diff --git "a/112710/metadata.json" "b/112710/metadata.json" new file mode 100644--- /dev/null +++ "b/112710/metadata.json" @@ -0,0 +1,9602 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "112710", + "quality_score": 0.9292, + "per_segment_quality_scores": [ + { + "start": 59.18, + "end": 59.18, + "probability": 0.4107 + }, + { + "start": 59.18, + "end": 60.38, + "probability": 0.1468 + }, + { + "start": 60.94, + "end": 64.86, + "probability": 0.907 + }, + { + "start": 75.14, + "end": 78.02, + "probability": 0.7444 + }, + { + "start": 78.18, + "end": 79.4, + "probability": 0.7561 + }, + { + "start": 80.24, + "end": 81.7, + "probability": 0.9377 + }, + { + "start": 82.86, + "end": 83.74, + "probability": 0.6728 + }, + { + "start": 85.66, + "end": 91.78, + "probability": 0.9782 + }, + { + "start": 92.98, + "end": 94.16, + "probability": 0.9849 + }, + { + "start": 94.74, + "end": 96.66, + "probability": 0.9853 + }, + { + "start": 97.26, + "end": 100.74, + "probability": 0.9016 + }, + { + "start": 100.74, + "end": 104.26, + "probability": 0.9478 + }, + { + "start": 104.46, + "end": 108.44, + "probability": 0.9962 + }, + { + "start": 108.44, + "end": 112.06, + "probability": 0.9338 + }, + { + "start": 113.44, + "end": 115.34, + "probability": 0.5197 + }, + { + "start": 115.78, + "end": 118.44, + "probability": 0.8999 + }, + { + "start": 118.44, + "end": 118.64, + "probability": 0.7338 + }, + { + "start": 119.04, + "end": 119.16, + "probability": 0.007 + }, + { + "start": 123.18, + "end": 123.22, + "probability": 0.0372 + }, + { + "start": 123.22, + "end": 123.22, + "probability": 0.1342 + }, + { + "start": 123.22, + "end": 124.18, + "probability": 0.1666 + }, + { + "start": 125.5, + "end": 129.5, + "probability": 0.9329 + }, + { + "start": 130.24, + "end": 132.06, + "probability": 0.8546 + }, + { + "start": 132.6, + "end": 134.47, + "probability": 0.9878 + }, + { + "start": 135.66, + "end": 138.2, + "probability": 0.8187 + }, + { + "start": 139.28, + "end": 140.82, + "probability": 0.4843 + }, + { + "start": 141.04, + "end": 145.66, + "probability": 0.964 + }, + { + "start": 146.48, + "end": 146.7, + "probability": 0.7018 + }, + { + "start": 147.32, + "end": 151.06, + "probability": 0.9858 + }, + { + "start": 151.5, + "end": 152.28, + "probability": 0.5416 + }, + { + "start": 152.42, + "end": 154.72, + "probability": 0.8658 + }, + { + "start": 155.36, + "end": 157.64, + "probability": 0.846 + }, + { + "start": 158.84, + "end": 161.64, + "probability": 0.8994 + }, + { + "start": 161.64, + "end": 166.46, + "probability": 0.8831 + }, + { + "start": 167.0, + "end": 168.96, + "probability": 0.8863 + }, + { + "start": 169.54, + "end": 171.24, + "probability": 0.8081 + }, + { + "start": 172.4, + "end": 174.52, + "probability": 0.7733 + }, + { + "start": 174.68, + "end": 175.31, + "probability": 0.8266 + }, + { + "start": 175.62, + "end": 178.6, + "probability": 0.7937 + }, + { + "start": 178.6, + "end": 181.16, + "probability": 0.9713 + }, + { + "start": 182.14, + "end": 183.08, + "probability": 0.9858 + }, + { + "start": 183.6, + "end": 184.82, + "probability": 0.9521 + }, + { + "start": 185.34, + "end": 187.96, + "probability": 0.963 + }, + { + "start": 189.08, + "end": 191.56, + "probability": 0.99 + }, + { + "start": 192.56, + "end": 194.14, + "probability": 0.9334 + }, + { + "start": 194.3, + "end": 197.32, + "probability": 0.9883 + }, + { + "start": 197.32, + "end": 200.36, + "probability": 0.9921 + }, + { + "start": 200.9, + "end": 203.78, + "probability": 0.8718 + }, + { + "start": 204.06, + "end": 205.54, + "probability": 0.9521 + }, + { + "start": 206.42, + "end": 209.52, + "probability": 0.7895 + }, + { + "start": 210.74, + "end": 214.36, + "probability": 0.9323 + }, + { + "start": 214.36, + "end": 216.76, + "probability": 0.998 + }, + { + "start": 217.7, + "end": 221.86, + "probability": 0.9083 + }, + { + "start": 222.6, + "end": 225.12, + "probability": 0.7892 + }, + { + "start": 225.84, + "end": 230.52, + "probability": 0.9948 + }, + { + "start": 231.7, + "end": 233.22, + "probability": 0.9294 + }, + { + "start": 233.76, + "end": 237.7, + "probability": 0.9794 + }, + { + "start": 237.84, + "end": 240.86, + "probability": 0.9878 + }, + { + "start": 241.8, + "end": 242.89, + "probability": 0.79 + }, + { + "start": 244.28, + "end": 246.94, + "probability": 0.9854 + }, + { + "start": 246.94, + "end": 249.46, + "probability": 0.7385 + }, + { + "start": 250.04, + "end": 252.6, + "probability": 0.9959 + }, + { + "start": 253.4, + "end": 255.32, + "probability": 0.8551 + }, + { + "start": 255.74, + "end": 257.34, + "probability": 0.5303 + }, + { + "start": 257.38, + "end": 257.82, + "probability": 0.7253 + }, + { + "start": 258.6, + "end": 261.54, + "probability": 0.9567 + }, + { + "start": 262.14, + "end": 262.4, + "probability": 0.5624 + }, + { + "start": 262.64, + "end": 263.52, + "probability": 0.828 + }, + { + "start": 263.94, + "end": 266.2, + "probability": 0.9842 + }, + { + "start": 266.72, + "end": 270.2, + "probability": 0.9972 + }, + { + "start": 270.8, + "end": 273.44, + "probability": 0.7966 + }, + { + "start": 274.12, + "end": 277.16, + "probability": 0.9155 + }, + { + "start": 277.16, + "end": 279.3, + "probability": 0.9917 + }, + { + "start": 279.9, + "end": 283.78, + "probability": 0.767 + }, + { + "start": 284.2, + "end": 286.22, + "probability": 0.8759 + }, + { + "start": 286.8, + "end": 288.26, + "probability": 0.9059 + }, + { + "start": 290.26, + "end": 293.3, + "probability": 0.5952 + }, + { + "start": 293.42, + "end": 294.06, + "probability": 0.459 + }, + { + "start": 294.54, + "end": 298.76, + "probability": 0.6089 + }, + { + "start": 298.86, + "end": 301.72, + "probability": 0.9958 + }, + { + "start": 301.86, + "end": 303.2, + "probability": 0.6712 + }, + { + "start": 303.72, + "end": 305.45, + "probability": 0.8364 + }, + { + "start": 306.08, + "end": 307.28, + "probability": 0.3943 + }, + { + "start": 307.36, + "end": 311.52, + "probability": 0.9795 + }, + { + "start": 311.9, + "end": 314.98, + "probability": 0.9937 + }, + { + "start": 315.54, + "end": 321.88, + "probability": 0.8181 + }, + { + "start": 321.88, + "end": 326.22, + "probability": 0.9834 + }, + { + "start": 326.38, + "end": 327.0, + "probability": 0.4481 + }, + { + "start": 327.06, + "end": 327.3, + "probability": 0.782 + }, + { + "start": 327.38, + "end": 328.02, + "probability": 0.392 + }, + { + "start": 328.48, + "end": 329.1, + "probability": 0.9725 + }, + { + "start": 329.3, + "end": 329.76, + "probability": 0.7936 + }, + { + "start": 330.38, + "end": 332.9, + "probability": 0.984 + }, + { + "start": 333.32, + "end": 335.34, + "probability": 0.7325 + }, + { + "start": 335.6, + "end": 339.6, + "probability": 0.9919 + }, + { + "start": 339.88, + "end": 342.82, + "probability": 0.983 + }, + { + "start": 343.66, + "end": 345.56, + "probability": 0.9923 + }, + { + "start": 346.08, + "end": 348.52, + "probability": 0.9968 + }, + { + "start": 348.56, + "end": 351.32, + "probability": 0.662 + }, + { + "start": 351.64, + "end": 354.02, + "probability": 0.9942 + }, + { + "start": 355.87, + "end": 359.38, + "probability": 0.8343 + }, + { + "start": 359.54, + "end": 362.45, + "probability": 0.8583 + }, + { + "start": 363.56, + "end": 365.14, + "probability": 0.8795 + }, + { + "start": 366.5, + "end": 367.42, + "probability": 0.8679 + }, + { + "start": 368.44, + "end": 369.12, + "probability": 0.6991 + }, + { + "start": 369.24, + "end": 371.24, + "probability": 0.7457 + }, + { + "start": 371.48, + "end": 371.7, + "probability": 0.0676 + }, + { + "start": 371.8, + "end": 374.5, + "probability": 0.8335 + }, + { + "start": 374.72, + "end": 375.88, + "probability": 0.5211 + }, + { + "start": 375.96, + "end": 379.56, + "probability": 0.7003 + }, + { + "start": 380.63, + "end": 383.32, + "probability": 0.9639 + }, + { + "start": 383.44, + "end": 387.24, + "probability": 0.9554 + }, + { + "start": 388.5, + "end": 390.94, + "probability": 0.8616 + }, + { + "start": 391.18, + "end": 393.98, + "probability": 0.8879 + }, + { + "start": 394.42, + "end": 395.98, + "probability": 0.9366 + }, + { + "start": 396.06, + "end": 397.72, + "probability": 0.9661 + }, + { + "start": 398.34, + "end": 400.86, + "probability": 0.9359 + }, + { + "start": 401.18, + "end": 406.72, + "probability": 0.6621 + }, + { + "start": 407.7, + "end": 412.5, + "probability": 0.6575 + }, + { + "start": 413.46, + "end": 416.54, + "probability": 0.8637 + }, + { + "start": 417.02, + "end": 422.78, + "probability": 0.9943 + }, + { + "start": 422.94, + "end": 423.14, + "probability": 0.7616 + }, + { + "start": 424.0, + "end": 424.66, + "probability": 0.6904 + }, + { + "start": 424.66, + "end": 426.32, + "probability": 0.5925 + }, + { + "start": 427.06, + "end": 428.14, + "probability": 0.7132 + }, + { + "start": 428.42, + "end": 429.84, + "probability": 0.8322 + }, + { + "start": 430.62, + "end": 433.72, + "probability": 0.808 + }, + { + "start": 433.72, + "end": 434.27, + "probability": 0.9722 + }, + { + "start": 434.44, + "end": 435.34, + "probability": 0.3152 + }, + { + "start": 435.98, + "end": 437.84, + "probability": 0.5697 + }, + { + "start": 437.86, + "end": 438.66, + "probability": 0.6278 + }, + { + "start": 438.78, + "end": 441.12, + "probability": 0.9281 + }, + { + "start": 441.24, + "end": 443.39, + "probability": 0.3946 + }, + { + "start": 443.52, + "end": 444.56, + "probability": 0.9412 + }, + { + "start": 444.8, + "end": 447.46, + "probability": 0.9737 + }, + { + "start": 448.36, + "end": 451.02, + "probability": 0.8633 + }, + { + "start": 451.44, + "end": 454.16, + "probability": 0.9839 + }, + { + "start": 454.32, + "end": 456.04, + "probability": 0.9581 + }, + { + "start": 456.6, + "end": 460.26, + "probability": 0.8704 + }, + { + "start": 460.84, + "end": 463.48, + "probability": 0.9623 + }, + { + "start": 463.52, + "end": 465.72, + "probability": 0.8704 + }, + { + "start": 465.98, + "end": 468.2, + "probability": 0.9722 + }, + { + "start": 468.2, + "end": 470.6, + "probability": 0.7897 + }, + { + "start": 470.7, + "end": 473.09, + "probability": 0.9558 + }, + { + "start": 473.6, + "end": 478.08, + "probability": 0.6804 + }, + { + "start": 478.14, + "end": 479.04, + "probability": 0.8686 + }, + { + "start": 479.7, + "end": 484.74, + "probability": 0.8008 + }, + { + "start": 485.06, + "end": 491.28, + "probability": 0.9818 + }, + { + "start": 491.56, + "end": 492.92, + "probability": 0.657 + }, + { + "start": 493.34, + "end": 493.8, + "probability": 0.8078 + }, + { + "start": 494.48, + "end": 495.74, + "probability": 0.4625 + }, + { + "start": 495.74, + "end": 496.0, + "probability": 0.446 + }, + { + "start": 496.12, + "end": 497.7, + "probability": 0.5456 + }, + { + "start": 497.7, + "end": 497.82, + "probability": 0.3429 + }, + { + "start": 497.82, + "end": 500.28, + "probability": 0.4977 + }, + { + "start": 500.38, + "end": 501.58, + "probability": 0.5901 + }, + { + "start": 501.7, + "end": 507.76, + "probability": 0.8434 + }, + { + "start": 508.02, + "end": 510.98, + "probability": 0.959 + }, + { + "start": 511.04, + "end": 512.24, + "probability": 0.2535 + }, + { + "start": 512.4, + "end": 513.42, + "probability": 0.6735 + }, + { + "start": 514.36, + "end": 520.06, + "probability": 0.8209 + }, + { + "start": 520.74, + "end": 522.68, + "probability": 0.8005 + }, + { + "start": 523.3, + "end": 527.14, + "probability": 0.9733 + }, + { + "start": 527.14, + "end": 527.8, + "probability": 0.6261 + }, + { + "start": 527.84, + "end": 528.7, + "probability": 0.5927 + }, + { + "start": 529.72, + "end": 534.06, + "probability": 0.7456 + }, + { + "start": 534.26, + "end": 535.18, + "probability": 0.6026 + }, + { + "start": 535.72, + "end": 537.92, + "probability": 0.922 + }, + { + "start": 538.7, + "end": 539.54, + "probability": 0.9402 + }, + { + "start": 540.02, + "end": 544.5, + "probability": 0.9977 + }, + { + "start": 544.5, + "end": 548.86, + "probability": 0.7119 + }, + { + "start": 548.94, + "end": 549.14, + "probability": 0.7827 + }, + { + "start": 549.78, + "end": 550.31, + "probability": 0.5406 + }, + { + "start": 553.72, + "end": 555.7, + "probability": 0.7034 + }, + { + "start": 555.8, + "end": 558.92, + "probability": 0.9843 + }, + { + "start": 559.06, + "end": 560.54, + "probability": 0.9824 + }, + { + "start": 572.48, + "end": 572.64, + "probability": 0.7086 + }, + { + "start": 573.42, + "end": 573.74, + "probability": 0.4816 + }, + { + "start": 573.74, + "end": 576.24, + "probability": 0.9838 + }, + { + "start": 576.4, + "end": 579.38, + "probability": 0.9967 + }, + { + "start": 581.62, + "end": 585.38, + "probability": 0.9888 + }, + { + "start": 588.06, + "end": 588.66, + "probability": 0.5306 + }, + { + "start": 589.12, + "end": 590.28, + "probability": 0.725 + }, + { + "start": 591.36, + "end": 591.78, + "probability": 0.8929 + }, + { + "start": 596.82, + "end": 597.34, + "probability": 0.7437 + }, + { + "start": 598.38, + "end": 602.04, + "probability": 0.9694 + }, + { + "start": 602.1, + "end": 602.9, + "probability": 0.9564 + }, + { + "start": 603.0, + "end": 604.61, + "probability": 0.9937 + }, + { + "start": 605.88, + "end": 608.92, + "probability": 0.9927 + }, + { + "start": 609.76, + "end": 610.4, + "probability": 0.5648 + }, + { + "start": 610.6, + "end": 612.84, + "probability": 0.7836 + }, + { + "start": 614.19, + "end": 617.44, + "probability": 0.9893 + }, + { + "start": 618.04, + "end": 618.38, + "probability": 0.8911 + }, + { + "start": 618.98, + "end": 621.88, + "probability": 0.9837 + }, + { + "start": 621.88, + "end": 624.56, + "probability": 0.934 + }, + { + "start": 624.78, + "end": 627.34, + "probability": 0.967 + }, + { + "start": 628.12, + "end": 628.76, + "probability": 0.6051 + }, + { + "start": 629.02, + "end": 632.28, + "probability": 0.819 + }, + { + "start": 633.5, + "end": 634.8, + "probability": 0.7129 + }, + { + "start": 636.22, + "end": 638.12, + "probability": 0.9565 + }, + { + "start": 638.44, + "end": 641.16, + "probability": 0.9372 + }, + { + "start": 642.42, + "end": 645.06, + "probability": 0.9465 + }, + { + "start": 645.52, + "end": 647.88, + "probability": 0.7301 + }, + { + "start": 648.06, + "end": 649.14, + "probability": 0.9785 + }, + { + "start": 649.58, + "end": 652.76, + "probability": 0.9773 + }, + { + "start": 654.9, + "end": 658.82, + "probability": 0.749 + }, + { + "start": 658.96, + "end": 661.74, + "probability": 0.918 + }, + { + "start": 662.0, + "end": 663.04, + "probability": 0.8575 + }, + { + "start": 663.92, + "end": 665.08, + "probability": 0.98 + }, + { + "start": 665.24, + "end": 670.6, + "probability": 0.9061 + }, + { + "start": 671.42, + "end": 675.3, + "probability": 0.911 + }, + { + "start": 676.34, + "end": 683.0, + "probability": 0.905 + }, + { + "start": 683.38, + "end": 687.86, + "probability": 0.9979 + }, + { + "start": 688.52, + "end": 692.54, + "probability": 0.9919 + }, + { + "start": 693.86, + "end": 701.22, + "probability": 0.9904 + }, + { + "start": 701.22, + "end": 705.46, + "probability": 0.9969 + }, + { + "start": 706.18, + "end": 707.68, + "probability": 0.958 + }, + { + "start": 708.42, + "end": 712.8, + "probability": 0.9362 + }, + { + "start": 713.92, + "end": 718.68, + "probability": 0.9964 + }, + { + "start": 718.88, + "end": 721.6, + "probability": 0.9777 + }, + { + "start": 721.74, + "end": 722.44, + "probability": 0.7883 + }, + { + "start": 722.56, + "end": 725.08, + "probability": 0.9991 + }, + { + "start": 726.4, + "end": 731.42, + "probability": 0.9659 + }, + { + "start": 731.9, + "end": 735.7, + "probability": 0.9435 + }, + { + "start": 735.84, + "end": 742.86, + "probability": 0.9593 + }, + { + "start": 742.86, + "end": 746.34, + "probability": 0.9897 + }, + { + "start": 746.38, + "end": 748.74, + "probability": 0.9796 + }, + { + "start": 749.46, + "end": 755.48, + "probability": 0.9855 + }, + { + "start": 755.68, + "end": 759.0, + "probability": 0.998 + }, + { + "start": 759.24, + "end": 763.64, + "probability": 0.9974 + }, + { + "start": 763.78, + "end": 767.72, + "probability": 0.8166 + }, + { + "start": 768.34, + "end": 775.84, + "probability": 0.9744 + }, + { + "start": 775.84, + "end": 783.76, + "probability": 0.9906 + }, + { + "start": 783.92, + "end": 790.56, + "probability": 0.996 + }, + { + "start": 791.95, + "end": 794.58, + "probability": 0.9251 + }, + { + "start": 794.68, + "end": 797.82, + "probability": 0.9927 + }, + { + "start": 