diff --git "a/120231/metadata.json" "b/120231/metadata.json" new file mode 100644--- /dev/null +++ "b/120231/metadata.json" @@ -0,0 +1,60017 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "120231", + "quality_score": 0.8813, + "per_segment_quality_scores": [ + { + "start": 67.77, + "end": 67.91, + "probability": 0.1365 + }, + { + "start": 68.7, + "end": 70.78, + "probability": 0.0281 + }, + { + "start": 71.18, + "end": 74.08, + "probability": 0.0671 + }, + { + "start": 75.02, + "end": 75.3, + "probability": 0.199 + }, + { + "start": 76.1, + "end": 79.36, + "probability": 0.0733 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 144.28, + "end": 148.64, + "probability": 0.1087 + }, + { + "start": 148.64, + "end": 149.12, + "probability": 0.327 + }, + { + "start": 150.63, + "end": 154.96, + "probability": 0.0746 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.0, + "end": 254.0, + "probability": 0.0 + }, + { + "start": 254.62, + "end": 254.62, + "probability": 0.0694 + }, + { + "start": 254.62, + "end": 254.62, + "probability": 0.0025 + }, + { + "start": 254.7, + "end": 260.56, + "probability": 0.9652 + }, + { + "start": 260.88, + "end": 267.02, + "probability": 0.9811 + }, + { + "start": 268.38, + "end": 273.22, + "probability": 0.9893 + }, + { + "start": 273.22, + "end": 278.68, + "probability": 0.9948 + }, + { + "start": 279.42, + "end": 279.68, + "probability": 0.29 + }, + { + "start": 280.38, + "end": 284.64, + "probability": 0.9863 + }, + { + "start": 285.16, + "end": 289.24, + "probability": 0.9922 + }, + { + "start": 290.06, + "end": 290.46, + "probability": 0.7738 + }, + { + "start": 290.62, + "end": 291.46, + "probability": 0.7088 + }, + { + "start": 291.58, + "end": 295.24, + "probability": 0.9736 + }, + { + "start": 295.24, + "end": 297.98, + "probability": 0.9448 + }, + { + "start": 298.4, + "end": 303.46, + "probability": 0.9964 + }, + { + "start": 303.48, + "end": 307.38, + "probability": 0.999 + }, + { + "start": 307.98, + "end": 310.76, + "probability": 0.828 + }, + { + "start": 311.68, + "end": 314.98, + "probability": 0.79 + }, + { + "start": 315.64, + "end": 321.12, + "probability": 0.993 + }, + { + "start": 321.66, + "end": 325.84, + "probability": 0.9764 + }, + { + "start": 325.84, + "end": 330.98, + "probability": 0.9976 + }, + { + "start": 332.34, + "end": 333.22, + "probability": 0.8523 + }, + { + "start": 334.98, + "end": 338.34, + "probability": 0.7593 + }, + { + "start": 338.94, + "end": 342.98, + "probability": 0.9977 + }, + { + "start": 343.58, + "end": 347.46, + "probability": 0.9971 + }, + { + "start": 347.46, + "end": 353.42, + "probability": 0.9944 + }, + { + "start": 353.42, + "end": 358.06, + "probability": 0.9991 + }, + { + "start": 358.06, + "end": 362.5, + "probability": 0.9976 + }, + { + "start": 363.1, + "end": 365.16, + "probability": 0.6874 + }, + { + "start": 365.88, + "end": 368.54, + "probability": 0.962 + }, + { + "start": 368.54, + "end": 371.58, + "probability": 0.8343 + }, + { + "start": 371.58, + "end": 378.64, + "probability": 0.8517 + }, + { + "start": 384.26, + "end": 386.62, + "probability": 0.6279 + }, + { + "start": 386.84, + "end": 393.06, + "probability": 0.9694 + }, + { + "start": 393.06, + "end": 398.66, + "probability": 0.9979 + }, + { + "start": 399.26, + "end": 406.0, + "probability": 0.9937 + }, + { + "start": 406.0, + "end": 411.42, + "probability": 0.9938 + }, + { + "start": 412.12, + "end": 418.22, + "probability": 0.9978 + }, + { + "start": 418.9, + "end": 424.38, + "probability": 0.986 + }, + { + "start": 424.38, + "end": 428.4, + "probability": 0.9978 + }, + { + "start": 428.88, + "end": 430.56, + "probability": 0.9618 + }, + { + "start": 430.98, + "end": 434.68, + "probability": 0.9982 + }, + { + "start": 434.68, + "end": 438.56, + "probability": 0.9989 + }, + { + "start": 439.24, + "end": 439.46, + "probability": 0.7321 + }, + { + "start": 440.42, + "end": 443.98, + "probability": 0.9805 + }, + { + "start": 444.62, + "end": 447.64, + "probability": 0.9868 + }, + { + "start": 447.7, + "end": 450.04, + "probability": 0.9945 + }, + { + "start": 450.6, + "end": 451.4, + "probability": 0.339 + }, + { + "start": 451.74, + "end": 452.74, + "probability": 0.3973 + }, + { + "start": 452.84, + "end": 453.12, + "probability": 0.6327 + }, + { + "start": 453.3, + "end": 454.54, + "probability": 0.6291 + }, + { + "start": 454.62, + "end": 455.96, + "probability": 0.8124 + }, + { + "start": 456.68, + "end": 457.34, + "probability": 0.8996 + }, + { + "start": 457.38, + "end": 458.49, + "probability": 0.7203 + }, + { + "start": 458.6, + "end": 460.32, + "probability": 0.8993 + }, + { + "start": 460.4, + "end": 462.1, + "probability": 0.5839 + }, + { + "start": 462.58, + "end": 464.06, + "probability": 0.8276 + }, + { + "start": 464.18, + "end": 467.32, + "probability": 0.9768 + }, + { + "start": 468.22, + "end": 469.82, + "probability": 0.9844 + }, + { + "start": 470.78, + "end": 471.4, + "probability": 0.5825 + }, + { + "start": 471.6, + "end": 472.86, + "probability": 0.7269 + }, + { + "start": 473.04, + "end": 476.58, + "probability": 0.4993 + }, + { + "start": 476.94, + "end": 479.92, + "probability": 0.4083 + }, + { + "start": 482.38, + "end": 482.38, + "probability": 0.1224 + }, + { + "start": 482.38, + "end": 482.38, + "probability": 0.0884 + }, + { + "start": 482.38, + "end": 482.38, + "probability": 0.0434 + }, + { + "start": 482.38, + "end": 482.38, + "probability": 0.0513 + }, + { + "start": 482.38, + "end": 483.76, + "probability": 0.5665 + }, + { + "start": 485.04, + "end": 485.58, + "probability": 0.7458 + }, + { + "start": 487.1, + "end": 487.64, + "probability": 0.5746 + }, + { + "start": 490.16, + "end": 491.64, + "probability": 0.8205 + }, + { + "start": 499.68, + "end": 502.16, + "probability": 0.7061 + }, + { + "start": 502.26, + "end": 503.96, + "probability": 0.8916 + }, + { + "start": 505.04, + "end": 508.36, + "probability": 0.2725 + }, + { + "start": 508.52, + "end": 509.7, + "probability": 0.1434 + }, + { + "start": 509.76, + "end": 510.6, + "probability": 0.7385 + }, + { + "start": 511.62, + "end": 512.66, + "probability": 0.7759 + }, + { + "start": 512.78, + "end": 514.28, + "probability": 0.8999 + }, + { + "start": 514.78, + "end": 515.68, + "probability": 0.4811 + }, + { + "start": 516.08, + "end": 517.72, + "probability": 0.6081 + }, + { + "start": 518.42, + "end": 519.02, + "probability": 0.4871 + }, + { + "start": 519.02, + "end": 520.45, + "probability": 0.6615 + }, + { + "start": 521.38, + "end": 523.18, + "probability": 0.218 + }, + { + "start": 523.44, + "end": 525.28, + "probability": 0.951 + }, + { + "start": 525.28, + "end": 527.0, + "probability": 0.8843 + }, + { + "start": 527.58, + "end": 527.88, + "probability": 0.2134 + }, + { + "start": 527.88, + "end": 528.95, + "probability": 0.9003 + }, + { + "start": 530.26, + "end": 533.08, + "probability": 0.4971 + }, + { + "start": 533.08, + "end": 534.72, + "probability": 0.6934 + }, + { + "start": 534.87, + "end": 536.68, + "probability": 0.6201 + }, + { + "start": 536.7, + "end": 538.22, + "probability": 0.5415 + }, + { + "start": 538.46, + "end": 538.81, + "probability": 0.2446 + }, + { + "start": 539.6, + "end": 541.78, + "probability": 0.9457 + }, + { + "start": 543.6, + "end": 551.06, + "probability": 0.9913 + }, + { + "start": 553.8, + "end": 560.46, + "probability": 0.9512 + }, + { + "start": 562.9, + "end": 565.62, + "probability": 0.7861 + }, + { + "start": 565.68, + "end": 568.22, + "probability": 0.9116 + }, + { + "start": 572.74, + "end": 575.94, + "probability": 0.9111 + }, + { + "start": 576.58, + "end": 577.84, + "probability": 0.9301 + }, + { + "start": 578.46, + "end": 582.14, + "probability": 0.9416 + }, + { + "start": 582.28, + "end": 582.76, + "probability": 0.9134 + }, + { + "start": 584.32, + "end": 584.76, + "probability": 0.9397 + }, + { + "start": 587.36, + "end": 589.56, + "probability": 0.9117 + }, + { + "start": 590.04, + "end": 592.36, + "probability": 0.9652 + }, + { + "start": 592.68, + "end": 595.44, + "probability": 0.951 + }, + { + "start": 599.72, + "end": 601.18, + "probability": 0.4592 + }, + { + "start": 603.58, + "end": 605.22, + "probability": 0.8588 + }, + { + "start": 606.32, + "end": 609.7, + "probability": 0.9893 + }, + { + "start": 609.76, + "end": 611.46, + "probability": 0.8927 + }, + { + "start": 613.32, + "end": 615.44, + "probability": 0.998 + }, + { + "start": 616.2, + "end": 619.62, + "probability": 0.9252 + }, + { + "start": 624.84, + "end": 625.94, + "probability": 0.7482 + }, + { + "start": 628.32, + "end": 629.84, + "probability": 0.8506 + }, + { + "start": 630.62, + "end": 635.94, + "probability": 0.8778 + }, + { + "start": 637.34, + "end": 638.12, + "probability": 0.5568 + }, + { + "start": 639.66, + "end": 640.94, + "probability": 0.9202 + }, + { + "start": 644.38, + "end": 646.0, + "probability": 0.9679 + }, + { + "start": 646.22, + "end": 647.96, + "probability": 0.8962 + }, + { + "start": 648.1, + "end": 648.5, + "probability": 0.9291 + }, + { + "start": 648.58, + "end": 648.96, + "probability": 0.5443 + }, + { + "start": 650.5, + "end": 653.8, + "probability": 0.8661 + }, + { + "start": 654.38, + "end": 657.44, + "probability": 0.874 + }, + { + "start": 658.78, + "end": 659.66, + "probability": 0.8341 + }, + { + "start": 662.12, + "end": 663.06, + "probability": 0.9712 + }, + { + "start": 664.46, + "end": 667.68, + "probability": 0.9963 + }, + { + "start": 669.84, + "end": 674.32, + "probability": 0.9109 + }, + { + "start": 675.38, + "end": 676.48, + "probability": 0.9071 + }, + { + "start": 680.76, + "end": 685.06, + "probability": 0.8965 + }, + { + "start": 685.22, + "end": 685.76, + "probability": 0.5514 + }, + { + "start": 686.38, + "end": 687.14, + "probability": 0.9836 + }, + { + "start": 688.2, + "end": 691.58, + "probability": 0.9493 + }, + { + "start": 695.3, + "end": 695.4, + "probability": 0.5262 + }, + { + "start": 695.98, + "end": 698.32, + "probability": 0.92 + }, + { + "start": 701.7, + "end": 702.06, + "probability": 0.6905 + }, + { + "start": 702.72, + "end": 708.66, + "probability": 0.9977 + }, + { + "start": 709.5, + "end": 710.02, + "probability": 0.7458 + }, + { + "start": 712.56, + "end": 716.8, + "probability": 0.9875 + }, + { + "start": 717.44, + "end": 721.76, + "probability": 0.9451 + }, + { + "start": 722.66, + "end": 724.26, + "probability": 0.9824 + }, + { + "start": 726.9, + "end": 730.1, + "probability": 0.9917 + }, + { + "start": 731.22, + "end": 734.84, + "probability": 0.8384 + }, + { + "start": 736.82, + "end": 737.4, + "probability": 0.7917 + }, + { + "start": 739.56, + "end": 740.3, + "probability": 0.7658 + }, + { + "start": 742.52, + "end": 743.92, + "probability": 0.9637 + }, + { + "start": 748.08, + "end": 752.78, + "probability": 0.9977 + }, + { + "start": 754.0, + "end": 756.48, + "probability": 0.7684 + }, + { + "start": 759.2, + "end": 762.78, + "probability": 0.8708 + }, + { + "start": 764.24, + "end": 765.44, + "probability": 0.9871 + }, + { + "start": 766.98, + "end": 767.86, + "probability": 0.8507 + }, + { + "start": 772.24, + "end": 772.86, + "probability": 0.4616 + }, + { + "start": 773.7, + "end": 777.98, + "probability": 0.9639 + }, + { + "start": 778.4, + "end": 781.3, + "probability": 0.9928 + }, + { + "start": 781.5, + "end": 782.08, + "probability": 0.9211 + }, + { + "start": 783.86, + "end": 784.52, + "probability": 0.9806 + }, + { + "start": 784.64, + "end": 786.94, + "probability": 0.5875 + }, + { + "start": 787.58, + "end": 790.12, + "probability": 0.9317 + }, + { + "start": 790.8, + "end": 797.14, + "probability": 0.8676 + }, + { + "start": 798.0, + "end": 798.76, + "probability": 0.8481 + }, + { + "start": 799.76, + "end": 802.26, + "probability": 0.7418 + }, + { + "start": 803.26, + "end": 804.26, + "probability": 0.7401 + }, + { + "start": 805.14, + "end": 812.74, + "probability": 0.911 + }, + { + "start": 812.92, + "end": 813.6, + "probability": 0.9039 + }, + { + "start": 814.02, + "end": 814.74, + "probability": 0.749 + }, + { + "start": 814.82, + "end": 816.5, + "probability": 0.5128 + }, + { + "start": 816.7, + "end": 818.44, + "probability": 0.8958 + }, + { + "start": 818.6, + "end": 820.1, + "probability": 0.9341 + }, + { + "start": 820.32, + "end": 821.16, + "probability": 0.6553 + }, + { + "start": 821.6, + "end": 823.4, + "probability": 0.782 + }, + { + "start": 823.5, + "end": 824.24, + "probability": 0.9331 + }, + { + "start": 824.76, + "end": 828.48, + "probability": 0.1996 + }, + { + "start": 828.56, + "end": 828.56, + "probability": 0.0325 + }, + { + "start": 828.56, + "end": 829.38, + "probability": 0.2009 + }, + { + "start": 830.12, + "end": 830.42, + "probability": 0.3073 + }, + { + "start": 830.42, + "end": 830.42, + "probability": 0.0235 + }, + { + "start": 830.42, + "end": 834.2, + "probability": 0.6506 + }, + { + "start": 834.98, + "end": 839.08, + "probability": 0.7007 + }, + { + "start": 839.2, + "end": 839.98, + "probability": 0.3425 + }, + { + "start": 840.34, + "end": 843.44, + "probability": 0.307 + }, + { + "start": 843.52, + "end": 844.24, + "probability": 0.1895 + }, + { + "start": 844.24, + "end": 847.52, + "probability": 0.4691 + }, + { + "start": 847.56, + "end": 847.56, + "probability": 0.1698 + }, + { + "start": 847.56, + "end": 847.96, + "probability": 0.142 + }, + { + "start": 848.0, + "end": 848.2, + "probability": 0.0826 + }, + { + "start": 848.2, + "end": 848.2, + "probability": 0.1043 + }, + { + "start": 848.2, + "end": 852.7, + "probability": 0.4641 + }, + { + "start": 853.18, + "end": 853.94, + "probability": 0.5293 + }, + { + "start": 854.02, + "end": 855.76, + "probability": 0.2631 + }, + { + "start": 855.94, + "end": 856.56, + "probability": 0.6562 + }, + { + "start": 856.7, + "end": 857.06, + "probability": 0.5035 + }, + { + "start": 857.2, + "end": 859.06, + "probability": 0.8721 + }, + { + "start": 859.7, + "end": 860.1, + "probability": 0.6405 + }, + { + "start": 860.57, + "end": 862.1, + "probability": 0.6467 + }, + { + "start": 862.1, + "end": 863.18, + "probability": 0.4957 + }, + { + "start": 863.26, + "end": 863.98, + "probability": 0.3217 + }, + { + "start": 865.84, + "end": 869.28, + "probability": 0.1898 + }, + { + "start": 869.48, + "end": 871.3, + "probability": 0.4142 + }, + { + "start": 871.66, + "end": 874.5, + "probability": 0.4262 + }, + { + "start": 875.32, + "end": 876.0, + "probability": 0.0561 + }, + { + "start": 876.0, + "end": 878.24, + "probability": 0.5449 + }, + { + "start": 878.3, + "end": 879.24, + "probability": 0.6532 + }, + { + "start": 879.24, + "end": 885.62, + "probability": 0.0576 + }, + { + "start": 887.12, + "end": 887.85, + "probability": 0.012 + }, + { + "start": 890.62, + "end": 893.84, + "probability": 0.0821 + }, + { + "start": 894.0, + "end": 896.8, + "probability": 0.2841 + }, + { + "start": 898.72, + "end": 900.94, + "probability": 0.2274 + }, + { + "start": 901.96, + "end": 904.28, + "probability": 0.1484 + }, + { + "start": 904.28, + "end": 904.28, + "probability": 0.0725 + }, + { + "start": 904.28, + "end": 907.64, + "probability": 0.5255 + }, + { + "start": 907.64, + "end": 907.98, + "probability": 0.2889 + }, + { + "start": 908.0, + "end": 908.0, + "probability": 0.0 + }, + { + "start": 908.0, + "end": 908.0, + "probability": 0.0 + }, + { + "start": 908.0, + "end": 908.0, + "probability": 0.0 + }, + { + "start": 908.0, + "end": 908.0, + "probability": 0.0 + }, + { + "start": 909.02, + "end": 911.74, + "probability": 0.0833 + }, + { + "start": 916.05, + "end": 917.78, + "probability": 0.0205 + }, + { + "start": 919.68, + "end": 920.5, + "probability": 0.1378 + }, + { + "start": 924.74, + "end": 924.84, + "probability": 0.2468 + }, + { + "start": 925.42, + "end": 928.34, + "probability": 0.0261 + }, + { + "start": 928.88, + "end": 930.36, + "probability": 0.0441 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.0, + "end": 1036.0, + "probability": 0.0 + }, + { + "start": 1036.3, + "end": 1040.84, + "probability": 0.0466 + }, + { + "start": 1041.94, + "end": 1044.74, + "probability": 0.0244 + }, + { + "start": 1044.74, + "end": 1049.44, + "probability": 0.0903 + }, + { + "start": 1049.44, + "end": 1049.5, + "probability": 0.2042 + }, + { + "start": 1049.5, + "end": 1051.22, + "probability": 0.0586 + }, + { + "start": 1051.22, + "end": 1052.18, + "probability": 0.0488 + }, + { + "start": 1052.42, + "end": 1057.32, + "probability": 0.2906 + }, + { + "start": 1057.58, + "end": 1057.86, + "probability": 0.1535 + }, + { + "start": 1060.02, + "end": 1060.7, + "probability": 0.4129 + }, + { + "start": 1061.86, + "end": 1061.92, + "probability": 0.0147 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1169.0, + "end": 1169.0, + "probability": 0.0 + }, + { + "start": 1171.12, + "end": 1171.42, + "probability": 0.0691 + }, + { + "start": 1180.68, + "end": 1185.02, + "probability": 0.0766 + }, + { + "start": 1185.16, + "end": 1188.3, + "probability": 0.2018 + }, + { + "start": 1189.76, + "end": 1191.1, + "probability": 0.0865 + }, + { + "start": 1191.1, + "end": 1192.99, + "probability": 0.0901 + }, + { + "start": 1194.92, + "end": 1197.28, + "probability": 0.0659 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.0, + "end": 1290.0, + "probability": 0.0 + }, + { + "start": 1290.38, + "end": 1291.3, + "probability": 0.1867 + }, + { + "start": 1291.3, + "end": 1295.1, + "probability": 0.5682 + }, + { + "start": 1295.7, + "end": 1295.94, + "probability": 0.2466 + }, + { + "start": 1296.04, + "end": 1298.7, + "probability": 0.9464 + }, + { + "start": 1299.92, + "end": 1303.36, + "probability": 0.9828 + }, + { + "start": 1304.82, + "end": 1310.38, + "probability": 0.9803 + }, + { + "start": 1312.02, + "end": 1314.28, + "probability": 0.9998 + }, + { + "start": 1314.84, + "end": 1317.74, + "probability": 0.781 + }, + { + "start": 1318.56, + "end": 1324.66, + "probability": 0.998 + }, + { + "start": 1325.02, + "end": 1332.98, + "probability": 0.9792 + }, + { + "start": 1333.94, + "end": 1336.7, + "probability": 0.9824 + }, + { + "start": 1337.3, + "end": 1340.08, + "probability": 0.7927 + }, + { + "start": 1340.9, + "end": 1343.82, + "probability": 0.8766 + }, + { + "start": 1344.48, + "end": 1346.14, + "probability": 0.8279 + }, + { + "start": 1346.9, + "end": 1348.14, + "probability": 0.9552 + }, + { + "start": 1349.14, + "end": 1351.64, + "probability": 0.9359 + }, + { + "start": 1352.96, + "end": 1353.1, + "probability": 0.9565 + }, + { + "start": 1353.8, + "end": 1359.28, + "probability": 0.9871 + }, + { + "start": 1360.1, + "end": 1363.32, + "probability": 0.9269 + }, + { + "start": 1364.16, + "end": 1367.6, + "probability": 0.78 + }, + { + "start": 1368.4, + "end": 1369.5, + "probability": 0.689 + }, + { + "start": 1371.0, + "end": 1372.96, + "probability": 0.9639 + }, + { + "start": 1373.72, + "end": 1376.58, + "probability": 0.6796 + }, + { + "start": 1377.36, + "end": 1380.62, + "probability": 0.9935 + }, + { + "start": 1381.3, + "end": 1383.56, + "probability": 0.5768 + }, + { + "start": 1383.6, + "end": 1383.6, + "probability": 0.5176 + }, + { + "start": 1384.56, + "end": 1392.16, + "probability": 0.856 + }, + { + "start": 1392.16, + "end": 1396.94, + "probability": 0.9941 + }, + { + "start": 1397.82, + "end": 1399.48, + "probability": 0.9019 + }, + { + "start": 1400.84, + "end": 1400.86, + "probability": 0.5337 + }, + { + "start": 1401.38, + "end": 1403.6, + "probability": 0.9989 + }, + { + "start": 1404.58, + "end": 1408.32, + "probability": 0.9963 + }, + { + "start": 1409.6, + "end": 1415.86, + "probability": 0.9251 + }, + { + "start": 1416.58, + "end": 1419.44, + "probability": 0.9923 + }, + { + "start": 1420.36, + "end": 1425.68, + "probability": 0.9824 + }, + { + "start": 1425.94, + "end": 1428.44, + "probability": 0.9863 + }, + { + "start": 1428.86, + "end": 1431.34, + "probability": 0.9786 + }, + { + "start": 1431.74, + "end": 1433.28, + "probability": 0.7987 + }, + { + "start": 1434.24, + "end": 1435.99, + "probability": 0.9941 + }, + { + "start": 1437.48, + "end": 1438.58, + "probability": 0.8206 + }, + { + "start": 1440.06, + "end": 1444.48, + "probability": 0.9775 + }, + { + "start": 1445.2, + "end": 1446.9, + "probability": 0.6102 + }, + { + "start": 1447.5, + "end": 1448.86, + "probability": 0.7429 + }, + { + "start": 1449.98, + "end": 1454.78, + "probability": 0.8689 + }, + { + "start": 1455.66, + "end": 1458.86, + "probability": 0.9875 + }, + { + "start": 1459.7, + "end": 1465.84, + "probability": 0.9102 + }, + { + "start": 1465.84, + "end": 1470.92, + "probability": 0.9672 + }, + { + "start": 1471.94, + "end": 1474.04, + "probability": 0.9053 + }, + { + "start": 1474.78, + "end": 1479.84, + "probability": 0.8159 + }, + { + "start": 1479.96, + "end": 1482.68, + "probability": 0.9792 + }, + { + "start": 1483.26, + "end": 1484.76, + "probability": 0.9716 + }, + { + "start": 1485.34, + "end": 1488.02, + "probability": 0.9958 + }, + { + "start": 1488.48, + "end": 1492.4, + "probability": 0.9438 + }, + { + "start": 1492.96, + "end": 1497.94, + "probability": 0.9611 + }, + { + "start": 1498.16, + "end": 1500.98, + "probability": 0.993 + }, + { + "start": 1501.94, + "end": 1504.8, + "probability": 0.9438 + }, + { + "start": 1505.54, + "end": 1508.58, + "probability": 0.98 + }, + { + "start": 1509.72, + "end": 1510.9, + "probability": 0.7558 + }, + { + "start": 1511.86, + "end": 1515.14, + "probability": 0.8462 + }, + { + "start": 1517.12, + "end": 1517.94, + "probability": 0.5784 + }, + { + "start": 1519.1, + "end": 1521.66, + "probability": 0.981 + }, + { + "start": 1521.78, + "end": 1522.16, + "probability": 0.7132 + }, + { + "start": 1522.22, + "end": 1524.36, + "probability": 0.7493 + }, + { + "start": 1524.52, + "end": 1525.9, + "probability": 0.8667 + }, + { + "start": 1526.88, + "end": 1529.47, + "probability": 0.9742 + }, + { + "start": 1530.0, + "end": 1532.76, + "probability": 0.9966 + }, + { + "start": 1532.96, + "end": 1533.88, + "probability": 0.8712 + }, + { + "start": 1534.02, + "end": 1534.46, + "probability": 0.7313 + }, + { + "start": 1534.76, + "end": 1536.64, + "probability": 0.9229 + }, + { + "start": 1536.96, + "end": 1538.98, + "probability": 0.9931 + }, + { + "start": 1539.5, + "end": 1540.8, + "probability": 0.6507 + }, + { + "start": 1542.14, + "end": 1543.98, + "probability": 0.8862 + }, + { + "start": 1546.66, + "end": 1549.96, + "probability": 0.8644 + }, + { + "start": 1550.14, + "end": 1551.44, + "probability": 0.9632 + }, + { + "start": 1551.66, + "end": 1552.66, + "probability": 0.8198 + }, + { + "start": 1553.2, + "end": 1559.48, + "probability": 0.9807 + }, + { + "start": 1560.4, + "end": 1562.12, + "probability": 0.6453 + }, + { + "start": 1562.72, + "end": 1568.32, + "probability": 0.987 + }, + { + "start": 1568.9, + "end": 1573.52, + "probability": 0.9804 + }, + { + "start": 1574.48, + "end": 1576.28, + "probability": 0.9937 + }, + { + "start": 1576.52, + "end": 1583.2, + "probability": 0.9919 + }, + { + "start": 1584.22, + "end": 1586.52, + "probability": 0.9587 + }, + { + "start": 1587.84, + "end": 1589.48, + "probability": 0.9687 + }, + { + "start": 1590.24, + "end": 1592.8, + "probability": 0.9918 + }, + { + "start": 1593.98, + "end": 1595.86, + "probability": 0.981 + }, + { + "start": 1597.5, + "end": 1598.32, + "probability": 0.9906 + }, + { + "start": 1599.64, + "end": 1608.84, + "probability": 0.8877 + }, + { + "start": 1609.02, + "end": 1612.06, + "probability": 0.9282 + }, + { + "start": 1613.3, + "end": 1615.82, + "probability": 0.6846 + }, + { + "start": 1616.48, + "end": 1621.58, + "probability": 0.9897 + }, + { + "start": 1622.28, + "end": 1622.28, + "probability": 0.0525 + }, + { + "start": 1622.28, + "end": 1623.74, + "probability": 0.9783 + }, + { + "start": 1626.02, + "end": 1626.72, + "probability": 0.7513 + }, + { + "start": 1630.4, + "end": 1634.16, + "probability": 0.5311 + }, + { + "start": 1634.56, + "end": 1638.56, + "probability": 0.9907 + }, + { + "start": 1638.56, + "end": 1644.76, + "probability": 0.9345 + }, + { + "start": 1645.18, + "end": 1646.76, + "probability": 0.9111 + }, + { + "start": 1649.3, + "end": 1651.28, + "probability": 0.6467 + }, + { + "start": 1651.36, + "end": 1658.36, + "probability": 0.9939 + }, + { + "start": 1659.28, + "end": 1665.88, + "probability": 0.9888 + }, + { + "start": 1666.7, + "end": 1671.74, + "probability": 0.9716 + }, + { + "start": 1672.26, + "end": 1672.76, + "probability": 0.8065 + }, + { + "start": 1673.44, + "end": 1685.42, + "probability": 0.8008 + }, + { + "start": 1685.98, + "end": 1687.3, + "probability": 0.8725 + }, + { + "start": 1687.82, + "end": 1690.58, + "probability": 0.7597 + }, + { + "start": 1691.2, + "end": 1692.24, + "probability": 0.8329 + }, + { + "start": 1692.92, + "end": 1696.78, + "probability": 0.9944 + }, + { + "start": 1696.82, + "end": 1700.36, + "probability": 0.9838 + }, + { + "start": 1700.38, + "end": 1701.96, + "probability": 0.7615 + }, + { + "start": 1702.84, + "end": 1708.28, + "probability": 0.9435 + }, + { + "start": 1708.96, + "end": 1712.52, + "probability": 0.9351 + }, + { + "start": 1713.82, + "end": 1716.8, + "probability": 0.8826 + }, + { + "start": 1717.48, + "end": 1721.62, + "probability": 0.9134 + }, + { + "start": 1721.78, + "end": 1729.44, + "probability": 0.9975 + }, + { + "start": 1730.78, + "end": 1732.86, + "probability": 0.6 + }, + { + "start": 1733.92, + "end": 1735.94, + "probability": 0.308 + }, + { + "start": 1736.12, + "end": 1739.26, + "probability": 0.6642 + }, + { + "start": 1741.04, + "end": 1746.24, + "probability": 0.9604 + }, + { + "start": 1746.46, + "end": 1751.26, + "probability": 0.7899 + }, + { + "start": 1752.62, + "end": 1754.24, + "probability": 0.4707 + }, + { + "start": 1754.24, + "end": 1763.5, + "probability": 0.8553 + }, + { + "start": 1764.02, + "end": 1765.71, + "probability": 0.8895 + }, + { + "start": 1766.08, + "end": 1767.76, + "probability": 0.9933 + }, + { + "start": 1769.16, + "end": 1769.78, + "probability": 0.9517 + }, + { + "start": 1770.36, + "end": 1775.72, + "probability": 0.9646 + }, + { + "start": 1776.24, + "end": 1777.9, + "probability": 0.528 + }, + { + "start": 1778.22, + "end": 1778.72, + "probability": 0.7362 + }, + { + "start": 1779.16, + "end": 1782.32, + "probability": 0.9245 + }, + { + "start": 1782.76, + "end": 1783.57, + "probability": 0.9681 + }, + { + "start": 1784.08, + "end": 1787.65, + "probability": 0.6351 + }, + { + "start": 1787.86, + "end": 1789.58, + "probability": 0.9301 + }, + { + "start": 1790.24, + "end": 1791.96, + "probability": 0.9241 + }, + { + "start": 1792.4, + "end": 1793.84, + "probability": 0.991 + }, + { + "start": 1794.62, + "end": 1798.52, + "probability": 0.9156 + }, + { + "start": 1799.24, + "end": 1802.48, + "probability": 0.9076 + }, + { + "start": 1803.16, + "end": 1807.12, + "probability": 0.9966 + }, + { + "start": 1807.12, + "end": 1811.58, + "probability": 0.9966 + }, + { + "start": 1813.26, + "end": 1814.84, + "probability": 0.7756 + }, + { + "start": 1815.44, + "end": 1816.06, + "probability": 0.8856 + }, + { + "start": 1829.72, + "end": 1831.0, + "probability": 0.0559 + }, + { + "start": 1839.42, + "end": 1839.94, + "probability": 0.5923 + }, + { + "start": 1845.2, + "end": 1848.02, + "probability": 0.7889 + }, + { + "start": 1849.84, + "end": 1850.84, + "probability": 0.7063 + }, + { + "start": 1851.98, + "end": 1852.18, + "probability": 0.9308 + }, + { + "start": 1853.48, + "end": 1854.78, + "probability": 0.6983 + }, + { + "start": 1855.16, + "end": 1856.82, + "probability": 0.9245 + }, + { + "start": 1856.86, + "end": 1859.44, + "probability": 0.8599 + }, + { + "start": 1859.46, + "end": 1862.46, + "probability": 0.9119 + }, + { + "start": 1863.04, + "end": 1866.42, + "probability": 0.998 + }, + { + "start": 1867.74, + "end": 1870.64, + "probability": 0.9854 + }, + { + "start": 1871.48, + "end": 1872.37, + "probability": 0.979 + }, + { + "start": 1873.8, + "end": 1875.16, + "probability": 0.8881 + }, + { + "start": 1876.16, + "end": 1877.67, + "probability": 0.9985 + }, + { + "start": 1878.2, + "end": 1883.56, + "probability": 0.9974 + }, + { + "start": 1884.42, + "end": 1886.2, + "probability": 0.7761 + }, + { + "start": 1886.76, + "end": 1891.22, + "probability": 0.48 + }, + { + "start": 1891.78, + "end": 1893.12, + "probability": 0.8892 + }, + { + "start": 1894.18, + "end": 1896.24, + "probability": 0.9902 + }, + { + "start": 1897.36, + "end": 1900.28, + "probability": 0.9254 + }, + { + "start": 1900.58, + "end": 1901.87, + "probability": 0.7091 + }, + { + "start": 1902.66, + "end": 1903.32, + "probability": 0.8855 + }, + { + "start": 1903.86, + "end": 1908.88, + "probability": 0.9634 + }, + { + "start": 1909.34, + "end": 1910.12, + "probability": 0.8198 + }, + { + "start": 1911.48, + "end": 1912.26, + "probability": 0.8365 + }, + { + "start": 1914.44, + "end": 1916.72, + "probability": 0.9642 + }, + { + "start": 1916.84, + "end": 1917.16, + "probability": 0.9466 + }, + { + "start": 1917.24, + "end": 1918.52, + "probability": 0.6196 + }, + { + "start": 1918.96, + "end": 1920.48, + "probability": 0.7618 + }, + { + "start": 1922.34, + "end": 1929.02, + "probability": 0.9749 + }, + { + "start": 1930.24, + "end": 1936.16, + "probability": 0.9972 + }, + { + "start": 1936.36, + "end": 1940.3, + "probability": 0.9767 + }, + { + "start": 1941.58, + "end": 1943.92, + "probability": 0.9256 + }, + { + "start": 1946.02, + "end": 1950.74, + "probability": 0.9852 + }, + { + "start": 1953.16, + "end": 1954.68, + "probability": 0.4789 + }, + { + "start": 1955.6, + "end": 1959.2, + "probability": 0.9873 + }, + { + "start": 1959.34, + "end": 1961.12, + "probability": 0.7908 + }, + { + "start": 1962.46, + "end": 1963.96, + "probability": 0.7934 + }, + { + "start": 1965.26, + "end": 1968.08, + "probability": 0.94 + }, + { + "start": 1970.16, + "end": 1971.02, + "probability": 0.8359 + }, + { + "start": 1971.78, + "end": 1975.02, + "probability": 0.9909 + }, + { + "start": 1976.48, + "end": 1977.5, + "probability": 0.9966 + }, + { + "start": 1979.08, + "end": 1982.92, + "probability": 0.8128 + }, + { + "start": 1984.96, + "end": 1988.3, + "probability": 0.9655 + }, + { + "start": 1990.08, + "end": 1991.12, + "probability": 0.6828 + }, + { + "start": 1991.6, + "end": 1991.9, + "probability": 0.5041 + }, + { + "start": 1992.06, + "end": 1999.42, + "probability": 0.9788 + }, + { + "start": 2001.14, + "end": 2006.26, + "probability": 0.9683 + }, + { + "start": 2007.98, + "end": 2008.24, + "probability": 0.6841 + }, + { + "start": 2009.94, + "end": 2011.08, + "probability": 0.5776 + }, + { + "start": 2013.5, + "end": 2015.18, + "probability": 0.8138 + }, + { + "start": 2015.88, + "end": 2018.34, + "probability": 0.7653 + }, + { + "start": 2018.98, + "end": 2022.1, + "probability": 0.5859 + }, + { + "start": 2023.54, + "end": 2026.9, + "probability": 0.9268 + }, + { + "start": 2027.52, + "end": 2029.62, + "probability": 0.8477 + }, + { + "start": 2030.04, + "end": 2034.02, + "probability": 0.9876 + }, + { + "start": 2034.1, + "end": 2035.38, + "probability": 0.9956 + }, + { + "start": 2038.72, + "end": 2039.4, + "probability": 0.6194 + }, + { + "start": 2041.62, + "end": 2044.38, + "probability": 0.9661 + }, + { + "start": 2048.06, + "end": 2050.24, + "probability": 0.9992 + }, + { + "start": 2051.82, + "end": 2053.53, + "probability": 0.7919 + }, + { + "start": 2055.8, + "end": 2057.6, + "probability": 0.8303 + }, + { + "start": 2057.68, + "end": 2059.48, + "probability": 0.76 + }, + { + "start": 2060.0, + "end": 2061.2, + "probability": 0.9646 + }, + { + "start": 2061.64, + "end": 2064.02, + "probability": 0.8769 + }, + { + "start": 2066.98, + "end": 2068.48, + "probability": 0.8424 + }, + { + "start": 2070.62, + "end": 2072.8, + "probability": 0.9884 + }, + { + "start": 2074.34, + "end": 2075.58, + "probability": 0.7326 + }, + { + "start": 2076.74, + "end": 2079.76, + "probability": 0.9106 + }, + { + "start": 2081.32, + "end": 2082.86, + "probability": 0.7817 + }, + { + "start": 2083.38, + "end": 2085.0, + "probability": 0.998 + }, + { + "start": 2085.52, + "end": 2087.84, + "probability": 0.9957 + }, + { + "start": 2088.44, + "end": 2088.86, + "probability": 0.8295 + }, + { + "start": 2089.74, + "end": 2090.74, + "probability": 0.8228 + }, + { + "start": 2092.3, + "end": 2093.42, + "probability": 0.8329 + }, + { + "start": 2093.56, + "end": 2094.04, + "probability": 0.5156 + }, + { + "start": 2094.14, + "end": 2096.8, + "probability": 0.9457 + }, + { + "start": 2097.26, + "end": 2097.76, + "probability": 0.6101 + }, + { + "start": 2097.98, + "end": 2101.58, + "probability": 0.6942 + }, + { + "start": 2102.2, + "end": 2103.82, + "probability": 0.8413 + }, + { + "start": 2105.06, + "end": 2108.46, + "probability": 0.7876 + }, + { + "start": 2108.8, + "end": 2113.44, + "probability": 0.9215 + }, + { + "start": 2115.58, + "end": 2118.06, + "probability": 0.9917 + }, + { + "start": 2119.28, + "end": 2122.12, + "probability": 0.8001 + }, + { + "start": 2124.52, + "end": 2127.52, + "probability": 0.026 + }, + { + "start": 2127.56, + "end": 2127.56, + "probability": 0.1264 + }, + { + "start": 2127.56, + "end": 2127.92, + "probability": 0.2844 + }, + { + "start": 2128.36, + "end": 2128.36, + "probability": 0.0525 + }, + { + "start": 2128.36, + "end": 2129.4, + "probability": 0.444 + }, + { + "start": 2130.2, + "end": 2132.36, + "probability": 0.7859 + }, + { + "start": 2133.3, + "end": 2135.34, + "probability": 0.7944 + }, + { + "start": 2135.82, + "end": 2140.34, + "probability": 0.9539 + }, + { + "start": 2140.84, + "end": 2143.46, + "probability": 0.9106 + }, + { + "start": 2144.1, + "end": 2144.8, + "probability": 0.7632 + }, + { + "start": 2146.1, + "end": 2147.52, + "probability": 0.9688 + }, + { + "start": 2148.4, + "end": 2150.08, + "probability": 0.9897 + }, + { + "start": 2151.1, + "end": 2152.01, + "probability": 0.9874 + }, + { + "start": 2153.06, + "end": 2153.82, + "probability": 0.9665 + }, + { + "start": 2155.98, + "end": 2159.28, + "probability": 0.9924 + }, + { + "start": 2160.38, + "end": 2162.96, + "probability": 0.7542 + }, + { + "start": 2164.8, + "end": 2168.42, + "probability": 0.9915 + }, + { + "start": 2169.92, + "end": 2172.96, + "probability": 0.9922 + }, + { + "start": 2173.74, + "end": 2176.16, + "probability": 0.9694 + }, + { + "start": 2176.66, + "end": 2176.9, + "probability": 0.9951 + }, + { + "start": 2177.0, + "end": 2180.98, + "probability": 0.9965 + }, + { + "start": 2183.44, + "end": 2185.3, + "probability": 0.993 + }, + { + "start": 2188.12, + "end": 2191.4, + "probability": 0.9794 + }, + { + "start": 2192.38, + "end": 2193.7, + "probability": 0.1473 + }, + { + "start": 2194.74, + "end": 2198.42, + "probability": 0.8819 + }, + { + "start": 2200.22, + "end": 2205.16, + "probability": 0.9465 + }, + { + "start": 2205.86, + "end": 2206.72, + "probability": 0.7652 + }, + { + "start": 2207.66, + "end": 2209.62, + "probability": 0.9653 + }, + { + "start": 2210.48, + "end": 2215.82, + "probability": 0.96 + }, + { + "start": 2216.06, + "end": 2217.18, + "probability": 0.6764 + }, + { + "start": 2218.62, + "end": 2221.66, + "probability": 0.9779 + }, + { + "start": 2222.66, + "end": 2223.84, + "probability": 0.7954 + }, + { + "start": 2224.98, + "end": 2225.26, + "probability": 0.3762 + }, + { + "start": 2227.9, + "end": 2229.2, + "probability": 0.761 + }, + { + "start": 2230.82, + "end": 2234.78, + "probability": 0.9967 + }, + { + "start": 2235.58, + "end": 2238.46, + "probability": 0.9678 + }, + { + "start": 2238.46, + "end": 2241.46, + "probability": 0.9985 + }, + { + "start": 2242.14, + "end": 2243.52, + "probability": 0.8458 + }, + { + "start": 2244.14, + "end": 2245.44, + "probability": 0.9868 + }, + { + "start": 2248.19, + "end": 2249.68, + "probability": 0.7251 + }, + { + "start": 2250.68, + "end": 2252.68, + "probability": 0.92 + }, + { + "start": 2254.12, + "end": 2256.48, + "probability": 0.8838 + }, + { + "start": 2256.76, + "end": 2257.52, + "probability": 0.9854 + }, + { + "start": 2257.82, + "end": 2259.16, + "probability": 0.9595 + }, + { + "start": 2260.62, + "end": 2262.12, + "probability": 0.9958 + }, + { + "start": 2262.5, + "end": 2265.9, + "probability": 0.9775 + }, + { + "start": 2266.52, + "end": 2270.42, + "probability": 0.9878 + }, + { + "start": 2270.42, + "end": 2272.45, + "probability": 0.7868 + }, + { + "start": 2275.68, + "end": 2277.68, + "probability": 0.5629 + }, + { + "start": 2279.38, + "end": 2280.12, + "probability": 0.9619 + }, + { + "start": 2281.48, + "end": 2286.16, + "probability": 0.9919 + }, + { + "start": 2288.46, + "end": 2292.32, + "probability": 0.928 + }, + { + "start": 2293.18, + "end": 2296.68, + "probability": 0.9976 + }, + { + "start": 2297.34, + "end": 2298.8, + "probability": 0.6152 + }, + { + "start": 2298.92, + "end": 2300.14, + "probability": 0.93 + }, + { + "start": 2301.06, + "end": 2303.18, + "probability": 0.9014 + }, + { + "start": 2304.44, + "end": 2305.36, + "probability": 0.6837 + }, + { + "start": 2305.76, + "end": 2307.3, + "probability": 0.8271 + }, + { + "start": 2307.84, + "end": 2310.66, + "probability": 0.9066 + }, + { + "start": 2310.7, + "end": 2314.84, + "probability": 0.9912 + }, + { + "start": 2315.94, + "end": 2320.76, + "probability": 0.9851 + }, + { + "start": 2321.74, + "end": 2322.32, + "probability": 0.9595 + }, + { + "start": 2322.84, + "end": 2325.32, + "probability": 0.6122 + }, + { + "start": 2326.32, + "end": 2332.22, + "probability": 0.9982 + }, + { + "start": 2333.66, + "end": 2339.96, + "probability": 0.9891 + }, + { + "start": 2341.56, + "end": 2342.28, + "probability": 0.254 + }, + { + "start": 2343.04, + "end": 2344.58, + "probability": 0.8181 + }, + { + "start": 2346.04, + "end": 2350.54, + "probability": 0.9562 + }, + { + "start": 2351.72, + "end": 2354.0, + "probability": 0.998 + }, + { + "start": 2354.9, + "end": 2356.86, + "probability": 0.9601 + }, + { + "start": 2358.38, + "end": 2361.54, + "probability": 0.9683 + }, + { + "start": 2363.26, + "end": 2364.72, + "probability": 0.9868 + }, + { + "start": 2365.76, + "end": 2369.72, + "probability": 0.9701 + }, + { + "start": 2369.78, + "end": 2376.44, + "probability": 0.9883 + }, + { + "start": 2377.42, + "end": 2381.25, + "probability": 0.9395 + }, + { + "start": 2382.34, + "end": 2383.08, + "probability": 0.9569 + }, + { + "start": 2384.2, + "end": 2389.22, + "probability": 0.9883 + }, + { + "start": 2390.38, + "end": 2392.24, + "probability": 0.9009 + }, + { + "start": 2393.62, + "end": 2395.18, + "probability": 0.5179 + }, + { + "start": 2395.3, + "end": 2395.64, + "probability": 0.9279 + }, + { + "start": 2395.96, + "end": 2396.86, + "probability": 0.9768 + }, + { + "start": 2397.0, + "end": 2397.66, + "probability": 0.6638 + }, + { + "start": 2397.98, + "end": 2401.66, + "probability": 0.9803 + }, + { + "start": 2401.72, + "end": 2403.24, + "probability": 0.6155 + }, + { + "start": 2404.8, + "end": 2407.08, + "probability": 0.9064 + }, + { + "start": 2419.22, + "end": 2419.98, + "probability": 0.3964 + }, + { + "start": 2419.98, + "end": 2419.98, + "probability": 0.0487 + }, + { + "start": 2419.98, + "end": 2421.34, + "probability": 0.1112 + }, + { + "start": 2422.66, + "end": 2425.12, + "probability": 0.8222 + }, + { + "start": 2425.92, + "end": 2426.76, + "probability": 0.5892 + }, + { + "start": 2427.84, + "end": 2433.6, + "probability": 0.9824 + }, + { + "start": 2434.28, + "end": 2437.14, + "probability": 0.902 + }, + { + "start": 2437.58, + "end": 2438.28, + "probability": 0.8086 + }, + { + "start": 2440.06, + "end": 2442.22, + "probability": 0.9517 + }, + { + "start": 2442.68, + "end": 2442.68, + "probability": 0.0451 + }, + { + "start": 2442.68, + "end": 2443.5, + "probability": 0.784 + }, + { + "start": 2443.58, + "end": 2445.56, + "probability": 0.985 + }, + { + "start": 2446.04, + "end": 2447.34, + "probability": 0.8826 + }, + { + "start": 2447.84, + "end": 2450.54, + "probability": 0.9834 + }, + { + "start": 2451.0, + "end": 2452.76, + "probability": 0.9703 + }, + { + "start": 2453.64, + "end": 2455.64, + "probability": 0.9741 + }, + { + "start": 2456.66, + "end": 2459.1, + "probability": 0.9628 + }, + { + "start": 2463.54, + "end": 2464.18, + "probability": 0.7086 + }, + { + "start": 2464.48, + "end": 2466.74, + "probability": 0.7159 + }, + { + "start": 2469.64, + "end": 2469.94, + "probability": 0.8134 + }, + { + "start": 2470.46, + "end": 2471.38, + "probability": 0.7618 + }, + { + "start": 2471.4, + "end": 2472.5, + "probability": 0.4934 + }, + { + "start": 2472.56, + "end": 2476.26, + "probability": 0.9738 + }, + { + "start": 2476.26, + "end": 2480.88, + "probability": 0.9741 + }, + { + "start": 2480.98, + "end": 2482.22, + "probability": 0.7444 + }, + { + "start": 2485.58, + "end": 2490.84, + "probability": 0.7923 + }, + { + "start": 2490.84, + "end": 2491.02, + "probability": 0.3609 + }, + { + "start": 2495.78, + "end": 2496.4, + "probability": 0.8234 + }, + { + "start": 2496.4, + "end": 2496.8, + "probability": 0.7369 + }, + { + "start": 2497.78, + "end": 2498.06, + "probability": 0.9275 + }, + { + "start": 2500.92, + "end": 2503.04, + "probability": 0.951 + }, + { + "start": 2504.3, + "end": 2509.66, + "probability": 0.5822 + }, + { + "start": 2514.26, + "end": 2515.14, + "probability": 0.326 + }, + { + "start": 2518.98, + "end": 2519.68, + "probability": 0.6788 + }, + { + "start": 2522.72, + "end": 2523.36, + "probability": 0.2565 + }, + { + "start": 2527.45, + "end": 2528.78, + "probability": 0.284 + }, + { + "start": 2528.96, + "end": 2530.08, + "probability": 0.8954 + }, + { + "start": 2530.16, + "end": 2530.37, + "probability": 0.8273 + }, + { + "start": 2531.42, + "end": 2531.78, + "probability": 0.8991 + }, + { + "start": 2533.74, + "end": 2537.2, + "probability": 0.8571 + }, + { + "start": 2539.5, + "end": 2547.86, + "probability": 0.9812 + }, + { + "start": 2547.86, + "end": 2553.18, + "probability": 0.9816 + }, + { + "start": 2555.16, + "end": 2556.94, + "probability": 0.9403 + }, + { + "start": 2558.78, + "end": 2560.82, + "probability": 0.4448 + }, + { + "start": 2562.96, + "end": 2563.5, + "probability": 0.751 + }, + { + "start": 2564.24, + "end": 2571.68, + "probability": 0.9753 + }, + { + "start": 2573.88, + "end": 2578.76, + "probability": 0.9673 + }, + { + "start": 2580.0, + "end": 2581.26, + "probability": 0.8402 + }, + { + "start": 2582.28, + "end": 2583.3, + "probability": 0.9246 + }, + { + "start": 2584.22, + "end": 2587.38, + "probability": 0.9878 + }, + { + "start": 2589.02, + "end": 2590.66, + "probability": 0.7453 + }, + { + "start": 2591.86, + "end": 2593.62, + "probability": 0.6417 + }, + { + "start": 2594.6, + "end": 2595.74, + "probability": 0.9835 + }, + { + "start": 2597.04, + "end": 2598.22, + "probability": 0.7518 + }, + { + "start": 2599.4, + "end": 2606.56, + "probability": 0.9958 + }, + { + "start": 2607.06, + "end": 2609.48, + "probability": 0.8622 + }, + { + "start": 2610.12, + "end": 2611.74, + "probability": 0.9917 + }, + { + "start": 2612.94, + "end": 2613.6, + "probability": 0.8163 + }, + { + "start": 2614.94, + "end": 2615.72, + "probability": 0.9938 + }, + { + "start": 2616.92, + "end": 2619.42, + "probability": 0.953 + }, + { + "start": 2620.18, + "end": 2622.16, + "probability": 0.9944 + }, + { + "start": 2624.3, + "end": 2627.04, + "probability": 0.8818 + }, + { + "start": 2628.08, + "end": 2630.62, + "probability": 0.6384 + }, + { + "start": 2631.26, + "end": 2635.14, + "probability": 0.9958 + }, + { + "start": 2636.22, + "end": 2637.48, + "probability": 0.9544 + }, + { + "start": 2638.66, + "end": 2640.0, + "probability": 0.9874 + }, + { + "start": 2641.44, + "end": 2643.68, + "probability": 0.9555 + }, + { + "start": 2644.92, + "end": 2648.84, + "probability": 0.6731 + }, + { + "start": 2650.0, + "end": 2655.4, + "probability": 0.7451 + }, + { + "start": 2656.64, + "end": 2660.0, + "probability": 0.9807 + }, + { + "start": 2661.48, + "end": 2665.02, + "probability": 0.907 + }, + { + "start": 2665.24, + "end": 2665.9, + "probability": 0.573 + }, + { + "start": 2666.98, + "end": 2669.5, + "probability": 0.9291 + }, + { + "start": 2670.92, + "end": 2673.86, + "probability": 0.8713 + }, + { + "start": 2674.39, + "end": 2678.08, + "probability": 0.9882 + }, + { + "start": 2678.66, + "end": 2681.04, + "probability": 0.9646 + }, + { + "start": 2681.62, + "end": 2683.88, + "probability": 0.7091 + }, + { + "start": 2685.04, + "end": 2688.22, + "probability": 0.8288 + }, + { + "start": 2688.9, + "end": 2690.58, + "probability": 0.9951 + }, + { + "start": 2691.12, + "end": 2694.0, + "probability": 0.9468 + }, + { + "start": 2694.8, + "end": 2697.34, + "probability": 0.6947 + }, + { + "start": 2699.8, + "end": 2703.34, + "probability": 0.8945 + }, + { + "start": 2703.38, + "end": 2706.64, + "probability": 0.8401 + }, + { + "start": 2707.06, + "end": 2708.16, + "probability": 0.7966 + }, + { + "start": 2708.58, + "end": 2711.12, + "probability": 0.9956 + }, + { + "start": 2711.66, + "end": 2713.6, + "probability": 0.9393 + }, + { + "start": 2714.1, + "end": 2719.4, + "probability": 0.9468 + }, + { + "start": 2719.56, + "end": 2720.3, + "probability": 0.9259 + }, + { + "start": 2722.98, + "end": 2723.32, + "probability": 0.043 + }, + { + "start": 2723.32, + "end": 2723.56, + "probability": 0.0127 + }, + { + "start": 2726.35, + "end": 2726.7, + "probability": 0.3825 + }, + { + "start": 2726.81, + "end": 2727.5, + "probability": 0.0553 + }, + { + "start": 2727.52, + "end": 2727.61, + "probability": 0.035 + }, + { + "start": 2728.44, + "end": 2729.0, + "probability": 0.0596 + }, + { + "start": 2729.0, + "end": 2729.38, + "probability": 0.2769 + }, + { + "start": 2729.5, + "end": 2729.78, + "probability": 0.108 + }, + { + "start": 2730.67, + "end": 2732.54, + "probability": 0.2122 + }, + { + "start": 2732.8, + "end": 2734.48, + "probability": 0.6481 + }, + { + "start": 2734.92, + "end": 2735.72, + "probability": 0.0235 + }, + { + "start": 2735.72, + "end": 2741.78, + "probability": 0.6891 + }, + { + "start": 2742.02, + "end": 2747.94, + "probability": 0.8597 + }, + { + "start": 2748.12, + "end": 2748.64, + "probability": 0.0813 + }, + { + "start": 2749.0, + "end": 2750.53, + "probability": 0.535 + }, + { + "start": 2750.54, + "end": 2757.04, + "probability": 0.974 + }, + { + "start": 2757.66, + "end": 2759.08, + "probability": 0.3206 + }, + { + "start": 2759.12, + "end": 2759.26, + "probability": 0.0668 + }, + { + "start": 2759.86, + "end": 2759.86, + "probability": 0.3775 + }, + { + "start": 2759.86, + "end": 2766.82, + "probability": 0.7921 + }, + { + "start": 2767.0, + "end": 2769.2, + "probability": 0.8378 + }, + { + "start": 2770.28, + "end": 2771.98, + "probability": 0.7983 + }, + { + "start": 2772.42, + "end": 2776.06, + "probability": 0.908 + }, + { + "start": 2776.52, + "end": 2779.78, + "probability": 0.9491 + }, + { + "start": 2780.04, + "end": 2783.66, + "probability": 0.8445 + }, + { + "start": 2784.62, + "end": 2787.96, + "probability": 0.9138 + }, + { + "start": 2788.3, + "end": 2789.32, + "probability": 0.9675 + }, + { + "start": 2789.96, + "end": 2792.4, + "probability": 0.6041 + }, + { + "start": 2792.42, + "end": 2792.42, + "probability": 0.004 + }, + { + "start": 2792.42, + "end": 2794.74, + "probability": 0.4073 + }, + { + "start": 2794.94, + "end": 2796.54, + "probability": 0.7615 + }, + { + "start": 2797.24, + "end": 2798.92, + "probability": 0.9281 + }, + { + "start": 2799.26, + "end": 2800.74, + "probability": 0.6901 + }, + { + "start": 2800.96, + "end": 2804.96, + "probability": 0.7473 + }, + { + "start": 2805.99, + "end": 2807.78, + "probability": 0.4535 + }, + { + "start": 2807.78, + "end": 2807.78, + "probability": 0.4197 + }, + { + "start": 2807.78, + "end": 2811.0, + "probability": 0.7989 + }, + { + "start": 2811.2, + "end": 2813.22, + "probability": 0.0832 + }, + { + "start": 2813.62, + "end": 2814.78, + "probability": 0.5539 + }, + { + "start": 2814.8, + "end": 2817.06, + "probability": 0.6992 + }, + { + "start": 2817.48, + "end": 2819.3, + "probability": 0.7569 + }, + { + "start": 2819.5, + "end": 2819.8, + "probability": 0.0389 + }, + { + "start": 2819.8, + "end": 2819.98, + "probability": 0.1403 + }, + { + "start": 2819.98, + "end": 2819.98, + "probability": 0.1528 + }, + { + "start": 2819.98, + "end": 2821.38, + "probability": 0.2433 + }, + { + "start": 2822.08, + "end": 2823.24, + "probability": 0.2119 + }, + { + "start": 2823.68, + "end": 2824.45, + "probability": 0.1635 + }, + { + "start": 2825.36, + "end": 2830.06, + "probability": 0.6816 + }, + { + "start": 2830.68, + "end": 2835.2, + "probability": 0.8149 + }, + { + "start": 2835.36, + "end": 2836.18, + "probability": 0.3464 + }, + { + "start": 2836.4, + "end": 2837.4, + "probability": 0.1034 + }, + { + "start": 2837.4, + "end": 2837.42, + "probability": 0.0413 + }, + { + "start": 2837.42, + "end": 2840.59, + "probability": 0.637 + }, + { + "start": 2840.92, + "end": 2845.24, + "probability": 0.9256 + }, + { + "start": 2846.06, + "end": 2850.18, + "probability": 0.7022 + }, + { + "start": 2850.58, + "end": 2851.63, + "probability": 0.5095 + }, + { + "start": 2852.6, + "end": 2856.06, + "probability": 0.9428 + }, + { + "start": 2857.0, + "end": 2858.64, + "probability": 0.9797 + }, + { + "start": 2867.6, + "end": 2870.8, + "probability": 0.3813 + }, + { + "start": 2887.32, + "end": 2888.34, + "probability": 0.1759 + }, + { + "start": 2889.04, + "end": 2891.54, + "probability": 0.3024 + }, + { + "start": 2895.28, + "end": 2896.64, + "probability": 0.6192 + }, + { + "start": 2897.88, + "end": 2899.42, + "probability": 0.8823 + }, + { + "start": 2901.22, + "end": 2904.22, + "probability": 0.8214 + }, + { + "start": 2905.84, + "end": 2911.82, + "probability": 0.9542 + }, + { + "start": 2912.68, + "end": 2915.34, + "probability": 0.9975 + }, + { + "start": 2916.08, + "end": 2919.18, + "probability": 0.9814 + }, + { + "start": 2920.32, + "end": 2920.84, + "probability": 0.6545 + }, + { + "start": 2921.98, + "end": 2922.6, + "probability": 0.9018 + }, + { + "start": 2922.8, + "end": 2923.34, + "probability": 0.7447 + }, + { + "start": 2923.34, + "end": 2927.6, + "probability": 0.8428 + }, + { + "start": 2927.86, + "end": 2931.08, + "probability": 0.9825 + }, + { + "start": 2932.78, + "end": 2934.42, + "probability": 0.9952 + }, + { + "start": 2935.06, + "end": 2935.88, + "probability": 0.8326 + }, + { + "start": 2937.88, + "end": 2941.42, + "probability": 0.9653 + }, + { + "start": 2942.28, + "end": 2943.84, + "probability": 0.9525 + }, + { + "start": 2945.16, + "end": 2950.02, + "probability": 0.9646 + }, + { + "start": 2951.34, + "end": 2951.9, + "probability": 0.9424 + }, + { + "start": 2954.1, + "end": 2956.96, + "probability": 0.8795 + }, + { + "start": 2957.7, + "end": 2959.76, + "probability": 0.9894 + }, + { + "start": 2959.96, + "end": 2964.78, + "probability": 0.6503 + }, + { + "start": 2965.26, + "end": 2967.6, + "probability": 0.9878 + }, + { + "start": 2969.42, + "end": 2969.98, + "probability": 0.9596 + }, + { + "start": 2970.74, + "end": 2971.36, + "probability": 0.9807 + }, + { + "start": 2974.66, + "end": 2978.54, + "probability": 0.9293 + }, + { + "start": 2979.54, + "end": 2983.36, + "probability": 0.5535 + }, + { + "start": 2983.52, + "end": 2984.87, + "probability": 0.9883 + }, + { + "start": 2985.58, + "end": 2986.66, + "probability": 0.9134 + }, + { + "start": 2986.96, + "end": 2987.96, + "probability": 0.6543 + }, + { + "start": 2994.28, + "end": 2995.24, + "probability": 0.808 + }, + { + "start": 2995.96, + "end": 2999.76, + "probability": 0.8763 + }, + { + "start": 2999.96, + "end": 3000.32, + "probability": 0.6352 + }, + { + "start": 3002.18, + "end": 3007.74, + "probability": 0.9967 + }, + { + "start": 3008.98, + "end": 3010.26, + "probability": 0.7181 + }, + { + "start": 3012.22, + "end": 3015.6, + "probability": 0.8807 + }, + { + "start": 3016.78, + "end": 3018.54, + "probability": 0.7941 + }, + { + "start": 3019.68, + "end": 3020.52, + "probability": 0.5746 + }, + { + "start": 3021.22, + "end": 3023.56, + "probability": 0.7249 + }, + { + "start": 3025.02, + "end": 3026.7, + "probability": 0.9561 + }, + { + "start": 3028.06, + "end": 3030.38, + "probability": 0.9653 + }, + { + "start": 3031.42, + "end": 3034.68, + "probability": 0.9563 + }, + { + "start": 3035.3, + "end": 3036.74, + "probability": 0.9714 + }, + { + "start": 3037.34, + "end": 3040.02, + "probability": 0.9219 + }, + { + "start": 3040.64, + "end": 3042.04, + "probability": 0.791 + }, + { + "start": 3042.88, + "end": 3044.54, + "probability": 0.958 + }, + { + "start": 3045.28, + "end": 3048.0, + "probability": 0.3707 + }, + { + "start": 3048.86, + "end": 3049.52, + "probability": 0.8208 + }, + { + "start": 3051.12, + "end": 3054.52, + "probability": 0.9736 + }, + { + "start": 3055.4, + "end": 3058.78, + "probability": 0.9946 + }, + { + "start": 3059.44, + "end": 3061.76, + "probability": 0.9628 + }, + { + "start": 3062.64, + "end": 3063.62, + "probability": 0.8449 + }, + { + "start": 3065.98, + "end": 3067.9, + "probability": 0.9966 + }, + { + "start": 3068.66, + "end": 3069.88, + "probability": 0.8531 + }, + { + "start": 3070.48, + "end": 3072.0, + "probability": 0.8479 + }, + { + "start": 3072.56, + "end": 3073.5, + "probability": 0.9627 + }, + { + "start": 3073.58, + "end": 3074.56, + "probability": 0.7821 + }, + { + "start": 3074.58, + "end": 3075.6, + "probability": 0.6639 + }, + { + "start": 3075.96, + "end": 3076.86, + "probability": 0.735 + }, + { + "start": 3077.52, + "end": 3080.62, + "probability": 0.6461 + }, + { + "start": 3083.06, + "end": 3084.56, + "probability": 0.8931 + }, + { + "start": 3086.5, + "end": 3092.26, + "probability": 0.9956 + }, + { + "start": 3093.1, + "end": 3094.38, + "probability": 0.7834 + }, + { + "start": 3095.26, + "end": 3098.3, + "probability": 0.9948 + }, + { + "start": 3098.88, + "end": 3100.1, + "probability": 0.7627 + }, + { + "start": 3100.98, + "end": 3104.06, + "probability": 0.9567 + }, + { + "start": 3104.68, + "end": 3107.32, + "probability": 0.9863 + }, + { + "start": 3108.16, + "end": 3109.94, + "probability": 0.7065 + }, + { + "start": 3111.24, + "end": 3112.36, + "probability": 0.9316 + }, + { + "start": 3114.16, + "end": 3114.68, + "probability": 0.5799 + }, + { + "start": 3115.5, + "end": 3116.36, + "probability": 0.6923 + }, + { + "start": 3116.52, + "end": 3117.54, + "probability": 0.901 + }, + { + "start": 3117.6, + "end": 3120.22, + "probability": 0.9445 + }, + { + "start": 3120.72, + "end": 3122.12, + "probability": 0.9386 + }, + { + "start": 3122.8, + "end": 3126.84, + "probability": 0.9969 + }, + { + "start": 3126.94, + "end": 3127.88, + "probability": 0.7253 + }, + { + "start": 3127.92, + "end": 3128.74, + "probability": 0.9211 + }, + { + "start": 3129.26, + "end": 3130.54, + "probability": 0.9394 + }, + { + "start": 3131.3, + "end": 3133.38, + "probability": 0.9957 + }, + { + "start": 3134.52, + "end": 3136.16, + "probability": 0.9345 + }, + { + "start": 3136.88, + "end": 3138.94, + "probability": 0.7275 + }, + { + "start": 3140.0, + "end": 3145.0, + "probability": 0.9242 + }, + { + "start": 3145.88, + "end": 3149.14, + "probability": 0.6646 + }, + { + "start": 3150.02, + "end": 3150.12, + "probability": 0.4073 + }, + { + "start": 3150.86, + "end": 3153.32, + "probability": 0.7899 + }, + { + "start": 3154.6, + "end": 3155.4, + "probability": 0.9366 + }, + { + "start": 3156.38, + "end": 3161.06, + "probability": 0.6258 + }, + { + "start": 3161.84, + "end": 3162.4, + "probability": 0.9358 + }, + { + "start": 3163.84, + "end": 3164.66, + "probability": 0.7686 + }, + { + "start": 3165.54, + "end": 3166.57, + "probability": 0.7065 + }, + { + "start": 3167.68, + "end": 3169.74, + "probability": 0.7997 + }, + { + "start": 3171.06, + "end": 3172.18, + "probability": 0.9795 + }, + { + "start": 3172.98, + "end": 3176.4, + "probability": 0.9961 + }, + { + "start": 3176.86, + "end": 3178.92, + "probability": 0.91 + }, + { + "start": 3179.6, + "end": 3180.33, + "probability": 0.9481 + }, + { + "start": 3181.34, + "end": 3181.64, + "probability": 0.6829 + }, + { + "start": 3182.16, + "end": 3185.42, + "probability": 0.8174 + }, + { + "start": 3186.4, + "end": 3193.44, + "probability": 0.9462 + }, + { + "start": 3194.2, + "end": 3195.1, + "probability": 0.4458 + }, + { + "start": 3195.52, + "end": 3196.58, + "probability": 0.9351 + }, + { + "start": 3197.75, + "end": 3200.36, + "probability": 0.9912 + }, + { + "start": 3201.88, + "end": 3204.66, + "probability": 0.9321 + }, + { + "start": 3206.04, + "end": 3206.56, + "probability": 0.5268 + }, + { + "start": 3207.0, + "end": 3207.36, + "probability": 0.1388 + }, + { + "start": 3207.36, + "end": 3210.06, + "probability": 0.7302 + }, + { + "start": 3210.48, + "end": 3212.34, + "probability": 0.9355 + }, + { + "start": 3213.02, + "end": 3215.9, + "probability": 0.5637 + }, + { + "start": 3217.32, + "end": 3220.18, + "probability": 0.9935 + }, + { + "start": 3220.94, + "end": 3222.56, + "probability": 0.7896 + }, + { + "start": 3222.72, + "end": 3224.28, + "probability": 0.6849 + }, + { + "start": 3225.32, + "end": 3225.48, + "probability": 0.6616 + }, + { + "start": 3225.86, + "end": 3231.94, + "probability": 0.9926 + }, + { + "start": 3232.26, + "end": 3233.08, + "probability": 0.8083 + }, + { + "start": 3233.56, + "end": 3234.12, + "probability": 0.7285 + }, + { + "start": 3234.24, + "end": 3239.24, + "probability": 0.843 + }, + { + "start": 3239.24, + "end": 3245.0, + "probability": 0.9801 + }, + { + "start": 3249.78, + "end": 3252.38, + "probability": 0.958 + }, + { + "start": 3252.9, + "end": 3258.28, + "probability": 0.4976 + }, + { + "start": 3258.42, + "end": 3259.04, + "probability": 0.4149 + }, + { + "start": 3259.66, + "end": 3262.92, + "probability": 0.6942 + }, + { + "start": 3267.46, + "end": 3271.74, + "probability": 0.7648 + }, + { + "start": 3276.61, + "end": 3281.62, + "probability": 0.7967 + }, + { + "start": 3283.2, + "end": 3287.58, + "probability": 0.9854 + }, + { + "start": 3288.86, + "end": 3293.68, + "probability": 0.9979 + }, + { + "start": 3294.5, + "end": 3296.98, + "probability": 0.9172 + }, + { + "start": 3298.32, + "end": 3306.3, + "probability": 0.9972 + }, + { + "start": 3307.62, + "end": 3310.36, + "probability": 0.9976 + }, + { + "start": 3311.06, + "end": 3314.7, + "probability": 0.992 + }, + { + "start": 3314.7, + "end": 3318.76, + "probability": 0.987 + }, + { + "start": 3319.22, + "end": 3320.04, + "probability": 0.8801 + }, + { + "start": 3320.6, + "end": 3325.56, + "probability": 0.9519 + }, + { + "start": 3326.64, + "end": 3328.94, + "probability": 0.9956 + }, + { + "start": 3328.94, + "end": 3333.6, + "probability": 0.9959 + }, + { + "start": 3334.4, + "end": 3335.64, + "probability": 0.999 + }, + { + "start": 3336.26, + "end": 3340.12, + "probability": 0.9978 + }, + { + "start": 3340.58, + "end": 3340.8, + "probability": 0.6992 + }, + { + "start": 3342.14, + "end": 3345.54, + "probability": 0.9805 + }, + { + "start": 3345.98, + "end": 3348.02, + "probability": 0.9985 + }, + { + "start": 3348.22, + "end": 3351.44, + "probability": 0.9838 + }, + { + "start": 3353.02, + "end": 3353.88, + "probability": 0.1207 + }, + { + "start": 3355.72, + "end": 3356.08, + "probability": 0.8096 + }, + { + "start": 3367.46, + "end": 3370.36, + "probability": 0.7158 + }, + { + "start": 3370.58, + "end": 3371.46, + "probability": 0.904 + }, + { + "start": 3371.7, + "end": 3372.7, + "probability": 0.9646 + }, + { + "start": 3372.94, + "end": 3373.72, + "probability": 0.9628 + }, + { + "start": 3374.62, + "end": 3377.98, + "probability": 0.9552 + }, + { + "start": 3378.56, + "end": 3383.7, + "probability": 0.9913 + }, + { + "start": 3384.74, + "end": 3385.62, + "probability": 0.4541 + }, + { + "start": 3386.14, + "end": 3387.12, + "probability": 0.4642 + }, + { + "start": 3387.88, + "end": 3389.28, + "probability": 0.6939 + }, + { + "start": 3389.58, + "end": 3390.56, + "probability": 0.9353 + }, + { + "start": 3391.5, + "end": 3393.9, + "probability": 0.8466 + }, + { + "start": 3394.2, + "end": 3398.18, + "probability": 0.8501 + }, + { + "start": 3400.14, + "end": 3400.49, + "probability": 0.5277 + }, + { + "start": 3401.52, + "end": 3402.26, + "probability": 0.6136 + }, + { + "start": 3403.0, + "end": 3407.94, + "probability": 0.9678 + }, + { + "start": 3408.72, + "end": 3411.72, + "probability": 0.9953 + }, + { + "start": 3412.28, + "end": 3414.14, + "probability": 0.9659 + }, + { + "start": 3414.64, + "end": 3416.22, + "probability": 0.9586 + }, + { + "start": 3416.56, + "end": 3418.02, + "probability": 0.7763 + }, + { + "start": 3419.36, + "end": 3423.88, + "probability": 0.9855 + }, + { + "start": 3424.56, + "end": 3428.1, + "probability": 0.9978 + }, + { + "start": 3428.1, + "end": 3434.95, + "probability": 0.9813 + }, + { + "start": 3436.12, + "end": 3437.9, + "probability": 0.8268 + }, + { + "start": 3438.42, + "end": 3439.78, + "probability": 0.7602 + }, + { + "start": 3440.18, + "end": 3442.86, + "probability": 0.9631 + }, + { + "start": 3442.96, + "end": 3444.86, + "probability": 0.6717 + }, + { + "start": 3445.34, + "end": 3446.34, + "probability": 0.9274 + }, + { + "start": 3447.04, + "end": 3450.06, + "probability": 0.9006 + }, + { + "start": 3450.2, + "end": 3452.06, + "probability": 0.9797 + }, + { + "start": 3452.6, + "end": 3455.06, + "probability": 0.7562 + }, + { + "start": 3455.72, + "end": 3457.48, + "probability": 0.8024 + }, + { + "start": 3457.56, + "end": 3458.62, + "probability": 0.7436 + }, + { + "start": 3458.72, + "end": 3460.18, + "probability": 0.9563 + }, + { + "start": 3460.28, + "end": 3460.84, + "probability": 0.6671 + }, + { + "start": 3461.38, + "end": 3464.14, + "probability": 0.8696 + }, + { + "start": 3464.22, + "end": 3464.54, + "probability": 0.8268 + }, + { + "start": 3464.6, + "end": 3465.44, + "probability": 0.7048 + }, + { + "start": 3466.02, + "end": 3466.8, + "probability": 0.5048 + }, + { + "start": 3467.1, + "end": 3467.2, + "probability": 0.288 + }, + { + "start": 3467.64, + "end": 3467.94, + "probability": 0.435 + }, + { + "start": 3468.46, + "end": 3469.14, + "probability": 0.5433 + }, + { + "start": 3469.27, + "end": 3471.1, + "probability": 0.5625 + }, + { + "start": 3472.0, + "end": 3473.02, + "probability": 0.8757 + }, + { + "start": 3473.98, + "end": 3474.28, + "probability": 0.7911 + }, + { + "start": 3476.36, + "end": 3477.14, + "probability": 0.5544 + }, + { + "start": 3478.01, + "end": 3481.8, + "probability": 0.7862 + }, + { + "start": 3482.22, + "end": 3483.33, + "probability": 0.5213 + }, + { + "start": 3483.96, + "end": 3485.82, + "probability": 0.4669 + }, + { + "start": 3485.88, + "end": 3487.12, + "probability": 0.8704 + }, + { + "start": 3487.78, + "end": 3490.38, + "probability": 0.8493 + }, + { + "start": 3490.48, + "end": 3491.44, + "probability": 0.9973 + }, + { + "start": 3492.4, + "end": 3493.4, + "probability": 0.6446 + }, + { + "start": 3493.96, + "end": 3494.34, + "probability": 0.4947 + }, + { + "start": 3494.34, + "end": 3494.41, + "probability": 0.0684 + }, + { + "start": 3494.78, + "end": 3497.34, + "probability": 0.8802 + }, + { + "start": 3498.06, + "end": 3499.96, + "probability": 0.7607 + }, + { + "start": 3500.14, + "end": 3501.22, + "probability": 0.6841 + }, + { + "start": 3501.3, + "end": 3501.38, + "probability": 0.5215 + }, + { + "start": 3501.46, + "end": 3502.18, + "probability": 0.7987 + }, + { + "start": 3502.28, + "end": 3502.88, + "probability": 0.7498 + }, + { + "start": 3502.94, + "end": 3505.02, + "probability": 0.9695 + }, + { + "start": 3505.5, + "end": 3507.94, + "probability": 0.9055 + }, + { + "start": 3508.52, + "end": 3509.46, + "probability": 0.6278 + }, + { + "start": 3509.9, + "end": 3516.68, + "probability": 0.9678 + }, + { + "start": 3517.18, + "end": 3520.98, + "probability": 0.8491 + }, + { + "start": 3521.02, + "end": 3524.14, + "probability": 0.9107 + }, + { + "start": 3524.86, + "end": 3525.98, + "probability": 0.9969 + }, + { + "start": 3526.06, + "end": 3526.94, + "probability": 0.7731 + }, + { + "start": 3527.14, + "end": 3528.02, + "probability": 0.925 + }, + { + "start": 3528.18, + "end": 3530.58, + "probability": 0.9202 + }, + { + "start": 3530.94, + "end": 3533.62, + "probability": 0.98 + }, + { + "start": 3534.22, + "end": 3535.74, + "probability": 0.8943 + }, + { + "start": 3536.46, + "end": 3539.14, + "probability": 0.8767 + }, + { + "start": 3539.22, + "end": 3539.56, + "probability": 0.3865 + }, + { + "start": 3539.62, + "end": 3544.08, + "probability": 0.827 + }, + { + "start": 3544.62, + "end": 3546.04, + "probability": 0.8197 + }, + { + "start": 3546.12, + "end": 3547.1, + "probability": 0.8695 + }, + { + "start": 3547.32, + "end": 3551.56, + "probability": 0.6666 + }, + { + "start": 3552.64, + "end": 3556.3, + "probability": 0.9864 + }, + { + "start": 3556.67, + "end": 3558.84, + "probability": 0.6265 + }, + { + "start": 3558.84, + "end": 3561.28, + "probability": 0.6892 + }, + { + "start": 3561.92, + "end": 3564.56, + "probability": 0.9404 + }, + { + "start": 3564.68, + "end": 3566.54, + "probability": 0.587 + }, + { + "start": 3567.28, + "end": 3568.79, + "probability": 0.6511 + }, + { + "start": 3569.02, + "end": 3573.38, + "probability": 0.939 + }, + { + "start": 3573.88, + "end": 3578.64, + "probability": 0.1148 + }, + { + "start": 3578.64, + "end": 3578.7, + "probability": 0.1341 + }, + { + "start": 3579.18, + "end": 3580.18, + "probability": 0.0502 + }, + { + "start": 3581.68, + "end": 3585.96, + "probability": 0.0186 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.12, + "end": 3678.02, + "probability": 0.4659 + }, + { + "start": 3678.28, + "end": 3679.31, + "probability": 0.9565 + }, + { + "start": 3679.61, + "end": 3679.98, + "probability": 0.0602 + }, + { + "start": 3679.98, + "end": 3680.98, + "probability": 0.3782 + }, + { + "start": 3681.62, + "end": 3684.77, + "probability": 0.0316 + }, + { + "start": 3684.78, + "end": 3685.08, + "probability": 0.3702 + }, + { + "start": 3685.08, + "end": 3685.3, + "probability": 0.3729 + }, + { + "start": 3686.4, + "end": 3686.52, + "probability": 0.0212 + }, + { + "start": 3686.52, + "end": 3687.42, + "probability": 0.1065 + }, + { + "start": 3688.16, + "end": 3691.38, + "probability": 0.6553 + }, + { + "start": 3691.76, + "end": 3693.22, + "probability": 0.6987 + }, + { + "start": 3693.38, + "end": 3695.9, + "probability": 0.6558 + }, + { + "start": 3697.97, + "end": 3700.4, + "probability": 0.2179 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.0, + "end": 3798.0, + "probability": 0.0 + }, + { + "start": 3798.32, + "end": 3798.46, + "probability": 0.005 + }, + { + "start": 3798.46, + "end": 3799.3, + "probability": 0.1816 + }, + { + "start": 3801.52, + "end": 3804.62, + "probability": 0.455 + }, + { + "start": 3805.96, + "end": 3807.12, + "probability": 0.7569 + }, + { + "start": 3807.2, + "end": 3808.22, + "probability": 0.5119 + }, + { + "start": 3808.28, + "end": 3811.18, + "probability": 0.9202 + }, + { + "start": 3811.18, + "end": 3815.46, + "probability": 0.9102 + }, + { + "start": 3815.7, + "end": 3816.3, + "probability": 0.5163 + }, + { + "start": 3816.36, + "end": 3818.28, + "probability": 0.3599 + }, + { + "start": 3818.28, + "end": 3822.46, + "probability": 0.9808 + }, + { + "start": 3822.58, + "end": 3825.22, + "probability": 0.6142 + }, + { + "start": 3826.34, + "end": 3826.76, + "probability": 0.492 + }, + { + "start": 3826.78, + "end": 3828.22, + "probability": 0.2299 + }, + { + "start": 3831.1, + "end": 3833.5, + "probability": 0.7455 + }, + { + "start": 3834.56, + "end": 3839.44, + "probability": 0.9626 + }, + { + "start": 3839.7, + "end": 3841.26, + "probability": 0.8241 + }, + { + "start": 3842.18, + "end": 3846.6, + "probability": 0.9886 + }, + { + "start": 3847.36, + "end": 3849.94, + "probability": 0.9896 + }, + { + "start": 3850.82, + "end": 3854.96, + "probability": 0.9805 + }, + { + "start": 3855.46, + "end": 3860.48, + "probability": 0.9895 + }, + { + "start": 3861.34, + "end": 3863.26, + "probability": 0.8257 + }, + { + "start": 3863.42, + "end": 3868.46, + "probability": 0.962 + }, + { + "start": 3869.06, + "end": 3871.66, + "probability": 0.9976 + }, + { + "start": 3871.66, + "end": 3875.94, + "probability": 0.9923 + }, + { + "start": 3876.8, + "end": 3879.64, + "probability": 0.887 + }, + { + "start": 3880.24, + "end": 3883.36, + "probability": 0.9973 + }, + { + "start": 3884.34, + "end": 3887.48, + "probability": 0.9818 + }, + { + "start": 3887.76, + "end": 3889.0, + "probability": 0.7761 + }, + { + "start": 3889.7, + "end": 3894.42, + "probability": 0.9472 + }, + { + "start": 3895.46, + "end": 3900.08, + "probability": 0.9875 + }, + { + "start": 3900.9, + "end": 3904.4, + "probability": 0.9899 + }, + { + "start": 3905.12, + "end": 3906.34, + "probability": 0.9766 + }, + { + "start": 3907.12, + "end": 3910.68, + "probability": 0.9287 + }, + { + "start": 3911.42, + "end": 3918.76, + "probability": 0.9572 + }, + { + "start": 3919.76, + "end": 3924.54, + "probability": 0.977 + }, + { + "start": 3925.06, + "end": 3929.74, + "probability": 0.6993 + }, + { + "start": 3930.3, + "end": 3932.24, + "probability": 0.9038 + }, + { + "start": 3932.36, + "end": 3933.32, + "probability": 0.7334 + }, + { + "start": 3933.44, + "end": 3933.96, + "probability": 0.8208 + }, + { + "start": 3935.06, + "end": 3936.84, + "probability": 0.9889 + }, + { + "start": 3937.62, + "end": 3939.34, + "probability": 0.9937 + }, + { + "start": 3940.14, + "end": 3940.38, + "probability": 0.9254 + }, + { + "start": 3940.48, + "end": 3942.22, + "probability": 0.9937 + }, + { + "start": 3942.66, + "end": 3944.15, + "probability": 0.9956 + }, + { + "start": 3945.04, + "end": 3945.74, + "probability": 0.6439 + }, + { + "start": 3946.3, + "end": 3946.44, + "probability": 0.6426 + }, + { + "start": 3946.54, + "end": 3948.64, + "probability": 0.9639 + }, + { + "start": 3950.16, + "end": 3954.88, + "probability": 0.9932 + }, + { + "start": 3954.88, + "end": 3958.28, + "probability": 0.9931 + }, + { + "start": 3958.7, + "end": 3963.45, + "probability": 0.9955 + }, + { + "start": 3964.74, + "end": 3965.52, + "probability": 0.7326 + }, + { + "start": 3966.22, + "end": 3968.04, + "probability": 0.8452 + }, + { + "start": 3968.6, + "end": 3969.86, + "probability": 0.9849 + }, + { + "start": 3970.36, + "end": 3971.14, + "probability": 0.717 + }, + { + "start": 3971.46, + "end": 3971.8, + "probability": 0.8203 + }, + { + "start": 3971.84, + "end": 3975.18, + "probability": 0.7441 + }, + { + "start": 3975.56, + "end": 3976.78, + "probability": 0.9902 + }, + { + "start": 3976.82, + "end": 3978.98, + "probability": 0.918 + }, + { + "start": 3979.8, + "end": 3984.28, + "probability": 0.9558 + }, + { + "start": 3985.16, + "end": 3989.27, + "probability": 0.9932 + }, + { + "start": 3990.28, + "end": 3997.12, + "probability": 0.9293 + }, + { + "start": 3997.68, + "end": 3999.56, + "probability": 0.9966 + }, + { + "start": 4000.92, + "end": 4003.86, + "probability": 0.9654 + }, + { + "start": 4004.76, + "end": 4005.94, + "probability": 0.5782 + }, + { + "start": 4007.72, + "end": 4009.76, + "probability": 0.9504 + }, + { + "start": 4010.34, + "end": 4010.84, + "probability": 0.9507 + }, + { + "start": 4011.8, + "end": 4015.62, + "probability": 0.9885 + }, + { + "start": 4015.92, + "end": 4015.92, + "probability": 0.4873 + }, + { + "start": 4016.04, + "end": 4017.28, + "probability": 0.9411 + }, + { + "start": 4018.22, + "end": 4019.94, + "probability": 0.9722 + }, + { + "start": 4020.5, + "end": 4023.06, + "probability": 0.9971 + }, + { + "start": 4023.46, + "end": 4025.62, + "probability": 0.97 + }, + { + "start": 4026.3, + "end": 4029.04, + "probability": 0.9847 + }, + { + "start": 4029.12, + "end": 4030.98, + "probability": 0.9807 + }, + { + "start": 4031.06, + "end": 4033.04, + "probability": 0.9572 + }, + { + "start": 4033.86, + "end": 4036.32, + "probability": 0.9214 + }, + { + "start": 4037.0, + "end": 4039.26, + "probability": 0.9633 + }, + { + "start": 4039.64, + "end": 4042.42, + "probability": 0.7576 + }, + { + "start": 4042.46, + "end": 4045.34, + "probability": 0.6989 + }, + { + "start": 4047.38, + "end": 4050.76, + "probability": 0.9981 + }, + { + "start": 4051.1, + "end": 4052.06, + "probability": 0.6837 + }, + { + "start": 4052.16, + "end": 4053.22, + "probability": 0.7094 + }, + { + "start": 4053.66, + "end": 4054.38, + "probability": 0.5751 + }, + { + "start": 4055.36, + "end": 4056.26, + "probability": 0.8972 + }, + { + "start": 4057.0, + "end": 4058.16, + "probability": 0.7626 + }, + { + "start": 4058.3, + "end": 4061.98, + "probability": 0.9955 + }, + { + "start": 4062.46, + "end": 4065.14, + "probability": 0.9714 + }, + { + "start": 4065.6, + "end": 4067.26, + "probability": 0.7969 + }, + { + "start": 4067.26, + "end": 4067.84, + "probability": 0.8509 + }, + { + "start": 4068.5, + "end": 4070.6, + "probability": 0.6511 + }, + { + "start": 4071.56, + "end": 4073.46, + "probability": 0.944 + }, + { + "start": 4074.0, + "end": 4075.66, + "probability": 0.446 + }, + { + "start": 4075.66, + "end": 4075.76, + "probability": 0.7508 + }, + { + "start": 4076.92, + "end": 4079.94, + "probability": 0.7688 + }, + { + "start": 4091.84, + "end": 4093.38, + "probability": 0.9934 + }, + { + "start": 4093.5, + "end": 4096.58, + "probability": 0.9484 + }, + { + "start": 4097.16, + "end": 4100.32, + "probability": 0.9915 + }, + { + "start": 4101.16, + "end": 4105.14, + "probability": 0.9142 + }, + { + "start": 4105.68, + "end": 4107.57, + "probability": 0.8266 + }, + { + "start": 4108.08, + "end": 4108.96, + "probability": 0.9497 + }, + { + "start": 4109.02, + "end": 4109.63, + "probability": 0.9893 + }, + { + "start": 4110.22, + "end": 4113.64, + "probability": 0.9068 + }, + { + "start": 4114.34, + "end": 4116.84, + "probability": 0.961 + }, + { + "start": 4117.54, + "end": 4119.42, + "probability": 0.6559 + }, + { + "start": 4120.64, + "end": 4121.92, + "probability": 0.9883 + }, + { + "start": 4122.02, + "end": 4123.92, + "probability": 0.984 + }, + { + "start": 4124.46, + "end": 4125.12, + "probability": 0.2877 + }, + { + "start": 4125.24, + "end": 4128.44, + "probability": 0.8615 + }, + { + "start": 4128.74, + "end": 4131.76, + "probability": 0.757 + }, + { + "start": 4132.64, + "end": 4135.58, + "probability": 0.9795 + }, + { + "start": 4136.04, + "end": 4138.32, + "probability": 0.9897 + }, + { + "start": 4138.94, + "end": 4141.04, + "probability": 0.8219 + }, + { + "start": 4141.58, + "end": 4143.0, + "probability": 0.7855 + }, + { + "start": 4143.56, + "end": 4144.66, + "probability": 0.9839 + }, + { + "start": 4146.02, + "end": 4148.64, + "probability": 0.9751 + }, + { + "start": 4148.64, + "end": 4150.7, + "probability": 0.9977 + }, + { + "start": 4151.12, + "end": 4152.48, + "probability": 0.9818 + }, + { + "start": 4152.94, + "end": 4156.72, + "probability": 0.9953 + }, + { + "start": 4156.72, + "end": 4160.56, + "probability": 0.9886 + }, + { + "start": 4161.4, + "end": 4165.9, + "probability": 0.9915 + }, + { + "start": 4166.7, + "end": 4167.96, + "probability": 0.8206 + }, + { + "start": 4168.28, + "end": 4168.74, + "probability": 0.8237 + }, + { + "start": 4168.9, + "end": 4169.22, + "probability": 0.8204 + }, + { + "start": 4169.54, + "end": 4171.0, + "probability": 0.9894 + }, + { + "start": 4171.7, + "end": 4174.82, + "probability": 0.9869 + }, + { + "start": 4175.38, + "end": 4176.88, + "probability": 0.953 + }, + { + "start": 4177.42, + "end": 4180.16, + "probability": 0.7061 + }, + { + "start": 4180.16, + "end": 4183.84, + "probability": 0.9812 + }, + { + "start": 4184.48, + "end": 4186.78, + "probability": 0.9887 + }, + { + "start": 4187.3, + "end": 4187.68, + "probability": 0.4811 + }, + { + "start": 4188.18, + "end": 4190.76, + "probability": 0.978 + }, + { + "start": 4203.32, + "end": 4204.0, + "probability": 0.1418 + }, + { + "start": 4204.0, + "end": 4204.0, + "probability": 0.0146 + }, + { + "start": 4204.0, + "end": 4204.0, + "probability": 0.063 + }, + { + "start": 4204.0, + "end": 4204.0, + "probability": 0.1207 + }, + { + "start": 4204.0, + "end": 4204.0, + "probability": 0.1121 + }, + { + "start": 4204.0, + "end": 4204.56, + "probability": 0.1545 + }, + { + "start": 4205.36, + "end": 4206.67, + "probability": 0.2565 + }, + { + "start": 4207.46, + "end": 4207.6, + "probability": 0.0562 + }, + { + "start": 4208.52, + "end": 4216.34, + "probability": 0.8927 + }, + { + "start": 4216.88, + "end": 4218.14, + "probability": 0.901 + }, + { + "start": 4218.32, + "end": 4220.18, + "probability": 0.9712 + }, + { + "start": 4220.36, + "end": 4220.7, + "probability": 0.7796 + }, + { + "start": 4220.8, + "end": 4221.96, + "probability": 0.9491 + }, + { + "start": 4222.5, + "end": 4224.38, + "probability": 0.998 + }, + { + "start": 4224.46, + "end": 4226.1, + "probability": 0.999 + }, + { + "start": 4226.58, + "end": 4228.16, + "probability": 0.9217 + }, + { + "start": 4229.0, + "end": 4230.88, + "probability": 0.8529 + }, + { + "start": 4231.48, + "end": 4232.32, + "probability": 0.7688 + }, + { + "start": 4232.56, + "end": 4233.46, + "probability": 0.8527 + }, + { + "start": 4233.7, + "end": 4234.66, + "probability": 0.9283 + }, + { + "start": 4234.72, + "end": 4235.7, + "probability": 0.8294 + }, + { + "start": 4236.2, + "end": 4237.2, + "probability": 0.9761 + }, + { + "start": 4237.32, + "end": 4239.74, + "probability": 0.9922 + }, + { + "start": 4239.74, + "end": 4241.71, + "probability": 0.999 + }, + { + "start": 4242.4, + "end": 4243.16, + "probability": 0.9905 + }, + { + "start": 4243.54, + "end": 4244.88, + "probability": 0.9163 + }, + { + "start": 4245.18, + "end": 4249.08, + "probability": 0.8526 + }, + { + "start": 4249.7, + "end": 4250.42, + "probability": 0.9179 + }, + { + "start": 4250.94, + "end": 4252.92, + "probability": 0.9705 + }, + { + "start": 4253.68, + "end": 4255.62, + "probability": 0.996 + }, + { + "start": 4255.68, + "end": 4258.32, + "probability": 0.0979 + }, + { + "start": 4258.32, + "end": 4259.95, + "probability": 0.6902 + }, + { + "start": 4260.7, + "end": 4263.32, + "probability": 0.9717 + }, + { + "start": 4263.84, + "end": 4266.52, + "probability": 0.9889 + }, + { + "start": 4266.7, + "end": 4267.4, + "probability": 0.9551 + }, + { + "start": 4268.06, + "end": 4269.84, + "probability": 0.8796 + }, + { + "start": 4270.26, + "end": 4271.32, + "probability": 0.8067 + }, + { + "start": 4271.82, + "end": 4272.34, + "probability": 0.8484 + }, + { + "start": 4272.66, + "end": 4275.7, + "probability": 0.9301 + }, + { + "start": 4276.5, + "end": 4279.12, + "probability": 0.8741 + }, + { + "start": 4279.14, + "end": 4282.82, + "probability": 0.9881 + }, + { + "start": 4283.02, + "end": 4284.16, + "probability": 0.0992 + }, + { + "start": 4284.48, + "end": 4285.8, + "probability": 0.6764 + }, + { + "start": 4286.3, + "end": 4288.06, + "probability": 0.9524 + }, + { + "start": 4288.26, + "end": 4291.54, + "probability": 0.9649 + }, + { + "start": 4292.04, + "end": 4295.84, + "probability": 0.9953 + }, + { + "start": 4296.0, + "end": 4296.56, + "probability": 0.8165 + }, + { + "start": 4297.04, + "end": 4298.42, + "probability": 0.9229 + }, + { + "start": 4298.86, + "end": 4299.8, + "probability": 0.5258 + }, + { + "start": 4299.9, + "end": 4301.09, + "probability": 0.9512 + }, + { + "start": 4301.38, + "end": 4302.64, + "probability": 0.9935 + }, + { + "start": 4302.76, + "end": 4303.6, + "probability": 0.905 + }, + { + "start": 4303.82, + "end": 4305.34, + "probability": 0.9216 + }, + { + "start": 4305.9, + "end": 4307.9, + "probability": 0.9291 + }, + { + "start": 4307.98, + "end": 4309.74, + "probability": 0.9972 + }, + { + "start": 4309.74, + "end": 4312.02, + "probability": 0.9312 + }, + { + "start": 4313.02, + "end": 4315.32, + "probability": 0.9915 + }, + { + "start": 4315.76, + "end": 4317.16, + "probability": 0.6459 + }, + { + "start": 4317.16, + "end": 4320.16, + "probability": 0.9604 + }, + { + "start": 4320.72, + "end": 4326.38, + "probability": 0.99 + }, + { + "start": 4326.84, + "end": 4329.14, + "probability": 0.9667 + }, + { + "start": 4329.82, + "end": 4331.4, + "probability": 0.9869 + }, + { + "start": 4331.5, + "end": 4332.9, + "probability": 0.8713 + }, + { + "start": 4332.98, + "end": 4334.34, + "probability": 0.9017 + }, + { + "start": 4334.6, + "end": 4337.74, + "probability": 0.9884 + }, + { + "start": 4338.06, + "end": 4339.42, + "probability": 0.5677 + }, + { + "start": 4339.7, + "end": 4340.82, + "probability": 0.9784 + }, + { + "start": 4341.12, + "end": 4341.76, + "probability": 0.3981 + }, + { + "start": 4341.84, + "end": 4342.68, + "probability": 0.594 + }, + { + "start": 4343.02, + "end": 4345.34, + "probability": 0.9963 + }, + { + "start": 4345.9, + "end": 4348.3, + "probability": 0.9976 + }, + { + "start": 4349.0, + "end": 4350.56, + "probability": 0.9964 + }, + { + "start": 4351.28, + "end": 4352.0, + "probability": 0.8125 + }, + { + "start": 4352.14, + "end": 4352.96, + "probability": 0.8781 + }, + { + "start": 4353.04, + "end": 4353.7, + "probability": 0.7292 + }, + { + "start": 4353.76, + "end": 4355.26, + "probability": 0.9728 + }, + { + "start": 4355.5, + "end": 4357.38, + "probability": 0.9829 + }, + { + "start": 4357.94, + "end": 4359.16, + "probability": 0.9624 + }, + { + "start": 4359.22, + "end": 4362.94, + "probability": 0.9796 + }, + { + "start": 4363.02, + "end": 4364.48, + "probability": 0.722 + }, + { + "start": 4364.62, + "end": 4365.68, + "probability": 0.8612 + }, + { + "start": 4365.98, + "end": 4366.96, + "probability": 0.9952 + }, + { + "start": 4368.22, + "end": 4369.94, + "probability": 0.6482 + }, + { + "start": 4370.24, + "end": 4372.26, + "probability": 0.4019 + }, + { + "start": 4373.06, + "end": 4375.86, + "probability": 0.8776 + }, + { + "start": 4375.98, + "end": 4376.72, + "probability": 0.3064 + }, + { + "start": 4376.84, + "end": 4378.1, + "probability": 0.9495 + }, + { + "start": 4378.66, + "end": 4380.58, + "probability": 0.6732 + }, + { + "start": 4381.04, + "end": 4384.22, + "probability": 0.9961 + }, + { + "start": 4386.96, + "end": 4388.12, + "probability": 0.9471 + }, + { + "start": 4388.79, + "end": 4391.38, + "probability": 0.2801 + }, + { + "start": 4392.12, + "end": 4392.92, + "probability": 0.6785 + }, + { + "start": 4394.26, + "end": 4394.42, + "probability": 0.0243 + }, + { + "start": 4394.42, + "end": 4395.02, + "probability": 0.297 + }, + { + "start": 4395.02, + "end": 4395.84, + "probability": 0.8582 + }, + { + "start": 4395.88, + "end": 4396.7, + "probability": 0.2424 + }, + { + "start": 4397.28, + "end": 4398.16, + "probability": 0.2113 + }, + { + "start": 4398.16, + "end": 4399.42, + "probability": 0.9141 + }, + { + "start": 4400.68, + "end": 4400.98, + "probability": 0.3193 + }, + { + "start": 4400.98, + "end": 4402.32, + "probability": 0.7092 + }, + { + "start": 4402.32, + "end": 4403.44, + "probability": 0.1206 + }, + { + "start": 4404.9, + "end": 4405.36, + "probability": 0.3624 + }, + { + "start": 4405.54, + "end": 4407.66, + "probability": 0.8669 + }, + { + "start": 4409.44, + "end": 4413.86, + "probability": 0.9329 + }, + { + "start": 4414.86, + "end": 4416.7, + "probability": 0.9963 + }, + { + "start": 4417.36, + "end": 4419.0, + "probability": 0.9657 + }, + { + "start": 4420.78, + "end": 4422.04, + "probability": 0.9622 + }, + { + "start": 4422.1, + "end": 4422.86, + "probability": 0.7934 + }, + { + "start": 4423.07, + "end": 4426.78, + "probability": 0.9895 + }, + { + "start": 4427.7, + "end": 4429.22, + "probability": 0.6831 + }, + { + "start": 4430.66, + "end": 4432.16, + "probability": 0.9949 + }, + { + "start": 4432.86, + "end": 4435.98, + "probability": 0.9595 + }, + { + "start": 4436.62, + "end": 4438.42, + "probability": 0.8843 + }, + { + "start": 4440.14, + "end": 4441.52, + "probability": 0.9123 + }, + { + "start": 4441.56, + "end": 4445.12, + "probability": 0.9991 + }, + { + "start": 4445.88, + "end": 4447.84, + "probability": 0.9736 + }, + { + "start": 4449.26, + "end": 4454.94, + "probability": 0.995 + }, + { + "start": 4455.52, + "end": 4459.44, + "probability": 0.9716 + }, + { + "start": 4459.72, + "end": 4460.98, + "probability": 0.8921 + }, + { + "start": 4461.96, + "end": 4463.66, + "probability": 0.6487 + }, + { + "start": 4464.08, + "end": 4471.68, + "probability": 0.9817 + }, + { + "start": 4472.7, + "end": 4474.08, + "probability": 0.9933 + }, + { + "start": 4474.82, + "end": 4479.58, + "probability": 0.998 + }, + { + "start": 4479.58, + "end": 4482.28, + "probability": 0.9968 + }, + { + "start": 4483.3, + "end": 4485.34, + "probability": 0.9983 + }, + { + "start": 4485.96, + "end": 4487.16, + "probability": 0.9873 + }, + { + "start": 4488.4, + "end": 4494.26, + "probability": 0.7934 + }, + { + "start": 4495.86, + "end": 4502.12, + "probability": 0.9933 + }, + { + "start": 4502.18, + "end": 4504.96, + "probability": 0.9578 + }, + { + "start": 4505.72, + "end": 4508.24, + "probability": 0.6348 + }, + { + "start": 4508.32, + "end": 4509.96, + "probability": 0.9229 + }, + { + "start": 4510.0, + "end": 4511.34, + "probability": 0.9582 + }, + { + "start": 4511.88, + "end": 4513.84, + "probability": 0.9929 + }, + { + "start": 4513.98, + "end": 4515.66, + "probability": 0.9859 + }, + { + "start": 4516.6, + "end": 4518.14, + "probability": 0.9953 + }, + { + "start": 4518.28, + "end": 4520.66, + "probability": 0.9921 + }, + { + "start": 4523.38, + "end": 4526.18, + "probability": 0.9609 + }, + { + "start": 4527.22, + "end": 4529.56, + "probability": 0.9836 + }, + { + "start": 4531.5, + "end": 4533.54, + "probability": 0.5036 + }, + { + "start": 4534.78, + "end": 4539.78, + "probability": 0.8931 + }, + { + "start": 4539.94, + "end": 4540.36, + "probability": 0.5094 + }, + { + "start": 4542.32, + "end": 4543.92, + "probability": 0.9966 + }, + { + "start": 4544.04, + "end": 4545.42, + "probability": 0.9985 + }, + { + "start": 4545.56, + "end": 4546.71, + "probability": 0.9976 + }, + { + "start": 4547.96, + "end": 4549.76, + "probability": 0.9135 + }, + { + "start": 4551.36, + "end": 4557.7, + "probability": 0.9768 + }, + { + "start": 4557.7, + "end": 4560.62, + "probability": 0.7367 + }, + { + "start": 4561.58, + "end": 4563.5, + "probability": 0.8865 + }, + { + "start": 4564.14, + "end": 4565.5, + "probability": 0.9859 + }, + { + "start": 4566.9, + "end": 4567.78, + "probability": 0.9401 + }, + { + "start": 4568.12, + "end": 4573.3, + "probability": 0.9845 + }, + { + "start": 4573.7, + "end": 4574.84, + "probability": 0.7439 + }, + { + "start": 4575.6, + "end": 4579.14, + "probability": 0.6469 + }, + { + "start": 4579.14, + "end": 4581.94, + "probability": 0.8842 + }, + { + "start": 4584.4, + "end": 4589.16, + "probability": 0.7854 + }, + { + "start": 4591.16, + "end": 4593.36, + "probability": 0.9835 + }, + { + "start": 4594.32, + "end": 4596.08, + "probability": 0.7802 + }, + { + "start": 4597.06, + "end": 4597.72, + "probability": 0.6348 + }, + { + "start": 4598.06, + "end": 4599.0, + "probability": 0.7402 + }, + { + "start": 4599.2, + "end": 4601.49, + "probability": 0.4312 + }, + { + "start": 4602.96, + "end": 4605.14, + "probability": 0.8955 + }, + { + "start": 4605.24, + "end": 4606.58, + "probability": 0.2736 + }, + { + "start": 4607.2, + "end": 4610.42, + "probability": 0.9886 + }, + { + "start": 4611.76, + "end": 4613.12, + "probability": 0.678 + }, + { + "start": 4613.86, + "end": 4615.4, + "probability": 0.7321 + }, + { + "start": 4615.6, + "end": 4619.38, + "probability": 0.9532 + }, + { + "start": 4619.9, + "end": 4623.64, + "probability": 0.9839 + }, + { + "start": 4624.32, + "end": 4626.16, + "probability": 0.9644 + }, + { + "start": 4627.56, + "end": 4628.71, + "probability": 0.9659 + }, + { + "start": 4629.0, + "end": 4630.52, + "probability": 0.4943 + }, + { + "start": 4630.56, + "end": 4634.08, + "probability": 0.9756 + }, + { + "start": 4634.18, + "end": 4634.58, + "probability": 0.8549 + }, + { + "start": 4635.6, + "end": 4637.46, + "probability": 0.769 + }, + { + "start": 4638.04, + "end": 4639.22, + "probability": 0.6345 + }, + { + "start": 4639.54, + "end": 4639.94, + "probability": 0.7709 + }, + { + "start": 4652.2, + "end": 4653.84, + "probability": 0.7672 + }, + { + "start": 4654.5, + "end": 4655.44, + "probability": 0.6965 + }, + { + "start": 4656.58, + "end": 4660.54, + "probability": 0.9942 + }, + { + "start": 4660.74, + "end": 4665.74, + "probability": 0.981 + }, + { + "start": 4666.54, + "end": 4667.82, + "probability": 0.7524 + }, + { + "start": 4667.92, + "end": 4672.74, + "probability": 0.9917 + }, + { + "start": 4673.24, + "end": 4676.5, + "probability": 0.9911 + }, + { + "start": 4677.04, + "end": 4678.56, + "probability": 0.9752 + }, + { + "start": 4678.7, + "end": 4682.7, + "probability": 0.9785 + }, + { + "start": 4683.34, + "end": 4684.0, + "probability": 0.6021 + }, + { + "start": 4684.14, + "end": 4691.63, + "probability": 0.9727 + }, + { + "start": 4691.9, + "end": 4695.76, + "probability": 0.9946 + }, + { + "start": 4696.34, + "end": 4698.52, + "probability": 0.9834 + }, + { + "start": 4699.62, + "end": 4702.3, + "probability": 0.9185 + }, + { + "start": 4702.46, + "end": 4705.08, + "probability": 0.8864 + }, + { + "start": 4705.88, + "end": 4709.38, + "probability": 0.9884 + }, + { + "start": 4709.38, + "end": 4713.2, + "probability": 0.9937 + }, + { + "start": 4713.42, + "end": 4714.38, + "probability": 0.8631 + }, + { + "start": 4714.96, + "end": 4720.3, + "probability": 0.9813 + }, + { + "start": 4720.48, + "end": 4721.64, + "probability": 0.5089 + }, + { + "start": 4721.78, + "end": 4726.74, + "probability": 0.9967 + }, + { + "start": 4727.46, + "end": 4730.08, + "probability": 0.9241 + }, + { + "start": 4730.74, + "end": 4733.76, + "probability": 0.9919 + }, + { + "start": 4733.76, + "end": 4737.58, + "probability": 0.9985 + }, + { + "start": 4738.14, + "end": 4744.22, + "probability": 0.9828 + }, + { + "start": 4744.88, + "end": 4749.6, + "probability": 0.9963 + }, + { + "start": 4750.08, + "end": 4756.38, + "probability": 0.9965 + }, + { + "start": 4756.9, + "end": 4761.16, + "probability": 0.9571 + }, + { + "start": 4761.8, + "end": 4768.9, + "probability": 0.989 + }, + { + "start": 4769.42, + "end": 4773.78, + "probability": 0.9725 + }, + { + "start": 4774.6, + "end": 4780.38, + "probability": 0.992 + }, + { + "start": 4780.38, + "end": 4787.68, + "probability": 0.9984 + }, + { + "start": 4788.4, + "end": 4788.64, + "probability": 0.8155 + }, + { + "start": 4788.76, + "end": 4789.06, + "probability": 0.8452 + }, + { + "start": 4789.16, + "end": 4793.96, + "probability": 0.9907 + }, + { + "start": 4796.52, + "end": 4799.56, + "probability": 0.8192 + }, + { + "start": 4800.6, + "end": 4802.8, + "probability": 0.8798 + }, + { + "start": 4803.9, + "end": 4805.92, + "probability": 0.6806 + }, + { + "start": 4806.98, + "end": 4809.28, + "probability": 0.9924 + }, + { + "start": 4809.38, + "end": 4813.88, + "probability": 0.9924 + }, + { + "start": 4814.08, + "end": 4814.7, + "probability": 0.4672 + }, + { + "start": 4815.38, + "end": 4821.1, + "probability": 0.9819 + }, + { + "start": 4821.58, + "end": 4829.46, + "probability": 0.9844 + }, + { + "start": 4829.6, + "end": 4829.72, + "probability": 0.9333 + }, + { + "start": 4829.88, + "end": 4830.58, + "probability": 0.7165 + }, + { + "start": 4831.56, + "end": 4832.76, + "probability": 0.8346 + }, + { + "start": 4834.14, + "end": 4835.26, + "probability": 0.9543 + }, + { + "start": 4835.52, + "end": 4842.44, + "probability": 0.8972 + }, + { + "start": 4843.0, + "end": 4848.26, + "probability": 0.9952 + }, + { + "start": 4848.26, + "end": 4852.96, + "probability": 0.7955 + }, + { + "start": 4853.3, + "end": 4856.34, + "probability": 0.9948 + }, + { + "start": 4856.5, + "end": 4859.6, + "probability": 0.9679 + }, + { + "start": 4860.02, + "end": 4860.02, + "probability": 0.6658 + }, + { + "start": 4860.06, + "end": 4861.2, + "probability": 0.9738 + }, + { + "start": 4861.52, + "end": 4865.78, + "probability": 0.8745 + }, + { + "start": 4866.12, + "end": 4867.2, + "probability": 0.3412 + }, + { + "start": 4868.8, + "end": 4869.32, + "probability": 0.6865 + }, + { + "start": 4869.98, + "end": 4870.54, + "probability": 0.5508 + }, + { + "start": 4870.68, + "end": 4872.42, + "probability": 0.8606 + }, + { + "start": 4874.56, + "end": 4877.02, + "probability": 0.9167 + }, + { + "start": 4877.5, + "end": 4878.68, + "probability": 0.9416 + }, + { + "start": 4881.38, + "end": 4883.12, + "probability": 0.9492 + }, + { + "start": 4884.0, + "end": 4884.0, + "probability": 0.2327 + }, + { + "start": 4884.14, + "end": 4884.78, + "probability": 0.9937 + }, + { + "start": 4886.22, + "end": 4887.26, + "probability": 0.1679 + }, + { + "start": 4887.26, + "end": 4887.68, + "probability": 0.6329 + }, + { + "start": 4887.88, + "end": 4890.16, + "probability": 0.9493 + }, + { + "start": 4890.66, + "end": 4891.04, + "probability": 0.176 + }, + { + "start": 4891.6, + "end": 4893.08, + "probability": 0.0179 + }, + { + "start": 4893.52, + "end": 4894.96, + "probability": 0.8583 + }, + { + "start": 4895.36, + "end": 4896.16, + "probability": 0.9434 + }, + { + "start": 4898.86, + "end": 4901.3, + "probability": 0.1221 + }, + { + "start": 4902.24, + "end": 4903.86, + "probability": 0.0345 + }, + { + "start": 4906.08, + "end": 4908.7, + "probability": 0.3771 + }, + { + "start": 4908.9, + "end": 4909.93, + "probability": 0.7885 + }, + { + "start": 4911.26, + "end": 4914.84, + "probability": 0.7569 + }, + { + "start": 4916.46, + "end": 4918.58, + "probability": 0.6272 + }, + { + "start": 4925.32, + "end": 4928.28, + "probability": 0.9219 + }, + { + "start": 4929.02, + "end": 4931.52, + "probability": 0.9741 + }, + { + "start": 4932.58, + "end": 4933.6, + "probability": 0.7129 + }, + { + "start": 4934.62, + "end": 4935.74, + "probability": 0.8055 + }, + { + "start": 4937.34, + "end": 4939.24, + "probability": 0.9894 + }, + { + "start": 4940.28, + "end": 4942.58, + "probability": 0.9573 + }, + { + "start": 4944.52, + "end": 4945.28, + "probability": 0.68 + }, + { + "start": 4947.28, + "end": 4948.26, + "probability": 0.8892 + }, + { + "start": 4950.5, + "end": 4952.94, + "probability": 0.6848 + }, + { + "start": 4953.18, + "end": 4954.14, + "probability": 0.9358 + }, + { + "start": 4954.98, + "end": 4956.06, + "probability": 0.5347 + }, + { + "start": 4957.06, + "end": 4959.2, + "probability": 0.8267 + }, + { + "start": 4960.7, + "end": 4962.18, + "probability": 0.9931 + }, + { + "start": 4963.36, + "end": 4964.24, + "probability": 0.9849 + }, + { + "start": 4965.2, + "end": 4966.36, + "probability": 0.979 + }, + { + "start": 4967.62, + "end": 4971.18, + "probability": 0.9962 + }, + { + "start": 4973.52, + "end": 4975.76, + "probability": 0.9662 + }, + { + "start": 4979.64, + "end": 4981.1, + "probability": 0.9985 + }, + { + "start": 4981.92, + "end": 4983.8, + "probability": 0.983 + }, + { + "start": 4984.64, + "end": 4985.64, + "probability": 0.52 + }, + { + "start": 4988.46, + "end": 4989.12, + "probability": 0.6022 + }, + { + "start": 4989.76, + "end": 4990.8, + "probability": 0.9922 + }, + { + "start": 4990.9, + "end": 4992.7, + "probability": 0.9983 + }, + { + "start": 4993.66, + "end": 4995.18, + "probability": 0.6711 + }, + { + "start": 4997.12, + "end": 4998.42, + "probability": 0.9758 + }, + { + "start": 4998.62, + "end": 5000.14, + "probability": 0.8902 + }, + { + "start": 5001.68, + "end": 5002.68, + "probability": 0.9819 + }, + { + "start": 5004.96, + "end": 5006.18, + "probability": 0.7829 + }, + { + "start": 5008.66, + "end": 5009.48, + "probability": 0.8352 + }, + { + "start": 5011.8, + "end": 5014.8, + "probability": 0.9619 + }, + { + "start": 5017.68, + "end": 5019.34, + "probability": 0.9913 + }, + { + "start": 5020.86, + "end": 5022.56, + "probability": 0.9766 + }, + { + "start": 5023.3, + "end": 5026.04, + "probability": 0.9756 + }, + { + "start": 5029.0, + "end": 5030.7, + "probability": 0.932 + }, + { + "start": 5030.98, + "end": 5033.88, + "probability": 0.4139 + }, + { + "start": 5033.96, + "end": 5035.24, + "probability": 0.8322 + }, + { + "start": 5035.34, + "end": 5036.62, + "probability": 0.9912 + }, + { + "start": 5036.72, + "end": 5037.54, + "probability": 0.7451 + }, + { + "start": 5037.62, + "end": 5041.46, + "probability": 0.9557 + }, + { + "start": 5042.74, + "end": 5046.58, + "probability": 0.9871 + }, + { + "start": 5047.16, + "end": 5050.34, + "probability": 0.9902 + }, + { + "start": 5051.82, + "end": 5052.58, + "probability": 0.9286 + }, + { + "start": 5053.6, + "end": 5055.44, + "probability": 0.8798 + }, + { + "start": 5056.14, + "end": 5057.54, + "probability": 0.9744 + }, + { + "start": 5058.84, + "end": 5063.52, + "probability": 0.9971 + }, + { + "start": 5063.52, + "end": 5066.74, + "probability": 0.9988 + }, + { + "start": 5067.9, + "end": 5069.06, + "probability": 0.8687 + }, + { + "start": 5069.98, + "end": 5071.08, + "probability": 0.8232 + }, + { + "start": 5072.58, + "end": 5074.76, + "probability": 0.8278 + }, + { + "start": 5075.34, + "end": 5076.69, + "probability": 0.9839 + }, + { + "start": 5078.4, + "end": 5079.45, + "probability": 0.9708 + }, + { + "start": 5080.56, + "end": 5080.56, + "probability": 0.2859 + }, + { + "start": 5080.58, + "end": 5081.42, + "probability": 0.8876 + }, + { + "start": 5082.6, + "end": 5084.32, + "probability": 0.9713 + }, + { + "start": 5086.42, + "end": 5087.6, + "probability": 0.9278 + }, + { + "start": 5088.98, + "end": 5092.48, + "probability": 0.9741 + }, + { + "start": 5093.1, + "end": 5095.76, + "probability": 0.9961 + }, + { + "start": 5095.88, + "end": 5096.92, + "probability": 0.9915 + }, + { + "start": 5098.02, + "end": 5099.4, + "probability": 0.6105 + }, + { + "start": 5099.92, + "end": 5101.66, + "probability": 0.9828 + }, + { + "start": 5103.44, + "end": 5105.02, + "probability": 0.9858 + }, + { + "start": 5105.3, + "end": 5106.56, + "probability": 0.9862 + }, + { + "start": 5108.4, + "end": 5110.5, + "probability": 0.9912 + }, + { + "start": 5111.52, + "end": 5112.22, + "probability": 0.9861 + }, + { + "start": 5113.2, + "end": 5114.52, + "probability": 0.962 + }, + { + "start": 5115.4, + "end": 5119.36, + "probability": 0.8723 + }, + { + "start": 5120.86, + "end": 5123.48, + "probability": 0.9784 + }, + { + "start": 5123.6, + "end": 5124.58, + "probability": 0.8945 + }, + { + "start": 5124.94, + "end": 5125.74, + "probability": 0.7015 + }, + { + "start": 5126.24, + "end": 