diff --git "a/34752/metadata.json" "b/34752/metadata.json" new file mode 100644--- /dev/null +++ "b/34752/metadata.json" @@ -0,0 +1,10087 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "34752", + "quality_score": 0.9092, + "per_segment_quality_scores": [ + { + "start": 55.22, + "end": 55.22, + "probability": 0.2109 + }, + { + "start": 55.22, + "end": 56.44, + "probability": 0.7362 + }, + { + "start": 56.62, + "end": 57.96, + "probability": 0.7623 + }, + { + "start": 58.04, + "end": 60.06, + "probability": 0.7757 + }, + { + "start": 60.2, + "end": 63.56, + "probability": 0.9188 + }, + { + "start": 63.7, + "end": 66.66, + "probability": 0.9828 + }, + { + "start": 71.04, + "end": 73.64, + "probability": 0.6403 + }, + { + "start": 74.5, + "end": 76.68, + "probability": 0.5923 + }, + { + "start": 77.5, + "end": 77.6, + "probability": 0.1114 + }, + { + "start": 77.6, + "end": 77.76, + "probability": 0.0345 + }, + { + "start": 77.76, + "end": 81.8, + "probability": 0.4377 + }, + { + "start": 81.9, + "end": 85.08, + "probability": 0.6767 + }, + { + "start": 85.08, + "end": 86.4, + "probability": 0.7502 + }, + { + "start": 86.52, + "end": 91.5, + "probability": 0.6676 + }, + { + "start": 95.56, + "end": 97.04, + "probability": 0.8036 + }, + { + "start": 97.12, + "end": 97.74, + "probability": 0.8373 + }, + { + "start": 97.88, + "end": 98.92, + "probability": 0.854 + }, + { + "start": 99.1, + "end": 100.94, + "probability": 0.9846 + }, + { + "start": 101.82, + "end": 104.06, + "probability": 0.9754 + }, + { + "start": 104.5, + "end": 108.08, + "probability": 0.9561 + }, + { + "start": 108.46, + "end": 108.8, + "probability": 0.5154 + }, + { + "start": 110.46, + "end": 114.34, + "probability": 0.895 + }, + { + "start": 115.16, + "end": 116.58, + "probability": 0.8129 + }, + { + "start": 120.6, + "end": 120.7, + "probability": 0.5421 + }, + { + "start": 122.52, + "end": 124.98, + "probability": 0.3195 + }, + { + "start": 125.16, + "end": 125.16, + "probability": 0.0281 + }, + { + "start": 125.16, + "end": 126.06, + "probability": 0.0889 + }, + { + "start": 126.06, + "end": 128.16, + "probability": 0.7863 + }, + { + "start": 129.08, + "end": 129.58, + "probability": 0.7051 + }, + { + "start": 129.68, + "end": 130.88, + "probability": 0.4073 + }, + { + "start": 131.14, + "end": 133.76, + "probability": 0.8545 + }, + { + "start": 133.76, + "end": 136.32, + "probability": 0.9184 + }, + { + "start": 137.58, + "end": 138.02, + "probability": 0.6035 + }, + { + "start": 138.24, + "end": 139.06, + "probability": 0.4209 + }, + { + "start": 139.16, + "end": 143.26, + "probability": 0.9824 + }, + { + "start": 143.6, + "end": 145.46, + "probability": 0.9818 + }, + { + "start": 146.6, + "end": 147.14, + "probability": 0.8896 + }, + { + "start": 147.2, + "end": 148.38, + "probability": 0.912 + }, + { + "start": 148.66, + "end": 149.9, + "probability": 0.8284 + }, + { + "start": 150.12, + "end": 150.96, + "probability": 0.8255 + }, + { + "start": 151.34, + "end": 155.2, + "probability": 0.9333 + }, + { + "start": 156.38, + "end": 160.0, + "probability": 0.9123 + }, + { + "start": 161.3, + "end": 165.68, + "probability": 0.9609 + }, + { + "start": 165.68, + "end": 169.14, + "probability": 0.9306 + }, + { + "start": 170.22, + "end": 171.94, + "probability": 0.773 + }, + { + "start": 172.24, + "end": 174.32, + "probability": 0.8585 + }, + { + "start": 176.04, + "end": 178.68, + "probability": 0.9876 + }, + { + "start": 178.68, + "end": 181.78, + "probability": 0.996 + }, + { + "start": 182.42, + "end": 183.28, + "probability": 0.9232 + }, + { + "start": 183.4, + "end": 185.64, + "probability": 0.9913 + }, + { + "start": 186.02, + "end": 188.52, + "probability": 0.9304 + }, + { + "start": 188.88, + "end": 192.26, + "probability": 0.9886 + }, + { + "start": 192.26, + "end": 195.64, + "probability": 0.9908 + }, + { + "start": 196.24, + "end": 199.4, + "probability": 0.9658 + }, + { + "start": 200.12, + "end": 202.28, + "probability": 0.9604 + }, + { + "start": 202.98, + "end": 206.5, + "probability": 0.7843 + }, + { + "start": 207.12, + "end": 207.32, + "probability": 0.7765 + }, + { + "start": 207.9, + "end": 209.9, + "probability": 0.9718 + }, + { + "start": 210.0, + "end": 211.46, + "probability": 0.9353 + }, + { + "start": 211.54, + "end": 212.02, + "probability": 0.5219 + }, + { + "start": 212.04, + "end": 213.12, + "probability": 0.8664 + }, + { + "start": 225.62, + "end": 226.1, + "probability": 0.5 + }, + { + "start": 226.12, + "end": 228.72, + "probability": 0.7139 + }, + { + "start": 229.64, + "end": 231.21, + "probability": 0.5939 + }, + { + "start": 233.54, + "end": 236.56, + "probability": 0.8255 + }, + { + "start": 237.26, + "end": 241.72, + "probability": 0.9321 + }, + { + "start": 242.62, + "end": 246.0, + "probability": 0.9722 + }, + { + "start": 246.82, + "end": 249.9, + "probability": 0.9978 + }, + { + "start": 251.04, + "end": 254.88, + "probability": 0.9884 + }, + { + "start": 256.27, + "end": 263.66, + "probability": 0.9771 + }, + { + "start": 264.46, + "end": 267.5, + "probability": 0.9505 + }, + { + "start": 267.9, + "end": 269.5, + "probability": 0.9238 + }, + { + "start": 270.26, + "end": 274.0, + "probability": 0.9183 + }, + { + "start": 274.78, + "end": 279.06, + "probability": 0.9316 + }, + { + "start": 280.02, + "end": 281.2, + "probability": 0.6621 + }, + { + "start": 281.32, + "end": 286.08, + "probability": 0.9177 + }, + { + "start": 287.02, + "end": 295.98, + "probability": 0.7408 + }, + { + "start": 295.98, + "end": 300.72, + "probability": 0.9903 + }, + { + "start": 300.86, + "end": 304.16, + "probability": 0.9827 + }, + { + "start": 304.3, + "end": 305.52, + "probability": 0.9604 + }, + { + "start": 306.36, + "end": 307.16, + "probability": 0.939 + }, + { + "start": 307.94, + "end": 312.72, + "probability": 0.9568 + }, + { + "start": 312.98, + "end": 314.58, + "probability": 0.8359 + }, + { + "start": 314.92, + "end": 317.74, + "probability": 0.8486 + }, + { + "start": 318.42, + "end": 320.32, + "probability": 0.9966 + }, + { + "start": 321.0, + "end": 325.82, + "probability": 0.9805 + }, + { + "start": 326.68, + "end": 329.18, + "probability": 0.9828 + }, + { + "start": 329.78, + "end": 330.62, + "probability": 0.7005 + }, + { + "start": 331.24, + "end": 335.5, + "probability": 0.9398 + }, + { + "start": 335.5, + "end": 339.14, + "probability": 0.9922 + }, + { + "start": 339.2, + "end": 339.4, + "probability": 0.6521 + }, + { + "start": 340.42, + "end": 342.26, + "probability": 0.8718 + }, + { + "start": 342.48, + "end": 343.84, + "probability": 0.947 + }, + { + "start": 343.92, + "end": 344.38, + "probability": 0.8017 + }, + { + "start": 344.46, + "end": 344.72, + "probability": 0.7661 + }, + { + "start": 344.74, + "end": 345.26, + "probability": 0.6697 + }, + { + "start": 345.36, + "end": 347.3, + "probability": 0.9784 + }, + { + "start": 349.32, + "end": 349.96, + "probability": 0.7242 + }, + { + "start": 350.34, + "end": 352.78, + "probability": 0.688 + }, + { + "start": 353.68, + "end": 357.8, + "probability": 0.9829 + }, + { + "start": 357.8, + "end": 363.02, + "probability": 0.9507 + }, + { + "start": 363.76, + "end": 368.66, + "probability": 0.9539 + }, + { + "start": 369.3, + "end": 371.84, + "probability": 0.7341 + }, + { + "start": 372.4, + "end": 375.08, + "probability": 0.8727 + }, + { + "start": 375.9, + "end": 376.88, + "probability": 0.6592 + }, + { + "start": 376.88, + "end": 378.86, + "probability": 0.9904 + }, + { + "start": 379.04, + "end": 380.12, + "probability": 0.9143 + }, + { + "start": 380.22, + "end": 383.46, + "probability": 0.8856 + }, + { + "start": 383.88, + "end": 384.7, + "probability": 0.8126 + }, + { + "start": 385.32, + "end": 387.22, + "probability": 0.8793 + }, + { + "start": 387.4, + "end": 389.34, + "probability": 0.8997 + }, + { + "start": 389.92, + "end": 393.72, + "probability": 0.9948 + }, + { + "start": 393.72, + "end": 397.1, + "probability": 0.9698 + }, + { + "start": 397.34, + "end": 399.3, + "probability": 0.9932 + }, + { + "start": 399.94, + "end": 403.58, + "probability": 0.9126 + }, + { + "start": 403.58, + "end": 407.34, + "probability": 0.9941 + }, + { + "start": 407.9, + "end": 410.72, + "probability": 0.9835 + }, + { + "start": 411.0, + "end": 414.78, + "probability": 0.9961 + }, + { + "start": 415.1, + "end": 418.52, + "probability": 0.9848 + }, + { + "start": 418.52, + "end": 422.62, + "probability": 0.967 + }, + { + "start": 423.2, + "end": 424.16, + "probability": 0.7728 + }, + { + "start": 424.84, + "end": 425.54, + "probability": 0.8947 + }, + { + "start": 425.82, + "end": 426.6, + "probability": 0.9828 + }, + { + "start": 426.88, + "end": 427.84, + "probability": 0.9879 + }, + { + "start": 428.3, + "end": 429.54, + "probability": 0.9836 + }, + { + "start": 431.52, + "end": 433.94, + "probability": 0.907 + }, + { + "start": 440.78, + "end": 441.06, + "probability": 0.2682 + }, + { + "start": 441.08, + "end": 444.52, + "probability": 0.9685 + }, + { + "start": 444.54, + "end": 445.36, + "probability": 0.4219 + }, + { + "start": 445.68, + "end": 446.98, + "probability": 0.0759 + }, + { + "start": 447.6, + "end": 450.56, + "probability": 0.8444 + }, + { + "start": 451.42, + "end": 455.26, + "probability": 0.9922 + }, + { + "start": 455.38, + "end": 458.46, + "probability": 0.8687 + }, + { + "start": 460.01, + "end": 461.93, + "probability": 0.6847 + }, + { + "start": 462.46, + "end": 466.46, + "probability": 0.9883 + }, + { + "start": 467.14, + "end": 469.62, + "probability": 0.9911 + }, + { + "start": 471.42, + "end": 474.46, + "probability": 0.8757 + }, + { + "start": 474.6, + "end": 475.14, + "probability": 0.7493 + }, + { + "start": 475.84, + "end": 477.28, + "probability": 0.9623 + }, + { + "start": 478.14, + "end": 480.18, + "probability": 0.9741 + }, + { + "start": 481.14, + "end": 483.52, + "probability": 0.9036 + }, + { + "start": 483.58, + "end": 486.76, + "probability": 0.9432 + }, + { + "start": 486.76, + "end": 491.92, + "probability": 0.9958 + }, + { + "start": 493.1, + "end": 497.1, + "probability": 0.7033 + }, + { + "start": 498.7, + "end": 501.7, + "probability": 0.9945 + }, + { + "start": 502.4, + "end": 504.1, + "probability": 0.9766 + }, + { + "start": 504.24, + "end": 505.14, + "probability": 0.8598 + }, + { + "start": 505.24, + "end": 506.7, + "probability": 0.8137 + }, + { + "start": 506.78, + "end": 508.14, + "probability": 0.9532 + }, + { + "start": 509.38, + "end": 513.92, + "probability": 0.9694 + }, + { + "start": 514.62, + "end": 516.78, + "probability": 0.882 + }, + { + "start": 517.8, + "end": 521.96, + "probability": 0.9887 + }, + { + "start": 522.72, + "end": 525.84, + "probability": 0.9933 + }, + { + "start": 527.7, + "end": 529.3, + "probability": 0.7499 + }, + { + "start": 529.88, + "end": 532.9, + "probability": 0.9506 + }, + { + "start": 533.74, + "end": 538.42, + "probability": 0.9898 + }, + { + "start": 539.04, + "end": 539.84, + "probability": 0.8407 + }, + { + "start": 541.26, + "end": 542.76, + "probability": 0.9485 + }, + { + "start": 543.42, + "end": 546.96, + "probability": 0.9914 + }, + { + "start": 547.92, + "end": 549.6, + "probability": 0.9175 + }, + { + "start": 550.52, + "end": 552.42, + "probability": 0.7553 + }, + { + "start": 552.96, + "end": 555.5, + "probability": 0.9929 + }, + { + "start": 557.06, + "end": 559.16, + "probability": 0.9172 + }, + { + "start": 559.22, + "end": 564.5, + "probability": 0.9187 + }, + { + "start": 565.16, + "end": 566.36, + "probability": 0.5643 + }, + { + "start": 567.08, + "end": 568.64, + "probability": 0.6791 + }, + { + "start": 569.68, + "end": 572.76, + "probability": 0.9329 + }, + { + "start": 573.44, + "end": 573.82, + "probability": 0.519 + }, + { + "start": 573.94, + "end": 575.66, + "probability": 0.9966 + }, + { + "start": 575.96, + "end": 579.32, + "probability": 0.9543 + }, + { + "start": 579.76, + "end": 580.98, + "probability": 0.7433 + }, + { + "start": 581.98, + "end": 586.06, + "probability": 0.9592 + }, + { + "start": 586.18, + "end": 587.16, + "probability": 0.796 + }, + { + "start": 588.02, + "end": 593.3, + "probability": 0.9102 + }, + { + "start": 594.12, + "end": 595.78, + "probability": 0.7275 + }, + { + "start": 596.04, + "end": 597.1, + "probability": 0.9249 + }, + { + "start": 597.36, + "end": 603.16, + "probability": 0.9657 + }, + { + "start": 603.6, + "end": 604.82, + "probability": 0.9309 + }, + { + "start": 605.06, + "end": 605.34, + "probability": 0.8205 + }, + { + "start": 606.42, + "end": 606.96, + "probability": 0.4222 + }, + { + "start": 607.18, + "end": 608.19, + "probability": 0.9059 + }, + { + "start": 609.12, + "end": 611.26, + "probability": 0.9246 + }, + { + "start": 612.16, + "end": 613.7, + "probability": 0.4625 + }, + { + "start": 617.46, + "end": 618.38, + "probability": 0.6617 + }, + { + "start": 618.44, + "end": 619.42, + "probability": 0.5705 + }, + { + "start": 619.56, + "end": 623.92, + "probability": 0.8514 + }, + { + "start": 624.4, + "end": 628.98, + "probability": 0.9455 + }, + { + "start": 629.0, + "end": 629.94, + "probability": 0.7381 + }, + { + "start": 630.0, + "end": 633.06, + "probability": 0.8175 + }, + { + "start": 633.38, + "end": 635.98, + "probability": 0.9032 + }, + { + "start": 636.34, + "end": 636.96, + "probability": 0.2274 + }, + { + "start": 637.18, + "end": 638.8, + "probability": 0.5354 + }, + { + "start": 639.36, + "end": 645.06, + "probability": 0.968 + }, + { + "start": 645.16, + "end": 645.78, + "probability": 0.7561 + }, + { + "start": 646.5, + "end": 649.78, + "probability": 0.9473 + }, + { + "start": 650.12, + "end": 652.92, + "probability": 0.8551 + }, + { + "start": 653.14, + "end": 655.66, + "probability": 0.9529 + }, + { + "start": 656.88, + "end": 658.66, + "probability": 0.736 + }, + { + "start": 658.84, + "end": 661.24, + "probability": 0.6767 + }, + { + "start": 661.82, + "end": 663.24, + "probability": 0.6158 + }, + { + "start": 667.78, + "end": 669.88, + "probability": 0.6752 + }, + { + "start": 671.08, + "end": 673.84, + "probability": 0.8738 + }, + { + "start": 674.28, + "end": 679.5, + "probability": 0.9627 + }, + { + "start": 679.5, + "end": 683.22, + "probability": 0.995 + }, + { + "start": 684.54, + "end": 688.38, + "probability": 0.8605 + }, + { + "start": 688.56, + "end": 