diff --git "a/10423/metadata.json" "b/10423/metadata.json" new file mode 100644--- /dev/null +++ "b/10423/metadata.json" @@ -0,0 +1,22582 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10423", + "quality_score": 0.9033, + "per_segment_quality_scores": [ + { + "start": 59.86, + "end": 63.34, + "probability": 0.4155 + }, + { + "start": 64.4, + "end": 67.44, + "probability": 0.6709 + }, + { + "start": 68.08, + "end": 70.58, + "probability": 0.9921 + }, + { + "start": 70.74, + "end": 72.38, + "probability": 0.9929 + }, + { + "start": 73.04, + "end": 74.76, + "probability": 0.9048 + }, + { + "start": 75.82, + "end": 82.04, + "probability": 0.9663 + }, + { + "start": 82.62, + "end": 84.74, + "probability": 0.7865 + }, + { + "start": 84.86, + "end": 85.64, + "probability": 0.7574 + }, + { + "start": 86.1, + "end": 86.66, + "probability": 0.4135 + }, + { + "start": 86.86, + "end": 88.0, + "probability": 0.908 + }, + { + "start": 103.16, + "end": 104.7, + "probability": 0.9536 + }, + { + "start": 106.82, + "end": 112.6, + "probability": 0.6636 + }, + { + "start": 113.8, + "end": 116.76, + "probability": 0.7691 + }, + { + "start": 118.96, + "end": 120.4, + "probability": 0.6683 + }, + { + "start": 140.06, + "end": 142.84, + "probability": 0.3421 + }, + { + "start": 143.72, + "end": 148.1, + "probability": 0.061 + }, + { + "start": 148.65, + "end": 151.1, + "probability": 0.0488 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.0, + "end": 268.0, + "probability": 0.0 + }, + { + "start": 268.24, + "end": 271.7, + "probability": 0.7411 + }, + { + "start": 271.7, + "end": 276.88, + "probability": 0.9912 + }, + { + "start": 277.65, + "end": 281.14, + "probability": 0.9903 + }, + { + "start": 282.76, + "end": 286.4, + "probability": 0.9951 + }, + { + "start": 287.2, + "end": 292.18, + "probability": 0.984 + }, + { + "start": 292.78, + "end": 295.7, + "probability": 0.9147 + }, + { + "start": 296.52, + "end": 300.7, + "probability": 0.9086 + }, + { + "start": 300.7, + "end": 303.9, + "probability": 0.9976 + }, + { + "start": 304.78, + "end": 306.3, + "probability": 0.8038 + }, + { + "start": 306.38, + "end": 307.76, + "probability": 0.7308 + }, + { + "start": 307.94, + "end": 310.64, + "probability": 0.995 + }, + { + "start": 311.22, + "end": 312.96, + "probability": 0.7957 + }, + { + "start": 313.48, + "end": 316.08, + "probability": 0.9886 + }, + { + "start": 316.08, + "end": 319.74, + "probability": 0.9959 + }, + { + "start": 320.44, + "end": 323.2, + "probability": 0.8017 + }, + { + "start": 323.5, + "end": 325.08, + "probability": 0.9361 + }, + { + "start": 325.6, + "end": 328.56, + "probability": 0.9005 + }, + { + "start": 329.2, + "end": 330.58, + "probability": 0.6997 + }, + { + "start": 330.84, + "end": 335.76, + "probability": 0.9155 + }, + { + "start": 335.76, + "end": 340.04, + "probability": 0.9641 + }, + { + "start": 340.72, + "end": 344.46, + "probability": 0.9876 + }, + { + "start": 345.12, + "end": 348.0, + "probability": 0.7918 + }, + { + "start": 348.2, + "end": 348.94, + "probability": 0.43 + }, + { + "start": 349.56, + "end": 350.9, + "probability": 0.2493 + }, + { + "start": 351.8, + "end": 352.2, + "probability": 0.6308 + }, + { + "start": 353.08, + "end": 356.46, + "probability": 0.9912 + }, + { + "start": 356.52, + "end": 358.46, + "probability": 0.866 + }, + { + "start": 358.64, + "end": 360.8, + "probability": 0.9949 + }, + { + "start": 361.24, + "end": 363.72, + "probability": 0.9658 + }, + { + "start": 364.56, + "end": 370.56, + "probability": 0.9929 + }, + { + "start": 370.84, + "end": 372.06, + "probability": 0.7319 + }, + { + "start": 372.06, + "end": 373.62, + "probability": 0.4975 + }, + { + "start": 373.92, + "end": 374.38, + "probability": 0.3579 + }, + { + "start": 374.4, + "end": 375.66, + "probability": 0.7959 + }, + { + "start": 384.38, + "end": 386.64, + "probability": 0.7263 + }, + { + "start": 389.5, + "end": 394.64, + "probability": 0.9807 + }, + { + "start": 396.9, + "end": 399.52, + "probability": 0.72 + }, + { + "start": 399.6, + "end": 401.02, + "probability": 0.0578 + }, + { + "start": 402.14, + "end": 404.22, + "probability": 0.2396 + }, + { + "start": 404.88, + "end": 405.68, + "probability": 0.1743 + }, + { + "start": 406.77, + "end": 409.07, + "probability": 0.1795 + }, + { + "start": 410.84, + "end": 412.87, + "probability": 0.5115 + }, + { + "start": 413.16, + "end": 414.56, + "probability": 0.9174 + }, + { + "start": 414.7, + "end": 416.21, + "probability": 0.7291 + }, + { + "start": 416.52, + "end": 417.92, + "probability": 0.8143 + }, + { + "start": 418.14, + "end": 418.74, + "probability": 0.3415 + }, + { + "start": 419.74, + "end": 420.14, + "probability": 0.8149 + }, + { + "start": 420.94, + "end": 422.02, + "probability": 0.0852 + }, + { + "start": 423.44, + "end": 424.16, + "probability": 0.7525 + }, + { + "start": 424.32, + "end": 426.04, + "probability": 0.9383 + }, + { + "start": 426.26, + "end": 431.28, + "probability": 0.8755 + }, + { + "start": 431.88, + "end": 436.2, + "probability": 0.8465 + }, + { + "start": 436.48, + "end": 438.81, + "probability": 0.8991 + }, + { + "start": 439.86, + "end": 440.24, + "probability": 0.623 + }, + { + "start": 441.0, + "end": 447.08, + "probability": 0.9699 + }, + { + "start": 447.36, + "end": 449.62, + "probability": 0.8057 + }, + { + "start": 450.54, + "end": 455.88, + "probability": 0.9761 + }, + { + "start": 456.28, + "end": 460.06, + "probability": 0.9796 + }, + { + "start": 460.28, + "end": 460.6, + "probability": 0.1555 + }, + { + "start": 461.38, + "end": 462.22, + "probability": 0.9251 + }, + { + "start": 462.4, + "end": 467.5, + "probability": 0.9851 + }, + { + "start": 467.6, + "end": 468.32, + "probability": 0.9086 + }, + { + "start": 468.4, + "end": 471.98, + "probability": 0.9565 + }, + { + "start": 472.02, + "end": 478.82, + "probability": 0.8514 + }, + { + "start": 479.14, + "end": 479.5, + "probability": 0.5405 + }, + { + "start": 479.76, + "end": 480.14, + "probability": 0.5001 + }, + { + "start": 480.24, + "end": 481.46, + "probability": 0.7159 + }, + { + "start": 482.04, + "end": 482.74, + "probability": 0.5107 + }, + { + "start": 483.38, + "end": 485.52, + "probability": 0.7139 + }, + { + "start": 486.16, + "end": 487.7, + "probability": 0.6504 + }, + { + "start": 487.92, + "end": 487.96, + "probability": 0.4081 + }, + { + "start": 487.96, + "end": 488.76, + "probability": 0.8584 + }, + { + "start": 489.0, + "end": 491.76, + "probability": 0.9977 + }, + { + "start": 492.32, + "end": 493.1, + "probability": 0.999 + }, + { + "start": 493.66, + "end": 496.96, + "probability": 0.9846 + }, + { + "start": 498.71, + "end": 501.33, + "probability": 0.9727 + }, + { + "start": 501.39, + "end": 504.86, + "probability": 0.9995 + }, + { + "start": 505.42, + "end": 509.78, + "probability": 0.9996 + }, + { + "start": 510.26, + "end": 510.72, + "probability": 0.426 + }, + { + "start": 511.7, + "end": 515.7, + "probability": 0.9955 + }, + { + "start": 516.4, + "end": 521.38, + "probability": 0.9976 + }, + { + "start": 521.92, + "end": 522.72, + "probability": 0.7007 + }, + { + "start": 522.8, + "end": 524.3, + "probability": 0.5735 + }, + { + "start": 526.52, + "end": 526.52, + "probability": 0.0461 + }, + { + "start": 526.52, + "end": 528.98, + "probability": 0.2113 + }, + { + "start": 529.5, + "end": 532.08, + "probability": 0.7901 + }, + { + "start": 532.84, + "end": 534.01, + "probability": 0.9927 + }, + { + "start": 535.18, + "end": 537.34, + "probability": 0.7567 + }, + { + "start": 537.4, + "end": 538.5, + "probability": 0.7625 + }, + { + "start": 538.94, + "end": 543.96, + "probability": 0.772 + }, + { + "start": 544.12, + "end": 545.34, + "probability": 0.5862 + }, + { + "start": 546.14, + "end": 548.23, + "probability": 0.8729 + }, + { + "start": 548.46, + "end": 549.94, + "probability": 0.8736 + }, + { + "start": 550.34, + "end": 552.26, + "probability": 0.557 + }, + { + "start": 553.06, + "end": 555.5, + "probability": 0.8728 + }, + { + "start": 556.38, + "end": 557.1, + "probability": 0.6363 + }, + { + "start": 557.2, + "end": 557.66, + "probability": 0.7324 + }, + { + "start": 557.94, + "end": 560.96, + "probability": 0.9968 + }, + { + "start": 561.56, + "end": 567.24, + "probability": 0.9927 + }, + { + "start": 568.42, + "end": 571.46, + "probability": 0.9794 + }, + { + "start": 571.84, + "end": 572.9, + "probability": 0.9634 + }, + { + "start": 573.02, + "end": 576.14, + "probability": 0.9844 + }, + { + "start": 576.14, + "end": 577.74, + "probability": 0.787 + }, + { + "start": 578.46, + "end": 585.18, + "probability": 0.999 + }, + { + "start": 586.22, + "end": 589.3, + "probability": 0.6514 + }, + { + "start": 589.86, + "end": 591.88, + "probability": 0.7266 + }, + { + "start": 591.88, + "end": 594.3, + "probability": 0.9797 + }, + { + "start": 595.34, + "end": 598.66, + "probability": 0.7768 + }, + { + "start": 601.84, + "end": 602.93, + "probability": 0.0732 + }, + { + "start": 603.18, + "end": 604.54, + "probability": 0.8558 + }, + { + "start": 604.7, + "end": 605.36, + "probability": 0.7388 + }, + { + "start": 605.48, + "end": 605.78, + "probability": 0.4087 + }, + { + "start": 606.78, + "end": 608.62, + "probability": 0.4947 + }, + { + "start": 608.86, + "end": 609.14, + "probability": 0.6044 + }, + { + "start": 609.76, + "end": 612.14, + "probability": 0.9964 + }, + { + "start": 612.14, + "end": 614.28, + "probability": 0.9033 + }, + { + "start": 614.6, + "end": 615.0, + "probability": 0.7388 + }, + { + "start": 615.12, + "end": 615.52, + "probability": 0.5154 + }, + { + "start": 615.88, + "end": 616.68, + "probability": 0.8734 + }, + { + "start": 616.8, + "end": 617.9, + "probability": 0.8099 + }, + { + "start": 618.02, + "end": 620.27, + "probability": 0.5449 + }, + { + "start": 621.22, + "end": 624.3, + "probability": 0.7358 + }, + { + "start": 624.6, + "end": 627.22, + "probability": 0.9471 + }, + { + "start": 627.7, + "end": 628.94, + "probability": 0.9878 + }, + { + "start": 629.8, + "end": 634.28, + "probability": 0.9919 + }, + { + "start": 634.52, + "end": 638.48, + "probability": 0.9977 + }, + { + "start": 638.94, + "end": 641.34, + "probability": 0.6383 + }, + { + "start": 641.96, + "end": 643.46, + "probability": 0.5636 + }, + { + "start": 643.68, + "end": 648.02, + "probability": 0.9876 + }, + { + "start": 649.34, + "end": 650.2, + "probability": 0.9961 + }, + { + "start": 651.08, + "end": 651.81, + "probability": 0.9901 + }, + { + "start": 652.74, + "end": 655.5, + "probability": 0.8343 + }, + { + "start": 656.22, + "end": 657.08, + "probability": 0.8545 + }, + { + "start": 657.98, + "end": 661.46, + "probability": 0.9482 + }, + { + "start": 661.68, + "end": 663.06, + "probability": 0.9796 + }, + { + "start": 663.32, + "end": 664.72, + "probability": 0.9555 + }, + { + "start": 665.52, + "end": 667.34, + "probability": 0.6672 + }, + { + "start": 667.48, + "end": 668.28, + "probability": 0.6278 + }, + { + "start": 668.8, + "end": 674.88, + "probability": 0.932 + }, + { + "start": 675.1, + "end": 680.66, + "probability": 0.5503 + }, + { + "start": 680.88, + "end": 681.88, + "probability": 0.847 + }, + { + "start": 682.14, + "end": 682.96, + "probability": 0.7568 + }, + { + "start": 683.18, + "end": 684.36, + "probability": 0.9583 + }, + { + "start": 684.8, + "end": 685.78, + "probability": 0.949 + }, + { + "start": 686.36, + "end": 688.88, + "probability": 0.7314 + }, + { + "start": 690.24, + "end": 692.78, + "probability": 0.9599 + }, + { + "start": 696.8, + "end": 697.36, + "probability": 0.7072 + }, + { + "start": 699.4, + "end": 700.04, + "probability": 0.3534 + }, + { + "start": 704.12, + "end": 704.42, + "probability": 0.7355 + }, + { + "start": 706.28, + "end": 707.46, + "probability": 0.8838 + }, + { + "start": 707.58, + "end": 708.58, + "probability": 0.6749 + }, + { + "start": 708.68, + "end": 709.48, + "probability": 0.9057 + }, + { + "start": 709.62, + "end": 712.86, + "probability": 0.9001 + }, + { + "start": 712.92, + "end": 717.26, + "probability": 0.7172 + }, + { + "start": 717.42, + "end": 719.74, + "probability": 0.7736 + }, + { + "start": 720.18, + "end": 721.94, + "probability": 0.6633 + }, + { + "start": 722.52, + "end": 725.1, + "probability": 0.6232 + }, + { + "start": 725.64, + "end": 728.06, + "probability": 0.6511 + }, + { + "start": 728.64, + "end": 732.22, + "probability": 0.647 + }, + { + "start": 732.98, + "end": 737.82, + "probability": 0.8923 + }, + { + "start": 738.0, + "end": 739.32, + "probability": 0.763 + }, + { + "start": 740.06, + "end": 741.54, + "probability": 0.817 + }, + { + "start": 742.46, + "end": 747.24, + "probability": 0.8606 + }, + { + "start": 747.84, + "end": 752.04, + "probability": 0.9719 + }, + { + "start": 753.2, + "end": 754.44, + "probability": 0.7407 + }, + { + "start": 754.56, + "end": 756.08, + "probability": 0.8084 + }, + { + "start": 756.36, + "end": 756.78, + "probability": 0.6718 + }, + { + "start": 757.08, + "end": 759.18, + "probability": 0.7416 + }, + { + "start": 759.52, + "end": 763.88, + "probability": 0.7931 + }, + { + "start": 764.32, + "end": 769.34, + "probability": 0.979 + }, + { + "start": 769.58, + "end": 772.3, + "probability": 0.9923 + }, + { + "start": 772.32, + "end": 773.36, + "probability": 0.9603 + }, + { + "start": 773.48, + "end": 776.7, + "probability": 0.978 + }, + { + "start": 777.56, + "end": 778.16, + "probability": 0.9025 + }, + { + "start": 778.68, + "end": 780.42, + "probability": 0.8373 + }, + { + "start": 781.1, + "end": 782.14, + "probability": 0.98 + }, + { + "start": 782.84, + "end": 786.08, + "probability": 0.5432 + }, + { + "start": 786.08, + "end": 789.64, + "probability": 0.9746 + }, + { + "start": 789.8, + "end": 791.52, + "probability": 0.8228 + }, + { + "start": 792.04, + "end": 792.32, + "probability": 0.7962 + }, + { + "start": 792.82, + "end": 793.34, + "probability": 0.6172 + }, + { + "start": 793.88, + "end": 795.94, + "probability": 0.9111 + }, + { + "start": 800.9, + "end": 801.32, + "probability": 0.5544 + }, + { + "start": 801.9, + "end": 803.54, + "probability": 0.5644 + }, + { + "start": 804.58, + "end": 805.28, + "probability": 0.7773 + }, + { + "start": 805.44, + "end": 806.14, + "probability": 0.8862 + }, + { + "start": 806.28, + "end": 807.44, + "probability": 0.7926 + }, + { + "start": 807.9, + "end": 812.12, + "probability": 0.9557 + }, + { + "start": 812.36, + "end": 812.98, + "probability": 0.8793 + }, + { + "start": 813.46, + "end": 817.05, + "probability": 0.6951 + }, + { + "start": 818.4, + "end": 820.87, + "probability": 0.8142 + }, + { + "start": 821.38, + "end": 821.74, + "probability": 0.6367 + }, + { + "start": 821.82, + "end": 823.04, + "probability": 0.9839 + }, + { + "start": 824.66, + "end": 829.16, + "probability": 0.9782 + }, + { + "start": 829.21, + "end": 834.13, + "probability": 0.857 + }, + { + "start": 834.92, + "end": 836.38, + "probability": 0.7501 + }, + { + "start": 836.54, + "end": 841.98, + "probability": 0.9669 + }, + { + "start": 841.98, + "end": 844.68, + "probability": 0.8564 + }, + { + "start": 845.3, + "end": 848.44, + "probability": 0.9467 + }, + { + "start": 848.82, + "end": 850.74, + "probability": 0.9905 + }, + { + "start": 851.7, + "end": 853.48, + "probability": 0.9982 + }, + { + "start": 854.76, + "end": 857.1, + "probability": 0.9845 + }, + { + "start": 857.26, + "end": 862.8, + "probability": 0.9658 + }, + { + "start": 863.38, + "end": 865.42, + "probability": 0.5606 + }, + { + "start": 866.08, + "end": 868.74, + "probability": 0.9101 + }, + { + "start": 869.84, + "end": 870.56, + "probability": 0.4154 + }, + { + "start": 870.58, + "end": 871.08, + "probability": 0.5976 + }, + { + "start": 871.14, + "end": 873.2, + "probability": 0.4892 + }, + { + "start": 874.04, + "end": 875.3, + "probability": 0.8438 + }, + { + "start": 879.54, + "end": 880.42, + "probability": 0.7967 + }, + { + "start": 880.6, + "end": 882.02, + "probability": 0.8508 + }, + { + "start": 882.04, + "end": 884.3, + "probability": 0.9932 + }, + { + "start": 885.36, + "end": 889.22, + "probability": 0.9814 + }, + { + "start": 889.44, + "end": 891.02, + "probability": 0.867 + }, + { + "start": 892.06, + "end": 897.74, + "probability": 0.9578 + }, + { + "start": 899.34, + "end": 900.96, + "probability": 0.9966 + }, + { + "start": 900.96, + "end": 904.42, + "probability": 0.9983 + }, + { + "start": 904.9, + "end": 907.4, + "probability": 0.7025 + }, + { + "start": 908.16, + "end": 911.54, + "probability": 0.991 + }, + { + "start": 913.36, + "end": 916.92, + "probability": 0.4281 + }, + { + "start": 917.44, + "end": 920.52, + "probability": 0.9442 + }, + { + "start": 921.24, + "end": 924.02, + "probability": 0.7222 + }, + { + "start": 925.12, + "end": 925.32, + "probability": 0.5708 + }, + { + "start": 925.58, + "end": 927.32, + "probability": 0.7955 + }, + { + "start": 927.48, + "end": 931.54, + "probability": 0.6905 + }, + { + "start": 931.74, + "end": 933.27, + "probability": 0.998 + }, + { + "start": 933.96, + "end": 936.7, + "probability": 0.9942 + }, + { + "start": 936.7, + "end": 939.96, + "probability": 0.7925 + }, + { + "start": 941.16, + "end": 942.72, + "probability": 0.7942 + }, + { + "start": 943.54, + "end": 946.88, + "probability": 0.9302 + }, + { + "start": 947.46, + "end": 952.34, + "probability": 0.7557 + }, + { + "start": 953.0, + "end": 954.8, + "probability": 0.8496 + }, + { + "start": 955.82, + "end": 961.14, + "probability": 0.9146 + }, + { + "start": 961.88, + "end": 964.56, + "probability": 0.9908 + }, + { + "start": 964.9, + "end": 966.98, + "probability": 0.7744 + }, + { + "start": 967.82, + "end": 970.98, + "probability": 0.8743 + }, + { + "start": 971.38, + "end": 973.26, + "probability": 0.9498 + }, + { + "start": 973.36, + "end": 976.24, + "probability": 0.8406 + }, + { + "start": 976.24, + "end": 978.94, + "probability": 0.9758 + }, + { + "start": 979.02, + "end": 979.24, + "probability": 0.6556 + }, + { + "start": 979.7, + "end": 981.9, + "probability": 0.5531 + }, + { + "start": 982.16, + "end": 983.48, + "probability": 0.6417 + }, + { + "start": 984.06, + "end": 987.98, + "probability": 0.7465 + }, + { + "start": 988.94, + "end": 991.66, + "probability": 0.6826 + }, + { + "start": 991.8, + "end": 994.62, + "probability": 0.8935 + }, + { + "start": 996.02, + "end": 997.37, + "probability": 0.0493 + }, + { + "start": 998.5, + "end": 1003.34, + "probability": 0.5928 + }, + { + "start": 1003.34, + "end": 1005.81, + "probability": 0.9705 + }, + { + "start": 1006.5, + "end": 1009.08, + "probability": 0.9119 + }, + { + "start": 1010.08, + "end": 1012.32, + "probability": 0.6798 + }, + { + "start": 1012.88, + "end": 1014.38, + "probability": 0.8105 + }, + { + "start": 1014.38, + "end": 1015.45, + "probability": 0.7019 + }, + { + "start": 1015.66, + "end": 1016.02, + "probability": 0.9128 + }, + { + "start": 1016.74, + "end": 1018.16, + "probability": 0.9189 + }, + { + "start": 1018.62, + "end": 1021.82, + "probability": 0.6726 + }, + { + "start": 1022.58, + "end": 1024.22, + "probability": 0.7302 + }, + { + "start": 1024.76, + "end": 1026.12, + "probability": 0.9193 + }, + { + "start": 1026.62, + "end": 1027.58, + "probability": 0.8848 + }, + { + "start": 1027.74, + "end": 1028.7, + "probability": 0.9741 + }, + { + "start": 1028.8, + "end": 1030.14, + "probability": 0.6501 + }, + { + "start": 1030.3, + "end": 1031.96, + "probability": 0.8184 + }, + { + "start": 1032.04, + "end": 1033.82, + "probability": 0.5959 + }, + { + "start": 1034.2, + "end": 1036.64, + "probability": 0.9727 + }, + { + "start": 1036.86, + "end": 1038.86, + "probability": 0.8725 + }, + { + "start": 1039.52, + "end": 1040.2, + "probability": 0.7401 + }, + { + "start": 1040.3, + "end": 1040.98, + "probability": 0.9105 + }, + { + "start": 1041.44, + "end": 1042.14, + "probability": 0.9791 + }, + { + "start": 1042.22, + "end": 1043.04, + "probability": 0.8848 + }, + { + "start": 1043.5, + "end": 1044.76, + "probability": 0.9658 + }, + { + "start": 1045.56, + "end": 1046.78, + "probability": 0.9786 + }, + { + "start": 1047.58, + "end": 1048.4, + "probability": 0.9897 + }, + { + "start": 1048.96, + "end": 1049.1, + "probability": 0.9993 + }, + { + "start": 1049.7, + "end": 1050.69, + "probability": 0.9884 + }, + { + "start": 1051.36, + "end": 1052.94, + "probability": 0.8761 + }, + { + "start": 1053.6, + "end": 1055.88, + "probability": 0.9756 + }, + { + "start": 1056.62, + "end": 1058.72, + "probability": 0.6404 + }, + { + "start": 1058.82, + "end": 1061.32, + "probability": 0.9109 + }, + { + "start": 1061.38, + "end": 1062.0, + "probability": 0.7912 + }, + { + "start": 1062.02, + "end": 1062.7, + "probability": 0.6904 + }, + { + "start": 1062.82, + "end": 1063.58, + "probability": 0.7604 + }, + { + "start": 1063.64, + "end": 1064.66, + "probability": 0.9747 + }, + { + "start": 1065.26, + "end": 1066.82, + "probability": 0.7272 + }, + { + "start": 1066.92, + "end": 1070.52, + "probability": 0.9672 + }, + { + "start": 1071.06, + "end": 1076.5, + "probability": 0.9401 + }, + { + "start": 1076.54, + "end": 1080.5, + "probability": 0.9925 + }, + { + "start": 1080.58, + "end": 1081.76, + "probability": 0.9036 + }, + { + "start": 1081.88, + "end": 1083.63, + "probability": 0.8441 + }, + { + "start": 1084.46, + "end": 1087.1, + "probability": 0.8706 + }, + { + "start": 1087.64, + "end": 1089.3, + "probability": 0.7564 + }, + { + "start": 1089.62, + "end": 1093.3, + "probability": 0.7874 + }, + { + "start": 1094.1, + "end": 1095.92, + "probability": 0.9215 + }, + { + "start": 1096.42, + "end": 1099.06, + "probability": 0.9922 + }, + { + "start": 1099.5, + "end": 1100.3, + "probability": 0.9828 + }, + { + "start": 1100.6, + "end": 1101.5, + "probability": 0.9506 + }, + { + "start": 1101.82, + "end": 1103.24, + "probability": 0.952 + }, + { + "start": 1103.42, + "end": 1106.0, + "probability": 0.973 + }, + { + "start": 1106.08, + "end": 1108.36, + "probability": 0.8314 + }, + { + "start": 1108.72, + "end": 1111.12, + "probability": 0.511 + }, + { + "start": 1111.16, + "end": 1113.26, + "probability": 0.9763 + }, + { + "start": 1113.34, + "end": 1115.58, + "probability": 0.8179 + }, + { + "start": 1115.7, + "end": 1118.54, + "probability": 0.9814 + }, + { + "start": 1118.86, + "end": 1121.88, + "probability": 0.8188 + }, + { + "start": 1121.92, + "end": 1123.28, + "probability": 0.6128 + }, + { + "start": 1123.98, + "end": 1127.2, + "probability": 0.8817 + }, + { + "start": 1127.54, + "end": 1127.98, + "probability": 0.8568 + }, + { + "start": 1128.24, + "end": 1129.98, + "probability": 0.9565 + }, + { + "start": 1130.38, + "end": 1132.2, + "probability": 0.425 + }, + { + "start": 1132.78, + "end": 1136.62, + "probability": 0.7238 + }, + { + "start": 1137.66, + "end": 1139.58, + "probability": 0.7177 + }, + { + "start": 1140.18, + "end": 1141.5, + "probability": 0.8385 + }, + { + "start": 1142.1, + "end": 1144.64, + "probability": 0.7253 + }, + { + "start": 1144.84, + "end": 1147.26, + "probability": 0.7712 + }, + { + "start": 1148.2, + "end": 1151.9, + "probability": 0.9979 + }, + { + "start": 1152.1, + "end": 1153.14, + "probability": 0.4293 + }, + { + "start": 1153.84, + "end": 1155.5, + "probability": 0.9277 + }, + { + "start": 1156.08, + "end": 1159.3, + "probability": 0.5165 + }, + { + "start": 1159.88, + "end": 1161.42, + "probability": 0.7762 + }, + { + "start": 1161.94, + "end": 1162.39, + "probability": 0.5511 + }, + { + "start": 1163.82, + "end": 1164.74, + "probability": 0.9189 + }, + { + "start": 1165.28, + "end": 1165.7, + "probability": 0.7607 + }, + { + "start": 1166.34, + "end": 1168.88, + "probability": 0.6704 + }, + { + "start": 1169.44, + "end": 1170.92, + "probability": 0.8612 + }, + { + "start": 1171.78, + "end": 1172.46, + "probability": 0.7773 + }, + { + "start": 1172.66, + "end": 1174.62, + "probability": 0.6789 + }, + { + "start": 1175.12, + "end": 1176.0, + "probability": 0.7794 + }, + { + "start": 1176.5, + "end": 1177.58, + "probability": 0.929 + }, + { + "start": 1181.22, + "end": 1184.56, + "probability": 0.5902 + }, + { + "start": 1184.78, + "end": 1186.48, + "probability": 0.7922 + }, + { + "start": 1187.4, + "end": 1192.3, + "probability": 0.9372 + }, + { + "start": 1192.86, + "end": 1197.44, + "probability": 0.9839 + }, + { + "start": 1198.24, + "end": 1198.76, + "probability": 0.5698 + }, + { + "start": 1199.28, + "end": 1199.48, + "probability": 0.6983 + }, + { + "start": 1200.24, + "end": 1201.8, + "probability": 0.771 + }, + { + "start": 1202.52, + "end": 1206.28, + "probability": 0.9492 + }, + { + "start": 1206.96, + "end": 1207.08, + "probability": 0.4873 + }, + { + "start": 1207.18, + "end": 1209.5, + "probability": 0.9544 + }, + { + "start": 1209.64, + "end": 1211.44, + "probability": 0.8646 + }, + { + "start": 1211.52, + "end": 1211.74, + "probability": 0.0671 + }, + { + "start": 1212.5, + "end": 1214.7, + "probability": 0.0632 + }, + { + "start": 1214.94, + "end": 1216.82, + "probability": 0.7608 + }, + { + "start": 1217.52, + "end": 1218.04, + "probability": 0.6836 + }, + { + "start": 1218.16, + "end": 1220.12, + "probability": 0.7841 + }, + { + "start": 1220.41, + "end": 1223.78, + "probability": 0.9912 + }, + { + "start": 1225.54, + "end": 1225.64, + "probability": 0.0533 + }, + { + "start": 1225.64, + "end": 1227.04, + "probability": 0.4393 + }, + { + "start": 1229.08, + "end": 1229.76, + "probability": 0.68 + }, + { + "start": 1229.86, + "end": 1233.54, + "probability": 0.9827 + }, + { + "start": 1234.14, + "end": 1235.78, + "probability": 0.9273 + }, + { + "start": 1236.8, + "end": 1240.68, + "probability": 0.9697 + }, + { + "start": 1241.5, + "end": 1244.2, + "probability": 0.982 + }, + { + "start": 1244.88, + "end": 1247.9, + "probability": 0.9946 + }, + { + "start": 1248.92, + "end": 1249.28, + "probability": 0.8978 + }, + { + "start": 1249.36, + "end": 1252.94, + "probability": 0.9867 + }, + { + "start": 1253.0, + "end": 1253.74, + "probability": 0.9688 + }, + { + "start": 1254.88, + "end": 1259.08, + "probability": 0.998 + }, + { + "start": 1259.16, + "end": 1260.36, + "probability": 0.9816 + }, + { + "start": 1261.26, + "end": 1261.78, + "probability": 0.7808 + }, + { + "start": 1262.52, + "end": 1266.12, + "probability": 0.9768 + }, + { + "start": 1266.66, + "end": 1268.21, + "probability": 0.9893 + }, + { + "start": 1269.06, + "end": 1271.66, + "probability": 0.9908 + }, + { + "start": 1272.46, + "end": 1277.44, + "probability": 0.9366 + }, + { + "start": 1277.44, + "end": 1281.12, + "probability": 0.9904 + }, + { + "start": 1281.68, + "end": 1284.92, + "probability": 0.9906 + }, + { + "start": 1285.02, + "end": 1287.06, + "probability": 0.9127 + }, + { + "start": 1287.58, + "end": 1288.19, + "probability": 0.9426 + }, + { + "start": 1288.3, + "end": 1289.92, + "probability": 0.9798 + }, + { + "start": 1289.92, + "end": 1292.82, + "probability": 0.9729 + }, + { + "start": 1292.86, + "end": 1296.44, + "probability": 0.9811 + }, + { + "start": 1297.86, + "end": 1298.14, + "probability": 0.2505 + }, + { + "start": 1298.14, + "end": 1298.14, + "probability": 0.1404 + }, + { + "start": 1298.14, + "end": 1298.42, + "probability": 0.5126 + }, + { + "start": 1298.86, + "end": 1301.92, + "probability": 0.6073 + }, + { + "start": 1302.68, + "end": 1303.8, + "probability": 0.7698 + }, + { + "start": 1303.96, + "end": 1306.32, + "probability": 0.432 + }, + { + "start": 1306.76, + "end": 1309.36, + "probability": 0.7103 + }, + { + "start": 1309.96, + "end": 1312.28, + "probability": 0.7331 + }, + { + "start": 1312.36, + "end": 1312.78, + "probability": 0.6137 + }, + { + "start": 1312.88, + "end": 1313.46, + "probability": 0.3867 + }, + { + "start": 1313.82, + "end": 1314.14, + "probability": 0.9494 + }, + { + "start": 1314.28, + "end": 1315.2, + "probability": 0.7183 + }, + { + "start": 1315.4, + "end": 1320.36, + "probability": 0.8808 + }, + { + "start": 1320.54, + "end": 1324.34, + "probability": 0.984 + }, + { + "start": 1324.68, + "end": 1326.8, + "probability": 0.9287 + }, + { + "start": 1327.98, + "end": 1330.26, + "probability": 0.9792 + }, + { + "start": 1330.38, + "end": 1332.13, + "probability": 0.722 + }, + { + "start": 1332.98, + "end": 1339.02, + "probability": 0.9887 + }, + { + "start": 1340.32, + "end": 1342.92, + "probability": 0.9688 + }, + { + "start": 1343.96, + "end": 1346.34, + "probability": 0.9292 + }, + { + "start": 1348.08, + "end": 1348.62, + "probability": 0.7815 + }, + { + "start": 1349.48, + "end": 1351.0, + "probability": 0.9912 + }, + { + "start": 1351.86, + "end": 1354.45, + "probability": 0.8648 + }, + { + "start": 1355.96, + "end": 1357.28, + "probability": 0.9706 + }, + { + "start": 1359.12, + "end": 1363.48, + "probability": 0.9889 + }, + { + "start": 1364.0, + "end": 1364.98, + "probability": 0.9582 + }, + { + "start": 1366.12, + "end": 1368.14, + "probability": 0.8724 + }, + { + "start": 1368.9, + "end": 1375.68, + "probability": 0.96 + }, + { + "start": 1376.66, + "end": 1377.74, + "probability": 0.9961 + }, + { + "start": 1378.47, + "end": 1384.26, + "probability": 0.9966 + }, + { + "start": 1385.36, + "end": 1386.0, + "probability": 0.4356 + }, + { + "start": 1386.22, + "end": 1389.02, + "probability": 0.9972 + }, + { + "start": 1389.54, + "end": 1392.62, + "probability": 0.997 + }, + { + "start": 1392.8, + "end": 1394.26, + "probability": 0.9921 + }, + { + "start": 1395.34, + "end": 1395.42, + "probability": 0.1916 + }, + { + "start": 1395.42, + "end": 1395.44, + "probability": 0.5006 + }, + { + "start": 1395.44, + "end": 1395.74, + "probability": 0.4594 + }, + { + "start": 1395.88, + "end": 1398.68, + "probability": 0.8679 + }, + { + "start": 1399.36, + "end": 1401.24, + "probability": 0.8669 + }, + { + "start": 1401.28, + "end": 1401.82, + "probability": 0.5703 + }, + { + "start": 1401.9, + "end": 1402.7, + "probability": 0.8867 + }, + { + "start": 1402.84, + "end": 1404.7, + "probability": 0.9756 + }, + { + "start": 1404.82, + "end": 1407.3, + "probability": 0.7101 + }, + { + "start": 1407.5, + "end": 1409.52, + "probability": 0.8071 + }, + { + "start": 1409.94, + "end": 1410.44, + "probability": 0.382 + }, + { + "start": 1410.6, + "end": 1412.47, + "probability": 0.9014 + }, + { + "start": 1413.78, + "end": 1417.02, + "probability": 0.4823 + }, + { + "start": 1417.16, + "end": 1421.08, + "probability": 0.9302 + }, + { + "start": 1421.08, + "end": 1423.38, + "probability": 0.9362 + }, + { + "start": 1424.02, + "end": 1425.84, + "probability": 0.7738 + }, + { + "start": 1426.04, + "end": 1430.62, + "probability": 0.9956 + }, + { + "start": 1431.12, + "end": 1431.42, + "probability": 0.756 + }, + { + "start": 1431.5, + "end": 1432.42, + "probability": 0.9333 + }, + { + "start": 1432.56, + "end": 1435.08, + "probability": 0.9697 + }, + { + "start": 1435.6, + "end": 1439.04, + "probability": 0.9912 + }, + { + "start": 1439.14, + "end": 1440.3, + "probability": 0.9513 + }, + { + "start": 1440.84, + "end": 1443.68, + "probability": 0.6154 + }, + { + "start": 1444.26, + "end": 1447.02, + "probability": 0.9971 + }, + { + "start": 1447.66, + "end": 1450.88, + "probability": 0.9843 + }, + { + "start": 1451.38, + "end": 1452.98, + "probability": 0.8249 + }, + { + "start": 1453.7, + "end": 1457.24, + "probability": 0.9893 + }, + { + "start": 1457.66, + "end": 1462.18, + "probability": 0.9264 + }, + { + "start": 1462.3, + "end": 1465.76, + "probability": 0.8323 + }, + { + "start": 1466.22, + "end": 1467.04, + "probability": 0.8865 + }, + { + "start": 1467.54, + "end": 1469.58, + "probability": 0.9611 + }, + { + "start": 1470.08, + "end": 1472.43, + "probability": 0.9922 + }, + { + "start": 1473.08, + "end": 1473.9, + "probability": 0.9356 + }, + { + "start": 1474.3, + "end": 1478.84, + "probability": 0.9788 + }, + { + "start": 1479.16, + "end": 1481.16, + "probability": 0.9758 + }, + { + "start": 1481.68, + "end": 1484.72, + "probability": 0.9976 + }, + { + "start": 1485.1, + "end": 1485.52, + "probability": 0.65 + }, + { + "start": 1485.52, + "end": 1488.2, + "probability": 0.9014 + }, + { + "start": 1488.78, + "end": 1491.14, + "probability": 0.834 + }, + { + "start": 1491.74, + "end": 1493.86, + "probability": 0.9437 + }, + { + "start": 1493.94, + "end": 1495.11, + "probability": 0.1205 + }, + { + "start": 1495.62, + "end": 1496.44, + "probability": 0.7399 + }, + { + "start": 1496.54, + "end": 1497.38, + "probability": 0.6632 + }, + { + "start": 1497.86, + "end": 1499.06, + "probability": 0.934 + }, + { + "start": 1499.16, + "end": 1499.86, + "probability": 0.9093 + }, + { + "start": 1500.36, + "end": 1501.28, + "probability": 0.9033 + }, + { + "start": 1501.52, + "end": 1502.22, + "probability": 0.8957 + }, + { + "start": 1502.86, + "end": 1506.96, + "probability": 0.7598 + }, + { + "start": 1507.16, + "end": 1509.16, + "probability": 0.4629 + }, + { + "start": 1509.98, + "end": 1512.54, + "probability": 0.8074 + }, + { + "start": 1513.1, + "end": 1513.76, + "probability": 0.501 + }, + { + "start": 1513.9, + "end": 1515.92, + "probability": 0.7117 + }, + { + "start": 1516.77, + "end": 1519.2, + "probability": 0.9023 + }, + { + "start": 1520.02, + "end": 1521.46, + "probability": 0.0048 + }, + { + "start": 1522.92, + "end": 1523.38, + "probability": 0.4772 + }, + { + "start": 1523.38, + "end": 1523.38, + "probability": 0.0731 + }, + { + "start": 1523.38, + "end": 1523.38, + "probability": 0.2405 + }, + { + "start": 1523.38, + "end": 1523.38, + "probability": 0.0376 + }, + { + "start": 1523.38, + "end": 1524.72, + "probability": 0.4544 + }, + { + "start": 1525.68, + "end": 1526.18, + "probability": 0.4064 + }, + { + "start": 1526.18, + "end": 1531.3, + "probability": 0.8885 + }, + { + "start": 1532.48, + "end": 1535.64, + "probability": 0.9825 + }, + { + "start": 1536.64, + "end": 1537.84, + "probability": 0.5571 + }, + { + "start": 1538.54, + "end": 1542.62, + "probability": 0.9211 + }, + { + "start": 1542.94, + "end": 1544.16, + "probability": 0.0936 + }, + { + "start": 1544.88, + "end": 1549.56, + "probability": 0.7639 + }, + { + "start": 1550.62, + "end": 1552.24, + "probability": 0.854 + }, + { + "start": 1554.05, + "end": 1556.58, + "probability": 0.4404 + }, + { + "start": 1557.2, + "end": 1559.41, + "probability": 0.9556 + }, + { + "start": 1560.22, + "end": 1562.14, + "probability": 0.7325 + }, + { + "start": 1563.14, + "end": 1564.58, + "probability": 0.9907 + }, + { + "start": 1565.3, + "end": 1567.98, + "probability": 0.8825 + }, + { + "start": 1568.9, + "end": 1569.5, + "probability": 0.7239 + }, + { + "start": 1570.04, + "end": 1570.64, + "probability": 0.9857 + }, + { + "start": 1571.23, + "end": 1577.7, + "probability": 0.741 + }, + { + "start": 1578.8, + "end": 1580.46, + "probability": 0.7749 + }, + { + "start": 1581.1, + "end": 1582.08, + "probability": 0.8683 + }, + { + "start": 1582.62, + "end": 1582.96, + "probability": 0.8055 + }, + { + "start": 1583.18, + "end": 1584.58, + "probability": 0.9758 + }, + { + "start": 1584.8, + "end": 1586.02, + "probability": 0.9739 + }, + { + "start": 1586.1, + "end": 1586.56, + "probability": 0.718 + }, + { + "start": 1586.88, + "end": 1587.3, + "probability": 0.4622 + }, + { + "start": 1587.32, + "end": 1588.28, + "probability": 0.9882 + }, + { + "start": 1590.5, + "end": 1592.56, + "probability": 0.6079 + }, + { + "start": 1592.74, + "end": 1592.74, + "probability": 0.4503 + }, + { + "start": 1592.74, + "end": 1593.72, + "probability": 0.9679 + }, + { + "start": 1594.04, + "end": 1595.58, + "probability": 0.8809 + }, + { + "start": 1596.14, + "end": 1600.48, + "probability": 0.9192 + }, + { + "start": 1600.6, + "end": 1603.1, + "probability": 0.9918 + }, + { + "start": 1603.76, + "end": 1609.88, + "probability": 0.9943 + }, + { + "start": 1610.02, + "end": 1611.88, + "probability": 0.9976 + }, + { + "start": 1612.86, + "end": 1618.3, + "probability": 0.995 + }, + { + "start": 1618.58, + "end": 1620.06, + "probability": 0.9651 + }, + { + "start": 1620.6, + "end": 1628.8, + "probability": 0.9872 + }, + { + "start": 1629.32, + "end": 1631.64, + "probability": 0.9648 + }, + { + "start": 1632.3, + "end": 1635.18, + "probability": 0.9086 + }, + { + "start": 1635.64, + "end": 1638.5, + "probability": 0.944 + }, + { + "start": 1638.58, + "end": 1639.2, + "probability": 0.6629 + }, + { + "start": 1639.28, + "end": 1643.3, + "probability": 0.9963 + }, + { + "start": 1643.72, + "end": 1648.8, + "probability": 0.997 + }, + { + "start": 1649.24, + "end": 1651.66, + "probability": 0.9952 + }, + { + "start": 1651.86, + "end": 1655.6, + "probability": 0.9442 + }, + { + "start": 1655.6, + "end": 1658.48, + "probability": 0.981 + }, + { + "start": 1659.0, + "end": 1659.26, + "probability": 0.7159 + }, + { + "start": 1659.54, + "end": 1660.2, + "probability": 0.537 + }, + { + "start": 1660.62, + "end": 1662.36, + "probability": 0.9454 + }, + { + "start": 1662.84, + "end": 1663.28, + "probability": 0.1372 + }, + { + "start": 1663.48, + "end": 1664.34, + "probability": 0.7952 + }, + { + "start": 1664.52, + "end": 1666.86, + "probability": 0.6949 + }, + { + "start": 1670.38, + "end": 1672.32, + "probability": 0.7528 + }, + { + "start": 1672.98, + "end": 1674.44, + "probability": 0.9954 + }, + { + "start": 1675.44, + "end": 1679.54, + "probability": 0.9051 + }, + { + "start": 1680.38, + "end": 1685.4, + "probability": 0.8132 + }, + { + "start": 1685.4, + "end": 1687.96, + "probability": 0.9681 + }, + { + "start": 1688.66, + "end": 1690.58, + "probability": 0.9964 + }, + { + "start": 1691.6, + "end": 1696.34, + "probability": 0.9648 + }, + { + "start": 1697.44, + "end": 1699.2, + "probability": 0.999 + }, + { + "start": 1699.3, + "end": 1699.58, + "probability": 0.4435 + }, + { + "start": 1699.72, + "end": 1699.98, + "probability": 0.8262 + }, + { + "start": 1700.04, + "end": 1700.78, + "probability": 0.9778 + }, + { + "start": 1701.3, + "end": 1701.96, + "probability": 0.8837 + }, + { + "start": 1702.96, + "end": 1706.1, + "probability": 0.9778 + }, + { + "start": 1706.3, + "end": 1709.3, + "probability": 0.9604 + }, + { + "start": 1710.42, + "end": 1712.42, + "probability": 0.8338 + }, + { + "start": 1712.94, + "end": 1714.72, + "probability": 0.989 + }, + { + "start": 1715.6, + "end": 1717.56, + "probability": 0.8778 + }, + { + "start": 1718.98, + "end": 1720.46, + "probability": 0.9967 + }, + { + "start": 1721.08, + "end": 1723.46, + "probability": 0.9996 + }, + { + "start": 1724.2, + "end": 1725.38, + "probability": 0.7736 + }, + { + "start": 1726.44, + "end": 1729.12, + "probability": 0.895 + }, + { + "start": 1729.8, + "end": 1732.94, + "probability": 0.8183 + }, + { + "start": 1733.6, + "end": 1736.56, + "probability": 0.9569 + }, + { + "start": 1737.64, + "end": 1740.32, + "probability": 0.973 + }, + { + "start": 1741.74, + "end": 1744.22, + "probability": 0.7928 + }, + { + "start": 1745.0, + "end": 1751.38, + "probability": 0.9837 + }, + { + "start": 1751.38, + "end": 1759.2, + "probability": 0.8302 + }, + { + "start": 1759.5, + "end": 1759.5, + "probability": 0.4195 + }, + { + "start": 1760.14, + "end": 1762.46, + "probability": 0.9399 + }, + { + "start": 