5129.32, + "probability": 0.9517 + }, + { + "start": 5130.1, + "end": 5130.42, + "probability": 0.4693 + }, + { + "start": 5130.42, + "end": 5130.78, + "probability": 0.5954 + }, + { + "start": 5131.8, + "end": 5133.88, + "probability": 0.8976 + }, + { + "start": 5134.32, + "end": 5135.68, + "probability": 0.6148 + }, + { + "start": 5136.0, + "end": 5136.04, + "probability": 0.2666 + }, + { + "start": 5136.04, + "end": 5136.92, + "probability": 0.825 + }, + { + "start": 5137.18, + "end": 5137.64, + "probability": 0.8206 + }, + { + "start": 5142.72, + "end": 5143.0, + "probability": 0.58 + }, + { + "start": 5143.56, + "end": 5143.94, + "probability": 0.4268 + }, + { + "start": 5145.0, + "end": 5146.68, + "probability": 0.3844 + }, + { + "start": 5150.88, + "end": 5151.38, + "probability": 0.4916 + }, + { + "start": 5151.98, + "end": 5152.58, + "probability": 0.471 + }, + { + "start": 5153.04, + "end": 5153.04, + "probability": 0.7873 + }, + { + "start": 5153.16, + "end": 5155.68, + "probability": 0.5592 + }, + { + "start": 5155.92, + "end": 5156.22, + "probability": 0.5492 + }, + { + "start": 5156.92, + "end": 5158.62, + "probability": 0.1419 + }, + { + "start": 5159.46, + "end": 5160.58, + "probability": 0.6036 + }, + { + "start": 5163.96, + "end": 5164.04, + "probability": 0.0151 + }, + { + "start": 5164.04, + "end": 5165.05, + "probability": 0.6266 + }, + { + "start": 5165.54, + "end": 5166.84, + "probability": 0.776 + }, + { + "start": 5167.7, + "end": 5167.8, + "probability": 0.1812 + }, + { + "start": 5167.98, + "end": 5169.28, + "probability": 0.9399 + }, + { + "start": 5170.36, + "end": 5172.48, + "probability": 0.9835 + }, + { + "start": 5174.34, + "end": 5179.04, + "probability": 0.9812 + }, + { + "start": 5179.04, + "end": 5184.62, + "probability": 0.8496 + }, + { + "start": 5186.26, + "end": 5187.44, + "probability": 0.9976 + }, + { + "start": 5188.0, + "end": 5192.7, + "probability": 0.899 + }, + { + "start": 5193.82, + "end": 5197.72, + "probability": 0.7864 + }, + { + "start": 5199.1, + "end": 5203.72, + "probability": 0.9268 + }, + { + "start": 5204.28, + "end": 5205.48, + "probability": 0.8945 + }, + { + "start": 5206.2, + "end": 5207.7, + "probability": 0.898 + }, + { + "start": 5208.44, + "end": 5213.28, + "probability": 0.9761 + }, + { + "start": 5215.12, + "end": 5221.18, + "probability": 0.8862 + }, + { + "start": 5221.82, + "end": 5224.74, + "probability": 0.9843 + }, + { + "start": 5225.6, + "end": 5229.04, + "probability": 0.9936 + }, + { + "start": 5229.04, + "end": 5233.36, + "probability": 0.9974 + }, + { + "start": 5233.54, + "end": 5234.42, + "probability": 0.6791 + }, + { + "start": 5235.4, + "end": 5238.32, + "probability": 0.9253 + }, + { + "start": 5239.52, + "end": 5241.72, + "probability": 0.9966 + }, + { + "start": 5241.72, + "end": 5245.32, + "probability": 0.9735 + }, + { + "start": 5246.06, + "end": 5247.48, + "probability": 0.9275 + }, + { + "start": 5248.6, + "end": 5250.44, + "probability": 0.9979 + }, + { + "start": 5251.59, + "end": 5253.0, + "probability": 0.6502 + }, + { + "start": 5253.64, + "end": 5257.18, + "probability": 0.9432 + }, + { + "start": 5257.72, + "end": 5258.44, + "probability": 0.6608 + }, + { + "start": 5259.24, + "end": 5263.16, + "probability": 0.9824 + }, + { + "start": 5263.72, + "end": 5266.2, + "probability": 0.9957 + }, + { + "start": 5266.22, + "end": 5270.58, + "probability": 0.9937 + }, + { + "start": 5270.96, + "end": 5271.34, + "probability": 0.0236 + }, + { + "start": 5271.48, + "end": 5271.48, + "probability": 0.014 + }, + { + "start": 5271.88, + "end": 5275.38, + "probability": 0.9727 + }, + { + "start": 5275.82, + "end": 5277.92, + "probability": 0.9664 + }, + { + "start": 5278.0, + "end": 5279.04, + "probability": 0.9842 + }, + { + "start": 5279.44, + "end": 5280.74, + "probability": 0.9879 + }, + { + "start": 5281.42, + "end": 5286.86, + "probability": 0.9583 + }, + { + "start": 5286.98, + "end": 5287.7, + "probability": 0.6342 + }, + { + "start": 5288.76, + "end": 5292.34, + "probability": 0.9526 + }, + { + "start": 5293.24, + "end": 5293.76, + "probability": 0.2767 + }, + { + "start": 5293.76, + "end": 5294.3, + "probability": 0.1192 + }, + { + "start": 5294.3, + "end": 5296.84, + "probability": 0.2894 + }, + { + "start": 5302.76, + "end": 5303.18, + "probability": 0.6208 + }, + { + "start": 5305.82, + "end": 5308.88, + "probability": 0.1991 + }, + { + "start": 5310.3, + "end": 5310.88, + "probability": 0.3846 + }, + { + "start": 5311.96, + "end": 5314.58, + "probability": 0.0768 + }, + { + "start": 5314.58, + "end": 5316.02, + "probability": 0.0514 + }, + { + "start": 5316.1, + "end": 5316.82, + "probability": 0.2487 + }, + { + "start": 5316.82, + "end": 5316.84, + "probability": 0.2531 + }, + { + "start": 5316.84, + "end": 5316.98, + "probability": 0.0417 + }, + { + "start": 5317.0, + "end": 5317.02, + "probability": 0.0589 + }, + { + "start": 5319.92, + "end": 5327.0, + "probability": 0.0917 + }, + { + "start": 5327.12, + "end": 5327.62, + "probability": 0.0332 + }, + { + "start": 5328.42, + "end": 5330.7, + "probability": 0.1043 + }, + { + "start": 5331.48, + "end": 5331.62, + "probability": 0.2155 + }, + { + "start": 5331.7, + "end": 5333.6, + "probability": 0.1733 + }, + { + "start": 5334.62, + "end": 5335.88, + "probability": 0.3055 + }, + { + "start": 5337.96, + "end": 5338.56, + "probability": 0.3167 + }, + { + "start": 5341.74, + "end": 5342.58, + "probability": 0.0922 + }, + { + "start": 5349.14, + "end": 5349.86, + "probability": 0.0717 + }, + { + "start": 5349.86, + "end": 5349.86, + "probability": 0.0879 + }, + { + "start": 5349.86, + "end": 5349.86, + "probability": 0.0068 + }, + { + "start": 5349.86, + "end": 5350.78, + "probability": 0.3621 + }, + { + "start": 5351.3, + "end": 5355.52, + "probability": 0.02 + }, + { + "start": 5356.26, + "end": 5358.14, + "probability": 0.0648 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5393.0, + "end": 5393.0, + "probability": 0.0 + }, + { + "start": 5396.01, + "end": 5396.18, + "probability": 0.0646 + }, + { + "start": 5396.96, + "end": 5405.26, + "probability": 0.1107 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5513.0, + "end": 5513.0, + "probability": 0.0 + }, + { + "start": 5514.1, + "end": 5514.12, + "probability": 0.5938 + }, + { + "start": 5514.12, + "end": 5514.12, + "probability": 0.1571 + }, + { + "start": 5514.12, + "end": 5515.48, + "probability": 0.7406 + }, + { + "start": 5515.62, + "end": 5518.18, + "probability": 0.3088 + }, + { + "start": 5518.82, + "end": 5521.62, + "probability": 0.8651 + }, + { + "start": 5521.68, + "end": 5521.7, + "probability": 0.2521 + }, + { + "start": 5521.7, + "end": 5521.7, + "probability": 0.2064 + }, + { + "start": 5521.7, + "end": 5523.32, + "probability": 0.8623 + }, + { + "start": 5523.54, + "end": 5524.84, + "probability": 0.8029 + }, + { + "start": 5525.32, + "end": 5527.24, + "probability": 0.8163 + }, + { + "start": 5528.18, + "end": 5529.12, + "probability": 0.7183 + }, + { + "start": 5529.42, + "end": 5529.7, + "probability": 0.4151 + }, + { + "start": 5529.8, + "end": 5532.74, + "probability": 0.9907 + }, + { + "start": 5533.92, + "end": 5537.36, + "probability": 0.9967 + }, + { + "start": 5538.14, + "end": 5540.44, + "probability": 0.9769 + }, + { + "start": 5541.06, + "end": 5545.81, + "probability": 0.9952 + }, + { + "start": 5546.8, + "end": 5547.34, + "probability": 0.6321 + }, + { + "start": 5547.8, + "end": 5550.87, + "probability": 0.9846 + }, + { + "start": 5552.26, + "end": 5553.2, + "probability": 0.4723 + }, + { + "start": 5553.28, + "end": 5557.64, + "probability": 0.9536 + }, + { + "start": 5558.24, + "end": 5564.16, + "probability": 0.6152 + }, + { + "start": 5564.72, + "end": 5570.02, + "probability": 0.9056 + }, + { + "start": 5570.62, + "end": 5576.44, + "probability": 0.8864 + }, + { + "start": 5576.44, + "end": 5580.22, + "probability": 0.9902 + }, + { + "start": 5580.68, + "end": 5586.6, + "probability": 0.9603 + }, + { + "start": 5587.36, + "end": 5589.82, + "probability": 0.9804 + }, + { + "start": 5590.08, + "end": 5592.34, + "probability": 0.7488 + }, + { + "start": 5592.74, + "end": 5596.54, + "probability": 0.6503 + }, + { + "start": 5596.62, + "end": 5597.96, + "probability": 0.8033 + }, + { + "start": 5598.24, + "end": 5601.46, + "probability": 0.8966 + }, + { + "start": 5601.66, + "end": 5602.56, + "probability": 0.7996 + }, + { + "start": 5602.96, + "end": 5604.44, + "probability": 0.9834 + }, + { + "start": 5604.52, + "end": 5606.84, + "probability": 0.895 + }, + { + "start": 5607.16, + "end": 5608.34, + "probability": 0.8865 + }, + { + "start": 5608.54, + "end": 5609.3, + "probability": 0.6739 + }, + { + "start": 5609.36, + "end": 5611.36, + "probability": 0.9938 + }, + { + "start": 5612.12, + "end": 5616.26, + "probability": 0.7479 + }, + { + "start": 5617.1, + "end": 5617.72, + "probability": 0.7729 + }, + { + "start": 5617.94, + "end": 5619.28, + "probability": 0.7136 + }, + { + "start": 5619.3, + "end": 5620.3, + "probability": 0.4434 + }, + { + "start": 5620.46, + "end": 5621.74, + "probability": 0.6897 + }, + { + "start": 5622.7, + "end": 5623.7, + "probability": 0.8674 + }, + { + "start": 5624.4, + "end": 5628.48, + "probability": 0.9668 + }, + { + "start": 5629.32, + "end": 5631.32, + "probability": 0.957 + }, + { + "start": 5631.5, + "end": 5635.76, + "probability": 0.7065 + }, + { + "start": 5635.76, + "end": 5638.6, + "probability": 0.9888 + }, + { + "start": 5638.68, + "end": 5639.16, + "probability": 0.9985 + }, + { + "start": 5640.26, + "end": 5643.3, + "probability": 0.9382 + }, + { + "start": 5644.38, + "end": 5647.18, + "probability": 0.7969 + }, + { + "start": 5647.76, + "end": 5649.17, + "probability": 0.9492 + }, + { + "start": 5650.08, + "end": 5651.86, + "probability": 0.9969 + }, + { + "start": 5652.06, + "end": 5653.16, + "probability": 0.8697 + }, + { + "start": 5653.36, + "end": 5654.02, + "probability": 0.751 + }, + { + "start": 5654.1, + "end": 5656.86, + "probability": 0.9746 + }, + { + "start": 5657.56, + "end": 5660.66, + "probability": 0.7323 + }, + { + "start": 5661.2, + "end": 5662.66, + "probability": 0.6877 + }, + { + "start": 5662.8, + "end": 5666.06, + "probability": 0.9873 + }, + { + "start": 5666.68, + "end": 5669.46, + "probability": 0.9946 + }, + { + "start": 5670.24, + "end": 5672.52, + "probability": 0.8945 + }, + { + "start": 5673.08, + "end": 5675.22, + "probability": 0.9922 + }, + { + "start": 5675.28, + "end": 5678.04, + "probability": 0.829 + }, + { + "start": 5678.42, + "end": 5680.84, + "probability": 0.9302 + }, + { + "start": 5681.24, + "end": 5681.84, + "probability": 0.4777 + }, + { + "start": 5682.24, + "end": 5683.64, + "probability": 0.988 + }, + { + "start": 5684.1, + "end": 5685.12, + "probability": 0.7616 + }, + { + "start": 5685.12, + "end": 5688.2, + "probability": 0.7161 + }, + { + "start": 5688.26, + "end": 5689.14, + "probability": 0.6984 + }, + { + "start": 5689.42, + "end": 5691.88, + "probability": 0.8693 + }, + { + "start": 5691.92, + "end": 5693.04, + "probability": 0.8677 + }, + { + "start": 5693.08, + "end": 5693.62, + "probability": 0.9762 + }, + { + "start": 5693.9, + "end": 5694.48, + "probability": 0.9066 + }, + { + "start": 5695.38, + "end": 5697.38, + "probability": 0.7174 + }, + { + "start": 5697.46, + "end": 5698.76, + "probability": 0.6971 + }, + { + "start": 5714.48, + "end": 5720.02, + "probability": 0.9951 + }, + { + "start": 5720.48, + "end": 5721.48, + "probability": 0.7607 + }, + { + "start": 5721.7, + "end": 5723.29, + "probability": 0.9443 + }, + { + "start": 5723.9, + "end": 5724.35, + "probability": 0.8003 + }, + { + "start": 5724.9, + "end": 5725.8, + "probability": 0.8249 + }, + { + "start": 5726.16, + "end": 5727.74, + "probability": 0.9978 + }, + { + "start": 5728.42, + "end": 5729.34, + "probability": 0.9563 + }, + { + "start": 5729.46, + "end": 5734.0, + "probability": 0.9906 + }, + { + "start": 5734.1, + "end": 5735.78, + "probability": 0.9938 + }, + { + "start": 5736.1, + "end": 5737.22, + "probability": 0.9578 + }, + { + "start": 5737.84, + "end": 5738.53, + "probability": 0.9767 + }, + { + "start": 5738.9, + "end": 5741.65, + "probability": 0.9922 + }, + { + "start": 5742.18, + "end": 5744.96, + "probability": 0.9817 + }, + { + "start": 5745.38, + "end": 5749.24, + "probability": 0.957 + }, + { + "start": 5749.24, + "end": 5752.3, + "probability": 0.989 + }, + { + "start": 5752.72, + "end": 5754.7, + "probability": 0.9941 + }, + { + "start": 5754.72, + "end": 5755.74, + "probability": 0.9917 + }, + { + "start": 5756.22, + "end": 5759.88, + "probability": 0.7896 + }, + { + "start": 5759.88, + "end": 5766.0, + "probability": 0.9663 + }, + { + "start": 5766.2, + "end": 5766.73, + "probability": 0.6855 + }, + { + "start": 5767.04, + "end": 5767.94, + "probability": 0.843 + }, + { + "start": 5768.3, + "end": 5770.4, + "probability": 0.9976 + }, + { + "start": 5770.5, + "end": 5772.84, + "probability": 0.9106 + }, + { + "start": 5772.9, + "end": 5773.82, + "probability": 0.9495 + }, + { + "start": 5774.04, + "end": 5775.06, + "probability": 0.9481 + }, + { + "start": 5775.1, + "end": 5778.34, + "probability": 0.8901 + }, + { + "start": 5778.34, + "end": 5781.82, + "probability": 0.9634 + }, + { + "start": 5782.24, + "end": 5785.42, + "probability": 0.9985 + }, + { + "start": 5785.58, + "end": 5786.48, + "probability": 0.9003 + }, + { + "start": 5787.0, + "end": 5791.42, + "probability": 0.8873 + }, + { + "start": 5791.42, + "end": 5794.52, + "probability": 0.7925 + }, + { + "start": 5794.6, + "end": 5794.92, + "probability": 0.5854 + }, + { + "start": 5795.38, + "end": 5797.26, + "probability": 0.926 + }, + { + "start": 5797.36, + "end": 5799.42, + "probability": 0.9888 + }, + { + "start": 5800.14, + "end": 5805.4, + "probability": 0.9893 + }, + { + "start": 5805.7, + "end": 5807.74, + "probability": 0.945 + }, + { + "start": 5808.1, + "end": 5809.16, + "probability": 0.6731 + }, + { + "start": 5809.28, + "end": 5811.24, + "probability": 0.9922 + }, + { + "start": 5811.42, + "end": 5812.98, + "probability": 0.5875 + }, + { + "start": 5813.36, + "end": 5814.32, + "probability": 0.9644 + }, + { + "start": 5814.64, + "end": 5816.78, + "probability": 0.9961 + }, + { + "start": 5817.04, + "end": 5818.87, + "probability": 0.998 + }, + { + "start": 5819.76, + "end": 5820.76, + "probability": 0.8885 + }, + { + "start": 5821.24, + "end": 5826.76, + "probability": 0.968 + }, + { + "start": 5826.94, + "end": 5827.58, + "probability": 0.9138 + }, + { + "start": 5827.86, + "end": 5832.5, + "probability": 0.9875 + }, + { + "start": 5832.68, + "end": 5833.42, + "probability": 0.6857 + }, + { + "start": 5834.24, + "end": 5836.5, + "probability": 0.9755 + }, + { + "start": 5836.96, + "end": 5839.48, + "probability": 0.5097 + }, + { + "start": 5840.16, + "end": 5841.24, + "probability": 0.9655 + }, + { + "start": 5841.98, + "end": 5842.92, + "probability": 0.8945 + }, + { + "start": 5843.44, + "end": 5844.41, + "probability": 0.6461 + }, + { + "start": 5844.92, + "end": 5846.88, + "probability": 0.9884 + }, + { + "start": 5847.32, + "end": 5848.72, + "probability": 0.9813 + }, + { + "start": 5848.92, + "end": 5850.72, + "probability": 0.6699 + }, + { + "start": 5850.8, + "end": 5852.62, + "probability": 0.9234 + }, + { + "start": 5852.78, + "end": 5852.96, + "probability": 0.112 + }, + { + "start": 5853.14, + "end": 5856.58, + "probability": 0.9932 + }, + { + "start": 5856.58, + "end": 5860.3, + "probability": 0.9943 + }, + { + "start": 5860.44, + "end": 5861.02, + "probability": 0.9824 + }, + { + "start": 5861.86, + "end": 5864.68, + "probability": 0.9978 + }, + { + "start": 5865.18, + "end": 5867.5, + "probability": 0.8028 + }, + { + "start": 5867.52, + "end": 5870.32, + "probability": 0.7254 + }, + { + "start": 5870.56, + "end": 5873.7, + "probability": 0.9684 + }, + { + "start": 5874.38, + "end": 5875.98, + "probability": 0.9718 + }, + { + "start": 5876.4, + "end": 5877.78, + "probability": 0.7059 + }, + { + "start": 5877.87, + "end": 5878.84, + "probability": 0.6296 + }, + { + "start": 5879.32, + "end": 5879.94, + "probability": 0.6225 + }, + { + "start": 5880.42, + "end": 5881.76, + "probability": 0.9545 + }, + { + "start": 5882.16, + "end": 5883.86, + "probability": 0.9338 + }, + { + "start": 5883.98, + "end": 5884.9, + "probability": 0.7756 + }, + { + "start": 5885.02, + "end": 5889.94, + "probability": 0.983 + }, + { + "start": 5890.18, + "end": 5893.44, + "probability": 0.9962 + }, + { + "start": 5894.52, + "end": 5895.7, + "probability": 0.9944 + }, + { + "start": 5896.28, + "end": 5897.14, + "probability": 0.6765 + }, + { + "start": 5897.36, + "end": 5898.06, + "probability": 0.9413 + }, + { + "start": 5898.1, + "end": 5898.34, + "probability": 0.5478 + }, + { + "start": 5899.04, + "end": 5899.78, + "probability": 0.8928 + }, + { + "start": 5900.12, + "end": 5901.58, + "probability": 0.9912 + }, + { + "start": 5901.92, + "end": 5902.42, + "probability": 0.4293 + }, + { + "start": 5902.58, + "end": 5903.0, + "probability": 0.8628 + }, + { + "start": 5903.28, + "end": 5906.98, + "probability": 0.9976 + }, + { + "start": 5907.68, + "end": 5908.16, + "probability": 0.478 + }, + { + "start": 5908.26, + "end": 5909.38, + "probability": 0.5653 + }, + { + "start": 5909.5, + "end": 5911.04, + "probability": 0.6737 + }, + { + "start": 5911.1, + "end": 5911.48, + "probability": 0.9431 + }, + { + "start": 5911.68, + "end": 5912.28, + "probability": 0.915 + }, + { + "start": 5912.82, + "end": 5913.68, + "probability": 0.7359 + }, + { + "start": 5913.68, + "end": 5915.26, + "probability": 0.4593 + }, + { + "start": 5915.28, + "end": 5916.96, + "probability": 0.8597 + }, + { + "start": 5916.96, + "end": 5919.88, + "probability": 0.738 + }, + { + "start": 5920.46, + "end": 5922.16, + "probability": 0.8162 + }, + { + "start": 5923.38, + "end": 5923.58, + "probability": 0.7367 + }, + { + "start": 5925.38, + "end": 5926.88, + "probability": 0.7276 + }, + { + "start": 5936.24, + "end": 5937.2, + "probability": 0.6606 + }, + { + "start": 5937.34, + "end": 5938.42, + "probability": 0.6532 + }, + { + "start": 5938.52, + "end": 5938.76, + "probability": 0.5377 + }, + { + "start": 5938.76, + "end": 5940.86, + "probability": 0.9903 + }, + { + "start": 5941.36, + "end": 5946.02, + "probability": 0.9354 + }, + { + "start": 5946.66, + "end": 5947.83, + "probability": 0.9546 + }, + { + "start": 5949.98, + "end": 5951.1, + "probability": 0.9395 + }, + { + "start": 5952.0, + "end": 5955.1, + "probability": 0.998 + }, + { + "start": 5955.6, + "end": 5957.64, + "probability": 0.8038 + }, + { + "start": 5959.54, + "end": 5960.68, + "probability": 0.9862 + }, + { + "start": 5960.68, + "end": 5961.22, + "probability": 0.9899 + }, + { + "start": 5961.3, + "end": 5966.66, + "probability": 0.995 + }, + { + "start": 5967.24, + "end": 5968.06, + "probability": 0.882 + }, + { + "start": 5968.14, + "end": 5969.72, + "probability": 0.9846 + }, + { + "start": 5970.2, + "end": 5973.32, + "probability": 0.8892 + }, + { + "start": 5973.9, + "end": 5977.98, + "probability": 0.8778 + }, + { + "start": 5978.8, + "end": 5982.3, + "probability": 0.9891 + }, + { + "start": 5983.16, + "end": 5985.6, + "probability": 0.463 + }, + { + "start": 5986.42, + "end": 5987.72, + "probability": 0.6922 + }, + { + "start": 5988.0, + "end": 5990.96, + "probability": 0.9558 + }, + { + "start": 5991.02, + "end": 5994.18, + "probability": 0.9881 + }, + { + "start": 5995.02, + "end": 5996.66, + "probability": 0.7365 + }, + { + "start": 5997.38, + "end": 6002.44, + "probability": 0.9865 + }, + { + "start": 6003.1, + "end": 6005.48, + "probability": 0.9946 + }, + { + "start": 6005.68, + "end": 6006.98, + "probability": 0.9954 + }, + { + "start": 6007.54, + "end": 6013.36, + "probability": 0.9646 + }, + { + "start": 6013.84, + "end": 6014.88, + "probability": 0.9285 + }, + { + "start": 6014.96, + "end": 6017.92, + "probability": 0.9539 + }, + { + "start": 6018.48, + "end": 6021.42, + "probability": 0.8517 + }, + { + "start": 6021.92, + "end": 6023.44, + "probability": 0.9014 + }, + { + "start": 6024.02, + "end": 6029.02, + "probability": 0.908 + }, + { + "start": 6029.38, + "end": 6030.47, + "probability": 0.9878 + }, + { + "start": 6031.22, + "end": 6036.66, + "probability": 0.9824 + }, + { + "start": 6037.8, + "end": 6041.16, + "probability": 0.9957 + }, + { + "start": 6041.8, + "end": 6042.82, + "probability": 0.9245 + }, + { + "start": 6043.72, + "end": 6045.06, + "probability": 0.8896 + }, + { + "start": 6045.36, + "end": 6047.9, + "probability": 0.976 + }, + { + "start": 6048.08, + "end": 6048.42, + "probability": 0.8367 + }, + { + "start": 6049.72, + "end": 6050.18, + "probability": 0.6714 + }, + { + "start": 6051.3, + "end": 6052.62, + "probability": 0.8967 + }, + { + "start": 6070.16, + "end": 6071.18, + "probability": 0.5492 + }, + { + "start": 6071.7, + "end": 6072.64, + "probability": 0.6688 + }, + { + "start": 6073.78, + "end": 6077.18, + "probability": 0.9862 + }, + { + "start": 6078.98, + "end": 6081.44, + "probability": 0.894 + }, + { + "start": 6082.14, + "end": 6084.12, + "probability": 0.9411 + }, + { + "start": 6087.46, + "end": 6091.54, + "probability": 0.9244 + }, + { + "start": 6092.2, + "end": 6096.4, + "probability": 0.9848 + }, + { + "start": 6098.06, + "end": 6100.64, + "probability": 0.9904 + }, + { + "start": 6101.66, + "end": 6102.54, + "probability": 0.5 + }, + { + "start": 6103.58, + "end": 6107.28, + "probability": 0.9876 + }, + { + "start": 6107.76, + "end": 6108.54, + "probability": 0.9935 + }, + { + "start": 6109.48, + "end": 6112.62, + "probability": 0.9598 + }, + { + "start": 6113.54, + "end": 6114.74, + "probability": 0.8347 + }, + { + "start": 6117.46, + "end": 6119.52, + "probability": 0.9736 + }, + { + "start": 6120.72, + "end": 6123.1, + "probability": 0.9817 + }, + { + "start": 6123.8, + "end": 6127.06, + "probability": 0.9979 + }, + { + "start": 6127.62, + "end": 6129.5, + "probability": 0.9907 + }, + { + "start": 6130.12, + "end": 6133.08, + "probability": 0.9867 + }, + { + "start": 6134.0, + "end": 6134.6, + "probability": 0.8084 + }, + { + "start": 6135.26, + "end": 6135.98, + "probability": 0.6739 + }, + { + "start": 6137.12, + "end": 6137.94, + "probability": 0.994 + }, + { + "start": 6138.96, + "end": 6142.41, + "probability": 0.9902 + }, + { + "start": 6142.96, + "end": 6144.62, + "probability": 0.9902 + }, + { + "start": 6144.64, + "end": 6146.34, + "probability": 0.9723 + }, + { + "start": 6146.74, + "end": 6147.38, + "probability": 0.9052 + }, + { + "start": 6148.34, + "end": 6149.56, + "probability": 0.9996 + }, + { + "start": 6151.08, + "end": 6154.04, + "probability": 0.7123 + }, + { + "start": 6154.94, + "end": 6157.46, + "probability": 0.5934 + }, + { + "start": 6158.08, + "end": 6159.84, + "probability": 0.9494 + }, + { + "start": 6161.16, + "end": 6166.22, + "probability": 0.9545 + }, + { + "start": 6166.3, + "end": 6166.92, + "probability": 0.6273 + }, + { + "start": 6167.36, + "end": 6169.14, + "probability": 0.967 + }, + { + "start": 6171.26, + "end": 6171.98, + "probability": 0.942 + }, + { + "start": 6173.48, + "end": 6178.96, + "probability": 0.9976 + }, + { + "start": 6179.68, + "end": 6180.6, + "probability": 0.988 + }, + { + "start": 6183.04, + "end": 6183.92, + "probability": 0.9978 + }, + { + "start": 6184.12, + "end": 6184.24, + "probability": 0.5152 + }, + { + "start": 6184.96, + "end": 6186.98, + "probability": 0.9961 + }, + { + "start": 6188.74, + "end": 6189.62, + "probability": 0.9514 + }, + { + "start": 6190.3, + "end": 6193.54, + "probability": 0.9834 + }, + { + "start": 6194.6, + "end": 6195.86, + "probability": 0.9897 + }, + { + "start": 6196.52, + "end": 6201.26, + "probability": 0.9862 + }, + { + "start": 6202.56, + "end": 6204.0, + "probability": 0.6585 + }, + { + "start": 6204.02, + "end": 6205.18, + "probability": 0.8301 + }, + { + "start": 6205.84, + "end": 6206.58, + "probability": 0.466 + }, + { + "start": 6208.66, + "end": 6211.44, + "probability": 0.994 + }, + { + "start": 6213.12, + "end": 6213.8, + "probability": 0.5376 + }, + { + "start": 6214.32, + "end": 6215.38, + "probability": 0.9209 + }, + { + "start": 6215.66, + "end": 6216.12, + "probability": 0.4661 + }, + { + "start": 6216.66, + "end": 6217.48, + "probability": 0.9085 + }, + { + "start": 6219.4, + "end": 6220.52, + "probability": 0.9257 + }, + { + "start": 6221.18, + "end": 6222.14, + "probability": 0.9893 + }, + { + "start": 6222.62, + "end": 6223.46, + "probability": 0.9594 + }, + { + "start": 6223.56, + "end": 6224.66, + "probability": 0.9525 + }, + { + "start": 6225.62, + "end": 6226.98, + "probability": 0.9244 + }, + { + "start": 6227.02, + "end": 6228.4, + "probability": 0.8743 + }, + { + "start": 6228.88, + "end": 6230.06, + "probability": 0.9983 + }, + { + "start": 6231.04, + "end": 6233.9, + "probability": 0.9364 + }, + { + "start": 6235.24, + "end": 6236.98, + "probability": 0.9944 + }, + { + "start": 6238.32, + "end": 6239.46, + "probability": 0.4983 + }, + { + "start": 6240.06, + "end": 6241.88, + "probability": 0.9851 + }, + { + "start": 6242.12, + "end": 6244.46, + "probability": 0.9913 + }, + { + "start": 6244.56, + "end": 6246.32, + "probability": 0.9985 + }, + { + "start": 6246.9, + "end": 6250.67, + "probability": 0.9046 + }, + { + "start": 6252.08, + "end": 6254.98, + "probability": 0.9316 + }, + { + "start": 6255.28, + "end": 6259.82, + "probability": 0.9001 + }, + { + "start": 6260.3, + "end": 6264.7, + "probability": 0.9956 + }, + { + "start": 6264.7, + "end": 6268.96, + "probability": 0.9788 + }, + { + "start": 6269.14, + "end": 6269.76, + "probability": 0.6026 + }, + { + "start": 6269.78, + "end": 6270.4, + "probability": 0.6112 + }, + { + "start": 6270.5, + "end": 6271.7, + "probability": 0.585 + }, + { + "start": 6273.72, + "end": 6275.36, + "probability": 0.5185 + }, + { + "start": 6297.0, + "end": 6298.04, + "probability": 0.7268 + }, + { + "start": 6298.76, + "end": 6301.76, + "probability": 0.883 + }, + { + "start": 6302.48, + "end": 6305.38, + "probability": 0.9971 + }, + { + "start": 6305.38, + "end": 6308.7, + "probability": 0.9987 + }, + { + "start": 6309.3, + "end": 6314.36, + "probability": 0.9995 + }, + { + "start": 6314.52, + "end": 6315.52, + "probability": 0.8442 + }, + { + "start": 6316.0, + "end": 6316.56, + "probability": 0.8736 + }, + { + "start": 6316.72, + "end": 6317.44, + "probability": 0.7092 + }, + { + "start": 6317.66, + "end": 6318.86, + "probability": 0.7729 + }, + { + "start": 6319.44, + "end": 6324.26, + "probability": 0.9315 + }, + { + "start": 6324.94, + "end": 6329.56, + "probability": 0.9834 + }, + { + "start": 6330.1, + "end": 6331.18, + "probability": 0.8848 + }, + { + "start": 6331.9, + "end": 6334.48, + "probability": 0.9966 + }, + { + "start": 6334.92, + "end": 6338.26, + "probability": 0.9757 + }, + { + "start": 6339.04, + "end": 6340.68, + "probability": 0.8687 + }, + { + "start": 6341.44, + "end": 6343.14, + "probability": 0.7434 + }, + { + "start": 6343.84, + "end": 6346.48, + "probability": 0.9562 + }, + { + "start": 6346.94, + "end": 6349.72, + "probability": 0.9959 + }, + { + "start": 6350.4, + "end": 6353.16, + "probability": 0.9513 + }, + { + "start": 6353.24, + "end": 6355.42, + "probability": 0.9953 + }, + { + "start": 6357.22, + "end": 6358.23, + "probability": 0.6005 + }, + { + "start": 6358.5, + "end": 6360.02, + "probability": 0.8874 + }, + { + "start": 6360.14, + "end": 6360.28, + "probability": 0.6181 + }, + { + "start": 6361.08, + "end": 6362.04, + "probability": 0.937 + }, + { + "start": 6362.6, + "end": 6365.3, + "probability": 0.9927 + }, + { + "start": 6365.98, + "end": 6368.06, + "probability": 0.9922 + }, + { + "start": 6368.6, + "end": 6374.26, + "probability": 0.9987 + }, + { + "start": 6374.9, + "end": 6377.78, + "probability": 0.8775 + }, + { + "start": 6377.78, + "end": 6381.7, + "probability": 0.9835 + }, + { + "start": 6381.94, + "end": 6383.78, + "probability": 0.7001 + }, + { + "start": 6383.88, + "end": 6384.84, + "probability": 0.8066 + }, + { + "start": 6385.46, + "end": 6388.64, + "probability": 0.9985 + }, + { + "start": 6388.9, + "end": 6390.7, + "probability": 0.8317 + }, + { + "start": 6391.4, + "end": 6395.38, + "probability": 0.9321 + }, + { + "start": 6395.94, + "end": 6402.44, + "probability": 0.9678 + }, + { + "start": 6403.0, + "end": 6404.04, + "probability": 0.9825 + }, + { + "start": 6404.58, + "end": 6406.38, + "probability": 0.8691 + }, + { + "start": 6406.84, + "end": 6411.34, + "probability": 0.9885 + }, + { + "start": 6412.2, + "end": 6413.82, + "probability": 0.6874 + }, + { + "start": 6414.4, + "end": 6419.82, + "probability": 0.6338 + }, + { + "start": 6420.04, + "end": 6421.64, + "probability": 0.128 + }, + { + "start": 6422.56, + "end": 6424.56, + "probability": 0.0791 + }, + { + "start": 6425.38, + "end": 6426.52, + "probability": 0.0215 + }, + { + "start": 6426.52, + "end": 6426.52, + "probability": 0.0543 + }, + { + "start": 6426.52, + "end": 6426.52, + "probability": 0.0716 + }, + { + "start": 6426.52, + "end": 6429.7, + "probability": 0.967 + }, + { + "start": 6430.54, + "end": 6435.16, + "probability": 0.9512 + }, + { + "start": 6435.34, + "end": 6438.54, + "probability": 0.9695 + }, + { + "start": 6439.1, + "end": 6442.58, + "probability": 0.7993 + }, + { + "start": 6443.26, + "end": 6445.98, + "probability": 0.9319 + }, + { + "start": 6446.2, + "end": 6446.4, + "probability": 0.4198 + }, + { + "start": 6446.46, + "end": 6446.92, + "probability": 0.7328 + }, + { + "start": 6447.68, + "end": 6449.32, + "probability": 0.944 + }, + { + "start": 6450.06, + "end": 6451.04, + "probability": 0.9843 + }, + { + "start": 6451.64, + "end": 6454.64, + "probability": 0.7432 + }, + { + "start": 6455.56, + "end": 6457.98, + "probability": 0.6984 + }, + { + "start": 6458.32, + "end": 6461.48, + "probability": 0.915 + }, + { + "start": 6462.18, + "end": 6465.1, + "probability": 0.8062 + }, + { + "start": 6466.02, + "end": 6467.02, + "probability": 0.8474 + }, + { + "start": 6467.08, + "end": 6470.8, + "probability": 0.6922 + }, + { + "start": 6471.7, + "end": 6473.43, + "probability": 0.8748 + }, + { + "start": 6474.04, + "end": 6476.88, + "probability": 0.8512 + }, + { + "start": 6477.0, + "end": 6480.48, + "probability": 0.9764 + }, + { + "start": 6480.6, + "end": 6483.98, + "probability": 0.0364 + }, + { + "start": 6484.58, + "end": 6490.0, + "probability": 0.3055 + }, + { + "start": 6490.1, + "end": 6490.8, + "probability": 0.0047 + }, + { + "start": 6493.08, + "end": 6493.86, + "probability": 0.0047 + }, + { + "start": 6493.86, + "end": 6495.92, + "probability": 0.0919 + }, + { + "start": 6495.92, + "end": 6496.46, + "probability": 0.0913 + }, + { + "start": 6496.66, + "end": 6496.96, + "probability": 0.0607 + }, + { + "start": 6498.48, + "end": 6501.78, + "probability": 0.0274 + }, + { + "start": 6502.1, + "end": 6502.96, + "probability": 0.0798 + }, + { + "start": 6504.26, + "end": 6505.26, + "probability": 0.3473 + }, + { + "start": 6505.48, + "end": 6508.58, + "probability": 0.1883 + }, + { + "start": 6510.28, + "end": 6514.57, + "probability": 0.022 + }, + { + "start": 6515.02, + "end": 6515.22, + "probability": 0.0833 + }, + { + "start": 6515.22, + "end": 6515.74, + "probability": 0.3722 + }, + { + "start": 6516.4, + "end": 6516.4, + "probability": 0.041 + }, + { + "start": 6516.4, + "end": 6517.02, + "probability": 0.0718 + }, + { + "start": 6517.12, + "end": 6517.76, + "probability": 0.2469 + }, + { + "start": 6520.96, + "end": 6521.8, + "probability": 0.2819 + }, + { + "start": 6523.52, + "end": 6529.12, + "probability": 0.0366 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6600.0, + "end": 6600.0, + "probability": 0.0 + }, + { + "start": 6601.84, + "end": 6602.58, + "probability": 0.1581 + }, + { + "start": 6602.58, + "end": 6603.26, + "probability": 0.1904 + }, + { + "start": 6603.28, + "end": 6605.07, + "probability": 0.0557 + }, + { + "start": 6605.1, + "end": 6606.5, + "probability": 0.0599 + }, + { + "start": 6608.29, + "end": 6608.64, + "probability": 0.0349 + }, + { + "start": 6608.64, + "end": 6608.68, + "probability": 0.0665 + }, + { + "start": 6623.64, + "end": 6624.6, + "probability": 0.2547 + }, + { + "start": 6626.02, + "end": 6628.5, + "probability": 0.1558 + }, + { + "start": 6628.98, + "end": 6631.92, + "probability": 0.0313 + }, + { + "start": 6633.51, + "end": 6635.84, + "probability": 0.3213 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.0, + "end": 6725.0, + "probability": 0.0 + }, + { + "start": 6725.16, + "end": 6725.62, + "probability": 0.1906 + }, + { + "start": 6725.62, + "end": 6727.26, + "probability": 0.3063 + }, + { + "start": 6727.4, + "end": 6730.38, + "probability": 0.803 + }, + { + "start": 6730.84, + "end": 6732.76, + "probability": 0.8595 + }, + { + "start": 6733.16, + "end": 6734.9, + "probability": 0.8256 + }, + { + "start": 6734.98, + "end": 6735.38, + "probability": 0.8677 + }, + { + "start": 6735.48, + "end": 6737.23, + "probability": 0.795 + }, + { + "start": 6737.62, + "end": 6738.7, + "probability": 0.905 + }, + { + "start": 6738.92, + "end": 6739.54, + "probability": 0.8581 + }, + { + "start": 6739.68, + "end": 6740.3, + "probability": 0.9778 + }, + { + "start": 6740.9, + "end": 6741.28, + "probability": 0.8691 + }, + { + "start": 6741.34, + "end": 6741.8, + "probability": 0.6341 + }, + { + "start": 6741.8, + "end": 6743.16, + "probability": 0.9543 + }, + { + "start": 6746.06, + "end": 6748.04, + "probability": 0.853 + }, + { + "start": 6752.34, + "end": 6755.28, + "probability": 0.8034 + }, + { + "start": 6756.2, + "end": 6757.84, + "probability": 0.4033 + }, + { + "start": 6757.86, + "end": 6758.14, + "probability": 0.6307 + }, + { + "start": 6758.24, + "end": 6760.56, + "probability": 0.9759 + }, + { + "start": 6761.08, + "end": 6761.74, + "probability": 0.0392 + }, + { + "start": 6761.74, + "end": 6765.02, + "probability": 0.9504 + }, + { + "start": 6765.26, + "end": 6765.88, + "probability": 0.8267 + }, + { + "start": 6766.54, + "end": 6766.98, + "probability": 0.8671 + }, + { + "start": 6768.08, + "end": 6775.16, + "probability": 0.9954 + }, + { + "start": 6775.18, + "end": 6779.02, + "probability": 0.9449 + }, + { + "start": 6779.84, + "end": 6781.28, + "probability": 0.9583 + }, + { + "start": 6782.1, + "end": 6783.2, + "probability": 0.9771 + }, + { + "start": 6783.52, + "end": 6787.52, + "probability": 0.9045 + }, + { + "start": 6787.58, + "end": 6788.88, + "probability": 0.6191 + }, + { + "start": 6790.33, + "end": 6794.54, + "probability": 0.8755 + }, + { + "start": 6795.3, + "end": 6795.7, + "probability": 0.9256 + }, + { + "start": 6796.72, + "end": 6799.04, + "probability": 0.9424 + }, + { + "start": 6799.1, + "end": 6799.86, + "probability": 0.7784 + }, + { + "start": 6799.88, + "end": 6801.06, + "probability": 0.8066 + }, + { + "start": 6801.18, + "end": 6801.86, + "probability": 0.363 + }, + { + "start": 6801.9, + "end": 6802.56, + "probability": 0.8561 + }, + { + "start": 6802.64, + "end": 6804.74, + "probability": 0.9277 + }, + { + "start": 6805.16, + "end": 6806.54, + "probability": 0.7398 + }, + { + "start": 6807.22, + "end": 6807.64, + "probability": 0.5461 + }, + { + "start": 6808.18, + "end": 6809.6, + "probability": 0.6007 + }, + { + "start": 6810.2, + "end": 6811.06, + "probability": 0.8765 + }, + { + "start": 6811.2, + "end": 6812.26, + "probability": 0.7489 + }, + { + "start": 6812.6, + "end": 6815.12, + "probability": 0.1135 + }, + { + "start": 6817.26, + "end": 6819.3, + "probability": 0.6407 + }, + { + "start": 6820.84, + "end": 6822.34, + "probability": 0.897 + }, + { + "start": 6823.9, + "end": 6828.7, + "probability": 0.9929 + }, + { + "start": 6829.72, + "end": 6831.76, + "probability": 0.4854 + }, + { + "start": 6831.76, + "end": 6832.0, + "probability": 0.0648 + }, + { + "start": 6832.74, + "end": 6833.22, + "probability": 0.6601 + }, + { + "start": 6833.58, + "end": 6835.88, + "probability": 0.4638 + }, + { + "start": 6840.04, + "end": 6841.66, + "probability": 0.0986 + }, + { + "start": 6841.66, + "end": 6843.1, + "probability": 0.1451 + }, + { + "start": 6843.26, + "end": 6843.75, + "probability": 0.0944 + }, + { + "start": 6843.78, + "end": 6843.96, + "probability": 0.0733 + }, + { + "start": 6843.98, + "end": 6844.18, + "probability": 0.1263 + }, + { + "start": 6844.18, + "end": 6845.44, + "probability": 0.7786 + }, + { + "start": 6845.44, + "end": 6846.42, + "probability": 0.4025 + }, + { + "start": 6846.54, + "end": 6853.08, + "probability": 0.99 + }, + { + "start": 6853.44, + "end": 6854.91, + "probability": 0.7516 + }, + { + "start": 6855.4, + "end": 6856.72, + "probability": 0.9775 + }, + { + "start": 6857.34, + "end": 6857.76, + "probability": 0.804 + }, + { + "start": 6859.7, + "end": 6861.2, + "probability": 0.9796 + }, + { + "start": 6862.04, + "end": 6868.24, + "probability": 0.9355 + }, + { + "start": 6869.42, + "end": 6871.04, + "probability": 0.8396 + }, + { + "start": 6871.56, + "end": 6871.88, + "probability": 0.8763 + }, + { + "start": 6873.04, + "end": 6873.91, + "probability": 0.5945 + }, + { + "start": 6875.36, + "end": 6876.68, + "probability": 0.9956 + }, + { + "start": 6877.94, + "end": 6879.28, + "probability": 0.9706 + }, + { + "start": 6880.06, + "end": 6880.68, + "probability": 0.0265 + }, + { + "start": 6880.84, + "end": 6881.48, + "probability": 0.7073 + }, + { + "start": 6882.3, + "end": 6884.5, + "probability": 0.9539 + }, + { + "start": 6884.62, + "end": 6887.4, + "probability": 0.1992 + }, + { + "start": 6887.8, + "end": 6888.28, + "probability": 0.001 + }, + { + "start": 6888.5, + "end": 6888.56, + "probability": 0.0663 + }, + { + "start": 6888.56, + "end": 6888.88, + "probability": 0.6405 + }, + { + "start": 6888.88, + "end": 6889.34, + "probability": 0.469 + }, + { + "start": 6889.76, + "end": 6890.24, + "probability": 0.9231 + }, + { + "start": 6891.62, + "end": 6894.06, + "probability": 0.8227 + }, + { + "start": 6894.12, + "end": 6897.14, + "probability": 0.9497 + }, + { + "start": 6897.52, + "end": 6898.96, + "probability": 0.6873 + }, + { + "start": 6899.0, + "end": 6901.08, + "probability": 0.9391 + }, + { + "start": 6901.46, + "end": 6901.68, + "probability": 0.0978 + }, + { + "start": 6901.68, + "end": 6902.22, + "probability": 0.3522 + }, + { + "start": 6902.88, + "end": 6909.14, + "probability": 0.6802 + }, + { + "start": 6910.14, + "end": 6913.5, + "probability": 0.9055 + }, + { + "start": 6914.36, + "end": 6916.42, + "probability": 0.9562 + }, + { + "start": 6917.14, + "end": 6919.34, + "probability": 0.9039 + }, + { + "start": 6920.0, + "end": 6921.72, + "probability": 0.947 + }, + { + "start": 6922.36, + "end": 6922.66, + "probability": 0.6979 + }, + { + "start": 6923.4, + "end": 6924.76, + "probability": 0.9612 + }, + { + "start": 6925.1, + "end": 6929.3, + "probability": 0.9775 + }, + { + "start": 6930.14, + "end": 6931.98, + "probability": 0.9413 + }, + { + "start": 6933.04, + "end": 6933.96, + "probability": 0.9966 + }, + { + "start": 6934.08, + "end": 6935.48, + "probability": 0.7401 + }, + { + "start": 6936.2, + "end": 6939.16, + "probability": 0.9682 + }, + { + "start": 6940.6, + "end": 6941.58, + "probability": 0.9612 + }, + { + "start": 6942.38, + "end": 6944.7, + "probability": 0.9365 + }, + { + "start": 6945.44, + "end": 6948.44, + "probability": 0.8563 + }, + { + "start": 6949.02, + "end": 6950.88, + "probability": 0.9165 + }, + { + "start": 6951.48, + "end": 6956.62, + "probability": 0.9954 + }, + { + "start": 6957.18, + "end": 6957.7, + "probability": 0.4351 + }, + { + "start": 6958.44, + "end": 6959.62, + "probability": 0.9789 + }, + { + "start": 6960.34, + "end": 6961.96, + "probability": 0.8326 + }, + { + "start": 6961.96, + "end": 6962.26, + "probability": 0.7125 + }, + { + "start": 6962.82, + "end": 6963.98, + "probability": 0.9165 + }, + { + "start": 6964.64, + "end": 6965.78, + "probability": 0.9675 + }, + { + "start": 6966.16, + "end": 6970.62, + "probability": 0.9264 + }, + { + "start": 6970.7, + "end": 6971.08, + "probability": 0.7553 + }, + { + "start": 6971.46, + "end": 6971.98, + "probability": 0.5633 + }, + { + "start": 6972.1, + "end": 6974.06, + "probability": 0.6303 + }, + { + "start": 6976.58, + "end": 6977.82, + "probability": 0.9851 + }, + { + "start": 6981.58, + "end": 6982.68, + "probability": 0.8798 + }, + { + "start": 6983.56, + "end": 6985.18, + "probability": 0.6311 + }, + { + "start": 6986.72, + "end": 6989.62, + "probability": 0.9596 + }, + { + "start": 6989.76, + "end": 6991.02, + "probability": 0.8665 + }, + { + "start": 6991.7, + "end": 6994.76, + "probability": 0.8431 + }, + { + "start": 6995.5, + "end": 7001.32, + "probability": 0.6197 + }, + { + "start": 7002.42, + "end": 7004.06, + "probability": 0.8577 + }, + { + "start": 7004.76, + "end": 7006.12, + "probability": 0.1363 + }, + { + "start": 7006.52, + "end": 7007.24, + "probability": 0.0592 + }, + { + "start": 7007.24, + "end": 7008.0, + "probability": 0.2571 + }, + { + "start": 7008.02, + "end": 7008.02, + "probability": 0.0004 + }, + { + "start": 7009.58, + "end": 7009.94, + "probability": 0.2124 + }, + { + "start": 7010.2, + "end": 7010.3, + "probability": 0.0728 + }, + { + "start": 7011.98, + "end": 7012.08, + "probability": 0.1807 + }, + { + "start": 7012.68, + "end": 7016.12, + "probability": 0.5127 + }, + { + "start": 7016.34, + "end": 7016.46, + "probability": 0.0273 + }, + { + "start": 7017.68, + "end": 7018.74, + "probability": 0.1087 + }, + { + "start": 7018.86, + "end": 7025.36, + "probability": 0.9807 + }, + { + "start": 7026.14, + "end": 7027.44, + "probability": 0.9407 + }, + { + "start": 7027.52, + "end": 7028.18, + "probability": 0.9709 + }, + { + "start": 7028.32, + "end": 7028.76, + "probability": 0.6179 + }, + { + "start": 7028.76, + "end": 7032.76, + "probability": 0.9858 + }, + { + "start": 7033.54, + "end": 7035.36, + "probability": 0.8523 + }, + { + "start": 7035.94, + "end": 7038.56, + "probability": 0.7389 + }, + { + "start": 7039.14, + "end": 7040.56, + "probability": 0.8242 + }, + { + "start": 7040.74, + "end": 7041.44, + "probability": 0.7467 + }, + { + "start": 7041.76, + "end": 7045.8, + "probability": 0.7059 + }, + { + "start": 7046.3, + "end": 7047.2, + "probability": 0.6991 + }, + { + "start": 7047.48, + "end": 7048.28, + "probability": 0.9929 + }, + { + "start": 7049.34, + "end": 7051.24, + "probability": 0.3038 + }, + { + "start": 7051.24, + "end": 7051.38, + "probability": 0.4085 + }, + { + "start": 7051.38, + "end": 7052.18, + "probability": 0.1613 + }, + { + "start": 7052.78, + "end": 7054.88, + "probability": 0.9184 + }, + { + "start": 7054.92, + "end": 7054.96, + "probability": 0.5438 + }, + { + "start": 7054.96, + "end": 7056.5, + "probability": 0.7 + }, + { + "start": 7057.54, + "end": 7060.78, + "probability": 0.8144 + }, + { + "start": 7061.5, + "end": 7064.8, + "probability": 0.9912 + }, + { + "start": 7064.8, + "end": 7069.02, + "probability": 0.9908 + }, + { + "start": 7069.74, + "end": 7074.22, + "probability": 0.8739 + }, + { + "start": 7075.08, + "end": 7075.92, + "probability": 0.7324 + }, + { + "start": 7076.0, + "end": 7077.7, + "probability": 0.9901 + }, + { + "start": 7077.84, + "end": 7079.04, + "probability": 0.7516 + }, + { + "start": 7079.6, + "end": 7080.94, + "probability": 0.9892 + }, + { + "start": 7081.7, + "end": 7082.54, + "probability": 0.9798 + }, + { + "start": 7082.78, + "end": 7084.22, + "probability": 0.6127 + }, + { + "start": 7085.06, + "end": 7087.24, + "probability": 0.7015 + }, + { + "start": 7087.94, + "end": 7089.42, + "probability": 0.882 + }, + { + "start": 7089.5, + "end": 7091.66, + "probability": 0.4828 + }, + { + "start": 7092.28, + "end": 7092.42, + "probability": 0.2675 + }, + { + "start": 7093.14, + "end": 7095.92, + "probability": 0.9585 + }, + { + "start": 7096.4, + "end": 7097.02, + "probability": 0.7797 + }, + { + "start": 7098.34, + "end": 7101.56, + "probability": 0.9951 + }, + { + "start": 7102.22, + "end": 7103.46, + "probability": 0.6629 + }, + { + "start": 7104.22, + "end": 7106.78, + "probability": 0.9789 + }, + { + "start": 7107.5, + "end": 7110.98, + "probability": 0.9669 + }, + { + "start": 7111.6, + "end": 7118.16, + "probability": 0.9964 + }, + { + "start": 7118.88, + "end": 7122.6, + "probability": 0.9975 + }, + { + "start": 7123.44, + "end": 7126.94, + "probability": 0.9994 + }, + { + "start": 7127.74, + "end": 7130.98, + "probability": 0.9506 + }, + { + "start": 7131.24, + "end": 7133.06, + "probability": 0.9614 + }, + { + "start": 7134.02, + "end": 7135.32, + "probability": 0.8174 + }, + { + "start": 7135.7, + "end": 7136.66, + "probability": 0.8763 + }, + { + "start": 7137.1, + "end": 7137.74, + "probability": 0.812 + }, + { + "start": 7137.82, + "end": 7141.8, + "probability": 0.8817 + }, + { + "start": 7142.32, + "end": 7143.28, + "probability": 0.8307 + }, + { + "start": 7143.4, + "end": 7143.86, + "probability": 0.9414 + }, + { + "start": 7144.42, + "end": 7145.7, + "probability": 0.9502 + }, + { + "start": 7146.52, + "end": 7149.38, + "probability": 0.9734 + }, + { + "start": 7149.88, + "end": 7152.17, + "probability": 0.9971 + }, + { + "start": 7152.82, + "end": 7153.82, + "probability": 0.917 + }, + { + "start": 7154.1, + "end": 7156.92, + "probability": 0.9915 + }, + { + "start": 7156.98, + "end": 7157.81, + "probability": 0.8751 + }, + { + "start": 7158.56, + "end": 7159.78, + "probability": 0.7429 + }, + { + "start": 7160.42, + "end": 7162.28, + "probability": 0.9871 + }, + { + "start": 7162.34, + "end": 7163.06, + "probability": 0.6541 + }, + { + "start": 7163.4, + "end": 7164.12, + "probability": 0.9491 + }, + { + "start": 7164.28, + "end": 7165.66, + "probability": 0.9873 + }, + { + "start": 7166.1, + "end": 7169.44, + "probability": 0.9664 + }, + { + "start": 7169.72, + "end": 7170.74, + "probability": 0.9761 + }, + { + "start": 7172.62, + "end": 7173.44, + "probability": 0.7401 + }, + { + "start": 7173.58, + "end": 7176.02, + "probability": 0.9457 + }, + { + "start": 7176.1, + "end": 7178.12, + "probability": 0.837 + }, + { + "start": 7178.86, + "end": 7180.0, + "probability": 0.9604 + }, + { + "start": 7197.26, + "end": 7200.54, + "probability": 0.7648 + }, + { + "start": 7201.46, + "end": 7202.86, + "probability": 0.8948 + }, + { + "start": 7203.64, + "end": 7206.02, + "probability": 0.9932 + }, + { + "start": 7206.74, + "end": 7209.16, + "probability": 0.8435 + }, + { + "start": 7209.9, + "end": 7211.84, + "probability": 0.9911 + }, + { + "start": 7212.54, + "end": 7216.9, + "probability": 0.9726 + }, + { + "start": 7216.98, + "end": 7220.7, + "probability": 0.8726 + }, + { + "start": 7221.74, + "end": 7225.1, + "probability": 0.9613 + }, + { + "start": 7225.58, + "end": 7226.76, + "probability": 0.7215 + }, + { + "start": 7226.86, + "end": 7228.92, + "probability": 0.9277 + }, + { + "start": 7230.44, + "end": 7233.54, + "probability": 0.9558 + }, + { + "start": 7233.6, + "end": 7234.1, + "probability": 0.7285 + }, + { + "start": 7234.74, + "end": 7235.16, + "probability": 0.5845 + }, + { + "start": 7235.22, + "end": 7237.52, + "probability": 0.51 + }, + { + "start": 7238.24, + "end": 7245.64, + "probability": 0.0631 + }, + { + "start": 7259.1, + "end": 7260.06, + "probability": 0.765 + }, + { + "start": 7263.96, + "end": 7266.32, + "probability": 0.2621 + }, + { + "start": 7266.36, + "end": 7267.22, + "probability": 0.4028 + }, + { + "start": 7267.42, + "end": 7269.68, + "probability": 0.7038 + }, + { + "start": 7270.34, + "end": 7272.98, + "probability": 0.1328 + }, + { + "start": 7273.08, + "end": 7273.54, + "probability": 0.7103 + }, + { + "start": 7275.06, + "end": 7275.56, + "probability": 0.2353 + }, + { + "start": 7281.12, + "end": 7281.9, + "probability": 0.1317 + }, + { + "start": 7285.12, + "end": 7287.98, + "probability": 0.2587 + }, + { + "start": 7291.06, + "end": 7291.36, + "probability": 0.8838 + }, + { + "start": 7291.96, + "end": 7293.74, + "probability": 0.5728 + }, + { + "start": 7294.0, + "end": 7294.84, + "probability": 0.5703 + }, + { + "start": 7298.1, + "end": 7303.26, + "probability": 0.5725 + }, + { + "start": 7305.08, + "end": 7307.46, + "probability": 0.0505 + }, + { + "start": 7312.58, + "end": 7315.56, + "probability": 0.0174 + }, + { + "start": 7315.9, + "end": 7316.6, + "probability": 0.0506 + }, + { + "start": 7316.6, + "end": 7320.86, + "probability": 0.0333 + }, + { + "start": 7321.42, + "end": 7322.32, + "probability": 0.1126 + }, + { + "start": 7324.48, + "end": 7327.28, + "probability": 0.0703 + }, + { + "start": 7370.0, + "end": 7370.0, + "probability": 0.0 + }, + { + "start": 7370.0, + "end": 7370.0, + "probability": 0.0 + }, + { + "start": 7370.0, + "end": 7370.0, + "probability": 0.0 + }, + { + "start": 7370.12, + "end": 7370.38, + "probability": 0.5172 + }, + { + "start": 7371.66, + "end": 7372.08, + "probability": 0.3718 + }, + { + "start": 7375.46, + "end": 7377.38, + "probability": 0.2121 + }, + { + "start": 7378.12, + "end": 7379.14, + "probability": 0.4423 + }, + { + "start": 7379.56, + "end": 7383.16, + "probability": 0.6549 + }, + { + "start": 7383.16, + "end": 7383.54, + "probability": 0.9348 + }, + { + "start": 7384.66, + "end": 7386.16, + "probability": 0.0922 + }, + { + "start": 7387.28, + "end": 7389.76, + "probability": 0.1772 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7494.0, + "end": 7494.0, + "probability": 0.0 + }, + { + "start": 7495.78, + "end": 7496.42, + "probability": 0.0355 + }, + { + "start": 7497.46, + "end": 7505.72, + "probability": 0.0632 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7616.0, + "end": 7616.0, + "probability": 0.0 + }, + { + "start": 7623.52, + "end": 7624.81, + "probability": 0.0913 + }, + { + "start": 7626.48, + "end": 7630.16, + "probability": 0.2563 + }, + { + "start": 7630.7, + "end": 7632.58, + "probability": 0.129 + }, + { + "start": 7635.74, + "end": 7636.78, + "probability": 0.0215 + }, + { + "start": 7648.56, + "end": 7651.22, + "probability": 0.1892 + }, + { + "start": 7651.52, + "end": 7653.56, + "probability": 0.1339 + }, + { + "start": 7653.56, + "end": 7659.64, + "probability": 0.1389 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.0, + "end": 7743.0, + "probability": 0.0 + }, + { + "start": 7743.24, + "end": 7743.4, + "probability": 0.1142 + }, + { + "start": 7743.4, + "end": 7744.72, + "probability": 0.7449 + }, + { + "start": 7744.82, + "end": 7748.06, + "probability": 0.9576 + }, + { + "start": 7748.86, + "end": 7749.16, + "probability": 0.4212 + }, + { + "start": 7749.3, + "end": 7750.5, + "probability": 0.7026 + }, + { + "start": 7750.68, + "end": 7751.18, + "probability": 0.8547 + }, + { + "start": 7751.2, + "end": 7751.88, + "probability": 0.865 + }, + { + "start": 7752.0, + "end": 7755.08, + "probability": 0.9727 + }, + { + "start": 7756.02, + "end": 7759.88, + "probability": 0.7075 + }, + { + "start": 7759.98, + "end": 7761.98, + "probability": 0.7595 + }, + { + "start": 7762.4, + "end": 7766.08, + "probability": 0.9916 + }, + { + "start": 7766.68, + "end": 7767.94, + "probability": 0.9089 + }, + { + "start": 7768.34, + "end": 7770.82, + "probability": 0.9463 + }, + { + "start": 7771.28, + "end": 7778.0, + "probability": 0.8895 + }, + { + "start": 7778.38, + "end": 7779.44, + "probability": 0.8457 + }, + { + "start": 7779.54, + "end": 7780.66, + "probability": 0.7167 + }, + { + "start": 7781.38, + "end": 7785.72, + "probability": 0.8046 + }, + { + "start": 7786.12, + "end": 7788.06, + "probability": 0.9927 + }, + { + "start": 7788.72, + "end": 7790.52, + "probability": 0.8906 + }, + { + "start": 7790.82, + "end": 7796.02, + "probability": 0.9851 + }, + { + "start": 7796.16, + "end": 7798.1, + "probability": 0.9323 + }, + { + "start": 7798.58, + "end": 7803.08, + "probability": 0.9868 + }, + { + "start": 7803.8, + "end": 7809.3, + "probability": 0.9691 + }, + { + "start": 7809.98, + "end": 7814.0, + "probability": 0.9724 + }, + { + "start": 7814.64, + "end": 7818.84, + "probability": 0.9907 + }, + { + "start": 7819.2, + "end": 7821.2, + "probability": 0.8523 + }, + { + "start": 7821.58, + "end": 7825.02, + "probability": 0.892 + }, + { + "start": 7825.76, + "end": 7828.04, + "probability": 0.9527 + }, + { + "start": 7828.14, + "end": 7829.24, + "probability": 0.895 + }, + { + "start": 7830.06, + "end": 7833.18, + "probability": 0.995 + }, + { + "start": 7833.6, + "end": 7837.7, + "probability": 0.9892 + }, + { + "start": 7838.3, + "end": 7841.6, + "probability": 0.9913 + }, + { + "start": 7842.18, + "end": 7845.9, + "probability": 0.9306 + }, + { + "start": 7845.9, + "end": 7848.84, + "probability": 0.9336 + }, + { + "start": 7848.9, + "end": 7849.34, + "probability": 0.5412 + }, + { + "start": 7849.68, + "end": 7851.7, + "probability": 0.8654 + }, + { + "start": 7852.48, + "end": 7854.8, + "probability": 0.9746 + }, + { + "start": 7854.8, + "end": 7857.6, + "probability": 0.9907 + }, + { + "start": 7858.36, + "end": 7867.24, + "probability": 0.9831 + }, + { + "start": 7867.24, + "end": 7872.16, + "probability": 0.9542 + }, + { + "start": 7872.9, + "end": 7875.54, + "probability": 0.9225 + }, + { + "start": 7875.58, + "end": 7878.56, + "probability": 0.6861 + }, + { + "start": 7879.74, + "end": 7881.92, + "probability": 0.9972 + }, + { + "start": 7883.26, + "end": 7885.04, + "probability": 0.9806 + }, + { + "start": 7886.0, + "end": 7889.83, + "probability": 0.9314 + }, + { + "start": 7890.0, + "end": 7890.86, + "probability": 0.987 + }, + { + "start": 7890.96, + "end": 7893.46, + "probability": 0.9796 + }, + { + "start": 7894.24, + "end": 7898.02, + "probability": 0.9067 + }, + { + "start": 7898.52, + "end": 7902.2, + "probability": 0.9518 + }, + { + "start": 7902.2, + "end": 7905.64, + "probability": 0.9915 + }, + { + "start": 7906.2, + "end": 7908.94, + "probability": 0.7634 + }, + { + "start": 7909.1, + "end": 7909.68, + "probability": 0.7604 + }, + { + "start": 7913.28, + "end": 7916.98, + "probability": 0.9908 + }, + { + "start": 7916.98, + "end": 7919.58, + "probability": 0.9928 + }, + { + "start": 7920.3, + "end": 7925.3, + "probability": 0.9716 + }, + { + "start": 7925.3, + "end": 7931.0, + "probability": 0.9525 + }, + { + "start": 7931.56, + "end": 7935.08, + "probability": 0.909 + }, + { + "start": 7935.9, + "end": 7939.88, + "probability": 0.9797 + }, + { + "start": 7940.92, + "end": 7944.34, + "probability": 0.9415 + }, + { + "start": 7944.34, + "end": 7946.86, + "probability": 0.8884 + }, + { + "start": 7947.92, + "end": 7950.46, + "probability": 0.8415 + }, + { + "start": 7951.76, + "end": 7954.35, + "probability": 0.8543 + }, + { + "start": 7954.74, + "end": 7957.02, + "probability": 0.816 + }, + { + "start": 7957.22, + "end": 7957.68, + "probability": 0.5964 + }, + { + "start": 7957.74, + "end": 7958.4, + "probability": 0.1472 + }, + { + "start": 7958.4, + "end": 7959.04, + "probability": 0.0524 + }, + { + "start": 7959.16, + "end": 7959.7, + "probability": 0.4572 + }, + { + "start": 7959.78, + "end": 7961.64, + "probability": 0.9137 + }, + { + "start": 7962.1, + "end": 7963.28, + "probability": 0.8702 + }, + { + "start": 7963.38, + "end": 7964.24, + "probability": 0.8973 + }, + { + "start": 7965.06, + "end": 7966.68, + "probability": 0.9136 + }, + { + "start": 7966.74, + "end": 7969.76, + "probability": 0.7573 + }, + { + "start": 7970.2, + "end": 7971.0, + "probability": 0.7535 + }, + { + "start": 7971.42, + "end": 7975.66, + "probability": 0.7778 + }, + { + "start": 7975.74, + "end": 7977.26, + "probability": 0.9746 + }, + { + "start": 7977.58, + "end": 7979.34, + "probability": 0.8748 + }, + { + "start": 7979.9, + "end": 7981.54, + "probability": 0.907 + }, + { + "start": 7981.92, + "end": 7985.34, + "probability": 0.8946 + }, + { + "start": 7985.34, + "end": 7990.32, + "probability": 0.9723 + }, + { + "start": 7990.72, + "end": 7992.34, + "probability": 0.9215 + }, + { + "start": 7992.94, + "end": 7997.74, + "probability": 0.9637 + }, + { + "start": 7997.74, + "end": 8002.64, + "probability": 0.8498 + }, + { + "start": 8003.32, + "end": 8007.22, + "probability": 0.924 + }, + { + "start": 8007.22, + "end": 8012.14, + "probability": 0.9918 + }, + { + "start": 8012.68, + "end": 8015.82, + "probability": 0.8947 + }, + { + "start": 8016.2, + "end": 8017.87, + "probability": 0.9651 + }, + { + "start": 8018.66, + "end": 8022.68, + "probability": 0.9146 + }, + { + "start": 8023.08, + "end": 8024.7, + "probability": 0.5835 + }, + { + "start": 8025.4, + "end": 8029.42, + "probability": 0.9692 + }, + { + "start": 8029.54, + "end": 8033.3, + "probability": 0.9743 + }, + { + "start": 8033.3, + "end": 8039.56, + "probability": 0.9855 + }, + { + "start": 8040.06, + "end": 8040.52, + "probability": 0.4904 + }, + { + "start": 8040.54, + "end": 8045.32, + "probability": 0.9807 + }, + { + "start": 8045.48, + "end": 8047.54, + "probability": 0.773 + }, + { + "start": 8047.62, + "end": 8052.2, + "probability": 0.8921 + }, + { + "start": 8052.7, + "end": 8054.08, + "probability": 0.814 + }, + { + "start": 8054.12, + "end": 8055.96, + "probability": 0.8335 + }, + { + "start": 8056.48, + "end": 8058.58, + "probability": 0.5818 + }, + { + "start": 8059.04, + "end": 8063.76, + "probability": 0.9851 + }, + { + "start": 8064.3, + "end": 8065.1, + "probability": 0.5382 + }, + { + "start": 8065.72, + "end": 8068.54, + "probability": 0.7794 + }, + { + "start": 8068.62, + "end": 8072.74, + "probability": 0.7788 + }, + { + "start": 8072.86, + "end": 8076.88, + "probability": 0.7915 + }, + { + "start": 8077.04, + "end": 8078.4, + "probability": 0.9797 + }, + { + "start": 8078.74, + "end": 8084.22, + "probability": 0.9893 + }, + { + "start": 8084.96, + "end": 8087.7, + "probability": 0.9774 + }, + { + "start": 8087.7, + "end": 8090.34, + "probability": 0.9493 + }, + { + "start": 8090.9, + "end": 8093.46, + "probability": 0.9788 + }, + { + "start": 8094.4, + "end": 8098.6, + "probability": 0.9983 + }, + { + "start": 8099.08, + "end": 8103.68, + "probability": 0.9399 + }, + { + "start": 8103.68, + "end": 8107.88, + "probability": 0.9954 + }, + { + "start": 8109.68, + "end": 8115.12, + "probability": 0.9946 + }, + { + "start": 8115.82, + "end": 8117.78, + "probability": 0.9897 + }, + { + "start": 8117.92, + "end": 8121.8, + "probability": 0.933 + }, + { + "start": 8122.36, + "end": 8123.18, + "probability": 0.8685 + }, + { + "start": 8123.98, + "end": 8126.58, + "probability": 0.8495 + }, + { + "start": 8126.74, + "end": 8130.14, + "probability": 0.8261 + }, + { + "start": 8130.66, + "end": 8131.96, + "probability": 0.8511 + }, + { + "start": 8132.06, + "end": 8136.02, + "probability": 0.8795 + }, + { + "start": 8136.38, + "end": 8140.6, + "probability": 0.9856 + }, + { + "start": 8141.0, + "end": 8145.86, + "probability": 0.9665 + }, + { + "start": 8146.26, + "end": 8148.88, + "probability": 0.9374 + }, + { + "start": 8149.5, + "end": 8151.38, + "probability": 0.5531 + }, + { + "start": 8151.86, + "end": 8153.92, + "probability": 0.9553 + }, + { + "start": 8153.92, + "end": 8156.9, + "probability": 0.996 + }, + { + "start": 8157.5, + "end": 8160.18, + "probability": 0.9785 + }, + { + "start": 8160.18, + "end": 8163.38, + "probability": 0.9943 + }, + { + "start": 8163.92, + "end": 8168.26, + "probability": 0.9878 + }, + { + "start": 8168.74, + "end": 8169.38, + "probability": 0.8375 + }, + { + "start": 8169.58, + "end": 8172.66, + "probability": 0.7484 + }, + { + "start": 8172.72, + "end": 8176.9, + "probability": 0.9626 + }, + { + "start": 8177.6, + "end": 8180.14, + "probability": 0.9117 + }, + { + "start": 8180.58, + "end": 8184.26, + "probability": 0.9661 + }, + { + "start": 8184.26, + "end": 8188.04, + "probability": 0.9961 + }, + { + "start": 8188.78, + "end": 8192.08, + "probability": 0.6309 + }, + { + "start": 8192.28, + "end": 8194.6, + "probability": 0.9453 + }, + { + "start": 8195.6, + "end": 8196.14, + "probability": 0.7261 + }, + { + "start": 8196.82, + "end": 8199.9, + "probability": 0.8765 + }, + { + "start": 8199.9, + "end": 8203.94, + "probability": 0.9847 + }, + { + "start": 8204.48, + "end": 8206.76, + "probability": 0.9334 + }, + { + "start": 8207.36, + "end": 8209.08, + "probability": 0.964 + }, + { + "start": 8209.52, + "end": 8212.56, + "probability": 0.8585 + }, + { + "start": 8213.0, + "end": 8215.56, + "probability": 0.7707 + }, + { + "start": 8216.18, + "end": 8217.64, + "probability": 0.9478 + }, + { + "start": 8218.2, + "end": 8221.34, + "probability": 0.7724 + }, + { + "start": 8221.38, + "end": 8224.4, + "probability": 0.9635 + }, + { + "start": 8224.54, + "end": 8225.28, + "probability": 0.8093 + }, + { + "start": 8225.88, + "end": 8228.34, + "probability": 0.9632 + }, + { + "start": 8228.34, + "end": 8232.58, + "probability": 0.9468 + }, + { + "start": 8232.58, + "end": 8235.82, + "probability": 0.8682 + }, + { + "start": 8236.54, + "end": 8240.48, + "probability": 0.9837 + }, + { + "start": 8240.94, + "end": 8242.55, + "probability": 0.7315 + }, + { + "start": 8243.18, + "end": 8245.42, + "probability": 0.8678 + }, + { + "start": 8245.82, + "end": 8250.68, + "probability": 0.8211 + }, + { + "start": 8251.3, + "end": 8253.28, + "probability": 0.9948 + }, + { + "start": 8253.84, + "end": 8256.5, + "probability": 0.9744 + }, + { + "start": 8256.5, + "end": 8259.88, + "probability": 0.9976 + }, + { + "start": 8260.32, + "end": 8262.72, + "probability": 0.9807 + }, + { + "start": 8263.1, + "end": 8265.46, + "probability": 0.7979 + }, + { + "start": 8266.04, + "end": 8267.74, + "probability": 0.9059 + }, + { + "start": 8268.24, + "end": 8272.06, + "probability": 0.9004 + }, + { + "start": 8272.06, + "end": 8276.48, + "probability": 0.9318 + }, + { + "start": 8277.08, + "end": 8278.62, + "probability": 0.8496 + }, + { + "start": 8278.7, + "end": 8282.0, + "probability": 0.7756 + }, + { + "start": 8282.1, + "end": 8284.76, + "probability": 0.8357 + }, + { + "start": 8285.58, + "end": 8289.16, + "probability": 0.9796 + }, + { + "start": 8289.7, + "end": 8292.74, + "probability": 0.6841 + }, + { + "start": 8293.1, + "end": 8296.0, + "probability": 0.8465 + }, + { + "start": 8296.54, + "end": 8298.22, + "probability": 0.9002 + }, + { + "start": 8298.76, + "end": 8299.24, + "probability": 0.5589 + }, + { + "start": 8299.26, + "end": 8301.2, + "probability": 0.7567 + }, + { + "start": 8301.28, + "end": 8304.44, + "probability": 0.8086 + }, + { + "start": 8304.44, + "end": 8308.44, + "probability": 0.9343 + }, + { + "start": 8308.88, + "end": 8311.9, + "probability": 0.9619 + }, + { + "start": 8312.54, + "end": 8312.96, + "probability": 0.5314 + }, + { + "start": 8313.0, + "end": 8315.58, + "probability": 0.7487 + }, + { + "start": 8316.36, + "end": 8317.8, + "probability": 0.8268 + }, + { + "start": 8317.88, + "end": 8322.29, + "probability": 0.7856 + }, + { + "start": 8323.08, + "end": 8324.92, + "probability": 0.9091 + }, + { + "start": 8325.46, + "end": 8331.6, + "probability": 0.9971 + }, + { + "start": 8332.3, + "end": 8333.0, + "probability": 0.7913 + }, + { + "start": 8333.18, + "end": 8334.9, + "probability": 0.8906 + }, + { + "start": 8335.1, + "end": 8335.74, + "probability": 0.7307 + }, + { + "start": 8336.42, + "end": 8339.2, + "probability": 0.9966 + }, + { + "start": 8339.2, + "end": 8342.12, + "probability": 0.9932 + }, + { + "start": 8342.6, + "end": 8345.24, + "probability": 0.818 + }, + { + "start": 8346.96, + "end": 8349.88, + "probability": 0.6019 + }, + { + "start": 8350.42, + "end": 8352.48, + "probability": 0.9608 + }, + { + "start": 8352.7, + "end": 8356.52, + "probability": 0.6448 + }, + { + "start": 8356.68, + "end": 8358.08, + "probability": 0.821 + }, + { + "start": 8358.2, + "end": 8359.44, + "probability": 0.9459 + }, + { + "start": 8360.0, + "end": 8362.62, + "probability": 0.6676 + }, + { + "start": 8363.24, + "end": 8363.66, + "probability": 0.6376 + }, + { + "start": 8364.22, + "end": 8368.62, + "probability": 0.6497 + }, + { + "start": 8368.62, + "end": 8373.6, + "probability": 0.9946 + }, + { + "start": 8374.16, + "end": 8376.04, + "probability": 0.6844 + }, + { + "start": 8376.1, + "end": 8378.28, + "probability": 0.9169 + }, + { + "start": 8379.14, + "end": 8380.1, + "probability": 0.9402 + }, + { + "start": 8380.86, + "end": 8382.96, + "probability": 0.5182 + }, + { + "start": 8384.78, + "end": 8389.26, + "probability": 0.9912 + }, + { + "start": 8390.5, + "end": 8390.76, + "probability": 0.0313 + }, + { + "start": 8390.76, + "end": 8391.96, + "probability": 0.2328 + }, + { + "start": 8391.96, + "end": 8392.78, + "probability": 0.0572 + }, + { + "start": 8392.78, + "end": 8393.2, + "probability": 0.3213 + }, + { + "start": 8393.32, + "end": 8395.44, + "probability": 0.7277 + }, + { + "start": 8396.12, + "end": 8398.04, + "probability": 0.2834 + }, + { + "start": 8398.4, + "end": 8401.02, + "probability": 0.3396 + }, + { + "start": 8401.18, + "end": 8403.36, + "probability": 0.8899 + }, + { + "start": 8403.5, + "end": 8403.84, + "probability": 0.4151 + }, + { + "start": 8403.88, + "end": 8404.78, + "probability": 0.606 + }, + { + "start": 8404.86, + "end": 8407.0, + "probability": 0.6305 + }, + { + "start": 8407.12, + "end": 8407.12, + "probability": 0.371 + }, + { + "start": 8407.12, + "end": 8407.8, + "probability": 0.0194 + }, + { + "start": 8408.82, + "end": 8410.58, + "probability": 0.0234 + }, + { + "start": 8411.34, + "end": 8412.06, + "probability": 0.0078 + }, + { + "start": 8413.74, + "end": 8414.38, + "probability": 0.1497 + }, + { + "start": 8414.38, + "end": 8414.88, + "probability": 0.1125 + }, + { + "start": 8415.22, + "end": 8415.8, + "probability": 0.4386 + }, + { + "start": 8415.92, + "end": 8418.62, + "probability": 0.9683 + }, + { + "start": 8418.7, + "end": 8419.9, + "probability": 0.9855 + }, + { + "start": 8420.58, + "end": 8421.04, + "probability": 0.6841 + }, + { + "start": 8421.26, + "end": 8425.5, + "probability": 0.9355 + }, + { + "start": 8425.8, + "end": 8429.22, + "probability": 0.9562 + }, + { + "start": 8429.28, + "end": 8430.48, + "probability": 0.868 + }, + { + "start": 8430.98, + "end": 8432.1, + "probability": 0.7482 + }, + { + "start": 8432.24, + "end": 8434.76, + "probability": 0.8345 + }, + { + "start": 8435.24, + "end": 8437.26, + "probability": 0.9495 + }, + { + "start": 8437.86, + "end": 8438.64, + "probability": 0.8062 + }, + { + "start": 8438.68, + "end": 8441.34, + "probability": 0.8145 + }, + { + "start": 8441.34, + "end": 8445.8, + "probability": 0.9817 + }, + { + "start": 8446.2, + "end": 8451.18, + "probability": 0.8682 + }, + { + "start": 8451.22, + "end": 8452.94, + "probability": 0.856 + }, + { + "start": 8453.4, + "end": 8454.32, + "probability": 0.911 + }, + { + "start": 8454.5, + "end": 8455.02, + "probability": 0.7873 + }, + { + "start": 8455.1, + "end": 8456.9, + "probability": 0.8093 + }, + { + "start": 8457.06, + "end": 8457.6, + "probability": 0.8023 + }, + { + "start": 8458.22, + "end": 8458.72, + "probability": 0.7997 + }, + { + "start": 8458.76, + "end": 8462.82, + "probability": 0.6992 + }, + { + "start": 8463.04, + "end": 8465.94, + "probability": 0.9632 + }, + { + "start": 8465.96, + "end": 8466.4, + "probability": 0.902 + }, + { + "start": 8466.86, + "end": 8468.32, + "probability": 0.7223 + }, + { + "start": 8468.52, + "end": 8470.02, + "probability": 0.5965 + }, + { + "start": 8470.1, + "end": 8470.86, + "probability": 0.7721 + }, + { + "start": 8471.14, + "end": 8475.07, + "probability": 0.9818 + }, + { + "start": 8475.68, + "end": 8477.64, + "probability": 0.9724 + }, + { + "start": 8480.44, + "end": 8484.12, + "probability": 0.8272 + }, + { + "start": 8484.16, + "end": 8484.54, + "probability": 0.7271 + }, + { + "start": 8485.42, + "end": 8486.04, + "probability": 0.0329 + }, + { + "start": 8486.64, + "end": 8488.68, + "probability": 0.2824 + }, + { + "start": 8496.76, + "end": 8499.24, + "probability": 0.6991 + }, + { + "start": 8500.92, + "end": 8504.96, + "probability": 0.9938 + }, + { + "start": 8505.68, + "end": 8505.94, + "probability": 0.9754 + }, + { + "start": 8507.74, + "end": 8509.52, + "probability": 0.9966 + }, + { + "start": 8510.96, + "end": 8513.8, + "probability": 0.998 + }, + { + "start": 8513.8, + "end": 8517.26, + "probability": 0.998 + }, + { + "start": 8517.84, + "end": 8521.1, + "probability": 0.9785 + }, + { + "start": 8522.26, + "end": 8525.3, + "probability": 0.9928 + }, + { + "start": 8525.36, + "end": 8527.6, + "probability": 0.9842 + }, + { + "start": 8527.72, + "end": 8535.24, + "probability": 0.9939 + }, + { + "start": 8536.1, + "end": 8544.84, + "probability": 0.9995 + }, + { + "start": 8546.3, + "end": 8552.12, + "probability": 0.999 + }, + { + "start": 8553.26, + "end": 8560.34, + "probability": 0.9959 + }, + { + "start": 8560.94, + "end": 8561.8, + "probability": 0.9341 + }, + { + "start": 8562.84, + "end": 8563.64, + "probability": 0.8364 + }, + { + "start": 8564.4, + "end": 8566.46, + "probability": 0.9913 + }, + { + "start": 8567.46, + "end": 8569.52, + "probability": 0.9027 + }, + { + "start": 8570.14, + "end": 8571.12, + "probability": 0.958 + }, + { + "start": 8571.82, + "end": 8573.68, + "probability": 0.9045 + }, + { + "start": 8574.94, + "end": 8577.06, + "probability": 0.9958 + }, + { + "start": 8577.68, + "end": 8578.5, + "probability": 0.8313 + }, + { + "start": 8580.22, + "end": 8583.7, + "probability": 0.9849 + }, + { + "start": 8584.28, + "end": 8584.68, + "probability": 0.5408 + }, + { + "start": 8585.26, + "end": 8587.58, + "probability": 0.8448 + }, + { + "start": 8588.24, + "end": 8591.4, + "probability": 0.9585 + }, + { + "start": 8591.94, + "end": 8593.67, + "probability": 0.9648 + }, + { + "start": 8594.36, + "end": 8597.02, + "probability": 0.998 + }, + { + "start": 8597.54, + "end": 8599.94, + "probability": 0.9751 + }, + { + "start": 8600.84, + "end": 8606.1, + "probability": 0.9946 + }, + { + "start": 8607.06, + "end": 8608.86, + "probability": 0.5797 + }, + { + "start": 8610.06, + "end": 8610.7, + "probability": 0.8201 + }, + { + "start": 8611.34, + "end": 8615.38, + "probability": 0.9933 + }, + { + "start": 8616.08, + "end": 8622.7, + "probability": 0.9886 + }, + { + "start": 8623.34, + "end": 8627.2, + "probability": 0.9494 + }, + { + "start": 8627.8, + "end": 8629.9, + "probability": 0.9077 + }, + { + "start": 8632.7, + "end": 8632.7, + "probability": 0.5962 + }, + { + "start": 8633.26, + "end": 8642.3, + "probability": 0.9649 + }, + { + "start": 8643.0, + "end": 8644.88, + "probability": 0.7743 + }, + { + "start": 8645.6, + "end": 8647.64, + "probability": 0.9805 + }, + { + "start": 8648.18, + "end": 8651.62, + "probability": 0.9879 + }, + { + "start": 8653.02, + "end": 8656.48, + "probability": 0.9536 + }, + { + "start": 8657.24, + "end": 8658.5, + "probability": 0.849 + }, + { + "start": 8658.72, + "end": 8660.25, + "probability": 0.9724 + }, + { + "start": 8660.84, + "end": 8664.5, + "probability": 0.9866 + }, + { + "start": 8665.74, + "end": 8671.28, + "probability": 0.9357 + }, + { + "start": 8671.28, + "end": 8675.38, + "probability": 0.9993 + }, + { + "start": 8676.62, + "end": 8678.14, + "probability": 0.8436 + }, + { + "start": 8679.18, + "end": 8684.06, + "probability": 0.9987 + }, + { + "start": 8685.2, + "end": 8687.2, + "probability": 0.8643 + }, + { + "start": 8687.78, + "end": 8689.14, + "probability": 0.9401 + }, + { + "start": 8689.3, + "end": 8690.3, + "probability": 0.9067 + }, + { + "start": 8690.84, + "end": 8692.54, + "probability": 0.5087 + }, + { + "start": 8692.9, + "end": 8694.68, + "probability": 0.9897 + }, + { + "start": 8694.84, + "end": 8696.23, + "probability": 0.9966 + }, + { + "start": 8697.18, + "end": 8698.82, + "probability": 0.9972 + }, + { + "start": 8699.62, + "end": 8700.06, + "probability": 0.3303 + }, + { + "start": 8701.16, + "end": 8702.78, + "probability": 0.9106 + }, + { + "start": 8703.04, + "end": 8703.62, + "probability": 0.6236 + }, + { + "start": 8704.18, + "end": 8706.42, + "probability": 0.9321 + }, + { + "start": 8706.66, + "end": 8707.5, + "probability": 0.9798 + }, + { + "start": 8708.52, + "end": 8709.28, + "probability": 0.7318 + }, + { + "start": 8709.8, + "end": 8712.98, + "probability": 0.9391 + }, + { + "start": 8713.88, + "end": 8714.5, + "probability": 0.8755 + }, + { + "start": 8715.74, + "end": 8718.72, + "probability": 0.7648 + }, + { + "start": 8718.72, + "end": 8721.74, + "probability": 0.9972 + }, + { + "start": 8723.22, + "end": 8724.72, + "probability": 0.8703 + }, + { + "start": 8726.3, + "end": 8727.28, + "probability": 0.8102 + }, + { + "start": 8727.44, + "end": 8729.72, + "probability": 0.9878 + }, + { + "start": 8730.46, + "end": 8733.16, + "probability": 0.9829 + }, + { + "start": 8734.36, + "end": 8735.54, + "probability": 0.9693 + }, + { + "start": 8736.38, + "end": 8737.2, + "probability": 0.6971 + }, + { + "start": 8738.0, + "end": 8742.98, + "probability": 0.9952 + }, + { + "start": 8743.74, + "end": 8743.94, + "probability": 0.568 + }, + { + "start": 8744.02, + "end": 8744.42, + "probability": 0.9704 + }, + { + "start": 8744.5, + "end": 8746.94, + "probability": 0.9964 + }, + { + "start": 8746.94, + "end": 8751.34, + "probability": 0.9963 + }, + { + "start": 8752.1, + "end": 8754.04, + "probability": 0.9983 + }, + { + "start": 8755.5, + "end": 8758.64, + "probability": 0.8686 + }, + { + "start": 8759.72, + "end": 8763.98, + "probability": 0.8674 + }, + { + "start": 8764.52, + "end": 8765.74, + "probability": 0.9874 + }, + { + "start": 8765.9, + "end": 8767.26, + "probability": 0.9305 + }, + { + "start": 8767.28, + "end": 8768.2, + "probability": 0.7682 + }, + { + "start": 8768.74, + "end": 8769.44, + "probability": 0.9048 + }, + { + "start": 8769.96, + "end": 8770.72, + "probability": 0.9903 + }, + { + "start": 8771.68, + "end": 8771.68, + "probability": 0.6851 + }, + { + "start": 8772.86, + "end": 8775.68, + "probability": 0.8319 + }, + { + "start": 8776.76, + "end": 8778.78, + "probability": 0.9702 + }, + { + "start": 8779.52, + "end": 8782.16, + "probability": 0.9941 + }, + { + "start": 8782.84, + "end": 8786.32, + "probability": 0.9601 + }, + { + "start": 8787.36, + "end": 8790.34, + "probability": 0.9811 + }, + { + "start": 8791.04, + "end": 8791.84, + "probability": 0.9506 + }, + { + "start": 8792.52, + "end": 8793.74, + "probability": 0.9982 + }, + { + "start": 8794.38, + "end": 8796.94, + "probability": 0.9771 + }, + { + "start": 8797.76, + "end": 8799.6, + "probability": 0.616 + }, + { + "start": 8799.8, + "end": 8803.48, + "probability": 0.9058 + }, + { + "start": 8803.48, + "end": 8807.18, + "probability": 0.9454 + }, + { + "start": 8808.87, + "end": 8811.9, + "probability": 0.9937 + }, + { + "start": 8812.18, + "end": 8814.88, + "probability": 0.9362 + }, + { + "start": 8815.42, + "end": 8816.94, + "probability": 0.9867 + }, + { + "start": 8817.6, + "end": 8819.94, + "probability": 0.9893 + }, + { + "start": 8820.0, + "end": 8823.75, + "probability": 0.993 + }, + { + "start": 8824.62, + "end": 8827.22, + "probability": 0.8585 + }, + { + "start": 8829.06, + "end": 8829.58, + "probability": 0.6115 + }, + { + "start": 8830.34, + "end": 8835.2, + "probability": 0.9998 + }, + { + "start": 8836.04, + "end": 8840.32, + "probability": 0.9729 + }, + { + "start": 8840.98, + "end": 8842.26, + "probability": 0.7809 + }, + { + "start": 8842.86, + "end": 8843.32, + "probability": 0.911 + }, + { + "start": 8844.04, + "end": 8846.14, + "probability": 0.9985 + }, + { + "start": 8846.68, + "end": 8848.44, + "probability": 0.9821 + }, + { + "start": 8848.56, + "end": 8851.52, + "probability": 0.981 + }, + { + "start": 8852.92, + "end": 8855.06, + "probability": 0.9071 + }, + { + "start": 8855.1, + "end": 8856.2, + "probability": 0.8066 + }, + { + "start": 8856.28, + "end": 8856.82, + "probability": 0.9241 + }, + { + "start": 8857.24, + "end": 8858.54, + "probability": 0.9876 + }, + { + "start": 8859.12, + "end": 8863.2, + "probability": 0.876 + }, + { + "start": 8863.4, + "end": 8865.88, + "probability": 0.867 + }, + { + "start": 8867.2, + "end": 8870.82, + "probability": 0.9912 + }, + { + "start": 8871.62, + "end": 8874.4, + "probability": 0.9957 + }, + { + "start": 8875.32, + "end": 8876.06, + "probability": 0.9743 + }, + { + "start": 8876.68, + "end": 8880.34, + "probability": 0.9771 + }, + { + "start": 8880.94, + "end": 8882.92, + "probability": 0.9657 + }, + { + "start": 8883.82, + "end": 8888.1, + "probability": 0.9872 + }, + { + "start": 8888.96, + "end": 8891.66, + "probability": 0.9775 + }, + { + "start": 8892.2, + "end": 8895.5, + "probability": 0.9067 + }, + { + "start": 8896.04, + "end": 8899.92, + "probability": 0.9697 + }, + { + "start": 8900.76, + "end": 8903.92, + "probability": 0.9855 + }, + { + "start": 8903.92, + "end": 8908.18, + "probability": 0.997 + }, + { + "start": 8910.52, + "end": 8914.0, + "probability": 0.996 + }, + { + "start": 8914.0, + "end": 8917.56, + "probability": 0.9842 + }, + { + "start": 8918.36, + "end": 8924.22, + "probability": 0.9962 + }, + { + "start": 8925.18, + "end": 8929.06, + "probability": 0.7494 + }, + { + "start": 8929.9, + "end": 8931.02, + "probability": 0.6093 + }, + { + "start": 8931.08, + "end": 8932.18, + "probability": 0.9774 + }, + { + "start": 8932.2, + "end": 8935.16, + "probability": 0.956 + }, + { + "start": 8935.7, + "end": 8938.34, + "probability": 0.9983 + }, + { + "start": 8939.56, + "end": 8941.5, + "probability": 0.643 + }, + { + "start": 8942.7, + "end": 8944.94, + "probability": 0.9036 + }, + { + "start": 8945.18, + "end": 8947.58, + "probability": 0.6426 + }, + { + "start": 8948.38, + "end": 8950.66, + "probability": 0.9893 + }, + { + "start": 8950.94, + "end": 8953.76, + "probability": 0.9272 + }, + { + "start": 8954.38, + "end": 8955.72, + "probability": 0.7791 + }, + { + "start": 8955.8, + "end": 8956.54, + "probability": 0.282 + }, + { + "start": 8956.82, + "end": 8957.56, + "probability": 0.9619 + }, + { + "start": 8958.54, + "end": 8961.88, + "probability": 0.8741 + }, + { + "start": 8961.96, + "end": 8964.08, + "probability": 0.8311 + }, + { + "start": 8964.58, + "end": 8967.8, + "probability": 0.9693 + }, + { + "start": 8967.98, + "end": 8969.96, + "probability": 0.9985 + }, + { + "start": 8971.92, + "end": 8972.94, + "probability": 0.5468 + }, + { + "start": 8973.86, + "end": 8976.84, + "probability": 0.9869 + }, + { + "start": 8976.98, + "end": 8978.86, + "probability": 0.7199 + }, + { + "start": 8979.42, + "end": 8982.22, + "probability": 0.9186 + }, + { + "start": 8983.06, + "end": 8987.7, + "probability": 0.994 + }, + { + "start": 8988.44, + "end": 8992.5, + "probability": 0.9958 + }, + { + "start": 8993.16, + "end": 8996.34, + "probability": 0.863 + }, + { + "start": 8997.82, + "end": 9000.2, + "probability": 0.8627 + }, + { + "start": 9000.84, + "end": 9003.5, + "probability": 0.9946 + }, + { + "start": 9004.3, + "end": 9007.32, + "probability": 0.9328 + }, + { + "start": 9007.54, + "end": 9010.7, + "probability": 0.9749 + }, + { + "start": 9011.46, + "end": 9014.66, + "probability": 0.8945 + }, + { + "start": 9015.18, + "end": 9016.54, + "probability": 0.9486 + }, + { + "start": 9017.08, + "end": 9021.06, + "probability": 0.9965 + }, + { + "start": 9021.92, + "end": 9024.8, + "probability": 0.9959 + }, + { + "start": 9025.64, + "end": 9026.36, + "probability": 0.6121 + }, + { + "start": 9026.98, + "end": 9029.48, + "probability": 0.9669 + }, + { + "start": 9030.0, + "end": 9030.82, + "probability": 0.8065 + }, + { + "start": 9031.28, + "end": 9033.82, + "probability": 0.9904 + }, + { + "start": 9034.44, + "end": 9035.0, + "probability": 0.9926 + }, + { + "start": 9036.4, + "end": 9040.34, + "probability": 0.9775 + }, + { + "start": 9040.56, + "end": 9043.62, + "probability": 0.8937 + }, + { + "start": 9044.56, + "end": 9046.82, + "probability": 0.6424 + }, + { + "start": 9046.82, + "end": 9050.3, + "probability": 0.9492 + }, + { + "start": 9051.42, + "end": 9054.88, + "probability": 0.7808 + }, + { + "start": 9055.08, + "end": 9055.54, + "probability": 0.8734 + }, + { + "start": 9063.34, + "end": 9065.94, + "probability": 0.6599 + }, + { + "start": 9066.84, + "end": 9068.78, + "probability": 0.9526 + }, + { + "start": 9069.98, + "end": 9071.12, + "probability": 0.9825 + }, + { + "start": 9071.26, + "end": 9075.96, + "probability": 0.9974 + }, + { + "start": 9076.0, + "end": 9076.88, + "probability": 0.9524 + }, + { + "start": 9077.7, + "end": 9078.56, + "probability": 0.9536 + }, + { + "start": 9078.66, + "end": 9080.4, + "probability": 0.9744 + }, + { + "start": 9080.5, + "end": 9081.2, + "probability": 0.9967 + }, + { + "start": 9082.4, + "end": 9086.32, + "probability": 0.9807 + }, + { + "start": 9087.62, + "end": 9091.62, + "probability": 0.9854 + }, + { + "start": 9092.44, + "end": 9096.88, + "probability": 0.9951 + }, + { + "start": 9098.14, + "end": 9100.09, + "probability": 0.9905 + }, + { + "start": 9100.82, + "end": 9104.36, + "probability": 0.9962 + }, + { + "start": 9105.26, + "end": 9107.54, + "probability": 0.9908 + }, + { + "start": 9107.54, + "end": 9110.58, + "probability": 1.0 + }, + { + "start": 9111.7, + "end": 9112.36, + "probability": 0.7889 + }, + { + "start": 9112.64, + "end": 9117.86, + "probability": 0.9979 + }, + { + "start": 9118.36, + "end": 9121.86, + "probability": 0.9969 + }, + { + "start": 9122.5, + "end": 9124.58, + "probability": 0.8849 + }, + { + "start": 9124.66, + "end": 9128.68, + "probability": 0.9987 + }, + { + "start": 9129.98, + "end": 9129.98, + "probability": 0.0201 + }, + { + "start": 9129.98, + "end": 9130.96, + "probability": 0.8478 + }, + { + "start": 9131.96, + "end": 9134.32, + "probability": 0.9891 + }, + { + "start": 9135.02, + "end": 9138.84, + "probability": 0.9113 + }, + { + "start": 9139.84, + "end": 9141.96, + "probability": 0.9902 + }, + { + "start": 9142.24, + "end": 9145.02, + "probability": 0.9792 + }, + { + "start": 9146.38, + "end": 9151.03, + "probability": 0.9863 + }, + { + "start": 9151.28, + "end": 9155.64, + "probability": 0.9924 + }, + { + "start": 9155.88, + "end": 9156.88, + "probability": 0.8045 + }, + { + "start": 9157.86, + "end": 9160.32, + "probability": 0.9743 + }, + { + "start": 9160.56, + "end": 9163.14, + "probability": 0.9755 + }, + { + "start": 9164.48, + "end": 9165.72, + "probability": 0.963 + }, + { + "start": 9166.46, + "end": 9169.06, + "probability": 0.9745 + }, + { + "start": 9169.88, + "end": 9171.65, + "probability": 0.9296 + }, + { + "start": 9172.74, + "end": 9175.62, + "probability": 0.971 + }, + { + "start": 9176.94, + "end": 9178.6, + "probability": 0.8604 + }, + { + "start": 9178.76, + "end": 9180.88, + "probability": 0.9748 + }, + { + "start": 9181.54, + "end": 9184.18, + "probability": 0.9825 + }, + { + "start": 9184.3, + "end": 9188.04, + "probability": 0.9786 + }, + { + "start": 9188.12, + "end": 9190.16, + "probability": 0.9945 + }, + { + "start": 9190.64, + "end": 9195.58, + "probability": 0.9978 + }, + { + "start": 9196.38, + "end": 9199.98, + "probability": 0.9866 + }, + { + "start": 9200.06, + "end": 9201.96, + "probability": 0.9816 + }, + { + "start": 9202.76, + "end": 9204.86, + "probability": 0.9939 + }, + { + "start": 9205.5, + "end": 9207.12, + "probability": 0.9909 + }, + { + "start": 9207.9, + "end": 9210.72, + "probability": 0.8742 + }, + { + "start": 9211.92, + "end": 9213.3, + "probability": 0.8748 + }, + { + "start": 9214.52, + "end": 9218.66, + "probability": 0.994 + }, + { + "start": 9219.38, + "end": 9223.06, + "probability": 0.9877 + }, + { + "start": 9224.46, + "end": 9227.12, + "probability": 0.996 + }, + { + "start": 9227.12, + "end": 9229.1, + "probability": 0.9941 + }, + { + "start": 9229.6, + "end": 9230.16, + "probability": 0.7512 + }, + { + "start": 9230.78, + "end": 9232.46, + "probability": 0.9912 + }, + { + "start": 9232.94, + "end": 9237.76, + "probability": 0.9916 + }, + { + "start": 9238.24, + "end": 9238.72, + "probability": 0.6469 + }, + { + "start": 9239.62, + "end": 9239.74, + "probability": 0.9133 + }, + { + "start": 9240.5, + "end": 9240.82, + "probability": 0.8585 + }, + { + "start": 9242.26, + "end": 9245.22, + "probability": 0.9925 + }, + { + "start": 9246.04, + "end": 9249.28, + "probability": 0.995 + }, + { + "start": 9250.04, + "end": 9253.34, + "probability": 0.9421 + }, + { + "start": 9254.48, + "end": 9255.7, + "probability": 0.8241 + }, + { + "start": 9255.92, + "end": 9260.22, + "probability": 0.9282 + }, + { + "start": 9266.4, + "end": 9268.58, + "probability": 0.7642 + }, + { + "start": 9269.56, + "end": 9273.34, + "probability": 0.7117 + }, + { + "start": 9273.8, + "end": 9274.48, + "probability": 0.2436 + }, + { + "start": 9275.72, + "end": 9277.86, + "probability": 0.4972 + }, + { + "start": 9277.94, + "end": 9278.96, + "probability": 0.9443 + }, + { + "start": 9279.12, + "end": 9282.88, + "probability": 0.7159 + }, + { + "start": 9283.88, + "end": 9283.88, + "probability": 0.0691 + }, + { + "start": 9283.88, + "end": 9285.84, + "probability": 0.8118 + }, + { + "start": 9286.42, + "end": 9287.48, + "probability": 0.9927 + }, + { + "start": 9287.64, + "end": 9288.55, + "probability": 0.907 + }, + { + "start": 9289.14, + "end": 9290.15, + "probability": 0.9976 + }, + { + "start": 9291.04, + "end": 9298.28, + "probability": 0.9839 + }, + { + "start": 9298.78, + "end": 9299.97, + "probability": 0.979 + }, + { + "start": 9300.36, + "end": 9300.84, + "probability": 0.5753 + }, + { + "start": 9300.94, + "end": 9302.9, + "probability": 0.9473 + }, + { + "start": 9303.48, + "end": 9305.64, + "probability": 0.9762 + }, + { + "start": 9305.88, + "end": 9307.54, + "probability": 0.7397 + }, + { + "start": 9308.14, + "end": 9309.22, + "probability": 0.986 + }, + { + "start": 9309.98, + "end": 9317.22, + "probability": 0.8822 + }, + { + "start": 9317.36, + "end": 9319.4, + "probability": 0.9297 + }, + { + "start": 9321.34, + "end": 9326.66, + "probability": 0.9896 + }, + { + "start": 9326.74, + "end": 9327.18, + "probability": 0.4803 + }, + { + "start": 9327.86, + "end": 9333.04, + "probability": 0.9737 + }, + { + "start": 9334.04, + "end": 9337.36, + "probability": 0.9572 + }, + { + "start": 9337.44, + "end": 9340.74, + "probability": 0.9474 + }, + { + "start": 9341.26, + "end": 9343.18, + "probability": 0.9504 + }, + { + "start": 9343.98, + "end": 9345.94, + "probability": 0.6537 + }, + { + "start": 9346.04, + "end": 9347.98, + "probability": 0.899 + }, + { + "start": 9348.12, + "end": 9352.0, + "probability": 0.9976 + }, + { + "start": 9353.54, + "end": 9354.6, + "probability": 0.9946 + }, + { + "start": 9356.14, + "end": 9359.32, + "probability": 0.9416 + }, + { + "start": 9359.54, + "end": 9361.08, + "probability": 0.8934 + }, + { + "start": 9362.14, + "end": 9365.58, + "probability": 0.8975 + }, + { + "start": 9365.66, + "end": 9368.16, + "probability": 0.9565 + }, + { + "start": 9368.34, + "end": 9368.68, + "probability": 0.9778 + }, + { + "start": 9369.62, + "end": 9369.96, + "probability": 0.7067 + }, + { + "start": 9370.1, + "end": 9373.68, + "probability": 0.6916 + }, + { + "start": 9373.8, + "end": 9376.22, + "probability": 0.991 + }, + { + "start": 9376.58, + "end": 9377.92, + "probability": 0.8678 + }, + { + "start": 9378.58, + "end": 9381.48, + "probability": 0.9861 + }, + { + "start": 9382.34, + "end": 9384.42, + "probability": 0.882 + }, + { + "start": 9385.08, + "end": 9386.26, + "probability": 0.7158 + }, + { + "start": 9386.46, + "end": 9387.23, + "probability": 0.2328 + }, + { + "start": 9387.62, + "end": 9389.04, + "probability": 0.828 + }, + { + "start": 9389.06, + "end": 9390.48, + "probability": 0.9058 + }, + { + "start": 9391.26, + "end": 9393.62, + "probability": 0.9771 + }, + { + "start": 9394.24, + "end": 9396.05, + "probability": 0.9083 + }, + { + "start": 9396.4, + "end": 9401.02, + "probability": 0.9666 + }, + { + "start": 9401.1, + "end": 9401.9, + "probability": 0.7722 + }, + { + "start": 9402.76, + "end": 9405.08, + "probability": 0.7783 + }, + { + "start": 9405.12, + "end": 9405.4, + "probability": 0.9088 + }, + { + "start": 9405.5, + "end": 9406.0, + "probability": 0.6547 + }, + { + "start": 9406.14, + "end": 9408.32, + "probability": 0.5982 + }, + { + "start": 9408.38, + "end": 9409.78, + "probability": 0.8632 + }, + { + "start": 9410.46, + "end": 9412.9, + "probability": 0.7465 + }, + { + "start": 9412.96, + "end": 9413.88, + "probability": 0.9934 + }, + { + "start": 9413.9, + "end": 9418.68, + "probability": 0.9639 + }, + { + "start": 9419.6, + "end": 9420.78, + "probability": 0.5617 + }, + { + "start": 9421.4, + "end": 9427.26, + "probability": 0.886 + }, + { + "start": 9427.56, + "end": 9430.98, + "probability": 0.9932 + }, + { + "start": 9431.52, + "end": 9433.04, + "probability": 0.8905 + }, + { + "start": 9434.14, + "end": 9435.8, + "probability": 0.9543 + }, + { + "start": 9435.86, + "end": 9441.36, + "probability": 0.949 + }, + { + "start": 9441.42, + "end": 9444.84, + "probability": 0.9941 + }, + { + "start": 9444.92, + "end": 9446.24, + "probability": 0.9888 + }, + { + "start": 9446.28, + "end": 9449.26, + "probability": 0.9734 + }, + { + "start": 9449.38, + "end": 9450.02, + "probability": 0.9403 + }, + { + "start": 9450.14, + "end": 9450.86, + "probability": 0.6375 + }, + { + "start": 9450.94, + "end": 9453.22, + "probability": 0.5696 + }, + { + "start": 9453.26, + "end": 9454.73, + "probability": 0.9342 + }, + { + "start": 9454.88, + "end": 9456.12, + "probability": 0.9535 + }, + { + "start": 9456.82, + "end": 9458.08, + "probability": 0.4164 + }, + { + "start": 9458.6, + "end": 9460.64, + "probability": 0.8894 + }, + { + "start": 9460.74, + "end": 9463.14, + "probability": 0.9617 + }, + { + "start": 9463.68, + "end": 9467.4, + "probability": 0.9839 + }, + { + "start": 9467.52, + "end": 9469.18, + "probability": 0.9084 + }, + { + "start": 9469.78, + "end": 9472.54, + "probability": 0.8116 + }, + { + "start": 9472.76, + "end": 9473.18, + "probability": 0.8368 + }, + { + "start": 9473.38, + "end": 9476.66, + "probability": 0.9045 + }, + { + "start": 9476.78, + "end": 9479.46, + "probability": 0.995 + }, + { + "start": 9479.96, + "end": 9481.38, + "probability": 0.9466 + }, + { + "start": 9482.34, + "end": 9484.48, + "probability": 0.6708 + }, + { + "start": 9484.58, + "end": 9485.24, + "probability": 0.9462 + }, + { + "start": 9485.24, + "end": 9485.46, + "probability": 0.6742 + }, + { + "start": 9485.56, + "end": 9485.84, + "probability": 0.7294 + }, + { + "start": 9485.9, + "end": 9488.56, + "probability": 0.9784 + }, + { + "start": 9488.68, + "end": 9490.08, + "probability": 0.9973 + }, + { + "start": 9491.28, + "end": 9492.7, + "probability": 0.8628 + }, + { + "start": 9493.42, + "end": 9495.86, + "probability": 0.9968 + }, + { + "start": 9496.9, + "end": 9497.92, + "probability": 0.867 + }, + { + "start": 9498.38, + "end": 9505.42, + "probability": 0.9434 + }, + { + "start": 9505.58, + "end": 9510.32, + "probability": 0.9988 + }, + { + "start": 9510.8, + "end": 9511.98, + "probability": 0.9986 + }, + { + "start": 9512.34, + "end": 9513.64, + "probability": 0.9858 + }, + { + "start": 9514.04, + "end": 9517.94, + "probability": 0.972 + }, + { + "start": 9517.94, + "end": 9521.32, + "probability": 0.9258 + }, + { + "start": 9521.32, + "end": 9522.78, + "probability": 0.7817 + }, + { + "start": 9523.1, + "end": 9527.7, + "probability": 0.9592 + }, + { + "start": 9528.22, + "end": 9530.26, + "probability": 0.9893 + }, + { + "start": 9530.38, + "end": 9533.32, + "probability": 0.9985 + }, + { + "start": 9534.86, + "end": 9536.18, + "probability": 0.7499 + }, + { + "start": 9536.24, + "end": 9538.71, + "probability": 0.9456 + }, + { + "start": 9539.38, + "end": 9544.73, + "probability": 0.9918 + }, + { + "start": 9545.12, + "end": 9547.2, + "probability": 0.9771 + }, + { + "start": 9547.58, + "end": 9550.76, + "probability": 0.8096 + }, + { + "start": 9550.88, + "end": 9552.02, + "probability": 0.9745 + }, + { + "start": 9552.74, + "end": 9552.88, + "probability": 0.2506 + }, + { + "start": 9552.92, + "end": 9553.72, + "probability": 0.9333 + }, + { + "start": 9554.0, + "end": 9555.3, + "probability": 0.8798 + }, + { + "start": 9555.34, + "end": 9555.78, + "probability": 0.7174 + }, + { + "start": 9555.86, + "end": 9556.08, + "probability": 0.9047 + }, + { + "start": 9556.08, + "end": 9557.52, + "probability": 0.8166 + }, + { + "start": 9557.54, + "end": 9558.18, + "probability": 0.7944 + }, + { + "start": 9558.26, + "end": 9558.97, + "probability": 0.7811 + }, + { + "start": 9559.34, + "end": 9559.88, + "probability": 0.886 + }, + { + "start": 9560.08, + "end": 9560.56, + "probability": 0.8071 + }, + { + "start": 9560.84, + "end": 9561.58, + "probability": 0.9901 + }, + { + "start": 9561.68, + "end": 9562.26, + "probability": 0.9135 + }, + { + "start": 9563.24, + "end": 9563.6, + "probability": 0.5309 + }, + { + "start": 9563.64, + "end": 9565.46, + "probability": 0.9893 + }, + { + "start": 9565.58, + "end": 9566.0, + "probability": 0.6195 + }, + { + "start": 9566.08, + "end": 9567.52, + "probability": 0.951 + }, + { + "start": 9567.58, + "end": 9569.82, + "probability": 0.9619 + }, + { + "start": 9569.86, + "end": 9571.5, + "probability": 0.8755 + }, + { + "start": 9572.04, + "end": 9572.04, + "probability": 0.1403 + }, + { + "start": 9572.04, + "end": 9576.53, + "probability": 0.9482 + }, + { + "start": 9576.98, + "end": 9579.66, + "probability": 0.9994 + }, + { + "start": 9580.64, + "end": 9582.66, + "probability": 0.8503 + }, + { + "start": 9583.06, + "end": 9583.86, + "probability": 0.7093 + }, + { + "start": 9583.92, + "end": 9585.6, + "probability": 0.7473 + }, + { + "start": 9586.6, + "end": 9590.12, + "probability": 0.9577 + }, + { + "start": 9590.14, + "end": 9591.32, + "probability": 0.7082 + }, + { + "start": 9592.15, + "end": 9598.44, + "probability": 0.9834 + }, + { + "start": 9598.6, + "end": 9598.76, + "probability": 0.8892 + }, + { + "start": 9598.86, + "end": 9599.49, + "probability": 0.8525 + }, + { + "start": 9599.88, + "end": 9601.12, + "probability": 0.8942 + }, + { + "start": 9601.16, + "end": 9602.7, + "probability": 0.9974 + }, + { + "start": 9602.84, + "end": 9603.42, + "probability": 0.9468 + }, + { + "start": 9603.94, + "end": 9606.44, + "probability": 0.5282 + }, + { + "start": 9606.48, + "end": 9606.94, + "probability": 0.9106 + }, + { + "start": 9607.22, + "end": 9609.32, + "probability": 0.9426 + }, + { + "start": 9609.44, + "end": 9610.08, + "probability": 0.5472 + }, + { + "start": 9610.12, + "end": 9611.52, + "probability": 0.8359 + }, + { + "start": 9611.8, + "end": 9614.04, + "probability": 0.7264 + }, + { + "start": 9614.66, + "end": 9618.3, + "probability": 0.9946 + }, + { + "start": 9618.42, + "end": 9619.66, + "probability": 0.9904 + }, + { + "start": 9620.72, + "end": 9622.42, + "probability": 0.9766 + }, + { + "start": 9622.56, + "end": 9623.64, + "probability": 0.9873 + }, + { + "start": 9623.76, + "end": 9624.76, + "probability": 0.5253 + }, + { + "start": 9624.86, + "end": 9627.28, + "probability": 0.9903 + }, + { + "start": 9627.7, + "end": 9629.3, + "probability": 0.9492 + }, + { + "start": 9630.0, + "end": 9633.04, + "probability": 0.9973 + }, + { + "start": 9633.24, + "end": 9634.66, + "probability": 0.9342 + }, + { + "start": 9634.98, + "end": 9636.42, + "probability": 0.9136 + }, + { + "start": 9636.78, + "end": 9640.04, + "probability": 0.9789 + }, + { + "start": 9640.4, + "end": 9642.63, + "probability": 0.9888 + }, + { + "start": 9643.54, + "end": 9644.14, + "probability": 0.8424 + }, + { + "start": 9644.36, + "end": 9644.98, + "probability": 0.8505 + }, + { + "start": 9645.1, + "end": 9646.12, + "probability": 0.8945 + }, + { + "start": 9646.54, + "end": 9649.88, + "probability": 0.8888 + }, + { + "start": 9650.2, + "end": 9653.52, + "probability": 0.9839 + }, + { + "start": 9653.6, + "end": 9658.48, + "probability": 0.9899 + }, + { + "start": 9658.56, + "end": 9661.96, + "probability": 0.9485 + }, + { + "start": 9662.02, + "end": 9666.28, + "probability": 0.9534 + }, + { + "start": 9666.3, + "end": 9668.4, + "probability": 0.8863 + }, + { + "start": 9668.66, + "end": 9671.04, + "probability": 0.9965 + }, + { + "start": 9671.84, + "end": 9674.28, + "probability": 0.9843 + }, + { + "start": 9674.42, + "end": 9677.74, + "probability": 0.852 + }, + { + "start": 9678.16, + "end": 9678.94, + "probability": 0.8542 + }, + { + "start": 9679.12, + "end": 9680.34, + "probability": 0.9971 + }, + { + "start": 9680.6, + "end": 9681.21, + "probability": 0.9393 + }, + { + "start": 9681.44, + "end": 9685.2, + "probability": 0.6779 + }, + { + "start": 9685.36, + "end": 9688.78, + "probability": 0.999 + }, + { + "start": 9688.78, + "end": 9691.98, + "probability": 0.9394 + }, + { + "start": 9692.42, + "end": 9692.74, + "probability": 0.4144 + }, + { + "start": 9692.8, + "end": 9693.16, + "probability": 0.911 + }, + { + "start": 9693.26, + "end": 9695.96, + "probability": 0.9897 + }, + { + "start": 9696.36, + "end": 9698.76, + "probability": 0.9909 + }, + { + "start": 9698.9, + "end": 9699.1, + "probability": 0.8324 + }, + { + "start": 9699.68, + "end": 9702.0, + "probability": 0.9389 + }, + { + "start": 9702.62, + "end": 9705.18, + "probability": 0.9072 + }, + { + "start": 9705.44, + "end": 9706.8, + "probability": 0.8713 + }, + { + "start": 9707.38, + "end": 9708.5, + "probability": 0.5026 + }, + { + "start": 9708.64, + "end": 9711.24, + "probability": 0.8369 + }, + { + "start": 9711.42, + "end": 9712.42, + "probability": 0.9766 + }, + { + "start": 9712.46, + "end": 9713.86, + "probability": 0.9609 + }, + { + "start": 9714.22, + "end": 9720.12, + "probability": 0.4805 + }, + { + "start": 9720.28, + "end": 9723.38, + "probability": 0.9688 + }, + { + "start": 9723.42, + "end": 9724.62, + "probability": 0.9945 + }, + { + "start": 9724.72, + "end": 9726.5, + "probability": 0.6756 + }, + { + "start": 9727.1, + "end": 9729.52, + "probability": 0.8767 + }, + { + "start": 9729.56, + "end": 9730.08, + "probability": 0.8053 + }, + { + "start": 9730.66, + "end": 9732.86, + "probability": 0.8407 + }, + { + "start": 9733.84, + "end": 9738.2, + "probability": 0.985 + }, + { + "start": 9738.24, + "end": 9739.73, + "probability": 0.8731 + }, + { + "start": 9740.74, + "end": 9745.24, + "probability": 0.9966 + }, + { + "start": 9746.16, + "end": 9748.56, + "probability": 0.9514 + }, + { + "start": 9763.02, + "end": 9766.28, + "probability": 0.856 + }, + { + "start": 9766.8, + "end": 9767.74, + "probability": 0.6005 + }, + { + "start": 9767.76, + "end": 9768.78, + "probability": 0.3278 + }, + { + "start": 9768.84, + "end": 