": 30276.6, + "probability": 0.6363 + }, + { + "start": 30277.16, + "end": 30279.02, + "probability": 0.7885 + }, + { + "start": 30279.54, + "end": 30282.18, + "probability": 0.8959 + }, + { + "start": 30283.0, + "end": 30286.88, + "probability": 0.9719 + }, + { + "start": 30287.3, + "end": 30288.21, + "probability": 0.9749 + }, + { + "start": 30288.82, + "end": 30290.28, + "probability": 0.9883 + }, + { + "start": 30290.74, + "end": 30292.62, + "probability": 0.9101 + }, + { + "start": 30293.08, + "end": 30295.7, + "probability": 0.8748 + }, + { + "start": 30296.12, + "end": 30297.68, + "probability": 0.9749 + }, + { + "start": 30298.34, + "end": 30301.38, + "probability": 0.9272 + }, + { + "start": 30301.9, + "end": 30306.28, + "probability": 0.9868 + }, + { + "start": 30307.04, + "end": 30310.6, + "probability": 0.9922 + }, + { + "start": 30310.94, + "end": 30311.82, + "probability": 0.9406 + }, + { + "start": 30312.5, + "end": 30317.98, + "probability": 0.993 + }, + { + "start": 30318.5, + "end": 30319.82, + "probability": 0.7569 + }, + { + "start": 30320.52, + "end": 30323.14, + "probability": 0.9435 + }, + { + "start": 30323.38, + "end": 30326.82, + "probability": 0.9302 + }, + { + "start": 30327.8, + "end": 30329.4, + "probability": 0.6599 + }, + { + "start": 30329.6, + "end": 30331.96, + "probability": 0.8093 + }, + { + "start": 30332.08, + "end": 30332.56, + "probability": 0.6016 + }, + { + "start": 30336.14, + "end": 30337.12, + "probability": 0.965 + }, + { + "start": 30343.34, + "end": 30344.8, + "probability": 0.5052 + }, + { + "start": 30345.06, + "end": 30346.3, + "probability": 0.4751 + }, + { + "start": 30346.52, + "end": 30347.74, + "probability": 0.7787 + }, + { + "start": 30347.82, + "end": 30349.56, + "probability": 0.7202 + }, + { + "start": 30350.0, + "end": 30351.92, + "probability": 0.9431 + }, + { + "start": 30359.14, + "end": 30359.76, + "probability": 0.4917 + }, + { + "start": 30359.92, + "end": 30360.68, + "probability": 0.7425 + }, + { + "start": 30360.86, + "end": 30363.72, + "probability": 0.9683 + }, + { + "start": 30363.92, + "end": 30365.96, + "probability": 0.8891 + }, + { + "start": 30366.7, + "end": 30372.02, + "probability": 0.9355 + }, + { + "start": 30372.76, + "end": 30375.7, + "probability": 0.802 + }, + { + "start": 30375.98, + "end": 30378.96, + "probability": 0.627 + }, + { + "start": 30379.8, + "end": 30382.68, + "probability": 0.7939 + }, + { + "start": 30383.58, + "end": 30384.42, + "probability": 0.8171 + }, + { + "start": 30384.48, + "end": 30389.22, + "probability": 0.9072 + }, + { + "start": 30389.3, + "end": 30393.06, + "probability": 0.9966 + }, + { + "start": 30393.25, + "end": 30398.76, + "probability": 0.9987 + }, + { + "start": 30400.06, + "end": 30406.5, + "probability": 0.9927 + }, + { + "start": 30406.64, + "end": 30407.5, + "probability": 0.5428 + }, + { + "start": 30408.4, + "end": 30410.66, + "probability": 0.9344 + }, + { + "start": 30411.6, + "end": 30413.58, + "probability": 0.9524 + }, + { + "start": 30414.38, + "end": 30416.22, + "probability": 0.9992 + }, + { + "start": 30417.12, + "end": 30419.22, + "probability": 0.9284 + }, + { + "start": 30420.06, + "end": 30421.76, + "probability": 0.9714 + }, + { + "start": 30422.3, + "end": 30423.96, + "probability": 0.9983 + }, + { + "start": 30424.04, + "end": 30426.58, + "probability": 0.9604 + }, + { + "start": 30427.26, + "end": 30431.04, + "probability": 0.9548 + }, + { + "start": 30431.1, + "end": 30435.16, + "probability": 0.9663 + }, + { + "start": 30435.38, + "end": 30436.14, + "probability": 0.7766 + }, + { + "start": 30436.52, + "end": 30438.08, + "probability": 0.998 + }, + { + "start": 30439.48, + "end": 30445.38, + "probability": 0.982 + }, + { + "start": 30446.18, + "end": 30447.64, + "probability": 0.998 + }, + { + "start": 30448.22, + "end": 30450.96, + "probability": 0.9796 + }, + { + "start": 30451.78, + "end": 30452.27, + "probability": 0.9395 + }, + { + "start": 30452.72, + "end": 30454.44, + "probability": 0.9583 + }, + { + "start": 30454.52, + "end": 30459.66, + "probability": 0.9449 + }, + { + "start": 30460.2, + "end": 30466.2, + "probability": 0.996 + }, + { + "start": 30466.3, + "end": 30467.1, + "probability": 0.3089 + }, + { + "start": 30467.74, + "end": 30468.22, + "probability": 0.7415 + }, + { + "start": 30468.5, + "end": 30469.34, + "probability": 0.9669 + }, + { + "start": 30469.62, + "end": 30470.82, + "probability": 0.6721 + }, + { + "start": 30470.9, + "end": 30473.14, + "probability": 0.9906 + }, + { + "start": 30473.44, + "end": 30478.22, + "probability": 0.9967 + }, + { + "start": 30478.22, + "end": 30483.8, + "probability": 0.999 + }, + { + "start": 30484.34, + "end": 30486.5, + "probability": 0.9304 + }, + { + "start": 30487.44, + "end": 30489.36, + "probability": 0.0048 + }, + { + "start": 30489.36, + "end": 30490.24, + "probability": 0.5867 + }, + { + "start": 30490.24, + "end": 30491.66, + "probability": 0.5952 + }, + { + "start": 30491.86, + "end": 30493.56, + "probability": 0.8093 + }, + { + "start": 30493.88, + "end": 30496.13, + "probability": 0.5931 + }, + { + "start": 30497.02, + "end": 30500.54, + "probability": 0.9863 + }, + { + "start": 30500.82, + "end": 30502.34, + "probability": 0.1692 + }, + { + "start": 30502.9, + "end": 30507.16, + "probability": 0.9858 + }, + { + "start": 30507.4, + "end": 30509.23, + "probability": 0.9932 + }, + { + "start": 30509.72, + "end": 30513.96, + "probability": 0.9974 + }, + { + "start": 30514.04, + "end": 30514.52, + "probability": 0.7809 + }, + { + "start": 30515.52, + "end": 30517.64, + "probability": 0.7991 + }, + { + "start": 30518.38, + "end": 30522.32, + "probability": 0.973 + }, + { + "start": 30522.74, + "end": 30524.8, + "probability": 0.8386 + }, + { + "start": 30525.22, + "end": 30525.62, + "probability": 0.0298 + }, + { + "start": 30528.36, + "end": 30528.36, + "probability": 0.6637 + }, + { + "start": 30535.02, + "end": 30536.3, + "probability": 0.5713 + }, + { + "start": 30537.84, + "end": 30539.44, + "probability": 0.7194 + }, + { + "start": 30539.62, + "end": 30543.88, + "probability": 0.989 + }, + { + "start": 30543.88, + "end": 30547.04, + "probability": 0.9898 + }, + { + "start": 30548.28, + "end": 30549.48, + "probability": 0.7488 + }, + { + "start": 30549.96, + "end": 30552.26, + "probability": 0.8371 + }, + { + "start": 30552.62, + "end": 30556.96, + "probability": 0.9757 + }, + { + "start": 30556.96, + "end": 30560.26, + "probability": 0.9926 + }, + { + "start": 30560.52, + "end": 30561.36, + "probability": 0.901 + }, + { + "start": 30561.56, + "end": 30562.54, + "probability": 0.7837 + }, + { + "start": 30563.04, + "end": 30565.56, + "probability": 0.9927 + }, + { + "start": 30565.88, + "end": 30567.9, + "probability": 0.9098 + }, + { + "start": 30567.98, + "end": 30570.12, + "probability": 0.8506 + }, + { + "start": 30570.74, + "end": 30572.34, + "probability": 0.9642 + }, + { + "start": 30572.4, + "end": 30576.84, + "probability": 0.9723 + }, + { + "start": 30577.48, + "end": 30582.64, + "probability": 0.9613 + }, + { + "start": 30583.18, + "end": 30584.92, + "probability": 0.761 + }, + { + "start": 30585.72, + "end": 30586.28, + "probability": 0.562 + }, + { + "start": 30586.62, + "end": 30590.56, + "probability": 0.9854 + }, + { + "start": 30591.02, + "end": 30592.42, + "probability": 0.9117 + }, + { + "start": 30592.84, + "end": 30597.04, + "probability": 0.9912 + }, + { + "start": 30597.42, + "end": 30600.76, + "probability": 0.9882 + }, + { + "start": 30601.6, + "end": 30602.76, + "probability": 0.9146 + }, + { + "start": 30602.92, + "end": 30606.24, + "probability": 0.9521 + }, + { + "start": 30606.32, + "end": 30611.26, + "probability": 0.8345 + }, + { + "start": 30611.26, + "end": 30615.96, + "probability": 0.7394 + }, + { + "start": 30616.5, + "end": 30617.0, + "probability": 0.4102 + }, + { + "start": 30617.04, + "end": 30619.74, + "probability": 0.9917 + }, + { + "start": 30619.82, + "end": 30620.86, + "probability": 0.8457 + }, + { + "start": 30621.34, + "end": 30621.72, + "probability": 0.6629 + }, + { + "start": 30621.72, + "end": 30622.62, + "probability": 0.9292 + }, + { + "start": 30622.72, + "end": 30625.16, + "probability": 0.9362 + }, + { + "start": 30625.9, + "end": 30627.38, + "probability": 0.6657 + }, + { + "start": 30627.46, + "end": 30629.18, + "probability": 0.8284 + }, + { + "start": 30629.46, + "end": 30629.86, + "probability": 0.0236 + }, + { + "start": 30629.9, + "end": 30632.62, + "probability": 0.6329 + }, + { + "start": 30632.72, + "end": 30634.78, + "probability": 0.7539 + }, + { + "start": 30634.8, + "end": 30639.56, + "probability": 0.0281 + }, + { + "start": 30639.56, + "end": 30640.0, + "probability": 0.0189 + }, + { + "start": 30640.0, + "end": 30640.1, + "probability": 0.1898 + }, + { + "start": 30640.52, + "end": 30641.48, + "probability": 0.3084 + }, + { + "start": 30641.82, + "end": 30645.04, + "probability": 0.3414 + }, + { + "start": 30652.82, + "end": 30654.32, + "probability": 0.2601 + }, + { + "start": 30654.32, + "end": 30654.32, + "probability": 0.0722 + }, + { + "start": 30654.32, + "end": 30654.32, + "probability": 0.1242 + }, + { + "start": 30654.32, + "end": 30660.44, + "probability": 0.6672 + }, + { + "start": 30660.54, + "end": 30661.04, + "probability": 0.6906 + }, + { + "start": 30661.54, + "end": 30663.56, + "probability": 0.9346 + }, + { + "start": 30663.74, + "end": 30664.9, + "probability": 0.3189 + }, + { + "start": 30665.06, + "end": 30665.5, + "probability": 0.492 + }, + { + "start": 30665.58, + "end": 30667.0, + "probability": 0.8765 + }, + { + "start": 30667.54, + "end": 30668.08, + "probability": 0.5517 + }, + { + "start": 30668.66, + "end": 30671.52, + "probability": 0.6722 + }, + { + "start": 30672.46, + "end": 30674.54, + "probability": 0.4995 + }, + { + "start": 30675.26, + "end": 30677.0, + "probability": 0.7949 + }, + { + "start": 30677.78, + "end": 30678.92, + "probability": 0.5055 + }, + { + "start": 30679.36, + "end": 30679.8, + "probability": 0.7321 + }, + { + "start": 30680.4, + "end": 30683.4, + "probability": 0.9377 + }, + { + "start": 30683.82, + "end": 30685.36, + "probability": 0.9868 + }, + { + "start": 30685.48, + "end": 30688.1, + "probability": 0.9738 + }, + { + "start": 30688.6, + "end": 30690.78, + "probability": 0.9479 + }, + { + "start": 30692.26, + "end": 30694.22, + "probability": 0.0729 + }, + { + "start": 30696.75, + "end": 30696.82, + "probability": 0.062 + }, + { + "start": 30697.16, + "end": 30697.82, + "probability": 0.064 + }, + { + "start": 30697.82, + "end": 30697.82, + "probability": 0.1189 + }, + { + "start": 30697.82, + "end": 30697.84, + "probability": 0.0265 + }, + { + "start": 30697.86, + "end": 30702.5, + "probability": 0.5362 + }, + { + "start": 30702.54, + "end": 30703.12, + "probability": 0.5049 + }, + { + "start": 30703.12, + "end": 30703.9, + "probability": 0.2842 + }, + { + "start": 30705.72, + "end": 30707.4, + "probability": 0.0689 + }, + { + "start": 30717.46, + "end": 30717.72, + "probability": 0.1852 + }, + { + "start": 30717.72, + "end": 30719.06, + "probability": 0.3718 + }, + { + "start": 30719.74, + "end": 30721.5, + "probability": 0.6786 + }, + { + "start": 30722.0, + "end": 30723.58, + "probability": 0.5984 + }, + { + "start": 30726.16, + "end": 30727.6, + "probability": 0.3445 + }, + { + "start": 30727.94, + "end": 30728.74, + "probability": 0.3951 + }, + { + "start": 30729.6, + "end": 30733.42, + "probability": 0.7659 + }, + { + "start": 30733.42, + "end": 30733.42, + "probability": 0.1102 + }, + { + "start": 30733.42, + "end": 30736.74, + "probability": 0.5149 + }, + { + "start": 30736.9, + "end": 30737.58, + "probability": 0.5759 + }, + { + "start": 30738.1, + "end": 30739.02, + "probability": 0.63 + }, + { + "start": 30739.76, + "end": 30740.76, + "probability": 0.513 + }, + { + "start": 30741.18, + "end": 30742.62, + "probability": 0.5863 + }, + { + "start": 30742.88, + "end": 30742.92, + "probability": 0.1235 + }, + { + "start": 30742.92, + "end": 30743.66, + "probability": 0.4204 + }, + { + "start": 30756.28, + "end": 30756.28, + "probability": 0.0798 + }, + { + "start": 30756.28, + "end": 30757.24, + "probability": 0.2628 + }, + { + "start": 30757.46, + "end": 30758.44, + "probability": 0.4714 + }, + { + "start": 30758.48, + "end": 30758.72, + "probability": 0.2478 + }, + { + "start": 30758.98, + "end": 30759.26, + "probability": 0.363 + }, + { + "start": 30759.32, + "end": 30760.24, + "probability": 0.4707 + }, + { + "start": 30760.46, + "end": 30763.72, + "probability": 0.4517 + }, + { + "start": 30764.28, + "end": 30767.0, + "probability": 0.7974 + }, + { + "start": 30769.9, + "end": 30770.38, + "probability": 0.0101 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30807.0, + "end": 30807.0, + "probability": 0.0 + }, + { + "start": 30809.1, + "end": 30811.88, + "probability": 0.1115 + }, + { + "start": 30811.88, + "end": 30814.08, + "probability": 0.139 + }, + { + "start": 30815.69, + "end": 30817.8, + "probability": 0.0838 + }, + { + "start": 30821.6, + "end": 30821.88, + "probability": 0.1201 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30938.0, + "end": 30938.0, + "probability": 0.0 + }, + { + "start": 30941.12, + "end": 30950.18, + "probability": 0.3058 + }, + { + "start": 30950.18, + "end": 30953.62, + "probability": 0.9757 + }, + { + "start": 30953.9, + "end": 30954.92, + "probability": 0.4609 + }, + { + "start": 30956.53, + "end": 30959.98, + "probability": 0.5627 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.0, + "end": 31146.0, + "probability": 0.0 + }, + { + "start": 31146.42, + "end": 31148.62, + "probability": 0.9213 + }, + { + "start": 31150.78, + "end": 31156.66, + "probability": 0.8293 + }, + { + "start": 31158.2, + "end": 31159.96, + "probability": 0.7221 + }, + { + "start": 31160.1, + "end": 31162.28, + "probability": 0.9672 + }, + { + "start": 31162.64, + "end": 31163.26, + "probability": 0.9633 + }, + { + "start": 31163.88, + "end": 31165.1, + "probability": 0.6415 + }, + { + "start": 31165.76, + "end": 31169.12, + "probability": 0.9958 + }, + { + "start": 31169.12, + "end": 31175.66, + "probability": 0.9785 + }, + { + "start": 31176.14, + "end": 31177.24, + "probability": 0.7416 + }, + { + "start": 31178.24, + "end": 31182.1, + "probability": 0.7722 + }, + { + "start": 31182.22, + "end": 31183.3, + "probability": 0.6343 + }, + { + "start": 31184.04, + "end": 31187.52, + "probability": 0.8262 + }, + { + "start": 31187.56, + "end": 31188.0, + "probability": 0.6926 + }, + { + "start": 31188.2, + "end": 31188.66, + "probability": 0.8583 + }, + { + "start": 31188.76, + "end": 31189.56, + "probability": 0.57 + }, + { + "start": 31190.4, + "end": 31193.84, + "probability": 0.7944 + }, + { + "start": 31193.84, + "end": 31198.36, + "probability": 0.9202 + }, + { + "start": 31198.48, + "end": 31200.78, + "probability": 0.938 + }, + { + "start": 31201.36, + "end": 31206.94, + "probability": 0.9843 + }, + { + "start": 31207.1, + "end": 31210.44, + "probability": 0.8818 + }, + { + "start": 31211.12, + "end": 31214.06, + "probability": 0.9673 + }, + { + "start": 31214.64, + "end": 31217.5, + "probability": 0.6991 + }, + { + "start": 31219.14, + "end": 31220.26, + "probability": 0.2461 + }, + { + "start": 31221.5, + "end": 31222.4, + "probability": 0.4244 + }, + { + "start": 31222.42, + "end": 31223.9, + "probability": 