diff --git "a/124074/metadata.json" "b/124074/metadata.json" new file mode 100644--- /dev/null +++ "b/124074/metadata.json" @@ -0,0 +1,26567 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "124074", + "quality_score": 0.8439, + "per_segment_quality_scores": [ + { + "start": 68.74, + "end": 70.98, + "probability": 0.9693 + }, + { + "start": 71.1, + "end": 72.44, + "probability": 0.5893 + }, + { + "start": 72.98, + "end": 76.75, + "probability": 0.7107 + }, + { + "start": 77.4, + "end": 81.34, + "probability": 0.8622 + }, + { + "start": 81.42, + "end": 81.52, + "probability": 0.6687 + }, + { + "start": 81.76, + "end": 83.04, + "probability": 0.9386 + }, + { + "start": 84.98, + "end": 85.08, + "probability": 0.0872 + }, + { + "start": 85.08, + "end": 85.76, + "probability": 0.4512 + }, + { + "start": 86.0, + "end": 87.16, + "probability": 0.8538 + }, + { + "start": 87.36, + "end": 88.1, + "probability": 0.8386 + }, + { + "start": 90.18, + "end": 92.98, + "probability": 0.5277 + }, + { + "start": 95.06, + "end": 97.1, + "probability": 0.1673 + }, + { + "start": 98.22, + "end": 104.76, + "probability": 0.0749 + }, + { + "start": 105.3, + "end": 105.44, + "probability": 0.1541 + }, + { + "start": 105.76, + "end": 107.72, + "probability": 0.2566 + }, + { + "start": 108.18, + "end": 113.28, + "probability": 0.0256 + }, + { + "start": 113.32, + "end": 119.44, + "probability": 0.2411 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 132.4, + "end": 134.84, + "probability": 0.6643 + }, + { + "start": 136.32, + "end": 136.88, + "probability": 0.1956 + }, + { + "start": 137.48, + "end": 137.58, + "probability": 0.1754 + }, + { + "start": 137.88, + "end": 139.9, + "probability": 0.3033 + }, + { + "start": 140.12, + "end": 143.18, + "probability": 0.8018 + }, + { + "start": 143.7, + "end": 149.08, + "probability": 0.6596 + }, + { + "start": 149.14, + "end": 153.86, + "probability": 0.9359 + }, + { + "start": 154.52, + "end": 157.04, + "probability": 0.837 + }, + { + "start": 157.24, + "end": 158.92, + "probability": 0.3669 + }, + { + "start": 159.66, + "end": 162.44, + "probability": 0.9174 + }, + { + "start": 162.88, + "end": 167.4, + "probability": 0.9911 + }, + { + "start": 168.0, + "end": 169.52, + "probability": 0.4682 + }, + { + "start": 170.16, + "end": 171.92, + "probability": 0.7121 + }, + { + "start": 172.48, + "end": 173.54, + "probability": 0.3361 + }, + { + "start": 174.26, + "end": 175.84, + "probability": 0.6414 + }, + { + "start": 176.42, + "end": 176.7, + "probability": 0.1525 + }, + { + "start": 177.22, + "end": 179.6, + "probability": 0.6586 + }, + { + "start": 179.8, + "end": 181.46, + "probability": 0.9181 + }, + { + "start": 182.28, + "end": 184.0, + "probability": 0.9305 + }, + { + "start": 184.94, + "end": 188.08, + "probability": 0.8957 + }, + { + "start": 189.95, + "end": 192.12, + "probability": 0.9966 + }, + { + "start": 192.72, + "end": 196.1, + "probability": 0.9937 + }, + { + "start": 196.1, + "end": 199.06, + "probability": 0.9376 + }, + { + "start": 199.22, + "end": 201.8, + "probability": 0.6629 + }, + { + "start": 203.8, + "end": 205.34, + "probability": 0.8093 + }, + { + "start": 207.86, + "end": 212.62, + "probability": 0.9451 + }, + { + "start": 213.36, + "end": 215.46, + "probability": 0.9709 + }, + { + "start": 215.56, + "end": 216.6, + "probability": 0.9713 + }, + { + "start": 216.72, + "end": 217.32, + "probability": 0.568 + }, + { + "start": 217.9, + "end": 219.6, + "probability": 0.8371 + }, + { + "start": 219.72, + "end": 224.56, + "probability": 0.947 + }, + { + "start": 224.64, + "end": 225.42, + "probability": 0.7563 + }, + { + "start": 225.56, + "end": 226.0, + "probability": 0.9584 + }, + { + "start": 226.1, + "end": 228.54, + "probability": 0.7859 + }, + { + "start": 229.72, + "end": 231.5, + "probability": 0.9807 + }, + { + "start": 231.6, + "end": 233.24, + "probability": 0.6665 + }, + { + "start": 234.4, + "end": 237.38, + "probability": 0.9319 + }, + { + "start": 251.0, + "end": 252.4, + "probability": 0.7693 + }, + { + "start": 252.46, + "end": 254.62, + "probability": 0.8186 + }, + { + "start": 254.68, + "end": 254.92, + "probability": 0.9097 + }, + { + "start": 264.32, + "end": 265.9, + "probability": 0.654 + }, + { + "start": 267.42, + "end": 268.82, + "probability": 0.8647 + }, + { + "start": 269.8, + "end": 273.08, + "probability": 0.7595 + }, + { + "start": 273.64, + "end": 275.7, + "probability": 0.8626 + }, + { + "start": 275.94, + "end": 281.02, + "probability": 0.9738 + }, + { + "start": 282.02, + "end": 283.1, + "probability": 0.8091 + }, + { + "start": 283.32, + "end": 284.54, + "probability": 0.7149 + }, + { + "start": 284.6, + "end": 286.34, + "probability": 0.9854 + }, + { + "start": 286.94, + "end": 289.34, + "probability": 0.8446 + }, + { + "start": 289.9, + "end": 291.28, + "probability": 0.8816 + }, + { + "start": 291.94, + "end": 293.86, + "probability": 0.8728 + }, + { + "start": 294.96, + "end": 296.48, + "probability": 0.6341 + }, + { + "start": 296.68, + "end": 298.58, + "probability": 0.958 + }, + { + "start": 298.98, + "end": 300.44, + "probability": 0.8797 + }, + { + "start": 301.12, + "end": 301.76, + "probability": 0.6567 + }, + { + "start": 302.12, + "end": 307.46, + "probability": 0.9835 + }, + { + "start": 307.68, + "end": 308.06, + "probability": 0.7092 + }, + { + "start": 309.02, + "end": 311.48, + "probability": 0.9982 + }, + { + "start": 312.16, + "end": 313.64, + "probability": 0.8749 + }, + { + "start": 314.34, + "end": 318.6, + "probability": 0.9283 + }, + { + "start": 319.38, + "end": 320.92, + "probability": 0.9985 + }, + { + "start": 321.52, + "end": 322.66, + "probability": 0.9934 + }, + { + "start": 323.2, + "end": 326.4, + "probability": 0.9944 + }, + { + "start": 327.0, + "end": 327.42, + "probability": 0.9233 + }, + { + "start": 328.62, + "end": 330.64, + "probability": 0.991 + }, + { + "start": 332.12, + "end": 335.88, + "probability": 0.9388 + }, + { + "start": 336.4, + "end": 337.9, + "probability": 0.7354 + }, + { + "start": 338.96, + "end": 342.42, + "probability": 0.9958 + }, + { + "start": 342.42, + "end": 345.58, + "probability": 0.98 + }, + { + "start": 345.58, + "end": 350.26, + "probability": 0.9113 + }, + { + "start": 351.1, + "end": 355.12, + "probability": 0.78 + }, + { + "start": 355.92, + "end": 360.54, + "probability": 0.924 + }, + { + "start": 360.78, + "end": 361.14, + "probability": 0.8384 + }, + { + "start": 362.02, + "end": 363.82, + "probability": 0.6292 + }, + { + "start": 363.9, + "end": 364.32, + "probability": 0.6486 + }, + { + "start": 364.48, + "end": 367.16, + "probability": 0.9519 + }, + { + "start": 368.1, + "end": 369.66, + "probability": 0.6056 + }, + { + "start": 370.1, + "end": 373.84, + "probability": 0.9613 + }, + { + "start": 374.44, + "end": 377.84, + "probability": 0.8933 + }, + { + "start": 378.42, + "end": 379.84, + "probability": 0.9531 + }, + { + "start": 380.0, + "end": 380.7, + "probability": 0.9548 + }, + { + "start": 381.82, + "end": 383.26, + "probability": 0.9491 + }, + { + "start": 384.0, + "end": 386.86, + "probability": 0.0327 + }, + { + "start": 387.26, + "end": 387.5, + "probability": 0.1445 + }, + { + "start": 388.08, + "end": 389.98, + "probability": 0.9217 + }, + { + "start": 393.74, + "end": 395.76, + "probability": 0.8513 + }, + { + "start": 400.14, + "end": 402.84, + "probability": 0.9275 + }, + { + "start": 403.44, + "end": 407.7, + "probability": 0.7429 + }, + { + "start": 408.12, + "end": 411.72, + "probability": 0.9256 + }, + { + "start": 411.76, + "end": 412.24, + "probability": 0.2809 + }, + { + "start": 412.46, + "end": 412.96, + "probability": 0.9299 + }, + { + "start": 414.73, + "end": 421.36, + "probability": 0.874 + }, + { + "start": 422.46, + "end": 426.2, + "probability": 0.984 + }, + { + "start": 426.82, + "end": 427.62, + "probability": 0.8053 + }, + { + "start": 427.78, + "end": 429.54, + "probability": 0.7571 + }, + { + "start": 429.7, + "end": 430.54, + "probability": 0.7284 + }, + { + "start": 431.1, + "end": 431.45, + "probability": 0.6819 + }, + { + "start": 432.62, + "end": 435.16, + "probability": 0.7334 + }, + { + "start": 435.78, + "end": 436.5, + "probability": 0.9165 + }, + { + "start": 436.86, + "end": 438.88, + "probability": 0.6239 + }, + { + "start": 438.92, + "end": 439.16, + "probability": 0.6181 + }, + { + "start": 440.32, + "end": 440.67, + "probability": 0.5571 + }, + { + "start": 440.98, + "end": 441.77, + "probability": 0.7952 + }, + { + "start": 441.92, + "end": 442.06, + "probability": 0.9136 + }, + { + "start": 442.52, + "end": 443.29, + "probability": 0.9132 + }, + { + "start": 443.96, + "end": 445.5, + "probability": 0.9259 + }, + { + "start": 446.06, + "end": 447.78, + "probability": 0.9476 + }, + { + "start": 449.2, + "end": 449.82, + "probability": 0.9655 + }, + { + "start": 450.64, + "end": 451.96, + "probability": 0.9062 + }, + { + "start": 452.62, + "end": 453.58, + "probability": 0.9035 + }, + { + "start": 454.1, + "end": 455.16, + "probability": 0.8618 + }, + { + "start": 455.94, + "end": 457.48, + "probability": 0.5575 + }, + { + "start": 458.76, + "end": 462.46, + "probability": 0.9647 + }, + { + "start": 463.18, + "end": 466.84, + "probability": 0.9826 + }, + { + "start": 467.44, + "end": 468.92, + "probability": 0.9769 + }, + { + "start": 470.0, + "end": 473.84, + "probability": 0.9858 + }, + { + "start": 474.24, + "end": 477.24, + "probability": 0.936 + }, + { + "start": 477.56, + "end": 477.82, + "probability": 0.8232 + }, + { + "start": 478.54, + "end": 479.28, + "probability": 0.4953 + }, + { + "start": 479.38, + "end": 480.68, + "probability": 0.9576 + }, + { + "start": 480.74, + "end": 481.3, + "probability": 0.7535 + }, + { + "start": 481.4, + "end": 482.5, + "probability": 0.7768 + }, + { + "start": 483.68, + "end": 484.2, + "probability": 0.5533 + }, + { + "start": 485.02, + "end": 485.88, + "probability": 0.7615 + }, + { + "start": 486.04, + "end": 488.68, + "probability": 0.7082 + }, + { + "start": 489.76, + "end": 497.32, + "probability": 0.9951 + }, + { + "start": 497.66, + "end": 505.92, + "probability": 0.9734 + }, + { + "start": 507.04, + "end": 514.88, + "probability": 0.9641 + }, + { + "start": 515.02, + "end": 516.58, + "probability": 0.983 + }, + { + "start": 517.04, + "end": 517.56, + "probability": 0.9611 + }, + { + "start": 518.12, + "end": 519.48, + "probability": 0.8826 + }, + { + "start": 519.66, + "end": 520.62, + "probability": 0.9645 + }, + { + "start": 520.82, + "end": 522.89, + "probability": 0.8442 + }, + { + "start": 523.6, + "end": 527.02, + "probability": 0.9956 + }, + { + "start": 527.22, + "end": 529.24, + "probability": 0.9972 + }, + { + "start": 529.4, + "end": 532.16, + "probability": 0.7373 + }, + { + "start": 532.22, + "end": 534.24, + "probability": 0.9702 + }, + { + "start": 534.9, + "end": 538.98, + "probability": 0.9968 + }, + { + "start": 539.12, + "end": 542.21, + "probability": 0.8369 + }, + { + "start": 543.82, + "end": 546.66, + "probability": 0.8253 + }, + { + "start": 547.26, + "end": 548.94, + "probability": 0.8193 + }, + { + "start": 549.0, + "end": 550.76, + "probability": 0.7617 + }, + { + "start": 550.86, + "end": 551.9, + "probability": 0.9784 + }, + { + "start": 552.26, + "end": 553.24, + "probability": 0.6891 + }, + { + "start": 554.04, + "end": 559.26, + "probability": 0.9023 + }, + { + "start": 560.32, + "end": 563.06, + "probability": 0.8536 + }, + { + "start": 563.2, + "end": 565.24, + "probability": 0.6654 + }, + { + "start": 565.66, + "end": 568.72, + "probability": 0.9502 + }, + { + "start": 568.84, + "end": 569.16, + "probability": 0.775 + }, + { + "start": 569.86, + "end": 570.3, + "probability": 0.6664 + }, + { + "start": 570.48, + "end": 572.22, + "probability": 0.9601 + }, + { + "start": 572.86, + "end": 574.62, + "probability": 0.8463 + }, + { + "start": 579.46, + "end": 580.18, + "probability": 0.7153 + }, + { + "start": 580.22, + "end": 581.34, + "probability": 0.7473 + }, + { + "start": 582.08, + "end": 586.2, + "probability": 0.7445 + }, + { + "start": 586.74, + "end": 587.52, + "probability": 0.9708 + }, + { + "start": 588.42, + "end": 592.5, + "probability": 0.9988 + }, + { + "start": 592.5, + "end": 594.94, + "probability": 0.9322 + }, + { + "start": 595.66, + "end": 597.28, + "probability": 0.9722 + }, + { + "start": 598.28, + "end": 603.76, + "probability": 0.9664 + }, + { + "start": 603.76, + "end": 610.7, + "probability": 0.7651 + }, + { + "start": 612.04, + "end": 614.28, + "probability": 0.998 + }, + { + "start": 615.0, + "end": 616.4, + "probability": 0.9546 + }, + { + "start": 616.98, + "end": 621.8, + "probability": 0.6126 + }, + { + "start": 622.52, + "end": 624.91, + "probability": 0.9802 + }, + { + "start": 625.66, + "end": 630.01, + "probability": 0.9901 + }, + { + "start": 630.6, + "end": 633.04, + "probability": 0.9971 + }, + { + "start": 633.04, + "end": 638.22, + "probability": 0.9941 + }, + { + "start": 639.18, + "end": 640.98, + "probability": 0.5294 + }, + { + "start": 641.9, + "end": 646.04, + "probability": 0.9949 + }, + { + "start": 646.04, + "end": 650.18, + "probability": 0.9942 + }, + { + "start": 650.86, + "end": 654.52, + "probability": 0.6329 + }, + { + "start": 654.84, + "end": 655.12, + "probability": 0.8848 + }, + { + "start": 655.96, + "end": 656.82, + "probability": 0.6747 + }, + { + "start": 657.04, + "end": 659.26, + "probability": 0.6174 + }, + { + "start": 659.78, + "end": 660.84, + "probability": 0.9664 + }, + { + "start": 668.1, + "end": 670.91, + "probability": 0.7074 + }, + { + "start": 672.3, + "end": 678.34, + "probability": 0.9888 + }, + { + "start": 679.94, + "end": 685.12, + "probability": 0.9629 + }, + { + "start": 687.56, + "end": 691.34, + "probability": 0.982 + }, + { + "start": 691.42, + "end": 695.52, + "probability": 0.998 + }, + { + "start": 696.54, + "end": 700.0, + "probability": 0.7609 + }, + { + "start": 700.64, + "end": 703.48, + "probability": 0.9981 + }, + { + "start": 704.0, + "end": 704.5, + "probability": 0.79 + }, + { + "start": 704.54, + "end": 705.06, + "probability": 0.951 + }, + { + "start": 705.14, + "end": 709.54, + "probability": 0.9577 + }, + { + "start": 709.66, + "end": 710.28, + "probability": 0.6694 + }, + { + "start": 711.04, + "end": 714.98, + "probability": 0.9579 + }, + { + "start": 715.28, + "end": 716.66, + "probability": 0.8564 + }, + { + "start": 717.4, + "end": 721.4, + "probability": 0.8784 + }, + { + "start": 722.12, + "end": 724.36, + "probability": 0.9446 + }, + { + "start": 724.36, + "end": 727.08, + "probability": 0.9827 + }, + { + "start": 727.66, + "end": 732.22, + "probability": 0.9985 + }, + { + "start": 732.58, + "end": 737.02, + "probability": 0.999 + }, + { + "start": 737.56, + "end": 738.8, + "probability": 0.7038 + }, + { + "start": 738.9, + "end": 741.06, + "probability": 0.9756 + }, + { + "start": 741.52, + "end": 745.1, + "probability": 0.9912 + }, + { + "start": 745.74, + "end": 747.84, + "probability": 0.9134 + }, + { + "start": 747.94, + "end": 748.4, + "probability": 0.7461 + }, + { + "start": 748.52, + "end": 749.92, + "probability": 0.9568 + }, + { + "start": 750.68, + "end": 756.46, + "probability": 0.9928 + }, + { + "start": 758.32, + "end": 759.14, + "probability": 0.5564 + }, + { + "start": 759.84, + "end": 761.88, + "probability": 0.9746 + }, + { + "start": 762.46, + "end": 763.72, + "probability": 0.812 + }, + { + "start": 770.5, + "end": 771.31, + "probability": 0.5928 + }, + { + "start": 771.62, + "end": 772.38, + "probability": 0.7408 + }, + { + "start": 773.18, + "end": 773.84, + "probability": 0.8392 + }, + { + "start": 773.92, + "end": 776.4, + "probability": 0.9867 + }, + { + "start": 776.8, + "end": 780.78, + "probability": 0.9764 + }, + { + "start": 780.78, + "end": 785.27, + "probability": 0.9861 + }, + { + "start": 785.92, + "end": 789.76, + "probability": 0.9871 + }, + { + "start": 789.78, + "end": 796.14, + "probability": 0.9927 + }, + { + "start": 796.72, + "end": 798.18, + "probability": 0.8352 + }, + { + "start": 799.06, + "end": 802.0, + "probability": 0.9998 + }, + { + "start": 803.12, + "end": 804.78, + "probability": 0.9797 + }, + { + "start": 805.5, + "end": 807.98, + "probability": 0.989 + }, + { + "start": 808.12, + "end": 811.16, + "probability": 0.981 + }, + { + "start": 812.52, + "end": 817.08, + "probability": 0.9909 + }, + { + "start": 817.5, + "end": 821.56, + "probability": 0.617 + }, + { + "start": 823.1, + "end": 824.1, + "probability": 0.8762 + }, + { + "start": 824.14, + "end": 826.58, + "probability": 0.6367 + }, + { + "start": 826.9, + "end": 831.6, + "probability": 0.8481 + }, + { + "start": 832.36, + "end": 833.72, + "probability": 0.6074 + }, + { + "start": 833.84, + "end": 836.92, + "probability": 0.9854 + }, + { + "start": 837.34, + "end": 837.7, + "probability": 0.5519 + }, + { + "start": 838.18, + "end": 842.56, + "probability": 0.984 + }, + { + "start": 843.52, + "end": 844.04, + "probability": 0.541 + }, + { + "start": 844.18, + "end": 845.7, + "probability": 0.7622 + }, + { + "start": 845.76, + "end": 846.34, + "probability": 0.5486 + }, + { + "start": 846.36, + "end": 848.2, + "probability": 0.8899 + }, + { + "start": 853.74, + "end": 854.48, + "probability": 0.6651 + }, + { + "start": 854.58, + "end": 855.8, + "probability": 0.7446 + }, + { + "start": 855.96, + "end": 856.88, + "probability": 0.7891 + }, + { + "start": 857.1, + "end": 858.42, + "probability": 0.8655 + }, + { + "start": 859.14, + "end": 862.34, + "probability": 0.9677 + }, + { + "start": 863.0, + "end": 865.06, + "probability": 0.9624 + }, + { + "start": 865.7, + "end": 868.42, + "probability": 0.9742 + }, + { + "start": 868.54, + "end": 869.38, + "probability": 0.7426 + }, + { + "start": 869.98, + "end": 871.38, + "probability": 0.8486 + }, + { + "start": 871.5, + "end": 875.12, + "probability": 0.9888 + }, + { + "start": 875.48, + "end": 877.1, + "probability": 0.9961 + }, + { + "start": 877.7, + "end": 879.16, + "probability": 0.8337 + }, + { + "start": 879.44, + "end": 881.38, + "probability": 0.9818 + }, + { + "start": 882.32, + "end": 883.28, + "probability": 0.6465 + }, + { + "start": 883.54, + "end": 884.3, + "probability": 0.9493 + }, + { + "start": 884.42, + "end": 885.34, + "probability": 0.7041 + }, + { + "start": 885.78, + "end": 887.0, + "probability": 0.9939 + }, + { + "start": 887.14, + "end": 888.28, + "probability": 0.8748 + }, + { + "start": 888.8, + "end": 890.72, + "probability": 0.9692 + }, + { + "start": 891.12, + "end": 893.56, + "probability": 0.9933 + }, + { + "start": 894.06, + "end": 897.7, + "probability": 0.6902 + }, + { + "start": 898.14, + "end": 898.18, + "probability": 0.0891 + }, + { + "start": 898.18, + "end": 900.66, + "probability": 0.9492 + }, + { + "start": 900.81, + "end": 904.36, + "probability": 0.9362 + }, + { + "start": 904.54, + "end": 904.76, + "probability": 0.7708 + }, + { + "start": 905.26, + "end": 910.1, + "probability": 0.9927 + }, + { + "start": 910.62, + "end": 912.86, + "probability": 0.6862 + }, + { + "start": 913.34, + "end": 917.2, + "probability": 0.9908 + }, + { + "start": 917.6, + "end": 920.34, + "probability": 0.8745 + }, + { + "start": 921.02, + "end": 923.42, + "probability": 0.8739 + }, + { + "start": 924.7, + "end": 924.94, + "probability": 0.2022 + }, + { + "start": 924.94, + "end": 927.18, + "probability": 0.0713 + }, + { + "start": 927.32, + "end": 927.76, + "probability": 0.7388 + }, + { + "start": 928.78, + "end": 929.4, + "probability": 0.6262 + }, + { + "start": 929.48, + "end": 931.84, + "probability": 0.7158 + }, + { + "start": 932.52, + "end": 934.42, + "probability": 0.8501 + }, + { + "start": 942.72, + "end": 944.54, + "probability": 0.5811 + }, + { + "start": 945.4, + "end": 951.32, + "probability": 0.6522 + }, + { + "start": 952.32, + "end": 952.8, + "probability": 0.5859 + }, + { + "start": 953.34, + "end": 957.06, + "probability": 0.8885 + }, + { + "start": 959.3, + "end": 962.9, + "probability": 0.9653 + }, + { + "start": 963.76, + "end": 967.72, + "probability": 0.987 + }, + { + "start": 967.72, + "end": 971.64, + "probability": 0.8443 + }, + { + "start": 971.9, + "end": 976.48, + "probability": 0.9647 + }, + { + "start": 976.48, + "end": 979.7, + "probability": 0.8584 + }, + { + "start": 980.82, + "end": 982.93, + "probability": 0.939 + }, + { + "start": 983.12, + "end": 989.74, + "probability": 0.9717 + }, + { + "start": 991.28, + "end": 993.26, + "probability": 0.9304 + }, + { + "start": 994.2, + "end": 995.58, + "probability": 0.5842 + }, + { + "start": 996.44, + "end": 997.92, + "probability": 0.5342 + }, + { + "start": 998.7, + "end": 1000.2, + "probability": 0.2426 + }, + { + "start": 1001.98, + "end": 1003.02, + "probability": 0.9812 + }, + { + "start": 1003.26, + "end": 1007.84, + "probability": 0.9704 + }, + { + "start": 1008.5, + "end": 1009.48, + "probability": 0.8315 + }, + { + "start": 1009.68, + "end": 1014.89, + "probability": 0.9535 + }, + { + "start": 1015.32, + "end": 1020.84, + "probability": 0.9444 + }, + { + "start": 1021.52, + "end": 1025.0, + "probability": 0.9844 + }, + { + "start": 1025.6, + "end": 1029.3, + "probability": 0.9528 + }, + { + "start": 1029.84, + "end": 1031.56, + "probability": 0.6681 + }, + { + "start": 1031.7, + "end": 1036.16, + "probability": 0.9159 + }, + { + "start": 1036.3, + "end": 1037.68, + "probability": 0.6045 + }, + { + "start": 1038.36, + "end": 1038.94, + "probability": 0.0921 + }, + { + "start": 1038.94, + "end": 1039.02, + "probability": 0.0268 + }, + { + "start": 1039.02, + "end": 1041.42, + "probability": 0.4156 + }, + { + "start": 1047.04, + "end": 1048.84, + "probability": 0.0273 + }, + { + "start": 1049.11, + "end": 1050.34, + "probability": 0.1196 + }, + { + "start": 1050.34, + "end": 1053.83, + "probability": 0.0462 + }, + { + "start": 1055.48, + "end": 1058.14, + "probability": 0.0929 + }, + { + "start": 1059.74, + "end": 1060.74, + "probability": 0.1531 + }, + { + "start": 1061.4, + "end": 1065.38, + "probability": 0.1139 + }, + { + "start": 1066.1, + "end": 1067.76, + "probability": 0.1214 + }, + { + "start": 1068.6, + "end": 1069.98, + "probability": 0.0593 + }, + { + "start": 1069.98, + "end": 1070.55, + "probability": 0.1437 + }, + { + "start": 1073.38, + "end": 1073.42, + "probability": 0.0275 + }, + { + "start": 1073.42, + "end": 1073.42, + "probability": 0.0493 + }, + { + "start": 1073.42, + "end": 1073.86, + "probability": 0.0686 + }, + { + "start": 1078.96, + "end": 1081.62, + "probability": 0.6875 + }, + { + "start": 1083.34, + "end": 1083.94, + "probability": 0.1363 + }, + { + "start": 1083.94, + "end": 1087.94, + "probability": 0.9921 + }, + { + "start": 1089.18, + "end": 1098.22, + "probability": 0.9212 + }, + { + "start": 1099.99, + "end": 1106.94, + "probability": 0.9582 + }, + { + "start": 1108.14, + "end": 1111.94, + "probability": 0.7238 + }, + { + "start": 1112.16, + "end": 1114.57, + "probability": 0.981 + }, + { + "start": 1114.92, + "end": 1116.02, + "probability": 0.4753 + }, + { + "start": 1116.3, + "end": 1119.48, + "probability": 0.7498 + }, + { + "start": 1121.57, + "end": 1126.47, + "probability": 0.9962 + }, + { + "start": 1127.84, + "end": 1129.76, + "probability": 0.9856 + }, + { + "start": 1129.84, + "end": 1136.6, + "probability": 0.9758 + }, + { + "start": 1138.5, + "end": 1141.16, + "probability": 0.894 + }, + { + "start": 1142.04, + "end": 1145.3, + "probability": 0.8347 + }, + { + "start": 1145.38, + "end": 1148.68, + "probability": 0.8655 + }, + { + "start": 1149.68, + "end": 1157.86, + "probability": 0.9773 + }, + { + "start": 1158.32, + "end": 1161.94, + "probability": 0.6937 + }, + { + "start": 1162.48, + "end": 1170.84, + "probability": 0.9787 + }, + { + "start": 1171.32, + "end": 1171.96, + "probability": 0.5242 + }, + { + "start": 1172.92, + "end": 1178.14, + "probability": 0.995 + }, + { + "start": 1178.32, + "end": 1179.62, + "probability": 0.8121 + }, + { + "start": 1180.42, + "end": 1180.48, + "probability": 0.0426 + }, + { + "start": 1180.48, + "end": 1184.84, + "probability": 0.8108 + }, + { + "start": 1184.84, + "end": 1191.12, + "probability": 0.7893 + }, + { + "start": 1191.3, + "end": 1194.14, + "probability": 0.9865 + }, + { + "start": 1194.68, + "end": 1195.28, + "probability": 0.6136 + }, + { + "start": 1195.42, + "end": 1198.24, + "probability": 0.8035 + }, + { + "start": 1198.94, + "end": 1200.86, + "probability": 0.1099 + }, + { + "start": 1200.86, + "end": 1200.86, + "probability": 0.0198 + }, + { + "start": 1200.86, + "end": 1200.86, + "probability": 0.2732 + }, + { + "start": 1200.86, + "end": 1202.23, + "probability": 0.5296 + }, + { + "start": 1202.56, + "end": 1202.92, + "probability": 0.1922 + }, + { + "start": 1202.92, + "end": 1204.26, + "probability": 0.5311 + }, + { + "start": 1204.26, + "end": 1205.16, + "probability": 0.3346 + }, + { + "start": 1205.2, + "end": 1206.04, + "probability": 0.4294 + }, + { + "start": 1206.34, + "end": 1206.92, + "probability": 0.049 + }, + { + "start": 1206.92, + "end": 1207.7, + "probability": 0.4648 + }, + { + "start": 1208.02, + "end": 1212.26, + "probability": 0.1389 + }, + { + "start": 1212.68, + "end": 1213.3, + "probability": 0.1504 + }, + { + "start": 1214.74, + "end": 1216.64, + "probability": 0.1192 + }, + { + "start": 1217.94, + "end": 1218.02, + "probability": 0.4555 + }, + { + "start": 1218.02, + "end": 1218.12, + "probability": 0.1167 + }, + { + "start": 1218.12, + "end": 1218.12, + "probability": 0.0336 + }, + { + "start": 1218.12, + "end": 1218.12, + "probability": 0.235 + }, + { + "start": 1218.12, + "end": 1218.12, + "probability": 0.0435 + }, + { + "start": 1218.12, + "end": 1222.42, + "probability": 0.8665 + }, + { + "start": 1223.58, + "end": 1225.23, + "probability": 0.1056 + }, + { + "start": 1225.56, + "end": 1226.68, + "probability": 0.5508 + }, + { + "start": 1228.04, + "end": 1229.3, + "probability": 0.3885 + }, + { + "start": 1230.2, + "end": 1231.8, + "probability": 0.5252 + }, + { + "start": 1232.36, + "end": 1234.54, + "probability": 0.2411 + }, + { + "start": 1235.16, + "end": 1237.16, + "probability": 0.6005 + }, + { + "start": 1239.62, + "end": 1242.28, + "probability": 0.1126 + }, + { + "start": 1245.46, + "end": 1247.34, + "probability": 0.1692 + }, + { + "start": 1248.96, + "end": 1252.54, + "probability": 0.0097 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1304.0, + "end": 1304.0, + "probability": 0.0 + }, + { + "start": 1311.88, + "end": 1311.88, + "probability": 0.1158 + }, + { + "start": 1311.88, + "end": 1315.6, + "probability": 0.0689 + }, + { + "start": 1322.68, + "end": 1326.48, + "probability": 0.0711 + }, + { + "start": 1326.48, + "end": 1334.54, + "probability": 0.1462 + }, + { + "start": 1335.56, + "end": 1336.02, + "probability": 0.0111 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1426.0, + "end": 1426.0, + "probability": 0.0 + }, + { + "start": 1429.04, + "end": 1431.68, + "probability": 0.3072 + }, + { + "start": 1432.6, + "end": 1440.02, + "probability": 0.0352 + }, + { + "start": 1440.02, + "end": 1441.82, + "probability": 0.1019 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.0, + "end": 1549.0, + "probability": 0.0 + }, + { + "start": 1549.38, + "end": 1550.32, + "probability": 0.6955 + }, + { + "start": 1550.44, + "end": 1553.56, + "probability": 0.9902 + }, + { + "start": 1554.02, + "end": 1555.54, + "probability": 0.9647 + }, + { + "start": 1555.68, + "end": 1556.1, + "probability": 0.8589 + }, + { + "start": 1556.92, + "end": 1559.54, + "probability": 0.9019 + }, + { + "start": 1559.96, + "end": 1562.9, + "probability": 0.9474 + }, + { + "start": 1563.48, + "end": 1564.1, + "probability": 0.406 + }, + { + "start": 1576.41, + "end": 1578.76, + "probability": 0.7049 + }, + { + "start": 1578.9, + "end": 1579.56, + "probability": 0.6572 + }, + { + "start": 1579.84, + "end": 1580.86, + "probability": 0.8916 + }, + { + "start": 1581.06, + "end": 1583.16, + "probability": 0.9045 + }, + { + "start": 1583.24, + "end": 1584.07, + "probability": 0.9663 + }, + { + "start": 1584.7, + "end": 1588.04, + "probability": 0.9678 + }, + { + "start": 1588.12, + "end": 1589.72, + "probability": 0.9845 + }, + { + "start": 1589.72, + "end": 1589.98, + "probability": 0.6185 + }, + { + "start": 1590.42, + "end": 1591.14, + "probability": 0.7676 + }, + { + "start": 1592.04, + "end": 1593.18, + "probability": 0.9977 + }, + { + "start": 1593.22, + "end": 1596.72, + "probability": 0.9886 + }, + { + "start": 1596.72, + "end": 1600.72, + "probability": 0.8978 + }, + { + "start": 1601.08, + "end": 1602.76, + "probability": 0.9917 + }, + { + "start": 1603.14, + "end": 1607.66, + "probability": 0.9871 + }, + { + "start": 1607.78, + "end": 1608.42, + "probability": 0.925 + }, + { + "start": 1608.48, + "end": 1608.92, + "probability": 0.6099 + }, + { + "start": 1609.34, + "end": 1610.88, + "probability": 0.6686 + }, + { + "start": 1611.22, + "end": 1613.84, + "probability": 0.9973 + }, + { + "start": 1614.02, + "end": 1614.2, + "probability": 0.7678 + }, + { + "start": 1614.96, + "end": 1616.94, + "probability": 0.9891 + }, + { + "start": 1617.62, + "end": 1618.9, + "probability": 0.9166 + }, + { + "start": 1619.24, + "end": 1619.74, + "probability": 0.5829 + }, + { + "start": 1619.82, + "end": 1619.94, + "probability": 0.8579 + }, + { + "start": 1620.02, + "end": 1622.16, + "probability": 0.9967 + }, + { + "start": 1622.58, + "end": 1624.24, + "probability": 0.9832 + }, + { + "start": 1624.66, + "end": 1626.35, + "probability": 0.9579 + }, + { + "start": 1626.82, + "end": 1629.52, + "probability": 0.9757 + }, + { + "start": 1629.6, + "end": 1630.16, + "probability": 0.9585 + }, + { + "start": 1630.56, + "end": 1630.96, + "probability": 0.9465 + }, + { + "start": 1631.04, + "end": 1631.56, + "probability": 0.9458 + }, + { + "start": 1631.6, + "end": 1632.86, + "probability": 0.9525 + }, + { + "start": 1633.3, + "end": 1636.98, + "probability": 0.9608 + }, + { + "start": 1637.42, + "end": 1639.28, + "probability": 0.761 + }, + { + "start": 1639.56, + "end": 1644.14, + "probability": 0.9929 + }, + { + "start": 1644.54, + "end": 1645.18, + "probability": 0.8521 + }, + { + "start": 1645.18, + "end": 1645.68, + "probability": 0.9712 + }, + { + "start": 1645.7, + "end": 1647.14, + "probability": 0.9014 + }, + { + "start": 1647.44, + "end": 1650.66, + "probability": 0.9615 + }, + { + "start": 1651.04, + "end": 1652.12, + "probability": 0.9352 + }, + { + "start": 1652.2, + "end": 1653.54, + "probability": 0.8999 + }, + { + "start": 1653.88, + "end": 1658.88, + "probability": 0.9801 + }, + { + "start": 1659.22, + "end": 1662.56, + "probability": 0.9693 + }, + { + "start": 1663.48, + "end": 1664.06, + "probability": 0.0108 + }, + { + "start": 1664.28, + "end": 1665.34, + "probability": 0.4057 + }, + { + "start": 1665.9, + "end": 1666.56, + "probability": 0.6215 + }, + { + "start": 1666.64, + "end": 1667.74, + "probability": 0.5495 + }, + { + "start": 1667.96, + "end": 1669.38, + "probability": 0.9294 + }, + { + "start": 1669.38, + "end": 1670.14, + "probability": 0.712 + }, + { + "start": 1670.48, + "end": 1671.22, + "probability": 0.7193 + }, + { + "start": 1671.32, + "end": 1673.62, + "probability": 0.9878 + }, + { + "start": 1673.62, + "end": 1678.0, + "probability": 0.9838 + }, + { + "start": 1678.04, + "end": 1680.86, + "probability": 0.9988 + }, + { + "start": 1680.96, + "end": 1682.6, + "probability": 0.9114 + }, + { + "start": 1682.8, + "end": 1684.96, + "probability": 0.9983 + }, + { + "start": 1684.96, + "end": 1686.54, + "probability": 0.9983 + }, + { + "start": 1687.16, + "end": 1690.88, + "probability": 0.9867 + }, + { + "start": 1690.88, + "end": 1694.2, + "probability": 0.9948 + }, + { + "start": 1694.62, + "end": 1696.8, + "probability": 0.9498 + }, + { + "start": 1697.26, + "end": 1699.72, + "probability": 0.9702 + }, + { + "start": 1700.24, + "end": 1701.48, + "probability": 0.9752 + }, + { + "start": 1701.52, + "end": 1701.66, + "probability": 0.8365 + }, + { + "start": 1701.7, + "end": 1702.86, + "probability": 0.6708 + }, + { + "start": 1703.0, + "end": 1705.28, + "probability": 0.9412 + }, + { + "start": 1705.66, + "end": 1707.74, + "probability": 0.8961 + }, + { + "start": 1707.96, + "end": 1709.28, + "probability": 0.9942 + }, + { + "start": 1709.74, + "end": 1710.92, + "probability": 0.991 + }, + { + "start": 1711.42, + "end": 1714.24, + "probability": 0.8414 + }, + { + "start": 1714.62, + "end": 1718.78, + "probability": 0.9973 + }, + { + "start": 1719.04, + "end": 1720.4, + "probability": 0.9081 + }, + { + "start": 1720.44, + "end": 1720.96, + "probability": 0.9537 + }, + { + "start": 1721.02, + "end": 1722.36, + "probability": 0.9653 + }, + { + "start": 1723.04, + "end": 1725.5, + "probability": 0.9592 + }, + { + "start": 1725.68, + "end": 1729.06, + "probability": 0.7822 + }, + { + "start": 1729.36, + "end": 1729.9, + "probability": 0.9653 + }, + { + "start": 1730.18, + "end": 1731.54, + "probability": 0.9824 + }, + { + "start": 1731.74, + "end": 1732.9, + "probability": 0.9839 + }, + { + "start": 1733.72, + "end": 1735.88, + "probability": 0.9846 + }, + { + "start": 1736.72, + "end": 1737.3, + "probability": 0.5327 + }, + { + "start": 1737.38, + "end": 1741.06, + "probability": 0.8536 + }, + { + "start": 1741.46, + "end": 1742.82, + "probability": 0.8213 + }, + { + "start": 1742.94, + "end": 1744.04, + "probability": 0.3859 + }, + { + "start": 1744.18, + "end": 1745.18, + "probability": 0.9648 + }, + { + "start": 1745.26, + "end": 1747.14, + "probability": 0.8562 + }, + { + "start": 1747.58, + "end": 1748.96, + "probability": 0.9597 + }, + { + "start": 1749.32, + "end": 1752.34, + "probability": 0.9977 + }, + { + "start": 1752.34, + "end": 1755.5, + "probability": 0.9959 + }, + { + "start": 1755.78, + "end": 1757.04, + "probability": 0.9076 + }, + { + "start": 1757.66, + "end": 1759.84, + "probability": 0.987 + }, + { + "start": 1760.1, + "end": 1763.5, + "probability": 0.9947 + }, + { + "start": 1764.9, + "end": 1765.82, + "probability": 0.7321 + }, + { + "start": 1766.22, + "end": 1769.12, + "probability": 0.6956 + }, + { + "start": 1770.08, + "end": 1771.92, + "probability": 0.8905 + }, + { + "start": 1772.7, + "end": 1774.8, + "probability": 0.9744 + }, + { + "start": 1775.54, + "end": 1778.52, + "probability": 0.9414 + }, + { + "start": 1779.36, + "end": 1781.3, + "probability": 0.843 + }, + { + "start": 1782.12, + "end": 1783.32, + "probability": 0.6737 + }, + { + "start": 1784.3, + "end": 1785.96, + "probability": 0.7703 + }, + { + "start": 1786.58, + "end": 1787.08, + "probability": 0.4777 + }, + { + "start": 1799.14, + "end": 1800.93, + "probability": 0.9126 + }, + { + "start": 1802.64, + "end": 1804.64, + "probability": 0.707 + }, + { + "start": 1805.76, + "end": 1809.66, + "probability": 0.9198 + }, + { + "start": 1809.84, + "end": 1815.54, + "probability": 0.9446 + }, + { + "start": 1816.86, + "end": 1817.52, + "probability": 0.9785 + }, + { + "start": 1818.74, + "end": 1821.2, + "probability": 0.5399 + }, + { + "start": 1821.94, + "end": 1825.94, + "probability": 0.9879 + }, + { + "start": 1827.3, + "end": 1828.2, + "probability": 0.809 + }, + { + "start": 1829.04, + "end": 1830.06, + "probability": 0.7103 + }, + { + "start": 1831.02, + "end": 1831.76, + "probability": 0.6947 + }, + { + "start": 1833.36, + "end": 1835.28, + "probability": 0.9691 + }, + { + "start": 1836.88, + "end": 1838.62, + "probability": 0.9546 + }, + { + "start": 1839.82, + "end": 1840.56, + "probability": 0.6812 + }, + { + "start": 1841.12, + "end": 1841.78, + "probability": 0.8298 + }, + { + "start": 1842.34, + "end": 1843.96, + "probability": 0.9901 + }, + { + "start": 1845.46, + "end": 1846.4, + "probability": 0.9824 + }, + { + "start": 1846.96, + "end": 1848.24, + "probability": 0.8824 + }, + { + "start": 1850.06, + "end": 1851.52, + "probability": 0.9164 + }, + { + "start": 1851.7, + "end": 1856.46, + "probability": 0.9653 + }, + { + "start": 1857.34, + "end": 1863.36, + "probability": 0.7511 + }, + { + "start": 1864.52, + "end": 1865.74, + "probability": 0.9917 + }, + { + "start": 1866.04, + "end": 1867.0, + "probability": 0.9569 + }, + { + "start": 1867.1, + "end": 1868.38, + "probability": 0.9911 + }, + { + "start": 1869.06, + "end": 1873.08, + "probability": 0.979 + }, + { + "start": 1874.5, + "end": 1876.18, + "probability": 0.6053 + }, + { + "start": 1877.2, + "end": 1877.82, + "probability": 0.5365 + }, + { + "start": 1878.28, + "end": 1881.1, + "probability": 0.9753 + }, + { + "start": 1881.28, + "end": 1882.86, + "probability": 0.8605 + }, + { + "start": 1883.68, + "end": 1884.38, + "probability": 0.8442 + }, + { + "start": 1885.34, + "end": 1888.88, + "probability": 0.9517 + }, + { + "start": 1890.06, + "end": 1890.66, + "probability": 0.9769 + }, + { + "start": 1891.92, + "end": 1894.54, + "probability": 0.9923 + }, + { + "start": 1894.66, + "end": 1895.36, + "probability": 0.7496 + }, + { + "start": 1896.9, + "end": 1897.88, + "probability": 0.9912 + }, + { + "start": 1898.4, + "end": 1899.64, + "probability": 0.9781 + }, + { + "start": 1900.9, + "end": 1905.2, + "probability": 0.9839 + }, + { + "start": 1906.32, + "end": 1910.24, + "probability": 0.9704 + }, + { + "start": 1911.22, + "end": 1911.94, + "probability": 0.6887 + }, + { + "start": 1914.21, + "end": 1914.87, + "probability": 0.3264 + }, + { + "start": 1915.9, + "end": 1916.92, + "probability": 0.5404 + }, + { + "start": 1917.14, + "end": 1917.7, + "probability": 0.8378 + }, + { + "start": 1918.82, + "end": 1920.44, + "probability": 0.9392 + }, + { + "start": 1920.46, + "end": 1922.46, + "probability": 0.9167 + }, + { + "start": 1923.74, + "end": 1924.94, + "probability": 0.876 + }, + { + "start": 1925.6, + "end": 1925.98, + "probability": 0.7337 + }, + { + "start": 1926.6, + "end": 1926.84, + "probability": 0.1798 + }, + { + "start": 1926.84, + "end": 1928.36, + "probability": 0.9242 + }, + { + "start": 1929.2, + "end": 1930.12, + "probability": 0.9315 + }, + { + "start": 1932.6, + "end": 1935.88, + "probability": 0.9697 + }, + { + "start": 1936.0, + "end": 1939.3, + "probability": 0.998 + }, + { + "start": 1940.42, + "end": 1943.24, + "probability": 0.9983 + }, + { + "start": 1943.24, + "end": 1946.7, + "probability": 0.9924 + }, + { + "start": 1947.5, + "end": 1948.36, + "probability": 0.6939 + }, + { + "start": 1948.5, + "end": 1951.84, + "probability": 0.8505 + }, + { + "start": 1952.88, + "end": 1955.58, + "probability": 0.9429 + }, + { + "start": 1956.16, + "end": 1956.32, + "probability": 0.707 + }, + { + "start": 1957.1, + "end": 1959.18, + "probability": 0.978 + }, + { + "start": 1959.78, + "end": 1960.32, + "probability": 0.7098 + }, + { + "start": 1960.5, + "end": 1962.78, + "probability": 0.9759 + }, + { + "start": 1963.0, + "end": 1963.86, + "probability": 0.903 + }, + { + "start": 1964.5, + "end": 1965.64, + "probability": 0.9901 + }, + { + "start": 1966.48, + "end": 1969.62, + "probability": 0.954 + }, + { + "start": 1969.78, + "end": 1970.0, + "probability": 0.772 + }, + { + "start": 1971.46, + "end": 1972.08, + "probability": 0.8934 + }, + { + "start": 1972.36, + "end": 1974.98, + "probability": 0.7943 + }, + { + "start": 1987.16, + "end": 1989.28, + "probability": 0.8284 + }, + { + "start": 1990.16, + "end": 1994.42, + "probability": 0.7485 + }, + { + "start": 1995.64, + "end": 1999.48, + "probability": 0.9863 + }, + { + "start": 2001.04, + "end": 2003.44, + "probability": 0.9953 + }, + { + "start": 2004.34, + "end": 2006.34, + "probability": 0.9924 + }, + { + "start": 2007.72, + "end": 2011.22, + "probability": 0.8943 + }, + { + "start": 2012.56, + "end": 2016.62, + "probability": 0.999 + }, + { + "start": 2018.18, + "end": 2019.5, + "probability": 0.9717 + }, + { + "start": 2021.98, + "end": 2023.46, + "probability": 0.9801 + }, + { + "start": 2025.12, + "end": 2028.58, + "probability": 0.9917 + }, + { + "start": 2029.46, + "end": 2031.56, + "probability": 0.9959 + }, + { + "start": 2032.72, + "end": 2033.22, + "probability": 0.9744 + }, + { + "start": 2033.4, + "end": 2040.48, + "probability": 0.9917 + }, + { + "start": 2040.48, + "end": 2045.42, + "probability": 0.9965 + }, + { + "start": 2046.76, + "end": 2049.88, + "probability": 0.802 + }, + { + "start": 2052.66, + "end": 2053.0, + "probability": 0.926 + }, + { + "start": 2053.86, + "end": 2055.4, + "probability": 0.9289 + }, + { + "start": 2056.06, + "end": 2057.6, + "probability": 0.936 + }, + { + "start": 2058.22, + "end": 2059.64, + "probability": 0.792 + }, + { + "start": 2060.24, + "end": 2061.44, + "probability": 0.8884 + }, + { + "start": 2062.46, + "end": 2064.22, + "probability": 0.8035 + }, + { + "start": 2065.36, + "end": 2068.76, + "probability": 0.8352 + }, + { + "start": 2069.62, + "end": 2073.38, + "probability": 0.9532 + }, + { + "start": 2076.52, + "end": 