9772.6, + "probability": 0.9777 + }, + { + "start": 9772.6, + "end": 9775.22, + "probability": 0.8447 + }, + { + "start": 9775.42, + "end": 9776.57, + "probability": 0.6914 + }, + { + "start": 9776.66, + "end": 9779.46, + "probability": 0.9062 + }, + { + "start": 9780.38, + "end": 9781.48, + "probability": 0.7743 + }, + { + "start": 9781.84, + "end": 9784.04, + "probability": 0.8278 + }, + { + "start": 9784.16, + "end": 9786.22, + "probability": 0.9256 + }, + { + "start": 9793.36, + "end": 9793.46, + "probability": 0.0596 + }, + { + "start": 9794.82, + "end": 9796.24, + "probability": 0.0736 + }, + { + "start": 9797.21, + "end": 9798.16, + "probability": 0.0333 + }, + { + "start": 9812.22, + "end": 9813.68, + "probability": 0.0099 + }, + { + "start": 9815.26, + "end": 9818.0, + "probability": 0.7168 + }, + { + "start": 9820.2, + "end": 9823.88, + "probability": 0.8104 + }, + { + "start": 9835.9, + "end": 9839.84, + "probability": 0.9642 + }, + { + "start": 9841.38, + "end": 9843.28, + "probability": 0.7745 + }, + { + "start": 9843.38, + "end": 9848.22, + "probability": 0.8583 + }, + { + "start": 9848.3, + "end": 9849.18, + "probability": 0.6847 + }, + { + "start": 9850.48, + "end": 9853.74, + "probability": 0.9834 + }, + { + "start": 9854.58, + "end": 9856.28, + "probability": 0.8711 + }, + { + "start": 9856.42, + "end": 9859.81, + "probability": 0.9017 + }, + { + "start": 9860.54, + "end": 9861.08, + "probability": 0.8064 + }, + { + "start": 9866.58, + "end": 9868.48, + "probability": 0.9267 + }, + { + "start": 9869.42, + "end": 9872.86, + "probability": 0.8859 + }, + { + "start": 9873.92, + "end": 9878.1, + "probability": 0.9194 + }, + { + "start": 9878.76, + "end": 9881.59, + "probability": 0.9831 + }, + { + "start": 9882.16, + "end": 9884.29, + "probability": 0.904 + }, + { + "start": 9886.04, + "end": 9890.34, + "probability": 0.9775 + }, + { + "start": 9891.38, + "end": 9894.16, + "probability": 0.8575 + }, + { + "start": 9894.86, + "end": 9896.02, + "probability": 0.6994 + }, + { + "start": 9896.74, + "end": 9900.84, + "probability": 0.6562 + }, + { + "start": 9900.92, + "end": 9902.38, + "probability": 0.9092 + }, + { + "start": 9902.42, + "end": 9906.0, + "probability": 0.8945 + }, + { + "start": 9906.0, + "end": 9909.62, + "probability": 0.9827 + }, + { + "start": 9909.68, + "end": 9913.12, + "probability": 0.8193 + }, + { + "start": 9913.42, + "end": 9918.5, + "probability": 0.9982 + }, + { + "start": 9919.34, + "end": 9921.65, + "probability": 0.9599 + }, + { + "start": 9922.24, + "end": 9927.86, + "probability": 0.9978 + }, + { + "start": 9929.38, + "end": 9929.74, + "probability": 0.536 + }, + { + "start": 9929.86, + "end": 9931.04, + "probability": 0.9741 + }, + { + "start": 9931.16, + "end": 9939.56, + "probability": 0.9694 + }, + { + "start": 9941.0, + "end": 9941.76, + "probability": 0.8826 + }, + { + "start": 9942.46, + "end": 9943.64, + "probability": 0.9118 + }, + { + "start": 9944.28, + "end": 9947.2, + "probability": 0.9869 + }, + { + "start": 9947.2, + "end": 9950.36, + "probability": 0.9987 + }, + { + "start": 9950.92, + "end": 9951.89, + "probability": 0.8335 + }, + { + "start": 9952.34, + "end": 9959.36, + "probability": 0.9975 + }, + { + "start": 9959.36, + "end": 9967.82, + "probability": 0.9995 + }, + { + "start": 9967.98, + "end": 9969.24, + "probability": 0.9827 + }, + { + "start": 9969.44, + "end": 9972.48, + "probability": 0.9766 + }, + { + "start": 9972.58, + "end": 9973.56, + "probability": 0.9693 + }, + { + "start": 9974.4, + "end": 9978.72, + "probability": 0.992 + }, + { + "start": 9978.8, + "end": 9979.66, + "probability": 0.8358 + }, + { + "start": 9980.56, + "end": 9983.36, + "probability": 0.9838 + }, + { + "start": 9983.42, + "end": 9984.16, + "probability": 0.8339 + }, + { + "start": 9984.54, + "end": 9986.24, + "probability": 0.979 + }, + { + "start": 9986.28, + "end": 9986.9, + "probability": 0.9888 + }, + { + "start": 9986.9, + "end": 9987.56, + "probability": 0.8392 + }, + { + "start": 9988.52, + "end": 9992.98, + "probability": 0.9822 + }, + { + "start": 9992.98, + "end": 9998.04, + "probability": 0.9504 + }, + { + "start": 9998.2, + "end": 10001.26, + "probability": 0.9647 + }, + { + "start": 10001.84, + "end": 10002.98, + "probability": 0.9958 + }, + { + "start": 10003.06, + "end": 10004.32, + "probability": 0.1301 + }, + { + "start": 10004.46, + "end": 10007.04, + "probability": 0.8616 + }, + { + "start": 10007.06, + "end": 10009.72, + "probability": 0.9159 + }, + { + "start": 10010.24, + "end": 10013.76, + "probability": 0.9912 + }, + { + "start": 10013.76, + "end": 10017.92, + "probability": 0.9945 + }, + { + "start": 10018.04, + "end": 10019.54, + "probability": 0.9918 + }, + { + "start": 10020.36, + "end": 10020.88, + "probability": 0.9902 + }, + { + "start": 10021.08, + "end": 10021.36, + "probability": 0.8898 + }, + { + "start": 10021.98, + "end": 10023.84, + "probability": 0.8488 + }, + { + "start": 10024.24, + "end": 10026.76, + "probability": 0.9546 + }, + { + "start": 10027.96, + "end": 10028.42, + "probability": 0.5164 + }, + { + "start": 10028.46, + "end": 10029.48, + "probability": 0.61 + }, + { + "start": 10029.6, + "end": 10030.94, + "probability": 0.5144 + }, + { + "start": 10031.06, + "end": 10031.5, + "probability": 0.4937 + }, + { + "start": 10031.68, + "end": 10032.52, + "probability": 0.9373 + }, + { + "start": 10033.32, + "end": 10037.3, + "probability": 0.9863 + }, + { + "start": 10037.76, + "end": 10043.6, + "probability": 0.9318 + }, + { + "start": 10046.68, + "end": 10047.64, + "probability": 0.6065 + }, + { + "start": 10047.66, + "end": 10048.86, + "probability": 0.7812 + }, + { + "start": 10049.32, + "end": 10053.26, + "probability": 0.9157 + }, + { + "start": 10054.56, + "end": 10056.26, + "probability": 0.9418 + }, + { + "start": 10056.46, + "end": 10057.26, + "probability": 0.9111 + }, + { + "start": 10057.58, + "end": 10060.38, + "probability": 0.9526 + }, + { + "start": 10060.48, + "end": 10062.62, + "probability": 0.9397 + }, + { + "start": 10062.82, + "end": 10063.75, + "probability": 0.9803 + }, + { + "start": 10064.0, + "end": 10064.62, + "probability": 0.951 + }, + { + "start": 10064.98, + "end": 10066.06, + "probability": 0.92 + }, + { + "start": 10066.24, + "end": 10068.16, + "probability": 0.767 + }, + { + "start": 10069.12, + "end": 10073.06, + "probability": 0.9973 + }, + { + "start": 10073.12, + "end": 10075.56, + "probability": 0.8882 + }, + { + "start": 10076.0, + "end": 10076.4, + "probability": 0.8373 + }, + { + "start": 10077.1, + "end": 10078.34, + "probability": 0.2166 + }, + { + "start": 10078.82, + "end": 10083.08, + "probability": 0.98 + }, + { + "start": 10083.08, + "end": 10088.46, + "probability": 0.989 + }, + { + "start": 10089.7, + "end": 10093.72, + "probability": 0.9773 + }, + { + "start": 10093.8, + "end": 10098.32, + "probability": 0.9953 + }, + { + "start": 10098.4, + "end": 10101.44, + "probability": 0.9938 + }, + { + "start": 10102.0, + "end": 10105.38, + "probability": 0.9952 + }, + { + "start": 10105.38, + "end": 10109.92, + "probability": 0.9987 + }, + { + "start": 10110.9, + "end": 10115.56, + "probability": 0.9758 + }, + { + "start": 10115.64, + "end": 10117.84, + "probability": 0.9985 + }, + { + "start": 10118.5, + "end": 10120.94, + "probability": 0.9712 + }, + { + "start": 10121.42, + "end": 10124.13, + "probability": 0.9855 + }, + { + "start": 10125.66, + "end": 10130.66, + "probability": 0.9952 + }, + { + "start": 10130.88, + "end": 10132.44, + "probability": 0.9248 + }, + { + "start": 10132.92, + "end": 10133.61, + "probability": 0.7303 + }, + { + "start": 10134.1, + "end": 10135.16, + "probability": 0.9448 + }, + { + "start": 10135.82, + "end": 10138.66, + "probability": 0.9846 + }, + { + "start": 10139.22, + "end": 10139.46, + "probability": 0.2549 + }, + { + "start": 10139.56, + "end": 10141.28, + "probability": 0.9783 + }, + { + "start": 10141.38, + "end": 10142.18, + "probability": 0.9514 + }, + { + "start": 10142.26, + "end": 10144.64, + "probability": 0.9466 + }, + { + "start": 10144.96, + "end": 10146.38, + "probability": 0.9688 + }, + { + "start": 10146.5, + "end": 10148.3, + "probability": 0.9895 + }, + { + "start": 10148.44, + "end": 10152.56, + "probability": 0.928 + }, + { + "start": 10153.55, + "end": 10158.42, + "probability": 0.9969 + }, + { + "start": 10158.8, + "end": 10161.9, + "probability": 0.9972 + }, + { + "start": 10161.9, + "end": 10164.76, + "probability": 0.9884 + }, + { + "start": 10165.56, + "end": 10170.36, + "probability": 0.9824 + }, + { + "start": 10171.38, + "end": 10175.7, + "probability": 0.9934 + }, + { + "start": 10175.7, + "end": 10178.72, + "probability": 0.9978 + }, + { + "start": 10179.24, + "end": 10184.4, + "probability": 0.9962 + }, + { + "start": 10185.28, + "end": 10191.98, + "probability": 0.9976 + }, + { + "start": 10192.78, + "end": 10195.3, + "probability": 0.9118 + }, + { + "start": 10195.84, + "end": 10198.66, + "probability": 0.9993 + }, + { + "start": 10199.24, + "end": 10201.72, + "probability": 0.9195 + }, + { + "start": 10201.82, + "end": 10202.28, + "probability": 0.7075 + }, + { + "start": 10202.34, + "end": 10203.04, + "probability": 0.8497 + }, + { + "start": 10203.06, + "end": 10205.3, + "probability": 0.8091 + }, + { + "start": 10205.38, + "end": 10207.96, + "probability": 0.9981 + }, + { + "start": 10207.96, + "end": 10212.38, + "probability": 0.9989 + }, + { + "start": 10212.98, + "end": 10216.42, + "probability": 0.9933 + }, + { + "start": 10217.08, + "end": 10219.24, + "probability": 0.9933 + }, + { + "start": 10219.3, + "end": 10224.34, + "probability": 0.8841 + }, + { + "start": 10224.42, + "end": 10225.92, + "probability": 0.9941 + }, + { + "start": 10226.56, + "end": 10231.6, + "probability": 0.8808 + }, + { + "start": 10231.72, + "end": 10233.18, + "probability": 0.7944 + }, + { + "start": 10233.24, + "end": 10233.72, + "probability": 0.7811 + }, + { + "start": 10234.38, + "end": 10239.24, + "probability": 0.998 + }, + { + "start": 10240.08, + "end": 10243.98, + "probability": 0.9978 + }, + { + "start": 10244.06, + "end": 10246.9, + "probability": 0.602 + }, + { + "start": 10247.14, + "end": 10247.56, + "probability": 0.7832 + }, + { + "start": 10249.22, + "end": 10251.08, + "probability": 0.9217 + }, + { + "start": 10251.88, + "end": 10255.42, + "probability": 0.5865 + }, + { + "start": 10256.9, + "end": 10257.18, + "probability": 0.3109 + }, + { + "start": 10260.26, + "end": 10262.18, + "probability": 0.7356 + }, + { + "start": 10283.24, + "end": 10284.14, + "probability": 0.6202 + }, + { + "start": 10284.2, + "end": 10285.12, + "probability": 0.6496 + }, + { + "start": 10286.54, + "end": 10292.32, + "probability": 0.9933 + }, + { + "start": 10294.0, + "end": 10300.98, + "probability": 0.9948 + }, + { + "start": 10301.6, + "end": 10302.8, + "probability": 0.9497 + }, + { + "start": 10303.72, + "end": 10305.04, + "probability": 0.6956 + }, + { + "start": 10305.96, + "end": 10308.64, + "probability": 0.6605 + }, + { + "start": 10309.22, + "end": 10312.32, + "probability": 0.998 + }, + { + "start": 10313.68, + "end": 10313.86, + "probability": 0.735 + }, + { + "start": 10315.18, + "end": 10316.12, + "probability": 0.3687 + }, + { + "start": 10317.76, + "end": 10318.64, + "probability": 0.9233 + }, + { + "start": 10320.02, + "end": 10322.0, + "probability": 0.9822 + }, + { + "start": 10323.1, + "end": 10324.4, + "probability": 0.9857 + }, + { + "start": 10326.26, + "end": 10329.14, + "probability": 0.941 + }, + { + "start": 10330.0, + "end": 10330.74, + "probability": 0.9988 + }, + { + "start": 10331.54, + "end": 10336.16, + "probability": 0.8441 + }, + { + "start": 10336.88, + "end": 10338.48, + "probability": 0.9089 + }, + { + "start": 10339.08, + "end": 10341.88, + "probability": 0.8955 + }, + { + "start": 10342.44, + "end": 10343.5, + "probability": 0.9932 + }, + { + "start": 10344.26, + "end": 10345.26, + "probability": 0.9974 + }, + { + "start": 10345.9, + "end": 10350.3, + "probability": 0.8981 + }, + { + "start": 10350.32, + "end": 10353.58, + "probability": 0.9976 + }, + { + "start": 10354.96, + "end": 10358.58, + "probability": 0.6601 + }, + { + "start": 10359.52, + "end": 10360.54, + "probability": 0.4562 + }, + { + "start": 10361.16, + "end": 10362.55, + "probability": 0.9976 + }, + { + "start": 10363.28, + "end": 10365.2, + "probability": 0.9856 + }, + { + "start": 10366.04, + "end": 10368.16, + "probability": 0.9673 + }, + { + "start": 10369.16, + "end": 10370.22, + "probability": 0.9716 + }, + { + "start": 10371.04, + "end": 10371.76, + "probability": 0.9834 + }, + { + "start": 10372.94, + "end": 10376.18, + "probability": 0.9772 + }, + { + "start": 10377.6, + "end": 10379.58, + "probability": 0.6265 + }, + { + "start": 10381.06, + "end": 10383.0, + "probability": 0.5016 + }, + { + "start": 10383.0, + "end": 10384.16, + "probability": 0.7747 + }, + { + "start": 10384.48, + "end": 10385.3, + "probability": 0.9495 + }, + { + "start": 10385.48, + "end": 10388.04, + "probability": 0.971 + }, + { + "start": 10389.2, + "end": 10389.56, + "probability": 0.7369 + }, + { + "start": 10389.98, + "end": 10393.58, + "probability": 0.9986 + }, + { + "start": 10394.36, + "end": 10396.7, + "probability": 0.9966 + }, + { + "start": 10397.76, + "end": 10399.82, + "probability": 0.9875 + }, + { + "start": 10401.22, + "end": 10404.66, + "probability": 0.9944 + }, + { + "start": 10404.8, + "end": 10408.18, + "probability": 0.9805 + }, + { + "start": 10408.96, + "end": 10410.06, + "probability": 0.9914 + }, + { + "start": 10411.3, + "end": 10412.74, + "probability": 0.8407 + }, + { + "start": 10413.34, + "end": 10414.26, + "probability": 0.9516 + }, + { + "start": 10414.84, + "end": 10417.42, + "probability": 0.9881 + }, + { + "start": 10419.54, + "end": 10423.76, + "probability": 0.9274 + }, + { + "start": 10424.62, + "end": 10427.9, + "probability": 0.9375 + }, + { + "start": 10428.56, + "end": 10429.38, + "probability": 0.9707 + }, + { + "start": 10430.16, + "end": 10431.48, + "probability": 0.999 + }, + { + "start": 10432.38, + "end": 10432.98, + "probability": 0.9931 + }, + { + "start": 10434.16, + "end": 10437.24, + "probability": 0.97 + }, + { + "start": 10437.24, + "end": 10442.04, + "probability": 0.9988 + }, + { + "start": 10442.72, + "end": 10445.26, + "probability": 0.7778 + }, + { + "start": 10446.88, + "end": 10453.44, + "probability": 0.9705 + }, + { + "start": 10454.26, + "end": 10457.54, + "probability": 0.9934 + }, + { + "start": 10457.8, + "end": 10458.58, + "probability": 0.9792 + }, + { + "start": 10459.48, + "end": 10464.12, + "probability": 0.9978 + }, + { + "start": 10464.84, + "end": 10469.54, + "probability": 0.9996 + }, + { + "start": 10471.12, + "end": 10471.91, + "probability": 0.9589 + }, + { + "start": 10473.24, + "end": 10474.18, + "probability": 0.7474 + }, + { + "start": 10474.88, + "end": 10477.44, + "probability": 0.9893 + }, + { + "start": 10478.16, + "end": 10479.2, + "probability": 0.9824 + }, + { + "start": 10479.36, + "end": 10483.64, + "probability": 0.7721 + }, + { + "start": 10486.26, + "end": 10487.2, + "probability": 0.9613 + }, + { + "start": 10488.4, + "end": 10489.5, + "probability": 0.8513 + }, + { + "start": 10490.94, + "end": 10491.51, + "probability": 0.9618 + }, + { + "start": 10492.0, + "end": 10495.92, + "probability": 0.9912 + }, + { + "start": 10496.54, + "end": 10497.4, + "probability": 0.9901 + }, + { + "start": 10498.16, + "end": 10498.72, + "probability": 0.9011 + }, + { + "start": 10499.56, + "end": 10502.32, + "probability": 0.8698 + }, + { + "start": 10503.42, + "end": 10504.28, + "probability": 0.9788 + }, + { + "start": 10504.9, + "end": 10505.78, + "probability": 0.7519 + }, + { + "start": 10507.26, + "end": 10510.1, + "probability": 0.0312 + }, + { + "start": 10511.44, + "end": 10512.08, + "probability": 0.032 + }, + { + "start": 10512.08, + "end": 10512.08, + "probability": 0.1522 + }, + { + "start": 10512.08, + "end": 10512.1, + "probability": 0.2015 + }, + { + "start": 10512.1, + "end": 10517.48, + "probability": 0.9281 + }, + { + "start": 10518.86, + "end": 10519.7, + "probability": 0.6713 + }, + { + "start": 10520.56, + "end": 10522.32, + "probability": 0.8914 + }, + { + "start": 10522.88, + "end": 10525.26, + "probability": 0.9346 + }, + { + "start": 10527.1, + "end": 10528.06, + "probability": 0.9297 + }, + { + "start": 10528.4, + "end": 10531.06, + "probability": 0.991 + }, + { + "start": 10532.84, + "end": 10536.92, + "probability": 0.9991 + }, + { + "start": 10539.58, + "end": 10540.22, + "probability": 0.9924 + }, + { + "start": 10541.42, + "end": 10542.26, + "probability": 0.7411 + }, + { + "start": 10543.1, + "end": 10544.94, + "probability": 0.9958 + }, + { + "start": 10545.06, + "end": 10548.92, + "probability": 0.9976 + }, + { + "start": 10550.44, + "end": 10550.96, + "probability": 0.8936 + }, + { + "start": 10551.58, + "end": 10553.8, + "probability": 0.9873 + }, + { + "start": 10554.64, + "end": 10556.14, + "probability": 0.8673 + }, + { + "start": 10557.4, + "end": 10558.86, + "probability": 0.8338 + }, + { + "start": 10559.88, + "end": 10561.48, + "probability": 0.8663 + }, + { + "start": 10561.94, + "end": 10563.66, + "probability": 0.9821 + }, + { + "start": 10564.3, + "end": 10568.08, + "probability": 0.9951 + }, + { + "start": 10568.2, + "end": 10568.92, + "probability": 0.9404 + }, + { + "start": 10569.48, + "end": 10573.04, + "probability": 0.9972 + }, + { + "start": 10574.22, + "end": 10577.42, + "probability": 0.9727 + }, + { + "start": 10578.28, + "end": 10579.18, + "probability": 0.9838 + }, + { + "start": 10580.22, + "end": 10584.24, + "probability": 0.8672 + }, + { + "start": 10584.78, + "end": 10588.1, + "probability": 0.9359 + }, + { + "start": 10588.58, + "end": 10589.6, + "probability": 0.9997 + }, + { + "start": 10590.48, + "end": 10592.42, + "probability": 0.7517 + }, + { + "start": 10592.98, + "end": 10594.64, + "probability": 0.9974 + }, + { + "start": 10595.24, + "end": 10596.42, + "probability": 0.978 + }, + { + "start": 10597.24, + "end": 10598.26, + "probability": 0.9985 + }, + { + "start": 10598.58, + "end": 10603.12, + "probability": 0.9754 + }, + { + "start": 10603.62, + "end": 10604.76, + "probability": 0.9936 + }, + { + "start": 10604.8, + "end": 10607.08, + "probability": 0.991 + }, + { + "start": 10607.08, + "end": 10609.64, + "probability": 0.9995 + }, + { + "start": 10610.1, + "end": 10610.44, + "probability": 0.7509 + }, + { + "start": 10610.9, + "end": 10611.32, + "probability": 0.5762 + }, + { + "start": 10611.42, + "end": 10612.68, + "probability": 0.7266 + }, + { + "start": 10612.76, + "end": 10613.24, + "probability": 0.6724 + }, + { + "start": 10613.36, + "end": 10615.12, + "probability": 0.9391 + }, + { + "start": 10628.26, + "end": 10629.24, + "probability": 0.5617 + }, + { + "start": 10632.16, + "end": 10633.26, + "probability": 0.7 + }, + { + "start": 10633.56, + "end": 10634.66, + "probability": 0.6361 + }, + { + "start": 10635.02, + "end": 10638.02, + "probability": 0.9503 + }, + { + "start": 10638.18, + "end": 10639.76, + "probability": 0.998 + }, + { + "start": 10640.44, + "end": 10644.44, + "probability": 0.6989 + }, + { + "start": 10645.46, + "end": 10649.4, + "probability": 0.9904 + }, + { + "start": 10650.52, + "end": 10654.36, + "probability": 0.9762 + }, + { + "start": 10654.44, + "end": 10658.76, + "probability": 0.9727 + }, + { + "start": 10660.1, + "end": 10662.82, + "probability": 0.9785 + }, + { + "start": 10663.34, + "end": 10666.04, + "probability": 0.9707 + }, + { + "start": 10666.64, + "end": 10668.36, + "probability": 0.8931 + }, + { + "start": 10669.86, + "end": 10671.64, + "probability": 0.4918 + }, + { + "start": 10672.8, + "end": 10673.52, + "probability": 0.7241 + }, + { + "start": 10674.62, + "end": 10675.74, + "probability": 0.9665 + }, + { + "start": 10677.68, + "end": 10684.78, + "probability": 0.9967 + }, + { + "start": 10685.56, + "end": 10686.14, + "probability": 0.8789 + }, + { + "start": 10686.8, + "end": 10687.62, + "probability": 0.9448 + }, + { + "start": 10688.26, + "end": 10690.46, + "probability": 0.6426 + }, + { + "start": 10691.8, + "end": 10693.08, + "probability": 0.7502 + }, + { + "start": 10693.62, + "end": 10696.98, + "probability": 0.9731 + }, + { + "start": 10697.78, + "end": 10700.98, + "probability": 0.7759 + }, + { + "start": 10702.26, + "end": 10704.82, + "probability": 0.6159 + }, + { + "start": 10705.9, + "end": 10706.82, + "probability": 0.7596 + }, + { + "start": 10706.94, + "end": 10712.7, + "probability": 0.9737 + }, + { + "start": 10713.56, + "end": 10715.32, + "probability": 0.9751 + }, + { + "start": 10716.1, + "end": 10723.62, + "probability": 0.9116 + }, + { + "start": 10724.06, + "end": 10725.28, + "probability": 0.7379 + }, + { + "start": 10727.0, + "end": 10728.14, + "probability": 0.7879 + }, + { + "start": 10729.08, + "end": 10731.08, + "probability": 0.7455 + }, + { + "start": 10732.54, + "end": 10733.14, + "probability": 0.8385 + }, + { + "start": 10734.76, + "end": 10735.86, + "probability": 0.8251 + }, + { + "start": 10739.88, + "end": 10740.64, + "probability": 0.768 + }, + { + "start": 10741.6, + "end": 10745.28, + "probability": 0.9969 + }, + { + "start": 10745.88, + "end": 10747.5, + "probability": 0.8623 + }, + { + "start": 10748.12, + "end": 10748.92, + "probability": 0.8382 + }, + { + "start": 10749.5, + "end": 10750.46, + "probability": 0.6072 + }, + { + "start": 10751.32, + "end": 10752.34, + "probability": 0.9485 + }, + { + "start": 10753.0, + "end": 10753.8, + "probability": 0.9987 + }, + { + "start": 10754.66, + "end": 10755.52, + "probability": 0.7511 + }, + { + "start": 10756.82, + "end": 10757.7, + "probability": 0.9854 + }, + { + "start": 10758.64, + "end": 10761.82, + "probability": 0.9927 + }, + { + "start": 10762.84, + "end": 10764.38, + "probability": 0.9691 + }, + { + "start": 10765.52, + "end": 10765.68, + "probability": 0.6166 + }, + { + "start": 10766.64, + "end": 10769.68, + "probability": 0.9762 + }, + { + "start": 10770.52, + "end": 10773.14, + "probability": 0.9867 + }, + { + "start": 10773.82, + "end": 10777.28, + "probability": 0.9865 + }, + { + "start": 10778.36, + "end": 10780.84, + "probability": 0.9935 + }, + { + "start": 10781.56, + "end": 10785.82, + "probability": 0.8838 + }, + { + "start": 10786.76, + "end": 10789.2, + "probability": 0.9025 + }, + { + "start": 10790.18, + "end": 10793.42, + "probability": 0.9958 + }, + { + "start": 10794.02, + "end": 10795.98, + "probability": 0.9873 + }, + { + "start": 10796.76, + "end": 10799.32, + "probability": 0.9814 + }, + { + "start": 10800.62, + "end": 10803.58, + "probability": 0.9964 + }, + { + "start": 10804.94, + "end": 10806.66, + "probability": 0.989 + }, + { + "start": 10807.42, + "end": 10808.54, + "probability": 0.9924 + }, + { + "start": 10809.28, + "end": 10811.82, + "probability": 0.957 + }, + { + "start": 10812.74, + "end": 10813.48, + "probability": 0.6304 + }, + { + "start": 10814.56, + "end": 10815.42, + "probability": 0.9955 + }, + { + "start": 10816.36, + "end": 10817.72, + "probability": 0.9899 + }, + { + "start": 10819.7, + "end": 10823.04, + "probability": 0.9966 + }, + { + "start": 10823.7, + "end": 10824.32, + "probability": 0.9247 + }, + { + "start": 10825.62, + "end": 10827.1, + "probability": 0.9788 + }, + { + "start": 10827.8, + "end": 10829.26, + "probability": 0.8102 + }, + { + "start": 10830.24, + "end": 10832.5, + "probability": 0.9283 + }, + { + "start": 10833.48, + "end": 10836.46, + "probability": 0.9551 + }, + { + "start": 10837.08, + "end": 10842.58, + "probability": 0.8436 + }, + { + "start": 10844.58, + "end": 10845.66, + "probability": 0.998 + }, + { + "start": 10847.42, + "end": 10850.46, + "probability": 0.9318 + }, + { + "start": 10851.18, + "end": 10854.5, + "probability": 0.9812 + }, + { + "start": 10855.02, + "end": 10858.23, + "probability": 0.9536 + }, + { + "start": 10859.8, + "end": 10862.42, + "probability": 0.9889 + }, + { + "start": 10863.14, + "end": 10866.18, + "probability": 0.9665 + }, + { + "start": 10867.4, + "end": 10871.2, + "probability": 0.941 + }, + { + "start": 10872.9, + "end": 10874.4, + "probability": 0.5196 + }, + { + "start": 10875.0, + "end": 10876.7, + "probability": 0.9883 + }, + { + "start": 10876.86, + "end": 10882.9, + "probability": 0.9906 + }, + { + "start": 10883.64, + "end": 10884.52, + "probability": 0.9161 + }, + { + "start": 10884.58, + "end": 10884.9, + "probability": 0.7553 + }, + { + "start": 10887.26, + "end": 10887.76, + "probability": 0.6829 + }, + { + "start": 10887.8, + "end": 10889.44, + "probability": 0.9258 + }, + { + "start": 10890.46, + "end": 10893.16, + "probability": 0.9621 + }, + { + "start": 10900.72, + "end": 10901.88, + "probability": 0.5783 + }, + { + "start": 10902.48, + "end": 10909.64, + "probability": 0.8816 + }, + { + "start": 10909.92, + "end": 10911.8, + "probability": 0.7752 + }, + { + "start": 10911.9, + "end": 10912.88, + "probability": 0.8694 + }, + { + "start": 10913.04, + "end": 10914.48, + "probability": 0.9756 + }, + { + "start": 10915.0, + "end": 10917.68, + "probability": 0.9982 + }, + { + "start": 10917.8, + "end": 10919.23, + "probability": 0.779 + }, + { + "start": 10919.98, + "end": 10920.08, + "probability": 0.4437 + }, + { + "start": 10920.66, + "end": 10920.76, + "probability": 0.9619 + }, + { + "start": 10921.4, + "end": 10921.84, + "probability": 0.1855 + }, + { + "start": 10922.24, + "end": 10923.38, + "probability": 0.9938 + }, + { + "start": 10923.92, + "end": 10925.26, + "probability": 0.7734 + }, + { + "start": 10925.42, + "end": 10927.56, + "probability": 0.6395 + }, + { + "start": 10927.72, + "end": 10928.32, + "probability": 0.8305 + }, + { + "start": 10928.94, + "end": 10931.5, + "probability": 0.9684 + }, + { + "start": 10932.58, + "end": 10934.96, + "probability": 0.6677 + }, + { + "start": 10935.08, + "end": 10936.62, + "probability": 0.8546 + }, + { + "start": 10937.14, + "end": 10939.02, + "probability": 0.925 + }, + { + "start": 10939.14, + "end": 10940.3, + "probability": 0.9867 + }, + { + "start": 10940.48, + "end": 10941.6, + "probability": 0.9808 + }, + { + "start": 10942.02, + "end": 10942.78, + "probability": 0.9841 + }, + { + "start": 10943.5, + "end": 10944.36, + "probability": 0.6162 + }, + { + "start": 10944.88, + "end": 10947.34, + "probability": 0.9782 + }, + { + "start": 10948.5, + "end": 10950.9, + "probability": 0.9982 + }, + { + "start": 10950.9, + "end": 10954.86, + "probability": 0.9921 + }, + { + "start": 10955.64, + "end": 10956.96, + "probability": 0.962 + }, + { + "start": 10960.18, + "end": 10962.08, + "probability": 0.9902 + }, + { + "start": 10965.8, + "end": 10969.22, + "probability": 0.9849 + }, + { + "start": 10970.3, + "end": 10974.44, + "probability": 0.9756 + }, + { + "start": 10975.36, + "end": 10981.54, + "probability": 0.9718 + }, + { + "start": 10982.46, + "end": 10984.3, + "probability": 0.9351 + }, + { + "start": 10985.0, + "end": 10986.46, + "probability": 0.9825 + }, + { + "start": 10986.94, + "end": 10988.18, + "probability": 0.8369 + }, + { + "start": 10988.58, + "end": 10990.9, + "probability": 0.9985 + }, + { + "start": 10991.66, + "end": 10993.78, + "probability": 0.9069 + }, + { + "start": 10994.52, + "end": 10995.52, + "probability": 0.4242 + }, + { + "start": 10995.7, + "end": 10995.96, + "probability": 0.6171 + }, + { + "start": 10996.04, + "end": 11002.6, + "probability": 0.8391 + }, + { + "start": 11003.26, + "end": 11005.9, + "probability": 0.9838 + }, + { + "start": 11007.1, + "end": 11009.28, + "probability": 0.895 + }, + { + "start": 11010.3, + "end": 11012.32, + "probability": 0.9107 + }, + { + "start": 11014.14, + "end": 11016.98, + "probability": 0.9972 + }, + { + "start": 11017.94, + "end": 11018.88, + "probability": 0.9323 + }, + { + "start": 11019.52, + "end": 11020.66, + "probability": 0.894 + }, + { + "start": 11022.32, + "end": 11026.0, + "probability": 0.9869 + }, + { + "start": 11027.88, + "end": 11029.74, + "probability": 0.986 + }, + { + "start": 11030.72, + "end": 11031.76, + "probability": 0.9742 + }, + { + "start": 11032.7, + "end": 11036.58, + "probability": 0.978 + }, + { + "start": 11036.68, + "end": 11041.72, + "probability": 0.9762 + }, + { + "start": 11042.66, + "end": 11044.52, + "probability": 0.9972 + }, + { + "start": 11045.82, + "end": 11049.1, + "probability": 0.9563 + }, + { + "start": 11050.12, + "end": 11051.74, + "probability": 0.9961 + }, + { + "start": 11053.4, + "end": 11060.38, + "probability": 0.9388 + }, + { + "start": 11061.68, + "end": 11062.2, + "probability": 0.6874 + }, + { + "start": 11062.36, + "end": 11065.44, + "probability": 0.8577 + }, + { + "start": 11066.0, + "end": 11067.26, + "probability": 0.9304 + }, + { + "start": 11067.72, + "end": 11068.1, + "probability": 0.6549 + }, + { + "start": 11070.31, + "end": 11074.58, + "probability": 0.972 + }, + { + "start": 11075.26, + "end": 11078.86, + "probability": 0.7158 + }, + { + "start": 11079.64, + "end": 11081.9, + "probability": 0.9821 + }, + { + "start": 11083.42, + "end": 11085.12, + "probability": 0.8239 + }, + { + "start": 11086.04, + "end": 11089.34, + "probability": 0.991 + }, + { + "start": 11090.2, + "end": 11090.92, + "probability": 0.87 + }, + { + "start": 11092.02, + "end": 11095.66, + "probability": 0.9985 + }, + { + "start": 11097.34, + "end": 11101.12, + "probability": 0.9927 + }, + { + "start": 11103.42, + "end": 11105.34, + "probability": 0.9047 + }, + { + "start": 11105.52, + "end": 11107.24, + "probability": 0.8407 + }, + { + "start": 11107.76, + "end": 11110.22, + "probability": 0.8798 + }, + { + "start": 11111.02, + "end": 11111.94, + "probability": 0.7501 + }, + { + "start": 11112.68, + "end": 11114.87, + "probability": 0.9917 + }, + { + "start": 11115.02, + "end": 11115.72, + "probability": 0.8432 + }, + { + "start": 11116.54, + "end": 11119.02, + "probability": 0.9601 + }, + { + "start": 11119.54, + "end": 11121.52, + "probability": 0.9408 + }, + { + "start": 11122.59, + "end": 11126.24, + "probability": 0.0327 + }, + { + "start": 11127.22, + "end": 11128.14, + "probability": 0.9949 + }, + { + "start": 11128.92, + "end": 11129.92, + "probability": 0.9872 + }, + { + "start": 11130.78, + "end": 11136.4, + "probability": 0.8467 + }, + { + "start": 11137.12, + "end": 11137.42, + "probability": 0.4608 + }, + { + "start": 11138.26, + "end": 11139.32, + "probability": 0.8212 + }, + { + "start": 11140.16, + "end": 11141.6, + "probability": 0.9055 + }, + { + "start": 11142.52, + "end": 11144.54, + "probability": 0.7535 + }, + { + "start": 11146.34, + "end": 11148.29, + "probability": 0.9983 + }, + { + "start": 11149.04, + "end": 11151.64, + "probability": 0.998 + }, + { + "start": 11151.72, + "end": 11155.32, + "probability": 0.9478 + }, + { + "start": 11156.26, + "end": 11156.36, + "probability": 0.2974 + }, + { + "start": 11156.9, + "end": 11159.4, + "probability": 0.8942 + }, + { + "start": 11161.72, + "end": 11166.7, + "probability": 0.9472 + }, + { + "start": 11166.96, + "end": 11168.44, + "probability": 0.8601 + }, + { + "start": 11168.94, + "end": 11169.6, + "probability": 0.7577 + }, + { + "start": 11169.7, + "end": 11171.26, + "probability": 0.9568 + }, + { + "start": 11172.18, + "end": 11173.72, + "probability": 0.9903 + }, + { + "start": 11174.42, + "end": 11176.12, + "probability": 0.9727 + }, + { + "start": 11177.4, + "end": 11179.56, + "probability": 0.8647 + }, + { + "start": 11180.08, + "end": 11181.28, + "probability": 0.9617 + }, + { + "start": 11181.66, + "end": 11182.7, + "probability": 0.9275 + }, + { + "start": 11182.74, + "end": 11184.54, + "probability": 0.8781 + }, + { + "start": 11185.0, + "end": 11187.3, + "probability": 0.8815 + }, + { + "start": 11187.44, + "end": 11188.32, + "probability": 0.8112 + }, + { + "start": 11188.4, + "end": 11189.16, + "probability": 0.9258 + }, + { + "start": 11195.96, + "end": 11197.08, + "probability": 0.6385 + }, + { + "start": 11197.98, + "end": 11198.0, + "probability": 0.0596 + }, + { + "start": 11198.0, + "end": 11199.14, + "probability": 0.5682 + }, + { + "start": 11200.3, + "end": 11200.84, + "probability": 0.2399 + }, + { + "start": 11200.84, + "end": 11203.76, + "probability": 0.9491 + }, + { + "start": 11204.0, + "end": 11205.22, + "probability": 0.9573 + }, + { + "start": 11205.68, + "end": 11207.82, + "probability": 0.9578 + }, + { + "start": 11207.82, + "end": 11209.78, + "probability": 0.8892 + }, + { + "start": 11212.06, + "end": 11213.14, + "probability": 0.0717 + }, + { + "start": 11213.14, + "end": 11213.14, + "probability": 0.4563 + }, + { + "start": 11213.14, + "end": 11215.94, + "probability": 0.3518 + }, + { + "start": 11216.66, + "end": 11219.48, + "probability": 0.8979 + }, + { + "start": 11220.48, + "end": 11220.7, + "probability": 0.6078 + }, + { + "start": 11220.7, + "end": 11223.26, + "probability": 0.9552 + }, + { + "start": 11223.62, + "end": 11227.86, + "probability": 0.9822 + }, + { + "start": 11229.7, + "end": 11234.82, + "probability": 0.958 + }, + { + "start": 11236.66, + "end": 11238.3, + "probability": 0.8069 + }, + { + "start": 11239.42, + "end": 11243.82, + "probability": 0.9807 + }, + { + "start": 11244.14, + "end": 11244.32, + "probability": 0.6316 + }, + { + "start": 11244.84, + "end": 11245.86, + "probability": 0.9941 + }, + { + "start": 11247.14, + "end": 11247.66, + "probability": 0.6234 + }, + { + "start": 11248.0, + "end": 11248.64, + "probability": 0.8939 + }, + { + "start": 11249.74, + "end": 11250.46, + "probability": 0.7175 + }, + { + "start": 11251.08, + "end": 11252.58, + "probability": 0.778 + }, + { + "start": 11255.68, + "end": 11258.24, + "probability": 0.2783 + }, + { + "start": 11263.22, + "end": 11264.28, + "probability": 0.7851 + }, + { + "start": 11265.02, + "end": 11266.02, + "probability": 0.8372 + }, + { + "start": 11267.16, + "end": 11274.46, + "probability": 0.8906 + }, + { + "start": 11275.54, + "end": 11281.92, + "probability": 0.7523 + }, + { + "start": 11282.1, + "end": 11283.54, + "probability": 0.6514 + }, + { + "start": 11284.27, + "end": 11289.3, + "probability": 0.9797 + }, + { + "start": 11289.88, + "end": 11291.52, + "probability": 0.6733 + }, + { + "start": 11292.1, + "end": 11300.44, + "probability": 0.9935 + }, + { + "start": 11300.44, + "end": 11301.54, + "probability": 0.7553 + }, + { + "start": 11301.78, + "end": 11303.14, + "probability": 0.9718 + }, + { + "start": 11303.36, + "end": 11304.28, + "probability": 0.85 + }, + { + "start": 11304.36, + "end": 11305.4, + "probability": 0.9402 + }, + { + "start": 11306.64, + "end": 11309.23, + "probability": 0.7665 + }, + { + "start": 11309.56, + "end": 11314.74, + "probability": 0.8985 + }, + { + "start": 11315.04, + "end": 11317.84, + "probability": 0.9945 + }, + { + "start": 11319.46, + "end": 11321.04, + "probability": 0.905 + }, + { + "start": 11321.44, + "end": 11326.98, + "probability": 0.9941 + }, + { + "start": 11327.04, + "end": 11327.58, + "probability": 0.6279 + }, + { + "start": 11327.66, + "end": 11328.66, + "probability": 0.8311 + }, + { + "start": 11329.22, + "end": 11330.78, + "probability": 0.994 + }, + { + "start": 11331.6, + "end": 11340.66, + "probability": 0.9481 + }, + { + "start": 11341.2, + "end": 11345.52, + "probability": 0.9927 + }, + { + "start": 11346.68, + "end": 11349.5, + "probability": 0.993 + }, + { + "start": 11349.82, + "end": 11357.74, + "probability": 0.998 + }, + { + "start": 11357.92, + "end": 11360.24, + "probability": 0.7983 + }, + { + "start": 11360.72, + "end": 11364.14, + "probability": 0.9428 + }, + { + "start": 11364.84, + "end": 11371.96, + "probability": 0.7904 + }, + { + "start": 11372.16, + "end": 11373.94, + "probability": 0.7924 + }, + { + "start": 11373.94, + "end": 11375.11, + "probability": 0.3393 + }, + { + "start": 11375.54, + "end": 11379.36, + "probability": 0.9646 + }, + { + "start": 11379.36, + "end": 11382.4, + "probability": 0.5955 + }, + { + "start": 11382.58, + "end": 11386.52, + "probability": 0.9574 + }, + { + "start": 11386.68, + "end": 11387.38, + "probability": 0.9095 + }, + { + "start": 11387.52, + "end": 11390.32, + "probability": 0.9875 + }, + { + "start": 11391.26, + "end": 11394.58, + "probability": 0.84 + }, + { + "start": 11394.6, + "end": 11396.86, + "probability": 0.984 + }, + { + "start": 11397.4, + "end": 11397.78, + "probability": 0.7354 + }, + { + "start": 11397.86, + "end": 11399.38, + "probability": 0.9518 + }, + { + "start": 11399.56, + "end": 11402.38, + "probability": 0.9548 + }, + { + "start": 11403.06, + "end": 11407.16, + "probability": 0.9951 + }, + { + "start": 11408.1, + "end": 11408.1, + "probability": 0.0041 + }, + { + "start": 11408.66, + "end": 11411.16, + "probability": 0.7194 + }, + { + "start": 11411.9, + "end": 11414.88, + "probability": 0.6266 + }, + { + "start": 11414.98, + "end": 11417.48, + "probability": 0.9971 + }, + { + "start": 11418.16, + "end": 11420.14, + "probability": 0.9797 + }, + { + "start": 11421.38, + "end": 11424.66, + "probability": 0.848 + }, + { + "start": 11425.14, + "end": 11433.4, + "probability": 0.9888 + }, + { + "start": 11433.54, + "end": 11437.12, + "probability": 0.9767 + }, + { + "start": 11437.88, + "end": 11440.36, + "probability": 0.9905 + }, + { + "start": 11441.38, + "end": 11445.56, + "probability": 0.9866 + }, + { + "start": 11446.22, + "end": 11451.7, + "probability": 0.9888 + }, + { + "start": 11451.7, + "end": 11455.86, + "probability": 0.9909 + }, + { + "start": 11456.34, + "end": 11458.5, + "probability": 0.9976 + }, + { + "start": 11458.98, + "end": 11460.86, + "probability": 0.6075 + }, + { + "start": 11461.12, + "end": 11464.9, + "probability": 0.9827 + }, + { + "start": 11465.28, + "end": 11468.38, + "probability": 0.8794 + }, + { + "start": 11469.04, + "end": 11471.42, + "probability": 0.9814 + }, + { + "start": 11471.78, + "end": 11477.18, + "probability": 0.9914 + }, + { + "start": 11477.78, + "end": 11478.52, + "probability": 0.6343 + }, + { + "start": 11478.68, + "end": 11480.0, + "probability": 0.8229 + }, + { + "start": 11480.2, + "end": 11483.3, + "probability": 0.9199 + }, + { + "start": 11483.68, + "end": 11486.98, + "probability": 0.9674 + }, + { + "start": 11487.58, + "end": 11497.7, + "probability": 0.7252 + }, + { + "start": 11497.88, + "end": 11502.02, + "probability": 0.7619 + }, + { + "start": 11502.18, + "end": 11508.3, + "probability": 0.9482 + }, + { + "start": 11508.48, + "end": 11509.81, + "probability": 0.6478 + }, + { + "start": 11510.14, + "end": 11514.64, + "probability": 0.9692 + }, + { + "start": 11515.02, + "end": 11518.04, + "probability": 0.972 + }, + { + "start": 11518.54, + "end": 11522.88, + "probability": 0.9988 + }, + { + "start": 11523.36, + "end": 11525.72, + "probability": 0.9276 + }, + { + "start": 11526.26, + "end": 11528.5, + "probability": 0.9985 + }, + { + "start": 11529.04, + "end": 11529.6, + "probability": 0.9513 + }, + { + "start": 11530.44, + "end": 11532.82, + "probability": 0.9901 + }, + { + "start": 11533.25, + "end": 11536.03, + "probability": 0.8794 + }, + { + "start": 11536.64, + "end": 11542.9, + "probability": 0.915 + }, + { + "start": 11543.28, + "end": 11546.7, + "probability": 0.9976 + }, + { + "start": 11546.72, + "end": 11547.34, + "probability": 0.8031 + }, + { + "start": 11548.12, + "end": 11549.76, + "probability": 0.7505 + }, + { + "start": 11549.92, + "end": 11551.56, + "probability": 0.8103 + }, + { + "start": 11564.44, + "end": 11566.34, + "probability": 0.6984 + }, + { + "start": 11567.48, + "end": 11572.06, + "probability": 0.9868 + }, + { + "start": 11572.88, + "end": 11574.21, + "probability": 0.8753 + }, + { + "start": 11575.08, + "end": 11579.0, + "probability": 0.9968 + }, + { + "start": 11579.96, + "end": 11582.24, + "probability": 0.9993 + }, + { + "start": 11583.2, + "end": 11586.66, + "probability": 0.9969 + }, + { + "start": 11586.9, + "end": 11587.54, + "probability": 0.7806 + }, + { + "start": 11587.68, + "end": 11587.94, + "probability": 0.9261 + }, + { + "start": 11588.06, + "end": 11593.08, + "probability": 0.9968 + }, + { + "start": 11593.62, + "end": 11594.62, + "probability": 0.9798 + }, + { + "start": 11595.62, + "end": 11598.06, + "probability": 0.9971 + }, + { + "start": 11598.06, + "end": 11601.46, + "probability": 0.9974 + }, + { + "start": 11602.02, + "end": 11607.14, + "probability": 0.995 + }, + { + "start": 11607.24, + "end": 11612.14, + "probability": 0.9978 + }, + { + "start": 11612.16, + "end": 11612.44, + "probability": 0.6866 + }, + { + "start": 11613.08, + "end": 11614.56, + "probability": 0.9751 + }, + { + "start": 11614.66, + "end": 11615.3, + "probability": 0.8434 + }, + { + "start": 11615.36, + "end": 11616.3, + "probability": 0.8206 + }, + { + "start": 11617.06, + "end": 11617.88, + "probability": 0.8362 + }, + { + "start": 11618.3, + "end": 11621.34, + "probability": 0.9748 + }, + { + "start": 11622.06, + "end": 11624.6, + "probability": 0.8428 + }, + { + "start": 11625.32, + "end": 11627.24, + "probability": 0.6636 + }, + { + "start": 11627.78, + "end": 11628.64, + "probability": 0.9561 + }, + { + "start": 11629.42, + "end": 11632.32, + "probability": 0.9942 + }, + { + "start": 11632.32, + "end": 11634.58, + "probability": 0.9985 + }, + { + "start": 11635.38, + "end": 11638.5, + "probability": 0.8076 + }, + { + "start": 11639.44, + "end": 11643.16, + "probability": 0.9913 + }, + { + "start": 11643.68, + "end": 11646.12, + "probability": 0.9974 + }, + { + "start": 11647.02, + "end": 11650.88, + "probability": 0.9924 + }, + { + "start": 11651.38, + "end": 11654.44, + "probability": 0.9933 + }, + { + "start": 11655.06, + "end": 11659.84, + "probability": 0.9873 + }, + { + "start": 11660.66, + "end": 11663.34, + "probability": 0.9789 + }, + { + "start": 11663.94, + "end": 11666.6, + "probability": 0.9319 + }, + { + "start": 11667.28, + "end": 11669.04, + "probability": 0.9097 + }, + { + "start": 11669.44, + "end": 11671.2, + "probability": 0.8878 + }, + { + "start": 11671.8, + "end": 11674.86, + "probability": 0.9916 + }, + { + "start": 11674.86, + "end": 11678.22, + "probability": 0.9348 + }, + { + "start": 11678.78, + "end": 11682.3, + "probability": 0.9989 + }, + { + "start": 11683.22, + "end": 11683.94, + "probability": 0.5603 + }, + { + "start": 11684.66, + "end": 11688.56, + "probability": 0.9265 + }, + { + "start": 11689.08, + "end": 11691.8, + "probability": 0.9995 + }, + { + "start": 11692.46, + "end": 11695.74, + "probability": 0.9908 + }, + { + "start": 11696.62, + "end": 11699.6, + "probability": 0.979 + }, + { + "start": 11700.48, + "end": 11703.98, + "probability": 0.9593 + }, + { + "start": 11704.52, + "end": 11708.82, + "probability": 0.9945 + }, + { + "start": 11709.48, + "end": 11711.5, + "probability": 0.9861 + }, + { + "start": 11712.26, + "end": 11714.52, + "probability": 0.7699 + }, + { + "start": 11714.98, + "end": 11716.58, + "probability": 0.6396 + }, + { + "start": 11716.68, + "end": 11720.54, + "probability": 0.9695 + }, + { + "start": 11721.06, + "end": 11722.96, + "probability": 0.995 + }, + { + "start": 11724.15, + "end": 11726.78, + "probability": 0.9722 + }, + { + "start": 11727.58, + "end": 11729.58, + "probability": 0.9189 + }, + { + "start": 11730.18, + "end": 11732.18, + "probability": 0.9945 + }, + { + "start": 11732.62, + "end": 11735.48, + "probability": 0.8706 + }, + { + "start": 11736.22, + "end": 11739.06, + "probability": 0.998 + }, + { + "start": 11739.12, + "end": 11740.74, + "probability": 0.9565 + }, + { + "start": 11741.3, + "end": 11745.64, + "probability": 0.995 + }, + { + "start": 11746.16, + "end": 11749.54, + "probability": 0.995 + }, + { + "start": 11750.08, + "end": 11750.92, + "probability": 0.9246 + }, + { + "start": 11751.5, + "end": 11752.34, + "probability": 0.8719 + }, + { + "start": 11752.9, + "end": 11755.16, + "probability": 0.9828 + }, + { + "start": 11755.84, + "end": 11758.22, + "probability": 0.9907 + }, + { + "start": 11758.9, + "end": 11759.58, + "probability": 0.9815 + }, + { + "start": 11760.48, + "end": 11761.38, + "probability": 0.9869 + }, + { + "start": 11761.8, + "end": 11764.12, + "probability": 0.9547 + }, + { + "start": 11764.58, + "end": 11768.08, + "probability": 0.9761 + }, + { + "start": 11768.88, + "end": 11770.22, + "probability": 0.864 + }, + { + "start": 11770.58, + "end": 11773.86, + "probability": 0.977 + }, + { + "start": 11774.42, + "end": 11777.66, + "probability": 0.9971 + }, + { + "start": 11778.2, + "end": 11779.55, + "probability": 0.9761 + }, + { + "start": 11780.5, + "end": 11782.46, + "probability": 0.9064 + }, + { + "start": 11783.04, + "end": 11785.16, + "probability": 0.9054 + }, + { + "start": 11785.9, + "end": 11787.0, + "probability": 0.9956 + }, + { + "start": 11787.26, + "end": 11789.5, + "probability": 0.9843 + }, + { + "start": 11789.94, + "end": 11791.38, + "probability": 0.978 + }, + { + "start": 11791.62, + "end": 11791.94, + "probability": 0.8421 + }, + { + "start": 11792.7, + "end": 11793.34, + "probability": 0.5789 + }, + { + "start": 11793.46, + "end": 11794.74, + "probability": 0.5352 + }, + { + "start": 11794.9, + "end": 11795.92, + "probability": 0.7076 + }, + { + "start": 11795.96, + "end": 11797.2, + "probability": 0.9913 + }, + { + "start": 11798.04, + "end": 11801.86, + "probability": 0.9652 + }, + { + "start": 11802.4, + "end": 11803.9, + "probability": 0.9832 + }, + { + "start": 11804.98, + "end": 11806.7, + "probability": 0.8567 + }, + { + "start": 11807.38, + "end": 11808.72, + "probability": 0.7194 + }, + { + "start": 11808.74, + "end": 11809.18, + "probability": 0.3991 + }, + { + "start": 11811.76, + "end": 11811.94, + "probability": 0.001 + }, + { + "start": 11817.64, + "end": 11817.74, + "probability": 0.0023 + }, + { + "start": 11817.74, + "end": 11818.32, + "probability": 0.6734 + }, + { + "start": 11821.48, + "end": 11823.66, + "probability": 0.6559 + }, + { + "start": 11826.36, + "end": 11826.94, + "probability": 0.9902 + }, + { + "start": 11827.64, + "end": 11832.72, + "probability": 0.9966 + }, + { + "start": 11834.0, + "end": 11838.4, + "probability": 0.9995 + }, + { + "start": 11839.24, + "end": 11840.02, + "probability": 0.9993 + }, + { + "start": 11841.84, + "end": 11842.64, + "probability": 0.9727 + }, + { + "start": 11843.76, + "end": 11845.82, + "probability": 0.9985 + }, + { + "start": 11847.5, + "end": 11850.88, + "probability": 0.9952 + }, + { + "start": 11852.62, + "end": 11855.3, + "probability": 0.991 + }, + { + "start": 11857.34, + "end": 11860.44, + "probability": 0.9952 + }, + { + "start": 11862.52, + "end": 11864.52, + "probability": 0.9983 + }, + { + "start": 11865.66, + "end": 11871.06, + "probability": 0.9971 + }, + { + "start": 11871.8, + "end": 11872.84, + "probability": 0.9932 + }, + { + "start": 11874.46, + "end": 11877.26, + "probability": 0.8327 + }, + { + "start": 11878.68, + "end": 11882.7, + "probability": 0.9896 + }, + { + "start": 11884.08, + "end": 11887.58, + "probability": 0.9703 + }, + { + "start": 11888.76, + "end": 11893.44, + "probability": 0.996 + }, + { + "start": 11895.7, + "end": 11896.32, + "probability": 0.5025 + }, + { + "start": 11897.24, + "end": 11898.46, + "probability": 0.9995 + }, + { + "start": 11899.62, + "end": 11901.56, + "probability": 0.9987 + }, + { + "start": 11902.62, + "end": 11904.58, + "probability": 0.7717 + }, + { + "start": 11905.88, + "end": 11907.26, + "probability": 0.8185 + }, + { + "start": 11909.3, + "end": 11909.94, + "probability": 0.9852 + }, + { + "start": 11910.98, + "end": 11913.94, + "probability": 0.8815 + }, + { + "start": 11915.86, + "end": 11916.54, + "probability": 0.5103 + }, + { + "start": 11917.58, + "end": 11922.12, + "probability": 0.9857 + }, + { + "start": 11922.24, + "end": 11924.04, + "probability": 0.9117 + }, + { + "start": 11924.94, + "end": 11928.94, + "probability": 0.9514 + }, + { + "start": 11930.08, + "end": 11932.22, + "probability": 0.9753 + }, + { + "start": 11933.54, + "end": 11936.26, + "probability": 0.6278 + }, + { + "start": 11937.74, + "end": 11938.24, + "probability": 0.676 + }, + { + "start": 11939.1, + "end": 11941.56, + "probability": 0.9097 + }, + { + "start": 11942.92, + "end": 11946.32, + "probability": 0.983 + }, + { + "start": 11947.54, + "end": 11950.0, + "probability": 0.9994 + }, + { + "start": 11950.6, + "end": 11952.78, + "probability": 0.8195 + }, + { + "start": 11954.22, + "end": 11959.24, + "probability": 0.9963 + }, + { + "start": 11960.7, + "end": 11962.18, + "probability": 0.9537 + }, + { + "start": 11963.36, + "end": 11968.16, + "probability": 0.9965 + }, + { + "start": 11969.36, + "end": 11972.3, + "probability": 0.9854 + }, + { + "start": 11973.8, + "end": 11975.06, + "probability": 0.9723 + }, + { + "start": 11976.58, + "end": 11979.32, + "probability": 0.9941 + }, + { + "start": 11980.42, + "end": 11982.72, + "probability": 0.9195 + }, + { + "start": 11983.74, + "end": 11986.4, + "probability": 0.8243 + }, + { + "start": 11986.96, + "end": 11991.0, + "probability": 0.9774 + }, + { + "start": 11992.92, + "end": 11994.64, + "probability": 0.9463 + }, + { + "start": 11995.9, + "end": 11997.1, + "probability": 0.9328 + }, + { + "start": 11998.14, + "end": 12000.04, + "probability": 0.8725 + }, + { + "start": 12001.6, + "end": 12004.7, + "probability": 0.9949 + }, + { + "start": 12005.9, + "end": 12006.96, + "probability": 0.9781 + }, + { + "start": 12007.48, + "end": 12008.04, + "probability": 0.8838 + }, + { + "start": 12009.14, + "end": 12018.66, + "probability": 0.9927 + }, + { + "start": 12018.8, + "end": 12020.86, + "probability": 0.8715 + }, + { + "start": 12022.7, + "end": 12028.66, + "probability": 0.9964 + }, + { + "start": 12030.26, + "end": 12030.94, + "probability": 0.8342 + }, + { + "start": 12031.58, + "end": 12032.74, + "probability": 0.9839 + }, + { + "start": 12034.8, + "end": 12041.78, + "probability": 0.9978 + }, + { + "start": 12043.44, + "end": 12045.09, + "probability": 0.9675 + }, + { + "start": 12046.54, + "end": 12048.56, + "probability": 0.6193 + }, + { + "start": 12049.82, + "end": 12053.18, + "probability": 0.9968 + }, + { + "start": 12054.36, + "end": 12056.34, + "probability": 0.8706 + }, + { + "start": 12057.96, + "end": 12061.04, + "probability": 0.9727 + }, + { + "start": 12062.1, + "end": 12063.54, + "probability": 0.7633 + }, + { + "start": 12069.14, + "end": 12071.96, + "probability": 0.9796 + }, + { + "start": 12073.62, + "end": 12074.8, + "probability": 0.7574 + }, + { + "start": 12076.28, + "end": 12078.78, + "probability": 0.9865 + }, + { + "start": 12079.62, + "end": 12082.62, + "probability": 0.9977 + }, + { + "start": 12083.58, + "end": 12084.94, + "probability": 0.9294 + }, + { + "start": 12086.12, + "end": 12090.36, + "probability": 0.9815 + }, + { + "start": 12091.66, + "end": 12096.1, + "probability": 0.9984 + }, + { + "start": 12097.2, + "end": 12101.08, + "probability": 0.9996 + }, + { + "start": 12102.72, + "end": 12106.78, + "probability": 0.9253 + }, + { + "start": 12107.76, + "end": 12108.46, + "probability": 0.7991 + }, + { + "start": 12109.74, + "end": 12112.06, + "probability": 0.9989 + }, + { + "start": 12112.98, + "end": 12116.2, + "probability": 0.9648 + }, + { + "start": 12117.06, + "end": 12119.7, + "probability": 0.9985 + }, + { + "start": 12121.36, + "end": 12123.46, + "probability": 0.9785 + }, + { + "start": 12124.84, + "end": 12125.96, + "probability": 0.9987 + }, + { + "start": 12126.56, + "end": 12128.5, + "probability": 0.908 + }, + { + "start": 12129.9, + "end": 12133.88, + "probability": 0.9648 + }, + { + "start": 12135.18, + "end": 12139.28, + "probability": 0.9277 + }, + { + "start": 12140.42, + "end": 12141.66, + "probability": 0.9977 + }, + { + "start": 12142.74, + "end": 12147.62, + "probability": 0.9925 + }, + { + "start": 12148.72, + "end": 12152.28, + "probability": 0.905 + }, + { + "start": 12154.38, + "end": 12155.28, + "probability": 0.8935 + }, + { + "start": 12156.22, + "end": 12158.62, + "probability": 0.9696 + }, + { + "start": 12158.68, + "end": 12160.34, + "probability": 0.7633 + }, + { + "start": 12161.4, + "end": 12164.82, + "probability": 0.9901 + }, + { + "start": 12165.74, + "end": 12168.82, + "probability": 0.9937 + }, + { + "start": 12170.42, + "end": 12170.6, + "probability": 0.7236 + }, + { + "start": 12171.66, + "end": 12173.69, + "probability": 0.9954 + }, + { + "start": 12174.68, + "end": 12175.6, + "probability": 0.9746 + }, + { + "start": 12176.54, + "end": 12177.88, + "probability": 0.7834 + }, + { + "start": 12178.84, + "end": 12182.3, + "probability": 0.968 + }, + { + "start": 12182.3, + "end": 12184.78, + "probability": 0.9788 + }, + { + "start": 12185.98, + "end": 12188.58, + "probability": 0.9866 + }, + { + "start": 12188.58, + "end": 12192.08, + "probability": 0.9948 + }, + { + "start": 12193.02, + "end": 12194.84, + "probability": 0.9797 + }, + { + "start": 12195.62, + "end": 12197.42, + "probability": 0.9949 + }, + { + "start": 12198.3, + "end": 12199.44, + "probability": 0.8945 + }, + { + "start": 12199.5, + "end": 12203.2, + "probability": 0.989 + }, + { + "start": 12203.9, + "end": 12205.7, + "probability": 0.998 + }, + { + "start": 12206.12, + "end": 12206.6, + "probability": 0.8648 + }, + { + "start": 12207.02, + "end": 12211.38, + "probability": 0.9648 + }, + { + "start": 12212.4, + "end": 12215.34, + "probability": 0.618 + }, + { + "start": 12215.56, + "end": 12217.24, + "probability": 0.9294 + }, + { + "start": 12217.28, + "end": 12217.74, + "probability": 0.9435 + }, + { + "start": 12220.56, + "end": 12221.18, + "probability": 0.6983 + }, + { + "start": 12221.3, + "end": 12225.28, + "probability": 0.9502 + }, + { + "start": 12226.08, + "end": 12226.5, + "probability": 0.7301 + }, + { + "start": 12227.58, + "end": 12228.45, + "probability": 0.6668 + }, + { + "start": 12229.78, + "end": 12233.46, + "probability": 0.6379 + }, + { + "start": 12240.5, + "end": 12243.24, + "probability": 0.7716 + }, + { + "start": 12244.18, + "end": 12245.3, + "probability": 0.9166 + }, + { + "start": 12246.06, + "end": 12248.7, + "probability": 0.8774 + }, + { + "start": 12249.54, + "end": 12251.44, + "probability": 0.9767 + }, + { + "start": 12252.1, + "end": 12256.04, + "probability": 0.9707 + }, + { + "start": 12256.6, + "end": 12260.58, + "probability": 0.9828 + }, + { + "start": 12261.34, + "end": 12264.52, + "probability": 0.9883 + }, + { + "start": 12265.44, + "end": 12268.06, + "probability": 0.8287 + }, + { + "start": 12268.66, + "end": 12273.66, + "probability": 0.9787 + }, + { + "start": 12274.76, + "end": 12277.42, + "probability": 0.9914 + }, + { + "start": 12277.42, + "end": 12281.26, + "probability": 0.9887 + }, + { + "start": 12281.9, + "end": 12286.32, + "probability": 0.9478 + }, + { + "start": 12286.72, + "end": 12287.34, + "probability": 0.559 + }, + { + "start": 12287.84, + "end": 12292.02, + "probability": 0.9604 + }, + { + "start": 12293.16, + "end": 12299.86, + "probability": 0.9811 + }, + { + "start": 12300.28, + "end": 12302.8, + "probability": 0.9938 + }, + { + "start": 12304.08, + "end": 12309.76, + "probability": 0.9863 + }, + { + "start": 12310.38, + "end": 12310.44, + "probability": 0.5242 + }, + { + "start": 12311.12, + "end": 12313.0, + "probability": 0.9784 + }, + { + "start": 12314.08, + "end": 12315.08, + "probability": 0.8898 + }, + { + "start": 12315.76, + "end": 12318.5, + "probability": 0.9816 + }, + { + "start": 12319.3, + "end": 12323.58, + "probability": 0.8796 + }, + { + "start": 12323.98, + "end": 12325.46, + "probability": 0.7521 + }, + { + "start": 12326.24, + "end": 12328.64, + "probability": 0.9893 + }, + { + "start": 12329.28, + "end": 12331.08, + "probability": 0.9414 + }, + { + "start": 12331.6, + "end": 12335.98, + "probability": 0.9673 + }, + { + "start": 12336.86, + "end": 12338.7, + "probability": 0.9913 + }, + { + "start": 12339.88, + "end": 12341.54, + "probability": 0.9158 + }, + { + "start": 12342.2, + "end": 12345.78, + "probability": 0.8252 + }, + { + "start": 12346.58, + "end": 12347.64, + "probability": 0.7716 + }, + { + "start": 12347.72, + "end": 12349.62, + "probability": 0.7455 + }, + { + "start": 12350.08, + "end": 12351.72, + "probability": 0.377 + }, + { + "start": 12351.86, + "end": 12354.22, + "probability": 0.9831 + }, + { + "start": 12355.1, + "end": 12359.22, + "probability": 0.9911 + }, + { + "start": 12359.64, + "end": 12360.54, + "probability": 0.4999 + }, + { + "start": 12361.3, + "end": 12363.48, + "probability": 0.9907 + }, + { + "start": 12363.92, + "end": 12368.4, + "probability": 0.9758 + }, + { + "start": 12368.4, + "end": 12372.88, + "probability": 0.9577 + }, + { + "start": 12374.12, + "end": 12379.72, + "probability": 0.8351 + }, + { + "start": 12379.84, + "end": 12383.9, + "probability": 0.9979 + }, + { + "start": 12384.86, + "end": 12385.66, + "probability": 0.6022 + }, + { + "start": 12386.2, + "end": 12391.04, + "probability": 0.9906 + }, + { + "start": 12391.42, + "end": 12392.42, + "probability": 0.965 + }, + { + "start": 12392.76, + "end": 12395.02, + "probability": 0.9695 + }, + { + "start": 12395.62, + "end": 12397.68, + "probability": 0.8029 + }, + { + "start": 12398.24, + "end": 12402.74, + "probability": 0.7353 + }, + { + "start": 12403.28, + "end": 12404.88, + "probability": 0.9517 + }, + { + "start": 12405.02, + "end": 12406.5, + "probability": 0.8276 + }, + { + "start": 12406.54, + "end": 12411.18, + "probability": 0.9422 + }, + { + "start": 12411.7, + "end": 12416.86, + "probability": 0.9652 + }, + { + "start": 12417.04, + "end": 12418.72, + "probability": 0.864 + }, + { + "start": 12418.88, + "end": 12423.82, + "probability": 0.9167 + }, + { + "start": 12423.92, + "end": 12424.5, + "probability": 0.6145 + }, + { + "start": 12424.96, + "end": 12431.38, + "probability": 0.9923 + }, + { + "start": 12431.42, + "end": 12432.22, + "probability": 0.9604 + }, + { + "start": 12432.76, + "end": 12433.52, + "probability": 0.5505 + }, + { + "start": 12433.94, + "end": 12436.84, + "probability": 0.9578 + }, + { + "start": 12436.9, + "end": 12440.42, + "probability": 0.9946 + }, + { + "start": 12441.4, + "end": 12441.76, + "probability": 0.6303 + }, + { + "start": 12441.8, + "end": 12443.18, + "probability": 0.7661 + }, + { + "start": 12443.3, + "end": 12447.16, + "probability": 0.9685 + }, + { + "start": 12447.3, + "end": 12449.94, + "probability": 0.7014 + }, + { + "start": 12450.54, + "end": 12451.51, + "probability": 0.7035 + }, + { + "start": 12451.8, + "end": 12452.72, + "probability": 0.6987 + }, + { + "start": 12453.32, + "end": 12456.34, + "probability": 0.4721 + }, + { + "start": 12456.58, + "end": 12458.06, + "probability": 0.8104 + }, + { + "start": 12458.58, + "end": 12460.78, + "probability": 0.6503 + }, + { + "start": 12461.7, + "end": 12463.28, + "probability": 0.1071 + }, + { + "start": 12463.28, + "end": 12463.68, + "probability": 0.5812 + }, + { + "start": 12463.72, + "end": 12464.7, + "probability": 0.8433 + }, + { + "start": 12464.74, + "end": 12467.1, + "probability": 0.9237 + }, + { + "start": 12467.52, + "end": 12470.42, + "probability": 0.84 + }, + { + "start": 12471.26, + "end": 12476.68, + "probability": 0.1593 + }, + { + "start": 12477.16, + "end": 12477.98, + "probability": 0.0246 + }, + { + "start": 12480.82, + "end": 12481.17, + "probability": 0.0097 + }, + { + "start": 12483.14, + "end": 12483.4, + "probability": 0.1079 + }, + { + "start": 12483.4, + "end": 12484.68, + "probability": 0.0596 + }, + { + "start": 12485.38, + "end": 12486.16, + "probability": 0.2222 + }, + { + "start": 12486.4, + "end": 12489.88, + "probability": 0.6556 + }, + { + "start": 12491.8, + "end": 12493.18, + "probability": 0.2865 + }, + { + "start": 12493.18, + "end": 12498.4, + "probability": 0.5742 + }, + { + "start": 12498.52, + "end": 12498.52, + "probability": 0.4462 + }, + { + "start": 12498.66, + "end": 12499.44, + "probability": 0.856 + }, + { + "start": 12499.5, + "end": 12500.88, + "probability": 0.7761 + }, + { + "start": 12501.14, + "end": 12505.04, + "probability": 0.9883 + }, + { + "start": 12505.82, + "end": 12506.54, + "probability": 0.8052 + }, + { + "start": 12507.82, + "end": 12511.16, + "probability": 0.9031 + }, + { + "start": 12511.72, + "end": 12516.52, + "probability": 0.9744 + }, + { + "start": 12517.06, + "end": 12519.12, + "probability": 0.7852 + }, + { + "start": 12519.4, + "end": 12523.6, + "probability": 0.6207 + }, + { + "start": 12524.78, + "end": 12529.72, + "probability": 0.9835 + }, + { + "start": 12529.88, + "end": 12534.96, + "probability": 0.9974 + }, + { + "start": 12535.34, + "end": 12538.56, + "probability": 0.9694 + }, + { + "start": 12539.06, + "end": 12545.42, + "probability": 0.9784 + }, + { + "start": 12546.14, + "end": 12550.78, + "probability": 0.5034 + }, + { + "start": 12554.64, + "end": 12557.18, + "probability": 0.9722 + }, + { + "start": 12557.88, + "end": 12562.46, + "probability": 0.7124 + }, + { + "start": 12563.4, + "end": 12564.44, + "probability": 0.9446 + }, + { + "start": 12564.48, + "end": 12565.12, + "probability": 0.6572 + }, + { + "start": 12565.14, + "end": 12565.84, + "probability": 0.866 + }, + { + "start": 12565.94, + "end": 12569.5, + "probability": 0.7517 + }, + { + "start": 12569.98, + "end": 12573.0, + "probability": 0.9424 + }, + { + "start": 12573.22, + "end": 12575.6, + "probability": 0.8174 + }, + { + "start": 12576.22, + "end": 12579.68, + "probability": 0.9819 + }, + { + "start": 12580.44, + "end": 12587.2, + "probability": 0.8647 + }, + { + "start": 12587.68, + "end": 12590.04, + "probability": 0.8735 + }, + { + "start": 12590.58, + "end": 12592.34, + "probability": 0.9735 + }, + { + "start": 12592.84, + "end": 12594.82, + "probability": 0.9033 + }, + { + "start": 12594.98, + "end": 12600.94, + "probability": 0.9868 + }, + { + "start": 12600.98, + "end": 12605.12, + "probability": 0.9457 + }, + { + "start": 12605.66, + "end": 12609.1, + "probability": 0.841 + }, + { + "start": 12609.56, + "end": 12612.82, + "probability": 0.9402 + }, + { + "start": 12613.42, + "end": 12613.98, + "probability": 0.2463 + }, + { + "start": 12613.98, + "end": 12618.54, + "probability": 0.9861 + }, + { + "start": 12619.36, + "end": 12619.68, + "probability": 0.659 + }, + { + "start": 12619.76, + "end": 12620.62, + "probability": 0.6389 + }, + { + "start": 12620.66, + "end": 12621.58, + "probability": 0.6442 + }, + { + "start": 12621.64, + "end": 12622.41, + "probability": 0.9951 + }, + { + "start": 12623.54, + "end": 12624.26, + "probability": 0.9578 + }, + { + "start": 12625.22, + "end": 12627.74, + "probability": 0.9585 + }, + { + "start": 12627.82, + "end": 12630.64, + "probability": 0.9173 + }, + { + "start": 12631.3, + "end": 12632.2, + "probability": 0.6306 + }, + { + "start": 12633.3, + "end": 12638.38, + "probability": 0.7913 + }, + { + "start": 12638.52, + "end": 12639.82, + "probability": 0.9445 + }, + { + "start": 12640.76, + "end": 12644.5, + "probability": 0.993 + }, + { + "start": 12644.84, + "end": 12647.36, + "probability": 0.6686 + }, + { + "start": 12647.6, + "end": 12648.88, + "probability": 0.8905 + }, + { + "start": 12649.08, + "end": 12653.41, + "probability": 0.9549 + }, + { + "start": 12655.22, + "end": 12655.84, + "probability": 0.7793 + }, + { + "start": 12656.58, + "end": 12661.8, + "probability": 0.991 + }, + { + "start": 12662.6, + "end": 12665.12, + "probability": 0.7155 + }, + { + "start": 12665.8, + "end": 12667.58, + "probability": 0.7498 + }, + { + "start": 12668.44, + "end": 12670.08, + "probability": 0.9286 + }, + { + "start": 12670.68, + "end": 12674.48, + "probability": 0.957 + }, + { + "start": 12674.54, + "end": 12678.88, + "probability": 0.9561 + }, + { + "start": 12678.94, + "end": 12680.3, + "probability": 0.7897 + }, + { + "start": 12680.96, + "end": 12684.1, + "probability": 0.9817 + }, + { + "start": 12684.92, + "end": 12687.48, + "probability": 0.9961 + }, + { + "start": 12688.28, + "end": 12689.68, + "probability": 0.2392 + }, + { + "start": 12689.8, + "end": 12693.08, + "probability": 0.9866 + }, + { + "start": 12694.04, + "end": 12696.06, + "probability": 0.801 + }, + { + "start": 12697.16, + "end": 12697.92, + "probability": 0.6036 + }, + { + "start": 12698.68, + "end": 12701.56, + "probability": 0.7781 + }, + { + "start": 12702.22, + "end": 12703.56, + "probability": 0.9436 + }, + { + "start": 12703.66, + "end": 12708.28, + "probability": 0.9877 + }, + { + "start": 12709.52, + "end": 12714.68, + "probability": 0.9927 + }, + { + "start": 12715.76, + "end": 12718.72, + "probability": 0.9976 + }, + { + "start": 12719.24, + "end": 12723.78, + "probability": 0.9744 + }, + { + "start": 12724.3, + "end": 12727.68, + "probability": 0.996 + }, + { + "start": 12728.56, + "end": 12729.56, + "probability": 0.9329 + }, + { + "start": 12730.0, + "end": 12733.42, + "probability": 0.9854 + }, + { + "start": 12733.64, + "end": 12736.8, + "probability": 0.957 + }, + { + "start": 12736.84, + "end": 12737.28, + "probability": 0.7734 + }, + { + "start": 12737.62, + "end": 12740.62, + "probability": 0.9539 + }, + { + "start": 12740.98, + "end": 12742.5, + "probability": 0.9412 + }, + { + "start": 12742.66, + "end": 12745.79, + "probability": 0.7592 + }, + { + "start": 12746.0, + "end": 12747.21, + "probability": 0.7676 + }, + { + "start": 12747.58, + "end": 12750.98, + "probability": 0.9778 + }, + { + "start": 12751.24, + "end": 12752.12, + "probability": 0.6351 + }, + { + "start": 12752.2, + "end": 12753.48, + "probability": 0.5125 + }, + { + "start": 12753.68, + "end": 12754.16, + "probability": 0.7746 + }, + { + "start": 12754.62, + "end": 12757.12, + "probability": 0.6129 + }, + { + "start": 12757.7, + "end": 12758.7, + "probability": 0.7612 + }, + { + "start": 12759.3, + "end": 12760.12, + "probability": 0.9614 + }, + { + "start": 12760.26, + "end": 12761.08, + "probability": 0.77 + }, + { + "start": 12761.16, + "end": 12762.04, + "probability": 0.9691 + }, + { + "start": 12762.3, + "end": 12765.38, + "probability": 0.9883 + }, + { + "start": 12765.38, + "end": 12768.06, + "probability": 0.9896 + }, + { + "start": 12768.58, + "end": 12769.22, + "probability": 0.7325 + }, + { + "start": 12769.76, + "end": 12770.58, + "probability": 0.8065 + }, + { + "start": 12770.66, + "end": 12773.83, + "probability": 0.981 + }, + { + "start": 12774.22, + "end": 12777.02, + "probability": 0.8848 + }, + { + "start": 12777.08, + "end": 12777.94, + "probability": 0.8917 + }, + { + "start": 12778.76, + "end": 12783.68, + "probability": 0.9935 + }, + { + "start": 12784.36, + "end": 12787.58, + "probability": 0.9095 + }, + { + "start": 12789.24, + "end": 12791.56, + "probability": 0.9982 + }, + { + "start": 12792.04, + "end": 12794.8, + "probability": 0.8498 + }, + { + "start": 12795.0, + "end": 12795.62, + "probability": 0.7378 + }, + { + "start": 12795.86, + "end": 12799.56, + "probability": 0.8892 + }, + { + "start": 12799.88, + "end": 12801.04, + "probability": 0.8262 + }, + { + "start": 12801.1, + "end": 12801.82, + "probability": 0.9762 + }, + { + "start": 12802.9, + "end": 12807.24, + "probability": 0.6571 + }, + { + "start": 12807.24, + "end": 12807.88, + "probability": 0.4845 + }, + { + "start": 12807.88, + "end": 12810.28, + "probability": 0.6844 + }, + { + "start": 12810.44, + "end": 12813.76, + "probability": 0.9266 + }, + { + "start": 12813.82, + "end": 12815.26, + "probability": 0.8534 + }, + { + "start": 12816.92, + "end": 12819.34, + "probability": 0.9146 + }, + { + "start": 12820.02, + "end": 12820.74, + "probability": 0.7147 + }, + { + "start": 12821.44, + "end": 12823.4, + "probability": 0.9877 + }, + { + "start": 12824.7, + "end": 12826.82, + "probability": 0.6694 + }, + { + "start": 12827.34, + "end": 12827.76, + "probability": 0.266 + }, + { + "start": 12828.48, + "end": 12831.82, + "probability": 0.9171 + }, + { + "start": 12840.6, + "end": 12845.36, + "probability": 0.0059 + }, + { + "start": 12845.36, + "end": 12846.4, + "probability": 0.6753 + }, + { + "start": 12846.4, + "end": 12849.38, + "probability": 0.6664 + }, + { + "start": 12849.38, + "end": 12850.34, + "probability": 0.2084 + }, + { + "start": 12850.96, + "end": 12852.22, + "probability": 0.97 + }, + { + "start": 12852.74, + "end": 12856.26, + "probability": 0.7515 + }, + { + "start": 12858.4, + "end": 12862.24, + "probability": 0.8674 + }, + { + "start": 12862.24, + "end": 12875.91, + "probability": 0.3548 + }, + { + "start": 12876.98, + "end": 12877.33, + "probability": 0.0124 + }, + { + "start": 12877.9, + "end": 12878.5, + "probability": 0.0618 + }, + { + "start": 12878.52, + "end": 12878.71, + "probability": 0.0342 + }, + { + "start": 12882.12, + "end": 12882.94, + "probability": 0.0263 + }, + { + "start": 12884.02, + "end": 12884.3, + "probability": 0.0001 + }, + { + "start": 12885.38, + "end": 12887.14, + "probability": 0.0155 + }, + { + "start": 12887.68, + "end": 12889.96, + "probability": 0.0628 + }, + { + "start": 12891.36, + "end": 12891.58, + "probability": 0.0408 + }, + { + "start": 12891.58, + "end": 12893.22, + "probability": 0.1101 + }, + { + "start": 12893.22, + "end": 12894.38, + "probability": 0.4947 + }, + { + "start": 12895.06, + "end": 12897.3, + "probability": 0.8184 + }, + { + "start": 12897.48, + "end": 12898.1, + "probability": 0.9702 + }, + { + "start": 12898.96, + "end": 12900.75, + "probability": 0.7492 + }, + { + "start": 12904.75, + "end": 12907.46, + "probability": 0.7132 + }, + { + "start": 12910.6, + "end": 12911.14, + "probability": 0.6093 + }, + { + "start": 12913.18, + "end": 12914.26, + "probability": 0.6997 + }, + { + "start": 12915.02, + "end": 12915.5, + "probability": 0.9614 + }, + { + "start": 12918.96, + "end": 12920.44, + "probability": 0.4276 + }, + { + "start": 12920.56, + "end": 12924.72, + "probability": 0.8412 + }, + { + "start": 12926.44, + "end": 12927.08, + "probability": 0.8464 + }, + { + "start": 12927.18, + "end": 12927.66, + "probability": 0.6909 + }, + { + "start": 12927.66, + "end": 12928.6, + "probability": 0.4547 + }, + { + "start": 12928.82, + "end": 12933.04, + "probability": 0.7596 + }, + { + "start": 12933.18, + "end": 12936.34, + "probability": 0.446 + }, + { + "start": 12937.0, + "end": 12939.68, + "probability": 0.9307 + }, + { + "start": 12940.58, + "end": 12946.56, + "probability": 0.9695 + }, + { + "start": 12946.78, + "end": 12947.18, + "probability": 0.6636 + }, + { + "start": 12952.5, + "end": 12953.64, + "probability": 0.5819 + }, + { + "start": 12960.98, + "end": 12962.58, + "probability": 0.9261 + }, + { + "start": 12965.86, + "end": 12967.84, + "probability": 0.768 + }, + { + "start": 12968.76, + "end": 12973.78, + "probability": 0.9949 + }, + { + "start": 12973.78, + "end": 12978.7, + "probability": 0.9241 + }, + { + "start": 12979.52, + "end": 12980.84, + "probability": 0.8915 + }, + { + "start": 12982.1, + "end": 12986.6, + "probability": 0.9618 + }, + { + "start": 12987.16, + "end": 12990.32, + "probability": 0.8685 + }, + { + "start": 12991.04, + "end": 12994.06, + "probability": 0.9592 + }, + { + "start": 12994.62, + "end": 12995.94, + "probability": 0.9832 + }, + { + "start": 12996.46, + "end": 13000.24, + "probability": 0.9934 + }, + { + "start": 13001.71, + "end": 13006.2, + "probability": 0.993 + }, + { + "start": 13006.78, + "end": 13010.04, + "probability": 0.9914 + }, + { + "start": 13010.12, + "end": 13010.92, + "probability": 0.6471 + }, + { + "start": 13011.0, + "end": 13012.62, + "probability": 0.9088 + }, + { + "start": 13013.44, + "end": 13016.68, + "probability": 0.9398 + }, + { + "start": 13016.68, + "end": 13021.58, + "probability": 1.0 + }, + { + "start": 13022.22, + "end": 13023.72, + "probability": 0.9411 + }, + { + "start": 13024.36, + "end": 13027.34, + "probability": 0.9859 + }, + { + "start": 13028.04, + "end": 13031.98, + "probability": 0.8998 + }, + { + "start": 13032.68, + "end": 13037.34, + "probability": 0.9941 + }, + { + "start": 13037.92, + "end": 13039.76, + "probability": 0.776 + }, + { + "start": 13041.2, + "end": 13043.2, + "probability": 0.9897 + }, + { + "start": 13043.74, + "end": 13044.7, + "probability": 0.9318 + }, + { + "start": 13045.72, + "end": 13047.06, + "probability": 0.9271 + }, + { + "start": 13047.76, + "end": 13049.82, + "probability": 0.7979 + }, + { + "start": 13049.92, + "end": 13052.74, + "probability": 0.1381 + }, + { + "start": 13053.42, + "end": 13055.86, + "probability": 0.7801 + }, + { + "start": 13056.38, + "end": 13057.64, + "probability": 0.9457 + }, + { + "start": 13058.42, + "end": 13062.08, + "probability": 0.9989 + }, + { + "start": 13063.16, + "end": 13069.54, + "probability": 0.9893 + }, + { + "start": 13069.72, + "end": 13070.8, + "probability": 0.79 + }, + { + "start": 13071.28, + "end": 13074.62, + "probability": 0.9882 + }, + { + "start": 13074.88, + "end": 13074.98, + "probability": 0.8198 + }, + { + "start": 13075.68, + "end": 13076.84, + "probability": 0.9736 + }, + { + "start": 13077.6, + "end": 13081.6, + "probability": 0.9973 + }, + { + "start": 13082.86, + "end": 13084.54, + "probability": 0.9042 + }, + { + "start": 13085.22, + "end": 13086.1, + "probability": 0.9864 + }, + { + "start": 13087.06, + "end": 13089.22, + "probability": 0.9979 + }, + { + "start": 13089.78, + "end": 13090.86, + "probability": 0.9919 + }, + { + "start": 13092.32, + "end": 13093.94, + "probability": 0.9966 + }, + { + "start": 13095.48, + "end": 13096.74, + "probability": 0.9329 + }, + { + "start": 13097.52, + "end": 13099.02, + "probability": 0.9971 + }, + { + "start": 13100.24, + "end": 13100.96, + "probability": 0.704 + }, + { + "start": 13101.76, + "end": 13107.32, + "probability": 0.9963 + }, + { + "start": 13108.3, + "end": 13110.66, + "probability": 0.8088 + }, + { + "start": 13112.98, + "end": 13115.43, + "probability": 0.7926 + }, + { + "start": 13116.5, + "end": 13118.6, + "probability": 0.9846 + }, + { + "start": 13119.4, + "end": 13121.52, + "probability": 0.7185 + }, + { + "start": 13122.6, + "end": 13126.76, + "probability": 0.979 + }, + { + "start": 13127.48, + "end": 13128.06, + "probability": 0.6668 + }, + { + "start": 13128.88, + "end": 13129.24, + "probability": 0.6859 + }, + { + "start": 13129.4, + "end": 13133.68, + "probability": 0.9731 + }, + { + "start": 13134.4, + "end": 13135.78, + "probability": 0.9984 + }, + { + "start": 13136.44, + "end": 13138.94, + "probability": 0.9095 + }, + { + "start": 13139.74, + "end": 13140.76, + "probability": 0.7073 + }, + { + "start": 13141.66, + "end": 13143.56, + "probability": 0.9573 + }, + { + "start": 13145.54, + "end": 13147.02, + "probability": 0.9907 + }, + { + "start": 13147.9, + "end": 13149.86, + "probability": 0.9919 + }, + { + "start": 13150.98, + "end": 13152.78, + "probability": 0.9988 + }, + { + "start": 13153.44, + "end": 13154.76, + "probability": 0.9884 + }, + { + "start": 13156.06, + "end": 13158.84, + "probability": 0.9329 + }, + { + "start": 13159.76, + "end": 13161.4, + "probability": 0.9335 + }, + { + "start": 13161.94, + "end": 13163.22, + "probability": 0.8817 + }, + { + "start": 13164.08, + "end": 13167.18, + "probability": 0.9515 + }, + { + "start": 13167.78, + "end": 13170.9, + "probability": 0.9564 + }, + { + "start": 13171.92, + "end": 13176.22, + "probability": 0.933 + }, + { + "start": 13176.92, + "end": 13179.92, + "probability": 0.9823 + }, + { + "start": 13180.82, + "end": 13183.96, + "probability": 0.9535 + }, + { + "start": 13187.18, + "end": 13187.44, + "probability": 0.0902 + }, + { + "start": 13187.44, + "end": 13187.44, + "probability": 0.2626 + }, + { + "start": 13187.44, + "end": 13190.16, + "probability": 0.9807 + }, + { + "start": 13190.72, + "end": 13193.98, + "probability": 0.9113 + }, + { + "start": 13194.22, + "end": 13195.29, + "probability": 0.2979 + }, + { + "start": 13196.04, + "end": 13197.88, + "probability": 0.5664 + }, + { + "start": 13198.02, + "end": 13199.48, + "probability": 0.879 + }, + { + "start": 13199.7, + "end": 13201.04, + "probability": 0.6548 + }, + { + "start": 13201.1, + "end": 13201.1, + "probability": 0.8902 + }, + { + "start": 13201.1, + "end": 13203.38, + "probability": 0.996 + }, + { + "start": 13203.62, + "end": 13204.7, + "probability": 0.9067 + }, + { + "start": 13205.08, + "end": 13206.1, + "probability": 0.9235 + }, + { + "start": 13206.1, + "end": 13209.28, + "probability": 0.8845 + }, + { + "start": 13209.94, + "end": 13212.9, + "probability": 0.9989 + }, + { + "start": 13213.82, + "end": 13214.64, + "probability": 0.7558 + }, + { + "start": 13215.2, + "end": 13217.2, + "probability": 0.9541 + }, + { + "start": 13217.72, + "end": 13221.72, + "probability": 0.9791 + }, + { + "start": 13222.62, + "end": 13223.9, + "probability": 0.999 + }, + { + "start": 13224.62, + "end": 13226.98, + "probability": 0.9174 + }, + { + "start": 13228.16, + "end": 13229.8, + "probability": 0.9901 + }, + { + "start": 13230.52, + "end": 13231.46, + "probability": 0.6356 + }, + { + "start": 13232.4, + "end": 13234.28, + "probability": 0.8552 + }, + { + "start": 13235.2, + "end": 13236.9, + "probability": 0.976 + }, + { + "start": 13238.0, + "end": 13239.2, + "probability": 0.9822 + }, + { + "start": 13239.9, + "end": 13240.5, + "probability": 0.9644 + }, + { + "start": 13241.2, + "end": 13244.38, + "probability": 0.9507 + }, + { + "start": 13245.56, + "end": 13247.38, + "probability": 0.8388 + }, + { + "start": 13247.98, + "end": 13249.92, + "probability": 0.9778 + }, + { + "start": 13250.12, + "end": 13254.04, + "probability": 0.9912 + }, + { + "start": 13254.84, + "end": 13261.18, + "probability": 0.9973 + }, + { + "start": 13261.18, + "end": 13266.92, + "probability": 0.9967 + }, + { + "start": 13268.48, + "end": 13269.54, + "probability": 0.9971 + }, + { + "start": 13270.08, + "end": 13273.08, + "probability": 0.9968 + }, + { + "start": 13274.1, + "end": 13274.8, + "probability": 0.6679 + }, + { + "start": 13275.66, + "end": 13277.98, + "probability": 0.7398 + }, + { + "start": 13278.66, + "end": 13282.32, + "probability": 0.8959 + }, + { + "start": 13282.9, + "end": 13286.92, + "probability": 0.9945 + }, + { + "start": 13287.54, + "end": 13289.02, + "probability": 0.6667 + }, + { + "start": 13289.44, + "end": 13289.58, + "probability": 0.2783 + }, + { + "start": 13290.18, + "end": 13291.48, + "probability": 0.9946 + }, + { + "start": 13292.78, + "end": 13293.62, + "probability": 0.8762 + }, + { + "start": 13294.74, + "end": 13296.98, + "probability": 0.8068 + }, + { + "start": 13297.78, + "end": 13302.34, + "probability": 0.9861 + }, + { + "start": 13303.0, + "end": 13303.02, + "probability": 0.0378 + }, + { + "start": 13303.02, + "end": 13304.23, + "probability": 0.4863 + }, + { + "start": 13304.94, + "end": 13308.06, + "probability": 0.4672 + }, + { + "start": 13308.24, + "end": 13309.43, + "probability": 0.1869 + }, + { + "start": 13309.74, + "end": 13310.12, + "probability": 0.0173 + }, + { + "start": 13311.78, + "end": 13314.7, + "probability": 0.7466 + }, + { + "start": 13314.92, + "end": 13315.86, + "probability": 0.1081 + }, + { + "start": 13317.2, + "end": 13318.92, + "probability": 0.2152 + }, + { + "start": 13321.42, + "end": 13323.12, + "probability": 0.3866 + }, + { + "start": 13323.96, + "end": 13324.6, + "probability": 0.2612 + }, + { + "start": 13325.12, + "end": 13328.74, + "probability": 0.5023 + }, + { + "start": 13332.1, + "end": 13333.3, + "probability": 0.0513 + }, + { + "start": 13333.3, + "end": 13334.12, + "probability": 0.0781 + }, + { + "start": 13335.46, + "end": 13336.58, + "probability": 0.1058 + }, + { + "start": 13336.58, + "end": 13339.58, + "probability": 0.0396 + }, + { + "start": 13339.68, + "end": 13340.78, + "probability": 0.0785 + }, + { + "start": 13340.78, + "end": 13347.0, + "probability": 0.0775 + }, + { + "start": 13350.62, + "end": 13354.2, + "probability": 0.0622 + }, + { + "start": 13354.3, + "end": 13355.22, + "probability": 0.1215 + }, + { + "start": 13355.22, + "end": 13357.24, + "probability": 0.0465 + }, + { + "start": 13357.32, + "end": 13359.66, + "probability": 0.1 + }, + { + "start": 13360.38, + "end": 13360.38, + "probability": 0.0167 + }, + { + "start": 13360.38, + "end": 13362.62, + "probability": 0.404 + }, + { + "start": 13362.66, + "end": 13364.2, + "probability": 0.0577 + }, + { + "start": 13364.2, + "end": 13364.86, + "probability": 0.0708 + }, + { + "start": 13364.86, + "end": 13364.86, + "probability": 0.0267 + }, + { + "start": 13364.86, + "end": 13368.08, + "probability": 0.1152 + }, + { + "start": 13368.08, + "end": 13368.44, + "probability": 0.0961 + }, + { + "start": 13368.52, + "end": 13370.02, + "probability": 0.2279 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.0, + "end": 13372.0, + "probability": 0.0 + }, + { + "start": 13372.24, + "end": 13372.36, + "probability": 0.1401 + }, + { + "start": 13372.36, + "end": 13376.62, + "probability": 0.8939 + }, + { + "start": 13377.22, + "end": 13379.9, + "probability": 0.864 + }, + { + "start": 13380.76, + "end": 13383.44, + "probability": 0.9239 + }, + { + "start": 13383.9, + "end": 13386.42, + "probability": 0.7677 + }, + { + "start": 13387.48, + "end": 13387.8, + "probability": 0.5009 + }, + { + "start": 13388.64, + "end": 13392.52, + "probability": 0.9779 + }, + { + "start": 13393.1, + "end": 13396.24, + "probability": 0.9972 + }, + { + "start": 13397.52, + "end": 13401.44, + "probability": 0.8425 + }, + { + "start": 13401.98, + "end": 13402.38, + "probability": 0.9722 + }, + { + "start": 13403.38, + "end": 13404.94, + "probability": 0.9327 + }, + { + "start": 13405.74, + "end": 13407.0, + "probability": 0.9864 + }, + { + "start": 13407.74, + "end": 13412.0, + "probability": 0.9724 + }, + { + "start": 13412.76, + "end": 13414.72, + "probability": 0.9927 + }, + { + "start": 13415.34, + "end": 13419.76, + "probability": 0.9851 + }, + { + "start": 13420.48, + "end": 13421.48, + "probability": 0.9946 + }, + { + "start": 13422.04, + "end": 13423.68, + "probability": 0.9983 + }, + { + "start": 13425.44, + "end": 13426.26, + "probability": 0.9962 + }, + { + "start": 13427.28, + "end": 13431.06, + "probability": 0.998 + }, + { + "start": 13431.7, + "end": 13433.86, + "probability": 0.9967 + }, + { + "start": 13434.6, + "end": 13437.68, + "probability": 0.9915 + }, + { + "start": 13437.68, + "end": 13441.42, + "probability": 0.9978 + }, + { + "start": 13442.32, + "end": 13444.14, + "probability": 0.9863 + }, + { + "start": 13445.7, + "end": 13447.78, + "probability": 0.8833 + }, + { + "start": 13448.62, + "end": 13449.54, + "probability": 0.8432 + }, + { + "start": 13449.92, + "end": 13451.04, + "probability": 0.864 + }, + { + "start": 13451.5, + "end": 13452.24, + "probability": 0.9905 + }, + { + "start": 13452.64, + "end": 13453.36, + "probability": 0.9549 + }, + { + "start": 13453.72, + "end": 13455.64, + "probability": 0.999 + }, + { + "start": 13456.24, + "end": 13457.34, + "probability": 0.9758 + }, + { + "start": 13458.5, + "end": 13459.62, + "probability": 0.6266 + }, + { + "start": 13460.3, + "end": 13462.56, + "probability": 0.9978 + }, + { + "start": 13463.84, + "end": 13466.16, + "probability": 0.9907 + }, + { + "start": 13466.76, + "end": 13470.1, + "probability": 0.999 + }, + { + "start": 13471.28, + "end": 13471.38, + "probability": 0.6179 + }, + { + "start": 13471.4, + "end": 13471.62, + "probability": 0.9193 + }, + { + "start": 13471.64, + "end": 13477.42, + "probability": 0.9604 + }, + { + "start": 13478.5, + "end": 13478.6, + "probability": 0.9336 + }, + { + "start": 13479.28, + "end": 13480.6, + "probability": 0.7448 + }, + { + "start": 13481.5, + "end": 13482.88, + "probability": 0.5631 + }, + { + "start": 13483.52, + "end": 13485.58, + "probability": 0.9118 + }, + { + "start": 13486.9, + "end": 13489.14, + "probability": 0.9914 + }, + { + "start": 13490.0, + "end": 13493.96, + "probability": 0.9613 + }, + { + "start": 13494.58, + "end": 13495.58, + "probability": 0.9906 + }, + { + "start": 13497.66, + "end": 13502.48, + "probability": 0.9691 + }, + { + "start": 13503.5, + "end": 13507.2, + "probability": 0.9993 + }, + { + "start": 13507.26, + "end": 13511.52, + "probability": 0.9985 + }, + { + "start": 13512.26, + "end": 13516.3, + "probability": 0.9317 + }, + { + "start": 13517.02, + "end": 13519.0, + "probability": 0.9913 + }, + { + "start": 13519.68, + "end": 13523.26, + "probability": 0.9683 + }, + { + "start": 13524.7, + "end": 13527.52, + "probability": 0.9702 + }, + { + "start": 13528.26, + "end": 13530.44, + "probability": 0.9273 + }, + { + "start": 13531.32, + "end": 13533.68, + "probability": 0.988 + }, + { + "start": 13534.62, + "end": 13536.27, + "probability": 0.9917 + }, + { + "start": 13537.02, + "end": 13538.53, + "probability": 0.9979 + }, + { + "start": 13539.3, + "end": 13540.52, + "probability": 0.9951 + }, + { + "start": 13541.0, + "end": 13541.36, + "probability": 0.7658 + }, + { + "start": 13542.34, + "end": 13544.58, + "probability": 0.7447 + }, + { + "start": 13544.74, + "end": 13545.24, + "probability": 0.396 + }, + { + "start": 13545.3, + "end": 13547.66, + "probability": 0.7017 + }, + { + "start": 13547.96, + "end": 13548.3, + "probability": 0.3723 + }, + { + "start": 13548.42, + "end": 13549.28, + "probability": 0.9074 + }, + { + "start": 13549.34, + "end": 13549.76, + "probability": 0.7932 + }, + { + "start": 13550.38, + "end": 13551.6, + "probability": 0.7426 + }, + { + "start": 13552.64, + "end": 13553.18, + "probability": 0.665 + }, + { + "start": 13553.62, + "end": 13554.56, + "probability": 0.8476 + }, + { + "start": 13554.6, + "end": 13554.84, + "probability": 0.2586 + }, + { + "start": 13555.0, + "end": 13555.66, + "probability": 0.6037 + }, + { + "start": 13555.74, + "end": 13556.1, + "probability": 0.4197 + }, + { + "start": 13556.2, + "end": 13557.12, + "probability": 0.9104 + }, + { + "start": 13569.82, + "end": 13570.38, + "probability": 0.7887 + }, + { + "start": 13571.44, + "end": 13572.98, + "probability": 0.7499 + }, + { + "start": 13573.14, + "end": 13573.8, + "probability": 0.819 + }, + { + "start": 13574.64, + "end": 13578.42, + "probability": 0.9811 + }, + { + "start": 13579.28, + "end": 13581.62, + "probability": 0.9814 + }, + { + "start": 13582.76, + "end": 13587.02, + "probability": 0.981 + }, + { + "start": 13588.24, + "end": 13590.2, + "probability": 0.2271 + }, + { + "start": 13590.2, + "end": 13595.24, + "probability": 0.9808 + }, + { + "start": 13595.78, + "end": 13598.32, + "probability": 0.989 + }, + { + "start": 13598.32, + "end": 13600.82, + "probability": 0.9889 + }, + { + "start": 13601.68, + "end": 13603.64, + "probability": 0.9891 + }, + { + "start": 13604.26, + "end": 13606.04, + "probability": 0.9744 + }, + { + "start": 13606.1, + "end": 13606.48, + "probability": 0.5986 + }, + { + "start": 13606.68, + "end": 13607.58, + "probability": 0.9538 + }, + { + "start": 13608.04, + "end": 13610.68, + "probability": 0.9727 + }, + { + "start": 13611.44, + "end": 13612.48, + "probability": 0.9362 + }, + { + "start": 13613.4, + "end": 13615.1, + "probability": 0.9969 + }, + { + "start": 13615.48, + "end": 13617.38, + "probability": 0.9939 + }, + { + "start": 13618.12, + "end": 13620.9, + "probability": 0.9958 + }, + { + "start": 13621.72, + "end": 13627.26, + "probability": 0.9627 + }, + { + "start": 13628.4, + "end": 13631.92, + "probability": 0.9976 + }, + { + "start": 13631.92, + "end": 13634.96, + "probability": 0.999 + }, + { + "start": 13636.26, + "end": 13636.82, + "probability": 0.9976 + }, + { + "start": 13638.02, + "end": 13642.44, + "probability": 0.9992 + }, + { + "start": 13642.94, + "end": 13644.42, + "probability": 0.9314 + }, + { + "start": 13644.44, + "end": 13645.84, + "probability": 0.9967 + }, + { + "start": 13645.94, + "end": 13646.08, + "probability": 0.5842 + }, + { + "start": 13646.68, + "end": 13648.4, + "probability": 0.883 + }, + { + "start": 13649.14, + "end": 13650.5, + "probability": 0.9664 + }, + { + "start": 13651.02, + "end": 13654.38, + "probability": 0.8752 + }, + { + "start": 13655.12, + "end": 13658.74, + "probability": 0.0579 + }, + { + "start": 13658.98, + "end": 13659.72, + "probability": 0.032 + }, + { + "start": 13659.72, + "end": 13659.98, + "probability": 0.1839 + }, + { + "start": 13659.98, + "end": 13661.04, + "probability": 0.0557 + }, + { + "start": 13661.9, + "end": 13668.18, + "probability": 0.807 + }, + { + "start": 13668.88, + "end": 13670.92, + "probability": 0.9783 + }, + { + "start": 13671.44, + "end": 13675.8, + "probability": 0.9943 + }, + { + "start": 13676.52, + "end": 13677.01, + "probability": 0.915 + }, + { + "start": 13677.72, + "end": 13678.44, + "probability": 0.9944 + }, + { + "start": 13678.66, + "end": 13679.24, + "probability": 0.9779 + }, + { + "start": 13679.88, + "end": 13682.08, + "probability": 0.9909 + }, + { + "start": 13682.08, + "end": 13683.82, + "probability": 0.9988 + }, + { + "start": 13684.52, + "end": 13686.18, + "probability": 0.9965 + }, + { + "start": 13686.64, + "end": 13687.88, + "probability": 0.9288 + }, + { + "start": 13688.54, + "end": 13690.08, + "probability": 0.9277 + }, + { + "start": 13690.4, + "end": 13695.42, + "probability": 0.9916 + }, + { + "start": 13695.82, + "end": 13699.06, + "probability": 0.991 + }, + { + "start": 13699.86, + "end": 13700.56, + "probability": 0.5684 + }, + { + "start": 13700.76, + "end": 13701.9, + "probability": 0.6399 + }, + { + "start": 13702.56, + "end": 13703.18, + "probability": 0.4792 + }, + { + "start": 13704.38, + "end": 13706.1, + "probability": 0.9659 + }, + { + "start": 13706.78, + "end": 13707.18, + "probability": 0.3153 + }, + { + "start": 13707.26, + "end": 13708.46, + "probability": 0.7017 + }, + { + "start": 13708.54, + "end": 13709.0, + "probability": 0.6177 + }, + { + "start": 13709.1, + "end": 13710.34, + "probability": 0.6947 + }, + { + "start": 13711.66, + "end": 13712.14, + "probability": 0.871 + }, + { + "start": 13712.92, + "end": 13716.54, + "probability": 0.6595 + }, + { + "start": 13717.36, + "end": 13717.96, + "probability": 0.1225 + }, + { + "start": 13717.96, + "end": 13717.96, + "probability": 0.519 + }, + { + "start": 13717.96, + "end": 13718.68, + "probability": 0.7431 + }, + { + "start": 13719.2, + "end": 13720.04, + "probability": 0.9089 + }, + { + "start": 13720.6, + "end": 13724.58, + "probability": 0.9257 + }, + { + "start": 13725.3, + "end": 13725.78, + "probability": 0.2031 + }, + { + "start": 13725.78, + "end": 13725.78, + "probability": 0.5077 + }, + { + "start": 13725.78, + "end": 13726.06, + "probability": 0.7326 + }, + { + "start": 13726.8, + "end": 13727.3, + "probability": 0.6898 + }, + { + "start": 13727.98, + "end": 13728.8, + "probability": 0.9547 + }, + { + "start": 13729.18, + "end": 13729.64, + "probability": 0.4575 + }, + { + "start": 13730.1, + "end": 13731.42, + "probability": 0.8422 + }, + { + "start": 13731.5, + "end": 13732.1, + "probability": 0.6676 + }, + { + "start": 13732.32, + "end": 13733.68, + "probability": 0.8449 + }, + { + "start": 13734.06, + "end": 13734.5, + "probability": 0.7056 + }, + { + "start": 13734.58, + "end": 13736.08, + "probability": 0.9448 + }, + { + "start": 13736.1, + "end": 13736.56, + "probability": 0.8737 + }, + { + "start": 13737.28, + "end": 13738.76, + "probability": 0.993 + }, + { + "start": 13739.36, + "end": 13740.04, + "probability": 0.9243 + }, + { + "start": 13740.24, + "end": 13741.58, + "probability": 0.7728 + }, + { + "start": 13741.6, + "end": 13742.2, + "probability": 0.759 + }, + { + "start": 13742.68, + "end": 13743.56, + "probability": 0.4329 + }, + { + "start": 13743.72, + "end": 13744.38, + "probability": 0.4114 + }, + { + "start": 13744.38, + "end": 13745.02, + "probability": 0.8882 + }, + { + "start": 13745.26, + "end": 13745.62, + "probability": 0.7359 + }, + { + "start": 13745.64, + "end": 13746.62, + "probability": 0.8887 + }, + { + "start": 13747.26, + "end": 13747.86, + "probability": 0.5268 + }, + { + "start": 13749.08, + "end": 13750.08, + "probability": 0.8019 + }, + { + "start": 13751.29, + "end": 13753.16, + "probability": 0.7887 + }, + { + "start": 13758.04, + "end": 13759.02, + "probability": 0.8125 + }, + { + "start": 13759.06, + "end": 13760.7, + "probability": 0.818 + }, + { + "start": 13761.06, + "end": 13763.16, + "probability": 0.1228 + }, + { + "start": 13763.4, + "end": 13764.4, + "probability": 0.4974 + }, + { + "start": 13778.04, + "end": 13781.96, + "probability": 0.7931 + }, + { + "start": 13783.02, + "end": 13784.92, + "probability": 0.9204 + }, + { + "start": 13786.0, + "end": 13790.32, + "probability": 0.9707 + }, + { + "start": 13790.94, + "end": 13792.28, + "probability": 0.9668 + }, + { + "start": 13792.76, + "end": 13798.0, + "probability": 0.9691 + }, + { + "start": 13798.56, + "end": 13798.92, + "probability": 0.7884 + }, + { + "start": 13799.08, + "end": 13799.66, + "probability": 0.7579 + }, + { + "start": 13800.08, + "end": 13801.92, + "probability": 0.998 + }, + { + "start": 13803.0, + "end": 13806.46, + "probability": 0.8862 + }, + { + "start": 13806.82, + "end": 13811.48, + "probability": 0.995 + }, + { + "start": 13812.4, + "end": 13817.66, + "probability": 0.9799 + }, + { + "start": 13818.58, + "end": 13821.62, + "probability": 0.9661 + }, + { + "start": 13822.76, + "end": 13823.44, + "probability": 0.9163 + }, + { + "start": 13824.2, + "end": 13829.4, + "probability": 0.998 + }, + { + "start": 13830.3, + "end": 13831.7, + "probability": 0.9528 + }, + { + "start": 13832.5, + "end": 13836.82, + "probability": 0.9744 + }, + { + "start": 13837.4, + "end": 13840.0, + "probability": 0.9941 + }, + { + "start": 13840.78, + "end": 13843.58, + "probability": 0.7499 + }, + { + "start": 13843.72, + "end": 13846.84, + "probability": 0.9944 + }, + { + "start": 13846.84, + "end": 13850.22, + "probability": 0.9645 + }, + { + "start": 13850.96, + "end": 13854.54, + "probability": 0.9816 + }, + { + "start": 13855.22, + "end": 13859.35, + "probability": 0.6795 + }, + { + "start": 13859.36, + "end": 13862.38, + "probability": 0.9888 + }, + { + "start": 13862.72, + "end": 13864.02, + "probability": 0.9885 + }, + { + "start": 13865.6, + "end": 13870.89, + "probability": 0.8483 + }, + { + "start": 13871.64, + "end": 13878.18, + "probability": 0.9938 + }, + { + "start": 13879.16, + "end": 13880.44, + "probability": 0.1582 + }, + { + "start": 13880.44, + "end": 13881.16, + "probability": 0.3477 + }, + { + "start": 13881.38, + "end": 13883.64, + "probability": 0.9519 + }, + { + "start": 13884.3, + "end": 13886.74, + "probability": 0.0333 + }, + { + "start": 13886.74, + "end": 13890.4, + "probability": 0.3719 + }, + { + "start": 13890.94, + "end": 13895.82, + "probability": 0.1229 + }, + { + "start": 13896.44, + "end": 13898.8, + "probability": 0.0472 + }, + { + "start": 13898.8, + "end": 13898.8, + "probability": 0.2344 + }, + { + "start": 13898.8, + "end": 13904.28, + "probability": 0.6126 + }, + { + "start": 13904.4, + "end": 13905.48, + "probability": 0.5305 + }, + { + "start": 13905.48, + "end": 13910.3, + "probability": 0.9945 + }, + { + "start": 13910.58, + "end": 13910.96, + "probability": 0.5356 + }, + { + "start": 13911.32, + "end": 13913.5, + "probability": 0.6905 + }, + { + "start": 13914.19, + "end": 13914.4, + "probability": 0.0485 + }, + { + "start": 13914.4, + "end": 13915.48, + "probability": 0.6211 + }, + { + "start": 13915.94, + "end": 13919.64, + "probability": 0.9632 + }, + { + "start": 13919.64, + "end": 13923.58, + "probability": 0.9816 + }, + { + "start": 13924.76, + "end": 13930.46, + "probability": 0.9764 + }, + { + "start": 13930.88, + "end": 13934.18, + "probability": 0.9169 + }, + { + "start": 13934.18, + "end": 13938.72, + "probability": 0.9974 + }, + { + "start": 13939.34, + "end": 13939.4, + "probability": 0.0096 + }, + { + "start": 13939.4, + "end": 13940.4, + "probability": 0.1741 + }, + { + "start": 13941.12, + "end": 13941.44, + "probability": 0.3314 + }, + { + "start": 13941.96, + "end": 13942.22, + "probability": 0.016 + }, + { + "start": 13942.22, + "end": 13942.22, + "probability": 0.1046 + }, + { + "start": 13942.22, + "end": 13946.24, + "probability": 0.7468 + }, + { + "start": 13946.38, + "end": 13948.76, + "probability": 0.9219 + }, + { + "start": 13948.96, + "end": 13949.12, + "probability": 0.4516 + }, + { + "start": 13949.12, + "end": 13949.16, + "probability": 0.1647 + }, + { + "start": 13949.32, + "end": 13949.98, + "probability": 0.5885 + }, + { + "start": 13950.28, + "end": 13957.16, + "probability": 0.8375 + }, + { + "start": 13957.48, + "end": 13957.48, + "probability": 0.214 + }, + { + "start": 13957.48, + "end": 13957.48, + "probability": 0.3988 + }, + { + "start": 13957.48, + "end": 13959.5, + "probability": 0.5502 + }, + { + "start": 13959.68, + "end": 13963.8, + "probability": 0.957 + }, + { + "start": 13964.04, + "end": 13964.04, + "probability": 0.2102 + }, + { + "start": 13964.04, + "end": 13969.32, + "probability": 0.6249 + }, + { + "start": 13970.02, + "end": 13970.8, + "probability": 0.1477 + }, + { + "start": 13970.98, + "end": 13974.86, + "probability": 0.6594 + }, + { + "start": 13974.96, + "end": 13976.26, + "probability": 0.9896 + }, + { + "start": 13976.58, + "end": 13982.48, + "probability": 0.9031 + }, + { + "start": 13982.76, + "end": 13986.36, + "probability": 0.9908 + }, + { + "start": 13986.36, + "end": 13989.74, + "probability": 0.5686 + }, + { + "start": 13990.14, + "end": 13992.28, + "probability": 0.7008 + }, + { + "start": 13992.8, + "end": 13996.98, + "probability": 0.2347 + }, + { + "start": 13997.66, + "end": 13999.26, + "probability": 0.4269 + }, + { + "start": 13999.26, + "end": 13999.26, + "probability": 0.3254 + }, + { + "start": 13999.46, + "end": 14002.88, + "probability": 0.3324 + }, + { + "start": 14002.88, + "end": 14004.34, + "probability": 0.3263 + }, + { + "start": 14005.26, + "end": 14007.2, + "probability": 0.1188 + }, + { + "start": 14008.72, + "end": 14010.74, + "probability": 0.0804 + }, + { + "start": 14010.74, + "end": 14013.06, + "probability": 0.191 + }, + { + "start": 14014.48, + "end": 14015.4, + "probability": 0.0285 + }, + { + "start": 14015.58, + "end": 14019.42, + "probability": 0.0268 + }, + { + "start": 14019.42, + "end": 14019.56, + "probability": 0.3773 + }, + { + "start": 14019.56, + "end": 14019.7, + "probability": 0.0721 + }, + { + "start": 14019.7, + "end": 14019.94, + "probability": 0.1003 + }, + { + "start": 14020.72, + "end": 14023.06, + "probability": 0.107 + }, + { + "start": 14023.28, + "end": 14024.78, + "probability": 0.2676 + }, + { + "start": 14035.7, + "end": 14036.54, + "probability": 0.0035 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.0, + "end": 