0.5695 + }, + { + "start": 31224.0, + "end": 31225.04, + "probability": 0.2499 + }, + { + "start": 31225.14, + "end": 31227.06, + "probability": 0.6633 + }, + { + "start": 31227.28, + "end": 31229.66, + "probability": 0.932 + }, + { + "start": 31230.1, + "end": 31231.16, + "probability": 0.0218 + }, + { + "start": 31231.16, + "end": 31231.16, + "probability": 0.0745 + }, + { + "start": 31231.16, + "end": 31238.3, + "probability": 0.9646 + }, + { + "start": 31238.3, + "end": 31245.96, + "probability": 0.9939 + }, + { + "start": 31246.62, + "end": 31248.72, + "probability": 0.9878 + }, + { + "start": 31249.61, + "end": 31252.32, + "probability": 0.9344 + }, + { + "start": 31252.38, + "end": 31253.18, + "probability": 0.6977 + }, + { + "start": 31253.58, + "end": 31255.98, + "probability": 0.9441 + }, + { + "start": 31256.04, + "end": 31260.48, + "probability": 0.991 + }, + { + "start": 31261.16, + "end": 31262.72, + "probability": 0.4555 + }, + { + "start": 31263.24, + "end": 31265.44, + "probability": 0.9712 + }, + { + "start": 31266.02, + "end": 31268.58, + "probability": 0.9748 + }, + { + "start": 31269.96, + "end": 31271.92, + "probability": 0.9952 + }, + { + "start": 31272.9, + "end": 31274.62, + "probability": 0.543 + }, + { + "start": 31276.28, + "end": 31276.96, + "probability": 0.9367 + }, + { + "start": 31277.52, + "end": 31278.24, + "probability": 0.0153 + }, + { + "start": 31280.56, + "end": 31280.56, + "probability": 0.1019 + }, + { + "start": 31280.56, + "end": 31280.56, + "probability": 0.0514 + }, + { + "start": 31280.56, + "end": 31283.74, + "probability": 0.6318 + }, + { + "start": 31283.74, + "end": 31287.32, + "probability": 0.7747 + }, + { + "start": 31287.5, + "end": 31287.96, + "probability": 0.7036 + }, + { + "start": 31291.58, + "end": 31293.19, + "probability": 0.623 + }, + { + "start": 31294.4, + "end": 31298.88, + "probability": 0.9083 + }, + { + "start": 31298.92, + "end": 31300.64, + "probability": 0.5782 + }, + { + "start": 31301.38, + "end": 31303.48, + "probability": 0.7222 + }, + { + "start": 31303.68, + "end": 31307.18, + "probability": 0.9561 + }, + { + "start": 31308.08, + "end": 31309.42, + "probability": 0.7528 + }, + { + "start": 31311.9, + "end": 31314.02, + "probability": 0.9982 + }, + { + "start": 31315.72, + "end": 31316.22, + "probability": 0.8557 + }, + { + "start": 31317.38, + "end": 31318.64, + "probability": 0.6542 + }, + { + "start": 31318.84, + "end": 31318.84, + "probability": 0.6587 + }, + { + "start": 31318.84, + "end": 31319.68, + "probability": 0.8015 + }, + { + "start": 31319.72, + "end": 31321.24, + "probability": 0.9437 + }, + { + "start": 31321.32, + "end": 31324.16, + "probability": 0.9816 + }, + { + "start": 31324.34, + "end": 31328.18, + "probability": 0.9766 + }, + { + "start": 31328.7, + "end": 31332.42, + "probability": 0.6637 + }, + { + "start": 31332.54, + "end": 31332.74, + "probability": 0.7214 + }, + { + "start": 31332.82, + "end": 31335.72, + "probability": 0.9812 + }, + { + "start": 31336.74, + "end": 31339.36, + "probability": 0.5096 + }, + { + "start": 31339.42, + "end": 31341.12, + "probability": 0.9041 + }, + { + "start": 31341.4, + "end": 31342.68, + "probability": 0.7951 + }, + { + "start": 31343.5, + "end": 31343.68, + "probability": 0.6717 + }, + { + "start": 31344.02, + "end": 31344.86, + "probability": 0.9514 + }, + { + "start": 31345.4, + "end": 31346.14, + "probability": 0.4027 + }, + { + "start": 31346.26, + "end": 31348.04, + "probability": 0.8905 + }, + { + "start": 31348.3, + "end": 31350.94, + "probability": 0.9254 + }, + { + "start": 31352.46, + "end": 31359.24, + "probability": 0.9893 + }, + { + "start": 31359.42, + "end": 31361.74, + "probability": 0.8015 + }, + { + "start": 31362.46, + "end": 31365.54, + "probability": 0.9951 + }, + { + "start": 31365.74, + "end": 31367.96, + "probability": 0.9962 + }, + { + "start": 31368.78, + "end": 31371.6, + "probability": 0.9983 + }, + { + "start": 31372.14, + "end": 31373.84, + "probability": 0.9945 + }, + { + "start": 31374.6, + "end": 31375.66, + "probability": 0.7032 + }, + { + "start": 31376.32, + "end": 31377.94, + "probability": 0.9864 + }, + { + "start": 31378.78, + "end": 31381.42, + "probability": 0.9981 + }, + { + "start": 31382.8, + "end": 31385.08, + "probability": 0.9564 + }, + { + "start": 31386.1, + "end": 31389.16, + "probability": 0.998 + }, + { + "start": 31390.2, + "end": 31394.76, + "probability": 0.9976 + }, + { + "start": 31395.62, + "end": 31397.58, + "probability": 0.9941 + }, + { + "start": 31398.62, + "end": 31401.44, + "probability": 0.9666 + }, + { + "start": 31402.4, + "end": 31403.62, + "probability": 0.787 + }, + { + "start": 31404.18, + "end": 31406.58, + "probability": 0.9771 + }, + { + "start": 31407.0, + "end": 31409.32, + "probability": 0.96 + }, + { + "start": 31409.9, + "end": 31411.68, + "probability": 0.9784 + }, + { + "start": 31412.5, + "end": 31414.94, + "probability": 0.9208 + }, + { + "start": 31415.06, + "end": 31415.72, + "probability": 0.9109 + }, + { + "start": 31416.16, + "end": 31417.62, + "probability": 0.887 + }, + { + "start": 31417.7, + "end": 31418.74, + "probability": 0.7746 + }, + { + "start": 31420.34, + "end": 31421.78, + "probability": 0.8912 + }, + { + "start": 31422.32, + "end": 31425.32, + "probability": 0.9882 + }, + { + "start": 31425.36, + "end": 31429.22, + "probability": 0.9613 + }, + { + "start": 31429.72, + "end": 31431.96, + "probability": 0.8556 + }, + { + "start": 31433.0, + "end": 31435.92, + "probability": 0.981 + }, + { + "start": 31436.6, + "end": 31439.16, + "probability": 0.9448 + }, + { + "start": 31439.76, + "end": 31442.74, + "probability": 0.9839 + }, + { + "start": 31443.84, + "end": 31444.6, + "probability": 0.9213 + }, + { + "start": 31445.16, + "end": 31448.8, + "probability": 0.9608 + }, + { + "start": 31449.48, + "end": 31452.93, + "probability": 0.9881 + }, + { + "start": 31454.16, + "end": 31455.06, + "probability": 0.7892 + }, + { + "start": 31455.44, + "end": 31460.03, + "probability": 0.9989 + }, + { + "start": 31460.42, + "end": 31462.7, + "probability": 0.9932 + }, + { + "start": 31463.34, + "end": 31465.18, + "probability": 0.9565 + }, + { + "start": 31465.78, + "end": 31467.56, + "probability": 0.9927 + }, + { + "start": 31468.62, + "end": 31468.94, + "probability": 0.5253 + }, + { + "start": 31469.04, + "end": 31470.16, + "probability": 0.6524 + }, + { + "start": 31470.28, + "end": 31471.94, + "probability": 0.8332 + }, + { + "start": 31472.66, + "end": 31474.4, + "probability": 0.9764 + }, + { + "start": 31477.76, + "end": 31479.88, + "probability": 0.7982 + }, + { + "start": 31482.3, + "end": 31485.6, + "probability": 0.9954 + }, + { + "start": 31487.26, + "end": 31488.2, + "probability": 0.8548 + }, + { + "start": 31488.72, + "end": 31489.48, + "probability": 0.9433 + }, + { + "start": 31490.02, + "end": 31493.8, + "probability": 0.9788 + }, + { + "start": 31494.78, + "end": 31495.46, + "probability": 0.9836 + }, + { + "start": 31496.7, + "end": 31497.9, + "probability": 0.9137 + }, + { + "start": 31498.5, + "end": 31500.0, + "probability": 0.6804 + }, + { + "start": 31500.8, + "end": 31502.14, + "probability": 0.7262 + }, + { + "start": 31502.86, + "end": 31506.92, + "probability": 0.8098 + }, + { + "start": 31507.02, + "end": 31511.12, + "probability": 0.7735 + }, + { + "start": 31511.66, + "end": 31513.14, + "probability": 0.7392 + }, + { + "start": 31513.34, + "end": 31516.1, + "probability": 0.6348 + }, + { + "start": 31516.2, + "end": 31517.69, + "probability": 0.9486 + }, + { + "start": 31518.1, + "end": 31519.8, + "probability": 0.868 + }, + { + "start": 31520.2, + "end": 31521.94, + "probability": 0.9802 + }, + { + "start": 31522.08, + "end": 31522.72, + "probability": 0.7818 + }, + { + "start": 31523.7, + "end": 31525.18, + "probability": 0.973 + }, + { + "start": 31526.36, + "end": 31528.16, + "probability": 0.9938 + }, + { + "start": 31529.02, + "end": 31530.98, + "probability": 0.9972 + }, + { + "start": 31531.74, + "end": 31533.82, + "probability": 0.9017 + }, + { + "start": 31536.3, + "end": 31539.56, + "probability": 0.9574 + }, + { + "start": 31539.74, + "end": 31541.02, + "probability": 0.8799 + }, + { + "start": 31541.12, + "end": 31542.12, + "probability": 0.9407 + }, + { + "start": 31542.2, + "end": 31543.28, + "probability": 0.8653 + }, + { + "start": 31543.62, + "end": 31547.08, + "probability": 0.9648 + }, + { + "start": 31547.84, + "end": 31549.9, + "probability": 0.7198 + }, + { + "start": 31551.34, + "end": 31555.18, + "probability": 0.9836 + }, + { + "start": 31556.1, + "end": 31558.82, + "probability": 0.9752 + }, + { + "start": 31560.26, + "end": 31562.34, + "probability": 0.9897 + }, + { + "start": 31563.56, + "end": 31564.62, + "probability": 0.7756 + }, + { + "start": 31567.25, + "end": 31574.54, + "probability": 0.9692 + }, + { + "start": 31574.72, + "end": 31577.64, + "probability": 0.9698 + }, + { + "start": 31578.52, + "end": 31580.38, + "probability": 0.8189 + }, + { + "start": 31582.54, + "end": 31583.06, + "probability": 0.5396 + }, + { + "start": 31583.94, + "end": 31586.32, + "probability": 0.9718 + }, + { + "start": 31586.48, + "end": 31586.58, + "probability": 0.5271 + }, + { + "start": 31588.16, + "end": 31589.38, + "probability": 0.9825 + }, + { + "start": 31590.06, + "end": 31593.84, + "probability": 0.2893 + }, + { + "start": 31593.84, + "end": 31593.84, + "probability": 0.0435 + }, + { + "start": 31594.1, + "end": 31594.9, + "probability": 0.5275 + }, + { + "start": 31594.96, + "end": 31598.56, + "probability": 0.7234 + }, + { + "start": 31598.62, + "end": 31599.74, + "probability": 0.8871 + }, + { + "start": 31600.64, + "end": 31603.1, + "probability": 0.6004 + }, + { + "start": 31603.68, + "end": 31604.14, + "probability": 0.7372 + }, + { + "start": 31605.18, + "end": 31606.34, + "probability": 0.9639 + }, + { + "start": 31607.12, + "end": 31608.14, + "probability": 0.8655 + }, + { + "start": 31608.68, + "end": 31608.78, + "probability": 0.2468 + }, + { + "start": 31610.46, + "end": 31610.86, + "probability": 0.0407 + }, + { + "start": 31611.76, + "end": 31615.18, + "probability": 0.9919 + }, + { + "start": 31615.18, + "end": 31617.6, + "probability": 0.9939 + }, + { + "start": 31619.78, + "end": 31623.76, + "probability": 0.1426 + }, + { + "start": 31623.82, + "end": 31624.36, + "probability": 0.7607 + }, + { + "start": 31624.48, + "end": 31626.41, + "probability": 0.867 + }, + { + "start": 31627.48, + "end": 31628.32, + "probability": 0.5292 + }, + { + "start": 31628.38, + "end": 31629.6, + "probability": 0.013 + }, + { + "start": 31631.8, + "end": 31633.32, + "probability": 0.0465 + }, + { + "start": 31651.58, + "end": 31654.74, + "probability": 0.3622 + }, + { + "start": 31655.44, + "end": 31656.96, + "probability": 0.7879 + }, + { + "start": 31657.08, + "end": 31657.9, + "probability": 0.7351 + }, + { + "start": 31658.64, + "end": 31664.3, + "probability": 0.9815 + }, + { + "start": 31664.42, + "end": 31676.2, + "probability": 0.588 + }, + { + "start": 31677.82, + "end": 31678.76, + "probability": 0.5941 + }, + { + "start": 31679.14, + "end": 31679.24, + "probability": 0.2821 + }, + { + "start": 31686.34, + "end": 31686.34, + "probability": 0.1495 + }, + { + "start": 31686.34, + "end": 31688.18, + "probability": 0.6211 + }, + { + "start": 31689.2, + "end": 31693.06, + "probability": 0.5425 + }, + { + "start": 31693.64, + "end": 31695.38, + "probability": 0.8563 + }, + { + "start": 31695.48, + "end": 31696.04, + "probability": 0.99 + }, + { + "start": 31696.46, + "end": 31698.06, + "probability": 0.9729 + }, + { + "start": 31698.84, + "end": 31701.68, + "probability": 0.877 + }, + { + "start": 31701.86, + "end": 31705.68, + "probability": 0.6293 + }, + { + "start": 31707.5, + "end": 31710.32, + "probability": 0.9971 + }, + { + "start": 31710.88, + "end": 31712.24, + "probability": 0.5167 + }, + { + "start": 31713.02, + "end": 31716.46, + "probability": 0.8993 + }, + { + "start": 31717.18, + "end": 31718.74, + "probability": 0.9837 + }, + { + "start": 31719.1, + "end": 31721.12, + "probability": 0.7224 + }, + { + "start": 31721.22, + "end": 31721.82, + "probability": 0.6234 + }, + { + "start": 31721.92, + "end": 31723.2, + "probability": 0.8908 + }, + { + "start": 31724.22, + "end": 31725.54, + "probability": 0.8982 + }, + { + "start": 31735.02, + "end": 31735.72, + "probability": 0.4549 + }, + { + "start": 31740.61, + "end": 31742.3, + "probability": 0.6575 + }, + { + "start": 31743.14, + "end": 31744.82, + "probability": 0.7442 + }, + { + "start": 31745.5, + "end": 31746.46, + "probability": 0.9397 + }, + { + "start": 31746.56, + "end": 31747.06, + "probability": 0.9292 + }, + { + "start": 31747.24, + "end": 31748.48, + "probability": 0.9765 + }, + { + "start": 31749.08, + "end": 31752.82, + "probability": 0.406 + }, + { + "start": 31753.42, + "end": 31757.24, + "probability": 0.6661 + }, + { + "start": 31757.48, + "end": 31761.54, + "probability": 0.9499 + }, + { + "start": 31761.54, + "end": 31765.5, + "probability": 0.994 + }, + { + "start": 31766.12, + "end": 31768.8, + "probability": 0.9859 + }, + { + "start": 31768.8, + "end": 31772.16, + "probability": 0.9818 + }, + { + "start": 31772.66, + "end": 31778.16, + "probability": 0.9966 + }, + { + "start": 31778.34, + "end": 31781.62, + "probability": 0.9987 + }, + { + "start": 31781.74, + "end": 31785.66, + "probability": 0.8671 + }, + { + "start": 31786.52, + "end": 31790.74, + "probability": 0.9487 + }, + { + "start": 31791.14, + "end": 31791.7, + "probability": 0.7022 + }, + { + "start": 31791.84, + "end": 31796.4, + "probability": 0.9712 + }, + { + "start": 31796.56, + "end": 31800.32, + "probability": 0.9889 + }, + { + "start": 31800.34, + "end": 31803.96, + "probability": 0.9713 + }, + { + "start": 31804.58, + "end": 31805.02, + "probability": 0.8132 + }, + { + "start": 31805.72, + "end": 31807.22, + "probability": 0.9884 + }, + { + "start": 31807.74, + "end": 31810.36, + "probability": 0.8418 + }, + { + "start": 31810.52, + "end": 31814.36, + "probability": 0.9274 + }, + { + "start": 31814.36, + "end": 31817.3, + "probability": 0.9863 + }, + { + "start": 31817.82, + "end": 31822.24, + "probability": 0.993 + }, + { + "start": 31822.36, + "end": 31823.04, + "probability": 0.5236 + }, + { + "start": 31824.44, + "end": 31826.22, + "probability": 0.4109 + }, + { + "start": 31827.08, + "end": 31828.42, + "probability": 0.7407 + }, + { + "start": 31828.46, + "end": 31830.96, + "probability": 0.9201 + }, + { + "start": 31831.08, + "end": 31835.78, + "probability": 0.9152 + }, + { + "start": 31839.74, + "end": 31842.26, + "probability": 0.949 + }, + { + "start": 31842.32, + "end": 31846.36, + "probability": 0.8277 + }, + { + "start": 31846.9, + "end": 31851.24, + "probability": 0.9927 + }, + { + "start": 31851.68, + "end": 31856.48, + "probability": 0.9912 + }, + { + "start": 31857.48, + "end": 31860.76, + "probability": 0.8659 + }, + { + "start": 31860.76, + "end": 31863.36, + "probability": 0.9844 + }, + { + "start": 31863.68, + "end": 31866.56, + "probability": 0.9335 + }, + { + "start": 31866.96, + "end": 31869.42, + "probability": 0.8802 + }, + { + "start": 31869.94, + "end": 31872.74, + "probability": 0.9595 + }, + { + "start": 31872.88, + "end": 31874.48, + "probability": 0.8184 + }, + { + "start": 31875.82, + "end": 31877.5, + "probability": 0.9121 + }, + { + "start": 31877.72, + "end": 31880.72, + "probability": 0.9888 + }, + { + "start": 31880.72, + "end": 31884.26, + "probability": 0.9757 + }, + { + "start": 31884.86, + "end": 31885.8, + "probability": 0.8485 + }, + { + "start": 31887.36, + "end": 31890.5, + "probability": 0.9777 + }, + { + "start": 31890.84, + "end": 31892.94, + "probability": 0.8316 + }, + { + "start": 31893.02, + "end": 31893.82, + "probability": 0.5928 + }, + { + "start": 31893.86, + "end": 31893.96, + "probability": 0.6722 + }, + { + "start": 31894.76, + "end": 31897.8, + "probability": 0.8623 + }, + { + "start": 31898.7, + "end": 31900.12, + "probability": 0.6641 + }, + { + "start": 31900.26, + "end": 31904.8, + "probability": 0.9422 + }, + { + "start": 31904.84, + "end": 31907.72, + "probability": 0.9864 + }, + { + "start": 31908.6, + "end": 31910.44, + "probability": 0.816 + }, + { + "start": 31911.36, + "end": 31913.78, + "probability": 0.9084 + }, + { + "start": 31913.86, + "end": 31914.5, + "probability": 0.8999 + }, + { + "start": 31914.54, + "end": 31918.84, + "probability": 0.8741 + }, + { + "start": 31919.06, + "end": 31920.48, + "probability": 0.6747 + }, + { + "start": 31920.6, + "end": 31922.4, + "probability": 0.8853 + }, + { + "start": 31923.2, + "end": 31927.66, + "probability": 0.8435 + }, + { + "start": 31928.06, + "end": 31928.83, + "probability": 0.894 + }, + { + "start": 31929.4, + "end": 31931.54, + "probability": 0.9819 + }, + { + "start": 31931.7, + "end": 31934.52, + "probability": 0.9827 + }, + { + "start": 31934.56, + "end": 31937.3, + "probability": 0.9928 + }, + { + "start": 31937.7, + "end": 31940.28, + "probability": 0.9771 + }, + { + "start": 31940.9, + "end": 31943.5, + "probability": 0.7747 + }, + { + "start": 31943.66, + "end": 31944.28, + "probability": 0.675 + }, + { + "start": 31945.32, + "end": 31949.36, + "probability": 0.9714 + }, + { + "start": 31949.5, + "end": 31951.56, + "probability": 0.9933 + }, + { + "start": 31951.88, + "end": 31952.3, + "probability": 0.9134 + }, + { + "start": 31952.94, + "end": 31954.42, + "probability": 0.7417 + }, + { + "start": 31954.64, + "end": 31958.54, + "probability": 0.9849 + }, + { + "start": 31958.54, + "end": 31960.96, + "probability": 0.9216 + }, + { + "start": 31961.28, + "end": 31965.46, + "probability": 0.915 + }, + { + "start": 31966.08, + "end": 31967.14, + "probability": 0.4575 + }, + { + "start": 31967.22, + "end": 31967.96, + "probability": 0.9514 + }, + { + "start": 31968.16, + "end": 31969.32, + "probability": 0.9932 + }, + { + "start": 31970.32, + "end": 31973.42, + "probability": 0.9962 + }, + { + "start": 31974.24, + "end": 31976.68, + "probability": 0.9879 + }, + { + "start": 31976.8, + "end": 31978.82, + "probability": 0.6673 + }, + { + "start": 31978.82, + "end": 31982.18, + "probability": 0.9862 + }, + { + "start": 31983.04, + "end": 31985.4, + "probability": 0.7283 + }, + { + "start": 31985.54, + "end": 31987.54, + "probability": 0.9951 + }, + { + "start": 31987.62, + "end": 31988.96, + "probability": 0.8358 + }, + { + "start": 31988.98, + "end": 31989.36, + "probability": 0.8525 + }, + { + "start": 31989.82, + "end": 31993.88, + "probability": 0.7948 + }, + { + "start": 31994.52, + "end": 31998.78, + "probability": 0.9821 + }, + { + "start": 31998.9, + "end": 32000.2, + "probability": 0.7706 + }, + { + "start": 32001.2, + "end": 32004.44, + "probability": 0.8598 + }, + { + "start": 32004.52, + "end": 32006.4, + "probability": 0.9265 + }, + { + "start": 32006.48, + "end": 32009.2, + "probability": 0.9697 + }, + { + "start": 32009.76, + "end": 32010.82, + "probability": 0.8923 + }, + { + "start": 32011.7, + "end": 32013.08, + "probability": 0.9337 + }, + { + "start": 32013.54, + "end": 32015.92, + "probability": 0.9297 + }, + { + "start": 32016.02, + "end": 32016.38, + "probability": 0.7808 + }, + { + "start": 32016.56, + "end": 32018.54, + "probability": 0.8353 + }, + { + "start": 32018.54, + "end": 32020.62, + "probability": 0.9214 + }, + { + "start": 32021.18, + "end": 32024.68, + "probability": 0.8206 + }, + { + "start": 32025.36, + "end": 32031.02, + "probability": 0.9249 + }, + { + "start": 32031.02, + "end": 32033.66, + "probability": 0.9931 + }, + { + "start": 32035.54, + "end": 32036.52, + "probability": 0.5355 + }, + { + "start": 32036.68, + "end": 32040.24, + "probability": 0.9289 + }, + { + "start": 32040.48, + "end": 32043.72, + "probability": 0.9088 + }, + { + "start": 32044.24, + "end": 32048.06, + "probability": 0.9301 + }, + { + "start": 32048.68, + "end": 32050.12, + "probability": 0.8496 + }, + { + "start": 32050.26, + "end": 32052.34, + "probability": 0.8735 + }, + { + "start": 32054.0, + "end": 32055.04, + "probability": 0.9293 + }, + { + "start": 32056.46, + "end": 32059.2, + "probability": 0.9882 + }, + { + "start": 32059.51, + "end": 32063.32, + "probability": 0.8168 + }, + { + "start": 32063.32, + "end": 32066.72, + "probability": 0.9359 + }, + { + "start": 32067.24, + "end": 32069.28, + "probability": 0.9879 + }, + { + "start": 32069.42, + "end": 32069.68, + "probability": 0.4667 + }, + { + "start": 32070.12, + "end": 32072.5, + "probability": 0.7934 + }, + { + "start": 32073.24, + "end": 32074.98, + "probability": 0.8919 + }, + { + "start": 32075.58, + "end": 32077.38, + "probability": 0.9335 + }, + { + "start": 32077.44, + "end": 32082.44, + "probability": 0.9282 + }, + { + "start": 32083.66, + "end": 32084.56, + "probability": 0.7004 + }, + { + "start": 32085.74, + "end": 32087.74, + "probability": 0.98 + }, + { + "start": 32088.66, + "end": 32089.16, + "probability": 0.4841 + }, + { + "start": 32090.2, + "end": 32091.78, + "probability": 0.687 + }, + { + "start": 32091.92, + "end": 32093.9, + "probability": 0.8298 + }, + { + "start": 32093.98, + "end": 32095.52, + "probability": 0.9845 + }, + { + "start": 32095.62, + "end": 32098.42, + "probability": 0.9451 + }, + { + "start": 32098.52, + "end": 32101.1, + "probability": 0.9783 + }, + { + "start": 32101.18, + "end": 32103.92, + "probability": 0.7371 + }, + { + "start": 32105.04, + "end": 32107.94, + "probability": 0.9308 + }, + { + "start": 32108.92, + "end": 32111.34, + "probability": 0.9947 + }, + { + "start": 32112.16, + "end": 32113.46, + "probability": 0.9224 + }, + { + "start": 32113.58, + "end": 32115.46, + "probability": 0.9727 + }, + { + "start": 32116.04, + "end": 32122.52, + "probability": 0.805 + }, + { + "start": 32122.58, + "end": 32124.7, + "probability": 0.8383 + }, + { + "start": 32125.42, + "end": 32128.28, + "probability": 0.8777 + }, + { + "start": 32129.5, + "end": 32131.84, + "probability": 0.9727 + }, + { + "start": 32132.48, + "end": 32135.32, + "probability": 0.8234 + }, + { + "start": 32135.32, + "end": 32137.24, + "probability": 0.851 + }, + { + "start": 32137.42, + "end": 32137.86, + "probability": 0.7376 + }, + { + "start": 32138.08, + "end": 32142.14, + "probability": 0.984 + }, + { + "start": 32142.78, + "end": 32146.62, + "probability": 0.9049 + }, + { + "start": 32146.72, + "end": 32148.58, + "probability": 0.9489 + }, + { + "start": 32149.28, + "end": 32152.02, + "probability": 0.9966 + }, + { + "start": 32152.02, + "end": 32154.96, + "probability": 0.7786 + }, + { + "start": 32155.18, + "end": 32157.04, + "probability": 0.908 + }, + { + "start": 32157.4, + "end": 32158.84, + "probability": 0.9972 + }, + { + "start": 32158.98, + "end": 32161.0, + "probability": 0.8831 + }, + { + "start": 32161.42, + "end": 32163.02, + "probability": 0.9644 + }, + { + "start": 32164.04, + "end": 32164.66, + "probability": 0.9063 + }, + { + "start": 32164.82, + "end": 32166.74, + "probability": 0.6984 + }, + { + "start": 32166.74, + "end": 32169.18, + "probability": 0.754 + }, + { + "start": 32170.06, + "end": 32170.8, + "probability": 0.927 + }, + { + "start": 32171.54, + "end": 32171.78, + "probability": 0.4079 + }, + { + "start": 32171.98, + "end": 32176.28, + "probability": 0.9738 + }, + { + "start": 32177.14, + "end": 32179.72, + "probability": 0.9698 + }, + { + "start": 32180.62, + "end": 32181.14, + "probability": 0.5176 + }, + { + "start": 32181.78, + "end": 32182.7, + "probability": 0.8774 + }, + { + "start": 32184.02, + "end": 32184.84, + "probability": 0.9064 + }, + { + "start": 32185.3, + "end": 32187.86, + "probability": 0.7766 + }, + { + "start": 32188.24, + "end": 32190.72, + "probability": 0.5606 + }, + { + "start": 32190.8, + "end": 32192.06, + "probability": 0.7905 + }, + { + "start": 32192.76, + "end": 32194.14, + "probability": 0.9119 + }, + { + "start": 32195.08, + "end": 32199.48, + "probability": 0.8164 + }, + { + "start": 32200.42, + "end": 32201.88, + "probability": 0.6766 + }, + { + "start": 32202.56, + "end": 32203.7, + "probability": 0.9338 + }, + { + "start": 32203.78, + "end": 32205.4, + "probability": 0.9348 + }, + { + "start": 32205.72, + "end": 32206.74, + "probability": 0.7892 + }, + { + "start": 32206.76, + "end": 32207.16, + "probability": 0.9569 + }, + { + "start": 32207.68, + "end": 32210.3, + "probability": 0.744 + }, + { + "start": 32210.56, + "end": 32211.12, + "probability": 0.9836 + }, + { + "start": 32211.86, + "end": 32213.88, + "probability": 0.8568 + }, + { + "start": 32214.34, + "end": 32215.64, + "probability": 0.9893 + }, + { + "start": 32216.54, + "end": 32217.94, + "probability": 0.8059 + }, + { + "start": 32218.5, + "end": 32219.34, + "probability": 0.9727 + }, + { + "start": 32219.9, + "end": 32220.88, + "probability": 0.6934 + }, + { + "start": 32221.84, + "end": 32224.92, + "probability": 0.9559 + }, + { + "start": 32225.58, + "end": 32229.66, + "probability": 0.9847 + }, + { + "start": 32230.2, + "end": 32232.72, + "probability": 0.9405 + }, + { + "start": 32233.08, + "end": 32233.46, + "probability": 0.5531 + }, + { + "start": 32235.98, + "end": 32237.74, + "probability": 0.812 + }, + { + "start": 32238.86, + "end": 32239.72, + "probability": 0.8032 + }, + { + "start": 32239.82, + "end": 32240.6, + "probability": 0.919 + }, + { + "start": 32240.84, + "end": 32243.2, + "probability": 0.8127 + }, + { + "start": 32243.34, + "end": 32244.74, + "probability": 0.4999 + }, + { + "start": 32246.42, + "end": 32247.46, + "probability": 0.7717 + }, + { + "start": 32247.96, + "end": 32248.78, + "probability": 0.6958 + }, + { + "start": 32248.9, + "end": 32249.54, + "probability": 0.4156 + }, + { + "start": 32249.58, + "end": 32252.08, + "probability": 0.7508 + }, + { + "start": 32252.58, + "end": 32253.3, + "probability": 0.4692 + }, + { + "start": 32253.7, + "end": 32255.1, + "probability": 0.7045 + }, + { + "start": 32255.16, + "end": 32256.26, + "probability": 0.9254 + }, + { + "start": 32257.82, + "end": 32261.32, + "probability": 0.8638 + }, + { + "start": 32264.88, + "end": 32269.98, + "probability": 0.4789 + }, + { + "start": 32270.7, + "end": 32273.26, + "probability": 0.2204 + }, + { + "start": 32274.4, + "end": 32275.74, + "probability": 0.9464 + }, + { + "start": 32279.04, + "end": 32280.94, + "probability": 0.0001 + }, + { + "start": 32291.74, + "end": 32292.34, + "probability": 0.1761 + }, + { + "start": 32292.34, + "end": 32292.7, + "probability": 0.4249 + }, + { + "start": 32292.92, + "end": 32295.22, + "probability": 0.8264 + }, + { + "start": 32295.74, + "end": 32296.6, + "probability": 0.9352 + }, + { + "start": 32300.14, + "end": 32301.06, + "probability": 0.75 + }, + { + "start": 32301.22, + "end": 32303.08, + "probability": 0.9703 + }, + { + "start": 32303.9, + "end": 32307.76, + "probability": 0.5829 + }, + { + "start": 32308.04, + "end": 32309.14, + "probability": 0.6172 + }, + { + "start": 32309.22, + "end": 32309.8, + "probability": 0.8845 + }, + { + "start": 32312.36, + "end": 32318.2, + "probability": 0.4983 + }, + { + "start": 32319.52, + "end": 32319.52, + "probability": 0.2007 + }, + { + "start": 32319.52, + "end": 32323.22, + "probability": 0.4867 + }, + { + "start": 32323.6, + "end": 32327.02, + "probability": 0.5897 + }, + { + "start": 32327.82, + "end": 32331.1, + "probability": 0.6333 + }, + { + "start": 32331.94, + "end": 32333.57, + "probability": 0.5272 + }, + { + "start": 32334.94, + "end": 32339.14, + "probability": 0.8694 + }, + { + "start": 32339.7, + "end": 32344.86, + "probability": 0.9857 + }, + { + "start": 32346.42, + "end": 32346.98, + "probability": 0.7655 + }, + { + "start": 32347.2, + "end": 32348.08, + "probability": 0.6967 + }, + { + "start": 32349.06, + "end": 32351.22, + "probability": 0.5137 + }, + { + "start": 32352.04, + "end": 32352.94, + "probability": 0.9213 + }, + { + "start": 32353.34, + "end": 32355.8, + "probability": 0.9325 + }, + { + "start": 32356.02, + "end": 32356.64, + "probability": 0.7091 + }, + { + "start": 32358.22, + "end": 32361.0, + "probability": 0.396 + }, + { + "start": 32361.12, + "end": 32362.28, + "probability": 0.7181 + }, + { + "start": 32362.48, + "end": 32363.46, + "probability": 0.7811 + }, + { + "start": 32363.62, + "end": 32364.44, + "probability": 0.5873 + }, + { + "start": 32364.62, + "end": 32366.04, + "probability": 0.8641 + }, + { + "start": 32366.3, + "end": 32369.0, + "probability": 0.6167 + }, + { + "start": 32369.1, + "end": 32370.72, + "probability": 0.6542 + }, + { + "start": 32371.54, + "end": 32372.62, + "probability": 0.9565 + }, + { + "start": 32373.04, + "end": 32374.69, + "probability": 0.9941 + }, + { + "start": 32375.74, + "end": 32376.62, + "probability": 0.749 + }, + { + "start": 32377.64, + "end": 32377.88, + "probability": 0.0294 + }, + { + "start": 32377.88, + "end": 32379.58, + "probability": 0.6962 + }, + { + "start": 32379.78, + "end": 32381.5, + "probability": 0.8388 + }, + { + "start": 32381.84, + "end": 32383.18, + "probability": 0.6791 + }, + { + "start": 32384.52, + "end": 32385.14, + "probability": 0.5767 + }, + { + "start": 32385.2, + "end": 32385.64, + "probability": 0.782 + }, + { + "start": 32385.74, + "end": 32388.22, + "probability": 0.9668 + }, + { + "start": 32388.22, + "end": 32390.92, + "probability": 0.6201 + }, + { + "start": 32391.28, + "end": 32394.0, + "probability": 0.5526 + }, + { + "start": 32394.0, + "end": 32395.78, + "probability": 0.8332 + }, + { + "start": 32396.56, + "end": 32399.7, + "probability": 0.8562 + }, + { + "start": 32399.94, + "end": 32402.28, + "probability": 0.9731 + }, + { + "start": 32402.8, + "end": 32406.18, + "probability": 0.8523 + }, + { + "start": 32406.72, + "end": 32407.68, + "probability": 0.5658 + }, + { + "start": 32408.2, + "end": 32408.82, + "probability": 0.8352 + }, + { + "start": 32409.36, + "end": 32413.68, + "probability": 0.9582 + }, + { + "start": 32413.78, + "end": 32414.0, + "probability": 0.7687 + }, + { + "start": 32414.5, + "end": 32419.16, + "probability": 0.9366 + }, + { + "start": 32419.16, + "end": 32424.42, + "probability": 0.9271 + }, + { + "start": 32424.48, + "end": 32425.38, + "probability": 0.9743 + }, + { + "start": 32425.98, + "end": 32428.32, + "probability": 0.9941 + }, + { + "start": 32428.94, + "end": 32433.62, + "probability": 0.9768 + }, + { + "start": 32433.62, + "end": 32438.22, + "probability": 0.9977 + }, + { + "start": 32438.44, + "end": 32439.92, + "probability": 0.8205 + }, + { + "start": 32440.88, + "end": 32445.58, + "probability": 0.7355 + }, + { + "start": 32446.22, + "end": 32448.66, + "probability": 0.9408 + }, + { + "start": 32449.8, + "end": 32450.84, + "probability": 0.9737 + }, + { + "start": 32451.38, + "end": 32452.32, + "probability": 0.8037 + }, + { + "start": 