1763.46, + "end": 1764.6, + "probability": 0.8696 + }, + { + "start": 1767.3, + "end": 1769.4, + "probability": 0.1573 + }, + { + "start": 1770.76, + "end": 1773.12, + "probability": 0.7077 + }, + { + "start": 1773.92, + "end": 1780.2, + "probability": 0.8899 + }, + { + "start": 1780.46, + "end": 1782.0, + "probability": 0.7544 + }, + { + "start": 1783.0, + "end": 1783.6, + "probability": 0.9634 + }, + { + "start": 1784.16, + "end": 1784.7, + "probability": 0.5141 + }, + { + "start": 1784.84, + "end": 1786.26, + "probability": 0.8765 + }, + { + "start": 1786.36, + "end": 1787.14, + "probability": 0.7164 + }, + { + "start": 1787.14, + "end": 1789.3, + "probability": 0.8016 + }, + { + "start": 1790.18, + "end": 1792.62, + "probability": 0.9509 + }, + { + "start": 1793.12, + "end": 1793.22, + "probability": 0.2075 + }, + { + "start": 1793.22, + "end": 1794.46, + "probability": 0.8354 + }, + { + "start": 1795.88, + "end": 1797.05, + "probability": 0.5549 + }, + { + "start": 1797.16, + "end": 1798.38, + "probability": 0.9761 + }, + { + "start": 1798.6, + "end": 1802.92, + "probability": 0.8018 + }, + { + "start": 1803.66, + "end": 1805.1, + "probability": 0.7282 + }, + { + "start": 1805.62, + "end": 1808.16, + "probability": 0.0452 + }, + { + "start": 1808.8, + "end": 1811.26, + "probability": 0.7759 + }, + { + "start": 1811.42, + "end": 1812.74, + "probability": 0.559 + }, + { + "start": 1812.74, + "end": 1815.3, + "probability": 0.1523 + }, + { + "start": 1815.4, + "end": 1817.3, + "probability": 0.2242 + }, + { + "start": 1820.76, + "end": 1824.1, + "probability": 0.9727 + }, + { + "start": 1824.8, + "end": 1829.18, + "probability": 0.9893 + }, + { + "start": 1829.42, + "end": 1830.4, + "probability": 0.4838 + }, + { + "start": 1832.62, + "end": 1835.34, + "probability": 0.6737 + }, + { + "start": 1835.5, + "end": 1839.78, + "probability": 0.9918 + }, + { + "start": 1840.22, + "end": 1842.78, + "probability": 0.8564 + }, + { + "start": 1842.78, + "end": 1847.0, + "probability": 0.983 + }, + { + "start": 1847.44, + "end": 1856.94, + "probability": 0.7563 + }, + { + "start": 1856.94, + "end": 1862.18, + "probability": 0.8151 + }, + { + "start": 1862.66, + "end": 1866.8, + "probability": 0.9971 + }, + { + "start": 1867.22, + "end": 1870.72, + "probability": 0.8394 + }, + { + "start": 1870.72, + "end": 1875.86, + "probability": 0.9475 + }, + { + "start": 1876.12, + "end": 1878.42, + "probability": 0.9876 + }, + { + "start": 1878.88, + "end": 1883.78, + "probability": 0.8514 + }, + { + "start": 1883.91, + "end": 1887.76, + "probability": 0.9883 + }, + { + "start": 1888.04, + "end": 1889.9, + "probability": 0.9843 + }, + { + "start": 1890.02, + "end": 1890.46, + "probability": 0.8783 + }, + { + "start": 1890.88, + "end": 1891.7, + "probability": 0.8694 + }, + { + "start": 1891.86, + "end": 1893.84, + "probability": 0.9306 + }, + { + "start": 1893.94, + "end": 1894.37, + "probability": 0.5006 + }, + { + "start": 1895.98, + "end": 1898.1, + "probability": 0.868 + }, + { + "start": 1898.1, + "end": 1900.96, + "probability": 0.988 + }, + { + "start": 1901.5, + "end": 1903.78, + "probability": 0.9981 + }, + { + "start": 1903.78, + "end": 1906.64, + "probability": 0.7437 + }, + { + "start": 1906.98, + "end": 1909.84, + "probability": 0.8197 + }, + { + "start": 1910.14, + "end": 1913.08, + "probability": 0.8848 + }, + { + "start": 1913.18, + "end": 1914.0, + "probability": 0.8442 + }, + { + "start": 1914.38, + "end": 1915.8, + "probability": 0.8978 + }, + { + "start": 1916.14, + "end": 1919.28, + "probability": 0.992 + }, + { + "start": 1919.72, + "end": 1920.84, + "probability": 0.8418 + }, + { + "start": 1921.28, + "end": 1924.0, + "probability": 0.9839 + }, + { + "start": 1924.6, + "end": 1926.64, + "probability": 0.8923 + }, + { + "start": 1926.64, + "end": 1928.72, + "probability": 0.9307 + }, + { + "start": 1929.34, + "end": 1933.16, + "probability": 0.9718 + }, + { + "start": 1933.16, + "end": 1935.94, + "probability": 0.5205 + }, + { + "start": 1936.5, + "end": 1938.3, + "probability": 0.9572 + }, + { + "start": 1938.3, + "end": 1941.02, + "probability": 0.5648 + }, + { + "start": 1941.42, + "end": 1943.66, + "probability": 0.7056 + }, + { + "start": 1943.86, + "end": 1946.2, + "probability": 0.8243 + }, + { + "start": 1946.86, + "end": 1949.32, + "probability": 0.3618 + }, + { + "start": 1949.42, + "end": 1950.96, + "probability": 0.8484 + }, + { + "start": 1951.02, + "end": 1952.18, + "probability": 0.6804 + }, + { + "start": 1952.38, + "end": 1953.02, + "probability": 0.5276 + }, + { + "start": 1953.32, + "end": 1954.82, + "probability": 0.7433 + }, + { + "start": 1955.28, + "end": 1956.92, + "probability": 0.9567 + }, + { + "start": 1957.48, + "end": 1959.38, + "probability": 0.8137 + }, + { + "start": 1959.88, + "end": 1961.44, + "probability": 0.8773 + }, + { + "start": 1961.98, + "end": 1966.66, + "probability": 0.9316 + }, + { + "start": 1967.14, + "end": 1967.5, + "probability": 0.9932 + }, + { + "start": 1968.14, + "end": 1968.92, + "probability": 0.7815 + }, + { + "start": 1968.96, + "end": 1969.28, + "probability": 0.7957 + }, + { + "start": 1969.34, + "end": 1969.56, + "probability": 0.6426 + }, + { + "start": 1969.64, + "end": 1970.18, + "probability": 0.586 + }, + { + "start": 1970.54, + "end": 1971.32, + "probability": 0.9557 + }, + { + "start": 1975.9, + "end": 1976.58, + "probability": 0.5496 + }, + { + "start": 1976.62, + "end": 1977.44, + "probability": 0.8491 + }, + { + "start": 1977.94, + "end": 1982.26, + "probability": 0.5617 + }, + { + "start": 1983.46, + "end": 1984.42, + "probability": 0.8066 + }, + { + "start": 1984.54, + "end": 1985.4, + "probability": 0.9207 + }, + { + "start": 1985.6, + "end": 1988.3, + "probability": 0.9924 + }, + { + "start": 1988.48, + "end": 1989.48, + "probability": 0.8125 + }, + { + "start": 1989.96, + "end": 1991.6, + "probability": 0.5818 + }, + { + "start": 1993.44, + "end": 1996.7, + "probability": 0.6028 + }, + { + "start": 1996.76, + "end": 1998.58, + "probability": 0.8495 + }, + { + "start": 1999.38, + "end": 2000.82, + "probability": 0.5197 + }, + { + "start": 2001.58, + "end": 2002.52, + "probability": 0.958 + }, + { + "start": 2002.68, + "end": 2003.4, + "probability": 0.677 + }, + { + "start": 2003.5, + "end": 2004.78, + "probability": 0.9658 + }, + { + "start": 2005.4, + "end": 2008.52, + "probability": 0.9124 + }, + { + "start": 2009.36, + "end": 2012.2, + "probability": 0.8307 + }, + { + "start": 2013.06, + "end": 2014.06, + "probability": 0.5886 + }, + { + "start": 2014.16, + "end": 2014.9, + "probability": 0.8104 + }, + { + "start": 2015.12, + "end": 2016.56, + "probability": 0.616 + }, + { + "start": 2016.98, + "end": 2017.92, + "probability": 0.7547 + }, + { + "start": 2018.68, + "end": 2019.51, + "probability": 0.8619 + }, + { + "start": 2020.36, + "end": 2023.4, + "probability": 0.8113 + }, + { + "start": 2023.4, + "end": 2026.46, + "probability": 0.7809 + }, + { + "start": 2027.18, + "end": 2031.56, + "probability": 0.9333 + }, + { + "start": 2032.56, + "end": 2036.48, + "probability": 0.9978 + }, + { + "start": 2036.86, + "end": 2037.96, + "probability": 0.9045 + }, + { + "start": 2038.02, + "end": 2040.62, + "probability": 0.9482 + }, + { + "start": 2040.88, + "end": 2041.88, + "probability": 0.7915 + }, + { + "start": 2042.24, + "end": 2043.44, + "probability": 0.6746 + }, + { + "start": 2043.52, + "end": 2043.94, + "probability": 0.8038 + }, + { + "start": 2044.02, + "end": 2045.62, + "probability": 0.9281 + }, + { + "start": 2045.92, + "end": 2046.69, + "probability": 0.7817 + }, + { + "start": 2047.44, + "end": 2047.62, + "probability": 0.5649 + }, + { + "start": 2048.18, + "end": 2049.02, + "probability": 0.9526 + }, + { + "start": 2050.26, + "end": 2050.6, + "probability": 0.9611 + }, + { + "start": 2053.26, + "end": 2055.46, + "probability": 0.862 + }, + { + "start": 2056.16, + "end": 2058.44, + "probability": 0.7766 + }, + { + "start": 2058.5, + "end": 2060.76, + "probability": 0.994 + }, + { + "start": 2061.09, + "end": 2064.64, + "probability": 0.9708 + }, + { + "start": 2064.76, + "end": 2066.35, + "probability": 0.8247 + }, + { + "start": 2068.38, + "end": 2069.79, + "probability": 0.9062 + }, + { + "start": 2070.32, + "end": 2072.33, + "probability": 0.7866 + }, + { + "start": 2073.88, + "end": 2074.88, + "probability": 0.4716 + }, + { + "start": 2075.14, + "end": 2077.48, + "probability": 0.9893 + }, + { + "start": 2078.52, + "end": 2080.76, + "probability": 0.8648 + }, + { + "start": 2081.34, + "end": 2084.0, + "probability": 0.9131 + }, + { + "start": 2084.2, + "end": 2085.28, + "probability": 0.9951 + }, + { + "start": 2085.44, + "end": 2086.28, + "probability": 0.6636 + }, + { + "start": 2086.9, + "end": 2088.56, + "probability": 0.9944 + }, + { + "start": 2089.1, + "end": 2090.92, + "probability": 0.9824 + }, + { + "start": 2090.96, + "end": 2092.66, + "probability": 0.8983 + }, + { + "start": 2092.84, + "end": 2094.62, + "probability": 0.9934 + }, + { + "start": 2094.7, + "end": 2096.16, + "probability": 0.9854 + }, + { + "start": 2096.58, + "end": 2098.12, + "probability": 0.9893 + }, + { + "start": 2099.02, + "end": 2099.86, + "probability": 0.979 + }, + { + "start": 2100.04, + "end": 2103.68, + "probability": 0.7624 + }, + { + "start": 2104.26, + "end": 2105.56, + "probability": 0.7663 + }, + { + "start": 2105.98, + "end": 2106.74, + "probability": 0.6929 + }, + { + "start": 2107.0, + "end": 2108.5, + "probability": 0.9713 + }, + { + "start": 2108.64, + "end": 2112.16, + "probability": 0.982 + }, + { + "start": 2112.94, + "end": 2116.44, + "probability": 0.623 + }, + { + "start": 2116.8, + "end": 2118.38, + "probability": 0.5573 + }, + { + "start": 2118.84, + "end": 2123.42, + "probability": 0.9892 + }, + { + "start": 2123.6, + "end": 2125.02, + "probability": 0.7039 + }, + { + "start": 2125.4, + "end": 2127.02, + "probability": 0.8562 + }, + { + "start": 2127.12, + "end": 2128.64, + "probability": 0.8243 + }, + { + "start": 2129.44, + "end": 2133.06, + "probability": 0.9932 + }, + { + "start": 2133.42, + "end": 2138.56, + "probability": 0.9942 + }, + { + "start": 2139.54, + "end": 2140.78, + "probability": 0.7476 + }, + { + "start": 2141.32, + "end": 2143.02, + "probability": 0.8186 + }, + { + "start": 2144.02, + "end": 2146.56, + "probability": 0.4632 + }, + { + "start": 2159.5, + "end": 2160.66, + "probability": 0.3712 + }, + { + "start": 2161.6, + "end": 2161.7, + "probability": 0.6255 + }, + { + "start": 2161.7, + "end": 2164.92, + "probability": 0.9049 + }, + { + "start": 2165.02, + "end": 2166.28, + "probability": 0.9518 + }, + { + "start": 2166.38, + "end": 2168.02, + "probability": 0.831 + }, + { + "start": 2168.48, + "end": 2172.22, + "probability": 0.6305 + }, + { + "start": 2172.22, + "end": 2177.2, + "probability": 0.8225 + }, + { + "start": 2177.6, + "end": 2179.34, + "probability": 0.9884 + }, + { + "start": 2179.46, + "end": 2181.88, + "probability": 0.9232 + }, + { + "start": 2182.06, + "end": 2182.92, + "probability": 0.7671 + }, + { + "start": 2183.5, + "end": 2188.2, + "probability": 0.9796 + }, + { + "start": 2188.64, + "end": 2191.0, + "probability": 0.9308 + }, + { + "start": 2192.16, + "end": 2197.24, + "probability": 0.9358 + }, + { + "start": 2197.44, + "end": 2202.42, + "probability": 0.9871 + }, + { + "start": 2202.42, + "end": 2207.42, + "probability": 0.996 + }, + { + "start": 2208.04, + "end": 2211.84, + "probability": 0.9669 + }, + { + "start": 2212.16, + "end": 2215.3, + "probability": 0.8635 + }, + { + "start": 2215.66, + "end": 2216.22, + "probability": 0.7258 + }, + { + "start": 2216.26, + "end": 2217.58, + "probability": 0.9767 + }, + { + "start": 2218.14, + "end": 2218.32, + "probability": 0.4991 + }, + { + "start": 2219.06, + "end": 2219.9, + "probability": 0.8007 + }, + { + "start": 2220.64, + "end": 2222.56, + "probability": 0.7376 + }, + { + "start": 2223.26, + "end": 2226.82, + "probability": 0.7724 + }, + { + "start": 2226.96, + "end": 2229.88, + "probability": 0.9016 + }, + { + "start": 2230.3, + "end": 2236.24, + "probability": 0.9424 + }, + { + "start": 2236.36, + "end": 2237.72, + "probability": 0.9902 + }, + { + "start": 2238.22, + "end": 2242.96, + "probability": 0.9941 + }, + { + "start": 2243.36, + "end": 2244.82, + "probability": 0.9794 + }, + { + "start": 2245.58, + "end": 2247.84, + "probability": 0.9973 + }, + { + "start": 2248.1, + "end": 2250.35, + "probability": 0.9395 + }, + { + "start": 2250.58, + "end": 2250.88, + "probability": 0.2754 + }, + { + "start": 2251.14, + "end": 2252.54, + "probability": 0.8345 + }, + { + "start": 2252.64, + "end": 2255.01, + "probability": 0.9906 + }, + { + "start": 2255.5, + "end": 2256.76, + "probability": 0.9048 + }, + { + "start": 2256.94, + "end": 2257.16, + "probability": 0.5717 + }, + { + "start": 2257.34, + "end": 2258.22, + "probability": 0.6504 + }, + { + "start": 2258.78, + "end": 2261.62, + "probability": 0.9891 + }, + { + "start": 2261.62, + "end": 2266.34, + "probability": 0.985 + }, + { + "start": 2267.92, + "end": 2270.12, + "probability": 0.6521 + }, + { + "start": 2270.28, + "end": 2272.52, + "probability": 0.6597 + }, + { + "start": 2272.94, + "end": 2273.6, + "probability": 0.7915 + }, + { + "start": 2273.72, + "end": 2275.28, + "probability": 0.7744 + }, + { + "start": 2275.4, + "end": 2276.9, + "probability": 0.9097 + }, + { + "start": 2277.0, + "end": 2280.16, + "probability": 0.9893 + }, + { + "start": 2280.28, + "end": 2281.1, + "probability": 0.8112 + }, + { + "start": 2281.62, + "end": 2283.9, + "probability": 0.6734 + }, + { + "start": 2284.52, + "end": 2285.42, + "probability": 0.5509 + }, + { + "start": 2285.42, + "end": 2289.18, + "probability": 0.9706 + }, + { + "start": 2289.82, + "end": 2291.28, + "probability": 0.8257 + }, + { + "start": 2291.6, + "end": 2298.34, + "probability": 0.9895 + }, + { + "start": 2298.5, + "end": 2299.44, + "probability": 0.7292 + }, + { + "start": 2299.9, + "end": 2301.86, + "probability": 0.8905 + }, + { + "start": 2301.94, + "end": 2303.7, + "probability": 0.6914 + }, + { + "start": 2304.36, + "end": 2305.34, + "probability": 0.9954 + }, + { + "start": 2305.42, + "end": 2305.92, + "probability": 0.8771 + }, + { + "start": 2306.02, + "end": 2312.52, + "probability": 0.9901 + }, + { + "start": 2312.68, + "end": 2313.64, + "probability": 0.9726 + }, + { + "start": 2313.76, + "end": 2314.12, + "probability": 0.7063 + }, + { + "start": 2314.2, + "end": 2314.92, + "probability": 0.8102 + }, + { + "start": 2315.96, + "end": 2316.56, + "probability": 0.6556 + }, + { + "start": 2316.64, + "end": 2317.94, + "probability": 0.6656 + }, + { + "start": 2317.94, + "end": 2321.24, + "probability": 0.9226 + }, + { + "start": 2321.26, + "end": 2324.28, + "probability": 0.9861 + }, + { + "start": 2324.58, + "end": 2326.82, + "probability": 0.9816 + }, + { + "start": 2327.26, + "end": 2328.36, + "probability": 0.8616 + }, + { + "start": 2328.74, + "end": 2331.16, + "probability": 0.8502 + }, + { + "start": 2331.6, + "end": 2335.8, + "probability": 0.9924 + }, + { + "start": 2336.7, + "end": 2338.04, + "probability": 0.0825 + }, + { + "start": 2338.04, + "end": 2340.75, + "probability": 0.0565 + }, + { + "start": 2340.82, + "end": 2341.94, + "probability": 0.8977 + }, + { + "start": 2342.59, + "end": 2345.9, + "probability": 0.6502 + }, + { + "start": 2346.68, + "end": 2350.14, + "probability": 0.9417 + }, + { + "start": 2350.14, + "end": 2353.46, + "probability": 0.9962 + }, + { + "start": 2353.92, + "end": 2357.62, + "probability": 0.9771 + }, + { + "start": 2357.84, + "end": 2359.42, + "probability": 0.8357 + }, + { + "start": 2359.42, + "end": 2363.06, + "probability": 0.9916 + }, + { + "start": 2363.2, + "end": 2366.66, + "probability": 0.9906 + }, + { + "start": 2366.96, + "end": 2368.69, + "probability": 0.8913 + }, + { + "start": 2368.86, + "end": 2370.49, + "probability": 0.8781 + }, + { + "start": 2370.98, + "end": 2372.54, + "probability": 0.7623 + }, + { + "start": 2372.76, + "end": 2373.3, + "probability": 0.7886 + }, + { + "start": 2373.6, + "end": 2373.94, + "probability": 0.3123 + }, + { + "start": 2374.44, + "end": 2376.0, + "probability": 0.7689 + }, + { + "start": 2376.78, + "end": 2379.97, + "probability": 0.6369 + }, + { + "start": 2384.12, + "end": 2384.68, + "probability": 0.6697 + }, + { + "start": 2384.84, + "end": 2385.56, + "probability": 0.7593 + }, + { + "start": 2386.06, + "end": 2390.38, + "probability": 0.9958 + }, + { + "start": 2390.54, + "end": 2391.02, + "probability": 0.9126 + }, + { + "start": 2391.32, + "end": 2392.62, + "probability": 0.9927 + }, + { + "start": 2393.82, + "end": 2397.66, + "probability": 0.984 + }, + { + "start": 2398.6, + "end": 2402.26, + "probability": 0.997 + }, + { + "start": 2402.26, + "end": 2405.1, + "probability": 0.986 + }, + { + "start": 2406.04, + "end": 2409.36, + "probability": 0.9939 + }, + { + "start": 2410.38, + "end": 2411.44, + "probability": 0.5785 + }, + { + "start": 2411.8, + "end": 2413.8, + "probability": 0.7149 + }, + { + "start": 2413.9, + "end": 2414.48, + "probability": 0.7054 + }, + { + "start": 2414.56, + "end": 2416.02, + "probability": 0.8894 + }, + { + "start": 2416.82, + "end": 2418.44, + "probability": 0.9897 + }, + { + "start": 2418.52, + "end": 2419.88, + "probability": 0.9411 + }, + { + "start": 2419.94, + "end": 2421.22, + "probability": 0.9935 + }, + { + "start": 2421.42, + "end": 2425.24, + "probability": 0.9773 + }, + { + "start": 2425.34, + "end": 2427.14, + "probability": 0.9734 + }, + { + "start": 2427.4, + "end": 2429.26, + "probability": 0.9782 + }, + { + "start": 2429.7, + "end": 2434.38, + "probability": 0.9861 + }, + { + "start": 2436.06, + "end": 2436.54, + "probability": 0.6315 + }, + { + "start": 2437.14, + "end": 2439.2, + "probability": 0.7953 + }, + { + "start": 2439.86, + "end": 2442.74, + "probability": 0.4692 + }, + { + "start": 2442.82, + "end": 2445.52, + "probability": 0.5873 + }, + { + "start": 2445.84, + "end": 2447.0, + "probability": 0.7381 + }, + { + "start": 2448.32, + "end": 2450.5, + "probability": 0.9143 + }, + { + "start": 2450.56, + "end": 2454.58, + "probability": 0.8088 + }, + { + "start": 2455.42, + "end": 2456.9, + "probability": 0.843 + }, + { + "start": 2457.9, + "end": 2459.2, + "probability": 0.9574 + }, + { + "start": 2459.74, + "end": 2462.08, + "probability": 0.721 + }, + { + "start": 2462.7, + "end": 2463.82, + "probability": 0.4164 + }, + { + "start": 2464.62, + "end": 2466.0, + "probability": 0.4229 + }, + { + "start": 2467.86, + "end": 2467.9, + "probability": 0.0214 + }, + { + "start": 2467.9, + "end": 2472.7, + "probability": 0.6819 + }, + { + "start": 2473.12, + "end": 2476.34, + "probability": 0.8374 + }, + { + "start": 2476.46, + "end": 2477.96, + "probability": 0.9041 + }, + { + "start": 2480.86, + "end": 2485.18, + "probability": 0.9705 + }, + { + "start": 2486.34, + "end": 2489.78, + "probability": 0.9802 + }, + { + "start": 2490.62, + "end": 2491.42, + "probability": 0.73 + }, + { + "start": 2492.08, + "end": 2493.34, + "probability": 0.9015 + }, + { + "start": 2494.34, + "end": 2497.88, + "probability": 0.9741 + }, + { + "start": 2497.88, + "end": 2503.62, + "probability": 0.994 + }, + { + "start": 2504.3, + "end": 2504.62, + "probability": 0.662 + }, + { + "start": 2505.1, + "end": 2505.52, + "probability": 0.7065 + }, + { + "start": 2506.76, + "end": 2509.24, + "probability": 0.7591 + }, + { + "start": 2511.14, + "end": 2512.42, + "probability": 0.7168 + }, + { + "start": 2512.6, + "end": 2512.64, + "probability": 0.6233 + }, + { + "start": 2512.64, + "end": 2517.12, + "probability": 0.9901 + }, + { + "start": 2517.82, + "end": 2521.12, + "probability": 0.9572 + }, + { + "start": 2521.2, + "end": 2522.28, + "probability": 0.9757 + }, + { + "start": 2522.32, + "end": 2524.62, + "probability": 0.9891 + }, + { + "start": 2525.42, + "end": 2528.06, + "probability": 0.8442 + }, + { + "start": 2528.72, + "end": 2535.42, + "probability": 0.9818 + }, + { + "start": 2536.12, + "end": 2539.1, + "probability": 0.9984 + }, + { + "start": 2540.34, + "end": 2544.58, + "probability": 0.9308 + }, + { + "start": 2545.34, + "end": 2545.86, + "probability": 0.9952 + }, + { + "start": 2546.46, + "end": 2550.34, + "probability": 0.9742 + }, + { + "start": 2550.86, + "end": 2555.04, + "probability": 0.9972 + }, + { + "start": 2555.96, + "end": 2556.66, + "probability": 0.9596 + }, + { + "start": 2557.62, + "end": 2558.36, + "probability": 0.7222 + }, + { + "start": 2558.36, + "end": 2561.98, + "probability": 0.9915 + }, + { + "start": 2562.96, + "end": 2564.26, + "probability": 0.8521 + }, + { + "start": 2564.9, + "end": 2566.06, + "probability": 0.8705 + }, + { + "start": 2566.48, + "end": 2569.92, + "probability": 0.994 + }, + { + "start": 2569.92, + "end": 2572.54, + "probability": 0.9992 + }, + { + "start": 2573.02, + "end": 2575.28, + "probability": 0.9886 + }, + { + "start": 2575.74, + "end": 2577.26, + "probability": 0.8595 + }, + { + "start": 2577.32, + "end": 2579.82, + "probability": 0.9873 + }, + { + "start": 2580.34, + "end": 2586.18, + "probability": 0.9885 + }, + { + "start": 2586.8, + "end": 2589.06, + "probability": 0.788 + }, + { + "start": 2589.84, + "end": 2591.26, + "probability": 0.9867 + }, + { + "start": 2592.28, + "end": 2595.32, + "probability": 0.9316 + }, + { + "start": 2595.48, + "end": 2597.02, + "probability": 0.9593 + }, + { + "start": 2598.06, + "end": 2601.0, + "probability": 0.9976 + }, + { + "start": 2601.0, + "end": 2604.44, + "probability": 0.988 + }, + { + "start": 2604.88, + "end": 2607.38, + "probability": 0.8733 + }, + { + "start": 2607.9, + "end": 2610.1, + "probability": 0.7511 + }, + { + "start": 2610.98, + "end": 2614.96, + "probability": 0.9861 + }, + { + "start": 2615.4, + "end": 2620.8, + "probability": 0.992 + }, + { + "start": 2621.86, + "end": 2625.32, + "probability": 0.8607 + }, + { + "start": 2626.18, + "end": 2630.86, + "probability": 0.9666 + }, + { + "start": 2631.76, + "end": 2632.42, + "probability": 0.2732 + }, + { + "start": 2632.6, + "end": 2633.84, + "probability": 0.87 + }, + { + "start": 2634.16, + "end": 2636.35, + "probability": 0.923 + }, + { + "start": 2637.55, + "end": 2640.46, + "probability": 0.6524 + }, + { + "start": 2641.2, + "end": 2642.64, + "probability": 0.9567 + }, + { + "start": 2643.0, + "end": 2644.92, + "probability": 0.9565 + }, + { + "start": 2645.58, + "end": 2648.28, + "probability": 0.9539 + }, + { + "start": 2649.52, + "end": 2650.24, + "probability": 0.8134 + }, + { + "start": 2650.8, + "end": 2656.1, + "probability": 0.9536 + }, + { + "start": 2657.02, + "end": 2657.02, + "probability": 0.8174 + }, + { + "start": 2658.18, + "end": 2660.26, + "probability": 0.6702 + }, + { + "start": 2661.74, + "end": 2662.28, + "probability": 0.6807 + }, + { + "start": 2664.12, + "end": 2672.5, + "probability": 0.9782 + }, + { + "start": 2673.62, + "end": 2673.76, + "probability": 0.675 + }, + { + "start": 2674.28, + "end": 2674.86, + "probability": 0.7487 + }, + { + "start": 2675.08, + "end": 2678.04, + "probability": 0.9697 + }, + { + "start": 2678.04, + "end": 2678.77, + "probability": 0.7957 + }, + { + "start": 2679.04, + "end": 2680.52, + "probability": 0.9626 + }, + { + "start": 2680.66, + "end": 2682.02, + "probability": 0.998 + }, + { + "start": 2682.42, + "end": 2685.28, + "probability": 0.9927 + }, + { + "start": 2686.04, + "end": 2687.78, + "probability": 0.5084 + }, + { + "start": 2688.22, + "end": 2689.28, + "probability": 0.9932 + }, + { + "start": 2689.48, + "end": 2690.74, + "probability": 0.934 + }, + { + "start": 2693.7, + "end": 2694.88, + "probability": 0.8113 + }, + { + "start": 2696.56, + "end": 2698.06, + "probability": 0.6988 + }, + { + "start": 2699.46, + "end": 2701.22, + "probability": 0.1994 + }, + { + "start": 2701.34, + "end": 2703.0, + "probability": 0.3029 + }, + { + "start": 2703.5, + "end": 2704.34, + "probability": 0.7191 + }, + { + "start": 2704.86, + "end": 2705.93, + "probability": 0.7078 + }, + { + "start": 2706.18, + "end": 2710.24, + "probability": 0.869 + }, + { + "start": 2710.62, + "end": 2711.94, + "probability": 0.9368 + }, + { + "start": 2713.26, + "end": 2717.38, + "probability": 0.974 + }, + { + "start": 2718.56, + "end": 2718.56, + "probability": 0.8823 + }, + { + "start": 2719.26, + "end": 2720.8, + "probability": 0.7092 + }, + { + "start": 2722.1, + "end": 2723.94, + "probability": 0.9188 + }, + { + "start": 2724.72, + "end": 2727.51, + "probability": 0.8177 + }, + { + "start": 2727.74, + "end": 2728.92, + "probability": 0.9956 + }, + { + "start": 2729.68, + "end": 2731.4, + "probability": 0.9016 + }, + { + "start": 2732.38, + "end": 2734.36, + "probability": 0.9768 + }, + { + "start": 2734.44, + "end": 2738.16, + "probability": 0.9944 + }, + { + "start": 2738.72, + "end": 2740.88, + "probability": 0.9975 + }, + { + "start": 2741.54, + "end": 2742.4, + "probability": 0.8303 + }, + { + "start": 2743.56, + "end": 2745.4, + "probability": 0.9276 + }, + { + "start": 2746.08, + "end": 2749.4, + "probability": 0.6011 + }, + { + "start": 2749.54, + "end": 2751.54, + "probability": 0.968 + }, + { + "start": 2752.4, + "end": 2753.04, + "probability": 0.8018 + }, + { + "start": 2753.96, + "end": 2758.6, + "probability": 0.7462 + }, + { + "start": 2758.94, + "end": 2760.26, + "probability": 0.9486 + }, + { + "start": 2760.52, + "end": 2760.92, + "probability": 0.5186 + }, + { + "start": 2761.04, + "end": 2761.56, + "probability": 0.95 + }, + { + "start": 2761.96, + "end": 2766.44, + "probability": 0.9795 + }, + { + "start": 2766.9, + "end": 2773.96, + "probability": 0.9233 + }, + { + "start": 2774.34, + "end": 2776.94, + "probability": 0.6964 + }, + { + "start": 2777.78, + "end": 2780.5, + "probability": 0.9666 + }, + { + "start": 2782.32, + "end": 2782.94, + "probability": 0.9355 + }, + { + "start": 2783.68, + "end": 2786.82, + "probability": 0.9904 + }, + { + "start": 2787.38, + "end": 2788.34, + "probability": 0.7239 + }, + { + "start": 2788.74, + "end": 2791.6, + "probability": 0.8075 + }, + { + "start": 2792.5, + "end": 2795.76, + "probability": 0.9766 + }, + { + "start": 2797.06, + "end": 2800.0, + "probability": 0.8175 + }, + { + "start": 2802.3, + "end": 2803.6, + "probability": 0.6674 + }, + { + "start": 2805.27, + "end": 2808.88, + "probability": 0.9692 + }, + { + "start": 2809.7, + "end": 2812.92, + "probability": 0.8308 + }, + { + "start": 2813.48, + "end": 2817.56, + "probability": 0.9429 + }, + { + "start": 2819.16, + "end": 2820.46, + "probability": 0.7405 + }, + { + "start": 2821.28, + "end": 2822.56, + "probability": 0.8135 + }, + { + "start": 2823.38, + "end": 2826.78, + "probability": 0.9231 + }, + { + "start": 2827.3, + "end": 2828.18, + "probability": 0.62 + }, + { + "start": 2828.72, + "end": 2828.96, + "probability": 0.5543 + }, + { + "start": 2830.08, + "end": 2831.24, + "probability": 0.9971 + }, + { + "start": 2831.44, + "end": 2832.08, + "probability": 0.7485 + }, + { + "start": 2832.22, + "end": 2832.56, + "probability": 0.7484 + }, + { + "start": 2833.2, + "end": 2835.84, + "probability": 0.9357 + }, + { + "start": 2836.74, + "end": 2838.06, + "probability": 0.8071 + }, + { + "start": 2839.14, + "end": 2839.94, + "probability": 0.8636 + }, + { + "start": 2840.42, + "end": 2841.54, + "probability": 0.9316 + }, + { + "start": 2841.9, + "end": 2843.76, + "probability": 0.6465 + }, + { + "start": 2843.84, + "end": 2844.83, + "probability": 0.957 + }, + { + "start": 2845.66, + "end": 2847.68, + "probability": 0.8184 + }, + { + "start": 2848.18, + "end": 2849.26, + "probability": 0.7682 + }, + { + "start": 2849.88, + "end": 2850.28, + "probability": 0.6595 + }, + { + "start": 2850.34, + "end": 2853.01, + "probability": 0.7568 + }, + { + "start": 2854.04, + "end": 2854.8, + "probability": 0.634 + }, + { + "start": 2855.41, + "end": 2857.66, + "probability": 0.3906 + }, + { + "start": 2858.54, + "end": 2859.48, + "probability": 0.097 + }, + { + "start": 2860.1, + "end": 2860.66, + "probability": 0.4762 + }, + { + "start": 2861.04, + "end": 2861.2, + "probability": 0.6472 + }, + { + "start": 2861.72, + "end": 2865.16, + "probability": 0.9971 + }, + { + "start": 2865.38, + "end": 2869.62, + "probability": 0.98 + }, + { + "start": 2869.98, + "end": 2873.04, + "probability": 0.792 + }, + { + "start": 2873.92, + "end": 2876.14, + "probability": 0.9755 + }, + { + "start": 2884.02, + "end": 2884.68, + "probability": 0.6605 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.2199 + }, + { + "start": 2885.08, + "end": 2885.5, + "probability": 0.7492 + }, + { + "start": 2885.66, + "end": 2886.68, + "probability": 0.7427 + }, + { + "start": 2887.32, + "end": 2891.94, + "probability": 0.9229 + }, + { + "start": 2892.7, + "end": 2894.06, + "probability": 0.6457 + }, + { + "start": 2894.14, + "end": 2895.6, + "probability": 0.719 + }, + { + "start": 2895.86, + "end": 2899.3, + "probability": 0.9754 + }, + { + "start": 2902.27, + "end": 2904.08, + "probability": 0.9949 + }, + { + "start": 2904.86, + "end": 2906.7, + "probability": 0.9805 + }, + { + "start": 2907.5, + "end": 2911.28, + "probability": 0.9775 + }, + { + "start": 2913.32, + "end": 2914.0, + "probability": 0.9203 + }, + { + "start": 2914.62, + "end": 2915.52, + "probability": 0.9367 + }, + { + "start": 2916.2, + "end": 2920.86, + "probability": 0.9506 + }, + { + "start": 2922.34, + "end": 2926.38, + "probability": 0.9956 + }, + { + "start": 2926.7, + "end": 2927.56, + "probability": 0.667 + }, + { + "start": 2928.08, + "end": 2931.1, + "probability": 0.9753 + }, + { + "start": 2931.94, + "end": 2934.36, + "probability": 0.9768 + }, + { + "start": 2935.24, + "end": 2937.98, + "probability": 0.9954 + }, + { + "start": 2938.04, + "end": 2939.28, + "probability": 0.8687 + }, + { + "start": 2939.46, + "end": 2940.52, + "probability": 0.9044 + }, + { + "start": 2941.48, + "end": 2943.56, + "probability": 0.7326 + }, + { + "start": 2943.68, + "end": 2946.34, + "probability": 0.9406 + }, + { + "start": 2946.48, + "end": 2948.0, + "probability": 0.8953 + }, + { + "start": 2948.78, + "end": 2950.8, + "probability": 0.9208 + }, + { + "start": 2951.92, + "end": 2952.7, + "probability": 0.8493 + }, + { + "start": 2953.38, + "end": 2955.0, + "probability": 0.7305 + }, + { + "start": 2955.84, + "end": 2957.14, + "probability": 0.9868 + }, + { + "start": 2957.3, + "end": 2957.82, + "probability": 0.6326 + }, + { + "start": 2958.08, + "end": 2958.92, + "probability": 0.6205 + }, + { + "start": 2958.98, + "end": 2959.92, + "probability": 0.8903 + }, + { + "start": 2960.4, + "end": 2960.82, + "probability": 0.9052 + }, + { + "start": 2961.77, + "end": 2966.28, + "probability": 0.9231 + }, + { + "start": 2967.48, + "end": 2972.94, + "probability": 0.8703 + }, + { + "start": 2974.44, + "end": 2978.32, + "probability": 0.9751 + }, + { + "start": 2979.12, + "end": 2981.52, + "probability": 0.9152 + }, + { + "start": 2982.48, + "end": 2984.5, + "probability": 0.5589 + }, + { + "start": 2984.8, + "end": 2985.62, + "probability": 0.5007 + }, + { + "start": 2985.72, + "end": 2986.18, + "probability": 0.9243 + }, + { + "start": 2986.26, + "end": 2988.02, + "probability": 0.9741 + }, + { + "start": 2988.96, + "end": 2991.96, + "probability": 0.9969 + }, + { + "start": 2992.48, + "end": 2993.36, + "probability": 0.9158 + }, + { + "start": 2993.56, + "end": 2995.62, + "probability": 0.9946 + }, + { + "start": 2998.16, + "end": 3001.46, + "probability": 0.5686 + }, + { + "start": 3002.0, + "end": 3003.48, + "probability": 0.9436 + }, + { + "start": 3004.42, + "end": 3007.28, + "probability": 0.9148 + }, + { + "start": 3007.48, + "end": 3009.94, + "probability": 0.972 + }, + { + "start": 3011.02, + "end": 3013.08, + "probability": 0.9862 + }, + { + "start": 3014.34, + "end": 3016.07, + "probability": 0.9951 + }, + { + "start": 3016.64, + "end": 3017.06, + "probability": 0.798 + }, + { + "start": 3017.86, + "end": 3018.46, + "probability": 0.5301 + }, + { + "start": 3019.06, + "end": 3026.7, + "probability": 0.9829 + }, + { + "start": 3026.86, + "end": 3027.68, + "probability": 0.4936 + }, + { + "start": 3027.92, + "end": 3030.95, + "probability": 0.9666 + }, + { + "start": 3031.68, + "end": 3032.64, + "probability": 0.9389 + }, + { + "start": 3034.3, + "end": 3039.06, + "probability": 0.7619 + }, + { + "start": 3040.56, + "end": 3041.26, + "probability": 0.0856 + }, + { + "start": 3041.26, + "end": 3042.02, + "probability": 0.1694 + }, + { + "start": 3042.96, + "end": 3044.72, + "probability": 0.0859 + }, + { + "start": 3045.16, + "end": 3052.84, + "probability": 0.7061 + }, + { + "start": 3053.26, + "end": 3054.66, + "probability": 0.9071 + }, + { + "start": 3055.24, + "end": 3056.82, + "probability": 0.6125 + }, + { + "start": 3057.98, + "end": 3058.62, + "probability": 0.6451 + }, + { + "start": 3058.86, + "end": 3059.28, + "probability": 0.5997 + }, + { + "start": 3059.48, + "end": 3059.68, + "probability": 0.758 + }, + { + "start": 3060.74, + "end": 3060.84, + "probability": 0.682 + }, + { + "start": 3061.32, + "end": 3062.6, + "probability": 0.0028 + }, + { + "start": 3062.6, + "end": 3062.86, + "probability": 0.2403 + }, + { + "start": 3062.98, + "end": 3063.38, + "probability": 0.7716 + }, + { + "start": 3063.38, + "end": 3065.02, + "probability": 0.0178 + }, + { + "start": 3065.62, + "end": 3065.92, + "probability": 0.3216 + }, + { + "start": 3066.28, + "end": 3067.9, + "probability": 0.75 + }, + { + "start": 3067.9, + "end": 3070.0, + "probability": 0.8324 + }, + { + "start": 3070.82, + "end": 3078.04, + "probability": 0.9722 + }, + { + "start": 3078.16, + "end": 3078.92, + "probability": 0.9813 + }, + { + "start": 3080.12, + "end": 3080.76, + "probability": 0.7007 + }, + { + "start": 3080.84, + "end": 3081.6, + "probability": 0.9888 + }, + { + "start": 3081.88, + "end": 3087.54, + "probability": 0.9857 + }, + { + "start": 3088.38, + "end": 3090.76, + "probability": 0.8262 + }, + { + "start": 3091.94, + "end": 3092.94, + "probability": 0.7703 + }, + { + "start": 3093.46, + "end": 3093.92, + "probability": 0.7888 + }, + { + "start": 3094.04, + "end": 3095.04, + "probability": 0.7587 + }, + { + "start": 3095.16, + "end": 3097.72, + "probability": 0.8358 + }, + { + "start": 3098.4, + "end": 3099.51, + "probability": 0.7699 + }, + { + "start": 3100.4, + "end": 3103.23, + "probability": 0.9395 + }, + { + "start": 3104.84, + "end": 3107.0, + "probability": 0.9584 + }, + { + "start": 3107.74, + "end": 3108.48, + "probability": 0.577 + }, + { + "start": 3109.66, + "end": 3111.38, + "probability": 0.8015 + }, + { + "start": 3112.48, + "end": 3115.04, + "probability": 0.9938 + }, + { + "start": 3115.04, + "end": 3116.76, + "probability": 0.9795 + }, + { + "start": 3117.44, + "end": 3118.74, + "probability": 0.5387 + }, + { + "start": 3118.86, + "end": 3122.1, + "probability": 0.8144 + }, + { + "start": 3122.7, + "end": 3122.94, + "probability": 0.4389 + }, + { + "start": 3122.96, + "end": 3123.38, + "probability": 0.4709 + }, + { + "start": 3123.38, + "end": 3126.0, + "probability": 0.9967 + }, + { + "start": 3126.0, + "end": 3127.88, + "probability": 0.8952 + }, + { + "start": 3127.96, + "end": 3129.06, + "probability": 0.5058 + }, + { + "start": 3129.64, + "end": 3129.82, + "probability": 0.6066 + }, + { + "start": 3131.02, + "end": 3133.36, + "probability": 0.9624 + }, + { + "start": 3134.06, + "end": 3138.74, + "probability": 0.9697 + }, + { + "start": 3138.96, + "end": 3139.74, + "probability": 0.7842 + }, + { + "start": 3139.92, + "end": 3141.32, + "probability": 0.9966 + }, + { + "start": 3142.08, + "end": 3145.34, + "probability": 0.9941 + }, + { + "start": 3146.52, + "end": 3149.1, + "probability": 0.9956 + }, + { + "start": 3149.1, + "end": 3151.68, + "probability": 0.8757 + }, + { + "start": 3151.86, + "end": 3160.96, + "probability": 0.9892 + }, + { + "start": 3162.1, + "end": 3164.24, + "probability": 0.9879 + }, + { + "start": 3164.86, + "end": 3168.08, + "probability": 0.8834 + }, + { + "start": 3169.08, + "end": 3169.6, + "probability": 0.7301 + }, + { + "start": 3169.94, + "end": 3171.18, + "probability": 0.7026 + }, + { + "start": 3171.64, + "end": 3174.16, + "probability": 0.9393 + }, + { + "start": 3174.62, + "end": 3177.12, + "probability": 0.8338 + }, + { + "start": 3177.72, + "end": 3180.64, + "probability": 0.9494 + }, + { + "start": 3181.62, + "end": 3183.56, + "probability": 0.707 + }, + { + "start": 3183.64, + "end": 3184.4, + "probability": 0.8889 + }, + { + "start": 3184.42, + "end": 3187.34, + "probability": 0.9556 + }, + { + "start": 3188.04, + "end": 3190.48, + "probability": 0.8354 + }, + { + "start": 3191.2, + "end": 3192.31, + "probability": 0.9713 + }, + { + "start": 3192.78, + "end": 3196.24, + "probability": 0.8933 + }, + { + "start": 3197.26, + "end": 3198.3, + "probability": 0.8312 + }, + { + "start": 3198.88, + "end": 3202.4, + "probability": 0.6343 + }, + { + "start": 3202.48, + "end": 3203.69, + "probability": 0.9419 + }, + { + "start": 3204.62, + "end": 3206.82, + "probability": 0.9699 + }, + { + "start": 3207.84, + "end": 3211.06, + "probability": 0.5679 + }, + { + "start": 3211.72, + "end": 3212.84, + "probability": 0.9397 + }, + { + "start": 3213.7, + "end": 3214.2, + "probability": 0.5798 + }, + { + "start": 3215.68, + "end": 3216.76, + "probability": 0.7968 + }, + { + "start": 3217.3, + "end": 3219.2, + "probability": 0.5692 + }, + { + "start": 3220.32, + "end": 3222.4, + "probability": 0.9243 + }, + { + "start": 3223.12, + "end": 3226.3, + "probability": 0.7878 + }, + { + "start": 3226.56, + "end": 3226.56, + "probability": 0.957 + }, + { + "start": 3230.48, + "end": 3232.8, + "probability": 0.9824 + }, + { + "start": 3233.72, + "end": 3237.0, + "probability": 0.8626 + }, + { + "start": 3238.42, + "end": 3240.38, + "probability": 0.7998 + }, + { + "start": 3241.34, + "end": 3242.7, + "probability": 0.8283 + }, + { + "start": 3243.44, + "end": 3245.02, + "probability": 0.8429 + }, + { + "start": 3245.9, + "end": 3250.44, + "probability": 0.826 + }, + { + "start": 3251.88, + "end": 3252.96, + "probability": 0.6342 + }, + { + "start": 3253.82, + "end": 3254.32, + "probability": 0.3499 + }, + { + "start": 3254.66, + "end": 3256.18, + "probability": 0.7825 + }, + { + "start": 3257.22, + "end": 3258.46, + "probability": 0.6595 + }, + { + "start": 3258.8, + "end": 3262.1, + "probability": 0.9478 + }, + { + "start": 3262.56, + "end": 3264.76, + "probability": 0.9965 + }, + { + "start": 3265.14, + "end": 3267.02, + "probability": 0.9792 + }, + { + "start": 3268.28, + "end": 3268.92, + "probability": 0.5199 + }, + { + "start": 3269.54, + "end": 3270.0, + "probability": 0.8914 + }, + { + "start": 3272.0, + "end": 3272.42, + "probability": 0.3965 + }, + { + "start": 3272.42, + "end": 3273.32, + "probability": 0.9698 + }, + { + "start": 3274.64, + "end": 3275.06, + "probability": 0.3861 + }, + { + "start": 3275.3, + "end": 3277.12, + "probability": 0.7562 + }, + { + "start": 3278.54, + "end": 3281.54, + "probability": 0.6506 + }, + { + "start": 3281.88, + "end": 