2077.04, + "probability": 0.9871 + }, + { + "start": 2078.46, + "end": 2080.14, + "probability": 0.753 + }, + { + "start": 2081.38, + "end": 2086.1, + "probability": 0.9556 + }, + { + "start": 2086.3, + "end": 2086.4, + "probability": 0.4744 + }, + { + "start": 2086.58, + "end": 2086.68, + "probability": 0.5051 + }, + { + "start": 2086.78, + "end": 2087.56, + "probability": 0.7671 + }, + { + "start": 2089.2, + "end": 2092.48, + "probability": 0.9269 + }, + { + "start": 2093.78, + "end": 2096.84, + "probability": 0.998 + }, + { + "start": 2098.96, + "end": 2100.22, + "probability": 0.9542 + }, + { + "start": 2101.24, + "end": 2103.44, + "probability": 0.9585 + }, + { + "start": 2104.2, + "end": 2105.66, + "probability": 0.5742 + }, + { + "start": 2106.48, + "end": 2107.7, + "probability": 0.8534 + }, + { + "start": 2109.24, + "end": 2111.92, + "probability": 0.9641 + }, + { + "start": 2113.1, + "end": 2116.06, + "probability": 0.9511 + }, + { + "start": 2116.88, + "end": 2121.22, + "probability": 0.9497 + }, + { + "start": 2121.58, + "end": 2127.8, + "probability": 0.7882 + }, + { + "start": 2128.0, + "end": 2128.18, + "probability": 0.4229 + }, + { + "start": 2128.18, + "end": 2129.48, + "probability": 0.83 + }, + { + "start": 2130.95, + "end": 2131.46, + "probability": 0.6517 + }, + { + "start": 2131.56, + "end": 2131.56, + "probability": 0.3306 + }, + { + "start": 2131.56, + "end": 2132.34, + "probability": 0.771 + }, + { + "start": 2132.8, + "end": 2133.52, + "probability": 0.8322 + }, + { + "start": 2133.56, + "end": 2139.96, + "probability": 0.8926 + }, + { + "start": 2140.68, + "end": 2141.24, + "probability": 0.4553 + }, + { + "start": 2141.64, + "end": 2144.12, + "probability": 0.7547 + }, + { + "start": 2145.8, + "end": 2146.5, + "probability": 0.7429 + }, + { + "start": 2146.62, + "end": 2148.5, + "probability": 0.8497 + }, + { + "start": 2148.94, + "end": 2156.08, + "probability": 0.6826 + }, + { + "start": 2156.16, + "end": 2158.94, + "probability": 0.0183 + }, + { + "start": 2159.84, + "end": 2159.84, + "probability": 0.1287 + }, + { + "start": 2159.84, + "end": 2160.84, + "probability": 0.0637 + }, + { + "start": 2161.38, + "end": 2164.9, + "probability": 0.6437 + }, + { + "start": 2165.52, + "end": 2171.34, + "probability": 0.872 + }, + { + "start": 2171.86, + "end": 2173.92, + "probability": 0.7202 + }, + { + "start": 2174.78, + "end": 2174.88, + "probability": 0.0884 + }, + { + "start": 2176.02, + "end": 2178.98, + "probability": 0.9908 + }, + { + "start": 2179.14, + "end": 2179.54, + "probability": 0.7574 + }, + { + "start": 2179.64, + "end": 2180.22, + "probability": 0.7996 + }, + { + "start": 2182.5, + "end": 2186.16, + "probability": 0.753 + }, + { + "start": 2186.22, + "end": 2186.62, + "probability": 0.0874 + }, + { + "start": 2186.84, + "end": 2186.84, + "probability": 0.1799 + }, + { + "start": 2186.84, + "end": 2187.26, + "probability": 0.1035 + }, + { + "start": 2187.98, + "end": 2190.35, + "probability": 0.069 + }, + { + "start": 2193.16, + "end": 2194.34, + "probability": 0.3653 + }, + { + "start": 2194.48, + "end": 2198.6, + "probability": 0.1093 + }, + { + "start": 2199.16, + "end": 2199.9, + "probability": 0.0367 + }, + { + "start": 2199.9, + "end": 2200.42, + "probability": 0.0892 + }, + { + "start": 2201.4, + "end": 2203.5, + "probability": 0.242 + }, + { + "start": 2203.5, + "end": 2203.5, + "probability": 0.6157 + }, + { + "start": 2203.5, + "end": 2206.43, + "probability": 0.8916 + }, + { + "start": 2208.3, + "end": 2208.86, + "probability": 0.2417 + }, + { + "start": 2208.86, + "end": 2210.58, + "probability": 0.0663 + }, + { + "start": 2210.84, + "end": 2215.3, + "probability": 0.7372 + }, + { + "start": 2215.9, + "end": 2219.28, + "probability": 0.9051 + }, + { + "start": 2220.46, + "end": 2221.98, + "probability": 0.9811 + }, + { + "start": 2223.06, + "end": 2226.5, + "probability": 0.7655 + }, + { + "start": 2227.68, + "end": 2229.92, + "probability": 0.9943 + }, + { + "start": 2231.2, + "end": 2233.71, + "probability": 0.8522 + }, + { + "start": 2234.5, + "end": 2235.54, + "probability": 0.9956 + }, + { + "start": 2236.52, + "end": 2238.04, + "probability": 0.9906 + }, + { + "start": 2239.42, + "end": 2240.41, + "probability": 0.7589 + }, + { + "start": 2241.7, + "end": 2245.54, + "probability": 0.8828 + }, + { + "start": 2247.04, + "end": 2247.58, + "probability": 0.7058 + }, + { + "start": 2248.48, + "end": 2251.66, + "probability": 0.9981 + }, + { + "start": 2252.68, + "end": 2254.02, + "probability": 0.832 + }, + { + "start": 2254.88, + "end": 2256.3, + "probability": 0.9964 + }, + { + "start": 2257.14, + "end": 2262.98, + "probability": 0.9367 + }, + { + "start": 2263.86, + "end": 2265.74, + "probability": 0.9768 + }, + { + "start": 2266.62, + "end": 2268.54, + "probability": 0.9561 + }, + { + "start": 2269.42, + "end": 2271.19, + "probability": 0.998 + }, + { + "start": 2272.94, + "end": 2273.6, + "probability": 0.552 + }, + { + "start": 2274.98, + "end": 2278.14, + "probability": 0.9223 + }, + { + "start": 2278.88, + "end": 2279.68, + "probability": 0.6907 + }, + { + "start": 2280.24, + "end": 2281.36, + "probability": 0.7886 + }, + { + "start": 2281.48, + "end": 2286.5, + "probability": 0.9875 + }, + { + "start": 2287.32, + "end": 2291.98, + "probability": 0.9775 + }, + { + "start": 2292.64, + "end": 2293.96, + "probability": 0.8613 + }, + { + "start": 2295.08, + "end": 2295.74, + "probability": 0.8015 + }, + { + "start": 2297.28, + "end": 2297.56, + "probability": 0.646 + }, + { + "start": 2297.58, + "end": 2298.08, + "probability": 0.519 + }, + { + "start": 2298.28, + "end": 2303.46, + "probability": 0.9881 + }, + { + "start": 2304.2, + "end": 2311.1, + "probability": 0.7935 + }, + { + "start": 2311.94, + "end": 2314.4, + "probability": 0.4872 + }, + { + "start": 2315.34, + "end": 2318.54, + "probability": 0.9841 + }, + { + "start": 2319.74, + "end": 2321.66, + "probability": 0.8885 + }, + { + "start": 2322.7, + "end": 2323.3, + "probability": 0.3375 + }, + { + "start": 2324.48, + "end": 2327.28, + "probability": 0.9896 + }, + { + "start": 2328.34, + "end": 2329.28, + "probability": 0.957 + }, + { + "start": 2329.84, + "end": 2331.54, + "probability": 0.9724 + }, + { + "start": 2331.6, + "end": 2334.02, + "probability": 0.2612 + }, + { + "start": 2334.12, + "end": 2334.46, + "probability": 0.4775 + }, + { + "start": 2334.64, + "end": 2335.43, + "probability": 0.9558 + }, + { + "start": 2335.78, + "end": 2336.68, + "probability": 0.9534 + }, + { + "start": 2336.86, + "end": 2337.9, + "probability": 0.9526 + }, + { + "start": 2338.48, + "end": 2339.14, + "probability": 0.8661 + }, + { + "start": 2339.6, + "end": 2341.28, + "probability": 0.5011 + }, + { + "start": 2341.72, + "end": 2343.5, + "probability": 0.9938 + }, + { + "start": 2344.34, + "end": 2345.36, + "probability": 0.9946 + }, + { + "start": 2347.16, + "end": 2349.24, + "probability": 0.9981 + }, + { + "start": 2349.58, + "end": 2350.78, + "probability": 0.9928 + }, + { + "start": 2350.86, + "end": 2351.46, + "probability": 0.9087 + }, + { + "start": 2352.56, + "end": 2355.66, + "probability": 0.9863 + }, + { + "start": 2356.36, + "end": 2357.84, + "probability": 0.8716 + }, + { + "start": 2358.9, + "end": 2360.53, + "probability": 0.8613 + }, + { + "start": 2361.04, + "end": 2363.96, + "probability": 0.9966 + }, + { + "start": 2364.9, + "end": 2366.09, + "probability": 0.9987 + }, + { + "start": 2367.04, + "end": 2369.84, + "probability": 0.9929 + }, + { + "start": 2370.68, + "end": 2373.08, + "probability": 0.9834 + }, + { + "start": 2374.04, + "end": 2374.5, + "probability": 0.775 + }, + { + "start": 2374.62, + "end": 2375.52, + "probability": 0.8971 + }, + { + "start": 2375.56, + "end": 2377.12, + "probability": 0.7833 + }, + { + "start": 2377.52, + "end": 2379.32, + "probability": 0.9946 + }, + { + "start": 2380.18, + "end": 2383.36, + "probability": 0.9788 + }, + { + "start": 2383.8, + "end": 2385.76, + "probability": 0.7852 + }, + { + "start": 2385.78, + "end": 2387.42, + "probability": 0.8601 + }, + { + "start": 2388.8, + "end": 2390.56, + "probability": 0.9981 + }, + { + "start": 2391.52, + "end": 2392.84, + "probability": 0.9787 + }, + { + "start": 2393.42, + "end": 2396.18, + "probability": 0.8647 + }, + { + "start": 2396.36, + "end": 2397.28, + "probability": 0.74 + }, + { + "start": 2397.7, + "end": 2401.86, + "probability": 0.8621 + }, + { + "start": 2402.6, + "end": 2403.8, + "probability": 0.9444 + }, + { + "start": 2403.98, + "end": 2404.36, + "probability": 0.8494 + }, + { + "start": 2404.36, + "end": 2404.56, + "probability": 0.5948 + }, + { + "start": 2405.1, + "end": 2406.18, + "probability": 0.9385 + }, + { + "start": 2427.92, + "end": 2428.52, + "probability": 0.3505 + }, + { + "start": 2429.3, + "end": 2430.46, + "probability": 0.6552 + }, + { + "start": 2430.66, + "end": 2432.16, + "probability": 0.9257 + }, + { + "start": 2433.22, + "end": 2433.3, + "probability": 0.5945 + }, + { + "start": 2433.3, + "end": 2437.24, + "probability": 0.9665 + }, + { + "start": 2439.46, + "end": 2440.3, + "probability": 0.8567 + }, + { + "start": 2441.3, + "end": 2441.94, + "probability": 0.9854 + }, + { + "start": 2442.74, + "end": 2444.66, + "probability": 0.9982 + }, + { + "start": 2446.08, + "end": 2446.56, + "probability": 0.3432 + }, + { + "start": 2447.68, + "end": 2451.84, + "probability": 0.999 + }, + { + "start": 2451.84, + "end": 2457.04, + "probability": 0.9175 + }, + { + "start": 2459.64, + "end": 2463.78, + "probability": 0.9889 + }, + { + "start": 2464.12, + "end": 2466.84, + "probability": 0.9922 + }, + { + "start": 2467.76, + "end": 2473.1, + "probability": 0.7105 + }, + { + "start": 2473.96, + "end": 2476.8, + "probability": 0.9695 + }, + { + "start": 2478.3, + "end": 2478.78, + "probability": 0.9612 + }, + { + "start": 2479.54, + "end": 2483.18, + "probability": 0.998 + }, + { + "start": 2484.52, + "end": 2485.96, + "probability": 0.9373 + }, + { + "start": 2486.68, + "end": 2488.2, + "probability": 0.5861 + }, + { + "start": 2488.98, + "end": 2492.3, + "probability": 0.9912 + }, + { + "start": 2493.92, + "end": 2496.42, + "probability": 0.9989 + }, + { + "start": 2497.16, + "end": 2497.78, + "probability": 0.8805 + }, + { + "start": 2499.04, + "end": 2500.98, + "probability": 0.9999 + }, + { + "start": 2502.5, + "end": 2504.28, + "probability": 0.995 + }, + { + "start": 2505.1, + "end": 2506.28, + "probability": 0.998 + }, + { + "start": 2507.42, + "end": 2507.52, + "probability": 0.6641 + }, + { + "start": 2507.66, + "end": 2509.7, + "probability": 0.9956 + }, + { + "start": 2509.82, + "end": 2511.92, + "probability": 0.8005 + }, + { + "start": 2512.72, + "end": 2515.12, + "probability": 0.9958 + }, + { + "start": 2516.24, + "end": 2518.36, + "probability": 0.9302 + }, + { + "start": 2519.54, + "end": 2521.32, + "probability": 0.9744 + }, + { + "start": 2521.6, + "end": 2523.84, + "probability": 0.9762 + }, + { + "start": 2525.16, + "end": 2532.34, + "probability": 0.994 + }, + { + "start": 2532.44, + "end": 2533.0, + "probability": 0.9333 + }, + { + "start": 2533.18, + "end": 2533.76, + "probability": 0.7964 + }, + { + "start": 2535.74, + "end": 2537.4, + "probability": 0.9629 + }, + { + "start": 2538.28, + "end": 2539.18, + "probability": 0.9717 + }, + { + "start": 2539.84, + "end": 2540.7, + "probability": 0.9514 + }, + { + "start": 2541.3, + "end": 2542.96, + "probability": 0.6139 + }, + { + "start": 2543.76, + "end": 2545.72, + "probability": 0.9937 + }, + { + "start": 2546.48, + "end": 2548.1, + "probability": 0.916 + }, + { + "start": 2548.84, + "end": 2550.86, + "probability": 0.9973 + }, + { + "start": 2552.28, + "end": 2553.7, + "probability": 0.9361 + }, + { + "start": 2554.72, + "end": 2556.76, + "probability": 0.9909 + }, + { + "start": 2557.4, + "end": 2559.72, + "probability": 0.9878 + }, + { + "start": 2560.62, + "end": 2562.02, + "probability": 0.9934 + }, + { + "start": 2563.26, + "end": 2568.4, + "probability": 0.9974 + }, + { + "start": 2568.7, + "end": 2569.99, + "probability": 0.9861 + }, + { + "start": 2570.68, + "end": 2575.68, + "probability": 0.9824 + }, + { + "start": 2576.74, + "end": 2578.74, + "probability": 0.6311 + }, + { + "start": 2579.46, + "end": 2581.29, + "probability": 0.3623 + }, + { + "start": 2582.76, + "end": 2584.04, + "probability": 0.748 + }, + { + "start": 2585.66, + "end": 2589.68, + "probability": 0.9554 + }, + { + "start": 2590.24, + "end": 2591.66, + "probability": 0.985 + }, + { + "start": 2592.54, + "end": 2594.76, + "probability": 0.9941 + }, + { + "start": 2594.86, + "end": 2595.14, + "probability": 0.798 + }, + { + "start": 2596.64, + "end": 2599.74, + "probability": 0.7113 + }, + { + "start": 2600.82, + "end": 2601.58, + "probability": 0.1546 + }, + { + "start": 2602.96, + "end": 2604.58, + "probability": 0.9858 + }, + { + "start": 2604.72, + "end": 2605.32, + "probability": 0.6988 + }, + { + "start": 2607.22, + "end": 2608.34, + "probability": 0.8105 + }, + { + "start": 2608.34, + "end": 2610.9, + "probability": 0.6694 + }, + { + "start": 2610.9, + "end": 2613.58, + "probability": 0.9656 + }, + { + "start": 2614.34, + "end": 2615.8, + "probability": 0.8857 + }, + { + "start": 2616.48, + "end": 2620.82, + "probability": 0.3286 + }, + { + "start": 2621.36, + "end": 2625.62, + "probability": 0.0286 + }, + { + "start": 2631.74, + "end": 2635.16, + "probability": 0.1373 + }, + { + "start": 2635.16, + "end": 2640.22, + "probability": 0.0518 + }, + { + "start": 2640.56, + "end": 2643.96, + "probability": 0.1554 + }, + { + "start": 2644.8, + "end": 2646.42, + "probability": 0.2897 + }, + { + "start": 2648.24, + "end": 2650.58, + "probability": 0.294 + }, + { + "start": 2650.9, + "end": 2652.0, + "probability": 0.0219 + }, + { + "start": 2652.74, + "end": 2652.86, + "probability": 0.0387 + }, + { + "start": 2652.86, + "end": 2653.26, + "probability": 0.0346 + }, + { + "start": 2654.12, + "end": 2656.54, + "probability": 0.0236 + }, + { + "start": 2658.98, + "end": 2659.44, + "probability": 0.1605 + }, + { + "start": 2662.64, + "end": 2663.26, + "probability": 0.1641 + }, + { + "start": 2663.98, + "end": 2667.6, + "probability": 0.058 + }, + { + "start": 2667.6, + "end": 2668.02, + "probability": 0.1461 + }, + { + "start": 2669.54, + "end": 2669.98, + "probability": 0.0545 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.0, + "end": 2670.0, + "probability": 0.0 + }, + { + "start": 2670.14, + "end": 2670.16, + "probability": 0.2488 + }, + { + "start": 2670.3, + "end": 2674.84, + "probability": 0.9868 + }, + { + "start": 2676.72, + "end": 2680.66, + "probability": 0.588 + }, + { + "start": 2682.46, + "end": 2687.78, + "probability": 0.4092 + }, + { + "start": 2688.94, + "end": 2692.94, + "probability": 0.7466 + }, + { + "start": 2693.06, + "end": 2695.3, + "probability": 0.856 + }, + { + "start": 2696.92, + "end": 2698.6, + "probability": 0.9707 + }, + { + "start": 2699.52, + "end": 2701.82, + "probability": 0.9968 + }, + { + "start": 2702.68, + "end": 2703.98, + "probability": 0.8 + }, + { + "start": 2704.92, + "end": 2705.38, + "probability": 0.7035 + }, + { + "start": 2706.26, + "end": 2709.14, + "probability": 0.9712 + }, + { + "start": 2710.12, + "end": 2711.58, + "probability": 0.9217 + }, + { + "start": 2712.52, + "end": 2714.82, + "probability": 0.6799 + }, + { + "start": 2716.14, + "end": 2719.28, + "probability": 0.8084 + }, + { + "start": 2720.04, + "end": 2722.06, + "probability": 0.8823 + }, + { + "start": 2722.78, + "end": 2725.06, + "probability": 0.7123 + }, + { + "start": 2726.9, + "end": 2727.42, + "probability": 0.9797 + }, + { + "start": 2727.94, + "end": 2731.58, + "probability": 0.9595 + }, + { + "start": 2732.74, + "end": 2735.6, + "probability": 0.9946 + }, + { + "start": 2736.54, + "end": 2738.2, + "probability": 0.6671 + }, + { + "start": 2738.96, + "end": 2741.62, + "probability": 0.8937 + }, + { + "start": 2743.16, + "end": 2743.58, + "probability": 0.5006 + }, + { + "start": 2744.74, + "end": 2746.94, + "probability": 0.9954 + }, + { + "start": 2748.1, + "end": 2751.14, + "probability": 0.5226 + }, + { + "start": 2751.36, + "end": 2752.4, + "probability": 0.5655 + }, + { + "start": 2754.48, + "end": 2757.38, + "probability": 0.8983 + }, + { + "start": 2758.26, + "end": 2759.26, + "probability": 0.9343 + }, + { + "start": 2760.28, + "end": 2762.3, + "probability": 0.9899 + }, + { + "start": 2763.06, + "end": 2767.04, + "probability": 0.9624 + }, + { + "start": 2767.26, + "end": 2767.26, + "probability": 0.4633 + }, + { + "start": 2767.52, + "end": 2768.52, + "probability": 0.8906 + }, + { + "start": 2769.34, + "end": 2770.32, + "probability": 0.9346 + }, + { + "start": 2771.02, + "end": 2773.62, + "probability": 0.9922 + }, + { + "start": 2774.32, + "end": 2776.32, + "probability": 0.995 + }, + { + "start": 2776.9, + "end": 2784.83, + "probability": 0.9859 + }, + { + "start": 2786.1, + "end": 2787.62, + "probability": 0.9006 + }, + { + "start": 2788.8, + "end": 2790.64, + "probability": 0.996 + }, + { + "start": 2791.12, + "end": 2793.24, + "probability": 0.9381 + }, + { + "start": 2794.3, + "end": 2798.14, + "probability": 0.8289 + }, + { + "start": 2798.52, + "end": 2802.4, + "probability": 0.9253 + }, + { + "start": 2803.02, + "end": 2803.62, + "probability": 0.5108 + }, + { + "start": 2804.26, + "end": 2807.62, + "probability": 0.9896 + }, + { + "start": 2808.22, + "end": 2809.44, + "probability": 0.8652 + }, + { + "start": 2810.42, + "end": 2812.1, + "probability": 0.9958 + }, + { + "start": 2813.06, + "end": 2814.64, + "probability": 0.9911 + }, + { + "start": 2815.62, + "end": 2816.26, + "probability": 0.4972 + }, + { + "start": 2817.24, + "end": 2818.82, + "probability": 0.9912 + }, + { + "start": 2819.8, + "end": 2822.36, + "probability": 0.9914 + }, + { + "start": 2822.96, + "end": 2825.54, + "probability": 0.9976 + }, + { + "start": 2826.16, + "end": 2829.66, + "probability": 0.9464 + }, + { + "start": 2830.12, + "end": 2831.82, + "probability": 0.6278 + }, + { + "start": 2832.32, + "end": 2833.98, + "probability": 0.917 + }, + { + "start": 2834.54, + "end": 2836.46, + "probability": 0.986 + }, + { + "start": 2836.94, + "end": 2838.36, + "probability": 0.9333 + }, + { + "start": 2839.84, + "end": 2843.24, + "probability": 0.7491 + }, + { + "start": 2843.88, + "end": 2848.18, + "probability": 0.96 + }, + { + "start": 2848.26, + "end": 2849.26, + "probability": 0.8644 + }, + { + "start": 2849.88, + "end": 2852.42, + "probability": 0.9707 + }, + { + "start": 2852.42, + "end": 2855.9, + "probability": 0.998 + }, + { + "start": 2856.22, + "end": 2856.7, + "probability": 0.516 + }, + { + "start": 2875.52, + "end": 2875.54, + "probability": 0.3614 + }, + { + "start": 2875.54, + "end": 2876.02, + "probability": 0.1123 + }, + { + "start": 2876.74, + "end": 2880.1, + "probability": 0.6809 + }, + { + "start": 2881.78, + "end": 2883.3, + "probability": 0.6847 + }, + { + "start": 2884.34, + "end": 2886.96, + "probability": 0.9092 + }, + { + "start": 2887.82, + "end": 2888.66, + "probability": 0.9335 + }, + { + "start": 2890.38, + "end": 2894.22, + "probability": 0.0159 + }, + { + "start": 2894.42, + "end": 2895.54, + "probability": 0.1537 + }, + { + "start": 2896.3, + "end": 2897.03, + "probability": 0.7988 + }, + { + "start": 2897.38, + "end": 2899.3, + "probability": 0.9536 + }, + { + "start": 2899.46, + "end": 2900.3, + "probability": 0.7118 + }, + { + "start": 2900.76, + "end": 2901.72, + "probability": 0.6847 + }, + { + "start": 2901.96, + "end": 2903.64, + "probability": 0.8893 + }, + { + "start": 2905.08, + "end": 2908.12, + "probability": 0.3204 + }, + { + "start": 2909.3, + "end": 2910.18, + "probability": 0.7649 + }, + { + "start": 2910.77, + "end": 2915.9, + "probability": 0.8188 + }, + { + "start": 2917.02, + "end": 2921.44, + "probability": 0.9969 + }, + { + "start": 2922.14, + "end": 2926.92, + "probability": 0.8935 + }, + { + "start": 2930.16, + "end": 2934.36, + "probability": 0.7647 + }, + { + "start": 2934.92, + "end": 2938.54, + "probability": 0.9624 + }, + { + "start": 2939.3, + "end": 2940.34, + "probability": 0.7966 + }, + { + "start": 2941.0, + "end": 2951.04, + "probability": 0.9907 + }, + { + "start": 2951.98, + "end": 2956.24, + "probability": 0.8209 + }, + { + "start": 2957.86, + "end": 2962.8, + "probability": 0.9973 + }, + { + "start": 2963.76, + "end": 2965.96, + "probability": 0.9486 + }, + { + "start": 2966.32, + "end": 2969.13, + "probability": 0.9978 + }, + { + "start": 2970.02, + "end": 2974.1, + "probability": 0.9699 + }, + { + "start": 2976.0, + "end": 2978.1, + "probability": 0.9839 + }, + { + "start": 2978.16, + "end": 2981.72, + "probability": 0.9751 + }, + { + "start": 2982.7, + "end": 2989.08, + "probability": 0.9625 + }, + { + "start": 2990.38, + "end": 2991.38, + "probability": 0.8787 + }, + { + "start": 2993.06, + "end": 2996.62, + "probability": 0.9751 + }, + { + "start": 2998.24, + "end": 3001.2, + "probability": 0.9513 + }, + { + "start": 3002.5, + "end": 3004.94, + "probability": 0.7313 + }, + { + "start": 3005.74, + "end": 3013.32, + "probability": 0.985 + }, + { + "start": 3014.5, + "end": 3018.52, + "probability": 0.983 + }, + { + "start": 3019.46, + "end": 3023.56, + "probability": 0.9423 + }, + { + "start": 3024.36, + "end": 3031.56, + "probability": 0.9748 + }, + { + "start": 3033.46, + "end": 3037.72, + "probability": 0.8004 + }, + { + "start": 3038.76, + "end": 3041.94, + "probability": 0.991 + }, + { + "start": 3042.1, + "end": 3044.36, + "probability": 0.9154 + }, + { + "start": 3045.18, + "end": 3048.72, + "probability": 0.963 + }, + { + "start": 3049.64, + "end": 3055.36, + "probability": 0.9609 + }, + { + "start": 3056.4, + "end": 3056.7, + "probability": 0.9478 + }, + { + "start": 3057.38, + "end": 3059.64, + "probability": 0.9123 + }, + { + "start": 3060.14, + "end": 3066.52, + "probability": 0.9891 + }, + { + "start": 3066.72, + "end": 3066.94, + "probability": 0.7476 + }, + { + "start": 3067.0, + "end": 3067.34, + "probability": 0.727 + }, + { + "start": 3068.08, + "end": 3069.14, + "probability": 0.7329 + }, + { + "start": 3087.68, + "end": 3087.7, + "probability": 0.7677 + }, + { + "start": 3087.7, + "end": 3089.09, + "probability": 0.8193 + }, + { + "start": 3091.96, + "end": 3096.56, + "probability": 0.8261 + }, + { + "start": 3097.64, + "end": 3098.24, + "probability": 0.4785 + }, + { + "start": 3098.36, + "end": 3106.96, + "probability": 0.9763 + }, + { + "start": 3108.9, + "end": 3110.88, + "probability": 0.5622 + }, + { + "start": 3111.64, + "end": 3113.42, + "probability": 0.9961 + }, + { + "start": 3114.3, + "end": 3116.82, + "probability": 0.9985 + }, + { + "start": 3117.74, + "end": 3123.58, + "probability": 0.856 + }, + { + "start": 3124.62, + "end": 3126.16, + "probability": 0.7389 + }, + { + "start": 3127.32, + "end": 3132.0, + "probability": 0.9822 + }, + { + "start": 3132.0, + "end": 3136.82, + "probability": 0.9883 + }, + { + "start": 3138.04, + "end": 3142.64, + "probability": 0.9881 + }, + { + "start": 3143.28, + "end": 3149.68, + "probability": 0.9927 + }, + { + "start": 3150.6, + "end": 3153.5, + "probability": 0.7686 + }, + { + "start": 3153.98, + "end": 3157.04, + "probability": 0.9834 + }, + { + "start": 3157.24, + "end": 3160.8, + "probability": 0.9895 + }, + { + "start": 3161.36, + "end": 3163.7, + "probability": 0.9766 + }, + { + "start": 3164.24, + "end": 3166.16, + "probability": 0.9976 + }, + { + "start": 3166.68, + "end": 3171.3, + "probability": 0.9906 + }, + { + "start": 3172.28, + "end": 3179.52, + "probability": 0.9758 + }, + { + "start": 3180.32, + "end": 3185.44, + "probability": 0.9911 + }, + { + "start": 3186.4, + "end": 3187.78, + "probability": 0.9674 + }, + { + "start": 3187.9, + "end": 3188.66, + "probability": 0.7597 + }, + { + "start": 3188.8, + "end": 3190.78, + "probability": 0.998 + }, + { + "start": 3191.88, + "end": 3198.98, + "probability": 0.9937 + }, + { + "start": 3199.74, + "end": 3201.96, + "probability": 0.955 + }, + { + "start": 3202.84, + "end": 3203.92, + "probability": 0.9371 + }, + { + "start": 3204.64, + "end": 3208.2, + "probability": 0.9934 + }, + { + "start": 3208.22, + "end": 3213.78, + "probability": 0.9513 + }, + { + "start": 3214.34, + "end": 3216.1, + "probability": 0.9671 + }, + { + "start": 3216.56, + "end": 3225.22, + "probability": 0.9892 + }, + { + "start": 3225.68, + "end": 3226.6, + "probability": 0.9189 + }, + { + "start": 3227.16, + "end": 3228.58, + "probability": 0.9912 + }, + { + "start": 3229.22, + "end": 3233.4, + "probability": 0.9976 + }, + { + "start": 3233.4, + "end": 3236.86, + "probability": 0.9917 + }, + { + "start": 3237.88, + "end": 3242.06, + "probability": 0.9401 + }, + { + "start": 3242.98, + "end": 3245.56, + "probability": 0.9935 + }, + { + "start": 3246.08, + "end": 3252.34, + "probability": 0.988 + }, + { + "start": 3253.08, + "end": 3258.4, + "probability": 0.938 + }, + { + "start": 3259.16, + "end": 3262.38, + "probability": 0.9958 + }, + { + "start": 3262.94, + "end": 3264.64, + "probability": 0.981 + }, + { + "start": 3264.98, + "end": 3266.46, + "probability": 0.9961 + }, + { + "start": 3266.94, + "end": 3267.78, + "probability": 0.4905 + }, + { + "start": 3268.08, + "end": 3269.82, + "probability": 0.6815 + }, + { + "start": 3269.96, + "end": 3275.66, + "probability": 0.9333 + }, + { + "start": 3275.66, + "end": 3275.66, + "probability": 0.5767 + }, + { + "start": 3275.72, + "end": 3278.7, + "probability": 0.9912 + }, + { + "start": 3279.06, + "end": 3279.52, + "probability": 0.6976 + }, + { + "start": 3279.62, + "end": 3281.04, + "probability": 0.6859 + }, + { + "start": 3281.14, + "end": 3282.28, + "probability": 0.9136 + }, + { + "start": 3283.14, + "end": 3284.32, + "probability": 0.9637 + }, + { + "start": 3284.42, + "end": 3287.4, + "probability": 0.9277 + }, + { + "start": 3287.62, + "end": 3292.62, + "probability": 0.999 + }, + { + "start": 3292.62, + "end": 3297.82, + "probability": 0.998 + }, + { + "start": 3298.34, + "end": 3301.28, + "probability": 0.9973 + }, + { + "start": 3301.28, + "end": 3301.48, + "probability": 0.7479 + }, + { + "start": 3303.0, + "end": 3305.48, + "probability": 0.8933 + }, + { + "start": 3306.46, + "end": 3307.2, + "probability": 0.7879 + }, + { + "start": 3308.1, + "end": 3310.0, + "probability": 0.9436 + }, + { + "start": 3310.82, + "end": 3311.56, + "probability": 0.7529 + }, + { + "start": 3312.46, + "end": 3314.5, + "probability": 0.8857 + }, + { + "start": 3314.98, + "end": 3317.06, + "probability": 0.6766 + }, + { + "start": 3317.06, + "end": 3317.62, + "probability": 0.6525 + }, + { + "start": 3317.62, + "end": 3320.78, + "probability": 0.1403 + }, + { + "start": 3320.78, + "end": 3320.8, + "probability": 0.1275 + }, + { + "start": 3321.72, + "end": 3323.58, + "probability": 0.2536 + }, + { + "start": 3323.82, + "end": 3329.96, + "probability": 0.0355 + }, + { + "start": 3342.64, + "end": 3343.6, + "probability": 0.2375 + }, + { + "start": 3358.36, + "end": 3360.18, + "probability": 0.9559 + }, + { + "start": 3361.02, + "end": 3364.72, + "probability": 0.9893 + }, + { + "start": 3365.36, + "end": 3367.26, + "probability": 0.91 + }, + { + "start": 3368.96, + "end": 3371.4, + "probability": 0.8263 + }, + { + "start": 3371.54, + "end": 3372.04, + "probability": 0.8246 + }, + { + "start": 3373.76, + "end": 3376.72, + "probability": 0.9913 + }, + { + "start": 3377.52, + "end": 3378.76, + "probability": 0.9619 + }, + { + "start": 3379.5, + "end": 3384.78, + "probability": 0.9908 + }, + { + "start": 3384.98, + "end": 3385.5, + "probability": 0.8772 + }, + { + "start": 3385.56, + "end": 3386.24, + "probability": 0.7453 + }, + { + "start": 3386.66, + "end": 3389.9, + "probability": 0.9976 + }, + { + "start": 3390.44, + "end": 3396.94, + "probability": 0.999 + }, + { + "start": 3397.6, + "end": 3402.44, + "probability": 0.9865 + }, + { + "start": 3403.62, + "end": 3405.5, + "probability": 0.9723 + }, + { + "start": 3406.42, + "end": 3411.64, + "probability": 0.9972 + }, + { + "start": 3412.64, + "end": 3415.66, + "probability": 0.9969 + }, + { + "start": 3416.3, + "end": 3421.02, + "probability": 0.9979 + }, + { + "start": 3422.18, + "end": 3424.04, + "probability": 0.8952 + }, + { + "start": 3424.1, + "end": 3426.28, + "probability": 0.9588 + }, + { + "start": 3426.4, + "end": 3431.58, + "probability": 0.9932 + }, + { + "start": 3432.72, + "end": 3433.26, + "probability": 0.5844 + }, + { + "start": 3433.38, + "end": 3436.18, + "probability": 0.9885 + }, + { + "start": 3436.18, + "end": 3438.88, + "probability": 0.9988 + }, + { + "start": 3439.74, + "end": 3439.98, + "probability": 0.2972 + }, + { + "start": 3440.2, + "end": 3447.8, + "probability": 0.9697 + }, + { + "start": 3448.9, + "end": 3452.96, + "probability": 0.9965 + }, + { + "start": 3453.12, + "end": 3455.02, + "probability": 0.8807 + }, + { + "start": 3455.66, + "end": 3457.08, + "probability": 0.9036 + }, + { + "start": 3457.18, + "end": 3459.24, + "probability": 0.9873 + }, + { + "start": 3459.82, + "end": 3463.58, + "probability": 0.9863 + }, + { + "start": 3463.66, + "end": 3464.24, + "probability": 0.726 + }, + { + "start": 3464.78, + "end": 3466.4, + "probability": 0.9648 + }, + { + "start": 3466.42, + "end": 3470.4, + "probability": 0.9427 + }, + { + "start": 3471.04, + "end": 3472.36, + "probability": 0.9873 + }, + { + "start": 3472.42, + "end": 3472.96, + "probability": 0.9222 + }, + { + "start": 3473.04, + "end": 3479.14, + "probability": 0.9957 + }, + { + "start": 3479.72, + "end": 3482.48, + "probability": 0.9043 + }, + { + "start": 3483.34, + "end": 3483.98, + "probability": 0.9667 + }, + { + "start": 3484.56, + "end": 3488.46, + "probability": 0.9976 + }, + { + "start": 3489.4, + "end": 3491.72, + "probability": 0.938 + }, + { + "start": 3491.82, + "end": 3495.76, + "probability": 0.9968 + }, + { + "start": 3496.46, + "end": 3501.52, + "probability": 0.9964 + }, + { + "start": 3502.1, + "end": 3504.3, + "probability": 0.9973 + }, + { + "start": 3504.34, + "end": 3507.14, + "probability": 0.9816 + }, + { + "start": 3507.14, + "end": 3509.42, + "probability": 0.9989 + }, + { + "start": 3510.28, + "end": 3514.66, + "probability": 0.9079 + }, + { + "start": 3515.06, + "end": 3518.94, + "probability": 0.9954 + }, + { + "start": 3519.34, + "end": 3519.68, + "probability": 0.7367 + }, + { + "start": 3520.36, + "end": 3520.6, + "probability": 0.4453 + }, + { + "start": 3521.02, + "end": 3522.24, + "probability": 0.8326 + }, + { + "start": 3523.62, + "end": 3524.42, + "probability": 0.7948 + }, + { + "start": 3525.08, + "end": 3528.28, + "probability": 0.9443 + }, + { + "start": 3530.56, + "end": 3531.4, + "probability": 0.9893 + }, + { + "start": 3537.86, + "end": 3540.0, + "probability": 0.9933 + }, + { + "start": 3543.06, + "end": 3545.3, + "probability": 0.7278 + }, + { + "start": 3546.16, + "end": 3547.02, + "probability": 0.6433 + }, + { + "start": 3547.1, + "end": 3551.46, + "probability": 0.9369 + }, + { + "start": 3552.3, + "end": 3554.22, + "probability": 0.9833 + }, + { + "start": 3554.74, + "end": 3555.94, + "probability": 0.9634 + }, + { + "start": 3556.68, + "end": 3561.1, + "probability": 0.9792 + }, + { + "start": 3561.52, + "end": 3568.58, + "probability": 0.7588 + }, + { + "start": 3569.76, + "end": 3571.68, + "probability": 0.6679 + }, + { + "start": 3572.72, + "end": 3575.88, + "probability": 0.9531 + }, + { + "start": 3576.2, + "end": 3576.88, + "probability": 0.9836 + }, + { + "start": 3577.52, + "end": 3581.36, + "probability": 0.6281 + }, + { + "start": 3581.72, + "end": 3582.54, + "probability": 0.6677 + }, + { + "start": 3583.86, + "end": 3588.22, + "probability": 0.9644 + }, + { + "start": 3589.7, + "end": 3593.22, + "probability": 0.9678 + }, + { + "start": 3593.82, + "end": 3594.46, + "probability": 0.8259 + }, + { + "start": 3595.26, + "end": 3598.78, + "probability": 0.8112 + }, + { + "start": 3598.88, + "end": 3599.42, + "probability": 0.5967 + }, + { + "start": 3600.08, + "end": 3602.8, + "probability": 0.9744 + }, + { + "start": 3603.38, + "end": 3603.9, + "probability": 0.884 + }, + { + "start": 3604.74, + "end": 3609.04, + "probability": 0.9388 + }, + { + "start": 3609.84, + "end": 3611.54, + "probability": 0.9904 + }, + { + "start": 3612.0, + "end": 3613.48, + "probability": 0.991 + }, + { + "start": 3613.96, + "end": 3618.3, + "probability": 0.9635 + }, + { + "start": 3618.34, + "end": 3619.41, + "probability": 0.9917 + }, + { + "start": 3620.72, + "end": 3626.76, + "probability": 0.9865 + }, + { + "start": 3627.58, + "end": 3628.56, + "probability": 0.9104 + }, + { + "start": 3629.12, + "end": 3631.02, + "probability": 0.9785 + }, + { + "start": 3631.58, + "end": 3632.42, + "probability": 0.7872 + }, + { + "start": 3634.2, + "end": 3635.8, + "probability": 0.1162 + }, + { + "start": 3636.68, + "end": 3636.68, + "probability": 0.0024 + }, + { + "start": 3636.68, + "end": 3638.06, + "probability": 0.9863 + }, + { + "start": 3639.36, + "end": 3639.44, + "probability": 0.0043 + }, + { + "start": 3639.44, + "end": 3641.02, + "probability": 0.7942 + }, + { + "start": 3641.46, + "end": 3646.38, + "probability": 0.9907 + }, + { + "start": 3647.62, + "end": 3648.84, + "probability": 0.8268 + }, + { + "start": 3650.02, + "end": 3652.84, + "probability": 0.9917 + }, + { + "start": 3653.98, + "end": 3657.26, + "probability": 0.9753 + }, + { + "start": 3658.24, + "end": 3659.22, + "probability": 0.9509 + }, + { + "start": 3660.58, + "end": 3667.28, + "probability": 0.9869 + }, + { + "start": 3667.52, + "end": 3670.51, + "probability": 0.9932 + }, + { + "start": 3671.48, + "end": 3674.16, + "probability": 0.9982 + }, + { + "start": 3674.68, + "end": 3677.74, + "probability": 0.8831 + }, + { + "start": 3678.18, + "end": 3680.31, + "probability": 0.967 + }, + { + "start": 3681.72, + "end": 3686.52, + "probability": 0.9272 + }, + { + "start": 3687.84, + "end": 3690.14, + "probability": 0.9917 + }, + { + "start": 3691.14, + "end": 3692.52, + "probability": 0.9935 + }, + { + "start": 3693.16, + "end": 3695.0, + "probability": 0.9571 + }, + { + "start": 3695.72, + "end": 3699.2, + "probability": 0.967 + }, + { + "start": 3700.02, + "end": 3704.42, + "probability": 0.9912 + }, + { + "start": 3704.42, + "end": 3707.56, + "probability": 0.9922 + }, + { + "start": 3708.04, + "end": 3711.2, + "probability": 0.8064 + }, + { + "start": 3711.6, + "end": 3713.78, + "probability": 0.8911 + }, + { + "start": 3714.24, + "end": 3718.24, + "probability": 0.9849 + }, + { + "start": 3718.56, + "end": 3723.58, + "probability": 0.9941 + }, + { + "start": 3723.96, + "end": 3726.88, + "probability": 0.5088 + }, + { + "start": 3727.18, + "end": 3732.78, + "probability": 0.9934 + }, + { + "start": 3732.92, + "end": 3733.38, + "probability": 0.6582 + }, + { + "start": 3733.7, + "end": 3734.18, + "probability": 0.5341 + }, + { + "start": 3734.3, + "end": 3734.78, + "probability": 0.822 + }, + { + "start": 3734.88, + "end": 3736.88, + "probability": 0.9092 + }, + { + "start": 3737.8, + "end": 3739.02, + "probability": 0.915 + }, + { + "start": 3739.4, + "end": 3743.16, + "probability": 0.8686 + }, + { + "start": 3743.76, + "end": 3746.7, + "probability": 0.8691 + }, + { + "start": 3746.74, + "end": 3749.14, + "probability": 0.9668 + }, + { + "start": 3749.26, + "end": 3749.84, + "probability": 0.822 + }, + { + "start": 3750.22, + "end": 3750.22, + "probability": 0.2789 + }, + { + "start": 3750.22, + "end": 3751.54, + "probability": 0.3613 + }, + { + "start": 3753.48, + "end": 3754.22, + "probability": 0.6801 + }, + { + "start": 3755.02, + "end": 3756.78, + "probability": 0.827 + }, + { + "start": 3758.5, + "end": 3759.34, + "probability": 0.7267 + }, + { + "start": 3761.0, + "end": 3762.96, + "probability": 0.6614 + }, + { + "start": 3764.42, + "end": 3765.28, + "probability": 0.7491 + }, + { + "start": 3765.92, + "end": 3767.44, + "probability": 0.9564 + }, + { + "start": 3768.38, + "end": 3769.8, + "probability": 0.2888 + }, + { + "start": 3769.98, + "end": 3776.92, + "probability": 0.3188 + }, + { + "start": 3777.94, + "end": 3779.06, + "probability": 0.1354 + }, + { + "start": 3789.24, + "end": 3789.92, + "probability": 0.3473 + }, + { + "start": 3806.39, + "end": 3810.58, + "probability": 0.356 + }, + { + "start": 3811.48, + "end": 3815.08, + "probability": 0.8542 + }, + { + "start": 3816.18, + "end": 3818.54, + "probability": 0.7357 + }, + { + "start": 3819.44, + "end": 3824.88, + "probability": 0.9863 + }, + { + "start": 3826.5, + "end": 3827.68, + "probability": 0.6703 + }, + { + "start": 3828.84, + "end": 3834.1, + "probability": 0.83 + }, + { + "start": 3834.74, + "end": 3838.25, + "probability": 0.9946 + }, + { + "start": 3839.94, + "end": 3840.86, + "probability": 0.8239 + }, + { + "start": 3841.22, + "end": 3842.64, + "probability": 0.7152 + }, + { + "start": 3842.74, + "end": 3847.92, + "probability": 0.815 + }, + { + "start": 3848.66, + "end": 3849.42, + "probability": 0.9412 + }, + { + "start": 3850.74, + "end": 3854.72, + "probability": 0.978 + }, + { + "start": 3855.12, + "end": 3855.84, + "probability": 0.7066 + }, + { + "start": 3856.6, + "end": 3857.16, + "probability": 0.9956 + }, + { + "start": 3858.34, + "end": 3859.06, + "probability": 0.8566 + }, + { + "start": 3860.02, + "end": 3860.12, + "probability": 0.5602 + }, + { + "start": 3861.26, + "end": 3861.78, + "probability": 0.8628 + }, + { + "start": 3862.68, + "end": 3862.96, + "probability": 0.9542 + }, + { + "start": 3865.68, + "end": 3866.52, + "probability": 0.8076 + }, + { + "start": 3866.74, + "end": 3867.9, + "probability": 0.9107 + }, + { + "start": 3868.02, + "end": 3869.0, + "probability": 0.9865 + }, + { + "start": 3869.24, + "end": 3870.24, + "probability": 0.9147 + }, + { + "start": 3870.34, + "end": 3870.92, + "probability": 0.9594 + }, + { + "start": 3871.4, + "end": 3872.92, + "probability": 0.9047 + }, + { + "start": 3873.28, + "end": 3876.48, + "probability": 0.7286 + }, + { + "start": 3876.61, + "end": 3880.74, + "probability": 0.9937 + }, + { + "start": 3883.8, + "end": 3887.96, + "probability": 0.9748 + }, + { + "start": 3889.52, + "end": 3893.42, + "probability": 0.9906 + }, + { + "start": 3894.22, + "end": 3899.4, + "probability": 0.9727 + }, + { + "start": 3899.86, + "end": 3902.5, + "probability": 0.9281 + }, + { + "start": 3903.62, + "end": 3904.92, + "probability": 0.9802 + }, + { + "start": 3906.72, + "end": 3907.38, + "probability": 0.6397 + }, + { + "start": 3909.2, + "end": 3912.7, + "probability": 0.8946 + }, + { + "start": 3913.56, + "end": 3916.14, + "probability": 0.9571 + }, + { + "start": 3917.1, + "end": 3919.32, + "probability": 0.7869 + }, + { + "start": 3920.1, + "end": 3923.96, + "probability": 0.9934 + }, + { + "start": 3923.96, + "end": 3928.28, + "probability": 0.9571 + }, + { + "start": 3929.08, + "end": 3930.98, + "probability": 0.9724 + }, + { + "start": 3932.74, + "end": 3935.82, + "probability": 0.9878 + }, + { + "start": 3936.46, + "end": 3940.0, + "probability": 0.9771 + }, + { + "start": 3941.2, + "end": 3942.26, + "probability": 0.9969 + }, + { + "start": 3943.06, + "end": 3943.88, + "probability": 0.5104 + }, + { + "start": 3944.6, + "end": 3947.38, + "probability": 0.9321 + }, + { + "start": 3947.98, + "end": 3949.3, + "probability": 0.9263 + }, + { + "start": 3949.82, + "end": 3953.5, + "probability": 0.884 + }, + { + "start": 3954.54, + "end": 3959.38, + "probability": 0.9525 + }, + { + "start": 3960.18, + "end": 3960.86, + "probability": 0.9163 + }, + { + "start": 3961.38, + "end": 3961.92, + "probability": 0.7856 + }, + { + "start": 3964.28, + "end": 3966.5, + "probability": 0.7647 + }, + { + "start": 3975.82, + "end": 3976.72, + "probability": 0.2245 + }, + { + "start": 3977.06, + "end": 3977.72, + "probability": 0.6352 + }, + { + "start": 3979.58, + "end": 3980.91, + "probability": 0.775 + }, + { + "start": 3981.3, + "end": 3982.32, + "probability": 0.6563 + }, + { + "start": 3982.62, + "end": 3986.24, + "probability": 0.5642 + }, + { + "start": 3986.92, + "end": 3988.32, + "probability": 0.9022 + }, + { + "start": 3989.34, + "end": 3993.82, + "probability": 0.9491 + }, + { + "start": 3994.08, + "end": 3994.64, + "probability": 0.665 + }, + { + "start": 3994.76, + "end": 3995.48, + "probability": 0.9227 + }, + { + "start": 3995.54, + "end": 3995.88, + "probability": 0.7802 + }, + { + "start": 3996.52, + "end": 3999.92, + "probability": 0.953 + }, + { + "start": 4000.1, + "end": 4000.82, + "probability": 0.9705 + }, + { + "start": 4000.94, + "end": 4003.34, + "probability": 0.9402 + }, + { + "start": 4003.9, + "end": 4005.84, + "probability": 0.9883 + }, + { + "start": 4006.4, + "end": 4009.38, + "probability": 0.9031 + }, + { + "start": 4009.54, + "end": 4010.84, + "probability": 0.7147 + }, + { + "start": 4010.92, + "end": 