798.32, + "end": 801.14, + "probability": 0.4474 + }, + { + "start": 801.88, + "end": 804.06, + "probability": 0.8653 + }, + { + "start": 804.1, + "end": 806.82, + "probability": 0.9851 + }, + { + "start": 806.9, + "end": 810.62, + "probability": 0.9993 + }, + { + "start": 811.38, + "end": 813.3, + "probability": 0.5184 + }, + { + "start": 813.82, + "end": 815.82, + "probability": 0.9497 + }, + { + "start": 816.7, + "end": 817.54, + "probability": 0.6971 + }, + { + "start": 818.18, + "end": 819.42, + "probability": 0.7647 + }, + { + "start": 820.04, + "end": 820.98, + "probability": 0.9294 + }, + { + "start": 821.74, + "end": 823.74, + "probability": 0.9529 + }, + { + "start": 823.74, + "end": 825.44, + "probability": 0.5063 + }, + { + "start": 825.5, + "end": 827.86, + "probability": 0.9881 + }, + { + "start": 828.3, + "end": 829.54, + "probability": 0.4724 + }, + { + "start": 829.78, + "end": 831.34, + "probability": 0.6381 + }, + { + "start": 833.16, + "end": 834.36, + "probability": 0.021 + }, + { + "start": 834.54, + "end": 836.12, + "probability": 0.0289 + }, + { + "start": 836.42, + "end": 838.62, + "probability": 0.0132 + }, + { + "start": 838.9, + "end": 839.06, + "probability": 0.0329 + }, + { + "start": 839.06, + "end": 842.2, + "probability": 0.4449 + }, + { + "start": 844.3, + "end": 845.42, + "probability": 0.0404 + }, + { + "start": 846.8, + "end": 846.9, + "probability": 0.0455 + }, + { + "start": 846.9, + "end": 846.9, + "probability": 0.0167 + }, + { + "start": 846.9, + "end": 848.46, + "probability": 0.723 + }, + { + "start": 848.62, + "end": 849.54, + "probability": 0.9375 + }, + { + "start": 849.96, + "end": 857.88, + "probability": 0.8545 + }, + { + "start": 858.52, + "end": 860.42, + "probability": 0.9746 + }, + { + "start": 860.72, + "end": 863.64, + "probability": 0.9976 + }, + { + "start": 864.96, + "end": 868.78, + "probability": 0.8815 + }, + { + "start": 869.6, + "end": 873.72, + "probability": 0.9902 + }, + { + "start": 874.54, + "end": 879.22, + "probability": 0.9723 + }, + { + "start": 879.22, + "end": 881.58, + "probability": 0.999 + }, + { + "start": 882.08, + "end": 884.74, + "probability": 0.9655 + }, + { + "start": 885.02, + "end": 888.06, + "probability": 0.9888 + }, + { + "start": 889.06, + "end": 889.88, + "probability": 0.0282 + }, + { + "start": 889.88, + "end": 894.96, + "probability": 0.9631 + }, + { + "start": 896.22, + "end": 900.14, + "probability": 0.9984 + }, + { + "start": 900.72, + "end": 902.1, + "probability": 0.9956 + }, + { + "start": 903.68, + "end": 905.28, + "probability": 0.496 + }, + { + "start": 908.12, + "end": 912.0, + "probability": 0.9988 + }, + { + "start": 912.0, + "end": 914.92, + "probability": 0.9989 + }, + { + "start": 915.08, + "end": 920.32, + "probability": 0.9984 + }, + { + "start": 921.2, + "end": 927.16, + "probability": 0.9986 + }, + { + "start": 928.91, + "end": 930.86, + "probability": 0.8468 + }, + { + "start": 930.96, + "end": 931.76, + "probability": 0.9058 + }, + { + "start": 931.84, + "end": 935.36, + "probability": 0.8393 + }, + { + "start": 935.42, + "end": 938.24, + "probability": 0.9913 + }, + { + "start": 940.02, + "end": 942.94, + "probability": 0.9898 + }, + { + "start": 943.14, + "end": 943.88, + "probability": 0.7188 + }, + { + "start": 944.5, + "end": 949.86, + "probability": 0.9976 + }, + { + "start": 950.48, + "end": 953.14, + "probability": 0.9964 + }, + { + "start": 954.0, + "end": 960.4, + "probability": 0.9894 + }, + { + "start": 960.4, + "end": 966.18, + "probability": 0.9995 + }, + { + "start": 966.84, + "end": 971.24, + "probability": 0.9984 + }, + { + "start": 971.24, + "end": 974.32, + "probability": 0.9995 + }, + { + "start": 975.2, + "end": 975.7, + "probability": 0.5409 + }, + { + "start": 975.8, + "end": 979.78, + "probability": 0.9087 + }, + { + "start": 979.94, + "end": 980.16, + "probability": 0.2459 + }, + { + "start": 980.16, + "end": 982.92, + "probability": 0.8594 + }, + { + "start": 985.02, + "end": 987.3, + "probability": 0.773 + }, + { + "start": 988.48, + "end": 992.72, + "probability": 0.9312 + }, + { + "start": 993.28, + "end": 994.72, + "probability": 0.8561 + }, + { + "start": 995.42, + "end": 998.94, + "probability": 0.9956 + }, + { + "start": 998.94, + "end": 1001.82, + "probability": 0.9933 + }, + { + "start": 1001.96, + "end": 1002.2, + "probability": 0.8568 + }, + { + "start": 1002.52, + "end": 1003.17, + "probability": 0.7496 + }, + { + "start": 1003.94, + "end": 1006.82, + "probability": 0.9828 + }, + { + "start": 1007.24, + "end": 1011.14, + "probability": 0.9947 + }, + { + "start": 1012.24, + "end": 1017.32, + "probability": 0.9876 + }, + { + "start": 1018.14, + "end": 1019.96, + "probability": 0.5468 + }, + { + "start": 1020.5, + "end": 1021.48, + "probability": 0.9424 + }, + { + "start": 1021.92, + "end": 1022.24, + "probability": 0.742 + }, + { + "start": 1022.28, + "end": 1022.6, + "probability": 0.3695 + }, + { + "start": 1022.9, + "end": 1024.76, + "probability": 0.9946 + }, + { + "start": 1024.88, + "end": 1027.02, + "probability": 0.8901 + }, + { + "start": 1027.82, + "end": 1031.64, + "probability": 0.9678 + }, + { + "start": 1031.84, + "end": 1032.82, + "probability": 0.843 + }, + { + "start": 1033.04, + "end": 1036.6, + "probability": 0.9021 + }, + { + "start": 1036.64, + "end": 1037.32, + "probability": 0.7242 + }, + { + "start": 1037.36, + "end": 1039.17, + "probability": 0.8623 + }, + { + "start": 1039.92, + "end": 1044.06, + "probability": 0.9729 + }, + { + "start": 1044.42, + "end": 1047.32, + "probability": 0.9834 + }, + { + "start": 1048.0, + "end": 1050.7, + "probability": 0.8914 + }, + { + "start": 1050.72, + "end": 1051.56, + "probability": 0.6771 + }, + { + "start": 1052.58, + "end": 1053.14, + "probability": 0.6528 + }, + { + "start": 1053.32, + "end": 1054.1, + "probability": 0.8326 + }, + { + "start": 1054.12, + "end": 1054.68, + "probability": 0.8945 + }, + { + "start": 1054.82, + "end": 1056.56, + "probability": 0.8798 + }, + { + "start": 1060.08, + "end": 1061.72, + "probability": 0.5324 + }, + { + "start": 1061.74, + "end": 1062.99, + "probability": 0.6196 + }, + { + "start": 1063.46, + "end": 1064.62, + "probability": 0.9078 + }, + { + "start": 1065.72, + "end": 1067.36, + "probability": 0.4891 + }, + { + "start": 1067.54, + "end": 1070.02, + "probability": 0.6965 + }, + { + "start": 1070.14, + "end": 1071.42, + "probability": 0.8276 + }, + { + "start": 1071.48, + "end": 1073.95, + "probability": 0.9126 + }, + { + "start": 1075.18, + "end": 1076.6, + "probability": 0.6503 + }, + { + "start": 1076.68, + "end": 1079.3, + "probability": 0.9812 + }, + { + "start": 1079.46, + "end": 1084.28, + "probability": 0.9761 + }, + { + "start": 1085.3, + "end": 1091.34, + "probability": 0.8206 + }, + { + "start": 1091.46, + "end": 1093.38, + "probability": 0.9312 + }, + { + "start": 1094.12, + "end": 1095.98, + "probability": 0.9895 + }, + { + "start": 1096.46, + "end": 1099.02, + "probability": 0.9893 + }, + { + "start": 1099.28, + "end": 1101.66, + "probability": 0.9761 + }, + { + "start": 1102.4, + "end": 1106.88, + "probability": 0.8589 + }, + { + "start": 1107.66, + "end": 1109.82, + "probability": 0.8804 + }, + { + "start": 1110.1, + "end": 1112.06, + "probability": 0.9948 + }, + { + "start": 1114.14, + "end": 1122.78, + "probability": 0.9965 + }, + { + "start": 1123.5, + "end": 1123.84, + "probability": 0.5786 + }, + { + "start": 1123.84, + "end": 1128.22, + "probability": 0.9963 + }, + { + "start": 1128.4, + "end": 1133.4, + "probability": 0.9969 + }, + { + "start": 1134.22, + "end": 1135.96, + "probability": 0.9536 + }, + { + "start": 1136.02, + "end": 1139.94, + "probability": 0.9927 + }, + { + "start": 1140.7, + "end": 1142.04, + "probability": 0.9392 + }, + { + "start": 1142.18, + "end": 1144.92, + "probability": 0.8669 + }, + { + "start": 1145.48, + "end": 1151.0, + "probability": 0.9875 + }, + { + "start": 1152.2, + "end": 1156.6, + "probability": 0.999 + }, + { + "start": 1156.92, + "end": 1161.88, + "probability": 0.9911 + }, + { + "start": 1162.86, + "end": 1166.82, + "probability": 0.9948 + }, + { + "start": 1168.08, + "end": 1169.86, + "probability": 0.9077 + }, + { + "start": 1169.98, + "end": 1174.58, + "probability": 0.9749 + }, + { + "start": 1174.72, + "end": 1179.3, + "probability": 0.9899 + }, + { + "start": 1179.98, + "end": 1180.24, + "probability": 0.6914 + }, + { + "start": 1181.5, + "end": 1185.68, + "probability": 0.9621 + }, + { + "start": 1186.24, + "end": 1190.2, + "probability": 0.9868 + }, + { + "start": 1190.42, + "end": 1195.94, + "probability": 0.9989 + }, + { + "start": 1196.34, + "end": 1196.68, + "probability": 0.5074 + }, + { + "start": 1198.98, + "end": 1202.54, + "probability": 0.9447 + }, + { + "start": 1202.56, + "end": 1202.76, + "probability": 0.8974 + }, + { + "start": 1204.23, + "end": 1206.48, + "probability": 0.742 + }, + { + "start": 1206.9, + "end": 1207.68, + "probability": 0.9738 + }, + { + "start": 1208.4, + "end": 1211.56, + "probability": 0.9977 + }, + { + "start": 1211.68, + "end": 1216.6, + "probability": 0.8999 + }, + { + "start": 1216.96, + "end": 1220.64, + "probability": 0.9744 + }, + { + "start": 1221.36, + "end": 1222.04, + "probability": 0.7301 + }, + { + "start": 1222.38, + "end": 1226.66, + "probability": 0.9893 + }, + { + "start": 1227.08, + "end": 1229.5, + "probability": 0.9871 + }, + { + "start": 1230.16, + "end": 1233.12, + "probability": 0.9825 + }, + { + "start": 1233.12, + "end": 1236.28, + "probability": 0.7109 + }, + { + "start": 1237.04, + "end": 1239.36, + "probability": 0.9837 + }, + { + "start": 1239.74, + "end": 1241.1, + "probability": 0.9683 + }, + { + "start": 1242.84, + "end": 1244.4, + "probability": 0.7933 + }, + { + "start": 1244.82, + "end": 1247.9, + "probability": 0.9582 + }, + { + "start": 1248.84, + "end": 1252.52, + "probability": 0.9851 + }, + { + "start": 1252.9, + "end": 1257.6, + "probability": 0.9913 + }, + { + "start": 1258.26, + "end": 1262.84, + "probability": 0.9973 + }, + { + "start": 1263.3, + "end": 1267.04, + "probability": 0.9968 + }, + { + "start": 1267.04, + "end": 1271.5, + "probability": 0.9971 + }, + { + "start": 1272.86, + "end": 1276.02, + "probability": 0.879 + }, + { + "start": 1277.24, + "end": 1279.28, + "probability": 0.7539 + }, + { + "start": 1279.92, + "end": 1284.86, + "probability": 0.9746 + }, + { + "start": 1284.86, + "end": 1289.14, + "probability": 0.9897 + }, + { + "start": 1289.82, + "end": 1292.4, + "probability": 0.9348 + }, + { + "start": 1292.46, + "end": 1298.18, + "probability": 0.9966 + }, + { + "start": 1298.44, + "end": 1298.68, + "probability": 0.6352 + }, + { + "start": 1298.9, + "end": 1299.58, + "probability": 0.8399 + }, + { + "start": 1299.7, + "end": 1302.26, + "probability": 0.9774 + }, + { + "start": 1302.44, + "end": 1303.74, + "probability": 0.7271 + }, + { + "start": 1304.32, + "end": 1307.12, + "probability": 0.7581 + }, + { + "start": 1309.16, + "end": 1310.04, + "probability": 0.648 + }, + { + "start": 1310.08, + "end": 1312.1, + "probability": 0.9836 + }, + { + "start": 1312.1, + "end": 1314.66, + "probability": 0.9554 + }, + { + "start": 1314.66, + "end": 1315.24, + "probability": 0.9325 + }, + { + "start": 1315.34, + "end": 1315.8, + "probability": 0.5848 + }, + { + "start": 1316.06, + "end": 1319.22, + "probability": 0.9005 + }, + { + "start": 1320.36, + "end": 1323.22, + "probability": 0.9678 + }, + { + "start": 1325.3, + "end": 1331.2, + "probability": 0.9553 + }, + { + "start": 1331.94, + "end": 1335.56, + "probability": 0.9943 + }, + { + "start": 1336.28, + "end": 1338.38, + "probability": 0.9481 + }, + { + "start": 1339.18, + "end": 1341.78, + "probability": 0.9005 + }, + { + "start": 1343.08, + "end": 1346.04, + "probability": 0.9956 + }, + { + "start": 1346.72, + "end": 1348.01, + "probability": 0.9971 + }, + { + "start": 1348.72, + "end": 1351.2, + "probability": 0.8735 + }, + { + "start": 1351.88, + "end": 1354.22, + "probability": 0.9943 + }, + { + "start": 1354.7, + "end": 1357.3, + "probability": 0.996 + }, + { + "start": 1357.42, + "end": 1359.66, + "probability": 0.9985 + }, + { + "start": 1360.68, + "end": 1363.94, + "probability": 0.9971 + }, + { + "start": 1363.94, + "end": 1367.24, + "probability": 0.9787 + }, + { + "start": 1367.32, + "end": 1368.32, + "probability": 0.9956 + }, + { + "start": 1368.94, + "end": 1375.04, + "probability": 0.9902 + }, + { + "start": 1375.04, + "end": 1379.06, + "probability": 0.996 + }, + { + "start": 1379.14, + "end": 1379.61, + "probability": 0.5091 + }, + { + "start": 1381.68, + "end": 1386.78, + "probability": 0.9811 + }, + { + "start": 1386.92, + "end": 1389.0, + "probability": 0.9924 + }, + { + "start": 1389.62, + "end": 1392.06, + "probability": 0.876 + }, + { + "start": 1393.08, + "end": 1396.1, + "probability": 0.9871 + }, + { + "start": 1396.28, + "end": 1401.14, + "probability": 0.9941 + }, + { + "start": 1401.14, + "end": 1404.28, + "probability": 0.9996 + }, + { + "start": 1405.0, + "end": 1406.42, + "probability": 0.9075 + }, + { + "start": 1407.46, + "end": 1413.34, + "probability": 0.9846 + }, + { + "start": 1414.2, + "end": 1416.1, + "probability": 0.9937 + }, + { + "start": 1416.6, + "end": 1419.4, + "probability": 0.9737 + }, + { + "start": 1420.22, + "end": 1424.14, + "probability": 0.9868 + }, + { + "start": 1424.88, + "end": 1425.68, + "probability": 0.8282 + }, + { + "start": 1426.36, + "end": 1430.66, + "probability": 0.8484 + }, + { + "start": 1430.72, + "end": 1432.08, + "probability": 0.8734 + }, + { + "start": 1432.6, + "end": 1434.2, + "probability": 0.9896 + }, + { + "start": 1434.76, + "end": 1437.3, + "probability": 0.9685 + }, + { + "start": 1437.98, + "end": 1440.56, + "probability": 0.9877 + }, + { + "start": 1441.24, + "end": 1444.08, + "probability": 0.6247 + }, + { + "start": 1444.22, + "end": 1445.38, + "probability": 0.6465 + }, + { + "start": 1446.04, + "end": 1447.1, + "probability": 0.7043 + }, + { + "start": 1447.58, + "end": 1452.66, + "probability": 0.8763 + }, + { + "start": 1452.88, + "end": 1453.51, + "probability": 0.9983 + }, + { + "start": 1454.38, + "end": 1458.18, + "probability": 0.9899 + }, + { + "start": 1458.22, + "end": 1461.18, + "probability": 0.9922 + }, + { + "start": 1461.7, + "end": 1462.82, + "probability": 0.9927 + }, + { + "start": 1463.32, + "end": 1466.56, + "probability": 0.9906 + }, + { + "start": 1466.56, + "end": 1469.2, + "probability": 0.9943 + }, + { + "start": 1469.98, + "end": 1473.42, + "probability": 0.8755 + }, + { + "start": 1473.6, + "end": 1473.92, + "probability": 0.7942 + }, + { + "start": 1474.48, + "end": 1476.68, + "probability": 0.9539 + }, + { + "start": 1477.64, + "end": 1483.54, + "probability": 0.9895 + }, + { + "start": 1483.54, + "end": 1490.12, + "probability": 0.9961 + }, + { + "start": 1490.68, + "end": 1491.84, + "probability": 0.9885 + }, + { + "start": 1491.96, + "end": 1492.36, + "probability": 0.5544 + }, + { + "start": 1492.36, + "end": 1493.92, + "probability": 0.9576 + }, + { + "start": 1494.08, + "end": 1496.34, + "probability": 0.9805 + }, + { + "start": 1496.86, + "end": 1498.9, + "probability": 0.969 + }, + { + "start": 1500.16, + "end": 1505.24, + "probability": 0.9517 + }, + { + "start": 1505.48, + "end": 1508.01, + "probability": 0.7517 + }, + { + "start": 1508.42, + "end": 1509.3, + "probability": 0.993 + }, + { + "start": 1510.56, + "end": 1513.48, + "probability": 0.7954 + }, + { + "start": 1514.0, + "end": 1515.98, + "probability": 0.8196 + }, + { + "start": 1516.08, + "end": 1519.3, + "probability": 0.9307 + }, + { + "start": 1520.14, + "end": 1522.7, + "probability": 0.9308 + }, + { + "start": 1523.3, + "end": 1528.9, + "probability": 0.9737 + }, + { + "start": 1529.62, + "end": 1532.5, + "probability": 0.6869 + }, + { + "start": 1533.26, + "end": 1535.12, + "probability": 0.9935 + }, + { + "start": 1535.18, + "end": 1535.46, + "probability": 0.954 + }, + { + "start": 1535.58, + "end": 1538.38, + "probability": 0.9951 + }, + { + "start": 1538.5, + "end": 1541.98, + "probability": 0.8137 + }, + { + "start": 1542.74, + "end": 1547.46, + "probability": 0.9944 + }, + { + "start": 1547.46, + "end": 1551.14, + "probability": 0.9951 + }, + { + "start": 1551.84, + "end": 1555.7, + "probability": 0.9932 + }, + { + "start": 1556.84, + "end": 1558.32, + "probability": 0.9458 + }, + { + "start": 1558.46, + "end": 