32453.16, + "end": 32454.92, + "probability": 0.9957 + }, + { + "start": 32455.06, + "end": 32457.5, + "probability": 0.9823 + }, + { + "start": 32458.14, + "end": 32458.48, + "probability": 0.1929 + }, + { + "start": 32459.4, + "end": 32459.62, + "probability": 0.5536 + }, + { + "start": 32460.38, + "end": 32462.78, + "probability": 0.8107 + }, + { + "start": 32462.78, + "end": 32465.5, + "probability": 0.9923 + }, + { + "start": 32466.08, + "end": 32466.9, + "probability": 0.8506 + }, + { + "start": 32467.12, + "end": 32470.1, + "probability": 0.9394 + }, + { + "start": 32470.18, + "end": 32474.44, + "probability": 0.929 + }, + { + "start": 32474.92, + "end": 32477.3, + "probability": 0.9604 + }, + { + "start": 32477.44, + "end": 32477.9, + "probability": 0.6777 + }, + { + "start": 32478.68, + "end": 32481.26, + "probability": 0.9783 + }, + { + "start": 32481.32, + "end": 32484.06, + "probability": 0.9956 + }, + { + "start": 32484.06, + "end": 32486.36, + "probability": 0.8403 + }, + { + "start": 32486.82, + "end": 32488.72, + "probability": 0.9514 + }, + { + "start": 32489.22, + "end": 32491.68, + "probability": 0.659 + }, + { + "start": 32491.74, + "end": 32492.46, + "probability": 0.6548 + }, + { + "start": 32492.76, + "end": 32497.32, + "probability": 0.815 + }, + { + "start": 32497.32, + "end": 32502.88, + "probability": 0.7549 + }, + { + "start": 32503.32, + "end": 32505.08, + "probability": 0.3877 + }, + { + "start": 32505.16, + "end": 32507.34, + "probability": 0.9946 + }, + { + "start": 32507.46, + "end": 32510.2, + "probability": 0.7472 + }, + { + "start": 32510.26, + "end": 32511.46, + "probability": 0.6651 + }, + { + "start": 32511.6, + "end": 32512.06, + "probability": 0.6662 + }, + { + "start": 32512.14, + "end": 32513.06, + "probability": 0.9441 + }, + { + "start": 32513.5, + "end": 32517.02, + "probability": 0.8499 + }, + { + "start": 32517.56, + "end": 32522.52, + "probability": 0.9856 + }, + { + "start": 32522.64, + "end": 32525.74, + "probability": 0.7759 + }, + { + "start": 32525.74, + "end": 32528.4, + "probability": 0.9023 + }, + { + "start": 32528.94, + "end": 32530.77, + "probability": 0.3793 + }, + { + "start": 32539.18, + "end": 32541.32, + "probability": 0.8757 + }, + { + "start": 32543.97, + "end": 32546.96, + "probability": 0.9351 + }, + { + "start": 32547.38, + "end": 32547.82, + "probability": 0.6789 + }, + { + "start": 32549.94, + "end": 32553.82, + "probability": 0.0186 + }, + { + "start": 32554.72, + "end": 32557.86, + "probability": 0.6468 + }, + { + "start": 32558.38, + "end": 32559.42, + "probability": 0.8039 + }, + { + "start": 32559.56, + "end": 32561.02, + "probability": 0.9754 + }, + { + "start": 32562.72, + "end": 32567.7, + "probability": 0.8565 + }, + { + "start": 32568.22, + "end": 32568.54, + "probability": 0.0424 + }, + { + "start": 32569.36, + "end": 32572.42, + "probability": 0.7761 + }, + { + "start": 32587.62, + "end": 32587.62, + "probability": 0.4629 + }, + { + "start": 32587.62, + "end": 32588.1, + "probability": 0.0372 + }, + { + "start": 32588.1, + "end": 32588.1, + "probability": 0.1882 + }, + { + "start": 32588.1, + "end": 32591.04, + "probability": 0.6093 + }, + { + "start": 32592.54, + "end": 32592.76, + "probability": 0.8945 + }, + { + "start": 32594.32, + "end": 32596.92, + "probability": 0.7999 + }, + { + "start": 32596.92, + "end": 32599.24, + "probability": 0.6127 + }, + { + "start": 32599.52, + "end": 32600.46, + "probability": 0.9807 + }, + { + "start": 32602.8, + "end": 32608.5, + "probability": 0.5113 + }, + { + "start": 32608.62, + "end": 32610.29, + "probability": 0.7426 + }, + { + "start": 32610.52, + "end": 32614.0, + "probability": 0.9478 + }, + { + "start": 32614.06, + "end": 32614.66, + "probability": 0.7174 + }, + { + "start": 32614.74, + "end": 32616.53, + "probability": 0.7757 + }, + { + "start": 32629.26, + "end": 32631.88, + "probability": 0.7667 + }, + { + "start": 32633.9, + "end": 32637.9, + "probability": 0.5938 + }, + { + "start": 32639.08, + "end": 32642.94, + "probability": 0.933 + }, + { + "start": 32644.12, + "end": 32645.9, + "probability": 0.9926 + }, + { + "start": 32645.96, + "end": 32649.24, + "probability": 0.9883 + }, + { + "start": 32649.78, + "end": 32652.86, + "probability": 0.9685 + }, + { + "start": 32654.36, + "end": 32656.54, + "probability": 0.6702 + }, + { + "start": 32656.72, + "end": 32658.68, + "probability": 0.8975 + }, + { + "start": 32659.54, + "end": 32662.02, + "probability": 0.9868 + }, + { + "start": 32662.24, + "end": 32664.8, + "probability": 0.8463 + }, + { + "start": 32665.56, + "end": 32668.36, + "probability": 0.9964 + }, + { + "start": 32668.36, + "end": 32671.28, + "probability": 0.9902 + }, + { + "start": 32671.46, + "end": 32671.74, + "probability": 0.7416 + }, + { + "start": 32673.16, + "end": 32673.54, + "probability": 0.6047 + }, + { + "start": 32673.64, + "end": 32676.34, + "probability": 0.9154 + }, + { + "start": 32676.44, + "end": 32678.26, + "probability": 0.8952 + }, + { + "start": 32679.16, + "end": 32681.06, + "probability": 0.9434 + }, + { + "start": 32681.16, + "end": 32682.61, + "probability": 0.9461 + }, + { + "start": 32683.38, + "end": 32684.18, + "probability": 0.4435 + }, + { + "start": 32684.26, + "end": 32685.04, + "probability": 0.8849 + }, + { + "start": 32685.14, + "end": 32688.98, + "probability": 0.9872 + }, + { + "start": 32689.86, + "end": 32694.18, + "probability": 0.8524 + }, + { + "start": 32695.08, + "end": 32697.88, + "probability": 0.803 + }, + { + "start": 32698.76, + "end": 32702.34, + "probability": 0.9977 + }, + { + "start": 32702.66, + "end": 32705.74, + "probability": 0.9904 + }, + { + "start": 32705.9, + "end": 32706.14, + "probability": 0.8709 + }, + { + "start": 32708.2, + "end": 32711.68, + "probability": 0.9638 + }, + { + "start": 32711.68, + "end": 32715.34, + "probability": 0.9922 + }, + { + "start": 32716.38, + "end": 32719.0, + "probability": 0.9019 + }, + { + "start": 32719.72, + "end": 32722.64, + "probability": 0.9946 + }, + { + "start": 32723.7, + "end": 32728.44, + "probability": 0.925 + }, + { + "start": 32729.4, + "end": 32732.36, + "probability": 0.9839 + }, + { + "start": 32732.36, + "end": 32735.7, + "probability": 0.8523 + }, + { + "start": 32736.24, + "end": 32736.9, + "probability": 0.5945 + }, + { + "start": 32737.46, + "end": 32740.42, + "probability": 0.9351 + }, + { + "start": 32741.5, + "end": 32744.52, + "probability": 0.9799 + }, + { + "start": 32745.68, + "end": 32748.26, + "probability": 0.9814 + }, + { + "start": 32748.26, + "end": 32751.86, + "probability": 0.9911 + }, + { + "start": 32752.52, + "end": 32755.24, + "probability": 0.9967 + }, + { + "start": 32755.3, + "end": 32756.86, + "probability": 0.9269 + }, + { + "start": 32757.56, + "end": 32759.92, + "probability": 0.9396 + }, + { + "start": 32760.76, + "end": 32763.42, + "probability": 0.9143 + }, + { + "start": 32763.48, + "end": 32765.18, + "probability": 0.9744 + }, + { + "start": 32766.26, + "end": 32769.68, + "probability": 0.9346 + }, + { + "start": 32771.42, + "end": 32773.78, + "probability": 0.9775 + }, + { + "start": 32773.78, + "end": 32777.08, + "probability": 0.9441 + }, + { + "start": 32777.84, + "end": 32779.04, + "probability": 0.5227 + }, + { + "start": 32779.28, + "end": 32782.56, + "probability": 0.9578 + }, + { + "start": 32783.18, + "end": 32785.28, + "probability": 0.7716 + }, + { + "start": 32786.6, + "end": 32789.36, + "probability": 0.9332 + }, + { + "start": 32790.2, + "end": 32792.36, + "probability": 0.8857 + }, + { + "start": 32792.58, + "end": 32795.0, + "probability": 0.994 + }, + { + "start": 32795.7, + "end": 32798.26, + "probability": 0.9338 + }, + { + "start": 32798.48, + "end": 32801.76, + "probability": 0.9756 + }, + { + "start": 32802.88, + "end": 32804.34, + "probability": 0.8481 + }, + { + "start": 32804.74, + "end": 32808.88, + "probability": 0.9798 + }, + { + "start": 32809.46, + "end": 32811.54, + "probability": 0.9801 + }, + { + "start": 32812.44, + "end": 32814.32, + "probability": 0.7528 + }, + { + "start": 32814.44, + "end": 32817.72, + "probability": 0.9801 + }, + { + "start": 32818.52, + "end": 32819.76, + "probability": 0.8477 + }, + { + "start": 32819.88, + "end": 32826.8, + "probability": 0.585 + }, + { + "start": 32827.04, + "end": 32827.82, + "probability": 0.7757 + }, + { + "start": 32828.06, + "end": 32828.86, + "probability": 0.7645 + }, + { + "start": 32829.68, + "end": 32833.16, + "probability": 0.9029 + }, + { + "start": 32833.92, + "end": 32836.62, + "probability": 0.7013 + }, + { + "start": 32837.36, + "end": 32840.84, + "probability": 0.9868 + }, + { + "start": 32841.56, + "end": 32846.34, + "probability": 0.957 + }, + { + "start": 32846.98, + "end": 32849.52, + "probability": 0.7189 + }, + { + "start": 32850.96, + "end": 32853.2, + "probability": 0.9854 + }, + { + "start": 32854.16, + "end": 32855.34, + "probability": 0.8274 + }, + { + "start": 32856.08, + "end": 32861.92, + "probability": 0.9948 + }, + { + "start": 32862.74, + "end": 32863.28, + "probability": 0.6746 + }, + { + "start": 32863.96, + "end": 32865.12, + "probability": 0.8914 + }, + { + "start": 32865.88, + "end": 32869.64, + "probability": 0.897 + }, + { + "start": 32870.42, + "end": 32871.38, + "probability": 0.9771 + }, + { + "start": 32872.34, + "end": 32874.1, + "probability": 0.9885 + }, + { + "start": 32874.72, + "end": 32877.58, + "probability": 0.8868 + }, + { + "start": 32878.4, + "end": 32880.15, + "probability": 0.9836 + }, + { + "start": 32880.46, + "end": 32883.9, + "probability": 0.7551 + }, + { + "start": 32884.44, + "end": 32885.8, + "probability": 0.7731 + }, + { + "start": 32891.94, + "end": 32892.44, + "probability": 0.4039 + }, + { + "start": 32892.56, + "end": 32893.04, + "probability": 0.3808 + }, + { + "start": 32893.22, + "end": 32894.54, + "probability": 0.9097 + }, + { + "start": 32895.16, + "end": 32897.48, + "probability": 0.8017 + }, + { + "start": 32898.04, + "end": 32899.14, + "probability": 0.9571 + }, + { + "start": 32900.8, + "end": 32902.82, + "probability": 0.9727 + }, + { + "start": 32903.68, + "end": 32904.1, + "probability": 0.8922 + }, + { + "start": 32904.2, + "end": 32904.96, + "probability": 0.6302 + }, + { + "start": 32905.06, + "end": 32908.38, + "probability": 0.9211 + }, + { + "start": 32908.38, + "end": 32911.9, + "probability": 0.5213 + }, + { + "start": 32911.92, + "end": 32912.26, + "probability": 0.6139 + }, + { + "start": 32930.34, + "end": 32930.6, + "probability": 0.475 + }, + { + "start": 32930.62, + "end": 32930.92, + "probability": 0.0107 + }, + { + "start": 32930.92, + "end": 32932.74, + "probability": 0.3628 + }, + { + "start": 32933.38, + "end": 32934.94, + "probability": 0.973 + }, + { + "start": 32935.06, + "end": 32937.77, + "probability": 0.9807 + }, + { + "start": 32937.9, + "end": 32938.36, + "probability": 0.5926 + }, + { + "start": 32938.38, + "end": 32938.78, + "probability": 0.529 + }, + { + "start": 32938.88, + "end": 32939.38, + "probability": 0.5582 + }, + { + "start": 32940.44, + "end": 32945.1, + "probability": 0.0075 + }, + { + "start": 32958.3, + "end": 32958.3, + "probability": 0.0922 + }, + { + "start": 32958.3, + "end": 32959.42, + "probability": 0.2305 + }, + { + "start": 32960.42, + "end": 32962.0, + "probability": 0.6762 + }, + { + "start": 32962.22, + "end": 32964.6, + "probability": 0.9866 + }, + { + "start": 32965.54, + "end": 32966.54, + "probability": 0.5447 + }, + { + "start": 32966.72, + "end": 32970.48, + "probability": 0.8828 + }, + { + "start": 32970.58, + "end": 32973.04, + "probability": 0.8333 + }, + { + "start": 32973.78, + "end": 32975.92, + "probability": 0.3036 + }, + { + "start": 32976.48, + "end": 32977.86, + "probability": 0.751 + }, + { + "start": 32978.02, + "end": 32978.9, + "probability": 0.7671 + }, + { + "start": 32979.5, + "end": 32981.86, + "probability": 0.7782 + }, + { + "start": 32981.9, + "end": 32982.3, + "probability": 0.8493 + }, + { + "start": 32985.54, + "end": 32986.13, + "probability": 0.1007 + }, + { + "start": 32987.66, + "end": 32989.34, + "probability": 0.922 + }, + { + "start": 32990.96, + "end": 32994.0, + "probability": 0.7855 + }, + { + "start": 32995.18, + "end": 32997.76, + "probability": 0.9271 + }, + { + "start": 32998.42, + "end": 33000.18, + "probability": 0.9269 + }, + { + "start": 33000.44, + "end": 33001.02, + "probability": 0.6916 + }, + { + "start": 33001.58, + "end": 33001.96, + "probability": 0.6361 + }, + { + "start": 33002.38, + "end": 33002.84, + "probability": 0.8739 + }, + { + "start": 33003.84, + "end": 33005.6, + "probability": 0.6116 + }, + { + "start": 33007.1, + "end": 33010.22, + "probability": 0.9947 + }, + { + "start": 33010.22, + "end": 33012.8, + "probability": 0.9435 + }, + { + "start": 33013.6, + "end": 33016.92, + "probability": 0.9924 + }, + { + "start": 33017.18, + "end": 33020.32, + "probability": 0.9969 + }, + { + "start": 33020.92, + "end": 33024.8, + "probability": 0.9686 + }, + { + "start": 33025.62, + "end": 33029.54, + "probability": 0.9904 + }, + { + "start": 33029.54, + "end": 33032.96, + "probability": 0.9989 + }, + { + "start": 33033.8, + "end": 33035.99, + "probability": 0.8139 + }, + { + "start": 33036.8, + "end": 33038.44, + "probability": 0.3451 + }, + { + "start": 33038.8, + "end": 33042.56, + "probability": 0.994 + }, + { + "start": 33043.16, + "end": 33046.58, + "probability": 0.9904 + }, + { + "start": 33047.22, + "end": 33050.14, + "probability": 0.9962 + }, + { + "start": 33050.88, + "end": 33056.02, + "probability": 0.9916 + }, + { + "start": 33057.1, + "end": 33062.7, + "probability": 0.991 + }, + { + "start": 33062.7, + "end": 33065.94, + "probability": 0.9652 + }, + { + "start": 33066.84, + "end": 33067.52, + "probability": 0.9 + }, + { + "start": 33068.34, + "end": 33072.16, + "probability": 0.9598 + }, + { + "start": 33072.86, + "end": 33076.06, + "probability": 0.9702 + }, + { + "start": 33076.72, + "end": 33079.34, + "probability": 0.9464 + }, + { + "start": 33080.34, + "end": 33083.12, + "probability": 0.9861 + }, + { + "start": 33083.12, + "end": 33085.68, + "probability": 0.9953 + }, + { + "start": 33086.46, + "end": 33088.62, + "probability": 0.9909 + }, + { + "start": 33089.22, + "end": 33090.66, + "probability": 0.8991 + }, + { + "start": 33091.18, + "end": 33093.66, + "probability": 0.894 + }, + { + "start": 33094.42, + "end": 33095.2, + "probability": 0.9133 + }, + { + "start": 33095.8, + "end": 33096.48, + "probability": 0.5679 + }, + { + "start": 33096.62, + "end": 33097.64, + "probability": 0.9912 + }, + { + "start": 33098.02, + "end": 33101.62, + "probability": 0.9606 + }, + { + "start": 33102.14, + "end": 33106.88, + "probability": 0.95 + }, + { + "start": 33107.68, + "end": 33108.84, + "probability": 0.9958 + }, + { + "start": 33109.56, + "end": 33112.5, + "probability": 0.8819 + }, + { + "start": 33112.5, + "end": 33115.16, + "probability": 0.9882 + }, + { + "start": 33115.74, + "end": 33118.7, + "probability": 0.8935 + }, + { + "start": 33119.1, + "end": 33119.54, + "probability": 0.364 + }, + { + "start": 33119.56, + "end": 33120.44, + "probability": 0.5083 + }, + { + "start": 33120.72, + "end": 33122.58, + "probability": 0.9182 + }, + { + "start": 33123.36, + "end": 33130.46, + "probability": 0.8783 + }, + { + "start": 33131.0, + "end": 33135.13, + "probability": 0.9153 + }, + { + "start": 33136.32, + "end": 