4011.84, + "probability": 0.762 + }, + { + "start": 4011.94, + "end": 4015.4, + "probability": 0.8683 + }, + { + "start": 4015.6, + "end": 4017.16, + "probability": 0.9305 + }, + { + "start": 4018.04, + "end": 4023.92, + "probability": 0.8177 + }, + { + "start": 4024.08, + "end": 4032.68, + "probability": 0.9766 + }, + { + "start": 4033.34, + "end": 4038.87, + "probability": 0.9995 + }, + { + "start": 4039.96, + "end": 4040.22, + "probability": 0.4312 + }, + { + "start": 4040.22, + "end": 4042.72, + "probability": 0.5379 + }, + { + "start": 4043.08, + "end": 4048.76, + "probability": 0.9832 + }, + { + "start": 4048.94, + "end": 4049.58, + "probability": 0.8075 + }, + { + "start": 4050.18, + "end": 4051.55, + "probability": 0.8995 + }, + { + "start": 4052.2, + "end": 4054.48, + "probability": 0.7837 + }, + { + "start": 4054.6, + "end": 4055.68, + "probability": 0.9597 + }, + { + "start": 4055.96, + "end": 4056.86, + "probability": 0.8837 + }, + { + "start": 4056.92, + "end": 4057.66, + "probability": 0.7979 + }, + { + "start": 4057.74, + "end": 4061.14, + "probability": 0.9017 + }, + { + "start": 4061.68, + "end": 4064.38, + "probability": 0.8161 + }, + { + "start": 4064.78, + "end": 4068.94, + "probability": 0.9314 + }, + { + "start": 4068.94, + "end": 4072.72, + "probability": 0.987 + }, + { + "start": 4073.78, + "end": 4077.34, + "probability": 0.9262 + }, + { + "start": 4077.36, + "end": 4079.72, + "probability": 0.9129 + }, + { + "start": 4079.98, + "end": 4084.86, + "probability": 0.9924 + }, + { + "start": 4086.14, + "end": 4088.38, + "probability": 0.9863 + }, + { + "start": 4088.78, + "end": 4089.9, + "probability": 0.6851 + }, + { + "start": 4090.08, + "end": 4091.08, + "probability": 0.8807 + }, + { + "start": 4091.24, + "end": 4094.88, + "probability": 0.9937 + }, + { + "start": 4094.88, + "end": 4095.5, + "probability": 0.8005 + }, + { + "start": 4096.16, + "end": 4099.24, + "probability": 0.9956 + }, + { + "start": 4099.86, + "end": 4100.34, + "probability": 0.7051 + }, + { + "start": 4100.46, + "end": 4101.73, + "probability": 0.9175 + }, + { + "start": 4101.86, + "end": 4102.4, + "probability": 0.9161 + }, + { + "start": 4102.56, + "end": 4103.12, + "probability": 0.4893 + }, + { + "start": 4103.54, + "end": 4104.06, + "probability": 0.4143 + }, + { + "start": 4104.24, + "end": 4104.96, + "probability": 0.4934 + }, + { + "start": 4105.44, + "end": 4109.2, + "probability": 0.9833 + }, + { + "start": 4109.6, + "end": 4111.78, + "probability": 0.7992 + }, + { + "start": 4112.3, + "end": 4115.14, + "probability": 0.9951 + }, + { + "start": 4115.64, + "end": 4117.72, + "probability": 0.9946 + }, + { + "start": 4118.42, + "end": 4122.32, + "probability": 0.632 + }, + { + "start": 4122.4, + "end": 4122.68, + "probability": 0.924 + }, + { + "start": 4124.26, + "end": 4124.5, + "probability": 0.7095 + }, + { + "start": 4125.12, + "end": 4126.36, + "probability": 0.9531 + }, + { + "start": 4127.04, + "end": 4129.92, + "probability": 0.856 + }, + { + "start": 4130.7, + "end": 4135.42, + "probability": 0.9893 + }, + { + "start": 4135.98, + "end": 4139.9, + "probability": 0.9685 + }, + { + "start": 4140.26, + "end": 4144.16, + "probability": 0.7038 + }, + { + "start": 4145.14, + "end": 4146.36, + "probability": 0.6989 + }, + { + "start": 4147.1, + "end": 4149.48, + "probability": 0.5493 + }, + { + "start": 4149.64, + "end": 4151.24, + "probability": 0.7939 + }, + { + "start": 4151.68, + "end": 4155.44, + "probability": 0.8525 + }, + { + "start": 4156.18, + "end": 4159.44, + "probability": 0.5837 + }, + { + "start": 4160.08, + "end": 4162.17, + "probability": 0.9883 + }, + { + "start": 4162.82, + "end": 4163.14, + "probability": 0.7542 + }, + { + "start": 4163.18, + "end": 4165.06, + "probability": 0.9924 + }, + { + "start": 4166.18, + "end": 4168.36, + "probability": 0.9769 + }, + { + "start": 4168.46, + "end": 4169.82, + "probability": 0.9646 + }, + { + "start": 4170.04, + "end": 4172.88, + "probability": 0.9594 + }, + { + "start": 4173.78, + "end": 4176.34, + "probability": 0.9994 + }, + { + "start": 4176.72, + "end": 4181.04, + "probability": 0.9959 + }, + { + "start": 4181.44, + "end": 4185.92, + "probability": 0.9487 + }, + { + "start": 4186.24, + "end": 4188.08, + "probability": 0.9749 + }, + { + "start": 4188.58, + "end": 4188.82, + "probability": 0.6733 + }, + { + "start": 4189.38, + "end": 4190.46, + "probability": 0.9041 + }, + { + "start": 4210.06, + "end": 4210.54, + "probability": 0.7501 + }, + { + "start": 4211.18, + "end": 4213.22, + "probability": 0.6254 + }, + { + "start": 4214.62, + "end": 4218.2, + "probability": 0.9911 + }, + { + "start": 4218.84, + "end": 4220.24, + "probability": 0.9556 + }, + { + "start": 4220.84, + "end": 4221.92, + "probability": 0.9702 + }, + { + "start": 4222.58, + "end": 4228.16, + "probability": 0.9556 + }, + { + "start": 4229.44, + "end": 4231.78, + "probability": 0.9937 + }, + { + "start": 4233.02, + "end": 4234.34, + "probability": 0.8701 + }, + { + "start": 4235.46, + "end": 4238.28, + "probability": 0.9954 + }, + { + "start": 4241.1, + "end": 4245.38, + "probability": 0.9729 + }, + { + "start": 4247.92, + "end": 4250.64, + "probability": 0.9551 + }, + { + "start": 4250.8, + "end": 4253.2, + "probability": 0.9508 + }, + { + "start": 4254.1, + "end": 4257.52, + "probability": 0.9857 + }, + { + "start": 4257.68, + "end": 4259.16, + "probability": 0.9661 + }, + { + "start": 4260.54, + "end": 4263.4, + "probability": 0.9985 + }, + { + "start": 4263.4, + "end": 4266.36, + "probability": 0.979 + }, + { + "start": 4266.54, + "end": 4267.84, + "probability": 0.8678 + }, + { + "start": 4268.06, + "end": 4271.12, + "probability": 0.5519 + }, + { + "start": 4272.92, + "end": 4274.48, + "probability": 0.9934 + }, + { + "start": 4275.1, + "end": 4277.4, + "probability": 0.9058 + }, + { + "start": 4278.72, + "end": 4280.96, + "probability": 0.9597 + }, + { + "start": 4281.58, + "end": 4283.74, + "probability": 0.9951 + }, + { + "start": 4283.9, + "end": 4284.28, + "probability": 0.6372 + }, + { + "start": 4284.44, + "end": 4286.12, + "probability": 0.9761 + }, + { + "start": 4287.48, + "end": 4289.88, + "probability": 0.9827 + }, + { + "start": 4290.96, + "end": 4293.24, + "probability": 0.9944 + }, + { + "start": 4293.62, + "end": 4295.48, + "probability": 0.9956 + }, + { + "start": 4297.5, + "end": 4299.46, + "probability": 0.9909 + }, + { + "start": 4299.66, + "end": 4300.52, + "probability": 0.8535 + }, + { + "start": 4300.98, + "end": 4301.54, + "probability": 0.6122 + }, + { + "start": 4302.16, + "end": 4304.21, + "probability": 0.8965 + }, + { + "start": 4305.38, + "end": 4306.7, + "probability": 0.9884 + }, + { + "start": 4306.76, + "end": 4309.0, + "probability": 0.9937 + }, + { + "start": 4310.66, + "end": 4312.94, + "probability": 0.9984 + }, + { + "start": 4312.94, + "end": 4317.3, + "probability": 0.9878 + }, + { + "start": 4318.24, + "end": 4320.48, + "probability": 0.8876 + }, + { + "start": 4322.18, + "end": 4324.18, + "probability": 0.8554 + }, + { + "start": 4324.26, + "end": 4332.08, + "probability": 0.9957 + }, + { + "start": 4332.7, + "end": 4336.28, + "probability": 0.9927 + }, + { + "start": 4336.5, + "end": 4338.44, + "probability": 0.8893 + }, + { + "start": 4339.28, + "end": 4340.5, + "probability": 0.984 + }, + { + "start": 4341.38, + "end": 4343.64, + "probability": 0.9952 + }, + { + "start": 4343.72, + "end": 4345.16, + "probability": 0.6791 + }, + { + "start": 4345.24, + "end": 4346.86, + "probability": 0.9967 + }, + { + "start": 4347.78, + "end": 4349.2, + "probability": 0.7453 + }, + { + "start": 4350.28, + "end": 4351.94, + "probability": 0.9855 + }, + { + "start": 4353.34, + "end": 4359.0, + "probability": 0.9839 + }, + { + "start": 4359.28, + "end": 4360.2, + "probability": 0.162 + }, + { + "start": 4360.96, + "end": 4362.72, + "probability": 0.9535 + }, + { + "start": 4362.82, + "end": 4366.16, + "probability": 0.8216 + }, + { + "start": 4368.02, + "end": 4372.14, + "probability": 0.9524 + }, + { + "start": 4372.9, + "end": 4373.24, + "probability": 0.1366 + }, + { + "start": 4375.26, + "end": 4379.28, + "probability": 0.9951 + }, + { + "start": 4380.38, + "end": 4383.6, + "probability": 0.8914 + }, + { + "start": 4384.38, + "end": 4385.56, + "probability": 0.9299 + }, + { + "start": 4385.66, + "end": 4386.66, + "probability": 0.9522 + }, + { + "start": 4389.0, + "end": 4392.14, + "probability": 0.9967 + }, + { + "start": 4392.28, + "end": 4394.76, + "probability": 0.9275 + }, + { + "start": 4394.9, + "end": 4397.56, + "probability": 0.9561 + }, + { + "start": 4398.84, + "end": 4405.72, + "probability": 0.9966 + }, + { + "start": 4407.14, + "end": 4412.54, + "probability": 0.9985 + }, + { + "start": 4412.96, + "end": 4413.8, + "probability": 0.8083 + }, + { + "start": 4414.48, + "end": 4416.2, + "probability": 0.9857 + }, + { + "start": 4417.08, + "end": 4417.68, + "probability": 0.9157 + }, + { + "start": 4418.78, + "end": 4420.68, + "probability": 0.9917 + }, + { + "start": 4420.9, + "end": 4421.28, + "probability": 0.9424 + }, + { + "start": 4421.6, + "end": 4426.44, + "probability": 0.9522 + }, + { + "start": 4427.08, + "end": 4430.38, + "probability": 0.7498 + }, + { + "start": 4430.68, + "end": 4431.06, + "probability": 0.7358 + }, + { + "start": 4431.98, + "end": 4433.24, + "probability": 0.8398 + }, + { + "start": 4434.24, + "end": 4435.62, + "probability": 0.5035 + }, + { + "start": 4437.24, + "end": 4441.17, + "probability": 0.6764 + }, + { + "start": 4442.44, + "end": 4445.18, + "probability": 0.9589 + }, + { + "start": 4445.92, + "end": 4447.04, + "probability": 0.9966 + }, + { + "start": 4464.84, + "end": 4466.24, + "probability": 0.2667 + }, + { + "start": 4466.93, + "end": 4467.14, + "probability": 0.0429 + }, + { + "start": 4467.14, + "end": 4467.5, + "probability": 0.0044 + }, + { + "start": 4467.88, + "end": 4468.76, + "probability": 0.2253 + }, + { + "start": 4469.44, + "end": 4477.56, + "probability": 0.1094 + }, + { + "start": 4477.96, + "end": 4478.9, + "probability": 0.2489 + }, + { + "start": 4479.64, + "end": 4484.64, + "probability": 0.1224 + }, + { + "start": 4484.74, + "end": 4487.1, + "probability": 0.0902 + }, + { + "start": 4488.54, + "end": 4490.84, + "probability": 0.4059 + }, + { + "start": 4493.94, + "end": 4502.62, + "probability": 0.1965 + }, + { + "start": 4503.3, + "end": 4504.92, + "probability": 0.1943 + }, + { + "start": 4506.08, + "end": 4510.74, + "probability": 0.353 + }, + { + "start": 4510.74, + "end": 4516.04, + "probability": 0.2381 + }, + { + "start": 4517.28, + "end": 4520.94, + "probability": 0.2026 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.0, + "end": 4523.0, + "probability": 0.0 + }, + { + "start": 4523.9, + "end": 4524.18, + "probability": 0.1203 + }, + { + "start": 4526.26, + "end": 4526.88, + "probability": 0.0568 + }, + { + "start": 4526.88, + "end": 4529.22, + "probability": 0.5124 + }, + { + "start": 4530.34, + "end": 4530.4, + "probability": 0.025 + }, + { + "start": 4530.4, + "end": 4530.4, + "probability": 0.0266 + }, + { + "start": 4530.5, + "end": 4530.5, + "probability": 0.3875 + }, + { + "start": 4531.92, + "end": 4532.02, + "probability": 0.0414 + }, + { + "start": 4533.94, + "end": 4534.48, + "probability": 0.0491 + }, + { + "start": 4535.44, + "end": 4537.34, + "probability": 0.1813 + }, + { + "start": 4537.62, + "end": 4539.3, + "probability": 0.0859 + }, + { + "start": 4541.52, + "end": 4542.5, + "probability": 0.0511 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.0, + "end": 4647.0, + "probability": 0.0 + }, + { + "start": 4647.34, + "end": 4647.46, + "probability": 0.103 + }, + { + "start": 4647.46, + "end": 4647.46, + "probability": 0.0679 + }, + { + "start": 4647.46, + "end": 4647.46, + "probability": 0.126 + }, + { + "start": 4647.46, + "end": 4648.06, + "probability": 0.0589 + }, + { + "start": 4648.36, + "end": 4650.98, + "probability": 0.6578 + }, + { + "start": 4651.54, + "end": 4651.54, + "probability": 0.1171 + }, + { + "start": 4651.56, + "end": 4653.16, + "probability": 0.8866 + }, + { + "start": 4654.08, + "end": 4658.9, + "probability": 0.9993 + }, + { + "start": 4659.0, + "end": 4662.36, + "probability": 0.9697 + }, + { + "start": 4662.42, + "end": 4665.12, + "probability": 0.9069 + }, + { + "start": 4665.16, + "end": 4665.22, + "probability": 0.6741 + }, + { + "start": 4665.22, + "end": 4666.6, + "probability": 0.8356 + }, + { + "start": 4667.06, + "end": 4675.06, + "probability": 0.7609 + }, + { + "start": 4675.22, + "end": 4675.22, + "probability": 0.5805 + }, + { + "start": 4675.32, + "end": 4678.02, + "probability": 0.7944 + }, + { + "start": 4679.4, + "end": 4683.33, + "probability": 0.2732 + }, + { + "start": 4683.66, + "end": 4684.92, + "probability": 0.3579 + }, + { + "start": 4684.98, + "end": 4686.6, + "probability": 0.1159 + }, + { + "start": 4686.98, + "end": 4688.47, + "probability": 0.4851 + }, + { + "start": 4689.86, + "end": 4691.34, + "probability": 0.3278 + }, + { + "start": 4691.34, + "end": 4693.04, + "probability": 0.0202 + }, + { + "start": 4693.5, + "end": 4697.54, + "probability": 0.3955 + }, + { + "start": 4698.28, + "end": 4700.0, + "probability": 0.2899 + }, + { + "start": 4701.96, + "end": 4704.32, + "probability": 0.2744 + }, + { + "start": 4705.3, + "end": 4710.18, + "probability": 0.1129 + }, + { + "start": 4710.18, + "end": 4710.92, + "probability": 0.4339 + }, + { + "start": 4711.54, + "end": 4714.12, + "probability": 0.9166 + }, + { + "start": 4715.88, + "end": 4716.88, + "probability": 0.0614 + }, + { + "start": 4718.5, + "end": 4719.26, + "probability": 0.2735 + }, + { + "start": 4720.66, + "end": 4722.1, + "probability": 0.7069 + }, + { + "start": 4723.04, + "end": 4727.54, + "probability": 0.9886 + }, + { + "start": 4728.32, + "end": 4731.14, + "probability": 0.988 + }, + { + "start": 4731.94, + "end": 4735.94, + "probability": 0.9951 + }, + { + "start": 4736.74, + "end": 4737.66, + "probability": 0.8915 + }, + { + "start": 4738.36, + "end": 4742.08, + "probability": 0.9046 + }, + { + "start": 4742.9, + "end": 4746.68, + "probability": 0.1622 + }, + { + "start": 4747.16, + "end": 4752.52, + "probability": 0.9896 + }, + { + "start": 4754.02, + "end": 4756.86, + "probability": 0.9746 + }, + { + "start": 4758.48, + "end": 4763.54, + "probability": 0.5184 + }, + { + "start": 4763.9, + "end": 4765.2, + "probability": 0.6076 + }, + { + "start": 4765.74, + "end": 4768.2, + "probability": 0.563 + }, + { + "start": 4768.78, + "end": 4772.04, + "probability": 0.7921 + }, + { + "start": 4772.6, + "end": 4773.02, + "probability": 0.7948 + }, + { + "start": 4773.56, + "end": 4778.86, + "probability": 0.8931 + }, + { + "start": 4779.66, + "end": 4783.62, + "probability": 0.8179 + }, + { + "start": 4784.06, + "end": 4787.96, + "probability": 0.7825 + }, + { + "start": 4788.72, + "end": 4790.46, + "probability": 0.0353 + }, + { + "start": 4790.68, + "end": 4790.68, + "probability": 0.0393 + }, + { + "start": 4790.68, + "end": 4793.18, + "probability": 0.9028 + }, + { + "start": 4793.74, + "end": 4796.86, + "probability": 0.797 + }, + { + "start": 4797.18, + "end": 4800.02, + "probability": 0.202 + }, + { + "start": 4800.32, + "end": 4800.84, + "probability": 0.0248 + }, + { + "start": 4803.5, + "end": 4806.08, + "probability": 0.0141 + }, + { + "start": 4808.32, + "end": 4811.76, + "probability": 0.0498 + }, + { + "start": 4812.34, + "end": 4816.32, + "probability": 0.1128 + }, + { + "start": 4817.14, + "end": 4817.14, + "probability": 0.0264 + }, + { + "start": 4818.0, + "end": 4818.18, + "probability": 0.1618 + }, + { + "start": 4818.18, + "end": 4821.38, + "probability": 0.1475 + }, + { + "start": 4821.46, + "end": 4825.1, + "probability": 0.1305 + }, + { + "start": 4827.38, + "end": 4829.38, + "probability": 0.0333 + }, + { + "start": 4834.34, + "end": 4837.94, + "probability": 0.209 + }, + { + "start": 4838.3, + "end": 4839.84, + "probability": 0.4894 + }, + { + "start": 4840.18, + "end": 4841.36, + "probability": 0.0527 + }, + { + "start": 4842.08, + "end": 4842.08, + "probability": 0.0578 + }, + { + "start": 4843.0, + "end": 4846.16, + "probability": 0.227 + }, + { + "start": 4846.16, + "end": 4851.52, + "probability": 0.0387 + }, + { + "start": 4851.7, + "end": 4852.54, + "probability": 0.1609 + }, + { + "start": 4853.6, + "end": 4856.34, + "probability": 0.0196 + }, + { + "start": 4856.44, + "end": 4861.6, + "probability": 0.0431 + }, + { + "start": 4861.6, + "end": 4862.44, + "probability": 0.0664 + }, + { + "start": 4862.6, + "end": 4865.22, + "probability": 0.0218 + }, + { + "start": 4865.22, + "end": 4866.84, + "probability": 0.2743 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.0, + "end": 4867.0, + "probability": 0.0 + }, + { + "start": 4867.4, + "end": 4868.34, + "probability": 0.0557 + }, + { + "start": 4868.64, + "end": 4869.88, + "probability": 0.6684 + }, + { + "start": 4870.08, + "end": 4875.76, + "probability": 0.1983 + }, + { + "start": 4876.2, + "end": 4879.49, + "probability": 0.6177 + }, + { + "start": 4880.98, + "end": 4881.9, + "probability": 0.0426 + }, + { + "start": 4882.94, + "end": 4884.74, + "probability": 0.0656 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.0, + "end": 4994.0, + "probability": 0.0 + }, + { + "start": 4994.04, + "end": 4997.8, + "probability": 0.9991 + }, + { + "start": 4998.32, + "end": 5000.16, + "probability": 0.9907 + }, + { + "start": 5000.7, + "end": 5002.02, + "probability": 0.9291 + }, + { + "start": 5002.04, + "end": 5002.88, + "probability": 0.8314 + }, + { + "start": 5003.34, + "end": 5005.96, + "probability": 0.9933 + }, + { + "start": 5006.8, + "end": 5008.56, + "probability": 0.9777 + }, + { + "start": 5009.4, + "end": 5009.88, + "probability": 0.21 + }, + { + "start": 5009.88, + "end": 5012.26, + "probability": 0.5522 + }, + { + "start": 5013.06, + "end": 5013.64, + "probability": 0.4771 + }, + { + "start": 5013.64, + "end": 5017.82, + "probability": 0.3433 + }, + { + "start": 5017.96, + "end": 5018.76, + "probability": 0.6787 + }, + { + "start": 5020.78, + "end": 5026.7, + "probability": 0.9788 + }, + { + "start": 5026.78, + "end": 5027.74, + "probability": 0.4492 + }, + { + "start": 5027.86, + "end": 5029.94, + "probability": 0.8641 + }, + { + "start": 5029.94, + "end": 5031.74, + "probability": 0.6873 + }, + { + "start": 5031.84, + "end": 5032.43, + "probability": 0.9725 + }, + { + "start": 5033.16, + "end": 5033.96, + "probability": 0.095 + }, + { + "start": 5034.8, + "end": 5035.62, + "probability": 0.3466 + }, + { + "start": 5035.62, + "end": 5040.6, + "probability": 0.9941 + }, + { + "start": 5040.72, + "end": 5041.92, + "probability": 0.6356 + }, + { + "start": 5042.88, + "end": 5044.64, + "probability": 0.9698 + }, + { + "start": 5045.34, + "end": 5047.82, + "probability": 0.9816 + }, + { + "start": 5048.74, + "end": 5052.54, + "probability": 0.7623 + }, + { + "start": 5052.96, + "end": 5054.16, + "probability": 0.6746 + }, + { + "start": 5054.68, + "end": 5058.16, + "probability": 0.9142 + }, + { + "start": 5058.38, + "end": 5059.42, + "probability": 0.9895 + }, + { + "start": 5059.78, + "end": 5060.68, + "probability": 0.9693 + }, + { + "start": 5061.02, + "end": 5063.36, + "probability": 0.92 + }, + { + "start": 5063.54, + "end": 5065.5, + "probability": 0.9261 + }, + { + "start": 5066.82, + "end": 5071.4, + "probability": 0.9341 + }, + { + "start": 5072.18, + "end": 5073.8, + "probability": 0.8624 + }, + { + "start": 5075.16, + "end": 5078.32, + "probability": 0.9828 + }, + { + "start": 5078.7, + "end": 5079.94, + "probability": 0.9901 + }, + { + "start": 5080.52, + "end": 5081.44, + "probability": 0.9136 + }, + { + "start": 5081.98, + "end": 5084.08, + "probability": 0.9841 + }, + { + "start": 5084.74, + "end": 5086.2, + "probability": 0.8859 + }, + { + "start": 5086.44, + "end": 5089.18, + "probability": 0.834 + }, + { + "start": 5089.66, + "end": 5093.36, + "probability": 0.6209 + }, + { + "start": 5094.48, + "end": 5095.56, + "probability": 0.7501 + }, + { + "start": 5095.96, + "end": 5096.94, + "probability": 0.9594 + }, + { + "start": 5098.9, + "end": 5101.24, + "probability": 0.9927 + }, + { + "start": 5101.38, + "end": 5103.06, + "probability": 0.8431 + }, + { + "start": 5103.12, + "end": 5106.22, + "probability": 0.9978 + }, + { + "start": 5106.98, + "end": 5108.94, + "probability": 0.9984 + }, + { + "start": 5109.46, + "end": 5112.34, + "probability": 0.9763 + }, + { + "start": 5112.44, + "end": 5113.69, + "probability": 0.9717 + }, + { + "start": 5114.44, + "end": 5115.06, + "probability": 0.9893 + }, + { + "start": 5115.5, + "end": 5118.84, + "probability": 0.9976 + }, + { + "start": 5119.42, + "end": 5120.94, + "probability": 0.9932 + }, + { + "start": 5121.48, + "end": 5122.7, + "probability": 0.9496 + }, + { + "start": 5122.8, + "end": 5124.1, + "probability": 0.7979 + }, + { + "start": 5124.2, + "end": 5124.6, + "probability": 0.96 + }, + { + "start": 5125.0, + "end": 5125.98, + "probability": 0.8958 + }, + { + "start": 5126.5, + "end": 5129.32, + "probability": 0.9927 + }, + { + "start": 5130.28, + "end": 5131.96, + "probability": 0.9038 + }, + { + "start": 5132.06, + "end": 5133.86, + "probability": 0.826 + }, + { + "start": 5133.98, + "end": 5135.48, + "probability": 0.8744 + }, + { + "start": 5135.86, + "end": 5136.34, + "probability": 0.8572 + }, + { + "start": 5136.46, + "end": 5137.06, + "probability": 0.786 + }, + { + "start": 5138.0, + "end": 5139.32, + "probability": 0.8335 + }, + { + "start": 5140.28, + "end": 5143.42, + "probability": 0.9889 + }, + { + "start": 5143.42, + "end": 5146.58, + "probability": 0.9997 + }, + { + "start": 5146.84, + "end": 5147.46, + "probability": 0.5055 + }, + { + "start": 5148.06, + "end": 5150.92, + "probability": 0.8877 + }, + { + "start": 5151.44, + "end": 5152.02, + "probability": 0.4442 + }, + { + "start": 5152.1, + "end": 5155.54, + "probability": 0.8302 + }, + { + "start": 5155.54, + "end": 5158.8, + "probability": 0.9438 + }, + { + "start": 5159.18, + "end": 5160.04, + "probability": 0.8521 + }, + { + "start": 5160.62, + "end": 5165.66, + "probability": 0.9906 + }, + { + "start": 5166.16, + "end": 5167.42, + "probability": 0.9264 + }, + { + "start": 5167.8, + "end": 5169.56, + "probability": 0.8905 + }, + { + "start": 5170.08, + "end": 5171.52, + "probability": 0.9946 + }, + { + "start": 5171.84, + "end": 5173.18, + "probability": 0.9784 + }, + { + "start": 5173.78, + "end": 5176.26, + "probability": 0.9075 + }, + { + "start": 5176.74, + "end": 5177.55, + "probability": 0.987 + }, + { + "start": 5178.12, + "end": 5180.84, + "probability": 0.976 + }, + { + "start": 5181.66, + "end": 5182.98, + "probability": 0.6915 + }, + { + "start": 5184.06, + "end": 5185.8, + "probability": 0.9729 + }, + { + "start": 5185.84, + "end": 5186.12, + "probability": 0.8535 + }, + { + "start": 5186.5, + "end": 5187.5, + "probability": 0.5406 + }, + { + "start": 5188.46, + "end": 5189.82, + "probability": 0.5475 + }, + { + "start": 5190.24, + "end": 5191.12, + "probability": 0.0986 + }, + { + "start": 5191.16, + "end": 5194.22, + "probability": 0.1608 + }, + { + "start": 5194.6, + "end": 5195.64, + "probability": 0.7299 + }, + { + "start": 5196.56, + "end": 5197.18, + "probability": 0.751 + }, + { + "start": 5197.34, + "end": 5200.0, + "probability": 0.7693 + }, + { + "start": 5205.22, + "end": 5207.0, + "probability": 0.6963 + }, + { + "start": 5207.18, + "end": 5207.58, + "probability": 0.849 + }, + { + "start": 5207.74, + "end": 5208.02, + "probability": 0.8054 + }, + { + "start": 5208.1, + "end": 5209.82, + "probability": 0.9897 + }, + { + "start": 5210.36, + "end": 5212.14, + "probability": 0.8583 + }, + { + "start": 5212.14, + "end": 5212.14, + "probability": 0.0319 + }, + { + "start": 5212.14, + "end": 5213.75, + "probability": 0.7418 + }, + { + "start": 5215.27, + "end": 5218.36, + "probability": 0.0249 + }, + { + "start": 5218.48, + "end": 5219.8, + "probability": 0.0546 + }, + { + "start": 5219.8, + "end": 5220.38, + "probability": 0.1393 + }, + { + "start": 5220.38, + "end": 5220.38, + "probability": 0.0364 + }, + { + "start": 5220.5, + "end": 5220.5, + "probability": 0.1136 + }, + { + "start": 5220.5, + "end": 5220.88, + "probability": 0.2006 + }, + { + "start": 5221.68, + "end": 5221.96, + "probability": 0.0299 + }, + { + "start": 5221.96, + "end": 5222.42, + "probability": 0.1929 + }, + { + "start": 5222.52, + "end": 5223.46, + "probability": 0.1899 + }, + { + "start": 5224.58, + "end": 5227.2, + "probability": 0.2624 + }, + { + "start": 5227.96, + "end": 5228.46, + "probability": 0.2895 + }, + { + "start": 5228.46, + "end": 5228.82, + "probability": 0.1313 + }, + { + "start": 5228.82, + "end": 5228.82, + "probability": 0.1352 + }, + { + "start": 5228.82, + "end": 5230.97, + "probability": 0.1376 + }, + { + "start": 5231.84, + "end": 5233.2, + "probability": 0.2594 + }, + { + "start": 5233.2, + "end": 5233.2, + "probability": 0.6171 + }, + { + "start": 5233.2, + "end": 5233.7, + "probability": 0.4106 + }, + { + "start": 5234.14, + "end": 5236.66, + "probability": 0.9515 + }, + { + "start": 5237.3, + "end": 5240.34, + "probability": 0.8706 + }, + { + "start": 5240.88, + "end": 5241.66, + "probability": 0.0499 + }, + { + "start": 5242.12, + "end": 5243.8, + "probability": 0.1009 + }, + { + "start": 5243.94, + "end": 5243.94, + "probability": 0.3195 + }, + { + "start": 5243.94, + "end": 5245.42, + "probability": 0.2434 + }, + { + "start": 5245.7, + "end": 5247.42, + "probability": 0.1035 + }, + { + "start": 5247.42, + "end": 5247.66, + "probability": 0.4764 + }, + { + "start": 5247.72, + "end": 5248.14, + "probability": 0.2554 + }, + { + "start": 5248.18, + "end": 5248.3, + "probability": 0.01 + }, + { + "start": 5248.38, + "end": 5248.38, + "probability": 0.0512 + }, + { + "start": 5248.38, + "end": 5250.42, + "probability": 0.2232 + }, + { + "start": 5250.54, + "end": 5252.7, + "probability": 0.2268 + }, + { + "start": 5253.22, + "end": 5255.86, + "probability": 0.9157 + }, + { + "start": 5255.92, + "end": 5258.3, + "probability": 0.9795 + }, + { + "start": 5258.34, + "end": 5261.62, + "probability": 0.8731 + }, + { + "start": 5262.38, + "end": 5263.98, + "probability": 0.7729 + }, + { + "start": 5264.1, + "end": 5266.14, + "probability": 0.9225 + }, + { + "start": 5266.68, + "end": 5269.32, + "probability": 0.9919 + }, + { + "start": 5270.16, + "end": 5273.16, + "probability": 0.8653 + }, + { + "start": 5273.64, + "end": 5275.22, + "probability": 0.852 + }, + { + "start": 5275.26, + "end": 5277.3, + "probability": 0.957 + }, + { + "start": 5277.4, + "end": 5277.58, + "probability": 0.1238 + }, + { + "start": 5277.86, + "end": 5279.56, + "probability": 0.956 + }, + { + "start": 5279.62, + "end": 5280.44, + "probability": 0.1431 + }, + { + "start": 5280.74, + "end": 5281.1, + "probability": 0.2494 + }, + { + "start": 5281.24, + "end": 5283.03, + "probability": 0.8239 + }, + { + "start": 5283.22, + "end": 5283.92, + "probability": 0.3194 + }, + { + "start": 5284.72, + "end": 5287.56, + "probability": 0.9897 + }, + { + "start": 5287.62, + "end": 5288.3, + "probability": 0.9624 + }, + { + "start": 5288.62, + "end": 5289.08, + "probability": 0.5917 + }, + { + "start": 5289.08, + "end": 5289.86, + "probability": 0.6132 + }, + { + "start": 5289.98, + "end": 5292.12, + "probability": 0.9541 + }, + { + "start": 5294.34, + "end": 5294.88, + "probability": 0.0328 + }, + { + "start": 5295.75, + "end": 5296.97, + "probability": 0.699 + }, + { + "start": 5297.48, + "end": 5298.44, + "probability": 0.8441 + }, + { + "start": 5298.72, + "end": 5303.0, + "probability": 0.9393 + }, + { + "start": 5303.08, + "end": 5304.48, + "probability": 0.9756 + }, + { + "start": 5305.2, + "end": 5312.08, + "probability": 0.9866 + }, + { + "start": 5312.54, + "end": 5315.94, + "probability": 0.9193 + }, + { + "start": 5316.18, + "end": 5317.12, + "probability": 0.8287 + }, + { + "start": 5317.24, + "end": 5317.74, + "probability": 0.9417 + }, + { + "start": 5317.82, + "end": 5319.17, + "probability": 0.9782 + }, + { + "start": 5319.72, + "end": 5320.76, + "probability": 0.9863 + }, + { + "start": 5322.14, + "end": 5324.6, + "probability": 0.8797 + }, + { + "start": 5324.88, + "end": 5326.04, + "probability": 0.8305 + }, + { + "start": 5326.12, + "end": 5326.94, + "probability": 0.9272 + }, + { + "start": 5327.14, + "end": 5328.33, + "probability": 0.8716 + }, + { + "start": 5328.82, + "end": 5330.0, + "probability": 0.9785 + }, + { + "start": 5330.12, + "end": 5331.16, + "probability": 0.8582 + }, + { + "start": 5331.3, + "end": 5335.36, + "probability": 0.9707 + }, + { + "start": 5335.75, + "end": 5336.95, + "probability": 0.9253 + }, + { + "start": 5337.68, + "end": 5339.0, + "probability": 0.4451 + }, + { + "start": 5339.68, + "end": 5342.02, + "probability": 0.8573 + }, + { + "start": 5342.12, + "end": 5344.3, + "probability": 0.9502 + }, + { + "start": 5344.64, + "end": 5345.68, + "probability": 0.884 + }, + { + "start": 5346.12, + "end": 5347.0, + "probability": 0.7257 + }, + { + "start": 5347.06, + "end": 5349.29, + "probability": 0.9652 + }, + { + "start": 5350.92, + "end": 5351.42, + "probability": 0.9658 + }, + { + "start": 5351.52, + "end": 5352.28, + "probability": 0.8288 + }, + { + "start": 5353.0, + "end": 5357.04, + "probability": 0.9971 + }, + { + "start": 5357.22, + "end": 5360.4, + "probability": 0.9456 + }, + { + "start": 5361.06, + "end": 5362.46, + "probability": 0.9625 + }, + { + "start": 5362.52, + "end": 5364.18, + "probability": 0.9651 + }, + { + "start": 5364.58, + "end": 5366.24, + "probability": 0.8301 + }, + { + "start": 5366.36, + "end": 5366.8, + "probability": 0.8586 + }, + { + "start": 5366.88, + "end": 5367.84, + "probability": 0.8115 + }, + { + "start": 5367.9, + "end": 5370.58, + "probability": 0.9059 + }, + { + "start": 5370.9, + "end": 5373.41, + "probability": 0.9536 + }, + { + "start": 5373.76, + "end": 5376.62, + "probability": 0.9951 + }, + { + "start": 5376.86, + "end": 5377.7, + "probability": 0.7186 + }, + { + "start": 5377.78, + "end": 5378.44, + "probability": 0.4945 + }, + { + "start": 5378.64, + "end": 5379.58, + "probability": 0.4303 + }, + { + "start": 5379.68, + "end": 5380.78, + "probability": 0.9448 + }, + { + "start": 5380.94, + "end": 5381.34, + "probability": 0.4717 + }, + { + "start": 5381.36, + "end": 5382.1, + "probability": 0.6667 + }, + { + "start": 5382.52, + "end": 5384.24, + "probability": 0.5978 + }, + { + "start": 5384.28, + "end": 5385.06, + "probability": 0.9726 + }, + { + "start": 5385.4, + "end": 5386.52, + "probability": 0.9951 + }, + { + "start": 5386.62, + "end": 5387.92, + "probability": 0.9827 + }, + { + "start": 5388.38, + "end": 5390.56, + "probability": 0.8721 + }, + { + "start": 5391.0, + "end": 5392.14, + "probability": 0.9677 + }, + { + "start": 5392.2, + "end": 5394.72, + "probability": 0.991 + }, + { + "start": 5395.22, + "end": 5395.46, + "probability": 0.7392 + }, + { + "start": 5395.52, + "end": 5398.56, + "probability": 0.9351 + }, + { + "start": 5398.6, + "end": 5398.81, + "probability": 0.9666 + }, + { + "start": 5399.22, + "end": 5401.22, + "probability": 0.9702 + }, + { + "start": 5401.28, + "end": 5401.66, + "probability": 0.897 + }, + { + "start": 5401.78, + "end": 5402.52, + "probability": 0.8893 + }, + { + "start": 5403.7, + "end": 5405.84, + "probability": 0.6051 + }, + { + "start": 5406.12, + "end": 5408.28, + "probability": 0.9278 + }, + { + "start": 5408.76, + "end": 5414.28, + "probability": 0.8685 + }, + { + "start": 5415.6, + "end": 5417.63, + "probability": 0.3497 + }, + { + "start": 5418.72, + "end": 5419.96, + "probability": 0.6309 + }, + { + "start": 5425.38, + "end": 5427.26, + "probability": 0.004 + }, + { + "start": 5434.68, + "end": 5435.62, + "probability": 0.0377 + }, + { + "start": 5435.65, + "end": 5436.0, + "probability": 0.0948 + }, + { + "start": 5436.68, + "end": 5437.72, + "probability": 0.0083 + }, + { + "start": 5439.32, + "end": 5439.94, + "probability": 0.0099 + }, + { + "start": 5440.3, + "end": 5440.96, + "probability": 0.4541 + }, + { + "start": 5440.96, + "end": 5441.38, + "probability": 0.581 + }, + { + "start": 5445.68, + "end": 5451.22, + "probability": 0.1402 + }, + { + "start": 5451.68, + "end": 5453.92, + "probability": 0.7381 + }, + { + "start": 5455.08, + "end": 5457.84, + "probability": 0.8075 + }, + { + "start": 5458.68, + "end": 5462.05, + "probability": 0.9907 + }, + { + "start": 5462.81, + "end": 5463.71, + "probability": 0.9866 + }, + { + "start": 5463.79, + "end": 5465.45, + "probability": 0.8336 + }, + { + "start": 5466.05, + "end": 5467.78, + "probability": 0.8061 + }, + { + "start": 5468.39, + "end": 5469.07, + "probability": 0.852 + }, + { + "start": 5469.11, + "end": 5470.26, + "probability": 0.9781 + }, + { + "start": 5471.15, + "end": 5472.21, + "probability": 0.9878 + }, + { + "start": 5472.71, + "end": 5473.19, + "probability": 0.7157 + }, + { + "start": 5473.27, + "end": 5476.37, + "probability": 0.8838 + }, + { + "start": 5476.73, + "end": 5479.29, + "probability": 0.9237 + }, + { + "start": 5479.79, + "end": 5480.65, + "probability": 0.5527 + }, + { + "start": 5481.59, + "end": 5481.99, + "probability": 0.6201 + }, + { + "start": 5483.05, + "end": 5486.41, + "probability": 0.8167 + }, + { + "start": 5486.59, + "end": 5487.25, + "probability": 0.8033 + }, + { + "start": 5487.63, + "end": 5490.87, + "probability": 0.4993 + }, + { + "start": 5491.19, + "end": 5492.65, + "probability": 0.9858 + }, + { + "start": 5493.35, + "end": 5495.43, + "probability": 0.7214 + }, + { + "start": 5495.91, + "end": 5496.93, + "probability": 0.8809 + }, + { + "start": 5497.33, + "end": 5498.55, + "probability": 0.9872 + }, + { + "start": 5499.15, + "end": 5499.64, + "probability": 0.889 + }, + { + "start": 5500.15, + "end": 5501.52, + "probability": 0.8496 + }, + { + "start": 5502.17, + "end": 5503.37, + "probability": 0.885 + }, + { + "start": 5503.99, + "end": 5509.37, + "probability": 0.0743 + }, + { + "start": 5509.63, + "end": 5510.63, + "probability": 0.0715 + }, + { + "start": 5512.69, + "end": 5514.71, + "probability": 0.0592 + }, + { + "start": 5514.95, + "end": 5515.73, + "probability": 0.3277 + }, + { + "start": 5518.15, + "end": 5521.29, + "probability": 0.2756 + }, + { + "start": 5521.85, + "end": 5522.45, + "probability": 0.2468 + }, + { + "start": 5522.55, + "end": 5523.87, + "probability": 0.1043 + }, + { + "start": 5523.87, + "end": 5524.91, + "probability": 0.014 + }, + { + "start": 5526.13, + "end": 5526.27, + "probability": 0.2837 + }, + { + "start": 5531.75, + "end": 5532.31, + "probability": 0.2879 + }, + { + "start": 5533.3, + "end": 5533.37, + "probability": 0.3276 + }, + { + "start": 5533.37, + "end": 5533.55, + "probability": 0.0499 + }, + { + "start": 5533.55, + "end": 5534.19, + "probability": 0.0268 + }, + { + "start": 5534.19, + "end": 5534.19, + "probability": 0.3733 + }, + { + "start": 5534.19, + "end": 5534.19, + "probability": 0.2488 + }, + { + "start": 5534.19, + "end": 5534.19, + "probability": 0.3612 + }, + { + "start": 5534.19, + "end": 5534.19, + "probability": 0.0621 + }, + { + "start": 5536.75, + "end": 5539.39, + "probability": 0.1434 + }, + { + "start": 5542.85, + "end": 5543.59, + "probability": 0.4798 + }, + { + "start": 5551.91, + "end": 5551.91, + "probability": 0.0242 + }, + { + "start": 5551.91, + "end": 5554.21, + "probability": 0.2405 + }, + { + "start": 5554.77, + "end": 5557.49, + "probability": 0.3281 + }, + { + "start": 5558.23, + "end": 5562.25, + "probability": 0.1747 + }, + { + "start": 5562.25, + "end": 5562.39, + "probability": 0.052 + }, + { + "start": 5563.95, + "end": 5565.15, + "probability": 0.0426 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.0, + "end": 5583.0, + "probability": 0.0 + }, + { + "start": 5583.36, + "end": 5585.36, + "probability": 0.1401 + }, + { + "start": 5585.44, + "end": 5587.16, + "probability": 0.2592 + }, + { + "start": 5587.64, + "end": 5588.08, + "probability": 0.4523 + }, + { + "start": 5589.3, + "end": 5590.76, + "probability": 0.4669 + }, + { + "start": 5591.02, + "end": 5593.26, + "probability": 0.5943 + }, + { + "start": 5593.28, + "end": 5593.84, + "probability": 0.0157 + }, + { + "start": 5593.84, + "end": 5593.84, + "probability": 0.266 + }, + { + "start": 5593.84, + "end": 5597.48, + "probability": 0.8309 + }, + { + "start": 5598.02, + "end": 5599.14, + "probability": 0.5898 + }, + { + "start": 5599.14, + "end": 5601.08, + "probability": 0.5357 + }, + { + "start": 5601.08, + "end": 5601.36, + "probability": 0.101 + }, + { + "start": 5601.36, + "end": 5601.62, + "probability": 0.1592 + }, + { + "start": 5601.62, + "end": 5601.62, + "probability": 0.0956 + }, + { + "start": 5601.62, + "end": 5602.34, + "probability": 0.5299 + }, + { + "start": 5602.74, + "end": 5603.83, + "probability": 0.6077 + }, + { + "start": 5603.94, + "end": 5604.66, + "probability": 0.5504 + }, + { + "start": 5605.46, + "end": 5607.1, + "probability": 0.4115 + }, + { + "start": 5607.4, + "end": 5608.68, + "probability": 0.5221 + }, + { + "start": 5608.68, + "end": 5609.55, + "probability": 0.711 + }, + { + "start": 5609.82, + "end": 5610.48, + "probability": 0.0283 + }, + { + "start": 5610.48, + "end": 5611.54, + "probability": 0.2433 + }, + { + "start": 5611.64, + "end": 5612.84, + "probability": 0.7795 + }, + { + "start": 5613.08, + "end": 5613.69, + "probability": 0.8688 + }, + { + "start": 5614.14, + "end": 5616.16, + "probability": 0.867 + }, + { + "start": 5616.86, + "end": 5618.12, + "probability": 0.8882 + }, + { + "start": 5618.2, + "end": 5619.0, + "probability": 0.0562 + }, + { + "start": 5619.0, + "end": 5622.14, + "probability": 0.8849 + }, + { + "start": 5622.36, + "end": 5624.6, + "probability": 0.9728 + }, + { + "start": 5624.78, + "end": 5625.78, + "probability": 0.7268 + }, + { + "start": 5627.0, + "end": 5627.98, + "probability": 0.0165 + }, + { + "start": 5628.0, + "end": 5628.0, + "probability": 0.0907 + }, + { + "start": 5628.0, + "end": 5628.0, + "probability": 0.077 + }, + { + "start": 5628.0, + "end": 5628.0, + "probability": 0.1076 + }, + { + "start": 5628.0, + "end": 5628.5, + "probability": 0.5124 + }, + { + "start": 5628.5, + "end": 5629.04, + "probability": 0.6277 + }, + { + "start": 5629.18, + "end": 5629.64, + "probability": 0.4684 + }, + { + "start": 5629.7, + "end": 5631.35, + "probability": 0.7073 + }, + { + "start": 5631.84, + "end": 5633.18, + "probability": 0.7425 + }, + { + "start": 5633.86, + "end": 5633.94, + "probability": 0.2826 + }, + { + "start": 5633.94, + "end": 5634.96, + "probability": 0.9035 + }, + { + "start": 5635.08, + "end": 5635.82, + "probability": 0.6731 + }, + { + "start": 5635.82, + "end": 5636.5, + "probability": 0.5899 + }, + { + "start": 5636.72, + "end": 5638.66, + "probability": 0.4068 + }, + { + "start": 5639.08, + "end": 5643.2, + "probability": 0.4858 + }, + { + "start": 5644.34, + "end": 5645.48, + "probability": 0.0082 + }, + { + "start": 5645.98, + "end": 5647.08, + "probability": 0.2084 + }, + { + "start": 5648.76, + "end": 5649.39, + "probability": 0.1568 + }, + { + "start": 5656.4, + "end": 5659.9, + "probability": 0.1839 + }, + { + "start": 5661.58, + "end": 5662.8, + "probability": 0.0332 + }, + { + "start": 5663.2, + "end": 5665.16, + "probability": 0.4008 + }, + { + "start": 5665.96, + "end": 5667.06, + "probability": 0.0134 + }, + { + "start": 5667.42, + "end": 5668.86, + "probability": 0.0788 + }, + { + "start": 5669.4, + "end": 5670.66, + "probability": 0.0027 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.0, + "end": 5725.0, + "probability": 0.0 + }, + { + "start": 5725.2, + "end": 5726.04, + "probability": 0.4646 + }, + { + "start": 5726.58, + "end": 5726.92, + "probability": 0.0776 + }, + { + "start": 5726.92, + "end": 5726.92, + "probability": 0.0317 + }, + { + "start": 5726.92, + "end": 5727.16, + "probability": 0.1129 + }, + { + "start": 5727.16, + "end": 5727.16, + "probability": 0.0407 + }, + { + "start": 5727.16, + "end": 5730.94, + "probability": 0.5167 + }, + { + "start": 5731.12, + "end": 5731.12, + "probability": 0.2101 + }, + { + "start": 5731.12, + "end": 5731.12, + "probability": 0.2217 + }, + { + "start": 5731.12, + "end": 5731.12, + "probability": 0.0883 + }, + { + "start": 5731.12, + "end": 5732.98, + "probability": 0.2225 + }, + { + "start": 5733.78, + "end": 5734.3, + "probability": 0.7338 + }, + { + "start": 5737.04, + "end": 5738.46, + "probability": 0.5654 + }, + { + "start": 5738.5, + "end": 5739.32, + "probability": 0.5334 + }, + { + "start": 5739.52, + "end": 5740.78, + "probability": 0.6975 + }, + { + "start": 5741.44, + "end": 5742.28, + "probability": 0.9712 + }, + { + "start": 5742.32, + "end": 5744.08, + "probability": 0.7885 + }, + { + "start": 5744.2, + "end": 5745.1, + "probability": 0.5188 + }, + { + "start": 5745.1, + "end": 5745.98, + "probability": 0.4555 + }, + { + "start": 5746.16, + "end": 5748.58, + "probability": 0.9542 + }, + { + "start": 5748.92, + "end": 5750.02, + "probability": 0.903 + }, + { + "start": 5751.0, + "end": 5753.5, + "probability": 0.9775 + }, + { + "start": 5754.32, + "end": 5755.0, + "probability": 0.6333 + }, + { + "start": 5755.7, + "end": 5757.36, + "probability": 0.9611 + }, + { + "start": 5758.34, + "end": 5759.2, + "probability": 0.9066 + }, + { + "start": 5759.56, + "end": 5760.08, + "probability": 0.9612 + }, + { + "start": 5760.18, + "end": 5760.56, + "probability": 0.6236 + }, + { + "start": 5760.62, + "end": 5761.48, + "probability": 0.8942 + }, + { + "start": 5761.7, + "end": 5762.1, + "probability": 0.8848 + }, + { + "start": 5762.28, + "end": 5762.7, + "probability": 0.449 + }, + { + "start": 5763.48, + "end": 5764.22, + "probability": 0.9204 + }, + { + "start": 5764.26, + "end": 5766.12, + "probability": 0.8363 + }, + { + "start": 5766.36, + "end": 5767.08, + "probability": 0.9768 + }, + { + "start": 5767.16, + "end": 5769.82, + "probability": 0.9865 + }, + { + "start": 5770.08, + "end": 5770.84, + "probability": 0.8465 + }, + { + "start": 5771.08, + "end": 5771.18, + "probability": 0.7351 + }, + { + "start": 5772.0, + "end": 5772.78, + "probability": 0.9789 + }, + { + "start": 5773.98, + "end": 5777.32, + "probability": 0.9888 + }, + { + "start": 5777.42, + "end": 5780.42, + "probability": 0.8244 + }, + { + "start": 5781.2, + "end": 5784.48, + "probability": 0.9917 + }, + { + "start": 5785.7, + "end": 5787.36, + "probability": 0.4915 + }, + { + "start": 5788.04, + "end": 5790.14, + "probability": 0.8191 + }, + { + "start": 5790.84, + "end": 5792.74, + "probability": 0.9697 + }, + { + "start": 5793.02, + "end": 5793.62, + "probability": 0.9001 + }, + { + "start": 5794.0, + "end": 5795.46, + "probability": 0.988 + }, + { + "start": 5796.36, + "end": 5798.86, + "probability": 0.9608 + }, + { + "start": 5799.0, + "end": 5799.7, + "probability": 0.5924 + }, + { + "start": 5800.34, + "end": 5800.44, + "probability": 0.231 + }, + { + "start": 5800.52, + "end": 5801.94, + "probability": 0.8985 + }, + { + "start": 5801.96, + "end": 5803.14, + "probability": 0.9606 + }, + { + "start": 5803.32, + "end": 5805.78, + "probability": 0.9802 + }, + { + "start": 5805.78, + "end": 5808.14, + "probability": 0.9899 + }, + { + "start": 5808.56, + "end": 5809.76, + "probability": 0.9572 + }, + { + "start": 5809.94, + "end": 5811.82, + "probability": 0.9984 + }, + { + "start": 5812.18, + "end": 5812.56, + "probability": 0.7513 + }, + { + "start": 5812.68, + "end": 5812.91, + "probability": 0.7935 + }, + { + "start": 5814.14, + "end": 5816.88, + "probability": 0.8145 + }, + { + "start": 5817.68, + "end": 5818.9, + "probability": 0.9963 + }, + { + "start": 5818.98, + "end": 5820.38, + "probability": 0.9895 + }, + { + "start": 5820.5, + "end": 5822.12, + "probability": 0.9785 + }, + { + "start": 5822.9, + "end": 5823.2, + "probability": 0.6471 + }, + { + "start": 5823.96, + "end": 5825.22, + "probability": 0.863 + }, + { + "start": 5825.96, + "end": 5827.5, + "probability": 0.9959 + }, + { + "start": 5828.3, + "end": 5829.66, + "probability": 0.8726 + }, + { + "start": 5830.3, + "end": 5831.34, + "probability": 0.9875 + }, + { + "start": 5831.96, + "end": 5835.5, + "probability": 0.9796 + }, + { + "start": 5836.36, + "end": 5838.56, + "probability": 0.9554 + }, + { + "start": 5839.16, + "end": 5841.12, + "probability": 0.9368 + }, + { + "start": 5841.66, + "end": 5843.49, + "probability": 0.9623 + }, + { + "start": 5844.28, + "end": 5845.38, + "probability": 0.8645 + }, + { + "start": 5846.16, + "end": 5848.92, + "probability": 0.9966 + }, + { + "start": 5849.66, + "end": 5850.63, + "probability": 0.9932 + }, + { + "start": 5851.52, + "end": 5852.94, + "probability": 0.7505 + }, + { + "start": 5853.46, + "end": 5854.72, + "probability": 0.9978 + }, + { + "start": 5855.52, + "end": 5858.68, + "probability": 0.9315 + }, + { + "start": 5859.24, + "end": 5862.12, + "probability": 0.9715 + }, + { + "start": 5862.86, + "end": 5864.0, + "probability": 0.9373 + }, + { + "start": 5864.68, + "end": 5865.34, + "probability": 0.7312 + }, + { + "start": 5865.7, + "end": 5868.39, + "probability": 0.9919 + }, + { + "start": 5868.98, + "end": 5869.34, + "probability": 0.7025 + }, + { + "start": 5869.8, + "end": 5871.76, + "probability": 0.7625 + }, + { + "start": 5872.24, + "end": 5873.54, + "probability": 0.9927 + }, + { + "start": 5874.02, + "end": 5875.32, + "probability": 0.9878 + }, + { + "start": 5875.98, + "end": 5878.02, + "probability": 0.9973 + }, + { + "start": 5878.8, + "end": 5879.58, + "probability": 0.9252 + }, + { + "start": 5880.2, + "end": 5881.5, + "probability": 0.9545 + }, + { + "start": 5882.1, + "end": 5883.1, + "probability": 0.8642 + }, + { + "start": 5883.7, + "end": 5885.18, + "probability": 0.9775 + }, + { + "start": 5886.08, + "end": 5886.52, + "probability": 0.9872 + }, + { + "start": 5886.92, + "end": 5887.54, + "probability": 0.7668 + }, + { + "start": 5887.98, + "end": 5890.94, + "probability": 0.9787 + }, + { + "start": 5891.6, + "end": 5892.56, + "probability": 0.8579 + }, + { + "start": 5893.08, + "end": 5893.36, + "probability": 0.5732 + }, + { + "start": 5893.46, + "end": 5893.98, + "probability": 0.4202 + }, + { + "start": 5894.06, + "end": 5894.92, + "probability": 0.9359 + }, + { + "start": 5895.0, + "end": 5895.56, + "probability": 0.7075 + }, + { + "start": 5895.98, + "end": 5898.32, + "probability": 0.9835 + }, + { + "start": 5898.44, + "end": 5898.86, + "probability": 0.7017 + }, + { + "start": 5899.48, + "end": 5901.68, + "probability": 0.9574 + }, + { + "start": 5902.26, + "end": 5903.07, + "probability": 0.9625 + }, + { + "start": 5903.26, + "end": 5904.2, + "probability": 0.8981 + }, + { + "start": 5904.28, + "end": 5905.14, + "probability": 0.7605 + }, + { + "start": 5905.48, + "end": 5905.84, + "probability": 0.7765 + }, + { + "start": 5906.6, + "end": 5908.94, + "probability": 0.912 + }, + { + "start": 5909.88, + "end": 5911.7, + "probability": 0.8877 + }, + { + "start": 5911.72, + "end": 5913.41, + "probability": 0.969 + }, + { + "start": 5914.3, + "end": 5916.14, + "probability": 0.9943 + }, + { + "start": 5916.7, + "end": 5919.12, + "probability": 0.9978 + }, + { + "start": 5919.64, + "end": 5921.32, + "probability": 0.7682 + }, + { + "start": 5921.34, + "end": 5922.84, + "probability": 0.8356 + }, + { + "start": 5923.3, + "end": 5925.86, + "probability": 0.9832 + }, + { + "start": 5926.32, + "end": 5928.0, + "probability": 0.7992 + }, + { + "start": 5928.08, + "end": 5929.16, + "probability": 0.7763 + }, + { + "start": 5929.84, + "end": 5930.36, + "probability": 0.719 + }, + { + "start": 5930.78, + "end": 5932.32, + "probability": 0.8328 + }, + { + "start": 5934.16, + "end": 5934.9, + "probability": 0.7789 + }, + { + "start": 5936.23, + "end": 5940.02, + "probability": 0.9377 + }, + { + "start": 5959.44, + "end": 5961.26, + "probability": 0.7622 + }, + { + "start": 5961.36, + "end": 5963.0, + "probability": 0.6647 + }, + { + "start": 5963.34, + "end": 5968.88, + "probability": 0.9883 + }, + { + "start": 5969.36, + "end": 5970.14, + "probability": 0.9808 + }, + { + "start": 5970.32, + "end": 5970.94, + "probability": 0.9655 + }, + { + "start": 5971.36, + "end": 5972.3, + "probability": 0.9814 + }, + { + "start": 5972.38, + "end": 5973.52, + "probability": 0.8427 + }, + { + "start": 5973.58, + "end": 5978.62, + "probability": 0.9492 + }, + { + "start": 5978.82, + "end": 5980.02, + "probability": 0.8556 + }, + { + "start": 5980.48, + "end": 5982.92, + "probability": 0.9904 + }, + { + "start": 5983.56, + "end": 5989.18, + "probability": 0.8683 + }, + { + "start": 5989.22, + "end": 5990.46, + "probability": 0.7651 + }, + { + "start": 5993.2, + "end": 5997.46, + "probability": 0.999 + }, + { + "start": 5998.36, + "end": 5998.72, + "probability": 0.7968 + }, + { + "start": 5998.82, + "end": 6003.66, + "probability": 0.9248 + }, + { + "start": 6003.76, + "end": 6004.8, + "probability": 0.8957 + }, + { + "start": 6005.02, + "end": 6006.46, + "probability": 0.9912 + }, + { + "start": 6007.0, + "end": 6009.24, + "probability": 0.9833 + }, + { + "start": 6010.04, + "end": 6013.46, + "probability": 0.921 + }, + { + "start": 6016.0, + "end": 6018.62, + "probability": 0.9735 + }, + { + "start": 6019.26, + "end": 6021.64, + "probability": 0.9543 + }, + { + "start": 6022.1, + "end": 6023.28, + "probability": 0.978 + }, + { + "start": 6023.9, + "end": 6027.7, + "probability": 0.9819 + }, + { + "start": 6028.18, + "end": 6031.32, + "probability": 0.9854 + }, + { + "start": 6032.3, + "end": 6039.46, + "probability": 0.988 + }, + { + "start": 6040.4, + "end": 6042.3, + "probability": 0.9607 + }, + { + "start": 6043.0, + "end": 6046.96, + "probability": 0.9946 + }, + { + "start": 6047.38, + "end": 6049.46, + "probability": 0.9812 + }, + { + "start": 6050.66, + "end": 6053.12, + "probability": 0.9918 + }, + { + "start": 6053.92, + "end": 6057.46, + "probability": 0.974 + }, + { + "start": 6058.28, + "end": 6061.12, + "probability": 0.8014 + }, + { + "start": 6061.2, + "end": 6061.66, + "probability": 0.9344 + }, + { + "start": 6061.74, + "end": 6062.34, + "probability": 0.991 + }, + { + "start": 6062.36, + "end": 6063.28, + "probability": 0.9862 + }, + { + "start": 6063.34, + "end": 6064.02, + "probability": 0.9828 + }, + { + "start": 6064.08, + "end": 6065.32, + "probability": 0.8675 + }, + { + "start": 6065.94, + "end": 6068.62, + "probability": 0.9944 + }, + { + "start": 6069.38, + "end": 6072.14, + "probability": 0.9786 + }, + { + "start": 6072.86, + "end": 6076.98, + "probability": 0.9972 + }, + { + "start": 6077.82, + "end": 6081.76, + "probability": 0.9715 + }, + { + "start": 6082.64, + "end": 6088.24, + "probability": 0.9717 + }, + { + "start": 6089.18, + "end": 6091.24, + "probability": 0.9295 + }, + { + "start": 6091.56, + "end": 6092.69, + "probability": 0.8537 + }, + { + "start": 6096.4, + "end": 6098.02, + "probability": 0.9888 + }, + { + "start": 6098.66, + "end": 6101.82, + "probability": 0.9573 + }, + { + "start": 6101.82, + "end": 6104.98, + "probability": 0.983 + }, + { + "start": 6106.64, + "end": 6110.19, + "probability": 0.9796 + }, + { + "start": 6111.04, + "end": 6112.68, + "probability": 0.8404 + }, + { + "start": 6113.26, + "end": 6115.36, + "probability": 0.9825 + }, + { + "start": 6116.14, + "end": 6121.12, + "probability": 0.9691 + }, + { + "start": 6121.66, + "end": 6125.14, + "probability": 0.994 + }, + { + "start": 6125.56, + "end": 6127.5, + "probability": 0.987 + }, + { + "start": 6128.4, + "end": 6129.82, + "probability": 0.9995 + }, + { + "start": 6130.72, + "end": 6132.54, + "probability": 0.9971 + }, + { + "start": 6133.24, + "end": 6134.18, + "probability": 0.595 + }, + { + "start": 6134.7, + "end": 6137.4, + "probability": 0.9849 + }, + { + "start": 6138.84, + "end": 6139.38, + "probability": 0.8679 + }, + { + "start": 6141.1, + "end": 6143.02, + "probability": 0.9416 + }, + { + "start": 6155.44, + "end": 6155.68, + "probability": 0.5273 + }, + { + "start": 6156.3, + "end": 6156.56, + "probability": 0.8126 + }, + { + "start": 6157.86, + "end": 6158.8, + "probability": 0.7489 + }, + { + "start": 6158.9, + "end": 6159.78, + "probability": 0.5756 + }, + { + "start": 6160.24, + "end": 6166.88, + "probability": 0.9967 + }, + { + "start": 6167.08, + "end": 6168.8, + "probability": 0.9957 + }, + { + "start": 6168.86, + "end": 6169.84, + "probability": 0.9854 + }, + { + "start": 6170.44, + "end": 6171.9, + "probability": 0.6523 + }, + { + "start": 6172.0, + "end": 6174.68, + "probability": 0.9522 + }, + { + "start": 6175.18, + "end": 6177.4, + "probability": 0.9197 + }, + { + "start": 6178.62, + "end": 6181.36, + "probability": 0.7272 + }, + { + "start": 6181.56, + "end": 6182.8, + "probability": 0.6814 + }, + { + "start": 6183.36, + "end": 6189.78, + "probability": 0.7471 + }, + { + "start": 6190.06, + "end": 6191.32, + "probability": 0.718 + }, + { + "start": 6192.58, + "end": 6195.18, + "probability": 0.9824 + }, + { + "start": 6195.64, + "end": 6198.8, + "probability": 0.8916 + }, + { + "start": 6199.54, + "end": 6203.12, + "probability": 0.6488 + }, + { + "start": 6203.5, + "end": 6208.9, + "probability": 0.9549 + }, + { + "start": 6209.86, + "end": 6214.59, + "probability": 0.9951 + }, + { + "start": 6214.72, + "end": 6218.38, + "probability": 0.9986 + }, + { + "start": 6220.14, + "end": 6221.46, + "probability": 0.9207 + }, + { + "start": 6221.72, + "end": 6223.14, + "probability": 0.9949 + }, + { + "start": 6223.42, + "end": 6225.9, + "probability": 0.8895 + }, + { + "start": 6226.84, + "end": 6227.88, + "probability": 0.842 + }, + { + "start": 6227.98, + "end": 6229.06, + "probability": 0.8813 + }, + { + "start": 6229.1, + "end": 6229.78, + "probability": 0.9834 + }, + { + "start": 6230.46, + "end": 6233.28, + "probability": 0.7357 + }, + { + "start": 6234.6, + "end": 6237.94, + "probability": 0.9684 + }, + { + "start": 6238.12, + "end": 6239.38, + "probability": 0.638 + }, + { + "start": 6240.16, + "end": 6245.54, + "probability": 0.9819 + }, + { + "start": 6246.0, + "end": 6247.16, + "probability": 0.8506 + }, + { + "start": 6247.58, + "end": 6248.4, + "probability": 0.9799 + }, + { + "start": 6248.64, + "end": 6249.58, + "probability": 0.9874 + }, + { + "start": 6249.84, + "end": 6251.4, + "probability": 0.9785 + }, + { + "start": 6251.82, + "end": 6252.62, + "probability": 0.9918 + }, + { + "start": 6252.68, + "end": 6253.92, + "probability": 0.7708 + }, + { + "start": 6254.66, + "end": 6260.38, + "probability": 0.9563 + }, + { + "start": 6260.86, + "end": 6265.22, + "probability": 0.5379 + }, + { + "start": 6267.12, + "end": 6270.2, + "probability": 0.8818 + }, + { + "start": 6271.16, + "end": 6272.78, + "probability": 0.2233 + }, + { + "start": 6273.34, + "end": 6279.84, + "probability": 0.7622 + }, + { + "start": 6280.74, + "end": 6283.02, + "probability": 0.7837 + }, + { + "start": 6283.56, + "end": 6285.0, + "probability": 0.9177 + }, + { + "start": 6285.22, + "end": 6287.12, + "probability": 0.9978 + }, + { + "start": 6287.7, + "end": 6289.74, + "probability": 0.8843 + }, + { + "start": 6290.22, + "end": 6294.18, + "probability": 0.9796 + }, + { + "start": 6294.74, + "end": 6301.1, + "probability": 0.9979 + }, + { + "start": 6301.28, + "end": 6301.84, + "probability": 0.9829 + }, + { + "start": 6301.9, + "end": 6302.68, + "probability": 0.5869 + }, + { + "start": 6303.34, + "end": 6306.32, + "probability": 0.9856 + }, + { + "start": 6306.5, + "end": 6311.28, + "probability": 0.999 + }, + { + "start": 6311.44, + "end": 6314.65, + "probability": 0.5976 + }, + { + "start": 6315.44, + "end": 6316.32, + "probability": 0.2014 + }, + { + "start": 6316.51, + "end": 6317.37, + "probability": 0.4836 + }, + { + "start": 6319.26, + "end": 6320.34, + "probability": 0.5412 + }, + { + "start": 6321.06, + "end": 6322.77, + "probability": 0.998 + }, + { + "start": 6322.94, + "end": 6326.8, + "probability": 0.6722 + }, + { + "start": 6326.86, + "end": 6328.68, + "probability": 0.8395 + }, + { + "start": 6329.06, + "end": 6331.79, + "probability": 0.9946 + }, + { + "start": 6332.08, + "end": 6333.56, + "probability": 0.966 + }, + { + "start": 6333.66, + "end": 6335.82, + "probability": 0.6146 + }, + { + "start": 6336.02, + "end": 6336.72, + "probability": 0.0896 + }, + { + "start": 6336.72, + "end": 6337.4, + "probability": 0.6628 + }, + { + "start": 6338.26, + "end": 6339.88, + "probability": 0.8605 + }, + { + "start": 6340.26, + "end": 6340.82, + "probability": 0.0797 + }, + { + "start": 6341.93, + "end": 6343.6, + "probability": 0.0215 + }, + { + "start": 6343.6, + "end": 6343.86, + "probability": 0.1026 + }, + { + "start": 6344.02, + "end": 6344.76, + "probability": 0.7021 + }, + { + "start": 6344.98, + "end": 6345.74, + "probability": 0.9295 + }, + { + "start": 6345.8, + "end": 6346.02, + "probability": 0.4063 + }, + { + "start": 6346.1, + "end": 6346.5, + "probability": 0.6126 + }, + { + "start": 6346.56, + "end": 6347.69, + "probability": 0.9946 + }, + { + "start": 6347.8, + "end": 6348.6, + "probability": 0.6589 + }, + { + "start": 6348.72, + "end": 6350.58, + "probability": 0.9101 + }, + { + "start": 6351.96, + "end": 6359.4, + "probability": 0.9895 + }, + { + "start": 6359.82, + "end": 6363.1, + "probability": 0.8662 + }, + { + "start": 6363.38, + "end": 6364.4, + "probability": 0.9626 + }, + { + "start": 6364.66, + "end": 6365.2, + "probability": 0.6036 + }, + { + "start": 6366.48, + "end": 6367.18, + "probability": 0.7931 + }, + { + "start": 6368.98, + "end": 6371.1, + "probability": 0.9058 + }, + { + "start": 6371.56, + "end": 6373.48, + "probability": 0.5902 + }, + { + "start": 6374.1, + "end": 6375.3, + "probability": 0.5305 + }, + { + "start": 6397.04, + "end": 6397.54, + "probability": 0.7482 + }, + { + "start": 6401.12, + "end": 6402.26, + "probability": 0.735 + }, + { + "start": 6403.06, + "end": 6405.12, + "probability": 0.8524 + }, + { + "start": 6405.98, + "end": 6407.42, + "probability": 0.9838 + }, + { + "start": 6407.5, + "end": 6408.22, + "probability": 0.9452 + }, + { + "start": 6408.28, + "end": 6409.76, + "probability": 0.8163 + }, + { + "start": 6410.76, + "end": 6415.22, + "probability": 0.9637 + }, + { + "start": 6416.4, + "end": 6419.48, + "probability": 0.8817 + }, + { + "start": 6420.22, + "end": 6421.16, + "probability": 0.6813 + }, + { + "start": 6421.88, + "end": 6423.84, + "probability": 0.9614 + }, + { + "start": 6425.24, + "end": 6425.46, + "probability": 0.8518 + }, + { + "start": 6427.4, + "end": 6428.36, + "probability": 0.9034 + }, + { + "start": 6429.3, + "end": 6434.36, + "probability": 0.7225 + }, + { + "start": 6434.36, + "end": 6436.94, + "probability": 0.9132 + }, + { + "start": 6439.48, + "end": 6440.28, + "probability": 0.6765 + }, + { + "start": 6441.4, + "end": 6443.92, + "probability": 0.9894 + }, + { + "start": 6444.98, + "end": 6447.24, + "probability": 0.9797 + }, + { + "start": 6448.14, + "end": 6451.43, + "probability": 0.9922 + }, + { + "start": 6452.96, + "end": 6453.52, + "probability": 0.3328 + }, + { + "start": 6453.7, + "end": 6454.96, + "probability": 0.6426 + }, + { + "start": 6456.34, + "end": 6459.0, + "probability": 0.7944 + }, + { + "start": 6459.14, + "end": 6459.93, + "probability": 0.9297 + }, + { + "start": 6460.8, + "end": 6462.16, + "probability": 0.9043 + }, + { + "start": 6462.78, + "end": 6463.82, + "probability": 0.9346 + }, + { + "start": 6464.36, + "end": 6465.4, + "probability": 0.9374 + }, + { + "start": 6467.36, + "end": 6470.2, + "probability": 0.6716 + }, + { + "start": 6471.8, + "end": 6473.2, + "probability": 0.9368 + }, + { + "start": 6474.12, + "end": 6475.1, + "probability": 0.6056 + }, + { + "start": 6475.92, + "end": 6477.86, + "probability": 0.9226 + }, + { + "start": 6478.48, + "end": 6479.4, + "probability": 0.9069 + }, + { + "start": 6480.74, + "end": 6482.32, + "probability": 0.9521 + }, + { + "start": 6483.1, + "end": 6486.84, + "probability": 0.9991 + }, + { + "start": 6487.7, + "end": 6489.76, + "probability": 0.9402 + }, + { + "start": 6490.5, + "end": 6491.49, + "probability": 0.4074 + }, + { + "start": 6492.02, + "end": 6493.36, + "probability": 0.8474 + }, + { + "start": 6493.94, + "end": 6495.54, + "probability": 0.9624 + }, + { + "start": 6495.94, + "end": 6498.8, + "probability": 0.8538 + }, + { + "start": 6499.86, + "end": 6501.38, + "probability": 0.7172 + }, + { + "start": 6502.48, + "end": 6506.32, + "probability": 0.9583 + }, + { + "start": 6508.02, + "end": 6509.4, + "probability": 0.5998 + }, + { + "start": 6510.26, + "end": 6512.52, + "probability": 0.9622 + }, + { + "start": 6513.14, + "end": 6516.62, + "probability": 0.9744 + }, + { + "start": 6516.62, + "end": 6519.0, + "probability": 0.9766 + }, + { + "start": 6519.88, + "end": 6524.16, + "probability": 0.6608 + }, + { + "start": 6524.62, + "end": 6529.98, + "probability": 0.9656 + }, + { + "start": 6530.86, + "end": 6533.04, + "probability": 0.9845 + }, + { + "start": 6533.64, + "end": 6539.0, + "probability": 0.9055 + }, + { + "start": 6539.02, + "end": 6540.18, + "probability": 0.9967 + }, + { + "start": 6540.84, + "end": 6543.62, + "probability": 0.916 + }, + { + "start": 6544.6, + "end": 6545.76, + "probability": 0.9183 + }, + { + "start": 6546.68, + "end": 6554.8, + "probability": 0.8911 + }, + { + "start": 6554.88, + "end": 6555.34, + "probability": 0.8075 + }, + { + "start": 6556.98, + "end": 6558.76, + "probability": 0.9271 + }, + { + "start": 6558.94, + "end": 6559.38, + "probability": 0.8392 + }, + { + "start": 6559.48, + "end": 6561.06, + "probability": 0.6173 + }, + { + "start": 6561.52, + "end": 6562.26, + "probability": 0.667 + }, + { + "start": 6563.3, + "end": 6567.12, + "probability": 0.9549 + }, + { + "start": 6568.84, + "end": 6572.24, + "probability": 0.9342 + }, + { + "start": 6572.5, + "end": 6573.54, + "probability": 0.6457 + }, + { + "start": 6574.06, + "end": 6579.02, + "probability": 0.9456 + }, + { + "start": 6579.58, + "end": 6580.51, + "probability": 0.5983 + }, + { + "start": 6580.74, + "end": 6582.68, + "probability": 0.9224 + }, + { + "start": 6583.2, + "end": 6586.12, + "probability": 0.965 + }, + { + "start": 6586.2, + "end": 6587.02, + "probability": 0.8324 + }, + { + "start": 6587.12, + "end": 6587.64, + "probability": 0.7112 + }, + { + "start": 6588.3, + "end": 6589.7, + "probability": 0.835 + }, + { + "start": 6597.68, + "end": 6603.56, + "probability": 0.0365 + }, + { + "start": 6604.68, + "end": 6606.88, + "probability": 0.1247 + }, + { + "start": 6607.04, + "end": 6609.02, + "probability": 0.2863 + }, + { + "start": 6609.14, + "end": 6612.1, + "probability": 0.8842 + }, + { + "start": 6612.1, + "end": 6613.36, + "probability": 0.4259 + }, + { + "start": 6613.52, + "end": 6615.18, + "probability": 0.9029 + }, + { + "start": 6615.86, + "end": 6617.48, + "probability": 0.7763 + }, + { + "start": 6617.48, + "end": 6618.26, + "probability": 0.8381 + }, + { + "start": 6618.44, + "end": 6621.12, + "probability": 0.7633 + }, + { + "start": 6621.82, + "end": 6626.62, + "probability": 0.9749 + }, + { + "start": 6626.86, + "end": 6628.46, + "probability": 0.5771 + }, + { + "start": 6629.64, + "end": 6634.1, + "probability": 0.9828 + }, + { + "start": 6634.26, + "end": 6637.92, + "probability": 0.9302 + }, + { + "start": 6638.84, + "end": 6641.06, + "probability": 0.9623 + }, + { + "start": 6643.26, + "end": 6643.46, + "probability": 0.6594 + }, + { + "start": 6643.46, + "end": 6648.12, + "probability": 0.9572 + }, + { + "start": 6649.3, + "end": 6651.12, + "probability": 0.7524 + }, + { + "start": 6652.28, + "end": 6654.21, + "probability": 0.9135 + }, + { + "start": 6654.96, + "end": 6656.9, + "probability": 0.8955 + }, + { + "start": 6658.64, + "end": 6665.86, + "probability": 0.9894 + }, + { + "start": 6666.94, + "end": 6668.74, + "probability": 0.8554 + }, + { + "start": 6669.54, + "end": 6671.92, + "probability": 0.9932 + }, + { + "start": 6672.16, + "end": 6673.53, + "probability": 0.9917 + }, + { + "start": 6674.22, + "end": 6675.36, + "probability": 0.4477 + }, + { + "start": 6676.0, + "end": 6677.5, + "probability": 0.9046 + }, + { + "start": 6677.54, + "end": 6679.38, + "probability": 0.8041 + }, + { + "start": 6681.12, + "end": 6687.2, + "probability": 0.9959 + }, + { + "start": 6687.32, + "end": 6688.84, + "probability": 0.9362 + }, + { + "start": 6689.86, + "end": 6690.88, + "probability": 0.8569 + }, + { + "start": 6691.8, + "end": 6694.32, + "probability": 0.9972 + }, + { + "start": 6694.44, + "end": 6695.52, + "probability": 0.8481 + }, + { + "start": 6696.12, + "end": 6697.98, + "probability": 0.5954 + }, + { + "start": 6698.3, + "end": 6699.46, + "probability": 0.5484 + }, + { + "start": 6699.62, + "end": 6703.58, + "probability": 0.9736 + }, + { + "start": 6705.73, + "end": 6706.68, + "probability": 0.3389 + }, + { + "start": 6707.04, + "end": 6708.98, + "probability": 0.9569 + }, + { + "start": 6709.42, + "end": 6710.48, + "probability": 0.4521 + }, + { + "start": 6711.83, + "end": 6713.1, + "probability": 0.3259 + }, + { + "start": 6714.1, + "end": 6714.2, + "probability": 0.0177 + }, + { + "start": 6714.2, + "end": 6715.78, + "probability": 0.9948 + }, + { + "start": 6715.86, + "end": 6717.26, + "probability": 0.9897 + }, + { + "start": 6717.8, + "end": 6719.74, + "probability": 0.9173 + }, + { + "start": 6720.78, + "end": 6722.38, + "probability": 0.9886 + }, + { + "start": 6722.42, + "end": 6723.64, + "probability": 0.9558 + }, + { + "start": 6724.02, + "end": 6725.52, + "probability": 0.9854 + }, + { + "start": 6726.5, + "end": 6728.62, + "probability": 0.2826 + }, + { + "start": 6728.92, + "end": 6730.22, + "probability": 0.9139 + }, + { + "start": 6730.76, + "end": 6733.32, + "probability": 0.844 + }, + { + "start": 6734.86, + "end": 6736.08, + "probability": 0.4945 + }, + { + "start": 6736.54, + "end": 6741.54, + "probability": 0.9385 + }, + { + "start": 6742.22, + "end": 6743.12, + "probability": 0.8728 + }, + { + "start": 6743.78, + "end": 6745.58, + "probability": 0.9795 + }, + { + "start": 6745.96, + "end": 6746.72, + "probability": 0.5955 + }, + { + "start": 6747.04, + "end": 6749.52, + "probability": 0.9957 + }, + { + "start": 6749.62, + "end": 6750.92, + "probability": 0.983 + }, + { + "start": 6751.04, + "end": 6753.34, + "probability": 0.986 + }, + { + "start": 6754.26, + "end": 6757.76, + "probability": 0.9841 + }, + { + "start": 6758.26, + "end": 6758.5, + "probability": 0.8682 + }, + { + "start": 6758.94, + "end": 6760.1, + "probability": 0.441 + }, + { + "start": 6760.1, + "end": 6760.64, + "probability": 0.3918 + }, + { + "start": 6761.26, + "end": 6761.6, + "probability": 0.5385 + }, + { + "start": 6762.36, + "end": 6763.26, + "probability": 0.96 + }, + { + "start": 6764.68, + "end": 6766.22, + "probability": 0.9312 + }, + { + "start": 6785.12, + "end": 6786.36, + "probability": 0.6929 + }, + { + "start": 6790.04, + "end": 6800.66, + "probability": 0.9587 + }, + { + "start": 6801.24, + "end": 6802.18, + "probability": 0.6606 + }, + { + "start": 6803.06, + "end": 6803.3, + "probability": 0.1912 + }, + { + "start": 6803.3, + "end": 6805.84, + "probability": 0.8655 + }, + { + "start": 6806.5, + "end": 6812.34, + "probability": 0.9474 + }, + { + "start": 6815.36, + "end": 6820.72, + "probability": 0.9769 + }, + { + "start": 6822.84, + "end": 6826.46, + "probability": 0.9942 + }, + { + "start": 6826.54, + "end": 6828.5, + "probability": 0.9228 + }, + { + "start": 6829.36, + "end": 6831.78, + "probability": 0.9624 + }, + { + "start": 6832.64, + "end": 6838.44, + "probability": 0.9456 + }, + { + "start": 6838.98, + "end": 6840.42, + "probability": 0.8529 + }, + { + "start": 6840.94, + "end": 6841.72, + "probability": 0.9308 + }, + { + "start": 6842.8, + "end": 6846.64, + "probability": 0.661 + }, + { + "start": 6847.44, + "end": 6850.98, + "probability": 0.9883 + }, + { + "start": 6851.8, + "end": 6857.8, + "probability": 0.9788 + }, + { + "start": 6858.44, + "end": 6859.46, + "probability": 0.3004 + }, + { + "start": 6861.64, + "end": 6863.98, + "probability": 0.9614 + }, + { + "start": 6864.04, + "end": 6866.22, + "probability": 0.9576 + }, + { + "start": 6866.74, + "end": 6871.76, + "probability": 0.9475 + }, + { + "start": 6871.84, + "end": 6873.34, + "probability": 0.8643 + }, + { + "start": 6874.04, + "end": 6875.38, + "probability": 0.8906 + }, + { + "start": 6877.42, + "end": 6880.36, + "probability": 0.7334 + }, + { + "start": 6880.62, + "end": 6883.1, + "probability": 0.7546 + }, + { + "start": 6884.0, + "end": 6890.0, + "probability": 0.9922 + }, + { + "start": 6890.8, + "end": 6891.54, + "probability": 0.7384 + }, + { + "start": 6892.72, + "end": 6897.22, + "probability": 0.9651 + }, + { + "start": 6897.32, + "end": 6902.42, + "probability": 0.968 + }, + { + "start": 6903.0, + "end": 6905.48, + "probability": 0.9438 + }, + { + "start": 6906.38, + "end": 6909.66, + "probability": 0.7902 + }, + { + "start": 6909.76, + "end": 6911.36, + "probability": 0.9088 + }, + { + "start": 6912.3, + "end": 6914.5, + "probability": 0.8188 + }, + { + "start": 6915.38, + "end": 6920.24, + "probability": 0.9772 + }, + { + "start": 6921.08, + "end": 6923.34, + "probability": 0.7955 + }, + { + "start": 6924.34, + "end": 6925.9, + "probability": 0.6082 + }, + { + "start": 6926.84, + "end": 6927.84, + "probability": 0.9503 + }, + { + "start": 6928.94, + "end": 6930.62, + "probability": 0.9982 + }, + { + "start": 6931.76, + "end": 6934.94, + "probability": 0.8227 + }, + { + "start": 6935.1, + "end": 6935.68, + "probability": 0.0591 + }, + { + "start": 6938.4, + "end": 6941.44, + "probability": 0.4963 + }, + { + "start": 6942.34, + "end": 6944.64, + "probability": 0.9458 + }, + { + "start": 6947.38, + "end": 6950.38, + "probability": 0.9817 + }, + { + "start": 6951.06, + "end": 6954.08, + "probability": 0.8259 + }, + { + "start": 6955.02, + "end": 6956.2, + "probability": 0.8391 + }, + { + "start": 6956.78, + "end": 6960.62, + "probability": 0.8299 + }, + { + "start": 6961.26, + "end": 6962.34, + "probability": 0.9176 + }, + { + "start": 6962.44, + "end": 6967.02, + "probability": 0.8544 + }, + { + "start": 6967.56, + "end": 6969.16, + "probability": 0.8415 + }, + { + "start": 6970.28, + "end": 6972.62, + "probability": 0.0665 + }, + { + "start": 6972.7, + "end": 6973.64, + "probability": 0.1101 + }, + { + "start": 6974.0, + "end": 6976.08, + "probability": 0.6417 + }, + { + "start": 6976.1, + "end": 6977.36, + "probability": 0.4456 + }, + { + "start": 6977.56, + "end": 6978.88, + "probability": 0.5448 + }, + { + "start": 6981.44, + "end": 6983.28, + "probability": 0.6839 + }, + { + "start": 6983.4, + "end": 6984.03, + "probability": 0.1471 + }, + { + "start": 6984.58, + "end": 6985.12, + "probability": 0.4585 + }, + { + "start": 6985.12, + "end": 6985.26, + "probability": 0.1202 + }, + { + "start": 6985.26, + "end": 6985.28, + "probability": 0.5017 + }, + { + "start": 6985.28, + "end": 6986.2, + "probability": 0.7097 + }, + { + "start": 6986.4, + "end": 6990.42, + "probability": 0.5916 + }, + { + "start": 6990.68, + "end": 6992.3, + "probability": 0.0536 + }, + { + "start": 6992.3, + "end": 6993.1, + "probability": 0.3697 + }, + { + "start": 6993.1, + "end": 6994.92, + "probability": 0.1576 + }, + { + "start": 6994.92, + "end": 6994.92, + "probability": 0.595 + }, + { + "start": 6994.92, + "end": 6996.64, + "probability": 0.5399 + }, + { + "start": 6997.42, + "end": 7000.42, + "probability": 0.8877 + }, + { + "start": 7000.96, + "end": 7003.23, + "probability": 0.6433 + }, + { + "start": 7004.58, + "end": 7009.66, + "probability": 0.7288 + }, + { + "start": 7009.94, + "end": 7011.6, + "probability": 0.8899 + }, + { + "start": 7012.02, + "end": 7015.32, + "probability": 0.9156 + }, + { + "start": 7015.34, + "end": 7015.52, + "probability": 0.1807 + }, + { + "start": 7015.52, + "end": 7015.7, + "probability": 0.3368 + }, + { + "start": 7015.7, + "end": 7016.82, + "probability": 0.7346 + }, + { + "start": 7017.06, + "end": 7017.98, + "probability": 0.8313 + }, + { + "start": 7018.14, + "end": 7020.16, + "probability": 0.6893 + }, + { + "start": 7020.16, + "end": 7021.72, + "probability": 0.1683 + }, + { + "start": 7021.72, + "end": 7023.56, + "probability": 0.7126 + }, + { + "start": 7023.58, + "end": 7023.76, + "probability": 0.1937 + }, + { + "start": 7023.76, + "end": 7024.52, + "probability": 0.494 + }, + { + "start": 7024.64, + "end": 7026.3, + "probability": 0.2183 + }, + { + "start": 7026.72, + "end": 7028.76, + "probability": 0.2066 + }, + { + "start": 7029.38, + "end": 7033.4, + "probability": 0.5724 + }, + { + "start": 7033.56, + "end": 7034.36, + "probability": 0.1624 + }, + { + "start": 7036.2, + "end": 7038.28, + "probability": 0.4059 + }, + { + "start": 7038.42, + "end": 7040.46, + "probability": 0.4911 + }, + { + "start": 7040.5, + "end": 7042.44, + "probability": 0.9521 + }, + { + "start": 7044.86, + "end": 7049.82, + "probability": 0.9811 + }, + { + "start": 7050.02, + "end": 7051.86, + "probability": 0.7899 + }, + { + "start": 7052.96, + "end": 7055.64, + "probability": 0.979 + }, + { + "start": 7055.78, + "end": 7061.62, + "probability": 0.8018 + }, + { + "start": 7062.5, + "end": 7065.52, + "probability": 0.4374 + }, + { + "start": 7066.0, + "end": 7070.34, + "probability": 0.9338 + }, + { + "start": 7072.45, + "end": 7073.34, + "probability": 0.0704 + }, + { + "start": 7073.34, + "end": 7073.34, + "probability": 0.1245 + }, + { + "start": 7073.34, + "end": 7073.34, + "probability": 0.2964 + }, + { + "start": 7073.34, + "end": 7075.3, + "probability": 0.3188 + }, + { + "start": 7076.02, + "end": 7078.18, + "probability": 0.9919 + }, + { + "start": 7079.12, + "end": 7082.14, + "probability": 0.9948 + }, + { + "start": 7082.76, + "end": 7088.5, + "probability": 0.9864 + }, + { + "start": 7089.16, + "end": 7092.86, + "probability": 0.8042 + }, + { + "start": 7093.52, + "end": 7094.76, + "probability": 0.9307 + }, + { + "start": 7094.82, + "end": 7099.04, + "probability": 0.9812 + }, + { + "start": 7100.14, + "end": 7103.82, + "probability": 0.9849 + }, + { + "start": 7104.04, + "end": 7105.7, + "probability": 0.8373 + }, + { + "start": 7105.74, + "end": 7107.72, + "probability": 0.9941 + }, + { + "start": 7107.86, + "end": 7108.6, + "probability": 0.9446 + }, + { + "start": 7108.92, + "end": 7110.54, + "probability": 0.9625 + }, + { + "start": 7110.92, + "end": 7114.68, + "probability": 0.5792 + }, + { + "start": 7115.36, + "end": 7116.64, + "probability": 0.8648 + }, + { + "start": 7117.18, + "end": 7120.1, + "probability": 0.9792 + }, + { + "start": 7120.8, + "end": 7122.46, + "probability": 0.6298 + }, + { + "start": 7124.3, + "end": 7125.52, + "probability": 0.8744 + }, + { + "start": 7126.16, + "end": 7127.34, + "probability": 0.7003 + }, + { + "start": 7129.0, + "end": 7132.94, + "probability": 0.9311 + }, + { + "start": 7133.38, + "end": 7134.52, + "probability": 0.972 + }, + { + "start": 7136.48, + "end": 7137.06, + "probability": 0.9721 + }, + { + "start": 7137.86, + "end": 7141.38, + "probability": 0.9949 + }, + { + "start": 7141.38, + "end": 7144.82, + "probability": 0.999 + }, + { + "start": 7145.54, + "end": 7147.24, + "probability": 0.8494 + }, + { + "start": 7147.38, + "end": 7148.78, + "probability": 0.8418 + }, + { + "start": 7148.88, + "end": 7150.66, + "probability": 0.7202 + }, + { + "start": 7152.1, + "end": 7155.02, + "probability": 0.9937 + }, + { + "start": 7155.12, + "end": 7157.48, + "probability": 0.946 + }, + { + "start": 7158.0, + "end": 7160.42, + "probability": 0.7968 + }, + { + "start": 7160.42, + "end": 7164.8, + "probability": 0.7187 + }, + { + "start": 7165.3, + "end": 7167.56, + "probability": 0.9975 + }, + { + "start": 7168.24, + "end": 7171.18, + "probability": 0.8782 + }, + { + "start": 7171.92, + "end": 7175.1, + "probability": 0.9277 + }, + { + "start": 7175.1, + "end": 7178.66, + "probability": 0.9982 + }, + { + "start": 7178.78, + "end": 7181.34, + "probability": 0.6916 + }, + { + "start": 7181.84, + "end": 7186.56, + "probability": 0.9868 + }, + { + "start": 7187.38, + "end": 7193.12, + "probability": 0.9497 + }, + { + "start": 7193.2, + "end": 7193.78, + "probability": 0.5547 + }, + { + "start": 7194.04, + "end": 7194.64, + "probability": 0.8206 + }, + { + "start": 7195.1, + "end": 7196.32, + "probability": 0.983 + }, + { + "start": 7197.1, + "end": 7199.5, + "probability": 0.9795 + }, + { + "start": 7199.6, + "end": 7200.66, + "probability": 0.9805 + }, + { + "start": 7200.72, + "end": 7202.18, + "probability": 0.9912 + }, + { + "start": 7202.74, + "end": 7208.96, + "probability": 0.9796 + }, + { + "start": 7209.66, + "end": 7211.11, + "probability": 0.7454 + }, + { + "start": 7211.36, + "end": 7214.04, + "probability": 0.9907 + }, + { + "start": 7214.92, + "end": 7218.5, + "probability": 0.9144 + }, + { + "start": 7219.04, + "end": 7222.58, + "probability": 0.9465 + }, + { + "start": 7224.1, + "end": 7227.74, + "probability": 0.9929 + }, + { + "start": 7227.96, + "end": 7233.2, + "probability": 0.9644 + }, + { + "start": 7233.78, + "end": 7239.52, + "probability": 0.9668 + }, + { + "start": 7239.88, + "end": 7240.4, + "probability": 0.8305 + }, + { + "start": 7240.66, + "end": 7241.94, + "probability": 0.422 + }, + { + "start": 7242.4, + "end": 7243.34, + "probability": 0.9935 + }, + { + "start": 7243.76, + "end": 7245.2, + "probability": 0.9897 + }, + { + "start": 7245.66, + "end": 7248.14, + "probability": 0.8408 + }, + { + "start": 7248.18, + "end": 7252.02, + "probability": 0.9622 + }, + { + "start": 7252.5, + "end": 7255.47, + "probability": 0.9363 + }, + { + "start": 7255.9, + "end": 7256.36, + "probability": 0.3862 + }, + { + "start": 7257.3, + "end": 7257.3, + "probability": 0.4457 + }, + { + "start": 7257.3, + "end": 7258.84, + "probability": 0.4969 + }, + { + "start": 7258.98, + "end": 7260.94, + "probability": 0.8831 + }, + { + "start": 7261.16, + "end": 7264.08, + "probability": 0.993 + }, + { + "start": 7265.2, + "end": 7267.98, + "probability": 0.9982 + }, + { + "start": 7268.02, + "end": 7275.2, + "probability": 0.9713 + }, + { + "start": 7275.94, + "end": 7279.04, + "probability": 0.9161 + }, + { + "start": 7280.08, + "end": 7280.08, + "probability": 0.5367 + }, + { + "start": 7280.08, + "end": 7281.08, + "probability": 0.5878 + }, + { + "start": 7295.46, + "end": 7296.68, + "probability": 0.6479 + }, + { + "start": 7297.18, + "end": 7299.9, + "probability": 0.998 + }, + { + "start": 7299.94, + "end": 7299.94, + "probability": 0.4787 + }, + { + "start": 7299.94, + "end": 7302.7, + "probability": 0.9791 + }, + { + "start": 7303.28, + "end": 7306.28, + "probability": 0.9658 + }, + { + "start": 7306.86, + "end": 7308.06, + "probability": 0.9918 + }, + { + "start": 7308.16, + "end": 7311.56, + "probability": 0.9854 + }, + { + "start": 7311.7, + "end": 7313.52, + "probability": 0.8727 + }, + { + "start": 7313.9, + "end": 7317.68, + "probability": 0.9941 + }, + { + "start": 7317.96, + "end": 7319.74, + "probability": 0.9948 + }, + { + "start": 7319.9, + "end": 7322.5, + "probability": 0.9886 + }, + { + "start": 7322.6, + "end": 7325.5, + "probability": 0.9893 + }, + { + "start": 7325.56, + "end": 7327.54, + "probability": 0.9612 + }, + { + "start": 7327.92, + "end": 7328.14, + "probability": 0.4643 + }, + { + "start": 7328.22, + "end": 7328.66, + "probability": 0.6312 + }, + { + "start": 7328.76, + "end": 7329.66, + "probability": 0.841 + }, + { + "start": 7329.96, + "end": 7330.92, + "probability": 0.9696 + }, + { + "start": 7331.22, + "end": 7334.58, + "probability": 0.9954 + }, + { + "start": 7334.7, + "end": 7337.58, + "probability": 0.9601 + }, + { + "start": 7337.62, + "end": 7337.98, + "probability": 0.1237 + }, + { + "start": 7338.38, + "end": 7338.78, + "probability": 0.7302 + }, + { + "start": 7339.04, + "end": 7339.48, + "probability": 0.6401 + }, + { + "start": 7339.96, + "end": 7343.3, + "probability": 0.7235 + }, + { + "start": 7343.7, + "end": 7344.52, + "probability": 0.7393 + }, + { + "start": 7346.5, + "end": 7350.66, + "probability": 0.9902 + }, + { + "start": 7350.66, + "end": 7354.04, + "probability": 0.6744 + }, + { + "start": 7354.16, + "end": 7355.1, + "probability": 0.7108 + }, + { + "start": 7355.56, + "end": 7357.48, + "probability": 0.3264 + }, + { + "start": 7357.72, + "end": 7359.9, + "probability": 0.8892 + }, + { + "start": 7362.24, + "end": 7362.78, + "probability": 0.7174 + }, + { + "start": 7365.24, + "end": 7369.84, + "probability": 0.1188 + }, + { + "start": 7384.24, + "end": 7389.58, + "probability": 0.9598 + }, + { + "start": 7389.72, + "end": 7390.36, + "probability": 0.6904 + }, + { + "start": 7390.6, + "end": 7391.16, + "probability": 0.1657 + }, + { + "start": 7392.76, + "end": 7397.1, + "probability": 0.5264 + }, + { + "start": 7419.36, + "end": 7420.64, + "probability": 0.0284 + }, + { + "start": 7420.64, + "end": 7422.34, + "probability": 0.5962 + }, + { + "start": 7424.52, + "end": 7426.22, + "probability": 0.0381 + }, + { + "start": 7426.22, + "end": 7426.7, + "probability": 0.0192 + }, + { + "start": 7426.7, + "end": 7427.04, + "probability": 0.0388 + }, + { + "start": 7427.04, + "end": 7427.92, + "probability": 0.0163 + }, + { + "start": 7440.86, + "end": 7441.16, + "probability": 0.0275 + }, + { + "start": 7448.9, + "end": 7450.14, + "probability": 0.2639 + }, + { + "start": 7451.21, + "end": 7454.76, + "probability": 0.1171 + }, + { + "start": 7454.76, + "end": 7454.91, + "probability": 0.2369 + }, + { + "start": 7455.02, + "end": 7455.72, + "probability": 0.1386 + }, + { + "start": 7456.18, + "end": 7458.38, + "probability": 0.2636 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.0, + "end": 7462.0, + "probability": 