14086.0, + "probability": 0.0 + }, + { + "start": 14086.86, + "end": 14088.06, + "probability": 0.106 + }, + { + "start": 14088.08, + "end": 14088.38, + "probability": 0.1901 + }, + { + "start": 14088.44, + "end": 14089.2, + "probability": 0.5141 + }, + { + "start": 14089.28, + "end": 14089.68, + "probability": 0.3644 + }, + { + "start": 14090.22, + "end": 14090.26, + "probability": 0.464 + }, + { + "start": 14090.26, + "end": 14090.74, + "probability": 0.6441 + }, + { + "start": 14091.92, + "end": 14092.62, + "probability": 0.8794 + }, + { + "start": 14094.44, + "end": 14095.78, + "probability": 0.7149 + }, + { + "start": 14096.22, + "end": 14098.82, + "probability": 0.2362 + }, + { + "start": 14109.08, + "end": 14109.64, + "probability": 0.4026 + }, + { + "start": 14109.76, + "end": 14109.8, + "probability": 0.2031 + }, + { + "start": 14109.8, + "end": 14109.8, + "probability": 0.0549 + }, + { + "start": 14109.8, + "end": 14109.8, + "probability": 0.3247 + }, + { + "start": 14109.8, + "end": 14112.02, + "probability": 0.1755 + }, + { + "start": 14113.04, + "end": 14114.4, + "probability": 0.0209 + }, + { + "start": 14122.81, + "end": 14122.93, + "probability": 0.0345 + }, + { + "start": 14122.94, + "end": 14122.94, + "probability": 0.3842 + }, + { + "start": 14122.96, + "end": 14125.34, + "probability": 0.3046 + }, + { + "start": 14126.28, + "end": 14126.82, + "probability": 0.6585 + }, + { + "start": 14136.1, + "end": 14136.54, + "probability": 0.7823 + }, + { + "start": 14138.47, + "end": 14139.8, + "probability": 0.0667 + }, + { + "start": 14141.06, + "end": 14141.06, + "probability": 0.2806 + }, + { + "start": 14141.06, + "end": 14141.06, + "probability": 0.1227 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14206.0, + "end": 14206.0, + "probability": 0.0 + }, + { + "start": 14207.22, + "end": 14207.72, + "probability": 0.2399 + }, + { + "start": 14208.5, + "end": 14211.36, + "probability": 0.9582 + }, + { + "start": 14216.14, + "end": 14216.44, + "probability": 0.6642 + }, + { + "start": 14218.26, + "end": 14220.7, + "probability": 0.9949 + }, + { + "start": 14220.78, + "end": 14222.06, + "probability": 0.7446 + }, + { + "start": 14222.14, + "end": 14223.88, + "probability": 0.7181 + }, + { + "start": 14225.66, + "end": 14227.54, + "probability": 0.9493 + }, + { + "start": 14228.08, + "end": 14228.38, + "probability": 0.8569 + }, + { + "start": 14230.2, + "end": 14231.5, + "probability": 0.9453 + }, + { + "start": 14232.12, + "end": 14233.36, + "probability": 0.6552 + }, + { + "start": 14234.66, + "end": 14239.0, + "probability": 0.5043 + }, + { + "start": 14239.36, + "end": 14240.94, + "probability": 0.5504 + }, + { + "start": 14241.92, + "end": 14243.36, + "probability": 0.7812 + }, + { + "start": 14244.96, + "end": 14245.86, + "probability": 0.9882 + }, + { + "start": 14245.96, + "end": 14247.4, + "probability": 0.7446 + }, + { + "start": 14247.7, + "end": 14249.54, + "probability": 0.8271 + }, + { + "start": 14249.6, + "end": 14250.2, + "probability": 0.9255 + }, + { + "start": 14250.42, + "end": 14250.96, + "probability": 0.5958 + }, + { + "start": 14251.14, + "end": 14251.8, + "probability": 0.6568 + }, + { + "start": 14251.88, + "end": 14252.72, + "probability": 0.778 + }, + { + "start": 14253.72, + "end": 14254.78, + "probability": 0.946 + }, + { + "start": 14256.06, + "end": 14258.24, + "probability": 0.9556 + }, + { + "start": 14259.32, + "end": 14260.9, + "probability": 0.4806 + }, + { + "start": 14261.1, + "end": 14263.28, + "probability": 0.6163 + }, + { + "start": 14263.28, + "end": 14265.16, + "probability": 0.4492 + }, + { + "start": 14265.46, + "end": 14271.6, + "probability": 0.5953 + }, + { + "start": 14271.6, + "end": 14272.18, + "probability": 0.082 + }, + { + "start": 14272.32, + "end": 14280.52, + "probability": 0.7257 + }, + { + "start": 14281.72, + "end": 14286.34, + "probability": 0.8678 + }, + { + "start": 14287.22, + "end": 14290.66, + "probability": 0.8199 + }, + { + "start": 14290.84, + "end": 14292.44, + "probability": 0.8691 + }, + { + "start": 14293.42, + "end": 14294.94, + "probability": 0.7249 + }, + { + "start": 14295.62, + "end": 14296.22, + "probability": 0.4119 + }, + { + "start": 14296.9, + "end": 14297.78, + "probability": 0.6841 + }, + { + "start": 14298.62, + "end": 14299.96, + "probability": 0.5244 + }, + { + "start": 14300.34, + "end": 14301.04, + "probability": 0.7739 + }, + { + "start": 14301.1, + "end": 14302.86, + "probability": 0.9717 + }, + { + "start": 14303.62, + "end": 14305.12, + "probability": 0.9341 + }, + { + "start": 14305.3, + "end": 14306.54, + "probability": 0.8389 + }, + { + "start": 14306.74, + "end": 14307.68, + "probability": 0.5853 + }, + { + "start": 14307.96, + "end": 14309.1, + "probability": 0.2137 + }, + { + "start": 14309.84, + "end": 14312.74, + "probability": 0.9556 + }, + { + "start": 14313.6, + "end": 14316.68, + "probability": 0.994 + }, + { + "start": 14318.02, + "end": 14319.52, + "probability": 0.9995 + }, + { + "start": 14320.4, + "end": 14321.44, + "probability": 0.5909 + }, + { + "start": 14323.62, + "end": 14324.72, + "probability": 0.3349 + }, + { + "start": 14325.26, + "end": 14331.12, + "probability": 0.9874 + }, + { + "start": 14331.86, + "end": 14332.32, + "probability": 0.2985 + }, + { + "start": 14332.8, + "end": 14333.68, + "probability": 0.9219 + }, + { + "start": 14333.82, + "end": 14338.36, + "probability": 0.9666 + }, + { + "start": 14339.52, + "end": 14343.22, + "probability": 0.9727 + }, + { + "start": 14343.92, + "end": 14344.66, + "probability": 0.873 + }, + { + "start": 14345.66, + "end": 14347.92, + "probability": 0.4073 + }, + { + "start": 14348.14, + "end": 14348.92, + "probability": 0.5958 + }, + { + "start": 14349.36, + "end": 14351.0, + "probability": 0.6984 + }, + { + "start": 14351.06, + "end": 14353.06, + "probability": 0.8368 + }, + { + "start": 14353.94, + "end": 14354.29, + "probability": 0.0648 + }, + { + "start": 14354.3, + "end": 14354.3, + "probability": 0.0208 + }, + { + "start": 14354.3, + "end": 14354.93, + "probability": 0.636 + }, + { + "start": 14355.6, + "end": 14357.16, + "probability": 0.6013 + }, + { + "start": 14357.18, + "end": 14360.42, + "probability": 0.1524 + }, + { + "start": 14360.42, + "end": 14365.76, + "probability": 0.3486 + }, + { + "start": 14367.2, + "end": 14367.4, + "probability": 0.7432 + }, + { + "start": 14367.46, + "end": 14368.86, + "probability": 0.803 + }, + { + "start": 14368.96, + "end": 14370.76, + "probability": 0.9806 + }, + { + "start": 14370.96, + "end": 14370.96, + "probability": 0.228 + }, + { + "start": 14371.1, + "end": 14372.66, + "probability": 0.0824 + }, + { + "start": 14374.28, + "end": 14375.56, + "probability": 0.3621 + }, + { + "start": 14375.62, + "end": 14376.08, + "probability": 0.5705 + }, + { + "start": 14376.52, + "end": 14376.9, + "probability": 0.4837 + }, + { + "start": 14376.98, + "end": 14378.74, + "probability": 0.8293 + }, + { + "start": 14379.12, + "end": 14380.34, + "probability": 0.8067 + }, + { + "start": 14380.36, + "end": 14382.92, + "probability": 0.9805 + }, + { + "start": 14383.26, + "end": 14383.82, + "probability": 0.9322 + }, + { + "start": 14384.84, + "end": 14385.28, + "probability": 0.6819 + }, + { + "start": 14385.28, + "end": 14386.99, + "probability": 0.9058 + }, + { + "start": 14388.2, + "end": 14391.24, + "probability": 0.8302 + }, + { + "start": 14393.58, + "end": 14395.78, + "probability": 0.2957 + }, + { + "start": 14395.78, + "end": 14398.54, + "probability": 0.8507 + }, + { + "start": 14398.56, + "end": 14399.88, + "probability": 0.5796 + }, + { + "start": 14400.5, + "end": 14402.88, + "probability": 0.7332 + }, + { + "start": 14403.66, + "end": 14405.7, + "probability": 0.7355 + }, + { + "start": 14409.6, + "end": 14411.04, + "probability": 0.7145 + }, + { + "start": 14412.66, + "end": 14414.26, + "probability": 0.2812 + }, + { + "start": 14424.48, + "end": 14429.84, + "probability": 0.1708 + }, + { + "start": 14429.96, + "end": 14432.68, + "probability": 0.8066 + }, + { + "start": 14433.18, + "end": 14434.26, + "probability": 0.5282 + }, + { + "start": 14437.48, + "end": 14441.16, + "probability": 0.2868 + }, + { + "start": 14444.04, + "end": 14446.16, + "probability": 0.0262 + }, + { + "start": 14446.16, + "end": 14448.58, + "probability": 0.0622 + }, + { + "start": 14466.34, + "end": 14467.48, + "probability": 0.0487 + }, + { + "start": 14470.28, + "end": 14472.8, + "probability": 0.0034 + }, + { + "start": 14481.72, + "end": 14482.54, + "probability": 0.1382 + }, + { + "start": 14483.98, + "end": 14484.8, + "probability": 0.0692 + }, + { + "start": 14484.82, + "end": 14486.12, + "probability": 0.1059 + }, + { + "start": 14486.24, + "end": 14488.26, + "probability": 0.0414 + }, + { + "start": 14489.72, + "end": 14490.98, + "probability": 0.157 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.0, + "end": 14491.0, + "probability": 0.0 + }, + { + "start": 14491.1, + "end": 14494.44, + "probability": 0.6657 + }, + { + "start": 14494.44, + "end": 14497.78, + "probability": 0.9972 + }, + { + "start": 14498.42, + "end": 14502.24, + "probability": 0.9934 + }, + { + "start": 14502.24, + "end": 14505.1, + "probability": 0.9893 + }, + { + "start": 14506.16, + "end": 14510.28, + "probability": 0.9869 + }, + { + "start": 14510.32, + "end": 14511.26, + "probability": 0.6161 + }, + { + "start": 14512.42, + "end": 14514.2, + "probability": 0.9065 + }, + { + "start": 14514.88, + "end": 14520.28, + "probability": 0.859 + }, + { + "start": 14521.84, + "end": 14523.08, + "probability": 0.9783 + }, + { + "start": 14523.18, + "end": 14526.43, + "probability": 0.9888 + }, + { + "start": 14527.26, + "end": 14528.48, + "probability": 0.9819 + }, + { + "start": 14528.76, + "end": 14530.5, + "probability": 0.9863 + }, + { + "start": 14531.0, + "end": 14532.06, + "probability": 0.9674 + }, + { + "start": 14532.56, + "end": 14534.46, + "probability": 0.9635 + }, + { + "start": 14534.64, + "end": 14535.76, + "probability": 0.777 + }, + { + "start": 14536.14, + "end": 14536.88, + "probability": 0.95 + }, + { + "start": 14536.98, + "end": 14538.24, + "probability": 0.972 + }, + { + "start": 14539.62, + "end": 14540.64, + "probability": 0.5883 + }, + { + "start": 14540.74, + "end": 14545.96, + "probability": 0.967 + }, + { + "start": 14546.18, + "end": 14550.22, + "probability": 0.9946 + }, + { + "start": 14550.82, + "end": 14552.12, + "probability": 0.7911 + }, + { + "start": 14552.38, + "end": 14554.6, + "probability": 0.9916 + }, + { + "start": 14554.64, + "end": 14556.04, + "probability": 0.8557 + }, + { + "start": 14556.28, + "end": 14560.8, + "probability": 0.8872 + }, + { + "start": 14561.48, + "end": 14562.98, + "probability": 0.8616 + }, + { + "start": 14563.1, + "end": 14565.84, + "probability": 0.8904 + }, + { + "start": 14565.92, + "end": 14570.4, + "probability": 0.9468 + }, + { + "start": 14570.4, + "end": 14574.92, + "probability": 0.9944 + }, + { + "start": 14575.1, + "end": 14576.32, + "probability": 0.9685 + }, + { + "start": 14577.02, + "end": 14578.92, + "probability": 0.9907 + }, + { + "start": 14579.34, + "end": 14584.92, + "probability": 0.9309 + }, + { + "start": 14584.92, + "end": 14588.8, + "probability": 0.9324 + }, + { + "start": 14589.76, + "end": 14593.6, + "probability": 0.7982 + }, + { + "start": 14593.66, + "end": 14597.66, + "probability": 0.9928 + }, + { + "start": 14598.38, + "end": 14600.44, + "probability": 0.9705 + }, + { + "start": 14602.34, + "end": 14603.28, + "probability": 0.6078 + }, + { + "start": 14603.4, + "end": 14604.26, + "probability": 0.9598 + }, + { + "start": 14604.64, + "end": 14605.78, + "probability": 0.5859 + }, + { + "start": 14606.44, + "end": 14609.94, + "probability": 0.9646 + }, + { + "start": 14609.94, + "end": 14613.18, + "probability": 0.9829 + }, + { + "start": 14613.66, + "end": 14617.64, + "probability": 0.9548 + }, + { + "start": 14617.64, + "end": 14621.18, + "probability": 0.9993 + }, + { + "start": 14621.24, + "end": 14622.04, + "probability": 0.6387 + }, + { + "start": 14622.1, + "end": 14624.64, + "probability": 0.3135 + }, + { + "start": 14625.1, + "end": 14627.5, + "probability": 0.9836 + }, + { + "start": 14627.5, + "end": 14629.84, + "probability": 0.9877 + }, + { + "start": 14630.46, + "end": 14633.6, + "probability": 0.9706 + }, + { + "start": 14633.6, + "end": 14636.06, + "probability": 0.9926 + }, + { + "start": 14638.35, + "end": 14643.06, + "probability": 0.9944 + }, + { + "start": 14643.06, + "end": 14647.72, + "probability": 0.9844 + }, + { + "start": 14647.78, + "end": 14651.06, + "probability": 0.6222 + }, + { + "start": 14652.24, + "end": 14653.08, + "probability": 0.9941 + }, + { + "start": 14653.84, + "end": 14657.16, + "probability": 0.9982 + }, + { + "start": 14657.16, + "end": 14660.24, + "probability": 0.9958 + }, + { + "start": 14660.8, + "end": 14661.82, + "probability": 0.9857 + }, + { + "start": 14661.92, + "end": 14664.26, + "probability": 0.9017 + }, + { + "start": 14664.4, + "end": 14666.12, + "probability": 0.8347 + }, + { + "start": 14666.86, + "end": 14668.78, + "probability": 0.9922 + }, + { + "start": 14668.86, + "end": 14671.26, + "probability": 0.9956 + }, + { + "start": 14671.26, + "end": 14675.26, + "probability": 0.9565 + }, + { + "start": 14675.4, + "end": 14678.08, + "probability": 0.615 + }, + { + "start": 14678.14, + "end": 14680.38, + "probability": 0.7805 + }, + { + "start": 14681.0, + "end": 14682.42, + "probability": 0.7393 + }, + { + "start": 14682.52, + "end": 14685.54, + "probability": 0.8769 + }, + { + "start": 14686.32, + "end": 14688.0, + "probability": 0.8959 + }, + { + "start": 14688.54, + "end": 14695.14, + "probability": 0.9888 + }, + { + "start": 14695.32, + "end": 14698.1, + "probability": 0.9696 + }, + { + "start": 14698.14, + "end": 14702.78, + "probability": 0.9945 + }, + { + "start": 14703.02, + "end": 14704.68, + "probability": 0.8732 + }, + { + "start": 14705.28, + "end": 14706.88, + "probability": 0.9833 + }, + { + "start": 14707.24, + "end": 14708.86, + "probability": 0.8072 + }, + { + "start": 14709.44, + "end": 14714.44, + "probability": 0.9946 + }, + { + "start": 14714.74, + "end": 14715.34, + "probability": 0.8661 + }, + { + "start": 14715.52, + "end": 14715.9, + "probability": 0.8463 + }, + { + "start": 14715.96, + "end": 14716.72, + "probability": 0.8201 + }, + { + "start": 14716.96, + "end": 14717.54, + "probability": 0.9412 + }, + { + "start": 14717.64, + "end": 14720.48, + "probability": 0.9399 + }, + { + "start": 14720.6, + "end": 14723.68, + "probability": 0.9811 + }, + { + "start": 14723.78, + "end": 14728.02, + "probability": 0.9556 + }, + { + "start": 14728.14, + "end": 14730.42, + "probability": 0.9959 + }, + { + "start": 14731.44, + "end": 14732.96, + "probability": 0.976 + }, + { + "start": 14733.02, + "end": 14734.22, + "probability": 0.4675 + }, + { + "start": 14734.3, + "end": 14738.46, + "probability": 0.9919 + }, + { + "start": 14738.56, + "end": 14740.3, + "probability": 0.9888 + }, + { + "start": 14740.46, + "end": 14743.32, + "probability": 0.9856 + }, + { + "start": 14743.32, + "end": 14746.86, + "probability": 0.9621 + }, + { + "start": 14747.22, + "end": 14749.44, + "probability": 0.9932 + }, + { + "start": 14749.84, + "end": 14751.22, + "probability": 0.8701 + }, + { + "start": 14751.92, + "end": 14760.32, + "probability": 0.9861 + }, + { + "start": 14761.16, + "end": 14764.46, + "probability": 0.969 + }, + { + "start": 14765.06, + "end": 14766.7, + "probability": 0.668 + }, + { + "start": 14766.82, + "end": 14768.18, + "probability": 0.8228 + }, + { + "start": 14768.24, + "end": 14772.0, + "probability": 0.9565 + }, + { + "start": 14772.78, + "end": 14774.72, + "probability": 0.9928 + }, + { + "start": 14774.86, + "end": 14780.06, + "probability": 0.9976 + }, + { + "start": 14780.72, + "end": 14781.64, + "probability": 0.9109 + }, + { + "start": 14781.76, + "end": 14783.38, + "probability": 0.973 + }, + { + "start": 14783.62, + "end": 14787.6, + "probability": 0.7479 + }, + { + "start": 14787.64, + "end": 14788.94, + "probability": 0.9082 + }, + { + "start": 14789.14, + "end": 14790.72, + "probability": 0.9961 + }, + { + "start": 14790.84, + "end": 14792.58, + "probability": 0.9927 + }, + { + "start": 14792.84, + "end": 14793.34, + "probability": 0.6219 + }, + { + "start": 14793.56, + "end": 14795.14, + "probability": 0.6264 + }, + { + "start": 14795.22, + "end": 14799.6, + "probability": 0.9805 + }, + { + "start": 14799.78, + "end": 14804.0, + "probability": 0.9846 + }, + { + "start": 14804.2, + "end": 14806.62, + "probability": 0.8768 + }, + { + "start": 14807.3, + "end": 14809.22, + "probability": 0.9876 + }, + { + "start": 14809.38, + "end": 14810.08, + "probability": 0.4186 + }, + { + "start": 14810.18, + "end": 14811.42, + "probability": 0.8238 + }, + { + "start": 14812.48, + "end": 14812.62, + "probability": 0.4065 + }, + { + "start": 14812.78, + "end": 14815.36, + "probability": 0.998 + }, + { + "start": 14815.36, + "end": 14818.54, + "probability": 0.9032 + }, + { + "start": 14819.12, + "end": 14821.88, + "probability": 0.9531 + }, + { + "start": 14821.96, + "end": 14824.58, + "probability": 0.7558 + }, + { + "start": 14824.62, + "end": 14826.9, + "probability": 0.9684 + }, + { + "start": 14826.9, + "end": 14829.76, + "probability": 0.7541 + }, + { + "start": 14830.16, + "end": 14832.36, + "probability": 0.9572 + }, + { + "start": 14832.88, + "end": 14835.92, + "probability": 0.6832 + }, + { + "start": 14835.94, + "end": 14840.1, + "probability": 0.971 + }, + { + "start": 14840.68, + "end": 14844.46, + "probability": 0.9767 + }, + { + "start": 14844.92, + "end": 14847.48, + "probability": 0.9492 + }, + { + "start": 14847.52, + "end": 14849.34, + "probability": 0.9587 + }, + { + "start": 14849.44, + "end": 14850.82, + "probability": 0.8616 + }, + { + "start": 14851.64, + "end": 14854.3, + "probability": 0.9971 + }, + { + "start": 14854.82, + "end": 14855.58, + "probability": 0.7686 + }, + { + "start": 14855.7, + "end": 14858.22, + "probability": 0.6988 + }, + { + "start": 14858.4, + "end": 14859.02, + "probability": 0.8954 + }, + { + "start": 14859.12, + "end": 14861.36, + "probability": 0.7551 + }, + { + "start": 14861.92, + "end": 14864.94, + "probability": 0.6655 + }, + { + "start": 14865.0, + "end": 14869.24, + "probability": 0.906 + }, + { + "start": 14869.72, + "end": 14870.68, + "probability": 0.7281 + }, + { + "start": 14871.32, + "end": 14873.06, + "probability": 0.9858 + }, + { + "start": 14873.26, + "end": 14874.39, + "probability": 0.8218 + }, + { + "start": 14875.64, + "end": 14878.48, + "probability": 0.9021 + }, + { + "start": 14879.1, + "end": 14880.16, + "probability": 0.9382 + }, + { + "start": 14880.26, + "end": 14881.33, + "probability": 0.9902 + }, + { + "start": 14881.64, + "end": 14883.7, + "probability": 0.9318 + }, + { + "start": 14884.48, + "end": 14885.86, + "probability": 0.9362 + }, + { + "start": 14886.54, + "end": 14887.18, + "probability": 0.7948 + }, + { + "start": 14887.28, + "end": 14887.52, + "probability": 0.772 + }, + { + "start": 14887.6, + "end": 14892.2, + "probability": 0.9633 + }, + { + "start": 14892.54, + "end": 14894.2, + "probability": 0.9553 + }, + { + "start": 14895.24, + "end": 14896.08, + "probability": 0.7791 + }, + { + "start": 14896.65, + "end": 14898.11, + "probability": 0.9666 + }, + { + "start": 14898.82, + "end": 14901.24, + "probability": 0.9617 + }, + { + "start": 14902.14, + "end": 14905.62, + "probability": 0.7664 + }, + { + "start": 14906.22, + "end": 14908.32, + "probability": 0.9739 + }, + { + "start": 14908.48, + "end": 14909.84, + "probability": 0.8265 + }, + { + "start": 14910.2, + "end": 14912.8, + "probability": 0.9726 + }, + { + "start": 14912.88, + "end": 14913.48, + "probability": 0.8945 + }, + { + "start": 14915.08, + "end": 14915.88, + "probability": 0.8492 + }, + { + "start": 14916.74, + "end": 14919.82, + "probability": 0.9163 + }, + { + "start": 14919.88, + "end": 14920.68, + "probability": 0.8647 + }, + { + "start": 14921.6, + "end": 14923.42, + "probability": 0.6651 + }, + { + "start": 14923.98, + "end": 14925.24, + "probability": 0.803 + }, + { + "start": 14925.69, + "end": 14932.68, + "probability": 0.366 + }, + { + "start": 14945.58, + "end": 14946.86, + "probability": 0.7557 + }, + { + "start": 14947.22, + "end": 14948.08, + "probability": 0.8943 + }, + { + "start": 14948.54, + "end": 14950.08, + "probability": 0.9107 + }, + { + "start": 14950.58, + "end": 14951.96, + "probability": 0.8402 + }, + { + "start": 14953.52, + "end": 14954.96, + "probability": 0.801 + }, + { + "start": 14955.22, + "end": 14956.3, + "probability": 0.8389 + }, + { + "start": 14956.54, + "end": 14958.43, + "probability": 0.876 + }, + { + "start": 14959.58, + "end": 14959.84, + "probability": 0.8843 + }, + { + "start": 14961.66, + "end": 14965.24, + "probability": 0.9277 + }, + { + "start": 14965.34, + "end": 14965.82, + "probability": 0.7992 + }, + { + "start": 14965.86, + "end": 14966.56, + "probability": 0.9545 + }, + { + "start": 14966.92, + "end": 14967.98, + "probability": 0.7375 + }, + { + "start": 14968.78, + "end": 14970.48, + "probability": 0.8894 + }, + { + "start": 14971.06, + "end": 14974.72, + "probability": 0.9982 + }, + { + "start": 14975.84, + "end": 14979.78, + "probability": 0.9854 + }, + { + "start": 14980.24, + "end": 14980.86, + "probability": 0.7344 + }, + { + "start": 14980.92, + "end": 14981.38, + "probability": 0.9299 + }, + { + "start": 14981.44, + "end": 14981.88, + "probability": 0.9286 + }, + { + "start": 14982.98, + "end": 14984.5, + "probability": 0.9941 + }, + { + "start": 14985.66, + "end": 14987.57, + "probability": 0.9902 + }, + { + "start": 14988.5, + "end": 14989.78, + "probability": 0.8127 + }, + { + "start": 14991.18, + "end": 14992.01, + "probability": 0.7094 + }, + { + "start": 14992.98, + "end": 14994.12, + "probability": 0.9468 + }, + { + "start": 14995.1, + "end": 14997.12, + "probability": 0.9843 + }, + { + "start": 14999.64, + "end": 15002.72, + "probability": 0.877 + }, + { + "start": 15003.38, + "end": 15005.04, + "probability": 0.9746 + }, + { + "start": 15005.9, + "end": 15007.63, + "probability": 0.9138 + }, + { + "start": 15008.64, + "end": 15009.98, + "probability": 0.9736 + }, + { + "start": 15010.5, + "end": 15010.96, + "probability": 0.8813 + }, + { + "start": 15012.5, + "end": 15014.06, + "probability": 0.9732 + }, + { + "start": 15014.28, + "end": 15015.54, + "probability": 0.9941 + }, + { + "start": 15015.66, + "end": 15018.28, + "probability": 0.9932 + }, + { + "start": 15018.3, + "end": 15021.92, + "probability": 0.9879 + }, + { + "start": 15022.54, + "end": 15026.0, + "probability": 0.9952 + }, + { + "start": 15026.48, + "end": 15030.16, + "probability": 0.9448 + }, + { + "start": 15032.08, + "end": 15034.02, + "probability": 0.9976 + }, + { + "start": 15034.2, + "end": 15037.18, + "probability": 0.9961 + }, + { + "start": 15038.04, + "end": 15042.9, + "probability": 0.996 + }, + { + "start": 15043.88, + "end": 15047.5, + "probability": 0.9928 + }, + { + "start": 15049.12, + "end": 15053.18, + "probability": 0.998 + }, + { + "start": 15053.24, + "end": 15054.82, + "probability": 0.9214 + }, + { + "start": 15055.48, + "end": 15058.14, + "probability": 0.9977 + }, + { + "start": 15058.88, + "end": 15059.46, + "probability": 0.6886 + }, + { + "start": 15059.52, + "end": 15060.12, + "probability": 0.8714 + }, + { + "start": 15060.5, + "end": 15063.94, + "probability": 0.9968 + }, + { + "start": 15064.46, + "end": 15065.14, + "probability": 0.985 + }, + { + "start": 15066.56, + "end": 15070.94, + "probability": 0.9948 + }, + { + "start": 15070.94, + "end": 15075.56, + "probability": 0.9519 + }, + { + "start": 15076.64, + "end": 15081.1, + "probability": 0.9068 + }, + { + "start": 15081.66, + "end": 15083.58, + "probability": 0.8781 + }, + { + "start": 15083.7, + "end": 15084.04, + "probability": 0.8407 + }, + { + "start": 15084.36, + "end": 15085.8, + "probability": 0.998 + }, + { + "start": 15087.14, + "end": 15089.48, + "probability": 0.7724 + }, + { + "start": 15089.48, + "end": 15092.46, + "probability": 0.9814 + }, + { + "start": 15093.0, + "end": 15094.08, + "probability": 0.8351 + }, + { + "start": 15094.52, + "end": 15099.04, + "probability": 0.9975 + }, + { + "start": 15099.58, + "end": 15099.9, + "probability": 0.7134 + }, + { + "start": 15100.44, + "end": 15103.36, + "probability": 0.9961 + }, + { + "start": 15105.22, + "end": 15106.1, + "probability": 0.999 + }, + { + "start": 15106.84, + "end": 15108.08, + "probability": 0.9187 + }, + { + "start": 15109.06, + "end": 15110.08, + "probability": 0.994 + }, + { + "start": 15111.96, + "end": 15113.62, + "probability": 0.8332 + }, + { + "start": 15114.44, + "end": 15115.36, + "probability": 0.6403 + }, + { + "start": 15116.1, + "end": 15120.16, + "probability": 0.9727 + }, + { + "start": 15121.16, + "end": 15121.98, + "probability": 0.8153 + }, + { + "start": 15122.84, + "end": 15125.14, + "probability": 0.9939 + }, + { + "start": 15127.0, + "end": 15128.3, + "probability": 0.8126 + }, + { + "start": 15128.62, + "end": 15130.62, + "probability": 0.96 + }, + { + "start": 15131.8, + "end": 15134.11, + "probability": 0.9866 + }, + { + "start": 15135.24, + "end": 15139.77, + "probability": 0.7309 + }, + { + "start": 15139.88, + "end": 15141.36, + "probability": 0.8751 + }, + { + "start": 15142.18, + "end": 15143.34, + "probability": 0.7727 + }, + { + "start": 15143.44, + "end": 15145.86, + "probability": 0.9954 + }, + { + "start": 15145.94, + "end": 15148.04, + "probability": 0.4194 + }, + { + "start": 15148.16, + "end": 15150.46, + "probability": 0.9138 + }, + { + "start": 15151.04, + "end": 15153.21, + "probability": 0.9897 + }, + { + "start": 15153.62, + "end": 15154.07, + "probability": 0.6871 + }, + { + "start": 15154.78, + "end": 15157.58, + "probability": 0.9957 + }, + { + "start": 15158.06, + "end": 15159.8, + "probability": 0.9092 + }, + { + "start": 15163.22, + "end": 15167.84, + "probability": 0.8338 + }, + { + "start": 15168.16, + "end": 15169.2, + "probability": 0.9728 + }, + { + "start": 15169.26, + "end": 15169.86, + "probability": 0.9438 + }, + { + "start": 15170.0, + "end": 15171.36, + "probability": 0.9257 + }, + { + "start": 15172.06, + "end": 15172.36, + "probability": 0.819 + }, + { + "start": 15172.36, + "end": 15173.51, + "probability": 0.9048 + }, + { + "start": 15174.0, + "end": 15176.76, + "probability": 0.9962 + }, + { + "start": 15177.24, + "end": 15178.08, + "probability": 0.6837 + }, + { + "start": 15179.3, + "end": 15182.9, + "probability": 0.9115 + }, + { + "start": 15183.72, + "end": 15186.02, + "probability": 0.9854 + }, + { + "start": 15186.12, + "end": 15186.46, + "probability": 0.4725 + }, + { + "start": 15186.62, + "end": 15188.0, + "probability": 0.9101 + }, + { + "start": 15188.0, + "end": 15190.1, + "probability": 0.9884 + }, + { + "start": 15190.72, + "end": 15191.54, + "probability": 0.5907 + }, + { + "start": 15191.68, + "end": 15192.2, + "probability": 0.5819 + }, + { + "start": 15192.44, + "end": 15194.16, + "probability": 0.9001 + }, + { + "start": 15194.64, + "end": 15200.0, + "probability": 0.9891 + }, + { + "start": 15200.06, + "end": 15201.35, + "probability": 0.9993 + }, + { + "start": 15201.64, + "end": 15204.96, + "probability": 0.9384 + }, + { + "start": 15205.02, + "end": 15208.24, + "probability": 0.9917 + }, + { + "start": 15208.3, + "end": 15211.24, + "probability": 0.7956 + }, + { + "start": 15211.78, + "end": 15214.56, + "probability": 0.7912 + }, + { + "start": 15214.96, + "end": 15216.34, + "probability": 0.7101 + }, + { + "start": 15216.88, + "end": 15217.86, + "probability": 0.3452 + }, + { + "start": 15218.76, + "end": 15220.04, + "probability": 0.4146 + }, + { + "start": 15221.14, + "end": 15222.46, + "probability": 0.9297 + }, + { + "start": 15223.14, + "end": 15224.06, + "probability": 0.1257 + }, + { + "start": 15224.06, + "end": 15224.56, + "probability": 0.0219 + }, + { + "start": 15225.12, + "end": 15226.13, + "probability": 0.6279 + }, + { + "start": 15226.48, + "end": 15226.6, + "probability": 0.2612 + }, + { + "start": 15226.6, + "end": 15229.88, + "probability": 0.7729 + }, + { + "start": 15230.34, + "end": 15231.83, + "probability": 0.9644 + }, + { + "start": 15232.24, + "end": 15234.24, + "probability": 0.9777 + }, + { + "start": 15237.5, + "end": 15241.73, + "probability": 0.9823 + }, + { + "start": 15241.86, + "end": 15242.84, + "probability": 0.7422 + }, + { + "start": 15242.9, + "end": 15246.02, + "probability": 0.7599 + }, + { + "start": 15246.18, + "end": 15246.95, + "probability": 0.9321 + }, + { + "start": 15248.18, + "end": 15250.66, + "probability": 0.9803 + }, + { + "start": 15250.82, + "end": 15256.88, + "probability": 0.9902 + }, + { + "start": 15256.94, + "end": 15260.66, + "probability": 0.9728 + }, + { + "start": 15260.78, + "end": 15261.22, + "probability": 0.7444 + }, + { + "start": 15261.4, + "end": 15265.32, + "probability": 0.9985 + }, + { + "start": 15265.74, + "end": 15267.36, + "probability": 0.8343 + }, + { + "start": 15267.68, + "end": 15267.9, + "probability": 0.2698 + }, + { + "start": 15268.16, + "end": 15270.66, + "probability": 0.8216 + }, + { + "start": 15271.74, + "end": 15273.1, + "probability": 0.8021 + }, + { + "start": 15273.88, + "end": 15278.12, + "probability": 0.2352 + }, + { + "start": 15278.12, + "end": 15279.8, + "probability": 0.4015 + }, + { + "start": 15280.4, + "end": 15281.06, + "probability": 0.3821 + }, + { + "start": 15281.98, + "end": 15282.64, + "probability": 0.3285 + }, + { + "start": 15282.66, + "end": 15284.82, + "probability": 0.9891 + }, + { + "start": 15285.22, + "end": 15290.0, + "probability": 0.7613 + }, + { + "start": 15290.06, + "end": 15292.25, + "probability": 0.9046 + }, + { + "start": 15293.0, + "end": 15296.79, + "probability": 0.9504 + }, + { + "start": 15297.76, + "end": 15298.78, + "probability": 0.7714 + }, + { + "start": 15298.82, + "end": 15300.46, + "probability": 0.981 + }, + { + "start": 15300.56, + "end": 15302.02, + "probability": 0.9668 + }, + { + "start": 15302.42, + "end": 15303.94, + "probability": 0.4915 + }, + { + "start": 15305.46, + "end": 15309.12, + "probability": 0.5208 + }, + { + "start": 15309.54, + "end": 15310.56, + "probability": 0.9714 + }, + { + "start": 15310.68, + "end": 15314.7, + "probability": 0.9885 + }, + { + "start": 15314.82, + "end": 15315.64, + "probability": 0.8504 + }, + { + "start": 15315.84, + "end": 15317.0, + "probability": 0.9885 + }, + { + "start": 15317.1, + "end": 15319.4, + "probability": 0.9202 + }, + { + "start": 15319.66, + "end": 15322.3, + "probability": 0.9828 + }, + { + "start": 15322.64, + "end": 15325.72, + "probability": 0.9783 + }, + { + "start": 15325.8, + "end": 15328.88, + "probability": 0.9756 + }, + { + "start": 15330.1, + "end": 15331.48, + "probability": 0.1447 + }, + { + "start": 15331.7, + "end": 15332.1, + "probability": 0.4085 + }, + { + "start": 15332.1, + "end": 15334.64, + "probability": 0.8918 + }, + { + "start": 15335.06, + "end": 15336.06, + "probability": 0.8658 + }, + { + "start": 15336.14, + "end": 15337.62, + "probability": 0.6459 + }, + { + "start": 15337.98, + "end": 15339.31, + "probability": 0.8557 + }, + { + "start": 15339.74, + "end": 15346.28, + "probability": 0.8579 + }, + { + "start": 15346.72, + "end": 15350.3, + "probability": 0.9618 + }, + { + "start": 15350.5, + "end": 15351.14, + "probability": 0.6233 + }, + { + "start": 15351.28, + "end": 15354.0, + "probability": 0.8792 + }, + { + "start": 15354.28, + "end": 15354.7, + "probability": 0.6993 + }, + { + "start": 15354.8, + "end": 15359.6, + "probability": 0.9975 + }, + { + "start": 15359.62, + "end": 15360.26, + "probability": 0.7358 + }, + { + "start": 15360.4, + "end": 15361.54, + "probability": 0.7491 + }, + { + "start": 15362.4, + "end": 15363.98, + "probability": 0.7983 + }, + { + "start": 15364.42, + "end": 15364.68, + "probability": 0.906 + }, + { + "start": 15364.7, + "end": 15367.82, + "probability": 0.9969 + }, + { + "start": 15367.86, + "end": 15371.18, + "probability": 0.9951 + }, + { + "start": 15371.74, + "end": 15375.81, + "probability": 0.9821 + }, + { + "start": 15376.68, + "end": 15377.18, + "probability": 0.5018 + }, + { + "start": 15377.22, + "end": 15377.56, + "probability": 0.7283 + }, + { + "start": 15377.7, + "end": 15381.14, + "probability": 0.8805 + }, + { + "start": 15381.68, + "end": 15382.62, + "probability": 0.7769 + }, + { + "start": 15382.98, + "end": 15385.36, + "probability": 0.9876 + }, + { + "start": 15386.18, + "end": 15387.26, + "probability": 0.8825 + }, + { + "start": 15388.24, + "end": 15394.98, + "probability": 0.9895 + }, + { + "start": 15395.56, + "end": 15395.56, + "probability": 0.0522 + }, + { + "start": 15395.56, + "end": 15398.04, + "probability": 0.9767 + }, + { + "start": 15398.64, + "end": 15400.14, + "probability": 0.7391 + }, + { + "start": 15400.3, + "end": 15407.12, + "probability": 0.9679 + }, + { + "start": 15407.32, + "end": 15408.53, + "probability": 0.9967 + }, + { + "start": 15409.44, + "end": 15411.16, + "probability": 0.9977 + }, + { + "start": 15411.76, + "end": 15413.28, + "probability": 0.9191 + }, + { + "start": 15413.48, + "end": 15415.66, + "probability": 0.9766 + }, + { + "start": 15415.8, + "end": 15417.3, + "probability": 0.9607 + }, + { + "start": 15417.52, + "end": 15418.08, + "probability": 0.8514 + }, + { + "start": 15418.7, + "end": 15419.42, + "probability": 0.6136 + }, + { + "start": 15419.58, + "end": 15420.9, + "probability": 0.8702 + }, + { + "start": 15423.84, + "end": 15423.84, + "probability": 0.4002 + }, + { + "start": 15424.18, + "end": 15424.46, + "probability": 0.8488 + }, + { + "start": 15424.46, + "end": 15428.11, + "probability": 0.9209 + }, + { + "start": 15428.12, + "end": 15429.58, + "probability": 0.8905 + }, + { + "start": 15429.64, + "end": 15430.56, + "probability": 0.9486 + }, + { + "start": 15431.42, + "end": 15435.64, + "probability": 0.2432 + }, + { + "start": 15439.58, + "end": 15443.64, + "probability": 0.8014 + }, + { + "start": 15444.76, + "end": 15446.8, + "probability": 0.999 + }, + { + "start": 15447.64, + "end": 15448.98, + "probability": 0.9985 + }, + { + "start": 15449.58, + "end": 15451.4, + "probability": 0.8657 + }, + { + "start": 15452.4, + "end": 15453.36, + "probability": 0.8118 + }, + { + "start": 15454.7, + "end": 15460.56, + "probability": 0.9591 + }, + { + "start": 15461.5, + "end": 15463.44, + "probability": 0.996 + }, + { + "start": 15464.58, + "end": 15468.92, + "probability": 0.9984 + }, + { + "start": 15470.12, + "end": 15473.92, + "probability": 0.9889 + }, + { + "start": 15474.6, + "end": 15478.84, + "probability": 0.993 + }, + { + "start": 15479.36, + "end": 15481.36, + "probability": 0.9993 + }, + { + "start": 15481.74, + "end": 15482.65, + "probability": 0.907 + }, + { + "start": 15483.78, + "end": 15489.66, + "probability": 0.9801 + }, + { + "start": 15489.86, + "end": 15490.08, + "probability": 0.7292 + }, + { + "start": 15491.38, + "end": 15493.86, + "probability": 0.9839 + }, + { + "start": 15494.86, + "end": 15498.58, + "probability": 0.998 + }, + { + "start": 15499.5, + "end": 15502.3, + "probability": 0.9942 + }, + { + "start": 15502.88, + "end": 15503.7, + "probability": 0.5865 + }, + { + "start": 15504.28, + "end": 15506.2, + "probability": 0.9883 + }, + { + "start": 15507.0, + "end": 15507.42, + "probability": 0.9722 + }, + { + "start": 15509.88, + "end": 15510.34, + "probability": 0.8526 + }, + { + "start": 15510.36, + "end": 15513.94, + "probability": 0.9844 + }, + { + "start": 15514.52, + "end": 15515.2, + "probability": 0.7642 + }, + { + "start": 15515.8, + "end": 15516.84, + "probability": 0.7687 + }, + { + "start": 15518.2, + "end": 15520.04, + "probability": 0.645 + }, + { + "start": 15520.86, + "end": 15521.54, + "probability": 0.6001 + }, + { + "start": 15521.6, + "end": 15523.18, + "probability": 0.9327 + }, + { + "start": 15523.56, + "end": 15526.52, + "probability": 0.9037 + }, + { + "start": 15527.74, + "end": 15531.98, + "probability": 0.9879 + }, + { + "start": 15533.34, + "end": 15536.06, + "probability": 0.9956 + }, + { + "start": 15537.28, + "end": 15538.98, + "probability": 0.9988 + }, + { + "start": 15540.4, + "end": 15543.16, + "probability": 0.9935 + }, + { + "start": 15544.96, + "end": 15547.26, + "probability": 0.9817 + }, + { + "start": 15548.36, + "end": 15549.96, + "probability": 0.9945 + }, + { + "start": 15551.08, + "end": 15557.06, + "probability": 0.9918 + }, + { + "start": 15557.72, + "end": 15561.42, + "probability": 0.9982 + }, + { + "start": 15562.14, + "end": 15565.1, + "probability": 0.9607 + }, + { + "start": 15566.32, + "end": 15570.96, + "probability": 0.9846 + }, + { + "start": 15570.96, + "end": 15574.26, + "probability": 0.8732 + }, + { + "start": 15575.06, + "end": 15578.38, + "probability": 0.9744 + }, + { + "start": 15578.48, + "end": 15580.2, + "probability": 0.819 + }, + { + "start": 15580.82, + "end": 15583.62, + "probability": 0.418 + }, + { + "start": 15583.72, + "end": 15586.64, + "probability": 0.9067 + }, + { + "start": 15586.76, + "end": 15590.12, + "probability": 0.9488 + }, + { + "start": 15591.32, + "end": 15592.0, + "probability": 0.749 + }, + { + "start": 15592.7, + "end": 15594.18, + "probability": 0.972 + }, + { + "start": 15594.78, + "end": 15596.44, + "probability": 0.982 + }, + { + "start": 15597.24, + "end": 15599.88, + "probability": 0.9688 + }, + { + "start": 15600.78, + "end": 15603.4, + "probability": 0.9878 + }, + { + "start": 15603.98, + "end": 15604.82, + "probability": 0.9723 + }, + { + "start": 15605.98, + "end": 15609.88, + "probability": 0.9775 + }, + { + "start": 15609.88, + "end": 15612.22, + "probability": 0.9981 + }, + { + "start": 15613.52, + "end": 15614.3, + "probability": 0.5561 + }, + { + "start": 15615.06, + "end": 15620.75, + "probability": 0.9964 + }, + { + "start": 15621.88, + "end": 15622.4, + "probability": 0.9679 + }, + { + "start": 15623.88, + "end": 15628.94, + "probability": 0.9928 + }, + { + "start": 15630.5, + "end": 15634.12, + "probability": 0.9273 + }, + { + "start": 15634.64, + "end": 15636.24, + "probability": 0.9911 + }, + { + "start": 15637.96, + "end": 15638.68, + "probability": 0.885 + }, + { + "start": 15640.32, + "end": 15643.26, + "probability": 0.9841 + }, + { + "start": 15644.12, + "end": 15647.42, + "probability": 0.9983 + }, + { + "start": 15647.42, + "end": 15650.36, + "probability": 0.9996 + }, + { + "start": 15651.18, + "end": 15654.32, + "probability": 0.9972 + }, + { + "start": 15655.36, + "end": 15659.58, + "probability": 0.9971 + }, + { + "start": 15660.18, + "end": 15662.82, + "probability": 0.9982 + }, + { + "start": 15663.76, + "end": 15665.5, + "probability": 0.9851 + }, + { + "start": 15665.9, + "end": 15668.44, + "probability": 0.9982 + }, + { + "start": 15669.44, + "end": 15673.36, + "probability": 0.992 + }, + { + "start": 15673.36, + "end": 15676.32, + "probability": 0.9868 + }, + { + "start": 15677.2, + "end": 15679.62, + "probability": 0.9774 + }, + { + "start": 15680.36, + "end": 15681.46, + "probability": 0.863 + }, + { + "start": 15681.58, + "end": 15685.1, + "probability": 0.8605 + }, + { + "start": 15686.08, + "end": 15688.5, + "probability": 0.9805 + }, + { + "start": 15690.54, + "end": 15691.02, + "probability": 0.6976 + }, + { + "start": 15691.8, + "end": 15694.76, + "probability": 0.9601 + }, + { + "start": 15695.38, + "end": 15696.66, + "probability": 0.9605 + }, + { + "start": 15696.7, + "end": 15698.64, + "probability": 0.8309 + }, + { + "start": 15700.26, + "end": 15705.76, + "probability": 0.8969 + }, + { + "start": 15706.24, + "end": 15708.24, + "probability": 0.7544 + }, + { + "start": 15709.0, + "end": 15710.38, + "probability": 0.6879 + }, + { + "start": 15711.24, + "end": 15712.0, + "probability": 0.3391 + }, + { + "start": 15712.0, + "end": 15712.28, + "probability": 0.9066 + }, + { + "start": 15712.9, + "end": 15716.08, + "probability": 0.9963 + }, + { + "start": 15716.1, + "end": 15718.78, + "probability": 0.9695 + }, + { + "start": 15718.88, + "end": 15720.44, + "probability": 0.8762 + }, + { + "start": 15720.5, + "end": 15722.14, + "probability": 0.9995 + }, + { + "start": 15722.86, + "end": 15726.34, + "probability": 0.9985 + }, + { + "start": 15726.38, + "end": 15728.04, + "probability": 0.9813 + }, + { + "start": 15728.1, + "end": 15728.54, + "probability": 0.701 + }, + { + "start": 15731.08, + "end": 15732.82, + "probability": 0.1075 + }, + { + "start": 15732.98, + "end": 15734.16, + "probability": 0.2741 + }, + { + "start": 15734.36, + "end": 15735.7, + "probability": 0.5718 + }, + { + "start": 15736.12, + "end": 15737.36, + "probability": 0.5196 + }, + { + "start": 15737.5, + "end": 15740.8, + "probability": 0.9561 + }, + { + "start": 15741.14, + "end": 15747.84, + "probability": 0.9595 + }, + { + "start": 15748.64, + "end": 15754.02, + "probability": 0.9972 + }, + { + "start": 15754.36, + "end": 15755.16, + "probability": 0.8566 + }, + { + "start": 15755.3, + "end": 15757.62, + "probability": 0.9968 + }, + { + "start": 15758.72, + "end": 15759.98, + "probability": 0.886 + }, + { + "start": 15760.02, + "end": 15762.52, + "probability": 0.7492 + }, + { + "start": 15762.58, + "end": 15763.76, + "probability": 0.9665 + }, + { + "start": 15764.36, + "end": 15767.68, + "probability": 0.9844 + }, + { + "start": 15768.54, + "end": 15771.32, + "probability": 0.9625 + }, + { + "start": 15771.6, + "end": 15772.5, + "probability": 0.9888 + }, + { + "start": 15773.44, + "end": 15775.14, + "probability": 0.549 + }, + { + "start": 15775.86, + "end": 15776.98, + "probability": 0.9801 + }, + { + "start": 15777.08, + "end": 15778.6, + "probability": 0.5465 + }, + { + "start": 15778.88, + "end": 15780.56, + "probability": 0.8913 + }, + { + "start": 15781.54, + "end": 15785.6, + "probability": 0.995 + }, + { + "start": 15786.66, + "end": 15787.44, + "probability": 0.919 + }, + { + "start": 15787.96, + "end": 15789.18, + "probability": 0.86 + }, + { + "start": 15789.9, + "end": 15794.54, + "probability": 0.9578 + }, + { + "start": 15795.34, + "end": 15796.82, + "probability": 0.7546 + }, + { + "start": 15798.16, + "end": 15803.8, + "probability": 0.9387 + }, + { + "start": 15804.44, + "end": 15807.56, + "probability": 0.9235 + }, + { + "start": 15807.62, + "end": 15808.78, + "probability": 0.9949 + }, + { + "start": 15809.9, + "end": 15809.9, + "probability": 0.1712 + }, + { + "start": 15809.9, + "end": 15812.06, + "probability": 0.7111 + }, + { + "start": 15813.1, + "end": 15816.04, + "probability": 0.9356 + }, + { + "start": 15816.88, + "end": 15817.88, + "probability": 0.9414 + }, + { + "start": 15818.0, + "end": 15818.82, + "probability": 0.9765 + }, + { + "start": 15818.88, + "end": 15822.78, + "probability": 0.9836 + }, + { + "start": 15822.92, + "end": 15827.04, + "probability": 0.9969 + }, + { + "start": 15827.92, + "end": 15829.7, + "probability": 0.8955 + }, + { + "start": 15830.24, + "end": 15831.2, + "probability": 0.9123 + }, + { + "start": 15831.82, + "end": 15832.4, + "probability": 0.9789 + }, + { + "start": 15833.02, + "end": 15835.5, + "probability": 0.8556 + }, + { + "start": 15836.58, + "end": 15838.64, + "probability": 0.963 + }, + { + "start": 15838.84, + "end": 15842.3, + "probability": 0.9958 + }, + { + "start": 15842.92, + "end": 15845.22, + "probability": 0.9587 + }, + { + "start": 15846.38, + "end": 15850.64, + "probability": 0.8993 + }, + { + "start": 15851.82, + "end": 15854.44, + "probability": 0.9873 + }, + { + "start": 15855.16, + "end": 15860.02, + "probability": 0.9987 + }, + { + "start": 15860.02, + "end": 15864.86, + "probability": 0.9943 + }, + { + "start": 15865.04, + "end": 15865.44, + "probability": 0.7657 + }, + { + "start": 15866.76, + "end": 15867.54, + "probability": 0.6339 + }, + { + "start": 15867.76, + "end": 15870.14, + "probability": 0.896 + }, + { + "start": 15892.0, + "end": 15895.6, + "probability": 0.6607 + }, + { + "start": 15897.3, + "end": 15900.44, + "probability": 0.887 + }, + { + "start": 15900.76, + "end": 15906.1, + "probability": 0.9749 + }, + { + "start": 15906.8, + "end": 15910.42, + "probability": 0.9621 + }, + { + "start": 15913.78, + "end": 15918.5, + "probability": 0.9537 + }, + { + "start": 15920.08, + "end": 15923.88, + "probability": 0.8365 + }, + { + "start": 15924.68, + "end": 15930.06, + "probability": 0.9924 + }, + { + "start": 15931.2, + "end": 15936.0, + "probability": 0.7778 + }, + { + "start": 15937.64, + "end": 15941.18, + "probability": 0.9679 + }, + { + "start": 15941.82, + "end": 15943.42, + "probability": 0.894 + }, + { + "start": 15944.46, + "end": 15948.34, + "probability": 0.981 + }, + { + "start": 15950.02, + "end": 15952.68, + "probability": 0.8892 + }, + { + "start": 15954.64, + "end": 15958.08, + "probability": 0.9723 + }, + { + "start": 15959.74, + "end": 15962.16, + "probability": 0.7296 + }, + { + "start": 15963.28, + "end": 15968.42, + "probability": 0.959 + }, + { + "start": 15969.96, + "end": 15972.6, + "probability": 0.938 + }, + { + "start": 15974.1, + "end": 15974.7, + "probability": 0.7179 + }, + { + "start": 15975.9, + "end": 15976.18, + "probability": 0.7614 + }, + { + "start": 15977.92, + "end": 15979.38, + "probability": 0.9749 + }, + { + "start": 15981.1, + "end": 15985.16, + "probability": 0.9858 + }, + { + "start": 15985.8, + "end": 15986.66, + "probability": 0.9213 + }, + { + "start": 15987.82, + "end": 15994.68, + "probability": 0.9929 + }, + { + "start": 15996.36, + "end": 15997.69, + "probability": 0.8921 + }, + { + "start": 15998.74, + "end": 16002.62, + "probability": 0.991 + }, + { + "start": 16004.08, + "end": 16007.92, + "probability": 0.993 + }, + { + "start": 16008.58, + "end": 16011.1, + "probability": 0.7314 + }, + { + "start": 16011.8, + "end": 16015.32, + "probability": 0.8418 + }, + { + "start": 16019.26, + "end": 16021.88, + "probability": 0.6273 + }, + { + "start": 16026.98, + "end": 16027.48, + "probability": 0.0466 + }, + { + "start": 16028.58, + "end": 16029.68, + "probability": 0.002 + }, + { + "start": 16030.88, + "end": 16032.6, + "probability": 0.0743 + }, + { + "start": 16032.6, + "end": 16036.14, + "probability": 0.2179 + }, + { + "start": 16037.94, + "end": 16039.06, + "probability": 0.1256 + }, + { + "start": 16041.66, + "end": 16043.2, + "probability": 0.08 + }, + { + "start": 16043.8, + "end": 16045.48, + "probability": 0.1109 + }, + { + "start": 16046.42, + "end": 16047.18, + "probability": 0.2213 + }, + { + "start": 16048.24, + "end": 16049.16, + "probability": 0.5702 + }, + { + "start": 16051.28, + "end": 16054.96, + "probability": 0.0818 + }, + { + "start": 16056.72, + "end": 16060.88, + "probability": 0.4806 + }, + { + "start": 16062.04, + "end": 16066.88, + "probability": 0.1095 + }, + { + "start": 16067.48, + "end": 16069.28, + "probability": 0.2656 + }, + { + "start": 16069.58, + "end": 16072.7, + "probability": 0.1425 + }, + { + "start": 16073.72, + "end": 16075.62, + "probability": 0.1176 + }, + { + "start": 16076.76, + "end": 16082.3, + "probability": 0.2917 + }, + { + "start": 16082.32, + "end": 16089.16, + "probability": 0.0741 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16144.0, + "end": 16144.0, + "probability": 0.0 + }, + { + "start": 16145.0, + "end": 16145.0, + "probability": 0.3616 + }, + { + "start": 16145.0, + "end": 16145.92, + "probability": 0.1521 + }, + { + "start": 16145.98, + "end": 16146.96, + "probability": 0.5732 + }, + { + "start": 16147.62, + "end": 16150.28, + "probability": 0.7914 + }, + { + "start": 16150.7, + "end": 16152.72, + "probability": 0.5134 + }, + { + "start": 16152.74, + "end": 16154.52, + "probability": 0.7839 + }, + { + "start": 16155.06, + "end": 16158.78, + "probability": 0.917 + }, + { + "start": 16158.92, + "end": 16160.57, + "probability": 0.5869 + }, + { + "start": 16160.87, + "end": 16165.62, + "probability": 0.9226 + }, + { + "start": 16166.7, + "end": 16169.22, + "probability": 0.9253 + }, + { + "start": 16172.46, + "end": 16174.34, + "probability": 0.7717 + }, + { + "start": 16175.16, + "end": 16179.8, + "probability": 0.8511 + }, + { + "start": 16181.64, + "end": 16183.82, + "probability": 0.9961 + }, + { + "start": 16183.92, + "end": 16185.04, + "probability": 0.7324 + }, + { + "start": 16186.04, + "end": 16187.08, + "probability": 0.9409 + }, + { + "start": 16187.96, + "end": 16188.92, + "probability": 0.7283 + }, + { + "start": 16189.24, + "end": 16190.5, + "probability": 0.4619 + }, + { + "start": 16190.96, + "end": 16192.88, + "probability": 0.7738 + }, + { + "start": 16193.58, + "end": 16196.36, + "probability": 0.8778 + }, + { + "start": 16196.98, + "end": 16200.06, + "probability": 0.9734 + }, + { + "start": 16201.1, + "end": 16201.1, + "probability": 0.6137 + }, + { + "start": 16201.1, + "end": 16201.88, + "probability": 0.5502 + }, + { + "start": 16203.8, + "end": 16206.04, + "probability": 0.6128 + }, + { + "start": 16207.04, + "end": 16208.22, + "probability": 0.6035 + }, + { + "start": 16208.94, + "end": 16212.62, + "probability": 0.9917 + }, + { + "start": 16212.62, + "end": 16215.92, + "probability": 0.9911 + }, + { + "start": 16216.0, + "end": 16216.5, + "probability": 0.7416 + }, + { + "start": 16217.82, + "end": 16221.68, + "probability": 0.8695 + }, + { + "start": 16222.18, + "end": 16222.84, + "probability": 0.6383 + }, + { + "start": 16222.94, + "end": 16223.64, + "probability": 0.5453 + }, + { + "start": 16224.4, + "end": 16224.98, + "probability": 0.181 + }, + { + "start": 16225.78, + "end": 16226.02, + "probability": 0.6295 + }, + { + "start": 16226.32, + "end": 16226.96, + "probability": 0.0042 + }, + { + "start": 16228.26, + "end": 16228.38, + "probability": 0.0 + }, + { + "start": 16234.46, + "end": 16235.34, + "probability": 0.0674 + }, + { + "start": 16237.52, + "end": 16240.9, + "probability": 0.7305 + }, + { + "start": 16241.06, + "end": 16242.92, + "probability": 0.7757 + }, + { + "start": 16242.94, + "end": 16246.18, + "probability": 0.8127 + }, + { + "start": 16247.1, + "end": 16247.78, + "probability": 0.7138 + }, + { + "start": 16247.82, + "end": 16248.34, + "probability": 0.5708 + }, + { + "start": 16248.34, + "end": 16249.0, + "probability": 0.9355 + }, + { + "start": 16264.53, + "end": 16268.52, + "probability": 0.8045 + }, + { + "start": 16268.52, + "end": 16271.72, + "probability": 0.6981 + }, + { + "start": 16272.2, + "end": 16272.9, + "probability": 0.4643 + }, + { + "start": 16273.24, + "end": 16273.8, + "probability": 0.2996 + }, + { + "start": 16279.72, + "end": 16281.0, + "probability": 0.0325 + }, + { + "start": 16281.0, + "end": 16283.46, + "probability": 0.013 + }, + { + "start": 16286.47, + "end": 16289.8, + "probability": 0.0772 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.0, + "end": 16370.0, + "probability": 0.0 + }, + { + "start": 16370.12, + "end": 16370.12, + "probability": 0.1024 + }, + { + "start": 16370.12, + "end": 16370.12, + "probability": 0.0104 + }, + { + "start": 16370.12, + "end": 16370.12, + "probability": 0.0172 + }, + { + "start": 16370.12, + "end": 16370.4, + "probability": 0.087 + }, + { + "start": 16370.5, + "end": 16372.26, + "probability": 0.9088 + }, + { + "start": 16372.84, + "end": 16373.22, + "probability": 0.3688 + }, + { + "start": 16384.46, + "end": 16385.0, + "probability": 0.1736 + }, + { + "start": 16405.88, + "end": 16408.66, + "probability": 0.6696 + }, + { + "start": 16410.84, + "end": 16412.92, + "probability": 0.2972 + }, + { + "start": 16412.98, + "end": 16413.76, + "probability": 0.2673 + }, + { + "start": 16413.84, + "end": 16415.33, + "probability": 0.2139 + }, + { + "start": 16415.36, + "end": 16415.36, + "probability": 0.0162 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.0, + "end": 16491.0, + "probability": 0.0 + }, + { + "start": 16491.34, + "end": 16491.64, + "probability": 0.0713 + }, + { + "start": 16492.08, + "end": 16495.46, + "probability": 0.9979 + }, + { + "start": 16495.46, + "end": 16499.4, + "probability": 0.9939 + }, + { + "start": 16500.54, + "end": 16500.98, + "probability": 0.2041 + }, + { + "start": 16501.74, + "end": 16504.54, + "probability": 0.99 + }, + { + "start": 16505.34, + "end": 16509.06, + "probability": 0.9954 + }, + { + "start": 16509.84, + "end": 16515.86, + "probability": 0.995 + }, + { + "start": 16517.1, + "end": 16520.38, + "probability": 0.9993 + }, + { + "start": 16520.38, + "end": 16523.92, + "probability": 0.9952 + }, + { + "start": 16524.86, + "end": 16529.66, + "probability": 0.9907 + }, + { + "start": 16529.66, + "end": 16534.6, + "probability": 0.9988 + }, + { + "start": 16535.94, + "end": 16536.72, + "probability": 0.8094 + }, + { + "start": 16537.36, + "end": 16540.3, + "probability": 0.9891 + }, + { + "start": 16540.3, + "end": 16544.44, + "probability": 0.9927 + }, + { + "start": 16545.34, + "end": 16545.62, + "probability": 0.6815 + }, + { + "start": 16546.38, + "end": 16552.06, + "probability": 0.998 + }, + { + "start": 16552.06, + "end": 16559.78, + "probability": 0.9987 + }, + { + "start": 16560.8, + "end": 16560.96, + "probability": 0.6234 + }, + { + "start": 16561.6, + "end": 16567.12, + "probability": 0.9854 + }, + { + "start": 16567.56, + "end": 16572.86, + "probability": 0.9508 + }, + { + "start": 16574.26, + "end": 16579.42, + "probability": 0.9788 + }, + { + "start": 16580.72, + "end": 16581.28, + "probability": 0.7118 + }, + { + "start": 16582.18, + "end": 16586.64, + "probability": 0.9911 + }, + { + "start": 16587.28, + "end": 16590.72, + "probability": 0.9827 + }, + { + "start": 16592.28, + "end": 16594.16, + "probability": 0.7862 + }, + { + "start": 16594.98, + "end": 16595.48, + "probability": 0.9645 + }, + { + "start": 16596.18, + "end": 16599.66, + "probability": 0.9856 + }, + { + "start": 16599.66, + "end": 16603.2, + "probability": 0.9985 + }, + { + "start": 16604.12, + "end": 16609.42, + "probability": 0.9883 + }, + { + "start": 16609.42, + "end": 16614.07, + "probability": 0.9961 + }, + { + "start": 16614.8, + "end": 16620.41, + "probability": 0.9922 + }, + { + "start": 16621.34, + "end": 16623.58, + "probability": 0.9841 + }, + { + "start": 16624.86, + "end": 16627.86, + "probability": 0.9982 + }, + { + "start": 16627.86, + "end": 16630.3, + "probability": 0.9988 + }, + { + "start": 16630.9, + "end": 16634.66, + "probability": 0.9731 + }, + { + "start": 16635.18, + "end": 16636.4, + "probability": 0.999 + }, + { + "start": 16637.54, + "end": 16638.58, + "probability": 0.6558 + }, + { + "start": 16639.32, + "end": 16642.26, + "probability": 0.9934 + }, + { + "start": 16642.26, + "end": 16647.64, + "probability": 0.9905 + }, + { + "start": 16647.82, + "end": 16653.28, + "probability": 0.9681 + }, + { + "start": 16654.0, + "end": 16655.64, + "probability": 0.9901 + }, + { + "start": 16656.26, + "end": 16657.4, + "probability": 0.8125 + }, + { + "start": 16658.18, + "end": 16663.74, + "probability": 0.9211 + }, + { + "start": 16665.9, + "end": 16670.04, + "probability": 0.9895 + }, + { + "start": 16670.04, + "end": 16674.42, + "probability": 0.9952 + }, + { + "start": 16675.02, + "end": 16680.28, + "probability": 0.9511 + }, + { + "start": 16680.8, + "end": 16687.0, + "probability": 0.9002 + }, + { + "start": 16687.1, + "end": 16691.68, + "probability": 0.9832 + }, + { + "start": 16693.66, + "end": 16694.04, + "probability": 0.8069 + }, + { + "start": 16694.24, + "end": 16695.14, + "probability": 0.7144 + }, + { + "start": 16695.18, + "end": 16701.02, + "probability": 0.9768 + }, + { + "start": 16701.82, + "end": 16702.3, + "probability": 0.5886 + }, + { + "start": 16703.36, + "end": 16705.68, + "probability": 0.9985 + }, + { + "start": 16706.44, + "end": 16710.78, + "probability": 0.9944 + }, + { + "start": 16711.44, + "end": 16714.64, + "probability": 0.9889 + }, + { + "start": 16714.66, + "end": 16718.18, + "probability": 0.9924 + }, + { + "start": 16718.7, + "end": 16723.34, + "probability": 0.999 + }, + { + "start": 16723.88, + "end": 16725.66, + "probability": 0.9972 + }, + { + "start": 16726.3, + "end": 16733.3, + "probability": 0.9989 + }, + { + "start": 16735.0, + "end": 16736.98, + "probability": 0.7687 + }, + { + "start": 16737.86, + "end": 16741.28, + "probability": 0.9524 + }, + { + "start": 16741.32, + "end": 16744.34, + "probability": 0.9987 + }, + { + "start": 16745.06, + "end": 16748.62, + "probability": 0.9969 + }, + { + "start": 16748.62, + "end": 16751.76, + "probability": 0.998 + }, + { + "start": 16752.64, + "end": 16755.44, + "probability": 0.9939 + }, + { + "start": 16757.02, + "end": 16760.34, + "probability": 0.8849 + }, + { + "start": 16760.5, + "end": 16764.16, + "probability": 0.9849 + }, + { + "start": 16764.66, + "end": 16767.82, + "probability": 0.9771 + }, + { + "start": 16768.58, + "end": 16772.54, + "probability": 0.9688 + }, + { + "start": 16772.54, + "end": 16776.12, + "probability": 0.9944 + }, + { + "start": 16776.68, + "end": 16783.04, + "probability": 0.9902 + }, + { + "start": 16783.78, + "end": 16784.5, + "probability": 0.7898 + }, + { + "start": 16785.54, + "end": 16785.7, + "probability": 0.2319 + }, + { + "start": 16788.02, + "end": 16792.6, + "probability": 0.9451 + }, + { + "start": 16792.6, + "end": 16796.6, + "probability": 0.9941 + }, + { + "start": 16796.64, + "end": 16802.42, + "probability": 0.9717 + }, + { + "start": 16802.86, + "end": 16805.56, + "probability": 0.9944 + }, + { + "start": 16806.34, + "end": 16806.6, + "probability": 0.4057 + }, + { + "start": 16807.38, + "end": 16808.98, + "probability": 0.9372 + }, + { + "start": 16809.28, + "end": 16814.66, + "probability": 0.9875 + }, + { + "start": 16815.84, + "end": 16818.72, + "probability": 0.7501 + }, + { + "start": 16819.24, + "end": 16820.1, + "probability": 0.99 + }, + { + "start": 16820.62, + "end": 16824.26, + "probability": 0.9977 + }, + { + "start": 16824.72, + "end": 16829.4, + "probability": 0.9867 + }, + { + "start": 16829.9, + "end": 16832.7, + "probability": 0.9906 + }, + { + "start": 16832.86, + "end": 16838.58, + "probability": 0.9434 + }, + { + "start": 16839.14, + "end": 16839.52, + "probability": 0.5401 + }, + { + "start": 16840.24, + "end": 16846.34, + "probability": 0.9967 + }, + { + "start": 16846.86, + "end": 16852.82, + "probability": 0.987 + }, + { + "start": 16853.54, + "end": 16861.2, + "probability": 0.9771 + }, + { + "start": 16861.86, + "end": 16864.74, + "probability": 0.5123 + }, + { + "start": 16865.32, + "end": 16870.28, + "probability": 0.8463 + }, + { + "start": 16871.04, + "end": 16874.78, + "probability": 0.9417 + }, + { + "start": 16875.24, + "end": 16876.66, + "probability": 0.9716 + }, + { + "start": 16877.08, + "end": 16880.0, + "probability": 0.9963 + }, + { + "start": 16881.4, + "end": 16881.86, + "probability": 0.5731 + }, + { + "start": 16881.94, + "end": 16882.88, + "probability": 0.6444 + }, + { + "start": 16882.96, + "end": 16887.02, + "probability": 0.9808 + }, + { + "start": 16887.02, + "end": 16889.96, + "probability": 0.9594 + }, + { + "start": 16890.9, + "end": 16891.54, + "probability": 0.495 + }, + { + "start": 16892.08, + "end": 16893.28, + "probability": 0.9391 + }, + { + "start": 16893.8, + "end": 16894.74, + "probability": 0.9481 + }, + { + "start": 16895.46, + "end": 16899.36, + "probability": 0.9438 + }, + { + "start": 16899.98, + "end": 16902.94, + "probability": 0.998 + }, + { + "start": 16903.48, + "end": 16903.92, + "probability": 0.3183 + }, + { + "start": 16904.02, + "end": 16904.5, + "probability": 0.9554 + }, + { + "start": 16904.52, + "end": 16906.52, + "probability": 0.9946 + }, + { + "start": 16907.2, + "end": 16910.92, + "probability": 0.9916 + }, + { + "start": 16910.92, + "end": 16914.92, + "probability": 0.9718 + }, + { + "start": 16915.82, + "end": 16922.14, + "probability": 0.949 + }, + { + "start": 16922.52, + "end": 16927.42, + "probability": 0.9651 + }, + { + "start": 16927.92, + "end": 16928.74, + "probability": 0.4678 + }, + { + "start": 16929.22, + "end": 16930.36, + "probability": 0.8855 + }, + { + "start": 16930.48, + "end": 16933.4, + "probability": 0.8223 + }, + { + "start": 16934.34, + "end": 16936.04, + "probability": 0.978 + }, + { + "start": 16936.56, + "end": 16940.24, + "probability": 0.9538 + }, + { + "start": 16940.3, + "end": 16944.78, + "probability": 0.9627 + }, + { + "start": 16945.68, + "end": 16948.64, + "probability": 0.7393 + }, + { + "start": 16949.26, + "end": 16950.64, + "probability": 0.8255 + }, + { + "start": 16951.24, + "end": 16954.04, + "probability": 0.9809 + }, + { + "start": 16954.04, + "end": 16956.86, + "probability": 0.9976 + }, + { + "start": 16957.38, + "end": 16964.24, + "probability": 0.965 + }, + { + "start": 16965.12, + "end": 16968.52, + "probability": 0.9966 + }, + { + "start": 16968.52, + "end": 16972.12, + "probability": 0.9915 + }, + { + "start": 16972.78, + "end": 16973.82, + "probability": 0.7126 + }, + { + "start": 16974.0, + "end": 16975.8, + "probability": 0.9944 + }, + { + "start": 16976.28, + "end": 16981.46, + "probability": 0.9979 + }, + { + "start": 16981.52, + "end": 16988.78, + "probability": 0.9635 + }, + { + "start": 16990.56, + "end": 16992.9, + "probability": 0.7038 + }, + { + "start": 16993.74, + "end": 16999.0, + "probability": 0.9941 + }, + { + "start": 16999.56, + "end": 17004.44, + "probability": 0.881 + }, + { + "start": 17004.44, + "end": 17009.1, + "probability": 0.964 + }, + { + "start": 17009.54, + "end": 17012.2, + "probability": 0.9688 + }, + { + "start": 17012.36, + "end": 17015.44, + "probability": 0.9288 + }, + { + "start": 17016.1, + "end": 17016.6, + "probability": 0.9027 + }, + { + "start": 17016.76, + "end": 17017.62, + "probability": 0.7577 + }, + { + "start": 17018.06, + "end": 17022.72, + "probability": 0.9915 + }, + { + "start": 17023.38, + "end": 17025.94, + "probability": 0.9935 + }, + { + "start": 17026.7, + "end": 17027.08, + "probability": 0.8157 + }, + { + "start": 17027.68, + "end": 17030.94, + "probability": 0.9902 + }, + { + "start": 17030.94, + "end": 17034.62, + "probability": 0.999 + }, + { + "start": 17035.14, + "end": 17037.88, + "probability": 0.8956 + }, + { + "start": 17038.42, + "end": 17043.14, + "probability": 0.9941 + }, + { + "start": 17043.78, + "end": 17049.38, + "probability": 0.9932 + }, + { + "start": 17049.94, + "end": 17054.34, + "probability": 0.9918 + }, + { + "start": 17055.34, + "end": 17055.8, + "probability": 0.7345 + }, + { + "start": 17056.34, + "end": 17057.94, + "probability": 0.5425 + }, + { + "start": 17058.12, + "end": 17061.92, + "probability": 0.9927 + }, + { + "start": 17062.44, + "end": 17065.5, + "probability": 0.9946 + }, + { + "start": 17066.0, + "end": 17070.9, + "probability": 0.9927 + }, + { + "start": 17071.44, + "end": 17073.54, + "probability": 0.9905 + }, + { + "start": 17075.02, + "end": 17077.34, + "probability": 0.807 + }, + { + "start": 17077.88, + "end": 17078.52, + "probability": 0.7637 + }, + { + "start": 17079.14, + "end": 17084.26, + "probability": 0.979 + }, + { + "start": 17084.38, + "end": 17088.24, + "probability": 0.985 + }, + { + "start": 17088.74, + "end": 17091.4, + "probability": 0.9717 + }, + { + "start": 17091.96, + "end": 17096.28, + "probability": 0.8347 + }, + { + "start": 17096.62, + "end": 17100.08, + "probability": 0.9765 + }, + { + "start": 17100.48, + "end": 17102.64, + "probability": 0.699 + }, + { + "start": 17103.56, + "end": 17105.24, + "probability": 0.9591 + }, + { + "start": 17105.74, + "end": 17108.46, + "probability": 0.9531 + }, + { + "start": 17108.94, + "end": 17110.82, + "probability": 0.9732 + }, + { + "start": 17111.68, + "end": 17117.5, + "probability": 0.992 + }, + { + "start": 17118.02, + "end": 17119.88, + "probability": 0.9982 + }, + { + "start": 17120.44, + "end": 17125.82, + "probability": 0.9996 + }, + { + "start": 17126.6, + "end": 17127.98, + "probability": 0.683 + }, + { + "start": 17128.16, + "end": 17133.44, + "probability": 0.9932 + }, + { + "start": 17133.48, + "end": 17135.9, + "probability": 0.9861 + }, + { + "start": 17136.78, + "end": 17140.06, + "probability": 0.9976 + }, + { + "start": 17140.92, + "end": 17144.98, + "probability": 0.9888 + }, + { + "start": 17144.98, + "end": 17150.58, + "probability": 0.9971 + }, + { + "start": 17151.02, + "end": 17155.9, + "probability": 0.9764 + }, + { + "start": 17156.36, + "end": 17161.52, + "probability": 0.9637 + }, + { + "start": 17162.22, + "end": 17162.7, + "probability": 0.7166 + }, + { + "start": 17163.42, + "end": 17168.5, + "probability": 0.9818 + }, + { + "start": 17168.88, + "end": 17172.66, + "probability": 0.9941 + }, + { + "start": 17172.82, + "end": 17175.62, + "probability": 0.9796 + }, + { + "start": 17176.22, + "end": 17180.0, + "probability": 0.8341 + }, + { + "start": 17181.48, + "end": 17186.08, + "probability": 0.9987 + }, + { + "start": 17186.08, + "end": 17191.8, + "probability": 0.9955 + }, + { + "start": 17192.92, + "end": 17196.38, + "probability": 0.9771 + }, + { + "start": 17196.98, + "end": 17201.94, + "probability": 0.993 + }, + { + "start": 17201.94, + "end": 17208.38, + "probability": 0.977 + }, + { + "start": 17209.02, + "end": 17211.74, + "probability": 0.9862 + }, + { + "start": 17212.58, + "end": 17219.34, + "probability": 0.9749 + }, + { + "start": 17220.12, + "end": 17224.5, + "probability": 0.9961 + }, + { + "start": 17225.46, + "end": 17226.71, + "probability": 0.6385 + }, + { + "start": 17227.42, + "end": 17230.12, + "probability": 0.9954 + }, + { + "start": 17230.64, + "end": 17233.68, + "probability": 0.9702 + }, + { + "start": 17234.22, + "end": 17236.5, + "probability": 0.9875 + }, + { + "start": 17237.08, + "end": 17239.74, + "probability": 0.8223 + }, + { + "start": 17240.14, + "end": 17241.56, + "probability": 0.9656 + }, + { + "start": 17241.66, + "end": 17245.82, + "probability": 0.9711 + }, + { + "start": 17248.4, + "end": 17251.24, + "probability": 0.8613 + }, + { + "start": 17252.1, + "end": 17252.56, + "probability": 0.8544 + }, + { + "start": 17252.86, + "end": 17253.66, + "probability": 0.9841 + }, + { + "start": 17253.78, + "end": 17254.62, + "probability": 0.7436 + }, + { + "start": 17254.72, + "end": 17255.74, + "probability": 0.9371 + }, + { + "start": 17256.54, + "end": 17261.14, + "probability": 0.998 + }, + { + "start": 17261.92, + "end": 17263.94, + "probability": 0.9493 + }, + { + "start": 17264.26, + "end": 17264.46, + "probability": 0.6226 + }, + { + "start": 17264.92, + "end": 17265.78, + "probability": 0.7331 + }, + { + "start": 17266.34, + "end": 17270.5, + "probability": 0.9481 + }, + { + "start": 17271.76, + "end": 17272.36, + "probability": 0.7246 + }, + { + "start": 17275.24, + "end": 17276.1, + "probability": 0.5841 + }, + { + "start": 17277.34, + "end": 17280.92, + "probability": 0.1589 + }, + { + "start": 17284.0, + "end": 17285.2, + "probability": 0.1618 + }, + { + "start": 17288.18, + "end": 17292.16, + "probability": 0.1261 + }, + { + "start": 17305.28, + "end": 17310.34, + "probability": 0.5062 + }, + { + "start": 17310.4, + "end": 17310.98, + "probability": 0.5697 + }, + { + "start": 17311.08, + "end": 17314.82, + "probability": 0.6799 + }, + { + "start": 17315.4, + "end": 17318.18, + "probability": 0.6965 + }, + { + "start": 17319.02, + "end": 17322.0, + "probability": 0.9839 + }, + { + "start": 17322.66, + "end": 17324.16, + "probability": 0.8368 + }, + { + "start": 17325.04, + "end": 17326.72, + "probability": 0.8157 + }, + { + "start": 17327.36, + "end": 17329.62, + "probability": 0.9845 + }, + { + "start": 17329.94, + "end": 17331.78, + "probability": 0.9619 + }, + { + "start": 17332.56, + "end": 17336.02, + "probability": 0.9926 + }, + { + "start": 17338.36, + "end": 17341.7, + "probability": 0.9688 + }, + { + "start": 17342.38, + "end": 17344.04, + "probability": 0.8647 + }, + { + "start": 17344.14, + "end": 17344.82, + "probability": 0.8769 + }, + { + "start": 17345.2, + "end": 17347.16, + "probability": 0.9876 + }, + { + "start": 17348.1, + "end": 17350.68, + "probability": 0.8784 + }, + { + "start": 17351.3, + "end": 17355.38, + "probability": 0.9876 + }, + { + "start": 17356.54, + "end": 17360.38, + "probability": 0.9707 + }, + { + "start": 17360.38, + "end": 17364.88, + "probability": 0.9955 + }, + { + "start": 17365.72, + "end": 17371.76, + "probability": 0.9922 + }, + { + "start": 17371.88, + "end": 17377.54, + "probability": 0.9949 + }, + { + "start": 17377.82, + "end": 17378.54, + "probability": 0.9034 + }, + { + "start": 17378.9, + "end": 17383.42, + "probability": 0.9849 + }, + { + "start": 17384.1, + "end": 17386.94, + "probability": 0.9741 + }, + { + "start": 17387.36, + "end": 17388.76, + "probability": 0.9976 + }, + { + "start": 17388.76, + "end": 17389.94, + "probability": 0.3868 + }, + { + "start": 17391.52, + "end": 17395.98, + "probability": 0.9432 + }, + { + "start": 17397.76, + "end": 17403.7, + "probability": 0.9906 + }, + { + "start": 17404.44, + "end": 17407.74, + "probability": 0.9946 + }, + { + "start": 17407.74, + "end": 17411.34, + "probability": 0.9894 + }, + { + "start": 17411.84, + "end": 17413.42, + "probability": 0.9909 + }, + { + "start": 17413.62, + "end": 17414.26, + "probability": 0.5452 + }, + { + "start": 17414.72, + "end": 17417.26, + "probability": 0.9731 + }, + { + "start": 17417.7, + "end": 17422.14, + "probability": 0.9946 + }, + { + "start": 17422.7, + "end": 17425.36, + "probability": 0.9951 + }, + { + "start": 17426.1, + "end": 17429.72, + "probability": 0.9898 + }, + { + "start": 17429.84, + "end": 17432.36, + "probability": 0.9986 + }, + { + "start": 17433.64, + "end": 17434.72, + "probability": 0.6255 + }, + { + "start": 17434.86, + "end": 17437.12, + "probability": 0.9948 + }, + { + "start": 17437.72, + "end": 17442.04, + "probability": 0.9938 + }, + { + "start": 17442.04, + "end": 17446.28, + "probability": 0.9989 + }, + { + "start": 17446.78, + "end": 17451.46, + "probability": 0.9735 + }, + { + "start": 17451.98, + "end": 17454.76, + "probability": 0.9933 + }, + { + "start": 17454.88, + "end": 17458.22, + "probability": 0.9955 + }, + { + "start": 17458.54, + "end": 17461.0, + "probability": 0.8211 + }, + { + "start": 17461.16, + "end": 17462.1, + "probability": 0.8562 + }, + { + "start": 17462.52, + "end": 17466.12, + "probability": 0.976 + }, + { + "start": 17466.24, + "end": 17467.1, + "probability": 0.8166 + }, + { + "start": 17467.46, + "end": 17470.98, + "probability": 0.9827 + }, + { + "start": 17471.66, + "end": 17475.48, + "probability": 0.9854 + }, + { + "start": 17475.88, + "end": 17479.3, + "probability": 0.9003 + }, + { + "start": 17479.3, + "end": 17482.26, + "probability": 0.9951 + }, + { + "start": 17482.66, + "end": 17484.74, + "probability": 0.986 + }, + { + "start": 17485.04, + "end": 17487.84, + "probability": 0.982 + }, + { + "start": 17488.48, + "end": 17488.48, + "probability": 0.0211 + }, + { + "start": 17488.48, + "end": 17488.74, + "probability": 0.2145 + }, + { + "start": 17488.78, + "end": 17493.24, + "probability": 0.9585 + }, + { + "start": 17494.42, + "end": 17494.8, + "probability": 0.0442 + }, + { + "start": 17495.43, + "end": 17498.74, + "probability": 0.08 + }, + { + "start": 17498.74, + "end": 17498.74, + "probability": 0.003 + }, + { + "start": 17498.74, + "end": 17499.32, + "probability": 0.1389 + }, + { + "start": 17499.66, + "end": 17501.46, + "probability": 0.8002 + }, + { + "start": 17501.66, + "end": 17505.62, + "probability": 0.8687 + }, + { + "start": 17506.02, + "end": 17510.06, + "probability": 0.9902 + }, + { + "start": 17510.06, + "end": 17514.32, + "probability": 0.7603 + }, + { + "start": 17514.42, + "end": 17515.1, + "probability": 0.5307 + }, + { + "start": 17515.26, + "end": 17519.04, + "probability": 0.8159 + }, + { + "start": 17519.54, + "end": 17524.04, + "probability": 0.9637 + }, + { + "start": 17524.18, + "end": 17528.18, + "probability": 0.9408 + }, + { + "start": 17528.58, + "end": 17532.2, + "probability": 0.951 + }, + { + "start": 17532.6, + "end": 17532.82, + "probability": 0.0317 + }, + { + "start": 17532.82, + "end": 17533.38, + "probability": 0.6019 + }, + { + "start": 17533.96, + "end": 17534.96, + "probability": 0.5545 + }, + { + "start": 17535.66, + "end": 17536.32, + "probability": 0.1019 + }, + { + "start": 17536.38, + "end": 17536.52, + "probability": 0.4729 + }, + { + "start": 17536.52, + "end": 17538.22, + "probability": 0.3693 + }, + { + "start": 17538.56, + "end": 17539.28, + "probability": 0.734 + }, + { + "start": 17539.4, + "end": 17540.14, + "probability": 0.1754 + }, + { + "start": 17540.14, + "end": 17541.62, + "probability": 0.0438 + }, + { + "start": 17541.92, + "end": 17542.48, + "probability": 0.0204 + }, + { + "start": 17542.58, + "end": 17543.62, + "probability": 0.0619 + }, + { + "start": 17544.7, + "end": 17545.36, + "probability": 0.1459 + }, + { + "start": 17549.12, + "end": 17554.18, + "probability": 0.3555 + }, + { + "start": 17554.56, + "end": 17556.28, + "probability": 0.0105 + }, + { + "start": 17556.86, + "end": 17559.46, + "probability": 0.0898 + }, + { + "start": 17559.46, + "end": 17562.08, + "probability": 0.0281 + }, + { + "start": 17562.26, + "end": 17567.4, + "probability": 0.0608 + }, + { + "start": 17567.4, + "end": 17571.22, + "probability": 0.0414 + }, + { + "start": 17571.26, + "end": 17572.51, + "probability": 0.0555 + }, + { + "start": 17573.1, + "end": 17573.5, + "probability": 0.0518 + }, + { + "start": 17573.5, + "end": 17573.86, + "probability": 0.076 + }, + { + "start": 17574.0, + "end": 17574.38, + "probability": 0.113 + }, + { + "start": 17574.7, + "end": 17574.76, + "probability": 0.1384 + }, + { + "start": 17574.76, + "end": 17574.76, + "probability": 0.009 + }, + { + "start": 17574.76, + "end": 17576.58, + "probability": 0.154 + }, + { + "start": 17577.29, + "end": 17581.16, + "probability": 0.1829 + }, + { + "start": 17581.38, + "end": 17581.98, + "probability": 0.0123 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.0, + "end": 17582.0, + "probability": 0.0 + }, + { + "start": 17582.04, + "end": 17584.56, + "probability": 0.9332 + }, + { + "start": 17584.8, + "end": 17588.54, + "probability": 0.7946 + }, + { + "start": 17588.54, + "end": 17588.62, + "probability": 0.1948 + }, + { + "start": 17588.62, + "end": 17588.62, + "probability": 0.2257 + }, + { + "start": 17588.62, + "end": 17589.59, + "probability": 0.5859 + }, + { + "start": 17590.5, + "end": 17593.56, + "probability": 0.8057 + }, + { + "start": 17593.78, + "end": 17595.34, + "probability": 0.4313 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.0, + "end": 17708.0, + "probability": 0.0 + }, + { + "start": 17708.54, + "end": 17708.54, + "probability": 0.0803 + }, + { + "start": 17708.54, + "end": 17708.54, + "probability": 0.1178 + }, + { + "start": 17708.54, + "end": 17711.94, + "probability": 0.9388 + }, + { + "start": 17712.38, + "end": 17716.64, + "probability": 0.9829 + }, + { + "start": 17716.92, + "end": 17717.36, + "probability": 0.8182 + }, + { + "start": 17717.56, + "end": 17718.65, + "probability": 0.9983 + }, + { + "start": 17719.18, + "end": 17723.62, + "probability": 0.9933 + }, + { + "start": 17724.04, + "end": 17725.82, + "probability": 0.9005 + }, + { + "start": 17726.0, + "end": 17726.5, + "probability": 0.6867 + }, + { + "start": 17727.16, + "end": 17728.74, + "probability": 0.8844 + }, + { + "start": 17728.9, + "end": 17731.96, + "probability": 0.9766 + }, + { + "start": 17732.4, + "end": 17734.92, + "probability": 0.9971 + }, + { + "start": 17735.06, + "end": 17736.02, + "probability": 0.7426 + }, + { + "start": 17736.4, + "end": 17739.28, + "probability": 0.9661 + }, + { + "start": 17740.08, + "end": 17741.46, + "probability": 0.6323 + }, + { + "start": 17741.98, + "end": 17745.2, + "probability": 0.989 + }, + { + "start": 17745.58, + "end": 17746.72, + "probability": 0.9902 + }, + { + "start": 17747.28, + "end": 17749.3, + "probability": 0.9901 + }, + { + "start": 17749.64, + "end": 17750.54, + "probability": 0.7343 + }, + { + "start": 17750.62, + "end": 17751.4, + "probability": 0.9076 + }, + { + "start": 17751.78, + "end": 17753.8, + "probability": 0.9755 + }, + { + "start": 17753.98, + "end": 17756.62, + "probability": 0.0674 + }, + { + "start": 17756.76, + "end": 17758.76, + "probability": 0.9419 + }, + { + "start": 17759.56, + "end": 17761.08, + "probability": 0.9214 + }, + { + "start": 17761.38, + "end": 17762.32, + "probability": 0.1865 + }, + { + "start": 17762.82, + "end": 17765.86, + "probability": 0.6432 + }, + { + "start": 17766.06, + "end": 17769.52, + "probability": 0.6735 + }, + { + "start": 17769.62, + "end": 17772.56, + "probability": 0.9893 + }, + { + "start": 17773.3, + "end": 17774.0, + "probability": 0.7065 + }, + { + "start": 17774.3, + "end": 17775.6, + "probability": 0.8076 + }, + { + "start": 17776.1, + "end": 17779.6, + "probability": 0.9733 + }, + { + "start": 17779.96, + "end": 17787.6, + "probability": 0.9906 + }, + { + "start": 17787.6, + "end": 17793.98, + "probability": 0.9878 + }, + { + "start": 17794.52, + "end": 17796.46, + "probability": 0.9868 + }, + { + "start": 17796.98, + "end": 17798.14, + "probability": 0.9032 + }, + { + "start": 17798.66, + "end": 17803.82, + "probability": 0.9951 + }, + { + "start": 17804.26, + "end": 17807.0, + "probability": 0.9936 + }, + { + "start": 17807.0, + "end": 17810.62, + "probability": 0.9823 + }, + { + "start": 17812.18, + "end": 17815.44, + "probability": 0.7549 + }, + { + "start": 17815.78, + "end": 17816.5, + "probability": 0.4968 + }, + { + "start": 17817.04, + "end": 17819.44, + "probability": 0.7636 + }, + { + "start": 17820.12, + "end": 17820.6, + "probability": 0.5889 + }, + { + "start": 17821.0, + "end": 17822.08, + "probability": 0.6433 + }, + { + "start": 17822.22, + "end": 17826.58, + "probability": 0.9168 + }, + { + "start": 17826.68, + "end": 17831.76, + "probability": 0.9922 + }, + { + "start": 17832.24, + "end": 17836.38, + "probability": 0.9942 + }, + { + "start": 17837.32, + "end": 17840.3, + "probability": 0.976 + }, + { + "start": 17840.4, + "end": 17841.22, + "probability": 0.8516 + }, + { + "start": 17841.66, + "end": 17842.42, + "probability": 0.9594 + }, + { + "start": 17842.48, + "end": 17843.26, + "probability": 0.8652 + }, + { + "start": 17843.78, + "end": 17846.26, + "probability": 0.9965 + }, + { + "start": 17846.82, + "end": 17847.32, + "probability": 0.8732 + }, + { + "start": 17847.64, + "end": 17849.22, + "probability": 0.9854 + }, + { + "start": 17849.7, + "end": 17852.44, + "probability": 0.9968 + }, + { + "start": 17852.6, + "end": 17853.12, + "probability": 0.7186 + }, + { + "start": 17853.46, + "end": 17856.74, + "probability": 0.9971 + }, + { + "start": 17857.2, + "end": 17858.92, + "probability": 0.7931 + }, + { + "start": 17859.48, + "end": 17861.52, + "probability": 0.9272 + }, + { + "start": 17861.98, + "end": 17864.32, + "probability": 0.9533 + }, + { + "start": 17864.4, + "end": 17864.94, + "probability": 0.9388 + }, + { + "start": 17865.04, + "end": 17865.6, + "probability": 0.9704 + }, + { + "start": 17865.64, + "end": 17866.2, + "probability": 0.8753 + }, + { + "start": 17866.66, + "end": 17869.02, + "probability": 0.9035 + }, + { + "start": 17870.44, + "end": 17873.1, + "probability": 0.8123 + }, + { + "start": 17873.5, + "end": 17876.3, + "probability": 0.9971 + }, + { + "start": 17876.88, + "end": 17878.66, + "probability": 0.6858 + }, + { + "start": 17878.66, + "end": 17881.94, + "probability": 0.908 + }, + { + "start": 17882.66, + "end": 17884.1, + "probability": 0.4984 + }, + { + "start": 17884.14, + "end": 17884.98, + "probability": 0.4205 + }, + { + "start": 17885.3, + "end": 17885.65, + "probability": 0.2096 + }, + { + "start": 17886.1, + "end": 17887.18, + "probability": 0.6445 + }, + { + "start": 17887.3, + "end": 17888.9, + "probability": 0.8286 + }, + { + "start": 17889.14, + "end": 17889.78, + "probability": 0.6177 + }, + { + "start": 17889.82, + "end": 17892.0, + "probability": 0.2559 + }, + { + "start": 17892.02, + "end": 17893.8, + "probability": 0.3306 + }, + { + "start": 17893.9, + "end": 17895.78, + "probability": 0.4683 + }, + { + "start": 17896.4, + "end": 17897.44, + "probability": 0.2111 + }, + { + "start": 17897.56, + "end": 17898.7, + "probability": 0.2159 + }, + { + "start": 17901.88, + "end": 17902.46, + "probability": 0.0278 + }, + { + "start": 17902.68, + "end": 17903.38, + "probability": 0.2487 + }, + { + "start": 17903.97, + "end": 17905.95, + "probability": 0.316 + }, + { + "start": 17907.0, + "end": 17908.9, + "probability": 0.2303 + }, + { + "start": 17909.18, + "end": 17910.72, + "probability": 0.4387 + }, + { + "start": 17911.2, + "end": 17912.32, + "probability": 0.5234 + }, + { + "start": 17913.52, + "end": 17913.7, + "probability": 0.1176 + }, + { + "start": 17914.28, + "end": 17914.73, + "probability": 0.2929 + }, + { + "start": 17916.3, + "end": 17918.5, + "probability": 0.3543 + }, + { + "start": 17918.56, + "end": 17919.5, + "probability": 0.1646 + }, + { + "start": 17919.62, + "end": 17921.56, + "probability": 0.1553 + }, + { + "start": 17921.78, + "end": 17922.76, + "probability": 0.777 + }, + { + "start": 17923.36, + "end": 17926.06, + "probability": 0.6007 + }, + { + "start": 17927.34, + "end": 17927.44, + "probability": 0.1552 + }, + { + "start": 17930.48, + "end": 17935.3, + "probability": 0.7944 + }, + { + "start": 17936.18, + "end": 17937.44, + "probability": 0.2751 + }, + { + "start": 17937.46, + "end": 17943.32, + "probability": 0.9033 + }, + { + "start": 17943.46, + "end": 17946.3, + "probability": 0.327 + }, + { + "start": 17946.38, + "end": 17948.3, + "probability": 0.9971 + }, + { + "start": 17948.82, + "end": 17950.86, + "probability": 0.9839 + }, + { + "start": 17951.56, + "end": 17952.77, + "probability": 0.6992 + }, + { + "start": 17952.98, + "end": 17953.64, + "probability": 0.9555 + }, + { + "start": 17953.94, + "end": 17954.93, + "probability": 0.9939 + }, + { + "start": 17955.76, + "end": 17957.06, + "probability": 0.575 + }, + { + "start": 17958.48, + "end": 17962.36, + "probability": 0.7848 + }, + { + "start": 17963.48, + "end": 17965.02, + "probability": 0.6913 + }, + { + "start": 17965.64, + "end": 17966.94, + "probability": 0.8695 + }, + { + "start": 17967.16, + "end": 17968.84, + "probability": 0.7778 + }, + { + "start": 17969.44, + "end": 17971.76, + "probability": 0.6602 + }, + { + "start": 17972.1, + "end": 17974.9, + "probability": 0.4023 + }, + { + "start": 17974.9, + "end": 17976.06, + "probability": 0.465 + }, + { + "start": 17976.16, + "end": 17977.38, + "probability": 0.5401 + }, + { + "start": 17977.38, + "end": 17978.09, + "probability": 0.2866 + }, + { + "start": 17978.42, + "end": 17979.68, + "probability": 0.3423 + }, + { + "start": 17980.3, + "end": 17981.51, + "probability": 0.7465 + }, + { + "start": 17981.64, + "end": 17982.65, + "probability": 0.2372 + }, + { + "start": 17982.8, + "end": 17982.8, + "probability": 0.2305 + }, + { + "start": 17982.96, + "end": 17984.72, + "probability": 0.768 + }, + { + "start": 17985.2, + "end": 17986.34, + "probability": 0.7939 + }, + { + "start": 17986.44, + "end": 17988.37, + "probability": 0.3715 + }, + { + "start": 17988.8, + "end": 17989.84, + "probability": 0.5483 + }, + { + "start": 17990.24, + "end": 17990.92, + "probability": 0.5707 + }, + { + "start": 17990.96, + "end": 17992.8, + "probability": 0.4652 + }, + { + "start": 17993.1, + "end": 17995.4, + "probability": 0.96 + }, + { + "start": 17996.0, + "end": 17999.12, + "probability": 0.6873 + }, + { + "start": 17999.4, + "end": 18000.96, + "probability": 0.9536 + }, + { + "start": 18001.32, + "end": 18001.62, + "probability": 0.7495 + }, + { + "start": 18001.7, + "end": 18002.4, + "probability": 0.8699 + }, + { + "start": 18002.74, + "end": 18004.2, + "probability": 0.9872 + }, + { + "start": 18004.48, + "end": 18005.04, + "probability": 0.5602 + }, + { + "start": 18005.48, + "end": 18006.32, + "probability": 0.8546 + }, + { + "start": 18006.44, + "end": 18009.2, + "probability": 0.9819 + }, + { + "start": 18009.26, + "end": 18010.12, + "probability": 0.4646 + }, + { + "start": 18010.28, + "end": 18011.48, + "probability": 0.561 + }, + { + "start": 18011.56, + "end": 18012.1, + "probability": 0.8394 + }, + { + "start": 18012.84, + "end": 18016.3, + "probability": 0.9766 + }, + { + "start": 18017.88, + "end": 18020.06, + "probability": 0.9575 + }, + { + "start": 18020.46, + "end": 18023.22, + "probability": 0.8537 + }, + { + "start": 18024.08, + "end": 18026.74, + "probability": 0.9976 + }, + { + "start": 18028.02, + "end": 18030.76, + "probability": 0.7076 + }, + { + "start": 18031.34, + "end": 18034.94, + "probability": 0.8831 + }, + { + "start": 18035.8, + "end": 18036.78, + "probability": 0.8062 + }, + { + "start": 18037.52, + "end": 18038.8, + "probability": 0.999 + }, + { + "start": 18039.14, + "end": 18039.62, + "probability": 0.8044 + }, + { + "start": 18039.72, + "end": 18042.22, + "probability": 0.6817 + }, + { + "start": 18043.44, + "end": 18043.78, + "probability": 0.7114 + }, + { + "start": 18044.58, + "end": 18050.9, + "probability": 0.9911 + }, + { + "start": 18051.72, + "end": 18054.06, + "probability": 0.9758 + }, + { + "start": 18054.5, + "end": 18056.54, + "probability": 0.9972 + }, + { + "start": 18056.56, + "end": 18057.94, + "probability": 0.9949 + }, + { + "start": 18058.22, + "end": 18062.58, + "probability": 0.987 + }, + { + "start": 18063.14, + "end": 18064.16, + "probability": 0.8241 + }, + { + "start": 18065.82, + "end": 18066.38, + "probability": 0.938 + }, + { + "start": 18067.58, + "end": 18068.28, + "probability": 0.9687 + }, + { + "start": 18069.26, + "end": 18070.5, + "probability": 0.9862 + }, + { + "start": 18071.36, + "end": 18075.8, + "probability": 0.9392 + }, + { + "start": 18076.6, + "end": 18080.16, + "probability": 0.9549 + }, + { + "start": 18081.1, + "end": 18083.5, + "probability": 0.9495 + }, + { + "start": 18084.54, + "end": 18086.42, + "probability": 0.9837 + }, + { + "start": 18086.52, + "end": 18091.14, + "probability": 0.8923 + }, + { + "start": 18092.94, + "end": 18095.8, + "probability": 0.8038 + }, + { + "start": 18097.74, + "end": 18098.32, + "probability": 0.8707 + }, + { + "start": 18098.94, + "end": 18100.56, + "probability": 0.9954 + }, + { + "start": 18101.46, + "end": 18104.38, + "probability": 0.8753 + }, + { + "start": 18105.02, + "end": 18107.5, + "probability": 0.9912 + }, + { + "start": 18108.98, + "end": 18110.4, + "probability": 0.8865 + }, + { + "start": 18110.56, + "end": 18111.3, + "probability": 0.6363 + }, + { + "start": 18111.46, + "end": 18112.4, + "probability": 0.8795 + }, + { + "start": 18112.9, + "end": 18113.71, + "probability": 0.9941 + }, + { + "start": 18115.18, + "end": 18116.72, + "probability": 0.822 + }, + { + "start": 18117.56, + "end": 18117.96, + "probability": 0.8163 + }, + { + "start": 18119.66, + "end": 18124.36, + "probability": 0.9909 + }, + { + "start": 18125.42, + "end": 18126.96, + "probability": 0.7744 + }, + { + "start": 18127.62, + "end": 18129.81, + "probability": 0.9312 + }, + { + "start": 18129.88, + "end": 18130.6, + "probability": 0.5034 + }, + { + "start": 18131.98, + "end": 18134.02, + "probability": 0.9053 + }, + { + "start": 18134.58, + "end": 18136.76, + "probability": 0.9764 + }, + { + "start": 18137.84, + "end": 18139.0, + "probability": 0.8757 + }, + { + "start": 18139.24, + "end": 18140.04, + "probability": 0.8577 + }, + { + "start": 18140.26, + "end": 18141.15, + "probability": 0.9917 + }, + { + "start": 18142.22, + "end": 18143.94, + "probability": 0.9113 + }, + { + "start": 18144.82, + "end": 18147.64, + "probability": 0.7823 + }, + { + "start": 18148.0, + "end": 18149.5, + "probability": 0.9927 + }, + { + "start": 18150.54, + "end": 18152.54, + "probability": 0.9258 + }, + { + "start": 18152.7, + "end": 18153.46, + "probability": 0.6072 + }, + { + "start": 18154.26, + "end": 18156.58, + "probability": 0.9816 + }, + { + "start": 18156.62, + "end": 18157.96, + "probability": 0.9832 + }, + { + "start": 18159.4, + "end": 18161.3, + "probability": 0.969 + }, + { + "start": 18161.46, + "end": 18163.68, + "probability": 0.9723 + }, + { + "start": 18164.44, + "end": 18166.86, + "probability": 0.9253 + }, + { + "start": 18168.78, + "end": 18172.78, + "probability": 0.8327 + }, + { + "start": 18173.66, + "end": 18174.94, + "probability": 0.9834 + }, + { + "start": 18175.58, + "end": 18177.4, + "probability": 0.9937 + }, + { + "start": 18178.1, + "end": 18180.4, + "probability": 0.9996 + }, + { + "start": 18181.06, + "end": 18181.7, + "probability": 0.7317 + }, + { + "start": 18182.28, + "end": 18182.94, + "probability": 0.7078 + }, + { + "start": 18184.02, + "end": 18185.36, + "probability": 0.9596 + }, + { + "start": 18186.74, + "end": 18189.9, + "probability": 0.9865 + }, + { + "start": 18190.8, + "end": 18191.0, + "probability": 0.1702 + }, + { + "start": 18191.0, + "end": 18192.4, + "probability": 0.8896 + }, + { + "start": 18193.42, + "end": 18196.72, + "probability": 0.9815 + }, + { + "start": 18197.44, + "end": 18199.92, + "probability": 0.4618 + }, + { + "start": 18200.72, + "end": 18204.26, + "probability": 0.9976 + }, + { + "start": 18204.46, + "end": 18205.58, + "probability": 0.8365 + }, + { + "start": 18206.44, + "end": 18207.42, + "probability": 0.9004 + }, + { + "start": 18208.08, + "end": 18209.54, + "probability": 0.8737 + }, + { + "start": 18210.1, + "end": 18212.88, + "probability": 0.7022 + }, + { + "start": 18213.98, + "end": 18216.0, + "probability": 0.7769 + }, + { + "start": 18216.58, + "end": 18217.92, + "probability": 0.9787 + }, + { + "start": 18217.96, + "end": 18219.54, + "probability": 0.9479 + }, + { + "start": 18219.68, + "end": 18220.7, + "probability": 0.5239 + }, + { + "start": 18221.28, + "end": 18222.46, + "probability": 0.8755 + }, + { + "start": 18224.16, + "end": 18227.22, + "probability": 0.9798 + }, + { + "start": 18228.7, + "end": 18228.9, + "probability": 0.9109 + }, + { + "start": 18230.08, + "end": 18232.56, + "probability": 0.7497 + }, + { + "start": 18233.86, + "end": 18234.76, + "probability": 0.8621 + }, + { + "start": 18235.56, + "end": 18236.6, + "probability": 0.9998 + }, + { + "start": 18237.54, + "end": 18239.18, + "probability": 0.8653 + }, + { + "start": 18240.0, + "end": 18240.46, + "probability": 0.3541 + }, + { + "start": 18241.74, + "end": 18243.46, + "probability": 0.5742 + }, + { + "start": 18243.88, + "end": 18243.88, + "probability": 0.2012 + }, + { + "start": 18243.88, + "end": 18245.7, + "probability": 0.7534 + }, + { + "start": 18246.08, + "end": 18248.9, + "probability": 0.8706 + }, + { + "start": 18249.2, + "end": 18251.06, + "probability": 0.694 + }, + { + "start": 18251.38, + "end": 18252.79, + "probability": 0.6342 + }, + { + "start": 18252.94, + "end": 18254.02, + "probability": 0.991 + }, + { + "start": 18254.72, + "end": 18256.18, + "probability": 0.8284 + }, + { + "start": 18256.62, + "end": 18258.44, + "probability": 0.8326 + }, + { + "start": 18259.04, + "end": 18260.56, + "probability": 0.8512 + }, + { + "start": 18261.48, + "end": 18262.06, + "probability": 0.2293 + }, + { + "start": 18262.24, + "end": 18263.12, + "probability": 0.5967 + }, + { + "start": 18263.36, + "end": 18265.92, + "probability": 0.307 + }, + { + "start": 18266.36, + "end": 18269.28, + "probability": 0.7447 + }, + { + "start": 18270.24, + "end": 18273.16, + "probability": 0.9003 + }, + { + "start": 18273.3, + "end": 18274.46, + "probability": 0.7457 + }, + { + "start": 18274.74, + "end": 18275.68, + "probability": 0.4352 + }, + { + "start": 18276.34, + "end": 18276.94, + "probability": 0.6665 + }, + { + "start": 18277.1, + "end": 18277.82, + "probability": 0.4754 + }, + { + "start": 18277.86, + "end": 18281.06, + "probability": 0.9004 + }, + { + "start": 18281.88, + "end": 18282.96, + "probability": 0.8978 + }, + { + "start": 18283.88, + "end": 18285.78, + "probability": 0.9924 + }, + { + "start": 18286.22, + "end": 18286.36, + "probability": 0.3434 + }, + { + "start": 18286.36, + "end": 18287.3, + "probability": 0.4717 + }, + { + "start": 18288.54, + "end": 18292.04, + "probability": 0.5215 + }, + { + "start": 18293.4, + "end": 18298.4, + "probability": 0.7164 + }, + { + "start": 18299.27, + "end": 18303.12, + "probability": 0.572 + }, + { + "start": 18303.22, + "end": 18305.38, + "probability": 0.6011 + }, + { + "start": 18305.88, + "end": 18307.17, + "probability": 0.9036 + }, + { + "start": 18308.28, + "end": 18309.08, + "probability": 0.4236 + }, + { + "start": 18309.08, + "end": 18310.62, + "probability": 0.6172 + }, + { + "start": 18310.7, + "end": 18311.54, + "probability": 0.1126 + }, + { + "start": 18311.58, + "end": 18312.98, + "probability": 0.812 + }, + { + "start": 18313.38, + "end": 18316.76, + "probability": 0.7828 + }, + { + "start": 18317.14, + "end": 18319.02, + "probability": 0.6725 + }, + { + "start": 18319.2, + "end": 18319.48, + "probability": 0.4831 + }, + { + "start": 18319.54, + "end": 18320.16, + "probability": 0.2931 + }, + { + "start": 18321.0, + "end": 18322.8, + "probability": 0.7021 + }, + { + "start": 18322.96, + "end": 18325.14, + "probability": 0.7993 + }, + { + "start": 18325.14, + "end": 18328.28, + "probability": 0.5627 + }, + { + "start": 18328.76, + "end": 18329.64, + "probability": 0.8173 + }, + { + "start": 18329.68, + "end": 18330.6, + "probability": 0.4947 + }, + { + "start": 18331.24, + "end": 18332.8, + "probability": 0.6445 + }, + { + "start": 18332.98, + "end": 18335.12, + "probability": 0.8936 + }, + { + "start": 18335.44, + "end": 18336.24, + "probability": 0.1734 + }, + { + "start": 18339.07, + "end": 18343.11, + "probability": 0.4983 + }, + { + "start": 18344.42, + "end": 18346.96, + "probability": 0.9968 + }, + { + "start": 18348.52, + "end": 18350.46, + "probability": 0.7876 + }, + { + "start": 18352.02, + "end": 18354.04, + "probability": 0.7694 + }, + { + "start": 18355.94, + "end": 18359.04, + "probability": 0.909 + }, + { + "start": 18378.1, + "end": 18378.36, + "probability": 0.2455 + }, + { + "start": 18380.78, + "end": 18383.18, + "probability": 0.5392 + }, + { + "start": 18385.0, + "end": 18385.46, + "probability": 0.77 + }, + { + "start": 18385.9, + "end": 18386.52, + "probability": 0.9811 + }, + { + "start": 18387.68, + "end": 18392.06, + "probability": 0.9905 + }, + { + "start": 18392.8, + "end": 18393.08, + "probability": 0.3774 + }, + { + "start": 18395.9, + "end": 18397.07, + "probability": 0.9895 + }, + { + "start": 18405.86, + "end": 18410.26, + "probability": 0.8376 + }, + { + "start": 18410.92, + "end": 18412.96, + "probability": 0.6501 + }, + { + "start": 18413.44, + "end": 18414.44, + "probability": 0.5849 + }, + { + "start": 18415.56, + "end": 18415.82, + "probability": 0.9215 + }, + { + "start": 18416.7, + "end": 18416.92, + "probability": 0.113 + }, + { + "start": 18416.92, + "end": 18417.48, + "probability": 0.1268 + }, + { + "start": 18418.02, + "end": 18420.48, + "probability": 0.8932 + }, + { + "start": 18421.62, + "end": 18423.3, + "probability": 0.957 + }, + { + "start": 18423.68, + "end": 18426.36, + "probability": 0.9779 + }, + { + "start": 18428.28, + "end": 18429.28, + "probability": 0.7125 + }, + { + "start": 18430.42, + "end": 18432.64, + "probability": 0.8984 + }, + { + "start": 18433.18, + "end": 18434.21, + "probability": 0.9401 + }, + { + "start": 18436.36, + "end": 18437.46, + "probability": 0.7144 + }, + { + "start": 18439.26, + "end": 18441.56, + "probability": 0.9224 + }, + { + "start": 18447.29, + "end": 18451.73, + "probability": 0.3 + }, + { + "start": 18452.82, + "end": 18453.0, + "probability": 0.1017 + }, + { + "start": 18453.18, + "end": 18454.4, + "probability": 0.7336 + }, + { + "start": 18454.54, + "end": 18456.9, + "probability": 0.7158 + }, + { + "start": 18456.96, + "end": 18457.82, + "probability": 0.6878 + }, + { + "start": 18458.26, + "end": 18462.04, + "probability": 0.7578 + }, + { + "start": 18462.7, + "end": 18464.12, + "probability": 0.5668 + }, + { + "start": 18465.4, + "end": 18469.78, + "probability": 0.9696 + }, + { + "start": 18470.46, + "end": 18473.94, + "probability": 0.9667 + }, + { + "start": 18476.36, + "end": 18480.06, + "probability": 0.9261 + }, + { + "start": 18481.14, + "end": 18481.48, + "probability": 0.4055 + }, + { + "start": 18483.5, + "end": 18484.04, + "probability": 0.4034 + }, + { + "start": 18485.58, + "end": 18488.98, + "probability": 0.9144 + }, + { + "start": 18490.72, + "end": 18493.2, + "probability": 0.7278 + }, + { + "start": 18493.2, + "end": 18493.38, + "probability": 0.8716 + }, + { + "start": 18497.22, + "end": 18499.04, + "probability": 0.9282 + }, + { + "start": 18500.76, + "end": 18502.74, + "probability": 0.9792 + }, + { + "start": 18503.76, + "end": 18505.32, + "probability": 0.9431 + }, + { + "start": 18506.1, + "end": 18508.14, + "probability": 0.9959 + }, + { + "start": 18509.38, + "end": 18511.36, + "probability": 0.4787 + }, + { + "start": 18513.08, + "end": 18516.2, + "probability": 0.9449 + }, + { + "start": 18517.54, + "end": 18518.68, + "probability": 0.8439 + }, + { + "start": 18518.86, + "end": 18519.08, + "probability": 0.584 + }, + { + "start": 18519.16, + "end": 18522.7, + "probability": 0.8411 + }, + { + "start": 18522.7, + "end": 18524.82, + "probability": 0.9912 + }, + { + "start": 18529.26, + "end": 18530.0, + "probability": 0.7228 + }, + { + "start": 18531.24, + "end": 18535.46, + "probability": 0.8929 + }, + { + "start": 18537.99, + "end": 18539.56, + "probability": 0.6547 + }, + { + "start": 18541.32, + "end": 18543.42, + "probability": 0.9658 + }, + { + "start": 18544.66, + "end": 18546.56, + "probability": 0.7388 + }, + { + "start": 18547.96, + "end": 18550.68, + "probability": 0.5988 + }, + { + "start": 18550.82, + "end": 18551.46, + "probability": 0.6956 + }, + { + "start": 18554.12, + "end": 18556.54, + "probability": 0.5785 + }, + { + "start": 18556.84, + "end": 18558.1, + "probability": 0.9528 + }, + { + "start": 18558.14, + "end": 18559.08, + "probability": 0.7302 + }, + { + "start": 18561.2, + "end": 18563.22, + "probability": 0.7756 + }, + { + "start": 18563.86, + "end": 18565.14, + "probability": 0.6293 + }, + { + "start": 18566.82, + "end": 18568.1, + "probability": 0.9266 + }, + { + "start": 18568.8, + "end": 18571.5, + "probability": 0.6216 + }, + { + "start": 18574.36, + "end": 18574.98, + "probability": 0.6987 + }, + { + "start": 18576.08, + "end": 18576.92, + "probability": 0.4352 + }, + { + "start": 18577.06, + "end": 18578.58, + "probability": 0.8568 + }, + { + "start": 