3283.04, + "probability": 0.6472 + }, + { + "start": 3283.78, + "end": 3284.92, + "probability": 0.6383 + }, + { + "start": 3285.74, + "end": 3287.06, + "probability": 0.7605 + }, + { + "start": 3288.0, + "end": 3288.84, + "probability": 0.9341 + }, + { + "start": 3289.6, + "end": 3292.92, + "probability": 0.5142 + }, + { + "start": 3293.38, + "end": 3295.48, + "probability": 0.6319 + }, + { + "start": 3296.52, + "end": 3296.98, + "probability": 0.2468 + }, + { + "start": 3297.54, + "end": 3299.32, + "probability": 0.6775 + }, + { + "start": 3300.0, + "end": 3302.84, + "probability": 0.7541 + }, + { + "start": 3303.54, + "end": 3305.54, + "probability": 0.9351 + }, + { + "start": 3306.1, + "end": 3309.24, + "probability": 0.9846 + }, + { + "start": 3309.82, + "end": 3314.26, + "probability": 0.9927 + }, + { + "start": 3315.5, + "end": 3317.84, + "probability": 0.9306 + }, + { + "start": 3318.56, + "end": 3320.88, + "probability": 0.9812 + }, + { + "start": 3321.66, + "end": 3322.1, + "probability": 0.7592 + }, + { + "start": 3322.82, + "end": 3324.92, + "probability": 0.9892 + }, + { + "start": 3326.02, + "end": 3328.45, + "probability": 0.9893 + }, + { + "start": 3329.02, + "end": 3332.1, + "probability": 0.9857 + }, + { + "start": 3332.46, + "end": 3335.82, + "probability": 0.9962 + }, + { + "start": 3336.4, + "end": 3339.92, + "probability": 0.972 + }, + { + "start": 3340.5, + "end": 3341.53, + "probability": 0.4585 + }, + { + "start": 3343.06, + "end": 3344.32, + "probability": 0.761 + }, + { + "start": 3345.0, + "end": 3346.84, + "probability": 0.991 + }, + { + "start": 3347.7, + "end": 3351.04, + "probability": 0.9355 + }, + { + "start": 3351.78, + "end": 3354.24, + "probability": 0.9717 + }, + { + "start": 3354.76, + "end": 3355.22, + "probability": 0.7424 + }, + { + "start": 3356.32, + "end": 3361.86, + "probability": 0.9588 + }, + { + "start": 3362.48, + "end": 3364.48, + "probability": 0.9849 + }, + { + "start": 3365.22, + "end": 3365.9, + "probability": 0.9639 + }, + { + "start": 3366.82, + "end": 3371.32, + "probability": 0.9228 + }, + { + "start": 3372.88, + "end": 3374.8, + "probability": 0.957 + }, + { + "start": 3375.34, + "end": 3380.16, + "probability": 0.9933 + }, + { + "start": 3381.32, + "end": 3382.52, + "probability": 0.975 + }, + { + "start": 3383.86, + "end": 3384.64, + "probability": 0.955 + }, + { + "start": 3385.58, + "end": 3387.44, + "probability": 0.9977 + }, + { + "start": 3388.08, + "end": 3389.78, + "probability": 0.884 + }, + { + "start": 3390.42, + "end": 3391.82, + "probability": 0.9723 + }, + { + "start": 3393.14, + "end": 3396.72, + "probability": 0.9837 + }, + { + "start": 3397.42, + "end": 3401.36, + "probability": 0.998 + }, + { + "start": 3402.5, + "end": 3405.34, + "probability": 0.9393 + }, + { + "start": 3406.62, + "end": 3409.38, + "probability": 0.9663 + }, + { + "start": 3410.92, + "end": 3412.3, + "probability": 0.9592 + }, + { + "start": 3413.56, + "end": 3416.0, + "probability": 0.9891 + }, + { + "start": 3417.1, + "end": 3418.04, + "probability": 0.8289 + }, + { + "start": 3419.58, + "end": 3422.94, + "probability": 0.9936 + }, + { + "start": 3423.88, + "end": 3425.82, + "probability": 0.9959 + }, + { + "start": 3427.5, + "end": 3432.42, + "probability": 0.9786 + }, + { + "start": 3433.16, + "end": 3434.86, + "probability": 0.9945 + }, + { + "start": 3436.0, + "end": 3437.84, + "probability": 0.9841 + }, + { + "start": 3438.76, + "end": 3439.02, + "probability": 0.9147 + }, + { + "start": 3439.58, + "end": 3442.82, + "probability": 0.9382 + }, + { + "start": 3443.58, + "end": 3445.08, + "probability": 0.585 + }, + { + "start": 3446.04, + "end": 3450.12, + "probability": 0.9102 + }, + { + "start": 3450.74, + "end": 3455.26, + "probability": 0.3207 + }, + { + "start": 3455.8, + "end": 3457.9, + "probability": 0.2419 + }, + { + "start": 3468.58, + "end": 3469.42, + "probability": 0.0531 + }, + { + "start": 3469.46, + "end": 3469.46, + "probability": 0.3685 + }, + { + "start": 3469.46, + "end": 3469.46, + "probability": 0.4281 + }, + { + "start": 3469.46, + "end": 3469.46, + "probability": 0.259 + }, + { + "start": 3469.46, + "end": 3469.46, + "probability": 0.0603 + }, + { + "start": 3469.46, + "end": 3470.02, + "probability": 0.2423 + }, + { + "start": 3474.24, + "end": 3474.78, + "probability": 0.2328 + }, + { + "start": 3475.48, + "end": 3477.44, + "probability": 0.3995 + }, + { + "start": 3479.02, + "end": 3479.68, + "probability": 0.0006 + }, + { + "start": 3488.47, + "end": 3490.96, + "probability": 0.1061 + }, + { + "start": 3491.5, + "end": 3492.26, + "probability": 0.0242 + }, + { + "start": 3493.16, + "end": 3496.54, + "probability": 0.0247 + }, + { + "start": 3499.64, + "end": 3500.04, + "probability": 0.0449 + }, + { + "start": 3501.71, + "end": 3502.32, + "probability": 0.1457 + }, + { + "start": 3514.86, + "end": 3515.4, + "probability": 0.2048 + }, + { + "start": 3515.4, + "end": 3516.1, + "probability": 0.2055 + }, + { + "start": 3516.12, + "end": 3518.68, + "probability": 0.1581 + }, + { + "start": 3518.68, + "end": 3520.07, + "probability": 0.2638 + }, + { + "start": 3522.34, + "end": 3525.04, + "probability": 0.1767 + }, + { + "start": 3526.24, + "end": 3527.98, + "probability": 0.1249 + }, + { + "start": 3528.0, + "end": 3528.0, + "probability": 0.0 + }, + { + "start": 3528.0, + "end": 3528.0, + "probability": 0.0 + }, + { + "start": 3528.0, + "end": 3528.0, + "probability": 0.0 + }, + { + "start": 3528.0, + "end": 3528.0, + "probability": 0.0 + }, + { + "start": 3528.84, + "end": 3529.62, + "probability": 0.0312 + }, + { + "start": 3529.62, + "end": 3529.62, + "probability": 0.0244 + }, + { + "start": 3529.62, + "end": 3529.62, + "probability": 0.071 + }, + { + "start": 3529.62, + "end": 3532.88, + "probability": 0.0535 + }, + { + "start": 3534.26, + "end": 3539.5, + "probability": 0.4316 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.0, + "end": 3648.0, + "probability": 0.0 + }, + { + "start": 3648.22, + "end": 3652.52, + "probability": 0.8427 + }, + { + "start": 3653.42, + "end": 3654.97, + "probability": 0.5863 + }, + { + "start": 3656.98, + "end": 3659.42, + "probability": 0.9944 + }, + { + "start": 3660.16, + "end": 3660.7, + "probability": 0.7243 + }, + { + "start": 3661.76, + "end": 3663.05, + "probability": 0.9753 + }, + { + "start": 3664.76, + "end": 3665.6, + "probability": 0.7753 + }, + { + "start": 3666.54, + "end": 3668.34, + "probability": 0.9978 + }, + { + "start": 3669.58, + "end": 3671.34, + "probability": 0.9995 + }, + { + "start": 3672.42, + "end": 3675.4, + "probability": 0.6992 + }, + { + "start": 3676.38, + "end": 3680.2, + "probability": 0.9973 + }, + { + "start": 3680.34, + "end": 3681.1, + "probability": 0.8033 + }, + { + "start": 3681.7, + "end": 3682.16, + "probability": 0.9833 + }, + { + "start": 3682.68, + "end": 3684.02, + "probability": 0.6982 + }, + { + "start": 3687.12, + "end": 3693.72, + "probability": 0.8063 + }, + { + "start": 3693.72, + "end": 3696.64, + "probability": 0.7707 + }, + { + "start": 3697.54, + "end": 3700.26, + "probability": 0.9666 + }, + { + "start": 3701.06, + "end": 3703.08, + "probability": 0.969 + }, + { + "start": 3704.74, + "end": 3709.16, + "probability": 0.9213 + }, + { + "start": 3711.06, + "end": 3714.0, + "probability": 0.9945 + }, + { + "start": 3714.32, + "end": 3715.46, + "probability": 0.8818 + }, + { + "start": 3715.54, + "end": 3716.92, + "probability": 0.8498 + }, + { + "start": 3717.8, + "end": 3721.82, + "probability": 0.9701 + }, + { + "start": 3722.5, + "end": 3724.96, + "probability": 0.9241 + }, + { + "start": 3725.36, + "end": 3726.9, + "probability": 0.9508 + }, + { + "start": 3726.94, + "end": 3729.76, + "probability": 0.6981 + }, + { + "start": 3730.32, + "end": 3732.12, + "probability": 0.9839 + }, + { + "start": 3732.36, + "end": 3734.08, + "probability": 0.7956 + }, + { + "start": 3734.7, + "end": 3736.34, + "probability": 0.8571 + }, + { + "start": 3736.62, + "end": 3739.08, + "probability": 0.9938 + }, + { + "start": 3739.48, + "end": 3740.2, + "probability": 0.8836 + }, + { + "start": 3740.92, + "end": 3742.36, + "probability": 0.9736 + }, + { + "start": 3743.3, + "end": 3746.36, + "probability": 0.9946 + }, + { + "start": 3746.52, + "end": 3749.8, + "probability": 0.8813 + }, + { + "start": 3750.02, + "end": 3750.2, + "probability": 0.4457 + }, + { + "start": 3750.64, + "end": 3753.42, + "probability": 0.9899 + }, + { + "start": 3753.54, + "end": 3754.46, + "probability": 0.8445 + }, + { + "start": 3755.1, + "end": 3756.12, + "probability": 0.9702 + }, + { + "start": 3757.32, + "end": 3764.56, + "probability": 0.5884 + }, + { + "start": 3764.76, + "end": 3765.76, + "probability": 0.8175 + }, + { + "start": 3766.46, + "end": 3767.76, + "probability": 0.7678 + }, + { + "start": 3768.1, + "end": 3773.36, + "probability": 0.9695 + }, + { + "start": 3773.54, + "end": 3774.6, + "probability": 0.6812 + }, + { + "start": 3775.04, + "end": 3777.1, + "probability": 0.9823 + }, + { + "start": 3777.24, + "end": 3778.88, + "probability": 0.9551 + }, + { + "start": 3779.68, + "end": 3781.12, + "probability": 0.9594 + }, + { + "start": 3781.6, + "end": 3783.5, + "probability": 0.9201 + }, + { + "start": 3784.98, + "end": 3789.42, + "probability": 0.9691 + }, + { + "start": 3789.42, + "end": 3795.54, + "probability": 0.9119 + }, + { + "start": 3795.74, + "end": 3798.22, + "probability": 0.7946 + }, + { + "start": 3798.64, + "end": 3800.86, + "probability": 0.9963 + }, + { + "start": 3801.56, + "end": 3802.74, + "probability": 0.9724 + }, + { + "start": 3803.58, + "end": 3804.26, + "probability": 0.995 + }, + { + "start": 3804.78, + "end": 3811.32, + "probability": 0.9549 + }, + { + "start": 3811.68, + "end": 3812.38, + "probability": 0.7896 + }, + { + "start": 3812.46, + "end": 3816.24, + "probability": 0.9893 + }, + { + "start": 3816.78, + "end": 3820.94, + "probability": 0.9647 + }, + { + "start": 3821.42, + "end": 3824.28, + "probability": 0.9196 + }, + { + "start": 3825.22, + "end": 3828.78, + "probability": 0.9917 + }, + { + "start": 3829.92, + "end": 3833.38, + "probability": 0.7346 + }, + { + "start": 3833.54, + "end": 3834.82, + "probability": 0.8693 + }, + { + "start": 3835.32, + "end": 3836.8, + "probability": 0.7513 + }, + { + "start": 3837.22, + "end": 3838.48, + "probability": 0.5015 + }, + { + "start": 3838.68, + "end": 3840.14, + "probability": 0.7607 + }, + { + "start": 3840.84, + "end": 3847.6, + "probability": 0.9756 + }, + { + "start": 3847.64, + "end": 3848.6, + "probability": 0.8902 + }, + { + "start": 3848.82, + "end": 3849.5, + "probability": 0.6725 + }, + { + "start": 3850.02, + "end": 3852.46, + "probability": 0.5829 + }, + { + "start": 3853.77, + "end": 3861.78, + "probability": 0.7784 + }, + { + "start": 3862.66, + "end": 3864.48, + "probability": 0.9111 + }, + { + "start": 3865.04, + "end": 3866.9, + "probability": 0.856 + }, + { + "start": 3867.52, + "end": 3868.94, + "probability": 0.9518 + }, + { + "start": 3870.22, + "end": 3874.54, + "probability": 0.9927 + }, + { + "start": 3875.62, + "end": 3879.36, + "probability": 0.9805 + }, + { + "start": 3879.9, + "end": 3881.1, + "probability": 0.8813 + }, + { + "start": 3881.32, + "end": 3885.04, + "probability": 0.7764 + }, + { + "start": 3885.6, + "end": 3886.28, + "probability": 0.8734 + }, + { + "start": 3886.98, + "end": 3887.72, + "probability": 0.9922 + }, + { + "start": 3888.44, + "end": 3892.0, + "probability": 0.9691 + }, + { + "start": 3893.96, + "end": 3896.7, + "probability": 0.8776 + }, + { + "start": 3896.78, + "end": 3901.74, + "probability": 0.9938 + }, + { + "start": 3901.92, + "end": 3904.02, + "probability": 0.7643 + }, + { + "start": 3904.96, + "end": 3909.64, + "probability": 0.9977 + }, + { + "start": 3910.26, + "end": 3915.5, + "probability": 0.997 + }, + { + "start": 3916.72, + "end": 3917.98, + "probability": 0.5167 + }, + { + "start": 3920.66, + "end": 3922.36, + "probability": 0.8362 + }, + { + "start": 3923.1, + "end": 3925.48, + "probability": 0.8881 + }, + { + "start": 3926.34, + "end": 3926.58, + "probability": 0.5942 + }, + { + "start": 3927.28, + "end": 3931.52, + "probability": 0.9224 + }, + { + "start": 3932.76, + "end": 3934.77, + "probability": 0.9941 + }, + { + "start": 3935.58, + "end": 3936.02, + "probability": 0.5959 + }, + { + "start": 3936.04, + "end": 3937.3, + "probability": 0.609 + }, + { + "start": 3943.16, + "end": 3946.64, + "probability": 0.4444 + }, + { + "start": 3946.86, + "end": 3948.92, + "probability": 0.9437 + }, + { + "start": 3949.48, + "end": 3950.44, + "probability": 0.782 + }, + { + "start": 3950.56, + "end": 3952.24, + "probability": 0.9541 + }, + { + "start": 3953.4, + "end": 3956.22, + "probability": 0.943 + }, + { + "start": 3956.78, + "end": 3960.06, + "probability": 0.9989 + }, + { + "start": 3960.42, + "end": 3963.88, + "probability": 0.9818 + }, + { + "start": 3964.56, + "end": 3964.86, + "probability": 0.7341 + }, + { + "start": 3965.14, + "end": 3965.66, + "probability": 0.7154 + }, + { + "start": 3965.88, + "end": 3967.84, + "probability": 0.9877 + }, + { + "start": 3968.08, + "end": 3971.58, + "probability": 0.9868 + }, + { + "start": 3972.26, + "end": 3975.57, + "probability": 0.984 + }, + { + "start": 3976.36, + "end": 3980.16, + "probability": 0.4984 + }, + { + "start": 3980.7, + "end": 3981.96, + "probability": 0.9507 + }, + { + "start": 3982.68, + "end": 3986.78, + "probability": 0.9616 + }, + { + "start": 3987.4, + "end": 3992.14, + "probability": 0.5514 + }, + { + "start": 3993.64, + "end": 3996.32, + "probability": 0.6544 + }, + { + "start": 3996.42, + "end": 3996.98, + "probability": 0.6473 + }, + { + "start": 3996.98, + "end": 3998.34, + "probability": 0.6736 + }, + { + "start": 3999.0, + "end": 4002.54, + "probability": 0.8409 + }, + { + "start": 4002.88, + "end": 4006.64, + "probability": 0.9427 + }, + { + "start": 4008.2, + "end": 4009.0, + "probability": 0.7045 + }, + { + "start": 4010.48, + "end": 4011.76, + "probability": 0.9004 + }, + { + "start": 4012.3, + "end": 4012.98, + "probability": 0.8356 + }, + { + "start": 4014.58, + "end": 4015.9, + "probability": 0.963 + }, + { + "start": 4016.62, + "end": 4018.02, + "probability": 0.9841 + }, + { + "start": 4018.72, + "end": 4019.62, + "probability": 0.9862 + }, + { + "start": 4021.12, + "end": 4022.34, + "probability": 0.9082 + }, + { + "start": 4023.94, + "end": 4025.98, + "probability": 0.4607 + }, + { + "start": 4027.4, + "end": 4029.72, + "probability": 0.8687 + }, + { + "start": 4030.62, + "end": 4031.78, + "probability": 0.8706 + }, + { + "start": 4033.42, + "end": 4034.98, + "probability": 0.7146 + }, + { + "start": 4037.3, + "end": 4038.9, + "probability": 0.9604 + }, + { + "start": 4039.42, + "end": 4039.68, + "probability": 0.8248 + }, + { + "start": 4040.58, + "end": 4041.5, + "probability": 0.8668 + }, + { + "start": 4042.68, + "end": 4044.16, + "probability": 0.9902 + }, + { + "start": 4045.04, + "end": 4047.02, + "probability": 0.8588 + }, + { + "start": 4048.24, + "end": 4051.14, + "probability": 0.4816 + }, + { + "start": 4051.28, + "end": 4051.28, + "probability": 0.1982 + }, + { + "start": 4051.28, + "end": 4057.84, + "probability": 0.5715 + }, + { + "start": 4059.36, + "end": 4060.7, + "probability": 0.7772 + }, + { + "start": 4061.38, + "end": 4064.24, + "probability": 0.96 + }, + { + "start": 4065.08, + "end": 4071.5, + "probability": 0.982 + }, + { + "start": 4071.5, + "end": 4076.68, + "probability": 0.9879 + }, + { + "start": 4078.36, + "end": 4079.88, + "probability": 0.984 + }, + { + "start": 4080.78, + "end": 4082.78, + "probability": 0.8849 + }, + { + "start": 4083.44, + "end": 4086.0, + "probability": 0.9983 + }, + { + "start": 4086.92, + "end": 4088.46, + "probability": 0.9424 + }, + { + "start": 4091.6, + "end": 4098.44, + "probability": 0.9841 + }, + { + "start": 4098.54, + "end": 4101.34, + "probability": 0.9943 + }, + { + "start": 4102.18, + "end": 4104.74, + "probability": 0.9616 + }, + { + "start": 4105.42, + "end": 4107.84, + "probability": 0.991 + }, + { + "start": 4109.84, + "end": 4113.04, + "probability": 0.9971 + }, + { + "start": 4113.22, + "end": 4114.16, + "probability": 0.4926 + }, + { + "start": 4114.16, + "end": 4115.08, + "probability": 0.6138 + }, + { + "start": 4116.4, + "end": 4121.64, + "probability": 0.9093 + }, + { + "start": 4123.0, + "end": 4125.82, + "probability": 0.8809 + }, + { + "start": 4126.58, + "end": 4127.53, + "probability": 0.9507 + }, + { + "start": 4128.38, + "end": 4129.92, + "probability": 0.8878 + }, + { + "start": 4131.02, + "end": 4132.8, + "probability": 0.8643 + }, + { + "start": 4134.72, + "end": 4136.94, + "probability": 0.8173 + }, + { + "start": 4138.6, + "end": 4143.44, + "probability": 0.9957 + }, + { + "start": 4144.2, + "end": 4147.18, + "probability": 0.999 + }, + { + "start": 4147.98, + "end": 4149.84, + "probability": 0.9734 + }, + { + "start": 4150.62, + "end": 4153.5, + "probability": 0.8991 + }, + { + "start": 4154.26, + "end": 4155.46, + "probability": 0.9645 + }, + { + "start": 4156.74, + "end": 4159.76, + "probability": 0.9773 + }, + { + "start": 4160.76, + "end": 4163.46, + "probability": 0.9827 + }, + { + "start": 4164.38, + "end": 4165.66, + "probability": 0.9797 + }, + { + "start": 4166.08, + "end": 4168.1, + "probability": 0.8066 + }, + { + "start": 4168.66, + "end": 4170.43, + "probability": 0.9941 + }, + { + "start": 4171.08, + "end": 4172.94, + "probability": 0.9894 + }, + { + "start": 4173.18, + "end": 4175.26, + "probability": 0.9507 + }, + { + "start": 4176.04, + "end": 4177.04, + "probability": 0.7101 + }, + { + "start": 4177.96, + "end": 4180.04, + "probability": 0.6592 + }, + { + "start": 4181.24, + "end": 4181.3, + "probability": 0.0556 + }, + { + "start": 4182.46, + "end": 4184.98, + "probability": 0.9532 + }, + { + "start": 4185.58, + "end": 4188.22, + "probability": 0.8713 + }, + { + "start": 4189.22, + "end": 4192.4, + "probability": 0.9314 + }, + { + "start": 4192.62, + "end": 4193.36, + "probability": 0.6369 + }, + { + "start": 4193.8, + "end": 4197.2, + "probability": 0.9206 + }, + { + "start": 4198.12, + "end": 4198.96, + "probability": 0.9738 + }, + { + "start": 4201.04, + "end": 4202.48, + "probability": 0.9941 + }, + { + "start": 4203.72, + "end": 4205.76, + "probability": 0.9962 + }, + { + "start": 4206.06, + "end": 4206.62, + "probability": 0.8625 + }, + { + "start": 4207.98, + "end": 4211.7, + "probability": 0.9636 + }, + { + "start": 4212.26, + "end": 4214.58, + "probability": 0.1555 + }, + { + "start": 4215.06, + "end": 4215.98, + "probability": 0.144 + }, + { + "start": 4216.14, + "end": 4218.3, + "probability": 0.2715 + }, + { + "start": 4219.08, + "end": 4222.3, + "probability": 0.8359 + }, + { + "start": 4222.62, + "end": 4224.64, + "probability": 0.9627 + }, + { + "start": 4224.84, + "end": 4225.46, + "probability": 0.729 + }, + { + "start": 4225.6, + "end": 4227.16, + "probability": 0.958 + }, + { + "start": 4227.7, + "end": 4228.64, + "probability": 0.2298 + }, + { + "start": 4230.04, + "end": 4231.06, + "probability": 0.7343 + }, + { + "start": 4231.4, + "end": 4232.16, + "probability": 0.9659 + }, + { + "start": 4232.32, + "end": 4233.5, + "probability": 0.879 + }, + { + "start": 4234.38, + "end": 4237.04, + "probability": 0.6957 + }, + { + "start": 4239.37, + "end": 4240.14, + "probability": 0.0349 + }, + { + "start": 4240.44, + "end": 4240.82, + "probability": 0.718 + }, + { + "start": 4240.84, + "end": 4242.72, + "probability": 0.8761 + }, + { + "start": 4243.72, + "end": 4246.84, + "probability": 0.045 + }, + { + "start": 4247.12, + "end": 4248.28, + "probability": 0.3444 + }, + { + "start": 4248.28, + "end": 4249.94, + "probability": 0.08 + }, + { + "start": 4249.98, + "end": 4251.2, + "probability": 0.7162 + }, + { + "start": 4251.38, + "end": 4256.5, + "probability": 0.7727 + }, + { + "start": 4257.38, + "end": 4259.16, + "probability": 0.9186 + }, + { + "start": 4261.4, + "end": 4262.72, + "probability": 0.9348 + }, + { + "start": 4263.86, + "end": 4265.2, + "probability": 0.9946 + }, + { + "start": 4265.94, + "end": 4266.8, + "probability": 0.7884 + }, + { + "start": 4267.52, + "end": 4269.6, + "probability": 0.9857 + }, + { + "start": 4270.36, + "end": 4272.08, + "probability": 0.9167 + }, + { + "start": 4274.44, + "end": 4274.98, + "probability": 0.3903 + }, + { + "start": 4274.98, + "end": 4274.98, + "probability": 0.0257 + }, + { + "start": 4274.98, + "end": 4275.08, + "probability": 0.671 + }, + { + "start": 4275.6, + "end": 4276.32, + "probability": 0.0401 + }, + { + "start": 4278.32, + "end": 4283.48, + "probability": 0.7093 + }, + { + "start": 4283.48, + "end": 4286.16, + "probability": 0.6535 + }, + { + "start": 4287.0, + "end": 4288.52, + "probability": 0.9785 + }, + { + "start": 4289.31, + "end": 4293.04, + "probability": 0.8883 + }, + { + "start": 4293.26, + "end": 4296.98, + "probability": 0.9884 + }, + { + "start": 4297.6, + "end": 4299.88, + "probability": 0.882 + }, + { + "start": 4300.24, + "end": 4302.42, + "probability": 0.8683 + }, + { + "start": 4302.46, + "end": 4304.62, + "probability": 0.9439 + }, + { + "start": 4305.92, + "end": 4307.12, + "probability": 0.8208 + }, + { + "start": 4308.28, + "end": 4311.78, + "probability": 0.9923 + }, + { + "start": 4313.88, + "end": 4314.46, + "probability": 0.1756 + }, + { + "start": 4315.02, + "end": 4321.64, + "probability": 0.9447 + }, + { + "start": 4322.1, + "end": 4323.8, + "probability": 0.9561 + }, + { + "start": 4324.54, + "end": 4328.24, + "probability": 0.9828 + }, + { + "start": 4328.78, + "end": 4332.18, + "probability": 0.9868 + }, + { + "start": 4332.62, + "end": 4334.56, + "probability": 0.9254 + }, + { + "start": 4335.12, + "end": 4337.8, + "probability": 0.9928 + }, + { + "start": 4337.8, + "end": 4342.4, + "probability": 0.4708 + }, + { + "start": 4348.56, + "end": 4349.76, + "probability": 0.7685 + }, + { + "start": 4352.8, + "end": 4360.04, + "probability": 0.8896 + }, + { + "start": 4361.04, + "end": 4362.36, + "probability": 0.5179 + }, + { + "start": 4363.26, + "end": 4364.68, + "probability": 0.9951 + }, + { + "start": 4365.42, + "end": 4369.22, + "probability": 0.9666 + }, + { + "start": 4370.26, + "end": 4373.62, + "probability": 0.8716 + }, + { + "start": 4373.8, + "end": 4374.6, + "probability": 0.8878 + }, + { + "start": 4375.04, + "end": 4375.66, + "probability": 0.862 + }, + { + "start": 4376.24, + "end": 4379.32, + "probability": 0.9885 + }, + { + "start": 4380.42, + "end": 4382.18, + "probability": 0.2178 + }, + { + "start": 4383.75, + "end": 4383.87, + "probability": 0.8531 + }, + { + "start": 4386.04, + "end": 4386.92, + "probability": 0.9968 + }, + { + "start": 4388.84, + "end": 4389.56, + "probability": 0.7785 + }, + { + "start": 4390.84, + "end": 4392.78, + "probability": 0.5554 + }, + { + "start": 4393.62, + "end": 4394.73, + "probability": 0.985 + }, + { + "start": 4396.02, + "end": 4400.46, + "probability": 0.9971 + }, + { + "start": 4401.06, + "end": 4403.4, + "probability": 0.9265 + }, + { + "start": 4404.98, + "end": 4407.22, + "probability": 0.9705 + }, + { + "start": 4408.08, + "end": 4408.78, + "probability": 0.6223 + }, + { + "start": 4408.86, + "end": 4411.24, + "probability": 0.9983 + }, + { + "start": 4412.06, + "end": 4415.36, + "probability": 0.6863 + }, + { + "start": 4416.1, + "end": 4417.6, + "probability": 0.871 + }, + { + "start": 4419.66, + "end": 4420.2, + "probability": 0.4946 + }, + { + "start": 4420.86, + "end": 4422.54, + "probability": 0.7881 + }, + { + "start": 4423.44, + "end": 4427.4, + "probability": 0.9901 + }, + { + "start": 4428.38, + "end": 4431.98, + "probability": 0.9135 + }, + { + "start": 4433.3, + "end": 4435.84, + "probability": 0.9915 + }, + { + "start": 4436.52, + "end": 4439.08, + "probability": 0.9873 + }, + { + "start": 4440.06, + "end": 4443.52, + "probability": 0.6805 + }, + { + "start": 4443.94, + "end": 4446.04, + "probability": 0.9391 + }, + { + "start": 4446.12, + "end": 4448.56, + "probability": 0.9402 + }, + { + "start": 4449.1, + "end": 4452.62, + "probability": 0.4283 + }, + { + "start": 4453.3, + "end": 4454.62, + "probability": 0.9391 + }, + { + "start": 4455.42, + "end": 4460.24, + "probability": 0.9938 + }, + { + "start": 4460.24, + "end": 4464.74, + "probability": 0.9943 + }, + { + "start": 4465.26, + "end": 4468.84, + "probability": 0.9964 + }, + { + "start": 4469.02, + "end": 4469.36, + "probability": 0.7165 + }, + { + "start": 4469.92, + "end": 4471.98, + "probability": 0.7807 + }, + { + "start": 4472.1, + "end": 4473.12, + "probability": 0.9408 + }, + { + "start": 4473.68, + "end": 4475.96, + "probability": 0.9813 + }, + { + "start": 4476.7, + "end": 4477.85, + "probability": 0.9958 + }, + { + "start": 4478.74, + "end": 4482.14, + "probability": 0.998 + }, + { + "start": 4482.14, + "end": 4484.84, + "probability": 0.9858 + }, + { + "start": 4485.24, + "end": 4488.84, + "probability": 0.4994 + }, + { + "start": 4489.8, + "end": 4490.52, + "probability": 0.8007 + }, + { + "start": 4490.84, + "end": 4496.27, + "probability": 0.9224 + }, + { + "start": 4496.28, + "end": 4498.7, + "probability": 0.8561 + }, + { + "start": 4499.14, + "end": 4501.36, + "probability": 0.972 + }, + { + "start": 4502.2, + "end": 4505.34, + "probability": 0.9829 + }, + { + "start": 4507.42, + "end": 4509.34, + "probability": 0.6258 + }, + { + "start": 4509.4, + "end": 4514.66, + "probability": 0.9072 + }, + { + "start": 4514.82, + "end": 4518.71, + "probability": 0.9032 + }, + { + "start": 4519.92, + "end": 4523.02, + "probability": 0.6522 + }, + { + "start": 4524.24, + "end": 4526.9, + "probability": 0.1088 + }, + { + "start": 4526.9, + "end": 4526.9, + "probability": 0.0236 + }, + { + "start": 4526.9, + "end": 4529.96, + "probability": 0.7185 + }, + { + "start": 4530.14, + "end": 4530.36, + "probability": 0.7832 + }, + { + "start": 4530.6, + "end": 4531.26, + "probability": 0.3252 + }, + { + "start": 4532.66, + "end": 4536.6, + "probability": 0.9069 + }, + { + "start": 4537.44, + "end": 4541.96, + "probability": 0.9334 + }, + { + "start": 4542.24, + "end": 4544.34, + "probability": 0.9935 + }, + { + "start": 4546.08, + "end": 4547.68, + "probability": 0.8658 + }, + { + "start": 4547.88, + "end": 4552.96, + "probability": 0.9574 + }, + { + "start": 4554.66, + "end": 4558.28, + "probability": 0.9822 + }, + { + "start": 4559.3, + "end": 4559.72, + "probability": 0.7956 + }, + { + "start": 4560.74, + "end": 4562.04, + "probability": 0.9609 + }, + { + "start": 4562.6, + "end": 4563.72, + "probability": 0.4791 + }, + { + "start": 4564.78, + "end": 4565.74, + "probability": 0.9016 + }, + { + "start": 4565.9, + "end": 4569.02, + "probability": 0.7889 + }, + { + "start": 4569.82, + "end": 4573.86, + "probability": 0.959 + }, + { + "start": 4574.94, + "end": 4576.98, + "probability": 0.9764 + }, + { + "start": 4577.98, + "end": 4582.61, + "probability": 0.9867 + }, + { + "start": 4582.72, + "end": 4587.14, + "probability": 0.9761 + }, + { + "start": 4588.14, + "end": 4590.14, + "probability": 0.9963 + }, + { + "start": 4590.28, + "end": 4590.66, + "probability": 0.4912 + }, + { + "start": 4590.74, + "end": 4594.44, + "probability": 0.8984 + }, + { + "start": 4595.58, + "end": 4597.42, + "probability": 0.9813 + }, + { + "start": 4598.68, + "end": 4599.95, + "probability": 0.4939 + }, + { + "start": 4601.08, + "end": 4604.46, + "probability": 0.9896 + }, + { + "start": 4604.72, + "end": 4607.06, + "probability": 0.9768 + }, + { + "start": 4608.46, + "end": 4610.3, + "probability": 0.9961 + }, + { + "start": 4611.24, + "end": 4614.94, + "probability": 0.9531 + }, + { + "start": 4616.3, + "end": 4618.1, + "probability": 0.9935 + }, + { + "start": 4618.32, + "end": 4622.64, + "probability": 0.6081 + }, + { + "start": 4624.32, + "end": 4625.2, + "probability": 0.9499 + }, + { + "start": 4625.68, + "end": 4630.47, + "probability": 0.9136 + }, + { + "start": 4631.48, + "end": 4634.49, + "probability": 0.9626 + }, + { + "start": 4635.96, + "end": 4638.08, + "probability": 0.9222 + }, + { + "start": 4638.38, + "end": 4639.02, + "probability": 0.7437 + }, + { + "start": 4640.06, + "end": 4642.18, + "probability": 0.9106 + }, + { + "start": 4643.2, + "end": 4644.16, + "probability": 0.8606 + }, + { + "start": 4646.02, + "end": 4646.54, + "probability": 0.5958 + }, + { + "start": 4647.56, + "end": 4652.02, + "probability": 0.965 + }, + { + "start": 4652.58, + "end": 4656.68, + "probability": 0.9115 + }, + { + "start": 4657.42, + "end": 4658.57, + "probability": 0.8461 + }, + { + "start": 4658.62, + "end": 4659.42, + "probability": 0.6619 + }, + { + "start": 4659.54, + "end": 4659.58, + "probability": 0.5376 + }, + { + "start": 4660.14, + "end": 4661.02, + "probability": 0.9182 + }, + { + "start": 4664.33, + "end": 4666.72, + "probability": 0.9679 + }, + { + "start": 4666.88, + "end": 4667.54, + "probability": 0.8981 + }, + { + "start": 4668.7, + "end": 4669.54, + "probability": 0.9244 + }, + { + "start": 4670.58, + "end": 4671.2, + "probability": 0.4479 + }, + { + "start": 4671.38, + "end": 4673.1, + "probability": 0.8382 + }, + { + "start": 4673.1, + "end": 4673.84, + "probability": 0.3085 + }, + { + "start": 4674.3, + "end": 4674.42, + "probability": 0.6272 + }, + { + "start": 4674.56, + "end": 4675.58, + "probability": 0.501 + }, + { + "start": 4676.0, + "end": 4678.3, + "probability": 0.7596 + }, + { + "start": 4679.4, + "end": 4681.34, + "probability": 0.9953 + }, + { + "start": 4681.46, + "end": 4682.34, + "probability": 0.8579 + }, + { + "start": 4682.44, + "end": 4683.24, + "probability": 0.9232 + }, + { + "start": 4683.86, + "end": 4684.8, + "probability": 0.908 + }, + { + "start": 4685.02, + "end": 4687.26, + "probability": 0.9962 + }, + { + "start": 4688.06, + "end": 4691.0, + "probability": 0.9816 + }, + { + "start": 4692.1, + "end": 4694.86, + "probability": 0.9849 + }, + { + "start": 4695.88, + "end": 4696.42, + "probability": 0.4949 + }, + { + "start": 4697.28, + "end": 4698.99, + "probability": 0.9759 + }, + { + "start": 4700.06, + "end": 4702.78, + "probability": 0.8342 + }, + { + "start": 4703.4, + "end": 4704.88, + "probability": 0.946 + }, + { + "start": 4705.1, + "end": 4707.44, + "probability": 0.6495 + }, + { + "start": 4707.6, + "end": 4708.75, + "probability": 0.9619 + }, + { + "start": 4709.06, + "end": 4710.66, + "probability": 0.8027 + }, + { + "start": 4711.78, + "end": 4713.86, + "probability": 0.7036 + }, + { + "start": 4714.92, + "end": 4718.04, + "probability": 0.9897 + }, + { + "start": 4719.84, + "end": 4724.58, + "probability": 0.9331 + }, + { + "start": 4725.16, + "end": 4727.22, + "probability": 0.5681 + }, + { + "start": 4728.4, + "end": 4731.42, + "probability": 0.9952 + }, + { + "start": 4731.94, + "end": 4734.4, + "probability": 0.9893 + }, + { + "start": 4734.84, + "end": 4736.38, + "probability": 0.8794 + }, + { + "start": 4738.42, + "end": 4742.22, + "probability": 0.9951 + }, + { + "start": 4743.76, + "end": 4747.76, + "probability": 0.9622 + }, + { + "start": 4749.0, + "end": 4751.08, + "probability": 0.9985 + }, + { + "start": 4751.12, + "end": 4752.48, + "probability": 0.7152 + }, + { + "start": 4752.94, + "end": 4756.4, + "probability": 0.9621 + }, + { + "start": 4757.22, + "end": 4758.28, + "probability": 0.9447 + }, + { + "start": 4759.66, + "end": 4760.6, + "probability": 0.466 + }, + { + "start": 4761.06, + "end": 4763.45, + "probability": 0.9685 + }, + { + "start": 4764.24, + "end": 4764.56, + "probability": 0.5977 + }, + { + "start": 4766.44, + "end": 4767.62, + "probability": 0.2889 + }, + { + "start": 4767.76, + "end": 4767.98, + "probability": 0.5485 + }, + { + "start": 4768.38, + "end": 4770.34, + "probability": 0.8857 + }, + { + "start": 4770.42, + "end": 4772.01, + "probability": 0.5826 + }, + { + "start": 4773.2, + "end": 4774.62, + "probability": 0.6082 + }, + { + "start": 4774.7, + "end": 4776.2, + "probability": 0.7039 + }, + { + "start": 4778.34, + "end": 4781.0, + "probability": 0.936 + }, + { + "start": 4782.88, + "end": 4786.84, + "probability": 0.9878 + }, + { + "start": 4786.96, + "end": 4789.08, + "probability": 0.5627 + }, + { + "start": 4789.24, + "end": 4791.6, + "probability": 0.9727 + }, + { + "start": 4791.62, + "end": 4791.8, + "probability": 0.6711 + }, + { + "start": 4792.54, + "end": 4794.02, + "probability": 0.8295 + }, + { + "start": 4795.44, + "end": 4796.06, + "probability": 0.7501 + }, + { + "start": 4796.92, + "end": 4801.5, + "probability": 0.9333 + }, + { + "start": 4802.3, + "end": 4806.74, + "probability": 0.9849 + }, + { + "start": 4807.36, + "end": 4807.94, + "probability": 0.7165 + }, + { + "start": 4808.8, + "end": 4811.46, + "probability": 0.9349 + }, + { + "start": 4812.88, + "end": 4813.82, + "probability": 0.8731 + }, + { + "start": 4815.18, + "end": 4816.43, + "probability": 0.7977 + }, + { + "start": 4817.44, + "end": 4822.16, + "probability": 0.9957 + }, + { + "start": 4822.68, + "end": 4824.7, + "probability": 0.9988 + }, + { + "start": 4824.92, + "end": 4827.64, + "probability": 0.9961 + }, + { + "start": 4828.5, + "end": 4829.2, + "probability": 0.8974 + }, + { + "start": 4829.32, + "end": 4833.48, + "probability": 0.6398 + }, + { + "start": 4833.82, + "end": 4836.72, + "probability": 0.9985 + }, + { + "start": 4836.72, + "end": 4839.36, + "probability": 0.9993 + }, + { + "start": 4839.96, + "end": 4840.92, + "probability": 0.996 + }, + { + "start": 4842.02, + "end": 4842.64, + "probability": 0.6598 + }, + { + "start": 4843.24, + "end": 4845.0, + "probability": 0.5185 + }, + { + "start": 4845.62, + "end": 4847.44, + "probability": 0.3058 + }, + { + "start": 4847.44, + "end": 4851.28, + "probability": 0.8732 + }, + { + "start": 4853.28, + "end": 4853.94, + "probability": 0.0601 + }, + { + "start": 4854.2, + "end": 4854.96, + "probability": 0.3049 + }, + { + "start": 4855.66, + "end": 4856.56, + "probability": 0.2445 + }, + { + "start": 4856.56, + "end": 4858.27, + "probability": 0.7452 + }, + { + "start": 4858.62, + "end": 4861.9, + "probability": 0.9596 + }, + { + "start": 4863.04, + "end": 4863.48, + "probability": 0.3803 + }, + { + "start": 4863.6, + "end": 4864.14, + "probability": 0.8446 + }, + { + "start": 4865.4, + "end": 4867.4, + "probability": 0.4538 + }, + { + "start": 4867.94, + "end": 4871.96, + "probability": 0.9758 + }, + { + "start": 4872.0, + "end": 4872.42, + "probability": 0.6965 + }, + { + "start": 4873.28, + "end": 4877.23, + "probability": 0.6033 + }, + { + "start": 4877.88, + "end": 4880.34, + "probability": 0.9607 + }, + { + "start": 4881.06, + "end": 4883.38, + "probability": 0.7024 + }, + { + "start": 4883.9, + "end": 4886.12, + "probability": 0.7179 + }, + { + "start": 4886.54, + "end": 4886.84, + "probability": 0.8806 + }, + { + "start": 4886.94, + "end": 4889.02, + "probability": 0.9636 + }, + { + "start": 4889.02, + "end": 4890.74, + "probability": 0.7916 + }, + { + "start": 4892.38, + "end": 4895.44, + "probability": 0.9993 + }, + { + "start": 4895.44, + "end": 4898.3, + "probability": 0.9299 + }, + { + "start": 4898.7, + "end": 4903.12, + "probability": 0.7606 + }, + { + "start": 4903.54, + "end": 4906.38, + "probability": 0.788 + }, + { + "start": 4906.38, + "end": 4908.76, + "probability": 0.5284 + }, + { + "start": 4910.3, + "end": 4911.44, + "probability": 0.9514 + }, + { + "start": 4912.5, + "end": 4914.32, + "probability": 0.8835 + }, + { + "start": 4914.54, + "end": 4915.51, + "probability": 0.6989 + }, + { + "start": 4916.44, + "end": 4918.4, + "probability": 0.986 + }, + { + "start": 4919.24, + "end": 4922.38, + "probability": 0.9838 + }, + { + "start": 4922.62, + "end": 4923.26, + "probability": 0.1284 + }, + { + "start": 4923.36, + "end": 4923.85, + "probability": 0.7418 + }, + { + "start": 4924.86, + "end": 4926.8, + "probability": 0.7206 + }, + { + "start": 4926.88, + "end": 4927.56, + "probability": 0.541 + }, + { + "start": 4928.22, + "end": 4930.17, + "probability": 0.9739 + }, + { + "start": 4931.12, + "end": 4933.56, + "probability": 0.9923 + }, + { + "start": 4934.5, + "end": 4934.6, + "probability": 0.0002 + }, + { + "start": 4935.2, + "end": 4938.44, + "probability": 0.9624 + }, + { + "start": 4938.56, + "end": 4940.08, + "probability": 0.8834 + }, + { + "start": 4940.62, + "end": 4942.5, + "probability": 0.9723 + }, + { + "start": 4943.38, + "end": 4944.6, + "probability": 0.5955 + }, + { + "start": 4944.8, + "end": 4945.78, + "probability": 0.9013 + }, + { + "start": 4945.86, + "end": 4945.94, + "probability": 0.1678 + }, + { + "start": 4946.04, + "end": 4947.18, + "probability": 0.8636 + }, + { + "start": 4947.78, + "end": 4949.72, + "probability": 0.9258 + }, + { + "start": 4950.58, + "end": 4951.56, + "probability": 0.9858 + }, + { + "start": 4951.56, + "end": 4954.46, + "probability": 0.9366 + }, + { + "start": 4955.02, + "end": 4957.34, + "probability": 0.9744 + }, + { + "start": 4957.86, + "end": 4960.78, + "probability": 0.261 + }, + { + "start": 4961.33, + "end": 4961.4, + "probability": 0.1343 + }, + { + "start": 4961.4, + "end": 4961.4, + "probability": 0.0058 + }, + { + "start": 4961.4, + "end": 4962.84, + "probability": 0.8283 + }, + { + "start": 4962.9, + "end": 4963.6, + "probability": 0.3698 + }, + { + "start": 4963.6, + "end": 4964.52, + "probability": 0.3981 + }, + { + "start": 4964.84, + "end": 4966.6, + "probability": 0.8776 + }, + { + "start": 4967.6, + "end": 4968.14, + "probability": 0.5531 + }, + { + "start": 4968.22, + "end": 4970.08, + "probability": 0.9796 + }, + { + "start": 4971.66, + "end": 4973.44, + "probability": 0.8525 + }, + { + "start": 4973.58, + "end": 4973.68, + "probability": 0.5996 + }, + { + "start": 4974.1, + "end": 4977.22, + "probability": 0.7364 + }, + { + "start": 4978.08, + "end": 4980.24, + "probability": 0.8464 + }, + { + "start": 4980.88, + "end": 4983.96, + "probability": 0.9361 + }, + { + "start": 4984.14, + "end": 4984.38, + "probability": 0.8674 + }, + { + "start": 4984.46, + "end": 4985.73, + "probability": 0.9888 + }, + { + "start": 4986.08, + "end": 4992.02, + "probability": 0.9694 + }, + { + "start": 4992.22, + "end": 4993.48, + "probability": 0.6848 + }, + { + "start": 4994.82, + "end": 4997.98, + "probability": 0.6684 + }, + { + "start": 4997.98, + "end": 5000.98, + "probability": 0.9697 + }, + { + "start": 5001.34, + "end": 5002.14, + "probability": 0.4985 + }, + { + "start": 5002.26, + "end": 5002.86, + "probability": 0.7687 + }, + { + "start": 5004.12, + "end": 5005.58, + "probability": 0.946 + }, + { + "start": 5006.04, + "end": 5009.7, + "probability": 0.991 + }, + { + "start": 5009.96, + "end": 5013.94, + "probability": 0.9866 + }, + { + "start": 5014.66, + "end": 5017.5, + "probability": 0.9272 + }, + { + "start": 5018.32, + "end": 5018.62, + "probability": 0.3491 + }, + { + "start": 5018.88, + "end": 5019.9, + "probability": 0.5832 + }, + { + "start": 5020.22, + "end": 5022.8, + "probability": 0.8438 + }, + { + "start": 5023.3, + "end": 5028.62, + "probability": 0.8998 + }, + { + "start": 5029.4, + "end": 5031.24, + "probability": 0.9417 + }, + { + "start": 5031.64, + "end": 