diff --git "a/15097/metadata.json" "b/15097/metadata.json" new file mode 100644--- /dev/null +++ "b/15097/metadata.json" @@ -0,0 +1,86717 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "15097", + "quality_score": 0.8804, + "per_segment_quality_scores": [ + { + "start": 14.68, + "end": 16.1, + "probability": 0.1476 + }, + { + "start": 18.22, + "end": 20.4, + "probability": 0.3052 + }, + { + "start": 67.78, + "end": 72.02, + "probability": 0.6736 + }, + { + "start": 72.98, + "end": 75.44, + "probability": 0.5544 + }, + { + "start": 76.66, + "end": 79.22, + "probability": 0.8671 + }, + { + "start": 80.32, + "end": 83.08, + "probability": 0.9881 + }, + { + "start": 83.68, + "end": 87.1, + "probability": 0.964 + }, + { + "start": 87.74, + "end": 88.88, + "probability": 0.5705 + }, + { + "start": 89.44, + "end": 90.78, + "probability": 0.7691 + }, + { + "start": 91.58, + "end": 95.3, + "probability": 0.8895 + }, + { + "start": 95.8, + "end": 97.46, + "probability": 0.7729 + }, + { + "start": 98.54, + "end": 105.16, + "probability": 0.9791 + }, + { + "start": 105.9, + "end": 106.68, + "probability": 0.8825 + }, + { + "start": 106.74, + "end": 113.56, + "probability": 0.9538 + }, + { + "start": 114.14, + "end": 115.88, + "probability": 0.5688 + }, + { + "start": 121.16, + "end": 124.36, + "probability": 0.9236 + }, + { + "start": 125.66, + "end": 128.02, + "probability": 0.9768 + }, + { + "start": 128.76, + "end": 129.4, + "probability": 0.4989 + }, + { + "start": 136.12, + "end": 140.62, + "probability": 0.7167 + }, + { + "start": 141.16, + "end": 144.06, + "probability": 0.8833 + }, + { + "start": 145.08, + "end": 150.84, + "probability": 0.9771 + }, + { + "start": 151.4, + "end": 151.96, + "probability": 0.6041 + }, + { + "start": 152.38, + "end": 153.76, + "probability": 0.8722 + }, + { + "start": 154.32, + "end": 155.98, + "probability": 0.9955 + }, + { + "start": 156.9, + "end": 158.92, + "probability": 0.954 + }, + { + "start": 159.92, + "end": 161.86, + "probability": 0.9762 + }, + { + "start": 161.98, + "end": 163.76, + "probability": 0.9009 + }, + { + "start": 163.88, + "end": 164.9, + "probability": 0.8701 + }, + { + "start": 165.22, + "end": 168.44, + "probability": 0.8201 + }, + { + "start": 168.88, + "end": 172.58, + "probability": 0.7864 + }, + { + "start": 173.5, + "end": 174.78, + "probability": 0.7191 + }, + { + "start": 174.92, + "end": 176.32, + "probability": 0.981 + }, + { + "start": 177.32, + "end": 178.46, + "probability": 0.862 + }, + { + "start": 178.6, + "end": 179.28, + "probability": 0.6558 + }, + { + "start": 179.48, + "end": 180.86, + "probability": 0.8018 + }, + { + "start": 181.46, + "end": 185.2, + "probability": 0.9325 + }, + { + "start": 185.38, + "end": 189.7, + "probability": 0.9023 + }, + { + "start": 190.22, + "end": 193.84, + "probability": 0.9915 + }, + { + "start": 194.52, + "end": 196.36, + "probability": 0.8374 + }, + { + "start": 197.65, + "end": 201.6, + "probability": 0.984 + }, + { + "start": 201.74, + "end": 202.94, + "probability": 0.7667 + }, + { + "start": 203.72, + "end": 207.48, + "probability": 0.8818 + }, + { + "start": 208.12, + "end": 208.86, + "probability": 0.7579 + }, + { + "start": 208.98, + "end": 210.72, + "probability": 0.7243 + }, + { + "start": 211.24, + "end": 215.04, + "probability": 0.9044 + }, + { + "start": 215.04, + "end": 217.9, + "probability": 0.9978 + }, + { + "start": 218.48, + "end": 218.66, + "probability": 0.3748 + }, + { + "start": 219.32, + "end": 219.84, + "probability": 0.5694 + }, + { + "start": 220.02, + "end": 220.7, + "probability": 0.535 + }, + { + "start": 220.9, + "end": 221.2, + "probability": 0.4451 + }, + { + "start": 221.26, + "end": 223.02, + "probability": 0.5757 + }, + { + "start": 223.72, + "end": 226.06, + "probability": 0.9983 + }, + { + "start": 227.34, + "end": 230.16, + "probability": 0.979 + }, + { + "start": 230.22, + "end": 233.52, + "probability": 0.9791 + }, + { + "start": 234.38, + "end": 239.72, + "probability": 0.9708 + }, + { + "start": 239.72, + "end": 248.42, + "probability": 0.7729 + }, + { + "start": 248.62, + "end": 250.2, + "probability": 0.9397 + }, + { + "start": 251.2, + "end": 254.48, + "probability": 0.7913 + }, + { + "start": 254.52, + "end": 257.02, + "probability": 0.9918 + }, + { + "start": 258.06, + "end": 258.86, + "probability": 0.9618 + }, + { + "start": 260.12, + "end": 264.12, + "probability": 0.9855 + }, + { + "start": 264.86, + "end": 267.42, + "probability": 0.9689 + }, + { + "start": 267.42, + "end": 269.88, + "probability": 0.9949 + }, + { + "start": 270.04, + "end": 270.62, + "probability": 0.842 + }, + { + "start": 271.76, + "end": 275.08, + "probability": 0.979 + }, + { + "start": 275.82, + "end": 276.34, + "probability": 0.9055 + }, + { + "start": 277.58, + "end": 280.66, + "probability": 0.7231 + }, + { + "start": 280.74, + "end": 284.4, + "probability": 0.9274 + }, + { + "start": 284.54, + "end": 287.06, + "probability": 0.933 + }, + { + "start": 287.46, + "end": 290.26, + "probability": 0.8345 + }, + { + "start": 291.28, + "end": 291.82, + "probability": 0.92 + }, + { + "start": 293.36, + "end": 294.28, + "probability": 0.739 + }, + { + "start": 295.3, + "end": 297.48, + "probability": 0.904 + }, + { + "start": 298.38, + "end": 300.1, + "probability": 0.9883 + }, + { + "start": 300.64, + "end": 303.28, + "probability": 0.9953 + }, + { + "start": 305.05, + "end": 306.2, + "probability": 0.8904 + }, + { + "start": 306.94, + "end": 307.58, + "probability": 0.6504 + }, + { + "start": 307.88, + "end": 309.42, + "probability": 0.6986 + }, + { + "start": 309.48, + "end": 310.14, + "probability": 0.754 + }, + { + "start": 312.02, + "end": 315.32, + "probability": 0.9783 + }, + { + "start": 316.48, + "end": 318.92, + "probability": 0.9988 + }, + { + "start": 319.94, + "end": 321.72, + "probability": 0.9915 + }, + { + "start": 322.9, + "end": 326.1, + "probability": 0.8285 + }, + { + "start": 326.16, + "end": 327.74, + "probability": 0.7818 + }, + { + "start": 328.52, + "end": 329.64, + "probability": 0.9902 + }, + { + "start": 330.7, + "end": 331.9, + "probability": 0.9868 + }, + { + "start": 332.76, + "end": 336.06, + "probability": 0.8731 + }, + { + "start": 337.06, + "end": 338.84, + "probability": 0.9932 + }, + { + "start": 340.12, + "end": 341.96, + "probability": 0.9934 + }, + { + "start": 343.1, + "end": 343.86, + "probability": 0.9262 + }, + { + "start": 344.5, + "end": 344.88, + "probability": 0.538 + }, + { + "start": 345.94, + "end": 346.06, + "probability": 0.7095 + }, + { + "start": 346.14, + "end": 347.04, + "probability": 0.631 + }, + { + "start": 347.14, + "end": 349.96, + "probability": 0.8149 + }, + { + "start": 350.1, + "end": 351.22, + "probability": 0.8657 + }, + { + "start": 352.82, + "end": 354.16, + "probability": 0.474 + }, + { + "start": 354.4, + "end": 357.64, + "probability": 0.8276 + }, + { + "start": 357.92, + "end": 358.02, + "probability": 0.6292 + }, + { + "start": 359.3, + "end": 361.62, + "probability": 0.4158 + }, + { + "start": 362.4, + "end": 365.34, + "probability": 0.8063 + }, + { + "start": 366.1, + "end": 366.4, + "probability": 0.8499 + }, + { + "start": 367.32, + "end": 368.32, + "probability": 0.7478 + }, + { + "start": 369.56, + "end": 374.96, + "probability": 0.9773 + }, + { + "start": 375.72, + "end": 378.86, + "probability": 0.9965 + }, + { + "start": 379.76, + "end": 380.28, + "probability": 0.7526 + }, + { + "start": 381.02, + "end": 381.86, + "probability": 0.5879 + }, + { + "start": 381.94, + "end": 382.52, + "probability": 0.9247 + }, + { + "start": 382.7, + "end": 383.41, + "probability": 0.8398 + }, + { + "start": 383.58, + "end": 385.53, + "probability": 0.9939 + }, + { + "start": 386.32, + "end": 390.46, + "probability": 0.9601 + }, + { + "start": 391.57, + "end": 395.08, + "probability": 0.6235 + }, + { + "start": 395.68, + "end": 396.82, + "probability": 0.8643 + }, + { + "start": 397.68, + "end": 405.66, + "probability": 0.9664 + }, + { + "start": 405.88, + "end": 407.26, + "probability": 0.9775 + }, + { + "start": 408.26, + "end": 415.44, + "probability": 0.8233 + }, + { + "start": 415.94, + "end": 417.74, + "probability": 0.7663 + }, + { + "start": 417.92, + "end": 422.66, + "probability": 0.9918 + }, + { + "start": 423.14, + "end": 426.62, + "probability": 0.9722 + }, + { + "start": 427.14, + "end": 430.0, + "probability": 0.7479 + }, + { + "start": 430.46, + "end": 430.92, + "probability": 0.6348 + }, + { + "start": 431.06, + "end": 435.28, + "probability": 0.9655 + }, + { + "start": 435.46, + "end": 435.8, + "probability": 0.895 + }, + { + "start": 436.5, + "end": 437.04, + "probability": 0.7318 + }, + { + "start": 437.14, + "end": 438.68, + "probability": 0.7067 + }, + { + "start": 439.68, + "end": 441.22, + "probability": 0.8594 + }, + { + "start": 441.78, + "end": 444.42, + "probability": 0.9961 + }, + { + "start": 444.88, + "end": 446.1, + "probability": 0.9905 + }, + { + "start": 446.58, + "end": 447.22, + "probability": 0.947 + }, + { + "start": 447.86, + "end": 449.5, + "probability": 0.7514 + }, + { + "start": 450.24, + "end": 451.42, + "probability": 0.8879 + }, + { + "start": 451.56, + "end": 453.96, + "probability": 0.6475 + }, + { + "start": 454.06, + "end": 454.92, + "probability": 0.0842 + }, + { + "start": 455.34, + "end": 456.3, + "probability": 0.5032 + }, + { + "start": 456.5, + "end": 457.54, + "probability": 0.9438 + }, + { + "start": 457.7, + "end": 458.68, + "probability": 0.203 + }, + { + "start": 458.7, + "end": 458.78, + "probability": 0.0517 + }, + { + "start": 458.78, + "end": 465.48, + "probability": 0.9512 + }, + { + "start": 465.48, + "end": 468.24, + "probability": 0.991 + }, + { + "start": 468.44, + "end": 470.1, + "probability": 0.4183 + }, + { + "start": 470.14, + "end": 473.36, + "probability": 0.9939 + }, + { + "start": 473.5, + "end": 474.5, + "probability": 0.7743 + }, + { + "start": 475.04, + "end": 480.64, + "probability": 0.7763 + }, + { + "start": 481.44, + "end": 482.06, + "probability": 0.5811 + }, + { + "start": 482.16, + "end": 483.66, + "probability": 0.8638 + }, + { + "start": 483.66, + "end": 484.54, + "probability": 0.0262 + }, + { + "start": 484.56, + "end": 485.32, + "probability": 0.4722 + }, + { + "start": 485.38, + "end": 485.94, + "probability": 0.7231 + }, + { + "start": 486.64, + "end": 488.46, + "probability": 0.2542 + }, + { + "start": 488.7, + "end": 488.7, + "probability": 0.0557 + }, + { + "start": 488.7, + "end": 489.36, + "probability": 0.0177 + }, + { + "start": 489.36, + "end": 489.48, + "probability": 0.1923 + }, + { + "start": 489.62, + "end": 491.34, + "probability": 0.5661 + }, + { + "start": 491.6, + "end": 492.26, + "probability": 0.0056 + }, + { + "start": 492.34, + "end": 493.06, + "probability": 0.1858 + }, + { + "start": 493.22, + "end": 493.28, + "probability": 0.3782 + }, + { + "start": 493.3, + "end": 494.18, + "probability": 0.512 + }, + { + "start": 494.32, + "end": 494.32, + "probability": 0.0735 + }, + { + "start": 494.44, + "end": 496.22, + "probability": 0.8066 + }, + { + "start": 496.78, + "end": 497.36, + "probability": 0.7625 + }, + { + "start": 497.56, + "end": 499.52, + "probability": 0.8675 + }, + { + "start": 499.52, + "end": 501.68, + "probability": 0.9971 + }, + { + "start": 502.06, + "end": 502.86, + "probability": 0.9938 + }, + { + "start": 503.44, + "end": 504.84, + "probability": 0.5362 + }, + { + "start": 505.34, + "end": 508.54, + "probability": 0.8269 + }, + { + "start": 509.22, + "end": 513.4, + "probability": 0.6467 + }, + { + "start": 514.04, + "end": 517.02, + "probability": 0.5596 + }, + { + "start": 517.1, + "end": 518.1, + "probability": 0.9693 + }, + { + "start": 518.46, + "end": 527.8, + "probability": 0.9531 + }, + { + "start": 528.24, + "end": 529.84, + "probability": 0.627 + }, + { + "start": 529.92, + "end": 530.64, + "probability": 0.9702 + }, + { + "start": 531.22, + "end": 531.38, + "probability": 0.6201 + }, + { + "start": 531.38, + "end": 531.78, + "probability": 0.8135 + }, + { + "start": 531.96, + "end": 532.08, + "probability": 0.7053 + }, + { + "start": 532.18, + "end": 535.02, + "probability": 0.9916 + }, + { + "start": 535.02, + "end": 540.3, + "probability": 0.9599 + }, + { + "start": 541.12, + "end": 541.12, + "probability": 0.0273 + }, + { + "start": 541.12, + "end": 542.52, + "probability": 0.3097 + }, + { + "start": 544.04, + "end": 547.5, + "probability": 0.9033 + }, + { + "start": 548.08, + "end": 549.62, + "probability": 0.9346 + }, + { + "start": 550.38, + "end": 552.22, + "probability": 0.9731 + }, + { + "start": 552.22, + "end": 556.04, + "probability": 0.755 + }, + { + "start": 556.74, + "end": 558.54, + "probability": 0.7769 + }, + { + "start": 559.26, + "end": 561.9, + "probability": 0.7825 + }, + { + "start": 562.12, + "end": 566.34, + "probability": 0.8713 + }, + { + "start": 567.16, + "end": 573.9, + "probability": 0.9281 + }, + { + "start": 574.08, + "end": 575.82, + "probability": 0.7104 + }, + { + "start": 576.32, + "end": 582.16, + "probability": 0.9451 + }, + { + "start": 582.24, + "end": 582.58, + "probability": 0.8422 + }, + { + "start": 583.16, + "end": 583.36, + "probability": 0.4399 + }, + { + "start": 583.42, + "end": 584.5, + "probability": 0.815 + }, + { + "start": 587.0, + "end": 588.86, + "probability": 0.7487 + }, + { + "start": 589.0, + "end": 591.12, + "probability": 0.7302 + }, + { + "start": 591.64, + "end": 596.66, + "probability": 0.9276 + }, + { + "start": 596.98, + "end": 598.54, + "probability": 0.8609 + }, + { + "start": 599.0, + "end": 600.88, + "probability": 0.9638 + }, + { + "start": 600.94, + "end": 602.28, + "probability": 0.8124 + }, + { + "start": 602.74, + "end": 604.56, + "probability": 0.995 + }, + { + "start": 604.82, + "end": 606.3, + "probability": 0.9875 + }, + { + "start": 606.7, + "end": 609.08, + "probability": 0.9956 + }, + { + "start": 609.46, + "end": 612.68, + "probability": 0.9564 + }, + { + "start": 612.9, + "end": 617.56, + "probability": 0.9828 + }, + { + "start": 618.04, + "end": 618.12, + "probability": 0.0791 + }, + { + "start": 618.18, + "end": 618.52, + "probability": 0.3132 + }, + { + "start": 618.6, + "end": 619.8, + "probability": 0.7122 + }, + { + "start": 619.94, + "end": 621.0, + "probability": 0.8756 + }, + { + "start": 622.22, + "end": 624.6, + "probability": 0.936 + }, + { + "start": 625.02, + "end": 626.3, + "probability": 0.8002 + }, + { + "start": 626.34, + "end": 629.28, + "probability": 0.9884 + }, + { + "start": 629.62, + "end": 629.9, + "probability": 0.2996 + }, + { + "start": 629.9, + "end": 630.12, + "probability": 0.5888 + }, + { + "start": 630.46, + "end": 631.06, + "probability": 0.6355 + }, + { + "start": 631.6, + "end": 634.68, + "probability": 0.9141 + }, + { + "start": 635.16, + "end": 637.56, + "probability": 0.9631 + }, + { + "start": 638.76, + "end": 639.86, + "probability": 0.4794 + }, + { + "start": 640.7, + "end": 641.12, + "probability": 0.9331 + }, + { + "start": 642.1, + "end": 642.92, + "probability": 0.7517 + }, + { + "start": 643.52, + "end": 646.0, + "probability": 0.9147 + }, + { + "start": 646.5, + "end": 650.04, + "probability": 0.9529 + }, + { + "start": 650.08, + "end": 652.84, + "probability": 0.5486 + }, + { + "start": 654.02, + "end": 655.58, + "probability": 0.8228 + }, + { + "start": 656.54, + "end": 658.04, + "probability": 0.2939 + }, + { + "start": 658.36, + "end": 658.64, + "probability": 0.355 + }, + { + "start": 659.94, + "end": 660.46, + "probability": 0.8359 + }, + { + "start": 661.98, + "end": 663.42, + "probability": 0.5662 + }, + { + "start": 664.42, + "end": 667.9, + "probability": 0.9771 + }, + { + "start": 668.52, + "end": 669.0, + "probability": 0.9653 + }, + { + "start": 669.68, + "end": 672.54, + "probability": 0.9919 + }, + { + "start": 673.16, + "end": 675.8, + "probability": 0.9896 + }, + { + "start": 676.42, + "end": 680.16, + "probability": 0.979 + }, + { + "start": 680.4, + "end": 683.3, + "probability": 0.9997 + }, + { + "start": 684.26, + "end": 687.74, + "probability": 0.9956 + }, + { + "start": 688.4, + "end": 689.5, + "probability": 0.9644 + }, + { + "start": 690.3, + "end": 691.66, + "probability": 0.9886 + }, + { + "start": 692.28, + "end": 694.96, + "probability": 0.9893 + }, + { + "start": 694.98, + "end": 696.46, + "probability": 0.3308 + }, + { + "start": 696.62, + "end": 698.72, + "probability": 0.8039 + }, + { + "start": 698.86, + "end": 698.98, + "probability": 0.3819 + }, + { + "start": 698.98, + "end": 700.48, + "probability": 0.4963 + }, + { + "start": 700.66, + "end": 704.3, + "probability": 0.9441 + }, + { + "start": 704.74, + "end": 705.36, + "probability": 0.6383 + }, + { + "start": 705.46, + "end": 705.7, + "probability": 0.1496 + }, + { + "start": 706.08, + "end": 706.46, + "probability": 0.17 + }, + { + "start": 706.52, + "end": 707.78, + "probability": 0.6589 + }, + { + "start": 707.86, + "end": 709.52, + "probability": 0.6887 + }, + { + "start": 710.58, + "end": 711.42, + "probability": 0.7529 + }, + { + "start": 712.42, + "end": 713.32, + "probability": 0.8371 + }, + { + "start": 713.62, + "end": 717.24, + "probability": 0.7471 + }, + { + "start": 717.38, + "end": 718.44, + "probability": 0.8588 + }, + { + "start": 719.22, + "end": 719.42, + "probability": 0.5898 + }, + { + "start": 719.78, + "end": 719.96, + "probability": 0.3323 + }, + { + "start": 720.06, + "end": 720.46, + "probability": 0.8903 + }, + { + "start": 720.94, + "end": 722.76, + "probability": 0.979 + }, + { + "start": 724.58, + "end": 725.7, + "probability": 0.6976 + }, + { + "start": 726.08, + "end": 726.56, + "probability": 0.7375 + }, + { + "start": 726.8, + "end": 727.7, + "probability": 0.9779 + }, + { + "start": 727.92, + "end": 729.0, + "probability": 0.7217 + }, + { + "start": 729.08, + "end": 729.64, + "probability": 0.5097 + }, + { + "start": 729.76, + "end": 730.32, + "probability": 0.9583 + }, + { + "start": 730.8, + "end": 731.64, + "probability": 0.9373 + }, + { + "start": 732.36, + "end": 736.28, + "probability": 0.9876 + }, + { + "start": 736.5, + "end": 737.46, + "probability": 0.1444 + }, + { + "start": 737.58, + "end": 738.26, + "probability": 0.5484 + }, + { + "start": 738.38, + "end": 738.64, + "probability": 0.0995 + }, + { + "start": 739.82, + "end": 742.22, + "probability": 0.1507 + }, + { + "start": 742.22, + "end": 742.94, + "probability": 0.0361 + }, + { + "start": 742.94, + "end": 742.94, + "probability": 0.2107 + }, + { + "start": 742.94, + "end": 743.36, + "probability": 0.0973 + }, + { + "start": 743.36, + "end": 745.06, + "probability": 0.202 + }, + { + "start": 745.34, + "end": 745.68, + "probability": 0.1297 + }, + { + "start": 745.68, + "end": 745.68, + "probability": 0.3426 + }, + { + "start": 745.68, + "end": 745.68, + "probability": 0.3155 + }, + { + "start": 745.74, + "end": 745.96, + "probability": 0.0991 + }, + { + "start": 745.98, + "end": 749.78, + "probability": 0.9581 + }, + { + "start": 749.86, + "end": 752.52, + "probability": 0.9791 + }, + { + "start": 752.6, + "end": 753.48, + "probability": 0.6898 + }, + { + "start": 753.72, + "end": 754.78, + "probability": 0.8969 + }, + { + "start": 755.6, + "end": 757.56, + "probability": 0.9282 + }, + { + "start": 757.62, + "end": 759.14, + "probability": 0.9937 + }, + { + "start": 759.82, + "end": 761.76, + "probability": 0.9932 + }, + { + "start": 763.24, + "end": 764.36, + "probability": 0.9854 + }, + { + "start": 765.34, + "end": 766.04, + "probability": 0.788 + }, + { + "start": 766.32, + "end": 767.24, + "probability": 0.7186 + }, + { + "start": 767.5, + "end": 767.86, + "probability": 0.8104 + }, + { + "start": 767.98, + "end": 768.46, + "probability": 0.9244 + }, + { + "start": 768.84, + "end": 770.02, + "probability": 0.9896 + }, + { + "start": 770.46, + "end": 771.76, + "probability": 0.2684 + }, + { + "start": 771.76, + "end": 772.32, + "probability": 0.8416 + }, + { + "start": 772.74, + "end": 775.96, + "probability": 0.9984 + }, + { + "start": 777.52, + "end": 778.76, + "probability": 0.9864 + }, + { + "start": 779.34, + "end": 781.02, + "probability": 0.983 + }, + { + "start": 781.42, + "end": 782.72, + "probability": 0.9888 + }, + { + "start": 782.92, + "end": 783.94, + "probability": 0.808 + }, + { + "start": 784.06, + "end": 784.68, + "probability": 0.8801 + }, + { + "start": 784.72, + "end": 785.52, + "probability": 0.9982 + }, + { + "start": 786.26, + "end": 790.82, + "probability": 0.9888 + }, + { + "start": 792.82, + "end": 796.32, + "probability": 0.9919 + }, + { + "start": 797.14, + "end": 799.14, + "probability": 0.8334 + }, + { + "start": 799.42, + "end": 800.3, + "probability": 0.8456 + }, + { + "start": 800.96, + "end": 802.28, + "probability": 0.9092 + }, + { + "start": 803.16, + "end": 803.68, + "probability": 0.4779 + }, + { + "start": 803.8, + "end": 807.52, + "probability": 0.8858 + }, + { + "start": 807.64, + "end": 809.1, + "probability": 0.9635 + }, + { + "start": 809.86, + "end": 810.94, + "probability": 0.6915 + }, + { + "start": 811.08, + "end": 812.92, + "probability": 0.8124 + }, + { + "start": 813.9, + "end": 815.3, + "probability": 0.9251 + }, + { + "start": 815.9, + "end": 816.74, + "probability": 0.9568 + }, + { + "start": 816.84, + "end": 817.23, + "probability": 0.9034 + }, + { + "start": 817.54, + "end": 819.56, + "probability": 0.7887 + }, + { + "start": 819.66, + "end": 820.64, + "probability": 0.8755 + }, + { + "start": 821.02, + "end": 825.62, + "probability": 0.9727 + }, + { + "start": 826.22, + "end": 827.46, + "probability": 0.9951 + }, + { + "start": 828.0, + "end": 830.7, + "probability": 0.8488 + }, + { + "start": 831.14, + "end": 832.0, + "probability": 0.8354 + }, + { + "start": 832.02, + "end": 834.56, + "probability": 0.9409 + }, + { + "start": 834.66, + "end": 835.26, + "probability": 0.8661 + }, + { + "start": 835.4, + "end": 838.74, + "probability": 0.873 + }, + { + "start": 838.86, + "end": 840.76, + "probability": 0.9089 + }, + { + "start": 840.92, + "end": 844.42, + "probability": 0.9115 + }, + { + "start": 844.56, + "end": 849.1, + "probability": 0.8537 + }, + { + "start": 849.76, + "end": 850.84, + "probability": 0.9451 + }, + { + "start": 851.84, + "end": 855.74, + "probability": 0.9826 + }, + { + "start": 855.82, + "end": 856.39, + "probability": 0.9403 + }, + { + "start": 856.52, + "end": 857.64, + "probability": 0.9301 + }, + { + "start": 857.96, + "end": 858.38, + "probability": 0.9028 + }, + { + "start": 858.44, + "end": 858.58, + "probability": 0.6691 + }, + { + "start": 858.64, + "end": 860.28, + "probability": 0.9598 + }, + { + "start": 860.68, + "end": 862.18, + "probability": 0.9236 + }, + { + "start": 862.92, + "end": 867.02, + "probability": 0.9592 + }, + { + "start": 867.22, + "end": 869.76, + "probability": 0.8799 + }, + { + "start": 869.82, + "end": 870.36, + "probability": 0.5511 + }, + { + "start": 870.68, + "end": 871.44, + "probability": 0.7487 + }, + { + "start": 872.26, + "end": 876.96, + "probability": 0.9869 + }, + { + "start": 877.08, + "end": 878.24, + "probability": 0.9409 + }, + { + "start": 881.04, + "end": 881.3, + "probability": 0.1875 + }, + { + "start": 881.3, + "end": 882.94, + "probability": 0.1273 + }, + { + "start": 883.54, + "end": 884.46, + "probability": 0.9183 + }, + { + "start": 884.52, + "end": 885.33, + "probability": 0.979 + }, + { + "start": 885.7, + "end": 890.64, + "probability": 0.9842 + }, + { + "start": 891.02, + "end": 894.43, + "probability": 0.7663 + }, + { + "start": 895.94, + "end": 896.5, + "probability": 0.8788 + }, + { + "start": 896.54, + "end": 896.9, + "probability": 0.7401 + }, + { + "start": 897.08, + "end": 899.26, + "probability": 0.9718 + }, + { + "start": 899.74, + "end": 903.08, + "probability": 0.9524 + }, + { + "start": 903.14, + "end": 904.68, + "probability": 0.984 + }, + { + "start": 904.8, + "end": 905.54, + "probability": 0.5424 + }, + { + "start": 905.7, + "end": 906.44, + "probability": 0.683 + }, + { + "start": 907.2, + "end": 913.28, + "probability": 0.9494 + }, + { + "start": 913.84, + "end": 915.9, + "probability": 0.6098 + }, + { + "start": 916.88, + "end": 916.88, + "probability": 0.4942 + }, + { + "start": 917.06, + "end": 919.06, + "probability": 0.9761 + }, + { + "start": 919.74, + "end": 921.54, + "probability": 0.6593 + }, + { + "start": 922.14, + "end": 924.1, + "probability": 0.9609 + }, + { + "start": 924.24, + "end": 925.48, + "probability": 0.9839 + }, + { + "start": 925.58, + "end": 926.62, + "probability": 0.9429 + }, + { + "start": 926.66, + "end": 927.84, + "probability": 0.883 + }, + { + "start": 928.44, + "end": 929.78, + "probability": 0.975 + }, + { + "start": 929.8, + "end": 930.54, + "probability": 0.8064 + }, + { + "start": 931.02, + "end": 932.01, + "probability": 0.7237 + }, + { + "start": 932.42, + "end": 933.52, + "probability": 0.9504 + }, + { + "start": 933.62, + "end": 935.82, + "probability": 0.9115 + }, + { + "start": 936.86, + "end": 939.4, + "probability": 0.9108 + }, + { + "start": 940.02, + "end": 940.74, + "probability": 0.7491 + }, + { + "start": 941.28, + "end": 944.34, + "probability": 0.9232 + }, + { + "start": 944.82, + "end": 946.55, + "probability": 0.88 + }, + { + "start": 947.76, + "end": 948.64, + "probability": 0.9958 + }, + { + "start": 949.26, + "end": 950.46, + "probability": 0.9988 + }, + { + "start": 951.08, + "end": 953.64, + "probability": 0.9531 + }, + { + "start": 954.28, + "end": 955.1, + "probability": 0.9739 + }, + { + "start": 955.72, + "end": 958.22, + "probability": 0.2002 + }, + { + "start": 959.78, + "end": 959.78, + "probability": 0.2225 + }, + { + "start": 959.78, + "end": 959.78, + "probability": 0.0334 + }, + { + "start": 959.78, + "end": 960.38, + "probability": 0.0265 + }, + { + "start": 960.9, + "end": 962.16, + "probability": 0.9146 + }, + { + "start": 963.3, + "end": 964.4, + "probability": 0.632 + }, + { + "start": 965.18, + "end": 967.18, + "probability": 0.9888 + }, + { + "start": 967.72, + "end": 969.34, + "probability": 0.7069 + }, + { + "start": 970.32, + "end": 972.6, + "probability": 0.917 + }, + { + "start": 973.3, + "end": 977.02, + "probability": 0.9956 + }, + { + "start": 977.42, + "end": 979.03, + "probability": 0.9968 + }, + { + "start": 979.52, + "end": 981.74, + "probability": 0.688 + }, + { + "start": 982.3, + "end": 985.36, + "probability": 0.7973 + }, + { + "start": 986.28, + "end": 986.7, + "probability": 0.596 + }, + { + "start": 987.82, + "end": 989.56, + "probability": 0.9363 + }, + { + "start": 989.86, + "end": 991.94, + "probability": 0.7462 + }, + { + "start": 991.98, + "end": 993.5, + "probability": 0.8939 + }, + { + "start": 994.08, + "end": 996.02, + "probability": 0.939 + }, + { + "start": 996.88, + "end": 997.04, + "probability": 0.6967 + }, + { + "start": 997.14, + "end": 998.16, + "probability": 0.8871 + }, + { + "start": 998.34, + "end": 999.44, + "probability": 0.7366 + }, + { + "start": 999.52, + "end": 1001.0, + "probability": 0.9467 + }, + { + "start": 1001.52, + "end": 1002.28, + "probability": 0.6308 + }, + { + "start": 1002.38, + "end": 1004.92, + "probability": 0.9613 + }, + { + "start": 1005.16, + "end": 1006.1, + "probability": 0.7344 + }, + { + "start": 1006.88, + "end": 1009.54, + "probability": 0.6648 + }, + { + "start": 1009.56, + "end": 1010.18, + "probability": 0.4904 + }, + { + "start": 1011.2, + "end": 1012.06, + "probability": 0.3858 + }, + { + "start": 1012.48, + "end": 1013.44, + "probability": 0.9966 + }, + { + "start": 1014.36, + "end": 1017.38, + "probability": 0.8582 + }, + { + "start": 1017.62, + "end": 1022.16, + "probability": 0.945 + }, + { + "start": 1022.66, + "end": 1025.06, + "probability": 0.9375 + }, + { + "start": 1025.2, + "end": 1028.2, + "probability": 0.9868 + }, + { + "start": 1029.28, + "end": 1030.42, + "probability": 0.2431 + }, + { + "start": 1030.6, + "end": 1032.68, + "probability": 0.861 + }, + { + "start": 1033.06, + "end": 1034.14, + "probability": 0.6556 + }, + { + "start": 1034.56, + "end": 1036.12, + "probability": 0.9174 + }, + { + "start": 1036.32, + "end": 1038.7, + "probability": 0.9555 + }, + { + "start": 1038.7, + "end": 1041.0, + "probability": 0.9475 + }, + { + "start": 1043.16, + "end": 1046.62, + "probability": 0.9961 + }, + { + "start": 1051.22, + "end": 1053.3, + "probability": 0.6485 + }, + { + "start": 1053.78, + "end": 1056.04, + "probability": 0.9557 + }, + { + "start": 1057.18, + "end": 1059.91, + "probability": 0.4313 + }, + { + "start": 1060.1, + "end": 1060.44, + "probability": 0.3789 + }, + { + "start": 1060.46, + "end": 1060.5, + "probability": 0.2672 + }, + { + "start": 1060.58, + "end": 1062.7, + "probability": 0.9487 + }, + { + "start": 1063.24, + "end": 1063.94, + "probability": 0.8146 + }, + { + "start": 1064.2, + "end": 1065.98, + "probability": 0.9613 + }, + { + "start": 1066.32, + "end": 1067.46, + "probability": 0.7844 + }, + { + "start": 1067.58, + "end": 1068.98, + "probability": 0.8667 + }, + { + "start": 1069.46, + "end": 1073.62, + "probability": 0.9399 + }, + { + "start": 1074.74, + "end": 1075.6, + "probability": 0.7363 + }, + { + "start": 1075.94, + "end": 1078.18, + "probability": 0.7828 + }, + { + "start": 1079.8, + "end": 1081.96, + "probability": 0.4671 + }, + { + "start": 1083.76, + "end": 1089.04, + "probability": 0.9934 + }, + { + "start": 1089.74, + "end": 1094.88, + "probability": 0.9844 + }, + { + "start": 1095.66, + "end": 1100.5, + "probability": 0.9803 + }, + { + "start": 1101.74, + "end": 1103.94, + "probability": 0.9679 + }, + { + "start": 1104.64, + "end": 1106.36, + "probability": 0.9371 + }, + { + "start": 1107.14, + "end": 1108.58, + "probability": 0.8556 + }, + { + "start": 1110.94, + "end": 1112.18, + "probability": 0.817 + }, + { + "start": 1112.28, + "end": 1113.76, + "probability": 0.9349 + }, + { + "start": 1113.9, + "end": 1115.32, + "probability": 0.9149 + }, + { + "start": 1115.5, + "end": 1119.3, + "probability": 0.8296 + }, + { + "start": 1119.66, + "end": 1120.74, + "probability": 0.6396 + }, + { + "start": 1120.8, + "end": 1121.9, + "probability": 0.7222 + }, + { + "start": 1121.9, + "end": 1122.98, + "probability": 0.6264 + }, + { + "start": 1123.12, + "end": 1123.8, + "probability": 0.8103 + }, + { + "start": 1124.08, + "end": 1124.82, + "probability": 0.8173 + }, + { + "start": 1127.38, + "end": 1129.08, + "probability": 0.9732 + }, + { + "start": 1129.88, + "end": 1130.72, + "probability": 0.548 + }, + { + "start": 1131.84, + "end": 1135.12, + "probability": 0.937 + }, + { + "start": 1135.66, + "end": 1139.74, + "probability": 0.9875 + }, + { + "start": 1140.34, + "end": 1143.82, + "probability": 0.832 + }, + { + "start": 1143.92, + "end": 1144.54, + "probability": 0.8077 + }, + { + "start": 1145.36, + "end": 1147.64, + "probability": 0.7339 + }, + { + "start": 1148.06, + "end": 1148.24, + "probability": 0.472 + }, + { + "start": 1148.42, + "end": 1149.08, + "probability": 0.8878 + }, + { + "start": 1149.42, + "end": 1150.8, + "probability": 0.7778 + }, + { + "start": 1152.04, + "end": 1152.8, + "probability": 0.4437 + }, + { + "start": 1153.54, + "end": 1155.02, + "probability": 0.8394 + }, + { + "start": 1155.42, + "end": 1156.76, + "probability": 0.907 + }, + { + "start": 1157.42, + "end": 1157.78, + "probability": 0.5652 + }, + { + "start": 1158.46, + "end": 1161.12, + "probability": 0.8113 + }, + { + "start": 1161.18, + "end": 1162.2, + "probability": 0.8376 + }, + { + "start": 1163.12, + "end": 1165.38, + "probability": 0.4124 + }, + { + "start": 1166.12, + "end": 1170.08, + "probability": 0.8787 + }, + { + "start": 1170.28, + "end": 1173.98, + "probability": 0.9649 + }, + { + "start": 1174.36, + "end": 1178.54, + "probability": 0.9941 + }, + { + "start": 1179.08, + "end": 1182.8, + "probability": 0.9583 + }, + { + "start": 1182.84, + "end": 1187.36, + "probability": 0.9982 + }, + { + "start": 1188.02, + "end": 1189.38, + "probability": 0.8199 + }, + { + "start": 1190.3, + "end": 1191.82, + "probability": 0.9736 + }, + { + "start": 1192.16, + "end": 1195.84, + "probability": 0.4965 + }, + { + "start": 1196.38, + "end": 1197.52, + "probability": 0.8159 + }, + { + "start": 1197.56, + "end": 1198.96, + "probability": 0.6605 + }, + { + "start": 1199.44, + "end": 1201.42, + "probability": 0.9825 + }, + { + "start": 1201.48, + "end": 1203.86, + "probability": 0.963 + }, + { + "start": 1204.48, + "end": 1206.1, + "probability": 0.7993 + }, + { + "start": 1206.78, + "end": 1208.78, + "probability": 0.9922 + }, + { + "start": 1209.2, + "end": 1210.46, + "probability": 0.9852 + }, + { + "start": 1210.64, + "end": 1214.04, + "probability": 0.9208 + }, + { + "start": 1214.78, + "end": 1217.88, + "probability": 0.9025 + }, + { + "start": 1218.62, + "end": 1222.82, + "probability": 0.9928 + }, + { + "start": 1222.82, + "end": 1224.92, + "probability": 0.5333 + }, + { + "start": 1224.98, + "end": 1226.1, + "probability": 0.4306 + }, + { + "start": 1226.74, + "end": 1229.22, + "probability": 0.9349 + }, + { + "start": 1230.32, + "end": 1232.62, + "probability": 0.9742 + }, + { + "start": 1233.24, + "end": 1235.02, + "probability": 0.7198 + }, + { + "start": 1235.02, + "end": 1237.72, + "probability": 0.9834 + }, + { + "start": 1238.32, + "end": 1241.0, + "probability": 0.7108 + }, + { + "start": 1241.0, + "end": 1242.08, + "probability": 0.8655 + }, + { + "start": 1242.2, + "end": 1243.12, + "probability": 0.8023 + }, + { + "start": 1243.62, + "end": 1245.64, + "probability": 0.9946 + }, + { + "start": 1245.72, + "end": 1246.24, + "probability": 0.7279 + }, + { + "start": 1246.78, + "end": 1251.76, + "probability": 0.7711 + }, + { + "start": 1252.54, + "end": 1254.38, + "probability": 0.9856 + }, + { + "start": 1254.44, + "end": 1255.36, + "probability": 0.5793 + }, + { + "start": 1255.82, + "end": 1259.64, + "probability": 0.9473 + }, + { + "start": 1259.76, + "end": 1260.62, + "probability": 0.8827 + }, + { + "start": 1261.18, + "end": 1264.24, + "probability": 0.8759 + }, + { + "start": 1265.13, + "end": 1268.38, + "probability": 0.9205 + }, + { + "start": 1268.84, + "end": 1271.12, + "probability": 0.8462 + }, + { + "start": 1271.5, + "end": 1275.26, + "probability": 0.9074 + }, + { + "start": 1275.54, + "end": 1276.44, + "probability": 0.8446 + }, + { + "start": 1277.12, + "end": 1279.76, + "probability": 0.7788 + }, + { + "start": 1280.28, + "end": 1282.77, + "probability": 0.8823 + }, + { + "start": 1284.62, + "end": 1287.2, + "probability": 0.6654 + }, + { + "start": 1287.9, + "end": 1290.68, + "probability": 0.7949 + }, + { + "start": 1291.26, + "end": 1295.64, + "probability": 0.714 + }, + { + "start": 1296.22, + "end": 1298.42, + "probability": 0.9878 + }, + { + "start": 1298.62, + "end": 1299.38, + "probability": 0.7339 + }, + { + "start": 1299.46, + "end": 1303.54, + "probability": 0.7025 + }, + { + "start": 1304.02, + "end": 1307.78, + "probability": 0.9203 + }, + { + "start": 1308.38, + "end": 1309.52, + "probability": 0.7602 + }, + { + "start": 1310.26, + "end": 1313.12, + "probability": 0.97 + }, + { + "start": 1313.32, + "end": 1316.08, + "probability": 0.9521 + }, + { + "start": 1316.18, + "end": 1316.56, + "probability": 0.5836 + }, + { + "start": 1316.68, + "end": 1318.12, + "probability": 0.914 + }, + { + "start": 1318.68, + "end": 1320.1, + "probability": 0.9784 + }, + { + "start": 1320.66, + "end": 1323.14, + "probability": 0.2091 + }, + { + "start": 1323.14, + "end": 1326.44, + "probability": 0.9897 + }, + { + "start": 1326.94, + "end": 1327.7, + "probability": 0.978 + }, + { + "start": 1327.86, + "end": 1330.18, + "probability": 0.9283 + }, + { + "start": 1330.86, + "end": 1333.5, + "probability": 0.995 + }, + { + "start": 1334.11, + "end": 1337.26, + "probability": 0.9951 + }, + { + "start": 1338.1, + "end": 1339.82, + "probability": 0.7383 + }, + { + "start": 1340.48, + "end": 1342.12, + "probability": 0.9795 + }, + { + "start": 1342.76, + "end": 1343.42, + "probability": 0.8877 + }, + { + "start": 1343.84, + "end": 1347.44, + "probability": 0.908 + }, + { + "start": 1347.82, + "end": 1348.52, + "probability": 0.9614 + }, + { + "start": 1348.64, + "end": 1349.34, + "probability": 0.6901 + }, + { + "start": 1349.44, + "end": 1351.42, + "probability": 0.9841 + }, + { + "start": 1352.06, + "end": 1353.34, + "probability": 0.9826 + }, + { + "start": 1353.66, + "end": 1354.98, + "probability": 0.9858 + }, + { + "start": 1355.36, + "end": 1356.06, + "probability": 0.6495 + }, + { + "start": 1356.16, + "end": 1356.68, + "probability": 0.8478 + }, + { + "start": 1357.5, + "end": 1361.1, + "probability": 0.9397 + }, + { + "start": 1361.14, + "end": 1363.48, + "probability": 0.9096 + }, + { + "start": 1363.78, + "end": 1366.14, + "probability": 0.9828 + }, + { + "start": 1368.06, + "end": 1371.78, + "probability": 0.9252 + }, + { + "start": 1372.82, + "end": 1373.56, + "probability": 0.9481 + }, + { + "start": 1373.74, + "end": 1376.74, + "probability": 0.9829 + }, + { + "start": 1377.46, + "end": 1380.66, + "probability": 0.9946 + }, + { + "start": 1380.94, + "end": 1383.6, + "probability": 0.9893 + }, + { + "start": 1383.98, + "end": 1389.54, + "probability": 0.4959 + }, + { + "start": 1390.18, + "end": 1395.04, + "probability": 0.9618 + }, + { + "start": 1395.32, + "end": 1398.68, + "probability": 0.9583 + }, + { + "start": 1399.1, + "end": 1403.84, + "probability": 0.9269 + }, + { + "start": 1404.32, + "end": 1407.9, + "probability": 0.5217 + }, + { + "start": 1408.26, + "end": 1413.32, + "probability": 0.8406 + }, + { + "start": 1413.32, + "end": 1414.8, + "probability": 0.3733 + }, + { + "start": 1414.96, + "end": 1415.38, + "probability": 0.6671 + }, + { + "start": 1415.9, + "end": 1419.26, + "probability": 0.7516 + }, + { + "start": 1419.48, + "end": 1420.08, + "probability": 0.773 + }, + { + "start": 1420.44, + "end": 1423.96, + "probability": 0.791 + }, + { + "start": 1424.36, + "end": 1425.08, + "probability": 0.98 + }, + { + "start": 1425.48, + "end": 1428.7, + "probability": 0.9683 + }, + { + "start": 1428.98, + "end": 1431.1, + "probability": 0.9806 + }, + { + "start": 1431.34, + "end": 1433.6, + "probability": 0.9843 + }, + { + "start": 1434.42, + "end": 1437.72, + "probability": 0.9423 + }, + { + "start": 1437.88, + "end": 1441.12, + "probability": 0.8539 + }, + { + "start": 1441.28, + "end": 1442.86, + "probability": 0.9394 + }, + { + "start": 1443.66, + "end": 1444.34, + "probability": 0.9309 + }, + { + "start": 1444.52, + "end": 1447.54, + "probability": 0.3194 + }, + { + "start": 1447.92, + "end": 1451.54, + "probability": 0.8388 + }, + { + "start": 1451.72, + "end": 1453.35, + "probability": 0.9852 + }, + { + "start": 1454.42, + "end": 1458.08, + "probability": 0.9312 + }, + { + "start": 1458.28, + "end": 1461.58, + "probability": 0.9475 + }, + { + "start": 1461.82, + "end": 1463.6, + "probability": 0.9982 + }, + { + "start": 1463.96, + "end": 1465.6, + "probability": 0.7473 + }, + { + "start": 1466.0, + "end": 1467.18, + "probability": 0.8809 + }, + { + "start": 1467.98, + "end": 1468.4, + "probability": 0.8297 + }, + { + "start": 1469.54, + "end": 1470.96, + "probability": 0.7634 + }, + { + "start": 1471.36, + "end": 1474.94, + "probability": 0.8848 + }, + { + "start": 1475.34, + "end": 1475.95, + "probability": 0.8518 + }, + { + "start": 1476.66, + "end": 1478.84, + "probability": 0.9935 + }, + { + "start": 1479.26, + "end": 1482.3, + "probability": 0.942 + }, + { + "start": 1482.4, + "end": 1484.88, + "probability": 0.9546 + }, + { + "start": 1484.98, + "end": 1488.28, + "probability": 0.9489 + }, + { + "start": 1488.32, + "end": 1490.5, + "probability": 0.4219 + }, + { + "start": 1491.92, + "end": 1492.72, + "probability": 0.6797 + }, + { + "start": 1492.96, + "end": 1494.5, + "probability": 0.6128 + }, + { + "start": 1494.62, + "end": 1494.88, + "probability": 0.5686 + }, + { + "start": 1495.14, + "end": 1496.5, + "probability": 0.7425 + }, + { + "start": 1497.14, + "end": 1498.72, + "probability": 0.7965 + }, + { + "start": 1499.6, + "end": 1500.52, + "probability": 0.2499 + }, + { + "start": 1500.54, + "end": 1501.9, + "probability": 0.9658 + }, + { + "start": 1502.4, + "end": 1504.48, + "probability": 0.9761 + }, + { + "start": 1505.12, + "end": 1507.16, + "probability": 0.9863 + }, + { + "start": 1507.4, + "end": 1508.58, + "probability": 0.7228 + }, + { + "start": 1509.0, + "end": 1511.6, + "probability": 0.9719 + }, + { + "start": 1512.04, + "end": 1513.32, + "probability": 0.8955 + }, + { + "start": 1513.96, + "end": 1516.38, + "probability": 0.9917 + }, + { + "start": 1516.48, + "end": 1519.78, + "probability": 0.9042 + }, + { + "start": 1520.62, + "end": 1523.6, + "probability": 0.6793 + }, + { + "start": 1523.72, + "end": 1524.74, + "probability": 0.8864 + }, + { + "start": 1525.18, + "end": 1526.32, + "probability": 0.7495 + }, + { + "start": 1526.44, + "end": 1526.7, + "probability": 0.6405 + }, + { + "start": 1527.72, + "end": 1528.64, + "probability": 0.8785 + }, + { + "start": 1529.44, + "end": 1531.9, + "probability": 0.9552 + }, + { + "start": 1532.44, + "end": 1535.58, + "probability": 0.9857 + }, + { + "start": 1536.04, + "end": 1536.72, + "probability": 0.6885 + }, + { + "start": 1537.12, + "end": 1537.92, + "probability": 0.8191 + }, + { + "start": 1538.8, + "end": 1540.48, + "probability": 0.6297 + }, + { + "start": 1540.72, + "end": 1542.38, + "probability": 0.6621 + }, + { + "start": 1543.14, + "end": 1543.62, + "probability": 0.6046 + }, + { + "start": 1543.7, + "end": 1544.74, + "probability": 0.6154 + }, + { + "start": 1544.84, + "end": 1547.94, + "probability": 0.8962 + }, + { + "start": 1547.98, + "end": 1548.84, + "probability": 0.956 + }, + { + "start": 1550.4, + "end": 1552.8, + "probability": 0.9793 + }, + { + "start": 1553.34, + "end": 1554.48, + "probability": 0.978 + }, + { + "start": 1554.94, + "end": 1555.58, + "probability": 0.8207 + }, + { + "start": 1555.76, + "end": 1558.08, + "probability": 0.9955 + }, + { + "start": 1558.48, + "end": 1562.86, + "probability": 0.9846 + }, + { + "start": 1563.04, + "end": 1564.46, + "probability": 0.9831 + }, + { + "start": 1565.23, + "end": 1566.34, + "probability": 0.2405 + }, + { + "start": 1566.42, + "end": 1567.48, + "probability": 0.8645 + }, + { + "start": 1567.56, + "end": 1568.3, + "probability": 0.6657 + }, + { + "start": 1568.36, + "end": 1568.45, + "probability": 0.9363 + }, + { + "start": 1568.78, + "end": 1568.85, + "probability": 0.075 + }, + { + "start": 1569.3, + "end": 1571.16, + "probability": 0.8226 + }, + { + "start": 1571.28, + "end": 1572.3, + "probability": 0.6604 + }, + { + "start": 1572.32, + "end": 1575.54, + "probability": 0.9116 + }, + { + "start": 1575.7, + "end": 1577.28, + "probability": 0.9812 + }, + { + "start": 1578.26, + "end": 1579.58, + "probability": 0.8183 + }, + { + "start": 1579.64, + "end": 1582.1, + "probability": 0.8637 + }, + { + "start": 1582.16, + "end": 1584.96, + "probability": 0.7611 + }, + { + "start": 1585.5, + "end": 1589.78, + "probability": 0.6074 + }, + { + "start": 1589.78, + "end": 1592.13, + "probability": 0.9855 + }, + { + "start": 1593.28, + "end": 1594.2, + "probability": 0.298 + }, + { + "start": 1594.24, + "end": 1596.5, + "probability": 0.741 + }, + { + "start": 1596.82, + "end": 1598.72, + "probability": 0.9941 + }, + { + "start": 1599.76, + "end": 1600.68, + "probability": 0.8652 + }, + { + "start": 1600.74, + "end": 1602.4, + "probability": 0.9644 + }, + { + "start": 1603.02, + "end": 1604.4, + "probability": 0.8765 + }, + { + "start": 1604.4, + "end": 1606.58, + "probability": 0.7833 + }, + { + "start": 1606.6, + "end": 1606.8, + "probability": 0.8295 + }, + { + "start": 1606.88, + "end": 1607.18, + "probability": 0.8553 + }, + { + "start": 1607.36, + "end": 1607.79, + "probability": 0.6072 + }, + { + "start": 1608.32, + "end": 1609.26, + "probability": 0.9752 + }, + { + "start": 1609.56, + "end": 1613.1, + "probability": 0.7809 + }, + { + "start": 1613.28, + "end": 1613.92, + "probability": 0.6559 + }, + { + "start": 1614.78, + "end": 1616.74, + "probability": 0.6929 + }, + { + "start": 1617.3, + "end": 1618.14, + "probability": 0.999 + }, + { + "start": 1618.72, + "end": 1619.32, + "probability": 0.9998 + }, + { + "start": 1619.88, + "end": 1621.72, + "probability": 0.977 + }, + { + "start": 1621.8, + "end": 1622.96, + "probability": 0.4335 + }, + { + "start": 1623.44, + "end": 1626.62, + "probability": 0.9934 + }, + { + "start": 1626.94, + "end": 1627.74, + "probability": 0.9836 + }, + { + "start": 1627.8, + "end": 1628.58, + "probability": 0.7911 + }, + { + "start": 1628.86, + "end": 1629.44, + "probability": 0.9824 + }, + { + "start": 1630.02, + "end": 1630.68, + "probability": 0.4577 + }, + { + "start": 1631.04, + "end": 1631.74, + "probability": 0.9465 + }, + { + "start": 1632.16, + "end": 1634.68, + "probability": 0.9858 + }, + { + "start": 1635.0, + "end": 1639.74, + "probability": 0.9895 + }, + { + "start": 1640.02, + "end": 1641.62, + "probability": 0.5697 + }, + { + "start": 1642.22, + "end": 1643.94, + "probability": 0.7952 + }, + { + "start": 1643.98, + "end": 1644.91, + "probability": 0.9202 + }, + { + "start": 1645.1, + "end": 1648.38, + "probability": 0.8855 + }, + { + "start": 1648.74, + "end": 1650.36, + "probability": 0.6704 + }, + { + "start": 1650.9, + "end": 1653.2, + "probability": 0.9598 + }, + { + "start": 1653.46, + "end": 1655.28, + "probability": 0.9326 + }, + { + "start": 1655.3, + "end": 1656.62, + "probability": 0.8219 + }, + { + "start": 1657.0, + "end": 1657.76, + "probability": 0.7737 + }, + { + "start": 1657.84, + "end": 1658.7, + "probability": 0.9523 + }, + { + "start": 1659.18, + "end": 1659.44, + "probability": 0.541 + }, + { + "start": 1659.56, + "end": 1660.24, + "probability": 0.7282 + }, + { + "start": 1660.34, + "end": 1661.82, + "probability": 0.7284 + }, + { + "start": 1662.18, + "end": 1665.9, + "probability": 0.8511 + }, + { + "start": 1666.24, + "end": 1666.86, + "probability": 0.538 + }, + { + "start": 1666.86, + "end": 1667.57, + "probability": 0.7812 + }, + { + "start": 1667.72, + "end": 1670.12, + "probability": 0.9766 + }, + { + "start": 1670.26, + "end": 1671.58, + "probability": 0.9984 + }, + { + "start": 1672.1, + "end": 1675.08, + "probability": 0.9761 + }, + { + "start": 1675.62, + "end": 1676.94, + "probability": 0.9609 + }, + { + "start": 1677.06, + "end": 1683.4, + "probability": 0.6502 + }, + { + "start": 1683.42, + "end": 1687.34, + "probability": 0.9876 + }, + { + "start": 1687.58, + "end": 1688.76, + "probability": 0.827 + }, + { + "start": 1689.21, + "end": 1694.24, + "probability": 0.8859 + }, + { + "start": 1694.34, + "end": 1697.12, + "probability": 0.9091 + }, + { + "start": 1697.24, + "end": 1697.94, + "probability": 0.7515 + }, + { + "start": 1698.02, + "end": 1699.48, + "probability": 0.9946 + }, + { + "start": 1699.66, + "end": 1700.54, + "probability": 0.924 + }, + { + "start": 1701.12, + "end": 1702.14, + "probability": 0.9689 + }, + { + "start": 1702.22, + "end": 1703.46, + "probability": 0.739 + }, + { + "start": 1703.78, + "end": 1705.14, + "probability": 0.9948 + }, + { + "start": 1705.26, + "end": 1705.78, + "probability": 0.6697 + }, + { + "start": 1706.08, + "end": 1712.11, + "probability": 0.5113 + }, + { + "start": 1713.9, + "end": 1715.9, + "probability": 0.6967 + }, + { + "start": 1715.96, + "end": 1716.46, + "probability": 0.4982 + }, + { + "start": 1716.58, + "end": 1717.4, + "probability": 0.783 + }, + { + "start": 1717.48, + "end": 1719.92, + "probability": 0.9907 + }, + { + "start": 1720.93, + "end": 1723.66, + "probability": 0.8022 + }, + { + "start": 1723.66, + "end": 1724.78, + "probability": 0.676 + }, + { + "start": 1724.88, + "end": 1725.64, + "probability": 0.7011 + }, + { + "start": 1728.01, + "end": 1731.72, + "probability": 0.7291 + }, + { + "start": 1732.35, + "end": 1735.12, + "probability": 0.8015 + }, + { + "start": 1735.94, + "end": 1738.34, + "probability": 0.8913 + }, + { + "start": 1738.82, + "end": 1741.7, + "probability": 0.9805 + }, + { + "start": 1741.7, + "end": 1744.62, + "probability": 0.9802 + }, + { + "start": 1744.8, + "end": 1747.09, + "probability": 0.9951 + }, + { + "start": 1747.74, + "end": 1750.14, + "probability": 0.7014 + }, + { + "start": 1751.81, + "end": 1753.78, + "probability": 0.6947 + }, + { + "start": 1754.54, + "end": 1756.84, + "probability": 0.9819 + }, + { + "start": 1756.94, + "end": 1762.66, + "probability": 0.9225 + }, + { + "start": 1762.7, + "end": 1763.28, + "probability": 0.7188 + }, + { + "start": 1763.38, + "end": 1763.86, + "probability": 0.3411 + }, + { + "start": 1763.92, + "end": 1766.2, + "probability": 0.96 + }, + { + "start": 1766.3, + "end": 1769.96, + "probability": 0.7711 + }, + { + "start": 1771.04, + "end": 1773.16, + "probability": 0.9296 + }, + { + "start": 1773.2, + "end": 1777.1, + "probability": 0.885 + }, + { + "start": 1778.56, + "end": 1779.66, + "probability": 0.7628 + }, + { + "start": 1779.8, + "end": 1780.9, + "probability": 0.5547 + }, + { + "start": 1781.36, + "end": 1783.66, + "probability": 0.9735 + }, + { + "start": 1783.96, + "end": 1786.0, + "probability": 0.9038 + }, + { + "start": 1786.72, + "end": 1790.12, + "probability": 0.9953 + }, + { + "start": 1790.38, + "end": 1791.28, + "probability": 0.9514 + }, + { + "start": 1791.3, + "end": 1793.1, + "probability": 0.8564 + }, + { + "start": 1793.1, + "end": 1793.83, + "probability": 0.7678 + }, + { + "start": 1793.98, + "end": 1795.04, + "probability": 0.3493 + }, + { + "start": 1795.16, + "end": 1796.68, + "probability": 0.74 + }, + { + "start": 1796.86, + "end": 1797.2, + "probability": 0.5634 + }, + { + "start": 1797.3, + "end": 1798.14, + "probability": 0.6147 + }, + { + "start": 1798.64, + "end": 1799.06, + "probability": 0.5654 + }, + { + "start": 1799.22, + "end": 1800.32, + "probability": 0.7516 + }, + { + "start": 1800.34, + "end": 1802.82, + "probability": 0.8925 + }, + { + "start": 1803.06, + "end": 1804.7, + "probability": 0.8657 + }, + { + "start": 1804.82, + "end": 1805.8, + "probability": 0.8206 + }, + { + "start": 1805.84, + "end": 1806.28, + "probability": 0.4964 + }, + { + "start": 1806.38, + "end": 1808.89, + "probability": 0.958 + }, + { + "start": 1809.48, + "end": 1810.9, + "probability": 0.9312 + }, + { + "start": 1811.04, + "end": 1813.08, + "probability": 0.9582 + }, + { + "start": 1814.12, + "end": 1815.42, + "probability": 0.9548 + }, + { + "start": 1816.22, + "end": 1819.02, + "probability": 0.8498 + }, + { + "start": 1819.54, + "end": 1823.0, + "probability": 0.7666 + }, + { + "start": 1823.26, + "end": 1826.08, + "probability": 0.8564 + }, + { + "start": 1826.92, + "end": 1829.34, + "probability": 0.8766 + }, + { + "start": 1830.1, + "end": 1830.9, + "probability": 0.8906 + }, + { + "start": 1831.04, + "end": 1835.12, + "probability": 0.7127 + }, + { + "start": 1836.92, + "end": 1837.84, + "probability": 0.5023 + }, + { + "start": 1838.48, + "end": 1838.94, + "probability": 0.9169 + }, + { + "start": 1839.1, + "end": 1839.8, + "probability": 0.8998 + }, + { + "start": 1839.88, + "end": 1842.6, + "probability": 0.9923 + }, + { + "start": 1842.6, + "end": 1846.42, + "probability": 0.9936 + }, + { + "start": 1847.12, + "end": 1847.99, + "probability": 0.8511 + }, + { + "start": 1848.88, + "end": 1850.74, + "probability": 0.733 + }, + { + "start": 1851.26, + "end": 1854.88, + "probability": 0.6855 + }, + { + "start": 1855.14, + "end": 1856.7, + "probability": 0.6837 + }, + { + "start": 1856.7, + "end": 1858.72, + "probability": 0.4465 + }, + { + "start": 1858.98, + "end": 1859.22, + "probability": 0.1957 + }, + { + "start": 1859.22, + "end": 1859.87, + "probability": 0.478 + }, + { + "start": 1860.6, + "end": 1862.86, + "probability": 0.5787 + }, + { + "start": 1863.62, + "end": 1863.62, + "probability": 0.538 + }, + { + "start": 1863.86, + "end": 1866.36, + "probability": 0.9951 + }, + { + "start": 1866.48, + "end": 1868.32, + "probability": 0.9939 + }, + { + "start": 1869.0, + "end": 1872.06, + "probability": 0.681 + }, + { + "start": 1872.14, + "end": 1875.26, + "probability": 0.851 + }, + { + "start": 1875.6, + "end": 1876.4, + "probability": 0.8599 + }, + { + "start": 1876.82, + "end": 1878.92, + "probability": 0.9398 + }, + { + "start": 1879.08, + "end": 1880.68, + "probability": 0.4003 + }, + { + "start": 1880.68, + "end": 1880.68, + "probability": 0.1936 + }, + { + "start": 1880.68, + "end": 1881.56, + "probability": 0.6796 + }, + { + "start": 1881.62, + "end": 1884.92, + "probability": 0.7938 + }, + { + "start": 1886.24, + "end": 1887.74, + "probability": 0.092 + }, + { + "start": 1887.74, + "end": 1887.9, + "probability": 0.0572 + }, + { + "start": 1887.9, + "end": 1887.9, + "probability": 0.0492 + }, + { + "start": 1887.9, + "end": 1887.9, + "probability": 0.3113 + }, + { + "start": 1887.9, + "end": 1889.98, + "probability": 0.8687 + }, + { + "start": 1890.14, + "end": 1891.66, + "probability": 0.9404 + }, + { + "start": 1891.7, + "end": 1893.0, + "probability": 0.9127 + }, + { + "start": 1893.38, + "end": 1893.71, + "probability": 0.5771 + }, + { + "start": 1893.8, + "end": 1893.9, + "probability": 0.2465 + }, + { + "start": 1894.34, + "end": 1895.92, + "probability": 0.8289 + }, + { + "start": 1896.02, + "end": 1896.62, + "probability": 0.3556 + }, + { + "start": 1896.88, + "end": 1899.32, + "probability": 0.8597 + }, + { + "start": 1900.0, + "end": 1900.92, + "probability": 0.9268 + }, + { + "start": 1901.18, + "end": 1901.9, + "probability": 0.9849 + }, + { + "start": 1902.28, + "end": 1902.88, + "probability": 0.7949 + }, + { + "start": 1902.98, + "end": 1904.7, + "probability": 0.9082 + }, + { + "start": 1904.98, + "end": 1906.42, + "probability": 0.9902 + }, + { + "start": 1906.58, + "end": 1907.72, + "probability": 0.9707 + }, + { + "start": 1907.98, + "end": 1908.74, + "probability": 0.9934 + }, + { + "start": 1909.28, + "end": 1910.22, + "probability": 0.9074 + }, + { + "start": 1910.72, + "end": 1913.64, + "probability": 0.9131 + }, + { + "start": 1913.66, + "end": 1915.78, + "probability": 0.9882 + }, + { + "start": 1916.3, + "end": 1916.76, + "probability": 0.43 + }, + { + "start": 1917.04, + "end": 1917.88, + "probability": 0.3154 + }, + { + "start": 1917.94, + "end": 1921.42, + "probability": 0.7969 + }, + { + "start": 1921.86, + "end": 1922.92, + "probability": 0.5044 + }, + { + "start": 1922.98, + "end": 1923.48, + "probability": 0.6795 + }, + { + "start": 1923.86, + "end": 1926.0, + "probability": 0.8451 + }, + { + "start": 1926.76, + "end": 1927.35, + "probability": 0.8407 + }, + { + "start": 1927.62, + "end": 1928.84, + "probability": 0.8311 + }, + { + "start": 1929.54, + "end": 1929.92, + "probability": 0.4686 + }, + { + "start": 1930.02, + "end": 1930.69, + "probability": 0.2872 + }, + { + "start": 1931.06, + "end": 1931.68, + "probability": 0.9224 + }, + { + "start": 1931.74, + "end": 1933.1, + "probability": 0.8777 + }, + { + "start": 1933.24, + "end": 1935.7, + "probability": 0.7847 + }, + { + "start": 1936.62, + "end": 1938.11, + "probability": 0.9752 + }, + { + "start": 1940.46, + "end": 1940.46, + "probability": 0.0098 + }, + { + "start": 1940.46, + "end": 1941.72, + "probability": 0.3437 + }, + { + "start": 1941.92, + "end": 1942.06, + "probability": 0.9069 + }, + { + "start": 1942.52, + "end": 1943.48, + "probability": 0.6781 + }, + { + "start": 1944.02, + "end": 1945.72, + "probability": 0.7397 + }, + { + "start": 1945.82, + "end": 1946.24, + "probability": 0.4661 + }, + { + "start": 1946.3, + "end": 1947.16, + "probability": 0.4193 + }, + { + "start": 1947.18, + "end": 1949.96, + "probability": 0.9634 + }, + { + "start": 1950.36, + "end": 1952.82, + "probability": 0.7468 + }, + { + "start": 1952.84, + "end": 1953.26, + "probability": 0.6077 + }, + { + "start": 1953.34, + "end": 1954.4, + "probability": 0.8477 + }, + { + "start": 1954.84, + "end": 1955.6, + "probability": 0.9982 + }, + { + "start": 1956.16, + "end": 1957.02, + "probability": 0.7372 + }, + { + "start": 1957.14, + "end": 1958.17, + "probability": 0.8043 + }, + { + "start": 1958.56, + "end": 1960.03, + "probability": 0.9795 + }, + { + "start": 1960.2, + "end": 1962.74, + "probability": 0.9985 + }, + { + "start": 1962.82, + "end": 1962.92, + "probability": 0.3757 + }, + { + "start": 1962.98, + "end": 1963.2, + "probability": 0.3952 + }, + { + "start": 1964.08, + "end": 1965.88, + "probability": 0.8447 + }, + { + "start": 1966.62, + "end": 1968.46, + "probability": 0.8862 + }, + { + "start": 1969.06, + "end": 1969.42, + "probability": 0.628 + }, + { + "start": 1969.52, + "end": 1972.28, + "probability": 0.8349 + }, + { + "start": 1972.84, + "end": 1974.98, + "probability": 0.8676 + }, + { + "start": 1975.04, + "end": 1975.65, + "probability": 0.8867 + }, + { + "start": 1976.28, + "end": 1979.08, + "probability": 0.9823 + }, + { + "start": 1979.6, + "end": 1982.02, + "probability": 0.7451 + }, + { + "start": 1982.16, + "end": 1982.34, + "probability": 0.4746 + }, + { + "start": 1982.62, + "end": 1985.5, + "probability": 0.9805 + }, + { + "start": 1985.88, + "end": 1986.32, + "probability": 0.678 + }, + { + "start": 1986.38, + "end": 1988.6, + "probability": 0.9209 + }, + { + "start": 1988.74, + "end": 1988.8, + "probability": 0.1858 + }, + { + "start": 1988.8, + "end": 1992.6, + "probability": 0.9946 + }, + { + "start": 1992.96, + "end": 1995.38, + "probability": 0.5071 + }, + { + "start": 1995.44, + "end": 1997.94, + "probability": 0.6198 + }, + { + "start": 1998.22, + "end": 1998.38, + "probability": 0.3978 + }, + { + "start": 1998.52, + "end": 1999.8, + "probability": 0.8999 + }, + { + "start": 1999.86, + "end": 2000.16, + "probability": 0.7414 + }, + { + "start": 2000.26, + "end": 2001.78, + "probability": 0.9824 + }, + { + "start": 2001.78, + "end": 2002.46, + "probability": 0.6335 + }, + { + "start": 2002.5, + "end": 2002.7, + "probability": 0.6948 + }, + { + "start": 2002.92, + "end": 2005.8, + "probability": 0.8077 + }, + { + "start": 2005.8, + "end": 2008.42, + "probability": 0.6964 + }, + { + "start": 2008.46, + "end": 2009.2, + "probability": 0.5255 + }, + { + "start": 2009.28, + "end": 2012.24, + "probability": 0.7797 + }, + { + "start": 2012.3, + "end": 2014.04, + "probability": 0.7511 + }, + { + "start": 2014.04, + "end": 2015.28, + "probability": 0.7632 + }, + { + "start": 2015.86, + "end": 2017.82, + "probability": 0.6046 + }, + { + "start": 2018.26, + "end": 2019.2, + "probability": 0.939 + }, + { + "start": 2019.72, + "end": 2020.6, + "probability": 0.7119 + }, + { + "start": 2020.66, + "end": 2024.04, + "probability": 0.9277 + }, + { + "start": 2024.16, + "end": 2025.42, + "probability": 0.8631 + }, + { + "start": 2025.42, + "end": 2027.46, + "probability": 0.7574 + }, + { + "start": 2027.54, + "end": 2028.18, + "probability": 0.3444 + }, + { + "start": 2028.18, + "end": 2029.0, + "probability": 0.9014 + }, + { + "start": 2029.36, + "end": 2031.72, + "probability": 0.9696 + }, + { + "start": 2032.16, + "end": 2034.78, + "probability": 0.9901 + }, + { + "start": 2034.96, + "end": 2036.32, + "probability": 0.9683 + }, + { + "start": 2036.84, + "end": 2038.66, + "probability": 0.8439 + }, + { + "start": 2039.18, + "end": 2043.9, + "probability": 0.9875 + }, + { + "start": 2044.02, + "end": 2045.42, + "probability": 0.4818 + }, + { + "start": 2045.42, + "end": 2047.78, + "probability": 0.9973 + }, + { + "start": 2048.22, + "end": 2049.04, + "probability": 0.6058 + }, + { + "start": 2049.04, + "end": 2050.1, + "probability": 0.5368 + }, + { + "start": 2051.54, + "end": 2053.58, + "probability": 0.0138 + }, + { + "start": 2053.58, + "end": 2053.58, + "probability": 0.1863 + }, + { + "start": 2053.58, + "end": 2053.76, + "probability": 0.133 + }, + { + "start": 2053.76, + "end": 2054.92, + "probability": 0.3258 + }, + { + "start": 2055.76, + "end": 2056.67, + "probability": 0.6663 + }, + { + "start": 2056.78, + "end": 2060.16, + "probability": 0.5871 + }, + { + "start": 2060.62, + "end": 2061.1, + "probability": 0.4245 + }, + { + "start": 2061.84, + "end": 2062.22, + "probability": 0.6509 + }, + { + "start": 2062.4, + "end": 2062.88, + "probability": 0.5476 + }, + { + "start": 2062.99, + "end": 2064.44, + "probability": 0.935 + }, + { + "start": 2064.58, + "end": 2067.7, + "probability": 0.9863 + }, + { + "start": 2067.86, + "end": 2069.06, + "probability": 0.6797 + }, + { + "start": 2069.14, + "end": 2070.2, + "probability": 0.7426 + }, + { + "start": 2070.32, + "end": 2073.82, + "probability": 0.9468 + }, + { + "start": 2074.16, + "end": 2075.46, + "probability": 0.9237 + }, + { + "start": 2075.96, + "end": 2076.64, + "probability": 0.7464 + }, + { + "start": 2077.02, + "end": 2077.74, + "probability": 0.8635 + }, + { + "start": 2078.4, + "end": 2078.98, + "probability": 0.9568 + }, + { + "start": 2079.04, + "end": 2079.98, + "probability": 0.9023 + }, + { + "start": 2080.0, + "end": 2081.18, + "probability": 0.7377 + }, + { + "start": 2081.26, + "end": 2082.8, + "probability": 0.9827 + }, + { + "start": 2083.12, + "end": 2083.9, + "probability": 0.8416 + }, + { + "start": 2084.44, + "end": 2087.62, + "probability": 0.9028 + }, + { + "start": 2087.72, + "end": 2088.78, + "probability": 0.9932 + }, + { + "start": 2089.3, + "end": 2090.18, + "probability": 0.9963 + }, + { + "start": 2090.2, + "end": 2090.82, + "probability": 0.9218 + }, + { + "start": 2090.9, + "end": 2091.36, + "probability": 0.7329 + }, + { + "start": 2091.44, + "end": 2091.72, + "probability": 0.7602 + }, + { + "start": 2092.04, + "end": 2095.81, + "probability": 0.9748 + }, + { + "start": 2096.4, + "end": 2099.14, + "probability": 0.7884 + }, + { + "start": 2099.38, + "end": 2101.5, + "probability": 0.875 + }, + { + "start": 2102.14, + "end": 2103.23, + "probability": 0.9852 + }, + { + "start": 2103.62, + "end": 2104.5, + "probability": 0.9219 + }, + { + "start": 2104.66, + "end": 2107.58, + "probability": 0.0697 + }, + { + "start": 2107.58, + "end": 2107.58, + "probability": 0.2013 + }, + { + "start": 2107.58, + "end": 2108.3, + "probability": 0.6147 + }, + { + "start": 2108.6, + "end": 2112.1, + "probability": 0.6191 + }, + { + "start": 2112.6, + "end": 2113.48, + "probability": 0.6243 + }, + { + "start": 2113.6, + "end": 2115.54, + "probability": 0.9958 + }, + { + "start": 2116.08, + "end": 2116.32, + "probability": 0.3088 + }, + { + "start": 2116.32, + "end": 2116.54, + "probability": 0.6104 + }, + { + "start": 2116.64, + "end": 2118.72, + "probability": 0.9707 + }, + { + "start": 2118.72, + "end": 2121.0, + "probability": 0.6704 + }, + { + "start": 2121.0, + "end": 2121.94, + "probability": 0.9463 + }, + { + "start": 2122.56, + "end": 2122.82, + "probability": 0.001 + }, + { + "start": 2122.82, + "end": 2122.96, + "probability": 0.464 + }, + { + "start": 2122.96, + "end": 2126.74, + "probability": 0.8282 + }, + { + "start": 2127.18, + "end": 2129.12, + "probability": 0.9974 + }, + { + "start": 2129.12, + "end": 2129.54, + "probability": 0.7261 + }, + { + "start": 2130.06, + "end": 2133.42, + "probability": 0.1259 + }, + { + "start": 2133.96, + "end": 2134.66, + "probability": 0.7897 + }, + { + "start": 2135.08, + "end": 2135.72, + "probability": 0.041 + }, + { + "start": 2135.82, + "end": 2136.92, + "probability": 0.6446 + }, + { + "start": 2137.08, + "end": 2139.22, + "probability": 0.9568 + }, + { + "start": 2139.6, + "end": 2145.58, + "probability": 0.8831 + }, + { + "start": 2146.1, + "end": 2147.26, + "probability": 0.5399 + }, + { + "start": 2147.72, + "end": 2150.49, + "probability": 0.9985 + }, + { + "start": 2150.8, + "end": 2154.18, + "probability": 0.9921 + }, + { + "start": 2154.82, + "end": 2157.18, + "probability": 0.9585 + }, + { + "start": 2157.92, + "end": 2158.56, + "probability": 0.9357 + }, + { + "start": 2163.6, + "end": 2164.62, + "probability": 0.5038 + }, + { + "start": 2164.78, + "end": 2165.98, + "probability": 0.6722 + }, + { + "start": 2166.06, + "end": 2166.62, + "probability": 0.9485 + }, + { + "start": 2166.88, + "end": 2168.06, + "probability": 0.9419 + }, + { + "start": 2168.14, + "end": 2169.92, + "probability": 0.8269 + }, + { + "start": 2171.78, + "end": 2175.8, + "probability": 0.7483 + }, + { + "start": 2176.06, + "end": 2177.14, + "probability": 0.9612 + }, + { + "start": 2178.22, + "end": 2180.86, + "probability": 0.0791 + }, + { + "start": 2180.86, + "end": 2180.86, + "probability": 0.2499 + }, + { + "start": 2180.86, + "end": 2182.48, + "probability": 0.5836 + }, + { + "start": 2182.9, + "end": 2183.92, + "probability": 0.7406 + }, + { + "start": 2184.54, + "end": 2186.69, + "probability": 0.6284 + }, + { + "start": 2186.78, + "end": 2189.22, + "probability": 0.9937 + }, + { + "start": 2189.88, + "end": 2192.06, + "probability": 0.1058 + }, + { + "start": 2192.28, + "end": 2194.38, + "probability": 0.9274 + }, + { + "start": 2194.8, + "end": 2195.4, + "probability": 0.2214 + }, + { + "start": 2195.48, + "end": 2195.66, + "probability": 0.4211 + }, + { + "start": 2195.66, + "end": 2195.72, + "probability": 0.3837 + }, + { + "start": 2195.72, + "end": 2196.98, + "probability": 0.9121 + }, + { + "start": 2197.06, + "end": 2197.5, + "probability": 0.7142 + }, + { + "start": 2197.54, + "end": 2198.34, + "probability": 0.5435 + }, + { + "start": 2198.72, + "end": 2200.02, + "probability": 0.9824 + }, + { + "start": 2200.54, + "end": 2205.32, + "probability": 0.9592 + }, + { + "start": 2205.72, + "end": 2206.02, + "probability": 0.7717 + }, + { + "start": 2206.32, + "end": 2206.32, + "probability": 0.0067 + }, + { + "start": 2206.32, + "end": 2206.48, + "probability": 0.4747 + }, + { + "start": 2206.6, + "end": 2211.72, + "probability": 0.8265 + }, + { + "start": 2211.9, + "end": 2213.66, + "probability": 0.8006 + }, + { + "start": 2214.54, + "end": 2216.02, + "probability": 0.4202 + }, + { + "start": 2216.4, + "end": 2217.44, + "probability": 0.7244 + }, + { + "start": 2218.32, + "end": 2220.1, + "probability": 0.2156 + }, + { + "start": 2220.22, + "end": 2220.57, + "probability": 0.0323 + }, + { + "start": 2220.8, + "end": 2221.94, + "probability": 0.7456 + }, + { + "start": 2222.48, + "end": 2224.26, + "probability": 0.8583 + }, + { + "start": 2224.4, + "end": 2224.88, + "probability": 0.5771 + }, + { + "start": 2226.04, + "end": 2226.82, + "probability": 0.8573 + }, + { + "start": 2226.84, + "end": 2230.8, + "probability": 0.8619 + }, + { + "start": 2230.8, + "end": 2234.7, + "probability": 0.9867 + }, + { + "start": 2236.13, + "end": 2238.3, + "probability": 0.9255 + }, + { + "start": 2238.62, + "end": 2240.62, + "probability": 0.9434 + }, + { + "start": 2241.98, + "end": 2243.32, + "probability": 0.9562 + }, + { + "start": 2243.78, + "end": 2246.54, + "probability": 0.8522 + }, + { + "start": 2247.14, + "end": 2248.14, + "probability": 0.7752 + }, + { + "start": 2248.84, + "end": 2251.06, + "probability": 0.9213 + }, + { + "start": 2251.6, + "end": 2253.8, + "probability": 0.8151 + }, + { + "start": 2254.26, + "end": 2255.05, + "probability": 0.9589 + }, + { + "start": 2256.28, + "end": 2260.32, + "probability": 0.8124 + }, + { + "start": 2260.96, + "end": 2263.88, + "probability": 0.9119 + }, + { + "start": 2264.02, + "end": 2264.42, + "probability": 0.4245 + }, + { + "start": 2264.54, + "end": 2266.33, + "probability": 0.9006 + }, + { + "start": 2266.52, + "end": 2266.68, + "probability": 0.835 + }, + { + "start": 2267.2, + "end": 2269.14, + "probability": 0.9756 + }, + { + "start": 2269.48, + "end": 2270.32, + "probability": 0.915 + }, + { + "start": 2270.4, + "end": 2271.66, + "probability": 0.699 + }, + { + "start": 2271.68, + "end": 2272.62, + "probability": 0.2835 + }, + { + "start": 2272.96, + "end": 2274.76, + "probability": 0.8193 + }, + { + "start": 2274.76, + "end": 2276.88, + "probability": 0.9712 + }, + { + "start": 2276.94, + "end": 2278.58, + "probability": 0.9849 + }, + { + "start": 2278.86, + "end": 2279.42, + "probability": 0.9834 + }, + { + "start": 2280.16, + "end": 2282.83, + "probability": 0.7072 + }, + { + "start": 2283.22, + "end": 2285.6, + "probability": 0.9768 + }, + { + "start": 2286.12, + "end": 2288.28, + "probability": 0.5949 + }, + { + "start": 2288.94, + "end": 2290.28, + "probability": 0.7532 + }, + { + "start": 2290.36, + "end": 2292.46, + "probability": 0.7319 + }, + { + "start": 2292.98, + "end": 2293.66, + "probability": 0.7461 + }, + { + "start": 2294.0, + "end": 2296.6, + "probability": 0.7978 + }, + { + "start": 2297.32, + "end": 2297.8, + "probability": 0.5137 + }, + { + "start": 2297.82, + "end": 2302.32, + "probability": 0.714 + }, + { + "start": 2302.4, + "end": 2306.56, + "probability": 0.7802 + }, + { + "start": 2306.8, + "end": 2307.56, + "probability": 0.8174 + }, + { + "start": 2307.62, + "end": 2307.9, + "probability": 0.9759 + }, + { + "start": 2308.64, + "end": 2310.36, + "probability": 0.7492 + }, + { + "start": 2310.38, + "end": 2314.38, + "probability": 0.7026 + }, + { + "start": 2314.48, + "end": 2314.86, + "probability": 0.4956 + }, + { + "start": 2315.44, + "end": 2315.87, + "probability": 0.2829 + }, + { + "start": 2315.98, + "end": 2320.5, + "probability": 0.9807 + }, + { + "start": 2320.5, + "end": 2324.84, + "probability": 0.9922 + }, + { + "start": 2325.36, + "end": 2326.14, + "probability": 0.6734 + }, + { + "start": 2326.52, + "end": 2326.76, + "probability": 0.5469 + }, + { + "start": 2327.32, + "end": 2327.82, + "probability": 0.7551 + }, + { + "start": 2328.26, + "end": 2328.46, + "probability": 0.5834 + }, + { + "start": 2328.54, + "end": 2329.62, + "probability": 0.6699 + }, + { + "start": 2330.0, + "end": 2331.62, + "probability": 0.9555 + }, + { + "start": 2332.86, + "end": 2332.86, + "probability": 0.2447 + }, + { + "start": 2332.86, + "end": 2333.2, + "probability": 0.3371 + }, + { + "start": 2333.2, + "end": 2334.04, + "probability": 0.8855 + }, + { + "start": 2334.46, + "end": 2337.64, + "probability": 0.6408 + }, + { + "start": 2338.04, + "end": 2340.34, + "probability": 0.8727 + }, + { + "start": 2340.66, + "end": 2341.38, + "probability": 0.8846 + }, + { + "start": 2341.88, + "end": 2344.14, + "probability": 0.9578 + }, + { + "start": 2345.02, + "end": 2346.22, + "probability": 0.9466 + }, + { + "start": 2346.44, + "end": 2347.64, + "probability": 0.806 + }, + { + "start": 2348.08, + "end": 2348.8, + "probability": 0.7484 + }, + { + "start": 2348.88, + "end": 2349.7, + "probability": 0.8354 + }, + { + "start": 2350.78, + "end": 2352.48, + "probability": 0.767 + }, + { + "start": 2352.8, + "end": 2354.38, + "probability": 0.7992 + }, + { + "start": 2354.88, + "end": 2355.9, + "probability": 0.9412 + }, + { + "start": 2357.78, + "end": 2359.62, + "probability": 0.7789 + }, + { + "start": 2359.82, + "end": 2361.22, + "probability": 0.5624 + }, + { + "start": 2362.0, + "end": 2365.72, + "probability": 0.9618 + }, + { + "start": 2366.42, + "end": 2368.42, + "probability": 0.6582 + }, + { + "start": 2368.98, + "end": 2371.12, + "probability": 0.9445 + }, + { + "start": 2371.9, + "end": 2373.8, + "probability": 0.7291 + }, + { + "start": 2373.96, + "end": 2374.48, + "probability": 0.3722 + }, + { + "start": 2375.1, + "end": 2378.2, + "probability": 0.8525 + }, + { + "start": 2378.24, + "end": 2378.98, + "probability": 0.6483 + }, + { + "start": 2379.44, + "end": 2379.96, + "probability": 0.9159 + }, + { + "start": 2380.58, + "end": 2380.88, + "probability": 0.9264 + }, + { + "start": 2381.0, + "end": 2381.0, + "probability": 0.1899 + }, + { + "start": 2381.0, + "end": 2381.38, + "probability": 0.3926 + }, + { + "start": 2381.52, + "end": 2383.36, + "probability": 0.8799 + }, + { + "start": 2383.88, + "end": 2384.64, + "probability": 0.9609 + }, + { + "start": 2384.74, + "end": 2385.1, + "probability": 0.5874 + }, + { + "start": 2385.2, + "end": 2387.24, + "probability": 0.3321 + }, + { + "start": 2387.36, + "end": 2390.32, + "probability": 0.5688 + }, + { + "start": 2392.04, + "end": 2393.7, + "probability": 0.7258 + }, + { + "start": 2393.82, + "end": 2394.7, + "probability": 0.5966 + }, + { + "start": 2395.26, + "end": 2400.42, + "probability": 0.8183 + }, + { + "start": 2400.6, + "end": 2400.6, + "probability": 0.0467 + }, + { + "start": 2400.6, + "end": 2400.64, + "probability": 0.7117 + }, + { + "start": 2400.7, + "end": 2405.82, + "probability": 0.968 + }, + { + "start": 2405.9, + "end": 2408.48, + "probability": 0.785 + }, + { + "start": 2408.86, + "end": 2410.62, + "probability": 0.9962 + }, + { + "start": 2411.14, + "end": 2411.34, + "probability": 0.6225 + }, + { + "start": 2411.9, + "end": 2413.02, + "probability": 0.9531 + }, + { + "start": 2413.6, + "end": 2415.48, + "probability": 0.5816 + }, + { + "start": 2415.98, + "end": 2417.06, + "probability": 0.66 + }, + { + "start": 2417.12, + "end": 2417.76, + "probability": 0.7972 + }, + { + "start": 2417.86, + "end": 2418.38, + "probability": 0.7875 + }, + { + "start": 2418.8, + "end": 2419.34, + "probability": 0.6366 + }, + { + "start": 2419.42, + "end": 2420.46, + "probability": 0.9706 + }, + { + "start": 2420.82, + "end": 2421.38, + "probability": 0.8181 + }, + { + "start": 2421.66, + "end": 2422.7, + "probability": 0.9854 + }, + { + "start": 2422.98, + "end": 2423.38, + "probability": 0.6241 + }, + { + "start": 2423.4, + "end": 2423.6, + "probability": 0.4717 + }, + { + "start": 2423.82, + "end": 2424.02, + "probability": 0.8087 + }, + { + "start": 2424.08, + "end": 2425.78, + "probability": 0.9379 + }, + { + "start": 2425.84, + "end": 2426.24, + "probability": 0.5526 + }, + { + "start": 2426.84, + "end": 2428.26, + "probability": 0.9932 + }, + { + "start": 2428.4, + "end": 2429.2, + "probability": 0.8753 + }, + { + "start": 2429.8, + "end": 2430.42, + "probability": 0.7839 + }, + { + "start": 2430.7, + "end": 2432.3, + "probability": 0.9476 + }, + { + "start": 2432.68, + "end": 2433.94, + "probability": 0.955 + }, + { + "start": 2434.28, + "end": 2434.74, + "probability": 0.3775 + }, + { + "start": 2434.74, + "end": 2436.12, + "probability": 0.6429 + }, + { + "start": 2436.16, + "end": 2439.1, + "probability": 0.8657 + }, + { + "start": 2439.68, + "end": 2440.12, + "probability": 0.7035 + }, + { + "start": 2440.18, + "end": 2441.26, + "probability": 0.7916 + }, + { + "start": 2441.28, + "end": 2441.98, + "probability": 0.6489 + }, + { + "start": 2442.34, + "end": 2443.17, + "probability": 0.4943 + }, + { + "start": 2444.9, + "end": 2446.96, + "probability": 0.7601 + }, + { + "start": 2447.32, + "end": 2448.88, + "probability": 0.9768 + }, + { + "start": 2449.38, + "end": 2452.7, + "probability": 0.704 + }, + { + "start": 2454.3, + "end": 2458.7, + "probability": 0.6031 + }, + { + "start": 2458.76, + "end": 2459.26, + "probability": 0.7802 + }, + { + "start": 2459.32, + "end": 2460.2, + "probability": 0.2251 + }, + { + "start": 2460.3, + "end": 2460.76, + "probability": 0.6664 + }, + { + "start": 2461.3, + "end": 2462.26, + "probability": 0.7997 + }, + { + "start": 2462.32, + "end": 2462.84, + "probability": 0.8663 + }, + { + "start": 2463.04, + "end": 2464.06, + "probability": 0.3132 + }, + { + "start": 2464.06, + "end": 2465.06, + "probability": 0.3466 + }, + { + "start": 2465.42, + "end": 2467.04, + "probability": 0.9246 + }, + { + "start": 2467.86, + "end": 2468.26, + "probability": 0.7734 + }, + { + "start": 2468.32, + "end": 2469.14, + "probability": 0.8093 + }, + { + "start": 2469.24, + "end": 2469.84, + "probability": 0.382 + }, + { + "start": 2469.92, + "end": 2470.5, + "probability": 0.6919 + }, + { + "start": 2471.8, + "end": 2473.4, + "probability": 0.2254 + }, + { + "start": 2473.74, + "end": 2474.86, + "probability": 0.8774 + }, + { + "start": 2475.04, + "end": 2475.94, + "probability": 0.6503 + }, + { + "start": 2476.2, + "end": 2476.56, + "probability": 0.5447 + }, + { + "start": 2477.08, + "end": 2479.92, + "probability": 0.8556 + }, + { + "start": 2480.4, + "end": 2481.94, + "probability": 0.7739 + }, + { + "start": 2482.62, + "end": 2484.36, + "probability": 0.5997 + }, + { + "start": 2484.82, + "end": 2487.02, + "probability": 0.9716 + }, + { + "start": 2487.38, + "end": 2489.39, + "probability": 0.8802 + }, + { + "start": 2489.9, + "end": 2490.92, + "probability": 0.4557 + }, + { + "start": 2491.04, + "end": 2491.64, + "probability": 0.1606 + }, + { + "start": 2491.64, + "end": 2491.9, + "probability": 0.3543 + }, + { + "start": 2492.0, + "end": 2492.49, + "probability": 0.9543 + }, + { + "start": 2493.56, + "end": 2494.96, + "probability": 0.5313 + }, + { + "start": 2495.28, + "end": 2498.66, + "probability": 0.6548 + }, + { + "start": 2498.84, + "end": 2500.32, + "probability": 0.0888 + }, + { + "start": 2500.36, + "end": 2502.64, + "probability": 0.8999 + }, + { + "start": 2502.76, + "end": 2504.08, + "probability": 0.695 + }, + { + "start": 2504.58, + "end": 2508.56, + "probability": 0.9533 + }, + { + "start": 2509.06, + "end": 2509.76, + "probability": 0.7969 + }, + { + "start": 2509.82, + "end": 2510.84, + "probability": 0.2723 + }, + { + "start": 2510.84, + "end": 2511.22, + "probability": 0.5118 + }, + { + "start": 2511.42, + "end": 2511.62, + "probability": 0.5516 + }, + { + "start": 2512.3, + "end": 2516.0, + "probability": 0.9647 + }, + { + "start": 2516.22, + "end": 2517.09, + "probability": 0.9805 + }, + { + "start": 2517.26, + "end": 2518.38, + "probability": 0.3189 + }, + { + "start": 2518.48, + "end": 2518.88, + "probability": 0.9353 + }, + { + "start": 2519.02, + "end": 2519.46, + "probability": 0.7637 + }, + { + "start": 2519.84, + "end": 2520.68, + "probability": 0.8637 + }, + { + "start": 2521.56, + "end": 2524.3, + "probability": 0.5031 + }, + { + "start": 2524.42, + "end": 2525.59, + "probability": 0.239 + }, + { + "start": 2526.24, + "end": 2530.76, + "probability": 0.9085 + }, + { + "start": 2531.0, + "end": 2533.26, + "probability": 0.7695 + }, + { + "start": 2533.42, + "end": 2533.7, + "probability": 0.3473 + }, + { + "start": 2534.08, + "end": 2535.36, + "probability": 0.2503 + }, + { + "start": 2535.44, + "end": 2538.32, + "probability": 0.7084 + }, + { + "start": 2538.36, + "end": 2538.76, + "probability": 0.651 + }, + { + "start": 2539.12, + "end": 2539.3, + "probability": 0.3664 + }, + { + "start": 2539.3, + "end": 2540.62, + "probability": 0.4601 + }, + { + "start": 2541.0, + "end": 2541.44, + "probability": 0.7603 + }, + { + "start": 2542.04, + "end": 2546.08, + "probability": 0.5018 + }, + { + "start": 2546.54, + "end": 2549.86, + "probability": 0.9771 + }, + { + "start": 2550.34, + "end": 2551.16, + "probability": 0.9846 + }, + { + "start": 2551.26, + "end": 2554.0, + "probability": 0.6407 + }, + { + "start": 2554.12, + "end": 2555.7, + "probability": 0.5489 + }, + { + "start": 2556.0, + "end": 2556.76, + "probability": 0.7905 + }, + { + "start": 2557.52, + "end": 2559.88, + "probability": 0.7232 + }, + { + "start": 2560.36, + "end": 2562.6, + "probability": 0.9582 + }, + { + "start": 2562.62, + "end": 2564.86, + "probability": 0.9862 + }, + { + "start": 2565.42, + "end": 2566.04, + "probability": 0.9629 + }, + { + "start": 2566.14, + "end": 2566.81, + "probability": 0.9131 + }, + { + "start": 2567.18, + "end": 2567.46, + "probability": 0.7319 + }, + { + "start": 2568.06, + "end": 2568.64, + "probability": 0.9018 + }, + { + "start": 2568.98, + "end": 2569.3, + "probability": 0.9658 + }, + { + "start": 2569.84, + "end": 2570.4, + "probability": 0.4752 + }, + { + "start": 2571.08, + "end": 2574.18, + "probability": 0.757 + }, + { + "start": 2576.19, + "end": 2578.02, + "probability": 0.6319 + }, + { + "start": 2578.66, + "end": 2579.74, + "probability": 0.4503 + }, + { + "start": 2579.9, + "end": 2581.1, + "probability": 0.8631 + }, + { + "start": 2581.64, + "end": 2584.78, + "probability": 0.7228 + }, + { + "start": 2584.82, + "end": 2585.38, + "probability": 0.5744 + }, + { + "start": 2586.82, + "end": 2586.92, + "probability": 0.2228 + }, + { + "start": 2586.94, + "end": 2586.94, + "probability": 0.4098 + }, + { + "start": 2587.16, + "end": 2590.16, + "probability": 0.8157 + }, + { + "start": 2590.54, + "end": 2592.02, + "probability": 0.9626 + }, + { + "start": 2592.66, + "end": 2593.28, + "probability": 0.9324 + }, + { + "start": 2593.72, + "end": 2594.13, + "probability": 0.9495 + }, + { + "start": 2594.82, + "end": 2597.08, + "probability": 0.9691 + }, + { + "start": 2597.6, + "end": 2601.12, + "probability": 0.8356 + }, + { + "start": 2601.66, + "end": 2605.64, + "probability": 0.9504 + }, + { + "start": 2606.12, + "end": 2610.38, + "probability": 0.7615 + }, + { + "start": 2610.88, + "end": 2613.78, + "probability": 0.4786 + }, + { + "start": 2613.98, + "end": 2615.52, + "probability": 0.6372 + }, + { + "start": 2615.86, + "end": 2616.12, + "probability": 0.2462 + }, + { + "start": 2616.2, + "end": 2619.86, + "probability": 0.78 + }, + { + "start": 2619.86, + "end": 2621.12, + "probability": 0.7044 + }, + { + "start": 2621.2, + "end": 2621.82, + "probability": 0.9475 + }, + { + "start": 2622.22, + "end": 2626.88, + "probability": 0.9719 + }, + { + "start": 2627.66, + "end": 2634.58, + "probability": 0.9949 + }, + { + "start": 2634.58, + "end": 2639.04, + "probability": 0.8359 + }, + { + "start": 2640.08, + "end": 2641.82, + "probability": 0.5871 + }, + { + "start": 2642.26, + "end": 2643.0, + "probability": 0.5877 + }, + { + "start": 2643.52, + "end": 2645.68, + "probability": 0.9795 + }, + { + "start": 2645.74, + "end": 2646.48, + "probability": 0.2508 + }, + { + "start": 2646.48, + "end": 2646.96, + "probability": 0.7281 + }, + { + "start": 2647.52, + "end": 2655.16, + "probability": 0.9924 + }, + { + "start": 2655.88, + "end": 2657.3, + "probability": 0.6025 + }, + { + "start": 2657.72, + "end": 2663.22, + "probability": 0.5861 + }, + { + "start": 2663.78, + "end": 2664.26, + "probability": 0.7076 + }, + { + "start": 2664.32, + "end": 2670.84, + "probability": 0.9272 + }, + { + "start": 2671.04, + "end": 2672.54, + "probability": 0.9327 + }, + { + "start": 2672.74, + "end": 2675.38, + "probability": 0.9688 + }, + { + "start": 2675.38, + "end": 2680.38, + "probability": 0.9486 + }, + { + "start": 2681.7, + "end": 2683.18, + "probability": 0.5997 + }, + { + "start": 2683.18, + "end": 2685.36, + "probability": 0.8527 + }, + { + "start": 2685.96, + "end": 2691.14, + "probability": 0.7852 + }, + { + "start": 2691.62, + "end": 2694.62, + "probability": 0.8502 + }, + { + "start": 2694.82, + "end": 2695.42, + "probability": 0.8844 + }, + { + "start": 2695.94, + "end": 2697.41, + "probability": 0.3846 + }, + { + "start": 2698.12, + "end": 2700.37, + "probability": 0.9261 + }, + { + "start": 2701.16, + "end": 2702.14, + "probability": 0.5618 + }, + { + "start": 2702.24, + "end": 2704.0, + "probability": 0.5303 + }, + { + "start": 2704.08, + "end": 2706.16, + "probability": 0.9764 + }, + { + "start": 2706.24, + "end": 2706.34, + "probability": 0.1286 + }, + { + "start": 2706.42, + "end": 2708.94, + "probability": 0.9658 + }, + { + "start": 2709.1, + "end": 2709.38, + "probability": 0.4258 + }, + { + "start": 2712.38, + "end": 2712.52, + "probability": 0.2163 + }, + { + "start": 2712.52, + "end": 2712.62, + "probability": 0.1886 + }, + { + "start": 2712.9, + "end": 2714.5, + "probability": 0.7596 + }, + { + "start": 2715.14, + "end": 2716.68, + "probability": 0.7737 + }, + { + "start": 2717.3, + "end": 2718.78, + "probability": 0.8923 + }, + { + "start": 2719.18, + "end": 2721.92, + "probability": 0.6763 + }, + { + "start": 2721.92, + "end": 2723.4, + "probability": 0.9063 + }, + { + "start": 2723.46, + "end": 2727.0, + "probability": 0.6379 + }, + { + "start": 2727.56, + "end": 2730.4, + "probability": 0.6572 + }, + { + "start": 2730.56, + "end": 2731.9, + "probability": 0.9399 + }, + { + "start": 2732.52, + "end": 2733.96, + "probability": 0.7366 + }, + { + "start": 2734.48, + "end": 2735.71, + "probability": 0.8358 + }, + { + "start": 2736.12, + "end": 2736.8, + "probability": 0.7869 + }, + { + "start": 2737.18, + "end": 2737.34, + "probability": 0.5353 + }, + { + "start": 2737.86, + "end": 2738.94, + "probability": 0.936 + }, + { + "start": 2739.42, + "end": 2740.2, + "probability": 0.7428 + }, + { + "start": 2740.36, + "end": 2741.08, + "probability": 0.8202 + }, + { + "start": 2741.64, + "end": 2744.68, + "probability": 0.9705 + }, + { + "start": 2744.94, + "end": 2745.84, + "probability": 0.6454 + }, + { + "start": 2746.1, + "end": 2746.52, + "probability": 0.594 + }, + { + "start": 2746.6, + "end": 2749.08, + "probability": 0.4925 + }, + { + "start": 2749.93, + "end": 2750.72, + "probability": 0.6266 + }, + { + "start": 2751.18, + "end": 2751.76, + "probability": 0.7834 + }, + { + "start": 2752.26, + "end": 2754.42, + "probability": 0.8076 + }, + { + "start": 2754.78, + "end": 2757.14, + "probability": 0.694 + }, + { + "start": 2757.85, + "end": 2764.08, + "probability": 0.8704 + }, + { + "start": 2764.44, + "end": 2767.88, + "probability": 0.7917 + }, + { + "start": 2767.94, + "end": 2769.24, + "probability": 0.7529 + }, + { + "start": 2769.56, + "end": 2772.4, + "probability": 0.8777 + }, + { + "start": 2772.88, + "end": 2775.82, + "probability": 0.9932 + }, + { + "start": 2776.22, + "end": 2785.92, + "probability": 0.9017 + }, + { + "start": 2786.04, + "end": 2789.64, + "probability": 0.8657 + }, + { + "start": 2789.64, + "end": 2792.64, + "probability": 0.9839 + }, + { + "start": 2792.68, + "end": 2794.16, + "probability": 0.9937 + }, + { + "start": 2794.52, + "end": 2795.49, + "probability": 0.7812 + }, + { + "start": 2796.12, + "end": 2798.86, + "probability": 0.5773 + }, + { + "start": 2798.94, + "end": 2801.25, + "probability": 0.9865 + }, + { + "start": 2801.64, + "end": 2803.12, + "probability": 0.9168 + }, + { + "start": 2803.72, + "end": 2808.64, + "probability": 0.9258 + }, + { + "start": 2809.2, + "end": 2811.52, + "probability": 0.8831 + }, + { + "start": 2811.88, + "end": 2815.98, + "probability": 0.9841 + }, + { + "start": 2816.02, + "end": 2819.76, + "probability": 0.9927 + }, + { + "start": 2819.8, + "end": 2824.48, + "probability": 0.9932 + }, + { + "start": 2824.96, + "end": 2828.22, + "probability": 0.7476 + }, + { + "start": 2828.22, + "end": 2831.78, + "probability": 0.7346 + }, + { + "start": 2831.8, + "end": 2832.7, + "probability": 0.8346 + }, + { + "start": 2834.06, + "end": 2835.76, + "probability": 0.893 + }, + { + "start": 2836.22, + "end": 2837.68, + "probability": 0.5814 + }, + { + "start": 2843.66, + "end": 2844.14, + "probability": 0.489 + }, + { + "start": 2844.18, + "end": 2845.94, + "probability": 0.7124 + }, + { + "start": 2846.54, + "end": 2848.98, + "probability": 0.9701 + }, + { + "start": 2849.9, + "end": 2852.8, + "probability": 0.8294 + }, + { + "start": 2853.34, + "end": 2855.28, + "probability": 0.9523 + }, + { + "start": 2857.18, + "end": 2857.18, + "probability": 0.0113 + }, + { + "start": 2857.18, + "end": 2858.82, + "probability": 0.5862 + }, + { + "start": 2858.94, + "end": 2862.26, + "probability": 0.9622 + }, + { + "start": 2862.4, + "end": 2863.18, + "probability": 0.6699 + }, + { + "start": 2863.3, + "end": 2864.12, + "probability": 0.6926 + }, + { + "start": 2864.52, + "end": 2868.24, + "probability": 0.7018 + }, + { + "start": 2868.9, + "end": 2869.48, + "probability": 0.5659 + }, + { + "start": 2869.88, + "end": 2870.6, + "probability": 0.8419 + }, + { + "start": 2870.98, + "end": 2873.08, + "probability": 0.49 + }, + { + "start": 2873.74, + "end": 2876.58, + "probability": 0.6519 + }, + { + "start": 2877.5, + "end": 2881.8, + "probability": 0.864 + }, + { + "start": 2881.8, + "end": 2887.08, + "probability": 0.7319 + }, + { + "start": 2887.14, + "end": 2889.44, + "probability": 0.9468 + }, + { + "start": 2890.04, + "end": 2892.96, + "probability": 0.825 + }, + { + "start": 2893.26, + "end": 2894.24, + "probability": 0.9384 + }, + { + "start": 2894.32, + "end": 2896.3, + "probability": 0.9646 + }, + { + "start": 2896.96, + "end": 2900.52, + "probability": 0.7629 + }, + { + "start": 2901.64, + "end": 2903.7, + "probability": 0.8521 + }, + { + "start": 2903.9, + "end": 2904.38, + "probability": 0.8701 + }, + { + "start": 2904.6, + "end": 2908.02, + "probability": 0.843 + }, + { + "start": 2909.1, + "end": 2910.82, + "probability": 0.8068 + }, + { + "start": 2911.06, + "end": 2913.16, + "probability": 0.4706 + }, + { + "start": 2913.16, + "end": 2919.2, + "probability": 0.729 + }, + { + "start": 2919.62, + "end": 2921.76, + "probability": 0.6775 + }, + { + "start": 2921.86, + "end": 2924.62, + "probability": 0.8061 + }, + { + "start": 2924.76, + "end": 2925.12, + "probability": 0.4454 + }, + { + "start": 2925.14, + "end": 2925.96, + "probability": 0.4688 + }, + { + "start": 2926.76, + "end": 2929.66, + "probability": 0.6796 + }, + { + "start": 2930.1, + "end": 2934.58, + "probability": 0.922 + }, + { + "start": 2936.06, + "end": 2941.12, + "probability": 0.9456 + }, + { + "start": 2941.7, + "end": 2946.34, + "probability": 0.9915 + }, + { + "start": 2946.34, + "end": 2951.78, + "probability": 0.7812 + }, + { + "start": 2952.58, + "end": 2953.7, + "probability": 0.6842 + }, + { + "start": 2953.94, + "end": 2960.36, + "probability": 0.9342 + }, + { + "start": 2961.38, + "end": 2964.98, + "probability": 0.5815 + }, + { + "start": 2966.66, + "end": 2969.74, + "probability": 0.7059 + }, + { + "start": 2969.92, + "end": 2973.34, + "probability": 0.6526 + }, + { + "start": 2973.7, + "end": 2978.34, + "probability": 0.9143 + }, + { + "start": 2978.56, + "end": 2978.96, + "probability": 0.4007 + }, + { + "start": 2979.0, + "end": 2982.38, + "probability": 0.8177 + }, + { + "start": 2983.22, + "end": 2983.82, + "probability": 0.7971 + }, + { + "start": 2984.38, + "end": 2987.88, + "probability": 0.9485 + }, + { + "start": 2988.06, + "end": 2989.1, + "probability": 0.9304 + }, + { + "start": 2990.92, + "end": 2993.8, + "probability": 0.563 + }, + { + "start": 2994.54, + "end": 2997.56, + "probability": 0.8344 + }, + { + "start": 2998.44, + "end": 2999.36, + "probability": 0.7454 + }, + { + "start": 3000.64, + "end": 3002.78, + "probability": 0.7633 + }, + { + "start": 3002.78, + "end": 3005.58, + "probability": 0.5977 + }, + { + "start": 3006.02, + "end": 3008.46, + "probability": 0.8999 + }, + { + "start": 3008.52, + "end": 3010.81, + "probability": 0.843 + }, + { + "start": 3011.9, + "end": 3012.76, + "probability": 0.7417 + }, + { + "start": 3012.9, + "end": 3015.06, + "probability": 0.7603 + }, + { + "start": 3016.63, + "end": 3019.46, + "probability": 0.949 + }, + { + "start": 3019.66, + "end": 3021.34, + "probability": 0.7349 + }, + { + "start": 3021.52, + "end": 3022.36, + "probability": 0.9224 + }, + { + "start": 3023.24, + "end": 3026.24, + "probability": 0.9464 + }, + { + "start": 3026.3, + "end": 3027.78, + "probability": 0.8062 + }, + { + "start": 3027.84, + "end": 3029.16, + "probability": 0.772 + }, + { + "start": 3030.46, + "end": 3034.5, + "probability": 0.8145 + }, + { + "start": 3035.62, + "end": 3037.64, + "probability": 0.8708 + }, + { + "start": 3038.62, + "end": 3039.52, + "probability": 0.6368 + }, + { + "start": 3041.0, + "end": 3042.72, + "probability": 0.7728 + }, + { + "start": 3043.22, + "end": 3045.09, + "probability": 0.7227 + }, + { + "start": 3045.64, + "end": 3047.5, + "probability": 0.4449 + }, + { + "start": 3047.58, + "end": 3048.8, + "probability": 0.9924 + }, + { + "start": 3049.44, + "end": 3052.83, + "probability": 0.6992 + }, + { + "start": 3053.34, + "end": 3059.18, + "probability": 0.9357 + }, + { + "start": 3059.28, + "end": 3060.14, + "probability": 0.4819 + }, + { + "start": 3062.18, + "end": 3064.12, + "probability": 0.8569 + }, + { + "start": 3064.74, + "end": 3066.82, + "probability": 0.5364 + }, + { + "start": 3067.1, + "end": 3067.76, + "probability": 0.6382 + }, + { + "start": 3068.46, + "end": 3068.6, + "probability": 0.6725 + }, + { + "start": 3069.94, + "end": 3070.66, + "probability": 0.7286 + }, + { + "start": 3070.84, + "end": 3071.6, + "probability": 0.7635 + }, + { + "start": 3071.84, + "end": 3075.24, + "probability": 0.4941 + }, + { + "start": 3075.34, + "end": 3079.45, + "probability": 0.8291 + }, + { + "start": 3079.58, + "end": 3080.01, + "probability": 0.4215 + }, + { + "start": 3080.74, + "end": 3081.38, + "probability": 0.7046 + }, + { + "start": 3082.62, + "end": 3084.82, + "probability": 0.9373 + }, + { + "start": 3085.7, + "end": 3087.58, + "probability": 0.9058 + }, + { + "start": 3088.82, + "end": 3091.9, + "probability": 0.9071 + }, + { + "start": 3091.9, + "end": 3092.96, + "probability": 0.1753 + }, + { + "start": 3092.96, + "end": 3093.94, + "probability": 0.5144 + }, + { + "start": 3094.12, + "end": 3095.08, + "probability": 0.7786 + }, + { + "start": 3095.26, + "end": 3097.46, + "probability": 0.7292 + }, + { + "start": 3097.86, + "end": 3099.3, + "probability": 0.854 + }, + { + "start": 3100.38, + "end": 3102.58, + "probability": 0.8862 + }, + { + "start": 3103.54, + "end": 3104.13, + "probability": 0.8979 + }, + { + "start": 3105.1, + "end": 3105.46, + "probability": 0.9316 + }, + { + "start": 3106.56, + "end": 3109.78, + "probability": 0.8511 + }, + { + "start": 3110.62, + "end": 3111.02, + "probability": 0.923 + }, + { + "start": 3111.18, + "end": 3113.38, + "probability": 0.9485 + }, + { + "start": 3113.72, + "end": 3114.62, + "probability": 0.6138 + }, + { + "start": 3115.4, + "end": 3117.56, + "probability": 0.9873 + }, + { + "start": 3118.02, + "end": 3118.62, + "probability": 0.9792 + }, + { + "start": 3119.44, + "end": 3121.5, + "probability": 0.8296 + }, + { + "start": 3122.04, + "end": 3123.46, + "probability": 0.8843 + }, + { + "start": 3123.58, + "end": 3125.86, + "probability": 0.9062 + }, + { + "start": 3126.32, + "end": 3129.58, + "probability": 0.8355 + }, + { + "start": 3130.48, + "end": 3133.59, + "probability": 0.7922 + }, + { + "start": 3135.06, + "end": 3135.62, + "probability": 0.6596 + }, + { + "start": 3136.26, + "end": 3138.3, + "probability": 0.8826 + }, + { + "start": 3138.84, + "end": 3139.96, + "probability": 0.7465 + }, + { + "start": 3140.08, + "end": 3142.34, + "probability": 0.8756 + }, + { + "start": 3143.36, + "end": 3144.2, + "probability": 0.5699 + }, + { + "start": 3144.26, + "end": 3145.36, + "probability": 0.7759 + }, + { + "start": 3145.5, + "end": 3147.28, + "probability": 0.9028 + }, + { + "start": 3147.54, + "end": 3148.4, + "probability": 0.5786 + }, + { + "start": 3148.72, + "end": 3149.1, + "probability": 0.8363 + }, + { + "start": 3149.5, + "end": 3150.86, + "probability": 0.9434 + }, + { + "start": 3151.74, + "end": 3152.12, + "probability": 0.5649 + }, + { + "start": 3153.16, + "end": 3153.2, + "probability": 0.121 + }, + { + "start": 3153.32, + "end": 3153.44, + "probability": 0.1966 + }, + { + "start": 3153.44, + "end": 3154.54, + "probability": 0.5425 + }, + { + "start": 3157.68, + "end": 3159.9, + "probability": 0.5566 + }, + { + "start": 3162.02, + "end": 3162.54, + "probability": 0.749 + }, + { + "start": 3163.02, + "end": 3163.78, + "probability": 0.8248 + }, + { + "start": 3163.86, + "end": 3164.28, + "probability": 0.7048 + }, + { + "start": 3164.28, + "end": 3167.22, + "probability": 0.327 + }, + { + "start": 3168.6, + "end": 3169.62, + "probability": 0.88 + }, + { + "start": 3170.95, + "end": 3176.64, + "probability": 0.8154 + }, + { + "start": 3176.64, + "end": 3178.06, + "probability": 0.2592 + }, + { + "start": 3178.3, + "end": 3179.68, + "probability": 0.776 + }, + { + "start": 3180.28, + "end": 3182.74, + "probability": 0.8771 + }, + { + "start": 3182.82, + "end": 3183.56, + "probability": 0.8791 + }, + { + "start": 3183.76, + "end": 3185.72, + "probability": 0.7738 + }, + { + "start": 3186.12, + "end": 3187.82, + "probability": 0.787 + }, + { + "start": 3187.88, + "end": 3193.08, + "probability": 0.9164 + }, + { + "start": 3193.24, + "end": 3194.0, + "probability": 0.2416 + }, + { + "start": 3194.18, + "end": 3194.54, + "probability": 0.1057 + }, + { + "start": 3194.56, + "end": 3195.98, + "probability": 0.9552 + }, + { + "start": 3196.06, + "end": 3197.0, + "probability": 0.392 + }, + { + "start": 3197.18, + "end": 3198.48, + "probability": 0.8511 + }, + { + "start": 3199.04, + "end": 3202.7, + "probability": 0.981 + }, + { + "start": 3203.12, + "end": 3204.3, + "probability": 0.5594 + }, + { + "start": 3204.6, + "end": 3205.63, + "probability": 0.9667 + }, + { + "start": 3206.08, + "end": 3208.54, + "probability": 0.6761 + }, + { + "start": 3208.54, + "end": 3208.86, + "probability": 0.5917 + }, + { + "start": 3208.96, + "end": 3212.52, + "probability": 0.923 + }, + { + "start": 3212.64, + "end": 3214.61, + "probability": 0.9982 + }, + { + "start": 3215.06, + "end": 3218.2, + "probability": 0.9896 + }, + { + "start": 3218.62, + "end": 3220.0, + "probability": 0.8447 + }, + { + "start": 3220.32, + "end": 3221.9, + "probability": 0.9835 + }, + { + "start": 3222.22, + "end": 3222.56, + "probability": 0.9043 + }, + { + "start": 3222.58, + "end": 3223.76, + "probability": 0.9834 + }, + { + "start": 3223.9, + "end": 3225.66, + "probability": 0.7679 + }, + { + "start": 3225.7, + "end": 3228.42, + "probability": 0.7295 + }, + { + "start": 3229.22, + "end": 3234.26, + "probability": 0.7807 + }, + { + "start": 3235.26, + "end": 3236.74, + "probability": 0.767 + }, + { + "start": 3237.52, + "end": 3239.34, + "probability": 0.7495 + }, + { + "start": 3239.48, + "end": 3240.06, + "probability": 0.7849 + }, + { + "start": 3240.16, + "end": 3242.0, + "probability": 0.9443 + }, + { + "start": 3242.18, + "end": 3247.14, + "probability": 0.9797 + }, + { + "start": 3247.2, + "end": 3247.98, + "probability": 0.6474 + }, + { + "start": 3248.74, + "end": 3249.84, + "probability": 0.9341 + }, + { + "start": 3250.32, + "end": 3251.62, + "probability": 0.8862 + }, + { + "start": 3251.8, + "end": 3253.1, + "probability": 0.9484 + }, + { + "start": 3253.22, + "end": 3255.26, + "probability": 0.6563 + }, + { + "start": 3255.26, + "end": 3255.36, + "probability": 0.8115 + }, + { + "start": 3256.52, + "end": 3256.64, + "probability": 0.1953 + }, + { + "start": 3256.64, + "end": 3257.14, + "probability": 0.276 + }, + { + "start": 3257.2, + "end": 3257.3, + "probability": 0.4242 + }, + { + "start": 3257.38, + "end": 3257.48, + "probability": 0.8202 + }, + { + "start": 3257.72, + "end": 3257.86, + "probability": 0.6554 + }, + { + "start": 3257.86, + "end": 3260.72, + "probability": 0.8901 + }, + { + "start": 3261.02, + "end": 3262.16, + "probability": 0.7505 + }, + { + "start": 3262.42, + "end": 3262.78, + "probability": 0.5471 + }, + { + "start": 3262.8, + "end": 3263.76, + "probability": 0.7949 + }, + { + "start": 3263.98, + "end": 3264.34, + "probability": 0.3548 + }, + { + "start": 3264.78, + "end": 3266.8, + "probability": 0.9883 + }, + { + "start": 3266.88, + "end": 3269.12, + "probability": 0.719 + }, + { + "start": 3270.34, + "end": 3271.28, + "probability": 0.6378 + }, + { + "start": 3271.32, + "end": 3272.42, + "probability": 0.8274 + }, + { + "start": 3272.52, + "end": 3273.62, + "probability": 0.9435 + }, + { + "start": 3273.92, + "end": 3275.1, + "probability": 0.947 + }, + { + "start": 3275.41, + "end": 3281.3, + "probability": 0.8534 + }, + { + "start": 3281.62, + "end": 3282.44, + "probability": 0.8495 + }, + { + "start": 3282.58, + "end": 3284.02, + "probability": 0.951 + }, + { + "start": 3284.42, + "end": 3287.46, + "probability": 0.9904 + }, + { + "start": 3287.88, + "end": 3291.24, + "probability": 0.9628 + }, + { + "start": 3291.7, + "end": 3292.28, + "probability": 0.7394 + }, + { + "start": 3292.86, + "end": 3293.54, + "probability": 0.1114 + }, + { + "start": 3293.7, + "end": 3295.44, + "probability": 0.7963 + }, + { + "start": 3295.72, + "end": 3296.24, + "probability": 0.7552 + }, + { + "start": 3296.36, + "end": 3297.54, + "probability": 0.8906 + }, + { + "start": 3297.94, + "end": 3300.32, + "probability": 0.9939 + }, + { + "start": 3300.44, + "end": 3304.8, + "probability": 0.9416 + }, + { + "start": 3305.2, + "end": 3307.88, + "probability": 0.8336 + }, + { + "start": 3308.08, + "end": 3308.94, + "probability": 0.5843 + }, + { + "start": 3308.98, + "end": 3312.14, + "probability": 0.7213 + }, + { + "start": 3312.62, + "end": 3315.44, + "probability": 0.9634 + }, + { + "start": 3316.14, + "end": 3318.4, + "probability": 0.6817 + }, + { + "start": 3319.08, + "end": 3321.28, + "probability": 0.7697 + }, + { + "start": 3321.58, + "end": 3322.6, + "probability": 0.6895 + }, + { + "start": 3323.62, + "end": 3324.7, + "probability": 0.4177 + }, + { + "start": 3325.1, + "end": 3327.08, + "probability": 0.6873 + }, + { + "start": 3327.54, + "end": 3329.16, + "probability": 0.6843 + }, + { + "start": 3329.66, + "end": 3331.34, + "probability": 0.8476 + }, + { + "start": 3332.06, + "end": 3332.62, + "probability": 0.3828 + }, + { + "start": 3332.7, + "end": 3333.76, + "probability": 0.7947 + }, + { + "start": 3333.86, + "end": 3334.96, + "probability": 0.7077 + }, + { + "start": 3335.02, + "end": 3338.88, + "probability": 0.9928 + }, + { + "start": 3339.78, + "end": 3344.44, + "probability": 0.9793 + }, + { + "start": 3345.1, + "end": 3350.12, + "probability": 0.9487 + }, + { + "start": 3350.58, + "end": 3353.44, + "probability": 0.8475 + }, + { + "start": 3353.5, + "end": 3354.7, + "probability": 0.8686 + }, + { + "start": 3355.8, + "end": 3357.5, + "probability": 0.9242 + }, + { + "start": 3358.06, + "end": 3359.62, + "probability": 0.9883 + }, + { + "start": 3360.6, + "end": 3364.76, + "probability": 0.976 + }, + { + "start": 3364.96, + "end": 3368.02, + "probability": 0.9627 + }, + { + "start": 3368.12, + "end": 3368.44, + "probability": 0.5559 + }, + { + "start": 3368.48, + "end": 3369.42, + "probability": 0.6256 + }, + { + "start": 3369.9, + "end": 3370.82, + "probability": 0.6057 + }, + { + "start": 3371.14, + "end": 3374.58, + "probability": 0.9822 + }, + { + "start": 3375.4, + "end": 3378.16, + "probability": 0.768 + }, + { + "start": 3378.8, + "end": 3380.82, + "probability": 0.8897 + }, + { + "start": 3382.4, + "end": 3385.06, + "probability": 0.6235 + }, + { + "start": 3385.28, + "end": 3388.08, + "probability": 0.8324 + }, + { + "start": 3389.26, + "end": 3389.66, + "probability": 0.5108 + }, + { + "start": 3390.38, + "end": 3392.38, + "probability": 0.116 + }, + { + "start": 3392.92, + "end": 3393.38, + "probability": 0.7531 + }, + { + "start": 3394.02, + "end": 3396.3, + "probability": 0.2451 + }, + { + "start": 3397.29, + "end": 3399.43, + "probability": 0.8153 + }, + { + "start": 3400.0, + "end": 3402.38, + "probability": 0.9102 + }, + { + "start": 3405.09, + "end": 3406.68, + "probability": 0.5369 + }, + { + "start": 3406.78, + "end": 3407.71, + "probability": 0.5173 + }, + { + "start": 3408.04, + "end": 3408.48, + "probability": 0.8485 + }, + { + "start": 3409.58, + "end": 3410.92, + "probability": 0.618 + }, + { + "start": 3412.12, + "end": 3415.54, + "probability": 0.6087 + }, + { + "start": 3415.88, + "end": 3419.24, + "probability": 0.4362 + }, + { + "start": 3419.76, + "end": 3422.2, + "probability": 0.6944 + }, + { + "start": 3423.18, + "end": 3425.22, + "probability": 0.4978 + }, + { + "start": 3425.78, + "end": 3430.54, + "probability": 0.8203 + }, + { + "start": 3432.63, + "end": 3433.78, + "probability": 0.0418 + }, + { + "start": 3434.2, + "end": 3438.44, + "probability": 0.628 + }, + { + "start": 3438.52, + "end": 3441.5, + "probability": 0.7904 + }, + { + "start": 3442.1, + "end": 3443.86, + "probability": 0.9273 + }, + { + "start": 3444.74, + "end": 3447.96, + "probability": 0.8306 + }, + { + "start": 3447.96, + "end": 3450.74, + "probability": 0.9451 + }, + { + "start": 3451.64, + "end": 3455.5, + "probability": 0.7505 + }, + { + "start": 3456.24, + "end": 3459.36, + "probability": 0.9473 + }, + { + "start": 3462.08, + "end": 3462.6, + "probability": 0.5068 + }, + { + "start": 3462.9, + "end": 3464.2, + "probability": 0.9552 + }, + { + "start": 3464.54, + "end": 3465.76, + "probability": 0.968 + }, + { + "start": 3466.32, + "end": 3467.26, + "probability": 0.7993 + }, + { + "start": 3468.3, + "end": 3469.96, + "probability": 0.4426 + }, + { + "start": 3471.18, + "end": 3472.48, + "probability": 0.0852 + }, + { + "start": 3473.92, + "end": 3474.66, + "probability": 0.6101 + }, + { + "start": 3474.78, + "end": 3475.55, + "probability": 0.7487 + }, + { + "start": 3477.44, + "end": 3479.52, + "probability": 0.69 + }, + { + "start": 3480.2, + "end": 3481.42, + "probability": 0.5981 + }, + { + "start": 3482.16, + "end": 3483.04, + "probability": 0.8991 + }, + { + "start": 3483.14, + "end": 3483.98, + "probability": 0.964 + }, + { + "start": 3484.5, + "end": 3487.8, + "probability": 0.1085 + }, + { + "start": 3488.96, + "end": 3489.4, + "probability": 0.0927 + }, + { + "start": 3489.42, + "end": 3489.86, + "probability": 0.0467 + }, + { + "start": 3490.32, + "end": 3490.88, + "probability": 0.2051 + }, + { + "start": 3490.96, + "end": 3492.12, + "probability": 0.7856 + }, + { + "start": 3492.48, + "end": 3493.84, + "probability": 0.9591 + }, + { + "start": 3494.74, + "end": 3499.86, + "probability": 0.7378 + }, + { + "start": 3499.94, + "end": 3504.24, + "probability": 0.9933 + }, + { + "start": 3504.98, + "end": 3505.68, + "probability": 0.5792 + }, + { + "start": 3505.74, + "end": 3507.32, + "probability": 0.5311 + }, + { + "start": 3507.4, + "end": 3507.4, + "probability": 0.6189 + }, + { + "start": 3507.4, + "end": 3508.36, + "probability": 0.9195 + }, + { + "start": 3508.5, + "end": 3508.58, + "probability": 0.4873 + }, + { + "start": 3508.74, + "end": 3510.96, + "probability": 0.9351 + }, + { + "start": 3511.4, + "end": 3512.12, + "probability": 0.8857 + }, + { + "start": 3512.76, + "end": 3516.02, + "probability": 0.7833 + }, + { + "start": 3516.72, + "end": 3517.66, + "probability": 0.416 + }, + { + "start": 3518.08, + "end": 3518.94, + "probability": 0.1704 + }, + { + "start": 3519.22, + "end": 3519.58, + "probability": 0.3861 + }, + { + "start": 3519.92, + "end": 3520.4, + "probability": 0.9437 + }, + { + "start": 3520.88, + "end": 3521.96, + "probability": 0.6852 + }, + { + "start": 3522.0, + "end": 3522.46, + "probability": 0.7627 + }, + { + "start": 3522.56, + "end": 3522.78, + "probability": 0.4427 + }, + { + "start": 3522.78, + "end": 3524.94, + "probability": 0.6817 + }, + { + "start": 3526.2, + "end": 3526.88, + "probability": 0.6479 + }, + { + "start": 3527.74, + "end": 3528.64, + "probability": 0.8553 + }, + { + "start": 3529.44, + "end": 3530.48, + "probability": 0.4546 + }, + { + "start": 3531.82, + "end": 3532.7, + "probability": 0.4043 + }, + { + "start": 3533.04, + "end": 3534.4, + "probability": 0.8323 + }, + { + "start": 3534.72, + "end": 3535.42, + "probability": 0.8474 + }, + { + "start": 3536.58, + "end": 3538.34, + "probability": 0.9485 + }, + { + "start": 3541.34, + "end": 3543.78, + "probability": 0.9631 + }, + { + "start": 3544.74, + "end": 3547.56, + "probability": 0.9709 + }, + { + "start": 3548.36, + "end": 3549.04, + "probability": 0.9193 + }, + { + "start": 3549.6, + "end": 3550.77, + "probability": 0.8629 + }, + { + "start": 3551.38, + "end": 3553.67, + "probability": 0.7201 + }, + { + "start": 3553.98, + "end": 3555.9, + "probability": 0.9666 + }, + { + "start": 3556.76, + "end": 3557.52, + "probability": 0.9497 + }, + { + "start": 3558.1, + "end": 3560.88, + "probability": 0.9742 + }, + { + "start": 3560.88, + "end": 3561.98, + "probability": 0.7379 + }, + { + "start": 3562.12, + "end": 3566.22, + "probability": 0.6056 + }, + { + "start": 3566.81, + "end": 3568.58, + "probability": 0.7342 + }, + { + "start": 3568.72, + "end": 3569.23, + "probability": 0.7993 + }, + { + "start": 3569.48, + "end": 3569.5, + "probability": 0.4387 + }, + { + "start": 3569.7, + "end": 3570.76, + "probability": 0.8231 + }, + { + "start": 3571.6, + "end": 3571.82, + "probability": 0.9106 + }, + { + "start": 3571.92, + "end": 3572.84, + "probability": 0.8915 + }, + { + "start": 3573.12, + "end": 3574.18, + "probability": 0.9556 + }, + { + "start": 3574.32, + "end": 3574.82, + "probability": 0.9326 + }, + { + "start": 3575.52, + "end": 3576.94, + "probability": 0.6808 + }, + { + "start": 3578.1, + "end": 3582.03, + "probability": 0.9438 + }, + { + "start": 3582.34, + "end": 3583.9, + "probability": 0.5318 + }, + { + "start": 3584.46, + "end": 3584.78, + "probability": 0.9043 + }, + { + "start": 3585.26, + "end": 3586.32, + "probability": 0.6895 + }, + { + "start": 3586.54, + "end": 3586.76, + "probability": 0.9677 + }, + { + "start": 3587.38, + "end": 3587.86, + "probability": 0.4607 + }, + { + "start": 3588.16, + "end": 3593.28, + "probability": 0.9476 + }, + { + "start": 3593.56, + "end": 3597.02, + "probability": 0.9852 + }, + { + "start": 3597.7, + "end": 3599.16, + "probability": 0.4507 + }, + { + "start": 3599.46, + "end": 3599.76, + "probability": 0.4034 + }, + { + "start": 3600.34, + "end": 3601.28, + "probability": 0.4545 + }, + { + "start": 3602.26, + "end": 3603.56, + "probability": 0.4598 + }, + { + "start": 3603.66, + "end": 3608.1, + "probability": 0.6201 + }, + { + "start": 3609.52, + "end": 3609.96, + "probability": 0.2701 + }, + { + "start": 3613.83, + "end": 3616.65, + "probability": 0.7808 + }, + { + "start": 3617.31, + "end": 3618.21, + "probability": 0.6407 + }, + { + "start": 3618.59, + "end": 3619.82, + "probability": 0.6357 + }, + { + "start": 3620.23, + "end": 3623.31, + "probability": 0.4182 + }, + { + "start": 3623.43, + "end": 3624.15, + "probability": 0.5636 + }, + { + "start": 3624.21, + "end": 3625.24, + "probability": 0.6868 + }, + { + "start": 3626.055, + "end": 3631.48, + "probability": 0.6881 + }, + { + "start": 3632.05, + "end": 3633.15, + "probability": 0.9287 + }, + { + "start": 3635.055, + "end": 3637.86, + "probability": 0.8865 + }, + { + "start": 3638.49, + "end": 3639.87, + "probability": 0.7035 + }, + { + "start": 3640.7, + "end": 3642.89, + "probability": 0.9878 + }, + { + "start": 3643.75, + "end": 3644.62, + "probability": 0.6784 + }, + { + "start": 3644.85, + "end": 3647.91, + "probability": 0.8796 + }, + { + "start": 3647.97, + "end": 3649.1, + "probability": 0.9613 + }, + { + "start": 3649.27, + "end": 3650.01, + "probability": 0.6681 + }, + { + "start": 3650.09, + "end": 3655.65, + "probability": 0.9396 + }, + { + "start": 3656.97, + "end": 3661.47, + "probability": 0.3857 + }, + { + "start": 3661.47, + "end": 3662.75, + "probability": 0.4082 + }, + { + "start": 3662.81, + "end": 3669.27, + "probability": 0.9084 + }, + { + "start": 3669.27, + "end": 3674.43, + "probability": 0.9552 + }, + { + "start": 3674.53, + "end": 3677.01, + "probability": 0.9459 + }, + { + "start": 3677.09, + "end": 3678.43, + "probability": 0.8267 + }, + { + "start": 3679.01, + "end": 3685.71, + "probability": 0.832 + }, + { + "start": 3686.53, + "end": 3687.47, + "probability": 0.2317 + }, + { + "start": 3687.53, + "end": 3693.85, + "probability": 0.8931 + }, + { + "start": 3694.35, + "end": 3695.69, + "probability": 0.5982 + }, + { + "start": 3695.75, + "end": 3697.23, + "probability": 0.7581 + }, + { + "start": 3697.25, + "end": 3699.4, + "probability": 0.6294 + }, + { + "start": 3700.15, + "end": 3701.59, + "probability": 0.1602 + }, + { + "start": 3701.63, + "end": 3702.17, + "probability": 0.5094 + }, + { + "start": 3708.31, + "end": 3709.53, + "probability": 0.1009 + }, + { + "start": 3711.45, + "end": 3714.13, + "probability": 0.0432 + }, + { + "start": 3714.19, + "end": 3714.93, + "probability": 0.4939 + }, + { + "start": 3716.23, + "end": 3717.19, + "probability": 0.8685 + }, + { + "start": 3717.27, + "end": 3717.98, + "probability": 0.9229 + }, + { + "start": 3718.31, + "end": 3719.27, + "probability": 0.7728 + }, + { + "start": 3719.73, + "end": 3721.24, + "probability": 0.6432 + }, + { + "start": 3722.69, + "end": 3725.43, + "probability": 0.5396 + }, + { + "start": 3725.89, + "end": 3728.21, + "probability": 0.1453 + }, + { + "start": 3728.85, + "end": 3732.51, + "probability": 0.4183 + }, + { + "start": 3732.79, + "end": 3734.59, + "probability": 0.7604 + }, + { + "start": 3735.27, + "end": 3735.55, + "probability": 0.6725 + }, + { + "start": 3742.58, + "end": 3744.05, + "probability": 0.5441 + }, + { + "start": 3745.59, + "end": 3751.65, + "probability": 0.8657 + }, + { + "start": 3752.87, + "end": 3754.65, + "probability": 0.8513 + }, + { + "start": 3755.47, + "end": 3757.19, + "probability": 0.8944 + }, + { + "start": 3757.29, + "end": 3760.55, + "probability": 0.9377 + }, + { + "start": 3760.87, + "end": 3762.37, + "probability": 0.9065 + }, + { + "start": 3762.81, + "end": 3766.21, + "probability": 0.9764 + }, + { + "start": 3767.19, + "end": 3768.73, + "probability": 0.8434 + }, + { + "start": 3769.35, + "end": 3770.29, + "probability": 0.7552 + }, + { + "start": 3770.49, + "end": 3771.77, + "probability": 0.7632 + }, + { + "start": 3771.95, + "end": 3772.73, + "probability": 0.9438 + }, + { + "start": 3773.49, + "end": 3777.47, + "probability": 0.9033 + }, + { + "start": 3779.57, + "end": 3783.01, + "probability": 0.752 + }, + { + "start": 3784.07, + "end": 3784.85, + "probability": 0.398 + }, + { + "start": 3786.03, + "end": 3788.55, + "probability": 0.8854 + }, + { + "start": 3788.63, + "end": 3789.71, + "probability": 0.9802 + }, + { + "start": 3790.67, + "end": 3791.57, + "probability": 0.1018 + }, + { + "start": 3791.85, + "end": 3793.33, + "probability": 0.2722 + }, + { + "start": 3794.63, + "end": 3795.25, + "probability": 0.5576 + }, + { + "start": 3796.37, + "end": 3796.37, + "probability": 0.119 + }, + { + "start": 3796.37, + "end": 3800.59, + "probability": 0.3152 + }, + { + "start": 3800.63, + "end": 3801.91, + "probability": 0.3971 + }, + { + "start": 3801.99, + "end": 3804.33, + "probability": 0.1827 + }, + { + "start": 3804.49, + "end": 3806.73, + "probability": 0.7641 + }, + { + "start": 3806.75, + "end": 3809.05, + "probability": 0.3562 + }, + { + "start": 3809.05, + "end": 3810.31, + "probability": 0.4323 + }, + { + "start": 3810.85, + "end": 3814.15, + "probability": 0.6119 + }, + { + "start": 3814.21, + "end": 3814.67, + "probability": 0.9071 + }, + { + "start": 3815.45, + "end": 3819.09, + "probability": 0.9905 + }, + { + "start": 3819.63, + "end": 3823.37, + "probability": 0.8711 + }, + { + "start": 3823.37, + "end": 3828.27, + "probability": 0.6086 + }, + { + "start": 3830.28, + "end": 3833.91, + "probability": 0.6457 + }, + { + "start": 3837.07, + "end": 3837.21, + "probability": 0.2972 + }, + { + "start": 3837.21, + "end": 3841.18, + "probability": 0.7369 + }, + { + "start": 3842.07, + "end": 3845.05, + "probability": 0.8023 + }, + { + "start": 3845.39, + "end": 3847.17, + "probability": 0.8785 + }, + { + "start": 3848.01, + "end": 3848.45, + "probability": 0.1191 + }, + { + "start": 3848.91, + "end": 3852.49, + "probability": 0.7153 + }, + { + "start": 3852.69, + "end": 3854.09, + "probability": 0.4686 + }, + { + "start": 3854.85, + "end": 3855.46, + "probability": 0.2401 + }, + { + "start": 3855.83, + "end": 3858.11, + "probability": 0.2171 + }, + { + "start": 3858.15, + "end": 3859.03, + "probability": 0.4632 + }, + { + "start": 3859.35, + "end": 3863.69, + "probability": 0.7861 + }, + { + "start": 3863.93, + "end": 3866.13, + "probability": 0.9009 + }, + { + "start": 3866.55, + "end": 3868.75, + "probability": 0.9537 + }, + { + "start": 3869.09, + "end": 3870.33, + "probability": 0.9184 + }, + { + "start": 3870.43, + "end": 3872.55, + "probability": 0.9111 + }, + { + "start": 3873.07, + "end": 3878.65, + "probability": 0.9907 + }, + { + "start": 3878.83, + "end": 3880.33, + "probability": 0.3885 + }, + { + "start": 3881.21, + "end": 3883.91, + "probability": 0.6237 + }, + { + "start": 3884.17, + "end": 3886.55, + "probability": 0.6929 + }, + { + "start": 3887.37, + "end": 3889.63, + "probability": 0.7947 + }, + { + "start": 3890.39, + "end": 3891.79, + "probability": 0.9895 + }, + { + "start": 3892.53, + "end": 3893.31, + "probability": 0.5184 + }, + { + "start": 3893.99, + "end": 3895.61, + "probability": 0.9873 + }, + { + "start": 3897.45, + "end": 3898.36, + "probability": 0.8481 + }, + { + "start": 3898.87, + "end": 3900.35, + "probability": 0.5466 + }, + { + "start": 3900.67, + "end": 3901.39, + "probability": 0.8628 + }, + { + "start": 3901.51, + "end": 3903.07, + "probability": 0.9213 + }, + { + "start": 3903.85, + "end": 3908.56, + "probability": 0.9297 + }, + { + "start": 3909.43, + "end": 3912.19, + "probability": 0.9702 + }, + { + "start": 3912.79, + "end": 3914.07, + "probability": 0.6791 + }, + { + "start": 3914.53, + "end": 3918.35, + "probability": 0.295 + }, + { + "start": 3918.35, + "end": 3918.35, + "probability": 0.0976 + }, + { + "start": 3918.35, + "end": 3918.92, + "probability": 0.741 + }, + { + "start": 3919.49, + "end": 3923.47, + "probability": 0.9675 + }, + { + "start": 3924.11, + "end": 3927.85, + "probability": 0.9756 + }, + { + "start": 3928.63, + "end": 3930.13, + "probability": 0.8126 + }, + { + "start": 3930.51, + "end": 3933.69, + "probability": 0.9962 + }, + { + "start": 3933.81, + "end": 3934.45, + "probability": 0.7236 + }, + { + "start": 3934.89, + "end": 3935.35, + "probability": 0.4793 + }, + { + "start": 3935.35, + "end": 3937.05, + "probability": 0.5507 + }, + { + "start": 3937.73, + "end": 3939.81, + "probability": 0.9211 + }, + { + "start": 3941.27, + "end": 3943.47, + "probability": 0.9839 + }, + { + "start": 3944.85, + "end": 3946.92, + "probability": 0.8846 + }, + { + "start": 3948.61, + "end": 3949.71, + "probability": 0.685 + }, + { + "start": 3950.15, + "end": 3958.35, + "probability": 0.8263 + }, + { + "start": 3959.03, + "end": 3961.05, + "probability": 0.9744 + }, + { + "start": 3974.89, + "end": 3976.35, + "probability": 0.2159 + }, + { + "start": 3977.45, + "end": 3978.71, + "probability": 0.5698 + }, + { + "start": 3978.87, + "end": 3978.87, + "probability": 0.4516 + }, + { + "start": 3978.87, + "end": 3979.61, + "probability": 0.6905 + }, + { + "start": 3980.03, + "end": 3981.61, + "probability": 0.8205 + }, + { + "start": 3982.97, + "end": 3984.99, + "probability": 0.9845 + }, + { + "start": 3985.51, + "end": 3988.53, + "probability": 0.9943 + }, + { + "start": 3989.29, + "end": 3993.15, + "probability": 0.9624 + }, + { + "start": 3993.15, + "end": 3998.33, + "probability": 0.9924 + }, + { + "start": 3999.07, + "end": 4001.25, + "probability": 0.9531 + }, + { + "start": 4002.01, + "end": 4005.85, + "probability": 0.998 + }, + { + "start": 4006.69, + "end": 4009.73, + "probability": 0.7677 + }, + { + "start": 4010.23, + "end": 4013.95, + "probability": 0.8506 + }, + { + "start": 4014.69, + "end": 4015.15, + "probability": 0.5187 + }, + { + "start": 4015.15, + "end": 4016.05, + "probability": 0.651 + }, + { + "start": 4016.17, + "end": 4017.95, + "probability": 0.7172 + }, + { + "start": 4018.03, + "end": 4024.71, + "probability": 0.3265 + }, + { + "start": 4025.63, + "end": 4029.43, + "probability": 0.9761 + }, + { + "start": 4029.61, + "end": 4035.21, + "probability": 0.9769 + }, + { + "start": 4035.65, + "end": 4041.41, + "probability": 0.9829 + }, + { + "start": 4041.89, + "end": 4042.61, + "probability": 0.4285 + }, + { + "start": 4042.73, + "end": 4044.67, + "probability": 0.6864 + }, + { + "start": 4045.07, + "end": 4047.13, + "probability": 0.8807 + }, + { + "start": 4048.43, + "end": 4052.57, + "probability": 0.8275 + }, + { + "start": 4053.05, + "end": 4057.21, + "probability": 0.7559 + }, + { + "start": 4057.91, + "end": 4060.83, + "probability": 0.6435 + }, + { + "start": 4061.43, + "end": 4065.67, + "probability": 0.9834 + }, + { + "start": 4066.23, + "end": 4069.33, + "probability": 0.9923 + }, + { + "start": 4069.99, + "end": 4072.23, + "probability": 0.7158 + }, + { + "start": 4073.03, + "end": 4073.73, + "probability": 0.9541 + }, + { + "start": 4073.85, + "end": 4078.69, + "probability": 0.9376 + }, + { + "start": 4078.69, + "end": 4082.43, + "probability": 0.9901 + }, + { + "start": 4084.11, + "end": 4088.17, + "probability": 0.9966 + }, + { + "start": 4088.55, + "end": 4091.17, + "probability": 0.9562 + }, + { + "start": 4092.21, + "end": 4093.31, + "probability": 0.6282 + }, + { + "start": 4093.87, + "end": 4094.65, + "probability": 0.843 + }, + { + "start": 4095.31, + "end": 4096.61, + "probability": 0.9953 + }, + { + "start": 4099.15, + "end": 4103.25, + "probability": 0.9124 + }, + { + "start": 4103.99, + "end": 4107.85, + "probability": 0.9705 + }, + { + "start": 4108.05, + "end": 4109.31, + "probability": 0.7037 + }, + { + "start": 4110.09, + "end": 4115.71, + "probability": 0.8616 + }, + { + "start": 4116.69, + "end": 4118.15, + "probability": 0.7377 + }, + { + "start": 4118.71, + "end": 4120.39, + "probability": 0.3841 + }, + { + "start": 4121.37, + "end": 4122.49, + "probability": 0.7534 + }, + { + "start": 4122.91, + "end": 4123.97, + "probability": 0.7825 + }, + { + "start": 4123.97, + "end": 4127.89, + "probability": 0.9393 + }, + { + "start": 4128.01, + "end": 4131.35, + "probability": 0.8133 + }, + { + "start": 4131.47, + "end": 4132.63, + "probability": 0.9961 + }, + { + "start": 4133.65, + "end": 4139.21, + "probability": 0.9825 + }, + { + "start": 4139.21, + "end": 4142.67, + "probability": 0.9741 + }, + { + "start": 4142.79, + "end": 4145.79, + "probability": 0.9834 + }, + { + "start": 4146.63, + "end": 4148.15, + "probability": 0.8635 + }, + { + "start": 4149.37, + "end": 4150.19, + "probability": 0.3845 + }, + { + "start": 4150.19, + "end": 4154.37, + "probability": 0.9227 + }, + { + "start": 4154.93, + "end": 4156.99, + "probability": 0.9966 + }, + { + "start": 4157.43, + "end": 4158.61, + "probability": 0.3832 + }, + { + "start": 4158.89, + "end": 4161.33, + "probability": 0.9531 + }, + { + "start": 4161.45, + "end": 4164.11, + "probability": 0.7322 + }, + { + "start": 4164.73, + "end": 4169.53, + "probability": 0.6016 + }, + { + "start": 4170.51, + "end": 4173.23, + "probability": 0.9421 + }, + { + "start": 4173.37, + "end": 4173.81, + "probability": 0.7443 + }, + { + "start": 4174.23, + "end": 4175.87, + "probability": 0.6282 + }, + { + "start": 4177.18, + "end": 4179.51, + "probability": 0.7969 + }, + { + "start": 4179.67, + "end": 4182.09, + "probability": 0.943 + }, + { + "start": 4182.19, + "end": 4182.75, + "probability": 0.5511 + }, + { + "start": 4183.53, + "end": 4184.05, + "probability": 0.9622 + }, + { + "start": 4184.59, + "end": 4187.69, + "probability": 0.8272 + }, + { + "start": 4188.13, + "end": 4189.61, + "probability": 0.7622 + }, + { + "start": 4190.29, + "end": 4190.95, + "probability": 0.4577 + }, + { + "start": 4191.43, + "end": 4194.57, + "probability": 0.9733 + }, + { + "start": 4194.93, + "end": 4195.73, + "probability": 0.8635 + }, + { + "start": 4195.97, + "end": 4197.57, + "probability": 0.3823 + }, + { + "start": 4197.93, + "end": 4198.93, + "probability": 0.8965 + }, + { + "start": 4199.67, + "end": 4201.19, + "probability": 0.8611 + }, + { + "start": 4201.51, + "end": 4204.91, + "probability": 0.902 + }, + { + "start": 4205.83, + "end": 4208.01, + "probability": 0.9393 + }, + { + "start": 4208.01, + "end": 4211.27, + "probability": 0.9263 + }, + { + "start": 4212.35, + "end": 4212.55, + "probability": 0.3098 + }, + { + "start": 4213.13, + "end": 4214.77, + "probability": 0.7644 + }, + { + "start": 4214.81, + "end": 4215.51, + "probability": 0.5103 + }, + { + "start": 4215.65, + "end": 4217.23, + "probability": 0.9883 + }, + { + "start": 4217.37, + "end": 4219.19, + "probability": 0.9873 + }, + { + "start": 4219.71, + "end": 4222.39, + "probability": 0.996 + }, + { + "start": 4222.39, + "end": 4224.89, + "probability": 0.8974 + }, + { + "start": 4225.01, + "end": 4226.03, + "probability": 0.7503 + }, + { + "start": 4226.67, + "end": 4227.49, + "probability": 0.8297 + }, + { + "start": 4228.65, + "end": 4231.91, + "probability": 0.9403 + }, + { + "start": 4232.15, + "end": 4234.55, + "probability": 0.949 + }, + { + "start": 4235.45, + "end": 4236.19, + "probability": 0.4763 + }, + { + "start": 4236.97, + "end": 4238.21, + "probability": 0.9557 + }, + { + "start": 4243.97, + "end": 4244.93, + "probability": 0.0547 + }, + { + "start": 4245.23, + "end": 4248.11, + "probability": 0.7846 + }, + { + "start": 4248.61, + "end": 4249.47, + "probability": 0.7546 + }, + { + "start": 4249.85, + "end": 4255.37, + "probability": 0.8734 + }, + { + "start": 4256.07, + "end": 4257.95, + "probability": 0.76 + }, + { + "start": 4259.99, + "end": 4265.29, + "probability": 0.9577 + }, + { + "start": 4266.91, + "end": 4268.65, + "probability": 0.5141 + }, + { + "start": 4269.83, + "end": 4272.91, + "probability": 0.8252 + }, + { + "start": 4273.53, + "end": 4277.81, + "probability": 0.9963 + }, + { + "start": 4277.81, + "end": 4280.05, + "probability": 0.9959 + }, + { + "start": 4282.13, + "end": 4282.81, + "probability": 0.9634 + }, + { + "start": 4283.59, + "end": 4285.25, + "probability": 0.739 + }, + { + "start": 4285.25, + "end": 4287.37, + "probability": 0.9969 + }, + { + "start": 4287.99, + "end": 4290.37, + "probability": 0.999 + }, + { + "start": 4290.37, + "end": 4293.29, + "probability": 0.9939 + }, + { + "start": 4293.83, + "end": 4294.79, + "probability": 0.5004 + }, + { + "start": 4294.91, + "end": 4296.03, + "probability": 0.6309 + }, + { + "start": 4296.43, + "end": 4297.07, + "probability": 0.7175 + }, + { + "start": 4297.13, + "end": 4298.17, + "probability": 0.6958 + }, + { + "start": 4298.25, + "end": 4298.97, + "probability": 0.6921 + }, + { + "start": 4299.27, + "end": 4304.17, + "probability": 0.8638 + }, + { + "start": 4304.57, + "end": 4310.21, + "probability": 0.9513 + }, + { + "start": 4310.87, + "end": 4311.39, + "probability": 0.5298 + }, + { + "start": 4311.61, + "end": 4312.17, + "probability": 0.7009 + }, + { + "start": 4312.41, + "end": 4314.99, + "probability": 0.5664 + }, + { + "start": 4315.67, + "end": 4317.15, + "probability": 0.8197 + }, + { + "start": 4317.59, + "end": 4321.85, + "probability": 0.9897 + }, + { + "start": 4322.61, + "end": 4329.07, + "probability": 0.9046 + }, + { + "start": 4330.31, + "end": 4331.77, + "probability": 0.8756 + }, + { + "start": 4331.89, + "end": 4333.33, + "probability": 0.9673 + }, + { + "start": 4334.27, + "end": 4335.85, + "probability": 0.4965 + }, + { + "start": 4337.89, + "end": 4340.13, + "probability": 0.9695 + }, + { + "start": 4340.79, + "end": 4344.29, + "probability": 0.9666 + }, + { + "start": 4345.31, + "end": 4351.01, + "probability": 0.8396 + }, + { + "start": 4351.71, + "end": 4353.11, + "probability": 0.9733 + }, + { + "start": 4354.91, + "end": 4355.55, + "probability": 0.8428 + }, + { + "start": 4355.65, + "end": 4356.25, + "probability": 0.958 + }, + { + "start": 4356.37, + "end": 4357.01, + "probability": 0.8441 + }, + { + "start": 4357.09, + "end": 4358.77, + "probability": 0.803 + }, + { + "start": 4359.85, + "end": 4364.21, + "probability": 0.9031 + }, + { + "start": 4364.35, + "end": 4365.11, + "probability": 0.6101 + }, + { + "start": 4365.91, + "end": 4369.29, + "probability": 0.9948 + }, + { + "start": 4369.49, + "end": 4370.54, + "probability": 0.8147 + }, + { + "start": 4371.87, + "end": 4376.45, + "probability": 0.8459 + }, + { + "start": 4376.65, + "end": 4379.53, + "probability": 0.7441 + }, + { + "start": 4380.31, + "end": 4383.59, + "probability": 0.9895 + }, + { + "start": 4383.69, + "end": 4386.43, + "probability": 0.9946 + }, + { + "start": 4386.77, + "end": 4388.25, + "probability": 0.3343 + }, + { + "start": 4388.73, + "end": 4389.83, + "probability": 0.6875 + }, + { + "start": 4397.57, + "end": 4397.79, + "probability": 0.4085 + }, + { + "start": 4397.81, + "end": 4398.23, + "probability": 0.8598 + }, + { + "start": 4398.33, + "end": 4401.31, + "probability": 0.5924 + }, + { + "start": 4402.79, + "end": 4409.17, + "probability": 0.944 + }, + { + "start": 4410.11, + "end": 4415.55, + "probability": 0.744 + }, + { + "start": 4416.41, + "end": 4420.95, + "probability": 0.4988 + }, + { + "start": 4421.11, + "end": 4423.83, + "probability": 0.9705 + }, + { + "start": 4424.15, + "end": 4427.47, + "probability": 0.9297 + }, + { + "start": 4427.47, + "end": 4429.71, + "probability": 0.9834 + }, + { + "start": 4429.99, + "end": 4430.21, + "probability": 0.6978 + }, + { + "start": 4432.23, + "end": 4435.21, + "probability": 0.874 + }, + { + "start": 4436.05, + "end": 4439.65, + "probability": 0.9837 + }, + { + "start": 4440.19, + "end": 4441.49, + "probability": 0.8635 + }, + { + "start": 4441.69, + "end": 4443.05, + "probability": 0.9692 + }, + { + "start": 4443.05, + "end": 4445.01, + "probability": 0.9141 + }, + { + "start": 4445.57, + "end": 4446.75, + "probability": 0.8901 + }, + { + "start": 4446.85, + "end": 4448.93, + "probability": 0.834 + }, + { + "start": 4449.09, + "end": 4451.95, + "probability": 0.9395 + }, + { + "start": 4452.45, + "end": 4453.07, + "probability": 0.8136 + }, + { + "start": 4453.47, + "end": 4454.73, + "probability": 0.8609 + }, + { + "start": 4454.79, + "end": 4457.65, + "probability": 0.9696 + }, + { + "start": 4458.25, + "end": 4464.45, + "probability": 0.6975 + }, + { + "start": 4464.95, + "end": 4466.61, + "probability": 0.9878 + }, + { + "start": 4467.09, + "end": 4468.65, + "probability": 0.9666 + }, + { + "start": 4468.83, + "end": 4469.75, + "probability": 0.8562 + }, + { + "start": 4470.43, + "end": 4473.41, + "probability": 0.9932 + }, + { + "start": 4473.51, + "end": 4474.43, + "probability": 0.6831 + }, + { + "start": 4476.03, + "end": 4477.81, + "probability": 0.8484 + }, + { + "start": 4477.95, + "end": 4480.57, + "probability": 0.7661 + }, + { + "start": 4481.43, + "end": 4482.71, + "probability": 0.7572 + }, + { + "start": 4483.47, + "end": 4485.89, + "probability": 0.9147 + }, + { + "start": 4486.83, + "end": 4490.05, + "probability": 0.7389 + }, + { + "start": 4490.71, + "end": 4491.41, + "probability": 0.342 + }, + { + "start": 4491.87, + "end": 4492.21, + "probability": 0.9158 + }, + { + "start": 4492.29, + "end": 4495.51, + "probability": 0.9443 + }, + { + "start": 4496.67, + "end": 4497.27, + "probability": 0.7457 + }, + { + "start": 4497.81, + "end": 4500.45, + "probability": 0.8674 + }, + { + "start": 4501.71, + "end": 4501.87, + "probability": 0.2381 + }, + { + "start": 4501.99, + "end": 4502.17, + "probability": 0.732 + }, + { + "start": 4502.53, + "end": 4505.2, + "probability": 0.9492 + }, + { + "start": 4506.39, + "end": 4508.11, + "probability": 0.8265 + }, + { + "start": 4508.31, + "end": 4508.41, + "probability": 0.5698 + }, + { + "start": 4508.55, + "end": 4509.03, + "probability": 0.4147 + }, + { + "start": 4509.15, + "end": 4509.55, + "probability": 0.7344 + }, + { + "start": 4509.55, + "end": 4513.49, + "probability": 0.7597 + }, + { + "start": 4513.85, + "end": 4515.91, + "probability": 0.9623 + }, + { + "start": 4516.51, + "end": 4520.41, + "probability": 0.8844 + }, + { + "start": 4520.93, + "end": 4521.71, + "probability": 0.6027 + }, + { + "start": 4522.58, + "end": 4527.02, + "probability": 0.9396 + }, + { + "start": 4527.05, + "end": 4530.51, + "probability": 0.9799 + }, + { + "start": 4530.67, + "end": 4532.09, + "probability": 0.9921 + }, + { + "start": 4532.69, + "end": 4533.71, + "probability": 0.873 + }, + { + "start": 4534.45, + "end": 4537.17, + "probability": 0.9929 + }, + { + "start": 4537.65, + "end": 4538.91, + "probability": 0.831 + }, + { + "start": 4539.03, + "end": 4539.65, + "probability": 0.6709 + }, + { + "start": 4539.65, + "end": 4539.99, + "probability": 0.6536 + }, + { + "start": 4540.39, + "end": 4541.13, + "probability": 0.9276 + }, + { + "start": 4541.39, + "end": 4543.71, + "probability": 0.9431 + }, + { + "start": 4544.27, + "end": 4548.19, + "probability": 0.6855 + }, + { + "start": 4548.87, + "end": 4552.13, + "probability": 0.9907 + }, + { + "start": 4552.57, + "end": 4557.29, + "probability": 0.9204 + }, + { + "start": 4557.29, + "end": 4560.93, + "probability": 0.9932 + }, + { + "start": 4561.41, + "end": 4563.19, + "probability": 0.9411 + }, + { + "start": 4563.63, + "end": 4567.99, + "probability": 0.8824 + }, + { + "start": 4568.65, + "end": 4571.4, + "probability": 0.8224 + }, + { + "start": 4572.39, + "end": 4577.65, + "probability": 0.9909 + }, + { + "start": 4578.17, + "end": 4582.37, + "probability": 0.7832 + }, + { + "start": 4583.11, + "end": 4584.73, + "probability": 0.7815 + }, + { + "start": 4585.61, + "end": 4586.95, + "probability": 0.993 + }, + { + "start": 4587.03, + "end": 4590.11, + "probability": 0.9341 + }, + { + "start": 4590.17, + "end": 4590.69, + "probability": 0.9464 + }, + { + "start": 4591.33, + "end": 4595.89, + "probability": 0.8282 + }, + { + "start": 4596.53, + "end": 4596.53, + "probability": 0.0117 + }, + { + "start": 4597.34, + "end": 4599.45, + "probability": 0.4883 + }, + { + "start": 4599.45, + "end": 4600.47, + "probability": 0.623 + }, + { + "start": 4601.89, + "end": 4603.89, + "probability": 0.1033 + }, + { + "start": 4605.73, + "end": 4606.21, + "probability": 0.5577 + }, + { + "start": 4606.45, + "end": 4610.87, + "probability": 0.9211 + }, + { + "start": 4611.71, + "end": 4613.83, + "probability": 0.8283 + }, + { + "start": 4614.65, + "end": 4616.31, + "probability": 0.8468 + }, + { + "start": 4618.63, + "end": 4619.6, + "probability": 0.0593 + }, + { + "start": 4620.63, + "end": 4620.97, + "probability": 0.2531 + }, + { + "start": 4620.99, + "end": 4625.65, + "probability": 0.8235 + }, + { + "start": 4626.63, + "end": 4627.21, + "probability": 0.6318 + }, + { + "start": 4629.65, + "end": 4631.45, + "probability": 0.6712 + }, + { + "start": 4632.29, + "end": 4635.73, + "probability": 0.8803 + }, + { + "start": 4636.39, + "end": 4638.53, + "probability": 0.9979 + }, + { + "start": 4639.05, + "end": 4642.09, + "probability": 0.9868 + }, + { + "start": 4643.27, + "end": 4643.41, + "probability": 0.3314 + }, + { + "start": 4643.71, + "end": 4645.27, + "probability": 0.8182 + }, + { + "start": 4645.37, + "end": 4648.53, + "probability": 0.8627 + }, + { + "start": 4648.65, + "end": 4651.77, + "probability": 0.9157 + }, + { + "start": 4652.05, + "end": 4652.63, + "probability": 0.8835 + }, + { + "start": 4653.25, + "end": 4654.39, + "probability": 0.9492 + }, + { + "start": 4654.47, + "end": 4658.19, + "probability": 0.9894 + }, + { + "start": 4658.59, + "end": 4660.01, + "probability": 0.77 + }, + { + "start": 4660.17, + "end": 4662.57, + "probability": 0.93 + }, + { + "start": 4662.95, + "end": 4663.63, + "probability": 0.6293 + }, + { + "start": 4663.93, + "end": 4667.15, + "probability": 0.8477 + }, + { + "start": 4667.89, + "end": 4668.93, + "probability": 0.9714 + }, + { + "start": 4669.25, + "end": 4670.43, + "probability": 0.955 + }, + { + "start": 4670.83, + "end": 4672.11, + "probability": 0.7537 + }, + { + "start": 4672.91, + "end": 4674.17, + "probability": 0.8842 + }, + { + "start": 4674.79, + "end": 4678.93, + "probability": 0.9292 + }, + { + "start": 4680.25, + "end": 4681.25, + "probability": 0.9323 + }, + { + "start": 4681.31, + "end": 4682.49, + "probability": 0.9318 + }, + { + "start": 4682.65, + "end": 4684.13, + "probability": 0.7594 + }, + { + "start": 4684.93, + "end": 4687.99, + "probability": 0.9305 + }, + { + "start": 4688.07, + "end": 4688.89, + "probability": 0.5311 + }, + { + "start": 4689.55, + "end": 4691.95, + "probability": 0.9961 + }, + { + "start": 4692.13, + "end": 4694.13, + "probability": 0.9875 + }, + { + "start": 4694.61, + "end": 4695.93, + "probability": 0.9744 + }, + { + "start": 4696.05, + "end": 4696.91, + "probability": 0.8382 + }, + { + "start": 4697.25, + "end": 4698.43, + "probability": 0.9691 + }, + { + "start": 4698.97, + "end": 4700.65, + "probability": 0.4836 + }, + { + "start": 4702.45, + "end": 4704.43, + "probability": 0.9707 + }, + { + "start": 4704.53, + "end": 4705.97, + "probability": 0.5077 + }, + { + "start": 4706.55, + "end": 4708.43, + "probability": 0.9582 + }, + { + "start": 4708.43, + "end": 4710.77, + "probability": 0.8983 + }, + { + "start": 4710.95, + "end": 4712.87, + "probability": 0.9817 + }, + { + "start": 4713.29, + "end": 4715.67, + "probability": 0.8819 + }, + { + "start": 4716.37, + "end": 4717.21, + "probability": 0.896 + }, + { + "start": 4717.31, + "end": 4720.67, + "probability": 0.922 + }, + { + "start": 4721.19, + "end": 4724.03, + "probability": 0.9341 + }, + { + "start": 4724.63, + "end": 4726.15, + "probability": 0.9834 + }, + { + "start": 4726.99, + "end": 4730.39, + "probability": 0.6316 + }, + { + "start": 4731.03, + "end": 4732.97, + "probability": 0.8853 + }, + { + "start": 4733.69, + "end": 4734.77, + "probability": 0.6342 + }, + { + "start": 4734.95, + "end": 4736.54, + "probability": 0.9755 + }, + { + "start": 4737.41, + "end": 4740.51, + "probability": 0.9684 + }, + { + "start": 4741.19, + "end": 4744.28, + "probability": 0.8577 + }, + { + "start": 4745.01, + "end": 4747.79, + "probability": 0.8872 + }, + { + "start": 4748.73, + "end": 4750.65, + "probability": 0.7545 + }, + { + "start": 4751.59, + "end": 4754.0, + "probability": 0.8835 + }, + { + "start": 4754.71, + "end": 4756.67, + "probability": 0.9421 + }, + { + "start": 4756.95, + "end": 4761.5, + "probability": 0.9849 + }, + { + "start": 4761.89, + "end": 4764.07, + "probability": 0.7885 + }, + { + "start": 4764.27, + "end": 4764.99, + "probability": 0.484 + }, + { + "start": 4765.59, + "end": 4767.13, + "probability": 0.755 + }, + { + "start": 4767.39, + "end": 4771.75, + "probability": 0.9399 + }, + { + "start": 4772.13, + "end": 4774.47, + "probability": 0.9064 + }, + { + "start": 4774.47, + "end": 4775.35, + "probability": 0.5377 + }, + { + "start": 4776.09, + "end": 4776.41, + "probability": 0.7367 + }, + { + "start": 4776.53, + "end": 4779.31, + "probability": 0.9157 + }, + { + "start": 4779.59, + "end": 4779.85, + "probability": 0.5252 + }, + { + "start": 4780.53, + "end": 4783.89, + "probability": 0.9834 + }, + { + "start": 4784.03, + "end": 4785.06, + "probability": 0.6171 + }, + { + "start": 4786.07, + "end": 4790.53, + "probability": 0.9753 + }, + { + "start": 4790.53, + "end": 4794.01, + "probability": 0.7798 + }, + { + "start": 4794.95, + "end": 4800.91, + "probability": 0.9552 + }, + { + "start": 4800.91, + "end": 4804.13, + "probability": 0.9939 + }, + { + "start": 4804.65, + "end": 4806.33, + "probability": 0.9126 + }, + { + "start": 4806.45, + "end": 4807.75, + "probability": 0.784 + }, + { + "start": 4808.13, + "end": 4808.9, + "probability": 0.7455 + }, + { + "start": 4809.21, + "end": 4809.85, + "probability": 0.6771 + }, + { + "start": 4810.13, + "end": 4810.58, + "probability": 0.8286 + }, + { + "start": 4810.79, + "end": 4812.73, + "probability": 0.7679 + }, + { + "start": 4812.85, + "end": 4813.07, + "probability": 0.5468 + }, + { + "start": 4813.63, + "end": 4815.31, + "probability": 0.8939 + }, + { + "start": 4815.99, + "end": 4820.61, + "probability": 0.9013 + }, + { + "start": 4821.61, + "end": 4823.91, + "probability": 0.6677 + }, + { + "start": 4823.91, + "end": 4827.17, + "probability": 0.9803 + }, + { + "start": 4827.63, + "end": 4831.39, + "probability": 0.9329 + }, + { + "start": 4831.55, + "end": 4831.71, + "probability": 0.6042 + }, + { + "start": 4831.83, + "end": 4833.29, + "probability": 0.8642 + }, + { + "start": 4833.73, + "end": 4836.25, + "probability": 0.8183 + }, + { + "start": 4837.11, + "end": 4841.17, + "probability": 0.8906 + }, + { + "start": 4842.13, + "end": 4844.43, + "probability": 0.5295 + }, + { + "start": 4845.18, + "end": 4848.33, + "probability": 0.808 + }, + { + "start": 4849.35, + "end": 4853.17, + "probability": 0.7354 + }, + { + "start": 4853.17, + "end": 4856.11, + "probability": 0.95 + }, + { + "start": 4857.11, + "end": 4861.15, + "probability": 0.8123 + }, + { + "start": 4861.27, + "end": 4861.57, + "probability": 0.7522 + }, + { + "start": 4862.31, + "end": 4864.81, + "probability": 0.8363 + }, + { + "start": 4864.91, + "end": 4865.11, + "probability": 0.9562 + }, + { + "start": 4865.83, + "end": 4869.35, + "probability": 0.9848 + }, + { + "start": 4869.75, + "end": 4872.11, + "probability": 0.6977 + }, + { + "start": 4872.55, + "end": 4876.09, + "probability": 0.9453 + }, + { + "start": 4877.11, + "end": 4879.62, + "probability": 0.9082 + }, + { + "start": 4880.49, + "end": 4881.75, + "probability": 0.7224 + }, + { + "start": 4882.61, + "end": 4883.79, + "probability": 0.8293 + }, + { + "start": 4884.23, + "end": 4888.51, + "probability": 0.9889 + }, + { + "start": 4889.19, + "end": 4890.71, + "probability": 0.7279 + }, + { + "start": 4891.77, + "end": 4892.65, + "probability": 0.8467 + }, + { + "start": 4893.13, + "end": 4896.43, + "probability": 0.7759 + }, + { + "start": 4896.43, + "end": 4899.95, + "probability": 0.9055 + }, + { + "start": 4900.01, + "end": 4903.55, + "probability": 0.9944 + }, + { + "start": 4904.21, + "end": 4907.85, + "probability": 0.816 + }, + { + "start": 4908.69, + "end": 4910.11, + "probability": 0.8882 + }, + { + "start": 4910.27, + "end": 4912.57, + "probability": 0.8791 + }, + { + "start": 4912.57, + "end": 4914.57, + "probability": 0.6945 + }, + { + "start": 4915.39, + "end": 4915.69, + "probability": 0.6406 + }, + { + "start": 4915.81, + "end": 4917.37, + "probability": 0.7483 + }, + { + "start": 4917.57, + "end": 4922.83, + "probability": 0.9575 + }, + { + "start": 4922.83, + "end": 4929.57, + "probability": 0.9626 + }, + { + "start": 4930.35, + "end": 4933.31, + "probability": 0.9576 + }, + { + "start": 4933.31, + "end": 4935.93, + "probability": 0.812 + }, + { + "start": 4936.41, + "end": 4940.01, + "probability": 0.9904 + }, + { + "start": 4940.01, + "end": 4942.29, + "probability": 0.9906 + }, + { + "start": 4942.81, + "end": 4943.33, + "probability": 0.3993 + }, + { + "start": 4944.17, + "end": 4947.31, + "probability": 0.8083 + }, + { + "start": 4947.41, + "end": 4948.59, + "probability": 0.9547 + }, + { + "start": 4949.29, + "end": 4949.87, + "probability": 0.4954 + }, + { + "start": 4951.21, + "end": 4951.57, + "probability": 0.0676 + }, + { + "start": 4952.39, + "end": 4955.51, + "probability": 0.2877 + }, + { + "start": 4957.61, + "end": 4958.2, + "probability": 0.3084 + }, + { + "start": 4959.43, + "end": 4961.45, + "probability": 0.2515 + }, + { + "start": 4961.47, + "end": 4962.55, + "probability": 0.3939 + }, + { + "start": 4962.71, + "end": 4963.31, + "probability": 0.508 + }, + { + "start": 4964.55, + "end": 4967.05, + "probability": 0.7586 + }, + { + "start": 4967.45, + "end": 4967.98, + "probability": 0.3107 + }, + { + "start": 4968.69, + "end": 4969.93, + "probability": 0.9828 + }, + { + "start": 4970.43, + "end": 4972.19, + "probability": 0.9796 + }, + { + "start": 4972.94, + "end": 4976.99, + "probability": 0.4511 + }, + { + "start": 4977.33, + "end": 4980.06, + "probability": 0.2969 + }, + { + "start": 4981.95, + "end": 4982.93, + "probability": 0.8304 + }, + { + "start": 4996.03, + "end": 4999.93, + "probability": 0.7748 + }, + { + "start": 5003.69, + "end": 5004.11, + "probability": 0.3275 + }, + { + "start": 5004.83, + "end": 5006.75, + "probability": 0.5818 + }, + { + "start": 5012.49, + "end": 5013.77, + "probability": 0.4184 + }, + { + "start": 5014.63, + "end": 5015.65, + "probability": 0.7158 + }, + { + "start": 5015.93, + "end": 5019.3, + "probability": 0.6969 + }, + { + "start": 5020.83, + "end": 5021.05, + "probability": 0.2365 + }, + { + "start": 5021.59, + "end": 5024.07, + "probability": 0.8745 + }, + { + "start": 5027.79, + "end": 5032.23, + "probability": 0.8578 + }, + { + "start": 5032.33, + "end": 5033.71, + "probability": 0.9517 + }, + { + "start": 5034.29, + "end": 5036.25, + "probability": 0.7537 + }, + { + "start": 5036.99, + "end": 5038.27, + "probability": 0.9923 + }, + { + "start": 5038.69, + "end": 5043.37, + "probability": 0.9794 + }, + { + "start": 5043.41, + "end": 5044.53, + "probability": 0.9041 + }, + { + "start": 5045.13, + "end": 5045.33, + "probability": 0.6523 + }, + { + "start": 5045.47, + "end": 5046.99, + "probability": 0.9131 + }, + { + "start": 5047.07, + "end": 5049.65, + "probability": 0.9411 + }, + { + "start": 5049.65, + "end": 5051.09, + "probability": 0.8747 + }, + { + "start": 5051.81, + "end": 5056.27, + "probability": 0.9261 + }, + { + "start": 5056.99, + "end": 5058.87, + "probability": 0.6273 + }, + { + "start": 5059.29, + "end": 5063.01, + "probability": 0.8689 + }, + { + "start": 5063.11, + "end": 5066.17, + "probability": 0.8591 + }, + { + "start": 5066.25, + "end": 5067.11, + "probability": 0.6169 + }, + { + "start": 5067.23, + "end": 5068.35, + "probability": 0.984 + }, + { + "start": 5068.41, + "end": 5069.93, + "probability": 0.8655 + }, + { + "start": 5070.31, + "end": 5073.27, + "probability": 0.9502 + }, + { + "start": 5073.85, + "end": 5078.79, + "probability": 0.9296 + }, + { + "start": 5078.91, + "end": 5080.19, + "probability": 0.828 + }, + { + "start": 5080.71, + "end": 5080.89, + "probability": 0.3693 + }, + { + "start": 5081.01, + "end": 5081.55, + "probability": 0.8341 + }, + { + "start": 5081.63, + "end": 5085.03, + "probability": 0.998 + }, + { + "start": 5085.11, + "end": 5086.15, + "probability": 0.9941 + }, + { + "start": 5086.65, + "end": 5088.29, + "probability": 0.9522 + }, + { + "start": 5088.87, + "end": 5090.67, + "probability": 0.9906 + }, + { + "start": 5091.55, + "end": 5092.17, + "probability": 0.9771 + }, + { + "start": 5092.25, + "end": 5096.47, + "probability": 0.932 + }, + { + "start": 5096.95, + "end": 5099.37, + "probability": 0.9961 + }, + { + "start": 5099.85, + "end": 5100.97, + "probability": 0.9722 + }, + { + "start": 5101.55, + "end": 5102.93, + "probability": 0.8882 + }, + { + "start": 5103.41, + "end": 5105.33, + "probability": 0.9688 + }, + { + "start": 5106.25, + "end": 5109.25, + "probability": 0.9025 + }, + { + "start": 5109.69, + "end": 5112.37, + "probability": 0.9954 + }, + { + "start": 5113.01, + "end": 5113.73, + "probability": 0.472 + }, + { + "start": 5113.81, + "end": 5114.61, + "probability": 0.6484 + }, + { + "start": 5114.99, + "end": 5119.29, + "probability": 0.9142 + }, + { + "start": 5119.47, + "end": 5119.77, + "probability": 0.8295 + }, + { + "start": 5120.29, + "end": 5122.89, + "probability": 0.9905 + }, + { + "start": 5123.17, + "end": 5126.39, + "probability": 0.6637 + }, + { + "start": 5126.49, + "end": 5127.45, + "probability": 0.6246 + }, + { + "start": 5128.25, + "end": 5130.69, + "probability": 0.8737 + }, + { + "start": 5130.69, + "end": 5133.77, + "probability": 0.9962 + }, + { + "start": 5134.09, + "end": 5135.73, + "probability": 0.9875 + }, + { + "start": 5136.35, + "end": 5142.47, + "probability": 0.8817 + }, + { + "start": 5143.55, + "end": 5144.45, + "probability": 0.6935 + }, + { + "start": 5145.01, + "end": 5145.03, + "probability": 0.1236 + }, + { + "start": 5145.23, + "end": 5147.67, + "probability": 0.9841 + }, + { + "start": 5147.75, + "end": 5149.25, + "probability": 0.9617 + }, + { + "start": 5149.41, + "end": 5152.07, + "probability": 0.8604 + }, + { + "start": 5152.57, + "end": 5155.21, + "probability": 0.947 + }, + { + "start": 5155.35, + "end": 5156.19, + "probability": 0.8561 + }, + { + "start": 5156.25, + "end": 5157.09, + "probability": 0.9211 + }, + { + "start": 5157.37, + "end": 5159.19, + "probability": 0.9929 + }, + { + "start": 5159.59, + "end": 5160.21, + "probability": 0.7928 + }, + { + "start": 5160.69, + "end": 5164.63, + "probability": 0.9944 + }, + { + "start": 5164.63, + "end": 5168.03, + "probability": 0.9834 + }, + { + "start": 5168.03, + "end": 5171.57, + "probability": 0.9984 + }, + { + "start": 5171.75, + "end": 5173.87, + "probability": 0.9883 + }, + { + "start": 5175.05, + "end": 5176.81, + "probability": 0.8682 + }, + { + "start": 5177.35, + "end": 5180.05, + "probability": 0.8831 + }, + { + "start": 5180.65, + "end": 5183.93, + "probability": 0.9054 + }, + { + "start": 5184.65, + "end": 5186.91, + "probability": 0.7881 + }, + { + "start": 5188.69, + "end": 5191.23, + "probability": 0.5161 + }, + { + "start": 5195.19, + "end": 5198.33, + "probability": 0.5934 + }, + { + "start": 5199.63, + "end": 5200.69, + "probability": 0.7973 + }, + { + "start": 5203.17, + "end": 5205.05, + "probability": 0.5557 + }, + { + "start": 5206.07, + "end": 5206.71, + "probability": 0.8392 + }, + { + "start": 5207.17, + "end": 5208.65, + "probability": 0.7398 + }, + { + "start": 5209.57, + "end": 5212.69, + "probability": 0.7551 + }, + { + "start": 5213.61, + "end": 5216.57, + "probability": 0.7955 + }, + { + "start": 5217.33, + "end": 5222.07, + "probability": 0.5456 + }, + { + "start": 5222.81, + "end": 5225.37, + "probability": 0.8423 + }, + { + "start": 5225.99, + "end": 5228.17, + "probability": 0.8588 + }, + { + "start": 5229.39, + "end": 5231.11, + "probability": 0.9678 + }, + { + "start": 5231.53, + "end": 5233.89, + "probability": 0.8809 + }, + { + "start": 5234.49, + "end": 5236.37, + "probability": 0.9896 + }, + { + "start": 5237.09, + "end": 5237.99, + "probability": 0.9631 + }, + { + "start": 5238.19, + "end": 5241.35, + "probability": 0.9741 + }, + { + "start": 5241.97, + "end": 5245.26, + "probability": 0.933 + }, + { + "start": 5245.67, + "end": 5248.05, + "probability": 0.085 + }, + { + "start": 5248.45, + "end": 5250.61, + "probability": 0.2902 + }, + { + "start": 5250.99, + "end": 5252.55, + "probability": 0.7788 + }, + { + "start": 5252.85, + "end": 5256.11, + "probability": 0.9844 + }, + { + "start": 5256.63, + "end": 5260.09, + "probability": 0.9154 + }, + { + "start": 5260.87, + "end": 5263.61, + "probability": 0.9556 + }, + { + "start": 5263.63, + "end": 5265.79, + "probability": 0.8655 + }, + { + "start": 5266.37, + "end": 5268.71, + "probability": 0.5288 + }, + { + "start": 5269.03, + "end": 5271.33, + "probability": 0.9551 + }, + { + "start": 5272.05, + "end": 5274.82, + "probability": 0.4517 + }, + { + "start": 5277.07, + "end": 5277.33, + "probability": 0.0232 + }, + { + "start": 5277.33, + "end": 5279.97, + "probability": 0.4508 + }, + { + "start": 5280.13, + "end": 5280.51, + "probability": 0.2603 + }, + { + "start": 5280.65, + "end": 5286.51, + "probability": 0.9131 + }, + { + "start": 5287.45, + "end": 5289.15, + "probability": 0.7816 + }, + { + "start": 5293.71, + "end": 5295.37, + "probability": 0.766 + }, + { + "start": 5296.05, + "end": 5298.93, + "probability": 0.9399 + }, + { + "start": 5300.17, + "end": 5301.15, + "probability": 0.7981 + }, + { + "start": 5301.55, + "end": 5302.05, + "probability": 0.7053 + }, + { + "start": 5302.49, + "end": 5306.75, + "probability": 0.9973 + }, + { + "start": 5307.77, + "end": 5311.09, + "probability": 0.8471 + }, + { + "start": 5311.15, + "end": 5313.25, + "probability": 0.8252 + }, + { + "start": 5313.41, + "end": 5314.56, + "probability": 0.6065 + }, + { + "start": 5314.87, + "end": 5316.49, + "probability": 0.9261 + }, + { + "start": 5317.45, + "end": 5318.93, + "probability": 0.9781 + }, + { + "start": 5319.83, + "end": 5323.13, + "probability": 0.9302 + }, + { + "start": 5325.61, + "end": 5325.61, + "probability": 0.017 + }, + { + "start": 5325.61, + "end": 5326.11, + "probability": 0.8846 + }, + { + "start": 5326.57, + "end": 5328.31, + "probability": 0.9261 + }, + { + "start": 5328.37, + "end": 5329.63, + "probability": 0.8353 + }, + { + "start": 5330.53, + "end": 5331.68, + "probability": 0.7999 + }, + { + "start": 5331.69, + "end": 5332.61, + "probability": 0.9557 + }, + { + "start": 5335.76, + "end": 5338.77, + "probability": 0.8479 + }, + { + "start": 5338.77, + "end": 5340.35, + "probability": 0.9476 + }, + { + "start": 5340.45, + "end": 5341.77, + "probability": 0.8718 + }, + { + "start": 5343.23, + "end": 5346.05, + "probability": 0.8491 + }, + { + "start": 5346.77, + "end": 5348.33, + "probability": 0.977 + }, + { + "start": 5349.59, + "end": 5353.95, + "probability": 0.9984 + }, + { + "start": 5354.63, + "end": 5355.69, + "probability": 0.7445 + }, + { + "start": 5355.99, + "end": 5358.33, + "probability": 0.9251 + }, + { + "start": 5358.41, + "end": 5359.09, + "probability": 0.881 + }, + { + "start": 5359.67, + "end": 5361.25, + "probability": 0.563 + }, + { + "start": 5362.25, + "end": 5364.89, + "probability": 0.9625 + }, + { + "start": 5366.07, + "end": 5366.25, + "probability": 0.5637 + }, + { + "start": 5366.81, + "end": 5369.07, + "probability": 0.9114 + }, + { + "start": 5369.27, + "end": 5369.85, + "probability": 0.7192 + }, + { + "start": 5370.31, + "end": 5371.01, + "probability": 0.8593 + }, + { + "start": 5371.31, + "end": 5372.35, + "probability": 0.9212 + }, + { + "start": 5372.77, + "end": 5373.83, + "probability": 0.8813 + }, + { + "start": 5374.51, + "end": 5376.67, + "probability": 0.9681 + }, + { + "start": 5378.57, + "end": 5380.09, + "probability": 0.6103 + }, + { + "start": 5380.35, + "end": 5381.87, + "probability": 0.0238 + }, + { + "start": 5381.97, + "end": 5382.67, + "probability": 0.5229 + }, + { + "start": 5382.71, + "end": 5385.4, + "probability": 0.3403 + }, + { + "start": 5386.09, + "end": 5387.37, + "probability": 