1560.2, + "probability": 0.9596 + }, + { + "start": 1560.7, + "end": 1565.67, + "probability": 0.9883 + }, + { + "start": 1565.76, + "end": 1570.46, + "probability": 0.998 + }, + { + "start": 1570.8, + "end": 1571.06, + "probability": 0.4543 + }, + { + "start": 1571.1, + "end": 1573.14, + "probability": 0.9044 + }, + { + "start": 1575.02, + "end": 1576.14, + "probability": 0.7743 + }, + { + "start": 1576.78, + "end": 1577.88, + "probability": 0.622 + }, + { + "start": 1577.96, + "end": 1582.16, + "probability": 0.9182 + }, + { + "start": 1582.78, + "end": 1585.04, + "probability": 0.9683 + }, + { + "start": 1585.9, + "end": 1588.32, + "probability": 0.9968 + }, + { + "start": 1589.5, + "end": 1591.04, + "probability": 0.7601 + }, + { + "start": 1591.92, + "end": 1595.52, + "probability": 0.7309 + }, + { + "start": 1596.12, + "end": 1598.94, + "probability": 0.9746 + }, + { + "start": 1599.46, + "end": 1603.56, + "probability": 0.9846 + }, + { + "start": 1604.14, + "end": 1606.3, + "probability": 0.9012 + }, + { + "start": 1606.9, + "end": 1608.26, + "probability": 0.9536 + }, + { + "start": 1608.42, + "end": 1609.06, + "probability": 0.9399 + }, + { + "start": 1609.12, + "end": 1609.46, + "probability": 0.1732 + }, + { + "start": 1609.64, + "end": 1611.66, + "probability": 0.9903 + }, + { + "start": 1612.04, + "end": 1614.06, + "probability": 0.9946 + }, + { + "start": 1614.42, + "end": 1617.18, + "probability": 0.9707 + }, + { + "start": 1617.36, + "end": 1618.22, + "probability": 0.6615 + }, + { + "start": 1618.74, + "end": 1620.66, + "probability": 0.6733 + }, + { + "start": 1620.76, + "end": 1623.68, + "probability": 0.8856 + }, + { + "start": 1623.86, + "end": 1627.92, + "probability": 0.7915 + }, + { + "start": 1628.06, + "end": 1630.02, + "probability": 0.9333 + }, + { + "start": 1630.02, + "end": 1634.22, + "probability": 0.9507 + }, + { + "start": 1634.42, + "end": 1636.5, + "probability": 0.9906 + }, + { + "start": 1636.58, + "end": 1636.96, + "probability": 0.7726 + }, + { + "start": 1637.96, + "end": 1638.44, + "probability": 0.3933 + }, + { + "start": 1638.58, + "end": 1640.4, + "probability": 0.3348 + }, + { + "start": 1640.48, + "end": 1644.06, + "probability": 0.9616 + }, + { + "start": 1644.2, + "end": 1646.2, + "probability": 0.9946 + }, + { + "start": 1646.48, + "end": 1648.66, + "probability": 0.9948 + }, + { + "start": 1648.76, + "end": 1651.96, + "probability": 0.9958 + }, + { + "start": 1653.06, + "end": 1655.72, + "probability": 0.7725 + }, + { + "start": 1656.52, + "end": 1662.58, + "probability": 0.9924 + }, + { + "start": 1662.66, + "end": 1663.7, + "probability": 0.8317 + }, + { + "start": 1663.88, + "end": 1670.48, + "probability": 0.9673 + }, + { + "start": 1670.56, + "end": 1672.76, + "probability": 0.9993 + }, + { + "start": 1672.8, + "end": 1674.76, + "probability": 0.999 + }, + { + "start": 1675.62, + "end": 1677.42, + "probability": 0.9805 + }, + { + "start": 1678.28, + "end": 1680.38, + "probability": 0.7434 + }, + { + "start": 1680.54, + "end": 1682.26, + "probability": 0.6357 + }, + { + "start": 1683.3, + "end": 1687.08, + "probability": 0.9147 + }, + { + "start": 1689.3, + "end": 1691.86, + "probability": 0.8406 + }, + { + "start": 1694.58, + "end": 1695.78, + "probability": 0.9891 + }, + { + "start": 1696.56, + "end": 1697.86, + "probability": 0.9911 + }, + { + "start": 1698.58, + "end": 1701.36, + "probability": 0.958 + }, + { + "start": 1701.56, + "end": 1702.76, + "probability": 0.9766 + }, + { + "start": 1703.0, + "end": 1703.66, + "probability": 0.9954 + }, + { + "start": 1704.02, + "end": 1706.12, + "probability": 0.9985 + }, + { + "start": 1706.26, + "end": 1706.7, + "probability": 0.9802 + }, + { + "start": 1707.3, + "end": 1709.58, + "probability": 0.9931 + }, + { + "start": 1710.12, + "end": 1717.49, + "probability": 0.9315 + }, + { + "start": 1719.38, + "end": 1725.16, + "probability": 0.9812 + }, + { + "start": 1726.26, + "end": 1732.5, + "probability": 0.9924 + }, + { + "start": 1733.32, + "end": 1735.7, + "probability": 0.9724 + }, + { + "start": 1736.12, + "end": 1738.58, + "probability": 0.9641 + }, + { + "start": 1739.42, + "end": 1742.58, + "probability": 0.8185 + }, + { + "start": 1742.6, + "end": 1744.54, + "probability": 0.9932 + }, + { + "start": 1745.12, + "end": 1745.58, + "probability": 0.6611 + }, + { + "start": 1747.18, + "end": 1747.84, + "probability": 0.5757 + }, + { + "start": 1747.84, + "end": 1749.7, + "probability": 0.832 + }, + { + "start": 1750.24, + "end": 1752.74, + "probability": 0.7733 + }, + { + "start": 1753.78, + "end": 1755.78, + "probability": 0.9279 + }, + { + "start": 1755.82, + "end": 1756.72, + "probability": 0.9674 + }, + { + "start": 1756.94, + "end": 1760.54, + "probability": 0.9198 + }, + { + "start": 1777.2, + "end": 1778.42, + "probability": 0.7722 + }, + { + "start": 1779.44, + "end": 1783.7, + "probability": 0.9816 + }, + { + "start": 1783.94, + "end": 1788.24, + "probability": 0.9953 + }, + { + "start": 1790.24, + "end": 1791.08, + "probability": 0.5121 + }, + { + "start": 1791.28, + "end": 1791.54, + "probability": 0.2098 + }, + { + "start": 1791.54, + "end": 1793.66, + "probability": 0.9858 + }, + { + "start": 1793.76, + "end": 1794.71, + "probability": 0.7173 + }, + { + "start": 1795.16, + "end": 1797.74, + "probability": 0.9871 + }, + { + "start": 1797.9, + "end": 1798.66, + "probability": 0.8877 + }, + { + "start": 1799.12, + "end": 1800.16, + "probability": 0.9709 + }, + { + "start": 1800.74, + "end": 1805.02, + "probability": 0.9712 + }, + { + "start": 1805.12, + "end": 1805.56, + "probability": 0.7602 + }, + { + "start": 1805.8, + "end": 1807.12, + "probability": 0.564 + }, + { + "start": 1807.46, + "end": 1811.94, + "probability": 0.9722 + }, + { + "start": 1812.08, + "end": 1814.1, + "probability": 0.9962 + }, + { + "start": 1814.64, + "end": 1816.06, + "probability": 0.9217 + }, + { + "start": 1816.52, + "end": 1822.4, + "probability": 0.9977 + }, + { + "start": 1823.0, + "end": 1824.4, + "probability": 0.9177 + }, + { + "start": 1824.96, + "end": 1825.22, + "probability": 0.6555 + }, + { + "start": 1827.2, + "end": 1830.18, + "probability": 0.8941 + }, + { + "start": 1831.2, + "end": 1832.16, + "probability": 0.8919 + }, + { + "start": 1833.52, + "end": 1835.98, + "probability": 0.9966 + }, + { + "start": 1838.4, + "end": 1839.29, + "probability": 0.8765 + }, + { + "start": 1842.86, + "end": 1845.62, + "probability": 0.9958 + }, + { + "start": 1847.2, + "end": 1850.78, + "probability": 0.9585 + }, + { + "start": 1852.26, + "end": 1852.84, + "probability": 0.6173 + }, + { + "start": 1853.64, + "end": 1854.32, + "probability": 0.8968 + }, + { + "start": 1856.94, + "end": 1857.46, + "probability": 0.95 + }, + { + "start": 1858.54, + "end": 1861.44, + "probability": 0.7735 + }, + { + "start": 1862.08, + "end": 1865.42, + "probability": 0.9308 + }, + { + "start": 1866.98, + "end": 1867.62, + "probability": 0.6465 + }, + { + "start": 1869.96, + "end": 1871.86, + "probability": 0.9891 + }, + { + "start": 1875.28, + "end": 1881.16, + "probability": 0.9804 + }, + { + "start": 1881.85, + "end": 1887.62, + "probability": 0.9109 + }, + { + "start": 1888.08, + "end": 1890.1, + "probability": 0.6572 + }, + { + "start": 1891.96, + "end": 1893.73, + "probability": 0.921 + }, + { + "start": 1895.58, + "end": 1898.82, + "probability": 0.999 + }, + { + "start": 1899.94, + "end": 1901.26, + "probability": 0.8698 + }, + { + "start": 1902.66, + "end": 1905.36, + "probability": 0.9194 + }, + { + "start": 1906.86, + "end": 1909.08, + "probability": 0.9964 + }, + { + "start": 1911.72, + "end": 1914.46, + "probability": 0.9918 + }, + { + "start": 1916.06, + "end": 1920.76, + "probability": 0.999 + }, + { + "start": 1921.5, + "end": 1923.78, + "probability": 0.9944 + }, + { + "start": 1924.88, + "end": 1926.42, + "probability": 0.9877 + }, + { + "start": 1926.96, + "end": 1930.2, + "probability": 0.9834 + }, + { + "start": 1932.82, + "end": 1934.44, + "probability": 0.9228 + }, + { + "start": 1935.14, + "end": 1938.9, + "probability": 0.9576 + }, + { + "start": 1940.16, + "end": 1942.62, + "probability": 0.9987 + }, + { + "start": 1943.68, + "end": 1946.64, + "probability": 0.9971 + }, + { + "start": 1947.76, + "end": 1954.68, + "probability": 0.9781 + }, + { + "start": 1956.22, + "end": 1961.02, + "probability": 0.9814 + }, + { + "start": 1962.1, + "end": 1967.14, + "probability": 0.9966 + }, + { + "start": 1967.96, + "end": 1970.66, + "probability": 0.9924 + }, + { + "start": 1971.24, + "end": 1971.54, + "probability": 0.9901 + }, + { + "start": 1973.12, + "end": 1979.06, + "probability": 0.9185 + }, + { + "start": 1979.72, + "end": 1981.84, + "probability": 0.8723 + }, + { + "start": 1984.28, + "end": 1989.46, + "probability": 0.9468 + }, + { + "start": 1990.48, + "end": 1993.12, + "probability": 0.8787 + }, + { + "start": 1994.52, + "end": 1995.88, + "probability": 0.6521 + }, + { + "start": 1996.6, + "end": 1997.14, + "probability": 0.9375 + }, + { + "start": 1999.02, + "end": 1999.88, + "probability": 0.957 + }, + { + "start": 2000.46, + "end": 2000.84, + "probability": 0.936 + }, + { + "start": 2001.5, + "end": 2003.66, + "probability": 0.9242 + }, + { + "start": 2004.9, + "end": 2007.1, + "probability": 0.9876 + }, + { + "start": 2008.28, + "end": 2009.88, + "probability": 0.8081 + }, + { + "start": 2011.14, + "end": 2012.78, + "probability": 0.957 + }, + { + "start": 2013.56, + "end": 2014.7, + "probability": 0.6292 + }, + { + "start": 2015.36, + "end": 2016.68, + "probability": 0.9903 + }, + { + "start": 2018.2, + "end": 2021.08, + "probability": 0.8878 + }, + { + "start": 2021.6, + "end": 2022.26, + "probability": 0.8017 + }, + { + "start": 2023.26, + "end": 2024.88, + "probability": 0.7378 + }, + { + "start": 2027.3, + "end": 2028.92, + "probability": 0.8719 + }, + { + "start": 2029.98, + "end": 2033.82, + "probability": 0.8416 + }, + { + "start": 2034.7, + "end": 2035.9, + "probability": 0.8744 + }, + { + "start": 2037.14, + "end": 2038.88, + "probability": 0.9772 + }, + { + "start": 2040.56, + "end": 2041.58, + "probability": 0.8733 + }, + { + "start": 2042.42, + "end": 2043.92, + "probability": 0.9966 + }, + { + "start": 2044.8, + "end": 2048.88, + "probability": 0.9979 + }, + { + "start": 2051.7, + "end": 2052.88, + "probability": 0.2268 + }, + { + "start": 2056.08, + "end": 2063.8, + "probability": 0.9983 + }, + { + "start": 2064.76, + "end": 2067.1, + "probability": 0.9555 + }, + { + "start": 2067.72, + "end": 2068.78, + "probability": 0.9448 + }, + { + "start": 2069.66, + "end": 2072.06, + "probability": 0.9834 + }, + { + "start": 2072.82, + "end": 2076.22, + "probability": 0.9977 + }, + { + "start": 2077.22, + "end": 2080.04, + "probability": 0.9011 + }, + { + "start": 2080.64, + "end": 2081.56, + "probability": 0.9931 + }, + { + "start": 2082.22, + "end": 2086.28, + "probability": 0.9917 + }, + { + "start": 2087.84, + "end": 2092.64, + "probability": 0.9865 + }, + { + "start": 2093.76, + "end": 2094.98, + "probability": 0.9888 + }, + { + "start": 2095.56, + "end": 2096.76, + "probability": 0.9546 + }, + { + "start": 2097.44, + "end": 2098.74, + "probability": 0.5449 + }, + { + "start": 2099.68, + "end": 2103.46, + "probability": 0.9913 + }, + { + "start": 2106.24, + "end": 2111.24, + "probability": 0.9941 + }, + { + "start": 2111.24, + "end": 2116.58, + "probability": 0.9921 + }, + { + "start": 2118.28, + "end": 2123.14, + "probability": 0.9912 + }, + { + "start": 2124.16, + "end": 2124.38, + "probability": 0.7469 + }, + { + "start": 2125.12, + "end": 2131.62, + "probability": 0.9697 + }, + { + "start": 2132.48, + "end": 2134.06, + "probability": 0.9738 + }, + { + "start": 2136.04, + "end": 2139.28, + "probability": 0.9295 + }, + { + "start": 2140.72, + "end": 2142.94, + "probability": 0.9861 + }, + { + "start": 2144.46, + "end": 2146.18, + "probability": 0.95 + }, + { + "start": 2146.86, + "end": 2147.96, + "probability": 0.9995 + }, + { + "start": 2148.84, + "end": 2150.78, + "probability": 0.9647 + }, + { + "start": 2157.32, + "end": 2159.08, + "probability": 0.4823 + }, + { + "start": 2161.66, + "end": 2162.3, + "probability": 0.5504 + }, + { + "start": 2165.2, + "end": 2165.54, + "probability": 0.6647 + }, + { + "start": 2168.36, + "end": 2169.0, + "probability": 0.7848 + }, + { + "start": 2170.04, + "end": 2173.36, + "probability": 0.9914 + }, + { + "start": 2187.34, + "end": 2189.08, + "probability": 0.7795 + }, + { + "start": 2190.7, + "end": 2192.8, + "probability": 0.9004 + }, + { + "start": 2196.5, + "end": 2198.42, + "probability": 0.8552 + }, + { + "start": 2199.48, + "end": 2200.8, + "probability": 0.995 + }, + { + "start": 2201.72, + "end": 2207.54, + "probability": 0.8436 + }, + { + "start": 2208.02, + "end": 2211.22, + "probability": 0.9737 + }, + { + "start": 2211.78, + "end": 2216.6, + "probability": 0.9928 + }, + { + "start": 2217.84, + "end": 2218.38, + "probability": 0.4985 + }, + { + "start": 2219.48, + "end": 2221.88, + "probability": 0.9509 + }, + { + "start": 2223.52, + "end": 2226.16, + "probability": 0.8754 + }, + { + "start": 2228.14, + "end": 2233.18, + "probability": 0.805 + }, + { + "start": 2233.76, + "end": 2235.06, + "probability": 0.9941 + }, + { + "start": 2236.26, + "end": 2243.18, + "probability": 0.9934 + }, + { + "start": 2246.48, + "end": 2247.8, + "probability": 0.93 + }, + { + "start": 2249.16, + "end": 2250.3, + "probability": 0.9964 + }, + { + "start": 2250.94, + "end": 2251.76, + "probability": 0.9644 + }, + { + "start": 2252.86, + "end": 2256.02, + "probability": 0.9888 + }, + { + "start": 2257.24, + "end": 2258.98, + "probability": 0.9665 + }, + { + "start": 2259.92, + "end": 2261.46, + "probability": 0.9781 + }, + { + "start": 2262.48, + "end": 2264.92, + "probability": 0.9735 + }, + { + "start": 2266.94, + "end": 2271.4, + "probability": 0.9534 + }, + { + "start": 2272.56, + "end": 2274.68, + "probability": 0.9893 + }, + { + "start": 2275.32, + "end": 2278.12, + "probability": 0.9692 + }, + { + "start": 2279.64, + "end": 2280.86, + "probability": 0.9757 + }, + { + "start": 2281.84, + "end": 2283.82, + "probability": 0.9806 + }, + { + "start": 2284.7, + "end": 2286.32, + "probability": 0.9585 + }, + { + "start": 2287.1, + "end": 2291.26, + "probability": 0.9866 + }, + { + "start": 2292.6, + "end": 2293.5, + "probability": 0.8126 + }, + { + "start": 2295.18, + "end": 2295.98, + "probability": 0.7815 + }, + { + "start": 2296.84, + "end": 2301.92, + "probability": 0.9973 + }, + { + "start": 2304.88, + "end": 2310.72, + "probability": 0.9956 + }, + { + "start": 2314.02, + "end": 2318.64, + "probability": 0.9983 + }, + { + "start": 2319.18, + "end": 2320.46, + "probability": 0.9966 + }, + { + "start": 2321.64, + "end": 2324.22, + "probability": 0.9481 + }, + { + "start": 2325.14, + "end": 2328.34, + "probability": 0.745 + }, + { + "start": 2329.5, + "end": 2333.66, + "probability": 0.9722 + }, + { + "start": 2335.02, + "end": 2337.74, + "probability": 0.9676 + }, + { + "start": 2338.84, + "end": 2340.16, + "probability": 0.9771 + }, + { + "start": 2342.02, + "end": 2348.32, + "probability": 0.9955 + }, + { + "start": 2349.96, + "end": 2352.28, + "probability": 0.993 + }, + { + "start": 2353.1, + "end": 2354.48, + "probability": 0.918 + }, + { + "start": 2355.58, + "end": 2356.52, + "probability": 0.5715 + }, + { + "start": 2357.92, + "end": 2359.34, + "probability": 0.9993 + }, + { + "start": 2360.04, + "end": 2360.58, + "probability": 0.9865 + }, + { + "start": 2363.24, + "end": 2365.22, + "probability": 0.04 + }, + { + "start": 2370.86, + "end": 2377.3, + "probability": 0.8737 + }, + { + "start": 2377.68, + "end": 2379.06, + "probability": 0.7216 + }, + { + "start": 2379.82, + "end": 2381.32, + "probability": 0.7459 + }, + { + "start": 2381.94, + "end": 2382.66, + "probability": 0.7768 + }, + { + "start": 2382.94, + "end": 2383.14, + "probability": 0.8174 + }, + { + "start": 2385.08, + "end": 2385.96, + "probability": 0.7163 + }, + { + "start": 2387.76, + "end": 2388.98, + "probability": 0.9906 + }, + { + "start": 2389.82, + "end": 2392.04, + "probability": 0.9622 + }, + { + "start": 2393.06, + "end": 2395.62, + "probability": 0.9974 + }, + { + "start": 2397.92, + "end": 2399.82, + "probability": 0.9482 + }, + { + "start": 2400.6, + "end": 2406.02, + "probability": 0.9988 + }, + { + "start": 2407.38, + "end": 2412.14, + "probability": 0.9987 + }, + { + "start": 2413.3, + "end": 2414.34, + "probability": 0.6864 + }, + { + "start": 2415.32, + "end": 2417.08, + "probability": 0.9888 + }, + { + "start": 2418.14, + "end": 2419.2, + "probability": 0.9798 + }, + { + "start": 2420.64, + "end": 2423.24, + "probability": 0.9495 + }, + { + "start": 2424.3, + "end": 2425.28, + "probability": 0.9819 + }, + { + "start": 2426.44, + "end": 2428.32, + "probability": 0.9914 + }, + { + "start": 2429.06, + "end": 2431.76, + "probability": 0.9307 + }, + { + "start": 2433.62, + "end": 2436.64, + "probability": 0.9842 + }, + { + "start": 2437.22, + "end": 2439.52, + "probability": 0.9942 + }, + { + "start": 2442.48, + "end": 2443.74, + "probability": 0.9958 + }, + { + "start": 2444.54, + "end": 2445.96, + "probability": 0.9791 + }, + { + "start": 2447.74, + "end": 2449.02, + "probability": 0.9985 + }, + { + "start": 2449.74, + "end": 2452.16, + "probability": 0.9855 + }, + { + "start": 2453.48, + "end": 2454.93, + "probability": 0.6919 + }, + { + "start": 2456.22, + "end": 2457.48, + "probability": 0.8511 + }, + { + "start": 2458.18, + "end": 2459.5, + "probability": 0.9497 + }, + { + "start": 2463.9, + "end": 2465.88, + "probability": 0.599 + }, + { + "start": 2466.28, + "end": 2468.56, + "probability": 0.9163 + }, + { + "start": 2469.26, + "end": 2469.42, + "probability": 0.6368 + }, + { + "start": 2470.0, + "end": 2470.8, + "probability": 0.9496 + }, + { + "start": 2471.3, + "end": 2471.82, + "probability": 0.9886 + }, + { + "start": 2474.42, + "end": 2476.94, + "probability": 0.9525 + }, + { + "start": 2477.98, + "end": 2480.92, + "probability": 0.9678 + }, + { + "start": 2481.48, + "end": 2487.92, + "probability": 0.9994 + }, + { + "start": 2489.06, + "end": 2490.32, + "probability": 0.9953 + }, + { + "start": 2491.08, + "end": 2492.34, + "probability": 0.8396 + }, + { + "start": 2493.36, + "end": 2496.72, + "probability": 0.5633 + }, + { + "start": 2498.7, + "end": 2500.56, + "probability": 0.953 + }, + { + "start": 2501.62, + "end": 2502.46, + "probability": 0.3033 + }, + { + "start": 2503.18, + "end": 2508.34, + "probability": 0.9868 + }, + { + "start": 2509.46, + "end": 2512.0, + "probability": 0.9979 + }, + { + "start": 2512.56, + "end": 2519.1, + "probability": 0.9924 + }, + { + "start": 2520.12, + "end": 2521.4, + "probability": 0.8365 + }, + { + "start": 2522.06, + "end": 2525.96, + "probability": 0.9915 + }, + { + "start": 2527.1, + "end": 2529.38, + "probability": 0.804 + }, + { + "start": 2530.22, + "end": 2535.5, + "probability": 0.9901 + }, + { + "start": 2536.32, + "end": 2538.06, + "probability": 0.9986 + }, + { + "start": 2538.6, + "end": 2541.68, + "probability": 0.9977 + }, + { + "start": 2543.54, + "end": 2547.5, + "probability": 0.9991 + }, + { + "start": 2548.48, + "end": 2550.14, + "probability": 0.9996 + }, + { + "start": 2551.0, + "end": 2553.22, + "probability": 0.9924 + }, + { + "start": 2554.82, + "end": 2558.24, + "probability": 0.9962 + }, + { + "start": 2559.7, + "end": 2560.64, + "probability": 0.8681 + }, + { + "start": 2563.4, + "end": 2567.12, + "probability": 0.722 + }, + { + "start": 2568.0, + "end": 2568.34, + "probability": 0.8949 + }, + { + "start": 2569.0, + "end": 2569.56, + "probability": 0.993 + }, + { + "start": 2570.14, + "end": 2572.66, + "probability": 0.9964 + }, + { + "start": 2573.32, + "end": 2576.44, + "probability": 0.9952 + }, + { + "start": 2578.02, + "end": 2581.2, + "probability": 0.9155 + }, + { + "start": 2581.88, + "end": 2587.54, + "probability": 0.9777 + }, + { + "start": 2587.84, + "end": 2588.62, + "probability": 0.6423 + }, + { + "start": 2589.18, + "end": 2590.7, + "probability": 0.9992 + }, + { + "start": 2591.3, + "end": 2596.06, + "probability": 0.998 + }, + { + "start": 2597.7, + "end": 2598.24, + "probability": 0.7741 + }, + { + "start": 2600.72, + "end": 2605.72, + "probability": 0.9878 + }, + { + "start": 2606.38, + "end": 2607.58, + "probability": 0.7575 + }, + { + "start": 2608.28, + "end": 2610.02, + "probability": 0.9994 + }, + { + "start": 2610.86, + "end": 2617.16, + "probability": 0.9062 + }, + { + "start": 2617.86, + "end": 2620.46, + "probability": 0.9653 + }, + { + "start": 2621.92, + "end": 2626.86, + "probability": 0.9917 + }, + { + "start": 2628.18, + "end": 2633.1, + "probability": 0.999 + }, + { + "start": 2633.6, + "end": 2640.66, + "probability": 0.9982 + }, + { + "start": 2641.18, + "end": 2642.42, + "probability": 0.999 + }, + { + "start": 2643.6, + "end": 2645.36, + "probability": 0.8462 + }, + { + "start": 2646.04, + "end": 2647.74, + "probability": 0.9293 + }, + { + "start": 2648.4, + "end": 2649.52, + "probability": 0.9804 + }, + { + "start": 2650.2, + "end": 2650.98, + "probability": 0.8704 + }, + { + "start": 2651.76, + "end": 2652.5, + "probability": 0.8499 + }, + { + "start": 2653.24, + "end": 2654.44, + "probability": 0.9995 + }, + { + "start": 2655.06, + "end": 2661.5, + "probability": 0.9985 + }, + { + "start": 2662.46, + "end": 2663.52, + "probability": 0.7531 + }, + { + "start": 2664.54, + "end": 2667.52, + "probability": 0.9727 + }, + { + "start": 2668.78, + "end": 2671.3, + "probability": 0.9546 + }, + { + "start": 2672.16, + "end": 2675.02, + "probability": 0.9946 + }, + { + "start": 2675.74, + "end": 2678.44, + "probability": 0.9988 + }, + { + "start": 2679.52, + "end": 2679.92, + "probability": 0.5002 + }, + { + "start": 2680.52, + "end": 2683.0, + "probability": 0.9994 + }, + { + "start": 2683.58, + "end": 2684.02, + "probability": 0.2266 + }, + { + "start": 2684.58, + "end": 2688.14, + "probability": 0.96 + }, + { + "start": 2689.12, + "end": 2689.96, + "probability": 0.9284 + }, + { + "start": 2690.58, + "end": 2696.7, + "probability": 0.9797 + }, + { + "start": 2697.64, + "end": 2698.02, + "probability": 0.7087 + }, + { + "start": 2698.6, + "end": 2700.24, + "probability": 0.9699 + }, + { + "start": 2700.78, + "end": 2702.08, + "probability": 0.9735 + }, + { + "start": 2702.6, + "end": 2704.9, + "probability": 0.9325 + }, + { + "start": 2706.12, + "end": 2707.0, + "probability": 0.9966 + }, + { + "start": 2707.76, + "end": 2714.38, + "probability": 0.978 + }, + { + "start": 2715.1, + "end": 2718.58, + "probability": 0.574 + }, + { + "start": 2719.88, + "end": 2721.76, + "probability": 0.9701 + }, + { + "start": 2722.7, + "end": 2729.82, + "probability": 0.9772 + }, + { + "start": 2730.38, + "end": 2732.36, + "probability": 0.9808 + }, + { + "start": 2733.58, + "end": 2735.84, + "probability": 0.9965 + }, + { + "start": 2736.8, + "end": 2741.9, + "probability": 0.964 + }, + { + "start": 2742.46, + "end": 2747.6, + "probability": 0.9995 + }, + { + "start": 2751.64, + "end": 2752.48, + "probability": 0.8416 + }, + { + "start": 2753.38, + "end": 2754.92, + "probability": 0.9507 + }, + { + "start": 2755.82, + "end": 2762.1, + "probability": 0.9901 + }, + { + "start": 2762.74, + "end": 2763.66, + "probability": 0.9752 + }, + { + "start": 2764.18, + "end": 2765.66, + "probability": 0.9959 + }, + { + "start": 2767.18, + "end": 2768.34, + "probability": 0.5858 + }, + { + "start": 2769.6, + "end": 2773.42, + "probability": 0.9773 + }, + { + "start": 2774.16, + "end": 2776.52, + "probability": 0.9774 + }, + { + "start": 2777.22, + "end": 2779.72, + "probability": 0.9974 + }, + { + "start": 2780.74, + "end": 2782.12, + "probability": 0.9259 + }, + { + "start": 2783.02, + "end": 2785.3, + "probability": 0.998 + }, + { + "start": 2786.1, + "end": 2787.54, + "probability": 0.9497 + }, + { + "start": 2789.22, + "end": 2793.92, + "probability": 0.9209 + }, + { + "start": 2793.92, + "end": 2797.08, + "probability": 0.9977 + }, + { + "start": 2798.12, + "end": 2799.74, + "probability": 0.8413 + }, + { + "start": 2800.4, + "end": 2806.36, + "probability": 0.8811 + }, + { + "start": 2806.56, + "end": 2807.42, + "probability": 0.011 + }, + { + "start": 2808.42, + "end": 2814.58, + "probability": 0.9958 + }, + { + "start": 2816.26, + "end": 2818.22, + "probability": 0.8246 + }, + { + "start": 2820.0, + "end": 2827.28, + "probability": 0.9945 + }, + { + "start": 2829.02, + "end": 2832.62, + "probability": 0.9956 + }, + { + "start": 2833.38, + "end": 2835.4, + "probability": 0.7255 + }, + { + "start": 2837.12, + "end": 2842.04, + "probability": 0.9833 + }, + { + "start": 2842.7, + "end": 2843.6, + "probability": 0.6201 + }, + { + "start": 2844.46, + "end": 2847.34, + "probability": 0.9918 + }, + { + "start": 2848.56, + "end": 2851.46, + "probability": 0.957 + }, + { + "start": 2852.4, + "end": 2854.9, + "probability": 0.9729 + }, + { + "start": 2855.96, + "end": 2856.96, + "probability": 0.6116 + }, + { + "start": 2857.82, + "end": 2859.28, + "probability": 0.9747 + }, + { + "start": 2860.1, + "end": 2861.38, + "probability": 0.8913 + }, + { + "start": 2862.48, + "end": 2863.8, + "probability": 0.9868 + }, + { + "start": 2864.84, + "end": 2866.26, + "probability": 0.9959 + }, + { + "start": 2867.34, + "end": 2868.6, + "probability": 0.8395 + }, + { + "start": 2869.76, + "end": 2870.86, + "probability": 0.8813 + }, + { + "start": 2872.1, + "end": 2874.18, + "probability": 0.9757 + }, + { + "start": 2875.12, + "end": 2876.86, + "probability": 0.9894 + }, + { + "start": 2877.66, + "end": 2879.48, + "probability": 0.9388 + }, + { + "start": 2881.22, + "end": 2882.74, + "probability": 0.9399 + }, + { + "start": 2885.22, + "end": 2887.86, + "probability": 0.9938 + }, + { + "start": 2889.6, + "end": 2890.4, + "probability": 0.9357 + }, + { + "start": 2891.1, + "end": 2892.74, + "probability": 0.9547 + }, + { + "start": 2893.56, + "end": 2895.16, + "probability": 0.9341 + }, + { + "start": 2895.96, + "end": 2897.96, + "probability": 0.9995 + }, + { + "start": 2898.52, + "end": 2899.32, + "probability": 0.9943 + }, + { + "start": 2901.12, + "end": 2904.36, + "probability": 0.9969 + }, + { + "start": 2905.52, + "end": 2906.78, + "probability": 0.9996 + }, + { + "start": 2907.4, + "end": 2908.1, + "probability": 0.9996 + }, + { + "start": 2909.02, + "end": 2909.64, + "probability": 0.9751 + }, + { + "start": 2910.88, + "end": 2911.6, + "probability": 0.7464 + }, + { + "start": 2912.56, + "end": 2915.6, + "probability": 0.739 + }, + { + "start": 2916.42, + "end": 2916.52, + "probability": 0.5026 + }, + { + "start": 2916.6, + "end": 2917.78, + "probability": 0.9126 + }, + { + "start": 2919.3, + "end": 2924.08, + "probability": 0.9901 + }, + { + "start": 2926.72, + "end": 2927.48, + "probability": 0.8965 + }, + { + "start": 2928.78, + "end": 2931.44, + "probability": 0.9795 + }, + { + "start": 2933.92, + "end": 2938.64, + "probability": 0.9976 + }, + { + "start": 2944.66, + "end": 2948.24, + "probability": 0.9319 + }, + { + "start": 2948.96, + "end": 2950.0, + "probability": 0.8828 + }, + { + "start": 2950.5, + "end": 2951.54, + "probability": 0.9202 + }, + { + "start": 2952.02, + "end": 2953.2, + "probability": 0.9574 + }, + { + "start": 2953.68, + "end": 2955.04, + "probability": 0.9417 + }, + { + "start": 2955.66, + "end": 2963.22, + "probability": 0.9956 + }, + { + "start": 2964.36, + "end": 2968.0, + "probability": 0.9725 + }, + { + "start": 2969.36, + "end": 2970.76, + "probability": 0.7938 + }, + { + "start": 2971.28, + "end": 2972.28, + "probability": 0.6856 + }, + { + "start": 2973.38, + "end": 2975.82, + "probability": 0.986 + }, + { + "start": 2977.14, + "end": 2978.62, + "probability": 0.9897 + }, + { + "start": 2979.22, + "end": 2980.24, + "probability": 0.894 + }, + { + "start": 2981.7, + "end": 2985.46, + "probability": 0.8792 + }, + { + "start": 2987.42, + "end": 2992.04, + "probability": 0.994 + }, + { + "start": 2992.92, + "end": 2995.54, + "probability": 0.9983 + }, + { + "start": 2996.08, + "end": 2999.24, + "probability": 0.991 + }, + { + "start": 3001.9, + "end": 3002.76, + "probability": 0.9664 + }, + { + "start": 3003.44, + "end": 3008.54, + "probability": 0.9977 + }, + { + "start": 3009.3, + "end": 3009.96, + "probability": 0.9715 + }, + { + "start": 3011.2, + "end": 3014.36, + "probability": 0.9969 + }, + { + "start": 3022.2, + "end": 3024.64, + "probability": 0.9956 + }, + { + "start": 3025.54, + "end": 3026.48, + "probability": 0.8835 + }, + { + "start": 3028.74, + "end": 3035.22, + "probability": 0.9979 + }, + { + "start": 3036.18, + "end": 3038.32, + "probability": 0.9984 + }, + { + "start": 3039.0, + "end": 3040.9, + "probability": 0.9445 + }, + { + "start": 3041.72, + "end": 3042.14, + "probability": 0.7965 + }, + { + "start": 3043.72, + "end": 3044.22, + "probability": 0.8496 + }, + { + "start": 3046.06, + "end": 3046.44, + "probability": 0.8855 + }, + { + "start": 3048.82, + "end": 3051.1, + "probability": 0.9193 + }, + { + "start": 3051.74, + "end": 3054.02, + "probability": 0.9652 + }, + { + "start": 3054.8, + "end": 3055.96, + "probability": 0.932 + }, + { + "start": 3056.92, + "end": 3058.14, + "probability": 0.658 + }, + { + "start": 3058.84, + "end": 3060.56, + "probability": 0.9836 + }, + { + "start": 3062.56, + "end": 3064.86, + "probability": 0.9097 + }, + { + "start": 3065.58, + "end": 3067.04, + "probability": 0.915 + }, + { + "start": 3067.76, + "end": 3071.7, + "probability": 0.9642 + }, + { + "start": 3072.58, + "end": 3073.28, + "probability": 0.9668 + }, + { + "start": 3073.96, + "end": 3075.46, + "probability": 0.7804 + }, + { + "start": 3076.32, + "end": 3082.84, + "probability": 0.9217 + }, + { + "start": 3084.78, + "end": 3088.3, + "probability": 0.9863 + }, + { + "start": 3088.3, + "end": 3093.1, + "probability": 0.9782 + }, + { + "start": 3094.36, + "end": 3101.64, + "probability": 0.9983 + }, + { + "start": 3102.42, + "end": 3103.4, + "probability": 0.9852 + }, + { + "start": 3103.96, + "end": 3106.42, + "probability": 0.8344 + }, + { + "start": 3107.32, + "end": 3108.76, + "probability": 0.9607 + }, + { + "start": 3115.8, + "end": 3119.42, + "probability": 0.9685 + }, + { + "start": 3120.24, + "end": 3123.9, + "probability": 0.9989 + }, + { + "start": 3124.94, + "end": 3126.92, + "probability": 0.4946 + }, + { + "start": 3127.72, + "end": 3132.68, + "probability": 0.7489 + }, + { + "start": 3133.54, + "end": 3134.48, + "probability": 0.6705 + }, + { + "start": 3135.12, + "end": 3139.68, + "probability": 0.9685 + }, + { + "start": 3140.22, + "end": 3140.8, + "probability": 0.6523 + }, + { + "start": 3141.22, + "end": 3142.08, + "probability": 0.975 + }, + { + "start": 3142.28, + "end": 3144.04, + "probability": 0.8486 + }, + { + "start": 3145.88, + "end": 3146.16, + "probability": 0.0398 + }, + { + "start": 3158.4, + "end": 3159.78, + "probability": 0.459 + }, + { + "start": 3163.07, + "end": 3166.36, + "probability": 0.0242 + }, + { + "start": 3240.26, + "end": 3244.22, + "probability": 0.6708 + }, + { + "start": 3244.36, + "end": 3245.04, + "probability": 0.444 + }, + { + "start": 3246.02, + "end": 3249.86, + "probability": 0.824 + }, + { + "start": 3251.06, + "end": 3252.02, + "probability": 0.3475 + }, + { + "start": 3252.02, + "end": 3252.38, + "probability": 0.1091 + }, + { + "start": 3252.88, + "end": 3256.86, + "probability": 0.043 + }, + { + "start": 3258.66, + "end": 3260.94, + "probability": 0.331 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.0, + "end": 3369.0, + "probability": 0.0 + }, + { + "start": 3369.58, + "end": 3370.2, + "probability": 0.07 + }, + { + "start": 3370.2, + "end": 3370.2, + "probability": 0.0508 + }, + { + "start": 3370.2, + "end": 3371.34, + "probability": 0.131 + }, + { + "start": 3372.44, + "end": 3374.5, + "probability": 0.9873 + }, + { + "start": 3375.02, + "end": 3375.6, + "probability": 0.6243 + }, + { + "start": 3375.72, + "end": 3377.87, + "probability": 0.85 + }, + { + "start": 3377.94, + "end": 3380.14, + "probability": 0.9185 + }, + { + "start": 3380.8, + "end": 3382.54, + "probability": 0.9917 + }, + { + "start": 3383.9, + "end": 3384.32, + "probability": 0.9557 + }, + { + "start": 3385.3, + "end": 3385.88, + "probability": 0.9772 + }, + { + "start": 3387.14, + "end": 3388.18, + "probability": 0.9702 + }, + { + "start": 3389.54, + "end": 3390.76, + "probability": 0.9843 + }, + { + "start": 3391.86, + "end": 3392.7, + "probability": 0.9631 + }, + { + "start": 3394.42, + "end": 3396.1, + "probability": 0.9857 + }, + { + "start": 3397.06, + "end": 3398.4, + "probability": 0.821 + }, + { + "start": 3399.8, + "end": 3401.38, + "probability": 0.985 + }, + { + "start": 3404.7, + "end": 3406.5, + "probability": 0.9988 + }, + { + "start": 3408.32, + "end": 3411.66, + "probability": 