5032.2, + "probability": 0.8716 + }, + { + "start": 5032.62, + "end": 5036.68, + "probability": 0.9275 + }, + { + "start": 5037.22, + "end": 5038.38, + "probability": 0.2389 + }, + { + "start": 5038.38, + "end": 5038.38, + "probability": 0.5667 + }, + { + "start": 5038.38, + "end": 5040.8, + "probability": 0.7893 + }, + { + "start": 5040.88, + "end": 5042.72, + "probability": 0.9126 + }, + { + "start": 5043.38, + "end": 5046.42, + "probability": 0.9059 + }, + { + "start": 5046.96, + "end": 5049.28, + "probability": 0.967 + }, + { + "start": 5049.98, + "end": 5054.44, + "probability": 0.9851 + }, + { + "start": 5054.54, + "end": 5055.86, + "probability": 0.9919 + }, + { + "start": 5056.82, + "end": 5058.9, + "probability": 0.98 + }, + { + "start": 5059.52, + "end": 5061.66, + "probability": 0.9968 + }, + { + "start": 5062.12, + "end": 5066.88, + "probability": 0.8675 + }, + { + "start": 5067.4, + "end": 5070.22, + "probability": 0.9931 + }, + { + "start": 5070.66, + "end": 5072.46, + "probability": 0.9958 + }, + { + "start": 5072.8, + "end": 5073.52, + "probability": 0.5543 + }, + { + "start": 5074.28, + "end": 5076.36, + "probability": 0.9001 + }, + { + "start": 5076.5, + "end": 5077.48, + "probability": 0.9922 + }, + { + "start": 5078.12, + "end": 5079.78, + "probability": 0.984 + }, + { + "start": 5080.32, + "end": 5081.8, + "probability": 0.8946 + }, + { + "start": 5082.28, + "end": 5085.46, + "probability": 0.8377 + }, + { + "start": 5086.12, + "end": 5088.28, + "probability": 0.9648 + }, + { + "start": 5088.78, + "end": 5091.82, + "probability": 0.9274 + }, + { + "start": 5092.74, + "end": 5094.8, + "probability": 0.9626 + }, + { + "start": 5095.36, + "end": 5097.56, + "probability": 0.9635 + }, + { + "start": 5097.66, + "end": 5099.45, + "probability": 0.8867 + }, + { + "start": 5100.12, + "end": 5101.24, + "probability": 0.9329 + }, + { + "start": 5101.92, + "end": 5102.62, + "probability": 0.5898 + }, + { + "start": 5103.14, + "end": 5104.2, + "probability": 0.7766 + }, + { + "start": 5104.32, + "end": 5108.78, + "probability": 0.8662 + }, + { + "start": 5109.2, + "end": 5111.28, + "probability": 0.881 + }, + { + "start": 5111.4, + "end": 5112.92, + "probability": 0.9623 + }, + { + "start": 5113.0, + "end": 5113.1, + "probability": 0.437 + }, + { + "start": 5113.78, + "end": 5116.28, + "probability": 0.8296 + }, + { + "start": 5116.96, + "end": 5118.76, + "probability": 0.9902 + }, + { + "start": 5119.4, + "end": 5121.22, + "probability": 0.7722 + }, + { + "start": 5121.5, + "end": 5124.18, + "probability": 0.696 + }, + { + "start": 5125.4, + "end": 5128.02, + "probability": 0.9287 + }, + { + "start": 5128.1, + "end": 5129.68, + "probability": 0.7893 + }, + { + "start": 5130.76, + "end": 5133.32, + "probability": 0.9812 + }, + { + "start": 5134.4, + "end": 5137.56, + "probability": 0.4549 + }, + { + "start": 5137.62, + "end": 5139.2, + "probability": 0.6799 + }, + { + "start": 5140.04, + "end": 5142.84, + "probability": 0.916 + }, + { + "start": 5143.4, + "end": 5145.53, + "probability": 0.9971 + }, + { + "start": 5145.68, + "end": 5147.76, + "probability": 0.9788 + }, + { + "start": 5148.46, + "end": 5150.54, + "probability": 0.6639 + }, + { + "start": 5151.24, + "end": 5156.38, + "probability": 0.9707 + }, + { + "start": 5157.08, + "end": 5159.1, + "probability": 0.9527 + }, + { + "start": 5159.8, + "end": 5162.38, + "probability": 0.705 + }, + { + "start": 5162.96, + "end": 5167.1, + "probability": 0.9378 + }, + { + "start": 5168.14, + "end": 5169.3, + "probability": 0.9301 + }, + { + "start": 5170.44, + "end": 5170.54, + "probability": 0.5635 + }, + { + "start": 5170.58, + "end": 5171.36, + "probability": 0.9279 + }, + { + "start": 5171.36, + "end": 5173.92, + "probability": 0.9888 + }, + { + "start": 5174.6, + "end": 5174.84, + "probability": 0.4847 + }, + { + "start": 5174.92, + "end": 5179.1, + "probability": 0.7949 + }, + { + "start": 5179.2, + "end": 5181.26, + "probability": 0.9621 + }, + { + "start": 5181.62, + "end": 5182.96, + "probability": 0.5605 + }, + { + "start": 5183.54, + "end": 5184.08, + "probability": 0.3848 + }, + { + "start": 5184.2, + "end": 5185.1, + "probability": 0.9254 + }, + { + "start": 5185.32, + "end": 5188.46, + "probability": 0.9956 + }, + { + "start": 5188.84, + "end": 5191.92, + "probability": 0.9812 + }, + { + "start": 5192.52, + "end": 5194.2, + "probability": 0.7892 + }, + { + "start": 5194.3, + "end": 5196.04, + "probability": 0.9965 + }, + { + "start": 5196.04, + "end": 5198.48, + "probability": 0.8118 + }, + { + "start": 5199.2, + "end": 5202.3, + "probability": 0.9802 + }, + { + "start": 5202.8, + "end": 5203.06, + "probability": 0.9575 + }, + { + "start": 5204.48, + "end": 5206.28, + "probability": 0.9901 + }, + { + "start": 5206.84, + "end": 5208.56, + "probability": 0.5337 + }, + { + "start": 5208.6, + "end": 5211.21, + "probability": 0.9347 + }, + { + "start": 5211.8, + "end": 5212.64, + "probability": 0.488 + }, + { + "start": 5213.46, + "end": 5217.34, + "probability": 0.9917 + }, + { + "start": 5217.58, + "end": 5217.76, + "probability": 0.9555 + }, + { + "start": 5218.58, + "end": 5219.14, + "probability": 0.9132 + }, + { + "start": 5220.02, + "end": 5220.2, + "probability": 0.6324 + }, + { + "start": 5220.34, + "end": 5221.88, + "probability": 0.8381 + }, + { + "start": 5222.18, + "end": 5223.56, + "probability": 0.9401 + }, + { + "start": 5224.78, + "end": 5226.62, + "probability": 0.9863 + }, + { + "start": 5227.34, + "end": 5228.31, + "probability": 0.7483 + }, + { + "start": 5229.14, + "end": 5231.9, + "probability": 0.8255 + }, + { + "start": 5233.22, + "end": 5235.21, + "probability": 0.9987 + }, + { + "start": 5235.98, + "end": 5237.8, + "probability": 0.9829 + }, + { + "start": 5239.16, + "end": 5240.06, + "probability": 0.6887 + }, + { + "start": 5240.18, + "end": 5241.1, + "probability": 0.8905 + }, + { + "start": 5241.66, + "end": 5242.26, + "probability": 0.7032 + }, + { + "start": 5242.38, + "end": 5245.18, + "probability": 0.7794 + }, + { + "start": 5246.48, + "end": 5247.66, + "probability": 0.9456 + }, + { + "start": 5247.82, + "end": 5248.36, + "probability": 0.563 + }, + { + "start": 5248.46, + "end": 5248.76, + "probability": 0.5651 + }, + { + "start": 5248.78, + "end": 5250.52, + "probability": 0.9702 + }, + { + "start": 5251.94, + "end": 5253.98, + "probability": 0.8501 + }, + { + "start": 5253.98, + "end": 5254.14, + "probability": 0.8247 + }, + { + "start": 5254.3, + "end": 5255.46, + "probability": 0.8298 + }, + { + "start": 5255.9, + "end": 5256.34, + "probability": 0.6552 + }, + { + "start": 5256.4, + "end": 5257.26, + "probability": 0.95 + }, + { + "start": 5258.46, + "end": 5261.38, + "probability": 0.9777 + }, + { + "start": 5262.16, + "end": 5266.07, + "probability": 0.9899 + }, + { + "start": 5267.04, + "end": 5268.49, + "probability": 0.9941 + }, + { + "start": 5269.48, + "end": 5270.7, + "probability": 0.9038 + }, + { + "start": 5270.78, + "end": 5272.2, + "probability": 0.9988 + }, + { + "start": 5272.54, + "end": 5274.88, + "probability": 0.8872 + }, + { + "start": 5275.5, + "end": 5277.22, + "probability": 0.974 + }, + { + "start": 5277.96, + "end": 5282.38, + "probability": 0.9595 + }, + { + "start": 5282.52, + "end": 5282.92, + "probability": 0.6878 + }, + { + "start": 5284.06, + "end": 5286.34, + "probability": 0.7751 + }, + { + "start": 5287.02, + "end": 5290.88, + "probability": 0.9883 + }, + { + "start": 5291.46, + "end": 5294.14, + "probability": 0.9299 + }, + { + "start": 5294.46, + "end": 5295.1, + "probability": 0.4503 + }, + { + "start": 5295.28, + "end": 5296.3, + "probability": 0.8545 + }, + { + "start": 5296.62, + "end": 5298.34, + "probability": 0.9954 + }, + { + "start": 5299.26, + "end": 5300.64, + "probability": 0.8955 + }, + { + "start": 5300.9, + "end": 5302.28, + "probability": 0.8352 + }, + { + "start": 5303.34, + "end": 5306.2, + "probability": 0.9879 + }, + { + "start": 5306.2, + "end": 5308.78, + "probability": 0.9921 + }, + { + "start": 5308.9, + "end": 5309.1, + "probability": 0.7446 + }, + { + "start": 5309.66, + "end": 5312.44, + "probability": 0.971 + }, + { + "start": 5312.62, + "end": 5314.42, + "probability": 0.9178 + }, + { + "start": 5315.16, + "end": 5318.66, + "probability": 0.9106 + }, + { + "start": 5319.3, + "end": 5320.35, + "probability": 0.8525 + }, + { + "start": 5321.0, + "end": 5323.98, + "probability": 0.5254 + }, + { + "start": 5324.14, + "end": 5325.78, + "probability": 0.8074 + }, + { + "start": 5325.9, + "end": 5328.46, + "probability": 0.849 + }, + { + "start": 5328.58, + "end": 5330.32, + "probability": 0.694 + }, + { + "start": 5330.88, + "end": 5333.92, + "probability": 0.9121 + }, + { + "start": 5335.29, + "end": 5336.32, + "probability": 0.897 + }, + { + "start": 5336.72, + "end": 5337.26, + "probability": 0.3524 + }, + { + "start": 5337.68, + "end": 5339.4, + "probability": 0.5553 + }, + { + "start": 5342.42, + "end": 5347.88, + "probability": 0.9678 + }, + { + "start": 5348.98, + "end": 5350.26, + "probability": 0.8589 + }, + { + "start": 5350.92, + "end": 5351.14, + "probability": 0.9736 + }, + { + "start": 5351.78, + "end": 5352.39, + "probability": 0.991 + }, + { + "start": 5353.48, + "end": 5359.76, + "probability": 0.7075 + }, + { + "start": 5360.76, + "end": 5362.14, + "probability": 0.8927 + }, + { + "start": 5364.11, + "end": 5364.58, + "probability": 0.0144 + }, + { + "start": 5364.58, + "end": 5365.5, + "probability": 0.716 + }, + { + "start": 5366.26, + "end": 5368.58, + "probability": 0.7767 + }, + { + "start": 5369.2, + "end": 5377.28, + "probability": 0.9931 + }, + { + "start": 5377.86, + "end": 5380.86, + "probability": 0.9827 + }, + { + "start": 5381.36, + "end": 5385.0, + "probability": 0.9287 + }, + { + "start": 5385.74, + "end": 5389.42, + "probability": 0.9657 + }, + { + "start": 5389.9, + "end": 5395.0, + "probability": 0.9951 + }, + { + "start": 5395.38, + "end": 5398.3, + "probability": 0.9531 + }, + { + "start": 5399.3, + "end": 5403.74, + "probability": 0.8376 + }, + { + "start": 5404.1, + "end": 5404.8, + "probability": 0.9606 + }, + { + "start": 5405.28, + "end": 5405.85, + "probability": 0.896 + }, + { + "start": 5406.7, + "end": 5407.36, + "probability": 0.8383 + }, + { + "start": 5408.04, + "end": 5410.24, + "probability": 0.9659 + }, + { + "start": 5410.82, + "end": 5413.5, + "probability": 0.7929 + }, + { + "start": 5413.92, + "end": 5418.1, + "probability": 0.9815 + }, + { + "start": 5418.1, + "end": 5423.78, + "probability": 0.9619 + }, + { + "start": 5423.88, + "end": 5429.82, + "probability": 0.974 + }, + { + "start": 5429.86, + "end": 5432.34, + "probability": 0.9585 + }, + { + "start": 5432.52, + "end": 5433.34, + "probability": 0.9219 + }, + { + "start": 5434.26, + "end": 5435.96, + "probability": 0.9958 + }, + { + "start": 5436.08, + "end": 5440.12, + "probability": 0.464 + }, + { + "start": 5440.12, + "end": 5441.31, + "probability": 0.769 + }, + { + "start": 5442.08, + "end": 5447.82, + "probability": 0.9968 + }, + { + "start": 5448.0, + "end": 5448.92, + "probability": 0.7379 + }, + { + "start": 5449.26, + "end": 5450.1, + "probability": 0.789 + }, + { + "start": 5450.64, + "end": 5450.9, + "probability": 0.7877 + }, + { + "start": 5450.9, + "end": 5451.66, + "probability": 0.8995 + }, + { + "start": 5451.74, + "end": 5453.48, + "probability": 0.9865 + }, + { + "start": 5453.9, + "end": 5455.34, + "probability": 0.9536 + }, + { + "start": 5455.36, + "end": 5457.5, + "probability": 0.8391 + }, + { + "start": 5459.38, + "end": 5461.12, + "probability": 0.9529 + }, + { + "start": 5462.72, + "end": 5467.02, + "probability": 0.9632 + }, + { + "start": 5467.54, + "end": 5468.04, + "probability": 0.7423 + }, + { + "start": 5469.58, + "end": 5473.16, + "probability": 0.7704 + }, + { + "start": 5473.98, + "end": 5474.68, + "probability": 0.8944 + }, + { + "start": 5475.66, + "end": 5477.3, + "probability": 0.7396 + }, + { + "start": 5477.98, + "end": 5480.3, + "probability": 0.9201 + }, + { + "start": 5481.24, + "end": 5481.82, + "probability": 0.9578 + }, + { + "start": 5483.34, + "end": 5485.76, + "probability": 0.9893 + }, + { + "start": 5485.82, + "end": 5492.6, + "probability": 0.9932 + }, + { + "start": 5493.55, + "end": 5496.38, + "probability": 0.9707 + }, + { + "start": 5497.5, + "end": 5497.92, + "probability": 0.7194 + }, + { + "start": 5498.46, + "end": 5499.26, + "probability": 0.8936 + }, + { + "start": 5499.48, + "end": 5504.8, + "probability": 0.9972 + }, + { + "start": 5505.0, + "end": 5506.14, + "probability": 0.9891 + }, + { + "start": 5506.56, + "end": 5508.48, + "probability": 0.9707 + }, + { + "start": 5508.56, + "end": 5512.16, + "probability": 0.9995 + }, + { + "start": 5512.9, + "end": 5516.72, + "probability": 0.9877 + }, + { + "start": 5517.72, + "end": 5518.62, + "probability": 0.8339 + }, + { + "start": 5519.18, + "end": 5520.5, + "probability": 0.9976 + }, + { + "start": 5521.48, + "end": 5523.6, + "probability": 0.9392 + }, + { + "start": 5524.34, + "end": 5524.8, + "probability": 0.5532 + }, + { + "start": 5527.14, + "end": 5533.26, + "probability": 0.9714 + }, + { + "start": 5534.22, + "end": 5536.08, + "probability": 0.9746 + }, + { + "start": 5536.92, + "end": 5540.14, + "probability": 0.7611 + }, + { + "start": 5540.74, + "end": 5542.0, + "probability": 0.9141 + }, + { + "start": 5543.14, + "end": 5544.34, + "probability": 0.9692 + }, + { + "start": 5545.18, + "end": 5546.24, + "probability": 0.9004 + }, + { + "start": 5547.82, + "end": 5548.44, + "probability": 0.5712 + }, + { + "start": 5549.04, + "end": 5551.49, + "probability": 0.7815 + }, + { + "start": 5552.52, + "end": 5556.08, + "probability": 0.9321 + }, + { + "start": 5556.7, + "end": 5557.6, + "probability": 0.9266 + }, + { + "start": 5558.64, + "end": 5559.6, + "probability": 0.9793 + }, + { + "start": 5560.36, + "end": 5561.01, + "probability": 0.9907 + }, + { + "start": 5562.56, + "end": 5564.62, + "probability": 0.9751 + }, + { + "start": 5565.06, + "end": 5570.91, + "probability": 0.9673 + }, + { + "start": 5571.2, + "end": 5572.15, + "probability": 0.8183 + }, + { + "start": 5572.74, + "end": 5576.5, + "probability": 0.8847 + }, + { + "start": 5577.9, + "end": 5579.74, + "probability": 0.9898 + }, + { + "start": 5579.94, + "end": 5583.34, + "probability": 0.9942 + }, + { + "start": 5584.14, + "end": 5585.08, + "probability": 0.8451 + }, + { + "start": 5585.34, + "end": 5586.5, + "probability": 0.5941 + }, + { + "start": 5587.34, + "end": 5590.08, + "probability": 0.9793 + }, + { + "start": 5590.52, + "end": 5593.52, + "probability": 0.9842 + }, + { + "start": 5594.26, + "end": 5598.0, + "probability": 0.9965 + }, + { + "start": 5598.52, + "end": 5599.46, + "probability": 0.9926 + }, + { + "start": 5600.96, + "end": 5603.62, + "probability": 0.7167 + }, + { + "start": 5604.32, + "end": 5605.88, + "probability": 0.9807 + }, + { + "start": 5606.26, + "end": 5611.44, + "probability": 0.9875 + }, + { + "start": 5611.76, + "end": 5613.9, + "probability": 0.9694 + }, + { + "start": 5613.98, + "end": 5614.9, + "probability": 0.991 + }, + { + "start": 5615.18, + "end": 5615.68, + "probability": 0.8975 + }, + { + "start": 5615.76, + "end": 5617.68, + "probability": 0.9977 + }, + { + "start": 5618.2, + "end": 5620.08, + "probability": 0.8997 + }, + { + "start": 5620.52, + "end": 5620.9, + "probability": 0.9724 + }, + { + "start": 5621.12, + "end": 5621.6, + "probability": 0.7339 + }, + { + "start": 5621.68, + "end": 5622.2, + "probability": 0.9609 + }, + { + "start": 5622.28, + "end": 5622.42, + "probability": 0.4999 + }, + { + "start": 5622.56, + "end": 5623.12, + "probability": 0.6865 + }, + { + "start": 5623.36, + "end": 5624.64, + "probability": 0.9362 + }, + { + "start": 5624.74, + "end": 5626.24, + "probability": 0.9906 + }, + { + "start": 5626.9, + "end": 5628.32, + "probability": 0.991 + }, + { + "start": 5629.38, + "end": 5631.6, + "probability": 0.5818 + }, + { + "start": 5631.7, + "end": 5634.43, + "probability": 0.8721 + }, + { + "start": 5635.28, + "end": 5638.72, + "probability": 0.9753 + }, + { + "start": 5639.79, + "end": 5640.26, + "probability": 0.2374 + }, + { + "start": 5640.32, + "end": 5644.82, + "probability": 0.9219 + }, + { + "start": 5644.92, + "end": 5645.53, + "probability": 0.62 + }, + { + "start": 5646.86, + "end": 5651.46, + "probability": 0.9849 + }, + { + "start": 5651.84, + "end": 5653.46, + "probability": 0.9859 + }, + { + "start": 5654.48, + "end": 5657.16, + "probability": 0.994 + }, + { + "start": 5657.68, + "end": 5659.34, + "probability": 0.9979 + }, + { + "start": 5660.16, + "end": 5660.74, + "probability": 0.8135 + }, + { + "start": 5661.08, + "end": 5663.92, + "probability": 0.9759 + }, + { + "start": 5664.96, + "end": 5665.36, + "probability": 0.889 + }, + { + "start": 5665.84, + "end": 5666.5, + "probability": 0.9419 + }, + { + "start": 5666.6, + "end": 5670.6, + "probability": 0.9558 + }, + { + "start": 5670.76, + "end": 5673.69, + "probability": 0.8184 + }, + { + "start": 5673.9, + "end": 5678.62, + "probability": 0.998 + }, + { + "start": 5679.06, + "end": 5679.77, + "probability": 0.8452 + }, + { + "start": 5680.44, + "end": 5681.78, + "probability": 0.7335 + }, + { + "start": 5682.14, + "end": 5683.46, + "probability": 0.9863 + }, + { + "start": 5683.92, + "end": 5685.66, + "probability": 0.9941 + }, + { + "start": 5686.06, + "end": 5687.88, + "probability": 0.9937 + }, + { + "start": 5689.32, + "end": 5693.7, + "probability": 0.9931 + }, + { + "start": 5694.34, + "end": 5697.24, + "probability": 0.9744 + }, + { + "start": 5697.6, + "end": 5697.86, + "probability": 0.926 + }, + { + "start": 5698.06, + "end": 5699.52, + "probability": 0.9902 + }, + { + "start": 5699.84, + "end": 5703.32, + "probability": 0.826 + }, + { + "start": 5703.54, + "end": 5704.02, + "probability": 0.807 + }, + { + "start": 5704.24, + "end": 5709.21, + "probability": 0.9946 + }, + { + "start": 5709.84, + "end": 5710.42, + "probability": 0.988 + }, + { + "start": 5710.62, + "end": 5711.32, + "probability": 0.8245 + }, + { + "start": 5711.48, + "end": 5712.1, + "probability": 0.6383 + }, + { + "start": 5712.36, + "end": 5713.14, + "probability": 0.8887 + }, + { + "start": 5713.28, + "end": 5715.1, + "probability": 0.9908 + }, + { + "start": 5715.32, + "end": 5715.78, + "probability": 0.9045 + }, + { + "start": 5715.96, + "end": 5720.46, + "probability": 0.9498 + }, + { + "start": 5720.8, + "end": 5720.82, + "probability": 0.3097 + }, + { + "start": 5720.92, + "end": 5721.02, + "probability": 0.2586 + }, + { + "start": 5721.02, + "end": 5721.02, + "probability": 0.2116 + }, + { + "start": 5721.02, + "end": 5721.5, + "probability": 0.6093 + }, + { + "start": 5721.56, + "end": 5722.78, + "probability": 0.6961 + }, + { + "start": 5722.92, + "end": 5724.88, + "probability": 0.98 + }, + { + "start": 5724.88, + "end": 5726.17, + "probability": 0.6569 + }, + { + "start": 5726.46, + "end": 5733.44, + "probability": 0.993 + }, + { + "start": 5733.98, + "end": 5738.76, + "probability": 0.9648 + }, + { + "start": 5738.96, + "end": 5739.52, + "probability": 0.4431 + }, + { + "start": 5739.58, + "end": 5741.15, + "probability": 0.9734 + }, + { + "start": 5741.34, + "end": 5744.21, + "probability": 0.8359 + }, + { + "start": 5750.66, + "end": 5752.25, + "probability": 0.73 + }, + { + "start": 5754.56, + "end": 5756.44, + "probability": 0.5614 + }, + { + "start": 5757.78, + "end": 5759.88, + "probability": 0.8792 + }, + { + "start": 5764.4, + "end": 5766.02, + "probability": 0.9639 + }, + { + "start": 5767.82, + "end": 5768.72, + "probability": 0.9171 + }, + { + "start": 5769.84, + "end": 5770.28, + "probability": 0.9781 + }, + { + "start": 5771.72, + "end": 5773.1, + "probability": 0.7318 + }, + { + "start": 5774.24, + "end": 5776.5, + "probability": 0.6469 + }, + { + "start": 5777.84, + "end": 5779.56, + "probability": 0.4207 + }, + { + "start": 5781.82, + "end": 5785.18, + "probability": 0.9149 + }, + { + "start": 5786.44, + "end": 5789.23, + "probability": 0.6982 + }, + { + "start": 5790.92, + "end": 5792.42, + "probability": 0.8367 + }, + { + "start": 5793.4, + "end": 5800.66, + "probability": 0.9652 + }, + { + "start": 5801.52, + "end": 5803.1, + "probability": 0.8288 + }, + { + "start": 5804.0, + "end": 5804.98, + "probability": 0.9026 + }, + { + "start": 5806.12, + "end": 5809.14, + "probability": 0.968 + }, + { + "start": 5809.78, + "end": 5811.16, + "probability": 0.7352 + }, + { + "start": 5811.84, + "end": 5812.78, + "probability": 0.9276 + }, + { + "start": 5812.94, + "end": 5814.02, + "probability": 0.8867 + }, + { + "start": 5814.66, + "end": 5815.46, + "probability": 0.7359 + }, + { + "start": 5816.92, + "end": 5816.94, + "probability": 0.9136 + }, + { + "start": 5817.52, + "end": 5821.38, + "probability": 0.8627 + }, + { + "start": 5821.96, + "end": 5823.34, + "probability": 0.6245 + }, + { + "start": 5824.4, + "end": 5826.62, + "probability": 0.7628 + }, + { + "start": 5827.42, + "end": 5829.86, + "probability": 0.8286 + }, + { + "start": 5830.04, + "end": 5831.7, + "probability": 0.6348 + }, + { + "start": 5832.72, + "end": 5834.82, + "probability": 0.5123 + }, + { + "start": 5836.26, + "end": 5840.1, + "probability": 0.8067 + }, + { + "start": 5841.48, + "end": 5844.28, + "probability": 0.9951 + }, + { + "start": 5845.8, + "end": 5847.39, + "probability": 0.8701 + }, + { + "start": 5848.06, + "end": 5848.98, + "probability": 0.8773 + }, + { + "start": 5850.1, + "end": 5854.2, + "probability": 0.9956 + }, + { + "start": 5854.94, + "end": 5856.56, + "probability": 0.761 + }, + { + "start": 5857.56, + "end": 5860.34, + "probability": 0.9512 + }, + { + "start": 5861.44, + "end": 5863.4, + "probability": 0.9297 + }, + { + "start": 5864.48, + "end": 5865.66, + "probability": 0.9749 + }, + { + "start": 5866.06, + "end": 5867.24, + "probability": 0.9742 + }, + { + "start": 5868.12, + "end": 5869.13, + "probability": 0.9653 + }, + { + "start": 5870.42, + "end": 5871.64, + "probability": 0.8826 + }, + { + "start": 5872.4, + "end": 5877.24, + "probability": 0.9858 + }, + { + "start": 5877.58, + "end": 5878.02, + "probability": 0.8668 + }, + { + "start": 5878.32, + "end": 5878.98, + "probability": 0.8339 + }, + { + "start": 5879.74, + "end": 5881.42, + "probability": 0.8495 + }, + { + "start": 5882.3, + "end": 5884.46, + "probability": 0.9188 + }, + { + "start": 5885.1, + "end": 5886.78, + "probability": 0.6952 + }, + { + "start": 5887.64, + "end": 5889.5, + "probability": 0.7567 + }, + { + "start": 5890.84, + "end": 5896.8, + "probability": 0.9763 + }, + { + "start": 5897.1, + "end": 5897.34, + "probability": 0.8118 + }, + { + "start": 5898.34, + "end": 5899.76, + "probability": 0.8413 + }, + { + "start": 5900.92, + "end": 5901.73, + "probability": 0.9961 + }, + { + "start": 5903.5, + "end": 5904.96, + "probability": 0.6603 + }, + { + "start": 5905.7, + "end": 5908.26, + "probability": 0.8217 + }, + { + "start": 5909.76, + "end": 5914.54, + "probability": 0.9941 + }, + { + "start": 5915.24, + "end": 5916.96, + "probability": 0.9888 + }, + { + "start": 5918.16, + "end": 5921.32, + "probability": 0.9969 + }, + { + "start": 5922.28, + "end": 5923.36, + "probability": 0.8873 + }, + { + "start": 5924.06, + "end": 5925.22, + "probability": 0.6652 + }, + { + "start": 5925.96, + "end": 5928.8, + "probability": 0.985 + }, + { + "start": 5929.7, + "end": 5930.76, + "probability": 0.7847 + }, + { + "start": 5932.28, + "end": 5936.82, + "probability": 0.8254 + }, + { + "start": 5937.94, + "end": 5940.22, + "probability": 0.8267 + }, + { + "start": 5940.82, + "end": 5942.76, + "probability": 0.9972 + }, + { + "start": 5943.56, + "end": 5944.12, + "probability": 0.8109 + }, + { + "start": 5944.2, + "end": 5947.85, + "probability": 0.972 + }, + { + "start": 5949.84, + "end": 5951.52, + "probability": 0.9341 + }, + { + "start": 5952.64, + "end": 5955.52, + "probability": 0.9036 + }, + { + "start": 5956.76, + "end": 5963.14, + "probability": 0.9954 + }, + { + "start": 5963.38, + "end": 5965.16, + "probability": 0.7603 + }, + { + "start": 5965.9, + "end": 5969.22, + "probability": 0.9966 + }, + { + "start": 5969.22, + "end": 5971.94, + "probability": 0.9943 + }, + { + "start": 5972.74, + "end": 5977.0, + "probability": 0.6936 + }, + { + "start": 5977.0, + "end": 5979.44, + "probability": 0.7422 + }, + { + "start": 5979.44, + "end": 5983.4, + "probability": 0.9836 + }, + { + "start": 5983.96, + "end": 5986.44, + "probability": 0.9513 + }, + { + "start": 5986.94, + "end": 5987.97, + "probability": 0.978 + }, + { + "start": 5988.3, + "end": 5990.86, + "probability": 0.9544 + }, + { + "start": 5991.56, + "end": 5994.56, + "probability": 0.9837 + }, + { + "start": 5995.59, + "end": 5998.88, + "probability": 0.9735 + }, + { + "start": 5999.8, + "end": 6003.0, + "probability": 0.6894 + }, + { + "start": 6004.3, + "end": 6005.12, + "probability": 0.6627 + }, + { + "start": 6005.38, + "end": 6008.42, + "probability": 0.7519 + }, + { + "start": 6008.42, + "end": 6012.04, + "probability": 0.697 + }, + { + "start": 6012.78, + "end": 6013.84, + "probability": 0.7114 + }, + { + "start": 6014.52, + "end": 6017.44, + "probability": 0.9443 + }, + { + "start": 6018.06, + "end": 6022.42, + "probability": 0.7347 + }, + { + "start": 6023.0, + "end": 6025.64, + "probability": 0.9212 + }, + { + "start": 6026.58, + "end": 6030.1, + "probability": 0.9876 + }, + { + "start": 6030.15, + "end": 6033.4, + "probability": 0.9985 + }, + { + "start": 6034.02, + "end": 6035.94, + "probability": 0.8424 + }, + { + "start": 6036.5, + "end": 6039.56, + "probability": 0.9532 + }, + { + "start": 6040.44, + "end": 6042.08, + "probability": 0.5965 + }, + { + "start": 6042.14, + "end": 6047.16, + "probability": 0.967 + }, + { + "start": 6047.24, + "end": 6047.64, + "probability": 0.9175 + }, + { + "start": 6048.24, + "end": 6053.26, + "probability": 0.9946 + }, + { + "start": 6053.8, + "end": 6054.88, + "probability": 0.9976 + }, + { + "start": 6056.32, + "end": 6059.14, + "probability": 0.9972 + }, + { + "start": 6059.66, + "end": 6060.88, + "probability": 0.7797 + }, + { + "start": 6061.6, + "end": 6068.84, + "probability": 0.9952 + }, + { + "start": 6069.46, + "end": 6071.48, + "probability": 0.9561 + }, + { + "start": 6071.64, + "end": 6072.8, + "probability": 0.6696 + }, + { + "start": 6073.66, + "end": 6074.64, + "probability": 0.9915 + }, + { + "start": 6075.26, + "end": 6078.2, + "probability": 0.7377 + }, + { + "start": 6078.78, + "end": 6079.48, + "probability": 0.7184 + }, + { + "start": 6079.92, + "end": 6080.56, + "probability": 0.6378 + }, + { + "start": 6081.06, + "end": 6081.6, + "probability": 0.921 + }, + { + "start": 6081.68, + "end": 6082.64, + "probability": 0.8505 + }, + { + "start": 6082.64, + "end": 6086.64, + "probability": 0.8268 + }, + { + "start": 6087.04, + "end": 6089.58, + "probability": 0.8385 + }, + { + "start": 6090.14, + "end": 6093.66, + "probability": 0.8818 + }, + { + "start": 6094.32, + "end": 6095.48, + "probability": 0.8624 + }, + { + "start": 6096.28, + "end": 6100.44, + "probability": 0.8865 + }, + { + "start": 6100.5, + "end": 6103.56, + "probability": 0.769 + }, + { + "start": 6104.18, + "end": 6107.08, + "probability": 0.4773 + }, + { + "start": 6107.52, + "end": 6109.12, + "probability": 0.759 + }, + { + "start": 6109.7, + "end": 6111.2, + "probability": 0.9946 + }, + { + "start": 6111.3, + "end": 6112.02, + "probability": 0.8277 + }, + { + "start": 6112.06, + "end": 6112.78, + "probability": 0.8747 + }, + { + "start": 6113.04, + "end": 6116.72, + "probability": 0.9714 + }, + { + "start": 6117.44, + "end": 6119.52, + "probability": 0.744 + }, + { + "start": 6119.76, + "end": 6122.72, + "probability": 0.9847 + }, + { + "start": 6125.02, + "end": 6130.32, + "probability": 0.7117 + }, + { + "start": 6130.4, + "end": 6131.16, + "probability": 0.7623 + }, + { + "start": 6131.48, + "end": 6134.1, + "probability": 0.9016 + }, + { + "start": 6134.1, + "end": 6137.92, + "probability": 0.9807 + }, + { + "start": 6138.36, + "end": 6138.76, + "probability": 0.6648 + }, + { + "start": 6138.82, + "end": 6139.44, + "probability": 0.7923 + }, + { + "start": 6139.52, + "end": 6142.36, + "probability": 0.9917 + }, + { + "start": 6143.52, + "end": 6144.38, + "probability": 0.7217 + }, + { + "start": 6145.44, + "end": 6147.07, + "probability": 0.8144 + }, + { + "start": 6147.86, + "end": 6150.3, + "probability": 0.6807 + }, + { + "start": 6150.94, + "end": 6152.0, + "probability": 0.682 + }, + { + "start": 6152.8, + "end": 6154.8, + "probability": 0.7439 + }, + { + "start": 6155.92, + "end": 6156.92, + "probability": 0.7327 + }, + { + "start": 6157.68, + "end": 6160.88, + "probability": 0.995 + }, + { + "start": 6163.0, + "end": 6165.28, + "probability": 0.9371 + }, + { + "start": 6165.68, + "end": 6168.12, + "probability": 0.9744 + }, + { + "start": 6169.04, + "end": 6169.95, + "probability": 0.9971 + }, + { + "start": 6170.88, + "end": 6172.14, + "probability": 0.8448 + }, + { + "start": 6173.14, + "end": 6176.5, + "probability": 0.9104 + }, + { + "start": 6177.52, + "end": 6177.84, + "probability": 0.2181 + }, + { + "start": 6179.66, + "end": 6183.14, + "probability": 0.9529 + }, + { + "start": 6184.12, + "end": 6184.54, + "probability": 0.9248 + }, + { + "start": 6185.64, + "end": 6187.96, + "probability": 0.9895 + }, + { + "start": 6188.5, + "end": 6191.6, + "probability": 0.9845 + }, + { + "start": 6193.02, + "end": 6196.34, + "probability": 0.9711 + }, + { + "start": 6197.56, + "end": 6199.84, + "probability": 0.8546 + }, + { + "start": 6200.54, + "end": 6204.1, + "probability": 0.9896 + }, + { + "start": 6204.1, + "end": 6208.18, + "probability": 0.9902 + }, + { + "start": 6209.52, + "end": 6212.74, + "probability": 0.9891 + }, + { + "start": 6212.74, + "end": 6216.46, + "probability": 0.9775 + }, + { + "start": 6216.72, + "end": 6217.6, + "probability": 0.9463 + }, + { + "start": 6218.14, + "end": 6219.2, + "probability": 0.9972 + }, + { + "start": 6219.92, + "end": 6222.98, + "probability": 0.9561 + }, + { + "start": 6223.92, + "end": 6224.4, + "probability": 0.5285 + }, + { + "start": 6224.62, + "end": 6225.22, + "probability": 0.4593 + }, + { + "start": 6225.34, + "end": 6227.72, + "probability": 0.9575 + }, + { + "start": 6228.5, + "end": 6229.44, + "probability": 0.8095 + }, + { + "start": 6231.56, + "end": 6235.48, + "probability": 0.8929 + }, + { + "start": 6235.48, + "end": 6239.72, + "probability": 0.9944 + }, + { + "start": 6240.78, + "end": 6244.19, + "probability": 0.9655 + }, + { + "start": 6245.2, + "end": 6245.78, + "probability": 0.5724 + }, + { + "start": 6247.4, + "end": 6249.6, + "probability": 0.9741 + }, + { + "start": 6250.5, + "end": 6251.84, + "probability": 0.9854 + }, + { + "start": 6252.64, + "end": 6255.06, + "probability": 0.9849 + }, + { + "start": 6256.6, + "end": 6257.5, + "probability": 0.9793 + }, + { + "start": 6257.64, + "end": 6258.78, + "probability": 0.9939 + }, + { + "start": 6258.94, + "end": 6264.6, + "probability": 0.9668 + }, + { + "start": 6264.6, + "end": 6270.44, + "probability": 0.9304 + }, + { + "start": 6270.44, + "end": 6275.22, + "probability": 0.9969 + }, + { + "start": 6276.12, + "end": 6278.76, + "probability": 0.9885 + }, + { + "start": 6279.4, + "end": 6281.7, + "probability": 0.9045 + }, + { + "start": 6282.24, + "end": 6283.72, + "probability": 0.8205 + }, + { + "start": 6284.98, + "end": 6287.14, + "probability": 0.9203 + }, + { + "start": 6287.62, + "end": 6291.8, + "probability": 0.936 + }, + { + "start": 6292.42, + "end": 6296.58, + "probability": 0.9774 + }, + { + "start": 6297.8, + "end": 6298.06, + "probability": 0.6207 + }, + { + "start": 6299.26, + "end": 6299.94, + "probability": 0.8949 + }, + { + "start": 6300.48, + "end": 6301.48, + "probability": 0.69 + }, + { + "start": 6301.52, + "end": 6302.24, + "probability": 0.8781 + }, + { + "start": 6302.68, + "end": 6310.0, + "probability": 0.943 + }, + { + "start": 6310.74, + "end": 6312.84, + "probability": 0.9525 + }, + { + "start": 6313.48, + "end": 6318.82, + "probability": 0.9498 + }, + { + "start": 6319.34, + "end": 6321.46, + "probability": 0.5896 + }, + { + "start": 6321.98, + "end": 6323.54, + "probability": 0.6756 + }, + { + "start": 6323.7, + "end": 6324.58, + "probability": 0.8571 + }, + { + "start": 6325.06, + "end": 6326.32, + "probability": 0.9946 + }, + { + "start": 6326.88, + "end": 6327.62, + "probability": 0.9786 + }, + { + "start": 6328.28, + "end": 6328.96, + "probability": 0.9665 + }, + { + "start": 6329.46, + "end": 6329.9, + "probability": 0.5599 + }, + { + "start": 6330.52, + "end": 6330.8, + "probability": 0.7407 + }, + { + "start": 6331.9, + "end": 6333.24, + "probability": 0.8701 + }, + { + "start": 6333.96, + "end": 6335.84, + "probability": 0.9982 + }, + { + "start": 6336.56, + "end": 6338.0, + "probability": 0.979 + }, + { + "start": 6338.98, + "end": 6339.68, + "probability": 0.7154 + }, + { + "start": 6340.8, + "end": 6341.74, + "probability": 0.9922 + }, + { + "start": 6342.0, + "end": 6344.22, + "probability": 0.9917 + }, + { + "start": 6344.42, + "end": 6348.06, + "probability": 0.9885 + }, + { + "start": 6348.56, + "end": 6353.88, + "probability": 0.9937 + }, + { + "start": 6354.84, + "end": 6356.2, + "probability": 0.8077 + }, + { + "start": 6356.32, + "end": 6357.94, + "probability": 0.4414 + }, + { + "start": 6358.06, + "end": 6358.2, + "probability": 0.7235 + }, + { + "start": 6358.26, + "end": 6358.3, + "probability": 0.5949 + }, + { + "start": 6358.32, + "end": 6358.76, + "probability": 0.6125 + }, + { + "start": 6359.38, + "end": 6361.56, + "probability": 0.9481 + }, + { + "start": 6362.3, + "end": 6362.5, + "probability": 0.7073 + }, + { + "start": 6363.14, + "end": 6364.92, + "probability": 0.9808 + }, + { + "start": 6365.08, + "end": 6368.38, + "probability": 0.9445 + }, + { + "start": 6369.66, + "end": 6370.1, + "probability": 0.1608 + }, + { + "start": 6386.49, + "end": 6388.92, + "probability": 0.7721 + }, + { + "start": 6390.14, + "end": 6393.24, + "probability": 0.8607 + }, + { + "start": 6394.12, + "end": 6394.72, + "probability": 0.7264 + }, + { + "start": 6395.3, + "end": 6398.38, + "probability": 0.6966 + }, + { + "start": 6398.56, + "end": 6400.94, + "probability": 0.9922 + }, + { + "start": 6406.48, + "end": 6406.72, + "probability": 0.0369 + }, + { + "start": 6406.72, + "end": 6406.72, + "probability": 0.108 + }, + { + "start": 6406.72, + "end": 6406.72, + "probability": 0.206 + }, + { + "start": 6406.72, + "end": 6406.72, + "probability": 0.0221 + }, + { + "start": 6406.72, + "end": 6407.38, + "probability": 0.0732 + }, + { + "start": 6408.88, + "end": 6411.64, + "probability": 0.731 + }, + { + "start": 6412.84, + "end": 6413.38, + "probability": 0.1907 + }, + { + "start": 6414.58, + "end": 6416.04, + "probability": 0.6467 + }, + { + "start": 6417.22, + "end": 6418.78, + "probability": 0.6725 + }, + { + "start": 6419.7, + "end": 6421.72, + "probability": 0.8834 + }, + { + "start": 6423.84, + "end": 6424.74, + "probability": 0.4273 + }, + { + "start": 6425.44, + "end": 6426.38, + "probability": 0.7471 + }, + { + "start": 6427.74, + "end": 6429.77, + "probability": 0.9478 + }, + { + "start": 6431.22, + "end": 6432.86, + "probability": 0.9688 + }, + { + "start": 6433.78, + "end": 6435.84, + "probability": 0.9844 + }, + { + "start": 6436.92, + "end": 6439.42, + "probability": 0.8652 + }, + { + "start": 6439.96, + "end": 6440.97, + "probability": 0.6971 + }, + { + "start": 6441.68, + "end": 6444.24, + "probability": 0.837 + }, + { + "start": 6444.86, + "end": 6446.3, + "probability": 0.954 + }, + { + "start": 6446.86, + "end": 6448.32, + "probability": 0.8745 + }, + { + "start": 6449.42, + "end": 6455.02, + "probability": 0.9551 + }, + { + "start": 6455.86, + "end": 6456.6, + "probability": 0.7524 + }, + { + "start": 6457.88, + "end": 6458.68, + "probability": 0.6244 + }, + { + "start": 6459.26, + "end": 6460.86, + "probability": 0.724 + }, + { + "start": 6461.42, + "end": 6464.33, + "probability": 0.9393 + }, + { + "start": 6464.9, + "end": 6467.52, + "probability": 0.9979 + }, + { + "start": 6468.28, + "end": 6471.68, + "probability": 0.7765 + }, + { + "start": 6472.6, + "end": 6474.32, + "probability": 0.8665 + }, + { + "start": 6474.92, + "end": 6475.64, + "probability": 0.8325 + }, + { + "start": 6476.76, + "end": 6481.16, + "probability": 0.8531 + }, + { + "start": 6481.9, + "end": 6482.28, + "probability": 0.4945 + }, + { + "start": 6482.46, + "end": 6482.84, + "probability": 0.741 + }, + { + "start": 6482.9, + "end": 6486.32, + "probability": 0.8957 + }, + { + "start": 6486.38, + "end": 6489.22, + "probability": 0.9657 + }, + { + "start": 6489.38, + "end": 6490.04, + "probability": 0.7896 + }, + { + "start": 6490.8, + "end": 6491.04, + "probability": 0.6661 + }, + { + "start": 6491.16, + "end": 6491.86, + "probability": 0.633 + }, + { + "start": 6492.32, + "end": 6496.0, + "probability": 0.9922 + }, + { + "start": 6497.36, + "end": 6502.62, + "probability": 0.7926 + }, + { + "start": 6503.28, + "end": 6504.1, + "probability": 0.8496 + }, + { + "start": 6504.7, + "end": 6505.66, + "probability": 0.8973 + }, + { + "start": 6506.76, + "end": 6511.1, + "probability": 0.9937 + }, + { + "start": 6511.1, + "end": 6515.7, + "probability": 0.9657 + }, + { + "start": 6516.22, + "end": 6518.42, + "probability": 0.959 + }, + { + "start": 6519.04, + "end": 6519.86, + "probability": 0.7417 + }, + { + "start": 6520.06, + "end": 6520.66, + "probability": 0.9497 + }, + { + "start": 6521.8, + "end": 6525.36, + "probability": 0.8926 + }, + { + "start": 6525.78, + "end": 6526.4, + "probability": 0.8128 + }, + { + "start": 6526.62, + "end": 6527.0, + "probability": 0.9265 + }, + { + "start": 6527.06, + "end": 6527.62, + "probability": 0.7641 + }, + { + "start": 6528.18, + "end": 6529.04, + "probability": 0.5263 + }, + { + "start": 6529.56, + "end": 6530.7, + "probability": 0.7804 + }, + { + "start": 6531.24, + "end": 6531.78, + "probability": 0.7293 + }, + { + "start": 6532.3, + "end": 6534.08, + "probability": 0.7015 + }, + { + "start": 6535.08, + "end": 6539.96, + "probability": 0.94 + }, + { + "start": 6541.06, + "end": 6544.64, + "probability": 0.9188 + }, + { + "start": 6545.34, + "end": 6546.16, + "probability": 0.9102 + }, + { + "start": 6546.78, + "end": 6550.0, + "probability": 0.9062 + }, + { + "start": 6550.76, + "end": 6557.26, + "probability": 0.9385 + }, + { + "start": 6557.76, + "end": 6560.4, + "probability": 0.8163 + }, + { + "start": 6561.34, + "end": 6564.02, + "probability": 0.7032 + }, + { + "start": 6565.34, + "end": 6569.72, + "probability": 0.9552 + }, + { + "start": 6569.72, + "end": 6574.12, + "probability": 0.9995 + }, + { + "start": 6575.28, + "end": 6577.08, + "probability": 0.9279 + }, + { + "start": 6577.6, + "end": 6579.92, + "probability": 0.999 + }, + { + "start": 6580.54, + "end": 6582.2, + "probability": 0.8952 + }, + { + "start": 6583.18, + "end": 6586.69, + "probability": 0.9471 + }, + { + "start": 6587.5, + "end": 6589.06, + "probability": 0.9004 + }, + { + "start": 