0.1085 + }, + { + "start": 5387.49, + "end": 5389.39, + "probability": 0.9471 + }, + { + "start": 5390.01, + "end": 5391.25, + "probability": 0.9801 + }, + { + "start": 5391.47, + "end": 5391.73, + "probability": 0.6545 + }, + { + "start": 5391.85, + "end": 5392.35, + "probability": 0.7417 + }, + { + "start": 5392.39, + "end": 5393.15, + "probability": 0.8871 + }, + { + "start": 5393.29, + "end": 5395.23, + "probability": 0.9663 + }, + { + "start": 5395.27, + "end": 5396.73, + "probability": 0.6197 + }, + { + "start": 5397.67, + "end": 5398.51, + "probability": 0.8039 + }, + { + "start": 5398.78, + "end": 5401.53, + "probability": 0.9374 + }, + { + "start": 5401.65, + "end": 5403.01, + "probability": 0.9699 + }, + { + "start": 5403.15, + "end": 5404.61, + "probability": 0.7714 + }, + { + "start": 5405.69, + "end": 5405.95, + "probability": 0.2168 + }, + { + "start": 5406.73, + "end": 5409.39, + "probability": 0.6697 + }, + { + "start": 5409.93, + "end": 5411.77, + "probability": 0.9207 + }, + { + "start": 5412.41, + "end": 5414.53, + "probability": 0.9673 + }, + { + "start": 5415.11, + "end": 5417.29, + "probability": 0.9017 + }, + { + "start": 5417.45, + "end": 5418.85, + "probability": 0.8752 + }, + { + "start": 5418.95, + "end": 5419.17, + "probability": 0.7271 + }, + { + "start": 5419.25, + "end": 5420.67, + "probability": 0.7402 + }, + { + "start": 5421.45, + "end": 5426.11, + "probability": 0.9938 + }, + { + "start": 5426.19, + "end": 5427.47, + "probability": 0.8271 + }, + { + "start": 5427.57, + "end": 5428.25, + "probability": 0.7131 + }, + { + "start": 5428.61, + "end": 5432.57, + "probability": 0.9595 + }, + { + "start": 5433.07, + "end": 5437.61, + "probability": 0.9527 + }, + { + "start": 5437.61, + "end": 5442.15, + "probability": 0.7612 + }, + { + "start": 5442.85, + "end": 5445.85, + "probability": 0.7814 + }, + { + "start": 5446.29, + "end": 5447.25, + "probability": 0.5008 + }, + { + "start": 5447.29, + "end": 5447.73, + "probability": 0.3408 + }, + { + "start": 5448.21, + "end": 5448.75, + "probability": 0.5867 + }, + { + "start": 5448.75, + "end": 5449.31, + "probability": 0.6901 + }, + { + "start": 5450.49, + "end": 5451.43, + "probability": 0.4661 + }, + { + "start": 5452.61, + "end": 5454.21, + "probability": 0.117 + }, + { + "start": 5464.29, + "end": 5464.99, + "probability": 0.402 + }, + { + "start": 5464.99, + "end": 5466.53, + "probability": 0.3092 + }, + { + "start": 5466.59, + "end": 5469.31, + "probability": 0.8798 + }, + { + "start": 5469.87, + "end": 5473.13, + "probability": 0.9474 + }, + { + "start": 5473.13, + "end": 5475.93, + "probability": 0.8138 + }, + { + "start": 5476.91, + "end": 5477.69, + "probability": 0.6385 + }, + { + "start": 5480.71, + "end": 5481.07, + "probability": 0.3428 + }, + { + "start": 5481.15, + "end": 5484.87, + "probability": 0.7457 + }, + { + "start": 5484.93, + "end": 5489.51, + "probability": 0.9963 + }, + { + "start": 5489.67, + "end": 5491.87, + "probability": 0.6548 + }, + { + "start": 5492.13, + "end": 5496.97, + "probability": 0.9785 + }, + { + "start": 5497.23, + "end": 5497.65, + "probability": 0.6068 + }, + { + "start": 5502.47, + "end": 5506.89, + "probability": 0.7735 + }, + { + "start": 5507.21, + "end": 5507.93, + "probability": 0.7708 + }, + { + "start": 5508.61, + "end": 5512.27, + "probability": 0.7628 + }, + { + "start": 5513.5, + "end": 5515.53, + "probability": 0.7445 + }, + { + "start": 5516.15, + "end": 5518.13, + "probability": 0.9692 + }, + { + "start": 5518.75, + "end": 5522.63, + "probability": 0.9024 + }, + { + "start": 5523.83, + "end": 5528.37, + "probability": 0.9747 + }, + { + "start": 5529.01, + "end": 5532.29, + "probability": 0.6961 + }, + { + "start": 5532.33, + "end": 5535.29, + "probability": 0.9967 + }, + { + "start": 5535.35, + "end": 5538.49, + "probability": 0.9973 + }, + { + "start": 5538.63, + "end": 5539.63, + "probability": 0.5838 + }, + { + "start": 5539.65, + "end": 5541.23, + "probability": 0.9743 + }, + { + "start": 5541.87, + "end": 5544.01, + "probability": 0.9745 + }, + { + "start": 5544.55, + "end": 5546.23, + "probability": 0.7327 + }, + { + "start": 5547.33, + "end": 5547.99, + "probability": 0.8163 + }, + { + "start": 5548.77, + "end": 5550.59, + "probability": 0.9495 + }, + { + "start": 5550.67, + "end": 5554.45, + "probability": 0.7838 + }, + { + "start": 5554.59, + "end": 5559.53, + "probability": 0.8973 + }, + { + "start": 5559.69, + "end": 5561.35, + "probability": 0.9342 + }, + { + "start": 5561.93, + "end": 5564.65, + "probability": 0.9914 + }, + { + "start": 5565.11, + "end": 5565.11, + "probability": 0.1396 + }, + { + "start": 5565.99, + "end": 5568.11, + "probability": 0.6935 + }, + { + "start": 5570.12, + "end": 5574.25, + "probability": 0.9879 + }, + { + "start": 5574.71, + "end": 5574.75, + "probability": 0.075 + }, + { + "start": 5574.75, + "end": 5576.27, + "probability": 0.4621 + }, + { + "start": 5576.57, + "end": 5577.51, + "probability": 0.9292 + }, + { + "start": 5578.98, + "end": 5583.01, + "probability": 0.9684 + }, + { + "start": 5583.23, + "end": 5586.77, + "probability": 0.206 + }, + { + "start": 5586.97, + "end": 5589.01, + "probability": 0.1963 + }, + { + "start": 5589.71, + "end": 5591.59, + "probability": 0.9809 + }, + { + "start": 5591.81, + "end": 5591.99, + "probability": 0.7504 + }, + { + "start": 5592.57, + "end": 5593.03, + "probability": 0.6313 + }, + { + "start": 5593.09, + "end": 5596.11, + "probability": 0.8101 + }, + { + "start": 5596.11, + "end": 5599.33, + "probability": 0.8239 + }, + { + "start": 5599.71, + "end": 5601.99, + "probability": 0.9676 + }, + { + "start": 5601.99, + "end": 5605.17, + "probability": 0.9875 + }, + { + "start": 5605.61, + "end": 5606.77, + "probability": 0.4409 + }, + { + "start": 5607.75, + "end": 5609.89, + "probability": 0.7872 + }, + { + "start": 5610.33, + "end": 5610.57, + "probability": 0.91 + }, + { + "start": 5611.23, + "end": 5614.31, + "probability": 0.9572 + }, + { + "start": 5614.49, + "end": 5618.79, + "probability": 0.9303 + }, + { + "start": 5618.93, + "end": 5619.93, + "probability": 0.7249 + }, + { + "start": 5621.11, + "end": 5625.67, + "probability": 0.9287 + }, + { + "start": 5626.13, + "end": 5632.19, + "probability": 0.9951 + }, + { + "start": 5632.55, + "end": 5633.05, + "probability": 0.5591 + }, + { + "start": 5633.09, + "end": 5633.19, + "probability": 0.8647 + }, + { + "start": 5633.53, + "end": 5639.07, + "probability": 0.9718 + }, + { + "start": 5639.77, + "end": 5643.41, + "probability": 0.7726 + }, + { + "start": 5644.29, + "end": 5645.45, + "probability": 0.6089 + }, + { + "start": 5646.11, + "end": 5647.73, + "probability": 0.8831 + }, + { + "start": 5648.75, + "end": 5655.23, + "probability": 0.9371 + }, + { + "start": 5656.27, + "end": 5659.15, + "probability": 0.9656 + }, + { + "start": 5659.15, + "end": 5662.17, + "probability": 0.9745 + }, + { + "start": 5662.83, + "end": 5663.91, + "probability": 0.6377 + }, + { + "start": 5664.79, + "end": 5665.49, + "probability": 0.7267 + }, + { + "start": 5665.61, + "end": 5665.99, + "probability": 0.8836 + }, + { + "start": 5666.63, + "end": 5668.55, + "probability": 0.7166 + }, + { + "start": 5669.45, + "end": 5672.61, + "probability": 0.9709 + }, + { + "start": 5673.23, + "end": 5677.69, + "probability": 0.9744 + }, + { + "start": 5677.69, + "end": 5683.15, + "probability": 0.9075 + }, + { + "start": 5683.63, + "end": 5684.3, + "probability": 0.326 + }, + { + "start": 5685.09, + "end": 5688.61, + "probability": 0.9454 + }, + { + "start": 5689.47, + "end": 5693.03, + "probability": 0.9486 + }, + { + "start": 5694.71, + "end": 5698.53, + "probability": 0.9976 + }, + { + "start": 5699.67, + "end": 5703.77, + "probability": 0.9835 + }, + { + "start": 5704.09, + "end": 5706.13, + "probability": 0.4445 + }, + { + "start": 5706.79, + "end": 5707.31, + "probability": 0.7241 + }, + { + "start": 5707.67, + "end": 5711.95, + "probability": 0.9661 + }, + { + "start": 5711.95, + "end": 5716.97, + "probability": 0.9766 + }, + { + "start": 5717.45, + "end": 5720.55, + "probability": 0.998 + }, + { + "start": 5720.55, + "end": 5722.85, + "probability": 0.9995 + }, + { + "start": 5723.67, + "end": 5729.03, + "probability": 0.9982 + }, + { + "start": 5729.16, + "end": 5733.61, + "probability": 0.9966 + }, + { + "start": 5734.17, + "end": 5734.29, + "probability": 0.6494 + }, + { + "start": 5738.11, + "end": 5742.49, + "probability": 0.9612 + }, + { + "start": 5743.21, + "end": 5745.61, + "probability": 0.995 + }, + { + "start": 5746.17, + "end": 5746.61, + "probability": 0.561 + }, + { + "start": 5746.79, + "end": 5749.03, + "probability": 0.6967 + }, + { + "start": 5750.17, + "end": 5755.77, + "probability": 0.9255 + }, + { + "start": 5756.63, + "end": 5757.75, + "probability": 0.9331 + }, + { + "start": 5758.17, + "end": 5763.31, + "probability": 0.8294 + }, + { + "start": 5764.17, + "end": 5766.39, + "probability": 0.9341 + }, + { + "start": 5766.97, + "end": 5770.71, + "probability": 0.8325 + }, + { + "start": 5771.53, + "end": 5771.99, + "probability": 0.6135 + }, + { + "start": 5773.41, + "end": 5775.59, + "probability": 0.9478 + }, + { + "start": 5776.33, + "end": 5776.65, + "probability": 0.2606 + }, + { + "start": 5777.15, + "end": 5777.69, + "probability": 0.3169 + }, + { + "start": 5777.75, + "end": 5781.17, + "probability": 0.8441 + }, + { + "start": 5781.67, + "end": 5782.53, + "probability": 0.7667 + }, + { + "start": 5782.69, + "end": 5783.57, + "probability": 0.8948 + }, + { + "start": 5784.33, + "end": 5785.03, + "probability": 0.9729 + }, + { + "start": 5785.69, + "end": 5786.49, + "probability": 0.8992 + }, + { + "start": 5787.07, + "end": 5788.45, + "probability": 0.7596 + }, + { + "start": 5788.71, + "end": 5791.51, + "probability": 0.7803 + }, + { + "start": 5792.57, + "end": 5796.73, + "probability": 0.768 + }, + { + "start": 5796.77, + "end": 5797.17, + "probability": 0.8956 + }, + { + "start": 5803.23, + "end": 5805.77, + "probability": 0.6369 + }, + { + "start": 5807.17, + "end": 5808.89, + "probability": 0.8779 + }, + { + "start": 5808.95, + "end": 5809.32, + "probability": 0.7856 + }, + { + "start": 5809.69, + "end": 5809.79, + "probability": 0.6005 + }, + { + "start": 5810.37, + "end": 5811.13, + "probability": 0.6636 + }, + { + "start": 5811.25, + "end": 5811.9, + "probability": 0.9367 + }, + { + "start": 5813.15, + "end": 5815.75, + "probability": 0.282 + }, + { + "start": 5815.75, + "end": 5818.59, + "probability": 0.863 + }, + { + "start": 5819.4, + "end": 5821.95, + "probability": 0.8843 + }, + { + "start": 5823.03, + "end": 5823.17, + "probability": 0.8105 + }, + { + "start": 5827.63, + "end": 5827.77, + "probability": 0.4446 + }, + { + "start": 5828.53, + "end": 5829.17, + "probability": 0.6983 + }, + { + "start": 5830.29, + "end": 5833.55, + "probability": 0.8767 + }, + { + "start": 5834.97, + "end": 5835.53, + "probability": 0.6961 + }, + { + "start": 5835.59, + "end": 5836.13, + "probability": 0.614 + }, + { + "start": 5836.81, + "end": 5837.93, + "probability": 0.7416 + }, + { + "start": 5838.25, + "end": 5838.51, + "probability": 0.7665 + }, + { + "start": 5838.53, + "end": 5839.07, + "probability": 0.9023 + }, + { + "start": 5841.13, + "end": 5843.47, + "probability": 0.9364 + }, + { + "start": 5844.09, + "end": 5845.71, + "probability": 0.8736 + }, + { + "start": 5846.71, + "end": 5849.29, + "probability": 0.9506 + }, + { + "start": 5850.05, + "end": 5851.27, + "probability": 0.8562 + }, + { + "start": 5851.89, + "end": 5853.39, + "probability": 0.9247 + }, + { + "start": 5854.21, + "end": 5859.93, + "probability": 0.9697 + }, + { + "start": 5861.31, + "end": 5862.17, + "probability": 0.8691 + }, + { + "start": 5862.99, + "end": 5865.97, + "probability": 0.9966 + }, + { + "start": 5866.73, + "end": 5871.67, + "probability": 0.9734 + }, + { + "start": 5872.69, + "end": 5873.57, + "probability": 0.9467 + }, + { + "start": 5874.73, + "end": 5876.39, + "probability": 0.9788 + }, + { + "start": 5877.61, + "end": 5883.31, + "probability": 0.9844 + }, + { + "start": 5884.71, + "end": 5886.93, + "probability": 0.6868 + }, + { + "start": 5887.19, + "end": 5888.43, + "probability": 0.9857 + }, + { + "start": 5888.53, + "end": 5893.79, + "probability": 0.8413 + }, + { + "start": 5893.95, + "end": 5894.85, + "probability": 0.8896 + }, + { + "start": 5895.55, + "end": 5897.45, + "probability": 0.9506 + }, + { + "start": 5898.47, + "end": 5898.81, + "probability": 0.8182 + }, + { + "start": 5899.45, + "end": 5900.05, + "probability": 0.4325 + }, + { + "start": 5900.97, + "end": 5901.13, + "probability": 0.1285 + }, + { + "start": 5901.19, + "end": 5902.85, + "probability": 0.9905 + }, + { + "start": 5903.89, + "end": 5904.87, + "probability": 0.8379 + }, + { + "start": 5906.55, + "end": 5908.09, + "probability": 0.7893 + }, + { + "start": 5908.29, + "end": 5908.37, + "probability": 0.0693 + }, + { + "start": 5908.83, + "end": 5909.67, + "probability": 0.7539 + }, + { + "start": 5909.83, + "end": 5912.07, + "probability": 0.6328 + }, + { + "start": 5912.25, + "end": 5914.89, + "probability": 0.7452 + }, + { + "start": 5916.27, + "end": 5918.65, + "probability": 0.9807 + }, + { + "start": 5919.57, + "end": 5924.01, + "probability": 0.9384 + }, + { + "start": 5924.57, + "end": 5928.65, + "probability": 0.9957 + }, + { + "start": 5929.35, + "end": 5930.32, + "probability": 0.9198 + }, + { + "start": 5930.59, + "end": 5932.83, + "probability": 0.9794 + }, + { + "start": 5932.95, + "end": 5936.91, + "probability": 0.9414 + }, + { + "start": 5937.75, + "end": 5942.77, + "probability": 0.5659 + }, + { + "start": 5942.97, + "end": 5945.41, + "probability": 0.8008 + }, + { + "start": 5945.55, + "end": 5946.63, + "probability": 0.6907 + }, + { + "start": 5947.21, + "end": 5951.02, + "probability": 0.8258 + }, + { + "start": 5952.97, + "end": 5957.91, + "probability": 0.6403 + }, + { + "start": 5958.43, + "end": 5962.63, + "probability": 0.9801 + }, + { + "start": 5963.57, + "end": 5964.61, + "probability": 0.731 + }, + { + "start": 5965.29, + "end": 5967.37, + "probability": 0.9813 + }, + { + "start": 5968.01, + "end": 5968.19, + "probability": 0.0515 + }, + { + "start": 5968.27, + "end": 5970.21, + "probability": 0.6204 + }, + { + "start": 5970.79, + "end": 5971.82, + "probability": 0.3894 + }, + { + "start": 5972.27, + "end": 5972.73, + "probability": 0.9502 + }, + { + "start": 5972.81, + "end": 5974.29, + "probability": 0.6589 + }, + { + "start": 5974.37, + "end": 5974.86, + "probability": 0.8503 + }, + { + "start": 5977.15, + "end": 5978.24, + "probability": 0.9356 + }, + { + "start": 5978.97, + "end": 5980.03, + "probability": 0.8218 + }, + { + "start": 5980.79, + "end": 5981.91, + "probability": 0.7436 + }, + { + "start": 5982.01, + "end": 5983.51, + "probability": 0.7513 + }, + { + "start": 5983.63, + "end": 5984.27, + "probability": 0.8711 + }, + { + "start": 5985.39, + "end": 5989.19, + "probability": 0.9539 + }, + { + "start": 5989.91, + "end": 5992.35, + "probability": 0.9887 + }, + { + "start": 5992.53, + "end": 5994.71, + "probability": 0.6128 + }, + { + "start": 5994.71, + "end": 5994.85, + "probability": 0.8391 + }, + { + "start": 5995.55, + "end": 5999.99, + "probability": 0.2117 + }, + { + "start": 6000.52, + "end": 6003.13, + "probability": 0.983 + }, + { + "start": 6003.29, + "end": 6004.39, + "probability": 0.9746 + }, + { + "start": 6004.49, + "end": 6005.15, + "probability": 0.6751 + }, + { + "start": 6005.95, + "end": 6006.55, + "probability": 0.7228 + }, + { + "start": 6006.67, + "end": 6008.35, + "probability": 0.4088 + }, + { + "start": 6008.97, + "end": 6009.59, + "probability": 0.6601 + }, + { + "start": 6009.69, + "end": 6010.55, + "probability": 0.7566 + }, + { + "start": 6010.97, + "end": 6013.35, + "probability": 0.9757 + }, + { + "start": 6013.35, + "end": 6016.29, + "probability": 0.7207 + }, + { + "start": 6017.13, + "end": 6017.73, + "probability": 0.8875 + }, + { + "start": 6018.03, + "end": 6019.77, + "probability": 0.9769 + }, + { + "start": 6019.77, + "end": 6019.91, + "probability": 0.5075 + }, + { + "start": 6020.47, + "end": 6021.22, + "probability": 0.7895 + }, + { + "start": 6021.89, + "end": 6021.89, + "probability": 0.4436 + }, + { + "start": 6021.89, + "end": 6022.21, + "probability": 0.8192 + }, + { + "start": 6022.27, + "end": 6023.05, + "probability": 0.7823 + }, + { + "start": 6023.19, + "end": 6024.65, + "probability": 0.8334 + }, + { + "start": 6024.95, + "end": 6027.29, + "probability": 0.9945 + }, + { + "start": 6027.29, + "end": 6030.03, + "probability": 0.9427 + }, + { + "start": 6030.75, + "end": 6032.25, + "probability": 0.8026 + }, + { + "start": 6032.79, + "end": 6033.77, + "probability": 0.7556 + }, + { + "start": 6034.55, + "end": 6036.14, + "probability": 0.7258 + }, + { + "start": 6036.39, + "end": 6038.27, + "probability": 0.6008 + }, + { + "start": 6038.97, + "end": 6042.38, + "probability": 0.8354 + }, + { + "start": 6043.93, + "end": 6044.89, + "probability": 0.9324 + }, + { + "start": 6045.05, + "end": 6047.95, + "probability": 0.8802 + }, + { + "start": 6048.23, + "end": 6049.63, + "probability": 0.9819 + }, + { + "start": 6050.37, + "end": 6051.61, + "probability": 0.7354 + }, + { + "start": 6052.03, + "end": 6054.03, + "probability": 0.9897 + }, + { + "start": 6054.65, + "end": 6056.47, + "probability": 0.6083 + }, + { + "start": 6056.69, + "end": 6057.55, + "probability": 0.4692 + }, + { + "start": 6057.63, + "end": 6060.17, + "probability": 0.8638 + }, + { + "start": 6060.83, + "end": 6062.19, + "probability": 0.7647 + }, + { + "start": 6063.83, + "end": 6068.61, + "probability": 0.7932 + }, + { + "start": 6069.33, + "end": 6070.53, + "probability": 0.7275 + }, + { + "start": 6071.59, + "end": 6072.43, + "probability": 0.646 + }, + { + "start": 6072.89, + "end": 6073.37, + "probability": 0.7945 + }, + { + "start": 6073.65, + "end": 6076.95, + "probability": 0.9636 + }, + { + "start": 6077.15, + "end": 6077.99, + "probability": 0.965 + }, + { + "start": 6078.65, + "end": 6079.51, + "probability": 0.9775 + }, + { + "start": 6080.11, + "end": 6082.39, + "probability": 0.76 + }, + { + "start": 6084.67, + "end": 6087.77, + "probability": 0.9547 + }, + { + "start": 6088.95, + "end": 6090.45, + "probability": 0.9233 + }, + { + "start": 6091.87, + "end": 6091.87, + "probability": 0.094 + }, + { + "start": 6091.91, + "end": 6095.33, + "probability": 0.9302 + }, + { + "start": 6095.35, + "end": 6096.27, + "probability": 0.7014 + }, + { + "start": 6097.49, + "end": 6099.27, + "probability": 0.7427 + }, + { + "start": 6099.93, + "end": 6106.82, + "probability": 0.968 + }, + { + "start": 6107.05, + "end": 6110.59, + "probability": 0.9976 + }, + { + "start": 6111.87, + "end": 6114.65, + "probability": 0.7551 + }, + { + "start": 6117.22, + "end": 6118.79, + "probability": 0.9893 + }, + { + "start": 6119.45, + "end": 6120.79, + "probability": 0.9989 + }, + { + "start": 6121.63, + "end": 6124.49, + "probability": 0.7341 + }, + { + "start": 6124.99, + "end": 6126.37, + "probability": 0.9924 + }, + { + "start": 6127.27, + "end": 6128.42, + "probability": 0.999 + }, + { + "start": 6128.65, + "end": 6129.57, + "probability": 0.5787 + }, + { + "start": 6130.19, + "end": 6130.72, + "probability": 0.2834 + }, + { + "start": 6131.05, + "end": 6131.75, + "probability": 0.0243 + }, + { + "start": 6132.15, + "end": 6133.69, + "probability": 0.9961 + }, + { + "start": 6133.77, + "end": 6134.27, + "probability": 0.9529 + }, + { + "start": 6134.31, + "end": 6135.75, + "probability": 0.9819 + }, + { + "start": 6135.85, + "end": 6136.25, + "probability": 0.676 + }, + { + "start": 6138.05, + "end": 6139.65, + "probability": 0.8743 + }, + { + "start": 6141.25, + "end": 6144.35, + "probability": 0.9753 + }, + { + "start": 6144.81, + "end": 6146.39, + "probability": 0.8352 + }, + { + "start": 6147.85, + "end": 6147.95, + "probability": 0.896 + }, + { + "start": 6148.07, + "end": 6148.39, + "probability": 0.6719 + }, + { + "start": 6148.55, + "end": 6148.65, + "probability": 0.5643 + }, + { + "start": 6148.83, + "end": 6150.23, + "probability": 0.8584 + }, + { + "start": 6150.55, + "end": 6151.67, + "probability": 0.805 + }, + { + "start": 6152.75, + "end": 6156.27, + "probability": 0.9885 + }, + { + "start": 6156.57, + "end": 6158.53, + "probability": 0.6814 + }, + { + "start": 6158.69, + "end": 6161.38, + "probability": 0.8759 + }, + { + "start": 6162.35, + "end": 6165.53, + "probability": 0.8931 + }, + { + "start": 6166.13, + "end": 6166.85, + "probability": 0.8393 + }, + { + "start": 6167.31, + "end": 6168.43, + "probability": 0.5049 + }, + { + "start": 6168.43, + "end": 6172.15, + "probability": 0.9888 + }, + { + "start": 6172.87, + "end": 6175.95, + "probability": 0.9961 + }, + { + "start": 6176.11, + "end": 6180.31, + "probability": 0.8774 + }, + { + "start": 6180.47, + "end": 6180.67, + "probability": 0.5035 + }, + { + "start": 6181.29, + "end": 6183.07, + "probability": 0.9023 + }, + { + "start": 6183.45, + "end": 6187.29, + "probability": 0.9672 + }, + { + "start": 6187.29, + "end": 6191.85, + "probability": 0.9688 + }, + { + "start": 6192.25, + "end": 6193.59, + "probability": 0.7732 + }, + { + "start": 6193.67, + "end": 6194.21, + "probability": 0.8737 + }, + { + "start": 6194.61, + "end": 6197.07, + "probability": 0.9588 + }, + { + "start": 6197.61, + "end": 6199.75, + "probability": 0.9332 + }, + { + "start": 6200.11, + "end": 6202.15, + "probability": 0.9154 + }, + { + "start": 6203.19, + "end": 6203.75, + "probability": 0.7449 + }, + { + "start": 6203.85, + "end": 6207.35, + "probability": 0.761 + }, + { + "start": 6207.87, + "end": 6210.05, + "probability": 0.9973 + }, + { + "start": 6210.07, + "end": 6216.29, + "probability": 0.7907 + }, + { + "start": 6217.01, + "end": 6217.41, + "probability": 0.2878 + }, + { + "start": 6217.47, + "end": 6217.89, + "probability": 0.5119 + }, + { + "start": 6217.91, + "end": 6218.63, + "probability": 0.7212 + }, + { + "start": 6225.32, + "end": 6230.6, + "probability": 0.2156 + }, + { + "start": 6230.93, + "end": 6235.13, + "probability": 0.9373 + }, + { + "start": 6236.35, + "end": 6240.41, + "probability": 0.1073 + }, + { + "start": 6242.11, + "end": 6246.23, + "probability": 0.6397 + }, + { + "start": 6247.11, + "end": 6249.39, + "probability": 0.0082 + }, + { + "start": 6250.09, + "end": 6250.75, + "probability": 0.0873 + }, + { + "start": 6251.63, + "end": 6252.61, + "probability": 0.0264 + }, + { + "start": 6253.35, + "end": 6254.89, + "probability": 0.2103 + }, + { + "start": 6255.79, + "end": 6256.49, + "probability": 0.0165 + }, + { + "start": 6259.63, + "end": 6264.17, + "probability": 0.0441 + }, + { + "start": 6271.81, + "end": 6275.05, + "probability": 0.0493 + }, + { + "start": 6275.07, + "end": 6275.75, + "probability": 0.0608 + }, + { + "start": 6276.45, + "end": 6278.55, + "probability": 0.0014 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.0, + "end": 6308.0, + "probability": 0.0 + }, + { + "start": 6308.28, + "end": 6308.48, + "probability": 0.0945 + }, + { + "start": 6308.48, + "end": 6308.48, + "probability": 0.0833 + }, + { + "start": 6308.48, + "end": 6308.48, + "probability": 0.17 + }, + { + "start": 6308.48, + "end": 6312.18, + "probability": 0.0755 + }, + { + "start": 6312.18, + "end": 6316.08, + "probability": 0.9895 + }, + { + "start": 6316.64, + "end": 6320.14, + "probability": 0.9293 + }, + { + "start": 6320.14, + "end": 6325.12, + "probability": 0.9979 + }, + { + "start": 6325.94, + "end": 6327.22, + "probability": 0.658 + }, + { + "start": 6327.66, + "end": 6331.36, + "probability": 0.9883 + }, + { + "start": 6331.88, + "end": 6332.88, + "probability": 0.9683 + }, + { + "start": 6332.98, + "end": 6337.46, + "probability": 0.9048 + }, + { + "start": 6338.02, + "end": 6338.92, + "probability": 0.5132 + }, + { + "start": 6339.0, + "end": 6339.92, + "probability": 0.8545 + }, + { + "start": 6340.22, + "end": 6341.14, + "probability": 0.6736 + }, + { + "start": 6341.18, + "end": 6342.04, + "probability": 0.8496 + }, + { + "start": 6343.02, + "end": 6343.3, + "probability": 0.7363 + }, + { + "start": 6343.48, + "end": 6344.26, + "probability": 0.9347 + }, + { + "start": 6344.44, + "end": 6345.5, + "probability": 0.9771 + }, + { + "start": 6345.92, + "end": 6348.2, + "probability": 0.8583 + }, + { + "start": 6348.46, + "end": 6352.4, + "probability": 0.9612 + }, + { + "start": 6352.94, + "end": 6355.54, + "probability": 0.9834 + }, + { + "start": 6355.68, + "end": 6361.46, + "probability": 0.9813 + }, + { + "start": 6362.14, + "end": 6365.62, + "probability": 0.9914 + }, + { + "start": 6366.18, + "end": 6369.64, + "probability": 0.9636 + }, + { + "start": 6370.04, + "end": 6373.24, + "probability": 0.8418 + }, + { + "start": 6373.38, + "end": 6375.18, + "probability": 0.9822 + }, + { + "start": 6375.78, + "end": 6377.38, + "probability": 0.979 + }, + { + "start": 6377.76, + "end": 6383.4, + "probability": 0.9748 + }, + { + "start": 6383.82, + "end": 6385.82, + "probability": 0.8172 + }, + { + "start": 6386.04, + "end": 6387.53, + "probability": 0.8085 + }, + { + "start": 6387.94, + "end": 6391.22, + "probability": 0.8726 + }, + { + "start": 6391.74, + "end": 6394.06, + "probability": 0.9865 + }, + { + "start": 6394.06, + "end": 6395.86, + "probability": 0.7366 + }, + { + "start": 6397.16, + "end": 6397.46, + "probability": 0.0589 + }, + { + "start": 6397.7, + "end": 6400.24, + "probability": 0.9037 + }, + { + "start": 6400.34, + "end": 6404.68, + "probability": 0.9893 + }, + { + "start": 6404.98, + "end": 6406.42, + "probability": 0.9595 + }, + { + "start": 6406.76, + "end": 6408.34, + "probability": 0.9792 + }, + { + "start": 6408.44, + "end": 6410.54, + "probability": 0.8834 + }, + { + "start": 6411.08, + "end": 6414.15, + "probability": 0.9805 + }, + { + "start": 6414.78, + "end": 6417.54, + "probability": 0.9985 + }, + { + "start": 6417.9, + "end": 6418.66, + "probability": 0.7406 + }, + { + "start": 6419.02, + "end": 6424.06, + "probability": 0.957 + }, + { + "start": 6424.4, + "end": 6428.42, + "probability": 0.9614 + }, + { + "start": 6428.52, + "end": 6429.96, + "probability": 0.6042 + }, + { + "start": 6430.14, + "end": 6431.42, + "probability": 0.8599 + }, + { + "start": 6431.82, + "end": 6434.14, + "probability": 0.9188 + }, + { + "start": 6434.52, + "end": 6435.3, + "probability": 0.8782 + }, + { + "start": 6435.8, + "end": 6436.76, + "probability": 0.7981 + }, + { + "start": 6436.98, + "end": 6438.3, + "probability": 0.9212 + }, + { + "start": 6438.54, + "end": 6438.8, + "probability": 0.6716 + }, + { + "start": 6438.92, + "end": 6439.54, + "probability": 0.9671 + }, + { + "start": 6439.64, + "end": 6440.88, + "probability": 0.96 + }, + { + "start": 6441.0, + "end": 6441.84, + "probability": 0.2704 + }, + { + "start": 6441.84, + "end": 6443.32, + "probability": 0.7863 + }, + { + "start": 6443.7, + "end": 6450.12, + "probability": 0.9478 + }, + { + "start": 6450.3, + "end": 6450.74, + "probability": 0.5392 + }, + { + "start": 6472.76, + "end": 6475.28, + "probability": 0.6819 + }, + { + "start": 6477.04, + "end": 6478.92, + "probability": 0.833 + }, + { + "start": 6480.98, + "end": 6482.4, + "probability": 0.4484 + }, + { + "start": 6483.94, + "end": 6486.12, + "probability": 0.7429 + }, + { + "start": 6486.12, + "end": 6489.46, + "probability": 0.6075 + }, + { + "start": 6489.6, + "end": 6491.56, + "probability": 0.9565 + }, + { + "start": 6492.08, + "end": 6492.96, + "probability": 0.9907 + }, + { + "start": 6494.08, + "end": 6497.84, + "probability": 0.9529 + }, + { + "start": 6498.06, + "end": 6500.48, + "probability": 0.3113 + }, + { + "start": 6500.56, + "end": 6503.78, + "probability": 0.9754 + }, + { + "start": 6503.78, + "end": 6506.72, + "probability": 0.9888 + }, + { + "start": 6507.26, + "end": 6509.38, + "probability": 0.7986 + }, + { + "start": 6509.98, + "end": 6514.02, + "probability": 0.9979 + }, + { + "start": 6514.62, + "end": 6516.76, + "probability": 0.816 + }, + { + "start": 6516.76, + "end": 6519.14, + "probability": 0.9608 + }, + { + "start": 6519.7, + "end": 6521.48, + "probability": 0.8718 + }, + { + "start": 6522.16, + "end": 6527.06, + "probability": 0.9676 + }, + { + "start": 6528.08, + "end": 6530.66, + "probability": 0.9019 + }, + { + "start": 6530.66, + "end": 6533.12, + "probability": 0.7409 + }, + { + "start": 6534.0, + "end": 6537.14, + "probability": 0.6836 + }, + { + "start": 6537.14, + "end": 6540.56, + "probability": 0.9863 + }, + { + "start": 6540.8, + "end": 6541.46, + "probability": 0.8362 + }, + { + "start": 6542.52, + "end": 6544.78, + "probability": 0.8302 + }, + { + "start": 6544.78, + "end": 6548.3, + "probability": 0.95 + }, + { + "start": 6549.48, + "end": 6553.78, + "probability": 0.6991 + }, + { + "start": 6554.4, + "end": 6560.3, + "probability": 0.8367 + }, + { + "start": 6561.14, + "end": 6565.32, + "probability": 0.9008 + }, + { + "start": 6565.88, + "end": 6569.36, + "probability": 0.9712 + }, + { + "start": 6569.58, + "end": 6572.46, + "probability": 0.7936 + }, + { + "start": 6573.0, + "end": 6573.96, + "probability": 0.6797 + }, + { + "start": 6574.02, + "end": 6578.4, + "probability": 0.981 + }, + { + "start": 6579.06, + "end": 6582.3, + "probability": 0.9224 + }, + { + "start": 6583.2, + "end": 6583.44, + "probability": 0.5273 + }, + { + "start": 6583.9, + "end": 6584.26, + "probability": 0.4294 + }, + { + "start": 6584.26, + "end": 6585.34, + "probability": 0.7343 + }, + { + "start": 6585.6, + "end": 6586.86, + "probability": 0.8631 + }, + { + "start": 6587.22, + "end": 6587.36, + "probability": 0.417 + }, + { + "start": 6587.56, + "end": 6591.92, + "probability": 0.9348 + }, + { + "start": 6591.98, + "end": 6593.4, + "probability": 0.9871 + }, + { + "start": 6593.8, + "end": 6595.26, + "probability": 0.9006 + }, + { + "start": 6595.32, + "end": 6598.12, + "probability": 0.9056 + }, + { + "start": 6598.88, + "end": 6602.82, + "probability": 0.9852 + }, + { + "start": 6603.54, + "end": 6606.46, + "probability": 0.8795 + }, + { + "start": 6607.28, + "end": 6610.66, + "probability": 0.8647 + }, + { + "start": 6611.18, + "end": 6615.72, + "probability": 0.7554 + }, + { + "start": 6615.82, + "end": 6616.3, + "probability": 0.6945 + }, + { + "start": 6616.32, + "end": 6616.94, + "probability": 0.8157 + }, + { + "start": 6617.54, + "end": 6618.96, + "probability": 0.4951 + }, + { + "start": 6618.96, + "end": 6619.86, + "probability": 0.7904 + }, + { + "start": 6620.84, + "end": 6621.28, + "probability": 0.2808 + }, + { + "start": 6634.41, + "end": 6637.28, + "probability": 0.6934 + }, + { + "start": 6638.16, + "end": 6642.46, + "probability": 0.7661 + }, + { + "start": 6645.78, + "end": 6648.0, + "probability": 0.3951 + }, + { + "start": 6651.12, + "end": 6653.24, + "probability": 0.0496 + }, + { + "start": 6653.5, + "end": 6656.98, + "probability": 0.0781 + }, + { + "start": 6657.9, + "end": 6665.28, + "probability": 0.0142 + }, + { + "start": 6666.33, + "end": 6668.5, + "probability": 0.1046 + }, + { + "start": 6669.14, + "end": 6676.44, + "probability": 0.0228 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0 + }, + { + "start": 6708.12, + "end": 6709.54, + "probability": 0.0849 + }, + { + "start": 6714.64, + "end": 6716.6, + "probability": 0.0059 + }, + { + "start": 6716.97, + "end": 6717.79, + "probability": 0.0469 + }, + { + "start": 6730.04, + "end": 6730.7, + "probability": 0.085 + }, + { + "start": 6730.7, + "end": 6731.33, + "probability": 0.0178 + }, + { + "start": 6734.36, + "end": 6736.72, + "probability": 0.1124 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6834.0, + "end": 6834.0, + "probability": 0.0 + }, + { + "start": 6839.66, + "end": 6840.2, + "probability": 0.0003 + }, + { + "start": 6842.28, + "end": 6842.9, + "probability": 0.1714 + }, + { + "start": 6849.2, + "end": 6850.86, + "probability": 0.0781 + }, + { + "start": 6855.64, + "end": 6856.34, + "probability": 0.4826 + }, + { + "start": 6859.58, + "end": 6861.66, + "probability": 0.0643 + }, + { + "start": 6861.66, + "end": 6861.94, + "probability": 0.0659 + }, + { + "start": 6864.12, + "end": 6864.84, + "probability": 0.154 + }, + { + "start": 6869.6, + "end": 6870.08, + "probability": 0.3314 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.0, + "end": 6959.0, + "probability": 0.0 + }, + { + "start": 6959.48, + "end": 6959.64, + "probability": 0.0477 + }, + { + "start": 6959.64, + "end": 6959.64, + "probability": 0.0324 + }, + { + "start": 6959.64, + "end": 6960.68, + "probability": 0.0683 + }, + { + "start": 6960.76, + "end": 6960.76, + "probability": 0.1212 + }, + { + "start": 6960.76, + "end": 6965.84, + "probability": 0.9616 + }, + { + "start": 6965.84, + "end": 6969.68, + "probability": 0.9941 + }, + { + "start": 6969.8, + "end": 6971.74, + "probability": 0.8323 + }, + { + "start": 6972.58, + "end": 6976.24, + "probability": 0.9644 + }, + { + "start": 6976.24, + "end": 6977.12, + "probability": 0.6371 + }, + { + "start": 6978.4, + "end": 6979.14, + "probability": 0.7351 + }, + { + "start": 6979.6, + "end": 6980.22, + "probability": 0.775 + }, + { + "start": 6980.76, + "end": 6982.86, + "probability": 0.9517 + }, + { + "start": 6983.0, + "end": 6985.82, + "probability": 0.7269 + }, + { + "start": 6986.22, + "end": 6987.64, + "probability": 0.8625 + }, + { + "start": 6988.06, + "end": 6990.42, + "probability": 0.9971 + }, + { + "start": 6991.06, + "end": 6992.02, + "probability": 0.7482 + }, + { + "start": 6992.16, + "end": 6995.64, + "probability": 0.9172 + }, + { + "start": 6996.94, + "end": 6998.5, + "probability": 0.9952 + }, + { + "start": 7018.04, + "end": 7019.18, + "probability": 0.6224 + }, + { + "start": 7019.9, + "end": 7021.98, + "probability": 0.788 + }, + { + "start": 7024.88, + "end": 7028.34, + "probability": 0.9949 + }, + { + "start": 7028.48, + "end": 7031.54, + "probability": 0.9792 + }, + { + "start": 7031.54, + "end": 7038.0, + "probability": 0.7741 + }, + { + "start": 7038.36, + "end": 7040.22, + "probability": 0.9954 + }, + { + "start": 7041.2, + "end": 7041.64, + "probability": 0.2017 + }, + { + "start": 7041.64, + "end": 7042.6, + "probability": 0.6737 + }, + { + "start": 7042.98, + "end": 7044.5, + "probability": 0.7105 + }, + { + "start": 7050.22, + "end": 7052.56, + "probability": 0.7043 + }, + { + "start": 7053.36, + "end": 7054.92, + "probability": 0.9202 + }, + { + "start": 7054.98, + "end": 7057.14, + "probability": 0.8525 + }, + { + "start": 7057.98, + "end": 7058.98, + "probability": 0.9364 + }, + { + "start": 7059.1, + "end": 7061.16, + "probability": 0.8903 + }, + { + "start": 7061.86, + "end": 7065.32, + "probability": 0.9767 + }, + { + "start": 7065.36, + "end": 7066.58, + "probability": 0.7333 + }, + { + "start": 7067.16, + "end": 7071.44, + "probability": 0.8998 + }, + { + "start": 7072.0, + "end": 7076.94, + "probability": 0.9768 + }, + { + "start": 7077.04, + "end": 7078.52, + "probability": 0.7046 + }, + { + "start": 7078.86, + "end": 7081.38, + "probability": 0.8604 + }, + { + "start": 7081.44, + "end": 7084.88, + "probability": 0.9431 + }, + { + "start": 7085.12, + "end": 7086.02, + "probability": 0.4655 + }, + { + "start": 7086.44, + "end": 7087.42, + "probability": 0.6429 + }, + { + "start": 7087.58, + "end": 7092.76, + "probability": 0.9622 + }, + { + "start": 7093.28, + "end": 7096.64, + "probability": 0.8199 + }, + { + "start": 7097.4, + "end": 7102.1, + "probability": 0.9961 + }, + { + "start": 7102.82, + "end": 7110.48, + "probability": 0.9855 + }, + { + "start": 7111.24, + "end": 7115.76, + "probability": 0.9814 + }, + { + "start": 7116.82, + "end": 7119.62, + "probability": 0.8731 + }, + { + "start": 7120.8, + "end": 7123.02, + "probability": 0.9072 + }, + { + "start": 7125.8, + "end": 7126.88, + "probability": 0.7937 + }, + { + "start": 7127.5, + "end": 7132.04, + "probability": 0.9327 + }, + { + "start": 7132.62, + "end": 7135.32, + "probability": 0.7983 + }, + { + "start": 7135.46, + "end": 7135.68, + "probability": 0.8413 + }, + { + "start": 7135.82, + "end": 7136.06, + "probability": 0.5064 + }, + { + "start": 7136.08, + "end": 7138.58, + "probability": 0.9507 + }, + { + "start": 7138.66, + "end": 7139.4, + "probability": 0.704 + }, + { + "start": 7139.6, + "end": 7139.98, + "probability": 0.9336 + }, + { + "start": 7140.08, + "end": 7141.06, + "probability": 0.9593 + }, + { + "start": 7142.02, + "end": 7147.48, + "probability": 0.8635 + }, + { + "start": 7147.52, + "end": 7148.52, + "probability": 0.7798 + }, + { + "start": 7148.62, + "end": 7151.74, + "probability": 0.9775 + }, + { + "start": 7151.88, + "end": 7154.28, + "probability": 0.8051 + }, + { + "start": 7155.06, + "end": 7156.14, + "probability": 0.936 + }, + { + "start": 7157.34, + "end": 7160.04, + "probability": 0.9116 + }, + { + "start": 7160.6, + "end": 7164.07, + "probability": 0.8949 + }, + { + "start": 7165.58, + "end": 7167.94, + "probability": 0.3999 + }, + { + "start": 7169.18, + "end": 7174.32, + "probability": 0.9854 + }, + { + "start": 7174.54, + "end": 7176.06, + "probability": 0.958 + }, + { + "start": 7176.2, + "end": 7176.92, + "probability": 0.7452 + }, + { + "start": 7177.02, + "end": 7177.34, + "probability": 0.589 + }, + { + "start": 7177.68, + "end": 7181.65, + "probability": 0.9949 + }, + { + "start": 7183.16, + "end": 7183.16, + "probability": 0.0918 + }, + { + "start": 7183.16, + "end": 7183.82, + "probability": 0.6635 + }, + { + "start": 7184.42, + "end": 7187.24, + "probability": 0.9312 + }, + { + "start": 7187.4, + "end": 7188.1, + "probability": 0.9485 + }, + { + "start": 7189.42, + "end": 7191.67, + "probability": 0.9854 + }, + { + "start": 7192.54, + "end": 7196.62, + "probability": 0.8556 + }, + { + "start": 7197.26, + "end": 7202.82, + "probability": 0.908 + }, + { + "start": 7203.54, + "end": 7204.96, + "probability": 0.8149 + }, + { + "start": 7205.58, + "end": 7206.74, + "probability": 0.7592 + }, + { + "start": 7206.92, + "end": 7208.14, + "probability": 0.957 + }, + { + "start": 7208.54, + "end": 7209.83, + "probability": 0.9951 + }, + { + "start": 7210.7, + "end": 7211.84, + "probability": 0.984 + }, + { + "start": 7211.86, + "end": 7213.1, + "probability": 0.9837 + }, + { + "start": 7213.42, + "end": 7215.0, + "probability": 0.9917 + }, + { + "start": 7215.08, + "end": 7216.32, + "probability": 0.7543 + }, + { + "start": 7216.44, + "end": 7221.34, + "probability": 0.988 + }, + { + "start": 7221.48, + "end": 7222.16, + "probability": 0.4616 + }, + { + "start": 7225.28, + "end": 7228.32, + "probability": 0.8906 + }, + { + "start": 7229.12, + "end": 7229.36, + "probability": 0.5912 + }, + { + "start": 7229.42, + "end": 7234.78, + "probability": 0.945 + }, + { + "start": 7235.2, + "end": 7235.9, + "probability": 0.7062 + }, + { + "start": 7236.0, + "end": 7236.84, + "probability": 0.8694 + }, + { + "start": 7237.18, + "end": 7239.3, + "probability": 0.9946 + }, + { + "start": 7239.58, + "end": 7241.17, + "probability": 0.8785 + }, + { + "start": 7241.9, + "end": 7243.72, + "probability": 0.685 + }, + { + "start": 7244.26, + "end": 7245.6, + "probability": 0.7939 + }, + { + "start": 7245.82, + "end": 7246.84, + "probability": 0.9602 + }, + { + "start": 7246.9, + "end": 7248.84, + "probability": 0.9358 + }, + { + "start": 7248.92, + "end": 7251.38, + "probability": 0.9702 + }, + { + "start": 7251.82, + "end": 7253.22, + "probability": 0.9026 + }, + { + "start": 7253.22, + "end": 7253.78, + "probability": 0.924 + }, + { + "start": 7254.32, + "end": 7256.06, + "probability": 0.9751 + }, + { + "start": 7256.7, + "end": 7258.66, + "probability": 0.954 + }, + { + "start": 7258.8, + "end": 7260.42, + "probability": 0.8262 + }, + { + "start": 7260.68, + "end": 7264.78, + "probability": 0.9016 + }, + { + "start": 7265.14, + "end": 7266.3, + "probability": 0.8508 + }, + { + "start": 7266.32, + "end": 7267.02, + "probability": 0.4671 + }, + { + "start": 7267.76, + "end": 7270.3, + "probability": 0.4064 + }, + { + "start": 7271.1, + "end": 7272.94, + "probability": 0.9824 + }, + { + "start": 7273.54, + "end": 7276.12, + "probability": 0.9927 + }, + { + "start": 7276.12, + "end": 7280.16, + "probability": 0.7557 + }, + { + "start": 7280.24, + "end": 7282.14, + "probability": 0.543 + }, + { + "start": 7282.5, + "end": 7284.62, + "probability": 0.9814 + }, + { + "start": 7285.16, + "end": 7286.78, + "probability": 0.6824 + }, + { + "start": 7287.08, + "end": 7289.26, + "probability": 0.8804 + }, + { + "start": 7289.38, + "end": 7290.7, + "probability": 0.8906 + }, + { + "start": 7291.18, + "end": 7292.44, + "probability": 0.7236 + }, + { + "start": 7292.62, + "end": 7295.12, + "probability": 0.9878 + }, + { + "start": 7296.05, + "end": 7299.7, + "probability": 0.8091 + }, + { + "start": 7299.8, + "end": 7300.74, + "probability": 0.5816 + }, + { + "start": 7300.92, + "end": 7301.68, + "probability": 0.864 + }, + { + "start": 7301.7, + "end": 7303.6, + "probability": 0.6659 + }, + { + "start": 7303.62, + "end": 7304.36, + "probability": 0.4046 + }, + { + "start": 7304.5, + "end": 7307.24, + "probability": 0.9747 + }, + { + "start": 7307.7, + "end": 7309.26, + "probability": 0.9248 + }, + { + "start": 7315.78, + "end": 7316.02, + "probability": 0.0016 + }, + { + "start": 7317.9, + "end": 7321.64, + "probability": 0.5017 + }, + { + "start": 7321.8, + "end": 7323.38, + "probability": 0.4745 + }, + { + "start": 7323.74, + "end": 7325.2, + "probability": 0.9025 + }, + { + "start": 7325.56, + "end": 7326.36, + "probability": 0.565 + }, + { + "start": 7326.36, + "end": 7330.82, + "probability": 0.7284 + }, + { + "start": 7331.36, + "end": 7331.64, + "probability": 0.6039 + }, + { + "start": 7331.74, + "end": 7332.38, + "probability": 0.8463 + }, + { + "start": 7332.46, + "end": 7338.2, + "probability": 0.9442 + }, + { + "start": 7338.9, + "end": 7341.12, + "probability": 0.8271 + }, + { + "start": 7342.26, + "end": 7344.56, + "probability": 0.9282 + }, + { + "start": 7345.58, + "end": 7348.88, + "probability": 0.9663 + }, + { + "start": 7349.42, + "end": 7353.06, + "probability": 0.9971 + }, + { + "start": 7353.64, + "end": 7358.06, + "probability": 0.9656 + }, + { + "start": 7358.16, + "end": 7362.32, + "probability": 0.9706 + }, + { + "start": 7362.42, + "end": 7365.18, + "probability": 0.3525 + }, + { + "start": 7365.58, + "end": 7367.76, + "probability": 0.9353 + }, + { + "start": 7367.76, + "end": 7370.88, + "probability": 0.7536 + }, + { + "start": 7371.22, + "end": 7373.06, + "probability": 0.9911 + }, + { + "start": 7373.92, + "end": 7375.14, + "probability": 0.4577 + }, + { + "start": 7375.24, + "end": 7378.16, + "probability": 0.9172 + }, + { + "start": 7378.16, + "end": 7381.28, + "probability": 0.9677 + }, + { + "start": 7382.18, + "end": 7382.54, + "probability": 0.2735 + }, + { + "start": 7383.06, + "end": 7383.88, + "probability": 0.6903 + }, + { + "start": 7384.08, + "end": 7385.72, + "probability": 0.8552 + }, + { + "start": 7386.14, + "end": 7387.58, + "probability": 0.6583 + }, + { + "start": 7387.84, + "end": 7390.86, + "probability": 0.9524 + }, + { + "start": 7391.4, + "end": 7392.04, + "probability": 0.5575 + }, + { + "start": 7392.08, + "end": 7394.15, + "probability": 0.9243 + }, + { + "start": 7394.68, + "end": 7397.06, + "probability": 0.9917 + }, + { + "start": 7397.8, + "end": 7399.52, + "probability": 0.5504 + }, + { + "start": 7399.52, + "end": 7400.5, + "probability": 0.7494 + }, + { + "start": 7400.52, + "end": 7401.74, + "probability": 0.381 + }, + { + "start": 7402.14, + "end": 7404.36, + "probability": 0.9775 + }, + { + "start": 7404.82, + "end": 7406.78, + "probability": 0.7269 + }, + { + "start": 7407.78, + "end": 7408.42, + "probability": 0.2251 + }, + { + "start": 7408.6, + "end": 7409.1, + "probability": 0.3789 + }, + { + "start": 7409.14, + "end": 7409.56, + "probability": 0.5444 + }, + { + "start": 7409.68, + "end": 7410.28, + "probability": 0.5809 + }, + { + "start": 7416.78, + "end": 7418.04, + "probability": 0.2033 + }, + { + "start": 7426.2, + "end": 7428.31, + "probability": 0.5281 + }, + { + "start": 7428.31, + "end": 7429.0, + "probability": 0.7588 + }, + { + "start": 7429.43, + "end": 7431.53, + "probability": 0.029 + }, + { + "start": 7431.53, + "end": 7433.02, + "probability": 0.2072 + }, + { + "start": 7433.71, + "end": 7437.75, + "probability": 0.0482 + }, + { + "start": 7439.19, + "end": 7442.01, + "probability": 0.0301 + }, + { + "start": 7443.61, + "end": 7448.01, + "probability": 0.0144 + }, + { + "start": 7448.01, + "end": 7448.85, + "probability": 0.0824 + }, + { + "start": 7448.85, + "end": 7448.85, + "probability": 0.0345 + }, + { + "start": 7449.43, + "end": 7452.29, + "probability": 0.0891 + }, + { + "start": 7452.81, + "end": 7455.79, + "probability": 0.0721 + }, + { + "start": 7456.21, + "end": 7457.61, + "probability": 0.3044 + }, + { + "start": 7457.63, + "end": 7459.03, + "probability": 0.0568 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.0, + "end": 7483.0, + "probability": 0.0 + }, + { + "start": 7483.2, + "end": 7483.2, + "probability": 0.0067 + }, + { + "start": 7483.2, + "end": 7483.22, + "probability": 0.0828 + }, + { + "start": 7483.22, + "end": 7483.22, + "probability": 0.0476 + }, + { + "start": 7483.22, + "end": 7483.22, + "probability": 0.2203 + }, + { + "start": 7483.22, + "end": 7483.74, + "probability": 0.1981 + }, + { + "start": 7485.24, + "end": 7487.8, + "probability": 0.679 + }, + { + "start": 7491.72, + "end": 7494.96, + "probability": 0.8126 + }, + { + "start": 7494.96, + "end": 7496.92, + "probability": 0.8242 + }, + { + "start": 7498.48, + "end": 7500.2, + "probability": 0.6215 + }, + { + "start": 7501.58, + "end": 7504.36, + "probability": 0.9911 + }, + { + "start": 7505.48, + "end": 7506.92, + "probability": 0.6965 + }, + { + "start": 7507.0, + "end": 7512.58, + "probability": 0.9824 + }, + { + "start": 7514.2, + "end": 7516.88, + "probability": 0.8909 + }, + { + "start": 7518.5, + "end": 7521.42, + "probability": 0.9897 + }, + { + "start": 7521.42, + "end": 7524.76, + "probability": 0.9942 + }, + { + "start": 7525.76, + "end": 7531.82, + "probability": 0.9702 + }, + { + "start": 7531.9, + "end": 7532.58, + "probability": 0.8982 + }, + { + "start": 7533.52, + "end": 7536.82, + "probability": 0.8584 + }, + { + "start": 7537.56, + "end": 7544.14, + "probability": 0.8778 + }, + { + "start": 7544.32, + "end": 7545.68, + "probability": 0.9646 + }, + { + "start": 7546.28, + "end": 7549.62, + "probability": 0.9443 + }, + { + "start": 7549.62, + "end": 7553.72, + "probability": 0.9434 + }, + { + "start": 7554.84, + "end": 7560.58, + "probability": 0.9721 + }, + { + "start": 7560.58, + "end": 7564.5, + "probability": 0.9827 + }, + { + "start": 7565.08, + "end": 7569.26, + "probability": 0.9893 + }, + { + "start": 7570.0, + "end": 7575.24, + "probability": 0.9869 + }, + { + "start": 7575.36, + "end": 7580.3, + "probability": 0.9866 + }, + { + "start": 7580.34, + "end": 7581.54, + "probability": 0.7476 + }, + { + "start": 7583.02, + "end": 7583.7, + "probability": 0.8777 + }, + { + "start": 7584.54, + "end": 7588.2, + "probability": 0.9535 + }, + { + "start": 7589.84, + "end": 7590.36, + "probability": 0.9385 + }, + { + "start": 7591.24, + "end": 7592.74, + "probability": 0.9678 + }, + { + "start": 7593.54, + "end": 7596.76, + "probability": 0.8722 + }, + { + "start": 7598.12, + "end": 7599.5, + "probability": 0.7536 + }, + { + "start": 7600.96, + "end": 7603.04, + "probability": 0.945 + }, + { + "start": 7604.4, + "end": 7605.62, + "probability": 0.8488 + }, + { + "start": 7606.26, + "end": 7608.1, + "probability": 0.9422 + }, + { + "start": 7608.76, + "end": 7610.4, + "probability": 0.9146 + }, + { + "start": 7613.58, + "end": 7619.46, + "probability": 0.7482 + }, + { + "start": 7620.16, + "end": 7624.76, + "probability": 0.8316 + }, + { + "start": 7625.2, + "end": 7625.96, + "probability": 0.7605 + }, + { + "start": 7626.18, + "end": 7630.08, + "probability": 0.9783 + }, + { + "start": 7630.84, + "end": 7634.44, + "probability": 0.9668 + }, + { + "start": 7634.62, + "end": 7636.4, + "probability": 0.7908 + }, + { + "start": 7637.28, + "end": 7638.72, + "probability": 0.9725 + }, + { + "start": 7639.54, + "end": 7643.22, + "probability": 0.9579 + }, + { + "start": 7644.56, + "end": 7648.56, + "probability": 0.8342 + }, + { + "start": 7649.3, + "end": 7651.3, + "probability": 0.9952 + }, + { + "start": 7652.24, + "end": 7656.52, + "probability": 0.7157 + }, + { + "start": 7657.34, + "end": 7658.14, + "probability": 0.5593 + }, + { + "start": 7658.82, + "end": 7660.25, + "probability": 0.9606 + }, + { + "start": 7662.5, + "end": 7666.56, + "probability": 0.6251 + }, + { + "start": 7667.24, + "end": 7669.46, + "probability": 0.9895 + }, + { + "start": 7669.56, + "end": 7670.98, + "probability": 0.7199 + }, + { + "start": 7671.46, + "end": 7674.3, + "probability": 0.9915 + }, + { + "start": 7674.92, + "end": 7679.2, + "probability": 0.8469 + }, + { + "start": 7680.2, + "end": 7681.42, + "probability": 0.9008 + }, + { + "start": 7682.9, + "end": 7689.82, + "probability": 0.9941 + }, + { + "start": 7692.52, + "end": 7694.32, + "probability": 0.9695 + }, + { + "start": 7695.18, + "end": 7696.84, + "probability": 0.9959 + }, + { + "start": 7697.02, + "end": 7699.1, + "probability": 0.7464 + }, + { + "start": 7699.58, + "end": 7700.72, + "probability": 0.895 + }, + { + "start": 7700.82, + "end": 7701.44, + "probability": 0.977 + }, + { + "start": 7702.92, + "end": 7703.65, + "probability": 0.9979 + }, + { + "start": 7704.5, + "end": 7705.42, + "probability": 0.7392 + }, + { + "start": 7706.24, + "end": 7707.84, + "probability": 0.9333 + }, + { + "start": 7709.04, + "end": 7712.16, + "probability": 0.7951 + }, + { + "start": 7712.9, + "end": 7717.84, + "probability": 0.9218 + }, + { + "start": 7719.3, + "end": 7720.96, + "probability": 0.8321 + }, + { + "start": 7721.54, + "end": 7723.52, + "probability": 0.9424 + }, + { + "start": 7724.3, + "end": 7725.02, + "probability": 0.7425 + }, + { + "start": 7725.56, + "end": 7728.48, + "probability": 0.9634 + }, + { + "start": 7729.08, + "end": 7730.13, + "probability": 0.7703 + }, + { + "start": 7730.58, + "end": 7732.42, + "probability": 0.631 + }, + { + "start": 7733.38, + "end": 7733.64, + "probability": 0.9468 + }, + { + "start": 7734.42, + "end": 7738.18, + "probability": 0.9544 + }, + { + "start": 7738.56, + "end": 7740.12, + "probability": 0.8369 + }, + { + "start": 7740.5, + "end": 7741.4, + "probability": 0.9951 + }, + { + "start": 7744.02, + "end": 7744.12, + "probability": 0.5618 + }, + { + "start": 7744.64, + "end": 7745.82, + "probability": 0.9407 + }, + { + "start": 7747.0, + "end": 7749.78, + "probability": 0.9552 + }, + { + "start": 7750.52, + "end": 7754.26, + "probability": 0.9721 + }, + { + "start": 7754.86, + "end": 7756.86, + "probability": 0.9746 + }, + { + "start": 7757.28, + "end": 7759.8, + "probability": 0.9825 + }, + { + "start": 7761.36, + "end": 7762.82, + "probability": 0.6346 + }, + { + "start": 7762.9, + "end": 7769.42, + "probability": 0.9599 + }, + { + "start": 7769.52, + "end": 7772.04, + "probability": 0.6323 + }, + { + "start": 7772.3, + "end": 7773.56, + "probability": 0.9897 + }, + { + "start": 7777.86, + "end": 7778.24, + "probability": 0.4249 + }, + { + "start": 7778.5, + "end": 7779.28, + "probability": 0.8104 + }, + { + "start": 7780.82, + "end": 7782.12, + "probability": 0.9351 + }, + { + "start": 7784.84, + "end": 7786.9, + "probability": 0.9967 + }, + { + "start": 7786.9, + "end": 7790.56, + "probability": 0.8344 + }, + { + "start": 7790.98, + "end": 7793.2, + "probability": 0.9934 + }, + { + "start": 7793.32, + "end": 7793.66, + "probability": 0.5466 + }, + { + "start": 7794.14, + "end": 7794.68, + "probability": 0.5798 + }, + { + "start": 7794.74, + "end": 7795.92, + "probability": 0.9091 + }, + { + "start": 7796.94, + "end": 7798.84, + "probability": 0.9377 + }, + { + "start": 7799.26, + "end": 7801.68, + "probability": 0.8518 + }, + { + "start": 7802.08, + "end": 7803.96, + "probability": 0.9095 + }, + { + "start": 7804.74, + "end": 7810.18, + "probability": 0.8066 + }, + { + "start": 7810.52, + "end": 7813.18, + "probability": 0.7668 + }, + { + "start": 7813.32, + "end": 7813.86, + "probability": 0.3866 + }, + { + "start": 7814.22, + "end": 7814.62, + "probability": 0.8032 + }, + { + "start": 7814.7, + "end": 7819.32, + "probability": 0.9461 + }, + { + "start": 7819.6, + "end": 7822.68, + "probability": 0.9294 + }, + { + "start": 7823.0, + "end": 7824.01, + "probability": 0.4961 + }, + { + "start": 7824.24, + "end": 7824.74, + "probability": 0.3938 + }, + { + "start": 7824.76, + "end": 7824.98, + "probability": 0.3832 + }, + { + "start": 7825.08, + "end": 7825.96, + "probability": 0.6848 + }, + { + "start": 7826.08, + "end": 7826.28, + "probability": 0.6331 + }, + { + "start": 7826.86, + "end": 7829.44, + "probability": 0.9146 + }, + { + "start": 7829.72, + "end": 7832.78, + "probability": 0.8217 + }, + { + "start": 7832.94, + "end": 7833.74, + "probability": 0.8911 + }, + { + "start": 7848.68, + "end": 7850.0, + "probability": 0.6825 + }, + { + "start": 7852.33, + "end": 7857.28, + "probability": 0.9917 + }, + { + "start": 7858.28, + "end": 7860.14, + "probability": 0.9746 + }, + { + "start": 7861.34, + "end": 7864.12, + "probability": 0.8796 + }, + { + "start": 7866.36, + "end": 7867.24, + "probability": 0.7394 + }, + { + "start": 7868.58, + "end": 7872.18, + "probability": 0.8688 + }, + { + "start": 7873.02, + "end": 7880.53, + "probability": 0.9344 + }, + { + "start": 7882.04, + "end": 7883.62, + "probability": 0.9761 + }, + { + "start": 7883.68, + "end": 7886.08, + "probability": 0.8494 + }, + { + "start": 7887.0, + "end": 7891.64, + "probability": 0.9766 + }, + { + "start": 7892.66, + "end": 7894.7, + "probability": 0.5707 + }, + { + "start": 7895.92, + "end": 7896.74, + "probability": 0.9784 + }, + { + "start": 7897.48, + "end": 7899.26, + "probability": 0.9476 + }, + { + "start": 7899.88, + "end": 7902.24, + "probability": 0.9694 + }, + { + "start": 7902.32, + "end": 7905.24, + "probability": 0.9832 + }, + { + "start": 7906.1, + "end": 7907.86, + "probability": 0.9584 + }, + { + "start": 7908.96, + "end": 7911.9, + "probability": 0.5827 + }, + { + "start": 7912.38, + "end": 7913.96, + "probability": 0.723 + }, + { + "start": 7914.82, + "end": 7916.38, + "probability": 0.8716 + }, + { + "start": 7919.22, + "end": 7921.56, + "probability": 0.7585 + }, + { + "start": 7921.56, + "end": 7923.58, + "probability": 0.67 + }, + { + "start": 7923.9, + "end": 7926.06, + "probability": 0.2359 + }, + { + "start": 7926.24, + "end": 7927.14, + "probability": 0.4958 + }, + { + "start": 7927.42, + "end": 7928.0, + "probability": 0.7148 + }, + { + "start": 7928.16, + "end": 7928.78, + "probability": 0.6513 + }, + { + "start": 7932.3, + "end": 7935.24, + "probability": 0.1481 + }, + { + "start": 7937.29, + "end": 7938.2, + "probability": 0.3694 + }, + { + "start": 7940.86, + "end": 7945.44, + "probability": 0.0538 + }, + { + "start": 7946.56, + "end": 7949.26, + "probability": 0.0283 + }, + { + "start": 7949.26, + "end": 7950.04, + "probability": 0.2508 + }, + { + "start": 7950.16, + "end": 7952.85, + "probability": 0.5251 + }, + { + "start": 7954.34, + "end": 7960.1, + "probability": 0.2261 + }, + { + "start": 7960.9, + "end": 7961.0, + "probability": 0.3292 + }, + { + "start": 7961.0, + "end": 7961.0, + "probability": 0.5005 + }, + { + "start": 7961.0, + "end": 7962.26, + "probability": 0.4283 + }, + { + "start": 7964.27, + "end": 7965.84, + "probability": 0.1001 + }, + { + "start": 7965.86, + "end": 7966.5, + "probability": 0.0434 + }, + { + "start": 7975.64, + "end": 7975.77, + "probability": 0.0672 + }, + { + "start": 7986.18, + "end": 7986.18, + "probability": 0.5544 + }, + { + "start": 7986.18, + "end": 7986.18, + "probability": 0.1079 + }, + { + "start": 7986.18, + "end": 7986.18, + "probability": 0.0199 + }, + { + "start": 7986.18, + "end": 7986.82, + "probability": 0.392 + }, + { + "start": 7989.0, + "end": 7989.58, + "probability": 0.6463 + }, + { + "start": 7990.98, + "end": 7993.44, + "probability": 0.8055 + }, + { + "start": 7994.26, + "end": 7995.16, + "probability": 0.7995 + }, + { + "start": 7996.02, + "end": 7996.63, + "probability": 0.9308 + }, + { + "start": 7997.68, + "end": 7998.6, + "probability": 0.0236 + }, + { + "start": 7998.78, + "end": 8001.04, + "probability": 0.7897 + }, + { + "start": 8001.4, + "end": 8001.88, + "probability": 0.3409 + }, + { + "start": 8002.46, + "end": 8007.22, + "probability": 0.98 + }, + { + "start": 8007.9, + "end": 8012.36, + "probability": 0.7915 + }, + { + "start": 8013.06, + "end": 8016.86, + "probability": 0.9156 + }, + { + "start": 8017.74, + "end": 8023.79, + "probability": 0.9681 + }, + { + "start": 8024.0, + "end": 8030.54, + "probability": 0.9866 + }, + { + "start": 8031.18, + "end": 8035.52, + "probability": 0.9735 + }, + { + "start": 8035.96, + "end": 8036.48, + "probability": 0.8682 + }, + { + "start": 8037.23, + "end": 8041.88, + "probability": 0.9466 + }, + { + "start": 8041.94, + "end": 8042.92, + "probability": 0.9546 + }, + { + "start": 8043.08, + "end": 8045.44, + "probability": 0.9759 + }, + { + "start": 8047.72, + "end": 8048.52, + "probability": 0.9507 + }, + { + "start": 8048.58, + "end": 8049.66, + "probability": 0.9076 + }, + { + "start": 8051.02, + "end": 8056.14, + "probability": 0.9833 + }, + { + "start": 8056.2, + "end": 8059.5, + "probability": 0.8516 + }, + { + "start": 8060.42, + "end": 8062.93, + "probability": 0.9928 + }, + { + "start": 8063.04, + "end": 8070.04, + "probability": 0.9706 + }, + { + "start": 8070.22, + "end": 8071.2, + "probability": 0.9182 + }, + { + "start": 8071.82, + "end": 8078.48, + "probability": 0.9883 + }, + { + "start": 8078.6, + "end": 8079.93, + "probability": 0.998 + }, + { + "start": 8080.06, + "end": 8081.73, + "probability": 0.979 + }, + { + "start": 8082.8, + "end": 8084.42, + "probability": 0.9946 + }, + { + "start": 8084.44, + "end": 8085.98, + "probability": 0.9888 + }, + { + "start": 8086.6, + "end": 8087.07, + "probability": 0.5845 + }, + { + "start": 8087.62, + "end": 8088.1, + "probability": 0.8632 + }, + { + "start": 8088.2, + "end": 8089.88, + "probability": 0.9743 + }, + { + "start": 8089.94, + "end": 8093.7, + "probability": 0.9775 + }, + { + "start": 8094.64, + "end": 8097.62, + "probability": 0.9977 + }, + { + "start": 8098.78, + "end": 8104.96, + "probability": 0.9863 + }, + { + "start": 8105.64, + "end": 8110.64, + "probability": 0.9824 + }, + { + "start": 8111.6, + "end": 8112.56, + "probability": 0.8981 + }, + { + "start": 8113.04, + "end": 8113.44, + "probability": 0.706 + }, + { + "start": 8113.56, + "end": 8113.6, + "probability": 0.3812 + }, + { + "start": 8113.72, + "end": 8114.4, + "probability": 0.8599 + }, + { + "start": 8114.56, + "end": 8115.98, + "probability": 0.97 + }, + { + "start": 8116.54, + "end": 8119.02, + "probability": 0.9441 + }, + { + "start": 8119.66, + "end": 8122.22, + "probability": 0.956 + }, + { + "start": 8122.82, + "end": 8124.96, + "probability": 0.9908 + }, + { + "start": 8125.18, + "end": 8126.44, + "probability": 0.9644 + }, + { + "start": 8126.54, + "end": 8127.27, + "probability": 0.9712 + }, + { + "start": 8127.72, + "end": 8128.26, + "probability": 0.7019 + }, + { + "start": 8128.4, + "end": 8129.82, + "probability": 0.9971 + }, + { + "start": 8130.42, + "end": 8133.56, + "probability": 0.8302 + }, + { + "start": 8134.08, + "end": 8135.98, + "probability": 0.9828 + }, + { + "start": 8136.12, + "end": 8136.58, + "probability": 0.6436 + }, + { + "start": 8137.56, + "end": 8140.84, + "probability": 0.8565 + }, + { + "start": 8141.36, + "end": 8142.84, + "probability": 0.8588 + }, + { + "start": 8143.82, + "end": 8145.74, + "probability": 0.867 + }, + { + "start": 8146.46, + "end": 8148.22, + "probability": 0.969 + }, + { + "start": 8148.68, + "end": 8150.0, + "probability": 0.8709 + }, + { + "start": 8150.58, + "end": 8152.53, + "probability": 0.9251 + }, + { + "start": 8153.82, + "end": 8154.52, + "probability": 0.944 + }, + { + "start": 8157.04, + "end": 8158.56, + "probability": 0.9885 + }, + { + "start": 8158.56, + "end": 8162.14, + "probability": 0.7297 + }, + { + "start": 8162.22, + "end": 8163.62, + "probability": 0.9451 + }, + { + "start": 8164.3, + "end": 8166.52, + "probability": 0.9976 + }, + { + "start": 8166.6, + "end": 8168.34, + "probability": 0.6771 + }, + { + "start": 8168.4, + "end": 8169.78, + "probability": 0.665 + }, + { + "start": 8170.58, + "end": 8171.82, + "probability": 0.5051 + }, + { + "start": 8172.52, + "end": 8179.58, + "probability": 0.9285 + }, + { + "start": 8179.7, + "end": 8180.46, + "probability": 0.7941 + }, + { + "start": 8181.68, + "end": 8184.44, + "probability": 0.9731 + }, + { + "start": 8184.86, + "end": 8185.38, + "probability": 0.5109 + }, + { + "start": 8185.46, + "end": 8186.78, + "probability": 0.4795 + }, + { + "start": 8187.64, + "end": 8190.4, + "probability": 0.6854 + }, + { + "start": 8190.56, + "end": 8193.72, + "probability": 0.998 + }, + { + "start": 8193.72, + "end": 8196.34, + "probability": 0.9556 + }, + { + "start": 8197.6, + "end": 8202.98, + "probability": 0.9733 + }, + { + "start": 8203.8, + "end": 8206.28, + "probability": 0.7464 + }, + { + "start": 8207.1, + "end": 8212.66, + "probability": 0.8555 + }, + { + "start": 8213.56, + "end": 8217.16, + "probability": 0.9813 + }, + { + "start": 8217.16, + "end": 8220.78, + "probability": 0.9672 + }, + { + "start": 8221.22, + "end": 8222.44, + "probability": 0.9849 + }, + { + "start": 8222.54, + "end": 8226.84, + "probability": 0.9983 + }, + { + "start": 8227.8, + "end": 8229.66, + "probability": 0.9502 + }, + { + "start": 8230.26, + "end": 8234.32, + "probability": 0.9829 + }, + { + "start": 8234.9, + "end": 8235.22, + "probability": 0.094 + }, + { + "start": 8235.38, + "end": 8235.98, + "probability": 0.3914 + }, + { + "start": 8236.16, + "end": 8236.76, + "probability": 0.7453 + }, + { + "start": 8237.18, + "end": 8238.05, + "probability": 0.6587 + }, + { + "start": 8238.34, + "end": 8239.48, + "probability": 0.7583 + }, + { + "start": 8240.1, + "end": 8242.46, + "probability": 0.9545 + }, + { + "start": 8242.58, + "end": 8243.57, + "probability": 0.9009 + }, + { + "start": 8244.82, + "end": 8245.72, + "probability": 0.9834 + }, + { + "start": 8246.58, + "end": 8248.12, + "probability": 0.9706 + }, + { + "start": 8249.2, + "end": 8252.3, + "probability": 0.95 + }, + { + "start": 8252.44, + "end": 8253.78, + "probability": 0.8806 + }, + { + "start": 8254.9, + "end": 8256.48, + "probability": 0.8576 + }, + { + "start": 8256.56, + "end": 8259.42, + "probability": 0.9614 + }, + { + "start": 8261.3, + "end": 8263.2, + "probability": 0.9191 + }, + { + "start": 8263.36, + "end": 8265.02, + "probability": 0.887 + }, + { + "start": 8265.14, + "end": 8268.44, + "probability": 0.9684 + }, + { + "start": 8268.94, + "end": 8270.28, + "probability": 0.542 + }, + { + "start": 8270.32, + "end": 8272.29, + "probability": 0.9852 + }, + { + "start": 8272.66, + "end": 8277.38, + "probability": 0.9899 + }, + { + "start": 8278.58, + "end": 8279.24, + "probability": 0.7819 + }, + { + "start": 8279.36, + "end": 8279.86, + "probability": 0.6702 + }, + { + "start": 8280.06, + "end": 8282.5, + "probability": 0.982 + }, + { + "start": 8282.6, + "end": 8283.66, + "probability": 0.2667 + }, + { + "start": 8284.46, + "end": 8286.73, + "probability": 0.9911 + }, + { + "start": 8287.44, + "end": 8289.16, + "probability": 0.9974 + }, + { + "start": 8289.28, + "end": 8290.14, + "probability": 0.9942 + }, + { + "start": 8290.18, + "end": 8291.36, + "probability": 0.9655 + }, + { + "start": 8291.58, + "end": 8292.65, + "probability": 0.9976 + }, + { + "start": 8293.44, + "end": 8296.34, + "probability": 0.3107 + }, + { + "start": 8296.34, + "end": 8299.63, + "probability": 0.6299 + }, + { + "start": 8300.04, + "end": 8300.4, + "probability": 0.6499 + }, + { + "start": 8300.44, + "end": 8301.66, + "probability": 0.705 + }, + { + "start": 8301.74, + "end": 8303.98, + "probability": 0.9772 + }, + { + "start": 8304.56, + "end": 8306.06, + "probability": 0.9209 + }, + { + "start": 8306.1, + "end": 8308.75, + "probability": 0.9829 + }, + { + "start": 8309.36, + "end": 8310.18, + "probability": 0.9539 + }, + { + "start": 8310.26, + "end": 8311.14, + "probability": 0.8442 + }, + { + "start": 8311.6, + "end": 8315.2, + "probability": 0.9712 + }, + { + "start": 8315.46, + "end": 8315.98, + "probability": 0.9007 + }, + { + "start": 8316.4, + "end": 8317.02, + "probability": 0.3473 + }, + { + "start": 8317.58, + "end": 8319.28, + "probability": 0.8735 + }, + { + "start": 8319.36, + "end": 8322.68, + "probability": 0.9974 + }, + { + "start": 8323.14, + "end": 8324.04, + "probability": 0.9538 + }, + { + "start": 8324.04, + "end": 8324.74, + "probability": 0.9476 + }, + { + "start": 8324.84, + "end": 8326.58, + "probability": 0.8604 + }, + { + "start": 8326.62, + "end": 8327.14, + "probability": 0.807 + }, + { + "start": 8327.76, + "end": 8331.72, + "probability": 0.9821 + }, + { + "start": 8332.28, + "end": 8333.92, + "probability": 0.9714 + }, + { + "start": 8334.22, + "end": 8335.48, + "probability": 0.7509 + }, + { + "start": 8335.86, + "end": 8336.3, + "probability": 0.6691 + }, + { + "start": 8336.32, + "end": 8336.84, + "probability": 0.2011 + }, + { + "start": 8338.02, + "end": 8339.16, + "probability": 0.6457 + }, + { + "start": 8339.16, + "end": 8341.36, + "probability": 0.9669 + }, + { + "start": 8341.88, + "end": 8344.64, + "probability": 0.5433 + }, + { + "start": 8345.2, + "end": 8350.12, + "probability": 0.9937 + }, + { + "start": 8352.08, + "end": 8353.28, + "probability": 0.5114 + }, + { + "start": 8353.34, + "end": 8353.5, + "probability": 0.8204 + }, + { + "start": 8353.58, + "end": 8354.53, + "probability": 0.9937 + }, + { + "start": 8354.76, + "end": 8355.12, + "probability": 0.704 + }, + { + "start": 8355.18, + "end": 8358.04, + "probability": 0.9308 + }, + { + "start": 8358.08, + "end": 8358.3, + "probability": 0.9635 + }, + { + "start": 8358.42, + "end": 8361.08, + "probability": 0.9979 + }, + { + "start": 8361.7, + "end": 8365.35, + "probability": 0.8745 + }, + { + "start": 8366.02, + "end": 8370.12, + "probability": 0.6803 + }, + { + "start": 8370.98, + "end": 8372.66, + "probability": 0.9546 + }, + { + "start": 8373.24, + "end": 8373.52, + "probability": 0.6158 + }, + { + "start": 8373.62, + "end": 8375.28, + "probability": 0.5832 + }, + { + "start": 8375.52, + "end": 8376.1, + "probability": 0.7245 + }, + { + "start": 8376.38, + "end": 8377.06, + "probability": 0.8413 + }, + { + "start": 8377.52, + "end": 8379.24, + "probability": 0.9646 + }, + { + "start": 8379.82, + "end": 8380.92, + "probability": 0.8408 + }, + { + "start": 8381.02, + "end": 8381.24, + "probability": 0.8936 + }, + { + "start": 8381.38, + "end": 8383.64, + "probability": 0.8216 + }, + { + "start": 8384.56, + "end": 8386.16, + "probability": 0.978 + }, + { + "start": 8386.34, + "end": 8386.5, + "probability": 0.2665 + }, + { + "start": 8386.82, + "end": 8389.78, + "probability": 0.6523 + }, + { + "start": 8389.86, + "end": 8389.86, + "probability": 0.242 + }, + { + "start": 8389.86, + "end": 8390.44, + "probability": 0.6312 + }, + { + "start": 8391.08, + "end": 8394.46, + "probability": 0.3775 + }, + { + "start": 8396.02, + "end": 8396.2, + "probability": 0.0204 + }, + { + "start": 8396.2, + "end": 8397.24, + "probability": 0.2093 + }, + { + "start": 8397.24, + "end": 8403.28, + "probability": 0.7857 + }, + { + "start": 8403.72, + "end": 8405.3, + "probability": 0.9932 + }, + { + "start": 8405.32, + "end": 8405.68, + "probability": 0.7588 + }, + { + "start": 8405.82, + "end": 8410.87, + "probability": 0.9743 + }, + { + "start": 8411.58, + "end": 8411.64, + "probability": 0.0969 + }, + { + "start": 8411.64, + "end": 8413.18, + "probability": 0.5163 + }, + { + "start": 8414.14, + "end": 8415.2, + "probability": 0.955 + }, + { + "start": 8415.36, + "end": 8419.72, + "probability": 0.9785 + }, + { + "start": 8419.88, + "end": 8421.42, + "probability": 0.9819 + }, + { + "start": 8421.5, + "end": 8422.4, + "probability": 0.8557 + }, + { + "start": 8422.48, + "end": 8426.54, + "probability": 0.973 + }, + { + "start": 8426.6, + "end": 8427.52, + "probability": 0.6195 + }, + { + "start": 8428.28, + "end": 8431.04, + "probability": 0.9917 + }, + { + "start": 8431.08, + "end": 8434.12, + "probability": 0.948 + }, + { + "start": 8434.5, + "end": 8436.34, + "probability": 0.9979 + }, + { + "start": 8436.46, + "end": 8439.8, + "probability": 0.9785 + }, + { + "start": 8440.7, + "end": 8443.36, + "probability": 0.9716 + }, + { + "start": 8445.2, + "end": 8448.62, + "probability": 0.9355 + }, + { + "start": 8449.69, + "end": 8452.04, + "probability": 0.99 + }, + { + "start": 8452.08, + "end": 8452.82, + "probability": 0.8348 + }, + { + "start": 8452.88, + "end": 8453.36, + "probability": 0.8911 + }, + { + "start": 8453.4, + "end": 8458.86, + "probability": 0.835 + }, + { + "start": 8458.98, + "end": 8462.62, + "probability": 0.9941 + }, + { + "start": 8463.5, + "end": 8464.44, + "probability": 0.1258 + }, + { + "start": 8465.06, + "end": 8468.02, + "probability": 0.8771 + }, + { + "start": 8468.22, + "end": 8469.22, + "probability": 0.8826 + }, + { + "start": 8469.26, + "end": 8470.9, + "probability": 0.987 + }, + { + "start": 8471.48, + "end": 8474.44, + "probability": 0.9855 + }, + { + "start": 8474.52, + "end": 8477.91, + "probability": 0.6877 + }, + { + "start": 8477.96, + "end": 8480.8, + "probability": 0.9094 + }, + { + "start": 8481.76, + "end": 8484.18, + "probability": 0.8888 + }, + { + "start": 8484.36, + "end": 8486.24, + "probability": 0.9702 + }, + { + "start": 8486.32, + "end": 8487.46, + "probability": 0.8964 + }, + { + "start": 8487.52, + "end": 8488.44, + "probability": 0.7532 + }, + { + "start": 8488.5, + "end": 8492.7, + "probability": 0.9454 + }, + { + "start": 8493.22, + "end": 8495.54, + "probability": 0.7195 + }, + { + "start": 8496.06, + "end": 8497.26, + "probability": 0.9106 + }, + { + "start": 8506.02, + "end": 8506.86, + "probability": 0.6889 + }, + { + "start": 8507.08, + "end": 8507.68, + "probability": 0.7816 + }, + { + "start": 8508.16, + "end": 8508.32, + "probability": 0.7946 + }, + { + "start": 8508.42, + "end": 8511.14, + "probability": 0.9082 + }, + { + "start": 8512.26, + "end": 8520.22, + "probability": 0.9587 + }, + { + "start": 8522.84, + "end": 8523.88, + "probability": 0.8817 + }, + { + "start": 8524.56, + "end": 8529.46, + "probability": 0.6875 + }, + { + "start": 8530.7, + "end": 8533.82, + "probability": 0.871 + }, + { + "start": 8535.04, + "end": 8535.04, + "probability": 0.6118 + }, + { + "start": 8535.94, + "end": 8537.76, + "probability": 0.7529 + }, + { + "start": 8538.42, + "end": 8541.52, + "probability": 0.85 + }, + { + "start": 8542.5, + "end": 8543.33, + "probability": 0.9468 + }, + { + "start": 8544.28, + "end": 8546.98, + "probability": 0.7147 + }, + { + "start": 8547.02, + "end": 8547.84, + "probability": 0.9537 + }, + { + "start": 8547.9, + "end": 8548.66, + "probability": 0.9382 + }, + { + "start": 8550.31, + "end": 8552.96, + "probability": 0.956 + }, + { + "start": 8553.92, + "end": 8557.58, + "probability": 0.9663 + }, + { + "start": 8558.6, + "end": 8559.9, + "probability": 0.5664 + }, + { + "start": 8560.48, + "end": 8561.96, + "probability": 0.9085 + }, + { + "start": 8562.66, + "end": 8564.28, + "probability": 0.5705 + }, + { + "start": 8564.52, + "end": 8565.56, + "probability": 0.917 + }, + { + "start": 8565.7, + "end": 8567.12, + "probability": 0.9353 + }, + { + "start": 8568.3, + "end": 8569.38, + "probability": 0.4457 + }, + { + "start": 8569.44, + "end": 8571.04, + "probability": 0.9966 + }, + { + "start": 8571.3, + "end": 8572.28, + "probability": 0.9984 + }, + { + "start": 8572.92, + "end": 8574.2, + "probability": 0.7816 + }, + { + "start": 8574.56, + "end": 8575.2, + "probability": 0.6451 + }, + { + "start": 8575.64, + "end": 8579.82, + "probability": 0.9919 + }, + { + "start": 8580.66, + "end": 8581.6, + "probability": 0.9858 + }, + { + "start": 8582.38, + "end": 8583.36, + "probability": 0.4561 + }, + { + "start": 8583.66, + "end": 8586.36, + "probability": 0.7604 + }, + { + "start": 8586.96, + "end": 8589.44, + "probability": 0.7737 + }, + { + "start": 8590.08, + "end": 8590.68, + "probability": 0.9102 + }, + { + "start": 8591.68, + "end": 8593.7, + "probability": 0.9922 + }, + { + "start": 8594.72, + "end": 8597.42, + "probability": 0.9066 + }, + { + "start": 8598.46, + "end": 8601.18, + "probability": 0.7955 + }, + { + "start": 8601.3, + "end": 8601.6, + "probability": 0.4553 + }, + { + "start": 8601.6, + "end": 8601.82, + "probability": 0.7144 + }, + { + "start": 8601.86, + "end": 8604.46, + "probability": 0.8934 + }, + { + "start": 8605.42, + "end": 8605.68, + "probability": 0.2755 + }, + { + "start": 8605.74, + "end": 8608.76, + "probability": 0.8925 + }, + { + "start": 8608.9, + "end": 8609.82, + "probability": 0.38 + }, + { + "start": 8610.62, + "end": 8612.9, + "probability": 0.9847 + }, + { + "start": 8613.08, + "end": 8613.62, + "probability": 0.5413 + }, + { + "start": 8614.24, + "end": 8614.96, + "probability": 0.7176 + }, + { + "start": 8621.31, + "end": 8621.79, + "probability": 0.1625 + }, + { + "start": 8621.92, + "end": 8622.98, + "probability": 0.11 + }, + { + "start": 8628.36, + "end": 8629.7, + "probability": 0.0035 + }, + { + "start": 8630.88, + "end": 8631.04, + "probability": 0.0355 + }, + { + "start": 8631.86, + "end": 8632.16, + "probability": 0.0424 + }, + { + "start": 8632.16, + "end": 8632.16, + "probability": 0.177 + }, + { + "start": 8632.16, + "end": 8634.14, + "probability": 0.4828 + }, + { + "start": 8635.08, + "end": 8637.86, + "probability": 0.7147 + }, + { + "start": 8640.84, + "end": 8642.12, + "probability": 0.2601 + }, + { + "start": 8642.12, + "end": 8642.54, + "probability": 0.3999 + }, + { + "start": 8642.58, + "end": 8646.38, + "probability": 0.9442 + }, + { + "start": 8646.84, + "end": 8647.08, + "probability": 0.4789 + }, + { + "start": 8647.12, + "end": 8647.76, + "probability": 0.7562 + }, + { + "start": 8647.96, + "end": 8649.5, + "probability": 0.43 + }, + { + "start": 8649.5, + "end": 8652.36, + "probability": 0.8387 + }, + { + "start": 8652.56, + "end": 8653.08, + "probability": 0.2963 + }, + { + "start": 8654.16, + "end": 8658.24, + "probability": 0.8931 + }, + { + "start": 8658.4, + "end": 8659.44, + "probability": 0.8379 + }, + { + "start": 8660.4, + "end": 8661.66, + "probability": 0.7613 + }, + { + "start": 8662.26, + "end": 8665.08, + "probability": 0.8405 + }, + { + "start": 8666.02, + "end": 8667.64, + "probability": 0.6655 + }, + { + "start": 8667.9, + "end": 8667.9, + "probability": 0.3366 + }, + { + "start": 8667.9, + "end": 8668.22, + "probability": 0.2321 + }, + { + "start": 8668.3, + "end": 8669.26, + "probability": 0.8371 + }, + { + "start": 8669.64, + "end": 8674.27, + "probability": 0.8561 + }, + { + "start": 8674.94, + "end": 8678.96, + "probability": 0.9612 + }, + { + "start": 8679.5, + "end": 8687.42, + "probability": 0.9937 + }, + { + "start": 8687.42, + "end": 8691.96, + "probability": 0.9701 + }, + { + "start": 8692.74, + "end": 8698.45, + "probability": 0.9756 + }, + { + "start": 8699.02, + "end": 8704.08, + "probability": 0.9961 + }, + { + "start": 8704.26, + "end": 8707.14, + "probability": 0.9863 + }, + { + "start": 8707.74, + "end": 8710.76, + "probability": 0.959 + }, + { + "start": 8710.84, + "end": 8715.9, + "probability": 0.946 + }, + { + "start": 8716.4, + "end": 8718.68, + "probability": 0.8291 + }, + { + "start": 8718.96, + "end": 8721.74, + "probability": 0.9715 + }, + { + "start": 8722.46, + "end": 8724.76, + "probability": 0.9973 + }, + { + "start": 8725.08, + "end": 8727.18, + "probability": 0.9553 + }, + { + "start": 8728.1, + "end": 8732.36, + "probability": 0.7609 + }, + { + "start": 8744.56, + "end": 8745.32, + "probability": 0.5435 + }, + { + "start": 8746.02, + "end": 8746.76, + "probability": 0.7056 + }, + { + "start": 8748.16, + "end": 8752.1, + "probability": 0.9618 + }, + { + "start": 8752.32, + "end": 8753.33, + "probability": 0.7648 + }, + { + "start": 8754.74, + "end": 8760.44, + "probability": 0.9843 + }, + { + "start": 8761.2, + "end": 8763.46, + "probability": 0.9471 + }, + { + "start": 8764.06, + "end": 8767.4, + "probability": 0.9852 + }, + { + "start": 8768.74, + "end": 8769.94, + "probability": 0.9513 + }, + { + "start": 8770.77, + "end": 8771.26, + "probability": 0.0138 + }, + { + "start": 8771.32, + "end": 8774.38, + "probability": 0.98 + }, + { + "start": 8774.9, + "end": 8778.4, + "probability": 0.9882 + }, + { + "start": 8778.62, + "end": 8780.66, + "probability": 0.8294 + }, + { + "start": 8781.78, + "end": 8784.72, + "probability": 0.9971 + }, + { + "start": 8785.32, + "end": 8787.46, + "probability": 0.9976 + }, + { + "start": 8788.12, + "end": 8790.38, + "probability": 0.7908 + }, + { + "start": 8790.96, + "end": 8794.02, + "probability": 0.9843 + }, + { + "start": 8794.98, + "end": 8798.62, + "probability": 0.9879 + }, + { + "start": 8798.62, + "end": 8801.7, + "probability": 0.9946 + }, + { + "start": 8802.68, + "end": 8805.34, + "probability": 0.7766 + }, + { + "start": 8806.02, + "end": 8808.56, + "probability": 0.9255 + }, + { + "start": 8809.32, + "end": 8812.32, + "probability": 0.8852 + }, + { + "start": 8813.12, + "end": 8815.22, + "probability": 0.8821 + }, + { + "start": 8816.0, + "end": 8817.42, + "probability": 0.9205 + }, + { + "start": 8817.96, + "end": 8820.82, + "probability": 0.9537 + }, + { + "start": 8821.48, + "end": 8823.3, + "probability": 0.9138 + }, + { + "start": 8823.88, + "end": 8827.62, + "probability": 0.9165 + }, + { + "start": 8827.74, + "end": 8830.58, + "probability": 0.9884 + }, + { + "start": 8832.06, + "end": 8834.74, + "probability": 0.9928 + }, + { + "start": 8835.44, + "end": 8836.94, + "probability": 0.9515 + }, + { + "start": 8838.72, + "end": 8839.02, + "probability": 0.6648 + }, + { + "start": 8839.72, + "end": 8842.66, + "probability": 0.7897 + }, + { + "start": 8842.84, + "end": 8843.78, + "probability": 0.4744 + }, + { + "start": 8846.71, + "end": 8848.82, + "probability": 0.2757 + }, + { + "start": 8850.93, + "end": 8867.18, + "probability": 0.2043 + }, + { + "start": 8867.4, + "end": 8868.46, + "probability": 0.1991 + }, + { + "start": 8869.2, + "end": 8870.28, + "probability": 0.4396 + }, + { + "start": 8870.92, + "end": 8874.36, + "probability": 0.0207 + }, + { + "start": 8875.7, + "end": 8879.96, + "probability": 0.0206 + }, + { + "start": 8883.33, + "end": 8887.23, + "probability": 0.1323 + }, + { + "start": 8889.58, + "end": 8889.58, + "probability": 0.0616 + }, + { + "start": 8889.58, + "end": 8891.68, + "probability": 0.2188 + }, + { + "start": 8892.36, + "end": 8898.68, + "probability": 0.2999 + }, + { + "start": 8899.5, + "end": 8900.56, + "probability": 0.3031 + }, + { + "start": 8900.82, + "end": 8902.54, + "probability": 0.1785 + }, + { + "start": 8902.8, + "end": 8904.04, + "probability": 0.0415 + }, + { + "start": 8908.96, + "end": 8910.14, + "probability": 0.18 + }, + { + "start": 8913.14, + "end": 8917.3, + "probability": 0.1446 + }, + { + "start": 8918.22, + "end": 8921.3, + "probability": 0.2659 + }, + { + "start": 8921.74, + "end": 8922.24, + "probability": 0.0656 + }, + { + "start": 8922.34, + "end": 8922.5, + "probability": 0.0794 + }, + { + "start": 8922.58, + "end": 8924.1, + "probability": 0.0584 + }, + { + "start": 8924.6, + "end": 8926.7, + "probability": 0.0671 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8927.0, + "end": 8927.0, + "probability": 0.0 + }, + { + "start": 8930.5, + "end": 8936.44, + "probability": 0.8405 + }, + { + "start": 8936.56, + "end": 8937.26, + "probability": 0.807 + }, + { + "start": 8937.52, + "end": 8938.22, + "probability": 0.8435 + }, + { + "start": 8939.08, + "end": 8940.6, + "probability": 0.9817 + }, + { + "start": 8942.46, + "end": 8943.44, + "probability": 0.5667 + }, + { + "start": 8944.72, + "end": 8947.66, + "probability": 0.9968 + }, + { + "start": 8948.68, + "end": 8951.26, + "probability": 0.9749 + }, + { + "start": 8953.16, + "end": 8959.84, + "probability": 0.9814 + }, + { + "start": 8959.91, + "end": 8965.76, + "probability": 0.9951 + }, + { + "start": 8966.86, + "end": 8967.6, + "probability": 0.5892 + }, + { + "start": 8968.18, + "end": 8968.54, + "probability": 0.7078 + }, + { + "start": 8970.3, + "end": 8973.64, + "probability": 0.946 + }, + { + "start": 8974.36, + "end": 8975.96, + "probability": 0.9989 + }, + { + "start": 8977.2, + "end": 8979.2, + "probability": 0.9877 + }, + { + "start": 8980.22, + "end": 8983.02, + "probability": 0.8118 + }, + { + "start": 8984.52, + "end": 8985.88, + "probability": 0.8776 + }, + { + "start": 8985.92, + "end": 8990.96, + "probability": 0.9686 + }, + { + "start": 8991.84, + "end": 8999.14, + "probability": 0.7506 + }, + { + "start": 8999.14, + "end": 9005.08, + "probability": 0.9902 + }, + { + "start": 9006.42, + "end": 9008.9, + "probability": 0.9435 + }, + { + "start": 9009.52, + "end": 9010.42, + "probability": 0.795 + }, + { + "start": 9011.2, + "end": 9012.08, + "probability": 0.9145 + }, + { + "start": 9012.74, + "end": 9015.08, + "probability": 0.962 + }, + { + "start": 9016.26, + "end": 9016.56, + "probability": 0.4892 + }, + { + "start": 9016.78, + "end": 9023.22, + "probability": 0.9185 + }, + { + "start": 9023.98, + "end": 9026.86, + "probability": 0.684 + }, + { + "start": 9028.4, + "end": 9030.14, + "probability": 0.897 + }, + { + "start": 9031.58, + "end": 9033.38, + "probability": 0.9604 + }, + { + "start": 9034.08, + "end": 9035.96, + "probability": 0.8997 + }, + { + "start": 9036.92, + "end": 9038.24, + "probability": 0.9933 + }, + { + "start": 9039.08, + "end": 9044.92, + "probability": 0.9466 + }, + { + "start": 9045.08, + "end": 9046.94, + "probability": 0.9526 + }, + { + "start": 9047.84, + "end": 9049.38, + "probability": 0.7278 + }, + { + "start": 9051.54, + "end": 9052.38, + "probability": 0.7231 + }, + { + "start": 9052.7, + "end": 9057.0, + "probability": 0.8421 + }, + { + "start": 9057.06, + "end": 9057.34, + "probability": 0.6478 + }, + { + "start": 9057.92, + "end": 9059.86, + "probability": 0.9596 + }, + { + "start": 9060.02, + "end": 9060.42, + "probability": 0.614 + }, + { + "start": 9061.1, + "end": 9063.9, + "probability": 0.6654 + }, + { + "start": 9071.1, + "end": 9072.46, + "probability": 0.0268 + }, + { + "start": 9072.46, + "end": 9075.02, + "probability": 0.5864 + }, + { + "start": 9076.47, + "end": 9077.98, + "probability": 0.0103 + }, + { + "start": 9077.98, + "end": 9079.25, + "probability": 0.5702 + }, + { + "start": 9080.26, + "end": 9081.08, + "probability": 0.7644 + }, + { + "start": 9081.2, + "end": 9081.66, + "probability": 0.5027 + }, + { + "start": 9082.06, + "end": 9086.0, + "probability": 0.6234 + }, + { + "start": 9086.58, + "end": 9087.84, + "probability": 0.9912 + }, + { + "start": 9088.58, + "end": 9090.26, + "probability": 0.8763 + }, + { + "start": 9090.92, + "end": 9092.56, + "probability": 0.4508 + }, + { + "start": 9093.8, + "end": 9096.12, + "probability": 0.7624 + }, + { + "start": 9096.92, + "end": 9097.76, + "probability": 0.9166 + }, + { + "start": 9099.0, + "end": 9102.7, + "probability": 0.9523 + }, + { + "start": 9103.5, + "end": 9105.6, + "probability": 0.8541 + }, + { + "start": 9106.32, + "end": 9108.26, + "probability": 0.7481 + }, + { + "start": 9110.68, + "end": 9111.96, + "probability": 0.7456 + }, + { + "start": 9112.12, + "end": 9114.78, + "probability": 0.8663 + }, + { + "start": 9115.8, + "end": 9117.34, + "probability": 0.4903 + }, + { + "start": 9118.76, + "end": 9120.68, + "probability": 0.7878 + }, + { + "start": 9121.1, + "end": 9123.28, + "probability": 0.6978 + }, + { + "start": 9123.34, + "end": 9125.28, + "probability": 0.3762 + }, + { + "start": 9125.58, + "end": 9126.16, + "probability": 0.6435 + }, + { + "start": 9126.42, + "end": 9127.08, + "probability": 0.5693 + }, + { + "start": 9128.0, + "end": 9129.04, + "probability": 0.2284 + }, + { + "start": 9129.86, + "end": 9130.24, + "probability": 0.0027 + }, + { + "start": 9132.26, + "end": 9133.64, + "probability": 0.0926 + }, + { + "start": 9134.96, + "end": 9137.84, + "probability": 0.0141 + }, + { + "start": 9142.98, + "end": 9144.64, + "probability": 0.0397 + }, + { + "start": 9144.88, + "end": 9151.16, + "probability": 0.3093 + }, + { + "start": 9151.16, + "end": 9152.0, + "probability": 0.1615 + }, + { + "start": 9152.8, + "end": 9161.12, + "probability": 0.0731 + }, + { + "start": 9161.12, + "end": 9162.4, + "probability": 0.0697 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.0, + "end": 9232.0, + "probability": 0.0 + }, + { + "start": 9232.38, + "end": 9232.48, + "probability": 0.0713 + }, + { + "start": 9232.48, + "end": 9232.48, + "probability": 0.1425 + }, + { + "start": 9232.48, + "end": 9232.48, + "probability": 0.0704 + }, + { + "start": 9232.48, + "end": 9233.92, + "probability": 0.3328 + }, + { + "start": 9233.92, + "end": 9235.88, + "probability": 0.7383 + }, + { + "start": 9236.04, + "end": 9239.74, + "probability": 0.6859 + }, + { + "start": 9239.94, + "end": 9244.42, + "probability": 0.8601 + }, + { + "start": 9244.96, + "end": 9247.18, + "probability": 0.6958 + }, + { + "start": 9247.32, + "end": 9250.38, + "probability": 0.9761 + }, + { + "start": 9250.42, + "end": 9255.14, + "probability": 0.9881 + }, + { + "start": 9255.7, + "end": 9257.18, + "probability": 0.7611 + }, + { + "start": 9257.28, + "end": 9257.88, + "probability": 0.9222 + }, + { + "start": 9258.06, + "end": 9261.02, + "probability": 0.9522 + }, + { + "start": 9261.6, + "end": 9264.62, + "probability": 0.9796 + }, + { + "start": 9265.32, + "end": 9266.72, + "probability": 0.8825 + }, + { + "start": 9267.44, + "end": 9269.56, + "probability": 0.9387 + }, + { + "start": 9269.82, + "end": 9272.68, + "probability": 0.9147 + }, + { + "start": 9272.8, + "end": 9278.42, + "probability": 0.8255 + }, + { + "start": 9278.42, + "end": 9281.3, + "probability": 0.9642 + }, + { + "start": 9281.76, + "end": 9282.22, + "probability": 0.7817 + }, + { + "start": 9282.64, + "end": 9283.96, + "probability": 0.9741 + }, + { + "start": 9284.5, + "end": 9285.7, + "probability": 0.6237 + }, + { + "start": 9286.48, + "end": 9289.2, + "probability": 0.6143 + }, + { + "start": 9289.74, + "end": 9290.74, + "probability": 0.8076 + }, + { + "start": 9306.48, + "end": 9307.82, + "probability": 0.604 + }, + { + "start": 9309.88, + "end": 9311.16, + "probability": 0.7432 + }, + { + "start": 9312.44, + "end": 9318.94, + "probability": 0.9956 + }, + { + "start": 9319.78, + "end": 9322.92, + "probability": 0.9985 + }, + { + "start": 9323.86, + "end": 9327.28, + "probability": 0.9969 + }, + { + "start": 9328.22, + "end": 9329.88, + "probability": 0.9734 + }, + { + "start": 9331.04, + "end": 9334.48, + "probability": 0.8472 + }, + { + "start": 9335.06, + "end": 9339.08, + "probability": 0.8212 + }, + { + "start": 9339.62, + "end": 9343.52, + "probability": 0.7226 + }, + { + "start": 9344.52, + "end": 9348.16, + "probability": 0.6527 + }, + { + "start": 9349.2, + "end": 9351.5, + "probability": 0.4344 + }, + { + "start": 9352.16, + "end": 9354.9, + "probability": 0.9839 + }, + { + "start": 9354.9, + "end": 9358.92, + "probability": 0.9706 + }, + { + "start": 9359.54, + "end": 9360.72, + "probability": 0.6461 + }, + { + "start": 9361.5, + "end": 9364.28, + "probability": 0.585 + }, + { + "start": 9364.36, + "end": 9368.64, + "probability": 0.9871 + }, + { + "start": 9368.64, + "end": 9373.22, + "probability": 0.9833 + }, + { + "start": 9373.32, + "end": 9374.34, + "probability": 0.5948 + }, + { + "start": 9375.7, + "end": 9376.58, + "probability": 0.8887 + }, + { + "start": 9378.68, + "end": 9379.1, + "probability": 0.3759 + }, + { + "start": 9381.54, + "end": 9381.54, + "probability": 0.0328 + }, + { + "start": 9381.54, + "end": 9382.5, + "probability": 0.0593 + }, + { + "start": 9382.64, + "end": 9383.27, + "probability": 0.2637 + }, + { + "start": 9384.84, + "end": 9387.92, + "probability": 0.9358 + }, + { + "start": 9387.98, + "end": 9388.46, + "probability": 0.5556 + }, + { + "start": 9389.14, + "end": 9392.5, + "probability": 0.9824 + }, + { + "start": 9393.86, + "end": 9397.42, + "probability": 0.9911 + }, + { + "start": 9398.16, + "end": 9401.56, + "probability": 0.8262 + }, + { + "start": 9402.1, + "end": 9405.22, + "probability": 0.9869 + }, + { + "start": 9406.08, + "end": 9409.2, + "probability": 0.9899 + }, + { + "start": 9409.8, + "end": 9410.62, + "probability": 0.6755 + }, + { + "start": 9411.7, + "end": 9413.94, + "probability": 0.9216 + }, + { + "start": 9414.9, + "end": 9415.98, + "probability": 0.2224 + }, + { + "start": 9416.76, + "end": 9417.16, + "probability": 0.8835 + }, + { + "start": 9417.94, + "end": 9421.56, + "probability": 0.9898 + }, + { + "start": 9421.56, + "end": 9424.8, + "probability": 0.9932 + }, + { + "start": 9425.52, + "end": 9427.58, + "probability": 0.7791 + }, + { + "start": 9428.28, + "end": 9431.08, + "probability": 0.9502 + }, + { + "start": 9431.98, + "end": 9432.62, + "probability": 0.8337 + }, + { + "start": 9433.2, + "end": 9436.26, + "probability": 0.7807 + }, + { + "start": 9437.02, + "end": 9438.08, + "probability": 0.5775 + }, + { + "start": 9438.8, + "end": 9442.02, + "probability": 0.9644 + }, + { + "start": 9442.74, + "end": 9447.66, + "probability": 0.8277 + }, + { + "start": 9448.14, + "end": 9448.94, + "probability": 0.7383 + }, + { + "start": 9449.68, + "end": 9450.82, + "probability": 0.7866 + }, + { + "start": 9451.52, + "end": 9454.76, + "probability": 0.9918 + }, + { + "start": 9455.42, + "end": 9458.9, + "probability": 0.716 + }, + { + "start": 9459.52, + "end": 9461.44, + "probability": 0.8781 + }, + { + "start": 9462.02, + "end": 9463.12, + "probability": 0.899 + }, + { + "start": 9463.76, + "end": 9467.02, + "probability": 0.8971 + }, + { + "start": 9467.92, + "end": 9471.28, + "probability": 0.6466 + }, + { + "start": 9471.3, + "end": 9474.44, + "probability": 0.6607 + }, + { + "start": 9475.2, + "end": 9480.08, + "probability": 0.8775 + }, + { + "start": 9481.38, + "end": 9484.1, + "probability": 0.7314 + }, + { + "start": 9484.3, + "end": 9486.82, + "probability": 0.5901 + }, + { + "start": 9488.06, + "end": 9490.88, + "probability": 0.9766 + }, + { + "start": 9491.74, + "end": 9494.78, + "probability": 0.9935 + }, + { + "start": 9495.32, + "end": 9496.64, + "probability": 0.9928 + }, + { + "start": 9497.58, + "end": 9498.72, + "probability": 0.6002 + }, + { + "start": 9499.4, + "end": 9501.9, + "probability": 0.9938 + }, + { + "start": 9502.54, + "end": 9505.1, + "probability": 0.9969 + }, + { + "start": 9505.7, + "end": 9507.62, + "probability": 0.9836 + }, + { + "start": 9508.72, + "end": 9513.74, + "probability": 0.9941 + }, + { + "start": 9513.98, + "end": 9518.54, + "probability": 0.9921 + }, + { + "start": 9520.22, + "end": 9520.66, + "probability": 0.7774 + }, + { + "start": 9521.28, + "end": 9523.16, + "probability": 0.8932 + }, + { + "start": 9524.28, + "end": 9528.84, + "probability": 0.9834 + }, + { + "start": 9529.34, + "end": 9532.58, + "probability": 0.9575 + }, + { + "start": 9533.28, + "end": 9534.86, + "probability": 0.9954 + }, + { + "start": 9536.04, + "end": 9538.38, + "probability": 0.9793 + }, + { + "start": 9538.38, + "end": 9542.14, + "probability": 0.99 + }, + { + "start": 9542.7, + "end": 9546.22, + "probability": 0.9124 + }, + { + "start": 9546.76, + "end": 9547.9, + "probability": 0.7774 + }, + { + "start": 9548.46, + "end": 9551.48, + "probability": 0.7363 + }, + { + "start": 9552.36, + "end": 9554.0, + "probability": 0.5811 + }, + { + "start": 9554.52, + "end": 9555.4, + "probability": 0.8931 + }, + { + "start": 9556.2, + "end": 9559.34, + "probability": 0.9047 + }, + { + "start": 9559.88, + "end": 9563.2, + "probability": 0.9912 + }, + { + "start": 9564.02, + "end": 9564.76, + "probability": 0.7692 + }, + { + "start": 9565.54, + "end": 9569.8, + "probability": 0.6558 + }, + { + "start": 9569.94, + "end": 9571.66, + "probability": 0.5816 + }, + { + "start": 9571.66, + "end": 9575.46, + "probability": 0.8464 + }, + { + "start": 9575.56, + "end": 9576.86, + "probability": 0.8643 + }, + { + "start": 9576.96, + "end": 9577.04, + "probability": 0.01 + }, + { + "start": 9577.04, + "end": 9579.4, + "probability": 0.7222 + }, + { + "start": 9580.2, + "end": 9580.7, + "probability": 0.5198 + }, + { + "start": 9581.5, + "end": 9585.02, + "probability": 0.687 + }, + { + "start": 9585.14, + "end": 9588.14, + "probability": 0.7398 + }, + { + "start": 9588.26, + "end": 9589.36, + "probability": 0.1653 + }, + { + "start": 9589.74, + "end": 9590.42, + "probability": 0.1572 + }, + { + "start": 9593.14, + "end": 9595.5, + "probability": 0.3332 + }, + { + "start": 9595.5, + "end": 9603.98, + "probability": 0.153 + }, + { + "start": 9604.48, + "end": 9604.58, + "probability": 0.0499 + }, + { + "start": 9605.46, + "end": 9607.42, + "probability": 0.1782 + }, + { + "start": 9607.46, + "end": 9608.38, + "probability": 0.6863 + }, + { + "start": 9614.12, + "end": 9615.2, + "probability": 0.0283 + }, + { + "start": 9615.22, + "end": 9616.46, + "probability": 0.0962 + }, + { + "start": 9616.98, + "end": 9618.72, + "probability": 0.1243 + }, + { + "start": 9618.72, + "end": 9620.02, + "probability": 0.1472 + }, + { + "start": 9621.6, + "end": 9621.6, + "probability": 0.0295 + }, + { + "start": 9621.6, + "end": 9621.6, + "probability": 0.0088 + }, + { + "start": 9621.6, + "end": 9621.6, + "probability": 0.0351 + }, + { + "start": 9621.6, + "end": 9621.6, + "probability": 0.3029 + }, + { + "start": 9621.6, + "end": 9623.7, + "probability": 0.6691 + }, + { + "start": 9648.42, + "end": 9648.42, + "probability": 0.3061 + }, + { + "start": 9648.42, + "end": 9650.3, + "probability": 0.7599 + }, + { + "start": 9651.6, + "end": 9656.54, + "probability": 0.9185 + }, + { + "start": 9656.56, + "end": 9659.82, + "probability": 0.8607 + }, + { + "start": 9659.9, + "end": 9663.74, + "probability": 0.9709 + }, + { + "start": 9664.5, + "end": 9670.18, + "probability": 0.82 + }, + { + "start": 9673.82, + "end": 9676.56, + "probability": 0.8943 + }, + { + "start": 9679.68, + "end": 9683.5, + "probability": 0.9893 + }, + { + "start": 9683.62, + "end": 9687.84, + "probability": 0.9966 + }, + { + "start": 9687.84, + "end": 9695.72, + "probability": 0.9731 + }, + { + "start": 9695.72, + "end": 9701.44, + "probability": 0.9912 + }, + { + "start": 9702.1, + "end": 9704.58, + "probability": 0.8284 + }, + { + "start": 9705.54, + "end": 9709.14, + "probability": 0.9775 + }, + { + "start": 9709.94, + "end": 9712.12, + "probability": 0.8752 + }, + { + "start": 9713.04, + "end": 9716.26, + "probability": 0.9907 + }, + { + "start": 9716.66, + "end": 9720.1, + "probability": 0.9968 + }, + { + "start": 9720.52, + "end": 9722.66, + "probability": 0.8758 + }, + { + "start": 9722.76, + "end": 9725.56, + "probability": 0.9525 + }, + { + "start": 9725.56, + "end": 9727.66, + "probability": 0.947 + }, + { + "start": 9728.86, + "end": 9729.86, + "probability": 0.6344 + }, + { + "start": 9730.02, + "end": 9735.38, + "probability": 0.9841 + }, + { + "start": 9735.38, + "end": 9740.24, + "probability": 0.8318 + }, + { + "start": 9740.96, + "end": 9744.96, + "probability": 0.9904 + }, + { + "start": 9744.96, + "end": 9749.94, + "probability": 0.9873 + }, + { + "start": 9751.1, + "end": 9754.76, + "probability": 0.9901 + }, + { + "start": 9754.76, + "end": 9762.06, + "probability": 0.9467 + }, + { + "start": 9762.06, + "end": 9765.82, + "probability": 0.99 + }, + { + "start": 9765.82, + "end": 9770.92, + "probability": 0.9287 + }, + { + "start": 9771.8, + "end": 9772.62, + "probability": 0.9894 + }, + { + "start": 9773.2, + "end": 9777.3, + "probability": 0.9848 + }, + { + "start": 9777.88, + "end": 9779.8, + "probability": 0.8809 + }, + { + "start": 9781.14, + "end": 9784.26, + "probability": 0.9766 + }, + { + "start": 9784.26, + "end": 9788.26, + "probability": 0.8301 + }, + { + "start": 9789.06, + "end": 9793.48, + "probability": 0.9924 + }, + { + "start": 9793.48, + "end": 9798.7, + "probability": 0.9763 + }, + { + "start": 9799.32, + "end": 9800.54, + "probability": 0.7624 + }, + { + "start": 9801.25, + "end": 9805.0, + "probability": 0.9833 + }, + { + "start": 9805.58, + "end": 9807.92, + "probability": 0.9426 + }, + { + "start": 9808.0, + "end": 9809.7, + "probability": 0.9747 + }, + { + "start": 9810.14, + "end": 9813.24, + "probability": 0.9723 + }, + { + "start": 9814.0, + "end": 9818.88, + "probability": 0.9512 + }, + { + "start": 9818.88, + "end": 9823.48, + "probability": 0.991 + }, + { + "start": 9824.24, + "end": 9825.54, + "probability": 0.8869 + }, + { + "start": 9826.18, + "end": 9832.26, + "probability": 0.993 + }, + { + "start": 9832.26, + "end": 9837.98, + "probability": 0.9945 + }, + { + "start": 9838.68, + "end": 9840.38, + "probability": 0.5272 + }, + { + "start": 9841.08, + "end": 9850.3, + "probability": 0.9767 + }, + { + "start": 9851.1, + "end": 9852.1, + "probability": 0.8228 + }, + { + "start": 9852.44, + "end": 9854.08, + "probability": 0.8874 + }, + { + "start": 9854.2, + "end": 9855.38, + "probability": 0.9077 + }, + { + "start": 9855.6, + "end": 9858.64, + "probability": 0.9685 + }, + { + "start": 9859.06, + "end": 9861.4, + "probability": 0.7027 + }, + { + "start": 9862.14, + "end": 9866.24, + "probability": 0.9846 + }, + { + "start": 9866.76, + "end": 9868.62, + "probability": 0.9907 + }, + { + "start": 9868.96, + "end": 9872.18, + "probability": 0.5643 + }, + { + "start": 9872.32, + "end": 9873.84, + "probability": 0.4852 + }, + { + "start": 9874.78, + "end": 9878.14, + "probability": 0.6189 + }, + { + "start": 9878.62, + "end": 9882.2, + "probability": 0.9262 + }, + { + "start": 9883.04, + "end": 9883.82, + "probability": 0.4956 + }, + { + "start": 9883.92, + "end": 9884.84, + "probability": 0.8766 + }, + { + "start": 9884.84, + "end": 9886.44, + "probability": 0.7666 + }, + { + "start": 9886.46, + "end": 9892.26, + "probability": 0.944 + }, + { + "start": 9893.2, + "end": 9895.6, + "probability": 0.735 + }, + { + "start": 9898.76, + "end": 9901.86, + "probability": 0.7347 + }, + { + "start": 9901.98, + "end": 9904.8, + "probability": 0.9922 + }, + { + "start": 9905.4, + "end": 9907.84, + "probability": 0.9941 + }, + { + "start": 9908.52, + "end": 9911.2, + "probability": 0.9854 + }, + { + "start": 9911.28, + "end": 9911.88, + "probability": 0.9228 + }, + { + "start": 9912.12, + "end": 9912.62, + "probability": 0.7 + }, + { + "start": 9913.02, + "end": 9915.11, + "probability": 0.849 + }, + { + "start": 9915.5, + "end": 9915.99, + "probability": 0.8939 + }, + { + "start": 9917.1, + "end": 9920.96, + "probability": 0.7122 + }, + { + "start": 9921.0, + "end": 9923.52, + "probability": 0.933 + }, + { + "start": 9923.9, + "end": 9926.68, + "probability": 0.9671 + }, + { + "start": 9927.2, + "end": 9928.94, + "probability": 0.8398 + }, + { + "start": 9929.08, + "end": 9930.04, + "probability": 0.7373 + }, + { + "start": 9930.24, + "end": 9932.7, + "probability": 0.3006 + }, + { + "start": 9933.82, + "end": 9935.0, + "probability": 0.7476 + }, + { + "start": 9935.5, + "end": 9935.78, + "probability": 0.5354 + }, + { + "start": 9935.78, + "end": 9938.32, + "probability": 0.9336 + }, + { + "start": 9938.32, + "end": 9943.96, + "probability": 0.9402 + }, + { + "start": 9944.5, + "end": 9945.44, + "probability": 0.9116 + }, + { + "start": 9945.82, + "end": 9953.1, + "probability": 0.9013 + }, + { + "start": 9954.1, + "end": 9959.18, + "probability": 0.994 + }, + { + "start": 9959.34, + "end": 9964.12, + "probability": 0.9736 + }, + { + "start": 9965.74, + "end": 9970.52, + "probability": 0.9921 + }, + { + "start": 9971.3, + "end": 9973.0, + "probability": 0.9912 + }, + { + "start": 9973.18, + "end": 9977.24, + "probability": 0.9419 + }, + { + "start": 9977.66, + "end": 9977.92, + "probability": 0.7187 + }, + { + "start": 9978.58, + "end": 9980.28, + "probability": 0.7885 + }, + { + "start": 9980.42, + "end": 9983.28, + "probability": 0.7216 + }, + { + "start": 9988.89, + "end": 9992.72, + "probability": 0.8372 + }, + { + "start": 9993.1, + "end": 9999.52, + "probability": 0.974 + }, + { + "start": 10000.54, + "end": 10001.42, + "probability": 0.913 + }, + { + "start": 10001.94, + "end": 10004.72, + "probability": 0.9899 + }, + { + "start": 10005.54, + "end": 10006.68, + "probability": 0.9887 + }, + { + "start": 10008.14, + "end": 10010.26, + "probability": 0.8662 + }, + { + "start": 10010.94, + "end": 10011.52, + "probability": 0.6136 + }, + { + "start": 10011.54, + "end": 10013.58, + "probability": 0.8181 + }, + { + "start": 10014.96, + "end": 10017.34, + "probability": 0.9833 + }, + { + "start": 10018.08, + "end": 10022.82, + "probability": 0.8884 + }, + { + "start": 10022.88, + "end": 10027.18, + "probability": 0.9935 + }, + { + "start": 10027.86, + "end": 10028.58, + "probability": 0.9935 + }, + { + "start": 10028.74, + "end": 10033.9, + "probability": 0.9052 + }, + { + "start": 10034.64, + "end": 10035.94, + "probability": 0.9801 + }, + { + "start": 10036.1, + "end": 10036.86, + "probability": 0.5464 + }, + { + "start": 10037.3, + "end": 10038.18, + "probability": 0.5964 + }, + { + "start": 10041.28, + "end": 10044.52, + "probability": 0.1354 + }, + { + "start": 10044.52, + "end": 10044.82, + "probability": 0.0999 + }, + { + "start": 10045.76, + "end": 10046.46, + "probability": 0.7133 + }, + { + "start": 10047.4, + "end": 10047.76, + "probability": 0.4817 + }, + { + "start": 10047.76, + "end": 10049.96, + "probability": 0.5497 + }, + { + "start": 10050.36, + "end": 10052.1, + "probability": 0.663 + }, + { + "start": 10052.88, + "end": 10053.12, + "probability": 0.3844 + }, + { + "start": 10059.78, + "end": 10063.9, + "probability": 0.7158 + }, + { + "start": 10064.42, + "end": 10064.62, + "probability": 0.1685 + }, + { + "start": 10066.7, + "end": 10068.3, + "probability": 0.1032 + }, + { + "start": 10068.9, + "end": 10071.78, + "probability": 0.5527 + }, + { + "start": 10072.12, + "end": 10073.54, + "probability": 0.8583 + }, + { + "start": 10073.6, + "end": 10081.3, + "probability": 0.9461 + }, + { + "start": 10082.52, + "end": 10087.96, + "probability": 0.8792 + }, + { + "start": 10090.82, + "end": 10094.92, + "probability": 0.7094 + }, + { + "start": 10094.92, + "end": 10097.2, + "probability": 0.9375 + }, + { + "start": 10098.02, + "end": 10100.74, + "probability": 0.9963 + }, + { + "start": 10101.42, + "end": 10102.64, + "probability": 0.7497 + }, + { + "start": 10103.28, + "end": 10107.54, + "probability": 0.834 + }, + { + "start": 10108.28, + "end": 10111.44, + "probability": 0.8877 + }, + { + "start": 10111.96, + "end": 10116.04, + "probability": 0.7248 + }, + { + "start": 10116.84, + "end": 10120.36, + "probability": 0.7985 + }, + { + "start": 10121.36, + "end": 10125.7, + "probability": 0.9034 + }, + { + "start": 10126.44, + "end": 10132.58, + "probability": 0.861 + }, + { + "start": 10132.7, + "end": 10136.94, + "probability": 0.9976 + }, + { + "start": 10136.94, + "end": 10140.56, + "probability": 0.8799 + }, + { + "start": 10141.02, + "end": 10144.24, + "probability": 0.6909 + }, + { + "start": 10145.02, + "end": 10149.4, + "probability": 0.998 + }, + { + "start": 10149.94, + "end": 10153.9, + "probability": 0.7644 + }, + { + "start": 10154.54, + "end": 10158.96, + "probability": 0.9727 + }, + { + "start": 10159.8, + "end": 10161.3, + "probability": 0.9907 + }, + { + "start": 10161.48, + "end": 10163.02, + "probability": 0.9983 + }, + { + "start": 10163.82, + "end": 10167.3, + "probability": 0.9627 + }, + { + "start": 10167.46, + "end": 10170.38, + "probability": 0.9594 + }, + { + "start": 10170.78, + "end": 10174.26, + "probability": 0.8707 + }, + { + "start": 10174.66, + "end": 10179.9, + "probability": 0.9678 + }, + { + "start": 10180.4, + "end": 10185.18, + "probability": 0.9974 + }, + { + "start": 10185.18, + "end": 10189.26, + "probability": 0.634 + }, + { + "start": 10189.64, + "end": 10191.68, + "probability": 0.9585 + }, + { + "start": 10191.84, + "end": 10192.46, + "probability": 0.6495 + }, + { + "start": 10193.76, + "end": 10195.1, + "probability": 0.9447 + }, + { + "start": 10195.34, + "end": 10196.4, + "probability": 0.9698 + }, + { + "start": 10196.76, + "end": 10199.48, + "probability": 0.9376 + }, + { + "start": 10199.66, + "end": 10200.06, + "probability": 0.7683 + }, + { + "start": 10200.42, + "end": 10202.06, + "probability": 0.5606 + }, + { + "start": 10202.14, + "end": 10202.86, + "probability": 0.6982 + }, + { + "start": 10203.58, + "end": 10206.72, + "probability": 0.9287 + }, + { + "start": 10206.76, + "end": 10208.68, + "probability": 0.7865 + }, + { + "start": 10211.52, + "end": 10212.0, + "probability": 0.6768 + }, + { + "start": 10212.12, + "end": 10212.92, + "probability": 0.2178 + }, + { + "start": 10213.18, + "end": 10213.84, + "probability": 0.0769 + }, + { + "start": 10215.24, + "end": 10216.86, + "probability": 0.6129 + }, + { + "start": 10216.91, + "end": 10219.11, + "probability": 0.9861 + }, + { + "start": 10220.42, + "end": 10222.58, + "probability": 0.9375 + }, + { + "start": 10227.0, + "end": 10228.26, + "probability": 0.9271 + }, + { + "start": 10229.92, + "end": 10239.56, + "probability": 0.9976 + }, + { + "start": 10239.74, + "end": 10241.58, + "probability": 0.8053 + }, + { + "start": 10243.54, + "end": 10244.1, + "probability": 0.5647 + }, + { + "start": 10244.86, + "end": 10249.24, + "probability": 0.9957 + }, + { + "start": 10249.94, + "end": 10250.96, + "probability": 0.8125 + }, + { + "start": 10251.74, + "end": 10254.06, + "probability": 0.9899 + }, + { + "start": 10254.7, + "end": 10257.38, + "probability": 0.8573 + }, + { + "start": 10258.0, + "end": 10262.74, + "probability": 0.9785 + }, + { + "start": 10263.28, + "end": 10266.7, + "probability": 0.9761 + }, + { + "start": 10267.26, + "end": 10271.08, + "probability": 0.989 + }, + { + "start": 10271.74, + "end": 10275.28, + "probability": 0.9678 + }, + { + "start": 10275.74, + "end": 10279.14, + "probability": 0.9711 + }, + { + "start": 10279.64, + "end": 10281.52, + "probability": 0.6932 + }, + { + "start": 10281.94, + "end": 10287.24, + "probability": 0.743 + }, + { + "start": 10288.04, + "end": 10288.85, + "probability": 0.694 + }, + { + "start": 10289.02, + "end": 10291.52, + "probability": 0.8816 + }, + { + "start": 10292.1, + "end": 10292.28, + "probability": 0.7305 + }, + { + "start": 10292.94, + "end": 10294.4, + "probability": 0.99 + }, + { + "start": 10294.52, + "end": 10297.56, + "probability": 0.9796 + }, + { + "start": 10297.82, + "end": 10298.94, + "probability": 0.8132 + }, + { + "start": 10299.92, + "end": 10302.12, + "probability": 0.9585 + }, + { + "start": 10302.74, + "end": 10304.02, + "probability": 0.4868 + }, + { + "start": 10304.02, + "end": 10308.86, + "probability": 0.9106 + }, + { + "start": 10309.06, + "end": 10310.22, + "probability": 0.4494 + }, + { + "start": 10310.86, + "end": 10311.62, + "probability": 0.7267 + }, + { + "start": 10312.16, + "end": 10315.52, + "probability": 0.9954 + }, + { + "start": 10316.06, + "end": 10319.16, + "probability": 0.9832 + }, + { + "start": 10319.34, + "end": 10322.6, + "probability": 0.8057 + }, + { + "start": 10323.38, + "end": 10326.9, + "probability": 0.9704 + }, + { + "start": 10326.94, + "end": 10328.22, + "probability": 0.7854 + }, + { + "start": 10329.0, + "end": 10329.54, + "probability": 0.8603 + }, + { + "start": 10329.88, + "end": 10331.42, + "probability": 0.5951 + }, + { + "start": 10331.78, + "end": 10332.24, + "probability": 0.635 + }, + { + "start": 10332.3, + "end": 10333.6, + "probability": 0.683 + }, + { + "start": 10334.0, + "end": 10336.0, + "probability": 0.9956 + }, + { + "start": 10336.42, + "end": 10340.19, + "probability": 0.999 + }, + { + "start": 10340.84, + "end": 10342.24, + "probability": 0.9175 + }, + { + "start": 10342.62, + "end": 10346.06, + "probability": 0.832 + }, + { + "start": 10346.54, + "end": 10347.98, + "probability": 0.8924 + }, + { + "start": 10348.62, + "end": 10352.3, + "probability": 0.9878 + }, + { + "start": 10352.64, + "end": 10353.92, + "probability": 0.9762 + }, + { + "start": 10354.86, + "end": 10356.72, + "probability": 0.9753 + }, + { + "start": 10357.5, + "end": 10358.44, + "probability": 0.4569 + }, + { + "start": 10358.48, + "end": 10359.88, + "probability": 0.7754 + }, + { + "start": 10360.28, + "end": 10361.88, + "probability": 0.9489 + }, + { + "start": 10361.94, + "end": 10363.88, + "probability": 0.9908 + }, + { + "start": 10364.26, + "end": 10364.72, + "probability": 0.8544 + }, + { + "start": 10365.52, + "end": 10367.94, + "probability": 0.958 + }, + { + "start": 10368.1, + "end": 10368.12, + "probability": 0.0359 + }, + { + "start": 10368.2, + "end": 10368.54, + "probability": 0.7128 + }, + { + "start": 10368.7, + "end": 10370.12, + "probability": 0.7307 + }, + { + "start": 10370.54, + "end": 10372.64, + "probability": 0.8784 + }, + { + "start": 10372.64, + "end": 10373.96, + "probability": 0.4764 + }, + { + "start": 10374.14, + "end": 10375.16, + "probability": 0.3681 + }, + { + "start": 10375.8, + "end": 10378.12, + "probability": 0.8739 + }, + { + "start": 10379.14, + "end": 10379.8, + "probability": 0.8871 + }, + { + "start": 10380.04, + "end": 10380.52, + "probability": 0.393 + }, + { + "start": 10381.34, + "end": 10382.82, + "probability": 0.2368 + }, + { + "start": 10388.54, + "end": 10388.56, + "probability": 0.0272 + }, + { + "start": 10388.56, + "end": 10388.58, + "probability": 0.009 + }, + { + "start": 10388.58, + "end": 10388.58, + "probability": 0.0372 + }, + { + "start": 10388.58, + "end": 10388.6, + "probability": 0.0835 + }, + { + "start": 10399.94, + "end": 10400.5, + "probability": 0.2568 + }, + { + "start": 10400.5, + "end": 10402.98, + "probability": 0.5524 + }, + { + "start": 10403.82, + "end": 10404.32, + "probability": 0.6556 + }, + { + "start": 10405.46, + "end": 10407.18, + "probability": 0.4853 + }, + { + "start": 10407.84, + "end": 10409.2, + "probability": 0.9812 + }, + { + "start": 10409.4, + "end": 10410.44, + "probability": 0.7986 + }, + { + "start": 10410.58, + "end": 10411.64, + "probability": 0.8828 + }, + { + "start": 10412.64, + "end": 10412.86, + "probability": 0.1175 + }, + { + "start": 10412.88, + "end": 10413.18, + "probability": 0.7058 + }, + { + "start": 10413.34, + "end": 10420.62, + "probability": 0.9721 + }, + { + "start": 10420.72, + "end": 10421.68, + "probability": 0.6028 + }, + { + "start": 10421.76, + "end": 10421.96, + "probability": 0.7181 + }, + { + "start": 10423.52, + "end": 10425.3, + "probability": 0.8369 + }, + { + "start": 10425.56, + "end": 10426.92, + "probability": 0.8417 + }, + { + "start": 10427.42, + "end": 10429.14, + "probability": 0.8864 + }, + { + "start": 10429.32, + "end": 10430.62, + "probability": 0.4379 + }, + { + "start": 10431.38, + "end": 10435.06, + "probability": 0.956 + }, + { + "start": 10435.78, + "end": 10436.63, + "probability": 0.006 + }, + { + "start": 10532.26, + "end": 10535.02, + "probability": 0.1683 + }, + { + "start": 10535.88, + "end": 10537.5, + "probability": 0.0314 + }, + { + "start": 10539.3, + "end": 10541.92, + "probability": 0.3297 + }, + { + "start": 10542.62, + "end": 10546.36, + "probability": 0.1427 + }, + { + "start": 10546.9, + "end": 10549.13, + "probability": 0.0471 + }, + { + "start": 10550.2, + "end": 10551.6, + "probability": 0.0543 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.0, + "end": 10580.0, + "probability": 0.0 + }, + { + "start": 10580.28, + "end": 10581.34, + "probability": 0.6102 + }, + { + "start": 10581.5, + "end": 10582.22, + "probability": 0.7638 + }, + { + "start": 10582.32, + "end": 10586.24, + "probability": 0.8125 + }, + { + "start": 10586.3, + "end": 10587.44, + "probability": 0.9897 + }, + { + "start": 10587.5, + "end": 10588.42, + "probability": 0.666 + }, + { + "start": 10588.74, + "end": 10589.9, + "probability": 0.9516 + }, + { + "start": 10602.28, + "end": 10603.24, + "probability": 0.5888 + }, + { + "start": 10605.26, + "end": 10607.04, + "probability": 0.6853 + }, + { + "start": 10608.92, + "end": 10610.78, + "probability": 0.9077 + }, + { + "start": 10612.54, + "end": 10616.32, + "probability": 0.85 + }, + { + "start": 10616.34, + "end": 10621.34, + "probability": 0.9262 + }, + { + "start": 10622.66, + "end": 10624.14, + "probability": 0.9864 + }, + { + "start": 10625.48, + "end": 10627.44, + "probability": 0.9328 + }, + { + "start": 10628.78, + "end": 10632.5, + "probability": 0.9943 + }, + { + "start": 10633.06, + "end": 10633.94, + "probability": 0.6797 + }, + { + "start": 10635.08, + "end": 10636.8, + "probability": 0.9907 + }, + { + "start": 10637.5, + "end": 10640.18, + "probability": 0.8554 + }, + { + "start": 10641.5, + "end": 10643.32, + "probability": 0.9335 + }, + { + "start": 10644.46, + "end": 10653.6, + "probability": 0.9918 + }, + { + "start": 10654.4, + "end": 10655.88, + "probability": 0.8226 + }, + { + "start": 10656.8, + "end": 10658.98, + "probability": 0.9961 + }, + { + "start": 10661.38, + "end": 10662.83, + "probability": 0.9966 + }, + { + "start": 10664.64, + "end": 10666.29, + "probability": 0.9292 + }, + { + "start": 10668.02, + "end": 10669.13, + "probability": 0.999 + }, + { + "start": 10670.6, + "end": 10671.86, + "probability": 0.9819 + }, + { + "start": 10673.46, + "end": 10676.59, + "probability": 0.9091 + }, + { + "start": 10677.38, + "end": 10678.88, + "probability": 0.9061 + }, + { + "start": 10679.96, + "end": 10682.8, + "probability": 0.9644 + }, + { + "start": 10684.6, + "end": 10686.36, + "probability": 0.9795 + }, + { + "start": 10688.02, + "end": 10690.82, + "probability": 0.5969 + }, + { + "start": 10690.88, + "end": 10692.04, + "probability": 0.8867 + }, + { + "start": 10692.12, + "end": 10694.42, + "probability": 0.9819 + }, + { + "start": 10694.42, + "end": 10697.1, + "probability": 0.9788 + }, + { + "start": 10697.84, + "end": 10700.84, + "probability": 0.8149 + }, + { + "start": 10702.5, + "end": 10703.6, + "probability": 0.715 + }, + { + "start": 10704.72, + "end": 10707.98, + "probability": 0.9882 + }, + { + "start": 10709.62, + "end": 10712.76, + "probability": 0.9959 + }, + { + "start": 10713.64, + "end": 10717.52, + "probability": 0.9966 + }, + { + "start": 10719.58, + "end": 10722.34, + "probability": 0.8289 + }, + { + "start": 10723.52, + "end": 10725.24, + "probability": 0.9427 + }, + { + "start": 10726.1, + "end": 10727.7, + "probability": 0.75 + }, + { + "start": 10729.4, + "end": 10735.84, + "probability": 0.9982 + }, + { + "start": 10735.88, + "end": 10737.92, + "probability": 0.9971 + }, + { + "start": 10738.98, + "end": 10741.6, + "probability": 0.9905 + }, + { + "start": 10741.68, + "end": 10742.7, + "probability": 0.8239 + }, + { + "start": 10742.9, + "end": 10744.14, + "probability": 0.9053 + }, + { + "start": 10744.2, + "end": 10745.78, + "probability": 0.715 + }, + { + "start": 10745.94, + "end": 10747.08, + "probability": 0.8449 + }, + { + "start": 10747.42, + "end": 10749.28, + "probability": 0.8237 + }, + { + "start": 10749.46, + "end": 10751.54, + "probability": 0.8829 + }, + { + "start": 10752.72, + "end": 10754.02, + "probability": 0.9661 + }, + { + "start": 10755.94, + "end": 10758.24, + "probability": 0.5713 + }, + { + "start": 10758.4, + "end": 10762.16, + "probability": 0.9656 + }, + { + "start": 10762.16, + "end": 10768.06, + "probability": 0.9966 + }, + { + "start": 10769.32, + "end": 10770.8, + "probability": 0.7376 + }, + { + "start": 10771.76, + "end": 10772.54, + "probability": 0.8226 + }, + { + "start": 10774.38, + "end": 10775.3, + "probability": 0.9149 + }, + { + "start": 10776.34, + "end": 10785.42, + "probability": 0.9843 + }, + { + "start": 10786.1, + "end": 10788.82, + "probability": 0.7539 + }, + { + "start": 10789.94, + "end": 10791.84, + "probability": 0.8859 + }, + { + "start": 10793.18, + "end": 10794.12, + "probability": 0.9683 + }, + { + "start": 10794.22, + "end": 10797.0, + "probability": 0.9595 + }, + { + "start": 10798.4, + "end": 10801.8, + "probability": 0.9674 + }, + { + "start": 10801.8, + "end": 10805.24, + "probability": 0.9766 + }, + { + "start": 10806.48, + "end": 10811.34, + "probability": 0.9973 + }, + { + "start": 10811.34, + "end": 10815.58, + "probability": 0.9988 + }, + { + "start": 10817.38, + "end": 10818.6, + "probability": 0.9668 + }, + { + "start": 10819.38, + "end": 10821.52, + "probability": 0.998 + }, + { + "start": 10823.18, + "end": 10824.78, + "probability": 0.7472 + }, + { + "start": 10825.24, + "end": 10826.56, + "probability": 0.9995 + }, + { + "start": 10827.6, + "end": 10830.02, + "probability": 0.7828 + }, + { + "start": 10830.68, + "end": 10832.86, + "probability": 0.9587 + }, + { + "start": 10833.44, + "end": 10835.3, + "probability": 0.8462 + }, + { + "start": 10835.4, + "end": 10840.94, + "probability": 0.9319 + }, + { + "start": 10841.74, + "end": 10844.0, + "probability": 0.9965 + }, + { + "start": 10845.68, + "end": 10851.04, + "probability": 0.7726 + }, + { + "start": 10851.62, + "end": 10853.92, + "probability": 0.7236 + }, + { + "start": 10855.04, + "end": 10860.18, + "probability": 0.9108 + }, + { + "start": 10861.04, + "end": 10863.16, + "probability": 0.8162 + }, + { + "start": 10863.9, + "end": 10865.96, + "probability": 0.7656 + }, + { + "start": 10866.62, + "end": 10869.14, + "probability": 0.7211 + }, + { + "start": 10869.88, + "end": 10871.0, + "probability": 0.9246 + }, + { + "start": 10871.2, + "end": 10875.28, + "probability": 0.9724 + }, + { + "start": 10876.26, + "end": 10877.58, + "probability": 0.7828 + }, + { + "start": 10879.7, + "end": 10882.27, + "probability": 0.907 + }, + { + "start": 10883.28, + "end": 10885.38, + "probability": 0.4365 + }, + { + "start": 10885.72, + "end": 10888.17, + "probability": 0.7655 + }, + { + "start": 10889.34, + "end": 10890.1, + "probability": 0.4061 + }, + { + "start": 10891.22, + "end": 10892.96, + "probability": 0.966 + }, + { + "start": 10893.04, + "end": 10896.8, + "probability": 0.9835 + }, + { + "start": 10897.7, + "end": 10898.83, + "probability": 0.9769 + }, + { + "start": 10899.62, + "end": 10904.36, + "probability": 0.9316 + }, + { + "start": 10904.36, + "end": 10909.4, + "probability": 0.9922 + }, + { + "start": 10910.02, + "end": 10911.92, + "probability": 0.9757 + }, + { + "start": 10912.42, + "end": 10914.62, + "probability": 0.9954 + }, + { + "start": 10915.56, + "end": 10919.34, + "probability": 0.9896 + }, + { + "start": 10920.28, + "end": 10923.8, + "probability": 0.9774 + }, + { + "start": 10924.48, + "end": 10930.3, + "probability": 0.9906 + }, + { + "start": 10930.74, + "end": 10932.16, + "probability": 0.9945 + }, + { + "start": 10932.98, + "end": 10937.48, + "probability": 0.9814 + }, + { + "start": 10939.08, + "end": 10941.66, + "probability": 0.9876 + }, + { + "start": 10942.38, + "end": 10944.88, + "probability": 0.9998 + }, + { + "start": 10945.36, + "end": 10945.98, + "probability": 0.7909 + }, + { + "start": 10946.46, + "end": 10946.92, + "probability": 0.8031 + }, + { + "start": 10947.04, + "end": 10947.96, + "probability": 0.8175 + }, + { + "start": 10948.44, + "end": 10951.24, + "probability": 0.978 + }, + { + "start": 10951.84, + "end": 10954.96, + "probability": 0.714 + }, + { + "start": 10955.96, + "end": 10960.18, + "probability": 0.9697 + }, + { + "start": 10961.28, + "end": 10965.18, + "probability": 0.787 + }, + { + "start": 10966.2, + "end": 10968.37, + "probability": 0.7157 + }, + { + "start": 10968.6, + "end": 10969.5, + "probability": 0.9406 + }, + { + "start": 10969.58, + "end": 10970.92, + "probability": 0.9626 + }, + { + "start": 10971.28, + "end": 10972.52, + "probability": 0.8492 + }, + { + "start": 10972.82, + "end": 10974.34, + "probability": 0.991 + }, + { + "start": 10974.5, + "end": 10975.18, + "probability": 0.9739 + }, + { + "start": 10975.84, + "end": 10977.16, + "probability": 0.9995 + }, + { + "start": 10978.14, + "end": 10980.42, + "probability": 0.9507 + }, + { + "start": 10980.42, + "end": 10983.24, + "probability": 0.9553 + }, + { + "start": 10986.54, + "end": 10987.26, + "probability": 0.4247 + }, + { + "start": 10987.86, + "end": 10988.18, + "probability": 0.5032 + }, + { + "start": 10988.18, + "end": 10989.96, + "probability": 0.9507 + }, + { + "start": 10990.64, + "end": 10993.78, + "probability": 0.993 + }, + { + "start": 10994.44, + "end": 10999.27, + "probability": 0.9939 + }, + { + "start": 10999.92, + "end": 11000.5, + "probability": 0.9467 + }, + { + "start": 11000.72, + "end": 11001.38, + "probability": 0.8139 + }, + { + "start": 11002.38, + "end": 11005.28, + "probability": 0.8111 + }, + { + "start": 11005.84, + "end": 11009.02, + "probability": 0.921 + }, + { + "start": 11010.46, + "end": 11012.25, + "probability": 0.9478 + }, + { + "start": 11012.34, + "end": 11012.76, + "probability": 0.6681 + }, + { + "start": 11012.94, + "end": 11014.54, + "probability": 0.7121 + }, + { + "start": 11015.9, + "end": 11018.04, + "probability": 0.5787 + }, + { + "start": 11018.7, + "end": 11020.44, + "probability": 0.9384 + }, + { + "start": 11021.12, + "end": 11022.68, + "probability": 0.9539 + }, + { + "start": 11023.32, + "end": 11024.46, + "probability": 0.9886 + }, + { + "start": 11024.92, + "end": 11026.66, + "probability": 0.9964 + }, + { + "start": 11027.32, + "end": 11033.2, + "probability": 0.968 + }, + { + "start": 11033.9, + "end": 11035.72, + "probability": 0.998 + }, + { + "start": 11036.26, + "end": 11039.18, + "probability": 0.9676 + }, + { + "start": 11040.44, + "end": 11043.6, + "probability": 0.6774 + }, + { + "start": 11044.14, + "end": 11047.6, + "probability": 0.9897 + }, + { + "start": 11048.38, + "end": 11050.93, + "probability": 0.9871 + }, + { + "start": 11052.14, + "end": 11054.28, + "probability": 0.9607 + }, + { + "start": 11055.18, + "end": 11056.26, + "probability": 0.9926 + }, + { + "start": 11057.32, + "end": 11061.2, + "probability": 0.7924 + }, + { + "start": 11061.76, + "end": 11063.04, + "probability": 0.938 + }, + { + "start": 11063.6, + "end": 11071.54, + "probability": 0.9943 + }, + { + "start": 11072.88, + "end": 11075.16, + "probability": 0.8005 + }, + { + "start": 11075.78, + "end": 11081.1, + "probability": 0.9146 + }, + { + "start": 11081.7, + "end": 11083.32, + "probability": 0.7961 + }, + { + "start": 11084.2, + "end": 11087.68, + "probability": 0.7924 + }, + { + "start": 11088.5, + "end": 11090.06, + "probability": 0.736 + }, + { + "start": 11090.46, + "end": 11094.24, + "probability": 0.9506 + }, + { + "start": 11094.76, + "end": 11097.72, + "probability": 0.9067 + }, + { + "start": 11098.66, + "end": 11100.0, + "probability": 0.8225 + }, + { + "start": 11100.54, + "end": 11103.58, + "probability": 0.9351 + }, + { + "start": 11104.14, + "end": 11108.42, + "probability": 0.636 + }, + { + "start": 11109.32, + "end": 11111.96, + "probability": 0.7177 + }, + { + "start": 11112.72, + "end": 11114.56, + "probability": 0.5815 + }, + { + "start": 11114.7, + "end": 11115.6, + "probability": 0.5646 + }, + { + "start": 11116.82, + "end": 11121.1, + "probability": 0.9937 + }, + { + "start": 11121.1, + "end": 11127.86, + "probability": 0.9844 + }, + { + "start": 11128.78, + "end": 11131.96, + "probability": 0.9071 + }, + { + "start": 11132.92, + "end": 11135.62, + "probability": 0.9951 + }, + { + "start": 11136.86, + "end": 11138.02, + "probability": 0.9131 + }, + { + "start": 11138.86, + "end": 11142.5, + "probability": 0.9908 + }, + { + "start": 11143.46, + "end": 11147.34, + "probability": 0.9963 + }, + { + "start": 11148.24, + "end": 11148.66, + "probability": 0.4578 + }, + { + "start": 11149.34, + "end": 11150.58, + "probability": 0.9976 + }, + { + "start": 11151.14, + "end": 11156.04, + "probability": 0.9966 + }, + { + "start": 11156.48, + "end": 11157.66, + "probability": 0.6388 + }, + { + "start": 11158.22, + "end": 11164.02, + "probability": 0.9188 + }, + { + "start": 11165.06, + "end": 11166.75, + "probability": 0.8334 + }, + { + "start": 11168.58, + "end": 11170.48, + "probability": 0.9188 + }, + { + "start": 11171.32, + "end": 11172.14, + "probability": 0.8788 + }, + { + "start": 11172.8, + "end": 11175.76, + "probability": 0.9567 + }, + { + "start": 11176.46, + "end": 11177.58, + "probability": 0.9004 + }, + { + "start": 11178.24, + "end": 11180.44, + "probability": 0.9644 + }, + { + "start": 11180.66, + "end": 11181.14, + "probability": 0.9289 + }, + { + "start": 11181.28, + "end": 11182.22, + "probability": 0.5037 + }, + { + "start": 11183.28, + "end": 11185.06, + "probability": 0.8327 + }, + { + "start": 11185.68, + "end": 11187.8, + "probability": 0.8666 + }, + { + "start": 11188.8, + "end": 11189.44, + "probability": 0.9092 + }, + { + "start": 11190.2, + "end": 11191.34, + "probability": 0.7798 + }, + { + "start": 11191.88, + "end": 11192.76, + "probability": 0.9538 + }, + { + "start": 11193.28, + "end": 11194.2, + "probability": 0.9849 + }, + { + "start": 11194.88, + "end": 11195.6, + "probability": 0.9433 + }, + { + "start": 11196.16, + "end": 11197.36, + "probability": 0.976 + }, + { + "start": 11198.04, + "end": 11198.87, + "probability": 0.2953 + }, + { + "start": 11199.02, + "end": 11199.7, + "probability": 0.9656 + }, + { + "start": 11199.94, + "end": 11201.06, + "probability": 0.7217 + }, + { + "start": 11201.98, + "end": 11202.2, + "probability": 0.882 + }, + { + "start": 11203.0, + "end": 11204.1, + "probability": 0.8089 + }, + { + "start": 11204.98, + "end": 11207.52, + "probability": 0.78 + }, + { + "start": 11208.76, + "end": 11211.1, + "probability": 0.9028 + }, + { + "start": 11212.12, + "end": 11214.42, + "probability": 0.9395 + }, + { + "start": 11214.96, + "end": 11216.78, + "probability": 0.984 + }, + { + "start": 11217.4, + "end": 11218.72, + "probability": 0.7367 + }, + { + "start": 11219.58, + "end": 11221.04, + "probability": 0.8584 + }, + { + "start": 11221.84, + "end": 11223.94, + "probability": 0.9704 + }, + { + "start": 11224.62, + "end": 11230.42, + "probability": 0.9541 + }, + { + "start": 11231.5, + "end": 11235.28, + "probability": 0.9694 + }, + { + "start": 11236.22, + "end": 11237.02, + "probability": 0.9363 + }, + { + "start": 11237.12, + "end": 11238.04, + "probability": 0.6978 + }, + { + "start": 11238.12, + "end": 11240.18, + "probability": 0.5878 + }, + { + "start": 11240.18, + "end": 11240.62, + "probability": 0.4605 + }, + { + "start": 11241.3, + "end": 11242.4, + "probability": 0.3481 + }, + { + "start": 11243.14, + "end": 11244.28, + "probability": 0.5098 + }, + { + "start": 11244.36, + "end": 11244.38, + "probability": 0.4574 + }, + { + "start": 11244.52, + "end": 11244.88, + "probability": 0.7644 + }, + { + "start": 11244.92, + "end": 11247.46, + "probability": 0.8741 + }, + { + "start": 11247.56, + "end": 11247.98, + "probability": 0.4805 + }, + { + "start": 11249.83, + "end": 11251.98, + "probability": 0.9561 + }, + { + "start": 11252.6, + "end": 11254.9, + "probability": 0.9908 + }, + { + "start": 11255.46, + "end": 11258.59, + "probability": 0.8857 + }, + { + "start": 11259.3, + "end": 11261.5, + "probability": 0.9795 + }, + { + "start": 11262.7, + "end": 11264.76, + "probability": 0.9401 + }, + { + "start": 11265.32, + "end": 11267.54, + "probability": 0.9525 + }, + { + "start": 11268.06, + "end": 11270.1, + "probability": 0.9456 + }, + { + "start": 11270.18, + "end": 11271.12, + "probability": 0.9496 + }, + { + "start": 11271.2, + "end": 11273.6, + "probability": 0.917 + }, + { + "start": 11274.48, + "end": 11277.87, + "probability": 0.9839 + }, + { + "start": 11279.82, + "end": 11279.94, + "probability": 0.3183 + }, + { + "start": 11282.92, + "end": 11283.18, + "probability": 0.0108 + }, + { + "start": 11283.18, + "end": 11283.18, + "probability": 0.0974 + }, + { + "start": 11283.18, + "end": 11283.26, + "probability": 0.208 + }, + { + "start": 11283.36, + "end": 11284.68, + "probability": 0.9939 + }, + { + "start": 11284.72, + "end": 11285.3, + "probability": 0.8149 + }, + { + "start": 11286.48, + "end": 11288.16, + "probability": 0.9292 + }, + { + "start": 11288.76, + "end": 11290.8, + "probability": 0.0272 + }, + { + "start": 11290.8, + "end": 11290.8, + "probability": 0.0312 + }, + { + "start": 11290.8, + "end": 11291.43, + "probability": 0.6989 + }, + { + "start": 11296.48, + "end": 11299.36, + "probability": 0.5674 + }, + { + "start": 11300.54, + "end": 11304.76, + "probability": 0.9957 + }, + { + "start": 11305.4, + "end": 11307.77, + "probability": 0.7415 + }, + { + "start": 11308.42, + "end": 11309.54, + "probability": 0.6587 + }, + { + "start": 11310.0, + "end": 11311.2, + "probability": 0.9492 + }, + { + "start": 11311.28, + "end": 11312.71, + "probability": 0.8126 + }, + { + "start": 11313.36, + "end": 11314.94, + "probability": 0.7871 + }, + { + "start": 11315.32, + "end": 11316.02, + "probability": 0.0915 + }, + { + "start": 11317.68, + "end": 11318.96, + "probability": 0.98 + }, + { + "start": 11319.02, + "end": 11321.1, + "probability": 0.9202 + }, + { + "start": 11321.84, + "end": 11326.18, + "probability": 0.9134 + }, + { + "start": 11326.88, + "end": 11327.86, + "probability": 0.703 + }, + { + "start": 11328.5, + "end": 11330.34, + "probability": 0.9259 + }, + { + "start": 11331.46, + "end": 11333.0, + "probability": 0.6639 + }, + { + "start": 11333.32, + "end": 11334.12, + "probability": 0.2356 + }, + { + "start": 11334.54, + "end": 11335.98, + "probability": 0.8567 + }, + { + "start": 11336.72, + "end": 11340.54, + "probability": 0.9817 + }, + { + "start": 11340.66, + "end": 11344.7, + "probability": 0.9811 + }, + { + "start": 11345.26, + "end": 11346.06, + "probability": 0.9083 + }, + { + "start": 11346.28, + "end": 11349.62, + "probability": 0.9956 + }, + { + "start": 11350.4, + "end": 11351.34, + "probability": 0.8248 + }, + { + "start": 11352.0, + "end": 11353.04, + "probability": 0.7025 + }, + { + "start": 11353.4, + "end": 11354.34, + "probability": 0.9937 + }, + { + "start": 11355.66, + "end": 11358.48, + "probability": 0.9359 + }, + { + "start": 11358.54, + "end": 11359.82, + "probability": 0.9523 + }, + { + "start": 11360.08, + "end": 11360.28, + "probability": 0.2862 + }, + { + "start": 11360.28, + "end": 11360.48, + "probability": 0.6921 + }, + { + "start": 11360.48, + "end": 11361.38, + "probability": 0.9361 + }, + { + "start": 11361.42, + "end": 11363.36, + "probability": 0.9488 + }, + { + "start": 11363.82, + "end": 11366.88, + "probability": 0.8663 + }, + { + "start": 11367.46, + "end": 11371.6, + "probability": 0.1438 + }, + { + "start": 11385.24, + "end": 11386.26, + "probability": 0.7877 + }, + { + "start": 11386.84, + "end": 11389.66, + "probability": 0.8975 + }, + { + "start": 11389.94, + "end": 11391.88, + "probability": 0.5626 + }, + { + "start": 11392.1, + "end": 11393.16, + "probability": 0.6712 + }, + { + "start": 11393.2, + "end": 11394.0, + "probability": 0.9834 + }, + { + "start": 11394.08, + "end": 11395.12, + "probability": 0.9266 + }, + { + "start": 11395.22, + "end": 11395.94, + "probability": 0.924 + }, + { + "start": 11397.6, + "end": 11397.6, + "probability": 0.4562 + }, + { + "start": 11397.6, + "end": 11399.2, + "probability": 0.6959 + }, + { + "start": 11399.64, + "end": 11403.7, + "probability": 0.9674 + }, + { + "start": 11404.12, + "end": 11406.18, + "probability": 0.9791 + }, + { + "start": 11406.28, + "end": 11410.48, + "probability": 0.9753 + }, + { + "start": 11413.62, + "end": 11417.96, + "probability": 0.9839 + }, + { + "start": 11418.7, + "end": 11423.04, + "probability": 0.7961 + }, + { + "start": 11423.36, + "end": 11424.75, + "probability": 0.9458 + }, + { + "start": 11425.06, + "end": 11426.04, + "probability": 0.8042 + }, + { + "start": 11426.44, + "end": 11428.87, + "probability": 0.6738 + }, + { + "start": 11430.1, + "end": 11430.58, + "probability": 0.032 + }, + { + "start": 11430.58, + "end": 11431.86, + "probability": 0.5872 + }, + { + "start": 11432.06, + "end": 11433.61, + "probability": 0.8852 + }, + { + "start": 11433.94, + "end": 11436.34, + "probability": 0.7714 + }, + { + "start": 11436.48, + "end": 11436.94, + "probability": 0.8363 + }, + { + "start": 11437.38, + "end": 11442.82, + "probability": 0.9614 + }, + { + "start": 11442.84, + "end": 11443.33, + "probability": 0.3912 + }, + { + "start": 11443.8, + "end": 11447.02, + "probability": 0.8191 + }, + { + "start": 11447.02, + "end": 11447.02, + "probability": 0.107 + }, + { + "start": 11447.02, + "end": 11447.08, + "probability": 0.3335 + }, + { + "start": 11447.08, + "end": 11449.88, + "probability": 0.8866 + }, + { + "start": 11450.12, + "end": 11451.68, + "probability": 0.4959 + }, + { + "start": 11451.76, + "end": 11452.18, + "probability": 0.4987 + }, + { + "start": 11452.38, + "end": 11453.12, + "probability": 0.7598 + }, + { + "start": 11453.18, + "end": 11453.82, + "probability": 0.8157 + }, + { + "start": 11453.96, + "end": 11462.02, + "probability": 0.9988 + }, + { + "start": 11462.48, + "end": 11463.62, + "probability": 0.993 + }, + { + "start": 11463.98, + "end": 11466.03, + "probability": 0.7117 + }, + { + "start": 11466.42, + "end": 11467.88, + "probability": 0.948 + }, + { + "start": 11467.96, + "end": 11468.34, + "probability": 0.8504 + }, + { + "start": 11468.58, + "end": 11472.12, + "probability": 0.6049 + }, + { + "start": 11472.64, + "end": 11475.16, + "probability": 0.7734 + }, + { + "start": 11479.84, + "end": 11483.61, + "probability": 0.8496 + }, + { + "start": 11487.44, + "end": 11489.36, + "probability": 0.8376 + }, + { + "start": 11490.02, + "end": 11492.64, + "probability": 0.9771 + }, + { + "start": 11492.7, + "end": 11493.1, + "probability": 0.9227 + }, + { + "start": 11494.06, + "end": 11494.6, + "probability": 0.7353 + }, + { + "start": 11495.38, + "end": 11496.68, + "probability": 0.9543 + }, + { + "start": 11497.34, + "end": 11498.36, + "probability": 0.7527 + }, + { + "start": 11499.54, + "end": 11503.72, + "probability": 0.9731 + }, + { + "start": 11503.72, + "end": 11505.92, + "probability": 0.9979 + }, + { + "start": 11507.18, + "end": 11509.98, + "probability": 0.8602 + }, + { + "start": 11510.08, + "end": 11513.0, + "probability": 0.9455 + }, + { + "start": 11513.78, + "end": 11517.04, + "probability": 0.9985 + }, + { + "start": 11517.78, + "end": 11521.1, + "probability": 0.7174 + }, + { + "start": 11521.1, + "end": 11523.58, + "probability": 0.9955 + }, + { + "start": 11524.22, + "end": 11528.12, + "probability": 0.9744 + }, + { + "start": 11528.82, + "end": 11531.7, + "probability": 0.7521 + }, + { + "start": 11532.34, + "end": 11532.92, + "probability": 0.57 + }, + { + "start": 11533.24, + "end": 11536.02, + "probability": 0.8762 + }, + { + "start": 11539.42, + "end": 11539.54, + "probability": 0.4457 + }, + { + "start": 11539.54, + "end": 11541.56, + "probability": 0.2486 + }, + { + "start": 11542.4, + "end": 11545.96, + "probability": 0.8057 + }, + { + "start": 11546.64, + "end": 11549.04, + "probability": 0.9707 + }, + { + "start": 11549.38, + "end": 11550.76, + "probability": 0.9881 + }, + { + "start": 11550.84, + "end": 11553.9, + "probability": 0.7935 + }, + { + "start": 11554.54, + "end": 11558.46, + "probability": 0.8576 + }, + { + "start": 11559.04, + "end": 11560.92, + "probability": 0.7673 + }, + { + "start": 11561.78, + "end": 11565.6, + "probability": 0.9595 + }, + { + "start": 11566.78, + "end": 11567.76, + "probability": 0.6629 + }, + { + "start": 11568.88, + "end": 11571.4, + "probability": 0.7791 + }, + { + "start": 11572.3, + "end": 11573.72, + "probability": 0.7939 + }, + { + "start": 11574.36, + "end": 11577.66, + "probability": 0.9943 + }, + { + "start": 11578.24, + "end": 11580.62, + "probability": 0.9831 + }, + { + "start": 11581.08, + "end": 11582.72, + "probability": 0.757 + }, + { + "start": 11588.02, + "end": 11589.6, + "probability": 0.6743 + }, + { + "start": 11590.28, + "end": 11596.06, + "probability": 0.6672 + }, + { + "start": 11596.7, + "end": 11599.6, + "probability": 0.6362 + }, + { + "start": 11600.04, + "end": 11601.52, + "probability": 0.9639 + }, + { + "start": 11601.82, + "end": 11606.38, + "probability": 0.9735 + }, + { + "start": 11607.22, + "end": 11613.34, + "probability": 0.9729 + }, + { + "start": 11614.88, + "end": 11616.95, + "probability": 0.0081 + }, + { + "start": 11618.6, + "end": 11620.82, + "probability": 0.6012 + }, + { + "start": 11621.12, + "end": 11621.98, + "probability": 0.7583 + }, + { + "start": 11622.34, + "end": 11624.22, + "probability": 0.663 + }, + { + "start": 11624.34, + "end": 11626.2, + "probability": 0.8929 + }, + { + "start": 11626.3, + "end": 11627.14, + "probability": 0.8106 + }, + { + "start": 11627.3, + "end": 11630.9, + "probability": 0.8884 + }, + { + "start": 11631.36, + "end": 11634.98, + "probability": 0.9683 + }, + { + "start": 11635.26, + "end": 11637.67, + "probability": 0.9949 + }, + { + "start": 11637.96, + "end": 11638.6, + "probability": 0.4293 + }, + { + "start": 11638.68, + "end": 11639.66, + "probability": 0.8677 + }, + { + "start": 11639.98, + "end": 11641.76, + "probability": 0.9002 + }, + { + "start": 11642.08, + "end": 11643.66, + "probability": 0.9182 + }, + { + "start": 11643.94, + "end": 11645.8, + "probability": 0.9245 + }, + { + "start": 11646.1, + "end": 11648.76, + "probability": 0.9854 + }, + { + "start": 11649.34, + "end": 11651.86, + "probability": 0.9589 + }, + { + "start": 11652.28, + "end": 11653.79, + "probability": 0.9855 + }, + { + "start": 11653.94, + "end": 11655.0, + "probability": 0.903 + }, + { + "start": 11655.32, + "end": 11657.36, + "probability": 0.7864 + }, + { + "start": 11657.6, + "end": 11659.2, + "probability": 0.9575 + }, + { + "start": 11659.74, + "end": 11661.96, + "probability": 0.991 + }, + { + "start": 11662.9, + "end": 11665.62, + "probability": 0.9598 + }, + { + "start": 11666.34, + "end": 11667.16, + "probability": 0.837 + }, + { + "start": 11667.66, + "end": 11670.51, + "probability": 0.797 + }, + { + "start": 11670.92, + "end": 11671.5, + "probability": 0.8892 + }, + { + "start": 11671.82, + "end": 11674.52, + "probability": 0.8726 + }, + { + "start": 11675.26, + "end": 11677.48, + "probability": 0.9858 + }, + { + "start": 11677.48, + "end": 11682.3, + "probability": 0.9708 + }, + { + "start": 11682.68, + "end": 11683.64, + "probability": 0.6458 + }, + { + "start": 11684.28, + "end": 11684.42, + "probability": 0.0589 + }, + { + "start": 11684.42, + "end": 11687.62, + "probability": 0.6099 + }, + { + "start": 11687.96, + "end": 11689.04, + "probability": 0.9316 + }, + { + "start": 11689.68, + "end": 11691.6, + "probability": 0.6498 + }, + { + "start": 11691.88, + "end": 11695.26, + "probability": 0.7524 + }, + { + "start": 11695.58, + "end": 11698.02, + "probability": 0.9677 + }, + { + "start": 11698.38, + "end": 11699.58, + "probability": 0.7852 + }, + { + "start": 11699.6, + "end": 11701.01, + "probability": 0.9858 + }, + { + "start": 11701.46, + "end": 11702.04, + "probability": 0.7322 + }, + { + "start": 11702.18, + "end": 11703.4, + "probability": 0.3863 + }, + { + "start": 11703.8, + "end": 11704.6, + "probability": 0.2561 + }, + { + "start": 11704.8, + "end": 11705.58, + "probability": 0.8051 + }, + { + "start": 11705.9, + "end": 11706.78, + "probability": 0.9281 + }, + { + "start": 11707.34, + "end": 11711.98, + "probability": 0.8098 + }, + { + "start": 11712.72, + "end": 11715.1, + "probability": 0.9883 + }, + { + "start": 11715.78, + "end": 11718.72, + "probability": 0.9478 + }, + { + "start": 11718.8, + "end": 11721.22, + "probability": 0.9319 + }, + { + "start": 11721.34, + "end": 11723.54, + "probability": 0.928 + }, + { + "start": 11723.82, + "end": 11724.1, + "probability": 0.447 + }, + { + "start": 11724.22, + "end": 11725.66, + "probability": 0.7284 + }, + { + "start": 11725.86, + "end": 11726.28, + "probability": 0.8258 + }, + { + "start": 11726.66, + "end": 11727.42, + "probability": 0.8682 + }, + { + "start": 11727.92, + "end": 11732.5, + "probability": 0.9808 + }, + { + "start": 11732.76, + "end": 11734.56, + "probability": 0.9156 + }, + { + "start": 11734.92, + "end": 11736.86, + "probability": 0.9663 + }, + { + "start": 11737.4, + "end": 11740.72, + "probability": 0.991 + }, + { + "start": 11741.08, + "end": 11742.2, + "probability": 0.5612 + }, + { + "start": 11742.48, + "end": 11743.28, + "probability": 0.6529 + }, + { + "start": 11743.58, + "end": 11744.72, + "probability": 0.8331 + }, + { + "start": 11745.5, + "end": 11745.84, + "probability": 0.8128 + }, + { + "start": 11746.2, + "end": 11748.94, + "probability": 0.8332 + }, + { + "start": 11749.5, + "end": 11749.7, + "probability": 0.713 + }, + { + "start": 11749.76, + "end": 11751.48, + "probability": 0.7487 + }, + { + "start": 11752.14, + "end": 11755.7, + "probability": 0.8675 + }, + { + "start": 11755.9, + "end": 11756.72, + "probability": 0.6234 + }, + { + "start": 11756.82, + "end": 11757.64, + "probability": 0.8977 + }, + { + "start": 11757.68, + "end": 11758.18, + "probability": 0.8644 + }, + { + "start": 11759.3, + "end": 11760.14, + "probability": 0.6687 + }, + { + "start": 11763.04, + "end": 11765.66, + "probability": 0.4753 + }, + { + "start": 11765.7, + "end": 11766.86, + "probability": 0.8501 + }, + { + "start": 11767.08, + "end": 11769.97, + "probability": 0.7571 + }, + { + "start": 11770.4, + "end": 11773.28, + "probability": 0.8649 + }, + { + "start": 11774.68, + "end": 11775.5, + "probability": 0.9849 + }, + { + "start": 11776.34, + "end": 11782.04, + "probability": 0.996 + }, + { + "start": 11782.98, + "end": 11786.8, + "probability": 0.8059 + }, + { + "start": 11786.9, + "end": 11788.38, + "probability": 0.8951 + }, + { + "start": 11789.22, + "end": 11791.34, + "probability": 0.8389 + }, + { + "start": 11791.52, + "end": 11793.94, + "probability": 0.9851 + }, + { + "start": 11794.5, + "end": 11795.94, + "probability": 0.8141 + }, + { + "start": 11795.98, + "end": 11799.92, + "probability": 0.9961 + }, + { + "start": 11800.48, + "end": 11806.06, + "probability": 0.998 + }, + { + "start": 11806.14, + "end": 11806.7, + "probability": 0.7997 + }, + { + "start": 11807.42, + "end": 11809.94, + "probability": 0.8643 + }, + { + "start": 11810.06, + "end": 11810.34, + "probability": 0.7194 + }, + { + "start": 11810.74, + "end": 11812.38, + "probability": 0.9224 + }, + { + "start": 11812.52, + "end": 11813.92, + "probability": 0.3923 + }, + { + "start": 11813.98, + "end": 11815.66, + "probability": 0.9403 + }, + { + "start": 11815.84, + "end": 11817.52, + "probability": 0.7712 + }, + { + "start": 11818.22, + "end": 11818.6, + "probability": 0.446 + }, + { + "start": 11819.42, + "end": 11819.66, + "probability": 0.0512 + }, + { + "start": 11819.66, + "end": 11821.14, + "probability": 0.9557 + }, + { + "start": 11821.28, + "end": 11822.26, + "probability": 0.6259 + }, + { + "start": 11822.46, + "end": 11823.02, + "probability": 0.2616 + }, + { + "start": 11823.08, + "end": 11823.84, + "probability": 0.5744 + }, + { + "start": 11828.44, + "end": 11829.18, + "probability": 0.2392 + }, + { + "start": 11830.38, + "end": 11830.58, + "probability": 0.193 + }, + { + "start": 11831.36, + "end": 11832.12, + "probability": 0.0143 + }, + { + "start": 11839.8, + "end": 11841.14, + "probability": 0.0194 + }, + { + "start": 11845.22, + "end": 11846.78, + "probability": 0.1113 + }, + { + "start": 11846.78, + "end": 11847.98, + "probability": 0.2114 + }, + { + "start": 11847.98, + "end": 11849.8, + "probability": 0.2999 + }, + { + "start": 11855.58, + "end": 11858.74, + "probability": 0.0394 + }, + { + "start": 11862.68, + "end": 11865.02, + "probability": 0.0273 + }, + { + "start": 11866.42, + "end": 11867.5, + "probability": 0.172 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11912.0, + "end": 11912.0, + "probability": 0.0 + }, + { + "start": 11917.88, + "end": 11919.72, + "probability": 0.6597 + }, + { + "start": 11919.8, + "end": 11923.84, + "probability": 0.5485 + }, + { + "start": 11923.86, + "end": 11924.84, + "probability": 0.9744 + }, + { + "start": 11925.46, + "end": 11927.2, + "probability": 0.7584 + }, + { + "start": 11927.36, + "end": 11927.64, + "probability": 0.8144 + }, + { + "start": 11927.78, + "end": 11928.44, + "probability": 0.6695 + }, + { + "start": 11928.5, + "end": 11933.26, + "probability": 0.9937 + }, + { + "start": 11933.46, + "end": 11935.9, + "probability": 0.4253 + }, + { + "start": 11936.56, + "end": 11937.32, + "probability": 0.823 + }, + { + "start": 11937.34, + "end": 11937.36, + "probability": 0.3037 + }, + { + "start": 11937.36, + "end": 11937.36, + "probability": 0.3097 + }, + { + "start": 11937.36, + "end": 11938.52, + "probability": 0.7699 + }, + { + "start": 11938.76, + "end": 11939.66, + "probability": 0.7954 + }, + { + "start": 11940.2, + "end": 11941.72, + "probability": 0.8547 + }, + { + "start": 11943.08, + "end": 11943.86, + "probability": 0.6696 + }, + { + "start": 11945.6, + "end": 11946.72, + "probability": 0.9956 + }, + { + "start": 11946.82, + "end": 11949.04, + "probability": 0.7367 + }, + { + "start": 11950.36, + "end": 11955.06, + "probability": 0.9645 + }, + { + "start": 11956.36, + "end": 11959.98, + "probability": 0.9352 + }, + { + "start": 11961.1, + "end": 11965.02, + "probability": 0.9956 + }, + { + "start": 11965.62, + "end": 11966.66, + "probability": 0.9988 + }, + { + "start": 11967.36, + "end": 11972.0, + "probability": 0.8265 + }, + { + "start": 11973.32, + "end": 11974.1, + "probability": 0.7125 + }, + { + "start": 11977.34, + "end": 11978.44, + "probability": 0.7038 + }, + { + "start": 11979.72, + "end": 11983.3, + "probability": 0.7471 + }, + { + "start": 11984.44, + "end": 11985.06, + "probability": 0.6158 + }, + { + "start": 11986.58, + "end": 11988.34, + "probability": 0.8102 + }, + { + "start": 11988.7, + "end": 11989.76, + "probability": 0.8133 + }, + { + "start": 11989.84, + "end": 11992.46, + "probability": 0.92 + }, + { + "start": 11992.92, + "end": 11993.08, + "probability": 0.2716 + }, + { + "start": 11993.1, + "end": 11999.82, + "probability": 0.9856 + }, + { + "start": 12000.34, + "end": 12008.94, + "probability": 0.9978 + }, + { + "start": 12009.44, + "end": 12011.86, + "probability": 0.9942 + }, + { + "start": 12012.82, + "end": 12015.54, + "probability": 0.981 + }, + { + "start": 12017.94, + "end": 12019.8, + "probability": 0.8114 + }, + { + "start": 12021.46, + "end": 12023.9, + "probability": 0.995 + }, + { + "start": 12024.26, + "end": 12031.56, + "probability": 0.9005 + }, + { + "start": 12031.8, + "end": 12037.2, + "probability": 0.9906 + }, + { + "start": 12038.56, + "end": 12043.12, + "probability": 0.9699 + }, + { + "start": 12043.76, + "end": 12045.72, + "probability": 0.7193 + }, + { + "start": 12046.0, + "end": 12048.26, + "probability": 0.8845 + }, + { + "start": 12050.44, + "end": 12051.36, + "probability": 0.9314 + }, + { + "start": 12052.46, + "end": 12055.68, + "probability": 0.8188 + }, + { + "start": 12058.34, + "end": 12062.34, + "probability": 0.9937 + }, + { + "start": 12063.4, + "end": 12065.58, + "probability": 0.9937 + }, + { + "start": 12066.58, + "end": 12067.9, + "probability": 0.9174 + }, + { + "start": 12069.84, + "end": 12073.52, + "probability": 0.9465 + }, + { + "start": 12073.72, + "end": 12077.24, + "probability": 0.9869 + }, + { + "start": 12077.96, + "end": 12084.12, + "probability": 0.9976 + }, + { + "start": 12084.46, + "end": 12085.98, + "probability": 0.8494 + }, + { + "start": 12086.92, + "end": 12087.52, + "probability": 0.941 + }, + { + "start": 12088.66, + "end": 12090.42, + "probability": 0.9993 + }, + { + "start": 12092.87, + "end": 12095.29, + "probability": 0.9256 + }, + { + "start": 12095.36, + "end": 12098.21, + "probability": 0.9944 + }, + { + "start": 12099.36, + "end": 12101.46, + "probability": 0.9383 + }, + { + "start": 12104.5, + "end": 12105.76, + "probability": 0.9696 + }, + { + "start": 12107.04, + "end": 12109.86, + "probability": 0.981 + }, + { + "start": 12110.42, + "end": 12111.14, + "probability": 0.8943 + }, + { + "start": 12111.9, + "end": 12115.48, + "probability": 0.9742 + }, + { + "start": 12116.52, + "end": 12117.22, + "probability": 0.9948 + }, + { + "start": 12117.9, + "end": 12121.72, + "probability": 0.8317 + }, + { + "start": 12123.32, + "end": 12125.06, + "probability": 0.8008 + }, + { + "start": 12125.24, + "end": 12127.16, + "probability": 0.8462 + }, + { + "start": 12127.42, + "end": 12128.32, + "probability": 0.9609 + }, + { + "start": 12129.16, + "end": 12130.36, + "probability": 0.815 + }, + { + "start": 12130.54, + "end": 12137.28, + "probability": 0.9936 + }, + { + "start": 12137.36, + "end": 12138.76, + "probability": 0.9752 + }, + { + "start": 12139.68, + "end": 12142.5, + "probability": 0.8875 + }, + { + "start": 12143.86, + "end": 12145.52, + "probability": 0.9359 + }, + { + "start": 12147.32, + "end": 12154.06, + "probability": 0.99 + }, + { + "start": 12157.18, + "end": 12163.14, + "probability": 0.9375 + }, + { + "start": 12163.78, + "end": 12168.04, + "probability": 0.8404 + }, + { + "start": 12169.12, + "end": 12174.12, + "probability": 0.7848 + }, + { + "start": 12175.22, + "end": 12180.46, + "probability": 0.9917 + }, + { + "start": 12182.3, + "end": 12185.32, + "probability": 0.9691 + }, + { + "start": 12186.38, + "end": 12188.48, + "probability": 0.9977 + }, + { + "start": 12191.04, + "end": 12193.76, + "probability": 0.7615 + }, + { + "start": 12194.3, + "end": 12196.9, + "probability": 0.9829 + }, + { + "start": 12196.96, + "end": 12199.26, + "probability": 0.9344 + }, + { + "start": 12199.36, + "end": 12200.78, + "probability": 0.9146 + }, + { + "start": 12202.46, + "end": 12203.78, + "probability": 0.9886 + }, + { + "start": 12204.48, + "end": 12205.8, + "probability": 0.8192 + }, + { + "start": 12206.8, + "end": 12210.12, + "probability": 0.9974 + }, + { + "start": 12212.44, + "end": 12216.44, + "probability": 0.9992 + }, + { + "start": 12217.38, + "end": 12221.12, + "probability": 0.9976 + }, + { + "start": 12222.12, + "end": 12226.74, + "probability": 0.9857 + }, + { + "start": 12228.9, + "end": 12234.3, + "probability": 0.9816 + }, + { + "start": 12236.7, + "end": 12238.12, + "probability": 0.9202 + }, + { + "start": 12238.22, + "end": 12241.38, + "probability": 0.9775 + }, + { + "start": 12241.72, + "end": 12242.2, + "probability": 0.5408 + }, + { + "start": 12242.72, + "end": 12243.7, + "probability": 0.9027 + }, + { + "start": 12244.08, + "end": 12244.58, + "probability": 0.4878 + }, + { + "start": 12244.68, + "end": 12246.38, + "probability": 0.925 + }, + { + "start": 12249.76, + "end": 12250.04, + "probability": 0.2907 + }, + { + "start": 12250.04, + "end": 12250.2, + "probability": 0.0419 + }, + { + "start": 12252.26, + "end": 12252.66, + "probability": 0.5766 + }, + { + "start": 12253.06, + "end": 12254.54, + "probability": 0.9551 + }, + { + "start": 12254.7, + "end": 12256.24, + "probability": 0.8672 + }, + { + "start": 12256.44, + "end": 12257.18, + "probability": 0.3216 + }, + { + "start": 12257.4, + "end": 12258.08, + "probability": 0.6283 + }, + { + "start": 12260.54, + "end": 12264.08, + "probability": 0.889 + }, + { + "start": 12265.16, + "end": 12266.26, + "probability": 0.9871 + }, + { + "start": 12267.8, + "end": 12268.84, + "probability": 0.9895 + }, + { + "start": 12269.9, + "end": 12272.74, + "probability": 0.9185 + }, + { + "start": 12273.62, + "end": 12276.12, + "probability": 0.992 + }, + { + "start": 12277.54, + "end": 12283.32, + "probability": 0.9916 + }, + { + "start": 12284.26, + "end": 12287.44, + "probability": 0.8413 + }, + { + "start": 12287.96, + "end": 12290.46, + "probability": 0.9589 + }, + { + "start": 12291.24, + "end": 12292.54, + "probability": 0.9952 + }, + { + "start": 12293.64, + "end": 12294.98, + "probability": 0.9475 + }, + { + "start": 12297.08, + "end": 12301.36, + "probability": 0.9988 + }, + { + "start": 12301.36, + "end": 12305.12, + "probability": 0.9989 + }, + { + "start": 12306.84, + "end": 12314.78, + "probability": 0.9811 + }, + { + "start": 12315.88, + "end": 12321.24, + "probability": 0.9973 + }, + { + "start": 12321.84, + "end": 12323.48, + "probability": 0.8984 + }, + { + "start": 12323.74, + "end": 12326.8, + "probability": 0.9925 + }, + { + "start": 12327.52, + "end": 12329.18, + "probability": 0.9963 + }, + { + "start": 12330.0, + "end": 12333.46, + "probability": 0.9649 + }, + { + "start": 12333.54, + "end": 12334.3, + "probability": 0.5261 + }, + { + "start": 12335.12, + "end": 12336.24, + "probability": 0.9298 + }, + { + "start": 12337.6, + "end": 12344.04, + "probability": 0.9759 + }, + { + "start": 12345.54, + "end": 