diff --git "a/42582/metadata.json" "b/42582/metadata.json" new file mode 100644--- /dev/null +++ "b/42582/metadata.json" @@ -0,0 +1,26932 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "42582", + "quality_score": 0.8576, + "per_segment_quality_scores": [ + { + "start": 64.3, + "end": 64.94, + "probability": 0.3868 + }, + { + "start": 64.98, + "end": 65.44, + "probability": 0.748 + }, + { + "start": 65.74, + "end": 68.64, + "probability": 0.7478 + }, + { + "start": 70.28, + "end": 72.8, + "probability": 0.6565 + }, + { + "start": 73.56, + "end": 75.28, + "probability": 0.6907 + }, + { + "start": 76.1, + "end": 79.28, + "probability": 0.8761 + }, + { + "start": 80.5, + "end": 81.58, + "probability": 0.9776 + }, + { + "start": 82.42, + "end": 85.94, + "probability": 0.8945 + }, + { + "start": 86.64, + "end": 87.64, + "probability": 0.7306 + }, + { + "start": 88.98, + "end": 90.14, + "probability": 0.0003 + }, + { + "start": 99.02, + "end": 99.34, + "probability": 0.0397 + }, + { + "start": 99.42, + "end": 100.78, + "probability": 0.8265 + }, + { + "start": 101.44, + "end": 103.22, + "probability": 0.932 + }, + { + "start": 103.38, + "end": 104.84, + "probability": 0.6582 + }, + { + "start": 104.92, + "end": 106.24, + "probability": 0.8773 + }, + { + "start": 106.74, + "end": 110.02, + "probability": 0.9828 + }, + { + "start": 110.86, + "end": 114.04, + "probability": 0.9176 + }, + { + "start": 114.98, + "end": 118.36, + "probability": 0.9777 + }, + { + "start": 119.46, + "end": 123.38, + "probability": 0.8051 + }, + { + "start": 124.48, + "end": 127.92, + "probability": 0.6779 + }, + { + "start": 128.54, + "end": 133.28, + "probability": 0.9432 + }, + { + "start": 137.4, + "end": 139.6, + "probability": 0.8953 + }, + { + "start": 139.96, + "end": 141.18, + "probability": 0.6208 + }, + { + "start": 141.72, + "end": 144.64, + "probability": 0.8179 + }, + { + "start": 154.96, + "end": 155.92, + "probability": 0.6771 + }, + { + "start": 159.92, + "end": 162.5, + "probability": 0.831 + }, + { + "start": 163.18, + "end": 163.9, + "probability": 0.4567 + }, + { + "start": 164.76, + "end": 168.68, + "probability": 0.9834 + }, + { + "start": 169.38, + "end": 171.1, + "probability": 0.9979 + }, + { + "start": 171.9, + "end": 173.66, + "probability": 0.9948 + }, + { + "start": 175.18, + "end": 181.4, + "probability": 0.987 + }, + { + "start": 181.98, + "end": 182.86, + "probability": 0.9954 + }, + { + "start": 184.46, + "end": 185.5, + "probability": 0.5893 + }, + { + "start": 185.6, + "end": 185.66, + "probability": 0.4437 + }, + { + "start": 185.66, + "end": 189.4, + "probability": 0.7829 + }, + { + "start": 190.0, + "end": 193.59, + "probability": 0.9694 + }, + { + "start": 196.4, + "end": 201.03, + "probability": 0.9731 + }, + { + "start": 201.54, + "end": 204.68, + "probability": 0.9883 + }, + { + "start": 205.92, + "end": 208.54, + "probability": 0.9541 + }, + { + "start": 208.64, + "end": 211.78, + "probability": 0.4987 + }, + { + "start": 212.9, + "end": 216.79, + "probability": 0.8887 + }, + { + "start": 216.94, + "end": 217.34, + "probability": 0.5356 + }, + { + "start": 217.46, + "end": 220.5, + "probability": 0.9847 + }, + { + "start": 221.48, + "end": 225.57, + "probability": 0.7731 + }, + { + "start": 227.18, + "end": 230.82, + "probability": 0.6965 + }, + { + "start": 232.08, + "end": 233.34, + "probability": 0.9313 + }, + { + "start": 233.9, + "end": 240.1, + "probability": 0.9952 + }, + { + "start": 240.58, + "end": 241.58, + "probability": 0.6332 + }, + { + "start": 242.12, + "end": 243.4, + "probability": 0.8796 + }, + { + "start": 244.36, + "end": 247.14, + "probability": 0.6609 + }, + { + "start": 248.3, + "end": 249.98, + "probability": 0.8415 + }, + { + "start": 250.6, + "end": 253.7, + "probability": 0.8312 + }, + { + "start": 257.54, + "end": 262.14, + "probability": 0.9965 + }, + { + "start": 262.24, + "end": 264.7, + "probability": 0.999 + }, + { + "start": 264.7, + "end": 267.46, + "probability": 0.976 + }, + { + "start": 267.9, + "end": 270.98, + "probability": 0.9139 + }, + { + "start": 271.24, + "end": 273.24, + "probability": 0.8843 + }, + { + "start": 273.58, + "end": 276.54, + "probability": 0.8191 + }, + { + "start": 276.76, + "end": 277.56, + "probability": 0.8369 + }, + { + "start": 277.64, + "end": 278.2, + "probability": 0.7679 + }, + { + "start": 278.26, + "end": 278.42, + "probability": 0.6394 + }, + { + "start": 278.46, + "end": 279.54, + "probability": 0.9653 + }, + { + "start": 279.88, + "end": 280.89, + "probability": 0.7592 + }, + { + "start": 281.0, + "end": 282.59, + "probability": 0.9006 + }, + { + "start": 283.16, + "end": 285.7, + "probability": 0.7591 + }, + { + "start": 285.86, + "end": 290.64, + "probability": 0.9406 + }, + { + "start": 291.8, + "end": 293.4, + "probability": 0.9532 + }, + { + "start": 293.48, + "end": 297.94, + "probability": 0.9979 + }, + { + "start": 299.38, + "end": 302.04, + "probability": 0.9926 + }, + { + "start": 302.56, + "end": 305.76, + "probability": 0.9496 + }, + { + "start": 306.88, + "end": 310.86, + "probability": 0.9984 + }, + { + "start": 311.02, + "end": 314.34, + "probability": 0.9334 + }, + { + "start": 314.52, + "end": 316.96, + "probability": 0.9734 + }, + { + "start": 317.06, + "end": 317.56, + "probability": 0.5342 + }, + { + "start": 319.56, + "end": 324.5, + "probability": 0.9834 + }, + { + "start": 324.7, + "end": 325.62, + "probability": 0.9834 + }, + { + "start": 325.9, + "end": 327.11, + "probability": 0.9907 + }, + { + "start": 327.42, + "end": 332.48, + "probability": 0.9362 + }, + { + "start": 332.48, + "end": 333.0, + "probability": 0.7642 + }, + { + "start": 333.04, + "end": 334.22, + "probability": 0.4615 + }, + { + "start": 334.48, + "end": 337.62, + "probability": 0.9814 + }, + { + "start": 337.78, + "end": 340.93, + "probability": 0.9721 + }, + { + "start": 341.06, + "end": 342.76, + "probability": 0.9948 + }, + { + "start": 342.9, + "end": 346.9, + "probability": 0.937 + }, + { + "start": 347.6, + "end": 348.84, + "probability": 0.998 + }, + { + "start": 348.9, + "end": 349.9, + "probability": 0.9756 + }, + { + "start": 350.28, + "end": 352.4, + "probability": 0.9753 + }, + { + "start": 352.62, + "end": 354.36, + "probability": 0.9238 + }, + { + "start": 354.62, + "end": 355.98, + "probability": 0.9915 + }, + { + "start": 356.1, + "end": 356.66, + "probability": 0.65 + }, + { + "start": 357.04, + "end": 357.54, + "probability": 0.8457 + }, + { + "start": 357.66, + "end": 358.74, + "probability": 0.7115 + }, + { + "start": 358.8, + "end": 359.75, + "probability": 0.8702 + }, + { + "start": 360.44, + "end": 363.52, + "probability": 0.9473 + }, + { + "start": 363.66, + "end": 365.98, + "probability": 0.9122 + }, + { + "start": 367.04, + "end": 367.76, + "probability": 0.7581 + }, + { + "start": 368.62, + "end": 370.02, + "probability": 0.9887 + }, + { + "start": 370.12, + "end": 374.18, + "probability": 0.9207 + }, + { + "start": 374.34, + "end": 377.46, + "probability": 0.8278 + }, + { + "start": 377.46, + "end": 379.56, + "probability": 0.9915 + }, + { + "start": 379.74, + "end": 381.96, + "probability": 0.79 + }, + { + "start": 382.08, + "end": 382.88, + "probability": 0.7325 + }, + { + "start": 383.34, + "end": 385.3, + "probability": 0.9983 + }, + { + "start": 385.38, + "end": 389.06, + "probability": 0.9907 + }, + { + "start": 389.26, + "end": 390.16, + "probability": 0.6978 + }, + { + "start": 391.06, + "end": 392.98, + "probability": 0.3344 + }, + { + "start": 393.86, + "end": 396.22, + "probability": 0.8727 + }, + { + "start": 396.94, + "end": 398.44, + "probability": 0.9746 + }, + { + "start": 398.56, + "end": 400.78, + "probability": 0.9954 + }, + { + "start": 401.28, + "end": 404.48, + "probability": 0.8785 + }, + { + "start": 404.78, + "end": 407.18, + "probability": 0.9658 + }, + { + "start": 407.64, + "end": 408.16, + "probability": 0.8208 + }, + { + "start": 408.42, + "end": 408.62, + "probability": 0.5345 + }, + { + "start": 408.62, + "end": 408.62, + "probability": 0.0365 + }, + { + "start": 408.62, + "end": 410.36, + "probability": 0.6606 + }, + { + "start": 410.75, + "end": 412.54, + "probability": 0.5123 + }, + { + "start": 412.8, + "end": 413.84, + "probability": 0.1973 + }, + { + "start": 414.32, + "end": 415.44, + "probability": 0.8997 + }, + { + "start": 415.64, + "end": 417.46, + "probability": 0.6594 + }, + { + "start": 417.5, + "end": 422.4, + "probability": 0.6682 + }, + { + "start": 423.02, + "end": 423.82, + "probability": 0.6712 + }, + { + "start": 423.92, + "end": 424.28, + "probability": 0.6413 + }, + { + "start": 424.54, + "end": 425.8, + "probability": 0.9976 + }, + { + "start": 426.5, + "end": 427.78, + "probability": 0.9376 + }, + { + "start": 428.34, + "end": 430.68, + "probability": 0.7314 + }, + { + "start": 431.54, + "end": 433.08, + "probability": 0.8131 + }, + { + "start": 434.0, + "end": 434.36, + "probability": 0.3916 + }, + { + "start": 434.58, + "end": 435.76, + "probability": 0.5629 + }, + { + "start": 436.04, + "end": 437.46, + "probability": 0.8125 + }, + { + "start": 438.06, + "end": 445.24, + "probability": 0.9631 + }, + { + "start": 445.92, + "end": 448.9, + "probability": 0.728 + }, + { + "start": 456.1, + "end": 457.96, + "probability": 0.6696 + }, + { + "start": 458.58, + "end": 465.32, + "probability": 0.9778 + }, + { + "start": 465.5, + "end": 466.24, + "probability": 0.559 + }, + { + "start": 466.72, + "end": 468.12, + "probability": 0.964 + }, + { + "start": 468.68, + "end": 471.78, + "probability": 0.8707 + }, + { + "start": 472.38, + "end": 477.22, + "probability": 0.9627 + }, + { + "start": 477.54, + "end": 480.18, + "probability": 0.981 + }, + { + "start": 480.54, + "end": 484.06, + "probability": 0.9757 + }, + { + "start": 484.38, + "end": 486.36, + "probability": 0.9724 + }, + { + "start": 486.42, + "end": 487.36, + "probability": 0.954 + }, + { + "start": 487.48, + "end": 488.02, + "probability": 0.8813 + }, + { + "start": 488.38, + "end": 490.06, + "probability": 0.9805 + }, + { + "start": 490.14, + "end": 492.7, + "probability": 0.6891 + }, + { + "start": 492.96, + "end": 493.46, + "probability": 0.696 + }, + { + "start": 495.56, + "end": 500.64, + "probability": 0.9409 + }, + { + "start": 500.68, + "end": 505.08, + "probability": 0.9875 + }, + { + "start": 505.08, + "end": 508.96, + "probability": 0.9976 + }, + { + "start": 509.34, + "end": 511.9, + "probability": 0.6602 + }, + { + "start": 512.48, + "end": 514.58, + "probability": 0.9576 + }, + { + "start": 514.72, + "end": 517.8, + "probability": 0.5101 + }, + { + "start": 517.8, + "end": 519.14, + "probability": 0.9944 + }, + { + "start": 520.02, + "end": 522.2, + "probability": 0.8499 + }, + { + "start": 522.34, + "end": 523.6, + "probability": 0.9883 + }, + { + "start": 524.5, + "end": 528.46, + "probability": 0.9956 + }, + { + "start": 528.6, + "end": 530.12, + "probability": 0.9269 + }, + { + "start": 530.68, + "end": 531.34, + "probability": 0.927 + }, + { + "start": 531.42, + "end": 532.26, + "probability": 0.9167 + }, + { + "start": 532.76, + "end": 533.98, + "probability": 0.9892 + }, + { + "start": 535.6, + "end": 536.84, + "probability": 0.9366 + }, + { + "start": 536.98, + "end": 541.18, + "probability": 0.8417 + }, + { + "start": 541.18, + "end": 547.02, + "probability": 0.8916 + }, + { + "start": 547.76, + "end": 551.6, + "probability": 0.6693 + }, + { + "start": 552.34, + "end": 555.98, + "probability": 0.9888 + }, + { + "start": 556.34, + "end": 558.86, + "probability": 0.7916 + }, + { + "start": 559.54, + "end": 559.86, + "probability": 0.3562 + }, + { + "start": 559.92, + "end": 567.16, + "probability": 0.9819 + }, + { + "start": 567.32, + "end": 567.86, + "probability": 0.6207 + }, + { + "start": 569.18, + "end": 574.54, + "probability": 0.6923 + }, + { + "start": 575.32, + "end": 581.32, + "probability": 0.959 + }, + { + "start": 583.62, + "end": 586.08, + "probability": 0.8079 + }, + { + "start": 586.64, + "end": 588.36, + "probability": 0.5451 + }, + { + "start": 589.06, + "end": 593.18, + "probability": 0.8703 + }, + { + "start": 594.87, + "end": 598.04, + "probability": 0.2762 + }, + { + "start": 598.88, + "end": 601.12, + "probability": 0.5934 + }, + { + "start": 601.52, + "end": 602.1, + "probability": 0.4623 + }, + { + "start": 602.68, + "end": 603.74, + "probability": 0.9367 + }, + { + "start": 603.86, + "end": 605.7, + "probability": 0.8623 + }, + { + "start": 606.42, + "end": 611.84, + "probability": 0.978 + }, + { + "start": 612.54, + "end": 614.32, + "probability": 0.7688 + }, + { + "start": 614.42, + "end": 615.24, + "probability": 0.8226 + }, + { + "start": 615.88, + "end": 618.38, + "probability": 0.9296 + }, + { + "start": 620.52, + "end": 623.9, + "probability": 0.6304 + }, + { + "start": 624.82, + "end": 626.0, + "probability": 0.0452 + }, + { + "start": 626.98, + "end": 630.74, + "probability": 0.9627 + }, + { + "start": 632.18, + "end": 636.7, + "probability": 0.9089 + }, + { + "start": 639.14, + "end": 643.44, + "probability": 0.8413 + }, + { + "start": 644.4, + "end": 647.83, + "probability": 0.9765 + }, + { + "start": 648.32, + "end": 651.04, + "probability": 0.8792 + }, + { + "start": 651.92, + "end": 655.78, + "probability": 0.8574 + }, + { + "start": 655.88, + "end": 662.12, + "probability": 0.9299 + }, + { + "start": 663.1, + "end": 663.8, + "probability": 0.3699 + }, + { + "start": 664.4, + "end": 664.44, + "probability": 0.1863 + }, + { + "start": 664.44, + "end": 664.72, + "probability": 0.3506 + }, + { + "start": 664.98, + "end": 667.62, + "probability": 0.7883 + }, + { + "start": 668.62, + "end": 669.3, + "probability": 0.0153 + }, + { + "start": 669.4, + "end": 673.5, + "probability": 0.9678 + }, + { + "start": 673.5, + "end": 674.19, + "probability": 0.8244 + }, + { + "start": 674.52, + "end": 674.68, + "probability": 0.8262 + }, + { + "start": 676.6, + "end": 681.38, + "probability": 0.886 + }, + { + "start": 681.38, + "end": 685.82, + "probability": 0.9952 + }, + { + "start": 686.94, + "end": 688.32, + "probability": 0.723 + }, + { + "start": 688.36, + "end": 692.62, + "probability": 0.7726 + }, + { + "start": 693.9, + "end": 695.84, + "probability": 0.8813 + }, + { + "start": 701.66, + "end": 705.44, + "probability": 0.71 + }, + { + "start": 705.44, + "end": 708.64, + "probability": 0.7481 + }, + { + "start": 708.88, + "end": 709.34, + "probability": 0.2918 + }, + { + "start": 709.4, + "end": 710.1, + "probability": 0.5047 + }, + { + "start": 710.64, + "end": 713.56, + "probability": 0.9556 + }, + { + "start": 720.88, + "end": 721.44, + "probability": 0.4846 + }, + { + "start": 722.58, + "end": 723.66, + "probability": 0.9001 + }, + { + "start": 724.18, + "end": 725.9, + "probability": 0.9092 + }, + { + "start": 726.84, + "end": 732.82, + "probability": 0.8746 + }, + { + "start": 732.82, + "end": 738.54, + "probability": 0.9448 + }, + { + "start": 738.98, + "end": 740.78, + "probability": 0.9969 + }, + { + "start": 741.96, + "end": 746.84, + "probability": 0.9348 + }, + { + "start": 746.88, + "end": 751.58, + "probability": 0.882 + }, + { + "start": 751.58, + "end": 756.14, + "probability": 0.8657 + }, + { + "start": 756.62, + "end": 764.62, + "probability": 0.9889 + }, + { + "start": 765.02, + "end": 766.68, + "probability": 0.7441 + }, + { + "start": 767.16, + "end": 772.78, + "probability": 0.9338 + }, + { + "start": 772.9, + "end": 773.86, + "probability": 0.4715 + }, + { + "start": 774.28, + "end": 777.86, + "probability": 0.9911 + }, + { + "start": 777.96, + "end": 780.56, + "probability": 0.9199 + }, + { + "start": 781.08, + "end": 783.95, + "probability": 0.8525 + }, + { + "start": 784.86, + "end": 785.98, + "probability": 0.7455 + }, + { + "start": 786.79, + "end": 791.8, + "probability": 0.8503 + }, + { + "start": 792.62, + "end": 794.5, + "probability": 0.5205 + }, + { + "start": 794.56, + "end": 797.02, + "probability": 0.3818 + }, + { + "start": 798.68, + "end": 800.6, + "probability": 0.9761 + }, + { + "start": 800.82, + "end": 805.44, + "probability": 0.5197 + }, + { + "start": 805.62, + "end": 807.57, + "probability": 0.8783 + }, + { + "start": 809.68, + "end": 811.61, + "probability": 0.3865 + }, + { + "start": 812.17, + "end": 815.17, + "probability": 0.7245 + }, + { + "start": 816.43, + "end": 819.21, + "probability": 0.6359 + }, + { + "start": 819.29, + "end": 823.07, + "probability": 0.9927 + }, + { + "start": 823.33, + "end": 828.27, + "probability": 0.9895 + }, + { + "start": 829.85, + "end": 831.31, + "probability": 0.4332 + }, + { + "start": 831.33, + "end": 832.25, + "probability": 0.7495 + }, + { + "start": 832.59, + "end": 834.97, + "probability": 0.7117 + }, + { + "start": 835.11, + "end": 835.99, + "probability": 0.7964 + }, + { + "start": 836.65, + "end": 837.99, + "probability": 0.9861 + }, + { + "start": 840.33, + "end": 841.21, + "probability": 0.2532 + }, + { + "start": 843.11, + "end": 843.65, + "probability": 0.3262 + }, + { + "start": 844.33, + "end": 845.45, + "probability": 0.6185 + }, + { + "start": 846.23, + "end": 846.23, + "probability": 0.0844 + }, + { + "start": 846.23, + "end": 850.37, + "probability": 0.6545 + }, + { + "start": 850.47, + "end": 851.77, + "probability": 0.5931 + }, + { + "start": 851.77, + "end": 853.37, + "probability": 0.8494 + }, + { + "start": 853.71, + "end": 854.83, + "probability": 0.9263 + }, + { + "start": 854.95, + "end": 857.73, + "probability": 0.8279 + }, + { + "start": 858.05, + "end": 862.43, + "probability": 0.9325 + }, + { + "start": 862.77, + "end": 864.3, + "probability": 0.6631 + }, + { + "start": 865.11, + "end": 868.73, + "probability": 0.0749 + }, + { + "start": 869.81, + "end": 869.83, + "probability": 0.0074 + }, + { + "start": 869.83, + "end": 869.83, + "probability": 0.0838 + }, + { + "start": 869.83, + "end": 870.03, + "probability": 0.063 + }, + { + "start": 870.03, + "end": 870.03, + "probability": 0.5482 + }, + { + "start": 870.03, + "end": 870.03, + "probability": 0.0146 + }, + { + "start": 870.03, + "end": 870.41, + "probability": 0.2149 + }, + { + "start": 870.59, + "end": 871.09, + "probability": 0.33 + }, + { + "start": 871.23, + "end": 871.37, + "probability": 0.0132 + }, + { + "start": 871.37, + "end": 872.13, + "probability": 0.6419 + }, + { + "start": 872.33, + "end": 873.41, + "probability": 0.656 + }, + { + "start": 873.93, + "end": 878.89, + "probability": 0.47 + }, + { + "start": 881.09, + "end": 882.85, + "probability": 0.6344 + }, + { + "start": 883.83, + "end": 885.55, + "probability": 0.631 + }, + { + "start": 885.67, + "end": 887.09, + "probability": 0.7367 + }, + { + "start": 887.19, + "end": 887.83, + "probability": 0.8405 + }, + { + "start": 887.85, + "end": 888.73, + "probability": 0.8248 + }, + { + "start": 889.37, + "end": 891.29, + "probability": 0.8999 + }, + { + "start": 892.13, + "end": 894.25, + "probability": 0.1468 + }, + { + "start": 894.37, + "end": 894.47, + "probability": 0.4301 + }, + { + "start": 894.47, + "end": 895.6, + "probability": 0.5799 + }, + { + "start": 895.95, + "end": 902.57, + "probability": 0.0327 + }, + { + "start": 903.49, + "end": 905.27, + "probability": 0.2108 + }, + { + "start": 905.39, + "end": 908.13, + "probability": 0.1792 + }, + { + "start": 910.15, + "end": 914.51, + "probability": 0.4392 + }, + { + "start": 915.34, + "end": 915.94, + "probability": 0.4085 + }, + { + "start": 917.91, + "end": 920.71, + "probability": 0.1589 + }, + { + "start": 923.23, + "end": 924.67, + "probability": 0.397 + }, + { + "start": 927.19, + "end": 930.25, + "probability": 0.0435 + }, + { + "start": 930.45, + "end": 931.41, + "probability": 0.0833 + }, + { + "start": 931.59, + "end": 932.51, + "probability": 0.0209 + }, + { + "start": 933.45, + "end": 934.63, + "probability": 0.0282 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.0, + "end": 947.0, + "probability": 0.0 + }, + { + "start": 947.16, + "end": 947.22, + "probability": 0.1259 + }, + { + "start": 947.22, + "end": 947.22, + "probability": 0.0152 + }, + { + "start": 947.22, + "end": 947.22, + "probability": 0.3025 + }, + { + "start": 947.22, + "end": 948.0, + "probability": 0.3414 + }, + { + "start": 948.3, + "end": 950.88, + "probability": 0.3072 + }, + { + "start": 951.14, + "end": 952.72, + "probability": 0.4809 + }, + { + "start": 954.26, + "end": 954.58, + "probability": 0.1215 + }, + { + "start": 954.58, + "end": 955.66, + "probability": 0.1524 + }, + { + "start": 955.82, + "end": 957.28, + "probability": 0.6343 + }, + { + "start": 957.42, + "end": 958.18, + "probability": 0.2126 + }, + { + "start": 958.18, + "end": 959.54, + "probability": 0.4025 + }, + { + "start": 959.56, + "end": 961.91, + "probability": 0.4764 + }, + { + "start": 962.04, + "end": 962.4, + "probability": 0.4352 + }, + { + "start": 962.62, + "end": 966.22, + "probability": 0.9011 + }, + { + "start": 966.74, + "end": 967.2, + "probability": 0.3061 + }, + { + "start": 967.32, + "end": 968.22, + "probability": 0.6702 + }, + { + "start": 968.44, + "end": 971.64, + "probability": 0.4021 + }, + { + "start": 972.12, + "end": 972.34, + "probability": 0.3359 + }, + { + "start": 972.46, + "end": 973.8, + "probability": 0.9823 + }, + { + "start": 974.12, + "end": 976.46, + "probability": 0.8492 + }, + { + "start": 976.86, + "end": 978.94, + "probability": 0.4736 + }, + { + "start": 980.34, + "end": 983.4, + "probability": 0.7781 + }, + { + "start": 984.24, + "end": 986.02, + "probability": 0.9703 + }, + { + "start": 986.3, + "end": 989.32, + "probability": 0.0545 + }, + { + "start": 989.32, + "end": 989.32, + "probability": 0.3891 + }, + { + "start": 992.35, + "end": 992.86, + "probability": 0.178 + }, + { + "start": 992.86, + "end": 995.14, + "probability": 0.1636 + }, + { + "start": 996.0, + "end": 1005.66, + "probability": 0.3702 + }, + { + "start": 1006.7, + "end": 1008.05, + "probability": 0.4467 + }, + { + "start": 1009.98, + "end": 1010.92, + "probability": 0.7842 + }, + { + "start": 1011.24, + "end": 1013.56, + "probability": 0.0892 + }, + { + "start": 1014.7, + "end": 1016.3, + "probability": 0.1195 + }, + { + "start": 1017.08, + "end": 1017.31, + "probability": 0.1437 + }, + { + "start": 1017.5, + "end": 1020.28, + "probability": 0.0858 + }, + { + "start": 1024.18, + "end": 1027.58, + "probability": 0.2051 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1108.88, + "end": 1114.42, + "probability": 0.0143 + }, + { + "start": 1115.1, + "end": 1117.88, + "probability": 0.0486 + }, + { + "start": 1125.92, + "end": 1130.32, + "probability": 0.0912 + }, + { + "start": 1130.32, + "end": 1132.16, + "probability": 0.0434 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.0, + "end": 1255.0, + "probability": 0.0 + }, + { + "start": 1255.22, + "end": 1255.22, + "probability": 0.0109 + }, + { + "start": 1255.22, + "end": 1255.22, + "probability": 0.0705 + }, + { + "start": 1255.22, + "end": 1257.12, + "probability": 0.1202 + }, + { + "start": 1258.2, + "end": 1263.26, + "probability": 0.7076 + }, + { + "start": 1263.78, + "end": 1267.1, + "probability": 0.819 + }, + { + "start": 1267.36, + "end": 1269.52, + "probability": 0.8617 + }, + { + "start": 1270.0, + "end": 1270.84, + "probability": 0.9657 + }, + { + "start": 1270.84, + "end": 1271.34, + "probability": 0.8284 + }, + { + "start": 1272.42, + "end": 1275.76, + "probability": 0.9806 + }, + { + "start": 1276.46, + "end": 1279.11, + "probability": 0.9871 + }, + { + "start": 1279.92, + "end": 1283.92, + "probability": 0.9136 + }, + { + "start": 1284.3, + "end": 1286.86, + "probability": 0.984 + }, + { + "start": 1287.54, + "end": 1292.34, + "probability": 0.9702 + }, + { + "start": 1295.2, + "end": 1296.48, + "probability": 0.7618 + }, + { + "start": 1297.1, + "end": 1298.6, + "probability": 0.9421 + }, + { + "start": 1299.46, + "end": 1301.26, + "probability": 0.9504 + }, + { + "start": 1301.64, + "end": 1302.36, + "probability": 0.9683 + }, + { + "start": 1302.66, + "end": 1303.14, + "probability": 0.882 + }, + { + "start": 1303.38, + "end": 1305.44, + "probability": 0.978 + }, + { + "start": 1305.48, + "end": 1308.32, + "probability": 0.9097 + }, + { + "start": 1308.36, + "end": 1309.38, + "probability": 0.8677 + }, + { + "start": 1309.62, + "end": 1311.04, + "probability": 0.9795 + }, + { + "start": 1311.44, + "end": 1312.54, + "probability": 0.6126 + }, + { + "start": 1313.14, + "end": 1316.34, + "probability": 0.6884 + }, + { + "start": 1317.36, + "end": 1319.92, + "probability": 0.5228 + }, + { + "start": 1320.2, + "end": 1321.04, + "probability": 0.7047 + }, + { + "start": 1321.46, + "end": 1321.92, + "probability": 0.3018 + }, + { + "start": 1321.94, + "end": 1324.3, + "probability": 0.8287 + }, + { + "start": 1324.36, + "end": 1327.26, + "probability": 0.9751 + }, + { + "start": 1327.64, + "end": 1332.34, + "probability": 0.9939 + }, + { + "start": 1333.12, + "end": 1334.94, + "probability": 0.9932 + }, + { + "start": 1335.24, + "end": 1336.02, + "probability": 0.7821 + }, + { + "start": 1336.06, + "end": 1338.58, + "probability": 0.5421 + }, + { + "start": 1338.72, + "end": 1339.66, + "probability": 0.8315 + }, + { + "start": 1339.98, + "end": 1343.0, + "probability": 0.8058 + }, + { + "start": 1343.4, + "end": 1344.24, + "probability": 0.9179 + }, + { + "start": 1344.66, + "end": 1346.04, + "probability": 0.8289 + }, + { + "start": 1352.85, + "end": 1356.18, + "probability": 0.6112 + }, + { + "start": 1356.42, + "end": 1356.58, + "probability": 0.2905 + }, + { + "start": 1356.72, + "end": 1359.57, + "probability": 0.8167 + }, + { + "start": 1360.94, + "end": 1363.24, + "probability": 0.7157 + }, + { + "start": 1363.34, + "end": 1366.38, + "probability": 0.9066 + }, + { + "start": 1366.98, + "end": 1368.1, + "probability": 0.5788 + }, + { + "start": 1368.8, + "end": 1370.13, + "probability": 0.9141 + }, + { + "start": 1371.12, + "end": 1372.8, + "probability": 0.9505 + }, + { + "start": 1372.88, + "end": 1375.84, + "probability": 0.9668 + }, + { + "start": 1377.76, + "end": 1382.54, + "probability": 0.9866 + }, + { + "start": 1383.58, + "end": 1386.04, + "probability": 0.9951 + }, + { + "start": 1386.6, + "end": 1389.78, + "probability": 0.9595 + }, + { + "start": 1390.32, + "end": 1394.87, + "probability": 0.84 + }, + { + "start": 1395.5, + "end": 1396.2, + "probability": 0.6357 + }, + { + "start": 1396.42, + "end": 1397.36, + "probability": 0.7682 + }, + { + "start": 1399.1, + "end": 1401.24, + "probability": 0.925 + }, + { + "start": 1401.66, + "end": 1411.38, + "probability": 0.7946 + }, + { + "start": 1411.78, + "end": 1412.8, + "probability": 0.8581 + }, + { + "start": 1413.26, + "end": 1414.94, + "probability": 0.767 + }, + { + "start": 1415.42, + "end": 1419.44, + "probability": 0.9661 + }, + { + "start": 1420.7, + "end": 1423.58, + "probability": 0.9956 + }, + { + "start": 1423.58, + "end": 1426.82, + "probability": 0.9869 + }, + { + "start": 1427.68, + "end": 1430.0, + "probability": 0.9942 + }, + { + "start": 1430.04, + "end": 1434.42, + "probability": 0.9946 + }, + { + "start": 1434.68, + "end": 1434.92, + "probability": 0.926 + }, + { + "start": 1435.6, + "end": 1438.92, + "probability": 0.914 + }, + { + "start": 1439.54, + "end": 1442.66, + "probability": 0.9784 + }, + { + "start": 1442.66, + "end": 1445.98, + "probability": 0.9937 + }, + { + "start": 1446.54, + "end": 1449.94, + "probability": 0.998 + }, + { + "start": 1449.94, + "end": 1453.62, + "probability": 0.9672 + }, + { + "start": 1454.02, + "end": 1455.3, + "probability": 0.5811 + }, + { + "start": 1455.32, + "end": 1456.85, + "probability": 0.9727 + }, + { + "start": 1457.6, + "end": 1460.18, + "probability": 0.981 + }, + { + "start": 1460.72, + "end": 1461.4, + "probability": 0.9209 + }, + { + "start": 1461.84, + "end": 1465.16, + "probability": 0.9961 + }, + { + "start": 1465.76, + "end": 1471.48, + "probability": 0.9562 + }, + { + "start": 1471.56, + "end": 1473.86, + "probability": 0.9932 + }, + { + "start": 1474.4, + "end": 1476.4, + "probability": 0.5546 + }, + { + "start": 1476.76, + "end": 1480.96, + "probability": 0.7168 + }, + { + "start": 1481.58, + "end": 1483.36, + "probability": 0.6943 + }, + { + "start": 1483.42, + "end": 1484.12, + "probability": 0.972 + }, + { + "start": 1484.14, + "end": 1485.94, + "probability": 0.8639 + }, + { + "start": 1486.12, + "end": 1487.38, + "probability": 0.9902 + }, + { + "start": 1488.02, + "end": 1488.66, + "probability": 0.8823 + }, + { + "start": 1488.76, + "end": 1491.44, + "probability": 0.9663 + }, + { + "start": 1491.52, + "end": 1492.28, + "probability": 0.875 + }, + { + "start": 1493.4, + "end": 1494.44, + "probability": 0.9577 + }, + { + "start": 1494.54, + "end": 1495.0, + "probability": 0.8633 + }, + { + "start": 1495.46, + "end": 1496.34, + "probability": 0.8155 + }, + { + "start": 1496.4, + "end": 1501.93, + "probability": 0.8234 + }, + { + "start": 1503.3, + "end": 1505.54, + "probability": 0.9878 + }, + { + "start": 1506.34, + "end": 1507.28, + "probability": 0.8831 + }, + { + "start": 1507.36, + "end": 1508.7, + "probability": 0.5596 + }, + { + "start": 1508.98, + "end": 1510.63, + "probability": 0.849 + }, + { + "start": 1511.84, + "end": 1512.33, + "probability": 0.4947 + }, + { + "start": 1513.18, + "end": 1515.22, + "probability": 0.9106 + }, + { + "start": 1515.36, + "end": 1517.02, + "probability": 0.9663 + }, + { + "start": 1517.68, + "end": 1519.96, + "probability": 0.9955 + }, + { + "start": 1520.3, + "end": 1524.42, + "probability": 0.8234 + }, + { + "start": 1524.54, + "end": 1527.01, + "probability": 0.9385 + }, + { + "start": 1527.54, + "end": 1530.2, + "probability": 0.9856 + }, + { + "start": 1530.62, + "end": 1531.35, + "probability": 0.933 + }, + { + "start": 1531.76, + "end": 1534.08, + "probability": 0.9136 + }, + { + "start": 1534.38, + "end": 1537.86, + "probability": 0.9873 + }, + { + "start": 1538.02, + "end": 1540.62, + "probability": 0.9851 + }, + { + "start": 1541.43, + "end": 1545.34, + "probability": 0.8448 + }, + { + "start": 1545.86, + "end": 1550.92, + "probability": 0.9967 + }, + { + "start": 1551.38, + "end": 1557.18, + "probability": 0.9752 + }, + { + "start": 1557.82, + "end": 1559.22, + "probability": 0.6895 + }, + { + "start": 1559.38, + "end": 1561.34, + "probability": 0.6736 + }, + { + "start": 1561.34, + "end": 1563.02, + "probability": 0.7866 + }, + { + "start": 1563.54, + "end": 1566.28, + "probability": 0.994 + }, + { + "start": 1566.82, + "end": 1567.34, + "probability": 0.5744 + }, + { + "start": 1567.46, + "end": 1568.46, + "probability": 0.7005 + }, + { + "start": 1568.58, + "end": 1570.82, + "probability": 0.9885 + }, + { + "start": 1571.74, + "end": 1576.3, + "probability": 0.7055 + }, + { + "start": 1576.4, + "end": 1577.42, + "probability": 0.5444 + }, + { + "start": 1578.2, + "end": 1578.88, + "probability": 0.4331 + }, + { + "start": 1579.4, + "end": 1580.28, + "probability": 0.6425 + }, + { + "start": 1580.38, + "end": 1580.74, + "probability": 0.4685 + }, + { + "start": 1580.74, + "end": 1585.4, + "probability": 0.9715 + }, + { + "start": 1588.36, + "end": 1588.95, + "probability": 0.4898 + }, + { + "start": 1589.86, + "end": 1591.99, + "probability": 0.9277 + }, + { + "start": 1593.0, + "end": 1596.64, + "probability": 0.9847 + }, + { + "start": 1597.36, + "end": 1600.42, + "probability": 0.7839 + }, + { + "start": 1600.56, + "end": 1604.16, + "probability": 0.6293 + }, + { + "start": 1605.14, + "end": 1607.18, + "probability": 0.8923 + }, + { + "start": 1614.3, + "end": 1615.86, + "probability": 0.6261 + }, + { + "start": 1616.52, + "end": 1618.6, + "probability": 0.9843 + }, + { + "start": 1619.54, + "end": 1619.54, + "probability": 0.1317 + }, + { + "start": 1619.54, + "end": 1622.66, + "probability": 0.9367 + }, + { + "start": 1623.02, + "end": 1623.78, + "probability": 0.4538 + }, + { + "start": 1623.82, + "end": 1625.54, + "probability": 0.7331 + }, + { + "start": 1625.74, + "end": 1627.56, + "probability": 0.9533 + }, + { + "start": 1653.36, + "end": 1656.76, + "probability": 0.6349 + }, + { + "start": 1656.9, + "end": 1658.02, + "probability": 0.7901 + }, + { + "start": 1658.02, + "end": 1659.0, + "probability": 0.871 + }, + { + "start": 1659.1, + "end": 1660.0, + "probability": 0.8029 + }, + { + "start": 1662.2, + "end": 1665.8, + "probability": 0.7267 + }, + { + "start": 1667.34, + "end": 1675.02, + "probability": 0.8774 + }, + { + "start": 1676.28, + "end": 1678.14, + "probability": 0.8057 + }, + { + "start": 1679.96, + "end": 1680.62, + "probability": 0.8513 + }, + { + "start": 1680.72, + "end": 1683.66, + "probability": 0.9498 + }, + { + "start": 1689.42, + "end": 1693.68, + "probability": 0.9778 + }, + { + "start": 1695.86, + "end": 1701.24, + "probability": 0.7993 + }, + { + "start": 1701.9, + "end": 1705.46, + "probability": 0.9833 + }, + { + "start": 1706.08, + "end": 1707.02, + "probability": 0.9029 + }, + { + "start": 1707.58, + "end": 1708.52, + "probability": 0.4241 + }, + { + "start": 1711.94, + "end": 1716.22, + "probability": 0.9054 + }, + { + "start": 1717.56, + "end": 1718.22, + "probability": 0.9232 + }, + { + "start": 1719.7, + "end": 1721.84, + "probability": 0.7118 + }, + { + "start": 1722.82, + "end": 1725.08, + "probability": 0.9688 + }, + { + "start": 1726.04, + "end": 1728.48, + "probability": 0.9677 + }, + { + "start": 1728.68, + "end": 1733.18, + "probability": 0.981 + }, + { + "start": 1733.64, + "end": 1736.26, + "probability": 0.9598 + }, + { + "start": 1737.92, + "end": 1740.48, + "probability": 0.9988 + }, + { + "start": 1741.84, + "end": 1742.56, + "probability": 0.4144 + }, + { + "start": 1743.48, + "end": 1745.2, + "probability": 0.8974 + }, + { + "start": 1747.1, + "end": 1748.1, + "probability": 0.9889 + }, + { + "start": 1749.28, + "end": 1750.18, + "probability": 0.9426 + }, + { + "start": 1751.44, + "end": 1753.76, + "probability": 0.9708 + }, + { + "start": 1754.56, + "end": 1762.58, + "probability": 0.8846 + }, + { + "start": 1764.24, + "end": 1768.36, + "probability": 0.8058 + }, + { + "start": 1769.26, + "end": 1775.26, + "probability": 0.9954 + }, + { + "start": 1776.84, + "end": 1783.84, + "probability": 0.9752 + }, + { + "start": 1785.5, + "end": 1786.95, + "probability": 0.8439 + }, + { + "start": 1789.7, + "end": 1795.2, + "probability": 0.9822 + }, + { + "start": 1795.76, + "end": 1800.86, + "probability": 0.9927 + }, + { + "start": 1801.8, + "end": 1803.73, + "probability": 0.9978 + }, + { + "start": 1804.4, + "end": 1805.42, + "probability": 0.9792 + }, + { + "start": 1805.94, + "end": 1807.9, + "probability": 0.8158 + }, + { + "start": 1809.76, + "end": 1811.36, + "probability": 0.8791 + }, + { + "start": 1812.74, + "end": 1814.42, + "probability": 0.935 + }, + { + "start": 1815.62, + "end": 1817.1, + "probability": 0.9377 + }, + { + "start": 1817.9, + "end": 1821.08, + "probability": 0.9808 + }, + { + "start": 1821.16, + "end": 1821.84, + "probability": 0.9514 + }, + { + "start": 1822.46, + "end": 1824.54, + "probability": 0.973 + }, + { + "start": 1825.94, + "end": 1829.64, + "probability": 0.9922 + }, + { + "start": 1830.08, + "end": 1835.03, + "probability": 0.9968 + }, + { + "start": 1835.78, + "end": 1836.2, + "probability": 0.6002 + }, + { + "start": 1836.52, + "end": 1838.7, + "probability": 0.5095 + }, + { + "start": 1839.02, + "end": 1839.72, + "probability": 0.7967 + }, + { + "start": 1839.82, + "end": 1840.96, + "probability": 0.8757 + }, + { + "start": 1841.02, + "end": 1841.88, + "probability": 0.8046 + }, + { + "start": 1843.34, + "end": 1845.52, + "probability": 0.6356 + }, + { + "start": 1848.58, + "end": 1849.52, + "probability": 0.756 + }, + { + "start": 1850.54, + "end": 1851.48, + "probability": 0.6731 + }, + { + "start": 1851.6, + "end": 1852.44, + "probability": 0.8496 + }, + { + "start": 1852.94, + "end": 1854.02, + "probability": 0.959 + }, + { + "start": 1854.14, + "end": 1855.42, + "probability": 0.9941 + }, + { + "start": 1855.96, + "end": 1858.92, + "probability": 0.874 + }, + { + "start": 1859.74, + "end": 1861.6, + "probability": 0.9023 + }, + { + "start": 1861.66, + "end": 1863.1, + "probability": 0.8074 + }, + { + "start": 1864.24, + "end": 1870.2, + "probability": 0.9958 + }, + { + "start": 1871.7, + "end": 1877.36, + "probability": 0.9854 + }, + { + "start": 1877.46, + "end": 1877.8, + "probability": 0.6887 + }, + { + "start": 1879.18, + "end": 1879.78, + "probability": 0.5719 + }, + { + "start": 1880.62, + "end": 1880.97, + "probability": 0.3917 + }, + { + "start": 1882.1, + "end": 1887.22, + "probability": 0.9676 + }, + { + "start": 1887.32, + "end": 1888.18, + "probability": 0.6244 + }, + { + "start": 1888.5, + "end": 1891.12, + "probability": 0.968 + }, + { + "start": 1891.4, + "end": 1892.32, + "probability": 0.8644 + }, + { + "start": 1893.44, + "end": 1896.0, + "probability": 0.7445 + }, + { + "start": 1896.52, + "end": 1898.22, + "probability": 0.4953 + }, + { + "start": 1901.4, + "end": 1903.86, + "probability": 0.7986 + }, + { + "start": 1907.38, + "end": 1908.4, + "probability": 0.8548 + }, + { + "start": 1908.58, + "end": 1909.14, + "probability": 0.9268 + }, + { + "start": 1909.26, + "end": 1910.86, + "probability": 0.8018 + }, + { + "start": 1910.88, + "end": 1912.28, + "probability": 0.7878 + }, + { + "start": 1913.3, + "end": 1914.18, + "probability": 0.7502 + }, + { + "start": 1916.04, + "end": 1919.26, + "probability": 0.9258 + }, + { + "start": 1919.68, + "end": 1923.36, + "probability": 0.9888 + }, + { + "start": 1923.56, + "end": 1924.28, + "probability": 0.4984 + }, + { + "start": 1924.52, + "end": 1926.88, + "probability": 0.7906 + }, + { + "start": 1928.04, + "end": 1932.4, + "probability": 0.9382 + }, + { + "start": 1933.58, + "end": 1935.13, + "probability": 0.9938 + }, + { + "start": 1937.02, + "end": 1937.64, + "probability": 0.7006 + }, + { + "start": 1940.32, + "end": 1943.46, + "probability": 0.9373 + }, + { + "start": 1943.46, + "end": 1947.32, + "probability": 0.9985 + }, + { + "start": 1948.52, + "end": 1954.54, + "probability": 0.9736 + }, + { + "start": 1957.64, + "end": 1965.14, + "probability": 0.7606 + }, + { + "start": 1965.76, + "end": 1969.8, + "probability": 0.9945 + }, + { + "start": 1970.32, + "end": 1971.74, + "probability": 0.8693 + }, + { + "start": 1972.84, + "end": 1976.12, + "probability": 0.9016 + }, + { + "start": 1977.0, + "end": 1978.4, + "probability": 0.9479 + }, + { + "start": 1979.18, + "end": 1982.68, + "probability": 0.7689 + }, + { + "start": 1982.96, + "end": 1984.9, + "probability": 0.3625 + }, + { + "start": 1985.34, + "end": 1986.88, + "probability": 0.9854 + }, + { + "start": 1987.38, + "end": 1987.84, + "probability": 0.8979 + }, + { + "start": 1987.92, + "end": 1992.78, + "probability": 0.8273 + }, + { + "start": 1993.38, + "end": 1995.4, + "probability": 0.9763 + }, + { + "start": 1995.84, + "end": 1998.84, + "probability": 0.9497 + }, + { + "start": 1998.92, + "end": 1999.78, + "probability": 0.7905 + }, + { + "start": 2000.74, + "end": 2004.8, + "probability": 0.85 + }, + { + "start": 2004.94, + "end": 2008.12, + "probability": 0.8696 + }, + { + "start": 2008.86, + "end": 2011.46, + "probability": 0.9593 + }, + { + "start": 2012.39, + "end": 2015.96, + "probability": 0.0533 + }, + { + "start": 2016.28, + "end": 2016.82, + "probability": 0.8022 + }, + { + "start": 2017.72, + "end": 2017.98, + "probability": 0.7009 + }, + { + "start": 2017.98, + "end": 2020.12, + "probability": 0.9048 + }, + { + "start": 2020.46, + "end": 2020.98, + "probability": 0.6345 + }, + { + "start": 2021.06, + "end": 2022.16, + "probability": 0.8945 + }, + { + "start": 2022.86, + "end": 2023.88, + "probability": 0.9678 + }, + { + "start": 2024.72, + "end": 2026.28, + "probability": 0.8786 + }, + { + "start": 2026.34, + "end": 2028.37, + "probability": 0.9956 + }, + { + "start": 2029.1, + "end": 2031.64, + "probability": 0.9956 + }, + { + "start": 2031.72, + "end": 2032.7, + "probability": 0.3947 + }, + { + "start": 2032.84, + "end": 2037.66, + "probability": 0.9944 + }, + { + "start": 2038.22, + "end": 2038.38, + "probability": 0.5044 + }, + { + "start": 2038.5, + "end": 2038.74, + "probability": 0.5343 + }, + { + "start": 2038.92, + "end": 2042.6, + "probability": 0.981 + }, + { + "start": 2044.04, + "end": 2044.66, + "probability": 0.896 + }, + { + "start": 2044.76, + "end": 2045.54, + "probability": 0.9614 + }, + { + "start": 2045.62, + "end": 2046.36, + "probability": 0.7494 + }, + { + "start": 2046.62, + "end": 2049.02, + "probability": 0.9728 + }, + { + "start": 2049.48, + "end": 2050.27, + "probability": 0.8416 + }, + { + "start": 2050.44, + "end": 2051.0, + "probability": 0.8242 + }, + { + "start": 2051.1, + "end": 2053.88, + "probability": 0.9556 + }, + { + "start": 2054.16, + "end": 2058.36, + "probability": 0.7928 + }, + { + "start": 2062.44, + "end": 2063.75, + "probability": 0.8211 + }, + { + "start": 2064.52, + "end": 2066.38, + "probability": 0.9879 + }, + { + "start": 2066.74, + "end": 2069.42, + "probability": 0.9806 + }, + { + "start": 2071.43, + "end": 2074.22, + "probability": 0.9509 + }, + { + "start": 2075.2, + "end": 2076.32, + "probability": 0.9588 + }, + { + "start": 2076.62, + "end": 2082.54, + "probability": 0.8911 + }, + { + "start": 2082.84, + "end": 2085.6, + "probability": 0.9941 + }, + { + "start": 2088.08, + "end": 2091.02, + "probability": 0.9099 + }, + { + "start": 2091.9, + "end": 2093.06, + "probability": 0.6775 + }, + { + "start": 2093.18, + "end": 2098.3, + "probability": 0.9604 + }, + { + "start": 2099.28, + "end": 2102.92, + "probability": 0.9872 + }, + { + "start": 2104.68, + "end": 2107.96, + "probability": 0.9896 + }, + { + "start": 2108.68, + "end": 2109.61, + "probability": 0.9726 + }, + { + "start": 2110.12, + "end": 2110.76, + "probability": 0.9221 + }, + { + "start": 2111.18, + "end": 2115.34, + "probability": 0.9976 + }, + { + "start": 2115.7, + "end": 2116.24, + "probability": 0.6185 + }, + { + "start": 2116.32, + "end": 2117.2, + "probability": 0.9956 + }, + { + "start": 2117.32, + "end": 2117.6, + "probability": 0.3673 + }, + { + "start": 2117.7, + "end": 2118.34, + "probability": 0.8397 + }, + { + "start": 2118.38, + "end": 2119.7, + "probability": 0.8969 + }, + { + "start": 2119.74, + "end": 2126.12, + "probability": 0.946 + }, + { + "start": 2126.58, + "end": 2129.78, + "probability": 0.9835 + }, + { + "start": 2130.78, + "end": 2131.6, + "probability": 0.5005 + }, + { + "start": 2132.26, + "end": 2134.24, + "probability": 0.3332 + }, + { + "start": 2134.78, + "end": 2137.42, + "probability": 0.2783 + }, + { + "start": 2137.94, + "end": 2139.93, + "probability": 0.3657 + }, + { + "start": 2140.52, + "end": 2141.08, + "probability": 0.792 + }, + { + "start": 2141.1, + "end": 2141.9, + "probability": 0.9585 + }, + { + "start": 2142.3, + "end": 2144.36, + "probability": 0.9852 + }, + { + "start": 2145.26, + "end": 2145.62, + "probability": 0.4808 + }, + { + "start": 2145.9, + "end": 2147.96, + "probability": 0.6753 + }, + { + "start": 2148.42, + "end": 2151.04, + "probability": 0.8628 + }, + { + "start": 2151.14, + "end": 2152.1, + "probability": 0.4358 + }, + { + "start": 2152.48, + "end": 2154.9, + "probability": 0.9823 + }, + { + "start": 2165.56, + "end": 2167.16, + "probability": 0.8934 + }, + { + "start": 2167.78, + "end": 2171.42, + "probability": 0.9036 + }, + { + "start": 2171.74, + "end": 2172.44, + "probability": 0.5952 + }, + { + "start": 2173.3, + "end": 2176.46, + "probability": 0.913 + }, + { + "start": 2177.56, + "end": 2178.26, + "probability": 0.5756 + }, + { + "start": 2178.78, + "end": 2179.88, + "probability": 0.9658 + }, + { + "start": 2180.48, + "end": 2181.56, + "probability": 0.6163 + }, + { + "start": 2182.62, + "end": 2186.09, + "probability": 0.7835 + }, + { + "start": 2188.08, + "end": 2188.82, + "probability": 0.7724 + }, + { + "start": 2190.04, + "end": 2191.32, + "probability": 0.8842 + }, + { + "start": 2192.02, + "end": 2193.32, + "probability": 0.7945 + }, + { + "start": 2194.1, + "end": 2195.26, + "probability": 0.4434 + }, + { + "start": 2195.86, + "end": 2197.04, + "probability": 0.5731 + }, + { + "start": 2198.16, + "end": 2199.92, + "probability": 0.6742 + }, + { + "start": 2200.96, + "end": 2202.96, + "probability": 0.7376 + }, + { + "start": 2204.78, + "end": 2205.1, + "probability": 0.8316 + }, + { + "start": 2205.72, + "end": 2206.06, + "probability": 0.8733 + }, + { + "start": 2208.1, + "end": 2209.92, + "probability": 0.7134 + }, + { + "start": 2211.02, + "end": 2212.12, + "probability": 0.3678 + }, + { + "start": 2213.66, + "end": 2215.88, + "probability": 0.8626 + }, + { + "start": 2217.6, + "end": 2221.84, + "probability": 0.9723 + }, + { + "start": 2222.82, + "end": 2223.6, + "probability": 0.4186 + }, + { + "start": 2225.12, + "end": 2228.2, + "probability": 0.672 + }, + { + "start": 2229.08, + "end": 2233.72, + "probability": 0.8694 + }, + { + "start": 2237.94, + "end": 2239.9, + "probability": 0.5457 + }, + { + "start": 2241.22, + "end": 2242.1, + "probability": 0.7328 + }, + { + "start": 2243.0, + "end": 2244.3, + "probability": 0.6181 + }, + { + "start": 2245.78, + "end": 2246.82, + "probability": 0.9885 + }, + { + "start": 2247.44, + "end": 2248.04, + "probability": 0.8102 + }, + { + "start": 2248.7, + "end": 2249.76, + "probability": 0.9342 + }, + { + "start": 2250.28, + "end": 2251.18, + "probability": 0.9472 + }, + { + "start": 2252.66, + "end": 2253.12, + "probability": 0.9495 + }, + { + "start": 2253.26, + "end": 2256.64, + "probability": 0.8089 + }, + { + "start": 2257.04, + "end": 2259.84, + "probability": 0.9781 + }, + { + "start": 2261.28, + "end": 2262.88, + "probability": 0.6527 + }, + { + "start": 2264.68, + "end": 2265.74, + "probability": 0.9138 + }, + { + "start": 2267.26, + "end": 2269.72, + "probability": 0.7437 + }, + { + "start": 2270.74, + "end": 2272.0, + "probability": 0.9634 + }, + { + "start": 2272.86, + "end": 2276.5, + "probability": 0.709 + }, + { + "start": 2277.58, + "end": 2279.92, + "probability": 0.9839 + }, + { + "start": 2280.96, + "end": 2286.66, + "probability": 0.7636 + }, + { + "start": 2287.44, + "end": 2290.32, + "probability": 0.6465 + }, + { + "start": 2291.04, + "end": 2295.12, + "probability": 0.8525 + }, + { + "start": 2296.7, + "end": 2298.48, + "probability": 0.6048 + }, + { + "start": 2299.52, + "end": 2300.3, + "probability": 0.7532 + }, + { + "start": 2300.86, + "end": 2304.84, + "probability": 0.9181 + }, + { + "start": 2305.64, + "end": 2308.16, + "probability": 0.979 + }, + { + "start": 2309.3, + "end": 2314.58, + "probability": 0.6517 + }, + { + "start": 2315.48, + "end": 2316.16, + "probability": 0.7205 + }, + { + "start": 2317.06, + "end": 2317.88, + "probability": 0.7502 + }, + { + "start": 2318.6, + "end": 2321.04, + "probability": 0.9688 + }, + { + "start": 2321.68, + "end": 2323.4, + "probability": 0.8347 + }, + { + "start": 2324.12, + "end": 2325.92, + "probability": 0.7721 + }, + { + "start": 2326.6, + "end": 2328.22, + "probability": 0.9266 + }, + { + "start": 2328.72, + "end": 2329.64, + "probability": 0.807 + }, + { + "start": 2330.14, + "end": 2332.72, + "probability": 0.7219 + }, + { + "start": 2332.86, + "end": 2335.16, + "probability": 0.9793 + }, + { + "start": 2335.22, + "end": 2335.9, + "probability": 0.6078 + }, + { + "start": 2335.94, + "end": 2338.02, + "probability": 0.838 + }, + { + "start": 2352.18, + "end": 2353.53, + "probability": 0.8114 + }, + { + "start": 2355.76, + "end": 2357.06, + "probability": 0.5863 + }, + { + "start": 2357.2, + "end": 2357.2, + "probability": 0.8188 + }, + { + "start": 2357.2, + "end": 2358.0, + "probability": 0.837 + }, + { + "start": 2358.2, + "end": 2359.36, + "probability": 0.6791 + }, + { + "start": 2361.0, + "end": 2362.63, + "probability": 0.9531 + }, + { + "start": 2363.72, + "end": 2365.76, + "probability": 0.8918 + }, + { + "start": 2366.64, + "end": 2368.28, + "probability": 0.8779 + }, + { + "start": 2369.74, + "end": 2374.22, + "probability": 0.7517 + }, + { + "start": 2375.42, + "end": 2376.34, + "probability": 0.5451 + }, + { + "start": 2376.9, + "end": 2377.36, + "probability": 0.7561 + }, + { + "start": 2377.52, + "end": 2382.24, + "probability": 0.7656 + }, + { + "start": 2383.14, + "end": 2385.64, + "probability": 0.7845 + }, + { + "start": 2386.64, + "end": 2386.96, + "probability": 0.2355 + }, + { + "start": 2387.0, + "end": 2387.94, + "probability": 0.6792 + }, + { + "start": 2387.94, + "end": 2389.54, + "probability": 0.7803 + }, + { + "start": 2390.42, + "end": 2394.14, + "probability": 0.8759 + }, + { + "start": 2395.6, + "end": 2402.22, + "probability": 0.9731 + }, + { + "start": 2402.92, + "end": 2406.96, + "probability": 0.5644 + }, + { + "start": 2407.66, + "end": 2411.82, + "probability": 0.7917 + }, + { + "start": 2413.38, + "end": 2413.6, + "probability": 0.9048 + }, + { + "start": 2415.04, + "end": 2419.56, + "probability": 0.942 + }, + { + "start": 2420.06, + "end": 2420.98, + "probability": 0.9385 + }, + { + "start": 2421.42, + "end": 2423.36, + "probability": 0.8648 + }, + { + "start": 2424.72, + "end": 2425.78, + "probability": 0.6824 + }, + { + "start": 2427.42, + "end": 2427.92, + "probability": 0.7747 + }, + { + "start": 2428.26, + "end": 2429.86, + "probability": 0.9521 + }, + { + "start": 2430.66, + "end": 2434.78, + "probability": 0.9958 + }, + { + "start": 2436.4, + "end": 2439.56, + "probability": 0.9761 + }, + { + "start": 2439.98, + "end": 2443.12, + "probability": 0.9966 + }, + { + "start": 2443.68, + "end": 2446.12, + "probability": 0.8277 + }, + { + "start": 2446.44, + "end": 2447.72, + "probability": 0.9857 + }, + { + "start": 2447.82, + "end": 2448.44, + "probability": 0.9819 + }, + { + "start": 2448.78, + "end": 2449.5, + "probability": 0.9619 + }, + { + "start": 2450.1, + "end": 2451.92, + "probability": 0.9812 + }, + { + "start": 2452.1, + "end": 2453.68, + "probability": 0.9937 + }, + { + "start": 2454.38, + "end": 2455.32, + "probability": 0.4869 + }, + { + "start": 2455.92, + "end": 2461.06, + "probability": 0.8704 + }, + { + "start": 2461.16, + "end": 2463.9, + "probability": 0.8111 + }, + { + "start": 2464.24, + "end": 2464.64, + "probability": 0.6597 + }, + { + "start": 2464.76, + "end": 2465.64, + "probability": 0.8604 + }, + { + "start": 2467.32, + "end": 2470.44, + "probability": 0.9069 + }, + { + "start": 2470.92, + "end": 2472.26, + "probability": 0.8579 + }, + { + "start": 2472.38, + "end": 2475.3, + "probability": 0.9767 + }, + { + "start": 2476.24, + "end": 2477.76, + "probability": 0.8481 + }, + { + "start": 2478.28, + "end": 2479.04, + "probability": 0.7373 + }, + { + "start": 2479.22, + "end": 2483.86, + "probability": 0.8869 + }, + { + "start": 2484.22, + "end": 2486.38, + "probability": 0.9371 + }, + { + "start": 2486.98, + "end": 2488.06, + "probability": 0.5314 + }, + { + "start": 2488.16, + "end": 2489.14, + "probability": 0.9873 + }, + { + "start": 2489.22, + "end": 2490.42, + "probability": 0.9556 + }, + { + "start": 2491.57, + "end": 2494.2, + "probability": 0.956 + }, + { + "start": 2494.42, + "end": 2496.72, + "probability": 0.8831 + }, + { + "start": 2497.32, + "end": 2498.12, + "probability": 0.9988 + }, + { + "start": 2498.72, + "end": 2501.66, + "probability": 0.8483 + }, + { + "start": 2502.42, + "end": 2503.88, + "probability": 0.6942 + }, + { + "start": 2504.92, + "end": 2506.92, + "probability": 0.7725 + }, + { + "start": 2506.96, + "end": 2507.7, + "probability": 0.4549 + }, + { + "start": 2507.88, + "end": 2509.01, + "probability": 0.7066 + }, + { + "start": 2509.74, + "end": 2511.06, + "probability": 0.8392 + }, + { + "start": 2511.86, + "end": 2514.0, + "probability": 0.8911 + }, + { + "start": 2514.08, + "end": 2519.82, + "probability": 0.8289 + }, + { + "start": 2520.74, + "end": 2521.96, + "probability": 0.9277 + }, + { + "start": 2522.12, + "end": 2523.0, + "probability": 0.7203 + }, + { + "start": 2523.16, + "end": 2523.72, + "probability": 0.7625 + }, + { + "start": 2523.86, + "end": 2525.52, + "probability": 0.9526 + }, + { + "start": 2525.52, + "end": 2527.58, + "probability": 0.5548 + }, + { + "start": 2528.16, + "end": 2530.38, + "probability": 0.7925 + }, + { + "start": 2531.02, + "end": 2533.42, + "probability": 0.9376 + }, + { + "start": 2535.0, + "end": 2536.2, + "probability": 0.67 + }, + { + "start": 2536.26, + "end": 2536.6, + "probability": 0.8572 + }, + { + "start": 2536.66, + "end": 2538.54, + "probability": 0.8543 + }, + { + "start": 2538.72, + "end": 2539.98, + "probability": 0.7582 + }, + { + "start": 2541.3, + "end": 2542.48, + "probability": 0.228 + }, + { + "start": 2543.26, + "end": 2543.26, + "probability": 0.1394 + }, + { + "start": 2543.26, + "end": 2543.48, + "probability": 0.3271 + }, + { + "start": 2543.56, + "end": 2545.54, + "probability": 0.8747 + }, + { + "start": 2546.14, + "end": 2550.48, + "probability": 0.9302 + }, + { + "start": 2550.9, + "end": 2554.3, + "probability": 0.7346 + }, + { + "start": 2554.32, + "end": 2555.88, + "probability": 0.9785 + }, + { + "start": 2555.98, + "end": 2557.7, + "probability": 0.8935 + }, + { + "start": 2558.18, + "end": 2559.3, + "probability": 0.9109 + }, + { + "start": 2560.16, + "end": 2560.94, + "probability": 0.7047 + }, + { + "start": 2561.08, + "end": 2561.72, + "probability": 0.7036 + }, + { + "start": 2561.94, + "end": 2562.42, + "probability": 0.5835 + }, + { + "start": 2562.52, + "end": 2563.3, + "probability": 0.8435 + }, + { + "start": 2563.34, + "end": 2564.38, + "probability": 0.988 + }, + { + "start": 2565.85, + "end": 2569.16, + "probability": 0.8754 + }, + { + "start": 2569.16, + "end": 2572.6, + "probability": 0.8323 + }, + { + "start": 2573.2, + "end": 2573.94, + "probability": 0.3629 + }, + { + "start": 2574.12, + "end": 2574.78, + "probability": 0.8074 + }, + { + "start": 2575.32, + "end": 2577.1, + "probability": 0.957 + }, + { + "start": 2577.22, + "end": 2578.28, + "probability": 0.3281 + }, + { + "start": 2578.38, + "end": 2581.5, + "probability": 0.6926 + }, + { + "start": 2581.5, + "end": 2582.0, + "probability": 0.486 + }, + { + "start": 2582.38, + "end": 2583.72, + "probability": 0.8445 + }, + { + "start": 2584.02, + "end": 2584.8, + "probability": 0.96 + }, + { + "start": 2584.9, + "end": 2585.28, + "probability": 0.9573 + }, + { + "start": 2585.76, + "end": 2586.66, + "probability": 0.9611 + }, + { + "start": 2587.1, + "end": 2589.32, + "probability": 0.9485 + }, + { + "start": 2589.62, + "end": 2590.44, + "probability": 0.9879 + }, + { + "start": 2590.72, + "end": 2592.48, + "probability": 0.9884 + }, + { + "start": 2593.28, + "end": 2594.58, + "probability": 0.7781 + }, + { + "start": 2595.16, + "end": 2596.38, + "probability": 0.538 + }, + { + "start": 2596.62, + "end": 2599.66, + "probability": 0.9709 + }, + { + "start": 2599.74, + "end": 2600.56, + "probability": 0.5083 + }, + { + "start": 2600.7, + "end": 2601.08, + "probability": 0.7884 + }, + { + "start": 2601.38, + "end": 2603.26, + "probability": 0.7007 + }, + { + "start": 2603.38, + "end": 2605.54, + "probability": 0.7772 + }, + { + "start": 2605.92, + "end": 2606.76, + "probability": 0.3952 + }, + { + "start": 2606.76, + "end": 2608.84, + "probability": 0.8626 + }, + { + "start": 2623.58, + "end": 2624.46, + "probability": 0.8354 + }, + { + "start": 2624.46, + "end": 2624.46, + "probability": 0.0451 + }, + { + "start": 2624.46, + "end": 2624.46, + "probability": 0.159 + }, + { + "start": 2624.46, + "end": 2624.96, + "probability": 0.0498 + }, + { + "start": 2637.98, + "end": 2639.5, + "probability": 0.715 + }, + { + "start": 2641.38, + "end": 2643.29, + "probability": 0.7948 + }, + { + "start": 2644.08, + "end": 2648.04, + "probability": 0.9097 + }, + { + "start": 2648.7, + "end": 2651.42, + "probability": 0.9977 + }, + { + "start": 2651.74, + "end": 2652.28, + "probability": 0.7507 + }, + { + "start": 2652.36, + "end": 2652.68, + "probability": 0.5648 + }, + { + "start": 2652.74, + "end": 2654.8, + "probability": 0.9854 + }, + { + "start": 2655.28, + "end": 2657.28, + "probability": 0.9736 + }, + { + "start": 2658.0, + "end": 2661.98, + "probability": 0.9212 + }, + { + "start": 2662.42, + "end": 2663.81, + "probability": 0.6146 + }, + { + "start": 2664.76, + "end": 2666.79, + "probability": 0.8866 + }, + { + "start": 2667.46, + "end": 2668.34, + "probability": 0.6963 + }, + { + "start": 2668.4, + "end": 2669.84, + "probability": 0.9673 + }, + { + "start": 2670.0, + "end": 2674.7, + "probability": 0.9883 + }, + { + "start": 2674.7, + "end": 2677.5, + "probability": 0.9975 + }, + { + "start": 2677.92, + "end": 2678.66, + "probability": 0.8621 + }, + { + "start": 2678.74, + "end": 2679.76, + "probability": 0.9976 + }, + { + "start": 2680.34, + "end": 2682.38, + "probability": 0.9979 + }, + { + "start": 2682.88, + "end": 2685.18, + "probability": 0.9899 + }, + { + "start": 2685.52, + "end": 2686.32, + "probability": 0.7492 + }, + { + "start": 2686.72, + "end": 2687.94, + "probability": 0.7048 + }, + { + "start": 2688.3, + "end": 2692.66, + "probability": 0.9908 + }, + { + "start": 2692.96, + "end": 2694.29, + "probability": 0.925 + }, + { + "start": 2694.86, + "end": 2698.02, + "probability": 0.9896 + }, + { + "start": 2698.02, + "end": 2700.8, + "probability": 0.9949 + }, + { + "start": 2701.18, + "end": 2707.18, + "probability": 0.9897 + }, + { + "start": 2708.08, + "end": 2711.16, + "probability": 0.9772 + }, + { + "start": 2711.18, + "end": 2712.74, + "probability": 0.9668 + }, + { + "start": 2713.54, + "end": 2717.56, + "probability": 0.9362 + }, + { + "start": 2718.74, + "end": 2720.36, + "probability": 0.8652 + }, + { + "start": 2720.54, + "end": 2721.58, + "probability": 0.9241 + }, + { + "start": 2722.04, + "end": 2724.08, + "probability": 0.9933 + }, + { + "start": 2724.28, + "end": 2725.84, + "probability": 0.9933 + }, + { + "start": 2726.18, + "end": 2727.84, + "probability": 0.9503 + }, + { + "start": 2728.22, + "end": 2731.12, + "probability": 0.6274 + }, + { + "start": 2731.26, + "end": 2733.78, + "probability": 0.9125 + }, + { + "start": 2734.12, + "end": 2736.25, + "probability": 0.9146 + }, + { + "start": 2736.7, + "end": 2740.68, + "probability": 0.8499 + }, + { + "start": 2741.22, + "end": 2745.36, + "probability": 0.996 + }, + { + "start": 2746.0, + "end": 2747.84, + "probability": 0.8878 + }, + { + "start": 2748.58, + "end": 2749.64, + "probability": 0.9361 + }, + { + "start": 2749.72, + "end": 2752.44, + "probability": 0.9016 + }, + { + "start": 2752.48, + "end": 2753.14, + "probability": 0.9704 + }, + { + "start": 2754.28, + "end": 2759.56, + "probability": 0.8117 + }, + { + "start": 2759.96, + "end": 2765.3, + "probability": 0.995 + }, + { + "start": 2765.4, + "end": 2769.88, + "probability": 0.9451 + }, + { + "start": 2770.18, + "end": 2771.76, + "probability": 0.839 + }, + { + "start": 2771.8, + "end": 2772.24, + "probability": 0.6176 + }, + { + "start": 2772.76, + "end": 2777.76, + "probability": 0.9963 + }, + { + "start": 2778.14, + "end": 2778.24, + "probability": 0.1393 + }, + { + "start": 2778.96, + "end": 2779.72, + "probability": 0.5961 + }, + { + "start": 2779.74, + "end": 2783.54, + "probability": 0.8215 + }, + { + "start": 2783.62, + "end": 2786.1, + "probability": 0.8825 + }, + { + "start": 2787.43, + "end": 2790.48, + "probability": 0.7449 + }, + { + "start": 2790.64, + "end": 2792.86, + "probability": 0.7634 + }, + { + "start": 2793.32, + "end": 2796.8, + "probability": 0.948 + }, + { + "start": 2797.08, + "end": 2800.58, + "probability": 0.983 + }, + { + "start": 2800.96, + "end": 2802.02, + "probability": 0.8273 + }, + { + "start": 2802.48, + "end": 2803.64, + "probability": 0.7879 + }, + { + "start": 2803.78, + "end": 2804.76, + "probability": 0.8205 + }, + { + "start": 2804.86, + "end": 2805.59, + "probability": 0.9395 + }, + { + "start": 2805.88, + "end": 2809.48, + "probability": 0.9932 + }, + { + "start": 2809.6, + "end": 2810.14, + "probability": 0.7334 + }, + { + "start": 2810.46, + "end": 2810.98, + "probability": 0.9223 + }, + { + "start": 2811.14, + "end": 2811.56, + "probability": 0.7565 + }, + { + "start": 2811.9, + "end": 2813.8, + "probability": 0.9526 + }, + { + "start": 2814.0, + "end": 2815.22, + "probability": 0.994 + }, + { + "start": 2815.54, + "end": 2816.76, + "probability": 0.5533 + }, + { + "start": 2817.04, + "end": 2819.02, + "probability": 0.5965 + }, + { + "start": 2819.08, + "end": 2819.7, + "probability": 0.9508 + }, + { + "start": 2820.08, + "end": 2823.54, + "probability": 0.9647 + }, + { + "start": 2824.36, + "end": 2825.32, + "probability": 0.7199 + }, + { + "start": 2825.48, + "end": 2828.77, + "probability": 0.7991 + }, + { + "start": 2829.12, + "end": 2829.74, + "probability": 0.8593 + }, + { + "start": 2830.14, + "end": 2831.48, + "probability": 0.9337 + }, + { + "start": 2831.64, + "end": 2834.14, + "probability": 0.9607 + }, + { + "start": 2834.24, + "end": 2836.92, + "probability": 0.8276 + }, + { + "start": 2837.22, + "end": 2840.28, + "probability": 0.9116 + }, + { + "start": 2841.48, + "end": 2842.38, + "probability": 0.7356 + }, + { + "start": 2842.74, + "end": 2844.12, + "probability": 0.8157 + }, + { + "start": 2844.24, + "end": 2847.6, + "probability": 0.9562 + }, + { + "start": 2847.68, + "end": 2853.46, + "probability": 0.9971 + }, + { + "start": 2853.46, + "end": 2858.28, + "probability": 0.9259 + }, + { + "start": 2859.04, + "end": 2859.14, + "probability": 0.6165 + }, + { + "start": 2859.72, + "end": 2862.04, + "probability": 0.6742 + }, + { + "start": 2862.76, + "end": 2867.02, + "probability": 0.8551 + }, + { + "start": 2868.72, + "end": 2873.22, + "probability": 0.934 + }, + { + "start": 2878.3, + "end": 2880.68, + "probability": 0.644 + }, + { + "start": 2881.26, + "end": 2882.17, + "probability": 0.401 + }, + { + "start": 2883.38, + "end": 2885.5, + "probability": 0.7899 + }, + { + "start": 2886.62, + "end": 2888.72, + "probability": 0.7605 + }, + { + "start": 2889.0, + "end": 2891.36, + "probability": 0.8907 + }, + { + "start": 2892.36, + "end": 2893.08, + "probability": 0.9214 + }, + { + "start": 2893.16, + "end": 2893.46, + "probability": 0.334 + }, + { + "start": 2893.5, + "end": 2898.14, + "probability": 0.9966 + }, + { + "start": 2899.92, + "end": 2904.24, + "probability": 0.9549 + }, + { + "start": 2905.0, + "end": 2905.55, + "probability": 0.753 + }, + { + "start": 2907.22, + "end": 2911.0, + "probability": 0.9763 + }, + { + "start": 2912.36, + "end": 2919.08, + "probability": 0.998 + }, + { + "start": 2919.94, + "end": 2920.92, + "probability": 0.7046 + }, + { + "start": 2921.08, + "end": 2924.29, + "probability": 0.9971 + }, + { + "start": 2924.94, + "end": 2929.32, + "probability": 0.855 + }, + { + "start": 2931.06, + "end": 2933.52, + "probability": 0.6543 + }, + { + "start": 2934.08, + "end": 2938.54, + "probability": 0.9824 + }, + { + "start": 2938.94, + "end": 2939.8, + "probability": 0.8191 + }, + { + "start": 2939.96, + "end": 2940.88, + "probability": 0.8708 + }, + { + "start": 2940.98, + "end": 2943.78, + "probability": 0.9846 + }, + { + "start": 2944.76, + "end": 2945.26, + "probability": 0.5106 + }, + { + "start": 2945.4, + "end": 2946.5, + "probability": 0.6895 + }, + { + "start": 2946.92, + "end": 2949.82, + "probability": 0.9631 + }, + { + "start": 2949.88, + "end": 2950.82, + "probability": 0.8854 + }, + { + "start": 2950.86, + "end": 2952.57, + "probability": 0.9818 + }, + { + "start": 2953.2, + "end": 2954.38, + "probability": 0.8714 + }, + { + "start": 2954.8, + "end": 2955.9, + "probability": 0.8232 + }, + { + "start": 2956.0, + "end": 2957.34, + "probability": 0.6745 + }, + { + "start": 2958.4, + "end": 2961.52, + "probability": 0.9378 + }, + { + "start": 2961.84, + "end": 2964.26, + "probability": 0.9977 + }, + { + "start": 2964.58, + "end": 2968.04, + "probability": 0.8241 + }, + { + "start": 2968.14, + "end": 2970.32, + "probability": 0.9811 + }, + { + "start": 2970.32, + "end": 2973.4, + "probability": 0.7328 + }, + { + "start": 2973.88, + "end": 2976.2, + "probability": 0.999 + }, + { + "start": 2976.58, + "end": 2978.92, + "probability": 0.9976 + }, + { + "start": 2978.92, + "end": 2981.6, + "probability": 0.998 + }, + { + "start": 2982.2, + "end": 2984.88, + "probability": 0.9841 + }, + { + "start": 2985.3, + "end": 2987.76, + "probability": 0.9812 + }, + { + "start": 2988.26, + "end": 2989.79, + "probability": 0.362 + }, + { + "start": 2990.06, + "end": 2993.24, + "probability": 0.9559 + }, + { + "start": 2993.36, + "end": 2994.34, + "probability": 0.714 + }, + { + "start": 2994.92, + "end": 2999.82, + "probability": 0.9952 + }, + { + "start": 3001.19, + "end": 3003.94, + "probability": 0.6613 + }, + { + "start": 3004.1, + "end": 3005.92, + "probability": 0.905 + }, + { + "start": 3005.96, + "end": 3007.92, + "probability": 0.709 + }, + { + "start": 3008.42, + "end": 3009.84, + "probability": 0.8296 + }, + { + "start": 3009.92, + "end": 3014.08, + "probability": 0.9769 + }, + { + "start": 3014.12, + "end": 3015.36, + "probability": 0.7541 + }, + { + "start": 3015.48, + "end": 3020.14, + "probability": 0.9322 + }, + { + "start": 3020.3, + "end": 3024.08, + "probability": 0.9832 + }, + { + "start": 3024.48, + "end": 3025.26, + "probability": 0.7854 + }, + { + "start": 3025.86, + "end": 3027.12, + "probability": 0.7292 + }, + { + "start": 3027.6, + "end": 3028.6, + "probability": 0.8696 + }, + { + "start": 3029.14, + "end": 3029.64, + "probability": 0.7533 + }, + { + "start": 3029.72, + "end": 3030.78, + "probability": 0.9016 + }, + { + "start": 3031.02, + "end": 3034.26, + "probability": 0.9961 + }, + { + "start": 3034.34, + "end": 3035.08, + "probability": 0.9028 + }, + { + "start": 3035.12, + "end": 3035.54, + "probability": 0.8165 + }, + { + "start": 3035.68, + "end": 3036.42, + "probability": 0.8125 + }, + { + "start": 3036.94, + "end": 3038.11, + "probability": 0.925 + }, + { + "start": 3038.34, + "end": 3040.92, + "probability": 0.9772 + }, + { + "start": 3041.36, + "end": 3043.06, + "probability": 0.7106 + }, + { + "start": 3043.2, + "end": 3044.44, + "probability": 0.9868 + }, + { + "start": 3044.76, + "end": 3045.44, + "probability": 0.6567 + }, + { + "start": 3045.58, + "end": 3046.98, + "probability": 0.9951 + }, + { + "start": 3047.38, + "end": 3048.82, + "probability": 0.9504 + }, + { + "start": 3049.44, + "end": 3052.08, + "probability": 0.968 + }, + { + "start": 3052.42, + "end": 3054.48, + "probability": 0.9971 + }, + { + "start": 3055.02, + "end": 3057.98, + "probability": 0.9883 + }, + { + "start": 3059.06, + "end": 3059.62, + "probability": 0.8754 + }, + { + "start": 3059.96, + "end": 3062.7, + "probability": 0.7587 + }, + { + "start": 3062.98, + "end": 3067.84, + "probability": 0.9454 + }, + { + "start": 3067.9, + "end": 3069.92, + "probability": 0.7739 + }, + { + "start": 3070.34, + "end": 3070.74, + "probability": 0.9393 + }, + { + "start": 3070.86, + "end": 3072.36, + "probability": 0.8031 + }, + { + "start": 3072.42, + "end": 3074.54, + "probability": 0.9971 + }, + { + "start": 3074.54, + "end": 3077.54, + "probability": 0.994 + }, + { + "start": 3077.88, + "end": 3079.72, + "probability": 0.9725 + }, + { + "start": 3080.08, + "end": 3080.56, + "probability": 0.5308 + }, + { + "start": 3080.72, + "end": 3081.38, + "probability": 0.9428 + }, + { + "start": 3081.54, + "end": 3082.34, + "probability": 0.9435 + }, + { + "start": 3082.64, + "end": 3084.62, + "probability": 0.9043 + }, + { + "start": 3085.22, + "end": 3085.24, + "probability": 0.4011 + }, + { + "start": 3085.92, + "end": 3086.7, + "probability": 0.7054 + }, + { + "start": 3086.82, + "end": 3087.36, + "probability": 0.9673 + }, + { + "start": 3087.44, + "end": 3088.56, + "probability": 0.7621 + }, + { + "start": 3088.64, + "end": 3093.34, + "probability": 0.9487 + }, + { + "start": 3093.62, + "end": 3095.46, + "probability": 0.9424 + }, + { + "start": 3095.52, + "end": 3097.44, + "probability": 0.967 + }, + { + "start": 3097.6, + "end": 3099.54, + "probability": 0.9755 + }, + { + "start": 3099.94, + "end": 3100.94, + "probability": 0.7573 + }, + { + "start": 3101.02, + "end": 3101.86, + "probability": 0.7541 + }, + { + "start": 3102.18, + "end": 3105.64, + "probability": 0.9888 + }, + { + "start": 3106.2, + "end": 3108.38, + "probability": 0.9858 + }, + { + "start": 3108.96, + "end": 3109.46, + "probability": 0.5622 + }, + { + "start": 3110.4, + "end": 3112.68, + "probability": 0.8813 + }, + { + "start": 3112.88, + "end": 3116.92, + "probability": 0.8743 + }, + { + "start": 3136.06, + "end": 3139.74, + "probability": 0.7136 + }, + { + "start": 3140.4, + "end": 3142.74, + "probability": 0.4558 + }, + { + "start": 3142.86, + "end": 3147.42, + "probability": 0.9774 + }, + { + "start": 3147.42, + "end": 3149.17, + "probability": 0.8458 + }, + { + "start": 3149.54, + "end": 3153.54, + "probability": 0.9948 + }, + { + "start": 3153.6, + "end": 3154.24, + "probability": 0.8455 + }, + { + "start": 3154.36, + "end": 3154.82, + "probability": 0.8239 + }, + { + "start": 3156.27, + "end": 3159.42, + "probability": 0.9934 + }, + { + "start": 3159.5, + "end": 3164.7, + "probability": 0.9471 + }, + { + "start": 3164.7, + "end": 3167.42, + "probability": 0.9976 + }, + { + "start": 3170.68, + "end": 3171.7, + "probability": 0.749 + }, + { + "start": 3172.76, + "end": 3172.94, + "probability": 0.1788 + }, + { + "start": 3172.94, + "end": 3172.94, + "probability": 0.0872 + }, + { + "start": 3172.94, + "end": 3178.7, + "probability": 0.9023 + }, + { + "start": 3178.92, + "end": 3181.24, + "probability": 0.5471 + }, + { + "start": 3182.12, + "end": 3185.68, + "probability": 0.9969 + }, + { + "start": 3185.9, + "end": 3187.74, + "probability": 0.9038 + }, + { + "start": 3188.26, + "end": 3193.08, + "probability": 0.9374 + }, + { + "start": 3194.52, + "end": 3197.32, + "probability": 0.5671 + }, + { + "start": 3197.68, + "end": 3198.54, + "probability": 0.9906 + }, + { + "start": 3198.62, + "end": 3202.46, + "probability": 0.9821 + }, + { + "start": 3202.6, + "end": 3207.8, + "probability": 0.9879 + }, + { + "start": 3208.58, + "end": 3210.65, + "probability": 0.96 + }, + { + "start": 3211.12, + "end": 3213.68, + "probability": 0.9991 + }, + { + "start": 3213.88, + "end": 3218.9, + "probability": 0.9963 + }, + { + "start": 3219.38, + "end": 3225.0, + "probability": 0.977 + }, + { + "start": 3225.6, + "end": 3230.52, + "probability": 0.9957 + }, + { + "start": 3232.02, + "end": 3237.8, + "probability": 0.8539 + }, + { + "start": 3239.3, + "end": 3244.78, + "probability": 0.8973 + }, + { + "start": 3244.92, + "end": 3247.84, + "probability": 0.8265 + }, + { + "start": 3248.0, + "end": 3248.42, + "probability": 0.8345 + }, + { + "start": 3248.44, + "end": 3251.99, + "probability": 0.702 + }, + { + "start": 3252.3, + "end": 3254.78, + "probability": 0.9932 + }, + { + "start": 3254.9, + "end": 3256.94, + "probability": 0.9902 + }, + { + "start": 3257.62, + "end": 3260.92, + "probability": 0.6549 + }, + { + "start": 3261.66, + "end": 3263.3, + "probability": 0.9952 + }, + { + "start": 3264.12, + "end": 3265.52, + "probability": 0.9155 + }, + { + "start": 3266.22, + "end": 3268.46, + "probability": 0.9792 + }, + { + "start": 3268.98, + "end": 3273.3, + "probability": 0.8878 + }, + { + "start": 3275.0, + "end": 3277.22, + "probability": 0.8918 + }, + { + "start": 3277.28, + "end": 3284.5, + "probability": 0.9955 + }, + { + "start": 3284.64, + "end": 3288.3, + "probability": 0.9983 + }, + { + "start": 3289.38, + "end": 3290.76, + "probability": 0.9888 + }, + { + "start": 3290.86, + "end": 3291.86, + "probability": 0.9426 + }, + { + "start": 3291.92, + "end": 3293.44, + "probability": 0.9586 + }, + { + "start": 3293.58, + "end": 3295.54, + "probability": 0.9597 + }, + { + "start": 3296.58, + "end": 3300.14, + "probability": 0.9506 + }, + { + "start": 3300.42, + "end": 3301.78, + "probability": 0.6221 + }, + { + "start": 3301.78, + "end": 3302.36, + "probability": 0.4327 + }, + { + "start": 3302.48, + "end": 3304.86, + "probability": 0.9566 + }, + { + "start": 3305.56, + "end": 3312.46, + "probability": 0.9925 + }, + { + "start": 3313.88, + "end": 3318.84, + "probability": 0.9897 + }, + { + "start": 3318.84, + "end": 3321.7, + "probability": 0.9983 + }, + { + "start": 3321.74, + "end": 3322.44, + "probability": 0.7458 + }, + { + "start": 3322.66, + "end": 3324.54, + "probability": 0.9647 + }, + { + "start": 3324.58, + "end": 3328.56, + "probability": 0.9958 + }, + { + "start": 3329.34, + "end": 3332.02, + "probability": 0.991 + }, + { + "start": 3334.32, + "end": 3335.9, + "probability": 0.9196 + }, + { + "start": 3336.08, + "end": 3337.42, + "probability": 0.978 + }, + { + "start": 3337.64, + "end": 3338.74, + "probability": 0.846 + }, + { + "start": 3339.12, + "end": 3341.06, + "probability": 0.7466 + }, + { + "start": 3341.38, + "end": 3342.11, + "probability": 0.9985 + }, + { + "start": 3343.78, + "end": 3346.22, + "probability": 0.9895 + }, + { + "start": 3347.14, + "end": 3349.06, + "probability": 0.7512 + }, + { + "start": 3349.64, + "end": 3349.64, + "probability": 0.0297 + }, + { + "start": 3349.64, + "end": 3350.48, + "probability": 0.6289 + }, + { + "start": 3350.48, + "end": 3353.9, + "probability": 0.6385 + }, + { + "start": 3354.06, + "end": 3356.5, + "probability": 0.4804 + }, + { + "start": 3356.98, + "end": 3357.96, + "probability": 0.6455 + }, + { + "start": 3358.08, + "end": 3358.4, + "probability": 0.9002 + }, + { + "start": 3358.54, + "end": 3359.44, + "probability": 0.9902 + }, + { + "start": 3359.77, + "end": 3362.6, + "probability": 0.7756 + }, + { + "start": 3363.36, + "end": 3367.32, + "probability": 0.7907 + }, + { + "start": 3367.84, + "end": 3369.22, + "probability": 0.7053 + }, + { + "start": 3369.3, + "end": 3369.52, + "probability": 0.8532 + }, + { + "start": 3369.62, + "end": 3370.16, + "probability": 0.8286 + }, + { + "start": 3370.28, + "end": 3371.24, + "probability": 0.786 + }, + { + "start": 3371.42, + "end": 3375.16, + "probability": 0.9881 + }, + { + "start": 3375.24, + "end": 3376.98, + "probability": 0.9688 + }, + { + "start": 3377.98, + "end": 3384.72, + "probability": 0.9949 + }, + { + "start": 3384.72, + "end": 3390.14, + "probability": 0.9385 + }, + { + "start": 3391.02, + "end": 3392.84, + "probability": 0.9216 + }, + { + "start": 3394.54, + "end": 3394.82, + "probability": 0.1587 + }, + { + "start": 3394.82, + "end": 3395.46, + "probability": 0.2687 + }, + { + "start": 3395.52, + "end": 3401.06, + "probability": 0.5051 + }, + { + "start": 3401.12, + "end": 3402.36, + "probability": 0.9968 + }, + { + "start": 3403.08, + "end": 3404.92, + "probability": 0.9962 + }, + { + "start": 3405.76, + "end": 3407.9, + "probability": 0.9385 + }, + { + "start": 3408.78, + "end": 3409.64, + "probability": 0.9303 + }, + { + "start": 3409.78, + "end": 3416.62, + "probability": 0.9587 + }, + { + "start": 3416.76, + "end": 3418.48, + "probability": 0.8788 + }, + { + "start": 3419.24, + "end": 3425.08, + "probability": 0.9912 + }, + { + "start": 3425.26, + "end": 3428.12, + "probability": 0.9971 + }, + { + "start": 3428.72, + "end": 3429.72, + "probability": 0.8667 + }, + { + "start": 3429.8, + "end": 3431.66, + "probability": 0.9785 + }, + { + "start": 3431.76, + "end": 3433.44, + "probability": 0.8859 + }, + { + "start": 3434.38, + "end": 3437.47, + "probability": 0.9985 + }, + { + "start": 3438.22, + "end": 3438.56, + "probability": 0.5812 + }, + { + "start": 3438.62, + "end": 3443.02, + "probability": 0.9653 + }, + { + "start": 3443.02, + "end": 3446.5, + "probability": 0.9969 + }, + { + "start": 3447.06, + "end": 3450.28, + "probability": 0.976 + }, + { + "start": 3450.32, + "end": 3451.96, + "probability": 0.9626 + }, + { + "start": 3452.0, + "end": 3452.74, + "probability": 0.7155 + }, + { + "start": 3453.4, + "end": 3458.3, + "probability": 0.9873 + }, + { + "start": 3458.42, + "end": 3460.24, + "probability": 0.9512 + }, + { + "start": 3461.26, + "end": 3468.74, + "probability": 0.998 + }, + { + "start": 3468.74, + "end": 3473.84, + "probability": 0.9988 + }, + { + "start": 3474.54, + "end": 3477.08, + "probability": 0.9733 + }, + { + "start": 3477.2, + "end": 3480.92, + "probability": 0.9962 + }, + { + "start": 3481.1, + "end": 3483.78, + "probability": 0.999 + }, + { + "start": 3484.44, + "end": 3487.58, + "probability": 0.9988 + }, + { + "start": 3487.66, + "end": 3490.0, + "probability": 0.9845 + }, + { + "start": 3490.0, + "end": 3493.06, + "probability": 0.9997 + }, + { + "start": 3493.96, + "end": 3496.11, + "probability": 0.7892 + }, + { + "start": 3496.6, + "end": 3497.82, + "probability": 0.8682 + }, + { + "start": 3497.94, + "end": 3500.86, + "probability": 0.98 + }, + { + "start": 3501.58, + "end": 3503.08, + "probability": 0.9949 + }, + { + "start": 3503.44, + "end": 3504.22, + "probability": 0.6829 + }, + { + "start": 3504.4, + "end": 3510.3, + "probability": 0.9976 + }, + { + "start": 3510.3, + "end": 3514.9, + "probability": 0.9969 + }, + { + "start": 3516.02, + "end": 3518.92, + "probability": 0.95 + }, + { + "start": 3518.98, + "end": 3519.94, + "probability": 0.6614 + }, + { + "start": 3520.08, + "end": 3520.62, + "probability": 0.606 + }, + { + "start": 3522.02, + "end": 3522.32, + "probability": 0.4482 + }, + { + "start": 3522.74, + "end": 3524.12, + "probability": 0.8023 + }, + { + "start": 3524.22, + "end": 3526.26, + "probability": 0.8492 + }, + { + "start": 3526.36, + "end": 3531.26, + "probability": 0.978 + }, + { + "start": 3531.36, + "end": 3532.06, + "probability": 0.9116 + }, + { + "start": 3532.32, + "end": 3532.7, + "probability": 0.6724 + }, + { + "start": 3532.84, + "end": 3534.32, + "probability": 0.9614 + }, + { + "start": 3535.06, + "end": 3539.3, + "probability": 0.9961 + }, + { + "start": 3539.96, + "end": 3542.6, + "probability": 0.999 + }, + { + "start": 3542.6, + "end": 3545.02, + "probability": 0.9963 + }, + { + "start": 3546.04, + "end": 3548.24, + "probability": 0.9829 + }, + { + "start": 3548.34, + "end": 3551.78, + "probability": 0.9573 + }, + { + "start": 3551.9, + "end": 3553.94, + "probability": 0.9937 + }, + { + "start": 3554.22, + "end": 3559.84, + "probability": 0.9769 + }, + { + "start": 3560.36, + "end": 3560.68, + "probability": 0.776 + }, + { + "start": 3560.76, + "end": 3562.8, + "probability": 0.9622 + }, + { + "start": 3562.94, + "end": 3564.22, + "probability": 0.916 + }, + { + "start": 3564.4, + "end": 3564.92, + "probability": 0.6934 + }, + { + "start": 3565.1, + "end": 3566.18, + "probability": 0.9521 + }, + { + "start": 3566.5, + "end": 3568.28, + "probability": 0.9668 + }, + { + "start": 3569.02, + "end": 3573.82, + "probability": 0.8049 + }, + { + "start": 3573.84, + "end": 3577.82, + "probability": 0.9408 + }, + { + "start": 3578.56, + "end": 3580.26, + "probability": 0.999 + }, + { + "start": 3580.36, + "end": 3582.62, + "probability": 0.4702 + }, + { + "start": 3582.88, + "end": 3587.58, + "probability": 0.9038 + }, + { + "start": 3588.44, + "end": 3590.02, + "probability": 0.9339 + }, + { + "start": 3590.48, + "end": 3591.14, + "probability": 0.8052 + }, + { + "start": 3591.2, + "end": 3592.4, + "probability": 0.9948 + }, + { + "start": 3592.66, + "end": 3594.74, + "probability": 0.9551 + }, + { + "start": 3595.82, + "end": 3598.58, + "probability": 0.8901 + }, + { + "start": 3599.32, + "end": 3602.0, + "probability": 0.9984 + }, + { + "start": 3602.0, + "end": 3605.82, + "probability": 0.9229 + }, + { + "start": 3607.08, + "end": 3608.96, + "probability": 0.9873 + }, + { + "start": 3609.04, + "end": 3612.12, + "probability": 0.9932 + }, + { + "start": 3612.12, + "end": 3614.48, + "probability": 0.9995 + }, + { + "start": 3616.26, + "end": 3617.1, + "probability": 0.9932 + }, + { + "start": 3619.36, + "end": 3622.94, + "probability": 0.9998 + }, + { + "start": 3622.94, + "end": 3625.96, + "probability": 0.9986 + }, + { + "start": 3627.56, + "end": 3630.56, + "probability": 0.9976 + }, + { + "start": 3630.56, + "end": 3636.2, + "probability": 0.9434 + }, + { + "start": 3636.32, + "end": 3637.52, + "probability": 0.7576 + }, + { + "start": 3637.66, + "end": 3639.7, + "probability": 0.9982 + }, + { + "start": 3639.76, + "end": 3644.72, + "probability": 0.9807 + }, + { + "start": 3646.26, + "end": 3649.04, + "probability": 0.0134 + }, + { + "start": 3651.12, + "end": 3652.16, + "probability": 0.0782 + }, + { + "start": 3652.74, + "end": 3653.1, + "probability": 0.3247 + }, + { + "start": 3655.3, + "end": 3655.72, + "probability": 0.3469 + }, + { + "start": 3656.24, + "end": 3662.24, + "probability": 0.9793 + }, + { + "start": 3662.56, + "end": 3668.64, + "probability": 0.9984 + }, + { + "start": 3668.72, + "end": 3670.7, + "probability": 0.988 + }, + { + "start": 3670.76, + "end": 3671.06, + "probability": 0.9423 + }, + { + "start": 3671.16, + "end": 3673.18, + "probability": 0.9614 + }, + { + "start": 3673.52, + "end": 3675.94, + "probability": 0.9849 + }, + { + "start": 3676.6, + "end": 3677.02, + "probability": 0.494 + }, + { + "start": 3677.06, + "end": 3677.68, + "probability": 0.8372 + }, + { + "start": 3677.78, + "end": 3678.4, + "probability": 0.7467 + }, + { + "start": 3678.48, + "end": 3682.64, + "probability": 0.9698 + }, + { + "start": 3683.64, + "end": 3685.48, + "probability": 0.9275 + }, + { + "start": 3685.76, + "end": 3686.6, + "probability": 0.3311 + }, + { + "start": 3687.22, + "end": 3689.56, + "probability": 0.6251 + }, + { + "start": 3689.74, + "end": 3692.06, + "probability": 0.9663 + }, + { + "start": 3692.22, + "end": 3695.88, + "probability": 0.9099 + }, + { + "start": 3696.2, + "end": 3697.24, + "probability": 0.7949 + }, + { + "start": 3697.44, + "end": 3698.5, + "probability": 0.9427 + }, + { + "start": 3698.66, + "end": 3701.5, + "probability": 0.9943 + }, + { + "start": 3702.22, + "end": 3705.36, + "probability": 0.9899 + }, + { + "start": 3705.36, + "end": 3707.8, + "probability": 0.997 + }, + { + "start": 3707.94, + "end": 3711.58, + "probability": 0.9617 + }, + { + "start": 3711.94, + "end": 3714.96, + "probability": 0.998 + }, + { + "start": 3715.4, + "end": 3721.08, + "probability": 0.9938 + }, + { + "start": 3721.28, + "end": 3722.12, + "probability": 0.8379 + }, + { + "start": 3722.26, + "end": 3727.04, + "probability": 0.9928 + }, + { + "start": 3727.94, + "end": 3731.64, + "probability": 0.9643 + }, + { + "start": 3732.28, + "end": 3735.66, + "probability": 0.9932 + }, + { + "start": 3735.66, + "end": 3738.64, + "probability": 0.9927 + }, + { + "start": 3738.8, + "end": 3743.26, + "probability": 0.9934 + }, + { + "start": 3743.42, + "end": 3745.44, + "probability": 0.9927 + }, + { + "start": 3745.56, + "end": 3747.93, + "probability": 0.9728 + }, + { + "start": 3748.56, + "end": 3749.76, + "probability": 0.9846 + }, + { + "start": 3750.28, + "end": 3751.16, + "probability": 0.9306 + }, + { + "start": 3752.43, + "end": 3755.9, + "probability": 0.2613 + }, + { + "start": 3757.58, + "end": 3760.92, + "probability": 0.886 + }, + { + "start": 3760.98, + "end": 3762.44, + "probability": 0.9036 + }, + { + "start": 3762.66, + "end": 3765.3, + "probability": 0.9131 + }, + { + "start": 3765.42, + "end": 3768.64, + "probability": 0.9912 + }, + { + "start": 3769.34, + "end": 3770.58, + "probability": 0.9937 + }, + { + "start": 3771.44, + "end": 3772.56, + "probability": 0.9034 + }, + { + "start": 3772.9, + "end": 3773.42, + "probability": 0.6056 + }, + { + "start": 3773.52, + "end": 3776.84, + "probability": 0.9833 + }, + { + "start": 3776.96, + "end": 3778.06, + "probability": 0.9562 + }, + { + "start": 3778.1, + "end": 3779.36, + "probability": 0.9916 + }, + { + "start": 3780.16, + "end": 3783.92, + "probability": 0.9334 + }, + { + "start": 3783.92, + "end": 3787.04, + "probability": 0.9911 + }, + { + "start": 3787.86, + "end": 3789.42, + "probability": 0.7429 + }, + { + "start": 3789.74, + "end": 3793.4, + "probability": 0.8341 + }, + { + "start": 3793.4, + "end": 3793.91, + "probability": 0.7139 + }, + { + "start": 3794.42, + "end": 3794.64, + "probability": 0.8996 + }, + { + "start": 3794.74, + "end": 3795.42, + "probability": 0.9601 + }, + { + "start": 3795.66, + "end": 3797.78, + "probability": 0.9162 + }, + { + "start": 3798.0, + "end": 3800.2, + "probability": 0.998 + }, + { + "start": 3800.44, + "end": 3805.22, + "probability": 0.9113 + }, + { + "start": 3805.22, + "end": 3811.76, + "probability": 0.979 + }, + { + "start": 3812.6, + "end": 3815.34, + "probability": 0.8663 + }, + { + "start": 3816.28, + "end": 3820.58, + "probability": 0.8948 + }, + { + "start": 3821.24, + "end": 3825.32, + "probability": 0.9563 + }, + { + "start": 3825.92, + "end": 3828.56, + "probability": 0.7576 + }, + { + "start": 3828.76, + "end": 3829.84, + "probability": 0.9833 + }, + { + "start": 3829.9, + "end": 3831.84, + "probability": 0.9948 + }, + { + "start": 3831.96, + "end": 3832.72, + "probability": 0.877 + }, + { + "start": 3832.72, + "end": 3834.12, + "probability": 0.8877 + }, + { + "start": 3835.9, + "end": 3839.92, + "probability": 0.9443 + }, + { + "start": 3840.54, + "end": 3843.32, + "probability": 0.9973 + }, + { + "start": 3843.52, + "end": 3844.76, + "probability": 0.7591 + }, + { + "start": 3844.84, + "end": 3845.82, + "probability": 0.7782 + }, + { + "start": 3846.52, + "end": 3849.12, + "probability": 0.9445 + }, + { + "start": 3849.74, + "end": 3851.64, + "probability": 0.9834 + }, + { + "start": 3852.0, + "end": 3852.24, + "probability": 0.8295 + }, + { + "start": 3853.14, + "end": 3854.56, + "probability": 0.6411 + }, + { + "start": 3854.62, + "end": 3855.22, + "probability": 0.5409 + }, + { + "start": 3855.44, + "end": 3856.18, + "probability": 0.3917 + }, + { + "start": 3856.38, + "end": 3857.4, + "probability": 0.7993 + }, + { + "start": 3857.52, + "end": 3857.66, + "probability": 0.447 + }, + { + "start": 3857.74, + "end": 3859.98, + "probability": 0.9856 + }, + { + "start": 3860.08, + "end": 3860.44, + "probability": 0.5549 + }, + { + "start": 3860.46, + "end": 3864.16, + "probability": 0.8875 + }, + { + "start": 3864.34, + "end": 3866.68, + "probability": 0.658 + }, + { + "start": 3868.68, + "end": 3869.6, + "probability": 0.5346 + }, + { + "start": 3869.88, + "end": 3872.3, + "probability": 0.7874 + }, + { + "start": 3872.44, + "end": 3873.43, + "probability": 0.6124 + }, + { + "start": 3874.84, + "end": 3876.82, + "probability": 0.8809 + }, + { + "start": 3878.24, + "end": 3882.04, + "probability": 0.8321 + }, + { + "start": 3883.9, + "end": 3890.52, + "probability": 0.9917 + }, + { + "start": 3890.64, + "end": 3891.76, + "probability": 0.8492 + }, + { + "start": 3892.12, + "end": 3893.7, + "probability": 0.4351 + }, + { + "start": 3893.82, + "end": 3895.02, + "probability": 0.9236 + }, + { + "start": 3895.9, + "end": 3900.92, + "probability": 0.9879 + }, + { + "start": 3900.92, + "end": 3905.42, + "probability": 0.9868 + }, + { + "start": 3906.3, + "end": 3907.98, + "probability": 0.8574 + }, + { + "start": 3908.42, + "end": 3911.68, + "probability": 0.9676 + }, + { + "start": 3912.12, + "end": 3913.48, + "probability": 0.9543 + }, + { + "start": 3914.32, + "end": 3918.2, + "probability": 0.9819 + }, + { + "start": 3918.64, + "end": 3919.44, + "probability": 0.9346 + }, + { + "start": 3919.88, + "end": 3923.54, + "probability": 0.946 + }, + { + "start": 3924.22, + "end": 3928.44, + "probability": 0.8743 + }, + { + "start": 3928.82, + "end": 3931.12, + "probability": 0.9932 + }, + { + "start": 3931.38, + "end": 3933.12, + "probability": 0.7834 + }, + { + "start": 3933.36, + "end": 3935.14, + "probability": 0.9905 + }, + { + "start": 3936.62, + "end": 3938.82, + "probability": 0.7749 + }, + { + "start": 3938.98, + "end": 3943.58, + "probability": 0.9908 + }, + { + "start": 3943.94, + "end": 3946.04, + "probability": 0.822 + }, + { + "start": 3946.06, + "end": 3946.88, + "probability": 0.8478 + }, + { + "start": 3947.8, + "end": 3949.1, + "probability": 0.9968 + }, + { + "start": 3949.18, + "end": 3950.4, + "probability": 0.9747 + }, + { + "start": 3950.92, + "end": 3952.72, + "probability": 0.9542 + }, + { + "start": 3952.84, + "end": 3955.98, + "probability": 0.8116 + }, + { + "start": 3956.22, + "end": 3960.62, + "probability": 0.9766 + }, + { + "start": 3961.16, + "end": 3961.28, + "probability": 0.3156 + }, + { + "start": 3961.28, + "end": 3965.57, + "probability": 0.8132 + }, + { + "start": 3965.76, + "end": 3967.45, + "probability": 0.9966 + }, + { + "start": 3967.86, + "end": 3969.2, + "probability": 0.9961 + }, + { + "start": 3969.5, + "end": 3970.32, + "probability": 0.7983 + }, + { + "start": 3971.06, + "end": 3973.38, + "probability": 0.9413 + }, + { + "start": 3973.76, + "end": 3976.36, + "probability": 0.9849 + }, + { + "start": 3976.36, + "end": 3980.34, + "probability": 0.9295 + }, + { + "start": 3980.7, + "end": 3984.78, + "probability": 0.9922 + }, + { + "start": 3985.16, + "end": 3987.36, + "probability": 0.9934 + }, + { + "start": 3987.9, + "end": 3988.6, + "probability": 0.8407 + }, + { + "start": 3988.74, + "end": 3992.98, + "probability": 0.9565 + }, + { + "start": 3993.28, + "end": 3995.76, + "probability": 0.9649 + }, + { + "start": 3995.76, + "end": 3999.64, + "probability": 0.9241 + }, + { + "start": 3999.78, + "end": 4003.7, + "probability": 0.9919 + }, + { + "start": 4004.0, + "end": 4004.72, + "probability": 0.6009 + }, + { + "start": 4004.92, + "end": 4008.06, + "probability": 0.7116 + }, + { + "start": 4008.16, + "end": 4012.34, + "probability": 0.9907 + }, + { + "start": 4013.04, + "end": 4015.18, + "probability": 