6590.04, + "end": 6591.86, + "probability": 0.6316 + }, + { + "start": 6592.84, + "end": 6594.46, + "probability": 0.9652 + }, + { + "start": 6595.12, + "end": 6599.94, + "probability": 0.9716 + }, + { + "start": 6600.14, + "end": 6602.36, + "probability": 0.5875 + }, + { + "start": 6603.52, + "end": 6605.96, + "probability": 0.8787 + }, + { + "start": 6606.72, + "end": 6608.78, + "probability": 0.9963 + }, + { + "start": 6609.54, + "end": 6612.24, + "probability": 0.9839 + }, + { + "start": 6613.04, + "end": 6613.6, + "probability": 0.7744 + }, + { + "start": 6614.38, + "end": 6615.46, + "probability": 0.5978 + }, + { + "start": 6616.1, + "end": 6618.24, + "probability": 0.9132 + }, + { + "start": 6619.18, + "end": 6622.82, + "probability": 0.9654 + }, + { + "start": 6624.32, + "end": 6629.68, + "probability": 0.9899 + }, + { + "start": 6630.06, + "end": 6631.4, + "probability": 0.5239 + }, + { + "start": 6632.46, + "end": 6635.46, + "probability": 0.8608 + }, + { + "start": 6636.32, + "end": 6639.54, + "probability": 0.8789 + }, + { + "start": 6639.66, + "end": 6641.84, + "probability": 0.9199 + }, + { + "start": 6642.88, + "end": 6644.76, + "probability": 0.8566 + }, + { + "start": 6645.98, + "end": 6647.12, + "probability": 0.6854 + }, + { + "start": 6647.78, + "end": 6649.04, + "probability": 0.833 + }, + { + "start": 6649.96, + "end": 6650.92, + "probability": 0.758 + }, + { + "start": 6651.54, + "end": 6652.72, + "probability": 0.7667 + }, + { + "start": 6653.4, + "end": 6654.12, + "probability": 0.4798 + }, + { + "start": 6654.6, + "end": 6657.38, + "probability": 0.9891 + }, + { + "start": 6658.48, + "end": 6660.64, + "probability": 0.9189 + }, + { + "start": 6662.64, + "end": 6666.74, + "probability": 0.7862 + }, + { + "start": 6667.36, + "end": 6671.5, + "probability": 0.7679 + }, + { + "start": 6672.56, + "end": 6675.26, + "probability": 0.7207 + }, + { + "start": 6676.26, + "end": 6680.7, + "probability": 0.9819 + }, + { + "start": 6681.38, + "end": 6682.58, + "probability": 0.9952 + }, + { + "start": 6683.22, + "end": 6685.64, + "probability": 0.9899 + }, + { + "start": 6685.92, + "end": 6687.26, + "probability": 0.9645 + }, + { + "start": 6688.36, + "end": 6690.34, + "probability": 0.9927 + }, + { + "start": 6690.9, + "end": 6692.26, + "probability": 0.9819 + }, + { + "start": 6692.88, + "end": 6694.16, + "probability": 0.9979 + }, + { + "start": 6694.72, + "end": 6697.38, + "probability": 0.8914 + }, + { + "start": 6698.5, + "end": 6700.58, + "probability": 0.9665 + }, + { + "start": 6701.46, + "end": 6701.76, + "probability": 0.7535 + }, + { + "start": 6703.66, + "end": 6705.26, + "probability": 0.8417 + }, + { + "start": 6705.38, + "end": 6707.06, + "probability": 0.8451 + }, + { + "start": 6707.76, + "end": 6710.34, + "probability": 0.8023 + }, + { + "start": 6711.1, + "end": 6713.22, + "probability": 0.4887 + }, + { + "start": 6714.18, + "end": 6715.92, + "probability": 0.9728 + }, + { + "start": 6716.3, + "end": 6717.03, + "probability": 0.9234 + }, + { + "start": 6718.08, + "end": 6721.86, + "probability": 0.8428 + }, + { + "start": 6722.06, + "end": 6722.44, + "probability": 0.8027 + }, + { + "start": 6722.86, + "end": 6723.26, + "probability": 0.531 + }, + { + "start": 6725.06, + "end": 6726.44, + "probability": 0.8855 + }, + { + "start": 6727.58, + "end": 6731.02, + "probability": 0.945 + }, + { + "start": 6731.2, + "end": 6734.16, + "probability": 0.9717 + }, + { + "start": 6734.9, + "end": 6737.46, + "probability": 0.7134 + }, + { + "start": 6738.2, + "end": 6739.86, + "probability": 0.8069 + }, + { + "start": 6740.74, + "end": 6743.4, + "probability": 0.4648 + }, + { + "start": 6744.48, + "end": 6747.32, + "probability": 0.9422 + }, + { + "start": 6748.02, + "end": 6750.76, + "probability": 0.8177 + }, + { + "start": 6751.18, + "end": 6752.74, + "probability": 0.9048 + }, + { + "start": 6753.74, + "end": 6755.6, + "probability": 0.9821 + }, + { + "start": 6756.74, + "end": 6762.94, + "probability": 0.9677 + }, + { + "start": 6763.52, + "end": 6764.02, + "probability": 0.8914 + }, + { + "start": 6764.82, + "end": 6765.52, + "probability": 0.9661 + }, + { + "start": 6766.66, + "end": 6766.9, + "probability": 0.9552 + }, + { + "start": 6767.76, + "end": 6768.8, + "probability": 0.8985 + }, + { + "start": 6768.92, + "end": 6769.28, + "probability": 0.7575 + }, + { + "start": 6769.46, + "end": 6770.38, + "probability": 0.6666 + }, + { + "start": 6770.9, + "end": 6773.02, + "probability": 0.3516 + }, + { + "start": 6773.56, + "end": 6779.04, + "probability": 0.8704 + }, + { + "start": 6800.02, + "end": 6801.18, + "probability": 0.1971 + }, + { + "start": 6802.72, + "end": 6803.88, + "probability": 0.6642 + }, + { + "start": 6803.94, + "end": 6804.9, + "probability": 0.7596 + }, + { + "start": 6805.6, + "end": 6806.88, + "probability": 0.9785 + }, + { + "start": 6808.8, + "end": 6810.96, + "probability": 0.9904 + }, + { + "start": 6811.66, + "end": 6812.06, + "probability": 0.995 + }, + { + "start": 6813.0, + "end": 6817.02, + "probability": 0.8772 + }, + { + "start": 6817.02, + "end": 6820.1, + "probability": 0.7906 + }, + { + "start": 6821.4, + "end": 6825.34, + "probability": 0.9663 + }, + { + "start": 6826.82, + "end": 6829.64, + "probability": 0.9946 + }, + { + "start": 6830.64, + "end": 6832.84, + "probability": 0.9946 + }, + { + "start": 6833.92, + "end": 6839.44, + "probability": 0.9984 + }, + { + "start": 6841.48, + "end": 6843.9, + "probability": 0.9246 + }, + { + "start": 6844.8, + "end": 6849.35, + "probability": 0.9966 + }, + { + "start": 6850.56, + "end": 6851.38, + "probability": 0.9829 + }, + { + "start": 6851.94, + "end": 6854.2, + "probability": 0.994 + }, + { + "start": 6854.82, + "end": 6856.58, + "probability": 0.9006 + }, + { + "start": 6857.28, + "end": 6859.26, + "probability": 0.9992 + }, + { + "start": 6859.86, + "end": 6861.24, + "probability": 0.9688 + }, + { + "start": 6861.88, + "end": 6863.24, + "probability": 0.8312 + }, + { + "start": 6864.08, + "end": 6866.9, + "probability": 0.9951 + }, + { + "start": 6868.14, + "end": 6872.12, + "probability": 0.9731 + }, + { + "start": 6872.78, + "end": 6876.92, + "probability": 0.9497 + }, + { + "start": 6877.58, + "end": 6879.98, + "probability": 0.9832 + }, + { + "start": 6880.44, + "end": 6882.68, + "probability": 0.6984 + }, + { + "start": 6883.98, + "end": 6886.06, + "probability": 0.5348 + }, + { + "start": 6886.86, + "end": 6891.54, + "probability": 0.8559 + }, + { + "start": 6892.4, + "end": 6895.02, + "probability": 0.3914 + }, + { + "start": 6895.88, + "end": 6900.92, + "probability": 0.9921 + }, + { + "start": 6900.92, + "end": 6905.42, + "probability": 0.9858 + }, + { + "start": 6906.46, + "end": 6907.32, + "probability": 0.8463 + }, + { + "start": 6907.9, + "end": 6912.04, + "probability": 0.9774 + }, + { + "start": 6912.96, + "end": 6916.72, + "probability": 0.9954 + }, + { + "start": 6916.72, + "end": 6922.16, + "probability": 0.998 + }, + { + "start": 6922.7, + "end": 6924.26, + "probability": 0.8248 + }, + { + "start": 6925.24, + "end": 6927.22, + "probability": 0.8821 + }, + { + "start": 6928.1, + "end": 6930.86, + "probability": 0.9455 + }, + { + "start": 6931.62, + "end": 6934.94, + "probability": 0.8741 + }, + { + "start": 6935.84, + "end": 6938.78, + "probability": 0.9865 + }, + { + "start": 6938.78, + "end": 6942.98, + "probability": 0.9675 + }, + { + "start": 6944.58, + "end": 6948.14, + "probability": 0.9878 + }, + { + "start": 6949.16, + "end": 6951.12, + "probability": 0.9277 + }, + { + "start": 6951.8, + "end": 6953.7, + "probability": 0.9738 + }, + { + "start": 6954.4, + "end": 6955.6, + "probability": 0.9733 + }, + { + "start": 6956.44, + "end": 6958.3, + "probability": 0.9688 + }, + { + "start": 6958.88, + "end": 6961.0, + "probability": 0.9815 + }, + { + "start": 6961.6, + "end": 6965.14, + "probability": 0.9504 + }, + { + "start": 6965.86, + "end": 6970.94, + "probability": 0.9933 + }, + { + "start": 6970.94, + "end": 6976.28, + "probability": 0.9943 + }, + { + "start": 6976.92, + "end": 6977.92, + "probability": 0.9258 + }, + { + "start": 6979.32, + "end": 6980.4, + "probability": 0.6685 + }, + { + "start": 6981.28, + "end": 6984.48, + "probability": 0.9451 + }, + { + "start": 6985.64, + "end": 6987.42, + "probability": 0.7974 + }, + { + "start": 6988.3, + "end": 6993.68, + "probability": 0.9679 + }, + { + "start": 6994.24, + "end": 6996.62, + "probability": 0.957 + }, + { + "start": 6997.14, + "end": 6998.64, + "probability": 0.7774 + }, + { + "start": 6999.68, + "end": 7000.62, + "probability": 0.987 + }, + { + "start": 7001.22, + "end": 7003.2, + "probability": 0.994 + }, + { + "start": 7003.76, + "end": 7006.06, + "probability": 0.9816 + }, + { + "start": 7006.68, + "end": 7009.64, + "probability": 0.9933 + }, + { + "start": 7011.1, + "end": 7012.82, + "probability": 0.9161 + }, + { + "start": 7013.86, + "end": 7017.26, + "probability": 0.9853 + }, + { + "start": 7017.88, + "end": 7020.02, + "probability": 0.9791 + }, + { + "start": 7021.08, + "end": 7026.26, + "probability": 0.9897 + }, + { + "start": 7027.34, + "end": 7028.78, + "probability": 0.9867 + }, + { + "start": 7029.66, + "end": 7032.9, + "probability": 0.9918 + }, + { + "start": 7033.64, + "end": 7034.46, + "probability": 0.9824 + }, + { + "start": 7035.28, + "end": 7037.44, + "probability": 0.8761 + }, + { + "start": 7038.34, + "end": 7041.52, + "probability": 0.9927 + }, + { + "start": 7042.04, + "end": 7046.24, + "probability": 0.9481 + }, + { + "start": 7046.8, + "end": 7048.14, + "probability": 0.911 + }, + { + "start": 7048.72, + "end": 7053.28, + "probability": 0.9877 + }, + { + "start": 7054.24, + "end": 7056.04, + "probability": 0.5706 + }, + { + "start": 7056.64, + "end": 7057.28, + "probability": 0.9821 + }, + { + "start": 7058.42, + "end": 7062.06, + "probability": 0.9243 + }, + { + "start": 7062.92, + "end": 7064.42, + "probability": 0.9211 + }, + { + "start": 7064.94, + "end": 7068.44, + "probability": 0.9789 + }, + { + "start": 7069.0, + "end": 7072.58, + "probability": 0.8219 + }, + { + "start": 7073.78, + "end": 7075.48, + "probability": 0.9159 + }, + { + "start": 7076.34, + "end": 7077.66, + "probability": 0.976 + }, + { + "start": 7078.22, + "end": 7079.56, + "probability": 0.8994 + }, + { + "start": 7080.38, + "end": 7085.1, + "probability": 0.9739 + }, + { + "start": 7086.08, + "end": 7086.64, + "probability": 0.8795 + }, + { + "start": 7087.22, + "end": 7092.14, + "probability": 0.8532 + }, + { + "start": 7092.14, + "end": 7096.34, + "probability": 0.925 + }, + { + "start": 7097.3, + "end": 7099.38, + "probability": 0.9974 + }, + { + "start": 7099.92, + "end": 7100.48, + "probability": 0.995 + }, + { + "start": 7101.58, + "end": 7107.56, + "probability": 0.9935 + }, + { + "start": 7107.56, + "end": 7110.62, + "probability": 0.9782 + }, + { + "start": 7111.9, + "end": 7116.82, + "probability": 0.993 + }, + { + "start": 7118.24, + "end": 7121.16, + "probability": 0.9956 + }, + { + "start": 7122.32, + "end": 7125.32, + "probability": 0.9961 + }, + { + "start": 7126.14, + "end": 7127.66, + "probability": 0.9939 + }, + { + "start": 7128.22, + "end": 7131.5, + "probability": 0.9971 + }, + { + "start": 7132.24, + "end": 7135.84, + "probability": 0.9983 + }, + { + "start": 7137.12, + "end": 7138.5, + "probability": 0.967 + }, + { + "start": 7139.02, + "end": 7140.92, + "probability": 0.9698 + }, + { + "start": 7141.76, + "end": 7144.86, + "probability": 0.9972 + }, + { + "start": 7144.86, + "end": 7150.24, + "probability": 0.9951 + }, + { + "start": 7151.26, + "end": 7154.54, + "probability": 0.9976 + }, + { + "start": 7155.06, + "end": 7157.4, + "probability": 0.9935 + }, + { + "start": 7158.04, + "end": 7165.04, + "probability": 0.9917 + }, + { + "start": 7166.26, + "end": 7171.02, + "probability": 0.9984 + }, + { + "start": 7171.7, + "end": 7173.04, + "probability": 0.9939 + }, + { + "start": 7173.34, + "end": 7176.56, + "probability": 0.9802 + }, + { + "start": 7177.4, + "end": 7179.98, + "probability": 0.953 + }, + { + "start": 7180.5, + "end": 7185.04, + "probability": 0.9775 + }, + { + "start": 7185.88, + "end": 7187.56, + "probability": 0.902 + }, + { + "start": 7188.24, + "end": 7189.0, + "probability": 0.9442 + }, + { + "start": 7189.12, + "end": 7190.76, + "probability": 0.9829 + }, + { + "start": 7191.24, + "end": 7192.38, + "probability": 0.8486 + }, + { + "start": 7192.72, + "end": 7193.78, + "probability": 0.8284 + }, + { + "start": 7194.18, + "end": 7195.96, + "probability": 0.8298 + }, + { + "start": 7197.08, + "end": 7202.48, + "probability": 0.9372 + }, + { + "start": 7203.14, + "end": 7207.78, + "probability": 0.9939 + }, + { + "start": 7208.38, + "end": 7210.24, + "probability": 0.9744 + }, + { + "start": 7210.84, + "end": 7214.58, + "probability": 0.8924 + }, + { + "start": 7215.1, + "end": 7216.28, + "probability": 0.8103 + }, + { + "start": 7216.88, + "end": 7219.74, + "probability": 0.996 + }, + { + "start": 7220.22, + "end": 7221.34, + "probability": 0.5601 + }, + { + "start": 7221.44, + "end": 7223.56, + "probability": 0.9881 + }, + { + "start": 7224.54, + "end": 7225.18, + "probability": 0.9812 + }, + { + "start": 7225.84, + "end": 7228.92, + "probability": 0.8501 + }, + { + "start": 7229.74, + "end": 7231.84, + "probability": 0.9946 + }, + { + "start": 7232.44, + "end": 7233.82, + "probability": 0.8404 + }, + { + "start": 7234.34, + "end": 7235.0, + "probability": 0.9915 + }, + { + "start": 7236.06, + "end": 7242.78, + "probability": 0.9924 + }, + { + "start": 7243.42, + "end": 7246.54, + "probability": 0.9984 + }, + { + "start": 7247.04, + "end": 7249.42, + "probability": 0.9866 + }, + { + "start": 7249.94, + "end": 7252.58, + "probability": 0.9954 + }, + { + "start": 7253.54, + "end": 7256.6, + "probability": 0.9956 + }, + { + "start": 7257.18, + "end": 7263.68, + "probability": 0.9997 + }, + { + "start": 7264.92, + "end": 7265.12, + "probability": 0.9335 + }, + { + "start": 7265.8, + "end": 7270.48, + "probability": 0.9812 + }, + { + "start": 7270.48, + "end": 7275.9, + "probability": 0.9917 + }, + { + "start": 7276.74, + "end": 7283.22, + "probability": 0.9985 + }, + { + "start": 7283.92, + "end": 7289.98, + "probability": 0.9969 + }, + { + "start": 7291.3, + "end": 7295.46, + "probability": 0.8124 + }, + { + "start": 7296.04, + "end": 7298.3, + "probability": 0.9971 + }, + { + "start": 7299.08, + "end": 7300.8, + "probability": 0.9996 + }, + { + "start": 7301.42, + "end": 7306.06, + "probability": 0.9968 + }, + { + "start": 7306.78, + "end": 7311.76, + "probability": 0.9576 + }, + { + "start": 7312.66, + "end": 7318.02, + "probability": 0.9985 + }, + { + "start": 7318.94, + "end": 7319.72, + "probability": 0.7095 + }, + { + "start": 7320.24, + "end": 7323.18, + "probability": 0.9619 + }, + { + "start": 7323.74, + "end": 7328.24, + "probability": 0.974 + }, + { + "start": 7329.5, + "end": 7333.54, + "probability": 0.9969 + }, + { + "start": 7333.54, + "end": 7338.34, + "probability": 0.9952 + }, + { + "start": 7339.36, + "end": 7339.94, + "probability": 0.7039 + }, + { + "start": 7340.16, + "end": 7343.16, + "probability": 0.9868 + }, + { + "start": 7343.42, + "end": 7346.84, + "probability": 0.9633 + }, + { + "start": 7347.04, + "end": 7353.08, + "probability": 0.9678 + }, + { + "start": 7354.04, + "end": 7355.32, + "probability": 0.9989 + }, + { + "start": 7355.84, + "end": 7358.48, + "probability": 0.9258 + }, + { + "start": 7358.48, + "end": 7362.44, + "probability": 0.9907 + }, + { + "start": 7363.02, + "end": 7365.84, + "probability": 0.9681 + }, + { + "start": 7366.58, + "end": 7370.26, + "probability": 0.9764 + }, + { + "start": 7370.26, + "end": 7373.2, + "probability": 0.9924 + }, + { + "start": 7374.1, + "end": 7378.2, + "probability": 0.9608 + }, + { + "start": 7378.74, + "end": 7380.7, + "probability": 0.8116 + }, + { + "start": 7381.46, + "end": 7383.08, + "probability": 0.9037 + }, + { + "start": 7384.32, + "end": 7385.9, + "probability": 0.9722 + }, + { + "start": 7386.54, + "end": 7387.94, + "probability": 0.6731 + }, + { + "start": 7388.86, + "end": 7390.3, + "probability": 0.8771 + }, + { + "start": 7392.32, + "end": 7395.08, + "probability": 0.9883 + }, + { + "start": 7395.08, + "end": 7399.02, + "probability": 0.9952 + }, + { + "start": 7399.54, + "end": 7404.52, + "probability": 0.9849 + }, + { + "start": 7405.6, + "end": 7406.82, + "probability": 0.5449 + }, + { + "start": 7407.4, + "end": 7409.56, + "probability": 0.7514 + }, + { + "start": 7409.8, + "end": 7412.0, + "probability": 0.9946 + }, + { + "start": 7412.5, + "end": 7416.42, + "probability": 0.8685 + }, + { + "start": 7416.42, + "end": 7419.16, + "probability": 0.993 + }, + { + "start": 7420.2, + "end": 7422.52, + "probability": 0.7478 + }, + { + "start": 7423.1, + "end": 7423.98, + "probability": 0.9464 + }, + { + "start": 7424.7, + "end": 7430.14, + "probability": 0.9959 + }, + { + "start": 7430.78, + "end": 7434.32, + "probability": 0.9982 + }, + { + "start": 7434.32, + "end": 7437.96, + "probability": 0.9697 + }, + { + "start": 7438.92, + "end": 7439.7, + "probability": 0.9551 + }, + { + "start": 7440.92, + "end": 7442.96, + "probability": 0.9961 + }, + { + "start": 7443.58, + "end": 7444.44, + "probability": 0.9905 + }, + { + "start": 7445.22, + "end": 7445.46, + "probability": 0.8375 + }, + { + "start": 7446.22, + "end": 7449.58, + "probability": 0.8991 + }, + { + "start": 7450.14, + "end": 7453.38, + "probability": 0.9982 + }, + { + "start": 7454.4, + "end": 7459.52, + "probability": 0.9877 + }, + { + "start": 7460.22, + "end": 7460.42, + "probability": 0.704 + }, + { + "start": 7461.68, + "end": 7464.12, + "probability": 0.7132 + }, + { + "start": 7464.32, + "end": 7466.64, + "probability": 0.9913 + }, + { + "start": 7466.87, + "end": 7467.94, + "probability": 0.6368 + }, + { + "start": 7468.46, + "end": 7473.88, + "probability": 0.7695 + }, + { + "start": 7474.9, + "end": 7480.68, + "probability": 0.9733 + }, + { + "start": 7483.84, + "end": 7486.32, + "probability": 0.6547 + }, + { + "start": 7486.98, + "end": 7489.94, + "probability": 0.9871 + }, + { + "start": 7490.02, + "end": 7490.76, + "probability": 0.3832 + }, + { + "start": 7491.2, + "end": 7494.08, + "probability": 0.9619 + }, + { + "start": 7494.94, + "end": 7497.34, + "probability": 0.8702 + }, + { + "start": 7504.42, + "end": 7506.7, + "probability": 0.7456 + }, + { + "start": 7507.61, + "end": 7511.52, + "probability": 0.9006 + }, + { + "start": 7511.82, + "end": 7512.26, + "probability": 0.4842 + }, + { + "start": 7512.78, + "end": 7514.02, + "probability": 0.9919 + }, + { + "start": 7516.1, + "end": 7520.06, + "probability": 0.8039 + }, + { + "start": 7520.98, + "end": 7522.34, + "probability": 0.0446 + }, + { + "start": 7522.34, + "end": 7522.58, + "probability": 0.0977 + }, + { + "start": 7522.58, + "end": 7522.58, + "probability": 0.1815 + }, + { + "start": 7522.58, + "end": 7522.58, + "probability": 0.0449 + }, + { + "start": 7523.68, + "end": 7524.54, + "probability": 0.8039 + }, + { + "start": 7525.32, + "end": 7527.5, + "probability": 0.9453 + }, + { + "start": 7528.02, + "end": 7530.6, + "probability": 0.9821 + }, + { + "start": 7544.8, + "end": 7546.98, + "probability": 0.2413 + }, + { + "start": 7546.98, + "end": 7548.94, + "probability": 0.0585 + }, + { + "start": 7549.04, + "end": 7550.9, + "probability": 0.0216 + }, + { + "start": 7552.74, + "end": 7559.82, + "probability": 0.1729 + }, + { + "start": 7559.82, + "end": 7560.34, + "probability": 0.0502 + }, + { + "start": 7560.34, + "end": 7560.88, + "probability": 0.051 + }, + { + "start": 7563.25, + "end": 7563.48, + "probability": 0.0077 + }, + { + "start": 7565.66, + "end": 7567.16, + "probability": 0.1175 + }, + { + "start": 7570.18, + "end": 7573.42, + "probability": 0.0458 + }, + { + "start": 7574.6, + "end": 7575.8, + "probability": 0.0873 + }, + { + "start": 7576.28, + "end": 7585.28, + "probability": 0.0504 + }, + { + "start": 7586.1, + "end": 7588.82, + "probability": 0.0326 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.0, + "end": 7600.0, + "probability": 0.0 + }, + { + "start": 7600.32, + "end": 7602.36, + "probability": 0.3571 + }, + { + "start": 7602.94, + "end": 7603.64, + "probability": 0.2516 + }, + { + "start": 7607.2, + "end": 7608.4, + "probability": 0.058 + }, + { + "start": 7608.4, + "end": 7619.28, + "probability": 0.0351 + }, + { + "start": 7621.56, + "end": 7621.56, + "probability": 0.0063 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.84, + "end": 7735.14, + "probability": 0.495 + }, + { + "start": 7735.14, + "end": 7736.34, + "probability": 0.6192 + }, + { + "start": 7737.74, + "end": 7740.24, + "probability": 0.9694 + }, + { + "start": 7740.28, + "end": 7742.72, + "probability": 0.9946 + }, + { + "start": 7742.78, + "end": 7743.22, + "probability": 0.764 + }, + { + "start": 7744.08, + "end": 7746.82, + "probability": 0.7578 + }, + { + "start": 7747.22, + "end": 7754.06, + "probability": 0.994 + }, + { + "start": 7754.18, + "end": 7756.81, + "probability": 0.9909 + }, + { + "start": 7757.32, + "end": 7758.14, + "probability": 0.9381 + }, + { + "start": 7759.14, + "end": 7760.9, + "probability": 0.9468 + }, + { + "start": 7760.98, + "end": 7761.9, + "probability": 0.9876 + }, + { + "start": 7762.02, + "end": 7765.14, + "probability": 0.998 + }, + { + "start": 7766.36, + "end": 7768.88, + "probability": 0.9937 + }, + { + "start": 7769.06, + "end": 7774.07, + "probability": 0.9443 + }, + { + "start": 7775.78, + "end": 7776.7, + "probability": 0.8614 + }, + { + "start": 7777.25, + "end": 7779.06, + "probability": 0.9342 + }, + { + "start": 7779.1, + "end": 7779.74, + "probability": 0.9056 + }, + { + "start": 7779.9, + "end": 7780.5, + "probability": 0.8598 + }, + { + "start": 7781.58, + "end": 7782.03, + "probability": 0.1629 + }, + { + "start": 7782.74, + "end": 7784.62, + "probability": 0.4908 + }, + { + "start": 7785.44, + "end": 7791.76, + "probability": 0.6717 + }, + { + "start": 7792.2, + "end": 7793.54, + "probability": 0.8796 + }, + { + "start": 7794.16, + "end": 7798.22, + "probability": 0.8776 + }, + { + "start": 7798.96, + "end": 7803.54, + "probability": 0.9535 + }, + { + "start": 7804.12, + "end": 7805.24, + "probability": 0.9497 + }, + { + "start": 7806.0, + "end": 7808.4, + "probability": 0.9504 + }, + { + "start": 7809.04, + "end": 7810.28, + "probability": 0.9431 + }, + { + "start": 7810.52, + "end": 7813.0, + "probability": 0.8016 + }, + { + "start": 7813.62, + "end": 7814.5, + "probability": 0.7344 + }, + { + "start": 7814.98, + "end": 7817.26, + "probability": 0.5042 + }, + { + "start": 7817.72, + "end": 7820.6, + "probability": 0.9731 + }, + { + "start": 7821.06, + "end": 7822.68, + "probability": 0.9128 + }, + { + "start": 7823.08, + "end": 7825.02, + "probability": 0.9921 + }, + { + "start": 7825.54, + "end": 7826.16, + "probability": 0.9213 + }, + { + "start": 7826.34, + "end": 7829.42, + "probability": 0.8783 + }, + { + "start": 7829.64, + "end": 7831.08, + "probability": 0.4728 + }, + { + "start": 7831.16, + "end": 7831.84, + "probability": 0.4888 + }, + { + "start": 7831.92, + "end": 7832.75, + "probability": 0.4871 + }, + { + "start": 7832.92, + "end": 7833.08, + "probability": 0.4565 + }, + { + "start": 7833.16, + "end": 7837.98, + "probability": 0.9406 + }, + { + "start": 7837.98, + "end": 7840.9, + "probability": 0.9971 + }, + { + "start": 7841.16, + "end": 7842.81, + "probability": 0.8647 + }, + { + "start": 7843.32, + "end": 7843.94, + "probability": 0.6762 + }, + { + "start": 7845.16, + "end": 7845.42, + "probability": 0.6952 + }, + { + "start": 7845.42, + "end": 7847.18, + "probability": 0.5518 + }, + { + "start": 7847.54, + "end": 7847.9, + "probability": 0.8955 + }, + { + "start": 7848.18, + "end": 7849.34, + "probability": 0.684 + }, + { + "start": 7849.48, + "end": 7850.62, + "probability": 0.9388 + }, + { + "start": 7851.46, + "end": 7852.88, + "probability": 0.8649 + }, + { + "start": 7853.08, + "end": 7853.26, + "probability": 0.4877 + }, + { + "start": 7853.36, + "end": 7856.02, + "probability": 0.9953 + }, + { + "start": 7856.02, + "end": 7859.94, + "probability": 0.5411 + }, + { + "start": 7860.62, + "end": 7861.98, + "probability": 0.9192 + }, + { + "start": 7862.06, + "end": 7862.64, + "probability": 0.9762 + }, + { + "start": 7862.86, + "end": 7865.14, + "probability": 0.9939 + }, + { + "start": 7865.52, + "end": 7867.82, + "probability": 0.9866 + }, + { + "start": 7867.84, + "end": 7869.48, + "probability": 0.6648 + }, + { + "start": 7869.66, + "end": 7873.5, + "probability": 0.9729 + }, + { + "start": 7873.56, + "end": 7875.68, + "probability": 0.8904 + }, + { + "start": 7875.7, + "end": 7880.02, + "probability": 0.9723 + }, + { + "start": 7881.22, + "end": 7883.34, + "probability": 0.583 + }, + { + "start": 7883.9, + "end": 7885.02, + "probability": 0.8677 + }, + { + "start": 7885.1, + "end": 7890.56, + "probability": 0.8444 + }, + { + "start": 7890.66, + "end": 7890.96, + "probability": 0.8525 + }, + { + "start": 7891.18, + "end": 7893.32, + "probability": 0.9958 + }, + { + "start": 7893.68, + "end": 7898.26, + "probability": 0.9889 + }, + { + "start": 7899.5, + "end": 7904.48, + "probability": 0.9973 + }, + { + "start": 7905.02, + "end": 7907.86, + "probability": 0.8633 + }, + { + "start": 7908.7, + "end": 7911.32, + "probability": 0.8457 + }, + { + "start": 7912.26, + "end": 7914.02, + "probability": 0.0434 + }, + { + "start": 7915.84, + "end": 7918.26, + "probability": 0.9982 + }, + { + "start": 7918.44, + "end": 7920.5, + "probability": 0.993 + }, + { + "start": 7922.93, + "end": 7924.28, + "probability": 0.9761 + }, + { + "start": 7924.48, + "end": 7926.94, + "probability": 0.9018 + }, + { + "start": 7930.94, + "end": 7935.98, + "probability": 0.6901 + }, + { + "start": 7936.06, + "end": 7940.18, + "probability": 0.6629 + }, + { + "start": 7940.38, + "end": 7942.34, + "probability": 0.5754 + }, + { + "start": 7942.7, + "end": 7943.84, + "probability": 0.967 + }, + { + "start": 7944.0, + "end": 7946.5, + "probability": 0.5806 + }, + { + "start": 7946.66, + "end": 7947.06, + "probability": 0.8298 + }, + { + "start": 7949.32, + "end": 7953.3, + "probability": 0.6693 + }, + { + "start": 7953.82, + "end": 7953.94, + "probability": 0.9458 + }, + { + "start": 7954.46, + "end": 7956.44, + "probability": 0.9943 + }, + { + "start": 7957.44, + "end": 7958.46, + "probability": 0.9785 + }, + { + "start": 7958.54, + "end": 7961.12, + "probability": 0.9141 + }, + { + "start": 7961.76, + "end": 7964.86, + "probability": 0.9973 + }, + { + "start": 7966.22, + "end": 7969.18, + "probability": 0.7571 + }, + { + "start": 7970.12, + "end": 7972.56, + "probability": 0.9773 + }, + { + "start": 7973.24, + "end": 7974.9, + "probability": 0.6509 + }, + { + "start": 7975.66, + "end": 7983.68, + "probability": 0.7304 + }, + { + "start": 7984.68, + "end": 7990.08, + "probability": 0.8236 + }, + { + "start": 7990.24, + "end": 7993.62, + "probability": 0.9801 + }, + { + "start": 7993.74, + "end": 7994.72, + "probability": 0.96 + }, + { + "start": 7995.24, + "end": 7999.24, + "probability": 0.9251 + }, + { + "start": 7999.92, + "end": 8002.42, + "probability": 0.9639 + }, + { + "start": 8004.58, + "end": 8006.46, + "probability": 0.8784 + }, + { + "start": 8006.98, + "end": 8008.0, + "probability": 0.9431 + }, + { + "start": 8008.2, + "end": 8008.82, + "probability": 0.7994 + }, + { + "start": 8009.24, + "end": 8009.74, + "probability": 0.7192 + }, + { + "start": 8009.94, + "end": 8011.8, + "probability": 0.8965 + }, + { + "start": 8011.92, + "end": 8017.66, + "probability": 0.837 + }, + { + "start": 8017.92, + "end": 8018.76, + "probability": 0.8972 + }, + { + "start": 8019.42, + "end": 8021.42, + "probability": 0.9846 + }, + { + "start": 8021.76, + "end": 8023.24, + "probability": 0.6708 + }, + { + "start": 8023.4, + "end": 8023.82, + "probability": 0.7666 + }, + { + "start": 8024.42, + "end": 8028.36, + "probability": 0.8039 + }, + { + "start": 8028.92, + "end": 8031.02, + "probability": 0.9544 + }, + { + "start": 8031.38, + "end": 8035.54, + "probability": 0.9348 + }, + { + "start": 8035.68, + "end": 8036.66, + "probability": 0.7974 + }, + { + "start": 8036.8, + "end": 8039.06, + "probability": 0.9738 + }, + { + "start": 8039.18, + "end": 8040.34, + "probability": 0.9754 + }, + { + "start": 8040.44, + "end": 8040.82, + "probability": 0.9473 + }, + { + "start": 8040.86, + "end": 8042.02, + "probability": 0.986 + }, + { + "start": 8042.14, + "end": 8042.66, + "probability": 0.8777 + }, + { + "start": 8043.18, + "end": 8044.28, + "probability": 0.999 + }, + { + "start": 8044.6, + "end": 8047.74, + "probability": 0.9699 + }, + { + "start": 8048.24, + "end": 8048.78, + "probability": 0.8777 + }, + { + "start": 8049.56, + "end": 8053.12, + "probability": 0.774 + }, + { + "start": 8053.26, + "end": 8055.86, + "probability": 0.9887 + }, + { + "start": 8056.52, + "end": 8057.92, + "probability": 0.9897 + }, + { + "start": 8058.04, + "end": 8061.22, + "probability": 0.8736 + }, + { + "start": 8061.84, + "end": 8063.58, + "probability": 0.7997 + }, + { + "start": 8063.62, + "end": 8064.8, + "probability": 0.9147 + }, + { + "start": 8065.4, + "end": 8070.6, + "probability": 0.9875 + }, + { + "start": 8070.78, + "end": 8072.92, + "probability": 0.696 + }, + { + "start": 8073.02, + "end": 8079.32, + "probability": 0.739 + }, + { + "start": 8079.86, + "end": 8080.08, + "probability": 0.1469 + }, + { + "start": 8080.08, + "end": 8081.9, + "probability": 0.5708 + }, + { + "start": 8082.44, + "end": 8083.2, + "probability": 0.7941 + }, + { + "start": 8089.1, + "end": 8090.04, + "probability": 0.8635 + }, + { + "start": 8091.18, + "end": 8091.86, + "probability": 0.7918 + }, + { + "start": 8095.18, + "end": 8095.28, + "probability": 0.0158 + }, + { + "start": 8095.28, + "end": 8095.42, + "probability": 0.0921 + }, + { + "start": 8095.42, + "end": 8098.4, + "probability": 0.9502 + }, + { + "start": 8099.46, + "end": 8104.18, + "probability": 0.9391 + }, + { + "start": 8104.48, + "end": 8106.18, + "probability": 0.8857 + }, + { + "start": 8107.04, + "end": 8109.66, + "probability": 0.9954 + }, + { + "start": 8110.52, + "end": 8111.74, + "probability": 0.825 + }, + { + "start": 8113.62, + "end": 8118.98, + "probability": 0.7444 + }, + { + "start": 8119.34, + "end": 8123.18, + "probability": 0.9355 + }, + { + "start": 8123.56, + "end": 8127.78, + "probability": 0.7597 + }, + { + "start": 8128.82, + "end": 8131.08, + "probability": 0.9942 + }, + { + "start": 8131.4, + "end": 8137.82, + "probability": 0.7508 + }, + { + "start": 8141.78, + "end": 8142.12, + "probability": 0.3859 + }, + { + "start": 8142.68, + "end": 8143.04, + "probability": 0.3717 + }, + { + "start": 8143.62, + "end": 8146.52, + "probability": 0.9344 + }, + { + "start": 8146.6, + "end": 8148.92, + "probability": 0.6451 + }, + { + "start": 8149.68, + "end": 8150.78, + "probability": 0.8853 + }, + { + "start": 8151.08, + "end": 8152.3, + "probability": 0.9456 + }, + { + "start": 8152.52, + "end": 8152.92, + "probability": 0.5511 + }, + { + "start": 8153.1, + "end": 8157.8, + "probability": 0.9663 + }, + { + "start": 8158.18, + "end": 8161.46, + "probability": 0.909 + }, + { + "start": 8161.52, + "end": 8165.28, + "probability": 0.9791 + }, + { + "start": 8165.96, + "end": 8168.0, + "probability": 0.8478 + }, + { + "start": 8168.12, + "end": 8169.34, + "probability": 0.681 + }, + { + "start": 8169.86, + "end": 8171.38, + "probability": 0.9731 + }, + { + "start": 8171.48, + "end": 8173.16, + "probability": 0.9985 + }, + { + "start": 8173.6, + "end": 8174.34, + "probability": 0.8337 + }, + { + "start": 8175.56, + "end": 8179.38, + "probability": 0.8806 + }, + { + "start": 8179.46, + "end": 8181.8, + "probability": 0.9312 + }, + { + "start": 8181.98, + "end": 8183.62, + "probability": 0.9541 + }, + { + "start": 8183.7, + "end": 8185.5, + "probability": 0.9947 + }, + { + "start": 8186.48, + "end": 8187.46, + "probability": 0.7389 + }, + { + "start": 8187.7, + "end": 8193.02, + "probability": 0.9374 + }, + { + "start": 8193.02, + "end": 8196.7, + "probability": 0.9584 + }, + { + "start": 8197.32, + "end": 8201.3, + "probability": 0.9292 + }, + { + "start": 8201.44, + "end": 8204.2, + "probability": 0.9964 + }, + { + "start": 8204.38, + "end": 8204.38, + "probability": 0.0637 + }, + { + "start": 8204.98, + "end": 8207.98, + "probability": 0.7352 + }, + { + "start": 8208.62, + "end": 8209.28, + "probability": 0.9921 + }, + { + "start": 8209.44, + "end": 8211.08, + "probability": 0.6434 + }, + { + "start": 8211.2, + "end": 8211.58, + "probability": 0.7705 + }, + { + "start": 8211.76, + "end": 8213.08, + "probability": 0.9099 + }, + { + "start": 8213.58, + "end": 8214.84, + "probability": 0.9529 + }, + { + "start": 8214.98, + "end": 8215.66, + "probability": 0.7538 + }, + { + "start": 8216.1, + "end": 8218.88, + "probability": 0.9565 + }, + { + "start": 8220.12, + "end": 8221.2, + "probability": 0.8293 + }, + { + "start": 8221.42, + "end": 8222.08, + "probability": 0.747 + }, + { + "start": 8222.2, + "end": 8223.12, + "probability": 0.8546 + }, + { + "start": 8223.18, + "end": 8227.56, + "probability": 0.9493 + }, + { + "start": 8227.64, + "end": 8228.4, + "probability": 0.7965 + }, + { + "start": 8228.46, + "end": 8229.46, + "probability": 0.844 + }, + { + "start": 8229.96, + "end": 8232.04, + "probability": 0.991 + }, + { + "start": 8232.78, + "end": 8235.78, + "probability": 0.7978 + }, + { + "start": 8235.78, + "end": 8238.7, + "probability": 0.9617 + }, + { + "start": 8238.88, + "end": 8240.4, + "probability": 0.9042 + }, + { + "start": 8240.88, + "end": 8242.66, + "probability": 0.5796 + }, + { + "start": 8242.74, + "end": 8244.72, + "probability": 0.9866 + }, + { + "start": 8245.22, + "end": 8245.5, + "probability": 0.4883 + }, + { + "start": 8245.58, + "end": 8248.62, + "probability": 0.9876 + }, + { + "start": 8249.28, + "end": 8251.08, + "probability": 0.3763 + }, + { + "start": 8251.12, + "end": 8252.24, + "probability": 0.6048 + }, + { + "start": 8252.66, + "end": 8255.6, + "probability": 0.9434 + }, + { + "start": 8256.22, + "end": 8258.06, + "probability": 0.8047 + }, + { + "start": 8259.26, + "end": 8263.38, + "probability": 0.9451 + }, + { + "start": 8263.84, + "end": 8265.8, + "probability": 0.7493 + }, + { + "start": 8265.92, + "end": 8267.88, + "probability": 0.9163 + }, + { + "start": 8268.48, + "end": 8274.96, + "probability": 0.7987 + }, + { + "start": 8275.18, + "end": 8276.18, + "probability": 0.7304 + }, + { + "start": 8276.3, + "end": 8277.52, + "probability": 0.9566 + }, + { + "start": 8278.3, + "end": 8282.4, + "probability": 0.8325 + }, + { + "start": 8282.6, + "end": 8283.74, + "probability": 0.8337 + }, + { + "start": 8283.98, + "end": 8284.86, + "probability": 0.5699 + }, + { + "start": 8285.88, + "end": 8288.0, + "probability": 0.9224 + }, + { + "start": 8288.06, + "end": 8291.14, + "probability": 0.8942 + }, + { + "start": 8291.34, + "end": 8292.06, + "probability": 0.8361 + }, + { + "start": 8292.12, + "end": 8292.34, + "probability": 0.9092 + }, + { + "start": 8292.74, + "end": 8293.5, + "probability": 0.9858 + }, + { + "start": 8294.44, + "end": 8297.3, + "probability": 0.9524 + }, + { + "start": 8297.48, + "end": 8298.83, + "probability": 0.9729 + }, + { + "start": 8299.28, + "end": 8300.96, + "probability": 0.9165 + }, + { + "start": 8301.08, + "end": 8302.67, + "probability": 0.9886 + }, + { + "start": 8302.9, + "end": 8304.41, + "probability": 0.9964 + }, + { + "start": 8304.96, + "end": 8307.44, + "probability": 0.8005 + }, + { + "start": 8307.6, + "end": 8307.64, + "probability": 0.4812 + }, + { + "start": 8307.78, + "end": 8308.68, + "probability": 0.5676 + }, + { + "start": 8308.7, + "end": 8308.84, + "probability": 0.5453 + }, + { + "start": 8308.98, + "end": 8312.04, + "probability": 0.7157 + }, + { + "start": 8312.16, + "end": 8316.64, + "probability": 0.9443 + }, + { + "start": 8317.88, + "end": 8320.7, + "probability": 0.6841 + }, + { + "start": 8320.78, + "end": 8322.88, + "probability": 0.9934 + }, + { + "start": 8323.32, + "end": 8324.63, + "probability": 0.9119 + }, + { + "start": 8326.42, + "end": 8331.34, + "probability": 0.9405 + }, + { + "start": 8331.9, + "end": 8334.92, + "probability": 0.9887 + }, + { + "start": 8335.16, + "end": 8338.72, + "probability": 0.4762 + }, + { + "start": 8338.72, + "end": 8342.14, + "probability": 0.7535 + }, + { + "start": 8342.7, + "end": 8345.98, + "probability": 0.8095 + }, + { + "start": 8346.68, + "end": 8347.42, + "probability": 0.1393 + }, + { + "start": 8348.0, + "end": 8350.48, + "probability": 0.9108 + }, + { + "start": 8351.14, + "end": 8354.2, + "probability": 0.8005 + }, + { + "start": 8355.08, + "end": 8356.8, + "probability": 0.6524 + }, + { + "start": 8357.28, + "end": 8360.36, + "probability": 0.8217 + }, + { + "start": 8361.06, + "end": 8365.34, + "probability": 0.9565 + }, + { + "start": 8365.56, + "end": 8370.1, + "probability": 0.9583 + }, + { + "start": 8370.1, + "end": 8374.23, + "probability": 0.9832 + }, + { + "start": 8374.4, + "end": 8377.82, + "probability": 0.7858 + }, + { + "start": 8378.38, + "end": 8379.78, + "probability": 0.8097 + }, + { + "start": 8380.1, + "end": 8380.64, + "probability": 0.5924 + }, + { + "start": 8380.64, + "end": 8381.4, + "probability": 0.7185 + }, + { + "start": 8381.52, + "end": 8382.8, + "probability": 0.9688 + }, + { + "start": 8382.98, + "end": 8383.82, + "probability": 0.5266 + }, + { + "start": 8383.98, + "end": 8384.49, + "probability": 0.9254 + }, + { + "start": 8385.2, + "end": 8386.08, + "probability": 0.753 + }, + { + "start": 8386.3, + "end": 8388.76, + "probability": 0.8743 + }, + { + "start": 8388.96, + "end": 8389.46, + "probability": 0.8052 + }, + { + "start": 8390.24, + "end": 8390.24, + "probability": 0.355 + }, + { + "start": 8390.3, + "end": 8392.4, + "probability": 0.6423 + }, + { + "start": 8394.57, + "end": 8395.9, + "probability": 0.4511 + }, + { + "start": 8395.98, + "end": 8396.14, + "probability": 0.267 + }, + { + "start": 8396.2, + "end": 8397.04, + "probability": 0.9131 + }, + { + "start": 8397.62, + "end": 8399.6, + "probability": 0.4363 + }, + { + "start": 8399.74, + "end": 8403.04, + "probability": 0.9008 + }, + { + "start": 8404.14, + "end": 8407.42, + "probability": 0.9506 + }, + { + "start": 8408.27, + "end": 8408.9, + "probability": 0.9559 + }, + { + "start": 8409.48, + "end": 8409.88, + "probability": 0.5819 + }, + { + "start": 8410.88, + "end": 8412.68, + "probability": 0.8743 + }, + { + "start": 8413.32, + "end": 8414.5, + "probability": 0.9574 + }, + { + "start": 8414.96, + "end": 8416.04, + "probability": 0.9642 + }, + { + "start": 8416.18, + "end": 8420.42, + "probability": 0.5545 + }, + { + "start": 8420.58, + "end": 8421.68, + "probability": 0.8859 + }, + { + "start": 8421.86, + "end": 8424.38, + "probability": 0.9966 + }, + { + "start": 8424.64, + "end": 8427.2, + "probability": 0.8469 + }, + { + "start": 8427.86, + "end": 8430.86, + "probability": 0.9191 + }, + { + "start": 