12350.24, + "probability": 0.9155 + }, + { + "start": 12351.04, + "end": 12358.12, + "probability": 0.9863 + }, + { + "start": 12358.46, + "end": 12360.92, + "probability": 0.9746 + }, + { + "start": 12361.32, + "end": 12364.44, + "probability": 0.9272 + }, + { + "start": 12365.04, + "end": 12366.44, + "probability": 0.9287 + }, + { + "start": 12367.2, + "end": 12370.88, + "probability": 0.9903 + }, + { + "start": 12371.18, + "end": 12371.9, + "probability": 0.5468 + }, + { + "start": 12371.94, + "end": 12373.28, + "probability": 0.97 + }, + { + "start": 12373.96, + "end": 12375.14, + "probability": 0.742 + }, + { + "start": 12375.14, + "end": 12379.56, + "probability": 0.7769 + }, + { + "start": 12380.22, + "end": 12381.56, + "probability": 0.5924 + }, + { + "start": 12382.28, + "end": 12384.36, + "probability": 0.9166 + }, + { + "start": 12384.64, + "end": 12386.54, + "probability": 0.8685 + }, + { + "start": 12386.6, + "end": 12387.92, + "probability": 0.4425 + }, + { + "start": 12388.44, + "end": 12390.76, + "probability": 0.9668 + }, + { + "start": 12393.22, + "end": 12396.46, + "probability": 0.8446 + }, + { + "start": 12404.48, + "end": 12407.58, + "probability": 0.8243 + }, + { + "start": 12409.08, + "end": 12410.92, + "probability": 0.8757 + }, + { + "start": 12412.12, + "end": 12414.66, + "probability": 0.8817 + }, + { + "start": 12416.18, + "end": 12420.12, + "probability": 0.9421 + }, + { + "start": 12421.24, + "end": 12422.83, + "probability": 0.8565 + }, + { + "start": 12424.32, + "end": 12426.76, + "probability": 0.9391 + }, + { + "start": 12427.92, + "end": 12432.06, + "probability": 0.7874 + }, + { + "start": 12433.2, + "end": 12435.48, + "probability": 0.9935 + }, + { + "start": 12436.26, + "end": 12438.02, + "probability": 0.9419 + }, + { + "start": 12438.98, + "end": 12443.14, + "probability": 0.949 + }, + { + "start": 12444.82, + "end": 12445.78, + "probability": 0.9484 + }, + { + "start": 12445.9, + "end": 12446.7, + "probability": 0.7229 + }, + { + "start": 12446.74, + "end": 12449.42, + "probability": 0.8882 + }, + { + "start": 12450.06, + "end": 12454.06, + "probability": 0.7774 + }, + { + "start": 12454.78, + "end": 12455.56, + "probability": 0.4399 + }, + { + "start": 12456.5, + "end": 12457.78, + "probability": 0.6761 + }, + { + "start": 12458.58, + "end": 12460.58, + "probability": 0.9248 + }, + { + "start": 12461.32, + "end": 12462.88, + "probability": 0.7355 + }, + { + "start": 12463.46, + "end": 12469.12, + "probability": 0.9812 + }, + { + "start": 12470.04, + "end": 12471.78, + "probability": 0.7892 + }, + { + "start": 12472.48, + "end": 12475.04, + "probability": 0.9096 + }, + { + "start": 12476.12, + "end": 12483.12, + "probability": 0.7194 + }, + { + "start": 12483.68, + "end": 12484.54, + "probability": 0.7066 + }, + { + "start": 12484.9, + "end": 12488.58, + "probability": 0.7963 + }, + { + "start": 12489.48, + "end": 12490.72, + "probability": 0.7853 + }, + { + "start": 12491.86, + "end": 12493.0, + "probability": 0.9543 + }, + { + "start": 12494.18, + "end": 12498.66, + "probability": 0.2571 + }, + { + "start": 12499.66, + "end": 12503.68, + "probability": 0.8652 + }, + { + "start": 12504.2, + "end": 12506.42, + "probability": 0.9674 + }, + { + "start": 12507.52, + "end": 12511.64, + "probability": 0.5649 + }, + { + "start": 12513.26, + "end": 12515.28, + "probability": 0.9883 + }, + { + "start": 12515.46, + "end": 12517.66, + "probability": 0.9128 + }, + { + "start": 12518.52, + "end": 12522.6, + "probability": 0.8955 + }, + { + "start": 12522.76, + "end": 12523.66, + "probability": 0.9146 + }, + { + "start": 12524.9, + "end": 12528.16, + "probability": 0.9237 + }, + { + "start": 12528.16, + "end": 12531.8, + "probability": 0.9149 + }, + { + "start": 12532.56, + "end": 12536.38, + "probability": 0.9172 + }, + { + "start": 12537.7, + "end": 12539.82, + "probability": 0.8255 + }, + { + "start": 12541.38, + "end": 12545.38, + "probability": 0.9214 + }, + { + "start": 12546.0, + "end": 12547.02, + "probability": 0.6892 + }, + { + "start": 12547.06, + "end": 12547.72, + "probability": 0.5774 + }, + { + "start": 12547.76, + "end": 12548.66, + "probability": 0.7927 + }, + { + "start": 12549.3, + "end": 12550.88, + "probability": 0.6938 + }, + { + "start": 12551.74, + "end": 12554.92, + "probability": 0.8711 + }, + { + "start": 12555.76, + "end": 12558.2, + "probability": 0.9872 + }, + { + "start": 12559.28, + "end": 12560.5, + "probability": 0.9707 + }, + { + "start": 12561.16, + "end": 12566.68, + "probability": 0.9915 + }, + { + "start": 12567.96, + "end": 12569.44, + "probability": 0.9902 + }, + { + "start": 12570.1, + "end": 12572.96, + "probability": 0.8802 + }, + { + "start": 12574.3, + "end": 12575.0, + "probability": 0.7899 + }, + { + "start": 12575.1, + "end": 12576.02, + "probability": 0.8242 + }, + { + "start": 12576.2, + "end": 12580.34, + "probability": 0.925 + }, + { + "start": 12581.62, + "end": 12582.74, + "probability": 0.6966 + }, + { + "start": 12582.82, + "end": 12585.37, + "probability": 0.8681 + }, + { + "start": 12586.46, + "end": 12592.4, + "probability": 0.8506 + }, + { + "start": 12594.02, + "end": 12597.34, + "probability": 0.8801 + }, + { + "start": 12598.34, + "end": 12598.58, + "probability": 0.3942 + }, + { + "start": 12599.06, + "end": 12602.48, + "probability": 0.5796 + }, + { + "start": 12603.36, + "end": 12604.92, + "probability": 0.7886 + }, + { + "start": 12605.8, + "end": 12606.78, + "probability": 0.5286 + }, + { + "start": 12607.78, + "end": 12613.52, + "probability": 0.9753 + }, + { + "start": 12613.94, + "end": 12616.6, + "probability": 0.9363 + }, + { + "start": 12617.34, + "end": 12619.5, + "probability": 0.879 + }, + { + "start": 12620.18, + "end": 12620.99, + "probability": 0.9673 + }, + { + "start": 12621.74, + "end": 12622.82, + "probability": 0.9497 + }, + { + "start": 12623.2, + "end": 12624.84, + "probability": 0.8723 + }, + { + "start": 12625.44, + "end": 12629.96, + "probability": 0.958 + }, + { + "start": 12631.0, + "end": 12632.14, + "probability": 0.7558 + }, + { + "start": 12632.94, + "end": 12634.42, + "probability": 0.9109 + }, + { + "start": 12634.94, + "end": 12635.54, + "probability": 0.9877 + }, + { + "start": 12636.94, + "end": 12640.7, + "probability": 0.8608 + }, + { + "start": 12641.3, + "end": 12642.02, + "probability": 0.8184 + }, + { + "start": 12642.36, + "end": 12643.24, + "probability": 0.9659 + }, + { + "start": 12643.52, + "end": 12644.46, + "probability": 0.7879 + }, + { + "start": 12644.68, + "end": 12645.56, + "probability": 0.9232 + }, + { + "start": 12646.4, + "end": 12647.58, + "probability": 0.9888 + }, + { + "start": 12648.16, + "end": 12648.94, + "probability": 0.9884 + }, + { + "start": 12649.3, + "end": 12649.94, + "probability": 0.7435 + }, + { + "start": 12650.42, + "end": 12653.38, + "probability": 0.924 + }, + { + "start": 12653.88, + "end": 12656.7, + "probability": 0.9871 + }, + { + "start": 12657.64, + "end": 12658.38, + "probability": 0.0805 + }, + { + "start": 12658.76, + "end": 12659.28, + "probability": 0.2739 + }, + { + "start": 12659.72, + "end": 12659.78, + "probability": 0.241 + }, + { + "start": 12667.76, + "end": 12669.78, + "probability": 0.9575 + }, + { + "start": 12669.9, + "end": 12675.36, + "probability": 0.9921 + }, + { + "start": 12675.36, + "end": 12681.64, + "probability": 0.998 + }, + { + "start": 12681.88, + "end": 12682.64, + "probability": 0.9951 + }, + { + "start": 12683.82, + "end": 12688.04, + "probability": 0.9638 + }, + { + "start": 12688.32, + "end": 12689.7, + "probability": 0.4883 + }, + { + "start": 12690.06, + "end": 12692.6, + "probability": 0.9373 + }, + { + "start": 12692.9, + "end": 12693.42, + "probability": 0.8696 + }, + { + "start": 12693.54, + "end": 12695.37, + "probability": 0.8862 + }, + { + "start": 12695.66, + "end": 12696.78, + "probability": 0.9951 + }, + { + "start": 12696.92, + "end": 12698.18, + "probability": 0.8755 + }, + { + "start": 12698.56, + "end": 12700.96, + "probability": 0.9609 + }, + { + "start": 12701.5, + "end": 12702.77, + "probability": 0.0385 + }, + { + "start": 12703.16, + "end": 12706.36, + "probability": 0.7403 + }, + { + "start": 12706.94, + "end": 12709.38, + "probability": 0.8117 + }, + { + "start": 12709.46, + "end": 12712.68, + "probability": 0.6651 + }, + { + "start": 12713.42, + "end": 12715.86, + "probability": 0.9635 + }, + { + "start": 12716.04, + "end": 12718.6, + "probability": 0.3342 + }, + { + "start": 12718.68, + "end": 12720.16, + "probability": 0.9247 + }, + { + "start": 12720.48, + "end": 12721.86, + "probability": 0.9529 + }, + { + "start": 12722.72, + "end": 12724.42, + "probability": 0.9314 + }, + { + "start": 12725.86, + "end": 12729.58, + "probability": 0.9358 + }, + { + "start": 12730.16, + "end": 12732.22, + "probability": 0.7174 + }, + { + "start": 12733.3, + "end": 12734.68, + "probability": 0.9434 + }, + { + "start": 12735.08, + "end": 12736.14, + "probability": 0.8397 + }, + { + "start": 12737.66, + "end": 12737.98, + "probability": 0.6289 + }, + { + "start": 12738.06, + "end": 12740.08, + "probability": 0.871 + }, + { + "start": 12740.44, + "end": 12741.02, + "probability": 0.6827 + }, + { + "start": 12741.74, + "end": 12746.16, + "probability": 0.9047 + }, + { + "start": 12746.16, + "end": 12747.4, + "probability": 0.6768 + }, + { + "start": 12747.56, + "end": 12749.66, + "probability": 0.8916 + }, + { + "start": 12749.86, + "end": 12750.72, + "probability": 0.661 + }, + { + "start": 12750.78, + "end": 12759.42, + "probability": 0.9919 + }, + { + "start": 12760.02, + "end": 12764.16, + "probability": 0.8285 + }, + { + "start": 12764.2, + "end": 12765.12, + "probability": 0.6077 + }, + { + "start": 12766.18, + "end": 12767.32, + "probability": 0.8442 + }, + { + "start": 12767.66, + "end": 12767.94, + "probability": 0.4809 + }, + { + "start": 12767.96, + "end": 12768.5, + "probability": 0.6231 + }, + { + "start": 12768.62, + "end": 12769.74, + "probability": 0.6749 + }, + { + "start": 12770.08, + "end": 12770.48, + "probability": 0.6967 + }, + { + "start": 12771.04, + "end": 12771.76, + "probability": 0.9493 + }, + { + "start": 12773.22, + "end": 12776.66, + "probability": 0.4681 + }, + { + "start": 12777.04, + "end": 12778.36, + "probability": 0.7559 + }, + { + "start": 12778.94, + "end": 12781.1, + "probability": 0.9397 + }, + { + "start": 12783.79, + "end": 12786.65, + "probability": 0.6588 + }, + { + "start": 12787.56, + "end": 12788.33, + "probability": 0.775 + }, + { + "start": 12789.68, + "end": 12794.02, + "probability": 0.8462 + }, + { + "start": 12794.74, + "end": 12797.08, + "probability": 0.7112 + }, + { + "start": 12797.82, + "end": 12798.56, + "probability": 0.6185 + }, + { + "start": 12799.66, + "end": 12802.28, + "probability": 0.7504 + }, + { + "start": 12803.1, + "end": 12805.32, + "probability": 0.9377 + }, + { + "start": 12805.94, + "end": 12807.22, + "probability": 0.4104 + }, + { + "start": 12807.9, + "end": 12808.95, + "probability": 0.9182 + }, + { + "start": 12809.6, + "end": 12813.08, + "probability": 0.5679 + }, + { + "start": 12813.88, + "end": 12815.04, + "probability": 0.9155 + }, + { + "start": 12815.68, + "end": 12819.34, + "probability": 0.8192 + }, + { + "start": 12820.42, + "end": 12823.36, + "probability": 0.9746 + }, + { + "start": 12824.26, + "end": 12829.64, + "probability": 0.9434 + }, + { + "start": 12829.98, + "end": 12831.48, + "probability": 0.9729 + }, + { + "start": 12832.1, + "end": 12836.32, + "probability": 0.9308 + }, + { + "start": 12836.46, + "end": 12836.92, + "probability": 0.6107 + }, + { + "start": 12839.56, + "end": 12843.08, + "probability": 0.7145 + }, + { + "start": 12843.82, + "end": 12845.9, + "probability": 0.9386 + }, + { + "start": 12845.9, + "end": 12847.48, + "probability": 0.5706 + }, + { + "start": 12848.06, + "end": 12849.78, + "probability": 0.712 + }, + { + "start": 12849.94, + "end": 12851.9, + "probability": 0.8183 + }, + { + "start": 12855.32, + "end": 12855.54, + "probability": 0.2262 + }, + { + "start": 12855.54, + "end": 12855.54, + "probability": 0.2885 + }, + { + "start": 12855.54, + "end": 12855.75, + "probability": 0.1036 + }, + { + "start": 12856.88, + "end": 12860.42, + "probability": 0.3674 + }, + { + "start": 12860.62, + "end": 12861.6, + "probability": 0.6823 + }, + { + "start": 12861.68, + "end": 12862.14, + "probability": 0.8234 + }, + { + "start": 12862.48, + "end": 12864.41, + "probability": 0.4057 + }, + { + "start": 12864.88, + "end": 12866.74, + "probability": 0.7233 + }, + { + "start": 12866.8, + "end": 12866.9, + "probability": 0.4336 + }, + { + "start": 12867.4, + "end": 12868.44, + "probability": 0.9312 + }, + { + "start": 12868.54, + "end": 12874.64, + "probability": 0.8486 + }, + { + "start": 12876.22, + "end": 12878.16, + "probability": 0.2544 + }, + { + "start": 12882.08, + "end": 12884.98, + "probability": 0.7829 + }, + { + "start": 12885.66, + "end": 12886.62, + "probability": 0.6151 + }, + { + "start": 12887.16, + "end": 12888.44, + "probability": 0.8624 + }, + { + "start": 12888.78, + "end": 12891.06, + "probability": 0.9953 + }, + { + "start": 12891.52, + "end": 12893.68, + "probability": 0.7303 + }, + { + "start": 12894.16, + "end": 12895.14, + "probability": 0.8718 + }, + { + "start": 12895.51, + "end": 12897.4, + "probability": 0.855 + }, + { + "start": 12897.5, + "end": 12897.94, + "probability": 0.5365 + }, + { + "start": 12898.02, + "end": 12901.18, + "probability": 0.9626 + }, + { + "start": 12901.42, + "end": 12901.66, + "probability": 0.4783 + }, + { + "start": 12901.9, + "end": 12902.11, + "probability": 0.5141 + }, + { + "start": 12902.34, + "end": 12905.05, + "probability": 0.7271 + }, + { + "start": 12905.56, + "end": 12909.06, + "probability": 0.7068 + }, + { + "start": 12909.06, + "end": 12911.12, + "probability": 0.7815 + }, + { + "start": 12911.54, + "end": 12916.86, + "probability": 0.8934 + }, + { + "start": 12916.94, + "end": 12920.44, + "probability": 0.4949 + }, + { + "start": 12920.96, + "end": 12923.5, + "probability": 0.9391 + }, + { + "start": 12923.96, + "end": 12924.6, + "probability": 0.7733 + }, + { + "start": 12924.82, + "end": 12926.44, + "probability": 0.9404 + }, + { + "start": 12926.98, + "end": 12927.52, + "probability": 0.9323 + }, + { + "start": 12928.54, + "end": 12929.36, + "probability": 0.9497 + }, + { + "start": 12930.0, + "end": 12932.44, + "probability": 0.9923 + }, + { + "start": 12933.28, + "end": 12936.72, + "probability": 0.8934 + }, + { + "start": 12937.22, + "end": 12937.84, + "probability": 0.6655 + }, + { + "start": 12937.88, + "end": 12938.41, + "probability": 0.6235 + }, + { + "start": 12938.74, + "end": 12940.48, + "probability": 0.9434 + }, + { + "start": 12940.48, + "end": 12941.08, + "probability": 0.7567 + }, + { + "start": 12941.56, + "end": 12946.62, + "probability": 0.7884 + }, + { + "start": 12946.68, + "end": 12947.3, + "probability": 0.8706 + }, + { + "start": 12947.62, + "end": 12950.2, + "probability": 0.9448 + }, + { + "start": 12950.62, + "end": 12951.9, + "probability": 0.7574 + }, + { + "start": 12951.96, + "end": 12953.4, + "probability": 0.5506 + }, + { + "start": 12953.74, + "end": 12955.56, + "probability": 0.3191 + }, + { + "start": 12956.02, + "end": 12957.64, + "probability": 0.7566 + }, + { + "start": 12957.98, + "end": 12960.9, + "probability": 0.873 + }, + { + "start": 12961.04, + "end": 12963.28, + "probability": 0.9009 + }, + { + "start": 12963.62, + "end": 12966.8, + "probability": 0.9669 + }, + { + "start": 12967.1, + "end": 12967.82, + "probability": 0.6276 + }, + { + "start": 12968.44, + "end": 12969.28, + "probability": 0.9773 + }, + { + "start": 12969.94, + "end": 12970.68, + "probability": 0.8408 + }, + { + "start": 12971.36, + "end": 12974.64, + "probability": 0.5172 + }, + { + "start": 12974.76, + "end": 12975.86, + "probability": 0.5129 + }, + { + "start": 12977.7, + "end": 12982.28, + "probability": 0.8016 + }, + { + "start": 12983.54, + "end": 12986.8, + "probability": 0.6626 + }, + { + "start": 12987.74, + "end": 12989.94, + "probability": 0.6125 + }, + { + "start": 12990.94, + "end": 12992.36, + "probability": 0.9885 + }, + { + "start": 12992.5, + "end": 12993.69, + "probability": 0.9873 + }, + { + "start": 12994.46, + "end": 12996.5, + "probability": 0.8571 + }, + { + "start": 12997.24, + "end": 12998.08, + "probability": 0.8525 + }, + { + "start": 12998.82, + "end": 13001.5, + "probability": 0.9128 + }, + { + "start": 13001.98, + "end": 13003.24, + "probability": 0.8148 + }, + { + "start": 13003.54, + "end": 13005.3, + "probability": 0.9645 + }, + { + "start": 13005.34, + "end": 13010.74, + "probability": 0.9559 + }, + { + "start": 13010.78, + "end": 13011.28, + "probability": 0.746 + }, + { + "start": 13011.36, + "end": 13012.68, + "probability": 0.6873 + }, + { + "start": 13012.88, + "end": 13015.58, + "probability": 0.7408 + }, + { + "start": 13022.8, + "end": 13023.02, + "probability": 0.0148 + }, + { + "start": 13024.25, + "end": 13025.81, + "probability": 0.4038 + }, + { + "start": 13025.96, + "end": 13032.1, + "probability": 0.6459 + }, + { + "start": 13032.76, + "end": 13034.8, + "probability": 0.4629 + }, + { + "start": 13034.86, + "end": 13035.5, + "probability": 0.3906 + }, + { + "start": 13035.82, + "end": 13035.94, + "probability": 0.2702 + }, + { + "start": 13035.94, + "end": 13036.54, + "probability": 0.7686 + }, + { + "start": 13038.3, + "end": 13038.66, + "probability": 0.0438 + }, + { + "start": 13038.66, + "end": 13039.08, + "probability": 0.5769 + }, + { + "start": 13039.22, + "end": 13039.98, + "probability": 0.5281 + }, + { + "start": 13040.46, + "end": 13041.86, + "probability": 0.8942 + }, + { + "start": 13044.87, + "end": 13046.71, + "probability": 0.928 + }, + { + "start": 13047.26, + "end": 13049.0, + "probability": 0.7603 + }, + { + "start": 13049.66, + "end": 13051.44, + "probability": 0.8287 + }, + { + "start": 13053.48, + "end": 13055.76, + "probability": 0.679 + }, + { + "start": 13056.34, + "end": 13059.64, + "probability": 0.7181 + }, + { + "start": 13060.8, + "end": 13061.36, + "probability": 0.8227 + }, + { + "start": 13061.48, + "end": 13063.04, + "probability": 0.4778 + }, + { + "start": 13063.12, + "end": 13063.78, + "probability": 0.9842 + }, + { + "start": 13063.84, + "end": 13064.19, + "probability": 0.751 + }, + { + "start": 13064.32, + "end": 13065.02, + "probability": 0.8752 + }, + { + "start": 13066.8, + "end": 13068.26, + "probability": 0.8006 + }, + { + "start": 13068.9, + "end": 13072.26, + "probability": 0.791 + }, + { + "start": 13073.5, + "end": 13074.4, + "probability": 0.9047 + }, + { + "start": 13075.34, + "end": 13077.5, + "probability": 0.7231 + }, + { + "start": 13078.58, + "end": 13079.52, + "probability": 0.4879 + }, + { + "start": 13079.62, + "end": 13079.8, + "probability": 0.6967 + }, + { + "start": 13079.88, + "end": 13081.58, + "probability": 0.8757 + }, + { + "start": 13082.42, + "end": 13085.38, + "probability": 0.7669 + }, + { + "start": 13086.68, + "end": 13088.24, + "probability": 0.7088 + }, + { + "start": 13088.34, + "end": 13090.19, + "probability": 0.7664 + }, + { + "start": 13090.92, + "end": 13091.98, + "probability": 0.4367 + }, + { + "start": 13092.88, + "end": 13097.64, + "probability": 0.7103 + }, + { + "start": 13098.92, + "end": 13099.7, + "probability": 0.8816 + }, + { + "start": 13099.78, + "end": 13101.69, + "probability": 0.7939 + }, + { + "start": 13102.2, + "end": 13103.96, + "probability": 0.8035 + }, + { + "start": 13105.4, + "end": 13106.9, + "probability": 0.7026 + }, + { + "start": 13107.62, + "end": 13108.56, + "probability": 0.3835 + }, + { + "start": 13108.6, + "end": 13109.6, + "probability": 0.9431 + }, + { + "start": 13109.84, + "end": 13110.36, + "probability": 0.9033 + }, + { + "start": 13110.48, + "end": 13111.48, + "probability": 0.8889 + }, + { + "start": 13111.9, + "end": 13113.42, + "probability": 0.5114 + }, + { + "start": 13113.84, + "end": 13115.08, + "probability": 0.9236 + }, + { + "start": 13115.66, + "end": 13116.94, + "probability": 0.7673 + }, + { + "start": 13117.14, + "end": 13118.66, + "probability": 0.9358 + }, + { + "start": 13118.78, + "end": 13119.5, + "probability": 0.6997 + }, + { + "start": 13119.86, + "end": 13121.0, + "probability": 0.9307 + }, + { + "start": 13121.76, + "end": 13125.04, + "probability": 0.8195 + }, + { + "start": 13126.04, + "end": 13126.9, + "probability": 0.6842 + }, + { + "start": 13127.02, + "end": 13128.88, + "probability": 0.9536 + }, + { + "start": 13129.28, + "end": 13129.9, + "probability": 0.8733 + }, + { + "start": 13130.5, + "end": 13131.72, + "probability": 0.994 + }, + { + "start": 13132.68, + "end": 13135.74, + "probability": 0.8712 + }, + { + "start": 13136.9, + "end": 13139.81, + "probability": 0.8879 + }, + { + "start": 13141.46, + "end": 13144.3, + "probability": 0.7269 + }, + { + "start": 13144.38, + "end": 13145.02, + "probability": 0.4557 + }, + { + "start": 13145.1, + "end": 13146.82, + "probability": 0.7663 + }, + { + "start": 13146.86, + "end": 13148.98, + "probability": 0.9476 + }, + { + "start": 13149.42, + "end": 13150.8, + "probability": 0.7644 + }, + { + "start": 13151.38, + "end": 13153.64, + "probability": 0.9673 + }, + { + "start": 13154.08, + "end": 13155.02, + "probability": 0.7306 + }, + { + "start": 13155.12, + "end": 13155.75, + "probability": 0.8749 + }, + { + "start": 13156.78, + "end": 13158.22, + "probability": 0.9166 + }, + { + "start": 13158.3, + "end": 13160.34, + "probability": 0.7137 + }, + { + "start": 13161.1, + "end": 13161.96, + "probability": 0.925 + }, + { + "start": 13162.0, + "end": 13162.64, + "probability": 0.3576 + }, + { + "start": 13162.64, + "end": 13162.78, + "probability": 0.4171 + }, + { + "start": 13163.14, + "end": 13163.98, + "probability": 0.8035 + }, + { + "start": 13164.24, + "end": 13166.18, + "probability": 0.3535 + }, + { + "start": 13166.18, + "end": 13166.58, + "probability": 0.4749 + }, + { + "start": 13166.98, + "end": 13167.34, + "probability": 0.4432 + }, + { + "start": 13167.46, + "end": 13168.86, + "probability": 0.5999 + }, + { + "start": 13169.66, + "end": 13171.87, + "probability": 0.8162 + }, + { + "start": 13172.04, + "end": 13173.26, + "probability": 0.901 + }, + { + "start": 13175.34, + "end": 13177.94, + "probability": 0.8994 + }, + { + "start": 13178.58, + "end": 13179.66, + "probability": 0.2545 + }, + { + "start": 13180.66, + "end": 13183.26, + "probability": 0.927 + }, + { + "start": 13183.56, + "end": 13184.4, + "probability": 0.8964 + }, + { + "start": 13184.58, + "end": 13186.46, + "probability": 0.9793 + }, + { + "start": 13187.2, + "end": 13190.04, + "probability": 0.8641 + }, + { + "start": 13190.76, + "end": 13192.62, + "probability": 0.9037 + }, + { + "start": 13193.2, + "end": 13193.86, + "probability": 0.7624 + }, + { + "start": 13194.54, + "end": 13196.14, + "probability": 0.9501 + }, + { + "start": 13196.66, + "end": 13199.3, + "probability": 0.9948 + }, + { + "start": 13199.4, + "end": 13199.84, + "probability": 0.5846 + }, + { + "start": 13199.96, + "end": 13200.95, + "probability": 0.9365 + }, + { + "start": 13201.5, + "end": 13202.8, + "probability": 0.9907 + }, + { + "start": 13203.32, + "end": 13205.12, + "probability": 0.8882 + }, + { + "start": 13205.76, + "end": 13207.6, + "probability": 0.9921 + }, + { + "start": 13208.04, + "end": 13208.9, + "probability": 0.7505 + }, + { + "start": 13209.12, + "end": 13211.52, + "probability": 0.9834 + }, + { + "start": 13211.88, + "end": 13214.64, + "probability": 0.9927 + }, + { + "start": 13215.3, + "end": 13215.4, + "probability": 0.0492 + }, + { + "start": 13215.4, + "end": 13215.4, + "probability": 0.4753 + }, + { + "start": 13215.4, + "end": 13215.4, + "probability": 0.6198 + }, + { + "start": 13215.4, + "end": 13215.5, + "probability": 0.5472 + }, + { + "start": 13216.28, + "end": 13219.05, + "probability": 0.9043 + }, + { + "start": 13219.8, + "end": 13222.4, + "probability": 0.4171 + }, + { + "start": 13222.46, + "end": 13224.58, + "probability": 0.9549 + }, + { + "start": 13225.18, + "end": 13226.24, + "probability": 0.6945 + }, + { + "start": 13226.34, + "end": 13229.78, + "probability": 0.9705 + }, + { + "start": 13230.32, + "end": 13231.36, + "probability": 0.9313 + }, + { + "start": 13231.54, + "end": 13233.14, + "probability": 0.9917 + }, + { + "start": 13233.64, + "end": 13234.44, + "probability": 0.2453 + }, + { + "start": 13234.44, + "end": 13234.64, + "probability": 0.8143 + }, + { + "start": 13234.74, + "end": 13235.0, + "probability": 0.6438 + }, + { + "start": 13235.58, + "end": 13236.88, + "probability": 0.8678 + }, + { + "start": 13237.5, + "end": 13238.31, + "probability": 0.9546 + }, + { + "start": 13238.48, + "end": 13240.04, + "probability": 0.9582 + }, + { + "start": 13240.3, + "end": 13241.17, + "probability": 0.8783 + }, + { + "start": 13241.2, + "end": 13242.76, + "probability": 0.863 + }, + { + "start": 13243.3, + "end": 13244.62, + "probability": 0.5262 + }, + { + "start": 13245.24, + "end": 13246.12, + "probability": 0.9142 + }, + { + "start": 13246.46, + "end": 13248.08, + "probability": 0.9539 + }, + { + "start": 13248.52, + "end": 13249.64, + "probability": 0.9401 + }, + { + "start": 13250.9, + "end": 13252.74, + "probability": 0.8984 + }, + { + "start": 13253.32, + "end": 13255.24, + "probability": 0.9339 + }, + { + "start": 13255.7, + "end": 13256.9, + "probability": 0.952 + }, + { + "start": 13257.38, + "end": 13258.1, + "probability": 0.979 + }, + { + "start": 13258.6, + "end": 13262.14, + "probability": 0.9641 + }, + { + "start": 13263.28, + "end": 13264.06, + "probability": 0.356 + }, + { + "start": 13264.08, + "end": 13265.23, + "probability": 0.7084 + }, + { + "start": 13265.82, + "end": 13267.12, + "probability": 0.1456 + }, + { + "start": 13267.66, + "end": 13269.18, + "probability": 0.6316 + }, + { + "start": 13271.62, + "end": 13272.38, + "probability": 0.1206 + }, + { + "start": 13272.38, + "end": 13272.42, + "probability": 0.0693 + }, + { + "start": 13272.48, + "end": 13273.3, + "probability": 0.7961 + }, + { + "start": 13273.6, + "end": 13274.16, + "probability": 0.8677 + }, + { + "start": 13274.16, + "end": 13274.88, + "probability": 0.5136 + }, + { + "start": 13274.88, + "end": 13278.6, + "probability": 0.7103 + }, + { + "start": 13278.84, + "end": 13280.18, + "probability": 0.7015 + }, + { + "start": 13280.74, + "end": 13283.38, + "probability": 0.9775 + }, + { + "start": 13283.76, + "end": 13286.14, + "probability": 0.8349 + }, + { + "start": 13286.22, + "end": 13287.66, + "probability": 0.9661 + }, + { + "start": 13287.84, + "end": 13289.36, + "probability": 0.9545 + }, + { + "start": 13290.02, + "end": 13290.86, + "probability": 0.9948 + }, + { + "start": 13291.0, + "end": 13292.6, + "probability": 0.9187 + }, + { + "start": 13292.88, + "end": 13293.86, + "probability": 0.9058 + }, + { + "start": 13294.3, + "end": 13295.1, + "probability": 0.5153 + }, + { + "start": 13295.88, + "end": 13298.54, + "probability": 0.953 + }, + { + "start": 13299.32, + "end": 13299.98, + "probability": 0.4365 + }, + { + "start": 13300.14, + "end": 13302.14, + "probability": 0.8443 + }, + { + "start": 13302.14, + "end": 13303.46, + "probability": 0.792 + }, + { + "start": 13303.5, + "end": 13304.96, + "probability": 0.9009 + }, + { + "start": 13305.06, + "end": 13307.52, + "probability": 0.9681 + }, + { + "start": 13308.1, + "end": 13308.79, + "probability": 0.894 + }, + { + "start": 13311.72, + "end": 13314.76, + "probability": 0.9959 + }, + { + "start": 13314.94, + "end": 13317.72, + "probability": 0.9795 + }, + { + "start": 13318.0, + "end": 13319.58, + "probability": 0.4352 + }, + { + "start": 13321.3, + "end": 13322.52, + "probability": 0.6401 + }, + { + "start": 13322.56, + "end": 13323.8, + "probability": 0.6598 + }, + { + "start": 13323.8, + "end": 13324.24, + "probability": 0.4908 + }, + { + "start": 13324.34, + "end": 13326.9, + "probability": 0.8612 + }, + { + "start": 13327.18, + "end": 13327.86, + "probability": 0.9453 + }, + { + "start": 13327.94, + "end": 13328.2, + "probability": 0.623 + }, + { + "start": 13328.32, + "end": 13330.53, + "probability": 0.6636 + }, + { + "start": 13330.84, + "end": 13331.71, + "probability": 0.9929 + }, + { + "start": 13332.28, + "end": 13334.34, + "probability": 0.7128 + }, + { + "start": 13334.6, + "end": 13334.68, + "probability": 0.5832 + }, + { + "start": 13334.72, + "end": 13336.1, + "probability": 0.9534 + }, + { + "start": 13336.3, + "end": 13337.32, + "probability": 0.5924 + }, + { + "start": 13337.42, + "end": 13338.38, + "probability": 0.4071 + }, + { + "start": 13338.7, + "end": 13340.5, + "probability": 0.8412 + }, + { + "start": 13346.26, + "end": 13348.22, + "probability": 0.4647 + }, + { + "start": 13348.34, + "end": 13349.26, + "probability": 0.4247 + }, + { + "start": 13350.48, + "end": 13354.06, + "probability": 0.8789 + }, + { + "start": 13357.08, + "end": 13362.2, + "probability": 0.6246 + }, + { + "start": 13362.62, + "end": 13364.46, + "probability": 0.9646 + }, + { + "start": 13364.96, + "end": 13366.46, + "probability": 0.9648 + }, + { + "start": 13366.64, + "end": 13368.02, + "probability": 0.9347 + }, + { + "start": 13368.42, + "end": 13368.92, + "probability": 0.4979 + }, + { + "start": 13368.92, + "end": 13369.56, + "probability": 0.6898 + }, + { + "start": 13369.66, + "end": 13371.28, + "probability": 0.9253 + }, + { + "start": 13371.36, + "end": 13371.88, + "probability": 0.581 + }, + { + "start": 13373.72, + "end": 13374.94, + "probability": 0.0136 + }, + { + "start": 13374.94, + "end": 13374.94, + "probability": 0.2317 + }, + { + "start": 13375.14, + "end": 13376.0, + "probability": 0.5694 + }, + { + "start": 13376.06, + "end": 13376.84, + "probability": 0.7193 + }, + { + "start": 13376.88, + "end": 13377.18, + "probability": 0.7302 + }, + { + "start": 13377.48, + "end": 13378.38, + "probability": 0.8977 + }, + { + "start": 13378.46, + "end": 13380.64, + "probability": 0.6954 + }, + { + "start": 13380.72, + "end": 13381.22, + "probability": 0.9401 + }, + { + "start": 13381.7, + "end": 13383.78, + "probability": 0.9392 + }, + { + "start": 13384.4, + "end": 13385.54, + "probability": 0.8572 + }, + { + "start": 13386.42, + "end": 13390.04, + "probability": 0.851 + }, + { + "start": 13390.72, + "end": 13391.58, + "probability": 0.9851 + }, + { + "start": 13391.66, + "end": 13392.56, + "probability": 0.9549 + }, + { + "start": 13392.62, + "end": 13394.74, + "probability": 0.9915 + }, + { + "start": 13397.54, + "end": 13399.5, + "probability": 0.6386 + }, + { + "start": 13400.14, + "end": 13402.4, + "probability": 0.2339 + }, + { + "start": 13402.52, + "end": 13403.1, + "probability": 0.5474 + }, + { + "start": 13403.1, + "end": 13403.54, + "probability": 0.0659 + }, + { + "start": 13404.39, + "end": 13404.46, + "probability": 0.5331 + }, + { + "start": 13404.58, + "end": 13405.91, + "probability": 0.8425 + }, + { + "start": 13406.14, + "end": 13407.78, + "probability": 0.9958 + }, + { + "start": 13408.74, + "end": 13409.1, + "probability": 0.7199 + }, + { + "start": 13409.12, + "end": 13410.54, + "probability": 0.7978 + }, + { + "start": 13410.76, + "end": 13413.76, + "probability": 0.7982 + }, + { + "start": 13413.88, + "end": 13415.56, + "probability": 0.7527 + }, + { + "start": 13415.72, + "end": 13416.94, + "probability": 0.2589 + }, + { + "start": 13417.74, + "end": 13418.62, + "probability": 0.576 + }, + { + "start": 13418.74, + "end": 13421.42, + "probability": 0.7452 + }, + { + "start": 13421.8, + "end": 13422.97, + "probability": 0.2878 + }, + { + "start": 13426.92, + "end": 13428.67, + "probability": 0.2098 + }, + { + "start": 13432.56, + "end": 13440.51, + "probability": 0.7298 + }, + { + "start": 13444.28, + "end": 13447.7, + "probability": 0.443 + }, + { + "start": 13449.5, + "end": 13450.4, + "probability": 0.5871 + }, + { + "start": 13452.44, + "end": 13454.88, + "probability": 0.6563 + }, + { + "start": 13455.3, + "end": 13458.96, + "probability": 0.5743 + }, + { + "start": 13458.98, + "end": 13462.68, + "probability": 0.4893 + }, + { + "start": 13462.86, + "end": 13464.28, + "probability": 0.9121 + }, + { + "start": 13464.54, + "end": 13466.5, + "probability": 0.8003 + }, + { + "start": 13466.82, + "end": 13469.29, + "probability": 0.6791 + }, + { + "start": 13470.28, + "end": 13470.77, + "probability": 0.2174 + }, + { + "start": 13472.46, + "end": 13475.16, + "probability": 0.5674 + }, + { + "start": 13476.8, + "end": 13478.78, + "probability": 0.6171 + }, + { + "start": 13480.2, + "end": 13481.86, + "probability": 0.6932 + }, + { + "start": 13484.27, + "end": 13485.68, + "probability": 0.147 + }, + { + "start": 13485.68, + "end": 13487.33, + "probability": 0.4374 + }, + { + "start": 13487.9, + "end": 13490.42, + "probability": 0.5868 + }, + { + "start": 13491.06, + "end": 13492.1, + "probability": 0.2938 + }, + { + "start": 13496.04, + "end": 13497.48, + "probability": 0.1996 + }, + { + "start": 13499.04, + "end": 13502.52, + "probability": 0.1563 + }, + { + "start": 13502.62, + "end": 13505.94, + "probability": 0.6161 + }, + { + "start": 13507.98, + "end": 13511.2, + "probability": 0.7614 + }, + { + "start": 13512.28, + "end": 13515.68, + "probability": 0.7799 + }, + { + "start": 13516.74, + "end": 13519.42, + "probability": 0.7324 + }, + { + "start": 13520.46, + "end": 13523.12, + "probability": 0.8683 + }, + { + "start": 13525.36, + "end": 13529.2, + "probability": 0.2414 + }, + { + "start": 13530.78, + "end": 13533.44, + "probability": 0.5388 + }, + { + "start": 13534.96, + "end": 13537.42, + "probability": 0.417 + }, + { + "start": 13537.44, + "end": 13537.44, + "probability": 0.3986 + }, + { + "start": 13537.68, + "end": 13538.6, + "probability": 0.2859 + }, + { + "start": 13539.18, + "end": 13540.24, + "probability": 0.7632 + }, + { + "start": 13540.26, + "end": 13540.26, + "probability": 0.9233 + }, + { + "start": 13540.28, + "end": 13541.68, + "probability": 0.6883 + }, + { + "start": 13542.06, + "end": 13543.08, + "probability": 0.1395 + }, + { + "start": 13544.74, + "end": 13545.16, + "probability": 0.0114 + }, + { + "start": 13545.16, + "end": 13547.62, + "probability": 0.3879 + }, + { + "start": 13548.66, + "end": 13549.46, + "probability": 0.2134 + }, + { + "start": 13549.52, + "end": 13551.15, + "probability": 0.2933 + }, + { + "start": 13555.42, + "end": 13555.66, + "probability": 0.181 + }, + { + "start": 13556.78, + "end": 13558.96, + "probability": 0.2888 + }, + { + "start": 13559.34, + "end": 13559.84, + "probability": 0.0311 + }, + { + "start": 13559.84, + "end": 13560.72, + "probability": 0.0261 + }, + { + "start": 13562.48, + "end": 13564.32, + "probability": 0.3862 + }, + { + "start": 13564.88, + "end": 13566.0, + "probability": 0.4284 + }, + { + "start": 13567.5, + "end": 13569.84, + "probability": 0.6397 + }, + { + "start": 13572.0, + "end": 13580.74, + "probability": 0.6678 + }, + { + "start": 13582.04, + "end": 13584.96, + "probability": 0.8245 + }, + { + "start": 13586.1, + "end": 13592.98, + "probability": 0.8247 + }, + { + "start": 13594.64, + "end": 13596.52, + "probability": 0.9758 + }, + { + "start": 13600.12, + "end": 13601.08, + "probability": 0.7084 + }, + { + "start": 13602.26, + "end": 13605.56, + "probability": 0.6497 + }, + { + "start": 13606.68, + "end": 13609.94, + "probability": 0.1204 + }, + { + "start": 13609.94, + "end": 13611.9, + "probability": 0.0312 + }, + { + "start": 13612.5, + "end": 13613.08, + "probability": 0.0955 + }, + { + "start": 13613.08, + "end": 13613.08, + "probability": 0.039 + }, + { + "start": 13613.08, + "end": 13613.99, + "probability": 0.4091 + }, + { + "start": 13615.14, + "end": 13617.68, + "probability": 0.3243 + }, + { + "start": 13618.62, + "end": 13621.34, + "probability": 0.4106 + }, + { + "start": 13623.4, + "end": 13625.44, + "probability": 0.5083 + }, + { + "start": 13627.02, + "end": 13629.36, + "probability": 0.5075 + }, + { + "start": 13629.9, + "end": 13631.4, + "probability": 0.5001 + }, + { + "start": 13633.56, + "end": 13633.86, + "probability": 0.8825 + }, + { + "start": 13634.54, + "end": 13639.2, + "probability": 0.3543 + }, + { + "start": 13640.82, + "end": 13642.72, + "probability": 0.3141 + }, + { + "start": 13642.9, + "end": 13645.5, + "probability": 0.6958 + }, + { + "start": 13645.52, + "end": 13646.52, + "probability": 0.8276 + }, + { + "start": 13646.68, + "end": 13649.08, + "probability": 0.9604 + }, + { + "start": 13649.4, + "end": 13649.98, + "probability": 0.768 + }, + { + "start": 13650.74, + "end": 13653.58, + "probability": 0.7784 + }, + { + "start": 13654.18, + "end": 13654.34, + "probability": 0.0376 + }, + { + "start": 13654.34, + "end": 13656.07, + "probability": 0.6408 + }, + { + "start": 13656.72, + "end": 13659.68, + "probability": 0.3431 + }, + { + "start": 13659.9, + "end": 13660.12, + "probability": 0.0557 + }, + { + "start": 13660.12, + "end": 13660.19, + "probability": 0.3699 + }, + { + "start": 13661.06, + "end": 13664.48, + "probability": 0.7094 + }, + { + "start": 13665.6, + "end": 13668.32, + "probability": 0.7525 + }, + { + "start": 13669.34, + "end": 13671.88, + "probability": 0.8203 + }, + { + "start": 13672.9, + "end": 13673.5, + "probability": 0.8433 + }, + { + "start": 13678.34, + "end": 13679.72, + "probability": 0.0858 + }, + { + "start": 13680.98, + "end": 13683.12, + "probability": 0.681 + }, + { + "start": 13685.84, + "end": 13688.72, + "probability": 0.6752 + }, + { + "start": 13689.58, + "end": 13695.5, + "probability": 0.8052 + }, + { + "start": 13697.46, + "end": 13699.72, + "probability": 0.1351 + }, + { + "start": 13700.48, + "end": 13703.0, + "probability": 0.0473 + }, + { + "start": 13705.88, + "end": 13705.88, + "probability": 0.032 + }, + { + "start": 13705.88, + "end": 13705.88, + "probability": 0.055 + }, + { + "start": 13705.88, + "end": 13705.88, + "probability": 0.0295 + }, + { + "start": 13705.88, + "end": 13706.58, + "probability": 0.2129 + }, + { + "start": 13707.46, + "end": 13708.12, + "probability": 0.4845 + }, + { + "start": 13709.46, + "end": 13710.42, + "probability": 0.4696 + }, + { + "start": 13711.7, + "end": 13721.12, + "probability": 0.6591 + }, + { + "start": 13722.66, + "end": 13724.8, + "probability": 0.6747 + }, + { + "start": 13726.12, + "end": 13731.36, + "probability": 0.6185 + }, + { + "start": 13731.58, + "end": 13736.1, + "probability": 0.2761 + }, + { + "start": 13736.32, + "end": 13739.22, + "probability": 0.9423 + }, + { + "start": 13739.22, + "end": 13739.36, + "probability": 0.0122 + }, + { + "start": 13741.98, + "end": 13743.58, + "probability": 0.3122 + }, + { + "start": 13745.1, + "end": 13746.04, + "probability": 0.1133 + }, + { + "start": 13746.42, + "end": 13748.5, + "probability": 0.5702 + }, + { + "start": 13748.62, + "end": 13750.97, + "probability": 0.4662 + }, + { + "start": 13751.46, + "end": 13755.16, + "probability": 0.6154 + }, + { + "start": 13756.0, + "end": 13761.88, + "probability": 0.5522 + }, + { + "start": 13768.12, + "end": 13769.3, + "probability": 0.0471 + }, + { + "start": 13771.12, + "end": 13779.86, + "probability": 0.6191 + }, + { + "start": 13781.38, + "end": 13784.14, + "probability": 0.9372 + }, + { + "start": 13785.5, + "end": 13788.6, + "probability": 0.8392 + }, + { + "start": 13790.96, + "end": 13792.73, + "probability": 0.7681 + }, + { + "start": 13800.44, + "end": 13803.46, + "probability": 0.3491 + }, + { + "start": 13805.28, + "end": 13808.18, + "probability": 0.5191 + }, + { + "start": 13809.44, + "end": 13813.02, + "probability": 0.6538 + }, + { + "start": 13814.18, + "end": 13816.56, + "probability": 0.794 + }, + { + "start": 13817.66, + "end": 13820.3, + "probability": 0.9071 + }, + { + "start": 13821.28, + "end": 13824.1, + "probability": 0.8334 + }, + { + "start": 13825.0, + "end": 13827.26, + "probability": 0.7785 + }, + { + "start": 13828.28, + "end": 13830.68, + "probability": 0.4858 + }, + { + "start": 13831.74, + "end": 13832.66, + "probability": 0.6039 + }, + { + "start": 13836.12, + "end": 13836.24, + "probability": 0.0207 + }, + { + "start": 13837.7, + "end": 13839.92, + "probability": 0.1902 + }, + { + "start": 13840.56, + "end": 13843.7, + "probability": 0.5918 + }, + { + "start": 13844.41, + "end": 13847.76, + "probability": 0.868 + }, + { + "start": 13848.68, + "end": 13850.66, + "probability": 0.7349 + }, + { + "start": 13852.2, + "end": 13855.7, + "probability": 0.6999 + }, + { + "start": 13856.74, + "end": 13860.48, + "probability": 0.9824 + }, + { + "start": 13861.16, + "end": 13865.64, + "probability": 0.9484 + }, + { + "start": 13868.14, + "end": 13868.7, + "probability": 0.6435 + }, + { + "start": 13870.2, + "end": 13872.86, + "probability": 0.6078 + }, + { + "start": 13873.98, + "end": 13879.86, + "probability": 0.9515 + }, + { + "start": 13880.92, + "end": 13883.18, + "probability": 0.8566 + }, + { + "start": 13884.18, + "end": 13891.1, + "probability": 0.813 + }, + { + "start": 13891.86, + "end": 13894.84, + "probability": 0.5971 + }, + { + "start": 13896.3, + "end": 13896.76, + "probability": 0.9723 + }, + { + "start": 13897.64, + "end": 13898.46, + "probability": 0.4956 + }, + { + "start": 13900.0, + "end": 13900.62, + "probability": 0.0303 + }, + { + "start": 13901.8, + "end": 13902.98, + "probability": 0.7558 + }, + { + "start": 13904.12, + "end": 13907.3, + "probability": 0.565 + }, + { + "start": 13910.32, + "end": 13913.28, + "probability": 0.1874 + }, + { + "start": 13914.6, + "end": 13914.6, + "probability": 0.0701 + }, + { + "start": 13914.6, + "end": 13914.6, + "probability": 0.0554 + }, + { + "start": 13914.6, + "end": 13915.8, + "probability": 0.5617 + }, + { + "start": 13915.96, + "end": 13916.78, + "probability": 0.25 + }, + { + "start": 13916.88, + "end": 13918.92, + "probability": 0.7283 + }, + { + "start": 13920.26, + "end": 13922.5, + "probability": 0.7785 + }, + { + "start": 13924.04, + "end": 13924.4, + "probability": 0.5056 + }, + { + "start": 13925.08, + "end": 13926.08, + "probability": 0.644 + }, + { + "start": 13927.4, + "end": 13929.86, + "probability": 0.8232 + }, + { + "start": 13932.08, + "end": 13933.82, + "probability": 0.9144 + }, + { + "start": 13936.1, + "end": 13944.46, + "probability": 0.6793 + }, + { + "start": 13945.66, + "end": 13949.58, + "probability": 0.7465 + }, + { + "start": 13950.22, + "end": 13951.52, + "probability": 0.5193 + }, + { + "start": 13953.26, + "end": 13954.52, + "probability": 0.2857 + }, + { + "start": 13955.16, + "end": 13960.08, + "probability": 0.7752 + }, + { + "start": 13962.18, + "end": 13963.14, + "probability": 0.9813 + }, + { + "start": 13964.06, + "end": 13964.92, + "probability": 0.4728 + }, + { + "start": 13965.98, + "end": 13966.8, + "probability": 0.8444 + }, + { + "start": 13969.02, + "end": 13969.98, + "probability": 0.6803 + }, + { + "start": 13971.78, + "end": 13975.52, + "probability": 0.7644 + }, + { + "start": 13976.26, + "end": 13977.98, + "probability": 0.5161 + }, + { + "start": 13984.3, + "end": 13985.74, + "probability": 0.3877 + }, + { + "start": 13987.88, + "end": 13990.98, + "probability": 0.7247 + }, + { + "start": 13992.08, + "end": 13996.14, + "probability": 0.7792 + }, + { + "start": 13997.88, + "end": 13999.74, + "probability": 0.7166 + }, + { + "start": 14008.24, + "end": 14009.78, + "probability": 0.6265 + }, + { + "start": 14010.36, + "end": 14013.42, + "probability": 0.782 + }, + { + "start": 14015.64, + "end": 14019.36, + "probability": 0.6352 + }, + { + "start": 14020.04, + "end": 14024.64, + "probability": 0.842 + }, + { + "start": 14025.64, + "end": 14030.2, + "probability": 0.7606 + }, + { + "start": 14032.3, + "end": 14038.72, + "probability": 0.6148 + }, + { + "start": 14039.98, + "end": 14042.38, + "probability": 0.7661 + }, + { + "start": 14043.48, + "end": 14048.7, + "probability": 0.9576 + }, + { + "start": 14049.26, + "end": 14050.16, + "probability": 0.1323 + }, + { + "start": 14052.16, + "end": 14055.74, + "probability": 0.3401 + }, + { + "start": 14056.54, + "end": 14058.66, + "probability": 0.7319 + }, + { + "start": 14060.46, + "end": 14064.42, + "probability": 0.7325 + }, + { + "start": 14066.28, + "end": 14071.46, + "probability": 0.6761 + }, + { + "start": 14073.02, + "end": 14077.11, + "probability": 0.7425 + }, + { + "start": 14078.4, + "end": 14080.3, + "probability": 0.2691 + }, + { + "start": 14082.16, + "end": 14082.8, + "probability": 0.667 + }, + { + "start": 14092.06, + "end": 14094.1, + "probability": 0.6277 + }, + { + "start": 14095.06, + "end": 14096.38, + "probability": 0.7446 + }, + { + "start": 14096.38, + "end": 14097.42, + "probability": 0.8678 + }, + { + "start": 14099.0, + "end": 14102.1, + "probability": 0.9349 + }, + { + "start": 14106.1, + "end": 14107.74, + "probability": 0.4581 + }, + { + "start": 14108.86, + "end": 14111.32, + "probability": 0.6853 + }, + { + "start": 14112.66, + "end": 14116.02, + "probability": 0.8683 + }, + { + "start": 14117.66, + "end": 14120.08, + "probability": 0.9641 + }, + { + "start": 14120.7, + "end": 14123.02, + "probability": 0.7442 + }, + { + "start": 14123.7, + "end": 14125.46, + "probability": 0.8365 + }, + { + "start": 14126.94, + "end": 14127.84, + "probability": 0.3904 + }, + { + "start": 14130.64, + "end": 14132.6, + "probability": 0.5636 + }, + { + "start": 14134.08, + "end": 14138.22, + "probability": 0.7545 + }, + { + "start": 14139.28, + "end": 14141.26, + "probability": 0.8749 + }, + { + "start": 14142.12, + "end": 14144.16, + "probability": 0.9711 + }, + { + "start": 14145.26, + "end": 14147.42, + "probability": 0.9549 + }, + { + "start": 14148.52, + "end": 14150.64, + "probability": 0.9647 + }, + { + "start": 14151.7, + "end": 14154.66, + "probability": 0.885 + }, + { + "start": 14155.48, + "end": 14161.82, + "probability": 0.8505 + }, + { + "start": 14162.64, + "end": 14165.45, + "probability": 0.835 + }, + { + "start": 14171.0, + "end": 14178.46, + "probability": 0.6671 + }, + { + "start": 14179.54, + "end": 14185.44, + "probability": 0.6496 + }, + { + "start": 14186.0, + "end": 14187.2, + "probability": 0.7775 + }, + { + "start": 14187.96, + "end": 14193.44, + "probability": 0.7792 + }, + { + "start": 14194.86, + "end": 14196.94, + "probability": 0.8288 + }, + { + "start": 14198.32, + "end": 14200.48, + "probability": 0.9508 + }, + { + "start": 14203.24, + "end": 14208.62, + "probability": 0.3918 + }, + { + "start": 14210.0, + "end": 14213.48, + "probability": 0.819 + }, + { + "start": 14214.24, + "end": 14219.22, + "probability": 0.931 + }, + { + "start": 14220.08, + "end": 14222.76, + "probability": 0.6817 + }, + { + "start": 14223.32, + "end": 14225.82, + "probability": 0.9014 + }, + { + "start": 14226.82, + "end": 14229.07, + "probability": 0.9556 + }, + { + "start": 14229.21, + "end": 14229.93, + "probability": 0.5529 + }, + { + "start": 14231.05, + "end": 14238.43, + "probability": 0.6545 + }, + { + "start": 14239.59, + "end": 14248.15, + "probability": 0.9707 + }, + { + "start": 14249.13, + "end": 14253.29, + "probability": 0.9449 + }, + { + "start": 14253.37, + "end": 14254.4, + "probability": 0.2529 + }, + { + "start": 14255.99, + "end": 14264.81, + "probability": 0.9055 + }, + { + "start": 14264.99, + "end": 14265.17, + "probability": 0.4235 + }, + { + "start": 14265.31, + "end": 14269.25, + "probability": 0.7072 + }, + { + "start": 14271.14, + "end": 14271.37, + "probability": 0.1359 + }, + { + "start": 14295.01, + "end": 14295.67, + "probability": 0.1121 + }, + { + "start": 14295.67, + "end": 14296.77, + "probability": 0.4285 + }, + { + "start": 14309.67, + "end": 14312.07, + "probability": 0.1634 + }, + { + "start": 14313.63, + "end": 14314.16, + "probability": 0.6143 + }, + { + "start": 14314.51, + "end": 14317.51, + "probability": 0.9154 + }, + { + "start": 14318.13, + "end": 14321.17, + "probability": 0.9951 + }, + { + "start": 14322.69, + "end": 14324.85, + "probability": 0.5571 + }, + { + "start": 14325.37, + "end": 14326.37, + "probability": 0.9443 + }, + { + "start": 14326.49, + "end": 14327.88, + "probability": 0.9653 + }, + { + "start": 14328.63, + "end": 14330.38, + "probability": 0.9043 + }, + { + "start": 14331.01, + "end": 14333.11, + "probability": 0.766 + }, + { + "start": 14333.73, + "end": 14333.73, + "probability": 0.1162 + }, + { + "start": 14334.73, + "end": 14339.71, + "probability": 0.1373 + }, + { + "start": 14340.07, + "end": 14344.35, + "probability": 0.2291 + }, + { + "start": 14346.53, + "end": 14347.31, + "probability": 0.4789 + }, + { + "start": 14353.71, + "end": 14354.07, + "probability": 0.0203 + }, + { + "start": 14360.94, + "end": 14363.97, + "probability": 0.3176 + }, + { + "start": 14365.78, + "end": 14366.7, + "probability": 0.0412 + }, + { + "start": 14366.98, + "end": 14369.93, + "probability": 0.0984 + }, + { + "start": 14372.64, + "end": 14374.32, + "probability": 0.1377 + }, + { + "start": 14376.04, + "end": 14378.78, + "probability": 0.3156 + }, + { + "start": 14380.64, + "end": 14381.12, + "probability": 0.1706 + }, + { + "start": 14391.46, + "end": 14391.8, + "probability": 0.0308 + }, + { + "start": 14392.42, + "end": 14395.7, + "probability": 0.1637 + }, + { + "start": 14395.74, + "end": 14396.26, + "probability": 0.2961 + }, + { + "start": 14396.26, + "end": 14396.62, + "probability": 0.255 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14485.0, + "end": 14485.0, + "probability": 0.0 + }, + { + "start": 14487.3, + "end": 14489.24, + "probability": 0.3773 + }, + { + "start": 14491.86, + "end": 14493.22, + "probability": 0.0271 + }, + { + "start": 14493.76, + "end": 14495.52, + "probability": 0.6673 + }, + { + "start": 14495.78, + "end": 14498.84, + "probability": 0.6215 + }, + { + "start": 14499.5, + "end": 14500.1, + "probability": 0.161 + }, + { + "start": 14500.12, + "end": 14500.8, + "probability": 0.4331 + }, + { + "start": 14501.3, + "end": 14503.66, + "probability": 0.9438 + }, + { + "start": 14503.8, + "end": 14506.5, + "probability": 0.9956 + }, + { + "start": 14507.32, + "end": 14508.32, + "probability": 0.1185 + }, + { + "start": 14509.86, + "end": 14511.16, + "probability": 0.019 + }, + { + "start": 14511.3, + "end": 14511.76, + "probability": 0.0864 + }, + { + "start": 14511.78, + "end": 14513.21, + "probability": 0.0138 + }, + { + "start": 14513.32, + "end": 14514.5, + "probability": 0.6257 + }, + { + "start": 14514.88, + "end": 14518.34, + "probability": 0.7998 + }, + { + "start": 14518.52, + "end": 14520.04, + "probability": 0.4102 + }, + { + "start": 14520.38, + "end": 14523.12, + "probability": 0.9666 + }, + { + "start": 14535.4, + "end": 14536.8, + "probability": 0.9482 + }, + { + "start": 14538.9, + "end": 14540.86, + "probability": 0.6132 + }, + { + "start": 14541.08, + "end": 14541.26, + "probability": 0.8585 + }, + { + "start": 14541.26, + "end": 14541.64, + "probability": 0.7402 + }, + { + "start": 14541.76, + "end": 14543.18, + "probability": 0.753 + }, + { + "start": 14543.86, + "end": 14543.98, + "probability": 0.7703 + }, + { + "start": 14544.06, + "end": 14545.62, + "probability": 0.9237 + }, + { + "start": 14546.1, + "end": 14548.25, + "probability": 0.9655 + }, + { + "start": 14548.96, + "end": 14556.0, + "probability": 0.9766 + }, + { + "start": 14556.02, + "end": 14558.32, + "probability": 0.6635 + }, + { + "start": 14559.68, + "end": 14565.8, + "probability": 0.9861 + }, + { + "start": 14566.76, + "end": 14569.72, + "probability": 0.9946 + }, + { + "start": 14569.72, + "end": 14574.08, + "probability": 0.9995 + }, + { + "start": 14575.16, + "end": 14575.72, + "probability": 0.743 + }, + { + "start": 14576.02, + "end": 14582.98, + "probability": 0.9766 + }, + { + "start": 14583.76, + "end": 14589.82, + "probability": 0.9646 + }, + { + "start": 14591.48, + "end": 14593.02, + "probability": 0.6838 + }, + { + "start": 14594.88, + "end": 14595.56, + "probability": 0.7381 + }, + { + "start": 14595.66, + "end": 14599.91, + "probability": 0.9914 + }, + { + "start": 14601.42, + "end": 14601.42, + "probability": 0.1478 + }, + { + "start": 14601.42, + "end": 14601.92, + "probability": 0.2748 + }, + { + "start": 14601.98, + "end": 14602.92, + "probability": 0.4843 + }, + { + "start": 14604.28, + "end": 14606.94, + "probability": 0.384 + }, + { + "start": 14607.0, + "end": 14609.32, + "probability": 0.6916 + }, + { + "start": 14609.42, + "end": 14610.38, + "probability": 0.8119 + }, + { + "start": 14610.52, + "end": 14611.54, + "probability": 0.6802 + }, + { + "start": 14611.54, + "end": 14612.2, + "probability": 0.0145 + }, + { + "start": 14612.52, + "end": 14612.7, + "probability": 0.0287 + }, + { + "start": 14612.7, + "end": 14613.6, + "probability": 0.2176 + }, + { + "start": 14613.66, + "end": 14617.64, + "probability": 0.4048 + }, + { + "start": 14618.36, + "end": 14619.44, + "probability": 0.113 + }, + { + "start": 14622.06, + "end": 14622.78, + "probability": 0.5991 + }, + { + "start": 14622.78, + "end": 14622.78, + "probability": 0.1259 + }, + { + "start": 14622.78, + "end": 14623.32, + "probability": 0.6966 + }, + { + "start": 14623.58, + "end": 14625.56, + "probability": 0.3696 + }, + { + "start": 14625.84, + "end": 14626.08, + "probability": 0.2774 + }, + { + "start": 14626.62, + "end": 14631.2, + "probability": 0.6527 + }, + { + "start": 14631.76, + "end": 14633.6, + "probability": 0.5187 + }, + { + "start": 14633.82, + "end": 14634.58, + "probability": 0.4034 + }, + { + "start": 14634.74, + "end": 14635.62, + "probability": 0.2499 + }, + { + "start": 14635.62, + "end": 14635.68, + "probability": 0.0365 + }, + { + "start": 14635.68, + "end": 14637.24, + "probability": 0.8018 + }, + { + "start": 14637.26, + "end": 14639.12, + "probability": 0.9904 + }, + { + "start": 14640.36, + "end": 14640.42, + "probability": 0.047 + }, + { + "start": 14640.42, + "end": 14641.71, + "probability": 0.1777 + }, + { + "start": 14642.1, + "end": 14644.02, + "probability": 0.5534 + }, + { + "start": 14647.14, + "end": 14650.6, + "probability": 0.7455 + }, + { + "start": 14650.86, + "end": 14652.82, + "probability": 0.4348 + }, + { + "start": 14652.86, + "end": 14659.5, + "probability": 0.8325 + }, + { + "start": 14659.5, + "end": 14666.28, + "probability": 0.9971 + }, + { + "start": 14666.86, + "end": 14669.1, + "probability": 0.9773 + }, + { + "start": 14669.32, + "end": 14671.12, + "probability": 0.8545 + }, + { + "start": 14671.28, + "end": 14672.0, + "probability": 0.0207 + }, + { + "start": 14672.4, + "end": 14672.5, + "probability": 0.323 + }, + { + "start": 14672.5, + "end": 14672.96, + "probability": 0.4387 + }, + { + "start": 14673.1, + "end": 14675.96, + "probability": 0.847 + }, + { + "start": 14676.2, + "end": 14676.26, + "probability": 0.0485 + }, + { + "start": 14676.26, + "end": 14680.08, + "probability": 0.9437 + }, + { + "start": 14681.04, + "end": 14683.68, + "probability": 0.0745 + }, + { + "start": 14684.96, + "end": 14684.96, + "probability": 0.0823 + }, + { + "start": 14684.96, + "end": 14685.8, + "probability": 0.1291 + }, + { + "start": 14686.46, + "end": 14686.88, + "probability": 0.4218 + }, + { + "start": 14686.94, + "end": 14687.56, + "probability": 0.8154 + }, + { + "start": 14687.68, + "end": 14688.24, + "probability": 0.4577 + }, + { + "start": 14688.62, + "end": 14692.72, + "probability": 0.854 + }, + { + "start": 14693.22, + "end": 14693.22, + "probability": 0.0642 + }, + { + "start": 14693.22, + "end": 14694.64, + "probability": 0.1499 + }, + { + "start": 14695.1, + "end": 14697.58, + "probability": 0.4031 + }, + { + "start": 14697.66, + "end": 14698.46, + "probability": 0.589 + }, + { + "start": 14698.46, + "end": 14699.65, + "probability": 0.6008 + }, + { + "start": 14700.12, + "end": 14704.78, + "probability": 0.2624 + }, + { + "start": 14705.04, + "end": 14705.7, + "probability": 0.7369 + }, + { + "start": 14706.76, + "end": 14709.74, + "probability": 0.7278 + }, + { + "start": 14713.42, + "end": 14715.26, + "probability": 0.4426 + }, + { + "start": 14716.3, + "end": 14717.34, + "probability": 0.8557 + }, + { + "start": 14718.28, + "end": 14719.47, + "probability": 0.2212 + }, + { + "start": 14720.6, + "end": 14723.24, + "probability": 0.9907 + }, + { + "start": 14723.28, + "end": 14727.8, + "probability": 0.9586 + }, + { + "start": 14728.6, + "end": 14730.1, + "probability": 0.8755 + }, + { + "start": 14730.22, + "end": 14730.52, + "probability": 0.1268 + }, + { + "start": 14731.14, + "end": 14733.92, + "probability": 0.372 + }, + { + "start": 14733.92, + "end": 14735.07, + "probability": 0.5722 + }, + { + "start": 14735.38, + "end": 14737.28, + "probability": 0.2457 + }, + { + "start": 14737.32, + "end": 14738.9, + "probability": 0.6882 + }, + { + "start": 14739.16, + "end": 14739.46, + "probability": 0.854 + }, + { + "start": 14741.5, + "end": 14745.8, + "probability": 0.9963 + }, + { + "start": 14746.86, + "end": 14750.7, + "probability": 0.9979 + }, + { + "start": 14751.56, + "end": 14758.2, + "probability": 0.9349 + }, + { + "start": 14758.42, + "end": 14759.2, + "probability": 0.8776 + }, + { + "start": 14759.68, + "end": 14761.76, + "probability": 0.9989 + }, + { + "start": 14762.38, + "end": 14763.34, + "probability": 0.9355 + }, + { + "start": 14764.8, + "end": 14766.86, + "probability": 0.7856 + }, + { + "start": 14766.94, + "end": 14773.34, + "probability": 0.9919 + }, + { + "start": 14776.36, + "end": 14780.56, + "probability": 0.9374 + }, + { + "start": 14780.58, + "end": 14781.48, + "probability": 0.4948 + }, + { + "start": 14782.58, + "end": 14784.92, + "probability": 0.7632 + }, + { + "start": 14787.04, + "end": 14787.76, + "probability": 0.0305 + }, + { + "start": 14789.47, + "end": 14792.56, + "probability": 0.2267 + }, + { + "start": 14792.7, + "end": 14793.96, + "probability": 0.5814 + }, + { + "start": 14794.06, + "end": 14794.98, + "probability": 0.3569 + }, + { + "start": 14795.22, + "end": 14796.4, + "probability": 0.9605 + }, + { + "start": 14797.1, + "end": 14802.96, + "probability": 0.9883 + }, + { + "start": 14803.06, + "end": 14803.41, + "probability": 0.9243 + }, + { + "start": 14803.8, + "end": 14805.52, + "probability": 0.9639 + }, + { + "start": 14805.52, + "end": 14807.48, + "probability": 0.5582 + }, + { + "start": 14807.48, + "end": 14807.48, + "probability": 0.2802 + }, + { + "start": 14807.48, + "end": 14808.56, + "probability": 0.622 + }, + { + "start": 14808.66, + "end": 14811.24, + "probability": 0.8931 + }, + { + "start": 14811.24, + "end": 14811.58, + "probability": 0.7034 + }, + { + "start": 14812.18, + "end": 14812.2, + "probability": 0.0202 + }, + { + "start": 14812.22, + "end": 14813.84, + "probability": 0.7944 + }, + { + "start": 14813.96, + "end": 14814.56, + "probability": 0.7149 + }, + { + "start": 14815.08, + "end": 14817.54, + "probability": 0.54 + }, + { + "start": 14817.98, + "end": 14818.34, + "probability": 0.3583 + }, + { + "start": 14818.34, + "end": 14821.7, + "probability": 0.5221 + }, + { + "start": 14822.42, + "end": 14825.04, + "probability": 0.5371 + }, + { + "start": 14825.64, + "end": 14827.12, + "probability": 0.1842 + }, + { + "start": 14827.98, + "end": 14828.0, + "probability": 0.1204 + }, + { + "start": 14828.22, + "end": 14828.76, + "probability": 0.1268 + }, + { + "start": 14828.8, + "end": 14829.26, + "probability": 0.6569 + }, + { + "start": 14829.32, + "end": 14829.84, + "probability": 0.6765 + }, + { + "start": 14830.02, + "end": 14831.84, + "probability": 0.9927 + }, + { + "start": 14833.36, + "end": 14834.02, + "probability": 0.9458 + }, + { + "start": 14834.28, + "end": 14838.94, + "probability": 0.9971 + }, + { + "start": 14839.66, + "end": 14843.22, + "probability": 0.9764 + }, + { + "start": 14843.86, + "end": 14846.6, + "probability": 0.9972 + }, + { + "start": 14846.86, + "end": 14847.88, + "probability": 0.7529 + }, + { + "start": 14848.42, + "end": 14849.74, + "probability": 0.8223 + }, + { + "start": 14851.08, + "end": 14855.4, + "probability": 0.9858 + }, + { + "start": 14855.82, + "end": 14860.48, + "probability": 0.994 + }, + { + "start": 14860.82, + "end": 14864.36, + "probability": 0.9918 + }, + { + "start": 14865.1, + "end": 14868.84, + "probability": 0.8971 + }, + { + "start": 14869.56, + "end": 14874.65, + "probability": 0.9849 + }, + { + "start": 14874.82, + "end": 14878.6, + "probability": 0.952 + }, + { + "start": 14879.72, + "end": 14882.84, + "probability": 0.7405 + }, + { + "start": 14882.9, + "end": 14883.88, + "probability": 0.9966 + }, + { + "start": 14884.46, + "end": 14888.59, + "probability": 0.9904 + }, + { + "start": 14891.65, + "end": 14892.96, + "probability": 0.1693 + }, + { + "start": 14892.96, + "end": 14892.96, + "probability": 0.0345 + }, + { + "start": 14892.96, + "end": 14895.45, + "probability": 0.649 + }, + { + "start": 14895.98, + "end": 14897.81, + "probability": 0.8405 + }, + { + "start": 14898.42, + "end": 14899.62, + "probability": 0.4618 + }, + { + "start": 14899.68, + "end": 14900.59, + "probability": 0.7675 + }, + { + "start": 14900.7, + "end": 14903.52, + "probability": 0.7095 + }, + { + "start": 14904.56, + "end": 14905.7, + "probability": 0.0042 + }, + { + "start": 14905.7, + "end": 14906.4, + "probability": 0.5551 + }, + { + "start": 14906.6, + "end": 14909.14, + "probability": 0.5129 + }, + { + "start": 14910.24, + "end": 14911.84, + "probability": 0.1673 + }, + { + "start": 14914.68, + "end": 14917.28, + "probability": 0.7877 + }, + { + "start": 14917.32, + "end": 14920.96, + "probability": 0.9042 + }, + { + "start": 14921.04, + "end": 14922.58, + "probability": 0.9832 + }, + { + "start": 14924.0, + "end": 14927.28, + "probability": 0.9756 + }, + { + "start": 14927.46, + "end": 14929.72, + "probability": 0.9947 + }, + { + "start": 14930.5, + "end": 14933.62, + "probability": 0.9607 + }, + { + "start": 14933.62, + "end": 14936.7, + "probability": 0.9988 + }, + { + "start": 14937.2, + "end": 14941.3, + "probability": 0.972 + }, + { + "start": 14941.3, + "end": 14944.1, + "probability": 0.9821 + }, + { + "start": 14944.96, + "end": 14947.54, + "probability": 0.9127 + }, + { + "start": 14948.4, + "end": 14950.01, + "probability": 0.9973 + }, + { + "start": 14950.84, + "end": 14951.28, + "probability": 0.6144 + }, + { + "start": 14952.36, + "end": 14953.22, + "probability": 0.4878 + }, + { + "start": 14953.82, + "end": 14954.72, + "probability": 0.5967 + }, + { + "start": 14954.98, + "end": 14956.92, + "probability": 0.6427 + }, + { + "start": 14957.42, + "end": 14959.5, + "probability": 0.6331 + }, + { + "start": 14961.04, + "end": 14961.66, + "probability": 0.2209 + }, + { + "start": 14961.8, + "end": 14962.58, + "probability": 0.7433 + }, + { + "start": 14962.62, + "end": 14963.94, + "probability": 0.9907 + }, + { + "start": 14964.64, + "end": 14966.3, + "probability": 0.0549 + }, + { + "start": 14966.48, + "end": 14966.86, + "probability": 0.2304 + }, + { + "start": 14968.14, + "end": 14972.48, + "probability": 0.9958 + }, + { + "start": 14973.6, + "end": 14979.6, + "probability": 0.9882 + }, + { + "start": 14979.98, + "end": 14985.96, + "probability": 0.9851 + }, + { + "start": 14986.48, + "end": 14987.46, + "probability": 0.8061 + }, + { + "start": 14988.14, + "end": 14992.58, + "probability": 0.937 + }, + { + "start": 14993.58, + "end": 14995.44, + "probability": 0.9792 + }, + { + "start": 14996.04, + "end": 15000.16, + "probability": 0.9967 + }, + { + "start": 15000.62, + "end": 15005.06, + "probability": 0.9629 + }, + { + "start": 15005.98, + "end": 15007.9, + "probability": 0.8818 + }, + { + "start": 15008.04, + "end": 15009.9, + "probability": 0.787 + }, + { + "start": 15009.94, + "end": 15011.12, + "probability": 0.9312 + }, + { + "start": 15011.74, + "end": 15013.28, + "probability": 0.9727 + }, + { + "start": 15013.96, + "end": 15017.88, + "probability": 0.9983 + }, + { + "start": 15020.9, + "end": 15020.9, + "probability": 0.028 + }, + { + "start": 15020.9, + "end": 15025.08, + "probability": 0.8354 + }, + { + "start": 15025.44, + "end": 15025.88, + "probability": 0.7169 + }, + { + "start": 15026.04, + "end": 15027.66, + "probability": 0.6448 + }, + { + "start": 15028.14, + "end": 15030.92, + "probability": 0.918 + }, + { + "start": 15030.98, + "end": 15032.52, + "probability": 0.8579 + }, + { + "start": 15032.98, + "end": 15035.22, + "probability": 0.9162 + }, + { + "start": 15035.78, + "end": 15036.86, + "probability": 0.8716 + }, + { + "start": 15037.04, + "end": 15038.58, + "probability": 0.9054 + }, + { + "start": 15039.0, + "end": 15042.52, + "probability": 0.9901 + }, + { + "start": 15043.22, + "end": 15045.68, + "probability": 0.7759 + }, + { + "start": 15046.5, + "end": 15047.94, + "probability": 0.9199 + }, + { + "start": 15049.3, + "end": 15052.26, + "probability": 0.9873 + }, + { + "start": 15052.98, + "end": 15054.5, + "probability": 0.8827 + }, + { + "start": 15054.62, + "end": 15058.64, + "probability": 0.9985 + }, + { + "start": 15059.42, + "end": 15064.7, + "probability": 0.9626 + }, + { + "start": 15065.4, + "end": 15067.76, + "probability": 0.814 + }, + { + "start": 15068.3, + "end": 15070.98, + "probability": 0.9932 + }, + { + "start": 15070.98, + "end": 15074.42, + "probability": 0.9969 + }, + { + "start": 15075.28, + "end": 15078.06, + "probability": 0.9733 + }, + { + "start": 15078.2, + "end": 15078.76, + "probability": 0.6977 + }, + { + "start": 15078.78, + "end": 15079.66, + "probability": 0.133 + }, + { + "start": 15079.66, + "end": 15081.3, + "probability": 0.9703 + }, + { + "start": 15081.88, + "end": 15083.34, + "probability": 0.9407 + }, + { + "start": 15083.8, + "end": 15086.16, + "probability": 0.9937 + }, + { + "start": 15087.7, + "end": 15089.9, + "probability": 0.9863 + }, + { + "start": 15090.08, + "end": 15090.68, + "probability": 0.8999 + }, + { + "start": 15091.44, + "end": 15095.1, + "probability": 0.9973 + }, + { + "start": 15095.41, + "end": 15099.03, + "probability": 0.9993 + }, + { + "start": 15100.04, + "end": 15103.0, + "probability": 0.9756 + }, + { + "start": 15103.18, + "end": 15107.06, + "probability": 0.9949 + }, + { + "start": 15107.06, + "end": 15110.98, + "probability": 0.9984 + }, + { + "start": 15111.94, + "end": 15118.34, + "probability": 0.9927 + }, + { + "start": 15118.36, + "end": 15120.52, + "probability": 0.9744 + }, + { + "start": 15120.92, + "end": 15121.44, + "probability": 0.6597 + }, + { + "start": 15121.74, + "end": 15123.27, + "probability": 0.9299 + }, + { + "start": 15124.12, + "end": 15131.18, + "probability": 0.9974 + }, + { + "start": 15131.18, + "end": 15136.24, + "probability": 0.9991 + }, + { + "start": 15136.78, + "end": 15141.98, + "probability": 0.9963 + }, + { + "start": 15141.98, + "end": 15148.1, + "probability": 0.9891 + }, + { + "start": 15149.26, + "end": 15152.76, + "probability": 0.9924 + }, + { + "start": 15152.88, + "end": 15157.54, + "probability": 0.9969 + }, + { + "start": 15159.1, + "end": 15161.36, + "probability": 0.9935 + }, + { + "start": 15161.46, + "end": 15162.44, + "probability": 0.8972 + }, + { + "start": 15162.56, + "end": 15165.18, + "probability": 0.4694 + }, + { + "start": 15165.4, + "end": 15169.7, + "probability": 0.7281 + }, + { + "start": 15170.24, + "end": 15170.24, + "probability": 0.2929 + }, + { + "start": 15170.24, + "end": 15170.56, + "probability": 0.2136 + }, + { + "start": 15171.98, + "end": 15172.47, + "probability": 0.9708 + }, + { + "start": 15173.64, + "end": 15177.46, + "probability": 0.9974 + }, + { + "start": 15177.76, + "end": 15183.24, + "probability": 0.7435 + }, + { + "start": 15183.3, + "end": 15184.3, + "probability": 0.6673 + }, + { + "start": 15188.94, + "end": 15189.7, + "probability": 0.173 + }, + { + "start": 15190.44, + "end": 15191.62, + "probability": 0.201 + }, + { + "start": 15191.62, + "end": 15193.7, + "probability": 0.9152 + }, + { + "start": 15194.44, + "end": 15196.98, + "probability": 0.9648 + }, + { + "start": 15197.2, + "end": 15198.53, + "probability": 0.9227 + }, + { + "start": 15198.94, + "end": 15199.48, + "probability": 0.6026 + }, + { + "start": 15200.36, + "end": 15203.8, + "probability": 0.9812 + }, + { + "start": 15203.8, + "end": 15206.56, + "probability": 0.9836 + }, + { + "start": 15207.28, + "end": 15208.78, + "probability": 0.9854 + }, + { + "start": 15208.86, + "end": 15210.16, + "probability": 0.8066 + }, + { + "start": 15210.5, + "end": 15210.98, + "probability": 0.9602 + }, + { + "start": 15211.56, + "end": 15213.58, + "probability": 0.5029 + }, + { + "start": 15213.74, + "end": 15218.78, + "probability": 0.9065 + }, + { + "start": 15220.82, + "end": 15222.48, + "probability": 0.96 + }, + { + "start": 15223.06, + "end": 15227.7, + "probability": 0.9788 + }, + { + "start": 15228.76, + "end": 15230.2, + "probability": 0.9081 + }, + { + "start": 15231.44, + "end": 15232.08, + "probability": 0.0238 + }, + { + "start": 15245.0, + "end": 15246.5, + "probability": 0.0205 + }, + { + "start": 15246.98, + "end": 15248.02, + "probability": 0.1646 + }, + { + "start": 15249.02, + "end": 15253.4, + "probability": 0.6702 + }, + { + "start": 15255.7, + "end": 15258.53, + "probability": 0.9556 + }, + { + "start": 15259.12, + "end": 15261.0, + "probability": 0.9458 + }, + { + "start": 15261.26, + "end": 15263.86, + "probability": 0.3532 + }, + { + "start": 15265.66, + "end": 15270.58, + "probability": 0.9655 + }, + { + "start": 15271.44, + "end": 15272.44, + "probability": 0.2329 + }, + { + "start": 15273.84, + "end": 15276.96, + "probability": 0.9683 + }, + { + "start": 15277.8, + "end": 15283.36, + "probability": 0.9775 + }, + { + "start": 15285.34, + "end": 15288.8, + "probability": 0.9824 + }, + { + "start": 15288.8, + "end": 15291.9, + "probability": 0.9385 + }, + { + "start": 15292.54, + "end": 15295.28, + "probability": 0.9509 + }, + { + "start": 15296.96, + "end": 15301.62, + "probability": 0.9609 + }, + { + "start": 15301.64, + "end": 15306.4, + "probability": 0.9603 + }, + { + "start": 15308.92, + "end": 15311.26, + "probability": 0.7833 + }, + { + "start": 15311.94, + "end": 15313.44, + "probability": 0.7705 + }, + { + "start": 15314.7, + "end": 15318.29, + "probability": 0.9346 + }, + { + "start": 15319.18, + "end": 15322.96, + "probability": 0.973 + }, + { + "start": 15323.58, + "end": 15325.4, + "probability": 0.8418 + }, + { + "start": 15328.8, + "end": 15330.1, + "probability": 0.8245 + }, + { + "start": 15330.3, + "end": 15330.92, + "probability": 0.5937 + }, + { + "start": 15331.04, + "end": 15335.32, + "probability": 0.9669 + }, + { + "start": 15335.5, + "end": 15337.12, + "probability": 0.9347 + }, + { + "start": 15337.8, + "end": 15341.88, + "probability": 0.9418 + }, + { + "start": 15342.72, + "end": 15349.72, + "probability": 0.9728 + }, + { + "start": 15350.94, + "end": 15355.54, + "probability": 0.9775 + }, + { + "start": 15357.42, + "end": 15358.56, + "probability": 0.5461 + }, + { + "start": 15359.18, + "end": 15364.06, + "probability": 0.9806 + }, + { + "start": 15364.06, + "end": 15369.2, + "probability": 0.9537 + }, + { + "start": 15372.56, + "end": 15373.42, + "probability": 0.5524 + }, + { + "start": 15374.2, + "end": 15374.54, + "probability": 0.0097 + }, + { + "start": 15375.96, + "end": 15377.26, + "probability": 0.9778 + }, + { + "start": 15377.4, + "end": 15381.54, + "probability": 0.7664 + }, + { + "start": 15382.22, + "end": 15385.18, + "probability": 0.9309 + }, + { + "start": 15386.6, + "end": 15390.4, + "probability": 0.7679 + }, + { + "start": 15391.32, + "end": 15392.22, + "probability": 0.0232 + }, + { + "start": 15392.22, + "end": 15394.18, + "probability": 0.5482 + }, + { + "start": 15394.46, + "end": 15395.08, + "probability": 0.3373 + }, + { + "start": 15395.68, + "end": 15400.14, + "probability": 0.6232 + }, + { + "start": 15400.4, + "end": 15402.16, + "probability": 0.7063 + }, + { + "start": 15402.16, + "end": 15402.62, + "probability": 0.1817 + }, + { + "start": 15402.82, + "end": 15403.24, + "probability": 0.4483 + }, + { + "start": 15403.24, + "end": 15403.59, + "probability": 0.8613 + }, + { + "start": 15404.38, + "end": 15408.88, + "probability": 0.8722 + }, + { + "start": 15409.0, + "end": 15409.84, + "probability": 0.5904 + }, + { + "start": 15410.73, + "end": 15414.24, + "probability": 0.1343 + }, + { + "start": 15414.24, + "end": 15414.24, + "probability": 0.3718 + }, + { + "start": 15414.24, + "end": 15415.99, + "probability": 0.8673 + }, + { + "start": 15417.3, + "end": 15418.66, + "probability": 0.9069 + }, + { + "start": 15418.82, + "end": 15420.46, + "probability": 0.9663 + }, + { + "start": 15420.6, + "end": 15421.98, + "probability": 0.7389 + }, + { + "start": 15422.04, + "end": 15424.04, + "probability": 0.8084 + }, + { + "start": 15427.2, + "end": 15428.88, + "probability": 0.8036 + }, + { + "start": 15428.98, + "end": 15429.92, + "probability": 0.3254 + }, + { + "start": 15430.1, + "end": 15430.94, + "probability": 0.6983 + }, + { + "start": 15431.18, + "end": 15432.82, + "probability": 0.7429 + }, + { + "start": 15432.9, + "end": 15433.82, + "probability": 0.0188 + }, + { + "start": 15434.36, + "end": 15435.74, + "probability": 0.0779 + }, + { + "start": 15435.74, + "end": 15435.74, + "probability": 0.0052 + }, + { + "start": 15435.76, + "end": 15439.14, + "probability": 0.9747 + }, + { + "start": 15439.14, + "end": 15444.12, + "probability": 0.9205 + }, + { + "start": 15448.3, + "end": 15449.82, + "probability": 0.9183 + }, + { + "start": 15450.0, + "end": 15450.54, + "probability": 0.4782 + }, + { + "start": 15451.02, + "end": 15451.72, + "probability": 0.6179 + }, + { + "start": 15451.84, + "end": 15454.52, + "probability": 0.6877 + }, + { + "start": 15455.72, + "end": 15458.74, + "probability": 0.787 + }, + { + "start": 15459.0, + "end": 15461.58, + "probability": 0.9476 + }, + { + "start": 15461.88, + "end": 15464.16, + "probability": 0.9012 + }, + { + "start": 15464.58, + "end": 15469.22, + "probability": 0.915 + }, + { + "start": 15471.18, + "end": 15474.8, + "probability": 0.9247 + }, + { + "start": 15474.8, + "end": 15479.76, + "probability": 0.9034 + }, + { + "start": 15480.52, + "end": 15484.52, + "probability": 0.8086 + }, + { + "start": 15485.1, + "end": 15488.72, + "probability": 0.9568 + }, + { + "start": 15488.72, + "end": 15492.56, + "probability": 0.9558 + }, + { + "start": 15493.08, + "end": 15495.38, + "probability": 0.7178 + }, + { + "start": 15495.68, + "end": 15498.14, + "probability": 0.9833 + }, + { + "start": 15498.34, + "end": 15500.8, + "probability": 0.9438 + }, + { + "start": 15501.5, + "end": 15506.56, + "probability": 0.9976 + }, + { + "start": 15508.86, + "end": 15510.3, + "probability": 0.7758 + }, + { + "start": 15510.58, + "end": 15514.3, + "probability": 0.9559 + }, + { + "start": 15515.18, + "end": 15519.6, + "probability": 0.9528 + }, + { + "start": 15519.7, + "end": 15521.56, + "probability": 0.9792 + }, + { + "start": 15521.66, + "end": 15526.6, + "probability": 0.9368 + }, + { + "start": 15528.94, + "end": 15534.3, + "probability": 0.8646 + }, + { + "start": 15534.54, + "end": 15536.38, + "probability": 0.812 + }, + { + "start": 15536.86, + "end": 15537.67, + "probability": 0.8596 + }, + { + "start": 15538.04, + "end": 15540.08, + "probability": 0.9919 + }, + { + "start": 15540.94, + "end": 15541.88, + "probability": 0.8017 + }, + { + "start": 15545.58, + "end": 15548.74, + "probability": 0.9346 + }, + { + "start": 15548.74, + "end": 15552.86, + "probability": 0.994 + }, + { + "start": 15553.76, + "end": 15556.28, + "probability": 0.8499 + }, + { + "start": 15558.6, + "end": 15559.54, + "probability": 0.7933 + }, + { + "start": 15559.72, + "end": 15565.16, + "probability": 0.9842 + }, + { + "start": 15565.38, + "end": 15566.24, + "probability": 0.0479 + }, + { + "start": 15566.32, + "end": 15569.56, + "probability": 0.993 + }, + { + "start": 15569.71, + "end": 15573.72, + "probability": 0.9679 + }, + { + "start": 15574.4, + "end": 15579.0, + "probability": 0.9869 + }, + { + "start": 15580.78, + "end": 15586.66, + "probability": 0.9052 + }, + { + "start": 15588.16, + "end": 15592.8, + "probability": 0.6338 + }, + { + "start": 15594.16, + "end": 15595.18, + "probability": 0.936 + }, + { + "start": 15595.32, + "end": 15596.1, + "probability": 0.9376 + }, + { + "start": 15596.28, + "end": 15598.8, + "probability": 0.9588 + }, + { + "start": 15599.0, + "end": 15602.28, + "probability": 0.0216 + }, + { + "start": 15602.34, + "end": 15603.44, + "probability": 0.7662 + }, + { + "start": 15603.54, + "end": 15605.0, + "probability": 0.772 + }, + { + "start": 15605.04, + "end": 15607.12, + "probability": 0.9245 + }, + { + "start": 15609.04, + "end": 15612.9, + "probability": 0.9844 + }, + { + "start": 15612.94, + "end": 15613.2, + "probability": 0.7559 + }, + { + "start": 15613.64, + "end": 15616.66, + "probability": 0.9111 + }, + { + "start": 15616.66, + "end": 15617.96, + "probability": 0.7803 + }, + { + "start": 15618.6, + "end": 15620.6, + "probability": 0.6559 + }, + { + "start": 15621.12, + "end": 15623.42, + "probability": 0.8024 + }, + { + "start": 15624.1, + "end": 15624.68, + "probability": 0.7451 + }, + { + "start": 15624.78, + "end": 15628.14, + "probability": 0.8513 + }, + { + "start": 15628.36, + "end": 15629.8, + "probability": 0.7266 + }, + { + "start": 15630.36, + "end": 15630.94, + "probability": 0.401 + }, + { + "start": 15630.94, + "end": 15631.68, + "probability": 0.7427 + }, + { + "start": 15633.16, + "end": 15634.32, + "probability": 0.4193 + }, + { + "start": 15634.38, + "end": 15638.54, + "probability": 0.4722 + }, + { + "start": 15639.24, + "end": 15641.5, + "probability": 0.8995 + }, + { + "start": 15642.38, + "end": 15642.58, + "probability": 0.2072 + }, + { + "start": 15648.16, + "end": 15648.7, + "probability": 0.7816 + }, + { + "start": 15649.32, + "end": 15649.76, + "probability": 0.3377 + }, + { + "start": 15652.14, + "end": 15654.42, + "probability": 0.7481 + }, + { + "start": 15655.46, + "end": 15659.92, + "probability": 0.9699 + }, + { + "start": 15660.7, + "end": 15665.32, + "probability": 0.9912 + }, + { + "start": 15665.32, + "end": 15669.68, + "probability": 0.9854 + }, + { + "start": 15670.86, + "end": 15674.3, + "probability": 0.7578 + }, + { + "start": 15675.18, + "end": 15678.82, + "probability": 0.9899 + }, + { + "start": 15680.16, + "end": 15683.48, + "probability": 0.8271 + }, + { + "start": 15683.6, + "end": 15685.04, + "probability": 0.9606 + }, + { + "start": 15685.48, + "end": 15688.62, + "probability": 0.9984 + }, + { + "start": 15689.32, + "end": 15691.89, + "probability": 0.9946 + }, + { + "start": 15692.92, + "end": 15695.78, + "probability": 0.9092 + }, + { + "start": 15698.26, + "end": 15702.0, + "probability": 0.9639 + }, + { + "start": 15702.84, + "end": 15704.12, + "probability": 0.6489 + }, + { + "start": 15704.26, + "end": 15713.04, + "probability": 0.9635 + }, + { + "start": 15714.0, + "end": 15716.22, + "probability": 0.9844 + }, + { + "start": 15717.12, + "end": 15721.06, + "probability": 0.9854 + }, + { + "start": 15721.58, + "end": 15722.98, + "probability": 0.9649 + }, + { + "start": 15723.56, + "end": 15724.68, + "probability": 0.8615 + }, + { + "start": 15727.6, + "end": 15727.66, + "probability": 0.1995 + }, + { + "start": 15727.66, + "end": 15731.66, + "probability": 0.758 + }, + { + "start": 15732.18, + "end": 15735.52, + "probability": 0.9724 + }, + { + "start": 15736.1, + "end": 15739.36, + "probability": 0.9937 + }, + { + "start": 15740.12, + "end": 15741.08, + "probability": 0.5909 + }, + { + "start": 15741.14, + "end": 15741.9, + "probability": 0.672 + }, + { + "start": 15742.28, + "end": 15743.6, + "probability": 0.3906 + }, + { + "start": 15743.6, + "end": 15744.3, + "probability": 0.6613 + }, + { + "start": 15744.42, + "end": 15746.44, + "probability": 0.7417 + }, + { + "start": 15746.64, + "end": 15749.32, + "probability": 0.8879 + }, + { + "start": 15749.8, + "end": 15751.66, + "probability": 0.9727 + }, + { + "start": 15752.38, + "end": 15753.24, + "probability": 0.2065 + }, + { + "start": 15754.08, + "end": 15756.44, + "probability": 0.9575 + }, + { + "start": 15756.62, + "end": 15756.82, + "probability": 0.6807 + }, + { + "start": 15757.02, + "end": 15758.04, + "probability": 0.9314 + }, + { + "start": 15758.28, + "end": 15759.22, + "probability": 0.9591 + }, + { + "start": 15759.3, + "end": 15760.08, + "probability": 0.7847 + }, + { + "start": 15760.62, + "end": 15762.84, + "probability": 0.8408 + }, + { + "start": 15763.24, + "end": 15764.82, + "probability": 0.9663 + }, + { + "start": 15766.04, + "end": 15768.08, + "probability": 0.7965 + }, + { + "start": 15768.18, + "end": 15770.7, + "probability": 0.933 + }, + { + "start": 15770.8, + "end": 15777.44, + "probability": 0.9932 + }, + { + "start": 15778.12, + "end": 15781.94, + "probability": 0.9854 + }, + { + "start": 15782.14, + "end": 15782.7, + "probability": 0.4401 + }, + { + "start": 15783.28, + "end": 15787.54, + "probability": 0.9651 + }, + { + "start": 15788.56, + "end": 15789.9, + "probability": 0.8731 + }, + { + "start": 15790.02, + "end": 15792.36, + "probability": 0.8572 + }, + { + "start": 15792.82, + "end": 15795.58, + "probability": 0.8927 + }, + { + "start": 15796.56, + "end": 15797.92, + "probability": 0.9416 + }, + { + "start": 15799.44, + "end": 15802.04, + "probability": 0.8412 + }, + { + "start": 15802.72, + "end": 15805.72, + "probability": 0.9762 + }, + { + "start": 15805.8, + "end": 15808.86, + "probability": 0.8529 + }, + { + "start": 15809.4, + "end": 15812.16, + "probability": 0.9956 + }, + { + "start": 15812.46, + "end": 15815.2, + "probability": 0.8894 + }, + { + "start": 15815.5, + "end": 15816.32, + "probability": 0.488 + }, + { + "start": 15817.54, + "end": 15820.0, + "probability": 0.8787 + }, + { + "start": 15820.12, + "end": 15823.82, + "probability": 0.9901 + }, + { + "start": 15824.86, + "end": 15828.44, + "probability": 0.9477 + }, + { + "start": 15828.82, + "end": 15831.7, + "probability": 0.9331 + }, + { + "start": 15833.62, + "end": 15836.62, + "probability": 0.8712 + }, + { + "start": 15838.5, + "end": 15842.64, + "probability": 0.875 + }, + { + "start": 15843.0, + "end": 15844.28, + "probability": 0.8287 + }, + { + "start": 15845.02, + "end": 15849.16, + "probability": 0.9707 + }, + { + "start": 15849.5, + "end": 15853.3, + "probability": 0.968 + }, + { + "start": 15853.4, + "end": 15854.02, + "probability": 0.7906 + }, + { + "start": 15854.36, + "end": 15854.88, + "probability": 0.5752 + }, + { + "start": 15854.88, + "end": 15856.12, + "probability": 0.7797 + }, + { + "start": 15856.18, + "end": 15857.92, + "probability": 0.7688 + }, + { + "start": 15858.0, + "end": 15858.94, + "probability": 0.669 + }, + { + "start": 15859.1, + "end": 15860.12, + "probability": 0.8891 + }, + { + "start": 15865.58, + "end": 15865.88, + "probability": 0.2785 + }, + { + "start": 15865.88, + "end": 15865.88, + "probability": 0.556 + }, + { + "start": 15865.88, + "end": 15865.88, + "probability": 0.0462 + }, + { + "start": 15865.88, + "end": 15868.28, + "probability": 0.6155 + }, + { + "start": 15868.76, + "end": 15870.86, + "probability": 0.6978 + }, + { + "start": 15872.74, + "end": 15875.8, + "probability": 0.805 + }, + { + "start": 15879.26, + "end": 15880.22, + "probability": 0.5416 + }, + { + "start": 15880.48, + "end": 15883.48, + "probability": 0.9871 + }, + { + "start": 15884.4, + "end": 15889.94, + "probability": 0.7242 + }, + { + "start": 15891.04, + "end": 15894.22, + "probability": 0.9951 + }, + { + "start": 15895.12, + "end": 15896.6, + "probability": 0.9881 + }, + { + "start": 15897.52, + "end": 15900.32, + "probability": 0.6839 + }, + { + "start": 15900.44, + "end": 15901.1, + "probability": 0.5589 + }, + { + "start": 15901.38, + "end": 15902.92, + "probability": 0.5107 + }, + { + "start": 15903.02, + "end": 15903.44, + "probability": 0.9272 + }, + { + "start": 15904.54, + "end": 15905.6, + "probability": 0.9901 + }, + { + "start": 15906.06, + "end": 15907.24, + "probability": 0.4578 + }, + { + "start": 15907.36, + "end": 15910.12, + "probability": 0.9 + }, + { + "start": 15910.96, + "end": 15911.31, + "probability": 0.5507 + }, + { + "start": 15911.56, + "end": 15912.34, + "probability": 0.9584 + }, + { + "start": 15912.8, + "end": 15913.58, + "probability": 0.927 + }, + { + "start": 15914.98, + "end": 15916.06, + "probability": 0.8474 + }, + { + "start": 15919.42, + "end": 15922.86, + "probability": 0.5844 + }, + { + "start": 15922.9, + "end": 15927.76, + "probability": 0.9923 + }, + { + "start": 15927.76, + "end": 15932.28, + "probability": 0.9839 + }, + { + "start": 15932.34, + "end": 15933.79, + "probability": 0.9912 + }, + { + "start": 15934.64, + "end": 15936.2, + "probability": 0.9983 + }, + { + "start": 15936.28, + "end": 15938.6, + "probability": 0.9829 + }, + { + "start": 15938.64, + "end": 15941.62, + "probability": 0.8708 + }, + { + "start": 15941.76, + "end": 15944.72, + "probability": 0.9336 + }, + { + "start": 15944.9, + "end": 15946.58, + "probability": 0.9849 + }, + { + "start": 15946.94, + "end": 15947.0, + "probability": 0.861 + }, + { + "start": 15947.12, + "end": 15949.2, + "probability": 0.9958 + }, + { + "start": 15949.7, + "end": 15953.54, + "probability": 0.3308 + }, + { + "start": 15954.38, + "end": 15955.84, + "probability": 0.8767 + }, + { + "start": 15956.38, + "end": 15961.04, + "probability": 0.9836 + }, + { + "start": 15961.2, + "end": 15961.76, + "probability": 0.8728 + }, + { + "start": 15962.5, + "end": 15965.84, + "probability": 0.9515 + }, + { + "start": 15966.36, + "end": 15970.16, + "probability": 0.7955 + }, + { + "start": 15970.82, + "end": 15971.3, + "probability": 0.4566 + }, + { + "start": 15971.42, + "end": 15972.42, + "probability": 0.9622 + }, + { + "start": 15972.46, + "end": 15973.08, + "probability": 0.6206 + }, + { + "start": 15973.62, + "end": 15974.46, + "probability": 0.9647 + }, + { + "start": 15974.6, + "end": 15975.64, + "probability": 0.9479 + }, + { + "start": 15976.0, + "end": 15977.28, + "probability": 0.9307 + }, + { + "start": 15977.9, + "end": 15979.1, + "probability": 0.9602 + }, + { + "start": 15979.3, + "end": 15979.8, + "probability": 0.9801 + }, + { + "start": 15979.86, + "end": 15980.34, + "probability": 0.7832 + }, + { + "start": 15980.46, + "end": 15981.12, + "probability": 0.9268 + }, + { + "start": 15981.6, + "end": 15983.4, + "probability": 0.9211 + }, + { + "start": 15983.94, + "end": 15986.7, + "probability": 0.9756 + }, + { + "start": 15988.12, + "end": 15989.68, + "probability": 0.7106 + }, + { + "start": 15989.84, + "end": 15991.61, + "probability": 0.5898 + }, + { + "start": 15992.44, + "end": 15993.0, + "probability": 0.3428 + }, + { + "start": 15994.49, + "end": 15997.04, + "probability": 0.8945 + }, + { + "start": 15997.22, + "end": 15997.74, + "probability": 0.1277 + }, + { + "start": 15997.9, + "end": 16001.04, + "probability": 0.7314 + }, + { + "start": 16001.52, + "end": 16003.74, + "probability": 0.9101 + }, + { + "start": 16004.78, + "end": 16005.44, + "probability": 0.7928 + }, + { + "start": 16010.14, + "end": 16012.32, + "probability": 0.1252 + }, + { + "start": 16016.68, + "end": 16016.78, + "probability": 0.5279 + }, + { + "start": 16016.78, + "end": 16016.78, + "probability": 0.3964 + }, + { + "start": 16016.8, + "end": 16016.9, + "probability": 0.0728 + }, + { + "start": 16017.44, + "end": 16018.92, + "probability": 0.1094 + }, + { + "start": 16019.64, + "end": 16019.96, + "probability": 0.0712 + }, + { + "start": 16028.92, + "end": 16029.36, + "probability": 0.0383 + }, + { + "start": 16029.36, + "end": 16032.46, + "probability": 0.5036 + }, + { + "start": 16032.52, + "end": 16033.92, + "probability": 0.7207 + }, + { + "start": 16034.48, + "end": 16041.58, + "probability": 0.5 + }, + { + "start": 16042.2, + "end": 16042.26, + "probability": 0.4678 + }, + { + "start": 16042.26, + "end": 16047.76, + "probability": 0.7577 + }, + { + "start": 16048.28, + "end": 16049.08, + "probability": 0.8785 + }, + { + "start": 16049.5, + "end": 16051.52, + "probability": 0.7862 + }, + { + "start": 16053.82, + "end": 16055.66, + "probability": 0.8751 + }, + { + "start": 16056.86, + "end": 16059.18, + "probability": 0.904 + }, + { + "start": 16059.86, + "end": 16064.18, + "probability": 0.927 + }, + { + "start": 16064.58, + "end": 16064.88, + "probability": 0.2834 + }, + { + "start": 16064.88, + "end": 16065.5, + "probability": 0.6548 + }, + { + "start": 16065.76, + "end": 16066.66, + "probability": 0.578 + }, + { + "start": 16066.76, + "end": 16067.5, + "probability": 0.69 + }, + { + "start": 16068.42, + "end": 16070.42, + "probability": 0.8403 + }, + { + "start": 16074.94, + "end": 16077.94, + "probability": 0.8329 + }, + { + "start": 16078.3, + "end": 16078.8, + "probability": 0.5854 + }, + { + "start": 16081.5, + "end": 16084.8, + "probability": 0.8671 + }, + { + "start": 16085.04, + "end": 16086.32, + "probability": 0.9778 + }, + { + "start": 16091.24, + "end": 16092.52, + "probability": 0.8043 + }, + { + "start": 16092.94, + "end": 16093.6, + "probability": 0.8645 + }, + { + "start": 16093.8, + "end": 16095.16, + "probability": 0.9416 + }, + { + "start": 16095.26, + "end": 16096.5, + "probability": 0.6361 + }, + { + "start": 16097.46, + "end": 16101.96, + "probability": 0.9718 + }, + { + "start": 16102.0, + "end": 16103.4, + "probability": 0.8171 + }, + { + "start": 16104.38, + "end": 16106.48, + "probability": 0.7438 + }, + { + "start": 16107.4, + "end": 16109.28, + "probability": 0.89 + }, + { + "start": 16110.28, + "end": 16114.84, + "probability": 0.7997 + }, + { + "start": 16114.94, + "end": 16116.48, + "probability": 0.9614 + }, + { + "start": 16117.32, + "end": 16119.2, + "probability": 0.9875 + }, + { + "start": 16119.98, + "end": 16121.3, + "probability": 0.9855 + }, + { + "start": 16122.84, + "end": 16129.8, + "probability": 0.9814 + }, + { + "start": 16131.08, + "end": 16134.96, + "probability": 0.9941 + }, + { + "start": 16135.06, + "end": 16135.67, + "probability": 0.5723 + }, + { + "start": 16136.06, + "end": 16137.44, + "probability": 0.8252 + }, + { + "start": 16138.1, + "end": 16138.73, + "probability": 0.8031 + }, + { + "start": 16139.2, + "end": 16140.56, + "probability": 0.6638 + }, + { + "start": 16140.88, + "end": 16145.22, + "probability": 0.994 + }, + { + "start": 16146.3, + "end": 16147.74, + "probability": 0.9177 + }, + { + "start": 16148.92, + "end": 16154.38, + "probability": 0.9929 + }, + { + "start": 16155.7, + "end": 16156.36, + "probability": 0.8435 + }, + { + "start": 16157.36, + "end": 16159.18, + "probability": 0.9893 + }, + { + "start": 16161.42, + "end": 16164.34, + "probability": 0.6815 + }, + { + "start": 16166.94, + "end": 16170.56, + "probability": 0.9012 + }, + { + "start": 16171.4, + "end": 16180.32, + "probability": 0.9452 + }, + { + "start": 16181.56, + "end": 16185.62, + "probability": 0.7409 + }, + { + "start": 16186.14, + "end": 16187.1, + "probability": 0.8775 + }, + { + "start": 16187.96, + "end": 16189.46, + "probability": 0.3462 + }, + { + "start": 16190.24, + "end": 16193.18, + "probability": 0.9557 + }, + { + "start": 16194.98, + "end": 16198.64, + "probability": 0.9829 + }, + { + "start": 16200.0, + "end": 16200.98, + "probability": 0.9318 + }, + { + "start": 16201.14, + "end": 16203.44, + "probability": 0.7821 + }, + { + "start": 16204.52, + "end": 16207.1, + "probability": 0.9993 + }, + { + "start": 16207.88, + "end": 16210.4, + "probability": 0.9969 + }, + { + "start": 16211.88, + "end": 16215.76, + "probability": 0.9969 + }, + { + "start": 16215.9, + "end": 16216.98, + "probability": 0.9203 + }, + { + "start": 16217.56, + "end": 16219.06, + "probability": 0.992 + }, + { + "start": 16220.3, + "end": 16223.0, + "probability": 0.9047 + }, + { + "start": 16223.94, + "end": 16225.6, + "probability": 0.6509 + }, + { + "start": 16226.12, + "end": 16227.18, + "probability": 0.9231 + }, + { + "start": 16227.92, + "end": 16230.22, + "probability": 0.9367 + }, + { + "start": 16231.3, + "end": 16233.53, + "probability": 0.9976 + }, + { + "start": 16234.72, + "end": 16236.64, + "probability": 0.9602 + }, + { + "start": 16236.78, + "end": 16237.16, + "probability": 0.6328 + }, + { + "start": 16239.08, + "end": 16242.92, + "probability": 0.6146 + }, + { + "start": 16243.8, + "end": 16246.5, + "probability": 0.9714 + }, + { + "start": 16246.8, + "end": 16248.02, + "probability": 0.9255 + }, + { + "start": 16248.06, + "end": 16251.5, + "probability": 0.9966 + }, + { + "start": 16251.5, + "end": 16254.46, + "probability": 0.9666 + }, + { + "start": 16255.26, + "end": 16259.84, + "probability": 0.9769 + }, + { + "start": 16260.22, + "end": 16262.04, + "probability": 0.3658 + }, + { + "start": 16262.92, + "end": 16265.34, + "probability": 0.4902 + }, + { + "start": 16265.62, + "end": 16267.6, + "probability": 0.8239 + }, + { + "start": 16267.64, + "end": 16268.12, + "probability": 0.6436 + }, + { + "start": 16268.18, + "end": 16270.7, + "probability": 0.8247 + }, + { + "start": 16271.26, + "end": 16271.64, + "probability": 0.5852 + }, + { + "start": 16271.82, + "end": 16274.82, + "probability": 0.9673 + }, + { + "start": 16274.88, + "end": 16276.4, + "probability": 0.9797 + }, + { + "start": 16277.42, + "end": 16280.92, + "probability": 0.8904 + }, + { + "start": 16281.06, + "end": 16284.28, + "probability": 0.9464 + }, + { + "start": 16284.54, + "end": 16286.54, + "probability": 0.7717 + }, + { + "start": 16287.72, + "end": 16290.12, + "probability": 0.8197 + }, + { + "start": 16294.94, + "end": 16297.34, + "probability": 0.998 + }, + { + "start": 16297.88, + "end": 16300.68, + "probability": 0.9467 + }, + { + "start": 16301.66, + "end": 16304.8, + "probability": 0.979 + }, + { + "start": 16306.34, + "end": 16306.54, + "probability": 0.3383 + }, + { + "start": 16306.7, + "end": 16307.18, + "probability": 0.6719 + }, + { + "start": 16307.26, + "end": 16307.82, + "probability": 0.8769 + }, + { + "start": 16307.84, + "end": 16311.12, + "probability": 0.6821 + }, + { + "start": 16311.22, + "end": 16314.16, + "probability": 0.8276 + }, + { + "start": 16314.26, + "end": 16315.56, + "probability": 0.8782 + }, + { + "start": 16316.04, + "end": 16318.36, + "probability": 0.9972 + }, + { + "start": 16318.54, + "end": 16322.58, + "probability": 0.9273 + }, + { + "start": 16323.1, + "end": 16323.36, + "probability": 0.8771 + }, + { + "start": 16323.98, + "end": 16324.4, + "probability": 0.9566 + }, + { + "start": 16324.54, + "end": 16325.16, + "probability": 0.98 + }, + { + "start": 16325.38, + "end": 16326.72, + "probability": 0.9614 + }, + { + "start": 16327.14, + "end": 16327.94, + "probability": 0.9712 + }, + { + "start": 16328.02, + "end": 16329.42, + "probability": 0.9934 + }, + { + "start": 16329.98, + "end": 16335.49, + "probability": 0.9399 + }, + { + "start": 16335.6, + "end": 16336.82, + "probability": 0.6244 + }, + { + "start": 16337.48, + "end": 16338.13, + "probability": 0.9175 + }, + { + "start": 16338.8, + "end": 16340.2, + "probability": 0.7821 + }, + { + "start": 16340.22, + "end": 16343.82, + "probability": 0.8457 + }, + { + "start": 16344.74, + "end": 16348.72, + "probability": 0.8345 + }, + { + "start": 16348.86, + "end": 16351.92, + "probability": 0.6264 + }, + { + "start": 16352.02, + "end": 16354.7, + "probability": 0.5221 + }, + { + "start": 16354.8, + "end": 16355.52, + "probability": 0.8478 + }, + { + "start": 16356.98, + "end": 16359.24, + "probability": 0.3474 + }, + { + "start": 16361.58, + "end": 16367.46, + "probability": 0.0125 + }, + { + "start": 16369.4, + "end": 16371.56, + "probability": 0.1356 + }, + { + "start": 16372.44, + "end": 16375.86, + "probability": 0.5019 + }, + { + "start": 16376.54, + "end": 16380.02, + "probability": 0.9286 + }, + { + "start": 16380.12, + "end": 16381.58, + "probability": 0.7002 + }, + { + "start": 16381.58, + "end": 16383.66, + "probability": 0.9194 + }, + { + "start": 16384.28, + "end": 16387.4, + "probability": 0.9924 + }, + { + "start": 16387.4, + "end": 16391.26, + "probability": 0.5903 + }, + { + "start": 16392.12, + "end": 16394.96, + "probability": 0.4654 + }, + { + "start": 16399.36, + "end": 16402.52, + "probability": 0.032 + }, + { + "start": 16403.98, + "end": 16404.48, + "probability": 0.009 + }, + { + "start": 16405.4, + "end": 16407.14, + "probability": 0.0516 + }, + { + "start": 16408.26, + "end": 16410.46, + "probability": 0.1101 + }, + { + "start": 16412.6, + "end": 16416.16, + "probability": 0.7721 + }, + { + "start": 16416.68, + "end": 16417.24, + "probability": 0.7764 + }, + { + "start": 16417.46, + "end": 16420.38, + "probability": 0.942 + }, + { + "start": 16421.14, + "end": 16422.04, + "probability": 0.8805 + }, + { + "start": 16422.18, + "end": 16429.44, + "probability": 0.9857 + }, + { + "start": 16430.46, + "end": 16435.2, + "probability": 0.8901 + }, + { + "start": 16438.56, + "end": 16442.58, + "probability": 0.9565 + }, + { + "start": 16442.58, + "end": 16446.86, + "probability": 0.9909 + }, + { + "start": 16450.94, + "end": 16452.82, + "probability": 0.6216 + }, + { + "start": 16466.02, + "end": 16469.6, + "probability": 0.8708 + }, + { + "start": 16469.64, + "end": 16470.74, + "probability": 0.8537 + }, + { + "start": 16470.76, + "end": 16472.64, + "probability": 0.7064 + }, + { + "start": 16472.76, + "end": 16474.02, + "probability": 0.9189 + }, + { + "start": 16474.24, + "end": 16474.24, + "probability": 0.1934 + }, + { + "start": 16483.04, + "end": 16483.06, + "probability": 0.2873 + }, + { + "start": 16483.06, + "end": 16484.5, + "probability": 0.6324 + }, + { + "start": 16485.1, + "end": 16489.34, + "probability": 0.9906 + }, + { + "start": 16489.58, + "end": 16492.22, + "probability": 0.9894 + }, + { + "start": 16493.16, + "end": 16500.74, + "probability": 0.9948 + }, + { + "start": 16501.26, + "end": 16503.25, + "probability": 0.9886 + }, + { + "start": 16503.68, + "end": 16506.22, + "probability": 0.9326 + }, + { + "start": 16506.38, + "end": 16506.6, + "probability": 0.4465 + }, + { + "start": 16507.06, + "end": 16509.06, + "probability": 0.9793 + }, + { + "start": 16510.64, + "end": 16514.46, + "probability": 0.9579 + }, + { + "start": 16514.46, + "end": 16517.04, + "probability": 0.998 + }, + { + "start": 16517.62, + "end": 16521.12, + "probability": 0.895 + }, + { + "start": 16521.12, + "end": 16524.44, + "probability": 0.9946 + }, + { + "start": 16525.82, + "end": 16526.58, + "probability": 0.843 + }, + { + "start": 16527.12, + "end": 16530.08, + "probability": 0.9953 + }, + { + "start": 16530.08, + "end": 16533.94, + "probability": 0.9462 + }, + { + "start": 16534.64, + "end": 16536.64, + "probability": 0.9937 + }, + { + "start": 16537.58, + "end": 16537.74, + "probability": 0.1438 + }, + { + "start": 16538.18, + "end": 16542.5, + "probability": 0.8745 + }, + { + "start": 16543.04, + "end": 16543.16, + "probability": 0.0306 + }, + { + "start": 16543.76, + "end": 16546.04, + "probability": 0.9973 + }, + { + "start": 16546.76, + "end": 16546.94, + "probability": 0.2935 + }, + { + "start": 16547.3, + "end": 16550.64, + "probability": 0.9431 + }, + { + "start": 16551.16, + "end": 16552.48, + "probability": 0.9508 + }, + { + "start": 16552.76, + "end": 16555.76, + "probability": 0.9739 + }, + { + "start": 16555.76, + "end": 16559.22, + "probability": 0.8525 + }, + { + "start": 16559.94, + "end": 16560.16, + "probability": 0.0412 + }, + { + "start": 16560.68, + "end": 16565.2, + "probability": 0.9814 + }, + { + "start": 16565.82, + "end": 16569.7, + "probability": 0.9953 + }, + { + "start": 16570.68, + "end": 16576.34, + "probability": 0.9826 + }, + { + "start": 16576.52, + "end": 16578.54, + "probability": 0.9788 + }, + { + "start": 16579.4, + "end": 16581.08, + "probability": 0.9208 + }, + { + "start": 16582.32, + "end": 16583.87, + "probability": 0.6982 + }, + { + "start": 16583.94, + "end": 16584.94, + "probability": 0.5664 + }, + { + "start": 16585.36, + "end": 16587.38, + "probability": 0.9932 + }, + { + "start": 16587.68, + "end": 16589.92, + "probability": 0.9495 + }, + { + "start": 16590.14, + "end": 16592.7, + "probability": 0.9832 + }, + { + "start": 16593.18, + "end": 16594.66, + "probability": 0.9752 + }, + { + "start": 16596.3, + "end": 16601.14, + "probability": 0.9781 + }, + { + "start": 16601.14, + "end": 16606.1, + "probability": 0.9936 + }, + { + "start": 16606.78, + "end": 16608.74, + "probability": 0.9933 + }, + { + "start": 16610.54, + "end": 16610.54, + "probability": 0.0028 + }, + { + "start": 16610.54, + "end": 16615.72, + "probability": 0.9091 + }, + { + "start": 16616.24, + "end": 16621.56, + "probability": 0.9964 + }, + { + "start": 16621.72, + "end": 16626.8, + "probability": 0.9961 + }, + { + "start": 16626.84, + "end": 16626.84, + "probability": 0.0181 + }, + { + "start": 16627.38, + "end": 16630.64, + "probability": 0.9904 + }, + { + "start": 16630.64, + "end": 16634.9, + "probability": 0.9976 + }, + { + "start": 16635.5, + "end": 16635.7, + "probability": 0.2523 + }, + { + "start": 16636.2, + "end": 16639.54, + "probability": 0.9017 + }, + { + "start": 16639.88, + "end": 16641.22, + "probability": 0.9696 + }, + { + "start": 16641.84, + "end": 16644.74, + "probability": 0.9992 + }, + { + "start": 16645.44, + "end": 16645.74, + "probability": 0.0933 + }, + { + "start": 16646.24, + "end": 16652.08, + "probability": 0.9623 + }, + { + "start": 16652.86, + "end": 16653.54, + "probability": 0.217 + }, + { + "start": 16653.6, + "end": 16657.78, + "probability": 0.9963 + }, + { + "start": 16657.78, + "end": 16662.32, + "probability": 0.9973 + }, + { + "start": 16663.48, + "end": 16668.38, + "probability": 0.9918 + }, + { + "start": 16668.72, + "end": 16671.12, + "probability": 0.9879 + }, + { + "start": 16671.8, + "end": 16676.0, + "probability": 0.956 + }, + { + "start": 16676.12, + "end": 16677.04, + "probability": 0.6908 + }, + { + "start": 16677.26, + "end": 16681.26, + "probability": 0.9134 + }, + { + "start": 16681.4, + "end": 16684.72, + "probability": 0.9666 + }, + { + "start": 16684.96, + "end": 16687.96, + "probability": 0.98 + }, + { + "start": 16688.22, + "end": 16691.06, + "probability": 0.9473 + }, + { + "start": 16691.76, + "end": 16694.42, + "probability": 0.7588 + }, + { + "start": 16694.42, + "end": 16698.08, + "probability": 0.9224 + }, + { + "start": 16699.58, + "end": 16701.5, + "probability": 0.1082 + }, + { + "start": 16703.76, + "end": 16703.86, + "probability": 0.4736 + }, + { + "start": 16703.86, + "end": 16705.92, + "probability": 0.8562 + }, + { + "start": 16707.78, + "end": 16712.84, + "probability": 0.9941 + }, + { + "start": 16713.92, + "end": 16714.82, + "probability": 0.9586 + }, + { + "start": 16715.38, + "end": 16716.14, + "probability": 0.9365 + }, + { + "start": 16716.58, + "end": 16718.02, + "probability": 0.8047 + }, + { + "start": 16718.52, + "end": 16721.6, + "probability": 0.9799 + }, + { + "start": 16722.68, + "end": 16724.51, + "probability": 0.7368 + }, + { + "start": 16725.46, + "end": 16730.36, + "probability": 0.8246 + }, + { + "start": 16732.02, + "end": 16735.48, + "probability": 0.9626 + }, + { + "start": 16736.82, + "end": 16743.32, + "probability": 0.9496 + }, + { + "start": 16743.6, + "end": 16743.68, + "probability": 0.0614 + }, + { + "start": 16743.68, + "end": 16744.94, + "probability": 0.7881 + }, + { + "start": 16747.74, + "end": 16748.64, + "probability": 0.8123 + }, + { + "start": 16749.36, + "end": 16751.54, + "probability": 0.9911 + }, + { + "start": 16751.58, + "end": 16753.88, + "probability": 0.3404 + }, + { + "start": 16753.88, + "end": 16755.61, + "probability": 0.1538 + }, + { + "start": 16755.88, + "end": 16757.64, + "probability": 0.8503 + }, + { + "start": 16758.44, + "end": 16762.24, + "probability": 0.8018 + }, + { + "start": 16762.4, + "end": 16764.5, + "probability": 0.4464 + }, + { + "start": 16765.2, + "end": 16765.68, + "probability": 0.6178 + }, + { + "start": 16765.8, + "end": 16774.66, + "probability": 0.9985 + }, + { + "start": 16775.2, + "end": 16777.22, + "probability": 0.9102 + }, + { + "start": 16778.1, + "end": 16779.42, + "probability": 0.657 + }, + { + "start": 16780.08, + "end": 16785.36, + "probability": 0.3953 + }, + { + "start": 16785.48, + "end": 16787.78, + "probability": 0.203 + }, + { + "start": 16787.78, + "end": 16788.18, + "probability": 0.3987 + }, + { + "start": 16788.24, + "end": 16788.42, + "probability": 0.7478 + }, + { + "start": 16788.46, + "end": 16788.86, + "probability": 0.0836 + }, + { + "start": 16788.86, + "end": 16788.86, + "probability": 0.2985 + }, + { + "start": 16788.86, + "end": 16790.1, + "probability": 0.3255 + }, + { + "start": 16790.14, + "end": 16791.12, + "probability": 0.6978 + }, + { + "start": 16791.24, + "end": 16795.6, + "probability": 0.9923 + }, + { + "start": 16795.74, + "end": 16799.08, + "probability": 0.9204 + }, + { + "start": 16799.82, + "end": 16803.98, + "probability": 0.8501 + }, + { + "start": 16804.56, + "end": 16804.98, + "probability": 0.7543 + }, + { + "start": 16805.66, + "end": 16807.06, + "probability": 0.9429 + }, + { + "start": 16807.82, + "end": 16808.72, + "probability": 0.0485 + }, + { + "start": 16819.08, + "end": 16823.82, + "probability": 0.6257 + }, + { + "start": 16823.82, + "end": 16828.6, + "probability": 0.0215 + }, + { + "start": 16828.79, + "end": 16831.92, + "probability": 0.1301 + }, + { + "start": 16832.14, + "end": 16837.12, + "probability": 0.6566 + }, + { + "start": 16837.84, + "end": 16839.18, + "probability": 0.0824 + }, + { + "start": 16840.74, + "end": 16840.81, + "probability": 0.0555 + }, + { + "start": 16843.8, + "end": 16847.24, + "probability": 0.2966 + }, + { + "start": 16847.3, + "end": 16848.1, + "probability": 0.0282 + }, + { + "start": 16848.1, + "end": 16849.88, + "probability": 0.1797 + }, + { + "start": 16851.26, + "end": 16852.2, + "probability": 0.0846 + }, + { + "start": 16853.28, + "end": 16855.64, + "probability": 0.0858 + }, + { + "start": 16857.16, + "end": 16857.52, + "probability": 0.0335 + }, + { + "start": 16857.88, + "end": 16860.14, + "probability": 0.0561 + }, + { + "start": 16861.0, + "end": 16865.94, + "probability": 0.0989 + }, + { + "start": 16865.94, + "end": 16867.9, + "probability": 0.1118 + }, + { + "start": 16868.4, + "end": 16871.28, + "probability": 0.1012 + }, + { + "start": 16872.06, + "end": 16874.68, + "probability": 0.0605 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.0, + "end": 16883.0, + "probability": 0.0 + }, + { + "start": 16883.32, + "end": 16887.82, + "probability": 0.9467 + }, + { + "start": 16887.82, + "end": 16891.76, + "probability": 0.998 + }, + { + "start": 16892.34, + "end": 16893.9, + "probability": 0.9424 + }, + { + "start": 16894.06, + "end": 16896.44, + "probability": 0.9985 + }, + { + "start": 16897.28, + "end": 16902.3, + "probability": 0.9486 + }, + { + "start": 16902.34, + "end": 16903.42, + "probability": 0.7621 + }, + { + "start": 16904.3, + "end": 16907.2, + "probability": 0.9275 + }, + { + "start": 16907.5, + "end": 16907.76, + "probability": 0.0591 + }, + { + "start": 16907.82, + "end": 16912.0, + "probability": 0.869 + }, + { + "start": 16912.4, + "end": 16914.76, + "probability": 0.9246 + }, + { + "start": 16915.46, + "end": 16917.66, + "probability": 0.817 + }, + { + "start": 16918.5, + "end": 16919.9, + "probability": 0.9124 + }, + { + "start": 16920.8, + "end": 16921.7, + "probability": 0.0576 + }, + { + "start": 16921.72, + "end": 16921.74, + "probability": 0.5548 + }, + { + "start": 16921.74, + "end": 16921.74, + "probability": 0.0795 + }, + { + "start": 16921.9, + "end": 16927.0, + "probability": 0.7047 + }, + { + "start": 16927.26, + "end": 16928.88, + "probability": 0.9749 + }, + { + "start": 16929.36, + "end": 16930.7, + "probability": 0.6211 + }, + { + "start": 16930.86, + "end": 16931.58, + "probability": 0.7234 + }, + { + "start": 16931.92, + "end": 16932.58, + "probability": 0.9754 + }, + { + "start": 16933.68, + "end": 16934.9, + "probability": 0.2812 + }, + { + "start": 16935.26, + "end": 16938.02, + "probability": 0.6496 + }, + { + "start": 16938.04, + "end": 16940.28, + "probability": 0.4083 + }, + { + "start": 16942.48, + "end": 16945.06, + "probability": 0.5297 + }, + { + "start": 16945.06, + "end": 16945.76, + "probability": 0.7872 + }, + { + "start": 16946.06, + "end": 16947.26, + "probability": 0.9881 + }, + { + "start": 16947.62, + "end": 16948.28, + "probability": 0.2291 + }, + { + "start": 16949.1, + "end": 16950.26, + "probability": 0.0032 + }, + { + "start": 16950.98, + "end": 16951.34, + "probability": 0.0111 + }, + { + "start": 16951.34, + "end": 16951.34, + "probability": 0.088 + }, + { + "start": 16951.34, + "end": 16951.34, + "probability": 0.0274 + }, + { + "start": 16951.34, + "end": 16951.34, + "probability": 0.2884 + }, + { + "start": 16951.34, + "end": 16951.34, + "probability": 0.2528 + }, + { + "start": 16951.34, + "end": 16952.7, + "probability": 0.4479 + }, + { + "start": 16952.84, + "end": 16954.38, + "probability": 0.8267 + }, + { + "start": 16955.06, + "end": 16958.34, + "probability": 0.9745 + }, + { + "start": 16958.64, + "end": 16959.94, + "probability": 0.951 + }, + { + "start": 16960.28, + "end": 16962.34, + "probability": 0.7952 + }, + { + "start": 16962.86, + "end": 16965.78, + "probability": 0.9141 + }, + { + "start": 16965.98, + "end": 16967.9, + "probability": 0.8162 + }, + { + "start": 16968.42, + "end": 16969.02, + "probability": 0.7324 + }, + { + "start": 16969.26, + "end": 16972.34, + "probability": 0.9132 + }, + { + "start": 16972.34, + "end": 16976.8, + "probability": 0.9937 + }, + { + "start": 16977.36, + "end": 16978.99, + "probability": 0.4872 + }, + { + "start": 16979.5, + "end": 16981.46, + "probability": 0.9637 + }, + { + "start": 16982.12, + "end": 16984.04, + "probability": 0.8458 + }, + { + "start": 16984.6, + "end": 16987.34, + "probability": 0.9686 + }, + { + "start": 16987.98, + "end": 16991.58, + "probability": 0.9541 + }, + { + "start": 16992.98, + "end": 16997.3, + "probability": 0.0723 + }, + { + "start": 16997.3, + "end": 16997.3, + "probability": 0.2448 + }, + { + "start": 16997.3, + "end": 16997.3, + "probability": 0.1051 + }, + { + "start": 16997.3, + "end": 16998.9, + "probability": 0.8889 + }, + { + "start": 16999.96, + "end": 17001.02, + "probability": 0.5701 + }, + { + "start": 17001.8, + "end": 17001.8, + "probability": 0.0765 + }, + { + "start": 17001.8, + "end": 17003.96, + "probability": 0.785 + }, + { + "start": 17004.52, + "end": 17005.7, + "probability": 0.9575 + }, + { + "start": 17005.92, + "end": 17011.9, + "probability": 0.6235 + }, + { + "start": 17012.56, + "end": 17019.02, + "probability": 0.9106 + }, + { + "start": 17019.36, + "end": 17020.36, + "probability": 0.9676 + }, + { + "start": 17020.76, + "end": 17021.4, + "probability": 0.768 + }, + { + "start": 17021.76, + "end": 17024.52, + "probability": 0.9448 + }, + { + "start": 17024.7, + "end": 17025.18, + "probability": 0.6646 + }, + { + "start": 17025.3, + "end": 17027.0, + "probability": 0.9297 + }, + { + "start": 17027.42, + "end": 17028.94, + "probability": 0.8733 + }, + { + "start": 17029.38, + "end": 17033.28, + "probability": 0.9604 + }, + { + "start": 17033.62, + "end": 17035.64, + "probability": 0.986 + }, + { + "start": 17036.4, + "end": 17040.0, + "probability": 0.9266 + }, + { + "start": 17041.32, + "end": 17041.8, + "probability": 0.7654 + }, + { + "start": 17041.84, + "end": 17044.18, + "probability": 0.485 + }, + { + "start": 17045.26, + "end": 17047.94, + "probability": 0.9007 + }, + { + "start": 17047.94, + "end": 17052.22, + "probability": 0.7148 + }, + { + "start": 17052.22, + "end": 17054.6, + "probability": 0.7116 + }, + { + "start": 17054.64, + "end": 17055.02, + "probability": 0.5117 + }, + { + "start": 17055.18, + "end": 17056.06, + "probability": 0.6259 + }, + { + "start": 17056.18, + "end": 17057.38, + "probability": 0.3615 + }, + { + "start": 17057.5, + "end": 17060.5, + "probability": 0.9626 + }, + { + "start": 17060.9, + "end": 17064.41, + "probability": 0.9827 + }, + { + "start": 17066.7, + "end": 17067.86, + "probability": 0.0817 + }, + { + "start": 17068.08, + "end": 17069.04, + "probability": 0.7739 + }, + { + "start": 17069.84, + "end": 17070.72, + "probability": 0.4939 + }, + { + "start": 17070.9, + "end": 17072.38, + "probability": 0.7872 + }, + { + "start": 17072.74, + "end": 17075.72, + "probability": 0.9086 + }, + { + "start": 17075.74, + "end": 17076.96, + "probability": 0.9848 + }, + { + "start": 17077.66, + "end": 17078.92, + "probability": 0.7941 + }, + { + "start": 17079.08, + "end": 17080.24, + "probability": 0.1549 + }, + { + "start": 17080.34, + "end": 17080.62, + "probability": 0.3647 + }, + { + "start": 17082.16, + "end": 17082.16, + "probability": 0.1231 + }, + { + "start": 17082.16, + "end": 17083.36, + "probability": 0.5024 + }, + { + "start": 17083.64, + "end": 17087.0, + "probability": 0.9711 + }, + { + "start": 17087.5, + "end": 17088.8, + "probability": 0.9601 + }, + { + "start": 17089.0, + "end": 17090.54, + "probability": 0.9229 + }, + { + "start": 17091.3, + "end": 17093.34, + "probability": 0.9972 + }, + { + "start": 17094.34, + "end": 17100.36, + "probability": 0.9901 + }, + { + "start": 17100.4, + "end": 17103.28, + "probability": 0.9733 + }, + { + "start": 17104.0, + "end": 17104.94, + "probability": 0.7869 + }, + { + "start": 17106.92, + "end": 17110.86, + "probability": 0.8961 + }, + { + "start": 17110.98, + "end": 17111.16, + "probability": 0.1446 + }, + { + "start": 17111.76, + "end": 17111.76, + "probability": 0.154 + }, + { + "start": 17111.76, + "end": 17113.1, + "probability": 0.9072 + }, + { + "start": 17113.68, + "end": 17114.58, + "probability": 0.8964 + }, + { + "start": 17114.58, + "end": 17114.72, + "probability": 0.9554 + }, + { + "start": 17114.88, + "end": 17117.16, + "probability": 0.9295 + }, + { + "start": 17117.16, + "end": 17117.68, + "probability": 0.0562 + }, + { + "start": 17117.68, + "end": 17121.66, + "probability": 0.9684 + }, + { + "start": 17122.3, + "end": 17125.36, + "probability": 0.6402 + }, + { + "start": 17125.92, + "end": 17128.72, + "probability": 0.9538 + }, + { + "start": 17128.82, + "end": 17129.48, + "probability": 0.7774 + }, + { + "start": 17129.52, + "end": 17131.94, + "probability": 0.9819 + }, + { + "start": 17131.98, + "end": 17134.86, + "probability": 0.9937 + }, + { + "start": 17135.38, + "end": 17138.06, + "probability": 0.9976 + }, + { + "start": 17138.64, + "end": 17141.06, + "probability": 0.9712 + }, + { + "start": 17141.66, + "end": 17143.72, + "probability": 0.9936 + }, + { + "start": 17144.5, + "end": 17145.72, + "probability": 0.9628 + }, + { + "start": 17146.5, + "end": 17148.58, + "probability": 0.7927 + }, + { + "start": 17148.82, + "end": 17152.64, + "probability": 0.9884 + }, + { + "start": 17153.3, + "end": 17155.2, + "probability": 0.5695 + }, + { + "start": 17156.14, + "end": 17156.32, + "probability": 0.7438 + }, + { + "start": 17156.78, + "end": 17157.46, + "probability": 0.7849 + }, + { + "start": 17157.88, + "end": 17159.24, + "probability": 0.9445 + }, + { + "start": 17159.78, + "end": 17160.36, + "probability": 0.9789 + }, + { + "start": 17160.54, + "end": 17161.42, + "probability": 0.9791 + }, + { + "start": 17161.88, + "end": 17162.72, + "probability": 0.7861 + }, + { + "start": 17163.0, + "end": 17164.58, + "probability": 0.9847 + }, + { + "start": 17165.28, + "end": 17165.28, + "probability": 0.0082 + }, + { + "start": 17165.28, + "end": 17168.76, + "probability": 0.9277 + }, + { + "start": 17169.02, + "end": 17170.96, + "probability": 0.8013 + }, + { + "start": 17171.08, + "end": 17175.74, + "probability": 0.9937 + }, + { + "start": 17176.64, + "end": 17183.3, + "probability": 0.9619 + }, + { + "start": 17183.48, + "end": 17184.62, + "probability": 0.6667 + }, + { + "start": 17185.36, + "end": 17187.96, + "probability": 0.7365 + }, + { + "start": 17188.12, + "end": 17193.1, + "probability": 0.7751 + }, + { + "start": 17193.1, + "end": 17197.2, + "probability": 0.9984 + }, + { + "start": 17197.3, + "end": 17198.08, + "probability": 0.8197 + }, + { + "start": 17198.6, + "end": 17203.68, + "probability": 0.9935 + }, + { + "start": 17203.68, + "end": 17208.28, + "probability": 0.9974 + }, + { + "start": 17209.12, + "end": 17213.34, + "probability": 0.9972 + }, + { + "start": 17214.1, + "end": 17214.86, + "probability": 0.9882 + }, + { + "start": 17215.46, + "end": 17218.56, + "probability": 0.888 + }, + { + "start": 17219.48, + "end": 17223.62, + "probability": 0.9912 + }, + { + "start": 17224.24, + "end": 17225.52, + "probability": 0.9507 + }, + { + "start": 17226.32, + "end": 17226.44, + "probability": 0.2906 + }, + { + "start": 17226.44, + "end": 17228.52, + "probability": 0.8804 + }, + { + "start": 17229.42, + "end": 17232.32, + "probability": 0.9519 + }, + { + "start": 17233.26, + "end": 17233.92, + "probability": 0.8513 + }, + { + "start": 17234.14, + "end": 17235.02, + "probability": 0.9366 + }, + { + "start": 17235.48, + "end": 17238.14, + "probability": 0.9918 + }, + { + "start": 17238.82, + "end": 17239.68, + "probability": 0.7724 + }, + { + "start": 17239.76, + "end": 17240.42, + "probability": 0.9941 + }, + { + "start": 17240.66, + "end": 17243.82, + "probability": 0.988 + }, + { + "start": 17244.52, + "end": 17247.42, + "probability": 0.9692 + }, + { + "start": 17248.3, + "end": 17254.06, + "probability": 0.955 + }, + { + "start": 17254.44, + "end": 17259.08, + "probability": 0.9823 + }, + { + "start": 17260.06, + "end": 17262.9, + "probability": 0.6123 + }, + { + "start": 17263.06, + "end": 17264.79, + "probability": 0.8924 + }, + { + "start": 17264.84, + "end": 17265.61, + "probability": 0.1366 + }, + { + "start": 17266.24, + "end": 17266.49, + "probability": 0.4182 + }, + { + "start": 17267.36, + "end": 17269.0, + "probability": 0.7334 + }, + { + "start": 17269.2, + "end": 17275.16, + "probability": 0.6599 + }, + { + "start": 17275.16, + "end": 17275.72, + "probability": 0.2165 + }, + { + "start": 17275.86, + "end": 17277.08, + "probability": 0.5092 + }, + { + "start": 17277.22, + "end": 17277.84, + "probability": 0.5661 + }, + { + "start": 17278.46, + "end": 17281.97, + "probability": 0.978 + }, + { + "start": 17282.0, + "end": 17285.08, + "probability": 0.9376 + }, + { + "start": 17285.26, + "end": 17288.3, + "probability": 0.9854 + }, + { + "start": 17288.94, + "end": 17290.14, + "probability": 0.9523 + }, + { + "start": 17290.6, + "end": 17294.06, + "probability": 0.9719 + }, + { + "start": 17294.06, + "end": 17300.1, + "probability": 0.7224 + }, + { + "start": 17300.66, + "end": 17301.22, + "probability": 0.7542 + }, + { + "start": 17302.24, + "end": 17304.74, + "probability": 0.845 + }, + { + "start": 17304.98, + "end": 17305.53, + "probability": 0.9258 + }, + { + "start": 17306.32, + "end": 17307.18, + "probability": 0.9082 + }, + { + "start": 17307.34, + "end": 17308.36, + "probability": 0.8462 + }, + { + "start": 17308.72, + "end": 17310.28, + "probability": 0.9226 + }, + { + "start": 17310.62, + "end": 17311.5, + "probability": 0.7755 + }, + { + "start": 17311.74, + "end": 17314.94, + "probability": 0.8216 + }, + { + "start": 17315.3, + "end": 17317.14, + "probability": 0.9697 + }, + { + "start": 17317.58, + "end": 17317.96, + "probability": 0.1653 + }, + { + "start": 17318.26, + "end": 17319.76, + "probability": 0.8442 + }, + { + "start": 17320.06, + "end": 17321.0, + "probability": 0.9 + }, + { + "start": 17321.32, + "end": 17326.28, + "probability": 0.9586 + }, + { + "start": 17326.46, + "end": 17328.02, + "probability": 0.8158 + }, + { + "start": 17328.06, + "end": 17329.61, + "probability": 0.8921 + }, + { + "start": 17330.64, + "end": 17336.14, + "probability": 0.9851 + }, + { + "start": 17337.15, + "end": 17340.56, + "probability": 0.5475 + }, + { + "start": 17340.64, + "end": 17342.28, + "probability": 0.5518 + }, + { + "start": 17342.62, + "end": 17344.0, + "probability": 0.8272 + }, + { + "start": 17344.08, + "end": 17346.24, + "probability": 0.703 + }, + { + "start": 17346.36, + "end": 17346.36, + "probability": 0.0185 + }, + { + "start": 17346.36, + "end": 17348.11, + "probability": 0.997 + }, + { + "start": 17348.9, + "end": 17352.54, + "probability": 0.9941 + }, + { + "start": 17353.6, + "end": 17358.32, + "probability": 0.9899 + }, + { + "start": 17359.1, + "end": 17362.24, + "probability": 0.9868 + }, + { + "start": 17362.32, + "end": 17365.54, + "probability": 0.9988 + }, + { + "start": 17366.28, + "end": 17368.07, + "probability": 0.9532 + }, + { + "start": 17368.78, + "end": 17371.24, + "probability": 0.7857 + }, + { + "start": 17372.1, + "end": 17372.1, + "probability": 0.2051 + }, + { + "start": 17372.1, + "end": 17372.76, + "probability": 0.6718 + }, + { + "start": 17374.28, + "end": 17375.24, + "probability": 0.0056 + }, + { + "start": 17376.46, + "end": 17377.42, + "probability": 0.0148 + }, + { + "start": 17377.5, + "end": 17377.92, + "probability": 0.041 + }, + { + "start": 17384.24, + "end": 17390.44, + "probability": 0.9874 + }, + { + "start": 17390.58, + "end": 17393.18, + "probability": 0.9991 + }, + { + "start": 17393.84, + "end": 17396.06, + "probability": 0.9859 + }, + { + "start": 17396.16, + "end": 17399.28, + "probability": 0.9243 + }, + { + "start": 17399.9, + "end": 17406.8, + "probability": 0.9927 + }, + { + "start": 17407.52, + "end": 17412.94, + "probability": 0.9817 + }, + { + "start": 17412.94, + "end": 17416.7, + "probability": 0.9996 + }, + { + "start": 17416.78, + "end": 17418.54, + "probability": 0.9835 + }, + { + "start": 17418.96, + "end": 17421.45, + "probability": 0.9775 + }, + { + "start": 17422.44, + "end": 17424.5, + "probability": 0.9414 + }, + { + "start": 17425.62, + "end": 17426.56, + "probability": 0.753 + }, + { + "start": 17426.62, + "end": 17432.56, + "probability": 0.9854 + }, + { + "start": 17433.02, + "end": 17434.71, + "probability": 0.9941 + }, + { + "start": 17434.94, + "end": 17438.52, + "probability": 0.9565 + }, + { + "start": 17440.24, + "end": 17443.3, + "probability": 0.9609 + }, + { + "start": 17443.3, + "end": 17445.9, + "probability": 0.5061 + }, + { + "start": 17446.06, + "end": 17448.8, + "probability": 0.9477 + }, + { + "start": 17449.52, + "end": 17451.74, + "probability": 0.9938 + }, + { + "start": 17452.28, + "end": 17456.56, + "probability": 0.9956 + }, + { + "start": 17456.64, + "end": 17462.3, + "probability": 0.8744 + }, + { + "start": 17462.78, + "end": 17464.02, + "probability": 0.9127 + }, + { + "start": 17464.18, + "end": 17465.21, + "probability": 0.9624 + }, + { + "start": 17465.68, + "end": 17468.7, + "probability": 0.9963 + }, + { + "start": 17469.38, + "end": 17471.62, + "probability": 0.9446 + }, + { + "start": 17471.74, + "end": 17472.04, + "probability": 0.7405 + }, + { + "start": 17472.12, + "end": 17472.18, + "probability": 0.5133 + }, + { + "start": 17472.18, + "end": 17472.58, + "probability": 0.3684 + }, + { + "start": 17472.7, + "end": 17473.18, + "probability": 0.9176 + }, + { + "start": 17473.24, + "end": 17474.08, + "probability": 0.9167 + }, + { + "start": 17474.24, + "end": 17475.78, + "probability": 0.8797 + }, + { + "start": 17475.84, + "end": 17477.04, + "probability": 0.6765 + }, + { + "start": 17477.3, + "end": 17480.02, + "probability": 0.9683 + }, + { + "start": 17480.08, + "end": 17482.28, + "probability": 0.6149 + }, + { + "start": 17482.44, + "end": 17485.1, + "probability": 0.8325 + }, + { + "start": 17485.38, + "end": 17485.84, + "probability": 0.3286 + }, + { + "start": 17485.96, + "end": 17487.08, + "probability": 0.352 + }, + { + "start": 17487.22, + "end": 17489.84, + "probability": 0.9888 + }, + { + "start": 17489.88, + "end": 17490.74, + "probability": 0.4692 + }, + { + "start": 17491.24, + "end": 17494.84, + "probability": 0.9751 + }, + { + "start": 17494.86, + "end": 17497.08, + "probability": 0.9621 + }, + { + "start": 17498.44, + "end": 17498.76, + "probability": 0.8269 + }, + { + "start": 17499.68, + "end": 17500.68, + "probability": 0.4034 + }, + { + "start": 17501.18, + "end": 17501.72, + "probability": 0.7456 + }, + { + "start": 17501.88, + "end": 17504.16, + "probability": 0.9568 + }, + { + "start": 17504.3, + "end": 17504.82, + "probability": 0.8674 + }, + { + "start": 17504.86, + "end": 17505.38, + "probability": 0.7082 + }, + { + "start": 17505.56, + "end": 17506.54, + "probability": 0.9612 + }, + { + "start": 17507.32, + "end": 17507.32, + "probability": 0.0337 + }, + { + "start": 17507.86, + "end": 17510.04, + "probability": 0.641 + }, + { + "start": 17510.4, + "end": 17511.38, + "probability": 0.9678 + }, + { + "start": 17512.12, + "end": 17513.52, + "probability": 0.5998 + }, + { + "start": 17513.74, + "end": 17514.56, + "probability": 0.4059 + }, + { + "start": 17515.56, + "end": 17519.48, + "probability": 0.1774 + }, + { + "start": 17519.58, + "end": 17521.38, + "probability": 0.4348 + }, + { + "start": 17521.5, + "end": 17524.32, + "probability": 0.3176 + }, + { + "start": 17524.42, + "end": 17527.98, + "probability": 0.8178 + }, + { + "start": 17528.24, + "end": 17528.72, + "probability": 0.701 + }, + { + "start": 17528.8, + "end": 17529.34, + "probability": 0.6706 + }, + { + "start": 17529.48, + "end": 17530.98, + "probability": 0.5761 + }, + { + "start": 17532.9, + "end": 17535.66, + "probability": 0.9342 + }, + { + "start": 17536.98, + "end": 17539.04, + "probability": 0.6735 + }, + { + "start": 17540.68, + "end": 17543.28, + "probability": 0.441 + }, + { + "start": 17544.64, + "end": 17547.16, + "probability": 0.9634 + }, + { + "start": 17548.14, + "end": 17550.34, + "probability": 0.9503 + }, + { + "start": 17551.38, + "end": 17553.48, + "probability": 0.9683 + }, + { + "start": 17554.44, + "end": 17555.9, + "probability": 0.8724 + }, + { + "start": 17557.12, + "end": 17558.22, + "probability": 0.5679 + }, + { + "start": 17558.28, + "end": 17559.56, + "probability": 0.8971 + }, + { + "start": 17559.58, + "end": 17559.88, + "probability": 0.6555 + }, + { + "start": 17559.92, + "end": 17562.24, + "probability": 0.9782 + }, + { + "start": 17563.84, + "end": 17566.3, + "probability": 0.9702 + }, + { + "start": 17567.56, + "end": 17570.2, + "probability": 0.9542 + }, + { + "start": 17570.72, + "end": 17571.5, + "probability": 0.9678 + }, + { + "start": 17572.18, + "end": 17573.98, + "probability": 0.8631 + }, + { + "start": 17575.36, + "end": 17577.88, + "probability": 0.9808 + }, + { + "start": 17580.34, + "end": 17583.22, + "probability": 0.9443 + }, + { + "start": 17584.7, + "end": 17589.8, + "probability": 0.9639 + }, + { + "start": 17590.3, + "end": 17590.3, + "probability": 0.9307 + }, + { + "start": 17591.22, + "end": 17593.64, + "probability": 0.9265 + }, + { + "start": 17594.18, + "end": 17595.66, + "probability": 0.8517 + }, + { + "start": 17595.7, + "end": 17601.02, + "probability": 0.9525 + }, + { + "start": 17601.06, + "end": 17601.96, + "probability": 0.8369 + }, + { + "start": 17602.42, + "end": 17603.3, + "probability": 0.8856 + }, + { + "start": 17603.38, + "end": 17604.16, + "probability": 0.8887 + }, + { + "start": 17604.44, + "end": 17605.74, + "probability": 0.6959 + }, + { + "start": 17606.46, + "end": 17608.8, + "probability": 0.8989 + }, + { + "start": 17610.04, + "end": 17612.58, + "probability": 0.882 + }, + { + "start": 17614.06, + "end": 17618.34, + "probability": 0.9069 + }, + { + "start": 17619.4, + "end": 17624.48, + "probability": 0.9785 + }, + { + "start": 17624.56, + "end": 17625.22, + "probability": 0.677 + }, + { + "start": 17625.68, + "end": 17626.32, + "probability": 0.9794 + }, + { + "start": 17628.14, + "end": 17632.44, + "probability": 0.8158 + }, + { + "start": 17634.36, + "end": 17636.5, + "probability": 0.586 + }, + { + "start": 17637.88, + "end": 17641.08, + "probability": 0.9958 + }, + { + "start": 17641.74, + "end": 17642.38, + "probability": 0.7546 + }, + { + "start": 17644.0, + "end": 17645.26, + "probability": 0.8638 + }, + { + "start": 17645.68, + "end": 17645.98, + "probability": 0.6566 + }, + { + "start": 17646.92, + "end": 17647.76, + "probability": 0.9863 + }, + { + "start": 17650.36, + "end": 17651.18, + "probability": 0.5051 + }, + { + "start": 17652.9, + "end": 17656.18, + "probability": 0.811 + }, + { + "start": 17657.58, + "end": 17660.02, + "probability": 0.8724 + }, + { + "start": 17660.98, + "end": 17663.72, + "probability": 0.9656 + }, + { + "start": 17664.02, + "end": 17665.44, + "probability": 0.9625 + }, + { + "start": 17666.58, + "end": 17668.9, + "probability": 0.3202 + }, + { + "start": 17670.08, + "end": 17671.42, + "probability": 0.6377 + }, + { + "start": 17672.1, + "end": 17676.52, + "probability": 0.8262 + }, + { + "start": 17676.7, + "end": 17677.24, + "probability": 0.9697 + }, + { + "start": 17677.48, + "end": 17677.96, + "probability": 0.7824 + }, + { + "start": 17678.56, + "end": 17680.32, + "probability": 0.9852 + }, + { + "start": 17681.2, + "end": 17682.89, + "probability": 0.6012 + }, + { + "start": 17683.7, + "end": 17684.24, + "probability": 0.6797 + }, + { + "start": 17684.9, + "end": 17686.3, + "probability": 0.7176 + }, + { + "start": 17686.84, + "end": 17689.34, + "probability": 0.9919 + }, + { + "start": 17690.04, + "end": 17690.88, + "probability": 0.9961 + }, + { + "start": 17692.16, + "end": 17693.32, + "probability": 0.8485 + }, + { + "start": 17694.54, + "end": 17695.96, + "probability": 0.8833 + }, + { + "start": 17696.88, + "end": 17697.92, + "probability": 0.668 + }, + { + "start": 17699.96, + "end": 17701.38, + "probability": 0.9482 + }, + { + "start": 17703.74, + "end": 17706.1, + "probability": 0.6593 + }, + { + "start": 17708.14, + "end": 17709.66, + "probability": 0.9544 + }, + { + "start": 17710.38, + "end": 17711.78, + "probability": 0.9857 + }, + { + "start": 17712.54, + "end": 17715.58, + "probability": 0.9221 + }, + { + "start": 17716.26, + "end": 17717.26, + "probability": 0.026 + }, + { + "start": 17717.56, + "end": 17720.05, + "probability": 0.9536 + }, + { + "start": 17720.9, + "end": 17722.3, + "probability": 0.9941 + }, + { + "start": 17723.84, + "end": 17727.12, + "probability": 0.7498 + }, + { + "start": 17729.03, + "end": 17731.08, + "probability": 0.5425 + }, + { + "start": 17731.16, + "end": 17731.5, + "probability": 0.7433 + }, + { + "start": 17731.52, + "end": 17731.94, + "probability": 0.7147 + }, + { + "start": 17732.72, + "end": 17735.98, + "probability": 0.9373 + }, + { + "start": 17738.16, + "end": 17741.2, + "probability": 0.4961 + }, + { + "start": 17742.2, + "end": 17743.48, + "probability": 0.38 + }, + { + "start": 17744.04, + "end": 17747.0, + "probability": 0.7091 + }, + { + "start": 17747.08, + "end": 17747.98, + "probability": 0.6768 + }, + { + "start": 17748.56, + "end": 17749.13, + "probability": 0.9873 + }, + { + "start": 17749.94, + "end": 17753.34, + "probability": 0.8766 + }, + { + "start": 17754.04, + "end": 17756.04, + "probability": 0.7894 + }, + { + "start": 17756.42, + "end": 17758.02, + "probability": 0.7056 + }, + { + "start": 17758.4, + "end": 17761.65, + "probability": 0.9568 + }, + { + "start": 17762.52, + "end": 17764.78, + "probability": 0.7668 + }, + { + "start": 17765.52, + "end": 17770.36, + "probability": 0.9727 + }, + { + "start": 17770.88, + "end": 17772.52, + "probability": 0.6922 + }, + { + "start": 17772.64, + "end": 17774.74, + "probability": 0.9465 + }, + { + "start": 17774.82, + "end": 17775.53, + "probability": 0.8647 + }, + { + "start": 17775.9, + "end": 17778.38, + "probability": 0.9976 + }, + { + "start": 17779.24, + "end": 17780.86, + "probability": 0.8232 + }, + { + "start": 17781.02, + "end": 17783.72, + "probability": 0.7646 + }, + { + "start": 17784.96, + "end": 17786.0, + "probability": 0.9508 + }, + { + "start": 17786.02, + "end": 17787.2, + "probability": 0.58 + }, + { + "start": 17787.58, + "end": 17789.54, + "probability": 0.9918 + }, + { + "start": 17790.14, + "end": 17793.24, + "probability": 0.9338 + }, + { + "start": 17794.5, + "end": 17795.54, + "probability": 0.9407 + }, + { + "start": 17796.02, + "end": 17797.7, + "probability": 0.9009 + }, + { + "start": 17798.14, + "end": 17798.72, + "probability": 0.6018 + }, + { + "start": 17799.58, + "end": 17800.2, + "probability": 0.7696 + }, + { + "start": 17801.14, + "end": 17805.62, + "probability": 0.9929 + }, + { + "start": 17806.32, + "end": 17807.12, + "probability": 0.9765 + }, + { + "start": 17807.8, + "end": 17808.62, + "probability": 0.9029 + }, + { + "start": 17809.2, + "end": 17809.92, + "probability": 0.8788 + }, + { + "start": 17810.08, + "end": 17812.0, + "probability": 0.8619 + }, + { + "start": 17812.04, + "end": 17812.58, + "probability": 0.6357 + }, + { + "start": 17813.36, + "end": 17816.21, + "probability": 0.7981 + }, + { + "start": 17816.94, + "end": 17817.8, + "probability": 0.8271 + }, + { + "start": 17818.82, + "end": 17821.58, + "probability": 0.9675 + }, + { + "start": 17822.12, + "end": 17824.86, + "probability": 0.9851 + }, + { + "start": 17825.82, + "end": 17827.84, + "probability": 0.9834 + }, + { + "start": 17828.82, + "end": 17830.5, + "probability": 0.9881 + }, + { + "start": 17831.84, + "end": 17832.12, + "probability": 0.3102 + }, + { + "start": 17833.08, + "end": 17837.96, + "probability": 0.9785 + }, + { + "start": 17838.44, + "end": 17838.86, + "probability": 0.7445 + }, + { + "start": 17838.98, + "end": 17839.96, + "probability": 0.6811 + }, + { + "start": 17841.26, + "end": 17843.58, + "probability": 0.9306 + }, + { + "start": 17844.92, + "end": 17845.02, + "probability": 0.1296 + }, + { + "start": 17845.06, + "end": 17845.96, + "probability": 0.8038 + }, + { + "start": 17846.06, + "end": 17846.28, + "probability": 0.4008 + }, + { + "start": 17846.28, + "end": 17848.58, + "probability": 0.8585 + }, + { + "start": 17849.16, + "end": 17850.78, + "probability": 0.8043 + }, + { + "start": 17852.02, + "end": 17854.58, + "probability": 0.9548 + }, + { + "start": 17855.42, + "end": 17857.44, + "probability": 0.9891 + }, + { + "start": 17857.8, + "end": 17859.26, + "probability": 0.875 + }, + { + "start": 17859.88, + "end": 17862.34, + "probability": 0.6082 + }, + { + "start": 17862.4, + "end": 17862.68, + "probability": 0.7619 + }, + { + "start": 17863.78, + "end": 17865.8, + "probability": 0.7174 + }, + { + "start": 17866.22, + "end": 17866.5, + "probability": 0.742 + }, + { + "start": 17867.12, + "end": 17867.12, + "probability": 0.0271 + }, + { + "start": 17867.12, + "end": 17869.28, + "probability": 0.7508 + }, + { + "start": 17871.38, + "end": 17873.1, + "probability": 0.8986 + }, + { + "start": 17873.34, + "end": 17873.84, + "probability": 0.792 + }, + { + "start": 17874.44, + "end": 17877.82, + "probability": 0.9369 + }, + { + "start": 17878.44, + "end": 17879.6, + "probability": 0.1893 + }, + { + "start": 17881.64, + "end": 17881.88, + "probability": 0.6058 + }, + { + "start": 17882.44, + "end": 17884.34, + "probability": 0.8835 + }, + { + "start": 17884.76, + "end": 17887.36, + "probability": 0.7247 + }, + { + "start": 17888.34, + "end": 17890.32, + "probability": 0.8645 + }, + { + "start": 17890.96, + "end": 17892.22, + "probability": 0.9995 + }, + { + "start": 17892.74, + "end": 17893.46, + "probability": 0.8561 + }, + { + "start": 17893.98, + "end": 17895.6, + "probability": 0.99 + }, + { + "start": 17896.4, + "end": 17898.35, + "probability": 0.9985 + }, + { + "start": 17898.92, + "end": 17901.68, + "probability": 0.9819 + }, + { + "start": 17902.22, + "end": 17905.14, + "probability": 0.9165 + }, + { + "start": 17905.14, + "end": 17907.76, + "probability": 0.9984 + }, + { + "start": 17908.48, + "end": 17911.66, + "probability": 0.8455 + }, + { + "start": 17912.86, + "end": 17913.14, + "probability": 0.1135 + }, + { + "start": 17913.14, + "end": 17918.28, + "probability": 0.9335 + }, + { + "start": 17918.5, + "end": 17920.86, + "probability": 0.845 + }, + { + "start": 17921.24, + "end": 17924.14, + "probability": 0.685 + }, + { + "start": 17924.26, + "end": 17926.7, + "probability": 0.9633 + }, + { + "start": 17927.08, + "end": 17929.24, + "probability": 0.9351 + }, + { + "start": 17929.7, + "end": 17932.68, + "probability": 0.9984 + }, + { + "start": 17932.92, + "end": 17934.22, + "probability": 0.9721 + }, + { + "start": 17934.56, + "end": 17935.22, + "probability": 0.9472 + }, + { + "start": 17935.68, + "end": 17936.36, + "probability": 0.976 + }, + { + "start": 17936.4, + "end": 17936.96, + "probability": 0.6509 + }, + { + "start": 17937.12, + "end": 17937.12, + "probability": 0.2146 + }, + { + "start": 17937.12, + "end": 17937.58, + "probability": 0.667 + }, + { + "start": 17938.22, + "end": 17938.66, + "probability": 0.4305 + }, + { + "start": 17938.66, + "end": 17941.38, + "probability": 0.9985 + }, + { + "start": 17941.62, + "end": 17943.18, + "probability": 0.9955 + }, + { + "start": 17943.32, + "end": 17944.38, + "probability": 0.8779 + }, + { + "start": 17944.44, + "end": 17946.44, + "probability": 0.8916 + }, + { + "start": 17946.76, + "end": 17947.62, + "probability": 0.9801 + }, + { + "start": 17947.72, + "end": 17949.08, + "probability": 0.828 + }, + { + "start": 17949.6, + "end": 17950.22, + "probability": 0.9322 + }, + { + "start": 17950.36, + "end": 17951.02, + "probability": 0.9089 + }, + { + "start": 17951.08, + "end": 17952.68, + "probability": 0.9485 + }, + { + "start": 17952.72, + "end": 17953.66, + "probability": 0.3415 + }, + { + "start": 17953.98, + "end": 17956.26, + "probability": 0.5868 + }, + { + "start": 17956.8, + "end": 17958.6, + "probability": 0.9887 + }, + { + "start": 17958.72, + "end": 17959.6, + "probability": 0.7594 + }, + { + "start": 17959.7, + "end": 17960.66, + "probability": 0.8974 + }, + { + "start": 17961.04, + "end": 17962.18, + "probability": 0.9843 + }, + { + "start": 17962.28, + "end": 17962.92, + "probability": 0.7326 + }, + { + "start": 17963.46, + "end": 17965.64, + "probability": 0.9595 + }, + { + "start": 17966.1, + "end": 17967.76, + "probability": 0.9855 + }, + { + "start": 17967.8, + "end": 17968.86, + "probability": 0.9751 + }, + { + "start": 17969.54, + "end": 17972.88, + "probability": 0.8394 + }, + { + "start": 17972.98, + "end": 17974.92, + "probability": 0.9969 + }, + { + "start": 17975.56, + "end": 17977.54, + "probability": 0.998 + }, + { + "start": 17977.9, + "end": 17983.5, + "probability": 0.859 + }, + { + "start": 17983.98, + "end": 17988.92, + "probability": 0.4515 + }, + { + "start": 17989.5, + "end": 17990.6, + "probability": 0.0717 + }, + { + "start": 17990.6, + "end": 17990.6, + "probability": 0.1085 + }, + { + "start": 17990.6, + "end": 17990.6, + "probability": 0.2179 + }, + { + "start": 17990.6, + "end": 17990.6, + "probability": 0.0269 + }, + { + "start": 17990.6, + "end": 17990.6, + "probability": 0.152 + }, + { + "start": 17990.6, + "end": 17992.78, + "probability": 0.8066 + }, + { + "start": 17993.5, + "end": 17995.16, + "probability": 0.9469 + }, + { + "start": 17995.28, + "end": 17996.3, + "probability": 0.66 + }, + { + "start": 17996.3, + "end": 17997.48, + "probability": 0.6957 + }, + { + "start": 17998.42, + "end": 17998.44, + "probability": 0.0238 + }, + { + "start": 17998.44, + "end": 18003.06, + "probability": 0.9735 + }, + { + "start": 18003.42, + "end": 18004.14, + "probability": 0.9617 + }, + { + "start": 18004.7, + "end": 18007.18, + "probability": 0.9463 + }, + { + "start": 18008.1, + "end": 18010.76, + "probability": 0.9855 + }, + { + "start": 18011.46, + "end": 18015.94, + "probability": 0.999 + }, + { + "start": 18016.54, + "end": 18017.94, + "probability": 0.9258 + }, + { + "start": 18018.1, + "end": 18019.68, + "probability": 0.9817 + }, + { + "start": 18020.16, + "end": 18023.58, + "probability": 0.991 + }, + { + "start": 18024.32, + "end": 18026.96, + "probability": 0.9186 + }, + { + "start": 18027.34, + "end": 18028.8, + "probability": 0.9392 + }, + { + "start": 18028.88, + "end": 18031.36, + "probability": 0.9362 + }, + { + "start": 18031.82, + "end": 18032.34, + "probability": 0.8642 + }, + { + "start": 18032.5, + "end": 18034.21, + "probability": 0.5991 + }, + { + "start": 18034.54, + "end": 18036.4, + "probability": 0.989 + }, + { + "start": 18036.84, + "end": 18038.76, + "probability": 0.9883 + }, + { + "start": 18038.82, + "end": 18040.08, + "probability": 0.9771 + }, + { + "start": 18040.56, + "end": 18043.58, + "probability": 0.9986 + }, + { + "start": 18044.22, + "end": 18044.22, + "probability": 0.0419 + }, + { + "start": 18044.22, + "end": 18046.08, + "probability": 0.6553 + }, + { + "start": 18046.66, + "end": 18049.38, + "probability": 0.8887 + }, + { + "start": 18049.48, + "end": 18050.4, + "probability": 0.993 + }, + { + "start": 18050.66, + "end": 18051.74, + "probability": 0.9878 + }, + { + "start": 18051.92, + "end": 18053.62, + "probability": 0.8833 + }, + { + "start": 18053.64, + "end": 18055.34, + "probability": 0.9819 + }, + { + "start": 18056.0, + "end": 18057.64, + "probability": 0.9578 + }, + { + "start": 18058.0, + "end": 18061.42, + "probability": 0.9858 + }, + { + "start": 18061.98, + "end": 18062.48, + "probability": 0.7382 + }, + { + "start": 18062.9, + "end": 18064.7, + "probability": 0.8938 + }, + { + "start": 18064.7, + "end": 18069.4, + "probability": 0.9969 + }, + { + "start": 18070.26, + "end": 18073.22, + "probability": 0.9957 + }, + { + "start": 18073.64, + "end": 18075.0, + "probability": 0.859 + }, + { + "start": 18075.1, + "end": 18076.36, + "probability": 0.9258 + }, + { + "start": 18076.42, + "end": 18077.18, + "probability": 0.7629 + }, + { + "start": 18077.69, + "end": 18079.72, + "probability": 0.9967 + }, + { + "start": 18080.82, + "end": 18082.56, + "probability": 0.9243 + }, + { + "start": 18082.72, + "end": 18084.1, + "probability": 0.8379 + }, + { + "start": 18084.7, + "end": 18085.8, + "probability": 0.5697 + }, + { + "start": 18086.28, + "end": 18089.3, + "probability": 0.9919 + }, + { + "start": 18089.6, + "end": 18090.78, + "probability": 0.9473 + }, + { + "start": 18092.02, + "end": 18095.56, + "probability": 0.9969 + }, + { + "start": 18095.96, + "end": 18097.92, + "probability": 0.9955 + }, + { + "start": 18098.3, + "end": 18100.22, + "probability": 0.9941 + }, + { + "start": 18100.58, + "end": 18102.86, + "probability": 0.9965 + }, + { + "start": 18103.4, + "end": 18105.6, + "probability": 0.9976 + }, + { + "start": 18105.62, + "end": 18110.88, + "probability": 0.9979 + }, + { + "start": 18111.8, + "end": 18114.94, + "probability": 0.9315 + }, + { + "start": 18115.44, + "end": 18116.88, + "probability": 0.9687 + }, + { + "start": 18117.5, + "end": 18122.5, + "probability": 0.9876 + }, + { + "start": 18122.64, + "end": 18124.54, + "probability": 0.8927 + }, + { + "start": 18125.14, + "end": 18125.86, + "probability": 0.9951 + }, + { + "start": 18126.7, + "end": 18127.46, + "probability": 0.0568 + }, + { + "start": 18127.86, + "end": 18129.92, + "probability": 0.7959 + }, + { + "start": 18130.28, + "end": 18132.38, + "probability": 0.7508 + }, + { + "start": 18132.52, + "end": 18133.94, + "probability": 0.9517 + }, + { + "start": 18134.42, + "end": 18136.96, + "probability": 0.9868 + }, + { + "start": 18137.76, + "end": 18139.08, + "probability": 0.9414 + }, + { + "start": 18140.06, + "end": 18142.42, + "probability": 0.9959 + }, + { + "start": 18142.76, + "end": 18145.2, + "probability": 0.997 + }, + { + "start": 18146.02, + "end": 18148.52, + "probability": 0.9919 + }, + { + "start": 18148.64, + "end": 18149.44, + "probability": 0.5562 + }, + { + "start": 18149.46, + "end": 18150.64, + "probability": 0.9759 + }, + { + "start": 18151.18, + "end": 18151.36, + "probability": 0.505 + }, + { + "start": 18151.48, + "end": 18153.02, + "probability": 0.8579 + }, + { + "start": 18153.5, + "end": 18155.02, + "probability": 0.9181 + }, + { + "start": 18155.52, + "end": 18156.88, + "probability": 0.99 + }, + { + "start": 18157.16, + "end": 18158.08, + "probability": 0.9813 + }, + { + "start": 18158.4, + "end": 18159.44, + "probability": 0.928 + }, + { + "start": 18159.82, + "end": 18162.14, + "probability": 0.9904 + }, + { + "start": 18163.48, + "end": 18166.2, + "probability": 0.9734 + }, + { + "start": 18166.72, + "end": 18170.1, + "probability": 0.7432 + }, + { + "start": 18170.18, + "end": 18173.48, + "probability": 0.9425 + }, + { + "start": 18174.52, + "end": 18175.94, + "probability": 0.0722 + }, + { + "start": 18175.94, + "end": 18177.44, + "probability": 0.7946 + }, + { + "start": 18177.94, + "end": 18177.98, + "probability": 0.2587 + }, + { + "start": 18177.98, + "end": 18179.9, + "probability": 0.5464 + }, + { + "start": 18180.06, + "end": 18180.84, + "probability": 0.7306 + }, + { + "start": 18181.22, + "end": 18182.92, + "probability": 0.3411 + }, + { + "start": 18183.06, + "end": 18185.7, + "probability": 0.8481 + }, + { + "start": 18185.82, + "end": 18187.44, + "probability": 0.4757 + }, + { + "start": 18187.46, + "end": 18188.08, + "probability": 0.5293 + }, + { + "start": 18188.32, + "end": 18189.9, + "probability": 0.8203 + }, + { + "start": 18190.36, + "end": 18190.36, + "probability": 0.3471 + }, + { + "start": 18190.36, + "end": 18190.36, + "probability": 0.0045 + }, + { + "start": 18190.36, + "end": 18191.66, + "probability": 0.2979 + }, + { + "start": 18191.88, + "end": 18192.46, + "probability": 0.2185 + }, + { + "start": 18193.2, + "end": 18194.06, + "probability": 0.2026 + }, + { + "start": 18194.68, + "end": 18195.16, + "probability": 0.5071 + }, + { + "start": 18195.34, + "end": 18199.26, + "probability": 0.0461 + }, + { + "start": 18200.6, + "end": 18201.04, + "probability": 0.099 + }, + { + "start": 18201.04, + "end": 18201.04, + "probability": 0.1288 + }, + { + "start": 18201.04, + "end": 18202.28, + "probability": 0.305 + }, + { + "start": 18202.52, + "end": 18205.76, + "probability": 0.9407 + }, + { + "start": 18206.18, + "end": 18209.5, + "probability": 0.9741 + }, + { + "start": 18210.14, + "end": 18212.74, + "probability": 0.9182 + }, + { + "start": 18212.82, + "end": 18214.54, + "probability": 0.6813 + }, + { + "start": 18215.0, + "end": 18217.36, + "probability": 0.9937 + }, + { + "start": 18217.94, + "end": 18218.56, + "probability": 0.9285 + }, + { + "start": 18218.7, + "end": 18221.0, + "probability": 0.878 + }, + { + "start": 18221.1, + "end": 18222.24, + "probability": 0.6848 + }, + { + "start": 18222.54, + "end": 18225.52, + "probability": 0.9855 + }, + { + "start": 18226.24, + "end": 18226.76, + "probability": 0.7298 + }, + { + "start": 18227.38, + "end": 18230.28, + "probability": 0.7994 + }, + { + "start": 18230.94, + "end": 18232.84, + "probability": 0.7379 + }, + { + "start": 18233.42, + "end": 18233.52, + "probability": 0.349 + }, + { + "start": 18233.66, + "end": 18235.0, + "probability": 0.8102 + }, + { + "start": 18235.14, + "end": 18238.4, + "probability": 0.8986 + }, + { + "start": 18238.78, + "end": 18241.16, + "probability": 0.7793 + }, + { + "start": 18241.58, + "end": 18242.82, + "probability": 0.4329 + }, + { + "start": 18243.48, + "end": 18247.4, + "probability": 0.9931 + }, + { + "start": 18248.02, + "end": 18252.06, + "probability": 0.9653 + }, + { + "start": 18252.18, + "end": 18253.5, + "probability": 0.6885 + }, + { + "start": 18253.92, + "end": 18256.38, + "probability": 0.9989 + }, + { + "start": 18257.0, + "end": 18258.14, + "probability": 0.9863 + }, + { + "start": 18258.56, + "end": 18259.17, + "probability": 0.9299 + }, + { + "start": 18259.7, + "end": 18263.22, + "probability": 0.9286 + }, + { + "start": 18263.62, + "end": 18267.46, + "probability": 0.9731 + }, + { + "start": 18267.5, + "end": 18267.72, + "probability": 0.3212 + }, + { + "start": 18268.02, + "end": 18269.76, + "probability": 0.7227 + }, + { + "start": 18270.09, + "end": 18270.65, + "probability": 0.2128 + }, + { + "start": 18270.88, + "end": 18274.04, + "probability": 0.3306 + }, + { + "start": 18274.25, + "end": 18277.02, + "probability": 0.0946 + }, + { + "start": 18277.02, + "end": 18279.54, + "probability": 0.9323 + }, + { + "start": 18279.54, + "end": 18280.54, + "probability": 0.818 + }, + { + "start": 18280.66, + "end": 18282.78, + "probability": 0.7641 + }, + { + "start": 18283.2, + "end": 18283.76, + "probability": 0.4714 + }, + { + "start": 18283.92, + "end": 18285.1, + "probability": 0.7144 + }, + { + "start": 18285.1, + "end": 18286.76, + "probability": 0.5931 + }, + { + "start": 18287.0, + "end": 18289.56, + "probability": 0.3318 + }, + { + "start": 18291.16, + "end": 18292.98, + "probability": 0.8178 + }, + { + "start": 18293.58, + "end": 18294.78, + "probability": 0.7568 + }, + { + "start": 18298.56, + "end": 18299.98, + "probability": 0.1489 + }, + { + "start": 18301.36, + "end": 18303.3, + "probability": 0.5136 + }, + { + "start": 18305.06, + "end": 18306.16, + "probability": 0.4087 + }, + { + "start": 18309.86, + "end": 18311.88, + "probability": 0.6289 + }, + { + "start": 18313.26, + "end": 18313.66, + "probability": 0.8548 + }, + { + "start": 18314.26, + "end": 18317.04, + "probability": 0.9972 + }, + { + "start": 18319.7, + "end": 18319.7, + "probability": 0.0413 + }, + { + "start": 18319.7, + "end": 18319.7, + "probability": 0.1714 + }, + { + "start": 18319.7, + "end": 18321.04, + "probability": 0.6328 + }, + { + "start": 18321.3, + "end": 18324.08, + "probability": 0.9831 + }, + { + "start": 18326.18, + "end": 18327.24, + "probability": 0.0249 + }, + { + "start": 18330.76, + "end": 18331.12, + "probability": 0.0052 + }, + { + "start": 18331.12, + "end": 18331.32, + "probability": 0.066 + }, + { + "start": 18331.32, + "end": 18333.32, + "probability": 0.7143 + }, + { + "start": 18333.46, + "end": 18336.78, + "probability": 0.9857 + }, + { + "start": 18336.78, + "end": 18340.9, + "probability": 0.9867 + }, + { + "start": 18341.5, + "end": 18348.52, + "probability": 0.9885 + }, + { + "start": 18349.08, + "end": 18349.08, + "probability": 0.0064 + }, + { + "start": 18349.08, + "end": 18350.56, + "probability": 0.5707 + }, + { + "start": 18351.58, + "end": 18357.24, + "probability": 0.9888 + }, + { + "start": 18358.14, + "end": 18359.74, + "probability": 0.7445 + }, + { + "start": 18360.5, + "end": 18361.34, + "probability": 0.8097 + }, + { + "start": 18361.44, + "end": 18362.66, + "probability": 0.8659 + }, + { + "start": 18362.76, + "end": 18363.5, + "probability": 0.8865 + }, + { + "start": 18363.56, + "end": 18365.04, + "probability": 0.9264 + }, + { + "start": 18365.14, + "end": 18366.4, + "probability": 0.9203 + }, + { + "start": 18366.52, + "end": 18368.04, + "probability": 0.574 + }, + { + "start": 18368.4, + "end": 18371.4, + "probability": 0.9976 + }, + { + "start": 18371.42, + "end": 18371.7, + "probability": 0.1445 + }, + { + "start": 18371.8, + "end": 18375.24, + "probability": 0.9655 + }, + { + "start": 18376.98, + "end": 18381.74, + "probability": 0.9941 + }, + { + "start": 18381.74, + "end": 18384.52, + "probability": 0.9996 + }, + { + "start": 18385.26, + "end": 18389.0, + "probability": 0.9048 + }, + { + "start": 18389.46, + "end": 18390.38, + "probability": 0.7512 + }, + { + "start": 18390.58, + "end": 18392.9, + "probability": 0.9662 + }, + { + "start": 18393.3, + "end": 18394.74, + "probability": 0.7405 + }, + { + "start": 18394.9, + "end": 18399.0, + "probability": 0.9425 + }, + { + "start": 18400.04, + "end": 18403.94, + "probability": 0.8889 + }, + { + "start": 18404.52, + "end": 18408.84, + "probability": 0.9697 + }, + { + "start": 18409.28, + "end": 18411.94, + "probability": 0.9898 + }, + { + "start": 18411.94, + "end": 18414.44, + "probability": 0.9709 + }, + { + "start": 18415.22, + "end": 18417.58, + "probability": 0.6413 + }, + { + "start": 18418.32, + "end": 18421.34, + "probability": 0.8463 + }, + { + "start": 18422.0, + "end": 18426.14, + "probability": 0.9437 + }, + { + "start": 18426.6, + "end": 18428.34, + "probability": 0.8164 + }, + { + "start": 18428.7, + "end": 18432.28, + "probability": 0.8342 + }, + { + "start": 18432.28, + "end": 18436.01, + "probability": 0.9968 + }, + { + "start": 18436.42, + "end": 18438.01, + "probability": 0.8579 + }, + { + "start": 18438.32, + "end": 18442.78, + "probability": 0.9992 + }, + { + "start": 18442.78, + "end": 18446.92, + "probability": 0.8311 + }, + { + "start": 18447.3, + "end": 18448.9, + "probability": 0.3854 + }, + { + "start": 18448.98, + "end": 18452.1, + "probability": 0.9314 + }, + { + "start": 18452.82, + "end": 18453.9, + "probability": 0.8983 + }, + { + "start": 18454.28, + "end": 18456.86, + "probability": 0.9002 + }, + { + "start": 18457.56, + "end": 18460.62, + "probability": 0.9608 + }, + { + "start": 18461.2, + "end": 18463.0, + "probability": 0.9966 + }, + { + "start": 18463.76, + "end": 18464.38, + "probability": 0.8735 + }, + { + "start": 18464.58, + "end": 18465.94, + "probability": 0.8346 + }, + { + "start": 18466.42, + "end": 18468.98, + "probability": 0.9526 + }, + { + "start": 18469.14, + "end": 18470.8, + "probability": 0.987 + }, + { + "start": 18471.2, + "end": 18472.78, + "probability": 0.9907 + }, + { + "start": 18472.82, + "end": 18475.62, + "probability": 0.9908 + }, + { + "start": 18477.1, + "end": 18481.78, + "probability": 0.9019 + }, + { + "start": 18482.26, + "end": 18484.46, + "probability": 0.9442 + }, + { + "start": 18484.56, + "end": 18486.06, + "probability": 0.8017 + }, + { + "start": 18486.48, + "end": 18486.52, + "probability": 0.4171 + }, + { + "start": 18486.56, + "end": 18488.38, + "probability": 0.8076 + }, + { + "start": 18488.68, + "end": 18489.84, + "probability": 0.9741 + }, + { + "start": 18490.28, + "end": 18491.06, + "probability": 0.802 + }, + { + "start": 18491.56, + "end": 18493.78, + "probability": 0.9964 + }, + { + "start": 18494.12, + "end": 18496.12, + "probability": 0.6338 + }, + { + "start": 18497.2, + "end": 18502.38, + "probability": 0.9852 + }, + { + "start": 18502.38, + "end": 18505.84, + "probability": 0.9913 + }, + { + "start": 18506.3, + "end": 18509.42, + "probability": 0.9473 + }, + { + "start": 18509.98, + "end": 18512.54, + "probability": 0.9895 + }, + { + "start": 18513.46, + "end": 18514.37, + "probability": 0.9567 + }, + { + "start": 18514.66, + "end": 18518.1, + "probability": 0.9438 + }, + { + "start": 18518.96, + "end": 18519.2, + "probability": 0.598 + }, + { + "start": 18519.34, + "end": 18520.1, + "probability": 0.7265 + }, + { + "start": 18520.16, + "end": 18520.92, + "probability": 0.4872 + }, + { + "start": 18521.06, + "end": 18521.62, + "probability": 0.5259 + }, + { + "start": 18521.64, + "end": 18523.03, + "probability": 0.6552 + }, + { + "start": 18523.42, + "end": 18525.12, + "probability": 0.7752 + }, + { + "start": 18525.22, + "end": 18526.88, + "probability": 0.9556 + }, + { + "start": 18527.64, + "end": 18531.26, + "probability": 0.9684 + }, + { + "start": 18531.54, + "end": 18533.68, + "probability": 0.9989 + }, + { + "start": 18534.78, + "end": 18535.24, + "probability": 0.6627 + }, + { + "start": 18536.1, + "end": 18538.2, + "probability": 0.9912 + }, + { + "start": 18539.08, + "end": 18543.02, + "probability": 0.9925 + }, + { + "start": 18544.56, + "end": 18544.66, + "probability": 0.0349 + }, + { + "start": 18544.66, + "end": 18545.52, + "probability": 0.7983 + }, + { + "start": 18546.12, + "end": 18547.46, + "probability": 0.7931 + }, + { + "start": 18548.14, + "end": 18553.12, + "probability": 0.979 + }, + { + "start": 18553.84, + "end": 18556.46, + "probability": 0.9924 + }, + { + "start": 18557.32, + "end": 18560.7, + "probability": 0.9799 + }, + { + "start": 18562.06, + "end": 18566.38, + "probability": 0.9968 + }, + { + "start": 18566.52, + "end": 18567.46, + "probability": 0.9263 + }, + { + "start": 18567.86, + "end": 18570.4, + "probability": 0.9975 + }, + { + "start": 18570.52, + "end": 18571.4, + "probability": 0.3078 + }, + { + "start": 18571.6, + "end": 18576.48, + "probability": 0.9971 + }, + { + "start": 18576.88, + "end": 18576.98, + "probability": 0.3182 + }, + { + "start": 18576.98, + "end": 18576.98, + "probability": 0.0064 + }, + { + "start": 18576.98, + "end": 18579.28, + "probability": 0.7666 + }, + { + "start": 18579.32, + "end": 18582.74, + "probability": 0.925 + }, + { + "start": 18582.86, + "end": 18583.64, + "probability": 0.2006 + }, + { + "start": 18583.68, + "end": 18585.52, + "probability": 0.9923 + }, + { + "start": 18586.18, + "end": 18588.24, + "probability": 0.972 + }, + { + "start": 18589.42, + "end": 18593.18, + "probability": 0.9842 + }, + { + "start": 18593.88, + "end": 18595.38, + "probability": 0.9987 + }, + { + "start": 18595.66, + "end": 18597.0, + "probability": 0.8465 + }, + { + "start": 18597.42, + "end": 18600.4, + "probability": 0.9877 + }, + { + "start": 18600.94, + "end": 18603.07, + "probability": 0.9809 + }, + { + "start": 18603.76, + "end": 18604.72, + "probability": 0.8394 + }, + { + "start": 18605.18, + "end": 18606.2, + "probability": 0.9424 + }, + { + "start": 18606.7, + "end": 18607.66, + "probability": 0.9179 + }, + { + "start": 18608.36, + "end": 18610.44, + "probability": 0.9703 + }, + { + "start": 18611.56, + "end": 18614.72, + "probability": 0.9719 + }, + { + "start": 18614.72, + "end": 18614.72, + "probability": 0.0579 + }, + { + "start": 18614.72, + "end": 18619.4, + "probability": 0.5235 + }, + { + "start": 18619.5, + "end": 18622.18, + "probability": 0.8851 + }, + { + "start": 18622.58, + "end": 18625.39, + "probability": 0.9477 + }, + { + "start": 18626.22, + "end": 18626.67, + "probability": 0.1772 + }, + { + "start": 18628.02, + "end": 18629.28, + "probability": 0.9435 + }, + { + "start": 18629.82, + "end": 18632.86, + "probability": 0.988 + }, + { + "start": 18632.94, + "end": 18635.04, + "probability": 0.9937 + }, + { + "start": 18636.06, + "end": 18637.74, + "probability": 0.1047 + }, + { + "start": 18638.82, + "end": 18640.76, + "probability": 0.157 + }, + { + "start": 18640.9, + "end": 18641.08, + "probability": 0.0528 + }, + { + "start": 18641.08, + "end": 18643.04, + "probability": 0.0378 + }, + { + "start": 18643.44, + "end": 18646.44, + "probability": 0.9856 + }, + { + "start": 18647.0, + "end": 18651.34, + "probability": 0.9751 + }, + { + "start": 18651.72, + "end": 18655.62, + "probability": 0.8297 + }, + { + "start": 18655.66, + "end": 18656.84, + "probability": 0.9421 + }, + { + "start": 18657.18, + "end": 18657.8, + "probability": 0.5672 + }, + { + "start": 18657.94, + "end": 18660.88, + "probability": 0.9255 + }, + { + "start": 18660.88, + "end": 18664.46, + "probability": 0.9946 + }, + { + "start": 18664.78, + "end": 18666.64, + "probability": 0.9077 + }, + { + "start": 18667.16, + "end": 18667.84, + "probability": 0.9768 + }, + { + "start": 18668.0, + "end": 18669.6, + "probability": 0.9931 + }, + { + "start": 18669.86, + "end": 18671.32, + "probability": 0.9603 + }, + { + "start": 18671.76, + "end": 18673.78, + "probability": 0.8735 + }, + { + "start": 18674.26, + "end": 18676.64, + "probability": 0.5235 + }, + { + "start": 18677.38, + "end": 18677.86, + "probability": 0.1822 + }, + { + "start": 18678.18, + "end": 18678.32, + "probability": 0.6383 + }, + { + "start": 18678.32, + "end": 18678.32, + "probability": 0.1187 + }, + { + "start": 18678.32, + "end": 18678.32, + "probability": 0.0625 + }, + { + "start": 18678.46, + "end": 18679.8, + "probability": 0.7079 + }, + { + "start": 18680.32, + "end": 18681.82, + "probability": 0.9233 + }, + { + "start": 18681.92, + "end": 18686.32, + "probability": 0.9809 + }, + { + "start": 18686.32, + "end": 18689.86, + "probability": 0.9897 + }, + { + "start": 18690.34, + "end": 18694.32, + "probability": 0.0208 + }, + { + "start": 18695.3, + "end": 18696.48, + "probability": 0.7312 + }, + { + "start": 18696.48, + "end": 18696.48, + "probability": 0.2032 + }, + { + "start": 18696.48, + "end": 18696.84, + "probability": 0.274 + }, + { + "start": 18697.22, + "end": 18698.72, + "probability": 0.8501 + }, + { + "start": 18698.98, + "end": 18704.78, + "probability": 0.992 + }, + { + "start": 18705.2, + "end": 18708.26, + "probability": 0.965 + }, + { + "start": 18708.78, + "end": 18711.14, + "probability": 0.9844 + }, + { + "start": 18711.34, + "end": 18713.18, + "probability": 0.8599 + }, + { + "start": 18713.6, + "end": 18719.66, + "probability": 0.9925 + }, + { + "start": 18720.1, + "end": 18723.2, + "probability": 0.7215 + }, + { + "start": 18723.68, + "end": 18726.88, + "probability": 0.8849 + }, + { + "start": 18727.28, + "end": 18731.14, + "probability": 0.9532 + }, + { + "start": 18731.14, + "end": 18733.94, + "probability": 0.9904 + }, + { + "start": 18736.12, + "end": 18736.98, + "probability": 0.5227 + }, + { + "start": 18739.22, + "end": 18741.14, + "probability": 0.7575 + }, + { + "start": 18741.3, + "end": 18744.02, + "probability": 0.7296 + }, + { + "start": 18744.9, + "end": 18749.5, + "probability": 0.9834 + }, + { + "start": 18750.2, + "end": 18753.78, + "probability": 0.9905 + }, + { + "start": 18754.58, + "end": 18758.22, + "probability": 0.8958 + }, + { + "start": 18759.0, + "end": 18765.62, + "probability": 0.9921 + }, + { + "start": 18766.18, + "end": 18767.04, + "probability": 0.793 + }, + { + "start": 18767.12, + "end": 18768.6, + "probability": 0.6788 + }, + { + "start": 18769.1, + "end": 18770.82, + "probability": 0.9181 + }, + { + "start": 18771.64, + "end": 18774.24, + "probability": 0.9437 + }, + { + "start": 18774.9, + "end": 18781.74, + "probability": 0.9926 + }, + { + "start": 18782.26, + "end": 18785.48, + "probability": 0.9945 + }, + { + "start": 18786.7, + "end": 18791.6, + "probability": 0.9937 + }, + { + "start": 18791.72, + "end": 18794.38, + "probability": 0.9849 + }, + { + "start": 18794.56, + "end": 18798.68, + "probability": 0.9888 + }, + { + "start": 18799.18, + "end": 18801.4, + "probability": 0.787 + }, + { + "start": 18802.4, + "end": 18803.78, + "probability": 0.9839 + }, + { + "start": 18804.12, + "end": 18805.58, + "probability": 0.8473 + }, + { + "start": 18805.98, + "end": 18808.56, + "probability": 0.8662 + }, + { + "start": 18808.56, + "end": 18811.78, + "probability": 0.9971 + }, + { + "start": 18812.06, + "end": 18812.32, + "probability": 0.7124 + }, + { + "start": 18813.12, + "end": 18814.9, + "probability": 0.6331 + }, + { + "start": 18815.14, + "end": 18818.55, + "probability": 0.9653 + }, + { + "start": 18819.34, + "end": 18820.7, + "probability": 0.7804 + }, + { + "start": 18822.24, + "end": 18823.3, + "probability": 0.8291 + }, + { + "start": 18830.64, + "end": 18832.36, + "probability": 0.739 + }, + { + "start": 18838.16, + "end": 18840.54, + "probability": 0.5859 + }, + { + "start": 18841.72, + "end": 18849.04, + "probability": 0.9726 + }, + { + "start": 18850.5, + "end": 18851.46, + "probability": 0.804 + }, + { + "start": 18852.3, + "end": 18856.1, + "probability": 0.9088 + }, + { + "start": 18857.36, + "end": 18858.98, + "probability": 0.9191 + }, + { + "start": 18860.8, + "end": 18866.48, + "probability": 0.9603 + }, + { + "start": 18867.88, + "end": 18870.84, + "probability": 0.8064 + }, + { + "start": 18871.6, + "end": 18874.06, + "probability": 0.8303 + }, + { + "start": 18875.16, + "end": 18877.08, + "probability": 0.9355 + }, + { + "start": 18877.74, + "end": 18878.8, + "probability": 0.8789 + }, + { + "start": 18880.0, + "end": 18885.14, + "probability": 0.9918 + }, + { + "start": 18885.14, + "end": 18892.34, + "probability": 0.9928 + }, + { + "start": 18893.96, + "end": 18896.6, + "probability": 0.9029 + }, + { + "start": 18897.54, + "end": 18904.18, + "probability": 0.9975 + }, + { + "start": 18905.04, + "end": 18907.7, + "probability": 0.9953 + }, + { + "start": 18907.74, + "end": 18911.5, + "probability": 0.9249 + }, + { + "start": 18912.22, + "end": 18916.26, + "probability": 0.9887 + }, + { + "start": 18918.0, + "end": 18919.74, + "probability": 0.717 + }, + { + "start": 18922.5, + "end": 18926.74, + "probability": 0.5585 + }, + { + "start": 18927.28, + "end": 18928.84, + "probability": 0.8466 + }, + { + "start": 18929.36, + "end": 18931.42, + "probability": 0.9106 + }, + { + "start": 18933.16, + "end": 18936.4, + "probability": 0.9501 + }, + { + "start": 18937.3, + "end": 18938.78, + "probability": 0.8828 + }, + { + "start": 18939.78, + "end": 18940.88, + "probability": 0.9946 + }, + { + "start": 18942.46, + "end": 18944.56, + "probability": 0.9294 + }, + { + "start": 18945.08, + "end": 18946.47, + "probability": 0.6075 + }, + { + "start": 18947.74, + "end": 18954.12, + "probability": 0.9617 + }, + { + "start": 18954.32, + "end": 18958.4, + "probability": 0.8734 + }, + { + "start": 18958.96, + "end": 18960.08, + "probability": 0.9419 + }, + { + "start": 18961.16, + "end": 18965.18, + "probability": 0.9732 + }, + { + "start": 18965.56, + "end": 18968.48, + "probability": 0.8185 + }, + { + "start": 18969.12, + "end": 18970.96, + "probability": 0.877 + }, + { + "start": 18971.16, + "end": 18973.38, + "probability": 0.9348 + }, + { + "start": 18974.56, + "end": 18974.72, + "probability": 0.0595 + }, + { + "start": 18975.0, + "end": 18977.58, + "probability": 0.7074 + }, + { + "start": 18978.52, + "end": 18983.92, + "probability": 0.9453 + }, + { + "start": 18985.64, + "end": 18985.68, + "probability": 0.9595 + }, + { + "start": 18986.64, + "end": 18992.82, + "probability": 0.9811 + }, + { + "start": 18993.88, + "end": 18996.64, + "probability": 0.6483 + }, + { + "start": 18996.8, + "end": 18997.76, + "probability": 0.7574 + }, + { + "start": 18998.4, + "end": 19000.3, + "probability": 0.8473 + }, + { + "start": 19001.34, + "end": 19002.44, + "probability": 0.9677 + }, + { + "start": 19003.12, + "end": 19004.38, + "probability": 0.8215 + }, + { + "start": 19005.24, + "end": 19012.36, + "probability": 0.9877 + }, + { + "start": 19013.54, + "end": 19021.28, + "probability": 0.9299 + }, + { + "start": 19022.26, + "end": 19023.08, + "probability": 0.929 + }, + { + "start": 19023.74, + "end": 19026.28, + "probability": 0.9956 + }, + { + "start": 19026.86, + "end": 19029.08, + "probability": 0.9131 + }, + { + "start": 19030.56, + "end": 19031.78, + "probability": 0.7533 + }, + { + "start": 19032.54, + "end": 19034.12, + "probability": 0.893 + }, + { + "start": 19034.92, + "end": 19038.78, + "probability": 0.9958 + }, + { + "start": 19039.98, + "end": 19040.82, + "probability": 0.8592 + }, + { + "start": 19041.38, + "end": 19044.11, + "probability": 0.9902 + }, + { + "start": 19044.84, + "end": 19050.14, + "probability": 0.9827 + }, + { + "start": 19050.6, + "end": 19053.05, + "probability": 0.9976 + }, + { + "start": 19053.76, + "end": 19054.92, + "probability": 0.8529 + }, + { + "start": 19055.92, + "end": 19056.9, + "probability": 0.8743 + }, + { + "start": 19057.78, + "end": 19058.68, + "probability": 0.8312 + }, + { + "start": 19059.42, + "end": 19061.08, + "probability": 0.4223 + }, + { + "start": 19061.92, + "end": 19063.92, + "probability": 0.9976 + }, + { + "start": 19064.66, + "end": 19066.5, + "probability": 1.0 + }, + { + "start": 19067.12, + "end": 19070.22, + "probability": 0.9966 + }, + { + "start": 19071.7, + "end": 19073.72, + "probability": 0.9275 + }, + { + "start": 19075.04, + "end": 19081.38, + "probability": 0.9749 + }, + { + "start": 19083.0, + "end": 19086.78, + "probability": 0.9927 + }, + { + "start": 19087.72, + "end": 19088.82, + "probability": 0.9978 + }, + { + "start": 19089.7, + "end": 19090.94, + "probability": 0.8803 + }, + { + "start": 19091.66, + "end": 19094.3, + "probability": 0.9912 + }, + { + "start": 19095.52, + "end": 19099.68, + "probability": 0.9893 + }, + { + "start": 19100.6, + "end": 19102.94, + "probability": 0.9946 + }, + { + "start": 19105.38, + "end": 19105.98, + "probability": 0.8068 + }, + { + "start": 19106.8, + "end": 19109.68, + "probability": 0.9954 + }, + { + "start": 19110.84, + "end": 19112.38, + "probability": 0.8313 + }, + { + "start": 19112.72, + "end": 19115.24, + "probability": 0.8574 + }, + { + "start": 19116.52, + "end": 19117.28, + "probability": 0.9966 + }, + { + "start": 19117.86, + "end": 19123.94, + "probability": 0.9872 + }, + { + "start": 19125.04, + "end": 19129.24, + "probability": 0.9179 + }, + { + "start": 19130.22, + "end": 19131.6, + "probability": 0.7469 + }, + { + "start": 19132.26, + "end": 19134.14, + "probability": 0.972 + }, + { + "start": 19135.66, + "end": 19136.86, + "probability": 0.9951 + }, + { + "start": 19137.7, + "end": 19142.46, + "probability": 0.9976 + }, + { + "start": 19143.52, + "end": 19150.04, + "probability": 0.9765 + }, + { + "start": 19150.04, + "end": 19153.9, + "probability": 0.9961 + }, + { + "start": 19154.68, + "end": 19157.44, + "probability": 0.993 + }, + { + "start": 19157.78, + "end": 19158.42, + "probability": 0.7264 + }, + { + "start": 19158.5, + "end": 19160.9, + "probability": 0.9683 + }, + { + "start": 19161.94, + "end": 19167.68, + "probability": 0.9104 + }, + { + "start": 19169.58, + "end": 19171.0, + "probability": 0.9827 + }, + { + "start": 19172.16, + "end": 19176.1, + "probability": 0.9948 + }, + { + "start": 19177.88, + "end": 19180.52, + "probability": 0.9624 + }, + { + "start": 19181.26, + "end": 19183.62, + "probability": 0.9717 + }, + { + "start": 19184.34, + "end": 19188.14, + "probability": 0.9872 + }, + { + "start": 19188.68, + "end": 19190.14, + "probability": 0.931 + }, + { + "start": 19190.54, + "end": 19194.32, + "probability": 0.9781 + }, + { + "start": 19195.38, + "end": 19197.5, + "probability": 0.9296 + }, + { + "start": 19198.04, + "end": 19199.64, + "probability": 0.8769 + }, + { + "start": 19199.88, + "end": 19205.24, + "probability": 0.9836 + }, + { + "start": 19205.24, + "end": 19209.26, + "probability": 0.9931 + }, + { + "start": 19209.94, + "end": 19217.06, + "probability": 0.9893 + }, + { + "start": 19217.54, + "end": 19222.0, + "probability": 0.937 + }, + { + "start": 19222.46, + "end": 19226.22, + "probability": 0.9974 + }, + { + "start": 19226.36, + "end": 19228.7, + "probability": 0.5987 + }, + { + "start": 19228.84, + "end": 19229.38, + "probability": 0.801 + }, + { + "start": 19229.9, + "end": 19233.26, + "probability": 0.8762 + }, + { + "start": 19241.26, + "end": 19243.2, + "probability": 0.7301 + }, + { + "start": 19244.68, + "end": 19246.04, + "probability": 0.6062 + }, + { + "start": 19246.24, + "end": 19248.88, + "probability": 0.8393 + }, + { + "start": 19249.18, + "end": 19250.06, + "probability": 0.4289 + }, + { + "start": 19250.14, + "end": 19250.94, + "probability": 0.8455 + }, + { + "start": 19251.18, + "end": 19256.08, + "probability": 0.9811 + }, + { + "start": 19257.62, + "end": 19260.34, + "probability": 0.9844 + }, + { + "start": 19260.34, + "end": 19263.98, + "probability": 0.9998 + }, + { + "start": 19264.64, + "end": 19270.48, + "probability": 0.935 + }, + { + "start": 19270.88, + "end": 19276.66, + "probability": 0.9985 + }, + { + "start": 19277.22, + "end": 19279.86, + "probability": 0.8637 + }, + { + "start": 19280.44, + "end": 19283.14, + "probability": 0.9776 + }, + { + "start": 19283.82, + "end": 19286.52, + "probability": 0.9779 + }, + { + "start": 19286.84, + "end": 19289.8, + "probability": 0.966 + }, + { + "start": 19290.42, + "end": 19293.98, + "probability": 0.8391 + }, + { + "start": 19295.02, + "end": 19298.14, + "probability": 0.8378 + }, + { + "start": 19299.06, + "end": 19302.22, + "probability": 0.7233 + }, + { + "start": 19302.9, + "end": 19303.78, + "probability": 0.8381 + }, + { + "start": 19304.06, + "end": 19308.3, + "probability": 0.9762 + }, + { + "start": 19308.32, + "end": 19310.16, + "probability": 0.5626 + }, + { + "start": 19310.26, + "end": 19312.38, + "probability": 0.9588 + }, + { + "start": 19312.5, + "end": 19314.68, + "probability": 0.9384 + }, + { + "start": 19315.46, + "end": 19319.77, + "probability": 0.9634 + }, + { + "start": 19321.4, + "end": 19323.64, + "probability": 0.9301 + }, + { + "start": 19323.86, + "end": 19325.44, + "probability": 0.9512 + }, + { + "start": 19325.76, + "end": 19327.32, + "probability": 0.9901 + }, + { + "start": 19327.54, + "end": 19329.06, + "probability": 0.906 + }, + { + "start": 19329.66, + "end": 19337.52, + "probability": 0.9875 + }, + { + "start": 19338.04, + "end": 19340.9, + "probability": 0.7644 + }, + { + "start": 19341.5, + "end": 19343.42, + "probability": 0.9499 + }, + { + "start": 19344.72, + "end": 19345.58, + "probability": 0.7839 + }, + { + "start": 19346.28, + "end": 19346.86, + "probability": 0.9825 + }, + { + "start": 19347.34, + "end": 19347.98, + "probability": 0.9883 + }, + { + "start": 19348.44, + "end": 19349.06, + "probability": 0.9745 + }, + { + "start": 19349.3, + "end": 19349.94, + "probability": 0.9578 + }, + { + "start": 19350.18, + "end": 19350.74, + "probability": 0.7928 + }, + { + "start": 19350.96, + "end": 19351.5, + "probability": 0.7415 + }, + { + "start": 19352.16, + "end": 19355.12, + "probability": 0.9501 + }, + { + "start": 19355.7, + "end": 19357.08, + "probability": 0.9493 + }, + { + "start": 19357.92, + "end": 19361.68, + "probability": 0.8196 + }, + { + "start": 19362.2, + "end": 19364.5, + "probability": 0.9203 + }, + { + "start": 19364.96, + "end": 19367.54, + "probability": 0.964 + }, + { + "start": 19368.46, + "end": 19370.84, + "probability": 0.9762 + }, + { + "start": 19371.62, + "end": 19375.4, + "probability": 0.9248 + }, + { + "start": 19376.68, + "end": 19379.12, + "probability": 0.9544 + }, + { + "start": 19380.36, + "end": 19386.68, + "probability": 0.8094 + }, + { + "start": 19387.0, + "end": 19391.58, + "probability": 0.8429 + }, + { + "start": 19392.3, + "end": 19393.24, + "probability": 0.5376 + }, + { + "start": 19393.84, + "end": 19396.9, + "probability": 0.9583 + }, + { + "start": 19397.92, + "end": 19398.24, + "probability": 0.8368 + }, + { + "start": 19398.82, + "end": 19400.16, + "probability": 0.8769 + }, + { + "start": 19401.0, + "end": 19405.26, + "probability": 0.9741 + }, + { + "start": 19405.9, + "end": 19409.18, + "probability": 0.9873 + }, + { + "start": 19409.7, + "end": 19411.22, + "probability": 0.8798 + }, + { + "start": 19411.34, + "end": 19413.12, + "probability": 0.9691 + }, + { + "start": 19413.52, + "end": 19415.12, + "probability": 0.9098 + }, + { + "start": 19416.06, + "end": 19417.22, + "probability": 0.4681 + }, + { + "start": 19417.44, + "end": 19418.48, + "probability": 0.967 + }, + { + "start": 19418.9, + "end": 19420.56, + "probability": 0.8504 + }, + { + "start": 19420.96, + "end": 19421.68, + "probability": 0.9458 + }, + { + "start": 19422.56, + "end": 19423.34, + "probability": 0.5684 + }, + { + "start": 19424.1, + "end": 19425.28, + "probability": 0.192 + }, + { + "start": 19425.58, + "end": 19429.7, + "probability": 0.7958 + }, + { + "start": 19430.0, + "end": 19431.0, + "probability": 0.8738 + }, + { + "start": 19431.12, + "end": 19432.4, + "probability": 0.9871 + }, + { + "start": 19433.68, + "end": 19439.14, + "probability": 0.9545 + }, + { + "start": 19439.14, + "end": 19443.22, + "probability": 0.9821 + }, + { + "start": 19443.94, + "end": 19448.36, + "probability": 0.9932 + }, + { + "start": 19448.92, + "end": 19452.44, + "probability": 0.9534 + }, + { + "start": 19452.66, + "end": 19457.92, + "probability": 0.9701 + }, + { + "start": 19458.0, + "end": 19458.64, + "probability": 0.7945 + }, + { + "start": 19458.74, + "end": 19460.34, + "probability": 0.9875 + }, + { + "start": 19461.26, + "end": 19463.56, + "probability": 0.5015 + }, + { + "start": 19464.26, + "end": 19465.52, + "probability": 0.938 + }, + { + "start": 19465.92, + "end": 19473.3, + "probability": 0.9914 + }, + { + "start": 19473.64, + "end": 19480.32, + "probability": 0.9823 + }, + { + "start": 19480.7, + "end": 19482.9, + "probability": 0.9533 + }, + { + "start": 19483.48, + "end": 19486.06, + "probability": 0.9108 + }, + { + "start": 19486.52, + "end": 19492.27, + "probability": 0.9873 + }, + { + "start": 19492.52, + "end": 19495.94, + "probability": 0.9793 + }, + { + "start": 19496.56, + "end": 19499.56, + "probability": 0.9449 + }, + { + "start": 19499.86, + "end": 19503.16, + "probability": 0.994 + }, + { + "start": 19503.72, + "end": 19509.02, + "probability": 0.9533 + }, + { + "start": 19509.76, + "end": 19515.22, + "probability": 0.9106 + }, + { + "start": 19515.82, + "end": 19525.14, + "probability": 0.8453 + }, + { + "start": 19525.32, + "end": 19525.6, + "probability": 0.7592 + }, + { + "start": 19526.5, + "end": 19527.84, + "probability": 0.6519 + }, + { + "start": 19528.34, + "end": 19529.68, + "probability": 0.731 + }, + { + "start": 19530.36, + "end": 19532.02, + "probability": 0.9248 + }, + { + "start": 19532.44, + "end": 19534.34, + "probability": 0.5351 + }, + { + "start": 19534.68, + "end": 19538.58, + "probability": 0.9302 + }, + { + "start": 19538.78, + "end": 19540.36, + "probability": 0.9729 + }, + { + "start": 19540.56, + "end": 19542.42, + "probability": 0.8144 + }, + { + "start": 19542.92, + "end": 19544.6, + "probability": 0.2403 + }, + { + "start": 19545.28, + "end": 19549.3, + "probability": 0.901 + }, + { + "start": 19549.74, + "end": 19551.2, + "probability": 0.5509 + }, + { + "start": 19552.08, + "end": 19553.6, + "probability": 0.9873 + }, + { + "start": 19554.08, + "end": 19554.98, + "probability": 0.9662 + }, + { + "start": 19555.24, + "end": 19556.76, + "probability": 0.9564 + }, + { + "start": 19557.12, + "end": 19558.72, + "probability": 0.9538 + }, + { + "start": 19559.0, + "end": 19562.02, + "probability": 0.9852 + }, + { + "start": 19562.08, + "end": 19564.9, + "probability": 0.9487 + }, + { + "start": 19565.28, + "end": 19568.82, + "probability": 0.6822 + }, + { + "start": 19569.42, + "end": 19572.16, + "probability": 0.9888 + }, + { + "start": 19572.52, + "end": 19578.26, + "probability": 0.9803 + }, + { + "start": 19578.48, + "end": 19579.56, + "probability": 0.9231 + }, + { + "start": 19580.0, + "end": 19580.72, + "probability": 0.7787 + }, + { + "start": 19581.12, + "end": 19581.64, + "probability": 0.8071 + }, + { + "start": 19582.16, + "end": 19586.7, + "probability": 0.9618 + }, + { + "start": 19586.7, + "end": 19590.64, + "probability": 0.9763 + }, + { + "start": 19591.08, + "end": 19596.52, + "probability": 0.8989 + }, + { + "start": 19596.88, + "end": 19598.4, + "probability": 0.873 + }, + { + "start": 19598.66, + "end": 19605.3, + "probability": 0.9862 + }, + { + "start": 19605.62, + "end": 19611.08, + "probability": 0.9641 + }, + { + "start": 19611.72, + "end": 19614.28, + "probability": 0.5229 + }, + { + "start": 19615.04, + "end": 19616.5, + "probability": 0.9795 + }, + { + "start": 19616.68, + "end": 19621.48, + "probability": 0.9691 + }, + { + "start": 19621.62, + "end": 19625.72, + "probability": 0.858 + }, + { + "start": 19625.84, + "end": 19627.94, + "probability": 0.632 + }, + { + "start": 19628.16, + "end": 19629.54, + "probability": 0.3985 + }, + { + "start": 19629.84, + "end": 19630.6, + "probability": 0.5669 + }, + { + "start": 19630.68, + "end": 19632.64, + "probability": 0.981 + }, + { + "start": 19634.28, + "end": 19637.28, + "probability": 0.776 + }, + { + "start": 19637.66, + "end": 19638.96, + "probability": 0.4262 + }, + { + "start": 19641.3, + "end": 19642.76, + "probability": 0.5716 + }, + { + "start": 19643.77, + "end": 19647.64, + "probability": 0.9231 + }, + { + "start": 19649.86, + "end": 19652.24, + "probability": 0.7485 + }, + { + "start": 19653.72, + "end": 19656.78, + "probability": 0.6251 + }, + { + "start": 19657.0, + "end": 19659.66, + "probability": 0.4299 + }, + { + "start": 19660.54, + "end": 19661.75, + "probability": 0.7075 + }, + { + "start": 19663.16, + "end": 19669.02, + "probability": 0.7983 + }, + { + "start": 19670.46, + "end": 19671.0, + "probability": 0.9532 + }, + { + "start": 19672.32, + "end": 19675.8, + "probability": 0.9895 + }, + { + "start": 19675.8, + "end": 19680.16, + "probability": 0.9758 + }, + { + "start": 19680.96, + "end": 19685.74, + "probability": 0.9707 + }, + { + "start": 19687.04, + "end": 19691.46, + "probability": 0.9965 + }, + { + "start": 19692.88, + "end": 19695.36, + "probability": 0.8457 + }, + { + "start": 19696.2, + "end": 19697.1, + "probability": 0.9195 + }, + { + "start": 19697.84, + "end": 19702.12, + "probability": 0.96 + }, + { + "start": 19703.1, + "end": 19704.8, + "probability": 0.9388 + }, + { + "start": 19704.82, + "end": 19706.08, + "probability": 0.994 + }, + { + "start": 19706.56, + "end": 19708.14, + "probability": 0.9716 + }, + { + "start": 19708.48, + "end": 19709.5, + "probability": 0.978 + }, + { + "start": 19710.86, + "end": 19715.28, + "probability": 0.9805 + }, + { + "start": 19716.58, + "end": 19719.8, + "probability": 0.999 + }, + { + "start": 19720.72, + "end": 19723.02, + "probability": 0.8631 + }, + { + "start": 19723.56, + "end": 19725.02, + "probability": 0.9266 + }, + { + "start": 19725.6, + "end": 19727.22, + "probability": 0.9634 + }, + { + "start": 19727.62, + "end": 19728.76, + "probability": 0.9878 + }, + { + "start": 19729.14, + "end": 19730.4, + "probability": 0.9854 + }, + { + "start": 19730.88, + "end": 19732.1, + "probability": 0.7102 + }, + { + "start": 19732.82, + "end": 19735.32, + "probability": 0.9934 + }, + { + "start": 19735.78, + "end": 19738.38, + "probability": 0.9977 + }, + { + "start": 19740.94, + "end": 19742.46, + "probability": 0.9176 + }, + { + "start": 19742.6, + "end": 19744.54, + "probability": 0.9789 + }, + { + "start": 19745.66, + "end": 19746.88, + "probability": 0.6901 + }, + { + "start": 19747.64, + "end": 19749.9, + "probability": 0.856 + }, + { + "start": 19751.38, + "end": 19754.7, + "probability": 0.7058 + }, + { + "start": 19755.82, + "end": 19761.5, + "probability": 0.9821 + }, + { + "start": 19762.94, + "end": 19764.52, + "probability": 0.9968 + }, + { + "start": 19765.74, + "end": 19768.1, + "probability": 0.9963 + }, + { + "start": 19768.92, + "end": 19771.62, + "probability": 0.999 + }, + { + "start": 19772.7, + "end": 19774.52, + "probability": 0.9982 + }, + { + "start": 19776.22, + "end": 19777.88, + "probability": 0.6029 + }, + { + "start": 19779.44, + "end": 19781.74, + "probability": 0.9747 + }, + { + "start": 19782.62, + "end": 19785.02, + "probability": 0.99 + }, + { + "start": 19786.64, + "end": 19789.0, + "probability": 0.9312 + }, + { + "start": 19790.44, + "end": 19795.42, + "probability": 0.9917 + }, + { + "start": 19796.72, + "end": 19797.96, + "probability": 0.9911 + }, + { + "start": 19799.16, + "end": 19800.26, + "probability": 0.9713 + }, + { + "start": 19801.54, + "end": 19805.84, + "probability": 0.8815 + }, + { + "start": 19808.24, + "end": 19810.46, + "probability": 0.9923 + }, + { + "start": 19811.02, + "end": 19813.56, + "probability": 0.9756 + }, + { + "start": 19815.04, + "end": 19816.12, + "probability": 0.9973 + }, + { + "start": 19817.72, + "end": 19821.3, + "probability": 0.9967 + }, + { + "start": 19822.74, + "end": 19825.86, + "probability": 0.911 + }, + { + "start": 19826.98, + "end": 19827.78, + "probability": 0.8683 + }, + { + "start": 19828.88, + "end": 19831.64, + "probability": 0.9624 + }, + { + "start": 19832.6, + "end": 19833.72, + "probability": 0.9612 + }, + { + "start": 19834.72, + "end": 19838.32, + "probability": 0.9999 + }, + { + "start": 19839.36, + "end": 19845.06, + "probability": 0.9983 + }, + { + "start": 19846.44, + "end": 19847.28, + "probability": 0.9672 + }, + { + "start": 19848.84, + "end": 19849.2, + "probability": 0.9032 + }, + { + "start": 19849.28, + "end": 19851.94, + "probability": 0.9981 + }, + { + "start": 19853.7, + "end": 19857.8, + "probability": 0.9862 + }, + { + "start": 19858.98, + "end": 19862.14, + "probability": 0.9983 + }, + { + "start": 19864.6, + "end": 19866.44, + "probability": 0.7304 + }, + { + "start": 19867.66, + "end": 19870.34, + "probability": 0.8089 + }, + { + "start": 19870.74, + "end": 19874.48, + "probability": 0.9911 + }, + { + "start": 19874.64, + "end": 19875.14, + "probability": 0.8131 + }, + { + "start": 19875.28, + "end": 19875.8, + "probability": 0.8713 + }, + { + "start": 19875.9, + "end": 19876.6, + "probability": 0.7418 + }, + { + "start": 19877.14, + "end": 19880.66, + "probability": 0.9751 + }, + { + "start": 19882.04, + "end": 19885.44, + "probability": 0.996 + }, + { + "start": 19886.6, + "end": 19891.08, + "probability": 0.9989 + }, + { + "start": 19891.6, + "end": 19892.23, + "probability": 0.8848 + }, + { + "start": 19893.2, + "end": 19896.96, + "probability": 0.8721 + }, + { + "start": 19897.66, + "end": 19898.44, + "probability": 0.5138 + }, + { + "start": 19900.0, + "end": 19900.66, + "probability": 0.7329 + }, + { + "start": 19901.92, + "end": 19903.08, + "probability": 0.9447 + }, + { + "start": 19904.72, + "end": 19908.14, + "probability": 0.9956 + }, + { + "start": 19909.46, + "end": 19916.52, + "probability": 0.9526 + }, + { + "start": 19917.86, + "end": 19921.84, + "probability": 0.9933 + }, + { + "start": 19923.5, + "end": 19925.43, + "probability": 0.9919 + }, + { + "start": 19926.3, + "end": 19927.96, + "probability": 0.9984 + }, + { + "start": 19929.02, + "end": 19932.7, + "probability": 0.9988 + }, + { + "start": 19932.7, + "end": 19936.76, + "probability": 0.9929 + }, + { + "start": 19937.56, + "end": 19941.94, + "probability": 0.9914 + }, + { + "start": 19942.46, + "end": 19943.06, + "probability": 0.8268 + }, + { + "start": 19943.72, + "end": 19946.2, + "probability": 0.9611 + }, + { + "start": 19946.94, + "end": 19947.52, + "probability": 0.9561 + }, + { + "start": 19948.6, + "end": 19950.44, + "probability": 0.9828 + }, + { + "start": 19951.36, + "end": 19954.66, + "probability": 0.9733 + }, + { + "start": 19956.08, + "end": 19958.34, + "probability": 0.8746 + }, + { + "start": 19958.88, + "end": 19960.74, + "probability": 0.856 + }, + { + "start": 19960.92, + "end": 19967.0, + "probability": 0.9946 + }, + { + "start": 19968.1, + "end": 19970.96, + "probability": 0.9641 + }, + { + "start": 19972.62, + "end": 19974.58, + "probability": 0.9965 + }, + { + "start": 19975.9, + "end": 19978.3, + "probability": 0.9966 + }, + { + "start": 19979.02, + "end": 19981.04, + "probability": 0.9462 + }, + { + "start": 19981.48, + "end": 19983.96, + "probability": 0.9917 + }, + { + "start": 19984.22, + "end": 19984.84, + "probability": 0.4498 + }, + { + "start": 19985.0, + "end": 19986.34, + "probability": 0.8084 + }, + { + "start": 19986.78, + "end": 19993.22, + "probability": 0.9884 + }, + { + "start": 19994.14, + "end": 19995.68, + "probability": 0.5836 + }, + { + "start": 19996.28, + "end": 19997.14, + "probability": 0.9213 + }, + { + "start": 19997.22, + "end": 19998.2, + "probability": 0.9462 + }, + { + "start": 19998.56, + "end": 20004.0, + "probability": 0.9044 + }, + { + "start": 20004.66, + "end": 20006.34, + "probability": 0.7549 + }, + { + "start": 20006.44, + "end": 20008.72, + "probability": 0.9394 + }, + { + "start": 20008.9, + "end": 20009.28, + "probability": 0.5093 + }, + { + "start": 20009.38, + "end": 20010.34, + "probability": 0.8431 + }, + { + "start": 20019.94, + "end": 20021.58, + "probability": 0.7376 + }, + { + "start": 20022.38, + "end": 20023.44, + "probability": 0.8421 + }, + { + "start": 20024.88, + "end": 20027.1, + "probability": 0.9194 + }, + { + "start": 20027.86, + "end": 20028.76, + "probability": 0.8324 + }, + { + "start": 20030.0, + "end": 20031.08, + "probability": 0.9694 + }, + { + "start": 20031.68, + "end": 20033.18, + "probability": 0.0963 + }, + { + "start": 20038.04, + "end": 20038.68, + "probability": 0.0816 + }, + { + "start": 20038.68, + "end": 20038.68, + "probability": 0.2053 + }, + { + "start": 20038.68, + "end": 20038.68, + "probability": 0.0494 + }, + { + "start": 20038.68, + "end": 20038.68, + "probability": 0.1576 + }, + { + "start": 20038.68, + "end": 20040.2, + "probability": 0.2805 + }, + { + "start": 20040.58, + "end": 20043.68, + "probability": 0.9186 + }, + { + "start": 20044.1, + "end": 20044.52, + "probability": 0.8705 + }, + { + "start": 20044.9, + "end": 20047.54, + "probability": 0.9961 + }, + { + "start": 20047.62, + "end": 20048.89, + "probability": 0.9971 + }, + { + "start": 20049.38, + "end": 20052.02, + "probability": 0.7832 + }, + { + "start": 20053.46, + "end": 20055.2, + "probability": 0.6722 + }, + { + "start": 20055.94, + "end": 20057.02, + "probability": 0.998 + }, + { + "start": 20057.74, + "end": 20061.7, + "probability": 0.3311 + }, + { + "start": 20061.88, + "end": 20063.5, + "probability": 0.5273 + }, + { + "start": 20063.52, + "end": 20065.36, + "probability": 0.5499 + }, + { + "start": 20065.88, + "end": 20067.62, + "probability": 0.7598 + }, + { + "start": 20067.7, + "end": 20069.12, + "probability": 0.914 + }, + { + "start": 20069.3, + "end": 20069.7, + "probability": 0.5824 + }, + { + "start": 20070.0, + "end": 20072.17, + "probability": 0.9512 + }, + { + "start": 20072.72, + "end": 20073.26, + "probability": 0.0519 + }, + { + "start": 20073.32, + "end": 20074.0, + "probability": 0.8958 + }, + { + "start": 20074.1, + "end": 20075.54, + "probability": 0.9132 + }, + { + "start": 20076.6, + "end": 20077.78, + "probability": 0.9233 + }, + { + "start": 20078.44, + "end": 20080.23, + "probability": 0.0917 + }, + { + "start": 20081.38, + "end": 20082.62, + "probability": 0.4633 + }, + { + "start": 20083.74, + "end": 20083.86, + "probability": 0.0154 + }, + { + "start": 20083.88, + "end": 20083.94, + "probability": 0.1303 + }, + { + "start": 20083.94, + "end": 20083.94, + "probability": 0.4117 + }, + { + "start": 20083.94, + "end": 20085.38, + "probability": 0.5336 + }, + { + "start": 20085.74, + "end": 20086.04, + "probability": 0.8477 + }, + { + "start": 20086.56, + "end": 20088.47, + "probability": 0.0532 + }, + { + "start": 20091.2, + "end": 20091.2, + "probability": 0.2067 + }, + { + "start": 20091.2, + "end": 20091.2, + "probability": 0.0818 + }, + { + "start": 20091.2, + "end": 20091.6, + "probability": 0.0956 + }, + { + "start": 20091.7, + "end": 20094.38, + "probability": 0.6494 + }, + { + "start": 20094.42, + "end": 20094.46, + "probability": 0.6234 + }, + { + "start": 20094.6, + "end": 20094.82, + "probability": 0.206 + }, + { + "start": 20094.82, + "end": 20097.28, + "probability": 0.6735 + }, + { + "start": 20097.94, + "end": 20100.8, + "probability": 0.9623 + }, + { + "start": 20102.3, + "end": 20102.3, + "probability": 0.0226 + }, + { + "start": 20102.3, + "end": 20102.3, + "probability": 0.1177 + }, + { + "start": 20102.3, + "end": 20102.3, + "probability": 0.0454 + }, + { + "start": 20102.3, + "end": 20102.3, + "probability": 0.1681 + }, + { + "start": 20102.3, + "end": 20102.32, + "probability": 0.4415 + }, + { + "start": 20102.82, + "end": 20103.52, + "probability": 0.6604 + }, + { + "start": 20103.6, + "end": 20104.49, + "probability": 0.4685 + }, + { + "start": 20104.98, + "end": 20106.3, + "probability": 0.9949 + }, + { + "start": 20106.42, + "end": 20106.96, + "probability": 0.1894 + }, + { + "start": 20107.1, + "end": 20108.54, + "probability": 0.9836 + }, + { + "start": 20108.66, + "end": 20112.86, + "probability": 0.979 + }, + { + "start": 20112.98, + "end": 20115.06, + "probability": 0.889 + }, + { + "start": 20115.48, + "end": 20116.88, + "probability": 0.9116 + }, + { + "start": 20117.64, + "end": 20119.32, + "probability": 0.7937 + }, + { + "start": 20121.14, + "end": 20122.72, + "probability": 0.8058 + }, + { + "start": 20123.5, + "end": 20123.66, + "probability": 0.429 + }, + { + "start": 20125.36, + "end": 20127.26, + "probability": 0.0543 + }, + { + "start": 20127.32, + "end": 20127.32, + "probability": 0.1161 + }, + { + "start": 20127.52, + "end": 20128.08, + "probability": 0.1186 + }, + { + "start": 20129.1, + "end": 20131.02, + "probability": 0.0268 + }, + { + "start": 20131.02, + "end": 20131.16, + "probability": 0.0425 + }, + { + "start": 20131.34, + "end": 20131.4, + "probability": 0.2943 + }, + { + "start": 20131.42, + "end": 20132.86, + "probability": 0.7697 + }, + { + "start": 20132.94, + "end": 20135.28, + "probability": 0.9694 + }, + { + "start": 20136.7, + "end": 20142.86, + "probability": 0.9984 + }, + { + "start": 20144.34, + "end": 20146.4, + "probability": 0.9041 + }, + { + "start": 20147.08, + "end": 20149.71, + "probability": 0.583 + }, + { + "start": 20150.6, + "end": 20152.74, + "probability": 0.9956 + }, + { + "start": 20152.82, + "end": 20153.94, + "probability": 0.9464 + }, + { + "start": 20154.8, + "end": 20157.88, + "probability": 0.9926 + }, + { + "start": 20157.96, + "end": 20158.78, + "probability": 0.7092 + }, + { + "start": 20159.46, + "end": 20162.79, + "probability": 0.9946 + }, + { + "start": 20164.48, + "end": 20165.66, + "probability": 0.9846 + }, + { + "start": 20166.78, + "end": 20166.8, + "probability": 0.4584 + }, + { + "start": 20166.98, + "end": 20169.26, + "probability": 0.7639 + }, + { + "start": 20169.58, + "end": 20170.96, + "probability": 0.9942 + }, + { + "start": 20171.22, + "end": 20172.84, + "probability": 0.9828 + }, + { + "start": 20174.14, + "end": 20178.58, + "probability": 0.9744 + }, + { + "start": 20179.32, + "end": 20180.86, + "probability": 0.7383 + }, + { + "start": 20182.46, + "end": 20185.06, + "probability": 0.4924 + }, + { + "start": 20185.68, + "end": 20190.9, + "probability": 0.9956 + }, + { + "start": 20190.9, + "end": 20194.36, + "probability": 0.8861 + }, + { + "start": 20196.62, + "end": 20198.12, + "probability": 0.2743 + }, + { + "start": 20198.12, + "end": 20198.12, + "probability": 0.0089 + }, + { + "start": 20198.12, + "end": 20198.34, + "probability": 0.4631 + }, + { + "start": 20199.0, + "end": 20201.78, + "probability": 0.6316 + }, + { + "start": 20201.92, + "end": 20201.96, + "probability": 0.0873 + }, + { + "start": 20201.96, + "end": 20204.1, + "probability": 0.8364 + }, + { + "start": 20204.26, + "end": 20204.85, + "probability": 0.9629 + }, + { + "start": 20205.38, + "end": 20207.12, + "probability": 0.8828 + }, + { + "start": 20207.22, + "end": 20209.86, + "probability": 0.9083 + }, + { + "start": 20210.62, + "end": 20211.98, + "probability": 0.969 + }, + { + "start": 20212.3, + "end": 20212.78, + "probability": 0.8065 + }, + { + "start": 20213.82, + "end": 20215.58, + "probability": 0.6726 + }, + { + "start": 20215.88, + "end": 20217.48, + "probability": 0.99 + }, + { + "start": 20217.52, + "end": 20218.5, + "probability": 0.999 + }, + { + "start": 20220.16, + "end": 20223.56, + "probability": 0.6443 + }, + { + "start": 20223.88, + "end": 20225.0, + "probability": 0.7241 + }, + { + "start": 20225.44, + "end": 20226.28, + "probability": 0.9152 + }, + { + "start": 20226.36, + "end": 20230.76, + "probability": 0.9536 + }, + { + "start": 20232.2, + "end": 20232.9, + "probability": 0.9712 + }, + { + "start": 20234.04, + "end": 20235.7, + "probability": 0.9951 + }, + { + "start": 20236.92, + "end": 20237.7, + "probability": 0.883 + }, + { + "start": 20237.88, + "end": 20239.24, + "probability": 0.344 + }, + { + "start": 20240.22, + "end": 20241.38, + "probability": 0.6002 + }, + { + "start": 20242.02, + "end": 20243.56, + "probability": 0.6464 + }, + { + "start": 20244.46, + "end": 20247.64, + "probability": 0.979 + }, + { + "start": 20248.08, + "end": 20249.66, + "probability": 0.7576 + }, + { + "start": 20249.82, + "end": 20251.72, + "probability": 0.8157 + }, + { + "start": 20252.56, + "end": 20256.24, + "probability": 0.9427 + }, + { + "start": 20257.18, + "end": 20258.76, + "probability": 0.1813 + }, + { + "start": 20259.56, + "end": 20260.89, + "probability": 0.3639 + }, + { + "start": 20262.2, + "end": 20263.9, + "probability": 0.6451 + }, + { + "start": 20264.14, + "end": 20265.26, + "probability": 0.9391 + }, + { + "start": 20265.82, + "end": 20267.54, + "probability": 0.9817 + }, + { + "start": 20267.84, + "end": 20268.86, + "probability": 0.9175 + }, + { + "start": 20269.12, + "end": 20269.47, + "probability": 0.8906 + }, + { + "start": 20269.84, + "end": 20271.12, + "probability": 0.5039 + }, + { + "start": 20272.03, + "end": 20276.04, + "probability": 0.4435 + }, + { + "start": 20276.04, + "end": 20277.8, + "probability": 0.5884 + }, + { + "start": 20278.12, + "end": 20281.5, + "probability": 0.877 + }, + { + "start": 20282.7, + "end": 20282.96, + "probability": 0.7383 + }, + { + "start": 20283.04, + "end": 20283.38, + "probability": 0.547 + }, + { + "start": 20284.42, + "end": 20285.54, + "probability": 0.726 + }, + { + "start": 20285.66, + "end": 20287.15, + "probability": 0.8911 + }, + { + "start": 20287.58, + "end": 20288.4, + "probability": 0.8966 + }, + { + "start": 20288.44, + "end": 20288.78, + "probability": 0.7623 + }, + { + "start": 20288.78, + "end": 20290.58, + "probability": 0.8847 + }, + { + "start": 20290.94, + "end": 20292.32, + "probability": 0.918 + }, + { + "start": 20292.56, + "end": 20292.56, + "probability": 0.0535 + }, + { + "start": 20292.56, + "end": 20297.46, + "probability": 0.6178 + }, + { + "start": 20298.16, + "end": 20300.36, + "probability": 0.0746 + }, + { + "start": 20300.36, + "end": 20300.36, + "probability": 0.0152 + }, + { + "start": 20300.36, + "end": 20300.36, + "probability": 0.1173 + }, + { + "start": 20300.36, + "end": 20301.98, + "probability": 0.7053 + }, + { + "start": 20302.02, + "end": 20304.79, + "probability": 0.7911 + }, + { + "start": 20304.94, + "end": 20306.32, + "probability": 0.7252 + }, + { + "start": 20306.58, + "end": 20310.72, + "probability": 0.7778 + }, + { + "start": 20311.42, + "end": 20311.68, + "probability": 0.8047 + }, + { + "start": 20311.86, + "end": 20315.7, + "probability": 0.9815 + }, + { + "start": 20315.76, + "end": 20318.14, + "probability": 0.3667 + }, + { + "start": 20318.58, + "end": 20319.68, + "probability": 0.8429 + }, + { + "start": 20320.14, + "end": 20321.51, + "probability": 0.9133 + }, + { + "start": 20321.66, + "end": 20322.14, + "probability": 0.2794 + }, + { + "start": 20322.6, + "end": 20323.22, + "probability": 0.6436 + }, + { + "start": 20323.42, + "end": 20325.14, + "probability": 0.6115 + }, + { + "start": 20325.14, + "end": 20326.48, + "probability": 0.5388 + }, + { + "start": 20326.48, + "end": 20327.58, + "probability": 0.7953 + }, + { + "start": 20327.78, + "end": 20330.86, + "probability": 0.8997 + }, + { + "start": 20331.08, + "end": 20337.64, + "probability": 0.9832 + }, + { + "start": 20337.9, + "end": 20340.82, + "probability": 0.9881 + }, + { + "start": 20341.76, + "end": 20342.8, + "probability": 0.7169 + }, + { + "start": 20344.76, + "end": 20346.56, + "probability": 0.9075 + }, + { + "start": 20347.42, + "end": 20347.98, + "probability": 0.9857 + }, + { + "start": 20348.08, + "end": 20348.88, + "probability": 0.0499 + }, + { + "start": 20348.96, + "end": 20350.34, + "probability": 0.9367 + }, + { + "start": 20351.3, + "end": 20353.3, + "probability": 0.946 + }, + { + "start": 20353.64, + "end": 20355.9, + "probability": 0.8514 + }, + { + "start": 20355.98, + "end": 20356.9, + "probability": 0.8509 + }, + { + "start": 20356.96, + "end": 20358.28, + "probability": 0.0447 + }, + { + "start": 20358.28, + "end": 20361.26, + "probability": 0.5634 + }, + { + "start": 20361.5, + "end": 20362.22, + "probability": 0.4045 + }, + { + "start": 20362.54, + "end": 20364.44, + "probability": 0.7457 + }, + { + "start": 20364.58, + "end": 20365.76, + "probability": 0.4662 + }, + { + "start": 20366.22, + "end": 20369.2, + "probability": 0.6988 + }, + { + "start": 20369.76, + "end": 20370.2, + "probability": 0.8323 + }, + { + "start": 20370.32, + "end": 20373.1, + "probability": 0.8698 + }, + { + "start": 20373.18, + "end": 20373.56, + "probability": 0.8228 + }, + { + "start": 20373.58, + "end": 20374.0, + "probability": 0.9186 + }, + { + "start": 20374.14, + "end": 20374.64, + "probability": 0.9184 + }, + { + "start": 20374.64, + "end": 20375.14, + "probability": 0.8749 + }, + { + "start": 20375.14, + "end": 20375.56, + "probability": 0.5354 + }, + { + "start": 20375.64, + "end": 20376.06, + "probability": 0.91 + }, + { + "start": 20376.52, + "end": 20377.1, + "probability": 0.7647 + }, + { + "start": 20377.2, + "end": 20378.08, + "probability": 0.8226 + }, + { + "start": 20378.26, + "end": 20380.64, + "probability": 0.5999 + }, + { + "start": 20381.6, + "end": 20382.47, + "probability": 0.7583 + }, + { + "start": 20383.56, + "end": 20384.68, + "probability": 0.9791 + }, + { + "start": 20385.08, + "end": 20385.42, + "probability": 0.7587 + }, + { + "start": 20385.96, + "end": 20388.54, + "probability": 0.8848 + }, + { + "start": 20388.54, + "end": 20390.74, + "probability": 0.7697 + }, + { + "start": 20390.96, + "end": 20391.4, + "probability": 0.7428 + }, + { + "start": 20391.6, + "end": 20391.9, + "probability": 0.7574 + }, + { + "start": 20392.0, + "end": 20392.94, + "probability": 0.9154 + }, + { + "start": 20393.3, + "end": 20397.6, + "probability": 0.9421 + }, + { + "start": 20398.96, + "end": 20399.74, + "probability": 0.6685 + }, + { + "start": 20401.23, + "end": 20406.56, + "probability": 0.923 + }, + { + "start": 20410.68, + "end": 20412.72, + "probability": 0.8666 + }, + { + "start": 20415.34, + "end": 20416.54, + "probability": 0.3057 + }, + { + "start": 20418.28, + "end": 20419.24, + "probability": 0.6518 + }, + { + "start": 20420.34, + "end": 20421.38, + "probability": 0.3149 + }, + { + "start": 20422.52, + "end": 20422.86, + "probability": 0.4841 + }, + { + "start": 20422.94, + "end": 20428.48, + "probability": 0.946 + }, + { + "start": 20429.06, + "end": 20433.98, + "probability": 0.9345 + }, + { + "start": 20435.2, + "end": 20436.36, + "probability": 0.8652 + }, + { + "start": 20438.02, + "end": 20440.7, + "probability": 0.9006 + }, + { + "start": 20441.92, + "end": 20444.96, + "probability": 0.8806 + }, + { + "start": 20446.26, + "end": 20447.52, + "probability": 0.89 + }, + { + "start": 20448.94, + "end": 20450.58, + "probability": 0.6872 + }, + { + "start": 20451.78, + "end": 20454.9, + "probability": 0.989 + }, + { + "start": 20455.86, + "end": 20458.88, + "probability": 0.9919 + }, + { + "start": 20459.68, + "end": 20462.32, + "probability": 0.5706 + }, + { + "start": 20463.14, + "end": 20465.6, + "probability": 0.8561 + }, + { + "start": 20466.92, + "end": 20467.77, + "probability": 0.9577 + }, + { + "start": 20468.64, + "end": 20474.46, + "probability": 0.8345 + }, + { + "start": 20474.46, + "end": 20479.44, + "probability": 0.9946 + }, + { + "start": 20480.64, + "end": 20482.2, + "probability": 0.9927 + }, + { + "start": 20483.12, + "end": 20486.36, + "probability": 0.9522 + }, + { + "start": 20486.88, + "end": 20487.56, + "probability": 0.5586 + }, + { + "start": 20488.44, + "end": 20490.24, + "probability": 0.6808 + }, + { + "start": 20491.08, + "end": 20494.32, + "probability": 0.9937 + }, + { + "start": 20495.46, + "end": 20496.85, + "probability": 0.9971 + }, + { + "start": 20498.0, + "end": 20499.2, + "probability": 0.9955 + }, + { + "start": 20499.94, + "end": 20504.52, + "probability": 0.9562 + }, + { + "start": 20505.88, + "end": 20510.7, + "probability": 0.8863 + }, + { + "start": 20511.5, + "end": 20512.54, + "probability": 0.8655 + }, + { + "start": 20514.3, + "end": 20517.28, + "probability": 0.9491 + }, + { + "start": 20518.4, + "end": 20519.68, + "probability": 0.7224 + }, + { + "start": 20521.08, + "end": 20522.18, + "probability": 0.882 + }, + { + "start": 20523.3, + "end": 20523.76, + "probability": 0.9365 + }, + { + "start": 20524.66, + "end": 20527.16, + "probability": 0.8528 + }, + { + "start": 20528.08, + "end": 20531.08, + "probability": 0.9991 + }, + { + "start": 20532.66, + "end": 20533.92, + "probability": 0.9102 + }, + { + "start": 20534.42, + "end": 20539.22, + "probability": 0.998 + }, + { + "start": 20540.04, + "end": 20545.94, + "probability": 0.9861 + }, + { + "start": 20547.34, + "end": 20549.28, + "probability": 0.8209 + }, + { + "start": 20550.36, + "end": 20552.12, + "probability": 0.6143 + }, + { + "start": 20553.28, + "end": 20555.04, + "probability": 0.9844 + }, + { + "start": 20555.94, + "end": 20557.64, + "probability": 0.9849 + }, + { + "start": 20558.74, + "end": 20563.82, + "probability": 0.9751 + }, + { + "start": 20564.34, + "end": 20565.38, + "probability": 0.3601 + }, + { + "start": 20565.84, + "end": 20567.36, + "probability": 0.6608 + }, + { + "start": 20567.64, + "end": 20568.47, + "probability": 0.9377 + }, + { + "start": 20568.9, + "end": 20571.14, + "probability": 0.6841 + }, + { + "start": 20577.26, + "end": 20578.84, + "probability": 0.6434 + }, + { + "start": 20578.9, + "end": 20580.18, + "probability": 0.6454 + }, + { + "start": 20580.72, + "end": 20583.7, + "probability": 0.8701 + }, + { + "start": 20583.7, + "end": 20584.58, + "probability": 0.3548 + }, + { + "start": 20584.6, + "end": 20584.81, + "probability": 0.1173 + }, + { + "start": 20585.12, + "end": 20585.78, + "probability": 0.4742 + }, + { + "start": 20585.78, + "end": 20589.14, + "probability": 0.047 + }, + { + "start": 20590.2, + "end": 20591.42, + "probability": 0.7803 + }, + { + "start": 20591.62, + "end": 20592.64, + "probability": 0.8584 + }, + { + "start": 20592.64, + "end": 20592.76, + "probability": 0.7624 + }, + { + "start": 20592.9, + "end": 20594.54, + "probability": 0.9979 + }, + { + "start": 20594.94, + "end": 20596.56, + "probability": 0.9419 + }, + { + "start": 20597.78, + "end": 20599.06, + "probability": 0.9766 + }, + { + "start": 20599.78, + "end": 20599.78, + "probability": 0.1258 + }, + { + "start": 20599.78, + "end": 20600.78, + "probability": 0.7109 + }, + { + "start": 20601.06, + "end": 20602.52, + "probability": 0.8354 + }, + { + "start": 20602.66, + "end": 20604.16, + "probability": 0.9982 + }, + { + "start": 20604.22, + "end": 20604.93, + "probability": 0.9258 + }, + { + "start": 20605.16, + "end": 20606.4, + "probability": 0.882 + }, + { + "start": 20606.5, + "end": 20607.56, + "probability": 0.5671 + }, + { + "start": 20607.78, + "end": 20608.26, + "probability": 0.3117 + }, + { + "start": 20608.3, + "end": 20609.22, + "probability": 0.4209 + }, + { + "start": 20609.42, + "end": 20611.3, + "probability": 0.9502 + }, + { + "start": 20611.82, + "end": 20612.66, + "probability": 0.4216 + }, + { + "start": 20612.66, + "end": 20613.7, + "probability": 0.5016 + }, + { + "start": 20613.86, + "end": 20616.39, + "probability": 0.9446 + }, + { + "start": 20617.34, + "end": 20618.16, + "probability": 0.4318 + }, + { + "start": 20618.2, + "end": 20619.36, + "probability": 0.9444 + }, + { + "start": 20619.48, + "end": 20621.84, + "probability": 0.9663 + }, + { + "start": 20622.1, + "end": 20623.8, + "probability": 0.9647 + }, + { + "start": 20624.24, + "end": 20625.76, + "probability": 0.9707 + }, + { + "start": 20627.36, + "end": 20629.32, + "probability": 0.9525 + }, + { + "start": 20631.4, + "end": 20631.52, + "probability": 0.019 + }, + { + "start": 20631.52, + "end": 20634.24, + "probability": 0.1969 + }, + { + "start": 20634.24, + "end": 20635.54, + "probability": 0.7714 + }, + { + "start": 20635.7, + "end": 20637.26, + "probability": 0.9554 + }, + { + "start": 20637.46, + "end": 20640.54, + "probability": 0.6708 + }, + { + "start": 20643.1, + "end": 20643.66, + "probability": 0.389 + }, + { + "start": 20645.0, + "end": 20645.7, + "probability": 0.0126 + }, + { + "start": 20645.92, + "end": 20647.54, + "probability": 0.1829 + }, + { + "start": 20647.78, + "end": 20649.98, + "probability": 0.4362 + }, + { + "start": 20649.98, + "end": 20650.34, + "probability": 0.1014 + }, + { + "start": 20650.64, + "end": 20650.64, + "probability": 0.525 + }, + { + "start": 20650.64, + "end": 20652.3, + "probability": 0.8186 + }, + { + "start": 20652.38, + "end": 20653.34, + "probability": 0.9844 + }, + { + "start": 20653.54, + "end": 20654.0, + "probability": 0.2187 + }, + { + "start": 20654.18, + "end": 20655.76, + "probability": 0.8283 + }, + { + "start": 20655.94, + "end": 20656.44, + "probability": 0.0437 + }, + { + "start": 20656.58, + "end": 20658.08, + "probability": 0.9897 + }, + { + "start": 20658.08, + "end": 20659.92, + "probability": 0.3618 + }, + { + "start": 20660.2, + "end": 20664.0, + "probability": 0.8386 + }, + { + "start": 20665.0, + "end": 20668.7, + "probability": 0.9502 + }, + { + "start": 20669.28, + "end": 20669.82, + "probability": 0.8464 + }, + { + "start": 20669.9, + "end": 20672.42, + "probability": 0.9736 + }, + { + "start": 20673.24, + "end": 20675.02, + "probability": 0.5334 + }, + { + "start": 20675.12, + "end": 20676.45, + "probability": 0.6523 + }, + { + "start": 20677.08, + "end": 20678.74, + "probability": 0.1499 + }, + { + "start": 20678.86, + "end": 20679.96, + "probability": 0.6556 + }, + { + "start": 20680.38, + "end": 20681.84, + "probability": 0.8151 + }, + { + "start": 20682.12, + "end": 20683.5, + "probability": 0.8751 + }, + { + "start": 20683.96, + "end": 20685.86, + "probability": 0.6668 + }, + { + "start": 20686.92, + "end": 20687.04, + "probability": 0.0378 + }, + { + "start": 20687.12, + "end": 20688.22, + "probability": 0.6212 + }, + { + "start": 20688.24, + "end": 20688.66, + "probability": 0.4613 + }, + { + "start": 20688.8, + "end": 20689.5, + "probability": 0.7747 + }, + { + "start": 20689.52, + "end": 20691.1, + "probability": 0.7189 + }, + { + "start": 20691.24, + "end": 20692.82, + "probability": 0.3829 + }, + { + "start": 20693.44, + "end": 20695.36, + "probability": 0.7008 + }, + { + "start": 20696.02, + "end": 20697.22, + "probability": 0.8691 + }, + { + "start": 20697.36, + "end": 20697.7, + "probability": 0.7951 + }, + { + "start": 20697.8, + "end": 20698.16, + "probability": 0.6141 + }, + { + "start": 20698.16, + "end": 20698.92, + "probability": 0.8566 + }, + { + "start": 20699.04, + "end": 20700.06, + "probability": 0.842 + }, + { + "start": 20701.3, + "end": 20701.68, + "probability": 0.7408 + }, + { + "start": 20702.04, + "end": 20702.6, + "probability": 0.8991 + }, + { + "start": 20702.76, + "end": 20705.12, + "probability": 0.9645 + }, + { + "start": 20705.74, + "end": 20707.6, + "probability": 0.9762 + }, + { + "start": 20708.2, + "end": 20708.92, + "probability": 0.9503 + }, + { + "start": 20709.54, + "end": 20710.18, + "probability": 0.5902 + }, + { + "start": 20710.7, + "end": 20714.04, + "probability": 0.7369 + }, + { + "start": 20714.4, + "end": 20714.62, + "probability": 0.4713 + }, + { + "start": 20714.98, + "end": 20717.32, + "probability": 0.5899 + }, + { + "start": 20717.74, + "end": 20718.14, + "probability": 0.0126 + }, + { + "start": 20718.14, + "end": 20719.46, + "probability": 0.428 + }, + { + "start": 20719.94, + "end": 20720.56, + "probability": 0.6176 + }, + { + "start": 20720.78, + "end": 20722.44, + "probability": 0.6441 + }, + { + "start": 20722.8, + "end": 20722.98, + "probability": 0.1689 + }, + { + "start": 20723.22, + "end": 20725.48, + "probability": 0.9155 + }, + { + "start": 20725.48, + "end": 20728.2, + "probability": 0.9722 + }, + { + "start": 20728.6, + "end": 20729.54, + "probability": 0.0842 + }, + { + "start": 20729.74, + "end": 20731.88, + "probability": 0.4585 + }, + { + "start": 20732.1, + "end": 20732.58, + "probability": 0.0673 + }, + { + "start": 20732.58, + "end": 20736.46, + "probability": 0.6753 + }, + { + "start": 20737.36, + "end": 20739.18, + "probability": 0.7149 + }, + { + "start": 20739.32, + "end": 20739.96, + "probability": 0.7977 + }, + { + "start": 20740.28, + "end": 20740.5, + "probability": 0.4452 + }, + { + "start": 20740.56, + "end": 20742.34, + "probability": 0.2464 + }, + { + "start": 20742.36, + "end": 20743.38, + "probability": 0.5738 + }, + { + "start": 20743.74, + "end": 20744.9, + "probability": 0.0173 + }, + { + "start": 20745.78, + "end": 20746.86, + "probability": 0.4994 + }, + { + "start": 20746.98, + "end": 20748.38, + "probability": 0.3309 + }, + { + "start": 20748.46, + "end": 20748.74, + "probability": 0.3424 + }, + { + "start": 20748.86, + "end": 20749.12, + "probability": 0.4965 + }, + { + "start": 20749.2, + "end": 20751.26, + "probability": 0.2273 + }, + { + "start": 20751.5, + "end": 20755.13, + "probability": 0.8312 + }, + { + "start": 20756.0, + "end": 20757.44, + "probability": 0.8004 + }, + { + "start": 20758.1, + "end": 20759.34, + "probability": 0.675 + }, + { + "start": 20759.42, + "end": 20759.88, + "probability": 0.3041 + }, + { + "start": 20760.06, + "end": 20762.64, + "probability": 0.684 + }, + { + "start": 20762.86, + "end": 20763.46, + "probability": 0.6588 + }, + { + "start": 20763.64, + "end": 20764.86, + "probability": 0.5059 + }, + { + "start": 20764.86, + "end": 20766.9, + "probability": 0.2796 + }, + { + "start": 20767.06, + "end": 20770.8, + "probability": 0.1977 + }, + { + "start": 20771.76, + "end": 20773.08, + "probability": 0.1612 + }, + { + "start": 20774.56, + "end": 20775.24, + "probability": 0.0424 + }, + { + "start": 20775.24, + "end": 20775.24, + "probability": 0.0332 + }, + { + "start": 20775.24, + "end": 20776.92, + "probability": 0.6197 + }, + { + "start": 20777.14, + "end": 20778.56, + "probability": 0.44 + }, + { + "start": 20778.6, + "end": 20779.72, + "probability": 0.7778 + }, + { + "start": 20779.96, + "end": 20781.62, + "probability": 0.7379 + }, + { + "start": 20781.92, + "end": 20782.42, + "probability": 0.6196 + }, + { + "start": 20782.44, + "end": 20784.78, + "probability": 0.9398 + }, + { + "start": 20784.9, + "end": 20785.1, + "probability": 0.0081 + }, + { + "start": 20785.66, + "end": 20786.32, + "probability": 0.0499 + }, + { + "start": 20786.82, + "end": 20787.74, + "probability": 0.1591 + }, + { + "start": 20788.5, + "end": 20790.58, + "probability": 0.9958 + }, + { + "start": 20790.7, + "end": 20792.44, + "probability": 0.981 + }, + { + "start": 20792.92, + "end": 20796.06, + "probability": 0.5571 + }, + { + "start": 20796.06, + "end": 20797.32, + "probability": 0.4189 + }, + { + "start": 20798.26, + "end": 20800.6, + "probability": 0.9229 + }, + { + "start": 20801.46, + "end": 20803.12, + "probability": 0.6079 + }, + { + "start": 20804.42, + "end": 20806.18, + "probability": 0.7276 + }, + { + "start": 20807.12, + "end": 20808.54, + "probability": 0.9868 + }, + { + "start": 20809.58, + "end": 20810.4, + "probability": 0.891 + }, + { + "start": 20810.42, + "end": 20811.1, + "probability": 0.8904 + }, + { + "start": 20811.54, + "end": 20812.9, + "probability": 0.9827 + }, + { + "start": 20814.0, + "end": 20815.98, + "probability": 0.7043 + }, + { + "start": 20817.0, + "end": 20818.6, + "probability": 0.974 + }, + { + "start": 20819.24, + "end": 20821.56, + "probability": 0.9753 + }, + { + "start": 20822.16, + "end": 20822.52, + "probability": 0.8916 + }, + { + "start": 20823.44, + "end": 20824.38, + "probability": 0.9883 + }, + { + "start": 20825.04, + "end": 20826.58, + "probability": 0.9896 + }, + { + "start": 20827.48, + "end": 20828.32, + "probability": 0.9984 + }, + { + "start": 20829.06, + "end": 20830.72, + "probability": 0.9955 + }, + { + "start": 20831.56, + "end": 20833.42, + "probability": 0.9939 + }, + { + "start": 20834.22, + "end": 20835.64, + "probability": 0.861 + }, + { + "start": 20836.28, + "end": 20837.4, + "probability": 0.6001 + }, + { + "start": 20838.24, + "end": 20839.04, + "probability": 0.791 + }, + { + "start": 20839.6, + "end": 20842.26, + "probability": 0.8789 + }, + { + "start": 20843.18, + "end": 20844.18, + "probability": 0.9669 + }, + { + "start": 20844.92, + "end": 20846.02, + "probability": 0.9187 + }, + { + "start": 20847.12, + "end": 20848.12, + "probability": 0.7245 + }, + { + "start": 20848.66, + "end": 20849.46, + "probability": 0.7354 + }, + { + "start": 20849.6, + "end": 20850.74, + "probability": 0.591 + }, + { + "start": 20851.38, + "end": 20853.36, + "probability": 0.9299 + }, + { + "start": 20853.88, + "end": 20855.18, + "probability": 0.9124 + }, + { + "start": 20855.6, + "end": 20857.16, + "probability": 0.9326 + }, + { + "start": 20857.26, + "end": 20858.3, + "probability": 0.9609 + }, + { + "start": 20858.92, + "end": 20859.74, + "probability": 0.744 + }, + { + "start": 20861.04, + "end": 20863.58, + "probability": 0.8898 + }, + { + "start": 20864.84, + "end": 20865.88, + "probability": 0.9573 + }, + { + "start": 20866.78, + "end": 20868.9, + "probability": 0.7664 + }, + { + "start": 20869.2, + "end": 20870.92, + "probability": 0.8095 + }, + { + "start": 20871.48, + "end": 20872.34, + "probability": 0.8906 + }, + { + "start": 20873.56, + "end": 20874.18, + "probability": 0.16 + }, + { + "start": 20874.18, + "end": 20877.06, + "probability": 0.9326 + }, + { + "start": 20877.22, + "end": 20877.64, + "probability": 0.8813 + }, + { + "start": 20878.76, + "end": 20879.18, + "probability": 0.7255 + }, + { + "start": 20880.86, + "end": 20884.0, + "probability": 0.9306 + }, + { + "start": 20885.02, + "end": 20886.26, + "probability": 0.9696 + }, + { + "start": 20887.4, + "end": 20888.46, + "probability": 0.9563 + }, + { + "start": 20888.96, + "end": 20893.12, + "probability": 0.8285 + }, + { + "start": 20894.42, + "end": 20896.06, + "probability": 0.5737 + }, + { + "start": 20896.82, + "end": 20898.61, + "probability": 0.9906 + }, + { + "start": 20899.58, + "end": 20900.69, + "probability": 0.675 + }, + { + "start": 20902.06, + "end": 20906.28, + "probability": 0.8943 + }, + { + "start": 20906.94, + "end": 20908.38, + "probability": 0.5805 + }, + { + "start": 20909.44, + "end": 20912.94, + "probability": 0.9175 + }, + { + "start": 20913.96, + "end": 20915.22, + "probability": 0.9023 + }, + { + "start": 20916.32, + "end": 20919.14, + "probability": 0.9974 + }, + { + "start": 20919.8, + "end": 20921.22, + "probability": 0.9208 + }, + { + "start": 20922.8, + "end": 20924.08, + "probability": 0.7473 + }, + { + "start": 20924.72, + "end": 20926.04, + "probability": 0.9272 + }, + { + "start": 20926.98, + "end": 20932.18, + "probability": 0.9788 + }, + { + "start": 20932.82, + "end": 20937.22, + "probability": 0.9885 + }, + { + "start": 20937.34, + "end": 20938.12, + "probability": 0.9537 + }, + { + "start": 20939.78, + "end": 20942.46, + "probability": 0.9251 + }, + { + "start": 20943.6, + "end": 20948.56, + "probability": 0.9412 + }, + { + "start": 20949.08, + "end": 20952.21, + "probability": 0.9547 + }, + { + "start": 20952.92, + "end": 20952.92, + "probability": 0.3912 + }, + { + "start": 20952.94, + "end": 20955.54, + "probability": 0.9248 + }, + { + "start": 20956.52, + "end": 20959.04, + "probability": 0.9288 + }, + { + "start": 20959.94, + "end": 20966.98, + "probability": 0.9823 + }, + { + "start": 20967.52, + "end": 20969.62, + "probability": 0.744 + }, + { + "start": 20969.8, + "end": 20972.14, + "probability": 0.9933 + }, + { + "start": 20981.66, + "end": 20981.66, + "probability": 0.5927 + }, + { + "start": 20981.66, + "end": 20983.24, + "probability": 0.3753 + }, + { + "start": 20984.12, + "end": 20984.96, + "probability": 0.3287 + }, + { + "start": 20985.96, + "end": 20987.22, + "probability": 0.5891 + }, + { + "start": 20988.92, + "end": 20990.0, + "probability": 0.5986 + }, + { + "start": 20991.54, + "end": 20995.46, + "probability": 0.7976 + }, + { + "start": 20996.4, + "end": 20998.38, + "probability": 0.9803 + }, + { + "start": 20999.36, + "end": 21002.58, + "probability": 0.9311 + }, + { + "start": 21004.3, + "end": 21007.18, + "probability": 0.9894 + }, + { + "start": 21007.58, + "end": 21010.54, + "probability": 0.9535 + }, + { + "start": 21011.26, + "end": 21013.26, + "probability": 0.9956 + }, + { + "start": 21013.94, + "end": 21015.82, + "probability": 0.9944 + }, + { + "start": 21017.64, + "end": 21020.16, + "probability": 0.7529 + }, + { + "start": 21020.84, + "end": 21022.1, + "probability": 0.5937 + }, + { + "start": 21023.42, + "end": 21025.64, + "probability": 0.9446 + }, + { + "start": 21026.14, + "end": 21027.52, + "probability": 0.9602 + }, + { + "start": 21027.7, + "end": 21028.1, + "probability": 0.9234 + }, + { + "start": 21028.3, + "end": 21030.3, + "probability": 0.9987 + }, + { + "start": 21031.02, + "end": 21033.52, + "probability": 0.9749 + }, + { + "start": 21034.06, + "end": 21036.48, + "probability": 0.9201 + }, + { + "start": 21037.1, + "end": 21038.4, + "probability": 0.9173 + }, + { + "start": 21038.84, + "end": 21041.29, + "probability": 0.9835 + }, + { + "start": 21042.34, + "end": 21048.66, + "probability": 0.8995 + }, + { + "start": 21049.74, + "end": 21050.82, + "probability": 0.9315 + }, + { + "start": 21050.96, + "end": 21051.82, + "probability": 0.8135 + }, + { + "start": 21051.86, + "end": 21053.5, + "probability": 0.9507 + }, + { + "start": 21054.42, + "end": 21059.2, + "probability": 0.9967 + }, + { + "start": 21060.2, + "end": 21063.18, + "probability": 0.9904 + }, + { + "start": 21063.9, + "end": 21064.86, + "probability": 0.9077 + }, + { + "start": 21065.36, + "end": 21068.28, + "probability": 0.9917 + }, + { + "start": 21068.88, + "end": 21072.26, + "probability": 0.9922 + }, + { + "start": 21072.94, + "end": 21074.12, + "probability": 0.9722 + }, + { + "start": 21074.74, + "end": 21077.54, + "probability": 0.998 + }, + { + "start": 21078.86, + "end": 21082.76, + "probability": 0.902 + }, + { + "start": 21082.8, + "end": 21086.38, + "probability": 0.9264 + }, + { + "start": 21087.66, + "end": 21090.12, + "probability": 0.9962 + }, + { + "start": 21091.56, + "end": 21094.12, + "probability": 0.9221 + }, + { + "start": 21095.0, + "end": 21096.16, + "probability": 0.6856 + }, + { + "start": 21096.66, + "end": 21099.46, + "probability": 0.9951 + }, + { + "start": 21100.58, + "end": 21104.4, + "probability": 0.9952 + }, + { + "start": 21104.54, + "end": 21106.96, + "probability": 0.9388 + }, + { + "start": 21107.76, + "end": 21108.9, + "probability": 0.8125 + }, + { + "start": 21109.92, + "end": 21112.34, + "probability": 0.9666 + }, + { + "start": 21112.84, + "end": 21112.98, + "probability": 0.2872 + }, + { + "start": 21112.98, + "end": 21112.98, + "probability": 0.4514 + }, + { + "start": 21112.98, + "end": 21112.98, + "probability": 0.5615 + }, + { + "start": 21112.98, + "end": 21114.88, + "probability": 0.7084 + }, + { + "start": 21115.28, + "end": 21119.72, + "probability": 0.9445 + }, + { + "start": 21119.92, + "end": 21120.2, + "probability": 0.3262 + }, + { + "start": 21120.26, + "end": 21121.18, + "probability": 0.9473 + }, + { + "start": 21121.32, + "end": 21122.44, + "probability": 0.4559 + }, + { + "start": 21122.78, + "end": 21126.26, + "probability": 0.9388 + }, + { + "start": 21126.8, + "end": 21129.66, + "probability": 0.8923 + }, + { + "start": 21130.04, + "end": 21132.41, + "probability": 0.9598 + }, + { + "start": 21133.16, + "end": 21135.56, + "probability": 0.8601 + }, + { + "start": 21136.84, + "end": 21141.56, + "probability": 0.996 + }, + { + "start": 21142.62, + "end": 21145.12, + "probability": 0.9914 + }, + { + "start": 21145.84, + "end": 21146.76, + "probability": 0.9599 + }, + { + "start": 21146.94, + "end": 21147.76, + "probability": 0.7667 + }, + { + "start": 21147.88, + "end": 21148.92, + "probability": 0.7566 + }, + { + "start": 21148.92, + "end": 21149.28, + "probability": 0.6829 + }, + { + "start": 21149.46, + "end": 21149.46, + "probability": 0.388 + }, + { + "start": 21149.46, + "end": 21149.46, + "probability": 0.0606 + }, + { + "start": 21149.46, + "end": 21150.53, + "probability": 0.9639 + }, + { + "start": 21151.16, + "end": 21152.15, + "probability": 0.9949 + }, + { + "start": 21152.32, + "end": 21153.29, + "probability": 0.9485 + }, + { + "start": 21153.88, + "end": 21156.54, + "probability": 0.9863 + }, + { + "start": 21157.64, + "end": 21158.32, + "probability": 0.8317 + }, + { + "start": 21159.02, + "end": 21159.94, + "probability": 0.9893 + }, + { + "start": 21160.48, + "end": 21161.22, + "probability": 0.9243 + }, + { + "start": 21163.04, + "end": 21164.94, + "probability": 0.9335 + }, + { + "start": 21165.62, + "end": 21167.88, + "probability": 0.9655 + }, + { + "start": 21168.9, + "end": 21171.36, + "probability": 0.939 + }, + { + "start": 21172.58, + "end": 21172.78, + "probability": 0.4614 + }, + { + "start": 21173.41, + "end": 21174.49, + "probability": 0.3643 + }, + { + "start": 21175.24, + "end": 21176.5, + "probability": 0.7716 + }, + { + "start": 21177.7, + "end": 21178.54, + "probability": 0.9608 + }, + { + "start": 21179.48, + "end": 21181.16, + "probability": 0.9976 + }, + { + "start": 21182.18, + "end": 21184.82, + "probability": 0.7588 + }, + { + "start": 21186.2, + "end": 21190.78, + "probability": 0.9965 + }, + { + "start": 21191.94, + "end": 21194.18, + "probability": 0.9983 + }, + { + "start": 21194.96, + "end": 21197.44, + "probability": 0.9967 + }, + { + "start": 21198.04, + "end": 21200.72, + "probability": 0.9995 + }, + { + "start": 21201.34, + "end": 21203.16, + "probability": 0.8866 + }, + { + "start": 21203.44, + "end": 21205.52, + "probability": 0.9399 + }, + { + "start": 21206.06, + "end": 21206.68, + "probability": 0.587 + }, + { + "start": 21206.86, + "end": 21208.04, + "probability": 0.8415 + }, + { + "start": 21208.12, + "end": 21209.56, + "probability": 0.9661 + }, + { + "start": 21209.94, + "end": 21212.08, + "probability": 0.9467 + }, + { + "start": 21212.56, + "end": 21215.3, + "probability": 0.038 + }, + { + "start": 21215.3, + "end": 21215.64, + "probability": 0.0346 + }, + { + "start": 21215.64, + "end": 21216.68, + "probability": 0.6467 + }, + { + "start": 21217.2, + "end": 21219.04, + "probability": 0.9686 + }, + { + "start": 21219.08, + "end": 21220.56, + "probability": 0.7575 + }, + { + "start": 21221.02, + "end": 21223.04, + "probability": 0.9863 + }, + { + "start": 21223.12, + "end": 21224.96, + "probability": 0.5149 + }, + { + "start": 21225.12, + "end": 21228.26, + "probability": 0.2596 + }, + { + "start": 21228.26, + "end": 21229.22, + "probability": 0.3478 + }, + { + "start": 21229.64, + "end": 21229.64, + "probability": 0.1061 + }, + { + "start": 21229.64, + "end": 21233.44, + "probability": 0.9717 + }, + { + "start": 21233.96, + "end": 21235.79, + "probability": 0.3389 + }, + { + "start": 21237.08, + "end": 21239.46, + "probability": 0.184 + }, + { + "start": 21239.52, + "end": 21242.36, + "probability": 0.1949 + }, + { + "start": 21242.36, + "end": 21242.36, + "probability": 0.0991 + }, + { + "start": 21242.36, + "end": 21242.36, + "probability": 0.1019 + }, + { + "start": 21242.36, + "end": 21243.58, + "probability": 0.5509 + }, + { + "start": 21243.68, + "end": 21244.0, + "probability": 0.8437 + }, + { + "start": 21244.08, + "end": 21244.62, + "probability": 0.5847 + }, + { + "start": 21245.2, + "end": 21246.82, + "probability": 0.9862 + }, + { + "start": 21247.46, + "end": 21249.84, + "probability": 0.9587 + }, + { + "start": 21250.64, + "end": 21253.5, + "probability": 0.9978 + }, + { + "start": 21254.06, + "end": 21257.76, + "probability": 0.9901 + }, + { + "start": 21258.3, + "end": 21259.82, + "probability": 0.994 + }, + { + "start": 21260.6, + "end": 21264.16, + "probability": 0.8229 + }, + { + "start": 21264.68, + "end": 21266.84, + "probability": 0.8464 + }, + { + "start": 21267.6, + "end": 21269.1, + "probability": 0.9956 + }, + { + "start": 21269.92, + "end": 21273.28, + "probability": 0.9074 + }, + { + "start": 21274.2, + "end": 21275.52, + "probability": 0.5721 + }, + { + "start": 21276.12, + "end": 21278.3, + "probability": 0.9877 + }, + { + "start": 21278.3, + "end": 21280.98, + "probability": 0.9954 + }, + { + "start": 21282.54, + "end": 21285.42, + "probability": 0.7158 + }, + { + "start": 21286.3, + "end": 21287.62, + "probability": 0.9164 + }, + { + "start": 21288.54, + "end": 21290.14, + "probability": 0.9185 + }, + { + "start": 21290.64, + "end": 21290.66, + "probability": 0.0066 + }, + { + "start": 21290.66, + "end": 21292.51, + "probability": 0.8389 + }, + { + "start": 21293.46, + "end": 21295.16, + "probability": 0.9929 + }, + { + "start": 21296.0, + "end": 21301.08, + "probability": 0.9972 + }, + { + "start": 21302.46, + "end": 21302.64, + "probability": 0.188 + }, + { + "start": 21302.64, + "end": 21307.84, + "probability": 0.9644 + }, + { + "start": 21308.34, + "end": 21309.52, + "probability": 0.8562 + }, + { + "start": 21310.06, + "end": 21314.6, + "probability": 0.9988 + }, + { + "start": 21314.6, + "end": 21319.18, + "probability": 0.9966 + }, + { + "start": 21320.2, + "end": 21323.06, + "probability": 0.7498 + }, + { + "start": 21323.22, + "end": 21325.44, + "probability": 0.7133 + }, + { + "start": 21325.52, + "end": 21326.1, + "probability": 0.6103 + }, + { + "start": 21326.3, + "end": 21327.18, + "probability": 0.9167 + }, + { + "start": 21338.8, + "end": 21341.56, + "probability": 0.835 + }, + { + "start": 21342.8, + "end": 21344.66, + "probability": 0.2755 + }, + { + "start": 21345.02, + "end": 21347.66, + "probability": 0.7643 + }, + { + "start": 21349.36, + "end": 21350.32, + "probability": 0.8596 + }, + { + "start": 21351.76, + "end": 21351.8, + "probability": 0.0525 + }, + { + "start": 21351.82, + "end": 21352.3, + "probability": 0.7497 + }, + { + "start": 21353.84, + "end": 21357.44, + "probability": 0.9831 + }, + { + "start": 21358.06, + "end": 21359.62, + "probability": 0.9913 + }, + { + "start": 21359.9, + "end": 21364.2, + "probability": 0.9752 + }, + { + "start": 21364.7, + "end": 21366.16, + "probability": 0.9494 + }, + { + "start": 21366.2, + "end": 21367.28, + "probability": 0.4979 + }, + { + "start": 21367.74, + "end": 21369.3, + "probability": 0.983 + }, + { + "start": 21369.38, + "end": 21370.18, + "probability": 0.7832 + }, + { + "start": 21370.66, + "end": 21372.08, + "probability": 0.9675 + }, + { + "start": 21372.92, + "end": 21375.86, + "probability": 0.9578 + }, + { + "start": 21375.94, + "end": 21376.53, + "probability": 0.9443 + }, + { + "start": 21378.22, + "end": 21382.1, + "probability": 0.9755 + }, + { + "start": 21382.54, + "end": 21383.94, + "probability": 0.8382 + }, + { + "start": 21384.86, + "end": 21386.38, + "probability": 0.931 + }, + { + "start": 21387.72, + "end": 21390.76, + "probability": 0.9938 + }, + { + "start": 21391.14, + "end": 21392.78, + "probability": 0.8792 + }, + { + "start": 21393.68, + "end": 21395.34, + "probability": 0.8137 + }, + { + "start": 21396.22, + "end": 21398.58, + "probability": 0.9911 + }, + { + "start": 21400.2, + "end": 21406.36, + "probability": 0.9856 + }, + { + "start": 21406.92, + "end": 21410.74, + "probability": 0.9578 + }, + { + "start": 21410.82, + "end": 21411.28, + "probability": 0.7269 + }, + { + "start": 21411.88, + "end": 21414.92, + "probability": 0.9829 + }, + { + "start": 21415.6, + "end": 21416.1, + "probability": 0.9633 + }, + { + "start": 21419.32, + "end": 21421.68, + "probability": 0.7182 + }, + { + "start": 21422.24, + "end": 21423.06, + "probability": 0.8301 + }, + { + "start": 21424.04, + "end": 21426.6, + "probability": 0.9692 + }, + { + "start": 21427.96, + "end": 21428.76, + "probability": 0.8336 + }, + { + "start": 21429.8, + "end": 21431.22, + "probability": 0.9897 + }, + { + "start": 21431.34, + "end": 21433.54, + "probability": 0.8202 + }, + { + "start": 21433.9, + "end": 21435.82, + "probability": 0.9882 + }, + { + "start": 21437.6, + "end": 21440.46, + "probability": 0.9998 + }, + { + "start": 21441.08, + "end": 21442.05, + "probability": 0.8818 + }, + { + "start": 21443.84, + "end": 21444.36, + "probability": 0.5325 + }, + { + "start": 21445.36, + "end": 21448.46, + "probability": 0.9885 + }, + { + "start": 21449.66, + "end": 21449.72, + "probability": 0.1644 + }, + { + "start": 21449.72, + "end": 21453.62, + "probability": 0.9402 + }, + { + "start": 21453.68, + "end": 21455.48, + "probability": 0.9326 + }, + { + "start": 21456.3, + "end": 21459.04, + "probability": 0.8173 + }, + { + "start": 21459.3, + "end": 21463.32, + "probability": 0.9792 + }, + { + "start": 21464.64, + "end": 21464.74, + "probability": 0.014 + }, + { + "start": 21464.74, + "end": 21464.76, + "probability": 0.0037 + }, + { + "start": 21464.76, + "end": 21469.15, + "probability": 0.8481 + }, + { + "start": 21470.22, + "end": 21472.02, + "probability": 0.7184 + }, + { + "start": 21473.22, + "end": 21474.38, + "probability": 0.2751 + }, + { + "start": 21474.56, + "end": 21475.8, + "probability": 0.8707 + }, + { + "start": 21476.06, + "end": 21476.94, + "probability": 0.4459 + }, + { + "start": 21477.44, + "end": 21480.16, + "probability": 0.8827 + }, + { + "start": 21482.04, + "end": 21483.22, + "probability": 0.7249 + }, + { + "start": 21483.32, + "end": 21483.7, + "probability": 0.8269 + }, + { + "start": 21484.0, + "end": 21484.36, + "probability": 0.5693 + }, + { + "start": 21484.5, + "end": 21486.34, + "probability": 0.8586 + }, + { + "start": 21487.34, + "end": 21489.78, + "probability": 0.9672 + }, + { + "start": 21490.78, + "end": 21491.52, + "probability": 0.8268 + }, + { + "start": 21491.96, + "end": 21493.4, + "probability": 0.8052 + }, + { + "start": 21493.88, + "end": 21496.32, + "probability": 0.642 + }, + { + "start": 21497.54, + "end": 21498.7, + "probability": 0.6332 + }, + { + "start": 21498.92, + "end": 21503.46, + "probability": 0.9182 + }, + { + "start": 21503.52, + "end": 21504.22, + "probability": 0.7421 + }, + { + "start": 21504.4, + "end": 21506.8, + "probability": 0.9912 + }, + { + "start": 21506.9, + "end": 21507.02, + "probability": 0.3133 + }, + { + "start": 21507.2, + "end": 21508.24, + "probability": 0.318 + }, + { + "start": 21508.6, + "end": 21510.1, + "probability": 0.7177 + }, + { + "start": 21510.76, + "end": 21510.98, + "probability": 0.1572 + }, + { + "start": 21510.98, + "end": 21511.0, + "probability": 0.2247 + }, + { + "start": 21511.0, + "end": 21513.62, + "probability": 0.9636 + }, + { + "start": 21513.74, + "end": 21516.34, + "probability": 0.5727 + }, + { + "start": 21516.36, + "end": 21517.44, + "probability": 0.4026 + }, + { + "start": 21517.52, + "end": 21517.58, + "probability": 0.232 + }, + { + "start": 21517.58, + "end": 21519.24, + "probability": 0.6553 + }, + { + "start": 21520.48, + "end": 21524.68, + "probability": 0.9658 + }, + { + "start": 21525.42, + "end": 21527.68, + "probability": 0.6484 + }, + { + "start": 21527.86, + "end": 21528.6, + "probability": 0.9017 + }, + { + "start": 21529.06, + "end": 21529.16, + "probability": 0.7191 + }, + { + "start": 21529.3, + "end": 21531.26, + "probability": 0.9572 + }, + { + "start": 21532.34, + "end": 21533.78, + "probability": 0.9371 + }, + { + "start": 21534.58, + "end": 21538.26, + "probability": 0.03 + }, + { + "start": 21538.26, + "end": 21538.26, + "probability": 0.4181 + }, + { + "start": 21538.26, + "end": 21538.96, + "probability": 0.6048 + }, + { + "start": 21539.3, + "end": 21540.34, + "probability": 0.6008 + }, + { + "start": 21541.0, + "end": 21542.89, + "probability": 0.6899 + }, + { + "start": 21544.54, + "end": 21544.64, + "probability": 0.5778 + }, + { + "start": 21544.64, + "end": 21545.06, + "probability": 0.9288 + }, + { + "start": 21545.16, + "end": 21546.06, + "probability": 0.8922 + }, + { + "start": 21546.18, + "end": 21546.7, + "probability": 0.4787 + }, + { + "start": 21547.38, + "end": 21548.58, + "probability": 0.9264 + }, + { + "start": 21549.36, + "end": 21550.5, + "probability": 0.674 + }, + { + "start": 21551.12, + "end": 21553.22, + "probability": 0.8381 + }, + { + "start": 21553.36, + "end": 21554.88, + "probability": 0.8841 + }, + { + "start": 21555.3, + "end": 21555.8, + "probability": 0.6851 + }, + { + "start": 21555.88, + "end": 21556.5, + "probability": 0.9607 + }, + { + "start": 21556.6, + "end": 21558.18, + "probability": 0.9783 + }, + { + "start": 21558.24, + "end": 21559.88, + "probability": 0.9797 + }, + { + "start": 21560.44, + "end": 21562.58, + "probability": 0.9048 + }, + { + "start": 21563.16, + "end": 21566.92, + "probability": 0.9747 + }, + { + "start": 21567.14, + "end": 21568.44, + "probability": 0.9624 + }, + { + "start": 21569.44, + "end": 21570.06, + "probability": 0.983 + }, + { + "start": 21570.58, + "end": 21571.9, + "probability": 0.6094 + }, + { + "start": 21572.9, + "end": 21575.96, + "probability": 0.8923 + }, + { + "start": 21576.04, + "end": 21578.22, + "probability": 0.8258 + }, + { + "start": 21578.88, + "end": 21579.3, + "probability": 0.9504 + }, + { + "start": 21580.18, + "end": 21583.0, + "probability": 0.9182 + }, + { + "start": 21583.82, + "end": 21585.28, + "probability": 0.9671 + }, + { + "start": 21586.04, + "end": 21586.84, + "probability": 0.9607 + }, + { + "start": 21587.98, + "end": 21590.84, + "probability": 0.9858 + }, + { + "start": 21591.94, + "end": 21593.02, + "probability": 0.429 + }, + { + "start": 21593.3, + "end": 21597.48, + "probability": 0.9764 + }, + { + "start": 21598.62, + "end": 21600.14, + "probability": 0.9789 + }, + { + "start": 21601.34, + "end": 21604.8, + "probability": 0.9973 + }, + { + "start": 21605.38, + "end": 21606.92, + "probability": 0.9996 + }, + { + "start": 21607.7, + "end": 21608.8, + "probability": 0.803 + }, + { + "start": 21608.92, + "end": 21613.92, + "probability": 0.9733 + }, + { + "start": 21614.5, + "end": 21617.62, + "probability": 0.9582 + }, + { + "start": 21617.98, + "end": 21618.86, + "probability": 0.5255 + }, + { + "start": 21619.86, + "end": 21622.81, + "probability": 0.8084 + }, + { + "start": 21623.92, + "end": 21625.92, + "probability": 0.9379 + }, + { + "start": 21626.14, + "end": 21627.8, + "probability": 0.8533 + }, + { + "start": 21628.66, + "end": 21631.38, + "probability": 0.7507 + }, + { + "start": 21632.1, + "end": 21633.06, + "probability": 0.9885 + }, + { + "start": 21633.7, + "end": 21636.06, + "probability": 0.9945 + }, + { + "start": 21636.08, + "end": 21636.98, + "probability": 0.9773 + }, + { + "start": 21637.54, + "end": 21641.94, + "probability": 0.9585 + }, + { + "start": 21642.68, + "end": 21644.92, + "probability": 0.6586 + }, + { + "start": 21645.18, + "end": 21646.26, + "probability": 0.9743 + }, + { + "start": 21646.52, + "end": 21648.52, + "probability": 0.9805 + }, + { + "start": 21649.04, + "end": 21649.52, + "probability": 0.9607 + }, + { + "start": 21649.8, + "end": 21652.76, + "probability": 0.9579 + }, + { + "start": 21652.98, + "end": 21654.04, + "probability": 0.9033 + }, + { + "start": 21654.14, + "end": 21654.42, + "probability": 0.1272 + }, + { + "start": 21654.7, + "end": 21656.04, + "probability": 0.3603 + }, + { + "start": 21656.26, + "end": 21658.48, + "probability": 0.6523 + }, + { + "start": 21659.48, + "end": 21662.32, + "probability": 0.9917 + }, + { + "start": 21663.42, + "end": 21665.3, + "probability": 0.8822 + }, + { + "start": 21665.42, + "end": 21666.38, + "probability": 0.8266 + }, + { + "start": 21666.76, + "end": 21669.22, + "probability": 0.9139 + }, + { + "start": 21669.92, + "end": 21672.26, + "probability": 0.9009 + }, + { + "start": 21672.94, + "end": 21674.73, + "probability": 0.8626 + }, + { + "start": 21674.76, + "end": 21677.38, + "probability": 0.9546 + }, + { + "start": 21677.7, + "end": 21677.94, + "probability": 0.7196 + }, + { + "start": 21678.24, + "end": 21680.44, + "probability": 0.7072 + }, + { + "start": 21680.5, + "end": 21682.7, + "probability": 0.8576 + }, + { + "start": 21682.74, + "end": 21683.34, + "probability": 0.6756 + }, + { + "start": 21683.48, + "end": 21685.3, + "probability": 0.7147 + }, + { + "start": 21695.16, + "end": 21696.1, + "probability": 0.5544 + }, + { + "start": 21696.2, + "end": 21698.1, + "probability": 0.2432 + }, + { + "start": 21699.62, + "end": 21702.48, + "probability": 0.8456 + }, + { + "start": 21703.9, + "end": 21705.12, + "probability": 0.638 + }, + { + "start": 21705.14, + "end": 21706.0, + "probability": 0.8665 + }, + { + "start": 21706.44, + "end": 21708.8, + "probability": 0.972 + }, + { + "start": 21709.62, + "end": 21711.64, + "probability": 0.9927 + }, + { + "start": 21711.76, + "end": 21713.62, + "probability": 0.9722 + }, + { + "start": 21715.94, + "end": 21716.72, + "probability": 0.8192 + }, + { + "start": 21718.46, + "end": 21719.62, + "probability": 0.9706 + }, + { + "start": 21721.1, + "end": 21723.6, + "probability": 0.9948 + }, + { + "start": 21724.7, + "end": 21728.84, + "probability": 0.9972 + }, + { + "start": 21728.84, + "end": 21735.1, + "probability": 0.9808 + }, + { + "start": 21735.62, + "end": 21736.82, + "probability": 0.7617 + }, + { + "start": 21736.9, + "end": 21738.18, + "probability": 0.382 + }, + { + "start": 21739.08, + "end": 21741.18, + "probability": 0.9172 + }, + { + "start": 21742.1, + "end": 21745.36, + "probability": 0.9092 + }, + { + "start": 21745.78, + "end": 21747.16, + "probability": 0.9639 + }, + { + "start": 21748.38, + "end": 21750.64, + "probability": 0.7309 + }, + { + "start": 21752.38, + "end": 21754.54, + "probability": 0.9729 + }, + { + "start": 21754.66, + "end": 21755.16, + "probability": 0.855 + }, + { + "start": 21755.24, + "end": 21755.74, + "probability": 0.9507 + }, + { + "start": 21755.8, + "end": 21757.96, + "probability": 0.9776 + }, + { + "start": 21759.0, + "end": 21759.84, + "probability": 0.8782 + }, + { + "start": 21760.7, + "end": 21762.58, + "probability": 0.9949 + }, + { + "start": 21762.82, + "end": 21764.12, + "probability": 0.3498 + }, + { + "start": 21764.22, + "end": 21765.68, + "probability": 0.6875 + }, + { + "start": 21765.74, + "end": 21766.44, + "probability": 0.7091 + }, + { + "start": 21766.56, + "end": 21767.76, + "probability": 0.739 + }, + { + "start": 21768.1, + "end": 21768.98, + "probability": 0.8618 + }, + { + "start": 21769.16, + "end": 21770.36, + "probability": 0.9578 + }, + { + "start": 21771.0, + "end": 21774.44, + "probability": 0.9896 + }, + { + "start": 21775.58, + "end": 21779.68, + "probability": 0.7924 + }, + { + "start": 21779.68, + "end": 21780.2, + "probability": 0.4816 + }, + { + "start": 21780.24, + "end": 21781.4, + "probability": 0.6372 + }, + { + "start": 21782.72, + "end": 21785.42, + "probability": 0.9702 + }, + { + "start": 21785.6, + "end": 21788.2, + "probability": 0.9944 + }, + { + "start": 21788.24, + "end": 21789.36, + "probability": 0.9516 + }, + { + "start": 21789.88, + "end": 21792.36, + "probability": 0.985 + }, + { + "start": 21792.82, + "end": 21794.34, + "probability": 0.9856 + }, + { + "start": 21794.8, + "end": 21795.78, + "probability": 0.9449 + }, + { + "start": 21795.86, + "end": 21796.52, + "probability": 0.7605 + }, + { + "start": 21796.74, + "end": 21797.92, + "probability": 0.8708 + }, + { + "start": 21798.48, + "end": 21800.7, + "probability": 0.9549 + }, + { + "start": 21801.08, + "end": 21805.68, + "probability": 0.9212 + }, + { + "start": 21805.74, + "end": 21806.78, + "probability": 0.7894 + }, + { + "start": 21807.18, + "end": 21807.74, + "probability": 0.8118 + }, + { + "start": 21808.04, + "end": 21808.84, + "probability": 0.8647 + }, + { + "start": 21809.32, + "end": 21810.35, + "probability": 0.9036 + }, + { + "start": 21810.58, + "end": 21811.54, + "probability": 0.87 + }, + { + "start": 21813.06, + "end": 21815.42, + "probability": 0.6144 + }, + { + "start": 21815.74, + "end": 21817.58, + "probability": 0.8239 + }, + { + "start": 21817.88, + "end": 21820.38, + "probability": 0.9432 + }, + { + "start": 21821.36, + "end": 21822.97, + "probability": 0.8076 + }, + { + "start": 21823.26, + "end": 21825.2, + "probability": 0.8822 + }, + { + "start": 21825.4, + "end": 21826.02, + "probability": 0.7772 + }, + { + "start": 21826.56, + "end": 21827.8, + "probability": 0.9772 + }, + { + "start": 21827.88, + "end": 21829.02, + "probability": 0.7561 + }, + { + "start": 21829.1, + "end": 21829.54, + "probability": 0.5608 + }, + { + "start": 21829.7, + "end": 21830.36, + "probability": 0.8593 + }, + { + "start": 21832.48, + "end": 21833.47, + "probability": 0.3747 + }, + { + "start": 21835.26, + "end": 21836.18, + "probability": 0.2273 + }, + { + "start": 21836.26, + "end": 21837.86, + "probability": 0.7225 + }, + { + "start": 21838.5, + "end": 21840.24, + "probability": 0.7612 + }, + { + "start": 21840.28, + "end": 21841.68, + "probability": 0.606 + }, + { + "start": 21843.24, + "end": 21845.24, + "probability": 0.9808 + }, + { + "start": 21847.22, + "end": 21850.8, + "probability": 0.9307 + }, + { + "start": 21851.62, + "end": 21851.9, + "probability": 0.0444 + }, + { + "start": 21851.9, + "end": 21857.94, + "probability": 0.8467 + }, + { + "start": 21858.46, + "end": 21859.5, + "probability": 0.871 + }, + { + "start": 21860.54, + "end": 21861.24, + "probability": 0.4061 + }, + { + "start": 21862.16, + "end": 21865.98, + "probability": 0.6746 + }, + { + "start": 21867.4, + "end": 21868.0, + "probability": 0.0114 + }, + { + "start": 21868.0, + "end": 21868.0, + "probability": 0.0379 + }, + { + "start": 21868.0, + "end": 21868.0, + "probability": 0.0351 + }, + { + "start": 21868.0, + "end": 21870.0, + "probability": 0.0278 + }, + { + "start": 21870.12, + "end": 21874.04, + "probability": 0.3637 + }, + { + "start": 21874.88, + "end": 21876.22, + "probability": 0.2339 + }, + { + "start": 21877.06, + "end": 21880.64, + "probability": 0.6554 + }, + { + "start": 21880.84, + "end": 21882.5, + "probability": 0.8861 + }, + { + "start": 21883.0, + "end": 21884.12, + "probability": 0.1486 + }, + { + "start": 21884.2, + "end": 21885.38, + "probability": 0.8469 + }, + { + "start": 21885.52, + "end": 21886.62, + "probability": 0.3709 + }, + { + "start": 21887.04, + "end": 21887.7, + "probability": 0.3107 + }, + { + "start": 21888.78, + "end": 21892.78, + "probability": 0.6498 + }, + { + "start": 21892.78, + "end": 21895.45, + "probability": 0.8159 + }, + { + "start": 21896.8, + "end": 21898.72, + "probability": 0.5138 + }, + { + "start": 21898.84, + "end": 21900.0, + "probability": 0.5409 + }, + { + "start": 21900.56, + "end": 21901.8, + "probability": 0.2959 + }, + { + "start": 21902.0, + "end": 21903.56, + "probability": 0.6973 + }, + { + "start": 21903.68, + "end": 21905.53, + "probability": 0.592 + }, + { + "start": 21906.76, + "end": 21907.78, + "probability": 0.5235 + }, + { + "start": 21907.9, + "end": 21908.98, + "probability": 0.6296 + }, + { + "start": 21909.22, + "end": 21910.02, + "probability": 0.8063 + }, + { + "start": 21912.1, + "end": 21913.1, + "probability": 0.5454 + }, + { + "start": 21913.14, + "end": 21913.78, + "probability": 0.0886 + }, + { + "start": 21913.8, + "end": 21914.78, + "probability": 0.6024 + }, + { + "start": 21914.84, + "end": 21916.1, + "probability": 0.2844 + }, + { + "start": 21916.18, + "end": 21918.1, + "probability": 0.7653 + }, + { + "start": 21918.71, + "end": 21921.62, + "probability": 0.9111 + }, + { + "start": 21922.62, + "end": 21923.24, + "probability": 0.6653 + }, + { + "start": 21923.38, + "end": 21924.86, + "probability": 0.6429 + }, + { + "start": 21924.94, + "end": 21925.8, + "probability": 0.8518 + }, + { + "start": 21926.64, + "end": 21928.06, + "probability": 0.9746 + }, + { + "start": 21928.54, + "end": 21929.12, + "probability": 0.2641 + }, + { + "start": 21930.26, + "end": 21933.0, + "probability": 0.8389 + }, + { + "start": 21934.58, + "end": 21935.84, + "probability": 0.8274 + }, + { + "start": 21935.94, + "end": 21937.76, + "probability": 0.699 + }, + { + "start": 21937.86, + "end": 21938.36, + "probability": 0.6491 + }, + { + "start": 21938.84, + "end": 21939.58, + "probability": 0.9076 + }, + { + "start": 21940.24, + "end": 21941.28, + "probability": 0.9779 + }, + { + "start": 21943.64, + "end": 21944.6, + "probability": 0.6564 + }, + { + "start": 21944.96, + "end": 21945.14, + "probability": 0.4517 + }, + { + "start": 21945.14, + "end": 21946.82, + "probability": 0.8089 + }, + { + "start": 21947.22, + "end": 21949.94, + "probability": 0.8933 + }, + { + "start": 21950.88, + "end": 21952.62, + "probability": 0.8514 + }, + { + "start": 21954.71, + "end": 21957.24, + "probability": 0.5311 + }, + { + "start": 21958.09, + "end": 21959.12, + "probability": 0.185 + }, + { + "start": 21959.12, + "end": 21961.32, + "probability": 0.5771 + }, + { + "start": 21961.56, + "end": 21964.34, + "probability": 0.6891 + }, + { + "start": 21964.9, + "end": 21966.84, + "probability": 0.9919 + }, + { + "start": 21967.54, + "end": 21969.84, + "probability": 0.969 + }, + { + "start": 21970.66, + "end": 21972.9, + "probability": 0.7435 + }, + { + "start": 21973.54, + "end": 21976.06, + "probability": 0.8896 + }, + { + "start": 21976.82, + "end": 21980.58, + "probability": 0.8755 + }, + { + "start": 21981.14, + "end": 21984.74, + "probability": 0.9245 + }, + { + "start": 21985.72, + "end": 21986.56, + "probability": 0.9302 + }, + { + "start": 21987.02, + "end": 21989.72, + "probability": 0.4225 + }, + { + "start": 21989.96, + "end": 21990.78, + "probability": 0.336 + }, + { + "start": 21991.14, + "end": 21992.04, + "probability": 0.4173 + }, + { + "start": 21992.04, + "end": 21993.66, + "probability": 0.691 + }, + { + "start": 21994.04, + "end": 21995.3, + "probability": 0.8016 + }, + { + "start": 21995.52, + "end": 21996.56, + "probability": 0.8931 + }, + { + "start": 21996.76, + "end": 21997.76, + "probability": 0.8461 + }, + { + "start": 21998.32, + "end": 21999.38, + "probability": 0.3803 + }, + { + "start": 21999.44, + "end": 22000.52, + "probability": 0.4525 + }, + { + "start": 22000.64, + "end": 22001.68, + "probability": 0.9883 + }, + { + "start": 22001.88, + "end": 22002.7, + "probability": 0.7203 + }, + { + "start": 22002.7, + "end": 22002.9, + "probability": 0.4767 + }, + { + "start": 22003.62, + "end": 22004.94, + "probability": 0.8767 + }, + { + "start": 22005.08, + "end": 22006.6, + "probability": 0.7569 + }, + { + "start": 22006.62, + "end": 22007.25, + "probability": 0.6214 + }, + { + "start": 22007.9, + "end": 22009.1, + "probability": 0.8668 + }, + { + "start": 22009.12, + "end": 22010.86, + "probability": 0.9026 + }, + { + "start": 22011.0, + "end": 22012.16, + "probability": 0.4992 + }, + { + "start": 22012.58, + "end": 22013.98, + "probability": 0.8813 + }, + { + "start": 22014.54, + "end": 22015.72, + "probability": 0.5427 + }, + { + "start": 22016.04, + "end": 22017.88, + "probability": 0.6472 + }, + { + "start": 22018.3, + "end": 22020.24, + "probability": 0.8503 + }, + { + "start": 22020.64, + "end": 22022.36, + "probability": 0.5353 + }, + { + "start": 22023.22, + "end": 22025.18, + "probability": 0.5524 + }, + { + "start": 22025.78, + "end": 22026.3, + "probability": 0.4998 + }, + { + "start": 22026.82, + "end": 22029.2, + "probability": 0.7659 + }, + { + "start": 22031.7, + "end": 22034.0, + "probability": 0.979 + }, + { + "start": 22035.32, + "end": 22035.56, + "probability": 0.8812 + }, + { + "start": 22036.42, + "end": 22039.1, + "probability": 0.8955 + }, + { + "start": 22040.5, + "end": 22044.88, + "probability": 0.9987 + }, + { + "start": 22046.0, + "end": 22048.46, + "probability": 0.9998 + }, + { + "start": 22049.22, + "end": 22050.6, + "probability": 0.7482 + }, + { + "start": 22051.14, + "end": 22052.42, + "probability": 0.8717 + }, + { + "start": 22052.76, + "end": 22056.86, + "probability": 0.9443 + }, + { + "start": 22057.18, + "end": 22058.86, + "probability": 0.9944 + }, + { + "start": 22058.94, + "end": 22059.42, + "probability": 0.8528 + }, + { + "start": 22063.02, + "end": 22065.22, + "probability": 0.5163 + }, + { + "start": 22065.34, + "end": 22068.82, + "probability": 0.903 + }, + { + "start": 22082.92, + "end": 22084.94, + "probability": 0.6537 + }, + { + "start": 22086.26, + "end": 22088.92, + "probability": 0.8876 + }, + { + "start": 22089.78, + "end": 22092.62, + "probability": 0.7173 + }, + { + "start": 22093.52, + "end": 22096.14, + "probability": 0.7752 + }, + { + "start": 22096.64, + "end": 22097.8, + "probability": 0.9568 + }, + { + "start": 22097.98, + "end": 22101.18, + "probability": 0.9949 + }, + { + "start": 22101.18, + "end": 22104.34, + "probability": 0.9932 + }, + { + "start": 22105.72, + "end": 22108.6, + "probability": 0.9995 + }, + { + "start": 22109.24, + "end": 22112.36, + "probability": 0.9886 + }, + { + "start": 22112.94, + "end": 22114.24, + "probability": 0.9867 + }, + { + "start": 22115.0, + "end": 22116.12, + "probability": 0.9739 + }, + { + "start": 22117.58, + "end": 22124.58, + "probability": 0.9282 + }, + { + "start": 22125.22, + "end": 22129.06, + "probability": 0.9973 + }, + { + "start": 22129.64, + "end": 22134.0, + "probability": 0.9883 + }, + { + "start": 22134.38, + "end": 22139.14, + "probability": 0.9947 + }, + { + "start": 22139.82, + "end": 22141.68, + "probability": 0.9592 + }, + { + "start": 22142.82, + "end": 22145.3, + "probability": 0.9576 + }, + { + "start": 22146.12, + "end": 22146.56, + "probability": 0.9751 + }, + { + "start": 22147.08, + "end": 22151.8, + "probability": 0.998 + }, + { + "start": 22151.8, + "end": 22155.62, + "probability": 0.9995 + }, + { + "start": 22156.24, + "end": 22157.04, + "probability": 0.301 + }, + { + "start": 22157.6, + "end": 22158.2, + "probability": 0.7941 + }, + { + "start": 22158.72, + "end": 22159.58, + "probability": 0.9543 + }, + { + "start": 22159.96, + "end": 22160.84, + "probability": 0.9508 + }, + { + "start": 22161.2, + "end": 22162.56, + "probability": 0.9862 + }, + { + "start": 22162.9, + "end": 22165.68, + "probability": 0.992 + }, + { + "start": 22166.06, + "end": 22166.48, + "probability": 0.6715 + }, + { + "start": 22166.56, + "end": 22167.46, + "probability": 0.825 + }, + { + "start": 22167.54, + "end": 22169.0, + "probability": 0.9736 + }, + { + "start": 22169.56, + "end": 22170.24, + "probability": 0.4776 + }, + { + "start": 22171.2, + "end": 22172.62, + "probability": 0.4117 + }, + { + "start": 22173.14, + "end": 22175.74, + "probability": 0.6798 + }, + { + "start": 22176.24, + "end": 22177.21, + "probability": 0.8506 + }, + { + "start": 22178.02, + "end": 22182.2, + "probability": 0.9022 + }, + { + "start": 22182.58, + "end": 22183.3, + "probability": 0.0046 + }, + { + "start": 22184.58, + "end": 22184.74, + "probability": 0.077 + }, + { + "start": 22184.74, + "end": 22185.78, + "probability": 0.0821 + }, + { + "start": 22185.88, + "end": 22191.88, + "probability": 0.7902 + }, + { + "start": 22192.22, + "end": 22193.6, + "probability": 0.8131 + }, + { + "start": 22194.12, + "end": 22197.64, + "probability": 0.9779 + }, + { + "start": 22199.04, + "end": 22199.88, + "probability": 0.0679 + }, + { + "start": 22200.58, + "end": 22205.02, + "probability": 0.9465 + }, + { + "start": 22207.02, + "end": 22208.84, + "probability": 0.9883 + }, + { + "start": 22209.48, + "end": 22212.04, + "probability": 0.9531 + }, + { + "start": 22212.04, + "end": 22217.9, + "probability": 0.7437 + }, + { + "start": 22218.58, + "end": 22220.46, + "probability": 0.9957 + }, + { + "start": 22220.76, + "end": 22221.66, + "probability": 0.9402 + }, + { + "start": 22221.82, + "end": 22223.1, + "probability": 0.9073 + }, + { + "start": 22223.62, + "end": 22223.98, + "probability": 0.4342 + }, + { + "start": 22223.98, + "end": 22223.98, + "probability": 0.2794 + }, + { + "start": 22223.98, + "end": 22226.18, + "probability": 0.6966 + }, + { + "start": 22226.32, + "end": 22227.84, + "probability": 0.5796 + }, + { + "start": 22228.78, + "end": 22229.62, + "probability": 0.7945 + }, + { + "start": 22230.62, + "end": 22231.58, + "probability": 0.4827 + }, + { + "start": 22233.88, + "end": 22236.9, + "probability": 0.8083 + }, + { + "start": 22237.14, + "end": 22237.6, + "probability": 0.8296 + }, + { + "start": 22238.28, + "end": 22238.9, + "probability": 0.911 + }, + { + "start": 22240.88, + "end": 22242.9, + "probability": 0.9756 + }, + { + "start": 22243.76, + "end": 22248.24, + "probability": 0.993 + }, + { + "start": 22248.58, + "end": 22249.44, + "probability": 0.9136 + }, + { + "start": 22250.12, + "end": 22250.98, + "probability": 0.9627 + }, + { + "start": 22251.66, + "end": 22253.3, + "probability": 0.9414 + }, + { + "start": 22253.86, + "end": 22257.56, + "probability": 0.7393 + }, + { + "start": 22258.08, + "end": 22261.68, + "probability": 0.8038 + }, + { + "start": 22261.68, + "end": 22265.96, + "probability": 0.9919 + }, + { + "start": 22267.8, + "end": 22269.82, + "probability": 0.8564 + }, + { + "start": 22270.16, + "end": 22271.88, + "probability": 0.8994 + }, + { + "start": 22272.18, + "end": 22280.06, + "probability": 0.9785 + }, + { + "start": 22280.18, + "end": 22283.94, + "probability": 0.8558 + }, + { + "start": 22284.32, + "end": 22286.52, + "probability": 0.9891 + }, + { + "start": 22286.9, + "end": 22288.2, + "probability": 0.9282 + }, + { + "start": 22288.68, + "end": 22290.8, + "probability": 0.8994 + }, + { + "start": 22291.12, + "end": 22292.54, + "probability": 0.9832 + }, + { + "start": 22292.9, + "end": 22293.24, + "probability": 0.7657 + }, + { + "start": 22293.44, + "end": 22297.16, + "probability": 0.9951 + }, + { + "start": 22297.56, + "end": 22299.36, + "probability": 0.7662 + }, + { + "start": 22300.38, + "end": 22302.7, + "probability": 0.6657 + }, + { + "start": 22303.02, + "end": 22304.22, + "probability": 0.8885 + }, + { + "start": 22304.6, + "end": 22306.22, + "probability": 0.9298 + }, + { + "start": 22306.42, + "end": 22308.16, + "probability": 0.9595 + }, + { + "start": 22308.32, + "end": 22309.44, + "probability": 0.1025 + }, + { + "start": 22309.66, + "end": 22311.48, + "probability": 0.9844 + }, + { + "start": 22311.84, + "end": 22314.56, + "probability": 0.9848 + }, + { + "start": 22315.04, + "end": 22315.38, + "probability": 0.5282 + }, + { + "start": 22315.96, + "end": 22317.34, + "probability": 0.9633 + }, + { + "start": 22317.52, + "end": 22318.68, + "probability": 0.9661 + }, + { + "start": 22319.08, + "end": 22319.9, + "probability": 0.8914 + }, + { + "start": 22320.24, + "end": 22321.48, + "probability": 0.9517 + }, + { + "start": 22321.58, + "end": 22322.78, + "probability": 0.9909 + }, + { + "start": 22322.9, + "end": 22323.55, + "probability": 0.393 + }, + { + "start": 22324.34, + "end": 22326.5, + "probability": 0.3621 + }, + { + "start": 22326.84, + "end": 22328.57, + "probability": 0.6258 + }, + { + "start": 22329.58, + "end": 22330.2, + "probability": 0.959 + }, + { + "start": 22331.4, + "end": 22332.06, + "probability": 0.3788 + }, + { + "start": 22332.06, + "end": 22333.46, + "probability": 0.5904 + }, + { + "start": 22334.0, + "end": 22335.34, + "probability": 0.7984 + }, + { + "start": 22335.76, + "end": 22338.32, + "probability": 0.9868 + }, + { + "start": 22338.74, + "end": 22339.9, + "probability": 0.7723 + }, + { + "start": 22340.72, + "end": 22341.04, + "probability": 0.0061 + }, + { + "start": 22341.18, + "end": 22342.12, + "probability": 0.3383 + }, + { + "start": 22342.5, + "end": 22346.3, + "probability": 0.8464 + }, + { + "start": 22346.4, + "end": 22347.42, + "probability": 0.9083 + }, + { + "start": 22347.5, + "end": 22350.16, + "probability": 0.5543 + }, + { + "start": 22350.16, + "end": 22354.2, + "probability": 0.9299 + }, + { + "start": 22355.02, + "end": 22355.56, + "probability": 0.889 + }, + { + "start": 22356.26, + "end": 22358.47, + "probability": 0.9844 + }, + { + "start": 22359.06, + "end": 22362.12, + "probability": 0.6148 + }, + { + "start": 22362.12, + "end": 22365.44, + "probability": 0.9742 + }, + { + "start": 22365.84, + "end": 22367.36, + "probability": 0.8096 + }, + { + "start": 22368.16, + "end": 22369.36, + "probability": 0.9461 + }, + { + "start": 22369.5, + "end": 22373.3, + "probability": 0.9381 + }, + { + "start": 22373.9, + "end": 22375.78, + "probability": 0.9048 + }, + { + "start": 22376.14, + "end": 22378.12, + "probability": 0.9019 + }, + { + "start": 22378.62, + "end": 22380.8, + "probability": 0.8309 + }, + { + "start": 22381.42, + "end": 22382.3, + "probability": 0.6641 + }, + { + "start": 22383.84, + "end": 22385.72, + "probability": 0.3511 + }, + { + "start": 22386.02, + "end": 22389.35, + "probability": 0.9518 + }, + { + "start": 22389.9, + "end": 22394.54, + "probability": 0.9827 + }, + { + "start": 22394.86, + "end": 22397.98, + "probability": 0.924 + }, + { + "start": 22398.62, + "end": 22401.04, + "probability": 0.8762 + }, + { + "start": 22401.84, + "end": 22403.88, + "probability": 0.8406 + }, + { + "start": 22404.42, + "end": 22405.76, + "probability": 0.9658 + }, + { + "start": 22406.3, + "end": 22407.16, + "probability": 0.9893 + }, + { + "start": 22408.02, + "end": 22409.02, + "probability": 0.9558 + }, + { + "start": 22409.68, + "end": 22410.73, + "probability": 0.9883 + }, + { + "start": 22411.06, + "end": 22412.25, + "probability": 0.9612 + }, + { + "start": 22413.5, + "end": 22414.18, + "probability": 0.6903 + }, + { + "start": 22417.36, + "end": 22419.86, + "probability": 0.4927 + }, + { + "start": 22419.96, + "end": 22422.14, + "probability": 0.8284 + }, + { + "start": 22424.36, + "end": 22426.34, + "probability": 0.905 + }, + { + "start": 22426.44, + "end": 22429.78, + "probability": 0.9515 + }, + { + "start": 22430.44, + "end": 22431.44, + "probability": 0.9019 + }, + { + "start": 22432.64, + "end": 22433.02, + "probability": 0.0348 + }, + { + "start": 22433.08, + "end": 22433.82, + "probability": 0.0582 + }, + { + "start": 22434.64, + "end": 22438.68, + "probability": 0.779 + }, + { + "start": 22439.38, + "end": 22440.48, + "probability": 0.6328 + }, + { + "start": 22440.54, + "end": 22442.42, + "probability": 0.8443 + }, + { + "start": 22442.52, + "end": 22445.76, + "probability": 0.8481 + }, + { + "start": 22446.12, + "end": 22447.0, + "probability": 0.8643 + }, + { + "start": 22448.24, + "end": 22451.0, + "probability": 0.967 + }, + { + "start": 22451.98, + "end": 22453.46, + "probability": 0.9971 + }, + { + "start": 22455.04, + "end": 22459.08, + "probability": 0.9417 + }, + { + "start": 22459.64, + "end": 22462.28, + "probability": 0.9503 + }, + { + "start": 22463.28, + "end": 22464.26, + "probability": 0.8784 + }, + { + "start": 22465.1, + "end": 22467.84, + "probability": 0.9961 + }, + { + "start": 22468.28, + "end": 22472.66, + "probability": 0.9946 + }, + { + "start": 22473.4, + "end": 22476.06, + "probability": 0.9979 + }, + { + "start": 22477.55, + "end": 22479.82, + "probability": 0.955 + }, + { + "start": 22480.0, + "end": 22480.3, + "probability": 0.7282 + }, + { + "start": 22480.72, + "end": 22481.04, + "probability": 0.7272 + }, + { + "start": 22482.16, + "end": 22485.96, + "probability": 0.77 + }, + { + "start": 22487.71, + "end": 22490.7, + "probability": 0.8127 + }, + { + "start": 22500.52, + "end": 22500.9, + "probability": 0.5314 + }, + { + "start": 22501.32, + "end": 22502.28, + "probability": 0.7798 + }, + { + "start": 22503.38, + "end": 22505.74, + "probability": 0.8943 + }, + { + "start": 22506.54, + "end": 22508.9, + "probability": 0.9624 + }, + { + "start": 22509.5, + "end": 22510.92, + "probability": 0.8765 + }, + { + "start": 22511.74, + "end": 22512.62, + "probability": 0.9829 + }, + { + "start": 22513.28, + "end": 22514.1, + "probability": 0.9379 + }, + { + "start": 22515.06, + "end": 22516.26, + "probability": 0.9771 + }, + { + "start": 22517.48, + "end": 22519.26, + "probability": 0.8845 + }, + { + "start": 22520.16, + "end": 22522.36, + "probability": 0.9272 + }, + { + "start": 22522.48, + "end": 22526.14, + "probability": 0.8335 + }, + { + "start": 22527.1, + "end": 22528.16, + "probability": 0.8612 + }, + { + "start": 22529.12, + "end": 22529.56, + "probability": 0.5959 + }, + { + "start": 22530.16, + "end": 22532.78, + "probability": 0.9861 + }, + { + "start": 22534.3, + "end": 22535.2, + "probability": 0.9634 + }, + { + "start": 22536.86, + "end": 22537.58, + "probability": 0.9717 + }, + { + "start": 22538.72, + "end": 22540.68, + "probability": 0.9953 + }, + { + "start": 22541.32, + "end": 22542.92, + "probability": 0.9961 + }, + { + "start": 22544.34, + "end": 22545.52, + "probability": 0.9037 + }, + { + "start": 22545.62, + "end": 22549.22, + "probability": 0.9702 + }, + { + "start": 22550.1, + "end": 22552.24, + "probability": 0.9316 + }, + { + "start": 22553.16, + "end": 22558.34, + "probability": 0.9246 + }, + { + "start": 22559.36, + "end": 22560.44, + "probability": 0.9686 + }, + { + "start": 22561.7, + "end": 22563.22, + "probability": 0.9985 + }, + { + "start": 22564.06, + "end": 22565.78, + "probability": 0.9515 + }, + { + "start": 22566.8, + "end": 22568.84, + "probability": 0.9336 + }, + { + "start": 22569.58, + "end": 22571.46, + "probability": 0.97 + }, + { + "start": 22571.62, + "end": 22572.42, + "probability": 0.7036 + }, + { + "start": 22572.44, + "end": 22574.04, + "probability": 0.6128 + }, + { + "start": 22574.2, + "end": 22574.4, + "probability": 0.8502 + }, + { + "start": 22574.5, + "end": 22575.68, + "probability": 0.8288 + }, + { + "start": 22576.4, + "end": 22579.02, + "probability": 0.8195 + }, + { + "start": 22579.72, + "end": 22583.48, + "probability": 0.9135 + }, + { + "start": 22584.8, + "end": 22586.04, + "probability": 0.6713 + }, + { + "start": 22587.16, + "end": 22588.52, + "probability": 0.9685 + }, + { + "start": 22589.46, + "end": 22591.24, + "probability": 0.5623 + }, + { + "start": 22592.16, + "end": 22595.4, + "probability": 0.9885 + }, + { + "start": 22595.48, + "end": 22597.66, + "probability": 0.9993 + }, + { + "start": 22598.88, + "end": 22600.44, + "probability": 0.9064 + }, + { + "start": 22601.52, + "end": 22602.86, + "probability": 0.5229 + }, + { + "start": 22602.9, + "end": 22604.16, + "probability": 0.9833 + }, + { + "start": 22605.18, + "end": 22607.52, + "probability": 0.7413 + }, + { + "start": 22608.44, + "end": 22611.18, + "probability": 0.8394 + }, + { + "start": 22612.18, + "end": 22614.08, + "probability": 0.4998 + }, + { + "start": 22614.82, + "end": 22617.38, + "probability": 0.9564 + }, + { + "start": 22618.42, + "end": 22621.4, + "probability": 0.9708 + }, + { + "start": 22622.58, + "end": 22623.74, + "probability": 0.9748 + }, + { + "start": 22624.74, + "end": 22625.86, + "probability": 0.5137 + }, + { + "start": 22626.12, + "end": 22629.08, + "probability": 0.6797 + }, + { + "start": 22629.88, + "end": 22631.7, + "probability": 0.8376 + }, + { + "start": 22632.64, + "end": 22635.62, + "probability": 0.7687 + }, + { + "start": 22636.02, + "end": 22637.16, + "probability": 0.7926 + }, + { + "start": 22638.42, + "end": 22639.38, + "probability": 0.4544 + }, + { + "start": 22639.5, + "end": 22640.28, + "probability": 0.7773 + }, + { + "start": 22640.32, + "end": 22642.58, + "probability": 0.8835 + }, + { + "start": 22643.62, + "end": 22645.22, + "probability": 0.8425 + }, + { + "start": 22646.24, + "end": 22650.64, + "probability": 0.9111 + }, + { + "start": 22651.7, + "end": 22653.14, + "probability": 0.9521 + }, + { + "start": 22654.4, + "end": 22656.86, + "probability": 0.9652 + }, + { + "start": 22657.54, + "end": 22657.9, + "probability": 0.8369 + }, + { + "start": 22658.66, + "end": 22660.22, + "probability": 0.9819 + }, + { + "start": 22660.32, + "end": 22661.9, + "probability": 0.9093 + }, + { + "start": 22662.78, + "end": 22670.82, + "probability": 0.7496 + }, + { + "start": 22670.88, + "end": 22673.22, + "probability": 0.6113 + }, + { + "start": 22673.38, + "end": 22674.04, + "probability": 0.8137 + }, + { + "start": 22674.86, + "end": 22676.82, + "probability": 0.8379 + }, + { + "start": 22677.68, + "end": 22680.76, + "probability": 0.9956 + }, + { + "start": 22681.28, + "end": 22681.86, + "probability": 0.6324 + }, + { + "start": 22682.08, + "end": 22685.76, + "probability": 0.9447 + }, + { + "start": 22686.42, + "end": 22689.1, + "probability": 0.9828 + }, + { + "start": 22690.02, + "end": 22693.16, + "probability": 0.9978 + }, + { + "start": 22693.62, + "end": 22694.86, + "probability": 0.9337 + }, + { + "start": 22694.94, + "end": 22695.86, + "probability": 0.3984 + }, + { + "start": 22696.3, + "end": 22696.96, + "probability": 0.9359 + }, + { + "start": 22697.04, + "end": 22698.54, + "probability": 0.9977 + }, + { + "start": 22699.34, + "end": 22701.72, + "probability": 0.9691 + }, + { + "start": 22702.48, + "end": 22703.8, + "probability": 0.7915 + }, + { + "start": 22704.5, + "end": 22705.84, + "probability": 0.5231 + }, + { + "start": 22706.82, + "end": 22708.6, + "probability": 0.8415 + }, + { + "start": 22708.94, + "end": 22710.0, + "probability": 0.6575 + }, + { + "start": 22710.6, + "end": 22711.36, + "probability": 0.9055 + }, + { + "start": 22712.3, + "end": 22714.66, + "probability": 0.9633 + }, + { + "start": 22715.28, + "end": 22716.82, + "probability": 0.9627 + }, + { + "start": 22717.56, + "end": 22719.46, + "probability": 0.8794 + }, + { + "start": 22720.7, + "end": 22723.6, + "probability": 0.8527 + }, + { + "start": 22724.82, + "end": 22725.96, + "probability": 0.9383 + }, + { + "start": 22726.12, + "end": 22730.76, + "probability": 0.9879 + }, + { + "start": 22731.34, + "end": 22733.7, + "probability": 0.9595 + }, + { + "start": 22734.42, + "end": 22736.0, + "probability": 0.6172 + }, + { + "start": 22736.66, + "end": 22739.88, + "probability": 0.9467 + }, + { + "start": 22739.98, + "end": 22741.36, + "probability": 0.7964 + }, + { + "start": 22741.92, + "end": 22746.02, + "probability": 0.9231 + }, + { + "start": 22746.56, + "end": 22747.91, + "probability": 0.9487 + }, + { + "start": 22748.78, + "end": 22750.5, + "probability": 0.9858 + }, + { + "start": 22751.32, + "end": 22756.08, + "probability": 0.9749 + }, + { + "start": 22756.54, + "end": 22758.12, + "probability": 0.6656 + }, + { + "start": 22758.98, + "end": 22761.72, + "probability": 0.9067 + }, + { + "start": 22762.02, + "end": 22763.54, + "probability": 0.6394 + }, + { + "start": 22763.96, + "end": 22766.42, + "probability": 0.7861 + }, + { + "start": 22766.5, + "end": 22767.14, + "probability": 0.7184 + }, + { + "start": 22767.84, + "end": 22770.4, + "probability": 0.9695 + }, + { + "start": 22770.56, + "end": 22771.02, + "probability": 0.873 + }, + { + "start": 22771.5, + "end": 22773.04, + "probability": 0.8289 + }, + { + "start": 22773.16, + "end": 22773.86, + "probability": 0.7937 + }, + { + "start": 22774.52, + "end": 22775.69, + "probability": 0.3177 + }, + { + "start": 22775.84, + "end": 22776.57, + "probability": 0.7419 + }, + { + "start": 22777.4, + "end": 22778.6, + "probability": 0.7212 + }, + { + "start": 22779.04, + "end": 22780.28, + "probability": 0.6497 + }, + { + "start": 22780.28, + "end": 22780.3, + "probability": 0.4219 + }, + { + "start": 22780.3, + "end": 22780.3, + "probability": 0.5356 + }, + { + "start": 22780.3, + "end": 22781.78, + "probability": 0.8814 + }, + { + "start": 22781.92, + "end": 22782.74, + "probability": 0.771 + }, + { + "start": 22782.94, + "end": 22783.12, + "probability": 0.1354 + }, + { + "start": 22783.22, + "end": 22783.63, + "probability": 0.6621 + }, + { + "start": 22784.34, + "end": 22786.77, + "probability": 0.6052 + }, + { + "start": 22787.32, + "end": 22787.46, + "probability": 0.0665 + }, + { + "start": 22787.46, + "end": 22788.76, + "probability": 0.1337 + }, + { + "start": 22788.88, + "end": 22789.66, + "probability": 0.2069 + }, + { + "start": 22789.7, + "end": 22790.44, + "probability": 0.2943 + }, + { + "start": 22790.8, + "end": 22793.46, + "probability": 0.2658 + }, + { + "start": 22794.32, + "end": 22794.48, + "probability": 0.0422 + }, + { + "start": 22794.48, + "end": 22794.48, + "probability": 0.0027 + }, + { + "start": 22794.48, + "end": 22794.56, + "probability": 0.0629 + }, + { + "start": 22794.56, + "end": 22794.66, + "probability": 0.1108 + }, + { + "start": 22794.66, + "end": 22794.98, + "probability": 0.1038 + }, + { + "start": 22795.08, + "end": 22795.68, + "probability": 0.2778 + }, + { + "start": 22795.86, + "end": 22796.88, + "probability": 0.0434 + }, + { + "start": 22796.88, + "end": 22796.88, + "probability": 0.1128 + }, + { + "start": 22797.04, + "end": 22798.22, + "probability": 0.4769 + }, + { + "start": 22798.96, + "end": 22802.02, + "probability": 0.7788 + }, + { + "start": 22802.44, + "end": 22804.22, + "probability": 0.6631 + }, + { + "start": 22804.66, + "end": 22805.94, + "probability": 0.6951 + }, + { + "start": 22806.48, + "end": 22810.6, + "probability": 0.9564 + }, + { + "start": 22810.86, + "end": 22812.28, + "probability": 0.9903 + }, + { + "start": 22813.28, + "end": 22814.2, + "probability": 0.6189 + }, + { + "start": 22815.02, + "end": 22815.38, + "probability": 0.6347 + }, + { + "start": 22815.52, + "end": 22815.92, + "probability": 0.8482 + }, + { + "start": 22815.96, + "end": 22816.54, + "probability": 0.9233 + }, + { + "start": 22816.6, + "end": 22818.22, + "probability": 0.9884 + }, + { + "start": 22818.52, + "end": 22819.52, + "probability": 0.831 + }, + { + "start": 22820.46, + "end": 22822.08, + "probability": 0.9276 + }, + { + "start": 22822.86, + "end": 22824.08, + "probability": 0.9805 + }, + { + "start": 22824.72, + "end": 22826.88, + "probability": 0.946 + }, + { + "start": 22827.3, + "end": 22828.12, + "probability": 0.988 + }, + { + "start": 22828.68, + "end": 22831.06, + "probability": 0.7393 + }, + { + "start": 22832.06, + "end": 22835.84, + "probability": 0.895 + }, + { + "start": 22836.48, + "end": 22838.7, + "probability": 0.7591 + }, + { + "start": 22839.48, + "end": 22840.38, + "probability": 0.8655 + }, + { + "start": 22840.7, + "end": 22843.64, + "probability": 0.933 + }, + { + "start": 22844.02, + "end": 22847.0, + "probability": 0.9258 + }, + { + "start": 22847.08, + "end": 22848.5, + "probability": 0.1392 + }, + { + "start": 22849.06, + "end": 22850.24, + "probability": 0.8689 + }, + { + "start": 22850.5, + "end": 22851.48, + "probability": 0.8022 + }, + { + "start": 22852.4, + "end": 22853.82, + "probability": 0.6922 + }, + { + "start": 22854.2, + "end": 22855.02, + "probability": 0.5259 + }, + { + "start": 22855.92, + "end": 22857.59, + "probability": 0.3929 + }, + { + "start": 22866.92, + "end": 22867.92, + "probability": 0.5551 + }, + { + "start": 22869.14, + "end": 22871.72, + "probability": 0.3353 + }, + { + "start": 22871.72, + "end": 22872.18, + "probability": 0.8738 + }, + { + "start": 22873.54, + "end": 22878.08, + "probability": 0.6642 + }, + { + "start": 22883.66, + "end": 22885.7, + "probability": 0.366 + }, + { + "start": 22885.7, + "end": 22887.03, + "probability": 0.7287 + }, + { + "start": 22888.06, + "end": 22889.96, + "probability": 0.6159 + }, + { + "start": 22890.74, + "end": 22892.4, + "probability": 0.6613 + }, + { + "start": 22892.86, + "end": 22893.68, + "probability": 0.658 + }, + { + "start": 22893.76, + "end": 22896.4, + "probability": 0.9398 + }, + { + "start": 22896.48, + "end": 22896.48, + "probability": 0.0063 + }, + { + "start": 22896.48, + "end": 22897.06, + "probability": 0.6553 + }, + { + "start": 22897.94, + "end": 22900.46, + "probability": 0.9651 + }, + { + "start": 22901.18, + "end": 22903.0, + "probability": 0.8578 + }, + { + "start": 22904.14, + "end": 22905.74, + "probability": 0.9818 + }, + { + "start": 22907.2, + "end": 22911.06, + "probability": 0.949 + }, + { + "start": 22911.68, + "end": 22913.94, + "probability": 0.9862 + }, + { + "start": 22915.32, + "end": 22920.2, + "probability": 0.9858 + }, + { + "start": 22921.7, + "end": 22923.0, + "probability": 0.999 + }, + { + "start": 22924.26, + "end": 22925.74, + "probability": 0.9825 + }, + { + "start": 22926.56, + "end": 22928.18, + "probability": 0.9995 + }, + { + "start": 22929.24, + "end": 22931.4, + "probability": 0.9988 + }, + { + "start": 22932.16, + "end": 22934.04, + "probability": 0.9152 + }, + { + "start": 22934.68, + "end": 22935.76, + "probability": 0.7401 + }, + { + "start": 22936.74, + "end": 22940.42, + "probability": 0.9831 + }, + { + "start": 22941.32, + "end": 22943.92, + "probability": 0.9493 + }, + { + "start": 22944.44, + "end": 22945.08, + "probability": 0.5639 + }, + { + "start": 22945.2, + "end": 22945.52, + "probability": 0.6453 + }, + { + "start": 22946.98, + "end": 22947.8, + "probability": 0.9385 + }, + { + "start": 22948.38, + "end": 22952.82, + "probability": 0.7946 + }, + { + "start": 22953.84, + "end": 22954.3, + "probability": 0.5522 + }, + { + "start": 22954.78, + "end": 22956.7, + "probability": 0.6971 + }, + { + "start": 22957.26, + "end": 22959.66, + "probability": 0.7879 + }, + { + "start": 22960.28, + "end": 22961.4, + "probability": 0.9061 + }, + { + "start": 22962.08, + "end": 22963.4, + "probability": 0.9849 + }, + { + "start": 22963.64, + "end": 22964.14, + "probability": 0.4951 + }, + { + "start": 22964.36, + "end": 22965.06, + "probability": 0.7855 + }, + { + "start": 22966.3, + "end": 22967.4, + "probability": 0.7849 + }, + { + "start": 22967.84, + "end": 22970.08, + "probability": 0.9142 + }, + { + "start": 22970.9, + "end": 22972.6, + "probability": 0.9958 + }, + { + "start": 22972.94, + "end": 22973.36, + "probability": 0.4432 + }, + { + "start": 22973.66, + "end": 22974.2, + "probability": 0.5673 + }, + { + "start": 22974.54, + "end": 22976.18, + "probability": 0.7852 + }, + { + "start": 22976.38, + "end": 22977.9, + "probability": 0.98 + }, + { + "start": 22978.06, + "end": 22980.48, + "probability": 0.9399 + }, + { + "start": 22981.26, + "end": 22981.26, + "probability": 0.0695 + }, + { + "start": 22981.26, + "end": 22983.46, + "probability": 0.8454 + }, + { + "start": 22984.66, + "end": 22986.22, + "probability": 0.8081 + }, + { + "start": 22986.84, + "end": 22989.74, + "probability": 0.9442 + }, + { + "start": 22991.44, + "end": 22992.44, + "probability": 0.9765 + }, + { + "start": 22993.02, + "end": 22994.06, + "probability": 0.8909 + }, + { + "start": 22994.68, + "end": 22997.02, + "probability": 0.7281 + }, + { + "start": 22997.94, + "end": 22999.94, + "probability": 0.9971 + }, + { + "start": 23001.04, + "end": 23002.74, + "probability": 0.9951 + }, + { + "start": 23003.52, + "end": 23003.94, + "probability": 0.3065 + }, + { + "start": 23004.02, + "end": 23004.9, + "probability": 0.8868 + }, + { + "start": 23005.02, + "end": 23005.56, + "probability": 0.5382 + }, + { + "start": 23005.64, + "end": 23006.6, + "probability": 0.947 + }, + { + "start": 23006.66, + "end": 23007.34, + "probability": 0.7905 + }, + { + "start": 23007.48, + "end": 23008.44, + "probability": 0.9932 + }, + { + "start": 23009.2, + "end": 23009.38, + "probability": 0.5441 + }, + { + "start": 23010.54, + "end": 23015.12, + "probability": 0.9912 + }, + { + "start": 23017.16, + "end": 23018.58, + "probability": 0.5265 + }, + { + "start": 23019.48, + "end": 23021.52, + "probability": 0.909 + }, + { + "start": 23023.06, + "end": 23026.22, + "probability": 0.9912 + }, + { + "start": 23026.74, + "end": 23030.45, + "probability": 0.9917 + }, + { + "start": 23031.88, + "end": 23033.14, + "probability": 0.8854 + }, + { + "start": 23034.64, + "end": 23039.19, + "probability": 0.9688 + }, + { + "start": 23040.4, + "end": 23046.44, + "probability": 0.9886 + }, + { + "start": 23046.96, + "end": 23048.68, + "probability": 0.9881 + }, + { + "start": 23049.12, + "end": 23050.72, + "probability": 0.9858 + }, + { + "start": 23051.18, + "end": 23054.36, + "probability": 0.9316 + }, + { + "start": 23055.52, + "end": 23055.52, + "probability": 0.855 + }, + { + "start": 23057.1, + "end": 23060.32, + "probability": 0.95 + }, + { + "start": 23060.32, + "end": 23062.98, + "probability": 0.9939 + }, + { + "start": 23064.84, + "end": 23066.0, + "probability": 0.7018 + }, + { + "start": 23067.1, + "end": 23067.62, + "probability": 0.5659 + }, + { + "start": 23068.2, + "end": 23071.22, + "probability": 0.9772 + }, + { + "start": 23072.72, + "end": 23073.84, + "probability": 0.4162 + }, + { + "start": 23074.06, + "end": 23075.5, + "probability": 0.9961 + }, + { + "start": 23076.3, + "end": 23076.73, + "probability": 0.8655 + }, + { + "start": 23077.24, + "end": 23081.04, + "probability": 0.9287 + }, + { + "start": 23083.0, + "end": 23084.3, + "probability": 0.9985 + }, + { + "start": 23084.94, + "end": 23088.84, + "probability": 0.9575 + }, + { + "start": 23089.18, + "end": 23089.8, + "probability": 0.787 + }, + { + "start": 23090.7, + "end": 23091.66, + "probability": 0.805 + }, + { + "start": 23092.58, + "end": 23093.66, + "probability": 0.9513 + }, + { + "start": 23094.08, + "end": 23096.54, + "probability": 0.9896 + }, + { + "start": 23096.6, + "end": 23097.46, + "probability": 0.8001 + }, + { + "start": 23097.9, + "end": 23099.56, + "probability": 0.9664 + }, + { + "start": 23100.64, + "end": 23101.39, + "probability": 0.9773 + }, + { + "start": 23102.06, + "end": 23104.48, + "probability": 0.9978 + }, + { + "start": 23104.64, + "end": 23107.78, + "probability": 0.9854 + }, + { + "start": 23108.7, + "end": 23109.64, + "probability": 0.9246 + }, + { + "start": 23111.16, + "end": 23114.1, + "probability": 0.8872 + }, + { + "start": 23114.78, + "end": 23117.4, + "probability": 0.9858 + }, + { + "start": 23117.78, + "end": 23118.7, + "probability": 0.701 + }, + { + "start": 23119.22, + "end": 23119.62, + "probability": 0.9577 + }, + { + "start": 23119.66, + "end": 23121.82, + "probability": 0.9044 + }, + { + "start": 23121.88, + "end": 23123.4, + "probability": 0.9837 + }, + { + "start": 23123.9, + "end": 23124.54, + "probability": 0.9382 + }, + { + "start": 23125.36, + "end": 23126.18, + "probability": 0.4803 + }, + { + "start": 23127.64, + "end": 23129.42, + "probability": 0.9871 + }, + { + "start": 23130.34, + "end": 23133.6, + "probability": 0.7492 + }, + { + "start": 23134.4, + "end": 23137.24, + "probability": 0.7547 + }, + { + "start": 23137.76, + "end": 23138.88, + "probability": 0.8286 + }, + { + "start": 23140.4, + "end": 23142.9, + "probability": 0.9858 + }, + { + "start": 23143.74, + "end": 23144.88, + "probability": 0.8931 + }, + { + "start": 23146.04, + "end": 23147.68, + "probability": 0.9954 + }, + { + "start": 23148.76, + "end": 23149.44, + "probability": 0.5578 + }, + { + "start": 23152.05, + "end": 23153.75, + "probability": 0.3488 + }, + { + "start": 23155.12, + "end": 23155.57, + "probability": 0.8525 + }, + { + "start": 23157.14, + "end": 23158.84, + "probability": 0.7797 + }, + { + "start": 23159.76, + "end": 23164.14, + "probability": 0.9575 + }, + { + "start": 23164.7, + "end": 23166.24, + "probability": 0.8875 + }, + { + "start": 23166.68, + "end": 23167.76, + "probability": 0.9369 + }, + { + "start": 23168.08, + "end": 23169.32, + "probability": 0.4884 + }, + { + "start": 23169.96, + "end": 23171.16, + "probability": 0.9443 + }, + { + "start": 23172.24, + "end": 23173.46, + "probability": 0.9329 + }, + { + "start": 23174.52, + "end": 23178.32, + "probability": 0.9414 + }, + { + "start": 23178.54, + "end": 23179.24, + "probability": 0.8339 + }, + { + "start": 23179.48, + "end": 23180.18, + "probability": 0.9338 + }, + { + "start": 23181.22, + "end": 23184.3, + "probability": 0.9227 + }, + { + "start": 23185.22, + "end": 23187.1, + "probability": 0.9697 + }, + { + "start": 23187.7, + "end": 23191.16, + "probability": 0.916 + }, + { + "start": 23191.9, + "end": 23192.96, + "probability": 0.8524 + }, + { + "start": 23193.26, + "end": 23193.7, + "probability": 0.5192 + }, + { + "start": 23193.72, + "end": 23193.92, + "probability": 0.5786 + }, + { + "start": 23194.32, + "end": 23195.4, + "probability": 0.9537 + }, + { + "start": 23196.26, + "end": 23198.24, + "probability": 0.9345 + }, + { + "start": 23199.16, + "end": 23200.46, + "probability": 0.8302 + }, + { + "start": 23200.58, + "end": 23201.21, + "probability": 0.9497 + }, + { + "start": 23202.08, + "end": 23204.62, + "probability": 0.9614 + }, + { + "start": 23205.06, + "end": 23205.48, + "probability": 0.7693 + }, + { + "start": 23205.76, + "end": 23206.26, + "probability": 0.5283 + }, + { + "start": 23206.5, + "end": 23209.24, + "probability": 0.9854 + }, + { + "start": 23209.88, + "end": 23212.26, + "probability": 0.9677 + }, + { + "start": 23213.18, + "end": 23213.34, + "probability": 0.6913 + }, + { + "start": 23214.0, + "end": 23216.34, + "probability": 0.9979 + }, + { + "start": 23217.16, + "end": 23223.54, + "probability": 0.9584 + }, + { + "start": 23223.92, + "end": 23226.58, + "probability": 0.9787 + }, + { + "start": 23227.04, + "end": 23230.74, + "probability": 0.9844 + }, + { + "start": 23231.16, + "end": 23231.9, + "probability": 0.875 + }, + { + "start": 23232.44, + "end": 23233.51, + "probability": 0.9956 + }, + { + "start": 23234.14, + "end": 23234.4, + "probability": 0.7874 + }, + { + "start": 23235.62, + "end": 23236.96, + "probability": 0.743 + }, + { + "start": 23237.12, + "end": 23238.64, + "probability": 0.9169 + }, + { + "start": 23241.8, + "end": 23243.96, + "probability": 0.3962 + }, + { + "start": 23258.08, + "end": 23259.86, + "probability": 0.6694 + }, + { + "start": 23261.76, + "end": 23263.3, + "probability": 0.5943 + }, + { + "start": 23263.46, + "end": 23263.74, + "probability": 0.8321 + }, + { + "start": 23263.82, + "end": 23266.16, + "probability": 0.9393 + }, + { + "start": 23266.16, + "end": 23267.88, + "probability": 0.9491 + }, + { + "start": 23269.78, + "end": 23271.72, + "probability": 0.7051 + }, + { + "start": 23271.74, + "end": 23273.0, + "probability": 0.9866 + }, + { + "start": 23273.12, + "end": 23274.88, + "probability": 0.5091 + }, + { + "start": 23275.92, + "end": 23277.62, + "probability": 0.6667 + }, + { + "start": 23281.28, + "end": 23281.92, + "probability": 0.0399 + }, + { + "start": 23282.14, + "end": 23282.9, + "probability": 0.1115 + }, + { + "start": 23282.9, + "end": 23284.36, + "probability": 0.81 + }, + { + "start": 23284.45, + "end": 23284.78, + "probability": 0.1305 + }, + { + "start": 23284.78, + "end": 23285.59, + "probability": 0.6947 + }, + { + "start": 23287.17, + "end": 23288.6, + "probability": 0.5634 + }, + { + "start": 23289.5, + "end": 23294.82, + "probability": 0.9934 + }, + { + "start": 23295.42, + "end": 23296.19, + "probability": 0.8014 + }, + { + "start": 23296.38, + "end": 23298.44, + "probability": 0.8489 + }, + { + "start": 23298.86, + "end": 23301.82, + "probability": 0.9961 + }, + { + "start": 23301.84, + "end": 23305.44, + "probability": 0.9897 + }, + { + "start": 23306.76, + "end": 23308.34, + "probability": 0.798 + }, + { + "start": 23308.6, + "end": 23311.88, + "probability": 0.9439 + }, + { + "start": 23312.36, + "end": 23315.49, + "probability": 0.9291 + }, + { + "start": 23316.34, + "end": 23316.72, + "probability": 0.8152 + }, + { + "start": 23317.82, + "end": 23322.14, + "probability": 0.996 + }, + { + "start": 23322.62, + "end": 23325.04, + "probability": 0.9246 + }, + { + "start": 23325.78, + "end": 23328.42, + "probability": 0.8161 + }, + { + "start": 23328.76, + "end": 23331.04, + "probability": 0.9878 + }, + { + "start": 23332.3, + "end": 23334.1, + "probability": 0.9161 + }, + { + "start": 23335.9, + "end": 23337.81, + "probability": 0.8943 + }, + { + "start": 23337.9, + "end": 23338.89, + "probability": 0.9253 + }, + { + "start": 23339.04, + "end": 23339.88, + "probability": 0.8594 + }, + { + "start": 23342.52, + "end": 23344.0, + "probability": 0.8977 + }, + { + "start": 23344.82, + "end": 23350.58, + "probability": 0.9183 + }, + { + "start": 23350.9, + "end": 23355.36, + "probability": 0.9944 + }, + { + "start": 23355.36, + "end": 23361.12, + "probability": 0.9464 + }, + { + "start": 23361.34, + "end": 23362.9, + "probability": 0.9414 + }, + { + "start": 23363.28, + "end": 23366.04, + "probability": 0.9565 + }, + { + "start": 23366.46, + "end": 23367.1, + "probability": 0.5308 + }, + { + "start": 23367.42, + "end": 23369.56, + "probability": 0.8544 + }, + { + "start": 23369.92, + "end": 23375.08, + "probability": 0.8921 + }, + { + "start": 23375.64, + "end": 23377.44, + "probability": 0.9464 + }, + { + "start": 23377.88, + "end": 23380.32, + "probability": 0.95 + }, + { + "start": 23380.94, + "end": 23381.9, + "probability": 0.9737 + }, + { + "start": 23383.06, + "end": 23385.36, + "probability": 0.9888 + }, + { + "start": 23385.86, + "end": 23386.52, + "probability": 0.8176 + }, + { + "start": 23386.8, + "end": 23387.68, + "probability": 0.7854 + }, + { + "start": 23388.18, + "end": 23389.78, + "probability": 0.9808 + }, + { + "start": 23389.86, + "end": 23390.7, + "probability": 0.7508 + }, + { + "start": 23391.02, + "end": 23396.26, + "probability": 0.9199 + }, + { + "start": 23397.84, + "end": 23400.66, + "probability": 0.985 + }, + { + "start": 23401.76, + "end": 23404.06, + "probability": 0.9634 + }, + { + "start": 23405.14, + "end": 23408.48, + "probability": 0.9272 + }, + { + "start": 23408.58, + "end": 23410.92, + "probability": 0.9727 + }, + { + "start": 23411.52, + "end": 23413.62, + "probability": 0.8718 + }, + { + "start": 23415.08, + "end": 23418.32, + "probability": 0.9795 + }, + { + "start": 23418.62, + "end": 23419.52, + "probability": 0.9243 + }, + { + "start": 23421.57, + "end": 23422.89, + "probability": 0.4569 + }, + { + "start": 23423.64, + "end": 23424.32, + "probability": 0.3238 + }, + { + "start": 23424.62, + "end": 23425.98, + "probability": 0.2157 + }, + { + "start": 23426.14, + "end": 23427.58, + "probability": 0.1032 + }, + { + "start": 23427.82, + "end": 23428.68, + "probability": 0.0154 + }, + { + "start": 23429.42, + "end": 23431.08, + "probability": 0.922 + }, + { + "start": 23431.84, + "end": 23433.49, + "probability": 0.9713 + }, + { + "start": 23433.94, + "end": 23437.62, + "probability": 0.8544 + }, + { + "start": 23438.14, + "end": 23438.68, + "probability": 0.9521 + }, + { + "start": 23440.86, + "end": 23441.04, + "probability": 0.2196 + }, + { + "start": 23441.38, + "end": 23442.12, + "probability": 0.8675 + }, + { + "start": 23442.16, + "end": 23446.36, + "probability": 0.9866 + }, + { + "start": 23446.84, + "end": 23451.56, + "probability": 0.9878 + }, + { + "start": 23451.86, + "end": 23452.82, + "probability": 0.8485 + }, + { + "start": 23453.0, + "end": 23454.24, + "probability": 0.8707 + }, + { + "start": 23454.64, + "end": 23455.7, + "probability": 0.7538 + }, + { + "start": 23457.24, + "end": 23459.5, + "probability": 0.9758 + }, + { + "start": 23460.2, + "end": 23460.52, + "probability": 0.5553 + }, + { + "start": 23460.66, + "end": 23461.84, + "probability": 0.9675 + }, + { + "start": 23462.06, + "end": 23463.72, + "probability": 0.9524 + }, + { + "start": 23464.4, + "end": 23465.68, + "probability": 0.9507 + }, + { + "start": 23466.42, + "end": 23469.68, + "probability": 0.832 + }, + { + "start": 23469.76, + "end": 23470.15, + "probability": 0.7288 + }, + { + "start": 23471.66, + "end": 23475.25, + "probability": 0.1618 + }, + { + "start": 23475.98, + "end": 23481.74, + "probability": 0.6072 + }, + { + "start": 23481.76, + "end": 23482.76, + "probability": 0.951 + }, + { + "start": 23483.48, + "end": 23483.78, + "probability": 0.5783 + }, + { + "start": 23485.73, + "end": 23490.54, + "probability": 0.967 + }, + { + "start": 23490.94, + "end": 23491.84, + "probability": 0.7618 + }, + { + "start": 23492.26, + "end": 23495.86, + "probability": 0.8062 + }, + { + "start": 23496.7, + "end": 23497.96, + "probability": 0.8462 + }, + { + "start": 23500.12, + "end": 23500.58, + "probability": 0.8452 + }, + { + "start": 23501.16, + "end": 23502.76, + "probability": 0.8389 + }, + { + "start": 23502.9, + "end": 23503.62, + "probability": 0.9197 + }, + { + "start": 23503.74, + "end": 23507.74, + "probability": 0.9282 + }, + { + "start": 23509.1, + "end": 23510.72, + "probability": 0.8636 + }, + { + "start": 23510.88, + "end": 23513.68, + "probability": 0.9861 + }, + { + "start": 23513.68, + "end": 23516.48, + "probability": 0.988 + }, + { + "start": 23516.56, + "end": 23519.14, + "probability": 0.9927 + }, + { + "start": 23520.11, + "end": 23522.38, + "probability": 0.8554 + }, + { + "start": 23522.48, + "end": 23523.18, + "probability": 0.4818 + }, + { + "start": 23523.42, + "end": 23527.94, + "probability": 0.981 + }, + { + "start": 23527.98, + "end": 23529.62, + "probability": 0.7526 + }, + { + "start": 23530.16, + "end": 23531.19, + "probability": 0.6754 + }, + { + "start": 23532.34, + "end": 23532.96, + "probability": 0.7376 + }, + { + "start": 23533.04, + "end": 23535.45, + "probability": 0.9238 + }, + { + "start": 23535.6, + "end": 23537.42, + "probability": 0.9902 + }, + { + "start": 23537.86, + "end": 23538.36, + "probability": 0.958 + }, + { + "start": 23538.5, + "end": 23541.28, + "probability": 0.8652 + }, + { + "start": 23541.32, + "end": 23541.67, + "probability": 0.7266 + }, + { + "start": 23543.6, + "end": 23548.72, + "probability": 0.9946 + }, + { + "start": 23549.16, + "end": 23550.04, + "probability": 0.585 + }, + { + "start": 23551.1, + "end": 23552.12, + "probability": 0.826 + }, + { + "start": 23552.2, + "end": 23552.64, + "probability": 0.5805 + }, + { + "start": 23552.74, + "end": 23553.33, + "probability": 0.6389 + }, + { + "start": 23553.58, + "end": 23554.32, + "probability": 0.5204 + }, + { + "start": 23555.26, + "end": 23555.42, + "probability": 0.319 + }, + { + "start": 23556.58, + "end": 23556.74, + "probability": 0.4274 + }, + { + "start": 23556.74, + "end": 23557.3, + "probability": 0.0462 + }, + { + "start": 23557.7, + "end": 23559.22, + "probability": 0.3481 + }, + { + "start": 23560.0, + "end": 23560.86, + "probability": 0.7387 + }, + { + "start": 23561.24, + "end": 23563.83, + "probability": 0.5132 + }, + { + "start": 23564.42, + "end": 23567.96, + "probability": 0.343 + }, + { + "start": 23570.4, + "end": 23570.64, + "probability": 0.0295 + }, + { + "start": 23570.64, + "end": 23573.0, + "probability": 0.1266 + }, + { + "start": 23573.84, + "end": 23574.66, + "probability": 0.3582 + }, + { + "start": 23576.18, + "end": 23578.84, + "probability": 0.7098 + }, + { + "start": 23579.04, + "end": 23580.04, + "probability": 0.749 + }, + { + "start": 23580.12, + "end": 23585.74, + "probability": 0.9886 + }, + { + "start": 23585.74, + "end": 23594.18, + "probability": 0.9934 + }, + { + "start": 23594.96, + "end": 23596.4, + "probability": 0.476 + }, + { + "start": 23596.68, + "end": 23597.9, + "probability": 0.8634 + }, + { + "start": 23598.0, + "end": 23598.76, + "probability": 0.8544 + }, + { + "start": 23599.04, + "end": 23601.2, + "probability": 0.9716 + }, + { + "start": 23601.84, + "end": 23605.6, + "probability": 0.9725 + }, + { + "start": 23605.64, + "end": 23608.92, + "probability": 0.9228 + }, + { + "start": 23609.48, + "end": 23612.54, + "probability": 0.6145 + }, + { + "start": 23613.08, + "end": 23613.56, + "probability": 0.4344 + }, + { + "start": 23614.12, + "end": 23617.16, + "probability": 0.9946 + }, + { + "start": 23617.6, + "end": 23623.18, + "probability": 0.9963 + }, + { + "start": 23623.9, + "end": 23625.19, + "probability": 0.9917 + }, + { + "start": 23625.54, + "end": 23627.9, + "probability": 0.9924 + }, + { + "start": 23627.9, + "end": 23631.88, + "probability": 0.9883 + }, + { + "start": 23632.36, + "end": 23635.96, + "probability": 0.9955 + }, + { + "start": 23636.0, + "end": 23638.46, + "probability": 0.992 + }, + { + "start": 23638.46, + "end": 23640.6, + "probability": 0.8326 + }, + { + "start": 23640.94, + "end": 23644.12, + "probability": 0.9517 + }, + { + "start": 23644.38, + "end": 23644.54, + "probability": 0.2397 + }, + { + "start": 23644.7, + "end": 23648.74, + "probability": 0.8712 + }, + { + "start": 23649.55, + "end": 23649.9, + "probability": 0.089 + }, + { + "start": 23649.9, + "end": 23650.4, + "probability": 0.4862 + }, + { + "start": 23651.52, + "end": 23653.84, + "probability": 0.6658 + }, + { + "start": 23662.9, + "end": 23663.36, + "probability": 0.3851 + }, + { + "start": 23668.64, + "end": 23669.78, + "probability": 0.7687 + }, + { + "start": 23670.3, + "end": 23671.91, + "probability": 0.7266 + }, + { + "start": 23672.74, + "end": 23676.02, + "probability": 0.9931 + }, + { + "start": 23676.72, + "end": 23680.18, + "probability": 0.9683 + }, + { + "start": 23680.86, + "end": 23682.04, + "probability": 0.9468 + }, + { + "start": 23682.82, + "end": 23686.8, + "probability": 0.9688 + }, + { + "start": 23686.86, + "end": 23690.84, + "probability": 0.8866 + }, + { + "start": 23691.78, + "end": 23693.04, + "probability": 0.5523 + }, + { + "start": 23693.26, + "end": 23699.6, + "probability": 0.8442 + }, + { + "start": 23700.1, + "end": 23701.92, + "probability": 0.9949 + }, + { + "start": 23702.12, + "end": 23703.56, + "probability": 0.9368 + }, + { + "start": 23704.2, + "end": 23705.18, + "probability": 0.6458 + }, + { + "start": 23706.04, + "end": 23707.58, + "probability": 0.9579 + }, + { + "start": 23710.32, + "end": 23712.0, + "probability": 0.9819 + }, + { + "start": 23712.98, + "end": 23713.56, + "probability": 0.9686 + }, + { + "start": 23714.18, + "end": 23719.82, + "probability": 0.8575 + }, + { + "start": 23720.06, + "end": 23724.5, + "probability": 0.969 + }, + { + "start": 23726.2, + "end": 23728.26, + "probability": 0.8525 + }, + { + "start": 23730.32, + "end": 23733.08, + "probability": 0.8234 + }, + { + "start": 23733.16, + "end": 23733.44, + "probability": 0.3025 + }, + { + "start": 23733.5, + "end": 23739.66, + "probability": 0.9888 + }, + { + "start": 23741.42, + "end": 23742.66, + "probability": 0.99 + }, + { + "start": 23743.26, + "end": 23746.66, + "probability": 0.9911 + }, + { + "start": 23746.66, + "end": 23751.4, + "probability": 0.9993 + }, + { + "start": 23752.7, + "end": 23758.68, + "probability": 0.9934 + }, + { + "start": 23759.96, + "end": 23760.88, + "probability": 0.9636 + }, + { + "start": 23761.42, + "end": 23762.66, + "probability": 0.9741 + }, + { + "start": 23763.7, + "end": 23764.94, + "probability": 0.8018 + }, + { + "start": 23765.68, + "end": 23771.7, + "probability": 0.9971 + }, + { + "start": 23772.12, + "end": 23772.84, + "probability": 0.6802 + }, + { + "start": 23773.92, + "end": 23775.82, + "probability": 0.9935 + }, + { + "start": 23776.34, + "end": 23782.0, + "probability": 0.9928 + }, + { + "start": 23782.78, + "end": 23783.44, + "probability": 0.7945 + }, + { + "start": 23784.66, + "end": 23785.54, + "probability": 0.7885 + }, + { + "start": 23786.42, + "end": 23791.46, + "probability": 0.9833 + }, + { + "start": 23792.18, + "end": 23795.2, + "probability": 0.9478 + }, + { + "start": 23796.76, + "end": 23798.08, + "probability": 0.8987 + }, + { + "start": 23801.78, + "end": 23806.84, + "probability": 0.986 + }, + { + "start": 23807.4, + "end": 23811.54, + "probability": 0.9748 + }, + { + "start": 23812.76, + "end": 23815.96, + "probability": 0.9852 + }, + { + "start": 23816.48, + "end": 23821.64, + "probability": 0.8308 + }, + { + "start": 23823.04, + "end": 23826.44, + "probability": 0.9934 + }, + { + "start": 23826.68, + "end": 23828.4, + "probability": 0.9908 + }, + { + "start": 23828.8, + "end": 23831.24, + "probability": 0.9756 + }, + { + "start": 23831.74, + "end": 23834.96, + "probability": 0.9883 + }, + { + "start": 23835.36, + "end": 23836.36, + "probability": 0.7854 + }, + { + "start": 23836.48, + "end": 23837.42, + "probability": 0.9302 + }, + { + "start": 23837.76, + "end": 23838.58, + "probability": 0.9054 + }, + { + "start": 23838.94, + "end": 23841.52, + "probability": 0.9351 + }, + { + "start": 23841.78, + "end": 23843.08, + "probability": 0.8164 + }, + { + "start": 23843.62, + "end": 23849.1, + "probability": 0.9718 + }, + { + "start": 23851.3, + "end": 23852.24, + "probability": 0.6958 + }, + { + "start": 23854.44, + "end": 23861.1, + "probability": 0.9893 + }, + { + "start": 23861.1, + "end": 23865.3, + "probability": 0.9987 + }, + { + "start": 23866.42, + "end": 23868.6, + "probability": 0.8247 + }, + { + "start": 23870.08, + "end": 23873.56, + "probability": 0.9847 + }, + { + "start": 23873.66, + "end": 23876.7, + "probability": 0.99 + }, + { + "start": 23877.28, + "end": 23882.34, + "probability": 0.9711 + }, + { + "start": 23882.88, + "end": 23887.04, + "probability": 0.9531 + }, + { + "start": 23887.62, + "end": 23889.08, + "probability": 0.9884 + }, + { + "start": 23889.28, + "end": 23890.2, + "probability": 0.7362 + }, + { + "start": 23890.52, + "end": 23891.18, + "probability": 0.8409 + }, + { + "start": 23891.68, + "end": 23894.3, + "probability": 0.9888 + }, + { + "start": 23895.2, + "end": 23897.56, + "probability": 0.7977 + }, + { + "start": 23897.9, + "end": 23900.32, + "probability": 0.9876 + }, + { + "start": 23900.48, + "end": 23901.34, + "probability": 0.995 + }, + { + "start": 23901.38, + "end": 23903.54, + "probability": 0.9952 + }, + { + "start": 23905.16, + "end": 23909.28, + "probability": 0.9845 + }, + { + "start": 23909.38, + "end": 23914.1, + "probability": 0.9609 + }, + { + "start": 23915.3, + "end": 23918.0, + "probability": 0.9985 + }, + { + "start": 23919.52, + "end": 23920.14, + "probability": 0.8713 + }, + { + "start": 23920.44, + "end": 23922.96, + "probability": 0.9976 + }, + { + "start": 23923.68, + "end": 23924.5, + "probability": 0.8541 + }, + { + "start": 23925.08, + "end": 23926.06, + "probability": 0.8669 + }, + { + "start": 23927.52, + "end": 23930.54, + "probability": 0.8076 + }, + { + "start": 23931.26, + "end": 23937.66, + "probability": 0.9814 + }, + { + "start": 23937.88, + "end": 23938.9, + "probability": 0.9029 + }, + { + "start": 23939.3, + "end": 23940.02, + "probability": 0.8245 + }, + { + "start": 23940.3, + "end": 23943.6, + "probability": 0.9849 + }, + { + "start": 23945.68, + "end": 23948.28, + "probability": 0.798 + }, + { + "start": 23950.28, + "end": 23953.09, + "probability": 0.9607 + }, + { + "start": 23953.6, + "end": 23956.06, + "probability": 0.9946 + }, + { + "start": 23958.1, + "end": 23963.3, + "probability": 0.9965 + }, + { + "start": 23963.3, + "end": 23967.38, + "probability": 0.9985 + }, + { + "start": 23968.12, + "end": 23968.6, + "probability": 0.3189 + }, + { + "start": 23969.18, + "end": 23971.04, + "probability": 0.9722 + }, + { + "start": 23971.68, + "end": 23972.14, + "probability": 0.8912 + }, + { + "start": 23972.98, + "end": 23973.88, + "probability": 0.7613 + }, + { + "start": 23974.76, + "end": 23976.82, + "probability": 0.8507 + }, + { + "start": 23977.58, + "end": 23978.96, + "probability": 0.8356 + }, + { + "start": 23996.16, + "end": 23996.34, + "probability": 0.37 + }, + { + "start": 23996.9, + "end": 23998.88, + "probability": 0.657 + }, + { + "start": 23999.76, + "end": 24005.63, + "probability": 0.9956 + }, + { + "start": 24006.72, + "end": 24011.74, + "probability": 0.9924 + }, + { + "start": 24012.76, + "end": 24013.68, + "probability": 0.6523 + }, + { + "start": 24014.3, + "end": 24015.2, + "probability": 0.5398 + }, + { + "start": 24015.86, + "end": 24017.76, + "probability": 0.9459 + }, + { + "start": 24018.88, + "end": 24023.76, + "probability": 0.9708 + }, + { + "start": 24024.3, + "end": 24025.66, + "probability": 0.7307 + }, + { + "start": 24026.34, + "end": 24027.2, + "probability": 0.3609 + }, + { + "start": 24027.98, + "end": 24030.76, + "probability": 0.9741 + }, + { + "start": 24031.4, + "end": 24036.18, + "probability": 0.9824 + }, + { + "start": 24036.8, + "end": 24039.1, + "probability": 0.7361 + }, + { + "start": 24039.54, + "end": 24042.44, + "probability": 0.7009 + }, + { + "start": 24042.96, + "end": 24045.14, + "probability": 0.8571 + }, + { + "start": 24046.16, + "end": 24050.38, + "probability": 0.7503 + }, + { + "start": 24050.52, + "end": 24054.26, + "probability": 0.9961 + }, + { + "start": 24055.38, + "end": 24058.64, + "probability": 0.9893 + }, + { + "start": 24058.64, + "end": 24062.86, + "probability": 0.9948 + }, + { + "start": 24062.96, + "end": 24065.72, + "probability": 0.9567 + }, + { + "start": 24066.4, + "end": 24069.36, + "probability": 0.6847 + }, + { + "start": 24069.82, + "end": 24072.56, + "probability": 0.9603 + }, + { + "start": 24073.08, + "end": 24075.66, + "probability": 0.9946 + }, + { + "start": 24076.42, + "end": 24077.62, + "probability": 0.6546 + }, + { + "start": 24077.76, + "end": 24078.36, + "probability": 0.6632 + }, + { + "start": 24078.54, + "end": 24080.42, + "probability": 0.9733 + }, + { + "start": 24081.12, + "end": 24084.84, + "probability": 0.9944 + }, + { + "start": 24085.38, + "end": 24088.08, + "probability": 0.854 + }, + { + "start": 24088.64, + "end": 24092.52, + "probability": 0.9924 + }, + { + "start": 24092.52, + "end": 24096.76, + "probability": 0.9818 + }, + { + "start": 24097.84, + "end": 24102.74, + "probability": 0.8009 + }, + { + "start": 24103.24, + "end": 24104.96, + "probability": 0.6324 + }, + { + "start": 24105.22, + "end": 24110.14, + "probability": 0.9968 + }, + { + "start": 24110.74, + "end": 24111.86, + "probability": 0.749 + }, + { + "start": 24112.46, + "end": 24114.32, + "probability": 0.9853 + }, + { + "start": 24114.46, + "end": 24117.9, + "probability": 0.9854 + }, + { + "start": 24117.9, + "end": 24122.26, + "probability": 0.9792 + }, + { + "start": 24123.32, + "end": 24128.36, + "probability": 0.9047 + }, + { + "start": 24129.18, + "end": 24134.22, + "probability": 0.8767 + }, + { + "start": 24134.22, + "end": 24138.92, + "probability": 0.9965 + }, + { + "start": 24139.46, + "end": 24141.1, + "probability": 0.8697 + }, + { + "start": 24141.14, + "end": 24144.49, + "probability": 0.9266 + }, + { + "start": 24145.46, + "end": 24148.14, + "probability": 0.7677 + }, + { + "start": 24148.98, + "end": 24152.58, + "probability": 0.9871 + }, + { + "start": 24153.22, + "end": 24159.76, + "probability": 0.9872 + }, + { + "start": 24160.2, + "end": 24161.84, + "probability": 0.771 + }, + { + "start": 24162.38, + "end": 24163.52, + "probability": 0.6353 + }, + { + "start": 24164.72, + "end": 24166.04, + "probability": 0.4873 + }, + { + "start": 24166.34, + "end": 24167.04, + "probability": 0.27 + }, + { + "start": 24167.12, + "end": 24167.4, + "probability": 0.8122 + }, + { + "start": 24167.54, + "end": 24169.72, + "probability": 0.9854 + }, + { + "start": 24170.22, + "end": 24171.94, + "probability": 0.7889 + }, + { + "start": 24172.24, + "end": 24174.42, + "probability": 0.7754 + }, + { + "start": 24175.58, + "end": 24178.62, + "probability": 0.9585 + }, + { + "start": 24178.62, + "end": 24181.86, + "probability": 0.9839 + }, + { + "start": 24182.38, + "end": 24184.44, + "probability": 0.6745 + }, + { + "start": 24185.02, + "end": 24185.4, + "probability": 0.507 + }, + { + "start": 24185.54, + "end": 24186.54, + "probability": 0.9671 + }, + { + "start": 24186.98, + "end": 24191.8, + "probability": 0.8888 + }, + { + "start": 24192.18, + "end": 24194.32, + "probability": 0.9639 + }, + { + "start": 24195.28, + "end": 24198.5, + "probability": 0.9388 + }, + { + "start": 24199.16, + "end": 24205.56, + "probability": 0.9672 + }, + { + "start": 24206.04, + "end": 24206.96, + "probability": 0.7737 + }, + { + "start": 24207.5, + "end": 24211.96, + "probability": 0.9868 + }, + { + "start": 24212.44, + "end": 24216.82, + "probability": 0.9102 + }, + { + "start": 24217.62, + "end": 24219.16, + "probability": 0.7778 + }, + { + "start": 24219.96, + "end": 24224.98, + "probability": 0.9636 + }, + { + "start": 24225.02, + "end": 24231.58, + "probability": 0.9818 + }, + { + "start": 24231.58, + "end": 24233.46, + "probability": 0.6206 + }, + { + "start": 24233.56, + "end": 24233.86, + "probability": 0.5745 + }, + { + "start": 24234.82, + "end": 24236.14, + "probability": 0.6463 + }, + { + "start": 24236.7, + "end": 24237.94, + "probability": 0.5263 + }, + { + "start": 24239.5, + "end": 24243.62, + "probability": 0.7082 + }, + { + "start": 24245.7, + "end": 24249.6, + "probability": 0.207 + }, + { + "start": 24250.24, + "end": 24251.68, + "probability": 0.0103 + }, + { + "start": 24256.9, + "end": 24257.16, + "probability": 0.4329 + }, + { + "start": 24272.26, + "end": 24279.14, + "probability": 0.9927 + }, + { + "start": 24281.56, + "end": 24282.5, + "probability": 0.7227 + }, + { + "start": 24283.02, + "end": 24285.1, + "probability": 0.5022 + }, + { + "start": 24285.36, + "end": 24292.41, + "probability": 0.9633 + }, + { + "start": 24293.72, + "end": 24294.78, + "probability": 0.7511 + }, + { + "start": 24296.64, + "end": 24304.26, + "probability": 0.9389 + }, + { + "start": 24307.74, + "end": 24310.62, + "probability": 0.6726 + }, + { + "start": 24312.52, + "end": 24313.9, + "probability": 0.9731 + }, + { + "start": 24315.98, + "end": 24317.86, + "probability": 0.8987 + }, + { + "start": 24319.88, + "end": 24321.12, + "probability": 0.657 + }, + { + "start": 24322.18, + "end": 24323.9, + "probability": 0.9814 + }, + { + "start": 24325.64, + "end": 24328.32, + "probability": 0.9348 + }, + { + "start": 24329.66, + "end": 24331.18, + "probability": 0.9954 + }, + { + "start": 24332.12, + "end": 24337.68, + "probability": 0.9883 + }, + { + "start": 24338.26, + "end": 24339.32, + "probability": 0.9609 + }, + { + "start": 24340.36, + "end": 24341.76, + "probability": 0.9823 + }, + { + "start": 24342.66, + "end": 24346.44, + "probability": 0.9929 + }, + { + "start": 24347.94, + "end": 24348.92, + "probability": 0.8135 + }, + { + "start": 24349.7, + "end": 24352.62, + "probability": 0.9846 + }, + { + "start": 24353.5, + "end": 24358.22, + "probability": 0.8874 + }, + { + "start": 24359.08, + "end": 24362.57, + "probability": 0.9247 + }, + { + "start": 24363.94, + "end": 24365.0, + "probability": 0.9814 + }, + { + "start": 24365.78, + "end": 24367.2, + "probability": 0.9928 + }, + { + "start": 24370.92, + "end": 24372.34, + "probability": 0.6709 + }, + { + "start": 24373.36, + "end": 24374.06, + "probability": 0.793 + }, + { + "start": 24374.78, + "end": 24375.76, + "probability": 0.9302 + }, + { + "start": 24376.32, + "end": 24377.0, + "probability": 0.9518 + }, + { + "start": 24378.38, + "end": 24380.46, + "probability": 0.7866 + }, + { + "start": 24383.12, + "end": 24384.34, + "probability": 0.7632 + }, + { + "start": 24385.1, + "end": 24386.5, + "probability": 0.8337 + }, + { + "start": 24388.02, + "end": 24392.26, + "probability": 0.8486 + }, + { + "start": 24392.9, + "end": 24396.98, + "probability": 0.8318 + }, + { + "start": 24398.54, + "end": 24403.72, + "probability": 0.7402 + }, + { + "start": 24405.3, + "end": 24409.44, + "probability": 0.9918 + }, + { + "start": 24410.12, + "end": 24414.68, + "probability": 0.9976 + }, + { + "start": 24415.26, + "end": 24419.18, + "probability": 0.8447 + }, + { + "start": 24422.26, + "end": 24424.66, + "probability": 0.8652 + }, + { + "start": 24425.26, + "end": 24426.68, + "probability": 0.8743 + }, + { + "start": 24427.56, + "end": 24429.84, + "probability": 0.9945 + }, + { + "start": 24430.58, + "end": 24432.38, + "probability": 0.8464 + }, + { + "start": 24433.94, + "end": 24434.86, + "probability": 0.9482 + }, + { + "start": 24435.44, + "end": 24436.46, + "probability": 0.8999 + }, + { + "start": 24438.26, + "end": 24439.12, + "probability": 0.8315 + }, + { + "start": 24440.32, + "end": 24442.56, + "probability": 0.7868 + }, + { + "start": 24443.3, + "end": 24446.36, + "probability": 0.9115 + }, + { + "start": 24448.02, + "end": 24448.72, + "probability": 0.9578 + }, + { + "start": 24449.76, + "end": 24450.54, + "probability": 0.7348 + }, + { + "start": 24451.42, + "end": 24453.3, + "probability": 0.9899 + }, + { + "start": 24455.3, + "end": 24456.1, + "probability": 0.9105 + }, + { + "start": 24456.64, + "end": 24457.66, + "probability": 0.868 + }, + { + "start": 24458.32, + "end": 24458.86, + "probability": 0.9436 + }, + { + "start": 24459.46, + "end": 24460.08, + "probability": 0.9788 + }, + { + "start": 24460.82, + "end": 24461.98, + "probability": 0.9498 + }, + { + "start": 24463.9, + "end": 24465.31, + "probability": 0.9712 + }, + { + "start": 24466.0, + "end": 24467.16, + "probability": 0.6444 + }, + { + "start": 24467.76, + "end": 24468.92, + "probability": 0.5978 + }, + { + "start": 24469.42, + "end": 24472.8, + "probability": 0.965 + }, + { + "start": 24473.72, + "end": 24474.92, + "probability": 0.9649 + }, + { + "start": 24478.26, + "end": 24479.4, + "probability": 0.3937 + }, + { + "start": 24480.94, + "end": 24481.92, + "probability": 0.4549 + }, + { + "start": 24484.4, + "end": 24485.18, + "probability": 0.9664 + }, + { + "start": 24486.5, + "end": 24488.1, + "probability": 0.7788 + }, + { + "start": 24488.9, + "end": 24489.72, + "probability": 0.8623 + }, + { + "start": 24490.3, + "end": 24497.2, + "probability": 0.9941 + }, + { + "start": 24498.44, + "end": 24499.04, + "probability": 0.9335 + }, + { + "start": 24499.54, + "end": 24500.72, + "probability": 0.6773 + }, + { + "start": 24501.52, + "end": 24501.92, + "probability": 0.4002 + }, + { + "start": 24502.08, + "end": 24502.96, + "probability": 0.9194 + }, + { + "start": 24504.04, + "end": 24504.88, + "probability": 0.3846 + }, + { + "start": 24505.78, + "end": 24507.82, + "probability": 0.8911 + }, + { + "start": 24508.72, + "end": 24511.32, + "probability": 0.9243 + }, + { + "start": 24512.12, + "end": 24513.9, + "probability": 0.9715 + }, + { + "start": 24514.16, + "end": 24518.65, + "probability": 0.9775 + }, + { + "start": 24520.24, + "end": 24521.76, + "probability": 0.7399 + }, + { + "start": 24524.16, + "end": 24528.9, + "probability": 0.9795 + }, + { + "start": 24529.76, + "end": 24536.62, + "probability": 0.9655 + }, + { + "start": 24537.26, + "end": 24538.98, + "probability": 0.8289 + }, + { + "start": 24539.54, + "end": 24541.08, + "probability": 0.9822 + }, + { + "start": 24543.72, + "end": 24545.12, + "probability": 0.9917 + }, + { + "start": 24545.54, + "end": 24548.52, + "probability": 0.9956 + }, + { + "start": 24550.38, + "end": 24551.42, + "probability": 0.7581 + }, + { + "start": 24552.9, + "end": 24555.62, + "probability": 0.8314 + }, + { + "start": 24556.58, + "end": 24558.54, + "probability": 0.4715 + }, + { + "start": 24558.94, + "end": 24561.28, + "probability": 0.9491 + }, + { + "start": 24561.48, + "end": 24562.2, + "probability": 0.4523 + }, + { + "start": 24563.38, + "end": 24564.94, + "probability": 0.9464 + }, + { + "start": 24565.54, + "end": 24568.56, + "probability": 0.922 + }, + { + "start": 24568.74, + "end": 24570.2, + "probability": 0.7351 + }, + { + "start": 24570.88, + "end": 24571.87, + "probability": 0.858 + }, + { + "start": 24572.24, + "end": 24574.8, + "probability": 0.9105 + }, + { + "start": 24574.9, + "end": 24575.52, + "probability": 0.3216 + }, + { + "start": 24576.98, + "end": 24578.74, + "probability": 0.6161 + }, + { + "start": 24579.96, + "end": 24582.1, + "probability": 0.7907 + }, + { + "start": 24584.64, + "end": 24590.58, + "probability": 0.736 + }, + { + "start": 24592.18, + "end": 24596.28, + "probability": 0.9618 + }, + { + "start": 24597.02, + "end": 24601.88, + "probability": 0.9085 + }, + { + "start": 24603.2, + "end": 24605.14, + "probability": 0.9698 + }, + { + "start": 24605.54, + "end": 24606.73, + "probability": 0.6622 + }, + { + "start": 24607.38, + "end": 24608.88, + "probability": 0.7563 + }, + { + "start": 24610.08, + "end": 24614.54, + "probability": 0.8729 + }, + { + "start": 24616.44, + "end": 24617.14, + "probability": 0.7549 + }, + { + "start": 24617.72, + "end": 24618.9, + "probability": 0.9966 + }, + { + "start": 24621.02, + "end": 24621.06, + "probability": 0.2534 + }, + { + "start": 24623.36, + "end": 24624.62, + "probability": 0.9194 + }, + { + "start": 24625.9, + "end": 24627.44, + "probability": 0.9709 + }, + { + "start": 24629.18, + "end": 24630.04, + "probability": 0.9663 + }, + { + "start": 24631.34, + "end": 24632.8, + "probability": 0.9347 + }, + { + "start": 24637.8, + "end": 24638.24, + "probability": 0.9269 + }, + { + "start": 24639.42, + "end": 24640.16, + "probability": 0.7677 + }, + { + "start": 24641.16, + "end": 24641.68, + "probability": 0.9663 + }, + { + "start": 24643.76, + "end": 24643.98, + "probability": 0.5611 + }, + { + "start": 24646.58, + "end": 24647.42, + "probability": 0.9912 + }, + { + "start": 24648.64, + "end": 24649.44, + "probability": 0.8887 + }, + { + "start": 24650.6, + "end": 24652.08, + "probability": 0.9836 + }, + { + "start": 24653.24, + "end": 24655.44, + "probability": 0.8852 + }, + { + "start": 24657.04, + "end": 24658.42, + "probability": 0.995 + }, + { + "start": 24660.56, + "end": 24663.78, + "probability": 0.4858 + }, + { + "start": 24664.32, + "end": 24665.76, + "probability": 0.6865 + }, + { + "start": 24666.68, + "end": 24667.06, + "probability": 0.3973 + }, + { + "start": 24668.14, + "end": 24674.02, + "probability": 0.9578 + }, + { + "start": 24674.72, + "end": 24677.46, + "probability": 0.9724 + }, + { + "start": 24678.08, + "end": 24681.86, + "probability": 0.9211 + }, + { + "start": 24681.96, + "end": 24684.82, + "probability": 0.2729 + }, + { + "start": 24686.86, + "end": 24686.86, + "probability": 0.0335 + }, + { + "start": 24689.24, + "end": 24692.14, + "probability": 0.9834 + }, + { + "start": 24692.78, + "end": 24699.64, + "probability": 0.6707 + }, + { + "start": 24700.16, + "end": 24704.28, + "probability": 0.8574 + }, + { + "start": 24704.88, + "end": 24707.86, + "probability": 0.9923 + }, + { + "start": 24708.52, + "end": 24709.34, + "probability": 0.7211 + }, + { + "start": 24710.48, + "end": 24712.76, + "probability": 0.9378 + }, + { + "start": 24713.48, + "end": 24719.02, + "probability": 0.9931 + }, + { + "start": 24719.9, + "end": 24722.28, + "probability": 0.8865 + }, + { + "start": 24723.32, + "end": 24726.56, + "probability": 0.9307 + }, + { + "start": 24726.56, + "end": 24729.9, + "probability": 0.9984 + }, + { + "start": 24730.08, + "end": 24730.82, + "probability": 0.8508 + }, + { + "start": 24731.36, + "end": 24731.62, + "probability": 0.0164 + }, + { + "start": 24731.62, + "end": 24731.62, + "probability": 0.1581 + }, + { + "start": 24731.62, + "end": 24733.3, + "probability": 0.9094 + }, + { + "start": 24733.86, + "end": 24734.46, + "probability": 0.4117 + }, + { + "start": 24735.2, + "end": 24735.86, + "probability": 0.5122 + }, + { + "start": 24736.34, + "end": 24736.44, + "probability": 0.8018 + }, + { + "start": 24736.44, + "end": 24739.41, + "probability": 0.9113 + }, + { + "start": 24739.98, + "end": 24744.18, + "probability": 0.893 + }, + { + "start": 24745.08, + "end": 24746.24, + "probability": 0.5754 + }, + { + "start": 24746.94, + "end": 24747.72, + "probability": 0.6383 + }, + { + "start": 24749.36, + "end": 24753.16, + "probability": 0.8799 + }, + { + "start": 24754.28, + "end": 24755.62, + "probability": 0.5962 + }, + { + "start": 24756.92, + "end": 24758.36, + "probability": 0.6106 + }, + { + "start": 24758.4, + "end": 24759.54, + "probability": 0.8818 + }, + { + "start": 24759.98, + "end": 24762.12, + "probability": 0.9567 + }, + { + "start": 24762.34, + "end": 24763.36, + "probability": 0.599 + }, + { + "start": 24764.02, + "end": 24764.92, + "probability": 0.9915 + }, + { + "start": 24766.24, + "end": 24769.5, + "probability": 0.9828 + }, + { + "start": 24770.1, + "end": 24771.38, + "probability": 0.9792 + }, + { + "start": 24771.84, + "end": 24773.08, + "probability": 0.9901 + }, + { + "start": 24773.38, + "end": 24774.56, + "probability": 0.9539 + }, + { + "start": 24774.84, + "end": 24777.26, + "probability": 0.9851 + }, + { + "start": 24777.88, + "end": 24778.8, + "probability": 0.4849 + }, + { + "start": 24779.42, + "end": 24782.5, + "probability": 0.9434 + }, + { + "start": 24783.04, + "end": 24784.54, + "probability": 0.7107 + }, + { + "start": 24785.1, + "end": 24786.44, + "probability": 0.8058 + }, + { + "start": 24787.04, + "end": 24787.88, + "probability": 0.1172 + }, + { + "start": 24787.9, + "end": 24790.56, + "probability": 0.9763 + }, + { + "start": 24791.08, + "end": 24793.86, + "probability": 0.8892 + }, + { + "start": 24794.18, + "end": 24795.26, + "probability": 0.8047 + }, + { + "start": 24795.72, + "end": 24797.2, + "probability": 0.8732 + }, + { + "start": 24797.98, + "end": 24803.5, + "probability": 0.9282 + }, + { + "start": 24803.66, + "end": 24804.78, + "probability": 0.664 + }, + { + "start": 24805.24, + "end": 24808.94, + "probability": 0.8888 + }, + { + "start": 24809.04, + "end": 24809.54, + "probability": 0.0907 + }, + { + "start": 24809.56, + "end": 24810.04, + "probability": 0.0152 + }, + { + "start": 24812.68, + "end": 24812.98, + "probability": 0.0979 + }, + { + "start": 24812.98, + "end": 24813.22, + "probability": 0.1433 + }, + { + "start": 24813.36, + "end": 24814.04, + "probability": 0.732 + }, + { + "start": 24814.2, + "end": 24816.32, + "probability": 0.9709 + }, + { + "start": 24816.42, + "end": 24817.54, + "probability": 0.7626 + }, + { + "start": 24818.02, + "end": 24822.18, + "probability": 0.8545 + }, + { + "start": 24822.5, + "end": 24827.12, + "probability": 0.9288 + }, + { + "start": 24827.12, + "end": 24831.24, + "probability": 0.9788 + }, + { + "start": 24831.34, + "end": 24833.24, + "probability": 0.9912 + }, + { + "start": 24833.62, + "end": 24836.56, + "probability": 0.9798 + }, + { + "start": 24837.0, + "end": 24841.44, + "probability": 0.9163 + }, + { + "start": 24841.56, + "end": 24843.42, + "probability": 0.1757 + }, + { + "start": 24844.06, + "end": 24844.28, + "probability": 0.3697 + }, + { + "start": 24844.28, + "end": 24844.28, + "probability": 0.083 + }, + { + "start": 24844.28, + "end": 24846.3, + "probability": 0.543 + }, + { + "start": 24846.66, + "end": 24850.88, + "probability": 0.7334 + }, + { + "start": 24851.26, + "end": 24851.98, + "probability": 0.7346 + }, + { + "start": 24853.38, + "end": 24854.86, + "probability": 0.2729 + }, + { + "start": 24858.42, + "end": 24860.6, + "probability": 0.8818 + }, + { + "start": 24861.46, + "end": 24861.62, + "probability": 0.0338 + }, + { + "start": 24862.63, + "end": 24865.14, + "probability": 0.5381 + }, + { + "start": 24865.14, + "end": 24865.68, + "probability": 0.1229 + }, + { + "start": 24866.48, + "end": 24868.48, + "probability": 0.0729 + }, + { + "start": 24874.66, + "end": 24875.72, + "probability": 0.4988 + }, + { + "start": 24876.4, + "end": 24877.1, + "probability": 0.7938 + }, + { + "start": 24880.94, + "end": 24882.98, + "probability": 0.9834 + }, + { + "start": 24884.48, + "end": 24886.72, + "probability": 0.986 + }, + { + "start": 24888.2, + "end": 24891.74, + "probability": 0.99 + }, + { + "start": 24892.38, + "end": 24894.28, + "probability": 0.957 + }, + { + "start": 24895.02, + "end": 24895.62, + "probability": 0.6175 + }, + { + "start": 24895.74, + "end": 24896.04, + "probability": 0.8647 + }, + { + "start": 24897.28, + "end": 24898.48, + "probability": 0.9762 + }, + { + "start": 24899.1, + "end": 24900.8, + "probability": 0.9911 + }, + { + "start": 24901.52, + "end": 24906.66, + "probability": 0.9871 + }, + { + "start": 24907.98, + "end": 24909.96, + "probability": 0.6774 + }, + { + "start": 24911.48, + "end": 24912.77, + "probability": 0.9875 + }, + { + "start": 24913.12, + "end": 24913.98, + "probability": 0.6157 + }, + { + "start": 24915.2, + "end": 24922.12, + "probability": 0.9639 + }, + { + "start": 24923.02, + "end": 24924.82, + "probability": 0.844 + }, + { + "start": 24925.78, + "end": 24929.5, + "probability": 0.9615 + }, + { + "start": 24930.26, + "end": 24932.92, + "probability": 0.8049 + }, + { + "start": 24934.08, + "end": 24938.58, + "probability": 0.9515 + }, + { + "start": 24939.9, + "end": 24943.4, + "probability": 0.9844 + }, + { + "start": 24944.02, + "end": 24945.64, + "probability": 0.9207 + }, + { + "start": 24946.32, + "end": 24948.96, + "probability": 0.9854 + }, + { + "start": 24949.88, + "end": 24952.12, + "probability": 0.9667 + }, + { + "start": 24952.96, + "end": 24957.8, + "probability": 0.727 + }, + { + "start": 24958.74, + "end": 24962.74, + "probability": 0.9669 + }, + { + "start": 24964.26, + "end": 24969.58, + "probability": 0.9944 + }, + { + "start": 24970.28, + "end": 24970.84, + "probability": 0.8716 + }, + { + "start": 24971.34, + "end": 24972.4, + "probability": 0.9838 + }, + { + "start": 24973.34, + "end": 24975.1, + "probability": 0.9771 + }, + { + "start": 24975.92, + "end": 24977.4, + "probability": 0.9594 + }, + { + "start": 24977.78, + "end": 24980.76, + "probability": 0.9813 + }, + { + "start": 24981.26, + "end": 24983.64, + "probability": 0.5397 + }, + { + "start": 24983.76, + "end": 24985.22, + "probability": 0.3901 + }, + { + "start": 24986.28, + "end": 24988.44, + "probability": 0.7094 + }, + { + "start": 24989.04, + "end": 24995.78, + "probability": 0.9946 + }, + { + "start": 24996.46, + "end": 24998.92, + "probability": 0.6099 + }, + { + "start": 24999.32, + "end": 25002.76, + "probability": 0.8665 + }, + { + "start": 25002.88, + "end": 25003.72, + "probability": 0.6009 + }, + { + "start": 25004.52, + "end": 25006.06, + "probability": 0.8025 + }, + { + "start": 25006.44, + "end": 25008.5, + "probability": 0.9904 + }, + { + "start": 25008.98, + "end": 25009.84, + "probability": 0.7641 + }, + { + "start": 25010.16, + "end": 25012.48, + "probability": 0.9035 + }, + { + "start": 25013.14, + "end": 25014.86, + "probability": 0.8753 + }, + { + "start": 25015.44, + "end": 25017.48, + "probability": 0.9184 + }, + { + "start": 25018.14, + "end": 25020.28, + "probability": 0.7658 + }, + { + "start": 25020.36, + "end": 25022.82, + "probability": 0.8747 + }, + { + "start": 25023.08, + "end": 25023.36, + "probability": 0.8747 + }, + { + "start": 25023.5, + "end": 25024.92, + "probability": 0.73 + }, + { + "start": 25025.3, + "end": 25029.42, + "probability": 0.8028 + }, + { + "start": 25029.76, + "end": 25031.8, + "probability": 0.7639 + }, + { + "start": 25031.92, + "end": 25034.64, + "probability": 0.9487 + }, + { + "start": 25034.64, + "end": 25035.99, + "probability": 0.3679 + }, + { + "start": 25038.0, + "end": 25042.78, + "probability": 0.9026 + }, + { + "start": 25043.56, + "end": 25044.76, + "probability": 0.143 + }, + { + "start": 25045.08, + "end": 25045.66, + "probability": 0.2967 + }, + { + "start": 25048.7, + "end": 25050.9, + "probability": 0.9818 + }, + { + "start": 25051.58, + "end": 25055.84, + "probability": 0.9565 + }, + { + "start": 25055.84, + "end": 25058.56, + "probability": 0.9895 + }, + { + "start": 25059.02, + "end": 25065.32, + "probability": 0.9878 + }, + { + "start": 25065.4, + "end": 25067.06, + "probability": 0.9608 + }, + { + "start": 25067.8, + "end": 25069.9, + "probability": 0.9595 + }, + { + "start": 25070.8, + "end": 25072.8, + "probability": 0.9298 + }, + { + "start": 25073.32, + "end": 25074.04, + "probability": 0.7478 + }, + { + "start": 25074.3, + "end": 25079.68, + "probability": 0.9642 + }, + { + "start": 25080.38, + "end": 25083.16, + "probability": 0.9889 + }, + { + "start": 25083.72, + "end": 25086.32, + "probability": 0.6604 + }, + { + "start": 25088.2, + "end": 25088.88, + "probability": 0.6748 + }, + { + "start": 25089.14, + "end": 25091.48, + "probability": 0.863 + }, + { + "start": 25091.6, + "end": 25094.34, + "probability": 0.7338 + }, + { + "start": 25095.14, + "end": 25097.84, + "probability": 0.646 + }, + { + "start": 25098.64, + "end": 25102.82, + "probability": 0.9912 + }, + { + "start": 25103.18, + "end": 25104.12, + "probability": 0.2921 + }, + { + "start": 25104.7, + "end": 25104.8, + "probability": 0.562 + }, + { + "start": 25105.46, + "end": 25107.0, + "probability": 0.9239 + }, + { + "start": 25107.56, + "end": 25108.72, + "probability": 0.5854 + }, + { + "start": 25109.1, + "end": 25109.64, + "probability": 0.8589 + }, + { + "start": 25110.12, + "end": 25111.1, + "probability": 0.9954 + }, + { + "start": 25111.9, + "end": 25112.83, + "probability": 0.9667 + }, + { + "start": 25113.42, + "end": 25116.26, + "probability": 0.9114 + }, + { + "start": 25117.06, + "end": 25118.74, + "probability": 0.5483 + }, + { + "start": 25119.32, + "end": 25123.48, + "probability": 0.9876 + }, + { + "start": 25124.0, + "end": 25126.46, + "probability": 0.9146 + }, + { + "start": 25126.88, + "end": 25128.0, + "probability": 0.916 + }, + { + "start": 25128.44, + "end": 25129.38, + "probability": 0.9688 + }, + { + "start": 25129.5, + "end": 25130.62, + "probability": 0.9084 + }, + { + "start": 25131.06, + "end": 25134.8, + "probability": 0.9575 + }, + { + "start": 25135.18, + "end": 25136.2, + "probability": 0.8516 + }, + { + "start": 25136.68, + "end": 25137.26, + "probability": 0.8438 + }, + { + "start": 25138.1, + "end": 25138.72, + "probability": 0.6639 + }, + { + "start": 25139.58, + "end": 25141.06, + "probability": 0.6902 + }, + { + "start": 25141.44, + "end": 25142.62, + "probability": 0.6477 + }, + { + "start": 25142.68, + "end": 25143.7, + "probability": 0.7691 + }, + { + "start": 25143.92, + "end": 25147.7, + "probability": 0.7231 + }, + { + "start": 25149.38, + "end": 25150.9, + "probability": 0.9041 + }, + { + "start": 25151.72, + "end": 25156.64, + "probability": 0.9746 + }, + { + "start": 25157.6, + "end": 25158.3, + "probability": 0.0001 + }, + { + "start": 25159.24, + "end": 25160.85, + "probability": 0.6367 + }, + { + "start": 25162.76, + "end": 25165.94, + "probability": 0.6712 + }, + { + "start": 25166.68, + "end": 25171.34, + "probability": 0.7109 + }, + { + "start": 25172.38, + "end": 25172.56, + "probability": 0.0002 + }, + { + "start": 25176.49, + "end": 25179.4, + "probability": 0.9963 + }, + { + "start": 25179.56, + "end": 25181.72, + "probability": 0.6916 + }, + { + "start": 25182.58, + "end": 25184.78, + "probability": 0.5789 + }, + { + "start": 25185.18, + "end": 25188.1, + "probability": 0.9295 + }, + { + "start": 25189.62, + "end": 25191.64, + "probability": 0.987 + }, + { + "start": 25192.24, + "end": 25194.48, + "probability": 0.9832 + }, + { + "start": 25195.34, + "end": 25196.48, + "probability": 0.7394 + }, + { + "start": 25197.1, + "end": 25199.2, + "probability": 0.915 + }, + { + "start": 25201.18, + "end": 25206.48, + "probability": 0.8549 + }, + { + "start": 25206.82, + "end": 25207.92, + "probability": 0.921 + }, + { + "start": 25208.48, + "end": 25208.72, + "probability": 0.7583 + }, + { + "start": 25208.82, + "end": 25209.38, + "probability": 0.6838 + }, + { + "start": 25211.48, + "end": 25212.18, + "probability": 0.8094 + }, + { + "start": 25215.38, + "end": 25216.06, + "probability": 0.1823 + }, + { + "start": 25216.8, + "end": 25218.08, + "probability": 0.5512 + }, + { + "start": 25233.02, + "end": 25233.38, + "probability": 0.5469 + }, + { + "start": 25236.4, + "end": 25236.4, + "probability": 0.3746 + }, + { + "start": 25236.92, + "end": 25239.72, + "probability": 0.723 + }, + { + "start": 25240.48, + "end": 25241.22, + "probability": 0.6185 + }, + { + "start": 25241.32, + "end": 25242.74, + "probability": 0.7207 + }, + { + "start": 25242.78, + "end": 25246.2, + "probability": 0.9819 + }, + { + "start": 25246.6, + "end": 25251.32, + "probability": 0.7717 + }, + { + "start": 25252.16, + "end": 25253.3, + "probability": 0.9802 + }, + { + "start": 25254.12, + "end": 25254.68, + "probability": 0.5587 + }, + { + "start": 25256.0, + "end": 25256.76, + "probability": 0.706 + }, + { + "start": 25257.84, + "end": 25259.0, + "probability": 0.7997 + }, + { + "start": 25259.5, + "end": 25267.5, + "probability": 0.98 + }, + { + "start": 25268.04, + "end": 25269.52, + "probability": 0.9492 + }, + { + "start": 25270.72, + "end": 25271.52, + "probability": 0.6199 + }, + { + "start": 25271.8, + "end": 25272.53, + "probability": 0.661 + }, + { + "start": 25272.7, + "end": 25274.24, + "probability": 0.9375 + }, + { + "start": 25274.94, + "end": 25278.48, + "probability": 0.6676 + }, + { + "start": 25278.6, + "end": 25280.62, + "probability": 0.6122 + }, + { + "start": 25280.96, + "end": 25281.4, + "probability": 0.7923 + }, + { + "start": 25282.22, + "end": 25283.42, + "probability": 0.8945 + }, + { + "start": 25283.88, + "end": 25286.9, + "probability": 0.9849 + }, + { + "start": 25287.66, + "end": 25291.5, + "probability": 0.9521 + }, + { + "start": 25291.86, + "end": 25292.5, + "probability": 0.8838 + }, + { + "start": 25292.54, + "end": 25294.02, + "probability": 0.9284 + }, + { + "start": 25294.4, + "end": 25295.28, + "probability": 0.9137 + }, + { + "start": 25295.44, + "end": 25296.06, + "probability": 0.9088 + }, + { + "start": 25296.46, + "end": 25296.88, + "probability": 0.7124 + }, + { + "start": 25298.38, + "end": 25299.0, + "probability": 0.8365 + }, + { + "start": 25299.84, + "end": 25301.44, + "probability": 0.998 + }, + { + "start": 25302.36, + "end": 25306.2, + "probability": 0.8925 + }, + { + "start": 25306.74, + "end": 25309.28, + "probability": 0.9152 + }, + { + "start": 25309.96, + "end": 25310.76, + "probability": 0.4633 + }, + { + "start": 25311.36, + "end": 25312.0, + "probability": 0.812 + }, + { + "start": 25312.18, + "end": 25313.12, + "probability": 0.6828 + }, + { + "start": 25313.52, + "end": 25316.26, + "probability": 0.4867 + }, + { + "start": 25317.24, + "end": 25320.88, + "probability": 0.9441 + }, + { + "start": 25321.48, + "end": 25323.42, + "probability": 0.9595 + }, + { + "start": 25324.7, + "end": 25327.18, + "probability": 0.6636 + }, + { + "start": 25327.84, + "end": 25329.22, + "probability": 0.9727 + }, + { + "start": 25329.98, + "end": 25332.3, + "probability": 0.9527 + }, + { + "start": 25333.06, + "end": 25334.62, + "probability": 0.6777 + }, + { + "start": 25335.14, + "end": 25335.86, + "probability": 0.8361 + }, + { + "start": 25336.94, + "end": 25337.52, + "probability": 0.6923 + }, + { + "start": 25338.28, + "end": 25339.02, + "probability": 0.4823 + }, + { + "start": 25340.44, + "end": 25342.56, + "probability": 0.8135 + }, + { + "start": 25344.98, + "end": 25347.7, + "probability": 0.8291 + }, + { + "start": 25348.56, + "end": 25350.4, + "probability": 0.634 + }, + { + "start": 25352.1, + "end": 25354.88, + "probability": 0.7663 + }, + { + "start": 25356.04, + "end": 25359.48, + "probability": 0.6692 + }, + { + "start": 25359.64, + "end": 25363.86, + "probability": 0.9201 + }, + { + "start": 25364.66, + "end": 25366.08, + "probability": 0.8026 + }, + { + "start": 25366.66, + "end": 25369.24, + "probability": 0.8648 + }, + { + "start": 25369.84, + "end": 25372.22, + "probability": 0.9485 + }, + { + "start": 25372.76, + "end": 25374.48, + "probability": 0.8038 + }, + { + "start": 25375.02, + "end": 25379.1, + "probability": 0.9308 + }, + { + "start": 25380.02, + "end": 25383.44, + "probability": 0.8622 + }, + { + "start": 25383.52, + "end": 25384.0, + "probability": 0.7114 + }, + { + "start": 25385.64, + "end": 25390.46, + "probability": 0.8871 + }, + { + "start": 25391.34, + "end": 25392.36, + "probability": 0.6904 + }, + { + "start": 25393.48, + "end": 25399.08, + "probability": 0.8938 + }, + { + "start": 25400.3, + "end": 25404.04, + "probability": 0.9622 + }, + { + "start": 25405.36, + "end": 25408.88, + "probability": 0.5994 + }, + { + "start": 25409.48, + "end": 25413.6, + "probability": 0.9146 + }, + { + "start": 25414.76, + "end": 25415.58, + "probability": 0.775 + }, + { + "start": 25415.82, + "end": 25417.57, + "probability": 0.8415 + }, + { + "start": 25418.1, + "end": 25419.48, + "probability": 0.9764 + }, + { + "start": 25419.72, + "end": 25420.42, + "probability": 0.7837 + }, + { + "start": 25421.06, + "end": 25422.08, + "probability": 0.992 + }, + { + "start": 25422.98, + "end": 25423.6, + "probability": 0.5198 + }, + { + "start": 25423.62, + "end": 25426.88, + "probability": 0.8233 + }, + { + "start": 25428.06, + "end": 25432.7, + "probability": 0.8943 + }, + { + "start": 25433.26, + "end": 25436.42, + "probability": 0.9949 + }, + { + "start": 25437.16, + "end": 25438.44, + "probability": 0.9506 + }, + { + "start": 25439.54, + "end": 25444.76, + "probability": 0.7671 + }, + { + "start": 25445.56, + "end": 25447.34, + "probability": 0.7356 + }, + { + "start": 25448.76, + "end": 25452.14, + "probability": 0.8786 + }, + { + "start": 25453.0, + "end": 25456.86, + "probability": 0.9665 + }, + { + "start": 25457.92, + "end": 25460.34, + "probability": 0.9821 + }, + { + "start": 25460.44, + "end": 25461.28, + "probability": 0.4592 + }, + { + "start": 25461.72, + "end": 25462.4, + "probability": 0.9285 + }, + { + "start": 25463.04, + "end": 25463.64, + "probability": 0.55 + }, + { + "start": 25464.76, + "end": 25466.2, + "probability": 0.3531 + }, + { + "start": 25467.12, + "end": 25469.72, + "probability": 0.7205 + }, + { + "start": 25470.62, + "end": 25474.82, + "probability": 0.9688 + }, + { + "start": 25475.28, + "end": 25477.22, + "probability": 0.8643 + }, + { + "start": 25478.06, + "end": 25479.12, + "probability": 0.9189 + }, + { + "start": 25479.84, + "end": 25480.18, + "probability": 0.9442 + }, + { + "start": 25481.24, + "end": 25482.26, + "probability": 0.7248 + }, + { + "start": 25482.8, + "end": 25485.26, + "probability": 0.83 + }, + { + "start": 25485.98, + "end": 25486.75, + "probability": 0.8804 + }, + { + "start": 25488.32, + "end": 25489.2, + "probability": 0.8836 + }, + { + "start": 25489.44, + "end": 25491.24, + "probability": 0.1184 + }, + { + "start": 25491.68, + "end": 25493.46, + "probability": 0.6738 + }, + { + "start": 25494.0, + "end": 25496.94, + "probability": 0.8582 + }, + { + "start": 25497.62, + "end": 25498.68, + "probability": 0.9775 + }, + { + "start": 25499.42, + "end": 25500.24, + "probability": 0.9591 + }, + { + "start": 25500.74, + "end": 25502.5, + "probability": 0.7255 + }, + { + "start": 25503.3, + "end": 25504.48, + "probability": 0.8496 + }, + { + "start": 25505.12, + "end": 25505.8, + "probability": 0.8479 + }, + { + "start": 25505.94, + "end": 25510.82, + "probability": 0.9712 + }, + { + "start": 25511.96, + "end": 25513.06, + "probability": 0.9351 + }, + { + "start": 25513.54, + "end": 25514.92, + "probability": 0.5173 + }, + { + "start": 25515.52, + "end": 25517.28, + "probability": 0.8101 + }, + { + "start": 25517.7, + "end": 25521.85, + "probability": 0.8537 + }, + { + "start": 25522.26, + "end": 25522.8, + "probability": 0.9484 + }, + { + "start": 25523.52, + "end": 25524.32, + "probability": 0.7608 + }, + { + "start": 25525.04, + "end": 25526.12, + "probability": 0.9385 + }, + { + "start": 25526.92, + "end": 25530.64, + "probability": 0.6305 + }, + { + "start": 25531.4, + "end": 25535.34, + "probability": 0.9637 + }, + { + "start": 25535.38, + "end": 25536.78, + "probability": 0.6147 + }, + { + "start": 25537.02, + "end": 25538.52, + "probability": 0.8831 + }, + { + "start": 25538.84, + "end": 25541.38, + "probability": 0.9659 + }, + { + "start": 25541.72, + "end": 25542.8, + "probability": 0.8641 + }, + { + "start": 25543.8, + "end": 25545.94, + "probability": 0.8901 + }, + { + "start": 25546.24, + "end": 25547.42, + "probability": 0.2549 + }, + { + "start": 25547.72, + "end": 25547.86, + "probability": 0.5052 + }, + { + "start": 25548.3, + "end": 25550.27, + "probability": 0.4883 + }, + { + "start": 25553.4, + "end": 25553.96, + "probability": 0.5878 + }, + { + "start": 25554.26, + "end": 25556.36, + "probability": 0.8848 + }, + { + "start": 25564.54, + "end": 25568.08, + "probability": 0.538 + }, + { + "start": 25569.78, + "end": 25572.04, + "probability": 0.573 + }, + { + "start": 25574.08, + "end": 25577.22, + "probability": 0.99 + }, + { + "start": 25579.14, + "end": 25579.52, + "probability": 0.988 + }, + { + "start": 25580.92, + "end": 25583.06, + "probability": 0.9897 + }, + { + "start": 25585.22, + "end": 25586.92, + "probability": 0.7739 + }, + { + "start": 25587.66, + "end": 25590.06, + "probability": 0.873 + }, + { + "start": 25592.02, + "end": 25593.58, + "probability": 0.8837 + }, + { + "start": 25595.18, + "end": 25595.87, + "probability": 0.9321 + }, + { + "start": 25597.78, + "end": 25601.16, + "probability": 0.9817 + }, + { + "start": 25601.62, + "end": 25603.06, + "probability": 0.6877 + }, + { + "start": 25603.82, + "end": 25604.84, + "probability": 0.8823 + }, + { + "start": 25606.04, + "end": 25607.34, + "probability": 0.9275 + }, + { + "start": 25607.54, + "end": 25608.56, + "probability": 0.2826 + }, + { + "start": 25608.56, + "end": 25609.7, + "probability": 0.7602 + }, + { + "start": 25609.88, + "end": 25611.52, + "probability": 0.872 + }, + { + "start": 25612.26, + "end": 25613.02, + "probability": 0.7402 + }, + { + "start": 25614.14, + "end": 25614.62, + "probability": 0.9268 + }, + { + "start": 25617.22, + "end": 25617.81, + "probability": 0.9053 + }, + { + "start": 25619.6, + "end": 25621.76, + "probability": 0.9888 + }, + { + "start": 25622.7, + "end": 25624.28, + "probability": 0.5042 + }, + { + "start": 25629.54, + "end": 25632.8, + "probability": 0.7926 + }, + { + "start": 25634.72, + "end": 25638.1, + "probability": 0.9645 + }, + { + "start": 25638.9, + "end": 25642.04, + "probability": 0.847 + }, + { + "start": 25642.12, + "end": 25644.58, + "probability": 0.8416 + }, + { + "start": 25644.8, + "end": 25645.48, + "probability": 0.6635 + }, + { + "start": 25647.12, + "end": 25647.48, + "probability": 0.4519 + }, + { + "start": 25648.18, + "end": 25650.06, + "probability": 0.9966 + }, + { + "start": 25651.74, + "end": 25653.62, + "probability": 0.9987 + }, + { + "start": 25653.9, + "end": 25654.46, + "probability": 0.7823 + }, + { + "start": 25656.64, + "end": 25658.52, + "probability": 0.9802 + }, + { + "start": 25659.64, + "end": 25660.8, + "probability": 0.998 + }, + { + "start": 25662.0, + "end": 25663.38, + "probability": 0.9768 + }, + { + "start": 25664.24, + "end": 25666.08, + "probability": 0.9951 + }, + { + "start": 25667.22, + "end": 25668.62, + "probability": 0.9437 + }, + { + "start": 25669.34, + "end": 25670.16, + "probability": 0.8817 + }, + { + "start": 25671.32, + "end": 25671.82, + "probability": 0.2442 + }, + { + "start": 25675.88, + "end": 25677.87, + "probability": 0.1087 + }, + { + "start": 25679.94, + "end": 25681.12, + "probability": 0.6773 + }, + { + "start": 25682.88, + "end": 25684.54, + "probability": 0.9922 + }, + { + "start": 25687.0, + "end": 25687.64, + "probability": 0.7869 + }, + { + "start": 25688.6, + "end": 25696.64, + "probability": 0.9958 + }, + { + "start": 25699.26, + "end": 25701.1, + "probability": 0.9574 + }, + { + "start": 25703.16, + "end": 25705.92, + "probability": 0.9363 + }, + { + "start": 25706.94, + "end": 25708.56, + "probability": 0.999 + }, + { + "start": 25709.46, + "end": 25711.84, + "probability": 0.9991 + }, + { + "start": 25713.1, + "end": 25716.08, + "probability": 0.9864 + }, + { + "start": 25717.8, + "end": 25719.22, + "probability": 0.9993 + }, + { + "start": 25721.18, + "end": 25722.22, + "probability": 0.9971 + }, + { + "start": 25723.06, + "end": 25726.6, + "probability": 0.9989 + }, + { + "start": 25727.42, + "end": 25729.16, + "probability": 0.9779 + }, + { + "start": 25731.34, + "end": 25732.86, + "probability": 0.9517 + }, + { + "start": 25733.46, + "end": 25735.24, + "probability": 0.9834 + }, + { + "start": 25736.46, + "end": 25738.12, + "probability": 0.9967 + }, + { + "start": 25739.8, + "end": 25740.74, + "probability": 0.7665 + }, + { + "start": 25741.44, + "end": 25743.77, + "probability": 0.7543 + }, + { + "start": 25747.1, + "end": 25749.16, + "probability": 0.9067 + }, + { + "start": 25750.18, + "end": 25751.26, + "probability": 0.9051 + }, + { + "start": 25751.94, + "end": 25753.34, + "probability": 0.8831 + }, + { + "start": 25754.14, + "end": 25754.68, + "probability": 0.6997 + }, + { + "start": 25755.76, + "end": 25757.54, + "probability": 0.6263 + }, + { + "start": 25758.61, + "end": 25760.12, + "probability": 0.8677 + }, + { + "start": 25762.14, + "end": 25764.22, + "probability": 0.8455 + }, + { + "start": 25766.64, + "end": 25769.52, + "probability": 0.9806 + }, + { + "start": 25771.14, + "end": 25774.86, + "probability": 0.9868 + }, + { + "start": 25775.78, + "end": 25776.96, + "probability": 0.8497 + }, + { + "start": 25777.72, + "end": 25778.64, + "probability": 0.9517 + }, + { + "start": 25782.12, + "end": 25783.92, + "probability": 0.9616 + }, + { + "start": 25785.06, + "end": 25787.84, + "probability": 0.869 + }, + { + "start": 25789.72, + "end": 25796.32, + "probability": 0.9293 + }, + { + "start": 25798.14, + "end": 25800.44, + "probability": 0.696 + }, + { + "start": 25802.22, + "end": 25803.98, + "probability": 0.621 + }, + { + "start": 25804.7, + "end": 25805.92, + "probability": 0.6905 + }, + { + "start": 25806.68, + "end": 25807.78, + "probability": 0.9899 + }, + { + "start": 25808.58, + "end": 25809.42, + "probability": 0.7073 + }, + { + "start": 25809.54, + "end": 25809.92, + "probability": 0.8425 + }, + { + "start": 25809.92, + "end": 25811.5, + "probability": 0.89 + }, + { + "start": 25812.04, + "end": 25813.2, + "probability": 0.9137 + }, + { + "start": 25814.16, + "end": 25815.24, + "probability": 0.8919 + }, + { + "start": 25816.54, + "end": 25817.08, + "probability": 0.8736 + }, + { + "start": 25817.4, + "end": 25819.34, + "probability": 0.8669 + }, + { + "start": 25820.58, + "end": 25823.34, + "probability": 0.9307 + }, + { + "start": 25824.2, + "end": 25827.32, + "probability": 0.9793 + }, + { + "start": 25828.74, + "end": 25835.02, + "probability": 0.9531 + }, + { + "start": 25835.9, + "end": 25840.24, + "probability": 0.9905 + }, + { + "start": 25840.32, + "end": 25840.86, + "probability": 0.676 + }, + { + "start": 25842.42, + "end": 25844.22, + "probability": 0.9946 + }, + { + "start": 25844.84, + "end": 25847.34, + "probability": 0.999 + }, + { + "start": 25848.22, + "end": 25848.5, + "probability": 0.7542 + }, + { + "start": 25849.04, + "end": 25852.44, + "probability": 0.9922 + }, + { + "start": 25853.52, + "end": 25855.6, + "probability": 0.9636 + }, + { + "start": 25856.2, + "end": 25857.76, + "probability": 0.9985 + }, + { + "start": 25858.28, + "end": 25862.94, + "probability": 0.998 + }, + { + "start": 25863.98, + "end": 25865.62, + "probability": 0.9254 + }, + { + "start": 25868.04, + "end": 25869.84, + "probability": 0.9307 + }, + { + "start": 25870.5, + "end": 25872.36, + "probability": 0.9651 + }, + { + "start": 25872.38, + "end": 25872.72, + "probability": 0.3645 + }, + { + "start": 25872.8, + "end": 25873.48, + "probability": 0.4714 + }, + { + "start": 25875.72, + "end": 25877.1, + "probability": 0.9526 + }, + { + "start": 25878.08, + "end": 25879.4, + "probability": 0.8883 + }, + { + "start": 25880.84, + "end": 25885.1, + "probability": 0.9463 + }, + { + "start": 25885.78, + "end": 25887.74, + "probability": 0.9847 + }, + { + "start": 25888.88, + "end": 25896.88, + "probability": 0.9581 + }, + { + "start": 25897.4, + "end": 25900.18, + "probability": 0.9989 + }, + { + "start": 25900.76, + "end": 25902.76, + "probability": 0.8198 + }, + { + "start": 25903.16, + "end": 25906.66, + "probability": 0.9064 + }, + { + "start": 25907.26, + "end": 25908.62, + "probability": 0.8073 + }, + { + "start": 25908.66, + "end": 25911.8, + "probability": 0.9963 + }, + { + "start": 25912.36, + "end": 25918.54, + "probability": 0.9707 + }, + { + "start": 25919.06, + "end": 25922.44, + "probability": 0.9915 + }, + { + "start": 25922.9, + "end": 25923.12, + "probability": 0.7504 + }, + { + "start": 25923.6, + "end": 25923.84, + "probability": 0.8319 + }, + { + "start": 25924.58, + "end": 25925.68, + "probability": 0.646 + }, + { + "start": 25927.72, + "end": 25929.44, + "probability": 0.9128 + }, + { + "start": 25944.0, + "end": 25944.94, + "probability": 0.6553 + }, + { + "start": 25951.24, + "end": 25951.72, + "probability": 0.5752 + }, + { + "start": 25952.52, + "end": 25953.02, + "probability": 0.686 + }, + { + "start": 25953.24, + "end": 25954.16, + "probability": 0.7965 + }, + { + "start": 25956.65, + "end": 25960.8, + "probability": 0.9959 + }, + { + "start": 25961.74, + "end": 25964.36, + "probability": 0.8881 + }, + { + "start": 25966.06, + "end": 25968.66, + "probability": 0.9971 + }, + { + "start": 25969.86, + "end": 25970.46, + "probability": 0.473 + }, + { + "start": 25970.54, + "end": 25975.24, + "probability": 0.9888 + }, + { + "start": 25975.24, + "end": 25980.32, + "probability": 0.9924 + }, + { + "start": 25981.14, + "end": 25982.0, + "probability": 0.6226 + }, + { + "start": 25982.16, + "end": 25984.2, + "probability": 0.9056 + }, + { + "start": 25984.32, + "end": 25986.96, + "probability": 0.9435 + }, + { + "start": 25986.96, + "end": 25989.98, + "probability": 0.9936 + }, + { + "start": 25990.86, + "end": 25992.7, + "probability": 0.9744 + }, + { + "start": 25993.4, + "end": 25997.28, + "probability": 0.6392 + }, + { + "start": 25997.9, + "end": 26002.88, + "probability": 0.7887 + }, + { + "start": 26004.22, + "end": 26006.68, + "probability": 0.9917 + }, + { + "start": 26006.68, + "end": 26008.62, + "probability": 0.9988 + }, + { + "start": 26009.56, + "end": 26013.64, + "probability": 0.9751 + }, + { + "start": 26013.96, + "end": 26015.92, + "probability": 0.8326 + }, + { + "start": 26016.96, + "end": 26018.86, + "probability": 0.8555 + }, + { + "start": 26019.14, + "end": 26019.46, + "probability": 0.4673 + }, + { + "start": 26019.46, + "end": 26024.58, + "probability": 0.9624 + }, + { + "start": 26025.5, + "end": 26029.14, + "probability": 0.971 + }, + { + "start": 26030.66, + "end": 26034.24, + "probability": 0.9902 + }, + { + "start": 26034.24, + "end": 26038.42, + "probability": 0.9797 + }, + { + "start": 26039.52, + "end": 26046.18, + "probability": 0.9761 + }, + { + "start": 26046.18, + "end": 26049.88, + "probability": 0.9993 + }, + { + "start": 26050.42, + "end": 26052.4, + "probability": 0.9487 + }, + { + "start": 26052.56, + "end": 26054.26, + "probability": 0.9722 + }, + { + "start": 26054.7, + "end": 26056.56, + "probability": 0.9895 + }, + { + "start": 26056.66, + "end": 26059.12, + "probability": 0.9878 + }, + { + "start": 26060.56, + "end": 26062.92, + "probability": 0.9727 + }, + { + "start": 26062.92, + "end": 26065.32, + "probability": 0.8888 + }, + { + "start": 26065.94, + "end": 26068.36, + "probability": 0.6683 + }, + { + "start": 26068.92, + "end": 26069.94, + "probability": 0.6384 + }, + { + "start": 26071.63, + "end": 26076.44, + "probability": 0.9709 + }, + { + "start": 26077.06, + "end": 26078.48, + "probability": 0.9108 + }, + { + "start": 26078.94, + "end": 26079.29, + "probability": 0.8682 + }, + { + "start": 26079.94, + "end": 26084.37, + "probability": 0.9957 + }, + { + "start": 26085.9, + "end": 26086.98, + "probability": 0.9165 + }, + { + "start": 26087.46, + "end": 26088.56, + "probability": 0.844 + }, + { + "start": 26088.66, + "end": 26089.64, + "probability": 0.964 + }, + { + "start": 26089.74, + "end": 26090.38, + "probability": 0.943 + }, + { + "start": 26090.52, + "end": 26091.06, + "probability": 0.8519 + }, + { + "start": 26091.4, + "end": 26092.52, + "probability": 0.9572 + }, + { + "start": 26092.86, + "end": 26093.02, + "probability": 0.6819 + }, + { + "start": 26093.2, + "end": 26095.4, + "probability": 0.7965 + }, + { + "start": 26095.82, + "end": 26097.0, + "probability": 0.3672 + }, + { + "start": 26097.06, + "end": 26098.48, + "probability": 0.859 + }, + { + "start": 26099.14, + "end": 26100.48, + "probability": 0.9897 + }, + { + "start": 26101.28, + "end": 26102.86, + "probability": 0.946 + }, + { + "start": 26103.42, + "end": 26106.78, + "probability": 0.957 + }, + { + "start": 26106.9, + "end": 26107.74, + "probability": 0.9259 + }, + { + "start": 26110.28, + "end": 26111.84, + "probability": 0.9419 + }, + { + "start": 26112.7, + "end": 26113.88, + "probability": 0.7385 + }, + { + "start": 26114.56, + "end": 26117.68, + "probability": 0.9963 + }, + { + "start": 26117.76, + "end": 26118.22, + "probability": 0.3974 + }, + { + "start": 26119.1, + "end": 26122.73, + "probability": 0.9921 + }, + { + "start": 26123.96, + "end": 26124.84, + "probability": 0.9393 + }, + { + "start": 26124.98, + "end": 26125.62, + "probability": 0.8825 + }, + { + "start": 26125.74, + "end": 26126.34, + "probability": 0.8057 + }, + { + "start": 26126.98, + "end": 26131.3, + "probability": 0.9805 + }, + { + "start": 26131.44, + "end": 26134.14, + "probability": 0.9182 + }, + { + "start": 26134.6, + "end": 26136.05, + "probability": 0.9735 + }, + { + "start": 26136.82, + "end": 26138.32, + "probability": 0.9442 + }, + { + "start": 26138.44, + "end": 26141.86, + "probability": 0.772 + }, + { + "start": 26142.28, + "end": 26144.18, + "probability": 0.8294 + }, + { + "start": 26144.88, + "end": 26146.26, + "probability": 0.9912 + }, + { + "start": 26146.9, + "end": 26149.36, + "probability": 0.529 + }, + { + "start": 26149.82, + "end": 26152.16, + "probability": 0.7475 + }, + { + "start": 26152.58, + "end": 26153.3, + "probability": 0.9726 + }, + { + "start": 26153.42, + "end": 26154.0, + "probability": 0.7783 + }, + { + "start": 26154.48, + "end": 26157.7, + "probability": 0.9479 + }, + { + "start": 26157.84, + "end": 26159.54, + "probability": 0.9545 + }, + { + "start": 26160.32, + "end": 26165.26, + "probability": 0.9811 + }, + { + "start": 26166.18, + "end": 26168.76, + "probability": 0.9969 + }, + { + "start": 26168.76, + "end": 26172.1, + "probability": 0.9979 + }, + { + "start": 26173.12, + "end": 26178.0, + "probability": 0.895 + }, + { + "start": 26178.8, + "end": 26183.58, + "probability": 0.6972 + }, + { + "start": 26183.98, + "end": 26185.22, + "probability": 0.9382 + }, + { + "start": 26186.16, + "end": 26187.42, + "probability": 0.8089 + }, + { + "start": 26187.96, + "end": 26191.3, + "probability": 0.5309 + }, + { + "start": 26191.3, + "end": 26195.78, + "probability": 0.604 + }, + { + "start": 26196.52, + "end": 26197.9, + "probability": 0.7293 + }, + { + "start": 26198.88, + "end": 26202.42, + "probability": 0.9826 + }, + { + "start": 26202.42, + "end": 26206.38, + "probability": 0.9688 + }, + { + "start": 26206.86, + "end": 26209.21, + "probability": 0.9966 + }, + { + "start": 26211.18, + "end": 26214.62, + "probability": 0.9856 + }, + { + "start": 26214.62, + "end": 26218.3, + "probability": 0.8503 + }, + { + "start": 26218.56, + "end": 26219.44, + "probability": 0.9951 + }, + { + "start": 26219.82, + "end": 26221.4, + "probability": 0.9688 + }, + { + "start": 26221.72, + "end": 26224.68, + "probability": 0.9797 + }, + { + "start": 26224.78, + "end": 26227.26, + "probability": 0.9961 + }, + { + "start": 26227.7, + "end": 26231.22, + "probability": 0.9576 + }, + { + "start": 26231.46, + "end": 26232.14, + "probability": 0.7417 + }, + { + "start": 26232.28, + "end": 26234.88, + "probability": 0.9234 + }, + { + "start": 26235.28, + "end": 26238.84, + "probability": 0.9692 + }, + { + "start": 26239.82, + "end": 26241.3, + "probability": 0.5171 + }, + { + "start": 26241.6, + "end": 26244.06, + "probability": 0.7563 + }, + { + "start": 26244.2, + "end": 26245.6, + "probability": 0.9961 + }, + { + "start": 26246.02, + "end": 26247.7, + "probability": 0.9582 + }, + { + "start": 26248.84, + "end": 26250.08, + "probability": 0.8389 + }, + { + "start": 26250.32, + "end": 26253.46, + "probability": 0.9984 + }, + { + "start": 26253.46, + "end": 26256.96, + "probability": 0.9906 + }, + { + "start": 26257.22, + "end": 26257.88, + "probability": 0.4214 + }, + { + "start": 26257.94, + "end": 26258.52, + "probability": 0.4381 + }, + { + "start": 26258.74, + "end": 26263.22, + "probability": 0.9167 + }, + { + "start": 26263.74, + "end": 26264.26, + "probability": 0.6498 + }, + { + "start": 26264.42, + "end": 26265.64, + "probability": 0.7505 + }, + { + "start": 26265.94, + "end": 26268.78, + "probability": 0.9641 + }, + { + "start": 26269.32, + "end": 26270.6, + "probability": 0.1192 + }, + { + "start": 26271.4, + "end": 26272.82, + "probability": 0.0871 + }, + { + "start": 26273.34, + "end": 26274.8, + "probability": 0.8218 + }, + { + "start": 26275.0, + "end": 26276.44, + "probability": 0.9934 + }, + { + "start": 26276.52, + "end": 26280.9, + "probability": 0.9917 + }, + { + "start": 26281.3, + "end": 26283.24, + "probability": 0.9737 + }, + { + "start": 26284.1, + "end": 26287.28, + "probability": 0.7659 + }, + { + "start": 26287.92, + "end": 26289.42, + "probability": 0.8141 + }, + { + "start": 26289.48, + "end": 26290.62, + "probability": 0.5952 + }, + { + "start": 26290.82, + "end": 26292.0, + "probability": 0.8906 + }, + { + "start": 26292.02, + "end": 26292.32, + "probability": 0.3697 + }, + { + "start": 26292.32, + "end": 26295.3, + "probability": 0.7565 + }, + { + "start": 26295.82, + "end": 26297.96, + "probability": 0.957 + }, + { + "start": 26298.2, + "end": 26300.86, + "probability": 0.8697 + }, + { + "start": 26300.98, + "end": 26302.18, + "probability": 0.9431 + }, + { + "start": 26303.02, + "end": 26304.65, + "probability": 0.7508 + }, + { + "start": 26305.94, + "end": 26308.14, + "probability": 0.9065 + }, + { + "start": 26308.98, + "end": 26313.74, + "probability": 0.9962 + }, + { + "start": 26313.74, + "end": 26317.96, + "probability": 0.9875 + }, + { + "start": 26318.42, + "end": 26320.2, + "probability": 0.9859 + }, + { + "start": 26320.28, + "end": 26321.86, + "probability": 0.9709 + }, + { + "start": 26321.98, + "end": 26324.14, + "probability": 0.7425 + }, + { + "start": 26324.14, + "end": 26326.84, + "probability": 0.9811 + }, + { + "start": 26326.98, + "end": 26328.6, + "probability": 0.9946 + }, + { + "start": 26329.06, + "end": 26333.85, + "probability": 0.995 + }, + { + "start": 26334.02, + "end": 26336.62, + "probability": 0.8732 + }, + { + "start": 26337.08, + "end": 26342.34, + "probability": 0.9855 + }, + { + "start": 26342.66, + "end": 26344.84, + "probability": 0.9871 + }, + { + "start": 26344.84, + "end": 26345.59, + "probability": 0.9819 + }, + { + "start": 26345.72, + "end": 26346.72, + "probability": 0.979 + }, + { + "start": 26347.4, + "end": 26348.34, + "probability": 0.7715 + }, + { + "start": 26349.22, + "end": 26351.06, + "probability": 0.9114 + }, + { + "start": 26354.05, + "end": 26357.04, + "probability": 0.9585 + }, + { + "start": 26362.48, + "end": 26363.02, + "probability": 0.7398 + }, + { + "start": 26374.14, + "end": 26374.44, + "probability": 0.3768 + }, + { + "start": 26374.44, + "end": 26375.22, + "probability": 0.6934 + }, + { + "start": 26376.6, + "end": 26379.01, + "probability": 0.8473 + }, + { + "start": 26381.47, + "end": 26382.45, + "probability": 0.7926 + }, + { + "start": 26384.27, + "end": 26385.03, + "probability": 0.6473 + }, + { + "start": 26388.81, + "end": 26389.99, + "probability": 0.8507 + }, + { + "start": 26390.75, + "end": 26391.33, + "probability": 0.8418 + }, + { + "start": 26392.37, + "end": 26392.51, + "probability": 0.1703 + }, + { + "start": 26392.53, + "end": 26395.55, + "probability": 0.9136 + }, + { + "start": 26395.77, + "end": 26397.53, + "probability": 0.8962 + }, + { + "start": 26397.69, + "end": 26403.19, + "probability": 0.7501 + }, + { + "start": 26404.59, + "end": 26406.27, + "probability": 0.851 + }, + { + "start": 26407.81, + "end": 26408.57, + "probability": 0.0958 + }, + { + "start": 26408.69, + "end": 26409.89, + "probability": 0.9192 + }, + { + "start": 26410.01, + "end": 26411.97, + "probability": 0.7656 + }, + { + "start": 26411.99, + "end": 26413.01, + "probability": 0.9874 + }, + { + "start": 26413.39, + "end": 26416.81, + "probability": 0.595 + }, + { + "start": 26419.19, + "end": 26420.41, + "probability": 0.4873 + }, + { + "start": 26421.13, + "end": 26425.33, + "probability": 0.9969 + }, + { + "start": 26425.33, + "end": 26434.07, + "probability": 0.9982 + }, + { + "start": 26435.11, + "end": 26436.19, + "probability": 0.9988 + }, + { + "start": 26437.27, + "end": 26439.59, + "probability": 0.5831 + }, + { + "start": 26439.69, + "end": 26440.75, + "probability": 0.7277 + }, + { + "start": 26440.79, + "end": 26442.11, + "probability": 0.6707 + }, + { + "start": 26442.33, + "end": 26452.69, + "probability": 0.9966 + }, + { + "start": 26453.65, + "end": 26455.21, + "probability": 0.3387 + }, + { + "start": 26455.63, + "end": 26458.15, + "probability": 0.9966 + }, + { + "start": 26459.55, + "end": 26463.13, + "probability": 0.9912 + }, + { + "start": 26464.83, + "end": 26465.41, + "probability": 0.7417 + }, + { + "start": 26465.51, + "end": 26469.25, + "probability": 0.995 + }, + { + "start": 26470.85, + "end": 26472.41, + "probability": 0.7084 + }, + { + "start": 26472.77, + "end": 26474.61, + "probability": 0.4635 + }, + { + "start": 26474.75, + "end": 26478.45, + "probability": 0.9437 + }, + { + "start": 26479.13, + "end": 26479.83, + "probability": 0.9695 + }, + { + "start": 26480.39, + "end": 26482.95, + "probability": 0.648 + }, + { + "start": 26483.79, + "end": 26485.19, + "probability": 0.7578 + }, + { + "start": 26485.35, + "end": 26486.69, + "probability": 0.9583 + }, + { + "start": 26486.97, + "end": 26488.49, + "probability": 0.6886 + }, + { + "start": 26488.67, + "end": 26490.41, + "probability": 0.8826 + }, + { + "start": 26490.43, + "end": 26492.29, + "probability": 0.672 + }, + { + "start": 26492.75, + "end": 26494.99, + "probability": 0.6806 + }, + { + "start": 26495.05, + "end": 26497.05, + "probability": 0.6621 + }, + { + "start": 26497.09, + "end": 26499.25, + "probability": 0.9081 + }, + { + "start": 26500.85, + "end": 26502.21, + "probability": 0.7369 + }, + { + "start": 26503.38, + "end": 26504.35, + "probability": 0.9738 + }, + { + "start": 26505.81, + "end": 26509.07, + "probability": 0.7849 + }, + { + "start": 26511.07, + "end": 26512.7, + "probability": 0.8931 + }, + { + "start": 26514.05, + "end": 26515.39, + "probability": 0.9697 + }, + { + "start": 26515.51, + "end": 26516.73, + "probability": 0.9712 + }, + { + "start": 26518.09, + "end": 26518.21, + "probability": 0.6666 + }, + { + "start": 26519.05, + "end": 26521.29, + "probability": 0.9918 + }, + { + "start": 26521.95, + "end": 26524.09, + "probability": 0.9836 + }, + { + "start": 26526.39, + "end": 26527.87, + "probability": 0.9821 + }, + { + "start": 26528.63, + "end": 26531.27, + "probability": 0.9996 + }, + { + "start": 26532.61, + "end": 26536.31, + "probability": 0.9933 + }, + { + "start": 26538.47, + "end": 26539.65, + "probability": 0.9819 + }, + { + "start": 26540.57, + "end": 26543.05, + "probability": 0.9972 + }, + { + "start": 26543.05, + "end": 26545.21, + "probability": 0.6994 + }, + { + "start": 26546.19, + "end": 26547.55, + "probability": 0.9067 + }, + { + "start": 26549.11, + "end": 26553.51, + "probability": 0.9452 + }, + { + "start": 26553.51, + "end": 26556.51, + "probability": 0.9976 + }, + { + "start": 26557.21, + "end": 26558.31, + "probability": 0.949 + }, + { + "start": 26560.39, + "end": 26561.54, + "probability": 0.9629 + }, + { + "start": 26562.71, + "end": 26564.37, + "probability": 0.8983 + }, + { + "start": 26566.75, + "end": 26569.13, + "probability": 0.796 + }, + { + "start": 26569.79, + "end": 26572.37, + "probability": 0.9721 + }, + { + "start": 26574.65, + "end": 26575.97, + "probability": 0.9292 + }, + { + "start": 26576.77, + "end": 26580.81, + "probability": 0.9814 + }, + { + "start": 26582.45, + "end": 26584.67, + "probability": 0.9854 + }, + { + "start": 26585.33, + "end": 26588.63, + "probability": 0.9231 + }, + { + "start": 26588.63, + "end": 26592.07, + "probability": 0.9308 + }, + { + "start": 26592.57, + "end": 26594.59, + "probability": 0.7344 + }, + { + "start": 26596.23, + "end": 26598.31, + "probability": 0.9873 + }, + { + "start": 26598.81, + "end": 26598.81, + "probability": 0.002 + }, + { + "start": 26599.23, + "end": 26602.15, + "probability": 0.9761 + }, + { + "start": 26602.55, + "end": 26604.25, + "probability": 0.8652 + }, + { + "start": 26604.43, + "end": 26607.15, + "probability": 0.999 + }, + { + "start": 26607.17, + "end": 26609.25, + "probability": 0.9691 + }, + { + "start": 26609.93, + "end": 26611.94, + "probability": 0.9764 + }, + { + "start": 26612.2, + "end": 26614.65, + "probability": 0.9187 + }, + { + "start": 26615.21, + "end": 26616.19, + "probability": 0.7326 + }, + { + "start": 26616.79, + "end": 26620.89, + "probability": 0.9904 + }, + { + "start": 26621.67, + "end": 26625.19, + "probability": 0.9941 + }, + { + "start": 26626.87, + "end": 26630.25, + "probability": 0.8817 + }, + { + "start": 26630.41, + "end": 26631.61, + "probability": 0.1662 + }, + { + "start": 26631.67, + "end": 26633.59, + "probability": 0.5249 + }, + { + "start": 26633.63, + "end": 26635.25, + "probability": 0.5557 + }, + { + "start": 26635.37, + "end": 26636.51, + "probability": 0.2359 + }, + { + "start": 26636.75, + "end": 26641.23, + "probability": 0.9937 + }, + { + "start": 26641.55, + "end": 26642.81, + "probability": 0.7229 + }, + { + "start": 26644.27, + "end": 26646.43, + "probability": 0.8773 + }, + { + "start": 26646.79, + "end": 26647.28, + "probability": 0.7568 + }, + { + "start": 26647.35, + "end": 26650.37, + "probability": 0.7297 + }, + { + "start": 26650.37, + "end": 26652.61, + "probability": 0.9425 + }, + { + "start": 26652.75, + "end": 26654.1, + "probability": 0.5168 + }, + { + "start": 26656.47, + "end": 26658.07, + "probability": 0.8908 + }, + { + "start": 26658.87, + "end": 26661.61, + "probability": 0.0049 + }, + { + "start": 26662.66, + "end": 26664.29, + "probability": 0.7068 + }, + { + "start": 26665.49, + "end": 26667.95, + "probability": 0.0259 + }, + { + "start": 26668.45, + "end": 26669.99, + "probability": 0.9657 + }, + { + "start": 26670.75, + "end": 26673.03, + "probability": 0.972 + }, + { + "start": 26675.33, + "end": 26676.14, + "probability": 0.94 + }, + { + "start": 26676.81, + "end": 26678.11, + "probability": 0.6511 + }, + { + "start": 26679.61, + "end": 26684.07, + "probability": 0.9573 + }, + { + "start": 26684.81, + "end": 26687.19, + "probability": 0.9988 + }, + { + "start": 26688.29, + "end": 26691.67, + "probability": 0.9761 + }, + { + "start": 26693.66, + "end": 26694.25, + "probability": 0.7106 + }, + { + "start": 26694.87, + "end": 26696.03, + "probability": 0.9732 + }, + { + "start": 26696.35, + "end": 26696.79, + "probability": 0.056 + }, + { + "start": 26696.81, + "end": 26697.89, + "probability": 0.9849 + }, + { + "start": 26700.65, + "end": 26701.29, + "probability": 0.7129 + }, + { + "start": 26702.17, + "end": 26703.95, + "probability": 0.9966 + }, + { + "start": 26704.05, + "end": 26707.31, + "probability": 0.9909 + }, + { + "start": 26708.79, + "end": 26710.71, + "probability": 0.9984 + }, + { + "start": 26711.91, + "end": 26714.25, + "probability": 0.3482 + }, + { + "start": 26715.25, + "end": 26717.09, + "probability": 0.1895 + }, + { + "start": 26717.75, + "end": 26720.05, + "probability": 0.0435 + }, + { + "start": 26720.11, + "end": 26721.07, + "probability": 0.9033 + }, + { + "start": 26721.39, + "end": 26722.27, + "probability": 0.9439 + }, + { + "start": 26722.57, + "end": 26727.31, + "probability": 0.9976 + }, + { + "start": 26727.73, + "end": 26731.61, + "probability": 0.6103 + }, + { + "start": 26731.61, + "end": 26732.71, + "probability": 0.0138 + }, + { + "start": 26733.75, + "end": 26734.99, + "probability": 0.2386 + }, + { + "start": 26734.99, + "end": 26734.99, + "probability": 0.3574 + }, + { + "start": 26735.03, + "end": 26735.31, + "probability": 0.5537 + }, + { + "start": 26735.41, + "end": 26737.77, + "probability": 0.9868 + }, + { + "start": 26738.15, + "end": 26739.41, + "probability": 0.2242 + }, + { + "start": 26739.41, + "end": 26741.53, + "probability": 0.682 + }, + { + "start": 26742.07, + "end": 26743.49, + "probability": 0.8895 + }, + { + "start": 26744.13, + "end": 26745.41, + "probability": 0.3923 + }, + { + "start": 26745.53, + "end": 26750.13, + "probability": 0.8929 + }, + { + "start": 26751.03, + "end": 26752.79, + "probability": 0.9587 + }, + { + "start": 26753.63, + "end": 26755.83, + "probability": 0.9125 + }, + { + "start": 26755.99, + "end": 26757.21, + "probability": 0.6484 + }, + { + "start": 26757.77, + "end": 26759.07, + "probability": 0.1882 + }, + { + "start": 26769.77, + "end": 26771.6, + "probability": 0.3484 + }, + { + "start": 26790.05, + "end": 26796.53, + "probability": 0.5243 + }, + { + "start": 26797.03, + "end": 26801.03, + "probability": 0.0509 + }, + { + "start": 26801.77, + "end": 26801.97, + "probability": 0.3893 + }, + { + "start": 26802.53, + "end": 26802.59, + "probability": 0.004 + }, + { + "start": 26802.59, + "end": 26803.77, + "probability": 0.2295 + }, + { + "start": 26805.27, + "end": 26806.49, + "probability": 0.1013 + }, + { + "start": 26806.51, + "end": 26808.69, + "probability": 0.0209 + }, + { + "start": 26810.29, + "end": 26810.67, + "probability": 0.0755 + }, + { + "start": 26810.67, + "end": 26810.69, + "probability": 0.1811 + }, + { + "start": 26811.59, + "end": 26811.59, + "probability": 0.0768 + }, + { + "start": 26811.59, + "end": 26811.59, + "probability": 0.1042 + }, + { + "start": 26811.59, + "end": 26811.59, + "probability": 0.1001 + }, + { + "start": 26811.59, + "end": 26811.59, + "probability": 0.0784 + }, + { + "start": 26811.59, + "end": 26811.59, + "probability": 0.0463 + }, + { + "start": 26811.59, + "end": 26811.61, + "probability": 0.2075 + }, + { + "start": 26811.61, + "end": 26811.79, + "probability": 0.3562 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.0, + "end": 26812.0, + "probability": 0.0 + }, + { + "start": 26812.14, + "end": 26814.91, + "probability": 0.3242 + }, + { + "start": 26815.58, + "end": 26816.9, + "probability": 0.5536 + }, + { + "start": 26817.1, + "end": 26819.18, + "probability": 0.8272 + }, + { + "start": 26819.18, + "end": 26820.14, + "probability": 0.0403 + }, + { + "start": 26820.4, + "end": 26821.82, + "probability": 0.666 + }, + { + "start": 26821.9, + "end": 26821.9, + "probability": 0.541 + }, + { + "start": 26821.94, + "end": 26823.94, + "probability": 0.9446 + }, + { + "start": 26824.22, + "end": 26825.82, + "probability": 0.9012 + }, + { + "start": 26826.82, + "end": 26827.62, + "probability": 0.9263 + }, + { + "start": 26827.76, + "end": 26829.96, + "probability": 0.4408 + }, + { + "start": 26830.02, + "end": 26830.2, + "probability": 0.0465 + }, + { + "start": 26830.2, + "end": 26832.16, + "probability": 0.8225 + }, + { + "start": 26832.92, + "end": 26834.92, + "probability": 0.9863 + }, + { + "start": 26835.32, + "end": 26837.02, + "probability": 0.9953 + }, + { + "start": 26837.8, + "end": 26840.96, + "probability": 0.7744 + }, + { + "start": 26841.78, + "end": 26842.7, + "probability": 0.1837 + }, + { + "start": 26842.86, + "end": 26842.86, + "probability": 0.2167 + }, + { + "start": 26842.88, + "end": 26845.46, + "probability": 0.8699 + }, + { + "start": 26846.28, + "end": 26848.68, + "probability": 0.9771 + }, + { + "start": 26849.48, + "end": 26850.76, + "probability": 0.0479 + }, + { + "start": 26850.94, + "end": 26851.52, + "probability": 0.0218 + }, + { + "start": 26851.52, + "end": 26852.01, + "probability": 0.3384 + }, + { + "start": 26852.46, + "end": 26853.04, + "probability": 0.3871 + }, + { + "start": 26853.04, + "end": 26853.04, + "probability": 0.6125 + }, + { + "start": 26853.04, + "end": 26853.82, + "probability": 0.4606 + }, + { + "start": 26853.82, + "end": 26855.2, + "probability": 0.4833 + }, + { + "start": 26856.54, + "end": 26857.78, + "probability": 0.7593 + }, + { + "start": 26857.88, + "end": 26861.6, + "probability": 0.1633 + }, + { + "start": 26862.22, + "end": 26862.92, + "probability": 0.0399 + }, + { + "start": 26862.92, + "end": 26863.52, + "probability": 0.2861 + }, + { + "start": 26863.86, + "end": 26864.16, + "probability": 0.2535 + }, + { + "start": 26864.16, + "end": 26864.74, + "probability": 0.3645 + }, + { + "start": 26865.36, + "end": 26866.6, + "probability": 0.519 + }, + { + "start": 26870.94, + "end": 26872.9, + "probability": 0.0411 + }, + { + "start": 26873.98, + "end": 26878.62, + "probability": 0.1312 + }, + { + "start": 26879.0, + "end": 26879.04, + "probability": 0.5638 + }, + { + "start": 26879.04, + "end": 26879.86, + "probability": 0.7931 + }, + { + "start": 26879.94, + "end": 26881.24, + "probability": 0.8375 + }, + { + "start": 26881.38, + "end": 26882.22, + "probability": 0.847 + }, + { + "start": 26885.3, + "end": 26886.1, + "probability": 0.6059 + }, + { + "start": 26899.08, + "end": 26899.96, + "probability": 0.4825 + }, + { + "start": 26899.96, + "end": 26904.3, + "probability": 0.8091 + }, + { + "start": 26906.82, + "end": 26909.82, + "probability": 0.5908 + }, + { + "start": 26910.02, + "end": 26911.35, + "probability": 0.4207 + }, + { + "start": 26911.48, + "end": 26911.94, + "probability": 0.1805 + }, + { + "start": 26913.2, + "end": 26914.03, + "probability": 0.1331 + }, + { + "start": 26914.8, + "end": 26916.44, + "probability": 0.7552 + }, + { + "start": 26916.6, + "end": 26917.56, + "probability": 0.8458 + }, + { + "start": 26918.22, + "end": 26919.52, + "probability": 0.6789 + }, + { + "start": 26921.66, + "end": 26923.66, + "probability": 0.9797 + }, + { + "start": 26923.78, + "end": 26924.54, + "probability": 0.9204 + }, + { + "start": 26924.64, + "end": 26925.82, + "probability": 0.8858 + }, + { + "start": 26926.16, + "end": 26928.31, + "probability": 0.8259 + }, + { + "start": 26929.02, + "end": 26932.62, + "probability": 0.9485 + }, + { + "start": 26933.24, + "end": 26937.06, + "probability": 0.9729 + }, + { + "start": 26939.08, + "end": 26940.66, + "probability": 0.524 + }, + { + "start": 26940.8, + "end": 26944.1, + "probability": 0.3177 + }, + { + "start": 26946.02, + "end": 26947.26, + "probability": 0.0846 + }, + { + "start": 26947.4, + "end": 26947.68, + "probability": 0.5516 + }, + { + "start": 26947.74, + "end": 26948.56, + "probability": 0.0664 + }, + { + "start": 26948.68, + "end": 26949.9, + "probability": 0.5292 + }, + { + "start": 26950.08, + "end": 26951.27, + "probability": 0.6794 + }, + { + "start": 26951.52, + "end": 26954.18, + "probability": 0.6202 + }, + { + "start": 26954.24, + "end": 26954.58, + "probability": 0.8953 + }, + { + "start": 26956.02, + "end": 26956.54, + "probability": 0.0158 + }, + { + "start": 26957.12, + "end": 26957.12, + "probability": 0.0151 + }, + { + "start": 26957.12, + "end": 26959.33, + "probability": 0.4953 + }, + { + "start": 26960.1, + "end": 26963.56, + "probability": 0.5918 + }, + { + "start": 26963.74, + "end": 26964.74, + "probability": 0.7438 + }, + { + "start": 26964.84, + "end": 26966.68, + "probability": 0.8698 + }, + { + "start": 26966.68, + "end": 26967.88, + "probability": 0.3692 + }, + { + "start": 26968.94, + "end": 26970.98, + "probability": 0.8922 + }, + { + "start": 26974.36, + "end": 26977.38, + "probability": 0.9862 + }, + { + "start": 26977.38, + "end": 26980.22, + "probability": 0.9995 + }, + { + "start": 26980.86, + "end": 26986.06, + "probability": 0.9985 + }, + { + "start": 26986.64, + "end": 26987.72, + "probability": 0.7225 + }, + { + "start": 26988.7, + "end": 26992.82, + "probability": 0.9972 + }, + { + "start": 26993.6, + "end": 26994.06, + "probability": 0.7408 + }, + { + "start": 26994.16, + "end": 26994.36, + "probability": 0.8299 + }, + { + "start": 26994.48, + "end": 26998.1, + "probability": 0.9544 + }, + { + "start": 26998.22, + "end": 27000.62, + "probability": 0.9907 + }, + { + "start": 27001.36, + "end": 27002.32, + "probability": 0.936 + }, + { + "start": 27003.0, + "end": 27004.98, + "probability": 0.9971 + }, + { + "start": 27005.28, + "end": 27007.82, + "probability": 0.9003 + }, + { + "start": 27008.22, + "end": 27009.94, + "probability": 0.9797 + }, + { + "start": 27010.32, + "end": 27010.84, + "probability": 0.772 + }, + { + "start": 27011.32, + "end": 27013.98, + "probability": 0.9917 + }, + { + "start": 27013.98, + "end": 27017.44, + "probability": 0.9949 + }, + { + "start": 27017.52, + "end": 27017.62, + "probability": 0.869 + }, + { + "start": 27018.82, + "end": 27021.5, + "probability": 0.8497 + }, + { + "start": 27022.54, + "end": 27026.7, + "probability": 0.9724 + }, + { + "start": 27027.32, + "end": 27029.22, + "probability": 0.9349 + }, + { + "start": 27030.05, + "end": 27032.64, + "probability": 0.9684 + }, + { + "start": 27033.64, + "end": 27036.98, + "probability": 0.9942 + }, + { + "start": 27037.16, + "end": 27037.54, + "probability": 0.9796 + }, + { + "start": 27037.98, + "end": 27038.9, + "probability": 0.812 + }, + { + "start": 27039.34, + "end": 27040.54, + "probability": 0.9951 + }, + { + "start": 27041.08, + "end": 27045.3, + "probability": 0.65 + }, + { + "start": 27045.98, + "end": 27046.66, + "probability": 0.5541 + }, + { + "start": 27047.7, + "end": 27052.04, + "probability": 0.8499 + }, + { + "start": 27052.42, + "end": 27053.72, + "probability": 0.6387 + }, + { + "start": 27054.26, + "end": 27057.08, + "probability": 0.5232 + }, + { + "start": 27058.1, + "end": 27058.56, + "probability": 0.0277 + }, + { + "start": 27058.56, + "end": 27059.06, + "probability": 0.2841 + }, + { + "start": 27060.14, + "end": 27061.51, + "probability": 0.7503 + }, + { + "start": 27062.48, + "end": 27063.57, + "probability": 0.7274 + }, + { + "start": 27067.62, + "end": 27069.76, + "probability": 0.386 + }, + { + "start": 27069.76, + "end": 27069.76, + "probability": 0.1362 + }, + { + "start": 27069.76, + "end": 27071.66, + "probability": 0.1447 + }, + { + "start": 27072.3, + "end": 27074.42, + "probability": 0.9666 + }, + { + "start": 27075.2, + "end": 27077.04, + "probability": 0.9927 + }, + { + "start": 27077.6, + "end": 27080.32, + "probability": 0.9722 + }, + { + "start": 27080.9, + "end": 27082.87, + "probability": 0.7035 + }, + { + "start": 27083.32, + "end": 27085.16, + "probability": 0.9865 + }, + { + "start": 27085.2, + "end": 27085.88, + "probability": 0.8329 + }, + { + "start": 27086.84, + "end": 27088.38, + "probability": 0.8867 + }, + { + "start": 27088.66, + "end": 27092.12, + "probability": 0.9679 + }, + { + "start": 27092.12, + "end": 27092.28, + "probability": 0.0721 + }, + { + "start": 27092.28, + "end": 27095.04, + "probability": 0.6726 + }, + { + "start": 27095.24, + "end": 27096.08, + "probability": 0.8284 + }, + { + "start": 27096.28, + "end": 27100.26, + "probability": 0.6508 + }, + { + "start": 27100.82, + "end": 27102.26, + "probability": 0.5783 + }, + { + "start": 27102.52, + "end": 27103.82, + "probability": 0.8864 + }, + { + "start": 27104.1, + "end": 27104.66, + "probability": 0.1582 + }, + { + "start": 27104.78, + "end": 27105.42, + "probability": 0.2466 + }, + { + "start": 27105.78, + "end": 27106.22, + "probability": 0.5196 + }, + { + "start": 27106.22, + "end": 27107.46, + "probability": 0.6389 + }, + { + "start": 27107.76, + "end": 27109.32, + "probability": 0.2899 + }, + { + "start": 27109.32, + "end": 27110.92, + "probability": 0.4285 + }, + { + "start": 27111.5, + "end": 27113.52, + "probability": 0.621 + }, + { + "start": 27113.98, + "end": 27115.21, + "probability": 0.3409 + }, + { + "start": 27116.8, + "end": 27122.6, + "probability": 0.9638 + }, + { + "start": 27123.12, + "end": 27125.12, + "probability": 0.9867 + }, + { + "start": 27125.2, + "end": 27126.72, + "probability": 0.9966 + }, + { + "start": 27128.07, + "end": 27129.34, + "probability": 0.0609 + }, + { + "start": 27129.44, + "end": 27131.3, + "probability": 0.9454 + }, + { + "start": 27132.3, + "end": 27132.72, + "probability": 0.5274 + }, + { + "start": 27132.88, + "end": 27133.36, + "probability": 0.7453 + }, + { + "start": 27133.44, + "end": 27133.74, + "probability": 0.5164 + }, + { + "start": 27133.78, + "end": 27134.96, + "probability": 0.0862 + }, + { + "start": 27135.06, + "end": 27137.16, + "probability": 0.6193 + }, + { + "start": 27138.03, + "end": 27138.62, + "probability": 0.0021 + }, + { + "start": 27138.62, + "end": 27138.62, + "probability": 0.0693 + }, + { + "start": 27138.62, + "end": 27138.88, + "probability": 0.0841 + }, + { + "start": 27138.88, + "end": 27139.76, + "probability": 0.7739 + }, + { + "start": 27140.14, + "end": 27140.5, + "probability": 0.8397 + }, + { + "start": 27140.56, + "end": 27141.78, + "probability": 0.7382 + }, + { + "start": 27142.56, + "end": 27143.96, + "probability": 0.0874 + }, + { + "start": 27144.3, + "end": 27148.98, + "probability": 0.9543 + }, + { + "start": 27149.22, + "end": 27151.94, + "probability": 0.8185 + }, + { + "start": 27152.48, + "end": 27152.96, + "probability": 0.8906 + }, + { + "start": 27153.96, + "end": 27154.48, + "probability": 0.4532 + }, + { + "start": 27155.2, + "end": 27156.28, + "probability": 0.8503 + }, + { + "start": 27157.14, + "end": 27158.94, + "probability": 0.9917 + }, + { + "start": 27159.64, + "end": 27161.02, + "probability": 0.9696 + }, + { + "start": 27161.76, + "end": 27163.18, + "probability": 0.6906 + }, + { + "start": 27164.08, + "end": 27165.04, + "probability": 0.335 + }, + { + "start": 27165.1, + "end": 27167.24, + "probability": 0.721 + }, + { + "start": 27167.42, + "end": 27168.84, + "probability": 0.9197 + }, + { + "start": 27168.9, + "end": 27170.08, + "probability": 0.7921 + }, + { + "start": 27170.18, + "end": 27172.23, + "probability": 0.858 + }, + { + "start": 27172.5, + "end": 27174.22, + "probability": 0.7294 + }, + { + "start": 27174.4, + "end": 27176.72, + "probability": 0.9907 + }, + { + "start": 27176.96, + "end": 27178.58, + "probability": 0.7347 + }, + { + "start": 27178.92, + "end": 27180.8, + "probability": 0.7174 + }, + { + "start": 27181.96, + "end": 27182.22, + "probability": 0.299 + }, + { + "start": 27182.22, + "end": 27182.68, + "probability": 0.464 + }, + { + "start": 27182.8, + "end": 27183.86, + "probability": 0.9866 + }, + { + "start": 27184.1, + "end": 27187.32, + "probability": 0.9684 + }, + { + "start": 27188.38, + "end": 27189.52, + "probability": 0.6983 + }, + { + "start": 27189.86, + "end": 27193.48, + "probability": 0.8016 + }, + { + "start": 27194.38, + "end": 27195.22, + "probability": 0.9141 + }, + { + "start": 27195.66, + "end": 27197.9, + "probability": 0.8675 + }, + { + "start": 27198.58, + "end": 27200.59, + "probability": 0.2052 + }, + { + "start": 27200.72, + "end": 27201.52, + "probability": 0.6081 + }, + { + "start": 27202.08, + "end": 27203.4, + "probability": 0.8029 + }, + { + "start": 27203.64, + "end": 27205.94, + "probability": 0.9874 + }, + { + "start": 27206.28, + "end": 27208.76, + "probability": 0.9884 + }, + { + "start": 27208.82, + "end": 27209.5, + "probability": 0.9363 + }, + { + "start": 27209.52, + "end": 27210.06, + "probability": 0.2056 + }, + { + "start": 27210.24, + "end": 27210.84, + "probability": 0.9717 + }, + { + "start": 27210.92, + "end": 27213.2, + "probability": 0.9227 + }, + { + "start": 27213.84, + "end": 27218.18, + "probability": 0.9106 + }, + { + "start": 27218.86, + "end": 27218.94, + "probability": 0.1325 + }, + { + "start": 27218.94, + "end": 27219.78, + "probability": 0.9019 + }, + { + "start": 27219.98, + "end": 27221.24, + "probability": 0.9017 + }, + { + "start": 27221.46, + "end": 27222.24, + "probability": 0.9365 + }, + { + "start": 27222.96, + "end": 27226.6, + "probability": 0.9701 + }, + { + "start": 27226.7, + "end": 27227.8, + "probability": 0.9222 + }, + { + "start": 27227.98, + "end": 27228.54, + "probability": 0.8035 + }, + { + "start": 27228.58, + "end": 27229.42, + "probability": 0.632 + }, + { + "start": 27229.52, + "end": 27234.72, + "probability": 0.9946 + }, + { + "start": 27235.3, + "end": 27238.28, + "probability": 0.9887 + }, + { + "start": 27239.5, + "end": 27242.16, + "probability": 0.999 + }, + { + "start": 27242.16, + "end": 27246.08, + "probability": 0.9963 + }, + { + "start": 27247.1, + "end": 27248.0, + "probability": 0.8918 + }, + { + "start": 27248.48, + "end": 27249.3, + "probability": 0.978 + }, + { + "start": 27249.42, + "end": 27249.64, + "probability": 0.8735 + }, + { + "start": 27249.7, + "end": 27252.7, + "probability": 0.9961 + }, + { + "start": 27253.22, + "end": 27254.76, + "probability": 0.9968 + }, + { + "start": 27254.9, + "end": 27256.24, + "probability": 0.7741 + }, + { + "start": 27256.74, + "end": 27257.2, + "probability": 0.8845 + }, + { + "start": 27257.68, + "end": 27259.3, + "probability": 0.9385 + }, + { + "start": 27259.94, + "end": 27261.38, + "probability": 0.9387 + }, + { + "start": 27262.12, + "end": 27263.88, + "probability": 0.8876 + }, + { + "start": 27264.1, + "end": 27266.97, + "probability": 0.0897 + }, + { + "start": 27268.3, + "end": 27268.54, + "probability": 0.0337 + }, + { + "start": 27268.54, + "end": 27269.16, + "probability": 0.0477 + }, + { + "start": 27269.16, + "end": 27269.16, + "probability": 0.1267 + }, + { + "start": 27269.16, + "end": 27269.6, + "probability": 0.1552 + }, + { + "start": 27269.6, + "end": 27269.68, + "probability": 0.0247 + }, + { + "start": 27269.68, + "end": 27269.7, + "probability": 0.4208 + }, + { + "start": 27269.7, + "end": 27269.84, + "probability": 0.3379 + }, + { + "start": 27270.04, + "end": 27274.16, + "probability": 0.793 + }, + { + "start": 27274.22, + "end": 27277.32, + "probability": 0.975 + }, + { + "start": 27277.72, + "end": 27278.06, + "probability": 0.8281 + }, + { + "start": 27278.18, + "end": 27278.42, + "probability": 0.839 + }, + { + "start": 27278.48, + "end": 27283.86, + "probability": 0.9883 + }, + { + "start": 27284.28, + "end": 27284.66, + "probability": 0.9417 + }, + { + "start": 27285.2, + "end": 27285.36, + "probability": 0.3651 + }, + { + "start": 27285.38, + "end": 27286.14, + "probability": 0.2811 + }, + { + "start": 27286.27, + "end": 27287.84, + "probability": 0.1791 + }, + { + "start": 27287.86, + "end": 27287.96, + "probability": 0.1273 + }, + { + "start": 27287.96, + "end": 27288.36, + "probability": 0.5308 + }, + { + "start": 27288.5, + "end": 27290.1, + "probability": 0.3593 + }, + { + "start": 27290.4, + "end": 27292.7, + "probability": 0.6233 + }, + { + "start": 27292.82, + "end": 27292.84, + "probability": 0.6035 + }, + { + "start": 27292.84, + "end": 27295.5, + "probability": 0.9941 + }, + { + "start": 27296.06, + "end": 27301.2, + "probability": 0.6372 + }, + { + "start": 27301.5, + "end": 27303.6, + "probability": 0.9585 + }, + { + "start": 27303.6, + "end": 27303.6, + "probability": 0.3839 + }, + { + "start": 27303.6, + "end": 27304.24, + "probability": 0.7741 + }, + { + "start": 27304.54, + "end": 27305.96, + "probability": 0.8526 + }, + { + "start": 27306.04, + "end": 27308.1, + "probability": 0.7361 + }, + { + "start": 27308.18, + "end": 27309.4, + "probability": 0.979 + }, + { + "start": 27309.82, + "end": 27310.53, + "probability": 0.8389 + }, + { + "start": 27310.72, + "end": 27311.52, + "probability": 0.7386 + }, + { + "start": 27311.96, + "end": 27313.7, + "probability": 0.9491 + }, + { + "start": 27314.04, + "end": 27314.14, + "probability": 0.1709 + }, + { + "start": 27314.7, + "end": 27316.74, + "probability": 0.0839 + }, + { + "start": 27317.95, + "end": 27318.17, + "probability": 0.1173 + }, + { + "start": 27319.08, + "end": 27320.72, + "probability": 0.4754 + }, + { + "start": 27322.86, + "end": 27324.55, + "probability": 0.8113 + }, + { + "start": 27326.54, + "end": 27329.6, + "probability": 0.971 + }, + { + "start": 27330.74, + "end": 27333.65, + "probability": 0.9316 + }, + { + "start": 27334.1, + "end": 27334.46, + "probability": 0.5308 + }, + { + "start": 27334.9, + "end": 27336.72, + "probability": 0.785 + }, + { + "start": 27336.86, + "end": 27337.18, + "probability": 0.8527 + }, + { + "start": 27338.0, + "end": 27340.12, + "probability": 0.9235 + }, + { + "start": 27341.0, + "end": 27342.56, + "probability": 0.9607 + }, + { + "start": 27342.7, + "end": 27344.14, + "probability": 0.9675 + }, + { + "start": 27344.76, + "end": 27347.96, + "probability": 0.9776 + }, + { + "start": 27348.6, + "end": 27349.22, + "probability": 0.9606 + }, + { + "start": 27350.44, + "end": 27351.51, + "probability": 0.8104 + }, + { + "start": 27352.42, + "end": 27354.4, + "probability": 0.2927 + }, + { + "start": 27354.6, + "end": 27355.84, + "probability": 0.6982 + }, + { + "start": 27356.58, + "end": 27358.15, + "probability": 0.4187 + }, + { + "start": 27358.94, + "end": 27360.47, + "probability": 0.9792 + }, + { + "start": 27360.66, + "end": 27361.9, + "probability": 0.8134 + }, + { + "start": 27362.64, + "end": 27363.34, + "probability": 0.4944 + }, + { + "start": 27365.59, + "end": 27368.38, + "probability": 0.9217 + }, + { + "start": 27369.82, + "end": 27373.58, + "probability": 0.6179 + }, + { + "start": 27374.7, + "end": 27375.98, + "probability": 0.9775 + }, + { + "start": 27377.02, + "end": 27379.24, + "probability": 0.9624 + }, + { + "start": 27379.92, + "end": 27384.84, + "probability": 0.8796 + }, + { + "start": 27385.18, + "end": 27388.28, + "probability": 0.9553 + }, + { + "start": 27390.12, + "end": 27391.18, + "probability": 0.902 + }, + { + "start": 27392.06, + "end": 27392.6, + "probability": 0.9402 + }, + { + "start": 27393.48, + "end": 27394.0, + "probability": 0.9653 + }, + { + "start": 27395.3, + "end": 27396.12, + "probability": 0.9834 + }, + { + "start": 27398.7, + "end": 27402.78, + "probability": 0.9653 + }, + { + "start": 27403.56, + "end": 27408.0, + "probability": 0.9711 + }, + { + "start": 27409.14, + "end": 27411.7, + "probability": 0.8047 + }, + { + "start": 27412.46, + "end": 27413.8, + "probability": 0.9565 + }, + { + "start": 27414.5, + "end": 27416.66, + "probability": 0.9899 + }, + { + "start": 27417.2, + "end": 27417.36, + "probability": 0.0123 + }, + { + "start": 27417.36, + "end": 27418.54, + "probability": 0.9697 + }, + { + "start": 27418.96, + "end": 27420.46, + "probability": 0.9912 + }, + { + "start": 27420.88, + "end": 27424.14, + "probability": 0.9941 + }, + { + "start": 27424.28, + "end": 27425.6, + "probability": 0.9336 + }, + { + "start": 27426.18, + "end": 27427.62, + "probability": 0.9285 + }, + { + "start": 27427.66, + "end": 27429.08, + "probability": 0.7133 + }, + { + "start": 27429.2, + "end": 27431.9, + "probability": 0.8045 + }, + { + "start": 27432.58, + "end": 27433.93, + "probability": 0.9193 + }, + { + "start": 27434.74, + "end": 27437.68, + "probability": 0.9914 + }, + { + "start": 27437.78, + "end": 27438.76, + "probability": 0.9781 + }, + { + "start": 27438.88, + "end": 27442.48, + "probability": 0.7951 + }, + { + "start": 27443.1, + "end": 27446.58, + "probability": 0.6947 + }, + { + "start": 27447.48, + "end": 27449.19, + "probability": 0.5084 + }, + { + "start": 27449.9, + "end": 27454.66, + "probability": 0.99 + }, + { + "start": 27455.26, + "end": 27458.94, + "probability": 0.9691 + }, + { + "start": 27459.22, + "end": 27460.26, + "probability": 0.9939 + }, + { + "start": 27460.72, + "end": 27464.76, + "probability": 0.9887 + }, + { + "start": 27465.48, + "end": 27466.44, + "probability": 0.9354 + }, + { + "start": 27466.56, + "end": 27467.1, + "probability": 0.9513 + }, + { + "start": 27467.16, + "end": 27467.84, + "probability": 0.986 + }, + { + "start": 27467.94, + "end": 27468.48, + "probability": 0.975 + }, + { + "start": 27468.52, + "end": 27469.0, + "probability": 0.5964 + }, + { + "start": 27469.46, + "end": 27469.86, + "probability": 0.9092 + }, + { + "start": 27469.96, + "end": 27471.64, + "probability": 0.9688 + }, + { + "start": 27472.08, + "end": 27475.46, + "probability": 0.9918 + }, + { + "start": 27475.9, + "end": 27477.86, + "probability": 0.9845 + }, + { + "start": 27478.64, + "end": 27480.94, + "probability": 0.9204 + }, + { + "start": 27481.1, + "end": 27484.88, + "probability": 0.9976 + }, + { + "start": 27485.0, + "end": 27485.0, + "probability": 0.0792 + }, + { + "start": 27485.0, + "end": 27486.28, + "probability": 0.651 + }, + { + "start": 27487.54, + "end": 27488.46, + "probability": 0.6133 + }, + { + "start": 27488.58, + "end": 27489.18, + "probability": 0.7348 + }, + { + "start": 27489.18, + "end": 27490.94, + "probability": 0.9046 + }, + { + "start": 27490.94, + "end": 27491.69, + "probability": 0.7983 + }, + { + "start": 27491.98, + "end": 27493.92, + "probability": 0.3126 + }, + { + "start": 27494.1, + "end": 27494.84, + "probability": 0.5271 + }, + { + "start": 27495.7, + "end": 27497.92, + "probability": 0.5512 + }, + { + "start": 27497.98, + "end": 27497.98, + "probability": 0.0236 + }, + { + "start": 27498.02, + "end": 27500.42, + "probability": 0.8838 + }, + { + "start": 27500.64, + "end": 27501.52, + "probability": 0.2338 + }, + { + "start": 27501.58, + "end": 27503.44, + "probability": 0.9733 + }, + { + "start": 27503.44, + "end": 27505.62, + "probability": 0.9956 + }, + { + "start": 27505.78, + "end": 27508.9, + "probability": 0.9965 + }, + { + "start": 27508.9, + "end": 27512.36, + "probability": 0.872 + }, + { + "start": 27513.14, + "end": 27514.3, + "probability": 0.9608 + }, + { + "start": 27514.58, + "end": 27515.12, + "probability": 0.5563 + }, + { + "start": 27515.18, + "end": 27516.38, + "probability": 0.8898 + }, + { + "start": 27516.5, + "end": 27517.12, + "probability": 0.902 + }, + { + "start": 27517.24, + "end": 27519.2, + "probability": 0.5907 + }, + { + "start": 27519.2, + "end": 27520.26, + "probability": 0.717 + }, + { + "start": 27521.0, + "end": 27523.36, + "probability": 0.9792 + }, + { + "start": 27524.38, + "end": 27526.9, + "probability": 0.6621 + }, + { + "start": 27527.5, + "end": 27529.82, + "probability": 0.807 + }, + { + "start": 27530.16, + "end": 27532.56, + "probability": 0.917 + }, + { + "start": 27533.2, + "end": 27538.4, + "probability": 0.982 + }, + { + "start": 27538.4, + "end": 27542.72, + "probability": 0.9712 + }, + { + "start": 27543.08, + "end": 27544.7, + "probability": 0.9634 + }, + { + "start": 27545.8, + "end": 27546.52, + "probability": 0.8246 + }, + { + "start": 27546.94, + "end": 27548.24, + "probability": 0.8428 + }, + { + "start": 27548.58, + "end": 27551.12, + "probability": 0.9735 + }, + { + "start": 27551.2, + "end": 27552.28, + "probability": 0.6495 + }, + { + "start": 27552.6, + "end": 27554.88, + "probability": 0.9741 + }, + { + "start": 27555.38, + "end": 27557.4, + "probability": 0.9971 + }, + { + "start": 27557.88, + "end": 27558.64, + "probability": 0.9667 + }, + { + "start": 27559.04, + "end": 27560.2, + "probability": 0.7532 + }, + { + "start": 27560.9, + "end": 27562.58, + "probability": 0.6679 + }, + { + "start": 27562.9, + "end": 27564.84, + "probability": 0.9709 + }, + { + "start": 27565.46, + "end": 27567.98, + "probability": 0.8454 + }, + { + "start": 27568.62, + "end": 27571.86, + "probability": 0.9405 + }, + { + "start": 27572.42, + "end": 27576.94, + "probability": 0.9731 + }, + { + "start": 27577.06, + "end": 27581.22, + "probability": 0.9932 + }, + { + "start": 27581.36, + "end": 27582.86, + "probability": 0.7814 + }, + { + "start": 27583.24, + "end": 27584.83, + "probability": 0.9724 + }, + { + "start": 27585.28, + "end": 27587.18, + "probability": 0.9985 + }, + { + "start": 27587.58, + "end": 27589.24, + "probability": 0.9908 + }, + { + "start": 27589.38, + "end": 27590.2, + "probability": 0.7982 + }, + { + "start": 27590.32, + "end": 27595.84, + "probability": 0.998 + }, + { + "start": 27596.34, + "end": 27600.86, + "probability": 0.9962 + }, + { + "start": 27601.48, + "end": 27604.88, + "probability": 0.9928 + }, + { + "start": 27604.88, + "end": 27608.81, + "probability": 0.999 + }, + { + "start": 27609.58, + "end": 27609.64, + "probability": 0.2212 + }, + { + "start": 27609.66, + "end": 27610.82, + "probability": 0.8246 + }, + { + "start": 27611.04, + "end": 27613.24, + "probability": 0.9285 + }, + { + "start": 27613.8, + "end": 27617.12, + "probability": 0.9482 + }, + { + "start": 27617.88, + "end": 27622.8, + "probability": 0.9962 + }, + { + "start": 27623.26, + "end": 27625.08, + "probability": 0.9399 + }, + { + "start": 27625.24, + "end": 27626.5, + "probability": 0.8297 + }, + { + "start": 27626.96, + "end": 27628.06, + "probability": 0.5223 + }, + { + "start": 27628.38, + "end": 27629.08, + "probability": 0.5278 + }, + { + "start": 27629.2, + "end": 27630.0, + "probability": 0.9042 + }, + { + "start": 27630.18, + "end": 27634.64, + "probability": 0.9919 + }, + { + "start": 27635.52, + "end": 27635.54, + "probability": 0.0599 + }, + { + "start": 27635.54, + "end": 27641.38, + "probability": 0.9614 + }, + { + "start": 27641.74, + "end": 27643.3, + "probability": 0.8158 + }, + { + "start": 27643.9, + "end": 27648.98, + "probability": 0.9914 + }, + { + "start": 27649.08, + "end": 27649.98, + "probability": 0.0227 + }, + { + "start": 27650.04, + "end": 27650.14, + "probability": 0.4861 + }, + { + "start": 27650.14, + "end": 27653.68, + "probability": 0.8506 + }, + { + "start": 27654.1, + "end": 27654.76, + "probability": 0.945 + }, + { + "start": 27654.88, + "end": 27655.46, + "probability": 0.7065 + }, + { + "start": 27655.62, + "end": 27656.74, + "probability": 0.8645 + }, + { + "start": 27657.06, + "end": 27658.06, + "probability": 0.9799 + }, + { + "start": 27658.42, + "end": 27663.44, + "probability": 0.8787 + }, + { + "start": 27663.96, + "end": 27667.9, + "probability": 0.9678 + }, + { + "start": 27668.46, + "end": 27671.14, + "probability": 0.9982 + }, + { + "start": 27671.54, + "end": 27674.1, + "probability": 0.9984 + }, + { + "start": 27674.64, + "end": 27678.08, + "probability": 0.9791 + }, + { + "start": 27678.46, + "end": 27682.18, + "probability": 0.9858 + }, + { + "start": 27682.28, + "end": 27686.62, + "probability": 0.9926 + }, + { + "start": 27687.12, + "end": 27690.87, + "probability": 0.9627 + }, + { + "start": 27691.26, + "end": 27694.91, + "probability": 0.9966 + }, + { + "start": 27695.18, + "end": 27697.1, + "probability": 0.9836 + }, + { + "start": 27697.18, + "end": 27697.84, + "probability": 0.8074 + }, + { + "start": 27698.24, + "end": 27700.3, + "probability": 0.9919 + }, + { + "start": 27700.68, + "end": 27705.88, + "probability": 0.9884 + }, + { + "start": 27706.26, + "end": 27707.14, + "probability": 0.6257 + }, + { + "start": 27707.24, + "end": 27708.08, + "probability": 0.6932 + }, + { + "start": 27708.52, + "end": 27714.32, + "probability": 0.9629 + }, + { + "start": 27714.92, + "end": 27720.02, + "probability": 0.9953 + }, + { + "start": 27720.42, + "end": 27723.52, + "probability": 0.971 + }, + { + "start": 27724.1, + "end": 27725.9, + "probability": 0.9518 + }, + { + "start": 27726.44, + "end": 27726.66, + "probability": 0.2241 + }, + { + "start": 27726.9, + "end": 27727.66, + "probability": 0.7274 + }, + { + "start": 27728.06, + "end": 27729.84, + "probability": 0.9778 + }, + { + "start": 27730.58, + "end": 27732.12, + "probability": 0.9137 + }, + { + "start": 27732.8, + "end": 27733.76, + "probability": 0.574 + }, + { + "start": 27740.62, + "end": 27741.42, + "probability": 0.1412 + }, + { + "start": 27747.74, + "end": 27749.54, + "probability": 0.3011 + }, + { + "start": 27749.92, + "end": 27752.82, + "probability": 0.6362 + }, + { + "start": 27754.06, + "end": 27756.42, + "probability": 0.8477 + }, + { + "start": 27759.66, + "end": 27761.24, + "probability": 0.8581 + }, + { + "start": 27763.88, + "end": 27765.26, + "probability": 0.4956 + }, + { + "start": 27765.86, + "end": 27767.66, + "probability": 0.9382 + }, + { + "start": 27768.6, + "end": 27769.27, + "probability": 0.9956 + }, + { + "start": 27770.6, + "end": 27774.08, + "probability": 0.9136 + }, + { + "start": 27775.0, + "end": 27776.02, + "probability": 0.982 + }, + { + "start": 27777.38, + "end": 27778.56, + "probability": 0.821 + }, + { + "start": 27779.32, + "end": 27780.32, + "probability": 0.9132 + }, + { + "start": 27780.48, + "end": 27782.22, + "probability": 0.9238 + }, + { + "start": 27783.46, + "end": 27784.44, + "probability": 0.9541 + }, + { + "start": 27784.58, + "end": 27785.32, + "probability": 0.5846 + }, + { + "start": 27785.82, + "end": 27787.76, + "probability": 0.9304 + }, + { + "start": 27787.76, + "end": 27789.82, + "probability": 0.5017 + }, + { + "start": 27789.9, + "end": 27790.48, + "probability": 0.736 + }, + { + "start": 27791.42, + "end": 27792.16, + "probability": 0.9751 + }, + { + "start": 27792.28, + "end": 27797.58, + "probability": 0.6473 + }, + { + "start": 27797.7, + "end": 27798.1, + "probability": 0.3613 + }, + { + "start": 27798.32, + "end": 27799.04, + "probability": 0.9632 + }, + { + "start": 27799.18, + "end": 27799.4, + "probability": 0.4373 + }, + { + "start": 27799.48, + "end": 27801.06, + "probability": 0.8717 + }, + { + "start": 27801.36, + "end": 27802.8, + "probability": 0.6762 + }, + { + "start": 27803.74, + "end": 27805.78, + "probability": 0.8981 + }, + { + "start": 27806.52, + "end": 27807.42, + "probability": 0.986 + }, + { + "start": 27807.46, + "end": 27808.51, + "probability": 0.9507 + }, + { + "start": 27809.8, + "end": 27810.62, + "probability": 0.9768 + }, + { + "start": 27811.16, + "end": 27811.92, + "probability": 0.9829 + }, + { + "start": 27812.2, + "end": 27812.71, + "probability": 0.9722 + }, + { + "start": 27813.0, + "end": 27813.52, + "probability": 0.7334 + }, + { + "start": 27814.16, + "end": 27814.88, + "probability": 0.5907 + }, + { + "start": 27815.32, + "end": 27816.32, + "probability": 0.7502 + }, + { + "start": 27817.6, + "end": 27818.46, + "probability": 0.9258 + }, + { + "start": 27818.74, + "end": 27819.62, + "probability": 0.3378 + }, + { + "start": 27819.7, + "end": 27820.16, + "probability": 0.2577 + }, + { + "start": 27820.16, + "end": 27820.8, + "probability": 0.6335 + }, + { + "start": 27821.02, + "end": 27821.72, + "probability": 0.4518 + }, + { + "start": 27822.72, + "end": 27825.82, + "probability": 0.9849 + }, + { + "start": 27826.66, + "end": 27827.62, + "probability": 0.915 + }, + { + "start": 27827.72, + "end": 27828.74, + "probability": 0.9257 + }, + { + "start": 27829.16, + "end": 27831.2, + "probability": 0.9306 + }, + { + "start": 27831.9, + "end": 27834.06, + "probability": 0.8232 + }, + { + "start": 27835.52, + "end": 27837.92, + "probability": 0.8327 + }, + { + "start": 27839.08, + "end": 27844.72, + "probability": 0.9801 + }, + { + "start": 27845.6, + "end": 27846.76, + "probability": 0.876 + }, + { + "start": 27847.72, + "end": 27848.62, + "probability": 0.9841 + }, + { + "start": 27849.52, + "end": 27853.0, + "probability": 0.9547 + }, + { + "start": 27853.54, + "end": 27855.4, + "probability": 0.9886 + }, + { + "start": 27855.42, + "end": 27861.76, + "probability": 0.8857 + }, + { + "start": 27862.28, + "end": 27864.7, + "probability": 0.6143 + }, + { + "start": 27865.0, + "end": 27867.12, + "probability": 0.8445 + }, + { + "start": 27867.48, + "end": 27869.32, + "probability": 0.9155 + }, + { + "start": 27870.18, + "end": 27870.64, + "probability": 0.5026 + }, + { + "start": 27871.04, + "end": 27874.14, + "probability": 0.7236 + }, + { + "start": 27874.92, + "end": 27876.9, + "probability": 0.8041 + }, + { + "start": 27878.42, + "end": 27879.26, + "probability": 0.9268 + }, + { + "start": 27879.26, + "end": 27880.83, + "probability": 0.9796 + }, + { + "start": 27881.52, + "end": 27882.03, + "probability": 0.3747 + }, + { + "start": 27882.38, + "end": 27882.88, + "probability": 0.6923 + }, + { + "start": 27883.0, + "end": 27883.68, + "probability": 0.7652 + }, + { + "start": 27883.96, + "end": 27884.62, + "probability": 0.6967 + }, + { + "start": 27884.7, + "end": 27885.26, + "probability": 0.519 + }, + { + "start": 27885.32, + "end": 27886.08, + "probability": 0.5419 + }, + { + "start": 27886.18, + "end": 27890.42, + "probability": 0.7551 + }, + { + "start": 27891.32, + "end": 27893.42, + "probability": 0.7534 + }, + { + "start": 27893.8, + "end": 27895.1, + "probability": 0.9699 + }, + { + "start": 27895.54, + "end": 27896.34, + "probability": 0.9893 + }, + { + "start": 27896.58, + "end": 27897.42, + "probability": 0.965 + }, + { + "start": 27898.18, + "end": 27902.1, + "probability": 0.9326 + }, + { + "start": 27902.52, + "end": 27903.36, + "probability": 0.8995 + }, + { + "start": 27903.52, + "end": 27904.54, + "probability": 0.3548 + }, + { + "start": 27904.64, + "end": 27905.48, + "probability": 0.618 + }, + { + "start": 27906.0, + "end": 27908.32, + "probability": 0.8619 + }, + { + "start": 27908.46, + "end": 27911.6, + "probability": 0.9546 + }, + { + "start": 27912.3, + "end": 27916.58, + "probability": 0.9989 + }, + { + "start": 27916.68, + "end": 27917.32, + "probability": 0.1685 + }, + { + "start": 27917.38, + "end": 27918.78, + "probability": 0.8007 + }, + { + "start": 27919.1, + "end": 27919.93, + "probability": 0.9751 + }, + { + "start": 27920.5, + "end": 27922.24, + "probability": 0.9584 + }, + { + "start": 27922.28, + "end": 27923.04, + "probability": 0.3722 + }, + { + "start": 27924.22, + "end": 27925.86, + "probability": 0.9132 + }, + { + "start": 27926.58, + "end": 27926.76, + "probability": 0.5299 + }, + { + "start": 27927.52, + "end": 27929.46, + "probability": 0.7337 + }, + { + "start": 27930.18, + "end": 27931.26, + "probability": 0.6014 + }, + { + "start": 27932.58, + "end": 27935.0, + "probability": 0.9178 + }, + { + "start": 27935.74, + "end": 27938.52, + "probability": 0.9935 + }, + { + "start": 27938.82, + "end": 27939.53, + "probability": 0.6815 + }, + { + "start": 27939.94, + "end": 27941.22, + "probability": 0.7906 + }, + { + "start": 27941.66, + "end": 27943.22, + "probability": 0.7442 + }, + { + "start": 27943.92, + "end": 27945.44, + "probability": 0.9944 + }, + { + "start": 27946.06, + "end": 27948.39, + "probability": 0.8105 + }, + { + "start": 27948.96, + "end": 27950.12, + "probability": 0.9402 + }, + { + "start": 27950.94, + "end": 27952.72, + "probability": 0.991 + }, + { + "start": 27952.98, + "end": 27955.78, + "probability": 0.9664 + }, + { + "start": 27955.94, + "end": 27957.06, + "probability": 0.4871 + }, + { + "start": 27957.08, + "end": 27957.67, + "probability": 0.7427 + }, + { + "start": 27957.95, + "end": 27960.27, + "probability": 0.7023 + }, + { + "start": 27960.62, + "end": 27961.22, + "probability": 0.2279 + }, + { + "start": 27961.26, + "end": 27961.7, + "probability": 0.2944 + }, + { + "start": 27962.16, + "end": 27962.18, + "probability": 0.0023 + }, + { + "start": 27962.2, + "end": 27963.33, + "probability": 0.221 + }, + { + "start": 27964.08, + "end": 27964.9, + "probability": 0.0693 + }, + { + "start": 27964.9, + "end": 27965.92, + "probability": 0.3451 + }, + { + "start": 27966.14, + "end": 27966.88, + "probability": 0.7235 + }, + { + "start": 27966.94, + "end": 27968.06, + "probability": 0.5177 + }, + { + "start": 27968.12, + "end": 27972.26, + "probability": 0.6201 + }, + { + "start": 27973.32, + "end": 27976.7, + "probability": 0.7296 + }, + { + "start": 27976.96, + "end": 27977.52, + "probability": 0.8723 + }, + { + "start": 27978.14, + "end": 27978.84, + "probability": 0.8677 + }, + { + "start": 27979.48, + "end": 27983.36, + "probability": 0.7752 + }, + { + "start": 27984.0, + "end": 27985.98, + "probability": 0.9453 + }, + { + "start": 27986.58, + "end": 27988.92, + "probability": 0.6982 + }, + { + "start": 27989.2, + "end": 27989.8, + "probability": 0.567 + }, + { + "start": 27989.94, + "end": 27991.44, + "probability": 0.8806 + }, + { + "start": 27991.84, + "end": 27997.28, + "probability": 0.7961 + }, + { + "start": 27997.34, + "end": 28001.6, + "probability": 0.8868 + }, + { + "start": 28002.02, + "end": 28004.4, + "probability": 0.7916 + }, + { + "start": 28004.82, + "end": 28006.74, + "probability": 0.8003 + }, + { + "start": 28007.16, + "end": 28009.34, + "probability": 0.932 + }, + { + "start": 28009.8, + "end": 28011.26, + "probability": 0.8707 + }, + { + "start": 28011.34, + "end": 28012.48, + "probability": 0.9381 + }, + { + "start": 28012.72, + "end": 28013.54, + "probability": 0.9831 + }, + { + "start": 28013.82, + "end": 28014.64, + "probability": 0.908 + }, + { + "start": 28014.96, + "end": 28015.42, + "probability": 0.5157 + }, + { + "start": 28015.68, + "end": 28016.32, + "probability": 0.9301 + }, + { + "start": 28016.96, + "end": 28019.58, + "probability": 0.5995 + }, + { + "start": 28019.78, + "end": 28021.33, + "probability": 0.1959 + }, + { + "start": 28023.02, + "end": 28025.36, + "probability": 0.3169 + }, + { + "start": 28025.4, + "end": 28027.52, + "probability": 0.098 + }, + { + "start": 28028.14, + "end": 28028.8, + "probability": 0.3644 + }, + { + "start": 28028.8, + "end": 28029.93, + "probability": 0.1219 + }, + { + "start": 28032.06, + "end": 28032.34, + "probability": 0.4665 + }, + { + "start": 28032.44, + "end": 28033.78, + "probability": 0.4559 + }, + { + "start": 28034.6, + "end": 28035.38, + "probability": 0.3638 + }, + { + "start": 28035.98, + "end": 28038.62, + "probability": 0.9752 + }, + { + "start": 28043.44, + "end": 28046.12, + "probability": 0.6263 + }, + { + "start": 28047.82, + "end": 28049.32, + "probability": 0.8557 + }, + { + "start": 28050.16, + "end": 28053.06, + "probability": 0.9006 + }, + { + "start": 28053.82, + "end": 28056.24, + "probability": 0.9291 + }, + { + "start": 28056.96, + "end": 28061.3, + "probability": 0.7408 + }, + { + "start": 28062.36, + "end": 28063.2, + "probability": 0.8536 + }, + { + "start": 28063.94, + "end": 28065.64, + "probability": 0.8866 + }, + { + "start": 28068.2, + "end": 28074.48, + "probability": 0.7932 + }, + { + "start": 28074.96, + "end": 28077.42, + "probability": 0.9871 + }, + { + "start": 28077.42, + "end": 28080.32, + "probability": 0.9966 + }, + { + "start": 28081.48, + "end": 28082.68, + "probability": 0.6978 + }, + { + "start": 28083.38, + "end": 28086.42, + "probability": 0.9699 + }, + { + "start": 28086.42, + "end": 28092.48, + "probability": 0.9209 + }, + { + "start": 28092.62, + "end": 28094.1, + "probability": 0.9559 + }, + { + "start": 28094.38, + "end": 28094.72, + "probability": 0.9553 + }, + { + "start": 28095.48, + "end": 28096.32, + "probability": 0.8206 + }, + { + "start": 28096.74, + "end": 28097.5, + "probability": 0.5001 + }, + { + "start": 28097.66, + "end": 28098.32, + "probability": 0.9473 + }, + { + "start": 28098.44, + "end": 28101.42, + "probability": 0.9878 + }, + { + "start": 28101.48, + "end": 28104.68, + "probability": 0.9805 + }, + { + "start": 28105.66, + "end": 28105.92, + "probability": 0.2082 + }, + { + "start": 28106.72, + "end": 28109.94, + "probability": 0.9977 + }, + { + "start": 28109.94, + "end": 28112.92, + "probability": 0.9706 + }, + { + "start": 28113.26, + "end": 28115.76, + "probability": 0.9959 + }, + { + "start": 28116.06, + "end": 28120.48, + "probability": 0.867 + }, + { + "start": 28120.76, + "end": 28127.92, + "probability": 0.9756 + }, + { + "start": 28128.5, + "end": 28129.16, + "probability": 0.7549 + }, + { + "start": 28129.56, + "end": 28129.66, + "probability": 0.9111 + }, + { + "start": 28130.12, + "end": 28133.12, + "probability": 0.991 + }, + { + "start": 28133.12, + "end": 28136.12, + "probability": 0.6829 + }, + { + "start": 28137.2, + "end": 28138.78, + "probability": 0.7551 + }, + { + "start": 28139.96, + "end": 28140.46, + "probability": 0.7472 + }, + { + "start": 28140.78, + "end": 28141.5, + "probability": 0.7887 + }, + { + "start": 28141.56, + "end": 28143.22, + "probability": 0.9958 + }, + { + "start": 28143.29, + "end": 28147.34, + "probability": 0.6729 + }, + { + "start": 28147.9, + "end": 28148.9, + "probability": 0.8067 + }, + { + "start": 28149.6, + "end": 28150.2, + "probability": 0.9888 + }, + { + "start": 28150.94, + "end": 28155.46, + "probability": 0.9392 + }, + { + "start": 28156.44, + "end": 28160.6, + "probability": 0.8999 + }, + { + "start": 28161.36, + "end": 28162.0, + "probability": 0.4087 + }, + { + "start": 28162.8, + "end": 28166.46, + "probability": 0.8818 + }, + { + "start": 28166.72, + "end": 28168.14, + "probability": 0.865 + }, + { + "start": 28168.62, + "end": 28169.86, + "probability": 0.6679 + }, + { + "start": 28170.28, + "end": 28172.44, + "probability": 0.9805 + }, + { + "start": 28172.96, + "end": 28174.98, + "probability": 0.999 + }, + { + "start": 28175.6, + "end": 28177.54, + "probability": 0.0898 + }, + { + "start": 28179.08, + "end": 28180.38, + "probability": 0.0613 + }, + { + "start": 28184.02, + "end": 28184.72, + "probability": 0.2045 + }, + { + "start": 28187.24, + "end": 28187.36, + "probability": 0.0149 + }, + { + "start": 28189.53, + "end": 28189.94, + "probability": 0.1003 + }, + { + "start": 28189.94, + "end": 28191.51, + "probability": 0.0741 + }, + { + "start": 28198.11, + "end": 28199.76, + "probability": 0.0164 + }, + { + "start": 28199.82, + "end": 28199.96, + "probability": 0.1255 + }, + { + "start": 28199.96, + "end": 28202.12, + "probability": 0.1827 + }, + { + "start": 28202.68, + "end": 28204.0, + "probability": 0.0575 + }, + { + "start": 28204.06, + "end": 28204.24, + "probability": 0.0644 + }, + { + "start": 28204.26, + "end": 28206.36, + "probability": 0.0596 + }, + { + "start": 28209.92, + "end": 28210.76, + "probability": 0.1676 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28268.0, + "end": 28268.0, + "probability": 0.0 + }, + { + "start": 28269.02, + "end": 28271.36, + "probability": 0.4554 + }, + { + "start": 28271.42, + "end": 28272.2, + "probability": 0.5758 + }, + { + "start": 28272.28, + "end": 28272.4, + "probability": 0.5073 + }, + { + "start": 28272.46, + "end": 28272.88, + "probability": 0.3392 + }, + { + "start": 28272.9, + "end": 28273.42, + "probability": 0.4685 + }, + { + "start": 28273.48, + "end": 28274.71, + "probability": 0.9473 + }, + { + "start": 28275.18, + "end": 28276.44, + "probability": 0.6567 + }, + { + "start": 28276.74, + "end": 28278.62, + "probability": 0.9048 + }, + { + "start": 28278.94, + "end": 28282.16, + "probability": 0.9827 + }, + { + "start": 28282.34, + "end": 28284.58, + "probability": 0.6857 + }, + { + "start": 28285.5, + "end": 28287.2, + "probability": 0.8014 + }, + { + "start": 28287.3, + "end": 28290.74, + "probability": 0.981 + }, + { + "start": 28291.22, + "end": 28294.44, + "probability": 0.8702 + }, + { + "start": 28294.48, + "end": 28296.14, + "probability": 0.7886 + }, + { + "start": 28296.46, + "end": 28298.48, + "probability": 0.8767 + }, + { + "start": 28299.14, + "end": 28299.72, + "probability": 0.3091 + }, + { + "start": 28299.9, + "end": 28303.3, + "probability": 0.9627 + }, + { + "start": 28303.44, + "end": 28303.98, + "probability": 0.3348 + }, + { + "start": 28304.08, + "end": 28304.48, + "probability": 0.7544 + }, + { + "start": 28304.56, + "end": 28305.54, + "probability": 0.8196 + }, + { + "start": 28306.08, + "end": 28306.82, + "probability": 0.9363 + }, + { + "start": 28307.9, + "end": 28310.92, + "probability": 0.9904 + }, + { + "start": 28311.4, + "end": 28313.56, + "probability": 0.9561 + }, + { + "start": 28314.46, + "end": 28314.86, + "probability": 0.7362 + }, + { + "start": 28314.92, + "end": 28315.55, + "probability": 0.916 + }, + { + "start": 28315.96, + "end": 28317.08, + "probability": 0.9751 + }, + { + "start": 28317.58, + "end": 28321.92, + "probability": 0.9917 + }, + { + "start": 28322.66, + "end": 28323.9, + "probability": 0.9673 + }, + { + "start": 28324.64, + "end": 28325.24, + "probability": 0.8657 + }, + { + "start": 28325.42, + "end": 28326.56, + "probability": 0.987 + }, + { + "start": 28326.94, + "end": 28328.96, + "probability": 0.8656 + }, + { + "start": 28329.04, + "end": 28329.39, + "probability": 0.8398 + }, + { + "start": 28330.14, + "end": 28330.86, + "probability": 0.3577 + }, + { + "start": 28331.0, + "end": 28331.56, + "probability": 0.8765 + }, + { + "start": 28331.82, + "end": 28333.2, + "probability": 0.4577 + }, + { + "start": 28333.36, + "end": 28336.38, + "probability": 0.7896 + }, + { + "start": 28336.78, + "end": 28337.46, + "probability": 0.1582 + }, + { + "start": 28338.7, + "end": 28341.04, + "probability": 0.512 + }, + { + "start": 28341.7, + "end": 28344.02, + "probability": 0.9816 + }, + { + "start": 28344.1, + "end": 28346.48, + "probability": 0.7644 + }, + { + "start": 28346.6, + "end": 28348.43, + "probability": 0.7221 + }, + { + "start": 28348.44, + "end": 28349.92, + "probability": 0.5268 + }, + { + "start": 28350.12, + "end": 28350.48, + "probability": 0.8927 + }, + { + "start": 28350.56, + "end": 28350.66, + "probability": 0.5368 + }, + { + "start": 28351.68, + "end": 28353.2, + "probability": 0.6885 + }, + { + "start": 28355.03, + "end": 28357.46, + "probability": 0.7477 + }, + { + "start": 28358.0, + "end": 28360.06, + "probability": 0.9815 + }, + { + "start": 28360.08, + "end": 28361.26, + "probability": 0.7808 + }, + { + "start": 28361.36, + "end": 28362.46, + "probability": 0.9476 + }, + { + "start": 28362.62, + "end": 28362.94, + "probability": 0.2582 + }, + { + "start": 28363.14, + "end": 28363.48, + "probability": 0.6385 + }, + { + "start": 28363.54, + "end": 28366.18, + "probability": 0.9752 + }, + { + "start": 28366.66, + "end": 28366.68, + "probability": 0.0757 + }, + { + "start": 28366.68, + "end": 28369.56, + "probability": 0.9848 + }, + { + "start": 28369.8, + "end": 28371.14, + "probability": 0.9867 + }, + { + "start": 28371.22, + "end": 28371.9, + "probability": 0.8184 + }, + { + "start": 28372.06, + "end": 28372.16, + "probability": 0.6133 + }, + { + "start": 28373.12, + "end": 28375.96, + "probability": 0.9508 + }, + { + "start": 28376.54, + "end": 28377.32, + "probability": 0.6772 + }, + { + "start": 28378.52, + "end": 28378.78, + "probability": 0.1609 + }, + { + "start": 28378.78, + "end": 28378.78, + "probability": 0.3464 + }, + { + "start": 28378.78, + "end": 28379.16, + "probability": 0.3324 + }, + { + "start": 28382.02, + "end": 28382.42, + "probability": 0.4091 + }, + { + "start": 28383.08, + "end": 28384.7, + "probability": 0.8833 + }, + { + "start": 28385.7, + "end": 28386.24, + "probability": 0.3548 + }, + { + "start": 28387.16, + "end": 28389.38, + "probability": 0.2896 + }, + { + "start": 28389.98, + "end": 28390.82, + "probability": 0.378 + }, + { + "start": 28391.46, + "end": 28391.74, + "probability": 0.162 + }, + { + "start": 28402.36, + "end": 28405.88, + "probability": 0.1321 + }, + { + "start": 28414.1, + "end": 28414.88, + "probability": 0.0367 + }, + { + "start": 28417.32, + "end": 28420.26, + "probability": 0.5778 + }, + { + "start": 28422.18, + "end": 28423.55, + "probability": 0.9562 + }, + { + "start": 28424.5, + "end": 28428.84, + "probability": 0.9679 + }, + { + "start": 28429.28, + "end": 28431.82, + "probability": 0.5888 + }, + { + "start": 28433.56, + "end": 28434.76, + "probability": 0.9717 + }, + { + "start": 28434.82, + "end": 28435.06, + "probability": 0.0021 + }, + { + "start": 28438.2, + "end": 28440.2, + "probability": 0.7341 + }, + { + "start": 28441.68, + "end": 28444.9, + "probability": 0.7313 + }, + { + "start": 28445.62, + "end": 28446.98, + "probability": 0.9969 + }, + { + "start": 28447.18, + "end": 28448.74, + "probability": 0.9683 + }, + { + "start": 28449.72, + "end": 28450.68, + "probability": 0.9724 + }, + { + "start": 28452.3, + "end": 28454.52, + "probability": 0.8553 + }, + { + "start": 28455.36, + "end": 28457.73, + "probability": 0.7868 + }, + { + "start": 28458.5, + "end": 28461.62, + "probability": 0.9923 + }, + { + "start": 28462.67, + "end": 28463.985, + "probability": 0.5239 + }, + { + "start": 28464.08, + "end": 28466.0, + "probability": 0.643 + }, + { + "start": 28466.06, + "end": 28468.14, + "probability": 0.7093 + }, + { + "start": 28468.44, + "end": 28470.26, + "probability": 0.5887 + }, + { + "start": 28470.36, + "end": 28471.26, + "probability": 0.9707 + }, + { + "start": 28471.46, + "end": 28471.92, + "probability": 0.2734 + }, + { + "start": 28472.12, + "end": 28473.96, + "probability": 0.7847 + }, + { + "start": 28474.0, + "end": 28477.74, + "probability": 0.5566 + }, + { + "start": 28477.74, + "end": 28478.24, + "probability": 0.0198 + }, + { + "start": 28479.04, + "end": 28480.48, + "probability": 0.0239 + }, + { + "start": 28480.48, + "end": 28481.72, + "probability": 0.3355 + }, + { + "start": 28481.72, + "end": 28484.1, + "probability": 0.9934 + }, + { + "start": 28484.28, + "end": 28484.76, + "probability": 0.7131 + }, + { + "start": 28485.52, + "end": 28487.76, + "probability": 0.9956 + }, + { + "start": 28487.88, + "end": 28488.92, + "probability": 0.4759 + }, + { + "start": 28489.4, + "end": 28491.38, + "probability": 0.5367 + }, + { + "start": 28491.56, + "end": 28493.37, + "probability": 0.6026 + }, + { + "start": 28493.48, + "end": 28494.19, + "probability": 0.8089 + }, + { + "start": 28494.88, + "end": 28495.68, + "probability": 0.7684 + }, + { + "start": 28496.04, + "end": 28498.18, + "probability": 0.9178 + }, + { + "start": 28498.78, + "end": 28499.74, + "probability": 0.8525 + }, + { + "start": 28500.0, + "end": 28500.62, + "probability": 0.8616 + }, + { + "start": 28500.92, + "end": 28507.64, + "probability": 0.4394 + }, + { + "start": 28508.56, + "end": 28508.56, + "probability": 0.0766 + }, + { + "start": 28508.56, + "end": 28510.28, + "probability": 0.9132 + }, + { + "start": 28510.34, + "end": 28511.16, + "probability": 0.8145 + }, + { + "start": 28511.54, + "end": 28511.95, + "probability": 0.16 + }, + { + "start": 28512.28, + "end": 28514.64, + "probability": 0.1482 + }, + { + "start": 28514.68, + "end": 28515.2, + "probability": 0.4643 + }, + { + "start": 28515.34, + "end": 28515.98, + "probability": 0.6653 + }, + { + "start": 28518.2, + "end": 28520.02, + "probability": 0.0662 + }, + { + "start": 28528.88, + "end": 28530.26, + "probability": 0.0993 + }, + { + "start": 28533.14, + "end": 28534.24, + "probability": 0.0273 + }, + { + "start": 28534.24, + "end": 28536.18, + "probability": 0.0489 + }, + { + "start": 28536.38, + "end": 28539.28, + "probability": 0.3785 + }, + { + "start": 28539.64, + "end": 28540.14, + "probability": 0.008 + }, + { + "start": 28542.66, + "end": 28543.66, + "probability": 0.0469 + }, + { + "start": 28543.66, + "end": 28544.5, + "probability": 0.2016 + }, + { + "start": 28544.86, + "end": 28544.86, + "probability": 0.1433 + }, + { + "start": 28546.0, + "end": 28546.34, + "probability": 0.1483 + }, + { + "start": 28546.4, + "end": 28548.0, + "probability": 0.2559 + }, + { + "start": 28548.76, + "end": 28550.1, + "probability": 0.0308 + }, + { + "start": 28550.48, + "end": 28550.88, + "probability": 0.164 + }, + { + "start": 28550.88, + "end": 28550.92, + "probability": 0.0812 + }, + { + "start": 28551.36, + "end": 28552.28, + "probability": 0.1368 + }, + { + "start": 28553.14, + "end": 28553.48, + "probability": 0.0095 + }, + { + "start": 28554.62, + "end": 28555.64, + "probability": 0.0522 + }, + { + "start": 28555.64, + "end": 28556.38, + "probability": 0.2029 + }, + { + "start": 28556.38, + "end": 28557.48, + "probability": 0.0491 + }, + { + "start": 28557.48, + "end": 28558.06, + "probability": 0.5008 + }, + { + "start": 28558.18, + "end": 28562.55, + "probability": 0.1449 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.0, + "end": 28582.0, + "probability": 0.0 + }, + { + "start": 28582.44, + "end": 28582.44, + "probability": 0.0825 + }, + { + "start": 28582.44, + "end": 28582.94, + "probability": 0.5752 + }, + { + "start": 28583.02, + "end": 28584.2, + "probability": 0.302 + }, + { + "start": 28584.2, + "end": 28584.46, + "probability": 0.6137 + }, + { + "start": 28584.46, + "end": 28585.58, + "probability": 0.734 + }, + { + "start": 28586.16, + "end": 28587.64, + "probability": 0.0555 + }, + { + "start": 28588.89, + "end": 28592.44, + "probability": 0.5276 + }, + { + "start": 28592.8, + "end": 28595.6, + "probability": 0.9318 + }, + { + "start": 28596.74, + "end": 28597.5, + "probability": 0.7516 + }, + { + "start": 28598.02, + "end": 28598.9, + "probability": 0.8825 + }, + { + "start": 28599.06, + "end": 28599.82, + "probability": 0.8122 + }, + { + "start": 28600.08, + "end": 28601.2, + "probability": 0.5521 + }, + { + "start": 28601.56, + "end": 28603.2, + "probability": 0.7891 + }, + { + "start": 28603.3, + "end": 28605.64, + "probability": 0.8566 + }, + { + "start": 28607.1, + "end": 28608.38, + "probability": 0.9956 + }, + { + "start": 28609.1, + "end": 28609.3, + "probability": 0.7055 + }, + { + "start": 28609.92, + "end": 28610.52, + "probability": 0.6984 + }, + { + "start": 28610.68, + "end": 28613.29, + "probability": 0.8719 + }, + { + "start": 28614.56, + "end": 28615.78, + "probability": 0.979 + }, + { + "start": 28616.1, + "end": 28621.0, + "probability": 0.9674 + }, + { + "start": 28621.7, + "end": 28624.26, + "probability": 0.998 + }, + { + "start": 28624.34, + "end": 28625.28, + "probability": 0.9934 + }, + { + "start": 28625.42, + "end": 28626.63, + "probability": 0.8839 + }, + { + "start": 28626.78, + "end": 28627.18, + "probability": 0.5757 + }, + { + "start": 28627.76, + "end": 28631.22, + "probability": 0.8423 + }, + { + "start": 28631.28, + "end": 28633.04, + "probability": 0.8862 + }, + { + "start": 28633.38, + "end": 28634.6, + "probability": 0.5937 + }, + { + "start": 28635.28, + "end": 28637.88, + "probability": 0.9272 + }, + { + "start": 28637.98, + "end": 28641.02, + "probability": 0.9006 + }, + { + "start": 28641.28, + "end": 28643.72, + "probability": 0.8837 + }, + { + "start": 28643.92, + "end": 28645.78, + "probability": 0.6135 + }, + { + "start": 28646.28, + "end": 28648.7, + "probability": 0.9878 + }, + { + "start": 28649.02, + "end": 28651.5, + "probability": 0.7688 + }, + { + "start": 28651.66, + "end": 28652.02, + "probability": 0.644 + }, + { + "start": 28652.12, + "end": 28654.14, + "probability": 0.9907 + }, + { + "start": 28654.34, + "end": 28654.47, + "probability": 0.0542 + }, + { + "start": 28654.94, + "end": 28655.66, + "probability": 0.4976 + }, + { + "start": 28655.84, + "end": 28656.46, + "probability": 0.6703 + }, + { + "start": 28656.5, + "end": 28657.88, + "probability": 0.4693 + }, + { + "start": 28658.04, + "end": 28658.94, + "probability": 0.6451 + }, + { + "start": 28659.58, + "end": 28661.34, + "probability": 0.9853 + }, + { + "start": 28661.36, + "end": 28666.32, + "probability": 0.959 + }, + { + "start": 28667.22, + "end": 28671.04, + "probability": 0.8178 + }, + { + "start": 28671.14, + "end": 28677.08, + "probability": 0.9894 + }, + { + "start": 28677.26, + "end": 28678.06, + "probability": 0.9024 + }, + { + "start": 28678.98, + "end": 28680.86, + "probability": 0.9585 + }, + { + "start": 28682.02, + "end": 28683.0, + "probability": 0.7019 + }, + { + "start": 28683.46, + "end": 28685.4, + "probability": 0.7273 + }, + { + "start": 28685.4, + "end": 28688.38, + "probability": 0.999 + }, + { + "start": 28689.14, + "end": 28691.16, + "probability": 0.9915 + }, + { + "start": 28691.7, + "end": 28693.7, + "probability": 0.9733 + }, + { + "start": 28694.24, + "end": 28696.68, + "probability": 0.8849 + }, + { + "start": 28697.2, + "end": 28700.74, + "probability": 0.7341 + }, + { + "start": 28700.94, + "end": 28702.08, + "probability": 0.6901 + }, + { + "start": 28702.72, + "end": 28703.38, + "probability": 0.6785 + }, + { + "start": 28704.7, + "end": 28705.2, + "probability": 0.6779 + }, + { + "start": 28705.44, + "end": 28706.1, + "probability": 0.8018 + }, + { + "start": 28706.16, + "end": 28708.74, + "probability": 0.6864 + }, + { + "start": 28709.66, + "end": 28711.64, + "probability": 0.5873 + }, + { + "start": 28712.34, + "end": 28712.7, + "probability": 0.8843 + }, + { + "start": 28712.84, + "end": 28718.5, + "probability": 0.9049 + }, + { + "start": 28718.6, + "end": 28720.17, + "probability": 0.6582 + }, + { + "start": 28720.74, + "end": 28721.58, + "probability": 0.9883 + }, + { + "start": 28721.68, + "end": 28722.24, + "probability": 0.8 + }, + { + "start": 28722.32, + "end": 28722.53, + "probability": 0.9297 + }, + { + "start": 28722.82, + "end": 28723.58, + "probability": 0.7288 + }, + { + "start": 28723.64, + "end": 28723.96, + "probability": 0.4745 + }, + { + "start": 28724.32, + "end": 28725.86, + "probability": 0.9878 + }, + { + "start": 28726.02, + "end": 28728.92, + "probability": 0.9945 + }, + { + "start": 28729.64, + "end": 28731.68, + "probability": 0.9139 + }, + { + "start": 28731.76, + "end": 28733.64, + "probability": 0.9956 + }, + { + "start": 28733.8, + "end": 28736.86, + "probability": 0.9813 + }, + { + "start": 28737.24, + "end": 28737.96, + "probability": 0.8295 + }, + { + "start": 28738.48, + "end": 28739.79, + "probability": 0.8104 + }, + { + "start": 28741.64, + "end": 28741.74, + "probability": 0.798 + }, + { + "start": 28742.75, + "end": 28744.8, + "probability": 0.927 + }, + { + "start": 28744.92, + "end": 28746.72, + "probability": 0.9876 + }, + { + "start": 28747.28, + "end": 28750.08, + "probability": 0.804 + }, + { + "start": 28750.12, + "end": 28755.08, + "probability": 0.9858 + }, + { + "start": 28755.12, + "end": 28755.88, + "probability": 0.8199 + }, + { + "start": 28756.32, + "end": 28761.44, + "probability": 0.8059 + }, + { + "start": 28761.88, + "end": 28762.32, + "probability": 0.5824 + }, + { + "start": 28762.5, + "end": 28764.04, + "probability": 0.9918 + }, + { + "start": 28764.54, + "end": 28766.72, + "probability": 0.9492 + }, + { + "start": 28767.14, + "end": 28769.32, + "probability": 0.8994 + }, + { + "start": 28769.66, + "end": 28771.74, + "probability": 0.9722 + }, + { + "start": 28772.2, + "end": 28774.74, + "probability": 0.6466 + }, + { + "start": 28774.98, + "end": 28775.96, + "probability": 0.9344 + }, + { + "start": 28776.3, + "end": 28777.26, + "probability": 0.97 + }, + { + "start": 28778.06, + "end": 28780.7, + "probability": 0.9493 + }, + { + "start": 28780.72, + "end": 28781.44, + "probability": 0.9924 + }, + { + "start": 28781.88, + "end": 28782.96, + "probability": 0.616 + }, + { + "start": 28783.28, + "end": 28784.92, + "probability": 0.5117 + }, + { + "start": 28785.14, + "end": 28786.62, + "probability": 0.9341 + }, + { + "start": 28786.8, + "end": 28787.48, + "probability": 0.8117 + }, + { + "start": 28787.48, + "end": 28787.64, + "probability": 0.4349 + }, + { + "start": 28787.72, + "end": 28787.82, + "probability": 0.407 + }, + { + "start": 28787.86, + "end": 28789.32, + "probability": 0.8413 + }, + { + "start": 28790.18, + "end": 28792.2, + "probability": 0.8117 + }, + { + "start": 28793.56, + "end": 28796.08, + "probability": 0.1478 + }, + { + "start": 28796.16, + "end": 28796.57, + "probability": 0.0376 + }, + { + "start": 28797.76, + "end": 28798.46, + "probability": 0.0614 + }, + { + "start": 28798.56, + "end": 28799.34, + "probability": 0.1964 + }, + { + "start": 28799.36, + "end": 28800.28, + "probability": 0.8385 + }, + { + "start": 28800.42, + "end": 28803.28, + "probability": 0.7924 + }, + { + "start": 28803.42, + "end": 28805.18, + "probability": 0.535 + }, + { + "start": 28805.68, + "end": 28806.76, + "probability": 0.7782 + }, + { + "start": 28806.76, + "end": 28807.36, + "probability": 0.2139 + }, + { + "start": 28807.36, + "end": 28808.78, + "probability": 0.5564 + }, + { + "start": 28812.46, + "end": 28814.36, + "probability": 0.474 + }, + { + "start": 28814.52, + "end": 28815.64, + "probability": 0.8134 + }, + { + "start": 28816.32, + "end": 28818.8, + "probability": 0.7119 + }, + { + "start": 28819.4, + "end": 28821.18, + "probability": 0.7305 + }, + { + "start": 28822.14, + "end": 28828.2, + "probability": 0.9551 + }, + { + "start": 28829.0, + "end": 28829.88, + "probability": 0.9897 + }, + { + "start": 28830.8, + "end": 28834.56, + "probability": 0.838 + }, + { + "start": 28835.28, + "end": 28839.34, + "probability": 0.9851 + }, + { + "start": 28839.34, + "end": 28843.36, + "probability": 0.9856 + }, + { + "start": 28843.36, + "end": 28846.18, + "probability": 0.95 + }, + { + "start": 28846.6, + "end": 28847.32, + "probability": 0.8173 + }, + { + "start": 28847.86, + "end": 28848.38, + "probability": 0.6643 + }, + { + "start": 28848.92, + "end": 28852.3, + "probability": 0.7766 + }, + { + "start": 28852.98, + "end": 28854.72, + "probability": 0.9856 + }, + { + "start": 28854.88, + "end": 28856.08, + "probability": 0.6195 + }, + { + "start": 28856.52, + "end": 28856.62, + "probability": 0.0637 + }, + { + "start": 28856.74, + "end": 28856.74, + "probability": 0.4846 + }, + { + "start": 28856.74, + "end": 28856.78, + "probability": 0.0604 + }, + { + "start": 28856.88, + "end": 28857.36, + "probability": 0.2552 + }, + { + "start": 28857.4, + "end": 28859.08, + "probability": 0.7671 + }, + { + "start": 28859.18, + "end": 28860.52, + "probability": 0.9658 + }, + { + "start": 28860.56, + "end": 28863.42, + "probability": 0.9557 + }, + { + "start": 28863.58, + "end": 28865.78, + "probability": 0.8315 + }, + { + "start": 28866.94, + "end": 28872.22, + "probability": 0.9929 + }, + { + "start": 28873.04, + "end": 28876.32, + "probability": 0.779 + }, + { + "start": 28876.72, + "end": 28879.09, + "probability": 0.8849 + }, + { + "start": 28880.24, + "end": 28881.69, + "probability": 0.7957 + }, + { + "start": 28882.08, + "end": 28886.38, + "probability": 0.5298 + }, + { + "start": 28887.1, + "end": 28887.26, + "probability": 0.0333 + }, + { + "start": 28887.26, + "end": 28887.44, + "probability": 0.1365 + }, + { + "start": 28887.44, + "end": 28887.44, + "probability": 0.3164 + }, + { + "start": 28887.44, + "end": 28888.07, + "probability": 0.2771 + }, + { + "start": 28889.74, + "end": 28893.42, + "probability": 0.7631 + }, + { + "start": 28893.56, + "end": 28894.12, + "probability": 0.9109 + }, + { + "start": 28895.46, + "end": 28898.42, + "probability": 0.8276 + }, + { + "start": 28898.9, + "end": 28899.68, + "probability": 0.5743 + }, + { + "start": 28899.84, + "end": 28900.74, + "probability": 0.7673 + }, + { + "start": 28901.46, + "end": 28903.42, + "probability": 0.6723 + }, + { + "start": 28905.2, + "end": 28907.56, + "probability": 0.059 + }, + { + "start": 28908.7, + "end": 28909.3, + "probability": 0.0421 + }, + { + "start": 28909.3, + "end": 28909.3, + "probability": 0.0283 + }, + { + "start": 28909.3, + "end": 28910.78, + "probability": 0.0614 + }, + { + "start": 28910.78, + "end": 28913.14, + "probability": 0.957 + }, + { + "start": 28913.64, + "end": 28916.64, + "probability": 0.8633 + }, + { + "start": 28916.96, + "end": 28917.9, + "probability": 0.9412 + }, + { + "start": 28918.6, + "end": 28918.6, + "probability": 0.0888 + }, + { + "start": 28918.6, + "end": 28918.6, + "probability": 0.0146 + }, + { + "start": 28918.6, + "end": 28923.22, + "probability": 0.5882 + }, + { + "start": 28923.4, + "end": 28924.0, + "probability": 0.3776 + }, + { + "start": 28924.0, + "end": 28925.38, + "probability": 0.8053 + }, + { + "start": 28925.4, + "end": 28927.02, + "probability": 0.5954 + }, + { + "start": 28927.36, + "end": 28928.46, + "probability": 0.5363 + }, + { + "start": 28928.56, + "end": 28930.96, + "probability": 0.8219 + }, + { + "start": 28931.3, + "end": 28932.49, + "probability": 0.6404 + }, + { + "start": 28932.86, + "end": 28935.14, + "probability": 0.4648 + }, + { + "start": 28935.14, + "end": 28938.66, + "probability": 0.1097 + }, + { + "start": 28939.48, + "end": 28940.12, + "probability": 0.2596 + }, + { + "start": 28941.84, + "end": 28944.84, + "probability": 0.0307 + }, + { + "start": 28945.62, + "end": 28946.32, + "probability": 0.3026 + }, + { + "start": 28946.7, + "end": 28948.36, + "probability": 0.567 + }, + { + "start": 28950.78, + "end": 28952.32, + "probability": 0.338 + }, + { + "start": 28952.32, + "end": 28952.32, + "probability": 0.1971 + }, + { + "start": 28952.32, + "end": 28952.32, + "probability": 0.0311 + }, + { + "start": 28952.32, + "end": 28952.32, + "probability": 0.0203 + }, + { + "start": 28952.32, + "end": 28952.32, + "probability": 0.1927 + }, + { + "start": 28952.32, + "end": 28952.78, + "probability": 0.2161 + }, + { + "start": 28952.86, + "end": 28953.2, + "probability": 0.397 + }, + { + "start": 28953.26, + "end": 28954.17, + "probability": 0.5728 + }, + { + "start": 28956.33, + "end": 28957.88, + "probability": 0.5715 + }, + { + "start": 28958.4, + "end": 28961.16, + "probability": 0.6987 + }, + { + "start": 28961.81, + "end": 28964.5, + "probability": 0.4854 + }, + { + "start": 28964.98, + "end": 28967.32, + "probability": 0.7 + }, + { + "start": 28967.58, + "end": 28967.96, + "probability": 0.4142 + }, + { + "start": 28967.96, + "end": 28967.96, + "probability": 0.4549 + }, + { + "start": 28967.96, + "end": 28969.9, + "probability": 0.9744 + }, + { + "start": 28971.3, + "end": 28973.34, + "probability": 0.999 + }, + { + "start": 28976.52, + "end": 28980.24, + "probability": 0.796 + }, + { + "start": 28981.46, + "end": 28987.42, + "probability": 0.9899 + }, + { + "start": 28987.42, + "end": 28992.34, + "probability": 0.9807 + }, + { + "start": 28994.1, + "end": 28998.28, + "probability": 0.9894 + }, + { + "start": 28999.72, + "end": 29002.16, + "probability": 0.8579 + }, + { + "start": 29003.26, + "end": 29005.34, + "probability": 0.9634 + }, + { + "start": 29006.1, + "end": 29008.9, + "probability": 0.9651 + }, + { + "start": 29011.04, + "end": 29014.96, + "probability": 0.9774 + }, + { + "start": 29016.18, + "end": 29016.88, + "probability": 0.6793 + }, + { + "start": 29017.88, + "end": 29019.74, + "probability": 0.9972 + }, + { + "start": 29020.52, + "end": 29021.83, + "probability": 0.5444 + }, + { + "start": 29023.08, + "end": 29027.1, + "probability": 0.9442 + }, + { + "start": 29029.38, + "end": 29032.4, + "probability": 0.9968 + }, + { + "start": 29033.36, + "end": 29038.12, + "probability": 0.9819 + }, + { + "start": 29038.12, + "end": 29042.08, + "probability": 0.9828 + }, + { + "start": 29042.78, + "end": 29046.82, + "probability": 0.9666 + }, + { + "start": 29047.82, + "end": 29049.76, + "probability": 0.809 + }, + { + "start": 29050.52, + "end": 29052.5, + "probability": 0.9949 + }, + { + "start": 29053.04, + "end": 29056.6, + "probability": 0.8105 + }, + { + "start": 29057.2, + "end": 29064.06, + "probability": 0.9955 + }, + { + "start": 29064.46, + "end": 29065.36, + "probability": 0.7235 + }, + { + "start": 29065.52, + "end": 29068.56, + "probability": 0.981 + }, + { + "start": 29069.84, + "end": 29073.1, + "probability": 0.9867 + }, + { + "start": 29073.11, + "end": 29077.5, + "probability": 0.9941 + }, + { + "start": 29077.66, + "end": 29079.94, + "probability": 0.9982 + }, + { + "start": 29080.38, + "end": 29082.21, + "probability": 0.9917 + }, + { + "start": 29083.04, + "end": 29088.54, + "probability": 0.9134 + }, + { + "start": 29089.14, + "end": 29089.8, + "probability": 0.6529 + }, + { + "start": 29089.92, + "end": 29092.98, + "probability": 0.9812 + }, + { + "start": 29093.32, + "end": 29094.04, + "probability": 0.7828 + }, + { + "start": 29095.22, + "end": 29098.98, + "probability": 0.9929 + }, + { + "start": 29098.98, + "end": 29104.22, + "probability": 0.7448 + }, + { + "start": 29104.74, + "end": 29109.78, + "probability": 0.8236 + }, + { + "start": 29110.44, + "end": 29113.94, + "probability": 0.9929 + }, + { + "start": 29114.7, + "end": 29118.52, + "probability": 0.8355 + }, + { + "start": 29119.08, + "end": 29124.34, + "probability": 0.9603 + }, + { + "start": 29124.9, + "end": 29128.5, + "probability": 0.9346 + }, + { + "start": 29128.64, + "end": 29130.12, + "probability": 0.8211 + }, + { + "start": 29130.44, + "end": 29134.24, + "probability": 0.9419 + }, + { + "start": 29134.8, + "end": 29136.5, + "probability": 0.864 + }, + { + "start": 29138.48, + "end": 29141.24, + "probability": 0.9032 + }, + { + "start": 29141.78, + "end": 29144.22, + "probability": 0.9559 + }, + { + "start": 29144.84, + "end": 29146.42, + "probability": 0.9164 + }, + { + "start": 29147.02, + "end": 29148.4, + "probability": 0.9827 + }, + { + "start": 29148.96, + "end": 29152.04, + "probability": 0.8992 + }, + { + "start": 29152.96, + "end": 29156.04, + "probability": 0.9734 + }, + { + "start": 29156.6, + "end": 29159.3, + "probability": 0.8669 + }, + { + "start": 29159.3, + "end": 29162.52, + "probability": 0.9359 + }, + { + "start": 29163.5, + "end": 29165.74, + "probability": 0.9757 + }, + { + "start": 29166.12, + "end": 29167.08, + "probability": 0.6592 + }, + { + "start": 29167.3, + "end": 29168.1, + "probability": 0.9235 + }, + { + "start": 29168.82, + "end": 29169.6, + "probability": 0.9045 + }, + { + "start": 29170.54, + "end": 29170.92, + "probability": 0.7042 + }, + { + "start": 29171.96, + "end": 29175.44, + "probability": 0.7952 + }, + { + "start": 29176.38, + "end": 29178.18, + "probability": 0.6677 + }, + { + "start": 29179.98, + "end": 29181.98, + "probability": 0.927 + }, + { + "start": 29183.04, + "end": 29185.74, + "probability": 0.9905 + }, + { + "start": 29185.88, + "end": 29189.32, + "probability": 0.9909 + }, + { + "start": 29189.76, + "end": 29193.12, + "probability": 0.9914 + }, + { + "start": 29193.64, + "end": 29194.7, + "probability": 0.7282 + }, + { + "start": 29195.06, + "end": 29196.16, + "probability": 0.9799 + }, + { + "start": 29196.9, + "end": 29200.62, + "probability": 0.9946 + }, + { + "start": 29201.64, + "end": 29203.23, + "probability": 0.9703 + }, + { + "start": 29203.5, + "end": 29204.86, + "probability": 0.9798 + }, + { + "start": 29206.14, + "end": 29208.72, + "probability": 0.99 + }, + { + "start": 29209.74, + "end": 29212.7, + "probability": 0.9062 + }, + { + "start": 29212.7, + "end": 29215.68, + "probability": 0.9909 + }, + { + "start": 29216.28, + "end": 29219.22, + "probability": 0.9471 + }, + { + "start": 29220.36, + "end": 29222.68, + "probability": 0.7835 + }, + { + "start": 29225.0, + "end": 29228.3, + "probability": 0.9897 + }, + { + "start": 29228.8, + "end": 29231.36, + "probability": 0.9948 + }, + { + "start": 29232.02, + "end": 29234.16, + "probability": 0.8745 + }, + { + "start": 29234.74, + "end": 29240.24, + "probability": 0.9719 + }, + { + "start": 29240.76, + "end": 29243.26, + "probability": 0.9172 + }, + { + "start": 29244.18, + "end": 29247.94, + "probability": 0.9664 + }, + { + "start": 29247.94, + "end": 29253.6, + "probability": 0.9972 + }, + { + "start": 29253.6, + "end": 29257.56, + "probability": 0.999 + }, + { + "start": 29258.3, + "end": 29259.42, + "probability": 0.7748 + }, + { + "start": 29259.6, + "end": 29260.16, + "probability": 0.7302 + }, + { + "start": 29260.54, + "end": 29264.84, + "probability": 0.954 + }, + { + "start": 29265.04, + "end": 29265.58, + "probability": 0.6663 + }, + { + "start": 29265.8, + "end": 29266.28, + "probability": 0.8013 + }, + { + "start": 29266.7, + "end": 29268.86, + "probability": 0.7098 + }, + { + "start": 29268.94, + "end": 29271.68, + "probability": 0.9241 + }, + { + "start": 29274.98, + "end": 29276.06, + "probability": 0.0509 + }, + { + "start": 29289.78, + "end": 29289.78, + "probability": 0.0164 + }, + { + "start": 29289.78, + "end": 29289.78, + "probability": 0.0923 + }, + { + "start": 29289.78, + "end": 29289.78, + "probability": 0.1532 + }, + { + "start": 29289.78, + "end": 29289.78, + "probability": 0.0837 + }, + { + "start": 29289.78, + "end": 29289.9, + "probability": 0.1086 + }, + { + "start": 29320.88, + "end": 29324.32, + "probability": 0.9678 + }, + { + "start": 29325.7, + "end": 29327.46, + "probability": 0.5704 + }, + { + "start": 29329.71, + "end": 29330.76, + "probability": 0.5918 + }, + { + "start": 29333.18, + "end": 29335.66, + "probability": 0.9814 + }, + { + "start": 29335.66, + "end": 29338.2, + "probability": 0.9901 + }, + { + "start": 29339.64, + "end": 29340.41, + "probability": 0.8704 + }, + { + "start": 29341.6, + "end": 29342.92, + "probability": 0.7634 + }, + { + "start": 29344.06, + "end": 29346.36, + "probability": 0.9873 + }, + { + "start": 29346.84, + "end": 29348.94, + "probability": 0.6561 + }, + { + "start": 29349.28, + "end": 29350.6, + "probability": 0.7676 + }, + { + "start": 29351.66, + "end": 29356.02, + "probability": 0.9344 + }, + { + "start": 29357.12, + "end": 29360.9, + "probability": 0.9836 + }, + { + "start": 29361.38, + "end": 29362.64, + "probability": 0.8012 + }, + { + "start": 29363.52, + "end": 29365.08, + "probability": 0.9954 + }, + { + "start": 29366.54, + "end": 29367.66, + "probability": 0.8748 + }, + { + "start": 29368.32, + "end": 29369.78, + "probability": 0.9929 + }, + { + "start": 29370.34, + "end": 29374.32, + "probability": 0.8615 + }, + { + "start": 29374.48, + "end": 29377.74, + "probability": 0.999 + }, + { + "start": 29378.7, + "end": 29380.3, + "probability": 0.9021 + }, + { + "start": 29381.08, + "end": 29381.66, + "probability": 0.9554 + }, + { + "start": 29382.72, + "end": 29385.4, + "probability": 0.957 + }, + { + "start": 29386.26, + "end": 29389.62, + "probability": 0.9958 + }, + { + "start": 29391.78, + "end": 29394.2, + "probability": 0.8829 + }, + { + "start": 29396.3, + "end": 29397.26, + "probability": 0.4683 + }, + { + "start": 29398.58, + "end": 29400.42, + "probability": 0.9844 + }, + { + "start": 29401.06, + "end": 29402.72, + "probability": 0.9314 + }, + { + "start": 29403.54, + "end": 29405.36, + "probability": 0.6459 + }, + { + "start": 29406.08, + "end": 29407.48, + "probability": 0.848 + }, + { + "start": 29408.3, + "end": 29409.96, + "probability": 0.9933 + }, + { + "start": 29410.74, + "end": 29411.49, + "probability": 0.9749 + }, + { + "start": 29412.5, + "end": 29414.18, + "probability": 0.9826 + }, + { + "start": 29414.18, + "end": 29418.82, + "probability": 0.8395 + }, + { + "start": 29420.1, + "end": 29421.32, + "probability": 0.9504 + }, + { + "start": 29422.52, + "end": 29423.86, + "probability": 0.8512 + }, + { + "start": 29424.86, + "end": 29425.78, + "probability": 0.998 + }, + { + "start": 29427.36, + "end": 29430.42, + "probability": 0.7467 + }, + { + "start": 29431.76, + "end": 29435.1, + "probability": 0.6636 + }, + { + "start": 29436.62, + "end": 29437.4, + "probability": 0.6669 + }, + { + "start": 29437.66, + "end": 29437.92, + "probability": 0.2593 + }, + { + "start": 29438.04, + "end": 29438.86, + "probability": 0.8909 + }, + { + "start": 29438.92, + "end": 29440.42, + "probability": 0.8977 + }, + { + "start": 29440.54, + "end": 29441.0, + "probability": 0.759 + }, + { + "start": 29442.3, + "end": 29442.78, + "probability": 0.9137 + }, + { + "start": 29443.44, + "end": 29448.0, + "probability": 0.969 + }, + { + "start": 29449.24, + "end": 29451.48, + "probability": 0.9695 + }, + { + "start": 29452.06, + "end": 29453.14, + "probability": 0.8459 + }, + { + "start": 29453.92, + "end": 29459.22, + "probability": 0.9984 + }, + { + "start": 29459.8, + "end": 29462.68, + "probability": 0.9731 + }, + { + "start": 29462.68, + "end": 29463.52, + "probability": 0.7236 + }, + { + "start": 29463.82, + "end": 29465.02, + "probability": 0.8173 + }, + { + "start": 29465.68, + "end": 29467.02, + "probability": 0.9636 + }, + { + "start": 29468.6, + "end": 29471.7, + "probability": 0.8666 + }, + { + "start": 29473.74, + "end": 29476.26, + "probability": 0.9723 + }, + { + "start": 29477.2, + "end": 29477.98, + "probability": 0.7765 + }, + { + "start": 29479.16, + "end": 29479.34, + "probability": 0.6375 + }, + { + "start": 29479.56, + "end": 29483.46, + "probability": 0.8662 + }, + { + "start": 29483.92, + "end": 29485.06, + "probability": 0.6411 + }, + { + "start": 29485.94, + "end": 29486.74, + "probability": 0.8517 + }, + { + "start": 29487.4, + "end": 29488.52, + "probability": 0.7141 + }, + { + "start": 29489.24, + "end": 29492.18, + "probability": 0.6626 + }, + { + "start": 29493.22, + "end": 29494.2, + "probability": 0.5266 + }, + { + "start": 29494.52, + "end": 29495.1, + "probability": 0.8125 + }, + { + "start": 29495.5, + "end": 29497.16, + "probability": 0.8477 + }, + { + "start": 29498.0, + "end": 29500.72, + "probability": 0.9049 + }, + { + "start": 29501.52, + "end": 29505.0, + "probability": 0.9966 + }, + { + "start": 29505.26, + "end": 29507.1, + "probability": 0.9609 + }, + { + "start": 29507.48, + "end": 29508.12, + "probability": 0.7582 + }, + { + "start": 29508.7, + "end": 29510.12, + "probability": 0.9142 + }, + { + "start": 29510.94, + "end": 29513.49, + "probability": 0.7588 + }, + { + "start": 29514.94, + "end": 29515.49, + "probability": 0.9709 + }, + { + "start": 29516.96, + "end": 29519.92, + "probability": 0.9554 + }, + { + "start": 29520.8, + "end": 29523.66, + "probability": 0.223 + }, + { + "start": 29524.36, + "end": 29525.76, + "probability": 0.6444 + }, + { + "start": 29526.72, + "end": 29529.24, + "probability": 0.8444 + }, + { + "start": 29529.4, + "end": 29530.02, + "probability": 0.6717 + }, + { + "start": 29530.66, + "end": 29532.4, + "probability": 0.9956 + }, + { + "start": 29534.2, + "end": 29536.56, + "probability": 0.801 + }, + { + "start": 29537.0, + "end": 29539.26, + "probability": 0.9868 + }, + { + "start": 29539.72, + "end": 29539.82, + "probability": 0.6122 + }, + { + "start": 29540.44, + "end": 29541.9, + "probability": 0.9857 + }, + { + "start": 29542.12, + "end": 29545.76, + "probability": 0.9115 + }, + { + "start": 29546.06, + "end": 29547.34, + "probability": 0.9863 + }, + { + "start": 29547.66, + "end": 29548.8, + "probability": 0.9534 + }, + { + "start": 29549.28, + "end": 29551.16, + "probability": 0.9451 + }, + { + "start": 29551.64, + "end": 29552.93, + "probability": 0.4241 + }, + { + "start": 29554.2, + "end": 29555.22, + "probability": 0.8623 + }, + { + "start": 29556.22, + "end": 29560.66, + "probability": 0.8295 + }, + { + "start": 29560.66, + "end": 29561.9, + "probability": 0.1046 + }, + { + "start": 29562.08, + "end": 29563.6, + "probability": 0.1998 + }, + { + "start": 29563.94, + "end": 29564.36, + "probability": 0.5819 + }, + { + "start": 29564.74, + "end": 29566.96, + "probability": 0.4468 + }, + { + "start": 29567.05, + "end": 29568.72, + "probability": 0.7158 + }, + { + "start": 29568.74, + "end": 29569.76, + "probability": 0.6591 + }, + { + "start": 29570.18, + "end": 29572.62, + "probability": 0.9795 + }, + { + "start": 29573.38, + "end": 29575.62, + "probability": 0.9751 + }, + { + "start": 29576.88, + "end": 29581.04, + "probability": 0.8967 + }, + { + "start": 29581.76, + "end": 29583.26, + "probability": 0.7973 + }, + { + "start": 29584.02, + "end": 29585.1, + "probability": 0.7821 + }, + { + "start": 29585.68, + "end": 29586.96, + "probability": 0.8939 + }, + { + "start": 29587.42, + "end": 29589.62, + "probability": 0.9948 + }, + { + "start": 29589.94, + "end": 29590.96, + "probability": 0.9827 + }, + { + "start": 29591.38, + "end": 29591.86, + "probability": 0.0353 + }, + { + "start": 29591.86, + "end": 29593.06, + "probability": 0.249 + }, + { + "start": 29593.38, + "end": 29593.8, + "probability": 0.0227 + }, + { + "start": 29594.14, + "end": 29595.36, + "probability": 0.991 + }, + { + "start": 29595.62, + "end": 29596.6, + "probability": 0.931 + }, + { + "start": 29596.9, + "end": 29599.05, + "probability": 0.5812 + }, + { + "start": 29599.56, + "end": 29601.24, + "probability": 0.9922 + }, + { + "start": 29601.7, + "end": 29603.96, + "probability": 0.9611 + }, + { + "start": 29604.78, + "end": 29608.76, + "probability": 0.6733 + }, + { + "start": 29609.26, + "end": 29610.08, + "probability": 0.76 + }, + { + "start": 29610.16, + "end": 29611.1, + "probability": 0.6526 + }, + { + "start": 29611.46, + "end": 29615.06, + "probability": 0.928 + }, + { + "start": 29615.66, + "end": 29616.72, + "probability": 0.877 + }, + { + "start": 29616.76, + "end": 29620.54, + "probability": 0.9434 + }, + { + "start": 29621.12, + "end": 29622.28, + "probability": 0.8301 + }, + { + "start": 29623.2, + "end": 29627.66, + "probability": 0.951 + }, + { + "start": 29628.48, + "end": 29629.6, + "probability": 0.9988 + }, + { + "start": 29630.2, + "end": 29632.6, + "probability": 0.9722 + }, + { + "start": 29632.88, + "end": 29634.65, + "probability": 0.7026 + }, + { + "start": 29634.8, + "end": 29635.32, + "probability": 0.8212 + }, + { + "start": 29636.16, + "end": 29637.44, + "probability": 0.6525 + }, + { + "start": 29638.32, + "end": 29638.32, + "probability": 0.0617 + }, + { + "start": 29638.32, + "end": 29641.96, + "probability": 0.9802 + }, + { + "start": 29642.6, + "end": 29643.02, + "probability": 0.5539 + }, + { + "start": 29644.28, + "end": 29646.63, + "probability": 0.998 + }, + { + "start": 29647.74, + "end": 29653.26, + "probability": 0.9189 + }, + { + "start": 29653.9, + "end": 29658.04, + "probability": 0.9648 + }, + { + "start": 29658.68, + "end": 29658.92, + "probability": 0.6493 + }, + { + "start": 29659.98, + "end": 29662.12, + "probability": 0.9993 + }, + { + "start": 29662.8, + "end": 29665.14, + "probability": 0.9865 + }, + { + "start": 29665.56, + "end": 29666.36, + "probability": 0.7313 + }, + { + "start": 29666.6, + "end": 29668.18, + "probability": 0.937 + }, + { + "start": 29668.18, + "end": 29670.38, + "probability": 0.9538 + }, + { + "start": 29687.58, + "end": 29689.58, + "probability": 0.7146 + }, + { + "start": 29689.6, + "end": 29690.22, + "probability": 0.5071 + }, + { + "start": 29690.36, + "end": 29692.28, + "probability": 0.7178 + }, + { + "start": 29693.14, + "end": 29695.56, + "probability": 0.7548 + }, + { + "start": 29696.88, + "end": 29701.92, + "probability": 0.8952 + }, + { + "start": 29702.94, + "end": 29706.04, + "probability": 0.9662 + }, + { + "start": 29706.96, + "end": 29709.62, + "probability": 0.4448 + }, + { + "start": 29709.76, + "end": 29711.18, + "probability": 0.6462 + }, + { + "start": 29713.54, + "end": 29713.64, + "probability": 0.3676 + }, + { + "start": 29713.64, + "end": 29715.54, + "probability": 0.6761 + }, + { + "start": 29716.78, + "end": 29717.4, + "probability": 0.8566 + }, + { + "start": 29718.14, + "end": 29719.9, + "probability": 0.5775 + }, + { + "start": 29723.72, + "end": 29725.62, + "probability": 0.9595 + }, + { + "start": 29726.7, + "end": 29728.64, + "probability": 0.5693 + }, + { + "start": 29728.66, + "end": 29730.14, + "probability": 0.2393 + }, + { + "start": 29730.7, + "end": 29732.06, + "probability": 0.7808 + }, + { + "start": 29733.45, + "end": 29734.53, + "probability": 0.9463 + }, + { + "start": 29737.32, + "end": 29739.7, + "probability": 0.9885 + }, + { + "start": 29740.28, + "end": 29743.94, + "probability": 0.7276 + }, + { + "start": 29745.14, + "end": 29748.54, + "probability": 0.7275 + }, + { + "start": 29750.16, + "end": 29755.28, + "probability": 0.9605 + }, + { + "start": 29757.5, + "end": 29758.62, + "probability": 0.856 + }, + { + "start": 29758.8, + "end": 29759.72, + "probability": 0.9874 + }, + { + "start": 29759.72, + "end": 29760.56, + "probability": 0.6556 + }, + { + "start": 29762.7, + "end": 29765.26, + "probability": 0.9737 + }, + { + "start": 29769.74, + "end": 29770.32, + "probability": 0.6913 + }, + { + "start": 29771.22, + "end": 29773.98, + "probability": 0.9216 + }, + { + "start": 29774.92, + "end": 29775.52, + "probability": 0.9626 + }, + { + "start": 29777.02, + "end": 29780.28, + "probability": 0.9757 + }, + { + "start": 29781.36, + "end": 29782.92, + "probability": 0.965 + }, + { + "start": 29783.86, + "end": 29785.64, + "probability": 0.9851 + }, + { + "start": 29786.44, + "end": 29787.24, + "probability": 0.563 + }, + { + "start": 29788.16, + "end": 29791.82, + "probability": 0.9466 + }, + { + "start": 29792.34, + "end": 29794.42, + "probability": 0.9807 + }, + { + "start": 29795.62, + "end": 29795.9, + "probability": 0.8269 + }, + { + "start": 29798.88, + "end": 29801.88, + "probability": 0.9557 + }, + { + "start": 29804.08, + "end": 29806.6, + "probability": 0.995 + }, + { + "start": 29807.18, + "end": 29808.2, + "probability": 0.7887 + }, + { + "start": 29808.84, + "end": 29809.56, + "probability": 0.9602 + }, + { + "start": 29810.84, + "end": 29811.34, + "probability": 0.9409 + }, + { + "start": 29813.16, + "end": 29815.98, + "probability": 0.995 + }, + { + "start": 29818.2, + "end": 29819.79, + "probability": 0.6671 + }, + { + "start": 29822.66, + "end": 29824.18, + "probability": 0.6659 + }, + { + "start": 29824.86, + "end": 29825.66, + "probability": 0.9509 + }, + { + "start": 29826.78, + "end": 29829.2, + "probability": 0.9988 + }, + { + "start": 29831.12, + "end": 29835.7, + "probability": 0.991 + }, + { + "start": 29835.7, + "end": 29838.86, + "probability": 0.9976 + }, + { + "start": 29838.88, + "end": 29839.56, + "probability": 0.9913 + }, + { + "start": 29839.66, + "end": 29841.4, + "probability": 0.8733 + }, + { + "start": 29842.02, + "end": 29843.02, + "probability": 0.9816 + }, + { + "start": 29844.02, + "end": 29847.56, + "probability": 0.9084 + }, + { + "start": 29848.18, + "end": 29848.7, + "probability": 0.9438 + }, + { + "start": 29849.44, + "end": 29849.84, + "probability": 0.8809 + }, + { + "start": 29851.08, + "end": 29851.38, + "probability": 0.7776 + }, + { + "start": 29853.02, + "end": 29855.1, + "probability": 0.962 + }, + { + "start": 29856.6, + "end": 29858.96, + "probability": 0.8684 + }, + { + "start": 29860.22, + "end": 29865.2, + "probability": 0.9802 + }, + { + "start": 29865.56, + "end": 29868.54, + "probability": 0.9851 + }, + { + "start": 29869.14, + "end": 29870.22, + "probability": 0.7782 + }, + { + "start": 29870.88, + "end": 29871.8, + "probability": 0.9621 + }, + { + "start": 29872.32, + "end": 29873.47, + "probability": 0.978 + }, + { + "start": 29875.3, + "end": 29877.44, + "probability": 0.9717 + }, + { + "start": 29878.56, + "end": 29883.52, + "probability": 0.9976 + }, + { + "start": 29885.52, + "end": 29888.16, + "probability": 0.9767 + }, + { + "start": 29891.0, + "end": 29893.96, + "probability": 0.8225 + }, + { + "start": 29895.2, + "end": 29899.2, + "probability": 0.7455 + }, + { + "start": 29900.46, + "end": 29901.39, + "probability": 0.9927 + }, + { + "start": 29903.12, + "end": 29906.8, + "probability": 0.9943 + }, + { + "start": 29908.92, + "end": 29909.5, + "probability": 0.8417 + }, + { + "start": 29911.06, + "end": 29916.04, + "probability": 0.9962 + }, + { + "start": 29916.58, + "end": 29917.26, + "probability": 0.8476 + }, + { + "start": 29919.04, + "end": 29920.94, + "probability": 0.7191 + }, + { + "start": 29922.54, + "end": 29926.36, + "probability": 0.9606 + }, + { + "start": 29928.64, + "end": 29929.66, + "probability": 0.6871 + }, + { + "start": 29931.18, + "end": 29934.44, + "probability": 0.8566 + }, + { + "start": 29934.96, + "end": 29936.76, + "probability": 0.9445 + }, + { + "start": 29937.9, + "end": 29942.38, + "probability": 0.7588 + }, + { + "start": 29943.74, + "end": 29943.98, + "probability": 0.2876 + }, + { + "start": 29944.54, + "end": 29945.88, + "probability": 0.9629 + }, + { + "start": 29947.14, + "end": 29950.1, + "probability": 0.9915 + }, + { + "start": 29954.22, + "end": 29958.64, + "probability": 0.512 + }, + { + "start": 29959.82, + "end": 29965.0, + "probability": 0.8461 + }, + { + "start": 29965.82, + "end": 29966.2, + "probability": 0.7081 + }, + { + "start": 29966.92, + "end": 29969.84, + "probability": 0.8942 + }, + { + "start": 29970.7, + "end": 29972.0, + "probability": 0.8251 + }, + { + "start": 29974.74, + "end": 29979.72, + "probability": 0.7553 + }, + { + "start": 29980.22, + "end": 29980.9, + "probability": 0.5408 + }, + { + "start": 29981.8, + "end": 29982.72, + "probability": 0.7945 + }, + { + "start": 29982.92, + "end": 29986.04, + "probability": 0.9556 + }, + { + "start": 29986.54, + "end": 29987.76, + "probability": 0.8155 + }, + { + "start": 29988.5, + "end": 29991.55, + "probability": 0.7758 + }, + { + "start": 29993.28, + "end": 29995.24, + "probability": 0.8855 + }, + { + "start": 29996.14, + "end": 29996.14, + "probability": 0.0042 + }, + { + "start": 30000.04, + "end": 30001.14, + "probability": 0.9132 + }, + { + "start": 30001.68, + "end": 30005.48, + "probability": 0.9824 + }, + { + "start": 30007.1, + "end": 30009.16, + "probability": 0.9353 + }, + { + "start": 30010.14, + "end": 30011.34, + "probability": 0.8924 + }, + { + "start": 30012.32, + "end": 30013.32, + "probability": 0.7482 + }, + { + "start": 30014.5, + "end": 30015.08, + "probability": 0.0731 + }, + { + "start": 30015.08, + "end": 30016.2, + "probability": 0.257 + }, + { + "start": 30016.24, + "end": 30022.86, + "probability": 0.9868 + }, + { + "start": 30023.58, + "end": 30023.78, + "probability": 0.6809 + }, + { + "start": 30023.86, + "end": 30024.2, + "probability": 0.9451 + }, + { + "start": 30026.16, + "end": 30026.81, + "probability": 0.9187 + }, + { + "start": 30027.24, + "end": 30031.7, + "probability": 0.9619 + }, + { + "start": 30032.98, + "end": 30034.36, + "probability": 0.954 + }, + { + "start": 30035.24, + "end": 30035.86, + "probability": 0.9447 + }, + { + "start": 30036.8, + "end": 30038.0, + "probability": 0.9983 + }, + { + "start": 30038.92, + "end": 30039.28, + "probability": 0.9929 + }, + { + "start": 30040.06, + "end": 30043.16, + "probability": 0.9106 + }, + { + "start": 30044.28, + "end": 30045.4, + "probability": 0.9287 + }, + { + "start": 30046.18, + "end": 30047.18, + "probability": 0.6592 + }, + { + "start": 30048.02, + "end": 30049.34, + "probability": 0.8628 + }, + { + "start": 30050.12, + "end": 30053.86, + "probability": 0.9757 + }, + { + "start": 30053.9, + "end": 30055.0, + "probability": 0.9778 + }, + { + "start": 30055.62, + "end": 30056.32, + "probability": 0.4676 + }, + { + "start": 30057.02, + "end": 30058.62, + "probability": 0.8746 + }, + { + "start": 30059.34, + "end": 30061.52, + "probability": 0.9017 + }, + { + "start": 30061.78, + "end": 30063.72, + "probability": 0.8584 + }, + { + "start": 30064.06, + "end": 30067.88, + "probability": 0.9543 + }, + { + "start": 30068.32, + "end": 30071.22, + "probability": 0.9954 + }, + { + "start": 30071.44, + "end": 30071.8, + "probability": 0.8663 + }, + { + "start": 30071.92, + "end": 30073.69, + "probability": 0.5503 + }, + { + "start": 30074.0, + "end": 30074.44, + "probability": 0.1864 + }, + { + "start": 30075.5, + "end": 30075.5, + "probability": 0.4619 + }, + { + "start": 30075.5, + "end": 30078.04, + "probability": 0.6753 + }, + { + "start": 30078.12, + "end": 30078.98, + "probability": 0.7243 + }, + { + "start": 30079.38, + "end": 30081.62, + "probability": 0.8452 + }, + { + "start": 30083.64, + "end": 30085.27, + "probability": 0.8345 + }, + { + "start": 30089.64, + "end": 30092.6, + "probability": 0.7858 + }, + { + "start": 30094.41, + "end": 30097.2, + "probability": 0.5639 + }, + { + "start": 30098.86, + "end": 30101.26, + "probability": 0.78 + }, + { + "start": 30102.8, + "end": 30105.78, + "probability": 0.9463 + }, + { + "start": 30105.98, + "end": 30108.2, + "probability": 0.926 + }, + { + "start": 30108.28, + "end": 30110.26, + "probability": 0.9719 + }, + { + "start": 30110.46, + "end": 30111.39, + "probability": 0.9876 + }, + { + "start": 30112.46, + "end": 30114.86, + "probability": 0.8848 + }, + { + "start": 30115.8, + "end": 30117.15, + "probability": 0.6098 + }, + { + "start": 30118.36, + "end": 30118.54, + "probability": 0.0126 + }, + { + "start": 30118.54, + "end": 30119.1, + "probability": 0.5414 + }, + { + "start": 30120.28, + "end": 30122.84, + "probability": 0.9579 + }, + { + "start": 30124.36, + "end": 30125.02, + "probability": 0.833 + }, + { + "start": 30125.88, + "end": 30127.4, + "probability": 0.8023 + }, + { + "start": 30128.5, + "end": 30130.62, + "probability": 0.977 + }, + { + "start": 30132.14, + "end": 30133.76, + "probability": 0.9533 + }, + { + "start": 30134.46, + "end": 30135.88, + "probability": 0.5964 + }, + { + "start": 30136.76, + "end": 30138.26, + "probability": 0.5553 + }, + { + "start": 30138.5, + "end": 30139.84, + "probability": 0.1754 + }, + { + "start": 30140.02, + "end": 30142.12, + "probability": 0.2033 + }, + { + "start": 30142.64, + "end": 30144.34, + "probability": 0.8102 + }, + { + "start": 30145.82, + "end": 30147.6, + "probability": 0.5092 + }, + { + "start": 30148.12, + "end": 30149.24, + "probability": 0.9629 + }, + { + "start": 30151.16, + "end": 30152.72, + "probability": 0.979 + }, + { + "start": 30153.26, + "end": 30153.66, + "probability": 0.2346 + }, + { + "start": 30154.21, + "end": 30156.26, + "probability": 0.1595 + }, + { + "start": 30156.38, + "end": 30162.42, + "probability": 0.8823 + }, + { + "start": 30163.36, + "end": 30165.82, + "probability": 0.8594 + }, + { + "start": 30165.82, + "end": 30168.5, + "probability": 0.9733 + }, + { + "start": 30168.61, + "end": 30170.26, + "probability": 0.8927 + }, + { + "start": 30170.4, + "end": 30172.44, + "probability": 0.7542 + }, + { + "start": 30173.1, + "end": 30176.24, + "probability": 0.9833 + }, + { + "start": 30178.08, + "end": 30181.48, + "probability": 0.9736 + }, + { + "start": 30181.58, + "end": 30182.24, + "probability": 0.8731 + }, + { + "start": 30182.3, + "end": 30183.78, + "probability": 0.7393 + }, + { + "start": 30183.96, + "end": 30185.98, + "probability": 0.9021 + }, + { + "start": 30186.18, + "end": 30188.66, + "probability": 0.9847 + }, + { + "start": 30188.66, + "end": 30190.48, + "probability": 0.8188 + }, + { + "start": 30190.62, + "end": 30191.58, + "probability": 0.7944 + }, + { + "start": 30191.92, + "end": 30193.46, + "probability": 0.9042 + }, + { + "start": 30193.92, + "end": 30194.28, + "probability": 0.6203 + }, + { + "start": 30194.36, + "end": 30195.04, + "probability": 0.681 + }, + { + "start": 30195.4, + "end": 30199.74, + "probability": 0.6903 + }, + { + "start": 30200.82, + "end": 30202.12, + "probability": 0.2153 + }, + { + "start": 30203.08, + "end": 30205.22, + "probability": 0.9751 + }, + { + "start": 30205.28, + "end": 30206.2, + "probability": 0.8734 + }, + { + "start": 30206.76, + "end": 30207.24, + "probability": 0.0677 + }, + { + "start": 30207.24, + "end": 30207.92, + "probability": 0.325 + }, + { + "start": 30207.94, + "end": 30209.41, + "probability": 0.9508 + }, + { + "start": 30209.76, + "end": 30211.54, + "probability": 0.9349 + }, + { + "start": 30211.62, + "end": 30212.76, + "probability": 0.899 + }, + { + "start": 30212.82, + "end": 30213.56, + "probability": 0.8951 + }, + { + "start": 30214.52, + "end": 30215.58, + "probability": 0.9069 + }, + { + "start": 30216.16, + "end": 30218.74, + "probability": 0.9787 + }, + { + "start": 30219.38, + "end": 30220.6, + "probability": 0.8621 + }, + { + "start": 30221.52, + "end": 30223.12, + "probability": 0.9595 + }, + { + "start": 30223.44, + "end": 30224.36, + "probability": 0.9583 + }, + { + "start": 30224.96, + "end": 30229.5, + "probability": 0.9927 + }, + { + "start": 30229.54, + "end": 30233.2, + "probability": 0.9695 + }, + { + "start": 30233.54, + "end": 30234.24, + "probability": 0.8298 + }, + { + "start": 30234.92, + "end": 30236.78, + "probability": 0.9823 + }, + { + "start": 30236.92, + "end": 30237.41, + "probability": 0.7819 + }, + { + "start": 30237.9, + "end": 30239.28, + "probability": 0.9129 + }, + { + "start": 30239.64, + "end": 30240.88, + "probability": 0.5716 + }, + { + "start": 30241.6, + "end": 30244.84, + "probability": 0.9587 + }, + { + "start": 30246.24, + "end": 30249.9, + "probability": 0.9147 + }, + { + "start": 30250.62, + "end": 30252.12, + "probability": 0.986 + }, + { + "start": 30253.38, + "end": 30254.1, + "probability": 0.6901 + }, + { + "start": 30254.22, + "end": 30255.09, + "probability": 0.9131 + }, + { + "start": 30255.38, + "end": 30256.5, + "probability": 0.845 + }, + { + "start": 30257.74, + "end": 30259.86, + "probability": 0.9012 + }, + { + "start": 30260.6, + "end": 30261.08, + "probability": 0.944 + }, + { + "start": 30261.14, + "end": 30261.86, + "probability": 0.9892 + }, + { + "start": 30262.02, + "end": 30262.12, + "probability": 0.6451 + }, + { + "start": 30262.3, + "end": 30263.7, + "probability": 0.9004 + }, + { + "start": 30264.44, + "end": 30265.28, + "probability": 0.5857 + }, + { + "start": 30265.38, + "end": 30268.6, + "probability": 0.963 + }, + { + "start": 30270.24, + "end": 30273.68, + "probability": 0.9744 + }, + { + "start": 30274.88, + "end": 30275.34, + "probability": 0.5721 + }, + { + "start": 30276.04, + "end": 30278.06, + "probability": 0.9748 + }, + { + "start": 30278.96, + "end": 30282.28, + "probability": 0.768 + }, + { + "start": 30283.58, + "end": 30286.32, + "probability": 0.9123 + }, + { + "start": 30286.44, + "end": 30288.64, + "probability": 0.9946 + }, + { + "start": 30290.18, + "end": 30291.46, + "probability": 0.9828 + }, + { + "start": 30292.04, + "end": 30295.0, + "probability": 0.895 + }, + { + "start": 30295.1, + "end": 30296.04, + "probability": 0.8055 + }, + { + "start": 30296.44, + "end": 30297.18, + "probability": 0.8268 + }, + { + "start": 30298.38, + "end": 30300.4, + "probability": 0.9079 + }, + { + "start": 30301.84, + "end": 30303.98, + "probability": 0.8013 + }, + { + "start": 30306.28, + "end": 30306.76, + "probability": 0.5706 + }, + { + "start": 30307.08, + "end": 30310.38, + "probability": 0.9822 + }, + { + "start": 30310.44, + "end": 30310.66, + "probability": 0.5215 + }, + { + "start": 30310.74, + "end": 30311.26, + "probability": 0.7144 + }, + { + "start": 30311.44, + "end": 30313.56, + "probability": 0.77 + }, + { + "start": 30314.02, + "end": 30315.26, + "probability": 0.6643 + }, + { + "start": 30315.9, + "end": 30316.98, + "probability": 0.6773 + }, + { + "start": 30317.4, + "end": 30324.16, + "probability": 0.9378 + }, + { + "start": 30324.96, + "end": 30328.1, + "probability": 0.8037 + }, + { + "start": 30328.9, + "end": 30330.78, + "probability": 0.9321 + }, + { + "start": 30331.5, + "end": 30333.66, + "probability": 0.9897 + }, + { + "start": 30333.82, + "end": 30335.14, + "probability": 0.9714 + }, + { + "start": 30335.9, + "end": 30336.96, + "probability": 0.6433 + }, + { + "start": 30337.06, + "end": 30337.84, + "probability": 0.9698 + }, + { + "start": 30338.4, + "end": 30339.0, + "probability": 0.8216 + }, + { + "start": 30339.36, + "end": 30340.0, + "probability": 0.6423 + }, + { + "start": 30340.06, + "end": 30341.76, + "probability": 0.6576 + }, + { + "start": 30342.52, + "end": 30343.1, + "probability": 0.7326 + }, + { + "start": 30343.14, + "end": 30344.04, + "probability": 0.9315 + }, + { + "start": 30344.18, + "end": 30344.86, + "probability": 0.7124 + }, + { + "start": 30345.04, + "end": 30348.34, + "probability": 0.9165 + }, + { + "start": 30348.4, + "end": 30349.32, + "probability": 0.2143 + }, + { + "start": 30349.54, + "end": 30350.18, + "probability": 0.4032 + }, + { + "start": 30350.26, + "end": 30350.86, + "probability": 0.203 + }, + { + "start": 30350.9, + "end": 30351.11, + "probability": 0.5756 + }, + { + "start": 30351.78, + "end": 30353.02, + "probability": 0.8377 + }, + { + "start": 30353.16, + "end": 30354.88, + "probability": 0.9748 + }, + { + "start": 30355.62, + "end": 30356.72, + "probability": 0.916 + }, + { + "start": 30356.82, + "end": 30357.5, + "probability": 0.7861 + }, + { + "start": 30357.96, + "end": 30358.62, + "probability": 0.6633 + }, + { + "start": 30358.86, + "end": 30359.19, + "probability": 0.3957 + }, + { + "start": 30359.42, + "end": 30364.36, + "probability": 0.1396 + }, + { + "start": 30365.2, + "end": 30366.48, + "probability": 0.6543 + }, + { + "start": 30366.6, + "end": 30368.8, + "probability": 0.0784 + }, + { + "start": 30370.82, + "end": 30371.1, + "probability": 0.0883 + }, + { + "start": 30371.24, + "end": 30372.06, + "probability": 0.1623 + }, + { + "start": 30373.4, + "end": 30373.62, + "probability": 0.0606 + }, + { + "start": 30373.62, + "end": 30373.62, + "probability": 0.128 + }, + { + "start": 30373.62, + "end": 30377.16, + "probability": 0.8623 + }, + { + "start": 30377.68, + "end": 30378.46, + "probability": 0.8359 + }, + { + "start": 30379.86, + "end": 30380.56, + "probability": 0.8972 + }, + { + "start": 30380.68, + "end": 30383.64, + "probability": 0.8922 + }, + { + "start": 30384.34, + "end": 30385.2, + "probability": 0.6944 + }, + { + "start": 30386.18, + "end": 30388.72, + "probability": 0.9943 + }, + { + "start": 30388.8, + "end": 30391.84, + "probability": 0.7124 + }, + { + "start": 30391.84, + "end": 30394.36, + "probability": 0.8795 + }, + { + "start": 30394.84, + "end": 30396.7, + "probability": 0.7523 + }, + { + "start": 30397.5, + "end": 30398.54, + "probability": 0.7415 + }, + { + "start": 30398.64, + "end": 30401.56, + "probability": 0.9941 + }, + { + "start": 30401.64, + "end": 30401.99, + "probability": 0.6787 + }, + { + "start": 30403.06, + "end": 30405.12, + "probability": 0.9907 + }, + { + "start": 30406.3, + "end": 30407.3, + "probability": 0.9688 + }, + { + "start": 30408.06, + "end": 30410.68, + "probability": 0.6338 + }, + { + "start": 30411.26, + "end": 30412.92, + "probability": 0.2014 + }, + { + "start": 30413.96, + "end": 30414.62, + "probability": 0.812 + }, + { + "start": 30414.74, + "end": 30415.6, + "probability": 0.8844 + }, + { + "start": 30415.88, + "end": 30416.27, + "probability": 0.8354 + }, + { + "start": 30416.44, + "end": 30417.66, + "probability": 0.7008 + }, + { + "start": 30417.68, + "end": 30420.38, + "probability": 0.9438 + }, + { + "start": 30420.5, + "end": 30420.98, + "probability": 0.6447 + }, + { + "start": 30421.88, + "end": 30425.94, + "probability": 0.9961 + }, + { + "start": 30426.14, + "end": 30432.66, + "probability": 0.9722 + }, + { + "start": 30432.8, + "end": 30434.2, + "probability": 0.9429 + }, + { + "start": 30434.52, + "end": 30435.98, + "probability": 0.6938 + }, + { + "start": 30436.08, + "end": 30438.4, + "probability": 0.9808 + }, + { + "start": 30441.26, + "end": 30441.72, + "probability": 0.433 + }, + { + "start": 30442.44, + "end": 30443.26, + "probability": 0.618 + }, + { + "start": 30445.8, + "end": 30448.12, + "probability": 0.1473 + }, + { + "start": 30451.4, + "end": 30454.3, + "probability": 0.5561 + }, + { + "start": 30455.2, + "end": 30458.9, + "probability": 0.9866 + }, + { + "start": 30460.28, + "end": 30462.0, + "probability": 0.9951 + }, + { + "start": 30462.56, + "end": 30464.18, + "probability": 0.9819 + }, + { + "start": 30465.2, + "end": 30467.42, + "probability": 0.9907 + }, + { + "start": 30468.62, + "end": 30469.44, + "probability": 0.7938 + }, + { + "start": 30470.26, + "end": 30470.72, + "probability": 0.9302 + }, + { + "start": 30471.9, + "end": 30474.06, + "probability": 0.9873 + }, + { + "start": 30474.6, + "end": 30474.9, + "probability": 0.9383 + }, + { + "start": 30475.56, + "end": 30476.18, + "probability": 0.9698 + }, + { + "start": 30477.66, + "end": 30482.12, + "probability": 0.9822 + }, + { + "start": 30482.64, + "end": 30483.44, + "probability": 0.8824 + }, + { + "start": 30484.04, + "end": 30488.32, + "probability": 0.9738 + }, + { + "start": 30489.06, + "end": 30490.62, + "probability": 0.963 + }, + { + "start": 30491.82, + "end": 30494.42, + "probability": 0.9739 + }, + { + "start": 30495.42, + "end": 30499.96, + "probability": 0.9216 + }, + { + "start": 30500.64, + "end": 30503.78, + "probability": 0.998 + }, + { + "start": 30504.5, + "end": 30505.34, + "probability": 0.954 + }, + { + "start": 30506.82, + "end": 30507.27, + "probability": 0.993 + }, + { + "start": 30508.84, + "end": 30511.34, + "probability": 0.9973 + }, + { + "start": 30511.42, + "end": 30514.5, + "probability": 0.9967 + }, + { + "start": 30514.5, + "end": 30517.3, + "probability": 0.7855 + }, + { + "start": 30518.02, + "end": 30520.02, + "probability": 0.7409 + }, + { + "start": 30521.56, + "end": 30522.26, + "probability": 0.949 + }, + { + "start": 30523.0, + "end": 30525.1, + "probability": 0.9508 + }, + { + "start": 30525.96, + "end": 30528.84, + "probability": 0.9722 + }, + { + "start": 30529.54, + "end": 30533.56, + "probability": 0.9962 + }, + { + "start": 30535.26, + "end": 30537.18, + "probability": 0.9425 + }, + { + "start": 30537.22, + "end": 30537.84, + "probability": 0.854 + }, + { + "start": 30537.9, + "end": 30540.68, + "probability": 0.9954 + }, + { + "start": 30541.34, + "end": 30543.56, + "probability": 0.995 + }, + { + "start": 30544.26, + "end": 30544.8, + "probability": 0.9001 + }, + { + "start": 30545.32, + "end": 30546.23, + "probability": 0.9995 + }, + { + "start": 30546.64, + "end": 30547.34, + "probability": 0.9899 + }, + { + "start": 30547.96, + "end": 30550.76, + "probability": 0.9897 + }, + { + "start": 30550.76, + "end": 30553.28, + "probability": 0.9973 + }, + { + "start": 30554.68, + "end": 30555.6, + "probability": 0.8426 + }, + { + "start": 30556.8, + "end": 30558.02, + "probability": 0.9895 + }, + { + "start": 30559.6, + "end": 30560.4, + "probability": 0.9436 + }, + { + "start": 30561.22, + "end": 30563.4, + "probability": 0.9979 + }, + { + "start": 30563.88, + "end": 30566.13, + "probability": 0.9937 + }, + { + "start": 30566.7, + "end": 30568.76, + "probability": 0.8452 + }, + { + "start": 30568.88, + "end": 30569.54, + "probability": 0.8656 + }, + { + "start": 30569.86, + "end": 30570.84, + "probability": 0.9712 + }, + { + "start": 30572.16, + "end": 30573.86, + "probability": 0.9917 + }, + { + "start": 30574.76, + "end": 30578.02, + "probability": 0.8892 + }, + { + "start": 30578.12, + "end": 30578.78, + "probability": 0.7672 + }, + { + "start": 30579.26, + "end": 30580.1, + "probability": 0.5126 + }, + { + "start": 30580.9, + "end": 30582.72, + "probability": 0.9844 + }, + { + "start": 30583.58, + "end": 30587.24, + "probability": 0.9404 + }, + { + "start": 30588.02, + "end": 30588.96, + "probability": 0.924 + }, + { + "start": 30589.64, + "end": 30592.44, + "probability": 0.9833 + }, + { + "start": 30593.18, + "end": 30597.29, + "probability": 0.9897 + }, + { + "start": 30598.52, + "end": 30598.68, + "probability": 0.0541 + }, + { + "start": 30598.68, + "end": 30601.78, + "probability": 0.9934 + }, + { + "start": 30601.78, + "end": 30605.42, + "probability": 0.9869 + }, + { + "start": 30605.58, + "end": 30605.9, + "probability": 0.8532 + }, + { + "start": 30606.34, + "end": 30606.8, + "probability": 0.7352 + }, + { + "start": 30606.86, + "end": 30608.44, + "probability": 0.7814 + }, + { + "start": 30609.36, + "end": 30610.86, + "probability": 0.9562 + }, + { + "start": 30611.72, + "end": 30612.96, + "probability": 0.991 + }, + { + "start": 30613.78, + "end": 30617.74, + "probability": 0.999 + }, + { + "start": 30618.18, + "end": 30623.1, + "probability": 0.9957 + }, + { + "start": 30623.64, + "end": 30624.34, + "probability": 0.9891 + }, + { + "start": 30625.68, + "end": 30626.3, + "probability": 0.7138 + }, + { + "start": 30626.9, + "end": 30629.82, + "probability": 0.9934 + }, + { + "start": 30630.68, + "end": 30631.4, + "probability": 0.8433 + }, + { + "start": 30631.92, + "end": 30633.88, + "probability": 0.9455 + }, + { + "start": 30635.08, + "end": 30639.01, + "probability": 0.9915 + }, + { + "start": 30640.6, + "end": 30646.78, + "probability": 0.9741 + }, + { + "start": 30647.2, + "end": 30647.5, + "probability": 0.9309 + }, + { + "start": 30647.7, + "end": 30648.54, + "probability": 0.6833 + }, + { + "start": 30648.76, + "end": 30649.56, + "probability": 0.7942 + }, + { + "start": 30650.3, + "end": 30654.52, + "probability": 0.9601 + }, + { + "start": 30656.38, + "end": 30657.16, + "probability": 0.9507 + }, + { + "start": 30657.5, + "end": 30657.88, + "probability": 0.8386 + }, + { + "start": 30658.02, + "end": 30658.54, + "probability": 0.931 + }, + { + "start": 30658.62, + "end": 30659.88, + "probability": 0.9578 + }, + { + "start": 30660.08, + "end": 30662.5, + "probability": 0.9918 + }, + { + "start": 30663.42, + "end": 30664.28, + "probability": 0.9813 + }, + { + "start": 30664.4, + "end": 30665.78, + "probability": 0.9872 + }, + { + "start": 30666.56, + "end": 30667.6, + "probability": 0.9648 + }, + { + "start": 30668.52, + "end": 30669.08, + "probability": 0.9415 + }, + { + "start": 30669.7, + "end": 30671.34, + "probability": 0.994 + }, + { + "start": 30672.12, + "end": 30673.44, + "probability": 0.9156 + }, + { + "start": 30674.0, + "end": 30674.9, + "probability": 0.6223 + }, + { + "start": 30675.42, + "end": 30676.96, + "probability": 0.8779 + }, + { + "start": 30677.06, + "end": 30678.59, + "probability": 0.9907 + }, + { + "start": 30678.76, + "end": 30679.38, + "probability": 0.9624 + }, + { + "start": 30679.72, + "end": 30685.68, + "probability": 0.9961 + }, + { + "start": 30685.82, + "end": 30687.56, + "probability": 0.7324 + }, + { + "start": 30687.92, + "end": 30691.6, + "probability": 0.9861 + }, + { + "start": 30692.38, + "end": 30695.68, + "probability": 0.9933 + }, + { + "start": 30696.2, + "end": 30697.88, + "probability": 0.9291 + }, + { + "start": 30698.4, + "end": 30701.88, + "probability": 0.9997 + }, + { + "start": 30702.2, + "end": 30703.86, + "probability": 0.781 + }, + { + "start": 30703.94, + "end": 30706.36, + "probability": 0.9561 + }, + { + "start": 30706.42, + "end": 30709.48, + "probability": 0.9913 + }, + { + "start": 30710.22, + "end": 30710.88, + "probability": 0.8943 + }, + { + "start": 30712.16, + "end": 30712.84, + "probability": 0.7957 + }, + { + "start": 30713.82, + "end": 30717.56, + "probability": 0.9563 + }, + { + "start": 30718.3, + "end": 30721.74, + "probability": 0.9689 + }, + { + "start": 30721.74, + "end": 30724.48, + "probability": 0.9219 + }, + { + "start": 30725.16, + "end": 30728.9, + "probability": 0.9965 + }, + { + "start": 30728.9, + "end": 30734.9, + "probability": 0.9845 + }, + { + "start": 30735.54, + "end": 30737.34, + "probability": 0.5621 + }, + { + "start": 30738.1, + "end": 30739.34, + "probability": 0.7419 + }, + { + "start": 30739.6, + "end": 30740.78, + "probability": 0.7458 + }, + { + "start": 30741.16, + "end": 30741.79, + "probability": 0.6907 + }, + { + "start": 30742.2, + "end": 30742.78, + "probability": 0.9775 + }, + { + "start": 30743.58, + "end": 30743.84, + "probability": 0.7071 + }, + { + "start": 30744.12, + "end": 30744.6, + "probability": 0.6967 + }, + { + "start": 30744.78, + "end": 30746.04, + "probability": 0.7612 + }, + { + "start": 30746.1, + "end": 30748.0, + "probability": 0.9309 + }, + { + "start": 30748.4, + "end": 30749.64, + "probability": 0.9351 + }, + { + "start": 30749.74, + "end": 30752.02, + "probability": 0.978 + }, + { + "start": 30771.56, + "end": 30773.22, + "probability": 0.6009 + }, + { + "start": 30780.6, + "end": 30784.54, + "probability": 0.6641 + }, + { + "start": 30786.74, + "end": 30791.9, + "probability": 0.9907 + }, + { + "start": 30792.06, + "end": 30794.96, + "probability": 0.931 + }, + { + "start": 30796.68, + "end": 30799.02, + "probability": 0.808 + }, + { + "start": 30801.18, + "end": 30802.19, + "probability": 0.72 + }, + { + "start": 30802.82, + "end": 30806.74, + "probability": 0.9468 + }, + { + "start": 30806.84, + "end": 30809.86, + "probability": 0.9461 + }, + { + "start": 30810.28, + "end": 30813.62, + "probability": 0.973 + }, + { + "start": 30814.38, + "end": 30816.58, + "probability": 0.9386 + }, + { + "start": 30816.68, + "end": 30818.72, + "probability": 0.9809 + }, + { + "start": 30818.8, + "end": 30819.55, + "probability": 0.668 + }, + { + "start": 30820.54, + "end": 30822.26, + "probability": 0.834 + }, + { + "start": 30823.92, + "end": 30825.0, + "probability": 0.8207 + }, + { + "start": 30826.04, + "end": 30830.94, + "probability": 0.9845 + }, + { + "start": 30831.6, + "end": 30835.9, + "probability": 0.9948 + }, + { + "start": 30837.54, + "end": 30838.52, + "probability": 0.9543 + }, + { + "start": 30839.74, + "end": 30840.98, + "probability": 0.7371 + }, + { + "start": 30842.66, + "end": 30844.14, + "probability": 0.6445 + }, + { + "start": 30844.94, + "end": 30847.3, + "probability": 0.8621 + }, + { + "start": 30847.4, + "end": 30849.54, + "probability": 0.9749 + }, + { + "start": 30849.66, + "end": 30850.74, + "probability": 0.9503 + }, + { + "start": 30852.58, + "end": 30854.4, + "probability": 0.8582 + }, + { + "start": 30856.3, + "end": 30859.58, + "probability": 0.8386 + }, + { + "start": 30859.7, + "end": 30862.78, + "probability": 0.8755 + }, + { + "start": 30864.54, + "end": 30868.54, + "probability": 0.9984 + }, + { + "start": 30868.54, + "end": 30872.1, + "probability": 0.9956 + }, + { + "start": 30873.5, + "end": 30873.5, + "probability": 0.0746 + }, + { + "start": 30873.5, + "end": 30874.9, + "probability": 0.7584 + }, + { + "start": 30875.46, + "end": 30878.97, + "probability": 0.9919 + }, + { + "start": 30879.42, + "end": 30883.28, + "probability": 0.5928 + }, + { + "start": 30883.52, + "end": 30888.02, + "probability": 0.9414 + }, + { + "start": 30888.26, + "end": 30888.74, + "probability": 0.0624 + }, + { + "start": 30888.96, + "end": 30888.96, + "probability": 0.1038 + }, + { + "start": 30888.96, + "end": 30891.3, + "probability": 0.8238 + }, + { + "start": 30891.42, + "end": 30892.94, + "probability": 0.4997 + }, + { + "start": 30893.4, + "end": 30894.82, + "probability": 0.5123 + }, + { + "start": 30894.94, + "end": 30896.38, + "probability": 0.8023 + }, + { + "start": 30896.52, + "end": 30897.5, + "probability": 0.7952 + }, + { + "start": 30898.64, + "end": 30900.71, + "probability": 0.6938 + }, + { + "start": 30902.0, + "end": 30903.84, + "probability": 0.9969 + }, + { + "start": 30904.26, + "end": 30905.92, + "probability": 0.8856 + }, + { + "start": 30906.28, + "end": 30906.94, + "probability": 0.9027 + }, + { + "start": 30907.08, + "end": 30909.12, + "probability": 0.8441 + }, + { + "start": 30909.2, + "end": 30909.9, + "probability": 0.847 + }, + { + "start": 30911.52, + "end": 30915.66, + "probability": 0.549 + }, + { + "start": 30915.8, + "end": 30916.71, + "probability": 0.5582 + }, + { + "start": 30917.76, + "end": 30918.32, + "probability": 0.2418 + }, + { + "start": 30918.44, + "end": 30921.98, + "probability": 0.5794 + }, + { + "start": 30922.02, + "end": 30926.06, + "probability": 0.9273 + }, + { + "start": 30927.08, + "end": 30928.84, + "probability": 0.8502 + }, + { + "start": 30928.96, + "end": 30933.47, + "probability": 0.8346 + }, + { + "start": 30934.42, + "end": 30937.26, + "probability": 0.9149 + }, + { + "start": 30938.48, + "end": 30941.1, + "probability": 0.9854 + }, + { + "start": 30942.62, + "end": 30948.28, + "probability": 0.9126 + }, + { + "start": 30949.44, + "end": 30952.14, + "probability": 0.9268 + }, + { + "start": 30952.26, + "end": 30953.84, + "probability": 0.0894 + }, + { + "start": 30954.34, + "end": 30956.3, + "probability": 0.864 + }, + { + "start": 30956.86, + "end": 30957.2, + "probability": 0.6795 + }, + { + "start": 30957.32, + "end": 30958.0, + "probability": 0.9983 + }, + { + "start": 30958.94, + "end": 30961.7, + "probability": 0.9138 + }, + { + "start": 30963.24, + "end": 30965.02, + "probability": 0.793 + }, + { + "start": 30966.28, + "end": 30969.11, + "probability": 0.9858 + }, + { + "start": 30969.92, + "end": 30970.02, + "probability": 0.9594 + }, + { + "start": 30971.18, + "end": 30974.22, + "probability": 0.9336 + }, + { + "start": 30975.38, + "end": 30979.82, + "probability": 0.9878 + }, + { + "start": 30980.74, + "end": 30981.76, + "probability": 0.6566 + }, + { + "start": 30983.14, + "end": 30983.52, + "probability": 0.9836 + }, + { + "start": 30984.24, + "end": 30987.42, + "probability": 0.9963 + }, + { + "start": 30988.62, + "end": 30989.5, + "probability": 0.8781 + }, + { + "start": 30991.16, + "end": 30991.78, + "probability": 0.7951 + }, + { + "start": 30992.2, + "end": 30994.58, + "probability": 0.9802 + }, + { + "start": 30994.58, + "end": 30998.56, + "probability": 0.8165 + }, + { + "start": 31000.2, + "end": 31004.76, + "probability": 0.9759 + }, + { + "start": 31005.22, + "end": 31007.58, + "probability": 0.9848 + }, + { + "start": 31007.58, + "end": 31008.78, + "probability": 0.8872 + }, + { + "start": 31008.88, + "end": 31009.48, + "probability": 0.86 + }, + { + "start": 31010.58, + "end": 31014.14, + "probability": 0.9906 + }, + { + "start": 31015.14, + "end": 31020.44, + "probability": 0.9852 + }, + { + "start": 31021.14, + "end": 31021.84, + "probability": 0.8446 + }, + { + "start": 31022.16, + "end": 31024.82, + "probability": 0.9929 + }, + { + "start": 31024.94, + "end": 31026.25, + "probability": 0.5565 + }, + { + "start": 31028.02, + "end": 31032.58, + "probability": 0.9007 + }, + { + "start": 31032.8, + "end": 31033.77, + "probability": 0.936 + }, + { + "start": 31034.4, + "end": 31035.36, + "probability": 0.5061 + }, + { + "start": 31035.52, + "end": 31036.6, + "probability": 0.7456 + }, + { + "start": 31037.28, + "end": 31041.36, + "probability": 0.9692 + }, + { + "start": 31042.5, + "end": 31042.86, + "probability": 0.7948 + }, + { + "start": 31043.38, + "end": 31044.84, + "probability": 0.877 + }, + { + "start": 31045.6, + "end": 31046.32, + "probability": 0.7218 + }, + { + "start": 31047.16, + "end": 31049.46, + "probability": 0.6899 + }, + { + "start": 31050.2, + "end": 31054.84, + "probability": 0.9855 + }, + { + "start": 31055.36, + "end": 31058.22, + "probability": 0.9884 + }, + { + "start": 31059.6, + "end": 31061.94, + "probability": 0.9948 + }, + { + "start": 31061.98, + "end": 31063.44, + "probability": 0.8748 + }, + { + "start": 31063.54, + "end": 31064.64, + "probability": 0.9946 + }, + { + "start": 31065.02, + "end": 31066.52, + "probability": 0.4861 + }, + { + "start": 31066.96, + "end": 31067.84, + "probability": 0.7452 + }, + { + "start": 31069.04, + "end": 31070.0, + "probability": 0.8918 + }, + { + "start": 31070.76, + "end": 31072.3, + "probability": 0.9756 + }, + { + "start": 31072.5, + "end": 31074.04, + "probability": 0.8374 + }, + { + "start": 31074.06, + "end": 31075.16, + "probability": 0.9736 + }, + { + "start": 31076.3, + "end": 31079.86, + "probability": 0.8411 + }, + { + "start": 31079.98, + "end": 31080.08, + "probability": 0.5719 + }, + { + "start": 31080.34, + "end": 31083.06, + "probability": 0.9479 + }, + { + "start": 31083.4, + "end": 31084.9, + "probability": 0.8033 + }, + { + "start": 31085.54, + "end": 31088.16, + "probability": 0.9655 + }, + { + "start": 31088.62, + "end": 31088.86, + "probability": 0.7253 + }, + { + "start": 31089.24, + "end": 31092.26, + "probability": 0.6274 + }, + { + "start": 31093.36, + "end": 31095.58, + "probability": 0.9891 + }, + { + "start": 31097.0, + "end": 31101.6, + "probability": 0.9705 + }, + { + "start": 31102.78, + "end": 31104.22, + "probability": 0.6887 + }, + { + "start": 31104.86, + "end": 31107.22, + "probability": 0.9883 + }, + { + "start": 31107.94, + "end": 31110.04, + "probability": 0.8711 + }, + { + "start": 31110.12, + "end": 31111.72, + "probability": 0.9075 + }, + { + "start": 31112.32, + "end": 31115.62, + "probability": 0.9779 + }, + { + "start": 31115.68, + "end": 31115.92, + "probability": 0.7361 + }, + { + "start": 31116.02, + "end": 31117.74, + "probability": 0.7495 + }, + { + "start": 31118.0, + "end": 31118.92, + "probability": 0.8988 + }, + { + "start": 31119.48, + "end": 31120.56, + "probability": 0.9356 + }, + { + "start": 31126.26, + "end": 31129.06, + "probability": 0.8173 + }, + { + "start": 31130.0, + "end": 31132.22, + "probability": 0.7328 + }, + { + "start": 31136.47, + "end": 31139.98, + "probability": 0.7315 + }, + { + "start": 31141.42, + "end": 31145.12, + "probability": 0.9643 + }, + { + "start": 31145.2, + "end": 31148.76, + "probability": 0.998 + }, + { + "start": 31149.26, + "end": 31150.2, + "probability": 0.7125 + }, + { + "start": 31150.98, + "end": 31152.06, + "probability": 0.6829 + }, + { + "start": 31152.46, + "end": 31152.92, + "probability": 0.8233 + }, + { + "start": 31153.74, + "end": 31154.62, + "probability": 0.8568 + }, + { + "start": 31155.24, + "end": 31158.42, + "probability": 0.6846 + }, + { + "start": 31158.42, + "end": 31161.6, + "probability": 0.9642 + }, + { + "start": 31161.66, + "end": 31162.9, + "probability": 0.9836 + }, + { + "start": 31163.4, + "end": 31164.38, + "probability": 0.9161 + }, + { + "start": 31164.88, + "end": 31167.02, + "probability": 0.9586 + }, + { + "start": 31167.24, + "end": 31167.84, + "probability": 0.8073 + }, + { + "start": 31167.92, + "end": 31168.6, + "probability": 0.9194 + }, + { + "start": 31169.02, + "end": 31170.28, + "probability": 0.9917 + }, + { + "start": 31170.9, + "end": 31171.68, + "probability": 0.9524 + }, + { + "start": 31172.28, + "end": 31173.4, + "probability": 0.8468 + }, + { + "start": 31173.44, + "end": 31178.1, + "probability": 0.9871 + }, + { + "start": 31178.64, + "end": 31179.9, + "probability": 0.6958 + }, + { + "start": 31180.32, + "end": 31183.96, + "probability": 0.9941 + }, + { + "start": 31184.2, + "end": 31186.7, + "probability": 0.9951 + }, + { + "start": 31187.1, + "end": 31190.28, + "probability": 0.9971 + }, + { + "start": 31190.68, + "end": 31191.98, + "probability": 0.7316 + }, + { + "start": 31192.8, + "end": 31195.64, + "probability": 0.8516 + }, + { + "start": 31196.2, + "end": 31198.84, + "probability": 0.9951 + }, + { + "start": 31199.56, + "end": 31203.36, + "probability": 0.5956 + }, + { + "start": 31203.72, + "end": 31204.24, + "probability": 0.9315 + }, + { + "start": 31204.3, + "end": 31206.82, + "probability": 0.998 + }, + { + "start": 31206.82, + "end": 31211.2, + "probability": 0.9883 + }, + { + "start": 31211.26, + "end": 31211.98, + "probability": 0.6861 + }, + { + "start": 31212.08, + "end": 31212.5, + "probability": 0.8096 + }, + { + "start": 31212.58, + "end": 31213.04, + "probability": 0.9471 + }, + { + "start": 31213.12, + "end": 31213.86, + "probability": 0.8403 + }, + { + "start": 31214.32, + "end": 31215.37, + "probability": 0.9893 + }, + { + "start": 31215.78, + "end": 31219.16, + "probability": 0.9751 + }, + { + "start": 31219.24, + "end": 31219.56, + "probability": 0.3338 + }, + { + "start": 31219.62, + "end": 31221.4, + "probability": 0.9364 + }, + { + "start": 31221.78, + "end": 31223.9, + "probability": 0.799 + }, + { + "start": 31224.84, + "end": 31226.42, + "probability": 0.9526 + }, + { + "start": 31227.5, + "end": 31229.82, + "probability": 0.9813 + }, + { + "start": 31229.96, + "end": 31234.04, + "probability": 0.9229 + }, + { + "start": 31234.42, + "end": 31235.24, + "probability": 0.6428 + }, + { + "start": 31235.56, + "end": 31236.48, + "probability": 0.6576 + }, + { + "start": 31236.66, + "end": 31239.18, + "probability": 0.9747 + }, + { + "start": 31239.32, + "end": 31240.62, + "probability": 0.8995 + }, + { + "start": 31240.78, + "end": 31241.36, + "probability": 0.4135 + }, + { + "start": 31241.9, + "end": 31242.32, + "probability": 0.7106 + }, + { + "start": 31242.62, + "end": 31245.82, + "probability": 0.9672 + }, + { + "start": 31245.82, + "end": 31248.1, + "probability": 0.9829 + }, + { + "start": 31248.58, + "end": 31252.28, + "probability": 0.917 + }, + { + "start": 31252.42, + "end": 31255.96, + "probability": 0.9966 + }, + { + "start": 31256.04, + "end": 31257.64, + "probability": 0.6916 + }, + { + "start": 31258.04, + "end": 31259.06, + "probability": 0.9566 + }, + { + "start": 31259.9, + "end": 31262.38, + "probability": 0.8484 + }, + { + "start": 31262.82, + "end": 31270.36, + "probability": 0.9867 + }, + { + "start": 31270.72, + "end": 31271.82, + "probability": 0.8375 + }, + { + "start": 31272.2, + "end": 31274.12, + "probability": 0.8872 + }, + { + "start": 31274.4, + "end": 31277.72, + "probability": 0.6833 + }, + { + "start": 31278.26, + "end": 31284.06, + "probability": 0.9784 + }, + { + "start": 31284.36, + "end": 31285.88, + "probability": 0.9058 + }, + { + "start": 31286.28, + "end": 31292.46, + "probability": 0.9792 + }, + { + "start": 31292.9, + "end": 31294.46, + "probability": 0.8971 + }, + { + "start": 31294.96, + "end": 31296.04, + "probability": 0.7237 + }, + { + "start": 31296.62, + "end": 31297.56, + "probability": 0.9658 + }, + { + "start": 31297.68, + "end": 31299.6, + "probability": 0.8022 + }, + { + "start": 31300.04, + "end": 31304.8, + "probability": 0.9734 + }, + { + "start": 31304.84, + "end": 31307.9, + "probability": 0.9935 + }, + { + "start": 31308.58, + "end": 31309.53, + "probability": 0.9819 + }, + { + "start": 31310.3, + "end": 31313.02, + "probability": 0.7261 + }, + { + "start": 31313.1, + "end": 31316.18, + "probability": 0.939 + }, + { + "start": 31316.32, + "end": 31317.48, + "probability": 0.3912 + }, + { + "start": 31317.94, + "end": 31319.94, + "probability": 0.7849 + }, + { + "start": 31320.38, + "end": 31321.26, + "probability": 0.9751 + }, + { + "start": 31321.46, + "end": 31324.24, + "probability": 0.7981 + }, + { + "start": 31325.34, + "end": 31327.4, + "probability": 0.9944 + }, + { + "start": 31327.68, + "end": 31330.64, + "probability": 0.9554 + }, + { + "start": 31331.54, + "end": 31332.54, + "probability": 0.7421 + }, + { + "start": 31333.04, + "end": 31335.32, + "probability": 0.9939 + }, + { + "start": 31335.44, + "end": 31336.56, + "probability": 0.9652 + }, + { + "start": 31337.0, + "end": 31338.08, + "probability": 0.985 + }, + { + "start": 31338.48, + "end": 31339.76, + "probability": 0.7689 + }, + { + "start": 31340.3, + "end": 31345.18, + "probability": 0.9928 + }, + { + "start": 31345.6, + "end": 31348.4, + "probability": 0.6486 + }, + { + "start": 31349.08, + "end": 31353.42, + "probability": 0.9898 + }, + { + "start": 31354.04, + "end": 31357.26, + "probability": 0.983 + }, + { + "start": 31357.26, + "end": 31360.9, + "probability": 0.9776 + }, + { + "start": 31361.1, + "end": 31361.84, + "probability": 0.6006 + }, + { + "start": 31361.86, + "end": 31365.62, + "probability": 0.9098 + }, + { + "start": 31365.8, + "end": 31367.1, + "probability": 0.9143 + }, + { + "start": 31367.5, + "end": 31370.82, + "probability": 0.995 + }, + { + "start": 31371.62, + "end": 31375.6, + "probability": 0.8826 + }, + { + "start": 31377.24, + "end": 31381.62, + "probability": 0.9863 + }, + { + "start": 31382.5, + "end": 31384.34, + "probability": 0.9916 + }, + { + "start": 31384.36, + "end": 31386.94, + "probability": 0.8726 + }, + { + "start": 31387.62, + "end": 31389.86, + "probability": 0.9896 + }, + { + "start": 31390.34, + "end": 31391.4, + "probability": 0.8808 + }, + { + "start": 31391.82, + "end": 31396.04, + "probability": 0.9938 + }, + { + "start": 31396.14, + "end": 31398.9, + "probability": 0.9771 + }, + { + "start": 31399.38, + "end": 31399.82, + "probability": 0.4233 + }, + { + "start": 31400.2, + "end": 31403.88, + "probability": 0.8759 + }, + { + "start": 31404.22, + "end": 31405.56, + "probability": 0.9844 + }, + { + "start": 31406.52, + "end": 31407.32, + "probability": 0.9958 + }, + { + "start": 31407.84, + "end": 31412.92, + "probability": 0.8132 + }, + { + "start": 31414.2, + "end": 31415.6, + "probability": 0.9722 + }, + { + "start": 31415.96, + "end": 31416.6, + "probability": 0.7786 + }, + { + "start": 31416.64, + "end": 31418.42, + "probability": 0.91 + }, + { + "start": 31418.58, + "end": 31421.2, + "probability": 0.995 + }, + { + "start": 31421.6, + "end": 31425.7, + "probability": 0.9302 + }, + { + "start": 31426.2, + "end": 31430.8, + "probability": 0.9922 + }, + { + "start": 31431.38, + "end": 31436.86, + "probability": 0.958 + }, + { + "start": 31437.2, + "end": 31438.36, + "probability": 0.9717 + }, + { + "start": 31439.6, + "end": 31441.85, + "probability": 0.9264 + }, + { + "start": 31442.58, + "end": 31445.24, + "probability": 0.9872 + }, + { + "start": 31445.42, + "end": 31448.5, + "probability": 0.9963 + }, + { + "start": 31449.02, + "end": 31453.56, + "probability": 0.9821 + }, + { + "start": 31454.02, + "end": 31457.98, + "probability": 0.9745 + }, + { + "start": 31458.32, + "end": 31459.8, + "probability": 0.9757 + }, + { + "start": 31459.94, + "end": 31462.0, + "probability": 0.9462 + }, + { + "start": 31462.08, + "end": 31464.16, + "probability": 0.9873 + }, + { + "start": 31464.54, + "end": 31465.62, + "probability": 0.9614 + }, + { + "start": 31466.1, + "end": 31467.53, + "probability": 0.9969 + }, + { + "start": 31468.0, + "end": 31473.16, + "probability": 0.9503 + }, + { + "start": 31473.16, + "end": 31476.46, + "probability": 0.9829 + }, + { + "start": 31476.52, + "end": 31478.58, + "probability": 0.7502 + }, + { + "start": 31479.24, + "end": 31481.21, + "probability": 0.9025 + }, + { + "start": 31482.12, + "end": 31490.56, + "probability": 0.6898 + }, + { + "start": 31491.92, + "end": 31492.46, + "probability": 0.4004 + }, + { + "start": 31497.96, + "end": 31498.8, + "probability": 0.5826 + }, + { + "start": 31499.64, + "end": 31503.12, + "probability": 0.7312 + }, + { + "start": 31503.82, + "end": 31505.76, + "probability": 0.9675 + }, + { + "start": 31505.94, + "end": 31512.86, + "probability": 0.9935 + }, + { + "start": 31513.58, + "end": 31513.68, + "probability": 0.5637 + }, + { + "start": 31514.24, + "end": 31514.72, + "probability": 0.511 + }, + { + "start": 31515.1, + "end": 31516.6, + "probability": 0.4797 + }, + { + "start": 31516.66, + "end": 31522.48, + "probability": 0.9562 + }, + { + "start": 31527.36, + "end": 31529.86, + "probability": 0.5022 + }, + { + "start": 31530.22, + "end": 31532.58, + "probability": 0.8799 + }, + { + "start": 31532.62, + "end": 31535.34, + "probability": 0.8472 + }, + { + "start": 31535.4, + "end": 31536.66, + "probability": 0.831 + }, + { + "start": 31537.24, + "end": 31540.06, + "probability": 0.5274 + }, + { + "start": 31541.52, + "end": 31543.48, + "probability": 0.8609 + }, + { + "start": 31543.66, + "end": 31544.6, + "probability": 0.8471 + }, + { + "start": 31545.26, + "end": 31547.76, + "probability": 0.4995 + }, + { + "start": 31547.84, + "end": 31553.58, + "probability": 0.6725 + }, + { + "start": 31554.46, + "end": 31556.74, + "probability": 0.911 + }, + { + "start": 31557.6, + "end": 31560.4, + "probability": 0.5802 + }, + { + "start": 31560.5, + "end": 31562.1, + "probability": 0.5433 + }, + { + "start": 31562.2, + "end": 31562.8, + "probability": 0.8685 + }, + { + "start": 31564.0, + "end": 31564.99, + "probability": 0.0454 + }, + { + "start": 31565.82, + "end": 31570.6, + "probability": 0.8359 + }, + { + "start": 31570.72, + "end": 31575.78, + "probability": 0.9816 + }, + { + "start": 31576.34, + "end": 31577.5, + "probability": 0.6675 + }, + { + "start": 31577.56, + "end": 31579.34, + "probability": 0.6597 + }, + { + "start": 31579.92, + "end": 31580.45, + "probability": 0.0278 + }, + { + "start": 31581.12, + "end": 31581.18, + "probability": 0.1175 + }, + { + "start": 31581.18, + "end": 31581.18, + "probability": 0.1491 + }, + { + "start": 31581.18, + "end": 31581.9, + "probability": 0.1346 + }, + { + "start": 31582.04, + "end": 31583.4, + "probability": 0.5847 + }, + { + "start": 31583.56, + "end": 31584.24, + "probability": 0.5854 + }, + { + "start": 31584.3, + "end": 31586.32, + "probability": 0.6245 + }, + { + "start": 31586.56, + "end": 31587.82, + "probability": 0.9043 + }, + { + "start": 31588.12, + "end": 31589.32, + "probability": 0.9127 + }, + { + "start": 31589.34, + "end": 31591.24, + "probability": 0.9155 + }, + { + "start": 31591.3, + "end": 31594.34, + "probability": 0.7693 + }, + { + "start": 31594.48, + "end": 31595.62, + "probability": 0.2154 + }, + { + "start": 31598.32, + "end": 31604.4, + "probability": 0.4225 + }, + { + "start": 31604.9, + "end": 31609.46, + "probability": 0.7463 + }, + { + "start": 31609.52, + "end": 31612.58, + "probability": 0.5402 + }, + { + "start": 31612.86, + "end": 31615.06, + "probability": 0.7851 + }, + { + "start": 31615.26, + "end": 31616.1, + "probability": 0.6646 + }, + { + "start": 31616.52, + "end": 31617.78, + "probability": 0.8173 + }, + { + "start": 31618.76, + "end": 31619.44, + "probability": 0.9534 + }, + { + "start": 31619.66, + "end": 31622.7, + "probability": 0.9949 + }, + { + "start": 31622.86, + "end": 31624.88, + "probability": 0.9968 + }, + { + "start": 31625.77, + "end": 31629.2, + "probability": 0.9883 + }, + { + "start": 31629.72, + "end": 31632.42, + "probability": 0.9932 + }, + { + "start": 31632.98, + "end": 31634.04, + "probability": 0.9232 + }, + { + "start": 31634.14, + "end": 31636.74, + "probability": 0.9866 + }, + { + "start": 31636.74, + "end": 31640.06, + "probability": 0.9912 + }, + { + "start": 31640.84, + "end": 31643.9, + "probability": 0.973 + }, + { + "start": 31644.58, + "end": 31649.62, + "probability": 0.8735 + }, + { + "start": 31650.58, + "end": 31653.32, + "probability": 0.9811 + }, + { + "start": 31654.16, + "end": 31655.94, + "probability": 0.7571 + }, + { + "start": 31656.24, + "end": 31657.66, + "probability": 0.99 + }, + { + "start": 31657.82, + "end": 31659.34, + "probability": 0.8931 + }, + { + "start": 31660.2, + "end": 31662.4, + "probability": 0.9953 + }, + { + "start": 31662.48, + "end": 31666.46, + "probability": 0.9596 + }, + { + "start": 31667.44, + "end": 31672.1, + "probability": 0.9919 + }, + { + "start": 31673.22, + "end": 31677.28, + "probability": 0.9937 + }, + { + "start": 31678.68, + "end": 31680.64, + "probability": 0.7593 + }, + { + "start": 31681.56, + "end": 31683.13, + "probability": 0.8971 + }, + { + "start": 31683.64, + "end": 31684.72, + "probability": 0.3805 + }, + { + "start": 31684.94, + "end": 31685.98, + "probability": 0.8757 + }, + { + "start": 31686.06, + "end": 31687.18, + "probability": 0.7802 + }, + { + "start": 31687.24, + "end": 31692.24, + "probability": 0.9744 + }, + { + "start": 31693.2, + "end": 31697.32, + "probability": 0.9423 + }, + { + "start": 31697.48, + "end": 31700.04, + "probability": 0.8398 + }, + { + "start": 31700.48, + "end": 31703.6, + "probability": 0.9342 + }, + { + "start": 31704.3, + "end": 31706.32, + "probability": 0.7681 + }, + { + "start": 31706.54, + "end": 31708.42, + "probability": 0.8395 + }, + { + "start": 31709.66, + "end": 31711.4, + "probability": 0.183 + }, + { + "start": 31711.62, + "end": 31712.9, + "probability": 0.4763 + }, + { + "start": 31713.3, + "end": 31715.88, + "probability": 0.8882 + }, + { + "start": 31716.1, + "end": 31717.22, + "probability": 0.98 + }, + { + "start": 31717.48, + "end": 31718.32, + "probability": 0.6401 + }, + { + "start": 31718.5, + "end": 31718.6, + "probability": 0.3665 + }, + { + "start": 31719.48, + "end": 31721.0, + "probability": 0.8804 + }, + { + "start": 31722.3, + "end": 31725.78, + "probability": 0.8182 + }, + { + "start": 31726.66, + "end": 31731.02, + "probability": 0.97 + }, + { + "start": 31731.38, + "end": 31735.28, + "probability": 0.9919 + }, + { + "start": 31735.72, + "end": 31736.34, + "probability": 0.5889 + }, + { + "start": 31737.12, + "end": 31739.42, + "probability": 0.9137 + }, + { + "start": 31740.54, + "end": 31743.06, + "probability": 0.9206 + }, + { + "start": 31743.7, + "end": 31746.34, + "probability": 0.9911 + }, + { + "start": 31746.5, + "end": 31748.82, + "probability": 0.9024 + }, + { + "start": 31750.26, + "end": 31752.12, + "probability": 0.293 + }, + { + "start": 31752.86, + "end": 31753.48, + "probability": 0.0544 + }, + { + "start": 31753.48, + "end": 31755.02, + "probability": 0.4194 + }, + { + "start": 31755.74, + "end": 31759.06, + "probability": 0.8724 + }, + { + "start": 31759.88, + "end": 31763.32, + "probability": 0.8259 + }, + { + "start": 31764.04, + "end": 31766.8, + "probability": 0.9884 + }, + { + "start": 31767.28, + "end": 31770.5, + "probability": 0.8867 + }, + { + "start": 31770.5, + "end": 31773.78, + "probability": 0.9079 + }, + { + "start": 31773.82, + "end": 31775.48, + "probability": 0.9824 + }, + { + "start": 31776.14, + "end": 31777.92, + "probability": 0.9557 + }, + { + "start": 31778.46, + "end": 31781.08, + "probability": 0.9985 + }, + { + "start": 31781.08, + "end": 31784.32, + "probability": 0.9983 + }, + { + "start": 31784.92, + "end": 31788.2, + "probability": 0.8024 + }, + { + "start": 31788.22, + "end": 31793.53, + "probability": 0.7624 + }, + { + "start": 31794.2, + "end": 31794.26, + "probability": 0.0822 + }, + { + "start": 31794.26, + "end": 31798.7, + "probability": 0.8678 + }, + { + "start": 31798.96, + "end": 31800.12, + "probability": 0.743 + }, + { + "start": 31800.48, + "end": 31800.8, + "probability": 0.75 + }, + { + "start": 31800.86, + "end": 31802.38, + "probability": 0.5834 + }, + { + "start": 31802.7, + "end": 31804.94, + "probability": 0.9377 + }, + { + "start": 31805.16, + "end": 31807.28, + "probability": 0.9151 + }, + { + "start": 31808.2, + "end": 31810.1, + "probability": 0.7925 + }, + { + "start": 31811.62, + "end": 31813.84, + "probability": 0.9926 + }, + { + "start": 31814.38, + "end": 31815.98, + "probability": 0.9716 + }, + { + "start": 31816.5, + "end": 31819.8, + "probability": 0.991 + }, + { + "start": 31820.42, + "end": 31823.58, + "probability": 0.9989 + }, + { + "start": 31824.06, + "end": 31826.68, + "probability": 0.998 + }, + { + "start": 31827.76, + "end": 31830.66, + "probability": 0.7947 + }, + { + "start": 31831.32, + "end": 31835.1, + "probability": 0.9952 + }, + { + "start": 31835.76, + "end": 31838.95, + "probability": 0.998 + }, + { + "start": 31839.06, + "end": 31843.58, + "probability": 0.9408 + }, + { + "start": 31850.7, + "end": 31853.82, + "probability": 0.996 + }, + { + "start": 31854.76, + "end": 31858.04, + "probability": 0.9851 + }, + { + "start": 31858.7, + "end": 31860.72, + "probability": 0.9991 + }, + { + "start": 31861.24, + "end": 31864.04, + "probability": 0.987 + }, + { + "start": 31864.78, + "end": 31866.68, + "probability": 0.9893 + }, + { + "start": 31867.3, + "end": 31869.48, + "probability": 0.9887 + }, + { + "start": 31870.04, + "end": 31871.3, + "probability": 0.9908 + }, + { + "start": 31871.86, + "end": 31872.96, + "probability": 0.8862 + }, + { + "start": 31874.04, + "end": 31877.62, + "probability": 0.9855 + }, + { + "start": 31878.6, + "end": 31882.3, + "probability": 0.9834 + }, + { + "start": 31883.52, + "end": 31886.48, + "probability": 0.9968 + }, + { + "start": 31886.48, + "end": 31890.36, + "probability": 0.9916 + }, + { + "start": 31890.44, + "end": 31891.0, + "probability": 0.8335 + }, + { + "start": 31892.04, + "end": 31892.96, + "probability": 0.872 + }, + { + "start": 31893.86, + "end": 31895.22, + "probability": 0.9755 + }, + { + "start": 31895.98, + "end": 31900.34, + "probability": 0.9885 + }, + { + "start": 31901.9, + "end": 31902.08, + "probability": 0.1157 + }, + { + "start": 31902.08, + "end": 31903.56, + "probability": 0.6077 + }, + { + "start": 31904.18, + "end": 31905.6, + "probability": 0.8987 + }, + { + "start": 31906.4, + "end": 31908.7, + "probability": 0.9517 + }, + { + "start": 31909.86, + "end": 31910.88, + "probability": 0.95 + }, + { + "start": 31911.64, + "end": 31913.98, + "probability": 0.9773 + }, + { + "start": 31915.16, + "end": 31916.4, + "probability": 0.8166 + }, + { + "start": 31916.48, + "end": 31920.14, + "probability": 0.9935 + }, + { + "start": 31920.84, + "end": 31925.96, + "probability": 0.9882 + }, + { + "start": 31926.6, + "end": 31929.68, + "probability": 0.8953 + }, + { + "start": 31930.36, + "end": 31932.04, + "probability": 0.935 + }, + { + "start": 31932.78, + "end": 31933.04, + "probability": 0.4696 + }, + { + "start": 31933.14, + "end": 31936.0, + "probability": 0.875 + }, + { + "start": 31936.2, + "end": 31939.42, + "probability": 0.9662 + }, + { + "start": 31940.1, + "end": 31943.04, + "probability": 0.8997 + }, + { + "start": 31943.8, + "end": 31945.84, + "probability": 0.9893 + }, + { + "start": 31946.36, + "end": 31947.4, + "probability": 0.9229 + }, + { + "start": 31947.94, + "end": 31949.3, + "probability": 0.9862 + }, + { + "start": 31950.26, + "end": 31951.81, + "probability": 0.8933 + }, + { + "start": 31952.18, + "end": 31954.96, + "probability": 0.9975 + }, + { + "start": 31956.34, + "end": 31959.96, + "probability": 0.9717 + }, + { + "start": 31961.64, + "end": 31962.39, + "probability": 0.9686 + }, + { + "start": 31962.7, + "end": 31968.46, + "probability": 0.9911 + }, + { + "start": 31969.42, + "end": 31971.18, + "probability": 0.9929 + }, + { + "start": 31971.64, + "end": 31974.16, + "probability": 0.6334 + }, + { + "start": 31974.66, + "end": 31978.24, + "probability": 0.9913 + }, + { + "start": 31978.66, + "end": 31979.3, + "probability": 0.6427 + }, + { + "start": 31979.74, + "end": 31982.1, + "probability": 0.8123 + }, + { + "start": 31982.16, + "end": 31982.22, + "probability": 0.1362 + }, + { + "start": 31982.22, + "end": 31983.27, + "probability": 0.492 + }, + { + "start": 31984.54, + "end": 31986.02, + "probability": 0.8062 + }, + { + "start": 31986.4, + "end": 31986.4, + "probability": 0.0231 + }, + { + "start": 31986.4, + "end": 31989.78, + "probability": 0.9636 + }, + { + "start": 31990.38, + "end": 31992.42, + "probability": 0.9537 + }, + { + "start": 31993.1, + "end": 31993.78, + "probability": 0.9491 + }, + { + "start": 31994.18, + "end": 31997.12, + "probability": 0.9655 + }, + { + "start": 31997.52, + "end": 32001.12, + "probability": 0.8831 + }, + { + "start": 32001.76, + "end": 32002.02, + "probability": 0.252 + }, + { + "start": 32002.02, + "end": 32003.7, + "probability": 0.7098 + }, + { + "start": 32003.76, + "end": 32007.76, + "probability": 0.7689 + }, + { + "start": 32008.06, + "end": 32008.28, + "probability": 0.4529 + }, + { + "start": 32008.62, + "end": 32010.38, + "probability": 0.7591 + }, + { + "start": 32010.4, + "end": 32014.74, + "probability": 0.9702 + }, + { + "start": 32014.74, + "end": 32017.34, + "probability": 0.9801 + }, + { + "start": 32018.52, + "end": 32020.1, + "probability": 0.9261 + }, + { + "start": 32020.24, + "end": 32021.54, + "probability": 0.957 + }, + { + "start": 32021.64, + "end": 32022.84, + "probability": 0.7947 + }, + { + "start": 32023.16, + "end": 32023.44, + "probability": 0.7017 + }, + { + "start": 32023.56, + "end": 32024.2, + "probability": 0.6807 + }, + { + "start": 32024.24, + "end": 32024.75, + "probability": 0.7957 + }, + { + "start": 32025.48, + "end": 32026.82, + "probability": 0.9937 + }, + { + "start": 32027.48, + "end": 32028.26, + "probability": 0.8737 + }, + { + "start": 32028.82, + "end": 32030.02, + "probability": 0.9567 + }, + { + "start": 32030.26, + "end": 32032.56, + "probability": 0.96 + }, + { + "start": 32033.14, + "end": 32037.16, + "probability": 0.9823 + }, + { + "start": 32037.16, + "end": 32040.56, + "probability": 0.9945 + }, + { + "start": 32041.02, + "end": 32045.14, + "probability": 0.9917 + }, + { + "start": 32045.54, + "end": 32047.98, + "probability": 0.9867 + }, + { + "start": 32048.38, + "end": 32048.88, + "probability": 0.6519 + }, + { + "start": 32049.12, + "end": 32050.44, + "probability": 0.9668 + }, + { + "start": 32050.64, + "end": 32051.9, + "probability": 0.528 + }, + { + "start": 32052.74, + "end": 32052.74, + "probability": 0.0568 + }, + { + "start": 32052.78, + "end": 32055.4, + "probability": 0.9541 + }, + { + "start": 32055.86, + "end": 32057.5, + "probability": 0.5437 + }, + { + "start": 32057.98, + "end": 32058.5, + "probability": 0.3351 + }, + { + "start": 32058.5, + "end": 32059.58, + "probability": 0.5188 + }, + { + "start": 32060.65, + "end": 32064.14, + "probability": 0.4895 + }, + { + "start": 32064.14, + "end": 32064.14, + "probability": 0.3769 + }, + { + "start": 32064.14, + "end": 32064.14, + "probability": 0.1152 + }, + { + "start": 32064.14, + "end": 32064.14, + "probability": 0.0557 + }, + { + "start": 32064.14, + "end": 32067.34, + "probability": 0.9663 + }, + { + "start": 32067.98, + "end": 32068.68, + "probability": 0.1621 + }, + { + "start": 32068.68, + "end": 32068.68, + "probability": 0.4219 + }, + { + "start": 32068.68, + "end": 32071.36, + "probability": 0.54 + }, + { + "start": 32071.64, + "end": 32072.92, + "probability": 0.6064 + }, + { + "start": 32072.94, + "end": 32074.1, + "probability": 0.5351 + }, + { + "start": 32075.02, + "end": 32076.4, + "probability": 0.8833 + }, + { + "start": 32076.48, + "end": 32077.68, + "probability": 0.58 + }, + { + "start": 32077.68, + "end": 32080.54, + "probability": 0.9868 + }, + { + "start": 32081.28, + "end": 32082.52, + "probability": 0.8855 + }, + { + "start": 32082.7, + "end": 32083.38, + "probability": 0.334 + }, + { + "start": 32083.52, + "end": 32086.08, + "probability": 0.1063 + }, + { + "start": 32086.2, + "end": 32086.76, + "probability": 0.7178 + }, + { + "start": 32088.36, + "end": 32089.0, + "probability": 0.4308 + }, + { + "start": 32089.34, + "end": 32090.5, + "probability": 0.0642 + }, + { + "start": 32091.52, + "end": 32092.66, + "probability": 0.1764 + }, + { + "start": 32095.6, + "end": 32096.14, + "probability": 0.8767 + }, + { + "start": 32096.24, + "end": 32098.94, + "probability": 0.531 + }, + { + "start": 32098.94, + "end": 32100.44, + "probability": 0.6321 + }, + { + "start": 32100.74, + "end": 32101.36, + "probability": 0.3356 + }, + { + "start": 32101.36, + "end": 32101.36, + "probability": 0.4028 + }, + { + "start": 32101.36, + "end": 32102.94, + "probability": 0.5687 + }, + { + "start": 32103.08, + "end": 32107.32, + "probability": 0.9943 + }, + { + "start": 32108.02, + "end": 32108.72, + "probability": 0.731 + }, + { + "start": 32109.96, + "end": 32113.22, + "probability": 0.5477 + }, + { + "start": 32114.48, + "end": 32117.06, + "probability": 0.9693 + }, + { + "start": 32117.08, + "end": 32119.88, + "probability": 0.8734 + }, + { + "start": 32120.72, + "end": 32123.52, + "probability": 0.9003 + }, + { + "start": 32124.3, + "end": 32124.93, + "probability": 0.0061 + }, + { + "start": 32125.14, + "end": 32126.2, + "probability": 0.6661 + }, + { + "start": 32126.62, + "end": 32128.66, + "probability": 0.6062 + }, + { + "start": 32128.7, + "end": 32131.84, + "probability": 0.7426 + }, + { + "start": 32132.42, + "end": 32133.98, + "probability": 0.7327 + }, + { + "start": 32134.92, + "end": 32136.36, + "probability": 0.665 + }, + { + "start": 32137.48, + "end": 32141.94, + "probability": 0.9836 + }, + { + "start": 32142.7, + "end": 32149.4, + "probability": 0.9841 + }, + { + "start": 32150.1, + "end": 32151.08, + "probability": 0.8762 + }, + { + "start": 32151.97, + "end": 32155.16, + "probability": 0.9111 + }, + { + "start": 32155.92, + "end": 32159.54, + "probability": 0.9889 + }, + { + "start": 32159.68, + "end": 32161.34, + "probability": 0.9937 + }, + { + "start": 32161.88, + "end": 32165.52, + "probability": 0.7272 + }, + { + "start": 32166.02, + "end": 32167.54, + "probability": 0.9946 + }, + { + "start": 32168.32, + "end": 32169.82, + "probability": 0.9162 + }, + { + "start": 32170.42, + "end": 32171.4, + "probability": 0.9771 + }, + { + "start": 32172.4, + "end": 32175.24, + "probability": 0.7683 + }, + { + "start": 32175.88, + "end": 32178.1, + "probability": 0.8275 + }, + { + "start": 32179.06, + "end": 32180.9, + "probability": 0.9842 + }, + { + "start": 32181.14, + "end": 32182.68, + "probability": 0.9365 + }, + { + "start": 32183.24, + "end": 32189.92, + "probability": 0.994 + }, + { + "start": 32191.12, + "end": 32195.42, + "probability": 0.9674 + }, + { + "start": 32196.16, + "end": 32196.7, + "probability": 0.9518 + }, + { + "start": 32197.32, + "end": 32203.32, + "probability": 0.9963 + }, + { + "start": 32204.82, + "end": 32207.0, + "probability": 0.9202 + }, + { + "start": 32208.52, + "end": 32209.66, + "probability": 0.9071 + }, + { + "start": 32210.36, + "end": 32214.88, + "probability": 0.9914 + }, + { + "start": 32214.88, + "end": 32218.28, + "probability": 0.9961 + }, + { + "start": 32218.64, + "end": 32223.22, + "probability": 0.9796 + }, + { + "start": 32223.88, + "end": 32225.34, + "probability": 0.9585 + }, + { + "start": 32225.98, + "end": 32228.58, + "probability": 0.9824 + }, + { + "start": 32228.58, + "end": 32230.03, + "probability": 0.6097 + }, + { + "start": 32230.56, + "end": 32233.8, + "probability": 0.946 + }, + { + "start": 32234.12, + "end": 32237.95, + "probability": 0.9961 + }, + { + "start": 32238.76, + "end": 32241.62, + "probability": 0.9122 + }, + { + "start": 32242.48, + "end": 32243.99, + "probability": 0.0638 + }, + { + "start": 32244.62, + "end": 32244.62, + "probability": 0.0768 + }, + { + "start": 32244.62, + "end": 32244.62, + "probability": 0.1043 + }, + { + "start": 32244.62, + "end": 32245.11, + "probability": 0.4112 + }, + { + "start": 32246.02, + "end": 32250.56, + "probability": 0.9832 + }, + { + "start": 32250.7, + "end": 32250.7, + "probability": 0.0704 + }, + { + "start": 32250.7, + "end": 32252.36, + "probability": 0.7796 + }, + { + "start": 32252.88, + "end": 32253.9, + "probability": 0.7104 + }, + { + "start": 32255.06, + "end": 32255.28, + "probability": 0.1408 + }, + { + "start": 32255.28, + "end": 32257.26, + "probability": 0.6457 + }, + { + "start": 32257.84, + "end": 32258.42, + "probability": 0.451 + }, + { + "start": 32258.5, + "end": 32259.83, + "probability": 0.9473 + }, + { + "start": 32260.56, + "end": 32262.74, + "probability": 0.7081 + }, + { + "start": 32262.88, + "end": 32263.54, + "probability": 0.6122 + }, + { + "start": 32264.28, + "end": 32264.28, + "probability": 0.1247 + }, + { + "start": 32264.28, + "end": 32264.54, + "probability": 0.0061 + }, + { + "start": 32264.54, + "end": 32266.56, + "probability": 0.7714 + }, + { + "start": 32266.98, + "end": 32268.14, + "probability": 0.4722 + }, + { + "start": 32268.6, + "end": 32268.6, + "probability": 0.0189 + }, + { + "start": 32268.6, + "end": 32270.68, + "probability": 0.4503 + }, + { + "start": 32271.06, + "end": 32273.58, + "probability": 0.73 + }, + { + "start": 32275.78, + "end": 32279.58, + "probability": 0.5787 + }, + { + "start": 32280.2, + "end": 32281.3, + "probability": 0.6445 + }, + { + "start": 32282.08, + "end": 32282.78, + "probability": 0.7039 + }, + { + "start": 32282.94, + "end": 32284.02, + "probability": 0.936 + }, + { + "start": 32284.08, + "end": 32284.78, + "probability": 0.9172 + }, + { + "start": 32284.9, + "end": 32286.48, + "probability": 0.8457 + }, + { + "start": 32286.8, + "end": 32287.56, + "probability": 0.9004 + }, + { + "start": 32287.64, + "end": 32289.96, + "probability": 0.8746 + }, + { + "start": 32290.36, + "end": 32292.24, + "probability": 0.7737 + }, + { + "start": 32292.48, + "end": 32292.6, + "probability": 0.0482 + }, + { + "start": 32292.86, + "end": 32293.74, + "probability": 0.2805 + }, + { + "start": 32294.46, + "end": 32297.28, + "probability": 0.8874 + }, + { + "start": 32298.14, + "end": 32300.64, + "probability": 0.9141 + }, + { + "start": 32301.4, + "end": 32302.18, + "probability": 0.1224 + }, + { + "start": 32302.18, + "end": 32303.02, + "probability": 0.3961 + }, + { + "start": 32303.02, + "end": 32303.48, + "probability": 0.4216 + }, + { + "start": 32303.48, + "end": 32304.42, + "probability": 0.5201 + }, + { + "start": 32304.68, + "end": 32306.28, + "probability": 0.9159 + }, + { + "start": 32306.62, + "end": 32308.52, + "probability": 0.7776 + }, + { + "start": 32308.56, + "end": 32312.1, + "probability": 0.9584 + }, + { + "start": 32312.8, + "end": 32314.54, + "probability": 0.5804 + }, + { + "start": 32314.58, + "end": 32317.34, + "probability": 0.9189 + }, + { + "start": 32317.34, + "end": 32320.06, + "probability": 0.7702 + }, + { + "start": 32320.56, + "end": 32321.28, + "probability": 0.9795 + }, + { + "start": 32321.46, + "end": 32322.72, + "probability": 0.8864 + }, + { + "start": 32322.78, + "end": 32324.88, + "probability": 0.8018 + }, + { + "start": 32325.38, + "end": 32326.94, + "probability": 0.4319 + }, + { + "start": 32327.06, + "end": 32327.3, + "probability": 0.0904 + }, + { + "start": 32327.46, + "end": 32331.92, + "probability": 0.8575 + }, + { + "start": 32332.04, + "end": 32332.78, + "probability": 0.3 + }, + { + "start": 32333.28, + "end": 32337.84, + "probability": 0.9669 + }, + { + "start": 32337.84, + "end": 32338.18, + "probability": 0.4463 + }, + { + "start": 32338.26, + "end": 32338.92, + "probability": 0.7045 + }, + { + "start": 32338.96, + "end": 32339.58, + "probability": 0.6364 + }, + { + "start": 32339.68, + "end": 32342.6, + "probability": 0.9848 + }, + { + "start": 32343.62, + "end": 32345.04, + "probability": 0.8754 + }, + { + "start": 32345.46, + "end": 32346.9, + "probability": 0.8782 + }, + { + "start": 32347.34, + "end": 32349.0, + "probability": 0.9509 + }, + { + "start": 32349.28, + "end": 32350.58, + "probability": 0.6566 + }, + { + "start": 32350.82, + "end": 32352.1, + "probability": 0.8262 + }, + { + "start": 32352.32, + "end": 32353.18, + "probability": 0.511 + }, + { + "start": 32354.06, + "end": 32354.06, + "probability": 0.0227 + }, + { + "start": 32354.06, + "end": 32354.6, + "probability": 0.2484 + }, + { + "start": 32355.12, + "end": 32357.57, + "probability": 0.2584 + }, + { + "start": 32358.32, + "end": 32358.88, + "probability": 0.1511 + }, + { + "start": 32358.88, + "end": 32360.12, + "probability": 0.3574 + }, + { + "start": 32360.46, + "end": 32361.9, + "probability": 0.5603 + }, + { + "start": 32362.06, + "end": 32364.36, + "probability": 0.0729 + }, + { + "start": 32365.02, + "end": 32366.74, + "probability": 0.1716 + }, + { + "start": 32367.76, + "end": 32369.3, + "probability": 0.0031 + }, + { + "start": 32370.56, + "end": 32371.06, + "probability": 0.1539 + }, + { + "start": 32376.67, + "end": 32382.14, + "probability": 0.2475 + }, + { + "start": 32382.14, + "end": 32383.04, + "probability": 0.0573 + }, + { + "start": 32383.04, + "end": 32386.58, + "probability": 0.0786 + }, + { + "start": 32388.04, + "end": 32388.8, + "probability": 0.2712 + }, + { + "start": 32388.92, + "end": 32393.64, + "probability": 0.0562 + }, + { + "start": 32394.52, + "end": 32396.26, + "probability": 0.1187 + }, + { + "start": 32396.26, + "end": 32396.26, + "probability": 0.0181 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.0, + "end": 32433.0, + "probability": 0.0 + }, + { + "start": 32433.18, + "end": 32435.56, + "probability": 0.6102 + }, + { + "start": 32435.58, + "end": 32437.48, + "probability": 0.9569 + }, + { + "start": 32437.56, + "end": 32437.96, + "probability": 0.0697 + }, + { + "start": 32437.96, + "end": 32439.5, + "probability": 0.7931 + }, + { + "start": 32439.96, + "end": 32442.24, + "probability": 0.7723 + }, + { + "start": 32442.26, + "end": 32442.96, + "probability": 0.546 + }, + { + "start": 32442.98, + "end": 32444.1, + "probability": 0.5656 + }, + { + "start": 32444.2, + "end": 32445.78, + "probability": 0.7311 + }, + { + "start": 32445.94, + "end": 32447.52, + "probability": 0.5038 + }, + { + "start": 32447.6, + "end": 32450.34, + "probability": 0.0695 + }, + { + "start": 32450.38, + "end": 32451.34, + "probability": 0.8361 + }, + { + "start": 32451.44, + "end": 32452.76, + "probability": 0.8234 + }, + { + "start": 32452.8, + "end": 32454.24, + "probability": 0.6683 + }, + { + "start": 32454.3, + "end": 32455.26, + "probability": 0.73 + }, + { + "start": 32455.46, + "end": 32456.54, + "probability": 0.5185 + }, + { + "start": 32456.54, + "end": 32460.0, + "probability": 0.9254 + }, + { + "start": 32460.0, + "end": 32460.95, + "probability": 0.3724 + }, + { + "start": 32461.22, + "end": 32462.2, + "probability": 0.3669 + }, + { + "start": 32462.36, + "end": 32463.92, + "probability": 0.9163 + }, + { + "start": 32464.02, + "end": 32465.63, + "probability": 0.5351 + }, + { + "start": 32466.14, + "end": 32469.84, + "probability": 0.2238 + }, + { + "start": 32470.36, + "end": 32471.04, + "probability": 0.3371 + }, + { + "start": 32471.14, + "end": 32471.62, + "probability": 0.0361 + }, + { + "start": 32471.86, + "end": 32472.36, + "probability": 0.1992 + }, + { + "start": 32472.86, + "end": 32474.0, + "probability": 0.2945 + }, + { + "start": 32474.08, + "end": 32475.0, + "probability": 0.4169 + }, + { + "start": 32475.18, + "end": 32475.7, + "probability": 0.0415 + }, + { + "start": 32476.12, + "end": 32477.49, + "probability": 0.0918 + }, + { + "start": 32477.78, + "end": 32479.62, + "probability": 0.2951 + }, + { + "start": 32479.72, + "end": 32480.64, + "probability": 0.2015 + }, + { + "start": 32480.72, + "end": 32482.8, + "probability": 0.5718 + }, + { + "start": 32482.8, + "end": 32483.1, + "probability": 0.321 + }, + { + "start": 32483.32, + "end": 32483.66, + "probability": 0.0911 + }, + { + "start": 32483.82, + "end": 32484.42, + "probability": 0.3807 + }, + { + "start": 32484.66, + "end": 32484.75, + "probability": 0.6053 + }, + { + "start": 32485.32, + "end": 32487.3, + "probability": 0.9793 + }, + { + "start": 32487.4, + "end": 32487.62, + "probability": 0.5145 + }, + { + "start": 32487.74, + "end": 32489.42, + "probability": 0.9237 + }, + { + "start": 32489.5, + "end": 32489.98, + "probability": 0.9095 + }, + { + "start": 32490.08, + "end": 32494.0, + "probability": 0.5571 + }, + { + "start": 32494.06, + "end": 32494.06, + "probability": 0.6807 + }, + { + "start": 32494.16, + "end": 32499.96, + "probability": 0.9432 + }, + { + "start": 32502.28, + "end": 32508.04, + "probability": 0.9961 + }, + { + "start": 32508.04, + "end": 32513.3, + "probability": 0.9719 + }, + { + "start": 32513.5, + "end": 32520.46, + "probability": 0.9394 + }, + { + "start": 32520.86, + "end": 32523.4, + "probability": 0.8288 + }, + { + "start": 32523.74, + "end": 32528.46, + "probability": 0.9827 + }, + { + "start": 32528.92, + "end": 32530.78, + "probability": 0.9808 + }, + { + "start": 32531.5, + "end": 32532.34, + "probability": 0.8976 + }, + { + "start": 32532.64, + "end": 32534.3, + "probability": 0.9917 + }, + { + "start": 32534.76, + "end": 32536.48, + "probability": 0.9923 + }, + { + "start": 32537.02, + "end": 32540.86, + "probability": 0.9598 + }, + { + "start": 32541.36, + "end": 32545.9, + "probability": 0.8902 + }, + { + "start": 32546.34, + "end": 32552.04, + "probability": 0.9762 + }, + { + "start": 32552.46, + "end": 32554.9, + "probability": 0.9817 + }, + { + "start": 32555.06, + "end": 32556.6, + "probability": 0.7225 + }, + { + "start": 32556.76, + "end": 32561.11, + "probability": 0.9926 + }, + { + "start": 32561.25, + "end": 32563.87, + "probability": 0.8363 + }, + { + "start": 32564.01, + "end": 32565.31, + "probability": 0.9027 + }, + { + "start": 32565.83, + "end": 32567.51, + "probability": 0.839 + }, + { + "start": 32568.07, + "end": 32572.71, + "probability": 0.6649 + }, + { + "start": 32573.19, + "end": 32575.81, + "probability": 0.6036 + }, + { + "start": 32576.29, + "end": 32578.28, + "probability": 0.9813 + }, + { + "start": 32578.45, + "end": 32578.83, + "probability": 0.5483 + }, + { + "start": 32578.85, + "end": 32579.93, + "probability": 0.9441 + }, + { + "start": 32580.09, + "end": 32581.45, + "probability": 0.9902 + }, + { + "start": 32581.55, + "end": 32585.99, + "probability": 0.9457 + }, + { + "start": 32587.31, + "end": 32589.86, + "probability": 0.9949 + }, + { + "start": 32592.87, + "end": 32596.35, + "probability": 0.9266 + }, + { + "start": 32596.43, + "end": 32597.35, + "probability": 0.7404 + }, + { + "start": 32598.51, + "end": 32599.75, + "probability": 0.6864 + }, + { + "start": 32600.35, + "end": 32605.55, + "probability": 0.7779 + }, + { + "start": 32606.31, + "end": 32607.37, + "probability": 0.5483 + }, + { + "start": 32608.15, + "end": 32613.19, + "probability": 0.8945 + }, + { + "start": 32613.67, + "end": 32615.17, + "probability": 0.8672 + }, + { + "start": 32615.27, + "end": 32618.05, + "probability": 0.9016 + }, + { + "start": 32618.93, + "end": 32619.49, + "probability": 0.0153 + }, + { + "start": 32620.25, + "end": 32621.57, + "probability": 0.8225 + }, + { + "start": 32621.57, + "end": 32621.71, + "probability": 0.43 + }, + { + "start": 32621.89, + "end": 32622.91, + "probability": 0.3841 + }, + { + "start": 32623.31, + "end": 32624.59, + "probability": 0.7251 + }, + { + "start": 32624.59, + "end": 32625.7, + "probability": 0.2145 + }, + { + "start": 32627.35, + "end": 32627.99, + "probability": 0.1439 + }, + { + "start": 32628.19, + "end": 32628.33, + "probability": 0.4381 + }, + { + "start": 32629.23, + "end": 32631.51, + "probability": 0.6804 + }, + { + "start": 32631.51, + "end": 32633.95, + "probability": 0.8633 + }, + { + "start": 32633.95, + "end": 32634.27, + "probability": 0.5857 + }, + { + "start": 32634.33, + "end": 32635.39, + "probability": 0.9544 + }, + { + "start": 32635.81, + "end": 32638.91, + "probability": 0.751 + }, + { + "start": 32639.13, + "end": 32639.63, + "probability": 0.8804 + }, + { + "start": 32639.99, + "end": 32640.57, + "probability": 0.9167 + }, + { + "start": 32640.73, + "end": 32640.89, + "probability": 0.065 + }, + { + "start": 32640.89, + "end": 32642.98, + "probability": 0.9602 + }, + { + "start": 32643.11, + "end": 32645.15, + "probability": 0.779 + }, + { + "start": 32645.55, + "end": 32646.15, + "probability": 0.0687 + }, + { + "start": 32646.15, + "end": 32649.35, + "probability": 0.5534 + }, + { + "start": 32649.35, + "end": 32651.69, + "probability": 0.9641 + }, + { + "start": 32652.17, + "end": 32652.49, + "probability": 0.2244 + }, + { + "start": 32652.49, + "end": 32652.63, + "probability": 0.1565 + }, + { + "start": 32652.63, + "end": 32653.59, + "probability": 0.7749 + }, + { + "start": 32653.81, + "end": 32657.31, + "probability": 0.7887 + }, + { + "start": 32657.79, + "end": 32664.71, + "probability": 0.7799 + }, + { + "start": 32665.09, + "end": 32666.95, + "probability": 0.7694 + }, + { + "start": 32667.41, + "end": 32669.21, + "probability": 0.9101 + }, + { + "start": 32672.01, + "end": 32673.77, + "probability": 0.3614 + }, + { + "start": 32673.89, + "end": 32675.03, + "probability": 0.4323 + }, + { + "start": 32675.15, + "end": 32675.97, + "probability": 0.4795 + }, + { + "start": 32676.15, + "end": 32679.43, + "probability": 0.9358 + }, + { + "start": 32679.69, + "end": 32682.18, + "probability": 0.8145 + }, + { + "start": 32682.85, + "end": 32683.88, + "probability": 0.8486 + }, + { + "start": 32685.17, + "end": 32686.25, + "probability": 0.8652 + }, + { + "start": 32686.85, + "end": 32688.07, + "probability": 0.0138 + }, + { + "start": 32689.51, + "end": 32689.67, + "probability": 0.1774 + }, + { + "start": 32689.67, + "end": 32689.67, + "probability": 0.0888 + }, + { + "start": 32689.67, + "end": 32689.67, + "probability": 0.0432 + }, + { + "start": 32689.67, + "end": 32689.67, + "probability": 0.3302 + }, + { + "start": 32689.67, + "end": 32689.95, + "probability": 0.1712 + }, + { + "start": 32690.57, + "end": 32691.35, + "probability": 0.4521 + }, + { + "start": 32691.47, + "end": 32692.45, + "probability": 0.3983 + }, + { + "start": 32693.05, + "end": 32693.87, + "probability": 0.0871 + }, + { + "start": 32694.51, + "end": 32696.03, + "probability": 0.2855 + }, + { + "start": 32697.61, + "end": 32698.43, + "probability": 0.8953 + }, + { + "start": 32700.43, + "end": 32701.47, + "probability": 0.3796 + }, + { + "start": 32702.35, + "end": 32703.33, + "probability": 0.7943 + }, + { + "start": 32703.35, + "end": 32705.61, + "probability": 0.9448 + }, + { + "start": 32705.93, + "end": 32706.91, + "probability": 0.8411 + }, + { + "start": 32719.71, + "end": 32719.71, + "probability": 0.0517 + }, + { + "start": 32719.71, + "end": 32719.83, + "probability": 0.0094 + }, + { + "start": 32720.05, + "end": 32721.55, + "probability": 0.366 + }, + { + "start": 32721.55, + "end": 32723.63, + "probability": 0.1373 + }, + { + "start": 32723.75, + "end": 32727.57, + "probability": 0.6145 + }, + { + "start": 32728.13, + "end": 32728.74, + "probability": 0.9753 + }, + { + "start": 32729.97, + "end": 32731.13, + "probability": 0.4887 + }, + { + "start": 32732.13, + "end": 32733.53, + "probability": 0.9689 + }, + { + "start": 32733.63, + "end": 32734.03, + "probability": 0.661 + }, + { + "start": 32734.13, + "end": 32734.72, + "probability": 0.8877 + }, + { + "start": 32736.77, + "end": 32738.19, + "probability": 0.5648 + }, + { + "start": 32738.31, + "end": 32740.63, + "probability": 0.678 + }, + { + "start": 32740.89, + "end": 32744.53, + "probability": 0.5704 + }, + { + "start": 32744.71, + "end": 32745.13, + "probability": 0.4466 + }, + { + "start": 32745.13, + "end": 32750.63, + "probability": 0.9663 + }, + { + "start": 32750.81, + "end": 32751.21, + "probability": 0.9333 + }, + { + "start": 32754.52, + "end": 32759.99, + "probability": 0.9874 + }, + { + "start": 32761.81, + "end": 32765.13, + "probability": 0.9917 + }, + { + "start": 32765.25, + "end": 32768.89, + "probability": 0.8954 + }, + { + "start": 32769.23, + "end": 32771.26, + "probability": 0.8976 + }, + { + "start": 32771.53, + "end": 32773.11, + "probability": 0.8356 + }, + { + "start": 32773.59, + "end": 32775.53, + "probability": 0.979 + }, + { + "start": 32775.53, + "end": 32778.05, + "probability": 0.9486 + }, + { + "start": 32779.45, + "end": 32780.43, + "probability": 0.8784 + }, + { + "start": 32783.03, + "end": 32783.03, + "probability": 0.035 + }, + { + "start": 32783.03, + "end": 32785.73, + "probability": 0.7521 + }, + { + "start": 32786.29, + "end": 32788.47, + "probability": 0.9033 + }, + { + "start": 32788.57, + "end": 32789.81, + "probability": 0.9429 + }, + { + "start": 32790.19, + "end": 32791.57, + "probability": 0.9951 + }, + { + "start": 32792.03, + "end": 32794.21, + "probability": 0.8009 + }, + { + "start": 32795.77, + "end": 32799.37, + "probability": 0.9701 + }, + { + "start": 32799.95, + "end": 32801.05, + "probability": 0.6329 + }, + { + "start": 32801.17, + "end": 32802.87, + "probability": 0.6877 + }, + { + "start": 32802.93, + "end": 32804.05, + "probability": 0.9686 + }, + { + "start": 32804.31, + "end": 32808.73, + "probability": 0.5177 + }, + { + "start": 32808.87, + "end": 32809.15, + "probability": 0.0685 + }, + { + "start": 32809.17, + "end": 32810.39, + "probability": 0.8061 + }, + { + "start": 32810.87, + "end": 32811.63, + "probability": 0.8706 + }, + { + "start": 32811.65, + "end": 32815.35, + "probability": 0.9946 + }, + { + "start": 32815.47, + "end": 32819.31, + "probability": 0.2767 + }, + { + "start": 32819.56, + "end": 32823.69, + "probability": 0.9128 + }, + { + "start": 32823.77, + "end": 32825.75, + "probability": 0.989 + }, + { + "start": 32826.51, + "end": 32828.43, + "probability": 0.9942 + }, + { + "start": 32829.09, + "end": 32831.37, + "probability": 0.9627 + }, + { + "start": 32831.37, + "end": 32832.29, + "probability": 0.4231 + }, + { + "start": 32832.45, + "end": 32832.89, + "probability": 0.8311 + }, + { + "start": 32833.05, + "end": 32838.11, + "probability": 0.9958 + }, + { + "start": 32838.23, + "end": 32839.79, + "probability": 0.9854 + }, + { + "start": 32840.01, + "end": 32841.27, + "probability": 0.9025 + }, + { + "start": 32841.33, + "end": 32842.25, + "probability": 0.4262 + }, + { + "start": 32842.37, + "end": 32844.61, + "probability": 0.7245 + }, + { + "start": 32844.65, + "end": 32846.23, + "probability": 0.9342 + }, + { + "start": 32846.33, + "end": 32846.87, + "probability": 0.6779 + }, + { + "start": 32847.69, + "end": 32848.35, + "probability": 0.8259 + }, + { + "start": 32848.39, + "end": 32849.21, + "probability": 0.5134 + }, + { + "start": 32849.29, + "end": 32856.27, + "probability": 0.8488 + }, + { + "start": 32856.39, + "end": 32859.53, + "probability": 0.7845 + }, + { + "start": 32859.85, + "end": 32861.79, + "probability": 0.9731 + }, + { + "start": 32862.11, + "end": 32862.71, + "probability": 0.8503 + }, + { + "start": 32863.53, + "end": 32864.57, + "probability": 0.7007 + }, + { + "start": 32865.25, + "end": 32866.99, + "probability": 0.6669 + }, + { + "start": 32867.47, + "end": 32868.99, + "probability": 0.1268 + }, + { + "start": 32869.87, + "end": 32872.65, + "probability": 0.4986 + }, + { + "start": 32873.17, + "end": 32873.97, + "probability": 0.8493 + }, + { + "start": 32874.21, + "end": 32875.31, + "probability": 0.895 + }, + { + "start": 32875.57, + "end": 32882.26, + "probability": 0.9897 + }, + { + "start": 32883.23, + "end": 32888.25, + "probability": 0.8687 + }, + { + "start": 32889.55, + "end": 32891.33, + "probability": 0.9235 + }, + { + "start": 32891.53, + "end": 32893.57, + "probability": 0.7087 + }, + { + "start": 32894.29, + "end": 32895.65, + "probability": 0.7089 + }, + { + "start": 32896.33, + "end": 32898.53, + "probability": 0.9341 + }, + { + "start": 32898.63, + "end": 32902.89, + "probability": 0.9615 + }, + { + "start": 32903.77, + "end": 32906.65, + "probability": 0.8964 + }, + { + "start": 32906.93, + "end": 32909.69, + "probability": 0.8097 + }, + { + "start": 32910.23, + "end": 32912.37, + "probability": 0.9738 + }, + { + "start": 32912.49, + "end": 32914.59, + "probability": 0.9983 + }, + { + "start": 32915.25, + "end": 32918.39, + "probability": 0.9915 + }, + { + "start": 32918.61, + "end": 32919.71, + "probability": 0.985 + }, + { + "start": 32920.37, + "end": 32925.49, + "probability": 0.7908 + }, + { + "start": 32926.15, + "end": 32928.9, + "probability": 0.9733 + }, + { + "start": 32930.61, + "end": 32932.29, + "probability": 0.9827 + }, + { + "start": 32932.93, + "end": 32933.84, + "probability": 0.9617 + }, + { + "start": 32935.82, + "end": 32939.85, + "probability": 0.9618 + }, + { + "start": 32940.47, + "end": 32942.43, + "probability": 0.856 + }, + { + "start": 32943.19, + "end": 32945.69, + "probability": 0.9283 + }, + { + "start": 32946.79, + "end": 32948.69, + "probability": 0.9235 + }, + { + "start": 32948.83, + "end": 32949.71, + "probability": 0.928 + }, + { + "start": 32950.33, + "end": 32952.13, + "probability": 0.901 + }, + { + "start": 32952.43, + "end": 32954.39, + "probability": 0.8662 + }, + { + "start": 32954.93, + "end": 32956.29, + "probability": 0.7148 + }, + { + "start": 32956.35, + "end": 32957.45, + "probability": 0.8554 + }, + { + "start": 32957.61, + "end": 32958.09, + "probability": 0.4272 + }, + { + "start": 32958.25, + "end": 32960.49, + "probability": 0.9814 + }, + { + "start": 32960.65, + "end": 32962.85, + "probability": 0.9023 + }, + { + "start": 32963.75, + "end": 32966.35, + "probability": 0.9942 + }, + { + "start": 32966.41, + "end": 32970.25, + "probability": 0.9293 + }, + { + "start": 32971.33, + "end": 32976.13, + "probability": 0.8201 + }, + { + "start": 32977.13, + "end": 32982.61, + "probability": 0.7258 + }, + { + "start": 32983.45, + "end": 32985.15, + "probability": 0.6526 + }, + { + "start": 32986.05, + "end": 32989.03, + "probability": 0.9526 + }, + { + "start": 32989.57, + "end": 32990.53, + "probability": 0.9058 + }, + { + "start": 32990.93, + "end": 32992.21, + "probability": 0.8803 + }, + { + "start": 32993.01, + "end": 32995.45, + "probability": 0.8632 + }, + { + "start": 32997.31, + "end": 32998.07, + "probability": 0.9531 + }, + { + "start": 33000.63, + "end": 33004.99, + "probability": 0.8186 + }, + { + "start": 33006.77, + "end": 33007.43, + "probability": 0.6344 + }, + { + "start": 33008.97, + "end": 33009.37, + "probability": 0.011 + }, + { + "start": 33010.89, + "end": 33014.11, + "probability": 0.5511 + }, + { + "start": 33014.37, + "end": 33016.51, + "probability": 0.4691 + }, + { + "start": 33016.55, + "end": 33017.47, + "probability": 0.5238 + }, + { + "start": 33020.15, + "end": 33020.41, + "probability": 0.938 + }, + { + "start": 33021.19, + "end": 33024.25, + "probability": 0.9854 + }, + { + "start": 33024.45, + "end": 33025.67, + "probability": 0.9273 + }, + { + "start": 33026.41, + "end": 33029.75, + "probability": 0.8403 + }, + { + "start": 33030.75, + "end": 33031.29, + "probability": 0.8982 + }, + { + "start": 33033.55, + "end": 33037.75, + "probability": 0.9353 + }, + { + "start": 33038.43, + "end": 33041.99, + "probability": 0.8873 + }, + { + "start": 33042.57, + "end": 33047.43, + "probability": 0.9825 + }, + { + "start": 33047.91, + "end": 33048.91, + "probability": 0.7327 + }, + { + "start": 33049.25, + "end": 33051.99, + "probability": 0.8313 + }, + { + "start": 33052.09, + "end": 33053.25, + "probability": 0.9874 + }, + { + "start": 33053.53, + "end": 33055.31, + "probability": 0.9943 + }, + { + "start": 33055.79, + "end": 33059.23, + "probability": 0.9916 + }, + { + "start": 33059.39, + "end": 33060.11, + "probability": 0.6967 + }, + { + "start": 33060.49, + "end": 33062.29, + "probability": 0.964 + }, + { + "start": 33063.47, + "end": 33067.61, + "probability": 0.9875 + }, + { + "start": 33068.21, + "end": 33068.45, + "probability": 0.0192 + }, + { + "start": 33068.45, + "end": 33068.45, + "probability": 0.1618 + }, + { + "start": 33068.45, + "end": 33070.41, + "probability": 0.9101 + }, + { + "start": 33070.49, + "end": 33078.37, + "probability": 0.8148 + }, + { + "start": 33078.97, + "end": 33084.17, + "probability": 0.9929 + }, + { + "start": 33084.75, + "end": 33085.25, + "probability": 0.0133 + }, + { + "start": 33085.25, + "end": 33085.27, + "probability": 0.5942 + }, + { + "start": 33085.27, + "end": 33086.13, + "probability": 0.5086 + }, + { + "start": 33086.43, + "end": 33087.19, + "probability": 0.5425 + }, + { + "start": 33087.79, + "end": 33090.03, + "probability": 0.9849 + }, + { + "start": 33090.91, + "end": 33091.31, + "probability": 0.8239 + }, + { + "start": 33091.47, + "end": 33091.87, + "probability": 0.962 + }, + { + "start": 33091.97, + "end": 33097.57, + "probability": 0.9948 + }, + { + "start": 33098.45, + "end": 33100.79, + "probability": 0.9982 + }, + { + "start": 33101.17, + "end": 33102.75, + "probability": 0.8825 + }, + { + "start": 33103.09, + "end": 33104.25, + "probability": 0.9841 + }, + { + "start": 33104.65, + "end": 33107.05, + "probability": 0.9387 + }, + { + "start": 33107.15, + "end": 33107.97, + "probability": 0.8045 + }, + { + "start": 33108.17, + "end": 33109.13, + "probability": 0.9624 + }, + { + "start": 33109.45, + "end": 33110.67, + "probability": 0.9655 + }, + { + "start": 33111.13, + "end": 33112.25, + "probability": 0.9876 + }, + { + "start": 33112.55, + "end": 33113.44, + "probability": 0.8771 + }, + { + "start": 33114.19, + "end": 33117.81, + "probability": 0.9922 + }, + { + "start": 33118.13, + "end": 33121.19, + "probability": 0.9961 + }, + { + "start": 33122.43, + "end": 33124.43, + "probability": 0.8135 + }, + { + "start": 33125.03, + "end": 33127.95, + "probability": 0.9854 + }, + { + "start": 33128.49, + "end": 33130.83, + "probability": 0.7476 + }, + { + "start": 33131.47, + "end": 33133.47, + "probability": 0.9547 + }, + { + "start": 33133.77, + "end": 33137.35, + "probability": 0.8099 + }, + { + "start": 33137.43, + "end": 33138.55, + "probability": 0.9478 + }, + { + "start": 33138.65, + "end": 33139.22, + "probability": 0.5937 + }, + { + "start": 33140.03, + "end": 33142.17, + "probability": 0.9945 + }, + { + "start": 33142.33, + "end": 33142.59, + "probability": 0.7528 + }, + { + "start": 33142.79, + "end": 33144.86, + "probability": 0.7285 + }, + { + "start": 33145.29, + "end": 33147.81, + "probability": 0.907 + }, + { + "start": 33167.47, + "end": 33169.69, + "probability": 0.8083 + }, + { + "start": 33171.27, + "end": 33171.57, + "probability": 0.4455 + }, + { + "start": 33171.61, + "end": 33174.97, + "probability": 0.7251 + }, + { + "start": 33175.79, + "end": 33178.63, + "probability": 0.7736 + }, + { + "start": 33179.59, + "end": 33179.89, + "probability": 0.801 + }, + { + "start": 33181.15, + "end": 33183.69, + "probability": 0.9833 + }, + { + "start": 33184.71, + "end": 33187.87, + "probability": 0.9977 + }, + { + "start": 33188.83, + "end": 33190.05, + "probability": 0.7292 + }, + { + "start": 33191.01, + "end": 33194.71, + "probability": 0.8517 + }, + { + "start": 33195.65, + "end": 33198.87, + "probability": 0.9958 + }, + { + "start": 33200.31, + "end": 33201.51, + "probability": 0.0959 + }, + { + "start": 33202.55, + "end": 33203.63, + "probability": 0.0781 + }, + { + "start": 33203.63, + "end": 33204.35, + "probability": 0.0276 + }, + { + "start": 33205.11, + "end": 33209.41, + "probability": 0.978 + }, + { + "start": 33209.41, + "end": 33212.63, + "probability": 0.9196 + }, + { + "start": 33213.37, + "end": 33214.28, + "probability": 0.6975 + }, + { + "start": 33214.93, + "end": 33215.97, + "probability": 0.7086 + }, + { + "start": 33216.79, + "end": 33223.03, + "probability": 0.9486 + }, + { + "start": 33223.57, + "end": 33226.17, + "probability": 0.6702 + }, + { + "start": 33226.53, + "end": 33227.13, + "probability": 0.8315 + }, + { + "start": 33227.27, + "end": 33228.23, + "probability": 0.985 + }, + { + "start": 33228.33, + "end": 33228.95, + "probability": 0.8564 + }, + { + "start": 33230.11, + "end": 33230.93, + "probability": 0.7511 + }, + { + "start": 33234.29, + "end": 33235.79, + "probability": 0.2863 + }, + { + "start": 33236.65, + "end": 33237.81, + "probability": 0.6581 + }, + { + "start": 33237.85, + "end": 33241.25, + "probability": 0.9604 + }, + { + "start": 33241.53, + "end": 33241.63, + "probability": 0.1613 + }, + { + "start": 33242.65, + "end": 33244.45, + "probability": 0.0125 + }, + { + "start": 33245.05, + "end": 33246.81, + "probability": 0.1354 + }, + { + "start": 33246.81, + "end": 33252.11, + "probability": 0.882 + }, + { + "start": 33252.73, + "end": 33255.57, + "probability": 0.9227 + }, + { + "start": 33256.21, + "end": 33262.91, + "probability": 0.9932 + }, + { + "start": 33263.71, + "end": 33267.45, + "probability": 0.9673 + }, + { + "start": 33268.35, + "end": 33269.99, + "probability": 0.9914 + }, + { + "start": 33270.05, + "end": 33271.83, + "probability": 0.679 + }, + { + "start": 33272.71, + "end": 33274.67, + "probability": 0.5737 + }, + { + "start": 33276.77, + "end": 33278.51, + "probability": 0.9748 + }, + { + "start": 33279.57, + "end": 33280.75, + "probability": 0.9692 + }, + { + "start": 33281.97, + "end": 33283.67, + "probability": 0.9388 + }, + { + "start": 33284.49, + "end": 33285.71, + "probability": 0.7382 + }, + { + "start": 33285.91, + "end": 33287.09, + "probability": 0.6435 + }, + { + "start": 33287.23, + "end": 33287.63, + "probability": 0.7495 + }, + { + "start": 33287.79, + "end": 33288.27, + "probability": 0.7151 + }, + { + "start": 33288.29, + "end": 33289.07, + "probability": 0.6223 + }, + { + "start": 33289.81, + "end": 33292.03, + "probability": 0.8226 + }, + { + "start": 33293.77, + "end": 33295.55, + "probability": 0.9187 + }, + { + "start": 33296.29, + "end": 33298.65, + "probability": 0.0009 + }, + { + "start": 33300.45, + "end": 33300.61, + "probability": 0.1284 + }, + { + "start": 33300.61, + "end": 33301.21, + "probability": 0.2104 + }, + { + "start": 33301.99, + "end": 33303.99, + "probability": 0.3256 + }, + { + "start": 33304.33, + "end": 33305.53, + "probability": 0.7339 + }, + { + "start": 33305.69, + "end": 33311.65, + "probability": 0.9166 + }, + { + "start": 33311.73, + "end": 33312.69, + "probability": 0.8707 + }, + { + "start": 33313.05, + "end": 33314.41, + "probability": 0.8585 + }, + { + "start": 33314.89, + "end": 33321.19, + "probability": 0.9082 + }, + { + "start": 33321.75, + "end": 33324.25, + "probability": 0.9575 + }, + { + "start": 33324.99, + "end": 33326.85, + "probability": 0.6624 + }, + { + "start": 33327.59, + "end": 33329.23, + "probability": 0.8519 + }, + { + "start": 33329.71, + "end": 33330.73, + "probability": 0.9753 + }, + { + "start": 33331.29, + "end": 33333.15, + "probability": 0.9222 + }, + { + "start": 33333.79, + "end": 33334.37, + "probability": 0.7561 + }, + { + "start": 33334.75, + "end": 33338.93, + "probability": 0.8723 + }, + { + "start": 33339.51, + "end": 33341.01, + "probability": 0.9057 + }, + { + "start": 33341.37, + "end": 33345.23, + "probability": 0.8317 + }, + { + "start": 33345.51, + "end": 33349.81, + "probability": 0.9584 + }, + { + "start": 33349.91, + "end": 33351.05, + "probability": 0.8501 + }, + { + "start": 33351.51, + "end": 33351.95, + "probability": 0.991 + }, + { + "start": 33352.99, + "end": 33353.83, + "probability": 0.9019 + }, + { + "start": 33354.43, + "end": 33355.25, + "probability": 0.4291 + }, + { + "start": 33356.11, + "end": 33360.35, + "probability": 0.9476 + }, + { + "start": 33361.27, + "end": 33362.23, + "probability": 0.8086 + }, + { + "start": 33362.69, + "end": 33363.61, + "probability": 0.7721 + }, + { + "start": 33364.47, + "end": 33364.75, + "probability": 0.1639 + }, + { + "start": 33364.75, + "end": 33366.49, + "probability": 0.7708 + }, + { + "start": 33367.31, + "end": 33367.87, + "probability": 0.0774 + }, + { + "start": 33367.97, + "end": 33370.57, + "probability": 0.7443 + }, + { + "start": 33371.31, + "end": 33372.91, + "probability": 0.9496 + }, + { + "start": 33373.39, + "end": 33373.93, + "probability": 0.9055 + }, + { + "start": 33374.95, + "end": 33376.23, + "probability": 0.9565 + }, + { + "start": 33376.55, + "end": 33377.81, + "probability": 0.9829 + }, + { + "start": 33378.45, + "end": 33380.21, + "probability": 0.9758 + }, + { + "start": 33380.39, + "end": 33383.07, + "probability": 0.3978 + }, + { + "start": 33383.07, + "end": 33383.89, + "probability": 0.7444 + }, + { + "start": 33384.63, + "end": 33387.63, + "probability": 0.9714 + }, + { + "start": 33388.17, + "end": 33389.55, + "probability": 0.9093 + }, + { + "start": 33389.61, + "end": 33391.13, + "probability": 0.9684 + }, + { + "start": 33392.17, + "end": 33394.23, + "probability": 0.9229 + }, + { + "start": 33394.29, + "end": 33395.33, + "probability": 0.9902 + }, + { + "start": 33395.77, + "end": 33398.2, + "probability": 0.7175 + }, + { + "start": 33398.27, + "end": 33400.17, + "probability": 0.2078 + }, + { + "start": 33400.23, + "end": 33400.91, + "probability": 0.7457 + }, + { + "start": 33401.95, + "end": 33402.09, + "probability": 0.399 + }, + { + "start": 33402.09, + "end": 33405.25, + "probability": 0.9863 + }, + { + "start": 33405.57, + "end": 33410.31, + "probability": 0.5011 + }, + { + "start": 33410.31, + "end": 33413.31, + "probability": 0.9901 + }, + { + "start": 33413.77, + "end": 33416.55, + "probability": 0.9883 + }, + { + "start": 33416.63, + "end": 33421.03, + "probability": 0.9303 + }, + { + "start": 33421.03, + "end": 33424.81, + "probability": 0.9963 + }, + { + "start": 33426.01, + "end": 33427.29, + "probability": 0.7445 + }, + { + "start": 33427.89, + "end": 33432.27, + "probability": 0.6132 + }, + { + "start": 33433.13, + "end": 33435.85, + "probability": 0.6937 + }, + { + "start": 33435.91, + "end": 33437.74, + "probability": 0.9514 + }, + { + "start": 33437.93, + "end": 33438.73, + "probability": 0.8641 + }, + { + "start": 33438.87, + "end": 33439.45, + "probability": 0.8793 + }, + { + "start": 33439.99, + "end": 33441.88, + "probability": 0.1174 + }, + { + "start": 33442.27, + "end": 33444.97, + "probability": 0.1175 + }, + { + "start": 33445.35, + "end": 33448.45, + "probability": 0.0924 + }, + { + "start": 33448.91, + "end": 33449.49, + "probability": 0.0996 + }, + { + "start": 33450.65, + "end": 33450.81, + "probability": 0.0003 + }, + { + "start": 33453.25, + "end": 33455.75, + "probability": 0.0457 + }, + { + "start": 33456.91, + "end": 33459.11, + "probability": 0.1105 + }, + { + "start": 33460.13, + "end": 33460.25, + "probability": 0.2483 + }, + { + "start": 33465.69, + "end": 33469.21, + "probability": 0.4106 + }, + { + "start": 33471.58, + "end": 33474.49, + "probability": 0.8621 + }, + { + "start": 33474.57, + "end": 33475.65, + "probability": 0.9985 + }, + { + "start": 33475.73, + "end": 33477.94, + "probability": 0.7476 + }, + { + "start": 33478.15, + "end": 33480.61, + "probability": 0.7719 + }, + { + "start": 33481.21, + "end": 33481.91, + "probability": 0.7211 + }, + { + "start": 33483.01, + "end": 33485.31, + "probability": 0.6579 + }, + { + "start": 33485.33, + "end": 33486.19, + "probability": 0.6995 + }, + { + "start": 33486.41, + "end": 33488.05, + "probability": 0.6406 + }, + { + "start": 33489.21, + "end": 33491.49, + "probability": 0.8835 + }, + { + "start": 33492.95, + "end": 33498.41, + "probability": 0.9606 + }, + { + "start": 33499.47, + "end": 33502.47, + "probability": 0.9968 + }, + { + "start": 33503.79, + "end": 33509.95, + "probability": 0.9569 + }, + { + "start": 33512.75, + "end": 33516.53, + "probability": 0.7786 + }, + { + "start": 33517.49, + "end": 33518.43, + "probability": 0.9017 + }, + { + "start": 33519.25, + "end": 33521.59, + "probability": 0.873 + }, + { + "start": 33522.69, + "end": 33525.97, + "probability": 0.9685 + }, + { + "start": 33527.01, + "end": 33528.71, + "probability": 0.6873 + }, + { + "start": 33529.31, + "end": 33531.11, + "probability": 0.8582 + }, + { + "start": 33531.81, + "end": 33533.93, + "probability": 0.8219 + }, + { + "start": 33534.71, + "end": 33535.91, + "probability": 0.6977 + }, + { + "start": 33536.77, + "end": 33539.13, + "probability": 0.908 + }, + { + "start": 33541.45, + "end": 33541.89, + "probability": 0.5127 + }, + { + "start": 33542.13, + "end": 33546.71, + "probability": 0.8332 + }, + { + "start": 33546.71, + "end": 33552.5, + "probability": 0.8131 + }, + { + "start": 33552.99, + "end": 33553.57, + "probability": 0.6263 + }, + { + "start": 33554.23, + "end": 33555.39, + "probability": 0.9817 + }, + { + "start": 33555.93, + "end": 33557.83, + "probability": 0.9636 + }, + { + "start": 33558.41, + "end": 33559.69, + "probability": 0.902 + }, + { + "start": 33560.37, + "end": 33561.27, + "probability": 0.821 + }, + { + "start": 33562.73, + "end": 33564.53, + "probability": 0.7552 + }, + { + "start": 33566.37, + "end": 33574.27, + "probability": 0.981 + }, + { + "start": 33576.09, + "end": 33580.03, + "probability": 0.7832 + }, + { + "start": 33580.91, + "end": 33585.77, + "probability": 0.9814 + }, + { + "start": 33587.53, + "end": 33589.01, + "probability": 0.9775 + }, + { + "start": 33589.67, + "end": 33590.43, + "probability": 0.8104 + }, + { + "start": 33591.57, + "end": 33600.17, + "probability": 0.9881 + }, + { + "start": 33601.25, + "end": 33605.41, + "probability": 0.9844 + }, + { + "start": 33606.97, + "end": 33611.05, + "probability": 0.9685 + }, + { + "start": 33611.63, + "end": 33616.27, + "probability": 0.773 + }, + { + "start": 33617.13, + "end": 33618.31, + "probability": 0.9314 + }, + { + "start": 33619.93, + "end": 33622.95, + "probability": 0.9316 + }, + { + "start": 33623.63, + "end": 33626.73, + "probability": 0.9375 + }, + { + "start": 33627.85, + "end": 33633.51, + "probability": 0.9944 + }, + { + "start": 33633.51, + "end": 33639.67, + "probability": 0.998 + }, + { + "start": 33640.23, + "end": 33640.47, + "probability": 0.7069 + }, + { + "start": 33640.61, + "end": 33641.03, + "probability": 0.524 + }, + { + "start": 33641.23, + "end": 33642.21, + "probability": 0.5063 + }, + { + "start": 33642.23, + "end": 33644.35, + "probability": 0.9181 + }, + { + "start": 33645.45, + "end": 33649.03, + "probability": 0.9443 + }, + { + "start": 33658.93, + "end": 33660.83, + "probability": 0.812 + }, + { + "start": 33661.27, + "end": 33662.02, + "probability": 0.7922 + }, + { + "start": 33663.45, + "end": 33664.91, + "probability": 0.583 + }, + { + "start": 33666.41, + "end": 33667.21, + "probability": 0.9343 + }, + { + "start": 33668.71, + "end": 33671.13, + "probability": 0.6596 + }, + { + "start": 33673.07, + "end": 33674.21, + "probability": 0.9122 + }, + { + "start": 33674.73, + "end": 33681.61, + "probability": 0.9934 + }, + { + "start": 33681.77, + "end": 33682.45, + "probability": 0.7277 + }, + { + "start": 33682.61, + "end": 33684.01, + "probability": 0.9909 + }, + { + "start": 33684.91, + "end": 33686.55, + "probability": 0.921 + }, + { + "start": 33687.59, + "end": 33688.66, + "probability": 0.9966 + }, + { + "start": 33689.97, + "end": 33692.85, + "probability": 0.9369 + }, + { + "start": 33694.33, + "end": 33695.17, + "probability": 0.9417 + }, + { + "start": 33695.85, + "end": 33696.77, + "probability": 0.7142 + }, + { + "start": 33698.29, + "end": 33699.55, + "probability": 0.9756 + }, + { + "start": 33700.09, + "end": 33701.77, + "probability": 0.8313 + }, + { + "start": 33703.45, + "end": 33704.11, + "probability": 0.8655 + }, + { + "start": 33705.87, + "end": 33710.61, + "probability": 0.5974 + }, + { + "start": 33710.75, + "end": 33711.31, + "probability": 0.9722 + }, + { + "start": 33712.79, + "end": 33715.95, + "probability": 0.9048 + }, + { + "start": 33717.25, + "end": 33718.31, + "probability": 0.8959 + }, + { + "start": 33718.39, + "end": 33721.41, + "probability": 0.9927 + }, + { + "start": 33722.91, + "end": 33725.83, + "probability": 0.9932 + }, + { + "start": 33726.15, + "end": 33728.38, + "probability": 0.9768 + }, + { + "start": 33730.21, + "end": 33732.85, + "probability": 0.9838 + }, + { + "start": 33735.27, + "end": 33738.73, + "probability": 0.9966 + }, + { + "start": 33739.95, + "end": 33741.95, + "probability": 0.9955 + }, + { + "start": 33743.93, + "end": 33744.75, + "probability": 0.9995 + }, + { + "start": 33746.21, + "end": 33749.09, + "probability": 0.9748 + }, + { + "start": 33750.87, + "end": 33752.99, + "probability": 0.9854 + }, + { + "start": 33754.37, + "end": 33755.91, + "probability": 0.9465 + }, + { + "start": 33757.43, + "end": 33758.09, + "probability": 0.6293 + }, + { + "start": 33759.43, + "end": 33762.32, + "probability": 0.8228 + }, + { + "start": 33763.83, + "end": 33765.16, + "probability": 0.816 + }, + { + "start": 33766.07, + "end": 33766.73, + "probability": 0.6903 + }, + { + "start": 33767.33, + "end": 33767.55, + "probability": 0.3315 + }, + { + "start": 33768.45, + "end": 33769.03, + "probability": 0.8129 + }, + { + "start": 33770.25, + "end": 33773.41, + "probability": 0.9658 + }, + { + "start": 33774.51, + "end": 33774.99, + "probability": 0.6583 + }, + { + "start": 33779.05, + "end": 33780.55, + "probability": 0.9939 + }, + { + "start": 33781.17, + "end": 33781.45, + "probability": 0.5966 + }, + { + "start": 33783.25, + "end": 33784.03, + "probability": 0.9297 + }, + { + "start": 33786.01, + "end": 33789.97, + "probability": 0.9979 + }, + { + "start": 33791.61, + "end": 33795.11, + "probability": 0.9974 + }, + { + "start": 33797.03, + "end": 33804.77, + "probability": 0.9935 + }, + { + "start": 33806.81, + "end": 33809.15, + "probability": 0.9589 + }, + { + "start": 33811.35, + "end": 33812.43, + "probability": 0.8633 + }, + { + "start": 33813.33, + "end": 33814.29, + "probability": 0.9137 + }, + { + "start": 33815.29, + "end": 33816.2, + "probability": 0.9609 + }, + { + "start": 33816.77, + "end": 33818.23, + "probability": 0.958 + }, + { + "start": 33821.51, + "end": 33823.37, + "probability": 0.3699 + }, + { + "start": 33824.07, + "end": 33827.43, + "probability": 0.9601 + }, + { + "start": 33827.97, + "end": 33832.77, + "probability": 0.8789 + }, + { + "start": 33835.07, + "end": 33836.89, + "probability": 0.716 + }, + { + "start": 33837.17, + "end": 33840.65, + "probability": 0.98 + }, + { + "start": 33840.71, + "end": 33842.64, + "probability": 0.9731 + }, + { + "start": 33843.25, + "end": 33845.47, + "probability": 0.9932 + }, + { + "start": 33846.61, + "end": 33848.77, + "probability": 0.9815 + }, + { + "start": 33849.69, + "end": 33851.69, + "probability": 0.9442 + }, + { + "start": 33851.85, + "end": 33852.29, + "probability": 0.7581 + }, + { + "start": 33852.47, + "end": 33853.87, + "probability": 0.6668 + }, + { + "start": 33855.31, + "end": 33857.49, + "probability": 0.542 + }, + { + "start": 33857.67, + "end": 33860.03, + "probability": 0.9729 + }, + { + "start": 33860.55, + "end": 33863.01, + "probability": 0.9946 + }, + { + "start": 33863.85, + "end": 33867.07, + "probability": 0.8514 + }, + { + "start": 33867.43, + "end": 33868.29, + "probability": 0.4883 + }, + { + "start": 33869.29, + "end": 33870.19, + "probability": 0.8316 + }, + { + "start": 33871.33, + "end": 33874.61, + "probability": 0.9825 + }, + { + "start": 33876.95, + "end": 33878.87, + "probability": 0.9758 + }, + { + "start": 33879.01, + "end": 33880.77, + "probability": 0.9941 + }, + { + "start": 33882.73, + "end": 33884.85, + "probability": 0.804 + }, + { + "start": 33885.47, + "end": 33886.53, + "probability": 0.7175 + }, + { + "start": 33887.21, + "end": 33891.23, + "probability": 0.8867 + }, + { + "start": 33891.97, + "end": 33896.83, + "probability": 0.7902 + }, + { + "start": 33897.49, + "end": 33898.89, + "probability": 0.7515 + }, + { + "start": 33899.99, + "end": 33902.61, + "probability": 0.965 + }, + { + "start": 33903.33, + "end": 33903.95, + "probability": 0.3304 + }, + { + "start": 33904.25, + "end": 33906.91, + "probability": 0.9921 + }, + { + "start": 33907.41, + "end": 33911.75, + "probability": 0.9738 + }, + { + "start": 33911.93, + "end": 33913.21, + "probability": 0.9378 + }, + { + "start": 33913.49, + "end": 33917.87, + "probability": 0.9719 + }, + { + "start": 33917.89, + "end": 33918.81, + "probability": 0.7396 + }, + { + "start": 33919.57, + "end": 33924.71, + "probability": 0.9708 + }, + { + "start": 33924.71, + "end": 33930.77, + "probability": 0.9921 + }, + { + "start": 33931.67, + "end": 33932.49, + "probability": 0.9328 + }, + { + "start": 33933.43, + "end": 33934.29, + "probability": 0.8844 + }, + { + "start": 33935.39, + "end": 33936.11, + "probability": 0.7275 + }, + { + "start": 33936.83, + "end": 33938.77, + "probability": 0.9979 + }, + { + "start": 33939.31, + "end": 33942.71, + "probability": 0.9987 + }, + { + "start": 33943.35, + "end": 33947.99, + "probability": 0.9947 + }, + { + "start": 33948.71, + "end": 33952.35, + "probability": 0.917 + }, + { + "start": 33952.91, + "end": 33954.71, + "probability": 0.7976 + }, + { + "start": 33955.51, + "end": 33957.03, + "probability": 0.926 + }, + { + "start": 33958.15, + "end": 33962.37, + "probability": 0.9796 + }, + { + "start": 33962.85, + "end": 33964.05, + "probability": 0.8966 + }, + { + "start": 33965.33, + "end": 33966.13, + "probability": 0.9253 + }, + { + "start": 33966.45, + "end": 33967.89, + "probability": 0.9966 + }, + { + "start": 33968.81, + "end": 33969.85, + "probability": 0.9712 + }, + { + "start": 33971.15, + "end": 33971.71, + "probability": 0.8042 + }, + { + "start": 33972.53, + "end": 33976.55, + "probability": 0.9556 + }, + { + "start": 33977.81, + "end": 33979.19, + "probability": 0.5873 + }, + { + "start": 33980.43, + "end": 33982.17, + "probability": 0.9694 + }, + { + "start": 33982.97, + "end": 33990.37, + "probability": 0.9964 + }, + { + "start": 33990.83, + "end": 33992.73, + "probability": 0.9418 + }, + { + "start": 33993.09, + "end": 33993.79, + "probability": 0.7705 + }, + { + "start": 33994.07, + "end": 33995.71, + "probability": 0.7942 + }, + { + "start": 33996.39, + "end": 33998.51, + "probability": 0.8919 + }, + { + "start": 33999.05, + "end": 34000.05, + "probability": 0.8201 + }, + { + "start": 34000.71, + "end": 34001.25, + "probability": 0.5684 + }, + { + "start": 34012.03, + "end": 34013.01, + "probability": 0.3976 + }, + { + "start": 34014.17, + "end": 34015.65, + "probability": 0.7253 + }, + { + "start": 34016.61, + "end": 34020.59, + "probability": 0.7362 + }, + { + "start": 34021.37, + "end": 34024.66, + "probability": 0.9912 + }, + { + "start": 34027.07, + "end": 34032.41, + "probability": 0.9902 + }, + { + "start": 34034.41, + "end": 34036.55, + "probability": 0.9053 + }, + { + "start": 34038.49, + "end": 34042.87, + "probability": 0.9124 + }, + { + "start": 34043.77, + "end": 34044.99, + "probability": 0.9766 + }, + { + "start": 34045.19, + "end": 34049.11, + "probability": 0.7153 + }, + { + "start": 34049.25, + "end": 34050.07, + "probability": 0.8055 + }, + { + "start": 34050.53, + "end": 34051.39, + "probability": 0.9264 + }, + { + "start": 34052.31, + "end": 34054.75, + "probability": 0.8197 + }, + { + "start": 34054.93, + "end": 34055.03, + "probability": 0.32 + }, + { + "start": 34055.17, + "end": 34056.01, + "probability": 0.1715 + }, + { + "start": 34056.01, + "end": 34056.99, + "probability": 0.6054 + }, + { + "start": 34057.13, + "end": 34059.09, + "probability": 0.9674 + }, + { + "start": 34059.21, + "end": 34062.51, + "probability": 0.9971 + }, + { + "start": 34063.09, + "end": 34063.57, + "probability": 0.7737 + }, + { + "start": 34064.19, + "end": 34064.31, + "probability": 0.8308 + }, + { + "start": 34065.11, + "end": 34065.95, + "probability": 0.7687 + }, + { + "start": 34066.71, + "end": 34067.89, + "probability": 0.8648 + }, + { + "start": 34068.99, + "end": 34069.21, + "probability": 0.563 + }, + { + "start": 34070.15, + "end": 34071.39, + "probability": 0.9667 + }, + { + "start": 34071.47, + "end": 34075.39, + "probability": 0.8477 + }, + { + "start": 34075.65, + "end": 34079.67, + "probability": 0.9331 + }, + { + "start": 34080.17, + "end": 34083.59, + "probability": 0.522 + }, + { + "start": 34084.09, + "end": 34088.65, + "probability": 0.8781 + }, + { + "start": 34088.71, + "end": 34089.57, + "probability": 0.701 + }, + { + "start": 34089.57, + "end": 34090.45, + "probability": 0.733 + }, + { + "start": 34091.45, + "end": 34094.65, + "probability": 0.901 + }, + { + "start": 34095.53, + "end": 34098.73, + "probability": 0.9839 + }, + { + "start": 34098.99, + "end": 34100.05, + "probability": 0.8855 + }, + { + "start": 34100.43, + "end": 34102.23, + "probability": 0.8353 + }, + { + "start": 34102.65, + "end": 34102.93, + "probability": 0.4963 + }, + { + "start": 34103.01, + "end": 34103.45, + "probability": 0.8343 + }, + { + "start": 34103.55, + "end": 34104.81, + "probability": 0.9705 + }, + { + "start": 34105.11, + "end": 34106.23, + "probability": 0.975 + }, + { + "start": 34106.83, + "end": 34107.01, + "probability": 0.7407 + }, + { + "start": 34108.05, + "end": 34111.63, + "probability": 0.993 + }, + { + "start": 34112.71, + "end": 34116.21, + "probability": 0.9979 + }, + { + "start": 34118.03, + "end": 34120.37, + "probability": 0.9946 + }, + { + "start": 34121.31, + "end": 34122.61, + "probability": 0.944 + }, + { + "start": 34123.89, + "end": 34126.67, + "probability": 0.9043 + }, + { + "start": 34128.01, + "end": 34128.93, + "probability": 0.8374 + }, + { + "start": 34129.25, + "end": 34129.91, + "probability": 0.8302 + }, + { + "start": 34130.33, + "end": 34134.73, + "probability": 0.9893 + }, + { + "start": 34136.49, + "end": 34138.75, + "probability": 0.8625 + }, + { + "start": 34139.91, + "end": 34140.45, + "probability": 0.9279 + }, + { + "start": 34140.53, + "end": 34141.63, + "probability": 0.9842 + }, + { + "start": 34141.75, + "end": 34144.31, + "probability": 0.976 + }, + { + "start": 34144.71, + "end": 34148.68, + "probability": 0.9379 + }, + { + "start": 34148.97, + "end": 34149.91, + "probability": 0.7216 + }, + { + "start": 34150.69, + "end": 34153.23, + "probability": 0.9619 + }, + { + "start": 34153.89, + "end": 34157.47, + "probability": 0.8999 + }, + { + "start": 34159.21, + "end": 34162.19, + "probability": 0.9436 + }, + { + "start": 34163.11, + "end": 34165.35, + "probability": 0.9948 + }, + { + "start": 34165.95, + "end": 34167.47, + "probability": 0.6737 + }, + { + "start": 34167.57, + "end": 34170.31, + "probability": 0.9003 + }, + { + "start": 34175.67, + "end": 34177.93, + "probability": 0.4351 + }, + { + "start": 34179.17, + "end": 34182.19, + "probability": 0.9692 + }, + { + "start": 34182.94, + "end": 34184.45, + "probability": 0.534 + }, + { + "start": 34184.51, + "end": 34186.81, + "probability": 0.5625 + }, + { + "start": 34186.89, + "end": 34188.31, + "probability": 0.8303 + }, + { + "start": 34188.43, + "end": 34190.28, + "probability": 0.9675 + }, + { + "start": 34190.65, + "end": 34191.79, + "probability": 0.9114 + }, + { + "start": 34191.91, + "end": 34193.24, + "probability": 0.3632 + }, + { + "start": 34193.31, + "end": 34194.42, + "probability": 0.6588 + }, + { + "start": 34195.15, + "end": 34195.59, + "probability": 0.7609 + }, + { + "start": 34195.79, + "end": 34197.03, + "probability": 0.8162 + }, + { + "start": 34197.03, + "end": 34200.4, + "probability": 0.9501 + }, + { + "start": 34201.85, + "end": 34202.85, + "probability": 0.9235 + }, + { + "start": 34203.81, + "end": 34208.77, + "probability": 0.715 + }, + { + "start": 34210.25, + "end": 34213.67, + "probability": 0.8283 + }, + { + "start": 34215.11, + "end": 34218.41, + "probability": 0.9965 + }, + { + "start": 34218.51, + "end": 34218.95, + "probability": 0.9371 + }, + { + "start": 34219.15, + "end": 34219.87, + "probability": 0.6906 + }, + { + "start": 34220.29, + "end": 34220.87, + "probability": 0.6799 + }, + { + "start": 34221.29, + "end": 34224.79, + "probability": 0.9912 + }, + { + "start": 34229.67, + "end": 34232.85, + "probability": 0.9411 + }, + { + "start": 34233.75, + "end": 34236.53, + "probability": 0.9959 + }, + { + "start": 34237.23, + "end": 34239.59, + "probability": 0.895 + }, + { + "start": 34239.75, + "end": 34242.03, + "probability": 0.8974 + }, + { + "start": 34243.07, + "end": 34245.33, + "probability": 0.99 + }, + { + "start": 34245.47, + "end": 34245.97, + "probability": 0.7578 + }, + { + "start": 34246.07, + "end": 34247.23, + "probability": 0.8569 + }, + { + "start": 34248.07, + "end": 34254.01, + "probability": 0.9723 + }, + { + "start": 34255.25, + "end": 34257.93, + "probability": 0.9983 + }, + { + "start": 34259.13, + "end": 34261.03, + "probability": 0.9097 + }, + { + "start": 34261.75, + "end": 34263.81, + "probability": 0.7878 + }, + { + "start": 34264.33, + "end": 34265.15, + "probability": 0.9924 + }, + { + "start": 34266.25, + "end": 34270.35, + "probability": 0.7322 + }, + { + "start": 34270.51, + "end": 34273.27, + "probability": 0.9807 + }, + { + "start": 34273.39, + "end": 34274.23, + "probability": 0.7137 + }, + { + "start": 34274.29, + "end": 34275.05, + "probability": 0.9378 + }, + { + "start": 34275.57, + "end": 34280.09, + "probability": 0.9978 + }, + { + "start": 34283.55, + "end": 34285.88, + "probability": 0.9992 + }, + { + "start": 34288.79, + "end": 34292.23, + "probability": 0.8453 + }, + { + "start": 34293.73, + "end": 34295.03, + "probability": 0.7413 + }, + { + "start": 34295.67, + "end": 34297.49, + "probability": 0.6263 + }, + { + "start": 34297.57, + "end": 34303.03, + "probability": 0.991 + }, + { + "start": 34305.07, + "end": 34306.97, + "probability": 0.9208 + }, + { + "start": 34307.09, + "end": 34311.35, + "probability": 0.9975 + }, + { + "start": 34311.35, + "end": 34314.77, + "probability": 0.9962 + }, + { + "start": 34316.11, + "end": 34318.67, + "probability": 0.999 + }, + { + "start": 34318.67, + "end": 34320.93, + "probability": 0.9976 + }, + { + "start": 34323.41, + "end": 34324.89, + "probability": 0.7856 + }, + { + "start": 34325.85, + "end": 34328.18, + "probability": 0.9949 + }, + { + "start": 34329.47, + "end": 34332.07, + "probability": 0.9176 + }, + { + "start": 34333.87, + "end": 34335.11, + "probability": 0.9955 + }, + { + "start": 34336.97, + "end": 34338.69, + "probability": 0.8501 + }, + { + "start": 34340.27, + "end": 34341.05, + "probability": 0.7794 + }, + { + "start": 34341.85, + "end": 34346.69, + "probability": 0.9832 + }, + { + "start": 34347.55, + "end": 34348.31, + "probability": 0.6154 + }, + { + "start": 34348.39, + "end": 34350.15, + "probability": 0.5432 + }, + { + "start": 34350.43, + "end": 34352.69, + "probability": 0.9963 + }, + { + "start": 34353.39, + "end": 34354.65, + "probability": 0.8788 + }, + { + "start": 34363.67, + "end": 34366.93, + "probability": 0.6029 + }, + { + "start": 34367.13, + "end": 34368.79, + "probability": 0.7217 + }, + { + "start": 34372.61, + "end": 34377.27, + "probability": 0.8491 + }, + { + "start": 34379.05, + "end": 34380.75, + "probability": 0.9824 + }, + { + "start": 34383.83, + "end": 34386.31, + "probability": 0.4297 + }, + { + "start": 34386.31, + "end": 34386.95, + "probability": 0.2218 + }, + { + "start": 34388.21, + "end": 34390.47, + "probability": 0.9478 + }, + { + "start": 34391.69, + "end": 34392.83, + "probability": 0.9302 + }, + { + "start": 34393.83, + "end": 34396.23, + "probability": 0.9646 + }, + { + "start": 34397.61, + "end": 34403.01, + "probability": 0.9902 + }, + { + "start": 34406.01, + "end": 34410.81, + "probability": 0.9851 + }, + { + "start": 34412.41, + "end": 34413.17, + "probability": 0.6451 + }, + { + "start": 34413.21, + "end": 34417.77, + "probability": 0.9922 + }, + { + "start": 34417.91, + "end": 34420.11, + "probability": 0.886 + }, + { + "start": 34421.07, + "end": 34423.37, + "probability": 0.8699 + }, + { + "start": 34423.45, + "end": 34425.51, + "probability": 0.8135 + }, + { + "start": 34426.33, + "end": 34430.25, + "probability": 0.824 + }, + { + "start": 34430.85, + "end": 34431.85, + "probability": 0.9875 + }, + { + "start": 34432.75, + "end": 34436.51, + "probability": 0.7959 + }, + { + "start": 34437.77, + "end": 34440.39, + "probability": 0.9521 + }, + { + "start": 34441.29, + "end": 34444.37, + "probability": 0.9948 + }, + { + "start": 34445.43, + "end": 34447.85, + "probability": 0.9856 + }, + { + "start": 34450.95, + "end": 34454.39, + "probability": 0.9048 + }, + { + "start": 34454.99, + "end": 34455.93, + "probability": 0.6351 + }, + { + "start": 34456.93, + "end": 34465.35, + "probability": 0.986 + }, + { + "start": 34465.91, + "end": 34467.37, + "probability": 0.979 + }, + { + "start": 34468.79, + "end": 34475.03, + "probability": 0.7564 + }, + { + "start": 34475.29, + "end": 34476.2, + "probability": 0.8894 + }, + { + "start": 34477.11, + "end": 34481.87, + "probability": 0.9563 + }, + { + "start": 34482.33, + "end": 34483.71, + "probability": 0.9823 + }, + { + "start": 34484.17, + "end": 34485.23, + "probability": 0.7254 + }, + { + "start": 34485.73, + "end": 34489.63, + "probability": 0.9721 + }, + { + "start": 34490.33, + "end": 34492.03, + "probability": 0.9589 + }, + { + "start": 34492.55, + "end": 34498.27, + "probability": 0.9655 + }, + { + "start": 34499.13, + "end": 34501.75, + "probability": 0.7158 + }, + { + "start": 34502.09, + "end": 34504.07, + "probability": 0.3798 + }, + { + "start": 34504.73, + "end": 34505.35, + "probability": 0.2218 + }, + { + "start": 34505.49, + "end": 34507.35, + "probability": 0.5112 + }, + { + "start": 34507.53, + "end": 34513.01, + "probability": 0.9718 + }, + { + "start": 34513.53, + "end": 34514.85, + "probability": 0.8219 + }, + { + "start": 34515.43, + "end": 34517.75, + "probability": 0.6138 + }, + { + "start": 34518.33, + "end": 34519.53, + "probability": 0.9523 + }, + { + "start": 34520.51, + "end": 34521.95, + "probability": 0.8446 + }, + { + "start": 34523.25, + "end": 34528.41, + "probability": 0.9861 + }, + { + "start": 34530.45, + "end": 34531.99, + "probability": 0.999 + }, + { + "start": 34532.23, + "end": 34534.11, + "probability": 0.9969 + }, + { + "start": 34535.69, + "end": 34537.52, + "probability": 0.6725 + }, + { + "start": 34540.23, + "end": 34544.41, + "probability": 0.9909 + }, + { + "start": 34545.29, + "end": 34545.79, + "probability": 0.3696 + }, + { + "start": 34547.19, + "end": 34548.63, + "probability": 0.9425 + }, + { + "start": 34550.29, + "end": 34554.21, + "probability": 0.9531 + }, + { + "start": 34557.71, + "end": 34558.83, + "probability": 0.9812 + }, + { + "start": 34559.53, + "end": 34563.65, + "probability": 0.9978 + }, + { + "start": 34565.23, + "end": 34567.43, + "probability": 0.8965 + }, + { + "start": 34568.59, + "end": 34572.79, + "probability": 0.6678 + }, + { + "start": 34573.87, + "end": 34578.13, + "probability": 0.9196 + }, + { + "start": 34579.45, + "end": 34580.89, + "probability": 0.8774 + }, + { + "start": 34580.97, + "end": 34584.27, + "probability": 0.9676 + }, + { + "start": 34584.57, + "end": 34591.33, + "probability": 0.9966 + }, + { + "start": 34592.35, + "end": 34596.83, + "probability": 0.999 + }, + { + "start": 34597.03, + "end": 34598.31, + "probability": 0.5887 + }, + { + "start": 34598.67, + "end": 34600.31, + "probability": 0.9169 + }, + { + "start": 34602.65, + "end": 34604.43, + "probability": 0.9937 + }, + { + "start": 34606.21, + "end": 34607.17, + "probability": 0.9719 + }, + { + "start": 34607.27, + "end": 34608.69, + "probability": 0.9005 + }, + { + "start": 34608.81, + "end": 34613.67, + "probability": 0.9858 + }, + { + "start": 34614.17, + "end": 34615.49, + "probability": 0.7214 + }, + { + "start": 34616.79, + "end": 34617.59, + "probability": 0.9681 + }, + { + "start": 34618.17, + "end": 34621.07, + "probability": 0.9761 + }, + { + "start": 34621.17, + "end": 34623.59, + "probability": 0.9342 + }, + { + "start": 34624.17, + "end": 34626.67, + "probability": 0.7939 + }, + { + "start": 34627.77, + "end": 34629.19, + "probability": 0.4553 + }, + { + "start": 34629.31, + "end": 34630.1, + "probability": 0.9792 + }, + { + "start": 34632.17, + "end": 34636.29, + "probability": 0.9417 + }, + { + "start": 34637.55, + "end": 34642.31, + "probability": 0.9873 + }, + { + "start": 34644.35, + "end": 34645.87, + "probability": 0.7178 + }, + { + "start": 34645.89, + "end": 34647.69, + "probability": 0.996 + }, + { + "start": 34647.69, + "end": 34649.63, + "probability": 0.8749 + }, + { + "start": 34649.93, + "end": 34652.17, + "probability": 0.4988 + }, + { + "start": 34652.87, + "end": 34653.69, + "probability": 0.7352 + }, + { + "start": 34654.73, + "end": 34656.85, + "probability": 0.9518 + }, + { + "start": 34657.95, + "end": 34660.11, + "probability": 0.9463 + }, + { + "start": 34660.85, + "end": 34664.43, + "probability": 0.9722 + }, + { + "start": 34664.83, + "end": 34668.85, + "probability": 0.9836 + }, + { + "start": 34669.31, + "end": 34676.07, + "probability": 0.9941 + }, + { + "start": 34676.47, + "end": 34678.89, + "probability": 0.9983 + }, + { + "start": 34679.41, + "end": 34680.21, + "probability": 0.8623 + }, + { + "start": 34680.33, + "end": 34683.99, + "probability": 0.9835 + }, + { + "start": 34684.11, + "end": 34684.43, + "probability": 0.7139 + }, + { + "start": 34687.04, + "end": 34687.93, + "probability": 0.0326 + }, + { + "start": 34687.93, + "end": 34688.31, + "probability": 0.6593 + }, + { + "start": 34689.37, + "end": 34690.23, + "probability": 0.7058 + }, + { + "start": 34693.41, + "end": 34694.39, + "probability": 0.7982 + }, + { + "start": 34703.93, + "end": 34707.21, + "probability": 0.6807 + }, + { + "start": 34708.51, + "end": 34711.97, + "probability": 0.8507 + }, + { + "start": 34712.31, + "end": 34713.09, + "probability": 0.8973 + }, + { + "start": 34714.29, + "end": 34719.35, + "probability": 0.8435 + }, + { + "start": 34720.23, + "end": 34724.81, + "probability": 0.9654 + }, + { + "start": 34725.71, + "end": 34727.27, + "probability": 0.9813 + }, + { + "start": 34728.19, + "end": 34731.01, + "probability": 0.8166 + }, + { + "start": 34732.33, + "end": 34735.97, + "probability": 0.9638 + }, + { + "start": 34736.89, + "end": 34737.73, + "probability": 0.8046 + }, + { + "start": 34739.67, + "end": 34741.39, + "probability": 0.83 + }, + { + "start": 34742.29, + "end": 34743.81, + "probability": 0.9551 + }, + { + "start": 34744.69, + "end": 34746.07, + "probability": 0.8798 + }, + { + "start": 34747.07, + "end": 34752.89, + "probability": 0.9756 + }, + { + "start": 34753.63, + "end": 34755.69, + "probability": 0.7034 + }, + { + "start": 34756.95, + "end": 34760.89, + "probability": 0.9865 + }, + { + "start": 34762.57, + "end": 34763.51, + "probability": 0.9443 + }, + { + "start": 34764.11, + "end": 34766.69, + "probability": 0.9951 + }, + { + "start": 34767.75, + "end": 34770.31, + "probability": 0.708 + }, + { + "start": 34771.03, + "end": 34771.93, + "probability": 0.683 + }, + { + "start": 34772.63, + "end": 34774.25, + "probability": 0.9697 + }, + { + "start": 34775.09, + "end": 34776.15, + "probability": 0.8157 + }, + { + "start": 34777.57, + "end": 34780.81, + "probability": 0.5694 + }, + { + "start": 34781.45, + "end": 34783.15, + "probability": 0.9948 + }, + { + "start": 34784.29, + "end": 34785.91, + "probability": 0.8228 + }, + { + "start": 34787.43, + "end": 34787.47, + "probability": 0.1172 + }, + { + "start": 34787.47, + "end": 34794.85, + "probability": 0.9932 + }, + { + "start": 34796.13, + "end": 34798.23, + "probability": 0.9229 + }, + { + "start": 34799.11, + "end": 34800.29, + "probability": 0.9863 + }, + { + "start": 34800.85, + "end": 34804.09, + "probability": 0.9546 + }, + { + "start": 34805.29, + "end": 34807.21, + "probability": 0.6648 + }, + { + "start": 34807.93, + "end": 34811.83, + "probability": 0.9428 + }, + { + "start": 34812.85, + "end": 34816.23, + "probability": 0.9921 + }, + { + "start": 34816.61, + "end": 34817.85, + "probability": 0.7388 + }, + { + "start": 34818.95, + "end": 34819.95, + "probability": 0.9192 + }, + { + "start": 34820.47, + "end": 34821.63, + "probability": 0.9527 + }, + { + "start": 34822.17, + "end": 34824.33, + "probability": 0.9541 + }, + { + "start": 34825.01, + "end": 34826.89, + "probability": 0.9717 + }, + { + "start": 34827.69, + "end": 34829.75, + "probability": 0.5851 + }, + { + "start": 34832.35, + "end": 34839.49, + "probability": 0.9204 + }, + { + "start": 34841.25, + "end": 34842.91, + "probability": 0.9995 + }, + { + "start": 34843.11, + "end": 34846.27, + "probability": 0.9367 + }, + { + "start": 34847.41, + "end": 34849.05, + "probability": 0.8247 + }, + { + "start": 34850.93, + "end": 34859.53, + "probability": 0.3225 + }, + { + "start": 34859.65, + "end": 34862.29, + "probability": 0.728 + }, + { + "start": 34862.61, + "end": 34864.73, + "probability": 0.5566 + }, + { + "start": 34864.91, + "end": 34865.83, + "probability": 0.4615 + }, + { + "start": 34866.15, + "end": 34866.87, + "probability": 0.0193 + }, + { + "start": 34866.87, + "end": 34867.51, + "probability": 0.6723 + }, + { + "start": 34867.73, + "end": 34868.69, + "probability": 0.5689 + }, + { + "start": 34868.69, + "end": 34870.45, + "probability": 0.6349 + }, + { + "start": 34871.65, + "end": 34874.27, + "probability": 0.6877 + }, + { + "start": 34875.53, + "end": 34876.67, + "probability": 0.9468 + }, + { + "start": 34877.91, + "end": 34880.61, + "probability": 0.9331 + }, + { + "start": 34881.75, + "end": 34883.59, + "probability": 0.9746 + }, + { + "start": 34884.81, + "end": 34887.25, + "probability": 0.9912 + }, + { + "start": 34888.61, + "end": 34891.07, + "probability": 0.4486 + }, + { + "start": 34891.15, + "end": 34892.55, + "probability": 0.5886 + }, + { + "start": 34893.47, + "end": 34896.15, + "probability": 0.624 + }, + { + "start": 34897.09, + "end": 34899.05, + "probability": 0.7624 + }, + { + "start": 34899.97, + "end": 34903.19, + "probability": 0.9656 + }, + { + "start": 34904.05, + "end": 34906.45, + "probability": 0.7117 + }, + { + "start": 34907.09, + "end": 34909.09, + "probability": 0.5767 + }, + { + "start": 34909.09, + "end": 34912.65, + "probability": 0.8122 + }, + { + "start": 34913.23, + "end": 34914.57, + "probability": 0.7755 + }, + { + "start": 34915.05, + "end": 34917.32, + "probability": 0.9673 + }, + { + "start": 34917.99, + "end": 34921.25, + "probability": 0.6692 + }, + { + "start": 34922.35, + "end": 34926.33, + "probability": 0.8038 + }, + { + "start": 34927.57, + "end": 34929.31, + "probability": 0.9639 + }, + { + "start": 34930.23, + "end": 34930.91, + "probability": 0.9531 + }, + { + "start": 34930.95, + "end": 34932.65, + "probability": 0.7293 + }, + { + "start": 34933.33, + "end": 34934.37, + "probability": 0.9858 + }, + { + "start": 34934.87, + "end": 34935.52, + "probability": 0.9463 + }, + { + "start": 34936.63, + "end": 34939.93, + "probability": 0.9775 + }, + { + "start": 34940.45, + "end": 34941.95, + "probability": 0.8673 + }, + { + "start": 34942.33, + "end": 34943.41, + "probability": 0.7776 + }, + { + "start": 34943.99, + "end": 34945.03, + "probability": 0.8418 + }, + { + "start": 34945.11, + "end": 34946.07, + "probability": 0.7797 + }, + { + "start": 34946.95, + "end": 34948.9, + "probability": 0.9824 + }, + { + "start": 34948.91, + "end": 34950.29, + "probability": 0.9814 + }, + { + "start": 34951.09, + "end": 34952.54, + "probability": 0.8755 + }, + { + "start": 34954.01, + "end": 34958.51, + "probability": 0.9916 + }, + { + "start": 34958.57, + "end": 34960.11, + "probability": 0.9484 + }, + { + "start": 34961.73, + "end": 34963.21, + "probability": 0.9431 + }, + { + "start": 34964.11, + "end": 34965.43, + "probability": 0.4569 + }, + { + "start": 34966.43, + "end": 34968.29, + "probability": 0.9567 + }, + { + "start": 34969.13, + "end": 34970.27, + "probability": 0.9819 + }, + { + "start": 34970.45, + "end": 34973.31, + "probability": 0.8891 + }, + { + "start": 34973.81, + "end": 34975.51, + "probability": 0.7703 + }, + { + "start": 34976.53, + "end": 34978.47, + "probability": 0.937 + }, + { + "start": 34979.17, + "end": 34982.43, + "probability": 0.985 + }, + { + "start": 34983.17, + "end": 34984.53, + "probability": 0.9506 + }, + { + "start": 34985.01, + "end": 34986.59, + "probability": 0.9772 + }, + { + "start": 34986.87, + "end": 34988.35, + "probability": 0.9869 + }, + { + "start": 34988.49, + "end": 34989.71, + "probability": 0.8285 + }, + { + "start": 34990.01, + "end": 34992.31, + "probability": 0.994 + }, + { + "start": 34992.49, + "end": 34996.02, + "probability": 0.7286 + }, + { + "start": 34997.61, + "end": 34999.05, + "probability": 0.3097 + }, + { + "start": 34999.41, + "end": 35002.81, + "probability": 0.9185 + }, + { + "start": 35003.23, + "end": 35004.85, + "probability": 0.5642 + }, + { + "start": 35005.07, + "end": 35005.57, + "probability": 0.5939 + }, + { + "start": 35005.71, + "end": 35009.89, + "probability": 0.7484 + }, + { + "start": 35010.15, + "end": 35011.07, + "probability": 0.9819 + }, + { + "start": 35011.41, + "end": 35012.4, + "probability": 0.9801 + }, + { + "start": 35013.07, + "end": 35014.71, + "probability": 0.9911 + }, + { + "start": 35014.97, + "end": 35018.63, + "probability": 0.9572 + }, + { + "start": 35019.41, + "end": 35022.15, + "probability": 0.9609 + }, + { + "start": 35022.47, + "end": 35023.89, + "probability": 0.975 + }, + { + "start": 35024.19, + "end": 35025.62, + "probability": 0.7793 + }, + { + "start": 35026.49, + "end": 35027.61, + "probability": 0.1013 + }, + { + "start": 35029.27, + "end": 35030.47, + "probability": 0.5935 + }, + { + "start": 35031.13, + "end": 35033.41, + "probability": 0.9767 + }, + { + "start": 35033.85, + "end": 35034.97, + "probability": 0.9731 + }, + { + "start": 35035.07, + "end": 35036.91, + "probability": 0.9174 + }, + { + "start": 35037.81, + "end": 35041.45, + "probability": 0.8385 + }, + { + "start": 35041.59, + "end": 35042.09, + "probability": 0.4939 + }, + { + "start": 35042.27, + "end": 35043.27, + "probability": 0.5028 + }, + { + "start": 35043.77, + "end": 35044.35, + "probability": 0.6152 + }, + { + "start": 35044.39, + "end": 35047.63, + "probability": 0.7152 + }, + { + "start": 35047.79, + "end": 35050.23, + "probability": 0.9504 + }, + { + "start": 35050.81, + "end": 35053.03, + "probability": 0.8538 + }, + { + "start": 35054.93, + "end": 35056.49, + "probability": 0.602 + }, + { + "start": 35057.25, + "end": 35058.47, + "probability": 0.3988 + }, + { + "start": 35063.7, + "end": 35066.23, + "probability": 0.5819 + }, + { + "start": 35067.75, + "end": 35068.75, + "probability": 0.7716 + }, + { + "start": 35068.77, + "end": 35072.57, + "probability": 0.9898 + }, + { + "start": 35074.31, + "end": 35075.21, + "probability": 0.1537 + }, + { + "start": 35075.21, + "end": 35076.42, + "probability": 0.5063 + }, + { + "start": 35077.09, + "end": 35078.87, + "probability": 0.5241 + }, + { + "start": 35079.01, + "end": 35079.19, + "probability": 0.1104 + }, + { + "start": 35079.19, + "end": 35080.11, + "probability": 0.5023 + }, + { + "start": 35080.19, + "end": 35082.17, + "probability": 0.6686 + }, + { + "start": 35082.45, + "end": 35084.05, + "probability": 0.9637 + }, + { + "start": 35084.07, + "end": 35086.39, + "probability": 0.9951 + }, + { + "start": 35087.57, + "end": 35090.53, + "probability": 0.9759 + }, + { + "start": 35091.69, + "end": 35092.59, + "probability": 0.5077 + }, + { + "start": 35093.33, + "end": 35096.19, + "probability": 0.9896 + }, + { + "start": 35097.01, + "end": 35099.75, + "probability": 0.998 + }, + { + "start": 35100.55, + "end": 35103.11, + "probability": 0.9971 + }, + { + "start": 35104.07, + "end": 35110.83, + "probability": 0.9979 + }, + { + "start": 35111.21, + "end": 35111.77, + "probability": 0.4987 + }, + { + "start": 35112.61, + "end": 35117.05, + "probability": 0.9729 + }, + { + "start": 35117.33, + "end": 35122.03, + "probability": 0.9991 + }, + { + "start": 35122.61, + "end": 35127.11, + "probability": 0.9404 + }, + { + "start": 35127.67, + "end": 35132.25, + "probability": 0.9964 + }, + { + "start": 35132.25, + "end": 35136.63, + "probability": 0.9993 + }, + { + "start": 35137.85, + "end": 35140.97, + "probability": 0.9558 + }, + { + "start": 35141.63, + "end": 35143.21, + "probability": 0.999 + }, + { + "start": 35143.89, + "end": 35146.51, + "probability": 0.9371 + }, + { + "start": 35147.41, + "end": 35149.41, + "probability": 0.8848 + }, + { + "start": 35149.99, + "end": 35153.55, + "probability": 0.9897 + }, + { + "start": 35154.19, + "end": 35154.75, + "probability": 0.8083 + }, + { + "start": 35154.85, + "end": 35158.11, + "probability": 0.9871 + }, + { + "start": 35159.09, + "end": 35161.91, + "probability": 0.9983 + }, + { + "start": 35162.03, + "end": 35163.19, + "probability": 0.9956 + }, + { + "start": 35163.77, + "end": 35167.33, + "probability": 0.9843 + }, + { + "start": 35167.33, + "end": 35170.37, + "probability": 0.9995 + }, + { + "start": 35170.97, + "end": 35176.05, + "probability": 0.9933 + }, + { + "start": 35176.09, + "end": 35178.53, + "probability": 0.9434 + }, + { + "start": 35178.93, + "end": 35182.21, + "probability": 0.9956 + }, + { + "start": 35182.41, + "end": 35184.51, + "probability": 0.9929 + }, + { + "start": 35184.79, + "end": 35187.01, + "probability": 0.8 + }, + { + "start": 35187.53, + "end": 35190.63, + "probability": 0.9179 + }, + { + "start": 35191.31, + "end": 35193.53, + "probability": 0.8642 + }, + { + "start": 35194.09, + "end": 35196.97, + "probability": 0.9975 + }, + { + "start": 35197.61, + "end": 35200.55, + "probability": 0.9943 + }, + { + "start": 35201.81, + "end": 35204.91, + "probability": 0.2841 + }, + { + "start": 35205.15, + "end": 35207.73, + "probability": 0.947 + }, + { + "start": 35208.31, + "end": 35208.77, + "probability": 0.0638 + }, + { + "start": 35208.77, + "end": 35209.54, + "probability": 0.3382 + }, + { + "start": 35210.31, + "end": 35210.91, + "probability": 0.6133 + }, + { + "start": 35211.19, + "end": 35215.05, + "probability": 0.9744 + }, + { + "start": 35215.75, + "end": 35217.47, + "probability": 0.9818 + }, + { + "start": 35218.27, + "end": 35219.01, + "probability": 0.6121 + }, + { + "start": 35219.07, + "end": 35219.87, + "probability": 0.9106 + }, + { + "start": 35219.99, + "end": 35222.97, + "probability": 0.7646 + }, + { + "start": 35223.07, + "end": 35226.65, + "probability": 0.8784 + }, + { + "start": 35226.79, + "end": 35228.19, + "probability": 0.9792 + }, + { + "start": 35229.53, + "end": 35233.25, + "probability": 0.9927 + }, + { + "start": 35233.41, + "end": 35234.97, + "probability": 0.772 + }, + { + "start": 35235.61, + "end": 35241.35, + "probability": 0.9845 + }, + { + "start": 35241.91, + "end": 35247.65, + "probability": 0.9968 + }, + { + "start": 35248.31, + "end": 35249.15, + "probability": 0.1239 + }, + { + "start": 35252.41, + "end": 35252.97, + "probability": 0.0942 + }, + { + "start": 35252.97, + "end": 35256.03, + "probability": 0.5048 + }, + { + "start": 35256.13, + "end": 35260.33, + "probability": 0.9246 + }, + { + "start": 35260.53, + "end": 35262.71, + "probability": 0.999 + }, + { + "start": 35262.83, + "end": 35264.81, + "probability": 0.9976 + }, + { + "start": 35264.93, + "end": 35267.57, + "probability": 0.9948 + }, + { + "start": 35267.65, + "end": 35268.97, + "probability": 0.5706 + }, + { + "start": 35269.57, + "end": 35269.59, + "probability": 0.0376 + }, + { + "start": 35269.67, + "end": 35270.85, + "probability": 0.6325 + }, + { + "start": 35270.85, + "end": 35276.77, + "probability": 0.7214 + }, + { + "start": 35277.27, + "end": 35278.35, + "probability": 0.686 + }, + { + "start": 35278.99, + "end": 35283.15, + "probability": 0.8739 + }, + { + "start": 35283.67, + "end": 35285.47, + "probability": 0.7293 + }, + { + "start": 35286.19, + "end": 35290.55, + "probability": 0.9785 + }, + { + "start": 35290.55, + "end": 35295.67, + "probability": 0.9954 + }, + { + "start": 35296.33, + "end": 35298.81, + "probability": 0.8672 + }, + { + "start": 35299.52, + "end": 35302.91, + "probability": 0.8914 + }, + { + "start": 35303.51, + "end": 35306.75, + "probability": 0.8691 + }, + { + "start": 35306.83, + "end": 35308.45, + "probability": 0.953 + }, + { + "start": 35308.93, + "end": 35311.29, + "probability": 0.9159 + }, + { + "start": 35311.37, + "end": 35312.71, + "probability": 0.8979 + }, + { + "start": 35313.55, + "end": 35316.07, + "probability": 0.998 + }, + { + "start": 35316.67, + "end": 35319.75, + "probability": 0.9975 + }, + { + "start": 35320.07, + "end": 35323.07, + "probability": 0.999 + }, + { + "start": 35323.99, + "end": 35325.53, + "probability": 0.9976 + }, + { + "start": 35325.61, + "end": 35326.03, + "probability": 0.7194 + }, + { + "start": 35326.21, + "end": 35327.57, + "probability": 0.9889 + }, + { + "start": 35328.23, + "end": 35328.33, + "probability": 0.0106 + }, + { + "start": 35328.33, + "end": 35331.69, + "probability": 0.9697 + }, + { + "start": 35331.83, + "end": 35334.67, + "probability": 0.8754 + }, + { + "start": 35334.69, + "end": 35337.83, + "probability": 0.8745 + }, + { + "start": 35338.21, + "end": 35342.25, + "probability": 0.9927 + }, + { + "start": 35342.37, + "end": 35345.69, + "probability": 0.9984 + }, + { + "start": 35345.97, + "end": 35347.45, + "probability": 0.9941 + }, + { + "start": 35347.69, + "end": 35351.13, + "probability": 0.9956 + }, + { + "start": 35351.41, + "end": 35353.75, + "probability": 0.8372 + }, + { + "start": 35354.59, + "end": 35357.19, + "probability": 0.998 + }, + { + "start": 35357.65, + "end": 35360.89, + "probability": 0.9847 + }, + { + "start": 35360.89, + "end": 35363.09, + "probability": 0.9901 + }, + { + "start": 35364.31, + "end": 35365.63, + "probability": 0.9047 + }, + { + "start": 35367.01, + "end": 35369.75, + "probability": 0.0442 + }, + { + "start": 35372.03, + "end": 35377.39, + "probability": 0.9951 + }, + { + "start": 35377.67, + "end": 35380.31, + "probability": 0.8716 + }, + { + "start": 35380.71, + "end": 35385.07, + "probability": 0.9922 + }, + { + "start": 35385.81, + "end": 35385.81, + "probability": 0.1595 + }, + { + "start": 35385.81, + "end": 35385.81, + "probability": 0.0424 + }, + { + "start": 35385.81, + "end": 35386.28, + "probability": 0.4697 + }, + { + "start": 35387.07, + "end": 35387.28, + "probability": 0.1487 + }, + { + "start": 35387.29, + "end": 35387.71, + "probability": 0.3691 + }, + { + "start": 35387.97, + "end": 35388.51, + "probability": 0.6919 + }, + { + "start": 35388.93, + "end": 35389.61, + "probability": 0.5357 + }, + { + "start": 35390.17, + "end": 35392.06, + "probability": 0.6788 + }, + { + "start": 35392.81, + "end": 35393.99, + "probability": 0.4952 + }, + { + "start": 35395.63, + "end": 35395.91, + "probability": 0.0036 + }, + { + "start": 35396.49, + "end": 35397.17, + "probability": 0.0374 + }, + { + "start": 35397.17, + "end": 35398.55, + "probability": 0.2701 + }, + { + "start": 35398.55, + "end": 35398.61, + "probability": 0.0447 + }, + { + "start": 35398.61, + "end": 35401.91, + "probability": 0.7915 + }, + { + "start": 35401.99, + "end": 35402.17, + "probability": 0.6042 + }, + { + "start": 35402.85, + "end": 35404.37, + "probability": 0.1447 + }, + { + "start": 35406.19, + "end": 35406.21, + "probability": 0.0806 + }, + { + "start": 35406.21, + "end": 35406.31, + "probability": 0.0314 + }, + { + "start": 35406.31, + "end": 35406.31, + "probability": 0.2151 + }, + { + "start": 35406.31, + "end": 35408.43, + "probability": 0.5185 + }, + { + "start": 35409.33, + "end": 35414.75, + "probability": 0.9794 + }, + { + "start": 35415.93, + "end": 35419.71, + "probability": 0.9924 + }, + { + "start": 35420.31, + "end": 35425.37, + "probability": 0.9991 + }, + { + "start": 35425.95, + "end": 35427.79, + "probability": 0.9277 + }, + { + "start": 35427.81, + "end": 35429.49, + "probability": 0.9929 + }, + { + "start": 35430.21, + "end": 35432.77, + "probability": 0.998 + }, + { + "start": 35432.77, + "end": 35433.31, + "probability": 0.6729 + }, + { + "start": 35434.05, + "end": 35438.33, + "probability": 0.981 + }, + { + "start": 35438.45, + "end": 35440.01, + "probability": 0.7089 + }, + { + "start": 35440.71, + "end": 35441.15, + "probability": 0.7114 + }, + { + "start": 35441.17, + "end": 35444.45, + "probability": 0.9879 + }, + { + "start": 35445.29, + "end": 35445.95, + "probability": 0.2175 + }, + { + "start": 35447.81, + "end": 35450.17, + "probability": 0.7412 + }, + { + "start": 35450.47, + "end": 35451.71, + "probability": 0.4018 + }, + { + "start": 35451.73, + "end": 35452.99, + "probability": 0.6005 + }, + { + "start": 35453.15, + "end": 35455.45, + "probability": 0.8476 + }, + { + "start": 35455.51, + "end": 35457.73, + "probability": 0.723 + }, + { + "start": 35457.81, + "end": 35458.39, + "probability": 0.7194 + }, + { + "start": 35458.43, + "end": 35458.75, + "probability": 0.8513 + }, + { + "start": 35458.81, + "end": 35459.67, + "probability": 0.9331 + }, + { + "start": 35460.31, + "end": 35460.89, + "probability": 0.9487 + }, + { + "start": 35461.35, + "end": 35463.19, + "probability": 0.7024 + }, + { + "start": 35463.99, + "end": 35465.59, + "probability": 0.5995 + }, + { + "start": 35465.79, + "end": 35466.79, + "probability": 0.9736 + }, + { + "start": 35468.39, + "end": 35469.0, + "probability": 0.8173 + }, + { + "start": 35469.53, + "end": 35472.83, + "probability": 0.2603 + }, + { + "start": 35472.99, + "end": 35473.47, + "probability": 0.2562 + }, + { + "start": 35474.32, + "end": 35476.76, + "probability": 0.9944 + }, + { + "start": 35476.85, + "end": 35478.05, + "probability": 0.6533 + }, + { + "start": 35478.31, + "end": 35478.55, + "probability": 0.6734 + }, + { + "start": 35479.43, + "end": 35481.39, + "probability": 0.9598 + }, + { + "start": 35481.99, + "end": 35483.35, + "probability": 0.847 + }, + { + "start": 35483.47, + "end": 35484.09, + "probability": 0.5182 + }, + { + "start": 35484.17, + "end": 35486.45, + "probability": 0.7024 + }, + { + "start": 35487.01, + "end": 35491.19, + "probability": 0.963 + }, + { + "start": 35491.63, + "end": 35492.12, + "probability": 0.9248 + }, + { + "start": 35492.45, + "end": 35493.29, + "probability": 0.4245 + }, + { + "start": 35493.95, + "end": 35495.51, + "probability": 0.71 + }, + { + "start": 35495.97, + "end": 35503.99, + "probability": 0.9213 + }, + { + "start": 35504.35, + "end": 35505.03, + "probability": 0.7293 + }, + { + "start": 35505.15, + "end": 35505.67, + "probability": 0.4706 + }, + { + "start": 35506.21, + "end": 35508.61, + "probability": 0.9305 + }, + { + "start": 35510.07, + "end": 35513.19, + "probability": 0.7899 + }, + { + "start": 35514.17, + "end": 35516.67, + "probability": 0.7657 + }, + { + "start": 35517.77, + "end": 35518.63, + "probability": 0.9644 + }, + { + "start": 35519.09, + "end": 35520.63, + "probability": 0.9917 + }, + { + "start": 35521.93, + "end": 35527.23, + "probability": 0.8483 + }, + { + "start": 35527.79, + "end": 35528.67, + "probability": 0.8321 + }, + { + "start": 35529.35, + "end": 35531.67, + "probability": 0.9714 + }, + { + "start": 35532.01, + "end": 35534.41, + "probability": 0.7668 + }, + { + "start": 35535.61, + "end": 35535.93, + "probability": 0.9607 + }, + { + "start": 35536.71, + "end": 35537.89, + "probability": 0.96 + }, + { + "start": 35538.59, + "end": 35540.65, + "probability": 0.9614 + }, + { + "start": 35540.91, + "end": 35545.85, + "probability": 0.9917 + }, + { + "start": 35546.61, + "end": 35547.81, + "probability": 0.6119 + }, + { + "start": 35548.51, + "end": 35550.41, + "probability": 0.9088 + }, + { + "start": 35550.97, + "end": 35552.73, + "probability": 0.9935 + }, + { + "start": 35553.35, + "end": 35555.97, + "probability": 0.8874 + }, + { + "start": 35556.67, + "end": 35557.75, + "probability": 0.7398 + }, + { + "start": 35558.61, + "end": 35562.53, + "probability": 0.98 + }, + { + "start": 35563.11, + "end": 35563.45, + "probability": 0.7906 + }, + { + "start": 35563.53, + "end": 35568.43, + "probability": 0.9719 + }, + { + "start": 35569.27, + "end": 35572.29, + "probability": 0.9653 + }, + { + "start": 35576.15, + "end": 35577.27, + "probability": 0.6072 + }, + { + "start": 35578.53, + "end": 35584.37, + "probability": 0.9814 + }, + { + "start": 35584.37, + "end": 35588.33, + "probability": 0.896 + }, + { + "start": 35588.83, + "end": 35596.95, + "probability": 0.8384 + }, + { + "start": 35597.59, + "end": 35602.89, + "probability": 0.8161 + }, + { + "start": 35603.57, + "end": 35606.33, + "probability": 0.9844 + }, + { + "start": 35606.89, + "end": 35608.99, + "probability": 0.9766 + }, + { + "start": 35609.89, + "end": 35613.41, + "probability": 0.9865 + }, + { + "start": 35614.35, + "end": 35615.35, + "probability": 0.7392 + }, + { + "start": 35616.17, + "end": 35624.63, + "probability": 0.9652 + }, + { + "start": 35624.99, + "end": 35629.77, + "probability": 0.9745 + }, + { + "start": 35630.51, + "end": 35632.65, + "probability": 0.9465 + }, + { + "start": 35633.19, + "end": 35634.99, + "probability": 0.9907 + }, + { + "start": 35635.77, + "end": 35639.99, + "probability": 0.9532 + }, + { + "start": 35640.97, + "end": 35646.09, + "probability": 0.7574 + }, + { + "start": 35646.39, + "end": 35648.53, + "probability": 0.7793 + }, + { + "start": 35649.43, + "end": 35652.23, + "probability": 0.9785 + }, + { + "start": 35653.09, + "end": 35654.15, + "probability": 0.9932 + }, + { + "start": 35654.77, + "end": 35658.11, + "probability": 0.9961 + }, + { + "start": 35658.61, + "end": 35662.43, + "probability": 0.9529 + }, + { + "start": 35662.89, + "end": 35664.13, + "probability": 0.9947 + }, + { + "start": 35665.03, + "end": 35666.47, + "probability": 0.9441 + }, + { + "start": 35667.25, + "end": 35671.35, + "probability": 0.9976 + }, + { + "start": 35672.45, + "end": 35672.85, + "probability": 0.9591 + }, + { + "start": 35673.55, + "end": 35675.89, + "probability": 0.9773 + }, + { + "start": 35676.55, + "end": 35680.59, + "probability": 0.9701 + }, + { + "start": 35680.59, + "end": 35685.65, + "probability": 0.9577 + }, + { + "start": 35686.35, + "end": 35692.14, + "probability": 0.6494 + }, + { + "start": 35693.47, + "end": 35695.27, + "probability": 0.9712 + }, + { + "start": 35695.79, + "end": 35697.41, + "probability": 0.9653 + }, + { + "start": 35698.13, + "end": 35699.69, + "probability": 0.8612 + }, + { + "start": 35700.31, + "end": 35703.29, + "probability": 0.9293 + }, + { + "start": 35703.81, + "end": 35705.26, + "probability": 0.5572 + }, + { + "start": 35705.99, + "end": 35706.65, + "probability": 0.7336 + }, + { + "start": 35706.71, + "end": 35707.37, + "probability": 0.47 + }, + { + "start": 35707.65, + "end": 35708.95, + "probability": 0.7242 + }, + { + "start": 35709.21, + "end": 35710.05, + "probability": 0.8927 + }, + { + "start": 35710.09, + "end": 35710.63, + "probability": 0.8682 + }, + { + "start": 35711.43, + "end": 35712.37, + "probability": 0.855 + }, + { + "start": 35713.03, + "end": 35714.25, + "probability": 0.3267 + }, + { + "start": 35714.33, + "end": 35717.07, + "probability": 0.8322 + }, + { + "start": 35717.55, + "end": 35717.55, + "probability": 0.1442 + }, + { + "start": 35717.55, + "end": 35718.77, + "probability": 0.8746 + }, + { + "start": 35719.05, + "end": 35723.44, + "probability": 0.7176 + }, + { + "start": 35724.21, + "end": 35725.45, + "probability": 0.8354 + }, + { + "start": 35726.13, + "end": 35729.65, + "probability": 0.9724 + }, + { + "start": 35729.71, + "end": 35732.39, + "probability": 0.9697 + }, + { + "start": 35732.69, + "end": 35732.81, + "probability": 0.4743 + }, + { + "start": 35732.91, + "end": 35733.41, + "probability": 0.5767 + }, + { + "start": 35733.45, + "end": 35734.73, + "probability": 0.5559 + }, + { + "start": 35734.91, + "end": 35736.35, + "probability": 0.9144 + }, + { + "start": 35736.35, + "end": 35736.53, + "probability": 0.3326 + }, + { + "start": 35736.53, + "end": 35740.63, + "probability": 0.8665 + }, + { + "start": 35741.57, + "end": 35744.21, + "probability": 0.9644 + }, + { + "start": 35744.63, + "end": 35748.45, + "probability": 0.9916 + }, + { + "start": 35748.45, + "end": 35751.45, + "probability": 0.9942 + }, + { + "start": 35752.99, + "end": 35754.85, + "probability": 0.9313 + }, + { + "start": 35755.51, + "end": 35759.41, + "probability": 0.834 + }, + { + "start": 35759.91, + "end": 35762.34, + "probability": 0.9933 + }, + { + "start": 35763.87, + "end": 35768.15, + "probability": 0.7109 + }, + { + "start": 35768.23, + "end": 35770.23, + "probability": 0.8997 + }, + { + "start": 35771.13, + "end": 35773.05, + "probability": 0.9287 + }, + { + "start": 35774.15, + "end": 35776.13, + "probability": 0.9062 + }, + { + "start": 35776.55, + "end": 35779.03, + "probability": 0.9939 + }, + { + "start": 35779.49, + "end": 35783.99, + "probability": 0.9922 + }, + { + "start": 35783.99, + "end": 35789.13, + "probability": 0.9725 + }, + { + "start": 35789.35, + "end": 35789.75, + "probability": 0.3344 + }, + { + "start": 35789.81, + "end": 35793.23, + "probability": 0.7873 + }, + { + "start": 35793.55, + "end": 35794.29, + "probability": 0.0078 + }, + { + "start": 35796.53, + "end": 35797.75, + "probability": 0.5144 + }, + { + "start": 35799.31, + "end": 35802.65, + "probability": 0.988 + }, + { + "start": 35803.49, + "end": 35805.25, + "probability": 0.9858 + }, + { + "start": 35807.05, + "end": 35809.96, + "probability": 0.9706 + }, + { + "start": 35811.05, + "end": 35815.11, + "probability": 0.9976 + }, + { + "start": 35816.85, + "end": 35817.59, + "probability": 0.6572 + }, + { + "start": 35817.73, + "end": 35818.47, + "probability": 0.5539 + }, + { + "start": 35818.79, + "end": 35820.63, + "probability": 0.9896 + }, + { + "start": 35821.25, + "end": 35822.75, + "probability": 0.9685 + }, + { + "start": 35823.51, + "end": 35826.3, + "probability": 0.9762 + }, + { + "start": 35826.63, + "end": 35827.81, + "probability": 0.8878 + }, + { + "start": 35828.13, + "end": 35831.13, + "probability": 0.9955 + }, + { + "start": 35831.27, + "end": 35837.09, + "probability": 0.8273 + }, + { + "start": 35837.43, + "end": 35840.51, + "probability": 0.8618 + }, + { + "start": 35840.75, + "end": 35841.79, + "probability": 0.712 + }, + { + "start": 35841.91, + "end": 35843.63, + "probability": 0.8406 + }, + { + "start": 35844.09, + "end": 35845.73, + "probability": 0.9939 + }, + { + "start": 35846.61, + "end": 35848.63, + "probability": 0.9932 + }, + { + "start": 35849.03, + "end": 35849.67, + "probability": 0.3816 + }, + { + "start": 35849.77, + "end": 35850.56, + "probability": 0.9513 + }, + { + "start": 35851.03, + "end": 35851.79, + "probability": 0.917 + }, + { + "start": 35855.57, + "end": 35856.59, + "probability": 0.747 + }, + { + "start": 35857.25, + "end": 35858.25, + "probability": 0.8649 + }, + { + "start": 35858.89, + "end": 35859.87, + "probability": 0.7558 + }, + { + "start": 35861.09, + "end": 35862.75, + "probability": 0.8646 + }, + { + "start": 35863.99, + "end": 35865.87, + "probability": 0.9957 + }, + { + "start": 35867.45, + "end": 35867.85, + "probability": 0.7046 + }, + { + "start": 35867.93, + "end": 35869.97, + "probability": 0.8992 + }, + { + "start": 35870.03, + "end": 35872.71, + "probability": 0.9835 + }, + { + "start": 35873.83, + "end": 35874.89, + "probability": 0.3836 + }, + { + "start": 35875.15, + "end": 35877.91, + "probability": 0.9771 + }, + { + "start": 35878.01, + "end": 35880.31, + "probability": 0.8983 + }, + { + "start": 35880.69, + "end": 35881.73, + "probability": 0.9313 + }, + { + "start": 35881.85, + "end": 35888.95, + "probability": 0.9877 + }, + { + "start": 35889.85, + "end": 35891.11, + "probability": 0.9818 + }, + { + "start": 35891.17, + "end": 35891.79, + "probability": 0.7592 + }, + { + "start": 35891.93, + "end": 35896.51, + "probability": 0.8821 + }, + { + "start": 35897.43, + "end": 35900.27, + "probability": 0.9854 + }, + { + "start": 35900.43, + "end": 35904.83, + "probability": 0.9807 + }, + { + "start": 35904.97, + "end": 35906.29, + "probability": 0.8849 + }, + { + "start": 35906.95, + "end": 35913.21, + "probability": 0.9871 + }, + { + "start": 35913.51, + "end": 35915.05, + "probability": 0.7201 + }, + { + "start": 35915.07, + "end": 35915.65, + "probability": 0.3429 + }, + { + "start": 35915.71, + "end": 35916.43, + "probability": 0.8712 + }, + { + "start": 35916.53, + "end": 35919.59, + "probability": 0.9935 + }, + { + "start": 35920.07, + "end": 35922.49, + "probability": 0.988 + }, + { + "start": 35923.21, + "end": 35923.35, + "probability": 0.1789 + }, + { + "start": 35923.35, + "end": 35924.79, + "probability": 0.9964 + }, + { + "start": 35924.79, + "end": 35925.11, + "probability": 0.0615 + }, + { + "start": 35925.17, + "end": 35926.31, + "probability": 0.7212 + }, + { + "start": 35926.43, + "end": 35929.09, + "probability": 0.5669 + }, + { + "start": 35929.19, + "end": 35930.53, + "probability": 0.987 + }, + { + "start": 35930.81, + "end": 35932.57, + "probability": 0.8549 + }, + { + "start": 35933.53, + "end": 35934.51, + "probability": 0.7356 + }, + { + "start": 35935.29, + "end": 35937.79, + "probability": 0.8786 + }, + { + "start": 35937.93, + "end": 35939.65, + "probability": 0.9819 + }, + { + "start": 35940.47, + "end": 35943.45, + "probability": 0.8813 + }, + { + "start": 35944.15, + "end": 35944.73, + "probability": 0.8792 + }, + { + "start": 35946.36, + "end": 35949.83, + "probability": 0.9584 + }, + { + "start": 35950.63, + "end": 35952.73, + "probability": 0.9974 + }, + { + "start": 35953.79, + "end": 35956.85, + "probability": 0.9858 + }, + { + "start": 35957.61, + "end": 35957.81, + "probability": 0.6133 + }, + { + "start": 35957.99, + "end": 35959.35, + "probability": 0.7785 + }, + { + "start": 35959.63, + "end": 35960.91, + "probability": 0.8682 + }, + { + "start": 35961.23, + "end": 35961.79, + "probability": 0.743 + }, + { + "start": 