0.0 + }, + { + "start": 7462.22, + "end": 7463.55, + "probability": 0.015 + }, + { + "start": 7464.82, + "end": 7467.42, + "probability": 0.6675 + }, + { + "start": 7469.26, + "end": 7472.18, + "probability": 0.3588 + }, + { + "start": 7472.76, + "end": 7473.56, + "probability": 0.2014 + }, + { + "start": 7475.02, + "end": 7476.4, + "probability": 0.5857 + }, + { + "start": 7477.12, + "end": 7477.58, + "probability": 0.9627 + }, + { + "start": 7477.94, + "end": 7479.7, + "probability": 0.7596 + }, + { + "start": 7480.22, + "end": 7483.08, + "probability": 0.9723 + }, + { + "start": 7484.66, + "end": 7487.42, + "probability": 0.9604 + }, + { + "start": 7488.9, + "end": 7495.42, + "probability": 0.6896 + }, + { + "start": 7495.96, + "end": 7497.06, + "probability": 0.6626 + }, + { + "start": 7498.85, + "end": 7500.7, + "probability": 0.9003 + }, + { + "start": 7501.12, + "end": 7501.3, + "probability": 0.8068 + }, + { + "start": 7503.44, + "end": 7508.73, + "probability": 0.9854 + }, + { + "start": 7509.62, + "end": 7510.32, + "probability": 0.9495 + }, + { + "start": 7510.36, + "end": 7511.24, + "probability": 0.6692 + }, + { + "start": 7512.28, + "end": 7512.88, + "probability": 0.677 + }, + { + "start": 7513.72, + "end": 7515.1, + "probability": 0.5192 + }, + { + "start": 7517.02, + "end": 7518.84, + "probability": 0.1596 + }, + { + "start": 7520.12, + "end": 7522.36, + "probability": 0.1011 + }, + { + "start": 7523.1, + "end": 7527.22, + "probability": 0.277 + }, + { + "start": 7527.84, + "end": 7529.56, + "probability": 0.0928 + }, + { + "start": 7529.56, + "end": 7530.68, + "probability": 0.3236 + }, + { + "start": 7531.54, + "end": 7534.5, + "probability": 0.458 + }, + { + "start": 7536.9, + "end": 7539.12, + "probability": 0.4494 + }, + { + "start": 7542.05, + "end": 7544.71, + "probability": 0.8072 + }, + { + "start": 7549.84, + "end": 7550.52, + "probability": 0.0619 + }, + { + "start": 7550.9, + "end": 7553.28, + "probability": 0.1124 + }, + { + "start": 7553.3, + "end": 7553.38, + "probability": 0.0557 + }, + { + "start": 7554.22, + "end": 7554.84, + "probability": 0.1237 + }, + { + "start": 7554.84, + "end": 7554.84, + "probability": 0.1194 + }, + { + "start": 7554.84, + "end": 7554.84, + "probability": 0.1703 + }, + { + "start": 7554.84, + "end": 7556.52, + "probability": 0.4124 + }, + { + "start": 7556.54, + "end": 7557.92, + "probability": 0.5194 + }, + { + "start": 7559.26, + "end": 7562.28, + "probability": 0.8645 + }, + { + "start": 7563.08, + "end": 7564.6, + "probability": 0.9026 + }, + { + "start": 7565.0, + "end": 7568.0, + "probability": 0.9982 + }, + { + "start": 7569.0, + "end": 7572.59, + "probability": 0.9384 + }, + { + "start": 7574.12, + "end": 7575.0, + "probability": 0.9932 + }, + { + "start": 7575.94, + "end": 7582.22, + "probability": 0.915 + }, + { + "start": 7582.22, + "end": 7584.6, + "probability": 0.9087 + }, + { + "start": 7585.18, + "end": 7587.88, + "probability": 0.7829 + }, + { + "start": 7588.3, + "end": 7592.58, + "probability": 0.5276 + }, + { + "start": 7593.28, + "end": 7598.37, + "probability": 0.9883 + }, + { + "start": 7599.26, + "end": 7599.64, + "probability": 0.7454 + }, + { + "start": 7599.78, + "end": 7599.88, + "probability": 0.4685 + }, + { + "start": 7600.0, + "end": 7600.9, + "probability": 0.4359 + }, + { + "start": 7602.34, + "end": 7602.54, + "probability": 0.1927 + }, + { + "start": 7602.54, + "end": 7604.68, + "probability": 0.87 + }, + { + "start": 7605.22, + "end": 7611.96, + "probability": 0.9326 + }, + { + "start": 7613.9, + "end": 7615.54, + "probability": 0.7872 + }, + { + "start": 7616.04, + "end": 7617.7, + "probability": 0.8212 + }, + { + "start": 7618.7, + "end": 7621.02, + "probability": 0.9963 + }, + { + "start": 7622.24, + "end": 7623.8, + "probability": 0.6939 + }, + { + "start": 7623.82, + "end": 7631.84, + "probability": 0.9884 + }, + { + "start": 7633.02, + "end": 7633.02, + "probability": 0.8296 + }, + { + "start": 7634.29, + "end": 7640.58, + "probability": 0.8248 + }, + { + "start": 7640.94, + "end": 7643.3, + "probability": 0.9911 + }, + { + "start": 7644.4, + "end": 7645.72, + "probability": 0.6653 + }, + { + "start": 7646.64, + "end": 7646.74, + "probability": 0.2061 + }, + { + "start": 7646.74, + "end": 7649.8, + "probability": 0.8197 + }, + { + "start": 7650.78, + "end": 7652.7, + "probability": 0.4499 + }, + { + "start": 7652.84, + "end": 7653.96, + "probability": 0.6188 + }, + { + "start": 7662.56, + "end": 7663.32, + "probability": 0.001 + }, + { + "start": 7664.5, + "end": 7668.64, + "probability": 0.6067 + }, + { + "start": 7668.74, + "end": 7669.02, + "probability": 0.7285 + }, + { + "start": 7674.96, + "end": 7676.16, + "probability": 0.8559 + }, + { + "start": 7676.5, + "end": 7680.24, + "probability": 0.9715 + }, + { + "start": 7680.8, + "end": 7684.72, + "probability": 0.9982 + }, + { + "start": 7684.72, + "end": 7689.02, + "probability": 0.9852 + }, + { + "start": 7689.24, + "end": 7690.5, + "probability": 0.9427 + }, + { + "start": 7690.56, + "end": 7693.0, + "probability": 0.9938 + }, + { + "start": 7693.82, + "end": 7697.54, + "probability": 0.9796 + }, + { + "start": 7698.2, + "end": 7699.22, + "probability": 0.9239 + }, + { + "start": 7699.76, + "end": 7700.98, + "probability": 0.856 + }, + { + "start": 7701.18, + "end": 7703.54, + "probability": 0.9688 + }, + { + "start": 7703.66, + "end": 7705.42, + "probability": 0.9945 + }, + { + "start": 7705.82, + "end": 7706.42, + "probability": 0.9235 + }, + { + "start": 7706.58, + "end": 7707.96, + "probability": 0.9856 + }, + { + "start": 7708.46, + "end": 7709.84, + "probability": 0.9758 + }, + { + "start": 7710.48, + "end": 7711.5, + "probability": 0.9155 + }, + { + "start": 7712.44, + "end": 7715.36, + "probability": 0.7207 + }, + { + "start": 7716.4, + "end": 7717.16, + "probability": 0.9486 + }, + { + "start": 7717.22, + "end": 7718.66, + "probability": 0.8965 + }, + { + "start": 7719.12, + "end": 7720.2, + "probability": 0.9573 + }, + { + "start": 7720.88, + "end": 7721.44, + "probability": 0.5065 + }, + { + "start": 7721.58, + "end": 7722.48, + "probability": 0.9704 + }, + { + "start": 7723.2, + "end": 7725.8, + "probability": 0.9906 + }, + { + "start": 7726.86, + "end": 7727.52, + "probability": 0.925 + }, + { + "start": 7728.0, + "end": 7730.7, + "probability": 0.9103 + }, + { + "start": 7731.12, + "end": 7732.06, + "probability": 0.849 + }, + { + "start": 7732.86, + "end": 7734.72, + "probability": 0.9971 + }, + { + "start": 7735.32, + "end": 7736.52, + "probability": 0.8637 + }, + { + "start": 7737.56, + "end": 7738.62, + "probability": 0.9462 + }, + { + "start": 7739.06, + "end": 7740.38, + "probability": 0.9946 + }, + { + "start": 7741.02, + "end": 7744.84, + "probability": 0.8989 + }, + { + "start": 7744.9, + "end": 7747.06, + "probability": 0.7774 + }, + { + "start": 7747.14, + "end": 7750.34, + "probability": 0.7482 + }, + { + "start": 7750.96, + "end": 7752.4, + "probability": 0.7957 + }, + { + "start": 7752.86, + "end": 7755.62, + "probability": 0.7661 + }, + { + "start": 7756.32, + "end": 7760.16, + "probability": 0.9436 + }, + { + "start": 7760.52, + "end": 7764.3, + "probability": 0.9982 + }, + { + "start": 7764.54, + "end": 7765.56, + "probability": 0.9751 + }, + { + "start": 7766.02, + "end": 7769.2, + "probability": 0.8721 + }, + { + "start": 7769.2, + "end": 7772.02, + "probability": 0.9969 + }, + { + "start": 7772.56, + "end": 7774.44, + "probability": 0.9966 + }, + { + "start": 7774.8, + "end": 7775.9, + "probability": 0.8629 + }, + { + "start": 7776.48, + "end": 7778.3, + "probability": 0.8761 + }, + { + "start": 7778.52, + "end": 7779.7, + "probability": 0.92 + }, + { + "start": 7779.98, + "end": 7781.0, + "probability": 0.9641 + }, + { + "start": 7781.12, + "end": 7782.96, + "probability": 0.853 + }, + { + "start": 7783.32, + "end": 7784.5, + "probability": 0.9901 + }, + { + "start": 7784.9, + "end": 7786.1, + "probability": 0.9541 + }, + { + "start": 7786.98, + "end": 7787.78, + "probability": 0.927 + }, + { + "start": 7788.56, + "end": 7789.16, + "probability": 0.9619 + }, + { + "start": 7789.86, + "end": 7791.12, + "probability": 0.7942 + }, + { + "start": 7791.14, + "end": 7794.98, + "probability": 0.9868 + }, + { + "start": 7795.66, + "end": 7796.48, + "probability": 0.94 + }, + { + "start": 7796.98, + "end": 7799.76, + "probability": 0.7526 + }, + { + "start": 7799.76, + "end": 7802.54, + "probability": 0.9995 + }, + { + "start": 7802.54, + "end": 7803.0, + "probability": 0.6959 + }, + { + "start": 7803.84, + "end": 7808.48, + "probability": 0.9988 + }, + { + "start": 7808.52, + "end": 7811.9, + "probability": 0.9126 + }, + { + "start": 7812.94, + "end": 7816.96, + "probability": 0.9893 + }, + { + "start": 7817.46, + "end": 7819.2, + "probability": 0.9674 + }, + { + "start": 7819.56, + "end": 7821.98, + "probability": 0.92 + }, + { + "start": 7822.54, + "end": 7823.5, + "probability": 0.9342 + }, + { + "start": 7824.02, + "end": 7825.86, + "probability": 0.9151 + }, + { + "start": 7826.38, + "end": 7828.6, + "probability": 0.9736 + }, + { + "start": 7829.38, + "end": 7830.16, + "probability": 0.9979 + }, + { + "start": 7830.76, + "end": 7831.61, + "probability": 0.998 + }, + { + "start": 7832.64, + "end": 7836.56, + "probability": 0.9863 + }, + { + "start": 7836.98, + "end": 7837.44, + "probability": 0.8908 + }, + { + "start": 7838.42, + "end": 7843.54, + "probability": 0.9829 + }, + { + "start": 7843.6, + "end": 7845.34, + "probability": 0.9543 + }, + { + "start": 7845.48, + "end": 7846.62, + "probability": 0.8333 + }, + { + "start": 7847.14, + "end": 7848.42, + "probability": 0.5906 + }, + { + "start": 7848.72, + "end": 7851.58, + "probability": 0.9551 + }, + { + "start": 7852.1, + "end": 7853.5, + "probability": 0.8356 + }, + { + "start": 7854.18, + "end": 7855.54, + "probability": 0.9515 + }, + { + "start": 7855.56, + "end": 7855.56, + "probability": 0.7714 + }, + { + "start": 7855.66, + "end": 7857.04, + "probability": 0.7917 + }, + { + "start": 7857.48, + "end": 7857.88, + "probability": 0.7935 + }, + { + "start": 7857.9, + "end": 7859.6, + "probability": 0.8335 + }, + { + "start": 7859.96, + "end": 7865.28, + "probability": 0.9951 + }, + { + "start": 7865.28, + "end": 7869.76, + "probability": 0.9983 + }, + { + "start": 7870.02, + "end": 7870.48, + "probability": 0.6762 + }, + { + "start": 7870.62, + "end": 7873.04, + "probability": 0.6097 + }, + { + "start": 7874.0, + "end": 7875.14, + "probability": 0.8102 + }, + { + "start": 7875.76, + "end": 7876.48, + "probability": 0.6939 + }, + { + "start": 7877.22, + "end": 7880.06, + "probability": 0.9112 + }, + { + "start": 7887.66, + "end": 7888.5, + "probability": 0.5291 + }, + { + "start": 7889.24, + "end": 7891.5, + "probability": 0.6492 + }, + { + "start": 7891.66, + "end": 7891.68, + "probability": 0.0782 + }, + { + "start": 7891.68, + "end": 7891.68, + "probability": 0.2939 + }, + { + "start": 7891.68, + "end": 7892.74, + "probability": 0.4981 + }, + { + "start": 7892.92, + "end": 7894.1, + "probability": 0.7119 + }, + { + "start": 7894.22, + "end": 7895.92, + "probability": 0.8652 + }, + { + "start": 7895.98, + "end": 7896.42, + "probability": 0.7817 + }, + { + "start": 7896.5, + "end": 7897.28, + "probability": 0.7573 + }, + { + "start": 7897.32, + "end": 7898.14, + "probability": 0.9109 + }, + { + "start": 7899.04, + "end": 7899.42, + "probability": 0.4817 + }, + { + "start": 7899.9, + "end": 7901.25, + "probability": 0.7163 + }, + { + "start": 7902.4, + "end": 7903.06, + "probability": 0.8403 + }, + { + "start": 7904.82, + "end": 7910.4, + "probability": 0.8954 + }, + { + "start": 7910.78, + "end": 7912.3, + "probability": 0.3265 + }, + { + "start": 7913.15, + "end": 7916.08, + "probability": 0.9737 + }, + { + "start": 7916.08, + "end": 7920.14, + "probability": 0.9882 + }, + { + "start": 7920.86, + "end": 7922.3, + "probability": 0.6197 + }, + { + "start": 7922.32, + "end": 7923.02, + "probability": 0.0073 + }, + { + "start": 7924.32, + "end": 7930.28, + "probability": 0.9937 + }, + { + "start": 7930.42, + "end": 7935.48, + "probability": 0.9839 + }, + { + "start": 7936.02, + "end": 7939.06, + "probability": 0.899 + }, + { + "start": 7940.14, + "end": 7944.8, + "probability": 0.9158 + }, + { + "start": 7945.82, + "end": 7948.3, + "probability": 0.8348 + }, + { + "start": 7950.18, + "end": 7952.42, + "probability": 0.9886 + }, + { + "start": 7952.54, + "end": 7954.9, + "probability": 0.9823 + }, + { + "start": 7955.48, + "end": 7957.28, + "probability": 0.9928 + }, + { + "start": 7958.06, + "end": 7961.22, + "probability": 0.9891 + }, + { + "start": 7962.0, + "end": 7962.79, + "probability": 0.9648 + }, + { + "start": 7963.8, + "end": 7964.24, + "probability": 0.766 + }, + { + "start": 7964.38, + "end": 7964.76, + "probability": 0.9893 + }, + { + "start": 7964.82, + "end": 7967.8, + "probability": 0.8301 + }, + { + "start": 7967.8, + "end": 7971.24, + "probability": 0.8836 + }, + { + "start": 7971.88, + "end": 7975.12, + "probability": 0.998 + }, + { + "start": 7975.66, + "end": 7977.38, + "probability": 0.9858 + }, + { + "start": 7978.24, + "end": 7980.22, + "probability": 0.8115 + }, + { + "start": 7980.9, + "end": 7983.24, + "probability": 0.9622 + }, + { + "start": 7984.62, + "end": 7985.52, + "probability": 0.8276 + }, + { + "start": 7985.58, + "end": 7988.06, + "probability": 0.9963 + }, + { + "start": 7988.56, + "end": 7991.42, + "probability": 0.7757 + }, + { + "start": 7992.12, + "end": 7995.22, + "probability": 0.9941 + }, + { + "start": 7995.58, + "end": 7996.72, + "probability": 0.9178 + }, + { + "start": 7996.84, + "end": 7997.78, + "probability": 0.9763 + }, + { + "start": 7997.9, + "end": 7998.8, + "probability": 0.9681 + }, + { + "start": 7998.96, + "end": 8001.98, + "probability": 0.9618 + }, + { + "start": 8002.16, + "end": 8002.23, + "probability": 0.2812 + }, + { + "start": 8002.78, + "end": 8003.44, + "probability": 0.8555 + }, + { + "start": 8004.2, + "end": 8006.56, + "probability": 0.7297 + }, + { + "start": 8007.38, + "end": 8009.15, + "probability": 0.8554 + }, + { + "start": 8009.86, + "end": 8010.62, + "probability": 0.9766 + }, + { + "start": 8010.94, + "end": 8011.46, + "probability": 0.8081 + }, + { + "start": 8011.62, + "end": 8014.98, + "probability": 0.9808 + }, + { + "start": 8015.68, + "end": 8016.38, + "probability": 0.6723 + }, + { + "start": 8016.6, + "end": 8020.64, + "probability": 0.7218 + }, + { + "start": 8020.84, + "end": 8021.8, + "probability": 0.7495 + }, + { + "start": 8022.24, + "end": 8025.84, + "probability": 0.9943 + }, + { + "start": 8026.3, + "end": 8027.84, + "probability": 0.9746 + }, + { + "start": 8028.38, + "end": 8029.46, + "probability": 0.7528 + }, + { + "start": 8030.26, + "end": 8032.0, + "probability": 0.995 + }, + { + "start": 8032.18, + "end": 8035.74, + "probability": 0.9639 + }, + { + "start": 8036.28, + "end": 8038.76, + "probability": 0.9463 + }, + { + "start": 8039.28, + "end": 8040.84, + "probability": 0.9885 + }, + { + "start": 8041.44, + "end": 8043.22, + "probability": 0.8607 + }, + { + "start": 8043.74, + "end": 8044.66, + "probability": 0.9159 + }, + { + "start": 8045.56, + "end": 8049.18, + "probability": 0.9759 + }, + { + "start": 8049.82, + "end": 8052.3, + "probability": 0.9534 + }, + { + "start": 8052.78, + "end": 8054.56, + "probability": 0.9915 + }, + { + "start": 8055.3, + "end": 8057.0, + "probability": 0.9219 + }, + { + "start": 8057.44, + "end": 8058.9, + "probability": 0.9896 + }, + { + "start": 8059.3, + "end": 8060.6, + "probability": 0.8372 + }, + { + "start": 8061.0, + "end": 8065.0, + "probability": 0.991 + }, + { + "start": 8065.72, + "end": 8071.44, + "probability": 0.9941 + }, + { + "start": 8072.18, + "end": 8075.76, + "probability": 0.9265 + }, + { + "start": 8076.62, + "end": 8080.56, + "probability": 0.9018 + }, + { + "start": 8080.68, + "end": 8081.46, + "probability": 0.5699 + }, + { + "start": 8081.92, + "end": 8083.4, + "probability": 0.8982 + }, + { + "start": 8083.64, + "end": 8086.6, + "probability": 0.8905 + }, + { + "start": 8086.92, + "end": 8090.32, + "probability": 0.9963 + }, + { + "start": 8090.82, + "end": 8091.22, + "probability": 0.5256 + }, + { + "start": 8091.62, + "end": 8091.62, + "probability": 0.5413 + }, + { + "start": 8091.62, + "end": 8094.52, + "probability": 0.4192 + }, + { + "start": 8096.18, + "end": 8096.9, + "probability": 0.2772 + }, + { + "start": 8096.96, + "end": 8097.5, + "probability": 0.8375 + }, + { + "start": 8097.82, + "end": 8100.0, + "probability": 0.4426 + }, + { + "start": 8100.28, + "end": 8101.18, + "probability": 0.5128 + }, + { + "start": 8101.68, + "end": 8104.56, + "probability": 0.4669 + }, + { + "start": 8104.84, + "end": 8107.36, + "probability": 0.8185 + }, + { + "start": 8107.9, + "end": 8108.9, + "probability": 0.447 + }, + { + "start": 8110.02, + "end": 8111.4, + "probability": 0.6471 + }, + { + "start": 8111.48, + "end": 8112.5, + "probability": 0.2669 + }, + { + "start": 8112.54, + "end": 8113.76, + "probability": 0.885 + }, + { + "start": 8113.92, + "end": 8117.48, + "probability": 0.7951 + }, + { + "start": 8123.6, + "end": 8124.5, + "probability": 0.6805 + }, + { + "start": 8124.6, + "end": 8125.62, + "probability": 0.7199 + }, + { + "start": 8126.04, + "end": 8126.46, + "probability": 0.8451 + }, + { + "start": 8126.54, + "end": 8128.1, + "probability": 0.7053 + }, + { + "start": 8134.04, + "end": 8134.44, + "probability": 0.1149 + }, + { + "start": 8140.24, + "end": 8141.06, + "probability": 0.0006 + }, + { + "start": 8142.98, + "end": 8144.66, + "probability": 0.0611 + }, + { + "start": 8144.66, + "end": 8147.94, + "probability": 0.1063 + }, + { + "start": 8148.94, + "end": 8150.36, + "probability": 0.0406 + }, + { + "start": 8156.71, + "end": 8158.56, + "probability": 0.0826 + }, + { + "start": 8159.32, + "end": 8159.84, + "probability": 0.074 + }, + { + "start": 8163.98, + "end": 8165.48, + "probability": 0.4191 + }, + { + "start": 8171.18, + "end": 8172.0, + "probability": 0.1124 + }, + { + "start": 8172.56, + "end": 8174.12, + "probability": 0.0177 + }, + { + "start": 8175.76, + "end": 8179.7, + "probability": 0.2147 + }, + { + "start": 8180.56, + "end": 8182.98, + "probability": 0.0717 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.0, + "end": 8248.0, + "probability": 0.0 + }, + { + "start": 8248.22, + "end": 8249.04, + "probability": 0.0448 + }, + { + "start": 8249.64, + "end": 8251.36, + "probability": 0.9731 + }, + { + "start": 8251.98, + "end": 8254.94, + "probability": 0.8905 + }, + { + "start": 8255.84, + "end": 8258.58, + "probability": 0.9983 + }, + { + "start": 8258.58, + "end": 8263.06, + "probability": 0.9116 + }, + { + "start": 8263.44, + "end": 8267.3, + "probability": 0.9952 + }, + { + "start": 8267.82, + "end": 8270.24, + "probability": 0.9893 + }, + { + "start": 8271.12, + "end": 8271.66, + "probability": 0.7086 + }, + { + "start": 8272.24, + "end": 8275.06, + "probability": 0.9861 + }, + { + "start": 8275.68, + "end": 8276.9, + "probability": 0.9297 + }, + { + "start": 8277.06, + "end": 8278.04, + "probability": 0.973 + }, + { + "start": 8278.28, + "end": 8282.32, + "probability": 0.9746 + }, + { + "start": 8282.6, + "end": 8285.92, + "probability": 0.9821 + }, + { + "start": 8287.04, + "end": 8289.34, + "probability": 0.9937 + }, + { + "start": 8290.02, + "end": 8293.96, + "probability": 0.9915 + }, + { + "start": 8294.76, + "end": 8297.6, + "probability": 0.9882 + }, + { + "start": 8297.72, + "end": 8301.28, + "probability": 0.9868 + }, + { + "start": 8301.74, + "end": 8305.36, + "probability": 0.9691 + }, + { + "start": 8306.0, + "end": 8306.72, + "probability": 0.7098 + }, + { + "start": 8307.34, + "end": 8309.04, + "probability": 0.9888 + }, + { + "start": 8309.54, + "end": 8310.98, + "probability": 0.8888 + }, + { + "start": 8311.12, + "end": 8312.46, + "probability": 0.9834 + }, + { + "start": 8313.78, + "end": 8317.88, + "probability": 0.9801 + }, + { + "start": 8318.4, + "end": 8320.82, + "probability": 0.724 + }, + { + "start": 8321.3, + "end": 8321.68, + "probability": 0.5024 + }, + { + "start": 8321.8, + "end": 8324.32, + "probability": 0.9897 + }, + { + "start": 8324.92, + "end": 8330.32, + "probability": 0.7717 + }, + { + "start": 8330.32, + "end": 8335.44, + "probability": 0.945 + }, + { + "start": 8335.88, + "end": 8340.06, + "probability": 0.8013 + }, + { + "start": 8340.24, + "end": 8340.76, + "probability": 0.767 + }, + { + "start": 8340.76, + "end": 8340.76, + "probability": 0.65 + }, + { + "start": 8340.82, + "end": 8341.28, + "probability": 0.9536 + }, + { + "start": 8342.68, + "end": 8344.64, + "probability": 0.6276 + }, + { + "start": 8365.2, + "end": 8366.84, + "probability": 0.7116 + }, + { + "start": 8367.02, + "end": 8367.02, + "probability": 0.6322 + }, + { + "start": 8367.46, + "end": 8370.68, + "probability": 0.8232 + }, + { + "start": 8371.52, + "end": 8375.12, + "probability": 0.9663 + }, + { + "start": 8376.2, + "end": 8376.24, + "probability": 0.0007 + }, + { + "start": 8378.42, + "end": 8379.64, + "probability": 0.1841 + }, + { + "start": 8380.16, + "end": 8383.6, + "probability": 0.9968 + }, + { + "start": 8383.6, + "end": 8385.96, + "probability": 0.9945 + }, + { + "start": 8388.06, + "end": 8389.48, + "probability": 0.6255 + }, + { + "start": 8389.52, + "end": 8390.16, + "probability": 0.8399 + }, + { + "start": 8390.44, + "end": 8396.66, + "probability": 0.9907 + }, + { + "start": 8397.42, + "end": 8401.2, + "probability": 0.9975 + }, + { + "start": 8401.8, + "end": 8403.12, + "probability": 0.9992 + }, + { + "start": 8404.04, + "end": 8407.1, + "probability": 0.9819 + }, + { + "start": 8407.58, + "end": 8409.34, + "probability": 0.9844 + }, + { + "start": 8409.4, + "end": 8413.34, + "probability": 0.9962 + }, + { + "start": 8414.58, + "end": 8416.7, + "probability": 0.9722 + }, + { + "start": 8417.16, + "end": 8420.4, + "probability": 0.9904 + }, + { + "start": 8421.84, + "end": 8424.84, + "probability": 0.9941 + }, + { + "start": 8425.0, + "end": 8428.04, + "probability": 0.9714 + }, + { + "start": 8428.86, + "end": 8430.08, + "probability": 0.7948 + }, + { + "start": 8431.1, + "end": 8432.43, + "probability": 0.7571 + }, + { + "start": 8433.38, + "end": 8435.56, + "probability": 0.9441 + }, + { + "start": 8436.42, + "end": 8436.7, + "probability": 0.6156 + }, + { + "start": 8436.76, + "end": 8437.36, + "probability": 0.8907 + }, + { + "start": 8437.46, + "end": 8442.34, + "probability": 0.9148 + }, + { + "start": 8442.34, + "end": 8445.86, + "probability": 0.8407 + }, + { + "start": 8446.86, + "end": 8448.12, + "probability": 0.9839 + }, + { + "start": 8448.86, + "end": 8449.82, + "probability": 0.7827 + }, + { + "start": 8449.94, + "end": 8453.06, + "probability": 0.9409 + }, + { + "start": 8453.8, + "end": 8454.74, + "probability": 0.6189 + }, + { + "start": 8455.0, + "end": 8455.76, + "probability": 0.7593 + }, + { + "start": 8455.8, + "end": 8459.02, + "probability": 0.8811 + }, + { + "start": 8459.38, + "end": 8460.9, + "probability": 0.9615 + }, + { + "start": 8461.44, + "end": 8462.46, + "probability": 0.9678 + }, + { + "start": 8462.58, + "end": 8464.64, + "probability": 0.7613 + }, + { + "start": 8465.34, + "end": 8466.22, + "probability": 0.8213 + }, + { + "start": 8466.82, + "end": 8467.22, + "probability": 0.4321 + }, + { + "start": 8468.02, + "end": 8469.46, + "probability": 0.9758 + }, + { + "start": 8470.0, + "end": 8472.36, + "probability": 0.9692 + }, + { + "start": 8473.28, + "end": 8474.22, + "probability": 0.8401 + }, + { + "start": 8474.7, + "end": 8477.24, + "probability": 0.9912 + }, + { + "start": 8477.52, + "end": 8478.22, + "probability": 0.8163 + }, + { + "start": 8479.88, + "end": 8486.5, + "probability": 0.9788 + }, + { + "start": 8487.76, + "end": 8488.96, + "probability": 0.9054 + }, + { + "start": 8489.24, + "end": 8490.63, + "probability": 0.8748 + }, + { + "start": 8491.32, + "end": 8492.37, + "probability": 0.9766 + }, + { + "start": 8493.8, + "end": 8495.12, + "probability": 0.9683 + }, + { + "start": 8495.46, + "end": 8495.82, + "probability": 0.8032 + }, + { + "start": 8495.92, + "end": 8497.2, + "probability": 0.5249 + }, + { + "start": 8497.96, + "end": 8498.16, + "probability": 0.2835 + }, + { + "start": 8499.9, + "end": 8501.5, + "probability": 0.975 + }, + { + "start": 8501.74, + "end": 8503.74, + "probability": 0.9245 + }, + { + "start": 8504.22, + "end": 8509.16, + "probability": 0.9543 + }, + { + "start": 8509.16, + "end": 8512.64, + "probability": 0.979 + }, + { + "start": 8512.98, + "end": 8516.6, + "probability": 0.7224 + }, + { + "start": 8516.6, + "end": 8520.06, + "probability": 0.9888 + }, + { + "start": 8520.64, + "end": 8523.9, + "probability": 0.9927 + }, + { + "start": 8524.38, + "end": 8525.42, + "probability": 0.9823 + }, + { + "start": 8525.8, + "end": 8527.62, + "probability": 0.9829 + }, + { + "start": 8528.32, + "end": 8528.6, + "probability": 0.7764 + }, + { + "start": 8529.36, + "end": 8530.18, + "probability": 0.9235 + }, + { + "start": 8530.64, + "end": 8531.16, + "probability": 0.9305 + }, + { + "start": 8531.26, + "end": 8534.68, + "probability": 0.9623 + }, + { + "start": 8535.04, + "end": 8535.89, + "probability": 0.9693 + }, + { + "start": 8536.44, + "end": 8539.7, + "probability": 0.9912 + }, + { + "start": 8540.34, + "end": 8544.34, + "probability": 0.729 + }, + { + "start": 8544.46, + "end": 8544.74, + "probability": 0.7342 + }, + { + "start": 8544.96, + "end": 8545.5, + "probability": 0.7809 + }, + { + "start": 8547.98, + "end": 8549.46, + "probability": 0.7304 + }, + { + "start": 8562.02, + "end": 8563.1, + "probability": 0.2896 + }, + { + "start": 8563.1, + "end": 8564.52, + "probability": 0.5227 + }, + { + "start": 8566.22, + "end": 8571.64, + "probability": 0.9611 + }, + { + "start": 8573.54, + "end": 8577.08, + "probability": 0.9768 + }, + { + "start": 8578.58, + "end": 8583.16, + "probability": 0.9808 + }, + { + "start": 8585.16, + "end": 8585.5, + "probability": 0.5812 + }, + { + "start": 8588.34, + "end": 8589.1, + "probability": 0.9324 + }, + { + "start": 8590.96, + "end": 8594.38, + "probability": 0.8868 + }, + { + "start": 8596.04, + "end": 8599.18, + "probability": 0.9877 + }, + { + "start": 8600.4, + "end": 8601.88, + "probability": 0.999 + }, + { + "start": 8603.4, + "end": 8604.66, + "probability": 0.577 + }, + { + "start": 8605.18, + "end": 8606.26, + "probability": 0.955 + }, + { + "start": 8607.6, + "end": 8608.52, + "probability": 0.9545 + }, + { + "start": 8609.3, + "end": 8611.78, + "probability": 0.9027 + }, + { + "start": 8612.62, + "end": 8613.4, + "probability": 0.7575 + }, + { + "start": 8614.96, + "end": 8615.86, + "probability": 0.9127 + }, + { + "start": 8617.94, + "end": 8618.9, + "probability": 0.99 + }, + { + "start": 8620.66, + "end": 8622.28, + "probability": 0.9878 + }, + { + "start": 8624.54, + "end": 8627.48, + "probability": 0.6942 + }, + { + "start": 8629.58, + "end": 8632.18, + "probability": 0.9902 + }, + { + "start": 8635.92, + "end": 8637.72, + "probability": 0.7699 + }, + { + "start": 8638.98, + "end": 8641.6, + "probability": 0.9915 + }, + { + "start": 8643.58, + "end": 8645.4, + "probability": 0.9678 + }, + { + "start": 8646.72, + "end": 8648.3, + "probability": 0.8813 + }, + { + "start": 8650.16, + "end": 8654.96, + "probability": 0.8772 + }, + { + "start": 8656.96, + "end": 8657.9, + "probability": 0.9978 + }, + { + "start": 8659.9, + "end": 8661.62, + "probability": 0.925 + }, + { + "start": 8663.1, + "end": 8664.94, + "probability": 0.8009 + }, + { + "start": 8667.98, + "end": 8670.64, + "probability": 0.9757 + }, + { + "start": 8671.9, + "end": 8674.94, + "probability": 0.9136 + }, + { + "start": 8674.94, + "end": 8680.04, + "probability": 0.9886 + }, + { + "start": 8680.42, + "end": 8681.14, + "probability": 0.5942 + }, + { + "start": 8681.2, + "end": 8681.64, + "probability": 0.6868 + }, + { + "start": 8683.18, + "end": 8688.54, + "probability": 0.8909 + }, + { + "start": 8691.36, + "end": 8692.0, + "probability": 0.9209 + }, + { + "start": 8693.54, + "end": 8694.96, + "probability": 0.9926 + }, + { + "start": 8696.76, + "end": 8699.22, + "probability": 0.6682 + }, + { + "start": 8703.62, + "end": 8706.04, + "probability": 0.6749 + }, + { + "start": 8708.3, + "end": 8708.44, + "probability": 0.1207 + }, + { + "start": 8708.44, + "end": 8711.1, + "probability": 0.7604 + }, + { + "start": 8712.14, + "end": 8715.06, + "probability": 0.9938 + }, + { + "start": 8715.72, + "end": 8716.38, + "probability": 0.9736 + }, + { + "start": 8718.18, + "end": 8719.42, + "probability": 0.9525 + }, + { + "start": 8720.18, + "end": 8722.32, + "probability": 0.9919 + }, + { + "start": 8723.52, + "end": 8725.22, + "probability": 0.957 + }, + { + "start": 8726.86, + "end": 8730.8, + "probability": 0.9916 + }, + { + "start": 8732.64, + "end": 8732.88, + "probability": 0.033 + }, + { + "start": 8734.14, + "end": 8734.7, + "probability": 0.042 + }, + { + "start": 8734.96, + "end": 8735.62, + "probability": 0.7939 + }, + { + "start": 8737.42, + "end": 8738.7, + "probability": 0.7379 + }, + { + "start": 8750.0, + "end": 8750.64, + "probability": 0.5163 + }, + { + "start": 8750.86, + "end": 8751.9, + "probability": 0.5863 + }, + { + "start": 8753.06, + "end": 8755.18, + "probability": 0.7195 + }, + { + "start": 8757.06, + "end": 8762.28, + "probability": 0.9915 + }, + { + "start": 8763.79, + "end": 8767.38, + "probability": 0.998 + }, + { + "start": 8769.28, + "end": 8772.22, + "probability": 0.9949 + }, + { + "start": 8773.08, + "end": 8775.3, + "probability": 0.65 + }, + { + "start": 8776.62, + "end": 8778.78, + "probability": 0.9952 + }, + { + "start": 8780.94, + "end": 8785.98, + "probability": 0.7262 + }, + { + "start": 8786.84, + "end": 8788.62, + "probability": 0.9614 + }, + { + "start": 8790.14, + "end": 8794.06, + "probability": 0.7583 + }, + { + "start": 8795.14, + "end": 8797.82, + "probability": 0.9945 + }, + { + "start": 8798.66, + "end": 8800.68, + "probability": 0.9953 + }, + { + "start": 8802.22, + "end": 8806.72, + "probability": 0.5876 + }, + { + "start": 8808.53, + "end": 8812.64, + "probability": 0.7416 + }, + { + "start": 8814.3, + "end": 8816.24, + "probability": 0.9966 + }, + { + "start": 8816.42, + "end": 8817.12, + "probability": 0.8797 + }, + { + "start": 8817.26, + "end": 8818.26, + "probability": 0.9952 + }, + { + "start": 8819.8, + "end": 8826.9, + "probability": 0.8955 + }, + { + "start": 8827.72, + "end": 8829.68, + "probability": 0.9034 + }, + { + "start": 8830.0, + "end": 8832.8, + "probability": 0.8207 + }, + { + "start": 8834.14, + "end": 8838.48, + "probability": 0.6443 + }, + { + "start": 8839.28, + "end": 8844.56, + "probability": 0.9199 + }, + { + "start": 8845.34, + "end": 8847.66, + "probability": 0.9868 + }, + { + "start": 8848.06, + "end": 8849.04, + "probability": 0.7937 + }, + { + "start": 8849.4, + "end": 8851.44, + "probability": 0.799 + }, + { + "start": 8851.84, + "end": 8852.76, + "probability": 0.6056 + }, + { + "start": 8853.32, + "end": 8856.28, + "probability": 0.9779 + }, + { + "start": 8857.36, + "end": 8859.82, + "probability": 0.9963 + }, + { + "start": 8860.08, + "end": 8860.57, + "probability": 0.8911 + }, + { + "start": 8861.5, + "end": 8862.64, + "probability": 0.9897 + }, + { + "start": 8863.4, + "end": 8865.61, + "probability": 0.875 + }, + { + "start": 8866.4, + "end": 8867.34, + "probability": 0.9377 + }, + { + "start": 8868.0, + "end": 8870.22, + "probability": 0.8354 + }, + { + "start": 8870.7, + "end": 8872.22, + "probability": 0.9696 + }, + { + "start": 8872.38, + "end": 8872.98, + "probability": 0.909 + }, + { + "start": 8873.26, + "end": 8875.0, + "probability": 0.9971 + }, + { + "start": 8875.22, + "end": 8875.92, + "probability": 0.3379 + }, + { + "start": 8876.34, + "end": 8876.98, + "probability": 0.9642 + }, + { + "start": 8877.98, + "end": 8881.04, + "probability": 0.9852 + }, + { + "start": 8882.06, + "end": 8884.32, + "probability": 0.9929 + }, + { + "start": 8885.08, + "end": 8885.34, + "probability": 0.4871 + }, + { + "start": 8885.58, + "end": 8886.46, + "probability": 0.9683 + }, + { + "start": 8886.48, + "end": 8887.38, + "probability": 0.9686 + }, + { + "start": 8887.42, + "end": 8888.46, + "probability": 0.9653 + }, + { + "start": 8888.86, + "end": 8892.92, + "probability": 0.9904 + }, + { + "start": 8893.62, + "end": 8894.62, + "probability": 0.6539 + }, + { + "start": 8895.3, + "end": 8899.16, + "probability": 0.8651 + }, + { + "start": 8899.76, + "end": 8902.48, + "probability": 0.7818 + }, + { + "start": 8902.78, + "end": 8904.48, + "probability": 0.4377 + }, + { + "start": 8905.2, + "end": 8907.94, + "probability": 0.9753 + }, + { + "start": 8908.28, + "end": 8908.74, + "probability": 0.8812 + }, + { + "start": 8909.4, + "end": 8910.0, + "probability": 0.8412 + }, + { + "start": 8911.14, + "end": 8913.1, + "probability": 0.9322 + }, + { + "start": 8914.14, + "end": 8914.92, + "probability": 0.6301 + }, + { + "start": 8916.0, + "end": 8917.52, + "probability": 0.9745 + }, + { + "start": 8918.56, + "end": 8920.48, + "probability": 0.6073 + }, + { + "start": 8921.14, + "end": 8922.94, + "probability": 0.961 + }, + { + "start": 8923.52, + "end": 8924.32, + "probability": 0.6788 + }, + { + "start": 8925.18, + "end": 8927.8, + "probability": 0.8305 + }, + { + "start": 8927.8, + "end": 8927.9, + "probability": 0.0124 + }, + { + "start": 8929.7, + "end": 8929.8, + "probability": 0.2719 + }, + { + "start": 8932.92, + "end": 8937.32, + "probability": 0.6513 + }, + { + "start": 8937.98, + "end": 8938.86, + "probability": 0.8254 + }, + { + "start": 8939.44, + "end": 8940.14, + "probability": 0.8647 + }, + { + "start": 8941.04, + "end": 8943.62, + "probability": 0.9718 + }, + { + "start": 8944.52, + "end": 8947.24, + "probability": 0.9567 + }, + { + "start": 8948.04, + "end": 8948.52, + "probability": 0.3555 + }, + { + "start": 8962.3, + "end": 8962.54, + "probability": 0.5046 + }, + { + "start": 8966.92, + "end": 8969.52, + "probability": 0.5753 + }, + { + "start": 8970.92, + "end": 8973.96, + "probability": 0.8992 + }, + { + "start": 8974.84, + "end": 8975.32, + "probability": 0.9592 + }, + { + "start": 8975.86, + "end": 8976.34, + "probability": 0.9331 + }, + { + "start": 8977.3, + "end": 8978.02, + "probability": 0.9019 + }, + { + "start": 8978.82, + "end": 8983.72, + "probability": 0.8171 + }, + { + "start": 8984.02, + "end": 8986.2, + "probability": 0.9735 + }, + { + "start": 8986.64, + "end": 8992.44, + "probability": 0.9673 + }, + { + "start": 8993.42, + "end": 8998.12, + "probability": 0.8419 + }, + { + "start": 8998.82, + "end": 9000.68, + "probability": 0.9692 + }, + { + "start": 9001.58, + "end": 9002.88, + "probability": 0.9941 + }, + { + "start": 9004.06, + "end": 9004.82, + "probability": 0.7281 + }, + { + "start": 9004.88, + "end": 9011.26, + "probability": 0.9148 + }, + { + "start": 9011.46, + "end": 9012.82, + "probability": 0.5009 + }, + { + "start": 9013.4, + "end": 9014.68, + "probability": 0.9845 + }, + { + "start": 9016.98, + "end": 9021.26, + "probability": 0.9829 + }, + { + "start": 9022.12, + "end": 9026.54, + "probability": 0.982 + }, + { + "start": 9027.5, + "end": 9031.69, + "probability": 0.9321 + }, + { + "start": 9033.18, + "end": 9037.03, + "probability": 0.9953 + }, + { + "start": 9037.82, + "end": 9040.58, + "probability": 0.9912 + }, + { + "start": 9041.5, + "end": 9043.58, + "probability": 0.933 + }, + { + "start": 9044.84, + "end": 9048.5, + "probability": 0.9905 + }, + { + "start": 9049.7, + "end": 9051.98, + "probability": 0.9082 + }, + { + "start": 9052.84, + "end": 9053.5, + "probability": 0.9498 + }, + { + "start": 9054.21, + "end": 9055.85, + "probability": 0.9594 + }, + { + "start": 9057.9, + "end": 9059.0, + "probability": 0.8881 + }, + { + "start": 9060.62, + "end": 9063.04, + "probability": 0.9769 + }, + { + "start": 9064.02, + "end": 9065.5, + "probability": 0.74 + }, + { + "start": 9066.32, + "end": 9070.08, + "probability": 0.7846 + }, + { + "start": 9071.1, + "end": 9076.14, + "probability": 0.9734 + }, + { + "start": 9076.14, + "end": 9081.38, + "probability": 0.983 + }, + { + "start": 9081.48, + "end": 9083.94, + "probability": 0.9836 + }, + { + "start": 9085.44, + "end": 9086.52, + "probability": 0.9806 + }, + { + "start": 9087.3, + "end": 9088.72, + "probability": 0.9984 + }, + { + "start": 9089.34, + "end": 9091.04, + "probability": 0.9888 + }, + { + "start": 9091.68, + "end": 9095.08, + "probability": 0.9396 + }, + { + "start": 9096.31, + "end": 9099.8, + "probability": 0.9507 + }, + { + "start": 9100.52, + "end": 9101.76, + "probability": 0.9985 + }, + { + "start": 9102.34, + "end": 9106.06, + "probability": 0.9575 + }, + { + "start": 9107.48, + "end": 9110.34, + "probability": 0.8983 + }, + { + "start": 9111.64, + "end": 9113.72, + "probability": 0.7897 + }, + { + "start": 9114.78, + "end": 9117.0, + "probability": 0.8019 + }, + { + "start": 9118.34, + "end": 9120.04, + "probability": 0.9976 + }, + { + "start": 9120.58, + "end": 9121.92, + "probability": 0.9961 + }, + { + "start": 9122.94, + "end": 9123.66, + "probability": 0.959 + }, + { + "start": 9124.84, + "end": 9127.02, + "probability": 0.6151 + }, + { + "start": 9127.62, + "end": 9130.72, + "probability": 0.9922 + }, + { + "start": 9130.72, + "end": 9134.88, + "probability": 0.989 + }, + { + "start": 9135.98, + "end": 9139.26, + "probability": 0.7579 + }, + { + "start": 9140.2, + "end": 9142.9, + "probability": 0.9958 + }, + { + "start": 9143.68, + "end": 9144.92, + "probability": 0.974 + }, + { + "start": 9146.16, + "end": 9147.62, + "probability": 0.9578 + }, + { + "start": 9148.58, + "end": 9152.66, + "probability": 0.9961 + }, + { + "start": 9153.04, + "end": 9153.9, + "probability": 0.7614 + }, + { + "start": 9154.44, + "end": 9155.08, + "probability": 0.9739 + }, + { + "start": 9155.84, + "end": 9160.9, + "probability": 0.9666 + }, + { + "start": 9161.46, + "end": 9162.86, + "probability": 0.4344 + }, + { + "start": 9164.58, + "end": 9167.1, + "probability": 0.994 + }, + { + "start": 9167.62, + "end": 9167.9, + "probability": 0.6703 + }, + { + "start": 9168.7, + "end": 9169.38, + "probability": 0.583 + }, + { + "start": 9169.6, + "end": 9172.84, + "probability": 0.7539 + }, + { + "start": 9174.28, + "end": 9175.04, + "probability": 0.8342 + }, + { + "start": 9176.1, + "end": 9178.28, + "probability": 0.8663 + }, + { + "start": 9179.24, + "end": 9179.9, + "probability": 0.7376 + }, + { + "start": 9180.5, + "end": 9181.72, + "probability": 0.6345 + }, + { + "start": 9183.22, + "end": 9183.8, + "probability": 0.3353 + }, + { + "start": 9184.4, + "end": 9186.02, + "probability": 0.8246 + }, + { + "start": 9186.7, + "end": 9187.5, + "probability": 0.8025 + }, + { + "start": 9188.28, + "end": 9190.16, + "probability": 0.9617 + }, + { + "start": 9190.88, + "end": 9191.7, + "probability": 0.6787 + }, + { + "start": 9193.04, + "end": 9194.86, + "probability": 0.85 + }, + { + "start": 9195.2, + "end": 9195.72, + "probability": 0.4959 + }, + { + "start": 9196.16, + "end": 9199.48, + "probability": 0.0302 + }, + { + "start": 9219.16, + "end": 9220.38, + "probability": 0.6668 + }, + { + "start": 9221.94, + "end": 9228.66, + "probability": 0.9966 + }, + { + "start": 9229.94, + "end": 9232.76, + "probability": 0.9894 + }, + { + "start": 9234.1, + "end": 9234.77, + "probability": 0.9771 + }, + { + "start": 9234.98, + "end": 9242.52, + "probability": 0.9759 + }, + { + "start": 9243.06, + "end": 9245.92, + "probability": 0.9677 + }, + { + "start": 9246.46, + "end": 9254.96, + "probability": 0.9985 + }, + { + "start": 9256.02, + "end": 9259.0, + "probability": 0.7998 + }, + { + "start": 9259.96, + "end": 9260.46, + "probability": 0.9697 + }, + { + "start": 9261.06, + "end": 9261.46, + "probability": 0.9893 + }, + { + "start": 9262.0, + "end": 9263.4, + "probability": 0.9861 + }, + { + "start": 9263.94, + "end": 9265.2, + "probability": 0.8085 + }, + { + "start": 9266.22, + "end": 9270.74, + "probability": 0.9977 + }, + { + "start": 9270.8, + "end": 9273.9, + "probability": 0.731 + }, + { + "start": 9275.32, + "end": 9280.96, + "probability": 0.9917 + }, + { + "start": 9282.0, + "end": 9286.26, + "probability": 0.9741 + }, + { + "start": 9287.6, + "end": 9290.42, + "probability": 0.9736 + }, + { + "start": 9291.54, + "end": 9293.68, + "probability": 0.998 + }, + { + "start": 9294.34, + "end": 9296.68, + "probability": 0.9897 + }, + { + "start": 9297.32, + "end": 9298.38, + "probability": 0.8206 + }, + { + "start": 9299.28, + "end": 9300.62, + "probability": 0.9589 + }, + { + "start": 9301.88, + "end": 9304.24, + "probability": 0.8451 + }, + { + "start": 9305.24, + "end": 9312.16, + "probability": 0.8267 + }, + { + "start": 9312.78, + "end": 9314.78, + "probability": 0.7999 + }, + { + "start": 