18579.02, + "end": 18582.44, + "probability": 0.7489 + }, + { + "start": 18583.46, + "end": 18586.8, + "probability": 0.9808 + }, + { + "start": 18587.14, + "end": 18588.6, + "probability": 0.5397 + }, + { + "start": 18589.8, + "end": 18594.62, + "probability": 0.9678 + }, + { + "start": 18595.74, + "end": 18595.96, + "probability": 0.715 + }, + { + "start": 18597.32, + "end": 18597.98, + "probability": 0.5299 + }, + { + "start": 18598.0, + "end": 18599.29, + "probability": 0.7391 + }, + { + "start": 18615.14, + "end": 18615.8, + "probability": 0.6062 + }, + { + "start": 18617.78, + "end": 18619.36, + "probability": 0.9959 + }, + { + "start": 18619.68, + "end": 18620.64, + "probability": 0.987 + }, + { + "start": 18620.76, + "end": 18622.36, + "probability": 0.9949 + }, + { + "start": 18624.1, + "end": 18625.64, + "probability": 0.7949 + }, + { + "start": 18628.04, + "end": 18628.96, + "probability": 0.7791 + }, + { + "start": 18629.08, + "end": 18632.44, + "probability": 0.3076 + }, + { + "start": 18632.5, + "end": 18635.02, + "probability": 0.9936 + }, + { + "start": 18635.02, + "end": 18637.14, + "probability": 0.9901 + }, + { + "start": 18638.44, + "end": 18641.31, + "probability": 0.8676 + }, + { + "start": 18642.9, + "end": 18644.28, + "probability": 0.8413 + }, + { + "start": 18645.8, + "end": 18647.42, + "probability": 0.9829 + }, + { + "start": 18648.14, + "end": 18650.38, + "probability": 0.9943 + }, + { + "start": 18651.62, + "end": 18652.28, + "probability": 0.999 + }, + { + "start": 18655.6, + "end": 18656.1, + "probability": 0.9029 + }, + { + "start": 18657.18, + "end": 18660.96, + "probability": 0.9696 + }, + { + "start": 18661.02, + "end": 18661.96, + "probability": 0.9341 + }, + { + "start": 18662.6, + "end": 18663.46, + "probability": 0.7049 + }, + { + "start": 18663.54, + "end": 18666.33, + "probability": 0.9844 + }, + { + "start": 18666.88, + "end": 18670.18, + "probability": 0.994 + }, + { + "start": 18670.84, + "end": 18672.54, + "probability": 0.9709 + }, + { + "start": 18672.58, + "end": 18673.6, + "probability": 0.9379 + }, + { + "start": 18673.74, + "end": 18675.14, + "probability": 0.9941 + }, + { + "start": 18675.86, + "end": 18676.62, + "probability": 0.7789 + }, + { + "start": 18676.68, + "end": 18678.08, + "probability": 0.9053 + }, + { + "start": 18678.34, + "end": 18679.46, + "probability": 0.9847 + }, + { + "start": 18680.06, + "end": 18681.78, + "probability": 0.9733 + }, + { + "start": 18682.76, + "end": 18686.45, + "probability": 0.866 + }, + { + "start": 18687.68, + "end": 18692.88, + "probability": 0.9935 + }, + { + "start": 18693.42, + "end": 18695.9, + "probability": 0.6655 + }, + { + "start": 18695.9, + "end": 18697.28, + "probability": 0.9665 + }, + { + "start": 18697.88, + "end": 18700.52, + "probability": 0.7078 + }, + { + "start": 18702.62, + "end": 18705.16, + "probability": 0.8702 + }, + { + "start": 18706.68, + "end": 18707.1, + "probability": 0.3701 + }, + { + "start": 18707.2, + "end": 18707.52, + "probability": 0.8461 + }, + { + "start": 18707.6, + "end": 18708.06, + "probability": 0.9033 + }, + { + "start": 18708.14, + "end": 18708.86, + "probability": 0.4564 + }, + { + "start": 18708.98, + "end": 18709.52, + "probability": 0.8058 + }, + { + "start": 18711.26, + "end": 18714.18, + "probability": 0.9715 + }, + { + "start": 18714.21, + "end": 18717.56, + "probability": 0.5137 + }, + { + "start": 18717.64, + "end": 18718.65, + "probability": 0.4569 + }, + { + "start": 18719.06, + "end": 18721.2, + "probability": 0.6705 + }, + { + "start": 18721.28, + "end": 18722.08, + "probability": 0.7246 + }, + { + "start": 18722.42, + "end": 18722.84, + "probability": 0.7723 + }, + { + "start": 18723.02, + "end": 18723.92, + "probability": 0.7725 + }, + { + "start": 18724.06, + "end": 18727.52, + "probability": 0.9037 + }, + { + "start": 18727.66, + "end": 18729.66, + "probability": 0.9932 + }, + { + "start": 18731.02, + "end": 18732.38, + "probability": 0.7488 + }, + { + "start": 18732.52, + "end": 18734.32, + "probability": 0.6599 + }, + { + "start": 18735.36, + "end": 18736.1, + "probability": 0.8298 + }, + { + "start": 18737.32, + "end": 18739.44, + "probability": 0.6126 + }, + { + "start": 18740.64, + "end": 18743.1, + "probability": 0.9547 + }, + { + "start": 18744.34, + "end": 18746.22, + "probability": 0.9785 + }, + { + "start": 18747.58, + "end": 18748.4, + "probability": 0.9678 + }, + { + "start": 18748.48, + "end": 18751.88, + "probability": 0.9883 + }, + { + "start": 18752.86, + "end": 18754.46, + "probability": 0.9541 + }, + { + "start": 18754.54, + "end": 18755.56, + "probability": 0.693 + }, + { + "start": 18757.0, + "end": 18758.1, + "probability": 0.2677 + }, + { + "start": 18758.2, + "end": 18760.88, + "probability": 0.9731 + }, + { + "start": 18761.46, + "end": 18764.5, + "probability": 0.7763 + }, + { + "start": 18765.24, + "end": 18767.6, + "probability": 0.7157 + }, + { + "start": 18767.68, + "end": 18769.07, + "probability": 0.9352 + }, + { + "start": 18770.24, + "end": 18772.46, + "probability": 0.9829 + }, + { + "start": 18773.02, + "end": 18773.46, + "probability": 0.9412 + }, + { + "start": 18773.54, + "end": 18774.42, + "probability": 0.824 + }, + { + "start": 18775.04, + "end": 18776.84, + "probability": 0.9619 + }, + { + "start": 18778.16, + "end": 18780.46, + "probability": 0.9651 + }, + { + "start": 18780.56, + "end": 18781.93, + "probability": 0.9995 + }, + { + "start": 18783.24, + "end": 18785.32, + "probability": 0.9899 + }, + { + "start": 18787.7, + "end": 18789.18, + "probability": 0.9735 + }, + { + "start": 18789.58, + "end": 18789.92, + "probability": 0.7566 + }, + { + "start": 18790.24, + "end": 18793.74, + "probability": 0.9849 + }, + { + "start": 18796.04, + "end": 18797.14, + "probability": 0.9688 + }, + { + "start": 18798.6, + "end": 18801.78, + "probability": 0.984 + }, + { + "start": 18801.8, + "end": 18802.79, + "probability": 0.7538 + }, + { + "start": 18803.36, + "end": 18804.32, + "probability": 0.9181 + }, + { + "start": 18805.56, + "end": 18806.54, + "probability": 0.8295 + }, + { + "start": 18806.82, + "end": 18808.2, + "probability": 0.9951 + }, + { + "start": 18808.28, + "end": 18810.14, + "probability": 0.8735 + }, + { + "start": 18810.24, + "end": 18812.96, + "probability": 0.9448 + }, + { + "start": 18814.72, + "end": 18816.08, + "probability": 0.5264 + }, + { + "start": 18816.18, + "end": 18819.16, + "probability": 0.9551 + }, + { + "start": 18819.9, + "end": 18821.13, + "probability": 0.876 + }, + { + "start": 18822.44, + "end": 18825.36, + "probability": 0.8284 + }, + { + "start": 18826.5, + "end": 18827.94, + "probability": 0.9054 + }, + { + "start": 18828.6, + "end": 18830.28, + "probability": 0.8821 + }, + { + "start": 18831.08, + "end": 18834.92, + "probability": 0.9111 + }, + { + "start": 18835.0, + "end": 18835.86, + "probability": 0.7746 + }, + { + "start": 18836.4, + "end": 18837.99, + "probability": 0.817 + }, + { + "start": 18838.48, + "end": 18839.48, + "probability": 0.9856 + }, + { + "start": 18840.42, + "end": 18842.96, + "probability": 0.7405 + }, + { + "start": 18843.32, + "end": 18845.26, + "probability": 0.7964 + }, + { + "start": 18846.2, + "end": 18847.12, + "probability": 0.8486 + }, + { + "start": 18847.14, + "end": 18850.22, + "probability": 0.9983 + }, + { + "start": 18850.98, + "end": 18855.72, + "probability": 0.8123 + }, + { + "start": 18856.56, + "end": 18860.18, + "probability": 0.6938 + }, + { + "start": 18860.26, + "end": 18860.66, + "probability": 0.9271 + }, + { + "start": 18860.82, + "end": 18862.48, + "probability": 0.9905 + }, + { + "start": 18863.68, + "end": 18870.06, + "probability": 0.9958 + }, + { + "start": 18870.7, + "end": 18872.4, + "probability": 0.9014 + }, + { + "start": 18873.72, + "end": 18877.52, + "probability": 0.9929 + }, + { + "start": 18878.58, + "end": 18884.6, + "probability": 0.9954 + }, + { + "start": 18884.68, + "end": 18885.88, + "probability": 0.7877 + }, + { + "start": 18886.56, + "end": 18889.46, + "probability": 0.9467 + }, + { + "start": 18890.52, + "end": 18893.15, + "probability": 0.8245 + }, + { + "start": 18893.62, + "end": 18894.18, + "probability": 0.9484 + }, + { + "start": 18894.2, + "end": 18899.24, + "probability": 0.8204 + }, + { + "start": 18899.96, + "end": 18904.64, + "probability": 0.9989 + }, + { + "start": 18905.04, + "end": 18905.78, + "probability": 0.9801 + }, + { + "start": 18907.11, + "end": 18911.18, + "probability": 0.9485 + }, + { + "start": 18911.4, + "end": 18912.06, + "probability": 0.3122 + }, + { + "start": 18912.26, + "end": 18914.54, + "probability": 0.7321 + }, + { + "start": 18915.28, + "end": 18915.74, + "probability": 0.0834 + }, + { + "start": 18916.12, + "end": 18916.61, + "probability": 0.4769 + }, + { + "start": 18916.96, + "end": 18918.18, + "probability": 0.979 + }, + { + "start": 18918.36, + "end": 18919.32, + "probability": 0.8413 + }, + { + "start": 18919.42, + "end": 18921.88, + "probability": 0.8851 + }, + { + "start": 18921.96, + "end": 18925.02, + "probability": 0.9924 + }, + { + "start": 18925.2, + "end": 18926.4, + "probability": 0.5018 + }, + { + "start": 18926.4, + "end": 18929.64, + "probability": 0.8993 + }, + { + "start": 18930.28, + "end": 18932.15, + "probability": 0.8704 + }, + { + "start": 18932.82, + "end": 18935.24, + "probability": 0.9907 + }, + { + "start": 18935.54, + "end": 18936.55, + "probability": 0.8861 + }, + { + "start": 18936.78, + "end": 18937.5, + "probability": 0.9496 + }, + { + "start": 18938.38, + "end": 18939.4, + "probability": 0.8616 + }, + { + "start": 18941.2, + "end": 18943.84, + "probability": 0.5003 + }, + { + "start": 18959.62, + "end": 18960.02, + "probability": 0.5081 + }, + { + "start": 18960.08, + "end": 18961.14, + "probability": 0.5763 + }, + { + "start": 18961.66, + "end": 18962.66, + "probability": 0.719 + }, + { + "start": 18963.22, + "end": 18964.86, + "probability": 0.86 + }, + { + "start": 18967.44, + "end": 18969.36, + "probability": 0.8759 + }, + { + "start": 18970.02, + "end": 18972.3, + "probability": 0.7703 + }, + { + "start": 18972.46, + "end": 18973.62, + "probability": 0.4842 + }, + { + "start": 18974.34, + "end": 18976.18, + "probability": 0.9543 + }, + { + "start": 18976.28, + "end": 18977.24, + "probability": 0.9873 + }, + { + "start": 18978.74, + "end": 18979.08, + "probability": 0.8044 + }, + { + "start": 18979.92, + "end": 18982.6, + "probability": 0.8098 + }, + { + "start": 18983.02, + "end": 18987.22, + "probability": 0.9964 + }, + { + "start": 18987.58, + "end": 18988.86, + "probability": 0.9318 + }, + { + "start": 18989.76, + "end": 18992.76, + "probability": 0.9544 + }, + { + "start": 18993.88, + "end": 18994.64, + "probability": 0.9718 + }, + { + "start": 18994.98, + "end": 18995.61, + "probability": 0.9748 + }, + { + "start": 18996.28, + "end": 18996.94, + "probability": 0.9808 + }, + { + "start": 18998.14, + "end": 19000.4, + "probability": 0.9156 + }, + { + "start": 19001.4, + "end": 19002.24, + "probability": 0.9471 + }, + { + "start": 19003.1, + "end": 19004.3, + "probability": 0.9351 + }, + { + "start": 19005.5, + "end": 19009.64, + "probability": 0.99 + }, + { + "start": 19010.84, + "end": 19014.16, + "probability": 0.9693 + }, + { + "start": 19015.44, + "end": 19017.44, + "probability": 0.8563 + }, + { + "start": 19018.88, + "end": 19019.52, + "probability": 0.9967 + }, + { + "start": 19020.04, + "end": 19026.42, + "probability": 0.9973 + }, + { + "start": 19027.58, + "end": 19029.12, + "probability": 0.9976 + }, + { + "start": 19029.94, + "end": 19030.28, + "probability": 0.7428 + }, + { + "start": 19031.9, + "end": 19033.6, + "probability": 0.9677 + }, + { + "start": 19033.94, + "end": 19036.2, + "probability": 0.7623 + }, + { + "start": 19036.66, + "end": 19038.58, + "probability": 0.972 + }, + { + "start": 19039.76, + "end": 19043.96, + "probability": 0.9982 + }, + { + "start": 19044.88, + "end": 19045.44, + "probability": 0.8734 + }, + { + "start": 19046.94, + "end": 19052.48, + "probability": 0.9587 + }, + { + "start": 19052.86, + "end": 19053.94, + "probability": 0.7132 + }, + { + "start": 19055.36, + "end": 19056.38, + "probability": 0.6655 + }, + { + "start": 19057.0, + "end": 19059.0, + "probability": 0.756 + }, + { + "start": 19059.76, + "end": 19061.38, + "probability": 0.9976 + }, + { + "start": 19062.48, + "end": 19063.2, + "probability": 0.9863 + }, + { + "start": 19064.24, + "end": 19067.42, + "probability": 0.9935 + }, + { + "start": 19067.52, + "end": 19068.32, + "probability": 0.9963 + }, + { + "start": 19069.34, + "end": 19072.84, + "probability": 0.9491 + }, + { + "start": 19073.36, + "end": 19074.62, + "probability": 0.9346 + }, + { + "start": 19075.64, + "end": 19079.84, + "probability": 0.9976 + }, + { + "start": 19080.38, + "end": 19084.58, + "probability": 0.9915 + }, + { + "start": 19085.94, + "end": 19088.26, + "probability": 0.9969 + }, + { + "start": 19088.94, + "end": 19089.94, + "probability": 0.9824 + }, + { + "start": 19090.02, + "end": 19090.72, + "probability": 0.8675 + }, + { + "start": 19091.8, + "end": 19094.08, + "probability": 0.847 + }, + { + "start": 19094.52, + "end": 19095.42, + "probability": 0.9561 + }, + { + "start": 19095.54, + "end": 19096.35, + "probability": 0.9502 + }, + { + "start": 19097.06, + "end": 19099.32, + "probability": 0.8709 + }, + { + "start": 19099.44, + "end": 19101.94, + "probability": 0.8159 + }, + { + "start": 19103.34, + "end": 19104.16, + "probability": 0.7262 + }, + { + "start": 19104.95, + "end": 19108.24, + "probability": 0.9955 + }, + { + "start": 19108.66, + "end": 19109.72, + "probability": 0.917 + }, + { + "start": 19110.38, + "end": 19113.52, + "probability": 0.9937 + }, + { + "start": 19115.7, + "end": 19119.26, + "probability": 0.9879 + }, + { + "start": 19120.6, + "end": 19121.92, + "probability": 0.6825 + }, + { + "start": 19122.84, + "end": 19123.74, + "probability": 0.6738 + }, + { + "start": 19123.92, + "end": 19126.94, + "probability": 0.896 + }, + { + "start": 19128.02, + "end": 19129.62, + "probability": 0.8363 + }, + { + "start": 19130.18, + "end": 19131.76, + "probability": 0.8239 + }, + { + "start": 19132.8, + "end": 19135.2, + "probability": 0.9787 + }, + { + "start": 19135.2, + "end": 19139.2, + "probability": 0.9924 + }, + { + "start": 19139.48, + "end": 19142.18, + "probability": 0.91 + }, + { + "start": 19143.26, + "end": 19144.58, + "probability": 0.9746 + }, + { + "start": 19144.7, + "end": 19145.82, + "probability": 0.9874 + }, + { + "start": 19146.04, + "end": 19146.94, + "probability": 0.8715 + }, + { + "start": 19147.68, + "end": 19150.28, + "probability": 0.9913 + }, + { + "start": 19150.28, + "end": 19154.02, + "probability": 0.9854 + }, + { + "start": 19155.3, + "end": 19155.94, + "probability": 0.4948 + }, + { + "start": 19156.64, + "end": 19157.92, + "probability": 0.6712 + }, + { + "start": 19159.52, + "end": 19160.92, + "probability": 0.9652 + }, + { + "start": 19161.0, + "end": 19163.52, + "probability": 0.9998 + }, + { + "start": 19164.2, + "end": 19171.26, + "probability": 0.9636 + }, + { + "start": 19171.6, + "end": 19171.88, + "probability": 0.8149 + }, + { + "start": 19174.1, + "end": 19174.9, + "probability": 0.7375 + }, + { + "start": 19178.9, + "end": 19180.34, + "probability": 0.9421 + }, + { + "start": 19188.54, + "end": 19194.04, + "probability": 0.693 + }, + { + "start": 19195.04, + "end": 19196.81, + "probability": 0.9463 + }, + { + "start": 19197.96, + "end": 19202.38, + "probability": 0.9688 + }, + { + "start": 19202.66, + "end": 19206.98, + "probability": 0.9897 + }, + { + "start": 19207.14, + "end": 19210.74, + "probability": 0.9973 + }, + { + "start": 19210.78, + "end": 19211.7, + "probability": 0.991 + }, + { + "start": 19212.2, + "end": 19212.62, + "probability": 0.8262 + }, + { + "start": 19212.78, + "end": 19217.32, + "probability": 0.9893 + }, + { + "start": 19217.86, + "end": 19219.56, + "probability": 0.923 + }, + { + "start": 19220.72, + "end": 19222.4, + "probability": 0.8994 + }, + { + "start": 19222.6, + "end": 19225.26, + "probability": 0.9966 + }, + { + "start": 19226.16, + "end": 19226.3, + "probability": 0.6652 + }, + { + "start": 19226.32, + "end": 19226.9, + "probability": 0.9823 + }, + { + "start": 19227.06, + "end": 19227.54, + "probability": 0.8785 + }, + { + "start": 19227.94, + "end": 19231.4, + "probability": 0.9413 + }, + { + "start": 19231.56, + "end": 19234.92, + "probability": 0.6763 + }, + { + "start": 19235.04, + "end": 19237.1, + "probability": 0.8206 + }, + { + "start": 19238.6, + "end": 19239.08, + "probability": 0.9393 + }, + { + "start": 19239.68, + "end": 19240.92, + "probability": 0.7843 + }, + { + "start": 19241.42, + "end": 19243.5, + "probability": 0.9804 + }, + { + "start": 19244.04, + "end": 19245.78, + "probability": 0.8314 + }, + { + "start": 19246.3, + "end": 19248.4, + "probability": 0.731 + }, + { + "start": 19248.88, + "end": 19249.26, + "probability": 0.6209 + }, + { + "start": 19249.8, + "end": 19251.56, + "probability": 0.8442 + }, + { + "start": 19251.94, + "end": 19254.86, + "probability": 0.988 + }, + { + "start": 19254.88, + "end": 19258.18, + "probability": 0.9967 + }, + { + "start": 19258.78, + "end": 19262.74, + "probability": 0.9186 + }, + { + "start": 19263.18, + "end": 19265.62, + "probability": 0.9956 + }, + { + "start": 19266.06, + "end": 19267.72, + "probability": 0.9953 + }, + { + "start": 19268.68, + "end": 19272.3, + "probability": 0.9746 + }, + { + "start": 19272.34, + "end": 19274.37, + "probability": 0.9793 + }, + { + "start": 19274.8, + "end": 19275.78, + "probability": 0.8786 + }, + { + "start": 19276.08, + "end": 19277.36, + "probability": 0.928 + }, + { + "start": 19278.32, + "end": 19279.84, + "probability": 0.3262 + }, + { + "start": 19279.94, + "end": 19284.58, + "probability": 0.9941 + }, + { + "start": 19284.82, + "end": 19285.08, + "probability": 0.7157 + }, + { + "start": 19286.82, + "end": 19287.66, + "probability": 0.7382 + }, + { + "start": 19288.32, + "end": 19289.76, + "probability": 0.8147 + }, + { + "start": 19290.3, + "end": 19292.88, + "probability": 0.5884 + }, + { + "start": 19293.36, + "end": 19294.34, + "probability": 0.667 + }, + { + "start": 19296.28, + "end": 19300.72, + "probability": 0.4288 + }, + { + "start": 19300.72, + "end": 19302.3, + "probability": 0.8786 + }, + { + "start": 19302.9, + "end": 19304.2, + "probability": 0.829 + }, + { + "start": 19304.2, + "end": 19305.26, + "probability": 0.846 + }, + { + "start": 19306.12, + "end": 19306.98, + "probability": 0.2365 + }, + { + "start": 19306.98, + "end": 19308.46, + "probability": 0.666 + }, + { + "start": 19308.52, + "end": 19310.42, + "probability": 0.6613 + }, + { + "start": 19311.3, + "end": 19313.16, + "probability": 0.8928 + }, + { + "start": 19314.22, + "end": 19319.56, + "probability": 0.812 + }, + { + "start": 19320.26, + "end": 19325.58, + "probability": 0.9514 + }, + { + "start": 19326.24, + "end": 19327.04, + "probability": 0.7408 + }, + { + "start": 19327.04, + "end": 19328.34, + "probability": 0.9348 + }, + { + "start": 19328.66, + "end": 19331.36, + "probability": 0.9594 + }, + { + "start": 19332.3, + "end": 19336.54, + "probability": 0.9984 + }, + { + "start": 19337.22, + "end": 19339.26, + "probability": 0.9993 + }, + { + "start": 19339.56, + "end": 19342.11, + "probability": 0.6358 + }, + { + "start": 19343.12, + "end": 19343.82, + "probability": 0.5754 + }, + { + "start": 19345.16, + "end": 19347.28, + "probability": 0.5098 + }, + { + "start": 19347.8, + "end": 19348.88, + "probability": 0.7055 + }, + { + "start": 19350.04, + "end": 19350.95, + "probability": 0.8869 + }, + { + "start": 19351.14, + "end": 19352.06, + "probability": 0.5063 + }, + { + "start": 19352.5, + "end": 19352.78, + "probability": 0.078 + }, + { + "start": 19352.78, + "end": 19353.74, + "probability": 0.7581 + }, + { + "start": 19353.78, + "end": 19356.84, + "probability": 0.8406 + }, + { + "start": 19357.98, + "end": 19359.56, + "probability": 0.981 + }, + { + "start": 19359.66, + "end": 19365.77, + "probability": 0.9578 + }, + { + "start": 19366.26, + "end": 19368.02, + "probability": 0.884 + }, + { + "start": 19368.12, + "end": 19369.6, + "probability": 0.7937 + }, + { + "start": 19369.86, + "end": 19372.94, + "probability": 0.7878 + }, + { + "start": 19374.14, + "end": 19374.94, + "probability": 0.9308 + }, + { + "start": 19376.74, + "end": 19377.28, + "probability": 0.656 + }, + { + "start": 19377.9, + "end": 19378.82, + "probability": 0.9493 + }, + { + "start": 19379.8, + "end": 19381.16, + "probability": 0.7959 + }, + { + "start": 19381.22, + "end": 19382.18, + "probability": 0.7427 + }, + { + "start": 19382.26, + "end": 19388.92, + "probability": 0.9864 + }, + { + "start": 19389.5, + "end": 19396.0, + "probability": 0.9016 + }, + { + "start": 19397.12, + "end": 19401.52, + "probability": 0.998 + }, + { + "start": 19402.26, + "end": 19408.02, + "probability": 0.9917 + }, + { + "start": 19409.1, + "end": 19410.24, + "probability": 0.9902 + }, + { + "start": 19410.82, + "end": 19413.32, + "probability": 0.8501 + }, + { + "start": 19413.84, + "end": 19415.36, + "probability": 0.8292 + }, + { + "start": 19415.52, + "end": 19416.06, + "probability": 0.627 + }, + { + "start": 19416.56, + "end": 19417.42, + "probability": 0.5141 + }, + { + "start": 19417.72, + "end": 19421.1, + "probability": 0.9958 + }, + { + "start": 19421.94, + "end": 19423.16, + "probability": 0.8904 + }, + { + "start": 19423.6, + "end": 19423.62, + "probability": 0.3261 + }, + { + "start": 19423.62, + "end": 19423.84, + "probability": 0.4824 + }, + { + "start": 19424.76, + "end": 19428.38, + "probability": 0.5482 + }, + { + "start": 19428.38, + "end": 19430.7, + "probability": 0.4286 + }, + { + "start": 19431.04, + "end": 19434.02, + "probability": 0.8402 + }, + { + "start": 19435.64, + "end": 19435.64, + "probability": 0.1217 + }, + { + "start": 19435.64, + "end": 19436.14, + "probability": 0.6797 + }, + { + "start": 19436.38, + "end": 19437.64, + "probability": 0.4158 + }, + { + "start": 19437.7, + "end": 19441.37, + "probability": 0.7995 + }, + { + "start": 19442.04, + "end": 19445.8, + "probability": 0.8557 + }, + { + "start": 19445.88, + "end": 19447.88, + "probability": 0.6145 + }, + { + "start": 19448.0, + "end": 19448.32, + "probability": 0.64 + }, + { + "start": 19449.92, + "end": 19451.32, + "probability": 0.9763 + }, + { + "start": 19452.08, + "end": 19454.86, + "probability": 0.9787 + }, + { + "start": 19455.18, + "end": 19458.56, + "probability": 0.8415 + }, + { + "start": 19458.9, + "end": 19462.18, + "probability": 0.8555 + }, + { + "start": 19464.78, + "end": 19467.66, + "probability": 0.6605 + }, + { + "start": 19469.36, + "end": 19471.42, + "probability": 0.8212 + }, + { + "start": 19472.02, + "end": 19478.08, + "probability": 0.9951 + }, + { + "start": 19478.26, + "end": 19479.08, + "probability": 0.7177 + }, + { + "start": 19479.2, + "end": 19480.04, + "probability": 0.8311 + }, + { + "start": 19480.92, + "end": 19483.48, + "probability": 0.6013 + }, + { + "start": 19483.94, + "end": 19487.0, + "probability": 0.9983 + }, + { + "start": 19487.1, + "end": 19490.92, + "probability": 0.963 + }, + { + "start": 19490.98, + "end": 19493.34, + "probability": 0.9872 + }, + { + "start": 19493.92, + "end": 19496.06, + "probability": 0.8404 + }, + { + "start": 19496.2, + "end": 19496.4, + "probability": 0.9067 + }, + { + "start": 19497.62, + "end": 19499.44, + "probability": 0.9925 + }, + { + "start": 19499.64, + "end": 19500.9, + "probability": 0.9062 + }, + { + "start": 19501.1, + "end": 19503.12, + "probability": 0.9924 + }, + { + "start": 19503.4, + "end": 19507.1, + "probability": 0.837 + }, + { + "start": 19508.34, + "end": 19509.92, + "probability": 0.834 + }, + { + "start": 19509.98, + "end": 19510.98, + "probability": 0.8641 + }, + { + "start": 19511.48, + "end": 19514.6, + "probability": 0.9019 + }, + { + "start": 19515.24, + "end": 19516.6, + "probability": 0.8398 + }, + { + "start": 19516.92, + "end": 19518.26, + "probability": 0.8604 + }, + { + "start": 19518.82, + "end": 19521.26, + "probability": 0.98 + }, + { + "start": 19521.84, + "end": 19524.66, + "probability": 0.994 + }, + { + "start": 19525.18, + "end": 19528.02, + "probability": 0.8575 + }, + { + "start": 19528.8, + "end": 19534.21, + "probability": 0.6656 + }, + { + "start": 19535.04, + "end": 19539.8, + "probability": 0.9729 + }, + { + "start": 19540.02, + "end": 19542.67, + "probability": 0.9972 + }, + { + "start": 19543.02, + "end": 19546.94, + "probability": 0.8982 + }, + { + "start": 19547.0, + "end": 19547.84, + "probability": 0.4313 + }, + { + "start": 19547.9, + "end": 19549.08, + "probability": 0.7435 + }, + { + "start": 19549.14, + "end": 19550.2, + "probability": 0.8006 + }, + { + "start": 19550.2, + "end": 19551.38, + "probability": 0.7706 + }, + { + "start": 19551.96, + "end": 19552.8, + "probability": 0.9357 + }, + { + "start": 19553.16, + "end": 19553.7, + "probability": 0.8021 + }, + { + "start": 19553.8, + "end": 19556.12, + "probability": 0.9479 + }, + { + "start": 19556.5, + "end": 19557.1, + "probability": 0.8925 + }, + { + "start": 19557.44, + "end": 19558.18, + "probability": 0.7165 + }, + { + "start": 19558.24, + "end": 19559.3, + "probability": 0.9431 + }, + { + "start": 19559.54, + "end": 19561.38, + "probability": 0.9927 + }, + { + "start": 19561.44, + "end": 19564.38, + "probability": 0.9949 + }, + { + "start": 19564.6, + "end": 19564.72, + "probability": 0.3835 + }, + { + "start": 19564.72, + "end": 19565.52, + "probability": 0.687 + }, + { + "start": 19565.66, + "end": 19567.84, + "probability": 0.8829 + }, + { + "start": 19568.18, + "end": 19572.5, + "probability": 0.9628 + }, + { + "start": 19572.56, + "end": 19572.92, + "probability": 0.7523 + }, + { + "start": 19573.82, + "end": 19575.84, + "probability": 0.8286 + }, + { + "start": 19588.66, + "end": 19590.04, + "probability": 0.6293 + }, + { + "start": 19590.14, + "end": 19592.92, + "probability": 0.8018 + }, + { + "start": 19593.46, + "end": 19597.12, + "probability": 0.9915 + }, + { + "start": 19597.12, + "end": 19600.4, + "probability": 0.9949 + }, + { + "start": 19600.9, + "end": 19604.0, + "probability": 0.5983 + }, + { + "start": 19604.84, + "end": 19607.34, + "probability": 0.9612 + }, + { + "start": 19608.24, + "end": 19610.84, + "probability": 0.9803 + }, + { + "start": 19611.36, + "end": 19612.66, + "probability": 0.8375 + }, + { + "start": 19614.46, + "end": 19620.32, + "probability": 0.9197 + }, + { + "start": 19620.62, + "end": 19620.8, + "probability": 0.4934 + }, + { + "start": 19621.2, + "end": 19621.66, + "probability": 0.4433 + }, + { + "start": 19621.98, + "end": 19623.96, + "probability": 0.8714 + }, + { + "start": 19624.48, + "end": 19626.76, + "probability": 0.735 + }, + { + "start": 19627.62, + "end": 19628.24, + "probability": 0.9193 + }, + { + "start": 19628.36, + "end": 19629.74, + "probability": 0.8602 + }, + { + "start": 19630.14, + "end": 19630.6, + "probability": 0.8616 + }, + { + "start": 19630.78, + "end": 19631.82, + "probability": 0.3081 + }, + { + "start": 19631.86, + "end": 19632.68, + "probability": 0.5371 + }, + { + "start": 19633.54, + "end": 19636.54, + "probability": 0.8521 + }, + { + "start": 19638.36, + "end": 19638.56, + "probability": 0.456 + }, + { + "start": 19638.6, + "end": 19640.44, + "probability": 0.9279 + }, + { + "start": 19640.8, + "end": 19644.88, + "probability": 0.9619 + }, + { + "start": 19646.02, + "end": 19647.06, + "probability": 0.6361 + }, + { + "start": 19647.26, + "end": 19648.32, + "probability": 0.6943 + }, + { + "start": 19648.5, + "end": 19648.98, + "probability": 0.7118 + }, + { + "start": 19649.08, + "end": 19649.38, + "probability": 0.8754 + }, + { + "start": 19649.44, + "end": 19649.58, + "probability": 0.0101 + }, + { + "start": 19649.58, + "end": 19650.09, + "probability": 0.4924 + }, + { + "start": 19651.08, + "end": 19652.08, + "probability": 0.6597 + }, + { + "start": 19652.36, + "end": 19653.6, + "probability": 0.0089 + }, + { + "start": 19653.6, + "end": 19659.04, + "probability": 0.1879 + }, + { + "start": 19659.04, + "end": 19659.98, + "probability": 0.0657 + }, + { + "start": 19660.52, + "end": 19661.02, + "probability": 0.0696 + }, + { + "start": 19661.02, + "end": 19661.02, + "probability": 0.1401 + }, + { + "start": 19661.02, + "end": 19661.02, + "probability": 0.4387 + }, + { + "start": 19661.02, + "end": 19662.36, + "probability": 0.4446 + }, + { + "start": 19662.76, + "end": 19665.42, + "probability": 0.6529 + }, + { + "start": 19665.62, + "end": 19667.96, + "probability": 0.453 + }, + { + "start": 19668.44, + "end": 19669.98, + "probability": 0.8246 + }, + { + "start": 19670.58, + "end": 19671.64, + "probability": 0.9194 + }, + { + "start": 19671.8, + "end": 19675.66, + "probability": 0.9946 + }, + { + "start": 19676.2, + "end": 19677.3, + "probability": 0.8284 + }, + { + "start": 19678.42, + "end": 19679.24, + "probability": 0.6852 + }, + { + "start": 19679.3, + "end": 19681.86, + "probability": 0.8994 + }, + { + "start": 19682.24, + "end": 19683.88, + "probability": 0.9766 + }, + { + "start": 19684.32, + "end": 19686.39, + "probability": 0.9706 + }, + { + "start": 19687.12, + "end": 19687.9, + "probability": 0.9904 + }, + { + "start": 19688.48, + "end": 19691.73, + "probability": 0.9943 + }, + { + "start": 19692.1, + "end": 19692.59, + "probability": 0.8334 + }, + { + "start": 19693.4, + "end": 19695.08, + "probability": 0.9717 + }, + { + "start": 19695.08, + "end": 19697.06, + "probability": 0.6727 + }, + { + "start": 19697.54, + "end": 19700.46, + "probability": 0.8643 + }, + { + "start": 19700.52, + "end": 19700.54, + "probability": 0.0037 + }, + { + "start": 19701.62, + "end": 19702.7, + "probability": 0.1109 + }, + { + "start": 19702.7, + "end": 19704.96, + "probability": 0.2315 + }, + { + "start": 19704.98, + "end": 19705.46, + "probability": 0.0647 + }, + { + "start": 19705.98, + "end": 19707.66, + "probability": 0.8284 + }, + { + "start": 19707.92, + "end": 19708.72, + "probability": 0.935 + }, + { + "start": 19708.78, + "end": 19709.56, + "probability": 0.7718 + }, + { + "start": 19709.62, + "end": 19711.88, + "probability": 0.5837 + }, + { + "start": 19712.46, + "end": 19716.18, + "probability": 0.8453 + }, + { + "start": 19716.72, + "end": 19718.56, + "probability": 0.5828 + }, + { + "start": 19719.12, + "end": 19720.86, + "probability": 0.8511 + }, + { + "start": 19721.08, + "end": 19722.84, + "probability": 0.9778 + }, + { + "start": 19724.6, + "end": 19724.96, + "probability": 0.5448 + }, + { + "start": 19725.84, + "end": 19727.16, + "probability": 0.9547 + }, + { + "start": 19727.64, + "end": 19728.36, + "probability": 0.8315 + }, + { + "start": 19728.94, + "end": 19729.34, + "probability": 0.917 + }, + { + "start": 19730.66, + "end": 19731.48, + "probability": 0.5693 + }, + { + "start": 19731.68, + "end": 19733.94, + "probability": 0.6504 + }, + { + "start": 19734.76, + "end": 19738.12, + "probability": 0.2351 + }, + { + "start": 19738.12, + "end": 19739.53, + "probability": 0.0547 + }, + { + "start": 19740.88, + "end": 19743.38, + "probability": 0.3703 + }, + { + "start": 19744.7, + "end": 19748.5, + "probability": 0.2725 + }, + { + "start": 19748.94, + "end": 19754.68, + "probability": 0.0708 + }, + { + "start": 19754.68, + "end": 19754.8, + "probability": 0.0109 + }, + { + "start": 19754.8, + "end": 19755.32, + "probability": 0.1562 + }, + { + "start": 19755.32, + "end": 19756.64, + "probability": 0.2105 + }, + { + "start": 19756.74, + "end": 19757.32, + "probability": 0.2861 + }, + { + "start": 19757.4, + "end": 19760.92, + "probability": 0.0605 + }, + { + "start": 19765.36, + "end": 19766.22, + "probability": 0.0577 + }, + { + "start": 19770.02, + "end": 19772.58, + "probability": 0.6818 + }, + { + "start": 19773.9, + "end": 19776.8, + "probability": 0.9934 + }, + { + "start": 19778.34, + "end": 19787.64, + "probability": 0.9885 + }, + { + "start": 19788.48, + "end": 19790.66, + "probability": 0.993 + }, + { + "start": 19791.85, + "end": 19795.72, + "probability": 0.98 + }, + { + "start": 19796.78, + "end": 19801.7, + "probability": 0.9956 + }, + { + "start": 19802.8, + "end": 19809.56, + "probability": 0.9106 + }, + { + "start": 19810.7, + "end": 19814.26, + "probability": 0.9933 + }, + { + "start": 19816.1, + "end": 19817.92, + "probability": 0.8568 + }, + { + "start": 19818.62, + "end": 19821.98, + "probability": 0.9799 + }, + { + "start": 19822.76, + "end": 19826.6, + "probability": 0.978 + }, + { + "start": 19827.38, + "end": 19830.06, + "probability": 0.9849 + }, + { + "start": 19831.22, + "end": 19832.52, + "probability": 0.9557 + }, + { + "start": 19832.84, + "end": 19833.94, + "probability": 0.8454 + }, + { + "start": 19834.38, + "end": 19835.96, + "probability": 0.9836 + }, + { + "start": 19836.04, + "end": 19837.12, + "probability": 0.6962 + }, + { + "start": 19837.78, + "end": 19839.54, + "probability": 0.7479 + }, + { + "start": 19839.64, + "end": 19842.77, + "probability": 0.8431 + }, + { + "start": 19842.86, + "end": 19843.96, + "probability": 0.7648 + }, + { + "start": 19844.08, + "end": 19846.24, + "probability": 0.963 + }, + { + "start": 19847.7, + "end": 19851.02, + "probability": 0.9854 + }, + { + "start": 19851.7, + "end": 19854.82, + "probability": 0.829 + }, + { + "start": 19855.44, + "end": 19859.92, + "probability": 0.9146 + }, + { + "start": 19861.0, + "end": 19865.62, + "probability": 0.9894 + }, + { + "start": 19867.28, + "end": 19869.36, + "probability": 0.1057 + }, + { + "start": 19869.62, + "end": 19873.04, + "probability": 0.9124 + }, + { + "start": 19874.12, + "end": 19874.12, + "probability": 0.0256 + }, + { + "start": 19874.14, + "end": 19874.36, + "probability": 0.3426 + }, + { + "start": 19875.0, + "end": 19881.92, + "probability": 0.9438 + }, + { + "start": 19882.84, + "end": 19887.89, + "probability": 0.9983 + }, + { + "start": 19888.34, + "end": 19890.14, + "probability": 0.6988 + }, + { + "start": 19891.1, + "end": 19898.16, + "probability": 0.991 + }, + { + "start": 19899.2, + "end": 19905.06, + "probability": 0.8906 + }, + { + "start": 19905.46, + "end": 19908.08, + "probability": 0.9928 + }, + { + "start": 19908.8, + "end": 19909.08, + "probability": 0.4579 + }, + { + "start": 19909.24, + "end": 19913.66, + "probability": 0.8823 + }, + { + "start": 19914.12, + "end": 19915.5, + "probability": 0.827 + }, + { + "start": 19915.84, + "end": 19916.54, + "probability": 0.0205 + }, + { + "start": 19918.54, + "end": 19919.0, + "probability": 0.1666 + }, + { + "start": 19920.56, + "end": 19920.78, + "probability": 0.0211 + }, + { + "start": 19921.48, + "end": 19927.1, + "probability": 0.0507 + }, + { + "start": 19927.3, + "end": 19927.66, + "probability": 0.0274 + }, + { + "start": 19927.66, + "end": 19932.34, + "probability": 0.1097 + }, + { + "start": 19936.04, + "end": 19936.44, + "probability": 0.4526 + }, + { + "start": 19937.32, + "end": 19939.42, + "probability": 0.1692 + }, + { + "start": 19940.44, + "end": 19940.7, + "probability": 0.0454 + }, + { + "start": 19940.7, + "end": 19940.7, + "probability": 0.1073 + }, + { + "start": 19940.7, + "end": 19940.7, + "probability": 0.0174 + }, + { + "start": 19940.7, + "end": 19940.7, + "probability": 0.115 + }, + { + "start": 19940.7, + "end": 19941.36, + "probability": 0.0242 + }, + { + "start": 19943.62, + "end": 19946.52, + "probability": 0.9037 + }, + { + "start": 19948.12, + "end": 19949.12, + "probability": 0.6717 + }, + { + "start": 19950.54, + "end": 19955.92, + "probability": 0.9745 + }, + { + "start": 19956.04, + "end": 19959.22, + "probability": 0.9843 + }, + { + "start": 19960.16, + "end": 19964.6, + "probability": 0.9498 + }, + { + "start": 19964.6, + "end": 19969.96, + "probability": 0.9963 + }, + { + "start": 19971.48, + "end": 19972.5, + "probability": 0.3292 + }, + { + "start": 19973.48, + "end": 19975.46, + "probability": 0.9346 + }, + { + "start": 19976.1, + "end": 19977.91, + "probability": 0.9964 + }, + { + "start": 19979.28, + "end": 19980.36, + "probability": 0.5301 + }, + { + "start": 19981.24, + "end": 19984.26, + "probability": 0.9036 + }, + { + "start": 19986.34, + "end": 19987.94, + "probability": 0.9797 + }, + { + "start": 19989.28, + "end": 19991.02, + "probability": 0.979 + }, + { + "start": 19992.14, + "end": 19995.28, + "probability": 0.7664 + }, + { + "start": 19997.44, + "end": 19999.16, + "probability": 0.5969 + }, + { + "start": 20000.76, + "end": 20004.7, + "probability": 0.8518 + }, + { + "start": 20005.78, + "end": 20006.74, + "probability": 0.8685 + }, + { + "start": 20008.14, + "end": 20014.92, + "probability": 0.9763 + }, + { + "start": 20016.12, + "end": 20021.01, + "probability": 0.9692 + }, + { + "start": 20022.44, + "end": 20026.64, + "probability": 0.9941 + }, + { + "start": 20027.46, + "end": 20028.72, + "probability": 0.9908 + }, + { + "start": 20029.6, + "end": 20030.6, + "probability": 0.9032 + }, + { + "start": 20031.68, + "end": 20037.34, + "probability": 0.9928 + }, + { + "start": 20037.34, + "end": 20042.66, + "probability": 0.9883 + }, + { + "start": 20043.24, + "end": 20045.14, + "probability": 0.6423 + }, + { + "start": 20045.7, + "end": 20049.82, + "probability": 0.9849 + }, + { + "start": 20051.08, + "end": 20054.98, + "probability": 0.5909 + }, + { + "start": 20055.96, + "end": 20061.3, + "probability": 0.761 + }, + { + "start": 20061.98, + "end": 20063.32, + "probability": 0.8496 + }, + { + "start": 20063.84, + "end": 20066.96, + "probability": 0.9911 + }, + { + "start": 20067.58, + "end": 20071.16, + "probability": 0.9922 + }, + { + "start": 20072.62, + "end": 20074.06, + "probability": 0.8325 + }, + { + "start": 20075.08, + "end": 20077.32, + "probability": 0.9937 + }, + { + "start": 20078.16, + "end": 20079.78, + "probability": 0.7949 + }, + { + "start": 20080.3, + "end": 20081.9, + "probability": 0.8234 + }, + { + "start": 20082.98, + "end": 20084.72, + "probability": 0.7967 + }, + { + "start": 20085.34, + "end": 20090.38, + "probability": 0.9845 + }, + { + "start": 20090.88, + "end": 20092.1, + "probability": 0.7615 + }, + { + "start": 20092.62, + "end": 20094.18, + "probability": 0.6801 + }, + { + "start": 20094.72, + "end": 20095.44, + "probability": 0.6293 + }, + { + "start": 20095.58, + "end": 20096.94, + "probability": 0.939 + }, + { + "start": 20097.58, + "end": 20099.12, + "probability": 0.9947 + }, + { + "start": 20100.16, + "end": 20106.14, + "probability": 0.8738 + }, + { + "start": 20106.6, + "end": 20107.18, + "probability": 0.5159 + }, + { + "start": 20107.32, + "end": 20109.22, + "probability": 0.9722 + }, + { + "start": 20110.1, + "end": 20111.96, + "probability": 0.9918 + }, + { + "start": 20112.78, + "end": 20114.96, + "probability": 0.7846 + }, + { + "start": 20117.36, + "end": 20119.56, + "probability": 0.6779 + }, + { + "start": 20121.0, + "end": 20123.72, + "probability": 0.9637 + }, + { + "start": 20124.4, + "end": 20125.56, + "probability": 0.7896 + }, + { + "start": 20127.0, + "end": 20134.0, + "probability": 0.9512 + }, + { + "start": 20134.0, + "end": 20139.7, + "probability": 0.9951 + }, + { + "start": 20140.46, + "end": 20144.72, + "probability": 0.9955 + }, + { + "start": 20145.76, + "end": 20148.32, + "probability": 0.9677 + }, + { + "start": 20151.6, + "end": 20157.8, + "probability": 0.981 + }, + { + "start": 20158.94, + "end": 20159.52, + "probability": 0.8796 + }, + { + "start": 20161.3, + "end": 20164.32, + "probability": 0.9848 + }, + { + "start": 20165.02, + "end": 20168.08, + "probability": 0.9941 + }, + { + "start": 20168.64, + "end": 20175.62, + "probability": 0.7691 + }, + { + "start": 20176.44, + "end": 20178.42, + "probability": 0.4945 + }, + { + "start": 20180.54, + "end": 20184.68, + "probability": 0.546 + }, + { + "start": 20186.48, + "end": 20187.76, + "probability": 0.8529 + }, + { + "start": 20188.44, + "end": 20190.4, + "probability": 0.79 + }, + { + "start": 20191.34, + "end": 20194.69, + "probability": 0.8687 + }, + { + "start": 20195.7, + "end": 20195.96, + "probability": 0.6957 + }, + { + "start": 20196.1, + "end": 20198.0, + "probability": 0.9727 + }, + { + "start": 20198.46, + "end": 20201.2, + "probability": 0.9573 + }, + { + "start": 20201.76, + "end": 20202.32, + "probability": 0.745 + }, + { + "start": 20203.12, + "end": 20203.76, + "probability": 0.9014 + }, + { + "start": 20204.18, + "end": 20204.76, + "probability": 0.9442 + }, + { + "start": 20204.96, + "end": 20209.18, + "probability": 0.9404 + }, + { + "start": 20209.86, + "end": 20212.76, + "probability": 0.9939 + }, + { + "start": 20214.2, + "end": 20217.66, + "probability": 0.8735 + }, + { + "start": 20218.62, + "end": 20220.56, + "probability": 0.6831 + }, + { + "start": 20221.12, + "end": 20225.68, + "probability": 0.8163 + }, + { + "start": 20227.28, + "end": 20228.0, + "probability": 0.8955 + }, + { + "start": 20228.44, + "end": 20230.88, + "probability": 0.9369 + }, + { + "start": 20232.08, + "end": 20233.06, + "probability": 0.8892 + }, + { + "start": 20235.58, + "end": 20236.54, + "probability": 0.9119 + }, + { + "start": 20236.74, + "end": 20238.26, + "probability": 0.9622 + }, + { + "start": 20239.3, + "end": 20245.46, + "probability": 0.9939 + }, + { + "start": 20245.96, + "end": 20247.1, + "probability": 0.9549 + }, + { + "start": 20247.62, + "end": 20248.4, + "probability": 0.9973 + }, + { + "start": 20249.76, + "end": 20251.5, + "probability": 0.7089 + }, + { + "start": 20252.46, + "end": 20256.94, + "probability": 0.978 + }, + { + "start": 20257.02, + "end": 20258.21, + "probability": 0.4922 + }, + { + "start": 20259.34, + "end": 20259.86, + "probability": 0.8644 + }, + { + "start": 20261.7, + "end": 20262.08, + "probability": 0.6598 + }, + { + "start": 20263.6, + "end": 20264.2, + "probability": 0.8739 + }, + { + "start": 20265.42, + "end": 20269.42, + "probability": 0.6947 + }, + { + "start": 20269.94, + "end": 20278.48, + "probability": 0.7732 + }, + { + "start": 20279.22, + "end": 20283.08, + "probability": 0.9988 + }, + { + "start": 20283.66, + "end": 20285.54, + "probability": 0.8414 + }, + { + "start": 20286.94, + "end": 20288.2, + "probability": 0.9016 + }, + { + "start": 20289.2, + "end": 20291.92, + "probability": 0.9976 + }, + { + "start": 20292.72, + "end": 20294.26, + "probability": 0.9951 + }, + { + "start": 20295.7, + "end": 20297.46, + "probability": 0.9402 + }, + { + "start": 20298.6, + "end": 20302.12, + "probability": 0.9966 + }, + { + "start": 20302.26, + "end": 20304.44, + "probability": 0.7974 + }, + { + "start": 20305.24, + "end": 20310.66, + "probability": 0.9953 + }, + { + "start": 20311.16, + "end": 20312.56, + "probability": 0.7334 + }, + { + "start": 20314.28, + "end": 20317.28, + "probability": 0.9985 + }, + { + "start": 20319.28, + "end": 20321.98, + "probability": 0.9988 + }, + { + "start": 20322.58, + "end": 20324.32, + "probability": 0.6796 + }, + { + "start": 20325.7, + "end": 20327.78, + "probability": 0.9438 + }, + { + "start": 20328.6, + "end": 20332.34, + "probability": 0.9996 + }, + { + "start": 20333.2, + "end": 20335.9, + "probability": 0.9908 + }, + { + "start": 20336.66, + "end": 20340.26, + "probability": 0.9913 + }, + { + "start": 20340.82, + "end": 20342.12, + "probability": 0.8921 + }, + { + "start": 20343.28, + "end": 20344.22, + "probability": 0.568 + }, + { + "start": 20344.92, + "end": 20345.18, + "probability": 0.6472 + }, + { + "start": 20345.88, + "end": 20350.92, + "probability": 0.904 + }, + { + "start": 20351.44, + "end": 20352.56, + "probability": 0.9647 + }, + { + "start": 20353.22, + "end": 20356.97, + "probability": 0.916 + }, + { + "start": 20358.64, + "end": 20361.14, + "probability": 0.9888 + }, + { + "start": 20361.72, + "end": 20363.46, + "probability": 0.998 + }, + { + "start": 20364.4, + "end": 20365.82, + "probability": 0.9723 + }, + { + "start": 20366.7, + "end": 20367.56, + "probability": 0.9874 + }, + { + "start": 20369.3, + "end": 20374.2, + "probability": 0.9697 + }, + { + "start": 20374.98, + "end": 20376.44, + "probability": 0.6253 + }, + { + "start": 20376.52, + "end": 20380.64, + "probability": 0.9812 + }, + { + "start": 20381.58, + "end": 20382.24, + "probability": 0.959 + }, + { + "start": 20384.0, + "end": 20385.26, + "probability": 0.793 + }, + { + "start": 20385.46, + "end": 20385.64, + "probability": 0.3888 + }, + { + "start": 20385.74, + "end": 20388.32, + "probability": 0.9924 + }, + { + "start": 20388.7, + "end": 20389.94, + "probability": 0.8602 + }, + { + "start": 20391.4, + "end": 20394.73, + "probability": 0.9189 + }, + { + "start": 20397.12, + "end": 20400.52, + "probability": 0.6809 + }, + { + "start": 20400.64, + "end": 20402.06, + "probability": 0.8786 + }, + { + "start": 20402.66, + "end": 20405.92, + "probability": 0.934 + }, + { + "start": 20406.58, + "end": 20409.26, + "probability": 0.8939 + }, + { + "start": 20410.06, + "end": 20412.02, + "probability": 0.9963 + }, + { + "start": 20413.48, + "end": 20416.1, + "probability": 0.9106 + }, + { + "start": 20416.1, + "end": 20416.5, + "probability": 0.7027 + }, + { + "start": 20417.48, + "end": 20418.52, + "probability": 0.5863 + }, + { + "start": 20418.66, + "end": 20422.88, + "probability": 0.8622 + }, + { + "start": 20422.92, + "end": 20424.1, + "probability": 0.9221 + }, + { + "start": 20424.46, + "end": 20427.94, + "probability": 0.9774 + }, + { + "start": 20428.36, + "end": 20428.56, + "probability": 0.9438 + }, + { + "start": 20428.9, + "end": 20429.46, + "probability": 0.7541 + }, + { + "start": 20429.8, + "end": 20430.86, + "probability": 0.7175 + }, + { + "start": 20433.5, + "end": 20435.08, + "probability": 0.1326 + }, + { + "start": 20438.3, + "end": 20439.04, + "probability": 0.0937 + }, + { + "start": 20440.6, + "end": 20443.18, + "probability": 0.2832 + }, + { + "start": 20443.88, + "end": 20444.8, + "probability": 0.0578 + }, + { + "start": 20445.5, + "end": 20445.98, + "probability": 0.2859 + }, + { + "start": 20449.98, + "end": 20452.06, + "probability": 0.0434 + }, + { + "start": 20456.88, + "end": 20458.06, + "probability": 0.1484 + }, + { + "start": 20458.64, + "end": 20459.14, + "probability": 0.0074 + }, + { + "start": 20471.9, + "end": 20477.18, + "probability": 0.1016 + }, + { + "start": 20480.12, + "end": 20481.22, + "probability": 0.1729 + }, + { + "start": 20483.64, + "end": 20487.32, + "probability": 0.0494 + }, + { + "start": 20487.34, + "end": 20489.1, + "probability": 0.0023 + }, + { + "start": 20508.76, + "end": 20511.76, + "probability": 0.9943 + }, + { + "start": 20512.52, + "end": 20513.48, + "probability": 0.8358 + }, + { + "start": 20513.78, + "end": 20515.1, + "probability": 0.9246 + }, + { + "start": 20515.2, + "end": 20516.56, + "probability": 0.9963 + }, + { + "start": 20517.18, + "end": 20518.22, + "probability": 0.9957 + }, + { + "start": 20518.84, + "end": 20519.72, + "probability": 0.9937 + }, + { + "start": 20519.94, + "end": 20523.83, + "probability": 0.9839 + }, + { + "start": 20524.94, + "end": 20528.86, + "probability": 0.8447 + }, + { + "start": 20528.92, + "end": 20530.78, + "probability": 0.8452 + }, + { + "start": 20531.54, + "end": 20535.92, + "probability": 0.9879 + }, + { + "start": 20535.92, + "end": 20541.74, + "probability": 0.9964 + }, + { + "start": 20542.24, + "end": 20544.4, + "probability": 0.8256 + }, + { + "start": 20544.54, + "end": 20550.04, + "probability": 0.7076 + }, + { + "start": 20550.6, + "end": 20551.54, + "probability": 0.9098 + }, + { + "start": 20552.34, + "end": 20557.06, + "probability": 0.8645 + }, + { + "start": 20558.94, + "end": 20562.7, + "probability": 0.9933 + }, + { + "start": 20563.22, + "end": 20565.24, + "probability": 0.8054 + }, + { + "start": 20566.06, + "end": 20567.6, + "probability": 0.9949 + }, + { + "start": 20568.46, + "end": 20570.74, + "probability": 0.9958 + }, + { + "start": 20570.74, + "end": 20574.62, + "probability": 0.9926 + }, + { + "start": 20575.2, + "end": 20577.56, + "probability": 0.9037 + }, + { + "start": 20578.88, + "end": 20580.9, + "probability": 0.988 + }, + { + "start": 20582.06, + "end": 20586.58, + "probability": 0.9819 + }, + { + "start": 20588.6, + "end": 20591.56, + "probability": 0.9635 + }, + { + "start": 20591.8, + "end": 20592.4, + "probability": 0.786 + }, + { + "start": 20593.14, + "end": 20594.18, + "probability": 0.9982 + }, + { + "start": 20594.32, + "end": 20596.94, + "probability": 0.9709 + }, + { + "start": 20597.6, + "end": 20599.48, + "probability": 0.7568 + }, + { + "start": 20599.58, + "end": 20600.3, + "probability": 0.5158 + }, + { + "start": 20600.3, + "end": 20602.36, + "probability": 0.9935 + }, + { + "start": 20602.88, + "end": 20603.22, + "probability": 0.0062 + }, + { + "start": 20604.49, + "end": 20608.5, + "probability": 0.858 + }, + { + "start": 20608.8, + "end": 20609.38, + "probability": 0.9674 + }, + { + "start": 20609.42, + "end": 20610.4, + "probability": 0.976 + }, + { + "start": 20610.54, + "end": 20611.64, + "probability": 0.9983 + }, + { + "start": 20612.5, + "end": 20614.16, + "probability": 0.9088 + }, + { + "start": 20614.22, + "end": 20616.06, + "probability": 0.7603 + }, + { + "start": 20616.1, + "end": 20619.68, + "probability": 0.7912 + }, + { + "start": 20620.22, + "end": 20620.46, + "probability": 0.275 + }, + { + "start": 20620.5, + "end": 20624.24, + "probability": 0.9882 + }, + { + "start": 20624.42, + "end": 20625.62, + "probability": 0.9869 + }, + { + "start": 20626.88, + "end": 20637.64, + "probability": 0.9922 + }, + { + "start": 20638.42, + "end": 20640.87, + "probability": 0.9571 + }, + { + "start": 20642.84, + "end": 20646.36, + "probability": 0.9824 + }, + { + "start": 20647.94, + "end": 20648.62, + "probability": 0.9719 + }, + { + "start": 20649.54, + "end": 20653.06, + "probability": 0.9977 + }, + { + "start": 20653.74, + "end": 20654.76, + "probability": 0.7406 + }, + { + "start": 20655.68, + "end": 20657.1, + "probability": 0.9183 + }, + { + "start": 20657.28, + "end": 20657.64, + "probability": 0.4067 + }, + { + "start": 20657.7, + "end": 20658.92, + "probability": 0.9176 + }, + { + "start": 20659.02, + "end": 20659.34, + "probability": 0.6747 + }, + { + "start": 20661.2, + "end": 20665.6, + "probability": 0.9951 + }, + { + "start": 20665.74, + "end": 20666.82, + "probability": 0.9161 + }, + { + "start": 20667.88, + "end": 20669.12, + "probability": 0.8384 + }, + { + "start": 20670.04, + "end": 20673.14, + "probability": 0.8091 + }, + { + "start": 20674.02, + "end": 20675.54, + "probability": 0.9966 + }, + { + "start": 20676.84, + "end": 20681.58, + "probability": 0.9568 + }, + { + "start": 20682.2, + "end": 20688.04, + "probability": 0.923 + }, + { + "start": 20688.5, + "end": 20692.94, + "probability": 0.9923 + }, + { + "start": 20694.18, + "end": 20695.4, + "probability": 0.752 + }, + { + "start": 20696.8, + "end": 20702.42, + "probability": 0.9951 + }, + { + "start": 20703.14, + "end": 20705.8, + "probability": 0.992 + }, + { + "start": 20705.86, + "end": 20706.21, + "probability": 0.7461 + }, + { + "start": 20706.78, + "end": 20708.13, + "probability": 0.9976 + }, + { + "start": 20709.1, + "end": 20710.3, + "probability": 0.6562 + }, + { + "start": 20711.24, + "end": 20715.45, + "probability": 0.9954 + }, + { + "start": 20716.14, + "end": 20718.66, + "probability": 0.8635 + }, + { + "start": 20719.7, + "end": 20722.34, + "probability": 0.9824 + }, + { + "start": 20724.2, + "end": 20727.74, + "probability": 0.9683 + }, + { + "start": 20727.74, + "end": 20732.34, + "probability": 0.7593 + }, + { + "start": 20733.16, + "end": 20738.02, + "probability": 0.9943 + }, + { + "start": 20738.02, + "end": 20743.3, + "probability": 0.9974 + }, + { + "start": 20743.42, + "end": 20743.88, + "probability": 0.6104 + }, + { + "start": 20744.94, + "end": 20747.56, + "probability": 0.995 + }, + { + "start": 20748.2, + "end": 20749.26, + "probability": 0.9466 + }, + { + "start": 20749.84, + "end": 20751.4, + "probability": 0.9431 + }, + { + "start": 20752.1, + "end": 20753.7, + "probability": 0.9469 + }, + { + "start": 20754.62, + "end": 20757.92, + "probability": 0.9833 + }, + { + "start": 20758.52, + "end": 20759.9, + "probability": 0.784 + }, + { + "start": 20760.6, + "end": 20762.46, + "probability": 0.6307 + }, + { + "start": 20763.46, + "end": 20765.78, + "probability": 0.9517 + }, + { + "start": 20766.7, + "end": 20772.34, + "probability": 0.9963 + }, + { + "start": 20772.74, + "end": 20776.42, + "probability": 0.905 + }, + { + "start": 20777.14, + "end": 20778.74, + "probability": 0.5383 + }, + { + "start": 20780.12, + "end": 20783.18, + "probability": 0.8314 + }, + { + "start": 20784.02, + "end": 20787.7, + "probability": 0.9917 + }, + { + "start": 20788.62, + "end": 20791.38, + "probability": 0.7309 + }, + { + "start": 20792.38, + "end": 20794.44, + "probability": 0.9871 + }, + { + "start": 20795.3, + "end": 20798.52, + "probability": 0.9954 + }, + { + "start": 20799.18, + "end": 20803.76, + "probability": 0.9907 + }, + { + "start": 20804.66, + "end": 20811.12, + "probability": 0.9922 + }, + { + "start": 20811.96, + "end": 20814.02, + "probability": 0.9056 + }, + { + "start": 20814.54, + "end": 20817.42, + "probability": 0.9897 + }, + { + "start": 20818.02, + "end": 20822.6, + "probability": 0.9901 + }, + { + "start": 20824.0, + "end": 20826.32, + "probability": 0.9385 + }, + { + "start": 20827.7, + "end": 20830.12, + "probability": 0.9871 + }, + { + "start": 20830.68, + "end": 20836.82, + "probability": 0.9873 + }, + { + "start": 20838.1, + "end": 20839.16, + "probability": 0.9948 + }, + { + "start": 20839.76, + "end": 20845.8, + "probability": 0.9989 + }, + { + "start": 20846.84, + "end": 20850.68, + "probability": 0.9944 + }, + { + "start": 20851.28, + "end": 20852.18, + "probability": 0.9976 + }, + { + "start": 20853.42, + "end": 20856.42, + "probability": 0.9976 + }, + { + "start": 20857.52, + "end": 20860.32, + "probability": 0.8647 + }, + { + "start": 20861.08, + "end": 20867.18, + "probability": 0.8956 + }, + { + "start": 20867.82, + "end": 20870.03, + "probability": 0.9348 + }, + { + "start": 20871.26, + "end": 20872.74, + "probability": 0.9212 + }, + { + "start": 20873.5, + "end": 20874.14, + "probability": 0.9587 + }, + { + "start": 20875.4, + "end": 20877.1, + "probability": 0.9647 + }, + { + "start": 20877.98, + "end": 20880.04, + "probability": 0.71 + }, + { + "start": 20881.24, + "end": 20883.58, + "probability": 0.7821 + }, + { + "start": 20883.58, + "end": 20887.3, + "probability": 0.9868 + }, + { + "start": 20888.18, + "end": 20892.04, + "probability": 0.9895 + }, + { + "start": 20893.12, + "end": 20896.38, + "probability": 0.9697 + }, + { + "start": 20897.38, + "end": 20899.64, + "probability": 0.9989 + }, + { + "start": 20900.32, + "end": 20901.96, + "probability": 0.912 + }, + { + "start": 20903.38, + "end": 20903.62, + "probability": 0.4719 + }, + { + "start": 20903.8, + "end": 20908.08, + "probability": 0.9619 + }, + { + "start": 20908.08, + "end": 20912.24, + "probability": 0.9913 + }, + { + "start": 20913.18, + "end": 20917.72, + "probability": 0.976 + }, + { + "start": 20918.42, + "end": 20920.18, + "probability": 0.766 + }, + { + "start": 20921.0, + "end": 20925.54, + "probability": 0.9959 + }, + { + "start": 20926.84, + "end": 20929.6, + "probability": 0.8596 + }, + { + "start": 20930.22, + "end": 20932.94, + "probability": 0.7921 + }, + { + "start": 20933.54, + "end": 20934.52, + "probability": 0.9291 + }, + { + "start": 20935.58, + "end": 20939.58, + "probability": 0.9373 + }, + { + "start": 20939.58, + "end": 20942.48, + "probability": 0.956 + }, + { + "start": 20943.26, + "end": 20946.56, + "probability": 0.7551 + }, + { + "start": 20947.32, + "end": 20950.72, + "probability": 0.9878 + }, + { + "start": 20951.26, + "end": 20954.6, + "probability": 0.9957 + }, + { + "start": 20955.92, + "end": 20961.3, + "probability": 0.9927 + }, + { + "start": 20963.04, + "end": 20967.0, + "probability": 0.9568 + }, + { + "start": 20967.64, + "end": 20970.38, + "probability": 0.8176 + }, + { + "start": 20971.64, + "end": 20972.06, + "probability": 0.8821 + }, + { + "start": 20972.7, + "end": 20976.9, + "probability": 0.9717 + }, + { + "start": 20977.48, + "end": 20979.86, + "probability": 0.9961 + }, + { + "start": 20980.94, + "end": 20985.02, + "probability": 0.9845 + }, + { + "start": 20987.16, + "end": 20992.52, + "probability": 0.9891 + }, + { + "start": 20994.44, + "end": 20997.3, + "probability": 0.9894 + }, + { + "start": 20998.58, + "end": 21000.62, + "probability": 0.9092 + }, + { + "start": 21001.42, + "end": 21002.98, + "probability": 0.743 + }, + { + "start": 21003.9, + "end": 21009.44, + "probability": 0.9906 + }, + { + "start": 21011.98, + "end": 21013.44, + "probability": 0.843 + }, + { + "start": 21013.44, + "end": 21014.44, + "probability": 0.8706 + }, + { + "start": 21014.74, + "end": 21017.22, + "probability": 0.972 + }, + { + "start": 21018.3, + "end": 21022.64, + "probability": 0.9832 + }, + { + "start": 21023.48, + "end": 21025.3, + "probability": 0.9871 + }, + { + "start": 21025.9, + "end": 21028.6, + "probability": 0.9862 + }, + { + "start": 21029.26, + "end": 21031.9, + "probability": 0.9257 + }, + { + "start": 21033.62, + "end": 21034.58, + "probability": 0.9758 + }, + { + "start": 21034.6, + "end": 21034.88, + "probability": 0.7693 + }, + { + "start": 21035.04, + "end": 21036.14, + "probability": 0.9849 + }, + { + "start": 21037.1, + "end": 21039.38, + "probability": 0.6392 + }, + { + "start": 21040.26, + "end": 21042.6, + "probability": 0.8784 + }, + { + "start": 21042.98, + "end": 21047.52, + "probability": 0.9909 + }, + { + "start": 21048.92, + "end": 21050.46, + "probability": 0.8643 + }, + { + "start": 21053.72, + "end": 21058.18, + "probability": 0.9509 + }, + { + "start": 21058.18, + "end": 21062.34, + "probability": 0.9995 + }, + { + "start": 21062.34, + "end": 21067.42, + "probability": 0.9668 + }, + { + "start": 21067.82, + "end": 21069.09, + "probability": 0.6592 + }, + { + "start": 21071.7, + "end": 21073.88, + "probability": 0.3345 + }, + { + "start": 21075.24, + "end": 21080.74, + "probability": 0.859 + }, + { + "start": 21080.74, + "end": 21084.78, + "probability": 0.8865 + }, + { + "start": 21085.94, + "end": 21088.16, + "probability": 0.9978 + }, + { + "start": 21089.04, + "end": 21092.26, + "probability": 0.8499 + }, + { + "start": 21092.26, + "end": 21095.54, + "probability": 0.9951 + }, + { + "start": 21095.86, + "end": 21096.2, + "probability": 0.7001 + }, + { + "start": 21096.6, + "end": 21099.94, + "probability": 0.563 + }, + { + "start": 21100.52, + "end": 21103.16, + "probability": 0.999 + }, + { + "start": 21103.48, + "end": 21105.02, + "probability": 0.9849 + }, + { + "start": 21105.62, + "end": 21110.18, + "probability": 0.9946 + }, + { + "start": 21110.22, + "end": 21112.92, + "probability": 0.9985 + }, + { + "start": 21113.38, + "end": 21115.58, + "probability": 0.9847 + }, + { + "start": 21116.28, + "end": 21119.44, + "probability": 0.8106 + }, + { + "start": 21119.44, + "end": 21120.52, + "probability": 0.6886 + }, + { + "start": 21120.6, + "end": 21127.86, + "probability": 0.9641 + }, + { + "start": 21129.36, + "end": 21131.66, + "probability": 0.9968 + }, + { + "start": 21131.66, + "end": 21135.66, + "probability": 0.9839 + }, + { + "start": 21136.08, + "end": 21136.62, + "probability": 0.8553 + }, + { + "start": 21136.72, + "end": 21137.4, + "probability": 0.6892 + }, + { + "start": 21138.0, + "end": 21138.44, + "probability": 0.6551 + }, + { + "start": 21138.96, + "end": 21143.68, + "probability": 0.9985 + }, + { + "start": 21143.8, + "end": 21144.6, + "probability": 0.6983 + }, + { + "start": 21145.34, + "end": 21147.76, + "probability": 0.9023 + }, + { + "start": 21148.64, + "end": 21150.24, + "probability": 0.8887 + }, + { + "start": 21162.24, + "end": 21162.24, + "probability": 0.1115 + }, + { + "start": 21162.24, + "end": 21162.26, + "probability": 0.0993 + }, + { + "start": 21162.26, + "end": 21162.26, + "probability": 0.2718 + }, + { + "start": 21162.26, + "end": 21162.26, + "probability": 0.1871 + }, + { + "start": 21162.26, + "end": 21162.26, + "probability": 0.0828 + }, + { + "start": 21162.26, + "end": 21162.32, + "probability": 0.0524 + }, + { + "start": 21188.04, + "end": 21190.0, + "probability": 0.9155 + }, + { + "start": 21191.22, + "end": 21194.28, + "probability": 0.9971 + }, + { + "start": 21195.22, + "end": 21197.22, + "probability": 0.7433 + }, + { + "start": 21198.38, + "end": 21200.76, + "probability": 0.8549 + }, + { + "start": 21201.7, + "end": 21204.86, + "probability": 0.967 + }, + { + "start": 21205.58, + "end": 21207.25, + "probability": 0.392 + }, + { + "start": 21209.1, + "end": 21209.1, + "probability": 0.4799 + }, + { + "start": 21209.1, + "end": 21210.18, + "probability": 0.8368 + }, + { + "start": 21210.28, + "end": 21211.06, + "probability": 0.9867 + }, + { + "start": 21211.24, + "end": 21212.28, + "probability": 0.6212 + }, + { + "start": 21212.42, + "end": 21212.98, + "probability": 0.768 + }, + { + "start": 21213.44, + "end": 21217.2, + "probability": 0.916 + }, + { + "start": 21217.36, + "end": 21218.26, + "probability": 0.9805 + }, + { + "start": 21220.0, + "end": 21221.42, + "probability": 0.3318 + }, + { + "start": 21221.94, + "end": 21227.24, + "probability": 0.9139 + }, + { + "start": 21227.44, + "end": 21232.83, + "probability": 0.9887 + }, + { + "start": 21233.76, + "end": 21235.46, + "probability": 0.9808 + }, + { + "start": 21236.06, + "end": 21236.62, + "probability": 0.8665 + }, + { + "start": 21237.24, + "end": 21238.92, + "probability": 0.7048 + }, + { + "start": 21239.06, + "end": 21239.62, + "probability": 0.7698 + }, + { + "start": 21239.7, + "end": 21240.7, + "probability": 0.8028 + }, + { + "start": 21240.74, + "end": 21241.58, + "probability": 0.5728 + }, + { + "start": 21242.14, + "end": 21242.64, + "probability": 0.7537 + }, + { + "start": 21242.78, + "end": 21243.5, + "probability": 0.985 + }, + { + "start": 21245.06, + "end": 21246.44, + "probability": 0.6752 + }, + { + "start": 21247.38, + "end": 21250.26, + "probability": 0.9687 + }, + { + "start": 21250.58, + "end": 21254.38, + "probability": 0.8882 + }, + { + "start": 21255.36, + "end": 21256.42, + "probability": 0.9985 + }, + { + "start": 21257.24, + "end": 21257.92, + "probability": 0.7808 + }, + { + "start": 21258.46, + "end": 21262.2, + "probability": 0.8271 + }, + { + "start": 21262.26, + "end": 21263.18, + "probability": 0.676 + }, + { + "start": 21263.34, + "end": 21264.08, + "probability": 0.7566 + }, + { + "start": 21264.62, + "end": 21266.6, + "probability": 0.9951 + }, + { + "start": 21266.74, + "end": 21269.22, + "probability": 0.8613 + }, + { + "start": 21270.7, + "end": 21271.7, + "probability": 0.9941 + }, + { + "start": 21272.96, + "end": 21274.4, + "probability": 0.8638 + }, + { + "start": 21274.5, + "end": 21274.99, + "probability": 0.9395 + }, + { + "start": 21275.62, + "end": 21282.93, + "probability": 0.9719 + }, + { + "start": 21283.26, + "end": 21284.54, + "probability": 0.9946 + }, + { + "start": 21284.72, + "end": 21286.5, + "probability": 0.9596 + }, + { + "start": 21286.86, + "end": 21288.92, + "probability": 0.8134 + }, + { + "start": 21289.5, + "end": 21293.38, + "probability": 0.9292 + }, + { + "start": 21293.68, + "end": 21294.29, + "probability": 0.9597 + }, + { + "start": 21295.28, + "end": 21298.84, + "probability": 0.9023 + }, + { + "start": 21300.36, + "end": 21301.48, + "probability": 0.9922 + }, + { + "start": 21302.28, + "end": 21305.66, + "probability": 0.8647 + }, + { + "start": 21307.08, + "end": 21309.48, + "probability": 0.9977 + }, + { + "start": 21309.84, + "end": 21310.5, + "probability": 0.3844 + }, + { + "start": 21311.2, + "end": 21312.14, + "probability": 0.877 + }, + { + "start": 21312.32, + "end": 21316.02, + "probability": 0.912 + }, + { + "start": 21316.38, + "end": 21318.44, + "probability": 0.8351 + }, + { + "start": 21319.14, + "end": 21323.3, + "probability": 0.8699 + }, + { + "start": 21323.56, + "end": 21324.78, + "probability": 0.1624 + }, + { + "start": 21324.94, + "end": 21326.72, + "probability": 0.7141 + }, + { + "start": 21326.8, + "end": 21328.7, + "probability": 0.4738 + }, + { + "start": 21328.88, + "end": 21330.18, + "probability": 0.4788 + }, + { + "start": 21330.24, + "end": 21332.12, + "probability": 0.9771 + }, + { + "start": 21333.02, + "end": 21335.56, + "probability": 0.7706 + }, + { + "start": 21336.6, + "end": 21339.2, + "probability": 0.7721 + }, + { + "start": 21339.86, + "end": 21341.1, + "probability": 0.9174 + }, + { + "start": 21341.68, + "end": 21344.38, + "probability": 0.9551 + }, + { + "start": 21345.12, + "end": 21345.32, + "probability": 0.8803 + }, + { + "start": 21346.24, + "end": 21349.34, + "probability": 0.9971 + }, + { + "start": 21349.64, + "end": 21352.84, + "probability": 0.9781 + }, + { + "start": 21353.2, + "end": 21355.14, + "probability": 0.8527 + }, + { + "start": 21355.7, + "end": 21359.66, + "probability": 0.9592 + }, + { + "start": 21360.3, + "end": 21360.98, + "probability": 0.3325 + }, + { + "start": 21361.56, + "end": 21363.74, + "probability": 0.7568 + }, + { + "start": 21364.36, + "end": 21367.63, + "probability": 0.9548 + }, + { + "start": 21368.62, + "end": 21370.66, + "probability": 0.7703 + }, + { + "start": 21370.84, + "end": 21376.7, + "probability": 0.9533 + }, + { + "start": 21377.38, + "end": 21377.48, + "probability": 0.4073 + }, + { + "start": 21377.54, + "end": 21379.09, + "probability": 0.9587 + }, + { + "start": 21379.28, + "end": 21381.36, + "probability": 0.6958 + }, + { + "start": 21382.44, + "end": 21385.58, + "probability": 0.9633 + }, + { + "start": 21386.76, + "end": 21388.48, + "probability": 0.8815 + }, + { + "start": 21389.06, + "end": 21391.04, + "probability": 0.9969 + }, + { + "start": 21391.78, + "end": 21392.66, + "probability": 0.5633 + }, + { + "start": 21392.9, + "end": 21393.56, + "probability": 0.7066 + }, + { + "start": 21394.28, + "end": 21395.78, + "probability": 0.7878 + }, + { + "start": 21396.34, + "end": 21397.8, + "probability": 0.8391 + }, + { + "start": 21398.1, + "end": 21399.14, + "probability": 0.8356 + }, + { + "start": 21399.4, + "end": 21401.2, + "probability": 0.98 + }, + { + "start": 21401.82, + "end": 21403.16, + "probability": 0.9968 + }, + { + "start": 21403.3, + "end": 21403.94, + "probability": 0.2352 + }, + { + "start": 21404.44, + "end": 21405.74, + "probability": 0.9648 + }, + { + "start": 21406.46, + "end": 21408.06, + "probability": 0.9096 + }, + { + "start": 21409.78, + "end": 21410.32, + "probability": 0.7856 + }, + { + "start": 21413.42, + "end": 21413.94, + "probability": 0.9246 + }, + { + "start": 21415.12, + "end": 21420.9, + "probability": 0.9605 + }, + { + "start": 21423.54, + "end": 21423.54, + "probability": 0.5173 + }, + { + "start": 21423.54, + "end": 21424.22, + "probability": 0.5223 + }, + { + "start": 21426.36, + "end": 21429.36, + "probability": 0.8702 + }, + { + "start": 21430.02, + "end": 21431.36, + "probability": 0.648 + }, + { + "start": 21431.96, + "end": 21433.24, + "probability": 0.9895 + }, + { + "start": 21433.78, + "end": 21434.41, + "probability": 0.908 + }, + { + "start": 21437.06, + "end": 21437.62, + "probability": 0.2742 + }, + { + "start": 21437.62, + "end": 21438.62, + "probability": 0.6003 + }, + { + "start": 21439.44, + "end": 21441.2, + "probability": 0.6294 + }, + { + "start": 21441.72, + "end": 21442.7, + "probability": 0.6149 + }, + { + "start": 21443.5, + "end": 21445.34, + "probability": 0.6785 + }, + { + "start": 21446.18, + "end": 21448.16, + "probability": 0.9378 + }, + { + "start": 21449.2, + "end": 21453.86, + "probability": 0.5934 + }, + { + "start": 21454.58, + "end": 21455.98, + "probability": 0.7446 + }, + { + "start": 21457.12, + "end": 21460.98, + "probability": 0.6817 + }, + { + "start": 21461.9, + "end": 21464.2, + "probability": 0.9077 + }, + { + "start": 21465.2, + "end": 21467.12, + "probability": 0.9122 + }, + { + "start": 21468.0, + "end": 21469.36, + "probability": 0.9482 + }, + { + "start": 21471.06, + "end": 21476.98, + "probability": 0.7906 + }, + { + "start": 21478.36, + "end": 21480.08, + "probability": 0.8085 + }, + { + "start": 21480.88, + "end": 21484.26, + "probability": 0.9823 + }, + { + "start": 21485.02, + "end": 21487.22, + "probability": 0.9922 + }, + { + "start": 21487.7, + "end": 21492.5, + "probability": 0.9571 + }, + { + "start": 21492.5, + "end": 21495.12, + "probability": 0.978 + }, + { + "start": 21495.28, + "end": 21496.78, + "probability": 0.8625 + }, + { + "start": 21497.42, + "end": 21498.94, + "probability": 0.7139 + }, + { + "start": 21499.56, + "end": 21501.14, + "probability": 0.5161 + }, + { + "start": 21501.74, + "end": 21504.0, + "probability": 0.8767 + }, + { + "start": 21504.38, + "end": 21507.98, + "probability": 0.9254 + }, + { + "start": 21508.24, + "end": 21511.3, + "probability": 0.7141 + }, + { + "start": 21511.48, + "end": 21511.98, + "probability": 0.7501 + }, + { + "start": 21512.1, + "end": 21512.1, + "probability": 0.5573 + }, + { + "start": 21512.1, + "end": 21513.08, + "probability": 0.5092 + }, + { + "start": 21521.72, + "end": 21522.12, + "probability": 0.7269 + }, + { + "start": 21522.12, + "end": 21522.12, + "probability": 0.1906 + }, + { + "start": 21537.1, + "end": 21537.94, + "probability": 0.5294 + }, + { + "start": 21538.5, + "end": 21539.22, + "probability": 0.6713 + }, + { + "start": 21539.3, + "end": 21541.44, + "probability": 0.7918 + }, + { + "start": 21541.56, + "end": 21546.98, + "probability": 0.9881 + }, + { + "start": 21547.36, + "end": 21550.02, + "probability": 0.908 + }, + { + "start": 21550.1, + "end": 21551.08, + "probability": 0.9644 + }, + { + "start": 21551.82, + "end": 21557.64, + "probability": 0.9929 + }, + { + "start": 21558.22, + "end": 21562.64, + "probability": 0.9932 + }, + { + "start": 21563.16, + "end": 21564.18, + "probability": 0.9232 + }, + { + "start": 21564.56, + "end": 21569.1, + "probability": 0.9978 + }, + { + "start": 21570.2, + "end": 21570.42, + "probability": 0.9655 + }, + { + "start": 21571.62, + "end": 21576.26, + "probability": 0.9971 + }, + { + "start": 21576.88, + "end": 21581.94, + "probability": 0.9629 + }, + { + "start": 21582.42, + "end": 21584.64, + "probability": 0.9816 + }, + { + "start": 21584.9, + "end": 21590.02, + "probability": 0.996 + }, + { + "start": 21590.5, + "end": 21593.3, + "probability": 0.9044 + }, + { + "start": 21593.9, + "end": 21596.22, + "probability": 0.8446 + }, + { + "start": 21597.08, + "end": 21598.64, + "probability": 0.9928 + }, + { + "start": 21599.3, + "end": 21602.22, + "probability": 0.9805 + }, + { + "start": 21602.4, + "end": 21603.24, + "probability": 0.8683 + }, + { + "start": 21603.28, + "end": 21604.08, + "probability": 0.8674 + }, + { + "start": 21605.26, + "end": 21611.68, + "probability": 0.9982 + }, + { + "start": 21612.78, + "end": 21618.48, + "probability": 0.9878 + }, + { + "start": 21618.88, + "end": 21622.92, + "probability": 0.998 + }, + { + "start": 21622.92, + "end": 21626.34, + "probability": 0.9725 + }, + { + "start": 21626.56, + "end": 21626.56, + "probability": 0.0488 + }, + { + "start": 21626.56, + "end": 21627.88, + "probability": 0.5064 + }, + { + "start": 21628.52, + "end": 21632.92, + "probability": 0.9773 + }, + { + "start": 21633.56, + "end": 21641.22, + "probability": 0.7064 + }, + { + "start": 21641.62, + "end": 21648.92, + "probability": 0.9482 + }, + { + "start": 21649.48, + "end": 21652.94, + "probability": 0.9873 + }, + { + "start": 21653.48, + "end": 21654.82, + "probability": 0.9905 + }, + { + "start": 21655.46, + "end": 21659.86, + "probability": 0.8679 + }, + { + "start": 21660.38, + "end": 21664.68, + "probability": 0.8035 + }, + { + "start": 21665.22, + "end": 21668.4, + "probability": 0.9326 + }, + { + "start": 21669.0, + "end": 21672.64, + "probability": 0.8275 + }, + { + "start": 21673.26, + "end": 21678.24, + "probability": 0.9549 + }, + { + "start": 21678.24, + "end": 21682.98, + "probability": 0.7676 + }, + { + "start": 21683.42, + "end": 21683.48, + "probability": 0.1019 + }, + { + "start": 21683.48, + "end": 21689.78, + "probability": 0.9441 + }, + { + "start": 21690.32, + "end": 21693.0, + "probability": 0.9657 + }, + { + "start": 21693.48, + "end": 21696.5, + "probability": 0.9435 + }, + { + "start": 21697.04, + "end": 21700.94, + "probability": 0.9774 + }, + { + "start": 21701.46, + "end": 21705.68, + "probability": 0.9515 + }, + { + "start": 21705.82, + "end": 21707.92, + "probability": 0.8145 + }, + { + "start": 21708.38, + "end": 21711.5, + "probability": 0.676 + }, + { + "start": 21712.08, + "end": 21716.46, + "probability": 0.9961 + }, + { + "start": 21716.82, + "end": 21720.76, + "probability": 0.9079 + }, + { + "start": 21721.36, + "end": 21724.92, + "probability": 0.9956 + }, + { + "start": 21724.92, + "end": 21728.54, + "probability": 0.9272 + }, + { + "start": 21729.0, + "end": 21733.1, + "probability": 0.9772 + }, + { + "start": 21733.66, + "end": 21739.54, + "probability": 0.9797 + }, + { + "start": 21739.58, + "end": 21742.62, + "probability": 0.9954 + }, + { + "start": 21743.4, + "end": 21746.16, + "probability": 0.9556 + }, + { + "start": 21746.88, + "end": 21747.2, + "probability": 0.8158 + }, + { + "start": 21747.28, + "end": 21748.64, + "probability": 0.9966 + }, + { + "start": 21748.82, + "end": 21753.54, + "probability": 0.9759 + }, + { + "start": 21753.7, + "end": 21757.64, + "probability": 0.9915 + }, + { + "start": 21757.64, + "end": 21762.4, + "probability": 0.9941 + }, + { + "start": 21763.24, + "end": 21766.92, + "probability": 0.9471 + }, + { + "start": 21767.68, + "end": 21773.5, + "probability": 0.9925 + }, + { + "start": 21774.06, + "end": 21776.46, + "probability": 0.9935 + }, + { + "start": 21777.68, + "end": 21779.92, + "probability": 0.998 + }, + { + "start": 21780.64, + "end": 21785.26, + "probability": 0.933 + }, + { + "start": 21785.5, + "end": 21788.31, + "probability": 0.9513 + }, + { + "start": 21789.94, + "end": 21791.12, + "probability": 0.756 + }, + { + "start": 21791.54, + "end": 21795.6, + "probability": 0.9738 + }, + { + "start": 21795.6, + "end": 21800.52, + "probability": 0.9709 + }, + { + "start": 21801.08, + "end": 21804.26, + "probability": 0.9664 + }, + { + "start": 21804.92, + "end": 21809.6, + "probability": 0.8309 + }, + { + "start": 21810.22, + "end": 21810.96, + "probability": 0.936 + }, + { + "start": 21811.88, + "end": 21813.32, + "probability": 0.9253 + }, + { + "start": 21813.94, + "end": 21818.94, + "probability": 0.9922 + }, + { + "start": 21818.94, + "end": 21823.66, + "probability": 0.9989 + }, + { + "start": 21824.08, + "end": 21829.1, + "probability": 0.997 + }, + { + "start": 21830.06, + "end": 21830.84, + "probability": 0.5177 + }, + { + "start": 21831.68, + "end": 21836.86, + "probability": 0.9912 + }, + { + "start": 21836.86, + "end": 21843.14, + "probability": 0.9972 + }, + { + "start": 21843.48, + "end": 21849.2, + "probability": 0.999 + }, + { + "start": 21850.36, + "end": 21856.82, + "probability": 0.9946 + }, + { + "start": 21856.96, + "end": 21857.66, + "probability": 0.7259 + }, + { + "start": 21857.92, + "end": 21858.46, + "probability": 0.7774 + }, + { + "start": 21858.8, + "end": 21860.19, + "probability": 0.0421 + }, + { + "start": 21860.8, + "end": 21860.9, + "probability": 0.0445 + }, + { + "start": 21861.58, + "end": 21863.04, + "probability": 0.7151 + }, + { + "start": 21863.08, + "end": 21865.5, + "probability": 0.4669 + }, + { + "start": 21868.5, + "end": 21869.14, + "probability": 0.3118 + }, + { + "start": 21869.86, + "end": 21870.18, + "probability": 0.2775 + }, + { + "start": 21870.18, + "end": 21871.38, + "probability": 0.4387 + }, + { + "start": 21872.3, + "end": 21873.54, + "probability": 0.0268 + }, + { + "start": 21874.1, + "end": 21875.64, + "probability": 0.1504 + }, + { + "start": 21876.1, + "end": 21877.62, + "probability": 0.0442 + }, + { + "start": 21877.62, + "end": 21877.62, + "probability": 0.06 + }, + { + "start": 21878.14, + "end": 21878.8, + "probability": 0.1652 + }, + { + "start": 21878.8, + "end": 21879.78, + "probability": 0.0573 + }, + { + "start": 21879.94, + "end": 21880.52, + "probability": 0.1806 + }, + { + "start": 21880.52, + "end": 21880.56, + "probability": 0.0993 + }, + { + "start": 21880.56, + "end": 21882.36, + "probability": 0.4047 + }, + { + "start": 21882.68, + "end": 21885.98, + "probability": 0.1011 + }, + { + "start": 21889.12, + "end": 21889.26, + "probability": 0.1539 + }, + { + "start": 21889.26, + "end": 21890.28, + "probability": 0.4546 + }, + { + "start": 21893.19, + "end": 21898.18, + "probability": 0.9863 + }, + { + "start": 21898.52, + "end": 21901.4, + "probability": 0.9973 + }, + { + "start": 21902.16, + "end": 21907.0, + "probability": 0.9219 + }, + { + "start": 21907.72, + "end": 21912.44, + "probability": 0.974 + }, + { + "start": 21913.54, + "end": 21917.58, + "probability": 0.9577 + }, + { + "start": 21918.66, + "end": 21919.72, + "probability": 0.7097 + }, + { + "start": 21920.12, + "end": 21923.32, + "probability": 0.9326 + }, + { + "start": 21924.08, + "end": 21927.18, + "probability": 0.5384 + }, + { + "start": 21928.0, + "end": 21932.28, + "probability": 0.8128 + }, + { + "start": 21933.02, + "end": 21935.92, + "probability": 0.7408 + }, + { + "start": 21936.74, + "end": 21937.78, + "probability": 0.851 + }, + { + "start": 21939.0, + "end": 21940.02, + "probability": 0.8464 + }, + { + "start": 21940.9, + "end": 21944.92, + "probability": 0.9899 + }, + { + "start": 21945.04, + "end": 21949.88, + "probability": 0.9839 + }, + { + "start": 21951.16, + "end": 21955.52, + "probability": 0.8081 + }, + { + "start": 21956.1, + "end": 21958.45, + "probability": 0.9557 + }, + { + "start": 21959.19, + "end": 21960.85, + "probability": 0.9361 + }, + { + "start": 21961.39, + "end": 21964.13, + "probability": 0.9307 + }, + { + "start": 21965.07, + "end": 21966.69, + "probability": 0.7747 + }, + { + "start": 21966.87, + "end": 21967.79, + "probability": 0.0078 + }, + { + "start": 21967.95, + "end": 21968.83, + "probability": 0.6093 + }, + { + "start": 21969.57, + "end": 21973.27, + "probability": 0.8854 + }, + { + "start": 21973.99, + "end": 21975.51, + "probability": 0.8658 + }, + { + "start": 21977.03, + "end": 21980.09, + "probability": 0.9258 + }, + { + "start": 21980.11, + "end": 21981.17, + "probability": 0.9278 + }, + { + "start": 21981.25, + "end": 21981.65, + "probability": 0.824 + }, + { + "start": 21982.88, + "end": 21986.29, + "probability": 0.9986 + }, + { + "start": 21988.49, + "end": 21990.49, + "probability": 0.9082 + }, + { + "start": 21990.57, + "end": 21990.75, + "probability": 0.1217 + }, + { + "start": 21992.41, + "end": 21994.35, + "probability": 0.2567 + }, + { + "start": 21994.53, + "end": 21995.19, + "probability": 0.4755 + }, + { + "start": 21995.19, + "end": 21997.45, + "probability": 0.3776 + }, + { + "start": 21997.45, + "end": 21998.33, + "probability": 0.6082 + }, + { + "start": 21998.87, + "end": 22001.03, + "probability": 0.2429 + }, + { + "start": 22001.25, + "end": 22004.05, + "probability": 0.8278 + }, + { + "start": 22004.15, + "end": 22004.79, + "probability": 0.4351 + }, + { + "start": 22004.85, + "end": 22006.05, + "probability": 0.7184 + }, + { + "start": 22006.71, + "end": 22011.71, + "probability": 0.3678 + }, + { + "start": 22014.37, + "end": 22015.99, + "probability": 0.5644 + }, + { + "start": 22019.21, + "end": 22020.37, + "probability": 0.2631 + }, + { + "start": 22022.59, + "end": 22024.62, + "probability": 0.3566 + }, + { + "start": 22026.56, + "end": 22027.83, + "probability": 0.0612 + }, + { + "start": 22027.83, + "end": 22033.73, + "probability": 0.0416 + }, + { + "start": 22034.33, + "end": 22036.01, + "probability": 0.2102 + }, + { + "start": 22037.17, + "end": 22038.31, + "probability": 0.0316 + }, + { + "start": 22039.45, + "end": 22040.71, + "probability": 0.0483 + }, + { + "start": 22044.65, + "end": 22048.89, + "probability": 0.0444 + }, + { + "start": 22049.45, + "end": 22051.91, + "probability": 0.1798 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.0, + "end": 22093.0, + "probability": 0.0 + }, + { + "start": 22093.94, + "end": 22094.88, + "probability": 0.171 + }, + { + "start": 22118.42, + "end": 22120.66, + "probability": 0.0682 + }, + { + "start": 22123.2, + "end": 22123.84, + "probability": 0.0183 + }, + { + "start": 22123.94, + "end": 22129.14, + "probability": 0.0638 + }, + { + "start": 22129.9, + "end": 22130.68, + "probability": 0.1327 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.0, + "end": 22226.0, + "probability": 0.0 + }, + { + "start": 22226.08, + "end": 22228.36, + "probability": 0.2068 + }, + { + "start": 22229.4, + "end": 22236.7, + "probability": 0.9787 + }, + { + "start": 22236.84, + "end": 22240.46, + "probability": 0.9949 + }, + { + "start": 22240.72, + "end": 22245.14, + "probability": 0.906 + }, + { + "start": 22245.14, + "end": 22245.64, + "probability": 0.0011 + }, + { + "start": 22245.7, + "end": 22250.0, + "probability": 0.9002 + }, + { + "start": 22250.52, + "end": 22251.6, + "probability": 0.8155 + }, + { + "start": 22252.14, + "end": 22256.38, + "probability": 0.4043 + }, + { + "start": 22256.48, + "end": 22256.66, + "probability": 0.1975 + }, + { + "start": 22256.66, + "end": 22260.52, + "probability": 0.0433 + }, + { + "start": 22260.52, + "end": 22260.52, + "probability": 0.3809 + }, + { + "start": 22260.52, + "end": 22262.08, + "probability": 0.6769 + }, + { + "start": 22262.14, + "end": 22264.4, + "probability": 0.8535 + }, + { + "start": 22264.68, + "end": 22270.16, + "probability": 0.9077 + }, + { + "start": 22270.7, + "end": 22277.92, + "probability": 0.981 + }, + { + "start": 22277.92, + "end": 22280.04, + "probability": 0.5027 + }, + { + "start": 22281.18, + "end": 22281.18, + "probability": 0.054 + }, + { + "start": 22281.18, + "end": 22281.88, + "probability": 0.1501 + }, + { + "start": 22283.06, + "end": 22285.28, + "probability": 0.1613 + }, + { + "start": 22285.46, + "end": 22286.2, + "probability": 0.1023 + }, + { + "start": 22286.32, + "end": 22287.84, + "probability": 0.35 + }, + { + "start": 22289.62, + "end": 22293.98, + "probability": 0.3824 + }, + { + "start": 22294.08, + "end": 22296.04, + "probability": 0.3734 + }, + { + "start": 22296.58, + "end": 22298.04, + "probability": 0.1142 + }, + { + "start": 22298.3, + "end": 22301.12, + "probability": 0.3994 + }, + { + "start": 22301.74, + "end": 22302.3, + "probability": 0.0477 + }, + { + "start": 22302.62, + "end": 22304.04, + "probability": 0.0611 + }, + { + "start": 22304.26, + "end": 22304.26, + "probability": 0.0944 + }, + { + "start": 22304.26, + "end": 22305.02, + "probability": 0.3746 + }, + { + "start": 22305.02, + "end": 22307.18, + "probability": 0.6493 + }, + { + "start": 22307.26, + "end": 22308.34, + "probability": 0.3458 + }, + { + "start": 22308.38, + "end": 22309.72, + "probability": 0.7858 + }, + { + "start": 22309.72, + "end": 22310.52, + "probability": 0.7609 + }, + { + "start": 22310.52, + "end": 22311.5, + "probability": 0.4178 + }, + { + "start": 22313.39, + "end": 22315.22, + "probability": 0.0774 + }, + { + "start": 22316.88, + "end": 22318.06, + "probability": 0.0355 + }, + { + "start": 22318.06, + "end": 22318.34, + "probability": 0.2569 + }, + { + "start": 22318.34, + "end": 22319.0, + "probability": 0.348 + }, + { + "start": 22319.52, + "end": 22320.27, + "probability": 0.0617 + }, + { + "start": 22321.64, + "end": 22321.72, + "probability": 0.0235 + }, + { + "start": 22321.72, + "end": 22323.4, + "probability": 0.5864 + }, + { + "start": 22323.48, + "end": 22324.39, + "probability": 0.4156 + }, + { + "start": 22324.86, + "end": 22329.48, + "probability": 0.1709 + }, + { + "start": 22329.68, + "end": 22331.52, + "probability": 0.6399 + }, + { + "start": 22331.9, + "end": 22332.81, + "probability": 0.7956 + }, + { + "start": 22333.04, + "end": 22333.38, + "probability": 0.4549 + }, + { + "start": 22333.44, + "end": 22335.08, + "probability": 0.9163 + }, + { + "start": 22335.38, + "end": 22337.02, + "probability": 0.7759 + }, + { + "start": 22337.14, + "end": 22339.7, + "probability": 0.2837 + }, + { + "start": 22339.72, + "end": 22343.88, + "probability": 0.6355 + }, + { + "start": 22344.34, + "end": 22344.34, + "probability": 0.1309 + }, + { + "start": 22344.34, + "end": 22346.54, + "probability": 0.6517 + }, + { + "start": 22346.54, + "end": 22347.3, + "probability": 0.4536 + }, + { + "start": 22347.48, + "end": 22349.0, + "probability": 0.0258 + }, + { + "start": 22350.18, + "end": 22354.1, + "probability": 0.7867 + }, + { + "start": 22355.3, + "end": 22356.96, + "probability": 0.9882 + }, + { + "start": 22359.06, + "end": 22360.34, + "probability": 0.0452 + }, + { + "start": 22361.38, + "end": 22364.66, + "probability": 0.6497 + }, + { + "start": 22365.62, + "end": 22368.66, + "probability": 0.9752 + }, + { + "start": 22368.94, + "end": 22369.56, + "probability": 0.5178 + }, + { + "start": 22369.56, + "end": 22373.46, + "probability": 0.6954 + }, + { + "start": 22373.88, + "end": 22378.08, + "probability": 0.3381 + }, + { + "start": 22378.68, + "end": 22380.7, + "probability": 0.1206 + }, + { + "start": 22381.46, + "end": 22381.78, + "probability": 0.0584 + }, + { + "start": 22381.78, + "end": 22382.74, + "probability": 0.1144 + }, + { + "start": 22383.3, + "end": 22389.88, + "probability": 0.5595 + }, + { + "start": 22390.6, + "end": 22392.22, + "probability": 0.6343 + }, + { + "start": 22393.44, + "end": 22397.38, + "probability": 0.9009 + }, + { + "start": 22397.66, + "end": 22401.18, + "probability": 0.0103 + }, + { + "start": 22401.5, + "end": 22402.42, + "probability": 0.1816 + }, + { + "start": 22403.32, + "end": 22405.5, + "probability": 0.6775 + }, + { + "start": 22405.92, + "end": 22408.96, + "probability": 0.5087 + }, + { + "start": 22408.98, + "end": 22415.7, + "probability": 0.2995 + }, + { + "start": 22415.7, + "end": 22416.04, + "probability": 0.0516 + }, + { + "start": 22416.08, + "end": 22420.46, + "probability": 0.8764 + }, + { + "start": 22420.64, + "end": 22424.76, + "probability": 0.6739 + }, + { + "start": 22425.74, + "end": 22428.92, + "probability": 0.2205 + }, + { + "start": 22429.82, + "end": 22430.34, + "probability": 0.5326 + }, + { + "start": 22430.78, + "end": 22431.16, + "probability": 0.012 + }, + { + "start": 22431.16, + "end": 22431.16, + "probability": 0.0666 + }, + { + "start": 22431.16, + "end": 22432.63, + "probability": 0.0724 + }, + { + "start": 22434.5, + "end": 22436.4, + "probability": 0.3771 + }, + { + "start": 22437.0, + "end": 22440.17, + "probability": 0.6654 + }, + { + "start": 22441.94, + "end": 22445.34, + "probability": 0.5692 + }, + { + "start": 22445.34, + "end": 22445.86, + "probability": 0.3648 + }, + { + "start": 22446.02, + "end": 22447.56, + "probability": 0.4488 + }, + { + "start": 22447.56, + "end": 22454.3, + "probability": 0.9756 + }, + { + "start": 22454.3, + "end": 22455.44, + "probability": 0.1181 + }, + { + "start": 22455.44, + "end": 22456.22, + "probability": 0.6562 + }, + { + "start": 22456.34, + "end": 22458.26, + "probability": 0.8969 + }, + { + "start": 22458.28, + "end": 22459.24, + "probability": 0.8127 + }, + { + "start": 22459.28, + "end": 22461.0, + "probability": 0.4962 + }, + { + "start": 22461.0, + "end": 22462.18, + "probability": 0.6328 + }, + { + "start": 22466.97, + "end": 22469.92, + "probability": 0.4919 + }, + { + "start": 22471.06, + "end": 22474.92, + "probability": 0.9829 + }, + { + "start": 22475.5, + "end": 22480.96, + "probability": 0.5163 + }, + { + "start": 22483.22, + "end": 22485.1, + "probability": 0.0348 + }, + { + "start": 22485.18, + "end": 22485.18, + "probability": 0.1131 + }, + { + "start": 22485.26, + "end": 22485.26, + "probability": 0.0924 + }, + { + "start": 22485.26, + "end": 22485.26, + "probability": 0.1994 + }, + { + "start": 22485.26, + "end": 22486.54, + "probability": 0.2102 + }, + { + "start": 22486.94, + "end": 22489.14, + "probability": 0.9668 + }, + { + "start": 22489.22, + "end": 22494.58, + "probability": 0.9891 + }, + { + "start": 22495.64, + "end": 22497.14, + "probability": 0.7408 + }, + { + "start": 22497.88, + "end": 22503.04, + "probability": 0.7873 + }, + { + "start": 22504.56, + "end": 22507.12, + "probability": 0.895 + }, + { + "start": 22508.22, + "end": 22510.68, + "probability": 0.8695 + }, + { + "start": 22511.48, + "end": 22516.24, + "probability": 0.9614 + }, + { + "start": 22516.26, + "end": 22518.06, + "probability": 0.0447 + }, + { + "start": 22518.48, + "end": 22519.54, + "probability": 0.4991 + }, + { + "start": 22519.66, + "end": 22520.26, + "probability": 0.4365 + }, + { + "start": 22520.5, + "end": 22521.64, + "probability": 0.2919 + }, + { + "start": 22521.64, + "end": 22522.26, + "probability": 0.4919 + }, + { + "start": 22522.4, + "end": 22522.72, + "probability": 0.5297 + }, + { + "start": 22523.86, + "end": 22523.88, + "probability": 0.0059 + }, + { + "start": 22524.42, + "end": 22524.64, + "probability": 0.1847 + }, + { + "start": 22524.64, + "end": 22524.64, + "probability": 0.1958 + }, + { + "start": 22524.64, + "end": 22524.78, + "probability": 0.1524 + }, + { + "start": 22524.78, + "end": 22524.78, + "probability": 0.1509 + }, + { + "start": 22524.78, + "end": 22526.98, + "probability": 0.8116 + }, + { + "start": 22527.54, + "end": 22530.86, + "probability": 0.7549 + }, + { + "start": 22531.02, + "end": 22533.62, + "probability": 0.8611 + }, + { + "start": 22534.52, + "end": 22537.48, + "probability": 0.9947 + }, + { + "start": 22538.08, + "end": 22547.62, + "probability": 0.9207 + }, + { + "start": 22548.48, + "end": 22553.58, + "probability": 0.7483 + }, + { + "start": 22553.6, + "end": 22557.04, + "probability": 0.6365 + }, + { + "start": 22557.76, + "end": 22560.9, + "probability": 0.7026 + }, + { + "start": 22561.34, + "end": 22565.5, + "probability": 0.2211 + }, + { + "start": 22565.84, + "end": 22565.84, + "probability": 0.0908 + }, + { + "start": 22565.84, + "end": 22565.84, + "probability": 0.0786 + }, + { + "start": 22565.84, + "end": 22569.78, + "probability": 0.5573 + }, + { + "start": 22569.8, + "end": 22572.26, + "probability": 0.9773 + }, + { + "start": 22572.8, + "end": 22573.72, + "probability": 0.2462 + }, + { + "start": 22573.72, + "end": 22574.76, + "probability": 0.5194 + }, + { + "start": 22575.48, + "end": 22575.6, + "probability": 0.4306 + }, + { + "start": 22576.66, + "end": 22576.94, + "probability": 0.0369 + }, + { + "start": 22576.94, + "end": 22578.14, + "probability": 0.4927 + }, + { + "start": 22578.14, + "end": 22579.78, + "probability": 0.4863 + }, + { + "start": 22580.14, + "end": 22581.94, + "probability": 0.237 + }, + { + "start": 22583.24, + "end": 22585.68, + "probability": 0.5318 + }, + { + "start": 22585.68, + "end": 22587.94, + "probability": 0.6339 + }, + { + "start": 22587.98, + "end": 22588.98, + "probability": 0.8154 + }, + { + "start": 22589.06, + "end": 22590.12, + "probability": 0.483 + }, + { + "start": 22594.62, + "end": 22594.76, + "probability": 0.053 + }, + { + "start": 22594.76, + "end": 22595.3, + "probability": 0.1331 + }, + { + "start": 22595.66, + "end": 22597.03, + "probability": 0.1054 + }, + { + "start": 22600.0, + "end": 22604.98, + "probability": 0.0393 + }, + { + "start": 22606.16, + "end": 22607.38, + "probability": 0.5636 + }, + { + "start": 22607.4, + "end": 22614.08, + "probability": 0.3936 + }, + { + "start": 22614.08, + "end": 22614.08, + "probability": 0.0728 + }, + { + "start": 22614.08, + "end": 22614.08, + "probability": 0.1704 + }, + { + "start": 22614.08, + "end": 22614.08, + "probability": 0.0461 + }, + { + "start": 22614.08, + "end": 22614.5, + "probability": 0.3771 + }, + { + "start": 22616.74, + "end": 22618.96, + "probability": 0.8361 + }, + { + "start": 22619.06, + "end": 22620.89, + "probability": 0.6523 + }, + { + "start": 22622.14, + "end": 22623.87, + "probability": 0.796 + }, + { + "start": 22624.56, + "end": 22625.45, + "probability": 0.0184 + }, + { + "start": 22627.24, + "end": 22627.74, + "probability": 0.001 + }, + { + "start": 22630.76, + "end": 22635.42, + "probability": 0.6254 + }, + { + "start": 22635.78, + "end": 22637.54, + "probability": 0.8262 + }, + { + "start": 22638.24, + "end": 22638.34, + "probability": 0.0062 + }, + { + "start": 22638.34, + "end": 22638.34, + "probability": 0.0331 + }, + { + "start": 22638.34, + "end": 22639.5, + "probability": 0.7243 + }, + { + "start": 22639.64, + "end": 22645.28, + "probability": 0.9346 + }, + { + "start": 22645.56, + "end": 22647.42, + "probability": 0.2165 + }, + { + "start": 22647.48, + "end": 22648.26, + "probability": 0.884 + }, + { + "start": 22648.4, + "end": 22650.86, + "probability": 0.9679 + }, + { + "start": 22651.14, + "end": 22655.02, + "probability": 0.9332 + }, + { + "start": 22655.06, + "end": 22656.92, + "probability": 0.6378 + }, + { + "start": 22657.78, + "end": 22658.91, + "probability": 0.8306 + }, + { + "start": 22658.96, + "end": 22660.26, + "probability": 0.7039 + }, + { + "start": 22660.56, + "end": 22662.38, + "probability": 0.688 + }, + { + "start": 22662.7, + "end": 22663.34, + "probability": 0.1765 + }, + { + "start": 22663.34, + "end": 22664.58, + "probability": 0.0008 + }, + { + "start": 22664.64, + "end": 22665.14, + "probability": 0.6349 + }, + { + "start": 22665.22, + "end": 22665.36, + "probability": 0.7837 + }, + { + "start": 22665.72, + "end": 22669.78, + "probability": 0.9751 + }, + { + "start": 22670.7, + "end": 22671.68, + "probability": 0.9321 + }, + { + "start": 22672.28, + "end": 22674.98, + "probability": 0.9949 + }, + { + "start": 22675.72, + "end": 22680.5, + "probability": 0.9929 + }, + { + "start": 22680.5, + "end": 22686.2, + "probability": 0.9972 + }, + { + "start": 22686.44, + "end": 22689.42, + "probability": 0.851 + }, + { + "start": 22690.06, + "end": 22691.16, + "probability": 0.6793 + }, + { + "start": 22692.72, + "end": 22694.72, + "probability": 0.1015 + }, + { + "start": 22694.78, + "end": 22695.42, + "probability": 0.4486 + }, + { + "start": 22695.42, + "end": 22695.6, + "probability": 0.4443 + }, + { + "start": 22695.64, + "end": 22698.04, + "probability": 0.6198 + }, + { + "start": 22700.14, + "end": 22701.5, + "probability": 0.7315 + }, + { + "start": 22701.76, + "end": 22703.34, + "probability": 0.5492 + }, + { + "start": 22703.4, + "end": 22704.1, + "probability": 0.7818 + }, + { + "start": 22704.44, + "end": 22705.62, + "probability": 0.0063 + }, + { + "start": 22706.3, + "end": 22715.82, + "probability": 0.9829 + }, + { + "start": 22716.1, + "end": 22716.1, + "probability": 0.0263 + }, + { + "start": 22716.14, + "end": 22716.35, + "probability": 0.0017 + }, + { + "start": 22716.88, + "end": 22723.94, + "probability": 0.9728 + }, + { + "start": 22724.5, + "end": 22728.76, + "probability": 0.8826 + }, + { + "start": 22729.52, + "end": 22731.52, + "probability": 0.819 + }, + { + "start": 22732.14, + "end": 22732.42, + "probability": 0.8359 + }, + { + "start": 22732.48, + "end": 22733.22, + "probability": 0.8912 + }, + { + "start": 22733.3, + "end": 22734.86, + "probability": 0.9722 + }, + { + "start": 22735.28, + "end": 22736.82, + "probability": 0.9941 + }, + { + "start": 22738.04, + "end": 22743.22, + "probability": 0.8417 + }, + { + "start": 22743.28, + "end": 22743.72, + "probability": 0.9182 + }, + { + "start": 22743.96, + "end": 22745.06, + "probability": 0.9413 + }, + { + "start": 22745.88, + "end": 22745.88, + "probability": 0.0822 + }, + { + "start": 22745.88, + "end": 22745.96, + "probability": 0.0244 + }, + { + "start": 22746.08, + "end": 22751.74, + "probability": 0.9909 + }, + { + "start": 22751.74, + "end": 22757.0, + "probability": 0.9963 + }, + { + "start": 22758.1, + "end": 22759.02, + "probability": 0.7528 + }, + { + "start": 22759.86, + "end": 22762.5, + "probability": 0.9964 + }, + { + "start": 22763.2, + "end": 22764.72, + "probability": 0.6687 + }, + { + "start": 22766.04, + "end": 22770.42, + "probability": 0.9323 + }, + { + "start": 22772.04, + "end": 22776.54, + "probability": 0.6773 + }, + { + "start": 22776.54, + "end": 22777.28, + "probability": 0.9846 + }, + { + "start": 22777.72, + "end": 22778.34, + "probability": 0.9486 + }, + { + "start": 22778.66, + "end": 22781.2, + "probability": 0.7534 + }, + { + "start": 22781.28, + "end": 22782.46, + "probability": 0.9468 + }, + { + "start": 22782.8, + "end": 22786.71, + "probability": 0.9895 + }, + { + "start": 22787.32, + "end": 22792.2, + "probability": 0.9893 + }, + { + "start": 22792.36, + "end": 22792.52, + "probability": 0.0883 + }, + { + "start": 22792.84, + "end": 22794.22, + "probability": 0.9705 + }, + { + "start": 22794.44, + "end": 22795.7, + "probability": 0.5798 + }, + { + "start": 22796.36, + "end": 22796.6, + "probability": 0.3085 + }, + { + "start": 22796.6, + "end": 22797.98, + "probability": 0.6492 + }, + { + "start": 22798.04, + "end": 22798.64, + "probability": 0.727 + }, + { + "start": 22798.92, + "end": 22800.32, + "probability": 0.6926 + }, + { + "start": 22801.4, + "end": 22805.14, + "probability": 0.8386 + }, + { + "start": 22806.02, + "end": 22811.28, + "probability": 0.8057 + }, + { + "start": 22813.44, + "end": 22814.68, + "probability": 0.3328 + }, + { + "start": 22815.47, + "end": 22817.46, + "probability": 0.0394 + }, + { + "start": 22817.8, + "end": 22818.96, + "probability": 0.47 + }, + { + "start": 22819.2, + "end": 22819.62, + "probability": 0.5939 + }, + { + "start": 22819.73, + "end": 22821.58, + "probability": 0.5196 + }, + { + "start": 22821.74, + "end": 22825.92, + "probability": 0.9834 + }, + { + "start": 22826.1, + "end": 22831.38, + "probability": 0.9625 + }, + { + "start": 22832.32, + "end": 22834.32, + "probability": 0.5015 + }, + { + "start": 22834.32, + "end": 22839.06, + "probability": 0.9123 + }, + { + "start": 22839.82, + "end": 22841.22, + "probability": 0.6594 + }, + { + "start": 22841.44, + "end": 22843.34, + "probability": 0.7938 + }, + { + "start": 22843.54, + "end": 22844.0, + "probability": 0.4435 + }, + { + "start": 22844.4, + "end": 22847.76, + "probability": 0.7582 + }, + { + "start": 22848.28, + "end": 22849.24, + "probability": 0.0403 + }, + { + "start": 22849.86, + "end": 22850.06, + "probability": 0.1993 + }, + { + "start": 22850.06, + "end": 22850.8, + "probability": 0.4438 + }, + { + "start": 22851.52, + "end": 22852.6, + "probability": 0.8828 + }, + { + "start": 22853.04, + "end": 22856.44, + "probability": 0.9674 + }, + { + "start": 22856.56, + "end": 