0.8311 + }, + { + "start": 4017.54, + "end": 4020.08, + "probability": 0.6757 + }, + { + "start": 4020.54, + "end": 4020.8, + "probability": 0.3097 + }, + { + "start": 4022.11, + "end": 4023.44, + "probability": 0.5461 + }, + { + "start": 4023.58, + "end": 4027.5, + "probability": 0.9669 + }, + { + "start": 4027.8, + "end": 4031.86, + "probability": 0.9921 + }, + { + "start": 4032.92, + "end": 4035.6, + "probability": 0.9942 + }, + { + "start": 4036.06, + "end": 4037.82, + "probability": 0.8462 + }, + { + "start": 4038.14, + "end": 4041.44, + "probability": 0.8322 + }, + { + "start": 4042.32, + "end": 4046.1, + "probability": 0.7497 + }, + { + "start": 4046.1, + "end": 4050.24, + "probability": 0.9233 + }, + { + "start": 4050.24, + "end": 4050.7, + "probability": 0.4278 + }, + { + "start": 4051.08, + "end": 4053.92, + "probability": 0.9235 + }, + { + "start": 4054.46, + "end": 4056.24, + "probability": 0.9852 + }, + { + "start": 4056.44, + "end": 4060.37, + "probability": 0.9966 + }, + { + "start": 4061.34, + "end": 4066.54, + "probability": 0.9629 + }, + { + "start": 4066.62, + "end": 4068.42, + "probability": 0.9824 + }, + { + "start": 4068.86, + "end": 4070.04, + "probability": 0.9919 + }, + { + "start": 4070.22, + "end": 4070.7, + "probability": 0.9434 + }, + { + "start": 4070.78, + "end": 4073.18, + "probability": 0.776 + }, + { + "start": 4073.72, + "end": 4074.44, + "probability": 0.8651 + }, + { + "start": 4074.5, + "end": 4076.42, + "probability": 0.9764 + }, + { + "start": 4076.64, + "end": 4077.82, + "probability": 0.1582 + }, + { + "start": 4077.84, + "end": 4079.7, + "probability": 0.9771 + }, + { + "start": 4079.84, + "end": 4081.42, + "probability": 0.997 + }, + { + "start": 4081.52, + "end": 4085.02, + "probability": 0.9712 + }, + { + "start": 4085.62, + "end": 4088.78, + "probability": 0.7872 + }, + { + "start": 4089.4, + "end": 4094.5, + "probability": 0.9467 + }, + { + "start": 4095.06, + "end": 4099.24, + "probability": 0.9843 + }, + { + "start": 4099.58, + "end": 4100.2, + "probability": 0.5933 + }, + { + "start": 4100.32, + "end": 4100.56, + "probability": 0.1708 + }, + { + "start": 4100.58, + "end": 4103.24, + "probability": 0.6812 + }, + { + "start": 4103.32, + "end": 4103.46, + "probability": 0.7749 + }, + { + "start": 4104.04, + "end": 4105.6, + "probability": 0.721 + }, + { + "start": 4106.1, + "end": 4108.06, + "probability": 0.7649 + }, + { + "start": 4108.72, + "end": 4111.34, + "probability": 0.7955 + }, + { + "start": 4112.02, + "end": 4112.12, + "probability": 0.6965 + }, + { + "start": 4114.06, + "end": 4114.76, + "probability": 0.5129 + }, + { + "start": 4116.0, + "end": 4118.22, + "probability": 0.9873 + }, + { + "start": 4118.9, + "end": 4119.24, + "probability": 0.713 + }, + { + "start": 4121.16, + "end": 4123.44, + "probability": 0.6354 + }, + { + "start": 4124.42, + "end": 4127.58, + "probability": 0.9958 + }, + { + "start": 4128.12, + "end": 4129.26, + "probability": 0.7931 + }, + { + "start": 4129.5, + "end": 4130.18, + "probability": 0.9554 + }, + { + "start": 4130.4, + "end": 4131.28, + "probability": 0.8636 + }, + { + "start": 4131.5, + "end": 4134.86, + "probability": 0.9673 + }, + { + "start": 4135.08, + "end": 4137.0, + "probability": 0.8666 + }, + { + "start": 4137.38, + "end": 4139.3, + "probability": 0.9965 + }, + { + "start": 4139.3, + "end": 4142.38, + "probability": 0.9907 + }, + { + "start": 4142.98, + "end": 4147.26, + "probability": 0.9954 + }, + { + "start": 4147.6, + "end": 4149.42, + "probability": 0.9983 + }, + { + "start": 4150.0, + "end": 4151.36, + "probability": 0.3295 + }, + { + "start": 4151.86, + "end": 4152.46, + "probability": 0.9347 + }, + { + "start": 4152.56, + "end": 4154.88, + "probability": 0.9629 + }, + { + "start": 4154.88, + "end": 4158.04, + "probability": 0.9954 + }, + { + "start": 4158.48, + "end": 4160.8, + "probability": 0.9905 + }, + { + "start": 4161.56, + "end": 4163.02, + "probability": 0.9043 + }, + { + "start": 4163.1, + "end": 4167.32, + "probability": 0.9624 + }, + { + "start": 4167.36, + "end": 4168.7, + "probability": 0.9062 + }, + { + "start": 4169.38, + "end": 4169.82, + "probability": 0.7107 + }, + { + "start": 4170.2, + "end": 4172.92, + "probability": 0.835 + }, + { + "start": 4173.14, + "end": 4175.32, + "probability": 0.9767 + }, + { + "start": 4176.28, + "end": 4180.04, + "probability": 0.9477 + }, + { + "start": 4181.24, + "end": 4182.44, + "probability": 0.8015 + }, + { + "start": 4182.6, + "end": 4183.66, + "probability": 0.7555 + }, + { + "start": 4184.04, + "end": 4188.34, + "probability": 0.9958 + }, + { + "start": 4189.2, + "end": 4192.52, + "probability": 0.876 + }, + { + "start": 4192.82, + "end": 4195.12, + "probability": 0.9879 + }, + { + "start": 4195.64, + "end": 4197.6, + "probability": 0.9924 + }, + { + "start": 4198.12, + "end": 4203.18, + "probability": 0.9767 + }, + { + "start": 4203.66, + "end": 4206.36, + "probability": 0.9827 + }, + { + "start": 4206.88, + "end": 4209.78, + "probability": 0.941 + }, + { + "start": 4210.44, + "end": 4214.68, + "probability": 0.9679 + }, + { + "start": 4215.4, + "end": 4218.46, + "probability": 0.9509 + }, + { + "start": 4219.42, + "end": 4220.74, + "probability": 0.9044 + }, + { + "start": 4220.86, + "end": 4225.66, + "probability": 0.969 + }, + { + "start": 4226.38, + "end": 4226.98, + "probability": 0.5948 + }, + { + "start": 4227.34, + "end": 4229.02, + "probability": 0.998 + }, + { + "start": 4229.42, + "end": 4231.52, + "probability": 0.9934 + }, + { + "start": 4232.0, + "end": 4233.36, + "probability": 0.9207 + }, + { + "start": 4233.4, + "end": 4234.46, + "probability": 0.7762 + }, + { + "start": 4234.98, + "end": 4237.04, + "probability": 0.9927 + }, + { + "start": 4237.98, + "end": 4240.96, + "probability": 0.979 + }, + { + "start": 4241.38, + "end": 4242.54, + "probability": 0.8949 + }, + { + "start": 4243.06, + "end": 4248.78, + "probability": 0.9573 + }, + { + "start": 4249.28, + "end": 4251.62, + "probability": 0.8943 + }, + { + "start": 4251.8, + "end": 4253.5, + "probability": 0.8263 + }, + { + "start": 4253.56, + "end": 4254.64, + "probability": 0.6756 + }, + { + "start": 4255.6, + "end": 4257.64, + "probability": 0.8643 + }, + { + "start": 4257.86, + "end": 4259.27, + "probability": 0.9875 + }, + { + "start": 4259.98, + "end": 4265.22, + "probability": 0.7602 + }, + { + "start": 4265.68, + "end": 4266.02, + "probability": 0.8141 + }, + { + "start": 4266.78, + "end": 4268.98, + "probability": 0.8413 + }, + { + "start": 4272.9, + "end": 4277.32, + "probability": 0.927 + }, + { + "start": 4279.45, + "end": 4281.49, + "probability": 0.7819 + }, + { + "start": 4282.08, + "end": 4285.02, + "probability": 0.9707 + }, + { + "start": 4285.54, + "end": 4285.94, + "probability": 0.3188 + }, + { + "start": 4286.56, + "end": 4287.92, + "probability": 0.246 + }, + { + "start": 4288.58, + "end": 4291.08, + "probability": 0.9711 + }, + { + "start": 4291.22, + "end": 4292.2, + "probability": 0.9344 + }, + { + "start": 4292.28, + "end": 4296.33, + "probability": 0.9805 + }, + { + "start": 4296.86, + "end": 4297.94, + "probability": 0.894 + }, + { + "start": 4298.16, + "end": 4300.84, + "probability": 0.9772 + }, + { + "start": 4301.52, + "end": 4302.96, + "probability": 0.5875 + }, + { + "start": 4303.78, + "end": 4304.42, + "probability": 0.5082 + }, + { + "start": 4305.12, + "end": 4306.02, + "probability": 0.8222 + }, + { + "start": 4306.18, + "end": 4307.96, + "probability": 0.8549 + }, + { + "start": 4308.0, + "end": 4311.46, + "probability": 0.8941 + }, + { + "start": 4311.86, + "end": 4314.46, + "probability": 0.6267 + }, + { + "start": 4314.54, + "end": 4320.42, + "probability": 0.6676 + }, + { + "start": 4320.88, + "end": 4325.18, + "probability": 0.9971 + }, + { + "start": 4326.34, + "end": 4329.52, + "probability": 0.9731 + }, + { + "start": 4330.24, + "end": 4330.84, + "probability": 0.6131 + }, + { + "start": 4330.96, + "end": 4336.02, + "probability": 0.9482 + }, + { + "start": 4336.44, + "end": 4337.9, + "probability": 0.958 + }, + { + "start": 4338.74, + "end": 4339.68, + "probability": 0.619 + }, + { + "start": 4340.12, + "end": 4343.6, + "probability": 0.993 + }, + { + "start": 4343.96, + "end": 4344.0, + "probability": 0.4075 + }, + { + "start": 4344.22, + "end": 4344.68, + "probability": 0.5593 + }, + { + "start": 4344.84, + "end": 4346.29, + "probability": 0.9474 + }, + { + "start": 4347.14, + "end": 4349.84, + "probability": 0.9961 + }, + { + "start": 4349.92, + "end": 4351.2, + "probability": 0.6924 + }, + { + "start": 4351.32, + "end": 4355.88, + "probability": 0.9323 + }, + { + "start": 4356.64, + "end": 4359.04, + "probability": 0.9827 + }, + { + "start": 4359.24, + "end": 4359.92, + "probability": 0.7224 + }, + { + "start": 4360.6, + "end": 4363.52, + "probability": 0.9449 + }, + { + "start": 4363.62, + "end": 4365.66, + "probability": 0.9331 + }, + { + "start": 4366.32, + "end": 4366.94, + "probability": 0.8215 + }, + { + "start": 4367.36, + "end": 4370.9, + "probability": 0.9951 + }, + { + "start": 4371.72, + "end": 4373.06, + "probability": 0.6494 + }, + { + "start": 4373.22, + "end": 4376.12, + "probability": 0.9928 + }, + { + "start": 4376.12, + "end": 4378.98, + "probability": 0.9766 + }, + { + "start": 4379.14, + "end": 4380.1, + "probability": 0.9136 + }, + { + "start": 4380.12, + "end": 4381.0, + "probability": 0.646 + }, + { + "start": 4382.18, + "end": 4382.26, + "probability": 0.4229 + }, + { + "start": 4382.26, + "end": 4383.64, + "probability": 0.7275 + }, + { + "start": 4383.76, + "end": 4385.21, + "probability": 0.9633 + }, + { + "start": 4385.28, + "end": 4385.48, + "probability": 0.4338 + }, + { + "start": 4385.62, + "end": 4387.96, + "probability": 0.8904 + }, + { + "start": 4388.53, + "end": 4392.7, + "probability": 0.8552 + }, + { + "start": 4392.86, + "end": 4394.74, + "probability": 0.908 + }, + { + "start": 4395.06, + "end": 4395.96, + "probability": 0.6425 + }, + { + "start": 4395.98, + "end": 4396.1, + "probability": 0.6749 + }, + { + "start": 4396.2, + "end": 4398.9, + "probability": 0.9922 + }, + { + "start": 4399.68, + "end": 4402.1, + "probability": 0.9866 + }, + { + "start": 4402.56, + "end": 4406.56, + "probability": 0.8519 + }, + { + "start": 4407.95, + "end": 4412.08, + "probability": 0.7681 + }, + { + "start": 4412.22, + "end": 4415.42, + "probability": 0.8565 + }, + { + "start": 4416.02, + "end": 4417.02, + "probability": 0.6225 + }, + { + "start": 4417.92, + "end": 4420.56, + "probability": 0.0122 + }, + { + "start": 4420.56, + "end": 4422.04, + "probability": 0.6754 + }, + { + "start": 4422.26, + "end": 4424.94, + "probability": 0.8593 + }, + { + "start": 4425.04, + "end": 4428.44, + "probability": 0.9445 + }, + { + "start": 4428.84, + "end": 4431.08, + "probability": 0.9972 + }, + { + "start": 4431.22, + "end": 4434.82, + "probability": 0.9824 + }, + { + "start": 4434.92, + "end": 4435.92, + "probability": 0.4706 + }, + { + "start": 4436.14, + "end": 4436.76, + "probability": 0.6607 + }, + { + "start": 4437.83, + "end": 4443.24, + "probability": 0.9978 + }, + { + "start": 4443.74, + "end": 4445.46, + "probability": 0.9127 + }, + { + "start": 4445.88, + "end": 4448.38, + "probability": 0.999 + }, + { + "start": 4448.64, + "end": 4450.2, + "probability": 0.974 + }, + { + "start": 4450.8, + "end": 4451.67, + "probability": 0.9875 + }, + { + "start": 4452.5, + "end": 4453.48, + "probability": 0.488 + }, + { + "start": 4453.64, + "end": 4455.5, + "probability": 0.9952 + }, + { + "start": 4455.88, + "end": 4456.9, + "probability": 0.7737 + }, + { + "start": 4457.44, + "end": 4461.4, + "probability": 0.8201 + }, + { + "start": 4461.4, + "end": 4463.22, + "probability": 0.9419 + }, + { + "start": 4464.02, + "end": 4466.14, + "probability": 0.9973 + }, + { + "start": 4466.98, + "end": 4471.78, + "probability": 0.9235 + }, + { + "start": 4471.86, + "end": 4473.7, + "probability": 0.9943 + }, + { + "start": 4474.42, + "end": 4474.84, + "probability": 0.7625 + }, + { + "start": 4474.96, + "end": 4476.72, + "probability": 0.4199 + }, + { + "start": 4476.72, + "end": 4478.18, + "probability": 0.5804 + }, + { + "start": 4478.18, + "end": 4479.14, + "probability": 0.6687 + }, + { + "start": 4479.42, + "end": 4479.46, + "probability": 0.2603 + }, + { + "start": 4479.46, + "end": 4481.88, + "probability": 0.886 + }, + { + "start": 4482.12, + "end": 4484.84, + "probability": 0.995 + }, + { + "start": 4484.84, + "end": 4488.04, + "probability": 0.9881 + }, + { + "start": 4488.22, + "end": 4490.3, + "probability": 0.6377 + }, + { + "start": 4490.46, + "end": 4490.74, + "probability": 0.4025 + }, + { + "start": 4490.74, + "end": 4492.48, + "probability": 0.8659 + }, + { + "start": 4492.54, + "end": 4497.84, + "probability": 0.9692 + }, + { + "start": 4497.96, + "end": 4497.96, + "probability": 0.2872 + }, + { + "start": 4497.96, + "end": 4498.64, + "probability": 0.9956 + }, + { + "start": 4500.32, + "end": 4503.36, + "probability": 0.7334 + }, + { + "start": 4504.72, + "end": 4504.88, + "probability": 0.2368 + }, + { + "start": 4504.88, + "end": 4505.02, + "probability": 0.4377 + }, + { + "start": 4505.26, + "end": 4506.26, + "probability": 0.1498 + }, + { + "start": 4506.36, + "end": 4507.84, + "probability": 0.7478 + }, + { + "start": 4507.86, + "end": 4510.34, + "probability": 0.6503 + }, + { + "start": 4510.5, + "end": 4512.3, + "probability": 0.386 + }, + { + "start": 4512.3, + "end": 4515.68, + "probability": 0.7973 + }, + { + "start": 4515.72, + "end": 4516.52, + "probability": 0.3668 + }, + { + "start": 4523.4, + "end": 4527.22, + "probability": 0.076 + }, + { + "start": 4531.4, + "end": 4531.64, + "probability": 0.4016 + }, + { + "start": 4531.64, + "end": 4532.06, + "probability": 0.2411 + }, + { + "start": 4532.06, + "end": 4534.42, + "probability": 0.4277 + }, + { + "start": 4534.42, + "end": 4539.7, + "probability": 0.8391 + }, + { + "start": 4540.08, + "end": 4541.1, + "probability": 0.8565 + }, + { + "start": 4543.04, + "end": 4547.28, + "probability": 0.776 + }, + { + "start": 4548.16, + "end": 4553.2, + "probability": 0.8949 + }, + { + "start": 4553.2, + "end": 4555.7, + "probability": 0.7459 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.1283 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.3374 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.4234 + }, + { + "start": 4557.0, + "end": 4557.0, + "probability": 0.1761 + }, + { + "start": 4557.0, + "end": 4559.94, + "probability": 0.6917 + }, + { + "start": 4559.94, + "end": 4563.88, + "probability": 0.7514 + }, + { + "start": 4564.18, + "end": 4567.42, + "probability": 0.6485 + }, + { + "start": 4568.02, + "end": 4572.86, + "probability": 0.1385 + }, + { + "start": 4572.86, + "end": 4574.73, + "probability": 0.7794 + }, + { + "start": 4575.56, + "end": 4576.46, + "probability": 0.6541 + }, + { + "start": 4576.56, + "end": 4580.18, + "probability": 0.8579 + }, + { + "start": 4580.18, + "end": 4581.72, + "probability": 0.6309 + }, + { + "start": 4583.41, + "end": 4588.48, + "probability": 0.7458 + }, + { + "start": 4588.96, + "end": 4594.84, + "probability": 0.9242 + }, + { + "start": 4595.06, + "end": 4596.56, + "probability": 0.6718 + }, + { + "start": 4597.82, + "end": 4600.34, + "probability": 0.0307 + }, + { + "start": 4600.76, + "end": 4600.86, + "probability": 0.5659 + }, + { + "start": 4600.86, + "end": 4601.26, + "probability": 0.3663 + }, + { + "start": 4601.76, + "end": 4602.52, + "probability": 0.6034 + }, + { + "start": 4604.48, + "end": 4605.74, + "probability": 0.8184 + }, + { + "start": 4609.2, + "end": 4610.94, + "probability": 0.8103 + }, + { + "start": 4611.88, + "end": 4615.62, + "probability": 0.9933 + }, + { + "start": 4616.96, + "end": 4621.74, + "probability": 0.9974 + }, + { + "start": 4622.66, + "end": 4623.84, + "probability": 0.9854 + }, + { + "start": 4624.84, + "end": 4629.88, + "probability": 0.9865 + }, + { + "start": 4631.46, + "end": 4633.34, + "probability": 0.999 + }, + { + "start": 4634.2, + "end": 4637.68, + "probability": 0.9846 + }, + { + "start": 4637.8, + "end": 4638.22, + "probability": 0.6081 + }, + { + "start": 4638.34, + "end": 4638.78, + "probability": 0.6801 + }, + { + "start": 4639.5, + "end": 4643.74, + "probability": 0.9904 + }, + { + "start": 4644.42, + "end": 4647.82, + "probability": 0.7764 + }, + { + "start": 4649.06, + "end": 4652.1, + "probability": 0.4471 + }, + { + "start": 4652.84, + "end": 4657.78, + "probability": 0.9859 + }, + { + "start": 4659.12, + "end": 4661.04, + "probability": 0.9895 + }, + { + "start": 4662.08, + "end": 4666.54, + "probability": 0.9921 + }, + { + "start": 4666.92, + "end": 4671.24, + "probability": 0.77 + }, + { + "start": 4672.58, + "end": 4676.08, + "probability": 0.9856 + }, + { + "start": 4676.78, + "end": 4681.02, + "probability": 0.8912 + }, + { + "start": 4681.88, + "end": 4685.08, + "probability": 0.9527 + }, + { + "start": 4685.72, + "end": 4686.76, + "probability": 0.8136 + }, + { + "start": 4687.58, + "end": 4691.1, + "probability": 0.8093 + }, + { + "start": 4691.72, + "end": 4695.56, + "probability": 0.9897 + }, + { + "start": 4696.26, + "end": 4704.7, + "probability": 0.9678 + }, + { + "start": 4705.6, + "end": 4712.9, + "probability": 0.9671 + }, + { + "start": 4714.16, + "end": 4718.9, + "probability": 0.768 + }, + { + "start": 4720.04, + "end": 4720.6, + "probability": 0.6686 + }, + { + "start": 4721.44, + "end": 4724.36, + "probability": 0.9765 + }, + { + "start": 4725.44, + "end": 4727.8, + "probability": 0.9693 + }, + { + "start": 4728.9, + "end": 4731.9, + "probability": 0.9962 + }, + { + "start": 4732.98, + "end": 4735.64, + "probability": 0.9115 + }, + { + "start": 4736.26, + "end": 4739.56, + "probability": 0.8492 + }, + { + "start": 4740.28, + "end": 4744.14, + "probability": 0.9845 + }, + { + "start": 4744.9, + "end": 4747.6, + "probability": 0.6575 + }, + { + "start": 4749.12, + "end": 4751.1, + "probability": 0.5529 + }, + { + "start": 4751.98, + "end": 4754.3, + "probability": 0.9214 + }, + { + "start": 4754.82, + "end": 4756.42, + "probability": 0.9634 + }, + { + "start": 4757.28, + "end": 4761.08, + "probability": 0.9851 + }, + { + "start": 4761.84, + "end": 4768.7, + "probability": 0.9441 + }, + { + "start": 4769.2, + "end": 4770.15, + "probability": 0.9927 + }, + { + "start": 4772.14, + "end": 4773.76, + "probability": 0.8063 + }, + { + "start": 4774.38, + "end": 4775.88, + "probability": 0.9882 + }, + { + "start": 4776.92, + "end": 4779.86, + "probability": 0.598 + }, + { + "start": 4780.58, + "end": 4781.84, + "probability": 0.7416 + }, + { + "start": 4781.98, + "end": 4785.12, + "probability": 0.9414 + }, + { + "start": 4786.52, + "end": 4788.12, + "probability": 0.99 + }, + { + "start": 4790.0, + "end": 4794.28, + "probability": 0.9674 + }, + { + "start": 4795.0, + "end": 4796.72, + "probability": 0.7476 + }, + { + "start": 4797.86, + "end": 4799.16, + "probability": 0.9392 + }, + { + "start": 4799.9, + "end": 4802.6, + "probability": 0.9642 + }, + { + "start": 4803.84, + "end": 4809.12, + "probability": 0.9869 + }, + { + "start": 4809.64, + "end": 4816.02, + "probability": 0.7799 + }, + { + "start": 4816.36, + "end": 4817.1, + "probability": 0.4655 + }, + { + "start": 4817.18, + "end": 4819.1, + "probability": 0.5542 + }, + { + "start": 4819.7, + "end": 4822.18, + "probability": 0.9976 + }, + { + "start": 4822.9, + "end": 4826.12, + "probability": 0.9448 + }, + { + "start": 4827.1, + "end": 4829.96, + "probability": 0.9917 + }, + { + "start": 4829.98, + "end": 4835.4, + "probability": 0.9666 + }, + { + "start": 4835.6, + "end": 4837.06, + "probability": 0.8393 + }, + { + "start": 4837.98, + "end": 4840.74, + "probability": 0.9907 + }, + { + "start": 4840.74, + "end": 4844.52, + "probability": 0.9265 + }, + { + "start": 4845.16, + "end": 4848.13, + "probability": 0.9979 + }, + { + "start": 4849.24, + "end": 4851.3, + "probability": 0.5304 + }, + { + "start": 4851.36, + "end": 4853.5, + "probability": 0.7931 + }, + { + "start": 4854.1, + "end": 4855.84, + "probability": 0.9667 + }, + { + "start": 4856.5, + "end": 4858.62, + "probability": 0.8703 + }, + { + "start": 4859.32, + "end": 4860.86, + "probability": 0.8521 + }, + { + "start": 4861.82, + "end": 4862.84, + "probability": 0.7963 + }, + { + "start": 4863.78, + "end": 4865.34, + "probability": 0.9788 + }, + { + "start": 4865.5, + "end": 4865.76, + "probability": 0.7074 + }, + { + "start": 4866.18, + "end": 4869.14, + "probability": 0.6704 + }, + { + "start": 4869.4, + "end": 4870.96, + "probability": 0.8036 + }, + { + "start": 4872.12, + "end": 4878.6, + "probability": 0.9031 + }, + { + "start": 4879.28, + "end": 4881.44, + "probability": 0.9828 + }, + { + "start": 4886.24, + "end": 4887.48, + "probability": 0.8278 + }, + { + "start": 4887.6, + "end": 4888.92, + "probability": 0.8608 + }, + { + "start": 4888.98, + "end": 4889.62, + "probability": 0.6204 + }, + { + "start": 4889.88, + "end": 4892.08, + "probability": 0.7463 + }, + { + "start": 4894.14, + "end": 4895.59, + "probability": 0.7152 + }, + { + "start": 4895.82, + "end": 4899.82, + "probability": 0.6985 + }, + { + "start": 4900.73, + "end": 4903.14, + "probability": 0.7438 + }, + { + "start": 4904.56, + "end": 4908.28, + "probability": 0.9802 + }, + { + "start": 4908.46, + "end": 4913.48, + "probability": 0.9857 + }, + { + "start": 4914.24, + "end": 4915.22, + "probability": 0.837 + }, + { + "start": 4915.7, + "end": 4917.42, + "probability": 0.9964 + }, + { + "start": 4917.7, + "end": 4918.5, + "probability": 0.6623 + }, + { + "start": 4918.56, + "end": 4919.44, + "probability": 0.9136 + }, + { + "start": 4920.08, + "end": 4922.7, + "probability": 0.9778 + }, + { + "start": 4923.1, + "end": 4924.04, + "probability": 0.8476 + }, + { + "start": 4924.18, + "end": 4925.76, + "probability": 0.9318 + }, + { + "start": 4926.58, + "end": 4930.28, + "probability": 0.8207 + }, + { + "start": 4930.44, + "end": 4932.38, + "probability": 0.807 + }, + { + "start": 4932.96, + "end": 4936.88, + "probability": 0.9927 + }, + { + "start": 4937.2, + "end": 4940.18, + "probability": 0.8754 + }, + { + "start": 4940.26, + "end": 4942.9, + "probability": 0.9441 + }, + { + "start": 4943.68, + "end": 4948.88, + "probability": 0.9548 + }, + { + "start": 4948.88, + "end": 4951.68, + "probability": 0.9928 + }, + { + "start": 4953.0, + "end": 4953.94, + "probability": 0.7353 + }, + { + "start": 4955.02, + "end": 4958.24, + "probability": 0.9778 + }, + { + "start": 4959.32, + "end": 4960.84, + "probability": 0.9884 + }, + { + "start": 4961.38, + "end": 4962.76, + "probability": 0.9492 + }, + { + "start": 4963.36, + "end": 4967.44, + "probability": 0.2746 + }, + { + "start": 4967.44, + "end": 4967.44, + "probability": 0.7812 + }, + { + "start": 4968.36, + "end": 4968.36, + "probability": 0.05 + }, + { + "start": 4968.36, + "end": 4968.36, + "probability": 0.1442 + }, + { + "start": 4968.36, + "end": 4969.48, + "probability": 0.7322 + }, + { + "start": 4969.6, + "end": 4969.98, + "probability": 0.8254 + }, + { + "start": 4970.08, + "end": 4970.88, + "probability": 0.9108 + }, + { + "start": 4971.02, + "end": 4975.84, + "probability": 0.9644 + }, + { + "start": 4976.62, + "end": 4979.5, + "probability": 0.995 + }, + { + "start": 4980.1, + "end": 4981.26, + "probability": 0.7684 + }, + { + "start": 4981.5, + "end": 4983.0, + "probability": 0.9912 + }, + { + "start": 4983.12, + "end": 4984.56, + "probability": 0.8904 + }, + { + "start": 4984.84, + "end": 4985.98, + "probability": 0.9545 + }, + { + "start": 4986.1, + "end": 4987.58, + "probability": 0.9782 + }, + { + "start": 4987.86, + "end": 4989.56, + "probability": 0.9804 + }, + { + "start": 4989.72, + "end": 4992.0, + "probability": 0.9165 + }, + { + "start": 4992.44, + "end": 4994.7, + "probability": 0.999 + }, + { + "start": 4994.9, + "end": 4996.02, + "probability": 0.925 + }, + { + "start": 4996.6, + "end": 4999.52, + "probability": 0.9966 + }, + { + "start": 4999.52, + "end": 5003.2, + "probability": 0.9124 + }, + { + "start": 5003.34, + "end": 5004.06, + "probability": 0.5648 + }, + { + "start": 5004.32, + "end": 5005.14, + "probability": 0.8574 + }, + { + "start": 5005.38, + "end": 5006.52, + "probability": 0.9658 + }, + { + "start": 5006.62, + "end": 5007.28, + "probability": 0.7357 + }, + { + "start": 5007.52, + "end": 5008.58, + "probability": 0.9321 + }, + { + "start": 5008.72, + "end": 5009.64, + "probability": 0.9901 + }, + { + "start": 5009.76, + "end": 5010.06, + "probability": 0.981 + }, + { + "start": 5010.54, + "end": 5010.92, + "probability": 0.8335 + }, + { + "start": 5010.96, + "end": 5011.32, + "probability": 0.9496 + }, + { + "start": 5011.32, + "end": 5013.18, + "probability": 0.9398 + }, + { + "start": 5014.04, + "end": 5018.14, + "probability": 0.8525 + }, + { + "start": 5018.8, + "end": 5021.7, + "probability": 0.9772 + }, + { + "start": 5022.14, + "end": 5026.34, + "probability": 0.9865 + }, + { + "start": 5027.2, + "end": 5029.28, + "probability": 0.9258 + }, + { + "start": 5030.1, + "end": 5034.08, + "probability": 0.9787 + }, + { + "start": 5034.08, + "end": 5039.26, + "probability": 0.9993 + }, + { + "start": 5039.58, + "end": 5040.22, + "probability": 0.4881 + }, + { + "start": 5040.5, + "end": 5044.04, + "probability": 0.8325 + }, + { + "start": 5044.04, + "end": 5047.78, + "probability": 0.9749 + }, + { + "start": 5048.4, + "end": 5049.02, + "probability": 0.6066 + }, + { + "start": 5049.16, + "end": 5052.34, + "probability": 0.9829 + }, + { + "start": 5052.34, + "end": 5054.44, + "probability": 0.9721 + }, + { + "start": 5054.94, + "end": 5055.72, + "probability": 0.9462 + }, + { + "start": 5056.04, + "end": 5056.74, + "probability": 0.9693 + }, + { + "start": 5057.12, + "end": 5058.36, + "probability": 0.988 + }, + { + "start": 5058.46, + "end": 5059.94, + "probability": 0.9844 + }, + { + "start": 5060.08, + "end": 5060.72, + "probability": 0.8008 + }, + { + "start": 5061.12, + "end": 5063.68, + "probability": 0.9761 + }, + { + "start": 5063.72, + "end": 5065.78, + "probability": 0.802 + }, + { + "start": 5066.44, + "end": 5067.76, + "probability": 0.9151 + }, + { + "start": 5067.88, + "end": 5073.56, + "probability": 0.9826 + }, + { + "start": 5073.9, + "end": 5075.2, + "probability": 0.9822 + }, + { + "start": 5075.24, + "end": 5077.24, + "probability": 0.7861 + }, + { + "start": 5077.68, + "end": 5079.38, + "probability": 0.9926 + }, + { + "start": 5079.9, + "end": 5085.0, + "probability": 0.9915 + }, + { + "start": 5085.0, + "end": 5086.02, + "probability": 0.3196 + }, + { + "start": 5086.36, + "end": 5090.78, + "probability": 0.9965 + }, + { + "start": 5090.78, + "end": 5094.06, + "probability": 0.9941 + }, + { + "start": 5094.52, + "end": 5097.1, + "probability": 0.976 + }, + { + "start": 5098.1, + "end": 5099.88, + "probability": 0.9985 + }, + { + "start": 5100.48, + "end": 5103.98, + "probability": 0.9556 + }, + { + "start": 5104.2, + "end": 5107.28, + "probability": 0.9799 + }, + { + "start": 5107.64, + "end": 5108.6, + "probability": 0.7823 + }, + { + "start": 5108.88, + "end": 5112.24, + "probability": 0.9556 + }, + { + "start": 5112.24, + "end": 5112.66, + "probability": 0.7965 + }, + { + "start": 5113.36, + "end": 5115.18, + "probability": 0.7507 + }, + { + "start": 5115.28, + "end": 5118.02, + "probability": 0.6252 + }, + { + "start": 5118.48, + "end": 5119.24, + "probability": 0.3942 + }, + { + "start": 5119.34, + "end": 5120.96, + "probability": 0.7678 + }, + { + "start": 5124.9, + "end": 5125.9, + "probability": 0.6985 + }, + { + "start": 5133.6, + "end": 5136.12, + "probability": 0.5857 + }, + { + "start": 5136.94, + "end": 5144.36, + "probability": 0.9907 + }, + { + "start": 5144.5, + "end": 5150.12, + "probability": 0.9891 + }, + { + "start": 5150.24, + "end": 5150.9, + "probability": 0.6473 + }, + { + "start": 5150.94, + "end": 5152.46, + "probability": 0.5882 + }, + { + "start": 5152.98, + "end": 5155.06, + "probability": 0.9839 + }, + { + "start": 5155.06, + "end": 5157.58, + "probability": 0.9756 + }, + { + "start": 5158.1, + "end": 5164.56, + "probability": 0.9927 + }, + { + "start": 5165.08, + "end": 5167.72, + "probability": 0.9873 + }, + { + "start": 5167.86, + "end": 5172.76, + "probability": 0.9825 + }, + { + "start": 5172.76, + "end": 5176.84, + "probability": 0.9963 + }, + { + "start": 5177.9, + "end": 5183.54, + "probability": 0.9364 + }, + { + "start": 5183.8, + "end": 5186.22, + "probability": 0.9871 + }, + { + "start": 5187.16, + "end": 5188.76, + "probability": 0.9871 + }, + { + "start": 5189.7, + "end": 5193.86, + "probability": 0.9937 + }, + { + "start": 5194.56, + "end": 5197.64, + "probability": 0.9628 + }, + { + "start": 5197.78, + "end": 5198.54, + "probability": 0.9491 + }, + { + "start": 5198.74, + "end": 5200.14, + "probability": 0.9966 + }, + { + "start": 5200.92, + "end": 5202.32, + "probability": 0.6664 + }, + { + "start": 5203.75, + "end": 5209.32, + "probability": 0.9398 + }, + { + "start": 5209.32, + "end": 5214.88, + "probability": 0.9399 + }, + { + "start": 5215.34, + "end": 5220.7, + "probability": 0.9896 + }, + { + "start": 5221.24, + "end": 5226.6, + "probability": 0.9977 + }, + { + "start": 5226.7, + "end": 5231.34, + "probability": 0.998 + }, + { + "start": 5232.4, + "end": 5236.74, + "probability": 0.9274 + }, + { + "start": 5237.48, + "end": 5239.78, + "probability": 0.9964 + }, + { + "start": 5241.64, + "end": 5246.04, + "probability": 0.9979 + }, + { + "start": 5246.46, + "end": 5248.6, + "probability": 0.753 + }, + { + "start": 5248.9, + "end": 5250.14, + "probability": 0.8562 + }, + { + "start": 5250.3, + "end": 5255.24, + "probability": 0.9971 + }, + { + "start": 5255.54, + "end": 5257.34, + "probability": 0.9971 + }, + { + "start": 5257.64, + "end": 5258.72, + "probability": 0.5704 + }, + { + "start": 5259.3, + "end": 5262.6, + "probability": 0.9972 + }, + { + "start": 5262.6, + "end": 5264.88, + "probability": 0.9966 + }, + { + "start": 5265.2, + "end": 5268.56, + "probability": 0.9861 + }, + { + "start": 5269.0, + "end": 5272.52, + "probability": 0.9815 + }, + { + "start": 5272.62, + "end": 5275.54, + "probability": 0.9595 + }, + { + "start": 5275.54, + "end": 5279.02, + "probability": 0.9967 + }, + { + "start": 5279.36, + "end": 5281.26, + "probability": 0.8495 + }, + { + "start": 5281.68, + "end": 5283.44, + "probability": 0.8885 + }, + { + "start": 5283.5, + "end": 5285.44, + "probability": 0.9694 + }, + { + "start": 5285.82, + "end": 5287.64, + "probability": 0.6743 + }, + { + "start": 5287.88, + "end": 5289.6, + "probability": 0.9703 + }, + { + "start": 5289.72, + "end": 5291.84, + "probability": 0.1831 + }, + { + "start": 5291.84, + "end": 5293.17, + "probability": 0.9279 + }, + { + "start": 5293.96, + "end": 5297.66, + "probability": 0.9803 + }, + { + "start": 5297.72, + "end": 5298.8, + "probability": 0.9142 + }, + { + "start": 5299.12, + "end": 5300.12, + "probability": 0.7349 + }, + { + "start": 5300.46, + "end": 5302.24, + "probability": 0.8262 + }, + { + "start": 5302.3, + "end": 5304.64, + "probability": 0.945 + }, + { + "start": 5304.94, + "end": 5306.96, + "probability": 0.8211 + }, + { + "start": 5307.16, + "end": 5309.64, + "probability": 0.7827 + }, + { + "start": 5310.04, + "end": 5312.39, + "probability": 0.9138 + }, + { + "start": 5312.88, + "end": 5316.02, + "probability": 0.9731 + }, + { + "start": 5316.5, + "end": 5320.68, + "probability": 0.998 + }, + { + "start": 5320.68, + "end": 5324.28, + "probability": 0.9958 + }, + { + "start": 5324.38, + "end": 5325.7, + "probability": 0.7589 + }, + { + "start": 5326.02, + "end": 5328.42, + "probability": 0.8985 + }, + { + "start": 5328.46, + "end": 5332.76, + "probability": 0.9854 + }, + { + "start": 5333.28, + "end": 5337.68, + "probability": 0.9026 + }, + { + "start": 5338.5, + "end": 5343.56, + "probability": 0.9841 + }, + { + "start": 5343.64, + "end": 5345.7, + "probability": 0.6855 + }, + { + "start": 5346.0, + "end": 5347.92, + "probability": 0.9949 + }, + { + "start": 5348.26, + "end": 5349.62, + "probability": 0.9346 + }, + { + "start": 5349.72, + "end": 5353.82, + "probability": 0.9738 + }, + { + "start": 5354.04, + "end": 5355.73, + "probability": 0.9151 + }, + { + "start": 5356.06, + "end": 5357.92, + "probability": 0.9602 + }, + { + "start": 5358.06, + "end": 5359.4, + "probability": 0.8644 + }, + { + "start": 5359.84, + "end": 5365.14, + "probability": 0.9581 + }, + { + "start": 5365.7, + "end": 5367.7, + "probability": 0.9879 + }, + { + "start": 5367.76, + "end": 5368.88, + "probability": 0.8896 + }, + { + "start": 5369.08, + "end": 5369.96, + "probability": 0.76 + }, + { + "start": 5370.28, + "end": 5371.82, + "probability": 0.9224 + }, + { + "start": 5372.24, + "end": 5372.76, + "probability": 0.8182 + }, + { + "start": 5372.9, + "end": 5375.82, + "probability": 0.6525 + }, + { + "start": 5376.12, + "end": 5378.72, + "probability": 0.8118 + }, + { + "start": 5379.24, + "end": 5382.66, + "probability": 0.9131 + }, + { + "start": 5391.16, + "end": 5392.96, + "probability": 0.7397 + }, + { + "start": 5393.35, + "end": 5396.44, + "probability": 0.7489 + }, + { + "start": 5397.62, + "end": 5398.8, + "probability": 0.8042 + }, + { + "start": 5400.26, + "end": 5402.98, + "probability": 0.6439 + }, + { + "start": 5404.08, + "end": 5405.42, + "probability": 0.6952 + }, + { + "start": 5406.32, + "end": 5407.46, + "probability": 0.861 + }, + { + "start": 5407.64, + "end": 5408.44, + "probability": 0.8579 + }, + { + "start": 5408.54, + "end": 5411.12, + "probability": 0.9814 + }, + { + "start": 5412.2, + "end": 5414.54, + "probability": 0.9897 + }, + { + "start": 5415.9, + "end": 5419.42, + "probability": 0.7843 + }, + { + "start": 5420.2, + "end": 5422.32, + "probability": 0.9858 + }, + { + "start": 5424.0, + "end": 5424.52, + "probability": 0.4942 + }, + { + "start": 5424.72, + "end": 5427.3, + "probability": 0.9194 + }, + { + "start": 5427.38, + "end": 5428.86, + "probability": 0.9559 + }, + { + "start": 5430.06, + "end": 5431.96, + "probability": 0.7642 + }, + { + "start": 5432.06, + "end": 5441.08, + "probability": 0.9039 + }, + { + "start": 5441.64, + "end": 5442.74, + "probability": 0.9861 + }, + { + "start": 5444.12, + "end": 5444.72, + "probability": 0.86 + }, + { + "start": 5445.64, + "end": 5449.58, + "probability": 0.9645 + }, + { + "start": 5450.72, + "end": 5453.92, + "probability": 0.6031 + }, + { + "start": 5454.02, + "end": 5455.0, + "probability": 0.7345 + }, + { + "start": 5456.44, + "end": 5457.49, + "probability": 0.4232 + }, + { + "start": 5457.86, + "end": 5461.04, + "probability": 0.8346 + }, + { + "start": 5461.7, + "end": 5464.08, + "probability": 0.9069 + }, + { + "start": 5465.2, + "end": 5467.7, + "probability": 0.7759 + }, + { + "start": 5468.52, + "end": 5472.0, + "probability": 0.9944 + }, + { + "start": 5472.56, + "end": 5474.8, + "probability": 0.9518 + }, + { + "start": 5476.28, + "end": 5477.2, + "probability": 0.941 + }, + { + "start": 5477.48, + "end": 5479.64, + "probability": 0.9648 + }, + { + "start": 5480.16, + "end": 5486.58, + "probability": 0.9912 + }, + { + "start": 5487.1, + "end": 5490.32, + "probability": 0.4523 + }, + { + "start": 5492.06, + "end": 5497.12, + "probability": 0.7695 + }, + { + "start": 5497.4, + "end": 5497.96, + "probability": 0.7625 + }, + { + "start": 5498.04, + "end": 5498.94, + "probability": 0.8025 + }, + { + "start": 5498.96, + "end": 5499.38, + "probability": 0.6477 + }, + { + "start": 5499.42, + "end": 5500.66, + "probability": 0.8658 + }, + { + "start": 5500.98, + "end": 5503.22, + "probability": 0.9261 + }, + { + "start": 5503.28, + "end": 5504.33, + "probability": 0.943 + }, + { + "start": 5505.82, + "end": 5510.2, + "probability": 0.8942 + }, + { + "start": 5510.84, + "end": 5518.34, + "probability": 0.9534 + }, + { + "start": 5519.24, + "end": 5523.64, + "probability": 0.9298 + }, + { + "start": 5524.32, + "end": 5524.88, + "probability": 0.9488 + }, + { + "start": 5525.76, + "end": 5529.1, + "probability": 0.9873 + }, + { + "start": 5529.92, + "end": 5533.68, + "probability": 0.8877 + }, + { + "start": 5534.34, + "end": 5535.32, + "probability": 0.7145 + }, + { + "start": 5535.84, + "end": 5540.58, + "probability": 0.8649 + }, + { + "start": 5541.1, + "end": 5543.66, + "probability": 0.9041 + }, + { + "start": 5544.56, + "end": 5545.2, + "probability": 0.8246 + }, + { + "start": 5545.6, + "end": 5550.68, + "probability": 0.8879 + }, + { + "start": 5550.76, + "end": 5551.44, + "probability": 0.8678 + }, + { + "start": 5552.4, + "end": 5555.83, + "probability": 0.8775 + }, + { + "start": 5556.48, + "end": 5559.66, + "probability": 0.8846 + }, + { + "start": 5560.06, + "end": 5561.76, + "probability": 0.9868 + }, + { + "start": 5562.1, + "end": 5562.68, + "probability": 0.8319 + }, + { + "start": 5563.96, + "end": 5564.72, + "probability": 0.8625 + }, + { + "start": 5565.42, + "end": 5567.0, + "probability": 0.8888 + }, + { + "start": 5567.18, + "end": 5567.92, + "probability": 0.705 + }, + { + "start": 5568.0, + "end": 5568.92, + "probability": 0.9332 + }, + { + "start": 5568.98, + "end": 5572.8, + "probability": 0.9602 + }, + { + "start": 5573.38, + "end": 5575.16, + "probability": 0.7789 + }, + { + "start": 5575.44, + "end": 5576.74, + "probability": 0.7384 + }, + { + "start": 5577.44, + "end": 5579.74, + "probability": 0.9512 + }, + { + "start": 5580.1, + "end": 5582.36, + "probability": 0.942 + }, + { + "start": 5583.06, + "end": 5584.92, + "probability": 0.9725 + }, + { + "start": 5584.98, + "end": 5585.26, + "probability": 0.6098 + }, + { + "start": 5585.46, + "end": 5587.92, + "probability": 0.9961 + }, + { + "start": 5588.1, + "end": 5590.32, + "probability": 0.9746 + }, + { + "start": 5590.88, + "end": 5592.38, + "probability": 0.399 + }, + { + "start": 5592.38, + "end": 5593.23, + "probability": 0.5605 + }, + { + "start": 5594.12, + "end": 5597.2, + "probability": 0.7072 + }, + { + "start": 5598.14, + "end": 5600.3, + "probability": 0.765 + }, + { + "start": 5624.44, + "end": 5625.24, + "probability": 0.7066 + }, + { + "start": 5625.34, + "end": 5626.0, + "probability": 0.7123 + }, + { + "start": 5626.08, + "end": 5626.76, + "probability": 0.8733 + }, + { + "start": 5626.9, + "end": 5627.56, + "probability": 0.8144 + }, + { + "start": 5628.56, + "end": 5629.42, + "probability": 0.8613 + }, + { + "start": 5629.58, + "end": 5630.66, + "probability": 0.9075 + }, + { + "start": 5630.76, + "end": 5633.26, + "probability": 0.77 + }, + { + "start": 5633.5, + "end": 5633.76, + "probability": 0.1901 + }, + { + "start": 5634.42, + "end": 5637.8, + "probability": 0.9893 + }, + { + "start": 5638.38, + "end": 5639.26, + "probability": 0.7249 + }, + { + "start": 5639.46, + "end": 5642.36, + "probability": 0.8983 + }, + { + "start": 5642.5, + "end": 5643.76, + "probability": 0.9726 + }, + { + "start": 5645.14, + "end": 5646.37, + "probability": 0.8763 + }, + { + "start": 5647.64, + "end": 5648.33, + "probability": 0.9819 + }, + { + "start": 5648.94, + "end": 5653.4, + "probability": 0.7499 + }, + { + "start": 5655.28, + "end": 5660.26, + "probability": 0.7475 + }, + { + "start": 5660.82, + "end": 5662.2, + "probability": 0.9126 + }, + { + "start": 5662.98, + "end": 5667.26, + "probability": 0.9691 + }, + { + "start": 5667.26, + "end": 5670.19, + "probability": 0.9644 + }, + { + "start": 5670.38, + "end": 5671.28, + "probability": 0.9832 + }, + { + "start": 5672.04, + "end": 5673.16, + "probability": 0.9808 + }, + { + "start": 5673.86, + "end": 5674.52, + "probability": 0.6716 + }, + { + "start": 5674.6, + "end": 5675.96, + "probability": 0.7803 + }, + { + "start": 5676.3, + "end": 5678.42, + "probability": 0.8802 + }, + { + "start": 5679.52, + "end": 5680.84, + "probability": 0.9 + }, + { + "start": 5680.9, + "end": 5682.96, + "probability": 0.9672 + }, + { + "start": 5682.96, + "end": 5685.46, + "probability": 0.877 + }, + { + "start": 5686.28, + "end": 5687.52, + "probability": 0.7559 + }, + { + "start": 5688.16, + "end": 5692.64, + "probability": 0.8682 + }, + { + "start": 5693.48, + "end": 5695.78, + "probability": 0.911 + }, + { + "start": 5697.12, + "end": 5699.76, + "probability": 0.9056 + }, + { + "start": 5700.04, + "end": 5700.64, + "probability": 0.8727 + }, + { + "start": 5700.72, + "end": 5703.48, + "probability": 0.9889 + }, + { + "start": 5703.62, + "end": 5704.82, + "probability": 0.5876 + }, + { + "start": 5704.88, + "end": 5706.24, + "probability": 0.7566 + }, + { + "start": 5706.72, + "end": 5708.92, + "probability": 0.9942 + }, + { + "start": 5708.92, + "end": 5712.68, + "probability": 0.9933 + }, + { + "start": 5713.26, + "end": 5714.72, + "probability": 0.8931 + }, + { + "start": 5715.38, + "end": 5719.52, + "probability": 0.9846 + }, + { + "start": 5720.22, + "end": 5721.2, + "probability": 0.8149 + }, + { + "start": 5721.66, + "end": 5722.43, + "probability": 0.9047 + }, + { + "start": 5723.0, + "end": 5724.4, + "probability": 0.9326 + }, + { + "start": 5724.46, + "end": 5726.5, + "probability": 0.9952 + }, + { + "start": 5726.62, + "end": 5727.7, + "probability": 0.7847 + }, + { + "start": 5727.9, + "end": 5729.7, + "probability": 0.8688 + }, + { + "start": 5730.14, + "end": 5735.18, + "probability": 0.989 + }, + { + "start": 5735.8, + "end": 5738.59, + "probability": 0.3136 + }, + { + "start": 5739.34, + "end": 5740.8, + "probability": 0.7974 + }, + { + "start": 5740.94, + "end": 5741.04, + "probability": 0.3688 + }, + { + "start": 5741.18, + "end": 5741.28, + "probability": 0.466 + }, + { + "start": 5741.28, + "end": 5742.36, + "probability": 0.784 + }, + { + "start": 5742.44, + "end": 5747.12, + "probability": 0.9422 + }, + { + "start": 5747.24, + "end": 5750.64, + "probability": 0.8152 + }, + { + "start": 5750.94, + "end": 5752.52, + "probability": 0.8049 + }, + { + "start": 5752.64, + "end": 5753.38, + "probability": 0.733 + }, + { + "start": 5753.96, + "end": 5754.96, + "probability": 0.7489 + }, + { + "start": 5755.36, + "end": 5758.0, + "probability": 0.9946 + }, + { + "start": 5758.44, + "end": 5758.8, + "probability": 0.6843 + }, + { + "start": 5758.9, + "end": 5759.76, + "probability": 0.6192 + }, + { + "start": 5759.8, + "end": 5764.78, + "probability": 0.9607 + }, + { + "start": 5765.2, + "end": 5766.8, + "probability": 0.9805 + }, + { + "start": 5766.92, + "end": 5768.71, + "probability": 0.9623 + }, + { + "start": 5768.92, + "end": 5772.26, + "probability": 0.8428 + }, + { + "start": 5772.28, + "end": 5773.34, + "probability": 0.8502 + }, + { + "start": 5773.56, + "end": 5775.16, + "probability": 0.9468 + }, + { + "start": 5776.34, + "end": 5782.06, + "probability": 0.9561 + }, + { + "start": 5782.12, + "end": 5785.58, + "probability": 0.9592 + }, + { + "start": 5785.7, + "end": 5786.96, + "probability": 0.8231 + }, + { + "start": 5787.04, + "end": 5789.88, + "probability": 0.9381 + }, + { + "start": 5789.88, + "end": 5792.52, + "probability": 0.8834 + }, + { + "start": 5792.96, + "end": 5796.58, + "probability": 0.9506 + }, + { + "start": 5797.52, + "end": 5800.02, + "probability": 0.9058 + }, + { + "start": 5800.5, + "end": 5806.0, + "probability": 0.9245 + }, + { + "start": 5806.72, + "end": 5809.11, + "probability": 0.9866 + }, + { + "start": 5810.28, + "end": 5810.28, + "probability": 0.2131 + }, + { + "start": 5810.28, + "end": 5810.9, + "probability": 0.6529 + }, + { + "start": 5811.04, + "end": 5811.6, + "probability": 0.4643 + }, + { + "start": 5811.7, + "end": 5813.14, + "probability": 0.4705 + }, + { + "start": 5813.22, + "end": 5814.1, + "probability": 0.8528 + }, + { + "start": 5814.5, + "end": 5817.06, + "probability": 0.7638 + }, + { + "start": 5817.36, + "end": 5820.84, + "probability": 0.8423 + }, + { + "start": 5820.94, + "end": 5823.52, + "probability": 0.6945 + }, + { + "start": 5823.58, + "end": 5824.3, + "probability": 0.3012 + }, + { + "start": 5824.48, + "end": 5825.12, + "probability": 0.6143 + }, + { + "start": 5825.2, + "end": 5825.84, + "probability": 0.666 + }, + { + "start": 5825.9, + "end": 5826.7, + "probability": 0.6924 + }, + { + "start": 5826.88, + "end": 5827.56, + "probability": 0.8531 + }, + { + "start": 5827.64, + "end": 5828.32, + "probability": 0.6772 + }, + { + "start": 5828.38, + "end": 5828.68, + "probability": 0.8639 + }, + { + "start": 5829.04, + "end": 5829.64, + "probability": 0.736 + }, + { + "start": 5829.66, + "end": 5830.22, + "probability": 0.5457 + }, + { + "start": 5830.24, + "end": 5833.18, + "probability": 0.8507 + }, + { + "start": 5833.18, + "end": 5835.69, + "probability": 0.9399 + }, + { + "start": 5835.98, + "end": 5839.8, + "probability": 0.9818 + }, + { + "start": 5840.04, + "end": 5842.7, + "probability": 0.9794 + }, + { + "start": 5843.5, + "end": 5843.94, + "probability": 