0.9838 + }, + { + "start": 3412.8, + "end": 3416.88, + "probability": 0.9871 + }, + { + "start": 3417.78, + "end": 3420.4, + "probability": 0.9683 + }, + { + "start": 3421.72, + "end": 3425.48, + "probability": 0.9961 + }, + { + "start": 3426.4, + "end": 3427.26, + "probability": 0.9519 + }, + { + "start": 3427.46, + "end": 3431.28, + "probability": 0.9863 + }, + { + "start": 3432.8, + "end": 3435.3, + "probability": 0.9973 + }, + { + "start": 3437.3, + "end": 3439.48, + "probability": 0.9978 + }, + { + "start": 3441.02, + "end": 3443.08, + "probability": 0.9512 + }, + { + "start": 3444.86, + "end": 3448.34, + "probability": 0.8334 + }, + { + "start": 3449.54, + "end": 3450.22, + "probability": 0.8847 + }, + { + "start": 3450.34, + "end": 3451.78, + "probability": 0.9653 + }, + { + "start": 3451.94, + "end": 3453.94, + "probability": 0.8953 + }, + { + "start": 3454.54, + "end": 3456.24, + "probability": 0.8896 + }, + { + "start": 3456.94, + "end": 3463.4, + "probability": 0.9705 + }, + { + "start": 3464.58, + "end": 3467.9, + "probability": 0.996 + }, + { + "start": 3467.9, + "end": 3472.0, + "probability": 0.988 + }, + { + "start": 3472.12, + "end": 3474.06, + "probability": 0.9087 + }, + { + "start": 3474.92, + "end": 3480.38, + "probability": 0.984 + }, + { + "start": 3480.44, + "end": 3484.82, + "probability": 0.9924 + }, + { + "start": 3486.36, + "end": 3490.78, + "probability": 0.9871 + }, + { + "start": 3492.12, + "end": 3496.32, + "probability": 0.9995 + }, + { + "start": 3496.9, + "end": 3498.1, + "probability": 0.9923 + }, + { + "start": 3499.76, + "end": 3501.78, + "probability": 0.7306 + }, + { + "start": 3503.86, + "end": 3505.16, + "probability": 0.8264 + }, + { + "start": 3505.7, + "end": 3507.78, + "probability": 0.9725 + }, + { + "start": 3508.56, + "end": 3514.51, + "probability": 0.8561 + }, + { + "start": 3516.38, + "end": 3516.74, + "probability": 0.8538 + }, + { + "start": 3517.62, + "end": 3518.76, + "probability": 0.8575 + }, + { + "start": 3520.25, + "end": 3524.24, + "probability": 0.9979 + }, + { + "start": 3524.88, + "end": 3527.24, + "probability": 0.9668 + }, + { + "start": 3528.56, + "end": 3531.28, + "probability": 0.9876 + }, + { + "start": 3532.08, + "end": 3534.92, + "probability": 0.9525 + }, + { + "start": 3536.0, + "end": 3542.24, + "probability": 0.9961 + }, + { + "start": 3543.16, + "end": 3548.42, + "probability": 0.7795 + }, + { + "start": 3549.56, + "end": 3554.08, + "probability": 0.9948 + }, + { + "start": 3554.16, + "end": 3555.88, + "probability": 0.1161 + }, + { + "start": 3556.06, + "end": 3557.36, + "probability": 0.8705 + }, + { + "start": 3560.93, + "end": 3563.1, + "probability": 0.9941 + }, + { + "start": 3563.26, + "end": 3568.68, + "probability": 0.959 + }, + { + "start": 3570.46, + "end": 3572.98, + "probability": 0.9819 + }, + { + "start": 3574.62, + "end": 3577.02, + "probability": 0.7782 + }, + { + "start": 3578.62, + "end": 3581.88, + "probability": 0.9847 + }, + { + "start": 3582.78, + "end": 3584.34, + "probability": 0.9009 + }, + { + "start": 3586.34, + "end": 3593.04, + "probability": 0.9893 + }, + { + "start": 3594.28, + "end": 3598.18, + "probability": 0.9932 + }, + { + "start": 3599.52, + "end": 3600.92, + "probability": 0.709 + }, + { + "start": 3602.7, + "end": 3605.2, + "probability": 0.9937 + }, + { + "start": 3606.9, + "end": 3611.26, + "probability": 0.9988 + }, + { + "start": 3611.36, + "end": 3614.22, + "probability": 0.9959 + }, + { + "start": 3614.22, + "end": 3616.66, + "probability": 0.998 + }, + { + "start": 3618.22, + "end": 3621.88, + "probability": 0.9901 + }, + { + "start": 3623.34, + "end": 3625.1, + "probability": 0.7306 + }, + { + "start": 3626.28, + "end": 3632.14, + "probability": 0.9978 + }, + { + "start": 3633.76, + "end": 3636.76, + "probability": 0.9995 + }, + { + "start": 3637.32, + "end": 3640.16, + "probability": 0.9998 + }, + { + "start": 3641.2, + "end": 3642.94, + "probability": 0.8056 + }, + { + "start": 3643.76, + "end": 3646.9, + "probability": 0.9929 + }, + { + "start": 3648.02, + "end": 3651.4, + "probability": 0.9832 + }, + { + "start": 3652.0, + "end": 3654.48, + "probability": 0.9801 + }, + { + "start": 3655.46, + "end": 3657.64, + "probability": 0.8867 + }, + { + "start": 3659.68, + "end": 3660.26, + "probability": 0.7591 + }, + { + "start": 3660.3, + "end": 3662.08, + "probability": 0.6973 + }, + { + "start": 3662.18, + "end": 3665.68, + "probability": 0.7966 + }, + { + "start": 3666.31, + "end": 3667.67, + "probability": 0.8999 + }, + { + "start": 3668.28, + "end": 3671.34, + "probability": 0.7903 + }, + { + "start": 3671.4, + "end": 3673.56, + "probability": 0.8933 + }, + { + "start": 3673.74, + "end": 3675.0, + "probability": 0.8759 + }, + { + "start": 3676.18, + "end": 3681.38, + "probability": 0.7024 + }, + { + "start": 3682.22, + "end": 3685.32, + "probability": 0.9855 + }, + { + "start": 3685.62, + "end": 3686.78, + "probability": 0.9987 + }, + { + "start": 3687.68, + "end": 3691.86, + "probability": 0.9938 + }, + { + "start": 3691.86, + "end": 3696.7, + "probability": 0.9956 + }, + { + "start": 3698.14, + "end": 3698.8, + "probability": 0.9932 + }, + { + "start": 3700.1, + "end": 3704.84, + "probability": 0.9661 + }, + { + "start": 3706.26, + "end": 3707.52, + "probability": 0.869 + }, + { + "start": 3708.38, + "end": 3711.46, + "probability": 0.9655 + }, + { + "start": 3712.38, + "end": 3716.66, + "probability": 0.9987 + }, + { + "start": 3718.48, + "end": 3721.12, + "probability": 0.9084 + }, + { + "start": 3721.32, + "end": 3722.8, + "probability": 0.9845 + }, + { + "start": 3722.9, + "end": 3725.34, + "probability": 0.9355 + }, + { + "start": 3725.42, + "end": 3726.86, + "probability": 0.9857 + }, + { + "start": 3728.98, + "end": 3735.06, + "probability": 0.8303 + }, + { + "start": 3739.28, + "end": 3745.74, + "probability": 0.9958 + }, + { + "start": 3746.76, + "end": 3750.94, + "probability": 0.9954 + }, + { + "start": 3752.56, + "end": 3759.36, + "probability": 0.9631 + }, + { + "start": 3760.36, + "end": 3760.66, + "probability": 0.7705 + }, + { + "start": 3760.72, + "end": 3762.0, + "probability": 0.9295 + }, + { + "start": 3762.28, + "end": 3762.58, + "probability": 0.6204 + }, + { + "start": 3762.6, + "end": 3763.46, + "probability": 0.8628 + }, + { + "start": 3763.7, + "end": 3764.72, + "probability": 0.9823 + }, + { + "start": 3764.82, + "end": 3765.68, + "probability": 0.8097 + }, + { + "start": 3766.04, + "end": 3766.94, + "probability": 0.7421 + }, + { + "start": 3767.2, + "end": 3769.0, + "probability": 0.9507 + }, + { + "start": 3770.1, + "end": 3772.18, + "probability": 0.7709 + }, + { + "start": 3774.06, + "end": 3778.76, + "probability": 0.9821 + }, + { + "start": 3779.94, + "end": 3784.94, + "probability": 0.9884 + }, + { + "start": 3785.74, + "end": 3787.72, + "probability": 0.6281 + }, + { + "start": 3789.22, + "end": 3792.36, + "probability": 0.969 + }, + { + "start": 3792.66, + "end": 3794.4, + "probability": 0.697 + }, + { + "start": 3795.26, + "end": 3797.64, + "probability": 0.9663 + }, + { + "start": 3797.68, + "end": 3804.96, + "probability": 0.978 + }, + { + "start": 3805.6, + "end": 3806.48, + "probability": 0.874 + }, + { + "start": 3807.96, + "end": 3810.91, + "probability": 0.9795 + }, + { + "start": 3812.85, + "end": 3816.44, + "probability": 0.9953 + }, + { + "start": 3816.58, + "end": 3821.14, + "probability": 0.9941 + }, + { + "start": 3821.44, + "end": 3822.28, + "probability": 0.9824 + }, + { + "start": 3823.7, + "end": 3829.58, + "probability": 0.9938 + }, + { + "start": 3829.58, + "end": 3833.74, + "probability": 0.9985 + }, + { + "start": 3834.32, + "end": 3835.58, + "probability": 0.9985 + }, + { + "start": 3836.34, + "end": 3836.68, + "probability": 0.9505 + }, + { + "start": 3837.72, + "end": 3839.12, + "probability": 0.7238 + }, + { + "start": 3843.0, + "end": 3844.06, + "probability": 0.8016 + }, + { + "start": 3844.7, + "end": 3850.62, + "probability": 0.9573 + }, + { + "start": 3851.36, + "end": 3853.76, + "probability": 0.9733 + }, + { + "start": 3854.6, + "end": 3856.58, + "probability": 0.9582 + }, + { + "start": 3856.58, + "end": 3858.5, + "probability": 0.9924 + }, + { + "start": 3859.58, + "end": 3863.38, + "probability": 0.8047 + }, + { + "start": 3864.22, + "end": 3865.6, + "probability": 0.9749 + }, + { + "start": 3865.7, + "end": 3866.66, + "probability": 0.8946 + }, + { + "start": 3866.74, + "end": 3869.34, + "probability": 0.9875 + }, + { + "start": 3870.62, + "end": 3871.39, + "probability": 0.9972 + }, + { + "start": 3871.58, + "end": 3872.68, + "probability": 0.9907 + }, + { + "start": 3874.48, + "end": 3879.42, + "probability": 0.9774 + }, + { + "start": 3879.92, + "end": 3881.68, + "probability": 0.869 + }, + { + "start": 3882.66, + "end": 3883.14, + "probability": 0.9352 + }, + { + "start": 3883.8, + "end": 3888.72, + "probability": 0.7588 + }, + { + "start": 3889.94, + "end": 3890.2, + "probability": 0.0329 + }, + { + "start": 3890.2, + "end": 3890.89, + "probability": 0.2972 + }, + { + "start": 3891.8, + "end": 3893.68, + "probability": 0.7349 + }, + { + "start": 3893.74, + "end": 3893.96, + "probability": 0.0393 + }, + { + "start": 3893.96, + "end": 3894.68, + "probability": 0.3967 + }, + { + "start": 3896.14, + "end": 3897.82, + "probability": 0.9102 + }, + { + "start": 3898.7, + "end": 3899.08, + "probability": 0.6699 + }, + { + "start": 3899.62, + "end": 3900.78, + "probability": 0.8645 + }, + { + "start": 3901.36, + "end": 3902.24, + "probability": 0.6584 + }, + { + "start": 3909.72, + "end": 3910.7, + "probability": 0.4982 + }, + { + "start": 3910.72, + "end": 3911.72, + "probability": 0.7499 + }, + { + "start": 3913.32, + "end": 3913.98, + "probability": 0.9435 + }, + { + "start": 3914.3, + "end": 3914.62, + "probability": 0.6997 + }, + { + "start": 3915.18, + "end": 3915.56, + "probability": 0.9215 + }, + { + "start": 3915.6, + "end": 3916.68, + "probability": 0.9629 + }, + { + "start": 3916.76, + "end": 3918.02, + "probability": 0.6573 + }, + { + "start": 3918.32, + "end": 3919.58, + "probability": 0.8956 + }, + { + "start": 3920.26, + "end": 3926.42, + "probability": 0.7205 + }, + { + "start": 3926.6, + "end": 3926.6, + "probability": 0.1663 + }, + { + "start": 3926.6, + "end": 3926.9, + "probability": 0.8482 + }, + { + "start": 3929.52, + "end": 3930.96, + "probability": 0.9309 + }, + { + "start": 3931.9, + "end": 3936.08, + "probability": 0.9913 + }, + { + "start": 3936.8, + "end": 3937.42, + "probability": 0.6468 + }, + { + "start": 3937.5, + "end": 3939.2, + "probability": 0.8709 + }, + { + "start": 3939.82, + "end": 3940.66, + "probability": 0.8536 + }, + { + "start": 3941.04, + "end": 3942.54, + "probability": 0.7313 + }, + { + "start": 3942.68, + "end": 3943.9, + "probability": 0.7415 + }, + { + "start": 3943.98, + "end": 3944.68, + "probability": 0.7315 + }, + { + "start": 3944.82, + "end": 3946.15, + "probability": 0.3192 + }, + { + "start": 3947.08, + "end": 3948.16, + "probability": 0.6305 + }, + { + "start": 3955.58, + "end": 3957.92, + "probability": 0.9206 + }, + { + "start": 3960.16, + "end": 3961.2, + "probability": 0.8506 + }, + { + "start": 3961.96, + "end": 3963.22, + "probability": 0.8955 + }, + { + "start": 3965.42, + "end": 3966.92, + "probability": 0.9778 + }, + { + "start": 3968.32, + "end": 3969.12, + "probability": 0.8816 + }, + { + "start": 3969.24, + "end": 3969.5, + "probability": 0.9218 + }, + { + "start": 3969.9, + "end": 3973.02, + "probability": 0.9817 + }, + { + "start": 3973.81, + "end": 3977.42, + "probability": 0.8061 + }, + { + "start": 3978.56, + "end": 3978.66, + "probability": 0.2919 + }, + { + "start": 3978.66, + "end": 3979.6, + "probability": 0.471 + }, + { + "start": 3980.9, + "end": 3981.24, + "probability": 0.7048 + }, + { + "start": 3982.58, + "end": 3985.74, + "probability": 0.9681 + }, + { + "start": 3986.4, + "end": 3990.54, + "probability": 0.9545 + }, + { + "start": 3991.99, + "end": 3996.46, + "probability": 0.9951 + }, + { + "start": 3997.06, + "end": 3998.44, + "probability": 0.7209 + }, + { + "start": 3999.48, + "end": 4001.74, + "probability": 0.8984 + }, + { + "start": 4002.6, + "end": 4005.68, + "probability": 0.9894 + }, + { + "start": 4006.84, + "end": 4009.16, + "probability": 0.917 + }, + { + "start": 4009.98, + "end": 4011.74, + "probability": 0.8338 + }, + { + "start": 4012.1, + "end": 4012.88, + "probability": 0.9103 + }, + { + "start": 4013.02, + "end": 4016.82, + "probability": 0.8888 + }, + { + "start": 4017.68, + "end": 4021.58, + "probability": 0.994 + }, + { + "start": 4023.24, + "end": 4025.7, + "probability": 0.9912 + }, + { + "start": 4026.32, + "end": 4027.78, + "probability": 0.9988 + }, + { + "start": 4028.5, + "end": 4032.28, + "probability": 0.6973 + }, + { + "start": 4033.26, + "end": 4034.1, + "probability": 0.8015 + }, + { + "start": 4036.02, + "end": 4037.76, + "probability": 0.8144 + }, + { + "start": 4039.36, + "end": 4042.44, + "probability": 0.9986 + }, + { + "start": 4043.18, + "end": 4043.82, + "probability": 0.9679 + }, + { + "start": 4044.38, + "end": 4046.66, + "probability": 0.9709 + }, + { + "start": 4047.66, + "end": 4050.38, + "probability": 0.9827 + }, + { + "start": 4051.28, + "end": 4052.1, + "probability": 0.9619 + }, + { + "start": 4052.88, + "end": 4054.04, + "probability": 0.8152 + }, + { + "start": 4055.0, + "end": 4057.64, + "probability": 0.9631 + }, + { + "start": 4058.66, + "end": 4061.94, + "probability": 0.9438 + }, + { + "start": 4064.48, + "end": 4067.9, + "probability": 0.9887 + }, + { + "start": 4068.7, + "end": 4069.6, + "probability": 0.9919 + }, + { + "start": 4070.32, + "end": 4072.58, + "probability": 0.9958 + }, + { + "start": 4073.64, + "end": 4078.04, + "probability": 0.994 + }, + { + "start": 4079.64, + "end": 4084.3, + "probability": 0.6466 + }, + { + "start": 4088.18, + "end": 4088.44, + "probability": 0.1414 + }, + { + "start": 4088.44, + "end": 4089.08, + "probability": 0.7933 + }, + { + "start": 4089.98, + "end": 4090.96, + "probability": 0.9325 + }, + { + "start": 4091.64, + "end": 4095.94, + "probability": 0.9861 + }, + { + "start": 4096.52, + "end": 4097.42, + "probability": 0.9593 + }, + { + "start": 4098.56, + "end": 4099.4, + "probability": 0.8031 + }, + { + "start": 4099.64, + "end": 4102.16, + "probability": 0.9985 + }, + { + "start": 4102.78, + "end": 4105.56, + "probability": 0.9819 + }, + { + "start": 4106.4, + "end": 4109.22, + "probability": 0.9925 + }, + { + "start": 4109.8, + "end": 4112.66, + "probability": 0.9944 + }, + { + "start": 4113.66, + "end": 4116.42, + "probability": 0.9927 + }, + { + "start": 4117.78, + "end": 4121.12, + "probability": 0.9943 + }, + { + "start": 4121.84, + "end": 4123.62, + "probability": 0.9987 + }, + { + "start": 4124.82, + "end": 4126.76, + "probability": 0.772 + }, + { + "start": 4127.6, + "end": 4128.52, + "probability": 0.9976 + }, + { + "start": 4129.18, + "end": 4130.12, + "probability": 0.9807 + }, + { + "start": 4130.96, + "end": 4133.82, + "probability": 0.9506 + }, + { + "start": 4134.64, + "end": 4136.92, + "probability": 0.994 + }, + { + "start": 4137.22, + "end": 4141.04, + "probability": 0.1241 + }, + { + "start": 4141.04, + "end": 4142.28, + "probability": 0.5819 + }, + { + "start": 4143.2, + "end": 4143.4, + "probability": 0.9281 + }, + { + "start": 4143.44, + "end": 4143.98, + "probability": 0.9031 + }, + { + "start": 4144.06, + "end": 4144.2, + "probability": 0.5508 + }, + { + "start": 4144.32, + "end": 4144.76, + "probability": 0.9768 + }, + { + "start": 4144.82, + "end": 4148.64, + "probability": 0.7761 + }, + { + "start": 4148.94, + "end": 4150.7, + "probability": 0.5657 + }, + { + "start": 4150.78, + "end": 4150.78, + "probability": 0.0763 + }, + { + "start": 4150.84, + "end": 4151.84, + "probability": 0.4808 + }, + { + "start": 4151.98, + "end": 4152.56, + "probability": 0.0473 + }, + { + "start": 4152.94, + "end": 4155.4, + "probability": 0.9473 + }, + { + "start": 4157.2, + "end": 4160.68, + "probability": 0.9666 + }, + { + "start": 4161.42, + "end": 4165.2, + "probability": 0.9794 + }, + { + "start": 4168.2, + "end": 4172.64, + "probability": 0.6929 + }, + { + "start": 4172.9, + "end": 4174.16, + "probability": 0.3707 + }, + { + "start": 4174.64, + "end": 4177.96, + "probability": 0.8196 + }, + { + "start": 4178.0, + "end": 4179.22, + "probability": 0.9409 + }, + { + "start": 4180.0, + "end": 