9315.68, + "end": 9321.58, + "probability": 0.9801 + }, + { + "start": 9322.38, + "end": 9323.86, + "probability": 0.8737 + }, + { + "start": 9323.96, + "end": 9323.96, + "probability": 0.3143 + }, + { + "start": 9323.96, + "end": 9325.0, + "probability": 0.6212 + }, + { + "start": 9325.02, + "end": 9329.84, + "probability": 0.992 + }, + { + "start": 9330.54, + "end": 9335.48, + "probability": 0.9985 + }, + { + "start": 9335.48, + "end": 9341.22, + "probability": 0.9971 + }, + { + "start": 9342.28, + "end": 9344.62, + "probability": 0.9912 + }, + { + "start": 9346.26, + "end": 9352.28, + "probability": 0.6952 + }, + { + "start": 9353.86, + "end": 9356.98, + "probability": 0.9927 + }, + { + "start": 9357.9, + "end": 9360.72, + "probability": 0.2368 + }, + { + "start": 9361.58, + "end": 9365.48, + "probability": 0.9731 + }, + { + "start": 9366.42, + "end": 9372.24, + "probability": 0.866 + }, + { + "start": 9372.8, + "end": 9373.88, + "probability": 0.6052 + }, + { + "start": 9374.8, + "end": 9375.86, + "probability": 0.858 + }, + { + "start": 9376.58, + "end": 9379.28, + "probability": 0.8657 + }, + { + "start": 9380.3, + "end": 9380.56, + "probability": 0.0692 + }, + { + "start": 9380.66, + "end": 9385.22, + "probability": 0.9775 + }, + { + "start": 9385.32, + "end": 9391.16, + "probability": 0.9584 + }, + { + "start": 9392.6, + "end": 9395.76, + "probability": 0.3423 + }, + { + "start": 9396.44, + "end": 9397.06, + "probability": 0.537 + }, + { + "start": 9397.94, + "end": 9401.6, + "probability": 0.6287 + }, + { + "start": 9401.6, + "end": 9402.3, + "probability": 0.7783 + }, + { + "start": 9402.34, + "end": 9403.28, + "probability": 0.7795 + }, + { + "start": 9403.34, + "end": 9403.5, + "probability": 0.6726 + }, + { + "start": 9403.72, + "end": 9404.0, + "probability": 0.7533 + }, + { + "start": 9404.0, + "end": 9404.54, + "probability": 0.5464 + }, + { + "start": 9404.64, + "end": 9405.2, + "probability": 0.6255 + }, + { + "start": 9405.6, + "end": 9407.14, + "probability": 0.9829 + }, + { + "start": 9408.3, + "end": 9413.92, + "probability": 0.9318 + }, + { + "start": 9414.46, + "end": 9419.66, + "probability": 0.8326 + }, + { + "start": 9419.96, + "end": 9420.14, + "probability": 0.6139 + }, + { + "start": 9420.22, + "end": 9420.24, + "probability": 0.3376 + }, + { + "start": 9420.24, + "end": 9421.22, + "probability": 0.8763 + }, + { + "start": 9422.08, + "end": 9424.44, + "probability": 0.9262 + }, + { + "start": 9424.46, + "end": 9426.26, + "probability": 0.8362 + }, + { + "start": 9426.34, + "end": 9426.68, + "probability": 0.6202 + }, + { + "start": 9426.8, + "end": 9430.38, + "probability": 0.9976 + }, + { + "start": 9430.38, + "end": 9433.28, + "probability": 0.9985 + }, + { + "start": 9433.42, + "end": 9433.94, + "probability": 0.74 + }, + { + "start": 9435.39, + "end": 9438.18, + "probability": 0.8219 + }, + { + "start": 9440.18, + "end": 9440.9, + "probability": 0.4748 + }, + { + "start": 9441.94, + "end": 9443.2, + "probability": 0.9778 + }, + { + "start": 9445.94, + "end": 9446.56, + "probability": 0.2518 + }, + { + "start": 9447.26, + "end": 9448.32, + "probability": 0.6166 + }, + { + "start": 9449.14, + "end": 9449.86, + "probability": 0.9645 + }, + { + "start": 9453.06, + "end": 9453.14, + "probability": 0.3017 + }, + { + "start": 9461.02, + "end": 9461.02, + "probability": 0.2192 + }, + { + "start": 9461.02, + "end": 9463.1, + "probability": 0.6738 + }, + { + "start": 9463.86, + "end": 9466.88, + "probability": 0.9085 + }, + { + "start": 9467.0, + "end": 9471.1, + "probability": 0.9824 + }, + { + "start": 9471.84, + "end": 9474.46, + "probability": 0.9524 + }, + { + "start": 9475.38, + "end": 9477.58, + "probability": 0.9879 + }, + { + "start": 9478.26, + "end": 9479.84, + "probability": 0.9421 + }, + { + "start": 9480.32, + "end": 9482.4, + "probability": 0.8877 + }, + { + "start": 9482.84, + "end": 9484.3, + "probability": 0.8744 + }, + { + "start": 9484.68, + "end": 9486.58, + "probability": 0.9853 + }, + { + "start": 9487.46, + "end": 9488.86, + "probability": 0.7468 + }, + { + "start": 9489.52, + "end": 9492.4, + "probability": 0.991 + }, + { + "start": 9492.54, + "end": 9493.52, + "probability": 0.9977 + }, + { + "start": 9494.12, + "end": 9496.6, + "probability": 0.9568 + }, + { + "start": 9497.1, + "end": 9501.28, + "probability": 0.9966 + }, + { + "start": 9501.28, + "end": 9504.58, + "probability": 0.9901 + }, + { + "start": 9505.1, + "end": 9506.34, + "probability": 0.9984 + }, + { + "start": 9506.36, + "end": 9507.9, + "probability": 0.7946 + }, + { + "start": 9508.84, + "end": 9511.24, + "probability": 0.9967 + }, + { + "start": 9511.44, + "end": 9511.56, + "probability": 0.026 + }, + { + "start": 9511.56, + "end": 9511.84, + "probability": 0.0984 + }, + { + "start": 9512.2, + "end": 9513.34, + "probability": 0.9744 + }, + { + "start": 9513.68, + "end": 9520.26, + "probability": 0.997 + }, + { + "start": 9520.54, + "end": 9522.1, + "probability": 0.816 + }, + { + "start": 9522.52, + "end": 9522.92, + "probability": 0.0027 + }, + { + "start": 9522.92, + "end": 9522.92, + "probability": 0.2125 + }, + { + "start": 9522.92, + "end": 9524.04, + "probability": 0.9028 + }, + { + "start": 9524.46, + "end": 9524.66, + "probability": 0.6722 + }, + { + "start": 9524.82, + "end": 9527.97, + "probability": 0.7532 + }, + { + "start": 9528.08, + "end": 9528.52, + "probability": 0.1445 + }, + { + "start": 9528.52, + "end": 9528.72, + "probability": 0.3973 + }, + { + "start": 9528.74, + "end": 9529.56, + "probability": 0.6161 + }, + { + "start": 9529.66, + "end": 9530.88, + "probability": 0.9087 + }, + { + "start": 9531.18, + "end": 9532.18, + "probability": 0.46 + }, + { + "start": 9533.24, + "end": 9533.64, + "probability": 0.522 + }, + { + "start": 9533.64, + "end": 9533.64, + "probability": 0.2017 + }, + { + "start": 9533.64, + "end": 9533.64, + "probability": 0.0508 + }, + { + "start": 9533.64, + "end": 9535.14, + "probability": 0.7287 + }, + { + "start": 9535.2, + "end": 9539.68, + "probability": 0.9812 + }, + { + "start": 9539.88, + "end": 9541.26, + "probability": 0.841 + }, + { + "start": 9541.66, + "end": 9544.4, + "probability": 0.9976 + }, + { + "start": 9544.96, + "end": 9549.0, + "probability": 0.9983 + }, + { + "start": 9549.26, + "end": 9550.7, + "probability": 0.778 + }, + { + "start": 9550.78, + "end": 9554.8, + "probability": 0.9793 + }, + { + "start": 9555.16, + "end": 9555.93, + "probability": 0.5669 + }, + { + "start": 9556.32, + "end": 9559.94, + "probability": 0.9829 + }, + { + "start": 9560.3, + "end": 9562.2, + "probability": 0.9907 + }, + { + "start": 9562.86, + "end": 9566.6, + "probability": 0.9945 + }, + { + "start": 9567.02, + "end": 9570.42, + "probability": 0.9941 + }, + { + "start": 9571.02, + "end": 9574.62, + "probability": 0.9875 + }, + { + "start": 9575.18, + "end": 9576.04, + "probability": 0.4692 + }, + { + "start": 9576.26, + "end": 9580.74, + "probability": 0.9791 + }, + { + "start": 9581.36, + "end": 9581.99, + "probability": 0.8066 + }, + { + "start": 9582.48, + "end": 9586.44, + "probability": 0.9869 + }, + { + "start": 9587.28, + "end": 9588.2, + "probability": 0.6258 + }, + { + "start": 9588.38, + "end": 9590.4, + "probability": 0.6562 + }, + { + "start": 9591.66, + "end": 9592.5, + "probability": 0.7533 + }, + { + "start": 9593.1, + "end": 9594.4, + "probability": 0.7589 + }, + { + "start": 9594.9, + "end": 9595.6, + "probability": 0.7277 + }, + { + "start": 9596.04, + "end": 9597.64, + "probability": 0.9427 + }, + { + "start": 9598.1, + "end": 9598.72, + "probability": 0.6905 + }, + { + "start": 9599.16, + "end": 9600.42, + "probability": 0.9879 + }, + { + "start": 9614.74, + "end": 9614.8, + "probability": 0.78 + }, + { + "start": 9614.8, + "end": 9615.96, + "probability": 0.5965 + }, + { + "start": 9616.22, + "end": 9617.28, + "probability": 0.5352 + }, + { + "start": 9618.4, + "end": 9622.74, + "probability": 0.9727 + }, + { + "start": 9622.8, + "end": 9623.88, + "probability": 0.8913 + }, + { + "start": 9624.56, + "end": 9630.9, + "probability": 0.9087 + }, + { + "start": 9631.26, + "end": 9631.65, + "probability": 0.1565 + }, + { + "start": 9631.9, + "end": 9632.46, + "probability": 0.5239 + }, + { + "start": 9633.48, + "end": 9635.3, + "probability": 0.948 + }, + { + "start": 9638.48, + "end": 9638.78, + "probability": 0.568 + }, + { + "start": 9638.78, + "end": 9640.1, + "probability": 0.3578 + }, + { + "start": 9640.6, + "end": 9641.62, + "probability": 0.8218 + }, + { + "start": 9644.64, + "end": 9648.14, + "probability": 0.4653 + }, + { + "start": 9648.68, + "end": 9649.6, + "probability": 0.1053 + }, + { + "start": 9652.78, + "end": 9653.55, + "probability": 0.1819 + }, + { + "start": 9657.46, + "end": 9660.5, + "probability": 0.4237 + }, + { + "start": 9667.16, + "end": 9669.96, + "probability": 0.2167 + }, + { + "start": 9670.54, + "end": 9674.36, + "probability": 0.145 + }, + { + "start": 9675.36, + "end": 9675.44, + "probability": 0.5548 + }, + { + "start": 9675.44, + "end": 9676.02, + "probability": 0.3374 + }, + { + "start": 9676.44, + "end": 9679.18, + "probability": 0.7793 + }, + { + "start": 9679.36, + "end": 9680.5, + "probability": 0.9691 + }, + { + "start": 9681.16, + "end": 9686.64, + "probability": 0.944 + }, + { + "start": 9688.56, + "end": 9689.44, + "probability": 0.9658 + }, + { + "start": 9690.12, + "end": 9693.8, + "probability": 0.9809 + }, + { + "start": 9694.74, + "end": 9696.2, + "probability": 0.4473 + }, + { + "start": 9696.34, + "end": 9697.94, + "probability": 0.8821 + }, + { + "start": 9698.44, + "end": 9701.7, + "probability": 0.9807 + }, + { + "start": 9703.08, + "end": 9706.92, + "probability": 0.9907 + }, + { + "start": 9708.16, + "end": 9713.08, + "probability": 0.9095 + }, + { + "start": 9713.98, + "end": 9720.58, + "probability": 0.9691 + }, + { + "start": 9720.88, + "end": 9721.78, + "probability": 0.5633 + }, + { + "start": 9722.72, + "end": 9724.1, + "probability": 0.9807 + }, + { + "start": 9726.7, + "end": 9731.32, + "probability": 0.8376 + }, + { + "start": 9732.4, + "end": 9733.26, + "probability": 0.678 + }, + { + "start": 9733.72, + "end": 9735.94, + "probability": 0.9646 + }, + { + "start": 9736.5, + "end": 9738.92, + "probability": 0.9856 + }, + { + "start": 9739.04, + "end": 9743.04, + "probability": 0.9814 + }, + { + "start": 9744.74, + "end": 9751.46, + "probability": 0.8588 + }, + { + "start": 9752.64, + "end": 9756.2, + "probability": 0.7536 + }, + { + "start": 9757.66, + "end": 9759.88, + "probability": 0.8959 + }, + { + "start": 9761.3, + "end": 9762.08, + "probability": 0.8887 + }, + { + "start": 9762.9, + "end": 9766.46, + "probability": 0.9902 + }, + { + "start": 9767.42, + "end": 9772.38, + "probability": 0.932 + }, + { + "start": 9773.32, + "end": 9774.7, + "probability": 0.9819 + }, + { + "start": 9775.22, + "end": 9777.62, + "probability": 0.072 + }, + { + "start": 9778.24, + "end": 9779.12, + "probability": 0.6879 + }, + { + "start": 9780.2, + "end": 9783.04, + "probability": 0.7817 + }, + { + "start": 9784.04, + "end": 9787.74, + "probability": 0.7986 + }, + { + "start": 9789.62, + "end": 9790.76, + "probability": 0.9872 + }, + { + "start": 9791.84, + "end": 9794.52, + "probability": 0.9046 + }, + { + "start": 9794.7, + "end": 9799.48, + "probability": 0.9716 + }, + { + "start": 9800.86, + "end": 9802.62, + "probability": 0.9407 + }, + { + "start": 9804.34, + "end": 9805.11, + "probability": 0.7272 + }, + { + "start": 9807.44, + "end": 9808.68, + "probability": 0.9723 + }, + { + "start": 9810.22, + "end": 9811.52, + "probability": 0.9589 + }, + { + "start": 9812.86, + "end": 9814.08, + "probability": 0.9138 + }, + { + "start": 9815.66, + "end": 9816.76, + "probability": 0.9245 + }, + { + "start": 9817.92, + "end": 9822.66, + "probability": 0.9824 + }, + { + "start": 9823.42, + "end": 9823.7, + "probability": 0.7466 + }, + { + "start": 9824.36, + "end": 9825.14, + "probability": 0.9532 + }, + { + "start": 9826.0, + "end": 9826.94, + "probability": 0.9643 + }, + { + "start": 9829.1, + "end": 9832.0, + "probability": 0.9847 + }, + { + "start": 9833.58, + "end": 9836.78, + "probability": 0.9813 + }, + { + "start": 9839.1, + "end": 9845.16, + "probability": 0.981 + }, + { + "start": 9845.18, + "end": 9850.1, + "probability": 0.9521 + }, + { + "start": 9850.9, + "end": 9852.64, + "probability": 0.6423 + }, + { + "start": 9853.28, + "end": 9856.38, + "probability": 0.9302 + }, + { + "start": 9857.56, + "end": 9862.1, + "probability": 0.9886 + }, + { + "start": 9862.22, + "end": 9863.02, + "probability": 0.8483 + }, + { + "start": 9863.84, + "end": 9865.46, + "probability": 0.9894 + }, + { + "start": 9866.38, + "end": 9867.32, + "probability": 0.3901 + }, + { + "start": 9867.32, + "end": 9871.48, + "probability": 0.9541 + }, + { + "start": 9872.58, + "end": 9875.2, + "probability": 0.9409 + }, + { + "start": 9875.2, + "end": 9875.76, + "probability": 0.5811 + }, + { + "start": 9876.78, + "end": 9877.36, + "probability": 0.9756 + }, + { + "start": 9877.66, + "end": 9878.24, + "probability": 0.9285 + }, + { + "start": 9878.38, + "end": 9878.88, + "probability": 0.4966 + }, + { + "start": 9879.14, + "end": 9879.56, + "probability": 0.9035 + }, + { + "start": 9880.12, + "end": 9880.66, + "probability": 0.2829 + }, + { + "start": 9880.72, + "end": 9882.2, + "probability": 0.7654 + }, + { + "start": 9882.34, + "end": 9882.94, + "probability": 0.9366 + }, + { + "start": 9883.02, + "end": 9884.6, + "probability": 0.6016 + }, + { + "start": 9885.24, + "end": 9886.2, + "probability": 0.7614 + }, + { + "start": 9888.62, + "end": 9894.88, + "probability": 0.9598 + }, + { + "start": 9895.04, + "end": 9895.58, + "probability": 0.4368 + }, + { + "start": 9895.58, + "end": 9897.2, + "probability": 0.9408 + }, + { + "start": 9897.92, + "end": 9900.22, + "probability": 0.825 + }, + { + "start": 9900.82, + "end": 9905.64, + "probability": 0.7459 + }, + { + "start": 9906.84, + "end": 9906.96, + "probability": 0.5967 + }, + { + "start": 9907.9, + "end": 9911.46, + "probability": 0.9909 + }, + { + "start": 9911.92, + "end": 9912.64, + "probability": 0.6668 + }, + { + "start": 9912.72, + "end": 9915.26, + "probability": 0.6648 + }, + { + "start": 9931.7, + "end": 9932.32, + "probability": 0.3928 + }, + { + "start": 9932.44, + "end": 9933.4, + "probability": 0.7936 + }, + { + "start": 9936.14, + "end": 9938.56, + "probability": 0.7647 + }, + { + "start": 9940.22, + "end": 9943.54, + "probability": 0.9232 + }, + { + "start": 9944.42, + "end": 9945.4, + "probability": 0.9722 + }, + { + "start": 9947.86, + "end": 9952.78, + "probability": 0.5047 + }, + { + "start": 9953.18, + "end": 9956.46, + "probability": 0.9059 + }, + { + "start": 9957.24, + "end": 9963.5, + "probability": 0.9794 + }, + { + "start": 9964.72, + "end": 9965.82, + "probability": 0.9536 + }, + { + "start": 9966.46, + "end": 9968.6, + "probability": 0.9864 + }, + { + "start": 9969.6, + "end": 9973.94, + "probability": 0.9879 + }, + { + "start": 9973.94, + "end": 9977.9, + "probability": 0.9295 + }, + { + "start": 9978.68, + "end": 9980.9, + "probability": 0.9979 + }, + { + "start": 9982.14, + "end": 9983.0, + "probability": 0.8026 + }, + { + "start": 9983.86, + "end": 9988.82, + "probability": 0.9713 + }, + { + "start": 9990.1, + "end": 9990.74, + "probability": 0.9148 + }, + { + "start": 9991.3, + "end": 9997.48, + "probability": 0.9957 + }, + { + "start": 9998.54, + "end": 10001.34, + "probability": 0.9933 + }, + { + "start": 10001.86, + "end": 10005.0, + "probability": 0.9307 + }, + { + "start": 10005.94, + "end": 10008.06, + "probability": 0.7721 + }, + { + "start": 10008.6, + "end": 10014.1, + "probability": 0.7943 + }, + { + "start": 10014.58, + "end": 10016.24, + "probability": 0.7882 + }, + { + "start": 10017.52, + "end": 10021.06, + "probability": 0.9427 + }, + { + "start": 10021.28, + "end": 10025.2, + "probability": 0.7578 + }, + { + "start": 10025.9, + "end": 10032.3, + "probability": 0.9857 + }, + { + "start": 10032.7, + "end": 10039.16, + "probability": 0.8854 + }, + { + "start": 10039.62, + "end": 10045.06, + "probability": 0.9746 + }, + { + "start": 10045.44, + "end": 10051.56, + "probability": 0.9791 + }, + { + "start": 10052.08, + "end": 10054.4, + "probability": 0.9941 + }, + { + "start": 10055.0, + "end": 10061.26, + "probability": 0.2827 + }, + { + "start": 10061.26, + "end": 10062.48, + "probability": 0.006 + }, + { + "start": 10063.26, + "end": 10067.3, + "probability": 0.2572 + }, + { + "start": 10070.0, + "end": 10072.34, + "probability": 0.0238 + }, + { + "start": 10073.0, + "end": 10073.82, + "probability": 0.0025 + }, + { + "start": 10074.38, + "end": 10079.78, + "probability": 0.2193 + }, + { + "start": 10080.16, + "end": 10083.82, + "probability": 0.2624 + }, + { + "start": 10083.84, + "end": 10084.28, + "probability": 0.2661 + }, + { + "start": 10084.58, + "end": 10085.74, + "probability": 0.2262 + }, + { + "start": 10086.72, + "end": 10087.66, + "probability": 0.3199 + }, + { + "start": 10088.18, + "end": 10091.46, + "probability": 0.2572 + }, + { + "start": 10091.46, + "end": 10099.3, + "probability": 0.207 + }, + { + "start": 10099.8, + "end": 10103.1, + "probability": 0.2293 + }, + { + "start": 10103.72, + "end": 10105.2, + "probability": 0.1799 + }, + { + "start": 10105.46, + "end": 10105.94, + "probability": 0.3696 + }, + { + "start": 10107.28, + "end": 10108.22, + "probability": 0.5149 + }, + { + "start": 10108.36, + "end": 10110.38, + "probability": 0.6742 + }, + { + "start": 10111.12, + "end": 10111.8, + "probability": 0.5981 + }, + { + "start": 10112.32, + "end": 10113.84, + "probability": 0.9818 + }, + { + "start": 10114.5, + "end": 10115.3, + "probability": 0.7268 + }, + { + "start": 10115.88, + "end": 10117.28, + "probability": 0.9828 + }, + { + "start": 10131.42, + "end": 10132.42, + "probability": 0.6372 + }, + { + "start": 10133.6, + "end": 10135.7, + "probability": 0.7811 + }, + { + "start": 10136.4, + "end": 10139.78, + "probability": 0.8661 + }, + { + "start": 10141.5, + "end": 10142.4, + "probability": 0.6858 + }, + { + "start": 10142.54, + "end": 10148.34, + "probability": 0.9899 + }, + { + "start": 10148.6, + "end": 10149.24, + "probability": 0.8948 + }, + { + "start": 10149.42, + "end": 10149.84, + "probability": 0.4675 + }, + { + "start": 10149.98, + "end": 10152.02, + "probability": 0.9724 + }, + { + "start": 10152.84, + "end": 10161.02, + "probability": 0.8716 + }, + { + "start": 10161.92, + "end": 10163.5, + "probability": 0.9993 + }, + { + "start": 10163.88, + "end": 10167.48, + "probability": 0.9941 + }, + { + "start": 10167.8, + "end": 10168.86, + "probability": 0.8906 + }, + { + "start": 10169.04, + "end": 10170.2, + "probability": 0.3389 + }, + { + "start": 10170.54, + "end": 10174.6, + "probability": 0.9763 + }, + { + "start": 10174.6, + "end": 10177.38, + "probability": 0.9934 + }, + { + "start": 10179.06, + "end": 10183.42, + "probability": 0.5876 + }, + { + "start": 10183.78, + "end": 10185.44, + "probability": 0.998 + }, + { + "start": 10186.34, + "end": 10190.36, + "probability": 0.9965 + }, + { + "start": 10191.04, + "end": 10192.62, + "probability": 0.9927 + }, + { + "start": 10192.7, + "end": 10195.14, + "probability": 0.9944 + }, + { + "start": 10195.3, + "end": 10199.72, + "probability": 0.9723 + }, + { + "start": 10200.47, + "end": 10205.03, + "probability": 0.9324 + }, + { + "start": 10206.36, + "end": 10206.8, + "probability": 0.7719 + }, + { + "start": 10207.98, + "end": 10211.78, + "probability": 0.9973 + }, + { + "start": 10212.24, + "end": 10217.2, + "probability": 0.951 + }, + { + "start": 10217.7, + "end": 10219.96, + "probability": 0.9891 + }, + { + "start": 10220.5, + "end": 10221.38, + "probability": 0.363 + }, + { + "start": 10221.42, + "end": 10221.82, + "probability": 0.5403 + }, + { + "start": 10221.9, + "end": 10223.98, + "probability": 0.8612 + }, + { + "start": 10224.02, + "end": 10224.78, + "probability": 0.976 + }, + { + "start": 10224.98, + "end": 10225.76, + "probability": 0.8792 + }, + { + "start": 10225.84, + "end": 10227.1, + "probability": 0.7589 + }, + { + "start": 10228.04, + "end": 10230.04, + "probability": 0.7749 + }, + { + "start": 10230.1, + "end": 10231.1, + "probability": 0.8872 + }, + { + "start": 10231.18, + "end": 10231.5, + "probability": 0.9294 + }, + { + "start": 10231.6, + "end": 10232.96, + "probability": 0.9889 + }, + { + "start": 10233.5, + "end": 10234.6, + "probability": 0.997 + }, + { + "start": 10235.26, + "end": 10236.58, + "probability": 0.7452 + }, + { + "start": 10236.9, + "end": 10239.24, + "probability": 0.9858 + }, + { + "start": 10239.32, + "end": 10241.6, + "probability": 0.7817 + }, + { + "start": 10242.02, + "end": 10245.32, + "probability": 0.9923 + }, + { + "start": 10246.4, + "end": 10247.71, + "probability": 0.998 + }, + { + "start": 10247.96, + "end": 10249.01, + "probability": 0.9933 + }, + { + "start": 10249.5, + "end": 10252.8, + "probability": 0.9871 + }, + { + "start": 10253.26, + "end": 10256.1, + "probability": 0.9956 + }, + { + "start": 10257.32, + "end": 10259.18, + "probability": 0.9988 + }, + { + "start": 10260.06, + "end": 10262.0, + "probability": 0.8773 + }, + { + "start": 10262.14, + "end": 10264.72, + "probability": 0.9974 + }, + { + "start": 10265.34, + "end": 10267.64, + "probability": 0.7325 + }, + { + "start": 10267.72, + "end": 10269.18, + "probability": 0.905 + }, + { + "start": 10269.46, + "end": 10270.28, + "probability": 0.7286 + }, + { + "start": 10270.5, + "end": 10271.44, + "probability": 0.9496 + }, + { + "start": 10271.9, + "end": 10273.28, + "probability": 0.9913 + }, + { + "start": 10274.04, + "end": 10275.54, + "probability": 0.9487 + }, + { + "start": 10276.04, + "end": 10276.88, + "probability": 0.7735 + }, + { + "start": 10277.36, + "end": 10278.92, + "probability": 0.9976 + }, + { + "start": 10279.06, + "end": 10280.18, + "probability": 0.9512 + }, + { + "start": 10280.54, + "end": 10282.22, + "probability": 0.9072 + }, + { + "start": 10282.3, + "end": 10284.98, + "probability": 0.9299 + }, + { + "start": 10285.04, + "end": 10285.92, + "probability": 0.7339 + }, + { + "start": 10286.74, + "end": 10287.74, + "probability": 0.9668 + }, + { + "start": 10289.04, + "end": 10292.46, + "probability": 0.7799 + }, + { + "start": 10292.46, + "end": 10296.78, + "probability": 0.9922 + }, + { + "start": 10296.78, + "end": 10300.16, + "probability": 0.8014 + }, + { + "start": 10300.74, + "end": 10306.0, + "probability": 0.9961 + }, + { + "start": 10306.44, + "end": 10307.7, + "probability": 0.8864 + }, + { + "start": 10308.62, + "end": 10312.06, + "probability": 0.9733 + }, + { + "start": 10312.2, + "end": 10314.66, + "probability": 0.8403 + }, + { + "start": 10314.84, + "end": 10316.08, + "probability": 0.9978 + }, + { + "start": 10316.84, + "end": 10319.2, + "probability": 0.6683 + }, + { + "start": 10320.04, + "end": 10320.66, + "probability": 0.8331 + }, + { + "start": 10320.78, + "end": 10321.08, + "probability": 0.2578 + }, + { + "start": 10321.18, + "end": 10321.72, + "probability": 0.7952 + }, + { + "start": 10321.82, + "end": 10324.86, + "probability": 0.9974 + }, + { + "start": 10325.8, + "end": 10328.3, + "probability": 0.9747 + }, + { + "start": 10328.5, + "end": 10329.7, + "probability": 0.9996 + }, + { + "start": 10330.3, + "end": 10331.18, + "probability": 0.8763 + }, + { + "start": 10331.76, + "end": 10332.62, + "probability": 0.8331 + }, + { + "start": 10332.88, + "end": 10333.7, + "probability": 0.9751 + }, + { + "start": 10334.64, + "end": 10336.92, + "probability": 0.9807 + }, + { + "start": 10337.18, + "end": 10339.08, + "probability": 0.9951 + }, + { + "start": 10339.2, + "end": 10339.42, + "probability": 0.8195 + }, + { + "start": 10340.18, + "end": 10341.08, + "probability": 0.655 + }, + { + "start": 10341.22, + "end": 10343.42, + "probability": 0.7098 + }, + { + "start": 10344.38, + "end": 10345.14, + "probability": 0.508 + }, + { + "start": 10345.82, + "end": 10347.02, + "probability": 0.9113 + }, + { + "start": 10348.0, + "end": 10350.56, + "probability": 0.6743 + }, + { + "start": 10351.5, + "end": 10352.4, + "probability": 0.4251 + }, + { + "start": 10353.08, + "end": 10354.2, + "probability": 0.91 + }, + { + "start": 10355.56, + "end": 10355.9, + "probability": 0.7424 + }, + { + "start": 10376.66, + "end": 10377.22, + "probability": 0.8309 + }, + { + "start": 10377.28, + "end": 10378.7, + "probability": 0.7903 + }, + { + "start": 10378.84, + "end": 10380.28, + "probability": 0.7523 + }, + { + "start": 10380.52, + "end": 10381.8, + "probability": 0.5471 + }, + { + "start": 10382.1, + "end": 10383.54, + "probability": 0.9201 + }, + { + "start": 10384.9, + "end": 10387.04, + "probability": 0.9953 + }, + { + "start": 10387.04, + "end": 10390.16, + "probability": 0.9048 + }, + { + "start": 10391.4, + "end": 10395.79, + "probability": 0.9982 + }, + { + "start": 10395.84, + "end": 10400.4, + "probability": 0.9409 + }, + { + "start": 10400.98, + "end": 10406.28, + "probability": 0.9963 + }, + { + "start": 10407.26, + "end": 10408.12, + "probability": 0.9005 + }, + { + "start": 10408.58, + "end": 10410.38, + "probability": 0.9506 + }, + { + "start": 10410.78, + "end": 10413.0, + "probability": 0.9975 + }, + { + "start": 10413.44, + "end": 10414.56, + "probability": 0.7934 + }, + { + "start": 10415.28, + "end": 10418.06, + "probability": 0.9668 + }, + { + "start": 10418.54, + "end": 10419.88, + "probability": 0.9375 + }, + { + "start": 10419.9, + "end": 10420.7, + "probability": 0.6333 + }, + { + "start": 10421.08, + "end": 10421.34, + "probability": 0.6951 + }, + { + "start": 10421.42, + "end": 10422.24, + "probability": 0.8491 + }, + { + "start": 10422.34, + "end": 10423.7, + "probability": 0.9884 + }, + { + "start": 10424.38, + "end": 10425.38, + "probability": 0.7686 + }, + { + "start": 10425.58, + "end": 10428.62, + "probability": 0.9878 + }, + { + "start": 10429.16, + "end": 10432.78, + "probability": 0.9976 + }, + { + "start": 10433.94, + "end": 10438.18, + "probability": 0.9865 + }, + { + "start": 10438.92, + "end": 10440.86, + "probability": 0.98 + }, + { + "start": 10441.48, + "end": 10443.98, + "probability": 0.9937 + }, + { + "start": 10444.68, + "end": 10446.52, + "probability": 0.9961 + }, + { + "start": 10447.22, + "end": 10450.06, + "probability": 0.9894 + }, + { + "start": 10450.74, + "end": 10453.02, + "probability": 0.8325 + }, + { + "start": 10453.8, + "end": 10457.4, + "probability": 0.9761 + }, + { + "start": 10457.98, + "end": 10458.74, + "probability": 0.6748 + }, + { + "start": 10459.36, + "end": 10460.28, + "probability": 0.6432 + }, + { + "start": 10460.56, + "end": 10461.32, + "probability": 0.9396 + }, + { + "start": 10461.38, + "end": 10463.74, + "probability": 0.9827 + }, + { + "start": 10464.36, + "end": 10467.64, + "probability": 0.8505 + }, + { + "start": 10467.64, + "end": 10471.52, + "probability": 0.973 + }, + { + "start": 10472.24, + "end": 10477.08, + "probability": 0.9946 + }, + { + "start": 10477.8, + "end": 10478.74, + "probability": 0.7999 + }, + { + "start": 10479.6, + "end": 10481.44, + "probability": 0.9984 + }, + { + "start": 10482.0, + "end": 10482.97, + "probability": 0.9956 + }, + { + "start": 10483.6, + "end": 10484.8, + "probability": 0.9959 + }, + { + "start": 10485.46, + "end": 10486.88, + "probability": 0.9995 + }, + { + "start": 10488.34, + "end": 10489.02, + "probability": 0.5469 + }, + { + "start": 10489.22, + "end": 10489.8, + "probability": 0.8318 + }, + { + "start": 10490.16, + "end": 10494.26, + "probability": 0.9932 + }, + { + "start": 10495.16, + "end": 10497.58, + "probability": 0.96 + }, + { + "start": 10497.8, + "end": 10498.9, + "probability": 0.5259 + }, + { + "start": 10501.13, + "end": 10502.84, + "probability": 0.2619 + }, + { + "start": 10503.38, + "end": 10505.42, + "probability": 0.9811 + }, + { + "start": 10505.94, + "end": 10509.64, + "probability": 0.9862 + }, + { + "start": 10510.22, + "end": 10511.82, + "probability": 0.8483 + }, + { + "start": 10512.18, + "end": 10512.82, + "probability": 0.8553 + }, + { + "start": 10512.98, + "end": 10515.9, + "probability": 0.9827 + }, + { + "start": 10517.52, + "end": 10521.12, + "probability": 0.9744 + }, + { + "start": 10521.84, + "end": 10523.8, + "probability": 0.9212 + }, + { + "start": 10523.94, + "end": 10527.74, + "probability": 0.9883 + }, + { + "start": 10528.86, + "end": 10533.5, + "probability": 0.9201 + }, + { + "start": 10533.58, + "end": 10536.76, + "probability": 0.9744 + }, + { + "start": 10537.66, + "end": 10539.14, + "probability": 0.674 + }, + { + "start": 10539.22, + "end": 10540.04, + "probability": 0.5229 + }, + { + "start": 10540.08, + "end": 10540.85, + "probability": 0.7683 + }, + { + "start": 10541.76, + "end": 10544.08, + "probability": 0.7771 + }, + { + "start": 10544.14, + "end": 10544.26, + "probability": 0.1176 + }, + { + "start": 10544.26, + "end": 10547.04, + "probability": 0.8228 + }, + { + "start": 10547.66, + "end": 10549.6, + "probability": 0.9083 + }, + { + "start": 10550.26, + "end": 10551.9, + "probability": 0.8061 + }, + { + "start": 10552.92, + "end": 10553.82, + "probability": 0.9563 + }, + { + "start": 10554.1, + "end": 10559.4, + "probability": 0.8177 + }, + { + "start": 10560.22, + "end": 10561.24, + "probability": 0.9365 + }, + { + "start": 10562.14, + "end": 10562.98, + "probability": 0.8728 + }, + { + "start": 10563.54, + "end": 10567.88, + "probability": 0.9977 + }, + { + "start": 10568.36, + "end": 10572.52, + "probability": 0.9977 + }, + { + "start": 10573.54, + "end": 10577.4, + "probability": 0.7858 + }, + { + "start": 10577.9, + "end": 10579.16, + "probability": 0.8952 + }, + { + "start": 10579.22, + "end": 10583.54, + "probability": 0.9635 + }, + { + "start": 10583.66, + "end": 10585.4, + "probability": 0.9849 + }, + { + "start": 10585.7, + "end": 10586.56, + "probability": 0.9943 + }, + { + "start": 10587.28, + "end": 10590.76, + "probability": 0.9984 + }, + { + "start": 10590.88, + "end": 10591.74, + "probability": 0.5284 + }, + { + "start": 10591.82, + "end": 10594.22, + "probability": 0.7399 + }, + { + "start": 10595.1, + "end": 10595.92, + "probability": 0.5821 + }, + { + "start": 10596.46, + "end": 10597.86, + "probability": 0.9068 + }, + { + "start": 10598.86, + "end": 10599.56, + "probability": 0.4032 + }, + { + "start": 10600.28, + "end": 10601.62, + "probability": 0.7181 + }, + { + "start": 10602.3, + "end": 10602.96, + "probability": 0.7399 + }, + { + "start": 10603.84, + "end": 10606.04, + "probability": 0.9928 + }, + { + "start": 10620.02, + "end": 10620.7, + "probability": 0.5929 + }, + { + "start": 10620.84, + "end": 10624.68, + "probability": 0.9834 + }, + { + "start": 10625.36, + "end": 10626.56, + "probability": 0.9399 + }, + { + "start": 10626.66, + "end": 10627.22, + "probability": 0.9278 + }, + { + "start": 10627.48, + "end": 10627.94, + "probability": 0.8769 + }, + { + "start": 10628.0, + "end": 10629.82, + "probability": 0.9956 + }, + { + "start": 10630.78, + "end": 10632.04, + "probability": 0.8001 + }, + { + "start": 10634.75, + "end": 10639.54, + "probability": 0.5134 + }, + { + "start": 10640.38, + "end": 10645.44, + "probability": 0.9782 + }, + { + "start": 10646.86, + "end": 10649.48, + "probability": 0.9924 + }, + { + "start": 10650.24, + "end": 10654.08, + "probability": 0.9154 + }, + { + "start": 10654.66, + "end": 10657.46, + "probability": 0.7079 + }, + { + "start": 10658.24, + "end": 10661.52, + "probability": 0.6934 + }, + { + "start": 10661.52, + "end": 10662.38, + "probability": 0.6741 + }, + { + "start": 10662.44, + "end": 10663.32, + "probability": 0.9545 + }, + { + "start": 10663.48, + "end": 10664.1, + "probability": 0.6012 + }, + { + "start": 10664.32, + "end": 10664.92, + "probability": 0.7415 + }, + { + "start": 10665.94, + "end": 10666.98, + "probability": 0.675 + }, + { + "start": 10667.08, + "end": 10670.94, + "probability": 0.9453 + }, + { + "start": 10670.94, + "end": 10675.4, + "probability": 0.901 + }, + { + "start": 10676.28, + "end": 10677.94, + "probability": 0.6743 + }, + { + "start": 10677.94, + "end": 10681.54, + "probability": 0.9404 + }, + { + "start": 10681.96, + "end": 10683.57, + "probability": 0.9902 + }, + { + "start": 10684.3, + "end": 10688.08, + "probability": 0.9723 + }, + { + "start": 10689.32, + "end": 10691.74, + "probability": 0.8411 + }, + { + "start": 10692.4, + "end": 10695.42, + "probability": 0.7949 + }, + { + "start": 10695.42, + "end": 10700.06, + "probability": 0.9889 + }, + { + "start": 10700.82, + "end": 10701.42, + "probability": 0.8479 + }, + { + "start": 10702.2, + "end": 10703.2, + "probability": 0.5151 + }, + { + "start": 10703.3, + "end": 10703.8, + "probability": 0.3831 + }, + { + "start": 10704.48, + "end": 10705.09, + "probability": 0.8927 + }, + { + "start": 10706.26, + "end": 10706.96, + "probability": 0.3895 + }, + { + "start": 10707.82, + "end": 10712.08, + "probability": 0.8059 + }, + { + "start": 10713.42, + "end": 10716.6, + "probability": 0.7056 + }, + { + "start": 10717.18, + "end": 10722.01, + "probability": 0.9944 + }, + { + "start": 10722.82, + "end": 10724.21, + "probability": 0.7477 + }, + { + "start": 10724.84, + "end": 10727.58, + "probability": 0.9053 + }, + { + "start": 10728.46, + "end": 10731.74, + "probability": 0.7214 + }, + { + "start": 10731.78, + "end": 10736.16, + "probability": 0.1727 + }, + { + "start": 10737.08, + "end": 10737.38, + "probability": 0.0177 + }, + { + "start": 10737.38, + "end": 10739.11, + "probability": 0.4322 + }, + { + "start": 10741.0, + "end": 10748.0, + "probability": 0.9854 + }, + { + "start": 10748.0, + "end": 10753.12, + "probability": 0.9949 + }, + { + "start": 10754.76, + "end": 10757.14, + "probability": 0.6239 + }, + { + "start": 10758.22, + "end": 10760.38, + "probability": 0.9663 + }, + { + "start": 10761.56, + "end": 10762.84, + "probability": 0.8715 + }, + { + "start": 10763.5, + "end": 10766.74, + "probability": 0.9964 + }, + { + "start": 10766.74, + "end": 10770.24, + "probability": 0.9952 + }, + { + "start": 10771.12, + "end": 10774.92, + "probability": 0.9746 + }, + { + "start": 10775.62, + "end": 10777.5, + "probability": 0.7439 + }, + { + "start": 10778.36, + "end": 10779.3, + "probability": 0.6415 + }, + { + "start": 10780.02, + "end": 10786.26, + "probability": 0.9796 + }, + { + "start": 10786.94, + "end": 10791.44, + "probability": 0.9749 + }, + { + "start": 10793.24, + "end": 10796.58, + "probability": 0.9932 + }, + { + "start": 10797.16, + "end": 10797.4, + "probability": 0.3855 + }, + { + "start": 10797.4, + "end": 10797.4, + "probability": 0.6512 + }, + { + "start": 10797.4, + "end": 10798.8, + "probability": 0.548 + }, + { + "start": 10799.48, + "end": 10803.46, + "probability": 0.9606 + }, + { + "start": 10806.28, + "end": 10810.22, + "probability": 0.9258 + }, + { + "start": 10810.82, + "end": 10811.3, + "probability": 0.7725 + }, + { + "start": 10811.64, + "end": 10812.52, + "probability": 0.5215 + }, + { + "start": 10812.56, + "end": 10815.86, + "probability": 0.6999 + }, + { + "start": 10816.82, + "end": 10817.76, + "probability": 0.5266 + }, + { + "start": 10818.54, + "end": 10822.12, + "probability": 0.9535 + }, + { + "start": 10825.4, + "end": 10825.54, + "probability": 0.4117 + }, + { + "start": 10837.58, + "end": 10840.92, + "probability": 0.7669 + }, + { + "start": 10842.1, + "end": 10844.72, + "probability": 0.8535 + }, + { + "start": 10845.6, + "end": 10847.44, + "probability": 0.0333 + }, + { + "start": 10848.44, + "end": 10851.72, + "probability": 0.5724 + }, + { + "start": 10852.96, + "end": 10853.74, + "probability": 0.2668 + }, + { + "start": 10853.88, + "end": 10854.46, + "probability": 0.8506 + }, + { + "start": 10858.34, + "end": 10867.54, + "probability": 0.0381 + }, + { + "start": 10868.98, + "end": 10869.96, + "probability": 0.0939 + }, + { + "start": 10870.38, + "end": 10874.42, + "probability": 0.5687 + }, + { + "start": 10874.96, + "end": 10878.38, + "probability": 0.2609 + }, + { + "start": 10891.64, + "end": 10897.68, + "probability": 0.5661 + }, + { + "start": 10899.84, + "end": 10903.46, + "probability": 0.9844 + }, + { + "start": 10904.02, + "end": 10905.08, + "probability": 0.5125 + }, + { + "start": 10907.41, + "end": 10909.86, + "probability": 0.7305 + }, + { + "start": 10910.16, + "end": 10910.5, + "probability": 0.0494 + }, + { + "start": 10912.6, + "end": 10913.5, + "probability": 0.3949 + }, + { + "start": 10913.5, + "end": 10915.96, + "probability": 0.8507 + }, + { + "start": 10916.66, + "end": 10919.5, + "probability": 0.0525 + }, + { + "start": 10920.36, + "end": 10922.18, + "probability": 0.9348 + }, + { + "start": 10922.18, + "end": 10925.5, + "probability": 0.8209 + }, + { + "start": 10926.08, + "end": 10926.56, + "probability": 0.5601 + }, + { + "start": 10929.38, + "end": 10930.0, + "probability": 0.4958 + }, + { + "start": 10930.06, + "end": 10934.28, + "probability": 0.7422 + }, + { + "start": 10934.68, + "end": 10938.61, + "probability": 0.8312 + }, + { + "start": 10939.5, + "end": 10941.4, + "probability": 0.2589 + }, + { + "start": 10942.18, + "end": 10942.98, + "probability": 0.6616 + }, + { + "start": 10943.4, + "end": 10943.88, + "probability": 0.5586 + }, + { + "start": 10944.98, + "end": 10948.46, + "probability": 0.9872 + }, + { + "start": 10949.48, + "end": 10950.54, + "probability": 0.7096 + }, + { + "start": 10962.62, + "end": 10964.72, + "probability": 0.6932 + }, + { + "start": 10965.82, + "end": 10966.78, + "probability": 0.7642 + }, + { + "start": 10968.66, + "end": 10971.8, + "probability": 0.7494 + }, + { + "start": 10974.02, + "end": 10976.56, + "probability": 0.993 + }, + { + "start": 10977.96, + "end": 10977.96, + "probability": 0.0001 + }, + { + "start": 10977.96, + "end": 10981.38, + "probability": 0.841 + }, + { + "start": 10981.42, + "end": 10984.58, + "probability": 0.2216 + }, + { + "start": 10984.94, + "end": 10985.22, + "probability": 0.3119 + }, + { + "start": 10986.68, + "end": 10990.84, + "probability": 0.8264 + }, + { + "start": 10990.9, + "end": 10992.88, + "probability": 0.2192 + }, + { + "start": 10993.02, + "end": 10998.0, + "probability": 0.8654 + }, + { + "start": 10998.78, + "end": 11000.48, + "probability": 0.7448 + }, + { + "start": 11001.22, + "end": 11002.08, + "probability": 0.8561 + }, + { + "start": 11002.98, + "end": 11005.78, + "probability": 0.6249 + }, + { + "start": 11006.66, + "end": 11008.58, + "probability": 0.8348 + }, + { + "start": 11009.14, + "end": 11010.84, + "probability": 0.9912 + }, + { + "start": 11011.38, + "end": 11014.06, + "probability": 0.9933 + }, + { + "start": 11014.6, + "end": 11015.22, + "probability": 0.8497 + }, + { + "start": 11016.42, + "end": 11016.94, + "probability": 0.7635 + }, + { + "start": 11017.04, + "end": 11024.38, + "probability": 0.9419 + }, + { + "start": 11024.98, + "end": 11026.84, + "probability": 0.8735 + }, + { + "start": 11027.62, + "end": 11030.0, + "probability": 0.9873 + }, + { + "start": 11030.64, + "end": 11036.28, + "probability": 0.9128 + }, + { + "start": 11037.48, + "end": 11042.86, + "probability": 0.9603 + }, + { + "start": 11043.42, + "end": 11046.5, + "probability": 0.9905 + }, + { + "start": 11046.94, + "end": 11050.62, + "probability": 0.996 + }, + { + "start": 11051.34, + "end": 11055.62, + "probability": 0.981 + }, + { + "start": 11056.46, + "end": 11059.5, + "probability": 0.9901 + }, + { + "start": 11059.5, + "end": 11064.72, + "probability": 0.9897 + }, + { + "start": 11064.9, + "end": 11070.18, + "probability": 0.9953 + }, + { + "start": 11070.86, + "end": 11075.84, + "probability": 0.3979 + }, + { + "start": 11076.32, + "end": 11078.0, + "probability": 0.9116 + }, + { + "start": 11078.24, + "end": 11082.9, + "probability": 0.9854 + }, + { + "start": 11083.6, + "end": 11085.18, + "probability": 0.699 + }, + { + "start": 11085.48, + "end": 11086.3, + "probability": 0.223 + }, + { + "start": 11086.38, + "end": 11086.76, + "probability": 0.445 + }, + { + "start": 11087.02, + "end": 11089.0, + "probability": 0.8594 + }, + { + "start": 11090.76, + "end": 11093.52, + "probability": 0.9535 + }, + { + "start": 11094.18, + "end": 11097.68, + "probability": 0.8286 + }, + { + "start": 11099.0, + "end": 11100.74, + "probability": 0.9614 + }, + { + "start": 11101.4, + "end": 11103.26, + "probability": 0.9573 + }, + { + "start": 11104.92, + "end": 11108.22, + "probability": 0.9633 + }, + { + "start": 11108.4, + "end": 11109.2, + "probability": 0.5757 + }, + { + "start": 11109.3, + "end": 11109.74, + "probability": 0.4561 + }, + { + "start": 11109.8, + "end": 11112.24, + "probability": 0.8075 + }, + { + "start": 11112.46, + "end": 11113.56, + "probability": 0.2531 + }, + { + "start": 11113.56, + "end": 11114.16, + "probability": 0.5545 + }, + { + "start": 11114.2, + "end": 11122.56, + "probability": 