0.3727 + }, + { + "start": 5844.31, + "end": 5846.68, + "probability": 0.9765 + }, + { + "start": 5846.7, + "end": 5848.22, + "probability": 0.9146 + }, + { + "start": 5848.38, + "end": 5849.58, + "probability": 0.9907 + }, + { + "start": 5849.72, + "end": 5853.3, + "probability": 0.989 + }, + { + "start": 5853.3, + "end": 5855.54, + "probability": 0.9883 + }, + { + "start": 5855.76, + "end": 5856.52, + "probability": 0.8977 + }, + { + "start": 5856.62, + "end": 5856.84, + "probability": 0.7268 + }, + { + "start": 5857.08, + "end": 5859.6, + "probability": 0.9502 + }, + { + "start": 5859.82, + "end": 5862.54, + "probability": 0.9204 + }, + { + "start": 5863.02, + "end": 5864.02, + "probability": 0.804 + }, + { + "start": 5864.26, + "end": 5865.8, + "probability": 0.5707 + }, + { + "start": 5871.04, + "end": 5871.8, + "probability": 0.711 + }, + { + "start": 5872.7, + "end": 5873.36, + "probability": 0.8309 + }, + { + "start": 5874.54, + "end": 5877.26, + "probability": 0.9774 + }, + { + "start": 5877.76, + "end": 5878.24, + "probability": 0.8354 + }, + { + "start": 5878.36, + "end": 5878.75, + "probability": 0.9183 + }, + { + "start": 5879.1, + "end": 5880.2, + "probability": 0.4874 + }, + { + "start": 5881.0, + "end": 5885.06, + "probability": 0.6262 + }, + { + "start": 5885.28, + "end": 5888.02, + "probability": 0.9075 + }, + { + "start": 5888.1, + "end": 5888.54, + "probability": 0.4647 + }, + { + "start": 5888.7, + "end": 5890.84, + "probability": 0.8811 + }, + { + "start": 5891.26, + "end": 5892.23, + "probability": 0.7947 + }, + { + "start": 5892.86, + "end": 5894.54, + "probability": 0.9893 + }, + { + "start": 5894.56, + "end": 5897.28, + "probability": 0.9824 + }, + { + "start": 5897.66, + "end": 5898.36, + "probability": 0.73 + }, + { + "start": 5898.7, + "end": 5901.52, + "probability": 0.9161 + }, + { + "start": 5901.8, + "end": 5902.38, + "probability": 0.979 + }, + { + "start": 5902.56, + "end": 5904.16, + "probability": 0.9684 + }, + { + "start": 5904.62, + "end": 5907.02, + "probability": 0.0081 + }, + { + "start": 5909.56, + "end": 5910.3, + "probability": 0.3328 + }, + { + "start": 5911.66, + "end": 5913.74, + "probability": 0.8826 + }, + { + "start": 5913.78, + "end": 5913.78, + "probability": 0.0246 + }, + { + "start": 5913.78, + "end": 5913.78, + "probability": 0.1839 + }, + { + "start": 5913.78, + "end": 5913.78, + "probability": 0.0477 + }, + { + "start": 5913.78, + "end": 5914.12, + "probability": 0.3415 + }, + { + "start": 5914.2, + "end": 5915.96, + "probability": 0.9653 + }, + { + "start": 5916.38, + "end": 5918.34, + "probability": 0.8853 + }, + { + "start": 5919.78, + "end": 5920.62, + "probability": 0.5721 + }, + { + "start": 5920.94, + "end": 5923.48, + "probability": 0.9406 + }, + { + "start": 5924.14, + "end": 5926.76, + "probability": 0.8974 + }, + { + "start": 5927.48, + "end": 5927.82, + "probability": 0.7043 + }, + { + "start": 5927.84, + "end": 5929.46, + "probability": 0.9762 + }, + { + "start": 5929.66, + "end": 5930.34, + "probability": 0.9571 + }, + { + "start": 5931.34, + "end": 5935.64, + "probability": 0.9679 + }, + { + "start": 5936.84, + "end": 5941.94, + "probability": 0.8962 + }, + { + "start": 5942.08, + "end": 5942.72, + "probability": 0.5561 + }, + { + "start": 5942.92, + "end": 5944.62, + "probability": 0.7879 + }, + { + "start": 5945.3, + "end": 5946.9, + "probability": 0.7319 + }, + { + "start": 5947.14, + "end": 5951.76, + "probability": 0.9856 + }, + { + "start": 5952.04, + "end": 5953.8, + "probability": 0.8708 + }, + { + "start": 5955.67, + "end": 5958.28, + "probability": 0.9971 + }, + { + "start": 5958.94, + "end": 5960.6, + "probability": 0.6197 + }, + { + "start": 5960.94, + "end": 5963.1, + "probability": 0.9879 + }, + { + "start": 5964.21, + "end": 5968.98, + "probability": 0.9898 + }, + { + "start": 5969.26, + "end": 5970.96, + "probability": 0.9857 + }, + { + "start": 5971.1, + "end": 5973.14, + "probability": 0.6895 + }, + { + "start": 5973.32, + "end": 5974.32, + "probability": 0.6804 + }, + { + "start": 5974.44, + "end": 5976.08, + "probability": 0.8014 + }, + { + "start": 5976.5, + "end": 5977.82, + "probability": 0.7762 + }, + { + "start": 5977.82, + "end": 5980.48, + "probability": 0.9746 + }, + { + "start": 5980.98, + "end": 5982.1, + "probability": 0.76 + }, + { + "start": 5982.3, + "end": 5983.3, + "probability": 0.9413 + }, + { + "start": 5983.68, + "end": 5985.56, + "probability": 0.9286 + }, + { + "start": 5985.88, + "end": 5989.3, + "probability": 0.9901 + }, + { + "start": 5989.3, + "end": 5992.04, + "probability": 0.9605 + }, + { + "start": 5992.2, + "end": 5995.1, + "probability": 0.9715 + }, + { + "start": 5996.22, + "end": 5999.1, + "probability": 0.9783 + }, + { + "start": 5999.4, + "end": 6000.1, + "probability": 0.6978 + }, + { + "start": 6000.32, + "end": 6001.5, + "probability": 0.6259 + }, + { + "start": 6001.84, + "end": 6005.72, + "probability": 0.7725 + }, + { + "start": 6006.16, + "end": 6007.26, + "probability": 0.7578 + }, + { + "start": 6007.38, + "end": 6007.98, + "probability": 0.1685 + }, + { + "start": 6008.58, + "end": 6010.74, + "probability": 0.5109 + }, + { + "start": 6010.96, + "end": 6013.16, + "probability": 0.9245 + }, + { + "start": 6016.38, + "end": 6017.94, + "probability": 0.6569 + }, + { + "start": 6018.84, + "end": 6019.94, + "probability": 0.599 + }, + { + "start": 6020.66, + "end": 6022.34, + "probability": 0.912 + }, + { + "start": 6022.5, + "end": 6023.82, + "probability": 0.8895 + }, + { + "start": 6025.69, + "end": 6028.56, + "probability": 0.9354 + }, + { + "start": 6029.18, + "end": 6031.34, + "probability": 0.9692 + }, + { + "start": 6031.4, + "end": 6032.22, + "probability": 0.7767 + }, + { + "start": 6032.48, + "end": 6033.06, + "probability": 0.9666 + }, + { + "start": 6034.22, + "end": 6040.96, + "probability": 0.9163 + }, + { + "start": 6041.34, + "end": 6042.38, + "probability": 0.7219 + }, + { + "start": 6042.78, + "end": 6046.88, + "probability": 0.9803 + }, + { + "start": 6046.96, + "end": 6048.72, + "probability": 0.9684 + }, + { + "start": 6048.88, + "end": 6050.78, + "probability": 0.7114 + }, + { + "start": 6050.92, + "end": 6052.44, + "probability": 0.7761 + }, + { + "start": 6052.6, + "end": 6054.2, + "probability": 0.7686 + }, + { + "start": 6054.28, + "end": 6056.24, + "probability": 0.8331 + }, + { + "start": 6056.42, + "end": 6058.4, + "probability": 0.9888 + }, + { + "start": 6058.5, + "end": 6062.98, + "probability": 0.9426 + }, + { + "start": 6063.68, + "end": 6067.68, + "probability": 0.5355 + }, + { + "start": 6067.68, + "end": 6069.78, + "probability": 0.4833 + }, + { + "start": 6070.24, + "end": 6070.82, + "probability": 0.6454 + }, + { + "start": 6070.98, + "end": 6071.58, + "probability": 0.9067 + }, + { + "start": 6072.5, + "end": 6077.42, + "probability": 0.979 + }, + { + "start": 6077.58, + "end": 6079.68, + "probability": 0.9297 + }, + { + "start": 6080.76, + "end": 6081.4, + "probability": 0.6173 + }, + { + "start": 6081.58, + "end": 6084.1, + "probability": 0.9797 + }, + { + "start": 6084.52, + "end": 6086.94, + "probability": 0.9681 + }, + { + "start": 6088.02, + "end": 6089.8, + "probability": 0.9615 + }, + { + "start": 6090.1, + "end": 6095.22, + "probability": 0.9944 + }, + { + "start": 6095.28, + "end": 6096.16, + "probability": 0.9189 + }, + { + "start": 6096.44, + "end": 6097.7, + "probability": 0.9912 + }, + { + "start": 6098.16, + "end": 6100.6, + "probability": 0.9825 + }, + { + "start": 6100.94, + "end": 6105.18, + "probability": 0.9742 + }, + { + "start": 6105.96, + "end": 6107.26, + "probability": 0.4641 + }, + { + "start": 6110.38, + "end": 6115.44, + "probability": 0.9982 + }, + { + "start": 6115.54, + "end": 6119.32, + "probability": 0.762 + }, + { + "start": 6120.18, + "end": 6126.6, + "probability": 0.9902 + }, + { + "start": 6126.6, + "end": 6131.12, + "probability": 0.9918 + }, + { + "start": 6133.72, + "end": 6139.5, + "probability": 0.999 + }, + { + "start": 6141.16, + "end": 6144.26, + "probability": 0.6032 + }, + { + "start": 6145.24, + "end": 6147.9, + "probability": 0.6429 + }, + { + "start": 6148.38, + "end": 6150.38, + "probability": 0.9445 + }, + { + "start": 6150.44, + "end": 6153.56, + "probability": 0.8223 + }, + { + "start": 6153.82, + "end": 6154.82, + "probability": 0.6397 + }, + { + "start": 6155.06, + "end": 6156.24, + "probability": 0.9453 + }, + { + "start": 6156.84, + "end": 6162.8, + "probability": 0.9121 + }, + { + "start": 6163.14, + "end": 6166.28, + "probability": 0.9354 + }, + { + "start": 6166.28, + "end": 6168.76, + "probability": 0.9881 + }, + { + "start": 6169.22, + "end": 6169.54, + "probability": 0.2594 + }, + { + "start": 6169.56, + "end": 6170.88, + "probability": 0.8807 + }, + { + "start": 6170.88, + "end": 6173.08, + "probability": 0.9382 + }, + { + "start": 6174.14, + "end": 6178.06, + "probability": 0.8596 + }, + { + "start": 6180.88, + "end": 6181.4, + "probability": 0.3153 + }, + { + "start": 6181.94, + "end": 6185.5, + "probability": 0.9929 + }, + { + "start": 6186.24, + "end": 6188.04, + "probability": 0.7608 + }, + { + "start": 6188.34, + "end": 6191.1, + "probability": 0.7257 + }, + { + "start": 6191.5, + "end": 6194.62, + "probability": 0.9938 + }, + { + "start": 6194.62, + "end": 6197.6, + "probability": 0.8087 + }, + { + "start": 6198.88, + "end": 6201.56, + "probability": 0.8125 + }, + { + "start": 6201.6, + "end": 6202.46, + "probability": 0.7957 + }, + { + "start": 6202.8, + "end": 6207.18, + "probability": 0.9941 + }, + { + "start": 6207.6, + "end": 6210.24, + "probability": 0.9912 + }, + { + "start": 6210.52, + "end": 6211.4, + "probability": 0.6705 + }, + { + "start": 6211.58, + "end": 6212.84, + "probability": 0.8238 + }, + { + "start": 6213.9, + "end": 6214.8, + "probability": 0.8794 + }, + { + "start": 6215.22, + "end": 6216.82, + "probability": 0.9922 + }, + { + "start": 6216.9, + "end": 6218.24, + "probability": 0.979 + }, + { + "start": 6218.6, + "end": 6220.42, + "probability": 0.9742 + }, + { + "start": 6220.42, + "end": 6222.8, + "probability": 0.9746 + }, + { + "start": 6223.44, + "end": 6227.74, + "probability": 0.9737 + }, + { + "start": 6227.74, + "end": 6233.48, + "probability": 0.9594 + }, + { + "start": 6233.48, + "end": 6238.22, + "probability": 0.9858 + }, + { + "start": 6238.24, + "end": 6238.78, + "probability": 0.6681 + }, + { + "start": 6239.9, + "end": 6244.0, + "probability": 0.9843 + }, + { + "start": 6244.84, + "end": 6247.37, + "probability": 0.6918 + }, + { + "start": 6247.38, + "end": 6251.74, + "probability": 0.7312 + }, + { + "start": 6252.55, + "end": 6254.8, + "probability": 0.9699 + }, + { + "start": 6254.8, + "end": 6256.68, + "probability": 0.9355 + }, + { + "start": 6256.96, + "end": 6258.53, + "probability": 0.6921 + }, + { + "start": 6259.16, + "end": 6259.46, + "probability": 0.1185 + }, + { + "start": 6259.74, + "end": 6263.36, + "probability": 0.9744 + }, + { + "start": 6264.26, + "end": 6268.64, + "probability": 0.9148 + }, + { + "start": 6269.08, + "end": 6269.82, + "probability": 0.0468 + }, + { + "start": 6270.34, + "end": 6271.3, + "probability": 0.7266 + }, + { + "start": 6271.52, + "end": 6272.52, + "probability": 0.2519 + }, + { + "start": 6272.68, + "end": 6273.2, + "probability": 0.3896 + }, + { + "start": 6273.22, + "end": 6274.52, + "probability": 0.5422 + }, + { + "start": 6274.68, + "end": 6276.1, + "probability": 0.7327 + }, + { + "start": 6276.26, + "end": 6281.94, + "probability": 0.875 + }, + { + "start": 6282.34, + "end": 6282.88, + "probability": 0.6937 + }, + { + "start": 6283.22, + "end": 6284.44, + "probability": 0.5605 + }, + { + "start": 6286.55, + "end": 6291.18, + "probability": 0.998 + }, + { + "start": 6292.02, + "end": 6293.06, + "probability": 0.9612 + }, + { + "start": 6296.22, + "end": 6299.14, + "probability": 0.9347 + }, + { + "start": 6299.64, + "end": 6300.1, + "probability": 0.6538 + }, + { + "start": 6300.16, + "end": 6300.56, + "probability": 0.5669 + }, + { + "start": 6300.58, + "end": 6301.14, + "probability": 0.9136 + }, + { + "start": 6301.26, + "end": 6304.04, + "probability": 0.5942 + }, + { + "start": 6304.36, + "end": 6306.45, + "probability": 0.6702 + }, + { + "start": 6306.76, + "end": 6307.1, + "probability": 0.0129 + }, + { + "start": 6307.34, + "end": 6310.1, + "probability": 0.7946 + }, + { + "start": 6310.5, + "end": 6312.94, + "probability": 0.8031 + }, + { + "start": 6313.06, + "end": 6314.02, + "probability": 0.8533 + }, + { + "start": 6314.06, + "end": 6314.62, + "probability": 0.5839 + }, + { + "start": 6314.74, + "end": 6315.12, + "probability": 0.7367 + }, + { + "start": 6315.22, + "end": 6315.74, + "probability": 0.8849 + }, + { + "start": 6315.98, + "end": 6317.38, + "probability": 0.8513 + }, + { + "start": 6317.46, + "end": 6318.54, + "probability": 0.6089 + }, + { + "start": 6318.88, + "end": 6321.42, + "probability": 0.0763 + }, + { + "start": 6321.5, + "end": 6324.26, + "probability": 0.8127 + }, + { + "start": 6324.28, + "end": 6327.46, + "probability": 0.98 + }, + { + "start": 6327.58, + "end": 6328.6, + "probability": 0.9773 + }, + { + "start": 6328.68, + "end": 6329.94, + "probability": 0.8965 + }, + { + "start": 6330.12, + "end": 6332.04, + "probability": 0.9626 + }, + { + "start": 6332.26, + "end": 6333.52, + "probability": 0.647 + }, + { + "start": 6333.84, + "end": 6336.66, + "probability": 0.9871 + }, + { + "start": 6336.84, + "end": 6338.5, + "probability": 0.9197 + }, + { + "start": 6338.76, + "end": 6339.8, + "probability": 0.7649 + }, + { + "start": 6340.04, + "end": 6341.16, + "probability": 0.8166 + }, + { + "start": 6341.86, + "end": 6342.84, + "probability": 0.964 + }, + { + "start": 6343.38, + "end": 6343.56, + "probability": 0.6746 + }, + { + "start": 6343.66, + "end": 6344.7, + "probability": 0.6839 + }, + { + "start": 6344.88, + "end": 6346.68, + "probability": 0.7465 + }, + { + "start": 6346.8, + "end": 6348.98, + "probability": 0.9521 + }, + { + "start": 6349.32, + "end": 6353.16, + "probability": 0.9749 + }, + { + "start": 6353.2, + "end": 6358.34, + "probability": 0.96 + }, + { + "start": 6358.38, + "end": 6359.82, + "probability": 0.9917 + }, + { + "start": 6360.36, + "end": 6362.96, + "probability": 0.643 + }, + { + "start": 6363.58, + "end": 6365.14, + "probability": 0.9019 + }, + { + "start": 6366.04, + "end": 6367.5, + "probability": 0.5972 + }, + { + "start": 6367.7, + "end": 6371.45, + "probability": 0.6553 + }, + { + "start": 6376.74, + "end": 6377.66, + "probability": 0.6305 + }, + { + "start": 6377.68, + "end": 6379.58, + "probability": 0.8348 + }, + { + "start": 6379.66, + "end": 6380.44, + "probability": 0.4624 + }, + { + "start": 6380.48, + "end": 6383.2, + "probability": 0.9717 + }, + { + "start": 6384.28, + "end": 6388.98, + "probability": 0.6121 + }, + { + "start": 6389.18, + "end": 6390.34, + "probability": 0.9333 + }, + { + "start": 6391.24, + "end": 6392.18, + "probability": 0.6672 + }, + { + "start": 6392.3, + "end": 6396.0, + "probability": 0.9707 + }, + { + "start": 6396.96, + "end": 6399.44, + "probability": 0.8679 + }, + { + "start": 6400.26, + "end": 6400.76, + "probability": 0.1535 + }, + { + "start": 6400.76, + "end": 6403.14, + "probability": 0.5246 + }, + { + "start": 6403.78, + "end": 6406.88, + "probability": 0.9969 + }, + { + "start": 6407.04, + "end": 6409.1, + "probability": 0.9637 + }, + { + "start": 6409.56, + "end": 6410.36, + "probability": 0.6964 + }, + { + "start": 6410.46, + "end": 6414.1, + "probability": 0.9781 + }, + { + "start": 6415.46, + "end": 6419.7, + "probability": 0.9949 + }, + { + "start": 6419.86, + "end": 6426.6, + "probability": 0.9924 + }, + { + "start": 6426.7, + "end": 6428.7, + "probability": 0.7785 + }, + { + "start": 6428.8, + "end": 6429.52, + "probability": 0.905 + }, + { + "start": 6429.94, + "end": 6430.76, + "probability": 0.7812 + }, + { + "start": 6431.54, + "end": 6437.28, + "probability": 0.8682 + }, + { + "start": 6438.06, + "end": 6440.82, + "probability": 0.9606 + }, + { + "start": 6441.62, + "end": 6442.16, + "probability": 0.5027 + }, + { + "start": 6443.14, + "end": 6445.7, + "probability": 0.9858 + }, + { + "start": 6445.76, + "end": 6446.36, + "probability": 0.8154 + }, + { + "start": 6446.56, + "end": 6448.82, + "probability": 0.9036 + }, + { + "start": 6448.88, + "end": 6449.62, + "probability": 0.981 + }, + { + "start": 6450.12, + "end": 6451.72, + "probability": 0.9833 + }, + { + "start": 6452.22, + "end": 6454.64, + "probability": 0.9885 + }, + { + "start": 6454.74, + "end": 6454.98, + "probability": 0.6318 + }, + { + "start": 6455.02, + "end": 6458.72, + "probability": 0.9697 + }, + { + "start": 6458.74, + "end": 6460.5, + "probability": 0.9739 + }, + { + "start": 6461.16, + "end": 6464.9, + "probability": 0.9935 + }, + { + "start": 6465.54, + "end": 6470.38, + "probability": 0.995 + }, + { + "start": 6470.72, + "end": 6472.44, + "probability": 0.9871 + }, + { + "start": 6472.74, + "end": 6473.18, + "probability": 0.597 + }, + { + "start": 6473.7, + "end": 6475.96, + "probability": 0.9927 + }, + { + "start": 6475.96, + "end": 6478.6, + "probability": 0.9995 + }, + { + "start": 6478.98, + "end": 6482.94, + "probability": 0.9974 + }, + { + "start": 6483.22, + "end": 6483.46, + "probability": 0.0237 + }, + { + "start": 6483.5, + "end": 6484.02, + "probability": 0.7232 + }, + { + "start": 6484.12, + "end": 6485.24, + "probability": 0.8381 + }, + { + "start": 6485.77, + "end": 6487.68, + "probability": 0.9831 + }, + { + "start": 6487.68, + "end": 6487.78, + "probability": 0.368 + }, + { + "start": 6487.78, + "end": 6489.52, + "probability": 0.9141 + }, + { + "start": 6489.62, + "end": 6493.48, + "probability": 0.7295 + }, + { + "start": 6493.74, + "end": 6494.7, + "probability": 0.678 + }, + { + "start": 6494.88, + "end": 6499.02, + "probability": 0.9258 + }, + { + "start": 6499.28, + "end": 6499.78, + "probability": 0.706 + }, + { + "start": 6499.86, + "end": 6504.82, + "probability": 0.8804 + }, + { + "start": 6505.48, + "end": 6508.74, + "probability": 0.9819 + }, + { + "start": 6509.3, + "end": 6511.76, + "probability": 0.9518 + }, + { + "start": 6511.84, + "end": 6513.7, + "probability": 0.9065 + }, + { + "start": 6514.34, + "end": 6517.2, + "probability": 0.9676 + }, + { + "start": 6517.74, + "end": 6518.84, + "probability": 0.6996 + }, + { + "start": 6519.3, + "end": 6522.76, + "probability": 0.7704 + }, + { + "start": 6524.12, + "end": 6529.42, + "probability": 0.9026 + }, + { + "start": 6530.02, + "end": 6530.72, + "probability": 0.8572 + }, + { + "start": 6530.88, + "end": 6536.04, + "probability": 0.9679 + }, + { + "start": 6536.46, + "end": 6539.44, + "probability": 0.8912 + }, + { + "start": 6539.86, + "end": 6541.44, + "probability": 0.9962 + }, + { + "start": 6541.96, + "end": 6545.62, + "probability": 0.9895 + }, + { + "start": 6545.9, + "end": 6548.1, + "probability": 0.9615 + }, + { + "start": 6548.38, + "end": 6550.16, + "probability": 0.5067 + }, + { + "start": 6550.34, + "end": 6550.82, + "probability": 0.7356 + }, + { + "start": 6551.28, + "end": 6555.64, + "probability": 0.7977 + }, + { + "start": 6555.66, + "end": 6558.56, + "probability": 0.8972 + }, + { + "start": 6559.12, + "end": 6559.56, + "probability": 0.8771 + }, + { + "start": 6559.68, + "end": 6559.9, + "probability": 0.856 + }, + { + "start": 6559.94, + "end": 6560.22, + "probability": 0.6774 + }, + { + "start": 6560.38, + "end": 6563.66, + "probability": 0.9512 + }, + { + "start": 6563.66, + "end": 6568.38, + "probability": 0.8602 + }, + { + "start": 6568.4, + "end": 6569.5, + "probability": 0.5904 + }, + { + "start": 6569.56, + "end": 6570.3, + "probability": 0.6154 + }, + { + "start": 6588.16, + "end": 6588.32, + "probability": 0.2839 + }, + { + "start": 6588.32, + "end": 6588.32, + "probability": 0.1281 + }, + { + "start": 6588.32, + "end": 6590.46, + "probability": 0.5341 + }, + { + "start": 6590.46, + "end": 6590.84, + "probability": 0.3839 + }, + { + "start": 6590.96, + "end": 6591.5, + "probability": 0.4191 + }, + { + "start": 6591.52, + "end": 6596.86, + "probability": 0.9044 + }, + { + "start": 6597.72, + "end": 6598.08, + "probability": 0.7162 + }, + { + "start": 6598.18, + "end": 6599.68, + "probability": 0.7547 + }, + { + "start": 6599.78, + "end": 6602.18, + "probability": 0.4038 + }, + { + "start": 6602.18, + "end": 6606.24, + "probability": 0.8654 + }, + { + "start": 6606.38, + "end": 6607.06, + "probability": 0.0054 + }, + { + "start": 6607.06, + "end": 6608.44, + "probability": 0.6562 + }, + { + "start": 6608.7, + "end": 6610.16, + "probability": 0.8707 + }, + { + "start": 6610.18, + "end": 6610.78, + "probability": 0.4879 + }, + { + "start": 6610.82, + "end": 6612.4, + "probability": 0.8533 + }, + { + "start": 6619.22, + "end": 6620.96, + "probability": 0.698 + }, + { + "start": 6628.26, + "end": 6628.48, + "probability": 0.4224 + }, + { + "start": 6628.72, + "end": 6630.08, + "probability": 0.5974 + }, + { + "start": 6631.0, + "end": 6634.22, + "probability": 0.8982 + }, + { + "start": 6634.22, + "end": 6636.82, + "probability": 0.9833 + }, + { + "start": 6637.38, + "end": 6642.02, + "probability": 0.9152 + }, + { + "start": 6642.74, + "end": 6643.12, + "probability": 0.5326 + }, + { + "start": 6643.16, + "end": 6643.94, + "probability": 0.8711 + }, + { + "start": 6643.98, + "end": 6646.74, + "probability": 0.9862 + }, + { + "start": 6647.62, + "end": 6648.48, + "probability": 0.7081 + }, + { + "start": 6649.04, + "end": 6652.78, + "probability": 0.7843 + }, + { + "start": 6653.38, + "end": 6655.34, + "probability": 0.6823 + }, + { + "start": 6656.0, + "end": 6659.5, + "probability": 0.983 + }, + { + "start": 6659.86, + "end": 6661.88, + "probability": 0.9887 + }, + { + "start": 6662.5, + "end": 6666.0, + "probability": 0.9977 + }, + { + "start": 6666.72, + "end": 6671.12, + "probability": 0.9961 + }, + { + "start": 6671.34, + "end": 6672.3, + "probability": 0.7602 + }, + { + "start": 6672.96, + "end": 6674.3, + "probability": 0.9943 + }, + { + "start": 6674.52, + "end": 6675.76, + "probability": 0.9902 + }, + { + "start": 6676.56, + "end": 6677.56, + "probability": 0.9272 + }, + { + "start": 6678.24, + "end": 6681.14, + "probability": 0.5109 + }, + { + "start": 6681.9, + "end": 6683.32, + "probability": 0.6245 + }, + { + "start": 6683.84, + "end": 6684.68, + "probability": 0.9671 + }, + { + "start": 6685.38, + "end": 6688.66, + "probability": 0.8906 + }, + { + "start": 6688.7, + "end": 6689.76, + "probability": 0.7407 + }, + { + "start": 6690.26, + "end": 6691.18, + "probability": 0.9217 + }, + { + "start": 6691.74, + "end": 6696.9, + "probability": 0.6634 + }, + { + "start": 6696.9, + "end": 6697.36, + "probability": 0.601 + }, + { + "start": 6697.46, + "end": 6698.0, + "probability": 0.4693 + }, + { + "start": 6698.2, + "end": 6698.64, + "probability": 0.5371 + }, + { + "start": 6698.72, + "end": 6699.6, + "probability": 0.762 + }, + { + "start": 6700.12, + "end": 6701.6, + "probability": 0.9263 + }, + { + "start": 6701.64, + "end": 6704.94, + "probability": 0.932 + }, + { + "start": 6705.38, + "end": 6708.0, + "probability": 0.9773 + }, + { + "start": 6708.08, + "end": 6711.44, + "probability": 0.9524 + }, + { + "start": 6712.28, + "end": 6715.12, + "probability": 0.9334 + }, + { + "start": 6716.06, + "end": 6717.14, + "probability": 0.9874 + }, + { + "start": 6718.04, + "end": 6720.93, + "probability": 0.995 + }, + { + "start": 6721.45, + "end": 6726.13, + "probability": 0.9715 + }, + { + "start": 6726.23, + "end": 6729.03, + "probability": 0.8591 + }, + { + "start": 6729.55, + "end": 6730.21, + "probability": 0.7029 + }, + { + "start": 6731.27, + "end": 6735.45, + "probability": 0.9688 + }, + { + "start": 6736.19, + "end": 6738.55, + "probability": 0.721 + }, + { + "start": 6739.43, + "end": 6742.25, + "probability": 0.9492 + }, + { + "start": 6743.69, + "end": 6744.71, + "probability": 0.0336 + }, + { + "start": 6748.07, + "end": 6749.37, + "probability": 0.0579 + }, + { + "start": 6749.37, + "end": 6749.37, + "probability": 0.0519 + }, + { + "start": 6749.37, + "end": 6749.37, + "probability": 0.2921 + }, + { + "start": 6749.37, + "end": 6751.34, + "probability": 0.2813 + }, + { + "start": 6751.93, + "end": 6753.57, + "probability": 0.0089 + }, + { + "start": 6754.77, + "end": 6757.15, + "probability": 0.3618 + }, + { + "start": 6757.17, + "end": 6759.19, + "probability": 0.0257 + }, + { + "start": 6761.63, + "end": 6761.79, + "probability": 0.071 + }, + { + "start": 6762.89, + "end": 6765.41, + "probability": 0.1391 + }, + { + "start": 6765.67, + "end": 6766.57, + "probability": 0.0444 + }, + { + "start": 6766.57, + "end": 6769.87, + "probability": 0.0145 + }, + { + "start": 6769.95, + "end": 6770.91, + "probability": 0.1319 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.0, + "end": 6864.0, + "probability": 0.0 + }, + { + "start": 6864.14, + "end": 6871.18, + "probability": 0.0192 + }, + { + "start": 6872.42, + "end": 6873.76, + "probability": 0.0731 + }, + { + "start": 6873.76, + "end": 6875.66, + "probability": 0.0528 + }, + { + "start": 6877.6, + "end": 6880.12, + "probability": 0.0477 + }, + { + "start": 6880.12, + "end": 6882.7, + "probability": 0.0502 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.0, + "end": 6994.0, + "probability": 0.0 + }, + { + "start": 6994.24, + "end": 6996.16, + "probability": 0.0224 + }, + { + "start": 6996.24, + "end": 6998.32, + "probability": 0.1913 + }, + { + "start": 6999.82, + "end": 7000.44, + "probability": 0.2322 + }, + { + "start": 7002.2, + "end": 7002.27, + "probability": 0.0933 + }, + { + "start": 7002.64, + "end": 7007.36, + "probability": 0.1137 + }, + { + "start": 7007.38, + "end": 7010.44, + "probability": 0.0331 + }, + { + "start": 7010.7, + "end": 7012.26, + "probability": 0.2301 + }, + { + "start": 7012.52, + "end": 7017.54, + "probability": 0.2817 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.0, + "end": 7136.0, + "probability": 0.0 + }, + { + "start": 7136.18, + "end": 7141.12, + "probability": 0.0238 + }, + { + "start": 7144.51, + "end": 7148.68, + "probability": 0.0887 + }, + { + "start": 7148.68, + "end": 7151.16, + "probability": 0.0283 + }, + { + "start": 7151.16, + "end": 7157.28, + "probability": 0.2072 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.0, + "end": 7259.0, + "probability": 0.0 + }, + { + "start": 7259.1, + "end": 7261.52, + "probability": 0.3363 + }, + { + "start": 7262.04, + "end": 7263.35, + "probability": 0.7916 + }, + { + "start": 7263.82, + "end": 7268.2, + "probability": 0.8726 + }, + { + "start": 7268.58, + "end": 7273.82, + "probability": 0.9426 + }, + { + "start": 7274.54, + "end": 7275.12, + "probability": 0.8987 + }, + { + "start": 7275.36, + "end": 7275.9, + "probability": 0.9237 + }, + { + "start": 7275.94, + "end": 7277.62, + "probability": 0.9733 + }, + { + "start": 7277.76, + "end": 7278.08, + "probability": 0.4903 + }, + { + "start": 7278.98, + "end": 7282.3, + "probability": 0.9867 + }, + { + "start": 7282.44, + "end": 7286.16, + "probability": 0.9233 + }, + { + "start": 7286.66, + "end": 7288.68, + "probability": 0.8813 + }, + { + "start": 7295.3, + "end": 7295.82, + "probability": 0.5905 + }, + { + "start": 7296.74, + "end": 7298.08, + "probability": 0.6717 + }, + { + "start": 7299.02, + "end": 7300.5, + "probability": 0.816 + }, + { + "start": 7301.3, + "end": 7302.3, + "probability": 0.8831 + }, + { + "start": 7302.54, + "end": 7304.78, + "probability": 0.9583 + }, + { + "start": 7305.48, + "end": 7308.54, + "probability": 0.9633 + }, + { + "start": 7309.16, + "end": 7311.32, + "probability": 0.8631 + }, + { + "start": 7312.12, + "end": 7316.08, + "probability": 0.7291 + }, + { + "start": 7316.8, + "end": 7322.22, + "probability": 0.989 + }, + { + "start": 7322.36, + "end": 7323.86, + "probability": 0.8824 + }, + { + "start": 7324.22, + "end": 7325.0, + "probability": 0.9849 + }, + { + "start": 7325.12, + "end": 7326.3, + "probability": 0.7863 + }, + { + "start": 7326.38, + "end": 7329.76, + "probability": 0.9717 + }, + { + "start": 7330.1, + "end": 7336.92, + "probability": 0.9616 + }, + { + "start": 7337.28, + "end": 7338.52, + "probability": 0.7927 + }, + { + "start": 7338.82, + "end": 7339.96, + "probability": 0.9678 + }, + { + "start": 7340.02, + "end": 7341.94, + "probability": 0.9451 + }, + { + "start": 7342.2, + "end": 7342.9, + "probability": 0.573 + }, + { + "start": 7342.92, + "end": 7346.28, + "probability": 0.9763 + }, + { + "start": 7346.28, + "end": 7349.68, + "probability": 0.99 + }, + { + "start": 7349.68, + "end": 7349.94, + "probability": 0.7267 + }, + { + "start": 7350.44, + "end": 7351.24, + "probability": 0.6485 + }, + { + "start": 7351.24, + "end": 7351.24, + "probability": 0.0515 + }, + { + "start": 7351.24, + "end": 7352.26, + "probability": 0.5912 + }, + { + "start": 7352.38, + "end": 7353.22, + "probability": 0.6609 + }, + { + "start": 7354.66, + "end": 7355.96, + "probability": 0.2991 + }, + { + "start": 7359.74, + "end": 7360.46, + "probability": 0.9304 + }, + { + "start": 7360.86, + "end": 7361.22, + "probability": 0.2315 + }, + { + "start": 7361.46, + "end": 7364.34, + "probability": 0.9114 + }, + { + "start": 7364.74, + "end": 7367.72, + "probability": 0.6081 + }, + { + "start": 7368.4, + "end": 7370.46, + "probability": 0.8987 + }, + { + "start": 7370.62, + "end": 7371.18, + "probability": 0.8289 + }, + { + "start": 7371.54, + "end": 7374.46, + "probability": 0.7042 + }, + { + "start": 7374.48, + "end": 7376.4, + "probability": 0.9895 + }, + { + "start": 7377.06, + "end": 7378.88, + "probability": 0.8009 + }, + { + "start": 7378.96, + "end": 7379.36, + "probability": 0.6552 + }, + { + "start": 7379.6, + "end": 7382.74, + "probability": 0.918 + }, + { + "start": 7382.8, + "end": 7384.16, + "probability": 0.4469 + }, + { + "start": 7384.8, + "end": 7388.68, + "probability": 0.5881 + }, + { + "start": 7390.64, + "end": 7391.66, + "probability": 0.1746 + }, + { + "start": 7394.9, + "end": 7395.3, + "probability": 0.1183 + }, + { + "start": 7395.3, + "end": 7395.3, + "probability": 0.1661 + }, + { + "start": 7395.3, + "end": 7395.3, + "probability": 0.311 + }, + { + "start": 7395.3, + "end": 7395.64, + "probability": 0.5025 + }, + { + "start": 7395.8, + "end": 7396.8, + "probability": 0.5653 + }, + { + "start": 7396.94, + "end": 7397.31, + "probability": 0.8203 + }, + { + "start": 7397.54, + "end": 7400.22, + "probability": 0.9805 + }, + { + "start": 7401.08, + "end": 7404.06, + "probability": 0.8239 + }, + { + "start": 7404.62, + "end": 7408.42, + "probability": 0.9957 + }, + { + "start": 7408.92, + "end": 7409.84, + "probability": 0.9873 + }, + { + "start": 7409.94, + "end": 7410.4, + "probability": 0.8448 + }, + { + "start": 7410.46, + "end": 7411.12, + "probability": 0.7194 + }, + { + "start": 7411.6, + "end": 7412.4, + "probability": 0.916 + }, + { + "start": 7412.44, + "end": 7412.88, + "probability": 0.8723 + }, + { + "start": 7412.96, + "end": 7413.84, + "probability": 0.8755 + }, + { + "start": 7414.58, + "end": 7417.66, + "probability": 0.3809 + }, + { + "start": 7417.66, + "end": 7418.35, + "probability": 0.1907 + }, + { + "start": 7419.02, + "end": 7420.0, + "probability": 0.7111 + }, + { + "start": 7420.12, + "end": 7422.08, + "probability": 0.8703 + }, + { + "start": 7422.6, + "end": 7426.46, + "probability": 0.8863 + }, + { + "start": 7426.66, + "end": 7428.08, + "probability": 0.8453 + }, + { + "start": 7428.48, + "end": 7430.63, + "probability": 0.6671 + }, + { + "start": 7430.92, + "end": 7431.54, + "probability": 0.1845 + }, + { + "start": 7432.68, + "end": 7432.68, + "probability": 0.3597 + }, + { + "start": 7432.72, + "end": 7432.74, + "probability": 0.1413 + }, + { + "start": 7432.74, + "end": 7435.66, + "probability": 0.6788 + }, + { + "start": 7436.1, + "end": 7436.6, + "probability": 0.6123 + }, + { + "start": 7436.72, + "end": 7438.72, + "probability": 0.9246 + }, + { + "start": 7438.74, + "end": 7441.28, + "probability": 0.1906 + }, + { + "start": 7441.78, + "end": 7441.78, + "probability": 0.0279 + }, + { + "start": 7442.6, + "end": 7443.64, + "probability": 0.0232 + }, + { + "start": 7448.3, + "end": 7449.16, + "probability": 0.5841 + }, + { + "start": 7449.6, + "end": 7453.26, + "probability": 0.0279 + }, + { + "start": 7456.69, + "end": 7459.68, + "probability": 0.3737 + }, + { + "start": 7462.88, + "end": 7467.08, + "probability": 0.6447 + }, + { + "start": 7469.1, + "end": 7469.7, + "probability": 0.5194 + }, + { + "start": 7470.08, + "end": 7471.2, + "probability": 0.6331 + }, + { + "start": 7471.2, + "end": 7472.24, + "probability": 0.9522 + }, + { + "start": 7472.48, + "end": 7473.69, + "probability": 0.9106 + }, + { + "start": 7475.04, + "end": 7475.58, + "probability": 0.9001 + }, + { + "start": 7475.6, + "end": 7479.48, + "probability": 0.8918 + }, + { + "start": 7479.54, + "end": 7480.8, + "probability": 0.6334 + }, + { + "start": 7480.92, + "end": 7481.84, + "probability": 0.9594 + }, + { + "start": 7481.84, + "end": 7484.54, + "probability": 0.2184 + }, + { + "start": 7484.54, + "end": 7485.07, + "probability": 0.4961 + }, + { + "start": 7485.76, + "end": 7485.9, + "probability": 0.4382 + }, + { + "start": 7486.24, + "end": 7491.54, + "probability": 0.9849 + }, + { + "start": 7492.58, + "end": 7497.16, + "probability": 0.8632 + }, + { + "start": 7497.78, + "end": 7499.2, + "probability": 0.9944 + }, + { + "start": 7507.2, + "end": 7507.2, + "probability": 0.119 + }, + { + "start": 7507.2, + "end": 7507.2, + "probability": 0.0598 + }, + { + "start": 7507.2, + "end": 7507.76, + "probability": 0.1828 + }, + { + "start": 7508.32, + "end": 7509.84, + "probability": 0.741 + }, + { + "start": 7510.58, + "end": 7511.22, + "probability": 0.8302 + }, + { + "start": 7511.78, + "end": 7514.56, + "probability": 0.748 + }, + { + "start": 7515.08, + "end": 7520.12, + "probability": 0.9251 + }, + { + "start": 7520.18, + "end": 7521.68, + "probability": 0.9357 + }, + { + "start": 7522.14, + "end": 7523.78, + "probability": 0.853 + }, + { + "start": 7523.96, + "end": 7525.2, + "probability": 0.4123 + }, + { + "start": 7525.3, + "end": 7525.74, + "probability": 0.4413 + }, + { + "start": 7526.0, + "end": 7527.72, + "probability": 0.8043 + }, + { + "start": 7528.7, + "end": 7528.9, + "probability": 0.9565 + }, + { + "start": 7529.7, + "end": 7533.92, + "probability": 0.9952 + }, + { + "start": 7534.08, + "end": 7534.5, + "probability": 0.5109 + }, + { + "start": 7534.5, + "end": 7537.48, + "probability": 0.8066 + }, + { + "start": 7537.84, + "end": 7539.96, + "probability": 0.2258 + }, + { + "start": 7539.96, + "end": 7541.02, + "probability": 0.6031 + }, + { + "start": 7541.68, + "end": 7543.79, + "probability": 0.9235 + }, + { + "start": 7544.14, + "end": 7545.24, + "probability": 0.4931 + }, + { + "start": 7545.66, + "end": 7548.92, + "probability": 0.6577 + }, + { + "start": 7549.04, + "end": 7555.1, + "probability": 0.3915 + }, + { + "start": 7557.95, + "end": 7561.16, + "probability": 0.282 + }, + { + "start": 7561.16, + "end": 7562.42, + "probability": 0.1534 + }, + { + "start": 7562.54, + "end": 7563.2, + "probability": 0.3319 + }, + { + "start": 7563.34, + "end": 7564.61, + "probability": 0.5121 + }, + { + "start": 7565.6, + "end": 7566.24, + "probability": 0.0327 + }, + { + "start": 7566.42, + "end": 7566.78, + "probability": 0.0859 + }, + { + "start": 7566.82, + "end": 7568.46, + "probability": 0.0255 + }, + { + "start": 7568.46, + "end": 7568.76, + "probability": 0.0549 + }, + { + "start": 7568.96, + "end": 7572.8, + "probability": 0.1954 + }, + { + "start": 7575.72, + "end": 7576.34, + "probability": 0.0394 + }, + { + "start": 7576.34, + "end": 7576.72, + "probability": 0.1536 + }, + { + "start": 7576.86, + "end": 7581.72, + "probability": 0.0671 + }, + { + "start": 7581.98, + "end": 7582.58, + "probability": 0.1605 + }, + { + "start": 7583.08, + "end": 7583.9, + "probability": 0.0158 + }, + { + "start": 7583.9, + "end": 7583.9, + "probability": 0.105 + }, + { + "start": 7583.9, + "end": 7583.9, + "probability": 0.0421 + }, + { + "start": 7583.9, + "end": 7583.9, + "probability": 0.0738 + }, + { + "start": 7596.66, + "end": 7599.44, + "probability": 0.0361 + }, + { + "start": 7603.4, + "end": 7606.6, + "probability": 0.0456 + }, + { + "start": 7606.82, + "end": 7609.3, + "probability": 0.0844 + }, + { + "start": 7609.7, + "end": 7611.52, + "probability": 0.0591 + }, + { + "start": 7611.78, + "end": 7613.72, + "probability": 0.0665 + }, + { + "start": 7613.72, + "end": 7614.06, + "probability": 0.3701 + }, + { + "start": 7614.48, + "end": 7615.24, + "probability": 0.3356 + }, + { + "start": 7616.39, + "end": 7618.06, + "probability": 0.1208 + }, + { + "start": 7618.68, + "end": 7619.2, + "probability": 0.0799 + }, + { + "start": 7619.2, + "end": 7619.42, + "probability": 0.1007 + }, + { + "start": 7619.66, + "end": 7619.98, + "probability": 0.0271 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.0, + "end": 7620.0, + "probability": 0.0 + }, + { + "start": 7620.2, + "end": 7621.04, + "probability": 0.0491 + }, + { + "start": 7621.04, + "end": 7621.04, + "probability": 0.0972 + }, + { + "start": 7621.04, + "end": 7621.04, + "probability": 0.0216 + }, + { + "start": 7621.04, + "end": 7621.04, + "probability": 0.1741 + }, + { + "start": 7621.04, + "end": 7621.04, + "probability": 0.5373 + }, + { + "start": 7621.04, + "end": 7621.74, + "probability": 0.1231 + }, + { + "start": 7622.2, + "end": 7624.92, + "probability": 0.2335 + }, + { + "start": 7624.98, + "end": 7626.68, + "probability": 0.726 + }, + { + "start": 7627.94, + "end": 7628.52, + "probability": 0.4918 + }, + { + "start": 7629.74, + "end": 7631.46, + "probability": 0.9929 + }, + { + "start": 7632.68, + "end": 7635.22, + "probability": 0.6525 + }, + { + "start": 7637.08, + "end": 7640.62, + "probability": 0.7643 + }, + { + "start": 7641.2, + "end": 7641.44, + "probability": 0.0949 + }, + { + "start": 7641.44, + "end": 7644.62, + "probability": 0.9762 + }, + { + "start": 7644.74, + "end": 7646.15, + "probability": 0.8011 + }, + { + "start": 7646.62, + "end": 7646.84, + "probability": 0.0397 + }, + { + "start": 7646.84, + "end": 7646.84, + "probability": 0.1629 + }, + { + "start": 7646.84, + "end": 7646.84, + "probability": 0.0719 + }, + { + "start": 7646.84, + "end": 7647.7, + "probability": 0.1204 + }, + { + "start": 7647.7, + "end": 7648.86, + "probability": 0.2655 + }, + { + "start": 7649.04, + "end": 7650.56, + "probability": 0.803 + }, + { + "start": 7652.74, + "end": 7652.92, + "probability": 0.0955 + }, + { + "start": 7652.92, + "end": 7653.38, + "probability": 0.2758 + }, + { + "start": 7653.5, + "end": 7655.24, + "probability": 0.6111 + }, + { + "start": 7655.52, + "end": 7656.24, + "probability": 0.6336 + }, + { + "start": 7656.3, + "end": 7657.32, + "probability": 0.8735 + }, + { + "start": 7657.4, + "end": 7658.26, + "probability": 0.8429 + }, + { + "start": 7658.54, + "end": 7660.4, + "probability": 0.7495 + }, + { + "start": 7660.5, + "end": 7663.62, + "probability": 0.948 + }, + { + "start": 7663.72, + "end": 7664.16, + "probability": 0.7576 + }, + { + "start": 7664.16, + "end": 7664.82, + "probability": 0.4674 + }, + { + "start": 7664.96, + "end": 7667.68, + "probability": 0.9564 + }, + { + "start": 7668.64, + "end": 7670.42, + "probability": 0.9324 + }, + { + "start": 7671.02, + "end": 7673.28, + "probability": 0.7529 + }, + { + "start": 7673.68, + "end": 7675.96, + "probability": 0.8273 + }, + { + "start": 7676.72, + "end": 7677.58, + "probability": 0.7363 + }, + { + "start": 7677.66, + "end": 7678.1, + "probability": 0.6616 + }, + { + "start": 7678.4, + "end": 7679.34, + "probability": 0.6609 + }, + { + "start": 7679.48, + "end": 7679.96, + "probability": 0.605 + }, + { + "start": 7680.3, + "end": 7681.2, + "probability": 0.9286 + }, + { + "start": 7681.46, + "end": 7682.3, + "probability": 0.9579 + }, + { + "start": 7682.66, + "end": 7683.56, + "probability": 0.6444 + }, + { + "start": 7684.56, + "end": 7686.34, + "probability": 0.9834 + }, + { + "start": 7686.76, + "end": 7688.8, + "probability": 0.9922 + }, + { + "start": 7689.06, + "end": 7689.83, + "probability": 0.7153 + }, + { + "start": 7690.02, + "end": 7690.54, + "probability": 0.7839 + }, + { + "start": 7690.62, + "end": 7691.36, + "probability": 0.6938 + }, + { + "start": 7691.58, + "end": 7692.06, + "probability": 0.4124 + }, + { + "start": 7692.14, + "end": 7693.36, + "probability": 0.3144 + }, + { + "start": 7693.5, + "end": 7694.42, + "probability": 0.9423 + }, + { + "start": 7694.66, + "end": 7694.68, + "probability": 0.008 + }, + { + "start": 7694.68, + "end": 7698.46, + "probability": 0.7816 + }, + { + "start": 7698.6, + "end": 7700.26, + "probability": 0.8862 + }, + { + "start": 7700.3, + "end": 7702.92, + "probability": 0.9487 + }, + { + "start": 7703.0, + "end": 7704.1, + "probability": 0.7999 + }, + { + "start": 7704.34, + "end": 7707.66, + "probability": 0.8575 + }, + { + "start": 7708.24, + "end": 7709.48, + "probability": 0.9022 + }, + { + "start": 7709.62, + "end": 7713.84, + "probability": 0.9875 + }, + { + "start": 7714.02, + "end": 7716.08, + "probability": 0.958 + }, + { + "start": 7716.36, + "end": 7716.64, + "probability": 0.2518 + }, + { + "start": 7716.64, + "end": 7717.02, + "probability": 0.7074 + }, + { + "start": 7717.14, + "end": 7717.48, + "probability": 0.608 + }, + { + "start": 7717.62, + "end": 7720.16, + "probability": 0.6001 + }, + { + "start": 7720.7, + "end": 7723.06, + "probability": 0.6842 + }, + { + "start": 7723.42, + "end": 7724.6, + "probability": 0.5162 + }, + { + "start": 7725.02, + "end": 7726.7, + "probability": 0.7258 + }, + { + "start": 7726.82, + "end": 7727.2, + "probability": 0.6393 + }, + { + "start": 7727.36, + "end": 7728.0, + "probability": 0.652 + }, + { + "start": 7728.18, + "end": 7730.14, + "probability": 0.9333 + }, + { + "start": 7730.34, + "end": 7731.36, + "probability": 0.7637 + }, + { + "start": 7731.72, + "end": 7732.04, + "probability": 0.9101 + }, + { + "start": 7732.36, + "end": 7735.14, + "probability": 0.9544 + }, + { + "start": 7735.56, + "end": 7736.76, + "probability": 0.5086 + }, + { + "start": 7737.4, + "end": 7741.34, + "probability": 0.8928 + }, + { + "start": 7741.54, + "end": 7744.14, + "probability": 0.9253 + }, + { + "start": 7744.82, + "end": 7746.92, + "probability": 0.6094 + }, + { + "start": 7747.18, + "end": 7747.78, + "probability": 0.75 + }, + { + "start": 7747.92, + "end": 7749.62, + "probability": 0.9609 + }, + { + "start": 7749.82, + "end": 7751.76, + "probability": 0.9911 + }, + { + "start": 7752.52, + "end": 7753.04, + "probability": 0.2147 + }, + { + "start": 7753.32, + "end": 7753.34, + "probability": 0.0072 + }, + { + "start": 7753.34, + "end": 7754.02, + "probability": 0.1373 + }, + { + "start": 7754.02, + "end": 7756.41, + "probability": 0.1025 + }, + { + "start": 7756.72, + "end": 7759.12, + "probability": 0.7911 + }, + { + "start": 7759.22, + "end": 7760.14, + "probability": 0.9736 + }, + { + "start": 7760.7, + "end": 7761.4, + "probability": 0.0395 + }, + { + "start": 7764.1, + "end": 7764.2, + "probability": 0.1286 + }, + { + "start": 7764.48, + "end": 7764.9, + "probability": 0.0381 + }, + { + "start": 7764.9, + "end": 7767.14, + "probability": 0.5048 + }, + { + "start": 7767.2, + "end": 7767.86, + "probability": 0.5145 + }, + { + "start": 7768.3, + "end": 7772.45, + "probability": 0.9834 + }, + { + "start": 7772.56, + "end": 7773.88, + "probability": 0.9766 + }, + { + "start": 7773.92, + "end": 7774.5, + "probability": 0.733 + }, + { + "start": 7774.78, + "end": 7778.32, + "probability": 0.9825 + }, + { + "start": 7780.22, + "end": 7781.72, + "probability": 0.0855 + }, + { + "start": 7782.02, + "end": 7785.06, + "probability": 0.2454 + }, + { + "start": 7785.56, + "end": 7786.04, + "probability": 0.3867 + }, + { + "start": 7786.42, + "end": 7791.22, + "probability": 0.9066 + }, + { + "start": 7791.78, + "end": 7793.06, + "probability": 0.9973 + }, + { + "start": 7793.32, + "end": 7793.64, + "probability": 0.5116 + }, + { + "start": 7793.66, + "end": 7794.94, + "probability": 0.7125 + }, + { + "start": 7795.12, + "end": 7795.42, + "probability": 0.6259 + }, + { + "start": 7795.44, + "end": 7797.3, + "probability": 0.8201 + }, + { + "start": 7797.44, + "end": 7797.64, + "probability": 0.5468 + }, + { + "start": 7797.86, + "end": 7799.06, + "probability": 0.9729 + }, + { + "start": 7799.38, + "end": 7799.88, + "probability": 0.8154 + }, + { + "start": 7799.9, + "end": 7801.42, + "probability": 0.9757 + }, + { + "start": 7801.88, + "end": 7802.32, + "probability": 0.9254 + }, + { + "start": 7802.74, + "end": 7804.1, + "probability": 0.5297 + }, + { + "start": 