8431.04, + "end": 8433.6, + "probability": 0.8141 + }, + { + "start": 8434.16, + "end": 8439.08, + "probability": 0.8571 + }, + { + "start": 8439.58, + "end": 8440.2, + "probability": 0.8969 + }, + { + "start": 8440.32, + "end": 8446.46, + "probability": 0.6071 + }, + { + "start": 8447.0, + "end": 8447.68, + "probability": 0.6089 + }, + { + "start": 8448.12, + "end": 8449.3, + "probability": 0.8119 + }, + { + "start": 8449.34, + "end": 8451.46, + "probability": 0.8818 + }, + { + "start": 8452.34, + "end": 8456.32, + "probability": 0.809 + }, + { + "start": 8456.76, + "end": 8457.22, + "probability": 0.6511 + }, + { + "start": 8457.34, + "end": 8457.72, + "probability": 0.886 + }, + { + "start": 8457.86, + "end": 8460.87, + "probability": 0.6764 + }, + { + "start": 8461.36, + "end": 8463.22, + "probability": 0.6094 + }, + { + "start": 8463.28, + "end": 8468.18, + "probability": 0.7379 + }, + { + "start": 8468.66, + "end": 8472.7, + "probability": 0.9766 + }, + { + "start": 8472.92, + "end": 8474.5, + "probability": 0.9152 + }, + { + "start": 8475.0, + "end": 8476.46, + "probability": 0.9201 + }, + { + "start": 8476.88, + "end": 8482.36, + "probability": 0.9651 + }, + { + "start": 8482.74, + "end": 8484.48, + "probability": 0.8541 + }, + { + "start": 8484.76, + "end": 8485.34, + "probability": 0.5519 + }, + { + "start": 8485.34, + "end": 8486.1, + "probability": 0.5041 + }, + { + "start": 8486.32, + "end": 8488.56, + "probability": 0.9212 + }, + { + "start": 8489.36, + "end": 8493.68, + "probability": 0.9847 + }, + { + "start": 8500.56, + "end": 8500.56, + "probability": 0.2643 + }, + { + "start": 8510.38, + "end": 8511.18, + "probability": 0.822 + }, + { + "start": 8517.16, + "end": 8518.22, + "probability": 0.4257 + }, + { + "start": 8520.54, + "end": 8523.8, + "probability": 0.8906 + }, + { + "start": 8524.96, + "end": 8529.38, + "probability": 0.7723 + }, + { + "start": 8531.5, + "end": 8537.42, + "probability": 0.9768 + }, + { + "start": 8539.62, + "end": 8541.76, + "probability": 0.7776 + }, + { + "start": 8542.44, + "end": 8546.68, + "probability": 0.8989 + }, + { + "start": 8548.06, + "end": 8552.16, + "probability": 0.9798 + }, + { + "start": 8554.76, + "end": 8555.24, + "probability": 0.9133 + }, + { + "start": 8559.84, + "end": 8562.74, + "probability": 0.845 + }, + { + "start": 8567.58, + "end": 8568.52, + "probability": 0.7129 + }, + { + "start": 8570.36, + "end": 8571.48, + "probability": 0.9369 + }, + { + "start": 8573.76, + "end": 8576.4, + "probability": 0.7383 + }, + { + "start": 8578.9, + "end": 8579.3, + "probability": 0.6327 + }, + { + "start": 8580.46, + "end": 8581.14, + "probability": 0.2579 + }, + { + "start": 8582.12, + "end": 8584.56, + "probability": 0.8926 + }, + { + "start": 8586.3, + "end": 8592.39, + "probability": 0.7388 + }, + { + "start": 8592.8, + "end": 8594.6, + "probability": 0.9564 + }, + { + "start": 8594.82, + "end": 8597.24, + "probability": 0.9822 + }, + { + "start": 8597.96, + "end": 8598.54, + "probability": 0.8678 + }, + { + "start": 8599.78, + "end": 8603.76, + "probability": 0.8634 + }, + { + "start": 8605.64, + "end": 8607.72, + "probability": 0.601 + }, + { + "start": 8608.36, + "end": 8612.04, + "probability": 0.9611 + }, + { + "start": 8612.26, + "end": 8617.14, + "probability": 0.8656 + }, + { + "start": 8618.34, + "end": 8623.85, + "probability": 0.9073 + }, + { + "start": 8628.12, + "end": 8634.12, + "probability": 0.9944 + }, + { + "start": 8637.66, + "end": 8638.24, + "probability": 0.6232 + }, + { + "start": 8639.64, + "end": 8640.38, + "probability": 0.6788 + }, + { + "start": 8641.02, + "end": 8643.44, + "probability": 0.5185 + }, + { + "start": 8643.62, + "end": 8645.38, + "probability": 0.9771 + }, + { + "start": 8650.6, + "end": 8654.15, + "probability": 0.9827 + }, + { + "start": 8654.78, + "end": 8656.7, + "probability": 0.8456 + }, + { + "start": 8656.92, + "end": 8657.94, + "probability": 0.7687 + }, + { + "start": 8658.3, + "end": 8659.16, + "probability": 0.2276 + }, + { + "start": 8659.64, + "end": 8664.5, + "probability": 0.6865 + }, + { + "start": 8666.12, + "end": 8671.76, + "probability": 0.9574 + }, + { + "start": 8671.88, + "end": 8674.84, + "probability": 0.7385 + }, + { + "start": 8676.6, + "end": 8680.3, + "probability": 0.9967 + }, + { + "start": 8681.5, + "end": 8689.54, + "probability": 0.9965 + }, + { + "start": 8691.9, + "end": 8696.74, + "probability": 0.8056 + }, + { + "start": 8701.88, + "end": 8703.24, + "probability": 0.6892 + }, + { + "start": 8703.38, + "end": 8709.76, + "probability": 0.8946 + }, + { + "start": 8709.86, + "end": 8710.16, + "probability": 0.5179 + }, + { + "start": 8710.3, + "end": 8713.86, + "probability": 0.9702 + }, + { + "start": 8714.04, + "end": 8714.58, + "probability": 0.7003 + }, + { + "start": 8715.28, + "end": 8718.88, + "probability": 0.8264 + }, + { + "start": 8718.92, + "end": 8719.88, + "probability": 0.8582 + }, + { + "start": 8720.86, + "end": 8722.68, + "probability": 0.8803 + }, + { + "start": 8723.34, + "end": 8724.98, + "probability": 0.9569 + }, + { + "start": 8727.24, + "end": 8730.78, + "probability": 0.9982 + }, + { + "start": 8731.92, + "end": 8735.3, + "probability": 0.9964 + }, + { + "start": 8736.12, + "end": 8738.96, + "probability": 0.9526 + }, + { + "start": 8740.6, + "end": 8741.36, + "probability": 0.748 + }, + { + "start": 8742.32, + "end": 8743.6, + "probability": 0.6124 + }, + { + "start": 8745.84, + "end": 8749.92, + "probability": 0.6077 + }, + { + "start": 8749.92, + "end": 8752.2, + "probability": 0.9678 + }, + { + "start": 8752.88, + "end": 8754.64, + "probability": 0.9327 + }, + { + "start": 8760.24, + "end": 8762.56, + "probability": 0.6188 + }, + { + "start": 8765.8, + "end": 8765.94, + "probability": 0.3258 + }, + { + "start": 8765.96, + "end": 8766.96, + "probability": 0.9836 + }, + { + "start": 8769.92, + "end": 8771.86, + "probability": 0.9845 + }, + { + "start": 8772.38, + "end": 8773.6, + "probability": 0.7136 + }, + { + "start": 8774.12, + "end": 8777.72, + "probability": 0.8999 + }, + { + "start": 8778.54, + "end": 8782.4, + "probability": 0.9935 + }, + { + "start": 8784.0, + "end": 8786.56, + "probability": 0.7702 + }, + { + "start": 8788.26, + "end": 8791.3, + "probability": 0.8121 + }, + { + "start": 8791.42, + "end": 8796.48, + "probability": 0.9346 + }, + { + "start": 8797.76, + "end": 8801.08, + "probability": 0.9729 + }, + { + "start": 8801.26, + "end": 8801.6, + "probability": 0.9773 + }, + { + "start": 8802.44, + "end": 8802.88, + "probability": 0.8477 + }, + { + "start": 8804.62, + "end": 8807.96, + "probability": 0.7466 + }, + { + "start": 8808.88, + "end": 8809.74, + "probability": 0.9946 + }, + { + "start": 8812.66, + "end": 8817.06, + "probability": 0.6734 + }, + { + "start": 8818.0, + "end": 8818.9, + "probability": 0.934 + }, + { + "start": 8820.12, + "end": 8822.2, + "probability": 0.9921 + }, + { + "start": 8822.76, + "end": 8827.2, + "probability": 0.8436 + }, + { + "start": 8827.86, + "end": 8831.26, + "probability": 0.9914 + }, + { + "start": 8832.2, + "end": 8834.5, + "probability": 0.5992 + }, + { + "start": 8835.9, + "end": 8836.72, + "probability": 0.3501 + }, + { + "start": 8837.76, + "end": 8839.32, + "probability": 0.7477 + }, + { + "start": 8839.5, + "end": 8845.05, + "probability": 0.9902 + }, + { + "start": 8846.62, + "end": 8849.32, + "probability": 0.8793 + }, + { + "start": 8849.5, + "end": 8850.74, + "probability": 0.9834 + }, + { + "start": 8851.6, + "end": 8852.36, + "probability": 0.6759 + }, + { + "start": 8853.06, + "end": 8854.72, + "probability": 0.7762 + }, + { + "start": 8855.84, + "end": 8856.52, + "probability": 0.8188 + }, + { + "start": 8858.52, + "end": 8860.76, + "probability": 0.7796 + }, + { + "start": 8861.62, + "end": 8862.54, + "probability": 0.8383 + }, + { + "start": 8863.26, + "end": 8863.88, + "probability": 0.9302 + }, + { + "start": 8865.32, + "end": 8866.6, + "probability": 0.9897 + }, + { + "start": 8867.66, + "end": 8872.24, + "probability": 0.819 + }, + { + "start": 8873.34, + "end": 8875.68, + "probability": 0.9838 + }, + { + "start": 8875.88, + "end": 8876.36, + "probability": 0.9392 + }, + { + "start": 8877.58, + "end": 8878.36, + "probability": 0.4993 + }, + { + "start": 8878.54, + "end": 8878.94, + "probability": 0.6877 + }, + { + "start": 8879.02, + "end": 8880.08, + "probability": 0.7559 + }, + { + "start": 8880.62, + "end": 8881.96, + "probability": 0.9072 + }, + { + "start": 8882.22, + "end": 8884.44, + "probability": 0.6349 + }, + { + "start": 8885.44, + "end": 8886.3, + "probability": 0.7306 + }, + { + "start": 8886.52, + "end": 8888.54, + "probability": 0.9971 + }, + { + "start": 8889.16, + "end": 8890.3, + "probability": 0.83 + }, + { + "start": 8891.24, + "end": 8897.86, + "probability": 0.9842 + }, + { + "start": 8898.38, + "end": 8899.72, + "probability": 0.9117 + }, + { + "start": 8901.1, + "end": 8901.66, + "probability": 0.017 + }, + { + "start": 8902.76, + "end": 8909.16, + "probability": 0.9944 + }, + { + "start": 8909.84, + "end": 8910.62, + "probability": 0.608 + }, + { + "start": 8910.84, + "end": 8914.2, + "probability": 0.9653 + }, + { + "start": 8914.3, + "end": 8915.58, + "probability": 0.9155 + }, + { + "start": 8915.64, + "end": 8918.76, + "probability": 0.9385 + }, + { + "start": 8920.02, + "end": 8924.2, + "probability": 0.7499 + }, + { + "start": 8925.48, + "end": 8928.34, + "probability": 0.8846 + }, + { + "start": 8928.72, + "end": 8930.46, + "probability": 0.9877 + }, + { + "start": 8930.64, + "end": 8932.22, + "probability": 0.9944 + }, + { + "start": 8932.78, + "end": 8934.42, + "probability": 0.9742 + }, + { + "start": 8934.88, + "end": 8935.76, + "probability": 0.7773 + }, + { + "start": 8935.84, + "end": 8937.35, + "probability": 0.544 + }, + { + "start": 8938.14, + "end": 8939.34, + "probability": 0.4983 + }, + { + "start": 8939.74, + "end": 8945.1, + "probability": 0.7482 + }, + { + "start": 8945.14, + "end": 8945.76, + "probability": 0.7816 + }, + { + "start": 8962.26, + "end": 8963.46, + "probability": 0.4902 + }, + { + "start": 8964.0, + "end": 8965.36, + "probability": 0.8494 + }, + { + "start": 8965.92, + "end": 8970.29, + "probability": 0.5252 + }, + { + "start": 8973.56, + "end": 8976.2, + "probability": 0.9117 + }, + { + "start": 8976.34, + "end": 8981.46, + "probability": 0.9369 + }, + { + "start": 8982.32, + "end": 8983.2, + "probability": 0.393 + }, + { + "start": 8984.4, + "end": 8986.64, + "probability": 0.875 + }, + { + "start": 8987.4, + "end": 8990.96, + "probability": 0.5808 + }, + { + "start": 8991.57, + "end": 8996.22, + "probability": 0.8052 + }, + { + "start": 8996.22, + "end": 8996.82, + "probability": 0.0921 + }, + { + "start": 8998.3, + "end": 8999.18, + "probability": 0.6686 + }, + { + "start": 9000.42, + "end": 9004.22, + "probability": 0.7225 + }, + { + "start": 9004.9, + "end": 9005.54, + "probability": 0.6579 + }, + { + "start": 9006.8, + "end": 9007.42, + "probability": 0.748 + }, + { + "start": 9008.98, + "end": 9013.18, + "probability": 0.6694 + }, + { + "start": 9015.12, + "end": 9015.36, + "probability": 0.7978 + }, + { + "start": 9017.95, + "end": 9019.16, + "probability": 0.7186 + }, + { + "start": 9021.2, + "end": 9024.56, + "probability": 0.7969 + }, + { + "start": 9025.1, + "end": 9026.86, + "probability": 0.7483 + }, + { + "start": 9028.86, + "end": 9030.84, + "probability": 0.8615 + }, + { + "start": 9031.28, + "end": 9031.28, + "probability": 0.3983 + }, + { + "start": 9031.28, + "end": 9032.82, + "probability": 0.5484 + }, + { + "start": 9034.18, + "end": 9036.0, + "probability": 0.5674 + }, + { + "start": 9036.8, + "end": 9038.14, + "probability": 0.7801 + }, + { + "start": 9039.26, + "end": 9040.06, + "probability": 0.6317 + }, + { + "start": 9048.54, + "end": 9051.6, + "probability": 0.2868 + }, + { + "start": 9055.1, + "end": 9059.08, + "probability": 0.5989 + }, + { + "start": 9059.8, + "end": 9060.12, + "probability": 0.6479 + }, + { + "start": 9061.66, + "end": 9066.02, + "probability": 0.44 + }, + { + "start": 9068.56, + "end": 9068.66, + "probability": 0.0436 + }, + { + "start": 9068.66, + "end": 9068.8, + "probability": 0.6147 + }, + { + "start": 9069.98, + "end": 9070.74, + "probability": 0.9708 + }, + { + "start": 9071.5, + "end": 9073.34, + "probability": 0.8241 + }, + { + "start": 9076.34, + "end": 9079.32, + "probability": 0.6325 + }, + { + "start": 9079.58, + "end": 9082.74, + "probability": 0.7486 + }, + { + "start": 9083.44, + "end": 9086.76, + "probability": 0.6693 + }, + { + "start": 9087.32, + "end": 9090.88, + "probability": 0.8682 + }, + { + "start": 9091.42, + "end": 9093.3, + "probability": 0.9325 + }, + { + "start": 9094.52, + "end": 9097.64, + "probability": 0.7965 + }, + { + "start": 9097.64, + "end": 9101.58, + "probability": 0.9814 + }, + { + "start": 9102.18, + "end": 9104.24, + "probability": 0.7053 + }, + { + "start": 9104.56, + "end": 9107.76, + "probability": 0.9049 + }, + { + "start": 9108.58, + "end": 9109.04, + "probability": 0.934 + }, + { + "start": 9109.74, + "end": 9112.34, + "probability": 0.8575 + }, + { + "start": 9114.36, + "end": 9118.5, + "probability": 0.8132 + }, + { + "start": 9119.1, + "end": 9122.98, + "probability": 0.8281 + }, + { + "start": 9123.42, + "end": 9124.92, + "probability": 0.9313 + }, + { + "start": 9125.64, + "end": 9126.22, + "probability": 0.2539 + }, + { + "start": 9126.74, + "end": 9127.45, + "probability": 0.8387 + }, + { + "start": 9128.74, + "end": 9130.86, + "probability": 0.8305 + }, + { + "start": 9131.28, + "end": 9131.62, + "probability": 0.5412 + }, + { + "start": 9133.29, + "end": 9135.99, + "probability": 0.8613 + }, + { + "start": 9136.78, + "end": 9139.62, + "probability": 0.8432 + }, + { + "start": 9141.46, + "end": 9143.0, + "probability": 0.6477 + }, + { + "start": 9143.6, + "end": 9147.23, + "probability": 0.8909 + }, + { + "start": 9148.66, + "end": 9149.08, + "probability": 0.6657 + }, + { + "start": 9149.16, + "end": 9150.12, + "probability": 0.9284 + }, + { + "start": 9150.74, + "end": 9152.22, + "probability": 0.9271 + }, + { + "start": 9153.28, + "end": 9156.32, + "probability": 0.88 + }, + { + "start": 9157.46, + "end": 9160.98, + "probability": 0.7082 + }, + { + "start": 9161.52, + "end": 9164.4, + "probability": 0.8837 + }, + { + "start": 9165.4, + "end": 9166.06, + "probability": 0.8858 + }, + { + "start": 9166.22, + "end": 9167.36, + "probability": 0.9341 + }, + { + "start": 9167.44, + "end": 9168.6, + "probability": 0.9121 + }, + { + "start": 9168.92, + "end": 9169.36, + "probability": 0.2545 + }, + { + "start": 9169.9, + "end": 9170.44, + "probability": 0.421 + }, + { + "start": 9171.44, + "end": 9173.78, + "probability": 0.9214 + }, + { + "start": 9175.38, + "end": 9180.66, + "probability": 0.7714 + }, + { + "start": 9180.74, + "end": 9185.42, + "probability": 0.8328 + }, + { + "start": 9185.48, + "end": 9189.74, + "probability": 0.6996 + }, + { + "start": 9189.74, + "end": 9193.7, + "probability": 0.8801 + }, + { + "start": 9193.84, + "end": 9194.34, + "probability": 0.58 + }, + { + "start": 9195.12, + "end": 9198.92, + "probability": 0.778 + }, + { + "start": 9199.26, + "end": 9204.22, + "probability": 0.795 + }, + { + "start": 9204.46, + "end": 9208.84, + "probability": 0.8445 + }, + { + "start": 9208.84, + "end": 9213.76, + "probability": 0.8087 + }, + { + "start": 9214.64, + "end": 9214.88, + "probability": 0.8089 + }, + { + "start": 9217.38, + "end": 9219.2, + "probability": 0.9263 + }, + { + "start": 9219.82, + "end": 9222.24, + "probability": 0.7569 + }, + { + "start": 9225.37, + "end": 9227.67, + "probability": 0.0274 + }, + { + "start": 9230.28, + "end": 9230.4, + "probability": 0.1243 + }, + { + "start": 9230.62, + "end": 9231.4, + "probability": 0.3083 + }, + { + "start": 9231.66, + "end": 9235.24, + "probability": 0.8282 + }, + { + "start": 9235.96, + "end": 9237.32, + "probability": 0.9489 + }, + { + "start": 9238.26, + "end": 9240.08, + "probability": 0.8427 + }, + { + "start": 9241.4, + "end": 9243.2, + "probability": 0.5611 + }, + { + "start": 9243.32, + "end": 9247.9, + "probability": 0.8532 + }, + { + "start": 9250.8, + "end": 9253.12, + "probability": 0.8739 + }, + { + "start": 9253.12, + "end": 9255.9, + "probability": 0.5849 + }, + { + "start": 9256.22, + "end": 9256.7, + "probability": 0.7082 + }, + { + "start": 9256.84, + "end": 9257.38, + "probability": 0.5626 + }, + { + "start": 9257.72, + "end": 9258.98, + "probability": 0.9601 + }, + { + "start": 9260.56, + "end": 9265.04, + "probability": 0.6319 + }, + { + "start": 9266.18, + "end": 9267.34, + "probability": 0.5649 + }, + { + "start": 9269.04, + "end": 9270.04, + "probability": 0.8324 + }, + { + "start": 9270.18, + "end": 9274.08, + "probability": 0.7963 + }, + { + "start": 9275.32, + "end": 9276.66, + "probability": 0.5542 + }, + { + "start": 9277.08, + "end": 9278.5, + "probability": 0.743 + }, + { + "start": 9278.8, + "end": 9279.5, + "probability": 0.5774 + }, + { + "start": 9280.24, + "end": 9280.34, + "probability": 0.1504 + }, + { + "start": 9282.32, + "end": 9283.72, + "probability": 0.6525 + }, + { + "start": 9283.9, + "end": 9286.48, + "probability": 0.7165 + }, + { + "start": 9286.72, + "end": 9290.9, + "probability": 0.798 + }, + { + "start": 9291.04, + "end": 9292.18, + "probability": 0.7285 + }, + { + "start": 9292.24, + "end": 9293.08, + "probability": 0.486 + }, + { + "start": 9293.94, + "end": 9296.84, + "probability": 0.723 + }, + { + "start": 9297.1, + "end": 9300.74, + "probability": 0.9072 + }, + { + "start": 9301.04, + "end": 9302.28, + "probability": 0.5796 + }, + { + "start": 9302.54, + "end": 9303.82, + "probability": 0.7388 + }, + { + "start": 9304.3, + "end": 9309.12, + "probability": 0.8973 + }, + { + "start": 9310.0, + "end": 9311.62, + "probability": 0.734 + }, + { + "start": 9312.4, + "end": 9314.3, + "probability": 0.9479 + }, + { + "start": 9314.3, + "end": 9316.6, + "probability": 0.6911 + }, + { + "start": 9317.22, + "end": 9318.98, + "probability": 0.4704 + }, + { + "start": 9320.68, + "end": 9324.48, + "probability": 0.9578 + }, + { + "start": 9324.6, + "end": 9326.22, + "probability": 0.5764 + }, + { + "start": 9326.48, + "end": 9327.32, + "probability": 0.8438 + }, + { + "start": 9327.64, + "end": 9329.28, + "probability": 0.7761 + }, + { + "start": 9330.0, + "end": 9330.92, + "probability": 0.8369 + }, + { + "start": 9331.26, + "end": 9334.16, + "probability": 0.9058 + }, + { + "start": 9335.02, + "end": 9337.98, + "probability": 0.688 + }, + { + "start": 9338.54, + "end": 9340.8, + "probability": 0.7809 + }, + { + "start": 9341.06, + "end": 9343.5, + "probability": 0.749 + }, + { + "start": 9343.86, + "end": 9346.88, + "probability": 0.8391 + }, + { + "start": 9347.52, + "end": 9348.8, + "probability": 0.9863 + }, + { + "start": 9349.3, + "end": 9350.72, + "probability": 0.7629 + }, + { + "start": 9351.42, + "end": 9352.18, + "probability": 0.6406 + }, + { + "start": 9352.32, + "end": 9356.54, + "probability": 0.636 + }, + { + "start": 9357.82, + "end": 9362.0, + "probability": 0.9502 + }, + { + "start": 9362.68, + "end": 9363.56, + "probability": 0.7752 + }, + { + "start": 9363.9, + "end": 9368.72, + "probability": 0.6453 + }, + { + "start": 9370.4, + "end": 9373.18, + "probability": 0.584 + }, + { + "start": 9373.42, + "end": 9375.62, + "probability": 0.6551 + }, + { + "start": 9376.58, + "end": 9378.14, + "probability": 0.5879 + }, + { + "start": 9379.24, + "end": 9381.18, + "probability": 0.9584 + }, + { + "start": 9382.08, + "end": 9389.78, + "probability": 0.9065 + }, + { + "start": 9390.34, + "end": 9392.74, + "probability": 0.7566 + }, + { + "start": 9393.34, + "end": 9396.7, + "probability": 0.9209 + }, + { + "start": 9397.2, + "end": 9400.0, + "probability": 0.7312 + }, + { + "start": 9401.16, + "end": 9401.46, + "probability": 0.7468 + }, + { + "start": 9402.68, + "end": 9405.12, + "probability": 0.8421 + }, + { + "start": 9405.62, + "end": 9408.32, + "probability": 0.9918 + }, + { + "start": 9408.46, + "end": 9410.24, + "probability": 0.8828 + }, + { + "start": 9410.74, + "end": 9411.92, + "probability": 0.6245 + }, + { + "start": 9412.02, + "end": 9413.0, + "probability": 0.5325 + }, + { + "start": 9413.2, + "end": 9415.84, + "probability": 0.9738 + }, + { + "start": 9416.14, + "end": 9418.18, + "probability": 0.8189 + }, + { + "start": 9418.62, + "end": 9420.26, + "probability": 0.7234 + }, + { + "start": 9420.7, + "end": 9422.92, + "probability": 0.8643 + }, + { + "start": 9423.44, + "end": 9426.22, + "probability": 0.8034 + }, + { + "start": 9427.1, + "end": 9428.12, + "probability": 0.9385 + }, + { + "start": 9428.72, + "end": 9429.38, + "probability": 0.922 + }, + { + "start": 9429.9, + "end": 9430.76, + "probability": 0.871 + }, + { + "start": 9431.5, + "end": 9432.56, + "probability": 0.9838 + }, + { + "start": 9433.04, + "end": 9435.06, + "probability": 0.5693 + }, + { + "start": 9435.2, + "end": 9436.92, + "probability": 0.5164 + }, + { + "start": 9437.0, + "end": 9440.02, + "probability": 0.8911 + }, + { + "start": 9440.2, + "end": 9444.42, + "probability": 0.9792 + }, + { + "start": 9446.16, + "end": 9448.8, + "probability": 0.8063 + }, + { + "start": 9449.08, + "end": 9450.56, + "probability": 0.6078 + }, + { + "start": 9450.68, + "end": 9450.9, + "probability": 0.8708 + }, + { + "start": 9451.78, + "end": 9453.96, + "probability": 0.8372 + }, + { + "start": 9454.68, + "end": 9457.22, + "probability": 0.7364 + }, + { + "start": 9459.01, + "end": 9463.92, + "probability": 0.6985 + }, + { + "start": 9464.34, + "end": 9466.78, + "probability": 0.0423 + }, + { + "start": 9466.92, + "end": 9466.92, + "probability": 0.1714 + }, + { + "start": 9466.94, + "end": 9466.94, + "probability": 0.2747 + }, + { + "start": 9466.94, + "end": 9466.94, + "probability": 0.0232 + }, + { + "start": 9474.5, + "end": 9474.86, + "probability": 0.0056 + }, + { + "start": 9474.86, + "end": 9474.86, + "probability": 0.1029 + }, + { + "start": 9474.86, + "end": 9478.84, + "probability": 0.8759 + }, + { + "start": 9478.94, + "end": 9481.1, + "probability": 0.8757 + }, + { + "start": 9481.12, + "end": 9482.82, + "probability": 0.823 + }, + { + "start": 9483.84, + "end": 9485.9, + "probability": 0.6167 + }, + { + "start": 9487.24, + "end": 9490.72, + "probability": 0.8366 + }, + { + "start": 9492.24, + "end": 9493.58, + "probability": 0.8636 + }, + { + "start": 9494.06, + "end": 9494.84, + "probability": 0.6875 + }, + { + "start": 9495.24, + "end": 9497.04, + "probability": 0.9884 + }, + { + "start": 9498.06, + "end": 9500.9, + "probability": 0.2384 + }, + { + "start": 9508.0, + "end": 9508.0, + "probability": 0.0031 + }, + { + "start": 9508.0, + "end": 9508.0, + "probability": 0.0585 + }, + { + "start": 9508.0, + "end": 9508.0, + "probability": 0.1953 + }, + { + "start": 9508.0, + "end": 9508.0, + "probability": 0.0669 + }, + { + "start": 9508.0, + "end": 9509.72, + "probability": 0.6342 + }, + { + "start": 9510.7, + "end": 9512.6, + "probability": 0.8505 + }, + { + "start": 9513.26, + "end": 9514.32, + "probability": 0.4957 + }, + { + "start": 9515.1, + "end": 9516.32, + "probability": 0.5985 + }, + { + "start": 9516.36, + "end": 9516.66, + "probability": 0.3614 + }, + { + "start": 9516.84, + "end": 9517.76, + "probability": 0.9384 + }, + { + "start": 9518.32, + "end": 9518.52, + "probability": 0.7137 + }, + { + "start": 9519.2, + "end": 9520.2, + "probability": 0.059 + }, + { + "start": 9520.34, + "end": 9520.48, + "probability": 0.4125 + }, + { + "start": 9520.64, + "end": 9520.9, + "probability": 0.8625 + }, + { + "start": 9523.22, + "end": 9531.9, + "probability": 0.8192 + }, + { + "start": 9532.52, + "end": 9535.16, + "probability": 0.7659 + }, + { + "start": 9536.7, + "end": 9539.0, + "probability": 0.9911 + }, + { + "start": 9539.72, + "end": 9542.58, + "probability": 0.9951 + }, + { + "start": 9544.34, + "end": 9547.02, + "probability": 0.9903 + }, + { + "start": 9547.88, + "end": 9550.72, + "probability": 0.9701 + }, + { + "start": 9551.56, + "end": 9555.72, + "probability": 0.934 + }, + { + "start": 9556.76, + "end": 9557.28, + "probability": 0.9738 + }, + { + "start": 9557.86, + "end": 9559.5, + "probability": 0.7953 + }, + { + "start": 9560.26, + "end": 9563.0, + "probability": 0.8484 + }, + { + "start": 9563.64, + "end": 9565.0, + "probability": 0.9476 + }, + { + "start": 9565.98, + "end": 9566.46, + "probability": 0.7716 + }, + { + "start": 9568.52, + "end": 9571.98, + "probability": 0.9609 + }, + { + "start": 9571.98, + "end": 9576.18, + "probability": 0.8789 + }, + { + "start": 9578.84, + "end": 9579.78, + "probability": 0.7803 + }, + { + "start": 9580.64, + "end": 9581.52, + "probability": 0.7969 + }, + { + "start": 9582.96, + "end": 9585.06, + "probability": 0.7647 + }, + { + "start": 9585.86, + "end": 9586.44, + "probability": 0.9669 + }, + { + "start": 9601.76, + "end": 9603.6, + "probability": 0.6367 + }, + { + "start": 9605.22, + "end": 9606.54, + "probability": 0.9003 + }, + { + "start": 9608.56, + "end": 9610.96, + "probability": 0.9712 + }, + { + "start": 9612.86, + "end": 9614.52, + "probability": 0.9761 + }, + { + "start": 9615.12, + "end": 9617.16, + "probability": 0.9798 + }, + { + "start": 9619.08, + "end": 9620.44, + "probability": 0.9966 + }, + { + "start": 9621.66, + "end": 9626.32, + "probability": 0.9976 + }, + { + "start": 9627.36, + "end": 9629.52, + "probability": 0.7149 + }, + { + "start": 9631.22, + "end": 9632.8, + "probability": 0.9784 + }, + { + "start": 9633.34, + "end": 9633.9, + "probability": 0.8726 + }, + { + "start": 9634.84, + "end": 9635.62, + "probability": 0.959 + }, + { + "start": 9637.76, + "end": 9639.2, + "probability": 0.9364 + }, + { + "start": 9640.84, + "end": 9643.86, + "probability": 0.7567 + }, + { + "start": 9648.18, + "end": 9650.48, + "probability": 0.9826 + }, + { + "start": 9651.32, + "end": 9653.74, + "probability": 0.8926 + }, + { + "start": 9654.38, + "end": 9658.48, + "probability": 0.9442 + }, + { + "start": 9659.34, + "end": 9662.16, + "probability": 0.9879 + }, + { + "start": 9667.24, + "end": 9667.86, + "probability": 0.9536 + }, + { + "start": 9669.46, + "end": 9670.06, + "probability": 0.9852 + }, + { + "start": 9670.68, + "end": 9671.2, + "probability": 0.9135 + }, + { + "start": 9673.66, + "end": 9675.3, + "probability": 0.7406 + }, + { + "start": 9677.74, + "end": 9679.16, + "probability": 0.4744 + }, + { + "start": 9680.54, + "end": 9683.36, + "probability": 0.9165 + }, + { + "start": 9684.72, + "end": 9689.2, + "probability": 0.925 + }, + { + "start": 9691.76, + "end": 9693.26, + "probability": 0.9336 + }, + { + "start": 9694.06, + "end": 9694.76, + "probability": 0.3571 + }, + { + "start": 9695.84, + "end": 9699.08, + "probability": 0.8725 + }, + { + "start": 9700.12, + "end": 9702.76, + "probability": 0.7612 + }, + { + "start": 9702.86, + "end": 9704.72, + "probability": 0.9246 + }, + { + "start": 9705.26, + "end": 9706.83, + "probability": 0.7203 + }, + { + "start": 9707.0, + "end": 9708.41, + "probability": 0.9966 + }, + { + "start": 9708.54, + "end": 9710.34, + "probability": 0.8178 + }, + { + "start": 9711.4, + "end": 9712.38, + "probability": 0.4334 + }, + { + "start": 9712.54, + "end": 9714.56, + "probability": 0.7949 + }, + { + "start": 9714.94, + "end": 9715.22, + "probability": 0.4814 + }, + { + "start": 9715.82, + "end": 9716.48, + "probability": 0.8911 + }, + { + "start": 9718.04, + "end": 9720.02, + "probability": 0.8273 + }, + { + "start": 9722.02, + "end": 9723.54, + "probability": 0.8856 + }, + { + "start": 9724.76, + "end": 9728.66, + "probability": 0.6844 + }, + { + "start": 9729.83, + "end": 9733.72, + "probability": 0.9966 + }, + { + "start": 9735.4, + "end": 9735.7, + "probability": 0.7821 + }, + { + "start": 9736.62, + "end": 9737.7, + "probability": 0.8353 + }, + { + "start": 9738.96, + "end": 9739.26, + "probability": 0.96 + }, + { + "start": 9740.28, + "end": 9740.98, + "probability": 0.993 + }, + { + "start": 9742.36, + "end": 9743.56, + "probability": 0.9985 + }, + { + "start": 9744.36, + "end": 9745.58, + "probability": 0.5826 + }, + { + "start": 9746.8, + "end": 9749.48, + "probability": 0.9258 + }, + { + "start": 9750.38, + "end": 9753.16, + "probability": 0.6829 + }, + { + "start": 9754.04, + "end": 9755.76, + "probability": 0.9307 + }, + { + "start": 9756.66, + "end": 9759.28, + "probability": 0.7823 + }, + { + "start": 9760.2, + "end": 9762.16, + "probability": 0.9015 + }, + { + "start": 9763.12, + "end": 9764.1, + "probability": 0.9039 + }, + { + "start": 9768.5, + "end": 9769.12, + "probability": 0.4795 + }, + { + "start": 9771.24, + "end": 9771.94, + "probability": 0.8327 + }, + { + "start": 9773.2, + "end": 9774.78, + "probability": 0.7431 + }, + { + "start": 9775.08, + "end": 9780.54, + "probability": 0.9338 + }, + { + "start": 9782.0, + "end": 9788.72, + "probability": 0.9507 + }, + { + "start": 9791.04, + "end": 9792.36, + "probability": 0.8394 + }, + { + "start": 9793.79, + "end": 9796.67, + "probability": 0.999 + }, + { + "start": 9797.74, + "end": 9800.54, + "probability": 0.9994 + }, + { + "start": 9801.14, + "end": 9802.12, + "probability": 0.2372 + }, + { + "start": 9804.08, + "end": 9805.02, + "probability": 0.5454 + }, + { + "start": 9805.7, + "end": 9807.0, + "probability": 0.8882 + }, + { + "start": 9808.2, + "end": 9809.68, + "probability": 0.89 + }, + { + "start": 9810.22, + "end": 9813.16, + "probability": 0.9294 + }, + { + "start": 9813.92, + "end": 9816.28, + "probability": 0.9995 + }, + { + "start": 9817.46, + "end": 9820.18, + "probability": 0.9968 + }, + { + "start": 9821.18, + "end": 9824.82, + "probability": 0.9976 + }, + { + "start": 9827.18, + "end": 9828.74, + "probability": 0.9848 + }, + { + "start": 9830.46, + "end": 9832.38, + "probability": 0.9949 + }, + { + "start": 9833.32, + "end": 9834.64, + "probability": 0.9782 + }, + { + "start": 9835.98, + "end": 9839.02, + "probability": 0.9978 + }, + { + "start": 9840.16, + "end": 9843.94, + "probability": 0.8849 + }, + { + "start": 9845.04, + "end": 9846.72, + "probability": 0.4995 + }, + { + "start": 9847.72, + "end": 9850.86, + "probability": 0.9912 + }, + { + "start": 9852.16, + "end": 9854.12, + "probability": 0.8581 + }, + { + "start": 9854.76, + "end": 9855.36, + "probability": 0.8757 + }, + { + "start": 9856.1, + "end": 9857.24, + "probability": 0.8152 + }, + { + "start": 9858.38, + "end": 9860.0, + "probability": 0.8867 + }, + { + "start": 9862.3, + "end": 9863.38, + "probability": 0.9386 + }, + { + "start": 9863.48, + "end": 9863.52, + "probability": 0.281 + }, + { + "start": 9863.52, + "end": 9864.06, + "probability": 0.8394 + }, + { + "start": 9864.46, + "end": 9866.48, + "probability": 0.662 + }, + { + "start": 9866.86, + "end": 9867.52, + "probability": 0.6911 + }, + { + "start": 9868.5, + "end": 9871.06, + "probability": 0.9976 + }, + { + "start": 9871.9, + "end": 9872.94, + "probability": 0.7739 + }, + { + "start": 9873.42, + "end": 9876.78, + "probability": 0.9983 + }, + { + "start": 9877.2, + "end": 9878.46, + "probability": 0.7139 + }, + { + "start": 9878.94, + "end": 9880.12, + "probability": 0.9273 + }, + { + "start": 9880.6, + "end": 9883.46, + "probability": 0.9603 + }, + { + "start": 9883.8, + "end": 9884.24, + "probability": 0.866 + }, + { + "start": 9884.4, + "end": 9886.36, + "probability": 0.8882 + }, + { + "start": 9886.72, + "end": 9891.2, + "probability": 0.9513 + }, + { + "start": 9891.62, + "end": 9892.4, + "probability": 0.8663 + }, + { + "start": 9910.04, + "end": 9910.6, + "probability": 0.1586 + }, + { + "start": 9911.14, + "end": 9912.3, + "probability": 0.6835 + }, + { + "start": 9913.72, + "end": 9914.64, + "probability": 0.7412 + }, + { + "start": 9914.82, + "end": 9916.4, + "probability": 0.9356 + }, + { + "start": 9916.52, + "end": 9917.42, + "probability": 0.824 + }, + { + "start": 9919.48, + "end": 9921.92, + "probability": 0.5893 + }, + { + "start": 9924.79, + "end": 9928.16, + "probability": 0.597 + }, + { + "start": 9928.78, + "end": 9929.38, + "probability": 0.9492 + }, + { + "start": 9931.72, + "end": 9931.82, + "probability": 0.7117 + }, + { + "start": 9933.16, + "end": 9934.84, + "probability": 0.943 + }, + { + "start": 9935.28, + "end": 9937.06, + "probability": 0.7852 + }, + { + "start": 9937.94, + "end": 9939.96, + "probability": 0.9866 + }, + { + "start": 9940.78, + "end": 9943.56, + "probability": 0.9961 + }, + { + "start": 9945.12, + "end": 9947.18, + "probability": 0.7838 + }, + { + "start": 9947.66, + "end": 9949.5, + "probability": 0.5114 + }, + { + "start": 9950.2, + "end": 9950.82, + "probability": 0.4963 + }, + { + "start": 9951.1, + "end": 9952.68, + "probability": 0.8616 + }, + { + "start": 9952.76, + "end": 9954.26, + "probability": 0.8008 + }, + { + "start": 9954.9, + "end": 9957.1, + "probability": 0.9899 + }, + { + "start": 9957.76, + "end": 9960.2, + "probability": 0.9591 + }, + { + "start": 9960.2, + "end": 9964.52, + "probability": 0.9576 + }, + { + "start": 9965.26, + "end": 9968.46, + "probability": 0.6977 + }, + { + "start": 9968.84, + "end": 9970.2, + "probability": 0.6001 + }, + { + "start": 9970.28, + "end": 9971.58, + "probability": 0.856 + }, + { + "start": 9973.2, + "end": 9979.36, + "probability": 0.6394 + }, + { + "start": 9980.18, + "end": 9982.06, + "probability": 0.5336 + }, + { + "start": 9982.16, + "end": 9983.26, + "probability": 0.2205 + }, + { + "start": 9984.4, + "end": 9986.14, + "probability": 0.522 + }, + { + "start": 9986.72, + "end": 9989.2, + "probability": 0.8716 + }, + { + "start": 9991.62, + "end": 9995.48, + "probability": 0.763 + }, + { + "start": 9996.42, + "end": 9999.72, + "probability": 0.9777 + }, + { + "start": 10000.2, + "end": 10001.34, + "probability": 0.4926 + }, + { + "start": 10001.6, + "end": 10001.7, + "probability": 0.459 + }, + { + "start": 10002.74, + "end": 10002.88, + "probability": 0.8608 + }, + { + "start": 10003.92, + "end": 10009.76, + "probability": 0.9272 + }, + { + "start": 10009.84, + "end": 10010.84, + "probability": 0.8633 + }, + { + "start": 10011.6, + "end": 10011.7, + "probability": 0.6912 + }, + { + "start": 10012.38, + "end": 10013.86, + "probability": 0.6112 + }, + { + "start": 10014.1, + "end": 10016.2, + "probability": 0.4434 + }, + { + "start": 10016.44, + "end": 10017.52, + "probability": 0.7856 + }, + { + "start": 10017.84, + "end": 10018.54, + "probability": 0.3557 + }, + { + "start": 10018.62, + "end": 10018.62, + "probability": 0.7622 + }, + { + "start": 10018.66, + "end": 10019.04, + "probability": 0.8768 + }, + { + "start": 10019.04, + "end": 10021.98, + "probability": 0.5297 + }, + { + "start": 10022.14, + "end": 10023.14, + "probability": 0.8159 + }, + { + "start": 10023.24, + "end": 10023.6, + "probability": 0.4199 + }, + { + "start": 10031.14, + "end": 10031.72, + "probability": 0.7961 + }, + { + "start": 10032.52, + "end": 10035.12, + "probability": 0.801 + }, + { + "start": 10035.12, + "end": 10038.26, + "probability": 0.8135 + }, + { + "start": 10038.84, + "end": 10039.72, + "probability": 0.797 + }, + { + "start": 10040.24, + "end": 10044.72, + "probability": 0.984 + }, + { + "start": 10044.72, + "end": 10045.26, + "probability": 0.7639 + }, + { + "start": 10046.46, + "end": 10048.5, + "probability": 0.7227 + }, + { + "start": 10049.48, + "end": 10049.74, + "probability": 0.7727 + }, + { + "start": 10050.7, + "end": 10054.7, + "probability": 0.7539 + }, + { + "start": 10055.1, + "end": 10056.06, + "probability": 0.5025 + }, + { + "start": 10056.66, + "end": 10062.08, + "probability": 0.7932 + }, + { + "start": 10063.14, + "end": 10068.04, + "probability": 0.6907 + }, + { + "start": 10068.74, + "end": 10070.58, + "probability": 0.9427 + }, + { + "start": 10072.0, + "end": 10073.82, + "probability": 0.3903 + }, + { + "start": 10074.76, + "end": 10076.92, + "probability": 0.9198 + }, + { + "start": 10078.46, + "end": 10078.58, + "probability": 0.5582 + }, + { + "start": 10078.66, + "end": 10080.64, + "probability": 0.9902 + }, + { + "start": 10080.92, + "end": 10082.1, + "probability": 0.3898 + }, + { + "start": 10083.22, + "end": 10083.9, + "probability": 0.3799 + }, + { + "start": 10084.2, + "end": 10084.49, + "probability": 0.0037 + }, + { + "start": 10085.0, + "end": 10086.24, + "probability": 0.7686 + }, + { + "start": 10086.42, + "end": 10089.42, + "probability": 0.824 + }, + { + "start": 10092.84, + "end": 10093.06, + "probability": 0.1563 + }, + { + "start": 10093.06, + "end": 10093.06, + "probability": 0.2787 + }, + { + "start": 10093.06, + "end": 10094.74, + "probability": 0.7638 + }, + { + "start": 10095.58, + "end": 10100.44, + "probability": 0.881 + }, + { + "start": 10101.24, + "end": 10105.36, + "probability": 0.8101 + }, + { + "start": 10106.08, + "end": 10107.22, + "probability": 0.5774 + }, + { + "start": 10107.92, + "end": 10111.46, + "probability": 0.947 + }, + { + "start": 10111.46, + "end": 10114.9, + "probability": 0.8148 + }, + { + "start": 10115.7, + "end": 10119.38, + "probability": 0.9587 + }, + { + "start": 10119.76, + "end": 10120.22, + "probability": 0.8325 + }, + { + "start": 10121.24, + "end": 10123.66, + "probability": 0.7478 + }, + { + "start": 10123.84, + "end": 10126.64, + "probability": 0.9653 + }, + { + "start": 10127.9, + "end": 10128.04, + "probability": 0.1611 + }, + { + "start": 10128.68, + "end": 10131.5, + "probability": 0.8643 + }, + { + "start": 10132.0, + "end": 10132.72, + "probability": 0.6078 + }, + { + "start": 10133.58, + "end": 10134.13, + "probability": 0.3259 + }, + { + "start": 10135.08, + "end": 10136.82, + "probability": 0.9366 + }, + { + "start": 10138.18, + "end": 10140.24, + "probability": 0.5239 + }, + { + "start": 10140.76, + "end": 10142.12, + "probability": 0.8563 + }, + { + "start": 10142.94, + "end": 10144.58, + "probability": 0.9176 + }, + { + "start": 10145.42, + "end": 10145.76, + "probability": 0.9404 + }, + { + "start": 10146.96, + "end": 10149.22, + "probability": 0.5832 + }, + { + "start": 10149.7, + "end": 10149.88, + "probability": 0.6824 + }, + { + "start": 10150.4, + "end": 10150.4, + "probability": 0.3948 + }, + { + "start": 10150.72, + "end": 10153.46, + "probability": 0.8332 + }, + { + "start": 10153.46, + "end": 10154.06, + "probability": 0.8692 + }, + { + "start": 10154.2, + "end": 10154.78, + "probability": 0.568 + }, + { + "start": 10155.58, + "end": 10159.0, + "probability": 0.8428 + }, + { + "start": 10159.04, + "end": 10159.36, + "probability": 0.1055 + }, + { + "start": 10159.38, + "end": 10160.92, + "probability": 0.5287 + }, + { + "start": 10162.4, + "end": 10167.02, + "probability": 0.9453 + }, + { + "start": 10167.34, + "end": 10169.54, + "probability": 0.7939 + }, + { + "start": 10169.68, + "end": 10173.22, + "probability": 0.9161 + }, + { + "start": 10174.08, + "end": 10176.92, + "probability": 0.6299 + }, + { + "start": 10177.52, + "end": 10182.06, + "probability": 0.6904 + }, + { + "start": 10182.1, + "end": 10182.52, + "probability": 0.4034 + }, + { + "start": 10182.78, + "end": 10185.52, + "probability": 0.9199 + }, + { + "start": 10186.18, + "end": 