35961.83, + "end": 35962.51, + "probability": 0.8263 + }, + { + "start": 35962.59, + "end": 35963.37, + "probability": 0.8046 + }, + { + "start": 35964.19, + "end": 35967.65, + "probability": 0.959 + }, + { + "start": 35968.31, + "end": 35968.81, + "probability": 0.6674 + }, + { + "start": 35969.69, + "end": 35973.31, + "probability": 0.9629 + }, + { + "start": 35974.59, + "end": 35979.09, + "probability": 0.9909 + }, + { + "start": 35979.09, + "end": 35983.23, + "probability": 0.9984 + }, + { + "start": 35983.99, + "end": 35984.85, + "probability": 0.7332 + }, + { + "start": 35985.63, + "end": 35989.65, + "probability": 0.993 + }, + { + "start": 35990.29, + "end": 35992.21, + "probability": 0.9789 + }, + { + "start": 35992.39, + "end": 35994.59, + "probability": 0.9973 + }, + { + "start": 35995.53, + "end": 35997.79, + "probability": 0.9326 + }, + { + "start": 35998.53, + "end": 35999.61, + "probability": 0.8016 + }, + { + "start": 36000.37, + "end": 36003.01, + "probability": 0.9857 + }, + { + "start": 36003.89, + "end": 36006.45, + "probability": 0.7627 + }, + { + "start": 36006.59, + "end": 36009.21, + "probability": 0.8962 + }, + { + "start": 36010.17, + "end": 36012.29, + "probability": 0.9431 + }, + { + "start": 36013.37, + "end": 36015.63, + "probability": 0.9724 + }, + { + "start": 36021.05, + "end": 36022.47, + "probability": 0.3664 + }, + { + "start": 36022.47, + "end": 36025.61, + "probability": 0.8066 + }, + { + "start": 36025.89, + "end": 36029.73, + "probability": 0.9482 + }, + { + "start": 36030.09, + "end": 36034.37, + "probability": 0.7507 + }, + { + "start": 36034.37, + "end": 36039.03, + "probability": 0.9806 + }, + { + "start": 36039.59, + "end": 36042.89, + "probability": 0.9985 + }, + { + "start": 36043.39, + "end": 36045.21, + "probability": 0.7798 + }, + { + "start": 36046.09, + "end": 36048.61, + "probability": 0.9757 + }, + { + "start": 36050.33, + "end": 36053.33, + "probability": 0.9845 + }, + { + "start": 36053.45, + "end": 36054.29, + "probability": 0.8906 + }, + { + "start": 36054.51, + "end": 36056.03, + "probability": 0.9971 + }, + { + "start": 36057.13, + "end": 36059.47, + "probability": 0.9961 + }, + { + "start": 36059.83, + "end": 36062.67, + "probability": 0.9836 + }, + { + "start": 36062.85, + "end": 36063.61, + "probability": 0.8385 + }, + { + "start": 36064.69, + "end": 36065.72, + "probability": 0.9312 + }, + { + "start": 36068.63, + "end": 36068.99, + "probability": 0.0343 + }, + { + "start": 36068.99, + "end": 36070.95, + "probability": 0.6316 + }, + { + "start": 36072.23, + "end": 36073.43, + "probability": 0.6629 + }, + { + "start": 36073.51, + "end": 36074.41, + "probability": 0.9202 + }, + { + "start": 36074.49, + "end": 36075.51, + "probability": 0.8672 + }, + { + "start": 36075.91, + "end": 36077.45, + "probability": 0.6892 + }, + { + "start": 36078.51, + "end": 36078.79, + "probability": 0.1133 + }, + { + "start": 36078.79, + "end": 36078.97, + "probability": 0.348 + }, + { + "start": 36078.97, + "end": 36082.91, + "probability": 0.9808 + }, + { + "start": 36084.0, + "end": 36088.83, + "probability": 0.9653 + }, + { + "start": 36089.07, + "end": 36090.57, + "probability": 0.8221 + }, + { + "start": 36090.95, + "end": 36092.47, + "probability": 0.988 + }, + { + "start": 36093.55, + "end": 36094.51, + "probability": 0.8905 + }, + { + "start": 36094.71, + "end": 36095.45, + "probability": 0.9347 + }, + { + "start": 36095.47, + "end": 36095.73, + "probability": 0.5613 + }, + { + "start": 36095.85, + "end": 36096.77, + "probability": 0.9009 + }, + { + "start": 36096.85, + "end": 36097.65, + "probability": 0.5041 + }, + { + "start": 36097.75, + "end": 36102.59, + "probability": 0.943 + }, + { + "start": 36102.93, + "end": 36104.03, + "probability": 0.9286 + }, + { + "start": 36104.11, + "end": 36105.77, + "probability": 0.9753 + }, + { + "start": 36105.89, + "end": 36107.17, + "probability": 0.4614 + }, + { + "start": 36107.23, + "end": 36109.05, + "probability": 0.9517 + }, + { + "start": 36109.79, + "end": 36111.89, + "probability": 0.9947 + }, + { + "start": 36111.89, + "end": 36115.45, + "probability": 0.9347 + }, + { + "start": 36115.93, + "end": 36118.13, + "probability": 0.9926 + }, + { + "start": 36118.69, + "end": 36120.17, + "probability": 0.9558 + }, + { + "start": 36121.21, + "end": 36123.11, + "probability": 0.9833 + }, + { + "start": 36123.91, + "end": 36126.15, + "probability": 0.9875 + }, + { + "start": 36126.21, + "end": 36128.87, + "probability": 0.7923 + }, + { + "start": 36129.27, + "end": 36134.27, + "probability": 0.9551 + }, + { + "start": 36135.07, + "end": 36137.41, + "probability": 0.9421 + }, + { + "start": 36138.09, + "end": 36142.05, + "probability": 0.9951 + }, + { + "start": 36142.69, + "end": 36144.67, + "probability": 0.7305 + }, + { + "start": 36145.29, + "end": 36146.15, + "probability": 0.8288 + }, + { + "start": 36146.81, + "end": 36147.85, + "probability": 0.9076 + }, + { + "start": 36148.39, + "end": 36150.39, + "probability": 0.9829 + }, + { + "start": 36150.75, + "end": 36152.61, + "probability": 0.9919 + }, + { + "start": 36153.01, + "end": 36155.03, + "probability": 0.9988 + }, + { + "start": 36156.07, + "end": 36158.73, + "probability": 0.9955 + }, + { + "start": 36159.75, + "end": 36162.53, + "probability": 0.8772 + }, + { + "start": 36162.57, + "end": 36163.23, + "probability": 0.4368 + }, + { + "start": 36163.53, + "end": 36164.97, + "probability": 0.9231 + }, + { + "start": 36165.51, + "end": 36166.85, + "probability": 0.583 + }, + { + "start": 36167.36, + "end": 36171.31, + "probability": 0.73 + }, + { + "start": 36172.25, + "end": 36173.29, + "probability": 0.9763 + }, + { + "start": 36174.63, + "end": 36176.69, + "probability": 0.9846 + }, + { + "start": 36177.49, + "end": 36178.51, + "probability": 0.6756 + }, + { + "start": 36178.63, + "end": 36179.49, + "probability": 0.8999 + }, + { + "start": 36179.57, + "end": 36180.81, + "probability": 0.9056 + }, + { + "start": 36180.91, + "end": 36181.93, + "probability": 0.9884 + }, + { + "start": 36183.81, + "end": 36185.09, + "probability": 0.4421 + }, + { + "start": 36189.1, + "end": 36191.29, + "probability": 0.8555 + }, + { + "start": 36191.99, + "end": 36194.57, + "probability": 0.9017 + }, + { + "start": 36194.75, + "end": 36196.39, + "probability": 0.9946 + }, + { + "start": 36197.31, + "end": 36197.49, + "probability": 0.5749 + }, + { + "start": 36197.57, + "end": 36199.43, + "probability": 0.7329 + }, + { + "start": 36199.59, + "end": 36203.47, + "probability": 0.9843 + }, + { + "start": 36204.11, + "end": 36207.73, + "probability": 0.7745 + }, + { + "start": 36208.27, + "end": 36212.07, + "probability": 0.999 + }, + { + "start": 36212.67, + "end": 36213.21, + "probability": 0.7513 + }, + { + "start": 36213.77, + "end": 36217.69, + "probability": 0.829 + }, + { + "start": 36218.25, + "end": 36220.99, + "probability": 0.9954 + }, + { + "start": 36221.29, + "end": 36222.31, + "probability": 0.485 + }, + { + "start": 36222.83, + "end": 36223.05, + "probability": 0.6524 + }, + { + "start": 36223.13, + "end": 36224.49, + "probability": 0.5383 + }, + { + "start": 36225.93, + "end": 36229.73, + "probability": 0.8511 + }, + { + "start": 36229.77, + "end": 36230.87, + "probability": 0.9371 + }, + { + "start": 36231.41, + "end": 36233.79, + "probability": 0.7725 + }, + { + "start": 36234.31, + "end": 36236.93, + "probability": 0.9268 + }, + { + "start": 36238.01, + "end": 36242.43, + "probability": 0.4599 + }, + { + "start": 36242.43, + "end": 36242.89, + "probability": 0.5123 + }, + { + "start": 36243.61, + "end": 36243.71, + "probability": 0.895 + }, + { + "start": 36244.45, + "end": 36248.37, + "probability": 0.9959 + }, + { + "start": 36248.75, + "end": 36251.07, + "probability": 0.9949 + }, + { + "start": 36251.17, + "end": 36255.75, + "probability": 0.9653 + }, + { + "start": 36256.25, + "end": 36263.25, + "probability": 0.9539 + }, + { + "start": 36263.83, + "end": 36265.79, + "probability": 0.9702 + }, + { + "start": 36266.33, + "end": 36269.48, + "probability": 0.52 + }, + { + "start": 36270.43, + "end": 36271.27, + "probability": 0.8351 + }, + { + "start": 36272.51, + "end": 36272.99, + "probability": 0.0884 + }, + { + "start": 36273.13, + "end": 36274.37, + "probability": 0.7556 + }, + { + "start": 36275.35, + "end": 36276.47, + "probability": 0.7563 + }, + { + "start": 36277.05, + "end": 36278.01, + "probability": 0.496 + }, + { + "start": 36279.95, + "end": 36280.07, + "probability": 0.0049 + }, + { + "start": 36280.55, + "end": 36281.55, + "probability": 0.556 + }, + { + "start": 36281.65, + "end": 36283.37, + "probability": 0.7643 + }, + { + "start": 36283.63, + "end": 36285.23, + "probability": 0.9692 + }, + { + "start": 36286.29, + "end": 36289.29, + "probability": 0.8245 + }, + { + "start": 36289.87, + "end": 36291.11, + "probability": 0.9922 + }, + { + "start": 36292.13, + "end": 36292.41, + "probability": 0.1296 + }, + { + "start": 36292.41, + "end": 36295.83, + "probability": 0.8906 + }, + { + "start": 36296.07, + "end": 36299.05, + "probability": 0.9958 + }, + { + "start": 36299.75, + "end": 36304.05, + "probability": 0.7057 + }, + { + "start": 36305.59, + "end": 36306.49, + "probability": 0.0351 + }, + { + "start": 36306.49, + "end": 36306.97, + "probability": 0.7463 + }, + { + "start": 36307.47, + "end": 36308.89, + "probability": 0.849 + }, + { + "start": 36309.31, + "end": 36310.15, + "probability": 0.545 + }, + { + "start": 36310.23, + "end": 36314.73, + "probability": 0.9158 + }, + { + "start": 36314.73, + "end": 36316.51, + "probability": 0.5149 + }, + { + "start": 36317.47, + "end": 36319.03, + "probability": 0.957 + }, + { + "start": 36319.43, + "end": 36321.65, + "probability": 0.7361 + }, + { + "start": 36321.69, + "end": 36322.19, + "probability": 0.7486 + }, + { + "start": 36322.53, + "end": 36324.57, + "probability": 0.7469 + }, + { + "start": 36325.37, + "end": 36327.15, + "probability": 0.9022 + }, + { + "start": 36327.45, + "end": 36328.95, + "probability": 0.9971 + }, + { + "start": 36330.05, + "end": 36331.11, + "probability": 0.7394 + }, + { + "start": 36331.67, + "end": 36332.69, + "probability": 0.6025 + }, + { + "start": 36333.01, + "end": 36334.11, + "probability": 0.4704 + }, + { + "start": 36334.19, + "end": 36335.85, + "probability": 0.8974 + }, + { + "start": 36336.69, + "end": 36337.57, + "probability": 0.0044 + }, + { + "start": 36337.57, + "end": 36338.2, + "probability": 0.6919 + }, + { + "start": 36339.19, + "end": 36341.77, + "probability": 0.8188 + }, + { + "start": 36342.15, + "end": 36343.95, + "probability": 0.9891 + }, + { + "start": 36344.57, + "end": 36344.59, + "probability": 0.1879 + }, + { + "start": 36344.59, + "end": 36346.41, + "probability": 0.9613 + }, + { + "start": 36346.97, + "end": 36349.69, + "probability": 0.8936 + }, + { + "start": 36349.87, + "end": 36350.93, + "probability": 0.9268 + }, + { + "start": 36351.49, + "end": 36356.91, + "probability": 0.9891 + }, + { + "start": 36357.39, + "end": 36359.97, + "probability": 0.8946 + }, + { + "start": 36360.37, + "end": 36361.67, + "probability": 0.8986 + }, + { + "start": 36361.97, + "end": 36362.97, + "probability": 0.7796 + }, + { + "start": 36363.25, + "end": 36363.47, + "probability": 0.0433 + }, + { + "start": 36363.47, + "end": 36363.47, + "probability": 0.0308 + }, + { + "start": 36363.47, + "end": 36365.07, + "probability": 0.5657 + }, + { + "start": 36365.13, + "end": 36370.39, + "probability": 0.9894 + }, + { + "start": 36370.71, + "end": 36374.79, + "probability": 0.9771 + }, + { + "start": 36374.89, + "end": 36378.23, + "probability": 0.9956 + }, + { + "start": 36378.43, + "end": 36379.73, + "probability": 0.6144 + }, + { + "start": 36379.91, + "end": 36380.99, + "probability": 0.8926 + }, + { + "start": 36381.23, + "end": 36382.81, + "probability": 0.8301 + }, + { + "start": 36383.19, + "end": 36384.13, + "probability": 0.6793 + }, + { + "start": 36384.27, + "end": 36387.05, + "probability": 0.2189 + }, + { + "start": 36387.13, + "end": 36387.37, + "probability": 0.0932 + }, + { + "start": 36387.37, + "end": 36387.37, + "probability": 0.0912 + }, + { + "start": 36387.37, + "end": 36390.29, + "probability": 0.6612 + }, + { + "start": 36390.29, + "end": 36392.59, + "probability": 0.6901 + }, + { + "start": 36392.59, + "end": 36393.29, + "probability": 0.8261 + }, + { + "start": 36393.59, + "end": 36394.69, + "probability": 0.9651 + }, + { + "start": 36394.81, + "end": 36397.53, + "probability": 0.9966 + }, + { + "start": 36397.97, + "end": 36401.41, + "probability": 0.9886 + }, + { + "start": 36401.97, + "end": 36401.97, + "probability": 0.1587 + }, + { + "start": 36401.97, + "end": 36404.05, + "probability": 0.7833 + }, + { + "start": 36404.23, + "end": 36405.27, + "probability": 0.9336 + }, + { + "start": 36405.49, + "end": 36407.31, + "probability": 0.9548 + }, + { + "start": 36407.85, + "end": 36408.77, + "probability": 0.1974 + }, + { + "start": 36408.77, + "end": 36410.37, + "probability": 0.6284 + }, + { + "start": 36410.55, + "end": 36412.29, + "probability": 0.9258 + }, + { + "start": 36412.57, + "end": 36416.67, + "probability": 0.9625 + }, + { + "start": 36417.01, + "end": 36418.95, + "probability": 0.9969 + }, + { + "start": 36419.39, + "end": 36420.51, + "probability": 0.931 + }, + { + "start": 36420.77, + "end": 36421.83, + "probability": 0.622 + }, + { + "start": 36422.01, + "end": 36422.01, + "probability": 0.3576 + }, + { + "start": 36422.01, + "end": 36425.83, + "probability": 0.7023 + }, + { + "start": 36425.85, + "end": 36426.25, + "probability": 0.5705 + }, + { + "start": 36426.45, + "end": 36427.37, + "probability": 0.8856 + }, + { + "start": 36427.63, + "end": 36428.83, + "probability": 0.7762 + }, + { + "start": 36429.15, + "end": 36433.35, + "probability": 0.9265 + }, + { + "start": 36433.65, + "end": 36433.67, + "probability": 0.0219 + }, + { + "start": 36433.67, + "end": 36434.87, + "probability": 0.8833 + }, + { + "start": 36435.01, + "end": 36435.29, + "probability": 0.2339 + }, + { + "start": 36435.61, + "end": 36437.11, + "probability": 0.821 + }, + { + "start": 36437.37, + "end": 36438.35, + "probability": 0.6401 + }, + { + "start": 36438.35, + "end": 36438.73, + "probability": 0.7828 + }, + { + "start": 36438.83, + "end": 36440.45, + "probability": 0.9092 + }, + { + "start": 36440.45, + "end": 36442.59, + "probability": 0.7086 + }, + { + "start": 36442.97, + "end": 36446.83, + "probability": 0.9702 + }, + { + "start": 36447.29, + "end": 36450.03, + "probability": 0.7913 + }, + { + "start": 36450.31, + "end": 36453.91, + "probability": 0.9143 + }, + { + "start": 36454.05, + "end": 36454.89, + "probability": 0.7717 + }, + { + "start": 36455.19, + "end": 36459.45, + "probability": 0.9097 + }, + { + "start": 36459.65, + "end": 36460.53, + "probability": 0.9663 + }, + { + "start": 36460.67, + "end": 36463.61, + "probability": 0.8371 + }, + { + "start": 36463.87, + "end": 36465.55, + "probability": 0.8745 + }, + { + "start": 36465.81, + "end": 36466.05, + "probability": 0.448 + }, + { + "start": 36466.05, + "end": 36468.01, + "probability": 0.9424 + }, + { + "start": 36468.23, + "end": 36469.33, + "probability": 0.9548 + }, + { + "start": 36469.45, + "end": 36470.63, + "probability": 0.971 + }, + { + "start": 36470.75, + "end": 36473.21, + "probability": 0.7064 + }, + { + "start": 36473.47, + "end": 36474.77, + "probability": 0.9872 + }, + { + "start": 36475.25, + "end": 36479.71, + "probability": 0.9938 + }, + { + "start": 36480.21, + "end": 36483.07, + "probability": 0.9974 + }, + { + "start": 36483.63, + "end": 36486.33, + "probability": 0.9541 + }, + { + "start": 36486.41, + "end": 36487.54, + "probability": 0.9847 + }, + { + "start": 36487.91, + "end": 36489.18, + "probability": 0.9454 + }, + { + "start": 36489.63, + "end": 36493.57, + "probability": 0.6042 + }, + { + "start": 36493.89, + "end": 36494.82, + "probability": 0.9888 + }, + { + "start": 36495.37, + "end": 36495.37, + "probability": 0.3894 + }, + { + "start": 36495.37, + "end": 36498.51, + "probability": 0.9705 + }, + { + "start": 36498.67, + "end": 36506.89, + "probability": 0.8942 + }, + { + "start": 36507.03, + "end": 36508.49, + "probability": 0.1299 + }, + { + "start": 36510.37, + "end": 36510.67, + "probability": 0.0318 + }, + { + "start": 36510.67, + "end": 36510.91, + "probability": 0.0577 + }, + { + "start": 36511.75, + "end": 36511.91, + "probability": 0.0573 + }, + { + "start": 36511.91, + "end": 36516.51, + "probability": 0.8263 + }, + { + "start": 36516.81, + "end": 36520.11, + "probability": 0.4855 + }, + { + "start": 36520.25, + "end": 36522.07, + "probability": 0.0821 + }, + { + "start": 36522.07, + "end": 36523.72, + "probability": 0.8008 + }, + { + "start": 36525.13, + "end": 36527.51, + "probability": 0.4567 + }, + { + "start": 36527.59, + "end": 36527.97, + "probability": 0.8293 + }, + { + "start": 36528.49, + "end": 36528.63, + "probability": 0.0009 + }, + { + "start": 36529.59, + "end": 36531.79, + "probability": 0.0442 + }, + { + "start": 36531.85, + "end": 36532.27, + "probability": 0.2276 + }, + { + "start": 36532.31, + "end": 36534.51, + "probability": 0.3652 + }, + { + "start": 36534.93, + "end": 36535.11, + "probability": 0.3127 + }, + { + "start": 36535.11, + "end": 36535.87, + "probability": 0.2693 + }, + { + "start": 36535.87, + "end": 36537.11, + "probability": 0.7283 + }, + { + "start": 36537.53, + "end": 36539.35, + "probability": 0.7735 + }, + { + "start": 36539.75, + "end": 36543.53, + "probability": 0.9937 + }, + { + "start": 36543.81, + "end": 36546.27, + "probability": 0.9205 + }, + { + "start": 36546.69, + "end": 36547.53, + "probability": 0.9177 + }, + { + "start": 36547.59, + "end": 36548.09, + "probability": 0.0412 + }, + { + "start": 36548.09, + "end": 36551.43, + "probability": 0.5673 + }, + { + "start": 36553.33, + "end": 36554.93, + "probability": 0.6487 + }, + { + "start": 36555.79, + "end": 36556.35, + "probability": 0.8314 + }, + { + "start": 36556.35, + "end": 36557.97, + "probability": 0.1951 + }, + { + "start": 36558.23, + "end": 36558.69, + "probability": 0.2692 + }, + { + "start": 36558.69, + "end": 36560.45, + "probability": 0.8475 + }, + { + "start": 36560.63, + "end": 36560.99, + "probability": 0.1345 + }, + { + "start": 36561.21, + "end": 36563.87, + "probability": 0.9636 + }, + { + "start": 36564.15, + "end": 36565.39, + "probability": 0.1281 + }, + { + "start": 36565.39, + "end": 36567.45, + "probability": 0.2401 + }, + { + "start": 36567.51, + "end": 36569.89, + "probability": 0.8109 + }, + { + "start": 36570.33, + "end": 36571.95, + "probability": 0.7943 + }, + { + "start": 36572.17, + "end": 36572.83, + "probability": 0.5166 + }, + { + "start": 36573.23, + "end": 36575.87, + "probability": 0.8978 + }, + { + "start": 36576.29, + "end": 36577.89, + "probability": 0.7715 + }, + { + "start": 36578.19, + "end": 36580.79, + "probability": 0.925 + }, + { + "start": 36581.34, + "end": 36581.83, + "probability": 0.1182 + }, + { + "start": 36582.05, + "end": 36583.59, + "probability": 0.4172 + }, + { + "start": 36584.05, + "end": 36584.71, + "probability": 0.6911 + }, + { + "start": 36585.34, + "end": 36591.35, + "probability": 0.756 + }, + { + "start": 36593.49, + "end": 36595.07, + "probability": 0.9987 + }, + { + "start": 36596.19, + "end": 36597.77, + "probability": 0.9951 + }, + { + "start": 36598.79, + "end": 36604.67, + "probability": 0.9174 + }, + { + "start": 36604.85, + "end": 36607.51, + "probability": 0.9045 + }, + { + "start": 36608.81, + "end": 36612.89, + "probability": 0.9803 + }, + { + "start": 36612.89, + "end": 36616.13, + "probability": 0.9958 + }, + { + "start": 36616.41, + "end": 36616.95, + "probability": 0.352 + }, + { + "start": 36617.19, + "end": 36619.51, + "probability": 0.9794 + }, + { + "start": 36620.17, + "end": 36623.59, + "probability": 0.837 + }, + { + "start": 36623.59, + "end": 36627.21, + "probability": 0.9968 + }, + { + "start": 36627.71, + "end": 36629.75, + "probability": 0.855 + }, + { + "start": 36629.87, + "end": 36630.59, + "probability": 0.8721 + }, + { + "start": 36630.89, + "end": 36631.35, + "probability": 0.4529 + }, + { + "start": 36631.63, + "end": 36632.27, + "probability": 0.3607 + }, + { + "start": 36632.59, + "end": 36637.17, + "probability": 0.9984 + }, + { + "start": 36637.17, + "end": 36642.71, + "probability": 0.9982 + }, + { + "start": 36643.93, + "end": 36646.05, + "probability": 0.448 + }, + { + "start": 36647.89, + "end": 36651.87, + "probability": 0.9493 + }, + { + "start": 36652.61, + "end": 36654.35, + "probability": 0.9232 + }, + { + "start": 36655.49, + "end": 36658.68, + "probability": 0.998 + }, + { + "start": 36659.15, + "end": 36663.59, + "probability": 0.993 + }, + { + "start": 36664.07, + "end": 36665.93, + "probability": 0.936 + }, + { + "start": 36666.79, + "end": 36669.29, + "probability": 0.9966 + }, + { + "start": 36669.91, + "end": 36671.62, + "probability": 0.9966 + }, + { + "start": 36672.83, + "end": 36677.09, + "probability": 0.9023 + }, + { + "start": 36678.13, + "end": 36681.49, + "probability": 0.812 + }, + { + "start": 36682.37, + "end": 36684.87, + "probability": 0.9916 + }, + { + "start": 36685.31, + "end": 36686.69, + "probability": 0.9698 + }, + { + "start": 36686.77, + "end": 36687.73, + "probability": 0.4677 + }, + { + "start": 36687.79, + "end": 36689.27, + "probability": 0.9985 + }, + { + "start": 36690.95, + "end": 36693.37, + "probability": 0.9794 + }, + { + "start": 36695.33, + "end": 36698.91, + "probability": 0.7766 + }, + { + "start": 36699.61, + "end": 36701.23, + "probability": 0.9072 + }, + { + "start": 36702.69, + "end": 36704.39, + "probability": 0.9946 + }, + { + "start": 36706.47, + "end": 36710.47, + "probability": 0.6448 + }, + { + "start": 36711.45, + "end": 36713.49, + "probability": 0.9412 + }, + { + "start": 36714.45, + "end": 36718.83, + "probability": 0.9932 + }, + { + "start": 36719.49, + "end": 36724.09, + "probability": 0.8824 + }, + { + "start": 36725.25, + "end": 36726.29, + "probability": 0.9923 + }, + { + "start": 36727.07, + "end": 36730.45, + "probability": 0.8124 + }, + { + "start": 36730.59, + "end": 36734.51, + "probability": 0.9966 + }, + { + "start": 36735.43, + "end": 36737.85, + "probability": 0.9837 + }, + { + "start": 36738.31, + "end": 36739.57, + "probability": 0.8586 + }, + { + "start": 36739.83, + "end": 36741.71, + "probability": 0.9139 + }, + { + "start": 36742.45, + "end": 36742.57, + "probability": 0.1671 + }, + { + "start": 36742.67, + "end": 36744.33, + "probability": 0.9943 + }, + { + "start": 36744.51, + "end": 36747.71, + "probability": 0.8633 + }, + { + "start": 36748.39, + "end": 36750.77, + "probability": 0.8137 + }, + { + "start": 36751.55, + "end": 36756.25, + "probability": 0.9923 + }, + { + "start": 36756.25, + "end": 36759.57, + "probability": 0.9662 + }, + { + "start": 36759.75, + "end": 36761.73, + "probability": 0.8738 + }, + { + "start": 36761.89, + "end": 36762.17, + "probability": 0.6273 + }, + { + "start": 36762.61, + "end": 36771.05, + "probability": 0.9839 + }, + { + "start": 36771.49, + "end": 36774.77, + "probability": 0.8026 + }, + { + "start": 36775.57, + "end": 36778.15, + "probability": 0.9888 + }, + { + "start": 36778.21, + "end": 36781.63, + "probability": 0.9773 + }, + { + "start": 36781.92, + "end": 36785.96, + "probability": 0.9008 + }, + { + "start": 36786.67, + "end": 36791.35, + "probability": 0.9926 + }, + { + "start": 36791.85, + "end": 36792.53, + "probability": 0.88 + }, + { + "start": 36792.63, + "end": 36794.17, + "probability": 0.9659 + }, + { + "start": 36794.55, + "end": 36795.73, + "probability": 0.9091 + }, + { + "start": 36796.17, + "end": 36796.89, + "probability": 0.9303 + }, + { + "start": 36797.25, + "end": 36798.91, + "probability": 0.9867 + }, + { + "start": 36800.03, + "end": 36803.49, + "probability": 0.9092 + }, + { + "start": 36803.57, + "end": 36804.01, + "probability": 0.6288 + }, + { + "start": 36805.63, + "end": 36810.17, + "probability": 0.9966 + }, + { + "start": 36811.49, + "end": 36812.05, + "probability": 0.9409 + }, + { + "start": 36812.65, + "end": 36816.73, + "probability": 0.9935 + }, + { + "start": 36817.81, + "end": 36824.97, + "probability": 0.9473 + }, + { + "start": 36826.43, + "end": 36829.95, + "probability": 0.999 + }, + { + "start": 36829.95, + "end": 36832.97, + "probability": 0.998 + }, + { + "start": 36833.91, + "end": 36837.99, + "probability": 0.9912 + }, + { + "start": 36838.51, + "end": 36839.68, + "probability": 0.9897 + }, + { + "start": 36840.73, + "end": 36841.87, + "probability": 0.9854 + }, + { + "start": 36842.51, + "end": 36848.38, + "probability": 0.9971 + }, + { + "start": 36848.49, + "end": 36852.41, + "probability": 0.9963 + }, + { + "start": 36853.03, + "end": 36853.66, + "probability": 0.9121 + }, + { + "start": 36854.87, + "end": 36856.59, + "probability": 0.8414 + }, + { + "start": 36857.19, + "end": 36858.97, + "probability": 0.7416 + }, + { + "start": 36860.25, + "end": 36862.61, + "probability": 0.8538 + }, + { + "start": 36864.01, + "end": 36867.67, + "probability": 0.9937 + }, + { + "start": 36868.85, + "end": 36872.85, + "probability": 0.9907 + }, + { + "start": 36873.53, + "end": 36879.17, + "probability": 0.9979 + }, + { + "start": 36879.89, + "end": 36882.73, + "probability": 0.9915 + }, + { + "start": 36883.37, + "end": 36887.11, + "probability": 0.9915 + }, + { + "start": 36887.61, + "end": 36889.67, + "probability": 0.9933 + }, + { + "start": 36890.27, + "end": 36894.57, + "probability": 0.9727 + }, + { + "start": 36895.19, + "end": 36897.65, + "probability": 0.9287 + }, + { + "start": 36898.29, + "end": 36900.29, + "probability": 0.9906 + }, + { + "start": 36900.45, + "end": 36906.49, + "probability": 0.9967 + }, + { + "start": 36907.05, + "end": 36909.23, + "probability": 0.8966 + }, + { + "start": 36910.27, + "end": 36911.24, + "probability": 0.9424 + }, + { + "start": 36911.55, + "end": 36912.35, + "probability": 0.6275 + }, + { + "start": 36912.79, + "end": 36918.15, + "probability": 0.9961 + }, + { + "start": 36918.85, + "end": 36921.11, + "probability": 0.9993 + }, + { + "start": 36921.57, + "end": 36923.37, + "probability": 0.9168 + }, + { + "start": 36923.43, + "end": 36924.49, + "probability": 0.6752 + }, + { + "start": 36924.67, + "end": 36930.75, + "probability": 0.9946 + }, + { + "start": 36931.07, + "end": 36934.43, + "probability": 0.8703 + }, + { + "start": 36934.97, + "end": 36937.17, + "probability": 0.9915 + }, + { + "start": 36937.61, + "end": 36940.61, + "probability": 0.9938 + }, + { + "start": 36941.33, + "end": 36943.1, + "probability": 0.4719 + }, + { + "start": 36944.33, + "end": 36946.71, + "probability": 0.9341 + }, + { + "start": 36947.13, + "end": 36948.99, + "probability": 0.8589 + }, + { + "start": 36949.35, + "end": 36951.05, + "probability": 0.8707 + }, + { + "start": 36951.33, + "end": 36953.71, + "probability": 0.9796 + }, + { + "start": 36953.95, + "end": 36956.41, + "probability": 0.9802 + }, + { + "start": 36956.67, + "end": 36959.15, + "probability": 0.6987 + }, + { + "start": 36959.95, + "end": 36962.79, + "probability": 0.9835 + }, + { + "start": 36963.19, + "end": 36965.15, + "probability": 0.7404 + }, + { + "start": 36965.57, + "end": 36966.89, + "probability": 0.7394 + }, + { + "start": 36966.93, + "end": 36968.43, + "probability": 0.8877 + }, + { + "start": 36968.53, + "end": 36970.37, + "probability": 0.9713 + }, + { + "start": 36970.87, + "end": 36973.31, + "probability": 0.622 + }, + { + "start": 36974.31, + "end": 36978.03, + "probability": 0.663 + }, + { + "start": 36979.41, + "end": 36982.09, + "probability": 0.9185 + }, + { + "start": 36983.07, + "end": 36986.11, + "probability": 0.5757 + }, + { + "start": 36986.63, + "end": 36989.01, + "probability": 0.704 + }, + { + "start": 36990.03, + "end": 36990.35, + "probability": 0.9032 + }, + { + "start": 36992.21, + "end": 36993.03, + "probability": 0.7086 + }, + { + "start": 36996.16, + "end": 36999.1, + "probability": 0.6552 + }, + { + "start": 37001.13, + "end": 37006.47, + "probability": 0.9849 + }, + { + "start": 37006.47, + "end": 37012.97, + "probability": 0.9772 + }, + { + "start": 37013.23, + "end": 37014.11, + "probability": 0.9521 + }, + { + "start": 37019.17, + "end": 37023.73, + "probability": 0.9974 + }, + { + "start": 37024.25, + "end": 37027.51, + "probability": 0.7324 + }, + { + "start": 37027.67, + "end": 37027.85, + "probability": 0.3663 + }, + { + "start": 37027.91, + "end": 37029.28, + "probability": 0.9451 + }, + { + "start": 37029.55, + "end": 37034.27, + "probability": 0.8813 + }, + { + "start": 37034.43, + "end": 37039.59, + "probability": 0.9906 + }, + { + "start": 37039.85, + "end": 37046.35, + "probability": 0.9885 + }, + { + "start": 37046.59, + "end": 37048.33, + "probability": 0.8441 + }, + { + "start": 37048.43, + "end": 37049.15, + "probability": 0.4967 + }, + { + "start": 37049.19, + "end": 37051.43, + "probability": 0.7686 + }, + { + "start": 37051.57, + "end": 37054.31, + "probability": 0.8895 + }, + { + "start": 37054.43, + "end": 37056.39, + "probability": 0.7938 + }, + { + "start": 37056.57, + "end": 37058.01, + "probability": 0.8778 + }, + { + "start": 37058.07, + "end": 37061.31, + "probability": 0.7482 + }, + { + "start": 37061.39, + "end": 37062.85, + "probability": 0.7733 + }, + { + "start": 37062.97, + "end": 37063.75, + "probability": 0.6831 + }, + { + "start": 37063.87, + "end": 37065.21, + "probability": 0.9155 + }, + { + "start": 37065.55, + "end": 37066.71, + "probability": 0.9632 + }, + { + "start": 37066.85, + "end": 37069.77, + "probability": 0.9414 + }, + { + "start": 37069.91, + "end": 37070.39, + "probability": 0.9624 + }, + { + "start": 37070.87, + "end": 37074.37, + "probability": 0.9441 + }, + { + "start": 37074.57, + "end": 37079.45, + "probability": 0.9826 + }, + { + "start": 37080.61, + "end": 37083.93, + "probability": 0.3996 + }, + { + "start": 37084.65, + "end": 37092.37, + "probability": 0.9825 + }, + { + "start": 37092.99, + "end": 37096.79, + "probability": 0.9905 + }, + { + "start": 37096.89, + "end": 37098.29, + "probability": 0.8876 + }, + { + "start": 37098.37, + "end": 37100.87, + "probability": 0.9269 + }, + { + "start": 37100.99, + "end": 37102.45, + "probability": 0.8701 + }, + { + "start": 37102.51, + "end": 37104.21, + "probability": 0.9321 + }, + { + "start": 37105.23, + "end": 37106.75, + "probability": 0.8843 + }, + { + "start": 37107.15, + "end": 37110.17, + "probability": 0.934 + }, + { + "start": 37110.65, + "end": 37112.31, + "probability": 0.5701 + }, + { + "start": 37112.43, + "end": 37113.45, + "probability": 0.586 + }, + { + "start": 37113.49, + "end": 37115.43, + "probability": 0.9195 + }, + { + "start": 37116.81, + "end": 37119.73, + "probability": 0.8979 + }, + { + "start": 37120.57, + "end": 37123.89, + "probability": 0.9946 + }, + { + "start": 37124.27, + "end": 37128.79, + "probability": 0.9825 + }, + { + "start": 37128.87, + "end": 37129.17, + "probability": 0.863 + }, + { + "start": 37129.59, + "end": 37131.13, + "probability": 0.9528 + }, + { + "start": 37131.25, + "end": 37131.79, + "probability": 0.6265 + }, + { + "start": 37131.89, + "end": 37133.73, + "probability": 0.9897 + }, + { + "start": 37133.89, + "end": 37135.45, + "probability": 0.7402 + }, + { + "start": 37135.91, + "end": 37143.65, + "probability": 0.9319 + }, + { + "start": 37144.11, + "end": 37145.73, + "probability": 0.8387 + }, + { + "start": 37146.05, + "end": 37149.67, + "probability": 0.7935 + }, + { + "start": 37149.71, + "end": 37151.53, + "probability": 0.7672 + }, + { + "start": 37152.25, + "end": 37152.91, + "probability": 0.8956 + }, + { + "start": 37152.97, + "end": 37154.73, + "probability": 0.9945 + }, + { + "start": 37154.89, + "end": 37157.55, + "probability": 0.9779 + }, + { + "start": 37158.11, + "end": 37160.63, + "probability": 0.7383 + }, + { + "start": 37161.17, + "end": 37161.95, + "probability": 0.7709 + }, + { + "start": 37162.41, + "end": 37164.03, + "probability": 0.6346 + }, + { + "start": 37164.35, + "end": 37166.39, + "probability": 0.7764 + }, + { + "start": 37166.53, + "end": 37168.43, + "probability": 0.9948 + }, + { + "start": 37168.97, + "end": 37171.61, + "probability": 0.9735 + }, + { + "start": 37171.61, + "end": 37176.75, + "probability": 0.9987 + }, + { + "start": 37177.41, + "end": 37181.35, + "probability": 0.6812 + }, + { + "start": 37181.95, + "end": 37185.82, + "probability": 0.994 + }, + { + "start": 37186.19, + "end": 37188.03, + "probability": 0.9449 + }, + { + "start": 37188.33, + "end": 37190.89, + "probability": 0.8143 + }, + { + "start": 37190.97, + "end": 37191.71, + "probability": 0.8819 + }, + { + "start": 37191.95, + "end": 37192.91, + "probability": 0.8172 + }, + { + "start": 37193.37, + "end": 37197.85, + "probability": 0.6865 + }, + { + "start": 37198.63, + "end": 37201.93, + "probability": 0.9976 + }, + { + "start": 37202.35, + "end": 37205.59, + "probability": 0.9714 + }, + { + "start": 37206.07, + "end": 37207.21, + "probability": 0.9683 + }, + { + "start": 37207.55, + "end": 37209.91, + "probability": 0.9917 + }, + { + "start": 37210.59, + "end": 37211.67, + "probability": 0.8448 + }, + { + "start": 37212.05, + "end": 37214.72, + "probability": 0.5041 + }, + { + "start": 37215.25, + "end": 37216.89, + "probability": 0.7103 + }, + { + "start": 37217.35, + "end": 37218.13, + "probability": 0.841 + }, + { + "start": 37219.01, + "end": 37221.65, + "probability": 0.9868 + }, + { + "start": 37222.83, + "end": 37223.23, + "probability": 0.8 + }, + { + "start": 37224.61, + "end": 37230.33, + "probability": 0.9936 + }, + { + "start": 37230.81, + "end": 37232.02, + "probability": 0.9946 + }, + { + "start": 37232.47, + "end": 37233.79, + "probability": 0.9728 + }, + { + "start": 37234.99, + "end": 37239.67, + "probability": 0.9961 + }, + { + "start": 37240.67, + "end": 37243.95, + "probability": 0.9875 + }, + { + "start": 37244.01, + "end": 37246.89, + "probability": 0.946 + }, + { + "start": 37246.97, + "end": 37247.15, + "probability": 0.4292 + }, + { + "start": 37247.39, + "end": 37248.21, + "probability": 0.9536 + }, + { + "start": 37248.29, + "end": 37250.19, + "probability": 0.7295 + }, + { + "start": 37250.61, + "end": 37253.47, + "probability": 0.9367 + }, + { + "start": 37253.63, + "end": 37254.71, + "probability": 0.795 + }, + { + "start": 37255.43, + "end": 37256.27, + "probability": 0.925 + }, + { + "start": 37256.39, + "end": 37256.81, + "probability": 0.7584 + }, + { + "start": 37257.09, + "end": 37259.37, + "probability": 0.9727 + }, + { + "start": 37259.43, + "end": 37261.93, + "probability": 0.9832 + }, + { + "start": 37262.43, + "end": 37263.67, + "probability": 0.6432 + }, + { + "start": 37264.23, + "end": 37266.33, + "probability": 0.9296 + }, + { + "start": 37267.67, + "end": 37268.44, + "probability": 0.8837 + }, + { + "start": 37269.23, + "end": 37270.93, + "probability": 0.9609 + }, + { + "start": 37271.27, + "end": 37272.29, + "probability": 0.9226 + }, + { + "start": 37272.33, + "end": 37273.09, + "probability": 0.739 + }, + { + "start": 37273.13, + "end": 37273.13, + "probability": 0.8181 + }, + { + "start": 37273.13, + "end": 37273.57, + "probability": 0.6497 + }, + { + "start": 37273.91, + "end": 37275.31, + "probability": 0.7866 + }, + { + "start": 37275.73, + "end": 37278.23, + "probability": 0.74 + }, + { + "start": 37278.35, + "end": 37282.83, + "probability": 0.9808 + }, + { + "start": 37284.03, + "end": 37286.87, + "probability": 0.9796 + }, + { + "start": 37287.27, + "end": 37291.49, + "probability": 0.9437 + }, + { + "start": 37291.53, + "end": 37292.71, + "probability": 0.4158 + }, + { + "start": 37292.81, + "end": 37293.6, + "probability": 0.4436 + }, + { + "start": 37293.87, + "end": 37294.52, + "probability": 0.9395 + }, + { + "start": 37294.81, + "end": 37295.69, + "probability": 0.9036 + }, + { + "start": 37295.75, + "end": 37299.03, + "probability": 0.8933 + }, + { + "start": 37299.61, + "end": 37301.18, + "probability": 0.8726 + }, + { + "start": 37302.01, + "end": 37302.43, + "probability": 0.2733 + }, + { + "start": 37302.57, + "end": 37302.65, + "probability": 0.6093 + }, + { + "start": 37302.77, + "end": 37303.01, + "probability": 0.3503 + }, + { + "start": 37303.13, + "end": 37303.13, + "probability": 0.3544 + }, + { + "start": 37303.13, + "end": 37304.37, + "probability": 0.938 + }, + { + "start": 37304.63, + "end": 37306.07, + "probability": 0.8358 + }, + { + "start": 37306.31, + "end": 37307.41, + "probability": 0.1008 + }, + { + "start": 37307.57, + "end": 37312.31, + "probability": 0.7179 + }, + { + "start": 37312.63, + "end": 37312.63, + "probability": 0.0489 + }, + { + "start": 37312.63, + "end": 37314.73, + "probability": 0.8246 + }, + { + "start": 37315.79, + "end": 37321.81, + "probability": 0.9367 + }, + { + "start": 37322.49, + "end": 37324.97, + "probability": 0.9935 + }, + { + "start": 37325.55, + "end": 37327.45, + "probability": 0.9835 + }, + { + "start": 37328.05, + "end": 37329.27, + "probability": 0.9766 + }, + { + "start": 37329.35, + "end": 37331.17, + "probability": 0.9104 + }, + { + "start": 37331.49, + "end": 37333.45, + "probability": 0.9406 + }, + { + "start": 37333.59, + "end": 37334.63, + "probability": 0.8391 + }, + { + "start": 37334.69, + "end": 37335.67, + "probability": 0.9271 + }, + { + "start": 37335.89, + "end": 37336.73, + "probability": 0.8764 + }, + { + "start": 37336.79, + "end": 37337.61, + "probability": 0.6536 + }, + { + "start": 37337.69, + "end": 37340.61, + "probability": 0.9648 + }, + { + "start": 37340.97, + "end": 37341.49, + "probability": 0.9435 + }, + { + "start": 37341.85, + "end": 37342.45, + "probability": 0.7322 + }, + { + "start": 37345.99, + "end": 37348.61, + "probability": 0.5556 + }, + { + "start": 37348.77, + "end": 37349.26, + "probability": 0.4343 + }, + { + "start": 37349.51, + "end": 37351.09, + "probability": 0.8691 + }, + { + "start": 37352.15, + "end": 37358.77, + "probability": 0.7233 + }, + { + "start": 37359.01, + "end": 37360.53, + "probability": 0.9941 + }, + { + "start": 37360.57, + "end": 37362.69, + "probability": 0.9767 + }, + { + "start": 37363.07, + "end": 37364.47, + "probability": 0.9979 + }, + { + "start": 37365.49, + "end": 37366.81, + "probability": 0.8416 + }, + { + "start": 37367.09, + "end": 37368.35, + "probability": 0.9614 + }, + { + "start": 37368.45, + "end": 37370.11, + "probability": 0.9306 + }, + { + "start": 37370.83, + "end": 37371.29, + "probability": 0.8547 + }, + { + "start": 37372.03, + "end": 37372.49, + "probability": 0.8273 + }, + { + "start": 37373.19, + "end": 37375.63, + "probability": 0.8287 + }, + { + "start": 37376.35, + "end": 37379.95, + "probability": 0.9714 + }, + { + "start": 37379.95, + "end": 37382.87, + "probability": 0.9896 + }, + { + "start": 37383.19, + "end": 37383.47, + "probability": 0.4979 + }, + { + "start": 37383.55, + "end": 37384.34, + "probability": 0.9894 + }, + { + "start": 37384.85, + "end": 37392.59, + "probability": 0.8165 + }, + { + "start": 37392.63, + "end": 37398.27, + "probability": 0.9963 + }, + { + "start": 37399.31, + "end": 37400.51, + "probability": 0.7893 + }, + { + "start": 37401.27, + "end": 37401.27, + "probability": 0.0199 + }, + { + "start": 37401.27, + "end": 37401.27, + "probability": 0.4142 + }, + { + "start": 37401.27, + "end": 37402.35, + "probability": 0.6094 + }, + { + "start": 37402.97, + "end": 37406.03, + "probability": 0.7097 + }, + { + "start": 37406.67, + "end": 37407.59, + "probability": 0.9446 + }, + { + "start": 37408.23, + "end": 37412.35, + "probability": 0.9046 + }, + { + "start": 37413.05, + "end": 37417.91, + "probability": 0.8077 + }, + { + "start": 37417.91, + "end": 37422.01, + "probability": 0.988 + }, + { + "start": 37422.43, + "end": 37425.93, + "probability": 0.9769 + }, + { + "start": 37427.98, + "end": 37428.19, + "probability": 0.2769 + }, + { + "start": 37428.19, + "end": 37429.57, + "probability": 0.7697 + }, + { + "start": 37429.95, + "end": 37432.33, + "probability": 0.7455 + }, + { + "start": 37432.91, + "end": 37433.75, + "probability": 0.9309 + }, + { + "start": 37433.97, + "end": 37435.13, + "probability": 0.9632 + }, + { + "start": 37435.45, + "end": 37436.45, + "probability": 0.9628 + }, + { + "start": 37436.59, + "end": 37438.07, + "probability": 0.9836 + }, + { + "start": 37438.77, + "end": 37439.75, + "probability": 0.8725 + }, + { + "start": 37439.99, + "end": 37440.93, + "probability": 0.7887 + }, + { + "start": 37441.25, + "end": 37444.87, + "probability": 0.965 + }, + { + "start": 37445.37, + "end": 37447.49, + "probability": 0.9558 + }, + { + "start": 37447.77, + "end": 37449.05, + "probability": 0.947 + }, + { + "start": 37449.47, + "end": 37449.95, + "probability": 0.7944 + }, + { + "start": 37450.91, + "end": 37451.51, + "probability": 0.9166 + }, + { + "start": 37452.21, + "end": 37455.81, + "probability": 0.8722 + }, + { + "start": 37456.19, + "end": 37457.49, + "probability": 0.8643 + }, + { + "start": 37457.99, + "end": 37462.45, + "probability": 0.8984 + }, + { + "start": 37462.95, + "end": 37464.95, + "probability": 0.9242 + }, + { + "start": 37465.47, + "end": 37466.53, + "probability": 0.9568 + }, + { + "start": 37466.99, + "end": 37468.25, + "probability": 0.9778 + }, + { + "start": 37468.71, + "end": 37470.77, + "probability": 0.9882 + }, + { + "start": 37471.39, + "end": 37474.13, + "probability": 0.9932 + }, + { + "start": 37474.53, + "end": 37477.73, + "probability": 0.9631 + }, + { + "start": 37478.19, + "end": 37481.11, + "probability": 0.91 + }, + { + "start": 37481.47, + "end": 37483.89, + "probability": 0.9741 + }, + { + "start": 37484.25, + "end": 37488.47, + "probability": 0.968 + }, + { + "start": 37488.85, + "end": 37489.77, + "probability": 0.9136 + }, + { + "start": 37492.09, + "end": 37492.61, + "probability": 0.6466 + }, + { + "start": 37493.41, + "end": 37496.33, + "probability": 0.847 + }, + { + "start": 37496.43, + "end": 37497.05, + "probability": 0.5479 + }, + { + "start": 37497.39, + "end": 37498.43, + "probability": 0.9823 + }, + { + "start": 37498.61, + "end": 37500.11, + "probability": 0.9797 + }, + { + "start": 37500.59, + "end": 37503.59, + "probability": 0.9897 + }, + { + "start": 37504.13, + "end": 37504.59, + "probability": 0.9319 + }, + { + "start": 37505.71, + "end": 37506.93, + "probability": 0.7991 + }, + { + "start": 37507.09, + "end": 37508.17, + "probability": 0.9467 + }, + { + "start": 37508.57, + "end": 37513.55, + "probability": 0.9977 + }, + { + "start": 37514.21, + "end": 37514.99, + "probability": 0.8555 + }, + { + "start": 37515.13, + "end": 37519.91, + "probability": 0.9395 + }, + { + "start": 37520.47, + "end": 37526.31, + "probability": 0.9868 + }, + { + "start": 37526.31, + "end": 37531.89, + "probability": 0.8838 + }, + { + "start": 37532.45, + "end": 37538.73, + "probability": 0.7987 + }, + { + "start": 37539.27, + "end": 37542.47, + "probability": 0.8817 + }, + { + "start": 37542.47, + "end": 37545.47, + "probability": 0.7274 + }, + { + "start": 37545.87, + "end": 37548.27, + "probability": 0.9956 + }, + { + "start": 37548.27, + "end": 37551.07, + "probability": 0.9914 + }, + { + "start": 37551.77, + "end": 37552.91, + "probability": 0.7608 + }, + { + "start": 37553.59, + "end": 37555.91, + "probability": 0.8539 + }, + { + "start": 37556.05, + "end": 37557.51, + "probability": 0.9098 + }, + { + "start": 37557.65, + "end": 37560.51, + "probability": 0.8948 + }, + { + "start": 37561.27, + "end": 37562.44, + "probability": 0.8522 + }, + { + "start": 37563.29, + "end": 37565.09, + "probability": 0.9875 + }, + { + "start": 37565.55, + "end": 37567.15, + "probability": 0.9795 + }, + { + "start": 37568.19, + "end": 37570.01, + "probability": 0.766 + }, + { + "start": 37570.35, + "end": 37571.47, + "probability": 0.9476 + }, + { + "start": 37571.81, + "end": 37573.51, + "probability": 0.9469 + }, + { + "start": 37573.93, + "end": 37575.83, + "probability": 0.9032 + }, + { + "start": 37576.27, + "end": 37580.77, + "probability": 0.9937 + }, + { + "start": 37581.39, + "end": 37582.38, + "probability": 0.8899 + }, + { + "start": 37582.89, + "end": 37586.63, + "probability": 0.9291 + }, + { + "start": 37587.29, + "end": 37588.03, + "probability": 0.786 + }, + { + "start": 37589.23, + "end": 37592.59, + "probability": 0.9779 + }, + { + "start": 37592.59, + "end": 37597.03, + "probability": 0.9917 + }, + { + "start": 37597.47, + "end": 37598.83, + "probability": 0.7376 + }, + { + "start": 37599.15, + "end": 37600.67, + "probability": 0.9262 + }, + { + "start": 37601.29, + "end": 37604.83, + "probability": 0.8699 + }, + { + "start": 37605.35, + "end": 37607.47, + "probability": 0.994 + }, + { + "start": 37608.15, + "end": 37609.49, + "probability": 0.8445 + }, + { + "start": 37609.95, + "end": 37610.85, + "probability": 0.9363 + }, + { + "start": 37611.27, + "end": 37611.87, + "probability": 0.4226 + }, + { + "start": 37611.91, + "end": 37612.97, + "probability": 0.8429 + }, + { + "start": 37613.03, + "end": 37617.69, + "probability": 0.7765 + }, + { + "start": 37617.95, + "end": 37621.65, + "probability": 0.839 + }, + { + "start": 37621.91, + "end": 37624.85, + "probability": 0.9682 + }, + { + "start": 37625.35, + "end": 37630.27, + "probability": 0.9967 + }, + { + "start": 37630.27, + "end": 37632.91, + "probability": 0.9473 + }, + { + "start": 37633.33, + "end": 37636.17, + "probability": 0.9963 + }, + { + "start": 37636.17, + "end": 37640.07, + "probability": 0.9969 + }, + { + "start": 37641.03, + "end": 37641.7, + "probability": 0.9567 + }, + { + "start": 37642.25, + "end": 37643.71, + "probability": 0.5355 + }, + { + "start": 37644.35, + "end": 37645.95, + "probability": 0.8867 + }, + { + "start": 37646.31, + "end": 37647.74, + "probability": 0.8973 + }, + { + "start": 37648.31, + "end": 37650.49, + "probability": 0.9413 + }, + { + "start": 37651.01, + "end": 37656.65, + "probability": 0.912 + }, + { + "start": 37656.87, + "end": 37657.93, + "probability": 0.4523 + }, + { + "start": 37658.83, + "end": 37658.89, + "probability": 0.5015 + }, + { + "start": 37658.89, + "end": 37663.41, + "probability": 0.8557 + }, + { + "start": 37664.07, + "end": 37668.45, + "probability": 0.9788 + }, + { + "start": 37668.83, + "end": 37672.09, + "probability": 0.8862 + }, + { + "start": 37672.55, + "end": 37674.03, + "probability": 0.6179 + }, + { + "start": 37674.31, + "end": 37675.91, + "probability": 0.9764 + }, + { + "start": 37676.39, + "end": 37677.17, + "probability": 0.678 + }, + { + "start": 37677.53, + "end": 37678.43, + "probability": 0.918 + }, + { + "start": 37678.83, + "end": 37680.71, + "probability": 0.9578 + }, + { + "start": 37681.07, + "end": 37685.75, + "probability": 0.9464 + }, + { + "start": 37685.75, + "end": 37693.99, + "probability": 0.85 + }, + { + "start": 37695.86, + "end": 37699.11, + "probability": 0.8031 + }, + { + "start": 37699.53, + "end": 37700.33, + "probability": 0.8893 + }, + { + "start": 37700.89, + "end": 37702.25, + "probability": 0.8235 + }, + { + "start": 37702.71, + "end": 37703.97, + "probability": 0.521 + }, + { + "start": 37704.31, + "end": 37706.51, + "probability": 0.6676 + }, + { + "start": 37707.53, + "end": 37707.53, + "probability": 0.5234 + }, + { + "start": 37707.53, + "end": 37708.89, + "probability": 0.9514 + }, + { + "start": 37709.05, + "end": 37710.51, + "probability": 0.9822 + }, + { + "start": 37710.91, + "end": 37711.75, + "probability": 0.8524 + }, + { + "start": 37712.71, + "end": 37716.21, + "probability": 0.8766 + }, + { + "start": 37716.69, + "end": 37717.29, + "probability": 0.9006 + }, + { + "start": 37717.57, + "end": 37720.05, + "probability": 0.9905 + }, + { + "start": 37720.05, + "end": 37723.29, + "probability": 0.8586 + }, + { + "start": 37724.01, + "end": 37728.59, + "probability": 0.9502 + }, + { + "start": 37728.59, + "end": 37732.25, + "probability": 0.89 + }, + { + "start": 37732.71, + "end": 37734.73, + "probability": 0.9767 + }, + { + "start": 37734.99, + "end": 37736.71, + "probability": 0.978 + }, + { + "start": 37737.01, + "end": 37737.61, + "probability": 0.9346 + }, + { + "start": 37737.91, + "end": 37738.39, + "probability": 0.7293 + }, + { + "start": 37738.69, + "end": 37743.69, + "probability": 0.9519 + }, + { + "start": 37744.09, + "end": 37745.41, + "probability": 0.9077 + }, + { + "start": 37745.47, + "end": 37746.07, + "probability": 0.5966 + }, + { + "start": 37746.35, + "end": 37747.93, + "probability": 0.6736 + }, + { + "start": 37748.29, + "end": 37750.97, + "probability": 0.9961 + }, + { + "start": 37751.57, + "end": 37753.05, + "probability": 0.9984 + }, + { + "start": 37753.65, + "end": 37757.87, + "probability": 0.9684 + }, + { + "start": 37758.49, + "end": 37759.65, + "probability": 0.8236 + }, + { + "start": 37760.67, + "end": 37765.43, + "probability": 0.8534 + }, + { + "start": 37765.51, + "end": 37766.63, + "probability": 0.7778 + }, + { + "start": 37768.25, + "end": 37768.95, + "probability": 0.2894 + }, + { + "start": 37770.55, + "end": 37774.15, + "probability": 0.0954 + }, + { + "start": 37776.05, + "end": 37776.91, + "probability": 0.1333 + }, + { + "start": 37777.27, + "end": 37778.39, + "probability": 0.1135 + }, + { + "start": 37779.19, + "end": 37780.61, + "probability": 0.298 + }, + { + "start": 37794.57, + "end": 37797.81, + "probability": 0.5822 + }, + { + "start": 37798.27, + "end": 37798.85, + "probability": 0.6316 + }, + { + "start": 37798.91, + "end": 37799.73, + "probability": 0.6128 + }, + { + "start": 37800.23, + "end": 37800.93, + "probability": 0.8191 + }, + { + "start": 37802.49, + "end": 37806.15, + "probability": 0.8959 + }, + { + "start": 37806.59, + "end": 37807.79, + "probability": 0.9826 + }, + { + "start": 37809.09, + "end": 37809.97, + "probability": 0.7822 + }, + { + "start": 37810.67, + "end": 37812.27, + "probability": 0.6799 + }, + { + "start": 37812.83, + "end": 37814.79, + "probability": 0.9529 + }, + { + "start": 37815.49, + "end": 37816.77, + "probability": 0.9941 + }, + { + "start": 37817.31, + "end": 37820.05, + "probability": 0.8578 + }, + { + "start": 37820.05, + "end": 37822.49, + "probability": 0.7391 + }, + { + "start": 37822.91, + "end": 37823.91, + "probability": 0.77 + }, + { + "start": 37824.53, + "end": 37827.07, + "probability": 0.7706 + }, + { + "start": 37827.61, + "end": 37829.37, + "probability": 0.5168 + }, + { + "start": 37829.39, + "end": 37829.95, + "probability": 0.561 + }, + { + "start": 37831.85, + "end": 37832.51, + "probability": 0.4994 + }, + { + "start": 37832.51, + "end": 37833.33, + "probability": 0.9425 + }, + { + "start": 37833.81, + "end": 37836.29, + "probability": 0.9961 + }, + { + "start": 37836.53, + "end": 37841.39, + "probability": 0.9975 + }, + { + "start": 37841.71, + "end": 37843.41, + "probability": 0.9004 + }, + { + "start": 37843.81, + "end": 37848.95, + "probability": 0.9885 + }, + { + "start": 37849.57, + "end": 37852.09, + "probability": 0.9832 + }, + { + "start": 37852.71, + "end": 37855.09, + "probability": 0.9987 + }, + { + "start": 37855.53, + "end": 37859.39, + "probability": 0.7866 + }, + { + "start": 37860.35, + "end": 37860.93, + "probability": 0.6832 + }, + { + "start": 37861.27, + "end": 37863.19, + "probability": 0.9697 + }, + { + "start": 37863.63, + "end": 37864.51, + "probability": 0.5074 + }, + { + "start": 37865.15, + "end": 37868.21, + "probability": 0.988 + }, + { + "start": 37868.61, + "end": 37872.12, + "probability": 0.9941 + }, + { + "start": 37872.91, + "end": 37875.91, + "probability": 0.897 + }, + { + "start": 37876.43, + "end": 37879.3, + "probability": 0.9009 + }, + { + "start": 37880.09, + "end": 37883.35, + "probability": 0.9871 + }, + { + "start": 37883.35, + "end": 37886.57, + "probability": 0.826 + }, + { + "start": 37887.01, + "end": 37888.49, + "probability": 0.9017 + }, + { + "start": 37888.77, + "end": 37890.37, + "probability": 0.9882 + }, + { + "start": 37890.65, + "end": 37891.83, + "probability": 0.9684 + }, + { + "start": 37892.07, + "end": 37892.89, + "probability": 0.6553 + }, + { + "start": 37893.01, + "end": 37893.73, + "probability": 0.439 + }, + { + "start": 37893.85, + "end": 37894.51, + "probability": 0.8231 + }, + { + "start": 37894.99, + "end": 37896.31, + "probability": 0.9313 + }, + { + "start": 37896.49, + "end": 37897.97, + "probability": 0.98 + }, + { + "start": 37898.47, + "end": 37899.85, + "probability": 0.9856 + }, + { + "start": 37900.39, + "end": 37902.65, + "probability": 0.957 + }, + { + "start": 37903.19, + "end": 37904.23, + "probability": 0.983 + }, + { + "start": 37904.85, + "end": 37906.67, + "probability": 0.8322 + }, + { + "start": 37907.09, + "end": 37909.47, + "probability": 0.7804 + }, + { + "start": 37910.17, + "end": 37913.99, + "probability": 0.84 + }, + { + "start": 37914.83, + "end": 37916.83, + "probability": 0.9212 + }, + { + "start": 37917.57, + "end": 37919.65, + "probability": 0.8857 + }, + { + "start": 37920.03, + "end": 37924.59, + "probability": 0.9865 + }, + { + "start": 37925.15, + "end": 37928.77, + "probability": 0.9893 + }, + { + "start": 37928.77, + "end": 37932.21, + "probability": 0.9967 + }, + { + "start": 37932.75, + "end": 37935.31, + "probability": 0.8721 + }, + { + "start": 37935.83, + "end": 37936.71, + "probability": 0.7891 + }, + { + "start": 37937.35, + "end": 37939.09, + "probability": 0.8564 + }, + { + "start": 37939.39, + "end": 37940.39, + "probability": 0.9527 + }, + { + "start": 37940.91, + "end": 37942.35, + "probability": 0.9592 + }, + { + "start": 37942.91, + "end": 37945.31, + "probability": 0.9951 + }, + { + "start": 37945.31, + "end": 37948.23, + "probability": 0.8764 + }, + { + "start": 37948.99, + "end": 37952.59, + "probability": 0.8903 + }, + { + "start": 37952.59, + "end": 37954.97, + "probability": 0.9824 + }, + { + "start": 37955.61, + "end": 37957.19, + "probability": 0.9324 + }, + { + "start": 37957.33, + "end": 37957.69, + "probability": 0.89 + }, + { + "start": 37958.53, + "end": 37960.17, + "probability": 0.9932 + }, + { + "start": 37961.25, + "end": 37963.93, + "probability": 0.848 + }, + { + "start": 37964.57, + "end": 37968.31, + "probability": 0.9821 + }, + { + "start": 37969.07, + "end": 37974.65, + "probability": 0.983 + }, + { + "start": 37974.79, + "end": 37977.39, + "probability": 0.979 + }, + { + "start": 37978.37, + "end": 37982.29, + "probability": 0.6427 + }, + { + "start": 37983.67, + "end": 37983.95, + "probability": 0.2456 + }, + { + "start": 37983.95, + "end": 37987.47, + "probability": 0.4924 + }, + { + "start": 37988.35, + "end": 37991.41, + "probability": 0.899 + }, + { + "start": 37991.99, + "end": 37994.07, + "probability": 0.7041 + }, + { + "start": 37994.49, + "end": 37998.87, + "probability": 0.8147 + }, + { + "start": 37999.27, + "end": 38002.95, + "probability": 0.8751 + }, + { + "start": 38003.49, + "end": 38004.99, + "probability": 0.8398 + }, + { + "start": 38005.77, + "end": 38010.19, + "probability": 0.9243 + }, + { + "start": 38010.55, + "end": 38011.59, + "probability": 0.9294 + }, + { + "start": 38012.47, + "end": 38013.19, + "probability": 0.8407 + }, + { + "start": 38013.35, + "end": 38014.27, + "probability": 0.7522 + }, + { + "start": 38014.75, + "end": 38017.05, + "probability": 0.9206 + }, + { + "start": 38017.53, + "end": 38018.53, + "probability": 0.9676 + }, + { + "start": 38018.97, + "end": 38021.65, + "probability": 0.95 + }, + { + "start": 38021.83, + "end": 38022.81, + "probability": 0.9847 + }, + { + "start": 38023.51, + "end": 38024.83, + "probability": 0.9688 + }, + { + "start": 38025.33, + "end": 38026.83, + "probability": 0.9657 + }, + { + "start": 38026.95, + "end": 38027.65, + "probability": 0.6961 + }, + { + "start": 38027.99, + "end": 38029.61, + "probability": 0.989 + }, + { + "start": 38030.21, + "end": 38034.31, + "probability": 0.9526 + }, + { + "start": 38034.83, + "end": 38035.29, + "probability": 0.8577 + }, + { + "start": 38035.83, + "end": 38036.85, + "probability": 0.5615 + }, + { + "start": 38037.35, + "end": 38039.79, + "probability": 0.9878 + }, + { + "start": 38040.17, + "end": 38041.73, + "probability": 0.8583 + }, + { + "start": 38042.35, + "end": 38045.23, + "probability": 0.9917 + }, + { + "start": 38045.69, + "end": 38045.99, + "probability": 0.5426 + }, + { + "start": 38046.13, + "end": 38050.65, + "probability": 0.9885 + }, + { + "start": 38050.95, + "end": 38052.15, + "probability": 0.7141 + }, + { + "start": 38052.57, + "end": 38056.29, + "probability": 0.9573 + }, + { + "start": 38057.33, + "end": 38057.91, + "probability": 0.724 + }, + { + "start": 38058.01, + "end": 38058.29, + "probability": 0.2384 + }, + { + "start": 38058.45, + "end": 38058.77, + "probability": 0.6484 + }, + { + "start": 38059.13, + "end": 38059.75, + "probability": 0.9438 + }, + { + "start": 38060.41, + "end": 38063.19, + "probability": 0.989 + }, + { + "start": 38063.19, + "end": 38066.29, + "probability": 0.9265 + }, + { + "start": 38066.65, + "end": 38069.17, + "probability": 0.9727 + }, + { + "start": 38069.47, + "end": 38070.67, + "probability": 0.8273 + }, + { + "start": 38071.07, + "end": 38073.77, + "probability": 0.9164 + }, + { + "start": 38074.17, + "end": 38075.67, + "probability": 0.9558 + }, + { + "start": 38076.11, + "end": 38077.97, + "probability": 0.9956 + }, + { + "start": 38078.47, + "end": 38080.43, + "probability": 0.9399 + }, + { + "start": 38080.95, + "end": 38084.17, + "probability": 0.9876 + }, + { + "start": 38084.65, + "end": 38086.45, + "probability": 0.8718 + }, + { + "start": 38087.31, + "end": 38088.27, + "probability": 0.6914 + }, + { + "start": 38088.67, + "end": 38092.41, + "probability": 0.7764 + }, + { + "start": 38092.83, + "end": 38093.95, + "probability": 0.9063 + }, + { + "start": 38094.39, + "end": 38098.63, + "probability": 0.9794 + }, + { + "start": 38098.95, + "end": 38100.85, + "probability": 0.9889 + }, + { + "start": 38101.19, + "end": 38103.51, + "probability": 0.9954 + }, + { + "start": 38104.23, + "end": 38107.21, + "probability": 0.988 + }, + { + "start": 38107.21, + "end": 38110.47, + "probability": 0.9993 + }, + { + "start": 38110.85, + "end": 38113.87, + "probability": 0.8078 + }, + { + "start": 38114.57, + "end": 38115.35, + "probability": 0.7152 + }, + { + "start": 38115.51, + "end": 38117.28, + "probability": 0.9919 + }, + { + "start": 38117.81, + "end": 38118.29, + "probability": 0.7417 + }, + { + "start": 38118.31, + "end": 38119.55, + "probability": 0.8338 + }, + { + "start": 38120.17, + "end": 38123.05, + "probability": 0.993 + }, + { + "start": 38123.51, + "end": 38124.59, + "probability": 0.8984 + }, + { + "start": 38124.95, + "end": 38126.17, + "probability": 0.7877 + }, + { + "start": 38126.25, + "end": 38129.19, + "probability": 0.9922 + }, + { + "start": 38129.71, + "end": 38131.75, + "probability": 0.9487 + }, + { + "start": 38132.27, + "end": 38135.37, + "probability": 0.9701 + }, + { + "start": 38135.91, + "end": 38137.35, + "probability": 0.9164 + }, + { + "start": 38137.83, + "end": 38140.09, + "probability": 0.993 + }, + { + "start": 38140.45, + "end": 38141.31, + "probability": 0.5218 + }, + { + "start": 38141.69, + "end": 38142.69, + "probability": 0.918 + }, + { + "start": 38143.51, + "end": 38147.15, + "probability": 0.9156 + }, + { + "start": 38147.31, + "end": 38147.95, + "probability": 0.6545 + }, + { + "start": 38148.37, + "end": 38151.17, + "probability": 0.9846 + }, + { + "start": 38151.29, + "end": 38155.24, + "probability": 0.8743 + }, + { + "start": 38157.67, + "end": 38158.91, + "probability": 0.6531 + }, + { + "start": 38159.93, + "end": 38161.81, + "probability": 0.4982 + }, + { + "start": 38162.59, + "end": 38165.13, + "probability": 0.9566 + }, + { + "start": 38165.29, + "end": 38167.63, + "probability": 0.5497 + }, + { + "start": 38167.87, + "end": 38169.35, + "probability": 0.4563 + }, + { + "start": 38169.95, + "end": 38172.09, + "probability": 0.8393 + }, + { + "start": 38172.49, + "end": 38173.27, + "probability": 0.8335 + }, + { + "start": 38173.39, + "end": 38174.59, + "probability": 0.6933 + }, + { + "start": 38176.58, + "end": 38179.1, + "probability": 0.2936 + }, + { + "start": 38179.85, + "end": 38181.65, + "probability": 0.8879 + }, + { + "start": 38182.49, + "end": 38183.51, + "probability": 0.7896 + }, + { + "start": 38184.03, + "end": 38185.29, + "probability": 0.9472 + }, + { + "start": 38186.03, + "end": 38188.93, + "probability": 0.9363 + }, + { + "start": 38192.22, + "end": 38199.97, + "probability": 0.9487 + }, + { + "start": 38200.75, + "end": 38204.65, + "probability": 0.9404 + }, + { + "start": 38205.01, + "end": 38208.37, + "probability": 0.9337 + }, + { + "start": 38208.61, + "end": 38208.93, + "probability": 0.457 + }, + { + "start": 38208.95, + "end": 38209.61, + "probability": 0.7355 + }, + { + "start": 38210.01, + "end": 38211.41, + "probability": 0.8047 + }, + { + "start": 38211.81, + "end": 38213.63, + "probability": 0.8359 + }, + { + "start": 38213.67, + "end": 38217.31, + "probability": 0.9331 + }, + { + "start": 38220.15, + "end": 38224.49, + "probability": 0.9921 + }, + { + "start": 38224.49, + "end": 38228.69, + "probability": 0.9946 + }, + { + "start": 38229.25, + "end": 38233.41, + "probability": 0.8703 + }, + { + "start": 38235.55, + "end": 38236.15, + "probability": 0.5238 + }, + { + "start": 38236.39, + "end": 38237.1, + "probability": 0.879 + }, + { + "start": 38238.98, + "end": 38243.31, + "probability": 0.9243 + }, + { + "start": 38244.23, + "end": 38245.33, + "probability": 0.7476 + }, + { + "start": 38245.45, + "end": 38247.83, + "probability": 0.8045 + }, + { + "start": 38247.95, + "end": 38249.59, + "probability": 0.9917 + }, + { + "start": 38250.03, + "end": 38251.55, + "probability": 0.7299 + }, + { + "start": 38252.45, + "end": 38255.0, + "probability": 0.9293 + }, + { + "start": 38255.07, + "end": 38256.83, + "probability": 0.8901 + }, + { + "start": 38257.01, + "end": 38257.85, + "probability": 0.9956 + }, + { + "start": 38262.49, + "end": 38265.07, + "probability": 0.5267 + }, + { + "start": 38265.43, + "end": 38265.79, + "probability": 0.0563 + }, + { + "start": 38268.75, + "end": 38271.62, + "probability": 0.0322 + }, + { + "start": 38273.47, + "end": 38280.21, + "probability": 0.951 + }, + { + "start": 38280.21, + "end": 38285.69, + "probability": 0.9081 + }, + { + "start": 38286.13, + "end": 38286.89, + "probability": 0.5879 + }, + { + "start": 38287.11, + "end": 38288.85, + "probability": 0.9897 + }, + { + "start": 38289.53, + "end": 38290.59, + "probability": 0.2222 + }, + { + "start": 38292.83, + "end": 38296.01, + "probability": 0.9927 + }, + { + "start": 38296.29, + "end": 38297.95, + "probability": 0.9557 + }, + { + "start": 38298.75, + "end": 38298.97, + "probability": 0.8347 + }, + { + "start": 38299.67, + "end": 38301.97, + "probability": 0.5557 + }, + { + "start": 38302.53, + "end": 38304.43, + "probability": 0.73 + }, + { + "start": 38305.43, + "end": 38306.57, + "probability": 0.7835 + }, + { + "start": 38307.25, + "end": 38307.87, + "probability": 0.3652 + }, + { + "start": 38309.77, + "end": 38313.41, + "probability": 0.8687 + }, + { + "start": 38313.73, + "end": 38314.19, + "probability": 0.8815 + }, + { + "start": 38314.33, + "end": 38317.93, + "probability": 0.9854 + }, + { + "start": 38317.93, + "end": 38320.85, + "probability": 0.9827 + }, + { + "start": 38320.91, + "end": 38322.41, + "probability": 0.7913 + }, + { + "start": 38322.71, + "end": 38323.83, + "probability": 0.4063 + }, + { + "start": 38324.56, + "end": 38325.31, + "probability": 0.1064 + }, + { + "start": 38331.73, + "end": 38333.23, + "probability": 0.8384 + }, + { + "start": 38333.75, + "end": 38336.23, + "probability": 0.7863 + }, + { + "start": 38336.53, + "end": 38338.56, + "probability": 0.264 + }, + { + "start": 38339.73, + "end": 38342.45, + "probability": 0.6521 + }, + { + "start": 38343.03, + "end": 38343.85, + "probability": 0.9805 + }, + { + "start": 38344.37, + "end": 38346.89, + "probability": 0.8024 + }, + { + "start": 38348.31, + "end": 38355.03, + "probability": 0.5738 + }, + { + "start": 38355.63, + "end": 38357.73, + "probability": 0.8609 + }, + { + "start": 38358.33, + "end": 38361.17, + "probability": 0.9287 + }, + { + "start": 38362.01, + "end": 38364.03, + "probability": 0.9795 + }, + { + "start": 38364.39, + "end": 38367.25, + "probability": 0.9887 + }, + { + "start": 38367.53, + "end": 38370.17, + "probability": 0.7172 + }, + { + "start": 38370.53, + "end": 38373.01, + "probability": 0.5426 + }, + { + "start": 38374.41, + "end": 38377.59, + "probability": 0.8775 + }, + { + "start": 38378.03, + "end": 38381.09, + "probability": 0.8657 + }, + { + "start": 38381.13, + "end": 38383.53, + "probability": 0.8417 + }, + { + "start": 38384.21, + "end": 38388.71, + "probability": 0.8537 + }, + { + "start": 38391.51, + "end": 38393.89, + "probability": 0.7633 + }, + { + "start": 38395.37, + "end": 38400.07, + "probability": 0.5345 + }, + { + "start": 38400.81, + "end": 38402.63, + "probability": 0.8017 + }, + { + "start": 38403.19, + "end": 38405.27, + "probability": 0.9185 + }, + { + "start": 38405.97, + "end": 38410.69, + "probability": 0.7939 + }, + { + "start": 38411.25, + "end": 38412.65, + "probability": 0.9377 + }, + { + "start": 38413.73, + "end": 38419.71, + "probability": 0.9742 + }, + { + "start": 38420.37, + "end": 38422.45, + "probability": 0.6652 + }, + { + "start": 38423.25, + "end": 38425.77, + "probability": 0.7827 + }, + { + "start": 38426.29, + "end": 38428.57, + "probability": 0.7932 + }, + { + "start": 38429.21, + "end": 38431.23, + "probability": 0.1615 + }, + { + "start": 38431.29, + "end": 38431.77, + "probability": 0.6463 + }, + { + "start": 38431.91, + "end": 38432.11, + "probability": 0.8095 + }, + { + "start": 38432.57, + "end": 38433.09, + "probability": 0.8439 + }, + { + "start": 38433.09, + "end": 38433.59, + "probability": 0.5745 + }, + { + "start": 38433.59, + "end": 38434.29, + "probability": 0.2648 + }, + { + "start": 38435.57, + "end": 38439.17, + "probability": 0.0283 + }, + { + "start": 38439.75, + "end": 38441.01, + "probability": 0.7388 + }, + { + "start": 38441.01, + "end": 38442.73, + "probability": 0.6626 + }, + { + "start": 38443.15, + "end": 38445.7, + "probability": 0.5007 + }, + { + "start": 38447.57, + "end": 38448.67, + "probability": 0.2728 + }, + { + "start": 38449.55, + "end": 38454.55, + "probability": 0.6881 + }, + { + "start": 38455.11, + "end": 38457.13, + "probability": 0.9861 + }, + { + "start": 38457.83, + "end": 38461.73, + "probability": 0.9343 + }, + { + "start": 38462.29, + "end": 38464.49, + "probability": 0.6972 + }, + { + "start": 38465.09, + "end": 38466.67, + "probability": 0.6583 + }, + { + "start": 38467.09, + "end": 38470.43, + "probability": 0.7905 + }, + { + "start": 38470.51, + "end": 38472.87, + "probability": 0.3785 + }, + { + "start": 38473.43, + "end": 38475.47, + "probability": 0.8537 + }, + { + "start": 38476.67, + "end": 38479.35, + "probability": 0.8455 + }, + { + "start": 38480.07, + "end": 38486.39, + "probability": 0.7735 + }, + { + "start": 38487.15, + "end": 38489.03, + "probability": 0.9795 + }, + { + "start": 38489.75, + "end": 38491.85, + "probability": 0.662 + }, + { + "start": 38492.21, + "end": 38494.05, + "probability": 0.7629 + }, + { + "start": 38494.55, + "end": 38496.81, + "probability": 0.7076 + }, + { + "start": 38497.15, + "end": 38499.55, + "probability": 0.5277 + }, + { + "start": 38500.39, + "end": 38502.47, + "probability": 0.4989 + }, + { + "start": 38502.93, + "end": 38504.79, + "probability": 0.818 + }, + { + "start": 38504.99, + "end": 38507.39, + "probability": 0.7009 + }, + { + "start": 38508.05, + "end": 38510.07, + "probability": 0.7319 + }, + { + "start": 38510.43, + "end": 38512.83, + "probability": 0.8114 + }, + { + "start": 38512.89, + "end": 38514.71, + "probability": 0.1956 + }, + { + "start": 38514.77, + "end": 38517.13, + "probability": 0.7657 + }, + { + "start": 38517.29, + "end": 38519.63, + "probability": 0.9613 + }, + { + "start": 38519.89, + "end": 38522.51, + "probability": 0.6826 + }, + { + "start": 38522.87, + "end": 38525.01, + "probability": 0.9761 + }, + { + "start": 38525.69, + "end": 38527.57, + "probability": 0.8885 + }, + { + "start": 38530.47, + "end": 38532.35, + "probability": 0.7553 + }, + { + "start": 38533.29, + "end": 38540.31, + "probability": 0.2382 + }, + { + "start": 38541.21, + "end": 38547.29, + "probability": 0.4172 + }, + { + "start": 38548.59, + "end": 38553.61, + "probability": 0.7749 + }, + { + "start": 38554.27, + "end": 38556.53, + "probability": 0.9486 + }, + { + "start": 38557.75, + "end": 38559.55, + "probability": 0.8347 + }, + { + "start": 38560.35, + "end": 38562.67, + "probability": 0.6986 + }, + { + "start": 38563.81, + "end": 38565.81, + "probability": 0.7262 + }, + { + "start": 38566.39, + "end": 38568.15, + "probability": 0.7942 + }, + { + "start": 38568.39, + "end": 38571.87, + "probability": 0.6303 + }, + { + "start": 38572.05, + "end": 38574.25, + "probability": 0.6672 + }, + { + "start": 38574.37, + "end": 38576.55, + "probability": 0.9023 + }, + { + "start": 38576.83, + "end": 38579.21, + "probability": 0.7953 + }, + { + "start": 38579.33, + "end": 38581.85, + "probability": 0.6028 + }, + { + "start": 38582.17, + "end": 38584.45, + "probability": 0.6724 + }, + { + "start": 38584.69, + "end": 38587.51, + "probability": 0.6679 + }, + { + "start": 38587.89, + "end": 38590.27, + "probability": 0.6851 + }, + { + "start": 38590.75, + "end": 38593.45, + "probability": 0.6966 + }, + { + "start": 38594.29, + "end": 38595.77, + "probability": 0.8259 + }, + { + "start": 38596.51, + "end": 38598.69, + "probability": 0.6661 + }, + { + "start": 38599.51, + "end": 38603.69, + "probability": 0.948 + }, + { + "start": 38604.25, + "end": 38608.25, + "probability": 0.6908 + }, + { + "start": 38608.83, + "end": 38613.59, + "probability": 0.6954 + }, + { + "start": 38614.27, + "end": 38616.21, + "probability": 0.8017 + }, + { + "start": 38617.53, + "end": 38622.21, + "probability": 0.6712 + }, + { + "start": 38622.77, + "end": 38624.29, + "probability": 0.2003 + }, + { + "start": 38625.31, + "end": 38628.37, + "probability": 0.6268 + }, + { + "start": 38629.07, + "end": 38630.93, + "probability": 0.9285 + }, + { + "start": 38631.49, + "end": 38635.67, + "probability": 0.6513 + }, + { + "start": 38637.79, + "end": 38640.89, + "probability": 0.8693 + }, + { + "start": 38641.55, + "end": 38648.55, + "probability": 0.9064 + }, + { + "start": 38649.21, + "end": 38650.63, + "probability": 0.7771 + }, + { + "start": 38651.19, + "end": 38655.71, + "probability": 0.7191 + }, + { + "start": 38656.27, + "end": 38657.85, + "probability": 0.8477 + }, + { + "start": 38658.41, + "end": 38661.97, + "probability": 0.8025 + }, + { + "start": 38662.55, + "end": 38666.39, + "probability": 0.9221 + }, + { + "start": 38666.99, + "end": 38670.47, + "probability": 0.841 + }, + { + "start": 38671.51, + "end": 38675.57, + "probability": 0.34 + }, + { + "start": 38676.23, + "end": 38680.23, + "probability": 0.6147 + }, + { + "start": 38680.99, + "end": 38686.39, + "probability": 0.7955 + }, + { + "start": 38687.25, + "end": 38690.29, + "probability": 0.7697 + }, + { + "start": 38691.17, + "end": 38693.47, + "probability": 0.5659 + }, + { + "start": 38694.29, + "end": 38695.79, + "probability": 0.3224 + }, + { + "start": 38696.99, + "end": 38701.67, + "probability": 0.6456 + }, + { + "start": 38704.91, + "end": 38710.07, + "probability": 0.7211 + }, + { + "start": 38710.95, + "end": 38713.17, + "probability": 0.783 + }, + { + "start": 38713.33, + "end": 38720.55, + "probability": 0.1755 + }, + { + "start": 38721.33, + "end": 38722.49, + "probability": 0.4467 + }, + { + "start": 38722.69, + "end": 38725.19, + "probability": 0.6137 + }, + { + "start": 38725.19, + "end": 38727.79, + "probability": 0.4897 + }, + { + "start": 38727.89, + "end": 38729.69, + "probability": 0.7895 + }, + { + "start": 38730.15, + "end": 38732.57, + "probability": 0.9341 + }, + { + "start": 38732.57, + "end": 38735.27, + "probability": 0.7829 + }, + { + "start": 38735.31, + "end": 38737.93, + "probability": 0.9512 + }, + { + "start": 38738.23, + "end": 38740.63, + "probability": 0.9088 + }, + { + "start": 38740.65, + "end": 38742.97, + "probability": 0.8996 + }, + { + "start": 38743.89, + "end": 38748.35, + "probability": 0.6872 + }, + { + "start": 38749.03, + "end": 38752.63, + "probability": 0.7559 + }, + { + "start": 38753.97, + "end": 38756.53, + "probability": 0.9788 + }, + { + "start": 38757.31, + "end": 38760.39, + "probability": 0.9251 + }, + { + "start": 38761.15, + "end": 38763.21, + "probability": 0.918 + }, + { + "start": 38763.97, + "end": 38765.91, + "probability": 0.8582 + }, + { + "start": 38766.95, + "end": 38769.02, + "probability": 0.701 + }, + { + "start": 38775.09, + "end": 38776.29, + "probability": 0.137 + }, + { + "start": 38777.17, + "end": 38779.83, + "probability": 0.7758 + }, + { + "start": 38779.83, + "end": 38781.77, + "probability": 0.8226 + }, + { + "start": 38782.13, + "end": 38783.93, + "probability": 0.8638 + }, + { + "start": 38784.65, + "end": 38786.45, + "probability": 0.6252 + }, + { + "start": 38787.25, + "end": 38789.15, + "probability": 0.7874 + }, + { + "start": 38789.23, + "end": 38792.33, + "probability": 0.8397 + }, + { + "start": 38792.33, + "end": 38794.29, + "probability": 0.8347 + }, + { + "start": 38795.05, + "end": 38798.81, + "probability": 0.6899 + }, + { + "start": 38798.95, + "end": 38801.19, + "probability": 0.6852 + }, + { + "start": 38801.31, + "end": 38804.35, + "probability": 0.8607 + }, + { + "start": 38805.21, + "end": 38807.99, + "probability": 0.7261 + }, + { + "start": 38807.99, + "end": 38810.55, + "probability": 0.4714 + }, + { + "start": 38811.05, + "end": 38813.11, + "probability": 0.8494 + }, + { + "start": 38813.31, + "end": 38814.99, + "probability": 0.8406 + }, + { + "start": 38815.89, + "end": 38817.87, + "probability": 0.8262 + }, + { + "start": 38817.93, + "end": 38820.43, + "probability": 0.8305 + }, + { + "start": 38821.35, + "end": 38822.21, + "probability": 0.8977 + }, + { + "start": 38823.21, + "end": 38825.49, + "probability": 0.8893 + }, + { + "start": 38828.47, + "end": 38829.89, + "probability": 0.5354 + }, + { + "start": 38830.35, + "end": 38834.85, + "probability": 0.9689 + }, + { + "start": 38835.15, + "end": 38841.49, + "probability": 0.927 + }, + { + "start": 38842.95, + "end": 38846.13, + "probability": 0.9956 + }, + { + "start": 38846.47, + "end": 38846.89, + "probability": 0.5386 + }, + { + "start": 38846.93, + "end": 38849.66, + "probability": 0.7826 + }, + { + "start": 38852.73, + "end": 38853.35, + "probability": 0.0759 + }, + { + "start": 38855.05, + "end": 38859.61, + "probability": 0.0588 + }, + { + "start": 38881.1, + "end": 38881.79, + "probability": 0.0152 + }, + { + "start": 38882.41, + "end": 38882.43, + "probability": 0.2192 + }, + { + "start": 38888.71, + "end": 38891.58, + "probability": 0.0692 + }, + { + "start": 38893.23, + "end": 38895.15, + "probability": 0.107 + }, + { + "start": 38895.59, + "end": 38896.97, + "probability": 0.1252 + }, + { + "start": 38897.67, + "end": 38898.59, + "probability": 0.0377 + }, + { + "start": 38899.53, + "end": 38904.73, + "probability": 0.2838 + }, + { + "start": 38923.17, + "end": 38927.57, + "probability": 0.7489 + }, + { + "start": 38927.57, + "end": 38933.63, + "probability": 0.7294 + }, + { + "start": 38934.45, + "end": 38935.77, + "probability": 0.6673 + }, + { + "start": 38935.81, + "end": 38939.11, + "probability": 0.6537 + }, + { + "start": 38939.63, + "end": 38942.61, + "probability": 0.8228 + }, + { + "start": 38944.03, + "end": 38945.65, + "probability": 0.2622 + }, + { + "start": 38949.55, + "end": 38951.97, + "probability": 0.2774 + }, + { + "start": 38952.51, + "end": 38954.63, + "probability": 0.6935 + }, + { + "start": 38955.27, + "end": 38956.99, + "probability": 0.8052 + }, + { + "start": 38959.65, + "end": 38963.35, + "probability": 0.5555 + }, + { + "start": 38965.79, + "end": 38970.61, + "probability": 0.8988 + }, + { + "start": 38971.49, + "end": 38972.87, + "probability": 0.7157 + }, + { + "start": 38973.69, + "end": 38975.19, + "probability": 0.8985 + }, + { + "start": 38976.75, + "end": 38978.17, + "probability": 0.9312 + }, + { + "start": 38979.25, + "end": 38981.07, + "probability": 0.8768 + }, + { + "start": 38981.79, + "end": 38983.85, + "probability": 0.9553 + }, + { + "start": 38984.45, + "end": 38986.31, + "probability": 0.9712 + }, + { + "start": 38987.03, + "end": 38988.91, + "probability": 0.9577 + }, + { + "start": 38989.77, + "end": 38990.13, + "probability": 0.6587 + }, + { + "start": 38990.71, + "end": 38991.55, + "probability": 0.803 + }, + { + "start": 38992.45, + "end": 38994.23, + "probability": 0.9441 + }, + { + "start": 38995.03, + "end": 38996.97, + "probability": 0.9799 + }, + { + "start": 38998.55, + "end": 39000.39, + "probability": 0.9505 + }, + { + "start": 39001.85, + "end": 39003.97, + "probability": 0.8063 + }, + { + "start": 39006.13, + "end": 39008.99, + "probability": 0.9688 + }, + { + "start": 39009.61, + "end": 39011.05, + "probability": 0.8428 + }, + { + "start": 39011.33, + "end": 39013.67, + "probability": 0.429 + }, + { + "start": 39013.69, + "end": 39016.01, + "probability": 0.8817 + }, + { + "start": 39016.01, + "end": 39017.73, + "probability": 0.5306 + }, + { + "start": 39018.63, + "end": 39020.37, + "probability": 0.7156 + }, + { + "start": 39020.66, + "end": 39023.77, + "probability": 0.8579 + }, + { + "start": 39024.23, + "end": 39026.03, + "probability": 0.9129 + }, + { + "start": 39026.09, + "end": 39028.35, + "probability": 0.8983 + }, + { + "start": 39029.03, + "end": 39031.15, + "probability": 0.9368 + }, + { + "start": 39031.45, + "end": 39033.71, + "probability": 0.8151 + }, + { + "start": 39033.71, + "end": 39038.57, + "probability": 0.7668 + }, + { + "start": 39039.63, + "end": 39041.73, + "probability": 0.7997 + }, + { + "start": 39042.51, + "end": 39044.55, + "probability": 0.757 + }, + { + "start": 39045.37, + "end": 39047.19, + "probability": 0.8939 + }, + { + "start": 39047.59, + "end": 39049.23, + "probability": 0.6853 + }, + { + "start": 39049.73, + "end": 39051.65, + "probability": 0.8615 + }, + { + "start": 39052.01, + "end": 39053.75, + "probability": 0.6386 + }, + { + "start": 39054.43, + "end": 39059.57, + "probability": 0.7151 + }, + { + "start": 39060.31, + "end": 39062.77, + "probability": 0.9416 + }, + { + "start": 39063.27, + "end": 39065.29, + "probability": 0.8814 + }, + { + "start": 39065.75, + "end": 39067.31, + "probability": 0.8804 + }, + { + "start": 39070.71, + "end": 39075.35, + "probability": 0.801 + }, + { + "start": 39076.33, + "end": 39078.41, + "probability": 0.9459 + }, + { + "start": 39079.11, + "end": 39081.21, + "probability": 0.5703 + }, + { + "start": 39081.93, + "end": 39082.29, + "probability": 0.9873 + }, + { + "start": 39082.91, + "end": 39083.87, + "probability": 0.6445 + }, + { + "start": 39084.79, + "end": 39088.89, + "probability": 0.8755 + }, + { + "start": 39089.41, + "end": 39091.75, + "probability": 0.6658 + }, + { + "start": 39092.07, + "end": 39094.19, + "probability": 0.6322 + }, + { + "start": 39094.63, + "end": 39096.25, + "probability": 0.9365 + }, + { + "start": 39097.05, + "end": 39098.93, + "probability": 0.8435 + }, + { + "start": 39099.69, + "end": 39101.31, + "probability": 0.873 + }, + { + "start": 39102.21, + "end": 39103.61, + "probability": 0.8118 + }, + { + "start": 39104.19, + "end": 39108.63, + "probability": 0.9684 + }, + { + "start": 39110.69, + "end": 39112.81, + "probability": 0.7954 + }, + { + "start": 39115.57, + "end": 39122.29, + "probability": 0.638 + }, + { + "start": 39123.67, + "end": 39125.83, + "probability": 0.816 + }, + { + "start": 39126.51, + "end": 39128.21, + "probability": 0.736 + }, + { + "start": 39129.71, + "end": 39130.45, + "probability": 0.3949 + }, + { + "start": 39131.23, + "end": 39132.11, + "probability": 0.0974 + }, + { + "start": 39134.29, + "end": 39136.11, + "probability": 0.781 + }, + { + "start": 39136.53, + "end": 39138.77, + "probability": 0.9264 + }, + { + "start": 39139.23, + "end": 39141.59, + "probability": 0.8129 + }, + { + "start": 39141.77, + "end": 39144.21, + "probability": 0.6618 + }, + { + "start": 39145.15, + "end": 39149.61, + "probability": 0.951 + }, + { + "start": 39150.31, + "end": 39152.21, + "probability": 0.7439 + }, + { + "start": 39152.29, + "end": 39154.25, + "probability": 0.6191 + }, + { + "start": 39154.55, + "end": 39156.31, + "probability": 0.6907 + }, + { + "start": 39156.61, + "end": 39158.81, + "probability": 0.7806 + }, + { + "start": 39159.03, + "end": 39160.73, + "probability": 0.9097 + }, + { + "start": 39160.99, + "end": 39163.19, + "probability": 0.5667 + }, + { + "start": 39163.53, + "end": 39166.39, + "probability": 0.8633 + }, + { + "start": 39167.05, + "end": 39170.09, + "probability": 0.7048 + }, + { + "start": 39170.93, + "end": 39172.93, + "probability": 0.6217 + }, + { + "start": 39173.79, + "end": 39177.49, + "probability": 0.5045 + }, + { + "start": 39177.49, + "end": 39180.45, + "probability": 0.837 + }, + { + "start": 39180.83, + "end": 39182.93, + "probability": 0.8383 + }, + { + "start": 39183.23, + "end": 39185.13, + "probability": 0.7051 + }, + { + "start": 39185.35, + "end": 39187.73, + "probability": 0.751 + }, + { + "start": 39188.03, + "end": 39191.41, + "probability": 0.8016 + }, + { + "start": 39192.07, + "end": 39194.05, + "probability": 0.9113 + }, + { + "start": 39194.77, + "end": 39196.37, + "probability": 0.9626 + }, + { + "start": 39197.13, + "end": 39198.93, + "probability": 0.5209 + }, + { + "start": 39199.27, + "end": 39201.03, + "probability": 0.7035 + }, + { + "start": 39201.53, + "end": 39203.71, + "probability": 0.7825 + }, + { + "start": 39204.37, + "end": 39206.21, + "probability": 0.5935 + }, + { + "start": 39206.65, + "end": 39208.33, + "probability": 0.699 + }, + { + "start": 39208.73, + "end": 39210.37, + "probability": 0.6914 + }, + { + "start": 39211.03, + "end": 39214.71, + "probability": 0.4768 + }, + { + "start": 39215.77, + "end": 39217.85, + "probability": 0.961 + }, + { + "start": 39218.59, + "end": 39220.29, + "probability": 0.5861 + }, + { + "start": 39220.89, + "end": 39225.07, + "probability": 0.8627 + }, + { + "start": 39225.75, + "end": 39227.49, + "probability": 0.7738 + }, + { + "start": 39228.21, + "end": 39230.17, + "probability": 0.9692 + }, + { + "start": 39230.63, + "end": 39232.55, + "probability": 0.8548 + }, + { + "start": 39232.85, + "end": 39235.01, + "probability": 0.959 + }, + { + "start": 39235.31, + "end": 39237.53, + "probability": 0.7263 + }, + { + "start": 39238.03, + "end": 39239.73, + "probability": 0.9713 + }, + { + "start": 39240.25, + "end": 39242.03, + "probability": 0.9008 + }, + { + "start": 39242.03, + "end": 39244.39, + "probability": 0.6539 + }, + { + "start": 39244.41, + "end": 39246.71, + "probability": 0.6113 + }, + { + "start": 39247.99, + "end": 39254.23, + "probability": 0.7246 + }, + { + "start": 39261.39, + "end": 39262.95, + "probability": 0.7244 + }, + { + "start": 39263.71, + "end": 39266.37, + "probability": 0.7617 + }, + { + "start": 39267.05, + "end": 39269.47, + "probability": 0.7365 + }, + { + "start": 39270.37, + "end": 39272.25, + "probability": 0.9128 + }, + { + "start": 39272.85, + "end": 39274.63, + "probability": 0.9226 + }, + { + "start": 39274.99, + "end": 39276.77, + "probability": 0.9174 + }, + { + "start": 39277.01, + "end": 39279.67, + "probability": 0.6768 + }, + { + "start": 39279.95, + "end": 39282.17, + "probability": 0.5667 + }, + { + "start": 39283.83, + "end": 39288.57, + "probability": 0.2315 + }, + { + "start": 39290.09, + "end": 39295.61, + "probability": 0.6785 + }, + { + "start": 39296.17, + "end": 39301.81, + "probability": 0.6238 + }, + { + "start": 39304.41, + "end": 39304.69, + "probability": 0.015 + }, + { + "start": 39306.43, + "end": 39307.81, + "probability": 0.6637 + }, + { + "start": 39308.15, + "end": 39310.59, + "probability": 0.7026 + }, + { + "start": 39310.85, + "end": 39312.91, + "probability": 0.8674 + }, + { + "start": 39313.55, + "end": 39315.73, + "probability": 0.8349 + }, + { + "start": 39315.75, + "end": 39318.09, + "probability": 0.8118 + }, + { + "start": 39318.35, + "end": 39319.99, + "probability": 0.6147 + }, + { + "start": 39320.29, + "end": 39322.09, + "probability": 0.9021 + }, + { + "start": 39322.17, + "end": 39324.63, + "probability": 0.8635 + }, + { + "start": 39324.89, + "end": 39326.83, + "probability": 0.9525 + }, + { + "start": 39327.31, + "end": 39329.23, + "probability": 0.9436 + }, + { + "start": 39329.39, + "end": 39331.03, + "probability": 0.8461 + }, + { + "start": 39331.27, + "end": 39333.17, + "probability": 0.8903 + }, + { + "start": 39333.61, + "end": 39335.45, + "probability": 0.3077 + }, + { + "start": 39336.11, + "end": 39338.73, + "probability": 0.7545 + }, + { + "start": 39339.23, + "end": 39342.89, + "probability": 0.7233 + }, + { + "start": 39342.97, + "end": 39344.87, + "probability": 0.8271 + }, + { + "start": 39345.41, + "end": 39347.07, + "probability": 0.844 + }, + { + "start": 39347.65, + "end": 39349.67, + "probability": 0.817 + }, + { + "start": 39350.95, + "end": 39351.33, + "probability": 0.9408 + }, + { + "start": 39353.71, + "end": 39355.33, + "probability": 0.1035 + }, + { + "start": 39356.05, + "end": 39357.83, + "probability": 0.8522 + }, + { + "start": 39358.23, + "end": 39360.11, + "probability": 0.8758 + }, + { + "start": 39360.15, + "end": 39361.95, + "probability": 0.899 + }, + { + "start": 39362.59, + "end": 39364.57, + "probability": 0.8829 + }, + { + "start": 39364.63, + "end": 39366.39, + "probability": 0.9012 + }, + { + "start": 39366.47, + "end": 39368.41, + "probability": 0.8594 + }, + { + "start": 39368.45, + "end": 39369.41, + "probability": 0.9735 + }, + { + "start": 39371.41, + "end": 39372.55, + "probability": 0.6246 + }, + { + "start": 39372.75, + "end": 39374.65, + "probability": 0.7514 + }, + { + "start": 39375.11, + "end": 39377.31, + "probability": 0.9077 + }, + { + "start": 39377.33, + "end": 39379.11, + "probability": 0.9474 + }, + { + "start": 39379.11, + "end": 39380.69, + "probability": 0.7672 + }, + { + "start": 39381.23, + "end": 39385.27, + "probability": 0.8888 + }, + { + "start": 39385.93, + "end": 39390.27, + "probability": 0.8894 + }, + { + "start": 39390.79, + "end": 39392.91, + "probability": 0.8266 + }, + { + "start": 39393.63, + "end": 39394.91, + "probability": 0.9799 + }, + { + "start": 39395.77, + "end": 39396.51, + "probability": 0.6997 + }, + { + "start": 39397.05, + "end": 39397.81, + "probability": 0.9744 + }, + { + "start": 39400.49, + "end": 39401.01, + "probability": 0.7236 + }, + { + "start": 39401.09, + "end": 39406.63, + "probability": 0.9732 + }, + { + "start": 39407.83, + "end": 39413.49, + "probability": 0.98 + }, + { + "start": 39413.91, + "end": 39414.41, + "probability": 0.5069 + }, + { + "start": 39414.51, + "end": 39416.29, + "probability": 0.9394 + }, + { + "start": 39421.11, + "end": 39421.77, + "probability": 0.2152 + }, + { + "start": 39422.27, + "end": 39424.13, + "probability": 0.8071 + }, + { + "start": 39424.49, + "end": 39426.19, + "probability": 0.9961 + }, + { + "start": 39456.25, + "end": 39465.09, + "probability": 0.959 + }, + { + "start": 39465.09, + "end": 39470.61, + "probability": 0.9821 + }, + { + "start": 39471.23, + "end": 39474.53, + "probability": 0.5779 + }, + { + "start": 39475.89, + "end": 39476.31, + "probability": 0.4498 + }, + { + "start": 39476.53, + "end": 39477.59, + "probability": 0.5901 + }, + { + "start": 39477.97, + "end": 39478.47, + "probability": 0.9037 + }, + { + "start": 39478.55, + "end": 39484.03, + "probability": 0.9186 + }, + { + "start": 39484.71, + "end": 39485.17, + "probability": 0.5945 + }, + { + "start": 39485.41, + "end": 39487.15, + "probability": 0.9097 + }, + { + "start": 39487.59, + "end": 39487.63, + "probability": 0.876 + }, + { + "start": 39490.95, + "end": 39494.01, + "probability": 0.8294 + }, + { + "start": 39494.41, + "end": 39496.89, + "probability": 0.7973 + }, + { + "start": 39497.67, + "end": 39502.69, + "probability": 0.8594 + }, + { + "start": 39503.15, + "end": 39508.45, + "probability": 0.9347 + }, + { + "start": 39508.45, + "end": 39511.97, + "probability": 0.9684 + }, + { + "start": 39512.33, + "end": 39519.27, + "probability": 0.0198 + }, + { + "start": 39519.27, + "end": 39522.17, + "probability": 0.0153 + }, + { + "start": 39531.39, + "end": 39532.47, + "probability": 0.5544 + }, + { + "start": 39532.55, + "end": 39535.99, + "probability": 0.9028 + }, + { + "start": 39536.09, + "end": 39538.89, + "probability": 0.9618 + }, + { + "start": 39545.97, + "end": 39548.31, + "probability": 0.4737 + }, + { + "start": 39548.51, + "end": 39554.81, + "probability": 0.8787 + }, + { + "start": 39556.59, + "end": 39560.57, + "probability": 0.9954 + }, + { + "start": 39560.67, + "end": 39562.55, + "probability": 0.4976 + }, + { + "start": 39563.53, + "end": 39566.53, + "probability": 0.974 + }, + { + "start": 39567.19, + "end": 39571.17, + "probability": 0.9784 + }, + { + "start": 39571.25, + "end": 39573.07, + "probability": 0.7378 + }, + { + "start": 39573.79, + "end": 39575.29, + "probability": 0.6731 + }, + { + "start": 39575.87, + "end": 39580.53, + "probability": 0.7086 + }, + { + "start": 39581.23, + "end": 39583.95, + "probability": 0.7811 + }, + { + "start": 39584.81, + "end": 39585.99, + "probability": 0.8187 + }, + { + "start": 39586.07, + "end": 39586.87, + "probability": 0.5597 + }, + { + "start": 39587.07, + "end": 39587.81, + "probability": 0.4946 + }, + { + "start": 39590.51, + "end": 39591.01, + "probability": 0.6008 + }, + { + "start": 39591.87, + "end": 39593.49, + "probability": 0.8859 + }, + { + "start": 39593.91, + "end": 39598.79, + "probability": 0.8201 + }, + { + "start": 39599.13, + "end": 39599.43, + "probability": 0.0002 + }, + { + "start": 39602.27, + "end": 39602.71, + "probability": 0.0423 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.0422 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.3724 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.4743 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5196 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5286 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5724 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5608 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5629 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.5806 + }, + { + "start": 39602.71, + "end": 39602.71, + "probability": 0.1285 + }, + { + "start": 39602.71, + "end": 39602.83, + "probability": 0.0829 + }, + { + "start": 39603.29, + "end": 39603.71, + "probability": 0.1736 + }, + { + "start": 39604.35, + "end": 39605.45, + "probability": 0.4057 + }, + { + "start": 39606.13, + "end": 39606.71, + "probability": 0.5441 + }, + { + "start": 39608.47, + "end": 39609.99, + "probability": 0.1472 + }, + { + "start": 39621.21, + "end": 39621.43, + "probability": 0.0266 + }, + { + "start": 39621.67, + "end": 39622.41, + "probability": 0.4663 + }, + { + "start": 39632.75, + "end": 39633.71, + "probability": 0.5394 + }, + { + "start": 39633.89, + "end": 39636.13, + "probability": 0.8232 + }, + { + "start": 39639.71, + "end": 39642.05, + "probability": 0.6749 + }, + { + "start": 39644.21, + "end": 39644.61, + "probability": 0.8757 + }, + { + "start": 39645.33, + "end": 39647.89, + "probability": 0.6514 + }, + { + "start": 39649.73, + "end": 39651.25, + "probability": 0.9979 + }, + { + "start": 39652.61, + "end": 39656.31, + "probability": 0.9602 + }, + { + "start": 39657.19, + "end": 39661.81, + "probability": 0.9888 + }, + { + "start": 39662.55, + "end": 39664.35, + "probability": 0.7081 + }, + { + "start": 39665.17, + "end": 39667.47, + "probability": 0.8436 + }, + { + "start": 39668.21, + "end": 39671.99, + "probability": 0.9478 + }, + { + "start": 39673.13, + "end": 39677.23, + "probability": 0.8329 + }, + { + "start": 39677.85, + "end": 39679.77, + "probability": 0.9648 + }, + { + "start": 39682.51, + "end": 39683.79, + "probability": 0.9573 + }, + { + "start": 39683.87, + "end": 39688.72, + "probability": 0.9393 + }, + { + "start": 39689.57, + "end": 39694.57, + "probability": 0.9998 + }, + { + "start": 39695.63, + "end": 39696.65, + "probability": 0.6149 + }, + { + "start": 39696.91, + "end": 39698.27, + "probability": 0.9549 + }, + { + "start": 39698.47, + "end": 39702.61, + "probability": 0.8179 + }, + { + "start": 39703.25, + "end": 39705.93, + "probability": 0.9971 + }, + { + "start": 39707.15, + "end": 39712.27, + "probability": 0.9993 + }, + { + "start": 39713.07, + "end": 39714.67, + "probability": 0.9977 + }, + { + "start": 39715.27, + "end": 39717.85, + "probability": 0.8893 + }, + { + "start": 39718.67, + "end": 39720.37, + "probability": 0.9453 + }, + { + "start": 39721.13, + "end": 39724.11, + "probability": 0.9798 + }, + { + "start": 39725.55, + "end": 39728.45, + "probability": 0.9855 + }, + { + "start": 39729.35, + "end": 39731.53, + "probability": 0.9573 + }, + { + "start": 39732.69, + "end": 39735.37, + "probability": 0.994 + }, + { + "start": 39735.97, + "end": 39740.01, + "probability": 0.8768 + }, + { + "start": 39740.75, + "end": 39746.61, + "probability": 0.992 + }, + { + "start": 39749.13, + "end": 39750.69, + "probability": 0.7675 + }, + { + "start": 39751.29, + "end": 39754.75, + "probability": 0.929 + }, + { + "start": 39755.65, + "end": 39758.11, + "probability": 0.8715 + }, + { + "start": 39758.77, + "end": 39761.19, + "probability": 0.9849 + }, + { + "start": 39761.77, + "end": 39767.13, + "probability": 0.9857 + }, + { + "start": 39767.93, + "end": 39771.99, + "probability": 0.9973 + }, + { + "start": 39771.99, + "end": 39775.19, + "probability": 0.9859 + }, + { + "start": 39776.15, + "end": 39778.33, + "probability": 0.9897 + }, + { + "start": 39779.03, + "end": 39780.51, + "probability": 0.9742 + }, + { + "start": 39781.17, + "end": 39783.55, + "probability": 0.999 + }, + { + "start": 39784.27, + "end": 39787.87, + "probability": 0.9814 + }, + { + "start": 39788.77, + "end": 39792.79, + "probability": 0.9261 + }, + { + "start": 39793.41, + "end": 39798.3, + "probability": 0.9937 + }, + { + "start": 39800.01, + "end": 39802.41, + "probability": 0.7852 + }, + { + "start": 39803.01, + "end": 39806.39, + "probability": 0.9821 + }, + { + "start": 39807.07, + "end": 39808.91, + "probability": 0.9774 + }, + { + "start": 39809.79, + "end": 39814.71, + "probability": 0.9923 + }, + { + "start": 39815.13, + "end": 39816.59, + "probability": 0.9741 + }, + { + "start": 39818.29, + "end": 39820.71, + "probability": 0.2513 + }, + { + "start": 39821.71, + "end": 39825.01, + "probability": 0.7461 + }, + { + "start": 39826.25, + "end": 39828.09, + "probability": 0.9821 + }, + { + "start": 39830.85, + "end": 39838.29, + "probability": 0.7727 + }, + { + "start": 39838.95, + "end": 39843.15, + "probability": 0.9421 + }, + { + "start": 39843.15, + "end": 39843.15, + "probability": 0.3591 + }, + { + "start": 39843.37, + "end": 39844.81, + "probability": 0.8213 + }, + { + "start": 39845.41, + "end": 39848.41, + "probability": 0.9799 + }, + { + "start": 39848.41, + "end": 39851.49, + "probability": 0.7701 + }, + { + "start": 39852.41, + "end": 39853.83, + "probability": 0.6992 + }, + { + "start": 39854.17, + "end": 39855.15, + "probability": 0.6726 + }, + { + "start": 39856.07, + "end": 39858.29, + "probability": 0.9227 + }, + { + "start": 39858.37, + "end": 39858.95, + "probability": 0.9062 + }, + { + "start": 39862.03, + "end": 39865.13, + "probability": 0.2616 + }, + { + "start": 39870.47, + "end": 39871.15, + "probability": 0.5652 + }, + { + "start": 39873.51, + "end": 39874.27, + "probability": 0.7464 + }, + { + "start": 39875.15, + "end": 39875.87, + "probability": 0.9219 + }, + { + "start": 39876.81, + "end": 39877.43, + "probability": 0.7926 + }, + { + "start": 39879.25, + "end": 39881.11, + "probability": 0.999 + }, + { + "start": 39882.49, + "end": 39884.05, + "probability": 0.9951 + }, + { + "start": 39885.65, + "end": 39890.23, + "probability": 0.9275 + }, + { + "start": 39891.91, + "end": 39895.69, + "probability": 0.9521 + }, + { + "start": 39897.07, + "end": 39897.81, + "probability": 0.7385 + }, + { + "start": 39899.97, + "end": 39903.51, + "probability": 0.9924 + }, + { + "start": 39904.47, + "end": 39906.31, + "probability": 0.9976 + }, + { + "start": 39907.51, + "end": 39908.73, + "probability": 0.9868 + }, + { + "start": 39910.37, + "end": 39913.13, + "probability": 0.9781 + }, + { + "start": 39914.19, + "end": 39915.95, + "probability": 0.9989 + }, + { + "start": 39917.01, + "end": 39917.87, + "probability": 0.7435 + }, + { + "start": 39918.83, + "end": 39922.39, + "probability": 0.5844 + }, + { + "start": 39923.63, + "end": 39925.29, + "probability": 0.8271 + }, + { + "start": 39926.39, + "end": 39928.81, + "probability": 0.7934 + }, + { + "start": 39929.41, + "end": 39931.39, + "probability": 0.7126 + }, + { + "start": 39932.33, + "end": 39933.91, + "probability": 0.9048 + }, + { + "start": 39934.23, + "end": 39936.57, + "probability": 0.9762 + }, + { + "start": 39937.21, + "end": 39942.25, + "probability": 0.7433 + }, + { + "start": 39943.59, + "end": 39945.81, + "probability": 0.7911 + }, + { + "start": 39946.59, + "end": 39947.81, + "probability": 0.9246 + }, + { + "start": 39948.97, + "end": 39950.35, + "probability": 0.9595 + }, + { + "start": 39951.67, + "end": 39954.45, + "probability": 0.9728 + }, + { + "start": 39955.83, + "end": 39957.47, + "probability": 0.9741 + }, + { + "start": 39957.53, + "end": 39958.71, + "probability": 0.9451 + }, + { + "start": 39959.53, + "end": 39960.13, + "probability": 0.8373 + }, + { + "start": 39961.77, + "end": 39966.17, + "probability": 0.9946 + }, + { + "start": 39967.65, + "end": 39969.39, + "probability": 0.3546 + }, + { + "start": 39970.35, + "end": 39973.43, + "probability": 0.9972 + }, + { + "start": 39974.87, + "end": 39977.17, + "probability": 0.5442 + }, + { + "start": 39977.89, + "end": 39979.35, + "probability": 0.8853 + }, + { + "start": 39980.07, + "end": 39982.39, + "probability": 0.981 + }, + { + "start": 39983.07, + "end": 39984.71, + "probability": 0.9872 + }, + { + "start": 39986.29, + "end": 39987.43, + "probability": 0.9005 + }, + { + "start": 39988.49, + "end": 39992.55, + "probability": 0.9898 + }, + { + "start": 39993.69, + "end": 39995.55, + "probability": 0.9823 + }, + { + "start": 39997.43, + "end": 39999.37, + "probability": 0.8443 + }, + { + "start": 40000.31, + "end": 40001.13, + "probability": 0.9651 + }, + { + "start": 40002.51, + "end": 40006.57, + "probability": 0.6794 + }, + { + "start": 40007.15, + "end": 40008.85, + "probability": 0.9938 + }, + { + "start": 40009.67, + "end": 40010.47, + "probability": 0.6314 + }, + { + "start": 40011.49, + "end": 40014.49, + "probability": 0.6227 + }, + { + "start": 40015.15, + "end": 40015.87, + "probability": 0.7595 + }, + { + "start": 40017.81, + "end": 40021.91, + "probability": 0.9794 + }, + { + "start": 40022.51, + "end": 40025.45, + "probability": 0.9274 + }, + { + "start": 40026.33, + "end": 40026.87, + "probability": 0.9561 + }, + { + "start": 40027.07, + "end": 40028.43, + "probability": 0.9705 + }, + { + "start": 40029.09, + "end": 40032.75, + "probability": 0.9736 + }, + { + "start": 40033.43, + "end": 40035.67, + "probability": 0.9844 + }, + { + "start": 40035.77, + "end": 40036.43, + "probability": 0.9623 + }, + { + "start": 40036.51, + "end": 40037.29, + "probability": 0.8997 + }, + { + "start": 40038.25, + "end": 40039.05, + "probability": 0.9689 + }, + { + "start": 40039.71, + "end": 40041.97, + "probability": 0.9934 + }, + { + "start": 40042.61, + "end": 40043.15, + "probability": 0.8481 + }, + { + "start": 40043.73, + "end": 40045.09, + "probability": 0.9707 + }, + { + "start": 40046.23, + "end": 40046.53, + "probability": 0.5922 + }, + { + "start": 40046.63, + "end": 40048.41, + "probability": 0.5194 + }, + { + "start": 40048.49, + "end": 40051.93, + "probability": 0.8581 + }, + { + "start": 40052.73, + "end": 40055.29, + "probability": 0.8079 + }, + { + "start": 40055.93, + "end": 40056.83, + "probability": 0.9693 + }, + { + "start": 40058.07, + "end": 40058.97, + "probability": 0.9795 + }, + { + "start": 40059.55, + "end": 40060.65, + "probability": 0.9201 + }, + { + "start": 40061.51, + "end": 40065.63, + "probability": 0.9049 + }, + { + "start": 40066.33, + "end": 40067.09, + "probability": 0.8145 + }, + { + "start": 40068.07, + "end": 40068.89, + "probability": 0.915 + }, + { + "start": 40068.99, + "end": 40069.63, + "probability": 0.734 + }, + { + "start": 40070.35, + "end": 40071.41, + "probability": 0.8771 + }, + { + "start": 40074.63, + "end": 40075.59, + "probability": 0.9861 + }, + { + "start": 40076.63, + "end": 40082.59, + "probability": 0.8987 + }, + { + "start": 40083.45, + "end": 40084.91, + "probability": 0.7656 + }, + { + "start": 40087.55, + "end": 40089.61, + "probability": 0.9279 + }, + { + "start": 40089.91, + "end": 40090.65, + "probability": 0.3844 + }, + { + "start": 40091.59, + "end": 40092.09, + "probability": 0.9641 + }, + { + "start": 40092.27, + "end": 40094.39, + "probability": 0.1951 + }, + { + "start": 40095.81, + "end": 40096.13, + "probability": 0.9287 + }, + { + "start": 40096.75, + "end": 40097.87, + "probability": 0.0312 + }, + { + "start": 40098.45, + "end": 40098.63, + "probability": 0.8125 + }, + { + "start": 40098.71, + "end": 40101.83, + "probability": 0.9874 + }, + { + "start": 40103.13, + "end": 40105.37, + "probability": 0.4349 + }, + { + "start": 40105.79, + "end": 40108.89, + "probability": 0.6541 + }, + { + "start": 40109.67, + "end": 40109.99, + "probability": 0.6684 + }, + { + "start": 40110.51, + "end": 40111.11, + "probability": 0.5281 + }, + { + "start": 40115.25, + "end": 40115.25, + "probability": 0.0046 + }, + { + "start": 40122.07, + "end": 40122.09, + "probability": 0.6163 + }, + { + "start": 40122.09, + "end": 40123.81, + "probability": 0.6105 + }, + { + "start": 40124.01, + "end": 40124.47, + "probability": 0.2467 + }, + { + "start": 40126.31, + "end": 40128.15, + "probability": 0.8909 + }, + { + "start": 40128.23, + "end": 40128.63, + "probability": 0.7712 + }, + { + "start": 40146.31, + "end": 40146.85, + "probability": 0.5898 + }, + { + "start": 40147.42, + "end": 40147.77, + "probability": 0.6973 + }, + { + "start": 40148.31, + "end": 40150.01, + "probability": 0.8346 + }, + { + "start": 40151.41, + "end": 40153.35, + "probability": 0.5463 + }, + { + "start": 40154.78, + "end": 40156.01, + "probability": 0.8104 + }, + { + "start": 40156.43, + "end": 40159.49, + "probability": 0.9937 + }, + { + "start": 40162.13, + "end": 40164.59, + "probability": 0.9021 + }, + { + "start": 40165.77, + "end": 40169.61, + "probability": 0.9169 + }, + { + "start": 40170.23, + "end": 40172.33, + "probability": 0.9442 + }, + { + "start": 40173.03, + "end": 40176.63, + "probability": 0.9957 + }, + { + "start": 40176.63, + "end": 40180.83, + "probability": 0.998 + }, + { + "start": 40181.81, + "end": 40183.91, + "probability": 0.9233 + }, + { + "start": 40185.05, + "end": 40190.89, + "probability": 0.9884 + }, + { + "start": 40191.57, + "end": 40194.77, + "probability": 0.9757 + }, + { + "start": 40194.83, + "end": 40200.77, + "probability": 0.9913 + }, + { + "start": 40202.57, + "end": 40207.29, + "probability": 0.9943 + }, + { + "start": 40207.93, + "end": 40211.55, + "probability": 0.758 + }, + { + "start": 40211.75, + "end": 40213.05, + "probability": 0.769 + }, + { + "start": 40213.45, + "end": 40215.79, + "probability": 0.8264 + }, + { + "start": 40215.99, + "end": 40221.45, + "probability": 0.9849 + }, + { + "start": 40222.09, + "end": 40224.99, + "probability": 0.8924 + }, + { + "start": 40226.33, + "end": 40228.22, + "probability": 0.9839 + }, + { + "start": 40228.53, + "end": 40230.95, + "probability": 0.8687 + }, + { + "start": 40231.45, + "end": 40233.19, + "probability": 0.8322 + }, + { + "start": 40234.55, + "end": 40235.23, + "probability": 0.5746 + }, + { + "start": 40235.97, + "end": 40236.69, + "probability": 0.9852 + }, + { + "start": 40237.99, + "end": 40241.27, + "probability": 0.8107 + }, + { + "start": 40242.57, + "end": 40243.32, + "probability": 0.5511 + }, + { + "start": 40243.89, + "end": 40247.43, + "probability": 0.99 + }, + { + "start": 40247.77, + "end": 40249.45, + "probability": 0.9385 + }, + { + "start": 40249.75, + "end": 40253.77, + "probability": 0.9925 + }, + { + "start": 40253.77, + "end": 40256.39, + "probability": 0.9982 + }, + { + "start": 40256.93, + "end": 40262.95, + "probability": 0.9918 + }, + { + "start": 40262.95, + "end": 40269.15, + "probability": 0.9592 + }, + { + "start": 40269.95, + "end": 40273.77, + "probability": 0.9563 + }, + { + "start": 40274.09, + "end": 40276.71, + "probability": 0.9824 + }, + { + "start": 40277.55, + "end": 40284.33, + "probability": 0.9876 + }, + { + "start": 40284.33, + "end": 40290.99, + "probability": 0.9867 + }, + { + "start": 40291.75, + "end": 40293.15, + "probability": 0.9243 + }, + { + "start": 40294.47, + "end": 40297.23, + "probability": 0.9388 + }, + { + "start": 40297.83, + "end": 40302.51, + "probability": 0.9487 + }, + { + "start": 40302.95, + "end": 40307.57, + "probability": 0.9715 + }, + { + "start": 40308.21, + "end": 40314.39, + "probability": 0.995 + }, + { + "start": 40314.69, + "end": 40315.21, + "probability": 0.8739 + }, + { + "start": 40316.01, + "end": 40318.19, + "probability": 0.8491 + }, + { + "start": 40319.13, + "end": 40320.97, + "probability": 0.8112 + }, + { + "start": 40322.21, + "end": 40325.85, + "probability": 0.9512 + }, + { + "start": 40325.85, + "end": 40330.71, + "probability": 0.9978 + }, + { + "start": 40330.85, + "end": 40331.45, + "probability": 0.9425 + }, + { + "start": 40331.51, + "end": 40332.35, + "probability": 0.777 + }, + { + "start": 40333.49, + "end": 40334.66, + "probability": 0.9244 + }, + { + "start": 40335.29, + "end": 40338.89, + "probability": 0.9633 + }, + { + "start": 40339.41, + "end": 40342.03, + "probability": 0.9941 + }, + { + "start": 40342.35, + "end": 40344.23, + "probability": 0.9979 + }, + { + "start": 40344.53, + "end": 40344.65, + "probability": 0.7282 + }, + { + "start": 40344.73, + "end": 40347.14, + "probability": 0.6634 + }, + { + "start": 40348.59, + "end": 40351.17, + "probability": 0.5777 + }, + { + "start": 40369.29, + "end": 40370.75, + "probability": 0.6696 + }, + { + "start": 40372.57, + "end": 40374.49, + "probability": 0.8339 + }, + { + "start": 40374.69, + "end": 40377.77, + "probability": 0.9976 + }, + { + "start": 40378.63, + "end": 40381.47, + "probability": 0.5145 + }, + { + "start": 40382.75, + "end": 40383.63, + "probability": 0.9668 + }, + { + "start": 40383.79, + "end": 40387.33, + "probability": 0.9829 + }, + { + "start": 40388.57, + "end": 40392.31, + "probability": 0.8464 + }, + { + "start": 40393.07, + "end": 40395.91, + "probability": 0.9937 + }, + { + "start": 40395.91, + "end": 40399.35, + "probability": 0.9952 + }, + { + "start": 40399.69, + "end": 40400.65, + "probability": 0.5688 + }, + { + "start": 40401.23, + "end": 40405.23, + "probability": 0.5998 + }, + { + "start": 40405.43, + "end": 40407.41, + "probability": 0.7254 + }, + { + "start": 40408.37, + "end": 40412.05, + "probability": 0.8164 + }, + { + "start": 40412.25, + "end": 40412.79, + "probability": 0.6116 + }, + { + "start": 40412.81, + "end": 40413.43, + "probability": 0.709 + }, + { + "start": 40414.39, + "end": 40416.01, + "probability": 0.3562 + }, + { + "start": 40416.87, + "end": 40418.39, + "probability": 0.8688 + }, + { + "start": 40419.09, + "end": 40420.91, + "probability": 0.9499 + }, + { + "start": 40421.33, + "end": 40423.49, + "probability": 0.9985 + }, + { + "start": 40423.65, + "end": 40424.55, + "probability": 0.9988 + }, + { + "start": 40425.15, + "end": 40426.11, + "probability": 0.9878 + }, + { + "start": 40426.23, + "end": 40429.59, + "probability": 0.8538 + }, + { + "start": 40430.49, + "end": 40433.07, + "probability": 0.9983 + }, + { + "start": 40433.55, + "end": 40434.83, + "probability": 0.879 + }, + { + "start": 40435.07, + "end": 40435.99, + "probability": 0.715 + }, + { + "start": 40436.89, + "end": 40438.21, + "probability": 0.846 + }, + { + "start": 40439.15, + "end": 40442.23, + "probability": 0.896 + }, + { + "start": 40443.27, + "end": 40444.25, + "probability": 0.7178 + }, + { + "start": 40444.77, + "end": 40447.13, + "probability": 0.9051 + }, + { + "start": 40447.17, + "end": 40450.19, + "probability": 0.771 + }, + { + "start": 40451.95, + "end": 40457.77, + "probability": 0.9926 + }, + { + "start": 40458.23, + "end": 40459.39, + "probability": 0.826 + }, + { + "start": 40459.93, + "end": 40460.69, + "probability": 0.8655 + }, + { + "start": 40460.75, + "end": 40461.79, + "probability": 0.8499 + }, + { + "start": 40462.23, + "end": 40462.75, + "probability": 0.617 + }, + { + "start": 40462.99, + "end": 40464.07, + "probability": 0.9907 + }, + { + "start": 40466.05, + "end": 40468.27, + "probability": 0.6795 + }, + { + "start": 40469.15, + "end": 40474.51, + "probability": 0.8239 + }, + { + "start": 40475.37, + "end": 40479.67, + "probability": 0.9065 + }, + { + "start": 40479.95, + "end": 40482.35, + "probability": 0.9198 + }, + { + "start": 40482.99, + "end": 40486.81, + "probability": 0.7504 + }, + { + "start": 40487.23, + "end": 40491.61, + "probability": 0.6691 + }, + { + "start": 40492.03, + "end": 40492.63, + "probability": 0.941 + }, + { + "start": 40493.09, + "end": 40494.0, + "probability": 0.9381 + }, + { + "start": 40494.45, + "end": 40499.29, + "probability": 0.9825 + }, + { + "start": 40500.57, + "end": 40500.57, + "probability": 0.0092 + }, + { + "start": 40501.35, + "end": 40505.63, + "probability": 0.8554 + }, + { + "start": 40506.83, + "end": 40508.13, + "probability": 0.9531 + }, + { + "start": 40508.97, + "end": 40514.33, + "probability": 0.9536 + }, + { + "start": 40514.61, + "end": 40515.17, + "probability": 0.962 + }, + { + "start": 40515.29, + "end": 40515.89, + "probability": 0.9887 + }, + { + "start": 40516.11, + "end": 40516.67, + "probability": 0.9826 + }, + { + "start": 40517.17, + "end": 40517.75, + "probability": 0.9805 + }, + { + "start": 40517.83, + "end": 40518.25, + "probability": 0.7781 + }, + { + "start": 40519.05, + "end": 40521.69, + "probability": 0.6715 + }, + { + "start": 40522.65, + "end": 40524.51, + "probability": 0.9924 + }, + { + "start": 40525.23, + "end": 40529.89, + "probability": 0.9619 + }, + { + "start": 40531.23, + "end": 40532.75, + "probability": 0.7125 + }, + { + "start": 40534.51, + "end": 40535.51, + "probability": 0.6307 + }, + { + "start": 40536.05, + "end": 40537.09, + "probability": 0.8785 + }, + { + "start": 40537.51, + "end": 40539.53, + "probability": 0.8224 + }, + { + "start": 40541.89, + "end": 40546.87, + "probability": 0.9194 + }, + { + "start": 40547.99, + "end": 40550.17, + "probability": 0.9951 + }, + { + "start": 40550.91, + "end": 40553.03, + "probability": 0.8343 + }, + { + "start": 40554.23, + "end": 40555.77, + "probability": 0.8735 + }, + { + "start": 40555.91, + "end": 40557.09, + "probability": 0.9238 + }, + { + "start": 40557.61, + "end": 40560.91, + "probability": 0.9179 + }, + { + "start": 40561.53, + "end": 40562.35, + "probability": 0.0114 + }, + { + "start": 40563.75, + "end": 40565.49, + "probability": 0.9923 + }, + { + "start": 40566.29, + "end": 40569.65, + "probability": 0.9897 + }, + { + "start": 40570.43, + "end": 40573.55, + "probability": 0.6561 + }, + { + "start": 40574.07, + "end": 40578.85, + "probability": 0.8273 + }, + { + "start": 40579.49, + "end": 40584.65, + "probability": 0.9875 + }, + { + "start": 40584.87, + "end": 40590.13, + "probability": 0.9318 + }, + { + "start": 40591.29, + "end": 40591.57, + "probability": 0.8015 + }, + { + "start": 40592.59, + "end": 40596.53, + "probability": 0.9824 + }, + { + "start": 40596.95, + "end": 40598.61, + "probability": 0.9418 + }, + { + "start": 40598.99, + "end": 40601.77, + "probability": 0.8777 + }, + { + "start": 40602.29, + "end": 40603.89, + "probability": 0.8687 + }, + { + "start": 40604.59, + "end": 40605.19, + "probability": 0.6763 + }, + { + "start": 40605.71, + "end": 40609.13, + "probability": 0.8147 + }, + { + "start": 40609.21, + "end": 40609.73, + "probability": 0.5584 + }, + { + "start": 40610.07, + "end": 40611.87, + "probability": 0.9671 + }, + { + "start": 40611.99, + "end": 40613.04, + "probability": 0.9034 + }, + { + "start": 40613.37, + "end": 40615.71, + "probability": 0.9858 + }, + { + "start": 40616.15, + "end": 40616.85, + "probability": 0.8875 + }, + { + "start": 40617.47, + "end": 40618.26, + "probability": 0.7127 + }, + { + "start": 40618.81, + "end": 40621.19, + "probability": 0.8623 + }, + { + "start": 40621.61, + "end": 40622.17, + "probability": 0.5065 + }, + { + "start": 40622.87, + "end": 40624.31, + "probability": 0.6148 + }, + { + "start": 40625.53, + "end": 40626.61, + "probability": 0.6766 + }, + { + "start": 40627.71, + "end": 40631.13, + "probability": 0.8957 + }, + { + "start": 40631.93, + "end": 40632.65, + "probability": 0.6788 + }, + { + "start": 40634.07, + "end": 40637.41, + "probability": 0.7915 + }, + { + "start": 40637.67, + "end": 40639.81, + "probability": 0.9831 + }, + { + "start": 40640.23, + "end": 40645.53, + "probability": 0.7872 + }, + { + "start": 40646.05, + "end": 40647.69, + "probability": 0.7979 + }, + { + "start": 40647.87, + "end": 40649.67, + "probability": 0.6403 + }, + { + "start": 40650.21, + "end": 40651.05, + "probability": 0.9121 + }, + { + "start": 40651.43, + "end": 40653.01, + "probability": 0.9976 + }, + { + "start": 40653.31, + "end": 40654.15, + "probability": 0.6971 + }, + { + "start": 40654.31, + "end": 40655.69, + "probability": 0.5047 + }, + { + "start": 40655.71, + "end": 40655.95, + "probability": 0.8302 + }, + { + "start": 40656.15, + "end": 40656.17, + "probability": 0.5643 + }, + { + "start": 40656.17, + "end": 40656.47, + "probability": 0.5764 + }, + { + "start": 40662.43, + "end": 40663.05, + "probability": 0.1658 + }, + { + "start": 40663.05, + "end": 40663.77, + "probability": 0.3199 + }, + { + "start": 40678.87, + "end": 40679.59, + "probability": 0.7121 + }, + { + "start": 40680.49, + "end": 40681.03, + "probability": 0.7312 + }, + { + "start": 40683.11, + "end": 40684.43, + "probability": 0.6978 + }, + { + "start": 40686.45, + "end": 40689.85, + "probability": 0.9321 + }, + { + "start": 40690.91, + "end": 40693.59, + "probability": 0.881 + }, + { + "start": 40695.01, + "end": 40695.91, + "probability": 0.6855 + }, + { + "start": 40695.91, + "end": 40698.33, + "probability": 0.9644 + }, + { + "start": 40698.37, + "end": 40698.49, + "probability": 0.7138 + }, + { + "start": 40699.95, + "end": 40701.43, + "probability": 0.9523 + }, + { + "start": 40702.45, + "end": 40708.81, + "probability": 0.989 + }, + { + "start": 40708.99, + "end": 40709.67, + "probability": 0.9644 + }, + { + "start": 40709.89, + "end": 40710.45, + "probability": 0.7673 + }, + { + "start": 40710.59, + "end": 40711.75, + "probability": 0.7611 + }, + { + "start": 40713.13, + "end": 40716.21, + "probability": 0.9977 + }, + { + "start": 40716.91, + "end": 40721.73, + "probability": 0.9573 + }, + { + "start": 40722.43, + "end": 40725.91, + "probability": 0.9585 + }, + { + "start": 40727.33, + "end": 40729.13, + "probability": 0.9966 + }, + { + "start": 40729.13, + "end": 40731.07, + "probability": 0.9937 + }, + { + "start": 40731.79, + "end": 40732.67, + "probability": 0.6927 + }, + { + "start": 40732.69, + "end": 40732.87, + "probability": 0.6966 + }, + { + "start": 40732.97, + "end": 40737.09, + "probability": 0.9561 + }, + { + "start": 40737.09, + "end": 40737.19, + "probability": 0.3453 + }, + { + "start": 40737.25, + "end": 40737.95, + "probability": 0.809 + }, + { + "start": 40739.11, + "end": 40742.03, + "probability": 0.9795 + }, + { + "start": 40743.29, + "end": 40743.87, + "probability": 0.873 + }, + { + "start": 40744.37, + "end": 40744.81, + "probability": 0.9797 + }, + { + "start": 40745.11, + "end": 40746.03, + "probability": 0.847 + }, + { + "start": 40746.09, + "end": 40746.97, + "probability": 0.8941 + }, + { + "start": 40747.97, + "end": 40748.41, + "probability": 0.7188 + }, + { + "start": 40748.67, + "end": 40748.93, + "probability": 0.6006 + }, + { + "start": 40748.99, + "end": 40749.21, + "probability": 0.9252 + }, + { + "start": 40749.77, + "end": 40750.05, + "probability": 0.6529 + }, + { + "start": 40751.73, + "end": 40754.09, + "probability": 0.7102 + }, + { + "start": 40755.05, + "end": 40756.19, + "probability": 0.4998 + }, + { + "start": 40756.27, + "end": 40758.69, + "probability": 0.9287 + }, + { + "start": 40760.17, + "end": 40763.65, + "probability": 0.9234 + }, + { + "start": 40763.67, + "end": 40764.37, + "probability": 0.7887 + }, + { + "start": 40765.67, + "end": 40767.43, + "probability": 0.8218 + }, + { + "start": 40767.55, + "end": 40767.73, + "probability": 0.7038 + }, + { + "start": 40767.75, + "end": 40768.75, + "probability": 0.9861 + }, + { + "start": 40768.81, + "end": 40769.25, + "probability": 0.6523 + }, + { + "start": 40770.73, + "end": 40771.57, + "probability": 0.9621 + }, + { + "start": 40771.65, + "end": 40773.21, + "probability": 0.9141 + }, + { + "start": 40773.57, + "end": 40774.45, + "probability": 0.9348 + }, + { + "start": 40774.57, + "end": 40775.87, + "probability": 0.8745 + }, + { + "start": 40775.95, + "end": 40776.55, + "probability": 0.8461 + }, + { + "start": 40778.17, + "end": 40781.17, + "probability": 0.9526 + }, + { + "start": 40781.55, + "end": 40783.23, + "probability": 0.8796 + }, + { + "start": 40783.81, + "end": 40786.03, + "probability": 0.8496 + }, + { + "start": 40786.49, + "end": 40790.93, + "probability": 0.9834 + }, + { + "start": 40791.77, + "end": 40795.49, + "probability": 0.9923 + }, + { + "start": 40796.99, + "end": 40801.35, + "probability": 0.6802 + }, + { + "start": 40801.53, + "end": 40802.65, + "probability": 0.9624 + }, + { + "start": 40803.97, + "end": 40806.67, + "probability": 0.9971 + }, + { + "start": 40807.61, + "end": 40812.27, + "probability": 0.9695 + }, + { + "start": 40812.89, + "end": 40814.17, + "probability": 0.9489 + }, + { + "start": 40814.85, + "end": 40820.61, + "probability": 0.9714 + }, + { + "start": 40822.71, + "end": 40824.25, + "probability": 0.7829 + }, + { + "start": 40825.21, + "end": 40827.31, + "probability": 0.9937 + }, + { + "start": 40827.31, + "end": 40830.47, + "probability": 0.9854 + }, + { + "start": 40830.99, + "end": 40833.97, + "probability": 0.923 + }, + { + "start": 40834.89, + "end": 40839.21, + "probability": 0.8039 + }, + { + "start": 40839.85, + "end": 40841.21, + "probability": 0.8364 + }, + { + "start": 40841.33, + "end": 40842.57, + "probability": 0.8272 + }, + { + "start": 40843.45, + "end": 40845.03, + "probability": 0.9364 + }, + { + "start": 40845.47, + "end": 40846.31, + "probability": 0.5369 + }, + { + "start": 40846.81, + "end": 40848.11, + "probability": 0.984 + }, + { + "start": 40848.29, + "end": 40848.55, + "probability": 0.3693 + }, + { + "start": 40848.95, + "end": 40849.87, + "probability": 0.9422 + }, + { + "start": 40850.25, + "end": 40850.35, + "probability": 0.8079 + }, + { + "start": 40850.79, + "end": 40851.74, + "probability": 0.9954 + }, + { + "start": 40851.99, + "end": 40852.35, + "probability": 0.7847 + }, + { + "start": 40852.69, + "end": 40853.63, + "probability": 0.9942 + }, + { + "start": 40854.01, + "end": 40854.09, + "probability": 0.6604 + }, + { + "start": 40854.15, + "end": 40857.87, + "probability": 0.9984 + }, + { + "start": 40858.05, + "end": 40858.47, + "probability": 0.5237 + }, + { + "start": 40858.61, + "end": 40860.85, + "probability": 0.9112 + }, + { + "start": 40861.33, + "end": 40863.15, + "probability": 0.999 + }, + { + "start": 40863.77, + "end": 40865.29, + "probability": 0.6803 + }, + { + "start": 40865.45, + "end": 40868.47, + "probability": 0.8965 + }, + { + "start": 40869.39, + "end": 40872.2, + "probability": 0.9951 + }, + { + "start": 40872.23, + "end": 40874.85, + "probability": 0.9877 + }, + { + "start": 40875.43, + "end": 40879.73, + "probability": 0.9756 + }, + { + "start": 40879.99, + "end": 40880.19, + "probability": 0.2707 + }, + { + "start": 40882.33, + "end": 40887.05, + "probability": 0.6508 + }, + { + "start": 40905.27, + "end": 40908.35, + "probability": 0.7283 + }, + { + "start": 40908.97, + "end": 40910.29, + "probability": 0.8554 + }, + { + "start": 40912.03, + "end": 40922.29, + "probability": 0.9264 + }, + { + "start": 40924.01, + "end": 40926.85, + "probability": 0.9948 + }, + { + "start": 40928.31, + "end": 40932.45, + "probability": 0.9938 + }, + { + "start": 40934.61, + "end": 40937.43, + "probability": 0.9947 + }, + { + "start": 40937.89, + "end": 40941.35, + "probability": 0.9982 + }, + { + "start": 40941.35, + "end": 40944.39, + "probability": 0.9969 + }, + { + "start": 40945.41, + "end": 40948.17, + "probability": 0.9957 + }, + { + "start": 40948.23, + "end": 40950.39, + "probability": 0.995 + }, + { + "start": 40951.27, + "end": 40956.89, + "probability": 0.9972 + }, + { + "start": 40957.45, + "end": 40961.03, + "probability": 0.974 + }, + { + "start": 40961.39, + "end": 40965.83, + "probability": 0.9467 + }, + { + "start": 40965.93, + "end": 40967.95, + "probability": 0.9942 + }, + { + "start": 40968.35, + "end": 40973.19, + "probability": 0.9969 + }, + { + "start": 40973.31, + "end": 40978.03, + "probability": 0.9885 + }, + { + "start": 40979.15, + "end": 40982.61, + "probability": 0.9791 + }, + { + "start": 40983.81, + "end": 40988.35, + "probability": 0.7567 + }, + { + "start": 40988.35, + "end": 40988.91, + "probability": 0.664 + }, + { + "start": 40989.37, + "end": 40991.05, + "probability": 0.8588 + }, + { + "start": 40992.37, + "end": 40995.65, + "probability": 0.9951 + }, + { + "start": 40995.65, + "end": 40998.45, + "probability": 0.9987 + }, + { + "start": 40998.63, + "end": 41000.23, + "probability": 0.622 + }, + { + "start": 41000.91, + "end": 41001.71, + "probability": 0.3931 + }, + { + "start": 41002.51, + "end": 41004.25, + "probability": 0.9274 + }, + { + "start": 41004.99, + "end": 41006.37, + "probability": 0.6808 + }, + { + "start": 41006.83, + "end": 41007.81, + "probability": 0.929 + }, + { + "start": 41008.47, + "end": 41010.11, + "probability": 0.9784 + }, + { + "start": 41010.79, + "end": 41011.79, + "probability": 0.7092 + }, + { + "start": 41012.47, + "end": 41015.29, + "probability": 0.9053 + }, + { + "start": 41016.43, + "end": 41019.45, + "probability": 0.9917 + }, + { + "start": 41020.41, + "end": 41021.13, + "probability": 0.9763 + }, + { + "start": 41022.07, + "end": 41023.85, + "probability": 0.9965 + }, + { + "start": 41024.71, + "end": 41027.07, + "probability": 0.9924 + }, + { + "start": 41027.99, + "end": 41030.51, + "probability": 0.9758 + }, + { + "start": 41031.64, + "end": 41034.81, + "probability": 0.9906 + }, + { + "start": 41035.41, + "end": 41039.13, + "probability": 0.967 + }, + { + "start": 41040.11, + "end": 41045.41, + "probability": 0.993 + }, + { + "start": 41045.99, + "end": 41047.45, + "probability": 0.8348 + }, + { + "start": 41047.57, + "end": 41050.39, + "probability": 0.9928 + }, + { + "start": 41050.39, + "end": 41053.53, + "probability": 0.998 + }, + { + "start": 41054.73, + "end": 41056.95, + "probability": 0.9918 + }, + { + "start": 41057.77, + "end": 41060.59, + "probability": 0.9888 + }, + { + "start": 41061.53, + "end": 41064.99, + "probability": 0.9585 + }, + { + "start": 41065.67, + "end": 41068.37, + "probability": 0.9341 + }, + { + "start": 41069.33, + "end": 41070.77, + "probability": 0.9941 + }, + { + "start": 41071.43, + "end": 41074.07, + "probability": 0.9953 + }, + { + "start": 41074.25, + "end": 41075.41, + "probability": 0.9739 + }, + { + "start": 41076.57, + "end": 41078.85, + "probability": 0.9989 + }, + { + "start": 41079.15, + "end": 41082.63, + "probability": 0.9883 + }, + { + "start": 41082.63, + "end": 41085.35, + "probability": 0.9964 + }, + { + "start": 41085.97, + "end": 41087.17, + "probability": 0.4781 + }, + { + "start": 41088.01, + "end": 41088.01, + "probability": 0.0031 + }, + { + "start": 41088.01, + "end": 41089.13, + "probability": 0.823 + }, + { + "start": 41089.19, + "end": 41094.47, + "probability": 0.9819 + }, + { + "start": 41095.09, + "end": 41095.63, + "probability": 0.9236 + }, + { + "start": 41096.83, + "end": 41099.69, + "probability": 0.999 + }, + { + "start": 41100.41, + "end": 41101.79, + "probability": 0.8932 + }, + { + "start": 41102.17, + "end": 41104.31, + "probability": 0.2426 + }, + { + "start": 41104.31, + "end": 41106.43, + "probability": 0.9722 + }, + { + "start": 41106.55, + "end": 41109.53, + "probability": 0.8093 + }, + { + "start": 41110.85, + "end": 41112.43, + "probability": 0.8171 + }, + { + "start": 41112.97, + "end": 41113.57, + "probability": 0.8094 + }, + { + "start": 41113.65, + "end": 41116.93, + "probability": 0.993 + }, + { + "start": 41117.63, + "end": 41120.51, + "probability": 0.964 + }, + { + "start": 41120.95, + "end": 41125.53, + "probability": 0.9968 + }, + { + "start": 41125.69, + "end": 41129.63, + "probability": 0.937 + }, + { + "start": 41130.49, + "end": 41130.91, + "probability": 0.6905 + }, + { + "start": 41130.99, + "end": 41135.19, + "probability": 0.9889 + }, + { + "start": 41135.19, + "end": 41136.03, + "probability": 0.5356 + }, + { + "start": 41137.43, + "end": 41139.33, + "probability": 0.7546 + }, + { + "start": 41139.43, + "end": 41140.97, + "probability": 0.6484 + }, + { + "start": 41141.43, + "end": 41142.53, + "probability": 0.4839 + }, + { + "start": 41146.15, + "end": 41146.45, + "probability": 0.6523 + }, + { + "start": 41146.75, + "end": 41148.11, + "probability": 0.7504 + }, + { + "start": 41149.67, + "end": 41149.93, + "probability": 0.768 + }, + { + "start": 41166.65, + "end": 41167.53, + "probability": 0.7091 + }, + { + "start": 41169.37, + "end": 41172.25, + "probability": 0.749 + }, + { + "start": 41173.73, + "end": 41174.07, + "probability": 0.7631 + }, + { + "start": 41174.39, + "end": 41175.01, + "probability": 0.9086 + }, + { + "start": 41175.15, + "end": 41177.17, + "probability": 0.9771 + }, + { + "start": 41177.29, + "end": 41179.64, + "probability": 0.8047 + }, + { + "start": 41181.15, + "end": 41182.13, + "probability": 0.8803 + }, + { + "start": 41182.95, + "end": 41183.55, + "probability": 0.6344 + }, + { + "start": 41184.15, + "end": 41187.45, + "probability": 0.9473 + }, + { + "start": 41188.21, + "end": 41190.95, + "probability": 0.9471 + }, + { + "start": 41193.05, + "end": 41193.65, + "probability": 0.5851 + }, + { + "start": 41193.69, + "end": 41194.65, + "probability": 0.7724 + }, + { + "start": 41194.65, + "end": 41196.73, + "probability": 0.7577 + }, + { + "start": 41196.77, + "end": 41197.63, + "probability": 0.6574 + }, + { + "start": 41197.77, + "end": 41201.05, + "probability": 0.7458 + }, + { + "start": 41201.05, + "end": 41204.05, + "probability": 0.9736 + }, + { + "start": 41204.65, + "end": 41204.71, + "probability": 0.3891 + }, + { + "start": 41204.71, + "end": 41205.95, + "probability": 0.9909 + }, + { + "start": 41206.69, + "end": 41208.63, + "probability": 0.9159 + }, + { + "start": 41208.73, + "end": 41211.45, + "probability": 0.9795 + }, + { + "start": 41212.13, + "end": 41214.33, + "probability": 0.978 + }, + { + "start": 41215.53, + "end": 41217.95, + "probability": 0.1021 + }, + { + "start": 41218.69, + "end": 41219.39, + "probability": 0.0254 + }, + { + "start": 41219.39, + "end": 41219.39, + "probability": 0.0681 + }, + { + "start": 41219.39, + "end": 41220.13, + "probability": 0.1463 + }, + { + "start": 41220.67, + "end": 41225.89, + "probability": 0.9497 + }, + { + "start": 41225.89, + "end": 41229.71, + "probability": 0.9965 + }, + { + "start": 41230.39, + "end": 41232.07, + "probability": 0.886 + }, + { + "start": 41232.73, + "end": 41239.13, + "probability": 0.9828 + }, + { + "start": 41239.13, + "end": 41245.33, + "probability": 0.9963 + }, + { + "start": 41245.83, + "end": 41246.69, + "probability": 0.4694 + }, + { + "start": 41247.61, + "end": 41249.07, + "probability": 0.9456 + }, + { + "start": 41250.89, + "end": 41251.81, + "probability": 0.7716 + }, + { + "start": 41252.07, + "end": 41254.15, + "probability": 0.9869 + }, + { + "start": 41254.71, + "end": 41258.41, + "probability": 0.9319 + }, + { + "start": 41259.33, + "end": 41262.25, + "probability": 0.8405 + }, + { + "start": 41263.03, + "end": 41267.59, + "probability": 0.9106 + }, + { + "start": 41268.13, + "end": 41269.45, + "probability": 0.8187 + }, + { + "start": 41270.23, + "end": 41273.77, + "probability": 0.9952 + }, + { + "start": 41274.53, + "end": 41278.39, + "probability": 0.9361 + }, + { + "start": 41279.53, + "end": 41280.79, + "probability": 0.9749 + }, + { + "start": 41282.63, + "end": 41285.37, + "probability": 0.9823 + }, + { + "start": 41286.33, + "end": 41287.69, + "probability": 0.5403 + }, + { + "start": 41288.67, + "end": 41291.79, + "probability": 0.9639 + }, + { + "start": 41291.85, + "end": 41296.71, + "probability": 0.8042 + }, + { + "start": 41297.25, + "end": 41297.57, + "probability": 0.4853 + }, + { + "start": 41297.77, + "end": 41302.73, + "probability": 0.9354 + }, + { + "start": 41303.33, + "end": 41304.17, + "probability": 0.7405 + }, + { + "start": 41305.55, + "end": 41307.29, + "probability": 0.743 + }, + { + "start": 41307.79, + "end": 41311.33, + "probability": 0.9756 + }, + { + "start": 41311.81, + "end": 41315.95, + "probability": 0.9546 + }, + { + "start": 41317.43, + "end": 41318.73, + "probability": 0.8587 + }, + { + "start": 41319.15, + "end": 41322.15, + "probability": 0.998 + }, + { + "start": 41322.79, + "end": 41327.23, + "probability": 0.9351 + }, + { + "start": 41327.75, + "end": 41330.73, + "probability": 0.8826 + }, + { + "start": 41332.15, + "end": 41334.93, + "probability": 0.9892 + }, + { + "start": 41335.31, + "end": 41336.31, + "probability": 0.9143 + }, + { + "start": 41337.05, + "end": 41337.61, + "probability": 0.2381 + }, + { + "start": 41337.77, + "end": 41338.19, + "probability": 0.6014 + }, + { + "start": 41338.55, + "end": 41340.95, + "probability": 0.9665 + }, + { + "start": 41341.37, + "end": 41342.59, + "probability": 0.6542 + }, + { + "start": 41342.79, + "end": 41346.69, + "probability": 0.8477 + }, + { + "start": 41347.13, + "end": 41348.43, + "probability": 0.9949 + }, + { + "start": 41348.63, + "end": 41351.45, + "probability": 0.9705 + }, + { + "start": 41351.83, + "end": 41356.95, + "probability": 0.9504 + }, + { + "start": 41357.83, + "end": 41360.04, + "probability": 0.7637 + }, + { + "start": 41362.95, + "end": 41364.01, + "probability": 0.9902 + }, + { + "start": 41364.43, + "end": 41367.99, + "probability": 0.8438 + }, + { + "start": 41368.51, + "end": 41369.93, + "probability": 0.9702 + }, + { + "start": 41370.69, + "end": 41375.67, + "probability": 0.9876 + }, + { + "start": 41376.83, + "end": 41381.73, + "probability": 0.9883 + }, + { + "start": 41382.19, + "end": 41386.41, + "probability": 0.9431 + }, + { + "start": 41387.03, + "end": 41388.09, + "probability": 0.683 + }, + { + "start": 41388.15, + "end": 41389.09, + "probability": 0.8415 + }, + { + "start": 41389.15, + "end": 41389.97, + "probability": 0.8081 + }, + { + "start": 41390.05, + "end": 41391.93, + "probability": 0.9365 + }, + { + "start": 41392.79, + "end": 41392.87, + "probability": 0.8594 + }, + { + "start": 41393.01, + "end": 41396.25, + "probability": 0.9687 + }, + { + "start": 41396.73, + "end": 41398.85, + "probability": 0.9516 + }, + { + "start": 41399.57, + "end": 41402.83, + "probability": 0.9938 + }, + { + "start": 41403.53, + "end": 41407.03, + "probability": 0.8973 + }, + { + "start": 41408.23, + "end": 41410.83, + "probability": 0.9944 + }, + { + "start": 41411.45, + "end": 41412.95, + "probability": 0.991 + }, + { + "start": 41413.57, + "end": 41414.19, + "probability": 0.631 + }, + { + "start": 41414.75, + "end": 41415.35, + "probability": 0.4465 + }, + { + "start": 41415.39, + "end": 41416.63, + "probability": 0.5905 + }, + { + "start": 41416.83, + "end": 41417.39, + "probability": 0.8548 + }, + { + "start": 41418.65, + "end": 41419.89, + "probability": 0.984 + }, + { + "start": 41421.17, + "end": 41423.65, + "probability": 0.7124 + }, + { + "start": 41424.81, + "end": 41424.97, + "probability": 0.0003 + }, + { + "start": 41443.69, + "end": 41443.95, + "probability": 0.0503 + }, + { + "start": 41443.95, + "end": 41446.27, + "probability": 0.9238 + }, + { + "start": 41447.79, + "end": 41450.55, + "probability": 0.8733 + }, + { + "start": 41450.65, + "end": 41451.31, + "probability": 0.1147 + }, + { + "start": 41451.39, + "end": 41454.05, + "probability": 0.8096 + }, + { + "start": 41454.59, + "end": 41455.45, + "probability": 0.8359 + }, + { + "start": 41455.93, + "end": 41457.83, + "probability": 0.3139 + }, + { + "start": 41458.81, + "end": 41461.8, + "probability": 0.9375 + }, + { + "start": 41461.89, + "end": 41463.71, + "probability": 0.979 + }, + { + "start": 41464.21, + "end": 41468.59, + "probability": 0.9897 + }, + { + "start": 41470.13, + "end": 41474.29, + "probability": 0.9535 + }, + { + "start": 41475.35, + "end": 41477.63, + "probability": 0.9948 + }, + { + "start": 41478.15, + "end": 41480.99, + "probability": 0.951 + }, + { + "start": 41481.93, + "end": 41484.19, + "probability": 0.9551 + }, + { + "start": 41484.49, + "end": 41485.99, + "probability": 0.9478 + }, + { + "start": 41486.49, + "end": 41487.37, + "probability": 0.4114 + }, + { + "start": 41487.61, + "end": 41489.47, + "probability": 0.8647 + }, + { + "start": 41490.95, + "end": 41493.13, + "probability": 0.8937 + }, + { + "start": 41493.77, + "end": 41495.09, + "probability": 0.8253 + }, + { + "start": 41495.19, + "end": 41496.27, + "probability": 0.9525 + }, + { + "start": 41497.01, + "end": 41498.45, + "probability": 0.9744 + }, + { + "start": 41500.05, + "end": 41505.07, + "probability": 0.9308 + }, + { + "start": 41505.07, + "end": 41510.61, + "probability": 0.8823 + }, + { + "start": 41511.23, + "end": 41513.71, + "probability": 0.988 + }, + { + "start": 41514.79, + "end": 41516.59, + "probability": 0.9735 + }, + { + "start": 41516.67, + "end": 41520.53, + "probability": 0.9829 + }, + { + "start": 41520.53, + "end": 41524.87, + "probability": 0.7789 + }, + { + "start": 41525.05, + "end": 41528.02, + "probability": 0.8858 + }, + { + "start": 41528.37, + "end": 41532.07, + "probability": 0.9888 + }, + { + "start": 41533.03, + "end": 41535.01, + "probability": 0.8505 + }, + { + "start": 41535.53, + "end": 41537.13, + "probability": 0.7864 + }, + { + "start": 41537.65, + "end": 41541.37, + "probability": 0.957 + }, + { + "start": 41541.37, + "end": 41545.49, + "probability": 0.9985 + }, + { + "start": 41546.57, + "end": 41547.65, + "probability": 0.7208 + }, + { + "start": 41548.13, + "end": 41550.01, + "probability": 0.743 + }, + { + "start": 41550.43, + "end": 41551.53, + "probability": 0.9055 + }, + { + "start": 41552.57, + "end": 41555.29, + "probability": 0.9288 + }, + { + "start": 41557.1, + "end": 41558.79, + "probability": 0.1676 + }, + { + "start": 41558.79, + "end": 41562.93, + "probability": 0.9985 + }, + { + "start": 41570.29, + "end": 41571.61, + "probability": 0.7608 + }, + { + "start": 41575.47, + "end": 41577.99, + "probability": 0.8587 + }, + { + "start": 41579.13, + "end": 41584.21, + "probability": 0.9716 + }, + { + "start": 41584.33, + "end": 41585.33, + "probability": 0.8822 + }, + { + "start": 41586.59, + "end": 41592.25, + "probability": 0.963 + }, + { + "start": 41593.13, + "end": 41595.95, + "probability": 0.9165 + }, + { + "start": 41596.71, + "end": 41599.61, + "probability": 0.989 + }, + { + "start": 41600.67, + "end": 41602.97, + "probability": 0.9924 + }, + { + "start": 41605.17, + "end": 41606.29, + "probability": 0.8026 + }, + { + "start": 41606.41, + "end": 41612.23, + "probability": 0.9848 + }, + { + "start": 41613.59, + "end": 41614.53, + "probability": 0.4686 + }, + { + "start": 41614.83, + "end": 41616.27, + "probability": 0.6245 + }, + { + "start": 41616.35, + "end": 41618.99, + "probability": 0.841 + }, + { + "start": 41619.11, + "end": 41619.59, + "probability": 0.8939 + }, + { + "start": 41620.53, + "end": 41627.17, + "probability": 0.9816 + }, + { + "start": 41628.13, + "end": 41632.44, + "probability": 0.8923 + }, + { + "start": 41632.71, + "end": 41633.81, + "probability": 0.6661 + }, + { + "start": 41633.91, + "end": 41634.15, + "probability": 0.9434 + }, + { + "start": 41634.35, + "end": 41638.59, + "probability": 0.9349 + }, + { + "start": 41638.59, + "end": 41642.25, + "probability": 0.9939 + }, + { + "start": 41643.49, + "end": 41645.99, + "probability": 0.847 + }, + { + "start": 41646.41, + "end": 41649.25, + "probability": 0.3336 + }, + { + "start": 41650.29, + "end": 41652.41, + "probability": 0.9756 + }, + { + "start": 41653.39, + "end": 41654.89, + "probability": 0.8965 + }, + { + "start": 41655.63, + "end": 41657.49, + "probability": 0.9089 + }, + { + "start": 41659.51, + "end": 41661.75, + "probability": 0.9507 + }, + { + "start": 41662.55, + "end": 41667.15, + "probability": 0.9696 + }, + { + "start": 41668.17, + "end": 41672.67, + "probability": 0.9954 + }, + { + "start": 41673.37, + "end": 41679.89, + "probability": 0.9676 + }, + { + "start": 41679.99, + "end": 41680.67, + "probability": 0.9177 + }, + { + "start": 41680.79, + "end": 41681.41, + "probability": 0.3129 + }, + { + "start": 41681.97, + "end": 41682.27, + "probability": 0.5089 + }, + { + "start": 41682.39, + "end": 41684.33, + "probability": 0.9562 + }, + { + "start": 41684.41, + "end": 41686.04, + "probability": 0.8449 + }, + { + "start": 41686.53, + "end": 41687.59, + "probability": 0.8643 + }, + { + "start": 41687.69, + "end": 41687.89, + "probability": 0.6017 + }, + { + "start": 41688.4, + "end": 41689.95, + "probability": 0.6059 + }, + { + "start": 41690.71, + "end": 41694.01, + "probability": 0.986 + }, + { + "start": 41694.03, + "end": 41695.87, + "probability": 0.5973 + }, + { + "start": 41696.37, + "end": 41700.83, + "probability": 0.9942 + }, + { + "start": 41700.99, + "end": 41701.53, + "probability": 0.7984 + }, + { + "start": 41702.11, + "end": 41705.81, + "probability": 0.9226 + }, + { + "start": 41706.35, + "end": 41707.93, + "probability": 0.9226 + }, + { + "start": 41708.37, + "end": 41709.07, + "probability": 0.7507 + }, + { + "start": 41710.21, + "end": 41711.23, + "probability": 0.7596 + }, + { + "start": 41711.53, + "end": 41718.15, + "probability": 0.8887 + }, + { + "start": 41718.33, + "end": 41719.33, + "probability": 0.851 + }, + { + "start": 41720.33, + "end": 41723.79, + "probability": 0.9955 + }, + { + "start": 41724.09, + "end": 41725.51, + "probability": 0.997 + }, + { + "start": 41726.33, + "end": 41727.07, + "probability": 0.7253 + }, + { + "start": 41727.35, + "end": 41727.79, + "probability": 0.0782 + }, + { + "start": 41728.13, + "end": 41730.69, + "probability": 0.6197 + }, + { + "start": 41731.03, + "end": 41731.19, + "probability": 0.2668 + }, + { + "start": 41731.19, + "end": 41731.19, + "probability": 0.2383 + }, + { + "start": 41731.19, + "end": 41735.25, + "probability": 0.743 + }, + { + "start": 41736.29, + "end": 41737.73, + "probability": 0.7464 + }, + { + "start": 41738.29, + "end": 41739.15, + "probability": 0.6837 + }, + { + "start": 41739.49, + "end": 41740.21, + "probability": 0.6274 + }, + { + "start": 41740.73, + "end": 41742.53, + "probability": 0.989 + }, + { + "start": 41743.25, + "end": 41747.91, + "probability": 0.9846 + }, + { + "start": 41748.03, + "end": 41750.53, + "probability": 0.8926 + }, + { + "start": 41750.57, + "end": 41753.11, + "probability": 0.358 + }, + { + "start": 41753.23, + "end": 41755.71, + "probability": 0.985 + }, + { + "start": 41756.27, + "end": 41757.75, + "probability": 0.716 + }, + { + "start": 41757.95, + "end": 41761.57, + "probability": 0.9738 + }, + { + "start": 41761.67, + "end": 41762.91, + "probability": 0.3492 + }, + { + "start": 41763.23, + "end": 41765.71, + "probability": 0.4642 + }, + { + "start": 41765.87, + "end": 41769.87, + "probability": 0.4557 + }, + { + "start": 41770.49, + "end": 41771.01, + "probability": 0.2213 + }, + { + "start": 41771.07, + "end": 41772.11, + "probability": 0.7251 + }, + { + "start": 41773.87, + "end": 41775.67, + "probability": 0.2935 + }, + { + "start": 41780.17, + "end": 41782.85, + "probability": 0.6122 + }, + { + "start": 41783.32, + "end": 41784.93, + "probability": 0.8835 + }, + { + "start": 41785.05, + "end": 41786.39, + "probability": 0.7237 + }, + { + "start": 41787.53, + "end": 41787.77, + "probability": 0.8533 + }, + { + "start": 41793.69, + "end": 41795.47, + "probability": 0.7081 + }, + { + "start": 41796.27, + "end": 41798.87, + "probability": 0.4726 + }, + { + "start": 41798.93, + "end": 41802.43, + "probability": 0.6199 + }, + { + "start": 41803.15, + "end": 41804.97, + "probability": 0.7768 + }, + { + "start": 41805.77, + "end": 41808.99, + "probability": 0.122 + }, + { + "start": 41809.63, + "end": 41811.31, + "probability": 0.7673 + }, + { + "start": 41811.63, + "end": 41812.39, + "probability": 0.6317 + }, + { + "start": 41812.81, + "end": 41814.11, + "probability": 0.4455 + }, + { + "start": 41814.21, + "end": 41814.55, + "probability": 0.2468 + }, + { + "start": 41816.21, + "end": 41817.31, + "probability": 0.3948 + }, + { + "start": 41817.87, + "end": 41818.45, + "probability": 0.3801 + }, + { + "start": 41820.48, + "end": 41822.67, + "probability": 0.7536 + }, + { + "start": 41822.75, + "end": 41826.13, + "probability": 0.9774 + }, + { + "start": 41826.17, + "end": 41827.13, + "probability": 0.0822 + }, + { + "start": 41827.25, + "end": 41828.95, + "probability": 0.8196 + }, + { + "start": 41830.37, + "end": 41832.67, + "probability": 0.5987 + }, + { + "start": 41832.73, + "end": 41836.15, + "probability": 0.5468 + }, + { + "start": 41837.05, + "end": 41837.85, + "probability": 0.9839 + }, + { + "start": 41838.15, + "end": 41839.87, + "probability": 0.7754 + }, + { + "start": 41842.41, + "end": 41843.43, + "probability": 0.2844 + }, + { + "start": 41848.06, + "end": 41850.13, + "probability": 0.1237 + }, + { + "start": 41850.39, + "end": 41854.57, + "probability": 0.5378 + }, + { + "start": 41857.87, + "end": 41861.23, + "probability": 0.2896 + }, + { + "start": 41861.23, + "end": 41862.36, + "probability": 0.4433 + }, + { + "start": 41863.99, + "end": 41867.83, + "probability": 0.4472 + }, + { + "start": 41871.79, + "end": 41878.07, + "probability": 0.292 + }, + { + "start": 41878.61, + "end": 41880.26, + "probability": 0.1366 + }, + { + "start": 41880.86, + "end": 41883.59, + "probability": 0.1409 + }, + { + "start": 41884.55, + "end": 41888.15, + "probability": 0.1414 + }, + { + "start": 41890.21, + "end": 41893.65, + "probability": 0.1465 + }, + { + "start": 41896.09, + "end": 41898.29, + "probability": 0.1458 + }, + { + "start": 41898.29, + "end": 41898.43, + "probability": 0.02 + }, + { + "start": 41898.43, + "end": 41899.53, + "probability": 0.1022 + }, + { + "start": 41900.6, + "end": 41901.15, + "probability": 0.1911 + }, + { + "start": 41901.15, + "end": 41902.25, + "probability": 0.14 + }, + { + "start": 41902.85, + "end": 41902.85, + "probability": 0.1109 + }, + { + "start": 41902.85, + "end": 41905.49, + "probability": 0.0919 + }, + { + "start": 41905.49, + "end": 41905.86, + "probability": 0.0211 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.0, + "end": 41908.0, + "probability": 0.0 + }, + { + "start": 41908.86, + "end": 41911.38, + "probability": 0.5377 + }, + { + "start": 41911.42, + "end": 41911.98, + "probability": 0.7354 + }, + { + "start": 41912.72, + "end": 41914.12, + "probability": 0.664 + }, + { + "start": 41914.66, + "end": 41916.48, + "probability": 0.9168 + }, + { + "start": 41916.58, + "end": 41917.14, + "probability": 0.8768 + }, + { + "start": 41917.16, + "end": 41920.06, + "probability": 0.7498 + }, + { + "start": 41920.32, + "end": 41921.44, + "probability": 0.939 + }, + { + "start": 41924.12, + "end": 41926.22, + "probability": 0.1574 + }, + { + "start": 41927.65, + "end": 41930.34, + "probability": 0.7748 + }, + { + "start": 41934.98, + "end": 41936.86, + "probability": 0.5165 + }, + { + "start": 41938.74, + "end": 41939.72, + "probability": 0.3189 + }, + { + "start": 41943.24, + "end": 41944.14, + "probability": 0.0 + }, + { + "start": 41944.98, + "end": 41945.08, + "probability": 0.077 + }, + { + "start": 41946.8, + "end": 41947.98, + "probability": 0.4248 + }, + { + "start": 41948.92, + "end": 41951.14, + "probability": 0.4754 + }, + { + "start": 41951.18, + "end": 41952.92, + "probability": 0.1286 + }, + { + "start": 41952.92, + "end": 41955.18, + "probability": 0.1348 + }, + { + "start": 41955.5, + "end": 41956.42, + "probability": 0.1163 + }, + { + "start": 41959.78, + "end": 41961.02, + "probability": 0.1907 + }, + { + "start": 41970.52, + "end": 41971.24, + "probability": 0.0272 + }, + { + "start": 41975.08, + "end": 41977.82, + "probability": 0.2695 + }, + { + "start": 41980.46, + "end": 41983.6, + "probability": 0.0257 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.0, + "end": 42034.0, + "probability": 0.0 + }, + { + "start": 42034.26, + "end": 42036.18, + "probability": 0.8191 + }, + { + "start": 42037.3, + "end": 42038.52, + "probability": 0.9978 + }, + { + "start": 42039.2, + "end": 42041.62, + "probability": 0.9832 + }, + { + "start": 42043.36, + "end": 42044.24, + "probability": 0.825 + }, + { + "start": 42044.48, + "end": 42047.3, + "probability": 0.9966 + }, + { + "start": 42048.04, + "end": 42051.04, + "probability": 0.9797 + }, + { + "start": 42053.12, + "end": 42053.68, + "probability": 0.5031 + }, + { + "start": 42054.5, + "end": 42055.98, + "probability": 0.881 + }, + { + "start": 42057.42, + "end": 42058.6, + "probability": 0.9444 + }, + { + "start": 42060.1, + "end": 42064.7, + "probability": 0.9902 + }, + { + "start": 42066.5, + "end": 42068.14, + "probability": 0.8865 + }, + { + "start": 42068.78, + "end": 42070.94, + "probability": 0.9889 + }, + { + "start": 42073.84, + "end": 42077.34, + "probability": 0.8773 + }, + { + "start": 42078.08, + "end": 42080.28, + "probability": 0.6617 + }, + { + "start": 42080.38, + "end": 42080.98, + "probability": 0.8414 + }, + { + "start": 42081.3, + "end": 42082.66, + "probability": 0.873 + }, + { + "start": 42084.56, + "end": 42085.44, + "probability": 0.9761 + }, + { + "start": 42086.38, + "end": 42089.7, + "probability": 0.9512 + }, + { + "start": 42092.68, + "end": 42094.88, + "probability": 0.6888 + }, + { + "start": 42094.88, + "end": 42095.7, + "probability": 0.8198 + }, + { + "start": 42095.92, + "end": 42096.62, + "probability": 0.8945 + }, + { + "start": 42097.08, + "end": 42100.22, + "probability": 0.9943 + }, + { + "start": 42101.22, + "end": 42102.44, + "probability": 0.5709 + }, + { + "start": 42102.62, + "end": 42104.01, + "probability": 0.9888 + }, + { + "start": 42107.04, + "end": 42109.08, + "probability": 0.9648 + }, + { + "start": 42110.8, + "end": 42112.06, + "probability": 0.9861 + }, + { + "start": 42112.48, + "end": 42114.0, + "probability": 0.9812 + }, + { + "start": 42114.38, + "end": 42117.4, + "probability": 0.916 + }, + { + "start": 42118.88, + "end": 42120.02, + "probability": 0.9976 + }, + { + "start": 42121.1, + "end": 42123.68, + "probability": 0.8997 + }, + { + "start": 42126.64, + "end": 42127.88, + "probability": 0.9712 + }, + { + "start": 42129.12, + "end": 42131.44, + "probability": 0.7701 + }, + { + "start": 42132.02, + "end": 42132.8, + "probability": 0.9502 + }, + { + "start": 42132.92, + "end": 42136.9, + "probability": 0.9763 + }, + { + "start": 42138.68, + "end": 42139.1, + "probability": 0.9727 + }, + { + "start": 42139.18, + "end": 42142.36, + "probability": 0.9827 + }, + { + "start": 42142.72, + "end": 42142.88, + "probability": 0.3336 + }, + { + "start": 42142.98, + "end": 42145.68, + "probability": 0.8867 + }, + { + "start": 42145.68, + "end": 42149.3, + "probability": 0.9708 + }, + { + "start": 42150.74, + "end": 42151.88, + "probability": 0.9823 + }, + { + "start": 42153.08, + "end": 42155.22, + "probability": 0.9284 + }, + { + "start": 42157.32, + "end": 42159.36, + "probability": 0.9369 + }, + { + "start": 42159.62, + "end": 42163.98, + "probability": 0.9707 + }, + { + "start": 42166.32, + "end": 42171.32, + "probability": 0.9251 + }, + { + "start": 42173.8, + "end": 42175.7, + "probability": 0.9707 + }, + { + "start": 42176.56, + "end": 42180.12, + "probability": 0.9302 + }, + { + "start": 42181.66, + "end": 42185.6, + "probability": 0.8001 + }, + { + "start": 42186.76, + "end": 42187.56, + "probability": 0.6769 + }, + { + "start": 42188.28, + "end": 42188.88, + "probability": 0.8555 + }, + { + "start": 42190.02, + "end": 42191.22, + "probability": 0.8916 + }, + { + "start": 42192.44, + "end": 42193.12, + "probability": 0.8624 + }, + { + "start": 42194.48, + "end": 42199.1, + "probability": 0.7999 + }, + { + "start": 42199.8, + "end": 42201.64, + "probability": 0.9917 + }, + { + "start": 42202.42, + "end": 42204.28, + "probability": 0.878 + }, + { + "start": 42207.04, + "end": 42209.6, + "probability": 0.7528 + }, + { + "start": 42211.64, + "end": 42215.14, + "probability": 0.9795 + }, + { + "start": 42215.26, + "end": 42216.64, + "probability": 0.8911 + }, + { + "start": 42217.52, + "end": 42218.18, + "probability": 0.9556 + }, + { + "start": 42218.58, + "end": 42219.9, + "probability": 0.9928 + }, + { + "start": 42219.92, + "end": 42220.56, + "probability": 0.3619 + }, + { + "start": 42220.7, + "end": 42221.7, + "probability": 0.8114 + }, + { + "start": 42222.84, + "end": 42224.06, + "probability": 0.4994 + }, + { + "start": 42224.74, + "end": 42226.2, + "probability": 0.717 + }, + { + "start": 42226.64, + "end": 42228.42, + "probability": 0.9198 + }, + { + "start": 42228.8, + "end": 42231.3, + "probability": 0.9512 + }, + { + "start": 42231.92, + "end": 42233.9, + "probability": 0.9726 + }, + { + "start": 42235.06, + "end": 42236.6, + "probability": 0.7623 + }, + { + "start": 42237.62, + "end": 42238.4, + "probability": 0.4809 + }, + { + "start": 42238.88, + "end": 42239.94, + "probability": 0.5402 + }, + { + "start": 42240.4, + "end": 42241.18, + "probability": 0.8358 + }, + { + "start": 42241.34, + "end": 42243.56, + "probability": 0.9983 + }, + { + "start": 42244.56, + "end": 42245.44, + "probability": 0.8919 + }, + { + "start": 42247.56, + "end": 42248.14, + "probability": 0.7978 + }, + { + "start": 42249.1, + "end": 42250.8, + "probability": 0.9923 + }, + { + "start": 42252.22, + "end": 42253.66, + "probability": 0.9265 + }, + { + "start": 42254.24, + "end": 42255.6, + "probability": 0.986 + }, + { + "start": 42256.02, + "end": 42257.6, + "probability": 0.9959 + }, + { + "start": 42258.58, + "end": 42260.4, + "probability": 0.9973 + }, + { + "start": 42261.1, + "end": 42262.38, + "probability": 0.8866 + }, + { + "start": 42263.3, + "end": 42266.14, + "probability": 0.7593 + }, + { + "start": 42268.16, + "end": 42270.06, + "probability": 0.9331 + }, + { + "start": 42270.94, + "end": 42271.44, + "probability": 0.9227 + }, + { + "start": 42272.08, + "end": 42273.9, + "probability": 0.9486 + }, + { + "start": 42274.52, + "end": 42275.92, + "probability": 0.7705 + }, + { + "start": 42278.02, + "end": 42279.04, + "probability": 0.9817 + }, + { + "start": 42279.8, + "end": 42281.38, + "probability": 0.9943 + }, + { + "start": 42281.88, + "end": 42282.92, + "probability": 0.3625 + }, + { + "start": 42283.62, + "end": 42285.22, + "probability": 0.9098 + }, + { + "start": 42285.38, + "end": 42287.0, + "probability": 0.3569 + }, + { + "start": 42287.0, + "end": 42287.3, + "probability": 0.4638 + }, + { + "start": 42287.72, + "end": 42288.66, + "probability": 0.8807 + }, + { + "start": 42289.8, + "end": 42290.92, + "probability": 0.9493 + }, + { + "start": 42292.9, + "end": 42293.7, + "probability": 0.7942 + }, + { + "start": 42294.38, + "end": 42296.08, + "probability": 0.9785 + }, + { + "start": 42296.72, + "end": 42299.66, + "probability": 0.9659 + }, + { + "start": 42299.98, + "end": 42300.22, + "probability": 0.6658 + }, + { + "start": 42300.82, + "end": 42301.48, + "probability": 0.6565 + }, + { + "start": 42302.38, + "end": 42303.74, + "probability": 0.6694 + }, + { + "start": 42305.14, + "end": 42306.32, + "probability": 0.736 + }, + { + "start": 42306.96, + "end": 42307.59, + "probability": 0.77 + }, + { + "start": 42307.96, + "end": 