0.6698 + }, + { + "start": 11122.68, + "end": 11123.4, + "probability": 0.6966 + }, + { + "start": 11124.14, + "end": 11125.84, + "probability": 0.999 + }, + { + "start": 11126.44, + "end": 11128.88, + "probability": 0.9954 + }, + { + "start": 11129.54, + "end": 11130.54, + "probability": 0.9137 + }, + { + "start": 11131.6, + "end": 11135.46, + "probability": 0.9542 + }, + { + "start": 11136.24, + "end": 11137.08, + "probability": 0.6494 + }, + { + "start": 11137.16, + "end": 11141.18, + "probability": 0.9983 + }, + { + "start": 11141.26, + "end": 11141.7, + "probability": 0.7962 + }, + { + "start": 11141.86, + "end": 11142.94, + "probability": 0.6396 + }, + { + "start": 11143.02, + "end": 11145.0, + "probability": 0.9661 + }, + { + "start": 11145.14, + "end": 11146.36, + "probability": 0.9492 + }, + { + "start": 11146.44, + "end": 11147.06, + "probability": 0.8211 + }, + { + "start": 11147.72, + "end": 11150.26, + "probability": 0.9225 + }, + { + "start": 11150.28, + "end": 11152.2, + "probability": 0.5865 + }, + { + "start": 11152.82, + "end": 11155.54, + "probability": 0.5073 + }, + { + "start": 11161.78, + "end": 11164.34, + "probability": 0.7388 + }, + { + "start": 11164.42, + "end": 11164.98, + "probability": 0.5441 + }, + { + "start": 11165.08, + "end": 11165.56, + "probability": 0.4726 + }, + { + "start": 11165.62, + "end": 11165.84, + "probability": 0.5124 + }, + { + "start": 11165.88, + "end": 11167.74, + "probability": 0.8824 + }, + { + "start": 11168.2, + "end": 11169.72, + "probability": 0.7077 + }, + { + "start": 11169.8, + "end": 11170.9, + "probability": 0.9835 + }, + { + "start": 11171.02, + "end": 11171.82, + "probability": 0.9818 + }, + { + "start": 11172.22, + "end": 11173.04, + "probability": 0.9752 + }, + { + "start": 11173.42, + "end": 11176.16, + "probability": 0.9972 + }, + { + "start": 11176.18, + "end": 11178.2, + "probability": 0.9968 + }, + { + "start": 11178.6, + "end": 11183.0, + "probability": 0.9964 + }, + { + "start": 11183.5, + "end": 11184.3, + "probability": 0.9677 + }, + { + "start": 11184.38, + "end": 11186.68, + "probability": 0.9799 + }, + { + "start": 11186.72, + "end": 11189.52, + "probability": 0.9708 + }, + { + "start": 11189.6, + "end": 11190.05, + "probability": 0.9808 + }, + { + "start": 11190.66, + "end": 11193.28, + "probability": 0.976 + }, + { + "start": 11193.54, + "end": 11197.14, + "probability": 0.9307 + }, + { + "start": 11197.66, + "end": 11201.78, + "probability": 0.9985 + }, + { + "start": 11201.9, + "end": 11202.68, + "probability": 0.9364 + }, + { + "start": 11203.14, + "end": 11205.8, + "probability": 0.9966 + }, + { + "start": 11206.34, + "end": 11207.86, + "probability": 0.8293 + }, + { + "start": 11207.9, + "end": 11210.18, + "probability": 0.7892 + }, + { + "start": 11210.97, + "end": 11212.3, + "probability": 0.0241 + }, + { + "start": 11212.38, + "end": 11212.68, + "probability": 0.5271 + }, + { + "start": 11212.78, + "end": 11213.36, + "probability": 0.6645 + }, + { + "start": 11213.4, + "end": 11214.6, + "probability": 0.9355 + }, + { + "start": 11214.68, + "end": 11216.42, + "probability": 0.9845 + }, + { + "start": 11216.88, + "end": 11218.8, + "probability": 0.9878 + }, + { + "start": 11218.86, + "end": 11222.18, + "probability": 0.6289 + }, + { + "start": 11222.6, + "end": 11224.08, + "probability": 0.8913 + }, + { + "start": 11224.62, + "end": 11226.12, + "probability": 0.9185 + }, + { + "start": 11226.2, + "end": 11227.24, + "probability": 0.8802 + }, + { + "start": 11227.66, + "end": 11228.54, + "probability": 0.9389 + }, + { + "start": 11229.1, + "end": 11231.3, + "probability": 0.9963 + }, + { + "start": 11231.68, + "end": 11237.26, + "probability": 0.9581 + }, + { + "start": 11237.36, + "end": 11239.5, + "probability": 0.8653 + }, + { + "start": 11239.88, + "end": 11241.17, + "probability": 0.9239 + }, + { + "start": 11241.72, + "end": 11242.92, + "probability": 0.9966 + }, + { + "start": 11243.06, + "end": 11246.26, + "probability": 0.9036 + }, + { + "start": 11246.46, + "end": 11246.89, + "probability": 0.9722 + }, + { + "start": 11247.48, + "end": 11250.38, + "probability": 0.9971 + }, + { + "start": 11250.4, + "end": 11251.94, + "probability": 0.8564 + }, + { + "start": 11252.54, + "end": 11255.38, + "probability": 0.9617 + }, + { + "start": 11255.64, + "end": 11255.86, + "probability": 0.4603 + }, + { + "start": 11256.02, + "end": 11256.86, + "probability": 0.822 + }, + { + "start": 11256.94, + "end": 11258.3, + "probability": 0.5246 + }, + { + "start": 11258.56, + "end": 11259.86, + "probability": 0.7576 + }, + { + "start": 11260.3, + "end": 11261.34, + "probability": 0.7403 + }, + { + "start": 11262.02, + "end": 11263.2, + "probability": 0.8189 + }, + { + "start": 11263.34, + "end": 11263.84, + "probability": 0.9176 + }, + { + "start": 11264.2, + "end": 11265.76, + "probability": 0.8836 + }, + { + "start": 11266.2, + "end": 11269.36, + "probability": 0.9532 + }, + { + "start": 11269.9, + "end": 11271.16, + "probability": 0.8855 + }, + { + "start": 11271.86, + "end": 11273.29, + "probability": 0.9153 + }, + { + "start": 11273.46, + "end": 11275.04, + "probability": 0.8418 + }, + { + "start": 11275.8, + "end": 11277.22, + "probability": 0.7922 + }, + { + "start": 11277.44, + "end": 11281.52, + "probability": 0.8049 + }, + { + "start": 11281.52, + "end": 11283.0, + "probability": 0.981 + }, + { + "start": 11283.12, + "end": 11283.44, + "probability": 0.8537 + }, + { + "start": 11284.0, + "end": 11284.92, + "probability": 0.8735 + }, + { + "start": 11285.16, + "end": 11285.66, + "probability": 0.9702 + }, + { + "start": 11285.94, + "end": 11286.66, + "probability": 0.9779 + }, + { + "start": 11286.76, + "end": 11287.48, + "probability": 0.9631 + }, + { + "start": 11287.58, + "end": 11288.48, + "probability": 0.9192 + }, + { + "start": 11289.16, + "end": 11291.53, + "probability": 0.9164 + }, + { + "start": 11291.76, + "end": 11293.52, + "probability": 0.7685 + }, + { + "start": 11293.9, + "end": 11295.58, + "probability": 0.8713 + }, + { + "start": 11296.08, + "end": 11298.32, + "probability": 0.9608 + }, + { + "start": 11298.7, + "end": 11299.1, + "probability": 0.8423 + }, + { + "start": 11299.54, + "end": 11300.42, + "probability": 0.6241 + }, + { + "start": 11300.86, + "end": 11302.4, + "probability": 0.9946 + }, + { + "start": 11302.4, + "end": 11304.6, + "probability": 0.9949 + }, + { + "start": 11305.12, + "end": 11307.98, + "probability": 0.9944 + }, + { + "start": 11308.08, + "end": 11308.7, + "probability": 0.972 + }, + { + "start": 11309.22, + "end": 11309.76, + "probability": 0.7732 + }, + { + "start": 11310.22, + "end": 11310.78, + "probability": 0.8637 + }, + { + "start": 11311.88, + "end": 11314.68, + "probability": 0.6591 + }, + { + "start": 11317.82, + "end": 11319.36, + "probability": 0.8835 + }, + { + "start": 11319.86, + "end": 11320.98, + "probability": 0.6636 + }, + { + "start": 11321.32, + "end": 11322.44, + "probability": 0.5382 + }, + { + "start": 11322.82, + "end": 11323.32, + "probability": 0.5023 + }, + { + "start": 11323.46, + "end": 11325.0, + "probability": 0.7832 + }, + { + "start": 11325.08, + "end": 11325.62, + "probability": 0.9938 + }, + { + "start": 11328.0, + "end": 11329.22, + "probability": 0.5087 + }, + { + "start": 11330.4, + "end": 11330.98, + "probability": 0.6777 + }, + { + "start": 11333.27, + "end": 11334.6, + "probability": 0.7536 + }, + { + "start": 11334.6, + "end": 11335.5, + "probability": 0.6834 + }, + { + "start": 11336.16, + "end": 11336.8, + "probability": 0.8755 + }, + { + "start": 11339.08, + "end": 11340.86, + "probability": 0.9458 + }, + { + "start": 11341.34, + "end": 11342.4, + "probability": 0.6714 + }, + { + "start": 11342.66, + "end": 11343.47, + "probability": 0.8353 + }, + { + "start": 11344.08, + "end": 11346.44, + "probability": 0.8576 + }, + { + "start": 11346.68, + "end": 11348.86, + "probability": 0.2741 + }, + { + "start": 11348.92, + "end": 11351.46, + "probability": 0.9745 + }, + { + "start": 11351.64, + "end": 11353.32, + "probability": 0.4224 + }, + { + "start": 11353.78, + "end": 11353.78, + "probability": 0.017 + }, + { + "start": 11353.78, + "end": 11355.02, + "probability": 0.0045 + }, + { + "start": 11355.02, + "end": 11355.74, + "probability": 0.3957 + }, + { + "start": 11355.94, + "end": 11357.98, + "probability": 0.621 + }, + { + "start": 11358.0, + "end": 11363.04, + "probability": 0.9836 + }, + { + "start": 11363.66, + "end": 11365.7, + "probability": 0.9929 + }, + { + "start": 11366.12, + "end": 11368.88, + "probability": 0.9676 + }, + { + "start": 11369.04, + "end": 11369.66, + "probability": 0.6645 + }, + { + "start": 11369.74, + "end": 11370.37, + "probability": 0.9498 + }, + { + "start": 11371.28, + "end": 11372.86, + "probability": 0.9985 + }, + { + "start": 11373.7, + "end": 11379.22, + "probability": 0.9617 + }, + { + "start": 11379.26, + "end": 11382.16, + "probability": 0.9985 + }, + { + "start": 11382.94, + "end": 11384.24, + "probability": 0.9907 + }, + { + "start": 11384.98, + "end": 11388.34, + "probability": 0.9865 + }, + { + "start": 11389.1, + "end": 11390.4, + "probability": 0.9976 + }, + { + "start": 11391.88, + "end": 11394.9, + "probability": 0.9878 + }, + { + "start": 11395.32, + "end": 11396.16, + "probability": 0.9845 + }, + { + "start": 11396.3, + "end": 11398.64, + "probability": 0.9552 + }, + { + "start": 11399.38, + "end": 11402.94, + "probability": 0.9832 + }, + { + "start": 11403.5, + "end": 11406.22, + "probability": 0.9971 + }, + { + "start": 11407.36, + "end": 11409.04, + "probability": 0.9943 + }, + { + "start": 11409.34, + "end": 11410.26, + "probability": 0.9749 + }, + { + "start": 11410.92, + "end": 11411.76, + "probability": 0.9907 + }, + { + "start": 11411.98, + "end": 11413.34, + "probability": 0.9694 + }, + { + "start": 11414.36, + "end": 11416.1, + "probability": 0.9976 + }, + { + "start": 11416.6, + "end": 11417.2, + "probability": 0.9147 + }, + { + "start": 11417.7, + "end": 11418.96, + "probability": 0.9954 + }, + { + "start": 11418.98, + "end": 11421.38, + "probability": 0.991 + }, + { + "start": 11421.5, + "end": 11421.87, + "probability": 0.8979 + }, + { + "start": 11422.04, + "end": 11424.34, + "probability": 0.9847 + }, + { + "start": 11425.16, + "end": 11428.44, + "probability": 0.9597 + }, + { + "start": 11429.14, + "end": 11430.3, + "probability": 0.9972 + }, + { + "start": 11431.2, + "end": 11431.9, + "probability": 0.9355 + }, + { + "start": 11432.92, + "end": 11433.96, + "probability": 0.9938 + }, + { + "start": 11434.14, + "end": 11440.4, + "probability": 0.9076 + }, + { + "start": 11440.48, + "end": 11443.6, + "probability": 0.918 + }, + { + "start": 11443.6, + "end": 11447.88, + "probability": 0.9961 + }, + { + "start": 11448.0, + "end": 11451.88, + "probability": 0.9683 + }, + { + "start": 11452.7, + "end": 11453.98, + "probability": 0.9996 + }, + { + "start": 11455.24, + "end": 11456.64, + "probability": 0.999 + }, + { + "start": 11456.8, + "end": 11458.08, + "probability": 0.9979 + }, + { + "start": 11458.62, + "end": 11461.08, + "probability": 0.892 + }, + { + "start": 11461.5, + "end": 11463.08, + "probability": 0.922 + }, + { + "start": 11463.5, + "end": 11467.14, + "probability": 0.98 + }, + { + "start": 11467.74, + "end": 11471.5, + "probability": 0.8506 + }, + { + "start": 11472.64, + "end": 11475.88, + "probability": 0.9932 + }, + { + "start": 11475.96, + "end": 11476.1, + "probability": 0.7232 + }, + { + "start": 11476.16, + "end": 11477.2, + "probability": 0.9894 + }, + { + "start": 11477.66, + "end": 11480.42, + "probability": 0.9953 + }, + { + "start": 11480.76, + "end": 11482.0, + "probability": 0.9783 + }, + { + "start": 11482.36, + "end": 11483.64, + "probability": 0.98 + }, + { + "start": 11484.43, + "end": 11488.12, + "probability": 0.9521 + }, + { + "start": 11488.66, + "end": 11494.54, + "probability": 0.9754 + }, + { + "start": 11494.68, + "end": 11495.86, + "probability": 0.9709 + }, + { + "start": 11496.3, + "end": 11497.68, + "probability": 0.8102 + }, + { + "start": 11498.66, + "end": 11500.98, + "probability": 0.8204 + }, + { + "start": 11501.52, + "end": 11504.24, + "probability": 0.8991 + }, + { + "start": 11505.84, + "end": 11508.0, + "probability": 0.849 + }, + { + "start": 11508.7, + "end": 11511.4, + "probability": 0.9885 + }, + { + "start": 11511.84, + "end": 11515.4, + "probability": 0.9966 + }, + { + "start": 11515.82, + "end": 11518.38, + "probability": 0.9688 + }, + { + "start": 11518.94, + "end": 11521.28, + "probability": 0.9909 + }, + { + "start": 11522.0, + "end": 11523.32, + "probability": 0.853 + }, + { + "start": 11524.1, + "end": 11527.0, + "probability": 0.9186 + }, + { + "start": 11527.48, + "end": 11529.0, + "probability": 0.971 + }, + { + "start": 11529.46, + "end": 11533.02, + "probability": 0.987 + }, + { + "start": 11533.56, + "end": 11534.0, + "probability": 0.8749 + }, + { + "start": 11534.1, + "end": 11534.88, + "probability": 0.7138 + }, + { + "start": 11535.48, + "end": 11536.0, + "probability": 0.5305 + }, + { + "start": 11536.0, + "end": 11538.26, + "probability": 0.6753 + }, + { + "start": 11539.26, + "end": 11541.92, + "probability": 0.7447 + }, + { + "start": 11543.4, + "end": 11547.04, + "probability": 0.8038 + }, + { + "start": 11548.4, + "end": 11549.36, + "probability": 0.7162 + }, + { + "start": 11550.06, + "end": 11552.1, + "probability": 0.5125 + }, + { + "start": 11553.04, + "end": 11553.68, + "probability": 0.5394 + }, + { + "start": 11554.52, + "end": 11556.24, + "probability": 0.905 + }, + { + "start": 11557.12, + "end": 11557.74, + "probability": 0.9518 + }, + { + "start": 11558.8, + "end": 11560.24, + "probability": 0.9502 + }, + { + "start": 11561.5, + "end": 11562.28, + "probability": 0.9705 + }, + { + "start": 11563.04, + "end": 11564.36, + "probability": 0.8825 + }, + { + "start": 11565.0, + "end": 11565.78, + "probability": 0.5494 + }, + { + "start": 11566.4, + "end": 11568.0, + "probability": 0.8528 + }, + { + "start": 11581.92, + "end": 11583.76, + "probability": 0.7955 + }, + { + "start": 11584.04, + "end": 11587.12, + "probability": 0.8245 + }, + { + "start": 11588.64, + "end": 11590.94, + "probability": 0.9946 + }, + { + "start": 11591.72, + "end": 11594.6, + "probability": 0.9324 + }, + { + "start": 11595.76, + "end": 11600.26, + "probability": 0.9841 + }, + { + "start": 11601.02, + "end": 11601.76, + "probability": 0.9026 + }, + { + "start": 11603.2, + "end": 11605.22, + "probability": 0.993 + }, + { + "start": 11606.44, + "end": 11609.08, + "probability": 0.9966 + }, + { + "start": 11610.24, + "end": 11615.44, + "probability": 0.9945 + }, + { + "start": 11616.28, + "end": 11617.85, + "probability": 0.9971 + }, + { + "start": 11618.56, + "end": 11620.82, + "probability": 0.9191 + }, + { + "start": 11620.86, + "end": 11624.24, + "probability": 0.6548 + }, + { + "start": 11624.64, + "end": 11626.8, + "probability": 0.9836 + }, + { + "start": 11628.04, + "end": 11631.2, + "probability": 0.9876 + }, + { + "start": 11631.5, + "end": 11632.86, + "probability": 0.971 + }, + { + "start": 11633.52, + "end": 11634.37, + "probability": 0.5472 + }, + { + "start": 11635.1, + "end": 11636.32, + "probability": 0.4541 + }, + { + "start": 11636.32, + "end": 11636.32, + "probability": 0.8519 + }, + { + "start": 11636.58, + "end": 11637.72, + "probability": 0.744 + }, + { + "start": 11637.72, + "end": 11639.42, + "probability": 0.4401 + }, + { + "start": 11639.42, + "end": 11643.9, + "probability": 0.9907 + }, + { + "start": 11645.02, + "end": 11645.95, + "probability": 0.9912 + }, + { + "start": 11646.08, + "end": 11647.44, + "probability": 0.9097 + }, + { + "start": 11647.52, + "end": 11648.56, + "probability": 0.8804 + }, + { + "start": 11648.77, + "end": 11650.54, + "probability": 0.8647 + }, + { + "start": 11650.72, + "end": 11655.64, + "probability": 0.9868 + }, + { + "start": 11656.4, + "end": 11658.78, + "probability": 0.9965 + }, + { + "start": 11658.78, + "end": 11661.16, + "probability": 0.9944 + }, + { + "start": 11662.18, + "end": 11664.48, + "probability": 0.9707 + }, + { + "start": 11665.7, + "end": 11667.3, + "probability": 0.8497 + }, + { + "start": 11667.58, + "end": 11669.72, + "probability": 0.8193 + }, + { + "start": 11670.0, + "end": 11672.22, + "probability": 0.9954 + }, + { + "start": 11673.26, + "end": 11677.94, + "probability": 0.9946 + }, + { + "start": 11678.7, + "end": 11682.6, + "probability": 0.9889 + }, + { + "start": 11683.48, + "end": 11685.7, + "probability": 0.8316 + }, + { + "start": 11686.8, + "end": 11691.02, + "probability": 0.9863 + }, + { + "start": 11691.48, + "end": 11694.86, + "probability": 0.9725 + }, + { + "start": 11694.86, + "end": 11697.7, + "probability": 0.9926 + }, + { + "start": 11698.54, + "end": 11699.42, + "probability": 0.9031 + }, + { + "start": 11700.26, + "end": 11701.5, + "probability": 0.9956 + }, + { + "start": 11702.24, + "end": 11703.82, + "probability": 0.9783 + }, + { + "start": 11705.2, + "end": 11709.06, + "probability": 0.9961 + }, + { + "start": 11710.6, + "end": 11711.14, + "probability": 0.9421 + }, + { + "start": 11711.9, + "end": 11715.46, + "probability": 0.9941 + }, + { + "start": 11716.44, + "end": 11717.56, + "probability": 0.8445 + }, + { + "start": 11718.24, + "end": 11722.06, + "probability": 0.9922 + }, + { + "start": 11722.56, + "end": 11725.7, + "probability": 0.2946 + }, + { + "start": 11725.7, + "end": 11725.7, + "probability": 0.1082 + }, + { + "start": 11725.7, + "end": 11725.7, + "probability": 0.2607 + }, + { + "start": 11725.7, + "end": 11729.88, + "probability": 0.9626 + }, + { + "start": 11729.88, + "end": 11733.7, + "probability": 0.9862 + }, + { + "start": 11735.26, + "end": 11739.34, + "probability": 0.9892 + }, + { + "start": 11740.3, + "end": 11743.68, + "probability": 0.998 + }, + { + "start": 11744.14, + "end": 11745.42, + "probability": 0.9529 + }, + { + "start": 11746.26, + "end": 11749.58, + "probability": 0.992 + }, + { + "start": 11750.12, + "end": 11750.9, + "probability": 0.5966 + }, + { + "start": 11751.82, + "end": 11754.86, + "probability": 0.9987 + }, + { + "start": 11755.32, + "end": 11757.08, + "probability": 0.896 + }, + { + "start": 11757.62, + "end": 11760.74, + "probability": 0.9861 + }, + { + "start": 11761.58, + "end": 11762.56, + "probability": 0.9258 + }, + { + "start": 11763.34, + "end": 11766.24, + "probability": 0.9894 + }, + { + "start": 11767.14, + "end": 11767.92, + "probability": 0.6552 + }, + { + "start": 11768.6, + "end": 11769.88, + "probability": 0.6955 + }, + { + "start": 11770.42, + "end": 11773.78, + "probability": 0.9906 + }, + { + "start": 11774.1, + "end": 11775.02, + "probability": 0.5959 + }, + { + "start": 11775.04, + "end": 11775.96, + "probability": 0.5385 + }, + { + "start": 11776.04, + "end": 11778.12, + "probability": 0.6783 + }, + { + "start": 11778.5, + "end": 11779.92, + "probability": 0.7773 + }, + { + "start": 11780.56, + "end": 11782.04, + "probability": 0.9629 + }, + { + "start": 11782.7, + "end": 11783.38, + "probability": 0.3294 + }, + { + "start": 11783.9, + "end": 11786.24, + "probability": 0.8899 + }, + { + "start": 11786.82, + "end": 11788.1, + "probability": 0.9671 + }, + { + "start": 11788.84, + "end": 11791.5, + "probability": 0.9669 + }, + { + "start": 11792.28, + "end": 11793.1, + "probability": 0.7076 + }, + { + "start": 11793.8, + "end": 11795.06, + "probability": 0.9753 + }, + { + "start": 11809.96, + "end": 11812.78, + "probability": 0.5906 + }, + { + "start": 11812.82, + "end": 11815.34, + "probability": 0.5262 + }, + { + "start": 11816.34, + "end": 11817.68, + "probability": 0.6456 + }, + { + "start": 11818.0, + "end": 11819.46, + "probability": 0.7093 + }, + { + "start": 11821.6, + "end": 11822.92, + "probability": 0.843 + }, + { + "start": 11824.38, + "end": 11828.92, + "probability": 0.8495 + }, + { + "start": 11829.56, + "end": 11831.36, + "probability": 0.9755 + }, + { + "start": 11832.48, + "end": 11839.06, + "probability": 0.9736 + }, + { + "start": 11839.32, + "end": 11840.68, + "probability": 0.9867 + }, + { + "start": 11841.74, + "end": 11843.9, + "probability": 0.9718 + }, + { + "start": 11844.76, + "end": 11847.44, + "probability": 0.9983 + }, + { + "start": 11848.36, + "end": 11850.34, + "probability": 0.9966 + }, + { + "start": 11850.46, + "end": 11851.4, + "probability": 0.9514 + }, + { + "start": 11851.48, + "end": 11853.4, + "probability": 0.9766 + }, + { + "start": 11853.74, + "end": 11855.04, + "probability": 0.9422 + }, + { + "start": 11856.26, + "end": 11858.0, + "probability": 0.9575 + }, + { + "start": 11859.26, + "end": 11860.38, + "probability": 0.9624 + }, + { + "start": 11860.8, + "end": 11862.94, + "probability": 0.9525 + }, + { + "start": 11863.02, + "end": 11865.72, + "probability": 0.9872 + }, + { + "start": 11865.82, + "end": 11866.62, + "probability": 0.8808 + }, + { + "start": 11867.42, + "end": 11868.7, + "probability": 0.8815 + }, + { + "start": 11869.28, + "end": 11871.36, + "probability": 0.9578 + }, + { + "start": 11872.14, + "end": 11873.4, + "probability": 0.9951 + }, + { + "start": 11874.66, + "end": 11876.26, + "probability": 0.9599 + }, + { + "start": 11876.32, + "end": 11879.5, + "probability": 0.9852 + }, + { + "start": 11880.29, + "end": 11884.86, + "probability": 0.8157 + }, + { + "start": 11885.78, + "end": 11887.42, + "probability": 0.9962 + }, + { + "start": 11887.52, + "end": 11888.73, + "probability": 0.9136 + }, + { + "start": 11889.0, + "end": 11890.12, + "probability": 0.9769 + }, + { + "start": 11890.86, + "end": 11892.94, + "probability": 0.9637 + }, + { + "start": 11893.02, + "end": 11894.22, + "probability": 0.9364 + }, + { + "start": 11895.48, + "end": 11898.2, + "probability": 0.9756 + }, + { + "start": 11898.82, + "end": 11905.16, + "probability": 0.9247 + }, + { + "start": 11905.2, + "end": 11905.2, + "probability": 0.5107 + }, + { + "start": 11905.74, + "end": 11906.38, + "probability": 0.2543 + }, + { + "start": 11906.38, + "end": 11906.38, + "probability": 0.6039 + }, + { + "start": 11906.38, + "end": 11908.74, + "probability": 0.9421 + }, + { + "start": 11910.82, + "end": 11916.9, + "probability": 0.7627 + }, + { + "start": 11917.86, + "end": 11919.48, + "probability": 0.9695 + }, + { + "start": 11920.56, + "end": 11921.56, + "probability": 0.7121 + }, + { + "start": 11922.5, + "end": 11924.38, + "probability": 0.3983 + }, + { + "start": 11925.22, + "end": 11928.16, + "probability": 0.855 + }, + { + "start": 11929.2, + "end": 11931.36, + "probability": 0.9774 + }, + { + "start": 11932.76, + "end": 11936.2, + "probability": 0.9839 + }, + { + "start": 11936.8, + "end": 11941.04, + "probability": 0.9971 + }, + { + "start": 11941.66, + "end": 11942.66, + "probability": 0.942 + }, + { + "start": 11942.72, + "end": 11944.46, + "probability": 0.983 + }, + { + "start": 11945.02, + "end": 11946.26, + "probability": 0.9614 + }, + { + "start": 11946.9, + "end": 11948.16, + "probability": 0.924 + }, + { + "start": 11949.56, + "end": 11951.88, + "probability": 0.9878 + }, + { + "start": 11952.76, + "end": 11954.32, + "probability": 0.9307 + }, + { + "start": 11956.36, + "end": 11960.7, + "probability": 0.9855 + }, + { + "start": 11961.02, + "end": 11963.26, + "probability": 0.8136 + }, + { + "start": 11964.16, + "end": 11965.22, + "probability": 0.9867 + }, + { + "start": 11965.86, + "end": 11969.16, + "probability": 0.877 + }, + { + "start": 11969.98, + "end": 11973.04, + "probability": 0.9065 + }, + { + "start": 11974.78, + "end": 11975.98, + "probability": 0.9714 + }, + { + "start": 11977.74, + "end": 11978.62, + "probability": 0.8164 + }, + { + "start": 11980.38, + "end": 11981.26, + "probability": 0.8877 + }, + { + "start": 11982.32, + "end": 11983.27, + "probability": 0.9963 + }, + { + "start": 11984.82, + "end": 11987.44, + "probability": 0.999 + }, + { + "start": 11988.16, + "end": 11990.96, + "probability": 0.8053 + }, + { + "start": 11991.56, + "end": 11995.58, + "probability": 0.9783 + }, + { + "start": 11996.38, + "end": 11999.12, + "probability": 0.9207 + }, + { + "start": 11999.96, + "end": 12000.84, + "probability": 0.8884 + }, + { + "start": 12001.5, + "end": 12002.4, + "probability": 0.9082 + }, + { + "start": 12002.74, + "end": 12003.76, + "probability": 0.9951 + }, + { + "start": 12004.18, + "end": 12004.82, + "probability": 0.1099 + }, + { + "start": 12004.82, + "end": 12005.72, + "probability": 0.6672 + }, + { + "start": 12005.82, + "end": 12008.52, + "probability": 0.8593 + }, + { + "start": 12009.96, + "end": 12011.42, + "probability": 0.946 + }, + { + "start": 12011.54, + "end": 12011.9, + "probability": 0.8779 + }, + { + "start": 12012.26, + "end": 12013.18, + "probability": 0.943 + }, + { + "start": 12013.9, + "end": 12015.0, + "probability": 0.6406 + }, + { + "start": 12019.26, + "end": 12023.66, + "probability": 0.9986 + }, + { + "start": 12023.66, + "end": 12028.44, + "probability": 0.9971 + }, + { + "start": 12029.48, + "end": 12031.94, + "probability": 0.9989 + }, + { + "start": 12032.72, + "end": 12035.14, + "probability": 0.8823 + }, + { + "start": 12035.53, + "end": 12039.62, + "probability": 0.9545 + }, + { + "start": 12039.88, + "end": 12042.84, + "probability": 0.9942 + }, + { + "start": 12042.96, + "end": 12043.2, + "probability": 0.4734 + }, + { + "start": 12043.48, + "end": 12044.48, + "probability": 0.9511 + }, + { + "start": 12044.54, + "end": 12046.06, + "probability": 0.9849 + }, + { + "start": 12046.42, + "end": 12051.08, + "probability": 0.9763 + }, + { + "start": 12051.14, + "end": 12051.5, + "probability": 0.8466 + }, + { + "start": 12051.6, + "end": 12051.82, + "probability": 0.6316 + }, + { + "start": 12051.82, + "end": 12052.58, + "probability": 0.5342 + }, + { + "start": 12052.58, + "end": 12055.32, + "probability": 0.5583 + }, + { + "start": 12056.44, + "end": 12057.26, + "probability": 0.6336 + }, + { + "start": 12058.0, + "end": 12059.04, + "probability": 0.2741 + }, + { + "start": 12060.76, + "end": 12061.42, + "probability": 0.4922 + }, + { + "start": 12062.0, + "end": 12063.48, + "probability": 0.6688 + }, + { + "start": 12064.1, + "end": 12066.56, + "probability": 0.9041 + }, + { + "start": 12067.42, + "end": 12068.16, + "probability": 0.7344 + }, + { + "start": 12068.78, + "end": 12070.12, + "probability": 0.9795 + }, + { + "start": 12070.98, + "end": 12071.68, + "probability": 0.9609 + }, + { + "start": 12072.34, + "end": 12073.18, + "probability": 0.7036 + }, + { + "start": 12073.78, + "end": 12076.46, + "probability": 0.9257 + }, + { + "start": 12077.24, + "end": 12078.02, + "probability": 0.8832 + }, + { + "start": 12078.46, + "end": 12079.68, + "probability": 0.9537 + }, + { + "start": 12080.18, + "end": 12080.8, + "probability": 0.9729 + }, + { + "start": 12081.04, + "end": 12082.14, + "probability": 0.9809 + }, + { + "start": 12083.08, + "end": 12083.82, + "probability": 0.9801 + }, + { + "start": 12084.38, + "end": 12085.32, + "probability": 0.9908 + }, + { + "start": 12086.6, + "end": 12087.28, + "probability": 0.2972 + }, + { + "start": 12088.1, + "end": 12089.84, + "probability": 0.8191 + }, + { + "start": 12090.62, + "end": 12092.92, + "probability": 0.9579 + }, + { + "start": 12093.72, + "end": 12097.48, + "probability": 0.9777 + }, + { + "start": 12098.02, + "end": 12099.34, + "probability": 0.9976 + }, + { + "start": 12100.38, + "end": 12101.26, + "probability": 0.9637 + }, + { + "start": 12102.82, + "end": 12104.1, + "probability": 0.5928 + }, + { + "start": 12104.7, + "end": 12105.82, + "probability": 0.5382 + }, + { + "start": 12106.74, + "end": 12108.3, + "probability": 0.9906 + }, + { + "start": 12109.14, + "end": 12109.78, + "probability": 0.8185 + }, + { + "start": 12110.52, + "end": 12111.7, + "probability": 0.8742 + }, + { + "start": 12112.74, + "end": 12113.58, + "probability": 0.971 + }, + { + "start": 12114.3, + "end": 12115.92, + "probability": 0.9052 + }, + { + "start": 12116.82, + "end": 12117.64, + "probability": 0.7435 + }, + { + "start": 12118.92, + "end": 12120.22, + "probability": 0.6408 + }, + { + "start": 12121.46, + "end": 12122.38, + "probability": 0.4923 + }, + { + "start": 12123.18, + "end": 12124.64, + "probability": 0.8118 + }, + { + "start": 12125.32, + "end": 12125.92, + "probability": 0.725 + }, + { + "start": 12126.54, + "end": 12127.92, + "probability": 0.9872 + }, + { + "start": 12128.44, + "end": 12130.84, + "probability": 0.9914 + }, + { + "start": 12131.74, + "end": 12132.46, + "probability": 0.846 + }, + { + "start": 12133.1, + "end": 12135.22, + "probability": 0.8755 + }, + { + "start": 12135.8, + "end": 12136.54, + "probability": 0.647 + }, + { + "start": 12137.12, + "end": 12139.82, + "probability": 0.6895 + }, + { + "start": 12142.9, + "end": 12143.26, + "probability": 0.4433 + }, + { + "start": 12144.84, + "end": 12145.72, + "probability": 0.9021 + }, + { + "start": 12147.24, + "end": 12147.26, + "probability": 0.1504 + }, + { + "start": 12149.36, + "end": 12150.07, + "probability": 0.5355 + }, + { + "start": 12150.08, + "end": 12150.38, + "probability": 0.6837 + }, + { + "start": 12151.24, + "end": 12153.7, + "probability": 0.7311 + }, + { + "start": 12153.86, + "end": 12155.0, + "probability": 0.7811 + }, + { + "start": 12155.12, + "end": 12162.76, + "probability": 0.9866 + }, + { + "start": 12164.9, + "end": 12169.18, + "probability": 0.9084 + }, + { + "start": 12169.68, + "end": 12174.42, + "probability": 0.6662 + }, + { + "start": 12174.76, + "end": 12174.86, + "probability": 0.7467 + }, + { + "start": 12174.86, + "end": 12177.26, + "probability": 0.8105 + }, + { + "start": 12178.3, + "end": 12180.64, + "probability": 0.953 + }, + { + "start": 12182.26, + "end": 12183.46, + "probability": 0.7935 + }, + { + "start": 12184.14, + "end": 12188.3, + "probability": 0.8196 + }, + { + "start": 12188.96, + "end": 12189.46, + "probability": 0.9387 + }, + { + "start": 12189.84, + "end": 12191.26, + "probability": 0.9407 + }, + { + "start": 12192.54, + "end": 12193.1, + "probability": 0.0648 + }, + { + "start": 12193.1, + "end": 12194.94, + "probability": 0.6999 + }, + { + "start": 12196.04, + "end": 12202.48, + "probability": 0.7578 + }, + { + "start": 12202.98, + "end": 12204.98, + "probability": 0.4737 + }, + { + "start": 12205.38, + "end": 12207.72, + "probability": 0.675 + }, + { + "start": 12208.66, + "end": 12208.9, + "probability": 0.4069 + }, + { + "start": 12209.0, + "end": 12210.48, + "probability": 0.9455 + }, + { + "start": 12210.6, + "end": 12212.18, + "probability": 0.7622 + }, + { + "start": 12212.34, + "end": 12216.7, + "probability": 0.931 + }, + { + "start": 12217.76, + "end": 12220.1, + "probability": 0.9443 + }, + { + "start": 12221.22, + "end": 12222.0, + "probability": 0.5635 + }, + { + "start": 12222.62, + "end": 12225.68, + "probability": 0.9712 + }, + { + "start": 12226.48, + "end": 12228.8, + "probability": 0.9816 + }, + { + "start": 12229.56, + "end": 12231.22, + "probability": 0.7432 + }, + { + "start": 12232.12, + "end": 12239.18, + "probability": 0.9463 + }, + { + "start": 12239.72, + "end": 12243.98, + "probability": 0.8349 + }, + { + "start": 12244.78, + "end": 12248.54, + "probability": 0.9868 + }, + { + "start": 12249.2, + "end": 12250.24, + "probability": 0.8203 + }, + { + "start": 12251.9, + "end": 12254.98, + "probability": 0.9847 + }, + { + "start": 12256.0, + "end": 12258.56, + "probability": 0.9975 + }, + { + "start": 12258.76, + "end": 12259.46, + "probability": 0.9428 + }, + { + "start": 12259.96, + "end": 12262.3, + "probability": 0.9726 + }, + { + "start": 12263.73, + "end": 12265.26, + "probability": 0.1794 + }, + { + "start": 12265.88, + "end": 12269.47, + "probability": 0.9719 + }, + { + "start": 12270.22, + "end": 12270.44, + "probability": 0.4942 + }, + { + "start": 12270.86, + "end": 12276.9, + "probability": 0.8789 + }, + { + "start": 12277.74, + "end": 12278.34, + "probability": 0.9517 + }, + { + "start": 12278.34, + "end": 12282.04, + "probability": 0.9526 + }, + { + "start": 12282.76, + "end": 12288.22, + "probability": 0.9902 + }, + { + "start": 12289.34, + "end": 12290.9, + "probability": 0.9729 + }, + { + "start": 12292.08, + "end": 12294.74, + "probability": 0.9878 + }, + { + "start": 12296.12, + "end": 12298.9, + "probability": 0.9384 + }, + { + "start": 12300.42, + "end": 12301.74, + "probability": 0.9779 + }, + { + "start": 12301.98, + "end": 12302.76, + "probability": 0.9233 + }, + { + "start": 12305.18, + "end": 12305.54, + "probability": 0.3215 + }, + { + "start": 12305.54, + "end": 12307.41, + "probability": 0.5796 + }, + { + "start": 12308.54, + "end": 12313.12, + "probability": 0.9346 + }, + { + "start": 12314.68, + "end": 12316.82, + "probability": 0.9573 + }, + { + "start": 12317.24, + "end": 12318.82, + "probability": 0.9717 + }, + { + "start": 12319.42, + "end": 12323.34, + "probability": 0.9959 + }, + { + "start": 12323.34, + "end": 12326.6, + "probability": 0.9917 + }, + { + "start": 12327.36, + "end": 12330.14, + "probability": 0.7087 + }, + { + "start": 12330.54, + "end": 12331.58, + "probability": 0.5723 + }, + { + "start": 12331.7, + "end": 12332.3, + "probability": 0.8991 + }, + { + "start": 12333.1, + "end": 12335.24, + "probability": 0.9287 + }, + { + "start": 12335.78, + "end": 12338.1, + "probability": 0.9939 + }, + { + "start": 12338.74, + "end": 12342.02, + "probability": 0.9919 + }, + { + "start": 12342.14, + "end": 12342.38, + "probability": 0.4061 + }, + { + "start": 12342.48, + "end": 12343.32, + "probability": 0.7251 + }, + { + "start": 12343.44, + "end": 12344.41, + "probability": 0.8383 + }, + { + "start": 12345.3, + "end": 12347.22, + "probability": 0.6375 + }, + { + "start": 12347.36, + "end": 12349.48, + "probability": 0.792 + }, + { + "start": 12349.62, + "end": 12355.18, + "probability": 0.8511 + }, + { + "start": 12355.92, + "end": 12357.38, + "probability": 0.0277 + }, + { + "start": 12358.06, + "end": 12360.5, + "probability": 0.7399 + }, + { + "start": 12360.66, + "end": 12362.88, + "probability": 0.3741 + }, + { + "start": 12363.06, + "end": 12364.24, + "probability": 0.7444 + }, + { + "start": 12364.98, + "end": 12365.66, + "probability": 0.3473 + }, + { + "start": 12366.32, + "end": 12367.25, + "probability": 0.9337 + }, + { + "start": 12367.72, + "end": 12368.32, + "probability": 0.5845 + }, + { + "start": 12369.16, + "end": 12369.44, + "probability": 0.2003 + }, + { + "start": 12370.02, + "end": 12372.36, + "probability": 0.1866 + }, + { + "start": 12373.94, + "end": 12376.46, + "probability": 0.011 + }, + { + "start": 12377.26, + "end": 12378.06, + "probability": 0.0342 + }, + { + "start": 12379.52, + "end": 12380.06, + "probability": 0.006 + }, + { + "start": 12381.95, + "end": 12385.0, + "probability": 0.025 + }, + { + "start": 12389.96, + "end": 12390.84, + "probability": 0.0579 + }, + { + "start": 12391.16, + "end": 12392.08, + "probability": 0.0281 + }, + { + "start": 12392.1, + "end": 12393.38, + "probability": 0.1382 + }, + { + "start": 12393.6, + "end": 12393.64, + "probability": 0.1859 + }, + { + "start": 12393.64, + "end": 12393.64, + "probability": 0.081 + }, + { + "start": 12393.64, + "end": 12396.6, + "probability": 0.6941 + }, + { + "start": 12399.2, + "end": 12399.82, + "probability": 0.0298 + }, + { + "start": 12400.2, + "end": 12402.4, + "probability": 0.7958 + }, + { + "start": 12403.58, + "end": 12404.68, + "probability": 0.741 + }, + { + "start": 12413.52, + "end": 12414.74, + "probability": 0.3406 + }, + { + "start": 12414.82, + "end": 12415.72, + "probability": 0.6958 + }, + { + "start": 12415.86, + "end": 12419.82, + "probability": 0.7555 + }, + { + "start": 12419.94, + "end": 12423.12, + "probability": 0.6739 + }, + { + "start": 12423.94, + "end": 12425.54, + "probability": 0.1641 + }, + { + "start": 12425.9, + "end": 12430.18, + "probability": 0.9541 + }, + { + "start": 12431.22, + "end": 12433.32, + "probability": 0.9941 + }, + { + "start": 12436.98, + "end": 12438.38, + "probability": 0.8852 + }, + { + "start": 12438.48, + "end": 12440.66, + "probability": 0.8732 + }, + { + "start": 12440.66, + "end": 12444.3, + "probability": 0.8923 + }, + { + "start": 12444.5, + "end": 12445.76, + "probability": 0.2333 + }, + { + "start": 12447.16, + "end": 12448.34, + "probability": 0.6685 + }, + { + "start": 12448.72, + "end": 12451.98, + "probability": 0.8271 + }, + { + "start": 12452.52, + "end": 12453.62, + "probability": 0.7438 + }, + { + "start": 12456.4, + "end": 12457.34, + "probability": 0.7852 + }, + { + "start": 12459.36, + "end": 12461.14, + "probability": 0.6926 + }, + { + "start": 12461.96, + "end": 12463.94, + "probability": 0.8975 + }, + { + "start": 12464.62, + "end": 12465.72, + "probability": 0.8557 + }, + { + "start": 12466.5, + "end": 12466.86, + "probability": 0.5235 + }, + { + "start": 12467.46, + "end": 12469.82, + "probability": 0.9883 + }, + { + "start": 12470.96, + "end": 12472.98, + "probability": 0.6337 + }, + { + "start": 12473.86, + "end": 12475.24, + "probability": 0.9202 + }, + { + "start": 12475.32, + "end": 12476.96, + "probability": 0.8113 + }, + { + "start": 12477.54, + "end": 12478.36, + "probability": 0.8047 + }, + { + "start": 12479.3, + "end": 12480.28, + "probability": 0.9332 + }, + { + "start": 12482.04, + "end": 12485.14, + "probability": 0.9358 + }, + { + "start": 12485.22, + "end": 12486.54, + "probability": 0.0617 + }, + { + "start": 12488.36, + "end": 12491.84, + "probability": 0.9969 + }, + { + "start": 12491.84, + "end": 12495.94, + "probability": 0.9976 + }, + { + "start": 12497.04, + "end": 12498.98, + "probability": 0.9271 + }, + { + "start": 12500.08, + "end": 12503.12, + "probability": 0.9863 + }, + { + "start": 12503.12, + "end": 12507.48, + "probability": 0.9941 + }, + { + "start": 12508.36, + "end": 12508.74, + "probability": 0.4357 + }, + { + "start": 12508.9, + "end": 12512.76, + "probability": 0.8742 + }, + { + "start": 12512.76, + "end": 12517.0, + "probability": 0.9914 + }, + { + "start": 12517.0, + "end": 12521.1, + "probability": 0.9953 + }, + { + "start": 12521.98, + "end": 12522.24, + "probability": 0.7915 + }, + { + "start": 12523.1, + "end": 12527.4, + "probability": 0.9843 + }, + { + "start": 12528.14, + "end": 12529.12, + "probability": 0.9432 + }, + { + "start": 12529.96, + "end": 12533.34, + "probability": 0.9583 + }, + { + "start": 12533.98, + "end": 12537.44, + "probability": 0.9894 + }, + { + "start": 12539.22, + "end": 12540.72, + "probability": 0.8381 + }, + { + "start": 12546.88, + "end": 12547.8, + "probability": 0.4054 + }, + { + "start": 12547.82, + "end": 12548.14, + "probability": 0.8215 + }, + { + "start": 12548.2, + "end": 12552.84, + "probability": 0.9429 + }, + { + "start": 12553.88, + "end": 12558.64, + "probability": 0.9548 + }, + { + "start": 12559.2, + "end": 12562.86, + "probability": 0.7971 + }, + { + "start": 12562.98, + "end": 12564.4, + "probability": 0.9922 + }, + { + "start": 12564.96, + "end": 12566.84, + "probability": 0.7943 + }, + { + "start": 12567.38, + "end": 12568.9, + "probability": 0.9233 + }, + { + "start": 12569.44, + "end": 12571.86, + "probability": 0.9456 + }, + { + "start": 12572.96, + "end": 12575.96, + "probability": 0.9395 + }, + { + "start": 12575.96, + "end": 12580.88, + "probability": 0.9974 + }, + { + "start": 12580.88, + "end": 12586.16, + "probability": 0.9918 + }, + { + "start": 12586.9, + "end": 12587.54, + "probability": 0.8729 + }, + { + "start": 12588.96, + "end": 12592.94, + "probability": 0.9704 + }, + { + "start": 12593.6, + "end": 12597.68, + "probability": 0.9897 + }, + { + "start": 12598.18, + "end": 12602.0, + "probability": 0.9988 + }, + { + "start": 12602.78, + "end": 12606.02, + "probability": 0.9775 + }, + { + "start": 12606.58, + "end": 12608.34, + "probability": 0.7919 + }, + { + "start": 12608.9, + "end": 12612.98, + "probability": 0.9977 + }, + { + "start": 12613.56, + "end": 12617.08, + "probability": 0.9932 + }, + { + "start": 12617.08, + "end": 12620.84, + "probability": 0.965 + }, + { + "start": 12621.32, + "end": 12625.36, + "probability": 0.9767 + }, + { + "start": 12625.36, + "end": 12630.18, + "probability": 0.9969 + }, + { + "start": 12630.3, + "end": 12631.7, + "probability": 0.8293 + }, + { + "start": 12632.36, + "end": 12634.74, + "probability": 0.8104 + }, + { + "start": 12634.84, + "end": 12636.6, + "probability": 0.9943 + }, + { + "start": 12638.7, + "end": 12639.44, + "probability": 0.9658 + }, + { + "start": 12641.92, + "end": 12643.8, + "probability": 0.9173 + }, + { + "start": 12644.42, + "end": 12646.48, + "probability": 0.7769 + }, + { + "start": 12647.02, + "end": 12647.82, + "probability": 0.7661 + }, + { + "start": 12649.06, + "end": 12651.88, + "probability": 0.8804 + }, + { + "start": 12651.96, + "end": 12656.94, + "probability": 0.9963 + }, + { + "start": 12657.46, + "end": 12658.0, + "probability": 0.8881 + }, + { + "start": 