7805.22, + "end": 7806.66, + "probability": 0.6434 + }, + { + "start": 7807.86, + "end": 7809.22, + "probability": 0.9682 + }, + { + "start": 7809.64, + "end": 7810.94, + "probability": 0.9521 + }, + { + "start": 7811.02, + "end": 7811.44, + "probability": 0.7179 + }, + { + "start": 7811.54, + "end": 7812.66, + "probability": 0.8529 + }, + { + "start": 7813.94, + "end": 7818.26, + "probability": 0.9803 + }, + { + "start": 7819.82, + "end": 7825.2, + "probability": 0.9912 + }, + { + "start": 7826.06, + "end": 7826.64, + "probability": 0.6807 + }, + { + "start": 7827.38, + "end": 7830.18, + "probability": 0.9811 + }, + { + "start": 7831.02, + "end": 7832.72, + "probability": 0.9938 + }, + { + "start": 7833.68, + "end": 7837.26, + "probability": 0.9896 + }, + { + "start": 7837.94, + "end": 7839.2, + "probability": 0.6107 + }, + { + "start": 7840.14, + "end": 7844.58, + "probability": 0.9644 + }, + { + "start": 7845.78, + "end": 7847.3, + "probability": 0.8025 + }, + { + "start": 7848.3, + "end": 7853.1, + "probability": 0.9758 + }, + { + "start": 7853.6, + "end": 7856.32, + "probability": 0.9888 + }, + { + "start": 7856.96, + "end": 7859.04, + "probability": 0.9975 + }, + { + "start": 7859.56, + "end": 7859.76, + "probability": 0.4683 + }, + { + "start": 7860.06, + "end": 7862.34, + "probability": 0.9888 + }, + { + "start": 7863.44, + "end": 7866.14, + "probability": 0.9873 + }, + { + "start": 7866.42, + "end": 7869.34, + "probability": 0.987 + }, + { + "start": 7869.72, + "end": 7870.8, + "probability": 0.9902 + }, + { + "start": 7871.32, + "end": 7874.54, + "probability": 0.8938 + }, + { + "start": 7876.14, + "end": 7880.14, + "probability": 0.9269 + }, + { + "start": 7880.18, + "end": 7883.52, + "probability": 0.7645 + }, + { + "start": 7883.56, + "end": 7884.44, + "probability": 0.87 + }, + { + "start": 7884.96, + "end": 7888.38, + "probability": 0.9933 + }, + { + "start": 7888.38, + "end": 7892.02, + "probability": 0.9989 + }, + { + "start": 7892.04, + "end": 7893.46, + "probability": 0.9873 + }, + { + "start": 7894.04, + "end": 7895.68, + "probability": 0.6108 + }, + { + "start": 7895.72, + "end": 7896.56, + "probability": 0.6737 + }, + { + "start": 7897.04, + "end": 7897.4, + "probability": 0.3325 + }, + { + "start": 7897.4, + "end": 7897.64, + "probability": 0.5583 + }, + { + "start": 7897.8, + "end": 7900.14, + "probability": 0.9666 + }, + { + "start": 7900.79, + "end": 7902.56, + "probability": 0.9247 + }, + { + "start": 7904.1, + "end": 7904.52, + "probability": 0.7626 + }, + { + "start": 7905.32, + "end": 7906.32, + "probability": 0.8954 + }, + { + "start": 7907.48, + "end": 7910.56, + "probability": 0.6197 + }, + { + "start": 7911.94, + "end": 7914.44, + "probability": 0.7851 + }, + { + "start": 7914.96, + "end": 7917.9, + "probability": 0.9841 + }, + { + "start": 7918.66, + "end": 7919.22, + "probability": 0.5988 + }, + { + "start": 7919.74, + "end": 7920.98, + "probability": 0.7496 + }, + { + "start": 7921.02, + "end": 7924.5, + "probability": 0.6922 + }, + { + "start": 7924.5, + "end": 7928.64, + "probability": 0.9753 + }, + { + "start": 7929.16, + "end": 7932.98, + "probability": 0.9174 + }, + { + "start": 7933.58, + "end": 7936.48, + "probability": 0.6605 + }, + { + "start": 7936.86, + "end": 7938.52, + "probability": 0.8021 + }, + { + "start": 7938.88, + "end": 7940.28, + "probability": 0.6202 + }, + { + "start": 7940.66, + "end": 7944.66, + "probability": 0.9786 + }, + { + "start": 7944.78, + "end": 7947.5, + "probability": 0.5883 + }, + { + "start": 7947.66, + "end": 7948.9, + "probability": 0.7944 + }, + { + "start": 7949.5, + "end": 7952.4, + "probability": 0.8372 + }, + { + "start": 7952.98, + "end": 7953.02, + "probability": 0.0139 + }, + { + "start": 7953.14, + "end": 7954.52, + "probability": 0.7444 + }, + { + "start": 7954.58, + "end": 7960.02, + "probability": 0.8056 + }, + { + "start": 7963.02, + "end": 7963.76, + "probability": 0.5726 + }, + { + "start": 7964.0, + "end": 7966.03, + "probability": 0.9172 + }, + { + "start": 7967.14, + "end": 7971.08, + "probability": 0.8682 + }, + { + "start": 7974.06, + "end": 7974.06, + "probability": 0.4704 + }, + { + "start": 7974.06, + "end": 7974.96, + "probability": 0.5376 + }, + { + "start": 7976.14, + "end": 7978.58, + "probability": 0.9604 + }, + { + "start": 7978.58, + "end": 7981.16, + "probability": 0.9933 + }, + { + "start": 7981.22, + "end": 7981.68, + "probability": 0.807 + }, + { + "start": 7981.76, + "end": 7982.36, + "probability": 0.6451 + }, + { + "start": 7982.46, + "end": 7985.2, + "probability": 0.984 + }, + { + "start": 7985.36, + "end": 7985.68, + "probability": 0.7613 + }, + { + "start": 7986.4, + "end": 7988.08, + "probability": 0.9701 + }, + { + "start": 7988.08, + "end": 7989.86, + "probability": 0.998 + }, + { + "start": 7990.1, + "end": 7990.54, + "probability": 0.7824 + }, + { + "start": 7990.6, + "end": 7991.57, + "probability": 0.9739 + }, + { + "start": 7991.72, + "end": 7995.5, + "probability": 0.9752 + }, + { + "start": 7996.08, + "end": 7996.48, + "probability": 0.5135 + }, + { + "start": 7996.8, + "end": 7997.34, + "probability": 0.9019 + }, + { + "start": 7997.44, + "end": 7998.04, + "probability": 0.6408 + }, + { + "start": 7998.12, + "end": 7998.78, + "probability": 0.9889 + }, + { + "start": 7998.88, + "end": 7999.62, + "probability": 0.9539 + }, + { + "start": 7999.68, + "end": 8000.6, + "probability": 0.9812 + }, + { + "start": 8000.84, + "end": 8001.88, + "probability": 0.9533 + }, + { + "start": 8002.36, + "end": 8004.16, + "probability": 0.981 + }, + { + "start": 8004.42, + "end": 8005.58, + "probability": 0.9811 + }, + { + "start": 8006.1, + "end": 8007.2, + "probability": 0.9736 + }, + { + "start": 8007.64, + "end": 8008.62, + "probability": 0.7669 + }, + { + "start": 8008.82, + "end": 8009.62, + "probability": 0.79 + }, + { + "start": 8009.68, + "end": 8011.02, + "probability": 0.968 + }, + { + "start": 8011.6, + "end": 8013.44, + "probability": 0.9461 + }, + { + "start": 8013.7, + "end": 8014.58, + "probability": 0.9534 + }, + { + "start": 8014.64, + "end": 8015.86, + "probability": 0.9519 + }, + { + "start": 8016.8, + "end": 8017.46, + "probability": 0.4189 + }, + { + "start": 8017.62, + "end": 8021.64, + "probability": 0.9624 + }, + { + "start": 8022.1, + "end": 8023.94, + "probability": 0.9099 + }, + { + "start": 8024.02, + "end": 8024.98, + "probability": 0.9237 + }, + { + "start": 8025.58, + "end": 8027.94, + "probability": 0.9377 + }, + { + "start": 8028.06, + "end": 8032.24, + "probability": 0.9345 + }, + { + "start": 8032.74, + "end": 8034.74, + "probability": 0.9815 + }, + { + "start": 8035.1, + "end": 8037.4, + "probability": 0.9819 + }, + { + "start": 8038.28, + "end": 8039.46, + "probability": 0.8697 + }, + { + "start": 8039.5, + "end": 8040.4, + "probability": 0.946 + }, + { + "start": 8040.46, + "end": 8041.4, + "probability": 0.9395 + }, + { + "start": 8042.28, + "end": 8042.94, + "probability": 0.9938 + }, + { + "start": 8043.92, + "end": 8045.3, + "probability": 0.6884 + }, + { + "start": 8045.58, + "end": 8046.36, + "probability": 0.7823 + }, + { + "start": 8046.42, + "end": 8047.13, + "probability": 0.8359 + }, + { + "start": 8047.3, + "end": 8048.82, + "probability": 0.9834 + }, + { + "start": 8049.58, + "end": 8051.58, + "probability": 0.9648 + }, + { + "start": 8051.72, + "end": 8052.6, + "probability": 0.9917 + }, + { + "start": 8053.8, + "end": 8055.58, + "probability": 0.9878 + }, + { + "start": 8055.7, + "end": 8057.26, + "probability": 0.6646 + }, + { + "start": 8058.18, + "end": 8059.3, + "probability": 0.7821 + }, + { + "start": 8059.82, + "end": 8061.08, + "probability": 0.9777 + }, + { + "start": 8061.58, + "end": 8063.08, + "probability": 0.7845 + }, + { + "start": 8063.16, + "end": 8064.5, + "probability": 0.915 + }, + { + "start": 8064.6, + "end": 8065.27, + "probability": 0.8105 + }, + { + "start": 8065.77, + "end": 8067.72, + "probability": 0.8643 + }, + { + "start": 8068.13, + "end": 8071.55, + "probability": 0.911 + }, + { + "start": 8072.42, + "end": 8075.13, + "probability": 0.7969 + }, + { + "start": 8075.69, + "end": 8078.11, + "probability": 0.8976 + }, + { + "start": 8078.63, + "end": 8080.59, + "probability": 0.9755 + }, + { + "start": 8080.67, + "end": 8081.65, + "probability": 0.8514 + }, + { + "start": 8082.15, + "end": 8082.33, + "probability": 0.3259 + }, + { + "start": 8082.39, + "end": 8083.19, + "probability": 0.7504 + }, + { + "start": 8083.21, + "end": 8085.89, + "probability": 0.874 + }, + { + "start": 8086.47, + "end": 8087.49, + "probability": 0.6499 + }, + { + "start": 8088.29, + "end": 8090.33, + "probability": 0.9902 + }, + { + "start": 8090.47, + "end": 8092.52, + "probability": 0.8942 + }, + { + "start": 8093.03, + "end": 8093.61, + "probability": 0.7296 + }, + { + "start": 8093.71, + "end": 8094.37, + "probability": 0.8942 + }, + { + "start": 8094.77, + "end": 8096.07, + "probability": 0.6951 + }, + { + "start": 8096.11, + "end": 8098.97, + "probability": 0.8795 + }, + { + "start": 8099.49, + "end": 8101.49, + "probability": 0.706 + }, + { + "start": 8101.99, + "end": 8103.95, + "probability": 0.8167 + }, + { + "start": 8104.41, + "end": 8105.69, + "probability": 0.9072 + }, + { + "start": 8105.71, + "end": 8105.79, + "probability": 0.0363 + }, + { + "start": 8105.79, + "end": 8108.35, + "probability": 0.798 + }, + { + "start": 8109.05, + "end": 8110.79, + "probability": 0.6539 + }, + { + "start": 8110.89, + "end": 8113.71, + "probability": 0.2991 + }, + { + "start": 8114.21, + "end": 8116.53, + "probability": 0.2356 + }, + { + "start": 8116.57, + "end": 8117.99, + "probability": 0.7468 + }, + { + "start": 8118.55, + "end": 8120.17, + "probability": 0.6654 + }, + { + "start": 8120.21, + "end": 8121.31, + "probability": 0.8281 + }, + { + "start": 8121.67, + "end": 8122.27, + "probability": 0.2155 + }, + { + "start": 8122.59, + "end": 8122.63, + "probability": 0.4455 + }, + { + "start": 8124.61, + "end": 8126.49, + "probability": 0.5786 + }, + { + "start": 8127.41, + "end": 8128.39, + "probability": 0.0955 + }, + { + "start": 8128.39, + "end": 8129.01, + "probability": 0.2865 + }, + { + "start": 8129.01, + "end": 8130.23, + "probability": 0.3946 + }, + { + "start": 8130.73, + "end": 8133.85, + "probability": 0.4831 + }, + { + "start": 8135.69, + "end": 8138.17, + "probability": 0.7952 + }, + { + "start": 8138.39, + "end": 8138.65, + "probability": 0.0541 + }, + { + "start": 8138.73, + "end": 8139.63, + "probability": 0.3814 + }, + { + "start": 8142.69, + "end": 8142.93, + "probability": 0.4383 + }, + { + "start": 8144.31, + "end": 8147.05, + "probability": 0.4889 + }, + { + "start": 8150.31, + "end": 8155.03, + "probability": 0.0717 + }, + { + "start": 8155.03, + "end": 8157.87, + "probability": 0.5134 + }, + { + "start": 8161.55, + "end": 8162.97, + "probability": 0.2744 + }, + { + "start": 8162.97, + "end": 8163.59, + "probability": 0.0759 + }, + { + "start": 8163.59, + "end": 8163.63, + "probability": 0.1901 + }, + { + "start": 8163.63, + "end": 8163.63, + "probability": 0.031 + }, + { + "start": 8163.63, + "end": 8164.47, + "probability": 0.0268 + }, + { + "start": 8166.63, + "end": 8172.85, + "probability": 0.3561 + }, + { + "start": 8172.85, + "end": 8177.93, + "probability": 0.0904 + }, + { + "start": 8177.95, + "end": 8177.95, + "probability": 0.0694 + }, + { + "start": 8178.07, + "end": 8179.47, + "probability": 0.0599 + }, + { + "start": 8179.47, + "end": 8184.55, + "probability": 0.1469 + }, + { + "start": 8184.71, + "end": 8185.17, + "probability": 0.2397 + }, + { + "start": 8185.17, + "end": 8186.41, + "probability": 0.1179 + }, + { + "start": 8186.57, + "end": 8187.71, + "probability": 0.0392 + }, + { + "start": 8187.71, + "end": 8187.83, + "probability": 0.008 + }, + { + "start": 8187.83, + "end": 8187.85, + "probability": 0.0257 + }, + { + "start": 8187.87, + "end": 8190.29, + "probability": 0.1022 + }, + { + "start": 8190.29, + "end": 8190.57, + "probability": 0.0158 + }, + { + "start": 8190.71, + "end": 8190.91, + "probability": 0.0147 + }, + { + "start": 8192.23, + "end": 8192.58, + "probability": 0.0469 + }, + { + "start": 8195.55, + "end": 8196.11, + "probability": 0.0783 + }, + { + "start": 8196.13, + "end": 8196.97, + "probability": 0.3456 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.0, + "probability": 0.0 + }, + { + "start": 8197.0, + "end": 8197.1, + "probability": 0.0335 + }, + { + "start": 8198.88, + "end": 8202.2, + "probability": 0.8025 + }, + { + "start": 8202.28, + "end": 8203.68, + "probability": 0.9238 + }, + { + "start": 8203.78, + "end": 8204.52, + "probability": 0.5674 + }, + { + "start": 8204.54, + "end": 8204.72, + "probability": 0.4439 + }, + { + "start": 8204.98, + "end": 8206.28, + "probability": 0.7854 + }, + { + "start": 8206.44, + "end": 8207.72, + "probability": 0.8774 + }, + { + "start": 8207.88, + "end": 8208.0, + "probability": 0.2727 + }, + { + "start": 8208.02, + "end": 8211.12, + "probability": 0.9961 + }, + { + "start": 8211.16, + "end": 8211.78, + "probability": 0.8828 + }, + { + "start": 8222.82, + "end": 8225.54, + "probability": 0.4803 + }, + { + "start": 8225.6, + "end": 8225.98, + "probability": 0.3958 + }, + { + "start": 8226.0, + "end": 8226.14, + "probability": 0.1315 + }, + { + "start": 8226.54, + "end": 8227.58, + "probability": 0.0722 + }, + { + "start": 8229.4, + "end": 8230.72, + "probability": 0.118 + }, + { + "start": 8233.78, + "end": 8234.7, + "probability": 0.2477 + }, + { + "start": 8236.36, + "end": 8236.96, + "probability": 0.1663 + }, + { + "start": 8237.16, + "end": 8238.92, + "probability": 0.0841 + }, + { + "start": 8238.98, + "end": 8241.38, + "probability": 0.0745 + }, + { + "start": 8242.3, + "end": 8243.96, + "probability": 0.0391 + }, + { + "start": 8245.38, + "end": 8246.42, + "probability": 0.0428 + }, + { + "start": 8246.42, + "end": 8247.16, + "probability": 0.1348 + }, + { + "start": 8247.52, + "end": 8248.9, + "probability": 0.2989 + }, + { + "start": 8249.76, + "end": 8250.14, + "probability": 0.0253 + }, + { + "start": 8250.68, + "end": 8252.0, + "probability": 0.0569 + }, + { + "start": 8252.38, + "end": 8254.88, + "probability": 0.0379 + }, + { + "start": 8262.38, + "end": 8262.54, + "probability": 0.0106 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.0, + "end": 8318.0, + "probability": 0.0 + }, + { + "start": 8318.66, + "end": 8320.71, + "probability": 0.0268 + }, + { + "start": 8321.66, + "end": 8322.92, + "probability": 0.3499 + }, + { + "start": 8322.98, + "end": 8325.14, + "probability": 0.9971 + }, + { + "start": 8325.14, + "end": 8329.52, + "probability": 0.9884 + }, + { + "start": 8329.68, + "end": 8330.14, + "probability": 0.8543 + }, + { + "start": 8330.5, + "end": 8331.38, + "probability": 0.8959 + }, + { + "start": 8331.48, + "end": 8332.37, + "probability": 0.8435 + }, + { + "start": 8332.44, + "end": 8333.42, + "probability": 0.9052 + }, + { + "start": 8333.6, + "end": 8334.49, + "probability": 0.4328 + }, + { + "start": 8334.82, + "end": 8337.58, + "probability": 0.9609 + }, + { + "start": 8337.58, + "end": 8337.58, + "probability": 0.2858 + }, + { + "start": 8337.58, + "end": 8341.78, + "probability": 0.5232 + }, + { + "start": 8341.84, + "end": 8343.16, + "probability": 0.9681 + }, + { + "start": 8344.0, + "end": 8346.08, + "probability": 0.5705 + }, + { + "start": 8346.32, + "end": 8349.13, + "probability": 0.2897 + }, + { + "start": 8349.36, + "end": 8350.2, + "probability": 0.3595 + }, + { + "start": 8350.26, + "end": 8351.82, + "probability": 0.1578 + }, + { + "start": 8351.9, + "end": 8354.7, + "probability": 0.6935 + }, + { + "start": 8354.82, + "end": 8357.1, + "probability": 0.5193 + }, + { + "start": 8357.26, + "end": 8358.58, + "probability": 0.7937 + }, + { + "start": 8359.0, + "end": 8359.64, + "probability": 0.8511 + }, + { + "start": 8359.64, + "end": 8359.73, + "probability": 0.0566 + }, + { + "start": 8359.96, + "end": 8361.73, + "probability": 0.3372 + }, + { + "start": 8362.14, + "end": 8363.26, + "probability": 0.7522 + }, + { + "start": 8363.34, + "end": 8364.14, + "probability": 0.8096 + }, + { + "start": 8364.82, + "end": 8366.84, + "probability": 0.4891 + }, + { + "start": 8367.02, + "end": 8369.52, + "probability": 0.7868 + }, + { + "start": 8369.52, + "end": 8370.76, + "probability": 0.1001 + }, + { + "start": 8371.44, + "end": 8373.78, + "probability": 0.2778 + }, + { + "start": 8373.78, + "end": 8375.68, + "probability": 0.2439 + }, + { + "start": 8377.62, + "end": 8378.06, + "probability": 0.2315 + }, + { + "start": 8378.06, + "end": 8378.78, + "probability": 0.2811 + }, + { + "start": 8379.24, + "end": 8380.34, + "probability": 0.5457 + }, + { + "start": 8380.46, + "end": 8380.96, + "probability": 0.6274 + }, + { + "start": 8381.8, + "end": 8386.68, + "probability": 0.3596 + }, + { + "start": 8386.76, + "end": 8388.44, + "probability": 0.276 + }, + { + "start": 8388.62, + "end": 8388.64, + "probability": 0.2684 + }, + { + "start": 8388.64, + "end": 8389.2, + "probability": 0.5815 + }, + { + "start": 8389.26, + "end": 8389.6, + "probability": 0.5157 + }, + { + "start": 8391.11, + "end": 8391.58, + "probability": 0.2121 + }, + { + "start": 8391.58, + "end": 8393.38, + "probability": 0.4254 + }, + { + "start": 8393.68, + "end": 8394.24, + "probability": 0.3327 + }, + { + "start": 8394.24, + "end": 8394.78, + "probability": 0.4612 + }, + { + "start": 8394.84, + "end": 8396.98, + "probability": 0.2187 + }, + { + "start": 8397.06, + "end": 8399.06, + "probability": 0.8666 + }, + { + "start": 8399.2, + "end": 8399.7, + "probability": 0.6793 + }, + { + "start": 8399.94, + "end": 8404.04, + "probability": 0.929 + }, + { + "start": 8404.04, + "end": 8407.1, + "probability": 0.9961 + }, + { + "start": 8407.52, + "end": 8409.36, + "probability": 0.9963 + }, + { + "start": 8409.54, + "end": 8410.44, + "probability": 0.9291 + }, + { + "start": 8410.54, + "end": 8411.74, + "probability": 0.9541 + }, + { + "start": 8412.16, + "end": 8412.94, + "probability": 0.6256 + }, + { + "start": 8413.48, + "end": 8416.18, + "probability": 0.8318 + }, + { + "start": 8417.12, + "end": 8420.04, + "probability": 0.5542 + }, + { + "start": 8420.44, + "end": 8421.44, + "probability": 0.8129 + }, + { + "start": 8421.48, + "end": 8421.88, + "probability": 0.7986 + }, + { + "start": 8422.0, + "end": 8427.0, + "probability": 0.9159 + }, + { + "start": 8427.22, + "end": 8428.36, + "probability": 0.6856 + }, + { + "start": 8428.52, + "end": 8430.86, + "probability": 0.9226 + }, + { + "start": 8430.92, + "end": 8432.08, + "probability": 0.9443 + }, + { + "start": 8432.08, + "end": 8432.3, + "probability": 0.2583 + }, + { + "start": 8433.3, + "end": 8435.44, + "probability": 0.6553 + }, + { + "start": 8436.0, + "end": 8437.22, + "probability": 0.323 + }, + { + "start": 8437.42, + "end": 8437.82, + "probability": 0.563 + }, + { + "start": 8437.82, + "end": 8438.6, + "probability": 0.0263 + }, + { + "start": 8438.6, + "end": 8438.66, + "probability": 0.1869 + }, + { + "start": 8438.74, + "end": 8439.84, + "probability": 0.4303 + }, + { + "start": 8439.88, + "end": 8441.24, + "probability": 0.6847 + }, + { + "start": 8441.46, + "end": 8443.24, + "probability": 0.711 + }, + { + "start": 8443.28, + "end": 8445.54, + "probability": 0.976 + }, + { + "start": 8445.54, + "end": 8446.78, + "probability": 0.4886 + }, + { + "start": 8446.9, + "end": 8447.04, + "probability": 0.1526 + }, + { + "start": 8447.04, + "end": 8449.62, + "probability": 0.978 + }, + { + "start": 8449.78, + "end": 8451.72, + "probability": 0.838 + }, + { + "start": 8452.4, + "end": 8454.02, + "probability": 0.9395 + }, + { + "start": 8454.7, + "end": 8457.76, + "probability": 0.9438 + }, + { + "start": 8458.48, + "end": 8460.36, + "probability": 0.9534 + }, + { + "start": 8461.08, + "end": 8462.06, + "probability": 0.8839 + }, + { + "start": 8462.46, + "end": 8466.32, + "probability": 0.992 + }, + { + "start": 8466.7, + "end": 8468.34, + "probability": 0.9616 + }, + { + "start": 8468.84, + "end": 8470.53, + "probability": 0.9976 + }, + { + "start": 8471.0, + "end": 8475.64, + "probability": 0.9949 + }, + { + "start": 8475.7, + "end": 8475.82, + "probability": 0.7506 + }, + { + "start": 8475.9, + "end": 8477.66, + "probability": 0.8223 + }, + { + "start": 8477.92, + "end": 8479.3, + "probability": 0.8345 + }, + { + "start": 8480.24, + "end": 8484.72, + "probability": 0.0455 + }, + { + "start": 8484.76, + "end": 8485.88, + "probability": 0.9489 + }, + { + "start": 8485.96, + "end": 8486.44, + "probability": 0.604 + }, + { + "start": 8486.48, + "end": 8489.03, + "probability": 0.9664 + }, + { + "start": 8489.32, + "end": 8490.66, + "probability": 0.0238 + }, + { + "start": 8490.78, + "end": 8491.02, + "probability": 0.3142 + }, + { + "start": 8491.12, + "end": 8494.5, + "probability": 0.9847 + }, + { + "start": 8495.0, + "end": 8495.56, + "probability": 0.8867 + }, + { + "start": 8495.64, + "end": 8496.84, + "probability": 0.571 + }, + { + "start": 8496.94, + "end": 8498.1, + "probability": 0.8707 + }, + { + "start": 8498.9, + "end": 8499.38, + "probability": 0.8906 + }, + { + "start": 8501.81, + "end": 8503.94, + "probability": 0.1069 + }, + { + "start": 8505.66, + "end": 8506.38, + "probability": 0.7258 + }, + { + "start": 8507.72, + "end": 8509.36, + "probability": 0.2518 + }, + { + "start": 8509.8, + "end": 8511.84, + "probability": 0.8156 + }, + { + "start": 8511.92, + "end": 8513.76, + "probability": 0.8252 + }, + { + "start": 8514.1, + "end": 8516.34, + "probability": 0.8558 + }, + { + "start": 8517.04, + "end": 8520.18, + "probability": 0.4143 + }, + { + "start": 8520.36, + "end": 8522.02, + "probability": 0.7686 + }, + { + "start": 8524.19, + "end": 8529.14, + "probability": 0.6571 + }, + { + "start": 8529.34, + "end": 8529.78, + "probability": 0.3671 + }, + { + "start": 8529.8, + "end": 8531.8, + "probability": 0.2514 + }, + { + "start": 8531.86, + "end": 8533.1, + "probability": 0.5476 + }, + { + "start": 8533.18, + "end": 8533.5, + "probability": 0.2561 + }, + { + "start": 8534.88, + "end": 8535.16, + "probability": 0.179 + }, + { + "start": 8535.16, + "end": 8537.07, + "probability": 0.6701 + }, + { + "start": 8537.88, + "end": 8538.7, + "probability": 0.03 + }, + { + "start": 8540.98, + "end": 8543.42, + "probability": 0.923 + }, + { + "start": 8544.4, + "end": 8546.04, + "probability": 0.8624 + }, + { + "start": 8546.2, + "end": 8546.83, + "probability": 0.894 + }, + { + "start": 8547.36, + "end": 8548.04, + "probability": 0.7464 + }, + { + "start": 8549.0, + "end": 8550.8, + "probability": 0.7561 + }, + { + "start": 8550.92, + "end": 8552.64, + "probability": 0.7568 + }, + { + "start": 8553.04, + "end": 8554.14, + "probability": 0.7741 + }, + { + "start": 8554.78, + "end": 8555.5, + "probability": 0.0738 + }, + { + "start": 8555.64, + "end": 8558.32, + "probability": 0.5006 + }, + { + "start": 8559.16, + "end": 8560.48, + "probability": 0.8818 + }, + { + "start": 8561.0, + "end": 8562.2, + "probability": 0.9624 + }, + { + "start": 8563.58, + "end": 8565.5, + "probability": 0.7139 + }, + { + "start": 8566.38, + "end": 8567.46, + "probability": 0.5723 + }, + { + "start": 8568.6, + "end": 8569.66, + "probability": 0.7641 + }, + { + "start": 8570.28, + "end": 8573.54, + "probability": 0.9714 + }, + { + "start": 8574.22, + "end": 8575.74, + "probability": 0.9336 + }, + { + "start": 8576.46, + "end": 8577.18, + "probability": 0.9453 + }, + { + "start": 8577.24, + "end": 8578.72, + "probability": 0.9907 + }, + { + "start": 8578.74, + "end": 8580.3, + "probability": 0.9942 + }, + { + "start": 8580.66, + "end": 8584.14, + "probability": 0.9927 + }, + { + "start": 8584.32, + "end": 8585.12, + "probability": 0.8595 + }, + { + "start": 8585.64, + "end": 8586.78, + "probability": 0.9761 + }, + { + "start": 8587.46, + "end": 8589.6, + "probability": 0.5197 + }, + { + "start": 8590.52, + "end": 8595.68, + "probability": 0.8325 + }, + { + "start": 8597.42, + "end": 8598.92, + "probability": 0.8049 + }, + { + "start": 8599.4, + "end": 8600.27, + "probability": 0.9518 + }, + { + "start": 8601.16, + "end": 8602.72, + "probability": 0.9883 + }, + { + "start": 8603.14, + "end": 8603.54, + "probability": 0.7848 + }, + { + "start": 8604.02, + "end": 8604.94, + "probability": 0.7909 + }, + { + "start": 8604.98, + "end": 8605.36, + "probability": 0.5251 + }, + { + "start": 8606.14, + "end": 8608.06, + "probability": 0.9696 + }, + { + "start": 8608.1, + "end": 8609.58, + "probability": 0.9885 + }, + { + "start": 8609.76, + "end": 8612.3, + "probability": 0.9647 + }, + { + "start": 8612.8, + "end": 8613.16, + "probability": 0.5883 + }, + { + "start": 8613.63, + "end": 8617.66, + "probability": 0.9875 + }, + { + "start": 8617.98, + "end": 8618.68, + "probability": 0.7744 + }, + { + "start": 8618.84, + "end": 8620.72, + "probability": 0.9487 + }, + { + "start": 8621.06, + "end": 8623.66, + "probability": 0.8428 + }, + { + "start": 8624.06, + "end": 8625.24, + "probability": 0.855 + }, + { + "start": 8625.46, + "end": 8626.54, + "probability": 0.9156 + }, + { + "start": 8626.98, + "end": 8628.94, + "probability": 0.9839 + }, + { + "start": 8629.0, + "end": 8630.04, + "probability": 0.922 + }, + { + "start": 8630.14, + "end": 8631.12, + "probability": 0.6201 + }, + { + "start": 8631.42, + "end": 8634.0, + "probability": 0.901 + }, + { + "start": 8634.52, + "end": 8635.72, + "probability": 0.9646 + }, + { + "start": 8635.94, + "end": 8638.88, + "probability": 0.8158 + }, + { + "start": 8638.98, + "end": 8641.74, + "probability": 0.9739 + }, + { + "start": 8641.8, + "end": 8644.14, + "probability": 0.9332 + }, + { + "start": 8644.14, + "end": 8645.78, + "probability": 0.8025 + }, + { + "start": 8646.38, + "end": 8649.08, + "probability": 0.9544 + }, + { + "start": 8649.42, + "end": 8651.02, + "probability": 0.2836 + }, + { + "start": 8651.02, + "end": 8652.66, + "probability": 0.771 + }, + { + "start": 8652.9, + "end": 8653.38, + "probability": 0.7246 + }, + { + "start": 8654.04, + "end": 8655.16, + "probability": 0.8805 + }, + { + "start": 8655.72, + "end": 8657.66, + "probability": 0.666 + }, + { + "start": 8658.0, + "end": 8659.44, + "probability": 0.9409 + }, + { + "start": 8659.54, + "end": 8661.82, + "probability": 0.7858 + }, + { + "start": 8661.82, + "end": 8662.58, + "probability": 0.8787 + }, + { + "start": 8662.72, + "end": 8664.3, + "probability": 0.8016 + }, + { + "start": 8664.56, + "end": 8668.2, + "probability": 0.768 + }, + { + "start": 8668.68, + "end": 8670.6, + "probability": 0.9971 + }, + { + "start": 8671.12, + "end": 8672.98, + "probability": 0.9075 + }, + { + "start": 8673.24, + "end": 8675.98, + "probability": 0.8833 + }, + { + "start": 8676.58, + "end": 8678.0, + "probability": 0.8807 + }, + { + "start": 8678.38, + "end": 8679.12, + "probability": 0.9668 + }, + { + "start": 8679.42, + "end": 8681.54, + "probability": 0.696 + }, + { + "start": 8681.72, + "end": 8683.1, + "probability": 0.8855 + }, + { + "start": 8683.5, + "end": 8685.4, + "probability": 0.7426 + }, + { + "start": 8686.48, + "end": 8686.76, + "probability": 0.0965 + }, + { + "start": 8686.76, + "end": 8687.38, + "probability": 0.3555 + }, + { + "start": 8687.4, + "end": 8688.62, + "probability": 0.3615 + }, + { + "start": 8688.62, + "end": 8689.62, + "probability": 0.2999 + }, + { + "start": 8689.62, + "end": 8689.62, + "probability": 0.2565 + }, + { + "start": 8689.62, + "end": 8690.96, + "probability": 0.6462 + }, + { + "start": 8690.98, + "end": 8692.8, + "probability": 0.9289 + }, + { + "start": 8693.04, + "end": 8695.0, + "probability": 0.8685 + }, + { + "start": 8695.14, + "end": 8697.55, + "probability": 0.748 + }, + { + "start": 8697.78, + "end": 8700.0, + "probability": 0.9341 + }, + { + "start": 8700.58, + "end": 8701.92, + "probability": 0.0458 + }, + { + "start": 8702.06, + "end": 8702.72, + "probability": 0.3532 + }, + { + "start": 8702.74, + "end": 8704.56, + "probability": 0.6726 + }, + { + "start": 8704.82, + "end": 8707.18, + "probability": 0.9434 + }, + { + "start": 8707.3, + "end": 8709.62, + "probability": 0.9893 + }, + { + "start": 8710.3, + "end": 8714.58, + "probability": 0.5088 + }, + { + "start": 8714.7, + "end": 8715.42, + "probability": 0.5419 + }, + { + "start": 8715.66, + "end": 8716.26, + "probability": 0.4291 + }, + { + "start": 8716.76, + "end": 8718.76, + "probability": 0.9928 + }, + { + "start": 8719.02, + "end": 8719.76, + "probability": 0.8232 + }, + { + "start": 8719.8, + "end": 8721.46, + "probability": 0.1138 + }, + { + "start": 8721.58, + "end": 8725.4, + "probability": 0.916 + }, + { + "start": 8725.72, + "end": 8726.88, + "probability": 0.8682 + }, + { + "start": 8727.42, + "end": 8730.14, + "probability": 0.9102 + }, + { + "start": 8730.24, + "end": 8731.88, + "probability": 0.7729 + }, + { + "start": 8731.9, + "end": 8733.4, + "probability": 0.8586 + }, + { + "start": 8733.42, + "end": 8735.64, + "probability": 0.6671 + }, + { + "start": 8735.82, + "end": 8736.84, + "probability": 0.9504 + }, + { + "start": 8737.02, + "end": 8740.52, + "probability": 0.8611 + }, + { + "start": 8740.72, + "end": 8741.18, + "probability": 0.6321 + }, + { + "start": 8741.34, + "end": 8742.74, + "probability": 0.8852 + }, + { + "start": 8742.88, + "end": 8748.2, + "probability": 0.9673 + }, + { + "start": 8748.3, + "end": 8748.52, + "probability": 0.4049 + }, + { + "start": 8749.04, + "end": 8749.88, + "probability": 0.1098 + }, + { + "start": 8750.58, + "end": 8757.2, + "probability": 0.1033 + }, + { + "start": 8757.66, + "end": 8758.9, + "probability": 0.0491 + }, + { + "start": 8758.9, + "end": 8759.14, + "probability": 0.2156 + }, + { + "start": 8759.22, + "end": 8760.22, + "probability": 0.3762 + }, + { + "start": 8760.4, + "end": 8762.2, + "probability": 0.2782 + }, + { + "start": 8762.22, + "end": 8764.86, + "probability": 0.1886 + }, + { + "start": 8765.32, + "end": 8766.24, + "probability": 0.1921 + }, + { + "start": 8766.38, + "end": 8767.92, + "probability": 0.4276 + }, + { + "start": 8768.92, + "end": 8771.84, + "probability": 0.7497 + }, + { + "start": 8772.32, + "end": 8774.5, + "probability": 0.3716 + }, + { + "start": 8774.74, + "end": 8776.88, + "probability": 0.8252 + }, + { + "start": 8777.22, + "end": 8778.12, + "probability": 0.0008 + }, + { + "start": 8779.72, + "end": 8781.46, + "probability": 0.1715 + }, + { + "start": 8781.54, + "end": 8782.04, + "probability": 0.0615 + }, + { + "start": 8782.04, + "end": 8782.54, + "probability": 0.4244 + }, + { + "start": 8782.82, + "end": 8786.12, + "probability": 0.9702 + }, + { + "start": 8786.44, + "end": 8788.45, + "probability": 0.23 + }, + { + "start": 8788.52, + "end": 8790.96, + "probability": 0.8312 + }, + { + "start": 8791.5, + "end": 8794.12, + "probability": 0.8139 + }, + { + "start": 8794.18, + "end": 8796.56, + "probability": 0.1939 + }, + { + "start": 8796.56, + "end": 8796.74, + "probability": 0.1816 + }, + { + "start": 8796.82, + "end": 8797.38, + "probability": 0.0854 + }, + { + "start": 8800.28, + "end": 8803.42, + "probability": 0.8369 + }, + { + "start": 8804.61, + "end": 8808.6, + "probability": 0.2905 + }, + { + "start": 8809.36, + "end": 8810.68, + "probability": 0.5138 + }, + { + "start": 8810.84, + "end": 8812.14, + "probability": 0.0558 + }, + { + "start": 8812.34, + "end": 8816.54, + "probability": 0.9527 + }, + { + "start": 8816.66, + "end": 8816.84, + "probability": 0.4597 + }, + { + "start": 8816.96, + "end": 8818.54, + "probability": 0.9105 + }, + { + "start": 8818.62, + "end": 8822.22, + "probability": 0.9103 + }, + { + "start": 8822.42, + "end": 8823.68, + "probability": 0.4294 + }, + { + "start": 8824.38, + "end": 8825.6, + "probability": 0.9303 + }, + { + "start": 8826.14, + "end": 8828.92, + "probability": 0.9798 + }, + { + "start": 8828.98, + "end": 8833.42, + "probability": 0.9457 + }, + { + "start": 8833.66, + "end": 8838.5, + "probability": 0.8805 + }, + { + "start": 8838.5, + "end": 8839.54, + "probability": 0.7928 + }, + { + "start": 8840.74, + "end": 8841.9, + "probability": 0.176 + }, + { + "start": 8842.54, + "end": 8843.44, + "probability": 0.1893 + }, + { + "start": 8843.44, + "end": 8845.86, + "probability": 0.6607 + }, + { + "start": 8846.14, + "end": 8850.0, + "probability": 0.6863 + }, + { + "start": 8850.1, + "end": 8851.7, + "probability": 0.8253 + }, + { + "start": 8852.24, + "end": 8854.76, + "probability": 0.7856 + }, + { + "start": 8856.14, + "end": 8856.24, + "probability": 0.1666 + }, + { + "start": 8856.24, + "end": 8860.96, + "probability": 0.4424 + }, + { + "start": 8861.76, + "end": 8865.44, + "probability": 0.4492 + }, + { + "start": 8865.44, + "end": 8866.96, + "probability": 0.4066 + }, + { + "start": 8867.1, + "end": 8868.14, + "probability": 0.8237 + }, + { + "start": 8869.56, + "end": 8870.96, + "probability": 0.4286 + }, + { + "start": 8871.22, + "end": 8872.28, + "probability": 0.3649 + }, + { + "start": 8872.28, + "end": 8872.58, + "probability": 0.499 + }, + { + "start": 8873.68, + "end": 8874.12, + "probability": 0.5294 + }, + { + "start": 8874.34, + "end": 8875.09, + "probability": 0.1125 + }, + { + "start": 8876.1, + "end": 8877.1, + "probability": 0.6599 + }, + { + "start": 8877.82, + "end": 8879.72, + "probability": 0.089 + }, + { + "start": 8880.52, + "end": 8883.62, + "probability": 0.0867 + }, + { + "start": 8884.56, + "end": 8884.94, + "probability": 0.1846 + }, + { + "start": 8885.08, + "end": 8885.08, + "probability": 0.0215 + }, + { + "start": 8885.08, + "end": 8885.08, + "probability": 0.1184 + }, + { + "start": 8885.08, + "end": 8885.08, + "probability": 0.1133 + }, + { + "start": 8885.08, + "end": 8885.08, + "probability": 0.009 + }, + { + "start": 8885.08, + "end": 8885.08, + "probability": 0.2617 + }, + { + "start": 8885.08, + "end": 8885.2, + "probability": 0.0493 + }, + { + "start": 8885.2, + "end": 8885.2, + "probability": 0.1961 + }, + { + "start": 8885.2, + "end": 8886.98, + "probability": 0.5138 + }, + { + "start": 8887.72, + "end": 8890.26, + "probability": 0.7093 + }, + { + "start": 8890.78, + "end": 8891.37, + "probability": 0.526 + }, + { + "start": 8892.34, + "end": 8893.4, + "probability": 0.6501 + }, + { + "start": 8893.5, + "end": 8898.9, + "probability": 0.7972 + }, + { + "start": 8899.48, + "end": 8900.76, + "probability": 0.8604 + }, + { + "start": 8901.26, + "end": 8902.76, + "probability": 0.7747 + }, + { + "start": 8903.32, + "end": 8903.93, + "probability": 0.7925 + }, + { + "start": 8904.67, + "end": 8909.15, + "probability": 0.998 + }, + { + "start": 8909.21, + "end": 8910.05, + "probability": 0.3025 + }, + { + "start": 8910.09, + "end": 8910.69, + "probability": 0.5821 + }, + { + "start": 8910.79, + "end": 8913.27, + "probability": 0.4262 + }, + { + "start": 8913.53, + "end": 8917.19, + "probability": 0.7944 + }, + { + "start": 8918.05, + "end": 8920.63, + "probability": 0.6411 + }, + { + "start": 8921.25, + "end": 8924.13, + "probability": 0.9519 + }, + { + "start": 8925.21, + "end": 8925.31, + "probability": 0.229 + }, + { + "start": 8925.59, + "end": 8925.59, + "probability": 0.1054 + }, + { + "start": 8925.59, + "end": 8929.33, + "probability": 0.9487 + }, + { + "start": 8929.35, + "end": 8933.49, + "probability": 0.8308 + }, + { + "start": 8933.55, + "end": 8936.21, + "probability": 0.9922 + }, + { + "start": 8937.05, + "end": 8937.75, + "probability": 0.291 + }, + { + "start": 8937.97, + "end": 8938.83, + "probability": 0.3821 + }, + { + "start": 8938.97, + "end": 8940.21, + "probability": 0.986 + }, + { + "start": 8940.29, + "end": 8941.27, + "probability": 0.8602 + }, + { + "start": 8941.43, + "end": 8943.19, + "probability": 0.6482 + }, + { + "start": 8943.63, + "end": 8945.75, + "probability": 0.7619 + }, + { + "start": 8945.79, + "end": 8945.79, + "probability": 0.3731 + }, + { + "start": 8945.79, + "end": 8949.43, + "probability": 0.9014 + }, + { + "start": 8949.57, + "end": 8950.71, + "probability": 0.7273 + }, + { + "start": 8950.89, + "end": 8950.99, + "probability": 0.2037 + }, + { + "start": 8950.99, + "end": 8950.99, + "probability": 0.0469 + }, + { + "start": 8950.99, + "end": 8952.45, + "probability": 0.501 + }, + { + "start": 8952.57, + "end": 8952.69, + "probability": 0.2563 + }, + { + "start": 8952.99, + "end": 8958.99, + "probability": 0.9857 + }, + { + "start": 8959.31, + "end": 8961.29, + "probability": 0.8915 + }, + { + "start": 8961.29, + "end": 8961.73, + "probability": 0.494 + }, + { + "start": 8962.11, + "end": 8962.23, + "probability": 0.0999 + }, + { + "start": 8962.23, + "end": 8965.37, + "probability": 0.9252 + }, + { + "start": 8965.37, + "end": 8967.67, + "probability": 0.3086 + }, + { + "start": 8967.77, + "end": 8967.97, + "probability": 0.2675 + }, + { + "start": 8967.97, + "end": 8968.15, + "probability": 0.0976 + }, + { + "start": 8968.77, + "end": 8970.55, + "probability": 0.1148 + }, + { + "start": 8970.65, + "end": 8971.31, + "probability": 0.4358 + }, + { + "start": 8972.14, + "end": 8975.03, + "probability": 0.6305 + }, + { + "start": 8975.35, + "end": 8976.11, + "probability": 0.0692 + }, + { + "start": 8976.15, + "end": 8976.19, + "probability": 0.9247 + }, + { + "start": 8976.19, + "end": 8978.89, + "probability": 0.6033 + }, + { + "start": 8978.97, + "end": 8980.25, + "probability": 0.8885 + }, + { + "start": 8980.55, + "end": 8982.31, + "probability": 0.2872 + }, + { + "start": 8982.91, + "end": 8984.31, + "probability": 0.0351 + }, + { + "start": 8984.31, + "end": 8985.19, + "probability": 0.1661 + }, + { + "start": 8985.21, + "end": 8985.99, + "probability": 0.1867 + }, + { + "start": 8985.99, + "end": 8986.11, + "probability": 0.1294 + }, + { + "start": 8986.83, + "end": 8988.63, + "probability": 0.2237 + }, + { + "start": 8988.77, + "end": 8989.95, + "probability": 0.523 + }, + { + "start": 8990.75, + "end": 8993.61, + "probability": 0.72 + }, + { + "start": 8993.73, + "end": 8994.01, + "probability": 0.4705 + }, + { + "start": 8994.17, + "end": 8994.52, + "probability": 0.136 + }, + { + "start": 8995.01, + "end": 8995.27, + "probability": 0.0479 + }, + { + "start": 8995.27, + "end": 8995.27, + "probability": 0.1377 + }, + { + "start": 8995.27, + "end": 8995.27, + "probability": 0.1683 + }, + { + "start": 8995.27, + "end": 8995.27, + "probability": 0.204 + }, + { + "start": 8995.27, + "end": 8999.55, + "probability": 0.8878 + }, + { + "start": 8999.85, + "end": 9001.13, + "probability": 0.9917 + }, + { + "start": 9001.67, + "end": 9002.19, + "probability": 0.4121 + }, + { + "start": 9003.63, + "end": 9004.59, + "probability": 0.522 + }, + { + "start": 9004.63, + "end": 9005.33, + "probability": 0.9426 + }, + { + "start": 9005.93, + "end": 9009.01, + "probability": 0.4026 + }, + { + "start": 9011.15, + "end": 9011.45, + "probability": 0.4685 + }, + { + "start": 9012.61, + "end": 9012.97, + "probability": 0.0316 + }, + { + "start": 9012.97, + "end": 9012.97, + "probability": 0.4053 + }, + { + "start": 9012.97, + "end": 9013.17, + "probability": 0.6205 + }, + { + "start": 9013.25, + "end": 9016.27, + "probability": 0.9719 + }, + { + "start": 9016.31, + "end": 9018.21, + "probability": 0.7892 + }, + { + "start": 9018.35, + "end": 9023.17, + "probability": 0.852 + }, + { + "start": 9023.31, + "end": 9024.01, + "probability": 0.039 + }, + { + "start": 9024.01, + "end": 9024.65, + "probability": 0.4969 + }, + { + "start": 9024.73, + "end": 9027.01, + "probability": 0.9211 + }, + { + "start": 9027.13, + "end": 9028.01, + "probability": 0.4821 + }, + { + "start": 9028.05, + "end": 9028.49, + "probability": 0.4973 + }, + { + "start": 9028.51, + "end": 9029.95, + "probability": 0.7503 + }, + { + "start": 9030.35, + "end": 9030.89, + "probability": 0.9216 + }, + { + "start": 9056.09, + "end": 9058.75, + "probability": 0.4517 + }, + { + "start": 9060.21, + "end": 9060.99, + "probability": 0.8882 + }, + { + "start": 9064.79, + "end": 9066.93, + "probability": 0.2999 + }, + { + "start": 9069.83, + "end": 9072.47, + "probability": 0.9783 + }, + { + "start": 9073.65, + "end": 9074.59, + "probability": 0.9835 + }, + { + "start": 9077.25, + "end": 9079.75, + "probability": 0.9577 + }, + { + "start": 9080.49, + "end": 9082.35, + "probability": 0.8042 + }, + { + "start": 9083.91, + "end": 9085.85, + "probability": 0.7387 + }, + { + "start": 9086.51, + "end": 9090.25, + "probability": 0.9949 + }, + { + "start": 9092.15, + "end": 9094.55, + "probability": 0.9937 + }, + { + "start": 9094.67, + "end": 9097.1, + "probability": 0.7772 + }, + { + "start": 9098.21, + "end": 9101.21, + "probability": 0.9031 + }, + { + "start": 9102.57, + "end": 9105.77, + "probability": 0.8882 + }, + { + "start": 9106.65, + "end": 9108.23, + "probability": 0.7901 + }, + { + "start": 9108.65, + "end": 9115.73, + "probability": 0.9775 + }, + { + "start": 9116.47, + "end": 9121.87, + "probability": 0.9899 + }, + { + "start": 9123.23, + "end": 9125.13, + "probability": 0.9897 + }, + { + "start": 9125.19, + "end": 9130.77, + "probability": 0.981 + }, + { + "start": 9131.31, + "end": 9133.47, + "probability": 0.8219 + }, + { + "start": 9134.65, + "end": 9135.99, + "probability": 0.9913 + }, + { + "start": 9139.85, + "end": 9143.49, + "probability": 0.8909 + }, + { + "start": 9145.45, + "end": 9149.53, + "probability": 0.9168 + }, + { + "start": 9152.21, + "end": 9152.75, + "probability": 0.418 + }, + { + "start": 9154.57, + "end": 9155.87, + "probability": 0.4934 + }, + { + "start": 9159.01, + "end": 9162.11, + "probability": 0.7444 + }, + { + "start": 9163.29, + "end": 9164.41, + "probability": 0.8798 + }, + { + "start": 9164.71, + "end": 9167.53, + "probability": 0.8396 + }, + { + "start": 9167.65, + "end": 9171.43, + "probability": 0.9947 + }, + { + "start": 9173.05, + "end": 9173.39, + "probability": 0.8676 + }, + { + "start": 9173.51, + "end": 9175.7, + "probability": 0.9976 + }, + { + "start": 9176.19, + "end": 9179.71, + "probability": 0.9786 + }, + { + "start": 9180.23, + "end": 9180.87, + "probability": 0.8503 + }, + { + "start": 9180.97, + "end": 9185.75, + "probability": 0.9141 + }, + { + "start": 9186.53, + "end": 9188.53, + "probability": 0.9435 + }, + { + "start": 9188.97, + "end": 9190.69, + "probability": 0.9125 + }, + { + "start": 9192.05, + "end": 9192.57, + "probability": 0.7762 + }, + { + "start": 9193.49, + "end": 9194.21, + "probability": 0.737 + }, + { + "start": 9195.21, + "end": 9196.19, + "probability": 0.8589 + }, + { + "start": 9196.71, + "end": 9197.41, + "probability": 0.9703 + }, + { + "start": 9198.05, + "end": 9201.59, + "probability": 0.7451 + }, + { + "start": 9201.75, + "end": 9203.67, + "probability": 0.4479 + }, + { + "start": 9204.57, + "end": 9206.59, + "probability": 0.9736 + }, + { + "start": 9207.77, + "end": 9208.65, + "probability": 0.4472 + }, + { + "start": 9209.39, + "end": 9210.15, + "probability": 0.9756 + }, + { + "start": 9210.77, + "end": 9213.13, + "probability": 0.7008 + }, + { + "start": 9213.79, + "end": 9216.47, + "probability": 0.9615 + }, + { + "start": 9216.77, + "end": 9218.75, + "probability": 0.9912 + }, + { + "start": 9220.21, + "end": 9220.84, + "probability": 0.6749 + }, + { + "start": 9222.17, + "end": 9224.39, + "probability": 0.828 + }, + { + "start": 9225.59, + "end": 9230.17, + "probability": 0.9507 + }, + { + "start": 9230.61, + "end": 9232.43, + "probability": 0.8378 + }, + { + "start": 9232.59, + "end": 9235.27, + "probability": 0.9655 + }, + { + "start": 9235.67, + "end": 9237.01, + "probability": 0.9934 + }, + { + "start": 9237.89, + "end": 9239.29, + "probability": 0.9303 + }, + { + "start": 9239.35, + "end": 9243.15, + "probability": 0.6411 + }, + { + "start": 9243.27, + "end": 9247.23, + "probability": 0.9453 + }, + { + "start": 9248.27, + "end": 9251.83, + "probability": 0.9129 + }, + { + "start": 9252.01, + "end": 9252.21, + "probability": 0.5793 + }, + { + "start": 9252.71, + "end": 9256.31, + "probability": 0.8073 + }, + { + "start": 9256.43, + "end": 9257.41, + "probability": 0.9554 + }, + { + "start": 9257.95, + "end": 9261.13, + "probability": 0.9556 + }, + { + "start": 9261.29, + "end": 9264.79, + "probability": 0.8369 + }, + { + "start": 9265.25, + "end": 9265.25, + "probability": 0.0138 + }, + { + "start": 9265.25, + "end": 9265.97, + "probability": 0.5661 + }, + { + "start": 9266.09, + "end": 9272.69, + "probability": 0.9298 + }, + { + "start": 9273.19, + "end": 9275.03, + "probability": 0.9945 + }, + { + "start": 9275.81, + "end": 9277.31, + "probability": 0.9904 + }, + { + "start": 9277.51, + "end": 9278.49, + "probability": 0.971 + }, + { + "start": 9278.71, + "end": 9279.67, + "probability": 0.5098 + }, + { + "start": 9279.79, + "end": 9281.05, + "probability": 0.972 + }, + { + "start": 9281.13, + "end": 9281.94, + "probability": 