10189.66, + "probability": 0.723 + }, + { + "start": 10190.42, + "end": 10192.7, + "probability": 0.835 + }, + { + "start": 10193.69, + "end": 10195.02, + "probability": 0.6077 + }, + { + "start": 10195.62, + "end": 10197.6, + "probability": 0.5752 + }, + { + "start": 10198.16, + "end": 10198.44, + "probability": 0.5193 + }, + { + "start": 10199.04, + "end": 10200.58, + "probability": 0.7419 + }, + { + "start": 10200.58, + "end": 10202.86, + "probability": 0.6684 + }, + { + "start": 10203.52, + "end": 10204.42, + "probability": 0.8495 + }, + { + "start": 10204.52, + "end": 10207.3, + "probability": 0.9176 + }, + { + "start": 10207.3, + "end": 10209.12, + "probability": 0.8379 + }, + { + "start": 10209.98, + "end": 10212.3, + "probability": 0.8295 + }, + { + "start": 10212.4, + "end": 10214.94, + "probability": 0.5235 + }, + { + "start": 10215.04, + "end": 10217.06, + "probability": 0.8874 + }, + { + "start": 10218.24, + "end": 10219.62, + "probability": 0.7666 + }, + { + "start": 10220.74, + "end": 10222.1, + "probability": 0.5663 + }, + { + "start": 10223.22, + "end": 10224.1, + "probability": 0.3467 + }, + { + "start": 10224.24, + "end": 10224.9, + "probability": 0.3946 + }, + { + "start": 10225.08, + "end": 10226.02, + "probability": 0.908 + }, + { + "start": 10226.64, + "end": 10227.14, + "probability": 0.9663 + }, + { + "start": 10227.94, + "end": 10228.46, + "probability": 0.5291 + }, + { + "start": 10228.86, + "end": 10230.02, + "probability": 0.5448 + }, + { + "start": 10231.26, + "end": 10234.8, + "probability": 0.5605 + }, + { + "start": 10235.56, + "end": 10236.46, + "probability": 0.4981 + }, + { + "start": 10237.24, + "end": 10239.66, + "probability": 0.2394 + }, + { + "start": 10240.46, + "end": 10242.84, + "probability": 0.7325 + }, + { + "start": 10244.1, + "end": 10246.54, + "probability": 0.7256 + }, + { + "start": 10246.6, + "end": 10249.52, + "probability": 0.8554 + }, + { + "start": 10250.26, + "end": 10253.08, + "probability": 0.8798 + }, + { + "start": 10254.72, + "end": 10255.14, + "probability": 0.4788 + }, + { + "start": 10255.22, + "end": 10259.74, + "probability": 0.7822 + }, + { + "start": 10260.52, + "end": 10262.38, + "probability": 0.6323 + }, + { + "start": 10262.66, + "end": 10263.1, + "probability": 0.3447 + }, + { + "start": 10263.22, + "end": 10263.68, + "probability": 0.3666 + }, + { + "start": 10263.82, + "end": 10266.62, + "probability": 0.7885 + }, + { + "start": 10267.46, + "end": 10270.88, + "probability": 0.6938 + }, + { + "start": 10271.8, + "end": 10275.16, + "probability": 0.9364 + }, + { + "start": 10277.08, + "end": 10277.16, + "probability": 0.3082 + }, + { + "start": 10277.24, + "end": 10277.72, + "probability": 0.5135 + }, + { + "start": 10281.52, + "end": 10285.68, + "probability": 0.6422 + }, + { + "start": 10285.74, + "end": 10286.7, + "probability": 0.4069 + }, + { + "start": 10287.3, + "end": 10288.04, + "probability": 0.5469 + }, + { + "start": 10288.1, + "end": 10288.32, + "probability": 0.4254 + }, + { + "start": 10289.14, + "end": 10289.94, + "probability": 0.5596 + }, + { + "start": 10290.42, + "end": 10290.66, + "probability": 0.7899 + }, + { + "start": 10291.7, + "end": 10293.68, + "probability": 0.8155 + }, + { + "start": 10293.88, + "end": 10296.16, + "probability": 0.7418 + }, + { + "start": 10296.16, + "end": 10299.36, + "probability": 0.8546 + }, + { + "start": 10300.16, + "end": 10303.86, + "probability": 0.8142 + }, + { + "start": 10305.68, + "end": 10309.0, + "probability": 0.8412 + }, + { + "start": 10309.0, + "end": 10311.54, + "probability": 0.9491 + }, + { + "start": 10312.54, + "end": 10313.82, + "probability": 0.8263 + }, + { + "start": 10314.42, + "end": 10318.74, + "probability": 0.8982 + }, + { + "start": 10318.74, + "end": 10321.98, + "probability": 0.8085 + }, + { + "start": 10322.48, + "end": 10323.22, + "probability": 0.8669 + }, + { + "start": 10323.88, + "end": 10325.98, + "probability": 0.8826 + }, + { + "start": 10325.98, + "end": 10328.34, + "probability": 0.8395 + }, + { + "start": 10329.2, + "end": 10333.22, + "probability": 0.7834 + }, + { + "start": 10333.62, + "end": 10333.74, + "probability": 0.2867 + }, + { + "start": 10334.1, + "end": 10334.68, + "probability": 0.4223 + }, + { + "start": 10334.76, + "end": 10337.9, + "probability": 0.6802 + }, + { + "start": 10338.7, + "end": 10338.94, + "probability": 0.7667 + }, + { + "start": 10339.04, + "end": 10342.52, + "probability": 0.8565 + }, + { + "start": 10342.52, + "end": 10345.14, + "probability": 0.7908 + }, + { + "start": 10345.8, + "end": 10347.04, + "probability": 0.5839 + }, + { + "start": 10347.14, + "end": 10349.02, + "probability": 0.7067 + }, + { + "start": 10349.88, + "end": 10351.82, + "probability": 0.8818 + }, + { + "start": 10352.76, + "end": 10352.76, + "probability": 0.3259 + }, + { + "start": 10352.78, + "end": 10353.4, + "probability": 0.8674 + }, + { + "start": 10353.5, + "end": 10356.42, + "probability": 0.8097 + }, + { + "start": 10357.14, + "end": 10359.36, + "probability": 0.9036 + }, + { + "start": 10360.24, + "end": 10362.64, + "probability": 0.7796 + }, + { + "start": 10362.7, + "end": 10364.98, + "probability": 0.8647 + }, + { + "start": 10365.72, + "end": 10367.02, + "probability": 0.8079 + }, + { + "start": 10368.0, + "end": 10372.76, + "probability": 0.715 + }, + { + "start": 10372.76, + "end": 10375.4, + "probability": 0.7985 + }, + { + "start": 10376.34, + "end": 10376.58, + "probability": 0.9814 + }, + { + "start": 10379.3, + "end": 10381.44, + "probability": 0.8104 + }, + { + "start": 10382.4, + "end": 10385.48, + "probability": 0.7593 + }, + { + "start": 10386.16, + "end": 10386.26, + "probability": 0.3979 + }, + { + "start": 10386.58, + "end": 10388.84, + "probability": 0.6423 + }, + { + "start": 10388.88, + "end": 10390.82, + "probability": 0.8828 + }, + { + "start": 10391.5, + "end": 10392.22, + "probability": 0.9836 + }, + { + "start": 10392.9, + "end": 10395.04, + "probability": 0.8688 + }, + { + "start": 10395.28, + "end": 10398.5, + "probability": 0.9442 + }, + { + "start": 10400.05, + "end": 10402.62, + "probability": 0.9507 + }, + { + "start": 10404.02, + "end": 10404.46, + "probability": 0.8213 + }, + { + "start": 10404.8, + "end": 10405.82, + "probability": 0.9264 + }, + { + "start": 10405.98, + "end": 10406.64, + "probability": 0.4693 + }, + { + "start": 10406.76, + "end": 10409.08, + "probability": 0.844 + }, + { + "start": 10409.74, + "end": 10410.94, + "probability": 0.7326 + }, + { + "start": 10411.1, + "end": 10413.14, + "probability": 0.9607 + }, + { + "start": 10413.9, + "end": 10415.56, + "probability": 0.8939 + }, + { + "start": 10416.4, + "end": 10420.2, + "probability": 0.8528 + }, + { + "start": 10422.8, + "end": 10428.56, + "probability": 0.9938 + }, + { + "start": 10429.4, + "end": 10433.0, + "probability": 0.9115 + }, + { + "start": 10433.2, + "end": 10434.48, + "probability": 0.7009 + }, + { + "start": 10435.16, + "end": 10435.58, + "probability": 0.9214 + }, + { + "start": 10438.28, + "end": 10438.8, + "probability": 0.4894 + }, + { + "start": 10440.08, + "end": 10444.62, + "probability": 0.9399 + }, + { + "start": 10445.82, + "end": 10449.5, + "probability": 0.8828 + }, + { + "start": 10449.76, + "end": 10451.18, + "probability": 0.9634 + }, + { + "start": 10452.06, + "end": 10455.86, + "probability": 0.756 + }, + { + "start": 10456.78, + "end": 10457.76, + "probability": 0.804 + }, + { + "start": 10458.04, + "end": 10458.52, + "probability": 0.4508 + }, + { + "start": 10460.26, + "end": 10460.76, + "probability": 0.7436 + }, + { + "start": 10461.4, + "end": 10463.02, + "probability": 0.7295 + }, + { + "start": 10463.38, + "end": 10464.28, + "probability": 0.4932 + }, + { + "start": 10464.5, + "end": 10467.14, + "probability": 0.452 + }, + { + "start": 10467.14, + "end": 10468.62, + "probability": 0.8394 + }, + { + "start": 10468.72, + "end": 10469.8, + "probability": 0.9718 + }, + { + "start": 10470.96, + "end": 10472.58, + "probability": 0.859 + }, + { + "start": 10472.64, + "end": 10474.22, + "probability": 0.9054 + }, + { + "start": 10475.06, + "end": 10477.46, + "probability": 0.7175 + }, + { + "start": 10478.14, + "end": 10480.36, + "probability": 0.7937 + }, + { + "start": 10481.34, + "end": 10484.04, + "probability": 0.5632 + }, + { + "start": 10484.34, + "end": 10485.92, + "probability": 0.9639 + }, + { + "start": 10486.64, + "end": 10487.72, + "probability": 0.7156 + }, + { + "start": 10489.11, + "end": 10493.12, + "probability": 0.8441 + }, + { + "start": 10493.76, + "end": 10497.58, + "probability": 0.6374 + }, + { + "start": 10497.96, + "end": 10500.74, + "probability": 0.6346 + }, + { + "start": 10501.96, + "end": 10502.36, + "probability": 0.6133 + }, + { + "start": 10503.54, + "end": 10505.08, + "probability": 0.7026 + }, + { + "start": 10506.16, + "end": 10508.71, + "probability": 0.7499 + }, + { + "start": 10510.06, + "end": 10510.68, + "probability": 0.5964 + }, + { + "start": 10510.84, + "end": 10513.14, + "probability": 0.8285 + }, + { + "start": 10515.02, + "end": 10518.16, + "probability": 0.6077 + }, + { + "start": 10518.22, + "end": 10520.36, + "probability": 0.9606 + }, + { + "start": 10521.04, + "end": 10524.04, + "probability": 0.9648 + }, + { + "start": 10524.2, + "end": 10526.24, + "probability": 0.6122 + }, + { + "start": 10526.5, + "end": 10527.1, + "probability": 0.715 + }, + { + "start": 10527.82, + "end": 10532.97, + "probability": 0.4737 + }, + { + "start": 10533.0, + "end": 10533.02, + "probability": 0.4863 + }, + { + "start": 10533.02, + "end": 10533.02, + "probability": 0.488 + }, + { + "start": 10533.02, + "end": 10533.32, + "probability": 0.5392 + }, + { + "start": 10533.54, + "end": 10534.02, + "probability": 0.8652 + }, + { + "start": 10534.5, + "end": 10535.72, + "probability": 0.9424 + }, + { + "start": 10536.88, + "end": 10539.14, + "probability": 0.9196 + }, + { + "start": 10542.16, + "end": 10543.46, + "probability": 0.5049 + }, + { + "start": 10543.52, + "end": 10544.12, + "probability": 0.6254 + }, + { + "start": 10544.14, + "end": 10544.78, + "probability": 0.8037 + }, + { + "start": 10544.98, + "end": 10545.78, + "probability": 0.9434 + }, + { + "start": 10552.64, + "end": 10552.64, + "probability": 0.1978 + }, + { + "start": 10552.64, + "end": 10552.64, + "probability": 0.1573 + }, + { + "start": 10552.64, + "end": 10552.64, + "probability": 0.092 + }, + { + "start": 10552.64, + "end": 10552.66, + "probability": 0.1529 + }, + { + "start": 10552.66, + "end": 10552.86, + "probability": 0.0159 + }, + { + "start": 10572.64, + "end": 10575.12, + "probability": 0.6161 + }, + { + "start": 10575.64, + "end": 10577.36, + "probability": 0.8408 + }, + { + "start": 10577.56, + "end": 10580.28, + "probability": 0.9829 + }, + { + "start": 10580.34, + "end": 10581.46, + "probability": 0.8472 + }, + { + "start": 10582.04, + "end": 10582.04, + "probability": 0.1039 + }, + { + "start": 10582.26, + "end": 10583.4, + "probability": 0.2765 + }, + { + "start": 10587.83, + "end": 10591.4, + "probability": 0.8497 + }, + { + "start": 10591.86, + "end": 10591.9, + "probability": 0.0513 + }, + { + "start": 10591.9, + "end": 10591.9, + "probability": 0.0362 + }, + { + "start": 10591.9, + "end": 10593.61, + "probability": 0.9337 + }, + { + "start": 10594.62, + "end": 10595.96, + "probability": 0.9538 + }, + { + "start": 10599.5, + "end": 10601.09, + "probability": 0.994 + }, + { + "start": 10602.48, + "end": 10603.54, + "probability": 0.4907 + }, + { + "start": 10603.6, + "end": 10606.18, + "probability": 0.9567 + }, + { + "start": 10606.7, + "end": 10608.42, + "probability": 0.8499 + }, + { + "start": 10608.6, + "end": 10609.12, + "probability": 0.8433 + }, + { + "start": 10609.24, + "end": 10610.66, + "probability": 0.3958 + }, + { + "start": 10611.06, + "end": 10611.28, + "probability": 0.4322 + }, + { + "start": 10611.3, + "end": 10611.6, + "probability": 0.822 + }, + { + "start": 10614.6, + "end": 10618.62, + "probability": 0.7049 + }, + { + "start": 10619.4, + "end": 10621.0, + "probability": 0.5761 + }, + { + "start": 10621.86, + "end": 10622.9, + "probability": 0.9303 + }, + { + "start": 10623.0, + "end": 10626.72, + "probability": 0.9803 + }, + { + "start": 10626.72, + "end": 10629.74, + "probability": 0.9866 + }, + { + "start": 10630.34, + "end": 10632.86, + "probability": 0.9719 + }, + { + "start": 10632.92, + "end": 10635.84, + "probability": 0.9867 + }, + { + "start": 10636.26, + "end": 10637.0, + "probability": 0.7816 + }, + { + "start": 10638.1, + "end": 10638.36, + "probability": 0.5645 + }, + { + "start": 10638.52, + "end": 10641.83, + "probability": 0.9738 + }, + { + "start": 10643.95, + "end": 10650.96, + "probability": 0.9553 + }, + { + "start": 10651.02, + "end": 10652.74, + "probability": 0.9638 + }, + { + "start": 10652.82, + "end": 10657.64, + "probability": 0.8315 + }, + { + "start": 10658.52, + "end": 10660.58, + "probability": 0.6692 + }, + { + "start": 10661.18, + "end": 10665.46, + "probability": 0.9314 + }, + { + "start": 10665.46, + "end": 10671.54, + "probability": 0.9849 + }, + { + "start": 10672.62, + "end": 10675.24, + "probability": 0.7685 + }, + { + "start": 10675.32, + "end": 10679.26, + "probability": 0.9807 + }, + { + "start": 10679.78, + "end": 10681.84, + "probability": 0.9894 + }, + { + "start": 10682.94, + "end": 10685.5, + "probability": 0.414 + }, + { + "start": 10686.0, + "end": 10688.08, + "probability": 0.9297 + }, + { + "start": 10688.62, + "end": 10689.92, + "probability": 0.2828 + }, + { + "start": 10690.8, + "end": 10696.44, + "probability": 0.9854 + }, + { + "start": 10697.32, + "end": 10699.24, + "probability": 0.8467 + }, + { + "start": 10699.82, + "end": 10702.18, + "probability": 0.6326 + }, + { + "start": 10702.92, + "end": 10705.56, + "probability": 0.8158 + }, + { + "start": 10705.7, + "end": 10706.24, + "probability": 0.7944 + }, + { + "start": 10706.86, + "end": 10711.84, + "probability": 0.97 + }, + { + "start": 10713.65, + "end": 10717.16, + "probability": 0.8124 + }, + { + "start": 10718.3, + "end": 10720.83, + "probability": 0.9712 + }, + { + "start": 10721.14, + "end": 10722.22, + "probability": 0.8278 + }, + { + "start": 10723.02, + "end": 10726.48, + "probability": 0.9909 + }, + { + "start": 10726.6, + "end": 10727.04, + "probability": 0.3631 + }, + { + "start": 10727.04, + "end": 10727.54, + "probability": 0.5279 + }, + { + "start": 10727.7, + "end": 10734.34, + "probability": 0.9843 + }, + { + "start": 10735.22, + "end": 10737.9, + "probability": 0.9779 + }, + { + "start": 10738.82, + "end": 10741.72, + "probability": 0.8912 + }, + { + "start": 10742.44, + "end": 10745.64, + "probability": 0.9609 + }, + { + "start": 10745.82, + "end": 10747.12, + "probability": 0.7891 + }, + { + "start": 10747.8, + "end": 10751.26, + "probability": 0.7467 + }, + { + "start": 10751.98, + "end": 10753.4, + "probability": 0.9694 + }, + { + "start": 10754.04, + "end": 10755.58, + "probability": 0.8171 + }, + { + "start": 10755.74, + "end": 10760.58, + "probability": 0.9655 + }, + { + "start": 10761.52, + "end": 10767.5, + "probability": 0.9326 + }, + { + "start": 10767.98, + "end": 10769.54, + "probability": 0.7638 + }, + { + "start": 10769.68, + "end": 10774.62, + "probability": 0.8892 + }, + { + "start": 10774.72, + "end": 10779.12, + "probability": 0.979 + }, + { + "start": 10779.72, + "end": 10782.7, + "probability": 0.9856 + }, + { + "start": 10782.98, + "end": 10785.88, + "probability": 0.9884 + }, + { + "start": 10786.32, + "end": 10788.08, + "probability": 0.9792 + }, + { + "start": 10788.54, + "end": 10791.6, + "probability": 0.9706 + }, + { + "start": 10791.94, + "end": 10793.12, + "probability": 0.8213 + }, + { + "start": 10793.26, + "end": 10794.44, + "probability": 0.7858 + }, + { + "start": 10794.54, + "end": 10798.02, + "probability": 0.9883 + }, + { + "start": 10798.06, + "end": 10800.1, + "probability": 0.9858 + }, + { + "start": 10800.42, + "end": 10800.82, + "probability": 0.9443 + }, + { + "start": 10800.88, + "end": 10804.76, + "probability": 0.97 + }, + { + "start": 10805.16, + "end": 10808.12, + "probability": 0.988 + }, + { + "start": 10808.6, + "end": 10811.72, + "probability": 0.9763 + }, + { + "start": 10812.02, + "end": 10814.58, + "probability": 0.9836 + }, + { + "start": 10815.12, + "end": 10817.16, + "probability": 0.9972 + }, + { + "start": 10817.3, + "end": 10818.17, + "probability": 0.6686 + }, + { + "start": 10818.66, + "end": 10820.5, + "probability": 0.9855 + }, + { + "start": 10820.72, + "end": 10825.56, + "probability": 0.9746 + }, + { + "start": 10826.08, + "end": 10826.6, + "probability": 0.3557 + }, + { + "start": 10826.6, + "end": 10829.54, + "probability": 0.9971 + }, + { + "start": 10830.24, + "end": 10832.42, + "probability": 0.8303 + }, + { + "start": 10832.74, + "end": 10836.7, + "probability": 0.8766 + }, + { + "start": 10837.2, + "end": 10839.74, + "probability": 0.9599 + }, + { + "start": 10840.42, + "end": 10842.33, + "probability": 0.931 + }, + { + "start": 10843.42, + "end": 10843.78, + "probability": 0.7902 + }, + { + "start": 10844.66, + "end": 10845.62, + "probability": 0.8703 + }, + { + "start": 10846.56, + "end": 10852.12, + "probability": 0.9935 + }, + { + "start": 10852.66, + "end": 10854.38, + "probability": 0.7675 + }, + { + "start": 10854.76, + "end": 10856.64, + "probability": 0.9481 + }, + { + "start": 10856.76, + "end": 10859.78, + "probability": 0.9492 + }, + { + "start": 10859.82, + "end": 10862.26, + "probability": 0.9504 + }, + { + "start": 10863.1, + "end": 10863.86, + "probability": 0.941 + }, + { + "start": 10864.66, + "end": 10865.58, + "probability": 0.6017 + }, + { + "start": 10866.16, + "end": 10870.58, + "probability": 0.9785 + }, + { + "start": 10871.14, + "end": 10873.82, + "probability": 0.9747 + }, + { + "start": 10873.94, + "end": 10877.9, + "probability": 0.6958 + }, + { + "start": 10878.34, + "end": 10880.66, + "probability": 0.691 + }, + { + "start": 10881.2, + "end": 10885.26, + "probability": 0.6596 + }, + { + "start": 10885.68, + "end": 10887.2, + "probability": 0.9166 + }, + { + "start": 10887.28, + "end": 10892.16, + "probability": 0.9959 + }, + { + "start": 10892.32, + "end": 10893.42, + "probability": 0.7411 + }, + { + "start": 10894.16, + "end": 10896.46, + "probability": 0.9991 + }, + { + "start": 10896.54, + "end": 10897.28, + "probability": 0.9988 + }, + { + "start": 10897.88, + "end": 10899.78, + "probability": 0.9039 + }, + { + "start": 10900.38, + "end": 10903.16, + "probability": 0.9537 + }, + { + "start": 10903.46, + "end": 10906.2, + "probability": 0.9793 + }, + { + "start": 10906.54, + "end": 10907.44, + "probability": 0.9806 + }, + { + "start": 10909.18, + "end": 10911.24, + "probability": 0.6482 + }, + { + "start": 10912.98, + "end": 10916.38, + "probability": 0.7568 + }, + { + "start": 10916.68, + "end": 10918.68, + "probability": 0.8762 + }, + { + "start": 10924.0, + "end": 10926.66, + "probability": 0.9749 + }, + { + "start": 10927.36, + "end": 10930.24, + "probability": 0.9935 + }, + { + "start": 10930.6, + "end": 10933.84, + "probability": 0.7927 + }, + { + "start": 10934.16, + "end": 10935.74, + "probability": 0.9932 + }, + { + "start": 10936.68, + "end": 10939.68, + "probability": 0.7963 + }, + { + "start": 10939.68, + "end": 10942.78, + "probability": 0.999 + }, + { + "start": 10943.14, + "end": 10945.06, + "probability": 0.9414 + }, + { + "start": 10945.16, + "end": 10945.46, + "probability": 0.4038 + }, + { + "start": 10945.6, + "end": 10948.36, + "probability": 0.9468 + }, + { + "start": 10948.46, + "end": 10949.88, + "probability": 0.9966 + }, + { + "start": 10949.92, + "end": 10951.94, + "probability": 0.9715 + }, + { + "start": 10952.46, + "end": 10957.58, + "probability": 0.9115 + }, + { + "start": 10957.58, + "end": 10961.46, + "probability": 0.9706 + }, + { + "start": 10962.02, + "end": 10964.64, + "probability": 0.9294 + }, + { + "start": 10965.77, + "end": 10968.56, + "probability": 0.9457 + }, + { + "start": 10968.72, + "end": 10969.18, + "probability": 0.5028 + }, + { + "start": 10970.4, + "end": 10973.14, + "probability": 0.7646 + }, + { + "start": 10973.84, + "end": 10975.16, + "probability": 0.5593 + }, + { + "start": 10976.22, + "end": 10977.46, + "probability": 0.9901 + }, + { + "start": 10978.2, + "end": 10979.7, + "probability": 0.9928 + }, + { + "start": 10979.7, + "end": 10982.38, + "probability": 0.8013 + }, + { + "start": 10983.5, + "end": 10984.62, + "probability": 0.2683 + }, + { + "start": 10985.28, + "end": 10989.24, + "probability": 0.8002 + }, + { + "start": 10990.06, + "end": 10995.4, + "probability": 0.9792 + }, + { + "start": 10995.76, + "end": 10997.02, + "probability": 0.8518 + }, + { + "start": 10997.28, + "end": 10997.92, + "probability": 0.9373 + }, + { + "start": 10997.98, + "end": 10998.48, + "probability": 0.7013 + }, + { + "start": 10998.54, + "end": 11000.0, + "probability": 0.9987 + }, + { + "start": 11001.1, + "end": 11005.2, + "probability": 0.9909 + }, + { + "start": 11005.26, + "end": 11006.53, + "probability": 0.9924 + }, + { + "start": 11006.96, + "end": 11012.02, + "probability": 0.9399 + }, + { + "start": 11012.12, + "end": 11013.26, + "probability": 0.7393 + }, + { + "start": 11013.72, + "end": 11014.3, + "probability": 0.6842 + }, + { + "start": 11015.38, + "end": 11015.88, + "probability": 0.532 + }, + { + "start": 11016.02, + "end": 11018.46, + "probability": 0.8849 + }, + { + "start": 11018.9, + "end": 11020.06, + "probability": 0.9709 + }, + { + "start": 11020.8, + "end": 11025.52, + "probability": 0.9155 + }, + { + "start": 11026.04, + "end": 11029.26, + "probability": 0.9407 + }, + { + "start": 11030.22, + "end": 11031.54, + "probability": 0.9753 + }, + { + "start": 11031.76, + "end": 11032.74, + "probability": 0.5476 + }, + { + "start": 11032.9, + "end": 11033.82, + "probability": 0.5803 + }, + { + "start": 11034.34, + "end": 11037.72, + "probability": 0.9902 + }, + { + "start": 11037.78, + "end": 11041.72, + "probability": 0.9738 + }, + { + "start": 11044.46, + "end": 11045.12, + "probability": 0.1805 + }, + { + "start": 11045.12, + "end": 11047.38, + "probability": 0.9675 + }, + { + "start": 11047.5, + "end": 11047.64, + "probability": 0.9016 + }, + { + "start": 11047.74, + "end": 11049.44, + "probability": 0.9786 + }, + { + "start": 11050.1, + "end": 11052.01, + "probability": 0.8416 + }, + { + "start": 11052.38, + "end": 11053.78, + "probability": 0.9978 + }, + { + "start": 11054.34, + "end": 11055.9, + "probability": 0.9775 + }, + { + "start": 11056.88, + "end": 11057.26, + "probability": 0.5248 + }, + { + "start": 11058.32, + "end": 11060.54, + "probability": 0.9953 + }, + { + "start": 11060.64, + "end": 11061.64, + "probability": 0.9703 + }, + { + "start": 11061.82, + "end": 11063.5, + "probability": 0.9771 + }, + { + "start": 11064.64, + "end": 11065.64, + "probability": 0.9063 + }, + { + "start": 11065.7, + "end": 11067.12, + "probability": 0.9844 + }, + { + "start": 11067.7, + "end": 11069.62, + "probability": 0.9526 + }, + { + "start": 11069.86, + "end": 11071.12, + "probability": 0.8222 + }, + { + "start": 11071.58, + "end": 11073.82, + "probability": 0.8048 + }, + { + "start": 11073.92, + "end": 11074.28, + "probability": 0.6863 + }, + { + "start": 11074.88, + "end": 11076.64, + "probability": 0.952 + }, + { + "start": 11077.58, + "end": 11081.16, + "probability": 0.6265 + }, + { + "start": 11081.56, + "end": 11083.94, + "probability": 0.9595 + }, + { + "start": 11084.0, + "end": 11089.74, + "probability": 0.9941 + }, + { + "start": 11089.82, + "end": 11091.3, + "probability": 0.9244 + }, + { + "start": 11092.0, + "end": 11095.4, + "probability": 0.8997 + }, + { + "start": 11096.14, + "end": 11097.32, + "probability": 0.6817 + }, + { + "start": 11097.46, + "end": 11100.26, + "probability": 0.3736 + }, + { + "start": 11100.4, + "end": 11101.72, + "probability": 0.8383 + }, + { + "start": 11101.9, + "end": 11104.07, + "probability": 0.9927 + }, + { + "start": 11104.46, + "end": 11105.48, + "probability": 0.9029 + }, + { + "start": 11105.48, + "end": 11107.12, + "probability": 0.8243 + }, + { + "start": 11109.15, + "end": 11110.54, + "probability": 0.5152 + }, + { + "start": 11110.68, + "end": 11113.2, + "probability": 0.9116 + }, + { + "start": 11113.76, + "end": 11114.22, + "probability": 0.9722 + }, + { + "start": 11115.2, + "end": 11116.1, + "probability": 0.8752 + }, + { + "start": 11117.1, + "end": 11118.8, + "probability": 0.9987 + }, + { + "start": 11119.16, + "end": 11120.82, + "probability": 0.7342 + }, + { + "start": 11120.98, + "end": 11122.1, + "probability": 0.979 + }, + { + "start": 11122.28, + "end": 11124.84, + "probability": 0.9893 + }, + { + "start": 11125.08, + "end": 11128.16, + "probability": 0.961 + }, + { + "start": 11128.76, + "end": 11130.46, + "probability": 0.9963 + }, + { + "start": 11131.55, + "end": 11134.5, + "probability": 0.6803 + }, + { + "start": 11135.42, + "end": 11138.22, + "probability": 0.9741 + }, + { + "start": 11138.32, + "end": 11139.02, + "probability": 0.9619 + }, + { + "start": 11139.72, + "end": 11140.34, + "probability": 0.7373 + }, + { + "start": 11141.72, + "end": 11144.1, + "probability": 0.9912 + }, + { + "start": 11145.34, + "end": 11148.2, + "probability": 0.9948 + }, + { + "start": 11148.72, + "end": 11153.04, + "probability": 0.9947 + }, + { + "start": 11153.58, + "end": 11154.84, + "probability": 0.9651 + }, + { + "start": 11155.56, + "end": 11160.16, + "probability": 0.9639 + }, + { + "start": 11160.16, + "end": 11160.82, + "probability": 0.6194 + }, + { + "start": 11161.68, + "end": 11163.7, + "probability": 0.8193 + }, + { + "start": 11164.02, + "end": 11166.12, + "probability": 0.7042 + }, + { + "start": 11167.02, + "end": 11167.9, + "probability": 0.9078 + }, + { + "start": 11182.3, + "end": 11183.46, + "probability": 0.4264 + }, + { + "start": 11184.02, + "end": 11186.74, + "probability": 0.9907 + }, + { + "start": 11187.78, + "end": 11189.76, + "probability": 0.9884 + }, + { + "start": 11189.82, + "end": 11192.22, + "probability": 0.8265 + }, + { + "start": 11195.52, + "end": 11200.16, + "probability": 0.9602 + }, + { + "start": 11201.98, + "end": 11205.22, + "probability": 0.7133 + }, + { + "start": 11206.8, + "end": 11215.24, + "probability": 0.9963 + }, + { + "start": 11216.3, + "end": 11217.42, + "probability": 0.9513 + }, + { + "start": 11219.54, + "end": 11220.84, + "probability": 0.9723 + }, + { + "start": 11221.52, + "end": 11226.16, + "probability": 0.9105 + }, + { + "start": 11227.84, + "end": 11229.42, + "probability": 0.8448 + }, + { + "start": 11230.28, + "end": 11231.42, + "probability": 0.824 + }, + { + "start": 11232.44, + "end": 11233.74, + "probability": 0.9704 + }, + { + "start": 11234.3, + "end": 11234.92, + "probability": 0.9661 + }, + { + "start": 11235.68, + "end": 11238.0, + "probability": 0.9163 + }, + { + "start": 11238.76, + "end": 11241.32, + "probability": 0.7532 + }, + { + "start": 11242.2, + "end": 11243.26, + "probability": 0.5087 + }, + { + "start": 11243.34, + "end": 11243.64, + "probability": 0.9481 + }, + { + "start": 11244.1, + "end": 11244.84, + "probability": 0.4992 + }, + { + "start": 11244.94, + "end": 11245.38, + "probability": 0.961 + }, + { + "start": 11246.04, + "end": 11248.36, + "probability": 0.9122 + }, + { + "start": 11249.56, + "end": 11250.15, + "probability": 0.7233 + }, + { + "start": 11250.94, + "end": 11251.24, + "probability": 0.9027 + }, + { + "start": 11251.5, + "end": 11252.78, + "probability": 0.7957 + }, + { + "start": 11252.8, + "end": 11253.06, + "probability": 0.7461 + }, + { + "start": 11253.14, + "end": 11254.94, + "probability": 0.8027 + }, + { + "start": 11255.2, + "end": 11255.7, + "probability": 0.8837 + }, + { + "start": 11256.26, + "end": 11258.2, + "probability": 0.9678 + }, + { + "start": 11258.3, + "end": 11259.62, + "probability": 0.8035 + }, + { + "start": 11259.78, + "end": 11260.7, + "probability": 0.8691 + }, + { + "start": 11261.36, + "end": 11263.74, + "probability": 0.8707 + }, + { + "start": 11264.4, + "end": 11267.14, + "probability": 0.8433 + }, + { + "start": 11267.66, + "end": 11271.02, + "probability": 0.9275 + }, + { + "start": 11271.14, + "end": 11272.56, + "probability": 0.9973 + }, + { + "start": 11272.84, + "end": 11273.68, + "probability": 0.8595 + }, + { + "start": 11274.26, + "end": 11276.7, + "probability": 0.8351 + }, + { + "start": 11277.46, + "end": 11279.44, + "probability": 0.7768 + }, + { + "start": 11279.76, + "end": 11280.68, + "probability": 0.9039 + }, + { + "start": 11281.12, + "end": 11283.06, + "probability": 0.9348 + }, + { + "start": 11283.18, + "end": 11283.6, + "probability": 0.3386 + }, + { + "start": 11284.8, + "end": 11287.14, + "probability": 0.7565 + }, + { + "start": 11287.34, + "end": 11290.48, + "probability": 0.9931 + }, + { + "start": 11291.04, + "end": 11291.7, + "probability": 0.9908 + }, + { + "start": 11293.28, + "end": 11294.8, + "probability": 0.9918 + }, + { + "start": 11295.62, + "end": 11297.02, + "probability": 0.8337 + }, + { + "start": 11297.84, + "end": 11300.86, + "probability": 0.9751 + }, + { + "start": 11301.82, + "end": 11304.82, + "probability": 0.988 + }, + { + "start": 11304.82, + "end": 11308.0, + "probability": 0.7609 + }, + { + "start": 11309.5, + "end": 11313.48, + "probability": 0.855 + }, + { + "start": 11314.26, + "end": 11316.88, + "probability": 0.9912 + }, + { + "start": 11317.8, + "end": 11319.78, + "probability": 0.7862 + }, + { + "start": 11320.42, + "end": 11323.6, + "probability": 0.943 + }, + { + "start": 11324.44, + "end": 11327.92, + "probability": 0.9575 + }, + { + "start": 11328.54, + "end": 11332.88, + "probability": 0.7644 + }, + { + "start": 11333.46, + "end": 11336.14, + "probability": 0.9587 + }, + { + "start": 11336.68, + "end": 11339.16, + "probability": 0.8912 + }, + { + "start": 11340.5, + "end": 11343.92, + "probability": 0.9567 + }, + { + "start": 11344.82, + "end": 11349.82, + "probability": 0.9966 + }, + { + "start": 11350.02, + "end": 11353.46, + "probability": 0.7874 + }, + { + "start": 11354.34, + "end": 11356.14, + "probability": 0.7986 + }, + { + "start": 11356.36, + "end": 11357.78, + "probability": 0.719 + }, + { + "start": 11358.08, + "end": 11359.16, + "probability": 0.9481 + }, + { + "start": 11359.72, + "end": 11362.5, + "probability": 0.8143 + }, + { + "start": 11363.46, + "end": 11366.0, + "probability": 0.7909 + }, + { + "start": 11368.06, + "end": 11371.64, + "probability": 0.9354 + }, + { + "start": 11372.88, + "end": 11373.58, + "probability": 0.8621 + }, + { + "start": 11373.84, + "end": 11374.36, + "probability": 0.9865 + }, + { + "start": 11374.5, + "end": 11374.92, + "probability": 0.9757 + }, + { + "start": 11375.38, + "end": 11376.28, + "probability": 0.8416 + }, + { + "start": 11376.78, + "end": 11378.68, + "probability": 0.9397 + }, + { + "start": 11379.18, + "end": 11379.62, + "probability": 0.7112 + }, + { + "start": 11380.18, + "end": 11382.16, + "probability": 0.9851 + }, + { + "start": 11382.16, + "end": 11384.5, + "probability": 0.8242 + }, + { + "start": 11385.0, + "end": 11385.1, + "probability": 0.8376 + }, + { + "start": 11386.1, + "end": 11387.3, + "probability": 0.9204 + }, + { + "start": 11388.72, + "end": 11391.62, + "probability": 0.9938 + }, + { + "start": 11393.12, + "end": 11394.26, + "probability": 0.6597 + }, + { + "start": 11394.84, + "end": 11395.88, + "probability": 0.8345 + }, + { + "start": 11396.88, + "end": 11397.46, + "probability": 0.8979 + }, + { + "start": 11398.18, + "end": 11401.2, + "probability": 0.936 + }, + { + "start": 11401.9, + "end": 11405.02, + "probability": 0.8963 + }, + { + "start": 11406.16, + "end": 11409.92, + "probability": 0.9595 + }, + { + "start": 11411.0, + "end": 11413.08, + "probability": 0.9383 + }, + { + "start": 11413.92, + "end": 11414.58, + "probability": 0.9425 + }, + { + "start": 11415.14, + "end": 11416.5, + "probability": 0.8437 + }, + { + "start": 11417.06, + "end": 11417.7, + "probability": 0.8456 + }, + { + "start": 11417.98, + "end": 11423.02, + "probability": 0.9922 + }, + { + "start": 11423.06, + "end": 11428.16, + "probability": 0.9769 + }, + { + "start": 11428.36, + "end": 11429.44, + "probability": 0.9172 + }, + { + "start": 11430.14, + "end": 11431.62, + "probability": 0.6597 + }, + { + "start": 11433.98, + "end": 11437.96, + "probability": 0.7885 + }, + { + "start": 11438.72, + "end": 11441.82, + "probability": 0.998 + }, + { + "start": 11442.3, + "end": 11445.55, + "probability": 0.9792 + }, + { + "start": 11446.9, + "end": 11451.2, + "probability": 0.8088 + }, + { + "start": 11452.0, + "end": 11456.9, + "probability": 0.9364 + }, + { + "start": 11457.5, + "end": 11459.92, + "probability": 0.9805 + }, + { + "start": 11460.56, + "end": 11462.18, + "probability": 0.9981 + }, + { + "start": 11462.82, + "end": 11466.16, + "probability": 0.886 + }, + { + "start": 11466.8, + "end": 11468.64, + "probability": 0.861 + }, + { + "start": 11469.22, + "end": 11471.2, + "probability": 0.7384 + }, + { + "start": 11473.14, + "end": 11474.53, + "probability": 0.5618 + }, + { + "start": 11474.92, + "end": 11478.98, + "probability": 0.9893 + }, + { + "start": 11479.92, + "end": 11480.58, + "probability": 0.5659 + }, + { + "start": 11481.46, + "end": 11484.76, + "probability": 0.938 + }, + { + "start": 11484.76, + "end": 11488.5, + "probability": 0.8513 + }, + { + "start": 11489.6, + "end": 11492.9, + "probability": 0.9952 + }, + { + "start": 11494.12, + "end": 11500.22, + "probability": 0.9632 + }, + { + "start": 11501.0, + "end": 11504.22, + "probability": 0.9815 + }, + { + "start": 11505.6, + "end": 11507.26, + "probability": 0.7559 + }, + { + "start": 11507.66, + "end": 11508.94, + "probability": 0.7811 + }, + { + "start": 11508.94, + "end": 11509.4, + "probability": 0.7657 + }, + { + "start": 11510.2, + "end": 11514.72, + "probability": 0.8719 + }, + { + "start": 11516.36, + "end": 11516.9, + "probability": 0.4914 + }, + { + "start": 11518.06, + "end": 11519.66, + "probability": 0.0759 + }, + { + "start": 11519.66, + "end": 11519.98, + "probability": 0.0337 + }, + { + "start": 11519.98, + "end": 11520.32, + "probability": 0.7038 + }, + { + "start": 11520.32, + "end": 11520.6, + "probability": 0.6674 + }, + { + "start": 11520.78, + "end": 11524.31, + "probability": 0.2795 + }, + { + "start": 11527.56, + "end": 11527.72, + "probability": 0.1655 + }, + { + "start": 11527.72, + "end": 11527.72, + "probability": 0.0776 + }, + { + "start": 11527.72, + "end": 11528.74, + "probability": 0.7804 + }, + { + "start": 11529.74, + "end": 11530.66, + "probability": 0.9229 + }, + { + "start": 11531.54, + "end": 11532.8, + "probability": 0.8981 + }, + { + "start": 11534.02, + "end": 11540.14, + "probability": 0.9688 + }, + { + "start": 11540.88, + "end": 11546.9, + "probability": 0.8958 + }, + { + "start": 11548.3, + "end": 11550.18, + "probability": 0.9944 + }, + { + "start": 11550.7, + "end": 11553.04, + "probability": 0.8586 + }, + { + "start": 11553.52, + "end": 11558.4, + "probability": 0.9946 + }, + { + "start": 11559.38, + "end": 11560.3, + "probability": 0.8525 + }, + { + "start": 11561.2, + "end": 11568.86, + "probability": 0.9642 + }, + { + "start": 11569.98, + "end": 11574.26, + "probability": 0.9471 + }, + { + "start": 11576.2, + "end": 11579.14, + "probability": 0.9966 + }, + { + "start": 11580.28, + "end": 11585.54, + "probability": 0.9927 + }, + { + "start": 11586.06, + "end": 11586.76, + "probability": 0.9998 + }, + { + "start": 11587.44, + "end": 11589.42, + "probability": 0.9901 + }, + { + "start": 11591.48, + "end": 11591.98, + "probability": 0.8496 + }, + { + "start": 11593.3, + "end": 11596.18, + "probability": 0.6946 + }, + { + "start": 11597.02, + "end": 11598.5, + "probability": 0.9966 + }, + { + "start": 11599.34, + "end": 11603.02, + "probability": 0.9047 + }, + { + "start": 11604.3, + "end": 11609.8, + "probability": 0.9157 + }, + { + "start": 11610.46, + "end": 11614.3, + "probability": 0.9818 + }, + { + "start": 11614.34, + "end": 11623.21, + "probability": 0.6564 + }, + { + "start": 11624.9, + "end": 11625.54, + "probability": 0.0626 + }, + { + "start": 11625.54, + "end": 11625.78, + "probability": 0.3153 + }, + { + "start": 11625.78, + "end": 11625.78, + "probability": 0.4176 + }, + { + "start": 11625.78, + "end": 11626.92, + "probability": 0.7677 + }, + { + "start": 11627.72, + "end": 11627.72, + "probability": 0.0142 + }, + { + "start": 11627.72, + "end": 11628.3, + "probability": 0.497 + }, + { + "start": 11629.18, + "end": 11630.98, + "probability": 0.7578 + }, + { + "start": 11632.76, + "end": 11633.9, + "probability": 0.9069 + }, + { + "start": 11634.6, + "end": 11635.48, + "probability": 0.9747 + }, + { + "start": 11636.0, + "end": 11636.68, + "probability": 0.9755 + }, + { + "start": 11637.94, + "end": 11640.88, + "probability": 0.9404 + }, + { + "start": 11641.66, + "end": 11644.36, + "probability": 0.9772 + }, + { + "start": 11645.36, + "end": 11645.68, + "probability": 0.5873 + }, + { + "start": 11646.5, + "end": 11648.98, + "probability": 0.8083 + }, + { + "start": 11650.3, + "end": 11652.98, + "probability": 0.6133 + }, + { + "start": 11654.5, + "end": 11655.16, + "probability": 0.785 + }, + { + "start": 11656.64, + "end": 11660.84, + "probability": 0.9983 + }, + { + "start": 11660.84, + "end": 11664.14, + "probability": 0.9954 + }, + { + "start": 11664.84, + "end": 11665.82, + "probability": 0.8315 + }, + { + "start": 11666.7, + "end": 11668.65, + "probability": 0.9783 + }, + { + "start": 11670.26, + "end": 11670.82, + "probability": 0.7584 + }, + { + "start": 11671.94, + "end": 11675.56, + "probability": 0.1112 + }, + { + "start": 11676.64, + "end": 11676.64, + "probability": 0.0176 + }, + { + "start": 11676.64, + "end": 11676.64, + "probability": 0.3642 + }, + { + "start": 11676.64, + "end": 11677.54, + "probability": 0.4745 + }, + { + "start": 11677.7, + "end": 11679.96, + "probability": 0.7699 + }, + { + "start": 11680.88, + "end": 11685.52, + "probability": 0.9896 + }, + { + "start": 11686.38, + "end": 11689.92, + "probability": 0.9942 + }, + { + "start": 11691.1, + "end": 11692.74, + "probability": 0.897 + }, + { + "start": 11694.04, + "end": 11694.74, + "probability": 0.9346 + }, + { + "start": 11695.6, + "end": 11696.42, + "probability": 0.9943 + }, + { + "start": 11697.1, + "end": 11699.92, + "probability": 0.9967 + }, + { + "start": 11701.62, + "end": 11702.53, + "probability": 0.9907 + }, + { + "start": 11703.14, + "end": 11704.58, + "probability": 0.9963 + }, + { + "start": 11705.32, + "end": 11706.66, + "probability": 0.9844 + }, + { + "start": 11708.06, + "end": 11709.74, + "probability": 0.9012 + }, + { + "start": 11710.34, + "end": 11711.4, + "probability": 0.9848 + }, + { + "start": 11712.2, + "end": 11713.98, + "probability": 0.9951 + }, + { + "start": 11714.4, + "end": 11714.4, + "probability": 0.074 + }, + { + "start": 11714.4, + "end": 11714.4, + "probability": 0.3948 + }, + { + "start": 11714.4, + "end": 11714.4, + "probability": 0.1627 + }, + { + "start": 11714.44, + "end": 