689.22, + "probability": 0.9215 + }, + { + "start": 690.18, + "end": 695.28, + "probability": 0.9932 + }, + { + "start": 695.96, + "end": 700.86, + "probability": 0.9882 + }, + { + "start": 701.58, + "end": 705.16, + "probability": 0.9798 + }, + { + "start": 706.2, + "end": 709.0, + "probability": 0.992 + }, + { + "start": 709.22, + "end": 714.18, + "probability": 0.9862 + }, + { + "start": 714.22, + "end": 718.08, + "probability": 0.6729 + }, + { + "start": 718.52, + "end": 721.62, + "probability": 0.9645 + }, + { + "start": 722.0, + "end": 726.42, + "probability": 0.9692 + }, + { + "start": 726.82, + "end": 730.3, + "probability": 0.9751 + }, + { + "start": 730.3, + "end": 735.04, + "probability": 0.9965 + }, + { + "start": 735.22, + "end": 735.46, + "probability": 0.7062 + }, + { + "start": 737.7, + "end": 739.8, + "probability": 0.5877 + }, + { + "start": 739.94, + "end": 741.9, + "probability": 0.9801 + }, + { + "start": 741.94, + "end": 742.44, + "probability": 0.6133 + }, + { + "start": 742.6, + "end": 743.74, + "probability": 0.975 + }, + { + "start": 745.86, + "end": 748.62, + "probability": 0.7486 + }, + { + "start": 750.12, + "end": 752.62, + "probability": 0.9238 + }, + { + "start": 754.04, + "end": 754.44, + "probability": 0.8376 + }, + { + "start": 755.44, + "end": 756.32, + "probability": 0.975 + }, + { + "start": 757.66, + "end": 765.36, + "probability": 0.9304 + }, + { + "start": 766.32, + "end": 771.6, + "probability": 0.9881 + }, + { + "start": 772.28, + "end": 775.78, + "probability": 0.9857 + }, + { + "start": 778.0, + "end": 782.14, + "probability": 0.9657 + }, + { + "start": 783.02, + "end": 784.66, + "probability": 0.9608 + }, + { + "start": 785.26, + "end": 788.36, + "probability": 0.9792 + }, + { + "start": 789.4, + "end": 792.5, + "probability": 0.9298 + }, + { + "start": 793.14, + "end": 797.12, + "probability": 0.7955 + }, + { + "start": 797.12, + "end": 800.42, + "probability": 0.967 + }, + { + "start": 801.16, + "end": 801.9, + "probability": 0.4976 + }, + { + "start": 802.74, + "end": 806.42, + "probability": 0.9639 + }, + { + "start": 806.96, + "end": 809.66, + "probability": 0.8167 + }, + { + "start": 810.22, + "end": 810.6, + "probability": 0.8679 + }, + { + "start": 810.66, + "end": 811.44, + "probability": 0.5937 + }, + { + "start": 811.72, + "end": 812.8, + "probability": 0.7955 + }, + { + "start": 813.26, + "end": 816.66, + "probability": 0.8531 + }, + { + "start": 816.88, + "end": 817.78, + "probability": 0.7492 + }, + { + "start": 818.16, + "end": 818.96, + "probability": 0.8961 + }, + { + "start": 819.48, + "end": 821.0, + "probability": 0.9673 + }, + { + "start": 821.8, + "end": 826.6, + "probability": 0.9905 + }, + { + "start": 827.2, + "end": 831.24, + "probability": 0.7633 + }, + { + "start": 831.68, + "end": 832.58, + "probability": 0.7813 + }, + { + "start": 833.16, + "end": 839.7, + "probability": 0.9771 + }, + { + "start": 840.26, + "end": 843.66, + "probability": 0.9854 + }, + { + "start": 844.3, + "end": 850.98, + "probability": 0.9942 + }, + { + "start": 851.16, + "end": 853.54, + "probability": 0.9726 + }, + { + "start": 854.14, + "end": 860.26, + "probability": 0.9876 + }, + { + "start": 860.7, + "end": 862.26, + "probability": 0.6939 + }, + { + "start": 862.5, + "end": 862.6, + "probability": 0.1609 + }, + { + "start": 863.16, + "end": 864.06, + "probability": 0.8356 + }, + { + "start": 864.4, + "end": 865.04, + "probability": 0.9362 + }, + { + "start": 865.38, + "end": 866.14, + "probability": 0.8058 + }, + { + "start": 866.48, + "end": 868.12, + "probability": 0.9714 + }, + { + "start": 868.44, + "end": 872.98, + "probability": 0.9839 + }, + { + "start": 873.38, + "end": 878.04, + "probability": 0.9922 + }, + { + "start": 878.48, + "end": 880.68, + "probability": 0.7769 + }, + { + "start": 881.26, + "end": 881.92, + "probability": 0.8564 + }, + { + "start": 882.22, + "end": 887.34, + "probability": 0.9911 + }, + { + "start": 887.62, + "end": 888.06, + "probability": 0.9121 + }, + { + "start": 889.64, + "end": 891.04, + "probability": 0.7288 + }, + { + "start": 891.2, + "end": 892.76, + "probability": 0.9219 + }, + { + "start": 892.76, + "end": 893.44, + "probability": 0.4843 + }, + { + "start": 893.48, + "end": 895.14, + "probability": 0.8348 + }, + { + "start": 901.5, + "end": 902.46, + "probability": 0.6185 + }, + { + "start": 903.5, + "end": 904.72, + "probability": 0.8518 + }, + { + "start": 904.9, + "end": 908.66, + "probability": 0.9919 + }, + { + "start": 910.36, + "end": 913.8, + "probability": 0.9951 + }, + { + "start": 913.8, + "end": 918.86, + "probability": 0.9743 + }, + { + "start": 920.95, + "end": 924.88, + "probability": 0.8914 + }, + { + "start": 925.64, + "end": 927.12, + "probability": 0.866 + }, + { + "start": 927.28, + "end": 928.25, + "probability": 0.9829 + }, + { + "start": 928.6, + "end": 931.26, + "probability": 0.9951 + }, + { + "start": 932.96, + "end": 936.0, + "probability": 0.9845 + }, + { + "start": 937.48, + "end": 939.54, + "probability": 0.9967 + }, + { + "start": 939.64, + "end": 941.22, + "probability": 0.9688 + }, + { + "start": 942.26, + "end": 943.16, + "probability": 0.9808 + }, + { + "start": 943.36, + "end": 949.28, + "probability": 0.9724 + }, + { + "start": 950.5, + "end": 954.54, + "probability": 0.7982 + }, + { + "start": 955.22, + "end": 957.68, + "probability": 0.9143 + }, + { + "start": 958.64, + "end": 959.42, + "probability": 0.5029 + }, + { + "start": 959.52, + "end": 960.13, + "probability": 0.9741 + }, + { + "start": 961.1, + "end": 964.54, + "probability": 0.995 + }, + { + "start": 964.66, + "end": 965.7, + "probability": 0.9802 + }, + { + "start": 966.24, + "end": 969.5, + "probability": 0.8436 + }, + { + "start": 970.02, + "end": 971.06, + "probability": 0.8794 + }, + { + "start": 972.04, + "end": 974.36, + "probability": 0.9675 + }, + { + "start": 975.12, + "end": 977.88, + "probability": 0.9966 + }, + { + "start": 978.16, + "end": 978.36, + "probability": 0.7743 + }, + { + "start": 979.88, + "end": 981.9, + "probability": 0.9668 + }, + { + "start": 981.98, + "end": 984.66, + "probability": 0.8889 + }, + { + "start": 985.28, + "end": 987.38, + "probability": 0.6482 + }, + { + "start": 989.02, + "end": 990.32, + "probability": 0.7206 + }, + { + "start": 990.38, + "end": 992.38, + "probability": 0.8785 + }, + { + "start": 992.76, + "end": 993.46, + "probability": 0.5636 + }, + { + "start": 993.52, + "end": 995.07, + "probability": 0.8991 + }, + { + "start": 996.02, + "end": 1000.94, + "probability": 0.876 + }, + { + "start": 1001.6, + "end": 1004.3, + "probability": 0.9623 + }, + { + "start": 1004.46, + "end": 1008.16, + "probability": 0.9645 + }, + { + "start": 1008.16, + "end": 1012.62, + "probability": 0.9652 + }, + { + "start": 1013.2, + "end": 1018.12, + "probability": 0.9956 + }, + { + "start": 1018.68, + "end": 1019.8, + "probability": 0.5363 + }, + { + "start": 1019.96, + "end": 1022.02, + "probability": 0.9633 + }, + { + "start": 1022.52, + "end": 1023.32, + "probability": 0.6071 + }, + { + "start": 1023.34, + "end": 1024.42, + "probability": 0.8824 + }, + { + "start": 1024.88, + "end": 1032.56, + "probability": 0.7359 + }, + { + "start": 1033.28, + "end": 1036.14, + "probability": 0.9952 + }, + { + "start": 1036.28, + "end": 1036.98, + "probability": 0.5151 + }, + { + "start": 1037.38, + "end": 1043.1, + "probability": 0.8413 + }, + { + "start": 1043.56, + "end": 1045.02, + "probability": 0.7656 + }, + { + "start": 1045.44, + "end": 1046.82, + "probability": 0.7109 + }, + { + "start": 1046.9, + "end": 1048.24, + "probability": 0.8198 + }, + { + "start": 1048.34, + "end": 1052.94, + "probability": 0.9931 + }, + { + "start": 1053.58, + "end": 1057.92, + "probability": 0.6712 + }, + { + "start": 1058.3, + "end": 1063.48, + "probability": 0.9737 + }, + { + "start": 1063.48, + "end": 1068.08, + "probability": 0.9897 + }, + { + "start": 1068.36, + "end": 1069.88, + "probability": 0.8982 + }, + { + "start": 1070.7, + "end": 1073.02, + "probability": 0.8247 + }, + { + "start": 1073.14, + "end": 1074.54, + "probability": 0.9288 + }, + { + "start": 1074.6, + "end": 1077.14, + "probability": 0.9829 + }, + { + "start": 1077.38, + "end": 1081.38, + "probability": 0.9825 + }, + { + "start": 1081.42, + "end": 1081.64, + "probability": 0.559 + }, + { + "start": 1083.18, + "end": 1085.22, + "probability": 0.8168 + }, + { + "start": 1086.0, + "end": 1087.0, + "probability": 0.7846 + }, + { + "start": 1087.1, + "end": 1087.52, + "probability": 0.7958 + }, + { + "start": 1087.6, + "end": 1088.0, + "probability": 0.7392 + }, + { + "start": 1088.04, + "end": 1088.84, + "probability": 0.7478 + }, + { + "start": 1088.94, + "end": 1090.52, + "probability": 0.9569 + }, + { + "start": 1096.98, + "end": 1097.84, + "probability": 0.7551 + }, + { + "start": 1097.96, + "end": 1099.22, + "probability": 0.7686 + }, + { + "start": 1099.36, + "end": 1102.61, + "probability": 0.9739 + }, + { + "start": 1104.88, + "end": 1108.34, + "probability": 0.9698 + }, + { + "start": 1109.34, + "end": 1118.22, + "probability": 0.9949 + }, + { + "start": 1119.44, + "end": 1121.7, + "probability": 0.7971 + }, + { + "start": 1123.44, + "end": 1125.39, + "probability": 0.7073 + }, + { + "start": 1127.02, + "end": 1129.16, + "probability": 0.7491 + }, + { + "start": 1130.96, + "end": 1131.84, + "probability": 0.5834 + }, + { + "start": 1131.86, + "end": 1137.04, + "probability": 0.8113 + }, + { + "start": 1137.36, + "end": 1140.74, + "probability": 0.9971 + }, + { + "start": 1141.46, + "end": 1145.18, + "probability": 0.8975 + }, + { + "start": 1145.74, + "end": 1148.8, + "probability": 0.9811 + }, + { + "start": 1150.14, + "end": 1150.72, + "probability": 0.6471 + }, + { + "start": 1151.02, + "end": 1153.62, + "probability": 0.9752 + }, + { + "start": 1154.48, + "end": 1160.46, + "probability": 0.9687 + }, + { + "start": 1160.94, + "end": 1165.58, + "probability": 0.9859 + }, + { + "start": 1166.44, + "end": 1170.52, + "probability": 0.9307 + }, + { + "start": 1173.02, + "end": 1178.22, + "probability": 0.8995 + }, + { + "start": 1178.22, + "end": 1183.76, + "probability": 0.9989 + }, + { + "start": 1184.28, + "end": 1185.48, + "probability": 0.6565 + }, + { + "start": 1186.74, + "end": 1187.22, + "probability": 0.7276 + }, + { + "start": 1187.3, + "end": 1189.98, + "probability": 0.8738 + }, + { + "start": 1190.28, + "end": 1190.94, + "probability": 0.7004 + }, + { + "start": 1191.12, + "end": 1191.92, + "probability": 0.7842 + }, + { + "start": 1191.98, + "end": 1192.46, + "probability": 0.5117 + }, + { + "start": 1192.62, + "end": 1195.84, + "probability": 0.9766 + }, + { + "start": 1196.08, + "end": 1202.08, + "probability": 0.8616 + }, + { + "start": 1203.12, + "end": 1205.7, + "probability": 0.7864 + }, + { + "start": 1205.84, + "end": 1210.4, + "probability": 0.7822 + }, + { + "start": 1210.98, + "end": 1213.64, + "probability": 0.9677 + }, + { + "start": 1213.68, + "end": 1216.54, + "probability": 0.8876 + }, + { + "start": 1216.66, + "end": 1218.28, + "probability": 0.9158 + }, + { + "start": 1218.36, + "end": 1219.46, + "probability": 0.9573 + }, + { + "start": 1219.66, + "end": 1220.66, + "probability": 0.669 + }, + { + "start": 1221.12, + "end": 1222.36, + "probability": 0.7939 + }, + { + "start": 1224.14, + "end": 1225.76, + "probability": 0.7415 + }, + { + "start": 1225.82, + "end": 1226.86, + "probability": 0.015 + }, + { + "start": 1228.38, + "end": 1229.62, + "probability": 0.8217 + }, + { + "start": 1231.16, + "end": 1233.44, + "probability": 0.8127 + }, + { + "start": 1239.98, + "end": 1240.12, + "probability": 0.0242 + }, + { + "start": 1240.2, + "end": 1244.08, + "probability": 0.7363 + }, + { + "start": 1245.02, + "end": 1249.44, + "probability": 0.9789 + }, + { + "start": 1249.44, + "end": 1252.3, + "probability": 0.9898 + }, + { + "start": 1252.98, + "end": 1260.08, + "probability": 0.9292 + }, + { + "start": 1260.44, + "end": 1262.5, + "probability": 0.8 + }, + { + "start": 1263.24, + "end": 1268.32, + "probability": 0.9688 + }, + { + "start": 1268.48, + "end": 1269.46, + "probability": 0.7197 + }, + { + "start": 1269.48, + "end": 1270.34, + "probability": 0.8117 + }, + { + "start": 1271.04, + "end": 1273.16, + "probability": 0.9773 + }, + { + "start": 1273.16, + "end": 1276.8, + "probability": 0.9812 + }, + { + "start": 1276.84, + "end": 1279.4, + "probability": 0.6783 + }, + { + "start": 1279.78, + "end": 1283.14, + "probability": 0.9552 + }, + { + "start": 1283.44, + "end": 1285.23, + "probability": 0.9928 + }, + { + "start": 1285.9, + "end": 1289.02, + "probability": 0.9648 + }, + { + "start": 1289.96, + "end": 1292.74, + "probability": 0.9045 + }, + { + "start": 1293.16, + "end": 1294.83, + "probability": 0.9443 + }, + { + "start": 1295.48, + "end": 1297.46, + "probability": 0.887 + }, + { + "start": 1297.5, + "end": 1300.74, + "probability": 0.9473 + }, + { + "start": 1301.2, + "end": 1301.7, + "probability": 0.4818 + }, + { + "start": 1301.86, + "end": 1302.7, + "probability": 0.951 + }, + { + "start": 1302.76, + "end": 1305.4, + "probability": 0.9246 + }, + { + "start": 1305.44, + "end": 1308.22, + "probability": 0.9401 + }, + { + "start": 1308.76, + "end": 1312.72, + "probability": 0.8036 + }, + { + "start": 1313.48, + "end": 1314.8, + "probability": 0.4164 + }, + { + "start": 1315.38, + "end": 1319.02, + "probability": 0.8322 + }, + { + "start": 1319.68, + "end": 1321.58, + "probability": 0.8296 + }, + { + "start": 1321.84, + "end": 1323.88, + "probability": 0.9902 + }, + { + "start": 1324.42, + "end": 1327.4, + "probability": 0.9421 + }, + { + "start": 1327.62, + "end": 1328.82, + "probability": 0.9956 + }, + { + "start": 1329.3, + "end": 1329.62, + "probability": 0.8704 + }, + { + "start": 1330.5, + "end": 1332.48, + "probability": 0.6377 + }, + { + "start": 1332.66, + "end": 1334.78, + "probability": 0.7687 + }, + { + "start": 1335.34, + "end": 1337.64, + "probability": 0.938 + }, + { + "start": 1349.56, + "end": 1352.88, + "probability": 0.7439 + }, + { + "start": 1353.68, + "end": 1354.12, + "probability": 0.4601 + }, + { + "start": 1354.22, + "end": 1358.48, + "probability": 0.9847 + }, + { + "start": 1358.54, + "end": 1361.02, + "probability": 0.9401 + }, + { + "start": 1361.66, + "end": 