22858.98, + "probability": 0.9951 + }, + { + "start": 22859.52, + "end": 22864.16, + "probability": 0.9932 + }, + { + "start": 22864.76, + "end": 22868.65, + "probability": 0.7937 + }, + { + "start": 22869.26, + "end": 22874.44, + "probability": 0.7225 + }, + { + "start": 22874.82, + "end": 22876.08, + "probability": 0.6731 + }, + { + "start": 22876.3, + "end": 22876.98, + "probability": 0.8899 + }, + { + "start": 22877.44, + "end": 22880.1, + "probability": 0.7571 + }, + { + "start": 22880.34, + "end": 22882.68, + "probability": 0.9059 + }, + { + "start": 22883.56, + "end": 22884.29, + "probability": 0.7171 + }, + { + "start": 22885.22, + "end": 22888.92, + "probability": 0.007 + }, + { + "start": 22889.04, + "end": 22889.6, + "probability": 0.0028 + }, + { + "start": 22891.66, + "end": 22893.02, + "probability": 0.0052 + }, + { + "start": 22906.48, + "end": 22906.48, + "probability": 0.3672 + }, + { + "start": 22906.48, + "end": 22908.06, + "probability": 0.5101 + }, + { + "start": 22908.16, + "end": 22910.64, + "probability": 0.4971 + }, + { + "start": 22910.74, + "end": 22912.74, + "probability": 0.5328 + }, + { + "start": 22913.44, + "end": 22915.48, + "probability": 0.5203 + }, + { + "start": 22916.34, + "end": 22917.14, + "probability": 0.1784 + }, + { + "start": 22917.54, + "end": 22919.42, + "probability": 0.4385 + }, + { + "start": 22922.84, + "end": 22927.58, + "probability": 0.581 + }, + { + "start": 22929.63, + "end": 22930.98, + "probability": 0.7455 + }, + { + "start": 22931.0, + "end": 22932.75, + "probability": 0.7624 + }, + { + "start": 22933.1, + "end": 22933.92, + "probability": 0.7063 + }, + { + "start": 22934.02, + "end": 22936.74, + "probability": 0.7595 + }, + { + "start": 22936.74, + "end": 22941.18, + "probability": 0.9595 + }, + { + "start": 22944.1, + "end": 22944.28, + "probability": 0.3705 + }, + { + "start": 22944.38, + "end": 22945.48, + "probability": 0.8615 + }, + { + "start": 22945.68, + "end": 22946.72, + "probability": 0.8625 + }, + { + "start": 22946.76, + "end": 22947.7, + "probability": 0.3512 + }, + { + "start": 22948.45, + "end": 22951.6, + "probability": 0.9221 + }, + { + "start": 22952.26, + "end": 22953.78, + "probability": 0.6191 + }, + { + "start": 22953.82, + "end": 22959.06, + "probability": 0.8245 + }, + { + "start": 22959.7, + "end": 22959.96, + "probability": 0.1808 + }, + { + "start": 22960.64, + "end": 22961.94, + "probability": 0.1823 + }, + { + "start": 22961.98, + "end": 22961.98, + "probability": 0.1688 + }, + { + "start": 22961.98, + "end": 22961.98, + "probability": 0.2031 + }, + { + "start": 22961.98, + "end": 22961.98, + "probability": 0.0757 + }, + { + "start": 22961.98, + "end": 22961.98, + "probability": 0.0357 + }, + { + "start": 22961.98, + "end": 22964.3, + "probability": 0.2702 + }, + { + "start": 22964.92, + "end": 22983.38, + "probability": 0.3101 + }, + { + "start": 22988.16, + "end": 22988.16, + "probability": 0.0143 + }, + { + "start": 22988.16, + "end": 22988.16, + "probability": 0.2218 + }, + { + "start": 22988.16, + "end": 22988.16, + "probability": 0.1697 + }, + { + "start": 22988.16, + "end": 22988.42, + "probability": 0.233 + }, + { + "start": 22988.44, + "end": 22989.06, + "probability": 0.5633 + }, + { + "start": 22989.06, + "end": 22989.44, + "probability": 0.5603 + }, + { + "start": 22989.45, + "end": 22992.37, + "probability": 0.6694 + }, + { + "start": 22992.88, + "end": 22994.82, + "probability": 0.9439 + }, + { + "start": 22996.28, + "end": 23013.98, + "probability": 0.6649 + }, + { + "start": 23015.18, + "end": 23015.48, + "probability": 0.1079 + }, + { + "start": 23015.76, + "end": 23016.46, + "probability": 0.1464 + }, + { + "start": 23016.5, + "end": 23016.84, + "probability": 0.511 + }, + { + "start": 23016.98, + "end": 23020.0, + "probability": 0.9087 + }, + { + "start": 23020.85, + "end": 23024.02, + "probability": 0.8394 + }, + { + "start": 23024.02, + "end": 23029.04, + "probability": 0.6146 + }, + { + "start": 23040.8, + "end": 23043.28, + "probability": 0.7409 + }, + { + "start": 23043.38, + "end": 23046.04, + "probability": 0.8173 + }, + { + "start": 23046.5, + "end": 23053.02, + "probability": 0.5595 + }, + { + "start": 23053.16, + "end": 23053.22, + "probability": 0.3214 + }, + { + "start": 23053.22, + "end": 23054.96, + "probability": 0.8272 + }, + { + "start": 23066.7, + "end": 23067.6, + "probability": 0.0934 + }, + { + "start": 23073.74, + "end": 23076.46, + "probability": 0.8243 + }, + { + "start": 23076.98, + "end": 23078.6, + "probability": 0.7412 + }, + { + "start": 23078.72, + "end": 23083.5, + "probability": 0.8818 + }, + { + "start": 23087.16, + "end": 23087.68, + "probability": 0.745 + }, + { + "start": 23089.04, + "end": 23094.26, + "probability": 0.087 + }, + { + "start": 23099.86, + "end": 23106.22, + "probability": 0.8346 + }, + { + "start": 23106.22, + "end": 23108.58, + "probability": 0.7556 + }, + { + "start": 23108.66, + "end": 23110.76, + "probability": 0.7753 + }, + { + "start": 23110.78, + "end": 23114.9, + "probability": 0.6449 + }, + { + "start": 23119.96, + "end": 23124.62, + "probability": 0.1468 + }, + { + "start": 23124.62, + "end": 23125.54, + "probability": 0.556 + }, + { + "start": 23126.14, + "end": 23126.38, + "probability": 0.693 + }, + { + "start": 23129.48, + "end": 23130.58, + "probability": 0.1589 + }, + { + "start": 23132.32, + "end": 23134.44, + "probability": 0.5308 + }, + { + "start": 23134.62, + "end": 23137.54, + "probability": 0.6107 + }, + { + "start": 23137.56, + "end": 23138.06, + "probability": 0.6613 + }, + { + "start": 23138.14, + "end": 23139.34, + "probability": 0.7889 + }, + { + "start": 23139.78, + "end": 23140.72, + "probability": 0.9925 + }, + { + "start": 23140.78, + "end": 23142.96, + "probability": 0.9479 + }, + { + "start": 23143.04, + "end": 23145.44, + "probability": 0.7508 + }, + { + "start": 23148.47, + "end": 23151.84, + "probability": 0.5398 + }, + { + "start": 23152.04, + "end": 23155.8, + "probability": 0.887 + }, + { + "start": 23155.86, + "end": 23157.06, + "probability": 0.8571 + }, + { + "start": 23157.12, + "end": 23157.88, + "probability": 0.8545 + }, + { + "start": 23159.26, + "end": 23160.08, + "probability": 0.3686 + }, + { + "start": 23162.82, + "end": 23163.68, + "probability": 0.1769 + }, + { + "start": 23176.8, + "end": 23177.72, + "probability": 0.1785 + }, + { + "start": 23191.4, + "end": 23193.44, + "probability": 0.6794 + }, + { + "start": 23193.62, + "end": 23195.84, + "probability": 0.8354 + }, + { + "start": 23199.08, + "end": 23203.78, + "probability": 0.4837 + }, + { + "start": 23204.38, + "end": 23209.84, + "probability": 0.9318 + }, + { + "start": 23210.48, + "end": 23213.44, + "probability": 0.9686 + }, + { + "start": 23214.6, + "end": 23219.66, + "probability": 0.8823 + }, + { + "start": 23220.26, + "end": 23223.92, + "probability": 0.8354 + }, + { + "start": 23224.5, + "end": 23226.92, + "probability": 0.9869 + }, + { + "start": 23227.42, + "end": 23229.4, + "probability": 0.8837 + }, + { + "start": 23229.92, + "end": 23234.78, + "probability": 0.9713 + }, + { + "start": 23235.6, + "end": 23236.0, + "probability": 0.3796 + }, + { + "start": 23236.08, + "end": 23237.96, + "probability": 0.934 + }, + { + "start": 23238.18, + "end": 23239.09, + "probability": 0.7593 + }, + { + "start": 23240.06, + "end": 23241.42, + "probability": 0.848 + }, + { + "start": 23242.16, + "end": 23245.42, + "probability": 0.9396 + }, + { + "start": 23245.6, + "end": 23249.84, + "probability": 0.9708 + }, + { + "start": 23250.46, + "end": 23251.62, + "probability": 0.7545 + }, + { + "start": 23252.48, + "end": 23255.66, + "probability": 0.5706 + }, + { + "start": 23257.46, + "end": 23259.84, + "probability": 0.9282 + }, + { + "start": 23260.4, + "end": 23264.46, + "probability": 0.9242 + }, + { + "start": 23265.04, + "end": 23266.84, + "probability": 0.5132 + }, + { + "start": 23267.36, + "end": 23268.94, + "probability": 0.8034 + }, + { + "start": 23269.66, + "end": 23273.46, + "probability": 0.9771 + }, + { + "start": 23273.46, + "end": 23277.24, + "probability": 0.9945 + }, + { + "start": 23278.04, + "end": 23280.0, + "probability": 0.9774 + }, + { + "start": 23280.48, + "end": 23283.66, + "probability": 0.9701 + }, + { + "start": 23284.46, + "end": 23288.44, + "probability": 0.9948 + }, + { + "start": 23288.44, + "end": 23292.64, + "probability": 0.9256 + }, + { + "start": 23292.74, + "end": 23293.8, + "probability": 0.6677 + }, + { + "start": 23294.4, + "end": 23298.88, + "probability": 0.9833 + }, + { + "start": 23299.96, + "end": 23302.04, + "probability": 0.8412 + }, + { + "start": 23302.5, + "end": 23305.46, + "probability": 0.9737 + }, + { + "start": 23306.08, + "end": 23307.4, + "probability": 0.9248 + }, + { + "start": 23308.0, + "end": 23309.58, + "probability": 0.9972 + }, + { + "start": 23310.12, + "end": 23314.44, + "probability": 0.9573 + }, + { + "start": 23315.28, + "end": 23318.78, + "probability": 0.9946 + }, + { + "start": 23319.02, + "end": 23324.26, + "probability": 0.98 + }, + { + "start": 23325.36, + "end": 23325.76, + "probability": 0.4783 + }, + { + "start": 23325.82, + "end": 23330.66, + "probability": 0.9963 + }, + { + "start": 23331.32, + "end": 23337.63, + "probability": 0.9567 + }, + { + "start": 23337.98, + "end": 23338.4, + "probability": 0.6748 + }, + { + "start": 23338.5, + "end": 23341.66, + "probability": 0.8571 + }, + { + "start": 23342.28, + "end": 23343.76, + "probability": 0.8719 + }, + { + "start": 23344.48, + "end": 23344.84, + "probability": 0.3839 + }, + { + "start": 23344.94, + "end": 23349.22, + "probability": 0.9831 + }, + { + "start": 23349.32, + "end": 23350.22, + "probability": 0.8931 + }, + { + "start": 23351.1, + "end": 23353.06, + "probability": 0.9717 + }, + { + "start": 23353.72, + "end": 23358.6, + "probability": 0.9157 + }, + { + "start": 23358.68, + "end": 23362.94, + "probability": 0.9785 + }, + { + "start": 23362.94, + "end": 23367.34, + "probability": 0.9394 + }, + { + "start": 23367.46, + "end": 23372.88, + "probability": 0.9646 + }, + { + "start": 23373.46, + "end": 23375.98, + "probability": 0.7675 + }, + { + "start": 23376.5, + "end": 23379.22, + "probability": 0.8111 + }, + { + "start": 23379.22, + "end": 23382.92, + "probability": 0.7527 + }, + { + "start": 23383.26, + "end": 23388.18, + "probability": 0.9797 + }, + { + "start": 23388.84, + "end": 23393.48, + "probability": 0.6789 + }, + { + "start": 23393.48, + "end": 23398.9, + "probability": 0.9862 + }, + { + "start": 23399.38, + "end": 23402.14, + "probability": 0.8588 + }, + { + "start": 23402.64, + "end": 23406.42, + "probability": 0.9538 + }, + { + "start": 23406.92, + "end": 23409.46, + "probability": 0.9861 + }, + { + "start": 23410.12, + "end": 23412.34, + "probability": 0.7114 + }, + { + "start": 23412.34, + "end": 23415.92, + "probability": 0.9832 + }, + { + "start": 23416.4, + "end": 23419.52, + "probability": 0.894 + }, + { + "start": 23419.52, + "end": 23423.42, + "probability": 0.9956 + }, + { + "start": 23424.1, + "end": 23424.8, + "probability": 0.562 + }, + { + "start": 23425.36, + "end": 23429.58, + "probability": 0.8682 + }, + { + "start": 23430.7, + "end": 23433.26, + "probability": 0.8633 + }, + { + "start": 23433.26, + "end": 23436.68, + "probability": 0.9824 + }, + { + "start": 23437.58, + "end": 23437.82, + "probability": 0.7149 + }, + { + "start": 23438.5, + "end": 23441.44, + "probability": 0.9333 + }, + { + "start": 23441.44, + "end": 23445.14, + "probability": 0.9962 + }, + { + "start": 23445.66, + "end": 23446.9, + "probability": 0.9913 + }, + { + "start": 23447.68, + "end": 23447.9, + "probability": 0.3324 + }, + { + "start": 23447.98, + "end": 23448.42, + "probability": 0.9153 + }, + { + "start": 23448.54, + "end": 23450.55, + "probability": 0.7085 + }, + { + "start": 23451.48, + "end": 23454.96, + "probability": 0.8907 + }, + { + "start": 23454.96, + "end": 23458.08, + "probability": 0.9425 + }, + { + "start": 23458.52, + "end": 23460.94, + "probability": 0.9073 + }, + { + "start": 23461.9, + "end": 23465.24, + "probability": 0.8429 + }, + { + "start": 23465.8, + "end": 23469.88, + "probability": 0.9868 + }, + { + "start": 23469.98, + "end": 23473.26, + "probability": 0.9498 + }, + { + "start": 23473.88, + "end": 23475.84, + "probability": 0.9287 + }, + { + "start": 23475.84, + "end": 23479.06, + "probability": 0.9853 + }, + { + "start": 23479.58, + "end": 23479.88, + "probability": 0.1628 + }, + { + "start": 23480.04, + "end": 23482.76, + "probability": 0.9785 + }, + { + "start": 23482.76, + "end": 23486.38, + "probability": 0.7567 + }, + { + "start": 23486.88, + "end": 23491.44, + "probability": 0.9399 + }, + { + "start": 23491.96, + "end": 23494.28, + "probability": 0.9835 + }, + { + "start": 23494.94, + "end": 23496.78, + "probability": 0.963 + }, + { + "start": 23497.56, + "end": 23501.12, + "probability": 0.9889 + }, + { + "start": 23501.54, + "end": 23504.74, + "probability": 0.9761 + }, + { + "start": 23505.42, + "end": 23507.52, + "probability": 0.6702 + }, + { + "start": 23508.12, + "end": 23513.04, + "probability": 0.949 + }, + { + "start": 23513.82, + "end": 23514.1, + "probability": 0.737 + }, + { + "start": 23514.26, + "end": 23518.4, + "probability": 0.9914 + }, + { + "start": 23519.0, + "end": 23522.16, + "probability": 0.9251 + }, + { + "start": 23522.76, + "end": 23525.96, + "probability": 0.6763 + }, + { + "start": 23525.96, + "end": 23530.08, + "probability": 0.9779 + }, + { + "start": 23530.72, + "end": 23534.32, + "probability": 0.9985 + }, + { + "start": 23535.28, + "end": 23537.38, + "probability": 0.8108 + }, + { + "start": 23538.06, + "end": 23538.4, + "probability": 0.2139 + }, + { + "start": 23538.42, + "end": 23541.78, + "probability": 0.989 + }, + { + "start": 23541.98, + "end": 23543.92, + "probability": 0.9815 + }, + { + "start": 23543.92, + "end": 23547.84, + "probability": 0.8193 + }, + { + "start": 23548.02, + "end": 23548.34, + "probability": 0.6282 + }, + { + "start": 23548.88, + "end": 23553.96, + "probability": 0.9861 + }, + { + "start": 23554.64, + "end": 23556.36, + "probability": 0.7653 + }, + { + "start": 23556.96, + "end": 23558.86, + "probability": 0.7811 + }, + { + "start": 23559.5, + "end": 23563.82, + "probability": 0.9953 + }, + { + "start": 23563.82, + "end": 23567.24, + "probability": 0.9736 + }, + { + "start": 23567.78, + "end": 23568.14, + "probability": 0.6545 + }, + { + "start": 23568.28, + "end": 23573.7, + "probability": 0.8621 + }, + { + "start": 23573.88, + "end": 23579.38, + "probability": 0.6643 + }, + { + "start": 23579.92, + "end": 23583.07, + "probability": 0.8447 + }, + { + "start": 23583.18, + "end": 23583.46, + "probability": 0.6943 + }, + { + "start": 23584.32, + "end": 23584.68, + "probability": 0.4756 + }, + { + "start": 23584.84, + "end": 23589.0, + "probability": 0.9153 + }, + { + "start": 23589.0, + "end": 23593.28, + "probability": 0.9811 + }, + { + "start": 23594.02, + "end": 23595.4, + "probability": 0.8601 + }, + { + "start": 23595.7, + "end": 23597.94, + "probability": 0.9932 + }, + { + "start": 23597.94, + "end": 23600.88, + "probability": 0.6645 + }, + { + "start": 23601.46, + "end": 23605.28, + "probability": 0.9943 + }, + { + "start": 23606.22, + "end": 23607.88, + "probability": 0.8007 + }, + { + "start": 23608.86, + "end": 23614.32, + "probability": 0.9033 + }, + { + "start": 23615.2, + "end": 23618.3, + "probability": 0.7647 + }, + { + "start": 23618.62, + "end": 23619.38, + "probability": 0.5098 + }, + { + "start": 23619.4, + "end": 23620.3, + "probability": 0.8059 + }, + { + "start": 23621.06, + "end": 23623.0, + "probability": 0.9007 + }, + { + "start": 23623.72, + "end": 23626.4, + "probability": 0.9966 + }, + { + "start": 23626.4, + "end": 23630.6, + "probability": 0.985 + }, + { + "start": 23631.24, + "end": 23634.94, + "probability": 0.9957 + }, + { + "start": 23635.08, + "end": 23637.62, + "probability": 0.9954 + }, + { + "start": 23638.32, + "end": 23640.08, + "probability": 0.9829 + }, + { + "start": 23640.8, + "end": 23640.8, + "probability": 0.1192 + }, + { + "start": 23640.8, + "end": 23642.6, + "probability": 0.4355 + }, + { + "start": 23642.74, + "end": 23643.31, + "probability": 0.2009 + }, + { + "start": 23643.96, + "end": 23645.56, + "probability": 0.9848 + }, + { + "start": 23645.82, + "end": 23650.12, + "probability": 0.9811 + }, + { + "start": 23650.12, + "end": 23654.86, + "probability": 0.9464 + }, + { + "start": 23655.38, + "end": 23657.78, + "probability": 0.9263 + }, + { + "start": 23657.78, + "end": 23664.18, + "probability": 0.9802 + }, + { + "start": 23664.6, + "end": 23667.3, + "probability": 0.9626 + }, + { + "start": 23668.11, + "end": 23669.84, + "probability": 0.9661 + }, + { + "start": 23670.18, + "end": 23670.38, + "probability": 0.6499 + }, + { + "start": 23672.74, + "end": 23673.22, + "probability": 0.7736 + }, + { + "start": 23673.28, + "end": 23675.28, + "probability": 0.6234 + }, + { + "start": 23675.54, + "end": 23678.56, + "probability": 0.5747 + }, + { + "start": 23679.18, + "end": 23681.74, + "probability": 0.9922 + }, + { + "start": 23682.44, + "end": 23684.41, + "probability": 0.5881 + }, + { + "start": 23686.18, + "end": 23686.3, + "probability": 0.0014 + }, + { + "start": 23693.1, + "end": 23694.06, + "probability": 0.3679 + }, + { + "start": 23699.2, + "end": 23700.34, + "probability": 0.0515 + }, + { + "start": 23700.34, + "end": 23700.96, + "probability": 0.0279 + }, + { + "start": 23701.56, + "end": 23701.66, + "probability": 0.1988 + }, + { + "start": 23704.22, + "end": 23705.12, + "probability": 0.6899 + }, + { + "start": 23705.28, + "end": 23706.64, + "probability": 0.8887 + }, + { + "start": 23706.8, + "end": 23713.14, + "probability": 0.9866 + }, + { + "start": 23713.68, + "end": 23715.24, + "probability": 0.9927 + }, + { + "start": 23716.82, + "end": 23721.94, + "probability": 0.8296 + }, + { + "start": 23722.62, + "end": 23724.96, + "probability": 0.9979 + }, + { + "start": 23725.68, + "end": 23728.38, + "probability": 0.9648 + }, + { + "start": 23728.94, + "end": 23730.26, + "probability": 0.9855 + }, + { + "start": 23731.16, + "end": 23733.76, + "probability": 0.9084 + }, + { + "start": 23734.14, + "end": 23739.9, + "probability": 0.9851 + }, + { + "start": 23739.9, + "end": 23745.94, + "probability": 0.9904 + }, + { + "start": 23746.6, + "end": 23751.12, + "probability": 0.9476 + }, + { + "start": 23751.36, + "end": 23752.3, + "probability": 0.894 + }, + { + "start": 23752.98, + "end": 23754.84, + "probability": 0.9787 + }, + { + "start": 23755.5, + "end": 23759.2, + "probability": 0.9676 + }, + { + "start": 23760.12, + "end": 23761.44, + "probability": 0.9589 + }, + { + "start": 23762.28, + "end": 23766.2, + "probability": 0.9719 + }, + { + "start": 23766.72, + "end": 23769.14, + "probability": 0.9996 + }, + { + "start": 23769.7, + "end": 23772.42, + "probability": 0.9976 + }, + { + "start": 23773.24, + "end": 23777.94, + "probability": 0.8813 + }, + { + "start": 23778.52, + "end": 23779.82, + "probability": 0.9893 + }, + { + "start": 23780.56, + "end": 23782.48, + "probability": 0.9648 + }, + { + "start": 23782.64, + "end": 23783.54, + "probability": 0.7526 + }, + { + "start": 23783.74, + "end": 23786.62, + "probability": 0.9978 + }, + { + "start": 23787.4, + "end": 23789.62, + "probability": 0.9937 + }, + { + "start": 23790.48, + "end": 23792.66, + "probability": 0.9386 + }, + { + "start": 23793.42, + "end": 23798.52, + "probability": 0.6393 + }, + { + "start": 23799.1, + "end": 23801.26, + "probability": 0.8245 + }, + { + "start": 23802.06, + "end": 23805.66, + "probability": 0.9568 + }, + { + "start": 23807.12, + "end": 23809.96, + "probability": 0.9993 + }, + { + "start": 23810.52, + "end": 23812.72, + "probability": 0.9222 + }, + { + "start": 23813.3, + "end": 23814.96, + "probability": 0.966 + }, + { + "start": 23815.2, + "end": 23817.06, + "probability": 0.9827 + }, + { + "start": 23817.5, + "end": 23818.58, + "probability": 0.9515 + }, + { + "start": 23818.6, + "end": 23819.82, + "probability": 0.9619 + }, + { + "start": 23820.32, + "end": 23825.02, + "probability": 0.9792 + }, + { + "start": 23825.44, + "end": 23829.08, + "probability": 0.8988 + }, + { + "start": 23829.4, + "end": 23829.7, + "probability": 0.7556 + }, + { + "start": 23831.42, + "end": 23832.1, + "probability": 0.8248 + }, + { + "start": 23832.6, + "end": 23834.48, + "probability": 0.9507 + }, + { + "start": 23837.98, + "end": 23838.98, + "probability": 0.1031 + }, + { + "start": 23841.12, + "end": 23842.18, + "probability": 0.0619 + }, + { + "start": 23857.22, + "end": 23857.54, + "probability": 0.2612 + }, + { + "start": 23867.54, + "end": 23873.36, + "probability": 0.955 + }, + { + "start": 23874.48, + "end": 23883.0, + "probability": 0.9839 + }, + { + "start": 23883.02, + "end": 23890.42, + "probability": 0.9805 + }, + { + "start": 23891.62, + "end": 23894.62, + "probability": 0.938 + }, + { + "start": 23896.5, + "end": 23900.6, + "probability": 0.9488 + }, + { + "start": 23901.5, + "end": 23905.24, + "probability": 0.8535 + }, + { + "start": 23906.14, + "end": 23907.76, + "probability": 0.895 + }, + { + "start": 23908.7, + "end": 23912.46, + "probability": 0.8416 + }, + { + "start": 23913.96, + "end": 23914.6, + "probability": 0.8037 + }, + { + "start": 23917.22, + "end": 23918.0, + "probability": 0.1487 + }, + { + "start": 23920.74, + "end": 23922.02, + "probability": 0.1943 + }, + { + "start": 23922.02, + "end": 23923.2, + "probability": 0.0693 + }, + { + "start": 23925.1, + "end": 23927.34, + "probability": 0.2602 + }, + { + "start": 23927.76, + "end": 23930.56, + "probability": 0.0708 + }, + { + "start": 23930.72, + "end": 23931.54, + "probability": 0.1447 + }, + { + "start": 23933.54, + "end": 23934.54, + "probability": 0.5748 + }, + { + "start": 23935.98, + "end": 23937.28, + "probability": 0.6576 + }, + { + "start": 23938.34, + "end": 23940.02, + "probability": 0.999 + }, + { + "start": 23940.86, + "end": 23942.12, + "probability": 0.6628 + }, + { + "start": 23943.3, + "end": 23943.94, + "probability": 0.7245 + }, + { + "start": 23944.86, + "end": 23945.56, + "probability": 0.8306 + }, + { + "start": 23948.16, + "end": 23949.8, + "probability": 0.8342 + }, + { + "start": 23952.86, + "end": 23955.14, + "probability": 0.9426 + }, + { + "start": 23956.28, + "end": 23960.38, + "probability": 0.9823 + }, + { + "start": 23962.52, + "end": 23964.7, + "probability": 0.8443 + }, + { + "start": 23968.38, + "end": 23971.84, + "probability": 0.9863 + }, + { + "start": 23972.92, + "end": 23983.84, + "probability": 0.9535 + }, + { + "start": 23986.26, + "end": 23990.94, + "probability": 0.9978 + }, + { + "start": 23992.72, + "end": 23995.26, + "probability": 0.988 + }, + { + "start": 23996.46, + "end": 23998.14, + "probability": 0.9514 + }, + { + "start": 24000.98, + "end": 24003.42, + "probability": 0.9379 + }, + { + "start": 24004.72, + "end": 24005.42, + "probability": 0.4325 + }, + { + "start": 24007.94, + "end": 24008.24, + "probability": 0.8923 + }, + { + "start": 24009.08, + "end": 24012.28, + "probability": 0.6106 + }, + { + "start": 24013.14, + "end": 24015.64, + "probability": 0.8366 + }, + { + "start": 24017.16, + "end": 24019.54, + "probability": 0.9963 + }, + { + "start": 24023.58, + "end": 24028.4, + "probability": 0.932 + }, + { + "start": 24029.98, + "end": 24035.66, + "probability": 0.9987 + }, + { + "start": 24036.54, + "end": 24038.22, + "probability": 0.8688 + }, + { + "start": 24039.1, + "end": 24041.4, + "probability": 0.9489 + }, + { + "start": 24047.26, + "end": 24048.8, + "probability": 0.8165 + }, + { + "start": 24048.88, + "end": 24049.34, + "probability": 0.6132 + }, + { + "start": 24049.34, + "end": 24051.0, + "probability": 0.7568 + }, + { + "start": 24051.12, + "end": 24053.26, + "probability": 0.9973 + }, + { + "start": 24053.98, + "end": 24057.32, + "probability": 0.9133 + }, + { + "start": 24057.86, + "end": 24060.33, + "probability": 0.5052 + }, + { + "start": 24061.56, + "end": 24062.72, + "probability": 0.7832 + }, + { + "start": 24063.78, + "end": 24065.04, + "probability": 0.8379 + }, + { + "start": 24065.76, + "end": 24067.52, + "probability": 0.8638 + }, + { + "start": 24068.52, + "end": 24069.98, + "probability": 0.9784 + }, + { + "start": 24086.46, + "end": 24086.66, + "probability": 0.5375 + }, + { + "start": 24086.7, + "end": 24086.74, + "probability": 0.0045 + }, + { + "start": 24086.74, + "end": 24087.74, + "probability": 0.3414 + }, + { + "start": 24087.82, + "end": 24088.16, + "probability": 0.0697 + }, + { + "start": 24088.16, + "end": 24091.3, + "probability": 0.5578 + }, + { + "start": 24091.36, + "end": 24092.38, + "probability": 0.2981 + }, + { + "start": 24092.52, + "end": 24093.6, + "probability": 0.7471 + }, + { + "start": 24094.02, + "end": 24097.74, + "probability": 0.6383 + }, + { + "start": 24097.96, + "end": 24098.22, + "probability": 0.2336 + }, + { + "start": 24098.24, + "end": 24098.58, + "probability": 0.5027 + }, + { + "start": 24098.72, + "end": 24099.06, + "probability": 0.6537 + }, + { + "start": 24100.04, + "end": 24105.36, + "probability": 0.6077 + }, + { + "start": 24118.18, + "end": 24121.88, + "probability": 0.098 + }, + { + "start": 24122.9, + "end": 24123.18, + "probability": 0.0565 + }, + { + "start": 24123.18, + "end": 24123.82, + "probability": 0.5035 + }, + { + "start": 24124.24, + "end": 24127.76, + "probability": 0.4329 + }, + { + "start": 24127.76, + "end": 24128.2, + "probability": 0.6225 + }, + { + "start": 24128.2, + "end": 24128.78, + "probability": 0.224 + }, + { + "start": 24128.98, + "end": 24131.55, + "probability": 0.7782 + }, + { + "start": 24132.3, + "end": 24135.54, + "probability": 0.285 + }, + { + "start": 24136.4, + "end": 24137.82, + "probability": 0.1295 + }, + { + "start": 24138.7, + "end": 24139.12, + "probability": 0.0526 + }, + { + "start": 24139.12, + "end": 24139.36, + "probability": 0.1023 + }, + { + "start": 24152.18, + "end": 24152.34, + "probability": 0.0451 + }, + { + "start": 24155.2, + "end": 24155.56, + "probability": 0.2378 + }, + { + "start": 24158.29, + "end": 24163.92, + "probability": 0.8523 + }, + { + "start": 24164.22, + "end": 24167.16, + "probability": 0.169 + }, + { + "start": 24167.16, + "end": 24167.4, + "probability": 0.086 + }, + { + "start": 24169.48, + "end": 24172.22, + "probability": 0.2748 + }, + { + "start": 24184.74, + "end": 24186.46, + "probability": 0.0276 + }, + { + "start": 24186.46, + "end": 24187.88, + "probability": 0.2206 + }, + { + "start": 24187.9, + "end": 24191.88, + "probability": 0.0355 + }, + { + "start": 24191.88, + "end": 24195.28, + "probability": 0.7359 + }, + { + "start": 24195.28, + "end": 24196.04, + "probability": 0.1315 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24257.0, + "end": 24257.0, + "probability": 0.0 + }, + { + "start": 24263.72, + "end": 24268.06, + "probability": 0.9891 + }, + { + "start": 24268.06, + "end": 24272.54, + "probability": 0.883 + }, + { + "start": 24272.94, + "end": 24275.34, + "probability": 0.9854 + }, + { + "start": 24275.78, + "end": 24278.34, + "probability": 0.8251 + }, + { + "start": 24278.34, + "end": 24281.58, + "probability": 0.9456 + }, + { + "start": 24282.2, + "end": 24286.72, + "probability": 0.9929 + }, + { + "start": 24286.82, + "end": 24290.12, + "probability": 0.9525 + }, + { + "start": 24290.82, + "end": 24294.02, + "probability": 0.993 + }, + { + "start": 24294.02, + "end": 24297.78, + "probability": 0.9939 + }, + { + "start": 24298.32, + "end": 24300.9, + "probability": 0.9634 + }, + { + "start": 24301.22, + "end": 24304.74, + "probability": 0.9639 + }, + { + "start": 24304.84, + "end": 24307.12, + "probability": 0.7796 + }, + { + "start": 24307.18, + "end": 24309.32, + "probability": 0.9619 + }, + { + "start": 24310.52, + "end": 24312.34, + "probability": 0.9286 + }, + { + "start": 24312.92, + "end": 24314.96, + "probability": 0.981 + }, + { + "start": 24314.96, + "end": 24317.85, + "probability": 0.9392 + }, + { + "start": 24318.56, + "end": 24319.82, + "probability": 0.6592 + }, + { + "start": 24320.0, + "end": 24320.92, + "probability": 0.7666 + }, + { + "start": 24321.0, + "end": 24323.92, + "probability": 0.9709 + }, + { + "start": 24323.92, + "end": 24326.78, + "probability": 0.9987 + }, + { + "start": 24327.42, + "end": 24331.36, + "probability": 0.8177 + }, + { + "start": 24331.58, + "end": 24334.52, + "probability": 0.8918 + }, + { + "start": 24334.52, + "end": 24337.7, + "probability": 0.9821 + }, + { + "start": 24337.72, + "end": 24341.42, + "probability": 0.998 + }, + { + "start": 24341.88, + "end": 24344.84, + "probability": 0.984 + }, + { + "start": 24344.84, + "end": 24348.96, + "probability": 0.955 + }, + { + "start": 24349.26, + "end": 24351.5, + "probability": 0.9821 + }, + { + "start": 24352.1, + "end": 24357.92, + "probability": 0.9431 + }, + { + "start": 24357.92, + "end": 24361.62, + "probability": 0.9982 + }, + { + "start": 24361.92, + "end": 24366.96, + "probability": 0.991 + }, + { + "start": 24367.58, + "end": 24368.02, + "probability": 0.5843 + }, + { + "start": 24368.12, + "end": 24371.82, + "probability": 0.9844 + }, + { + "start": 24371.82, + "end": 24377.32, + "probability": 0.9845 + }, + { + "start": 24377.84, + "end": 24380.6, + "probability": 0.9182 + }, + { + "start": 24381.04, + "end": 24384.94, + "probability": 0.9969 + }, + { + "start": 24384.94, + "end": 24388.76, + "probability": 0.9941 + }, + { + "start": 24389.24, + "end": 24389.86, + "probability": 0.7555 + }, + { + "start": 24390.64, + "end": 24392.02, + "probability": 0.912 + }, + { + "start": 24392.1, + "end": 24392.98, + "probability": 0.4973 + }, + { + "start": 24393.04, + "end": 24396.8, + "probability": 0.9333 + }, + { + "start": 24398.04, + "end": 24401.74, + "probability": 0.9384 + }, + { + "start": 24402.44, + "end": 24408.26, + "probability": 0.9349 + }, + { + "start": 24408.44, + "end": 24410.64, + "probability": 0.8713 + }, + { + "start": 24411.18, + "end": 24413.16, + "probability": 0.8179 + }, + { + "start": 24413.36, + "end": 24414.26, + "probability": 0.8818 + }, + { + "start": 24414.88, + "end": 24416.41, + "probability": 0.7432 + }, + { + "start": 24417.44, + "end": 24419.02, + "probability": 0.6312 + }, + { + "start": 24419.04, + "end": 24420.14, + "probability": 0.5256 + }, + { + "start": 24420.46, + "end": 24426.78, + "probability": 0.863 + }, + { + "start": 24427.4, + "end": 24431.44, + "probability": 0.9224 + }, + { + "start": 24431.54, + "end": 24434.4, + "probability": 0.9883 + }, + { + "start": 24434.58, + "end": 24435.18, + "probability": 0.727 + }, + { + "start": 24435.76, + "end": 24438.42, + "probability": 0.9775 + }, + { + "start": 24440.17, + "end": 24442.48, + "probability": 0.935 + }, + { + "start": 24442.92, + "end": 24442.94, + "probability": 0.0306 + }, + { + "start": 24442.94, + "end": 24444.0, + "probability": 0.7855 + }, + { + "start": 24444.26, + "end": 24446.22, + "probability": 0.9934 + }, + { + "start": 24446.54, + "end": 24447.34, + "probability": 0.75 + }, + { + "start": 24447.44, + "end": 24448.34, + "probability": 0.8159 + }, + { + "start": 24448.38, + "end": 24450.28, + "probability": 0.9409 + }, + { + "start": 24450.82, + "end": 24453.18, + "probability": 0.7545 + }, + { + "start": 24453.76, + "end": 24456.06, + "probability": 0.9815 + }, + { + "start": 24456.28, + "end": 24458.68, + "probability": 0.8429 + }, + { + "start": 24459.16, + "end": 24462.38, + "probability": 0.9693 + }, + { + "start": 24462.82, + "end": 24464.48, + "probability": 0.7413 + }, + { + "start": 24464.74, + "end": 24467.68, + "probability": 0.9824 + }, + { + "start": 24468.14, + "end": 24471.8, + "probability": 0.9622 + }, + { + "start": 24472.66, + "end": 24477.96, + "probability": 0.9917 + }, + { + "start": 24478.46, + "end": 24480.2, + "probability": 0.939 + }, + { + "start": 24480.6, + "end": 24485.76, + "probability": 0.9679 + }, + { + "start": 24485.76, + "end": 24490.86, + "probability": 0.9661 + }, + { + "start": 24491.46, + "end": 24493.15, + "probability": 0.9966 + }, + { + "start": 24493.34, + "end": 24493.83, + "probability": 0.9858 + }, + { + "start": 24494.14, + "end": 24495.18, + "probability": 0.9893 + }, + { + "start": 24495.64, + "end": 24496.28, + "probability": 0.9568 + }, + { + "start": 24496.96, + "end": 24498.4, + "probability": 0.9698 + }, + { + "start": 24499.22, + "end": 24501.78, + "probability": 0.9458 + }, + { + "start": 24502.4, + "end": 24506.42, + "probability": 0.8196 + }, + { + "start": 24507.08, + "end": 24507.48, + "probability": 0.8207 + }, + { + "start": 24507.6, + "end": 24510.96, + "probability": 0.832 + }, + { + "start": 24511.7, + "end": 24512.04, + "probability": 0.2658 + }, + { + "start": 24512.08, + "end": 24515.14, + "probability": 0.9341 + }, + { + "start": 24515.72, + "end": 24518.02, + "probability": 0.9683 + }, + { + "start": 24518.06, + "end": 24521.96, + "probability": 0.9865 + }, + { + "start": 24522.38, + "end": 24523.02, + "probability": 0.6397 + }, + { + "start": 24523.1, + "end": 24524.42, + "probability": 0.8667 + }, + { + "start": 24525.3, + "end": 24526.81, + "probability": 0.922 + }, + { + "start": 24527.06, + "end": 24528.08, + "probability": 0.5424 + }, + { + "start": 24528.5, + "end": 24528.96, + "probability": 0.949 + }, + { + "start": 24529.74, + "end": 24532.8, + "probability": 0.9581 + }, + { + "start": 24533.12, + "end": 24533.46, + "probability": 0.4665 + }, + { + "start": 24534.06, + "end": 24535.53, + "probability": 0.6322 + }, + { + "start": 24536.42, + "end": 24540.58, + "probability": 0.9814 + }, + { + "start": 24540.66, + "end": 24541.16, + "probability": 0.5877 + }, + { + "start": 24541.26, + "end": 24542.38, + "probability": 0.9607 + }, + { + "start": 24543.52, + "end": 24544.14, + "probability": 0.6642 + }, + { + "start": 24545.28, + "end": 24546.42, + "probability": 0.5497 + }, + { + "start": 24546.56, + "end": 24547.98, + "probability": 0.8837 + }, + { + "start": 24548.12, + "end": 24549.36, + "probability": 0.8249 + }, + { + "start": 24549.88, + "end": 24550.8, + "probability": 0.9673 + }, + { + "start": 24551.12, + "end": 24554.28, + "probability": 0.9897 + }, + { + "start": 24554.76, + "end": 24555.53, + "probability": 0.8348 + }, + { + "start": 24556.14, + "end": 24556.48, + "probability": 0.2596 + }, + { + "start": 24556.56, + "end": 24558.5, + "probability": 0.9703 + }, + { + "start": 24559.24, + "end": 24561.6, + "probability": 0.9927 + }, + { + "start": 24562.36, + "end": 24563.8, + "probability": 0.9117 + }, + { + "start": 24564.56, + "end": 24565.08, + "probability": 0.7795 + }, + { + "start": 24565.2, + "end": 24566.08, + "probability": 0.9869 + }, + { + "start": 24566.24, + "end": 24567.04, + "probability": 0.8832 + }, + { + "start": 24567.34, + "end": 24569.14, + "probability": 0.9908 + }, + { + "start": 24569.86, + "end": 24571.14, + "probability": 0.757 + }, + { + "start": 24571.52, + "end": 24571.88, + "probability": 0.2999 + }, + { + "start": 24572.98, + "end": 24574.7, + "probability": 0.9415 + }, + { + "start": 24575.56, + "end": 24579.67, + "probability": 0.996 + }, + { + "start": 24580.02, + "end": 24580.56, + "probability": 0.3879 + }, + { + "start": 24580.7, + "end": 24581.02, + "probability": 0.6851 + }, + { + "start": 24581.1, + "end": 24584.24, + "probability": 0.6508 + }, + { + "start": 24585.3, + "end": 24585.88, + "probability": 0.1631 + }, + { + "start": 24585.88, + "end": 24586.41, + "probability": 0.7602 + }, + { + "start": 24586.82, + "end": 24587.74, + "probability": 0.7123 + }, + { + "start": 24587.76, + "end": 24590.34, + "probability": 0.9693 + }, + { + "start": 24590.52, + "end": 24591.12, + "probability": 0.7762 + }, + { + "start": 24591.2, + "end": 24591.66, + "probability": 0.4151 + }, + { + "start": 24592.18, + "end": 24593.24, + "probability": 0.8933 + }, + { + "start": 24593.62, + "end": 24595.46, + "probability": 0.9038 + }, + { + "start": 24596.16, + "end": 24597.48, + "probability": 0.9798 + }, + { + "start": 24597.54, + "end": 24598.74, + "probability": 0.9949 + }, + { + "start": 24598.78, + "end": 24599.06, + "probability": 0.8639 + }, + { + "start": 24601.05, + "end": 24604.7, + "probability": 0.8949 + }, + { + "start": 24604.7, + "end": 24605.76, + "probability": 0.4981 + }, + { + "start": 24606.62, + "end": 24608.44, + "probability": 0.8942 + }, + { + "start": 24609.7, + "end": 24611.94, + "probability": 0.0035 + }, + { + "start": 24622.2, + "end": 24622.36, + "probability": 0.0359 + }, + { + "start": 24622.36, + "end": 24623.16, + "probability": 0.6514 + }, + { + "start": 24623.98, + "end": 24625.08, + "probability": 0.6394 + }, + { + "start": 24625.2, + "end": 24629.9, + "probability": 0.7698 + }, + { + "start": 24629.96, + "end": 24631.18, + "probability": 0.8333 + }, + { + "start": 24631.68, + "end": 24632.7, + "probability": 0.943 + }, + { + "start": 24633.6, + "end": 24634.82, + "probability": 0.4635 + }, + { + "start": 24634.94, + "end": 24635.2, + "probability": 0.6553 + }, + { + "start": 24636.78, + "end": 24637.54, + "probability": 0.0908 + }, + { + "start": 24639.16, + "end": 24643.36, + "probability": 0.3718 + }, + { + "start": 24643.64, + "end": 24644.18, + "probability": 0.0352 + }, + { + "start": 24644.46, + "end": 24644.5, + "probability": 0.1285 + }, + { + "start": 24649.31, + "end": 24651.96, + "probability": 0.687 + }, + { + "start": 24652.04, + "end": 24654.84, + "probability": 0.9541 + }, + { + "start": 24654.84, + "end": 24657.78, + "probability": 0.7427 + }, + { + "start": 24658.32, + "end": 24660.28, + "probability": 0.9615 + }, + { + "start": 24660.44, + "end": 24662.35, + "probability": 0.4933 + }, + { + "start": 24662.92, + "end": 24665.12, + "probability": 0.6843 + }, + { + "start": 24665.86, + "end": 24669.82, + "probability": 0.8713 + }, + { + "start": 24670.2, + "end": 24672.04, + "probability": 0.9095 + }, + { + "start": 24672.14, + "end": 24672.56, + "probability": 0.734 + }, + { + "start": 24695.32, + "end": 24696.4, + "probability": 0.7094 + }, + { + "start": 24697.44, + "end": 24699.1, + "probability": 0.7486 + }, + { + "start": 24701.24, + "end": 24702.08, + "probability": 0.9202 + }, + { + "start": 24704.44, + "end": 24705.26, + "probability": 0.7577 + }, + { + "start": 24706.86, + "end": 24707.84, + "probability": 0.7544 + }, + { + "start": 24709.28, + "end": 24712.42, + "probability": 0.9922 + }, + { + "start": 24713.36, + "end": 24717.44, + "probability": 0.9869 + }, + { + "start": 24717.98, + "end": 24721.74, + "probability": 0.7534 + }, + { + "start": 24723.08, + "end": 24726.66, + "probability": 0.5296 + }, + { + "start": 24727.44, + "end": 24730.8, + "probability": 0.9742 + }, + { + "start": 24731.6, + "end": 24733.08, + "probability": 0.9868 + }, + { + "start": 24733.9, + "end": 24737.58, + "probability": 0.9619 + }, + { + "start": 24737.74, + "end": 24743.22, + "probability": 0.6113 + }, + { + "start": 24743.66, + "end": 24745.12, + "probability": 0.9946 + }, + { + "start": 24746.2, + "end": 24748.56, + "probability": 0.5906 + }, + { + "start": 24749.47, + "end": 24752.38, + "probability": 0.7738 + }, + { + "start": 24753.58, + "end": 24757.22, + "probability": 0.9955 + }, + { + "start": 24757.22, + "end": 24761.52, + "probability": 0.9081 + }, + { + "start": 24762.2, + "end": 24766.4, + "probability": 0.8616 + }, + { + "start": 24767.36, + "end": 24771.22, + "probability": 0.9873 + }, + { + "start": 24771.68, + "end": 24772.66, + "probability": 0.9932 + }, + { + "start": 24773.32, + "end": 24775.0, + "probability": 0.9752 + }, + { + "start": 24775.44, + "end": 24780.18, + "probability": 0.9807 + }, + { + "start": 24780.88, + "end": 24785.9, + "probability": 0.9679 + }, + { + "start": 24786.7, + "end": 24788.42, + "probability": 0.9874 + }, + { + "start": 24789.0, + "end": 24794.96, + "probability": 0.9982 + }, + { + "start": 24794.96, + "end": 24801.42, + "probability": 0.9929 + }, + { + "start": 24802.02, + "end": 24803.3, + "probability": 0.9129 + }, + { + "start": 24803.96, + "end": 24809.06, + "probability": 0.9816 + }, + { + "start": 24809.9, + "end": 24813.0, + "probability": 0.9972 + }, + { + "start": 24813.52, + "end": 24819.86, + "probability": 0.9992 + }, + { + "start": 24820.56, + "end": 24823.52, + "probability": 0.7495 + }, + { + "start": 24824.34, + "end": 24829.76, + "probability": 0.998 + }, + { + "start": 24830.46, + "end": 24830.72, + "probability": 0.2988 + }, + { + "start": 24830.88, + "end": 24835.48, + "probability": 0.9791 + }, + { + "start": 24835.48, + "end": 24841.18, + "probability": 0.9686 + }, + { + "start": 24841.92, + "end": 24843.76, + "probability": 0.8431 + }, + { + "start": 24844.6, + "end": 24852.42, + "probability": 0.9815 + }, + { + "start": 24853.08, + "end": 24854.3, + "probability": 0.9486 + }, + { + "start": 24855.08, + "end": 24870.0, + "probability": 0.9839 + }, + { + "start": 24870.52, + "end": 24872.22, + "probability": 0.9926 + }, + { + "start": 24872.86, + "end": 24875.14, + "probability": 0.9676 + }, + { + "start": 24875.8, + "end": 24883.12, + "probability": 0.9932 + }, + { + "start": 24884.12, + "end": 24888.58, + "probability": 0.9972 + }, + { + "start": 24889.12, + "end": 24890.3, + "probability": 0.9443 + }, + { + "start": 24890.76, + "end": 24895.28, + "probability": 0.979 + }, + { + "start": 24895.68, + "end": 24897.82, + "probability": 0.9343 + }, + { + "start": 24898.34, + "end": 24901.98, + "probability": 0.8832 + }, + { + "start": 24902.78, + "end": 24903.48, + "probability": 0.7161 + }, + { + "start": 24904.1, + "end": 24907.8, + "probability": 0.9957 + }, + { + "start": 24907.8, + "end": 24912.92, + "probability": 0.986 + }, + { + "start": 24913.66, + "end": 24915.14, + "probability": 0.66 + }, + { + "start": 24915.66, + "end": 24922.4, + "probability": 0.9857 + }, + { + "start": 24922.4, + "end": 24927.9, + "probability": 0.9995 + }, + { + "start": 24928.22, + "end": 24932.08, + "probability": 0.9851 + }, + { + "start": 24933.62, + "end": 24934.34, + "probability": 0.8932 + }, + { + "start": 24934.86, + "end": 24939.16, + "probability": 0.8911 + }, + { + "start": 24939.2, + "end": 24948.62, + "probability": 0.7808 + }, + { + "start": 24949.72, + "end": 24952.28, + "probability": 0.8772 + }, + { + "start": 24953.0, + "end": 24957.1, + "probability": 0.9968 + }, + { + "start": 24958.34, + "end": 24962.02, + "probability": 0.9884 + }, + { + "start": 24962.66, + "end": 24966.16, + "probability": 0.9971 + }, + { + "start": 24966.4, + "end": 24968.42, + "probability": 0.9033 + }, + { + "start": 24968.82, + "end": 24971.22, + "probability": 0.983 + }, + { + "start": 24971.54, + "end": 24972.08, + "probability": 0.8304 + }, + { + "start": 24974.36, + "end": 24975.92, + "probability": 0.78 + }, + { + "start": 24996.38, + "end": 24999.62, + "probability": 0.7956 + }, + { + "start": 25001.28, + "end": 25003.72, + "probability": 0.9985 + }, + { + "start": 25003.72, + "end": 25006.98, + "probability": 0.9941 + }, + { + "start": 25008.0, + "end": 25009.4, + "probability": 0.949 + }, + { + "start": 25010.52, + "end": 25011.41, + "probability": 0.9949 + }, + { + "start": 25012.1, + "end": 25012.2, + "probability": 0.919 + }, + { + "start": 25013.4, + "end": 25015.48, + "probability": 0.9539 + }, + { + "start": 25016.02, + "end": 25018.52, + "probability": 0.9958 + }, + { + "start": 25019.64, + "end": 25021.36, + "probability": 0.6665 + }, + { + "start": 25021.36, + "end": 25024.54, + "probability": 0.9978 + }, + { + "start": 25025.84, + "end": 25029.2, + "probability": 0.9976 + }, + { + "start": 25029.74, + "end": 25030.36, + "probability": 0.9882 + }, + { + "start": 25032.98, + "end": 25036.7, + "probability": 0.9871 + }, + { + "start": 25036.7, + "end": 25040.58, + "probability": 0.9934 + }, + { + "start": 25041.28, + "end": 25042.42, + "probability": 0.8083 + }, + { + "start": 25043.42, + "end": 25046.62, + "probability": 0.9427 + }, + { + "start": 25047.5, + "end": 25052.9, + "probability": 0.9901 + }, + { + "start": 25054.36, + "end": 25059.72, + "probability": 0.9973 + }, + { + "start": 25060.48, + "end": 25062.32, + "probability": 0.9995 + }, + { + "start": 25063.32, + "end": 25066.8, + "probability": 0.9976 + }, + { + "start": 25068.2, + "end": 25073.82, + "probability": 0.9838 + }, + { + "start": 25074.56, + "end": 25075.42, + "probability": 0.8208 + }, + { + "start": 25076.14, + "end": 25079.28, + "probability": 0.9954 + }, + { + "start": 25079.78, + "end": 25080.78, + "probability": 0.9616 + }, + { + "start": 25082.08, + "end": 25084.82, + "probability": 0.9268 + }, + { + "start": 25085.72, + "end": 25087.88, + "probability": 0.9956 + }, + { + "start": 25089.36, + "end": 25096.04, + "probability": 0.989 + }, + { + "start": 25096.36, + "end": 25096.74, + "probability": 0.8993 + }, + { + "start": 25097.38, + "end": 25098.72, + "probability": 0.9656 + }, + { + "start": 25098.98, + "end": 25101.24, + "probability": 0.8053 + }, + { + "start": 25101.52, + "end": 25105.24, + "probability": 0.8025 + }, + { + "start": 25106.02, + "end": 25106.6, + "probability": 0.8809 + }, + { + "start": 25107.48, + "end": 25108.46, + "probability": 0.9846 + }, + { + "start": 25109.78, + "end": 25115.84, + "probability": 0.987 + }, + { + "start": 25117.36, + "end": 25120.94, + "probability": 0.9624 + }, + { + "start": 25121.7, + "end": 25123.82, + "probability": 0.9937 + }, + { + "start": 25124.26, + "end": 25126.36, + "probability": 0.9979 + }, + { + "start": 25127.0, + "end": 25130.0, + "probability": 0.9977 + }, + { + "start": 25131.24, + "end": 25133.2, + "probability": 0.9087 + }, + { + "start": 25134.56, + "end": 25137.74, + "probability": 0.9813 + }, + { + "start": 25138.74, + "end": 25141.7, + "probability": 0.808 + }, + { + "start": 25142.78, + "end": 25143.66, + "probability": 0.9974 + }, + { + "start": 25144.26, + "end": 25145.9, + "probability": 0.9976 + }, + { + "start": 25146.94, + "end": 25149.18, + "probability": 0.9977 + }, + { + "start": 25149.54, + "end": 25150.68, + "probability": 0.898 + }, + { + "start": 25151.28, + "end": 25154.41, + "probability": 0.9962 + }, + { + "start": 25154.56, + "end": 25159.52, + "probability": 0.9985 + }, + { + "start": 25160.9, + "end": 25164.68, + "probability": 0.9839 + }, + { + "start": 25164.68, + "end": 25168.6, + "probability": 0.9927 + }, + { + "start": 25170.02, + "end": 25172.86, + "probability": 0.9674 + }, + { + "start": 25172.86, + "end": 25177.04, + "probability": 0.9956 + }, + { + "start": 25179.6, + "end": 25182.54, + "probability": 0.914 + }, + { + "start": 25182.92, + "end": 25183.42, + "probability": 0.8908 + }, + { + "start": 25183.96, + "end": 25186.04, + "probability": 0.9979 + }, + { + "start": 25187.26, + "end": 25188.42, + "probability": 0.6875 + }, + { + "start": 25188.94, + "end": 25190.02, + "probability": 0.9841 + }, + { + "start": 25190.4, + "end": 25193.06, + "probability": 0.6503 + }, + { + "start": 25193.88, + "end": 25195.78, + "probability": 0.8509 + }, + { + "start": 25195.96, + "end": 25199.62, + "probability": 0.9919 + }, + { + "start": 25200.12, + "end": 25200.36, + "probability": 0.3017 + }, + { + "start": 25200.44, + "end": 25202.72, + "probability": 0.9777 + }, + { + "start": 25202.82, + "end": 25203.74, + "probability": 0.9504 + }, + { + "start": 25205.18, + "end": 25206.18, + "probability": 0.9191 + }, + { + "start": 25206.26, + "end": 25209.62, + "probability": 0.7847 + }, + { + "start": 25210.02, + "end": 25212.84, + "probability": 0.9661 + }, + { + "start": 25213.66, + "end": 25218.68, + "probability": 0.7878 + }, + { + "start": 25218.88, + "end": 25219.52, + "probability": 0.9604 + }, + { + "start": 25219.76, + "end": 25220.3, + "probability": 0.7242 + }, + { + "start": 25220.74, + "end": 25222.9, + "probability": 0.991 + }, + { + "start": 25223.68, + "end": 25226.84, + "probability": 0.9938 + }, + { + "start": 25227.52, + "end": 25229.5, + "probability": 0.9618 + }, + { + "start": 25230.58, + "end": 25233.92, + "probability": 0.9624 + }, + { + "start": 25233.96, + "end": 25236.82, + "probability": 0.991 + }, + { + "start": 25238.02, + "end": 25240.88, + "probability": 0.9007 + }, + { + "start": 25241.46, + "end": 25243.94, + "probability": 0.823 + }, + { + "start": 25244.48, + "end": 25245.14, + "probability": 0.8985 + }, + { + "start": 25246.44, + "end": 25248.18, + "probability": 0.6223 + }, + { + "start": 25248.3, + "end": 25248.76, + "probability": 0.7787 + }, + { + "start": 25248.9, + "end": 25251.78, + "probability": 0.9598 + }, + { + "start": 25253.16, + "end": 25254.66, + "probability": 0.3023 + }, + { + "start": 25255.62, + "end": 25258.42, + "probability": 0.8966 + }, + { + "start": 25258.5, + "end": 25261.0, + "probability": 0.8628 + }, + { + "start": 25261.66, + "end": 25262.86, + "probability": 0.848 + }, + { + "start": 25263.42, + "end": 25264.99, + "probability": 0.9977 + }, + { + "start": 25265.5, + "end": 25270.86, + "probability": 0.9939 + }, + { + "start": 25271.5, + "end": 25273.5, + "probability": 0.9985 + }, + { + "start": 25273.92, + "end": 25277.06, + "probability": 0.7845 + }, + { + "start": 25277.12, + "end": 25277.64, + "probability": 0.7865 + }, + { + "start": 25278.66, + "end": 25279.64, + "probability": 0.7605 + }, + { + "start": 25279.76, + "end": 25282.98, + "probability": 0.9917 + }, + { + "start": 25285.06, + "end": 25285.86, + "probability": 0.7694 + }, + { + "start": 25286.38, + "end": 25286.98, + "probability": 0.7382 + }, + { + "start": 25287.3, + "end": 25291.2, + "probability": 0.9928 + }, + { + "start": 25291.38, + "end": 25292.16, + "probability": 0.7343 + }, + { + "start": 25294.16, + "end": 25294.48, + "probability": 0.7898 + }, + { + "start": 25295.34, + "end": 25298.94, + "probability": 0.0014 + }, + { + "start": 25304.7, + "end": 25308.36, + "probability": 0.7027 + }, + { + "start": 25309.34, + "end": 25310.7, + "probability": 0.9878 + }, + { + "start": 25310.78, + "end": 25312.34, + "probability": 0.8779 + }, + { + "start": 25313.52, + "end": 25314.44, + "probability": 0.9176 + }, + { + "start": 25314.9, + "end": 25315.1, + "probability": 0.0517 + }, + { + "start": 25325.1, + "end": 25329.91, + "probability": 0.0895 + }, + { + "start": 25331.04, + "end": 25332.5, + "probability": 0.6548 + }, + { + "start": 25332.6, + "end": 25334.3, + "probability": 0.9852 + }, + { + "start": 25335.32, + "end": 25337.98, + "probability": 0.6671 + }, + { + "start": 25340.37, + "end": 25341.84, + "probability": 0.6948 + }, + { + "start": 25341.86, + "end": 25343.6, + "probability": 0.9294 + }, + { + "start": 25343.7, + "end": 25346.1, + "probability": 0.7629 + }, + { + "start": 25346.18, + "end": 25349.48, + "probability": 0.869 + }, + { + "start": 25349.48, + "end": 25349.98, + "probability": 0.5769 + }, + { + "start": 25350.04, + "end": 25350.98, + "probability": 0.6408 + }, + { + "start": 25351.08, + "end": 25352.87, + "probability": 0.8871 + }, + { + "start": 25353.14, + "end": 25355.14, + "probability": 0.9087 + }, + { + "start": 25355.2, + "end": 25355.84, + "probability": 0.8609 + }, + { + "start": 25363.46, + "end": 25364.46, + "probability": 0.1294 + }, + { + "start": 25389.92, + "end": 25392.12, + "probability": 0.9935 + }, + { + "start": 25392.12, + "end": 25394.92, + "probability": 0.7642 + }, + { + "start": 25396.64, + "end": 25400.08, + "probability": 0.929 + }, + { + "start": 25401.14, + "end": 25404.68, + "probability": 0.9619 + }, + { + "start": 25405.62, + "end": 25407.66, + "probability": 0.6461 + }, + { + "start": 25408.3, + "end": 25412.1, + "probability": 0.8263 + }, + { + "start": 25414.32, + "end": 25416.66, + "probability": 0.7793 + }, + { + "start": 25416.8, + "end": 25417.54, + "probability": 0.3612 + }, + { + "start": 25418.85, + "end": 25421.98, + "probability": 0.988 + }, + { + "start": 25421.98, + "end": 25425.5, + "probability": 0.9595 + }, + { + "start": 25426.2, + "end": 25427.46, + "probability": 0.9316 + }, + { + "start": 25427.5, + "end": 25430.6, + "probability": 0.9791 + }, + { + "start": 25431.44, + "end": 25434.9, + "probability": 0.9756 + }, + { + "start": 25435.84, + "end": 25437.12, + "probability": 0.7983 + }, + { + "start": 25437.22, + "end": 25441.24, + "probability": 0.9897 + }, + { + "start": 25441.76, + "end": 25443.26, + "probability": 0.9977 + }, + { + "start": 25443.78, + "end": 25445.4, + "probability": 0.994 + }, + { + "start": 25445.54, + "end": 25448.04, + "probability": 0.974 + }, + { + "start": 25448.38, + "end": 25451.54, + "probability": 0.8936 + }, + { + "start": 25452.28, + "end": 25456.12, + "probability": 0.9062 + }, + { + "start": 25457.2, + "end": 25459.06, + "probability": 0.9642 + }, + { + "start": 25460.04, + "end": 25463.04, + "probability": 0.8341 + }, + { + "start": 25463.16, + "end": 25465.1, + "probability": 0.6095 + }, + { + "start": 25465.24, + "end": 25467.98, + "probability": 0.8236 + }, + { + "start": 25468.1, + "end": 25471.6, + "probability": 0.9301 + }, + { + "start": 25473.2, + "end": 25475.66, + "probability": 0.891 + }, + { + "start": 25475.66, + "end": 25477.98, + "probability": 0.7833 + }, + { + "start": 25478.06, + "end": 25478.72, + "probability": 0.5497 + }, + { + "start": 25479.52, + "end": 25480.32, + "probability": 0.6525 + }, + { + "start": 25480.4, + "end": 25484.24, + "probability": 0.9606 + }, + { + "start": 25484.92, + "end": 25487.2, + "probability": 0.9781 + }, + { + "start": 25487.72, + "end": 25490.08, + "probability": 0.9889 + }, + { + "start": 25490.08, + "end": 25493.18, + "probability": 0.8341 + }, + { + "start": 25493.36, + "end": 25494.2, + "probability": 0.7613 + }, + { + "start": 25495.34, + "end": 25497.88, + "probability": 0.8862 + }, + { + "start": 25498.54, + "end": 25501.68, + "probability": 0.9873 + }, + { + "start": 25501.68, + "end": 25505.86, + "probability": 0.9911 + }, + { + "start": 25507.02, + "end": 25511.48, + "probability": 0.9045 + }, + { + "start": 25511.48, + "end": 25517.16, + "probability": 0.9376 + }, + { + "start": 25517.94, + "end": 25521.64, + "probability": 0.6644 + }, + { + "start": 25522.78, + "end": 25527.38, + "probability": 0.9954 + }, + { + "start": 25528.4, + "end": 25530.68, + "probability": 0.9418 + }, + { + "start": 25531.42, + "end": 25532.82, + "probability": 0.9454 + }, + { + "start": 25533.46, + "end": 25536.08, + "probability": 0.9984 + }, + { + "start": 25536.8, + "end": 25537.52, + "probability": 0.8636 + }, + { + "start": 25537.94, + "end": 25539.72, + "probability": 0.763 + }, + { + "start": 25539.82, + "end": 25541.02, + "probability": 0.928 + }, + { + "start": 25541.78, + "end": 25546.24, + "probability": 0.8183 + }, + { + "start": 25549.04, + "end": 25551.04, + "probability": 0.8291 + }, + { + "start": 25552.02, + "end": 25554.08, + "probability": 0.9983 + }, + { + "start": 25554.84, + "end": 25559.38, + "probability": 0.6677 + }, + { + "start": 25559.48, + "end": 25561.76, + "probability": 0.8283 + }, + { + "start": 25564.47, + "end": 25567.02, + "probability": 0.7972 + }, + { + "start": 25567.8, + "end": 25568.24, + "probability": 0.3782 + }, + { + "start": 25568.34, + "end": 25568.76, + "probability": 0.5023 + }, + { + "start": 25568.9, + "end": 25570.18, + "probability": 0.744 + }, + { + "start": 25570.32, + "end": 25570.9, + "probability": 0.9788 + }, + { + "start": 25571.44, + "end": 25572.6, + "probability": 0.9629 + }, + { + "start": 25573.62, + "end": 25574.12, + "probability": 0.0542 + }, + { + "start": 25575.98, + "end": 25580.76, + "probability": 0.9026 + }, + { + "start": 25581.3, + "end": 25585.12, + "probability": 0.9948 + }, + { + "start": 25585.12, + "end": 25589.12, + "probability": 0.9689 + }, + { + "start": 25590.88, + "end": 25593.17, + "probability": 0.7155 + }, + { + "start": 25593.4, + "end": 25597.04, + "probability": 0.9237 + }, + { + "start": 25597.04, + "end": 25600.28, + "probability": 0.932 + }, + { + "start": 25600.8, + "end": 25601.68, + "probability": 0.7623 + }, + { + "start": 25602.48, + "end": 25604.14, + "probability": 0.9662 + }, + { + "start": 25604.26, + "end": 25607.7, + "probability": 0.8582 + }, + { + "start": 25609.34, + "end": 25610.1, + "probability": 0.9976 + }, + { + "start": 25611.08, + "end": 25614.58, + "probability": 0.8414 + }, + { + "start": 25615.86, + "end": 25623.4, + "probability": 0.9536 + }, + { + "start": 25624.08, + "end": 25626.36, + "probability": 0.908 + }, + { + "start": 25627.58, + "end": 25629.46, + "probability": 0.9374 + }, + { + "start": 25630.83, + "end": 25634.68, + "probability": 0.944 + }, + { + "start": 25635.24, + "end": 25640.24, + "probability": 0.8715 + }, + { + "start": 25640.76, + "end": 25643.02, + "probability": 0.6967 + }, + { + "start": 25644.1, + "end": 25646.64, + "probability": 0.9229 + }, + { + "start": 25647.24, + "end": 25648.7, + "probability": 0.9075 + }, + { + "start": 25649.4, + "end": 25652.76, + "probability": 0.9028 + }, + { + "start": 25653.58, + "end": 25656.24, + "probability": 0.9277 + }, + { + "start": 25657.02, + "end": 25658.96, + "probability": 0.9188 + }, + { + "start": 25659.66, + "end": 25661.48, + "probability": 0.5451 + }, + { + "start": 25662.28, + "end": 25666.2, + "probability": 0.9929 + }, + { + "start": 25666.92, + "end": 25668.38, + "probability": 0.2803 + }, + { + "start": 25668.92, + "end": 25671.56, + "probability": 0.9966 + }, + { + "start": 25673.74, + "end": 25675.08, + "probability": 0.2572 + }, + { + "start": 25675.08, + "end": 25676.8, + "probability": 0.8389 + }, + { + "start": 25677.44, + "end": 25680.82, + "probability": 0.95 + }, + { + "start": 25681.68, + "end": 25684.32, + "probability": 0.9966 + }, + { + "start": 25685.06, + "end": 25686.96, + "probability": 0.9848 + }, + { + "start": 25687.78, + "end": 25688.1, + "probability": 0.6708 + }, + { + "start": 25689.47, + "end": 25690.28, + "probability": 0.0971 + }, + { + "start": 25690.82, + "end": 25692.14, + "probability": 0.7272 + }, + { + "start": 25692.82, + "end": 25695.12, + "probability": 0.8427 + }, + { + "start": 25696.08, + "end": 25698.22, + "probability": 0.6847 + }, + { + "start": 25698.82, + "end": 25700.92, + "probability": 0.9019 + }, + { + "start": 25702.44, + "end": 25702.54, + "probability": 0.0192 + }, + { + "start": 25702.54, + "end": 25702.54, + "probability": 0.07 + }, + { + "start": 25702.54, + "end": 25704.48, + "probability": 0.7227 + }, + { + "start": 25705.06, + "end": 25706.5, + "probability": 0.9973 + }, + { + "start": 25707.04, + "end": 25708.88, + "probability": 0.9954 + }, + { + "start": 25710.3, + "end": 25712.54, + "probability": 0.9828 + }, + { + "start": 25713.06, + "end": 25716.22, + "probability": 0.994 + }, + { + "start": 25717.1, + "end": 25719.1, + "probability": 0.7187 + }, + { + "start": 25719.66, + "end": 25720.46, + "probability": 0.4086 + }, + { + "start": 25721.14, + "end": 25727.61, + "probability": 0.9642 + }, + { + "start": 25728.22, + "end": 25729.76, + "probability": 0.9834 + }, + { + "start": 25730.38, + "end": 25731.14, + "probability": 0.6846 + }, + { + "start": 25731.7, + "end": 25732.33, + "probability": 0.8794 + }, + { + "start": 25734.04, + "end": 25736.98, + "probability": 0.076 + }, + { + "start": 25737.84, + "end": 25737.84, + "probability": 0.0694 + }, + { + "start": 25737.84, + "end": 25737.84, + "probability": 0.1331 + }, + { + "start": 25737.84, + "end": 25740.16, + "probability": 0.7126 + }, + { + "start": 25740.36, + "end": 25742.62, + "probability": 0.1171 + }, + { + "start": 25743.7, + "end": 25743.7, + "probability": 0.3818 + }, + { + "start": 25743.7, + "end": 25743.7, + "probability": 0.0372 + }, + { + "start": 25743.7, + "end": 25745.1, + "probability": 0.4276 + }, + { + "start": 25746.14, + "end": 25750.0, + "probability": 0.9678 + }, + { + "start": 25750.52, + "end": 25752.22, + "probability": 0.8437 + }, + { + "start": 25753.04, + "end": 25754.54, + "probability": 0.8412 + }, + { + "start": 25754.6, + "end": 25756.1, + "probability": 0.953 + }, + { + "start": 25756.64, + "end": 25760.42, + "probability": 0.6322 + }, + { + "start": 25761.34, + "end": 25764.14, + "probability": 0.9982 + }, + { + "start": 25765.0, + "end": 25766.5, + "probability": 0.9135 + }, + { + "start": 25766.96, + "end": 25769.68, + "probability": 0.9902 + }, + { + "start": 25770.32, + "end": 25771.46, + "probability": 0.8047 + }, + { + "start": 25772.24, + "end": 25774.3, + "probability": 0.8941 + }, + { + "start": 25774.86, + "end": 25778.54, + "probability": 0.9625 + }, + { + "start": 25780.04, + "end": 25781.5, + "probability": 0.9731 + }, + { + "start": 25782.08, + "end": 25783.66, + "probability": 0.9938 + }, + { + "start": 25784.18, + "end": 25785.34, + "probability": 0.9971 + }, + { + "start": 25786.12, + "end": 25787.16, + "probability": 0.8409 + }, + { + "start": 25787.52, + "end": 25788.09, + "probability": 0.8884 + }, + { + "start": 25788.32, + "end": 25789.98, + "probability": 0.9694 + }, + { + "start": 25790.5, + "end": 25792.3, + "probability": 0.9907 + }, + { + "start": 25792.7, + "end": 25794.38, + "probability": 0.9979 + }, + { + "start": 25795.14, + "end": 25797.62, + "probability": 0.984 + }, + { + "start": 25798.36, + "end": 25799.84, + "probability": 0.7551 + }, + { + "start": 25800.26, + "end": 25801.8, + "probability": 0.8716 + }, + { + "start": 25802.28, + "end": 25804.4, + "probability": 0.9252 + }, + { + "start": 25806.26, + "end": 25808.95, + "probability": 0.999 + }, + { + "start": 25809.96, + "end": 25812.2, + "probability": 0.9644 + }, + { + "start": 25813.32, + "end": 25813.86, + "probability": 0.998 + }, + { + "start": 25814.68, + "end": 25815.28, + "probability": 0.6213 + }, + { + "start": 25815.98, + "end": 25816.72, + "probability": 0.6166 + }, + { + "start": 25817.9, + "end": 25820.1, + "probability": 0.9966 + }, + { + "start": 25821.74, + "end": 25824.28, + "probability": 0.9474 + }, + { + "start": 25825.4, + "end": 25830.06, + "probability": 0.9159 + }, + { + "start": 25830.64, + "end": 25832.56, + "probability": 0.9621 + }, + { + "start": 25832.66, + "end": 25833.36, + "probability": 0.6965 + }, + { + "start": 25833.84, + "end": 25834.74, + "probability": 0.4891 + }, + { + "start": 25835.61, + "end": 25838.18, + "probability": 0.7229 + }, + { + "start": 25838.18, + "end": 25843.34, + "probability": 0.4387 + }, + { + "start": 25846.9, + "end": 25850.63, + "probability": 0.9473 + }, + { + "start": 25851.04, + "end": 25852.4, + "probability": 0.5656 + }, + { + "start": 25853.3, + "end": 25854.64, + "probability": 0.9385 + }, + { + "start": 25855.1, + "end": 25856.04, + "probability": 0.0089 + }, + { + "start": 25856.28, + "end": 25857.26, + "probability": 0.4252 + }, + { + "start": 25858.81, + "end": 25861.28, + "probability": 0.3723 + }, + { + "start": 25861.48, + "end": 25862.28, + "probability": 0.5309 + }, + { + "start": 25863.46, + "end": 25864.04, + "probability": 0.868 + }, + { + "start": 25864.14, + "end": 25865.12, + "probability": 0.6037 + }, + { + "start": 25865.18, + "end": 25867.6, + "probability": 0.9217 + }, + { + "start": 25868.24, + "end": 25870.84, + "probability": 0.942 + }, + { + "start": 25871.44, + "end": 25873.1, + "probability": 0.9656 + }, + { + "start": 25873.96, + "end": 25876.12, + "probability": 0.9377 + }, + { + "start": 25876.78, + "end": 25878.32, + "probability": 0.917 + }, + { + "start": 25879.06, + "end": 25882.06, + "probability": 0.9747 + }, + { + "start": 25882.62, + "end": 25883.48, + "probability": 0.9715 + }, + { + "start": 25884.16, + "end": 25887.44, + "probability": 0.9938 + }, + { + "start": 25888.9, + "end": 25890.36, + "probability": 0.5373 + }, + { + "start": 25890.9, + "end": 25891.5, + "probability": 0.1488 + }, + { + "start": 25892.46, + "end": 25894.76, + "probability": 0.9966 + }, + { + "start": 25895.22, + "end": 25896.54, + "probability": 0.7507 + }, + { + "start": 25896.62, + "end": 25897.92, + "probability": 0.7361 + }, + { + "start": 25898.54, + "end": 25899.72, + "probability": 0.9772 + }, + { + "start": 25900.2, + "end": 25902.24, + "probability": 0.7369 + }, + { + "start": 25902.8, + "end": 25905.74, + "probability": 0.9659 + }, + { + "start": 25906.16, + "end": 25907.12, + "probability": 0.9474 + }, + { + "start": 25907.58, + "end": 25909.7, + "probability": 0.8833 + }, + { + "start": 25910.06, + "end": 25912.6, + "probability": 0.9275 + }, + { + "start": 25913.1, + "end": 25915.92, + "probability": 0.7674 + }, + { + "start": 25916.4, + "end": 25918.88, + "probability": 0.9805 + }, + { + "start": 25919.18, + "end": 25922.44, + "probability": 0.9752 + }, + { + "start": 25922.62, + "end": 25923.26, + "probability": 0.6652 + }, + { + "start": 25923.68, + "end": 25924.58, + "probability": 0.9822 + }, + { + "start": 25925.0, + "end": 25925.44, + "probability": 0.8163 + }, + { + "start": 25926.22, + "end": 25929.3, + "probability": 0.8852 + }, + { + "start": 25929.34, + "end": 25929.58, + "probability": 0.8251 + }, + { + "start": 25931.08, + "end": 25935.02, + "probability": 0.4277 + }, + { + "start": 25935.18, + "end": 25936.46, + "probability": 0.9329 + }, + { + "start": 25936.56, + "end": 25937.23, + "probability": 0.8647 + }, + { + "start": 25937.28, + "end": 25940.34, + "probability": 0.9679 + }, + { + "start": 25941.88, + "end": 25942.46, + "probability": 0.7571 + }, + { + "start": 25946.68, + "end": 25949.14, + "probability": 0.1141 + }, + { + "start": 25951.68, + "end": 25953.58, + "probability": 0.0661 + }, + { + "start": 25956.44, + "end": 25956.44, + "probability": 0.1383 + }, + { + "start": 25958.18, + "end": 25960.08, + "probability": 0.3248 + }, + { + "start": 25960.22, + "end": 25961.0, + "probability": 0.752 + }, + { + "start": 25961.89, + "end": 25966.1, + "probability": 0.9279 + }, + { + "start": 25966.14, + "end": 25968.6, + "probability": 0.9467 + }, + { + "start": 25972.4, + "end": 25972.84, + "probability": 0.0372 + }, + { + "start": 25974.64, + "end": 25976.46, + "probability": 0.9435 + }, + { + "start": 25977.56, + "end": 25979.02, + "probability": 0.173 + }, + { + "start": 25979.94, + "end": 25981.46, + "probability": 0.2601 + }, + { + "start": 25985.64, + "end": 25987.42, + "probability": 0.1703 + }, + { + "start": 25987.54, + "end": 25991.06, + "probability": 0.9666 + }, + { + "start": 25991.22, + "end": 25991.5, + "probability": 0.5605 + }, + { + "start": 25991.86, + "end": 25992.92, + "probability": 0.5579 + }, + { + "start": 25993.58, + "end": 25994.96, + "probability": 0.9744 + }, + { + "start": 25995.4, + "end": 25996.48, + "probability": 0.8831 + }, + { + "start": 25996.52, + "end": 25998.4, + "probability": 0.9816 + }, + { + "start": 25998.65, + "end": 26000.1, + "probability": 0.8621 + }, + { + "start": 26000.16, + "end": 26002.88, + "probability": 0.9585 + }, + { + "start": 26003.0, + "end": 26006.9, + "probability": 0.8726 + }, + { + "start": 26006.98, + "end": 26008.04, + "probability": 0.9233 + }, + { + "start": 26020.52, + "end": 26021.18, + "probability": 0.6874 + }, + { + "start": 26021.38, + "end": 26021.92, + "probability": 0.8073 + }, + { + "start": 26022.19, + "end": 26024.94, + "probability": 0.9725 + }, + { + "start": 26024.94, + "end": 26027.36, + "probability": 0.7935 + }, + { + "start": 26028.3, + "end": 26032.92, + "probability": 0.7003 + }, + { + "start": 26033.36, + "end": 26033.94, + "probability": 0.502 + }, + { + "start": 26035.48, + "end": 26036.5, + "probability": 0.3657 + }, + { + "start": 26040.0, + "end": 26041.18, + "probability": 0.9215 + }, + { + "start": 26041.42, + "end": 26043.16, + "probability": 0.7374 + }, + { + "start": 26043.26, + "end": 26044.5, + "probability": 0.7235 + }, + { + "start": 26044.83, + "end": 26050.64, + "probability": 0.9907 + }, + { + "start": 26051.24, + "end": 26054.2, + "probability": 0.9358 + }, + { + "start": 26054.5, + "end": 26058.28, + "probability": 0.9756 + }, + { + "start": 26058.28, + "end": 26063.12, + "probability": 0.8087 + }, + { + "start": 26064.78, + "end": 26064.78, + "probability": 0.1901 + }, + { + "start": 26064.78, + "end": 26066.12, + "probability": 0.9922 + }, + { + "start": 26066.52, + "end": 26070.52, + "probability": 0.9736 + }, + { + "start": 26071.84, + "end": 26076.82, + "probability": 0.9546 + }, + { + "start": 26076.82, + "end": 26083.32, + "probability": 0.9904 + }, + { + "start": 26084.28, + "end": 26086.76, + "probability": 0.9927 + }, + { + "start": 26086.92, + "end": 26089.44, + "probability": 0.9413 + }, + { + "start": 26089.44, + "end": 26092.54, + "probability": 0.8461 + }, + { + "start": 26093.56, + "end": 26098.34, + "probability": 0.9912 + }, + { + "start": 26098.34, + "end": 26102.1, + "probability": 0.7869 + }, + { + "start": 26102.1, + "end": 26104.68, + "probability": 0.9718 + }, + { + "start": 26105.32, + "end": 26109.18, + "probability": 0.9147 + }, + { + "start": 26109.18, + "end": 26112.66, + "probability": 0.9964 + }, + { + "start": 26113.54, + "end": 26115.99, + "probability": 0.8175 + }, + { + "start": 26117.72, + "end": 26119.72, + "probability": 0.9385 + }, + { + "start": 26119.72, + "end": 26124.46, + "probability": 0.9798 + }, + { + "start": 26124.7, + "end": 26127.52, + "probability": 0.9471 + }, + { + "start": 26128.6, + "end": 26129.18, + "probability": 0.8973 + }, + { + "start": 26130.54, + "end": 26133.44, + "probability": 0.5129 + }, + { + "start": 26133.96, + "end": 26135.58, + "probability": 0.4184 + }, + { + "start": 26135.76, + "end": 26139.29, + "probability": 0.6799 + }, + { + "start": 26139.72, + "end": 26143.2, + "probability": 0.958 + }, + { + "start": 26143.3, + "end": 26144.38, + "probability": 0.9554 + }, + { + "start": 26144.84, + "end": 26145.56, + "probability": 0.8704 + }, + { + "start": 26145.7, + "end": 26146.28, + "probability": 0.8416 + }, + { + "start": 26146.62, + "end": 26148.62, + "probability": 0.8609 + }, + { + "start": 26149.08, + "end": 26152.16, + "probability": 0.896 + }, + { + "start": 26152.16, + "end": 26154.46, + "probability": 0.7818 + }, + { + "start": 26156.7, + "end": 26159.08, + "probability": 0.706 + }, + { + "start": 26159.08, + "end": 26160.88, + "probability": 0.7749 + }, + { + "start": 26161.58, + "end": 26164.62, + "probability": 0.8994 + }, + { + "start": 26165.0, + "end": 26165.26, + "probability": 0.5984 + }, + { + "start": 26165.6, + "end": 26169.18, + "probability": 0.9854 + }, + { + "start": 26169.5, + "end": 26170.84, + "probability": 0.5029 + }, + { + "start": 26170.92, + "end": 26173.62, + "probability": 0.9505 + }, + { + "start": 26174.08, + "end": 26177.8, + "probability": 0.975 + }, + { + "start": 26178.54, + "end": 26182.44, + "probability": 0.8237 + }, + { + "start": 26182.5, + "end": 26183.26, + "probability": 0.8643 + }, + { + "start": 26183.64, + "end": 26185.88, + "probability": 0.796 + }, + { + "start": 26185.88, + "end": 26187.35, + "probability": 0.9349 + }, + { + "start": 26188.08, + "end": 26189.58, + "probability": 0.9704 + }, + { + "start": 26190.42, + "end": 26191.96, + "probability": 0.9937 + }, + { + "start": 26192.58, + "end": 26196.18, + "probability": 0.6153 + }, + { + "start": 26196.18, + "end": 26199.32, + "probability": 0.9801 + }, + { + "start": 26199.94, + "end": 26201.46, + "probability": 0.8633 + }, + { + "start": 26202.04, + "end": 26205.72, + "probability": 0.9839 + }, + { + "start": 26206.12, + "end": 26209.68, + "probability": 0.9648 + }, + { + "start": 26210.28, + "end": 26213.16, + "probability": 0.986 + }, + { + "start": 26213.16, + "end": 26216.74, + "probability": 0.6124 + }, + { + "start": 26216.78, + "end": 26219.06, + "probability": 0.8969 + }, + { + "start": 26220.08, + "end": 26223.42, + "probability": 0.9982 + }, + { + "start": 26223.66, + "end": 26224.36, + "probability": 0.9255 + }, + { + "start": 26224.9, + "end": 26228.02, + "probability": 0.9011 + }, + { + "start": 26228.1, + "end": 26230.12, + "probability": 0.8359 + }, + { + "start": 26230.82, + "end": 26232.46, + "probability": 0.8975 + }, + { + "start": 26233.2, + "end": 26236.86, + "probability": 0.92 + }, + { + "start": 26237.5, + "end": 26238.72, + "probability": 0.8684 + }, + { + "start": 26239.46, + "end": 26242.0, + "probability": 0.8937 + }, + { + "start": 26242.82, + "end": 26247.02, + "probability": 0.9852 + }, + { + "start": 26248.62, + "end": 26254.28, + "probability": 0.9834 + }, + { + "start": 26254.42, + "end": 26255.56, + "probability": 0.8594 + }, + { + "start": 26255.86, + "end": 26258.48, + "probability": 0.9913 + }, + { + "start": 26259.14, + "end": 26261.06, + "probability": 0.9515 + }, + { + "start": 26261.06, + "end": 26263.62, + "probability": 0.7343 + }, + { + "start": 26264.08, + "end": 26264.74, + "probability": 0.9304 + }, + { + "start": 26265.16, + "end": 26266.3, + "probability": 0.8931 + }, + { + "start": 26266.38, + "end": 26268.86, + "probability": 0.957 + }, + { + "start": 26268.98, + "end": 26270.74, + "probability": 0.8088 + }, + { + "start": 26271.26, + "end": 26271.9, + "probability": 0.8107 + }, + { + "start": 26272.73, + "end": 26276.18, + "probability": 0.9122 + }, + { + "start": 26276.2, + "end": 26278.34, + "probability": 0.9274 + }, + { + "start": 26278.74, + "end": 26282.44, + "probability": 0.9249 + }, + { + "start": 26282.5, + "end": 26282.86, + "probability": 0.7964 + }, + { + "start": 26284.08, + "end": 26284.62, + "probability": 0.5848 + }, + { + "start": 26284.7, + "end": 26285.46, + "probability": 0.5704 + }, + { + "start": 26285.92, + "end": 26290.0, + "probability": 0.9286 + }, + { + "start": 26303.74, + "end": 26304.98, + "probability": 0.4312 + }, + { + "start": 26305.9, + "end": 26308.26, + "probability": 0.0011 + }, + { + "start": 26308.82, + "end": 26311.9, + "probability": 0.0267 + }, + { + "start": 26312.48, + "end": 26314.08, + "probability": 0.6676 + }, + { + "start": 26314.58, + "end": 26316.16, + "probability": 0.6706 + }, + { + "start": 26316.48, + "end": 26320.84, + "probability": 0.801 + }, + { + "start": 26320.86, + "end": 26323.32, + "probability": 0.0616 + }, + { + "start": 26324.1, + "end": 26327.54, + "probability": 0.014 + }, + { + "start": 26339.6, + "end": 26339.8, + "probability": 0.393 + }, + { + "start": 26339.8, + "end": 26339.86, + "probability": 0.5103 + }, + { + "start": 26339.86, + "end": 26340.07, + "probability": 0.562 + }, + { + "start": 26340.32, + "end": 26340.72, + "probability": 0.3052 + }, + { + "start": 26340.82, + "end": 26344.0, + "probability": 0.8843 + }, + { + "start": 26344.34, + "end": 26345.04, + "probability": 0.6097 + }, + { + "start": 26345.18, + "end": 26346.08, + "probability": 0.7333 + }, + { + "start": 26346.1, + "end": 26348.34, + "probability": 0.9798 + }, + { + "start": 26349.36, + "end": 26350.44, + "probability": 0.8396 + }, + { + "start": 26350.54, + "end": 26354.52, + "probability": 0.7101 + }, + { + "start": 26354.56, + "end": 26358.96, + "probability": 0.8201 + }, + { + "start": 26359.58, + "end": 26360.52, + "probability": 0.9673 + }, + { + "start": 26366.88, + "end": 26369.72, + "probability": 0.7465 + }, + { + "start": 26371.44, + "end": 26374.72, + "probability": 0.9847 + }, + { + "start": 26379.08, + "end": 26384.66, + "probability": 0.9986 + }, + { + "start": 26385.66, + "end": 26387.92, + "probability": 0.9348 + }, + { + "start": 26388.94, + "end": 26391.02, + "probability": 0.8505 + }, + { + "start": 26391.26, + "end": 26392.08, + "probability": 0.6179 + }, + { + "start": 26392.17, + "end": 26394.66, + "probability": 0.9587 + }, + { + "start": 26395.88, + "end": 26398.12, + "probability": 0.9385 + }, + { + "start": 26398.12, + "end": 26400.84, + "probability": 0.7908 + }, + { + "start": 26401.86, + "end": 26404.38, + "probability": 0.6971 + }, + { + "start": 26404.88, + "end": 26407.82, + "probability": 0.9787 + }, + { + "start": 26408.18, + "end": 26408.86, + "probability": 0.5951 + }, + { + "start": 26408.92, + "end": 26409.78, + "probability": 0.6785 + }, + { + "start": 26410.86, + "end": 26415.28, + "probability": 0.7877 + }, + { + "start": 26415.74, + "end": 26419.12, + "probability": 0.3498 + }, + { + "start": 26419.72, + "end": 26421.64, + "probability": 0.8733 + }, + { + "start": 26422.94, + "end": 26424.38, + "probability": 0.8032 + }, + { + "start": 26425.0, + "end": 26425.74, + "probability": 0.8549 + }, + { + "start": 26426.48, + "end": 26428.88, + "probability": 0.9399 + }, + { + "start": 26429.46, + "end": 26430.62, + "probability": 0.8752 + }, + { + "start": 26431.36, + "end": 26437.18, + "probability": 0.9897 + }, + { + "start": 26437.44, + "end": 26437.96, + "probability": 0.7045 + }, + { + "start": 26438.76, + "end": 26440.92, + "probability": 0.8117 + }, + { + "start": 26441.5, + "end": 26444.64, + "probability": 0.9393 + }, + { + "start": 26445.28, + "end": 26447.46, + "probability": 0.8798 + }, + { + "start": 26447.98, + "end": 26451.5, + "probability": 0.9933 + }, + { + "start": 26451.5, + "end": 26454.24, + "probability": 0.9685 + }, + { + "start": 26454.7, + "end": 26459.56, + "probability": 0.9724 + }, + { + "start": 26459.56, + "end": 26463.86, + "probability": 0.9744 + }, + { + "start": 26464.54, + "end": 26468.36, + "probability": 0.9399 + }, + { + "start": 26468.36, + "end": 26473.64, + "probability": 0.9341 + }, + { + "start": 26473.64, + "end": 26479.2, + "probability": 0.9945 + }, + { + "start": 26479.7, + "end": 26482.14, + "probability": 0.8668 + }, + { + "start": 26482.6, + "end": 26484.64, + "probability": 0.9629 + }, + { + "start": 26485.3, + "end": 26486.94, + "probability": 0.716 + }, + { + "start": 26486.98, + "end": 26489.72, + "probability": 0.7515 + }, + { + "start": 26489.8, + "end": 26492.0, + "probability": 0.895 + }, + { + "start": 26492.04, + "end": 26494.76, + "probability": 0.9907 + }, + { + "start": 26494.76, + "end": 26498.7, + "probability": 0.9932 + }, + { + "start": 26500.34, + "end": 26501.98, + "probability": 0.8792 + }, + { + "start": 26502.46, + "end": 26503.22, + "probability": 0.3345 + }, + { + "start": 26503.36, + "end": 26508.82, + "probability": 0.9854 + }, + { + "start": 26509.78, + "end": 26513.66, + "probability": 0.9655 + }, + { + "start": 26513.66, + "end": 26519.46, + "probability": 0.9221 + }, + { + "start": 26519.5, + "end": 26520.96, + "probability": 0.999 + }, + { + "start": 26521.8, + "end": 26522.78, + "probability": 0.9833 + }, + { + "start": 26522.96, + "end": 26526.08, + "probability": 0.8245 + }, + { + "start": 26526.54, + "end": 26527.74, + "probability": 0.9762 + }, + { + "start": 26527.94, + "end": 26530.82, + "probability": 0.9634 + }, + { + "start": 26530.82, + "end": 26534.34, + "probability": 0.8904 + }, + { + "start": 26534.48, + "end": 26534.94, + "probability": 0.3213 + }, + { + "start": 26535.32, + "end": 26535.58, + "probability": 0.7996 + }, + { + "start": 26535.66, + "end": 26536.74, + "probability": 0.9009 + }, + { + "start": 26536.86, + "end": 26539.06, + "probability": 0.8784 + }, + { + "start": 26539.06, + "end": 26542.6, + "probability": 0.9279 + }, + { + "start": 26543.18, + "end": 26546.82, + "probability": 0.9842 + }, + { + "start": 26547.2, + "end": 26549.02, + "probability": 0.737 + }, + { + "start": 26549.38, + "end": 26551.76, + "probability": 0.8079 + }, + { + "start": 26552.38, + "end": 26552.82, + "probability": 0.8249 + }, + { + "start": 26553.2, + "end": 26556.16, + "probability": 0.699 + }, + { + "start": 26556.16, + "end": 26560.32, + "probability": 0.9742 + }, + { + "start": 26562.48, + "end": 26564.96, + "probability": 0.998 + }, + { + "start": 26565.71, + "end": 26570.04, + "probability": 0.6372 + }, + { + "start": 26570.18, + "end": 26574.88, + "probability": 0.9627 + }, + { + "start": 26574.94, + "end": 26579.5, + "probability": 0.7472 + }, + { + "start": 26580.22, + "end": 26581.9, + "probability": 0.771 + }, + { + "start": 26582.16, + "end": 26583.26, + "probability": 0.729 + }, + { + "start": 26584.1, + "end": 26585.34, + "probability": 0.7489 + }, + { + "start": 26586.24, + "end": 26587.4, + "probability": 0.5815 + }, + { + "start": 26588.82, + "end": 26591.34, + "probability": 0.9675 + }, + { + "start": 26591.34, + "end": 26594.08, + "probability": 0.9905 + }, + { + "start": 26594.18, + "end": 26598.06, + "probability": 0.7341 + }, + { + "start": 26598.06, + "end": 26603.32, + "probability": 0.9767 + }, + { + "start": 26603.5, + "end": 26604.68, + "probability": 0.7789 + }, + { + "start": 26604.76, + "end": 26605.28, + "probability": 0.7567 + }, + { + "start": 26605.32, + "end": 26606.58, + "probability": 0.9207 + }, + { + "start": 26606.68, + "end": 26608.2, + "probability": 0.9683 + }, + { + "start": 26608.24, + "end": 26609.38, + "probability": 0.9564 + }, + { + "start": 26610.28, + "end": 26612.56, + "probability": 0.6506 + }, + { + "start": 26612.56, + "end": 26615.22, + "probability": 0.944 + }, + { + "start": 26615.84, + "end": 26618.5, + "probability": 0.9299 + }, + { + "start": 26621.3, + "end": 26621.6, + "probability": 0.0618 + }, + { + "start": 26621.6, + "end": 26622.28, + "probability": 0.6976 + }, + { + "start": 26622.46, + "end": 26626.08, + "probability": 0.9745 + }, + { + "start": 26626.58, + "end": 26630.4, + "probability": 0.9856 + }, + { + "start": 26630.54, + "end": 26630.86, + "probability": 0.8266 + }, + { + "start": 26631.38, + "end": 26632.12, + "probability": 0.9952 + }, + { + "start": 26632.64, + "end": 26633.98, + "probability": 0.8882 + }, + { + "start": 26634.32, + "end": 26636.48, + "probability": 0.9976 + }, + { + "start": 26636.48, + "end": 26640.62, + "probability": 0.7356 + }, + { + "start": 26641.48, + "end": 26642.34, + "probability": 0.9549 + }, + { + "start": 26643.08, + "end": 26646.82, + "probability": 0.9807 + }, + { + "start": 26647.88, + "end": 26648.96, + "probability": 0.8475 + }, + { + "start": 26649.48, + "end": 26653.2, + "probability": 0.7409 + }, + { + "start": 26653.56, + "end": 26654.38, + "probability": 0.8405 + }, + { + "start": 26654.82, + "end": 26654.98, + "probability": 0.28 + }, + { + "start": 26655.06, + "end": 26656.95, + "probability": 0.669 + }, + { + "start": 26657.24, + "end": 26659.66, + "probability": 0.9294 + }, + { + "start": 26661.06, + "end": 26661.46, + "probability": 0.7292 + }, + { + "start": 26661.96, + "end": 26664.72, + "probability": 0.9718 + }, + { + "start": 26664.9, + "end": 26665.58, + "probability": 0.8866 + }, + { + "start": 26665.66, + "end": 26666.6, + "probability": 0.6533 + }, + { + "start": 26666.96, + "end": 26669.88, + "probability": 0.9475 + }, + { + "start": 26670.22, + "end": 26672.38, + "probability": 0.9714 + }, + { + "start": 26672.4, + "end": 26673.18, + "probability": 0.656 + }, + { + "start": 26673.3, + "end": 26674.24, + "probability": 0.7768 + }, + { + "start": 26674.64, + "end": 26675.96, + "probability": 0.8784 + }, + { + "start": 26676.62, + "end": 26679.9, + "probability": 0.7887 + }, + { + "start": 26680.04, + "end": 26683.44, + "probability": 0.9754 + }, + { + "start": 26683.82, + "end": 26684.68, + "probability": 0.7025 + }, + { + "start": 26685.2, + "end": 26686.44, + "probability": 0.6454 + }, + { + "start": 26686.44, + "end": 26686.84, + "probability": 0.6075 + }, + { + "start": 26687.04, + "end": 26688.76, + "probability": 0.913 + }, + { + "start": 26688.96, + "end": 26690.48, + "probability": 0.9302 + }, + { + "start": 26690.62, + "end": 26692.8, + "probability": 0.9193 + }, + { + "start": 26693.72, + "end": 26696.52, + "probability": 0.8062 + }, + { + "start": 26697.3, + "end": 26698.14, + "probability": 0.8018 + }, + { + "start": 26699.0, + "end": 26703.02, + "probability": 0.8119 + }, + { + "start": 26703.56, + "end": 26703.86, + "probability": 0.5518 + }, + { + "start": 26703.98, + "end": 26706.24, + "probability": 0.7004 + }, + { + "start": 26706.56, + "end": 26708.18, + "probability": 0.9671 + }, + { + "start": 26708.68, + "end": 26712.1, + "probability": 0.8797 + }, + { + "start": 26712.1, + "end": 26712.9, + "probability": 0.8336 + }, + { + "start": 26713.3, + "end": 26713.82, + "probability": 0.7559 + }, + { + "start": 26713.94, + "end": 26714.4, + "probability": 0.8593 + }, + { + "start": 26715.6, + "end": 26716.96, + "probability": 0.8579 + }, + { + "start": 26717.24, + "end": 26720.8, + "probability": 0.8519 + }, + { + "start": 26721.58, + "end": 26722.5, + "probability": 0.6564 + }, + { + "start": 26722.6, + "end": 26724.94, + "probability": 0.5829 + }, + { + "start": 26725.4, + "end": 26729.4, + "probability": 0.9846 + }, + { + "start": 26729.6, + "end": 26731.38, + "probability": 0.9375 + }, + { + "start": 26733.18, + "end": 26735.96, + "probability": 0.7055 + }, + { + "start": 26735.96, + "end": 26737.6, + "probability": 0.7215 + }, + { + "start": 26737.96, + "end": 26740.14, + "probability": 0.6435 + }, + { + "start": 26740.3, + "end": 26742.82, + "probability": 0.9814 + }, + { + "start": 26742.82, + "end": 26744.98, + "probability": 0.7799 + }, + { + "start": 26745.44, + "end": 26746.88, + "probability": 0.8909 + }, + { + "start": 26747.5, + "end": 26749.64, + "probability": 0.9239 + }, + { + "start": 26749.66, + "end": 26752.92, + "probability": 0.9435 + }, + { + "start": 26754.26, + "end": 26759.66, + "probability": 0.5775 + }, + { + "start": 26759.94, + "end": 26761.06, + "probability": 0.6283 + }, + { + "start": 26761.38, + "end": 26764.12, + "probability": 0.9823 + }, + { + "start": 26764.16, + "end": 26767.78, + "probability": 0.6746 + }, + { + "start": 26768.16, + "end": 26771.58, + "probability": 0.9507 + }, + { + "start": 26771.96, + "end": 26774.16, + "probability": 0.9101 + }, + { + "start": 26774.26, + "end": 26775.36, + "probability": 0.6436 + }, + { + "start": 26775.72, + "end": 26776.34, + "probability": 0.7789 + }, + { + "start": 26776.44, + "end": 26778.38, + "probability": 0.9694 + }, + { + "start": 26778.38, + "end": 26781.24, + "probability": 0.6832 + }, + { + "start": 26781.48, + "end": 26785.34, + "probability": 0.9792 + }, + { + "start": 26785.72, + "end": 26789.84, + "probability": 0.9978 + }, + { + "start": 26789.92, + "end": 26790.34, + "probability": 0.8767 + }, + { + "start": 26790.9, + "end": 26794.98, + "probability": 0.97 + }, + { + "start": 26795.06, + "end": 26798.6, + "probability": 0.9691 + }, + { + "start": 26798.98, + "end": 26802.24, + "probability": 0.9549 + }, + { + "start": 26802.24, + "end": 26803.4, + "probability": 0.1951 + }, + { + "start": 26804.18, + "end": 26808.7, + "probability": 0.1431 + }, + { + "start": 26809.04, + "end": 26813.42, + "probability": 0.6149 + }, + { + "start": 26814.06, + "end": 26815.01, + "probability": 0.0343 + }, + { + "start": 26816.42, + "end": 26819.54, + "probability": 0.793 + }, + { + "start": 26819.54, + "end": 26821.27, + "probability": 0.8557 + }, + { + "start": 26821.88, + "end": 26823.56, + "probability": 0.9865 + }, + { + "start": 26823.84, + "end": 26824.5, + "probability": 0.5379 + }, + { + "start": 26824.52, + "end": 26825.36, + "probability": 0.4239 + }, + { + "start": 26825.5, + "end": 26827.24, + "probability": 0.4362 + }, + { + "start": 26827.48, + "end": 26829.12, + "probability": 0.9336 + }, + { + "start": 26829.66, + "end": 26831.16, + "probability": 0.7878 + }, + { + "start": 26831.26, + "end": 26834.18, + "probability": 0.96 + }, + { + "start": 26834.24, + "end": 26835.52, + "probability": 0.7322 + }, + { + "start": 26835.92, + "end": 26840.22, + "probability": 0.9941 + }, + { + "start": 26840.44, + "end": 26841.34, + "probability": 0.4471 + }, + { + "start": 26841.44, + "end": 26844.44, + "probability": 0.9814 + }, + { + "start": 26844.44, + "end": 26847.14, + "probability": 0.9579 + }, + { + "start": 26847.42, + "end": 26850.32, + "probability": 0.979 + }, + { + "start": 26851.76, + "end": 26852.6, + "probability": 0.5018 + }, + { + "start": 26853.22, + "end": 26855.9, + "probability": 0.874 + }, + { + "start": 26858.76, + "end": 26860.9, + "probability": 0.442 + }, + { + "start": 26860.98, + "end": 26865.34, + "probability": 0.7865 + }, + { + "start": 26865.52, + "end": 26870.42, + "probability": 0.9916 + }, + { + "start": 26871.0, + "end": 26874.6, + "probability": 0.8958 + }, + { + "start": 26875.18, + "end": 26879.02, + "probability": 0.9626 + }, + { + "start": 26879.38, + "end": 26881.14, + "probability": 0.9872 + }, + { + "start": 26881.14, + "end": 26882.02, + "probability": 0.6164 + }, + { + "start": 26882.55, + "end": 26884.2, + "probability": 0.7056 + }, + { + "start": 26884.54, + "end": 26887.94, + "probability": 0.9723 + }, + { + "start": 26888.26, + "end": 26889.3, + "probability": 0.7826 + }, + { + "start": 26889.82, + "end": 26894.06, + "probability": 0.9541 + }, + { + "start": 26894.38, + "end": 26897.52, + "probability": 0.9817 + }, + { + "start": 26897.68, + "end": 26898.42, + "probability": 0.9688 + }, + { + "start": 26899.46, + "end": 26899.82, + "probability": 0.4211 + }, + { + "start": 26899.94, + "end": 26901.54, + "probability": 0.988 + }, + { + "start": 26901.64, + "end": 26902.3, + "probability": 0.6985 + }, + { + "start": 26902.7, + "end": 26903.84, + "probability": 0.9751 + }, + { + "start": 26903.98, + "end": 26906.06, + "probability": 0.8024 + }, + { + "start": 26906.44, + "end": 26907.96, + "probability": 0.9363 + }, + { + "start": 26908.52, + "end": 26910.38, + "probability": 0.9841 + }, + { + "start": 26910.6, + "end": 26911.82, + "probability": 0.9417 + }, + { + "start": 26911.92, + "end": 26915.56, + "probability": 0.8474 + }, + { + "start": 26915.62, + "end": 26916.6, + "probability": 0.8786 + }, + { + "start": 26916.68, + "end": 26917.82, + "probability": 0.9168 + }, + { + "start": 26918.28, + "end": 26919.34, + "probability": 0.8551 + }, + { + "start": 26919.78, + "end": 26923.0, + "probability": 0.8633 + }, + { + "start": 26923.1, + "end": 26923.76, + "probability": 0.703 + }, + { + "start": 26924.16, + "end": 26929.02, + "probability": 0.986 + }, + { + "start": 26929.4, + "end": 26929.7, + "probability": 0.974 + }, + { + "start": 26932.48, + "end": 26932.62, + "probability": 0.071 + }, + { + "start": 26932.62, + "end": 26933.76, + "probability": 0.422 + }, + { + "start": 26934.68, + "end": 26936.02, + "probability": 0.6963 + }, + { + "start": 26936.1, + "end": 26938.32, + "probability": 0.6297 + }, + { + "start": 26938.92, + "end": 26941.68, + "probability": 0.7239 + }, + { + "start": 26942.0, + "end": 26943.42, + "probability": 0.7601 + }, + { + "start": 26944.28, + "end": 26944.76, + "probability": 0.266 + }, + { + "start": 26945.6, + "end": 26946.6, + "probability": 0.5333 + }, + { + "start": 26947.08, + "end": 26948.56, + "probability": 0.8047 + }, + { + "start": 26948.96, + "end": 26950.38, + "probability": 0.9857 + }, + { + "start": 26951.12, + "end": 26956.92, + "probability": 0.9875 + }, + { + "start": 26957.44, + "end": 26959.22, + "probability": 0.9465 + }, + { + "start": 26959.34, + "end": 26962.24, + "probability": 0.9825 + }, + { + "start": 26962.72, + "end": 26963.12, + "probability": 0.6272 + }, + { + "start": 26963.18, + "end": 26963.56, + "probability": 0.8131 + }, + { + "start": 26963.66, + "end": 26964.84, + "probability": 0.8089 + }, + { + "start": 26965.2, + "end": 26969.34, + "probability": 0.9932 + }, + { + "start": 26969.42, + "end": 26971.26, + "probability": 0.8012 + }, + { + "start": 26971.44, + "end": 26971.8, + "probability": 0.6212 + }, + { + "start": 26971.9, + "end": 26974.88, + "probability": 0.8657 + }, + { + "start": 26974.98, + "end": 26975.62, + "probability": 0.9235 + }, + { + "start": 26975.7, + "end": 26976.04, + "probability": 0.9443 + }, + { + "start": 26979.06, + "end": 26983.42, + "probability": 0.905 + }, + { + "start": 26983.6, + "end": 26987.42, + "probability": 0.9748 + }, + { + "start": 26991.18, + "end": 26992.2, + "probability": 0.9417 + }, + { + "start": 26992.2, + "end": 26992.3, + "probability": 0.9429 + }, + { + "start": 26992.48, + "end": 26994.76, + "probability": 0.749 + }, + { + "start": 26995.32, + "end": 26995.56, + "probability": 0.0673 + }, + { + "start": 26995.74, + "end": 26996.1, + "probability": 0.6483 + }, + { + "start": 26996.82, + "end": 26997.86, + "probability": 0.9908 + }, + { + "start": 26999.2, + "end": 27000.47, + "probability": 0.9932 + }, + { + "start": 27003.52, + "end": 27004.48, + "probability": 0.6354 + }, + { + "start": 27005.54, + "end": 27007.5, + "probability": 0.7322 + }, + { + "start": 27008.38, + "end": 27012.19, + "probability": 0.9769 + }, + { + "start": 27014.32, + "end": 27014.76, + "probability": 0.8617 + }, + { + "start": 27015.38, + "end": 27016.94, + "probability": 0.9327 + }, + { + "start": 27018.78, + "end": 27024.36, + "probability": 0.9427 + }, + { + "start": 27024.58, + "end": 27025.92, + "probability": 0.9705 + }, + { + "start": 27027.24, + "end": 27029.96, + "probability": 0.7925 + }, + { + "start": 27030.16, + "end": 27031.08, + "probability": 0.9347 + }, + { + "start": 27031.94, + "end": 27036.08, + "probability": 0.981 + }, + { + "start": 27036.54, + "end": 27040.66, + "probability": 0.8288 + }, + { + "start": 27041.68, + "end": 27043.2, + "probability": 0.5027 + }, + { + "start": 27044.5, + "end": 27050.62, + "probability": 0.736 + }, + { + "start": 27051.28, + "end": 27052.82, + "probability": 0.9736 + }, + { + "start": 27055.38, + "end": 27059.3, + "probability": 0.9937 + }, + { + "start": 27060.5, + "end": 27063.24, + "probability": 0.9392 + }, + { + "start": 27064.26, + "end": 27068.56, + "probability": 0.9656 + }, + { + "start": 27071.0, + "end": 27072.1, + "probability": 0.9972 + }, + { + "start": 27072.96, + "end": 27075.9, + "probability": 0.703 + }, + { + "start": 27076.58, + "end": 27080.33, + "probability": 0.8738 + }, + { + "start": 27081.26, + "end": 27084.98, + "probability": 0.9871 + }, + { + "start": 27085.62, + "end": 27087.98, + "probability": 0.9695 + }, + { + "start": 27088.8, + "end": 27089.8, + "probability": 0.9251 + }, + { + "start": 27090.72, + "end": 27092.2, + "probability": 0.7014 + }, + { + "start": 27093.9, + "end": 27094.58, + "probability": 0.8444 + }, + { + "start": 27095.24, + "end": 27097.54, + "probability": 0.9709 + }, + { + "start": 27098.92, + "end": 27101.02, + "probability": 0.9711 + }, + { + "start": 27101.7, + "end": 27102.44, + "probability": 0.9765 + }, + { + "start": 27103.18, + "end": 27104.36, + "probability": 0.9087 + }, + { + "start": 27105.54, + "end": 27106.34, + "probability": 0.9857 + }, + { + "start": 27107.2, + "end": 27108.12, + "probability": 0.7222 + }, + { + "start": 27109.82, + "end": 27111.74, + "probability": 0.8279 + }, + { + "start": 27112.62, + "end": 27115.04, + "probability": 0.9826 + }, + { + "start": 27115.6, + "end": 27118.2, + "probability": 0.9915 + }, + { + "start": 27119.24, + "end": 27120.26, + "probability": 0.6935 + }, + { + "start": 27121.4, + "end": 27128.4, + "probability": 0.9906 + }, + { + "start": 27129.04, + "end": 27130.44, + "probability": 0.9937 + }, + { + "start": 27131.46, + "end": 27134.72, + "probability": 0.7088 + }, + { + "start": 27136.2, + "end": 27139.14, + "probability": 0.7822 + }, + { + "start": 27140.46, + "end": 27142.58, + "probability": 0.9348 + }, + { + "start": 27143.46, + "end": 27144.48, + "probability": 0.9855 + }, + { + "start": 27145.44, + "end": 27146.66, + "probability": 0.7452 + }, + { + "start": 27147.38, + "end": 27152.72, + "probability": 0.9783 + }, + { + "start": 27152.94, + "end": 27153.34, + "probability": 0.7484 + }, + { + "start": 27155.84, + "end": 27156.4, + "probability": 0.7489 + }, + { + "start": 27158.8, + "end": 27162.88, + "probability": 0.5772 + }, + { + "start": 27162.96, + "end": 27164.12, + "probability": 0.3648 + }, + { + "start": 27164.2, + "end": 27165.18, + "probability": 0.8253 + }, + { + "start": 27166.74, + "end": 27168.88, + "probability": 0.1299 + }, + { + "start": 27171.72, + "end": 27172.86, + "probability": 0.2222 + }, + { + "start": 27173.5, + "end": 27177.2, + "probability": 0.6043 + }, + { + "start": 27179.34, + "end": 27181.22, + "probability": 0.4353 + }, + { + "start": 27182.82, + "end": 27184.7, + "probability": 0.9557 + }, + { + "start": 27186.04, + "end": 27186.88, + "probability": 0.929 + }, + { + "start": 27201.32, + "end": 27201.32, + "probability": 0.2873 + }, + { + "start": 27201.32, + "end": 27202.28, + "probability": 0.5644 + }, + { + "start": 27202.36, + "end": 27204.1, + "probability": 0.9917 + }, + { + "start": 27204.2, + "end": 27206.58, + "probability": 0.952 + }, + { + "start": 27206.76, + "end": 27208.48, + "probability": 0.7464 + }, + { + "start": 27209.5, + "end": 27210.64, + "probability": 0.7203 + }, + { + "start": 27211.58, + "end": 27212.22, + "probability": 0.0087 + }, + { + "start": 27228.92, + "end": 27231.96, + "probability": 0.4336 + }, + { + "start": 27231.96, + "end": 27232.96, + "probability": 0.6726 + }, + { + "start": 27233.92, + "end": 27234.08, + "probability": 0.0756 + }, + { + "start": 27234.08, + "end": 27234.78, + "probability": 0.3812 + }, + { + "start": 27238.4, + "end": 27238.98, + "probability": 0.2333 + }, + { + "start": 27239.04, + "end": 27240.42, + "probability": 0.0248 + }, + { + "start": 27241.68, + "end": 27242.42, + "probability": 0.0219 + }, + { + "start": 27243.3, + "end": 27243.62, + "probability": 0.1123 + }, + { + "start": 27243.62, + "end": 27243.62, + "probability": 0.1719 + }, + { + "start": 27243.62, + "end": 27243.62, + "probability": 0.0315 + }, + { + "start": 27243.62, + "end": 27243.94, + "probability": 0.4342 + }, + { + "start": 27244.6, + "end": 27245.21, + "probability": 0.876 + }, + { + "start": 27246.38, + "end": 27247.22, + "probability": 0.5659 + }, + { + "start": 27250.36, + "end": 27251.24, + "probability": 0.2701 + }, + { + "start": 27251.78, + "end": 27253.16, + "probability": 0.7675 + }, + { + "start": 27254.44, + "end": 27256.24, + "probability": 0.7433 + }, + { + "start": 27256.38, + "end": 27258.3, + "probability": 0.9039 + }, + { + "start": 27258.44, + "end": 27259.8, + "probability": 0.5459 + }, + { + "start": 27260.86, + "end": 27261.3, + "probability": 0.4892 + }, + { + "start": 27261.38, + "end": 27262.32, + "probability": 0.9323 + }, + { + "start": 27263.68, + "end": 27265.26, + "probability": 0.3316 + }, + { + "start": 27265.52, + "end": 27267.52, + "probability": 0.656 + }, + { + "start": 27268.28, + "end": 27272.1, + "probability": 0.9333 + }, + { + "start": 27273.1, + "end": 27274.32, + "probability": 0.7877 + }, + { + "start": 27275.4, + "end": 27281.24, + "probability": 0.9326 + }, + { + "start": 27282.9, + "end": 27284.28, + "probability": 0.9164 + }, + { + "start": 27285.32, + "end": 27287.5, + "probability": 0.9854 + }, + { + "start": 27287.78, + "end": 27289.38, + "probability": 0.9849 + }, + { + "start": 27289.5, + "end": 27290.34, + "probability": 0.7593 + }, + { + "start": 27291.2, + "end": 27293.74, + "probability": 0.9895 + }, + { + "start": 27294.36, + "end": 27296.42, + "probability": 0.6759 + }, + { + "start": 27297.48, + "end": 27300.9, + "probability": 