4181.5, + "probability": 0.7676 + }, + { + "start": 4182.34, + "end": 4183.54, + "probability": 0.9928 + }, + { + "start": 4183.78, + "end": 4185.46, + "probability": 0.5459 + }, + { + "start": 4185.77, + "end": 4185.89, + "probability": 0.3501 + }, + { + "start": 4187.12, + "end": 4188.96, + "probability": 0.8236 + }, + { + "start": 4190.18, + "end": 4190.98, + "probability": 0.7135 + }, + { + "start": 4191.06, + "end": 4192.4, + "probability": 0.8366 + }, + { + "start": 4192.76, + "end": 4197.1, + "probability": 0.8519 + }, + { + "start": 4197.62, + "end": 4197.92, + "probability": 0.7399 + }, + { + "start": 4199.9, + "end": 4201.84, + "probability": 0.7928 + }, + { + "start": 4202.02, + "end": 4203.06, + "probability": 0.849 + }, + { + "start": 4203.24, + "end": 4203.98, + "probability": 0.7261 + }, + { + "start": 4204.08, + "end": 4205.54, + "probability": 0.6043 + }, + { + "start": 4205.54, + "end": 4205.68, + "probability": 0.0159 + }, + { + "start": 4206.44, + "end": 4206.72, + "probability": 0.3144 + }, + { + "start": 4207.4, + "end": 4210.68, + "probability": 0.6458 + }, + { + "start": 4211.14, + "end": 4212.42, + "probability": 0.5423 + }, + { + "start": 4212.9, + "end": 4217.84, + "probability": 0.0051 + }, + { + "start": 4217.96, + "end": 4219.7, + "probability": 0.4508 + }, + { + "start": 4219.8, + "end": 4220.66, + "probability": 0.5267 + }, + { + "start": 4221.12, + "end": 4222.59, + "probability": 0.7144 + }, + { + "start": 4223.0, + "end": 4227.26, + "probability": 0.1658 + }, + { + "start": 4227.66, + "end": 4230.89, + "probability": 0.4961 + }, + { + "start": 4231.26, + "end": 4233.04, + "probability": 0.7634 + }, + { + "start": 4234.41, + "end": 4240.9, + "probability": 0.7066 + }, + { + "start": 4241.12, + "end": 4242.7, + "probability": 0.3494 + }, + { + "start": 4242.78, + "end": 4246.62, + "probability": 0.2764 + }, + { + "start": 4248.44, + "end": 4248.72, + "probability": 0.004 + }, + { + "start": 4248.72, + "end": 4248.72, + "probability": 0.1926 + }, + { + "start": 4248.72, + "end": 4249.78, + "probability": 0.8936 + }, + { + "start": 4249.78, + "end": 4250.04, + "probability": 0.9126 + }, + { + "start": 4250.62, + "end": 4252.0, + "probability": 0.9954 + }, + { + "start": 4252.7, + "end": 4254.68, + "probability": 0.6688 + }, + { + "start": 4254.74, + "end": 4257.46, + "probability": 0.9922 + }, + { + "start": 4260.02, + "end": 4264.82, + "probability": 0.4869 + }, + { + "start": 4265.12, + "end": 4266.3, + "probability": 0.6155 + }, + { + "start": 4267.08, + "end": 4268.38, + "probability": 0.7267 + }, + { + "start": 4268.56, + "end": 4269.78, + "probability": 0.8944 + }, + { + "start": 4269.9, + "end": 4273.64, + "probability": 0.7699 + }, + { + "start": 4273.96, + "end": 4277.34, + "probability": 0.574 + }, + { + "start": 4277.68, + "end": 4279.44, + "probability": 0.9849 + }, + { + "start": 4279.82, + "end": 4281.48, + "probability": 0.5504 + }, + { + "start": 4281.48, + "end": 4282.4, + "probability": 0.2987 + }, + { + "start": 4282.46, + "end": 4283.28, + "probability": 0.2976 + }, + { + "start": 4283.34, + "end": 4283.86, + "probability": 0.4288 + }, + { + "start": 4284.2, + "end": 4287.38, + "probability": 0.9447 + }, + { + "start": 4288.07, + "end": 4288.56, + "probability": 0.0999 + }, + { + "start": 4288.56, + "end": 4288.56, + "probability": 0.2456 + }, + { + "start": 4288.56, + "end": 4288.56, + "probability": 0.031 + }, + { + "start": 4288.56, + "end": 4289.26, + "probability": 0.6727 + }, + { + "start": 4289.4, + "end": 4290.26, + "probability": 0.3708 + }, + { + "start": 4290.36, + "end": 4290.56, + "probability": 0.2167 + }, + { + "start": 4290.56, + "end": 4291.86, + "probability": 0.1407 + }, + { + "start": 4292.04, + "end": 4292.97, + "probability": 0.2499 + }, + { + "start": 4293.5, + "end": 4298.54, + "probability": 0.2847 + }, + { + "start": 4299.18, + "end": 4300.88, + "probability": 0.6204 + }, + { + "start": 4300.92, + "end": 4301.48, + "probability": 0.2088 + }, + { + "start": 4303.32, + "end": 4304.36, + "probability": 0.217 + }, + { + "start": 4306.5, + "end": 4309.78, + "probability": 0.2616 + }, + { + "start": 4311.2, + "end": 4312.24, + "probability": 0.2451 + }, + { + "start": 4313.4, + "end": 4316.5, + "probability": 0.1055 + }, + { + "start": 4316.98, + "end": 4325.66, + "probability": 0.4413 + }, + { + "start": 4326.96, + "end": 4327.06, + "probability": 0.3931 + }, + { + "start": 4327.06, + "end": 4327.28, + "probability": 0.5674 + }, + { + "start": 4334.8, + "end": 4336.08, + "probability": 0.3479 + }, + { + "start": 4336.2, + "end": 4336.72, + "probability": 0.5569 + }, + { + "start": 4336.94, + "end": 4338.08, + "probability": 0.5255 + }, + { + "start": 4338.26, + "end": 4339.08, + "probability": 0.6749 + }, + { + "start": 4341.82, + "end": 4342.98, + "probability": 0.5322 + }, + { + "start": 4343.1, + "end": 4344.14, + "probability": 0.8031 + }, + { + "start": 4345.42, + "end": 4350.32, + "probability": 0.9821 + }, + { + "start": 4353.92, + "end": 4356.18, + "probability": 0.5329 + }, + { + "start": 4356.18, + "end": 4357.26, + "probability": 0.8334 + }, + { + "start": 4357.36, + "end": 4357.82, + "probability": 0.4779 + }, + { + "start": 4358.04, + "end": 4358.54, + "probability": 0.2312 + }, + { + "start": 4358.54, + "end": 4360.78, + "probability": 0.5601 + }, + { + "start": 4360.86, + "end": 4362.28, + "probability": 0.9525 + }, + { + "start": 4363.5, + "end": 4364.4, + "probability": 0.7278 + }, + { + "start": 4364.9, + "end": 4365.64, + "probability": 0.8204 + }, + { + "start": 4365.96, + "end": 4367.52, + "probability": 0.9974 + }, + { + "start": 4368.44, + "end": 4369.02, + "probability": 0.418 + }, + { + "start": 4369.4, + "end": 4372.14, + "probability": 0.9407 + }, + { + "start": 4373.48, + "end": 4374.86, + "probability": 0.739 + }, + { + "start": 4377.9, + "end": 4379.94, + "probability": 0.6105 + }, + { + "start": 4381.26, + "end": 4381.26, + "probability": 0.1856 + }, + { + "start": 4381.26, + "end": 4381.26, + "probability": 0.7758 + }, + { + "start": 4381.26, + "end": 4381.26, + "probability": 0.5125 + }, + { + "start": 4381.26, + "end": 4382.68, + "probability": 0.9836 + }, + { + "start": 4383.7, + "end": 4384.32, + "probability": 0.3321 + }, + { + "start": 4385.02, + "end": 4387.2, + "probability": 0.9387 + }, + { + "start": 4388.28, + "end": 4391.5, + "probability": 0.3151 + }, + { + "start": 4392.18, + "end": 4392.18, + "probability": 0.4815 + }, + { + "start": 4392.18, + "end": 4392.66, + "probability": 0.3891 + }, + { + "start": 4393.66, + "end": 4394.22, + "probability": 0.0936 + }, + { + "start": 4394.52, + "end": 4395.58, + "probability": 0.3789 + }, + { + "start": 4395.58, + "end": 4397.42, + "probability": 0.8236 + }, + { + "start": 4397.62, + "end": 4398.68, + "probability": 0.7529 + }, + { + "start": 4398.74, + "end": 4402.3, + "probability": 0.7675 + }, + { + "start": 4402.54, + "end": 4404.46, + "probability": 0.5872 + }, + { + "start": 4405.84, + "end": 4407.5, + "probability": 0.8593 + }, + { + "start": 4408.34, + "end": 4413.36, + "probability": 0.9857 + }, + { + "start": 4413.36, + "end": 4417.68, + "probability": 0.9915 + }, + { + "start": 4418.26, + "end": 4420.3, + "probability": 0.9417 + }, + { + "start": 4420.58, + "end": 4421.92, + "probability": 0.9404 + }, + { + "start": 4422.74, + "end": 4423.68, + "probability": 0.7212 + }, + { + "start": 4424.64, + "end": 4425.48, + "probability": 0.7212 + }, + { + "start": 4425.86, + "end": 4429.4, + "probability": 0.9777 + }, + { + "start": 4430.06, + "end": 4433.86, + "probability": 0.9379 + }, + { + "start": 4434.44, + "end": 4437.6, + "probability": 0.7779 + }, + { + "start": 4438.12, + "end": 4438.62, + "probability": 0.649 + }, + { + "start": 4439.2, + "end": 4440.74, + "probability": 0.9096 + }, + { + "start": 4441.04, + "end": 4442.42, + "probability": 0.9874 + }, + { + "start": 4442.8, + "end": 4446.82, + "probability": 0.9436 + }, + { + "start": 4447.52, + "end": 4447.68, + "probability": 0.0005 + }, + { + "start": 4448.38, + "end": 4448.68, + "probability": 0.2249 + }, + { + "start": 4449.32, + "end": 4451.07, + "probability": 0.3595 + }, + { + "start": 4454.74, + "end": 4455.26, + "probability": 0.0202 + }, + { + "start": 4455.26, + "end": 4458.86, + "probability": 0.9053 + }, + { + "start": 4458.94, + "end": 4460.54, + "probability": 0.6062 + }, + { + "start": 4460.7, + "end": 4463.68, + "probability": 0.3927 + }, + { + "start": 4464.06, + "end": 4464.64, + "probability": 0.4836 + }, + { + "start": 4464.64, + "end": 4466.7, + "probability": 0.7799 + }, + { + "start": 4466.74, + "end": 4468.1, + "probability": 0.8962 + }, + { + "start": 4468.58, + "end": 4469.16, + "probability": 0.4621 + }, + { + "start": 4469.16, + "end": 4470.82, + "probability": 0.9539 + }, + { + "start": 4471.0, + "end": 4477.22, + "probability": 0.9861 + }, + { + "start": 4477.22, + "end": 4479.52, + "probability": 0.9377 + }, + { + "start": 4479.86, + "end": 4481.96, + "probability": 0.9951 + }, + { + "start": 4482.34, + "end": 4484.45, + "probability": 0.9956 + }, + { + "start": 4485.28, + "end": 4486.9, + "probability": 0.9629 + }, + { + "start": 4487.08, + "end": 4487.82, + "probability": 0.9478 + }, + { + "start": 4487.94, + "end": 4489.08, + "probability": 0.4516 + }, + { + "start": 4489.3, + "end": 4490.02, + "probability": 0.6127 + }, + { + "start": 4490.56, + "end": 4492.4, + "probability": 0.9521 + }, + { + "start": 4492.48, + "end": 4498.24, + "probability": 0.9087 + }, + { + "start": 4498.84, + "end": 4499.0, + "probability": 0.4224 + }, + { + "start": 4501.24, + "end": 4501.48, + "probability": 0.1523 + }, + { + "start": 4501.48, + "end": 4501.48, + "probability": 0.0942 + }, + { + "start": 4501.48, + "end": 4501.48, + "probability": 0.177 + }, + { + "start": 4501.48, + "end": 4504.3, + "probability": 0.5762 + }, + { + "start": 4504.56, + "end": 4510.66, + "probability": 0.4949 + }, + { + "start": 4510.72, + "end": 4510.98, + "probability": 0.3877 + }, + { + "start": 4510.98, + "end": 4511.76, + "probability": 0.4147 + }, + { + "start": 4512.0, + "end": 4513.72, + "probability": 0.1015 + }, + { + "start": 4513.78, + "end": 4514.54, + "probability": 0.7973 + }, + { + "start": 4514.56, + "end": 4516.4, + "probability": 0.9922 + }, + { + "start": 4516.48, + "end": 4517.4, + "probability": 0.6311 + }, + { + "start": 4517.68, + "end": 4520.54, + "probability": 0.2231 + }, + { + "start": 4520.62, + "end": 4521.46, + "probability": 0.5782 + }, + { + "start": 4521.86, + "end": 4523.63, + "probability": 0.8261 + }, + { + "start": 4524.22, + "end": 4525.41, + "probability": 0.4171 + }, + { + "start": 4533.27, + "end": 4538.05, + "probability": 0.6364 + }, + { + "start": 4539.44, + "end": 4541.3, + "probability": 0.8065 + }, + { + "start": 4542.33, + "end": 4545.23, + "probability": 0.674 + }, + { + "start": 4548.92, + "end": 4549.29, + "probability": 0.3471 + }, + { + "start": 4551.01, + "end": 4552.91, + "probability": 0.5046 + }, + { + "start": 4553.07, + "end": 4555.85, + "probability": 0.9742 + }, + { + "start": 4556.6, + "end": 4557.52, + "probability": 0.9425 + }, + { + "start": 4558.01, + "end": 4558.51, + "probability": 0.5307 + }, + { + "start": 4559.35, + "end": 4561.12, + "probability": 0.0786 + }, + { + "start": 4562.59, + "end": 4562.69, + "probability": 0.0293 + }, + { + "start": 4578.61, + "end": 4580.71, + "probability": 0.5244 + }, + { + "start": 4581.07, + "end": 4581.31, + "probability": 0.8037 + }, + { + "start": 4581.45, + "end": 4586.59, + "probability": 0.8511 + }, + { + "start": 4587.07, + "end": 4589.33, + "probability": 0.9902 + }, + { + "start": 4589.87, + "end": 4591.55, + "probability": 0.1205 + }, + { + "start": 4595.87, + "end": 4598.79, + "probability": 0.4946 + }, + { + "start": 4599.47, + "end": 4601.19, + "probability": 0.9888 + }, + { + "start": 4601.53, + "end": 4604.33, + "probability": 0.9856 + }, + { + "start": 4604.33, + "end": 4607.59, + "probability": 0.9896 + }, + { + "start": 4607.71, + "end": 4607.97, + "probability": 0.1993 + }, + { + "start": 4607.99, + "end": 4611.59, + "probability": 0.9633 + }, + { + "start": 4612.29, + "end": 4614.75, + "probability": 0.8003 + }, + { + "start": 4615.49, + "end": 4616.33, + "probability": 0.6796 + }, + { + "start": 4616.91, + "end": 4622.27, + "probability": 0.9678 + }, + { + "start": 4622.39, + "end": 4626.13, + "probability": 0.939 + }, + { + "start": 4626.75, + "end": 4630.03, + "probability": 0.9392 + }, + { + "start": 4636.21, + "end": 4639.53, + "probability": 0.444 + }, + { + "start": 4641.97, + "end": 4644.27, + "probability": 0.2617 + }, + { + "start": 4645.47, + "end": 4645.99, + "probability": 0.4458 + }, + { + "start": 4647.35, + "end": 4650.59, + "probability": 0.9674 + }, + { + "start": 4654.35, + "end": 4659.71, + "probability": 0.8778 + }, + { + "start": 4659.77, + "end": 4660.55, + "probability": 0.6803 + }, + { + "start": 4660.67, + "end": 4660.67, + "probability": 0.0609 + }, + { + "start": 4660.67, + "end": 4661.95, + "probability": 0.8271 + }, + { + "start": 4662.15, + "end": 4665.25, + "probability": 0.4152 + }, + { + "start": 4665.27, + "end": 4668.33, + "probability": 0.3035 + }, + { + "start": 4668.45, + "end": 4669.57, + "probability": 0.7473 + }, + { + "start": 4669.61, + "end": 4670.99, + "probability": 0.5836 + }, + { + "start": 4671.27, + "end": 4677.44, + "probability": 0.9872 + }, + { + "start": 4681.73, + "end": 4684.27, + "probability": 0.5568 + }, + { + "start": 4684.29, + "end": 4686.13, + "probability": 0.8428 + }, + { + "start": 4686.29, + "end": 4687.37, + "probability": 0.1208 + }, + { + "start": 4687.55, + "end": 4688.15, + "probability": 0.6359 + }, + { + "start": 4688.85, + "end": 4693.53, + "probability": 0.4444 + }, + { + "start": 4694.07, + "end": 4695.11, + "probability": 0.1728 + }, + { + "start": 4695.57, + "end": 4696.53, + "probability": 0.3651 + }, + { + "start": 4697.57, + "end": 4700.17, + "probability": 0.1029 + }, + { + "start": 4700.85, + "end": 4701.75, + "probability": 0.2996 + }, + { + "start": 4706.61, + "end": 4706.65, + "probability": 0.0053 + }, + { + "start": 4706.83, + "end": 4712.45, + "probability": 0.9953 + }, + { + "start": 4713.05, + "end": 4715.31, + "probability": 0.8571 + }, + { + "start": 4715.33, + "end": 4715.71, + "probability": 0.8286 + }, + { + "start": 4715.99, + "end": 4716.43, + "probability": 0.803 + }, + { + "start": 4716.55, + "end": 4718.59, + "probability": 0.8353 + }, + { + "start": 4722.41, + "end": 4723.55, + "probability": 0.8439 + }, + { + "start": 4723.67, + "end": 4724.31, + "probability": 0.7339 + }, + { + "start": 4724.39, + "end": 4726.84, + "probability": 0.8013 + }, + { + "start": 4727.47, + "end": 4728.19, + "probability": 0.775 + }, + { + "start": 4728.35, + "end": 4729.23, + "probability": 0.9722 + }, + { + "start": 4729.33, + "end": 4733.25, + "probability": 0.8907 + }, + { + "start": 4733.27, + "end": 4734.75, + "probability": 0.6179 + }, + { + "start": 4734.83, + "end": 4735.25, + "probability": 0.6361 + }, + { + "start": 4735.31, + "end": 4737.21, + "probability": 0.9204 + }, + { + "start": 4737.65, + "end": 4738.57, + "probability": 0.8546 + }, + { + "start": 4738.65, + "end": 4739.07, + "probability": 0.8906 + }, + { + "start": 4739.11, + "end": 4739.81, + "probability": 0.7799 + }, + { + "start": 4739.97, + "end": 4740.64, + "probability": 0.9821 + }, + { + "start": 4740.75, + "end": 4741.97, + "probability": 0.8711 + }, + { + "start": 4742.43, + "end": 4743.09, + "probability": 0.9307 + }, + { + "start": 4743.11, + "end": 4745.23, + "probability": 0.9875 + }, + { + "start": 4745.69, + "end": 4748.97, + "probability": 0.9499 + }, + { + "start": 4748.97, + "end": 4751.51, + "probability": 0.9922 + }, + { + "start": 4752.45, + "end": 4757.37, + "probability": 0.985 + }, + { + "start": 4758.75, + "end": 4761.27, + "probability": 0.9374 + }, + { + "start": 4763.43, + "end": 4764.43, + "probability": 0.0629 + }, + { + "start": 4764.43, + "end": 4764.77, + "probability": 0.2808 + }, + { + "start": 4765.37, + "end": 4766.65, + "probability": 0.6611 + }, + { + "start": 4766.81, + "end": 4771.53, + "probability": 0.7708 + }, + { + "start": 4771.89, + "end": 4772.45, + "probability": 0.6804 + }, + { + "start": 4772.79, + "end": 4773.51, + "probability": 0.5756 + }, + { + "start": 4773.67, + "end": 4778.81, + "probability": 0.586 + }, + { + "start": 4779.17, + "end": 