1364.1, + "probability": 0.8965 + }, + { + "start": 1365.5, + "end": 1367.52, + "probability": 0.9486 + }, + { + "start": 1368.22, + "end": 1369.02, + "probability": 0.9817 + }, + { + "start": 1369.64, + "end": 1372.4, + "probability": 0.9795 + }, + { + "start": 1372.46, + "end": 1373.28, + "probability": 0.7622 + }, + { + "start": 1373.32, + "end": 1373.62, + "probability": 0.7534 + }, + { + "start": 1373.64, + "end": 1375.62, + "probability": 0.7491 + }, + { + "start": 1376.72, + "end": 1378.86, + "probability": 0.9623 + }, + { + "start": 1379.2, + "end": 1381.02, + "probability": 0.5046 + }, + { + "start": 1381.32, + "end": 1382.14, + "probability": 0.6964 + }, + { + "start": 1382.2, + "end": 1385.56, + "probability": 0.9841 + }, + { + "start": 1385.6, + "end": 1387.06, + "probability": 0.8876 + }, + { + "start": 1388.06, + "end": 1390.4, + "probability": 0.9805 + }, + { + "start": 1391.28, + "end": 1393.96, + "probability": 0.9524 + }, + { + "start": 1393.96, + "end": 1398.06, + "probability": 0.9803 + }, + { + "start": 1398.64, + "end": 1400.44, + "probability": 0.9819 + }, + { + "start": 1400.5, + "end": 1401.88, + "probability": 0.9284 + }, + { + "start": 1402.02, + "end": 1402.98, + "probability": 0.6234 + }, + { + "start": 1403.08, + "end": 1405.28, + "probability": 0.7938 + }, + { + "start": 1406.02, + "end": 1408.34, + "probability": 0.99 + }, + { + "start": 1408.62, + "end": 1411.02, + "probability": 0.9255 + }, + { + "start": 1411.1, + "end": 1411.46, + "probability": 0.6933 + }, + { + "start": 1411.5, + "end": 1412.0, + "probability": 0.8275 + }, + { + "start": 1412.08, + "end": 1413.44, + "probability": 0.9958 + }, + { + "start": 1414.06, + "end": 1415.0, + "probability": 0.7983 + }, + { + "start": 1416.94, + "end": 1419.88, + "probability": 0.9571 + }, + { + "start": 1419.88, + "end": 1422.1, + "probability": 0.9939 + }, + { + "start": 1422.62, + "end": 1425.56, + "probability": 0.9816 + }, + { + "start": 1425.64, + "end": 1426.08, + "probability": 0.7686 + }, + { + "start": 1426.14, + "end": 1429.56, + "probability": 0.9204 + }, + { + "start": 1429.94, + "end": 1431.02, + "probability": 0.998 + }, + { + "start": 1431.12, + "end": 1432.1, + "probability": 0.9941 + }, + { + "start": 1432.86, + "end": 1435.84, + "probability": 0.9399 + }, + { + "start": 1436.04, + "end": 1439.04, + "probability": 0.9695 + }, + { + "start": 1439.12, + "end": 1441.78, + "probability": 0.8909 + }, + { + "start": 1441.9, + "end": 1444.16, + "probability": 0.7735 + }, + { + "start": 1444.32, + "end": 1444.83, + "probability": 0.9103 + }, + { + "start": 1445.44, + "end": 1447.56, + "probability": 0.9558 + }, + { + "start": 1448.06, + "end": 1449.36, + "probability": 0.991 + }, + { + "start": 1449.46, + "end": 1449.8, + "probability": 0.5127 + }, + { + "start": 1449.9, + "end": 1451.28, + "probability": 0.8453 + }, + { + "start": 1451.68, + "end": 1453.24, + "probability": 0.6508 + }, + { + "start": 1453.3, + "end": 1458.04, + "probability": 0.8674 + }, + { + "start": 1458.12, + "end": 1459.0, + "probability": 0.6632 + }, + { + "start": 1459.06, + "end": 1460.32, + "probability": 0.629 + }, + { + "start": 1460.58, + "end": 1462.35, + "probability": 0.9956 + }, + { + "start": 1462.84, + "end": 1464.7, + "probability": 0.9568 + }, + { + "start": 1464.9, + "end": 1465.12, + "probability": 0.7979 + }, + { + "start": 1466.3, + "end": 1468.66, + "probability": 0.8743 + }, + { + "start": 1469.24, + "end": 1471.22, + "probability": 0.7894 + }, + { + "start": 1473.9, + "end": 1474.6, + "probability": 0.7306 + }, + { + "start": 1474.84, + "end": 1475.7, + "probability": 0.9237 + }, + { + "start": 1475.92, + "end": 1481.32, + "probability": 0.9814 + }, + { + "start": 1481.32, + "end": 1484.22, + "probability": 0.96 + }, + { + "start": 1485.08, + "end": 1485.88, + "probability": 0.742 + }, + { + "start": 1486.98, + "end": 1488.32, + "probability": 0.9869 + }, + { + "start": 1489.02, + "end": 1491.86, + "probability": 0.9966 + }, + { + "start": 1492.04, + "end": 1494.22, + "probability": 0.9826 + }, + { + "start": 1494.68, + "end": 1498.24, + "probability": 0.9591 + }, + { + "start": 1499.52, + "end": 1504.24, + "probability": 0.9954 + }, + { + "start": 1505.1, + "end": 1508.84, + "probability": 0.7138 + }, + { + "start": 1509.42, + "end": 1511.34, + "probability": 0.7604 + }, + { + "start": 1512.62, + "end": 1515.98, + "probability": 0.7935 + }, + { + "start": 1516.8, + "end": 1522.04, + "probability": 0.8683 + }, + { + "start": 1522.04, + "end": 1528.82, + "probability": 0.9375 + }, + { + "start": 1529.86, + "end": 1530.68, + "probability": 0.824 + }, + { + "start": 1531.24, + "end": 1533.76, + "probability": 0.9869 + }, + { + "start": 1534.22, + "end": 1537.92, + "probability": 0.983 + }, + { + "start": 1538.68, + "end": 1544.68, + "probability": 0.9984 + }, + { + "start": 1545.24, + "end": 1548.24, + "probability": 0.9963 + }, + { + "start": 1548.82, + "end": 1555.48, + "probability": 0.9951 + }, + { + "start": 1556.02, + "end": 1558.24, + "probability": 0.9219 + }, + { + "start": 1558.32, + "end": 1560.96, + "probability": 0.995 + }, + { + "start": 1561.34, + "end": 1561.72, + "probability": 0.747 + }, + { + "start": 1563.02, + "end": 1565.36, + "probability": 0.9734 + }, + { + "start": 1565.78, + "end": 1567.5, + "probability": 0.9341 + }, + { + "start": 1569.02, + "end": 1571.44, + "probability": 0.9353 + }, + { + "start": 1572.54, + "end": 1576.16, + "probability": 0.9025 + }, + { + "start": 1576.3, + "end": 1577.68, + "probability": 0.9089 + }, + { + "start": 1581.09, + "end": 1584.46, + "probability": 0.6503 + }, + { + "start": 1585.24, + "end": 1586.3, + "probability": 0.8137 + }, + { + "start": 1621.64, + "end": 1622.6, + "probability": 0.3656 + }, + { + "start": 1622.72, + "end": 1625.3, + "probability": 0.9522 + }, + { + "start": 1626.86, + "end": 1630.0, + "probability": 0.6658 + }, + { + "start": 1630.8, + "end": 1631.38, + "probability": 0.4277 + }, + { + "start": 1631.44, + "end": 1632.56, + "probability": 0.6532 + }, + { + "start": 1632.78, + "end": 1634.3, + "probability": 0.8469 + }, + { + "start": 1634.44, + "end": 1636.9, + "probability": 0.8605 + }, + { + "start": 1637.0, + "end": 1639.34, + "probability": 0.9957 + }, + { + "start": 1640.34, + "end": 1644.64, + "probability": 0.9982 + }, + { + "start": 1644.64, + "end": 1648.79, + "probability": 0.9949 + }, + { + "start": 1649.52, + "end": 1651.14, + "probability": 0.8286 + }, + { + "start": 1651.82, + "end": 1653.92, + "probability": 0.8728 + }, + { + "start": 1654.5, + "end": 1658.26, + "probability": 0.8613 + }, + { + "start": 1658.26, + "end": 1662.82, + "probability": 0.9635 + }, + { + "start": 1663.64, + "end": 1665.92, + "probability": 0.8796 + }, + { + "start": 1666.28, + "end": 1669.58, + "probability": 0.9828 + }, + { + "start": 1670.14, + "end": 1672.66, + "probability": 0.9891 + }, + { + "start": 1673.2, + "end": 1676.62, + "probability": 0.985 + }, + { + "start": 1676.62, + "end": 1680.06, + "probability": 0.7948 + }, + { + "start": 1680.44, + "end": 1682.72, + "probability": 0.8969 + }, + { + "start": 1682.72, + "end": 1686.48, + "probability": 0.9652 + }, + { + "start": 1686.62, + "end": 1688.0, + "probability": 0.9053 + }, + { + "start": 1688.18, + "end": 1693.18, + "probability": 0.9476 + }, + { + "start": 1693.46, + "end": 1696.4, + "probability": 0.9062 + }, + { + "start": 1696.58, + "end": 1696.76, + "probability": 0.6642 + }, + { + "start": 1697.04, + "end": 1697.4, + "probability": 0.3787 + }, + { + "start": 1698.12, + "end": 1699.88, + "probability": 0.828 + }, + { + "start": 1700.54, + "end": 1703.52, + "probability": 0.7985 + }, + { + "start": 1704.62, + "end": 1709.64, + "probability": 0.9696 + }, + { + "start": 1709.64, + "end": 1712.36, + "probability": 0.9756 + }, + { + "start": 1714.26, + "end": 1718.41, + "probability": 0.8522 + }, + { + "start": 1718.66, + "end": 1721.12, + "probability": 0.9468 + }, + { + "start": 1721.88, + "end": 1723.19, + "probability": 0.9753 + }, + { + "start": 1724.52, + "end": 1727.84, + "probability": 0.8489 + }, + { + "start": 1729.54, + "end": 1732.66, + "probability": 0.9838 + }, + { + "start": 1733.42, + "end": 1740.14, + "probability": 0.9964 + }, + { + "start": 1741.22, + "end": 1749.69, + "probability": 0.8034 + }, + { + "start": 1750.16, + "end": 1753.44, + "probability": 0.7122 + }, + { + "start": 1755.16, + "end": 1757.0, + "probability": 0.9966 + }, + { + "start": 1757.0, + "end": 1757.57, + "probability": 0.5416 + }, + { + "start": 1758.72, + "end": 1763.82, + "probability": 0.9588 + }, + { + "start": 1764.72, + "end": 1769.12, + "probability": 0.9497 + }, + { + "start": 1770.12, + "end": 1770.52, + "probability": 0.7729 + }, + { + "start": 1771.28, + "end": 1771.62, + "probability": 0.0052 + }, + { + "start": 1771.62, + "end": 1772.42, + "probability": 0.5897 + }, + { + "start": 1772.52, + "end": 1774.72, + "probability": 0.8816 + }, + { + "start": 1774.86, + "end": 1775.56, + "probability": 0.9475 + }, + { + "start": 1776.42, + "end": 1777.96, + "probability": 0.9902 + }, + { + "start": 1779.68, + "end": 1782.1, + "probability": 0.871 + }, + { + "start": 1782.78, + "end": 1788.9, + "probability": 0.9689 + }, + { + "start": 1789.72, + "end": 1792.76, + "probability": 0.9896 + }, + { + "start": 1794.98, + "end": 1801.48, + "probability": 0.9707 + }, + { + "start": 1802.42, + "end": 1804.94, + "probability": 0.8115 + }, + { + "start": 1805.74, + "end": 1811.12, + "probability": 0.9956 + }, + { + "start": 1811.12, + "end": 1816.74, + "probability": 0.9967 + }, + { + "start": 1817.3, + "end": 1819.42, + "probability": 0.7932 + }, + { + "start": 1820.58, + "end": 1824.1, + "probability": 0.8101 + }, + { + "start": 1824.18, + "end": 1828.58, + "probability": 0.9546 + }, + { + "start": 1829.38, + "end": 1836.62, + "probability": 0.9487 + }, + { + "start": 1836.66, + "end": 1840.44, + "probability": 0.9633 + }, + { + "start": 1841.16, + "end": 1842.7, + "probability": 0.95 + }, + { + "start": 1842.76, + "end": 1846.2, + "probability": 0.7269 + }, + { + "start": 1846.96, + "end": 1851.18, + "probability": 0.674 + }, + { + "start": 1851.82, + "end": 1853.66, + "probability": 0.5925 + }, + { + "start": 1854.24, + "end": 1861.7, + "probability": 0.936 + }, + { + "start": 1861.76, + "end": 1863.04, + "probability": 0.8542 + }, + { + "start": 1863.68, + "end": 1870.36, + "probability": 0.9185 + }, + { + "start": 1870.52, + "end": 1874.94, + "probability": 0.9249 + }, + { + "start": 1875.9, + "end": 1878.68, + "probability": 0.7273 + }, + { + "start": 1879.78, + "end": 1880.32, + "probability": 0.3908 + }, + { + "start": 1880.32, + "end": 1883.28, + "probability": 0.9568 + }, + { + "start": 1883.36, + "end": 1884.56, + "probability": 0.2379 + }, + { + "start": 1884.98, + "end": 1888.42, + "probability": 0.7452 + }, + { + "start": 1888.42, + "end": 1892.34, + "probability": 0.9934 + }, + { + "start": 1892.62, + "end": 1894.48, + "probability": 0.9449 + }, + { + "start": 1897.32, + "end": 1898.78, + "probability": 0.6936 + }, + { + "start": 1899.87, + "end": 1902.16, + "probability": 0.9465 + }, + { + "start": 1902.38, + "end": 1903.79, + "probability": 0.5625 + }, + { + "start": 1906.96, + "end": 1909.98, + "probability": 0.8532 + }, + { + "start": 1910.64, + "end": 1913.84, + "probability": 0.4943 + }, + { + "start": 1914.4, + "end": 1917.4, + "probability": 0.9689 + }, + { + "start": 1918.16, + "end": 1925.96, + "probability": 0.8132 + }, + { + "start": 1926.54, + "end": 1928.18, + "probability": 0.9958 + }, + { + "start": 1928.36, + "end": 1929.0, + "probability": 0.837 + }, + { + "start": 1930.64, + "end": 1934.38, + "probability": 0.9281 + }, + { + "start": 1934.42, + "end": 1938.08, + "probability": 0.9011 + }, + { + "start": 1939.6, + "end": 1940.84, + "probability": 0.7523 + }, + { + "start": 1941.4, + "end": 1941.78, + "probability": 0.5261 + }, + { + "start": 1941.86, + "end": 1942.44, + "probability": 0.8261 + }, + { + "start": 1942.6, + "end": 1943.62, + "probability": 0.7277 + }, + { + "start": 1943.66, + "end": 1947.66, + "probability": 0.9146 + }, + { + "start": 1948.56, + "end": 1949.2, + "probability": 0.5842 + }, + { + "start": 1949.36, + "end": 1951.68, + "probability": 0.8642 + }, + { + "start": 1952.02, + "end": 1953.16, + "probability": 0.8423 + }, + { + "start": 1953.4, + "end": 1957.34, + "probability": 0.9875 + }, + { + "start": 1957.66, + "end": 1959.26, + "probability": 0.1755 + }, + { + "start": 1960.69, + "end": 1962.6, + "probability": 0.6889 + }, + { + "start": 1962.62, + "end": 1965.14, + "probability": 0.9956 + }, + { + "start": 1965.14, + "end": 1967.38, + "probability": 0.8824 + }, + { + "start": 1968.04, + "end": 1970.48, + "probability": 0.9956 + }, + { + "start": 1970.68, + "end": 1974.9, + "probability": 0.9896 + }, + { + "start": 1975.02, + "end": 1977.68, + "probability": 0.9906 + }, + { + "start": 1977.8, + "end": 1978.84, + "probability": 0.9449 + }, + { + "start": 1979.44, + "end": 1980.74, + "probability": 0.967 + }, + { + "start": 1980.8, + "end": 1985.28, + "probability": 0.813 + }, + { + "start": 1985.36, + "end": 1985.94, + "probability": 0.422 + }, + { + "start": 1986.0, + "end": 1988.6, + "probability": 0.8428 + }, + { + "start": 1988.64, + "end": 1989.0, + "probability": 0.8198 + }, + { + "start": 1989.06, + "end": 1989.74, + "probability": 0.8018 + }, + { + "start": 1989.82, + "end": 1991.28, + "probability": 0.9456 + }, + { + "start": 1991.48, + "end": 1994.5, + "probability": 0.6818 + }, + { + "start": 1994.58, + "end": 1995.58, + "probability": 0.7931 + }, + { + "start": 1995.7, + "end": 1997.38, + "probability": 0.9458 + }, + { + "start": 1998.76, + "end": 2002.3, + "probability": 0.9648 + }, + { + "start": 2002.54, + "end": 2006.94, + "probability": 0.9738 + }, + { + "start": 2006.94, + "end": 2012.6, + "probability": 0.9951 + }, + { + "start": 2012.68, + "end": 2013.98, + "probability": 0.9635 + }, + { + "start": 2014.06, + "end": 2015.38, + "probability": 0.9384 + }, + { + "start": 2015.38, + "end": 2015.54, + "probability": 0.8114 + }, + { + "start": 2015.62, + "end": 2015.86, + "probability": 0.3375 + }, + { + "start": 2015.9, + "end": 2019.06, + "probability": 0.9077 + }, + { + "start": 2019.8, + "end": 2020.88, + "probability": 0.3108 + }, + { + "start": 