0.9312 + }, + { + "start": 27301.32, + "end": 27304.43, + "probability": 0.922 + }, + { + "start": 27306.28, + "end": 27306.98, + "probability": 0.4619 + }, + { + "start": 27307.74, + "end": 27310.62, + "probability": 0.6659 + }, + { + "start": 27311.78, + "end": 27316.78, + "probability": 0.9097 + }, + { + "start": 27316.92, + "end": 27318.12, + "probability": 0.8146 + }, + { + "start": 27318.48, + "end": 27320.36, + "probability": 0.8833 + }, + { + "start": 27321.82, + "end": 27326.72, + "probability": 0.9614 + }, + { + "start": 27327.56, + "end": 27332.5, + "probability": 0.9567 + }, + { + "start": 27332.7, + "end": 27336.0, + "probability": 0.8369 + }, + { + "start": 27337.16, + "end": 27340.18, + "probability": 0.8725 + }, + { + "start": 27341.02, + "end": 27342.38, + "probability": 0.9504 + }, + { + "start": 27342.5, + "end": 27343.04, + "probability": 0.9479 + }, + { + "start": 27343.12, + "end": 27348.6, + "probability": 0.9007 + }, + { + "start": 27349.16, + "end": 27353.78, + "probability": 0.9966 + }, + { + "start": 27353.9, + "end": 27356.06, + "probability": 0.6726 + }, + { + "start": 27356.72, + "end": 27359.22, + "probability": 0.8837 + }, + { + "start": 27359.86, + "end": 27361.72, + "probability": 0.9961 + }, + { + "start": 27362.34, + "end": 27367.5, + "probability": 0.8285 + }, + { + "start": 27369.1, + "end": 27372.1, + "probability": 0.9736 + }, + { + "start": 27376.66, + "end": 27378.2, + "probability": 0.3284 + }, + { + "start": 27379.24, + "end": 27380.0, + "probability": 0.0515 + }, + { + "start": 27382.0, + "end": 27382.94, + "probability": 0.5193 + }, + { + "start": 27383.06, + "end": 27383.41, + "probability": 0.2921 + }, + { + "start": 27384.18, + "end": 27385.8, + "probability": 0.7573 + }, + { + "start": 27386.16, + "end": 27389.64, + "probability": 0.9792 + }, + { + "start": 27390.24, + "end": 27393.16, + "probability": 0.8187 + }, + { + "start": 27393.8, + "end": 27397.58, + "probability": 0.9875 + }, + { + "start": 27398.1, + "end": 27403.22, + "probability": 0.9952 + }, + { + "start": 27403.82, + "end": 27407.46, + "probability": 0.9756 + }, + { + "start": 27408.22, + "end": 27412.24, + "probability": 0.8189 + }, + { + "start": 27412.72, + "end": 27416.08, + "probability": 0.9868 + }, + { + "start": 27416.98, + "end": 27420.26, + "probability": 0.9989 + }, + { + "start": 27421.68, + "end": 27421.68, + "probability": 0.0242 + }, + { + "start": 27421.68, + "end": 27423.46, + "probability": 0.9612 + }, + { + "start": 27425.28, + "end": 27429.06, + "probability": 0.998 + }, + { + "start": 27430.0, + "end": 27430.96, + "probability": 0.98 + }, + { + "start": 27431.52, + "end": 27436.64, + "probability": 0.9817 + }, + { + "start": 27436.7, + "end": 27439.48, + "probability": 0.9726 + }, + { + "start": 27440.0, + "end": 27442.54, + "probability": 0.7397 + }, + { + "start": 27443.16, + "end": 27445.58, + "probability": 0.986 + }, + { + "start": 27447.25, + "end": 27448.54, + "probability": 0.7532 + }, + { + "start": 27448.78, + "end": 27452.56, + "probability": 0.7886 + }, + { + "start": 27452.98, + "end": 27456.44, + "probability": 0.9533 + }, + { + "start": 27457.67, + "end": 27462.3, + "probability": 0.9581 + }, + { + "start": 27465.5, + "end": 27467.34, + "probability": 0.189 + }, + { + "start": 27468.5, + "end": 27472.78, + "probability": 0.2775 + }, + { + "start": 27473.58, + "end": 27473.6, + "probability": 0.0203 + }, + { + "start": 27473.6, + "end": 27476.48, + "probability": 0.834 + }, + { + "start": 27476.72, + "end": 27478.92, + "probability": 0.789 + }, + { + "start": 27479.44, + "end": 27485.16, + "probability": 0.6618 + }, + { + "start": 27487.8, + "end": 27491.16, + "probability": 0.1489 + }, + { + "start": 27491.16, + "end": 27491.72, + "probability": 0.0486 + }, + { + "start": 27491.84, + "end": 27492.7, + "probability": 0.4786 + }, + { + "start": 27493.02, + "end": 27494.66, + "probability": 0.5771 + }, + { + "start": 27495.14, + "end": 27497.92, + "probability": 0.0374 + }, + { + "start": 27499.26, + "end": 27503.86, + "probability": 0.0373 + }, + { + "start": 27504.38, + "end": 27507.76, + "probability": 0.3449 + }, + { + "start": 27508.94, + "end": 27510.26, + "probability": 0.0675 + }, + { + "start": 27511.45, + "end": 27515.08, + "probability": 0.069 + }, + { + "start": 27515.2, + "end": 27518.56, + "probability": 0.0594 + }, + { + "start": 27520.24, + "end": 27524.12, + "probability": 0.0726 + }, + { + "start": 27526.17, + "end": 27527.12, + "probability": 0.0036 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.0, + "end": 27572.0, + "probability": 0.0 + }, + { + "start": 27572.56, + "end": 27572.72, + "probability": 0.0221 + }, + { + "start": 27572.72, + "end": 27572.72, + "probability": 0.0803 + }, + { + "start": 27572.72, + "end": 27579.44, + "probability": 0.8397 + }, + { + "start": 27580.18, + "end": 27587.36, + "probability": 0.9829 + }, + { + "start": 27587.52, + "end": 27591.64, + "probability": 0.9524 + }, + { + "start": 27593.06, + "end": 27595.82, + "probability": 0.8087 + }, + { + "start": 27596.1, + "end": 27601.54, + "probability": 0.9562 + }, + { + "start": 27601.76, + "end": 27607.96, + "probability": 0.998 + }, + { + "start": 27608.9, + "end": 27617.64, + "probability": 0.9957 + }, + { + "start": 27619.82, + "end": 27628.12, + "probability": 0.9847 + }, + { + "start": 27628.28, + "end": 27628.84, + "probability": 0.9753 + }, + { + "start": 27629.4, + "end": 27633.06, + "probability": 0.9692 + }, + { + "start": 27633.64, + "end": 27638.1, + "probability": 0.9886 + }, + { + "start": 27638.1, + "end": 27644.1, + "probability": 0.9963 + }, + { + "start": 27644.72, + "end": 27646.3, + "probability": 0.8698 + }, + { + "start": 27647.16, + "end": 27648.12, + "probability": 0.8662 + }, + { + "start": 27648.26, + "end": 27652.22, + "probability": 0.9045 + }, + { + "start": 27652.6, + "end": 27656.2, + "probability": 0.5075 + }, + { + "start": 27656.84, + "end": 27661.26, + "probability": 0.9809 + }, + { + "start": 27661.96, + "end": 27667.42, + "probability": 0.9392 + }, + { + "start": 27668.04, + "end": 27672.0, + "probability": 0.9575 + }, + { + "start": 27672.58, + "end": 27677.06, + "probability": 0.7753 + }, + { + "start": 27677.42, + "end": 27678.46, + "probability": 0.7754 + }, + { + "start": 27678.52, + "end": 27679.14, + "probability": 0.7945 + }, + { + "start": 27679.2, + "end": 27681.88, + "probability": 0.7604 + }, + { + "start": 27682.8, + "end": 27683.96, + "probability": 0.6918 + }, + { + "start": 27684.56, + "end": 27690.52, + "probability": 0.9834 + }, + { + "start": 27690.52, + "end": 27698.56, + "probability": 0.9897 + }, + { + "start": 27699.1, + "end": 27703.08, + "probability": 0.9924 + }, + { + "start": 27703.86, + "end": 27704.22, + "probability": 0.721 + }, + { + "start": 27705.6, + "end": 27708.92, + "probability": 0.0852 + }, + { + "start": 27709.54, + "end": 27712.16, + "probability": 0.284 + }, + { + "start": 27712.36, + "end": 27714.34, + "probability": 0.6815 + }, + { + "start": 27714.62, + "end": 27717.02, + "probability": 0.2386 + }, + { + "start": 27717.28, + "end": 27717.58, + "probability": 0.3901 + }, + { + "start": 27717.78, + "end": 27718.94, + "probability": 0.4152 + }, + { + "start": 27718.94, + "end": 27724.1, + "probability": 0.7658 + }, + { + "start": 27724.18, + "end": 27727.66, + "probability": 0.8836 + }, + { + "start": 27728.86, + "end": 27730.54, + "probability": 0.8636 + }, + { + "start": 27744.46, + "end": 27745.26, + "probability": 0.0174 + }, + { + "start": 27745.96, + "end": 27746.68, + "probability": 0.3832 + }, + { + "start": 27747.56, + "end": 27748.3, + "probability": 0.0038 + }, + { + "start": 27752.62, + "end": 27754.08, + "probability": 0.2404 + }, + { + "start": 27756.68, + "end": 27758.7, + "probability": 0.3634 + }, + { + "start": 27759.46, + "end": 27761.02, + "probability": 0.2935 + }, + { + "start": 27776.68, + "end": 27777.2, + "probability": 0.1659 + }, + { + "start": 27777.2, + "end": 27777.52, + "probability": 0.299 + }, + { + "start": 27783.26, + "end": 27786.96, + "probability": 0.9722 + }, + { + "start": 27786.96, + "end": 27790.56, + "probability": 0.9995 + }, + { + "start": 27790.72, + "end": 27793.3, + "probability": 0.929 + }, + { + "start": 27793.46, + "end": 27794.47, + "probability": 0.7808 + }, + { + "start": 27795.08, + "end": 27795.36, + "probability": 0.4715 + }, + { + "start": 27795.48, + "end": 27795.78, + "probability": 0.1476 + }, + { + "start": 27795.78, + "end": 27800.6, + "probability": 0.8796 + }, + { + "start": 27800.64, + "end": 27801.62, + "probability": 0.9605 + }, + { + "start": 27802.92, + "end": 27805.72, + "probability": 0.1806 + }, + { + "start": 27806.54, + "end": 27809.66, + "probability": 0.2843 + }, + { + "start": 27810.34, + "end": 27812.12, + "probability": 0.8803 + }, + { + "start": 27812.22, + "end": 27814.88, + "probability": 0.8725 + }, + { + "start": 27817.16, + "end": 27822.0, + "probability": 0.6904 + }, + { + "start": 27822.1, + "end": 27825.74, + "probability": 0.7664 + }, + { + "start": 27826.4, + "end": 27827.0, + "probability": 0.3919 + }, + { + "start": 27827.18, + "end": 27828.54, + "probability": 0.0132 + }, + { + "start": 27828.84, + "end": 27829.64, + "probability": 0.8059 + }, + { + "start": 27829.84, + "end": 27832.76, + "probability": 0.1958 + }, + { + "start": 27833.96, + "end": 27837.72, + "probability": 0.6961 + }, + { + "start": 27839.24, + "end": 27840.54, + "probability": 0.7941 + }, + { + "start": 27840.66, + "end": 27841.86, + "probability": 0.9214 + }, + { + "start": 27841.96, + "end": 27843.24, + "probability": 0.9784 + }, + { + "start": 27843.9, + "end": 27844.88, + "probability": 0.6236 + }, + { + "start": 27845.74, + "end": 27846.94, + "probability": 0.9233 + }, + { + "start": 27847.26, + "end": 27850.56, + "probability": 0.9939 + }, + { + "start": 27851.44, + "end": 27854.24, + "probability": 0.9802 + }, + { + "start": 27855.0, + "end": 27855.24, + "probability": 0.0379 + }, + { + "start": 27855.82, + "end": 27861.08, + "probability": 0.8532 + }, + { + "start": 27862.16, + "end": 27864.48, + "probability": 0.9839 + }, + { + "start": 27865.64, + "end": 27868.84, + "probability": 0.9942 + }, + { + "start": 27868.84, + "end": 27872.4, + "probability": 0.9984 + }, + { + "start": 27873.26, + "end": 27878.46, + "probability": 0.8378 + }, + { + "start": 27878.84, + "end": 27883.02, + "probability": 0.9694 + }, + { + "start": 27883.02, + "end": 27887.32, + "probability": 0.9572 + }, + { + "start": 27888.5, + "end": 27890.46, + "probability": 0.8989 + }, + { + "start": 27890.98, + "end": 27894.18, + "probability": 0.9968 + }, + { + "start": 27894.92, + "end": 27898.42, + "probability": 0.9956 + }, + { + "start": 27899.72, + "end": 27901.9, + "probability": 0.9178 + }, + { + "start": 27902.4, + "end": 27903.64, + "probability": 0.9627 + }, + { + "start": 27903.82, + "end": 27905.14, + "probability": 0.9857 + }, + { + "start": 27905.62, + "end": 27909.86, + "probability": 0.9908 + }, + { + "start": 27910.78, + "end": 27914.18, + "probability": 0.9946 + }, + { + "start": 27915.52, + "end": 27918.06, + "probability": 0.9855 + }, + { + "start": 27918.22, + "end": 27923.04, + "probability": 0.9972 + }, + { + "start": 27923.34, + "end": 27929.08, + "probability": 0.9756 + }, + { + "start": 27929.72, + "end": 27930.38, + "probability": 0.8073 + }, + { + "start": 27931.32, + "end": 27932.4, + "probability": 0.9839 + }, + { + "start": 27932.98, + "end": 27933.56, + "probability": 0.9266 + }, + { + "start": 27934.1, + "end": 27937.74, + "probability": 0.966 + }, + { + "start": 27938.28, + "end": 27941.14, + "probability": 0.9662 + }, + { + "start": 27941.68, + "end": 27946.2, + "probability": 0.9961 + }, + { + "start": 27946.2, + "end": 27950.34, + "probability": 0.9867 + }, + { + "start": 27951.72, + "end": 27952.63, + "probability": 0.9943 + }, + { + "start": 27953.88, + "end": 27956.52, + "probability": 0.9897 + }, + { + "start": 27956.52, + "end": 27958.96, + "probability": 0.9952 + }, + { + "start": 27960.08, + "end": 27963.6, + "probability": 0.9976 + }, + { + "start": 27963.74, + "end": 27967.56, + "probability": 0.9084 + }, + { + "start": 27967.7, + "end": 27968.28, + "probability": 0.9736 + }, + { + "start": 27968.84, + "end": 27971.1, + "probability": 0.9645 + }, + { + "start": 27971.62, + "end": 27972.04, + "probability": 0.9839 + }, + { + "start": 27973.2, + "end": 27975.72, + "probability": 0.9302 + }, + { + "start": 27976.26, + "end": 27976.76, + "probability": 0.7071 + }, + { + "start": 27977.46, + "end": 27983.28, + "probability": 0.9827 + }, + { + "start": 27983.28, + "end": 27990.78, + "probability": 0.9849 + }, + { + "start": 27991.38, + "end": 27993.3, + "probability": 0.9958 + }, + { + "start": 27993.3, + "end": 27996.54, + "probability": 0.9973 + }, + { + "start": 27997.58, + "end": 28001.24, + "probability": 0.9923 + }, + { + "start": 28002.22, + "end": 28003.1, + "probability": 0.96 + }, + { + "start": 28003.8, + "end": 28006.7, + "probability": 0.9995 + }, + { + "start": 28006.7, + "end": 28011.56, + "probability": 0.9995 + }, + { + "start": 28012.96, + "end": 28013.86, + "probability": 0.7849 + }, + { + "start": 28014.8, + "end": 28016.36, + "probability": 0.9793 + }, + { + "start": 28016.92, + "end": 28017.44, + "probability": 0.9347 + }, + { + "start": 28018.38, + "end": 28021.48, + "probability": 0.9893 + }, + { + "start": 28022.72, + "end": 28023.4, + "probability": 0.8936 + }, + { + "start": 28023.62, + "end": 28027.34, + "probability": 0.9855 + }, + { + "start": 28027.74, + "end": 28028.46, + "probability": 0.838 + }, + { + "start": 28029.02, + "end": 28030.3, + "probability": 0.8902 + }, + { + "start": 28031.74, + "end": 28031.92, + "probability": 0.4655 + }, + { + "start": 28031.96, + "end": 28034.68, + "probability": 0.9766 + }, + { + "start": 28034.68, + "end": 28037.94, + "probability": 0.9949 + }, + { + "start": 28038.12, + "end": 28039.04, + "probability": 0.9774 + }, + { + "start": 28040.08, + "end": 28042.0, + "probability": 0.9878 + }, + { + "start": 28042.64, + "end": 28044.88, + "probability": 0.9875 + }, + { + "start": 28045.58, + "end": 28049.64, + "probability": 0.9943 + }, + { + "start": 28050.58, + "end": 28050.98, + "probability": 0.7566 + }, + { + "start": 28052.1, + "end": 28054.4, + "probability": 0.9982 + }, + { + "start": 28054.4, + "end": 28056.88, + "probability": 0.9937 + }, + { + "start": 28058.18, + "end": 28061.48, + "probability": 0.9948 + }, + { + "start": 28062.06, + "end": 28066.64, + "probability": 0.9996 + }, + { + "start": 28067.28, + "end": 28069.72, + "probability": 0.9951 + }, + { + "start": 28070.3, + "end": 28071.52, + "probability": 0.7285 + }, + { + "start": 28073.38, + "end": 28076.24, + "probability": 0.7931 + }, + { + "start": 28077.1, + "end": 28078.24, + "probability": 0.8486 + }, + { + "start": 28079.16, + "end": 28081.9, + "probability": 0.935 + }, + { + "start": 28082.48, + "end": 28088.54, + "probability": 0.9873 + }, + { + "start": 28089.74, + "end": 28094.36, + "probability": 0.9951 + }, + { + "start": 28094.98, + "end": 28099.02, + "probability": 0.9919 + }, + { + "start": 28099.06, + "end": 28103.12, + "probability": 0.9857 + }, + { + "start": 28104.94, + "end": 28109.52, + "probability": 0.9979 + }, + { + "start": 28112.5, + "end": 28115.94, + "probability": 0.999 + }, + { + "start": 28115.94, + "end": 28120.3, + "probability": 0.9922 + }, + { + "start": 28121.32, + "end": 28126.86, + "probability": 0.9803 + }, + { + "start": 28126.86, + "end": 28133.06, + "probability": 0.9946 + }, + { + "start": 28134.14, + "end": 28136.2, + "probability": 0.9028 + }, + { + "start": 28137.06, + "end": 28144.44, + "probability": 0.9948 + }, + { + "start": 28144.44, + "end": 28149.52, + "probability": 0.9985 + }, + { + "start": 28151.36, + "end": 28155.02, + "probability": 0.9961 + }, + { + "start": 28155.06, + "end": 28159.24, + "probability": 0.999 + }, + { + "start": 28159.88, + "end": 28162.46, + "probability": 0.8635 + }, + { + "start": 28162.86, + "end": 28166.9, + "probability": 0.9633 + }, + { + "start": 28168.78, + "end": 28169.76, + "probability": 0.9407 + }, + { + "start": 28170.36, + "end": 28171.92, + "probability": 0.9905 + }, + { + "start": 28172.12, + "end": 28175.46, + "probability": 0.996 + }, + { + "start": 28175.46, + "end": 28178.22, + "probability": 0.9862 + }, + { + "start": 28179.06, + "end": 28181.16, + "probability": 0.7486 + }, + { + "start": 28182.06, + "end": 28182.98, + "probability": 0.9529 + }, + { + "start": 28183.38, + "end": 28187.88, + "probability": 0.9927 + }, + { + "start": 28189.48, + "end": 28195.42, + "probability": 0.9851 + }, + { + "start": 28195.42, + "end": 28199.84, + "probability": 0.9946 + }, + { + "start": 28200.4, + "end": 28201.12, + "probability": 0.9715 + }, + { + "start": 28201.64, + "end": 28205.88, + "probability": 0.9655 + }, + { + "start": 28206.88, + "end": 28210.26, + "probability": 0.9987 + }, + { + "start": 28212.1, + "end": 28215.06, + "probability": 0.9714 + }, + { + "start": 28215.68, + "end": 28215.96, + "probability": 0.9039 + }, + { + "start": 28216.74, + "end": 28219.4, + "probability": 0.9942 + }, + { + "start": 28219.54, + "end": 28223.84, + "probability": 0.9727 + }, + { + "start": 28224.76, + "end": 28226.4, + "probability": 0.9974 + }, + { + "start": 28227.38, + "end": 28230.06, + "probability": 0.9903 + }, + { + "start": 28231.02, + "end": 28236.7, + "probability": 0.9951 + }, + { + "start": 28237.66, + "end": 28239.16, + "probability": 0.991 + }, + { + "start": 28239.86, + "end": 28241.62, + "probability": 0.9711 + }, + { + "start": 28242.32, + "end": 28244.14, + "probability": 0.9305 + }, + { + "start": 28244.9, + "end": 28247.62, + "probability": 0.9751 + }, + { + "start": 28248.26, + "end": 28251.6, + "probability": 0.9976 + }, + { + "start": 28252.36, + "end": 28256.3, + "probability": 0.9207 + }, + { + "start": 28257.02, + "end": 28259.84, + "probability": 0.9665 + }, + { + "start": 28261.22, + "end": 28265.96, + "probability": 0.9646 + }, + { + "start": 28266.42, + "end": 28267.7, + "probability": 0.9661 + }, + { + "start": 28268.72, + "end": 28270.92, + "probability": 0.6684 + }, + { + "start": 28271.42, + "end": 28279.1, + "probability": 0.9344 + }, + { + "start": 28280.82, + "end": 28283.36, + "probability": 0.9835 + }, + { + "start": 28283.96, + "end": 28287.2, + "probability": 0.9979 + }, + { + "start": 28287.2, + "end": 28291.16, + "probability": 0.9987 + }, + { + "start": 28291.58, + "end": 28292.14, + "probability": 0.7011 + }, + { + "start": 28292.28, + "end": 28292.82, + "probability": 0.8886 + }, + { + "start": 28293.4, + "end": 28296.0, + "probability": 0.9974 + }, + { + "start": 28296.84, + "end": 28298.82, + "probability": 0.9083 + }, + { + "start": 28300.0, + "end": 28301.4, + "probability": 0.9953 + }, + { + "start": 28302.5, + "end": 28304.66, + "probability": 0.8604 + }, + { + "start": 28305.62, + "end": 28309.84, + "probability": 0.993 + }, + { + "start": 28309.9, + "end": 28312.8, + "probability": 0.9989 + }, + { + "start": 28315.14, + "end": 28315.58, + "probability": 0.7454 + }, + { + "start": 28316.98, + "end": 28319.84, + "probability": 0.9854 + }, + { + "start": 28320.08, + "end": 28324.26, + "probability": 0.9163 + }, + { + "start": 28324.26, + "end": 28328.06, + "probability": 0.9989 + }, + { + "start": 28328.86, + "end": 28331.16, + "probability": 0.7542 + }, + { + "start": 28331.8, + "end": 28333.16, + "probability": 0.8965 + }, + { + "start": 28334.08, + "end": 28337.12, + "probability": 0.9459 + }, + { + "start": 28337.78, + "end": 28341.54, + "probability": 0.9878 + }, + { + "start": 28342.38, + "end": 28345.4, + "probability": 0.999 + }, + { + "start": 28345.94, + "end": 28347.3, + "probability": 0.8647 + }, + { + "start": 28347.96, + "end": 28349.18, + "probability": 0.9977 + }, + { + "start": 28349.84, + "end": 28351.78, + "probability": 0.9933 + }, + { + "start": 28353.86, + "end": 28357.46, + "probability": 0.9972 + }, + { + "start": 28357.98, + "end": 28359.7, + "probability": 0.9714 + }, + { + "start": 28360.88, + "end": 28363.82, + "probability": 0.6752 + }, + { + "start": 28364.88, + "end": 28366.66, + "probability": 0.9844 + }, + { + "start": 28367.68, + "end": 28369.4, + "probability": 0.9187 + }, + { + "start": 28372.37, + "end": 28374.2, + "probability": 0.9697 + }, + { + "start": 28375.16, + "end": 28377.3, + "probability": 0.9937 + }, + { + "start": 28378.56, + "end": 28379.4, + "probability": 0.9763 + }, + { + "start": 28381.83, + "end": 28387.18, + "probability": 0.9906 + }, + { + "start": 28387.86, + "end": 28388.06, + "probability": 0.7704 + }, + { + "start": 28388.66, + "end": 28389.72, + "probability": 0.9323 + }, + { + "start": 28391.14, + "end": 28393.5, + "probability": 0.9976 + }, + { + "start": 28394.34, + "end": 28395.64, + "probability": 0.9956 + }, + { + "start": 28396.38, + "end": 28398.76, + "probability": 0.9981 + }, + { + "start": 28399.38, + "end": 28400.1, + "probability": 0.84 + }, + { + "start": 28400.7, + "end": 28403.12, + "probability": 0.9134 + }, + { + "start": 28403.64, + "end": 28404.08, + "probability": 0.9348 + }, + { + "start": 28405.06, + "end": 28407.04, + "probability": 0.9976 + }, + { + "start": 28407.74, + "end": 28412.38, + "probability": 0.9956 + }, + { + "start": 28412.94, + "end": 28413.44, + "probability": 0.9627 + }, + { + "start": 28415.94, + "end": 28416.64, + "probability": 0.7574 + }, + { + "start": 28417.9, + "end": 28419.24, + "probability": 0.5125 + }, + { + "start": 28419.24, + "end": 28422.82, + "probability": 0.9421 + }, + { + "start": 28423.38, + "end": 28424.84, + "probability": 0.8767 + }, + { + "start": 28442.36, + "end": 28442.46, + "probability": 0.2652 + }, + { + "start": 28444.94, + "end": 28445.42, + "probability": 0.1314 + }, + { + "start": 28445.42, + "end": 28445.58, + "probability": 0.0698 + }, + { + "start": 28445.58, + "end": 28446.78, + "probability": 0.3826 + }, + { + "start": 28446.84, + "end": 28448.74, + "probability": 0.2827 + }, + { + "start": 28448.82, + "end": 28449.74, + "probability": 0.8007 + }, + { + "start": 28450.54, + "end": 28451.64, + "probability": 0.8055 + }, + { + "start": 28452.36, + "end": 28455.54, + "probability": 0.9812 + }, + { + "start": 28457.44, + "end": 28461.62, + "probability": 0.7448 + }, + { + "start": 28462.38, + "end": 28465.04, + "probability": 0.9937 + }, + { + "start": 28465.6, + "end": 28471.5, + "probability": 0.9432 + }, + { + "start": 28472.28, + "end": 28472.28, + "probability": 0.0003 + }, + { + "start": 28472.9, + "end": 28473.2, + "probability": 0.0562 + }, + { + "start": 28473.2, + "end": 28478.16, + "probability": 0.9067 + }, + { + "start": 28478.64, + "end": 28482.86, + "probability": 0.4981 + }, + { + "start": 28483.38, + "end": 28487.02, + "probability": 0.4902 + }, + { + "start": 28487.18, + "end": 28487.88, + "probability": 0.7787 + }, + { + "start": 28488.18, + "end": 28492.54, + "probability": 0.9755 + }, + { + "start": 28493.1, + "end": 28495.72, + "probability": 0.999 + }, + { + "start": 28495.94, + "end": 28498.3, + "probability": 0.7695 + }, + { + "start": 28498.74, + "end": 28498.9, + "probability": 0.597 + }, + { + "start": 28498.9, + "end": 28498.98, + "probability": 0.2668 + }, + { + "start": 28499.04, + "end": 28501.6, + "probability": 0.8999 + }, + { + "start": 28501.62, + "end": 28503.78, + "probability": 0.7465 + }, + { + "start": 28503.92, + "end": 28504.08, + "probability": 0.4848 + }, + { + "start": 28504.2, + "end": 28506.15, + "probability": 0.6291 + }, + { + "start": 28506.48, + "end": 28510.14, + "probability": 0.2182 + }, + { + "start": 28510.14, + "end": 28512.98, + "probability": 0.6471 + }, + { + "start": 28513.23, + "end": 28514.21, + "probability": 0.9937 + }, + { + "start": 28514.68, + "end": 28516.02, + "probability": 0.3627 + }, + { + "start": 28516.34, + "end": 28517.6, + "probability": 0.6341 + }, + { + "start": 28518.26, + "end": 28519.92, + "probability": 0.3114 + }, + { + "start": 28519.92, + "end": 28520.74, + "probability": 0.0396 + }, + { + "start": 28521.9, + "end": 28526.6, + "probability": 0.9689 + }, + { + "start": 28527.06, + "end": 28527.9, + "probability": 0.8459 + }, + { + "start": 28528.0, + "end": 28530.8, + "probability": 0.985 + }, + { + "start": 28530.9, + "end": 28531.64, + "probability": 0.8749 + }, + { + "start": 28532.18, + "end": 28537.46, + "probability": 0.9453 + }, + { + "start": 28539.02, + "end": 28540.86, + "probability": 0.9648 + }, + { + "start": 28541.9, + "end": 28543.1, + "probability": 0.9822 + }, + { + "start": 28544.28, + "end": 28547.02, + "probability": 0.9574 + }, + { + "start": 28548.16, + "end": 28548.96, + "probability": 0.6802 + }, + { + "start": 28549.0, + "end": 28551.44, + "probability": 0.7214 + }, + { + "start": 28551.88, + "end": 28553.86, + "probability": 0.9708 + }, + { + "start": 28554.46, + "end": 28555.82, + "probability": 0.9612 + }, + { + "start": 28556.34, + "end": 28560.24, + "probability": 0.797 + }, + { + "start": 28560.86, + "end": 28562.46, + "probability": 0.7849 + }, + { + "start": 28563.06, + "end": 28565.0, + "probability": 0.811 + }, + { + "start": 28565.46, + "end": 28567.92, + "probability": 0.9878 + }, + { + "start": 28568.48, + "end": 28570.74, + "probability": 0.9838 + }, + { + "start": 28571.68, + "end": 28576.18, + "probability": 0.84 + }, + { + "start": 28576.98, + "end": 28579.56, + "probability": 0.981 + }, + { + "start": 28579.72, + "end": 28581.2, + "probability": 0.6328 + }, + { + "start": 28581.82, + "end": 28585.1, + "probability": 0.9089 + }, + { + "start": 28586.04, + "end": 28589.32, + "probability": 0.7506 + }, + { + "start": 28589.82, + "end": 28591.62, + "probability": 0.6759 + }, + { + "start": 28591.92, + "end": 28592.56, + "probability": 0.8813 + }, + { + "start": 28595.0, + "end": 28597.32, + "probability": 0.998 + }, + { + "start": 28597.84, + "end": 28600.14, + "probability": 0.9474 + }, + { + "start": 28601.14, + "end": 28603.62, + "probability": 0.9827 + }, + { + "start": 28604.08, + "end": 28606.44, + "probability": 0.7591 + }, + { + "start": 28606.58, + "end": 28606.92, + "probability": 0.8146 + }, + { + "start": 28608.86, + "end": 28609.22, + "probability": 0.6577 + }, + { + "start": 28609.4, + "end": 28612.34, + "probability": 0.896 + }, + { + "start": 28613.0, + "end": 28615.58, + "probability": 0.5412 + }, + { + "start": 28616.36, + "end": 28617.72, + "probability": 0.3059 + }, + { + "start": 28640.56, + "end": 28641.44, + "probability": 0.629 + }, + { + "start": 28641.56, + "end": 28642.58, + "probability": 0.9608 + }, + { + "start": 28642.74, + "end": 28644.0, + "probability": 0.9574 + }, + { + "start": 28644.86, + "end": 28646.17, + "probability": 0.9288 + }, + { + "start": 28647.38, + "end": 28648.08, + "probability": 0.9451 + }, + { + "start": 28648.72, + "end": 28649.62, + "probability": 0.5608 + }, + { + "start": 28650.0, + "end": 28650.02, + "probability": 0.0526 + }, + { + "start": 28650.02, + "end": 28653.84, + "probability": 0.8462 + }, + { + "start": 28654.54, + "end": 28658.56, + "probability": 0.9858 + }, + { + "start": 28658.76, + "end": 28660.62, + "probability": 0.8862 + }, + { + "start": 28660.94, + "end": 28661.24, + "probability": 0.803 + }, + { + "start": 28662.12, + "end": 28662.8, + "probability": 0.8663 + }, + { + "start": 28663.64, + "end": 28669.14, + "probability": 0.9349 + }, + { + "start": 28669.7, + "end": 28671.5, + "probability": 0.881 + }, + { + "start": 28671.62, + "end": 28676.4, + "probability": 0.9351 + }, + { + "start": 28676.4, + "end": 28680.0, + "probability": 0.9951 + }, + { + "start": 28680.56, + "end": 28684.24, + "probability": 0.9147 + }, + { + "start": 28684.82, + "end": 28688.22, + "probability": 0.9869 + }, + { + "start": 28688.44, + "end": 28690.4, + "probability": 0.9772 + }, + { + "start": 28690.92, + "end": 28693.32, + "probability": 0.7921 + }, + { + "start": 28693.44, + "end": 28695.7, + "probability": 0.992 + }, + { + "start": 28696.22, + "end": 28696.96, + "probability": 0.7881 + }, + { + "start": 28697.82, + "end": 28705.06, + "probability": 0.9285 + }, + { + "start": 28705.36, + "end": 28709.18, + "probability": 0.7925 + }, + { + "start": 28709.66, + "end": 28713.54, + "probability": 0.9959 + }, + { + "start": 28713.94, + "end": 28715.22, + "probability": 0.7823 + }, + { + "start": 28715.38, + "end": 28717.14, + "probability": 0.9482 + }, + { + "start": 28717.3, + "end": 28719.7, + "probability": 0.6865 + }, + { + "start": 28719.96, + "end": 28719.96, + "probability": 0.2367 + }, + { + "start": 28720.02, + "end": 28722.25, + "probability": 0.9936 + }, + { + "start": 28722.86, + "end": 28727.92, + "probability": 0.8873 + }, + { + "start": 28728.04, + "end": 28730.34, + "probability": 0.9929 + }, + { + "start": 28730.6, + "end": 28731.12, + "probability": 0.5137 + }, + { + "start": 28731.86, + "end": 28732.72, + "probability": 0.9536 + }, + { + "start": 28733.7, + "end": 28736.66, + "probability": 0.9334 + }, + { + "start": 28736.8, + "end": 28738.56, + "probability": 0.998 + }, + { + "start": 28739.1, + "end": 28742.22, + "probability": 0.9276 + }, + { + "start": 28742.82, + "end": 28747.16, + "probability": 0.9697 + }, + { + "start": 28747.32, + "end": 28747.64, + "probability": 0.8472 + }, + { + "start": 28747.78, + "end": 28750.1, + "probability": 0.9075 + }, + { + "start": 28750.44, + "end": 28751.02, + "probability": 0.8438 + }, + { + "start": 28751.14, + "end": 28752.14, + "probability": 0.8 + }, + { + "start": 28752.2, + "end": 28752.66, + "probability": 0.5537 + }, + { + "start": 28752.76, + "end": 28753.98, + "probability": 0.6036 + }, + { + "start": 28754.18, + "end": 28758.5, + "probability": 0.8413 + }, + { + "start": 28758.7, + "end": 28759.58, + "probability": 0.7834 + }, + { + "start": 28759.86, + "end": 28760.92, + "probability": 0.3614 + }, + { + "start": 28761.06, + "end": 28762.04, + "probability": 0.7334 + }, + { + "start": 28762.2, + "end": 28764.12, + "probability": 0.608 + }, + { + "start": 28764.48, + "end": 28769.06, + "probability": 0.8098 + }, + { + "start": 28769.4, + "end": 28770.04, + "probability": 0.9592 + }, + { + "start": 28770.1, + "end": 28771.22, + "probability": 0.74 + }, + { + "start": 28771.46, + "end": 28773.3, + "probability": 0.8413 + }, + { + "start": 28773.62, + "end": 28778.06, + "probability": 0.978 + }, + { + "start": 28778.22, + "end": 28782.02, + "probability": 0.9976 + }, + { + "start": 28782.02, + "end": 28787.02, + "probability": 0.7899 + }, + { + "start": 28787.2, + "end": 28787.46, + "probability": 0.9766 + }, + { + "start": 28787.76, + "end": 28791.06, + "probability": 0.9648 + }, + { + "start": 28791.42, + "end": 28792.42, + "probability": 0.7631 + }, + { + "start": 28792.48, + "end": 28793.22, + "probability": 0.7519 + }, + { + "start": 28793.32, + "end": 28793.74, + "probability": 0.7453 + }, + { + "start": 28793.76, + "end": 28795.16, + "probability": 0.8784 + }, + { + "start": 28795.5, + "end": 28795.5, + "probability": 0.0641 + }, + { + "start": 28796.1, + "end": 28798.92, + "probability": 0.856 + }, + { + "start": 28799.02, + "end": 28802.9, + "probability": 0.7712 + }, + { + "start": 28803.06, + "end": 28805.56, + "probability": 0.9338 + }, + { + "start": 28805.98, + "end": 28807.32, + "probability": 0.9885 + }, + { + "start": 28807.42, + "end": 28807.74, + "probability": 0.8814 + }, + { + "start": 28807.86, + "end": 28808.34, + "probability": 0.7644 + }, + { + "start": 28808.4, + "end": 28809.22, + "probability": 0.8527 + }, + { + "start": 28809.88, + "end": 28811.4, + "probability": 0.9398 + }, + { + "start": 28811.8, + "end": 28813.84, + "probability": 0.9534 + }, + { + "start": 28814.3, + "end": 28816.06, + "probability": 0.8854 + }, + { + "start": 28818.26, + "end": 28820.4, + "probability": 0.9072 + }, + { + "start": 28822.14, + "end": 28822.56, + "probability": 0.6635 + }, + { + "start": 28822.6, + "end": 28825.0, + "probability": 0.9953 + }, + { + "start": 28825.08, + "end": 28826.99, + "probability": 0.947 + }, + { + "start": 28827.44, + "end": 28827.98, + "probability": 0.3734 + }, + { + "start": 28828.02, + "end": 28829.24, + "probability": 0.8848 + }, + { + "start": 28829.58, + "end": 28830.38, + "probability": 0.8448 + }, + { + "start": 28830.5, + "end": 28831.12, + "probability": 0.576 + }, + { + "start": 28831.18, + "end": 28831.54, + "probability": 0.6577 + }, + { + "start": 28831.92, + "end": 28837.78, + "probability": 0.9866 + }, + { + "start": 28838.58, + "end": 28844.08, + "probability": 0.8968 + }, + { + "start": 28844.2, + "end": 28844.38, + "probability": 0.7976 + }, + { + "start": 28845.16, + "end": 28845.91, + "probability": 0.601 + }, + { + "start": 28846.08, + "end": 28848.94, + "probability": 0.991 + }, + { + "start": 28851.3, + "end": 28851.68, + "probability": 0.6971 + }, + { + "start": 28854.36, + "end": 28855.04, + "probability": 0.0029 + }, + { + "start": 28862.6, + "end": 28866.1, + "probability": 0.0174 + }, + { + "start": 28866.9, + "end": 28868.24, + "probability": 0.5122 + }, + { + "start": 28868.3, + "end": 28869.5, + "probability": 0.9446 + }, + { + "start": 28869.6, + "end": 28871.28, + "probability": 0.9449 + }, + { + "start": 28871.52, + "end": 28874.2, + "probability": 0.3466 + }, + { + "start": 28874.4, + "end": 28874.4, + "probability": 0.1212 + }, + { + "start": 28883.1, + "end": 28883.68, + "probability": 0.3393 + }, + { + "start": 28883.68, + "end": 28883.68, + "probability": 0.6373 + }, + { + "start": 28883.68, + "end": 28884.0, + "probability": 0.092 + }, + { + "start": 28888.82, + "end": 28890.06, + "probability": 0.6434 + }, + { + "start": 28890.18, + "end": 28894.48, + "probability": 0.6461 + }, + { + "start": 28895.12, + "end": 28896.1, + "probability": 0.788 + }, + { + "start": 28896.24, + "end": 28897.14, + "probability": 0.7194 + }, + { + "start": 28897.18, + "end": 28899.04, + "probability": 0.9854 + }, + { + "start": 28900.08, + "end": 28901.02, + "probability": 0.8898 + }, + { + "start": 28901.08, + "end": 28905.0, + "probability": 0.7507 + }, + { + "start": 28905.06, + "end": 28905.72, + "probability": 0.487 + }, + { + "start": 28907.82, + "end": 28908.7, + "probability": 0.6904 + }, + { + "start": 28908.92, + "end": 28911.22, + "probability": 0.8789 + }, + { + "start": 28911.52, + "end": 28913.26, + "probability": 0.9878 + }, + { + "start": 28914.8, + "end": 28915.86, + "probability": 0.9478 + }, + { + "start": 28917.92, + "end": 28921.42, + "probability": 0.8215 + }, + { + "start": 28928.48, + "end": 28928.78, + "probability": 0.6322 + }, + { + "start": 28929.48, + "end": 28931.12, + "probability": 0.9664 + }, + { + "start": 28931.38, + "end": 28931.76, + "probability": 0.174 + }, + { + "start": 28931.86, + "end": 28933.87, + "probability": 0.1395 + }, + { + "start": 28934.92, + "end": 28937.44, + "probability": 0.7328 + }, + { + "start": 28937.6, + "end": 28939.0, + "probability": 0.9129 + }, + { + "start": 28939.52, + "end": 28940.38, + "probability": 0.8181 + }, + { + "start": 28941.46, + "end": 28945.02, + "probability": 0.988 + }, + { + "start": 28945.12, + "end": 28946.32, + "probability": 0.7236 + }, + { + "start": 28946.7, + "end": 28951.4, + "probability": 0.8783 + }, + { + "start": 28953.4, + "end": 28955.24, + "probability": 0.9019 + }, + { + "start": 28956.52, + "end": 28960.92, + "probability": 0.99 + }, + { + "start": 28961.12, + "end": 28961.82, + "probability": 0.1441 + }, + { + "start": 28961.82, + "end": 28961.82, + "probability": 0.0656 + }, + { + "start": 28961.82, + "end": 28962.48, + "probability": 0.1602 + }, + { + "start": 28962.62, + "end": 28963.26, + "probability": 0.5421 + }, + { + "start": 28963.6, + "end": 28965.64, + "probability": 0.8233 + }, + { + "start": 28967.18, + "end": 28967.8, + "probability": 0.4942 + }, + { + "start": 28967.86, + "end": 28970.56, + "probability": 0.9095 + }, + { + "start": 28971.12, + "end": 28973.68, + "probability": 0.99 + }, + { + "start": 28974.36, + "end": 28978.36, + "probability": 0.9911 + }, + { + "start": 28979.68, + "end": 28982.98, + "probability": 0.5045 + }, + { + "start": 28983.66, + "end": 28985.56, + "probability": 0.0012 + }, + { + "start": 28986.08, + "end": 28987.34, + "probability": 0.9513 + }, + { + "start": 28987.94, + "end": 28990.5, + "probability": 0.9895 + }, + { + "start": 28990.5, + "end": 28994.94, + "probability": 0.9976 + }, + { + "start": 28996.28, + "end": 28998.3, + "probability": 0.9009 + }, + { + "start": 28998.3, + "end": 29000.52, + "probability": 0.9019 + }, + { + "start": 29000.64, + "end": 29003.98, + "probability": 0.993 + }, + { + "start": 29004.72, + "end": 29005.36, + "probability": 0.6893 + }, + { + "start": 29005.5, + "end": 29008.9, + "probability": 0.8153 + }, + { + "start": 29009.52, + "end": 29011.7, + "probability": 0.9949 + }, + { + "start": 29012.28, + "end": 29016.58, + "probability": 0.9795 + }, + { + "start": 29016.76, + "end": 29019.88, + "probability": 0.9067 + }, + { + "start": 29020.3, + "end": 29023.36, + "probability": 0.9878 + }, + { + "start": 29024.56, + "end": 29027.0, + "probability": 0.8894 + }, + { + "start": 29027.0, + "end": 29030.3, + "probability": 0.8999 + }, + { + "start": 29031.38, + "end": 29031.64, + "probability": 0.6771 + }, + { + "start": 29032.08, + "end": 29034.73, + "probability": 0.7805 + }, + { + "start": 29034.84, + "end": 29037.18, + "probability": 0.9938 + }, + { + "start": 29037.6, + "end": 29042.38, + "probability": 0.9683 + }, + { + "start": 29042.38, + "end": 29046.5, + "probability": 0.9975 + }, + { + "start": 29047.46, + "end": 29050.18, + "probability": 0.9924 + }, + { + "start": 29050.18, + "end": 29053.66, + "probability": 0.9449 + }, + { + "start": 29053.72, + "end": 29054.24, + "probability": 0.5524 + }, + { + "start": 29054.94, + "end": 29056.02, + "probability": 0.6776 + }, + { + "start": 29056.2, + "end": 29058.96, + "probability": 0.9262 + }, + { + "start": 29059.42, + "end": 29065.38, + "probability": 0.9771 + }, + { + "start": 29065.56, + "end": 29072.66, + "probability": 0.9949 + }, + { + "start": 29073.1, + "end": 29074.24, + "probability": 0.9949 + }, + { + "start": 29074.94, + "end": 29075.92, + "probability": 0.5623 + }, + { + "start": 29076.04, + "end": 29076.4, + "probability": 0.4095 + }, + { + "start": 29076.44, + "end": 29079.28, + "probability": 0.9833 + }, + { + "start": 29079.52, + "end": 29081.58, + "probability": 0.9915 + }, + { + "start": 29082.18, + "end": 29083.12, + "probability": 0.7463 + }, + { + "start": 29083.58, + "end": 29085.02, + "probability": 0.9903 + }, + { + "start": 29085.46, + "end": 29086.26, + "probability": 0.682 + }, + { + "start": 29086.58, + "end": 29089.9, + "probability": 0.9844 + }, + { + "start": 29090.98, + "end": 29094.28, + "probability": 0.9971 + }, + { + "start": 29095.0, + "end": 29100.52, + "probability": 0.9691 + }, + { + "start": 29101.3, + "end": 29104.86, + "probability": 0.9897 + }, + { + "start": 29105.2, + "end": 29106.7, + "probability": 0.8188 + }, + { + "start": 29107.26, + "end": 29111.42, + "probability": 0.9392 + }, + { + "start": 29111.78, + "end": 29113.7, + "probability": 0.9545 + }, + { + "start": 29114.52, + "end": 29114.92, + "probability": 0.4987 + }, + { + "start": 29115.66, + "end": 29118.12, + "probability": 0.9256 + }, + { + "start": 29118.22, + "end": 29121.24, + "probability": 0.9868 + }, + { + "start": 29121.66, + "end": 29122.44, + "probability": 0.8342 + }, + { + "start": 29123.12, + "end": 29124.12, + "probability": 0.9215 + }, + { + "start": 29124.66, + "end": 29128.28, + "probability": 0.9901 + }, + { + "start": 29129.02, + "end": 29130.54, + "probability": 0.9392 + }, + { + "start": 29132.08, + "end": 29133.48, + "probability": 0.8584 + }, + { + "start": 29134.06, + "end": 29137.6, + "probability": 0.9927 + }, + { + "start": 29137.62, + "end": 29142.1, + "probability": 0.9966 + }, + { + "start": 29143.38, + "end": 29146.03, + "probability": 0.9794 + }, + { + "start": 29146.34, + "end": 29149.88, + "probability": 0.9876 + }, + { + "start": 29150.32, + "end": 29151.2, + "probability": 0.9389 + }, + { + "start": 29151.56, + "end": 29156.24, + "probability": 0.9496 + }, + { + "start": 29156.84, + "end": 29160.56, + "probability": 0.981 + }, + { + "start": 29160.56, + "end": 29162.84, + "probability": 0.9932 + }, + { + "start": 29163.12, + "end": 29164.38, + "probability": 0.9492 + }, + { + "start": 29164.76, + "end": 29165.2, + "probability": 0.936 + }, + { + "start": 29165.42, + "end": 29166.28, + "probability": 0.8621 + }, + { + "start": 29167.22, + "end": 29171.44, + "probability": 0.98 + }, + { + "start": 29172.06, + "end": 29174.32, + "probability": 0.9987 + }, + { + "start": 29174.32, + "end": 29177.7, + "probability": 0.9949 + }, + { + "start": 29178.6, + "end": 29179.9, + "probability": 0.9966 + }, + { + "start": 29180.72, + "end": 29182.44, + "probability": 0.8919 + }, + { + "start": 29182.74, + "end": 29187.04, + "probability": 0.9746 + }, + { + "start": 29187.42, + "end": 29188.52, + "probability": 0.9971 + }, + { + "start": 29188.62, + "end": 29189.4, + "probability": 0.9713 + }, + { + "start": 29189.76, + "end": 29191.2, + "probability": 0.8631 + }, + { + "start": 29191.56, + "end": 29193.5, + "probability": 0.9137 + }, + { + "start": 29193.82, + "end": 29194.96, + "probability": 0.9481 + }, + { + "start": 29195.56, + "end": 29196.32, + "probability": 0.9783 + }, + { + "start": 29196.78, + "end": 29199.68, + "probability": 0.9954 + }, + { + "start": 29199.68, + "end": 29203.48, + "probability": 0.9832 + }, + { + "start": 29203.9, + "end": 29204.5, + "probability": 0.6109 + }, + { + "start": 29204.62, + "end": 29209.88, + "probability": 0.9442 + }, + { + "start": 29210.16, + "end": 29210.58, + "probability": 0.7471 + }, + { + "start": 29211.4, + "end": 29211.4, + "probability": 0.733 + }, + { + "start": 29211.4, + "end": 29212.72, + "probability": 0.2902 + }, + { + "start": 29213.44, + "end": 29216.48, + "probability": 0.2908 + }, + { + "start": 29216.88, + "end": 29217.4, + "probability": 0.7538 + }, + { + "start": 29218.04, + "end": 29218.64, + "probability": 0.9341 + }, + { + "start": 29218.9, + "end": 29219.0, + "probability": 0.0004 + }, + { + "start": 29219.88, + "end": 29220.07, + "probability": 0.1645 + }, + { + "start": 29220.8, + "end": 29221.76, + "probability": 0.9758 + }, + { + "start": 29221.84, + "end": 29223.14, + "probability": 0.5757 + }, + { + "start": 29223.32, + "end": 29225.64, + "probability": 0.9181 + }, + { + "start": 29225.72, + "end": 29226.63, + "probability": 0.7239 + }, + { + "start": 29227.18, + "end": 29227.18, + "probability": 0.0469 + }, + { + "start": 29227.18, + "end": 29228.9, + "probability": 0.8218 + }, + { + "start": 29229.93, + "end": 29233.8, + "probability": 0.4461 + }, + { + "start": 29233.8, + "end": 29234.38, + "probability": 0.4979 + }, + { + "start": 29234.48, + "end": 29236.2, + "probability": 0.8599 + }, + { + "start": 29236.34, + "end": 29238.32, + "probability": 0.6679 + }, + { + "start": 29238.48, + "end": 29241.7, + "probability": 0.5416 + }, + { + "start": 29242.94, + "end": 29243.43, + "probability": 0.2101 + }, + { + "start": 29244.5, + "end": 29246.61, + "probability": 0.7677 + }, + { + "start": 29248.93, + "end": 29255.04, + "probability": 0.3829 + }, + { + "start": 29255.44, + "end": 29256.14, + "probability": 0.4559 + }, + { + "start": 29256.92, + "end": 29258.53, + "probability": 0.4938 + }, + { + "start": 29258.92, + "end": 29261.42, + "probability": 0.4713 + }, + { + "start": 29261.52, + "end": 29262.76, + "probability": 0.7164 + }, + { + "start": 29262.76, + "end": 29267.88, + "probability": 0.9341 + }, + { + "start": 29268.22, + "end": 29272.92, + "probability": 0.8893 + }, + { + "start": 29273.02, + "end": 29275.22, + "probability": 0.8861 + }, + { + "start": 29275.44, + "end": 29276.34, + "probability": 0.6142 + }, + { + "start": 29276.44, + "end": 29279.64, + "probability": 0.8291 + }, + { + "start": 29280.14, + "end": 29282.72, + "probability": 0.9555 + }, + { + "start": 29282.72, + "end": 29287.14, + "probability": 0.9969 + }, + { + "start": 29287.44, + "end": 29288.64, + "probability": 0.6744 + }, + { + "start": 29288.76, + "end": 29294.2, + "probability": 0.9738 + }, + { + "start": 29294.3, + "end": 29295.42, + "probability": 0.98 + }, + { + "start": 29295.98, + "end": 29297.58, + "probability": 0.7521 + }, + { + "start": 29297.68, + "end": 29301.52, + "probability": 0.7789 + }, + { + "start": 29301.68, + "end": 29302.7, + "probability": 0.8452 + }, + { + "start": 29302.84, + "end": 29307.92, + "probability": 0.9542 + }, + { + "start": 29308.04, + "end": 29308.81, + "probability": 0.6078 + }, + { + "start": 29309.06, + "end": 29313.4, + "probability": 0.8364 + }, + { + "start": 29313.6, + "end": 29318.1, + "probability": 0.9902 + }, + { + "start": 29318.78, + "end": 29320.86, + "probability": 0.8178 + }, + { + "start": 29321.02, + "end": 29325.5, + "probability": 0.9197 + }, + { + "start": 29325.7, + "end": 29327.88, + "probability": 0.9277 + }, + { + "start": 29328.54, + "end": 29330.76, + "probability": 0.9838 + }, + { + "start": 29331.56, + "end": 29331.98, + "probability": 0.7887 + }, + { + "start": 29332.1, + "end": 29335.4, + "probability": 0.9927 + }, + { + "start": 29335.48, + "end": 29336.76, + "probability": 0.8975 + }, + { + "start": 29337.26, + "end": 29339.56, + "probability": 0.951 + }, + { + "start": 29339.76, + "end": 29341.32, + "probability": 0.9287 + }, + { + "start": 29341.7, + "end": 29344.82, + "probability": 0.955 + }, + { + "start": 29344.82, + "end": 29349.56, + "probability": 0.9754 + }, + { + "start": 29350.28, + "end": 29352.84, + "probability": 0.9747 + }, + { + "start": 29352.94, + "end": 29360.52, + "probability": 0.9798 + }, + { + "start": 29360.86, + "end": 29362.96, + "probability": 0.7744 + }, + { + "start": 29363.86, + "end": 29367.56, + "probability": 0.947 + }, + { + "start": 29368.88, + "end": 29372.4, + "probability": 0.9777 + }, + { + "start": 29372.4, + "end": 29377.12, + "probability": 0.9639 + }, + { + "start": 29377.84, + "end": 29379.64, + "probability": 0.2327 + }, + { + "start": 29379.86, + "end": 29382.24, + "probability": 0.9123 + }, + { + "start": 29382.92, + "end": 29386.8, + "probability": 0.9126 + }, + { + "start": 29387.12, + "end": 29389.74, + "probability": 0.9717 + }, + { + "start": 29390.18, + "end": 29391.38, + "probability": 0.7007 + }, + { + "start": 29392.11, + "end": 29394.6, + "probability": 0.8162 + }, + { + "start": 29394.64, + "end": 29403.72, + "probability": 0.8734 + }, + { + "start": 29404.02, + "end": 29406.78, + "probability": 0.9722 + }, + { + "start": 29406.94, + "end": 29408.04, + "probability": 0.6701 + }, + { + "start": 29408.22, + "end": 29409.86, + "probability": 0.9499 + }, + { + "start": 29410.3, + "end": 29413.36, + "probability": 0.9725 + }, + { + "start": 29413.52, + "end": 29414.64, + "probability": 0.742 + }, + { + "start": 29414.92, + "end": 29415.72, + "probability": 0.985 + }, + { + "start": 29416.3, + "end": 29419.12, + "probability": 0.6988 + }, + { + "start": 29419.28, + "end": 29423.64, + "probability": 0.9911 + }, + { + "start": 29423.64, + "end": 29427.38, + "probability": 0.8882 + }, + { + "start": 29427.94, + "end": 29428.92, + "probability": 0.8071 + }, + { + "start": 29429.0, + "end": 29430.55, + "probability": 0.6269 + }, + { + "start": 29431.46, + "end": 29437.5, + "probability": 0.7378 + }, + { + "start": 29437.56, + "end": 29438.86, + "probability": 0.6195 + }, + { + "start": 29441.07, + "end": 29444.48, + "probability": 0.9844 + }, + { + "start": 29444.94, + "end": 29445.04, + "probability": 0.779 + }, + { + "start": 29445.16, + "end": 29445.54, + "probability": 0.7414 + }, + { + "start": 29446.46, + "end": 29448.08, + "probability": 0.8693 + }, + { + "start": 29449.0, + "end": 29450.28, + "probability": 0.9696 + }, + { + "start": 29450.4, + "end": 29450.9, + "probability": 0.9633 + }, + { + "start": 29451.06, + "end": 29452.22, + "probability": 0.9888 + }, + { + "start": 29453.0, + "end": 29454.78, + "probability": 0.3912 + }, + { + "start": 29454.78, + "end": 29455.52, + "probability": 0.8309 + }, + { + "start": 29455.72, + "end": 29456.94, + "probability": 0.4222 + }, + { + "start": 29457.2, + "end": 29457.42, + "probability": 0.6806 + }, + { + "start": 29462.56, + "end": 29467.44, + "probability": 0.7084 + }, + { + "start": 29468.02, + "end": 29471.54, + "probability": 0.9398 + }, + { + "start": 29471.66, + "end": 29472.08, + "probability": 0.5736 + }, + { + "start": 29472.28, + "end": 29473.12, + "probability": 0.9331 + }, + { + "start": 29473.88, + "end": 29475.7, + "probability": 0.0466 + }, + { + "start": 29478.34, + "end": 29482.18, + "probability": 0.9951 + }, + { + "start": 29483.02, + "end": 29489.4, + "probability": 0.9757 + }, + { + "start": 29490.06, + "end": 29492.1, + "probability": 0.8413 + }, + { + "start": 29492.88, + "end": 29496.72, + "probability": 0.8202 + }, + { + "start": 29498.08, + "end": 29502.22, + "probability": 0.7681 + }, + { + "start": 29502.98, + "end": 29508.54, + "probability": 0.9435 + }, + { + "start": 29511.2, + "end": 29519.5, + "probability": 0.991 + }, + { + "start": 29520.06, + "end": 29521.42, + "probability": 0.8948 + }, + { + "start": 29522.64, + "end": 29528.28, + "probability": 0.9954 + }, + { + "start": 29529.22, + "end": 29534.6, + "probability": 0.9976 + }, + { + "start": 29535.38, + "end": 29538.2, + "probability": 0.9308 + }, + { + "start": 29539.39, + "end": 29545.55, + "probability": 0.871 + }, + { + "start": 29547.84, + "end": 29550.78, + "probability": 0.5581 + }, + { + "start": 29551.58, + "end": 29554.16, + "probability": 0.7216 + }, + { + "start": 29555.04, + "end": 29557.9, + "probability": 0.9447 + }, + { + "start": 29558.04, + "end": 29559.02, + "probability": 0.331 + }, + { + "start": 29559.18, + "end": 29561.34, + "probability": 0.9401 + }, + { + "start": 29562.18, + "end": 29563.4, + "probability": 0.5345 + }, + { + "start": 29564.02, + "end": 29565.14, + "probability": 0.8696 + }, + { + "start": 29565.36, + "end": 29570.08, + "probability": 0.9018 + }, + { + "start": 29571.9, + "end": 29575.92, + "probability": 0.998 + }, + { + "start": 29576.02, + "end": 29577.14, + "probability": 0.986 + }, + { + "start": 29578.14, + "end": 29579.14, + "probability": 0.778 + }, + { + "start": 29580.78, + "end": 29584.18, + "probability": 0.9563 + }, + { + "start": 29584.98, + "end": 29593.96, + "probability": 0.9868 + }, + { + "start": 29594.36, + "end": 29597.98, + "probability": 0.8539 + }, + { + "start": 29598.1, + "end": 29600.14, + "probability": 0.9517 + }, + { + "start": 29600.16, + "end": 29602.9, + "probability": 0.8595 + }, + { + "start": 29603.48, + "end": 29605.86, + "probability": 0.8464 + }, + { + "start": 29607.14, + "end": 29614.28, + "probability": 0.8692 + }, + { + "start": 29615.1, + "end": 29615.42, + "probability": 0.8555 + }, + { + "start": 29616.22, + "end": 29616.98, + "probability": 0.7959 + }, + { + "start": 29617.58, + "end": 29621.8, + "probability": 0.8023 + }, + { + "start": 29622.26, + "end": 29622.75, + "probability": 0.0505 + }, + { + "start": 29625.04, + "end": 29626.06, + "probability": 0.0829 + }, + { + "start": 29626.36, + "end": 29630.74, + "probability": 0.2791 + }, + { + "start": 29630.78, + "end": 29632.72, + "probability": 0.8322 + }, + { + "start": 29632.84, + "end": 29634.94, + "probability": 0.8433 + }, + { + "start": 29635.74, + "end": 29637.6, + "probability": 0.2419 + }, + { + "start": 29637.6, + "end": 29638.12, + "probability": 0.0402 + }, + { + "start": 29639.66, + "end": 29644.38, + "probability": 0.2394 + }, + { + "start": 29645.94, + "end": 29649.72, + "probability": 0.5712 + }, + { + "start": 29649.76, + "end": 29651.14, + "probability": 0.9302 + }, + { + "start": 29652.1, + "end": 29657.32, + "probability": 0.0607 + }, + { + "start": 29657.88, + "end": 29665.94, + "probability": 0.0809 + }, + { + "start": 29666.92, + "end": 29667.4, + "probability": 0.534 + }, + { + "start": 29667.42, + "end": 29669.0, + "probability": 0.7515 + }, + { + "start": 29672.94, + "end": 29673.8, + "probability": 0.9618 + }, + { + "start": 29675.7, + "end": 29675.7, + "probability": 0.7969 + }, + { + "start": 29675.7, + "end": 29675.7, + "probability": 0.0002 + }, + { + "start": 29684.84, + "end": 29685.12, + "probability": 0.1592 + }, + { + "start": 29692.92, + "end": 29694.14, + "probability": 0.7261 + }, + { + "start": 29694.4, + "end": 29695.2, + "probability": 0.8345 + }, + { + "start": 29695.48, + "end": 29699.36, + "probability": 0.9912 + }, + { + "start": 29700.74, + "end": 29702.12, + "probability": 0.7 + }, + { + "start": 29703.24, + "end": 29709.9, + "probability": 0.996 + }, + { + "start": 29710.6, + "end": 29712.76, + "probability": 0.9549 + }, + { + "start": 29714.04, + "end": 29716.14, + "probability": 0.8212 + }, + { + "start": 29716.94, + "end": 29722.16, + "probability": 0.9154 + }, + { + "start": 29723.18, + "end": 29725.5, + "probability": 0.9956 + }, + { + "start": 29726.24, + "end": 29726.9, + "probability": 0.5278 + }, + { + "start": 29727.98, + "end": 29730.37, + "probability": 0.6719 + }, + { + "start": 29731.34, + "end": 29736.9, + "probability": 0.9252 + }, + { + "start": 29737.88, + "end": 29740.15, + "probability": 0.9049 + }, + { + "start": 29742.18, + "end": 29744.1, + "probability": 0.8586 + }, + { + "start": 29744.84, + "end": 29747.96, + "probability": 0.5239 + }, + { + "start": 29748.58, + "end": 29750.8, + "probability": 0.9813 + }, + { + "start": 29751.72, + "end": 29753.22, + "probability": 0.7819 + }, + { + "start": 29755.96, + "end": 29757.3, + "probability": 0.0901 + }, + { + "start": 29757.3, + "end": 29757.3, + "probability": 0.6443 + }, + { + "start": 29757.84, + "end": 29757.84, + "probability": 0.0839 + }, + { + "start": 29757.84, + "end": 29759.22, + "probability": 0.336 + }, + { + "start": 29759.36, + "end": 29760.32, + "probability": 0.541 + }, + { + "start": 29760.38, + "end": 29760.38, + "probability": 0.5793 + }, + { + "start": 29760.44, + "end": 29761.58, + "probability": 0.465 + }, + { + "start": 29761.58, + "end": 29762.56, + "probability": 0.2012 + }, + { + "start": 29762.94, + "end": 29766.9, + "probability": 0.602 + }, + { + "start": 29766.9, + "end": 29769.04, + "probability": 0.8751 + }, + { + "start": 29769.68, + "end": 29775.4, + "probability": 0.9156 + }, + { + "start": 29775.96, + "end": 29776.82, + "probability": 0.9708 + }, + { + "start": 29777.68, + "end": 29778.34, + "probability": 0.843 + }, + { + "start": 29778.42, + "end": 29780.59, + "probability": 0.1631 + }, + { + "start": 29781.08, + "end": 29781.63, + "probability": 0.003 + }, + { + "start": 29783.54, + "end": 29783.68, + "probability": 0.301 + }, + { + "start": 29783.68, + "end": 29783.72, + "probability": 0.0013 + }, + { + "start": 29783.72, + "end": 29783.72, + "probability": 0.4116 + }, + { + "start": 29783.72, + "end": 29783.72, + "probability": 0.1818 + }, + { + "start": 29783.72, + "end": 29783.94, + "probability": 0.065 + }, + { + "start": 29784.34, + "end": 29785.6, + "probability": 0.5122 + }, + { + "start": 29786.08, + "end": 29786.78, + "probability": 0.8166 + }, + { + "start": 29788.1, + "end": 29788.5, + "probability": 0.634 + }, + { + "start": 29788.62, + "end": 29791.21, + "probability": 0.9915 + }, + { + "start": 29795.26, + "end": 29799.06, + "probability": 0.6689 + }, + { + "start": 29800.02, + "end": 29801.08, + "probability": 0.684 + }, + { + "start": 29803.8, + "end": 29805.9, + "probability": 0.9635 + }, + { + "start": 29806.18, + "end": 29807.08, + "probability": 0.8312 + }, + { + "start": 29808.46, + "end": 29809.08, + "probability": 0.1742 + }, + { + "start": 29820.4, + "end": 29824.7, + "probability": 0.5218 + }, + { + "start": 29824.8, + "end": 29827.24, + "probability": 0.0633 + }, + { + "start": 29827.44, + "end": 29828.58, + "probability": 0.7359 + }, + { + "start": 29829.34, + "end": 29829.92, + "probability": 0.9929 + }, + { + "start": 29831.6, + "end": 29831.82, + "probability": 0.0331 + }, + { + "start": 29831.82, + "end": 29834.92, + "probability": 0.0539 + }, + { + "start": 29834.92, + "end": 29834.94, + "probability": 0.0475 + }, + { + "start": 29834.94, + "end": 29835.82, + "probability": 0.3495 + }, + { + "start": 29839.92, + "end": 29842.02, + "probability": 0.1315 + }, + { + "start": 29842.02, + "end": 29844.36, + "probability": 0.1453 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29876.0, + "end": 29876.0, + "probability": 0.0 + }, + { + "start": 29895.84, + "end": 29898.94, + "probability": 0.6661 + }, + { + "start": 29899.6, + "end": 29900.64, + "probability": 0.1126 + }, + { + "start": 29900.64, + "end": 29903.5, + "probability": 0.069 + }, + { + "start": 29904.19, + "end": 29905.1, + "probability": 0.0877 + }, + { + "start": 29905.18, + "end": 29907.2, + "probability": 0.0103 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.0, + "end": 29997.0, + "probability": 0.0 + }, + { + "start": 29997.7, + "end": 29997.7, + "probability": 0.1992 + }, + { + "start": 29997.7, + "end": 29997.7, + "probability": 0.0438 + }, + { + "start": 29997.7, + "end": 29998.0, + "probability": 0.2959 + }, + { + "start": 29998.04, + "end": 29999.16, + "probability": 0.6663 + }, + { + "start": 29999.3, + "end": 30000.14, + "probability": 0.7863 + }, + { + "start": 30000.32, + "end": 30003.2, + "probability": 0.8118 + }, + { + "start": 30003.7, + "end": 30005.76, + "probability": 0.9827 + }, + { + "start": 30006.02, + "end": 30007.24, + "probability": 0.6668 + }, + { + "start": 30007.86, + "end": 30009.82, + "probability": 0.9368 + }, + { + "start": 30009.92, + "end": 30012.48, + "probability": 0.769 + }, + { + "start": 30012.6, + "end": 30013.76, + "probability": 0.9104 + }, + { + "start": 30013.86, + "end": 30015.82, + "probability": 0.7718 + }, + { + "start": 30016.28, + "end": 30019.64, + "probability": 0.9358 + }, + { + "start": 30020.12, + "end": 30020.7, + "probability": 0.494 + }, + { + "start": 30020.82, + "end": 30024.8, + "probability": 0.9943 + }, + { + "start": 30024.92, + "end": 30025.2, + "probability": 0.7071 + }, + { + "start": 30027.14, + "end": 30029.34, + "probability": 0.9816 + }, + { + "start": 30029.76, + "end": 30033.08, + "probability": 0.6974 + }, + { + "start": 30033.88, + "end": 30036.46, + "probability": 0.9185 + }, + { + "start": 30037.02, + "end": 30038.76, + "probability": 0.6678 + }, + { + "start": 30039.04, + "end": 30039.3, + "probability": 0.4809 + }, + { + "start": 30039.74, + "end": 30042.51, + "probability": 0.59 + }, + { + "start": 30047.34, + "end": 30047.88, + "probability": 0.9429 + }, + { + "start": 30049.5, + "end": 30053.26, + "probability": 0.4781 + }, + { + "start": 30053.38, + "end": 30057.18, + "probability": 0.7721 + }, + { + "start": 30057.82, + "end": 30057.92, + "probability": 0.0408 + }, + { + "start": 30057.92, + "end": 30059.32, + "probability": 0.7963 + }, + { + "start": 30059.4, + "end": 30060.78, + "probability": 0.7224 + }, + { + "start": 30060.82, + "end": 30061.84, + "probability": 0.8012 + }, + { + "start": 30062.6, + "end": 30063.0, + "probability": 0.7929 + }, + { + "start": 30065.32, + "end": 30065.4, + "probability": 0.2304 + }, + { + "start": 30079.48, + "end": 30081.4, + "probability": 0.2939 + }, + { + "start": 30081.4, + "end": 30084.22, + "probability": 0.4806 + }, + { + "start": 30084.36, + "end": 30087.26, + "probability": 0.7785 + }, + { + "start": 30087.74, + "end": 30088.06, + "probability": 0.6937 + }, + { + "start": 30089.7, + "end": 30089.92, + "probability": 0.0786 + }, + { + "start": 30097.39, + "end": 30099.5, + "probability": 0.8869 + }, + { + "start": 30107.88, + "end": 30108.88, + "probability": 0.0643 + }, + { + "start": 30108.88, + "end": 30112.08, + "probability": 0.1223 + }, + { + "start": 30119.76, + "end": 30121.38, + "probability": 0.0491 + }, + { + "start": 30122.26, + "end": 30129.3, + "probability": 0.0268 + }, + { + "start": 30129.86, + "end": 30130.12, + "probability": 0.0503 + }, + { + "start": 30131.66, + "end": 30135.98, + "probability": 0.0586 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.0, + "end": 30136.0, + "probability": 0.0 + }, + { + "start": 30136.8, + "end": 30137.12, + "probability": 0.0383 + }, + { + "start": 30137.12, + "end": 30137.12, + "probability": 0.2374 + }, + { + "start": 30137.12, + "end": 30139.4, + "probability": 0.7851 + }, + { + "start": 30139.84, + "end": 30141.1, + "probability": 0.7803 + }, + { + "start": 30141.18, + "end": 30141.74, + "probability": 0.8039 + }, + { + "start": 30141.78, + "end": 30142.6, + "probability": 0.8158 + }, + { + "start": 30142.92, + "end": 30145.89, + "probability": 0.9067 + }, + { + "start": 30146.4, + "end": 30149.04, + "probability": 0.9854 + }, + { + "start": 30150.28, + "end": 30152.24, + "probability": 0.9189 + }, + { + "start": 30153.36, + "end": 30153.86, + "probability": 0.3804 + }, + { + "start": 30153.9, + "end": 30157.46, + "probability": 0.6776 + }, + { + "start": 30157.62, + "end": 30158.98, + "probability": 0.7912 + }, + { + "start": 30159.54, + "end": 30161.6, + "probability": 0.9731 + }, + { + "start": 30162.12, + "end": 30163.84, + "probability": 0.7851 + }, + { + "start": 30163.9, + "end": 30166.52, + "probability": 0.8992 + }, + { + "start": 30166.64, + "end": 30169.94, + "probability": 0.9715 + }, + { + "start": 30170.48, + "end": 30173.76, + "probability": 0.9896 + }, + { + "start": 30174.6, + "end": 30177.5, + "probability": 0.9969 + }, + { + "start": 30177.72, + "end": 30179.46, + "probability": 0.9816 + }, + { + "start": 30179.58, + "end": 30180.09, + "probability": 0.0925 + }, + { + "start": 30180.12, + "end": 30180.7, + "probability": 0.7378 + }, + { + "start": 30181.3, + "end": 30184.04, + "probability": 0.9751 + }, + { + "start": 30184.92, + "end": 30187.84, + "probability": 0.9763 + }, + { + "start": 30188.84, + "end": 30191.54, + "probability": 0.9858 + }, + { + "start": 30191.66, + "end": 30192.74, + "probability": 0.7684 + }, + { + "start": 30192.82, + "end": 30194.94, + "probability": 0.7881 + }, + { + "start": 30195.44, + "end": 30198.34, + "probability": 0.799 + }, + { + "start": 30198.68, + "end": 30199.92, + "probability": 0.9976 + }, + { + "start": 30199.98, + "end": 30201.68, + "probability": 0.9525 + }, + { + "start": 30202.22, + "end": 30203.54, + "probability": 0.976 + }, + { + "start": 30203.66, + "end": 30206.07, + "probability": 0.9948 + }, + { + "start": 30207.1, + "end": 30210.52, + "probability": 0.9965 + }, + { + "start": 30212.06, + "end": 30212.7, + "probability": 0.8132 + }, + { + "start": 30212.86, + "end": 30214.06, + "probability": 0.9775 + }, + { + "start": 30214.3, + "end": 30216.0, + "probability": 0.7834 + }, + { + "start": 30216.18, + "end": 30218.86, + "probability": 0.998 + }, + { + "start": 30219.2, + "end": 30220.54, + "probability": 0.7998 + }, + { + "start": 30221.5, + "end": 30225.0, + "probability": 0.983 + }, + { + "start": 30225.14, + "end": 30225.98, + "probability": 0.9531 + }, + { + "start": 30226.12, + "end": 30226.52, + "probability": 0.9464 + }, + { + "start": 30226.9, + "end": 30231.89, + "probability": 0.9963 + }, + { + "start": 30232.64, + "end": 30235.64, + "probability": 0.7181 + }, + { + "start": 30236.08, + "end": 30240.22, + "probability": 0.9832 + }, + { + "start": 30240.86, + "end": 30241.8, + "probability": 0.918 + }, + { + "start": 30242.36, + "end": 30245.98, + "probability": 0.8029 + }, + { + "start": 30246.4, + "end": 30248.66, + "probability": 0.9966 + }, + { + "start": 30249.02, + "end": 30255.16, + "probability": 0.9608 + }, + { + "start": 30255.62, + "end": 30259.38, + "probability": 0.9897 + }, + { + "start": 30259.46, + "end": 30262.78, + "probability": 0.8451 + }, + { + "start": 30263.16, + "end": 30269.58, + "probability": 0.9937 + }, + { + "start": 30269.68, + "end": 30271.01, + "probability": 0.5966 + }, + { + "start": 30271.78, + "end": 30272.22, + "probability": 0.7531 + }, + { + "start": 30272.28, + "end": 30272.6, + "probability": 0.8423 + }, + { + "start": 30273.02, + "end": 30275.06, + "probability": 0.854 + }, + { + "start": 30275.22, + "end": 30275.44, + "probability": 0.7786 + }, + { + "start": 30277.4, + "end": 30278.34, + "probability": 0.6674 + }, + { + "start": 30278.34, + "end": 30281.82, + "probability": 0.9265 + }, + { + "start": 30281.98, + "end": 30285.74, + "probability": 0.9937 + }, + { + "start": 30286.34, + "end": 30289.04, + "probability": 0.6364 + }, + { + "start": 30289.16, + "end": 30291.42, + "probability": 0.9927 + }, + { + "start": 30292.2, + "end": 30293.23, + "probability": 0.6515 + }, + { + "start": 30293.94, + "end": 30296.88, + "probability": 0.9313 + }, + { + "start": 30297.32, + "end": 30300.28, + "probability": 0.8654 + }, + { + "start": 30300.28, + "end": 30301.7, + "probability": 0.6383 + }, + { + "start": 30302.26, + "end": 30306.24, + "probability": 0.8373 + }, + { + "start": 30307.7, + "end": 30308.8, + "probability": 0.4021 + }, + { + "start": 30311.74, + "end": 30312.38, + "probability": 0.1005 + }, + { + "start": 30312.92, + "end": 30313.02, + "probability": 0.1368 + }, + { + "start": 30315.04, + "end": 30315.98, + "probability": 0.728 + }, + { + "start": 30321.94, + "end": 30326.82, + "probability": 0.718 + }, + { + "start": 30326.82, + "end": 30329.0, + "probability": 0.7826 + }, + { + "start": 30329.2, + "end": 30329.32, + "probability": 0.5607 + }, + { + "start": 30331.72, + "end": 30338.64, + "probability": 0.5907 + }, + { + "start": 30364.16, + "end": 30365.58, + "probability": 0.0419 + }, + { + "start": 30365.58, + "end": 30365.78, + "probability": 0.0086 + }, + { + "start": 30367.42, + "end": 30367.48, + "probability": 0.002 + }, + { + "start": 30368.83, + "end": 30375.22, + "probability": 0.1007 + }, + { + "start": 30375.24, + "end": 30376.06, + "probability": 0.0869 + }, + { + "start": 30381.5, + "end": 30384.08, + "probability": 0.047 + }, + { + "start": 30387.88, + "end": 30388.7, + "probability": 0.0207 + }, + { + "start": 30389.93, + "end": 30392.74, + "probability": 0.0555 + }, + { + "start": 30392.74, + "end": 30392.98, + "probability": 0.1599 + }, + { + "start": 30393.46, + "end": 30394.12, + "probability": 0.0383 + }, + { + "start": 30394.12, + "end": 30394.66, + "probability": 0.0562 + }, + { + "start": 30397.8, + "end": 30397.98, + "probability": 0.0129 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30398.0, + "end": 30398.0, + "probability": 0.0 + }, + { + "start": 30410.26, + "end": 30410.88, + "probability": 0.0783 + }, + { + "start": 30412.03, + "end": 30415.55, + "probability": 0.0926 + }, + { + "start": 30418.78, + "end": 30418.78, + "probability": 0.0347 + }, + { + "start": 30418.78, + "end": 30422.46, + "probability": 0.1025 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.0, + "end": 30522.0, + "probability": 0.0 + }, + { + "start": 30522.22, + "end": 30522.22, + "probability": 0.0268 + }, + { + "start": 30522.22, + "end": 30522.22, + "probability": 0.1111 + }, + { + "start": 30522.22, + "end": 30523.3, + "probability": 0.543 + }, + { + "start": 30523.76, + "end": 30524.5, + "probability": 0.5815 + }, + { + "start": 30524.62, + "end": 30528.05, + "probability": 0.8716 + }, + { + "start": 30529.92, + "end": 30530.78, + "probability": 0.3579 + }, + { + "start": 30531.52, + "end": 30532.36, + "probability": 0.1523 + }, + { + "start": 30532.5, + "end": 30536.29, + "probability": 0.9297 + }, + { + "start": 30536.92, + "end": 30537.82, + "probability": 0.9384 + }, + { + "start": 30537.94, + "end": 30542.58, + "probability": 0.9551 + }, + { + "start": 30543.34, + "end": 30547.54, + "probability": 0.9562 + }, + { + "start": 30548.14, + "end": 30549.42, + "probability": 0.932 + }, + { + "start": 30549.44, + "end": 30550.1, + "probability": 0.9193 + }, + { + "start": 30550.42, + "end": 30551.48, + "probability": 0.8996 + }, + { + "start": 30552.02, + "end": 30553.98, + "probability": 0.6788 + }, + { + "start": 30554.64, + "end": 30555.38, + "probability": 0.6895 + }, + { + "start": 30555.76, + "end": 30555.9, + "probability": 0.656 + }, + { + "start": 30556.9, + "end": 30560.38, + "probability": 0.9945 + }, + { + "start": 30560.92, + "end": 30563.58, + "probability": 0.9958 + }, + { + "start": 30563.58, + "end": 30567.18, + "probability": 0.9668 + }, + { + "start": 30567.56, + "end": 30568.0, + "probability": 0.8618 + }, + { + "start": 30570.5, + "end": 30572.06, + "probability": 0.4903 + }, + { + "start": 30573.2, + "end": 30577.24, + "probability": 0.6951 + }, + { + "start": 30578.04, + "end": 30581.92, + "probability": 0.9969 + }, + { + "start": 30582.58, + "end": 30583.4, + "probability": 0.7928 + }, + { + "start": 30583.94, + "end": 30586.42, + "probability": 0.9586 + }, + { + "start": 30591.1, + "end": 30593.02, + "probability": 0.6652 + }, + { + "start": 30593.74, + "end": 30594.86, + "probability": 0.681 + }, + { + "start": 30594.94, + "end": 30595.92, + "probability": 0.9341 + }, + { + "start": 30596.24, + "end": 30602.14, + "probability": 0.8694 + }, + { + "start": 30607.0, + "end": 30609.4, + "probability": 0.3196 + }, + { + "start": 30610.18, + "end": 30614.16, + "probability": 0.7362 + }, + { + "start": 30614.88, + "end": 30619.06, + "probability": 0.9556 + }, + { + "start": 30619.7, + "end": 30621.66, + "probability": 0.8779 + }, + { + "start": 30622.18, + "end": 30624.52, + "probability": 0.9499 + }, + { + "start": 30625.4, + "end": 30628.26, + "probability": 0.7235 + }, + { + "start": 30628.84, + "end": 30630.96, + "probability": 0.9963 + }, + { + "start": 30631.58, + "end": 30637.06, + "probability": 0.9677 + }, + { + "start": 30637.72, + "end": 30639.4, + "probability": 0.9743 + }, + { + "start": 30639.5, + "end": 30641.5, + "probability": 0.979 + }, + { + "start": 30642.18, + "end": 30643.66, + "probability": 0.8506 + }, + { + "start": 30643.74, + "end": 30646.82, + "probability": 0.6869 + }, + { + "start": 30646.86, + "end": 30650.0, + "probability": 0.9927 + }, + { + "start": 30650.66, + "end": 30653.1, + "probability": 0.7746 + }, + { + "start": 30653.78, + "end": 30654.56, + "probability": 0.8636 + }, + { + "start": 30655.5, + "end": 30657.46, + "probability": 0.8369 + }, + { + "start": 30657.7, + "end": 30659.82, + "probability": 0.9851 + }, + { + "start": 30660.0, + "end": 30662.14, + "probability": 0.9087 + }, + { + "start": 30662.64, + "end": 30665.38, + "probability": 0.9867 + }, + { + "start": 30665.98, + "end": 30669.92, + "probability": 0.6139 + }, + { + "start": 30670.52, + "end": 30671.3, + "probability": 0.7221 + }, + { + "start": 30671.8, + "end": 30676.3, + "probability": 0.9792 + }, + { + "start": 30676.56, + "end": 30677.54, + "probability": 0.9259 + }, + { + "start": 30677.68, + "end": 30678.52, + "probability": 0.9273 + }, + { + "start": 30679.06, + "end": 30680.3, + "probability": 0.969 + }, + { + "start": 30680.7, + "end": 30685.06, + "probability": 0.6667 + }, + { + "start": 30685.8, + "end": 30687.4, + "probability": 0.7992 + }, + { + "start": 30687.44, + "end": 30688.51, + "probability": 0.4822 + }, + { + "start": 30689.34, + "end": 30690.04, + "probability": 0.5138 + }, + { + "start": 30690.04, + "end": 30692.14, + "probability": 0.8537 + }, + { + "start": 30692.32, + "end": 30695.14, + "probability": 0.9164 + }, + { + "start": 30695.28, + "end": 30695.64, + "probability": 0.7146 + }, + { + "start": 30695.76, + "end": 30700.24, + "probability": 0.9972 + }, + { + "start": 30701.45, + "end": 30703.52, + "probability": 0.9468 + }, + { + "start": 30704.94, + "end": 30706.96, + "probability": 0.8279 + }, + { + "start": 30707.06, + "end": 30708.3, + "probability": 0.4847 + }, + { + "start": 30709.8, + "end": 30711.8, + "probability": 0.1119 + }, + { + "start": 30711.84, + "end": 30712.4, + "probability": 0.6386 + }, + { + "start": 30712.6, + "end": 30714.2, + "probability": 0.9722 + }, + { + "start": 30715.46, + "end": 30719.45, + "probability": 0.6592 + }, + { + "start": 30719.66, + "end": 30721.2, + "probability": 0.9345 + }, + { + "start": 30721.76, + "end": 30724.26, + "probability": 0.7221 + }, + { + "start": 30724.96, + "end": 30727.58, + "probability": 0.9874 + }, + { + "start": 30727.66, + "end": 30728.56, + "probability": 0.8063 + }, + { + "start": 30728.86, + "end": 30730.42, + "probability": 0.5938 + }, + { + "start": 30730.5, + "end": 30735.5, + "probability": 0.8307 + }, + { + "start": 30735.56, + "end": 30737.51, + "probability": 0.7614 + }, + { + "start": 30738.66, + "end": 30741.42, + "probability": 0.2998 + }, + { + "start": 30741.42, + "end": 30745.08, + "probability": 0.2563 + }, + { + "start": 30745.48, + "end": 30745.94, + "probability": 0.0617 + }, + { + "start": 30745.94, + "end": 30748.48, + "probability": 0.3344 + }, + { + "start": 30748.56, + "end": 30752.38, + "probability": 0.7211 + }, + { + "start": 30752.58, + "end": 30754.36, + "probability": 0.8578 + }, + { + "start": 30754.46, + "end": 30756.44, + "probability": 0.8096 + }, + { + "start": 30757.0, + "end": 30757.94, + "probability": 0.3227 + }, + { + "start": 30758.14, + "end": 30759.72, + "probability": 0.3982 + }, + { + "start": 30759.84, + "end": 30762.46, + "probability": 0.1964 + }, + { + "start": 30763.04, + "end": 30764.02, + "probability": 0.8246 + }, + { + "start": 30764.68, + "end": 30768.92, + "probability": 0.8005 + }, + { + "start": 30769.7, + "end": 30770.2, + "probability": 0.1601 + }, + { + "start": 30770.88, + "end": 30771.1, + "probability": 0.0323 + }, + { + "start": 30771.64, + "end": 30773.58, + "probability": 0.5762 + }, + { + "start": 30774.32, + "end": 30776.6, + "probability": 0.7661 + }, + { + "start": 30776.74, + "end": 30777.51, + "probability": 0.7969 + }, + { + "start": 30778.32, + "end": 30778.74, + "probability": 0.769 + }, + { + "start": 30780.42, + "end": 30780.6, + "probability": 0.355 + }, + { + "start": 30794.98, + "end": 30796.6, + "probability": 0.1659 + }, + { + "start": 30797.43, + "end": 30801.16, + "probability": 0.4026 + }, + { + "start": 30801.24, + "end": 30801.56, + "probability": 0.5802 + }, + { + "start": 30803.62, + "end": 30804.56, + "probability": 0.0543 + }, + { + "start": 30809.06, + "end": 30812.5, + "probability": 0.3895 + }, + { + "start": 30816.62, + "end": 30819.62, + "probability": 0.0305 + }, + { + "start": 30819.62, + "end": 30820.26, + "probability": 0.0428 + }, + { + "start": 30821.48, + "end": 30822.4, + "probability": 0.0206 + }, + { + "start": 30833.7, + "end": 30833.94, + "probability": 0.0281 + }, + { + "start": 30834.52, + "end": 30834.98, + "probability": 0.051 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30835.0, + "end": 30835.0, + "probability": 0.0 + }, + { + "start": 30842.64, + "end": 30845.44, + "probability": 0.085 + }, + { + "start": 30845.44, + "end": 30849.62, + "probability": 0.045 + }, + { + "start": 30850.27, + "end": 30856.6, + "probability": 0.0253 + }, + { + "start": 30856.96, + "end": 30858.18, + "probability": 0.0535 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.0, + "end": 30966.0, + "probability": 0.0 + }, + { + "start": 30966.36, + "end": 30966.95, + "probability": 0.2443 + }, + { + "start": 30968.14, + "end": 30969.58, + "probability": 0.8719 + }, + { + "start": 30969.7, + "end": 30971.64, + "probability": 0.9379 + }, + { + "start": 30973.56, + "end": 30973.74, + "probability": 0.2891 + }, + { + "start": 30973.84, + "end": 30974.34, + "probability": 0.2826 + }, + { + "start": 30974.46, + "end": 30976.54, + "probability": 0.5236 + }, + { + "start": 30976.54, + "end": 30976.64, + "probability": 0.8025 + }, + { + "start": 30977.42, + "end": 30979.36, + "probability": 0.571 + }, + { + "start": 30979.82, + "end": 30980.4, + "probability": 0.9652 + }, + { + "start": 30981.0, + "end": 30983.18, + "probability": 0.6881 + }, + { + "start": 30985.6, + "end": 30986.74, + "probability": 0.0121 + }, + { + "start": 30988.32, + "end": 30991.14, + "probability": 0.6543 + }, + { + "start": 30991.9, + "end": 30992.56, + "probability": 0.9377 + }, + { + "start": 30995.1, + "end": 30996.12, + "probability": 0.8651 + }, + { + "start": 30996.12, + "end": 30997.1, + "probability": 0.0384 + }, + { + "start": 30998.04, + "end": 30999.9, + "probability": 0.1236 + }, + { + "start": 31007.0, + "end": 31008.14, + "probability": 0.4913 + }, + { + "start": 31008.24, + "end": 31010.56, + "probability": 0.8583 + }, + { + "start": 31010.74, + "end": 31011.82, + "probability": 0.5172 + }, + { + "start": 31011.98, + "end": 31013.32, + "probability": 0.8475 + }, + { + "start": 31013.54, + "end": 31017.64, + "probability": 0.781 + }, + { + "start": 31017.8, + "end": 31018.4, + "probability": 0.3636 + }, + { + "start": 31018.54, + "end": 31019.5, + "probability": 0.7258 + }, + { + "start": 31019.96, + "end": 31020.5, + "probability": 0.8688 + }, + { + "start": 31024.42, + "end": 31024.54, + "probability": 0.136 + }, + { + "start": 31024.54, + "end": 31024.54, + "probability": 0.1283 + }, + { + "start": 31024.54, + "end": 31024.54, + "probability": 0.1366 + }, + { + "start": 31024.54, + "end": 31025.3, + "probability": 0.6547 + }, + { + "start": 31025.7, + "end": 31026.7, + "probability": 0.6386 + }, + { + "start": 31026.76, + "end": 31030.6, + "probability": 0.991 + }, + { + "start": 31030.66, + "end": 31031.62, + "probability": 0.6802 + }, + { + "start": 31032.74, + "end": 31033.62, + "probability": 0.0704 + }, + { + "start": 31033.84, + "end": 31033.9, + "probability": 0.0143 + }, + { + "start": 31033.98, + "end": 31033.98, + "probability": 0.3163 + }, + { + "start": 31033.98, + "end": 31035.24, + "probability": 0.5394 + }, + { + "start": 31035.4, + "end": 31038.36, + "probability": 0.7711 + }, + { + "start": 31038.36, + "end": 31040.82, + "probability": 0.536 + }, + { + "start": 31040.86, + "end": 31042.12, + "probability": 0.3885 + }, + { + "start": 31042.5, + "end": 31044.1, + "probability": 0.8886 + }, + { + "start": 31044.24, + "end": 31047.04, + "probability": 0.9801 + }, + { + "start": 31047.62, + "end": 31049.76, + "probability": 0.7125 + }, + { + "start": 31050.34, + "end": 31051.38, + "probability": 0.5299 + }, + { + "start": 31051.9, + "end": 31052.72, + "probability": 0.0764 + }, + { + "start": 31053.18, + "end": 31054.34, + "probability": 0.7059 + }, + { + "start": 31054.54, + "end": 31055.32, + "probability": 0.736 + }, + { + "start": 31055.42, + "end": 31056.12, + "probability": 0.6937 + }, + { + "start": 31056.8, + "end": 31056.9, + "probability": 0.9778 + }, + { + "start": 31057.42, + "end": 31058.76, + "probability": 0.878 + }, + { + "start": 31058.84, + "end": 31060.22, + "probability": 0.9905 + }, + { + "start": 31076.7, + "end": 31079.44, + "probability": 0.6823 + }, + { + "start": 31080.0, + "end": 31080.4, + "probability": 0.6847 + }, + { + "start": 31082.26, + "end": 31083.96, + "probability": 0.9915 + }, + { + "start": 31084.1, + "end": 31085.62, + "probability": 0.956 + }, + { + "start": 31085.76, + "end": 31088.8, + "probability": 0.7936 + }, + { + "start": 31089.72, + "end": 31092.8, + "probability": 0.6534 + }, + { + "start": 31093.6, + "end": 31096.9, + "probability": 0.9901 + }, + { + "start": 31096.9, + "end": 31099.88, + "probability": 0.9816 + }, + { + "start": 31102.7, + "end": 31104.22, + "probability": 0.9483 + }, + { + "start": 31104.96, + "end": 31106.32, + "probability": 0.9493 + }, + { + "start": 31107.06, + "end": 31108.26, + "probability": 0.9739 + }, + { + "start": 31108.64, + "end": 31114.46, + "probability": 0.9842 + }, + { + "start": 31114.58, + "end": 31115.92, + "probability": 0.8687 + }, + { + "start": 31116.4, + "end": 31119.4, + "probability": 0.9978 + }, + { + "start": 31119.4, + "end": 31122.94, + "probability": 0.9955 + }, + { + "start": 31124.16, + "end": 31125.24, + "probability": 0.6997 + }, + { + "start": 31125.86, + "end": 31129.3, + "probability": 0.9984 + }, + { + "start": 31129.3, + "end": 31132.86, + "probability": 0.9531 + }, + { + "start": 31133.76, + "end": 31136.46, + "probability": 0.9993 + }, + { + "start": 31137.1, + "end": 31141.98, + "probability": 0.9961 + }, + { + "start": 31142.32, + "end": 31144.88, + "probability": 0.7961 + }, + { + "start": 31145.74, + "end": 31147.4, + "probability": 0.8958 + }, + { + "start": 31149.04, + "end": 31152.02, + "probability": 0.9827 + }, + { + "start": 31152.48, + "end": 31157.38, + "probability": 0.9979 + }, + { + "start": 31157.38, + "end": 31162.72, + "probability": 0.9835 + }, + { + "start": 31163.36, + "end": 31165.0, + "probability": 0.6933 + }, + { + "start": 31165.14, + "end": 31165.64, + "probability": 0.8591 + }, + { + "start": 31165.76, + "end": 31166.3, + "probability": 0.9658 + }, + { + "start": 31166.32, + "end": 31166.88, + "probability": 0.9379 + }, + { + "start": 31166.98, + "end": 31167.38, + "probability": 0.7885 + }, + { + "start": 31167.52, + "end": 31174.12, + "probability": 0.9115 + }, + { + "start": 31174.12, + "end": 31177.08, + "probability": 0.9916 + }, + { + "start": 31177.56, + "end": 31182.54, + "probability": 0.8952 + }, + { + "start": 31182.96, + "end": 31183.56, + "probability": 0.9045 + }, + { + "start": 31184.28, + "end": 31187.94, + "probability": 0.9045 + }, + { + "start": 31188.38, + "end": 31188.86, + "probability": 0.9347 + }, + { + "start": 31188.98, + "end": 31189.38, + "probability": 0.6319 + }, + { + "start": 31189.44, + "end": 31193.12, + "probability": 0.9459 + }, + { + "start": 31193.44, + "end": 31196.58, + "probability": 0.7359 + }, + { + "start": 31197.18, + "end": 31203.42, + "probability": 0.9964 + }, + { + "start": 31203.88, + "end": 31206.36, + "probability": 0.8288 + }, + { + "start": 31207.04, + "end": 31210.52, + "probability": 0.9941 + }, + { + "start": 31210.68, + "end": 31216.1, + "probability": 0.9517 + }, + { + "start": 31216.62, + "end": 31221.9, + "probability": 0.9944 + }, + { + "start": 31222.38, + "end": 31225.56, + "probability": 0.9463 + }, + { + "start": 31226.0, + "end": 31231.18, + "probability": 0.9938 + }, + { + "start": 31231.18, + "end": 31238.57, + "probability": 0.9971 + }, + { + "start": 31239.32, + "end": 31242.5, + "probability": 0.9705 + }, + { + "start": 31243.1, + "end": 31247.3, + "probability": 0.9948 + }, + { + "start": 31247.3, + "end": 31252.04, + "probability": 0.9633 + }, + { + "start": 31252.6, + "end": 31253.3, + "probability": 0.7497 + }, + { + "start": 31253.74, + "end": 31259.1, + "probability": 0.9688 + }, + { + "start": 31259.52, + "end": 31263.0, + "probability": 0.9942 + }, + { + "start": 31263.32, + "end": 31266.28, + "probability": 0.9946 + }, + { + "start": 31266.8, + "end": 31271.44, + "probability": 0.8248 + }, + { + "start": 31271.96, + "end": 31273.16, + "probability": 0.9985 + }, + { + "start": 31274.16, + "end": 31276.12, + "probability": 0.9567 + }, + { + "start": 31276.24, + "end": 31276.8, + "probability": 0.8123 + }, + { + "start": 31277.18, + "end": 31278.7, + "probability": 0.9651 + }, + { + "start": 31279.1, + "end": 31283.82, + "probability": 0.9358 + }, + { + "start": 31284.28, + "end": 31287.44, + "probability": 0.7086 + }, + { + "start": 31287.96, + "end": 31295.2, + "probability": 0.9846 + }, + { + "start": 31295.58, + "end": 31299.26, + "probability": 0.8967 + }, + { + "start": 31299.26, + "end": 31302.94, + "probability": 0.877 + }, + { + "start": 31303.38, + "end": 31305.62, + "probability": 0.853 + }, + { + "start": 31306.08, + "end": 31308.18, + "probability": 0.9764 + }, + { + "start": 31308.38, + "end": 31309.74, + "probability": 0.8789 + }, + { + "start": 31310.26, + "end": 31310.84, + "probability": 0.7986 + }, + { + "start": 31311.98, + "end": 31316.52, + "probability": 0.9937 + }, + { + "start": 31316.52, + "end": 31321.02, + "probability": 0.8466 + }, + { + "start": 31321.46, + "end": 31323.44, + "probability": 0.9941 + }, + { + "start": 31323.96, + "end": 31327.9, + "probability": 0.9844 + }, + { + "start": 31328.42, + "end": 31332.92, + "probability": 0.9535 + }, + { + "start": 31333.46, + "end": 31334.74, + "probability": 0.9376 + }, + { + "start": 31335.3, + "end": 31338.74, + "probability": 0.7586 + }, + { + "start": 31338.74, + "end": 31342.1, + "probability": 0.9884 + }, + { + "start": 31342.66, + "end": 31346.16, + "probability": 0.991 + }, + { + "start": 31346.86, + "end": 31350.68, + "probability": 0.69 + }, + { + "start": 31351.16, + "end": 31354.0, + "probability": 0.861 + }, + { + "start": 31354.42, + "end": 31361.06, + "probability": 0.9844 + }, + { + "start": 31361.76, + "end": 31364.3, + "probability": 0.994 + }, + { + "start": 31364.68, + "end": 31365.36, + "probability": 0.7757 + }, + { + "start": 31365.42, + "end": 31366.78, + "probability": 0.9859 + }, + { + "start": 31367.14, + "end": 31369.02, + "probability": 0.803 + }, + { + "start": 31369.48, + "end": 31371.68, + "probability": 0.9959 + }, + { + "start": 31372.62, + "end": 31376.52, + "probability": 0.9946 + }, + { + "start": 31377.08, + "end": 31379.52, + "probability": 0.9733 + }, + { + "start": 31380.0, + "end": 31382.32, + "probability": 0.9689 + }, + { + "start": 31382.8, + "end": 31383.7, + "probability": 0.8599 + }, + { + "start": 31384.36, + "end": 31386.62, + "probability": 0.9888 + }, + { + "start": 31386.8, + "end": 31387.54, + "probability": 0.4717 + }, + { + "start": 31387.68, + "end": 31388.62, + "probability": 0.6953 + }, + { + "start": 31389.24, + "end": 31393.46, + "probability": 0.9944 + }, + { + "start": 31394.66, + "end": 31396.56, + "probability": 0.9849 + }, + { + "start": 31396.7, + "end": 31400.76, + "probability": 0.9959 + }, + { + "start": 31400.76, + "end": 31403.9, + "probability": 0.9993 + }, + { + "start": 31404.48, + "end": 31404.7, + "probability": 0.6792 + }, + { + "start": 31405.28, + "end": 31407.3, + "probability": 0.9552 + }, + { + "start": 31407.32, + "end": 31408.72, + "probability": 0.8234 + }, + { + "start": 31409.32, + "end": 31413.48, + "probability": 0.8516 + }, + { + "start": 31413.54, + "end": 31417.5, + "probability": 0.9902 + }, + { + "start": 31417.92, + "end": 31419.28, + "probability": 0.6878 + }, + { + "start": 31419.38, + "end": 31421.72, + "probability": 0.9312 + }, + { + "start": 31429.1, + "end": 31430.42, + "probability": 0.6386 + }, + { + "start": 31430.44, + "end": 31431.36, + "probability": 0.4062 + }, + { + "start": 31431.46, + "end": 31432.46, + "probability": 0.8558 + }, + { + "start": 31432.56, + "end": 31435.04, + "probability": 0.9316 + }, + { + "start": 31435.32, + "end": 31437.78, + "probability": 0.967 + }, + { + "start": 31437.82, + "end": 31439.48, + "probability": 0.7331 + }, + { + "start": 31440.62, + "end": 31442.54, + "probability": 0.9546 + }, + { + "start": 31443.02, + "end": 31444.18, + "probability": 0.9371 + }, + { + "start": 31444.74, + "end": 31448.1, + "probability": 0.9167 + }, + { + "start": 31448.92, + "end": 31451.12, + "probability": 0.9795 + }, + { + "start": 31451.26, + "end": 31452.88, + "probability": 0.9941 + }, + { + "start": 31453.72, + "end": 31456.6, + "probability": 0.8784 + }, + { + "start": 31457.26, + "end": 31463.36, + "probability": 0.979 + }, + { + "start": 31464.04, + "end": 31466.26, + "probability": 0.9098 + }, + { + "start": 31466.36, + "end": 31467.8, + "probability": 0.9557 + }, + { + "start": 31468.22, + "end": 31472.98, + "probability": 0.9962 + }, + { + "start": 31474.0, + "end": 31475.6, + "probability": 0.7494 + }, + { + "start": 31476.42, + "end": 31483.18, + "probability": 0.9445 + }, + { + "start": 31483.72, + "end": 31484.62, + "probability": 0.802 + }, + { + "start": 31484.82, + "end": 31492.77, + "probability": 0.9824 + }, + { + "start": 31492.96, + "end": 31498.36, + "probability": 0.9983 + }, + { + "start": 31499.08, + "end": 31499.26, + "probability": 0.7654 + }, + { + "start": 31499.4, + "end": 31502.1, + "probability": 0.9846 + }, + { + "start": 31504.57, + "end": 31505.3, + "probability": 0.0497 + }, + { + "start": 31505.3, + "end": 31508.2, + "probability": 0.8486 + }, + { + "start": 31508.74, + "end": 31509.96, + "probability": 0.9722 + }, + { + "start": 31510.08, + "end": 31514.52, + "probability": 0.9308 + }, + { + "start": 31514.94, + "end": 31518.62, + "probability": 0.9907 + }, + { + "start": 31520.0, + "end": 31521.46, + "probability": 0.6553 + }, + { + "start": 31521.9, + "end": 31523.85, + "probability": 0.9883 + }, + { + "start": 31524.9, + "end": 31528.16, + "probability": 0.6448 + }, + { + "start": 31528.64, + "end": 31530.43, + "probability": 0.7593 + }, + { + "start": 31531.34, + "end": 31534.64, + "probability": 0.9971 + }, + { + "start": 31535.26, + "end": 31535.58, + "probability": 0.5548 + }, + { + "start": 31535.74, + "end": 31537.12, + "probability": 0.9548 + }, + { + "start": 31537.2, + "end": 31538.52, + "probability": 0.8691 + }, + { + "start": 31538.62, + "end": 31539.04, + "probability": 0.4176 + }, + { + "start": 31539.72, + "end": 31541.0, + "probability": 0.9932 + }, + { + "start": 31541.18, + "end": 31542.56, + "probability": 0.4791 + }, + { + "start": 31542.66, + "end": 31543.14, + "probability": 0.7527 + }, + { + "start": 31544.3, + "end": 31544.8, + "probability": 0.6896 + }, + { + "start": 31544.88, + "end": 31546.24, + "probability": 0.8367 + }, + { + "start": 31546.26, + "end": 31550.02, + "probability": 0.97 + }, + { + "start": 31550.98, + "end": 31551.88, + "probability": 0.8973 + }, + { + "start": 31553.18, + "end": 31553.58, + "probability": 0.6259 + }, + { + "start": 31554.14, + "end": 31554.84, + "probability": 0.0048 + }, + { + "start": 31555.56, + "end": 31556.18, + "probability": 0.0002 + }, + { + "start": 31568.32, + "end": 31568.52, + "probability": 0.0252 + }, + { + "start": 31568.52, + "end": 31569.88, + "probability": 0.6701 + }, + { + "start": 31570.0, + "end": 31572.22, + "probability": 0.2387 + }, + { + "start": 31572.32, + "end": 31573.52, + "probability": 0.4089 + }, + { + "start": 31574.2, + "end": 31575.44, + "probability": 0.9636 + }, + { + "start": 31575.54, + "end": 31577.6, + "probability": 0.9747 + }, + { + "start": 31577.7, + "end": 31580.1, + "probability": 0.7155 + }, + { + "start": 31595.77, + "end": 31597.8, + "probability": 0.1326 + }, + { + "start": 31598.34, + "end": 31599.44, + "probability": 0.4525 + }, + { + "start": 31602.24, + "end": 31602.38, + "probability": 0.0947 + }, + { + "start": 31602.38, + "end": 31602.38, + "probability": 0.2357 + }, + { + "start": 31602.92, + "end": 31606.76, + "probability": 0.6719 + }, + { + "start": 31608.06, + "end": 31610.98, + "probability": 0.7637 + }, + { + "start": 31611.94, + "end": 31612.14, + "probability": 0.3009 + }, + { + "start": 31614.84, + "end": 31616.48, + "probability": 0.6672 + }, + { + "start": 31617.52, + "end": 31618.57, + "probability": 0.4991 + }, + { + "start": 31621.44, + "end": 31621.68, + "probability": 0.0238 + }, + { + "start": 31622.74, + "end": 31628.1, + "probability": 0.4402 + }, + { + "start": 31652.67, + "end": 31653.19, + "probability": 0.0487 + }, + { + "start": 31653.19, + "end": 31654.69, + "probability": 0.0915 + }, + { + "start": 31654.81, + "end": 31655.11, + "probability": 0.0989 + }, + { + "start": 31655.11, + "end": 31660.01, + "probability": 0.0857 + }, + { + "start": 31663.33, + "end": 31667.79, + "probability": 0.2311 + }, + { + "start": 31667.79, + "end": 31669.83, + "probability": 0.4541 + }, + { + "start": 31669.87, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31701.0, + "end": 31701.0, + "probability": 0.0 + }, + { + "start": 31703.18, + "end": 31705.1, + "probability": 0.8707 + }, + { + "start": 31705.18, + "end": 31706.86, + "probability": 0.9514 + }, + { + "start": 31707.32, + "end": 31708.66, + "probability": 0.9503 + }, + { + "start": 31708.78, + "end": 31713.04, + "probability": 0.9674 + }, + { + "start": 31713.72, + "end": 31714.16, + "probability": 0.7525 + }, + { + "start": 31715.22, + "end": 31718.86, + "probability": 0.9945 + }, + { + "start": 31719.02, + "end": 31722.34, + "probability": 0.7722 + }, + { + "start": 31722.9, + "end": 31725.72, + "probability": 0.6428 + }, + { + "start": 31726.68, + "end": 31731.04, + "probability": 0.7382 + }, + { + "start": 31731.62, + "end": 31734.64, + "probability": 0.8695 + }, + { + "start": 31734.64, + "end": 31739.44, + "probability": 0.9513 + }, + { + "start": 31740.4, + "end": 31740.4, + "probability": 0.1675 + }, + { + "start": 31740.4, + "end": 31742.2, + "probability": 0.7143 + }, + { + "start": 31742.42, + "end": 31745.24, + "probability": 0.8119 + }, + { + "start": 31746.08, + "end": 31748.18, + "probability": 0.6689 + }, + { + "start": 31748.42, + "end": 31750.74, + "probability": 0.9183 + }, + { + "start": 31750.74, + "end": 31752.46, + "probability": 0.995 + }, + { + "start": 31752.62, + "end": 31758.13, + "probability": 0.7471 + }, + { + "start": 31759.02, + "end": 31760.38, + "probability": 0.7981 + }, + { + "start": 31761.46, + "end": 31763.54, + "probability": 0.7473 + }, + { + "start": 31763.8, + "end": 31766.1, + "probability": 0.9693 + }, + { + "start": 31766.1, + "end": 31767.8, + "probability": 0.8575 + }, + { + "start": 31768.82, + "end": 31772.06, + "probability": 0.981 + }, + { + "start": 31772.06, + "end": 31775.66, + "probability": 0.9544 + }, + { + "start": 31775.76, + "end": 31778.16, + "probability": 0.9166 + }, + { + "start": 31778.2, + "end": 31780.32, + "probability": 0.7812 + }, + { + "start": 31781.06, + "end": 31786.02, + "probability": 0.964 + }, + { + "start": 31786.12, + "end": 31786.38, + "probability": 0.9381 + }, + { + "start": 31786.5, + "end": 31787.94, + "probability": 0.8386 + }, + { + "start": 31788.2, + "end": 31789.72, + "probability": 0.9774 + }, + { + "start": 31789.74, + "end": 31792.78, + "probability": 0.9364 + }, + { + "start": 31792.92, + "end": 31794.72, + "probability": 0.8197 + }, + { + "start": 31795.2, + "end": 31797.6, + "probability": 0.939 + }, + { + "start": 31797.6, + "end": 31799.72, + "probability": 0.9292 + }, + { + "start": 31800.56, + "end": 31801.7, + "probability": 0.6696 + }, + { + "start": 31803.42, + "end": 31807.66, + "probability": 0.8675 + }, + { + "start": 31808.36, + "end": 31808.7, + "probability": 0.6268 + }, + { + "start": 31808.8, + "end": 31813.82, + "probability": 0.7626 + }, + { + "start": 31814.9, + "end": 31815.82, + "probability": 0.6376 + }, + { + "start": 31816.0, + "end": 31817.82, + "probability": 0.6474 + }, + { + "start": 31817.9, + "end": 31819.24, + "probability": 0.6707 + }, + { + "start": 31819.38, + "end": 31820.94, + "probability": 0.806 + }, + { + "start": 31821.26, + "end": 31822.6, + "probability": 0.438 + }, + { + "start": 31822.88, + "end": 31824.94, + "probability": 0.8338 + }, + { + "start": 31824.94, + "end": 31825.92, + "probability": 0.9087 + }, + { + "start": 31826.6, + "end": 31827.2, + "probability": 0.6345 + }, + { + "start": 31827.38, + "end": 31828.41, + "probability": 0.6171 + }, + { + "start": 31829.28, + "end": 31830.56, + "probability": 0.9771 + }, + { + "start": 31830.6, + "end": 31831.74, + "probability": 0.7686 + }, + { + "start": 31831.86, + "end": 31832.38, + "probability": 0.7283 + }, + { + "start": 31833.84, + "end": 31835.08, + "probability": 0.7907 + }, + { + "start": 31835.68, + "end": 31838.54, + "probability": 0.7562 + }, + { + "start": 31839.1, + "end": 31842.86, + "probability": 0.8749 + }, + { + "start": 31843.58, + "end": 31846.54, + "probability": 0.7209 + }, + { + "start": 31846.64, + "end": 31847.68, + "probability": 0.675 + }, + { + "start": 31848.06, + "end": 31848.58, + "probability": 0.7419 + }, + { + "start": 31849.46, + "end": 31850.2, + "probability": 0.9822 + }, + { + "start": 31850.94, + "end": 31853.58, + "probability": 0.2665 + }, + { + "start": 31854.34, + "end": 31855.1, + "probability": 0.6351 + }, + { + "start": 31855.34, + "end": 31859.34, + "probability": 0.4876 + }, + { + "start": 31859.66, + "end": 31860.22, + "probability": 0.3901 + }, + { + "start": 31860.36, + "end": 31860.78, + "probability": 0.9424 + }, + { + "start": 31862.02, + "end": 31862.18, + "probability": 0.0746 + }, + { + "start": 31862.22, + "end": 31862.44, + "probability": 0.4674 + }, + { + "start": 31862.52, + "end": 31863.18, + "probability": 0.818 + }, + { + "start": 31863.28, + "end": 31865.2, + "probability": 0.6857 + }, + { + "start": 31865.36, + "end": 31867.56, + "probability": 0.4758 + }, + { + "start": 31867.71, + "end": 31867.78, + "probability": 0.6161 + }, + { + "start": 31867.84, + "end": 31868.24, + "probability": 0.3714 + }, + { + "start": 31868.4, + "end": 31869.3, + "probability": 0.8372 + }, + { + "start": 31869.46, + "end": 31870.0, + "probability": 0.9744 + }, + { + "start": 31870.16, + "end": 31872.22, + "probability": 0.8552 + }, + { + "start": 31872.38, + "end": 31875.34, + "probability": 0.9829 + }, + { + "start": 31876.06, + "end": 31878.38, + "probability": 0.6788 + }, + { + "start": 31878.68, + "end": 31880.86, + "probability": 0.7521 + }, + { + "start": 31881.48, + "end": 31885.32, + "probability": 0.9541 + }, + { + "start": 31885.62, + "end": 31886.86, + "probability": 0.994 + }, + { + "start": 31886.94, + "end": 31888.04, + "probability": 0.9471 + }, + { + "start": 31888.62, + "end": 31891.84, + "probability": 0.9517 + }, + { + "start": 31892.68, + "end": 31893.16, + "probability": 0.3995 + }, + { + "start": 31893.7, + "end": 31895.98, + "probability": 0.8759 + }, + { + "start": 31896.06, + "end": 31897.06, + "probability": 0.9817 + }, + { + "start": 31897.08, + "end": 31900.12, + "probability": 0.941 + }, + { + "start": 31900.2, + "end": 31901.34, + "probability": 0.957 + }, + { + "start": 31901.44, + "end": 31903.92, + "probability": 0.7521 + }, + { + "start": 31904.52, + "end": 31905.72, + "probability": 0.9782 + }, + { + "start": 31906.4, + "end": 31908.6, + "probability": 0.8436 + }, + { + "start": 31909.2, + "end": 31910.56, + "probability": 0.9471 + }, + { + "start": 31911.1, + "end": 31913.38, + "probability": 0.8271 + }, + { + "start": 31914.28, + "end": 31915.6, + "probability": 0.9414 + }, + { + "start": 31916.06, + "end": 31916.22, + "probability": 0.7787 + }, + { + "start": 31917.2, + "end": 31918.5, + "probability": 0.8642 + }, + { + "start": 31918.56, + "end": 31919.22, + "probability": 0.7411 + }, + { + "start": 31919.3, + "end": 31919.64, + "probability": 0.8563 + }, + { + "start": 31919.9, + "end": 31920.38, + "probability": 0.8244 + }, + { + "start": 31920.44, + "end": 31920.78, + "probability": 0.9376 + }, + { + "start": 31921.2, + "end": 31922.33, + "probability": 0.9117 + }, + { + "start": 31922.54, + "end": 31924.06, + "probability": 0.9982 + }, + { + "start": 31924.24, + "end": 31925.0, + "probability": 0.9495 + }, + { + "start": 31925.36, + "end": 31925.7, + "probability": 0.7777 + }, + { + "start": 31925.72, + "end": 31927.74, + "probability": 0.9328 + }, + { + "start": 