0.8134 + }, + { + "start": 9282.37, + "end": 9286.57, + "probability": 0.9963 + }, + { + "start": 9286.69, + "end": 9289.03, + "probability": 0.7145 + }, + { + "start": 9289.03, + "end": 9289.57, + "probability": 0.5908 + }, + { + "start": 9289.81, + "end": 9292.01, + "probability": 0.9614 + }, + { + "start": 9292.51, + "end": 9293.75, + "probability": 0.9811 + }, + { + "start": 9293.91, + "end": 9294.65, + "probability": 0.7493 + }, + { + "start": 9295.37, + "end": 9296.37, + "probability": 0.9332 + }, + { + "start": 9296.51, + "end": 9296.79, + "probability": 0.7862 + }, + { + "start": 9297.47, + "end": 9298.71, + "probability": 0.5764 + }, + { + "start": 9298.99, + "end": 9300.81, + "probability": 0.9367 + }, + { + "start": 9302.05, + "end": 9302.37, + "probability": 0.5121 + }, + { + "start": 9303.01, + "end": 9303.89, + "probability": 0.7573 + }, + { + "start": 9313.47, + "end": 9313.65, + "probability": 0.2862 + }, + { + "start": 9313.69, + "end": 9314.51, + "probability": 0.2785 + }, + { + "start": 9314.51, + "end": 9315.53, + "probability": 0.6266 + }, + { + "start": 9316.19, + "end": 9316.49, + "probability": 0.5366 + }, + { + "start": 9316.57, + "end": 9316.77, + "probability": 0.6221 + }, + { + "start": 9317.05, + "end": 9319.93, + "probability": 0.9091 + }, + { + "start": 9320.39, + "end": 9322.93, + "probability": 0.9921 + }, + { + "start": 9322.93, + "end": 9326.81, + "probability": 0.8771 + }, + { + "start": 9327.47, + "end": 9331.11, + "probability": 0.9859 + }, + { + "start": 9331.37, + "end": 9332.59, + "probability": 0.8866 + }, + { + "start": 9332.75, + "end": 9334.49, + "probability": 0.9905 + }, + { + "start": 9334.93, + "end": 9335.41, + "probability": 0.8304 + }, + { + "start": 9335.97, + "end": 9338.09, + "probability": 0.9661 + }, + { + "start": 9338.59, + "end": 9340.53, + "probability": 0.683 + }, + { + "start": 9341.01, + "end": 9343.59, + "probability": 0.9878 + }, + { + "start": 9344.05, + "end": 9347.55, + "probability": 0.9874 + }, + { + "start": 9347.99, + "end": 9348.55, + "probability": 0.9653 + }, + { + "start": 9350.27, + "end": 9351.69, + "probability": 0.7195 + }, + { + "start": 9352.45, + "end": 9355.19, + "probability": 0.9995 + }, + { + "start": 9355.27, + "end": 9355.95, + "probability": 0.9615 + }, + { + "start": 9356.25, + "end": 9361.47, + "probability": 0.9722 + }, + { + "start": 9361.67, + "end": 9362.57, + "probability": 0.5359 + }, + { + "start": 9363.25, + "end": 9367.53, + "probability": 0.8878 + }, + { + "start": 9367.69, + "end": 9368.21, + "probability": 0.7897 + }, + { + "start": 9368.29, + "end": 9369.13, + "probability": 0.8359 + }, + { + "start": 9369.53, + "end": 9371.99, + "probability": 0.9794 + }, + { + "start": 9372.71, + "end": 9376.03, + "probability": 0.8005 + }, + { + "start": 9377.95, + "end": 9381.85, + "probability": 0.8498 + }, + { + "start": 9382.53, + "end": 9385.55, + "probability": 0.8382 + }, + { + "start": 9386.25, + "end": 9389.05, + "probability": 0.998 + }, + { + "start": 9389.67, + "end": 9390.57, + "probability": 0.9006 + }, + { + "start": 9390.95, + "end": 9395.45, + "probability": 0.9958 + }, + { + "start": 9395.61, + "end": 9397.15, + "probability": 0.9838 + }, + { + "start": 9398.67, + "end": 9399.19, + "probability": 0.5048 + }, + { + "start": 9400.25, + "end": 9401.49, + "probability": 0.9092 + }, + { + "start": 9401.49, + "end": 9405.95, + "probability": 0.9281 + }, + { + "start": 9406.17, + "end": 9406.85, + "probability": 0.8036 + }, + { + "start": 9408.03, + "end": 9409.47, + "probability": 0.998 + }, + { + "start": 9410.83, + "end": 9413.75, + "probability": 0.5303 + }, + { + "start": 9414.23, + "end": 9414.95, + "probability": 0.4912 + }, + { + "start": 9415.03, + "end": 9415.79, + "probability": 0.5538 + }, + { + "start": 9416.07, + "end": 9416.75, + "probability": 0.9497 + }, + { + "start": 9417.51, + "end": 9418.09, + "probability": 0.5292 + }, + { + "start": 9418.25, + "end": 9419.65, + "probability": 0.755 + }, + { + "start": 9419.71, + "end": 9420.93, + "probability": 0.8105 + }, + { + "start": 9421.95, + "end": 9423.67, + "probability": 0.9841 + }, + { + "start": 9424.03, + "end": 9425.41, + "probability": 0.9937 + }, + { + "start": 9426.05, + "end": 9429.77, + "probability": 0.9142 + }, + { + "start": 9431.25, + "end": 9433.47, + "probability": 0.8763 + }, + { + "start": 9433.61, + "end": 9434.63, + "probability": 0.9906 + }, + { + "start": 9435.53, + "end": 9437.13, + "probability": 0.7773 + }, + { + "start": 9437.53, + "end": 9440.49, + "probability": 0.9688 + }, + { + "start": 9441.53, + "end": 9445.33, + "probability": 0.9744 + }, + { + "start": 9446.61, + "end": 9451.01, + "probability": 0.9932 + }, + { + "start": 9451.41, + "end": 9452.59, + "probability": 0.925 + }, + { + "start": 9452.87, + "end": 9455.35, + "probability": 0.9556 + }, + { + "start": 9455.95, + "end": 9460.11, + "probability": 0.9731 + }, + { + "start": 9460.23, + "end": 9461.73, + "probability": 0.9199 + }, + { + "start": 9461.91, + "end": 9462.65, + "probability": 0.5057 + }, + { + "start": 9463.01, + "end": 9466.27, + "probability": 0.9435 + }, + { + "start": 9466.95, + "end": 9469.13, + "probability": 0.9912 + }, + { + "start": 9470.17, + "end": 9473.77, + "probability": 0.9004 + }, + { + "start": 9474.69, + "end": 9475.47, + "probability": 0.4553 + }, + { + "start": 9475.59, + "end": 9479.45, + "probability": 0.9688 + }, + { + "start": 9479.59, + "end": 9481.11, + "probability": 0.585 + }, + { + "start": 9481.13, + "end": 9481.65, + "probability": 0.6323 + }, + { + "start": 9481.71, + "end": 9482.21, + "probability": 0.7695 + }, + { + "start": 9482.53, + "end": 9483.79, + "probability": 0.871 + }, + { + "start": 9484.33, + "end": 9487.93, + "probability": 0.953 + }, + { + "start": 9487.93, + "end": 9490.23, + "probability": 0.8217 + }, + { + "start": 9490.37, + "end": 9492.25, + "probability": 0.7377 + }, + { + "start": 9492.27, + "end": 9493.69, + "probability": 0.7834 + }, + { + "start": 9495.15, + "end": 9498.95, + "probability": 0.9767 + }, + { + "start": 9499.51, + "end": 9501.73, + "probability": 0.8329 + }, + { + "start": 9501.81, + "end": 9505.09, + "probability": 0.9209 + }, + { + "start": 9505.15, + "end": 9505.15, + "probability": 0.1673 + }, + { + "start": 9505.25, + "end": 9509.43, + "probability": 0.9865 + }, + { + "start": 9509.47, + "end": 9510.99, + "probability": 0.8374 + }, + { + "start": 9511.25, + "end": 9511.25, + "probability": 0.6553 + }, + { + "start": 9511.41, + "end": 9514.37, + "probability": 0.9878 + }, + { + "start": 9514.91, + "end": 9517.93, + "probability": 0.9075 + }, + { + "start": 9517.95, + "end": 9518.67, + "probability": 0.6727 + }, + { + "start": 9519.11, + "end": 9521.13, + "probability": 0.8152 + }, + { + "start": 9521.45, + "end": 9524.8, + "probability": 0.8734 + }, + { + "start": 9525.43, + "end": 9528.21, + "probability": 0.272 + }, + { + "start": 9528.45, + "end": 9528.71, + "probability": 0.017 + }, + { + "start": 9528.89, + "end": 9529.13, + "probability": 0.2661 + }, + { + "start": 9529.13, + "end": 9530.91, + "probability": 0.856 + }, + { + "start": 9530.95, + "end": 9533.45, + "probability": 0.9667 + }, + { + "start": 9535.21, + "end": 9535.89, + "probability": 0.2745 + }, + { + "start": 9537.71, + "end": 9538.73, + "probability": 0.9507 + }, + { + "start": 9539.35, + "end": 9540.05, + "probability": 0.7608 + }, + { + "start": 9541.59, + "end": 9541.69, + "probability": 0.547 + }, + { + "start": 9544.17, + "end": 9544.93, + "probability": 0.7125 + }, + { + "start": 9546.61, + "end": 9547.87, + "probability": 0.6473 + }, + { + "start": 9549.77, + "end": 9550.38, + "probability": 0.587 + }, + { + "start": 9554.17, + "end": 9559.95, + "probability": 0.7525 + }, + { + "start": 9561.21, + "end": 9561.71, + "probability": 0.4441 + }, + { + "start": 9563.39, + "end": 9565.61, + "probability": 0.9535 + }, + { + "start": 9565.67, + "end": 9569.55, + "probability": 0.998 + }, + { + "start": 9569.71, + "end": 9570.75, + "probability": 0.8983 + }, + { + "start": 9571.39, + "end": 9573.81, + "probability": 0.9513 + }, + { + "start": 9576.83, + "end": 9580.95, + "probability": 0.949 + }, + { + "start": 9580.95, + "end": 9586.53, + "probability": 0.9922 + }, + { + "start": 9588.23, + "end": 9590.29, + "probability": 0.7684 + }, + { + "start": 9590.67, + "end": 9593.23, + "probability": 0.9299 + }, + { + "start": 9593.87, + "end": 9596.31, + "probability": 0.9754 + }, + { + "start": 9597.09, + "end": 9602.37, + "probability": 0.9791 + }, + { + "start": 9603.07, + "end": 9607.71, + "probability": 0.9722 + }, + { + "start": 9608.25, + "end": 9609.27, + "probability": 0.9949 + }, + { + "start": 9611.85, + "end": 9614.63, + "probability": 0.1186 + }, + { + "start": 9614.63, + "end": 9614.79, + "probability": 0.0035 + }, + { + "start": 9616.69, + "end": 9617.63, + "probability": 0.0478 + }, + { + "start": 9618.25, + "end": 9622.86, + "probability": 0.986 + }, + { + "start": 9623.47, + "end": 9624.51, + "probability": 0.9888 + }, + { + "start": 9625.07, + "end": 9627.35, + "probability": 0.9903 + }, + { + "start": 9627.35, + "end": 9631.85, + "probability": 0.9928 + }, + { + "start": 9632.39, + "end": 9635.08, + "probability": 0.8936 + }, + { + "start": 9637.29, + "end": 9639.91, + "probability": 0.9796 + }, + { + "start": 9639.99, + "end": 9640.59, + "probability": 0.2106 + }, + { + "start": 9641.97, + "end": 9643.31, + "probability": 0.6402 + }, + { + "start": 9644.05, + "end": 9646.91, + "probability": 0.9672 + }, + { + "start": 9646.91, + "end": 9649.77, + "probability": 0.9958 + }, + { + "start": 9650.87, + "end": 9653.63, + "probability": 0.7316 + }, + { + "start": 9653.81, + "end": 9656.31, + "probability": 0.9828 + }, + { + "start": 9656.31, + "end": 9659.61, + "probability": 0.9791 + }, + { + "start": 9660.49, + "end": 9664.47, + "probability": 0.9687 + }, + { + "start": 9665.05, + "end": 9670.43, + "probability": 0.9945 + }, + { + "start": 9670.43, + "end": 9675.87, + "probability": 0.9963 + }, + { + "start": 9677.03, + "end": 9679.61, + "probability": 0.9965 + }, + { + "start": 9680.27, + "end": 9682.63, + "probability": 0.9966 + }, + { + "start": 9683.01, + "end": 9685.13, + "probability": 0.96 + }, + { + "start": 9686.03, + "end": 9687.97, + "probability": 0.9983 + }, + { + "start": 9687.97, + "end": 9690.93, + "probability": 0.9896 + }, + { + "start": 9691.63, + "end": 9693.97, + "probability": 0.9883 + }, + { + "start": 9693.97, + "end": 9697.53, + "probability": 0.9985 + }, + { + "start": 9702.07, + "end": 9702.23, + "probability": 0.1989 + }, + { + "start": 9702.23, + "end": 9702.23, + "probability": 0.0485 + }, + { + "start": 9702.23, + "end": 9703.75, + "probability": 0.7503 + }, + { + "start": 9704.35, + "end": 9709.87, + "probability": 0.8663 + }, + { + "start": 9710.29, + "end": 9710.83, + "probability": 0.5051 + }, + { + "start": 9711.39, + "end": 9713.83, + "probability": 0.9969 + }, + { + "start": 9713.97, + "end": 9716.64, + "probability": 0.9941 + }, + { + "start": 9716.67, + "end": 9720.09, + "probability": 0.9927 + }, + { + "start": 9721.09, + "end": 9723.31, + "probability": 0.9376 + }, + { + "start": 9724.05, + "end": 9725.25, + "probability": 0.9636 + }, + { + "start": 9725.89, + "end": 9728.37, + "probability": 0.935 + }, + { + "start": 9729.03, + "end": 9730.67, + "probability": 0.9449 + }, + { + "start": 9731.27, + "end": 9733.75, + "probability": 0.9702 + }, + { + "start": 9734.45, + "end": 9736.89, + "probability": 0.9714 + }, + { + "start": 9737.45, + "end": 9742.03, + "probability": 0.9899 + }, + { + "start": 9744.13, + "end": 9744.73, + "probability": 0.9781 + }, + { + "start": 9745.91, + "end": 9747.87, + "probability": 0.9459 + }, + { + "start": 9750.65, + "end": 9752.57, + "probability": 0.681 + }, + { + "start": 9753.55, + "end": 9756.51, + "probability": 0.8175 + }, + { + "start": 9757.93, + "end": 9758.19, + "probability": 0.9497 + }, + { + "start": 9758.35, + "end": 9760.97, + "probability": 0.9808 + }, + { + "start": 9761.81, + "end": 9762.91, + "probability": 0.8232 + }, + { + "start": 9763.89, + "end": 9766.29, + "probability": 0.5158 + }, + { + "start": 9766.35, + "end": 9768.45, + "probability": 0.96 + }, + { + "start": 9769.29, + "end": 9775.59, + "probability": 0.9916 + }, + { + "start": 9776.19, + "end": 9777.29, + "probability": 0.9941 + }, + { + "start": 9778.07, + "end": 9780.99, + "probability": 0.9586 + }, + { + "start": 9781.83, + "end": 9782.51, + "probability": 0.9585 + }, + { + "start": 9782.61, + "end": 9785.02, + "probability": 0.9749 + }, + { + "start": 9785.53, + "end": 9786.89, + "probability": 0.7748 + }, + { + "start": 9787.37, + "end": 9788.59, + "probability": 0.2455 + }, + { + "start": 9789.39, + "end": 9791.15, + "probability": 0.8397 + }, + { + "start": 9791.41, + "end": 9793.99, + "probability": 0.8936 + }, + { + "start": 9794.63, + "end": 9796.75, + "probability": 0.5574 + }, + { + "start": 9796.87, + "end": 9800.03, + "probability": 0.6947 + }, + { + "start": 9801.15, + "end": 9802.61, + "probability": 0.3274 + }, + { + "start": 9803.49, + "end": 9803.59, + "probability": 0.0782 + }, + { + "start": 9803.59, + "end": 9806.47, + "probability": 0.9392 + }, + { + "start": 9807.03, + "end": 9810.19, + "probability": 0.8444 + }, + { + "start": 9810.71, + "end": 9811.63, + "probability": 0.8467 + }, + { + "start": 9811.75, + "end": 9813.49, + "probability": 0.6691 + }, + { + "start": 9813.49, + "end": 9816.39, + "probability": 0.7598 + }, + { + "start": 9817.35, + "end": 9818.17, + "probability": 0.8705 + }, + { + "start": 9818.67, + "end": 9824.23, + "probability": 0.9597 + }, + { + "start": 9824.91, + "end": 9826.55, + "probability": 0.8487 + }, + { + "start": 9827.21, + "end": 9829.87, + "probability": 0.9355 + }, + { + "start": 9830.73, + "end": 9831.93, + "probability": 0.9902 + }, + { + "start": 9832.19, + "end": 9832.97, + "probability": 0.9182 + }, + { + "start": 9833.11, + "end": 9837.33, + "probability": 0.9531 + }, + { + "start": 9838.09, + "end": 9840.41, + "probability": 0.5631 + }, + { + "start": 9841.93, + "end": 9842.61, + "probability": 0.7206 + }, + { + "start": 9843.45, + "end": 9844.35, + "probability": 0.7288 + }, + { + "start": 9844.53, + "end": 9847.89, + "probability": 0.9375 + }, + { + "start": 9849.37, + "end": 9850.71, + "probability": 0.8796 + }, + { + "start": 9852.69, + "end": 9856.81, + "probability": 0.5954 + }, + { + "start": 9858.5, + "end": 9863.73, + "probability": 0.8084 + }, + { + "start": 9864.13, + "end": 9868.23, + "probability": 0.7854 + }, + { + "start": 9868.99, + "end": 9870.81, + "probability": 0.0348 + }, + { + "start": 9871.07, + "end": 9871.49, + "probability": 0.7677 + }, + { + "start": 9871.55, + "end": 9874.79, + "probability": 0.7124 + }, + { + "start": 9874.89, + "end": 9875.99, + "probability": 0.8765 + }, + { + "start": 9876.07, + "end": 9881.81, + "probability": 0.9851 + }, + { + "start": 9881.93, + "end": 9882.05, + "probability": 0.0156 + }, + { + "start": 9882.07, + "end": 9883.49, + "probability": 0.2237 + }, + { + "start": 9883.49, + "end": 9883.81, + "probability": 0.1216 + }, + { + "start": 9884.05, + "end": 9885.01, + "probability": 0.7122 + }, + { + "start": 9885.73, + "end": 9886.05, + "probability": 0.1746 + }, + { + "start": 9886.05, + "end": 9887.39, + "probability": 0.9404 + }, + { + "start": 9887.87, + "end": 9888.87, + "probability": 0.8351 + }, + { + "start": 9889.17, + "end": 9890.33, + "probability": 0.4445 + }, + { + "start": 9890.57, + "end": 9891.93, + "probability": 0.9922 + }, + { + "start": 9892.41, + "end": 9893.45, + "probability": 0.6133 + }, + { + "start": 9893.49, + "end": 9895.59, + "probability": 0.7622 + }, + { + "start": 9895.71, + "end": 9896.41, + "probability": 0.2279 + }, + { + "start": 9896.41, + "end": 9899.94, + "probability": 0.9839 + }, + { + "start": 9900.41, + "end": 9902.07, + "probability": 0.9708 + }, + { + "start": 9902.51, + "end": 9903.45, + "probability": 0.6142 + }, + { + "start": 9904.01, + "end": 9904.41, + "probability": 0.5589 + }, + { + "start": 9904.55, + "end": 9904.71, + "probability": 0.4458 + }, + { + "start": 9904.71, + "end": 9905.33, + "probability": 0.9443 + }, + { + "start": 9905.37, + "end": 9908.52, + "probability": 0.8761 + }, + { + "start": 9910.31, + "end": 9910.45, + "probability": 0.0138 + }, + { + "start": 9910.45, + "end": 9911.77, + "probability": 0.4853 + }, + { + "start": 9911.87, + "end": 9911.87, + "probability": 0.0094 + }, + { + "start": 9911.87, + "end": 9914.01, + "probability": 0.8447 + }, + { + "start": 9914.45, + "end": 9914.94, + "probability": 0.5507 + }, + { + "start": 9915.91, + "end": 9916.14, + "probability": 0.2274 + }, + { + "start": 9916.31, + "end": 9920.11, + "probability": 0.9643 + }, + { + "start": 9920.11, + "end": 9923.75, + "probability": 0.9956 + }, + { + "start": 9924.03, + "end": 9924.99, + "probability": 0.9851 + }, + { + "start": 9925.11, + "end": 9926.13, + "probability": 0.2139 + }, + { + "start": 9926.66, + "end": 9928.59, + "probability": 0.6217 + }, + { + "start": 9929.03, + "end": 9930.51, + "probability": 0.3084 + }, + { + "start": 9930.67, + "end": 9931.65, + "probability": 0.6392 + }, + { + "start": 9932.79, + "end": 9933.19, + "probability": 0.0124 + }, + { + "start": 9933.19, + "end": 9934.49, + "probability": 0.4406 + }, + { + "start": 9934.49, + "end": 9935.07, + "probability": 0.6574 + }, + { + "start": 9935.17, + "end": 9936.17, + "probability": 0.8578 + }, + { + "start": 9939.61, + "end": 9940.05, + "probability": 0.5904 + }, + { + "start": 9940.65, + "end": 9941.25, + "probability": 0.5471 + }, + { + "start": 9941.31, + "end": 9941.97, + "probability": 0.5722 + }, + { + "start": 9942.57, + "end": 9945.73, + "probability": 0.8502 + }, + { + "start": 9947.93, + "end": 9950.5, + "probability": 0.9874 + }, + { + "start": 9952.17, + "end": 9954.61, + "probability": 0.0944 + }, + { + "start": 9955.51, + "end": 9956.29, + "probability": 0.1556 + }, + { + "start": 9957.51, + "end": 9958.63, + "probability": 0.4838 + }, + { + "start": 9958.97, + "end": 9958.97, + "probability": 0.1535 + }, + { + "start": 9958.97, + "end": 9958.97, + "probability": 0.1576 + }, + { + "start": 9958.97, + "end": 9961.65, + "probability": 0.9523 + }, + { + "start": 9962.09, + "end": 9963.17, + "probability": 0.7828 + }, + { + "start": 9963.65, + "end": 9964.87, + "probability": 0.893 + }, + { + "start": 9965.17, + "end": 9967.47, + "probability": 0.9454 + }, + { + "start": 9967.79, + "end": 9969.11, + "probability": 0.9426 + }, + { + "start": 9969.35, + "end": 9970.23, + "probability": 0.9116 + }, + { + "start": 9970.27, + "end": 9971.61, + "probability": 0.9015 + }, + { + "start": 9971.75, + "end": 9973.35, + "probability": 0.9629 + }, + { + "start": 9973.97, + "end": 9978.57, + "probability": 0.992 + }, + { + "start": 9979.07, + "end": 9982.25, + "probability": 0.8632 + }, + { + "start": 9982.29, + "end": 9983.37, + "probability": 0.72 + }, + { + "start": 9983.57, + "end": 9984.49, + "probability": 0.8321 + }, + { + "start": 9984.63, + "end": 9985.25, + "probability": 0.9339 + }, + { + "start": 9985.87, + "end": 9987.27, + "probability": 0.8341 + }, + { + "start": 9987.55, + "end": 9989.77, + "probability": 0.8419 + }, + { + "start": 9989.89, + "end": 9991.39, + "probability": 0.6496 + }, + { + "start": 9991.59, + "end": 9997.41, + "probability": 0.8809 + }, + { + "start": 9997.57, + "end": 9999.57, + "probability": 0.7523 + }, + { + "start": 10000.13, + "end": 10001.37, + "probability": 0.8906 + }, + { + "start": 10001.51, + "end": 10003.83, + "probability": 0.978 + }, + { + "start": 10003.83, + "end": 10007.47, + "probability": 0.7911 + }, + { + "start": 10007.89, + "end": 10009.81, + "probability": 0.6389 + }, + { + "start": 10010.05, + "end": 10011.05, + "probability": 0.6754 + }, + { + "start": 10011.49, + "end": 10015.37, + "probability": 0.9829 + }, + { + "start": 10015.81, + "end": 10017.45, + "probability": 0.7921 + }, + { + "start": 10017.55, + "end": 10018.47, + "probability": 0.7466 + }, + { + "start": 10018.57, + "end": 10020.16, + "probability": 0.6523 + }, + { + "start": 10020.51, + "end": 10025.45, + "probability": 0.799 + }, + { + "start": 10025.53, + "end": 10026.05, + "probability": 0.62 + }, + { + "start": 10026.17, + "end": 10027.29, + "probability": 0.8137 + }, + { + "start": 10027.79, + "end": 10029.81, + "probability": 0.8584 + }, + { + "start": 10029.91, + "end": 10032.29, + "probability": 0.8245 + }, + { + "start": 10032.45, + "end": 10033.25, + "probability": 0.5353 + }, + { + "start": 10033.31, + "end": 10034.99, + "probability": 0.9774 + }, + { + "start": 10035.33, + "end": 10039.75, + "probability": 0.9648 + }, + { + "start": 10040.01, + "end": 10041.11, + "probability": 0.9475 + }, + { + "start": 10041.39, + "end": 10044.63, + "probability": 0.7211 + }, + { + "start": 10044.63, + "end": 10047.37, + "probability": 0.8716 + }, + { + "start": 10047.43, + "end": 10049.15, + "probability": 0.5157 + }, + { + "start": 10049.39, + "end": 10051.09, + "probability": 0.8144 + }, + { + "start": 10051.29, + "end": 10054.61, + "probability": 0.6803 + }, + { + "start": 10054.63, + "end": 10056.67, + "probability": 0.693 + }, + { + "start": 10056.79, + "end": 10057.03, + "probability": 0.7455 + }, + { + "start": 10058.09, + "end": 10058.73, + "probability": 0.6999 + }, + { + "start": 10058.91, + "end": 10060.93, + "probability": 0.8623 + }, + { + "start": 10061.75, + "end": 10063.61, + "probability": 0.4319 + }, + { + "start": 10064.77, + "end": 10065.23, + "probability": 0.5098 + }, + { + "start": 10066.03, + "end": 10066.77, + "probability": 0.535 + }, + { + "start": 10067.75, + "end": 10070.83, + "probability": 0.8997 + }, + { + "start": 10071.03, + "end": 10071.67, + "probability": 0.609 + }, + { + "start": 10071.73, + "end": 10074.99, + "probability": 0.9667 + }, + { + "start": 10075.53, + "end": 10079.01, + "probability": 0.8114 + }, + { + "start": 10079.33, + "end": 10081.24, + "probability": 0.7 + }, + { + "start": 10081.65, + "end": 10083.13, + "probability": 0.9603 + }, + { + "start": 10083.21, + "end": 10083.99, + "probability": 0.7687 + }, + { + "start": 10084.07, + "end": 10085.37, + "probability": 0.791 + }, + { + "start": 10085.83, + "end": 10089.71, + "probability": 0.9971 + }, + { + "start": 10090.15, + "end": 10092.61, + "probability": 0.7328 + }, + { + "start": 10093.07, + "end": 10093.69, + "probability": 0.4774 + }, + { + "start": 10093.97, + "end": 10095.55, + "probability": 0.5645 + }, + { + "start": 10095.75, + "end": 10097.49, + "probability": 0.9832 + }, + { + "start": 10097.99, + "end": 10100.25, + "probability": 0.9532 + }, + { + "start": 10100.63, + "end": 10102.37, + "probability": 0.9875 + }, + { + "start": 10102.77, + "end": 10105.07, + "probability": 0.8765 + }, + { + "start": 10105.13, + "end": 10109.25, + "probability": 0.9072 + }, + { + "start": 10109.45, + "end": 10109.93, + "probability": 0.0736 + }, + { + "start": 10110.37, + "end": 10112.61, + "probability": 0.7363 + }, + { + "start": 10113.09, + "end": 10116.15, + "probability": 0.3677 + }, + { + "start": 10116.81, + "end": 10117.71, + "probability": 0.0661 + }, + { + "start": 10117.85, + "end": 10121.57, + "probability": 0.4565 + }, + { + "start": 10121.83, + "end": 10122.77, + "probability": 0.9438 + }, + { + "start": 10123.15, + "end": 10124.41, + "probability": 0.9103 + }, + { + "start": 10124.53, + "end": 10127.75, + "probability": 0.797 + }, + { + "start": 10127.87, + "end": 10128.39, + "probability": 0.4252 + }, + { + "start": 10128.49, + "end": 10133.59, + "probability": 0.9004 + }, + { + "start": 10133.99, + "end": 10138.41, + "probability": 0.981 + }, + { + "start": 10138.51, + "end": 10138.77, + "probability": 0.743 + }, + { + "start": 10139.19, + "end": 10140.53, + "probability": 0.4515 + }, + { + "start": 10140.67, + "end": 10142.69, + "probability": 0.9486 + }, + { + "start": 10142.83, + "end": 10143.43, + "probability": 0.7176 + }, + { + "start": 10144.11, + "end": 10144.89, + "probability": 0.7759 + }, + { + "start": 10145.61, + "end": 10148.33, + "probability": 0.9624 + }, + { + "start": 10149.05, + "end": 10149.05, + "probability": 0.0957 + }, + { + "start": 10149.05, + "end": 10149.05, + "probability": 0.5028 + }, + { + "start": 10149.05, + "end": 10150.16, + "probability": 0.8101 + }, + { + "start": 10150.97, + "end": 10153.09, + "probability": 0.9073 + }, + { + "start": 10153.53, + "end": 10155.39, + "probability": 0.9319 + }, + { + "start": 10155.59, + "end": 10157.49, + "probability": 0.7974 + }, + { + "start": 10157.67, + "end": 10159.33, + "probability": 0.7969 + }, + { + "start": 10159.69, + "end": 10161.49, + "probability": 0.9811 + }, + { + "start": 10161.77, + "end": 10162.41, + "probability": 0.8168 + }, + { + "start": 10162.45, + "end": 10163.79, + "probability": 0.9895 + }, + { + "start": 10163.81, + "end": 10164.55, + "probability": 0.3709 + }, + { + "start": 10164.81, + "end": 10166.19, + "probability": 0.9535 + }, + { + "start": 10166.69, + "end": 10172.51, + "probability": 0.8933 + }, + { + "start": 10172.67, + "end": 10176.87, + "probability": 0.9769 + }, + { + "start": 10177.01, + "end": 10178.81, + "probability": 0.9966 + }, + { + "start": 10178.97, + "end": 10181.03, + "probability": 0.9977 + }, + { + "start": 10181.15, + "end": 10181.41, + "probability": 0.7339 + }, + { + "start": 10181.77, + "end": 10183.17, + "probability": 0.7225 + }, + { + "start": 10183.27, + "end": 10185.31, + "probability": 0.8837 + }, + { + "start": 10186.21, + "end": 10188.41, + "probability": 0.7508 + }, + { + "start": 10188.95, + "end": 10190.27, + "probability": 0.3208 + }, + { + "start": 10190.85, + "end": 10192.97, + "probability": 0.9305 + }, + { + "start": 10193.07, + "end": 10193.49, + "probability": 0.6115 + }, + { + "start": 10193.97, + "end": 10194.57, + "probability": 0.9023 + }, + { + "start": 10195.31, + "end": 10196.63, + "probability": 0.8544 + }, + { + "start": 10196.71, + "end": 10198.85, + "probability": 0.6813 + }, + { + "start": 10198.95, + "end": 10199.65, + "probability": 0.7426 + }, + { + "start": 10200.03, + "end": 10200.13, + "probability": 0.6178 + }, + { + "start": 10200.21, + "end": 10201.98, + "probability": 0.7826 + }, + { + "start": 10202.07, + "end": 10202.17, + "probability": 0.7709 + }, + { + "start": 10202.45, + "end": 10202.79, + "probability": 0.718 + }, + { + "start": 10203.25, + "end": 10205.22, + "probability": 0.8326 + }, + { + "start": 10205.43, + "end": 10205.83, + "probability": 0.9448 + }, + { + "start": 10206.17, + "end": 10207.73, + "probability": 0.9305 + }, + { + "start": 10208.07, + "end": 10208.75, + "probability": 0.9535 + }, + { + "start": 10208.79, + "end": 10210.07, + "probability": 0.7853 + }, + { + "start": 10210.15, + "end": 10211.01, + "probability": 0.9097 + }, + { + "start": 10211.95, + "end": 10213.25, + "probability": 0.7676 + }, + { + "start": 10213.31, + "end": 10215.89, + "probability": 0.9152 + }, + { + "start": 10216.69, + "end": 10218.15, + "probability": 0.9336 + }, + { + "start": 10218.89, + "end": 10222.65, + "probability": 0.9636 + }, + { + "start": 10223.13, + "end": 10224.69, + "probability": 0.9375 + }, + { + "start": 10225.03, + "end": 10226.49, + "probability": 0.9153 + }, + { + "start": 10226.87, + "end": 10227.85, + "probability": 0.9251 + }, + { + "start": 10227.89, + "end": 10229.07, + "probability": 0.9884 + }, + { + "start": 10229.09, + "end": 10230.74, + "probability": 0.9309 + }, + { + "start": 10230.85, + "end": 10232.15, + "probability": 0.9863 + }, + { + "start": 10232.61, + "end": 10234.43, + "probability": 0.9696 + }, + { + "start": 10234.53, + "end": 10234.77, + "probability": 0.6073 + }, + { + "start": 10234.85, + "end": 10235.53, + "probability": 0.9637 + }, + { + "start": 10235.81, + "end": 10236.75, + "probability": 0.7632 + }, + { + "start": 10236.83, + "end": 10237.91, + "probability": 0.9202 + }, + { + "start": 10238.07, + "end": 10238.49, + "probability": 0.6621 + }, + { + "start": 10239.03, + "end": 10240.41, + "probability": 0.7843 + }, + { + "start": 10241.05, + "end": 10242.27, + "probability": 0.6332 + }, + { + "start": 10243.19, + "end": 10244.47, + "probability": 0.5317 + }, + { + "start": 10244.87, + "end": 10246.31, + "probability": 0.5148 + }, + { + "start": 10246.97, + "end": 10247.75, + "probability": 0.744 + }, + { + "start": 10247.87, + "end": 10252.41, + "probability": 0.9056 + }, + { + "start": 10253.09, + "end": 10254.97, + "probability": 0.6627 + }, + { + "start": 10255.07, + "end": 10257.31, + "probability": 0.9674 + }, + { + "start": 10257.41, + "end": 10258.83, + "probability": 0.7647 + }, + { + "start": 10259.37, + "end": 10261.57, + "probability": 0.9908 + }, + { + "start": 10262.15, + "end": 10262.73, + "probability": 0.459 + }, + { + "start": 10262.85, + "end": 10263.75, + "probability": 0.7184 + }, + { + "start": 10264.59, + "end": 10268.59, + "probability": 0.6122 + }, + { + "start": 10268.81, + "end": 10271.83, + "probability": 0.9099 + }, + { + "start": 10272.77, + "end": 10274.81, + "probability": 0.8083 + }, + { + "start": 10274.89, + "end": 10275.31, + "probability": 0.456 + }, + { + "start": 10275.37, + "end": 10277.87, + "probability": 0.8637 + }, + { + "start": 10277.93, + "end": 10278.53, + "probability": 0.8581 + }, + { + "start": 10280.09, + "end": 10284.61, + "probability": 0.4869 + }, + { + "start": 10286.25, + "end": 10290.09, + "probability": 0.1126 + }, + { + "start": 10290.09, + "end": 10293.67, + "probability": 0.7166 + }, + { + "start": 10293.79, + "end": 10298.87, + "probability": 0.7955 + }, + { + "start": 10300.33, + "end": 10301.21, + "probability": 0.2534 + }, + { + "start": 10301.21, + "end": 10304.95, + "probability": 0.8417 + }, + { + "start": 10305.03, + "end": 10306.09, + "probability": 0.0819 + }, + { + "start": 10306.09, + "end": 10306.09, + "probability": 0.2783 + }, + { + "start": 10306.09, + "end": 10306.09, + "probability": 0.1717 + }, + { + "start": 10306.09, + "end": 10306.87, + "probability": 0.3092 + }, + { + "start": 10307.07, + "end": 10309.21, + "probability": 0.8683 + }, + { + "start": 10309.75, + "end": 10310.21, + "probability": 0.4939 + }, + { + "start": 10310.29, + "end": 10312.89, + "probability": 0.8613 + }, + { + "start": 10312.95, + "end": 10315.09, + "probability": 0.1173 + }, + { + "start": 10315.09, + "end": 10316.11, + "probability": 0.7988 + }, + { + "start": 10317.69, + "end": 10319.53, + "probability": 0.8789 + }, + { + "start": 10323.21, + "end": 10323.51, + "probability": 0.398 + }, + { + "start": 10324.03, + "end": 10326.31, + "probability": 0.7903 + }, + { + "start": 10326.47, + "end": 10326.95, + "probability": 0.0116 + }, + { + "start": 10327.83, + "end": 10328.05, + "probability": 0.0837 + }, + { + "start": 10328.05, + "end": 10329.05, + "probability": 0.6743 + }, + { + "start": 10331.05, + "end": 10332.19, + "probability": 0.821 + }, + { + "start": 10332.99, + "end": 10335.39, + "probability": 0.5487 + }, + { + "start": 10336.33, + "end": 10338.59, + "probability": 0.7346 + }, + { + "start": 10339.41, + "end": 10341.01, + "probability": 0.9521 + }, + { + "start": 10343.31, + "end": 10346.85, + "probability": 0.9954 + }, + { + "start": 10348.05, + "end": 10350.99, + "probability": 0.9371 + }, + { + "start": 10351.19, + "end": 10354.33, + "probability": 0.9897 + }, + { + "start": 10355.89, + "end": 10357.63, + "probability": 0.735 + }, + { + "start": 10358.65, + "end": 10359.61, + "probability": 0.9902 + }, + { + "start": 10360.29, + "end": 10364.05, + "probability": 0.9289 + }, + { + "start": 10364.89, + "end": 10368.21, + "probability": 0.9282 + }, + { + "start": 10368.69, + "end": 10370.05, + "probability": 0.9747 + }, + { + "start": 10371.19, + "end": 10372.97, + "probability": 0.9692 + }, + { + "start": 10373.07, + "end": 10377.43, + "probability": 0.8306 + }, + { + "start": 10377.59, + "end": 10379.65, + "probability": 0.9951 + }, + { + "start": 10380.17, + "end": 10382.13, + "probability": 0.9853 + }, + { + "start": 10382.27, + "end": 10383.61, + "probability": 0.9833 + }, + { + "start": 10383.93, + "end": 10389.77, + "probability": 0.9754 + }, + { + "start": 10390.89, + "end": 10391.41, + "probability": 0.6909 + }, + { + "start": 10392.11, + "end": 10394.73, + "probability": 0.7609 + }, + { + "start": 10395.29, + "end": 10398.17, + "probability": 0.9758 + }, + { + "start": 10399.07, + "end": 10399.93, + "probability": 0.5477 + }, + { + "start": 10401.41, + "end": 10402.51, + "probability": 0.7262 + }, + { + "start": 10403.49, + "end": 10407.35, + "probability": 0.989 + }, + { + "start": 10408.09, + "end": 10409.01, + "probability": 0.9889 + }, + { + "start": 10409.71, + "end": 10410.89, + "probability": 0.9844 + }, + { + "start": 10412.33, + "end": 10415.43, + "probability": 0.9167 + }, + { + "start": 10416.97, + "end": 10420.0, + "probability": 0.9878 + }, + { + "start": 10421.85, + "end": 10425.43, + "probability": 0.9461 + }, + { + "start": 10426.51, + "end": 10430.25, + "probability": 0.9854 + }, + { + "start": 10431.31, + "end": 10434.73, + "probability": 0.8579 + }, + { + "start": 10435.81, + "end": 10439.15, + "probability": 0.9441 + }, + { + "start": 10439.77, + "end": 10441.09, + "probability": 0.8652 + }, + { + "start": 10441.51, + "end": 10447.35, + "probability": 0.9968 + }, + { + "start": 10448.63, + "end": 10449.81, + "probability": 0.7618 + }, + { + "start": 10450.51, + "end": 10453.75, + "probability": 0.9564 + }, + { + "start": 10453.95, + "end": 10455.09, + "probability": 0.9648 + }, + { + "start": 10455.97, + "end": 10458.51, + "probability": 0.9706 + }, + { + "start": 10459.45, + "end": 10460.71, + "probability": 0.5625 + }, + { + "start": 10462.21, + "end": 10464.39, + "probability": 0.7806 + }, + { + "start": 10464.87, + "end": 10465.71, + "probability": 0.9103 + }, + { + "start": 10465.77, + "end": 10469.33, + "probability": 0.8952 + }, + { + "start": 10470.13, + "end": 10472.79, + "probability": 0.9589 + }, + { + "start": 10474.05, + "end": 10475.99, + "probability": 0.8872 + }, + { + "start": 10477.09, + "end": 10479.63, + "probability": 0.8916 + }, + { + "start": 10480.45, + "end": 10483.31, + "probability": 0.9481 + }, + { + "start": 10484.09, + "end": 10484.96, + "probability": 0.5523 + }, + { + "start": 10485.39, + "end": 10487.71, + "probability": 0.9558 + }, + { + "start": 10488.91, + "end": 10492.29, + "probability": 0.9585 + }, + { + "start": 10492.99, + "end": 10494.13, + "probability": 0.9858 + }, + { + "start": 10494.31, + "end": 10497.23, + "probability": 0.9188 + }, + { + "start": 10497.89, + "end": 10499.06, + "probability": 0.9956 + }, + { + "start": 10499.99, + "end": 10501.21, + "probability": 0.9613 + }, + { + "start": 10501.59, + "end": 10503.53, + "probability": 0.5472 + }, + { + "start": 10503.57, + "end": 10505.57, + "probability": 0.7736 + }, + { + "start": 10505.87, + "end": 10505.89, + "probability": 0.3502 + }, + { + "start": 10505.99, + "end": 10507.91, + "probability": 0.2 + }, + { + "start": 10508.13, + "end": 10508.89, + "probability": 0.0185 + }, + { + "start": 10509.01, + "end": 10510.07, + "probability": 0.3991 + }, + { + "start": 10510.17, + "end": 10510.61, + "probability": 0.0546 + }, + { + "start": 10511.67, + "end": 10511.77, + "probability": 0.398 + }, + { + "start": 10512.31, + "end": 10512.31, + "probability": 0.0467 + }, + { + "start": 10512.31, + "end": 10512.31, + "probability": 0.2203 + }, + { + "start": 10512.31, + "end": 10512.31, + "probability": 0.0818 + }, + { + "start": 10512.31, + "end": 10514.31, + "probability": 0.7126 + }, + { + "start": 10514.41, + "end": 10516.23, + "probability": 0.8007 + }, + { + "start": 10516.73, + "end": 10521.65, + "probability": 0.9901 + }, + { + "start": 10522.17, + "end": 10525.59, + "probability": 0.9775 + }, + { + "start": 10526.51, + "end": 10530.47, + "probability": 0.9314 + }, + { + "start": 10530.51, + "end": 10534.43, + "probability": 0.9936 + }, + { + "start": 10534.81, + "end": 10537.87, + "probability": 0.937 + }, + { + "start": 10537.99, + "end": 10538.07, + "probability": 0.1208 + }, + { + "start": 10538.07, + "end": 10538.75, + "probability": 0.7797 + }, + { + "start": 10538.85, + "end": 10539.52, + "probability": 0.8716 + }, + { + "start": 10540.43, + "end": 10544.11, + "probability": 0.6063 + }, + { + "start": 10544.11, + "end": 10548.23, + "probability": 0.9226 + }, + { + "start": 10548.51, + "end": 10549.55, + "probability": 0.4928 + }, + { + "start": 10549.59, + "end": 10550.21, + "probability": 0.6806 + }, + { + "start": 10550.29, + "end": 10550.99, + "probability": 0.8288 + }, + { + "start": 10551.45, + "end": 10554.53, + "probability": 0.9941 + }, + { + "start": 10554.61, + "end": 10555.17, + "probability": 0.6183 + }, + { + "start": 10555.27, + "end": 10557.57, + "probability": 0.7612 + }, + { + "start": 10557.67, + "end": 10559.91, + "probability": 0.9811 + }, + { + "start": 10560.01, + "end": 10563.65, + "probability": 0.9936 + }, + { + "start": 10563.87, + "end": 10564.67, + "probability": 0.9419 + }, + { + "start": 10564.97, + "end": 10566.25, + "probability": 0.9697 + }, + { + "start": 10566.87, + "end": 10568.57, + "probability": 0.4178 + }, + { + "start": 10568.87, + "end": 10572.03, + "probability": 0.8333 + }, + { + "start": 10572.23, + "end": 10573.19, + "probability": 0.6299 + }, + { + "start": 10573.39, + "end": 10575.81, + "probability": 0.4248 + }, + { + "start": 10575.87, + "end": 10576.37, + "probability": 0.8305 + }, + { + "start": 10576.69, + "end": 10577.93, + "probability": 0.7091 + }, + { + "start": 10578.23, + "end": 10582.63, + "probability": 0.6979 + }, + { + "start": 10582.75, + "end": 10585.33, + "probability": 0.7944 + }, + { + "start": 10585.67, + "end": 10586.15, + "probability": 0.6575 + }, + { + "start": 10586.33, + "end": 10588.15, + "probability": 0.9808 + }, + { + "start": 10588.31, + "end": 10588.65, + "probability": 0.5508 + }, + { + "start": 10588.67, + "end": 10590.13, + "probability": 0.7972 + }, + { + "start": 10590.23, + "end": 10592.33, + "probability": 0.9802 + }, + { + "start": 10592.37, + "end": 10593.95, + "probability": 0.7742 + }, + { + "start": 10594.53, + "end": 10595.47, + "probability": 0.7752 + }, + { + "start": 10596.69, + "end": 10597.53, + "probability": 0.2958 + }, + { + "start": 10597.57, + "end": 10598.93, + "probability": 0.7817 + }, + { + "start": 10602.83, + "end": 10605.35, + "probability": 0.5689 + }, + { + "start": 10606.19, + "end": 10608.41, + "probability": 0.9982 + }, + { + "start": 10608.69, + "end": 10609.49, + "probability": 0.462 + }, + { + "start": 10609.55, + "end": 10610.01, + "probability": 0.4661 + }, + { + "start": 10610.01, + "end": 10610.15, + "probability": 0.1133 + }, + { + "start": 10610.79, + "end": 10612.61, + "probability": 0.4721 + }, + { + "start": 10613.29, + "end": 10613.63, + "probability": 0.541 + }, + { + "start": 10614.97, + "end": 10615.67, + "probability": 0.7176 + }, + { + "start": 10615.99, + "end": 10623.57, + "probability": 0.3608 + }, + { + "start": 10624.07, + "end": 10624.53, + "probability": 0.2782 + }, + { + "start": 10625.07, + "end": 10628.37, + "probability": 0.3205 + }, + { + "start": 10628.87, + "end": 10629.83, + "probability": 0.4179 + }, + { + "start": 10629.93, + "end": 10631.85, + "probability": 0.7024 + }, + { + "start": 10632.03, + "end": 10633.15, + "probability": 0.9053 + }, + { + "start": 10633.23, + "end": 10636.33, + "probability": 0.6253 + }, + { + "start": 10636.37, + "end": 10637.61, + "probability": 0.8945 + }, + { + "start": 10637.93, + "end": 10639.81, + "probability": 0.8923 + }, + { + "start": 10640.11, + "end": 10640.59, + "probability": 0.5082 + }, + { + "start": 10640.63, + "end": 10641.45, + "probability": 0.8326 + }, + { + "start": 10641.53, + "end": 10642.11, + "probability": 0.4876 + }, + { + "start": 10642.29, + "end": 10643.23, + "probability": 0.5234 + }, + { + "start": 10643.55, + "end": 10645.21, + "probability": 0.8447 + }, + { + "start": 10645.37, + "end": 10646.19, + "probability": 0.7467 + }, + { + "start": 10646.35, + "end": 10647.17, + "probability": 0.8185 + }, + { + "start": 10647.31, + "end": 10650.51, + "probability": 0.9609 + }, + { + "start": 10650.67, + "end": 10651.85, + "probability": 0.8818 + }, + { + "start": 10652.35, + "end": 10654.45, + "probability": 0.7713 + }, + { + "start": 10656.87, + "end": 10658.47, + "probability": 0.1285 + }, + { + "start": 10659.13, + "end": 10661.97, + "probability": 0.9919 + }, + { + "start": 10662.35, + "end": 10665.33, + "probability": 0.9234 + }, + { + "start": 10665.53, + "end": 10666.95, + "probability": 0.9004 + }, + { + "start": 10667.71, + "end": 10668.97, + "probability": 0.8187 + }, + { + "start": 10670.61, + "end": 10676.73, + "probability": 0.8406 + }, + { + "start": 10677.47, + "end": 10679.92, + "probability": 0.7269 + }, + { + "start": 10681.25, + "end": 10686.07, + "probability": 0.7402 + }, + { + "start": 10688.29, + "end": 10689.89, + "probability": 0.654 + }, + { + "start": 10690.63, + "end": 10691.93, + "probability": 0.7806 + }, + { + "start": 10692.87, + "end": 10696.46, + "probability": 0.7805 + }, + { + "start": 10697.69, + "end": 10704.23, + "probability": 0.938 + }, + { + "start": 10705.17, + "end": 10706.47, + "probability": 0.9309 + }, + { + "start": 10706.59, + "end": 10708.45, + "probability": 0.9784 + }, + { + "start": 10708.75, + "end": 10714.39, + "probability": 0.9529 + }, + { + "start": 10714.77, + "end": 10716.18, + "probability": 0.9976 + }, + { + "start": 10716.93, + "end": 10717.19, + "probability": 0.235 + }, + { + "start": 10717.67, + "end": 10719.87, + "probability": 0.0176 + }, + { + "start": 10720.09, + "end": 10721.35, + "probability": 0.1969 + }, + { + "start": 10721.85, + "end": 10726.95, + "probability": 0.0677 + }, + { + "start": 10727.39, + "end": 10729.47, + "probability": 0.8303 + }, + { + "start": 10729.67, + "end": 10730.93, + "probability": 0.9142 + }, + { + "start": 10731.89, + "end": 10733.53, + "probability": 0.7309 + }, + { + "start": 10734.17, + "end": 10736.27, + "probability": 0.8832 + }, + { + "start": 10736.47, + "end": 10739.59, + "probability": 0.9308 + }, + { + "start": 10741.09, + "end": 10745.55, + "probability": 0.5273 + }, + { + "start": 10745.79, + "end": 10749.25, + "probability": 0.8414 + }, + { + "start": 10749.91, + "end": 10753.71, + "probability": 0.8273 + }, + { + "start": 10753.93, + "end": 10756.73, + "probability": 0.9831 + }, + { + "start": 10757.65, + "end": 10758.65, + "probability": 0.9456 + }, + { + "start": 10759.19, + "end": 10759.68, + "probability": 0.9112 + }, + { + "start": 10761.01, + "end": 10762.44, + "probability": 0.8606 + }, + { + "start": 10763.09, + "end": 10767.27, + "probability": 0.9706 + }, + { + "start": 10768.21, + "end": 10770.99, + "probability": 0.9926 + }, + { + "start": 10771.51, + "end": 10773.47, + "probability": 0.915 + }, + { + "start": 10774.09, + "end": 10775.77, + "probability": 0.9917 + }, + { + "start": 10776.17, + "end": 10778.73, + "probability": 0.9917 + }, + { + "start": 10779.53, + "end": 10781.19, + "probability": 0.9995 + }, + { + "start": 10781.81, + "end": 10783.19, + "probability": 0.4822 + }, + { + "start": 10783.57, + "end": 10786.11, + "probability": 0.993 + }, + { + "start": 10788.49, + "end": 10790.53, + "probability": 0.6415 + }, + { + "start": 10791.23, + "end": 10794.91, + "probability": 0.6141 + }, + { + "start": 10796.81, + "end": 10799.44, + "probability": 0.4801 + }, + { + "start": 10800.17, + "end": 10803.17, + "probability": 0.7642 + }, + { + "start": 10805.83, + "end": 10806.81, + "probability": 0.2959 + }, + { + "start": 10808.63, + "end": 10810.03, + "probability": 0.8151 + }, + { + "start": 10813.69, + "end": 10814.89, + "probability": 0.6353 + }, + { + "start": 10814.95, + "end": 10818.03, + "probability": 0.915 + }, + { + "start": 10818.03, + "end": 10821.09, + "probability": 0.8516 + }, + { + "start": 10821.19, + "end": 10821.99, + "probability": 0.7413 + }, + { + "start": 10822.29, + "end": 10823.23, + "probability": 0.9661 + }, + { + "start": 10824.17, + "end": 10825.37, + "probability": 0.9579 + }, + { + "start": 10827.37, + "end": 10830.25, + "probability": 0.841 + }, + { + "start": 10831.71, + "end": 10837.17, + "probability": 0.9818 + }, + { + "start": 10837.85, + "end": 10839.27, + "probability": 0.6648 + }, + { + "start": 10839.75, + "end": 10842.75, + "probability": 0.7451 + }, + { + "start": 10842.83, + "end": 10844.53, + "probability": 0.9305 + }, + { + "start": 10844.81, + "end": 10848.17, + "probability": 0.8157 + }, + { + "start": 10849.63, + "end": 10855.03, + "probability": 0.8738 + }, + { + "start": 10855.31, + "end": 10858.65, + "probability": 0.6612 + }, + { + "start": 10859.29, + "end": 10860.9, + "probability": 