2020.88, + "end": 2023.76, + "probability": 0.9755 + }, + { + "start": 2024.28, + "end": 2026.48, + "probability": 0.5816 + }, + { + "start": 2026.6, + "end": 2029.44, + "probability": 0.6138 + }, + { + "start": 2030.82, + "end": 2034.86, + "probability": 0.9937 + }, + { + "start": 2034.86, + "end": 2038.18, + "probability": 0.9503 + }, + { + "start": 2038.2, + "end": 2040.94, + "probability": 0.9761 + }, + { + "start": 2041.3, + "end": 2042.7, + "probability": 0.4743 + }, + { + "start": 2042.88, + "end": 2044.18, + "probability": 0.4854 + }, + { + "start": 2044.26, + "end": 2046.24, + "probability": 0.9656 + }, + { + "start": 2047.32, + "end": 2053.62, + "probability": 0.9938 + }, + { + "start": 2053.86, + "end": 2054.64, + "probability": 0.8103 + }, + { + "start": 2054.76, + "end": 2055.72, + "probability": 0.7605 + }, + { + "start": 2056.3, + "end": 2059.38, + "probability": 0.9161 + }, + { + "start": 2060.22, + "end": 2060.58, + "probability": 0.6303 + }, + { + "start": 2060.7, + "end": 2061.36, + "probability": 0.9478 + }, + { + "start": 2061.44, + "end": 2070.26, + "probability": 0.98 + }, + { + "start": 2070.34, + "end": 2070.48, + "probability": 0.5339 + }, + { + "start": 2070.48, + "end": 2072.24, + "probability": 0.7568 + }, + { + "start": 2072.8, + "end": 2077.13, + "probability": 0.8491 + }, + { + "start": 2078.26, + "end": 2079.44, + "probability": 0.9336 + }, + { + "start": 2079.58, + "end": 2082.0, + "probability": 0.9106 + }, + { + "start": 2082.06, + "end": 2084.3, + "probability": 0.8585 + }, + { + "start": 2084.88, + "end": 2086.78, + "probability": 0.8852 + }, + { + "start": 2087.18, + "end": 2089.76, + "probability": 0.8818 + }, + { + "start": 2089.96, + "end": 2092.2, + "probability": 0.9771 + }, + { + "start": 2092.2, + "end": 2095.88, + "probability": 0.9974 + }, + { + "start": 2097.02, + "end": 2099.86, + "probability": 0.534 + }, + { + "start": 2099.94, + "end": 2100.96, + "probability": 0.7527 + }, + { + "start": 2101.4, + "end": 2102.2, + "probability": 0.7239 + }, + { + "start": 2102.26, + "end": 2102.34, + "probability": 0.1683 + }, + { + "start": 2102.34, + "end": 2104.34, + "probability": 0.733 + }, + { + "start": 2104.58, + "end": 2106.2, + "probability": 0.981 + }, + { + "start": 2106.32, + "end": 2106.76, + "probability": 0.6688 + }, + { + "start": 2106.78, + "end": 2107.1, + "probability": 0.8567 + }, + { + "start": 2107.22, + "end": 2109.23, + "probability": 0.8508 + }, + { + "start": 2109.64, + "end": 2110.52, + "probability": 0.6994 + }, + { + "start": 2110.56, + "end": 2111.98, + "probability": 0.8373 + }, + { + "start": 2112.72, + "end": 2114.14, + "probability": 0.8619 + }, + { + "start": 2114.26, + "end": 2116.9, + "probability": 0.9532 + }, + { + "start": 2116.9, + "end": 2120.36, + "probability": 0.927 + }, + { + "start": 2120.46, + "end": 2122.98, + "probability": 0.6886 + }, + { + "start": 2123.02, + "end": 2123.96, + "probability": 0.6809 + }, + { + "start": 2124.14, + "end": 2124.94, + "probability": 0.4449 + }, + { + "start": 2125.08, + "end": 2127.26, + "probability": 0.4173 + }, + { + "start": 2127.4, + "end": 2129.08, + "probability": 0.9138 + }, + { + "start": 2129.46, + "end": 2130.2, + "probability": 0.8156 + }, + { + "start": 2130.88, + "end": 2138.04, + "probability": 0.9446 + }, + { + "start": 2139.48, + "end": 2140.86, + "probability": 0.549 + }, + { + "start": 2141.04, + "end": 2142.56, + "probability": 0.7302 + }, + { + "start": 2143.58, + "end": 2149.48, + "probability": 0.9551 + }, + { + "start": 2150.34, + "end": 2153.78, + "probability": 0.7104 + }, + { + "start": 2154.72, + "end": 2157.16, + "probability": 0.3998 + }, + { + "start": 2157.46, + "end": 2158.68, + "probability": 0.7399 + }, + { + "start": 2159.34, + "end": 2160.6, + "probability": 0.939 + }, + { + "start": 2160.66, + "end": 2160.96, + "probability": 0.9186 + }, + { + "start": 2161.1, + "end": 2163.3, + "probability": 0.9359 + }, + { + "start": 2163.36, + "end": 2168.28, + "probability": 0.6468 + }, + { + "start": 2169.96, + "end": 2170.14, + "probability": 0.0059 + }, + { + "start": 2170.14, + "end": 2170.32, + "probability": 0.1101 + }, + { + "start": 2170.32, + "end": 2170.32, + "probability": 0.1117 + }, + { + "start": 2170.32, + "end": 2170.32, + "probability": 0.1176 + }, + { + "start": 2170.32, + "end": 2171.62, + "probability": 0.2563 + }, + { + "start": 2171.64, + "end": 2172.64, + "probability": 0.6119 + }, + { + "start": 2172.84, + "end": 2173.1, + "probability": 0.4602 + }, + { + "start": 2173.44, + "end": 2177.94, + "probability": 0.9464 + }, + { + "start": 2179.02, + "end": 2182.66, + "probability": 0.9937 + }, + { + "start": 2182.66, + "end": 2188.98, + "probability": 0.9963 + }, + { + "start": 2189.16, + "end": 2190.5, + "probability": 0.8882 + }, + { + "start": 2191.08, + "end": 2192.62, + "probability": 0.7612 + }, + { + "start": 2193.84, + "end": 2200.0, + "probability": 0.9069 + }, + { + "start": 2200.74, + "end": 2205.94, + "probability": 0.9972 + }, + { + "start": 2207.12, + "end": 2211.46, + "probability": 0.6853 + }, + { + "start": 2211.9, + "end": 2212.86, + "probability": 0.8273 + }, + { + "start": 2212.98, + "end": 2215.4, + "probability": 0.5435 + }, + { + "start": 2215.96, + "end": 2216.58, + "probability": 0.2873 + }, + { + "start": 2216.58, + "end": 2217.44, + "probability": 0.6005 + }, + { + "start": 2217.44, + "end": 2217.62, + "probability": 0.2691 + }, + { + "start": 2217.62, + "end": 2219.58, + "probability": 0.5672 + }, + { + "start": 2220.14, + "end": 2224.26, + "probability": 0.9756 + }, + { + "start": 2225.02, + "end": 2226.0, + "probability": 0.7285 + }, + { + "start": 2226.68, + "end": 2230.86, + "probability": 0.9279 + }, + { + "start": 2230.86, + "end": 2233.42, + "probability": 0.8535 + }, + { + "start": 2233.52, + "end": 2238.44, + "probability": 0.9883 + }, + { + "start": 2238.66, + "end": 2245.08, + "probability": 0.989 + }, + { + "start": 2245.52, + "end": 2246.72, + "probability": 0.7589 + }, + { + "start": 2247.8, + "end": 2251.2, + "probability": 0.9677 + }, + { + "start": 2252.1, + "end": 2254.3, + "probability": 0.697 + }, + { + "start": 2255.16, + "end": 2258.52, + "probability": 0.7947 + }, + { + "start": 2259.36, + "end": 2263.14, + "probability": 0.9951 + }, + { + "start": 2263.14, + "end": 2267.14, + "probability": 0.9963 + }, + { + "start": 2268.56, + "end": 2271.14, + "probability": 0.6649 + }, + { + "start": 2272.12, + "end": 2279.78, + "probability": 0.978 + }, + { + "start": 2279.78, + "end": 2285.06, + "probability": 0.9762 + }, + { + "start": 2286.46, + "end": 2287.82, + "probability": 0.705 + }, + { + "start": 2288.98, + "end": 2292.26, + "probability": 0.867 + }, + { + "start": 2292.26, + "end": 2295.62, + "probability": 0.9615 + }, + { + "start": 2295.74, + "end": 2296.74, + "probability": 0.9645 + }, + { + "start": 2297.28, + "end": 2297.92, + "probability": 0.8079 + }, + { + "start": 2298.04, + "end": 2299.42, + "probability": 0.8521 + }, + { + "start": 2299.74, + "end": 2302.28, + "probability": 0.9006 + }, + { + "start": 2303.54, + "end": 2307.72, + "probability": 0.817 + }, + { + "start": 2308.56, + "end": 2311.52, + "probability": 0.6899 + }, + { + "start": 2313.14, + "end": 2316.92, + "probability": 0.5587 + }, + { + "start": 2317.42, + "end": 2317.68, + "probability": 0.9253 + }, + { + "start": 2317.86, + "end": 2321.82, + "probability": 0.9683 + }, + { + "start": 2323.58, + "end": 2325.26, + "probability": 0.751 + }, + { + "start": 2325.44, + "end": 2331.9, + "probability": 0.8957 + }, + { + "start": 2332.06, + "end": 2333.98, + "probability": 0.9673 + }, + { + "start": 2334.56, + "end": 2343.48, + "probability": 0.9904 + }, + { + "start": 2343.48, + "end": 2347.66, + "probability": 0.9883 + }, + { + "start": 2348.24, + "end": 2350.68, + "probability": 0.854 + }, + { + "start": 2351.2, + "end": 2353.36, + "probability": 0.9711 + }, + { + "start": 2354.08, + "end": 2355.76, + "probability": 0.8594 + }, + { + "start": 2356.28, + "end": 2358.98, + "probability": 0.7882 + }, + { + "start": 2359.88, + "end": 2362.62, + "probability": 0.7398 + }, + { + "start": 2363.84, + "end": 2365.02, + "probability": 0.7269 + }, + { + "start": 2365.88, + "end": 2366.12, + "probability": 0.9375 + }, + { + "start": 2366.2, + "end": 2370.93, + "probability": 0.9483 + }, + { + "start": 2371.72, + "end": 2375.88, + "probability": 0.926 + }, + { + "start": 2377.16, + "end": 2378.38, + "probability": 0.9575 + }, + { + "start": 2378.82, + "end": 2380.26, + "probability": 0.8122 + }, + { + "start": 2380.32, + "end": 2381.8, + "probability": 0.9673 + }, + { + "start": 2382.4, + "end": 2385.86, + "probability": 0.9832 + }, + { + "start": 2386.0, + "end": 2388.4, + "probability": 0.9765 + }, + { + "start": 2389.16, + "end": 2390.36, + "probability": 0.9901 + }, + { + "start": 2391.02, + "end": 2394.32, + "probability": 0.9413 + }, + { + "start": 2395.24, + "end": 2398.04, + "probability": 0.7418 + }, + { + "start": 2400.7, + "end": 2406.7, + "probability": 0.9938 + }, + { + "start": 2407.86, + "end": 2409.52, + "probability": 0.7527 + }, + { + "start": 2409.78, + "end": 2414.82, + "probability": 0.9932 + }, + { + "start": 2414.82, + "end": 2420.68, + "probability": 0.9641 + }, + { + "start": 2422.06, + "end": 2422.9, + "probability": 0.7235 + }, + { + "start": 2423.28, + "end": 2423.46, + "probability": 0.6516 + }, + { + "start": 2430.72, + "end": 2432.26, + "probability": 0.5372 + }, + { + "start": 2432.8, + "end": 2435.22, + "probability": 0.9636 + }, + { + "start": 2436.22, + "end": 2439.76, + "probability": 0.8665 + }, + { + "start": 2439.8, + "end": 2442.6, + "probability": 0.9932 + }, + { + "start": 2442.74, + "end": 2444.22, + "probability": 0.6512 + }, + { + "start": 2444.38, + "end": 2445.42, + "probability": 0.424 + }, + { + "start": 2445.74, + "end": 2446.78, + "probability": 0.6489 + }, + { + "start": 2447.06, + "end": 2450.8, + "probability": 0.9425 + }, + { + "start": 2451.06, + "end": 2451.18, + "probability": 0.1241 + }, + { + "start": 2451.46, + "end": 2451.7, + "probability": 0.0595 + }, + { + "start": 2451.7, + "end": 2451.88, + "probability": 0.5237 + }, + { + "start": 2451.94, + "end": 2453.32, + "probability": 0.768 + }, + { + "start": 2453.62, + "end": 2454.0, + "probability": 0.3094 + }, + { + "start": 2454.02, + "end": 2454.16, + "probability": 0.8445 + }, + { + "start": 2454.26, + "end": 2457.58, + "probability": 0.6549 + }, + { + "start": 2457.98, + "end": 2461.2, + "probability": 0.7693 + }, + { + "start": 2461.36, + "end": 2464.16, + "probability": 0.8527 + }, + { + "start": 2464.36, + "end": 2464.68, + "probability": 0.3915 + }, + { + "start": 2464.72, + "end": 2465.38, + "probability": 0.8076 + }, + { + "start": 2465.56, + "end": 2465.94, + "probability": 0.9272 + }, + { + "start": 2466.52, + "end": 2469.24, + "probability": 0.8853 + }, + { + "start": 2469.32, + "end": 2469.76, + "probability": 0.7914 + }, + { + "start": 2470.28, + "end": 2471.4, + "probability": 0.0924 + }, + { + "start": 2471.72, + "end": 2477.48, + "probability": 0.8796 + }, + { + "start": 2477.9, + "end": 2478.56, + "probability": 0.8215 + }, + { + "start": 2480.28, + "end": 2485.64, + "probability": 0.906 + }, + { + "start": 2485.66, + "end": 2487.61, + "probability": 0.9833 + }, + { + "start": 2488.26, + "end": 2490.04, + "probability": 0.9983 + }, + { + "start": 2490.58, + "end": 2494.46, + "probability": 0.9819 + }, + { + "start": 2494.46, + "end": 2498.4, + "probability": 0.8793 + }, + { + "start": 2499.76, + "end": 2500.46, + "probability": 0.0098 + }, + { + "start": 2500.96, + "end": 2502.66, + "probability": 0.9191 + }, + { + "start": 2503.62, + "end": 2507.84, + "probability": 0.6654 + }, + { + "start": 2508.06, + "end": 2511.86, + "probability": 0.9434 + }, + { + "start": 2511.9, + "end": 2513.88, + "probability": 0.8532 + }, + { + "start": 2513.9, + "end": 2514.7, + "probability": 0.6077 + }, + { + "start": 2514.78, + "end": 2518.31, + "probability": 0.945 + }, + { + "start": 2519.14, + "end": 2522.98, + "probability": 0.9951 + }, + { + "start": 2523.0, + "end": 2527.58, + "probability": 0.9229 + }, + { + "start": 2527.74, + "end": 2528.78, + "probability": 0.9992 + }, + { + "start": 2529.38, + "end": 2531.3, + "probability": 0.6862 + }, + { + "start": 2531.44, + "end": 2532.56, + "probability": 0.8895 + }, + { + "start": 2532.7, + "end": 2537.46, + "probability": 0.9615 + }, + { + "start": 2537.54, + "end": 2540.28, + "probability": 0.8692 + }, + { + "start": 2540.28, + "end": 2541.08, + "probability": 0.964 + }, + { + "start": 2541.74, + "end": 2543.44, + "probability": 0.7933 + }, + { + "start": 2543.56, + "end": 2543.82, + "probability": 0.6534 + }, + { + "start": 2544.08, + "end": 2544.48, + "probability": 0.386 + }, + { + "start": 2544.7, + "end": 2545.14, + "probability": 0.2248 + }, + { + "start": 2545.14, + "end": 2546.64, + "probability": 0.5282 + }, + { + "start": 2546.68, + "end": 2551.42, + "probability": 0.9905 + }, + { + "start": 2552.3, + "end": 2553.0, + "probability": 0.9139 + }, + { + "start": 2553.12, + "end": 2554.02, + "probability": 0.74 + }, + { + "start": 2554.04, + "end": 2556.72, + "probability": 0.9042 + }, + { + "start": 2557.82, + "end": 2561.1, + "probability": 0.8856 + }, + { + "start": 2561.82, + "end": 2564.76, + "probability": 0.8352 + }, + { + "start": 2565.7, + "end": 2566.3, + "probability": 0.9883 + }, + { + "start": 2566.9, + "end": 2567.68, + "probability": 0.9121 + }, + { + "start": 2568.4, + "end": 2571.45, + "probability": 0.9941 + }, + { + "start": 2571.64, + "end": 2572.1, + "probability": 0.4986 + }, + { + "start": 2572.3, + "end": 2572.86, + "probability": 0.828 + }, + { + "start": 2578.34, + "end": 2584.08, + "probability": 0.6728 + }, + { + "start": 2584.8, + "end": 2587.68, + "probability": 0.9314 + }, + { + "start": 2588.24, + "end": 2592.06, + "probability": 0.7173 + }, + { + "start": 2598.04, + "end": 2602.68, + "probability": 0.8481 + }, + { + "start": 2603.64, + "end": 2607.8, + "probability": 0.9875 + }, + { + "start": 2608.88, + "end": 2611.4, + "probability": 0.9202 + }, + { + "start": 2611.92, + "end": 2613.34, + "probability": 0.8789 + }, + { + "start": 2614.56, + "end": 2617.02, + "probability": 0.9799 + }, + { + "start": 2617.02, + "end": 2621.16, + "probability": 0.819 + }, + { + "start": 2621.72, + "end": 2623.44, + "probability": 0.9746 + }, + { + "start": 2624.36, + "end": 2626.78, + "probability": 0.9949 + }, + { + "start": 2627.94, + "end": 2630.88, + "probability": 0.993 + }, + { + "start": 2631.9, + "end": 2635.6, + "probability": 0.8943 + }, + { + "start": 2635.6, + "end": 2638.76, + "probability": 0.9824 + }, + { + "start": 2639.32, + "end": 2640.4, + "probability": 0.967 + }, + { + "start": 2641.34, + "end": 2648.72, + "probability": 0.9946 + }, + { + "start": 2651.58, + "end": 2652.2, + "probability": 0.9796 + }, + { + "start": 2652.74, + "end": 2653.84, + "probability": 0.7284 + }, + { + "start": 2654.12, + "end": 2656.02, + "probability": 0.7792 + }, + { + "start": 2656.22, + "end": 2663.4, + "probability": 0.7603 + }, + { + "start": 2663.54, + "end": 2668.66, + "probability": 0.9119 + }, + { + "start": 2668.76, + "end": 2670.58, + "probability": 0.9461 + }, + { + "start": 2671.26, + "end": 2672.14, + "probability": 0.8288 + }, + { + "start": 2672.82, + "end": 2673.64, + "probability": 0.7327 + }, + { + "start": 2673.72, + "end": 2676.66, + "probability": 0.8943 + }, + { + "start": 2676.66, + "end": 2681.48, + "probability": 0.9927 + }, + { + "start": 2683.38, + "end": 2684.74, + "probability": 0.424 + }, + { + "start": 2684.8, + "end": 2689.92, + "probability": 0.9777 + }, + { + "start": 2690.22, + "end": 2690.8, + "probability": 0.7296 + }, + { + "start": 2704.54, + "end": 2708.38, + "probability": 0.5163 + }, + { + "start": 2709.67, + "end": 2711.8, + "probability": 0.9917 + }, + { + "start": 2711.96, + "end": 2714.58, + "probability": 0.7556 + }, + { + "start": 2714.82, + "end": 2716.84, + "probability": 0.81 + }, + { + "start": 2716.92, + "end": 2717.8, + "probability": 0.4021 + }, + { + "start": 2717.86, + "end": 2722.4, + "probability": 0.6867 + }, + { + "start": 2722.4, + "end": 2725.86, + "probability": 0.9836 + }, + { + "start": 2725.96, + "end": 2726.18, + "probability": 0.2155 + }, + { + "start": 2726.24, + "end": 2730.0, + "probability": 0.8945 + }, + { + "start": 2730.14, + "end": 2734.56, + "probability": 0.9902 + }, + { + "start": 2735.04, + "end": 2738.98, + "probability": 0.9055 + }, + { + "start": 2739.3, + "end": 2741.72, + "probability": 0.9924 + }, + { + "start": 2742.02, + "end": 2742.76, + "probability": 0.8847 + }, + { + "start": 2743.34, + "end": 2746.22, + "probability": 0.8879 + }, + { + "start": 2746.34, + "end": 2748.9, + "probability": 0.9801 + }, + { + "start": 2748.9, + "end": 2751.9, + "probability": 0.9537 + }, + { + "start": 2753.38, + "end": 2755.96, + "probability": 0.4299 + }, + { + "start": 2755.96, + "end": 2759.78, + "probability": 0.986 + }, + { + "start": 2760.24, + "end": 2762.34, + "probability": 0.9346 + }, + { + "start": 2762.34, + "end": 2764.52, + "probability": 0.8488 + }, + { + "start": 2765.1, + "end": 2769.02, + "probability": 0.9758 + }, + { + "start": 2769.02, + "end": 2773.14, + "probability": 0.9704 + }, + { + "start": 2773.5, + "end": 2773.64, + "probability": 0.7265 + }, + { + "start": 2774.64, + "end": 2775.51, + "probability": 0.3918 + }, + { + "start": 2776.62, + "end": 2780.92, + "probability": 0.8629 + }, + { + "start": 2781.8, + "end": 2783.47, + "probability": 0.8612 + }, + { + "start": 2784.4, + "end": 2785.5, + "probability": 0.9364 + }, + { + "start": 2785.94, + "end": 2790.72, + "probability": 0.8741 + }, + { + "start": 2790.88, + "end": 2791.42, + "probability": 0.5846 + }, + { + "start": 2791.9, + "end": 2793.04, + "probability": 0.7344 + }, + { + "start": 2794.04, + "end": 2795.46, + "probability": 0.9673 + }, + { + "start": 2797.12, + "end": 2799.16, + "probability": 0.8091 + }, + { + "start": 2799.16, + "end": 2804.7, + "probability": 0.8855 + }, + { + "start": 2805.66, + "end": 2808.38, + "probability": 0.9036 + }, + { + "start": 2808.58, + "end": 2810.36, + "probability": 0.793 + }, + { + "start": 2811.26, + "end": 2813.6, + "probability": 0.9606 + }, + { + "start": 2813.64, + "end": 2816.06, + "probability": 0.8582 + }, + { + "start": 2816.1, + "end": 2817.16, + "probability": 0.8046 + }, + { + "start": 2818.06, + "end": 2820.96, + "probability": 0.8789 + }, + { + "start": 2823.54, + "end": 2825.22, + "probability": 0.7017 + }, + { + "start": 2826.04, + "end": 2829.12, + "probability": 0.6503 + }, + { + "start": 2829.64, + "end": 2830.5, + "probability": 0.9006 + }, + { + "start": 2831.4, + "end": 2833.0, + "probability": 0.7318 + }, + { + "start": 2833.26, + "end": 2834.94, + "probability": 0.8467 + }, + { + "start": 2835.12, + "end": 2838.59, + "probability": 0.9496 + }, + { + "start": 2839.44, + "end": 2842.34, + "probability": 0.6849 + }, + { + "start": 2842.4, + "end": 2843.54, + "probability": 0.8333 + }, + { + "start": 2843.74, + "end": 2846.6, + "probability": 0.4299 + }, + { + "start": 2846.7, + "end": 2847.04, + "probability": 0.7486 + }, + { + "start": 2847.18, + "end": 2847.94, + "probability": 0.9563 + }, + { + "start": 2849.32, + "end": 2854.84, + "probability": 0.9588 + }, + { + "start": 2855.8, + "end": 2862.04, + "probability": 0.9229 + }, + { + "start": 2863.44, + "end": 2867.38, + "probability": 0.936 + }, + { + "start": 2868.14, + "end": 2870.88, + "probability": 0.874 + }, + { + "start": 2870.98, + "end": 2873.7, + "probability": 0.9738 + }, + { + "start": 2873.7, + "end": 2878.72, + "probability": 0.8698 + }, + { + "start": 2878.82, + "end": 2884.48, + "probability": 0.9214 + }, + { + "start": 2884.56, + "end": 2885.13, + "probability": 0.9923 + }, + { + "start": 2885.6, + "end": 2886.42, + "probability": 0.9234 + }, + { + "start": 2886.76, + "end": 2887.54, + "probability": 0.8621 + }, + { + "start": 2888.08, + "end": 2894.1, + "probability": 0.987 + }, + { + "start": 2894.18, + "end": 2897.46, + "probability": 0.9835 + }, + { + "start": 2898.0, + "end": 2898.76, + "probability": 0.5469 + }, + { + "start": 2899.44, + "end": 2901.29, + "probability": 0.8743 + }, + { + "start": 2901.48, + "end": 2903.46, + "probability": 0.9786 + }, + { + "start": 2903.9, + "end": 2910.1, + "probability": 0.9907 + }, + { + "start": 2910.26, + "end": 2917.08, + "probability": 0.9893 + }, + { + "start": 2917.78, + "end": 2919.78, + "probability": 0.9092 + }, + { + "start": 2920.56, + "end": 2925.88, + "probability": 0.7996 + }, + { + "start": 2926.56, + "end": 2928.82, + "probability": 0.8849 + }, + { + "start": 2929.28, + "end": 2932.4, + "probability": 0.966 + }, + { + "start": 2932.4, + "end": 2935.86, + "probability": 0.7942 + }, + { + "start": 2936.34, + "end": 2937.18, + "probability": 0.8308 + }, + { + "start": 2937.26, + "end": 2937.84, + "probability": 0.6003 + }, + { + "start": 2937.9, + "end": 2938.54, + "probability": 0.544 + }, + { + "start": 2939.04, + "end": 2940.9, + "probability": 0.7606 + }, + { + "start": 2940.98, + "end": 2944.48, + "probability": 0.8782 + }, + { + "start": 2944.52, + "end": 2947.86, + "probability": 0.7742 + }, + { + "start": 2948.06, + "end": 2950.44, + "probability": 0.9877 + }, + { + "start": 2950.48, + "end": 2952.66, + "probability": 0.5116 + }, + { + "start": 2952.8, + "end": 2953.6, + "probability": 0.4319 + }, + { + "start": 2954.0, + "end": 2958.08, + "probability": 0.9015 + }, + { + "start": 2958.16, + "end": 2960.57, + "probability": 0.9727 + }, + { + "start": 2960.86, + "end": 2965.3, + "probability": 0.9476 + }, + { + "start": 2965.98, + "end": 2969.3, + "probability": 0.9165 + }, + { + "start": 2969.4, + "end": 2970.5, + "probability": 0.8139 + }, + { + "start": 2970.54, + "end": 2976.84, + "probability": 0.9826 + }, + { + "start": 2978.38, + "end": 2980.25, + "probability": 0.9766 + }, + { + "start": 2981.1, + "end": 2985.08, + "probability": 0.9863 + }, + { + "start": 2987.58, + "end": 2990.06, + "probability": 0.7303 + }, + { + "start": 2990.7, + "end": 2994.18, + "probability": 0.9636 + }, + { + "start": 2995.06, + "end": 2999.18, + "probability": 0.9548 + }, + { + "start": 2999.26, + "end": 3001.2, + "probability": 0.9824 + }, + { + "start": 3002.44, + "end": 3004.24, + "probability": 0.9982 + }, + { + "start": 3005.04, + "end": 3008.64, + "probability": 0.9951 + }, + { + "start": 3008.64, + "end": 3012.68, + "probability": 0.9206 + }, + { + "start": 3013.8, + "end": 3015.0, + "probability": 0.9084 + }, + { + "start": 3015.92, + "end": 3020.12, + "probability": 0.954 + }, + { + "start": 3020.52, + "end": 3021.41, + "probability": 0.5945 + }, + { + "start": 3022.06, + "end": 3025.36, + "probability": 0.9951 + }, + { + "start": 3025.36, + "end": 3029.28, + "probability": 0.9915 + }, + { + "start": 3029.68, + "end": 3030.42, + "probability": 0.8794 + }, + { + "start": 3030.5, + "end": 3031.11, + "probability": 0.8884 + }, + { + "start": 3032.38, + "end": 3033.82, + "probability": 0.9585 + }, + { + "start": 3034.42, + "end": 3034.94, + "probability": 0.6325 + }, + { + "start": 3035.06, + "end": 3036.24, + "probability": 0.9824 + }, + { + "start": 3036.28, + "end": 3037.86, + "probability": 0.8676 + }, + { + "start": 3037.9, + "end": 3039.06, + "probability": 0.9868 + }, + { + "start": 3040.5, + "end": 3043.04, + "probability": 0.9508 + }, + { + "start": 3043.58, + "end": 3045.3, + "probability": 0.8674 + }, + { + "start": 3045.64, + "end": 3049.86, + "probability": 0.9661 + }, + { + "start": 3052.14, + "end": 3053.34, + "probability": 0.7066 + }, + { + "start": 3053.74, + "end": 3056.74, + "probability": 0.9725 + }, + { + "start": 3057.42, + "end": 3060.58, + "probability": 0.6546 + }, + { + "start": 3061.24, + "end": 3061.72, + "probability": 0.5416 + }, + { + "start": 3062.16, + "end": 3064.74, + "probability": 0.9748 + }, + { + "start": 3064.86, + "end": 3067.8, + "probability": 0.9879 + }, + { + "start": 3067.88, + "end": 3069.3, + "probability": 0.803 + }, + { + "start": 3070.76, + "end": 3071.81, + "probability": 0.9869 + }, + { + "start": 3072.26, + "end": 3072.9, + "probability": 0.9432 + }, + { + "start": 3072.96, + "end": 3073.55, + "probability": 0.9713 + }, + { + "start": 3073.74, + "end": 3077.1, + "probability": 0.9614 + }, + { + "start": 3077.12, + "end": 3078.08, + "probability": 0.6324 + }, + { + "start": 3078.4, + "end": 3079.1, + "probability": 0.3503 + }, + { + "start": 3081.12, + "end": 3082.18, + "probability": 0.9598 + }, + { + "start": 3084.96, + "end": 3088.1, + "probability": 0.709 + }, + { + "start": 3088.26, + "end": 3090.15, + "probability": 0.7212 + }, + { + "start": 3090.16, + "end": 3092.54, + "probability": 0.9718 + }, + { + "start": 3092.64, + "end": 3092.98, + "probability": 0.3151 + }, + { + "start": 3093.12, + "end": 3093.86, + "probability": 0.8608 + }, + { + "start": 3094.34, + "end": 3094.7, + "probability": 0.4716 + }, + { + "start": 3094.72, + "end": 3095.58, + "probability": 0.8924 + }, + { + "start": 3095.68, + "end": 3095.78, + "probability": 0.6119 + }, + { + "start": 3097.1, + "end": 3098.46, + "probability": 0.9497 + }, + { + "start": 3098.98, + "end": 3101.28, + "probability": 0.7457 + }, + { + "start": 3101.86, + "end": 3105.12, + "probability": 0.929 + }, + { + "start": 3106.04, + "end": 3108.68, + "probability": 0.8612 + }, + { + "start": 3110.07, + "end": 3116.12, + "probability": 0.9699 + }, + { + "start": 3116.82, + "end": 3119.32, + "probability": 0.9559 + }, + { + "start": 3119.74, + "end": 3120.42, + "probability": 0.3663 + }, + { + "start": 3120.52, + "end": 3121.08, + "probability": 0.6087 + }, + { + "start": 3121.16, + "end": 3121.94, + "probability": 0.9109 + }, + { + "start": 3122.18, + "end": 3128.64, + "probability": 0.9775 + }, + { + "start": 3128.74, + "end": 3131.02, + "probability": 0.9018 + }, + { + "start": 3131.8, + "end": 3132.96, + "probability": 0.594 + }, + { + "start": 3133.06, + "end": 3135.28, + "probability": 0.6833 + }, + { + "start": 3136.02, + "end": 3136.88, + "probability": 0.8491 + }, + { + "start": 3139.5, + "end": 3143.96, + "probability": 0.8488 + }, + { + "start": 3144.02, + "end": 3145.33, + "probability": 0.9927 + }, + { + "start": 3146.56, + "end": 3146.7, + "probability": 0.9146 + }, + { + "start": 3149.72, + "end": 3151.98, + "probability": 0.9478 + }, + { + "start": 3152.68, + "end": 3153.26, + "probability": 0.3709 + }, + { + "start": 3153.4, + "end": 3154.12, + "probability": 0.6174 + }, + { + "start": 3154.2, + "end": 3155.66, + "probability": 0.967 + }, + { + "start": 3155.72, + "end": 3156.63, + "probability": 0.8968 + }, + { + "start": 3156.84, + "end": 3157.78, + "probability": 0.5171 + }, + { + "start": 3158.44, + "end": 3163.82, + "probability": 0.9178 + }, + { + "start": 3164.64, + "end": 3165.74, + "probability": 0.6885 + }, + { + "start": 3165.94, + "end": 3167.76, + "probability": 0.8176 + }, + { + "start": 3168.06, + "end": 3171.0, + "probability": 0.9599 + }, + { + "start": 3171.08, + "end": 3172.96, + "probability": 0.4931 + }, + { + "start": 3173.1, + "end": 3174.66, + "probability": 0.9457 + }, + { + "start": 3175.34, + "end": 3176.5, + "probability": 0.6233 + }, + { + "start": 3177.36, + "end": 3178.06, + "probability": 0.9451 + }, + { + "start": 3179.22, + "end": 3179.74, + "probability": 0.6595 + }, + { + "start": 3179.74, + "end": 3181.68, + "probability": 0.9655 + }, + { + "start": 3182.12, + "end": 3185.34, + "probability": 0.9944 + }, + { + "start": 3186.28, + "end": 3189.24, + "probability": 0.9659 + }, + { + "start": 3189.9, + "end": 3192.1, + "probability": 0.8735 + }, + { + "start": 3192.78, + "end": 3196.74, + "probability": 0.9907 + }, + { + "start": 3196.78, + "end": 3197.24, + "probability": 0.7568 + }, + { + "start": 3197.62, + "end": 3200.32, + "probability": 0.9937 + }, + { + "start": 3200.32, + "end": 3204.36, + "probability": 0.9628 + }, + { + "start": 3204.4, + "end": 3206.12, + "probability": 0.9976 + }, + { + "start": 3206.14, + "end": 3209.29, + "probability": 0.6887 + }, + { + "start": 3209.54, + "end": 3211.76, + "probability": 0.6956 + }, + { + "start": 3211.98, + "end": 3213.04, + "probability": 0.8681 + }, + { + "start": 3213.12, + "end": 3214.08, + "probability": 0.6821 + }, + { + "start": 3214.14, + "end": 3216.44, + "probability": 0.9507 + }, + { + "start": 3216.56, + "end": 3219.36, + "probability": 0.851 + }, + { + "start": 3219.98, + "end": 3222.34, + "probability": 0.9463 + }, + { + "start": 3223.42, + "end": 3224.58, + "probability": 0.9835 + }, + { + "start": 3225.34, + "end": 3226.98, + "probability": 