33140.4, + "probability": 0.7605 + }, + { + "start": 33140.4, + "end": 33147.12, + "probability": 0.9962 + }, + { + "start": 33147.88, + "end": 33148.28, + "probability": 0.6821 + }, + { + "start": 33148.98, + "end": 33151.7, + "probability": 0.8594 + }, + { + "start": 33152.46, + "end": 33154.6, + "probability": 0.9918 + }, + { + "start": 33155.36, + "end": 33156.6, + "probability": 0.7212 + }, + { + "start": 33156.78, + "end": 33161.02, + "probability": 0.9956 + }, + { + "start": 33161.02, + "end": 33165.98, + "probability": 0.9919 + }, + { + "start": 33167.1, + "end": 33168.58, + "probability": 0.4916 + }, + { + "start": 33169.28, + "end": 33171.36, + "probability": 0.6294 + }, + { + "start": 33171.44, + "end": 33173.38, + "probability": 0.9797 + }, + { + "start": 33173.82, + "end": 33176.4, + "probability": 0.9945 + }, + { + "start": 33176.52, + "end": 33177.02, + "probability": 0.9417 + }, + { + "start": 33178.28, + "end": 33180.76, + "probability": 0.9443 + }, + { + "start": 33180.94, + "end": 33184.22, + "probability": 0.8463 + }, + { + "start": 33184.88, + "end": 33187.0, + "probability": 0.8604 + }, + { + "start": 33187.0, + "end": 33189.36, + "probability": 0.9901 + }, + { + "start": 33190.26, + "end": 33195.46, + "probability": 0.9644 + }, + { + "start": 33196.12, + "end": 33201.34, + "probability": 0.9629 + }, + { + "start": 33202.06, + "end": 33204.4, + "probability": 0.8346 + }, + { + "start": 33205.16, + "end": 33207.96, + "probability": 0.7386 + }, + { + "start": 33208.6, + "end": 33212.94, + "probability": 0.9825 + }, + { + "start": 33213.58, + "end": 33214.98, + "probability": 0.9653 + }, + { + "start": 33215.9, + "end": 33216.74, + "probability": 0.7473 + }, + { + "start": 33216.9, + "end": 33219.82, + "probability": 0.8747 + }, + { + "start": 33220.54, + "end": 33223.36, + "probability": 0.9864 + }, + { + "start": 33224.22, + "end": 33227.14, + "probability": 0.8861 + }, + { + "start": 33227.36, + "end": 33230.4, + "probability": 0.9574 + }, + { + "start": 33231.26, + "end": 33232.58, + "probability": 0.9852 + }, + { + "start": 33233.28, + "end": 33234.4, + "probability": 0.6892 + }, + { + "start": 33235.22, + "end": 33235.84, + "probability": 0.8092 + }, + { + "start": 33235.9, + "end": 33239.7, + "probability": 0.9486 + }, + { + "start": 33240.5, + "end": 33242.2, + "probability": 0.7472 + }, + { + "start": 33243.08, + "end": 33245.06, + "probability": 0.9963 + }, + { + "start": 33245.96, + "end": 33247.4, + "probability": 0.8972 + }, + { + "start": 33248.24, + "end": 33248.88, + "probability": 0.63 + }, + { + "start": 33249.36, + "end": 33252.22, + "probability": 0.9893 + }, + { + "start": 33252.96, + "end": 33254.68, + "probability": 0.707 + }, + { + "start": 33254.86, + "end": 33255.39, + "probability": 0.4341 + }, + { + "start": 33256.02, + "end": 33257.34, + "probability": 0.805 + }, + { + "start": 33257.82, + "end": 33259.28, + "probability": 0.6052 + }, + { + "start": 33259.46, + "end": 33260.96, + "probability": 0.6995 + }, + { + "start": 33261.0, + "end": 33261.84, + "probability": 0.9826 + }, + { + "start": 33262.14, + "end": 33264.32, + "probability": 0.9116 + }, + { + "start": 33265.82, + "end": 33267.26, + "probability": 0.8006 + }, + { + "start": 33267.7, + "end": 33269.2, + "probability": 0.5957 + }, + { + "start": 33269.52, + "end": 33271.88, + "probability": 0.9806 + }, + { + "start": 33272.38, + "end": 33274.36, + "probability": 0.9622 + }, + { + "start": 33275.12, + "end": 33276.3, + "probability": 0.9907 + }, + { + "start": 33276.7, + "end": 33278.8, + "probability": 0.973 + }, + { + "start": 33279.22, + "end": 33282.48, + "probability": 0.9888 + }, + { + "start": 33282.9, + "end": 33283.94, + "probability": 0.7402 + }, + { + "start": 33284.46, + "end": 33286.4, + "probability": 0.98 + }, + { + "start": 33286.48, + "end": 33287.64, + "probability": 0.6685 + }, + { + "start": 33288.08, + "end": 33291.56, + "probability": 0.5115 + }, + { + "start": 33292.34, + "end": 33293.84, + "probability": 0.7326 + }, + { + "start": 33294.78, + "end": 33296.36, + "probability": 0.9371 + }, + { + "start": 33297.36, + "end": 33299.7, + "probability": 0.7681 + }, + { + "start": 33300.36, + "end": 33301.82, + "probability": 0.6252 + }, + { + "start": 33301.82, + "end": 33302.54, + "probability": 0.7644 + }, + { + "start": 33302.58, + "end": 33305.14, + "probability": 0.7919 + }, + { + "start": 33305.32, + "end": 33307.52, + "probability": 0.9253 + }, + { + "start": 33308.22, + "end": 33309.9, + "probability": 0.0996 + }, + { + "start": 33310.8, + "end": 33311.72, + "probability": 0.6015 + }, + { + "start": 33311.8, + "end": 33312.24, + "probability": 0.6357 + }, + { + "start": 33312.56, + "end": 33312.96, + "probability": 0.7466 + }, + { + "start": 33316.08, + "end": 33317.64, + "probability": 0.6776 + }, + { + "start": 33341.52, + "end": 33341.59, + "probability": 0.0048 + }, + { + "start": 33341.92, + "end": 33343.32, + "probability": 0.4784 + }, + { + "start": 33343.46, + "end": 33344.72, + "probability": 0.6567 + }, + { + "start": 33347.62, + "end": 33350.42, + "probability": 0.8965 + }, + { + "start": 33351.2, + "end": 33352.48, + "probability": 0.8535 + }, + { + "start": 33352.88, + "end": 33353.4, + "probability": 0.5565 + }, + { + "start": 33353.42, + "end": 33353.84, + "probability": 0.6313 + }, + { + "start": 33353.84, + "end": 33354.0, + "probability": 0.9195 + }, + { + "start": 33354.7, + "end": 33355.96, + "probability": 0.0429 + }, + { + "start": 33377.9, + "end": 33382.9, + "probability": 0.1364 + }, + { + "start": 33386.77, + "end": 33389.44, + "probability": 0.3513 + }, + { + "start": 33391.51, + "end": 33396.52, + "probability": 0.5819 + }, + { + "start": 33397.22, + "end": 33401.56, + "probability": 0.7347 + }, + { + "start": 33416.72, + "end": 33418.64, + "probability": 0.2348 + }, + { + "start": 33418.64, + "end": 33418.66, + "probability": 0.0853 + }, + { + "start": 33418.66, + "end": 33418.66, + "probability": 0.1724 + }, + { + "start": 33418.66, + "end": 33418.66, + "probability": 0.1514 + }, + { + "start": 33418.66, + "end": 33419.54, + "probability": 0.4506 + }, + { + "start": 33419.54, + "end": 33424.36, + "probability": 0.0278 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.0, + "end": 33425.0, + "probability": 0.0 + }, + { + "start": 33425.12, + "end": 33428.08, + "probability": 0.532 + }, + { + "start": 33428.88, + "end": 33429.96, + "probability": 0.5988 + }, + { + "start": 33430.14, + "end": 33430.7, + "probability": 0.8263 + }, + { + "start": 33433.4, + "end": 33434.1, + "probability": 0.7224 + }, + { + "start": 33435.58, + "end": 33436.23, + "probability": 0.7839 + }, + { + "start": 33436.98, + "end": 33437.9, + "probability": 0.6774 + }, + { + "start": 33438.96, + "end": 33443.48, + "probability": 0.655 + }, + { + "start": 33444.04, + "end": 33446.1, + "probability": 0.3921 + }, + { + "start": 33446.9, + "end": 33449.88, + "probability": 0.9214 + }, + { + "start": 33450.06, + "end": 33456.64, + "probability": 0.9774 + }, + { + "start": 33458.34, + "end": 33462.4, + "probability": 0.9961 + }, + { + "start": 33462.4, + "end": 33466.78, + "probability": 0.9948 + }, + { + "start": 33467.68, + "end": 33470.58, + "probability": 0.9925 + }, + { + "start": 33471.32, + "end": 33474.16, + "probability": 0.9987 + }, + { + "start": 33474.28, + "end": 33476.88, + "probability": 0.9733 + }, + { + "start": 33477.8, + "end": 33478.02, + "probability": 0.5363 + }, + { + "start": 33478.1, + "end": 33481.58, + "probability": 0.9958 + }, + { + "start": 33481.58, + "end": 33485.9, + "probability": 0.9983 + }, + { + "start": 33486.92, + "end": 33491.2, + "probability": 0.9716 + }, + { + "start": 33492.2, + "end": 33494.94, + "probability": 0.9514 + }, + { + "start": 33495.62, + "end": 33499.76, + "probability": 0.9879 + }, + { + "start": 33500.5, + "end": 33500.88, + "probability": 0.8895 + }, + { + "start": 33501.88, + "end": 33506.28, + "probability": 0.9951 + }, + { + "start": 33507.08, + "end": 33508.88, + "probability": 0.9899 + }, + { + "start": 33509.5, + "end": 33512.7, + "probability": 0.9856 + }, + { + "start": 33513.4, + "end": 33519.92, + "probability": 0.9937 + }, + { + "start": 33520.8, + "end": 33525.06, + "probability": 0.8989 + }, + { + "start": 33525.88, + "end": 33527.8, + "probability": 0.9897 + }, + { + "start": 33528.66, + "end": 33530.6, + "probability": 0.9772 + }, + { + "start": 33531.66, + "end": 33534.11, + "probability": 0.9795 + }, + { + "start": 33535.54, + "end": 33536.12, + "probability": 0.8542 + }, + { + "start": 33536.82, + "end": 33539.04, + "probability": 0.9978 + }, + { + "start": 33539.04, + "end": 33542.08, + "probability": 0.9935 + }, + { + "start": 33542.62, + "end": 33543.82, + "probability": 0.824 + }, + { + "start": 33544.78, + "end": 33546.2, + "probability": 0.8509 + }, + { + "start": 33547.32, + "end": 33550.88, + "probability": 0.9955 + }, + { + "start": 33550.88, + "end": 33554.52, + "probability": 0.9285 + }, + { + "start": 33555.5, + "end": 33558.68, + "probability": 0.999 + }, + { + "start": 33559.18, + "end": 33559.54, + "probability": 0.2642 + }, + { + "start": 33560.02, + "end": 33560.79, + "probability": 0.3156 + }, + { + "start": 33560.88, + "end": 33562.98, + "probability": 0.975 + }, + { + "start": 33563.94, + "end": 33566.12, + "probability": 0.9955 + }, + { + "start": 33566.78, + "end": 33572.52, + "probability": 0.9881 + }, + { + "start": 33573.1, + "end": 33573.94, + "probability": 0.9057 + }, + { + "start": 33574.06, + "end": 33574.42, + "probability": 0.9491 + }, + { + "start": 33574.48, + "end": 33575.5, + "probability": 0.9851 + }, + { + "start": 33575.62, + "end": 33576.42, + "probability": 0.8761 + }, + { + "start": 33576.56, + "end": 33577.34, + "probability": 0.7691 + }, + { + "start": 33577.4, + "end": 33581.1, + "probability": 0.9927 + }, + { + "start": 33581.74, + "end": 33583.1, + "probability": 0.9845 + }, + { + "start": 33583.62, + "end": 33584.44, + "probability": 0.9533 + }, + { + "start": 33584.78, + "end": 33589.94, + "probability": 0.985 + }, + { + "start": 33589.94, + "end": 33593.84, + "probability": 0.9597 + }, + { + "start": 33594.74, + "end": 33595.32, + "probability": 0.6606 + }, + { + "start": 33595.96, + "end": 33599.24, + "probability": 0.9768 + }, + { + "start": 33599.24, + "end": 33604.1, + "probability": 0.9875 + }, + { + "start": 33605.18, + "end": 33610.74, + "probability": 0.9876 + }, + { + "start": 33610.84, + "end": 33611.1, + "probability": 0.7959 + }, + { + "start": 33612.02, + "end": 33613.64, + "probability": 0.9245 + }, + { + "start": 33613.7, + "end": 33616.06, + "probability": 0.8521 + }, + { + "start": 33617.1, + "end": 33619.64, + "probability": 0.9055 + }, + { + "start": 33620.24, + "end": 33620.78, + "probability": 0.354 + }, + { + "start": 33621.56, + "end": 33624.34, + "probability": 0.9867 + }, + { + "start": 33625.06, + "end": 33627.76, + "probability": 0.9136 + }, + { + "start": 33627.76, + "end": 33632.58, + "probability": 0.9915 + }, + { + "start": 33633.4, + "end": 33635.94, + "probability": 0.9556 + }, + { + "start": 33636.46, + "end": 33637.74, + "probability": 0.863 + }, + { + "start": 33638.2, + "end": 33639.18, + "probability": 0.8084 + }, + { + "start": 33639.2, + "end": 33639.72, + "probability": 0.5492 + }, + { + "start": 33639.9, + "end": 33640.18, + "probability": 0.7483 + }, + { + "start": 33640.28, + "end": 33640.64, + "probability": 0.7523 + }, + { + "start": 33641.26, + "end": 33643.92, + "probability": 0.9069 + }, + { + "start": 33644.34, + "end": 33646.42, + "probability": 0.7779 + }, + { + "start": 33646.78, + "end": 33647.42, + "probability": 0.8833 + }, + { + "start": 33647.5, + "end": 33653.7, + "probability": 0.9673 + }, + { + "start": 33654.3, + "end": 33659.7, + "probability": 0.981 + }, + { + "start": 33660.24, + "end": 33661.16, + "probability": 0.9023 + }, + { + "start": 33661.98, + "end": 33663.2, + "probability": 0.9521 + }, + { + "start": 33663.84, + "end": 33666.4, + "probability": 0.9187 + }, + { + "start": 33667.02, + "end": 33669.82, + "probability": 0.8831 + }, + { + "start": 33670.24, + "end": 33671.09, + "probability": 0.7215 + }, + { + "start": 33671.38, + "end": 33672.82, + "probability": 0.9829 + }, + { + "start": 33672.92, + "end": 33673.96, + "probability": 0.9043 + }, + { + "start": 33674.44, + "end": 33676.06, + "probability": 0.9913 + }, + { + "start": 33676.86, + "end": 33680.14, + "probability": 0.9221 + }, + { + "start": 33680.14, + "end": 33683.88, + "probability": 0.9806 + }, + { + "start": 33684.02, + "end": 33690.3, + "probability": 0.9929 + }, + { + "start": 33690.82, + "end": 33692.78, + "probability": 0.9665 + }, + { + "start": 33692.9, + "end": 33696.06, + "probability": 0.9741 + }, + { + "start": 33696.7, + "end": 33699.01, + "probability": 0.9874 + }, + { + "start": 33699.49, + "end": 33701.39, + "probability": 0.9969 + }, + { + "start": 33702.09, + "end": 33703.97, + "probability": 0.8838 + }, + { + "start": 33704.43, + "end": 33706.67, + "probability": 0.6895 + }, + { + "start": 33707.21, + "end": 33709.71, + "probability": 0.6125 + }, + { + "start": 33709.89, + "end": 33710.31, + "probability": 0.796 + }, + { + "start": 33710.71, + "end": 33716.51, + "probability": 0.8253 + }, + { + "start": 33717.89, + "end": 33719.35, + "probability": 0.5848 + }, + { + "start": 33719.51, + "end": 33721.81, + "probability": 0.8975 + }, + { + "start": 33722.43, + "end": 33725.01, + "probability": 0.7926 + }, + { + "start": 33725.11, + "end": 33726.65, + "probability": 0.0751 + }, + { + "start": 33726.79, + "end": 33727.25, + "probability": 0.5854 + }, + { + "start": 33727.33, + "end": 33727.69, + "probability": 0.4817 + }, + { + "start": 33744.61, + "end": 33744.95, + "probability": 0.6672 + }, + { + "start": 33744.95, + "end": 33745.13, + "probability": 0.0065 + }, + { + "start": 33745.13, + "end": 33747.31, + "probability": 0.5499 + }, + { + "start": 33747.61, + "end": 33750.41, + "probability": 0.9523 + }, + { + "start": 33750.57, + "end": 33753.69, + "probability": 0.8478 + }, + { + "start": 33753.91, + "end": 33754.37, + "probability": 0.6658 + }, + { + "start": 33754.97, + "end": 33755.35, + "probability": 0.2683 + }, + { + "start": 33755.37, + "end": 33755.81, + "probability": 0.6972 + }, + { + "start": 33778.7, + "end": 33782.29, + "probability": 0.1301 + }, + { + "start": 33782.85, + "end": 33784.69, + "probability": 0.0878 + }, + { + "start": 33784.93, + "end": 33786.09, + "probability": 0.0151 + }, + { + "start": 33787.69, + "end": 33788.43, + "probability": 0.4696 + }, + { + "start": 33788.43, + "end": 33793.33, + "probability": 0.6274 + }, + { + "start": 33795.41, + "end": 33796.51, + "probability": 0.6374 + }, + { + "start": 33797.21, + "end": 33798.11, + "probability": 0.0708 + }, + { + "start": 33798.11, + "end": 33799.27, + "probability": 0.4539 + }, + { + "start": 33799.87, + "end": 33801.39, + "probability": 0.1467 + }, + { + "start": 33803.03, + "end": 33805.45, + "probability": 0.0231 + }, + { + "start": 33806.01, + "end": 33807.63, + "probability": 0.0138 + }, + { + "start": 33811.89, + "end": 33813.75, + "probability": 0.0191 + }, + { + "start": 33815.15, + "end": 33816.55, + "probability": 0.023 + }, + { + "start": 33817.79, + "end": 33819.63, + "probability": 0.0882 + }, + { + "start": 33820.75, + "end": 33824.78, + "probability": 0.0515 + }, + { + "start": 33826.53, + "end": 