42311.86, + "probability": 0.9894 + }, + { + "start": 42312.4, + "end": 42312.91, + "probability": 0.8882 + }, + { + "start": 42313.38, + "end": 42315.52, + "probability": 0.0407 + }, + { + "start": 42315.52, + "end": 42320.47, + "probability": 0.1509 + }, + { + "start": 42326.1, + "end": 42328.32, + "probability": 0.7243 + }, + { + "start": 42331.08, + "end": 42333.26, + "probability": 0.9316 + }, + { + "start": 42334.52, + "end": 42338.04, + "probability": 0.9246 + }, + { + "start": 42340.7, + "end": 42343.42, + "probability": 0.8556 + }, + { + "start": 42344.84, + "end": 42350.4, + "probability": 0.9373 + }, + { + "start": 42351.48, + "end": 42351.84, + "probability": 0.7256 + }, + { + "start": 42354.08, + "end": 42356.78, + "probability": 0.8915 + }, + { + "start": 42357.76, + "end": 42360.22, + "probability": 0.8951 + }, + { + "start": 42361.1, + "end": 42363.7, + "probability": 0.9614 + }, + { + "start": 42365.26, + "end": 42370.88, + "probability": 0.9553 + }, + { + "start": 42371.96, + "end": 42376.04, + "probability": 0.9972 + }, + { + "start": 42378.04, + "end": 42380.0, + "probability": 0.9664 + }, + { + "start": 42382.12, + "end": 42385.72, + "probability": 0.7996 + }, + { + "start": 42387.32, + "end": 42388.68, + "probability": 0.9977 + }, + { + "start": 42389.4, + "end": 42394.24, + "probability": 0.9766 + }, + { + "start": 42394.42, + "end": 42396.2, + "probability": 0.9142 + }, + { + "start": 42396.28, + "end": 42400.56, + "probability": 0.9974 + }, + { + "start": 42401.66, + "end": 42403.1, + "probability": 0.9946 + }, + { + "start": 42403.94, + "end": 42405.06, + "probability": 0.8529 + }, + { + "start": 42406.9, + "end": 42408.88, + "probability": 0.9563 + }, + { + "start": 42409.78, + "end": 42412.18, + "probability": 0.8652 + }, + { + "start": 42413.2, + "end": 42413.68, + "probability": 0.8084 + }, + { + "start": 42413.76, + "end": 42414.22, + "probability": 0.5589 + }, + { + "start": 42414.36, + "end": 42416.92, + "probability": 0.999 + }, + { + "start": 42416.92, + "end": 42419.66, + "probability": 0.9943 + }, + { + "start": 42420.22, + "end": 42423.5, + "probability": 0.9942 + }, + { + "start": 42423.6, + "end": 42427.86, + "probability": 0.9819 + }, + { + "start": 42428.96, + "end": 42430.58, + "probability": 0.8768 + }, + { + "start": 42431.2, + "end": 42433.58, + "probability": 0.9873 + }, + { + "start": 42434.22, + "end": 42435.5, + "probability": 0.6238 + }, + { + "start": 42435.66, + "end": 42438.12, + "probability": 0.9751 + }, + { + "start": 42438.22, + "end": 42440.4, + "probability": 0.9962 + }, + { + "start": 42440.78, + "end": 42441.82, + "probability": 0.7789 + }, + { + "start": 42442.4, + "end": 42443.76, + "probability": 0.8363 + }, + { + "start": 42444.2, + "end": 42447.54, + "probability": 0.9795 + }, + { + "start": 42447.64, + "end": 42448.34, + "probability": 0.8058 + }, + { + "start": 42448.52, + "end": 42450.9, + "probability": 0.9557 + }, + { + "start": 42451.58, + "end": 42453.26, + "probability": 0.9057 + }, + { + "start": 42453.82, + "end": 42458.38, + "probability": 0.6372 + }, + { + "start": 42458.56, + "end": 42460.48, + "probability": 0.8222 + }, + { + "start": 42460.74, + "end": 42461.86, + "probability": 0.8208 + }, + { + "start": 42462.18, + "end": 42463.42, + "probability": 0.975 + }, + { + "start": 42463.48, + "end": 42466.92, + "probability": 0.989 + }, + { + "start": 42467.0, + "end": 42469.02, + "probability": 0.9841 + }, + { + "start": 42469.84, + "end": 42471.3, + "probability": 0.8232 + }, + { + "start": 42471.72, + "end": 42473.1, + "probability": 0.5856 + }, + { + "start": 42473.42, + "end": 42474.24, + "probability": 0.8174 + }, + { + "start": 42474.4, + "end": 42475.78, + "probability": 0.8231 + }, + { + "start": 42475.86, + "end": 42479.76, + "probability": 0.9648 + }, + { + "start": 42479.96, + "end": 42482.7, + "probability": 0.9845 + }, + { + "start": 42483.2, + "end": 42485.04, + "probability": 0.8495 + }, + { + "start": 42485.96, + "end": 42490.12, + "probability": 0.9917 + }, + { + "start": 42491.1, + "end": 42492.74, + "probability": 0.976 + }, + { + "start": 42493.88, + "end": 42495.08, + "probability": 0.918 + }, + { + "start": 42495.82, + "end": 42497.88, + "probability": 0.8789 + }, + { + "start": 42498.42, + "end": 42499.18, + "probability": 0.7804 + }, + { + "start": 42499.24, + "end": 42499.98, + "probability": 0.8562 + }, + { + "start": 42500.12, + "end": 42500.78, + "probability": 0.7115 + }, + { + "start": 42500.78, + "end": 42501.52, + "probability": 0.9557 + }, + { + "start": 42501.62, + "end": 42502.5, + "probability": 0.9028 + }, + { + "start": 42503.06, + "end": 42505.86, + "probability": 0.989 + }, + { + "start": 42506.46, + "end": 42507.9, + "probability": 0.9951 + }, + { + "start": 42508.12, + "end": 42511.2, + "probability": 0.9927 + }, + { + "start": 42511.36, + "end": 42512.64, + "probability": 0.937 + }, + { + "start": 42513.1, + "end": 42516.0, + "probability": 0.9823 + }, + { + "start": 42516.9, + "end": 42517.3, + "probability": 0.7765 + }, + { + "start": 42517.6, + "end": 42520.44, + "probability": 0.7778 + }, + { + "start": 42521.02, + "end": 42524.04, + "probability": 0.9879 + }, + { + "start": 42524.12, + "end": 42524.59, + "probability": 0.5674 + }, + { + "start": 42524.82, + "end": 42525.6, + "probability": 0.7839 + }, + { + "start": 42546.3, + "end": 42547.26, + "probability": 0.6391 + }, + { + "start": 42547.86, + "end": 42548.76, + "probability": 0.7608 + }, + { + "start": 42550.52, + "end": 42551.38, + "probability": 0.908 + }, + { + "start": 42553.04, + "end": 42556.39, + "probability": 0.9842 + }, + { + "start": 42561.48, + "end": 42563.0, + "probability": 0.8984 + }, + { + "start": 42563.7, + "end": 42566.18, + "probability": 0.9808 + }, + { + "start": 42567.48, + "end": 42569.1, + "probability": 0.9724 + }, + { + "start": 42570.34, + "end": 42572.86, + "probability": 0.8612 + }, + { + "start": 42575.16, + "end": 42577.16, + "probability": 0.9874 + }, + { + "start": 42577.9, + "end": 42579.7, + "probability": 0.9805 + }, + { + "start": 42581.08, + "end": 42584.78, + "probability": 0.935 + }, + { + "start": 42585.8, + "end": 42589.0, + "probability": 0.9981 + }, + { + "start": 42589.0, + "end": 42593.2, + "probability": 0.8575 + }, + { + "start": 42595.34, + "end": 42597.74, + "probability": 0.9153 + }, + { + "start": 42599.16, + "end": 42602.54, + "probability": 0.9189 + }, + { + "start": 42603.92, + "end": 42605.14, + "probability": 0.7043 + }, + { + "start": 42606.06, + "end": 42614.88, + "probability": 0.9902 + }, + { + "start": 42615.92, + "end": 42618.84, + "probability": 0.7029 + }, + { + "start": 42620.18, + "end": 42620.84, + "probability": 0.7532 + }, + { + "start": 42622.32, + "end": 42623.52, + "probability": 0.9736 + }, + { + "start": 42623.52, + "end": 42628.78, + "probability": 0.9792 + }, + { + "start": 42628.78, + "end": 42633.32, + "probability": 0.9643 + }, + { + "start": 42634.88, + "end": 42635.98, + "probability": 0.9311 + }, + { + "start": 42636.7, + "end": 42637.91, + "probability": 0.9932 + }, + { + "start": 42638.28, + "end": 42640.2, + "probability": 0.9692 + }, + { + "start": 42640.22, + "end": 42642.66, + "probability": 0.8324 + }, + { + "start": 42643.42, + "end": 42646.14, + "probability": 0.9924 + }, + { + "start": 42647.84, + "end": 42651.62, + "probability": 0.9546 + }, + { + "start": 42652.54, + "end": 42653.44, + "probability": 0.9985 + }, + { + "start": 42654.16, + "end": 42655.92, + "probability": 0.9987 + }, + { + "start": 42659.06, + "end": 42663.68, + "probability": 0.8554 + }, + { + "start": 42666.3, + "end": 42667.52, + "probability": 0.9541 + }, + { + "start": 42668.58, + "end": 42670.4, + "probability": 0.7037 + }, + { + "start": 42670.52, + "end": 42671.38, + "probability": 0.7626 + }, + { + "start": 42671.46, + "end": 42675.12, + "probability": 0.9028 + }, + { + "start": 42675.84, + "end": 42677.78, + "probability": 0.9897 + }, + { + "start": 42678.16, + "end": 42682.42, + "probability": 0.9849 + }, + { + "start": 42683.12, + "end": 42687.64, + "probability": 0.9888 + }, + { + "start": 42690.08, + "end": 42693.36, + "probability": 0.9954 + }, + { + "start": 42694.4, + "end": 42696.2, + "probability": 0.9753 + }, + { + "start": 42697.04, + "end": 42699.66, + "probability": 0.9844 + }, + { + "start": 42700.44, + "end": 42703.86, + "probability": 0.9993 + }, + { + "start": 42704.98, + "end": 42711.48, + "probability": 0.9946 + }, + { + "start": 42712.62, + "end": 42715.74, + "probability": 0.9954 + }, + { + "start": 42717.06, + "end": 42719.44, + "probability": 0.9658 + }, + { + "start": 42720.1, + "end": 42723.04, + "probability": 0.895 + }, + { + "start": 42723.56, + "end": 42725.44, + "probability": 0.9973 + }, + { + "start": 42726.04, + "end": 42736.42, + "probability": 0.9854 + }, + { + "start": 42737.18, + "end": 42742.88, + "probability": 0.5431 + }, + { + "start": 42743.68, + "end": 42747.64, + "probability": 0.9951 + }, + { + "start": 42747.64, + "end": 42752.08, + "probability": 0.9694 + }, + { + "start": 42753.1, + "end": 42757.06, + "probability": 0.979 + }, + { + "start": 42757.62, + "end": 42761.9, + "probability": 0.9042 + }, + { + "start": 42762.1, + "end": 42762.8, + "probability": 0.4994 + }, + { + "start": 42762.86, + "end": 42763.36, + "probability": 0.6205 + }, + { + "start": 42765.18, + "end": 42766.18, + "probability": 0.4347 + }, + { + "start": 42767.42, + "end": 42767.92, + "probability": 0.1998 + }, + { + "start": 42768.48, + "end": 42769.78, + "probability": 0.7414 + }, + { + "start": 42770.5, + "end": 42771.08, + "probability": 0.6457 + }, + { + "start": 42771.62, + "end": 42772.8, + "probability": 0.7212 + }, + { + "start": 42774.34, + "end": 42774.76, + "probability": 0.5833 + }, + { + "start": 42775.46, + "end": 42776.72, + "probability": 0.6017 + }, + { + "start": 42790.22, + "end": 42790.32, + "probability": 0.076 + }, + { + "start": 42792.28, + "end": 42794.7, + "probability": 0.7964 + }, + { + "start": 42795.16, + "end": 42796.56, + "probability": 0.62 + }, + { + "start": 42797.04, + "end": 42798.2, + "probability": 0.4297 + }, + { + "start": 42798.2, + "end": 42801.84, + "probability": 0.9201 + }, + { + "start": 42802.74, + "end": 42808.9, + "probability": 0.9656 + }, + { + "start": 42810.06, + "end": 42813.06, + "probability": 0.933 + }, + { + "start": 42814.46, + "end": 42815.84, + "probability": 0.8389 + }, + { + "start": 42816.56, + "end": 42819.44, + "probability": 0.8721 + }, + { + "start": 42819.44, + "end": 42823.2, + "probability": 0.9663 + }, + { + "start": 42824.82, + "end": 42828.6, + "probability": 0.9792 + }, + { + "start": 42829.06, + "end": 42832.04, + "probability": 0.9216 + }, + { + "start": 42833.38, + "end": 42836.58, + "probability": 0.8889 + }, + { + "start": 42837.22, + "end": 42844.32, + "probability": 0.9941 + }, + { + "start": 42845.24, + "end": 42849.32, + "probability": 0.9907 + }, + { + "start": 42851.64, + "end": 42859.14, + "probability": 0.8707 + }, + { + "start": 42859.26, + "end": 42862.48, + "probability": 0.9833 + }, + { + "start": 42863.28, + "end": 42866.24, + "probability": 0.9905 + }, + { + "start": 42867.16, + "end": 42870.32, + "probability": 0.7593 + }, + { + "start": 42871.06, + "end": 42872.56, + "probability": 0.7686 + }, + { + "start": 42873.14, + "end": 42874.2, + "probability": 0.9111 + }, + { + "start": 42874.96, + "end": 42876.66, + "probability": 0.8938 + }, + { + "start": 42876.8, + "end": 42880.26, + "probability": 0.9345 + }, + { + "start": 42880.72, + "end": 42882.26, + "probability": 0.9332 + }, + { + "start": 42882.9, + "end": 42884.0, + "probability": 0.9844 + }, + { + "start": 42884.72, + "end": 42889.49, + "probability": 0.947 + }, + { + "start": 42889.92, + "end": 42891.19, + "probability": 0.9387 + }, + { + "start": 42891.34, + "end": 42892.26, + "probability": 0.9698 + }, + { + "start": 42892.36, + "end": 42894.94, + "probability": 0.9838 + }, + { + "start": 42894.98, + "end": 42895.8, + "probability": 0.8293 + }, + { + "start": 42896.38, + "end": 42897.34, + "probability": 0.6347 + }, + { + "start": 42898.26, + "end": 42903.54, + "probability": 0.9005 + }, + { + "start": 42903.62, + "end": 42904.8, + "probability": 0.8529 + }, + { + "start": 42904.92, + "end": 42906.3, + "probability": 0.8993 + }, + { + "start": 42906.96, + "end": 42906.96, + "probability": 0.5625 + }, + { + "start": 42907.48, + "end": 42909.04, + "probability": 0.9197 + }, + { + "start": 42910.46, + "end": 42914.48, + "probability": 0.973 + }, + { + "start": 42915.08, + "end": 42920.86, + "probability": 0.9819 + }, + { + "start": 42921.06, + "end": 42922.5, + "probability": 0.844 + }, + { + "start": 42922.86, + "end": 42924.62, + "probability": 0.9406 + }, + { + "start": 42925.12, + "end": 42926.36, + "probability": 0.8246 + }, + { + "start": 42926.84, + "end": 42928.14, + "probability": 0.7895 + }, + { + "start": 42929.04, + "end": 42931.6, + "probability": 0.8455 + }, + { + "start": 42932.06, + "end": 42933.72, + "probability": 0.9231 + }, + { + "start": 42934.42, + "end": 42934.9, + "probability": 0.9636 + }, + { + "start": 42935.74, + "end": 42937.04, + "probability": 0.9026 + }, + { + "start": 42937.82, + "end": 42938.78, + "probability": 0.9507 + }, + { + "start": 42938.9, + "end": 42939.32, + "probability": 0.798 + }, + { + "start": 42939.44, + "end": 42944.64, + "probability": 0.9688 + }, + { + "start": 42945.7, + "end": 42950.64, + "probability": 0.7719 + }, + { + "start": 42951.14, + "end": 42953.46, + "probability": 0.9887 + }, + { + "start": 42954.06, + "end": 42954.98, + "probability": 0.819 + }, + { + "start": 42955.48, + "end": 42958.42, + "probability": 0.8994 + }, + { + "start": 42959.76, + "end": 42963.1, + "probability": 0.9297 + }, + { + "start": 42963.62, + "end": 42964.2, + "probability": 0.9292 + }, + { + "start": 42964.2, + "end": 42964.78, + "probability": 0.588 + }, + { + "start": 42965.18, + "end": 42966.69, + "probability": 0.6851 + }, + { + "start": 42967.16, + "end": 42971.38, + "probability": 0.8578 + }, + { + "start": 42971.94, + "end": 42977.3, + "probability": 0.9142 + }, + { + "start": 42977.96, + "end": 42980.0, + "probability": 0.9702 + }, + { + "start": 42980.06, + "end": 42982.64, + "probability": 0.9792 + }, + { + "start": 42983.08, + "end": 42984.85, + "probability": 0.8523 + }, + { + "start": 42985.42, + "end": 42987.26, + "probability": 0.9267 + }, + { + "start": 42987.84, + "end": 42989.64, + "probability": 0.9976 + }, + { + "start": 42990.32, + "end": 42992.74, + "probability": 0.9192 + }, + { + "start": 42994.26, + "end": 42998.06, + "probability": 0.9058 + }, + { + "start": 42998.26, + "end": 43000.67, + "probability": 0.9929 + }, + { + "start": 43001.46, + "end": 43001.52, + "probability": 0.8999 + }, + { + "start": 43001.62, + "end": 43004.38, + "probability": 0.9979 + }, + { + "start": 43004.8, + "end": 43008.06, + "probability": 0.9973 + }, + { + "start": 43008.32, + "end": 43008.87, + "probability": 0.9147 + }, + { + "start": 43009.68, + "end": 43013.42, + "probability": 0.7192 + }, + { + "start": 43014.08, + "end": 43020.98, + "probability": 0.9727 + }, + { + "start": 43021.08, + "end": 43023.22, + "probability": 0.9559 + }, + { + "start": 43023.76, + "end": 43024.6, + "probability": 0.5747 + }, + { + "start": 43025.0, + "end": 43026.16, + "probability": 0.5806 + }, + { + "start": 43026.26, + "end": 43029.16, + "probability": 0.6758 + }, + { + "start": 43030.08, + "end": 43031.02, + "probability": 0.8523 + }, + { + "start": 43031.92, + "end": 43032.54, + "probability": 0.7804 + }, + { + "start": 43033.22, + "end": 43033.5, + "probability": 0.7246 + }, + { + "start": 43036.38, + "end": 43038.68, + "probability": 0.9473 + }, + { + "start": 43039.98, + "end": 43041.0, + "probability": 0.9985 + }, + { + "start": 43042.34, + "end": 43042.96, + "probability": 0.9643 + }, + { + "start": 43044.28, + "end": 43045.52, + "probability": 0.8029 + }, + { + "start": 43047.3, + "end": 43049.12, + "probability": 0.8186 + }, + { + "start": 43050.42, + "end": 43051.24, + "probability": 0.9711 + }, + { + "start": 43052.82, + "end": 43055.92, + "probability": 0.9407 + }, + { + "start": 43056.86, + "end": 43059.38, + "probability": 0.979 + }, + { + "start": 43060.1, + "end": 43061.34, + "probability": 0.9636 + }, + { + "start": 43061.88, + "end": 43063.92, + "probability": 0.9974 + }, + { + "start": 43064.48, + "end": 43067.7, + "probability": 0.2972 + }, + { + "start": 43068.8, + "end": 43069.71, + "probability": 0.9014 + }, + { + "start": 43071.16, + "end": 43072.98, + "probability": 0.7234 + }, + { + "start": 43073.32, + "end": 43074.38, + "probability": 0.9375 + }, + { + "start": 43075.12, + "end": 43078.02, + "probability": 0.6791 + }, + { + "start": 43078.96, + "end": 43080.38, + "probability": 0.2163 + }, + { + "start": 43080.58, + "end": 43083.08, + "probability": 0.766 + }, + { + "start": 43083.9, + "end": 43084.3, + "probability": 0.8153 + }, + { + "start": 43084.96, + "end": 43086.8, + "probability": 0.6666 + }, + { + "start": 43087.04, + "end": 43089.92, + "probability": 0.8472 + }, + { + "start": 43090.48, + "end": 43092.78, + "probability": 0.7474 + }, + { + "start": 43093.5, + "end": 43095.62, + "probability": 0.9617 + }, + { + "start": 43095.94, + "end": 43097.24, + "probability": 0.8135 + }, + { + "start": 43098.08, + "end": 43099.74, + "probability": 0.4927 + }, + { + "start": 43100.08, + "end": 43101.77, + "probability": 0.8337 + }, + { + "start": 43102.68, + "end": 43106.8, + "probability": 0.9312 + }, + { + "start": 43107.12, + "end": 43109.16, + "probability": 0.974 + }, + { + "start": 43109.8, + "end": 43110.4, + "probability": 0.0837 + }, + { + "start": 43110.48, + "end": 43111.7, + "probability": 0.5751 + }, + { + "start": 43112.1, + "end": 43112.32, + "probability": 0.5463 + }, + { + "start": 43113.9, + "end": 43114.18, + "probability": 0.3381 + }, + { + "start": 43114.96, + "end": 43115.44, + "probability": 0.6197 + }, + { + "start": 43115.52, + "end": 43115.96, + "probability": 0.6476 + }, + { + "start": 43122.26, + "end": 43123.34, + "probability": 0.7888 + }, + { + "start": 43129.24, + "end": 43131.74, + "probability": 0.9002 + }, + { + "start": 43132.34, + "end": 43138.12, + "probability": 0.9947 + }, + { + "start": 43138.64, + "end": 43139.98, + "probability": 0.8606 + }, + { + "start": 43140.56, + "end": 43140.66, + "probability": 0.8197 + }, + { + "start": 43141.84, + "end": 43142.66, + "probability": 0.5183 + }, + { + "start": 43144.06, + "end": 43145.92, + "probability": 0.2308 + }, + { + "start": 43146.4, + "end": 43147.54, + "probability": 0.6846 + }, + { + "start": 43148.06, + "end": 43150.38, + "probability": 0.8365 + }, + { + "start": 43151.18, + "end": 43154.06, + "probability": 0.5009 + }, + { + "start": 43154.74, + "end": 43155.26, + "probability": 0.8383 + }, + { + "start": 43158.3, + "end": 43159.58, + "probability": 0.3884 + }, + { + "start": 43160.38, + "end": 43163.56, + "probability": 0.6858 + }, + { + "start": 43164.9, + "end": 43172.2, + "probability": 0.8261 + }, + { + "start": 43175.29, + "end": 43178.46, + "probability": 0.9045 + }, + { + "start": 43182.7, + "end": 43191.84, + "probability": 0.4665 + }, + { + "start": 43192.54, + "end": 43194.02, + "probability": 0.3249 + }, + { + "start": 43194.16, + "end": 43194.72, + "probability": 0.3386 + }, + { + "start": 43195.16, + "end": 43197.1, + "probability": 0.9065 + }, + { + "start": 43197.2, + "end": 43200.08, + "probability": 0.6843 + }, + { + "start": 43200.08, + "end": 43201.74, + "probability": 0.8135 + }, + { + "start": 43202.58, + "end": 43206.12, + "probability": 0.9585 + }, + { + "start": 43206.2, + "end": 43207.06, + "probability": 0.823 + }, + { + "start": 43207.26, + "end": 43208.64, + "probability": 0.8359 + }, + { + "start": 43209.36, + "end": 43210.96, + "probability": 0.9542 + }, + { + "start": 43211.84, + "end": 43213.32, + "probability": 0.9175 + }, + { + "start": 43213.6, + "end": 43214.3, + "probability": 0.7692 + }, + { + "start": 43214.32, + "end": 43214.9, + "probability": 0.9355 + }, + { + "start": 43215.06, + "end": 43217.64, + "probability": 0.719 + }, + { + "start": 43218.34, + "end": 43220.3, + "probability": 0.876 + }, + { + "start": 43221.04, + "end": 43224.64, + "probability": 0.9465 + }, + { + "start": 43225.52, + "end": 43228.16, + "probability": 0.9827 + }, + { + "start": 43229.14, + "end": 43232.54, + "probability": 0.9814 + }, + { + "start": 43233.66, + "end": 43242.66, + "probability": 0.8471 + }, + { + "start": 43243.8, + "end": 43245.08, + "probability": 0.7612 + }, + { + "start": 43245.9, + "end": 43248.68, + "probability": 0.9904 + }, + { + "start": 43250.08, + "end": 43252.62, + "probability": 0.689 + }, + { + "start": 43253.46, + "end": 43254.66, + "probability": 0.7137 + }, + { + "start": 43255.98, + "end": 43257.2, + "probability": 0.9158 + }, + { + "start": 43257.88, + "end": 43259.42, + "probability": 0.8804 + }, + { + "start": 43260.1, + "end": 43263.58, + "probability": 0.9185 + }, + { + "start": 43264.38, + "end": 43265.22, + "probability": 0.6263 + }, + { + "start": 43265.72, + "end": 43267.48, + "probability": 0.3554 + }, + { + "start": 43268.68, + "end": 43269.24, + "probability": 0.8518 + }, + { + "start": 43269.82, + "end": 43269.92, + "probability": 0.3353 + }, + { + "start": 43269.92, + "end": 43273.14, + "probability": 0.7976 + }, + { + "start": 43273.82, + "end": 43274.04, + "probability": 0.1268 + }, + { + "start": 43274.04, + "end": 43276.9, + "probability": 0.096 + }, + { + "start": 43276.9, + "end": 43277.54, + "probability": 0.3888 + }, + { + "start": 43278.02, + "end": 43280.58, + "probability": 0.7074 + }, + { + "start": 43281.04, + "end": 43286.4, + "probability": 0.8906 + }, + { + "start": 43286.7, + "end": 43289.5, + "probability": 0.7122 + }, + { + "start": 43290.2, + "end": 43292.08, + "probability": 0.9242 + }, + { + "start": 43292.44, + "end": 43293.6, + "probability": 0.708 + }, + { + "start": 43293.7, + "end": 43295.04, + "probability": 0.9531 + }, + { + "start": 43297.18, + "end": 43299.64, + "probability": 0.9375 + }, + { + "start": 43299.8, + "end": 43301.7, + "probability": 0.937 + }, + { + "start": 43302.18, + "end": 43302.84, + "probability": 0.6789 + }, + { + "start": 43304.35, + "end": 43308.08, + "probability": 0.9832 + }, + { + "start": 43308.6, + "end": 43310.98, + "probability": 0.7742 + }, + { + "start": 43311.56, + "end": 43313.1, + "probability": 0.9636 + }, + { + "start": 43314.22, + "end": 43315.3, + "probability": 0.9019 + }, + { + "start": 43315.76, + "end": 43317.44, + "probability": 0.9698 + }, + { + "start": 43317.58, + "end": 43319.14, + "probability": 0.9088 + }, + { + "start": 43319.9, + "end": 43323.08, + "probability": 0.9222 + }, + { + "start": 43325.0, + "end": 43325.36, + "probability": 0.8012 + }, + { + "start": 43326.26, + "end": 43326.84, + "probability": 0.9302 + }, + { + "start": 43327.06, + "end": 43327.5, + "probability": 0.9268 + }, + { + "start": 43327.56, + "end": 43333.28, + "probability": 0.9688 + }, + { + "start": 43334.0, + "end": 43334.94, + "probability": 0.5317 + }, + { + "start": 43335.6, + "end": 43337.9, + "probability": 0.8366 + }, + { + "start": 43338.2, + "end": 43339.1, + "probability": 0.5437 + }, + { + "start": 43339.5, + "end": 43341.1, + "probability": 0.7046 + }, + { + "start": 43341.8, + "end": 43342.0, + "probability": 0.6578 + }, + { + "start": 43342.84, + "end": 43344.64, + "probability": 0.2827 + }, + { + "start": 43344.72, + "end": 43345.74, + "probability": 0.8751 + }, + { + "start": 43349.4, + "end": 43352.08, + "probability": 0.5818 + }, + { + "start": 43354.32, + "end": 43356.84, + "probability": 0.0064 + }, + { + "start": 43372.94, + "end": 43375.84, + "probability": 0.8257 + }, + { + "start": 43376.44, + "end": 43377.8, + "probability": 0.6579 + }, + { + "start": 43378.98, + "end": 43380.92, + "probability": 0.8593 + }, + { + "start": 43381.74, + "end": 43383.6, + "probability": 0.9968 + }, + { + "start": 43384.34, + "end": 43387.48, + "probability": 0.8433 + }, + { + "start": 43388.02, + "end": 43390.78, + "probability": 0.8854 + }, + { + "start": 43391.9, + "end": 43393.67, + "probability": 0.9902 + }, + { + "start": 43394.7, + "end": 43396.22, + "probability": 0.6861 + }, + { + "start": 43397.02, + "end": 43399.4, + "probability": 0.8571 + }, + { + "start": 43400.04, + "end": 43401.92, + "probability": 0.9718 + }, + { + "start": 43402.48, + "end": 43405.02, + "probability": 0.7802 + }, + { + "start": 43406.52, + "end": 43406.64, + "probability": 0.1012 + }, + { + "start": 43406.64, + "end": 43414.22, + "probability": 0.9055 + }, + { + "start": 43415.7, + "end": 43419.06, + "probability": 0.9873 + }, + { + "start": 43419.98, + "end": 43422.44, + "probability": 0.7231 + }, + { + "start": 43423.22, + "end": 43428.06, + "probability": 0.7109 + }, + { + "start": 43428.92, + "end": 43430.9, + "probability": 0.9894 + }, + { + "start": 43431.28, + "end": 43432.94, + "probability": 0.842 + }, + { + "start": 43434.08, + "end": 43438.56, + "probability": 0.9467 + }, + { + "start": 43438.56, + "end": 43443.7, + "probability": 0.9633 + }, + { + "start": 43443.78, + "end": 43447.82, + "probability": 0.9368 + }, + { + "start": 43448.8, + "end": 43452.94, + "probability": 0.8256 + }, + { + "start": 43453.6, + "end": 43456.7, + "probability": 0.9846 + }, + { + "start": 43457.4, + "end": 43459.4, + "probability": 0.9565 + }, + { + "start": 43459.94, + "end": 43463.04, + "probability": 0.9814 + }, + { + "start": 43464.32, + "end": 43469.3, + "probability": 0.7568 + }, + { + "start": 43469.86, + "end": 43471.34, + "probability": 0.9443 + }, + { + "start": 43472.74, + "end": 43478.16, + "probability": 0.9561 + }, + { + "start": 43478.88, + "end": 43483.62, + "probability": 0.9421 + }, + { + "start": 43484.3, + "end": 43486.98, + "probability": 0.9615 + }, + { + "start": 43487.62, + "end": 43490.12, + "probability": 0.9594 + }, + { + "start": 43491.8, + "end": 43496.2, + "probability": 0.98 + }, + { + "start": 43496.76, + "end": 43498.82, + "probability": 0.8699 + }, + { + "start": 43499.44, + "end": 43502.4, + "probability": 0.7116 + }, + { + "start": 43503.08, + "end": 43508.7, + "probability": 0.9197 + }, + { + "start": 43509.4, + "end": 43511.73, + "probability": 0.9839 + }, + { + "start": 43512.22, + "end": 43516.22, + "probability": 0.8506 + }, + { + "start": 43517.32, + "end": 43519.76, + "probability": 0.8281 + }, + { + "start": 43520.4, + "end": 43523.82, + "probability": 0.9277 + }, + { + "start": 43524.34, + "end": 43526.44, + "probability": 0.984 + }, + { + "start": 43527.24, + "end": 43528.98, + "probability": 0.9715 + }, + { + "start": 43529.32, + "end": 43530.58, + "probability": 0.9813 + }, + { + "start": 43531.0, + "end": 43531.9, + "probability": 0.9466 + }, + { + "start": 43532.94, + "end": 43538.02, + "probability": 0.944 + }, + { + "start": 43538.94, + "end": 43541.6, + "probability": 0.9924 + }, + { + "start": 43542.12, + "end": 43544.5, + "probability": 0.9924 + }, + { + "start": 43545.16, + "end": 43549.46, + "probability": 0.9863 + }, + { + "start": 43549.46, + "end": 43554.54, + "probability": 0.8822 + }, + { + "start": 43555.36, + "end": 43555.68, + "probability": 0.7902 + }, + { + "start": 43556.84, + "end": 43557.2, + "probability": 0.498 + }, + { + "start": 43557.42, + "end": 43560.78, + "probability": 0.7004 + }, + { + "start": 43563.66, + "end": 43566.1, + "probability": 0.5437 + }, + { + "start": 43566.72, + "end": 43568.38, + "probability": 0.6711 + }, + { + "start": 43570.06, + "end": 43572.9, + "probability": 0.4821 + }, + { + "start": 43572.94, + "end": 43574.96, + "probability": 0.884 + }, + { + "start": 43575.38, + "end": 43577.72, + "probability": 0.62 + }, + { + "start": 43579.04, + "end": 43580.64, + "probability": 0.1385 + }, + { + "start": 43581.54, + "end": 43582.22, + "probability": 0.1181 + }, + { + "start": 43582.22, + "end": 43586.42, + "probability": 0.1935 + }, + { + "start": 43595.7, + "end": 43597.06, + "probability": 0.39 + }, + { + "start": 43598.36, + "end": 43600.26, + "probability": 0.0451 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.0, + "end": 43700.0, + "probability": 0.0 + }, + { + "start": 43700.54, + "end": 43702.72, + "probability": 0.0792 + }, + { + "start": 43703.2, + "end": 43703.3, + "probability": 0.1862 + }, + { + "start": 43704.42, + "end": 43705.58, + "probability": 0.0207 + }, + { + "start": 43708.42, + "end": 43708.46, + "probability": 0.198 + }, + { + "start": 43710.88, + "end": 43711.48, + "probability": 0.0118 + }, + { + "start": 43715.26, + "end": 43716.94, + "probability": 0.1567 + }, + { + "start": 43720.06, + "end": 43720.4, + "probability": 0.0705 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.0, + "end": 43825.0, + "probability": 0.0 + }, + { + "start": 43825.16, + "end": 43825.54, + "probability": 0.0185 + }, + { + "start": 43825.54, + "end": 43825.54, + "probability": 0.127 + }, + { + "start": 43825.54, + "end": 43825.54, + "probability": 0.0177 + }, + { + "start": 43825.54, + "end": 43828.12, + "probability": 0.1491 + }, + { + "start": 43828.6, + "end": 43830.0, + "probability": 0.6102 + }, + { + "start": 43830.94, + "end": 43833.94, + "probability": 0.6787 + }, + { + "start": 43835.0, + "end": 43835.3, + "probability": 0.8345 + }, + { + "start": 43836.42, + "end": 43838.92, + "probability": 0.6919 + }, + { + "start": 43840.02, + "end": 43844.2, + "probability": 0.7619 + }, + { + "start": 43846.14, + "end": 43846.3, + "probability": 0.615 + }, + { + "start": 43846.4, + "end": 43850.82, + "probability": 0.8867 + }, + { + "start": 43851.64, + "end": 43853.1, + "probability": 0.8274 + }, + { + "start": 43853.88, + "end": 43856.06, + "probability": 0.7532 + }, + { + "start": 43856.86, + "end": 43858.58, + "probability": 0.7192 + }, + { + "start": 43859.02, + "end": 43860.12, + "probability": 0.8921 + }, + { + "start": 43860.54, + "end": 43865.42, + "probability": 0.9925 + }, + { + "start": 43865.48, + "end": 43867.86, + "probability": 0.9814 + }, + { + "start": 43868.02, + "end": 43868.7, + "probability": 0.6453 + }, + { + "start": 43869.18, + "end": 43871.36, + "probability": 0.8018 + }, + { + "start": 43871.84, + "end": 43873.2, + "probability": 0.7749 + }, + { + "start": 43873.84, + "end": 43876.86, + "probability": 0.6538 + }, + { + "start": 43877.4, + "end": 43880.12, + "probability": 0.8643 + }, + { + "start": 43880.56, + "end": 43886.26, + "probability": 0.9596 + }, + { + "start": 43886.74, + "end": 43890.22, + "probability": 0.9954 + }, + { + "start": 43890.48, + "end": 43891.34, + "probability": 0.6876 + }, + { + "start": 43891.42, + "end": 43895.76, + "probability": 0.9153 + }, + { + "start": 43897.32, + "end": 43901.26, + "probability": 0.9681 + }, + { + "start": 43901.42, + "end": 43906.08, + "probability": 0.9874 + }, + { + "start": 43907.08, + "end": 43909.08, + "probability": 0.8216 + }, + { + "start": 43910.06, + "end": 43910.86, + "probability": 0.7355 + }, + { + "start": 43912.18, + "end": 43913.98, + "probability": 0.9906 + }, + { + "start": 43915.44, + "end": 43919.06, + "probability": 0.9866 + }, + { + "start": 43919.88, + "end": 43922.08, + "probability": 0.9434 + }, + { + "start": 43922.5, + "end": 43925.3, + "probability": 0.97 + }, + { + "start": 43925.36, + "end": 43929.42, + "probability": 0.9673 + }, + { + "start": 43929.42, + "end": 43931.82, + "probability": 0.8436 + }, + { + "start": 43931.86, + "end": 43935.22, + "probability": 0.8502 + }, + { + "start": 43935.84, + "end": 43938.44, + "probability": 0.8401 + }, + { + "start": 43939.22, + "end": 43942.06, + "probability": 0.9816 + }, + { + "start": 43942.14, + "end": 43946.46, + "probability": 0.9961 + }, + { + "start": 43947.06, + "end": 43954.54, + "probability": 0.9653 + }, + { + "start": 43954.66, + "end": 43957.2, + "probability": 0.9761 + }, + { + "start": 43958.38, + "end": 43960.64, + "probability": 0.8977 + }, + { + "start": 43961.22, + "end": 43963.24, + "probability": 0.9939 + }, + { + "start": 43963.86, + "end": 43966.66, + "probability": 0.9493 + }, + { + "start": 43966.98, + "end": 43968.48, + "probability": 0.8428 + }, + { + "start": 43968.56, + "end": 43969.36, + "probability": 0.9368 + }, + { + "start": 43969.72, + "end": 43969.74, + "probability": 0.0116 + }, + { + "start": 43969.9, + "end": 43970.94, + "probability": 0.9966 + }, + { + "start": 43971.02, + "end": 43971.66, + "probability": 0.7475 + }, + { + "start": 43972.2, + "end": 43973.36, + "probability": 0.9789 + }, + { + "start": 43973.46, + "end": 43974.46, + "probability": 0.9108 + }, + { + "start": 43974.88, + "end": 43975.98, + "probability": 0.9922 + }, + { + "start": 43976.42, + "end": 43979.0, + "probability": 0.8389 + }, + { + "start": 43979.4, + "end": 43981.44, + "probability": 0.9748 + }, + { + "start": 43981.94, + "end": 43984.76, + "probability": 0.7007 + }, + { + "start": 43985.18, + "end": 43986.62, + "probability": 0.6745 + }, + { + "start": 43987.1, + "end": 43988.48, + "probability": 0.5631 + }, + { + "start": 43989.12, + "end": 43991.22, + "probability": 0.8841 + }, + { + "start": 43991.56, + "end": 43995.74, + "probability": 0.9152 + }, + { + "start": 43996.34, + "end": 43997.42, + "probability": 0.7384 + }, + { + "start": 43998.24, + "end": 44001.16, + "probability": 0.8861 + }, + { + "start": 44001.92, + "end": 44003.68, + "probability": 0.9949 + }, + { + "start": 44004.57, + "end": 44008.42, + "probability": 0.9862 + }, + { + "start": 44008.6, + "end": 44009.37, + "probability": 0.856 + }, + { + "start": 44009.5, + "end": 44011.76, + "probability": 0.9801 + }, + { + "start": 44012.2, + "end": 44013.28, + "probability": 0.8209 + }, + { + "start": 44013.32, + "end": 44018.62, + "probability": 0.9849 + }, + { + "start": 44018.68, + "end": 44020.24, + "probability": 0.8302 + }, + { + "start": 44020.44, + "end": 44021.5, + "probability": 0.8467 + }, + { + "start": 44022.3, + "end": 44025.76, + "probability": 0.9272 + }, + { + "start": 44026.62, + "end": 44027.39, + "probability": 0.955 + }, + { + "start": 44027.52, + "end": 44030.5, + "probability": 0.9456 + }, + { + "start": 44030.92, + "end": 44033.26, + "probability": 0.9621 + }, + { + "start": 44033.82, + "end": 44036.5, + "probability": 0.7153 + }, + { + "start": 44037.28, + "end": 44039.38, + "probability": 0.9725 + }, + { + "start": 44039.66, + "end": 44040.22, + "probability": 0.7454 + }, + { + "start": 44040.32, + "end": 44042.66, + "probability": 0.8752 + }, + { + "start": 44042.96, + "end": 44043.66, + "probability": 0.8243 + }, + { + "start": 44043.8, + "end": 44044.6, + "probability": 0.9676 + }, + { + "start": 44044.96, + "end": 44045.94, + "probability": 0.9312 + }, + { + "start": 44046.8, + "end": 44048.74, + "probability": 0.8986 + }, + { + "start": 44048.98, + "end": 44049.24, + "probability": 0.4752 + }, + { + "start": 44049.9, + "end": 44051.88, + "probability": 0.8484 + }, + { + "start": 44052.12, + "end": 44053.52, + "probability": 0.6911 + }, + { + "start": 44053.72, + "end": 44055.16, + "probability": 0.8014 + }, + { + "start": 44055.22, + "end": 44056.28, + "probability": 0.8934 + }, + { + "start": 44056.68, + "end": 44058.18, + "probability": 0.9629 + }, + { + "start": 44058.22, + "end": 44059.14, + "probability": 0.7745 + }, + { + "start": 44059.22, + "end": 44060.36, + "probability": 0.7203 + }, + { + "start": 44060.54, + "end": 44061.28, + "probability": 0.4553 + }, + { + "start": 44061.44, + "end": 44063.5, + "probability": 0.7882 + }, + { + "start": 44063.9, + "end": 44067.84, + "probability": 0.8024 + }, + { + "start": 44068.38, + "end": 44069.36, + "probability": 0.9826 + }, + { + "start": 44070.88, + "end": 44074.16, + "probability": 0.3804 + }, + { + "start": 44075.86, + "end": 44077.82, + "probability": 0.7464 + }, + { + "start": 44078.12, + "end": 44079.94, + "probability": 0.7994 + }, + { + "start": 44079.96, + "end": 44080.68, + "probability": 0.5562 + }, + { + "start": 44081.3, + "end": 44082.42, + "probability": 0.4399 + }, + { + "start": 44082.46, + "end": 44086.1, + "probability": 0.92 + }, + { + "start": 44087.02, + "end": 44090.56, + "probability": 0.9805 + }, + { + "start": 44091.3, + "end": 44094.92, + "probability": 0.9694 + }, + { + "start": 44095.28, + "end": 44099.38, + "probability": 0.7257 + }, + { + "start": 44099.46, + "end": 44100.36, + "probability": 0.9313 + }, + { + "start": 44100.52, + "end": 44102.16, + "probability": 0.9983 + }, + { + "start": 44102.4, + "end": 44103.68, + "probability": 0.9104 + }, + { + "start": 44103.82, + "end": 44103.96, + "probability": 0.3384 + }, + { + "start": 44104.06, + "end": 44104.44, + "probability": 0.629 + }, + { + "start": 44104.48, + "end": 44107.12, + "probability": 0.876 + }, + { + "start": 44107.44, + "end": 44108.42, + "probability": 0.2445 + }, + { + "start": 44109.22, + "end": 44109.6, + "probability": 0.6951 + }, + { + "start": 44109.7, + "end": 44110.82, + "probability": 0.9414 + }, + { + "start": 44110.9, + "end": 44112.6, + "probability": 0.8515 + }, + { + "start": 44112.64, + "end": 44116.74, + "probability": 0.9704 + }, + { + "start": 44116.92, + "end": 44117.64, + "probability": 0.9382 + }, + { + "start": 44118.26, + "end": 44121.5, + "probability": 0.8838 + }, + { + "start": 44121.52, + "end": 44122.16, + "probability": 0.7416 + }, + { + "start": 44122.26, + "end": 44123.14, + "probability": 0.8618 + }, + { + "start": 44123.52, + "end": 44123.82, + "probability": 0.6607 + }, + { + "start": 44123.9, + "end": 44124.92, + "probability": 0.8779 + }, + { + "start": 44125.4, + "end": 44126.8, + "probability": 0.9222 + }, + { + "start": 44126.84, + "end": 44130.38, + "probability": 0.9792 + }, + { + "start": 44130.94, + "end": 44133.86, + "probability": 0.9829 + }, + { + "start": 44134.94, + "end": 44139.74, + "probability": 0.9475 + }, + { + "start": 44139.96, + "end": 44140.9, + "probability": 0.9674 + }, + { + "start": 44141.02, + "end": 44141.56, + "probability": 0.8341 + }, + { + "start": 44141.96, + "end": 44145.32, + "probability": 0.9645 + }, + { + "start": 44145.36, + "end": 44149.36, + "probability": 0.8711 + }, + { + "start": 44149.42, + "end": 44150.14, + "probability": 0.7827 + }, + { + "start": 44150.52, + "end": 44153.04, + "probability": 0.9464 + }, + { + "start": 44153.5, + "end": 44153.72, + "probability": 0.7551 + }, + { + "start": 44154.78, + "end": 44156.89, + "probability": 0.7748 + }, + { + "start": 44157.3, + "end": 44160.52, + "probability": 0.9069 + }, + { + "start": 44161.28, + "end": 44163.3, + "probability": 0.8301 + }, + { + "start": 44163.8, + "end": 44163.98, + "probability": 0.7009 + }, + { + "start": 44164.12, + "end": 44166.74, + "probability": 0.6069 + }, + { + "start": 44167.14, + "end": 44172.06, + "probability": 0.9628 + }, + { + "start": 44172.6, + "end": 44173.54, + "probability": 0.7698 + }, + { + "start": 44174.08, + "end": 44175.58, + "probability": 0.8782 + }, + { + "start": 44176.2, + "end": 44176.48, + "probability": 0.5509 + }, + { + "start": 44177.4, + "end": 44178.3, + "probability": 0.6044 + }, + { + "start": 44178.5, + "end": 44181.72, + "probability": 0.9518 + }, + { + "start": 44182.56, + "end": 44183.74, + "probability": 0.6375 + }, + { + "start": 44184.64, + "end": 44187.64, + "probability": 0.9983 + }, + { + "start": 44187.7, + "end": 44191.64, + "probability": 0.9551 + }, + { + "start": 44192.18, + "end": 44193.12, + "probability": 0.7847 + }, + { + "start": 44193.22, + "end": 44193.3, + "probability": 0.1048 + }, + { + "start": 44193.32, + "end": 44194.02, + "probability": 0.8326 + }, + { + "start": 44194.28, + "end": 44196.18, + "probability": 0.6626 + }, + { + "start": 44196.26, + "end": 44197.95, + "probability": 0.7848 + }, + { + "start": 44198.74, + "end": 44199.58, + "probability": 0.5105 + }, + { + "start": 44199.6, + "end": 44200.52, + "probability": 0.5691 + }, + { + "start": 44200.72, + "end": 44203.62, + "probability": 0.8832 + }, + { + "start": 44204.0, + "end": 44205.7, + "probability": 0.9751 + }, + { + "start": 44205.74, + "end": 44206.16, + "probability": 0.493 + }, + { + "start": 44206.36, + "end": 44206.94, + "probability": 0.6597 + }, + { + "start": 44207.14, + "end": 44210.2, + "probability": 0.5412 + }, + { + "start": 44211.18, + "end": 44212.74, + "probability": 0.6603 + }, + { + "start": 44213.32, + "end": 44215.38, + "probability": 0.948 + }, + { + "start": 44215.46, + "end": 44216.54, + "probability": 0.9384 + }, + { + "start": 44216.8, + "end": 44219.22, + "probability": 0.6415 + }, + { + "start": 44220.02, + "end": 44222.33, + "probability": 0.8472 + }, + { + "start": 44223.42, + "end": 44226.01, + "probability": 0.9875 + }, + { + "start": 44226.44, + "end": 44228.19, + "probability": 0.848 + }, + { + "start": 44228.48, + "end": 44232.4, + "probability": 0.849 + }, + { + "start": 44232.62, + "end": 44233.62, + "probability": 0.3755 + }, + { + "start": 44233.7, + "end": 44234.42, + "probability": 0.8865 + }, + { + "start": 44234.9, + "end": 44236.75, + "probability": 0.7474 + }, + { + "start": 44237.8, + "end": 44241.42, + "probability": 0.8747 + }, + { + "start": 44241.58, + "end": 44243.6, + "probability": 0.7515 + }, + { + "start": 44243.62, + "end": 44244.81, + "probability": 0.9629 + }, + { + "start": 44245.72, + "end": 44246.28, + "probability": 0.9888 + }, + { + "start": 44246.8, + "end": 44248.1, + "probability": 0.985 + }, + { + "start": 44248.26, + "end": 44248.64, + "probability": 0.4307 + }, + { + "start": 44248.74, + "end": 44250.68, + "probability": 0.8485 + }, + { + "start": 44251.06, + "end": 44251.9, + "probability": 0.9264 + }, + { + "start": 44252.58, + "end": 44254.8, + "probability": 0.8108 + }, + { + "start": 44254.86, + "end": 44257.26, + "probability": 0.6347 + }, + { + "start": 44257.42, + "end": 44258.5, + "probability": 0.6662 + }, + { + "start": 44259.16, + "end": 44260.62, + "probability": 0.6901 + }, + { + "start": 44260.68, + "end": 44262.48, + "probability": 0.972 + }, + { + "start": 44262.8, + "end": 44265.4, + "probability": 0.8118 + }, + { + "start": 44265.56, + "end": 44269.38, + "probability": 0.7223 + }, + { + "start": 44269.88, + "end": 44273.6, + "probability": 0.8718 + }, + { + "start": 44273.68, + "end": 44274.9, + "probability": 0.8977 + }, + { + "start": 44275.1, + "end": 44277.42, + "probability": 0.998 + }, + { + "start": 44278.44, + "end": 44279.06, + "probability": 0.9222 + }, + { + "start": 44279.34, + "end": 44280.26, + "probability": 0.9019 + }, + { + "start": 44280.64, + "end": 44282.64, + "probability": 0.7424 + }, + { + "start": 44282.78, + "end": 44283.24, + "probability": 0.4203 + }, + { + "start": 44283.62, + "end": 44284.52, + "probability": 0.8208 + }, + { + "start": 44284.8, + "end": 44287.58, + "probability": 0.9774 + }, + { + "start": 44288.5, + "end": 44293.3, + "probability": 0.9952 + }, + { + "start": 44293.68, + "end": 44295.52, + "probability": 0.9602 + }, + { + "start": 44295.98, + "end": 44297.78, + "probability": 0.7 + }, + { + "start": 44297.92, + "end": 44298.98, + "probability": 0.219 + }, + { + "start": 44299.1, + "end": 44301.4, + "probability": 0.5419 + }, + { + "start": 44301.64, + "end": 44303.16, + "probability": 0.4947 + }, + { + "start": 44304.77, + "end": 44306.24, + "probability": 0.3463 + }, + { + "start": 44308.08, + "end": 44310.38, + "probability": 0.4334 + }, + { + "start": 44310.94, + "end": 44313.74, + "probability": 0.6456 + }, + { + "start": 44313.82, + "end": 44315.59, + "probability": 0.7893 + }, + { + "start": 44317.38, + "end": 44318.32, + "probability": 0.9737 + }, + { + "start": 44319.1, + "end": 44321.5, + "probability": 0.9487 + }, + { + "start": 44334.22, + "end": 44334.22, + "probability": 0.2221 + }, + { + "start": 44334.22, + "end": 44336.16, + "probability": 0.3928 + }, + { + "start": 44336.48, + "end": 44338.92, + "probability": 0.7839 + }, + { + "start": 44339.24, + "end": 44342.8, + "probability": 0.645 + }, + { + "start": 44342.8, + "end": 44344.44, + "probability": 0.6629 + }, + { + "start": 44344.68, + "end": 44345.92, + "probability": 0.7456 + }, + { + "start": 44345.98, + "end": 44347.0, + "probability": 0.5713 + }, + { + "start": 44347.08, + "end": 44348.94, + "probability": 0.591 + }, + { + "start": 44350.0, + "end": 44350.98, + "probability": 0.7828 + }, + { + "start": 44351.78, + "end": 44355.92, + "probability": 0.4546 + }, + { + "start": 44357.09, + "end": 44361.18, + "probability": 0.8694 + }, + { + "start": 44361.18, + "end": 44365.52, + "probability": 0.9844 + }, + { + "start": 44365.52, + "end": 44371.18, + "probability": 0.9526 + }, + { + "start": 44374.92, + "end": 44376.5, + "probability": 0.9312 + }, + { + "start": 44376.64, + "end": 44377.38, + "probability": 0.6852 + }, + { + "start": 44377.58, + "end": 44377.88, + "probability": 0.8397 + }, + { + "start": 44378.22, + "end": 44379.74, + "probability": 0.9198 + }, + { + "start": 44379.86, + "end": 44380.06, + "probability": 0.0719 + }, + { + "start": 44380.06, + "end": 44381.48, + "probability": 0.5795 + }, + { + "start": 44381.5, + "end": 44384.56, + "probability": 0.7756 + }, + { + "start": 44385.1, + "end": 44388.06, + "probability": 0.9035 + }, + { + "start": 44389.7, + "end": 44396.24, + "probability": 0.6811 + }, + { + "start": 44396.48, + "end": 44397.28, + "probability": 0.8078 + }, + { + "start": 44401.88, + "end": 44403.46, + "probability": 0.9478 + }, + { + "start": 44403.68, + "end": 44404.64, + "probability": 0.68 + }, + { + "start": 44404.82, + "end": 44405.6, + "probability": 0.128 + }, + { + "start": 44405.66, + "end": 44406.56, + "probability": 0.0516 + }, + { + "start": 44409.96, + "end": 44410.06, + "probability": 0.0984 + }, + { + "start": 44410.06, + "end": 44410.52, + "probability": 0.5678 + }, + { + "start": 44411.04, + "end": 44413.12, + "probability": 0.6881 + }, + { + "start": 44415.72, + "end": 44420.32, + "probability": 0.9972 + }, + { + "start": 44422.14, + "end": 44423.46, + "probability": 0.9927 + }, + { + "start": 44424.98, + "end": 44425.92, + "probability": 0.9323 + }, + { + "start": 44427.9, + "end": 44431.12, + "probability": 0.9946 + }, + { + "start": 44433.5, + "end": 44438.09, + "probability": 0.7863 + }, + { + "start": 44439.06, + "end": 44439.92, + "probability": 0.7568 + }, + { + "start": 44440.92, + "end": 44441.48, + "probability": 0.9492 + }, + { + "start": 44443.94, + "end": 44445.08, + "probability": 0.8148 + }, + { + "start": 44446.19, + "end": 44446.88, + "probability": 0.9569 + }, + { + "start": 44449.24, + "end": 44452.06, + "probability": 0.9895 + }, + { + "start": 44453.64, + "end": 44455.84, + "probability": 0.7623 + }, + { + "start": 44457.16, + "end": 44458.64, + "probability": 0.7628 + }, + { + "start": 44458.94, + "end": 44460.54, + "probability": 0.8403 + }, + { + "start": 44462.18, + "end": 44466.06, + "probability": 0.9928 + }, + { + "start": 44466.66, + "end": 44467.8, + "probability": 0.6906 + }, + { + "start": 44468.86, + "end": 44471.06, + "probability": 0.8949 + }, + { + "start": 44471.96, + "end": 44474.44, + "probability": 0.9059 + }, + { + "start": 44475.32, + "end": 44476.38, + "probability": 0.9937 + }, + { + "start": 44478.36, + "end": 44478.88, + "probability": 0.9355 + }, + { + "start": 44480.44, + "end": 44481.98, + "probability": 0.9922 + }, + { + "start": 44482.7, + "end": 44483.22, + "probability": 0.6142 + }, + { + "start": 44485.7, + "end": 44488.22, + "probability": 0.8689 + }, + { + "start": 44489.56, + "end": 44490.86, + "probability": 0.7316 + }, + { + "start": 44491.96, + "end": 44494.48, + "probability": 0.8833 + }, + { + "start": 44495.62, + "end": 44496.16, + "probability": 0.9508 + }, + { + "start": 44497.34, + "end": 44500.0, + "probability": 0.9977 + }, + { + "start": 44500.34, + "end": 44501.3, + "probability": 0.4718 + }, + { + "start": 44501.94, + "end": 44503.84, + "probability": 0.9829 + }, + { + "start": 44504.48, + "end": 44509.2, + "probability": 0.9984 + }, + { + "start": 44509.74, + "end": 44510.2, + "probability": 0.439 + }, + { + "start": 44510.76, + "end": 44512.76, + "probability": 0.9967 + }, + { + "start": 44513.92, + "end": 44514.92, + "probability": 0.9048 + }, + { + "start": 44515.34, + "end": 44516.88, + "probability": 0.5146 + }, + { + "start": 44517.3, + "end": 44518.88, + "probability": 0.9641 + }, + { + "start": 44521.3, + "end": 44522.2, + "probability": 0.0176 + }, + { + "start": 44522.42, + "end": 44524.71, + "probability": 0.8082 + }, + { + "start": 44525.56, + "end": 44527.76, + "probability": 0.992 + }, + { + "start": 44528.22, + "end": 44529.04, + "probability": 0.8073 + }, + { + "start": 44529.6, + "end": 44532.22, + "probability": 0.9274 + }, + { + "start": 44532.88, + "end": 44534.5, + "probability": 0.9622 + }, + { + "start": 44537.36, + "end": 44540.16, + "probability": 0.9912 + }, + { + "start": 44541.96, + "end": 44545.21, + "probability": 0.9941 + }, + { + "start": 44545.74, + "end": 44551.06, + "probability": 0.9873 + }, + { + "start": 44551.62, + "end": 44552.92, + "probability": 0.9921 + }, + { + "start": 44553.6, + "end": 44554.86, + "probability": 0.9426 + }, + { + "start": 44555.8, + "end": 44557.35, + "probability": 0.9077 + }, + { + "start": 44557.66, + "end": 44558.84, + "probability": 0.9321 + }, + { + "start": 44559.3, + "end": 44562.06, + "probability": 0.9586 + }, + { + "start": 44563.2, + "end": 44566.68, + "probability": 0.8981 + }, + { + "start": 44567.0, + "end": 44567.9, + "probability": 0.1807 + }, + { + "start": 44568.02, + "end": 44570.28, + "probability": 0.983 + }, + { + "start": 44571.8, + "end": 44573.04, + "probability": 0.7847 + }, + { + "start": 44573.86, + "end": 44575.82, + "probability": 0.7709 + }, + { + "start": 44576.48, + "end": 44576.48, + "probability": 0.4509 + }, + { + "start": 44577.1, + "end": 44581.36, + "probability": 0.6454 + }, + { + "start": 44582.18, + "end": 44583.5, + "probability": 0.9144 + }, + { + "start": 44584.16, + "end": 44585.22, + "probability": 0.8444 + }, + { + "start": 44586.5, + "end": 44587.44, + "probability": 0.7799 + }, + { + "start": 44588.18, + "end": 44590.82, + "probability": 0.9333 + }, + { + "start": 44592.76, + "end": 44594.84, + "probability": 0.8636 + }, + { + "start": 44596.18, + "end": 44599.3, + "probability": 0.9159 + }, + { + "start": 44599.88, + "end": 44600.68, + "probability": 0.9523 + }, + { + "start": 44601.6, + "end": 44603.32, + "probability": 0.8343 + }, + { + "start": 44604.86, + "end": 44607.08, + "probability": 0.8709 + }, + { + "start": 44607.64, + "end": 44610.58, + "probability": 0.9758 + }, + { + "start": 44611.82, + "end": 44615.3, + "probability": 0.9782 + }, + { + "start": 44616.1, + "end": 44619.18, + "probability": 0.9105 + }, + { + "start": 44620.3, + "end": 44624.14, + "probability": 0.8475 + }, + { + "start": 44626.32, + "end": 44628.34, + "probability": 0.7786 + }, + { + "start": 44628.9, + "end": 44630.72, + "probability": 0.9562 + }, + { + "start": 44631.12, + "end": 44631.3, + "probability": 0.8879 + }, + { + "start": 44632.54, + "end": 44633.12, + "probability": 0.8621 + }, + { + "start": 44639.32, + "end": 44642.2, + "probability": 0.9971 + }, + { + "start": 44643.82, + "end": 44647.0, + "probability": 0.6415 + }, + { + "start": 44649.66, + "end": 44653.02, + "probability": 0.9225 + }, + { + "start": 44654.4, + "end": 44655.86, + "probability": 0.9048 + }, + { + "start": 44657.08, + "end": 44660.24, + "probability": 0.8913 + }, + { + "start": 44661.34, + "end": 44664.98, + "probability": 0.9932 + }, + { + "start": 44667.0, + "end": 44669.28, + "probability": 0.982 + }, + { + "start": 44670.4, + "end": 44671.56, + "probability": 0.7568 + }, + { + "start": 44673.42, + "end": 44677.22, + "probability": 0.7602 + }, + { + "start": 44678.54, + "end": 44679.98, + "probability": 0.9268 + }, + { + "start": 44682.0, + "end": 44683.56, + "probability": 0.9688 + }, + { + "start": 44685.06, + "end": 44688.84, + "probability": 0.7555 + }, + { + "start": 44689.52, + "end": 44692.6, + "probability": 0.6992 + }, + { + "start": 44693.3, + "end": 44694.14, + "probability": 0.9075 + }, + { + "start": 44695.8, + "end": 44697.58, + "probability": 0.9936 + }, + { + "start": 44698.8, + "end": 44701.71, + "probability": 0.7534 + }, + { + "start": 44702.5, + "end": 44703.74, + "probability": 0.9805 + }, + { + "start": 44704.16, + "end": 44705.4, + "probability": 0.9243 + }, + { + "start": 44706.44, + "end": 44707.78, + "probability": 0.9497 + }, + { + "start": 44708.86, + "end": 44709.98, + "probability": 0.8122 + }, + { + "start": 44710.92, + "end": 44714.72, + "probability": 0.9953 + }, + { + "start": 44715.98, + "end": 44720.58, + "probability": 0.793 + }, + { + "start": 44722.4, + "end": 44724.14, + "probability": 0.8829 + }, + { + "start": 44725.62, + "end": 44731.38, + "probability": 0.9697 + }, + { + "start": 44732.06, + "end": 44735.16, + "probability": 0.9953 + }, + { + "start": 44736.66, + "end": 44739.24, + "probability": 0.9502 + }, + { + "start": 44740.9, + "end": 44742.76, + "probability": 0.8215 + }, + { + "start": 44744.0, + "end": 44745.46, + "probability": 0.9951 + }, + { + "start": 44746.2, + "end": 44749.54, + "probability": 0.986 + }, + { + "start": 44751.84, + "end": 44754.24, + "probability": 0.8826 + }, + { + "start": 44754.9, + "end": 44758.34, + "probability": 0.8706 + }, + { + "start": 44759.02, + "end": 44760.2, + "probability": 0.5206 + }, + { + "start": 44760.68, + "end": 44761.96, + "probability": 0.7728 + }, + { + "start": 44762.54, + "end": 44763.59, + "probability": 0.7525 + }, + { + "start": 44764.78, + "end": 44766.22, + "probability": 0.9556 + }, + { + "start": 44766.9, + "end": 44770.92, + "probability": 0.8916 + }, + { + "start": 44771.68, + "end": 44774.1, + "probability": 0.9417 + }, + { + "start": 44774.8, + "end": 44775.98, + "probability": 0.9199 + }, + { + "start": 44776.54, + "end": 44779.32, + "probability": 0.9309 + }, + { + "start": 44779.78, + "end": 44781.9, + "probability": 0.8264 + }, + { + "start": 44782.52, + "end": 44785.68, + "probability": 0.9402 + }, + { + "start": 44786.34, + "end": 44790.02, + "probability": 0.9686 + }, + { + "start": 44790.68, + "end": 44792.1, + "probability": 0.8147 + }, + { + "start": 44792.4, + "end": 44795.08, + "probability": 0.0994 + }, + { + "start": 44796.44, + "end": 44796.92, + "probability": 0.1406 + }, + { + "start": 44797.66, + "end": 44798.62, + "probability": 0.9548 + }, + { + "start": 44799.66, + "end": 44801.22, + "probability": 0.8018 + }, + { + "start": 44801.82, + "end": 44804.08, + "probability": 0.6615 + }, + { + "start": 44804.56, + "end": 44804.74, + "probability": 0.0905 + }, + { + "start": 44804.98, + "end": 44805.56, + "probability": 0.6685 + }, + { + "start": 44806.06, + "end": 44807.65, + "probability": 0.8931 + }, + { + "start": 44807.98, + "end": 44809.3, + "probability": 0.5947 + }, + { + "start": 44809.72, + "end": 44809.9, + "probability": 0.2398 + }, + { + "start": 44809.98, + "end": 44810.4, + "probability": 0.6562 + }, + { + "start": 44810.68, + "end": 44811.71, + "probability": 0.9927 + }, + { + "start": 44811.9, + "end": 44812.22, + "probability": 0.5314 + }, + { + "start": 44813.74, + "end": 44815.3, + "probability": 0.379 + }, + { + "start": 44815.56, + "end": 44815.72, + "probability": 0.4644 + }, + { + "start": 44815.84, + "end": 44817.4, + "probability": 0.7908 + }, + { + "start": 44817.48, + "end": 44818.42, + "probability": 0.8916 + }, + { + "start": 44818.5, + "end": 44821.18, + "probability": 0.6188 + }, + { + "start": 44821.18, + "end": 44822.06, + "probability": 0.6353 + }, + { + "start": 44823.44, + "end": 44825.98, + "probability": 0.9282 + }, + { + "start": 44826.84, + "end": 44829.26, + "probability": 0.4148 + }, + { + "start": 44829.52, + "end": 44831.5, + "probability": 0.6689 + }, + { + "start": 44832.6, + "end": 44835.9, + "probability": 0.967 + }, + { + "start": 44836.82, + "end": 44839.94, + "probability": 0.7514 + }, + { + "start": 44840.74, + "end": 44842.89, + "probability": 0.9551 + }, + { + "start": 44843.42, + "end": 44843.88, + "probability": 0.5048 + }, + { + "start": 44844.06, + "end": 44845.04, + "probability": 0.7378 + }, + { + "start": 44846.4, + "end": 44847.54, + "probability": 0.558 + }, + { + "start": 44848.22, + "end": 44849.46, + "probability": 0.944 + }, + { + "start": 44850.82, + "end": 44853.78, + "probability": 0.9053 + }, + { + "start": 44854.58, + "end": 44855.26, + "probability": 0.7362 + }, + { + "start": 44856.18, + "end": 44856.78, + "probability": 0.8768 + }, + { + "start": 44857.4, + "end": 44859.91, + "probability": 0.9819 + }, + { + "start": 44861.54, + "end": 44863.14, + "probability": 0.8642 + }, + { + "start": 44864.56, + "end": 44865.68, + "probability": 0.7124 + }, + { + "start": 44866.04, + "end": 44867.32, + "probability": 0.8576 + }, + { + "start": 44867.82, + "end": 44869.88, + "probability": 0.9798 + }, + { + "start": 44870.66, + "end": 44871.68, + "probability": 0.7491 + }, + { + "start": 44872.28, + "end": 44874.74, + "probability": 0.6575 + }, + { + "start": 44875.48, + "end": 44876.46, + "probability": 0.9921 + }, + { + "start": 44876.94, + "end": 44879.2, + "probability": 0.9591 + }, + { + "start": 44880.36, + "end": 44881.3, + "probability": 0.8299 + }, + { + "start": 44882.1, + "end": 44884.42, + "probability": 0.8122 + }, + { + "start": 44885.22, + "end": 44887.34, + "probability": 0.8781 + }, + { + "start": 44888.08, + "end": 44888.77, + "probability": 0.9009 + }, + { + "start": 44889.5, + "end": 44892.1, + "probability": 0.9661 + }, + { + "start": 44892.2, + "end": 44893.68, + "probability": 0.9621 + }, + { + "start": 44894.64, + "end": 44896.68, + "probability": 0.88 + }, + { + "start": 44897.92, + "end": 44903.26, + "probability": 0.944 + }, + { + "start": 44903.82, + "end": 44905.59, + "probability": 0.9591 + }, + { + "start": 44906.16, + "end": 44907.9, + "probability": 0.8742 + }, + { + "start": 44909.1, + "end": 44909.66, + "probability": 0.8419 + }, + { + "start": 44910.36, + "end": 44915.7, + "probability": 0.6714 + }, + { + "start": 44916.0, + "end": 44919.48, + "probability": 0.5352 + }, + { + "start": 44919.98, + "end": 44920.86, + "probability": 0.514 + }, + { + "start": 44921.68, + "end": 44927.8, + "probability": 0.9199 + }, + { + "start": 44927.94, + "end": 44931.34, + "probability": 0.7372 + }, + { + "start": 44931.86, + "end": 44932.77, + "probability": 0.6337 + }, + { + "start": 44934.14, + "end": 44934.5, + "probability": 0.7903 + }, + { + "start": 44935.14, + "end": 44937.78, + "probability": 0.988 + }, + { + "start": 44939.04, + "end": 44941.5, + "probability": 0.9539 + }, + { + "start": 44942.7, + "end": 44944.92, + "probability": 0.8483 + }, + { + "start": 44945.88, + "end": 44947.36, + "probability": 0.9139 + }, + { + "start": 44948.54, + "end": 44949.66, + "probability": 0.7893 + }, + { + "start": 44950.42, + "end": 44950.66, + "probability": 0.0365 + }, + { + "start": 44950.66, + "end": 44950.7, + "probability": 0.0584 + }, + { + "start": 44950.7, + "end": 44950.92, + "probability": 0.3444 + }, + { + "start": 44951.24, + "end": 44952.62, + "probability": 0.9552 + }, + { + "start": 44953.46, + "end": 44954.54, + "probability": 0.9444 + }, + { + "start": 44955.62, + "end": 44955.68, + "probability": 0.0586 + }, + { + "start": 44955.68, + "end": 44956.58, + "probability": 0.6138 + }, + { + "start": 44957.1, + "end": 44960.12, + "probability": 0.9124 + }, + { + "start": 44960.68, + "end": 44960.92, + "probability": 0.3098 + }, + { + "start": 44960.96, + "end": 44961.92, + "probability": 0.9689 + }, + { + "start": 44962.24, + "end": 44965.14, + "probability": 0.979 + }, + { + "start": 44967.0, + "end": 44968.3, + "probability": 0.9043 + }, + { + "start": 44969.12, + "end": 44970.88, + "probability": 0.9727 + }, + { + "start": 44971.38, + "end": 44974.86, + "probability": 0.9616 + }, + { + "start": 44976.02, + "end": 44977.52, + "probability": 0.7883 + }, + { + "start": 44977.7, + "end": 44979.02, + "probability": 0.9432 + }, + { + "start": 44979.6, + "end": 44980.94, + "probability": 0.9531 + }, + { + "start": 44984.46, + "end": 44985.1, + "probability": 0.4511 + }, + { + "start": 44986.44, + "end": 44989.34, + "probability": 0.5513 + }, + { + "start": 44989.92, + "end": 44991.26, + "probability": 0.9055 + }, + { + "start": 44993.0, + "end": 44999.32, + "probability": 0.746 + }, + { + "start": 45000.5, + "end": 45002.02, + "probability": 0.9027 + }, + { + "start": 45003.02, + "end": 45009.12, + "probability": 0.745 + }, + { + "start": 45010.18, + "end": 45012.6, + "probability": 0.4531 + }, + { + "start": 45012.66, + "end": 45019.56, + "probability": 0.9617 + }, + { + "start": 45019.94, + "end": 45023.26, + "probability": 0.835 + }, + { + "start": 45024.18, + "end": 45025.46, + "probability": 0.9922 + }, + { + "start": 45025.58, + "end": 45026.34, + "probability": 0.5394 + }, + { + "start": 45027.41, + "end": 45030.38, + "probability": 0.5641 + }, + { + "start": 45031.26, + "end": 45031.62, + "probability": 0.7962 + }, + { + "start": 45032.66, + "end": 45033.06, + "probability": 0.3379 + }, + { + "start": 45033.1, + "end": 45035.62, + "probability": 0.936 + }, + { + "start": 45036.42, + "end": 45038.72, + "probability": 0.5255 + }, + { + "start": 45049.52, + "end": 45049.88, + "probability": 0.2811 + }, + { + "start": 45050.02, + "end": 45051.8, + "probability": 0.4526 + }, + { + "start": 45058.74, + "end": 45060.38, + "probability": 0.6155 + }, + { + "start": 45061.72, + "end": 45063.94, + "probability": 0.8298 + }, + { + "start": 45064.42, + "end": 45067.32, + "probability": 0.6463 + }, + { + "start": 45067.92, + "end": 45069.18, + "probability": 0.7924 + }, + { + "start": 45069.76, + "end": 45070.7, + "probability": 0.9251 + }, + { + "start": 45070.88, + "end": 45072.54, + "probability": 0.8971 + }, + { + "start": 45073.02, + "end": 45074.82, + "probability": 0.9897 + }, + { + "start": 45075.5, + "end": 45077.82, + "probability": 0.8927 + }, + { + "start": 45079.2, + "end": 45087.56, + "probability": 0.7588 + }, + { + "start": 45087.56, + "end": 45087.56, + "probability": 0.0401 + }, + { + "start": 45087.56, + "end": 45087.56, + "probability": 0.0175 + }, + { + "start": 45087.56, + "end": 45090.11, + "probability": 0.5411 + }, + { + "start": 45090.64, + "end": 45091.24, + "probability": 0.6359 + }, + { + "start": 45092.02, + "end": 45093.48, + "probability": 0.9745 + }, + { + "start": 45094.4, + "end": 45096.32, + "probability": 0.8953 + }, + { + "start": 45096.58, + "end": 45098.32, + "probability": 0.9902 + }, + { + "start": 45099.22, + "end": 45100.34, + "probability": 0.8639 + }, + { + "start": 45101.34, + "end": 45104.02, + "probability": 0.903 + }, + { + "start": 45106.06, + "end": 45110.18, + "probability": 0.996 + }, + { + "start": 45110.18, + "end": 45113.0, + "probability": 0.9974 + }, + { + "start": 45113.68, + "end": 45114.31, + "probability": 0.8667 + }, + { + "start": 45114.64, + "end": 45117.22, + "probability": 0.9402 + }, + { + "start": 45118.0, + "end": 45120.76, + "probability": 0.9634 + }, + { + "start": 45121.46, + "end": 45125.08, + "probability": 0.9984 + }, + { + "start": 45125.88, + "end": 45131.08, + "probability": 0.9761 + }, + { + "start": 45131.62, + "end": 45134.34, + "probability": 0.5366 + }, + { + "start": 45136.42, + "end": 45140.98, + "probability": 0.9533 + }, + { + "start": 45141.58, + "end": 45143.14, + "probability": 0.626 + }, + { + "start": 45143.8, + "end": 45146.8, + "probability": 0.9426 + }, + { + "start": 45147.48, + "end": 45149.64, + "probability": 0.9943 + }, + { + "start": 45150.5, + "end": 45152.24, + "probability": 0.9963 + }, + { + "start": 45152.82, + "end": 45154.94, + "probability": 0.9973 + }, + { + "start": 45155.68, + "end": 45157.18, + "probability": 0.9351 + }, + { + "start": 45157.74, + "end": 45158.62, + "probability": 0.7439 + }, + { + "start": 45159.46, + "end": 45161.32, + "probability": 0.6156 + }, + { + "start": 45162.56, + "end": 45164.72, + "probability": 0.0174 + }, + { + "start": 45166.12, + "end": 45167.56, + "probability": 0.4793 + }, + { + "start": 45168.56, + "end": 45171.08, + "probability": 0.9754 + }, + { + "start": 45171.6, + "end": 45175.4, + "probability": 0.9866 + }, + { + "start": 45175.52, + "end": 45178.08, + "probability": 0.8247 + }, + { + "start": 45178.7, + "end": 45180.72, + "probability": 0.9907 + }, + { + "start": 45181.42, + "end": 45182.7, + "probability": 0.5696 + }, + { + "start": 45183.22, + "end": 45186.68, + "probability": 0.7565 + }, + { + "start": 45187.76, + "end": 45194.38, + "probability": 0.7949 + }, + { + "start": 45194.88, + "end": 45196.3, + "probability": 0.9294 + }, + { + "start": 45196.7, + "end": 45198.08, + "probability": 0.5262 + }, + { + "start": 45198.92, + "end": 45201.22, + "probability": 0.7547 + }, + { + "start": 45201.82, + "end": 45203.9, + "probability": 0.8185 + }, + { + "start": 45204.6, + "end": 45206.64, + "probability": 0.9849 + }, + { + "start": 45207.06, + "end": 45209.14, + "probability": 0.9902 + }, + { + "start": 45209.56, + "end": 45210.68, + "probability": 0.862 + }, + { + "start": 45211.98, + "end": 45216.52, + "probability": 0.997 + }, + { + "start": 45219.14, + "end": 45220.16, + "probability": 0.5663 + }, + { + "start": 45221.58, + "end": 45224.34, + "probability": 0.9268 + }, + { + "start": 45224.92, + "end": 45226.46, + "probability": 0.9863 + }, + { + "start": 45227.06, + "end": 45228.9, + "probability": 0.8467 + }, + { + "start": 45228.96, + "end": 45229.28, + "probability": 0.6776 + }, + { + "start": 45229.82, + "end": 45230.72, + "probability": 0.827 + }, + { + "start": 45231.2, + "end": 45232.54, + "probability": 0.8233 + }, + { + "start": 45233.46, + "end": 45235.28, + "probability": 0.9874 + }, + { + "start": 45236.1, + "end": 45240.06, + "probability": 0.9891 + }, + { + "start": 45240.94, + "end": 45243.98, + "probability": 0.9882 + }, + { + "start": 45244.34, + "end": 45245.16, + "probability": 0.9204 + }, + { + "start": 45245.66, + "end": 45249.0, + "probability": 0.9795 + }, + { + "start": 45249.0, + "end": 45252.62, + "probability": 0.889 + }, + { + "start": 45253.26, + "end": 45256.78, + "probability": 0.9211 + }, + { + "start": 45257.36, + "end": 45259.4, + "probability": 0.9761 + }, + { + "start": 45260.0, + "end": 45264.22, + "probability": 0.9854 + }, + { + "start": 45269.19, + "end": 45270.88, + "probability": 0.1339 + }, + { + "start": 45270.88, + "end": 45271.23, + "probability": 0.0395 + }, + { + "start": 45274.36, + "end": 45275.44, + "probability": 0.7209 + }, + { + "start": 45275.56, + "end": 45275.96, + "probability": 0.249 + }, + { + "start": 45276.14, + "end": 45278.42, + "probability": 0.7715 + }, + { + "start": 45278.48, + "end": 45279.54, + "probability": 0.976 + }, + { + "start": 45279.58, + "end": 45281.48, + "probability": 0.3114 + }, + { + "start": 45282.22, + "end": 45283.24, + "probability": 0.8393 + }, + { + "start": 45283.26, + "end": 45286.34, + "probability": 0.4387 + }, + { + "start": 45286.48, + "end": 45286.8, + "probability": 0.5562 + }, + { + "start": 45287.32, + "end": 45288.12, + "probability": 0.5988 + }, + { + "start": 45288.72, + "end": 45291.72, + "probability": 0.8745 + }, + { + "start": 45292.34, + "end": 45294.01, + "probability": 0.9105 + }, + { + "start": 45294.66, + "end": 45297.48, + "probability": 0.7495 + }, + { + "start": 45297.88, + "end": 45298.98, + "probability": 0.8591 + }, + { + "start": 45299.16, + "end": 45301.41, + "probability": 0.3404 + }, + { + "start": 45301.9, + "end": 45303.06, + "probability": 0.2033 + }, + { + "start": 45303.14, + "end": 45303.92, + "probability": 0.604 + }, + { + "start": 45304.02, + "end": 45305.78, + "probability": 0.3429 + }, + { + "start": 45305.86, + "end": 45305.96, + "probability": 0.287 + }, + { + "start": 45306.54, + "end": 45307.36, + "probability": 0.194 + }, + { + "start": 45307.36, + "end": 45307.42, + "probability": 0.0877 + }, + { + "start": 45308.2, + "end": 45308.38, + "probability": 0.0581 + }, + { + "start": 45309.64, + "end": 45310.26, + "probability": 0.121 + }, + { + "start": 45310.8, + "end": 45312.18, + "probability": 0.7248 + }, + { + "start": 45313.11, + "end": 45316.24, + "probability": 0.4981 + }, + { + "start": 45316.28, + "end": 45318.22, + "probability": 0.6672 + }, + { + "start": 45318.26, + "end": 45320.18, + "probability": 0.7428 + }, + { + "start": 45321.92, + "end": 45324.52, + "probability": 0.2456 + }, + { + "start": 45325.58, + "end": 45326.94, + "probability": 0.4422 + }, + { + "start": 45327.98, + "end": 45329.56, + "probability": 0.0221 + }, + { + "start": 45336.42, + "end": 45339.08, + "probability": 0.2465 + }, + { + "start": 45339.18, + "end": 45342.0, + "probability": 0.6917 + }, + { + "start": 45342.78, + "end": 45344.73, + "probability": 0.7561 + }, + { + "start": 45345.26, + "end": 45347.8, + "probability": 0.7456 + }, + { + "start": 45348.32, + "end": 45350.12, + "probability": 0.7482 + }, + { + "start": 45350.22, + "end": 45352.51, + "probability": 0.9327 + }, + { + "start": 45352.84, + "end": 45354.22, + "probability": 0.6543 + }, + { + "start": 45354.28, + "end": 45355.84, + "probability": 0.3106 + }, + { + "start": 45356.46, + "end": 45359.18, + "probability": 0.0262 + }, + { + "start": 45369.1, + "end": 45371.5, + "probability": 0.1436 + }, + { + "start": 45371.7, + "end": 45373.68, + "probability": 0.1105 + }, + { + "start": 45373.84, + "end": 45375.32, + "probability": 0.4214 + }, + { + "start": 45376.36, + "end": 45378.94, + "probability": 0.3307 + }, + { + "start": 45379.56, + "end": 45380.46, + "probability": 0.6431 + }, + { + "start": 45380.72, + "end": 45381.34, + "probability": 0.8535 + }, + { + "start": 45381.64, + "end": 45382.06, + "probability": 0.425 + }, + { + "start": 45382.24, + "end": 45383.24, + "probability": 0.7371 + }, + { + "start": 45384.18, + "end": 45392.7, + "probability": 0.7318 + }, + { + "start": 45394.25, + "end": 45396.12, + "probability": 0.9754 + }, + { + "start": 45396.72, + "end": 45397.9, + "probability": 0.7005 + }, + { + "start": 45399.0, + "end": 45402.26, + "probability": 0.993 + }, + { + "start": 45403.14, + "end": 45405.46, + "probability": 0.9531 + }, + { + "start": 45406.56, + "end": 45407.96, + "probability": 0.8238 + }, + { + "start": 45408.88, + "end": 45413.48, + "probability": 0.8544 + }, + { + "start": 45414.88, + "end": 45420.56, + "probability": 0.9021 + }, + { + "start": 45421.54, + "end": 45424.94, + "probability": 0.9824 + }, + { + "start": 45425.96, + "end": 45428.9, + "probability": 0.9285 + }, + { + "start": 45430.02, + "end": 45433.24, + "probability": 0.9979 + }, + { + "start": 45434.74, + "end": 45438.16, + "probability": 0.8271 + }, + { + "start": 45438.84, + "end": 45440.58, + "probability": 0.9311 + }, + { + "start": 45441.3, + "end": 45444.34, + "probability": 0.983 + }, + { + "start": 45445.02, + "end": 45445.76, + "probability": 0.9779 + }, + { + "start": 45446.66, + "end": 45449.16, + "probability": 0.8387 + }, + { + "start": 45449.36, + "end": 45452.78, + "probability": 0.9182 + }, + { + "start": 45453.46, + "end": 45454.56, + "probability": 0.7408 + }, + { + "start": 45455.84, + "end": 45458.72, + "probability": 0.0593 + }, + { + "start": 45458.72, + "end": 45460.48, + "probability": 0.8226 + }, + { + "start": 45461.92, + "end": 45462.36, + "probability": 0.9609 + }, + { + "start": 45464.7, + "end": 45467.2, + "probability": 0.6718 + }, + { + "start": 45467.86, + "end": 45470.72, + "probability": 0.8839 + }, + { + "start": 45472.04, + "end": 45473.7, + "probability": 0.8975 + }, + { + "start": 45474.76, + "end": 45478.18, + "probability": 0.9781 + }, + { + "start": 45478.9, + "end": 45483.38, + "probability": 0.9028 + }, + { + "start": 45484.12, + "end": 45484.8, + "probability": 0.7176 + }, + { + "start": 45485.04, + "end": 45486.3, + "probability": 0.7354 + }, + { + "start": 45486.48, + "end": 45488.52, + "probability": 0.432 + }, + { + "start": 45489.28, + "end": 45489.58, + "probability": 0.8761 + }, + { + "start": 45491.1, + "end": 45492.82, + "probability": 0.8843 + }, + { + "start": 45493.16, + "end": 45493.8, + "probability": 0.8178 + }, + { + "start": 45494.16, + "end": 45497.72, + "probability": 0.9586 + }, + { + "start": 45497.78, + "end": 45498.32, + "probability": 0.8927 + }, + { + "start": 45499.44, + "end": 45500.08, + "probability": 0.7139 + }, + { + "start": 45500.82, + "end": 45505.68, + "probability": 0.8674 + }, + { + "start": 45506.36, + "end": 45506.78, + "probability": 0.4438 + }, + { + "start": 45506.92, + "end": 45510.76, + "probability": 0.8572 + }, + { + "start": 45510.84, + "end": 45511.2, + "probability": 0.8271 + }, + { + "start": 45511.94, + "end": 45513.42, + "probability": 0.9697 + }, + { + "start": 45513.82, + "end": 45514.88, + "probability": 0.8804 + }, + { + "start": 45515.0, + "end": 45515.48, + "probability": 0.6553 + }, + { + "start": 45516.08, + "end": 45516.88, + "probability": 0.8247 + }, + { + "start": 45517.8, + "end": 45522.22, + "probability": 0.9028 + }, + { + "start": 45523.08, + "end": 45528.14, + "probability": 0.9507 + }, + { + "start": 45528.48, + "end": 45528.9, + "probability": 0.3483 + }, + { + "start": 45528.96, + "end": 45529.34, + "probability": 0.3914 + }, + { + "start": 45530.0, + "end": 45532.64, + "probability": 0.9339 + }, + { + "start": 45532.64, + "end": 45535.96, + "probability": 0.9816 + }, + { + "start": 45537.18, + "end": 45537.98, + "probability": 0.7576 + }, + { + "start": 45539.3, + "end": 45541.68, + "probability": 0.9955 + }, + { + "start": 45541.68, + "end": 45547.41, + "probability": 0.7852 + }, + { + "start": 45548.98, + "end": 45552.8, + "probability": 0.8189 + }, + { + "start": 45553.7, + "end": 45557.56, + "probability": 0.9705 + }, + { + "start": 45557.68, + "end": 45558.05, + "probability": 0.5497 + }, + { + "start": 45558.22, + "end": 45558.54, + "probability": 0.5818 + }, + { + "start": 45558.68, + "end": 45559.02, + "probability": 0.5042 + }, + { + "start": 45559.38, + "end": 45559.8, + "probability": 0.4976 + }, + { + "start": 45560.52, + "end": 45564.88, + "probability": 0.8945 + }, + { + "start": 45564.92, + "end": 45565.96, + "probability": 0.7865 + }, + { + "start": 45566.02, + "end": 45566.36, + "probability": 0.4751 + }, + { + "start": 45566.98, + "end": 45575.52, + "probability": 0.9548 + }, + { + "start": 45575.6, + "end": 45578.18, + "probability": 0.8005 + }, + { + "start": 45579.48, + "end": 45581.66, + "probability": 0.8251 + }, + { + "start": 45582.3, + "end": 45583.0, + "probability": 0.7616 + }, + { + "start": 45585.58, + "end": 45586.8, + "probability": 0.1961 + }, + { + "start": 45586.8, + "end": 45586.8, + "probability": 0.0819 + }, + { + "start": 45586.8, + "end": 45588.26, + "probability": 0.7096 + }, + { + "start": 45589.68, + "end": 45592.28, + "probability": 0.9302 + }, + { + "start": 45592.42, + "end": 45594.06, + "probability": 0.8833 + }, + { + "start": 45594.24, + "end": 45594.92, + "probability": 0.717 + }, + { + "start": 45595.82, + "end": 45599.9, + "probability": 0.8084 + }, + { + "start": 45600.62, + "end": 45606.7, + "probability": 0.9943 + }, + { + "start": 45606.94, + "end": 45607.7, + "probability": 0.2056 + }, + { + "start": 45608.36, + "end": 45608.74, + "probability": 0.5845 + }, + { + "start": 45609.26, + "end": 45615.0, + "probability": 0.8408 + }, + { + "start": 45616.84, + "end": 45621.34, + "probability": 0.9528 + }, + { + "start": 45622.18, + "end": 45625.54, + "probability": 0.9272 + }, + { + "start": 45625.92, + "end": 45627.24, + "probability": 0.9673 + }, + { + "start": 45627.3, + "end": 45627.92, + "probability": 0.8726 + }, + { + "start": 45628.44, + "end": 45634.32, + "probability": 0.9685 + }, + { + "start": 45634.61, + "end": 45635.06, + "probability": 0.5559 + }, + { + "start": 45636.16, + "end": 45637.54, + "probability": 0.874 + }, + { + "start": 45638.18, + "end": 45638.82, + "probability": 0.0785 + }, + { + "start": 45639.46, + "end": 45640.96, + "probability": 0.9815 + }, + { + "start": 45642.22, + "end": 45643.34, + "probability": 0.9937 + }, + { + "start": 45643.98, + "end": 45645.1, + "probability": 0.3566 + }, + { + "start": 45645.1, + "end": 45646.64, + "probability": 0.1021 + }, + { + "start": 45647.1, + "end": 45648.4, + "probability": 0.8697 + }, + { + "start": 45649.18, + "end": 45649.18, + "probability": 0.1659 + }, + { + "start": 45649.72, + "end": 45650.29, + "probability": 0.0769 + }, + { + "start": 45651.36, + "end": 45653.2, + "probability": 0.1364 + }, + { + "start": 45655.58, + "end": 45658.84, + "probability": 0.2252 + }, + { + "start": 45659.14, + "end": 45662.16, + "probability": 0.0245 + }, + { + "start": 45662.34, + "end": 45663.98, + "probability": 0.6455 + }, + { + "start": 45664.1, + "end": 45665.08, + "probability": 0.7489 + }, + { + "start": 45665.24, + "end": 45665.5, + "probability": 0.6506 + }, + { + "start": 45666.06, + "end": 45667.06, + "probability": 0.4622 + }, + { + "start": 45668.64, + "end": 45670.16, + "probability": 0.1395 + }, + { + "start": 45670.72, + "end": 45671.2, + "probability": 0.5786 + }, + { + "start": 45676.78, + "end": 45677.86, + "probability": 0.0377 + }, + { + "start": 45678.82, + "end": 45681.74, + "probability": 0.6497 + }, + { + "start": 45683.34, + "end": 45686.36, + "probability": 0.7402 + }, + { + "start": 45686.62, + "end": 45687.28, + "probability": 0.8888 + }, + { + "start": 45688.36, + "end": 45688.52, + "probability": 0.3824 + }, + { + "start": 45689.32, + "end": 45690.0, + "probability": 0.8442 + }, + { + "start": 45691.16, + "end": 45692.84, + "probability": 0.2971 + }, + { + "start": 45693.64, + "end": 45694.74, + "probability": 0.4282 + }, + { + "start": 45694.74, + "end": 45697.94, + "probability": 0.518 + }, + { + "start": 45698.06, + "end": 45699.0, + "probability": 0.4927 + }, + { + "start": 45699.38, + "end": 45700.34, + "probability": 0.6827 + }, + { + "start": 45700.86, + "end": 45702.32, + "probability": 0.7446 + }, + { + "start": 45703.02, + "end": 45705.62, + "probability": 0.897 + }, + { + "start": 45709.06, + "end": 45709.47, + "probability": 0.944 + }, + { + "start": 45710.24, + "end": 45711.7, + "probability": 0.5206 + }, + { + "start": 45711.96, + "end": 45713.6, + "probability": 0.833 + }, + { + "start": 45714.02, + "end": 45714.44, + "probability": 0.4023 + }, + { + "start": 45716.38, + "end": 45718.86, + "probability": 0.8349 + }, + { + "start": 45719.76, + "end": 45720.34, + "probability": 0.4392 + }, + { + "start": 45721.94, + "end": 45724.5, + "probability": 0.8907 + }, + { + "start": 45724.75, + "end": 45728.44, + "probability": 0.5931 + }, + { + "start": 45732.96, + "end": 45735.62, + "probability": 0.5631 + }, + { + "start": 45736.5, + "end": 45741.26, + "probability": 0.9935 + }, + { + "start": 45742.28, + "end": 45742.67, + "probability": 0.5875 + }, + { + "start": 45743.94, + "end": 45744.22, + "probability": 0.5435 + }, + { + "start": 45746.24, + "end": 45747.02, + "probability": 0.8702 + }, + { + "start": 45747.24, + "end": 45749.38, + "probability": 0.8126 + }, + { + "start": 45749.82, + "end": 45751.12, + "probability": 0.8196 + }, + { + "start": 45751.24, + "end": 45752.8, + "probability": 0.8614 + }, + { + "start": 45754.08, + "end": 45755.42, + "probability": 0.9004 + }, + { + "start": 45756.0, + "end": 45756.32, + "probability": 0.911 + }, + { + "start": 45756.88, + "end": 45758.52, + "probability": 0.9546 + }, + { + "start": 45760.92, + "end": 45761.48, + "probability": 0.6802 + }, + { + "start": 45761.7, + "end": 45763.78, + "probability": 0.6989 + }, + { + "start": 45763.88, + "end": 45766.46, + "probability": 0.9772 + }, + { + "start": 45769.66, + "end": 45771.45, + "probability": 0.4126 + }, + { + "start": 45772.62, + "end": 45775.65, + "probability": 0.7996 + }, + { + "start": 45776.44, + "end": 45776.8, + "probability": 0.7397 + }, + { + "start": 45777.82, + "end": 45781.04, + "probability": 0.95 + }, + { + "start": 45781.98, + "end": 45785.82, + "probability": 0.8622 + }, + { + "start": 45788.32, + "end": 45789.62, + "probability": 0.5867 + }, + { + "start": 45790.66, + "end": 45791.91, + "probability": 0.7328 + }, + { + "start": 45793.32, + "end": 45794.1, + "probability": 0.4803 + }, + { + "start": 45794.42, + "end": 45795.0, + "probability": 0.6675 + }, + { + "start": 45795.68, + "end": 45796.34, + "probability": 0.2186 + }, + { + "start": 45796.42, + "end": 45796.98, + "probability": 0.4238 + }, + { + "start": 45798.12, + "end": 45799.38, + "probability": 0.8022 + }, + { + "start": 45799.98, + "end": 45801.98, + "probability": 0.4879 + }, + { + "start": 45802.88, + "end": 45803.34, + "probability": 0.0045 + }, + { + "start": 45806.2, + "end": 45807.94, + "probability": 0.0627 + }, + { + "start": 45808.24, + "end": 45809.5, + "probability": 0.5987 + }, + { + "start": 45809.72, + "end": 45811.86, + "probability": 0.3345 + }, + { + "start": 45811.86, + "end": 45812.3, + "probability": 0.0572 + }, + { + "start": 45812.54, + "end": 45813.47, + "probability": 0.5147 + }, + { + "start": 45814.32, + "end": 45815.16, + "probability": 0.4556 + }, + { + "start": 45815.16, + "end": 45821.24, + "probability": 0.9917 + }, + { + "start": 45821.68, + "end": 45823.3, + "probability": 0.3569 + }, + { + "start": 45823.38, + "end": 45825.02, + "probability": 0.8901 + }, + { + "start": 45825.46, + "end": 45826.3, + "probability": 0.9839 + }, + { + "start": 45826.3, + "end": 45829.84, + "probability": 0.4988 + }, + { + "start": 45830.02, + "end": 45833.22, + "probability": 0.9627 + }, + { + "start": 45834.02, + "end": 45838.04, + "probability": 0.9351 + }, + { + "start": 45838.4, + "end": 45839.62, + "probability": 0.771 + }, + { + "start": 45839.62, + "end": 45842.74, + "probability": 0.8976 + }, + { + "start": 45843.34, + "end": 45846.06, + "probability": 0.8114 + }, + { + "start": 45846.74, + "end": 45846.78, + "probability": 0.0581 + }, + { + "start": 45846.78, + "end": 45847.16, + "probability": 0.0179 + }, + { + "start": 45847.5, + "end": 45847.78, + "probability": 0.582 + }, + { + "start": 45847.88, + "end": 45849.06, + "probability": 0.8194 + }, + { + "start": 45849.6, + "end": 45854.12, + "probability": 0.8644 + }, + { + "start": 45854.34, + "end": 45855.22, + "probability": 0.9282 + }, + { + "start": 45856.56, + "end": 45857.44, + "probability": 0.9302 + }, + { + "start": 45858.24, + "end": 45859.68, + "probability": 0.6202 + }, + { + "start": 45860.42, + "end": 45861.94, + "probability": 0.8198 + }, + { + "start": 45863.2, + "end": 45863.9, + "probability": 0.5439 + }, + { + "start": 45864.42, + "end": 45866.6, + "probability": 0.9768 + }, + { + "start": 45868.06, + "end": 45868.72, + "probability": 0.7646 + }, + { + "start": 45869.72, + "end": 45872.76, + "probability": 0.9049 + }, + { + "start": 45874.0, + "end": 45875.79, + "probability": 0.8654 + }, + { + "start": 45876.28, + "end": 45876.28, + "probability": 0.3907 + }, + { + "start": 45876.44, + "end": 45877.38, + "probability": 0.7811 + }, + { + "start": 45878.44, + "end": 45878.98, + "probability": 0.5024 + }, + { + "start": 45879.34, + "end": 45882.14, + "probability": 0.958 + }, + { + "start": 45883.02, + "end": 45884.45, + "probability": 0.8789 + }, + { + "start": 45886.72, + "end": 45890.66, + "probability": 0.9265 + }, + { + "start": 45891.38, + "end": 45894.94, + "probability": 0.8179 + }, + { + "start": 45895.08, + "end": 45897.02, + "probability": 0.6866 + }, + { + "start": 45897.5, + "end": 45899.06, + "probability": 0.6791 + }, + { + "start": 45899.08, + "end": 45900.96, + "probability": 0.8246 + }, + { + "start": 45901.58, + "end": 45903.6, + "probability": 0.9409 + }, + { + "start": 45904.12, + "end": 45907.26, + "probability": 0.5133 + }, + { + "start": 45907.5, + "end": 45909.3, + "probability": 0.575 + }, + { + "start": 45910.2, + "end": 45913.2, + "probability": 0.107 + }, + { + "start": 45913.72, + "end": 45913.84, + "probability": 0.3871 + }, + { + "start": 45913.94, + "end": 45914.08, + "probability": 0.4277 + }, + { + "start": 45914.12, + "end": 45914.58, + "probability": 0.5006 + }, + { + "start": 45914.8, + "end": 45915.7, + "probability": 0.7616 + }, + { + "start": 45916.08, + "end": 45917.18, + "probability": 0.4619 + }, + { + "start": 45917.24, + "end": 45918.03, + "probability": 0.8803 + }, + { + "start": 45918.16, + "end": 45920.4, + "probability": 0.7937 + }, + { + "start": 45920.44, + "end": 45920.78, + "probability": 0.3841 + }, + { + "start": 45921.64, + "end": 45922.64, + "probability": 0.6444 + }, + { + "start": 45923.7, + "end": 45924.04, + "probability": 0.2518 + }, + { + "start": 45924.5, + "end": 45925.42, + "probability": 0.6541 + }, + { + "start": 45925.42, + "end": 45928.82, + "probability": 0.7755 + }, + { + "start": 45928.84, + "end": 45929.06, + "probability": 0.2589 + }, + { + "start": 45929.18, + "end": 45930.2, + "probability": 0.1013 + }, + { + "start": 45930.32, + "end": 45930.96, + "probability": 0.2875 + }, + { + "start": 45931.42, + "end": 45931.42, + "probability": 0.1385 + }, + { + "start": 45931.42, + "end": 45932.78, + "probability": 0.5796 + }, + { + "start": 45932.84, + "end": 45933.83, + "probability": 0.3321 + }, + { + "start": 45934.6, + "end": 45935.42, + "probability": 0.4143 + }, + { + "start": 45935.46, + "end": 45936.93, + "probability": 0.6791 + }, + { + "start": 45937.26, + "end": 45939.46, + "probability": 0.802 + }, + { + "start": 45939.88, + "end": 45941.66, + "probability": 0.8781 + }, + { + "start": 45942.62, + "end": 45943.32, + "probability": 0.9863 + }, + { + "start": 45944.92, + "end": 45945.32, + "probability": 0.7956 + }, + { + "start": 45946.28, + "end": 45949.28, + "probability": 0.7379 + }, + { + "start": 45949.8, + "end": 45951.28, + "probability": 0.7195 + }, + { + "start": 45951.38, + "end": 45957.38, + "probability": 0.8123 + }, + { + "start": 45958.68, + "end": 45959.1, + "probability": 0.8447 + }, + { + "start": 45959.4, + "end": 45961.86, + "probability": 0.7803 + }, + { + "start": 45962.78, + "end": 45962.96, + "probability": 0.621 + }, + { + "start": 45963.48, + "end": 45967.02, + "probability": 0.9365 + }, + { + "start": 45967.04, + "end": 45970.26, + "probability": 0.9988 + }, + { + "start": 45970.82, + "end": 45975.84, + "probability": 0.9674 + }, + { + "start": 45976.18, + "end": 45980.1, + "probability": 0.9966 + }, + { + "start": 45980.2, + "end": 45980.52, + "probability": 0.9078 + }, + { + "start": 45981.5, + "end": 45982.32, + "probability": 0.8817 + }, + { + "start": 45982.9, + "end": 45983.66, + "probability": 0.211 + }, + { + "start": 45985.02, + "end": 45985.82, + "probability": 0.8105 + }, + { + "start": 45987.08, + "end": 45988.28, + "probability": 0.4839 + }, + { + "start": 45988.56, + "end": 45988.96, + "probability": 0.5862 + }, + { + "start": 45989.86, + "end": 45991.1, + "probability": 0.2917 + }, + { + "start": 45991.32, + "end": 45992.48, + "probability": 0.7204 + }, + { + "start": 45992.8, + "end": 45994.33, + "probability": 0.6954 + }, + { + "start": 45994.52, + "end": 45996.12, + "probability": 0.9667 + }, + { + "start": 45996.88, + "end": 45997.99, + "probability": 0.5759 + }, + { + "start": 45998.2, + "end": 45998.44, + "probability": 0.4893 + }, + { + "start": 45998.48, + "end": 46002.86, + "probability": 0.8647 + }, + { + "start": 46002.86, + "end": 46002.94, + "probability": 0.2896 + }, + { + "start": 46002.94, + "end": 46003.44, + "probability": 0.4201 + }, + { + "start": 46003.54, + "end": 46005.12, + "probability": 0.9624 + }, + { + "start": 46005.82, + "end": 46006.42, + "probability": 0.9769 + }, + { + "start": 46006.84, + "end": 46009.56, + "probability": 0.9522 + }, + { + "start": 46009.96, + "end": 46010.54, + "probability": 0.0611 + }, + { + "start": 46010.66, + "end": 46014.16, + "probability": 0.7305 + }, + { + "start": 46014.16, + "end": 46016.98, + "probability": 0.9814 + }, + { + "start": 46017.04, + "end": 46018.84, + "probability": 0.9388 + }, + { + "start": 46018.96, + "end": 46020.68, + "probability": 0.7794 + }, + { + "start": 46020.9, + "end": 46024.36, + "probability": 0.6404 + }, + { + "start": 46024.44, + "end": 46024.74, + "probability": 0.3864 + }, + { + "start": 46024.9, + "end": 46029.13, + "probability": 0.4667 + }, + { + "start": 46029.32, + "end": 46029.54, + "probability": 0.9251 + }, + { + "start": 46029.9, + "end": 46030.24, + "probability": 0.9863 + }, + { + "start": 46030.94, + "end": 46032.0, + "probability": 0.1725 + }, + { + "start": 46032.32, + "end": 46032.75, + "probability": 0.2632 + }, + { + "start": 46033.67, + "end": 46033.9, + "probability": 0.6564 + }, + { + "start": 46034.97, + "end": 46036.38, + "probability": 0.4229 + }, + { + "start": 46036.4, + "end": 46041.04, + "probability": 0.9491 + }, + { + "start": 46041.34, + "end": 46042.22, + "probability": 0.6806 + }, + { + "start": 46042.34, + "end": 46044.1, + "probability": 0.7935 + }, + { + "start": 46044.4, + "end": 46045.98, + "probability": 0.9662 + }, + { + "start": 46046.02, + "end": 46046.9, + "probability": 0.8772 + }, + { + "start": 46047.22, + "end": 46047.68, + "probability": 0.9478 + }, + { + "start": 46048.58, + "end": 46049.1, + "probability": 0.8805 + }, + { + "start": 46049.24, + "end": 46049.94, + "probability": 0.5038 + }, + { + "start": 46050.42, + "end": 46050.84, + "probability": 0.611 + }, + { + "start": 46050.94, + "end": 46053.14, + "probability": 0.9462 + }, + { + "start": 46053.9, + "end": 46054.6, + "probability": 0.4799 + }, + { + "start": 46055.92, + "end": 46056.24, + "probability": 0.8945 + }, + { + "start": 46056.62, + "end": 46056.82, + "probability": 0.0419 + }, + { + "start": 46057.58, + "end": 46059.64, + "probability": 0.7814 + }, + { + "start": 46062.25, + "end": 46065.14, + "probability": 0.9949 + }, + { + "start": 46065.84, + "end": 46066.18, + "probability": 0.5154 + }, + { + "start": 46066.78, + "end": 46067.38, + "probability": 0.2908 + }, + { + "start": 46068.0, + "end": 46070.46, + "probability": 0.6521 + }, + { + "start": 46072.28, + "end": 46072.42, + "probability": 0.1412 + }, + { + "start": 46075.02, + "end": 46077.76, + "probability": 0.3762 + }, + { + "start": 46078.92, + "end": 46080.28, + "probability": 0.748 + }, + { + "start": 46081.26, + "end": 46084.4, + "probability": 0.8309 + }, + { + "start": 46085.08, + "end": 46086.28, + "probability": 0.817 + }, + { + "start": 46086.28, + "end": 46087.28, + "probability": 0.6395 + }, + { + "start": 46087.4, + "end": 46091.8, + "probability": 0.8889 + }, + { + "start": 46091.92, + "end": 46092.7, + "probability": 0.6495 + }, + { + "start": 46092.78, + "end": 46094.24, + "probability": 0.483 + }, + { + "start": 46094.3, + "end": 46096.26, + "probability": 0.4812 + }, + { + "start": 46096.46, + "end": 46097.72, + "probability": 0.4954 + }, + { + "start": 46098.94, + "end": 46099.42, + "probability": 0.6562 + }, + { + "start": 46118.4, + "end": 46118.4, + "probability": 0.0948 + }, + { + "start": 46118.4, + "end": 46120.66, + "probability": 0.3378 + }, + { + "start": 46120.82, + "end": 46121.56, + "probability": 0.5874 + }, + { + "start": 46122.6, + "end": 46124.98, + "probability": 0.4679 + }, + { + "start": 46125.06, + "end": 46126.18, + "probability": 0.1362 + }, + { + "start": 46126.52, + "end": 46127.5, + "probability": 0.7167 + }, + { + "start": 46127.68, + "end": 46129.8, + "probability": 0.6863 + }, + { + "start": 46131.18, + "end": 46135.0, + "probability": 0.649 + }, + { + "start": 46135.0, + "end": 46137.86, + "probability": 0.5823 + }, + { + "start": 46138.06, + "end": 46139.96, + "probability": 0.2594 + }, + { + "start": 46140.64, + "end": 46142.42, + "probability": 0.474 + }, + { + "start": 46142.58, + "end": 46146.32, + "probability": 0.9099 + }, + { + "start": 46148.44, + "end": 46151.6, + "probability": 0.4859 + }, + { + "start": 46151.88, + "end": 46153.6, + "probability": 0.9043 + }, + { + "start": 46156.52, + "end": 46156.92, + "probability": 0.5435 + }, + { + "start": 46157.32, + "end": 46162.36, + "probability": 0.8394 + }, + { + "start": 46163.14, + "end": 46166.72, + "probability": 0.5553 + }, + { + "start": 46168.24, + "end": 46168.36, + "probability": 0.4121 + }, + { + "start": 46168.36, + "end": 46169.46, + "probability": 0.0394 + }, + { + "start": 46169.66, + "end": 46169.88, + "probability": 0.7711 + }, + { + "start": 46170.68, + "end": 46172.32, + "probability": 0.7478 + }, + { + "start": 46173.48, + "end": 46174.66, + "probability": 0.54 + }, + { + "start": 46174.92, + "end": 46176.34, + "probability": 0.7486 + }, + { + "start": 46176.5, + "end": 46178.54, + "probability": 0.8802 + }, + { + "start": 46180.62, + "end": 46183.98, + "probability": 0.9675 + }, + { + "start": 46184.8, + "end": 46185.86, + "probability": 0.7882 + }, + { + "start": 46186.88, + "end": 46192.28, + "probability": 0.9958 + }, + { + "start": 46193.48, + "end": 46195.54, + "probability": 0.999 + }, + { + "start": 46196.1, + "end": 46198.18, + "probability": 0.9596 + }, + { + "start": 46198.84, + "end": 46199.45, + "probability": 0.9677 + }, + { + "start": 46201.06, + "end": 46203.85, + "probability": 0.8555 + }, + { + "start": 46205.28, + "end": 46206.93, + "probability": 0.6023 + }, + { + "start": 46208.18, + "end": 46209.74, + "probability": 0.6955 + }, + { + "start": 46210.68, + "end": 46212.32, + "probability": 0.7508 + }, + { + "start": 46214.1, + "end": 46215.32, + "probability": 0.9744 + }, + { + "start": 46216.94, + "end": 46217.69, + "probability": 0.9316 + }, + { + "start": 46218.0, + "end": 46219.79, + "probability": 0.915 + }, + { + "start": 46220.4, + "end": 46221.4, + "probability": 0.8262 + }, + { + "start": 46222.18, + "end": 46226.76, + "probability": 0.9954 + }, + { + "start": 46227.88, + "end": 46228.98, + "probability": 0.852 + }, + { + "start": 46230.62, + "end": 46232.38, + "probability": 0.9808 + }, + { + "start": 46233.72, + "end": 46237.56, + "probability": 0.9728 + }, + { + "start": 46238.3, + "end": 46240.3, + "probability": 0.9573 + }, + { + "start": 46240.98, + "end": 46242.3, + "probability": 0.6145 + }, + { + "start": 46243.14, + "end": 46245.78, + "probability": 0.979 + }, + { + "start": 46246.5, + "end": 46248.99, + "probability": 0.6599 + }, + { + "start": 46250.32, + "end": 46254.08, + "probability": 0.8371 + }, + { + "start": 46256.04, + "end": 46257.54, + "probability": 0.9784 + }, + { + "start": 46258.44, + "end": 46262.44, + "probability": 0.9818 + }, + { + "start": 46264.16, + "end": 46265.29, + "probability": 0.9873 + }, + { + "start": 46265.84, + "end": 46268.92, + "probability": 0.5824 + }, + { + "start": 46270.16, + "end": 46271.93, + "probability": 0.9838 + }, + { + "start": 46273.28, + "end": 46275.74, + "probability": 0.9988 + }, + { + "start": 46277.54, + "end": 46279.02, + "probability": 0.7531 + }, + { + "start": 46279.96, + "end": 46285.48, + "probability": 0.9794 + }, + { + "start": 46286.64, + "end": 46288.32, + "probability": 0.8811 + }, + { + "start": 46289.12, + "end": 46291.84, + "probability": 0.8528 + }, + { + "start": 46292.78, + "end": 46294.4, + "probability": 0.6765 + }, + { + "start": 46295.06, + "end": 46299.72, + "probability": 0.9007 + }, + { + "start": 46300.28, + "end": 46301.0, + "probability": 0.7601 + }, + { + "start": 46301.64, + "end": 46303.8, + "probability": 0.9712 + }, + { + "start": 46304.7, + "end": 46305.64, + "probability": 0.7918 + }, + { + "start": 46306.34, + "end": 46308.24, + "probability": 0.9435 + }, + { + "start": 46309.44, + "end": 46310.86, + "probability": 0.8399 + }, + { + "start": 46311.78, + "end": 46313.34, + "probability": 0.4464 + }, + { + "start": 46314.24, + "end": 46318.58, + "probability": 0.7371 + }, + { + "start": 46320.14, + "end": 46323.94, + "probability": 0.8587 + }, + { + "start": 46325.56, + "end": 46330.7, + "probability": 0.6647 + }, + { + "start": 46331.32, + "end": 46336.3, + "probability": 0.8591 + }, + { + "start": 46337.46, + "end": 46342.28, + "probability": 0.9816 + }, + { + "start": 46342.5, + "end": 46346.34, + "probability": 0.9508 + }, + { + "start": 46346.88, + "end": 46348.36, + "probability": 0.653 + }, + { + "start": 46349.12, + "end": 46349.54, + "probability": 0.9183 + }, + { + "start": 46349.6, + "end": 46350.32, + "probability": 0.6913 + }, + { + "start": 46350.76, + "end": 46354.88, + "probability": 0.979 + }, + { + "start": 46356.84, + "end": 46358.46, + "probability": 0.9797 + }, + { + "start": 46358.58, + "end": 46362.24, + "probability": 0.6632 + }, + { + "start": 46363.24, + "end": 46365.68, + "probability": 0.8405 + }, + { + "start": 46371.2, + "end": 46373.48, + "probability": 0.6546 + }, + { + "start": 46374.6, + "end": 46375.8, + "probability": 0.8424 + }, + { + "start": 46376.6, + "end": 46378.15, + "probability": 0.7848 + }, + { + "start": 46378.72, + "end": 46380.42, + "probability": 0.8987 + }, + { + "start": 46381.42, + "end": 46382.26, + "probability": 0.9062 + }, + { + "start": 46383.34, + "end": 46387.22, + "probability": 0.9829 + }, + { + "start": 46387.9, + "end": 46390.03, + "probability": 0.7941 + }, + { + "start": 46390.86, + "end": 46394.06, + "probability": 0.7731 + }, + { + "start": 46394.56, + "end": 46395.75, + "probability": 0.7542 + }, + { + "start": 46396.54, + "end": 46400.07, + "probability": 0.9871 + }, + { + "start": 46401.12, + "end": 46402.2, + "probability": 0.7842 + }, + { + "start": 46405.02, + "end": 46407.24, + "probability": 0.7431 + }, + { + "start": 46407.4, + "end": 46411.32, + "probability": 0.9961 + }, + { + "start": 46414.24, + "end": 46414.73, + "probability": 0.9602 + }, + { + "start": 46415.18, + "end": 46416.52, + "probability": 0.656 + }, + { + "start": 46416.88, + "end": 46417.58, + "probability": 0.8729 + }, + { + "start": 46417.66, + "end": 46420.66, + "probability": 0.6906 + }, + { + "start": 46422.8, + "end": 46425.9, + "probability": 0.9486 + }, + { + "start": 46426.68, + "end": 46430.08, + "probability": 0.976 + }, + { + "start": 46431.66, + "end": 46432.56, + "probability": 0.9966 + }, + { + "start": 46435.16, + "end": 46435.64, + "probability": 0.3174 + }, + { + "start": 46436.76, + "end": 46445.6, + "probability": 0.971 + }, + { + "start": 46446.68, + "end": 46448.53, + "probability": 0.9783 + }, + { + "start": 46449.38, + "end": 46450.04, + "probability": 0.784 + }, + { + "start": 46450.1, + "end": 46451.72, + "probability": 0.9972 + }, + { + "start": 46452.22, + "end": 46454.34, + "probability": 0.9697 + }, + { + "start": 46454.8, + "end": 46456.22, + "probability": 0.6488 + }, + { + "start": 46456.78, + "end": 46458.18, + "probability": 0.8448 + }, + { + "start": 46459.52, + "end": 46460.16, + "probability": 0.7735 + }, + { + "start": 46461.3, + "end": 46463.76, + "probability": 0.991 + }, + { + "start": 46464.34, + "end": 46467.92, + "probability": 0.9824 + }, + { + "start": 46468.98, + "end": 46471.3, + "probability": 0.9648 + }, + { + "start": 46472.9, + "end": 46473.16, + "probability": 0.8862 + }, + { + "start": 46474.36, + "end": 46475.6, + "probability": 0.7561 + }, + { + "start": 46477.26, + "end": 46484.82, + "probability": 0.8981 + }, + { + "start": 46485.54, + "end": 46486.76, + "probability": 0.689 + }, + { + "start": 46487.76, + "end": 46488.6, + "probability": 0.9512 + }, + { + "start": 46491.44, + "end": 46492.7, + "probability": 0.5066 + }, + { + "start": 46494.46, + "end": 46496.42, + "probability": 0.7519 + }, + { + "start": 46497.14, + "end": 46499.52, + "probability": 0.5431 + }, + { + "start": 46499.78, + "end": 46504.62, + "probability": 0.631 + }, + { + "start": 46505.16, + "end": 46507.96, + "probability": 0.9725 + }, + { + "start": 46509.0, + "end": 46513.78, + "probability": 0.9569 + }, + { + "start": 46515.02, + "end": 46517.32, + "probability": 0.9033 + }, + { + "start": 46517.98, + "end": 46519.09, + "probability": 0.9614 + }, + { + "start": 46520.14, + "end": 46522.04, + "probability": 0.9802 + }, + { + "start": 46522.86, + "end": 46524.06, + "probability": 0.9852 + }, + { + "start": 46525.2, + "end": 46526.04, + "probability": 0.8726 + }, + { + "start": 46529.16, + "end": 46530.2, + "probability": 0.6632 + }, + { + "start": 46531.0, + "end": 46532.82, + "probability": 0.9285 + }, + { + "start": 46533.44, + "end": 46535.28, + "probability": 0.9329 + }, + { + "start": 46535.84, + "end": 46538.3, + "probability": 0.5019 + }, + { + "start": 46539.24, + "end": 46541.23, + "probability": 0.9922 + }, + { + "start": 46542.44, + "end": 46543.7, + "probability": 0.7085 + }, + { + "start": 46544.66, + "end": 46549.74, + "probability": 0.9207 + }, + { + "start": 46551.24, + "end": 46552.22, + "probability": 0.7095 + }, + { + "start": 46552.76, + "end": 46554.36, + "probability": 0.9073 + }, + { + "start": 46555.04, + "end": 46559.8, + "probability": 0.9858 + }, + { + "start": 46561.02, + "end": 46561.84, + "probability": 0.8758 + }, + { + "start": 46561.98, + "end": 46562.63, + "probability": 0.8726 + }, + { + "start": 46562.9, + "end": 46568.96, + "probability": 0.938 + }, + { + "start": 46569.28, + "end": 46571.98, + "probability": 0.9862 + }, + { + "start": 46572.58, + "end": 46573.68, + "probability": 0.9998 + }, + { + "start": 46574.32, + "end": 46577.68, + "probability": 0.9993 + }, + { + "start": 46578.46, + "end": 46581.88, + "probability": 0.993 + }, + { + "start": 46582.4, + "end": 46584.5, + "probability": 0.9937 + }, + { + "start": 46584.76, + "end": 46585.5, + "probability": 0.9592 + }, + { + "start": 46585.88, + "end": 46589.1, + "probability": 0.9965 + }, + { + "start": 46590.08, + "end": 46593.28, + "probability": 0.9963 + }, + { + "start": 46593.78, + "end": 46595.44, + "probability": 0.9945 + }, + { + "start": 46596.65, + "end": 46601.36, + "probability": 0.9663 + }, + { + "start": 46603.26, + "end": 46609.52, + "probability": 0.9201 + }, + { + "start": 46610.66, + "end": 46612.54, + "probability": 0.9741 + }, + { + "start": 46613.94, + "end": 46615.57, + "probability": 0.6634 + }, + { + "start": 46615.86, + "end": 46619.4, + "probability": 0.7063 + }, + { + "start": 46631.1, + "end": 46633.84, + "probability": 0.8148 + }, + { + "start": 46634.56, + "end": 46635.64, + "probability": 0.8081 + }, + { + "start": 46636.96, + "end": 46638.48, + "probability": 0.7899 + }, + { + "start": 46644.77, + "end": 46646.52, + "probability": 0.6146 + }, + { + "start": 46647.26, + "end": 46647.46, + "probability": 0.3121 + }, + { + "start": 46647.64, + "end": 46648.92, + "probability": 0.7853 + }, + { + "start": 46651.54, + "end": 46653.7, + "probability": 0.9267 + }, + { + "start": 46655.81, + "end": 46659.86, + "probability": 0.8029 + }, + { + "start": 46660.82, + "end": 46663.88, + "probability": 0.7279 + }, + { + "start": 46664.34, + "end": 46667.28, + "probability": 0.9529 + }, + { + "start": 46668.68, + "end": 46671.26, + "probability": 0.9192 + }, + { + "start": 46671.9, + "end": 46672.52, + "probability": 0.9512 + }, + { + "start": 46673.84, + "end": 46675.51, + "probability": 0.9033 + }, + { + "start": 46676.54, + "end": 46684.36, + "probability": 0.9012 + }, + { + "start": 46684.68, + "end": 46688.16, + "probability": 0.9494 + }, + { + "start": 46689.1, + "end": 46692.06, + "probability": 0.6763 + }, + { + "start": 46693.3, + "end": 46696.76, + "probability": 0.807 + }, + { + "start": 46696.9, + "end": 46697.7, + "probability": 0.8976 + }, + { + "start": 46698.12, + "end": 46699.7, + "probability": 0.6675 + }, + { + "start": 46700.18, + "end": 46701.04, + "probability": 0.8942 + }, + { + "start": 46701.58, + "end": 46707.8, + "probability": 0.9976 + }, + { + "start": 46707.96, + "end": 46708.98, + "probability": 0.9739 + }, + { + "start": 46709.96, + "end": 46711.0, + "probability": 0.3474 + }, + { + "start": 46711.04, + "end": 46712.9, + "probability": 0.7048 + }, + { + "start": 46713.82, + "end": 46714.92, + "probability": 0.8945 + }, + { + "start": 46715.86, + "end": 46717.51, + "probability": 0.9927 + }, + { + "start": 46718.2, + "end": 46720.46, + "probability": 0.6914 + }, + { + "start": 46721.08, + "end": 46723.86, + "probability": 0.9514 + }, + { + "start": 46724.4, + "end": 46725.68, + "probability": 0.5049 + }, + { + "start": 46726.58, + "end": 46727.15, + "probability": 0.9565 + }, + { + "start": 46728.18, + "end": 46729.84, + "probability": 0.882 + }, + { + "start": 46730.18, + "end": 46731.06, + "probability": 0.8754 + }, + { + "start": 46731.42, + "end": 46736.26, + "probability": 0.9893 + }, + { + "start": 46736.94, + "end": 46738.82, + "probability": 0.8007 + }, + { + "start": 46739.66, + "end": 46742.34, + "probability": 0.9731 + }, + { + "start": 46743.56, + "end": 46744.68, + "probability": 0.9056 + }, + { + "start": 46744.82, + "end": 46745.88, + "probability": 0.9559 + }, + { + "start": 46746.36, + "end": 46747.22, + "probability": 0.8378 + }, + { + "start": 46747.72, + "end": 46748.82, + "probability": 0.6342 + }, + { + "start": 46748.88, + "end": 46750.3, + "probability": 0.9416 + }, + { + "start": 46750.8, + "end": 46751.86, + "probability": 0.9381 + }, + { + "start": 46751.88, + "end": 46752.7, + "probability": 0.4828 + }, + { + "start": 46755.58, + "end": 46755.82, + "probability": 0.0179 + }, + { + "start": 46755.82, + "end": 46758.06, + "probability": 0.8455 + }, + { + "start": 46758.7, + "end": 46760.2, + "probability": 0.9883 + }, + { + "start": 46760.7, + "end": 46765.46, + "probability": 0.9834 + }, + { + "start": 46765.92, + "end": 46770.14, + "probability": 0.6521 + }, + { + "start": 46770.7, + "end": 46773.68, + "probability": 0.8867 + }, + { + "start": 46774.56, + "end": 46779.34, + "probability": 0.9722 + }, + { + "start": 46779.86, + "end": 46781.38, + "probability": 0.8528 + }, + { + "start": 46781.76, + "end": 46783.32, + "probability": 0.9789 + }, + { + "start": 46784.0, + "end": 46786.64, + "probability": 0.7707 + }, + { + "start": 46787.62, + "end": 46788.04, + "probability": 0.3979 + }, + { + "start": 46788.12, + "end": 46791.24, + "probability": 0.9447 + }, + { + "start": 46791.3, + "end": 46793.96, + "probability": 0.6753 + }, + { + "start": 46794.14, + "end": 46794.9, + "probability": 0.7796 + }, + { + "start": 46794.98, + "end": 46795.6, + "probability": 0.7611 + }, + { + "start": 46795.94, + "end": 46797.26, + "probability": 0.9971 + }, + { + "start": 46797.38, + "end": 46798.0, + "probability": 0.901 + }, + { + "start": 46798.52, + "end": 46799.68, + "probability": 0.6099 + }, + { + "start": 46800.74, + "end": 46801.44, + "probability": 0.1226 + }, + { + "start": 46801.58, + "end": 46804.64, + "probability": 0.9182 + }, + { + "start": 46805.36, + "end": 46805.78, + "probability": 0.5305 + }, + { + "start": 46805.86, + "end": 46806.8, + "probability": 0.5483 + }, + { + "start": 46806.8, + "end": 46807.08, + "probability": 0.6886 + }, + { + "start": 46807.68, + "end": 46811.02, + "probability": 0.9618 + }, + { + "start": 46811.64, + "end": 46813.52, + "probability": 0.8291 + }, + { + "start": 46813.9, + "end": 46814.98, + "probability": 0.7912 + }, + { + "start": 46815.36, + "end": 46817.3, + "probability": 0.9125 + }, + { + "start": 46817.99, + "end": 46821.28, + "probability": 0.6433 + }, + { + "start": 46821.98, + "end": 46823.94, + "probability": 0.6651 + }, + { + "start": 46824.76, + "end": 46829.66, + "probability": 0.9772 + }, + { + "start": 46831.32, + "end": 46833.28, + "probability": 0.9878 + }, + { + "start": 46833.46, + "end": 46835.19, + "probability": 0.9751 + }, + { + "start": 46836.79, + "end": 46840.68, + "probability": 0.3328 + }, + { + "start": 46841.5, + "end": 46843.02, + "probability": 0.7258 + }, + { + "start": 46844.06, + "end": 46844.8, + "probability": 0.9717 + }, + { + "start": 46846.2, + "end": 46850.52, + "probability": 0.3187 + }, + { + "start": 46850.82, + "end": 46855.16, + "probability": 0.1814 + }, + { + "start": 46855.4, + "end": 46856.64, + "probability": 0.1161 + }, + { + "start": 46856.76, + "end": 46858.02, + "probability": 0.5293 + }, + { + "start": 46858.02, + "end": 46860.08, + "probability": 0.1838 + }, + { + "start": 46860.18, + "end": 46863.72, + "probability": 0.5172 + }, + { + "start": 46867.14, + "end": 46868.71, + "probability": 0.7508 + }, + { + "start": 46869.14, + "end": 46872.05, + "probability": 0.7054 + }, + { + "start": 46873.0, + "end": 46875.84, + "probability": 0.9749 + }, + { + "start": 46876.06, + "end": 46880.88, + "probability": 0.9823 + }, + { + "start": 46881.06, + "end": 46885.1, + "probability": 0.9938 + }, + { + "start": 46885.64, + "end": 46886.62, + "probability": 0.9221 + }, + { + "start": 46886.82, + "end": 46890.62, + "probability": 0.8282 + }, + { + "start": 46890.96, + "end": 46893.02, + "probability": 0.9897 + }, + { + "start": 46893.92, + "end": 46896.8, + "probability": 0.8264 + }, + { + "start": 46897.52, + "end": 46900.24, + "probability": 0.9463 + }, + { + "start": 46902.02, + "end": 46906.08, + "probability": 0.9874 + }, + { + "start": 46907.14, + "end": 46909.58, + "probability": 0.9847 + }, + { + "start": 46909.68, + "end": 46913.44, + "probability": 0.992 + }, + { + "start": 46914.28, + "end": 46917.5, + "probability": 0.8105 + }, + { + "start": 46917.66, + "end": 46919.8, + "probability": 0.9946 + }, + { + "start": 46920.68, + "end": 46924.11, + "probability": 0.985 + }, + { + "start": 46924.4, + "end": 46927.4, + "probability": 0.9126 + }, + { + "start": 46928.42, + "end": 46932.92, + "probability": 0.998 + }, + { + "start": 46933.56, + "end": 46936.82, + "probability": 0.9099 + }, + { + "start": 46937.82, + "end": 46939.24, + "probability": 0.6756 + }, + { + "start": 46939.78, + "end": 46940.59, + "probability": 0.9204 + }, + { + "start": 46941.12, + "end": 46942.3, + "probability": 0.9775 + }, + { + "start": 46942.84, + "end": 46942.94, + "probability": 0.9966 + }, + { + "start": 46945.8, + "end": 46947.68, + "probability": 0.6236 + }, + { + "start": 46947.94, + "end": 46949.44, + "probability": 0.9883 + }, + { + "start": 46949.66, + "end": 46952.76, + "probability": 0.9166 + }, + { + "start": 46954.74, + "end": 46956.5, + "probability": 0.6756 + }, + { + "start": 46956.58, + "end": 46959.96, + "probability": 0.9932 + }, + { + "start": 46961.22, + "end": 46964.85, + "probability": 0.9917 + }, + { + "start": 46966.32, + "end": 46968.36, + "probability": 0.7253 + }, + { + "start": 46968.6, + "end": 46971.56, + "probability": 0.9177 + }, + { + "start": 46972.26, + "end": 46976.18, + "probability": 0.972 + }, + { + "start": 46976.52, + "end": 46978.42, + "probability": 0.9835 + }, + { + "start": 46978.52, + "end": 46979.68, + "probability": 0.9602 + }, + { + "start": 46981.0, + "end": 46987.14, + "probability": 0.9961 + }, + { + "start": 46987.14, + "end": 46992.48, + "probability": 0.9985 + }, + { + "start": 46993.02, + "end": 46994.84, + "probability": 0.2198 + }, + { + "start": 46994.96, + "end": 46995.86, + "probability": 0.7433 + }, + { + "start": 46995.98, + "end": 46998.98, + "probability": 0.9387 + }, + { + "start": 46999.9, + "end": 47000.12, + "probability": 0.4689 + }, + { + "start": 47000.64, + "end": 47001.9, + "probability": 0.8778 + }, + { + "start": 47002.18, + "end": 47006.7, + "probability": 0.8154 + }, + { + "start": 47007.96, + "end": 47009.56, + "probability": 0.6533 + }, + { + "start": 47009.66, + "end": 47011.03, + "probability": 0.7378 + }, + { + "start": 47011.14, + "end": 47013.34, + "probability": 0.9054 + }, + { + "start": 47013.36, + "end": 47015.58, + "probability": 0.5937 + }, + { + "start": 47022.86, + "end": 47025.96, + "probability": 0.37 + }, + { + "start": 47026.8, + "end": 47027.28, + "probability": 0.2038 + }, + { + "start": 47032.76, + "end": 47033.96, + "probability": 0.3213 + }, + { + "start": 47033.96, + "end": 47036.32, + "probability": 0.6051 + }, + { + "start": 47036.62, + "end": 47041.34, + "probability": 0.8842 + }, + { + "start": 47041.78, + "end": 47042.08, + "probability": 0.7548 + }, + { + "start": 47042.4, + "end": 47045.18, + "probability": 0.7358 + }, + { + "start": 47045.86, + "end": 47047.68, + "probability": 0.8701 + }, + { + "start": 47047.84, + "end": 47049.26, + "probability": 0.8601 + }, + { + "start": 47050.34, + "end": 47051.24, + "probability": 0.7581 + }, + { + "start": 47052.02, + "end": 47053.1, + "probability": 0.7493 + }, + { + "start": 47058.6, + "end": 47061.1, + "probability": 0.8695 + }, + { + "start": 47062.76, + "end": 47065.98, + "probability": 0.8638 + }, + { + "start": 47066.14, + "end": 47067.9, + "probability": 0.6892 + }, + { + "start": 47068.92, + "end": 47069.62, + "probability": 0.9462 + }, + { + "start": 47081.0, + "end": 47081.14, + "probability": 0.4047 + }, + { + "start": 47083.46, + "end": 47085.74, + "probability": 0.7364 + }, + { + "start": 47087.3, + "end": 47090.94, + "probability": 0.9884 + }, + { + "start": 47090.94, + "end": 47093.76, + "probability": 0.9211 + }, + { + "start": 47094.54, + "end": 47098.84, + "probability": 0.9746 + }, + { + "start": 47098.84, + "end": 47101.72, + "probability": 0.9952 + }, + { + "start": 47102.42, + "end": 47104.8, + "probability": 0.9934 + }, + { + "start": 47106.08, + "end": 47111.18, + "probability": 0.877 + }, + { + "start": 47115.74, + "end": 47120.32, + "probability": 0.9972 + }, + { + "start": 47121.32, + "end": 47124.4, + "probability": 0.8466 + }, + { + "start": 47125.36, + "end": 47130.6, + "probability": 0.9865 + }, + { + "start": 47132.48, + "end": 47136.04, + "probability": 0.8035 + }, + { + "start": 47137.2, + "end": 47138.44, + "probability": 0.5888 + }, + { + "start": 47138.52, + "end": 47138.76, + "probability": 0.8021 + }, + { + "start": 47138.78, + "end": 47139.92, + "probability": 0.6565 + }, + { + "start": 47140.16, + "end": 47141.21, + "probability": 0.8936 + }, + { + "start": 47142.34, + "end": 47147.5, + "probability": 0.9647 + }, + { + "start": 47148.42, + "end": 47151.88, + "probability": 0.7176 + }, + { + "start": 47152.96, + "end": 47155.3, + "probability": 0.9951 + }, + { + "start": 47155.46, + "end": 47157.12, + "probability": 0.6509 + }, + { + "start": 47159.56, + "end": 47161.32, + "probability": 0.2896 + }, + { + "start": 47162.08, + "end": 47163.51, + "probability": 0.5406 + }, + { + "start": 47164.86, + "end": 47166.46, + "probability": 0.7832 + }, + { + "start": 47167.06, + "end": 47171.12, + "probability": 0.9919 + }, + { + "start": 47171.56, + "end": 47172.85, + "probability": 0.8043 + }, + { + "start": 47173.32, + "end": 47174.3, + "probability": 0.8019 + }, + { + "start": 47174.54, + "end": 47175.7, + "probability": 0.6932 + }, + { + "start": 47175.78, + "end": 47176.36, + "probability": 0.6483 + }, + { + "start": 47176.48, + "end": 47177.91, + "probability": 0.9666 + }, + { + "start": 47178.52, + "end": 47179.28, + "probability": 0.4705 + }, + { + "start": 47179.28, + "end": 47183.04, + "probability": 0.7779 + }, + { + "start": 47183.54, + "end": 47184.2, + "probability": 0.5761 + }, + { + "start": 47184.24, + "end": 47187.64, + "probability": 0.9634 + }, + { + "start": 47188.54, + "end": 47191.12, + "probability": 0.6523 + }, + { + "start": 47197.54, + "end": 47200.02, + "probability": 0.8939 + }, + { + "start": 47200.14, + "end": 47201.86, + "probability": 0.8785 + }, + { + "start": 47201.98, + "end": 47208.22, + "probability": 0.951 + }, + { + "start": 47209.02, + "end": 47212.72, + "probability": 0.9419 + }, + { + "start": 47213.82, + "end": 47216.37, + "probability": 0.9782 + }, + { + "start": 47217.42, + "end": 47220.72, + "probability": 0.988 + }, + { + "start": 47221.42, + "end": 47224.46, + "probability": 0.6787 + }, + { + "start": 47224.48, + "end": 47226.66, + "probability": 0.9734 + }, + { + "start": 47227.4, + "end": 47229.98, + "probability": 0.939 + }, + { + "start": 47231.32, + "end": 47232.82, + "probability": 0.8713 + }, + { + "start": 47233.46, + "end": 47234.5, + "probability": 0.2596 + }, + { + "start": 47234.66, + "end": 47239.89, + "probability": 0.6997 + }, + { + "start": 47240.52, + "end": 47241.34, + "probability": 0.9987 + }, + { + "start": 47241.8, + "end": 47244.22, + "probability": 0.445 + }, + { + "start": 47244.92, + "end": 47246.16, + "probability": 0.5015 + }, + { + "start": 47246.18, + "end": 47247.98, + "probability": 0.6754 + }, + { + "start": 47247.98, + "end": 47248.38, + "probability": 0.1918 + }, + { + "start": 47248.7, + "end": 47248.96, + "probability": 0.652 + }, + { + "start": 47249.62, + "end": 47250.21, + "probability": 0.915 + }, + { + "start": 47252.42, + "end": 47254.2, + "probability": 0.9247 + }, + { + "start": 47256.16, + "end": 47257.16, + "probability": 0.6395 + }, + { + "start": 47257.46, + "end": 47259.87, + "probability": 0.8066 + }, + { + "start": 47261.89, + "end": 47265.04, + "probability": 0.6417 + }, + { + "start": 47265.8, + "end": 47270.2, + "probability": 0.7014 + }, + { + "start": 47271.68, + "end": 47273.76, + "probability": 0.4012 + }, + { + "start": 47273.78, + "end": 47275.8, + "probability": 0.9617 + }, + { + "start": 47276.36, + "end": 47282.12, + "probability": 0.8557 + }, + { + "start": 47283.83, + "end": 47287.26, + "probability": 0.9626 + }, + { + "start": 47287.26, + "end": 47289.86, + "probability": 0.9924 + }, + { + "start": 47290.48, + "end": 47291.22, + "probability": 0.3928 + }, + { + "start": 47291.74, + "end": 47291.78, + "probability": 0.1272 + }, + { + "start": 47291.78, + "end": 47296.64, + "probability": 0.96 + }, + { + "start": 47297.38, + "end": 47300.46, + "probability": 0.8325 + }, + { + "start": 47301.02, + "end": 47304.44, + "probability": 0.9308 + }, + { + "start": 47305.92, + "end": 47308.7, + "probability": 0.9909 + }, + { + "start": 47311.02, + "end": 47311.52, + "probability": 0.6404 + }, + { + "start": 47311.6, + "end": 47314.8, + "probability": 0.8875 + }, + { + "start": 47315.16, + "end": 47316.46, + "probability": 0.855 + }, + { + "start": 47316.98, + "end": 47317.86, + "probability": 0.9873 + }, + { + "start": 47318.96, + "end": 47319.72, + "probability": 0.8545 + }, + { + "start": 47319.78, + "end": 47321.58, + "probability": 0.6287 + }, + { + "start": 47322.02, + "end": 47323.44, + "probability": 0.5042 + }, + { + "start": 47324.02, + "end": 47327.1, + "probability": 0.8938 + }, + { + "start": 47327.24, + "end": 47327.78, + "probability": 0.1499 + }, + { + "start": 47328.88, + "end": 47330.2, + "probability": 0.6176 + }, + { + "start": 47330.22, + "end": 47331.48, + "probability": 0.8494 + }, + { + "start": 47331.58, + "end": 47332.74, + "probability": 0.9412 + }, + { + "start": 47332.86, + "end": 47334.82, + "probability": 0.9782 + }, + { + "start": 47335.44, + "end": 47338.12, + "probability": 0.8286 + }, + { + "start": 47338.38, + "end": 47341.62, + "probability": 0.9537 + }, + { + "start": 47342.0, + "end": 47347.68, + "probability": 0.6052 + }, + { + "start": 47347.8, + "end": 47349.36, + "probability": 0.7562 + }, + { + "start": 47350.24, + "end": 47351.74, + "probability": 0.412 + }, + { + "start": 47352.62, + "end": 47358.52, + "probability": 0.8757 + }, + { + "start": 47359.16, + "end": 47360.66, + "probability": 0.6542 + }, + { + "start": 47361.08, + "end": 47362.4, + "probability": 0.9346 + }, + { + "start": 47363.2, + "end": 47366.48, + "probability": 0.9076 + }, + { + "start": 47367.2, + "end": 47368.66, + "probability": 0.6343 + }, + { + "start": 47368.68, + "end": 47370.37, + "probability": 0.5239 + }, + { + "start": 47371.32, + "end": 47373.38, + "probability": 0.0196 + }, + { + "start": 47376.44, + "end": 47377.46, + "probability": 0.0361 + }, + { + "start": 47378.72, + "end": 47380.78, + "probability": 0.2868 + }, + { + "start": 47381.9, + "end": 47382.5, + "probability": 0.5905 + }, + { + "start": 47384.18, + "end": 47385.48, + "probability": 0.9431 + }, + { + "start": 47386.66, + "end": 47389.48, + "probability": 0.7824 + }, + { + "start": 47390.72, + "end": 47397.48, + "probability": 0.9655 + }, + { + "start": 47398.64, + "end": 47401.2, + "probability": 0.9907 + }, + { + "start": 47402.64, + "end": 47405.12, + "probability": 0.7451 + }, + { + "start": 47406.2, + "end": 47408.1, + "probability": 0.749 + }, + { + "start": 47408.34, + "end": 47412.16, + "probability": 0.9809 + }, + { + "start": 47413.52, + "end": 47416.82, + "probability": 0.9711 + }, + { + "start": 47417.9, + "end": 47419.4, + "probability": 0.9725 + }, + { + "start": 47419.46, + "end": 47419.88, + "probability": 0.4709 + }, + { + "start": 47419.96, + "end": 47420.92, + "probability": 0.9511 + }, + { + "start": 47421.4, + "end": 47424.16, + "probability": 0.8671 + }, + { + "start": 47426.02, + "end": 47429.38, + "probability": 0.9369 + }, + { + "start": 47429.46, + "end": 47432.96, + "probability": 0.9717 + }, + { + "start": 47433.56, + "end": 47439.76, + "probability": 0.9429 + }, + { + "start": 47440.22, + "end": 47444.7, + "probability": 0.6234 + }, + { + "start": 47445.6, + "end": 47449.22, + "probability": 0.8306 + }, + { + "start": 47449.36, + "end": 47450.68, + "probability": 0.9889 + }, + { + "start": 47450.72, + "end": 47451.86, + "probability": 0.9325 + }, + { + "start": 47452.72, + "end": 47457.68, + "probability": 0.9812 + }, + { + "start": 47457.82, + "end": 47461.36, + "probability": 0.853 + }, + { + "start": 47461.42, + "end": 47463.86, + "probability": 0.7496 + }, + { + "start": 47464.88, + "end": 47468.98, + "probability": 0.9078 + }, + { + "start": 47469.72, + "end": 47470.51, + "probability": 0.9104 + }, + { + "start": 47471.72, + "end": 47475.62, + "probability": 0.9054 + }, + { + "start": 47477.38, + "end": 47484.1, + "probability": 0.7851 + }, + { + "start": 47485.04, + "end": 47488.24, + "probability": 0.7462 + }, + { + "start": 47488.86, + "end": 47491.4, + "probability": 0.9785 + }, + { + "start": 47491.84, + "end": 47493.16, + "probability": 0.7151 + }, + { + "start": 47493.7, + "end": 47495.11, + "probability": 0.3847 + }, + { + "start": 47495.68, + "end": 47496.24, + "probability": 0.6364 + }, + { + "start": 47496.4, + "end": 47497.31, + "probability": 0.6266 + }, + { + "start": 47497.98, + "end": 47498.68, + "probability": 0.6388 + }, + { + "start": 47498.88, + "end": 47501.04, + "probability": 0.8821 + }, + { + "start": 47501.7, + "end": 47504.52, + "probability": 0.9519 + }, + { + "start": 47504.8, + "end": 47506.76, + "probability": 0.8678 + }, + { + "start": 47507.14, + "end": 47507.22, + "probability": 0.4511 + }, + { + "start": 47507.22, + "end": 47513.1, + "probability": 0.9278 + }, + { + "start": 47513.86, + "end": 47516.2, + "probability": 0.8647 + }, + { + "start": 47516.7, + "end": 47517.82, + "probability": 0.8668 + }, + { + "start": 47518.12, + "end": 47521.56, + "probability": 0.9096 + }, + { + "start": 47522.4, + "end": 47525.2, + "probability": 0.9842 + }, + { + "start": 47525.92, + "end": 47526.82, + "probability": 0.8256 + }, + { + "start": 47527.5, + "end": 47529.86, + "probability": 0.6819 + }, + { + "start": 47530.34, + "end": 47533.9, + "probability": 0.7485 + }, + { + "start": 47534.38, + "end": 47536.2, + "probability": 0.9214 + }, + { + "start": 47536.88, + "end": 47538.08, + "probability": 0.8792 + }, + { + "start": 47538.58, + "end": 47539.32, + "probability": 0.3631 + }, + { + "start": 47539.76, + "end": 47540.54, + "probability": 0.2402 + }, + { + "start": 47540.62, + "end": 47541.16, + "probability": 0.8642 + }, + { + "start": 47541.76, + "end": 47542.7, + "probability": 0.8036 + }, + { + "start": 47543.5, + "end": 47545.76, + "probability": 0.9369 + }, + { + "start": 47546.38, + "end": 47548.42, + "probability": 0.6057 + }, + { + "start": 47548.42, + "end": 47549.36, + "probability": 0.6251 + }, + { + "start": 47549.46, + "end": 47552.02, + "probability": 0.8854 + }, + { + "start": 47552.42, + "end": 47553.68, + "probability": 0.9875 + }, + { + "start": 47554.28, + "end": 47554.5, + "probability": 0.6458 + }, + { + "start": 47555.06, + "end": 47557.34, + "probability": 0.866 + }, + { + "start": 47558.06, + "end": 47564.84, + "probability": 0.878 + }, + { + "start": 47565.42, + "end": 47567.14, + "probability": 0.9554 + }, + { + "start": 47567.68, + "end": 47568.16, + "probability": 0.8578 + }, + { + "start": 47569.0, + "end": 47571.7, + "probability": 0.8699 + }, + { + "start": 47572.8, + "end": 47573.54, + "probability": 0.2825 + }, + { + "start": 47573.54, + "end": 47574.68, + "probability": 0.4627 + }, + { + "start": 47574.82, + "end": 47575.4, + "probability": 0.4216 + }, + { + "start": 47575.44, + "end": 47576.36, + "probability": 0.5804 + }, + { + "start": 47576.6, + "end": 47579.96, + "probability": 0.975 + }, + { + "start": 47579.96, + "end": 47580.74, + "probability": 0.8354 + }, + { + "start": 47580.96, + "end": 47581.88, + "probability": 0.7244 + }, + { + "start": 47582.06, + "end": 47584.36, + "probability": 0.6626 + }, + { + "start": 47584.46, + "end": 47584.48, + "probability": 0.3918 + }, + { + "start": 47584.48, + "end": 47584.74, + "probability": 0.3232 + }, + { + "start": 47584.74, + "end": 47585.72, + "probability": 0.9609 + }, + { + "start": 47586.18, + "end": 47588.64, + "probability": 0.598 + }, + { + "start": 47588.96, + "end": 47590.86, + "probability": 0.4573 + }, + { + "start": 47590.86, + "end": 47591.22, + "probability": 0.1304 + }, + { + "start": 47591.22, + "end": 47592.86, + "probability": 0.7145 + }, + { + "start": 47592.98, + "end": 47593.24, + "probability": 0.6321 + }, + { + "start": 47593.8, + "end": 47596.81, + "probability": 0.9333 + }, + { + "start": 47597.98, + "end": 47597.98, + "probability": 0.0069 + }, + { + "start": 47604.96, + "end": 47605.4, + "probability": 0.111 + }, + { + "start": 47605.4, + "end": 47606.36, + "probability": 0.046 + }, + { + "start": 47606.66, + "end": 47610.82, + "probability": 0.3767 + }, + { + "start": 47611.0, + "end": 47611.8, + "probability": 0.9956 + }, + { + "start": 47612.78, + "end": 47613.24, + "probability": 0.3869 + }, + { + "start": 47614.06, + "end": 47615.32, + "probability": 0.1939 + }, + { + "start": 47616.18, + "end": 47619.76, + "probability": 0.2727 + }, + { + "start": 47620.48, + "end": 47621.14, + "probability": 0.2231 + }, + { + "start": 47621.14, + "end": 47623.1, + "probability": 0.1977 + }, + { + "start": 47623.14, + "end": 47624.54, + "probability": 0.928 + }, + { + "start": 47624.9, + "end": 47626.9, + "probability": 0.7659 + }, + { + "start": 47627.56, + "end": 47628.74, + "probability": 0.659 + }, + { + "start": 47629.28, + "end": 47632.34, + "probability": 0.9927 + }, + { + "start": 47632.42, + "end": 47634.28, + "probability": 0.0362 + }, + { + "start": 47634.4, + "end": 47635.96, + "probability": 0.8997 + }, + { + "start": 47636.02, + "end": 47637.4, + "probability": 0.409 + }, + { + "start": 47637.72, + "end": 47640.66, + "probability": 0.7912 + }, + { + "start": 47640.72, + "end": 47645.2, + "probability": 0.9204 + }, + { + "start": 47645.5, + "end": 47645.98, + "probability": 0.3028 + }, + { + "start": 47646.3, + "end": 47646.36, + "probability": 0.1661 + }, + { + "start": 47646.36, + "end": 47647.02, + "probability": 0.1955 + }, + { + "start": 47647.4, + "end": 47648.14, + "probability": 0.0589 + }, + { + "start": 47648.42, + "end": 47648.82, + "probability": 0.7002 + }, + { + "start": 47649.36, + "end": 47649.94, + "probability": 0.3262 + }, + { + "start": 47650.42, + "end": 47651.3, + "probability": 0.7939 + }, + { + "start": 47651.32, + "end": 47652.78, + "probability": 0.2776 + }, + { + "start": 47653.14, + "end": 47655.12, + "probability": 0.5938 + }, + { + "start": 47655.22, + "end": 47655.82, + "probability": 0.085 + }, + { + "start": 47656.72, + "end": 47657.66, + "probability": 0.0778 + }, + { + "start": 47658.78, + "end": 47663.42, + "probability": 0.7853 + }, + { + "start": 47664.12, + "end": 47664.12, + "probability": 0.0809 + }, + { + "start": 47664.14, + "end": 47666.26, + "probability": 0.9832 + }, + { + "start": 47666.26, + "end": 47669.18, + "probability": 0.9967 + }, + { + "start": 47669.36, + "end": 47673.69, + "probability": 0.996 + }, + { + "start": 47673.72, + "end": 47675.36, + "probability": 0.9891 + }, + { + "start": 47675.64, + "end": 47676.13, + "probability": 0.7695 + }, + { + "start": 47676.26, + "end": 47676.88, + "probability": 0.8424 + }, + { + "start": 47676.94, + "end": 47678.93, + "probability": 0.9459 + }, + { + "start": 47679.16, + "end": 47680.12, + "probability": 0.981 + }, + { + "start": 47680.64, + "end": 47681.58, + "probability": 0.6932 + }, + { + "start": 47681.86, + "end": 47683.68, + "probability": 0.8322 + }, + { + "start": 47683.72, + "end": 47684.14, + "probability": 0.2158 + }, + { + "start": 47684.18, + "end": 47684.62, + "probability": 0.0613 + }, + { + "start": 47686.34, + "end": 47688.76, + "probability": 0.7515 + }, + { + "start": 47688.86, + "end": 47690.24, + "probability": 0.9585 + }, + { + "start": 47690.32, + "end": 47692.06, + "probability": 0.9858 + }, + { + "start": 47692.06, + "end": 47692.86, + "probability": 0.8932 + }, + { + "start": 47693.0, + "end": 47693.92, + "probability": 0.7588 + }, + { + "start": 47694.32, + "end": 47695.9, + "probability": 0.8784 + }, + { + "start": 47696.22, + "end": 47696.74, + "probability": 0.941 + }, + { + "start": 47697.08, + "end": 47697.4, + "probability": 0.2496 + }, + { + "start": 47697.52, + "end": 47697.56, + "probability": 0.509 + }, + { + "start": 47697.56, + "end": 47698.18, + "probability": 0.3508 + }, + { + "start": 47698.39, + "end": 47700.0, + "probability": 0.9246 + }, + { + "start": 47700.22, + "end": 47700.34, + "probability": 0.6454 + }, + { + "start": 47700.34, + "end": 47702.34, + "probability": 0.675 + }, + { + "start": 47704.84, + "end": 47705.93, + "probability": 0.537 + }, + { + "start": 47706.1, + "end": 47708.54, + "probability": 0.9109 + }, + { + "start": 47709.1, + "end": 47712.9, + "probability": 0.655 + }, + { + "start": 47713.02, + "end": 47715.7, + "probability": 0.9024 + }, + { + "start": 47715.74, + "end": 47717.01, + "probability": 0.9985 + }, + { + "start": 47719.06, + "end": 47722.62, + "probability": 0.9893 + }, + { + "start": 47723.38, + "end": 47727.58, + "probability": 0.9507 + }, + { + "start": 47728.02, + "end": 47730.0, + "probability": 0.911 + }, + { + "start": 47731.06, + "end": 47734.3, + "probability": 0.8239 + }, + { + "start": 47735.12, + "end": 47740.42, + "probability": 0.9869 + }, + { + "start": 47741.0, + "end": 47744.32, + "probability": 0.9979 + }, + { + "start": 47744.84, + "end": 47746.34, + "probability": 0.9963 + }, + { + "start": 47748.32, + "end": 47749.2, + "probability": 0.6875 + }, + { + "start": 47749.46, + "end": 47750.38, + "probability": 0.5272 + }, + { + "start": 47751.44, + "end": 47752.12, + "probability": 0.0077 + }, + { + "start": 47752.64, + "end": 47752.82, + "probability": 0.0112 + }, + { + "start": 47752.82, + "end": 47753.02, + "probability": 0.3222 + }, + { + "start": 47753.16, + "end": 47757.5, + "probability": 0.712 + }, + { + "start": 47757.68, + "end": 47758.78, + "probability": 0.7614 + }, + { + "start": 47758.82, + "end": 47760.8, + "probability": 0.9658 + }, + { + "start": 47761.38, + "end": 47762.95, + "probability": 0.9397 + }, + { + "start": 47764.16, + "end": 47764.92, + "probability": 0.6323 + }, + { + "start": 47765.22, + "end": 47766.42, + "probability": 0.4949 + }, + { + "start": 47766.58, + "end": 47781.36, + "probability": 0.7867 + }, + { + "start": 47781.46, + "end": 47787.08, + "probability": 0.9224 + }, + { + "start": 47787.08, + "end": 47789.08, + "probability": 0.8264 + }, + { + "start": 47790.02, + "end": 47793.9, + "probability": 0.8145 + }, + { + "start": 47794.0, + "end": 47796.44, + "probability": 0.6773 + }, + { + "start": 47797.0, + "end": 47812.08, + "probability": 0.0995 + }, + { + "start": 47812.08, + "end": 47812.08, + "probability": 0.0175 + }, + { + "start": 47812.08, + "end": 47812.08, + "probability": 0.2213 + }, + { + "start": 47812.08, + "end": 47812.08, + "probability": 0.1082 + }, + { + "start": 47812.08, + "end": 47812.42, + "probability": 0.302 + }, + { + "start": 47813.2, + "end": 47814.7, + "probability": 0.5766 + }, + { + "start": 47815.32, + "end": 47816.71, + "probability": 0.3661 + }, + { + "start": 47817.8, + "end": 47819.6, + "probability": 0.779 + }, + { + "start": 47820.1, + "end": 47821.46, + "probability": 0.9834 + }, + { + "start": 47822.04, + "end": 47824.4, + "probability": 0.9583 + }, + { + "start": 47824.64, + "end": 47825.94, + "probability": 0.9703 + }, + { + "start": 47826.58, + "end": 47827.1, + "probability": 0.9792 + }, + { + "start": 47828.26, + "end": 47828.94, + "probability": 0.8934 + }, + { + "start": 47829.68, + "end": 47831.8, + "probability": 0.5837 + }, + { + "start": 47832.46, + "end": 47832.86, + "probability": 0.1289 + }, + { + "start": 47832.86, + "end": 47832.86, + "probability": 0.0944 + }, + { + "start": 47832.86, + "end": 47833.16, + "probability": 0.2542 + }, + { + "start": 47833.26, + "end": 47833.78, + "probability": 0.6623 + }, + { + "start": 47833.94, + "end": 47835.3, + "probability": 0.784 + }, + { + "start": 47835.92, + "end": 47839.12, + "probability": 0.7528 + }, + { + "start": 47839.28, + "end": 47839.54, + "probability": 0.1736 + }, + { + "start": 47839.54, + "end": 47839.54, + "probability": 0.0346 + }, + { + "start": 47839.54, + "end": 47840.76, + "probability": 0.9629 + }, + { + "start": 47841.52, + "end": 47843.88, + "probability": 0.7225 + }, + { + "start": 47844.56, + "end": 47845.66, + "probability": 0.6372 + }, + { + "start": 47845.8, + "end": 47847.14, + "probability": 0.6995 + }, + { + "start": 47847.3, + "end": 47847.98, + "probability": 0.7281 + }, + { + "start": 47848.38, + "end": 47851.24, + "probability": 0.9591 + }, + { + "start": 47852.04, + "end": 47854.78, + "probability": 0.9298 + }, + { + "start": 47854.9, + "end": 47858.08, + "probability": 0.9838 + }, + { + "start": 47858.46, + "end": 47858.94, + "probability": 0.4724 + }, + { + "start": 47859.06, + "end": 47860.36, + "probability": 0.7552 + }, + { + "start": 47860.44, + "end": 47861.18, + "probability": 0.465 + }, + { + "start": 47861.64, + "end": 47863.7, + "probability": 0.4707 + }, + { + "start": 47863.88, + "end": 47864.4, + "probability": 0.3091 + }, + { + "start": 47864.4, + "end": 47865.06, + "probability": 0.9148 + }, + { + "start": 47865.44, + "end": 47866.48, + "probability": 0.8794 + }, + { + "start": 47866.78, + "end": 47868.48, + "probability": 0.998 + }, + { + "start": 47869.1, + "end": 47870.54, + "probability": 0.7503 + }, + { + "start": 47871.16, + "end": 47873.8, + "probability": 0.9697 + }, + { + "start": 47873.9, + "end": 47876.09, + "probability": 0.9309 + }, + { + "start": 47878.08, + "end": 47881.12, + "probability": 0.9551 + }, + { + "start": 47881.6, + "end": 47883.06, + "probability": 0.395 + }, + { + "start": 47883.88, + "end": 47885.92, + "probability": 0.9055 + }, + { + "start": 47887.1, + "end": 47890.34, + "probability": 0.967 + }, + { + "start": 47892.14, + "end": 47893.14, + "probability": 0.3715 + }, + { + "start": 47893.46, + "end": 47893.7, + "probability": 0.5598 + }, + { + "start": 47894.08, + "end": 47896.64, + "probability": 0.6287 + }, + { + "start": 47897.26, + "end": 47900.5, + "probability": 0.9028 + }, + { + "start": 47900.5, + "end": 47903.8, + "probability": 0.9908 + }, + { + "start": 47903.86, + "end": 47908.1, + "probability": 0.9956 + }, + { + "start": 47908.8, + "end": 47911.7, + "probability": 0.8521 + }, + { + "start": 47911.82, + "end": 47912.98, + "probability": 0.7702 + }, + { + "start": 47913.82, + "end": 47917.2, + "probability": 0.8873 + }, + { + "start": 47918.4, + "end": 47919.1, + "probability": 0.585 + }, + { + "start": 47921.6, + "end": 47925.0, + "probability": 0.731 + }, + { + "start": 47926.54, + "end": 47931.5, + "probability": 0.9906 + }, + { + "start": 47932.68, + "end": 47934.1, + "probability": 0.1896 + }, + { + "start": 47934.1, + "end": 47935.42, + "probability": 0.1282 + }, + { + "start": 47936.28, + "end": 47938.6, + "probability": 0.7377 + }, + { + "start": 47939.24, + "end": 47945.6, + "probability": 0.9941 + }, + { + "start": 47946.06, + "end": 47948.26, + "probability": 0.8577 + }, + { + "start": 47949.74, + "end": 47952.34, + "probability": 0.9254 + }, + { + "start": 47952.96, + "end": 47955.86, + "probability": 0.9938 + }, + { + "start": 47956.38, + "end": 47957.95, + "probability": 0.8849 + }, + { + "start": 47958.98, + "end": 47962.68, + "probability": 0.9944 + }, + { + "start": 47963.2, + "end": 47967.72, + "probability": 0.9405 + }, + { + "start": 47968.08, + "end": 47969.5, + "probability": 0.9489 + }, + { + "start": 47970.36, + "end": 47972.54, + "probability": 0.9885 + }, + { + "start": 47974.67, + "end": 47974.98, + "probability": 0.8597 + }, + { + "start": 47974.98, + "end": 47976.48, + "probability": 0.7066 + }, + { + "start": 47977.0, + "end": 47980.94, + "probability": 0.9412 + }, + { + "start": 47981.54, + "end": 47987.84, + "probability": 0.9706 + }, + { + "start": 47988.4, + "end": 47990.5, + "probability": 0.5116 + }, + { + "start": 47991.18, + "end": 47993.68, + "probability": 0.8905 + }, + { + "start": 47994.92, + "end": 47997.62, + "probability": 0.8312 + }, + { + "start": 47998.76, + "end": 48001.54, + "probability": 0.7746 + }, + { + "start": 48002.18, + "end": 48002.88, + "probability": 0.8921 + }, + { + "start": 48005.81, + "end": 48008.32, + "probability": 0.8067 + }, + { + "start": 48008.46, + "end": 48009.42, + "probability": 0.662 + }, + { + "start": 48009.5, + "end": 48011.16, + "probability": 0.9771 + }, + { + "start": 48011.32, + "end": 48012.94, + "probability": 0.9583 + }, + { + "start": 48013.04, + "end": 48016.84, + "probability": 0.9912 + }, + { + "start": 48017.68, + "end": 48019.42, + "probability": 0.9443 + }, + { + "start": 48019.56, + "end": 48022.12, + "probability": 0.7746 + }, + { + "start": 48022.28, + "end": 48023.38, + "probability": 0.7598 + }, + { + "start": 48024.32, + "end": 48028.44, + "probability": 0.9333 + }, + { + "start": 48028.84, + "end": 48030.34, + "probability": 0.8577 + }, + { + "start": 48030.46, + "end": 48032.74, + "probability": 0.9917 + }, + { + "start": 48032.8, + "end": 48034.8, + "probability": 0.6293 + }, + { + "start": 48034.84, + "end": 48036.23, + "probability": 0.9575 + }, + { + "start": 48037.12, + "end": 48038.19, + "probability": 0.3353 + }, + { + "start": 48039.24, + "end": 48039.34, + "probability": 0.5717 + }, + { + "start": 48040.48, + "end": 48043.62, + "probability": 0.9809 + }, + { + "start": 48043.7, + "end": 48045.8, + "probability": 0.9749 + }, + { + "start": 48046.12, + "end": 48048.54, + "probability": 0.9902 + }, + { + "start": 48049.5, + "end": 48052.0, + "probability": 0.951 + }, + { + "start": 48053.2, + "end": 48054.6, + "probability": 0.9564 + }, + { + "start": 48055.02, + "end": 48057.0, + "probability": 0.9035 + }, + { + "start": 48057.54, + "end": 48057.8, + "probability": 0.7259 + }, + { + "start": 48058.84, + "end": 48059.14, + "probability": 0.4359 + }, + { + "start": 48059.3, + "end": 48059.64, + "probability": 0.863 + }, + { + "start": 48060.64, + "end": 48061.23, + "probability": 0.9559 + }, + { + "start": 48061.32, + "end": 48061.54, + "probability": 0.4574 + }, + { + "start": 48061.62, + "end": 48064.9, + "probability": 0.7256 + }, + { + "start": 48065.04, + "end": 48066.22, + "probability": 0.6409 + }, + { + "start": 48066.36, + "end": 48067.22, + "probability": 0.6155 + }, + { + "start": 48068.1, + "end": 48068.94, + "probability": 0.3083 + }, + { + "start": 48069.98, + "end": 48071.18, + "probability": 0.7936 + }, + { + "start": 48072.2, + "end": 48073.64, + "probability": 0.1173 + }, + { + "start": 48073.64, + "end": 48075.98, + "probability": 0.8791 + }, + { + "start": 48076.02, + "end": 48076.38, + "probability": 0.7659 + }, + { + "start": 48084.34, + "end": 48084.72, + "probability": 0.3993 + }, + { + "start": 48085.02, + "end": 48086.98, + "probability": 0.8144 + }, + { + "start": 48087.84, + "end": 48091.94, + "probability": 0.8453 + }, + { + "start": 48092.64, + "end": 48094.92, + "probability": 0.9385 + }, + { + "start": 48094.92, + "end": 48097.36, + "probability": 0.9304 + }, + { + "start": 48098.04, + "end": 48099.17, + "probability": 0.967 + }, + { + "start": 48100.14, + "end": 48102.76, + "probability": 0.9182 + }, + { + "start": 48103.64, + "end": 48105.46, + "probability": 0.9779 + }, + { + "start": 48105.68, + "end": 48108.34, + "probability": 0.6332 + }, + { + "start": 48110.17, + "end": 48113.13, + "probability": 0.4472 + }, + { + "start": 48114.38, + "end": 48117.28, + "probability": 0.8395 + }, + { + "start": 48118.64, + "end": 48119.66, + "probability": 0.9466 + }, + { + "start": 48120.34, + "end": 48123.08, + "probability": 0.9277 + }, + { + "start": 48124.42, + "end": 48125.6, + "probability": 0.4681 + }, + { + "start": 48126.48, + "end": 48129.44, + "probability": 0.8834 + }, + { + "start": 48130.02, + "end": 48134.82, + "probability": 0.9946 + }, + { + "start": 48135.34, + "end": 48136.54, + "probability": 0.6225 + }, + { + "start": 48138.48, + "end": 48139.36, + "probability": 0.756 + }, + { + "start": 48139.42, + "end": 48141.48, + "probability": 0.8805 + }, + { + "start": 48142.04, + "end": 48143.7, + "probability": 0.785 + }, + { + "start": 48144.3, + "end": 48151.08, + "probability": 0.9115 + }, + { + "start": 48151.22, + "end": 48153.24, + "probability": 0.6943 + }, + { + "start": 48154.32, + "end": 48156.74, + "probability": 0.922 + }, + { + "start": 48156.9, + "end": 48162.04, + "probability": 0.982 + }, + { + "start": 48162.14, + "end": 48166.48, + "probability": 0.9467 + }, + { + "start": 48167.58, + "end": 48170.83, + "probability": 0.6082 + }, + { + "start": 48171.6, + "end": 48177.9, + "probability": 0.9332 + }, + { + "start": 48178.62, + "end": 48180.9, + "probability": 0.7147 + }, + { + "start": 48181.58, + "end": 48183.8, + "probability": 0.7904 + }, + { + "start": 48184.46, + "end": 48187.24, + "probability": 0.839 + }, + { + "start": 48187.92, + "end": 48192.82, + "probability": 0.9395 + }, + { + "start": 48194.44, + "end": 48195.04, + "probability": 0.6753 + }, + { + "start": 48195.2, + "end": 48195.62, + "probability": 0.879 + }, + { + "start": 48197.5, + "end": 48199.72, + "probability": 0.7535 + }, + { + "start": 48200.92, + "end": 48203.02, + "probability": 0.7609 + }, + { + "start": 48203.92, + "end": 48205.46, + "probability": 0.9949 + }, + { + "start": 48206.18, + "end": 48209.26, + "probability": 0.826 + }, + { + "start": 48209.5, + "end": 48212.94, + "probability": 0.6662 + }, + { + "start": 48212.94, + "end": 48217.06, + "probability": 0.9774 + }, + { + "start": 48217.12, + "end": 48218.74, + "probability": 0.9733 + }, + { + "start": 48219.38, + "end": 48223.88, + "probability": 0.745 + }, + { + "start": 48224.46, + "end": 48226.57, + "probability": 0.9963 + }, + { + "start": 48227.48, + "end": 48228.44, + "probability": 0.9696 + }, + { + "start": 48228.9, + "end": 48231.48, + "probability": 0.7751 + }, + { + "start": 48231.54, + "end": 48231.8, + "probability": 0.8103 + }, + { + "start": 48231.8, + "end": 48232.68, + "probability": 0.802 + }, + { + "start": 48232.82, + "end": 48233.88, + "probability": 0.9167 + }, + { + "start": 48233.94, + "end": 48237.98, + "probability": 0.8029 + }, + { + "start": 48238.16, + "end": 48238.98, + "probability": 0.7673 + }, + { + "start": 48239.52, + "end": 48242.98, + "probability": 0.9861 + }, + { + "start": 48243.64, + "end": 48246.26, + "probability": 0.5515 + }, + { + "start": 48246.92, + "end": 48250.94, + "probability": 0.9093 + }, + { + "start": 48252.98, + "end": 48255.06, + "probability": 0.964 + }, + { + "start": 48255.14, + "end": 48255.88, + "probability": 0.3688 + }, + { + "start": 48255.88, + "end": 48256.3, + "probability": 0.6377 + }, + { + "start": 48257.48, + "end": 48259.72, + "probability": 0.515 + }, + { + "start": 48260.68, + "end": 48263.78, + "probability": 0.9666 + }, + { + "start": 48264.02, + "end": 48265.18, + "probability": 0.8209 + }, + { + "start": 48265.52, + "end": 48266.66, + "probability": 0.4124 + }, + { + "start": 48267.64, + "end": 48270.2, + "probability": 0.8411 + }, + { + "start": 48270.98, + "end": 48273.12, + "probability": 0.9701 + }, + { + "start": 48274.12, + "end": 48275.12, + "probability": 0.7151 + }, + { + "start": 48275.68, + "end": 48278.32, + "probability": 0.6942 + }, + { + "start": 48278.56, + "end": 48279.2, + "probability": 0.8996 + }, + { + "start": 48279.44, + "end": 48281.49, + "probability": 0.5738 + }, + { + "start": 48284.54, + "end": 48286.42, + "probability": 0.7464 + }, + { + "start": 48286.68, + "end": 48288.5, + "probability": 0.6135 + }, + { + "start": 48289.48, + "end": 48290.79, + "probability": 0.9924 + }, + { + "start": 48291.56, + "end": 48292.66, + "probability": 0.8062 + }, + { + "start": 48293.0, + "end": 48294.66, + "probability": 0.7622 + }, + { + "start": 48305.18, + "end": 48305.88, + "probability": 0.7627 + }, + { + "start": 48306.48, + "end": 48309.78, + "probability": 0.9887 + }, + { + "start": 48310.24, + "end": 48313.32, + "probability": 0.9767 + }, + { + "start": 48313.98, + "end": 48318.26, + "probability": 0.9958 + }, + { + "start": 48319.2, + "end": 48321.32, + "probability": 0.7223 + }, + { + "start": 48321.86, + "end": 48322.16, + "probability": 0.4785 + }, + { + "start": 48322.72, + "end": 48326.58, + "probability": 0.9902 + }, + { + "start": 48329.2, + "end": 48332.18, + "probability": 0.8124 + }, + { + "start": 48333.31, + "end": 48334.02, + "probability": 0.4246 + }, + { + "start": 48335.44, + "end": 48336.52, + "probability": 0.3392 + }, + { + "start": 48336.6, + "end": 48338.63, + "probability": 0.5916 + }, + { + "start": 48339.28, + "end": 48341.54, + "probability": 0.7398 + }, + { + "start": 48342.76, + "end": 48344.4, + "probability": 0.9259 + }, + { + "start": 48344.46, + "end": 48345.58, + "probability": 0.8392 + }, + { + "start": 48346.02, + "end": 48347.24, + "probability": 0.9941 + }, + { + "start": 48348.0, + "end": 48348.54, + "probability": 0.8335 + }, + { + "start": 48349.08, + "end": 48349.68, + "probability": 0.8459 + }, + { + "start": 48350.34, + "end": 48351.3, + "probability": 0.1251 + }, + { + "start": 48352.02, + "end": 48353.78, + "probability": 0.657 + }, + { + "start": 48353.98, + "end": 48355.48, + "probability": 0.1946 + }, + { + "start": 48355.8, + "end": 48356.8, + "probability": 0.949 + }, + { + "start": 48357.38, + "end": 48357.88, + "probability": 0.283 + }, + { + "start": 48358.95, + "end": 48360.4, + "probability": 0.9224 + }, + { + "start": 48361.3, + "end": 48362.22, + "probability": 0.6974 + }, + { + "start": 48362.26, + "end": 48366.0, + "probability": 0.7805 + }, + { + "start": 48366.0, + "end": 48368.18, + "probability": 0.9775 + }, + { + "start": 48368.6, + "end": 48370.06, + "probability": 0.9688 + }, + { + "start": 48372.91, + "end": 48376.64, + "probability": 0.9141 + }, + { + "start": 48376.68, + "end": 48377.86, + "probability": 0.6548 + }, + { + "start": 48377.96, + "end": 48380.76, + "probability": 0.8033 + }, + { + "start": 48380.76, + "end": 48382.96, + "probability": 0.4504 + }, + { + "start": 48383.18, + "end": 48385.08, + "probability": 0.499 + }, + { + "start": 48385.4, + "end": 48385.62, + "probability": 0.3012 + }, + { + "start": 48385.98, + "end": 48388.62, + "probability": 0.6668 + }, + { + "start": 48389.02, + "end": 48392.18, + "probability": 0.1614 + }, + { + "start": 48392.18, + "end": 48393.16, + "probability": 0.1011 + }, + { + "start": 48394.28, + "end": 48396.55, + "probability": 0.4413 + }, + { + "start": 48397.64, + "end": 48399.98, + "probability": 0.8879 + }, + { + "start": 48400.06, + "end": 48400.16, + "probability": 0.2625 + }, + { + "start": 48400.24, + "end": 48400.64, + "probability": 0.573 + }, + { + "start": 48400.78, + "end": 48402.54, + "probability": 0.5326 + }, + { + "start": 48402.72, + "end": 48403.77, + "probability": 0.7804 + }, + { + "start": 48404.76, + "end": 48405.76, + "probability": 0.1476 + }, + { + "start": 48406.56, + "end": 48409.08, + "probability": 0.2161 + }, + { + "start": 48409.34, + "end": 48411.5, + "probability": 0.3862 + }, + { + "start": 48412.52, + "end": 48413.84, + "probability": 0.7789 + }, + { + "start": 48414.12, + "end": 48416.84, + "probability": 0.8164 + }, + { + "start": 48417.24, + "end": 48419.26, + "probability": 0.7356 + }, + { + "start": 48420.24, + "end": 48421.24, + "probability": 0.8167 + }, + { + "start": 48421.6, + "end": 48427.27, + "probability": 0.9463 + }, + { + "start": 48428.22, + "end": 48436.26, + "probability": 0.3773 + }, + { + "start": 48436.26, + "end": 48437.92, + "probability": 0.5283 + }, + { + "start": 48438.6, + "end": 48441.26, + "probability": 0.6496 + }, + { + "start": 48441.4, + "end": 48443.94, + "probability": 0.9211 + }, + { + "start": 48444.4, + "end": 48445.88, + "probability": 0.8896 + }, + { + "start": 48446.64, + "end": 48449.1, + "probability": 0.4281 + }, + { + "start": 48453.1, + "end": 48453.16, + "probability": 0.2499 + }, + { + "start": 48453.16, + "end": 48453.16, + "probability": 0.0084 + }, + { + "start": 48453.16, + "end": 48453.16, + "probability": 0.0852 + }, + { + "start": 48453.16, + "end": 48453.16, + "probability": 0.366 + }, + { + "start": 48453.16, + "end": 48454.1, + "probability": 0.4477 + }, + { + "start": 48454.44, + "end": 48456.2, + "probability": 0.2847 + }, + { + "start": 48456.62, + "end": 48457.6, + "probability": 0.276 + }, + { + "start": 48457.6, + "end": 48459.0, + "probability": 0.3693 + }, + { + "start": 48459.22, + "end": 48461.74, + "probability": 0.5456 + }, + { + "start": 48462.56, + "end": 48467.38, + "probability": 0.5312 + }, + { + "start": 48469.08, + "end": 48469.34, + "probability": 0.0324 + }, + { + "start": 48469.34, + "end": 48469.34, + "probability": 0.1368 + }, + { + "start": 48469.34, + "end": 48469.34, + "probability": 0.2869 + }, + { + "start": 48469.34, + "end": 48470.0, + "probability": 0.5695 + }, + { + "start": 48470.02, + "end": 48470.86, + "probability": 0.7833 + }, + { + "start": 48471.62, + "end": 48472.9, + "probability": 0.6431 + }, + { + "start": 48473.06, + "end": 48473.78, + "probability": 0.5121 + }, + { + "start": 48474.1, + "end": 48475.21, + "probability": 0.7728 + }, + { + "start": 48475.78, + "end": 48476.28, + "probability": 0.3415 + }, + { + "start": 48486.16, + "end": 48487.0, + "probability": 0.3219 + }, + { + "start": 48487.72, + "end": 48488.96, + "probability": 0.8704 + }, + { + "start": 48489.3, + "end": 48494.44, + "probability": 0.9421 + }, + { + "start": 48501.34, + "end": 48505.08, + "probability": 0.972 + }, + { + "start": 48506.78, + "end": 48512.84, + "probability": 0.6241 + }, + { + "start": 48515.54, + "end": 48518.86, + "probability": 0.2664 + }, + { + "start": 48521.1, + "end": 48526.44, + "probability": 0.6932 + }, + { + "start": 48527.1, + "end": 48530.3, + "probability": 0.8019 + }, + { + "start": 48533.38, + "end": 48535.34, + "probability": 0.5145 + }, + { + "start": 48535.66, + "end": 48541.48, + "probability": 0.7433 + }, + { + "start": 48542.12, + "end": 48542.72, + "probability": 0.3398 + }, + { + "start": 48542.78, + "end": 48544.94, + "probability": 0.8444 + }, + { + "start": 48545.16, + "end": 48545.96, + "probability": 0.1957 + }, + { + "start": 48546.16, + "end": 48547.66, + "probability": 0.8726 + }, + { + "start": 48548.12, + "end": 48549.04, + "probability": 0.2553 + }, + { + "start": 48549.2, + "end": 48550.44, + "probability": 0.1773 + }, + { + "start": 48550.5, + "end": 48552.4, + "probability": 0.9661 + }, + { + "start": 48553.24, + "end": 48554.56, + "probability": 0.4401 + }, + { + "start": 48554.96, + "end": 48555.54, + "probability": 0.8639 + }, + { + "start": 48555.6, + "end": 48556.36, + "probability": 0.7866 + }, + { + "start": 48556.46, + "end": 48557.08, + "probability": 0.5679 + }, + { + "start": 48557.08, + "end": 48560.6, + "probability": 0.8035 + }, + { + "start": 48560.84, + "end": 48564.26, + "probability": 0.7906 + }, + { + "start": 48565.1, + "end": 48565.66, + "probability": 0.6351 + }, + { + "start": 48565.86, + "end": 48566.84, + "probability": 0.3942 + }, + { + "start": 48567.52, + "end": 48568.6, + "probability": 0.9958 + }, + { + "start": 48568.82, + "end": 48571.3, + "probability": 0.835 + }, + { + "start": 48572.1, + "end": 48573.82, + "probability": 0.6925 + }, + { + "start": 48573.82, + "end": 48576.18, + "probability": 0.7875 + }, + { + "start": 48576.64, + "end": 48577.4, + "probability": 0.5065 + }, + { + "start": 48578.34, + "end": 48578.64, + "probability": 0.7723 + }, + { + "start": 48578.72, + "end": 48579.24, + "probability": 0.5254 + }, + { + "start": 48579.62, + "end": 48579.62, + "probability": 0.3823 + }, + { + "start": 48579.62, + "end": 48579.99, + "probability": 0.7294 + }, + { + "start": 48580.56, + "end": 48584.0, + "probability": 0.9248 + }, + { + "start": 48584.38, + "end": 48584.38, + "probability": 0.654 + }, + { + "start": 48584.6, + "end": 48585.16, + "probability": 0.8467 + }, + { + "start": 48586.22, + "end": 48588.24, + "probability": 0.7837 + } + ], + "segments_count": 17340, + "words_count": 84784, + "avg_words_per_segment": 4.8895, + "avg_segment_duration": 2.0283, + "avg_words_per_minute": 104.5324, + "plenum_id": "15097", + "duration": 48664.73, + "title": null, + "plenum_date": "2011-07-20" +} \ No newline at end of file