4779.17, + "probability": 0.3302 + }, + { + "start": 4779.45, + "end": 4782.69, + "probability": 0.4843 + }, + { + "start": 4782.99, + "end": 4783.93, + "probability": 0.6719 + }, + { + "start": 4784.29, + "end": 4786.5, + "probability": 0.7764 + }, + { + "start": 4786.91, + "end": 4788.09, + "probability": 0.7124 + }, + { + "start": 4788.67, + "end": 4790.17, + "probability": 0.3762 + }, + { + "start": 4790.91, + "end": 4794.15, + "probability": 0.344 + }, + { + "start": 4794.33, + "end": 4795.25, + "probability": 0.0341 + }, + { + "start": 4795.41, + "end": 4795.41, + "probability": 0.3693 + }, + { + "start": 4795.41, + "end": 4795.71, + "probability": 0.073 + }, + { + "start": 4795.71, + "end": 4796.79, + "probability": 0.0908 + }, + { + "start": 4798.03, + "end": 4798.92, + "probability": 0.1638 + }, + { + "start": 4798.99, + "end": 4798.99, + "probability": 0.1268 + }, + { + "start": 4798.99, + "end": 4800.95, + "probability": 0.2815 + }, + { + "start": 4801.93, + "end": 4806.47, + "probability": 0.994 + }, + { + "start": 4806.59, + "end": 4810.53, + "probability": 0.9923 + }, + { + "start": 4811.49, + "end": 4813.57, + "probability": 0.9614 + }, + { + "start": 4814.05, + "end": 4815.01, + "probability": 0.9851 + }, + { + "start": 4817.53, + "end": 4820.09, + "probability": 0.9484 + }, + { + "start": 4820.61, + "end": 4822.65, + "probability": 0.9084 + }, + { + "start": 4822.95, + "end": 4824.49, + "probability": 0.988 + }, + { + "start": 4824.91, + "end": 4825.23, + "probability": 0.9136 + }, + { + "start": 4825.89, + "end": 4828.57, + "probability": 0.9926 + }, + { + "start": 4828.85, + "end": 4831.33, + "probability": 0.881 + }, + { + "start": 4831.81, + "end": 4833.99, + "probability": 0.9963 + }, + { + "start": 4834.53, + "end": 4836.21, + "probability": 0.9721 + }, + { + "start": 4837.13, + "end": 4840.27, + "probability": 0.9504 + }, + { + "start": 4840.89, + "end": 4841.37, + "probability": 0.6659 + }, + { + "start": 4841.45, + "end": 4842.19, + "probability": 0.8131 + }, + { + "start": 4842.57, + "end": 4843.07, + "probability": 0.6559 + }, + { + "start": 4843.13, + "end": 4845.1, + "probability": 0.703 + }, + { + "start": 4845.63, + "end": 4846.05, + "probability": 0.8989 + }, + { + "start": 4846.31, + "end": 4846.83, + "probability": 0.9754 + }, + { + "start": 4846.97, + "end": 4848.15, + "probability": 0.9827 + }, + { + "start": 4848.55, + "end": 4849.23, + "probability": 0.9199 + }, + { + "start": 4849.47, + "end": 4849.69, + "probability": 0.4041 + }, + { + "start": 4850.07, + "end": 4850.65, + "probability": 0.8501 + }, + { + "start": 4850.79, + "end": 4851.57, + "probability": 0.8413 + }, + { + "start": 4852.09, + "end": 4852.59, + "probability": 0.9026 + }, + { + "start": 4852.67, + "end": 4853.11, + "probability": 0.7138 + }, + { + "start": 4853.23, + "end": 4853.75, + "probability": 0.5219 + }, + { + "start": 4854.13, + "end": 4856.97, + "probability": 0.9243 + }, + { + "start": 4858.79, + "end": 4860.43, + "probability": 0.9462 + }, + { + "start": 4860.67, + "end": 4861.43, + "probability": 0.7079 + }, + { + "start": 4862.75, + "end": 4864.93, + "probability": 0.9463 + }, + { + "start": 4865.01, + "end": 4867.99, + "probability": 0.9734 + }, + { + "start": 4868.07, + "end": 4868.63, + "probability": 0.6914 + }, + { + "start": 4868.67, + "end": 4869.11, + "probability": 0.9863 + }, + { + "start": 4869.25, + "end": 4870.51, + "probability": 0.9253 + }, + { + "start": 4870.93, + "end": 4872.85, + "probability": 0.9732 + }, + { + "start": 4872.89, + "end": 4874.29, + "probability": 0.9014 + }, + { + "start": 4874.93, + "end": 4876.85, + "probability": 0.9001 + }, + { + "start": 4877.43, + "end": 4880.17, + "probability": 0.9794 + }, + { + "start": 4880.39, + "end": 4881.88, + "probability": 0.6286 + }, + { + "start": 4882.21, + "end": 4882.45, + "probability": 0.8218 + }, + { + "start": 4883.87, + "end": 4888.05, + "probability": 0.8481 + }, + { + "start": 4888.65, + "end": 4889.29, + "probability": 0.7569 + }, + { + "start": 4889.79, + "end": 4890.39, + "probability": 0.9174 + }, + { + "start": 4890.49, + "end": 4892.55, + "probability": 0.3843 + }, + { + "start": 4892.83, + "end": 4893.47, + "probability": 0.6326 + }, + { + "start": 4893.57, + "end": 4894.05, + "probability": 0.646 + }, + { + "start": 4894.21, + "end": 4894.87, + "probability": 0.7251 + }, + { + "start": 4895.23, + "end": 4895.51, + "probability": 0.9207 + }, + { + "start": 4895.95, + "end": 4896.41, + "probability": 0.8876 + }, + { + "start": 4896.83, + "end": 4897.71, + "probability": 0.8445 + }, + { + "start": 4897.83, + "end": 4898.81, + "probability": 0.9568 + }, + { + "start": 4899.55, + "end": 4900.17, + "probability": 0.9766 + }, + { + "start": 4900.21, + "end": 4901.07, + "probability": 0.9567 + }, + { + "start": 4901.17, + "end": 4901.75, + "probability": 0.8542 + }, + { + "start": 4901.77, + "end": 4902.66, + "probability": 0.9849 + }, + { + "start": 4902.79, + "end": 4903.01, + "probability": 0.8194 + }, + { + "start": 4903.71, + "end": 4904.25, + "probability": 0.5463 + }, + { + "start": 4904.33, + "end": 4904.85, + "probability": 0.8407 + }, + { + "start": 4905.25, + "end": 4906.11, + "probability": 0.9559 + }, + { + "start": 4906.29, + "end": 4906.75, + "probability": 0.7479 + }, + { + "start": 4906.91, + "end": 4907.25, + "probability": 0.7347 + }, + { + "start": 4908.19, + "end": 4912.01, + "probability": 0.9417 + }, + { + "start": 4912.51, + "end": 4915.87, + "probability": 0.8649 + }, + { + "start": 4916.77, + "end": 4918.57, + "probability": 0.8682 + }, + { + "start": 4919.69, + "end": 4921.67, + "probability": 0.9559 + }, + { + "start": 4921.73, + "end": 4922.33, + "probability": 0.7861 + }, + { + "start": 4922.45, + "end": 4923.91, + "probability": 0.96 + }, + { + "start": 4924.51, + "end": 4925.75, + "probability": 0.9861 + }, + { + "start": 4926.29, + "end": 4929.01, + "probability": 0.9672 + }, + { + "start": 4929.87, + "end": 4934.77, + "probability": 0.909 + }, + { + "start": 4935.13, + "end": 4939.53, + "probability": 0.8333 + }, + { + "start": 4939.57, + "end": 4940.25, + "probability": 0.7619 + }, + { + "start": 4940.41, + "end": 4941.51, + "probability": 0.9099 + }, + { + "start": 4941.57, + "end": 4942.19, + "probability": 0.813 + }, + { + "start": 4942.23, + "end": 4942.75, + "probability": 0.7433 + }, + { + "start": 4943.19, + "end": 4944.33, + "probability": 0.9722 + }, + { + "start": 4944.51, + "end": 4944.97, + "probability": 0.9652 + }, + { + "start": 4945.07, + "end": 4945.97, + "probability": 0.9421 + }, + { + "start": 4946.37, + "end": 4947.03, + "probability": 0.4997 + }, + { + "start": 4947.03, + "end": 4947.41, + "probability": 0.9043 + }, + { + "start": 4947.75, + "end": 4948.47, + "probability": 0.4987 + }, + { + "start": 4948.61, + "end": 4949.05, + "probability": 0.6141 + }, + { + "start": 4949.51, + "end": 4950.41, + "probability": 0.9428 + }, + { + "start": 4950.43, + "end": 4951.15, + "probability": 0.7764 + }, + { + "start": 4951.53, + "end": 4952.35, + "probability": 0.9464 + }, + { + "start": 4952.47, + "end": 4953.35, + "probability": 0.5441 + }, + { + "start": 4953.75, + "end": 4954.61, + "probability": 0.9895 + }, + { + "start": 4954.63, + "end": 4954.95, + "probability": 0.9812 + }, + { + "start": 4955.43, + "end": 4956.13, + "probability": 0.7848 + }, + { + "start": 4956.21, + "end": 4956.69, + "probability": 0.9467 + }, + { + "start": 4956.89, + "end": 4957.55, + "probability": 0.541 + }, + { + "start": 4958.53, + "end": 4959.87, + "probability": 0.7675 + }, + { + "start": 4960.19, + "end": 4963.35, + "probability": 0.9354 + }, + { + "start": 4964.07, + "end": 4964.07, + "probability": 0.368 + }, + { + "start": 4964.07, + "end": 4966.99, + "probability": 0.7823 + }, + { + "start": 4966.99, + "end": 4970.07, + "probability": 0.9637 + }, + { + "start": 4970.13, + "end": 4972.01, + "probability": 0.8801 + }, + { + "start": 4972.59, + "end": 4973.87, + "probability": 0.8603 + }, + { + "start": 4975.55, + "end": 4977.83, + "probability": 0.9855 + }, + { + "start": 4977.95, + "end": 4980.01, + "probability": 0.8809 + }, + { + "start": 4980.03, + "end": 4981.35, + "probability": 0.9038 + }, + { + "start": 4982.13, + "end": 4985.81, + "probability": 0.9968 + }, + { + "start": 4986.49, + "end": 4989.57, + "probability": 0.8981 + }, + { + "start": 4990.13, + "end": 4990.81, + "probability": 0.6778 + }, + { + "start": 4990.83, + "end": 4991.39, + "probability": 0.8091 + }, + { + "start": 4991.45, + "end": 4992.69, + "probability": 0.8594 + }, + { + "start": 4992.73, + "end": 4993.21, + "probability": 0.8766 + }, + { + "start": 4993.43, + "end": 4993.93, + "probability": 0.9902 + }, + { + "start": 4994.01, + "end": 4994.81, + "probability": 0.8886 + }, + { + "start": 4995.47, + "end": 4996.15, + "probability": 0.9815 + }, + { + "start": 4998.11, + "end": 4998.21, + "probability": 0.322 + }, + { + "start": 4998.21, + "end": 4998.21, + "probability": 0.065 + }, + { + "start": 4998.21, + "end": 4998.59, + "probability": 0.3768 + }, + { + "start": 4998.75, + "end": 4999.35, + "probability": 0.6439 + }, + { + "start": 4999.35, + "end": 5000.13, + "probability": 0.8099 + }, + { + "start": 5000.13, + "end": 5000.63, + "probability": 0.9911 + }, + { + "start": 5001.05, + "end": 5001.73, + "probability": 0.9344 + }, + { + "start": 5001.93, + "end": 5002.39, + "probability": 0.7678 + }, + { + "start": 5002.51, + "end": 5003.42, + "probability": 0.7096 + }, + { + "start": 5003.77, + "end": 5004.41, + "probability": 0.9242 + }, + { + "start": 5004.83, + "end": 5005.35, + "probability": 0.8413 + }, + { + "start": 5005.51, + "end": 5005.95, + "probability": 0.7347 + }, + { + "start": 5006.21, + "end": 5006.83, + "probability": 0.2895 + }, + { + "start": 5007.23, + "end": 5007.95, + "probability": 0.5944 + }, + { + "start": 5008.11, + "end": 5008.49, + "probability": 0.7178 + }, + { + "start": 5008.57, + "end": 5009.31, + "probability": 0.6317 + }, + { + "start": 5009.95, + "end": 5013.01, + "probability": 0.6635 + }, + { + "start": 5014.05, + "end": 5016.77, + "probability": 0.4713 + }, + { + "start": 5017.01, + "end": 5019.99, + "probability": 0.9935 + }, + { + "start": 5020.07, + "end": 5020.65, + "probability": 0.9089 + }, + { + "start": 5021.17, + "end": 5021.43, + "probability": 0.9913 + }, + { + "start": 5021.99, + "end": 5023.35, + "probability": 0.9815 + }, + { + "start": 5024.27, + "end": 5027.93, + "probability": 0.9864 + }, + { + "start": 5028.63, + "end": 5029.97, + "probability": 0.745 + }, + { + "start": 5031.31, + "end": 5031.63, + "probability": 0.6876 + }, + { + "start": 5033.23, + "end": 5035.81, + "probability": 0.6982 + }, + { + "start": 5036.85, + "end": 5038.87, + "probability": 0.9035 + }, + { + "start": 5039.53, + "end": 5040.99, + "probability": 0.9542 + }, + { + "start": 5041.15, + "end": 5042.11, + "probability": 0.7298 + }, + { + "start": 5051.91, + "end": 5052.89, + "probability": 0.6424 + }, + { + "start": 5054.19, + "end": 5056.01, + "probability": 0.838 + }, + { + "start": 5056.11, + "end": 5059.75, + "probability": 0.9521 + }, + { + "start": 5059.97, + "end": 5064.47, + "probability": 0.9554 + }, + { + "start": 5064.97, + "end": 5065.41, + "probability": 0.5144 + }, + { + "start": 5065.49, + "end": 5065.97, + "probability": 0.817 + }, + { + "start": 5066.21, + "end": 5067.47, + "probability": 0.9762 + }, + { + "start": 5068.51, + "end": 5075.11, + "probability": 0.838 + }, + { + "start": 5075.47, + "end": 5077.01, + "probability": 0.5901 + }, + { + "start": 5077.55, + "end": 5082.51, + "probability": 0.9733 + }, + { + "start": 5083.29, + "end": 5088.63, + "probability": 0.9841 + }, + { + "start": 5088.79, + "end": 5095.29, + "probability": 0.9655 + }, + { + "start": 5096.35, + "end": 5103.25, + "probability": 0.9734 + }, + { + "start": 5103.73, + "end": 5105.47, + "probability": 0.9308 + }, + { + "start": 5105.89, + "end": 5112.07, + "probability": 0.9985 + }, + { + "start": 5112.35, + "end": 5119.01, + "probability": 0.9974 + }, + { + "start": 5119.05, + "end": 5124.75, + "probability": 0.9989 + }, + { + "start": 5125.85, + "end": 5126.05, + "probability": 0.7724 + }, + { + "start": 5127.63, + "end": 5133.33, + "probability": 0.9976 + }, + { + "start": 5133.83, + "end": 5136.11, + "probability": 0.9653 + }, + { + "start": 5136.51, + "end": 5139.97, + "probability": 0.9951 + }, + { + "start": 5140.51, + "end": 5144.55, + "probability": 0.9945 + }, + { + "start": 5145.29, + "end": 5154.13, + "probability": 0.9967 + }, + { + "start": 5154.91, + "end": 5161.35, + "probability": 0.9889 + }, + { + "start": 5161.87, + "end": 5165.15, + "probability": 0.9346 + }, + { + "start": 5165.69, + "end": 5171.87, + "probability": 0.9507 + }, + { + "start": 5172.77, + "end": 5173.69, + "probability": 0.6423 + }, + { + "start": 5173.93, + "end": 5174.33, + "probability": 0.6424 + }, + { + "start": 5174.41, + "end": 5174.77, + "probability": 0.9116 + }, + { + "start": 5174.89, + "end": 5175.47, + "probability": 0.6658 + }, + { + "start": 5175.89, + "end": 5178.13, + "probability": 0.8271 + }, + { + "start": 5178.41, + "end": 5181.43, + "probability": 0.51 + }, + { + "start": 5181.69, + "end": 5184.89, + "probability": 0.6688 + }, + { + "start": 5185.41, + "end": 5187.61, + "probability": 0.9777 + }, + { + "start": 5188.07, + "end": 5191.83, + "probability": 0.7452 + }, + { + "start": 5191.85, + "end": 5192.15, + "probability": 0.3715 + }, + { + "start": 5192.77, + "end": 5201.55, + "probability": 0.971 + }, + { + "start": 5201.55, + "end": 5206.73, + "probability": 0.9996 + }, + { + "start": 5207.13, + "end": 5209.53, + "probability": 0.8782 + }, + { + "start": 5209.95, + "end": 5214.57, + "probability": 0.9926 + }, + { + "start": 5215.25, + "end": 5217.43, + "probability": 0.7381 + }, + { + "start": 5217.99, + "end": 5223.15, + "probability": 0.9858 + }, + { + "start": 5223.81, + "end": 5226.49, + "probability": 0.9793 + }, + { + "start": 5227.41, + "end": 5232.01, + "probability": 0.9896 + }, + { + "start": 5232.01, + "end": 5236.09, + "probability": 0.986 + }, + { + "start": 5236.63, + "end": 5241.27, + "probability": 0.7815 + }, + { + "start": 5242.05, + "end": 5246.17, + "probability": 0.8864 + }, + { + "start": 5247.05, + "end": 5249.71, + "probability": 0.9824 + }, + { + "start": 5250.53, + "end": 5252.35, + "probability": 0.9783 + }, + { + "start": 5252.95, + "end": 5254.67, + "probability": 0.9922 + }, + { + "start": 5255.47, + "end": 5257.23, + "probability": 0.9937 + }, + { + "start": 5257.95, + "end": 5257.95, + "probability": 0.4093 + }, + { + "start": 5257.95, + "end": 5258.73, + "probability": 0.4726 + }, + { + "start": 5259.35, + "end": 5261.03, + "probability": 0.7696 + }, + { + "start": 5261.43, + "end": 5264.67, + "probability": 0.9722 + }, + { + "start": 5264.77, + "end": 5271.53, + "probability": 0.9964 + }, + { + "start": 5272.31, + "end": 5273.99, + "probability": 0.6046 + }, + { + "start": 5274.67, + "end": 5277.31, + "probability": 0.991 + }, + { + "start": 5277.43, + "end": 5280.03, + "probability": 0.9681 + }, + { + "start": 5280.49, + "end": 5282.37, + "probability": 0.9178 + }, + { + "start": 5282.79, + "end": 5284.83, + "probability": 0.9666 + }, + { + "start": 5285.17, + "end": 5290.53, + "probability": 0.9957 + }, + { + "start": 5291.13, + "end": 5295.79, + "probability": 0.9932 + }, + { + "start": 5296.01, + "end": 5296.89, + "probability": 0.4911 + }, + { + "start": 5297.09, + "end": 5299.07, + "probability": 0.9956 + }, + { + "start": 5299.71, + "end": 5307.27, + "probability": 0.0889 + }, + { + "start": 5310.73, + "end": 5312.23, + "probability": 0.2961 + }, + { + "start": 5312.23, + "end": 5312.23, + "probability": 0.0286 + }, + { + "start": 5312.23, + "end": 5312.23, + "probability": 0.3726 + }, + { + "start": 5312.23, + "end": 5316.25, + "probability": 0.5886 + }, + { + "start": 5316.63, + "end": 5320.33, + "probability": 0.5135 + }, + { + "start": 5320.83, + "end": 5325.61, + "probability": 0.9956 + }, + { + "start": 5325.83, + "end": 5326.35, + "probability": 0.7439 + }, + { + "start": 5326.37, + "end": 5326.37, + "probability": 0.2073 + }, + { + "start": 5326.37, + "end": 5326.37, + "probability": 0.4141 + }, + { + "start": 5326.37, + "end": 5331.45, + "probability": 0.9886 + }, + { + "start": 5331.45, + "end": 5336.93, + "probability": 0.9349 + }, + { + "start": 5337.77, + "end": 5339.87, + "probability": 0.0551 + }, + { + "start": 