31927.84, + "end": 31928.38, + "probability": 0.8358 + }, + { + "start": 31928.46, + "end": 31928.56, + "probability": 0.3852 + }, + { + "start": 31928.6, + "end": 31929.82, + "probability": 0.948 + }, + { + "start": 31929.98, + "end": 31930.4, + "probability": 0.7425 + }, + { + "start": 31930.58, + "end": 31931.94, + "probability": 0.8582 + }, + { + "start": 31932.06, + "end": 31932.18, + "probability": 0.5692 + }, + { + "start": 31932.18, + "end": 31933.52, + "probability": 0.8918 + }, + { + "start": 31933.62, + "end": 31934.16, + "probability": 0.6687 + }, + { + "start": 31934.5, + "end": 31936.44, + "probability": 0.7131 + }, + { + "start": 31936.68, + "end": 31937.23, + "probability": 0.7441 + }, + { + "start": 31938.02, + "end": 31939.06, + "probability": 0.8119 + }, + { + "start": 31941.02, + "end": 31941.42, + "probability": 0.8467 + }, + { + "start": 31941.5, + "end": 31946.86, + "probability": 0.8222 + }, + { + "start": 31947.1, + "end": 31947.92, + "probability": 0.6215 + }, + { + "start": 31948.48, + "end": 31949.82, + "probability": 0.9529 + }, + { + "start": 31950.72, + "end": 31952.92, + "probability": 0.6612 + }, + { + "start": 31954.22, + "end": 31954.48, + "probability": 0.2048 + }, + { + "start": 31954.48, + "end": 31954.48, + "probability": 0.0506 + }, + { + "start": 31954.48, + "end": 31954.58, + "probability": 0.5345 + }, + { + "start": 31954.6, + "end": 31955.36, + "probability": 0.4836 + }, + { + "start": 31955.4, + "end": 31955.92, + "probability": 0.9185 + }, + { + "start": 31956.02, + "end": 31957.79, + "probability": 0.932 + }, + { + "start": 31957.9, + "end": 31958.72, + "probability": 0.8098 + }, + { + "start": 31958.84, + "end": 31960.48, + "probability": 0.8599 + }, + { + "start": 31960.64, + "end": 31961.4, + "probability": 0.5287 + }, + { + "start": 31961.92, + "end": 31963.72, + "probability": 0.7367 + }, + { + "start": 31964.44, + "end": 31965.7, + "probability": 0.9858 + }, + { + "start": 31965.78, + "end": 31966.64, + "probability": 0.4286 + }, + { + "start": 31966.66, + "end": 31968.44, + "probability": 0.9448 + }, + { + "start": 31968.7, + "end": 31969.2, + "probability": 0.6636 + }, + { + "start": 31969.34, + "end": 31974.22, + "probability": 0.8269 + }, + { + "start": 31975.1, + "end": 31976.84, + "probability": 0.8455 + }, + { + "start": 31977.72, + "end": 31980.0, + "probability": 0.9456 + }, + { + "start": 31980.02, + "end": 31981.08, + "probability": 0.8196 + }, + { + "start": 31981.12, + "end": 31982.08, + "probability": 0.9746 + }, + { + "start": 31982.2, + "end": 31984.13, + "probability": 0.9099 + }, + { + "start": 31984.3, + "end": 31985.0, + "probability": 0.8748 + }, + { + "start": 31985.42, + "end": 31986.54, + "probability": 0.7921 + }, + { + "start": 31986.66, + "end": 31988.26, + "probability": 0.765 + }, + { + "start": 31988.52, + "end": 31992.86, + "probability": 0.7615 + }, + { + "start": 31993.36, + "end": 31995.96, + "probability": 0.8631 + }, + { + "start": 31996.04, + "end": 31996.8, + "probability": 0.9507 + }, + { + "start": 31997.06, + "end": 31998.06, + "probability": 0.6976 + }, + { + "start": 32001.72, + "end": 32001.96, + "probability": 0.4007 + }, + { + "start": 32002.1, + "end": 32002.68, + "probability": 0.6964 + }, + { + "start": 32002.74, + "end": 32003.94, + "probability": 0.7123 + }, + { + "start": 32003.98, + "end": 32004.48, + "probability": 0.3904 + }, + { + "start": 32004.52, + "end": 32004.94, + "probability": 0.7426 + }, + { + "start": 32005.0, + "end": 32005.48, + "probability": 0.6904 + }, + { + "start": 32005.48, + "end": 32005.74, + "probability": 0.1238 + }, + { + "start": 32006.84, + "end": 32008.71, + "probability": 0.8405 + }, + { + "start": 32009.0, + "end": 32010.24, + "probability": 0.5134 + }, + { + "start": 32010.8, + "end": 32012.58, + "probability": 0.2972 + }, + { + "start": 32012.72, + "end": 32013.7, + "probability": 0.6608 + }, + { + "start": 32013.8, + "end": 32015.06, + "probability": 0.6158 + }, + { + "start": 32015.26, + "end": 32016.96, + "probability": 0.917 + }, + { + "start": 32016.98, + "end": 32017.53, + "probability": 0.9028 + }, + { + "start": 32017.76, + "end": 32018.26, + "probability": 0.7378 + }, + { + "start": 32019.3, + "end": 32022.96, + "probability": 0.8994 + }, + { + "start": 32023.06, + "end": 32027.16, + "probability": 0.6484 + }, + { + "start": 32027.52, + "end": 32028.64, + "probability": 0.8873 + }, + { + "start": 32028.74, + "end": 32030.7, + "probability": 0.6395 + }, + { + "start": 32031.02, + "end": 32031.76, + "probability": 0.6382 + }, + { + "start": 32032.34, + "end": 32033.58, + "probability": 0.4988 + }, + { + "start": 32033.88, + "end": 32034.8, + "probability": 0.533 + }, + { + "start": 32034.92, + "end": 32036.36, + "probability": 0.6958 + }, + { + "start": 32036.4, + "end": 32038.38, + "probability": 0.9065 + }, + { + "start": 32038.42, + "end": 32039.32, + "probability": 0.9863 + }, + { + "start": 32039.4, + "end": 32041.18, + "probability": 0.7465 + }, + { + "start": 32041.9, + "end": 32042.8, + "probability": 0.8358 + }, + { + "start": 32043.44, + "end": 32044.72, + "probability": 0.9027 + }, + { + "start": 32044.8, + "end": 32047.48, + "probability": 0.992 + }, + { + "start": 32047.62, + "end": 32047.9, + "probability": 0.459 + }, + { + "start": 32047.92, + "end": 32048.56, + "probability": 0.6772 + }, + { + "start": 32048.74, + "end": 32049.8, + "probability": 0.9507 + }, + { + "start": 32049.88, + "end": 32050.32, + "probability": 0.7166 + }, + { + "start": 32050.82, + "end": 32056.4, + "probability": 0.9691 + }, + { + "start": 32056.5, + "end": 32057.38, + "probability": 0.9985 + }, + { + "start": 32057.98, + "end": 32058.5, + "probability": 0.5202 + }, + { + "start": 32058.58, + "end": 32062.08, + "probability": 0.9755 + }, + { + "start": 32062.1, + "end": 32063.1, + "probability": 0.7856 + }, + { + "start": 32063.42, + "end": 32064.46, + "probability": 0.9648 + }, + { + "start": 32064.92, + "end": 32069.08, + "probability": 0.9603 + }, + { + "start": 32069.56, + "end": 32070.82, + "probability": 0.6458 + }, + { + "start": 32070.98, + "end": 32071.6, + "probability": 0.7381 + }, + { + "start": 32071.94, + "end": 32073.17, + "probability": 0.932 + }, + { + "start": 32073.58, + "end": 32075.32, + "probability": 0.7135 + }, + { + "start": 32075.42, + "end": 32077.86, + "probability": 0.9811 + }, + { + "start": 32077.9, + "end": 32078.72, + "probability": 0.3551 + }, + { + "start": 32079.02, + "end": 32079.02, + "probability": 0.0942 + }, + { + "start": 32079.12, + "end": 32079.14, + "probability": 0.3929 + }, + { + "start": 32079.14, + "end": 32083.56, + "probability": 0.5862 + }, + { + "start": 32083.83, + "end": 32086.08, + "probability": 0.515 + }, + { + "start": 32086.22, + "end": 32090.16, + "probability": 0.7573 + }, + { + "start": 32091.2, + "end": 32091.46, + "probability": 0.3065 + }, + { + "start": 32091.94, + "end": 32093.04, + "probability": 0.2014 + }, + { + "start": 32093.18, + "end": 32093.44, + "probability": 0.865 + }, + { + "start": 32093.54, + "end": 32096.74, + "probability": 0.5308 + }, + { + "start": 32096.74, + "end": 32097.44, + "probability": 0.5401 + }, + { + "start": 32097.98, + "end": 32098.38, + "probability": 0.0112 + }, + { + "start": 32098.38, + "end": 32099.17, + "probability": 0.6575 + }, + { + "start": 32099.98, + "end": 32100.48, + "probability": 0.0306 + }, + { + "start": 32100.48, + "end": 32101.24, + "probability": 0.4765 + }, + { + "start": 32101.76, + "end": 32103.66, + "probability": 0.7098 + }, + { + "start": 32105.18, + "end": 32105.46, + "probability": 0.3802 + }, + { + "start": 32105.54, + "end": 32106.38, + "probability": 0.7869 + }, + { + "start": 32106.45, + "end": 32110.22, + "probability": 0.8605 + }, + { + "start": 32110.84, + "end": 32112.81, + "probability": 0.7455 + }, + { + "start": 32113.76, + "end": 32116.02, + "probability": 0.9531 + }, + { + "start": 32116.86, + "end": 32118.74, + "probability": 0.0161 + }, + { + "start": 32119.54, + "end": 32121.76, + "probability": 0.9863 + }, + { + "start": 32123.14, + "end": 32124.84, + "probability": 0.33 + }, + { + "start": 32125.72, + "end": 32126.6, + "probability": 0.0537 + }, + { + "start": 32126.6, + "end": 32126.6, + "probability": 0.0184 + }, + { + "start": 32126.6, + "end": 32127.1, + "probability": 0.4009 + }, + { + "start": 32127.1, + "end": 32129.28, + "probability": 0.5388 + }, + { + "start": 32129.44, + "end": 32130.58, + "probability": 0.705 + }, + { + "start": 32130.6, + "end": 32131.62, + "probability": 0.6183 + }, + { + "start": 32131.72, + "end": 32132.08, + "probability": 0.3179 + }, + { + "start": 32133.19, + "end": 32134.68, + "probability": 0.4276 + }, + { + "start": 32134.7, + "end": 32136.28, + "probability": 0.7467 + }, + { + "start": 32136.76, + "end": 32138.26, + "probability": 0.6561 + }, + { + "start": 32138.58, + "end": 32140.2, + "probability": 0.9054 + }, + { + "start": 32140.26, + "end": 32141.24, + "probability": 0.9109 + }, + { + "start": 32141.28, + "end": 32142.72, + "probability": 0.903 + }, + { + "start": 32143.12, + "end": 32144.36, + "probability": 0.7772 + }, + { + "start": 32145.3, + "end": 32147.82, + "probability": 0.9521 + }, + { + "start": 32148.98, + "end": 32152.88, + "probability": 0.8097 + }, + { + "start": 32153.18, + "end": 32155.5, + "probability": 0.7785 + }, + { + "start": 32155.54, + "end": 32156.36, + "probability": 0.906 + }, + { + "start": 32157.26, + "end": 32158.16, + "probability": 0.8121 + }, + { + "start": 32158.88, + "end": 32163.64, + "probability": 0.9785 + }, + { + "start": 32164.58, + "end": 32165.78, + "probability": 0.8944 + }, + { + "start": 32165.8, + "end": 32168.84, + "probability": 0.8389 + }, + { + "start": 32169.24, + "end": 32171.56, + "probability": 0.6897 + }, + { + "start": 32171.64, + "end": 32172.38, + "probability": 0.8997 + }, + { + "start": 32172.7, + "end": 32175.12, + "probability": 0.9607 + }, + { + "start": 32175.6, + "end": 32176.76, + "probability": 0.9817 + }, + { + "start": 32177.48, + "end": 32180.72, + "probability": 0.9585 + }, + { + "start": 32181.24, + "end": 32183.12, + "probability": 0.8518 + }, + { + "start": 32183.12, + "end": 32186.12, + "probability": 0.9951 + }, + { + "start": 32186.58, + "end": 32187.98, + "probability": 0.9215 + }, + { + "start": 32188.54, + "end": 32190.16, + "probability": 0.9854 + }, + { + "start": 32190.36, + "end": 32191.46, + "probability": 0.5197 + }, + { + "start": 32192.0, + "end": 32193.54, + "probability": 0.7334 + }, + { + "start": 32193.94, + "end": 32198.18, + "probability": 0.8323 + }, + { + "start": 32198.3, + "end": 32199.92, + "probability": 0.8853 + }, + { + "start": 32199.98, + "end": 32202.98, + "probability": 0.895 + }, + { + "start": 32203.62, + "end": 32204.6, + "probability": 0.8676 + }, + { + "start": 32205.72, + "end": 32207.06, + "probability": 0.7785 + }, + { + "start": 32207.72, + "end": 32211.24, + "probability": 0.9905 + }, + { + "start": 32211.92, + "end": 32215.14, + "probability": 0.9758 + }, + { + "start": 32215.2, + "end": 32218.76, + "probability": 0.9989 + }, + { + "start": 32219.3, + "end": 32220.2, + "probability": 0.9406 + }, + { + "start": 32220.54, + "end": 32221.6, + "probability": 0.8843 + }, + { + "start": 32221.82, + "end": 32222.24, + "probability": 0.721 + }, + { + "start": 32222.7, + "end": 32223.84, + "probability": 0.9743 + }, + { + "start": 32224.34, + "end": 32228.06, + "probability": 0.7162 + }, + { + "start": 32228.32, + "end": 32232.56, + "probability": 0.6209 + }, + { + "start": 32232.62, + "end": 32234.44, + "probability": 0.4998 + }, + { + "start": 32234.84, + "end": 32235.7, + "probability": 0.9106 + }, + { + "start": 32236.24, + "end": 32237.06, + "probability": 0.7786 + }, + { + "start": 32237.08, + "end": 32239.4, + "probability": 0.9802 + }, + { + "start": 32239.7, + "end": 32240.12, + "probability": 0.5857 + }, + { + "start": 32240.2, + "end": 32240.52, + "probability": 0.7796 + }, + { + "start": 32240.72, + "end": 32243.52, + "probability": 0.9849 + }, + { + "start": 32243.88, + "end": 32245.1, + "probability": 0.9564 + }, + { + "start": 32245.33, + "end": 32247.84, + "probability": 0.9613 + }, + { + "start": 32248.2, + "end": 32249.38, + "probability": 0.7284 + }, + { + "start": 32249.56, + "end": 32249.82, + "probability": 0.708 + }, + { + "start": 32250.7, + "end": 32251.1, + "probability": 0.5967 + }, + { + "start": 32251.14, + "end": 32252.66, + "probability": 0.7495 + }, + { + "start": 32252.78, + "end": 32254.47, + "probability": 0.8024 + }, + { + "start": 32255.6, + "end": 32256.72, + "probability": 0.5966 + }, + { + "start": 32257.06, + "end": 32257.78, + "probability": 0.8927 + }, + { + "start": 32257.8, + "end": 32258.16, + "probability": 0.3015 + }, + { + "start": 32259.32, + "end": 32261.58, + "probability": 0.9908 + }, + { + "start": 32261.6, + "end": 32263.08, + "probability": 0.9562 + }, + { + "start": 32263.2, + "end": 32264.64, + "probability": 0.7688 + }, + { + "start": 32264.64, + "end": 32265.36, + "probability": 0.007 + }, + { + "start": 32266.24, + "end": 32268.62, + "probability": 0.8414 + }, + { + "start": 32268.8, + "end": 32270.92, + "probability": 0.8481 + }, + { + "start": 32271.0, + "end": 32271.92, + "probability": 0.8821 + }, + { + "start": 32272.5, + "end": 32273.72, + "probability": 0.7156 + }, + { + "start": 32273.72, + "end": 32274.76, + "probability": 0.3139 + }, + { + "start": 32275.45, + "end": 32276.22, + "probability": 0.0086 + }, + { + "start": 32276.22, + "end": 32277.96, + "probability": 0.5087 + }, + { + "start": 32279.68, + "end": 32282.32, + "probability": 0.5941 + }, + { + "start": 32282.68, + "end": 32283.76, + "probability": 0.1037 + }, + { + "start": 32283.94, + "end": 32285.66, + "probability": 0.5227 + }, + { + "start": 32285.68, + "end": 32287.52, + "probability": 0.6764 + }, + { + "start": 32287.62, + "end": 32290.78, + "probability": 0.6181 + }, + { + "start": 32291.02, + "end": 32291.56, + "probability": 0.4814 + }, + { + "start": 32305.18, + "end": 32305.92, + "probability": 0.3052 + }, + { + "start": 32306.44, + "end": 32307.77, + "probability": 0.0035 + }, + { + "start": 32307.92, + "end": 32309.2, + "probability": 0.2891 + }, + { + "start": 32309.34, + "end": 32311.26, + "probability": 0.9819 + }, + { + "start": 32311.32, + "end": 32314.0, + "probability": 0.93 + }, + { + "start": 32314.06, + "end": 32316.36, + "probability": 0.7662 + }, + { + "start": 32318.66, + "end": 32320.94, + "probability": 0.008 + }, + { + "start": 32332.46, + "end": 32334.9, + "probability": 0.5141 + }, + { + "start": 32334.9, + "end": 32338.14, + "probability": 0.6035 + }, + { + "start": 32338.66, + "end": 32341.24, + "probability": 0.4651 + }, + { + "start": 32343.58, + "end": 32343.82, + "probability": 0.1686 + }, + { + "start": 32344.52, + "end": 32344.54, + "probability": 0.2802 + }, + { + "start": 32344.54, + "end": 32347.52, + "probability": 0.7823 + }, + { + "start": 32347.77, + "end": 32348.82, + "probability": 0.0387 + }, + { + "start": 32348.82, + "end": 32349.16, + "probability": 0.4968 + }, + { + "start": 32350.96, + "end": 32353.14, + "probability": 0.0811 + }, + { + "start": 32354.24, + "end": 32354.54, + "probability": 0.0358 + }, + { + "start": 32355.64, + "end": 32356.26, + "probability": 0.1344 + }, + { + "start": 32356.5, + "end": 32357.15, + "probability": 0.0322 + }, + { + "start": 32357.96, + "end": 32358.48, + "probability": 0.2383 + }, + { + "start": 32358.48, + "end": 32358.92, + "probability": 0.0896 + }, + { + "start": 32359.24, + "end": 32362.14, + "probability": 0.9353 + }, + { + "start": 32362.6, + "end": 32365.12, + "probability": 0.8818 + }, + { + "start": 32373.1, + "end": 32374.86, + "probability": 0.766 + }, + { + "start": 32375.42, + "end": 32376.64, + "probability": 0.8641 + }, + { + "start": 32377.12, + "end": 32380.98, + "probability": 0.7272 + }, + { + "start": 32381.02, + "end": 32382.52, + "probability": 0.4759 + }, + { + "start": 32382.64, + "end": 32383.64, + "probability": 0.6901 + }, + { + "start": 32383.78, + "end": 32386.6, + "probability": 0.9854 + }, + { + "start": 32386.86, + "end": 32388.56, + "probability": 0.7214 + }, + { + "start": 32388.66, + "end": 32390.46, + "probability": 0.9974 + }, + { + "start": 32390.48, + "end": 32393.34, + "probability": 0.5205 + }, + { + "start": 32393.34, + "end": 32395.04, + "probability": 0.1637 + }, + { + "start": 32402.39, + "end": 32404.21, + "probability": 0.0769 + }, + { + "start": 32406.6, + "end": 32406.6, + "probability": 0.009 + }, + { + "start": 32406.6, + "end": 32406.6, + "probability": 0.1008 + }, + { + "start": 32406.6, + "end": 32406.6, + "probability": 0.0597 + }, + { + "start": 32406.6, + "end": 32408.34, + "probability": 0.7021 + }, + { + "start": 32409.0, + "end": 32410.22, + "probability": 0.5031 + }, + { + "start": 32410.44, + "end": 32415.18, + "probability": 0.9565 + }, + { + "start": 32416.34, + "end": 32420.04, + "probability": 0.8872 + }, + { + "start": 32420.58, + "end": 32422.5, + "probability": 0.8837 + }, + { + "start": 32422.5, + "end": 32424.76, + "probability": 0.9863 + }, + { + "start": 32424.86, + "end": 32427.94, + "probability": 0.9922 + }, + { + "start": 32428.42, + "end": 32431.76, + "probability": 0.9516 + }, + { + "start": 32432.2, + "end": 32434.1, + "probability": 0.9902 + }, + { + "start": 32434.24, + "end": 32436.2, + "probability": 0.725 + }, + { + "start": 32436.28, + "end": 32438.98, + "probability": 0.9883 + }, + { + "start": 32439.38, + "end": 32441.7, + "probability": 0.9665 + }, + { + "start": 32442.04, + "end": 32443.58, + "probability": 0.8951 + }, + { + "start": 32443.94, + "end": 32445.86, + "probability": 0.9807 + }, + { + "start": 32446.9, + "end": 32452.16, + "probability": 0.8463 + }, + { + "start": 32452.28, + "end": 32456.22, + "probability": 0.9852 + }, + { + "start": 32456.22, + "end": 32458.92, + "probability": 0.9844 + }, + { + "start": 32459.6, + "end": 32463.16, + "probability": 0.9808 + }, + { + "start": 32463.16, + "end": 32468.1, + "probability": 0.993 + }, + { + "start": 32468.68, + "end": 32470.92, + "probability": 0.9363 + }, + { + "start": 32471.1, + "end": 32472.22, + "probability": 0.8224 + }, + { + "start": 32472.92, + "end": 32476.58, + "probability": 0.9878 + }, + { + "start": 32477.42, + "end": 32478.22, + "probability": 0.8437 + }, + { + "start": 32478.36, + "end": 32481.08, + "probability": 0.9897 + }, + { + "start": 32481.46, + "end": 32486.28, + "probability": 0.9564 + }, + { + "start": 32487.22, + "end": 32489.26, + "probability": 0.9731 + }, + { + "start": 32489.26, + "end": 32492.14, + "probability": 0.9994 + }, + { + "start": 32492.5, + "end": 32495.2, + "probability": 0.6796 + }, + { + "start": 32495.76, + "end": 32497.16, + "probability": 0.835 + }, + { + "start": 32498.16, + "end": 32500.92, + "probability": 0.9561 + }, + { + "start": 32501.5, + "end": 32502.72, + "probability": 0.9977 + }, + { + "start": 32503.5, + "end": 32507.1, + "probability": 0.9956 + }, + { + "start": 32507.5, + "end": 32508.47, + "probability": 0.7904 + }, + { + "start": 32509.22, + "end": 32511.62, + "probability": 0.9561 + }, + { + "start": 32512.3, + "end": 32516.26, + "probability": 0.9705 + }, + { + "start": 32516.26, + "end": 32519.56, + "probability": 0.9912 + }, + { + "start": 32520.2, + "end": 32523.34, + "probability": 0.9795 + }, + { + "start": 32523.34, + "end": 32526.36, + "probability": 0.9905 + }, + { + "start": 32527.34, + "end": 32530.9, + "probability": 0.9578 + }, + { + "start": 32531.42, + "end": 32532.26, + "probability": 0.7692 + }, + { + "start": 32532.94, + "end": 32537.8, + "probability": 0.9823 + }, + { + "start": 32538.2, + "end": 32540.98, + "probability": 0.8961 + }, + { + "start": 32540.98, + "end": 32542.86, + "probability": 0.9738 + }, + { + "start": 32543.54, + "end": 32545.72, + "probability": 0.7922 + }, + { + "start": 32546.28, + "end": 32548.84, + "probability": 0.9211 + }, + { + "start": 32548.9, + "end": 32549.52, + "probability": 0.6249 + }, + { + "start": 32550.08, + "end": 32553.18, + "probability": 0.9734 + }, + { + "start": 32553.6, + "end": 32556.28, + "probability": 0.9769 + }, + { + "start": 32556.86, + "end": 32559.64, + "probability": 0.7134 + }, + { + "start": 32560.14, + "end": 32562.78, + "probability": 0.9587 + }, + { + "start": 32562.88, + "end": 32564.63, + "probability": 0.9906 + }, + { + "start": 32564.9, + "end": 32565.34, + "probability": 0.8562 + }, + { + "start": 32565.94, + "end": 32568.6, + "probability": 0.978 + }, + { + "start": 32569.26, + "end": 32569.94, + "probability": 0.5713 + }, + { + "start": 32570.04, + "end": 32572.56, + "probability": 0.9699 + }, + { + "start": 32572.56, + "end": 32575.56, + "probability": 0.9738 + }, + { + "start": 32575.94, + "end": 32578.22, + "probability": 0.7482 + }, + { + "start": 32578.9, + "end": 32580.8, + "probability": 0.8154 + }, + { + "start": 32581.3, + "end": 32584.4, + "probability": 0.8579 + }, + { + "start": 32584.56, + "end": 32585.98, + "probability": 0.9964 + }, + { + "start": 32586.58, + "end": 32591.88, + "probability": 0.9884 + }, + { + "start": 32591.92, + "end": 32597.28, + "probability": 0.9749 + }, + { + "start": 32598.04, + "end": 32601.76, + "probability": 0.9756 + }, + { + "start": 32602.38, + "end": 32606.0, + "probability": 0.9966 + }, + { + "start": 32606.82, + "end": 32607.36, + "probability": 0.8708 + }, + { + "start": 32607.98, + "end": 32612.34, + "probability": 0.9974 + }, + { + "start": 32612.34, + "end": 32617.46, + "probability": 0.9821 + }, + { + "start": 32618.26, + "end": 32619.38, + "probability": 0.8143 + }, + { + "start": 32619.96, + "end": 32622.19, + "probability": 0.8195 + }, + { + "start": 32622.36, + "end": 32624.84, + "probability": 0.991 + }, + { + "start": 32625.36, + "end": 32627.64, + "probability": 0.9736 + }, + { + "start": 32628.18, + "end": 32630.98, + "probability": 0.9937 + }, + { + "start": 32631.8, + "end": 32634.92, + "probability": 0.9973 + }, + { + "start": 32634.92, + "end": 32639.28, + "probability": 0.9946 + }, + { + "start": 32640.1, + "end": 32642.36, + "probability": 0.9814 + }, + { + "start": 32642.36, + "end": 32645.8, + "probability": 0.9976 + }, + { + "start": 32646.34, + "end": 32648.04, + "probability": 0.9849 + }, + { + "start": 32648.78, + "end": 32649.14, + "probability": 0.4325 + }, + { + "start": 32649.32, + "end": 32652.26, + "probability": 0.9863 + }, + { + "start": 32652.26, + "end": 32656.64, + "probability": 0.9961 + }, + { + "start": 32656.64, + "end": 32661.1, + "probability": 0.9993 + }, + { + "start": 32661.74, + "end": 32664.54, + "probability": 0.9919 + }, + { + "start": 32665.22, + "end": 32667.08, + "probability": 0.9941 + }, + { + "start": 32667.16, + "end": 32669.5, + "probability": 0.9949 + }, + { + "start": 32669.98, + "end": 32673.0, + "probability": 0.9947 + }, + { + "start": 32673.56, + "end": 32676.24, + "probability": 0.9944 + }, + { + "start": 32677.14, + "end": 32680.72, + "probability": 0.9909 + }, + { + "start": 32680.72, + "end": 32685.22, + "probability": 0.9958 + }, + { + "start": 32686.08, + "end": 32688.54, + "probability": 0.9924 + }, + { + "start": 32689.14, + "end": 32695.0, + "probability": 0.9757 + }, + { + "start": 32695.0, + "end": 32699.56, + "probability": 0.9697 + }, + { + "start": 32699.56, + "end": 32704.34, + "probability": 0.9276 + }, + { + "start": 32704.94, + "end": 32705.64, + "probability": 0.5156 + }, + { + "start": 32706.36, + "end": 32713.44, + "probability": 0.9956 + }, + { + "start": 32713.44, + "end": 32717.2, + "probability": 0.9434 + }, + { + "start": 32717.92, + "end": 32721.16, + "probability": 0.9891 + }, + { + "start": 32721.16, + "end": 32724.9, + "probability": 0.9531 + }, + { + "start": 32727.01, + "end": 32729.2, + "probability": 0.5839 + }, + { + "start": 32729.28, + "end": 32731.82, + "probability": 0.9894 + }, + { + "start": 32731.82, + "end": 32733.84, + "probability": 0.9868 + }, + { + "start": 32734.5, + "end": 32737.66, + "probability": 0.9636 + }, + { + "start": 32738.4, + "end": 32739.8, + "probability": 0.158 + }, + { + "start": 32739.8, + "end": 32742.56, + "probability": 0.9832 + }, + { + "start": 32743.1, + "end": 32746.46, + "probability": 0.9823 + }, + { + "start": 32746.8, + "end": 32747.96, + "probability": 0.9613 + }, + { + "start": 32748.08, + "end": 32749.34, + "probability": 0.9914 + }, + { + "start": 32749.38, + "end": 32750.34, + "probability": 0.9004 + }, + { + "start": 32751.3, + "end": 32753.58, + "probability": 0.6788 + }, + { + "start": 32754.28, + "end": 32757.12, + "probability": 0.9659 + }, + { + "start": 32757.12, + "end": 32759.68, + "probability": 0.9612 + }, + { + "start": 32760.16, + "end": 32760.34, + "probability": 0.7208 + }, + { + "start": 32761.04, + "end": 32761.68, + "probability": 0.6629 + }, + { + "start": 32761.92, + "end": 32761.92, + "probability": 0.4146 + }, + { + "start": 32761.92, + "end": 32763.26, + "probability": 0.219 + }, + { + "start": 32763.46, + "end": 32766.64, + "probability": 0.9723 + }, + { + "start": 32767.88, + "end": 32769.46, + "probability": 0.4063 + }, + { + "start": 32769.78, + "end": 32770.24, + "probability": 0.5873 + }, + { + "start": 32770.32, + "end": 32772.46, + "probability": 0.774 + }, + { + "start": 32778.68, + "end": 32783.38, + "probability": 0.6189 + }, + { + "start": 32783.7, + "end": 32786.56, + "probability": 0.3623 + }, + { + "start": 32787.34, + "end": 32789.9, + "probability": 0.3627 + }, + { + "start": 32790.02, + "end": 32793.58, + "probability": 0.8776 + }, + { + "start": 32794.24, + "end": 32795.62, + "probability": 0.9019 + }, + { + "start": 32797.08, + "end": 32801.02, + "probability": 0.8643 + }, + { + "start": 32802.9, + "end": 32806.3, + "probability": 0.9901 + }, + { + "start": 32807.16, + "end": 32809.7, + "probability": 0.7572 + }, + { + "start": 32810.28, + "end": 32812.06, + "probability": 0.8147 + }, + { + "start": 32812.86, + "end": 32814.28, + "probability": 0.9375 + }, + { + "start": 32814.88, + "end": 32816.74, + "probability": 0.8566 + }, + { + "start": 32817.34, + "end": 32822.6, + "probability": 0.8841 + }, + { + "start": 32822.74, + "end": 32825.74, + "probability": 0.9941 + }, + { + "start": 32826.34, + "end": 32827.27, + "probability": 0.9966 + }, + { + "start": 32828.42, + "end": 32833.62, + "probability": 0.9557 + }, + { + "start": 32834.24, + "end": 32835.74, + "probability": 0.9304 + }, + { + "start": 32835.88, + "end": 32837.8, + "probability": 0.9952 + }, + { + "start": 32838.42, + "end": 32839.82, + "probability": 0.7446 + }, + { + "start": 32840.74, + "end": 32846.6, + "probability": 0.6643 + }, + { + "start": 32847.06, + "end": 32849.0, + "probability": 0.9824 + }, + { + "start": 32849.2, + "end": 32849.9, + "probability": 0.9563 + }, + { + "start": 32850.06, + "end": 32850.72, + "probability": 0.721 + }, + { + "start": 32851.16, + "end": 32855.92, + "probability": 0.9896 + }, + { + "start": 32856.04, + "end": 32859.46, + "probability": 0.9917 + }, + { + "start": 32859.8, + "end": 32862.42, + "probability": 0.9739 + }, + { + "start": 32862.84, + "end": 32863.62, + "probability": 0.7833 + }, + { + "start": 32863.78, + "end": 32865.36, + "probability": 0.8818 + }, + { + "start": 32866.12, + "end": 32872.06, + "probability": 0.9581 + }, + { + "start": 32872.6, + "end": 32875.58, + "probability": 0.9705 + }, + { + "start": 32876.86, + "end": 32879.84, + "probability": 0.7078 + }, + { + "start": 32880.52, + "end": 32881.78, + "probability": 0.881 + }, + { + "start": 32882.0, + "end": 32882.94, + "probability": 0.9017 + }, + { + "start": 32883.14, + "end": 32887.84, + "probability": 0.7164 + }, + { + "start": 32889.0, + "end": 32889.7, + "probability": 0.5833 + }, + { + "start": 32889.8, + "end": 32891.22, + "probability": 0.9387 + }, + { + "start": 32891.34, + "end": 32891.68, + "probability": 0.833 + }, + { + "start": 32891.82, + "end": 32892.04, + "probability": 0.404 + }, + { + "start": 32892.04, + "end": 32892.58, + "probability": 0.5261 + }, + { + "start": 32892.64, + "end": 32893.72, + "probability": 0.8477 + }, + { + "start": 32894.08, + "end": 32895.6, + "probability": 0.8013 + }, + { + "start": 32895.68, + "end": 32896.16, + "probability": 0.7916 + }, + { + "start": 32896.22, + "end": 32896.58, + "probability": 0.8379 + }, + { + "start": 32896.68, + "end": 32897.1, + "probability": 0.8592 + }, + { + "start": 32897.5, + "end": 32897.84, + "probability": 0.5743 + }, + { + "start": 32897.9, + "end": 32899.28, + "probability": 0.7925 + }, + { + "start": 32899.84, + "end": 32904.08, + "probability": 0.9186 + }, + { + "start": 32904.62, + "end": 32908.36, + "probability": 0.7411 + }, + { + "start": 32908.78, + "end": 32914.24, + "probability": 0.9809 + }, + { + "start": 32914.82, + "end": 32915.96, + "probability": 0.8903 + }, + { + "start": 32916.36, + "end": 32921.64, + "probability": 0.9309 + }, + { + "start": 32922.06, + "end": 32922.84, + "probability": 0.625 + }, + { + "start": 32924.32, + "end": 32925.13, + "probability": 0.6146 + }, + { + "start": 32925.82, + "end": 32931.04, + "probability": 0.9869 + }, + { + "start": 32931.64, + "end": 32934.56, + "probability": 0.5262 + }, + { + "start": 32935.02, + "end": 32937.18, + "probability": 0.9853 + }, + { + "start": 32937.74, + "end": 32938.64, + "probability": 0.7786 + }, + { + "start": 32939.26, + "end": 32943.16, + "probability": 0.8477 + }, + { + "start": 32944.02, + "end": 32946.56, + "probability": 0.9933 + }, + { + "start": 32946.66, + "end": 32949.72, + "probability": 0.9915 + }, + { + "start": 32949.92, + "end": 32952.44, + "probability": 0.6635 + }, + { + "start": 32952.6, + "end": 32953.12, + "probability": 0.6149 + }, + { + "start": 32953.54, + "end": 32954.96, + "probability": 0.7064 + }, + { + "start": 32955.16, + "end": 32956.74, + "probability": 0.8842 + }, + { + "start": 32957.68, + "end": 32961.08, + "probability": 0.6305 + }, + { + "start": 32961.56, + "end": 32965.28, + "probability": 0.9505 + }, + { + "start": 32965.34, + "end": 32965.68, + "probability": 0.8437 + }, + { + "start": 32965.76, + "end": 32966.4, + "probability": 0.7243 + }, + { + "start": 32966.42, + "end": 32966.9, + "probability": 0.8981 + }, + { + "start": 32966.92, + "end": 32967.32, + "probability": 0.9264 + }, + { + "start": 32967.36, + "end": 32968.68, + "probability": 0.9816 + }, + { + "start": 32969.44, + "end": 32973.02, + "probability": 0.9769 + }, + { + "start": 32973.38, + "end": 32973.84, + "probability": 0.7545 + }, + { + "start": 32976.5, + "end": 32979.32, + "probability": 0.8961 + }, + { + "start": 32985.85, + "end": 32990.35, + "probability": 0.0651 + }, + { + "start": 32995.64, + "end": 32995.86, + "probability": 0.5451 + }, + { + "start": 32995.86, + "end": 32997.52, + "probability": 0.0031 + }, + { + "start": 33007.42, + "end": 33009.27, + "probability": 0.3671 + }, + { + "start": 33009.7, + "end": 33010.94, + "probability": 0.8121 + }, + { + "start": 33011.02, + "end": 33014.28, + "probability": 0.899 + }, + { + "start": 33016.14, + "end": 33017.06, + "probability": 0.7384 + }, + { + "start": 33017.36, + "end": 33017.48, + "probability": 0.0464 + }, + { + "start": 33020.78, + "end": 33023.92, + "probability": 0.3831 + }, + { + "start": 33023.92, + "end": 33024.36, + "probability": 0.6486 + }, + { + "start": 33024.44, + "end": 33027.06, + "probability": 0.086 + }, + { + "start": 33031.18, + "end": 33032.42, + "probability": 0.6388 + }, + { + "start": 33032.44, + "end": 33033.68, + "probability": 0.7396 + }, + { + "start": 33034.44, + "end": 33038.48, + "probability": 0.7627 + }, + { + "start": 33039.32, + "end": 33040.22, + "probability": 0.957 + }, + { + "start": 33040.28, + "end": 33042.24, + "probability": 0.9854 + }, + { + "start": 33043.08, + "end": 33043.78, + "probability": 0.0235 + }, + { + "start": 33044.56, + "end": 33044.68, + "probability": 0.0914 + }, + { + "start": 33044.68, + "end": 33045.28, + "probability": 0.9326 + }, + { + "start": 33048.52, + "end": 33051.98, + "probability": 0.485 + }, + { + "start": 33052.06, + "end": 33054.22, + "probability": 0.8006 + }, + { + "start": 33057.36, + "end": 33062.12, + "probability": 0.4623 + }, + { + "start": 33062.8, + "end": 33065.72, + "probability": 0.3054 + }, + { + "start": 33067.28, + "end": 33069.66, + "probability": 0.148 + }, + { + "start": 33082.14, + "end": 33084.58, + "probability": 0.3032 + }, + { + "start": 33087.64, + "end": 33090.7, + "probability": 0.9362 + }, + { + "start": 33091.4, + "end": 33094.16, + "probability": 0.8652 + }, + { + "start": 33094.8, + "end": 33096.34, + "probability": 0.979 + }, + { + "start": 33096.92, + "end": 33098.52, + "probability": 0.9793 + }, + { + "start": 33099.24, + "end": 33101.98, + "probability": 0.9036 + }, + { + "start": 33102.04, + "end": 33102.86, + "probability": 0.8696 + }, + { + "start": 33103.58, + "end": 33105.54, + "probability": 0.6315 + }, + { + "start": 33108.38, + "end": 33110.22, + "probability": 0.7371 + }, + { + "start": 33110.4, + "end": 33112.64, + "probability": 0.9549 + }, + { + "start": 33113.0, + "end": 33115.6, + "probability": 0.9982 + }, + { + "start": 33116.24, + "end": 33118.52, + "probability": 0.9983 + }, + { + "start": 33119.52, + "end": 33120.6, + "probability": 0.5764 + }, + { + "start": 33121.24, + "end": 33122.38, + "probability": 0.9122 + }, + { + "start": 33122.96, + "end": 33124.34, + "probability": 0.9623 + }, + { + "start": 33124.92, + "end": 33125.48, + "probability": 0.9615 + }, + { + "start": 33125.54, + "end": 33128.94, + "probability": 0.9985 + }, + { + "start": 33128.94, + "end": 33133.8, + "probability": 0.9918 + }, + { + "start": 33134.5, + "end": 33135.22, + "probability": 0.769 + }, + { + "start": 33135.8, + "end": 33137.84, + "probability": 0.8901 + }, + { + "start": 33138.38, + "end": 33140.31, + "probability": 0.9745 + }, + { + "start": 33142.28, + "end": 33142.5, + "probability": 0.884 + }, + { + "start": 33142.76, + "end": 33145.86, + "probability": 0.9958 + }, + { + "start": 33146.46, + "end": 33149.53, + "probability": 0.9937 + }, + { + "start": 33150.04, + "end": 33152.88, + "probability": 0.9985 + }, + { + "start": 33153.38, + "end": 33154.16, + "probability": 0.8096 + }, + { + "start": 33154.26, + "end": 33154.64, + "probability": 0.5305 + }, + { + "start": 33154.94, + "end": 33155.1, + "probability": 0.9819 + }, + { + "start": 33156.04, + "end": 33157.08, + "probability": 0.8677 + }, + { + "start": 33157.56, + "end": 33161.32, + "probability": 0.9553 + }, + { + "start": 33162.0, + "end": 33163.86, + "probability": 0.9971 + }, + { + "start": 33164.74, + "end": 33167.1, + "probability": 0.9537 + }, + { + "start": 33167.52, + "end": 33171.34, + "probability": 0.9473 + }, + { + "start": 33172.14, + "end": 33173.74, + "probability": 0.9513 + }, + { + "start": 33174.36, + "end": 33178.2, + "probability": 0.9888 + }, + { + "start": 33178.82, + "end": 33181.49, + "probability": 0.9902 + }, + { + "start": 33182.34, + "end": 33183.62, + "probability": 0.6034 + }, + { + "start": 33183.92, + "end": 33186.32, + "probability": 0.7861 + }, + { + "start": 33186.4, + "end": 33187.9, + "probability": 0.9436 + }, + { + "start": 33188.44, + "end": 33191.88, + "probability": 0.9795 + }, + { + "start": 33192.46, + "end": 33195.72, + "probability": 0.9091 + }, + { + "start": 33196.22, + "end": 33199.32, + "probability": 0.9932 + }, + { + "start": 33199.32, + "end": 33203.2, + "probability": 0.9733 + }, + { + "start": 33203.88, + "end": 33204.94, + "probability": 0.8903 + }, + { + "start": 33204.96, + "end": 33208.32, + "probability": 0.9697 + }, + { + "start": 33208.32, + "end": 33212.16, + "probability": 0.8442 + }, + { + "start": 33214.18, + "end": 33217.06, + "probability": 0.9768 + }, + { + "start": 33217.2, + "end": 33218.66, + "probability": 0.7074 + }, + { + "start": 33218.74, + "end": 33219.48, + "probability": 0.8414 + }, + { + "start": 33219.84, + "end": 33220.74, + "probability": 0.7256 + }, + { + "start": 33221.26, + "end": 33223.46, + "probability": 0.7832 + }, + { + "start": 33223.5, + "end": 33225.36, + "probability": 0.6969 + }, + { + "start": 33225.4, + "end": 33228.08, + "probability": 0.7459 + }, + { + "start": 33229.22, + "end": 33230.32, + "probability": 0.4387 + }, + { + "start": 33230.5, + "end": 33235.88, + "probability": 0.9641 + }, + { + "start": 33236.7, + "end": 33237.98, + "probability": 0.8525 + }, + { + "start": 33238.1, + "end": 33238.82, + "probability": 0.8667 + }, + { + "start": 33238.94, + "end": 33241.18, + "probability": 0.9968 + }, + { + "start": 33241.68, + "end": 33243.24, + "probability": 0.389 + }, + { + "start": 33243.74, + "end": 33245.34, + "probability": 0.9635 + }, + { + "start": 33246.04, + "end": 33250.16, + "probability": 0.9869 + }, + { + "start": 33250.16, + "end": 33256.4, + "probability": 0.9917 + }, + { + "start": 33256.9, + "end": 33258.88, + "probability": 0.9878 + }, + { + "start": 33258.94, + "end": 33262.66, + "probability": 0.9718 + }, + { + "start": 33262.86, + "end": 33264.98, + "probability": 0.9911 + }, + { + "start": 33265.38, + "end": 33267.1, + "probability": 0.9927 + }, + { + "start": 33267.42, + "end": 33268.94, + "probability": 0.9518 + }, + { + "start": 33269.5, + "end": 33273.3, + "probability": 0.9243 + }, + { + "start": 33273.88, + "end": 33275.52, + "probability": 0.9417 + }, + { + "start": 33276.16, + "end": 33277.84, + "probability": 0.905 + }, + { + "start": 33277.96, + "end": 33278.58, + "probability": 0.986 + }, + { + "start": 33278.7, + "end": 33279.16, + "probability": 0.8668 + }, + { + "start": 33279.28, + "end": 33280.2, + "probability": 0.9164 + }, + { + "start": 33280.68, + "end": 33281.86, + "probability": 0.9192 + }, + { + "start": 33282.54, + "end": 33285.42, + "probability": 0.9746 + }, + { + "start": 33285.94, + "end": 33286.7, + "probability": 0.6788 + }, + { + "start": 33286.88, + "end": 33288.44, + "probability": 0.9551 + }, + { + "start": 33288.98, + "end": 33290.06, + "probability": 0.4031 + }, + { + "start": 33290.18, + "end": 33292.16, + "probability": 0.9755 + }, + { + "start": 33292.92, + "end": 33295.44, + "probability": 0.9731 + }, + { + "start": 33296.1, + "end": 33300.08, + "probability": 0.975 + }, + { + "start": 33300.56, + "end": 33301.28, + "probability": 0.5203 + }, + { + "start": 33301.34, + "end": 33303.72, + "probability": 0.9964 + }, + { + "start": 33304.26, + "end": 33306.78, + "probability": 0.9972 + }, + { + "start": 33307.66, + "end": 33310.76, + "probability": 0.9767 + }, + { + "start": 33311.12, + "end": 33312.64, + "probability": 0.9793 + }, + { + "start": 33313.06, + "end": 33314.2, + "probability": 0.9872 + }, + { + "start": 33314.36, + "end": 33315.9, + "probability": 0.9862 + }, + { + "start": 33316.24, + "end": 33319.26, + "probability": 0.838 + }, + { + "start": 33319.34, + "end": 33320.96, + "probability": 0.669 + }, + { + "start": 33320.98, + "end": 33323.4, + "probability": 0.825 + }, + { + "start": 33323.92, + "end": 33324.55, + "probability": 0.3113 + }, + { + "start": 33324.7, + "end": 33325.68, + "probability": 0.5186 + }, + { + "start": 33326.14, + "end": 33327.54, + "probability": 0.5202 + }, + { + "start": 33327.7, + "end": 33329.0, + "probability": 0.8816 + }, + { + "start": 33329.06, + "end": 33331.9, + "probability": 0.9506 + }, + { + "start": 33332.0, + "end": 33332.84, + "probability": 0.7538 + }, + { + "start": 33332.9, + "end": 33333.62, + "probability": 0.8327 + }, + { + "start": 33333.86, + "end": 33334.73, + "probability": 0.9292 + }, + { + "start": 33335.46, + "end": 33339.88, + "probability": 0.9474 + }, + { + "start": 33339.96, + "end": 33342.94, + "probability": 0.9749 + }, + { + "start": 33343.04, + "end": 33346.2, + "probability": 0.9803 + }, + { + "start": 33346.92, + "end": 33349.18, + "probability": 0.7732 + }, + { + "start": 33349.88, + "end": 33351.78, + "probability": 0.9942 + }, + { + "start": 33351.86, + "end": 33353.56, + "probability": 0.9314 + }, + { + "start": 33354.5, + "end": 33359.38, + "probability": 0.9359 + }, + { + "start": 33359.82, + "end": 33363.02, + "probability": 0.9763 + }, + { + "start": 33363.68, + "end": 33368.5, + "probability": 0.9932 + }, + { + "start": 33369.16, + "end": 33374.18, + "probability": 0.9687 + }, + { + "start": 33374.18, + "end": 33378.48, + "probability": 0.9653 + }, + { + "start": 33379.1, + "end": 33380.18, + "probability": 0.8274 + }, + { + "start": 33380.68, + "end": 33383.34, + "probability": 0.9587 + }, + { + "start": 33383.86, + "end": 33388.7, + "probability": 0.8318 + }, + { + "start": 33389.14, + "end": 33391.4, + "probability": 0.9653 + }, + { + "start": 33391.46, + "end": 33393.62, + "probability": 0.9978 + }, + { + "start": 33394.2, + "end": 33396.12, + "probability": 0.7041 + }, + { + "start": 33396.7, + "end": 33399.58, + "probability": 0.9883 + }, + { + "start": 33399.68, + "end": 33402.94, + "probability": 0.9644 + }, + { + "start": 33403.42, + "end": 33405.64, + "probability": 0.9912 + }, + { + "start": 33405.64, + "end": 33407.68, + "probability": 0.9115 + }, + { + "start": 33408.34, + "end": 33410.76, + "probability": 0.981 + }, + { + "start": 33410.79, + "end": 33413.88, + "probability": 0.9727 + }, + { + "start": 33414.36, + "end": 33414.82, + "probability": 0.7781 + }, + { + "start": 33415.42, + "end": 33416.04, + "probability": 0.6222 + }, + { + "start": 33416.3, + "end": 33418.06, + "probability": 0.9674 + }, + { + "start": 33418.12, + "end": 33420.32, + "probability": 0.9519 + }, + { + "start": 33420.4, + "end": 33421.72, + "probability": 0.7894 + }, + { + "start": 33422.34, + "end": 33423.43, + "probability": 0.9212 + }, + { + "start": 33424.5, + "end": 33425.84, + "probability": 0.9545 + }, + { + "start": 33425.94, + "end": 33427.06, + "probability": 0.9354 + }, + { + "start": 33428.28, + "end": 33430.62, + "probability": 0.9725 + }, + { + "start": 33430.7, + "end": 33432.28, + "probability": 0.6654 + }, + { + "start": 33432.4, + "end": 33433.08, + "probability": 0.978 + }, + { + "start": 33434.76, + "end": 33436.6, + "probability": 0.7638 + }, + { + "start": 33437.0, + "end": 33438.8, + "probability": 0.0687 + }, + { + "start": 33440.64, + "end": 33441.02, + "probability": 0.1677 + }, + { + "start": 33441.02, + "end": 33445.24, + "probability": 0.3732 + }, + { + "start": 33445.64, + "end": 33448.96, + "probability": 0.2163 + }, + { + "start": 33449.42, + "end": 33457.08, + "probability": 0.9497 + }, + { + "start": 33457.64, + "end": 33460.96, + "probability": 0.9416 + }, + { + "start": 33461.82, + "end": 33465.14, + "probability": 0.8439 + }, + { + "start": 33465.72, + "end": 33467.42, + "probability": 0.8101 + }, + { + "start": 33467.94, + "end": 33474.22, + "probability": 0.9517 + }, + { + "start": 33474.9, + "end": 33477.36, + "probability": 0.897 + }, + { + "start": 33477.92, + "end": 33479.56, + "probability": 0.9841 + }, + { + "start": 33480.2, + "end": 33482.54, + "probability": 0.9474 + }, + { + "start": 33483.3, + "end": 33484.55, + "probability": 0.9966 + }, + { + "start": 33485.32, + "end": 33487.22, + "probability": 0.9905 + }, + { + "start": 33487.82, + "end": 33489.8, + "probability": 0.9213 + }, + { + "start": 33490.92, + "end": 33491.42, + "probability": 0.6829 + }, + { + "start": 33492.08, + "end": 33492.84, + "probability": 0.8647 + }, + { + "start": 33494.26, + "end": 33495.46, + "probability": 0.9937 + }, + { + "start": 33497.34, + "end": 33498.8, + "probability": 0.8888 + }, + { + "start": 33499.36, + "end": 33500.51, + "probability": 0.5471 + }, + { + "start": 33501.26, + "end": 33505.06, + "probability": 0.9548 + }, + { + "start": 33505.76, + "end": 33507.7, + "probability": 0.9815 + }, + { + "start": 33508.64, + "end": 33509.96, + "probability": 0.8485 + }, + { + "start": 33510.38, + "end": 33511.68, + "probability": 0.9738 + }, + { + "start": 33511.98, + "end": 33513.56, + "probability": 0.8913 + }, + { + "start": 33514.4, + "end": 33515.96, + "probability": 0.9015 + }, + { + "start": 33517.46, + "end": 33521.48, + "probability": 0.8777 + }, + { + "start": 33521.98, + "end": 33523.9, + "probability": 0.8749 + }, + { + "start": 33525.0, + "end": 33526.56, + "probability": 0.9941 + }, + { + "start": 33527.12, + "end": 33528.96, + "probability": 0.9778 + }, + { + "start": 33529.94, + "end": 33532.46, + "probability": 0.9937 + }, + { + "start": 33533.38, + "end": 33535.8, + "probability": 0.9712 + }, + { + "start": 33536.52, + "end": 33540.56, + "probability": 0.9078 + }, + { + "start": 33541.22, + "end": 33543.78, + "probability": 0.957 + }, + { + "start": 33544.32, + "end": 33549.7, + "probability": 0.9688 + }, + { + "start": 33550.1, + "end": 33550.92, + "probability": 0.852 + }, + { + "start": 33551.46, + "end": 33554.52, + "probability": 0.8483 + }, + { + "start": 33554.98, + "end": 33563.02, + "probability": 0.9816 + }, + { + "start": 33563.44, + "end": 33565.98, + "probability": 0.9932 + }, + { + "start": 33566.46, + "end": 33568.5, + "probability": 0.9902 + }, + { + "start": 33569.28, + "end": 33571.08, + "probability": 0.6209 + }, + { + "start": 33571.62, + "end": 33572.26, + "probability": 0.9213 + }, + { + "start": 33573.06, + "end": 33574.62, + "probability": 0.6021 + }, + { + "start": 33576.14, + "end": 33577.88, + "probability": 0.9462 + }, + { + "start": 33577.94, + "end": 33578.8, + "probability": 0.2474 + }, + { + "start": 33579.24, + "end": 33580.37, + "probability": 0.8996 + }, + { + "start": 33580.4, + "end": 33580.5, + "probability": 0.47 + }, + { + "start": 33582.2, + "end": 33582.74, + "probability": 0.5002 + }, + { + "start": 33583.16, + "end": 33584.72, + "probability": 0.8261 + }, + { + "start": 33585.26, + "end": 33586.9, + "probability": 0.7427 + }, + { + "start": 33587.86, + "end": 33590.76, + "probability": 0.8152 + }, + { + "start": 33591.22, + "end": 33592.69, + "probability": 0.7986 + }, + { + "start": 33593.08, + "end": 33594.4, + "probability": 0.9222 + }, + { + "start": 33594.7, + "end": 33596.36, + "probability": 0.9552 + }, + { + "start": 33597.0, + "end": 33598.72, + "probability": 0.8454 + }, + { + "start": 33599.94, + "end": 33601.82, + "probability": 0.9891 + }, + { + "start": 33602.28, + "end": 33602.9, + "probability": 0.9377 + }, + { + "start": 33603.28, + "end": 33604.5, + "probability": 0.9781 + }, + { + "start": 33604.9, + "end": 33606.28, + "probability": 0.8432 + }, + { + "start": 33606.66, + "end": 33607.54, + "probability": 0.9534 + }, + { + "start": 33608.24, + "end": 33611.64, + "probability": 0.9946 + }, + { + "start": 33613.18, + "end": 33615.06, + "probability": 0.7864 + }, + { + "start": 33616.12, + "end": 33617.18, + "probability": 0.9518 + }, + { + "start": 33617.92, + "end": 33623.26, + "probability": 0.9961 + }, + { + "start": 33624.0, + "end": 33626.6, + "probability": 0.6761 + }, + { + "start": 33627.12, + "end": 33630.22, + "probability": 0.9849 + }, + { + "start": 33630.72, + "end": 33633.78, + "probability": 0.5166 + }, + { + "start": 33634.32, + "end": 33637.64, + "probability": 0.6831 + }, + { + "start": 33638.06, + "end": 33640.9, + "probability": 0.9967 + }, + { + "start": 33641.76, + "end": 33645.3, + "probability": 0.9169 + }, + { + "start": 33645.98, + "end": 33646.94, + "probability": 0.8819 + }, + { + "start": 33647.04, + "end": 33647.56, + "probability": 0.9588 + }, + { + "start": 33647.64, + "end": 33648.34, + "probability": 0.966 + }, + { + "start": 33648.78, + "end": 33649.68, + "probability": 0.8703 + }, + { + "start": 33649.76, + "end": 33650.68, + "probability": 0.8271 + }, + { + "start": 33651.16, + "end": 33652.82, + "probability": 0.9458 + }, + { + "start": 33653.2, + "end": 33655.22, + "probability": 0.8222 + }, + { + "start": 33655.62, + "end": 33656.6, + "probability": 0.9536 + }, + { + "start": 33657.2, + "end": 33660.48, + "probability": 0.8411 + }, + { + "start": 33660.54, + "end": 33660.89, + "probability": 0.8263 + }, + { + "start": 33661.08, + "end": 33661.5, + "probability": 0.8812 + }, + { + "start": 33663.04, + "end": 33666.86, + "probability": 0.957 + }, + { + "start": 33667.3, + "end": 33669.62, + "probability": 0.9472 + }, + { + "start": 33669.92, + "end": 33672.98, + "probability": 0.9927 + }, + { + "start": 33673.42, + "end": 33674.41, + "probability": 0.5914 + }, + { + "start": 33674.96, + "end": 33675.7, + "probability": 0.8163 + }, + { + "start": 33675.96, + "end": 33678.76, + "probability": 0.9758 + }, + { + "start": 33679.56, + "end": 33681.36, + "probability": 0.8739 + }, + { + "start": 33682.12, + "end": 33683.46, + "probability": 0.8735 + }, + { + "start": 33683.96, + "end": 33684.74, + "probability": 0.9897 + }, + { + "start": 33685.06, + "end": 33686.76, + "probability": 0.7372 + }, + { + "start": 33686.86, + "end": 33688.84, + "probability": 0.9955 + }, + { + "start": 33690.9, + "end": 33691.3, + "probability": 0.9028 + }, + { + "start": 33692.34, + "end": 33692.38, + "probability": 0.0013 + }, + { + "start": 33692.98, + "end": 33694.68, + "probability": 0.1734 + }, + { + "start": 33695.88, + "end": 33695.88, + "probability": 0.1948 + }, + { + "start": 33695.88, + "end": 33697.7, + "probability": 0.9467 + }, + { + "start": 33700.24, + "end": 33700.66, + "probability": 0.0073 + }, + { + "start": 33706.42, + "end": 33709.74, + "probability": 0.411 + }, + { + "start": 33710.4, + "end": 33711.06, + "probability": 0.6008 + }, + { + "start": 33711.18, + "end": 33711.8, + "probability": 0.6119 + }, + { + "start": 33711.86, + "end": 33713.74, + "probability": 0.847 + }, + { + "start": 33713.86, + "end": 33714.95, + "probability": 0.999 + }, + { + "start": 33716.1, + "end": 33717.06, + "probability": 0.592 + }, + { + "start": 33717.5, + "end": 33718.24, + "probability": 0.9118 + }, + { + "start": 33719.02, + "end": 33719.9, + "probability": 0.7953 + }, + { + "start": 33720.5, + "end": 33721.38, + "probability": 0.82 + }, + { + "start": 33721.84, + "end": 33723.9, + "probability": 0.9919 + }, + { + "start": 33723.98, + "end": 33724.48, + "probability": 0.6673 + }, + { + "start": 33724.66, + "end": 33725.38, + "probability": 0.8514 + }, + { + "start": 33725.46, + "end": 33725.9, + "probability": 0.8908 + }, + { + "start": 33726.38, + "end": 33727.83, + "probability": 0.9355 + }, + { + "start": 33728.36, + "end": 33729.46, + "probability": 0.8466 + }, + { + "start": 33730.16, + "end": 33730.94, + "probability": 0.9526 + }, + { + "start": 33731.08, + "end": 33733.1, + "probability": 0.8984 + }, + { + "start": 33733.72, + "end": 33735.88, + "probability": 0.8503 + }, + { + "start": 33736.5, + "end": 33736.6, + "probability": 0.5823 + }, + { + "start": 33737.06, + "end": 33737.66, + "probability": 0.8303 + }, + { + "start": 33737.78, + "end": 33738.62, + "probability": 0.6645 + }, + { + "start": 33739.1, + "end": 33740.62, + "probability": 0.9892 + }, + { + "start": 33741.54, + "end": 33744.54, + "probability": 0.9634 + }, + { + "start": 33744.88, + "end": 33745.38, + "probability": 0.9834 + }, + { + "start": 33745.5, + "end": 33746.22, + "probability": 0.6544 + }, + { + "start": 33747.0, + "end": 33747.42, + "probability": 0.7812 + }, + { + "start": 33747.5, + "end": 33748.46, + "probability": 0.9276 + }, + { + "start": 33748.56, + "end": 33750.04, + "probability": 0.9544 + }, + { + "start": 33750.48, + "end": 33751.04, + "probability": 0.845 + }, + { + "start": 33751.18, + "end": 33751.36, + "probability": 0.7415 + }, + { + "start": 33751.44, + "end": 33751.88, + "probability": 0.4764 + }, + { + "start": 33752.36, + "end": 33752.54, + "probability": 0.4672 + }, + { + "start": 33752.64, + "end": 33753.3, + "probability": 0.9436 + }, + { + "start": 33753.44, + "end": 33755.16, + "probability": 0.9671 + }, + { + "start": 33755.22, + "end": 33755.78, + "probability": 0.6078 + }, + { + "start": 33756.3, + "end": 33757.16, + "probability": 0.838 + }, + { + "start": 33757.66, + "end": 33758.36, + "probability": 0.8226 + }, + { + "start": 33759.06, + "end": 33760.78, + "probability": 0.9768 + }, + { + "start": 33760.82, + "end": 33761.62, + "probability": 0.7536 + }, + { + "start": 33762.16, + "end": 33763.86, + "probability": 0.8768 + }, + { + "start": 33764.44, + "end": 33766.6, + "probability": 0.9019 + }, + { + "start": 33767.52, + "end": 33769.22, + "probability": 0.9009 + }, + { + "start": 33769.46, + "end": 33770.74, + "probability": 0.7451 + }, + { + "start": 33771.52, + "end": 33773.96, + "probability": 0.6818 + }, + { + "start": 33774.48, + "end": 33775.5, + "probability": 0.8892 + }, + { + "start": 33775.6, + "end": 33777.84, + "probability": 0.9473 + }, + { + "start": 33778.46, + "end": 33781.14, + "probability": 0.9683 + }, + { + "start": 33781.72, + "end": 33784.62, + "probability": 0.8972 + }, + { + "start": 33785.3, + "end": 33786.36, + "probability": 0.7705 + }, + { + "start": 33786.52, + "end": 33787.28, + "probability": 0.5732 + }, + { + "start": 33787.4, + "end": 33788.02, + "probability": 0.9443 + }, + { + "start": 33788.42, + "end": 33789.16, + "probability": 0.9023 + }, + { + "start": 33789.9, + "end": 33790.4, + "probability": 0.8612 + }, + { + "start": 33790.42, + "end": 33793.72, + "probability": 0.7647 + }, + { + "start": 33794.48, + "end": 33795.48, + "probability": 0.9405 + }, + { + "start": 33795.94, + "end": 33796.62, + "probability": 0.5797 + }, + { + "start": 33796.7, + "end": 33798.36, + "probability": 0.417 + }, + { + "start": 33798.36, + "end": 33799.24, + "probability": 0.2568 + }, + { + "start": 33801.01, + "end": 33802.94, + "probability": 0.4836 + }, + { + "start": 33805.26, + "end": 33808.44, + "probability": 0.7507 + }, + { + "start": 33808.66, + "end": 33810.8, + "probability": 0.7801 + }, + { + "start": 33811.88, + "end": 33815.82, + "probability": 0.985 + }, + { + "start": 33815.88, + "end": 33817.04, + "probability": 0.9189 + }, + { + "start": 33817.36, + "end": 33818.52, + "probability": 0.8494 + }, + { + "start": 33821.44, + "end": 33823.84, + "probability": 0.998 + }, + { + "start": 33824.14, + "end": 33825.61, + "probability": 0.996 + }, + { + "start": 33826.74, + "end": 33829.38, + "probability": 0.9259 + }, + { + "start": 33829.98, + "end": 33831.68, + "probability": 0.9914 + }, + { + "start": 33832.04, + "end": 33833.02, + "probability": 0.8772 + }, + { + "start": 33833.12, + "end": 33837.18, + "probability": 0.8291 + }, + { + "start": 33837.3, + "end": 33839.88, + "probability": 0.713 + }, + { + "start": 33840.68, + "end": 33844.46, + "probability": 0.872 + }, + { + "start": 33844.7, + "end": 33847.38, + "probability": 0.9918 + }, + { + "start": 33847.46, + "end": 33847.96, + "probability": 0.8407 + }, + { + "start": 33848.32, + "end": 33855.16, + "probability": 0.998 + }, + { + "start": 33855.16, + "end": 33861.32, + "probability": 0.9975 + }, + { + "start": 33861.52, + "end": 33862.9, + "probability": 0.7738 + }, + { + "start": 33863.08, + "end": 33864.96, + "probability": 0.8598 + }, + { + "start": 33865.06, + "end": 33866.06, + "probability": 0.7521 + }, + { + "start": 33866.56, + "end": 33869.22, + "probability": 0.5848 + }, + { + "start": 33869.62, + "end": 33870.66, + "probability": 0.9882 + }, + { + "start": 33871.7, + "end": 33874.72, + "probability": 0.7459 + }, + { + "start": 33874.8, + "end": 33876.72, + "probability": 0.7058 + }, + { + "start": 33877.72, + "end": 33880.64, + "probability": 0.9373 + }, + { + "start": 33880.76, + "end": 33882.12, + "probability": 0.5269 + }, + { + "start": 33882.22, + "end": 33882.98, + "probability": 0.5368 + }, + { + "start": 33883.1, + "end": 33885.42, + "probability": 0.9692 + }, + { + "start": 33885.52, + "end": 33886.2, + "probability": 0.9268 + }, + { + "start": 33886.3, + "end": 33891.94, + "probability": 0.6902 + }, + { + "start": 33892.36, + "end": 33894.4, + "probability": 0.9536 + }, + { + "start": 33894.52, + "end": 33896.84, + "probability": 0.9785 + }, + { + "start": 33897.88, + "end": 33902.72, + "probability": 0.9906 + }, + { + "start": 33902.92, + "end": 33903.7, + "probability": 0.9323 + }, + { + "start": 33904.62, + "end": 33905.41, + "probability": 0.9941 + }, + { + "start": 33905.58, + "end": 33906.92, + "probability": 0.9975 + }, + { + "start": 33907.04, + "end": 33907.6, + "probability": 0.9451 + }, + { + "start": 33907.66, + "end": 33908.34, + "probability": 0.856 + }, + { + "start": 33909.08, + "end": 33909.08, + "probability": 0.0004 + }, + { + "start": 33910.08, + "end": 33911.78, + "probability": 0.7245 + }, + { + "start": 33912.0, + "end": 33912.66, + "probability": 0.2243 + }, + { + "start": 33913.12, + "end": 33913.92, + "probability": 0.4744 + }, + { + "start": 33913.92, + "end": 33914.16, + "probability": 0.7887 + }, + { + "start": 33914.62, + "end": 33915.38, + "probability": 0.6222 + }, + { + "start": 33915.56, + "end": 33916.4, + "probability": 0.5604 + }, + { + "start": 33916.74, + "end": 33918.2, + "probability": 0.4091 + }, + { + "start": 33918.42, + "end": 33918.72, + "probability": 0.6039 + }, + { + "start": 33922.16, + "end": 33928.58, + "probability": 0.9665 + }, + { + "start": 33928.72, + "end": 33930.26, + "probability": 0.9965 + }, + { + "start": 33930.58, + "end": 33933.72, + "probability": 0.9961 + }, + { + "start": 33934.52, + "end": 33939.68, + "probability": 0.9965 + }, + { + "start": 33940.38, + "end": 33942.46, + "probability": 0.7595 + }, + { + "start": 33942.48, + "end": 33945.72, + "probability": 0.7987 + }, + { + "start": 33945.9, + "end": 33946.34, + "probability": 0.7867 + }, + { + "start": 33946.36, + "end": 33947.8, + "probability": 0.8215 + }, + { + "start": 33948.56, + "end": 33951.1, + "probability": 0.9858 + }, + { + "start": 33951.68, + "end": 33954.06, + "probability": 0.653 + }, + { + "start": 33954.8, + "end": 33956.72, + "probability": 0.9969 + }, + { + "start": 33957.78, + "end": 33960.2, + "probability": 0.7343 + }, + { + "start": 33961.52, + "end": 33963.7, + "probability": 0.9939 + }, + { + "start": 33965.0, + "end": 33966.78, + "probability": 0.9685 + }, + { + "start": 33966.96, + "end": 33970.08, + "probability": 0.998 + }, + { + "start": 33970.48, + "end": 33972.14, + "probability": 0.9781 + }, + { + "start": 33972.26, + "end": 33973.28, + "probability": 0.655 + }, + { + "start": 33973.34, + "end": 33974.44, + "probability": 0.9885 + }, + { + "start": 33975.08, + "end": 33979.1, + "probability": 0.8762 + }, + { + "start": 33979.64, + "end": 33980.1, + "probability": 0.7554 + }, + { + "start": 33980.38, + "end": 33981.02, + "probability": 0.8805 + }, + { + "start": 33981.14, + "end": 33982.19, + "probability": 0.9082 + }, + { + "start": 33984.34, + "end": 33987.54, + "probability": 0.9717 + }, + { + "start": 33987.72, + "end": 33990.28, + "probability": 0.6797 + }, + { + "start": 33990.4, + "end": 33992.12, + "probability": 0.7108 + }, + { + "start": 33992.26, + "end": 33993.38, + "probability": 0.8528 + }, + { + "start": 33993.46, + "end": 33994.5, + "probability": 0.8087 + }, + { + "start": 33994.56, + "end": 33995.32, + "probability": 0.9628 + }, + { + "start": 33995.38, + "end": 33997.1, + "probability": 0.6824 + }, + { + "start": 33997.48, + "end": 33998.91, + "probability": 0.8464 + }, + { + "start": 33999.78, + "end": 34003.14, + "probability": 0.9922 + }, + { + "start": 34003.14, + "end": 34005.6, + "probability": 0.697 + }, + { + "start": 34006.3, + "end": 34008.24, + "probability": 0.9995 + }, + { + "start": 34008.44, + "end": 34010.18, + "probability": 0.7267 + }, + { + "start": 34010.7, + "end": 34013.76, + "probability": 0.9902 + }, + { + "start": 34014.42, + "end": 34015.96, + "probability": 0.7076 + }, + { + "start": 34016.8, + "end": 34020.72, + "probability": 0.8559 + }, + { + "start": 34020.84, + "end": 34021.72, + "probability": 0.8647 + }, + { + "start": 34021.86, + "end": 34024.02, + "probability": 0.7511 + }, + { + "start": 34024.28, + "end": 34026.2, + "probability": 0.8066 + }, + { + "start": 34026.38, + "end": 34027.66, + "probability": 0.8364 + }, + { + "start": 34028.04, + "end": 34028.96, + "probability": 0.8044 + }, + { + "start": 34029.04, + "end": 34030.48, + "probability": 0.1402 + }, + { + "start": 34032.7, + "end": 34034.74, + "probability": 0.9214 + }, + { + "start": 34035.7, + "end": 34038.74, + "probability": 0.9887 + }, + { + "start": 34039.52, + "end": 34040.82, + "probability": 0.6178 + }, + { + "start": 34041.78, + "end": 34045.2, + "probability": 0.6115 + }, + { + "start": 34045.68, + "end": 34046.76, + "probability": 0.7451 + }, + { + "start": 34046.96, + "end": 34049.46, + "probability": 0.2155 + }, + { + "start": 34049.72, + "end": 34050.38, + "probability": 0.6693 + }, + { + "start": 34053.0, + "end": 34056.48, + "probability": 0.8501 + }, + { + "start": 34057.42, + "end": 34060.38, + "probability": 0.6801 + }, + { + "start": 34060.9, + "end": 34062.13, + "probability": 0.584 + }, + { + "start": 34063.1, + "end": 34066.44, + "probability": 0.999 + }, + { + "start": 34066.66, + "end": 34068.26, + "probability": 0.9991 + }, + { + "start": 34068.44, + "end": 34072.32, + "probability": 0.9863 + }, + { + "start": 34072.4, + "end": 34075.43, + "probability": 0.8597 + }, + { + "start": 34075.96, + "end": 34077.7, + "probability": 0.9589 + }, + { + "start": 34078.3, + "end": 34079.06, + "probability": 0.8285 + }, + { + "start": 34079.5, + "end": 34081.8, + "probability": 0.9991 + }, + { + "start": 34082.44, + "end": 34084.47, + "probability": 0.9988 + }, + { + "start": 34085.32, + "end": 34089.02, + "probability": 0.9824 + }, + { + "start": 34089.06, + "end": 34090.12, + "probability": 0.8233 + }, + { + "start": 34090.74, + "end": 34094.6, + "probability": 0.9889 + }, + { + "start": 34094.7, + "end": 34097.74, + "probability": 0.981 + }, + { + "start": 34098.54, + "end": 34100.56, + "probability": 0.9921 + }, + { + "start": 34100.68, + "end": 34101.12, + "probability": 0.8913 + }, + { + "start": 34101.7, + "end": 34102.16, + "probability": 0.864 + }, + { + "start": 34102.76, + "end": 34103.34, + "probability": 0.9454 + }, + { + "start": 34103.4, + "end": 34107.18, + "probability": 0.9581 + }, + { + "start": 34109.16, + "end": 34109.64, + "probability": 0.9077 + }, + { + "start": 34109.74, + "end": 34113.26, + "probability": 0.5275 + }, + { + "start": 34117.62, + "end": 34120.32, + "probability": 0.8727 + }, + { + "start": 34120.88, + "end": 34121.02, + "probability": 0.1411 + }, + { + "start": 34121.26, + "end": 34124.96, + "probability": 0.9703 + }, + { + "start": 34125.02, + "end": 34126.44, + "probability": 0.7748 + }, + { + "start": 34127.82, + "end": 34128.42, + "probability": 0.9624 + }, + { + "start": 34128.76, + "end": 34129.9, + "probability": 0.9295 + }, + { + "start": 34138.04, + "end": 34141.68, + "probability": 0.6982 + }, + { + "start": 34143.38, + "end": 34146.72, + "probability": 0.9355 + }, + { + "start": 34148.1, + "end": 34149.0, + "probability": 0.7704 + }, + { + "start": 34149.1, + "end": 34153.8, + "probability": 0.9712 + }, + { + "start": 34154.98, + "end": 34156.84, + "probability": 0.9907 + }, + { + "start": 34157.6, + "end": 34158.59, + "probability": 0.9141 + }, + { + "start": 34159.98, + "end": 34161.86, + "probability": 0.9104 + }, + { + "start": 34162.6, + "end": 34164.98, + "probability": 0.7947 + }, + { + "start": 34165.44, + "end": 34168.46, + "probability": 0.958 + }, + { + "start": 34168.54, + "end": 34170.18, + "probability": 0.9307 + }, + { + "start": 34170.4, + "end": 34171.38, + "probability": 0.9929 + }, + { + "start": 34171.94, + "end": 34174.0, + "probability": 0.994 + }, + { + "start": 34174.08, + "end": 34176.14, + "probability": 0.8553 + }, + { + "start": 34177.08, + "end": 34181.66, + "probability": 0.8811 + }, + { + "start": 34182.38, + "end": 34182.7, + "probability": 0.5988 + }, + { + "start": 34183.06, + "end": 34185.94, + "probability": 0.9919 + }, + { + "start": 34186.38, + "end": 34188.22, + "probability": 0.74 + }, + { + "start": 34188.72, + "end": 34191.42, + "probability": 0.8319 + }, + { + "start": 34192.0, + "end": 34193.44, + "probability": 0.7852 + }, + { + "start": 34194.22, + "end": 34196.74, + "probability": 0.9816 + }, + { + "start": 34197.66, + "end": 34199.81, + "probability": 0.5183 + }, + { + "start": 34200.42, + "end": 34202.56, + "probability": 0.8353 + }, + { + "start": 34203.2, + "end": 34204.42, + "probability": 0.9489 + }, + { + "start": 34205.04, + "end": 34207.22, + "probability": 0.9743 + }, + { + "start": 34207.56, + "end": 34208.95, + "probability": 0.9683 + }, + { + "start": 34210.48, + "end": 34214.06, + "probability": 0.9846 + }, + { + "start": 34214.42, + "end": 34215.06, + "probability": 0.4802 + }, + { + "start": 34215.86, + "end": 34216.34, + "probability": 0.2747 + }, + { + "start": 34216.36, + "end": 34222.78, + "probability": 0.8759 + }, + { + "start": 34223.32, + "end": 34225.46, + "probability": 0.9985 + }, + { + "start": 34226.84, + "end": 34227.76, + "probability": 0.8469 + }, + { + "start": 34228.12, + "end": 34229.78, + "probability": 0.777 + }, + { + "start": 34229.86, + "end": 34231.88, + "probability": 0.6885 + }, + { + "start": 34232.34, + "end": 34233.58, + "probability": 0.7692 + }, + { + "start": 34234.5, + "end": 34237.34, + "probability": 0.9088 + }, + { + "start": 34237.34, + "end": 34240.0, + "probability": 0.8617 + }, + { + "start": 34241.31, + "end": 34245.72, + "probability": 0.8543 + }, + { + "start": 34246.24, + "end": 34247.94, + "probability": 0.9792 + }, + { + "start": 34248.82, + "end": 34251.32, + "probability": 0.8114 + }, + { + "start": 34251.7, + "end": 34253.6, + "probability": 0.9525 + }, + { + "start": 34254.38, + "end": 34255.14, + "probability": 0.3912 + }, + { + "start": 34255.74, + "end": 34259.46, + "probability": 0.9836 + }, + { + "start": 34260.42, + "end": 34262.02, + "probability": 0.8744 + }, + { + "start": 34262.34, + "end": 34265.46, + "probability": 0.82 + }, + { + "start": 34265.62, + "end": 34266.32, + "probability": 0.7119 + }, + { + "start": 34266.66, + "end": 34267.18, + "probability": 0.6107 + }, + { + "start": 34267.64, + "end": 34270.14, + "probability": 0.9829 + }, + { + "start": 34270.34, + "end": 34272.08, + "probability": 0.6838 + }, + { + "start": 34272.72, + "end": 34273.76, + "probability": 0.7299 + }, + { + "start": 34274.28, + "end": 34278.18, + "probability": 0.9827 + }, + { + "start": 34278.28, + "end": 34278.66, + "probability": 0.5029 + }, + { + "start": 34279.56, + "end": 34282.78, + "probability": 0.9977 + }, + { + "start": 34283.3, + "end": 34284.02, + "probability": 0.5876 + }, + { + "start": 34285.3, + "end": 34289.44, + "probability": 0.9801 + }, + { + "start": 34289.56, + "end": 34290.2, + "probability": 0.7294 + }, + { + "start": 34292.0, + "end": 34295.44, + "probability": 0.916 + }, + { + "start": 34296.0, + "end": 34296.16, + "probability": 0.1068 + }, + { + "start": 34296.24, + "end": 34299.08, + "probability": 0.5992 + }, + { + "start": 34299.58, + "end": 34300.7, + "probability": 0.5094 + }, + { + "start": 34301.26, + "end": 34302.12, + "probability": 0.7116 + }, + { + "start": 34302.28, + "end": 34303.4, + "probability": 0.6154 + }, + { + "start": 34303.4, + "end": 34305.22, + "probability": 0.8936 + }, + { + "start": 34305.64, + "end": 34306.34, + "probability": 0.4898 + }, + { + "start": 34307.12, + "end": 34310.12, + "probability": 0.7138 + }, + { + "start": 34310.68, + "end": 34312.18, + "probability": 0.7515 + }, + { + "start": 34313.1, + "end": 34313.58, + "probability": 0.7891 + }, + { + "start": 34313.7, + "end": 34314.57, + "probability": 0.983 + }, + { + "start": 34314.78, + "end": 34318.18, + "probability": 0.7535 + }, + { + "start": 34318.92, + "end": 34323.3, + "probability": 0.9279 + }, + { + "start": 34323.64, + "end": 34325.34, + "probability": 0.9437 + }, + { + "start": 34325.54, + "end": 34326.88, + "probability": 0.9531 + }, + { + "start": 34327.6, + "end": 34330.16, + "probability": 0.9537 + }, + { + "start": 34330.68, + "end": 34333.5, + "probability": 0.9418 + }, + { + "start": 34334.26, + "end": 34334.96, + "probability": 0.8182 + }, + { + "start": 34335.08, + "end": 34335.88, + "probability": 0.6718 + }, + { + "start": 34336.16, + "end": 34336.5, + "probability": 0.7841 + }, + { + "start": 34336.78, + "end": 34337.38, + "probability": 0.888 + }, + { + "start": 34337.8, + "end": 34338.3, + "probability": 0.3409 + }, + { + "start": 34338.34, + "end": 34338.86, + "probability": 0.7124 + }, + { + "start": 34338.9, + "end": 34339.4, + "probability": 0.9512 + }, + { + "start": 34339.62, + "end": 34342.76, + "probability": 0.5787 + }, + { + "start": 34343.38, + "end": 34345.34, + "probability": 0.9987 + }, + { + "start": 34346.74, + "end": 34348.4, + "probability": 0.8687 + }, + { + "start": 34349.34, + "end": 34349.94, + "probability": 0.9514 + }, + { + "start": 34350.28, + "end": 34351.82, + "probability": 0.7426 + }, + { + "start": 34351.96, + "end": 34353.72, + "probability": 0.9033 + }, + { + "start": 34353.72, + "end": 34357.26, + "probability": 0.8603 + }, + { + "start": 34357.58, + "end": 34362.12, + "probability": 0.9627 + }, + { + "start": 34362.2, + "end": 34365.12, + "probability": 0.9937 + }, + { + "start": 34365.52, + "end": 34366.2, + "probability": 0.8584 + }, + { + "start": 34366.66, + "end": 34369.02, + "probability": 0.9736 + }, + { + "start": 34369.15, + "end": 34371.82, + "probability": 0.887 + }, + { + "start": 34372.42, + "end": 34373.86, + "probability": 0.8546 + }, + { + "start": 34374.64, + "end": 34375.54, + "probability": 0.9987 + }, + { + "start": 34376.08, + "end": 34376.54, + "probability": 0.8584 + }, + { + "start": 34377.46, + "end": 34379.48, + "probability": 0.7509 + }, + { + "start": 34380.08, + "end": 34382.24, + "probability": 0.8879 + }, + { + "start": 34382.24, + "end": 34384.74, + "probability": 0.9924 + }, + { + "start": 34384.78, + "end": 34385.38, + "probability": 0.919 + }, + { + "start": 34386.02, + "end": 34387.36, + "probability": 0.787 + }, + { + "start": 34388.12, + "end": 34390.18, + "probability": 0.7362 + }, + { + "start": 34390.18, + "end": 34391.7, + "probability": 0.6452 + }, + { + "start": 34391.86, + "end": 34393.58, + "probability": 0.8582 + }, + { + "start": 34394.0, + "end": 34394.92, + "probability": 0.8362 + }, + { + "start": 34395.44, + "end": 34396.68, + "probability": 0.8159 + }, + { + "start": 34397.22, + "end": 34400.64, + "probability": 0.9047 + }, + { + "start": 34401.02, + "end": 34402.58, + "probability": 0.9444 + }, + { + "start": 34403.02, + "end": 34404.84, + "probability": 0.486 + }, + { + "start": 34404.96, + "end": 34405.68, + "probability": 0.5555 + }, + { + "start": 34405.86, + "end": 34407.5, + "probability": 0.8276 + }, + { + "start": 34407.96, + "end": 34409.02, + "probability": 0.9686 + }, + { + "start": 34410.25, + "end": 34411.14, + "probability": 0.0385 + }, + { + "start": 34411.14, + "end": 34414.52, + "probability": 0.5221 + }, + { + "start": 34415.18, + "end": 34415.96, + "probability": 0.9045 + }, + { + "start": 34416.44, + "end": 34417.08, + "probability": 0.9453 + }, + { + "start": 34417.26, + "end": 34417.84, + "probability": 0.8327 + }, + { + "start": 34418.12, + "end": 34421.32, + "probability": 0.6715 + }, + { + "start": 34421.34, + "end": 34424.16, + "probability": 0.9697 + }, + { + "start": 34424.76, + "end": 34425.72, + "probability": 0.8117 + }, + { + "start": 34426.44, + "end": 34429.64, + "probability": 0.9231 + }, + { + "start": 34430.18, + "end": 34431.1, + "probability": 0.9404 + }, + { + "start": 34431.52, + "end": 34435.46, + "probability": 0.2375 + }, + { + "start": 34435.52, + "end": 34436.16, + "probability": 0.6379 + }, + { + "start": 34436.52, + "end": 34437.86, + "probability": 0.985 + }, + { + "start": 34438.14, + "end": 34439.84, + "probability": 0.5263 + }, + { + "start": 34440.22, + "end": 34444.08, + "probability": 0.9885 + }, + { + "start": 34444.58, + "end": 34444.7, + "probability": 0.189 + }, + { + "start": 34444.8, + "end": 34445.5, + "probability": 0.8695 + }, + { + "start": 34445.9, + "end": 34446.46, + "probability": 0.6787 + }, + { + "start": 34446.94, + "end": 34450.76, + "probability": 0.6255 + }, + { + "start": 34451.2, + "end": 34452.5, + "probability": 0.9804 + }, + { + "start": 34452.74, + "end": 34458.0, + "probability": 0.8286 + }, + { + "start": 34458.08, + "end": 34458.58, + "probability": 0.6918 + }, + { + "start": 34458.9, + "end": 34459.46, + "probability": 0.8687 + }, + { + "start": 34461.52, + "end": 34462.18, + "probability": 0.8474 + }, + { + "start": 34463.74, + "end": 34466.4, + "probability": 0.9169 + }, + { + "start": 34466.88, + "end": 34468.42, + "probability": 0.5836 + }, + { + "start": 34468.9, + "end": 34469.0, + "probability": 0.0423 + }, + { + "start": 34469.0, + "end": 34470.7, + "probability": 0.988 + }, + { + "start": 34470.74, + "end": 34471.08, + "probability": 0.8 + }, + { + "start": 34471.64, + "end": 34472.6, + "probability": 0.1675 + }, + { + "start": 34472.98, + "end": 34473.96, + "probability": 0.8817 + }, + { + "start": 34474.7, + "end": 34475.16, + "probability": 0.6269 + }, + { + "start": 34476.58, + "end": 34480.9, + "probability": 0.9741 + }, + { + "start": 34481.28, + "end": 34482.34, + "probability": 0.6449 + }, + { + "start": 34482.5, + "end": 34483.22, + "probability": 0.5841 + }, + { + "start": 34483.44, + "end": 34485.08, + "probability": 0.1428 + }, + { + "start": 34486.62, + "end": 34489.42, + "probability": 0.8572 + }, + { + "start": 34489.58, + "end": 34492.52, + "probability": 0.9434 + }, + { + "start": 34492.56, + "end": 34495.16, + "probability": 0.9097 + }, + { + "start": 34495.66, + "end": 34496.96, + "probability": 0.5531 + }, + { + "start": 34497.12, + "end": 34501.02, + "probability": 0.9678 + }, + { + "start": 34501.32, + "end": 34502.62, + "probability": 0.8669 + }, + { + "start": 34502.94, + "end": 34504.36, + "probability": 0.5632 + }, + { + "start": 34504.76, + "end": 34506.16, + "probability": 0.8712 + }, + { + "start": 34506.46, + "end": 34507.32, + "probability": 0.9961 + }, + { + "start": 34507.98, + "end": 34508.99, + "probability": 0.9849 + }, + { + "start": 34509.44, + "end": 34510.14, + "probability": 0.9536 + }, + { + "start": 34510.72, + "end": 34512.02, + "probability": 0.6777 + }, + { + "start": 34512.8, + "end": 34515.18, + "probability": 0.7799 + }, + { + "start": 34515.7, + "end": 34517.34, + "probability": 0.9404 + }, + { + "start": 34518.52, + "end": 34521.52, + "probability": 0.8978 + }, + { + "start": 34521.52, + "end": 34524.88, + "probability": 0.9849 + }, + { + "start": 34524.96, + "end": 34527.06, + "probability": 0.6669 + }, + { + "start": 34527.54, + "end": 34529.48, + "probability": 0.7174 + }, + { + "start": 34529.56, + "end": 34533.06, + "probability": 0.9968 + }, + { + "start": 34533.16, + "end": 34533.94, + "probability": 0.8333 + }, + { + "start": 34534.54, + "end": 34540.76, + "probability": 0.9927 + }, + { + "start": 34541.02, + "end": 34542.36, + "probability": 0.6204 + }, + { + "start": 34542.86, + "end": 34544.28, + "probability": 0.2169 + }, + { + "start": 34544.28, + "end": 34547.14, + "probability": 0.5396 + }, + { + "start": 34547.86, + "end": 34551.2, + "probability": 0.6072 + }, + { + "start": 34551.26, + "end": 34551.35, + "probability": 0.7374 + }, + { + "start": 34552.44, + "end": 34552.46, + "probability": 0.0232 + }, + { + "start": 34552.46, + "end": 34553.18, + "probability": 0.529 + }, + { + "start": 34553.24, + "end": 34555.66, + "probability": 0.9392 + }, + { + "start": 34556.72, + "end": 34559.06, + "probability": 0.1276 + }, + { + "start": 34559.74, + "end": 34560.28, + "probability": 0.2828 + }, + { + "start": 34560.92, + "end": 34561.04, + "probability": 0.0981 + }, + { + "start": 34561.04, + "end": 34561.04, + "probability": 0.2567 + }, + { + "start": 34561.04, + "end": 34565.12, + "probability": 0.9883 + }, + { + "start": 34565.72, + "end": 34567.96, + "probability": 0.9934 + }, + { + "start": 34568.0, + "end": 34569.64, + "probability": 0.9601 + }, + { + "start": 34570.48, + "end": 34571.94, + "probability": 0.9782 + }, + { + "start": 34572.36, + "end": 34575.82, + "probability": 0.9952 + }, + { + "start": 34575.82, + "end": 34578.74, + "probability": 0.9726 + }, + { + "start": 34579.66, + "end": 34582.38, + "probability": 0.5018 + }, + { + "start": 34583.16, + "end": 34584.82, + "probability": 0.6885 + }, + { + "start": 34585.64, + "end": 34588.5, + "probability": 0.9956 + }, + { + "start": 34590.72, + "end": 34591.46, + "probability": 0.6212 + }, + { + "start": 34591.46, + "end": 34592.24, + "probability": 0.0255 + }, + { + "start": 34592.24, + "end": 34592.56, + "probability": 0.1713 + }, + { + "start": 34592.56, + "end": 34592.92, + "probability": 0.5296 + }, + { + "start": 34593.04, + "end": 34593.65, + "probability": 0.917 + }, + { + "start": 34593.98, + "end": 34595.0, + "probability": 0.7368 + }, + { + "start": 34595.44, + "end": 34596.08, + "probability": 0.5521 + }, + { + "start": 34596.52, + "end": 34597.54, + "probability": 0.7039 + }, + { + "start": 34597.64, + "end": 34598.2, + "probability": 0.6889 + }, + { + "start": 34600.02, + "end": 34602.38, + "probability": 0.7753 + }, + { + "start": 34602.4, + "end": 34603.14, + "probability": 0.0283 + }, + { + "start": 34603.64, + "end": 34603.64, + "probability": 0.1583 + }, + { + "start": 34603.64, + "end": 34604.88, + "probability": 0.7875 + }, + { + "start": 34606.3, + "end": 34611.62, + "probability": 0.8143 + }, + { + "start": 34611.78, + "end": 34612.22, + "probability": 0.701 + }, + { + "start": 34612.28, + "end": 34613.2, + "probability": 0.9939 + }, + { + "start": 34614.0, + "end": 34616.08, + "probability": 0.6374 + }, + { + "start": 34616.54, + "end": 34616.54, + "probability": 0.1286 + }, + { + "start": 34616.54, + "end": 34617.02, + "probability": 0.6086 + }, + { + "start": 34617.02, + "end": 34619.54, + "probability": 0.842 + }, + { + "start": 34619.64, + "end": 34621.96, + "probability": 0.9608 + }, + { + "start": 34622.04, + "end": 34622.22, + "probability": 0.9058 + }, + { + "start": 34622.32, + "end": 34623.06, + "probability": 0.5483 + }, + { + "start": 34623.6, + "end": 34626.52, + "probability": 0.8758 + }, + { + "start": 34626.52, + "end": 34630.94, + "probability": 0.9974 + }, + { + "start": 34631.52, + "end": 34636.0, + "probability": 0.9848 + }, + { + "start": 34636.94, + "end": 34641.16, + "probability": 0.9409 + }, + { + "start": 34641.16, + "end": 34644.9, + "probability": 0.9985 + }, + { + "start": 34645.2, + "end": 34646.86, + "probability": 0.9234 + }, + { + "start": 34647.56, + "end": 34648.53, + "probability": 0.9976 + }, + { + "start": 34649.16, + "end": 34651.38, + "probability": 0.9654 + }, + { + "start": 34652.0, + "end": 34654.14, + "probability": 0.9963 + }, + { + "start": 34654.6, + "end": 34656.94, + "probability": 0.7566 + }, + { + "start": 34657.34, + "end": 34659.56, + "probability": 0.966 + }, + { + "start": 34660.04, + "end": 34662.14, + "probability": 0.6729 + }, + { + "start": 34662.54, + "end": 34665.04, + "probability": 0.997 + }, + { + "start": 34665.46, + "end": 34669.38, + "probability": 0.9823 + }, + { + "start": 34669.38, + "end": 34674.32, + "probability": 0.9766 + }, + { + "start": 34674.38, + "end": 34675.98, + "probability": 0.9738 + }, + { + "start": 34676.46, + "end": 34678.84, + "probability": 0.9144 + }, + { + "start": 34679.26, + "end": 34681.16, + "probability": 0.9972 + }, + { + "start": 34681.6, + "end": 34682.12, + "probability": 0.7922 + }, + { + "start": 34682.22, + "end": 34686.3, + "probability": 0.9505 + }, + { + "start": 34686.6, + "end": 34688.38, + "probability": 0.8669 + }, + { + "start": 34688.64, + "end": 34689.68, + "probability": 0.6754 + }, + { + "start": 34690.16, + "end": 34690.24, + "probability": 0.0009 + }, + { + "start": 34690.24, + "end": 34694.54, + "probability": 0.9883 + }, + { + "start": 34694.54, + "end": 34697.72, + "probability": 0.9985 + }, + { + "start": 34698.26, + "end": 34704.28, + "probability": 0.9976 + }, + { + "start": 34704.66, + "end": 34705.46, + "probability": 0.761 + }, + { + "start": 34705.9, + "end": 34712.28, + "probability": 0.9267 + }, + { + "start": 34712.76, + "end": 34716.56, + "probability": 0.8408 + }, + { + "start": 34717.08, + "end": 34718.9, + "probability": 0.9846 + }, + { + "start": 34719.36, + "end": 34720.9, + "probability": 0.9952 + }, + { + "start": 34721.88, + "end": 34725.38, + "probability": 0.9944 + }, + { + "start": 34725.54, + "end": 34731.42, + "probability": 0.9966 + }, + { + "start": 34731.98, + "end": 34732.4, + "probability": 0.5487 + }, + { + "start": 34732.52, + "end": 34734.66, + "probability": 0.981 + }, + { + "start": 34734.76, + "end": 34736.18, + "probability": 0.9849 + }, + { + "start": 34737.0, + "end": 34743.94, + "probability": 0.9913 + }, + { + "start": 34744.5, + "end": 34747.62, + "probability": 0.9028 + }, + { + "start": 34747.78, + "end": 34751.52, + "probability": 0.9296 + }, + { + "start": 34752.1, + "end": 34754.52, + "probability": 0.9644 + }, + { + "start": 34754.98, + "end": 34756.68, + "probability": 0.9285 + }, + { + "start": 34756.86, + "end": 34757.62, + "probability": 0.9741 + }, + { + "start": 34758.46, + "end": 34759.7, + "probability": 0.9297 + }, + { + "start": 34761.84, + "end": 34763.64, + "probability": 0.9514 + }, + { + "start": 34764.1, + "end": 34765.32, + "probability": 0.8799 + }, + { + "start": 34765.88, + "end": 34769.22, + "probability": 0.9956 + }, + { + "start": 34769.7, + "end": 34770.92, + "probability": 0.9298 + }, + { + "start": 34771.38, + "end": 34774.6, + "probability": 0.9943 + }, + { + "start": 34775.0, + "end": 34776.0, + "probability": 0.9794 + }, + { + "start": 34776.34, + "end": 34777.54, + "probability": 0.9087 + }, + { + "start": 34777.94, + "end": 34779.34, + "probability": 0.9951 + }, + { + "start": 34779.82, + "end": 34781.94, + "probability": 0.97 + }, + { + "start": 34782.42, + "end": 34784.88, + "probability": 0.9755 + }, + { + "start": 34785.02, + "end": 34785.38, + "probability": 0.8265 + }, + { + "start": 34785.5, + "end": 34786.54, + "probability": 0.7561 + }, + { + "start": 34787.02, + "end": 34789.12, + "probability": 0.9073 + }, + { + "start": 34789.66, + "end": 34792.92, + "probability": 0.9889 + }, + { + "start": 34793.42, + "end": 34797.48, + "probability": 0.9934 + }, + { + "start": 34797.94, + "end": 34799.74, + "probability": 0.9948 + }, + { + "start": 34800.18, + "end": 34801.2, + "probability": 0.7334 + }, + { + "start": 34801.74, + "end": 34804.44, + "probability": 0.8342 + }, + { + "start": 34805.08, + "end": 34808.48, + "probability": 0.9825 + }, + { + "start": 34808.86, + "end": 34812.96, + "probability": 0.9956 + }, + { + "start": 34813.38, + "end": 34816.28, + "probability": 0.8691 + }, + { + "start": 34816.3, + "end": 34817.28, + "probability": 0.9893 + }, + { + "start": 34817.44, + "end": 34820.06, + "probability": 0.6825 + }, + { + "start": 34821.6, + "end": 34824.1, + "probability": 0.8916 + }, + { + "start": 34825.34, + "end": 34827.34, + "probability": 0.8398 + }, + { + "start": 34828.0, + "end": 34830.62, + "probability": 0.66 + }, + { + "start": 34830.66, + "end": 34834.84, + "probability": 0.8009 + }, + { + "start": 34835.4, + "end": 34836.22, + "probability": 0.9614 + }, + { + "start": 34850.42, + "end": 34850.62, + "probability": 0.3309 + }, + { + "start": 34850.82, + "end": 34850.82, + "probability": 0.0561 + }, + { + "start": 34850.82, + "end": 34851.06, + "probability": 0.477 + }, + { + "start": 34851.24, + "end": 34852.1, + "probability": 0.8536 + }, + { + "start": 34852.5, + "end": 34853.62, + "probability": 0.9884 + }, + { + "start": 34853.74, + "end": 34855.32, + "probability": 0.9833 + }, + { + "start": 34856.92, + "end": 34859.16, + "probability": 0.6917 + }, + { + "start": 34864.38, + "end": 34865.66, + "probability": 0.2169 + }, + { + "start": 34865.66, + "end": 34865.66, + "probability": 0.5935 + }, + { + "start": 34867.88, + "end": 34868.0, + "probability": 0.0698 + }, + { + "start": 34871.86, + "end": 34873.18, + "probability": 0.6415 + }, + { + "start": 34873.28, + "end": 34874.66, + "probability": 0.9525 + }, + { + "start": 34875.42, + "end": 34876.9, + "probability": 0.8002 + }, + { + "start": 34877.42, + "end": 34877.52, + "probability": 0.0111 + }, + { + "start": 34877.58, + "end": 34878.58, + "probability": 0.6112 + }, + { + "start": 34878.7, + "end": 34879.54, + "probability": 0.938 + }, + { + "start": 34879.6, + "end": 34881.38, + "probability": 0.9827 + }, + { + "start": 34882.8, + "end": 34884.18, + "probability": 0.5886 + }, + { + "start": 34886.31, + "end": 34887.1, + "probability": 0.2435 + }, + { + "start": 34887.1, + "end": 34887.98, + "probability": 0.6178 + }, + { + "start": 34888.14, + "end": 34889.82, + "probability": 0.253 + }, + { + "start": 34889.9, + "end": 34891.16, + "probability": 0.1461 + }, + { + "start": 34891.38, + "end": 34894.72, + "probability": 0.336 + }, + { + "start": 34895.42, + "end": 34896.66, + "probability": 0.4692 + }, + { + "start": 34896.82, + "end": 34898.4, + "probability": 0.0753 + }, + { + "start": 34898.94, + "end": 34899.72, + "probability": 0.6524 + }, + { + "start": 34906.84, + "end": 34911.04, + "probability": 0.7569 + }, + { + "start": 34911.92, + "end": 34912.82, + "probability": 0.5122 + }, + { + "start": 34912.9, + "end": 34916.32, + "probability": 0.9941 + }, + { + "start": 34916.32, + "end": 34919.6, + "probability": 0.9968 + }, + { + "start": 34920.28, + "end": 34925.68, + "probability": 0.9712 + }, + { + "start": 34926.34, + "end": 34927.34, + "probability": 0.7234 + }, + { + "start": 34927.86, + "end": 34931.06, + "probability": 0.984 + }, + { + "start": 34932.5, + "end": 34936.62, + "probability": 0.9673 + }, + { + "start": 34937.58, + "end": 34939.96, + "probability": 0.9957 + }, + { + "start": 34940.42, + "end": 34943.18, + "probability": 0.9987 + }, + { + "start": 34943.84, + "end": 34945.34, + "probability": 0.997 + }, + { + "start": 34945.96, + "end": 34946.92, + "probability": 0.983 + }, + { + "start": 34948.18, + "end": 34955.42, + "probability": 0.9962 + }, + { + "start": 34956.08, + "end": 34961.67, + "probability": 0.9946 + }, + { + "start": 34962.48, + "end": 34967.52, + "probability": 0.9945 + }, + { + "start": 34968.48, + "end": 34969.58, + "probability": 0.9612 + }, + { + "start": 34971.42, + "end": 34973.8, + "probability": 0.841 + }, + { + "start": 34981.46, + "end": 34984.28, + "probability": 0.7103 + }, + { + "start": 34985.1, + "end": 34986.0, + "probability": 0.0715 + }, + { + "start": 34986.32, + "end": 34987.52, + "probability": 0.1087 + }, + { + "start": 34987.52, + "end": 34987.52, + "probability": 0.4763 + }, + { + "start": 34987.66, + "end": 34988.68, + "probability": 0.5389 + }, + { + "start": 34989.04, + "end": 34990.34, + "probability": 0.0517 + }, + { + "start": 34990.34, + "end": 34991.04, + "probability": 0.3451 + }, + { + "start": 34992.32, + "end": 34994.9, + "probability": 0.2637 + }, + { + "start": 34994.9, + "end": 34995.0, + "probability": 0.1959 + }, + { + "start": 34995.0, + "end": 34995.0, + "probability": 0.3186 + }, + { + "start": 34995.0, + "end": 34996.56, + "probability": 0.2197 + }, + { + "start": 34997.14, + "end": 35000.14, + "probability": 0.6694 + }, + { + "start": 35000.32, + "end": 35001.18, + "probability": 0.4981 + }, + { + "start": 35001.68, + "end": 35003.42, + "probability": 0.9839 + }, + { + "start": 35007.58, + "end": 35008.49, + "probability": 0.7715 + }, + { + "start": 35009.2, + "end": 35010.02, + "probability": 0.3247 + }, + { + "start": 35010.7, + "end": 35012.9, + "probability": 0.3438 + }, + { + "start": 35013.6, + "end": 35015.86, + "probability": 0.4656 + }, + { + "start": 35015.86, + "end": 35018.34, + "probability": 0.9835 + }, + { + "start": 35019.94, + "end": 35020.54, + "probability": 0.8974 + }, + { + "start": 35021.04, + "end": 35024.9, + "probability": 0.8458 + }, + { + "start": 35027.38, + "end": 35031.58, + "probability": 0.9117 + }, + { + "start": 35032.24, + "end": 35033.22, + "probability": 0.8493 + }, + { + "start": 35033.88, + "end": 35036.72, + "probability": 0.9943 + }, + { + "start": 35037.26, + "end": 35038.5, + "probability": 0.8971 + }, + { + "start": 35038.92, + "end": 35042.22, + "probability": 0.9517 + }, + { + "start": 35042.96, + "end": 35043.98, + "probability": 0.7981 + }, + { + "start": 35045.32, + "end": 35046.3, + "probability": 0.9706 + }, + { + "start": 35047.64, + "end": 35048.88, + "probability": 0.9411 + }, + { + "start": 35049.76, + "end": 35055.76, + "probability": 0.893 + }, + { + "start": 35055.76, + "end": 35062.4, + "probability": 0.8407 + }, + { + "start": 35063.26, + "end": 35069.06, + "probability": 0.9019 + }, + { + "start": 35069.76, + "end": 35075.2, + "probability": 0.9882 + }, + { + "start": 35075.98, + "end": 35081.22, + "probability": 0.9403 + }, + { + "start": 35082.16, + "end": 35083.78, + "probability": 0.7977 + }, + { + "start": 35084.4, + "end": 35089.08, + "probability": 0.9953 + }, + { + "start": 35089.08, + "end": 35093.04, + "probability": 0.9971 + }, + { + "start": 35093.74, + "end": 35098.04, + "probability": 0.9572 + }, + { + "start": 35098.78, + "end": 35103.56, + "probability": 0.9983 + }, + { + "start": 35103.98, + "end": 35109.38, + "probability": 0.9899 + }, + { + "start": 35109.54, + "end": 35111.9, + "probability": 0.9259 + }, + { + "start": 35112.56, + "end": 35112.84, + "probability": 0.6722 + }, + { + "start": 35113.42, + "end": 35114.52, + "probability": 0.9398 + }, + { + "start": 35114.64, + "end": 35115.08, + "probability": 0.7723 + }, + { + "start": 35115.5, + "end": 35117.18, + "probability": 0.8077 + }, + { + "start": 35117.52, + "end": 35119.04, + "probability": 0.5323 + }, + { + "start": 35119.2, + "end": 35122.5, + "probability": 0.9883 + }, + { + "start": 35123.0, + "end": 35123.88, + "probability": 0.9266 + }, + { + "start": 35124.98, + "end": 35127.88, + "probability": 0.8917 + }, + { + "start": 35128.28, + "end": 35130.38, + "probability": 0.9958 + }, + { + "start": 35131.0, + "end": 35132.68, + "probability": 0.7904 + }, + { + "start": 35133.1, + "end": 35138.4, + "probability": 0.9673 + }, + { + "start": 35138.62, + "end": 35138.98, + "probability": 0.7161 + }, + { + "start": 35139.52, + "end": 35141.82, + "probability": 0.9066 + }, + { + "start": 35142.54, + "end": 35148.62, + "probability": 0.9708 + }, + { + "start": 35149.14, + "end": 35152.64, + "probability": 0.9629 + }, + { + "start": 35153.3, + "end": 35159.0, + "probability": 0.9924 + }, + { + "start": 35159.26, + "end": 35163.66, + "probability": 0.7913 + }, + { + "start": 35164.36, + "end": 35166.98, + "probability": 0.9302 + }, + { + "start": 35167.54, + "end": 35170.58, + "probability": 0.6586 + }, + { + "start": 35171.18, + "end": 35173.24, + "probability": 0.991 + }, + { + "start": 35173.92, + "end": 35174.72, + "probability": 0.78 + }, + { + "start": 35175.22, + "end": 35177.12, + "probability": 0.8536 + }, + { + "start": 35177.26, + "end": 35178.44, + "probability": 0.8439 + }, + { + "start": 35179.02, + "end": 35180.14, + "probability": 0.9549 + }, + { + "start": 35180.62, + "end": 35182.34, + "probability": 0.9575 + }, + { + "start": 35182.74, + "end": 35184.16, + "probability": 0.9833 + }, + { + "start": 35184.64, + "end": 35185.84, + "probability": 0.7729 + }, + { + "start": 35186.34, + "end": 35188.8, + "probability": 0.9331 + }, + { + "start": 35189.56, + "end": 35192.98, + "probability": 0.9839 + }, + { + "start": 35193.22, + "end": 35199.12, + "probability": 0.9711 + }, + { + "start": 35199.18, + "end": 35200.22, + "probability": 0.919 + }, + { + "start": 35200.66, + "end": 35202.74, + "probability": 0.9967 + }, + { + "start": 35203.28, + "end": 35206.4, + "probability": 0.9156 + }, + { + "start": 35206.44, + "end": 35211.62, + "probability": 0.9432 + }, + { + "start": 35212.18, + "end": 35216.76, + "probability": 0.9907 + }, + { + "start": 35217.3, + "end": 35220.9, + "probability": 0.9526 + }, + { + "start": 35221.02, + "end": 35224.52, + "probability": 0.9875 + }, + { + "start": 35224.58, + "end": 35227.88, + "probability": 0.9906 + }, + { + "start": 35228.48, + "end": 35233.0, + "probability": 0.9316 + }, + { + "start": 35233.7, + "end": 35237.16, + "probability": 0.9963 + }, + { + "start": 35237.68, + "end": 35238.88, + "probability": 0.9651 + }, + { + "start": 35239.6, + "end": 35241.7, + "probability": 0.985 + }, + { + "start": 35241.74, + "end": 35242.7, + "probability": 0.9889 + }, + { + "start": 35242.82, + "end": 35243.56, + "probability": 0.9406 + }, + { + "start": 35243.66, + "end": 35247.46, + "probability": 0.9761 + }, + { + "start": 35248.08, + "end": 35251.42, + "probability": 0.9746 + }, + { + "start": 35251.42, + "end": 35256.3, + "probability": 0.9616 + }, + { + "start": 35256.92, + "end": 35259.18, + "probability": 0.9928 + }, + { + "start": 35259.36, + "end": 35265.38, + "probability": 0.9896 + }, + { + "start": 35266.1, + "end": 35269.66, + "probability": 0.9966 + }, + { + "start": 35270.18, + "end": 35275.48, + "probability": 0.9915 + }, + { + "start": 35276.06, + "end": 35279.44, + "probability": 0.8757 + }, + { + "start": 35279.98, + "end": 35282.78, + "probability": 0.8562 + }, + { + "start": 35283.4, + "end": 35284.55, + "probability": 0.8838 + }, + { + "start": 35285.5, + "end": 35289.0, + "probability": 0.8691 + }, + { + "start": 35289.7, + "end": 35296.58, + "probability": 0.8939 + }, + { + "start": 35297.46, + "end": 35298.26, + "probability": 0.6105 + }, + { + "start": 35298.52, + "end": 35299.18, + "probability": 0.9009 + }, + { + "start": 35299.78, + "end": 35301.0, + "probability": 0.7685 + }, + { + "start": 35301.08, + "end": 35302.04, + "probability": 0.6564 + }, + { + "start": 35302.84, + "end": 35304.22, + "probability": 0.9712 + }, + { + "start": 35304.81, + "end": 35308.54, + "probability": 0.989 + }, + { + "start": 35308.54, + "end": 35312.0, + "probability": 0.9783 + }, + { + "start": 35314.59, + "end": 35315.6, + "probability": 0.083 + }, + { + "start": 35315.6, + "end": 35319.6, + "probability": 0.8335 + }, + { + "start": 35319.68, + "end": 35325.81, + "probability": 0.8473 + }, + { + "start": 35326.26, + "end": 35327.98, + "probability": 0.9585 + }, + { + "start": 35328.72, + "end": 35329.92, + "probability": 0.9723 + }, + { + "start": 35330.16, + "end": 35330.8, + "probability": 0.8504 + }, + { + "start": 35330.86, + "end": 35331.28, + "probability": 0.6486 + }, + { + "start": 35332.52, + "end": 35333.54, + "probability": 0.694 + }, + { + "start": 35333.54, + "end": 35335.18, + "probability": 0.9498 + }, + { + "start": 35335.38, + "end": 35337.62, + "probability": 0.8773 + }, + { + "start": 35337.62, + "end": 35340.0, + "probability": 0.913 + }, + { + "start": 35340.56, + "end": 35342.5, + "probability": 0.9742 + }, + { + "start": 35343.76, + "end": 35345.56, + "probability": 0.8945 + }, + { + "start": 35346.1, + "end": 35347.22, + "probability": 0.7622 + }, + { + "start": 35347.96, + "end": 35352.88, + "probability": 0.9865 + }, + { + "start": 35353.92, + "end": 35357.36, + "probability": 0.9319 + }, + { + "start": 35358.54, + "end": 35361.88, + "probability": 0.7259 + }, + { + "start": 35361.98, + "end": 35364.08, + "probability": 0.9695 + }, + { + "start": 35364.68, + "end": 35366.16, + "probability": 0.4982 + }, + { + "start": 35366.6, + "end": 35369.68, + "probability": 0.7045 + }, + { + "start": 35369.76, + "end": 35370.89, + "probability": 0.9778 + }, + { + "start": 35371.34, + "end": 35372.48, + "probability": 0.8793 + }, + { + "start": 35372.56, + "end": 35373.54, + "probability": 0.9602 + }, + { + "start": 35374.02, + "end": 35377.16, + "probability": 0.6994 + }, + { + "start": 35377.74, + "end": 35380.82, + "probability": 0.9422 + }, + { + "start": 35381.34, + "end": 35383.87, + "probability": 0.8428 + }, + { + "start": 35384.5, + "end": 35385.7, + "probability": 0.7361 + }, + { + "start": 35385.84, + "end": 35387.2, + "probability": 0.9299 + }, + { + "start": 35387.7, + "end": 35389.42, + "probability": 0.6937 + }, + { + "start": 35389.54, + "end": 35391.35, + "probability": 0.7059 + }, + { + "start": 35391.76, + "end": 35393.19, + "probability": 0.5969 + }, + { + "start": 35394.32, + "end": 35395.34, + "probability": 0.7675 + }, + { + "start": 35396.02, + "end": 35398.26, + "probability": 0.9349 + }, + { + "start": 35398.56, + "end": 35399.36, + "probability": 0.8863 + }, + { + "start": 35402.21, + "end": 35402.64, + "probability": 0.0737 + }, + { + "start": 35402.64, + "end": 35402.64, + "probability": 0.1418 + }, + { + "start": 35402.64, + "end": 35403.03, + "probability": 0.492 + }, + { + "start": 35403.54, + "end": 35405.01, + "probability": 0.4566 + }, + { + "start": 35405.58, + "end": 35409.46, + "probability": 0.8334 + }, + { + "start": 35410.08, + "end": 35413.12, + "probability": 0.8538 + }, + { + "start": 35413.78, + "end": 35415.62, + "probability": 0.9092 + }, + { + "start": 35416.18, + "end": 35417.58, + "probability": 0.8899 + }, + { + "start": 35418.3, + "end": 35419.08, + "probability": 0.7096 + }, + { + "start": 35419.18, + "end": 35419.94, + "probability": 0.9492 + }, + { + "start": 35420.12, + "end": 35421.34, + "probability": 0.6653 + }, + { + "start": 35421.8, + "end": 35424.26, + "probability": 0.9654 + }, + { + "start": 35424.42, + "end": 35424.98, + "probability": 0.4966 + }, + { + "start": 35425.04, + "end": 35426.7, + "probability": 0.6086 + }, + { + "start": 35427.16, + "end": 35429.0, + "probability": 0.9741 + }, + { + "start": 35429.04, + "end": 35431.52, + "probability": 0.7496 + }, + { + "start": 35432.06, + "end": 35434.12, + "probability": 0.7347 + }, + { + "start": 35434.28, + "end": 35434.82, + "probability": 0.793 + }, + { + "start": 35435.7, + "end": 35436.14, + "probability": 0.1472 + }, + { + "start": 35436.38, + "end": 35436.7, + "probability": 0.3439 + }, + { + "start": 35436.72, + "end": 35437.68, + "probability": 0.8 + }, + { + "start": 35438.64, + "end": 35439.42, + "probability": 0.5465 + }, + { + "start": 35439.86, + "end": 35440.78, + "probability": 0.8021 + }, + { + "start": 35440.88, + "end": 35441.88, + "probability": 0.4175 + }, + { + "start": 35442.26, + "end": 35443.18, + "probability": 0.6807 + }, + { + "start": 35443.18, + "end": 35444.32, + "probability": 0.6187 + }, + { + "start": 35444.44, + "end": 35447.16, + "probability": 0.7224 + }, + { + "start": 35447.18, + "end": 35449.34, + "probability": 0.6044 + }, + { + "start": 35450.02, + "end": 35450.42, + "probability": 0.6493 + }, + { + "start": 35485.36, + "end": 35486.26, + "probability": 0.0159 + } + ], + "segments_count": 12000, + "words_count": 61206, + "avg_words_per_segment": 5.1005, + "avg_segment_duration": 2.0379, + "avg_words_per_minute": 103.4672, + "plenum_id": "120231", + "duration": 35492.99, + "title": null, + "plenum_date": "2023-07-30" +} \ No newline at end of file