0.9608 + }, + { + "start": 3227.7, + "end": 3235.72, + "probability": 0.8979 + }, + { + "start": 3236.98, + "end": 3238.76, + "probability": 0.6798 + }, + { + "start": 3239.44, + "end": 3242.56, + "probability": 0.9722 + }, + { + "start": 3242.7, + "end": 3245.58, + "probability": 0.913 + }, + { + "start": 3248.02, + "end": 3250.65, + "probability": 0.9578 + }, + { + "start": 3251.4, + "end": 3254.08, + "probability": 0.8711 + }, + { + "start": 3254.14, + "end": 3255.02, + "probability": 0.8121 + }, + { + "start": 3255.06, + "end": 3256.16, + "probability": 0.7427 + }, + { + "start": 3256.3, + "end": 3256.54, + "probability": 0.0167 + }, + { + "start": 3256.54, + "end": 3257.64, + "probability": 0.3361 + }, + { + "start": 3260.31, + "end": 3261.38, + "probability": 0.6185 + }, + { + "start": 3261.76, + "end": 3262.62, + "probability": 0.7092 + }, + { + "start": 3263.59, + "end": 3265.76, + "probability": 0.5091 + }, + { + "start": 3265.86, + "end": 3266.54, + "probability": 0.7977 + }, + { + "start": 3266.66, + "end": 3267.72, + "probability": 0.4418 + }, + { + "start": 3267.8, + "end": 3268.56, + "probability": 0.876 + }, + { + "start": 3269.52, + "end": 3277.02, + "probability": 0.9963 + }, + { + "start": 3277.76, + "end": 3284.0, + "probability": 0.9878 + }, + { + "start": 3284.02, + "end": 3287.32, + "probability": 0.9219 + }, + { + "start": 3287.42, + "end": 3288.76, + "probability": 0.8784 + }, + { + "start": 3288.94, + "end": 3290.6, + "probability": 0.7805 + }, + { + "start": 3291.06, + "end": 3291.66, + "probability": 0.7924 + }, + { + "start": 3292.74, + "end": 3296.68, + "probability": 0.8433 + }, + { + "start": 3297.34, + "end": 3298.16, + "probability": 0.8145 + }, + { + "start": 3298.28, + "end": 3299.3, + "probability": 0.7991 + }, + { + "start": 3299.52, + "end": 3300.38, + "probability": 0.5822 + }, + { + "start": 3300.44, + "end": 3301.37, + "probability": 0.8608 + }, + { + "start": 3301.62, + "end": 3305.86, + "probability": 0.9558 + }, + { + "start": 3306.58, + "end": 3308.12, + "probability": 0.7443 + }, + { + "start": 3308.18, + "end": 3310.04, + "probability": 0.9477 + }, + { + "start": 3310.12, + "end": 3310.97, + "probability": 0.4783 + }, + { + "start": 3311.72, + "end": 3312.6, + "probability": 0.7799 + }, + { + "start": 3312.9, + "end": 3313.56, + "probability": 0.5473 + }, + { + "start": 3313.78, + "end": 3317.46, + "probability": 0.476 + }, + { + "start": 3317.82, + "end": 3318.76, + "probability": 0.7677 + }, + { + "start": 3319.38, + "end": 3320.98, + "probability": 0.4448 + }, + { + "start": 3321.66, + "end": 3324.44, + "probability": 0.9774 + }, + { + "start": 3324.56, + "end": 3325.86, + "probability": 0.9856 + }, + { + "start": 3325.9, + "end": 3327.06, + "probability": 0.8642 + }, + { + "start": 3327.14, + "end": 3327.46, + "probability": 0.4745 + }, + { + "start": 3327.8, + "end": 3328.84, + "probability": 0.1781 + }, + { + "start": 3328.98, + "end": 3330.0, + "probability": 0.7559 + }, + { + "start": 3331.7, + "end": 3332.48, + "probability": 0.5247 + }, + { + "start": 3332.58, + "end": 3333.4, + "probability": 0.3063 + }, + { + "start": 3334.0, + "end": 3334.74, + "probability": 0.8271 + }, + { + "start": 3334.82, + "end": 3337.62, + "probability": 0.9189 + }, + { + "start": 3338.14, + "end": 3338.66, + "probability": 0.3876 + }, + { + "start": 3338.76, + "end": 3341.96, + "probability": 0.8334 + }, + { + "start": 3341.97, + "end": 3345.04, + "probability": 0.9969 + }, + { + "start": 3345.54, + "end": 3349.08, + "probability": 0.9749 + }, + { + "start": 3349.08, + "end": 3351.86, + "probability": 0.997 + }, + { + "start": 3356.96, + "end": 3359.0, + "probability": 0.765 + }, + { + "start": 3359.64, + "end": 3360.66, + "probability": 0.9798 + }, + { + "start": 3360.9, + "end": 3362.96, + "probability": 0.9542 + }, + { + "start": 3363.02, + "end": 3365.58, + "probability": 0.9912 + }, + { + "start": 3366.32, + "end": 3367.02, + "probability": 0.8253 + }, + { + "start": 3367.8, + "end": 3369.06, + "probability": 0.8101 + }, + { + "start": 3369.76, + "end": 3371.52, + "probability": 0.993 + }, + { + "start": 3371.6, + "end": 3371.88, + "probability": 0.5952 + }, + { + "start": 3372.16, + "end": 3375.92, + "probability": 0.9446 + }, + { + "start": 3378.02, + "end": 3380.78, + "probability": 0.9416 + }, + { + "start": 3382.04, + "end": 3382.9, + "probability": 0.5927 + }, + { + "start": 3383.42, + "end": 3385.24, + "probability": 0.8442 + }, + { + "start": 3385.96, + "end": 3389.7, + "probability": 0.452 + }, + { + "start": 3389.76, + "end": 3390.14, + "probability": 0.4034 + }, + { + "start": 3390.24, + "end": 3391.9, + "probability": 0.9716 + }, + { + "start": 3392.0, + "end": 3392.84, + "probability": 0.8394 + }, + { + "start": 3393.04, + "end": 3393.9, + "probability": 0.3416 + }, + { + "start": 3393.96, + "end": 3396.68, + "probability": 0.9294 + }, + { + "start": 3404.9, + "end": 3407.6, + "probability": 0.6987 + }, + { + "start": 3407.68, + "end": 3412.54, + "probability": 0.9354 + }, + { + "start": 3412.94, + "end": 3417.0, + "probability": 0.9624 + }, + { + "start": 3417.04, + "end": 3417.8, + "probability": 0.6252 + }, + { + "start": 3417.84, + "end": 3419.61, + "probability": 0.411 + }, + { + "start": 3421.74, + "end": 3422.82, + "probability": 0.525 + }, + { + "start": 3422.9, + "end": 3423.92, + "probability": 0.6001 + }, + { + "start": 3424.2, + "end": 3424.92, + "probability": 0.7078 + }, + { + "start": 3425.02, + "end": 3425.95, + "probability": 0.7798 + }, + { + "start": 3426.08, + "end": 3426.96, + "probability": 0.8267 + }, + { + "start": 3427.02, + "end": 3427.58, + "probability": 0.8667 + }, + { + "start": 3427.68, + "end": 3428.62, + "probability": 0.9176 + }, + { + "start": 3428.74, + "end": 3428.88, + "probability": 0.2652 + }, + { + "start": 3428.96, + "end": 3430.96, + "probability": 0.958 + }, + { + "start": 3432.72, + "end": 3437.6, + "probability": 0.9969 + }, + { + "start": 3437.76, + "end": 3438.18, + "probability": 0.5758 + }, + { + "start": 3438.32, + "end": 3438.94, + "probability": 0.9188 + }, + { + "start": 3439.02, + "end": 3439.82, + "probability": 0.5089 + }, + { + "start": 3440.0, + "end": 3440.72, + "probability": 0.9641 + }, + { + "start": 3442.0, + "end": 3444.32, + "probability": 0.4663 + }, + { + "start": 3444.34, + "end": 3444.56, + "probability": 0.6918 + }, + { + "start": 3445.18, + "end": 3445.82, + "probability": 0.4402 + }, + { + "start": 3445.88, + "end": 3448.02, + "probability": 0.8093 + }, + { + "start": 3448.06, + "end": 3450.16, + "probability": 0.9847 + }, + { + "start": 3450.98, + "end": 3456.2, + "probability": 0.9878 + }, + { + "start": 3457.66, + "end": 3461.38, + "probability": 0.9929 + }, + { + "start": 3461.54, + "end": 3463.44, + "probability": 0.8972 + }, + { + "start": 3463.54, + "end": 3464.94, + "probability": 0.9866 + }, + { + "start": 3466.1, + "end": 3466.3, + "probability": 0.5504 + }, + { + "start": 3466.42, + "end": 3467.0, + "probability": 0.5264 + }, + { + "start": 3467.08, + "end": 3467.44, + "probability": 0.6655 + }, + { + "start": 3467.64, + "end": 3469.02, + "probability": 0.972 + }, + { + "start": 3469.22, + "end": 3474.23, + "probability": 0.9727 + }, + { + "start": 3475.1, + "end": 3476.4, + "probability": 0.9889 + }, + { + "start": 3476.94, + "end": 3477.72, + "probability": 0.8214 + }, + { + "start": 3478.04, + "end": 3478.18, + "probability": 0.6727 + }, + { + "start": 3478.28, + "end": 3480.28, + "probability": 0.981 + }, + { + "start": 3480.76, + "end": 3482.84, + "probability": 0.9938 + }, + { + "start": 3483.68, + "end": 3485.66, + "probability": 0.9854 + }, + { + "start": 3485.8, + "end": 3488.1, + "probability": 0.9327 + }, + { + "start": 3488.84, + "end": 3491.74, + "probability": 0.9344 + }, + { + "start": 3492.44, + "end": 3497.26, + "probability": 0.8353 + }, + { + "start": 3497.4, + "end": 3498.68, + "probability": 0.9569 + }, + { + "start": 3498.8, + "end": 3500.4, + "probability": 0.8689 + }, + { + "start": 3500.5, + "end": 3503.68, + "probability": 0.8162 + }, + { + "start": 3504.02, + "end": 3504.71, + "probability": 0.7697 + }, + { + "start": 3504.92, + "end": 3505.96, + "probability": 0.9639 + }, + { + "start": 3506.04, + "end": 3508.96, + "probability": 0.6758 + }, + { + "start": 3509.36, + "end": 3511.1, + "probability": 0.9139 + }, + { + "start": 3511.84, + "end": 3512.95, + "probability": 0.9764 + }, + { + "start": 3513.3, + "end": 3515.66, + "probability": 0.2313 + }, + { + "start": 3515.66, + "end": 3518.46, + "probability": 0.6466 + }, + { + "start": 3518.64, + "end": 3519.76, + "probability": 0.7755 + }, + { + "start": 3520.7, + "end": 3521.54, + "probability": 0.7402 + }, + { + "start": 3523.4, + "end": 3527.7, + "probability": 0.9789 + }, + { + "start": 3529.64, + "end": 3533.58, + "probability": 0.8836 + }, + { + "start": 3535.5, + "end": 3536.48, + "probability": 0.4094 + }, + { + "start": 3538.69, + "end": 3541.98, + "probability": 0.4958 + }, + { + "start": 3544.28, + "end": 3547.32, + "probability": 0.8953 + }, + { + "start": 3548.14, + "end": 3549.34, + "probability": 0.9203 + }, + { + "start": 3551.3, + "end": 3555.94, + "probability": 0.7928 + }, + { + "start": 3557.1, + "end": 3558.25, + "probability": 0.5417 + }, + { + "start": 3561.04, + "end": 3562.68, + "probability": 0.8959 + }, + { + "start": 3563.36, + "end": 3563.36, + "probability": 0.0182 + }, + { + "start": 3565.74, + "end": 3573.82, + "probability": 0.9927 + }, + { + "start": 3575.72, + "end": 3579.32, + "probability": 0.8019 + }, + { + "start": 3581.04, + "end": 3583.1, + "probability": 0.9587 + }, + { + "start": 3583.24, + "end": 3585.3, + "probability": 0.669 + }, + { + "start": 3586.98, + "end": 3591.34, + "probability": 0.9762 + }, + { + "start": 3591.94, + "end": 3591.96, + "probability": 0.0364 + }, + { + "start": 3591.96, + "end": 3594.08, + "probability": 0.7354 + }, + { + "start": 3594.64, + "end": 3594.78, + "probability": 0.1095 + }, + { + "start": 3594.78, + "end": 3596.36, + "probability": 0.8237 + }, + { + "start": 3596.44, + "end": 3597.44, + "probability": 0.7482 + }, + { + "start": 3597.54, + "end": 3598.52, + "probability": 0.7624 + }, + { + "start": 3598.86, + "end": 3599.28, + "probability": 0.0697 + }, + { + "start": 3599.28, + "end": 3600.08, + "probability": 0.5709 + }, + { + "start": 3600.18, + "end": 3602.08, + "probability": 0.9487 + }, + { + "start": 3603.7, + "end": 3604.4, + "probability": 0.5825 + }, + { + "start": 3605.06, + "end": 3607.28, + "probability": 0.5301 + }, + { + "start": 3607.46, + "end": 3608.28, + "probability": 0.672 + }, + { + "start": 3608.7, + "end": 3609.18, + "probability": 0.7097 + }, + { + "start": 3609.18, + "end": 3612.34, + "probability": 0.9558 + }, + { + "start": 3612.6, + "end": 3614.04, + "probability": 0.8745 + }, + { + "start": 3614.54, + "end": 3615.24, + "probability": 0.917 + }, + { + "start": 3615.86, + "end": 3621.66, + "probability": 0.9418 + }, + { + "start": 3621.66, + "end": 3624.76, + "probability": 0.9973 + }, + { + "start": 3625.38, + "end": 3626.76, + "probability": 0.5083 + }, + { + "start": 3626.84, + "end": 3627.94, + "probability": 0.708 + }, + { + "start": 3628.06, + "end": 3628.3, + "probability": 0.7028 + }, + { + "start": 3628.48, + "end": 3632.12, + "probability": 0.8761 + }, + { + "start": 3632.18, + "end": 3632.67, + "probability": 0.8804 + }, + { + "start": 3632.96, + "end": 3635.8, + "probability": 0.9126 + }, + { + "start": 3636.94, + "end": 3639.1, + "probability": 0.926 + }, + { + "start": 3639.48, + "end": 3641.14, + "probability": 0.9278 + }, + { + "start": 3641.92, + "end": 3642.98, + "probability": 0.8295 + }, + { + "start": 3644.88, + "end": 3651.26, + "probability": 0.9618 + }, + { + "start": 3652.8, + "end": 3653.93, + "probability": 0.9536 + }, + { + "start": 3655.26, + "end": 3655.78, + "probability": 0.6406 + }, + { + "start": 3657.18, + "end": 3659.64, + "probability": 0.665 + }, + { + "start": 3662.02, + "end": 3662.9, + "probability": 0.7294 + }, + { + "start": 3663.6, + "end": 3666.02, + "probability": 0.9525 + }, + { + "start": 3666.9, + "end": 3668.68, + "probability": 0.9739 + }, + { + "start": 3668.78, + "end": 3670.18, + "probability": 0.9206 + }, + { + "start": 3670.46, + "end": 3671.38, + "probability": 0.8843 + }, + { + "start": 3671.42, + "end": 3672.24, + "probability": 0.3484 + }, + { + "start": 3672.8, + "end": 3676.42, + "probability": 0.6755 + }, + { + "start": 3678.2, + "end": 3680.7, + "probability": 0.8271 + }, + { + "start": 3682.2, + "end": 3685.2, + "probability": 0.803 + }, + { + "start": 3685.32, + "end": 3687.28, + "probability": 0.8324 + }, + { + "start": 3687.98, + "end": 3688.84, + "probability": 0.9452 + }, + { + "start": 3689.18, + "end": 3691.02, + "probability": 0.5756 + }, + { + "start": 3692.34, + "end": 3694.86, + "probability": 0.722 + }, + { + "start": 3696.36, + "end": 3697.08, + "probability": 0.932 + }, + { + "start": 3699.64, + "end": 3703.6, + "probability": 0.4787 + }, + { + "start": 3705.96, + "end": 3708.54, + "probability": 0.9884 + }, + { + "start": 3710.3, + "end": 3712.64, + "probability": 0.8092 + }, + { + "start": 3715.28, + "end": 3717.58, + "probability": 0.6391 + }, + { + "start": 3717.72, + "end": 3719.09, + "probability": 0.8079 + }, + { + "start": 3719.42, + "end": 3721.07, + "probability": 0.6611 + }, + { + "start": 3721.82, + "end": 3723.46, + "probability": 0.9714 + }, + { + "start": 3723.74, + "end": 3726.02, + "probability": 0.9221 + }, + { + "start": 3728.66, + "end": 3728.92, + "probability": 0.5433 + }, + { + "start": 3731.24, + "end": 3733.16, + "probability": 0.7361 + }, + { + "start": 3734.82, + "end": 3735.6, + "probability": 0.8224 + }, + { + "start": 3735.78, + "end": 3737.48, + "probability": 0.9128 + }, + { + "start": 3743.96, + "end": 3746.5, + "probability": 0.708 + }, + { + "start": 3748.28, + "end": 3749.06, + "probability": 0.8192 + }, + { + "start": 3749.2, + "end": 3752.72, + "probability": 0.9177 + }, + { + "start": 3752.9, + "end": 3753.64, + "probability": 0.9706 + }, + { + "start": 3754.82, + "end": 3758.32, + "probability": 0.9951 + }, + { + "start": 3759.98, + "end": 3760.52, + "probability": 0.4952 + }, + { + "start": 3760.66, + "end": 3764.94, + "probability": 0.8478 + }, + { + "start": 3765.82, + "end": 