0.7416 + }, + { + "start": 10861.81, + "end": 10867.03, + "probability": 0.845 + }, + { + "start": 10867.15, + "end": 10868.59, + "probability": 0.9883 + }, + { + "start": 10869.47, + "end": 10871.85, + "probability": 0.9236 + }, + { + "start": 10871.95, + "end": 10874.43, + "probability": 0.5666 + }, + { + "start": 10875.39, + "end": 10878.79, + "probability": 0.6611 + }, + { + "start": 10879.33, + "end": 10882.61, + "probability": 0.8596 + }, + { + "start": 10883.21, + "end": 10883.21, + "probability": 0.1297 + }, + { + "start": 10883.21, + "end": 10885.55, + "probability": 0.958 + }, + { + "start": 10886.75, + "end": 10890.13, + "probability": 0.8414 + }, + { + "start": 10890.23, + "end": 10893.15, + "probability": 0.6393 + }, + { + "start": 10893.97, + "end": 10895.33, + "probability": 0.8339 + }, + { + "start": 10895.63, + "end": 10897.19, + "probability": 0.9965 + }, + { + "start": 10897.65, + "end": 10900.97, + "probability": 0.9077 + }, + { + "start": 10901.39, + "end": 10907.23, + "probability": 0.9938 + }, + { + "start": 10907.23, + "end": 10914.15, + "probability": 0.9909 + }, + { + "start": 10914.29, + "end": 10915.23, + "probability": 0.8499 + }, + { + "start": 10915.47, + "end": 10916.17, + "probability": 0.7695 + }, + { + "start": 10916.37, + "end": 10918.27, + "probability": 0.9556 + }, + { + "start": 10919.43, + "end": 10920.05, + "probability": 0.4044 + }, + { + "start": 10920.45, + "end": 10922.73, + "probability": 0.6581 + }, + { + "start": 10926.25, + "end": 10927.09, + "probability": 0.9943 + }, + { + "start": 10927.95, + "end": 10928.29, + "probability": 0.8705 + }, + { + "start": 10930.81, + "end": 10932.25, + "probability": 0.6999 + }, + { + "start": 10932.47, + "end": 10932.57, + "probability": 0.3723 + }, + { + "start": 10932.63, + "end": 10933.23, + "probability": 0.6134 + }, + { + "start": 10933.33, + "end": 10934.43, + "probability": 0.7233 + }, + { + "start": 10935.19, + "end": 10939.29, + "probability": 0.8284 + }, + { + "start": 10939.81, + "end": 10942.65, + "probability": 0.9274 + }, + { + "start": 10943.75, + "end": 10946.36, + "probability": 0.9929 + }, + { + "start": 10946.95, + "end": 10952.13, + "probability": 0.7952 + }, + { + "start": 10952.49, + "end": 10952.98, + "probability": 0.5859 + }, + { + "start": 10953.23, + "end": 10954.77, + "probability": 0.5263 + }, + { + "start": 10954.87, + "end": 10956.07, + "probability": 0.9697 + }, + { + "start": 10956.21, + "end": 10957.65, + "probability": 0.878 + }, + { + "start": 10958.35, + "end": 10961.65, + "probability": 0.9253 + }, + { + "start": 10962.25, + "end": 10964.29, + "probability": 0.7462 + }, + { + "start": 10964.91, + "end": 10969.61, + "probability": 0.8967 + }, + { + "start": 10970.63, + "end": 10973.49, + "probability": 0.9394 + }, + { + "start": 10974.41, + "end": 10977.65, + "probability": 0.8023 + }, + { + "start": 10977.73, + "end": 10979.77, + "probability": 0.7361 + }, + { + "start": 10980.21, + "end": 10983.15, + "probability": 0.9553 + }, + { + "start": 10984.23, + "end": 10985.66, + "probability": 0.9523 + }, + { + "start": 10986.09, + "end": 10987.35, + "probability": 0.9592 + }, + { + "start": 10987.59, + "end": 10991.63, + "probability": 0.957 + }, + { + "start": 10992.11, + "end": 10994.23, + "probability": 0.8337 + }, + { + "start": 10994.73, + "end": 11001.61, + "probability": 0.8549 + }, + { + "start": 11002.45, + "end": 11003.33, + "probability": 0.7155 + }, + { + "start": 11003.85, + "end": 11009.57, + "probability": 0.9863 + }, + { + "start": 11009.93, + "end": 11010.95, + "probability": 0.9566 + }, + { + "start": 11011.13, + "end": 11013.97, + "probability": 0.9963 + }, + { + "start": 11014.63, + "end": 11017.53, + "probability": 0.9047 + }, + { + "start": 11017.61, + "end": 11018.85, + "probability": 0.9689 + }, + { + "start": 11019.31, + "end": 11020.97, + "probability": 0.9949 + }, + { + "start": 11021.71, + "end": 11022.49, + "probability": 0.7214 + }, + { + "start": 11022.69, + "end": 11023.81, + "probability": 0.9916 + }, + { + "start": 11024.09, + "end": 11025.19, + "probability": 0.9425 + }, + { + "start": 11025.67, + "end": 11026.79, + "probability": 0.5894 + }, + { + "start": 11027.43, + "end": 11028.69, + "probability": 0.9448 + }, + { + "start": 11029.17, + "end": 11030.67, + "probability": 0.7866 + }, + { + "start": 11031.13, + "end": 11032.41, + "probability": 0.9607 + }, + { + "start": 11032.53, + "end": 11034.1, + "probability": 0.791 + }, + { + "start": 11034.57, + "end": 11036.12, + "probability": 0.9609 + }, + { + "start": 11036.69, + "end": 11037.89, + "probability": 0.9602 + }, + { + "start": 11038.47, + "end": 11040.45, + "probability": 0.7493 + }, + { + "start": 11041.01, + "end": 11043.43, + "probability": 0.9124 + }, + { + "start": 11043.93, + "end": 11047.13, + "probability": 0.9282 + }, + { + "start": 11047.15, + "end": 11049.87, + "probability": 0.9517 + }, + { + "start": 11050.21, + "end": 11053.51, + "probability": 0.918 + }, + { + "start": 11053.85, + "end": 11055.59, + "probability": 0.9849 + }, + { + "start": 11055.77, + "end": 11057.69, + "probability": 0.9871 + }, + { + "start": 11058.49, + "end": 11059.67, + "probability": 0.9917 + }, + { + "start": 11059.77, + "end": 11062.53, + "probability": 0.9961 + }, + { + "start": 11063.03, + "end": 11064.45, + "probability": 0.6792 + }, + { + "start": 11064.91, + "end": 11066.83, + "probability": 0.8086 + }, + { + "start": 11066.97, + "end": 11067.93, + "probability": 0.7113 + }, + { + "start": 11068.07, + "end": 11069.79, + "probability": 0.8397 + }, + { + "start": 11070.15, + "end": 11071.95, + "probability": 0.8346 + }, + { + "start": 11072.35, + "end": 11073.11, + "probability": 0.8148 + }, + { + "start": 11073.47, + "end": 11075.37, + "probability": 0.9682 + }, + { + "start": 11075.55, + "end": 11077.53, + "probability": 0.663 + }, + { + "start": 11078.27, + "end": 11084.74, + "probability": 0.6691 + }, + { + "start": 11085.03, + "end": 11086.07, + "probability": 0.676 + }, + { + "start": 11086.41, + "end": 11086.73, + "probability": 0.3925 + }, + { + "start": 11086.91, + "end": 11087.85, + "probability": 0.7731 + }, + { + "start": 11088.21, + "end": 11092.41, + "probability": 0.8911 + }, + { + "start": 11092.87, + "end": 11094.87, + "probability": 0.9255 + }, + { + "start": 11095.01, + "end": 11097.03, + "probability": 0.813 + }, + { + "start": 11097.25, + "end": 11098.53, + "probability": 0.8519 + }, + { + "start": 11098.79, + "end": 11099.47, + "probability": 0.8392 + }, + { + "start": 11099.53, + "end": 11100.33, + "probability": 0.8986 + }, + { + "start": 11100.61, + "end": 11101.29, + "probability": 0.7325 + }, + { + "start": 11101.97, + "end": 11104.65, + "probability": 0.8925 + }, + { + "start": 11104.69, + "end": 11105.93, + "probability": 0.9475 + }, + { + "start": 11106.55, + "end": 11108.17, + "probability": 0.8638 + }, + { + "start": 11108.21, + "end": 11109.41, + "probability": 0.9463 + }, + { + "start": 11109.57, + "end": 11110.4, + "probability": 0.9868 + }, + { + "start": 11110.73, + "end": 11111.51, + "probability": 0.6425 + }, + { + "start": 11111.73, + "end": 11112.73, + "probability": 0.9097 + }, + { + "start": 11113.17, + "end": 11116.09, + "probability": 0.9526 + }, + { + "start": 11116.35, + "end": 11118.25, + "probability": 0.9629 + }, + { + "start": 11118.33, + "end": 11120.16, + "probability": 0.9618 + }, + { + "start": 11120.41, + "end": 11122.17, + "probability": 0.915 + }, + { + "start": 11122.27, + "end": 11122.71, + "probability": 0.7875 + }, + { + "start": 11123.05, + "end": 11124.91, + "probability": 0.8177 + }, + { + "start": 11125.41, + "end": 11125.93, + "probability": 0.5839 + }, + { + "start": 11125.99, + "end": 11126.97, + "probability": 0.586 + }, + { + "start": 11127.39, + "end": 11131.55, + "probability": 0.9197 + }, + { + "start": 11131.61, + "end": 11132.01, + "probability": 0.7829 + }, + { + "start": 11132.51, + "end": 11134.25, + "probability": 0.9741 + }, + { + "start": 11135.11, + "end": 11137.51, + "probability": 0.8924 + }, + { + "start": 11137.53, + "end": 11138.45, + "probability": 0.695 + }, + { + "start": 11149.77, + "end": 11151.09, + "probability": 0.509 + }, + { + "start": 11152.03, + "end": 11159.19, + "probability": 0.8468 + }, + { + "start": 11159.27, + "end": 11159.85, + "probability": 0.4204 + }, + { + "start": 11160.79, + "end": 11163.23, + "probability": 0.9433 + }, + { + "start": 11164.13, + "end": 11165.31, + "probability": 0.9807 + }, + { + "start": 11166.51, + "end": 11169.69, + "probability": 0.7285 + }, + { + "start": 11169.83, + "end": 11173.31, + "probability": 0.5691 + }, + { + "start": 11173.45, + "end": 11176.49, + "probability": 0.8152 + }, + { + "start": 11177.11, + "end": 11180.11, + "probability": 0.9713 + }, + { + "start": 11180.67, + "end": 11183.31, + "probability": 0.9781 + }, + { + "start": 11183.47, + "end": 11185.49, + "probability": 0.765 + }, + { + "start": 11186.17, + "end": 11191.83, + "probability": 0.9907 + }, + { + "start": 11192.33, + "end": 11193.53, + "probability": 0.5869 + }, + { + "start": 11193.61, + "end": 11194.05, + "probability": 0.5287 + }, + { + "start": 11194.13, + "end": 11194.83, + "probability": 0.8735 + }, + { + "start": 11196.37, + "end": 11197.48, + "probability": 0.3184 + }, + { + "start": 11198.37, + "end": 11203.07, + "probability": 0.9486 + }, + { + "start": 11203.15, + "end": 11203.65, + "probability": 0.543 + }, + { + "start": 11204.29, + "end": 11207.51, + "probability": 0.9797 + }, + { + "start": 11207.85, + "end": 11210.85, + "probability": 0.8612 + }, + { + "start": 11211.47, + "end": 11216.77, + "probability": 0.9831 + }, + { + "start": 11217.33, + "end": 11218.2, + "probability": 0.9545 + }, + { + "start": 11218.85, + "end": 11223.15, + "probability": 0.8576 + }, + { + "start": 11223.69, + "end": 11226.11, + "probability": 0.7238 + }, + { + "start": 11226.55, + "end": 11226.97, + "probability": 0.8085 + }, + { + "start": 11227.09, + "end": 11227.37, + "probability": 0.7566 + }, + { + "start": 11227.47, + "end": 11227.71, + "probability": 0.5522 + }, + { + "start": 11227.85, + "end": 11228.23, + "probability": 0.818 + }, + { + "start": 11228.47, + "end": 11231.47, + "probability": 0.9254 + }, + { + "start": 11231.87, + "end": 11234.29, + "probability": 0.5873 + }, + { + "start": 11235.27, + "end": 11240.05, + "probability": 0.6001 + }, + { + "start": 11240.11, + "end": 11241.01, + "probability": 0.9001 + }, + { + "start": 11242.33, + "end": 11244.17, + "probability": 0.1145 + }, + { + "start": 11244.39, + "end": 11245.8, + "probability": 0.6528 + }, + { + "start": 11245.93, + "end": 11246.41, + "probability": 0.2162 + }, + { + "start": 11246.65, + "end": 11249.79, + "probability": 0.5712 + }, + { + "start": 11249.79, + "end": 11250.27, + "probability": 0.4749 + }, + { + "start": 11250.53, + "end": 11254.09, + "probability": 0.9505 + }, + { + "start": 11254.85, + "end": 11257.83, + "probability": 0.6542 + }, + { + "start": 11257.95, + "end": 11259.99, + "probability": 0.9494 + }, + { + "start": 11260.97, + "end": 11263.57, + "probability": 0.7585 + }, + { + "start": 11264.33, + "end": 11267.37, + "probability": 0.3462 + }, + { + "start": 11267.55, + "end": 11270.09, + "probability": 0.9624 + }, + { + "start": 11270.67, + "end": 11271.63, + "probability": 0.6584 + }, + { + "start": 11271.75, + "end": 11273.59, + "probability": 0.9352 + }, + { + "start": 11273.69, + "end": 11274.95, + "probability": 0.6567 + }, + { + "start": 11275.39, + "end": 11276.53, + "probability": 0.0837 + }, + { + "start": 11276.53, + "end": 11279.45, + "probability": 0.6396 + }, + { + "start": 11279.45, + "end": 11282.29, + "probability": 0.856 + }, + { + "start": 11282.97, + "end": 11283.81, + "probability": 0.492 + }, + { + "start": 11284.65, + "end": 11288.53, + "probability": 0.8592 + }, + { + "start": 11288.61, + "end": 11290.01, + "probability": 0.8801 + }, + { + "start": 11290.13, + "end": 11291.59, + "probability": 0.8765 + }, + { + "start": 11292.11, + "end": 11294.83, + "probability": 0.8763 + }, + { + "start": 11295.19, + "end": 11296.61, + "probability": 0.6195 + }, + { + "start": 11297.07, + "end": 11298.35, + "probability": 0.8254 + }, + { + "start": 11298.81, + "end": 11300.33, + "probability": 0.7688 + }, + { + "start": 11300.47, + "end": 11304.43, + "probability": 0.8637 + }, + { + "start": 11304.93, + "end": 11307.65, + "probability": 0.9746 + }, + { + "start": 11307.77, + "end": 11308.33, + "probability": 0.5886 + }, + { + "start": 11308.69, + "end": 11311.32, + "probability": 0.7695 + }, + { + "start": 11312.33, + "end": 11314.91, + "probability": 0.7438 + }, + { + "start": 11315.43, + "end": 11320.55, + "probability": 0.774 + }, + { + "start": 11320.67, + "end": 11323.99, + "probability": 0.8591 + }, + { + "start": 11324.09, + "end": 11326.43, + "probability": 0.8853 + }, + { + "start": 11326.59, + "end": 11327.03, + "probability": 0.725 + }, + { + "start": 11328.15, + "end": 11330.17, + "probability": 0.8826 + }, + { + "start": 11330.61, + "end": 11332.17, + "probability": 0.7358 + }, + { + "start": 11332.27, + "end": 11335.15, + "probability": 0.9574 + }, + { + "start": 11335.43, + "end": 11341.27, + "probability": 0.6262 + }, + { + "start": 11341.89, + "end": 11346.95, + "probability": 0.9785 + }, + { + "start": 11347.09, + "end": 11347.33, + "probability": 0.712 + }, + { + "start": 11347.75, + "end": 11349.58, + "probability": 0.9885 + }, + { + "start": 11349.65, + "end": 11351.27, + "probability": 0.8458 + }, + { + "start": 11351.69, + "end": 11354.05, + "probability": 0.873 + }, + { + "start": 11354.33, + "end": 11355.71, + "probability": 0.6549 + }, + { + "start": 11355.79, + "end": 11355.97, + "probability": 0.5945 + }, + { + "start": 11356.27, + "end": 11358.27, + "probability": 0.5842 + }, + { + "start": 11358.33, + "end": 11361.59, + "probability": 0.26 + }, + { + "start": 11361.93, + "end": 11362.86, + "probability": 0.0748 + }, + { + "start": 11363.79, + "end": 11367.57, + "probability": 0.8289 + }, + { + "start": 11367.89, + "end": 11369.11, + "probability": 0.7864 + }, + { + "start": 11369.29, + "end": 11371.55, + "probability": 0.9466 + }, + { + "start": 11371.69, + "end": 11373.75, + "probability": 0.7498 + }, + { + "start": 11373.75, + "end": 11377.89, + "probability": 0.9049 + }, + { + "start": 11378.59, + "end": 11380.01, + "probability": 0.9111 + }, + { + "start": 11380.11, + "end": 11381.61, + "probability": 0.9777 + }, + { + "start": 11382.01, + "end": 11382.63, + "probability": 0.3199 + }, + { + "start": 11382.67, + "end": 11384.87, + "probability": 0.5993 + }, + { + "start": 11385.77, + "end": 11386.01, + "probability": 0.779 + }, + { + "start": 11387.11, + "end": 11389.01, + "probability": 0.2638 + }, + { + "start": 11389.55, + "end": 11390.59, + "probability": 0.6196 + }, + { + "start": 11390.81, + "end": 11391.72, + "probability": 0.9723 + }, + { + "start": 11392.29, + "end": 11394.01, + "probability": 0.7686 + }, + { + "start": 11394.11, + "end": 11395.93, + "probability": 0.9454 + }, + { + "start": 11396.13, + "end": 11401.1, + "probability": 0.9639 + }, + { + "start": 11401.47, + "end": 11402.83, + "probability": 0.7243 + }, + { + "start": 11405.65, + "end": 11409.05, + "probability": 0.8285 + }, + { + "start": 11410.17, + "end": 11411.33, + "probability": 0.8075 + }, + { + "start": 11411.49, + "end": 11416.47, + "probability": 0.8539 + }, + { + "start": 11416.83, + "end": 11417.55, + "probability": 0.8157 + }, + { + "start": 11417.71, + "end": 11419.17, + "probability": 0.5816 + }, + { + "start": 11419.89, + "end": 11424.17, + "probability": 0.9044 + }, + { + "start": 11424.67, + "end": 11429.37, + "probability": 0.9971 + }, + { + "start": 11431.05, + "end": 11436.07, + "probability": 0.9688 + }, + { + "start": 11436.07, + "end": 11440.63, + "probability": 0.976 + }, + { + "start": 11440.69, + "end": 11441.87, + "probability": 0.5806 + }, + { + "start": 11441.93, + "end": 11444.01, + "probability": 0.9097 + }, + { + "start": 11445.45, + "end": 11447.53, + "probability": 0.8416 + }, + { + "start": 11449.07, + "end": 11450.71, + "probability": 0.9453 + }, + { + "start": 11451.37, + "end": 11451.49, + "probability": 0.1944 + }, + { + "start": 11451.49, + "end": 11456.75, + "probability": 0.9116 + }, + { + "start": 11457.07, + "end": 11459.55, + "probability": 0.907 + }, + { + "start": 11460.29, + "end": 11462.65, + "probability": 0.8472 + }, + { + "start": 11463.19, + "end": 11464.19, + "probability": 0.7419 + }, + { + "start": 11464.59, + "end": 11467.49, + "probability": 0.9192 + }, + { + "start": 11467.69, + "end": 11468.69, + "probability": 0.7171 + }, + { + "start": 11469.33, + "end": 11471.89, + "probability": 0.5936 + }, + { + "start": 11472.27, + "end": 11475.02, + "probability": 0.9722 + }, + { + "start": 11475.71, + "end": 11479.71, + "probability": 0.9962 + }, + { + "start": 11481.03, + "end": 11484.01, + "probability": 0.8843 + }, + { + "start": 11484.37, + "end": 11487.87, + "probability": 0.8711 + }, + { + "start": 11487.97, + "end": 11489.07, + "probability": 0.4953 + }, + { + "start": 11489.43, + "end": 11491.53, + "probability": 0.7249 + }, + { + "start": 11491.89, + "end": 11491.89, + "probability": 0.4065 + }, + { + "start": 11492.15, + "end": 11495.37, + "probability": 0.9888 + }, + { + "start": 11495.95, + "end": 11499.05, + "probability": 0.981 + }, + { + "start": 11499.59, + "end": 11502.45, + "probability": 0.8967 + }, + { + "start": 11502.55, + "end": 11503.83, + "probability": 0.0133 + }, + { + "start": 11503.83, + "end": 11504.97, + "probability": 0.5667 + }, + { + "start": 11505.01, + "end": 11505.97, + "probability": 0.7333 + }, + { + "start": 11506.71, + "end": 11512.77, + "probability": 0.9659 + }, + { + "start": 11513.35, + "end": 11514.49, + "probability": 0.7408 + }, + { + "start": 11514.57, + "end": 11514.93, + "probability": 0.223 + }, + { + "start": 11514.95, + "end": 11516.61, + "probability": 0.494 + }, + { + "start": 11516.87, + "end": 11519.87, + "probability": 0.4616 + }, + { + "start": 11519.93, + "end": 11520.71, + "probability": 0.3712 + }, + { + "start": 11520.87, + "end": 11522.55, + "probability": 0.9194 + }, + { + "start": 11522.57, + "end": 11523.49, + "probability": 0.6792 + }, + { + "start": 11523.89, + "end": 11525.81, + "probability": 0.821 + }, + { + "start": 11525.95, + "end": 11526.61, + "probability": 0.7937 + }, + { + "start": 11526.77, + "end": 11528.67, + "probability": 0.9762 + }, + { + "start": 11529.19, + "end": 11530.19, + "probability": 0.7683 + }, + { + "start": 11530.21, + "end": 11533.25, + "probability": 0.9912 + }, + { + "start": 11533.25, + "end": 11533.41, + "probability": 0.2785 + }, + { + "start": 11533.41, + "end": 11533.59, + "probability": 0.5875 + }, + { + "start": 11533.65, + "end": 11534.87, + "probability": 0.9607 + }, + { + "start": 11534.89, + "end": 11535.19, + "probability": 0.8484 + }, + { + "start": 11535.27, + "end": 11536.71, + "probability": 0.9451 + }, + { + "start": 11536.83, + "end": 11537.23, + "probability": 0.7188 + }, + { + "start": 11537.51, + "end": 11537.63, + "probability": 0.6364 + }, + { + "start": 11537.75, + "end": 11539.97, + "probability": 0.7817 + }, + { + "start": 11540.15, + "end": 11540.21, + "probability": 0.3626 + }, + { + "start": 11540.21, + "end": 11543.19, + "probability": 0.5607 + }, + { + "start": 11543.23, + "end": 11543.55, + "probability": 0.337 + }, + { + "start": 11543.55, + "end": 11544.13, + "probability": 0.9668 + }, + { + "start": 11544.79, + "end": 11547.89, + "probability": 0.8937 + }, + { + "start": 11549.17, + "end": 11550.83, + "probability": 0.9949 + }, + { + "start": 11550.99, + "end": 11552.97, + "probability": 0.9792 + }, + { + "start": 11553.61, + "end": 11555.51, + "probability": 0.9883 + }, + { + "start": 11555.93, + "end": 11557.89, + "probability": 0.9989 + }, + { + "start": 11558.07, + "end": 11559.67, + "probability": 0.6611 + }, + { + "start": 11560.05, + "end": 11560.15, + "probability": 0.2199 + }, + { + "start": 11560.87, + "end": 11564.07, + "probability": 0.8396 + }, + { + "start": 11564.75, + "end": 11568.19, + "probability": 0.9686 + }, + { + "start": 11568.47, + "end": 11571.35, + "probability": 0.9971 + }, + { + "start": 11571.49, + "end": 11575.23, + "probability": 0.3666 + }, + { + "start": 11575.51, + "end": 11578.69, + "probability": 0.3235 + }, + { + "start": 11578.87, + "end": 11579.09, + "probability": 0.1568 + }, + { + "start": 11579.09, + "end": 11580.63, + "probability": 0.1616 + }, + { + "start": 11580.81, + "end": 11580.85, + "probability": 0.027 + }, + { + "start": 11581.07, + "end": 11581.07, + "probability": 0.0317 + }, + { + "start": 11581.07, + "end": 11581.49, + "probability": 0.322 + }, + { + "start": 11582.41, + "end": 11583.05, + "probability": 0.1403 + }, + { + "start": 11583.29, + "end": 11583.87, + "probability": 0.5037 + }, + { + "start": 11583.89, + "end": 11584.81, + "probability": 0.0769 + }, + { + "start": 11584.91, + "end": 11584.91, + "probability": 0.3402 + }, + { + "start": 11584.91, + "end": 11585.23, + "probability": 0.6687 + }, + { + "start": 11585.47, + "end": 11585.85, + "probability": 0.0301 + }, + { + "start": 11585.97, + "end": 11587.65, + "probability": 0.9754 + }, + { + "start": 11587.73, + "end": 11590.41, + "probability": 0.7932 + }, + { + "start": 11590.55, + "end": 11590.99, + "probability": 0.5047 + }, + { + "start": 11591.75, + "end": 11593.65, + "probability": 0.8281 + }, + { + "start": 11593.75, + "end": 11599.21, + "probability": 0.9009 + }, + { + "start": 11599.23, + "end": 11601.43, + "probability": 0.9293 + }, + { + "start": 11601.77, + "end": 11602.99, + "probability": 0.6691 + }, + { + "start": 11603.11, + "end": 11605.97, + "probability": 0.1099 + }, + { + "start": 11606.03, + "end": 11606.69, + "probability": 0.559 + }, + { + "start": 11606.73, + "end": 11607.49, + "probability": 0.4302 + }, + { + "start": 11608.23, + "end": 11609.57, + "probability": 0.5718 + }, + { + "start": 11609.75, + "end": 11613.77, + "probability": 0.9307 + }, + { + "start": 11614.31, + "end": 11617.33, + "probability": 0.9604 + }, + { + "start": 11617.83, + "end": 11620.81, + "probability": 0.7178 + }, + { + "start": 11621.43, + "end": 11621.61, + "probability": 0.4776 + }, + { + "start": 11621.73, + "end": 11623.07, + "probability": 0.7209 + }, + { + "start": 11623.39, + "end": 11625.17, + "probability": 0.8843 + }, + { + "start": 11625.25, + "end": 11628.81, + "probability": 0.9084 + }, + { + "start": 11628.81, + "end": 11632.95, + "probability": 0.9821 + }, + { + "start": 11633.15, + "end": 11635.19, + "probability": 0.8454 + }, + { + "start": 11635.57, + "end": 11636.43, + "probability": 0.8123 + }, + { + "start": 11636.65, + "end": 11636.93, + "probability": 0.3639 + }, + { + "start": 11637.03, + "end": 11638.67, + "probability": 0.5372 + }, + { + "start": 11638.77, + "end": 11639.0, + "probability": 0.9382 + }, + { + "start": 11639.07, + "end": 11639.27, + "probability": 0.8692 + }, + { + "start": 11639.29, + "end": 11640.37, + "probability": 0.9372 + }, + { + "start": 11640.67, + "end": 11641.59, + "probability": 0.9922 + }, + { + "start": 11641.97, + "end": 11644.59, + "probability": 0.9812 + }, + { + "start": 11644.93, + "end": 11646.67, + "probability": 0.9941 + }, + { + "start": 11646.77, + "end": 11647.09, + "probability": 0.9638 + }, + { + "start": 11647.23, + "end": 11651.23, + "probability": 0.9282 + }, + { + "start": 11651.39, + "end": 11652.27, + "probability": 0.9246 + }, + { + "start": 11652.37, + "end": 11652.65, + "probability": 0.569 + }, + { + "start": 11652.73, + "end": 11653.29, + "probability": 0.3882 + }, + { + "start": 11653.81, + "end": 11655.73, + "probability": 0.9979 + }, + { + "start": 11655.93, + "end": 11658.67, + "probability": 0.9731 + }, + { + "start": 11660.17, + "end": 11660.67, + "probability": 0.5427 + }, + { + "start": 11660.73, + "end": 11666.51, + "probability": 0.9401 + }, + { + "start": 11667.87, + "end": 11668.71, + "probability": 0.6055 + }, + { + "start": 11668.77, + "end": 11669.33, + "probability": 0.593 + }, + { + "start": 11669.75, + "end": 11673.01, + "probability": 0.9648 + }, + { + "start": 11674.85, + "end": 11680.13, + "probability": 0.956 + }, + { + "start": 11680.23, + "end": 11681.73, + "probability": 0.6043 + }, + { + "start": 11682.63, + "end": 11685.16, + "probability": 0.8508 + }, + { + "start": 11687.05, + "end": 11688.91, + "probability": 0.8965 + }, + { + "start": 11689.83, + "end": 11693.01, + "probability": 0.8689 + }, + { + "start": 11694.07, + "end": 11697.77, + "probability": 0.9043 + }, + { + "start": 11698.35, + "end": 11698.91, + "probability": 0.7979 + }, + { + "start": 11699.35, + "end": 11699.59, + "probability": 0.2559 + }, + { + "start": 11699.71, + "end": 11700.21, + "probability": 0.5358 + }, + { + "start": 11700.23, + "end": 11700.77, + "probability": 0.2594 + }, + { + "start": 11700.89, + "end": 11700.97, + "probability": 0.3531 + }, + { + "start": 11701.05, + "end": 11701.84, + "probability": 0.801 + }, + { + "start": 11702.11, + "end": 11709.13, + "probability": 0.9668 + }, + { + "start": 11709.49, + "end": 11711.29, + "probability": 0.6676 + }, + { + "start": 11711.55, + "end": 11712.31, + "probability": 0.7264 + }, + { + "start": 11713.47, + "end": 11715.39, + "probability": 0.9478 + }, + { + "start": 11715.53, + "end": 11716.65, + "probability": 0.5602 + }, + { + "start": 11716.73, + "end": 11717.67, + "probability": 0.8627 + }, + { + "start": 11717.73, + "end": 11721.23, + "probability": 0.9203 + }, + { + "start": 11721.85, + "end": 11723.87, + "probability": 0.8083 + }, + { + "start": 11723.87, + "end": 11725.03, + "probability": 0.4802 + }, + { + "start": 11725.49, + "end": 11726.23, + "probability": 0.7715 + }, + { + "start": 11726.33, + "end": 11727.03, + "probability": 0.9058 + }, + { + "start": 11727.21, + "end": 11733.89, + "probability": 0.6803 + }, + { + "start": 11734.89, + "end": 11735.57, + "probability": 0.2579 + }, + { + "start": 11735.69, + "end": 11735.69, + "probability": 0.154 + }, + { + "start": 11735.69, + "end": 11736.01, + "probability": 0.6709 + }, + { + "start": 11736.15, + "end": 11737.93, + "probability": 0.7028 + }, + { + "start": 11738.09, + "end": 11739.37, + "probability": 0.6225 + }, + { + "start": 11739.37, + "end": 11739.73, + "probability": 0.0207 + }, + { + "start": 11739.73, + "end": 11740.45, + "probability": 0.1216 + }, + { + "start": 11740.45, + "end": 11742.11, + "probability": 0.3197 + }, + { + "start": 11742.29, + "end": 11745.35, + "probability": 0.9396 + }, + { + "start": 11746.51, + "end": 11749.81, + "probability": 0.2525 + }, + { + "start": 11750.13, + "end": 11752.57, + "probability": 0.6943 + }, + { + "start": 11753.21, + "end": 11755.77, + "probability": 0.8771 + }, + { + "start": 11756.05, + "end": 11756.39, + "probability": 0.6069 + }, + { + "start": 11756.73, + "end": 11757.91, + "probability": 0.9122 + }, + { + "start": 11758.05, + "end": 11758.45, + "probability": 0.6975 + }, + { + "start": 11758.47, + "end": 11759.33, + "probability": 0.6851 + }, + { + "start": 11759.63, + "end": 11760.93, + "probability": 0.7745 + }, + { + "start": 11760.93, + "end": 11765.53, + "probability": 0.4234 + }, + { + "start": 11765.53, + "end": 11767.51, + "probability": 0.3217 + }, + { + "start": 11768.39, + "end": 11768.43, + "probability": 0.0811 + }, + { + "start": 11768.43, + "end": 11769.41, + "probability": 0.6648 + }, + { + "start": 11769.51, + "end": 11769.97, + "probability": 0.7797 + }, + { + "start": 11770.07, + "end": 11770.45, + "probability": 0.7844 + }, + { + "start": 11770.59, + "end": 11770.89, + "probability": 0.6752 + }, + { + "start": 11771.27, + "end": 11772.55, + "probability": 0.9581 + }, + { + "start": 11772.91, + "end": 11774.35, + "probability": 0.7076 + }, + { + "start": 11774.71, + "end": 11780.79, + "probability": 0.938 + }, + { + "start": 11781.35, + "end": 11781.63, + "probability": 0.1414 + }, + { + "start": 11781.63, + "end": 11782.33, + "probability": 0.7905 + }, + { + "start": 11782.63, + "end": 11786.95, + "probability": 0.9038 + }, + { + "start": 11787.11, + "end": 11787.65, + "probability": 0.6782 + }, + { + "start": 11787.97, + "end": 11787.97, + "probability": 0.2819 + }, + { + "start": 11787.97, + "end": 11787.97, + "probability": 0.2677 + }, + { + "start": 11787.97, + "end": 11793.75, + "probability": 0.5724 + }, + { + "start": 11794.33, + "end": 11798.57, + "probability": 0.8357 + }, + { + "start": 11798.63, + "end": 11800.11, + "probability": 0.6807 + }, + { + "start": 11800.29, + "end": 11803.87, + "probability": 0.9114 + }, + { + "start": 11805.47, + "end": 11809.43, + "probability": 0.875 + }, + { + "start": 11809.49, + "end": 11810.41, + "probability": 0.8422 + }, + { + "start": 11810.47, + "end": 11811.15, + "probability": 0.8042 + }, + { + "start": 11811.49, + "end": 11813.43, + "probability": 0.9507 + }, + { + "start": 11814.15, + "end": 11815.43, + "probability": 0.6704 + }, + { + "start": 11815.99, + "end": 11817.43, + "probability": 0.8819 + }, + { + "start": 11817.49, + "end": 11818.01, + "probability": 0.5385 + }, + { + "start": 11818.01, + "end": 11818.59, + "probability": 0.2376 + }, + { + "start": 11818.81, + "end": 11818.81, + "probability": 0.3252 + }, + { + "start": 11819.13, + "end": 11819.61, + "probability": 0.5058 + }, + { + "start": 11820.29, + "end": 11820.79, + "probability": 0.5369 + }, + { + "start": 11820.79, + "end": 11822.77, + "probability": 0.649 + }, + { + "start": 11822.77, + "end": 11824.59, + "probability": 0.6577 + }, + { + "start": 11824.99, + "end": 11825.63, + "probability": 0.8328 + }, + { + "start": 11825.81, + "end": 11826.31, + "probability": 0.8264 + }, + { + "start": 11826.51, + "end": 11831.63, + "probability": 0.9387 + }, + { + "start": 11831.83, + "end": 11832.81, + "probability": 0.5522 + }, + { + "start": 11832.87, + "end": 11833.55, + "probability": 0.873 + }, + { + "start": 11833.65, + "end": 11834.97, + "probability": 0.7768 + }, + { + "start": 11836.33, + "end": 11840.05, + "probability": 0.7344 + }, + { + "start": 11840.38, + "end": 11845.05, + "probability": 0.7273 + }, + { + "start": 11852.35, + "end": 11853.63, + "probability": 0.2742 + }, + { + "start": 11853.63, + "end": 11855.51, + "probability": 0.4693 + }, + { + "start": 11856.29, + "end": 11859.93, + "probability": 0.78 + }, + { + "start": 11859.93, + "end": 11864.25, + "probability": 0.8436 + }, + { + "start": 11864.79, + "end": 11865.21, + "probability": 0.5335 + }, + { + "start": 11865.31, + "end": 11870.15, + "probability": 0.6976 + }, + { + "start": 11870.17, + "end": 11870.79, + "probability": 0.0507 + }, + { + "start": 11870.79, + "end": 11871.55, + "probability": 0.3455 + }, + { + "start": 11871.65, + "end": 11874.15, + "probability": 0.851 + }, + { + "start": 11874.15, + "end": 11876.37, + "probability": 0.6872 + }, + { + "start": 11876.39, + "end": 11877.29, + "probability": 0.6051 + }, + { + "start": 11877.31, + "end": 11877.74, + "probability": 0.9316 + }, + { + "start": 11878.13, + "end": 11879.51, + "probability": 0.9723 + }, + { + "start": 11879.75, + "end": 11880.23, + "probability": 0.9387 + }, + { + "start": 11880.33, + "end": 11881.31, + "probability": 0.9458 + }, + { + "start": 11881.37, + "end": 11881.57, + "probability": 0.3639 + }, + { + "start": 11882.45, + "end": 11883.87, + "probability": 0.9595 + }, + { + "start": 11884.89, + "end": 11885.19, + "probability": 0.673 + }, + { + "start": 11885.27, + "end": 11885.71, + "probability": 0.9356 + }, + { + "start": 11885.83, + "end": 11886.49, + "probability": 0.7975 + }, + { + "start": 11886.63, + "end": 11887.73, + "probability": 0.9724 + }, + { + "start": 11888.07, + "end": 11888.35, + "probability": 0.8111 + }, + { + "start": 11888.91, + "end": 11889.01, + "probability": 0.6912 + }, + { + "start": 11889.09, + "end": 11889.41, + "probability": 0.577 + }, + { + "start": 11889.47, + "end": 11891.29, + "probability": 0.6644 + }, + { + "start": 11891.69, + "end": 11893.63, + "probability": 0.8315 + }, + { + "start": 11893.81, + "end": 11894.89, + "probability": 0.8415 + }, + { + "start": 11894.91, + "end": 11896.95, + "probability": 0.8057 + }, + { + "start": 11896.95, + "end": 11898.79, + "probability": 0.7252 + }, + { + "start": 11898.97, + "end": 11899.31, + "probability": 0.7448 + }, + { + "start": 11899.51, + "end": 11899.87, + "probability": 0.884 + }, + { + "start": 11900.07, + "end": 11902.42, + "probability": 0.818 + }, + { + "start": 11902.83, + "end": 11903.15, + "probability": 0.8672 + }, + { + "start": 11903.49, + "end": 11906.13, + "probability": 0.6871 + }, + { + "start": 11906.67, + "end": 11910.47, + "probability": 0.9364 + }, + { + "start": 11910.59, + "end": 11912.13, + "probability": 0.9775 + }, + { + "start": 11912.75, + "end": 11916.29, + "probability": 0.9351 + }, + { + "start": 11916.69, + "end": 11919.59, + "probability": 0.9889 + }, + { + "start": 11920.14, + "end": 11923.39, + "probability": 0.9797 + }, + { + "start": 11923.57, + "end": 11924.47, + "probability": 0.9129 + }, + { + "start": 11924.59, + "end": 11926.63, + "probability": 0.9358 + }, + { + "start": 11927.17, + "end": 11930.99, + "probability": 0.99 + }, + { + "start": 11931.71, + "end": 11934.67, + "probability": 0.978 + }, + { + "start": 11934.77, + "end": 11937.79, + "probability": 0.887 + }, + { + "start": 11937.79, + "end": 11940.73, + "probability": 0.9692 + }, + { + "start": 11941.23, + "end": 11942.07, + "probability": 0.3032 + }, + { + "start": 11942.09, + "end": 11942.85, + "probability": 0.8732 + }, + { + "start": 11943.01, + "end": 11947.39, + "probability": 0.9432 + }, + { + "start": 11947.39, + "end": 11952.25, + "probability": 0.9807 + }, + { + "start": 11952.47, + "end": 11954.37, + "probability": 0.9824 + }, + { + "start": 11954.77, + "end": 11961.28, + "probability": 0.9082 + }, + { + "start": 11961.99, + "end": 11963.55, + "probability": 0.9802 + }, + { + "start": 11963.87, + "end": 11964.97, + "probability": 0.7688 + }, + { + "start": 11965.41, + "end": 11967.19, + "probability": 0.9339 + }, + { + "start": 11968.03, + "end": 11974.79, + "probability": 0.981 + }, + { + "start": 11975.29, + "end": 11975.85, + "probability": 0.6169 + }, + { + "start": 11976.01, + "end": 11983.13, + "probability": 0.9265 + }, + { + "start": 11983.33, + "end": 11986.35, + "probability": 0.9598 + }, + { + "start": 11986.73, + "end": 11990.07, + "probability": 0.9795 + }, + { + "start": 11990.55, + "end": 11993.23, + "probability": 0.8751 + }, + { + "start": 11993.61, + "end": 11994.53, + "probability": 0.8403 + }, + { + "start": 11995.01, + "end": 11995.77, + "probability": 0.8468 + }, + { + "start": 11995.83, + "end": 11996.63, + "probability": 0.7094 + }, + { + "start": 11996.67, + "end": 11997.97, + "probability": 0.9733 + }, + { + "start": 11998.31, + "end": 12002.41, + "probability": 0.6657 + }, + { + "start": 12002.49, + "end": 12005.17, + "probability": 0.9922 + }, + { + "start": 12005.35, + "end": 12007.67, + "probability": 0.9971 + }, + { + "start": 12008.33, + "end": 12010.13, + "probability": 0.9885 + }, + { + "start": 12010.19, + "end": 12013.37, + "probability": 0.9108 + }, + { + "start": 12013.37, + "end": 12018.27, + "probability": 0.9881 + }, + { + "start": 12018.35, + "end": 12021.68, + "probability": 0.9297 + }, + { + "start": 12022.93, + "end": 12023.95, + "probability": 0.4458 + }, + { + "start": 12024.69, + "end": 12026.03, + "probability": 0.7224 + }, + { + "start": 12026.41, + "end": 12030.97, + "probability": 0.9938 + }, + { + "start": 12031.47, + "end": 12033.83, + "probability": 0.9741 + }, + { + "start": 12033.95, + "end": 12038.77, + "probability": 0.9881 + }, + { + "start": 12038.77, + "end": 12043.97, + "probability": 0.9603 + }, + { + "start": 12044.79, + "end": 12046.35, + "probability": 0.6699 + }, + { + "start": 12046.67, + "end": 12052.49, + "probability": 0.9967 + }, + { + "start": 12052.85, + "end": 12060.79, + "probability": 0.9691 + }, + { + "start": 12061.59, + "end": 12068.01, + "probability": 0.8815 + }, + { + "start": 12068.47, + "end": 12073.59, + "probability": 0.9279 + }, + { + "start": 12074.11, + "end": 12076.59, + "probability": 0.9774 + }, + { + "start": 12076.59, + "end": 12079.87, + "probability": 0.8679 + }, + { + "start": 12080.07, + "end": 12081.11, + "probability": 0.6539 + }, + { + "start": 12081.65, + "end": 12082.61, + "probability": 0.7843 + }, + { + "start": 12083.15, + "end": 12085.39, + "probability": 0.9948 + }, + { + "start": 12086.07, + "end": 12086.79, + "probability": 0.4917 + }, + { + "start": 12087.43, + "end": 12089.75, + "probability": 0.7279 + }, + { + "start": 12090.35, + "end": 12092.77, + "probability": 0.852 + }, + { + "start": 12093.75, + "end": 12099.15, + "probability": 0.9801 + }, + { + "start": 12099.55, + "end": 12105.29, + "probability": 0.9893 + }, + { + "start": 12105.29, + "end": 12110.29, + "probability": 0.9994 + }, + { + "start": 12110.79, + "end": 12113.51, + "probability": 0.9971 + }, + { + "start": 12113.51, + "end": 12120.23, + "probability": 0.9409 + }, + { + "start": 12120.91, + "end": 12122.17, + "probability": 0.6894 + }, + { + "start": 12122.61, + "end": 12126.07, + "probability": 0.9045 + }, + { + "start": 12126.07, + "end": 12128.53, + "probability": 0.9704 + }, + { + "start": 12128.91, + "end": 12130.03, + "probability": 0.7945 + }, + { + "start": 12130.11, + "end": 12132.49, + "probability": 0.9888 + }, + { + "start": 12133.57, + "end": 12138.29, + "probability": 0.9516 + }, + { + "start": 12138.51, + "end": 12142.63, + "probability": 0.9663 + }, + { + "start": 12143.15, + "end": 12148.47, + "probability": 0.9761 + }, + { + "start": 12148.97, + "end": 12150.41, + "probability": 0.6869 + }, + { + "start": 12151.49, + "end": 12157.41, + "probability": 0.9908 + }, + { + "start": 12158.01, + "end": 12160.99, + "probability": 0.6475 + }, + { + "start": 12161.81, + "end": 12162.99, + "probability": 0.8017 + }, + { + "start": 12163.57, + "end": 12165.59, + "probability": 0.9944 + }, + { + "start": 12165.63, + "end": 12167.25, + "probability": 0.8686 + }, + { + "start": 12167.43, + "end": 12170.63, + "probability": 0.9838 + }, + { + "start": 12170.63, + "end": 12173.85, + "probability": 0.9961 + }, + { + "start": 12174.45, + "end": 12176.25, + "probability": 0.939 + }, + { + "start": 12176.49, + "end": 12180.75, + "probability": 0.9599 + }, + { + "start": 12181.43, + "end": 12183.77, + "probability": 0.8236 + }, + { + "start": 12184.41, + "end": 12185.15, + "probability": 0.5145 + }, + { + "start": 12185.21, + "end": 12186.05, + "probability": 0.9524 + }, + { + "start": 12186.39, + "end": 12195.39, + "probability": 0.9637 + }, + { + "start": 12195.93, + "end": 12202.97, + "probability": 0.9961 + }, + { + "start": 12203.89, + "end": 12205.75, + "probability": 0.4663 + }, + { + "start": 12207.67, + "end": 12209.81, + "probability": 0.8947 + }, + { + "start": 12211.19, + "end": 12213.21, + "probability": 0.8514 + }, + { + "start": 12214.73, + "end": 12216.99, + "probability": 0.9618 + }, + { + "start": 12217.25, + "end": 12218.73, + "probability": 0.9868 + }, + { + "start": 12219.27, + "end": 12220.15, + "probability": 0.6639 + }, + { + "start": 12220.25, + "end": 12221.01, + "probability": 0.8819 + }, + { + "start": 12224.57, + "end": 12225.43, + "probability": 0.5008 + }, + { + "start": 12225.71, + "end": 12231.71, + "probability": 0.946 + }, + { + "start": 12231.71, + "end": 12233.3, + "probability": 0.9959 + }, + { + "start": 12233.81, + "end": 12234.11, + "probability": 0.8887 + }, + { + "start": 12234.17, + "end": 12234.67, + "probability": 0.8243 + }, + { + "start": 12235.17, + "end": 12235.59, + "probability": 0.9269 + }, + { + "start": 12235.91, + "end": 12239.79, + "probability": 0.9703 + }, + { + "start": 12239.79, + "end": 12242.65, + "probability": 0.949 + }, + { + "start": 12242.99, + "end": 12244.12, + "probability": 0.9122 + }, + { + "start": 12244.31, + "end": 12245.96, + "probability": 0.9106 + }, + { + "start": 12246.59, + "end": 12247.83, + "probability": 0.6113 + }, + { + "start": 12248.05, + "end": 12248.61, + "probability": 0.8455 + }, + { + "start": 12249.19, + "end": 12250.29, + "probability": 0.9622 + }, + { + "start": 12250.59, + "end": 12251.59, + "probability": 0.9453 + }, + { + "start": 12251.89, + "end": 12252.89, + "probability": 0.9765 + }, + { + "start": 12253.25, + "end": 12254.39, + "probability": 0.9738 + }, + { + "start": 12254.75, + "end": 12259.68, + "probability": 0.9949 + }, + { + "start": 12260.33, + "end": 12260.95, + "probability": 0.8778 + }, + { + "start": 12261.03, + "end": 12262.71, + "probability": 0.9847 + }, + { + "start": 12262.83, + "end": 12264.65, + "probability": 0.9399 + }, + { + "start": 12264.73, + "end": 12266.95, + "probability": 0.9554 + }, + { + "start": 12267.05, + "end": 12269.35, + "probability": 0.9346 + }, + { + "start": 12269.95, + "end": 12271.25, + "probability": 0.9966 + }, + { + "start": 12272.21, + "end": 12275.19, + "probability": 0.9722 + }, + { + "start": 12276.17, + "end": 12276.47, + "probability": 0.5136 + }, + { + "start": 12276.83, + "end": 12279.67, + "probability": 0.982 + }, + { + "start": 12279.83, + "end": 12281.73, + "probability": 0.9738 + }, + { + "start": 12282.21, + "end": 12286.09, + "probability": 0.963 + }, + { + "start": 12286.79, + "end": 12293.07, + "probability": 0.9226 + }, + { + "start": 12293.09, + "end": 12294.03, + "probability": 0.6352 + }, + { + "start": 12294.11, + "end": 12294.65, + "probability": 0.7988 + }, + { + "start": 12295.03, + "end": 12298.59, + "probability": 0.9817 + }, + { + "start": 12298.85, + "end": 12303.01, + "probability": 0.9944 + }, + { + "start": 12303.15, + "end": 12303.97, + "probability": 0.8361 + }, + { + "start": 12304.05, + "end": 12304.71, + "probability": 0.8277 + }, + { + "start": 12304.93, + "end": 12306.53, + "probability": 0.0565 + }, + { + "start": 12307.13, + "end": 12308.41, + "probability": 0.6007 + }, + { + "start": 12309.77, + "end": 12309.93, + "probability": 0.4785 + }, + { + "start": 12309.97, + "end": 12310.49, + "probability": 0.9647 + }, + { + "start": 12310.49, + "end": 12314.33, + "probability": 0.9792 + }, + { + "start": 12314.45, + "end": 12314.69, + "probability": 0.0195 + }, + { + "start": 12314.69, + "end": 12314.83, + "probability": 0.4223 + }, + { + "start": 12314.93, + "end": 12318.07, + "probability": 0.9647 + }, + { + "start": 12318.27, + "end": 12321.79, + "probability": 0.9761 + }, + { + "start": 12322.15, + "end": 12322.83, + "probability": 0.5999 + }, + { + "start": 12324.15, + "end": 12327.13, + "probability": 0.9921 + }, + { + "start": 12327.83, + "end": 12330.57, + "probability": 0.909 + }, + { + "start": 12330.69, + "end": 12332.95, + "probability": 0.9764 + }, + { + "start": 12333.09, + "end": 12338.21, + "probability": 0.9788 + }, + { + "start": 12338.21, + "end": 12341.33, + "probability": 0.9795 + }, + { + "start": 12342.25, + "end": 12344.85, + "probability": 0.9582 + }, + { + "start": 12345.61, + "end": 12347.99, + "probability": 0.6691 + }, + { + "start": 12348.41, + "end": 12349.21, + "probability": 0.9164 + }, + { + "start": 12350.21, + "end": 12351.33, + "probability": 0.9055 + }, + { + "start": 12352.47, + "end": 12352.89, + "probability": 0.9501 + }, + { + "start": 12352.93, + "end": 12353.51, + "probability": 0.9799 + }, + { + "start": 12353.61, + "end": 12354.53, + "probability": 0.9406 + }, + { + "start": 12354.63, + "end": 12355.69, + "probability": 0.9878 + }, + { + "start": 12355.75, + "end": 12356.65, + "probability": 0.9189 + }, + { + "start": 12356.75, + "end": 12359.68, + "probability": 0.9888 + }, + { + "start": 12360.63, + "end": 12362.49, + "probability": 0.8105 + }, + { + "start": 12363.15, + "end": 12364.61, + "probability": 0.8872 + }, + { + "start": 12364.73, + "end": 12365.37, + "probability": 0.9013 + }, + { + "start": 12365.51, + "end": 12366.33, + "probability": 0.9223 + }, + { + "start": 12366.43, + "end": 12367.91, + "probability": 0.8733 + }, + { + "start": 12368.29, + "end": 12369.03, + "probability": 0.6029 + }, + { + "start": 12369.11, + "end": 12369.61, + "probability": 0.9077 + }, + { + "start": 12369.73, + "end": 12375.55, + "probability": 0.9751 + }, + { + "start": 12375.59, + "end": 12377.57, + "probability": 0.9726 + }, + { + "start": 12379.69, + "end": 12383.53, + "probability": 0.9627 + }, + { + "start": 12384.13, + "end": 12387.29, + "probability": 0.9919 + }, + { + "start": 12388.63, + "end": 12391.95, + "probability": 0.9849 + }, + { + "start": 12392.09, + "end": 12394.07, + "probability": 0.9963 + }, + { + "start": 12394.99, + "end": 12395.63, + "probability": 0.6293 + }, + { + "start": 12395.83, + "end": 12397.93, + "probability": 0.9893 + }, + { + "start": 