12659.72, + "end": 12661.72, + "probability": 0.9922 + }, + { + "start": 12662.52, + "end": 12663.2, + "probability": 0.5896 + }, + { + "start": 12663.74, + "end": 12665.5, + "probability": 0.9604 + }, + { + "start": 12666.74, + "end": 12671.06, + "probability": 0.9366 + }, + { + "start": 12671.88, + "end": 12673.94, + "probability": 0.8271 + }, + { + "start": 12676.06, + "end": 12680.38, + "probability": 0.9245 + }, + { + "start": 12680.38, + "end": 12683.78, + "probability": 0.9736 + }, + { + "start": 12684.22, + "end": 12687.74, + "probability": 0.9509 + }, + { + "start": 12688.06, + "end": 12689.68, + "probability": 0.565 + }, + { + "start": 12689.8, + "end": 12691.28, + "probability": 0.743 + }, + { + "start": 12692.26, + "end": 12694.16, + "probability": 0.4422 + }, + { + "start": 12695.1, + "end": 12695.74, + "probability": 0.3616 + }, + { + "start": 12697.7, + "end": 12700.36, + "probability": 0.852 + }, + { + "start": 12701.08, + "end": 12702.62, + "probability": 0.7339 + }, + { + "start": 12703.3, + "end": 12704.18, + "probability": 0.7339 + }, + { + "start": 12704.74, + "end": 12706.36, + "probability": 0.9856 + }, + { + "start": 12706.72, + "end": 12707.44, + "probability": 0.79 + }, + { + "start": 12707.88, + "end": 12709.3, + "probability": 0.9183 + }, + { + "start": 12710.08, + "end": 12710.92, + "probability": 0.833 + }, + { + "start": 12711.78, + "end": 12713.7, + "probability": 0.5718 + }, + { + "start": 12714.0, + "end": 12715.6, + "probability": 0.475 + }, + { + "start": 12715.84, + "end": 12717.76, + "probability": 0.7332 + }, + { + "start": 12718.1, + "end": 12721.0, + "probability": 0.8199 + }, + { + "start": 12721.82, + "end": 12722.44, + "probability": 0.8203 + }, + { + "start": 12723.28, + "end": 12724.74, + "probability": 0.9904 + }, + { + "start": 12725.26, + "end": 12725.96, + "probability": 0.7334 + }, + { + "start": 12726.56, + "end": 12728.6, + "probability": 0.8409 + }, + { + "start": 12729.24, + "end": 12731.24, + "probability": 0.983 + }, + { + "start": 12731.9, + "end": 12732.58, + "probability": 0.9584 + }, + { + "start": 12733.26, + "end": 12735.66, + "probability": 0.832 + }, + { + "start": 12736.58, + "end": 12737.12, + "probability": 0.9303 + }, + { + "start": 12739.3, + "end": 12740.64, + "probability": 0.9289 + }, + { + "start": 12740.88, + "end": 12741.4, + "probability": 0.3074 + }, + { + "start": 12741.48, + "end": 12742.68, + "probability": 0.8085 + }, + { + "start": 12742.78, + "end": 12743.34, + "probability": 0.9338 + }, + { + "start": 12743.68, + "end": 12745.14, + "probability": 0.9572 + }, + { + "start": 12745.24, + "end": 12745.74, + "probability": 0.9317 + }, + { + "start": 12746.8, + "end": 12749.1, + "probability": 0.8311 + }, + { + "start": 12750.06, + "end": 12751.6, + "probability": 0.9923 + }, + { + "start": 12752.54, + "end": 12753.42, + "probability": 0.9065 + }, + { + "start": 12754.1, + "end": 12756.16, + "probability": 0.5982 + }, + { + "start": 12756.78, + "end": 12757.36, + "probability": 0.5088 + }, + { + "start": 12758.02, + "end": 12759.0, + "probability": 0.5258 + }, + { + "start": 12759.72, + "end": 12760.24, + "probability": 0.9316 + }, + { + "start": 12760.9, + "end": 12763.28, + "probability": 0.9228 + }, + { + "start": 12763.9, + "end": 12765.78, + "probability": 0.8602 + }, + { + "start": 12766.4, + "end": 12767.06, + "probability": 0.9548 + }, + { + "start": 12767.76, + "end": 12769.02, + "probability": 0.8781 + }, + { + "start": 12769.8, + "end": 12770.46, + "probability": 0.4427 + }, + { + "start": 12771.1, + "end": 12772.24, + "probability": 0.9835 + }, + { + "start": 12772.78, + "end": 12776.08, + "probability": 0.9606 + }, + { + "start": 12776.8, + "end": 12779.0, + "probability": 0.9821 + }, + { + "start": 12780.38, + "end": 12781.68, + "probability": 0.9918 + }, + { + "start": 12781.88, + "end": 12785.12, + "probability": 0.6252 + }, + { + "start": 12785.3, + "end": 12786.18, + "probability": 0.3705 + }, + { + "start": 12786.18, + "end": 12786.18, + "probability": 0.4992 + }, + { + "start": 12786.18, + "end": 12786.74, + "probability": 0.8326 + }, + { + "start": 12787.84, + "end": 12790.02, + "probability": 0.972 + }, + { + "start": 12790.88, + "end": 12791.54, + "probability": 0.9418 + }, + { + "start": 12792.3, + "end": 12793.7, + "probability": 0.934 + }, + { + "start": 12794.3, + "end": 12795.02, + "probability": 0.9766 + }, + { + "start": 12795.94, + "end": 12796.98, + "probability": 0.6843 + }, + { + "start": 12797.6, + "end": 12799.74, + "probability": 0.8894 + }, + { + "start": 12800.46, + "end": 12801.14, + "probability": 0.9447 + }, + { + "start": 12801.78, + "end": 12803.82, + "probability": 0.9564 + }, + { + "start": 12804.52, + "end": 12806.72, + "probability": 0.9668 + }, + { + "start": 12807.36, + "end": 12809.92, + "probability": 0.65 + }, + { + "start": 12810.58, + "end": 12812.78, + "probability": 0.7408 + }, + { + "start": 12813.5, + "end": 12815.04, + "probability": 0.8513 + }, + { + "start": 12815.68, + "end": 12818.44, + "probability": 0.923 + }, + { + "start": 12819.24, + "end": 12821.98, + "probability": 0.8982 + }, + { + "start": 12826.06, + "end": 12826.06, + "probability": 0.9932 + }, + { + "start": 12835.5, + "end": 12835.96, + "probability": 0.1146 + }, + { + "start": 12836.08, + "end": 12837.4, + "probability": 0.758 + }, + { + "start": 12842.62, + "end": 12844.02, + "probability": 0.505 + }, + { + "start": 12846.48, + "end": 12851.84, + "probability": 0.9248 + }, + { + "start": 12853.2, + "end": 12857.04, + "probability": 0.9916 + }, + { + "start": 12858.32, + "end": 12860.26, + "probability": 0.9755 + }, + { + "start": 12860.82, + "end": 12863.1, + "probability": 0.9985 + }, + { + "start": 12863.86, + "end": 12865.48, + "probability": 0.9404 + }, + { + "start": 12866.08, + "end": 12868.94, + "probability": 0.9885 + }, + { + "start": 12869.84, + "end": 12873.14, + "probability": 0.9987 + }, + { + "start": 12873.48, + "end": 12876.22, + "probability": 0.7368 + }, + { + "start": 12876.36, + "end": 12880.58, + "probability": 0.718 + }, + { + "start": 12880.7, + "end": 12881.6, + "probability": 0.8206 + }, + { + "start": 12881.94, + "end": 12884.32, + "probability": 0.8426 + }, + { + "start": 12885.2, + "end": 12889.22, + "probability": 0.9694 + }, + { + "start": 12890.08, + "end": 12892.42, + "probability": 0.9964 + }, + { + "start": 12893.02, + "end": 12893.28, + "probability": 0.9076 + }, + { + "start": 12894.54, + "end": 12897.68, + "probability": 0.6616 + }, + { + "start": 12898.9, + "end": 12904.16, + "probability": 0.9697 + }, + { + "start": 12905.42, + "end": 12907.3, + "probability": 0.7532 + }, + { + "start": 12907.94, + "end": 12909.94, + "probability": 0.9952 + }, + { + "start": 12910.6, + "end": 12911.98, + "probability": 0.9816 + }, + { + "start": 12913.4, + "end": 12917.3, + "probability": 0.981 + }, + { + "start": 12918.46, + "end": 12918.66, + "probability": 0.1395 + }, + { + "start": 12918.66, + "end": 12920.24, + "probability": 0.607 + }, + { + "start": 12920.82, + "end": 12922.16, + "probability": 0.9668 + }, + { + "start": 12923.04, + "end": 12925.36, + "probability": 0.6643 + }, + { + "start": 12925.92, + "end": 12930.76, + "probability": 0.9228 + }, + { + "start": 12931.58, + "end": 12932.68, + "probability": 0.8143 + }, + { + "start": 12933.44, + "end": 12934.4, + "probability": 0.8628 + }, + { + "start": 12934.98, + "end": 12937.3, + "probability": 0.9777 + }, + { + "start": 12937.96, + "end": 12939.14, + "probability": 0.9922 + }, + { + "start": 12939.98, + "end": 12942.52, + "probability": 0.9889 + }, + { + "start": 12943.34, + "end": 12945.88, + "probability": 0.908 + }, + { + "start": 12946.62, + "end": 12948.2, + "probability": 0.9043 + }, + { + "start": 12948.88, + "end": 12949.5, + "probability": 0.4668 + }, + { + "start": 12950.28, + "end": 12955.44, + "probability": 0.8379 + }, + { + "start": 12956.3, + "end": 12962.68, + "probability": 0.9608 + }, + { + "start": 12963.46, + "end": 12966.0, + "probability": 0.9973 + }, + { + "start": 12966.62, + "end": 12968.42, + "probability": 0.8045 + }, + { + "start": 12969.42, + "end": 12970.54, + "probability": 0.9635 + }, + { + "start": 12970.62, + "end": 12973.04, + "probability": 0.9897 + }, + { + "start": 12973.54, + "end": 12976.08, + "probability": 0.5439 + }, + { + "start": 12976.32, + "end": 12977.47, + "probability": 0.6544 + }, + { + "start": 12978.48, + "end": 12983.22, + "probability": 0.9963 + }, + { + "start": 12983.94, + "end": 12987.94, + "probability": 0.9975 + }, + { + "start": 12988.88, + "end": 12990.68, + "probability": 0.9799 + }, + { + "start": 12992.44, + "end": 12994.72, + "probability": 0.9707 + }, + { + "start": 12995.9, + "end": 12998.78, + "probability": 0.996 + }, + { + "start": 12999.32, + "end": 13000.56, + "probability": 0.8658 + }, + { + "start": 13001.14, + "end": 13002.94, + "probability": 0.8983 + }, + { + "start": 13003.74, + "end": 13005.24, + "probability": 0.7766 + }, + { + "start": 13005.98, + "end": 13007.72, + "probability": 0.9829 + }, + { + "start": 13008.32, + "end": 13012.76, + "probability": 0.9912 + }, + { + "start": 13013.48, + "end": 13016.4, + "probability": 0.8477 + }, + { + "start": 13017.06, + "end": 13018.16, + "probability": 0.7763 + }, + { + "start": 13018.84, + "end": 13020.72, + "probability": 0.9011 + }, + { + "start": 13021.28, + "end": 13023.67, + "probability": 0.9652 + }, + { + "start": 13024.96, + "end": 13028.56, + "probability": 0.858 + }, + { + "start": 13028.56, + "end": 13031.86, + "probability": 0.9928 + }, + { + "start": 13032.46, + "end": 13037.54, + "probability": 0.9138 + }, + { + "start": 13038.02, + "end": 13041.98, + "probability": 0.9806 + }, + { + "start": 13042.06, + "end": 13042.58, + "probability": 0.6893 + }, + { + "start": 13046.14, + "end": 13047.08, + "probability": 0.5909 + }, + { + "start": 13047.38, + "end": 13051.4, + "probability": 0.8519 + }, + { + "start": 13052.28, + "end": 13053.72, + "probability": 0.7201 + }, + { + "start": 13054.88, + "end": 13058.6, + "probability": 0.9437 + }, + { + "start": 13060.16, + "end": 13061.16, + "probability": 0.5815 + }, + { + "start": 13063.7, + "end": 13064.8, + "probability": 0.5552 + }, + { + "start": 13065.6, + "end": 13066.62, + "probability": 0.7862 + }, + { + "start": 13068.0, + "end": 13069.16, + "probability": 0.726 + }, + { + "start": 13072.8, + "end": 13073.64, + "probability": 0.4324 + }, + { + "start": 13073.68, + "end": 13075.24, + "probability": 0.888 + }, + { + "start": 13075.24, + "end": 13078.72, + "probability": 0.8457 + }, + { + "start": 13078.84, + "end": 13084.78, + "probability": 0.1452 + }, + { + "start": 13085.46, + "end": 13087.12, + "probability": 0.7721 + }, + { + "start": 13087.68, + "end": 13088.84, + "probability": 0.2852 + }, + { + "start": 13099.08, + "end": 13099.26, + "probability": 0.0017 + }, + { + "start": 13101.5, + "end": 13110.62, + "probability": 0.8481 + }, + { + "start": 13111.2, + "end": 13115.1, + "probability": 0.2891 + }, + { + "start": 13115.48, + "end": 13115.76, + "probability": 0.5646 + }, + { + "start": 13118.48, + "end": 13122.44, + "probability": 0.9888 + }, + { + "start": 13123.18, + "end": 13127.2, + "probability": 0.4225 + }, + { + "start": 13127.64, + "end": 13128.22, + "probability": 0.1417 + }, + { + "start": 13128.22, + "end": 13129.22, + "probability": 0.3431 + }, + { + "start": 13140.0, + "end": 13141.58, + "probability": 0.5162 + }, + { + "start": 13143.81, + "end": 13147.02, + "probability": 0.3317 + }, + { + "start": 13147.64, + "end": 13148.82, + "probability": 0.4589 + }, + { + "start": 13150.14, + "end": 13154.46, + "probability": 0.1635 + }, + { + "start": 13155.4, + "end": 13157.9, + "probability": 0.0519 + }, + { + "start": 13157.9, + "end": 13160.1, + "probability": 0.1102 + }, + { + "start": 13160.1, + "end": 13161.12, + "probability": 0.0443 + }, + { + "start": 13161.12, + "end": 13161.94, + "probability": 0.2111 + }, + { + "start": 13162.02, + "end": 13162.42, + "probability": 0.1812 + }, + { + "start": 13163.74, + "end": 13163.74, + "probability": 0.2201 + }, + { + "start": 13165.8, + "end": 13167.76, + "probability": 0.4257 + }, + { + "start": 13174.83, + "end": 13175.45, + "probability": 0.1436 + }, + { + "start": 13176.32, + "end": 13179.25, + "probability": 0.024 + }, + { + "start": 13180.06, + "end": 13181.63, + "probability": 0.036 + }, + { + "start": 13182.41, + "end": 13188.98, + "probability": 0.061 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.0, + "end": 13189.0, + "probability": 0.0 + }, + { + "start": 13189.12, + "end": 13190.84, + "probability": 0.551 + }, + { + "start": 13190.84, + "end": 13193.96, + "probability": 0.9863 + }, + { + "start": 13194.34, + "end": 13197.96, + "probability": 0.9723 + }, + { + "start": 13197.96, + "end": 13201.58, + "probability": 0.9998 + }, + { + "start": 13201.68, + "end": 13205.78, + "probability": 0.9912 + }, + { + "start": 13206.22, + "end": 13208.48, + "probability": 0.998 + }, + { + "start": 13208.48, + "end": 13210.64, + "probability": 0.9987 + }, + { + "start": 13211.14, + "end": 13214.52, + "probability": 0.973 + }, + { + "start": 13214.52, + "end": 13218.52, + "probability": 0.9844 + }, + { + "start": 13219.26, + "end": 13219.6, + "probability": 0.219 + }, + { + "start": 13219.7, + "end": 13222.46, + "probability": 0.946 + }, + { + "start": 13222.54, + "end": 13224.02, + "probability": 0.9957 + }, + { + "start": 13224.58, + "end": 13226.32, + "probability": 0.4778 + }, + { + "start": 13226.34, + "end": 13230.6, + "probability": 0.9783 + }, + { + "start": 13231.1, + "end": 13232.3, + "probability": 0.8127 + }, + { + "start": 13232.96, + "end": 13234.4, + "probability": 0.5946 + }, + { + "start": 13234.54, + "end": 13239.2, + "probability": 0.9893 + }, + { + "start": 13239.2, + "end": 13243.94, + "probability": 0.9993 + }, + { + "start": 13244.06, + "end": 13247.3, + "probability": 0.984 + }, + { + "start": 13248.24, + "end": 13251.34, + "probability": 0.9915 + }, + { + "start": 13251.34, + "end": 13255.5, + "probability": 0.9774 + }, + { + "start": 13255.62, + "end": 13257.2, + "probability": 0.979 + }, + { + "start": 13257.52, + "end": 13258.4, + "probability": 0.9913 + }, + { + "start": 13258.46, + "end": 13261.52, + "probability": 0.9576 + }, + { + "start": 13262.12, + "end": 13263.64, + "probability": 0.9922 + }, + { + "start": 13263.64, + "end": 13265.22, + "probability": 0.9625 + }, + { + "start": 13265.88, + "end": 13268.22, + "probability": 0.8422 + }, + { + "start": 13268.22, + "end": 13270.5, + "probability": 0.8615 + }, + { + "start": 13271.2, + "end": 13273.42, + "probability": 0.961 + }, + { + "start": 13273.84, + "end": 13274.48, + "probability": 0.7684 + }, + { + "start": 13274.98, + "end": 13277.64, + "probability": 0.9233 + }, + { + "start": 13278.08, + "end": 13280.58, + "probability": 0.9928 + }, + { + "start": 13280.58, + "end": 13284.68, + "probability": 0.9861 + }, + { + "start": 13285.24, + "end": 13289.0, + "probability": 0.88 + }, + { + "start": 13289.52, + "end": 13293.08, + "probability": 0.9657 + }, + { + "start": 13293.46, + "end": 13294.66, + "probability": 0.7597 + }, + { + "start": 13294.7, + "end": 13296.82, + "probability": 0.9971 + }, + { + "start": 13297.86, + "end": 13298.18, + "probability": 0.3749 + }, + { + "start": 13298.26, + "end": 13300.42, + "probability": 0.9856 + }, + { + "start": 13300.52, + "end": 13302.34, + "probability": 0.9729 + }, + { + "start": 13303.3, + "end": 13306.22, + "probability": 0.9958 + }, + { + "start": 13306.22, + "end": 13309.02, + "probability": 0.9963 + }, + { + "start": 13309.64, + "end": 13311.54, + "probability": 0.9938 + }, + { + "start": 13311.58, + "end": 13312.6, + "probability": 0.8564 + }, + { + "start": 13313.1, + "end": 13313.38, + "probability": 0.3893 + }, + { + "start": 13313.38, + "end": 13316.22, + "probability": 0.9805 + }, + { + "start": 13316.7, + "end": 13319.92, + "probability": 0.9785 + }, + { + "start": 13320.5, + "end": 13321.28, + "probability": 0.9927 + }, + { + "start": 13322.94, + "end": 13324.66, + "probability": 0.7871 + }, + { + "start": 13324.66, + "end": 13327.36, + "probability": 0.8459 + }, + { + "start": 13327.98, + "end": 13330.6, + "probability": 0.9746 + }, + { + "start": 13330.72, + "end": 13332.9, + "probability": 0.9893 + }, + { + "start": 13332.92, + "end": 13335.18, + "probability": 0.9923 + }, + { + "start": 13335.8, + "end": 13336.48, + "probability": 0.8179 + }, + { + "start": 13336.58, + "end": 13338.6, + "probability": 0.8788 + }, + { + "start": 13339.2, + "end": 13340.56, + "probability": 0.9043 + }, + { + "start": 13341.52, + "end": 13342.32, + "probability": 0.633 + }, + { + "start": 13342.44, + "end": 13342.44, + "probability": 0.4005 + }, + { + "start": 13342.44, + "end": 13344.0, + "probability": 0.9938 + }, + { + "start": 13344.54, + "end": 13344.82, + "probability": 0.3103 + }, + { + "start": 13344.82, + "end": 13348.8, + "probability": 0.9605 + }, + { + "start": 13349.14, + "end": 13350.2, + "probability": 0.9689 + }, + { + "start": 13350.3, + "end": 13353.08, + "probability": 0.9504 + }, + { + "start": 13353.7, + "end": 13355.14, + "probability": 0.9938 + }, + { + "start": 13356.0, + "end": 13356.44, + "probability": 0.8653 + }, + { + "start": 13356.54, + "end": 13358.92, + "probability": 0.9805 + }, + { + "start": 13358.92, + "end": 13361.5, + "probability": 0.9784 + }, + { + "start": 13362.1, + "end": 13364.22, + "probability": 0.9851 + }, + { + "start": 13364.22, + "end": 13366.36, + "probability": 0.9896 + }, + { + "start": 13366.88, + "end": 13370.1, + "probability": 0.9724 + }, + { + "start": 13370.2, + "end": 13373.84, + "probability": 0.9906 + }, + { + "start": 13374.44, + "end": 13375.66, + "probability": 0.9733 + }, + { + "start": 13376.52, + "end": 13378.14, + "probability": 0.8464 + }, + { + "start": 13378.14, + "end": 13380.3, + "probability": 0.8779 + }, + { + "start": 13380.96, + "end": 13381.22, + "probability": 0.3742 + }, + { + "start": 13381.3, + "end": 13383.02, + "probability": 0.9915 + }, + { + "start": 13383.02, + "end": 13385.78, + "probability": 0.9915 + }, + { + "start": 13386.34, + "end": 13388.58, + "probability": 0.989 + }, + { + "start": 13388.66, + "end": 13390.4, + "probability": 0.9147 + }, + { + "start": 13390.82, + "end": 13392.4, + "probability": 0.9136 + }, + { + "start": 13392.8, + "end": 13395.08, + "probability": 0.9985 + }, + { + "start": 13395.14, + "end": 13397.62, + "probability": 0.9893 + }, + { + "start": 13398.06, + "end": 13401.28, + "probability": 0.9823 + }, + { + "start": 13401.88, + "end": 13403.08, + "probability": 0.662 + }, + { + "start": 13403.18, + "end": 13405.76, + "probability": 0.9872 + }, + { + "start": 13406.28, + "end": 13407.82, + "probability": 0.9141 + }, + { + "start": 13408.44, + "end": 13410.78, + "probability": 0.5963 + }, + { + "start": 13411.28, + "end": 13411.28, + "probability": 0.8547 + }, + { + "start": 13411.28, + "end": 13414.9, + "probability": 0.9945 + }, + { + "start": 13415.36, + "end": 13417.1, + "probability": 0.9656 + }, + { + "start": 13418.41, + "end": 13419.26, + "probability": 0.3391 + }, + { + "start": 13420.56, + "end": 13421.34, + "probability": 0.9404 + }, + { + "start": 13421.88, + "end": 13423.98, + "probability": 0.6755 + }, + { + "start": 13427.24, + "end": 13428.7, + "probability": 0.8704 + }, + { + "start": 13432.28, + "end": 13432.94, + "probability": 0.3868 + }, + { + "start": 13433.14, + "end": 13437.96, + "probability": 0.9967 + }, + { + "start": 13438.16, + "end": 13441.12, + "probability": 0.9892 + }, + { + "start": 13441.2, + "end": 13444.86, + "probability": 0.9916 + }, + { + "start": 13445.0, + "end": 13445.79, + "probability": 0.8372 + }, + { + "start": 13446.42, + "end": 13450.14, + "probability": 0.9581 + }, + { + "start": 13450.76, + "end": 13453.32, + "probability": 0.9972 + }, + { + "start": 13453.32, + "end": 13457.18, + "probability": 0.9912 + }, + { + "start": 13457.34, + "end": 13458.58, + "probability": 0.8718 + }, + { + "start": 13458.7, + "end": 13461.08, + "probability": 0.9688 + }, + { + "start": 13461.16, + "end": 13461.98, + "probability": 0.7678 + }, + { + "start": 13462.1, + "end": 13463.1, + "probability": 0.659 + }, + { + "start": 13463.72, + "end": 13464.52, + "probability": 0.6765 + }, + { + "start": 13465.08, + "end": 13465.58, + "probability": 0.702 + }, + { + "start": 13465.7, + "end": 13467.8, + "probability": 0.99 + }, + { + "start": 13468.22, + "end": 13472.2, + "probability": 0.9055 + }, + { + "start": 13473.36, + "end": 13477.1, + "probability": 0.9932 + }, + { + "start": 13477.72, + "end": 13479.74, + "probability": 0.9976 + }, + { + "start": 13479.88, + "end": 13484.72, + "probability": 0.8818 + }, + { + "start": 13485.16, + "end": 13486.24, + "probability": 0.5674 + }, + { + "start": 13486.5, + "end": 13490.54, + "probability": 0.9895 + }, + { + "start": 13491.48, + "end": 13494.22, + "probability": 0.9627 + }, + { + "start": 13494.6, + "end": 13496.62, + "probability": 0.979 + }, + { + "start": 13497.14, + "end": 13497.28, + "probability": 0.3264 + }, + { + "start": 13497.36, + "end": 13498.08, + "probability": 0.7388 + }, + { + "start": 13498.54, + "end": 13502.64, + "probability": 0.9738 + }, + { + "start": 13503.12, + "end": 13503.88, + "probability": 0.8186 + }, + { + "start": 13504.22, + "end": 13505.82, + "probability": 0.9503 + }, + { + "start": 13506.35, + "end": 13507.94, + "probability": 0.8062 + }, + { + "start": 13508.16, + "end": 13509.52, + "probability": 0.6556 + }, + { + "start": 13509.6, + "end": 13512.08, + "probability": 0.9752 + }, + { + "start": 13512.42, + "end": 13514.82, + "probability": 0.9707 + }, + { + "start": 13515.38, + "end": 13518.0, + "probability": 0.9943 + }, + { + "start": 13518.96, + "end": 13523.06, + "probability": 0.9805 + }, + { + "start": 13523.6, + "end": 13526.12, + "probability": 0.9508 + }, + { + "start": 13526.28, + "end": 13527.56, + "probability": 0.9763 + }, + { + "start": 13528.02, + "end": 13529.32, + "probability": 0.8985 + }, + { + "start": 13529.94, + "end": 13539.04, + "probability": 0.9443 + }, + { + "start": 13539.16, + "end": 13540.66, + "probability": 0.9044 + }, + { + "start": 13541.36, + "end": 13546.22, + "probability": 0.9961 + }, + { + "start": 13546.28, + "end": 13547.8, + "probability": 0.9987 + }, + { + "start": 13548.28, + "end": 13551.44, + "probability": 0.9534 + }, + { + "start": 13551.44, + "end": 13555.4, + "probability": 0.9952 + }, + { + "start": 13558.12, + "end": 13561.02, + "probability": 0.7645 + }, + { + "start": 13561.46, + "end": 13565.48, + "probability": 0.9843 + }, + { + "start": 13566.98, + "end": 13569.74, + "probability": 0.9575 + }, + { + "start": 13570.62, + "end": 13574.2, + "probability": 0.6465 + }, + { + "start": 13575.78, + "end": 13580.52, + "probability": 0.9067 + }, + { + "start": 13581.38, + "end": 13584.46, + "probability": 0.8955 + }, + { + "start": 13588.12, + "end": 13589.92, + "probability": 0.9761 + }, + { + "start": 13589.92, + "end": 13593.0, + "probability": 0.7879 + }, + { + "start": 13593.1, + "end": 13596.84, + "probability": 0.9836 + }, + { + "start": 13596.94, + "end": 13600.22, + "probability": 0.9953 + }, + { + "start": 13600.76, + "end": 13603.28, + "probability": 0.6511 + }, + { + "start": 13603.56, + "end": 13604.84, + "probability": 0.6627 + }, + { + "start": 13605.16, + "end": 13607.0, + "probability": 0.8394 + }, + { + "start": 13607.0, + "end": 13610.46, + "probability": 0.9245 + }, + { + "start": 13612.02, + "end": 13616.54, + "probability": 0.9846 + }, + { + "start": 13617.42, + "end": 13618.66, + "probability": 0.4944 + }, + { + "start": 13630.0, + "end": 13630.7, + "probability": 0.834 + }, + { + "start": 13631.86, + "end": 13633.38, + "probability": 0.7466 + }, + { + "start": 13633.42, + "end": 13634.46, + "probability": 0.7191 + }, + { + "start": 13634.52, + "end": 13634.74, + "probability": 0.4747 + }, + { + "start": 13634.88, + "end": 13635.9, + "probability": 0.7 + }, + { + "start": 13635.9, + "end": 13636.38, + "probability": 0.9476 + }, + { + "start": 13636.4, + "end": 13639.26, + "probability": 0.9865 + }, + { + "start": 13639.3, + "end": 13640.26, + "probability": 0.9673 + }, + { + "start": 13640.46, + "end": 13641.38, + "probability": 0.0023 + }, + { + "start": 13642.16, + "end": 13646.68, + "probability": 0.8004 + }, + { + "start": 13647.48, + "end": 13647.86, + "probability": 0.0472 + }, + { + "start": 13647.86, + "end": 13647.86, + "probability": 0.3633 + }, + { + "start": 13647.86, + "end": 13652.02, + "probability": 0.7295 + }, + { + "start": 13653.04, + "end": 13657.16, + "probability": 0.922 + }, + { + "start": 13657.32, + "end": 13659.78, + "probability": 0.9355 + }, + { + "start": 13659.78, + "end": 13662.12, + "probability": 0.9703 + }, + { + "start": 13662.82, + "end": 13666.42, + "probability": 0.8883 + }, + { + "start": 13667.1, + "end": 13672.02, + "probability": 0.8604 + }, + { + "start": 13672.1, + "end": 13674.46, + "probability": 0.9165 + }, + { + "start": 13675.06, + "end": 13676.02, + "probability": 0.9401 + }, + { + "start": 13676.68, + "end": 13678.87, + "probability": 0.9976 + }, + { + "start": 13680.86, + "end": 13682.04, + "probability": 0.8804 + }, + { + "start": 13682.22, + "end": 13684.62, + "probability": 0.989 + }, + { + "start": 13685.04, + "end": 13687.18, + "probability": 0.9771 + }, + { + "start": 13687.94, + "end": 13693.78, + "probability": 0.9741 + }, + { + "start": 13694.22, + "end": 13696.44, + "probability": 0.9755 + }, + { + "start": 13696.44, + "end": 13699.2, + "probability": 0.9976 + }, + { + "start": 13699.32, + "end": 13701.3, + "probability": 0.9487 + }, + { + "start": 13703.02, + "end": 13706.14, + "probability": 0.857 + }, + { + "start": 13706.14, + "end": 13708.84, + "probability": 0.9587 + }, + { + "start": 13709.26, + "end": 13713.16, + "probability": 0.9124 + }, + { + "start": 13713.56, + "end": 13717.24, + "probability": 0.9775 + }, + { + "start": 13717.24, + "end": 13722.48, + "probability": 0.9756 + }, + { + "start": 13722.66, + "end": 13728.32, + "probability": 0.8654 + }, + { + "start": 13728.88, + "end": 13733.42, + "probability": 0.9971 + }, + { + "start": 13734.18, + "end": 13739.48, + "probability": 0.976 + }, + { + "start": 13740.06, + "end": 13741.96, + "probability": 0.7581 + }, + { + "start": 13742.1, + "end": 13744.88, + "probability": 0.965 + }, + { + "start": 13746.18, + "end": 13750.5, + "probability": 0.9932 + }, + { + "start": 13751.16, + "end": 13752.92, + "probability": 0.9249 + }, + { + "start": 13753.66, + "end": 13757.02, + "probability": 0.9302 + }, + { + "start": 13757.12, + "end": 13758.24, + "probability": 0.7856 + }, + { + "start": 13758.32, + "end": 13758.88, + "probability": 0.5697 + }, + { + "start": 13758.94, + "end": 13760.82, + "probability": 0.9631 + }, + { + "start": 13761.5, + "end": 13763.92, + "probability": 0.8058 + }, + { + "start": 13764.16, + "end": 13765.82, + "probability": 0.5588 + }, + { + "start": 13766.1, + "end": 13768.06, + "probability": 0.7045 + }, + { + "start": 13768.76, + "end": 13772.46, + "probability": 0.9906 + }, + { + "start": 13772.46, + "end": 13779.78, + "probability": 0.8544 + }, + { + "start": 13779.94, + "end": 13788.2, + "probability": 0.9143 + }, + { + "start": 13788.92, + "end": 13793.18, + "probability": 0.9994 + }, + { + "start": 13793.24, + "end": 13795.2, + "probability": 0.707 + }, + { + "start": 13795.32, + "end": 13796.94, + "probability": 0.8104 + }, + { + "start": 13797.08, + "end": 13798.06, + "probability": 0.7407 + }, + { + "start": 13798.72, + "end": 13801.88, + "probability": 0.9211 + }, + { + "start": 13802.24, + "end": 13804.62, + "probability": 0.7543 + }, + { + "start": 13804.82, + "end": 13807.34, + "probability": 0.9798 + }, + { + "start": 13809.76, + "end": 13811.32, + "probability": 0.8516 + }, + { + "start": 13812.38, + "end": 13814.5, + "probability": 0.7544 + }, + { + "start": 13814.68, + "end": 13815.42, + "probability": 0.7995 + }, + { + "start": 13815.52, + "end": 13816.7, + "probability": 0.6391 + }, + { + "start": 13816.86, + "end": 13818.2, + "probability": 0.9268 + }, + { + "start": 13818.28, + "end": 13819.88, + "probability": 0.9523 + }, + { + "start": 13820.46, + "end": 13825.84, + "probability": 0.979 + }, + { + "start": 13826.6, + "end": 13831.0, + "probability": 0.9896 + }, + { + "start": 13831.12, + "end": 13831.6, + "probability": 0.8234 + }, + { + "start": 13832.0, + "end": 13833.24, + "probability": 0.6541 + }, + { + "start": 13833.28, + "end": 13835.96, + "probability": 0.9888 + }, + { + "start": 13835.96, + "end": 13838.52, + "probability": 0.9027 + }, + { + "start": 13838.7, + "end": 13840.26, + "probability": 0.4752 + }, + { + "start": 13841.28, + "end": 13843.04, + "probability": 0.6362 + }, + { + "start": 13843.2, + "end": 13845.66, + "probability": 0.5687 + }, + { + "start": 13848.98, + "end": 13850.7, + "probability": 0.0045 + }, + { + "start": 13855.42, + "end": 13859.08, + "probability": 0.0406 + }, + { + "start": 13859.08, + "end": 13861.8, + "probability": 0.4517 + }, + { + "start": 13861.88, + "end": 13864.86, + "probability": 0.9717 + }, + { + "start": 13865.64, + "end": 13869.26, + "probability": 0.7197 + }, + { + "start": 13869.5, + "end": 13874.5, + "probability": 0.5649 + }, + { + "start": 13878.9, + "end": 13880.7, + "probability": 0.0173 + }, + { + "start": 13881.56, + "end": 13883.38, + "probability": 0.0671 + }, + { + "start": 13884.68, + "end": 13885.3, + "probability": 0.1281 + }, + { + "start": 13890.2, + "end": 13893.28, + "probability": 0.4929 + }, + { + "start": 13900.26, + "end": 13903.24, + "probability": 0.5195 + }, + { + "start": 13903.36, + "end": 13906.08, + "probability": 0.6194 + }, + { + "start": 13906.24, + "end": 13912.38, + "probability": 0.9403 + }, + { + "start": 13913.0, + "end": 13913.12, + "probability": 0.0423 + }, + { + "start": 13913.12, + "end": 13916.46, + "probability": 0.3014 + }, + { + "start": 13918.72, + "end": 13919.56, + "probability": 0.0309 + }, + { + "start": 13919.7, + "end": 13919.82, + "probability": 0.0265 + }, + { + "start": 13919.82, + "end": 13920.32, + "probability": 0.2025 + }, + { + "start": 13920.6, + "end": 13924.07, + "probability": 0.2405 + }, + { + "start": 13924.88, + "end": 13926.98, + "probability": 0.9258 + }, + { + "start": 13927.53, + "end": 13928.98, + "probability": 0.9141 + }, + { + "start": 13929.32, + "end": 13929.32, + "probability": 0.4553 + }, + { + "start": 13929.32, + "end": 13929.66, + "probability": 0.167 + }, + { + "start": 13929.76, + "end": 13931.51, + "probability": 0.2033 + }, + { + "start": 13931.78, + "end": 13934.0, + "probability": 0.6134 + }, + { + "start": 13935.0, + "end": 13935.9, + "probability": 0.0227 + }, + { + "start": 13938.1, + "end": 13939.18, + "probability": 0.6621 + }, + { + "start": 13942.46, + "end": 13944.04, + "probability": 0.4337 + }, + { + "start": 13944.38, + "end": 13947.02, + "probability": 0.5648 + }, + { + "start": 13947.88, + "end": 13948.84, + "probability": 0.2141 + }, + { + "start": 13949.84, + "end": 13954.2, + "probability": 0.9524 + }, + { + "start": 13958.18, + "end": 13959.18, + "probability": 0.6906 + }, + { + "start": 13959.44, + "end": 13960.65, + "probability": 0.6845 + }, + { + "start": 13960.78, + "end": 13962.06, + "probability": 0.4138 + }, + { + "start": 13962.82, + "end": 13964.88, + "probability": 0.8312 + }, + { + "start": 13965.96, + "end": 13969.32, + "probability": 0.807 + }, + { + "start": 13971.06, + "end": 13973.24, + "probability": 0.9636 + }, + { + "start": 13973.24, + "end": 13976.76, + "probability": 0.988 + }, + { + "start": 13977.3, + "end": 13980.4, + "probability": 0.7687 + }, + { + "start": 13981.9, + "end": 13987.38, + "probability": 0.9871 + }, + { + "start": 13989.14, + "end": 13989.76, + "probability": 0.6632 + }, + { + "start": 13993.3, + "end": 13995.32, + "probability": 0.9539 + }, + { + "start": 14001.3, + "end": 14002.08, + "probability": 0.6375 + }, + { + "start": 14002.98, + "end": 14004.56, + "probability": 0.7808 + }, + { + "start": 14004.88, + "end": 14007.24, + "probability": 0.7809 + }, + { + "start": 14007.84, + "end": 14011.64, + "probability": 0.9722 + }, + { + "start": 14011.64, + "end": 14015.62, + "probability": 0.8459 + }, + { + "start": 14015.78, + "end": 14017.04, + "probability": 0.5311 + }, + { + "start": 14017.6, + "end": 14018.94, + "probability": 0.496 + }, + { + "start": 14019.68, + "end": 14020.5, + "probability": 0.9736 + }, + { + "start": 14021.12, + "end": 14024.14, + "probability": 0.9986 + }, + { + "start": 14024.2, + "end": 14027.84, + "probability": 0.9945 + }, + { + "start": 14028.38, + "end": 14029.78, + "probability": 0.8841 + }, + { + "start": 14029.98, + "end": 14030.86, + "probability": 0.8706 + }, + { + "start": 14030.9, + "end": 14033.25, + "probability": 0.9144 + }, + { + "start": 14034.0, + "end": 14034.62, + "probability": 0.7448 + }, + { + "start": 14035.6, + "end": 14037.94, + "probability": 0.8776 + }, + { + "start": 14037.98, + "end": 14039.14, + "probability": 0.9248 + }, + { + "start": 14039.7, + "end": 14042.4, + "probability": 0.7996 + }, + { + "start": 14042.9, + "end": 14046.08, + "probability": 0.9788 + }, + { + "start": 14046.12, + "end": 14048.88, + "probability": 0.9774 + }, + { + "start": 14048.88, + "end": 14051.98, + "probability": 0.9805 + }, + { + "start": 14052.68, + "end": 14054.76, + "probability": 0.711 + }, + { + "start": 14054.8, + "end": 14057.72, + "probability": 0.993 + }, + { + "start": 14058.46, + "end": 14060.14, + "probability": 0.9858 + }, + { + "start": 14060.98, + "end": 14061.88, + "probability": 0.7587 + }, + { + "start": 14062.02, + "end": 14063.56, + "probability": 0.644 + }, + { + "start": 14064.98, + "end": 14068.9, + "probability": 0.6758 + }, + { + "start": 14069.86, + "end": 14072.7, + "probability": 0.7082 + }, + { + "start": 14073.54, + "end": 14076.48, + "probability": 0.8612 + }, + { + "start": 14077.26, + "end": 14078.5, + "probability": 0.8525 + }, + { + "start": 14078.58, + "end": 14079.04, + "probability": 0.4951 + }, + { + "start": 14079.38, + "end": 14081.04, + "probability": 0.9577 + }, + { + "start": 14081.9, + "end": 14084.04, + "probability": 0.6374 + }, + { + "start": 14084.82, + "end": 14087.88, + "probability": 0.7441 + }, + { + "start": 14088.82, + "end": 14091.66, + "probability": 0.876 + }, + { + "start": 14092.36, + "end": 14094.54, + "probability": 0.9667 + }, + { + "start": 14095.16, + "end": 14095.9, + "probability": 0.6653 + }, + { + "start": 14097.2, + "end": 14098.5, + "probability": 0.847 + }, + { + "start": 14099.24, + "end": 14101.42, + "probability": 0.8929 + }, + { + "start": 14102.06, + "end": 14102.62, + "probability": 0.9448 + }, + { + "start": 14103.44, + "end": 14104.92, + "probability": 0.9425 + }, + { + "start": 14105.6, + "end": 14106.22, + "probability": 0.9366 + }, + { + "start": 14107.54, + "end": 14108.72, + "probability": 0.9671 + }, + { + "start": 14109.7, + "end": 14113.0, + "probability": 0.6591 + }, + { + "start": 14113.52, + "end": 14115.18, + "probability": 0.8752 + }, + { + "start": 14115.88, + "end": 14118.82, + "probability": 0.7819 + }, + { + "start": 14119.6, + "end": 14122.02, + "probability": 0.8747 + }, + { + "start": 14122.66, + "end": 14124.7, + "probability": 0.9882 + }, + { + "start": 14125.22, + "end": 14127.68, + "probability": 0.9281 + }, + { + "start": 14131.7, + "end": 14132.6, + "probability": 0.409 + }, + { + "start": 14132.6, + "end": 14132.6, + "probability": 0.3045 + }, + { + "start": 14132.6, + "end": 14133.02, + "probability": 0.6047 + }, + { + "start": 14133.4, + "end": 14134.06, + "probability": 0.841 + }, + { + "start": 14134.16, + "end": 14135.16, + "probability": 0.845 + }, + { + "start": 14135.3, + "end": 14135.9, + "probability": 0.9042 + }, + { + "start": 14136.44, + "end": 14138.4, + "probability": 0.916 + }, + { + "start": 14138.92, + "end": 14141.84, + "probability": 0.7012 + }, + { + "start": 14142.56, + "end": 14146.26, + "probability": 0.7922 + }, + { + "start": 14149.02, + "end": 14150.86, + "probability": 0.5254 + }, + { + "start": 14151.7, + "end": 14153.03, + "probability": 0.441 + }, + { + "start": 14153.3, + "end": 14154.19, + "probability": 0.5544 + }, + { + "start": 14155.48, + "end": 14157.41, + "probability": 0.9198 + }, + { + "start": 14158.62, + "end": 14160.15, + "probability": 0.2364 + }, + { + "start": 14160.22, + "end": 14162.92, + "probability": 0.9756 + }, + { + "start": 14163.52, + "end": 14166.88, + "probability": 0.5293 + }, + { + "start": 14167.64, + "end": 14171.4, + "probability": 0.3696 + }, + { + "start": 14187.96, + "end": 14192.24, + "probability": 0.6849 + }, + { + "start": 14193.85, + "end": 14197.12, + "probability": 0.3948 + }, + { + "start": 14197.34, + "end": 14200.08, + "probability": 0.4339 + }, + { + "start": 14201.34, + "end": 14202.7, + "probability": 0.1532 + }, + { + "start": 14210.76, + "end": 14213.34, + "probability": 0.0866 + }, + { + "start": 14214.24, + "end": 14215.5, + "probability": 0.117 + }, + { + "start": 14216.26, + "end": 14218.68, + "probability": 0.1745 + }, + { + "start": 14223.44, + "end": 14225.84, + "probability": 0.0185 + }, + { + "start": 14225.84, + "end": 14226.04, + "probability": 0.0263 + }, + { + "start": 14226.36, + "end": 14227.52, + "probability": 0.0207 + }, + { + "start": 14227.88, + "end": 14228.6, + "probability": 0.0476 + }, + { + "start": 14229.04, + "end": 14231.66, + "probability": 0.2926 + }, + { + "start": 14237.56, + "end": 14242.38, + "probability": 0.1249 + }, + { + "start": 14242.55, + "end": 14242.66, + "probability": 0.1269 + }, + { + "start": 14242.66, + "end": 14242.8, + "probability": 0.2457 + }, + { + "start": 14242.82, + "end": 14243.21, + "probability": 0.3907 + }, + { + "start": 14243.72, + "end": 14243.98, + "probability": 0.2356 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14244.0, + "end": 14244.0, + "probability": 0.0 + }, + { + "start": 14249.96, + "end": 14250.9, + "probability": 0.3185 + }, + { + "start": 14250.9, + "end": 14253.5, + "probability": 0.1278 + }, + { + "start": 14262.94, + "end": 14264.38, + "probability": 0.0921 + }, + { + "start": 14266.74, + "end": 14270.14, + "probability": 0.2587 + }, + { + "start": 14270.14, + "end": 14272.88, + "probability": 0.1698 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.0, + "end": 14380.0, + "probability": 0.0 + }, + { + "start": 14380.12, + "end": 14380.18, + "probability": 0.0349 + }, + { + "start": 14380.18, + "end": 14380.88, + "probability": 0.5979 + }, + { + "start": 14380.98, + "end": 14382.34, + "probability": 0.6369 + }, + { + "start": 14382.62, + "end": 14383.94, + "probability": 0.4481 + }, + { + "start": 14384.44, + "end": 14385.94, + "probability": 0.9704 + }, + { + "start": 14386.1, + "end": 14386.96, + "probability": 0.5392 + }, + { + "start": 14392.12, + "end": 14393.88, + "probability": 0.7712 + }, + { + "start": 14393.98, + "end": 14395.74, + "probability": 0.8191 + }, + { + "start": 14402.22, + "end": 14402.74, + "probability": 0.4555 + }, + { + "start": 14403.74, + "end": 14406.56, + "probability": 0.52 + }, + { + "start": 14406.56, + "end": 14410.22, + "probability": 0.8917 + }, + { + "start": 14410.22, + "end": 14412.48, + "probability": 0.6885 + }, + { + "start": 14413.26, + "end": 14418.72, + "probability": 0.3039 + }, + { + "start": 14433.54, + "end": 14436.74, + "probability": 0.7499 + }, + { + "start": 14436.74, + "end": 14438.74, + "probability": 0.8399 + }, + { + "start": 14439.28, + "end": 14442.64, + "probability": 0.5712 + }, + { + "start": 14443.58, + "end": 14444.48, + "probability": 0.4251 + }, + { + "start": 14445.58, + "end": 14447.4, + "probability": 0.2877 + }, + { + "start": 14450.4, + "end": 14451.02, + "probability": 0.1404 + }, + { + "start": 14451.92, + "end": 14453.24, + "probability": 0.0229 + }, + { + "start": 14453.4, + "end": 14454.88, + "probability": 0.0942 + }, + { + "start": 14454.88, + "end": 14454.88, + "probability": 0.1094 + }, + { + "start": 14459.32, + "end": 14459.42, + "probability": 0.2276 + }, + { + "start": 14460.58, + "end": 14460.96, + "probability": 0.0781 + }, + { + "start": 14462.02, + "end": 14462.12, + "probability": 0.0488 + }, + { + "start": 14478.1, + "end": 14478.46, + "probability": 0.0255 + }, + { + "start": 14479.9, + "end": 14480.06, + "probability": 0.0205 + }, + { + "start": 14492.76, + "end": 14499.32, + "probability": 0.0701 + }, + { + "start": 14556.01, + "end": 14556.01, + "probability": 0.0 + }, + { + "start": 14556.01, + "end": 14556.01, + "probability": 0.0 + } + ], + "segments_count": 5310, + "words_count": 25985, + "avg_words_per_segment": 4.8936, + "avg_segment_duration": 1.8433, + "avg_words_per_minute": 107.1104, + "plenum_id": "124074", + "duration": 14556.01, + "title": null, + "plenum_date": "2024-02-12" +} \ No newline at end of file