33827.99, + "probability": 0.1005 + }, + { + "start": 33828.89, + "end": 33830.71, + "probability": 0.2104 + }, + { + "start": 33831.0, + "end": 33831.0, + "probability": 0.0 + }, + { + "start": 33831.0, + "end": 33831.0, + "probability": 0.0 + }, + { + "start": 33831.0, + "end": 33831.0, + "probability": 0.0 + }, + { + "start": 33831.0, + "end": 33831.0, + "probability": 0.0 + }, + { + "start": 33831.22, + "end": 33833.54, + "probability": 0.2388 + }, + { + "start": 33833.54, + "end": 33833.54, + "probability": 0.3063 + }, + { + "start": 33833.54, + "end": 33833.54, + "probability": 0.0664 + }, + { + "start": 33833.54, + "end": 33834.06, + "probability": 0.6644 + }, + { + "start": 33835.22, + "end": 33837.82, + "probability": 0.8092 + }, + { + "start": 33839.3, + "end": 33841.56, + "probability": 0.7452 + }, + { + "start": 33842.88, + "end": 33843.44, + "probability": 0.7716 + }, + { + "start": 33844.0, + "end": 33845.24, + "probability": 0.786 + }, + { + "start": 33846.9, + "end": 33848.4, + "probability": 0.794 + }, + { + "start": 33849.02, + "end": 33855.84, + "probability": 0.9789 + }, + { + "start": 33856.78, + "end": 33859.24, + "probability": 0.9983 + }, + { + "start": 33861.54, + "end": 33862.84, + "probability": 0.9303 + }, + { + "start": 33863.6, + "end": 33865.34, + "probability": 0.8127 + }, + { + "start": 33865.78, + "end": 33866.52, + "probability": 0.7409 + }, + { + "start": 33866.62, + "end": 33869.46, + "probability": 0.9685 + }, + { + "start": 33870.04, + "end": 33871.72, + "probability": 0.9246 + }, + { + "start": 33872.28, + "end": 33875.7, + "probability": 0.9619 + }, + { + "start": 33875.7, + "end": 33878.74, + "probability": 0.9929 + }, + { + "start": 33879.64, + "end": 33883.58, + "probability": 0.9817 + }, + { + "start": 33883.58, + "end": 33886.7, + "probability": 0.983 + }, + { + "start": 33886.92, + "end": 33889.08, + "probability": 0.9086 + }, + { + "start": 33890.32, + "end": 33890.84, + "probability": 0.6339 + }, + { + "start": 33890.96, + "end": 33895.32, + "probability": 0.918 + }, + { + "start": 33895.46, + "end": 33897.56, + "probability": 0.7714 + }, + { + "start": 33897.76, + "end": 33899.72, + "probability": 0.889 + }, + { + "start": 33899.86, + "end": 33901.34, + "probability": 0.7665 + }, + { + "start": 33902.62, + "end": 33906.74, + "probability": 0.9746 + }, + { + "start": 33907.48, + "end": 33911.64, + "probability": 0.9614 + }, + { + "start": 33912.88, + "end": 33913.78, + "probability": 0.9165 + }, + { + "start": 33917.2, + "end": 33921.04, + "probability": 0.9873 + }, + { + "start": 33921.84, + "end": 33925.54, + "probability": 0.9651 + }, + { + "start": 33925.66, + "end": 33932.0, + "probability": 0.9744 + }, + { + "start": 33932.32, + "end": 33933.16, + "probability": 0.7171 + }, + { + "start": 33933.58, + "end": 33938.98, + "probability": 0.9391 + }, + { + "start": 33940.5, + "end": 33941.42, + "probability": 0.6381 + }, + { + "start": 33941.66, + "end": 33943.38, + "probability": 0.6312 + }, + { + "start": 33943.56, + "end": 33945.48, + "probability": 0.9854 + }, + { + "start": 33946.54, + "end": 33951.5, + "probability": 0.9136 + }, + { + "start": 33951.84, + "end": 33958.92, + "probability": 0.9414 + }, + { + "start": 33960.34, + "end": 33965.74, + "probability": 0.7568 + }, + { + "start": 33966.0, + "end": 33966.0, + "probability": 0.5808 + }, + { + "start": 33966.0, + "end": 33966.9, + "probability": 0.7804 + }, + { + "start": 33967.1, + "end": 33969.26, + "probability": 0.9698 + }, + { + "start": 33970.34, + "end": 33972.04, + "probability": 0.9405 + }, + { + "start": 33972.14, + "end": 33973.24, + "probability": 0.8265 + }, + { + "start": 33973.32, + "end": 33977.1, + "probability": 0.9373 + }, + { + "start": 33978.52, + "end": 33983.03, + "probability": 0.9976 + }, + { + "start": 33983.17, + "end": 33985.79, + "probability": 0.9468 + }, + { + "start": 33986.35, + "end": 33989.05, + "probability": 0.7328 + }, + { + "start": 33989.27, + "end": 33989.49, + "probability": 0.7573 + }, + { + "start": 33990.41, + "end": 33992.15, + "probability": 0.8067 + }, + { + "start": 33992.27, + "end": 33993.33, + "probability": 0.814 + }, + { + "start": 33994.15, + "end": 33995.57, + "probability": 0.9368 + }, + { + "start": 33995.71, + "end": 33998.99, + "probability": 0.8647 + }, + { + "start": 33998.99, + "end": 34001.19, + "probability": 0.5956 + }, + { + "start": 34002.43, + "end": 34003.61, + "probability": 0.8603 + }, + { + "start": 34004.67, + "end": 34005.09, + "probability": 0.2841 + }, + { + "start": 34005.41, + "end": 34007.45, + "probability": 0.8774 + }, + { + "start": 34009.19, + "end": 34009.81, + "probability": 0.3274 + }, + { + "start": 34010.17, + "end": 34011.59, + "probability": 0.995 + }, + { + "start": 34014.45, + "end": 34016.13, + "probability": 0.8469 + }, + { + "start": 34017.03, + "end": 34019.51, + "probability": 0.9565 + }, + { + "start": 34021.55, + "end": 34022.62, + "probability": 0.9467 + }, + { + "start": 34024.07, + "end": 34025.14, + "probability": 0.9872 + }, + { + "start": 34025.45, + "end": 34028.25, + "probability": 0.4124 + }, + { + "start": 34028.25, + "end": 34028.39, + "probability": 0.7852 + }, + { + "start": 34028.79, + "end": 34030.03, + "probability": 0.6201 + }, + { + "start": 34030.89, + "end": 34032.73, + "probability": 0.9193 + }, + { + "start": 34033.57, + "end": 34035.57, + "probability": 0.7107 + }, + { + "start": 34035.57, + "end": 34038.27, + "probability": 0.8995 + }, + { + "start": 34038.83, + "end": 34042.07, + "probability": 0.7559 + }, + { + "start": 34042.33, + "end": 34044.29, + "probability": 0.548 + }, + { + "start": 34044.41, + "end": 34046.45, + "probability": 0.0933 + }, + { + "start": 34046.67, + "end": 34047.41, + "probability": 0.4888 + }, + { + "start": 34047.89, + "end": 34048.33, + "probability": 0.5956 + }, + { + "start": 34048.37, + "end": 34048.73, + "probability": 0.4149 + }, + { + "start": 34048.75, + "end": 34049.01, + "probability": 0.7317 + }, + { + "start": 34069.99, + "end": 34072.43, + "probability": 0.1649 + }, + { + "start": 34073.17, + "end": 34075.07, + "probability": 0.0238 + }, + { + "start": 34075.87, + "end": 34076.71, + "probability": 0.0338 + }, + { + "start": 34079.15, + "end": 34082.33, + "probability": 0.1243 + }, + { + "start": 34085.95, + "end": 34088.85, + "probability": 0.0369 + }, + { + "start": 34092.73, + "end": 34094.03, + "probability": 0.0628 + }, + { + "start": 34096.29, + "end": 34098.41, + "probability": 0.0627 + }, + { + "start": 34098.43, + "end": 34101.01, + "probability": 0.2314 + }, + { + "start": 34101.01, + "end": 34102.45, + "probability": 0.1002 + }, + { + "start": 34116.69, + "end": 34116.73, + "probability": 0.0306 + }, + { + "start": 34116.73, + "end": 34116.73, + "probability": 0.0844 + }, + { + "start": 34116.73, + "end": 34116.87, + "probability": 0.0244 + }, + { + "start": 34116.87, + "end": 34116.97, + "probability": 0.0228 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.0, + "end": 34117.0, + "probability": 0.0 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.1792 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.0474 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.0853 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.3353 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.191 + }, + { + "start": 34117.6, + "end": 34117.6, + "probability": 0.0637 + }, + { + "start": 34117.6, + "end": 34119.14, + "probability": 0.3936 + }, + { + "start": 34119.74, + "end": 34120.72, + "probability": 0.6181 + }, + { + "start": 34120.8, + "end": 34121.94, + "probability": 0.8596 + }, + { + "start": 34122.16, + "end": 34126.12, + "probability": 0.9294 + }, + { + "start": 34126.12, + "end": 34129.38, + "probability": 0.9968 + }, + { + "start": 34129.56, + "end": 34131.5, + "probability": 0.2938 + }, + { + "start": 34132.22, + "end": 34135.38, + "probability": 0.9942 + }, + { + "start": 34135.46, + "end": 34135.92, + "probability": 0.7161 + }, + { + "start": 34136.08, + "end": 34136.58, + "probability": 0.7857 + }, + { + "start": 34136.68, + "end": 34138.2, + "probability": 0.7221 + }, + { + "start": 34139.02, + "end": 34146.18, + "probability": 0.9829 + }, + { + "start": 34146.18, + "end": 34153.1, + "probability": 0.9896 + }, + { + "start": 34153.4, + "end": 34155.32, + "probability": 0.9741 + }, + { + "start": 34155.5, + "end": 34157.2, + "probability": 0.9889 + }, + { + "start": 34157.36, + "end": 34158.18, + "probability": 0.979 + }, + { + "start": 34158.3, + "end": 34159.42, + "probability": 0.9226 + }, + { + "start": 34159.54, + "end": 34160.52, + "probability": 0.8384 + }, + { + "start": 34161.06, + "end": 34167.36, + "probability": 0.9887 + }, + { + "start": 34167.36, + "end": 34173.2, + "probability": 0.9989 + }, + { + "start": 34173.46, + "end": 34180.02, + "probability": 0.9872 + }, + { + "start": 34180.58, + "end": 34183.08, + "probability": 0.9392 + }, + { + "start": 34184.04, + "end": 34184.14, + "probability": 0.3822 + }, + { + "start": 34184.72, + "end": 34187.22, + "probability": 0.998 + }, + { + "start": 34188.0, + "end": 34192.44, + "probability": 0.9771 + }, + { + "start": 34192.66, + "end": 34196.76, + "probability": 0.9699 + }, + { + "start": 34197.86, + "end": 34202.62, + "probability": 0.8727 + }, + { + "start": 34203.14, + "end": 34206.64, + "probability": 0.9686 + }, + { + "start": 34207.69, + "end": 34212.3, + "probability": 0.9943 + }, + { + "start": 34212.76, + "end": 34217.62, + "probability": 0.9903 + }, + { + "start": 34218.34, + "end": 34219.18, + "probability": 0.4124 + }, + { + "start": 34219.42, + "end": 34225.53, + "probability": 0.9871 + }, + { + "start": 34225.86, + "end": 34228.1, + "probability": 0.907 + }, + { + "start": 34228.62, + "end": 34233.44, + "probability": 0.9785 + }, + { + "start": 34234.4, + "end": 34241.62, + "probability": 0.9747 + }, + { + "start": 34243.06, + "end": 34245.82, + "probability": 0.9025 + }, + { + "start": 34246.58, + "end": 34252.95, + "probability": 0.9749 + }, + { + "start": 34253.98, + "end": 34258.5, + "probability": 0.9924 + }, + { + "start": 34258.7, + "end": 34258.84, + "probability": 0.7099 + }, + { + "start": 34258.94, + "end": 34263.34, + "probability": 0.9989 + }, + { + "start": 34263.34, + "end": 34267.48, + "probability": 0.9958 + }, + { + "start": 34268.12, + "end": 34276.52, + "probability": 0.9967 + }, + { + "start": 34277.24, + "end": 34279.74, + "probability": 0.9985 + }, + { + "start": 34280.3, + "end": 34280.96, + "probability": 0.7567 + }, + { + "start": 34281.1, + "end": 34281.54, + "probability": 0.7679 + }, + { + "start": 34281.74, + "end": 34286.48, + "probability": 0.7376 + }, + { + "start": 34286.78, + "end": 34289.38, + "probability": 0.9758 + }, + { + "start": 34289.62, + "end": 34289.8, + "probability": 0.7802 + }, + { + "start": 34291.24, + "end": 34292.9, + "probability": 0.6687 + }, + { + "start": 34293.12, + "end": 34299.58, + "probability": 0.7092 + }, + { + "start": 34300.16, + "end": 34301.07, + "probability": 0.7559 + }, + { + "start": 34302.02, + "end": 34306.32, + "probability": 0.9812 + }, + { + "start": 34306.52, + "end": 34307.9, + "probability": 0.1539 + }, + { + "start": 34308.76, + "end": 34309.5, + "probability": 0.6122 + }, + { + "start": 34309.78, + "end": 34310.2, + "probability": 0.5481 + }, + { + "start": 34310.26, + "end": 34310.58, + "probability": 0.4891 + }, + { + "start": 34312.25, + "end": 34312.43, + "probability": 0.0862 + }, + { + "start": 34333.08, + "end": 34333.28, + "probability": 0.0245 + }, + { + "start": 34333.28, + "end": 34333.28, + "probability": 0.0468 + }, + { + "start": 34333.28, + "end": 34333.28, + "probability": 0.5526 + }, + { + "start": 34333.28, + "end": 34335.34, + "probability": 0.3874 + }, + { + "start": 34335.48, + "end": 34335.96, + "probability": 0.9412 + }, + { + "start": 34336.48, + "end": 34341.16, + "probability": 0.8442 + }, + { + "start": 34342.0, + "end": 34342.84, + "probability": 0.6161 + }, + { + "start": 34342.9, + "end": 34346.34, + "probability": 0.5945 + }, + { + "start": 34347.24, + "end": 34349.0, + "probability": 0.9843 + }, + { + "start": 34349.12, + "end": 34350.6, + "probability": 0.0515 + }, + { + "start": 34351.53, + "end": 34354.36, + "probability": 0.6856 + }, + { + "start": 34354.42, + "end": 34354.64, + "probability": 0.312 + }, + { + "start": 34354.64, + "end": 34356.64, + "probability": 0.5426 + }, + { + "start": 34356.68, + "end": 34357.14, + "probability": 0.8861 + }, + { + "start": 34373.66, + "end": 34375.24, + "probability": 0.6555 + }, + { + "start": 34375.38, + "end": 34375.82, + "probability": 0.6607 + }, + { + "start": 34375.92, + "end": 34377.1, + "probability": 0.958 + }, + { + "start": 34377.44, + "end": 34382.04, + "probability": 0.9894 + }, + { + "start": 34382.4, + "end": 34385.78, + "probability": 0.7278 + }, + { + "start": 34387.27, + "end": 34391.45, + "probability": 0.6752 + }, + { + "start": 34391.6, + "end": 34392.42, + "probability": 0.8389 + }, + { + "start": 34392.48, + "end": 34393.0, + "probability": 0.8675 + }, + { + "start": 34393.08, + "end": 34393.68, + "probability": 0.812 + }, + { + "start": 34393.74, + "end": 34394.44, + "probability": 0.9309 + }, + { + "start": 34394.62, + "end": 34396.94, + "probability": 0.927 + }, + { + "start": 34399.56, + "end": 34406.24, + "probability": 0.9359 + }, + { + "start": 34406.94, + "end": 34411.7, + "probability": 0.9924 + }, + { + "start": 34413.06, + "end": 34417.38, + "probability": 0.9785 + }, + { + "start": 34417.38, + "end": 34420.06, + "probability": 0.9858 + }, + { + "start": 34420.24, + "end": 34422.32, + "probability": 0.9899 + }, + { + "start": 34422.32, + "end": 34426.68, + "probability": 0.9136 + }, + { + "start": 34432.5, + "end": 34438.72, + "probability": 0.9822 + }, + { + "start": 34438.82, + "end": 34440.0, + "probability": 0.6903 + }, + { + "start": 34440.02, + "end": 34445.24, + "probability": 0.8202 + }, + { + "start": 34445.42, + "end": 34446.52, + "probability": 0.6836 + }, + { + "start": 34446.64, + "end": 34449.38, + "probability": 0.9117 + }, + { + "start": 34449.38, + "end": 34452.08, + "probability": 0.7461 + }, + { + "start": 34452.2, + "end": 34455.68, + "probability": 0.9436 + }, + { + "start": 34455.68, + "end": 34458.46, + "probability": 0.9829 + }, + { + "start": 34458.5, + "end": 34459.64, + "probability": 0.7497 + }, + { + "start": 34459.7, + "end": 34461.42, + "probability": 0.4293 + }, + { + "start": 34461.5, + "end": 34466.3, + "probability": 0.939 + }, + { + "start": 34467.22, + "end": 34470.38, + "probability": 0.9927 + }, + { + "start": 34470.38, + "end": 34474.08, + "probability": 0.9894 + }, + { + "start": 34474.62, + "end": 34475.74, + "probability": 0.7704 + }, + { + "start": 34475.8, + "end": 34477.49, + "probability": 0.9875 + }, + { + "start": 34477.68, + "end": 34480.96, + "probability": 0.9678 + }, + { + "start": 34481.46, + "end": 34484.9, + "probability": 0.9573 + }, + { + "start": 34484.9, + "end": 34490.52, + "probability": 0.7565 + }, + { + "start": 34490.52, + "end": 34493.46, + "probability": 0.9996 + }, + { + "start": 34493.56, + "end": 34495.76, + "probability": 0.9937 + }, + { + "start": 34496.48, + "end": 34497.78, + "probability": 0.2906 + }, + { + "start": 34497.86, + "end": 34503.24, + "probability": 0.9927 + }, + { + "start": 34503.62, + "end": 34503.88, + "probability": 0.2322 + }, + { + "start": 34504.1, + "end": 