12398.01, + "end": 12399.87, + "probability": 0.9899 + }, + { + "start": 12399.93, + "end": 12401.31, + "probability": 0.9653 + }, + { + "start": 12401.51, + "end": 12403.57, + "probability": 0.9978 + }, + { + "start": 12404.65, + "end": 12405.65, + "probability": 0.657 + }, + { + "start": 12406.05, + "end": 12408.71, + "probability": 0.9971 + }, + { + "start": 12408.99, + "end": 12410.99, + "probability": 0.9894 + }, + { + "start": 12411.79, + "end": 12412.67, + "probability": 0.912 + }, + { + "start": 12413.31, + "end": 12414.15, + "probability": 0.8549 + }, + { + "start": 12415.13, + "end": 12419.23, + "probability": 0.9827 + }, + { + "start": 12419.23, + "end": 12422.85, + "probability": 0.9966 + }, + { + "start": 12422.97, + "end": 12423.92, + "probability": 0.7917 + }, + { + "start": 12424.81, + "end": 12425.92, + "probability": 0.998 + }, + { + "start": 12426.83, + "end": 12428.46, + "probability": 0.9286 + }, + { + "start": 12429.67, + "end": 12432.81, + "probability": 0.981 + }, + { + "start": 12433.15, + "end": 12434.73, + "probability": 0.9915 + }, + { + "start": 12435.07, + "end": 12435.39, + "probability": 0.9257 + }, + { + "start": 12437.17, + "end": 12437.41, + "probability": 0.5623 + }, + { + "start": 12438.07, + "end": 12438.57, + "probability": 0.6524 + }, + { + "start": 12442.42, + "end": 12444.35, + "probability": 0.6354 + }, + { + "start": 12444.95, + "end": 12447.45, + "probability": 0.8468 + }, + { + "start": 12447.51, + "end": 12447.91, + "probability": 0.6263 + }, + { + "start": 12448.07, + "end": 12448.91, + "probability": 0.8382 + }, + { + "start": 12450.21, + "end": 12450.47, + "probability": 0.5965 + }, + { + "start": 12453.27, + "end": 12454.47, + "probability": 0.9249 + }, + { + "start": 12458.31, + "end": 12462.13, + "probability": 0.9587 + }, + { + "start": 12462.71, + "end": 12465.29, + "probability": 0.9974 + }, + { + "start": 12465.85, + "end": 12470.63, + "probability": 0.9992 + }, + { + "start": 12471.17, + "end": 12474.53, + "probability": 0.9974 + }, + { + "start": 12474.95, + "end": 12479.05, + "probability": 0.9974 + }, + { + "start": 12479.63, + "end": 12482.47, + "probability": 0.9854 + }, + { + "start": 12483.73, + "end": 12491.97, + "probability": 0.9139 + }, + { + "start": 12492.39, + "end": 12493.49, + "probability": 0.8791 + }, + { + "start": 12493.59, + "end": 12494.59, + "probability": 0.8952 + }, + { + "start": 12494.81, + "end": 12496.41, + "probability": 0.7019 + }, + { + "start": 12496.51, + "end": 12499.33, + "probability": 0.9666 + }, + { + "start": 12499.47, + "end": 12502.03, + "probability": 0.9015 + }, + { + "start": 12502.45, + "end": 12502.81, + "probability": 0.4797 + }, + { + "start": 12502.93, + "end": 12506.17, + "probability": 0.9775 + }, + { + "start": 12506.27, + "end": 12506.89, + "probability": 0.8538 + }, + { + "start": 12506.99, + "end": 12508.17, + "probability": 0.924 + }, + { + "start": 12508.29, + "end": 12510.37, + "probability": 0.8664 + }, + { + "start": 12510.71, + "end": 12513.65, + "probability": 0.7218 + }, + { + "start": 12513.77, + "end": 12514.19, + "probability": 0.9001 + }, + { + "start": 12514.31, + "end": 12515.99, + "probability": 0.9427 + }, + { + "start": 12516.43, + "end": 12518.43, + "probability": 0.9961 + }, + { + "start": 12518.53, + "end": 12519.99, + "probability": 0.9628 + }, + { + "start": 12520.11, + "end": 12520.83, + "probability": 0.8439 + }, + { + "start": 12520.85, + "end": 12523.33, + "probability": 0.9869 + }, + { + "start": 12523.81, + "end": 12524.21, + "probability": 0.0326 + }, + { + "start": 12524.29, + "end": 12525.71, + "probability": 0.8377 + }, + { + "start": 12525.81, + "end": 12526.63, + "probability": 0.5952 + }, + { + "start": 12526.97, + "end": 12532.33, + "probability": 0.9121 + }, + { + "start": 12532.39, + "end": 12538.63, + "probability": 0.9657 + }, + { + "start": 12538.77, + "end": 12539.43, + "probability": 0.848 + }, + { + "start": 12539.55, + "end": 12540.21, + "probability": 0.6931 + }, + { + "start": 12540.63, + "end": 12542.83, + "probability": 0.9761 + }, + { + "start": 12542.87, + "end": 12542.97, + "probability": 0.6287 + }, + { + "start": 12544.95, + "end": 12547.23, + "probability": 0.7087 + }, + { + "start": 12547.31, + "end": 12549.61, + "probability": 0.75 + }, + { + "start": 12550.93, + "end": 12553.19, + "probability": 0.9917 + }, + { + "start": 12553.29, + "end": 12554.09, + "probability": 0.6727 + }, + { + "start": 12554.19, + "end": 12554.74, + "probability": 0.2977 + }, + { + "start": 12555.55, + "end": 12555.89, + "probability": 0.8287 + }, + { + "start": 12557.33, + "end": 12560.85, + "probability": 0.9907 + }, + { + "start": 12561.89, + "end": 12563.15, + "probability": 0.9016 + }, + { + "start": 12563.29, + "end": 12566.05, + "probability": 0.8921 + }, + { + "start": 12566.15, + "end": 12569.51, + "probability": 0.6204 + }, + { + "start": 12569.71, + "end": 12570.03, + "probability": 0.665 + }, + { + "start": 12570.19, + "end": 12571.69, + "probability": 0.536 + }, + { + "start": 12571.69, + "end": 12574.15, + "probability": 0.8783 + }, + { + "start": 12574.27, + "end": 12576.33, + "probability": 0.9658 + }, + { + "start": 12577.59, + "end": 12578.71, + "probability": 0.9396 + }, + { + "start": 12578.89, + "end": 12580.71, + "probability": 0.8503 + }, + { + "start": 12581.23, + "end": 12583.65, + "probability": 0.9887 + }, + { + "start": 12583.81, + "end": 12584.97, + "probability": 0.8254 + }, + { + "start": 12586.49, + "end": 12586.99, + "probability": 0.4963 + }, + { + "start": 12586.99, + "end": 12589.23, + "probability": 0.8283 + }, + { + "start": 12589.37, + "end": 12592.17, + "probability": 0.9473 + }, + { + "start": 12592.17, + "end": 12596.33, + "probability": 0.9686 + }, + { + "start": 12596.39, + "end": 12596.61, + "probability": 0.608 + }, + { + "start": 12597.25, + "end": 12600.05, + "probability": 0.9885 + }, + { + "start": 12600.45, + "end": 12601.97, + "probability": 0.9946 + }, + { + "start": 12602.15, + "end": 12603.25, + "probability": 0.9669 + }, + { + "start": 12603.41, + "end": 12603.99, + "probability": 0.4881 + }, + { + "start": 12604.33, + "end": 12605.41, + "probability": 0.9788 + }, + { + "start": 12605.49, + "end": 12612.39, + "probability": 0.9735 + }, + { + "start": 12612.49, + "end": 12615.6, + "probability": 0.9883 + }, + { + "start": 12616.17, + "end": 12619.06, + "probability": 0.9817 + }, + { + "start": 12620.24, + "end": 12624.07, + "probability": 0.7414 + }, + { + "start": 12624.29, + "end": 12624.99, + "probability": 0.7621 + }, + { + "start": 12625.45, + "end": 12628.61, + "probability": 0.9938 + }, + { + "start": 12628.89, + "end": 12629.79, + "probability": 0.6571 + }, + { + "start": 12629.89, + "end": 12631.03, + "probability": 0.9309 + }, + { + "start": 12631.13, + "end": 12631.35, + "probability": 0.6504 + }, + { + "start": 12632.13, + "end": 12632.79, + "probability": 0.6506 + }, + { + "start": 12632.91, + "end": 12635.07, + "probability": 0.8053 + }, + { + "start": 12637.49, + "end": 12638.23, + "probability": 0.669 + }, + { + "start": 12638.63, + "end": 12643.47, + "probability": 0.8119 + }, + { + "start": 12643.83, + "end": 12645.29, + "probability": 0.7468 + }, + { + "start": 12645.59, + "end": 12647.37, + "probability": 0.7333 + }, + { + "start": 12648.23, + "end": 12649.26, + "probability": 0.9697 + }, + { + "start": 12649.63, + "end": 12650.03, + "probability": 0.1641 + }, + { + "start": 12650.09, + "end": 12651.15, + "probability": 0.9573 + }, + { + "start": 12651.51, + "end": 12654.11, + "probability": 0.8354 + }, + { + "start": 12654.95, + "end": 12656.23, + "probability": 0.9279 + }, + { + "start": 12657.11, + "end": 12659.45, + "probability": 0.6143 + }, + { + "start": 12660.39, + "end": 12661.71, + "probability": 0.6683 + }, + { + "start": 12661.73, + "end": 12662.15, + "probability": 0.3976 + }, + { + "start": 12662.21, + "end": 12665.67, + "probability": 0.7751 + }, + { + "start": 12665.67, + "end": 12669.95, + "probability": 0.9729 + }, + { + "start": 12670.51, + "end": 12673.0, + "probability": 0.6144 + }, + { + "start": 12674.31, + "end": 12675.01, + "probability": 0.4654 + }, + { + "start": 12675.49, + "end": 12678.37, + "probability": 0.5829 + }, + { + "start": 12678.83, + "end": 12679.21, + "probability": 0.0023 + }, + { + "start": 12679.21, + "end": 12681.19, + "probability": 0.9459 + }, + { + "start": 12682.89, + "end": 12684.35, + "probability": 0.48 + }, + { + "start": 12684.73, + "end": 12685.19, + "probability": 0.515 + }, + { + "start": 12687.29, + "end": 12687.87, + "probability": 0.9271 + }, + { + "start": 12688.16, + "end": 12691.51, + "probability": 0.6891 + }, + { + "start": 12691.83, + "end": 12693.49, + "probability": 0.9191 + }, + { + "start": 12694.19, + "end": 12696.63, + "probability": 0.9263 + }, + { + "start": 12698.77, + "end": 12700.63, + "probability": 0.8198 + }, + { + "start": 12700.63, + "end": 12703.53, + "probability": 0.8894 + }, + { + "start": 12703.61, + "end": 12706.21, + "probability": 0.9849 + }, + { + "start": 12706.33, + "end": 12707.81, + "probability": 0.8619 + }, + { + "start": 12707.85, + "end": 12710.45, + "probability": 0.7236 + }, + { + "start": 12711.31, + "end": 12711.33, + "probability": 0.0543 + }, + { + "start": 12711.33, + "end": 12711.33, + "probability": 0.1978 + }, + { + "start": 12711.33, + "end": 12715.05, + "probability": 0.6679 + }, + { + "start": 12715.05, + "end": 12715.15, + "probability": 0.0371 + }, + { + "start": 12716.31, + "end": 12716.31, + "probability": 0.1123 + }, + { + "start": 12716.31, + "end": 12717.95, + "probability": 0.1331 + }, + { + "start": 12718.49, + "end": 12718.87, + "probability": 0.4274 + }, + { + "start": 12718.87, + "end": 12720.39, + "probability": 0.9478 + }, + { + "start": 12720.59, + "end": 12721.73, + "probability": 0.483 + }, + { + "start": 12721.79, + "end": 12722.89, + "probability": 0.7067 + }, + { + "start": 12723.23, + "end": 12724.69, + "probability": 0.8165 + }, + { + "start": 12724.87, + "end": 12728.11, + "probability": 0.9305 + }, + { + "start": 12728.15, + "end": 12729.27, + "probability": 0.8811 + }, + { + "start": 12729.49, + "end": 12732.43, + "probability": 0.7634 + }, + { + "start": 12733.31, + "end": 12735.81, + "probability": 0.7255 + }, + { + "start": 12736.57, + "end": 12736.57, + "probability": 0.3837 + }, + { + "start": 12736.57, + "end": 12736.77, + "probability": 0.4132 + }, + { + "start": 12736.87, + "end": 12741.05, + "probability": 0.9619 + }, + { + "start": 12741.15, + "end": 12744.61, + "probability": 0.9648 + }, + { + "start": 12745.83, + "end": 12746.61, + "probability": 0.9028 + }, + { + "start": 12746.81, + "end": 12747.65, + "probability": 0.7404 + }, + { + "start": 12762.04, + "end": 12762.29, + "probability": 0.3575 + }, + { + "start": 12762.29, + "end": 12762.29, + "probability": 0.1269 + }, + { + "start": 12762.29, + "end": 12763.95, + "probability": 0.6099 + }, + { + "start": 12764.03, + "end": 12765.65, + "probability": 0.8185 + }, + { + "start": 12765.81, + "end": 12769.43, + "probability": 0.6835 + }, + { + "start": 12769.91, + "end": 12770.23, + "probability": 0.3404 + }, + { + "start": 12770.33, + "end": 12771.73, + "probability": 0.8231 + }, + { + "start": 12771.73, + "end": 12773.95, + "probability": 0.9033 + }, + { + "start": 12774.17, + "end": 12774.17, + "probability": 0.1084 + }, + { + "start": 12774.17, + "end": 12780.39, + "probability": 0.7729 + }, + { + "start": 12781.18, + "end": 12782.8, + "probability": 0.096 + }, + { + "start": 12783.69, + "end": 12786.19, + "probability": 0.967 + }, + { + "start": 12786.59, + "end": 12788.09, + "probability": 0.835 + }, + { + "start": 12788.45, + "end": 12789.53, + "probability": 0.9381 + }, + { + "start": 12800.19, + "end": 12800.91, + "probability": 0.8294 + }, + { + "start": 12801.85, + "end": 12803.81, + "probability": 0.6356 + }, + { + "start": 12803.81, + "end": 12807.99, + "probability": 0.9587 + }, + { + "start": 12808.35, + "end": 12809.47, + "probability": 0.9171 + }, + { + "start": 12809.53, + "end": 12816.69, + "probability": 0.9214 + }, + { + "start": 12816.69, + "end": 12821.67, + "probability": 0.9957 + }, + { + "start": 12822.55, + "end": 12830.67, + "probability": 0.9783 + }, + { + "start": 12830.81, + "end": 12832.29, + "probability": 0.6615 + }, + { + "start": 12832.89, + "end": 12837.87, + "probability": 0.9365 + }, + { + "start": 12838.27, + "end": 12838.65, + "probability": 0.8511 + }, + { + "start": 12838.67, + "end": 12841.09, + "probability": 0.9342 + }, + { + "start": 12843.19, + "end": 12847.35, + "probability": 0.5572 + }, + { + "start": 12847.35, + "end": 12851.23, + "probability": 0.8406 + }, + { + "start": 12851.27, + "end": 12852.61, + "probability": 0.9697 + }, + { + "start": 12853.19, + "end": 12854.51, + "probability": 0.7296 + }, + { + "start": 12854.71, + "end": 12857.53, + "probability": 0.993 + }, + { + "start": 12858.41, + "end": 12860.94, + "probability": 0.8589 + }, + { + "start": 12861.47, + "end": 12863.65, + "probability": 0.8591 + }, + { + "start": 12864.05, + "end": 12869.65, + "probability": 0.9277 + }, + { + "start": 12870.07, + "end": 12873.63, + "probability": 0.983 + }, + { + "start": 12874.07, + "end": 12877.73, + "probability": 0.9685 + }, + { + "start": 12878.31, + "end": 12879.43, + "probability": 0.8355 + }, + { + "start": 12879.91, + "end": 12881.35, + "probability": 0.7833 + }, + { + "start": 12881.35, + "end": 12887.83, + "probability": 0.9702 + }, + { + "start": 12888.29, + "end": 12889.27, + "probability": 0.9707 + }, + { + "start": 12889.39, + "end": 12890.83, + "probability": 0.9858 + }, + { + "start": 12890.99, + "end": 12895.07, + "probability": 0.9629 + }, + { + "start": 12895.91, + "end": 12899.17, + "probability": 0.9571 + }, + { + "start": 12899.23, + "end": 12899.57, + "probability": 0.7842 + }, + { + "start": 12899.65, + "end": 12903.09, + "probability": 0.9921 + }, + { + "start": 12903.59, + "end": 12904.19, + "probability": 0.8976 + }, + { + "start": 12904.57, + "end": 12910.39, + "probability": 0.9706 + }, + { + "start": 12910.53, + "end": 12914.35, + "probability": 0.981 + }, + { + "start": 12915.23, + "end": 12920.31, + "probability": 0.9777 + }, + { + "start": 12920.43, + "end": 12921.93, + "probability": 0.7885 + }, + { + "start": 12922.81, + "end": 12927.05, + "probability": 0.8393 + }, + { + "start": 12927.09, + "end": 12930.38, + "probability": 0.8604 + }, + { + "start": 12931.27, + "end": 12933.49, + "probability": 0.9927 + }, + { + "start": 12933.61, + "end": 12934.93, + "probability": 0.8765 + }, + { + "start": 12935.73, + "end": 12937.79, + "probability": 0.7427 + }, + { + "start": 12937.93, + "end": 12941.09, + "probability": 0.9946 + }, + { + "start": 12942.21, + "end": 12945.73, + "probability": 0.9961 + }, + { + "start": 12945.73, + "end": 12950.27, + "probability": 0.9965 + }, + { + "start": 12950.33, + "end": 12956.61, + "probability": 0.9893 + }, + { + "start": 12957.17, + "end": 12962.65, + "probability": 0.9497 + }, + { + "start": 12963.03, + "end": 12966.77, + "probability": 0.9897 + }, + { + "start": 12966.77, + "end": 12972.03, + "probability": 0.9901 + }, + { + "start": 12972.47, + "end": 12976.19, + "probability": 0.8276 + }, + { + "start": 12977.13, + "end": 12978.19, + "probability": 0.3739 + }, + { + "start": 12978.27, + "end": 12981.75, + "probability": 0.5743 + }, + { + "start": 12982.45, + "end": 12988.81, + "probability": 0.9788 + }, + { + "start": 12988.85, + "end": 12989.35, + "probability": 0.6924 + }, + { + "start": 12989.91, + "end": 12990.67, + "probability": 0.873 + }, + { + "start": 12991.45, + "end": 12995.59, + "probability": 0.9633 + }, + { + "start": 12995.59, + "end": 12999.61, + "probability": 0.9984 + }, + { + "start": 13000.15, + "end": 13002.33, + "probability": 0.8774 + }, + { + "start": 13002.67, + "end": 13008.59, + "probability": 0.993 + }, + { + "start": 13009.03, + "end": 13009.61, + "probability": 0.4238 + }, + { + "start": 13009.71, + "end": 13011.91, + "probability": 0.9651 + }, + { + "start": 13012.15, + "end": 13013.15, + "probability": 0.9858 + }, + { + "start": 13013.25, + "end": 13017.25, + "probability": 0.9236 + }, + { + "start": 13017.25, + "end": 13021.51, + "probability": 0.8472 + }, + { + "start": 13021.59, + "end": 13021.97, + "probability": 0.2976 + }, + { + "start": 13021.97, + "end": 13022.55, + "probability": 0.7218 + }, + { + "start": 13022.65, + "end": 13023.37, + "probability": 0.8612 + }, + { + "start": 13023.43, + "end": 13024.13, + "probability": 0.2159 + }, + { + "start": 13024.39, + "end": 13024.67, + "probability": 0.5061 + }, + { + "start": 13024.67, + "end": 13029.73, + "probability": 0.9344 + }, + { + "start": 13029.73, + "end": 13034.05, + "probability": 0.7453 + }, + { + "start": 13034.33, + "end": 13039.11, + "probability": 0.9812 + }, + { + "start": 13039.33, + "end": 13039.91, + "probability": 0.2928 + }, + { + "start": 13040.35, + "end": 13041.01, + "probability": 0.8759 + }, + { + "start": 13042.47, + "end": 13047.99, + "probability": 0.9975 + }, + { + "start": 13048.77, + "end": 13049.43, + "probability": 0.7563 + }, + { + "start": 13049.63, + "end": 13051.01, + "probability": 0.4947 + }, + { + "start": 13051.03, + "end": 13051.41, + "probability": 0.6641 + }, + { + "start": 13051.45, + "end": 13055.19, + "probability": 0.7721 + }, + { + "start": 13055.21, + "end": 13055.49, + "probability": 0.6055 + }, + { + "start": 13056.71, + "end": 13057.49, + "probability": 0.7633 + }, + { + "start": 13057.81, + "end": 13058.13, + "probability": 0.5502 + }, + { + "start": 13058.21, + "end": 13060.47, + "probability": 0.9951 + }, + { + "start": 13087.05, + "end": 13087.05, + "probability": 0.376 + }, + { + "start": 13087.05, + "end": 13089.51, + "probability": 0.6541 + }, + { + "start": 13090.71, + "end": 13093.55, + "probability": 0.7405 + }, + { + "start": 13095.39, + "end": 13095.65, + "probability": 0.6315 + }, + { + "start": 13095.77, + "end": 13104.95, + "probability": 0.9854 + }, + { + "start": 13106.45, + "end": 13107.05, + "probability": 0.6412 + }, + { + "start": 13107.71, + "end": 13110.13, + "probability": 0.9824 + }, + { + "start": 13111.29, + "end": 13113.57, + "probability": 0.604 + }, + { + "start": 13116.35, + "end": 13121.71, + "probability": 0.994 + }, + { + "start": 13122.65, + "end": 13125.34, + "probability": 0.9895 + }, + { + "start": 13128.79, + "end": 13129.59, + "probability": 0.985 + }, + { + "start": 13130.15, + "end": 13132.33, + "probability": 0.8188 + }, + { + "start": 13133.23, + "end": 13140.91, + "probability": 0.989 + }, + { + "start": 13142.13, + "end": 13144.37, + "probability": 0.9401 + }, + { + "start": 13145.65, + "end": 13153.03, + "probability": 0.9777 + }, + { + "start": 13154.23, + "end": 13155.53, + "probability": 0.6959 + }, + { + "start": 13155.59, + "end": 13163.71, + "probability": 0.7079 + }, + { + "start": 13164.99, + "end": 13171.53, + "probability": 0.9937 + }, + { + "start": 13172.85, + "end": 13175.55, + "probability": 0.5432 + }, + { + "start": 13176.86, + "end": 13184.51, + "probability": 0.999 + }, + { + "start": 13186.75, + "end": 13192.63, + "probability": 0.9869 + }, + { + "start": 13193.93, + "end": 13198.43, + "probability": 0.985 + }, + { + "start": 13199.53, + "end": 13201.0, + "probability": 0.9632 + }, + { + "start": 13201.97, + "end": 13205.55, + "probability": 0.9867 + }, + { + "start": 13206.67, + "end": 13207.79, + "probability": 0.1505 + }, + { + "start": 13209.51, + "end": 13212.33, + "probability": 0.9716 + }, + { + "start": 13213.83, + "end": 13216.61, + "probability": 0.8757 + }, + { + "start": 13216.67, + "end": 13220.65, + "probability": 0.905 + }, + { + "start": 13221.45, + "end": 13222.67, + "probability": 0.7484 + }, + { + "start": 13223.47, + "end": 13225.41, + "probability": 0.968 + }, + { + "start": 13225.47, + "end": 13226.52, + "probability": 0.8848 + }, + { + "start": 13227.33, + "end": 13230.45, + "probability": 0.9939 + }, + { + "start": 13231.11, + "end": 13232.57, + "probability": 0.8549 + }, + { + "start": 13234.79, + "end": 13235.91, + "probability": 0.9594 + }, + { + "start": 13236.49, + "end": 13241.65, + "probability": 0.9346 + }, + { + "start": 13242.73, + "end": 13244.71, + "probability": 0.7996 + }, + { + "start": 13245.77, + "end": 13247.23, + "probability": 0.8688 + }, + { + "start": 13248.93, + "end": 13251.53, + "probability": 0.8813 + }, + { + "start": 13253.03, + "end": 13255.51, + "probability": 0.8038 + }, + { + "start": 13257.41, + "end": 13261.21, + "probability": 0.6657 + }, + { + "start": 13262.13, + "end": 13264.6, + "probability": 0.9773 + }, + { + "start": 13265.79, + "end": 13267.19, + "probability": 0.6605 + }, + { + "start": 13269.63, + "end": 13270.51, + "probability": 0.8243 + }, + { + "start": 13270.97, + "end": 13277.15, + "probability": 0.978 + }, + { + "start": 13278.21, + "end": 13280.41, + "probability": 0.8877 + }, + { + "start": 13281.88, + "end": 13283.51, + "probability": 0.7247 + }, + { + "start": 13283.57, + "end": 13287.97, + "probability": 0.9972 + }, + { + "start": 13288.75, + "end": 13290.67, + "probability": 0.7154 + }, + { + "start": 13290.85, + "end": 13303.93, + "probability": 0.977 + }, + { + "start": 13304.05, + "end": 13305.81, + "probability": 0.9377 + }, + { + "start": 13306.59, + "end": 13307.93, + "probability": 0.6705 + }, + { + "start": 13308.65, + "end": 13310.39, + "probability": 0.562 + }, + { + "start": 13310.57, + "end": 13315.83, + "probability": 0.7151 + }, + { + "start": 13316.67, + "end": 13321.45, + "probability": 0.9866 + }, + { + "start": 13321.99, + "end": 13325.67, + "probability": 0.9547 + }, + { + "start": 13326.51, + "end": 13329.17, + "probability": 0.9988 + }, + { + "start": 13329.17, + "end": 13333.75, + "probability": 0.9915 + }, + { + "start": 13334.39, + "end": 13336.05, + "probability": 0.8863 + }, + { + "start": 13336.79, + "end": 13341.73, + "probability": 0.9872 + }, + { + "start": 13342.75, + "end": 13345.43, + "probability": 0.8211 + }, + { + "start": 13346.49, + "end": 13350.09, + "probability": 0.515 + }, + { + "start": 13350.21, + "end": 13351.29, + "probability": 0.7525 + }, + { + "start": 13352.11, + "end": 13355.45, + "probability": 0.8555 + }, + { + "start": 13356.21, + "end": 13357.63, + "probability": 0.9731 + }, + { + "start": 13358.87, + "end": 13361.53, + "probability": 0.9704 + }, + { + "start": 13362.25, + "end": 13367.41, + "probability": 0.9235 + }, + { + "start": 13367.51, + "end": 13369.26, + "probability": 0.569 + }, + { + "start": 13370.19, + "end": 13371.01, + "probability": 0.1131 + }, + { + "start": 13371.05, + "end": 13374.77, + "probability": 0.925 + }, + { + "start": 13376.63, + "end": 13376.77, + "probability": 0.4563 + }, + { + "start": 13376.89, + "end": 13380.45, + "probability": 0.9758 + }, + { + "start": 13381.43, + "end": 13381.57, + "probability": 0.5023 + }, + { + "start": 13383.77, + "end": 13386.25, + "probability": 0.9727 + }, + { + "start": 13388.83, + "end": 13391.91, + "probability": 0.816 + }, + { + "start": 13394.61, + "end": 13398.43, + "probability": 0.7495 + }, + { + "start": 13399.33, + "end": 13400.37, + "probability": 0.7712 + }, + { + "start": 13401.27, + "end": 13402.99, + "probability": 0.8516 + }, + { + "start": 13404.81, + "end": 13414.83, + "probability": 0.8502 + }, + { + "start": 13415.61, + "end": 13418.21, + "probability": 0.9121 + }, + { + "start": 13418.35, + "end": 13421.43, + "probability": 0.8925 + }, + { + "start": 13423.37, + "end": 13427.49, + "probability": 0.8469 + }, + { + "start": 13428.07, + "end": 13429.19, + "probability": 0.905 + }, + { + "start": 13429.67, + "end": 13431.69, + "probability": 0.8672 + }, + { + "start": 13432.57, + "end": 13434.97, + "probability": 0.9801 + }, + { + "start": 13434.97, + "end": 13438.41, + "probability": 0.9143 + }, + { + "start": 13439.07, + "end": 13441.41, + "probability": 0.9834 + }, + { + "start": 13443.73, + "end": 13444.87, + "probability": 0.8607 + }, + { + "start": 13445.51, + "end": 13447.33, + "probability": 0.8105 + }, + { + "start": 13447.99, + "end": 13450.33, + "probability": 0.821 + }, + { + "start": 13451.43, + "end": 13452.07, + "probability": 0.9113 + }, + { + "start": 13456.27, + "end": 13458.35, + "probability": 0.8166 + }, + { + "start": 13458.49, + "end": 13460.93, + "probability": 0.9255 + }, + { + "start": 13461.87, + "end": 13464.79, + "probability": 0.9814 + }, + { + "start": 13465.15, + "end": 13466.27, + "probability": 0.912 + }, + { + "start": 13466.81, + "end": 13469.49, + "probability": 0.8815 + }, + { + "start": 13470.27, + "end": 13471.15, + "probability": 0.7404 + }, + { + "start": 13471.25, + "end": 13478.29, + "probability": 0.9506 + }, + { + "start": 13479.89, + "end": 13482.77, + "probability": 0.7044 + }, + { + "start": 13483.39, + "end": 13488.11, + "probability": 0.9759 + }, + { + "start": 13489.45, + "end": 13489.61, + "probability": 0.168 + }, + { + "start": 13490.77, + "end": 13492.93, + "probability": 0.7646 + }, + { + "start": 13493.01, + "end": 13494.43, + "probability": 0.7415 + }, + { + "start": 13495.01, + "end": 13496.31, + "probability": 0.5598 + }, + { + "start": 13497.07, + "end": 13498.79, + "probability": 0.8797 + }, + { + "start": 13500.05, + "end": 13502.43, + "probability": 0.9707 + }, + { + "start": 13506.73, + "end": 13507.39, + "probability": 0.5598 + }, + { + "start": 13507.39, + "end": 13507.69, + "probability": 0.5951 + }, + { + "start": 13508.41, + "end": 13513.09, + "probability": 0.7247 + }, + { + "start": 13513.2, + "end": 13518.27, + "probability": 0.9019 + }, + { + "start": 13519.07, + "end": 13524.95, + "probability": 0.7773 + }, + { + "start": 13525.89, + "end": 13527.11, + "probability": 0.0321 + }, + { + "start": 13527.11, + "end": 13532.99, + "probability": 0.9703 + }, + { + "start": 13533.27, + "end": 13536.81, + "probability": 0.8587 + }, + { + "start": 13538.95, + "end": 13540.8, + "probability": 0.9529 + }, + { + "start": 13541.77, + "end": 13544.37, + "probability": 0.8633 + }, + { + "start": 13546.07, + "end": 13550.15, + "probability": 0.9023 + }, + { + "start": 13550.31, + "end": 13552.85, + "probability": 0.8105 + }, + { + "start": 13553.07, + "end": 13554.73, + "probability": 0.7988 + }, + { + "start": 13554.83, + "end": 13560.85, + "probability": 0.979 + }, + { + "start": 13561.59, + "end": 13561.97, + "probability": 0.8043 + }, + { + "start": 13569.07, + "end": 13570.25, + "probability": 0.3193 + }, + { + "start": 13570.35, + "end": 13572.95, + "probability": 0.5655 + }, + { + "start": 13573.05, + "end": 13575.47, + "probability": 0.8831 + }, + { + "start": 13577.03, + "end": 13578.19, + "probability": 0.9781 + }, + { + "start": 13578.61, + "end": 13578.83, + "probability": 0.1719 + }, + { + "start": 13579.19, + "end": 13579.83, + "probability": 0.7376 + }, + { + "start": 13580.05, + "end": 13581.59, + "probability": 0.7554 + }, + { + "start": 13583.15, + "end": 13584.39, + "probability": 0.4379 + }, + { + "start": 13584.87, + "end": 13586.12, + "probability": 0.6198 + }, + { + "start": 13586.49, + "end": 13589.71, + "probability": 0.6521 + }, + { + "start": 13589.71, + "end": 13592.61, + "probability": 0.9949 + }, + { + "start": 13594.09, + "end": 13607.39, + "probability": 0.9229 + }, + { + "start": 13608.33, + "end": 13610.43, + "probability": 0.5112 + }, + { + "start": 13610.45, + "end": 13612.97, + "probability": 0.8576 + }, + { + "start": 13613.05, + "end": 13615.23, + "probability": 0.8284 + }, + { + "start": 13615.47, + "end": 13621.45, + "probability": 0.7816 + }, + { + "start": 13621.53, + "end": 13622.49, + "probability": 0.6795 + }, + { + "start": 13622.87, + "end": 13625.11, + "probability": 0.6751 + }, + { + "start": 13625.65, + "end": 13634.85, + "probability": 0.8305 + }, + { + "start": 13635.19, + "end": 13642.89, + "probability": 0.9701 + }, + { + "start": 13642.95, + "end": 13653.33, + "probability": 0.926 + }, + { + "start": 13654.45, + "end": 13660.05, + "probability": 0.9624 + }, + { + "start": 13660.11, + "end": 13661.73, + "probability": 0.7088 + }, + { + "start": 13662.33, + "end": 13668.85, + "probability": 0.9961 + }, + { + "start": 13669.19, + "end": 13675.13, + "probability": 0.8953 + }, + { + "start": 13675.29, + "end": 13680.89, + "probability": 0.9901 + }, + { + "start": 13681.67, + "end": 13685.91, + "probability": 0.7177 + }, + { + "start": 13685.97, + "end": 13686.95, + "probability": 0.7948 + }, + { + "start": 13687.01, + "end": 13688.69, + "probability": 0.953 + }, + { + "start": 13689.17, + "end": 13690.79, + "probability": 0.7477 + }, + { + "start": 13690.95, + "end": 13694.31, + "probability": 0.7838 + }, + { + "start": 13694.31, + "end": 13694.31, + "probability": 0.444 + }, + { + "start": 13694.41, + "end": 13699.69, + "probability": 0.9885 + }, + { + "start": 13699.85, + "end": 13704.41, + "probability": 0.7946 + }, + { + "start": 13704.47, + "end": 13704.71, + "probability": 0.7238 + }, + { + "start": 13704.87, + "end": 13705.37, + "probability": 0.5756 + }, + { + "start": 13705.39, + "end": 13706.59, + "probability": 0.4988 + }, + { + "start": 13706.59, + "end": 13707.57, + "probability": 0.2168 + }, + { + "start": 13709.81, + "end": 13710.23, + "probability": 0.4851 + }, + { + "start": 13710.59, + "end": 13713.47, + "probability": 0.3415 + }, + { + "start": 13713.71, + "end": 13715.07, + "probability": 0.7486 + }, + { + "start": 13715.17, + "end": 13715.81, + "probability": 0.7574 + }, + { + "start": 13715.83, + "end": 13719.51, + "probability": 0.9435 + }, + { + "start": 13720.13, + "end": 13722.91, + "probability": 0.9494 + }, + { + "start": 13723.77, + "end": 13724.09, + "probability": 0.2447 + }, + { + "start": 13724.23, + "end": 13732.09, + "probability": 0.9907 + }, + { + "start": 13732.93, + "end": 13735.53, + "probability": 0.981 + }, + { + "start": 13735.97, + "end": 13739.65, + "probability": 0.9883 + }, + { + "start": 13740.15, + "end": 13741.27, + "probability": 0.8797 + }, + { + "start": 13742.15, + "end": 13742.43, + "probability": 0.3181 + }, + { + "start": 13743.55, + "end": 13744.49, + "probability": 0.4452 + }, + { + "start": 13744.49, + "end": 13746.01, + "probability": 0.8748 + }, + { + "start": 13746.39, + "end": 13755.05, + "probability": 0.9841 + }, + { + "start": 13755.25, + "end": 13756.13, + "probability": 0.6846 + }, + { + "start": 13756.39, + "end": 13758.29, + "probability": 0.7842 + }, + { + "start": 13758.63, + "end": 13759.23, + "probability": 0.6205 + }, + { + "start": 13759.57, + "end": 13760.37, + "probability": 0.5666 + }, + { + "start": 13760.41, + "end": 13761.43, + "probability": 0.8852 + }, + { + "start": 13762.05, + "end": 13762.75, + "probability": 0.1451 + }, + { + "start": 13763.29, + "end": 13765.71, + "probability": 0.9402 + }, + { + "start": 13766.19, + "end": 13771.59, + "probability": 0.7602 + }, + { + "start": 13771.75, + "end": 13772.89, + "probability": 0.7722 + }, + { + "start": 13773.73, + "end": 13774.25, + "probability": 0.6461 + }, + { + "start": 13774.75, + "end": 13777.73, + "probability": 0.3574 + }, + { + "start": 13778.03, + "end": 13782.49, + "probability": 0.9605 + }, + { + "start": 13782.49, + "end": 13785.51, + "probability": 0.9913 + }, + { + "start": 13786.11, + "end": 13789.33, + "probability": 0.9933 + }, + { + "start": 13789.79, + "end": 13791.83, + "probability": 0.9751 + }, + { + "start": 13792.47, + "end": 13793.39, + "probability": 0.4543 + }, + { + "start": 13793.99, + "end": 13801.45, + "probability": 0.8901 + }, + { + "start": 13801.63, + "end": 13805.01, + "probability": 0.969 + }, + { + "start": 13805.37, + "end": 13807.01, + "probability": 0.9868 + }, + { + "start": 13807.83, + "end": 13808.55, + "probability": 0.6433 + }, + { + "start": 13809.51, + "end": 13811.11, + "probability": 0.3939 + }, + { + "start": 13811.15, + "end": 13811.91, + "probability": 0.5071 + }, + { + "start": 13811.95, + "end": 13814.47, + "probability": 0.9068 + }, + { + "start": 13815.23, + "end": 13819.69, + "probability": 0.8879 + }, + { + "start": 13820.23, + "end": 13825.63, + "probability": 0.9847 + }, + { + "start": 13826.29, + "end": 13827.85, + "probability": 0.5889 + }, + { + "start": 13828.27, + "end": 13832.85, + "probability": 0.9285 + }, + { + "start": 13832.87, + "end": 13834.07, + "probability": 0.6678 + }, + { + "start": 13834.15, + "end": 13836.95, + "probability": 0.9368 + }, + { + "start": 13837.07, + "end": 13838.77, + "probability": 0.7601 + }, + { + "start": 13838.85, + "end": 13840.05, + "probability": 0.812 + }, + { + "start": 13840.15, + "end": 13841.35, + "probability": 0.7214 + }, + { + "start": 13841.65, + "end": 13842.33, + "probability": 0.3352 + }, + { + "start": 13842.33, + "end": 13842.45, + "probability": 0.2437 + }, + { + "start": 13842.45, + "end": 13842.45, + "probability": 0.6153 + }, + { + "start": 13842.45, + "end": 13845.67, + "probability": 0.3202 + }, + { + "start": 13845.67, + "end": 13846.41, + "probability": 0.5685 + }, + { + "start": 13846.65, + "end": 13848.09, + "probability": 0.7565 + }, + { + "start": 13848.37, + "end": 13849.35, + "probability": 0.9087 + }, + { + "start": 13849.45, + "end": 13849.91, + "probability": 0.7383 + }, + { + "start": 13850.15, + "end": 13852.45, + "probability": 0.9575 + }, + { + "start": 13852.49, + "end": 13856.87, + "probability": 0.8687 + }, + { + "start": 13857.23, + "end": 13861.05, + "probability": 0.6973 + }, + { + "start": 13861.21, + "end": 13861.21, + "probability": 0.622 + }, + { + "start": 13861.23, + "end": 13863.13, + "probability": 0.9631 + }, + { + "start": 13863.37, + "end": 13866.53, + "probability": 0.9155 + }, + { + "start": 13866.53, + "end": 13866.53, + "probability": 0.6105 + }, + { + "start": 13866.53, + "end": 13867.45, + "probability": 0.5966 + }, + { + "start": 13868.05, + "end": 13870.75, + "probability": 0.9673 + }, + { + "start": 13870.85, + "end": 13871.15, + "probability": 0.5153 + }, + { + "start": 13871.15, + "end": 13871.53, + "probability": 0.4576 + }, + { + "start": 13872.77, + "end": 13874.6, + "probability": 0.9526 + }, + { + "start": 13875.49, + "end": 13875.97, + "probability": 0.315 + }, + { + "start": 13876.69, + "end": 13882.57, + "probability": 0.3468 + }, + { + "start": 13883.11, + "end": 13883.85, + "probability": 0.8562 + }, + { + "start": 13884.01, + "end": 13884.47, + "probability": 0.7722 + }, + { + "start": 13884.67, + "end": 13886.37, + "probability": 0.8303 + }, + { + "start": 13886.45, + "end": 13887.13, + "probability": 0.2614 + }, + { + "start": 13899.79, + "end": 13900.31, + "probability": 0.8203 + }, + { + "start": 13900.73, + "end": 13900.75, + "probability": 0.9646 + }, + { + "start": 13901.43, + "end": 13901.43, + "probability": 0.0663 + }, + { + "start": 13901.43, + "end": 13901.81, + "probability": 0.5577 + }, + { + "start": 13902.03, + "end": 13902.19, + "probability": 0.2417 + }, + { + "start": 13902.19, + "end": 13902.21, + "probability": 0.6539 + }, + { + "start": 13904.05, + "end": 13906.69, + "probability": 0.9354 + }, + { + "start": 13912.35, + "end": 13912.45, + "probability": 0.3577 + }, + { + "start": 13912.45, + "end": 13912.45, + "probability": 0.0672 + }, + { + "start": 13912.45, + "end": 13912.45, + "probability": 0.05 + }, + { + "start": 13912.45, + "end": 13912.73, + "probability": 0.6854 + }, + { + "start": 13914.31, + "end": 13917.79, + "probability": 0.5497 + }, + { + "start": 13918.35, + "end": 13923.53, + "probability": 0.8683 + }, + { + "start": 13923.57, + "end": 13925.03, + "probability": 0.9539 + }, + { + "start": 13925.61, + "end": 13928.17, + "probability": 0.6033 + }, + { + "start": 13928.75, + "end": 13929.59, + "probability": 0.8675 + }, + { + "start": 13930.31, + "end": 13930.77, + "probability": 0.8623 + }, + { + "start": 13931.23, + "end": 13932.67, + "probability": 0.8613 + }, + { + "start": 13933.41, + "end": 13937.39, + "probability": 0.709 + }, + { + "start": 13938.49, + "end": 13942.77, + "probability": 0.9592 + }, + { + "start": 13943.85, + "end": 13944.29, + "probability": 0.5383 + }, + { + "start": 13944.63, + "end": 13945.23, + "probability": 0.7487 + }, + { + "start": 13950.55, + "end": 13954.29, + "probability": 0.2739 + }, + { + "start": 13955.13, + "end": 13955.67, + "probability": 0.8446 + }, + { + "start": 13956.59, + "end": 13961.11, + "probability": 0.9377 + }, + { + "start": 13961.33, + "end": 13964.91, + "probability": 0.7846 + }, + { + "start": 13965.15, + "end": 13967.91, + "probability": 0.5486 + }, + { + "start": 13969.69, + "end": 13974.39, + "probability": 0.899 + }, + { + "start": 13974.79, + "end": 13977.53, + "probability": 0.9766 + }, + { + "start": 13978.27, + "end": 13980.99, + "probability": 0.9656 + }, + { + "start": 13981.29, + "end": 13982.73, + "probability": 0.5829 + }, + { + "start": 13982.97, + "end": 13985.03, + "probability": 0.9379 + }, + { + "start": 13985.19, + "end": 13989.09, + "probability": 0.9114 + }, + { + "start": 13989.09, + "end": 13992.59, + "probability": 0.9839 + }, + { + "start": 13992.87, + "end": 13993.71, + "probability": 0.694 + }, + { + "start": 13994.47, + "end": 13995.87, + "probability": 0.9648 + }, + { + "start": 13997.15, + "end": 13999.43, + "probability": 0.5123 + }, + { + "start": 13999.83, + "end": 14003.33, + "probability": 0.853 + }, + { + "start": 14004.77, + "end": 14005.53, + "probability": 0.5619 + }, + { + "start": 14005.61, + "end": 14005.93, + "probability": 0.501 + }, + { + "start": 14006.81, + "end": 14007.71, + "probability": 0.651 + }, + { + "start": 14008.13, + "end": 14008.71, + "probability": 0.3506 + }, + { + "start": 14010.89, + "end": 14011.91, + "probability": 0.505 + }, + { + "start": 14012.81, + "end": 14014.01, + "probability": 0.9018 + }, + { + "start": 14014.11, + "end": 14016.25, + "probability": 0.9187 + }, + { + "start": 14016.49, + "end": 14017.17, + "probability": 0.9088 + }, + { + "start": 14017.35, + "end": 14017.79, + "probability": 0.7518 + }, + { + "start": 14018.81, + "end": 14021.61, + "probability": 0.8885 + }, + { + "start": 14022.15, + "end": 14024.09, + "probability": 0.9636 + }, + { + "start": 14024.89, + "end": 14025.51, + "probability": 0.6711 + }, + { + "start": 14026.15, + "end": 14026.74, + "probability": 0.8372 + }, + { + "start": 14027.85, + "end": 14029.83, + "probability": 0.7949 + }, + { + "start": 14030.95, + "end": 14033.35, + "probability": 0.8239 + }, + { + "start": 14034.11, + "end": 14036.01, + "probability": 0.9193 + }, + { + "start": 14036.07, + "end": 14036.37, + "probability": 0.7856 + }, + { + "start": 14036.45, + "end": 14040.99, + "probability": 0.9854 + }, + { + "start": 14041.97, + "end": 14045.89, + "probability": 0.9605 + }, + { + "start": 14046.59, + "end": 14049.29, + "probability": 0.8757 + }, + { + "start": 14049.87, + "end": 14055.31, + "probability": 0.7991 + }, + { + "start": 14055.31, + "end": 14058.81, + "probability": 0.9966 + }, + { + "start": 14059.17, + "end": 14062.35, + "probability": 0.8535 + }, + { + "start": 14062.41, + "end": 14063.11, + "probability": 0.9314 + }, + { + "start": 14063.55, + "end": 14064.59, + "probability": 0.9938 + }, + { + "start": 14066.89, + "end": 14068.15, + "probability": 0.8011 + }, + { + "start": 14068.93, + "end": 14072.27, + "probability": 0.9663 + }, + { + "start": 14072.41, + "end": 14073.04, + "probability": 0.6448 + }, + { + "start": 14073.83, + "end": 14076.93, + "probability": 0.9899 + }, + { + "start": 14077.29, + "end": 14080.22, + "probability": 0.7246 + }, + { + "start": 14080.93, + "end": 14082.49, + "probability": 0.5185 + }, + { + "start": 14082.57, + "end": 14083.67, + "probability": 0.9556 + }, + { + "start": 14084.73, + "end": 14085.99, + "probability": 0.8069 + }, + { + "start": 14086.19, + "end": 14087.69, + "probability": 0.5631 + }, + { + "start": 14087.87, + "end": 14094.82, + "probability": 0.9189 + }, + { + "start": 14095.17, + "end": 14097.41, + "probability": 0.9976 + }, + { + "start": 14097.87, + "end": 14105.39, + "probability": 0.9718 + }, + { + "start": 14106.29, + "end": 14109.29, + "probability": 0.8175 + }, + { + "start": 14109.37, + "end": 14113.91, + "probability": 0.8746 + }, + { + "start": 14114.29, + "end": 14118.57, + "probability": 0.9753 + }, + { + "start": 14119.19, + "end": 14120.59, + "probability": 0.8574 + }, + { + "start": 14122.83, + "end": 14123.75, + "probability": 0.5075 + }, + { + "start": 14123.93, + "end": 14127.29, + "probability": 0.984 + }, + { + "start": 14127.49, + "end": 14130.83, + "probability": 0.8947 + }, + { + "start": 14131.21, + "end": 14136.65, + "probability": 0.9564 + }, + { + "start": 14137.83, + "end": 14139.77, + "probability": 0.4714 + }, + { + "start": 14140.03, + "end": 14143.25, + "probability": 0.9734 + }, + { + "start": 14143.45, + "end": 14146.11, + "probability": 0.9937 + }, + { + "start": 14146.11, + "end": 14150.53, + "probability": 0.9951 + }, + { + "start": 14151.47, + "end": 14153.19, + "probability": 0.3221 + }, + { + "start": 14154.53, + "end": 14157.59, + "probability": 0.4076 + }, + { + "start": 14157.85, + "end": 14159.27, + "probability": 0.724 + }, + { + "start": 14159.71, + "end": 14164.05, + "probability": 0.8416 + }, + { + "start": 14164.05, + "end": 14166.19, + "probability": 0.9497 + }, + { + "start": 14166.53, + "end": 14167.07, + "probability": 0.4962 + }, + { + "start": 14167.11, + "end": 14168.49, + "probability": 0.9766 + }, + { + "start": 14168.81, + "end": 14169.85, + "probability": 0.8914 + }, + { + "start": 14170.69, + "end": 14172.97, + "probability": 0.9178 + }, + { + "start": 14173.01, + "end": 14174.37, + "probability": 0.9857 + }, + { + "start": 14174.75, + "end": 14176.61, + "probability": 0.9338 + }, + { + "start": 14177.27, + "end": 14180.97, + "probability": 0.6747 + }, + { + "start": 14181.61, + "end": 14183.29, + "probability": 0.7773 + }, + { + "start": 14183.29, + "end": 14183.83, + "probability": 0.0252 + }, + { + "start": 14183.83, + "end": 14183.93, + "probability": 0.2625 + }, + { + "start": 14183.93, + "end": 14185.29, + "probability": 0.2751 + }, + { + "start": 14185.31, + "end": 14186.29, + "probability": 0.6761 + }, + { + "start": 14186.39, + "end": 14186.55, + "probability": 0.5807 + }, + { + "start": 14187.19, + "end": 14189.83, + "probability": 0.7047 + }, + { + "start": 14189.91, + "end": 14191.01, + "probability": 0.9501 + }, + { + "start": 14191.55, + "end": 14191.69, + "probability": 0.8874 + }, + { + "start": 14191.77, + "end": 14192.45, + "probability": 0.9594 + }, + { + "start": 14192.57, + "end": 14193.61, + "probability": 0.768 + }, + { + "start": 14194.03, + "end": 14195.57, + "probability": 0.9893 + }, + { + "start": 14197.31, + "end": 14200.93, + "probability": 0.8712 + }, + { + "start": 14201.73, + "end": 14203.59, + "probability": 0.9218 + }, + { + "start": 14203.71, + "end": 14205.33, + "probability": 0.8679 + }, + { + "start": 14205.39, + "end": 14207.43, + "probability": 0.9119 + }, + { + "start": 14207.45, + "end": 14208.89, + "probability": 0.8939 + }, + { + "start": 14209.55, + "end": 14210.41, + "probability": 0.5614 + }, + { + "start": 14211.13, + "end": 14214.46, + "probability": 0.9908 + }, + { + "start": 14215.11, + "end": 14216.27, + "probability": 0.6138 + }, + { + "start": 14216.41, + "end": 14218.17, + "probability": 0.8923 + }, + { + "start": 14218.47, + "end": 14222.03, + "probability": 0.9846 + }, + { + "start": 14223.21, + "end": 14223.83, + "probability": 0.7459 + }, + { + "start": 14224.15, + "end": 14224.45, + "probability": 0.629 + }, + { + "start": 14224.53, + "end": 14227.51, + "probability": 0.223 + }, + { + "start": 14228.15, + "end": 14229.25, + "probability": 0.6587 + }, + { + "start": 14229.89, + "end": 14231.01, + "probability": 0.6812 + }, + { + "start": 14232.19, + "end": 14235.71, + "probability": 0.9365 + }, + { + "start": 14235.81, + "end": 14237.17, + "probability": 0.7322 + }, + { + "start": 14237.23, + "end": 14240.21, + "probability": 0.9582 + }, + { + "start": 14240.31, + "end": 14243.53, + "probability": 0.58 + }, + { + "start": 14244.13, + "end": 14248.49, + "probability": 0.7645 + }, + { + "start": 14248.55, + "end": 14249.33, + "probability": 0.6328 + }, + { + "start": 14250.31, + "end": 14251.67, + "probability": 0.917 + }, + { + "start": 14251.93, + "end": 14253.27, + "probability": 0.0086 + }, + { + "start": 14253.81, + "end": 14255.53, + "probability": 0.8022 + }, + { + "start": 14256.71, + "end": 14258.89, + "probability": 0.722 + }, + { + "start": 14264.15, + "end": 14266.83, + "probability": 0.9419 + } + ], + "segments_count": 5383, + "words_count": 26261, + "avg_words_per_segment": 4.8785, + "avg_segment_duration": 1.9567, + "avg_words_per_minute": 109.841, + "plenum_id": "42582", + "duration": 14344.92, + "title": null, + "plenum_date": "2015-05-27" +} \ No newline at end of file