5339.87, + "end": 5340.49, + "probability": 0.1093 + }, + { + "start": 5342.37, + "end": 5342.95, + "probability": 0.5036 + }, + { + "start": 5344.17, + "end": 5346.27, + "probability": 0.3894 + }, + { + "start": 5346.27, + "end": 5346.27, + "probability": 0.1885 + }, + { + "start": 5346.27, + "end": 5346.27, + "probability": 0.4228 + }, + { + "start": 5346.27, + "end": 5346.37, + "probability": 0.2625 + }, + { + "start": 5347.39, + "end": 5348.03, + "probability": 0.4883 + }, + { + "start": 5348.97, + "end": 5350.41, + "probability": 0.4808 + }, + { + "start": 5353.19, + "end": 5353.67, + "probability": 0.1824 + }, + { + "start": 5354.99, + "end": 5356.35, + "probability": 0.537 + }, + { + "start": 5357.01, + "end": 5357.57, + "probability": 0.5175 + }, + { + "start": 5357.73, + "end": 5360.55, + "probability": 0.9116 + }, + { + "start": 5377.93, + "end": 5382.61, + "probability": 0.5575 + }, + { + "start": 5382.85, + "end": 5382.87, + "probability": 0.8644 + }, + { + "start": 5383.27, + "end": 5384.17, + "probability": 0.2704 + }, + { + "start": 5384.49, + "end": 5385.63, + "probability": 0.6615 + }, + { + "start": 5386.45, + "end": 5388.91, + "probability": 0.9596 + }, + { + "start": 5389.83, + "end": 5392.19, + "probability": 0.9457 + }, + { + "start": 5393.77, + "end": 5397.27, + "probability": 0.9961 + }, + { + "start": 5398.49, + "end": 5402.81, + "probability": 0.9944 + }, + { + "start": 5403.35, + "end": 5403.81, + "probability": 0.7243 + }, + { + "start": 5405.79, + "end": 5408.03, + "probability": 0.9803 + }, + { + "start": 5408.87, + "end": 5411.77, + "probability": 0.8505 + }, + { + "start": 5412.63, + "end": 5414.79, + "probability": 0.9473 + }, + { + "start": 5415.77, + "end": 5417.57, + "probability": 0.9428 + }, + { + "start": 5419.33, + "end": 5421.91, + "probability": 0.7727 + }, + { + "start": 5422.77, + "end": 5423.41, + "probability": 0.8417 + }, + { + "start": 5423.81, + "end": 5430.49, + "probability": 0.9858 + }, + { + "start": 5432.01, + "end": 5433.97, + "probability": 0.9951 + }, + { + "start": 5434.53, + "end": 5438.67, + "probability": 0.9875 + }, + { + "start": 5439.07, + "end": 5442.45, + "probability": 0.9976 + }, + { + "start": 5443.51, + "end": 5446.63, + "probability": 0.9602 + }, + { + "start": 5447.63, + "end": 5450.97, + "probability": 0.9985 + }, + { + "start": 5452.43, + "end": 5455.73, + "probability": 0.9956 + }, + { + "start": 5455.73, + "end": 5460.27, + "probability": 0.9934 + }, + { + "start": 5460.91, + "end": 5462.11, + "probability": 0.7748 + }, + { + "start": 5462.37, + "end": 5462.91, + "probability": 0.8756 + }, + { + "start": 5463.07, + "end": 5463.37, + "probability": 0.8689 + }, + { + "start": 5463.79, + "end": 5465.27, + "probability": 0.8923 + }, + { + "start": 5465.83, + "end": 5467.85, + "probability": 0.948 + }, + { + "start": 5467.99, + "end": 5468.59, + "probability": 0.7957 + }, + { + "start": 5468.71, + "end": 5469.75, + "probability": 0.7624 + }, + { + "start": 5470.15, + "end": 5472.97, + "probability": 0.9916 + }, + { + "start": 5473.45, + "end": 5474.55, + "probability": 0.7512 + }, + { + "start": 5475.97, + "end": 5477.65, + "probability": 0.9616 + }, + { + "start": 5478.27, + "end": 5481.15, + "probability": 0.9666 + }, + { + "start": 5481.79, + "end": 5483.35, + "probability": 0.9067 + }, + { + "start": 5484.53, + "end": 5489.59, + "probability": 0.9811 + }, + { + "start": 5490.37, + "end": 5495.45, + "probability": 0.9877 + }, + { + "start": 5496.15, + "end": 5497.65, + "probability": 0.9951 + }, + { + "start": 5498.95, + "end": 5502.07, + "probability": 0.9938 + }, + { + "start": 5502.55, + "end": 5506.17, + "probability": 0.9728 + }, + { + "start": 5506.71, + "end": 5508.71, + "probability": 0.9803 + }, + { + "start": 5509.57, + "end": 5512.63, + "probability": 0.994 + }, + { + "start": 5513.41, + "end": 5515.25, + "probability": 0.672 + }, + { + "start": 5516.89, + "end": 5519.75, + "probability": 0.9719 + }, + { + "start": 5520.45, + "end": 5521.39, + "probability": 0.7706 + }, + { + "start": 5521.67, + "end": 5524.07, + "probability": 0.8023 + }, + { + "start": 5524.17, + "end": 5526.33, + "probability": 0.9827 + }, + { + "start": 5527.33, + "end": 5530.41, + "probability": 0.9919 + }, + { + "start": 5530.57, + "end": 5533.05, + "probability": 0.9727 + }, + { + "start": 5533.19, + "end": 5535.49, + "probability": 0.9919 + }, + { + "start": 5535.49, + "end": 5538.55, + "probability": 0.9875 + }, + { + "start": 5540.03, + "end": 5541.81, + "probability": 0.9851 + }, + { + "start": 5542.15, + "end": 5542.99, + "probability": 0.7028 + }, + { + "start": 5543.11, + "end": 5543.53, + "probability": 0.8981 + }, + { + "start": 5543.61, + "end": 5545.01, + "probability": 0.7326 + }, + { + "start": 5545.71, + "end": 5546.79, + "probability": 0.9801 + }, + { + "start": 5547.69, + "end": 5549.53, + "probability": 0.9728 + }, + { + "start": 5551.37, + "end": 5553.69, + "probability": 0.6818 + }, + { + "start": 5558.11, + "end": 5560.95, + "probability": 0.9468 + }, + { + "start": 5561.61, + "end": 5565.51, + "probability": 0.9307 + }, + { + "start": 5566.07, + "end": 5569.77, + "probability": 0.9448 + }, + { + "start": 5570.63, + "end": 5574.31, + "probability": 0.9943 + }, + { + "start": 5574.95, + "end": 5578.69, + "probability": 0.9929 + }, + { + "start": 5578.85, + "end": 5578.85, + "probability": 0.0 + }, + { + "start": 5579.69, + "end": 5582.71, + "probability": 0.9503 + }, + { + "start": 5583.79, + "end": 5587.16, + "probability": 0.9934 + }, + { + "start": 5587.89, + "end": 5592.69, + "probability": 0.8972 + }, + { + "start": 5593.29, + "end": 5596.03, + "probability": 0.8112 + }, + { + "start": 5596.19, + "end": 5597.19, + "probability": 0.8054 + }, + { + "start": 5597.89, + "end": 5598.55, + "probability": 0.5988 + }, + { + "start": 5598.71, + "end": 5599.59, + "probability": 0.6659 + }, + { + "start": 5601.47, + "end": 5601.59, + "probability": 0.6338 + }, + { + "start": 5602.87, + "end": 5604.67, + "probability": 0.6683 + }, + { + "start": 5604.75, + "end": 5605.27, + "probability": 0.7427 + }, + { + "start": 5605.29, + "end": 5606.13, + "probability": 0.2391 + }, + { + "start": 5606.27, + "end": 5608.39, + "probability": 0.8993 + }, + { + "start": 5609.27, + "end": 5611.35, + "probability": 0.9816 + }, + { + "start": 5611.81, + "end": 5613.2, + "probability": 0.985 + }, + { + "start": 5613.37, + "end": 5614.35, + "probability": 0.8588 + }, + { + "start": 5615.77, + "end": 5616.55, + "probability": 0.3819 + }, + { + "start": 5618.07, + "end": 5620.11, + "probability": 0.7085 + }, + { + "start": 5620.63, + "end": 5621.19, + "probability": 0.4491 + }, + { + "start": 5625.07, + "end": 5625.97, + "probability": 0.4869 + }, + { + "start": 5625.97, + "end": 5625.97, + "probability": 0.3133 + }, + { + "start": 5625.97, + "end": 5626.56, + "probability": 0.784 + }, + { + "start": 5627.63, + "end": 5628.31, + "probability": 0.7502 + }, + { + "start": 5629.07, + "end": 5630.41, + "probability": 0.7136 + }, + { + "start": 5631.21, + "end": 5633.53, + "probability": 0.8627 + }, + { + "start": 5634.31, + "end": 5634.97, + "probability": 0.6703 + }, + { + "start": 5635.87, + "end": 5636.01, + "probability": 0.3217 + }, + { + "start": 5636.09, + "end": 5636.67, + "probability": 0.5854 + }, + { + "start": 5636.97, + "end": 5638.29, + "probability": 0.251 + }, + { + "start": 5638.47, + "end": 5641.95, + "probability": 0.3003 + }, + { + "start": 5642.75, + "end": 5644.11, + "probability": 0.0356 + }, + { + "start": 5644.65, + "end": 5646.29, + "probability": 0.6539 + }, + { + "start": 5647.23, + "end": 5647.33, + "probability": 0.1519 + }, + { + "start": 5647.33, + "end": 5647.35, + "probability": 0.2406 + }, + { + "start": 5647.43, + "end": 5647.97, + "probability": 0.7001 + }, + { + "start": 5648.17, + "end": 5648.83, + "probability": 0.8954 + }, + { + "start": 5650.05, + "end": 5654.61, + "probability": 0.8179 + }, + { + "start": 5654.73, + "end": 5659.11, + "probability": 0.8628 + }, + { + "start": 5661.33, + "end": 5663.01, + "probability": 0.6029 + }, + { + "start": 5663.99, + "end": 5664.63, + "probability": 0.496 + }, + { + "start": 5665.21, + "end": 5667.89, + "probability": 0.6971 + }, + { + "start": 5668.97, + "end": 5670.35, + "probability": 0.8556 + }, + { + "start": 5670.75, + "end": 5671.49, + "probability": 0.5307 + }, + { + "start": 5671.73, + "end": 5672.23, + "probability": 0.7045 + }, + { + "start": 5673.85, + "end": 5676.13, + "probability": 0.0596 + }, + { + "start": 5678.11, + "end": 5679.29, + "probability": 0.1629 + }, + { + "start": 5679.53, + "end": 5681.02, + "probability": 0.7896 + }, + { + "start": 5683.93, + "end": 5684.77, + "probability": 0.7454 + }, + { + "start": 5687.29, + "end": 5687.45, + "probability": 0.5979 + }, + { + "start": 5689.55, + "end": 5690.93, + "probability": 0.6158 + }, + { + "start": 5692.05, + "end": 5692.83, + "probability": 0.8384 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.0, + "end": 5803.0, + "probability": 0.0 + }, + { + "start": 5803.04, + "end": 5803.36, + "probability": 0.0938 + }, + { + "start": 5803.36, + "end": 5803.74, + "probability": 0.2336 + }, + { + "start": 5803.74, + "end": 5803.84, + "probability": 0.2423 + }, + { + "start": 5805.12, + "end": 5805.76, + "probability": 0.9546 + }, + { + "start": 5805.96, + "end": 5807.2, + "probability": 0.9185 + }, + { + "start": 5807.82, + "end": 5808.42, + "probability": 0.8997 + }, + { + "start": 5810.34, + "end": 5811.4, + "probability": 0.2923 + }, + { + "start": 8481.0, + "end": 8481.0, + "probability": 0.0 + }, + { + "start": 8481.0, + "end": 8481.0, + "probability": 0.0 + }, + { + "start": 8481.0, + "end": 8481.0, + "probability": 0.0 + }, + { + "start": 8481.18, + "end": 8481.18, + "probability": 0.2445 + }, + { + "start": 8481.18, + "end": 8481.18, + "probability": 0.0678 + }, + { + "start": 8481.2, + "end": 8482.3, + "probability": 0.6601 + }, + { + "start": 8483.06, + "end": 8483.44, + "probability": 0.8223 + }, + { + "start": 8485.5, + "end": 8489.52, + "probability": 0.9152 + }, + { + "start": 8490.38, + "end": 8491.6, + "probability": 0.9972 + }, + { + "start": 8492.54, + "end": 8494.06, + "probability": 0.9619 + }, + { + "start": 8494.72, + "end": 8496.68, + "probability": 0.8538 + }, + { + "start": 8498.24, + "end": 8498.78, + "probability": 0.5908 + }, + { + "start": 8499.34, + "end": 8499.98, + "probability": 0.9412 + }, + { + "start": 8501.5, + "end": 8503.68, + "probability": 0.0111 + }, + { + "start": 8505.14, + "end": 8506.6, + "probability": 0.1176 + }, + { + "start": 8506.66, + "end": 8509.28, + "probability": 0.3198 + }, + { + "start": 8509.6, + "end": 8509.7, + "probability": 0.0189 + }, + { + "start": 8519.0, + "end": 8519.72, + "probability": 0.2921 + }, + { + "start": 8521.46, + "end": 8523.54, + "probability": 0.4385 + }, + { + "start": 8524.38, + "end": 8527.1, + "probability": 0.9183 + }, + { + "start": 8527.6, + "end": 8530.36, + "probability": 0.9893 + }, + { + "start": 8530.9, + "end": 8532.46, + "probability": 0.6626 + }, + { + "start": 8533.12, + "end": 8533.74, + "probability": 0.6799 + }, + { + "start": 8534.3, + "end": 8535.56, + "probability": 0.8763 + }, + { + "start": 8535.62, + "end": 8538.92, + "probability": 0.8362 + }, + { + "start": 8539.0, + "end": 8539.96, + "probability": 0.7481 + }, + { + "start": 8540.52, + "end": 8542.48, + "probability": 0.9917 + }, + { + "start": 8543.0, + "end": 8544.76, + "probability": 0.9907 + }, + { + "start": 8544.8, + "end": 8545.3, + "probability": 0.8621 + }, + { + "start": 8545.68, + "end": 8547.6, + "probability": 0.9779 + }, + { + "start": 8548.86, + "end": 8550.68, + "probability": 0.9188 + }, + { + "start": 8551.2, + "end": 8552.74, + "probability": 0.9202 + }, + { + "start": 8553.24, + "end": 8556.86, + "probability": 0.9469 + }, + { + "start": 8556.92, + "end": 8560.54, + "probability": 0.8657 + }, + { + "start": 8560.88, + "end": 8562.2, + "probability": 0.7943 + }, + { + "start": 8563.24, + "end": 8566.74, + "probability": 0.945 + }, + { + "start": 8567.22, + "end": 8568.78, + "probability": 0.9756 + }, + { + "start": 8569.22, + "end": 8570.32, + "probability": 0.8589 + }, + { + "start": 8571.12, + "end": 8572.08, + "probability": 0.9087 + }, + { + "start": 8572.14, + "end": 8574.02, + "probability": 0.9595 + }, + { + "start": 8574.68, + "end": 8576.48, + "probability": 0.481 + }, + { + "start": 8576.62, + "end": 8578.9, + "probability": 0.945 + }, + { + "start": 8579.74, + "end": 8582.56, + "probability": 0.7194 + }, + { + "start": 8583.5, + "end": 8585.3, + "probability": 0.7266 + }, + { + "start": 8586.94, + "end": 8589.04, + "probability": 0.9688 + }, + { + "start": 8589.6, + "end": 8592.54, + "probability": 0.6444 + }, + { + "start": 8593.2, + "end": 8595.22, + "probability": 0.7017 + }, + { + "start": 8595.9, + "end": 8597.2, + "probability": 0.897 + }, + { + "start": 8597.46, + "end": 8599.44, + "probability": 0.9908 + }, + { + "start": 8600.32, + "end": 8600.52, + "probability": 0.9913 + }, + { + "start": 8601.08, + "end": 8605.16, + "probability": 0.6826 + }, + { + "start": 8605.74, + "end": 8607.48, + "probability": 0.832 + }, + { + "start": 8609.16, + "end": 8609.56, + "probability": 0.766 + }, + { + "start": 8610.72, + "end": 8613.72, + "probability": 0.9111 + }, + { + "start": 8616.32, + "end": 8617.12, + "probability": 0.9103 + }, + { + "start": 8622.16, + "end": 8622.6, + "probability": 0.6465 + }, + { + "start": 8623.32, + "end": 8626.26, + "probability": 0.7034 + }, + { + "start": 8627.86, + "end": 8628.81, + "probability": 0.2293 + }, + { + "start": 8629.78, + "end": 8630.54, + "probability": 0.6336 + }, + { + "start": 8630.62, + "end": 8630.72, + "probability": 0.7139 + }, + { + "start": 8638.1, + "end": 8639.6, + "probability": 0.7681 + }, + { + "start": 8640.0, + "end": 8642.86, + "probability": 0.4426 + }, + { + "start": 8642.88, + "end": 8644.86, + "probability": 0.7897 + }, + { + "start": 8645.02, + "end": 8646.78, + "probability": 0.6868 + }, + { + "start": 8647.14, + "end": 8651.58, + "probability": 0.7893 + }, + { + "start": 8652.32, + "end": 8653.22, + "probability": 0.9092 + }, + { + "start": 8653.82, + "end": 8658.52, + "probability": 0.9945 + }, + { + "start": 8659.6, + "end": 8660.18, + "probability": 0.5232 + }, + { + "start": 8669.94, + "end": 8671.5, + "probability": 0.7529 + }, + { + "start": 8672.5, + "end": 8676.08, + "probability": 0.8212 + }, + { + "start": 8678.86, + "end": 8679.92, + "probability": 0.9689 + }, + { + "start": 8680.06, + "end": 8680.34, + "probability": 0.3024 + }, + { + "start": 8707.08, + "end": 8708.7, + "probability": 0.5771 + }, + { + "start": 8709.12, + "end": 8711.16, + "probability": 0.7864 + }, + { + "start": 8711.18, + "end": 8712.66, + "probability": 0.8813 + }, + { + "start": 8713.08, + "end": 8714.4, + "probability": 0.6208 + }, + { + "start": 8715.32, + "end": 8718.72, + "probability": 0.9302 + }, + { + "start": 8719.4, + "end": 8720.32, + "probability": 0.7639 + }, + { + "start": 8721.38, + "end": 8725.36, + "probability": 0.9969 + }, + { + "start": 8726.42, + "end": 8727.24, + "probability": 0.7422 + }, + { + "start": 8731.48, + "end": 8732.32, + "probability": 0.67 + }, + { + "start": 8733.16, + "end": 8736.76, + "probability": 0.6507 + }, + { + "start": 8737.2, + "end": 8737.7, + "probability": 0.8639 + }, + { + "start": 8738.28, + "end": 8739.76, + "probability": 0.9878 + }, + { + "start": 8744.84, + "end": 8745.96, + "probability": 0.9426 + }, + { + "start": 8747.78, + "end": 8749.48, + "probability": 0.8995 + }, + { + "start": 8749.6, + "end": 8750.62, + "probability": 0.6045 + }, + { + "start": 8750.72, + "end": 8752.94, + "probability": 0.9825 + }, + { + "start": 8752.94, + "end": 8755.96, + "probability": 0.9961 + }, + { + "start": 8756.48, + "end": 8757.38, + "probability": 0.6865 + }, + { + "start": 8758.18, + "end": 8761.84, + "probability": 0.9797 + }, + { + "start": 8762.24, + "end": 8765.9, + "probability": 0.9959 + }, + { + "start": 8765.9, + "end": 8769.54, + "probability": 0.9933 + }, + { + "start": 8769.68, + "end": 8769.82, + "probability": 0.0011 + } + ], + "segments_count": 1917, + "words_count": 9955, + "avg_words_per_segment": 5.193, + "avg_segment_duration": 2.1709, + "avg_words_per_minute": 67.9201, + "plenum_id": "112710", + "duration": 8794.16, + "title": null, + "plenum_date": "2023-01-25" +} \ No newline at end of file