34507.46, + "probability": 0.8787 + }, + { + "start": 34507.94, + "end": 34510.26, + "probability": 0.9504 + }, + { + "start": 34510.26, + "end": 34513.52, + "probability": 0.9957 + }, + { + "start": 34513.66, + "end": 34516.1, + "probability": 0.9711 + }, + { + "start": 34516.2, + "end": 34516.74, + "probability": 0.4514 + }, + { + "start": 34516.82, + "end": 34518.44, + "probability": 0.9371 + }, + { + "start": 34519.0, + "end": 34522.8, + "probability": 0.9907 + }, + { + "start": 34523.4, + "end": 34526.12, + "probability": 0.7445 + }, + { + "start": 34527.36, + "end": 34530.94, + "probability": 0.9854 + }, + { + "start": 34530.94, + "end": 34535.22, + "probability": 0.9993 + }, + { + "start": 34535.5, + "end": 34542.36, + "probability": 0.9766 + }, + { + "start": 34543.08, + "end": 34543.96, + "probability": 0.9072 + }, + { + "start": 34546.64, + "end": 34553.8, + "probability": 0.761 + }, + { + "start": 34555.02, + "end": 34556.08, + "probability": 0.6866 + }, + { + "start": 34556.2, + "end": 34559.28, + "probability": 0.8555 + }, + { + "start": 34559.36, + "end": 34565.38, + "probability": 0.9863 + }, + { + "start": 34565.44, + "end": 34568.78, + "probability": 0.9925 + }, + { + "start": 34569.6, + "end": 34572.22, + "probability": 0.8911 + }, + { + "start": 34572.22, + "end": 34576.76, + "probability": 0.8412 + }, + { + "start": 34576.94, + "end": 34581.12, + "probability": 0.9883 + }, + { + "start": 34581.2, + "end": 34583.42, + "probability": 0.9861 + }, + { + "start": 34583.42, + "end": 34586.0, + "probability": 0.9987 + }, + { + "start": 34586.64, + "end": 34590.02, + "probability": 0.9995 + }, + { + "start": 34590.02, + "end": 34597.58, + "probability": 0.988 + }, + { + "start": 34601.36, + "end": 34602.6, + "probability": 0.659 + }, + { + "start": 34602.86, + "end": 34603.34, + "probability": 0.5276 + }, + { + "start": 34603.96, + "end": 34605.22, + "probability": 0.5342 + }, + { + "start": 34605.3, + "end": 34606.1, + "probability": 0.4478 + }, + { + "start": 34606.48, + "end": 34608.06, + "probability": 0.9941 + }, + { + "start": 34608.76, + "end": 34609.64, + "probability": 0.5017 + }, + { + "start": 34609.76, + "end": 34611.89, + "probability": 0.9571 + }, + { + "start": 34612.01, + "end": 34614.73, + "probability": 0.8739 + }, + { + "start": 34614.85, + "end": 34614.95, + "probability": 0.7002 + }, + { + "start": 34616.33, + "end": 34618.11, + "probability": 0.5429 + }, + { + "start": 34618.39, + "end": 34620.27, + "probability": 0.6471 + }, + { + "start": 34620.33, + "end": 34621.9, + "probability": 0.9171 + }, + { + "start": 34623.55, + "end": 34624.77, + "probability": 0.2034 + }, + { + "start": 34626.08, + "end": 34628.23, + "probability": 0.4956 + }, + { + "start": 34628.75, + "end": 34630.59, + "probability": 0.9473 + }, + { + "start": 34631.21, + "end": 34632.09, + "probability": 0.6128 + }, + { + "start": 34632.95, + "end": 34634.73, + "probability": 0.744 + }, + { + "start": 34636.43, + "end": 34636.53, + "probability": 0.4556 + }, + { + "start": 34636.53, + "end": 34637.45, + "probability": 0.8576 + }, + { + "start": 34637.71, + "end": 34638.61, + "probability": 0.972 + }, + { + "start": 34640.47, + "end": 34641.89, + "probability": 0.7206 + }, + { + "start": 34642.97, + "end": 34644.22, + "probability": 0.6755 + }, + { + "start": 34645.57, + "end": 34645.57, + "probability": 0.1322 + }, + { + "start": 34645.59, + "end": 34646.75, + "probability": 0.6603 + }, + { + "start": 34646.89, + "end": 34646.93, + "probability": 0.2076 + }, + { + "start": 34646.93, + "end": 34648.21, + "probability": 0.7852 + }, + { + "start": 34650.45, + "end": 34650.57, + "probability": 0.0264 + }, + { + "start": 34650.57, + "end": 34650.92, + "probability": 0.3651 + }, + { + "start": 34651.15, + "end": 34654.17, + "probability": 0.7613 + }, + { + "start": 34654.17, + "end": 34656.61, + "probability": 0.666 + }, + { + "start": 34657.41, + "end": 34660.25, + "probability": 0.4165 + }, + { + "start": 34661.23, + "end": 34661.95, + "probability": 0.5409 + }, + { + "start": 34661.95, + "end": 34662.25, + "probability": 0.3365 + }, + { + "start": 34662.33, + "end": 34662.83, + "probability": 0.7081 + }, + { + "start": 34668.23, + "end": 34670.65, + "probability": 0.0503 + }, + { + "start": 34678.7, + "end": 34679.41, + "probability": 0.0427 + }, + { + "start": 34680.93, + "end": 34683.67, + "probability": 0.0223 + }, + { + "start": 34686.81, + "end": 34689.77, + "probability": 0.7497 + }, + { + "start": 34691.91, + "end": 34692.31, + "probability": 0.0284 + }, + { + "start": 34692.67, + "end": 34695.33, + "probability": 0.1725 + }, + { + "start": 34696.16, + "end": 34699.8, + "probability": 0.0871 + }, + { + "start": 34704.75, + "end": 34705.23, + "probability": 0.1327 + }, + { + "start": 34705.23, + "end": 34705.23, + "probability": 0.0988 + }, + { + "start": 34705.23, + "end": 34710.21, + "probability": 0.1151 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.0, + "end": 34752.0, + "probability": 0.0 + }, + { + "start": 34752.66, + "end": 34756.26, + "probability": 0.2712 + }, + { + "start": 34756.72, + "end": 34759.04, + "probability": 0.033 + }, + { + "start": 34767.04, + "end": 34768.8, + "probability": 0.15 + }, + { + "start": 34768.82, + "end": 34772.3, + "probability": 0.0656 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.0, + "end": 34877.0, + "probability": 0.0 + }, + { + "start": 34877.14, + "end": 34880.1, + "probability": 0.8629 + }, + { + "start": 34880.78, + "end": 34881.92, + "probability": 0.8755 + }, + { + "start": 34882.06, + "end": 34882.62, + "probability": 0.677 + }, + { + "start": 34882.7, + "end": 34888.16, + "probability": 0.9894 + }, + { + "start": 34889.54, + "end": 34895.16, + "probability": 0.8656 + }, + { + "start": 34895.72, + "end": 34900.74, + "probability": 0.8816 + }, + { + "start": 34901.26, + "end": 34903.82, + "probability": 0.936 + }, + { + "start": 34904.26, + "end": 34904.94, + "probability": 0.614 + }, + { + "start": 34905.08, + "end": 34909.59, + "probability": 0.9314 + }, + { + "start": 34910.68, + "end": 34913.12, + "probability": 0.9915 + }, + { + "start": 34914.1, + "end": 34921.0, + "probability": 0.9749 + }, + { + "start": 34921.82, + "end": 34923.36, + "probability": 0.7776 + }, + { + "start": 34924.1, + "end": 34925.54, + "probability": 0.4354 + }, + { + "start": 34925.98, + "end": 34930.32, + "probability": 0.9953 + }, + { + "start": 34930.96, + "end": 34933.82, + "probability": 0.846 + }, + { + "start": 34935.3, + "end": 34937.76, + "probability": 0.9941 + }, + { + "start": 34938.3, + "end": 34939.47, + "probability": 0.9681 + }, + { + "start": 34940.34, + "end": 34943.08, + "probability": 0.9858 + }, + { + "start": 34943.3, + "end": 34945.38, + "probability": 0.9968 + }, + { + "start": 34945.98, + "end": 34948.3, + "probability": 0.83 + }, + { + "start": 34949.06, + "end": 34956.62, + "probability": 0.9648 + }, + { + "start": 34957.78, + "end": 34960.78, + "probability": 0.0699 + }, + { + "start": 34961.1, + "end": 34964.14, + "probability": 0.6244 + }, + { + "start": 34964.74, + "end": 34965.6, + "probability": 0.6236 + }, + { + "start": 34965.92, + "end": 34969.94, + "probability": 0.7979 + }, + { + "start": 34970.16, + "end": 34971.12, + "probability": 0.9149 + }, + { + "start": 34972.1, + "end": 34973.96, + "probability": 0.8582 + }, + { + "start": 34974.52, + "end": 34977.49, + "probability": 0.9988 + }, + { + "start": 34977.86, + "end": 34979.36, + "probability": 0.9982 + }, + { + "start": 34979.76, + "end": 34985.14, + "probability": 0.9294 + }, + { + "start": 34985.5, + "end": 34991.06, + "probability": 0.9846 + }, + { + "start": 34991.08, + "end": 34994.88, + "probability": 0.9801 + }, + { + "start": 34995.58, + "end": 34997.44, + "probability": 0.8059 + }, + { + "start": 34997.82, + "end": 35001.3, + "probability": 0.9808 + }, + { + "start": 35001.9, + "end": 35007.48, + "probability": 0.9706 + }, + { + "start": 35008.24, + "end": 35012.0, + "probability": 0.6644 + }, + { + "start": 35012.46, + "end": 35015.28, + "probability": 0.8796 + }, + { + "start": 35015.78, + "end": 35018.94, + "probability": 0.9508 + }, + { + "start": 35019.5, + "end": 35021.94, + "probability": 0.847 + }, + { + "start": 35022.3, + "end": 35024.14, + "probability": 0.9706 + }, + { + "start": 35024.4, + "end": 35024.82, + "probability": 0.8304 + }, + { + "start": 35025.22, + "end": 35026.6, + "probability": 0.5446 + }, + { + "start": 35027.3, + "end": 35028.5, + "probability": 0.804 + }, + { + "start": 35028.56, + "end": 35028.96, + "probability": 0.4829 + }, + { + "start": 35028.98, + "end": 35030.44, + "probability": 0.83 + }, + { + "start": 35030.64, + "end": 35031.14, + "probability": 0.6668 + }, + { + "start": 35041.54, + "end": 35042.18, + "probability": 0.8616 + }, + { + "start": 35043.14, + "end": 35044.22, + "probability": 0.4153 + }, + { + "start": 35044.32, + "end": 35045.12, + "probability": 0.6674 + }, + { + "start": 35045.18, + "end": 35049.38, + "probability": 0.8966 + }, + { + "start": 35049.52, + "end": 35051.4, + "probability": 0.504 + }, + { + "start": 35052.26, + "end": 35054.12, + "probability": 0.9824 + }, + { + "start": 35054.76, + "end": 35057.54, + "probability": 0.8337 + }, + { + "start": 35058.3, + "end": 35060.1, + "probability": 0.9575 + }, + { + "start": 35060.22, + "end": 35064.1, + "probability": 0.9927 + }, + { + "start": 35064.84, + "end": 35067.42, + "probability": 0.9504 + }, + { + "start": 35068.5, + "end": 35072.44, + "probability": 0.1602 + }, + { + "start": 35073.1, + "end": 35073.1, + "probability": 0.0412 + }, + { + "start": 35073.1, + "end": 35073.1, + "probability": 0.0929 + }, + { + "start": 35073.1, + "end": 35073.1, + "probability": 0.1656 + }, + { + "start": 35073.1, + "end": 35074.52, + "probability": 0.174 + }, + { + "start": 35074.55, + "end": 35077.16, + "probability": 0.9932 + }, + { + "start": 35077.2, + "end": 35083.24, + "probability": 0.8081 + }, + { + "start": 35083.78, + "end": 35084.38, + "probability": 0.5232 + }, + { + "start": 35084.44, + "end": 35085.58, + "probability": 0.4609 + }, + { + "start": 35085.94, + "end": 35086.84, + "probability": 0.6678 + }, + { + "start": 35086.92, + "end": 35087.85, + "probability": 0.6868 + }, + { + "start": 35088.42, + "end": 35091.36, + "probability": 0.9766 + }, + { + "start": 35091.84, + "end": 35094.1, + "probability": 0.9351 + }, + { + "start": 35094.32, + "end": 35096.68, + "probability": 0.9398 + }, + { + "start": 35097.1, + "end": 35097.79, + "probability": 0.4158 + }, + { + "start": 35097.96, + "end": 35098.34, + "probability": 0.6738 + }, + { + "start": 35098.4, + "end": 35098.9, + "probability": 0.8582 + }, + { + "start": 35099.16, + "end": 35101.48, + "probability": 0.9561 + }, + { + "start": 35102.02, + "end": 35104.36, + "probability": 0.8242 + }, + { + "start": 35104.76, + "end": 35105.88, + "probability": 0.9231 + }, + { + "start": 35105.92, + "end": 35108.26, + "probability": 0.9893 + }, + { + "start": 35109.02, + "end": 35109.7, + "probability": 0.3131 + }, + { + "start": 35109.8, + "end": 35111.46, + "probability": 0.9053 + }, + { + "start": 35111.56, + "end": 35112.18, + "probability": 0.7687 + }, + { + "start": 35112.44, + "end": 35113.96, + "probability": 0.9433 + }, + { + "start": 35114.9, + "end": 35115.64, + "probability": 0.9576 + }, + { + "start": 35115.72, + "end": 35120.04, + "probability": 0.936 + }, + { + "start": 35120.2, + "end": 35121.4, + "probability": 0.965 + }, + { + "start": 35122.15, + "end": 35126.62, + "probability": 0.9146 + }, + { + "start": 35126.92, + "end": 35128.52, + "probability": 0.933 + }, + { + "start": 35128.78, + "end": 35131.0, + "probability": 0.6964 + }, + { + "start": 35131.16, + "end": 35133.58, + "probability": 0.7861 + }, + { + "start": 35134.26, + "end": 35136.9, + "probability": 0.7425 + }, + { + "start": 35137.5, + "end": 35139.0, + "probability": 0.7415 + }, + { + "start": 35139.26, + "end": 35140.18, + "probability": 0.6867 + }, + { + "start": 35140.26, + "end": 35141.04, + "probability": 0.73 + }, + { + "start": 35141.12, + "end": 35141.86, + "probability": 0.8136 + }, + { + "start": 35141.96, + "end": 35145.08, + "probability": 0.959 + }, + { + "start": 35145.92, + "end": 35147.26, + "probability": 0.9705 + }, + { + "start": 35147.36, + "end": 35149.7, + "probability": 0.9634 + }, + { + "start": 35150.12, + "end": 35152.24, + "probability": 0.4491 + }, + { + "start": 35152.34, + "end": 35153.12, + "probability": 0.7716 + }, + { + "start": 35153.48, + "end": 35155.8, + "probability": 0.9738 + }, + { + "start": 35155.8, + "end": 35159.32, + "probability": 0.9333 + }, + { + "start": 35159.96, + "end": 35161.4, + "probability": 0.8045 + }, + { + "start": 35162.6, + "end": 35163.76, + "probability": 0.8463 + }, + { + "start": 35163.98, + "end": 35164.89, + "probability": 0.709 + }, + { + "start": 35165.02, + "end": 35166.04, + "probability": 0.8484 + }, + { + "start": 35166.28, + "end": 35171.64, + "probability": 0.9415 + }, + { + "start": 35172.66, + "end": 35174.92, + "probability": 0.9653 + }, + { + "start": 35175.54, + "end": 35176.72, + "probability": 0.9753 + }, + { + "start": 35176.8, + "end": 35177.3, + "probability": 0.5463 + }, + { + "start": 35177.4, + "end": 35179.0, + "probability": 0.8369 + }, + { + "start": 35179.4, + "end": 35180.42, + "probability": 0.7528 + }, + { + "start": 35180.88, + "end": 35182.96, + "probability": 0.6815 + }, + { + "start": 35183.0, + "end": 35187.28, + "probability": 0.8778 + }, + { + "start": 35187.36, + "end": 35188.22, + "probability": 0.8025 + }, + { + "start": 35188.26, + "end": 35192.2, + "probability": 0.6465 + }, + { + "start": 35192.2, + "end": 35196.42, + "probability": 0.8675 + }, + { + "start": 35196.5, + "end": 35197.68, + "probability": 0.6475 + }, + { + "start": 35198.18, + "end": 35200.46, + "probability": 0.6248 + }, + { + "start": 35201.84, + "end": 35202.32, + "probability": 0.9668 + }, + { + "start": 35202.4, + "end": 35203.31, + "probability": 0.9795 + }, + { + "start": 35203.44, + "end": 35204.12, + "probability": 0.8839 + }, + { + "start": 35204.18, + "end": 35205.24, + "probability": 0.8946 + }, + { + "start": 35205.28, + "end": 35210.13, + "probability": 0.816 + }, + { + "start": 35210.44, + "end": 35212.22, + "probability": 0.8654 + }, + { + "start": 35212.8, + "end": 35213.54, + "probability": 0.8882 + }, + { + "start": 35213.66, + "end": 35213.98, + "probability": 0.6437 + }, + { + "start": 35215.32, + "end": 35217.02, + "probability": 0.356 + }, + { + "start": 35217.8, + "end": 35220.82, + "probability": 0.6235 + }, + { + "start": 35221.3, + "end": 35225.56, + "probability": 0.6756 + }, + { + "start": 35225.66, + "end": 35227.12, + "probability": 0.7548 + }, + { + "start": 35227.16, + "end": 35227.59, + "probability": 0.2175 + }, + { + "start": 35228.4, + "end": 35229.72, + "probability": 0.8276 + }, + { + "start": 35229.78, + "end": 35230.52, + "probability": 0.8413 + }, + { + "start": 35230.92, + "end": 35231.93, + "probability": 0.9136 + }, + { + "start": 35232.24, + "end": 35233.22, + "probability": 0.9559 + }, + { + "start": 35233.76, + "end": 35234.04, + "probability": 0.6809 + }, + { + "start": 35234.5, + "end": 35235.3, + "probability": 0.9015 + }, + { + "start": 35235.48, + "end": 35237.46, + "probability": 0.9131 + }, + { + "start": 35237.64, + "end": 35238.5, + "probability": 0.949 + }, + { + "start": 35238.84, + "end": 