11717.0, + "probability": 0.764 + }, + { + "start": 11718.06, + "end": 11727.04, + "probability": 0.9503 + }, + { + "start": 11727.98, + "end": 11730.32, + "probability": 0.6716 + }, + { + "start": 11731.0, + "end": 11731.66, + "probability": 0.904 + }, + { + "start": 11732.74, + "end": 11736.0, + "probability": 0.9983 + }, + { + "start": 11736.6, + "end": 11737.88, + "probability": 0.9585 + }, + { + "start": 11738.62, + "end": 11742.2, + "probability": 0.9971 + }, + { + "start": 11742.3, + "end": 11742.84, + "probability": 0.7282 + }, + { + "start": 11743.02, + "end": 11744.49, + "probability": 0.6344 + }, + { + "start": 11745.48, + "end": 11750.84, + "probability": 0.835 + }, + { + "start": 11750.84, + "end": 11752.56, + "probability": 0.692 + }, + { + "start": 11752.98, + "end": 11753.66, + "probability": 0.8353 + }, + { + "start": 11753.78, + "end": 11757.72, + "probability": 0.9529 + }, + { + "start": 11758.54, + "end": 11758.54, + "probability": 0.143 + }, + { + "start": 11758.54, + "end": 11761.8, + "probability": 0.6735 + }, + { + "start": 11762.72, + "end": 11764.24, + "probability": 0.9722 + }, + { + "start": 11765.02, + "end": 11766.72, + "probability": 0.8859 + }, + { + "start": 11767.7, + "end": 11769.32, + "probability": 0.5884 + }, + { + "start": 11770.84, + "end": 11771.72, + "probability": 0.7002 + }, + { + "start": 11772.5, + "end": 11775.43, + "probability": 0.9909 + }, + { + "start": 11776.4, + "end": 11777.18, + "probability": 0.7288 + }, + { + "start": 11778.36, + "end": 11778.58, + "probability": 0.8193 + }, + { + "start": 11780.36, + "end": 11784.64, + "probability": 0.9881 + }, + { + "start": 11784.8, + "end": 11787.86, + "probability": 0.9704 + }, + { + "start": 11788.62, + "end": 11792.5, + "probability": 0.966 + }, + { + "start": 11793.38, + "end": 11797.44, + "probability": 0.7651 + }, + { + "start": 11798.08, + "end": 11799.7, + "probability": 0.6907 + }, + { + "start": 11800.46, + "end": 11800.68, + "probability": 0.6896 + }, + { + "start": 11801.92, + "end": 11802.52, + "probability": 0.036 + }, + { + "start": 11802.52, + "end": 11803.34, + "probability": 0.651 + }, + { + "start": 11803.94, + "end": 11806.62, + "probability": 0.9862 + }, + { + "start": 11807.28, + "end": 11808.28, + "probability": 0.4353 + }, + { + "start": 11809.28, + "end": 11811.16, + "probability": 0.9487 + }, + { + "start": 11811.76, + "end": 11813.0, + "probability": 0.9294 + }, + { + "start": 11814.86, + "end": 11819.56, + "probability": 0.8612 + }, + { + "start": 11820.74, + "end": 11822.14, + "probability": 0.8325 + }, + { + "start": 11823.38, + "end": 11825.52, + "probability": 0.9946 + }, + { + "start": 11826.2, + "end": 11827.46, + "probability": 0.9766 + }, + { + "start": 11827.6, + "end": 11828.02, + "probability": 0.7973 + }, + { + "start": 11829.18, + "end": 11829.6, + "probability": 0.0374 + }, + { + "start": 11829.6, + "end": 11831.04, + "probability": 0.6165 + }, + { + "start": 11833.07, + "end": 11837.38, + "probability": 0.9784 + }, + { + "start": 11837.46, + "end": 11838.06, + "probability": 0.656 + }, + { + "start": 11838.88, + "end": 11839.12, + "probability": 0.0792 + }, + { + "start": 11844.0, + "end": 11847.92, + "probability": 0.3207 + }, + { + "start": 11848.3, + "end": 11848.3, + "probability": 0.0315 + }, + { + "start": 11848.3, + "end": 11848.3, + "probability": 0.1276 + }, + { + "start": 11848.3, + "end": 11848.3, + "probability": 0.1986 + }, + { + "start": 11848.3, + "end": 11849.0, + "probability": 0.9373 + }, + { + "start": 11853.52, + "end": 11856.34, + "probability": 0.7601 + }, + { + "start": 11856.46, + "end": 11857.86, + "probability": 0.7825 + }, + { + "start": 11857.96, + "end": 11859.08, + "probability": 0.8441 + }, + { + "start": 11859.94, + "end": 11862.44, + "probability": 0.7527 + }, + { + "start": 11862.52, + "end": 11863.2, + "probability": 0.7234 + }, + { + "start": 11863.9, + "end": 11865.84, + "probability": 0.8963 + }, + { + "start": 11865.86, + "end": 11866.68, + "probability": 0.6805 + }, + { + "start": 11866.68, + "end": 11866.72, + "probability": 0.1478 + }, + { + "start": 11866.72, + "end": 11868.06, + "probability": 0.6722 + }, + { + "start": 11869.56, + "end": 11870.84, + "probability": 0.945 + }, + { + "start": 11871.0, + "end": 11872.28, + "probability": 0.8494 + }, + { + "start": 11872.52, + "end": 11873.48, + "probability": 0.5884 + }, + { + "start": 11873.48, + "end": 11876.91, + "probability": 0.8462 + }, + { + "start": 11877.8, + "end": 11881.12, + "probability": 0.8418 + }, + { + "start": 11881.8, + "end": 11884.7, + "probability": 0.9845 + }, + { + "start": 11886.6, + "end": 11892.52, + "probability": 0.9955 + }, + { + "start": 11892.84, + "end": 11893.3, + "probability": 0.9914 + }, + { + "start": 11893.32, + "end": 11894.02, + "probability": 0.8969 + }, + { + "start": 11895.36, + "end": 11896.68, + "probability": 0.8453 + }, + { + "start": 11896.76, + "end": 11900.58, + "probability": 0.9731 + }, + { + "start": 11900.78, + "end": 11904.56, + "probability": 0.9469 + }, + { + "start": 11904.58, + "end": 11909.12, + "probability": 0.9849 + }, + { + "start": 11909.16, + "end": 11910.72, + "probability": 0.9578 + }, + { + "start": 11911.42, + "end": 11914.44, + "probability": 0.9951 + }, + { + "start": 11915.62, + "end": 11916.12, + "probability": 0.8447 + }, + { + "start": 11920.02, + "end": 11921.8, + "probability": 0.7035 + }, + { + "start": 11922.42, + "end": 11926.3, + "probability": 0.9942 + }, + { + "start": 11926.94, + "end": 11930.14, + "probability": 0.9763 + }, + { + "start": 11930.26, + "end": 11931.42, + "probability": 0.9976 + }, + { + "start": 11932.24, + "end": 11935.2, + "probability": 0.8162 + }, + { + "start": 11935.4, + "end": 11936.34, + "probability": 0.4919 + }, + { + "start": 11936.34, + "end": 11940.36, + "probability": 0.9925 + }, + { + "start": 11940.44, + "end": 11945.18, + "probability": 0.9888 + }, + { + "start": 11946.0, + "end": 11949.68, + "probability": 0.9965 + }, + { + "start": 11949.68, + "end": 11953.12, + "probability": 0.9983 + }, + { + "start": 11953.96, + "end": 11954.82, + "probability": 0.8772 + }, + { + "start": 11954.86, + "end": 11955.8, + "probability": 0.6807 + }, + { + "start": 11955.9, + "end": 11957.5, + "probability": 0.9277 + }, + { + "start": 11958.34, + "end": 11960.54, + "probability": 0.9868 + }, + { + "start": 11961.16, + "end": 11964.3, + "probability": 0.9438 + }, + { + "start": 11964.48, + "end": 11965.98, + "probability": 0.9375 + }, + { + "start": 11966.48, + "end": 11969.14, + "probability": 0.9794 + }, + { + "start": 11969.14, + "end": 11972.64, + "probability": 0.6358 + }, + { + "start": 11972.7, + "end": 11973.82, + "probability": 0.9989 + }, + { + "start": 11974.56, + "end": 11974.62, + "probability": 0.1915 + }, + { + "start": 11974.62, + "end": 11976.6, + "probability": 0.7538 + }, + { + "start": 11977.54, + "end": 11978.66, + "probability": 0.6459 + }, + { + "start": 11978.84, + "end": 11978.94, + "probability": 0.6496 + }, + { + "start": 11978.94, + "end": 11984.64, + "probability": 0.8796 + }, + { + "start": 11984.7, + "end": 11987.34, + "probability": 0.993 + }, + { + "start": 11987.66, + "end": 11988.42, + "probability": 0.7744 + }, + { + "start": 11989.62, + "end": 11991.28, + "probability": 0.9958 + }, + { + "start": 11991.8, + "end": 11993.98, + "probability": 0.8324 + }, + { + "start": 11994.58, + "end": 11995.24, + "probability": 0.994 + }, + { + "start": 11995.8, + "end": 11996.2, + "probability": 0.9749 + }, + { + "start": 11997.4, + "end": 11997.62, + "probability": 0.8436 + }, + { + "start": 11998.14, + "end": 11999.54, + "probability": 0.832 + }, + { + "start": 12000.32, + "end": 12001.64, + "probability": 0.8054 + }, + { + "start": 12001.74, + "end": 12003.56, + "probability": 0.6628 + }, + { + "start": 12004.34, + "end": 12005.36, + "probability": 0.5445 + }, + { + "start": 12005.56, + "end": 12007.28, + "probability": 0.5833 + }, + { + "start": 12007.48, + "end": 12008.38, + "probability": 0.6819 + }, + { + "start": 12008.46, + "end": 12011.82, + "probability": 0.7289 + }, + { + "start": 12012.7, + "end": 12012.7, + "probability": 0.0055 + }, + { + "start": 12013.6, + "end": 12014.75, + "probability": 0.8027 + }, + { + "start": 12015.18, + "end": 12017.5, + "probability": 0.9496 + }, + { + "start": 12018.62, + "end": 12020.82, + "probability": 0.9165 + }, + { + "start": 12020.94, + "end": 12023.24, + "probability": 0.9295 + }, + { + "start": 12023.24, + "end": 12023.89, + "probability": 0.963 + }, + { + "start": 12024.86, + "end": 12026.34, + "probability": 0.9883 + }, + { + "start": 12027.12, + "end": 12027.3, + "probability": 0.3872 + }, + { + "start": 12027.38, + "end": 12028.24, + "probability": 0.6355 + }, + { + "start": 12028.36, + "end": 12030.42, + "probability": 0.8784 + }, + { + "start": 12031.1, + "end": 12033.38, + "probability": 0.8696 + }, + { + "start": 12033.68, + "end": 12035.85, + "probability": 0.9739 + }, + { + "start": 12037.0, + "end": 12039.92, + "probability": 0.8728 + }, + { + "start": 12040.16, + "end": 12041.96, + "probability": 0.8146 + }, + { + "start": 12042.06, + "end": 12043.6, + "probability": 0.7865 + }, + { + "start": 12043.98, + "end": 12045.42, + "probability": 0.9023 + }, + { + "start": 12045.5, + "end": 12047.9, + "probability": 0.9597 + }, + { + "start": 12048.28, + "end": 12049.18, + "probability": 0.7932 + }, + { + "start": 12049.36, + "end": 12051.66, + "probability": 0.8754 + }, + { + "start": 12051.76, + "end": 12052.0, + "probability": 0.2561 + }, + { + "start": 12052.38, + "end": 12056.1, + "probability": 0.7326 + }, + { + "start": 12056.42, + "end": 12059.18, + "probability": 0.7617 + }, + { + "start": 12059.92, + "end": 12060.84, + "probability": 0.5748 + }, + { + "start": 12061.46, + "end": 12062.72, + "probability": 0.9727 + }, + { + "start": 12062.94, + "end": 12067.34, + "probability": 0.8744 + }, + { + "start": 12069.82, + "end": 12072.52, + "probability": 0.7664 + }, + { + "start": 12072.72, + "end": 12073.92, + "probability": 0.5675 + }, + { + "start": 12074.02, + "end": 12075.86, + "probability": 0.8224 + }, + { + "start": 12076.38, + "end": 12077.24, + "probability": 0.7988 + }, + { + "start": 12077.3, + "end": 12080.18, + "probability": 0.8357 + }, + { + "start": 12080.42, + "end": 12080.56, + "probability": 0.497 + }, + { + "start": 12081.84, + "end": 12083.92, + "probability": 0.698 + }, + { + "start": 12084.7, + "end": 12086.86, + "probability": 0.9522 + }, + { + "start": 12087.02, + "end": 12092.26, + "probability": 0.71 + }, + { + "start": 12092.8, + "end": 12094.06, + "probability": 0.9888 + }, + { + "start": 12094.36, + "end": 12094.98, + "probability": 0.6934 + }, + { + "start": 12095.36, + "end": 12096.84, + "probability": 0.9154 + }, + { + "start": 12097.0, + "end": 12098.4, + "probability": 0.6265 + }, + { + "start": 12098.48, + "end": 12099.14, + "probability": 0.8356 + }, + { + "start": 12099.48, + "end": 12100.4, + "probability": 0.472 + }, + { + "start": 12100.48, + "end": 12102.32, + "probability": 0.9918 + }, + { + "start": 12102.32, + "end": 12104.82, + "probability": 0.9963 + }, + { + "start": 12105.0, + "end": 12107.0, + "probability": 0.9849 + }, + { + "start": 12107.92, + "end": 12110.0, + "probability": 0.9791 + }, + { + "start": 12110.16, + "end": 12111.46, + "probability": 0.7516 + }, + { + "start": 12111.64, + "end": 12115.12, + "probability": 0.9799 + }, + { + "start": 12115.24, + "end": 12120.42, + "probability": 0.9533 + }, + { + "start": 12122.78, + "end": 12124.8, + "probability": 0.264 + }, + { + "start": 12125.6, + "end": 12126.44, + "probability": 0.4371 + }, + { + "start": 12126.54, + "end": 12127.49, + "probability": 0.5377 + }, + { + "start": 12134.84, + "end": 12134.84, + "probability": 0.1083 + }, + { + "start": 12134.84, + "end": 12134.84, + "probability": 0.2284 + }, + { + "start": 12134.84, + "end": 12137.94, + "probability": 0.8326 + }, + { + "start": 12138.46, + "end": 12139.76, + "probability": 0.8127 + }, + { + "start": 12140.04, + "end": 12143.02, + "probability": 0.3282 + }, + { + "start": 12143.06, + "end": 12143.95, + "probability": 0.9642 + }, + { + "start": 12145.34, + "end": 12147.14, + "probability": 0.5009 + }, + { + "start": 12147.24, + "end": 12150.5, + "probability": 0.9304 + }, + { + "start": 12151.08, + "end": 12152.38, + "probability": 0.8115 + }, + { + "start": 12153.16, + "end": 12153.86, + "probability": 0.9294 + }, + { + "start": 12156.7, + "end": 12160.8, + "probability": 0.806 + }, + { + "start": 12173.5, + "end": 12173.72, + "probability": 0.2836 + }, + { + "start": 12173.72, + "end": 12175.72, + "probability": 0.6215 + }, + { + "start": 12176.96, + "end": 12180.86, + "probability": 0.9448 + }, + { + "start": 12181.06, + "end": 12184.58, + "probability": 0.9134 + }, + { + "start": 12185.26, + "end": 12187.34, + "probability": 0.2916 + }, + { + "start": 12187.48, + "end": 12188.88, + "probability": 0.2461 + }, + { + "start": 12190.02, + "end": 12193.1, + "probability": 0.8779 + }, + { + "start": 12193.52, + "end": 12196.12, + "probability": 0.034 + }, + { + "start": 12196.12, + "end": 12196.12, + "probability": 0.3054 + }, + { + "start": 12196.12, + "end": 12196.12, + "probability": 0.3631 + }, + { + "start": 12196.12, + "end": 12196.12, + "probability": 0.0517 + }, + { + "start": 12196.12, + "end": 12199.1, + "probability": 0.2299 + }, + { + "start": 12199.56, + "end": 12205.06, + "probability": 0.9175 + }, + { + "start": 12206.9, + "end": 12208.52, + "probability": 0.8277 + }, + { + "start": 12209.92, + "end": 12211.08, + "probability": 0.9986 + }, + { + "start": 12214.16, + "end": 12218.78, + "probability": 0.7524 + }, + { + "start": 12218.84, + "end": 12221.4, + "probability": 0.5912 + }, + { + "start": 12222.46, + "end": 12227.58, + "probability": 0.974 + }, + { + "start": 12228.2, + "end": 12231.6, + "probability": 0.9716 + }, + { + "start": 12232.08, + "end": 12234.9, + "probability": 0.9818 + }, + { + "start": 12234.96, + "end": 12237.3, + "probability": 0.905 + }, + { + "start": 12237.44, + "end": 12238.52, + "probability": 0.7994 + }, + { + "start": 12239.38, + "end": 12242.2, + "probability": 0.9979 + }, + { + "start": 12243.64, + "end": 12247.22, + "probability": 0.7424 + }, + { + "start": 12247.44, + "end": 12250.64, + "probability": 0.924 + }, + { + "start": 12250.82, + "end": 12251.68, + "probability": 0.8916 + }, + { + "start": 12251.82, + "end": 12252.56, + "probability": 0.9252 + }, + { + "start": 12253.24, + "end": 12256.36, + "probability": 0.881 + }, + { + "start": 12257.18, + "end": 12260.04, + "probability": 0.8761 + }, + { + "start": 12261.22, + "end": 12263.34, + "probability": 0.9142 + }, + { + "start": 12263.54, + "end": 12266.62, + "probability": 0.9932 + }, + { + "start": 12267.26, + "end": 12268.62, + "probability": 0.981 + }, + { + "start": 12268.9, + "end": 12271.68, + "probability": 0.9929 + }, + { + "start": 12272.98, + "end": 12274.58, + "probability": 0.7617 + }, + { + "start": 12274.82, + "end": 12277.3, + "probability": 0.9717 + }, + { + "start": 12277.42, + "end": 12282.32, + "probability": 0.9923 + }, + { + "start": 12283.54, + "end": 12289.38, + "probability": 0.9906 + }, + { + "start": 12290.0, + "end": 12290.6, + "probability": 0.7624 + }, + { + "start": 12293.0, + "end": 12293.98, + "probability": 0.8345 + }, + { + "start": 12294.24, + "end": 12294.48, + "probability": 0.3287 + }, + { + "start": 12295.04, + "end": 12298.28, + "probability": 0.9937 + }, + { + "start": 12298.4, + "end": 12302.2, + "probability": 0.9927 + }, + { + "start": 12303.36, + "end": 12303.7, + "probability": 0.8447 + }, + { + "start": 12303.82, + "end": 12305.64, + "probability": 0.9849 + }, + { + "start": 12305.8, + "end": 12307.46, + "probability": 0.9959 + }, + { + "start": 12307.46, + "end": 12310.32, + "probability": 0.874 + }, + { + "start": 12311.06, + "end": 12314.04, + "probability": 0.999 + }, + { + "start": 12314.76, + "end": 12316.84, + "probability": 0.9759 + }, + { + "start": 12316.84, + "end": 12319.54, + "probability": 0.7674 + }, + { + "start": 12320.14, + "end": 12322.68, + "probability": 0.976 + }, + { + "start": 12322.7, + "end": 12326.96, + "probability": 0.994 + }, + { + "start": 12327.62, + "end": 12328.8, + "probability": 0.8459 + }, + { + "start": 12329.44, + "end": 12332.54, + "probability": 0.9843 + }, + { + "start": 12332.7, + "end": 12333.14, + "probability": 0.897 + }, + { + "start": 12333.26, + "end": 12333.86, + "probability": 0.521 + }, + { + "start": 12334.36, + "end": 12339.52, + "probability": 0.9669 + }, + { + "start": 12339.58, + "end": 12345.06, + "probability": 0.991 + }, + { + "start": 12346.11, + "end": 12348.44, + "probability": 0.5623 + }, + { + "start": 12349.24, + "end": 12351.58, + "probability": 0.9795 + }, + { + "start": 12352.4, + "end": 12358.32, + "probability": 0.8911 + }, + { + "start": 12359.66, + "end": 12363.92, + "probability": 0.968 + }, + { + "start": 12363.92, + "end": 12368.06, + "probability": 0.9818 + }, + { + "start": 12368.98, + "end": 12371.14, + "probability": 0.9154 + }, + { + "start": 12371.26, + "end": 12371.8, + "probability": 0.5071 + }, + { + "start": 12372.16, + "end": 12376.46, + "probability": 0.9893 + }, + { + "start": 12376.88, + "end": 12378.34, + "probability": 0.7854 + }, + { + "start": 12379.14, + "end": 12381.62, + "probability": 0.8842 + }, + { + "start": 12382.28, + "end": 12383.58, + "probability": 0.6986 + }, + { + "start": 12384.67, + "end": 12389.0, + "probability": 0.9533 + }, + { + "start": 12389.54, + "end": 12391.34, + "probability": 0.9478 + }, + { + "start": 12391.44, + "end": 12393.52, + "probability": 0.8411 + }, + { + "start": 12393.58, + "end": 12394.48, + "probability": 0.587 + }, + { + "start": 12394.86, + "end": 12395.6, + "probability": 0.9349 + }, + { + "start": 12397.02, + "end": 12399.58, + "probability": 0.9377 + }, + { + "start": 12399.74, + "end": 12401.26, + "probability": 0.9427 + }, + { + "start": 12402.3, + "end": 12403.56, + "probability": 0.9719 + }, + { + "start": 12404.48, + "end": 12405.42, + "probability": 0.8597 + }, + { + "start": 12405.82, + "end": 12407.24, + "probability": 0.9226 + }, + { + "start": 12407.74, + "end": 12408.18, + "probability": 0.9683 + }, + { + "start": 12409.38, + "end": 12412.22, + "probability": 0.9322 + }, + { + "start": 12412.74, + "end": 12413.66, + "probability": 0.8745 + }, + { + "start": 12416.5, + "end": 12420.0, + "probability": 0.9873 + }, + { + "start": 12421.06, + "end": 12424.82, + "probability": 0.7484 + }, + { + "start": 12425.88, + "end": 12428.56, + "probability": 0.9688 + }, + { + "start": 12429.54, + "end": 12432.8, + "probability": 0.9197 + }, + { + "start": 12433.3, + "end": 12436.68, + "probability": 0.9947 + }, + { + "start": 12437.24, + "end": 12438.5, + "probability": 0.9424 + }, + { + "start": 12440.06, + "end": 12447.06, + "probability": 0.8086 + }, + { + "start": 12449.03, + "end": 12453.72, + "probability": 0.8703 + }, + { + "start": 12453.9, + "end": 12454.5, + "probability": 0.2994 + }, + { + "start": 12454.6, + "end": 12455.88, + "probability": 0.9536 + }, + { + "start": 12456.1, + "end": 12456.44, + "probability": 0.6961 + }, + { + "start": 12456.44, + "end": 12458.44, + "probability": 0.7738 + }, + { + "start": 12458.48, + "end": 12460.88, + "probability": 0.8121 + }, + { + "start": 12462.34, + "end": 12465.04, + "probability": 0.8763 + }, + { + "start": 12465.2, + "end": 12467.16, + "probability": 0.8782 + }, + { + "start": 12467.96, + "end": 12468.82, + "probability": 0.9702 + }, + { + "start": 12469.46, + "end": 12471.08, + "probability": 0.6554 + }, + { + "start": 12471.88, + "end": 12472.9, + "probability": 0.8567 + }, + { + "start": 12473.02, + "end": 12473.38, + "probability": 0.5331 + }, + { + "start": 12474.32, + "end": 12477.48, + "probability": 0.9641 + }, + { + "start": 12477.66, + "end": 12478.7, + "probability": 0.6392 + }, + { + "start": 12479.08, + "end": 12481.94, + "probability": 0.9915 + }, + { + "start": 12482.78, + "end": 12483.8, + "probability": 0.7747 + }, + { + "start": 12483.84, + "end": 12488.53, + "probability": 0.7681 + }, + { + "start": 12489.58, + "end": 12490.56, + "probability": 0.819 + }, + { + "start": 12491.06, + "end": 12491.64, + "probability": 0.5255 + }, + { + "start": 12491.92, + "end": 12493.1, + "probability": 0.7711 + }, + { + "start": 12494.54, + "end": 12498.78, + "probability": 0.9762 + }, + { + "start": 12499.46, + "end": 12501.06, + "probability": 0.9702 + }, + { + "start": 12501.96, + "end": 12505.12, + "probability": 0.981 + }, + { + "start": 12505.68, + "end": 12512.48, + "probability": 0.9458 + }, + { + "start": 12513.34, + "end": 12515.42, + "probability": 0.917 + }, + { + "start": 12516.78, + "end": 12520.78, + "probability": 0.7485 + }, + { + "start": 12521.78, + "end": 12526.84, + "probability": 0.9963 + }, + { + "start": 12527.1, + "end": 12529.84, + "probability": 0.991 + }, + { + "start": 12530.1, + "end": 12531.8, + "probability": 0.8026 + }, + { + "start": 12532.26, + "end": 12535.14, + "probability": 0.9503 + }, + { + "start": 12535.26, + "end": 12536.9, + "probability": 0.635 + }, + { + "start": 12538.02, + "end": 12538.04, + "probability": 0.0972 + }, + { + "start": 12538.04, + "end": 12538.62, + "probability": 0.483 + }, + { + "start": 12539.14, + "end": 12541.34, + "probability": 0.8917 + }, + { + "start": 12541.94, + "end": 12544.88, + "probability": 0.8967 + }, + { + "start": 12545.28, + "end": 12547.0, + "probability": 0.9586 + }, + { + "start": 12547.7, + "end": 12553.58, + "probability": 0.976 + }, + { + "start": 12554.2, + "end": 12555.6, + "probability": 0.988 + }, + { + "start": 12555.98, + "end": 12558.2, + "probability": 0.97 + }, + { + "start": 12558.36, + "end": 12558.86, + "probability": 0.6704 + }, + { + "start": 12558.9, + "end": 12560.34, + "probability": 0.9232 + }, + { + "start": 12560.68, + "end": 12561.13, + "probability": 0.8647 + }, + { + "start": 12561.76, + "end": 12563.4, + "probability": 0.9335 + }, + { + "start": 12563.58, + "end": 12566.76, + "probability": 0.9811 + }, + { + "start": 12567.22, + "end": 12569.18, + "probability": 0.8599 + }, + { + "start": 12569.34, + "end": 12569.6, + "probability": 0.6937 + }, + { + "start": 12569.7, + "end": 12571.9, + "probability": 0.923 + }, + { + "start": 12572.12, + "end": 12572.92, + "probability": 0.8367 + }, + { + "start": 12573.24, + "end": 12574.38, + "probability": 0.9614 + }, + { + "start": 12575.06, + "end": 12579.42, + "probability": 0.9967 + }, + { + "start": 12579.88, + "end": 12580.58, + "probability": 0.9133 + }, + { + "start": 12581.9, + "end": 12583.88, + "probability": 0.9758 + }, + { + "start": 12584.38, + "end": 12585.84, + "probability": 0.7999 + }, + { + "start": 12586.22, + "end": 12586.8, + "probability": 0.3402 + }, + { + "start": 12587.16, + "end": 12587.58, + "probability": 0.3501 + }, + { + "start": 12587.78, + "end": 12589.84, + "probability": 0.7631 + }, + { + "start": 12590.2, + "end": 12594.6, + "probability": 0.9783 + }, + { + "start": 12594.94, + "end": 12597.52, + "probability": 0.9891 + }, + { + "start": 12597.98, + "end": 12598.82, + "probability": 0.8143 + }, + { + "start": 12599.1, + "end": 12599.7, + "probability": 0.6782 + }, + { + "start": 12599.8, + "end": 12600.22, + "probability": 0.5296 + }, + { + "start": 12600.32, + "end": 12603.68, + "probability": 0.9171 + }, + { + "start": 12604.2, + "end": 12607.56, + "probability": 0.9617 + }, + { + "start": 12608.14, + "end": 12615.18, + "probability": 0.9976 + }, + { + "start": 12615.52, + "end": 12617.4, + "probability": 0.9245 + }, + { + "start": 12617.52, + "end": 12619.42, + "probability": 0.9971 + }, + { + "start": 12619.82, + "end": 12624.98, + "probability": 0.9904 + }, + { + "start": 12625.3, + "end": 12628.92, + "probability": 0.9731 + }, + { + "start": 12629.18, + "end": 12631.12, + "probability": 0.9937 + }, + { + "start": 12632.22, + "end": 12634.74, + "probability": 0.8841 + }, + { + "start": 12635.26, + "end": 12635.7, + "probability": 0.9756 + }, + { + "start": 12636.44, + "end": 12639.4, + "probability": 0.9727 + }, + { + "start": 12639.96, + "end": 12642.04, + "probability": 0.9954 + }, + { + "start": 12642.64, + "end": 12643.9, + "probability": 0.9531 + }, + { + "start": 12644.26, + "end": 12646.88, + "probability": 0.9778 + }, + { + "start": 12647.22, + "end": 12647.92, + "probability": 0.6207 + }, + { + "start": 12648.3, + "end": 12649.1, + "probability": 0.7892 + }, + { + "start": 12649.38, + "end": 12650.42, + "probability": 0.9846 + }, + { + "start": 12650.5, + "end": 12651.68, + "probability": 0.9892 + }, + { + "start": 12651.94, + "end": 12653.64, + "probability": 0.9734 + }, + { + "start": 12654.1, + "end": 12654.28, + "probability": 0.0822 + }, + { + "start": 12654.98, + "end": 12657.84, + "probability": 0.9742 + }, + { + "start": 12658.4, + "end": 12660.02, + "probability": 0.7939 + }, + { + "start": 12660.44, + "end": 12661.94, + "probability": 0.9907 + }, + { + "start": 12662.22, + "end": 12665.42, + "probability": 0.9379 + }, + { + "start": 12665.68, + "end": 12667.9, + "probability": 0.9872 + }, + { + "start": 12668.34, + "end": 12669.74, + "probability": 0.884 + }, + { + "start": 12670.04, + "end": 12672.68, + "probability": 0.9961 + }, + { + "start": 12673.7, + "end": 12676.42, + "probability": 0.9851 + }, + { + "start": 12676.82, + "end": 12680.39, + "probability": 0.793 + }, + { + "start": 12681.08, + "end": 12681.92, + "probability": 0.7355 + }, + { + "start": 12683.64, + "end": 12684.34, + "probability": 0.4626 + }, + { + "start": 12684.76, + "end": 12685.58, + "probability": 0.6248 + }, + { + "start": 12685.9, + "end": 12688.6, + "probability": 0.9746 + }, + { + "start": 12689.36, + "end": 12693.48, + "probability": 0.9785 + }, + { + "start": 12694.28, + "end": 12697.78, + "probability": 0.9827 + }, + { + "start": 12697.78, + "end": 12701.86, + "probability": 0.8853 + }, + { + "start": 12702.26, + "end": 12702.64, + "probability": 0.5829 + }, + { + "start": 12702.78, + "end": 12708.06, + "probability": 0.9378 + }, + { + "start": 12708.4, + "end": 12711.06, + "probability": 0.9791 + }, + { + "start": 12711.94, + "end": 12714.4, + "probability": 0.8156 + }, + { + "start": 12715.76, + "end": 12718.76, + "probability": 0.5003 + }, + { + "start": 12719.28, + "end": 12723.22, + "probability": 0.9775 + }, + { + "start": 12724.46, + "end": 12729.12, + "probability": 0.9404 + }, + { + "start": 12729.34, + "end": 12734.18, + "probability": 0.9579 + }, + { + "start": 12734.96, + "end": 12735.86, + "probability": 0.8662 + }, + { + "start": 12736.08, + "end": 12736.96, + "probability": 0.5241 + }, + { + "start": 12737.04, + "end": 12740.78, + "probability": 0.9722 + }, + { + "start": 12740.78, + "end": 12743.58, + "probability": 0.9893 + }, + { + "start": 12744.02, + "end": 12748.02, + "probability": 0.9799 + }, + { + "start": 12748.6, + "end": 12749.88, + "probability": 0.9829 + }, + { + "start": 12750.66, + "end": 12751.84, + "probability": 0.9168 + }, + { + "start": 12752.62, + "end": 12755.29, + "probability": 0.9937 + }, + { + "start": 12755.48, + "end": 12759.7, + "probability": 0.9011 + }, + { + "start": 12760.56, + "end": 12762.98, + "probability": 0.9448 + }, + { + "start": 12763.74, + "end": 12764.36, + "probability": 0.7189 + }, + { + "start": 12764.48, + "end": 12767.86, + "probability": 0.8281 + }, + { + "start": 12768.28, + "end": 12771.32, + "probability": 0.8792 + }, + { + "start": 12771.32, + "end": 12774.78, + "probability": 0.8848 + }, + { + "start": 12775.2, + "end": 12778.44, + "probability": 0.9949 + }, + { + "start": 12779.78, + "end": 12783.04, + "probability": 0.6709 + }, + { + "start": 12784.1, + "end": 12785.7, + "probability": 0.821 + }, + { + "start": 12786.22, + "end": 12790.66, + "probability": 0.9648 + }, + { + "start": 12790.66, + "end": 12794.62, + "probability": 0.998 + }, + { + "start": 12795.58, + "end": 12800.1, + "probability": 0.9294 + }, + { + "start": 12800.1, + "end": 12805.4, + "probability": 0.9864 + }, + { + "start": 12806.0, + "end": 12807.36, + "probability": 0.655 + }, + { + "start": 12808.08, + "end": 12812.44, + "probability": 0.9516 + }, + { + "start": 12812.52, + "end": 12816.18, + "probability": 0.9965 + }, + { + "start": 12816.84, + "end": 12820.36, + "probability": 0.969 + }, + { + "start": 12820.9, + "end": 12822.06, + "probability": 0.5585 + }, + { + "start": 12822.68, + "end": 12824.52, + "probability": 0.8109 + }, + { + "start": 12824.64, + "end": 12825.86, + "probability": 0.9611 + }, + { + "start": 12826.22, + "end": 12826.66, + "probability": 0.9408 + }, + { + "start": 12826.72, + "end": 12827.26, + "probability": 0.9394 + }, + { + "start": 12827.72, + "end": 12828.68, + "probability": 0.9007 + }, + { + "start": 12829.18, + "end": 12831.0, + "probability": 0.5921 + }, + { + "start": 12831.6, + "end": 12836.88, + "probability": 0.8114 + }, + { + "start": 12837.02, + "end": 12837.24, + "probability": 0.6342 + }, + { + "start": 12837.46, + "end": 12837.98, + "probability": 0.5401 + }, + { + "start": 12837.98, + "end": 12839.28, + "probability": 0.7426 + }, + { + "start": 12839.34, + "end": 12840.67, + "probability": 0.9775 + }, + { + "start": 12841.24, + "end": 12845.22, + "probability": 0.9327 + }, + { + "start": 12846.0, + "end": 12848.8, + "probability": 0.9631 + }, + { + "start": 12849.56, + "end": 12851.94, + "probability": 0.744 + }, + { + "start": 12859.52, + "end": 12860.1, + "probability": 0.6253 + }, + { + "start": 12860.22, + "end": 12861.84, + "probability": 0.4726 + }, + { + "start": 12862.22, + "end": 12864.74, + "probability": 0.7615 + }, + { + "start": 12864.8, + "end": 12865.75, + "probability": 0.5244 + }, + { + "start": 12866.04, + "end": 12867.86, + "probability": 0.729 + }, + { + "start": 12868.36, + "end": 12870.55, + "probability": 0.7505 + }, + { + "start": 12871.52, + "end": 12874.06, + "probability": 0.8373 + }, + { + "start": 12875.55, + "end": 12876.9, + "probability": 0.6612 + }, + { + "start": 12877.62, + "end": 12879.7, + "probability": 0.9958 + }, + { + "start": 12879.8, + "end": 12880.46, + "probability": 0.9512 + }, + { + "start": 12881.56, + "end": 12882.26, + "probability": 0.9995 + }, + { + "start": 12883.18, + "end": 12884.52, + "probability": 0.5664 + }, + { + "start": 12885.12, + "end": 12886.72, + "probability": 0.9785 + }, + { + "start": 12887.24, + "end": 12888.4, + "probability": 0.7728 + }, + { + "start": 12889.0, + "end": 12891.3, + "probability": 0.9072 + }, + { + "start": 12893.0, + "end": 12896.32, + "probability": 0.9983 + }, + { + "start": 12897.44, + "end": 12899.14, + "probability": 0.9847 + }, + { + "start": 12899.96, + "end": 12901.46, + "probability": 0.8612 + }, + { + "start": 12902.52, + "end": 12904.08, + "probability": 0.5963 + }, + { + "start": 12904.7, + "end": 12905.18, + "probability": 0.8035 + }, + { + "start": 12906.78, + "end": 12910.68, + "probability": 0.995 + }, + { + "start": 12911.42, + "end": 12914.3, + "probability": 0.992 + }, + { + "start": 12915.2, + "end": 12915.96, + "probability": 0.609 + }, + { + "start": 12916.76, + "end": 12919.24, + "probability": 0.9664 + }, + { + "start": 12919.96, + "end": 12921.76, + "probability": 0.9824 + }, + { + "start": 12922.66, + "end": 12923.65, + "probability": 0.9817 + }, + { + "start": 12924.52, + "end": 12926.14, + "probability": 0.9827 + }, + { + "start": 12926.88, + "end": 12928.22, + "probability": 0.9699 + }, + { + "start": 12929.02, + "end": 12933.8, + "probability": 0.9946 + }, + { + "start": 12934.6, + "end": 12935.64, + "probability": 0.9675 + }, + { + "start": 12936.2, + "end": 12938.88, + "probability": 0.9921 + }, + { + "start": 12939.66, + "end": 12943.62, + "probability": 0.748 + }, + { + "start": 12943.74, + "end": 12945.76, + "probability": 0.8749 + }, + { + "start": 12946.5, + "end": 12947.7, + "probability": 0.9854 + }, + { + "start": 12947.82, + "end": 12948.82, + "probability": 0.9737 + }, + { + "start": 12949.18, + "end": 12954.03, + "probability": 0.9941 + }, + { + "start": 12954.5, + "end": 12956.3, + "probability": 0.9421 + }, + { + "start": 12956.6, + "end": 12960.04, + "probability": 0.6293 + }, + { + "start": 12960.68, + "end": 12963.88, + "probability": 0.9683 + }, + { + "start": 12964.48, + "end": 12967.16, + "probability": 0.8001 + }, + { + "start": 12967.18, + "end": 12969.22, + "probability": 0.6558 + }, + { + "start": 12969.3, + "end": 12970.9, + "probability": 0.1416 + }, + { + "start": 12970.92, + "end": 12971.32, + "probability": 0.4128 + }, + { + "start": 12971.4, + "end": 12972.08, + "probability": 0.4945 + }, + { + "start": 12972.3, + "end": 12973.58, + "probability": 0.9521 + }, + { + "start": 12974.3, + "end": 12976.38, + "probability": 0.592 + }, + { + "start": 12976.6, + "end": 12979.14, + "probability": 0.9515 + }, + { + "start": 12979.66, + "end": 12979.9, + "probability": 0.2476 + }, + { + "start": 12979.9, + "end": 12979.9, + "probability": 0.3292 + }, + { + "start": 12979.9, + "end": 12981.82, + "probability": 0.3624 + }, + { + "start": 12981.9, + "end": 12982.71, + "probability": 0.6156 + }, + { + "start": 12983.36, + "end": 12984.94, + "probability": 0.7802 + }, + { + "start": 12986.14, + "end": 12988.38, + "probability": 0.7563 + }, + { + "start": 12988.6, + "end": 12992.26, + "probability": 0.9718 + }, + { + "start": 12992.8, + "end": 12993.06, + "probability": 0.8753 + }, + { + "start": 12993.62, + "end": 12995.18, + "probability": 0.8507 + }, + { + "start": 12995.98, + "end": 12998.84, + "probability": 0.7932 + }, + { + "start": 12998.84, + "end": 12999.44, + "probability": 0.6359 + }, + { + "start": 12999.44, + "end": 12999.88, + "probability": 0.7366 + }, + { + "start": 13000.06, + "end": 13000.06, + "probability": 0.5083 + }, + { + "start": 13000.64, + "end": 13004.0, + "probability": 0.9852 + }, + { + "start": 13004.14, + "end": 13005.46, + "probability": 0.7391 + }, + { + "start": 13006.06, + "end": 13008.96, + "probability": 0.9747 + }, + { + "start": 13009.44, + "end": 13011.28, + "probability": 0.769 + }, + { + "start": 13012.16, + "end": 13013.98, + "probability": 0.9368 + }, + { + "start": 13014.44, + "end": 13016.52, + "probability": 0.9082 + }, + { + "start": 13017.38, + "end": 13020.36, + "probability": 0.9708 + }, + { + "start": 13020.94, + "end": 13023.0, + "probability": 0.9654 + }, + { + "start": 13024.78, + "end": 13026.64, + "probability": 0.9941 + }, + { + "start": 13027.64, + "end": 13029.36, + "probability": 0.9873 + }, + { + "start": 13030.34, + "end": 13031.62, + "probability": 0.9293 + }, + { + "start": 13032.18, + "end": 13033.42, + "probability": 0.7118 + }, + { + "start": 13034.0, + "end": 13034.86, + "probability": 0.9885 + }, + { + "start": 13035.4, + "end": 13039.08, + "probability": 0.9937 + }, + { + "start": 13039.72, + "end": 13041.46, + "probability": 0.9042 + }, + { + "start": 13041.56, + "end": 13046.04, + "probability": 0.7018 + }, + { + "start": 13046.6, + "end": 13048.74, + "probability": 0.6386 + }, + { + "start": 13049.32, + "end": 13051.52, + "probability": 0.9727 + }, + { + "start": 13052.2, + "end": 13052.82, + "probability": 0.5098 + }, + { + "start": 13052.9, + "end": 13056.24, + "probability": 0.7899 + }, + { + "start": 13056.54, + "end": 13057.3, + "probability": 0.4861 + }, + { + "start": 13057.78, + "end": 13058.88, + "probability": 0.7698 + }, + { + "start": 13058.98, + "end": 13059.34, + "probability": 0.5585 + }, + { + "start": 13059.76, + "end": 13061.04, + "probability": 0.8582 + }, + { + "start": 13061.38, + "end": 13062.78, + "probability": 0.9415 + }, + { + "start": 13062.96, + "end": 13068.04, + "probability": 0.9744 + }, + { + "start": 13068.38, + "end": 13069.2, + "probability": 0.7925 + }, + { + "start": 13069.5, + "end": 13070.48, + "probability": 0.7755 + }, + { + "start": 13070.72, + "end": 13071.4, + "probability": 0.7391 + }, + { + "start": 13072.54, + "end": 13074.5, + "probability": 0.9478 + }, + { + "start": 13075.64, + "end": 13079.2, + "probability": 0.9889 + }, + { + "start": 13079.62, + "end": 13082.12, + "probability": 0.9053 + }, + { + "start": 13082.38, + "end": 13082.66, + "probability": 0.8856 + }, + { + "start": 13082.7, + "end": 13083.74, + "probability": 0.9501 + }, + { + "start": 13084.3, + "end": 13086.36, + "probability": 0.7571 + }, + { + "start": 13086.82, + "end": 13087.52, + "probability": 0.6083 + }, + { + "start": 13088.02, + "end": 13089.1, + "probability": 0.491 + }, + { + "start": 13089.28, + "end": 13090.08, + "probability": 0.9832 + }, + { + "start": 13090.58, + "end": 13091.62, + "probability": 0.9753 + }, + { + "start": 13091.76, + "end": 13094.74, + "probability": 0.674 + }, + { + "start": 13095.08, + "end": 13096.08, + "probability": 0.9095 + }, + { + "start": 13096.14, + "end": 13097.2, + "probability": 0.6884 + }, + { + "start": 13097.76, + "end": 13104.0, + "probability": 0.7188 + }, + { + "start": 13104.04, + "end": 13104.14, + "probability": 0.0264 + }, + { + "start": 13104.14, + "end": 13104.22, + "probability": 0.3289 + }, + { + "start": 13104.28, + "end": 13104.7, + "probability": 0.8206 + }, + { + "start": 13105.62, + "end": 13106.0, + "probability": 0.6514 + }, + { + "start": 13106.46, + "end": 13107.98, + "probability": 0.9048 + }, + { + "start": 13108.12, + "end": 13109.26, + "probability": 0.9204 + }, + { + "start": 13109.68, + "end": 13110.52, + "probability": 0.471 + }, + { + "start": 13110.54, + "end": 13112.58, + "probability": 0.9219 + }, + { + "start": 13112.72, + "end": 13113.5, + "probability": 0.2247 + }, + { + "start": 13113.72, + "end": 13116.98, + "probability": 0.9245 + }, + { + "start": 13117.48, + "end": 13120.14, + "probability": 0.9531 + }, + { + "start": 13120.8, + "end": 13124.06, + "probability": 0.9429 + }, + { + "start": 13124.08, + "end": 13126.38, + "probability": 0.9155 + }, + { + "start": 13126.7, + "end": 13130.18, + "probability": 0.9453 + }, + { + "start": 13130.22, + "end": 13133.18, + "probability": 0.9168 + }, + { + "start": 13133.28, + "end": 13133.66, + "probability": 0.8524 + }, + { + "start": 13133.8, + "end": 13135.42, + "probability": 0.9136 + }, + { + "start": 13135.8, + "end": 13141.96, + "probability": 0.8439 + }, + { + "start": 13142.12, + "end": 13146.12, + "probability": 0.7997 + }, + { + "start": 13146.69, + "end": 13150.16, + "probability": 0.7767 + }, + { + "start": 13150.78, + "end": 13151.58, + "probability": 0.4299 + }, + { + "start": 13151.7, + "end": 13152.88, + "probability": 0.8403 + }, + { + "start": 13153.02, + "end": 13153.52, + "probability": 0.859 + }, + { + "start": 13153.86, + "end": 13155.66, + "probability": 0.2506 + }, + { + "start": 13156.08, + "end": 13157.46, + "probability": 0.5422 + }, + { + "start": 13157.61, + "end": 13161.06, + "probability": 0.8303 + }, + { + "start": 13162.42, + "end": 13162.68, + "probability": 0.0068 + } + ], + "segments_count": 4513, + "words_count": 22658, + "avg_words_per_segment": 5.0206, + "avg_segment_duration": 2.1042, + "avg_words_per_minute": 102.5516, + "plenum_id": "10423", + "duration": 13256.55, + "title": null, + "plenum_date": "2010-11-30" +} \ No newline at end of file