35240.02, + "probability": 0.9461 + }, + { + "start": 35240.34, + "end": 35241.68, + "probability": 0.6832 + }, + { + "start": 35242.74, + "end": 35244.89, + "probability": 0.8176 + }, + { + "start": 35245.3, + "end": 35248.02, + "probability": 0.9114 + }, + { + "start": 35248.2, + "end": 35249.6, + "probability": 0.9166 + }, + { + "start": 35249.68, + "end": 35250.1, + "probability": 0.5659 + }, + { + "start": 35250.64, + "end": 35251.21, + "probability": 0.9866 + }, + { + "start": 35251.82, + "end": 35252.64, + "probability": 0.6248 + }, + { + "start": 35253.1, + "end": 35254.64, + "probability": 0.7234 + }, + { + "start": 35254.9, + "end": 35257.86, + "probability": 0.9535 + }, + { + "start": 35257.86, + "end": 35260.96, + "probability": 0.9203 + }, + { + "start": 35261.1, + "end": 35261.34, + "probability": 0.7284 + }, + { + "start": 35262.48, + "end": 35263.94, + "probability": 0.6863 + }, + { + "start": 35264.02, + "end": 35265.94, + "probability": 0.7276 + }, + { + "start": 35266.28, + "end": 35266.66, + "probability": 0.7264 + }, + { + "start": 35266.76, + "end": 35267.06, + "probability": 0.9798 + }, + { + "start": 35287.66, + "end": 35288.44, + "probability": 0.5932 + }, + { + "start": 35288.48, + "end": 35289.78, + "probability": 0.8787 + }, + { + "start": 35289.96, + "end": 35290.88, + "probability": 0.4822 + }, + { + "start": 35292.06, + "end": 35294.94, + "probability": 0.9327 + }, + { + "start": 35296.28, + "end": 35298.16, + "probability": 0.8439 + }, + { + "start": 35299.12, + "end": 35301.54, + "probability": 0.7131 + }, + { + "start": 35302.48, + "end": 35305.3, + "probability": 0.5945 + }, + { + "start": 35305.76, + "end": 35308.02, + "probability": 0.9845 + }, + { + "start": 35308.9, + "end": 35311.56, + "probability": 0.6654 + }, + { + "start": 35311.76, + "end": 35312.19, + "probability": 0.8191 + }, + { + "start": 35312.52, + "end": 35316.98, + "probability": 0.9637 + }, + { + "start": 35319.32, + "end": 35320.36, + "probability": 0.7233 + }, + { + "start": 35321.22, + "end": 35326.7, + "probability": 0.9548 + }, + { + "start": 35327.16, + "end": 35328.12, + "probability": 0.827 + }, + { + "start": 35329.1, + "end": 35331.66, + "probability": 0.7751 + }, + { + "start": 35332.46, + "end": 35333.92, + "probability": 0.7735 + }, + { + "start": 35334.18, + "end": 35336.8, + "probability": 0.009 + }, + { + "start": 35337.6, + "end": 35339.96, + "probability": 0.0888 + }, + { + "start": 35340.16, + "end": 35341.09, + "probability": 0.626 + }, + { + "start": 35342.08, + "end": 35342.51, + "probability": 0.97 + }, + { + "start": 35343.7, + "end": 35344.94, + "probability": 0.8975 + }, + { + "start": 35345.18, + "end": 35345.86, + "probability": 0.5259 + }, + { + "start": 35345.86, + "end": 35346.52, + "probability": 0.8628 + }, + { + "start": 35346.68, + "end": 35349.2, + "probability": 0.8999 + }, + { + "start": 35349.4, + "end": 35350.36, + "probability": 0.9485 + }, + { + "start": 35350.56, + "end": 35351.7, + "probability": 0.9956 + }, + { + "start": 35352.62, + "end": 35356.64, + "probability": 0.8656 + }, + { + "start": 35356.72, + "end": 35356.9, + "probability": 0.7845 + }, + { + "start": 35357.04, + "end": 35360.1, + "probability": 0.8916 + }, + { + "start": 35360.1, + "end": 35365.4, + "probability": 0.971 + }, + { + "start": 35366.12, + "end": 35366.6, + "probability": 0.8384 + }, + { + "start": 35367.1, + "end": 35373.34, + "probability": 0.9022 + }, + { + "start": 35373.8, + "end": 35376.6, + "probability": 0.9888 + }, + { + "start": 35376.92, + "end": 35381.06, + "probability": 0.9827 + }, + { + "start": 35382.12, + "end": 35383.12, + "probability": 0.9577 + }, + { + "start": 35383.76, + "end": 35385.38, + "probability": 0.7021 + }, + { + "start": 35385.46, + "end": 35386.14, + "probability": 0.6569 + }, + { + "start": 35386.6, + "end": 35389.2, + "probability": 0.9667 + }, + { + "start": 35389.88, + "end": 35394.18, + "probability": 0.814 + }, + { + "start": 35395.08, + "end": 35400.64, + "probability": 0.9518 + }, + { + "start": 35401.4, + "end": 35403.86, + "probability": 0.6726 + }, + { + "start": 35404.48, + "end": 35407.92, + "probability": 0.8527 + }, + { + "start": 35409.42, + "end": 35410.92, + "probability": 0.9581 + }, + { + "start": 35411.14, + "end": 35414.17, + "probability": 0.9185 + }, + { + "start": 35414.38, + "end": 35415.48, + "probability": 0.9241 + }, + { + "start": 35416.12, + "end": 35421.36, + "probability": 0.9636 + }, + { + "start": 35422.36, + "end": 35425.24, + "probability": 0.7817 + }, + { + "start": 35426.0, + "end": 35426.98, + "probability": 0.6074 + }, + { + "start": 35427.66, + "end": 35431.1, + "probability": 0.4258 + }, + { + "start": 35432.42, + "end": 35433.82, + "probability": 0.5587 + }, + { + "start": 35434.02, + "end": 35434.5, + "probability": 0.9583 + }, + { + "start": 35434.58, + "end": 35437.04, + "probability": 0.9797 + }, + { + "start": 35437.1, + "end": 35438.75, + "probability": 0.8217 + }, + { + "start": 35439.06, + "end": 35441.9, + "probability": 0.9595 + }, + { + "start": 35443.07, + "end": 35447.02, + "probability": 0.9397 + }, + { + "start": 35447.94, + "end": 35450.92, + "probability": 0.9536 + }, + { + "start": 35451.84, + "end": 35457.08, + "probability": 0.921 + }, + { + "start": 35457.86, + "end": 35458.7, + "probability": 0.7814 + }, + { + "start": 35459.8, + "end": 35460.55, + "probability": 0.9072 + }, + { + "start": 35461.86, + "end": 35465.22, + "probability": 0.6562 + }, + { + "start": 35466.04, + "end": 35468.62, + "probability": 0.8048 + }, + { + "start": 35468.86, + "end": 35469.0, + "probability": 0.6011 + }, + { + "start": 35469.24, + "end": 35469.44, + "probability": 0.8059 + }, + { + "start": 35470.58, + "end": 35472.5, + "probability": 0.6272 + }, + { + "start": 35472.58, + "end": 35473.42, + "probability": 0.786 + }, + { + "start": 35473.54, + "end": 35475.62, + "probability": 0.8608 + }, + { + "start": 35475.62, + "end": 35479.38, + "probability": 0.4004 + }, + { + "start": 35479.48, + "end": 35481.12, + "probability": 0.0784 + }, + { + "start": 35481.9, + "end": 35483.14, + "probability": 0.6696 + }, + { + "start": 35483.38, + "end": 35484.42, + "probability": 0.6847 + }, + { + "start": 35484.42, + "end": 35484.96, + "probability": 0.9369 + }, + { + "start": 35510.34, + "end": 35512.46, + "probability": 0.147 + }, + { + "start": 35512.46, + "end": 35512.46, + "probability": 0.022 + }, + { + "start": 35512.46, + "end": 35512.6, + "probability": 0.0503 + }, + { + "start": 35512.7, + "end": 35517.28, + "probability": 0.7447 + }, + { + "start": 35518.3, + "end": 35520.14, + "probability": 0.0326 + }, + { + "start": 35521.72, + "end": 35523.68, + "probability": 0.0393 + }, + { + "start": 35524.38, + "end": 35527.34, + "probability": 0.0764 + }, + { + "start": 35527.34, + "end": 35529.32, + "probability": 0.1258 + }, + { + "start": 35529.32, + "end": 35530.68, + "probability": 0.0585 + }, + { + "start": 35533.6, + "end": 35535.54, + "probability": 0.5568 + }, + { + "start": 35538.08, + "end": 35538.18, + "probability": 0.0028 + }, + { + "start": 35539.36, + "end": 35540.22, + "probability": 0.0618 + }, + { + "start": 35541.26, + "end": 35547.18, + "probability": 0.307 + }, + { + "start": 35547.72, + "end": 35548.06, + "probability": 0.0702 + }, + { + "start": 35566.84, + "end": 35567.36, + "probability": 0.045 + }, + { + "start": 35567.52, + "end": 35567.9, + "probability": 0.0167 + }, + { + "start": 35567.9, + "end": 35568.02, + "probability": 0.0533 + }, + { + "start": 35568.02, + "end": 35568.04, + "probability": 0.0222 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35580.0, + "end": 35580.0, + "probability": 0.0 + }, + { + "start": 35589.14, + "end": 35590.1, + "probability": 0.0316 + }, + { + "start": 35590.1, + "end": 35590.82, + "probability": 0.0185 + }, + { + "start": 35592.68, + "end": 35592.86, + "probability": 0.0247 + }, + { + "start": 35593.44, + "end": 35595.36, + "probability": 0.0199 + }, + { + "start": 35607.66, + "end": 35609.14, + "probability": 0.0187 + }, + { + "start": 35609.78, + "end": 35613.94, + "probability": 0.0624 + }, + { + "start": 35614.0, + "end": 35614.54, + "probability": 0.018 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35714.0, + "end": 35714.0, + "probability": 0.0 + }, + { + "start": 35722.16, + "end": 35725.0, + "probability": 0.3751 + }, + { + "start": 35725.96, + "end": 35727.13, + "probability": 0.0213 + }, + { + "start": 35727.86, + "end": 35728.36, + "probability": 0.016 + }, + { + "start": 35747.58, + "end": 35748.04, + "probability": 0.0012 + }, + { + "start": 35748.2, + "end": 35752.06, + "probability": 0.094 + }, + { + "start": 35752.06, + "end": 35754.3, + "probability": 0.0393 + }, + { + "start": 35755.0, + "end": 35755.72, + "probability": 0.1251 + }, + { + "start": 35756.81, + "end": 35759.89, + "probability": 0.0447 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35835.0, + "end": 35835.0, + "probability": 0.0 + }, + { + "start": 35847.42, + "end": 35849.48, + "probability": 0.5392 + }, + { + "start": 35850.22, + "end": 35854.78, + "probability": 0.8354 + }, + { + "start": 35854.8, + "end": 35858.68, + "probability": 0.8833 + }, + { + "start": 35859.64, + "end": 35860.64, + "probability": 0.7314 + }, + { + "start": 35860.78, + "end": 35864.6, + "probability": 0.7288 + }, + { + "start": 35865.5, + "end": 35870.84, + "probability": 0.5936 + }, + { + "start": 35870.94, + "end": 35872.3, + "probability": 0.0827 + }, + { + "start": 35873.52, + "end": 35875.68, + "probability": 0.733 + }, + { + "start": 35875.68, + "end": 35876.14, + "probability": 0.8584 + }, + { + "start": 35876.9, + "end": 35878.92, + "probability": 0.4869 + }, + { + "start": 35879.66, + "end": 35881.36, + "probability": 0.6096 + }, + { + "start": 35881.48, + "end": 35883.72, + "probability": 0.9526 + }, + { + "start": 35884.16, + "end": 35884.34, + "probability": 0.4706 + }, + { + "start": 35884.38, + "end": 35884.7, + "probability": 0.9119 + }, + { + "start": 35884.78, + "end": 35889.22, + "probability": 0.8993 + }, + { + "start": 35889.28, + "end": 35891.66, + "probability": 0.9968 + }, + { + "start": 35892.1, + "end": 35893.05, + "probability": 0.7615 + }, + { + "start": 35893.46, + "end": 35896.16, + "probability": 0.9824 + }, + { + "start": 35896.72, + "end": 35898.75, + "probability": 0.9424 + }, + { + "start": 35899.52, + "end": 35902.38, + "probability": 0.976 + }, + { + "start": 35902.52, + "end": 35903.54, + "probability": 0.8846 + }, + { + "start": 35904.12, + "end": 35906.2, + "probability": 0.9991 + }, + { + "start": 35907.48, + "end": 35911.24, + "probability": 0.7066 + }, + { + "start": 35911.36, + "end": 35914.66, + "probability": 0.9965 + }, + { + "start": 35915.8, + "end": 35918.1, + "probability": 0.9814 + }, + { + "start": 35919.48, + "end": 35921.58, + "probability": 0.9933 + }, + { + "start": 35921.78, + "end": 35925.4, + "probability": 0.8169 + }, + { + "start": 35926.12, + "end": 35928.04, + "probability": 0.9229 + }, + { + "start": 35929.22, + "end": 35932.32, + "probability": 0.825 + }, + { + "start": 35932.44, + "end": 35937.3, + "probability": 0.9895 + }, + { + "start": 35937.72, + "end": 35939.24, + "probability": 0.8351 + }, + { + "start": 35939.3, + "end": 35940.98, + "probability": 0.9591 + }, + { + "start": 35941.54, + "end": 35943.38, + "probability": 0.5894 + }, + { + "start": 35943.38, + "end": 35944.12, + "probability": 0.0456 + }, + { + "start": 35945.12, + "end": 35945.86, + "probability": 0.7091 + }, + { + "start": 35945.94, + "end": 35947.46, + "probability": 0.766 + }, + { + "start": 35948.24, + "end": 35949.01, + "probability": 0.7057 + }, + { + "start": 35949.76, + "end": 35950.54, + "probability": 0.8905 + }, + { + "start": 35951.52, + "end": 35955.2, + "probability": 0.8851 + }, + { + "start": 35955.6, + "end": 35958.06, + "probability": 0.9608 + }, + { + "start": 35958.5, + "end": 35959.86, + "probability": 0.6667 + }, + { + "start": 35960.24, + "end": 35960.82, + "probability": 0.7672 + }, + { + "start": 35960.94, + "end": 35962.78, + "probability": 0.9595 + }, + { + "start": 35963.64, + "end": 35964.92, + "probability": 0.9198 + }, + { + "start": 35965.3, + "end": 35966.48, + "probability": 0.868 + }, + { + "start": 35966.72, + "end": 35968.29, + "probability": 0.6969 + }, + { + "start": 35968.9, + "end": 35973.52, + "probability": 0.9917 + }, + { + "start": 35974.22, + "end": 35976.76, + "probability": 0.9961 + }, + { + "start": 35976.88, + "end": 35977.2, + "probability": 0.9619 + }, + { + "start": 35977.82, + "end": 35981.28, + "probability": 0.9567 + }, + { + "start": 35981.44, + "end": 35984.26, + "probability": 0.9932 + }, + { + "start": 35984.76, + "end": 35985.5, + "probability": 0.9428 + }, + { + "start": 35985.6, + "end": 35987.18, + "probability": 0.9714 + }, + { + "start": 35987.44, + "end": 35990.04, + "probability": 0.834 + }, + { + "start": 35990.04, + "end": 35993.74, + "probability": 0.9916 + }, + { + "start": 35994.4, + "end": 35997.68, + "probability": 0.7939 + }, + { + "start": 35998.52, + "end": 36000.18, + "probability": 0.8889 + }, + { + "start": 36000.44, + "end": 36005.32, + "probability": 0.9576 + }, + { + "start": 36005.46, + "end": 36006.14, + "probability": 0.71 + }, + { + "start": 36006.16, + "end": 36007.82, + "probability": 0.9587 + }, + { + "start": 36008.34, + "end": 36011.74, + "probability": 0.9907 + }, + { + "start": 36012.46, + "end": 36018.08, + "probability": 0.8465 + }, + { + "start": 36018.08, + "end": 36022.95, + "probability": 0.9972 + }, + { + "start": 36023.54, + "end": 36025.64, + "probability": 0.9806 + }, + { + "start": 36025.7, + "end": 36028.0, + "probability": 0.9411 + }, + { + "start": 36028.0, + "end": 36028.2, + "probability": 0.8145 + }, + { + "start": 36029.3, + "end": 36031.12, + "probability": 0.8376 + }, + { + "start": 36033.08, + "end": 36034.3, + "probability": 0.5257 + }, + { + "start": 36034.56, + "end": 36036.34, + "probability": 0.5481 + }, + { + "start": 36036.46, + "end": 36037.2, + "probability": 0.8477 + }, + { + "start": 36039.18, + "end": 36040.1, + "probability": 0.6583 + }, + { + "start": 36040.6, + "end": 36041.06, + "probability": 0.5163 + }, + { + "start": 36041.12, + "end": 36041.44, + "probability": 0.6184 + }, + { + "start": 36041.52, + "end": 36041.9, + "probability": 0.8287 + }, + { + "start": 36059.26, + "end": 36063.81, + "probability": 0.1186 + }, + { + "start": 36064.02, + "end": 36065.02, + "probability": 0.0089 + }, + { + "start": 36065.02, + "end": 36065.02, + "probability": 0.109 + }, + { + "start": 36065.02, + "end": 36067.51, + "probability": 0.4335 + }, + { + "start": 36068.24, + "end": 36068.38, + "probability": 0.0338 + }, + { + "start": 36070.52, + "end": 36070.94, + "probability": 0.0426 + }, + { + "start": 36129.96, + "end": 36130.063, + "probability": 0.0 + }, + { + "start": 36130.063, + "end": 36130.063, + "probability": 0.0 + }, + { + "start": 36130.063, + "end": 36130.063, + "probability": 0.0 + }, + { + "start": 36130.063, + "end": 36130.063, + "probability": 0.0 + }, + { + "start": 36130.063, + "end": 36130.063, + "probability": 0.0 + } + ], + "segments_count": 11917, + "words_count": 59529, + "avg_words_per_segment": 4.9953, + "avg_segment_duration": 2.1578, + "avg_words_per_minute": 98.8578, + "plenum_id": "39320", + "duration": 36130.06, + "title": null, + "plenum_date": "2014-07-29" +} \ No newline at end of file