3769.18, + "probability": 0.8777 + }, + { + "start": 3770.0, + "end": 3770.22, + "probability": 0.7029 + }, + { + "start": 3770.98, + "end": 3771.18, + "probability": 0.7134 + }, + { + "start": 3772.44, + "end": 3776.77, + "probability": 0.915 + }, + { + "start": 3779.34, + "end": 3781.68, + "probability": 0.9055 + }, + { + "start": 3783.86, + "end": 3784.48, + "probability": 0.6742 + }, + { + "start": 3785.72, + "end": 3786.38, + "probability": 0.5648 + }, + { + "start": 3786.52, + "end": 3786.62, + "probability": 0.3648 + }, + { + "start": 3786.62, + "end": 3788.9, + "probability": 0.7449 + }, + { + "start": 3789.44, + "end": 3790.42, + "probability": 0.9751 + }, + { + "start": 3791.62, + "end": 3792.56, + "probability": 0.9671 + }, + { + "start": 3794.22, + "end": 3798.77, + "probability": 0.8604 + }, + { + "start": 3799.84, + "end": 3806.84, + "probability": 0.993 + }, + { + "start": 3807.62, + "end": 3813.88, + "probability": 0.8374 + }, + { + "start": 3815.18, + "end": 3818.22, + "probability": 0.9534 + }, + { + "start": 3819.36, + "end": 3820.86, + "probability": 0.9051 + }, + { + "start": 3820.9, + "end": 3822.46, + "probability": 0.9987 + }, + { + "start": 3823.12, + "end": 3823.74, + "probability": 0.8625 + }, + { + "start": 3824.74, + "end": 3825.7, + "probability": 0.9371 + }, + { + "start": 3826.8, + "end": 3830.68, + "probability": 0.9823 + }, + { + "start": 3834.62, + "end": 3838.28, + "probability": 0.9714 + }, + { + "start": 3838.46, + "end": 3841.12, + "probability": 0.971 + }, + { + "start": 3841.82, + "end": 3843.39, + "probability": 0.5204 + }, + { + "start": 3844.86, + "end": 3847.18, + "probability": 0.9514 + }, + { + "start": 3847.26, + "end": 3848.96, + "probability": 0.9888 + }, + { + "start": 3849.06, + "end": 3849.49, + "probability": 0.9757 + }, + { + "start": 3850.66, + "end": 3851.8, + "probability": 0.9956 + }, + { + "start": 3859.14, + "end": 3861.23, + "probability": 0.9883 + }, + { + "start": 3862.94, + "end": 3865.1, + "probability": 0.6536 + }, + { + "start": 3865.18, + "end": 3870.18, + "probability": 0.9928 + }, + { + "start": 3870.72, + "end": 3872.26, + "probability": 0.8868 + }, + { + "start": 3872.42, + "end": 3872.74, + "probability": 0.5616 + }, + { + "start": 3872.84, + "end": 3874.96, + "probability": 0.9282 + }, + { + "start": 3875.12, + "end": 3876.04, + "probability": 0.7872 + }, + { + "start": 3876.6, + "end": 3877.92, + "probability": 0.9232 + }, + { + "start": 3879.14, + "end": 3880.52, + "probability": 0.9827 + }, + { + "start": 3881.76, + "end": 3882.18, + "probability": 0.8989 + }, + { + "start": 3882.34, + "end": 3883.5, + "probability": 0.5694 + }, + { + "start": 3883.91, + "end": 3887.2, + "probability": 0.9983 + }, + { + "start": 3887.36, + "end": 3887.68, + "probability": 0.9493 + }, + { + "start": 3887.74, + "end": 3888.42, + "probability": 0.9315 + }, + { + "start": 3889.1, + "end": 3890.81, + "probability": 0.957 + }, + { + "start": 3892.26, + "end": 3894.7, + "probability": 0.7516 + }, + { + "start": 3895.54, + "end": 3896.88, + "probability": 0.95 + }, + { + "start": 3897.04, + "end": 3902.94, + "probability": 0.9265 + }, + { + "start": 3903.2, + "end": 3905.89, + "probability": 0.9972 + }, + { + "start": 3906.8, + "end": 3908.16, + "probability": 0.7375 + }, + { + "start": 3908.32, + "end": 3912.52, + "probability": 0.6583 + }, + { + "start": 3913.14, + "end": 3915.32, + "probability": 0.9986 + }, + { + "start": 3915.44, + "end": 3921.24, + "probability": 0.6993 + }, + { + "start": 3921.42, + "end": 3922.1, + "probability": 0.8201 + }, + { + "start": 3922.14, + "end": 3923.29, + "probability": 0.9653 + }, + { + "start": 3923.68, + "end": 3924.98, + "probability": 0.8331 + }, + { + "start": 3925.54, + "end": 3929.44, + "probability": 0.3857 + }, + { + "start": 3930.58, + "end": 3933.68, + "probability": 0.7272 + }, + { + "start": 3934.5, + "end": 3936.88, + "probability": 0.9176 + }, + { + "start": 3937.0, + "end": 3939.24, + "probability": 0.8347 + }, + { + "start": 3939.3, + "end": 3941.66, + "probability": 0.7748 + }, + { + "start": 3941.76, + "end": 3943.76, + "probability": 0.9932 + }, + { + "start": 3945.5, + "end": 3948.04, + "probability": 0.8208 + }, + { + "start": 3949.04, + "end": 3953.12, + "probability": 0.9761 + }, + { + "start": 3955.2, + "end": 3958.38, + "probability": 0.4988 + }, + { + "start": 3958.5, + "end": 3963.06, + "probability": 0.9967 + }, + { + "start": 3963.98, + "end": 3964.93, + "probability": 0.8183 + }, + { + "start": 3965.58, + "end": 3970.9, + "probability": 0.8102 + }, + { + "start": 3970.96, + "end": 3971.94, + "probability": 0.4523 + }, + { + "start": 3972.58, + "end": 3972.68, + "probability": 0.8687 + }, + { + "start": 3974.18, + "end": 3975.76, + "probability": 0.705 + }, + { + "start": 3976.34, + "end": 3979.92, + "probability": 0.8422 + }, + { + "start": 3980.52, + "end": 3981.88, + "probability": 0.7815 + }, + { + "start": 3982.54, + "end": 3986.68, + "probability": 0.921 + }, + { + "start": 3986.82, + "end": 3988.6, + "probability": 0.9429 + }, + { + "start": 3988.8, + "end": 3989.84, + "probability": 0.7335 + }, + { + "start": 3991.42, + "end": 3993.58, + "probability": 0.7015 + }, + { + "start": 3994.36, + "end": 3998.66, + "probability": 0.6893 + }, + { + "start": 4000.38, + "end": 4007.2, + "probability": 0.6579 + }, + { + "start": 4007.34, + "end": 4012.82, + "probability": 0.7446 + }, + { + "start": 4013.66, + "end": 4016.72, + "probability": 0.8818 + }, + { + "start": 4018.96, + "end": 4021.56, + "probability": 0.7648 + }, + { + "start": 4021.62, + "end": 4021.7, + "probability": 0.6389 + }, + { + "start": 4021.78, + "end": 4026.72, + "probability": 0.8441 + }, + { + "start": 4029.3, + "end": 4034.4, + "probability": 0.7476 + }, + { + "start": 4036.13, + "end": 4040.08, + "probability": 0.9685 + }, + { + "start": 4041.94, + "end": 4046.12, + "probability": 0.4742 + }, + { + "start": 4046.2, + "end": 4052.18, + "probability": 0.8163 + }, + { + "start": 4052.18, + "end": 4055.18, + "probability": 0.8796 + }, + { + "start": 4056.46, + "end": 4057.23, + "probability": 0.5193 + }, + { + "start": 4059.16, + "end": 4062.86, + "probability": 0.9951 + }, + { + "start": 4064.6, + "end": 4066.88, + "probability": 0.8635 + }, + { + "start": 4068.28, + "end": 4072.6, + "probability": 0.9946 + }, + { + "start": 4073.36, + "end": 4076.44, + "probability": 0.9922 + }, + { + "start": 4077.1, + "end": 4080.12, + "probability": 0.663 + }, + { + "start": 4080.12, + "end": 4083.58, + "probability": 0.9896 + }, + { + "start": 4084.32, + "end": 4085.36, + "probability": 0.7612 + }, + { + "start": 4086.68, + "end": 4088.98, + "probability": 0.8077 + }, + { + "start": 4089.24, + "end": 4093.92, + "probability": 0.8398 + }, + { + "start": 4093.92, + "end": 4097.54, + "probability": 0.8776 + }, + { + "start": 4097.6, + "end": 4100.24, + "probability": 0.6631 + }, + { + "start": 4100.76, + "end": 4104.52, + "probability": 0.9206 + }, + { + "start": 4105.08, + "end": 4105.7, + "probability": 0.8044 + }, + { + "start": 4106.6, + "end": 4107.48, + "probability": 0.8926 + }, + { + "start": 4107.72, + "end": 4110.98, + "probability": 0.9845 + }, + { + "start": 4111.08, + "end": 4114.44, + "probability": 0.8106 + }, + { + "start": 4114.74, + "end": 4115.96, + "probability": 0.9908 + }, + { + "start": 4116.44, + "end": 4118.68, + "probability": 0.9922 + }, + { + "start": 4119.58, + "end": 4121.64, + "probability": 0.8333 + }, + { + "start": 4121.86, + "end": 4126.18, + "probability": 0.6489 + }, + { + "start": 4127.2, + "end": 4128.68, + "probability": 0.9989 + }, + { + "start": 4129.6, + "end": 4132.98, + "probability": 0.9621 + }, + { + "start": 4133.06, + "end": 4136.44, + "probability": 0.9619 + }, + { + "start": 4136.56, + "end": 4138.41, + "probability": 0.7646 + }, + { + "start": 4138.7, + "end": 4139.18, + "probability": 0.9795 + }, + { + "start": 4140.04, + "end": 4142.12, + "probability": 0.8583 + }, + { + "start": 4142.38, + "end": 4144.8, + "probability": 0.5764 + }, + { + "start": 4145.08, + "end": 4146.52, + "probability": 0.7161 + }, + { + "start": 4146.86, + "end": 4148.68, + "probability": 0.782 + }, + { + "start": 4149.24, + "end": 4154.3, + "probability": 0.9808 + }, + { + "start": 4155.36, + "end": 4155.88, + "probability": 0.2665 + }, + { + "start": 4156.04, + "end": 4163.56, + "probability": 0.9716 + }, + { + "start": 4163.7, + "end": 4163.88, + "probability": 0.605 + }, + { + "start": 4163.94, + "end": 4166.66, + "probability": 0.8571 + }, + { + "start": 4167.54, + "end": 4179.56, + "probability": 0.8535 + }, + { + "start": 4180.6, + "end": 4183.48, + "probability": 0.7778 + }, + { + "start": 4184.16, + "end": 4186.86, + "probability": 0.6307 + }, + { + "start": 4188.04, + "end": 4189.8, + "probability": 0.9964 + }, + { + "start": 4192.76, + "end": 4196.84, + "probability": 0.9521 + }, + { + "start": 4196.9, + "end": 4198.32, + "probability": 0.8504 + }, + { + "start": 4198.86, + "end": 4199.3, + "probability": 0.3065 + }, + { + "start": 4199.36, + "end": 4199.96, + "probability": 0.9707 + }, + { + "start": 4200.06, + "end": 4201.36, + "probability": 0.9924 + }, + { + "start": 4202.78, + "end": 4203.86, + "probability": 0.7088 + }, + { + "start": 4203.94, + "end": 4207.7, + "probability": 0.9907 + }, + { + "start": 4207.8, + "end": 4208.51, + "probability": 0.671 + }, + { + "start": 4209.56, + "end": 4211.56, + "probability": 0.4443 + }, + { + "start": 4211.66, + "end": 4211.8, + "probability": 0.8285 + }, + { + "start": 4211.82, + "end": 4213.42, + "probability": 0.9963 + }, + { + "start": 4213.54, + "end": 4216.1, + "probability": 0.7822 + }, + { + "start": 4217.06, + "end": 4217.84, + "probability": 0.3334 + }, + { + "start": 4218.04, + "end": 4220.5, + "probability": 0.9934 + }, + { + "start": 4220.5, + "end": 4225.0, + "probability": 0.8455 + }, + { + "start": 4226.47, + "end": 4230.02, + "probability": 0.8708 + }, + { + "start": 4230.74, + "end": 4233.24, + "probability": 0.9946 + }, + { + "start": 4233.32, + "end": 4234.83, + "probability": 0.7679 + }, + { + "start": 4235.64, + "end": 4236.81, + "probability": 0.9889 + }, + { + "start": 4237.22, + "end": 4239.0, + "probability": 0.6529 + }, + { + "start": 4240.24, + "end": 4242.08, + "probability": 0.7651 + }, + { + "start": 4242.34, + "end": 4243.24, + "probability": 0.9125 + }, + { + "start": 4243.34, + "end": 4244.14, + "probability": 0.7738 + }, + { + "start": 4246.84, + "end": 4247.34, + "probability": 0.5009 + }, + { + "start": 4248.14, + "end": 4249.76, + "probability": 0.8791 + }, + { + "start": 4251.18, + "end": 4252.96, + "probability": 0.7696 + }, + { + "start": 4253.14, + "end": 4254.52, + "probability": 0.9746 + }, + { + "start": 4257.84, + "end": 4260.14, + "probability": 0.7693 + }, + { + "start": 4266.8, + "end": 4268.1, + "probability": 0.3832 + }, + { + "start": 4268.18, + "end": 4270.36, + "probability": 0.9458 + }, + { + "start": 4270.58, + "end": 4274.26, + "probability": 0.6549 + }, + { + "start": 4275.26, + "end": 4279.9, + "probability": 0.9949 + }, + { + "start": 4280.38, + "end": 4283.16, + "probability": 0.9963 + }, + { + "start": 4283.46, + "end": 4285.52, + "probability": 0.6859 + }, + { + "start": 4285.58, + "end": 4286.14, + "probability": 0.6396 + }, + { + "start": 4287.14, + "end": 4291.38, + "probability": 0.9891 + }, + { + "start": 4292.16, + "end": 4293.1, + "probability": 0.4766 + }, + { + "start": 4293.38, + "end": 4301.02, + "probability": 0.8625 + }, + { + "start": 4301.4, + "end": 4308.74, + "probability": 0.9975 + }, + { + "start": 4309.06, + "end": 4310.28, + "probability": 0.9159 + }, + { + "start": 4310.56, + "end": 4314.96, + "probability": 0.9881 + }, + { + "start": 4315.9, + "end": 4319.88, + "probability": 0.9587 + }, + { + "start": 4320.94, + "end": 4321.04, + "probability": 0.5964 + }, + { + "start": 4321.04, + "end": 4321.82, + "probability": 0.4935 + }, + { + "start": 4321.9, + "end": 4322.6, + "probability": 0.6791 + }, + { + "start": 4322.98, + "end": 4323.82, + "probability": 0.9536 + }, + { + "start": 4324.72, + "end": 4327.66, + "probability": 0.9419 + }, + { + "start": 4328.0, + "end": 4329.86, + "probability": 0.9382 + }, + { + "start": 4330.2, + "end": 4334.64, + "probability": 0.976 + }, + { + "start": 4334.78, + "end": 4336.62, + "probability": 0.8431 + }, + { + "start": 4337.06, + "end": 4343.04, + "probability": 0.9945 + }, + { + "start": 4343.26, + "end": 4344.1, + "probability": 0.8069 + }, + { + "start": 4344.38, + "end": 4346.1, + "probability": 0.8024 + }, + { + "start": 4346.53, + "end": 4349.96, + "probability": 0.9837 + }, + { + "start": 4350.12, + "end": 4351.42, + "probability": 0.8799 + }, + { + "start": 4351.56, + "end": 4354.4, + "probability": 0.9504 + }, + { + "start": 4354.7, + "end": 4354.9, + "probability": 0.5185 + }, + { + "start": 4355.08, + "end": 4356.26, + "probability": 0.9235 + }, + { + "start": 4356.52, + "end": 4364.24, + "probability": 0.9809 + }, + { + "start": 4364.88, + "end": 4365.26, + "probability": 0.4845 + }, + { + "start": 4365.28, + "end": 4367.74, + "probability": 0.9937 + }, + { + "start": 4367.74, + "end": 4373.36, + "probability": 0.9182 + }, + { + "start": 4373.7, + "end": 4375.14, + "probability": 0.929 + }, + { + "start": 4375.74, + "end": 4377.66, + "probability": 0.3351 + }, + { + "start": 4378.24, + "end": 4381.16, + "probability": 0.8793 + }, + { + "start": 4382.69, + "end": 4385.48, + "probability": 0.9028 + }, + { + "start": 4385.84, + "end": 4386.16, + "probability": 0.7444 + }, + { + "start": 4386.28, + "end": 4389.24, + "probability": 0.8971 + }, + { + "start": 4389.4, + "end": 4391.04, + "probability": 0.7222 + }, + { + "start": 4391.12, + "end": 4394.3, + "probability": 0.9451 + }, + { + "start": 4394.94, + "end": 4398.28, + "probability": 0.9714 + }, + { + "start": 4398.68, + "end": 4401.88, + "probability": 0.988 + }, + { + "start": 4402.12, + "end": 4404.54, + "probability": 0.9083 + }, + { + "start": 4405.18, + "end": 4407.4, + "probability": 0.547 + }, + { + "start": 4407.66, + "end": 4410.7, + "probability": 0.9645 + }, + { + "start": 4411.14, + "end": 4413.88, + "probability": 0.9849 + }, + { + "start": 4413.96, + "end": 4415.58, + "probability": 0.9928 + }, + { + "start": 4415.62, + "end": 4420.5, + "probability": 0.9542 + }, + { + "start": 4420.64, + "end": 4422.82, + "probability": 0.9272 + }, + { + "start": 4423.82, + "end": 4425.32, + "probability": 0.6317 + }, + { + "start": 4425.5, + "end": 4425.92, + "probability": 0.8899 + }, + { + "start": 4429.04, + "end": 4431.3, + "probability": 0.7883 + }, + { + "start": 4431.88, + "end": 4432.98, + "probability": 0.9847 + }, + { + "start": 4434.44, + "end": 4437.6, + "probability": 0.966 + }, + { + "start": 4437.7, + "end": 4440.84, + "probability": 0.9954 + }, + { + "start": 4440.84, + "end": 4443.52, + "probability": 0.9451 + }, + { + "start": 4443.72, + "end": 4444.44, + "probability": 0.7508 + }, + { + "start": 4444.52, + "end": 4445.46, + "probability": 0.5201 + }, + { + "start": 4446.24, + "end": 4448.1, + "probability": 0.4117 + }, + { + "start": 4448.9, + "end": 4450.1, + "probability": 0.5947 + }, + { + "start": 4450.16, + "end": 4452.22, + "probability": 0.9961 + }, + { + "start": 4453.24, + "end": 4454.58, + "probability": 0.8026 + }, + { + "start": 4454.94, + "end": 4459.54, + "probability": 0.8501 + }, + { + "start": 4459.66, + "end": 4460.22, + "probability": 0.8625 + }, + { + "start": 4460.32, + "end": 4462.84, + "probability": 0.928 + }, + { + "start": 4463.3, + "end": 4464.0, + "probability": 0.8946 + }, + { + "start": 4464.98, + "end": 4467.14, + "probability": 0.8269 + }, + { + "start": 4468.1, + "end": 4471.08, + "probability": 0.8821 + }, + { + "start": 4471.76, + "end": 4474.4, + "probability": 0.9306 + }, + { + "start": 4474.48, + "end": 4477.12, + "probability": 0.6703 + }, + { + "start": 4477.24, + "end": 4478.56, + "probability": 0.7708 + }, + { + "start": 4478.64, + "end": 4479.0, + "probability": 0.6511 + }, + { + "start": 4479.08, + "end": 4481.06, + "probability": 0.8498 + }, + { + "start": 4481.2, + "end": 4482.12, + "probability": 0.8081 + }, + { + "start": 4482.3, + "end": 4484.24, + "probability": 0.9893 + }, + { + "start": 4484.4, + "end": 4485.24, + "probability": 0.8817 + }, + { + "start": 4486.26, + "end": 4488.04, + "probability": 0.2232 + }, + { + "start": 4488.04, + "end": 4488.36, + "probability": 0.3571 + }, + { + "start": 4488.42, + "end": 4488.62, + "probability": 0.3758 + }, + { + "start": 4488.68, + "end": 4489.08, + "probability": 0.524 + }, + { + "start": 4489.7, + "end": 4491.12, + "probability": 0.5448 + }, + { + "start": 4492.52, + "end": 4493.34, + "probability": 0.7131 + }, + { + "start": 4494.08, + "end": 4495.14, + "probability": 0.9912 + }, + { + "start": 4496.62, + "end": 4498.06, + "probability": 0.9778 + }, + { + "start": 4499.28, + "end": 4502.36, + "probability": 0.9115 + }, + { + "start": 4502.4, + "end": 4506.0, + "probability": 0.9155 + }, + { + "start": 4506.08, + "end": 4508.4, + "probability": 0.995 + }, + { + "start": 4509.9, + "end": 4510.86, + "probability": 0.8647 + }, + { + "start": 4511.5, + "end": 4512.9, + "probability": 0.9485 + }, + { + "start": 4520.62, + "end": 4521.58, + "probability": 0.6155 + }, + { + "start": 4521.62, + "end": 4525.06, + "probability": 0.9247 + }, + { + "start": 4525.26, + "end": 4526.78, + "probability": 0.8459 + }, + { + "start": 4527.7, + "end": 4533.3, + "probability": 0.8942 + }, + { + "start": 4533.9, + "end": 4540.86, + "probability": 0.9266 + }, + { + "start": 4540.96, + "end": 4543.72, + "probability": 0.5452 + }, + { + "start": 4543.86, + "end": 4544.34, + "probability": 0.4654 + }, + { + "start": 4544.9, + "end": 4546.62, + "probability": 0.9868 + }, + { + "start": 4548.69, + "end": 4551.62, + "probability": 0.7842 + }, + { + "start": 4551.7, + "end": 4552.54, + "probability": 0.9353 + }, + { + "start": 4553.14, + "end": 4553.54, + "probability": 0.8776 + }, + { + "start": 4553.58, + "end": 4558.06, + "probability": 0.8755 + }, + { + "start": 4558.06, + "end": 4558.42, + "probability": 0.6632 + }, + { + "start": 4558.56, + "end": 4559.98, + "probability": 0.4274 + }, + { + "start": 4563.08, + "end": 4564.88, + "probability": 0.54 + }, + { + "start": 4564.96, + "end": 4568.1, + "probability": 0.6602 + }, + { + "start": 4568.12, + "end": 4570.4, + "probability": 0.7794 + }, + { + "start": 4570.44, + "end": 4575.08, + "probability": 0.5585 + }, + { + "start": 4575.08, + "end": 4579.74, + "probability": 0.9819 + }, + { + "start": 4580.7, + "end": 4580.8, + "probability": 0.5634 + }, + { + "start": 4581.64, + "end": 4582.72, + "probability": 0.2269 + }, + { + "start": 4582.76, + "end": 4582.9, + "probability": 0.5928 + }, + { + "start": 4583.8, + "end": 4590.5, + "probability": 0.9895 + }, + { + "start": 4590.5, + "end": 4594.5, + "probability": 0.999 + }, + { + "start": 4594.58, + "end": 4597.94, + "probability": 0.8962 + }, + { + "start": 4598.18, + "end": 4598.91, + "probability": 0.9442 + }, + { + "start": 4599.2, + "end": 4599.44, + "probability": 0.2084 + }, + { + "start": 4599.5, + "end": 4599.98, + "probability": 0.1874 + }, + { + "start": 4600.1, + "end": 4600.34, + "probability": 0.3865 + }, + { + "start": 4600.72, + "end": 4600.86, + "probability": 0.4795 + }, + { + "start": 4600.86, + "end": 4601.14, + "probability": 0.3272 + }, + { + "start": 4601.14, + "end": 4601.78, + "probability": 0.5876 + }, + { + "start": 4601.82, + "end": 4603.58, + "probability": 0.9829 + }, + { + "start": 4603.66, + "end": 4609.98, + "probability": 0.9517 + }, + { + "start": 4610.1, + "end": 4612.3, + "probability": 0.7438 + }, + { + "start": 4612.64, + "end": 4612.9, + "probability": 0.2414 + }, + { + "start": 4613.12, + "end": 4613.68, + "probability": 0.3656 + }, + { + "start": 4613.84, + "end": 4614.26, + "probability": 0.3645 + }, + { + "start": 4614.28, + "end": 4614.52, + "probability": 0.714 + }, + { + "start": 4614.52, + "end": 4615.08, + "probability": 0.8087 + }, + { + "start": 4615.26, + "end": 4622.22, + "probability": 0.9609 + }, + { + "start": 4623.04, + "end": 4623.36, + "probability": 0.678 + }, + { + "start": 4623.36, + "end": 4626.83, + "probability": 0.525 + }, + { + "start": 4628.24, + "end": 4629.22, + "probability": 0.0148 + }, + { + "start": 4630.51, + "end": 4635.38, + "probability": 0.7847 + }, + { + "start": 4635.5, + "end": 4637.92, + "probability": 0.7047 + }, + { + "start": 4638.18, + "end": 4639.8, + "probability": 0.997 + }, + { + "start": 4639.84, + "end": 4640.0, + "probability": 0.7496 + }, + { + "start": 4640.44, + "end": 4641.52, + "probability": 0.7249 + }, + { + "start": 4642.3, + "end": 4643.61, + "probability": 0.5439 + }, + { + "start": 4645.54, + "end": 4650.94, + "probability": 0.9705 + }, + { + "start": 4650.94, + "end": 4654.34, + "probability": 0.9492 + }, + { + "start": 4654.42, + "end": 4655.14, + "probability": 0.9788 + }, + { + "start": 4655.48, + "end": 4657.66, + "probability": 0.9581 + }, + { + "start": 4657.8, + "end": 4658.2, + "probability": 0.7421 + }, + { + "start": 4658.68, + "end": 4661.94, + "probability": 0.9958 + }, + { + "start": 4661.98, + "end": 4662.62, + "probability": 0.7789 + }, + { + "start": 4663.58, + "end": 4666.16, + "probability": 0.8683 + }, + { + "start": 4666.82, + "end": 4667.42, + "probability": 0.8599 + }, + { + "start": 4667.48, + "end": 4667.96, + "probability": 0.7563 + }, + { + "start": 4668.14, + "end": 4668.51, + "probability": 0.5742 + }, + { + "start": 4668.88, + "end": 4669.68, + "probability": 0.9623 + }, + { + "start": 4670.76, + "end": 4672.04, + "probability": 0.6993 + }, + { + "start": 4672.16, + "end": 4673.28, + "probability": 0.9471 + }, + { + "start": 4673.46, + "end": 4674.38, + "probability": 0.9142 + }, + { + "start": 4674.44, + "end": 4675.43, + "probability": 0.5839 + }, + { + "start": 4676.24, + "end": 4681.06, + "probability": 0.9155 + }, + { + "start": 4681.68, + "end": 4685.22, + "probability": 0.9985 + }, + { + "start": 4685.88, + "end": 4688.82, + "probability": 0.9827 + }, + { + "start": 4688.96, + "end": 4692.39, + "probability": 0.7773 + }, + { + "start": 4693.42, + "end": 4694.78, + "probability": 0.9456 + }, + { + "start": 4695.62, + "end": 4698.26, + "probability": 0.7222 + }, + { + "start": 4698.38, + "end": 4698.76, + "probability": 0.6008 + }, + { + "start": 4698.93, + "end": 4703.12, + "probability": 0.8307 + }, + { + "start": 4704.18, + "end": 4706.2, + "probability": 0.9906 + }, + { + "start": 4706.38, + "end": 4709.9, + "probability": 0.9045 + }, + { + "start": 4710.14, + "end": 4710.9, + "probability": 0.944 + }, + { + "start": 4711.08, + "end": 4711.42, + "probability": 0.3838 + }, + { + "start": 4711.64, + "end": 4712.32, + "probability": 0.3717 + }, + { + "start": 4712.72, + "end": 4714.14, + "probability": 0.8643 + }, + { + "start": 4714.26, + "end": 4715.92, + "probability": 0.8692 + }, + { + "start": 4716.38, + "end": 4720.36, + "probability": 0.9031 + }, + { + "start": 4721.14, + "end": 4723.38, + "probability": 0.9424 + }, + { + "start": 4724.18, + "end": 4727.96, + "probability": 0.9196 + }, + { + "start": 4729.74, + "end": 4730.34, + "probability": 0.9971 + }, + { + "start": 4730.98, + "end": 4733.96, + "probability": 0.8961 + }, + { + "start": 4734.64, + "end": 4742.16, + "probability": 0.7668 + }, + { + "start": 4745.42, + "end": 4746.3, + "probability": 0.7301 + }, + { + "start": 4746.88, + "end": 4747.18, + "probability": 0.9445 + }, + { + "start": 4749.84, + "end": 4753.82, + "probability": 0.7277 + }, + { + "start": 4754.44, + "end": 4755.04, + "probability": 0.6287 + }, + { + "start": 4756.04, + "end": 4757.02, + "probability": 0.8092 + }, + { + "start": 4758.8, + "end": 4761.84, + "probability": 0.9979 + }, + { + "start": 4762.98, + "end": 4765.9, + "probability": 0.9862 + }, + { + "start": 4766.92, + "end": 4771.28, + "probability": 0.9904 + }, + { + "start": 4772.4, + "end": 4773.14, + "probability": 0.9943 + }, + { + "start": 4774.18, + "end": 4775.46, + "probability": 0.7489 + }, + { + "start": 4775.72, + "end": 4776.33, + "probability": 0.8309 + }, + { + "start": 4776.42, + "end": 4777.18, + "probability": 0.7413 + }, + { + "start": 4777.3, + "end": 4778.94, + "probability": 0.8939 + }, + { + "start": 4779.7, + "end": 4781.7, + "probability": 0.7503 + }, + { + "start": 4781.8, + "end": 4784.09, + "probability": 0.9635 + }, + { + "start": 4785.52, + "end": 4787.4, + "probability": 0.9549 + }, + { + "start": 4787.6, + "end": 4788.08, + "probability": 0.8481 + }, + { + "start": 4788.24, + "end": 4797.86, + "probability": 0.8896 + }, + { + "start": 4798.04, + "end": 4798.94, + "probability": 0.7793 + }, + { + "start": 4800.46, + "end": 4802.92, + "probability": 0.8453 + }, + { + "start": 4804.14, + "end": 4806.0, + "probability": 0.9117 + }, + { + "start": 4807.38, + "end": 4809.24, + "probability": 0.9321 + }, + { + "start": 4811.56, + "end": 4813.26, + "probability": 0.9331 + }, + { + "start": 4813.34, + "end": 4815.18, + "probability": 0.6074 + }, + { + "start": 4815.68, + "end": 4816.56, + "probability": 0.8563 + }, + { + "start": 4818.02, + "end": 4819.66, + "probability": 0.8975 + }, + { + "start": 4820.66, + "end": 4821.76, + "probability": 0.9933 + }, + { + "start": 4821.8, + "end": 4823.74, + "probability": 0.7353 + }, + { + "start": 4823.98, + "end": 4824.02, + "probability": 0.1331 + }, + { + "start": 4824.56, + "end": 4825.78, + "probability": 0.3873 + }, + { + "start": 4826.94, + "end": 4827.8, + "probability": 0.7502 + }, + { + "start": 4828.98, + "end": 4833.66, + "probability": 0.9581 + }, + { + "start": 4833.94, + "end": 4835.56, + "probability": 0.5151 + }, + { + "start": 4836.7, + "end": 4837.3, + "probability": 0.5405 + }, + { + "start": 4838.76, + "end": 4842.28, + "probability": 0.9591 + }, + { + "start": 4847.32, + "end": 4848.58, + "probability": 0.8443 + }, + { + "start": 4850.08, + "end": 4851.06, + "probability": 0.7649 + }, + { + "start": 4851.14, + "end": 4852.72, + "probability": 0.9092 + }, + { + "start": 4852.78, + "end": 4854.22, + "probability": 0.9523 + }, + { + "start": 4854.36, + "end": 4857.58, + "probability": 0.5 + }, + { + "start": 4857.88, + "end": 4858.1, + "probability": 0.3555 + }, + { + "start": 4858.56, + "end": 4860.38, + "probability": 0.2803 + }, + { + "start": 4863.76, + "end": 4864.44, + "probability": 0.0557 + }, + { + "start": 4864.44, + "end": 4865.98, + "probability": 0.6983 + }, + { + "start": 4866.14, + "end": 4867.7, + "probability": 0.5439 + }, + { + "start": 4868.02, + "end": 4869.56, + "probability": 0.4834 + }, + { + "start": 4869.7, + "end": 4870.7, + "probability": 0.6478 + }, + { + "start": 4870.76, + "end": 4873.96, + "probability": 0.7432 + }, + { + "start": 4874.12, + "end": 4874.28, + "probability": 0.6978 + }, + { + "start": 4874.32, + "end": 4874.69, + "probability": 0.4639 + }, + { + "start": 4875.32, + "end": 4878.4, + "probability": 0.6103 + }, + { + "start": 4878.4, + "end": 4880.3, + "probability": 0.5597 + }, + { + "start": 4880.38, + "end": 4882.14, + "probability": 0.2057 + }, + { + "start": 4882.22, + "end": 4884.28, + "probability": 0.3078 + }, + { + "start": 4884.28, + "end": 4887.36, + "probability": 0.2317 + }, + { + "start": 4887.68, + "end": 4887.88, + "probability": 0.2885 + }, + { + "start": 4888.5, + "end": 4889.82, + "probability": 0.5096 + }, + { + "start": 4889.9, + "end": 4891.4, + "probability": 0.6736 + }, + { + "start": 4891.48, + "end": 4891.94, + "probability": 0.5947 + }, + { + "start": 4891.94, + "end": 4892.32, + "probability": 0.7531 + }, + { + "start": 4893.88, + "end": 4897.68, + "probability": 0.6474 + }, + { + "start": 4897.76, + "end": 4898.44, + "probability": 0.874 + }, + { + "start": 4898.98, + "end": 4901.32, + "probability": 0.7463 + }, + { + "start": 4901.4, + "end": 4904.18, + "probability": 0.8568 + }, + { + "start": 4904.2, + "end": 4905.26, + "probability": 0.975 + }, + { + "start": 4905.32, + "end": 4905.42, + "probability": 0.6314 + }, + { + "start": 4906.5, + "end": 4908.98, + "probability": 0.5535 + }, + { + "start": 4909.28, + "end": 4911.01, + "probability": 0.5292 + }, + { + "start": 4911.92, + "end": 4915.02, + "probability": 0.966 + }, + { + "start": 4915.52, + "end": 4917.86, + "probability": 0.7953 + }, + { + "start": 4918.2, + "end": 4919.6, + "probability": 0.9956 + }, + { + "start": 4919.62, + "end": 4921.24, + "probability": 0.9614 + }, + { + "start": 4921.26, + "end": 4922.42, + "probability": 0.9846 + }, + { + "start": 4922.48, + "end": 4923.91, + "probability": 0.9277 + }, + { + "start": 4925.34, + "end": 4929.54, + "probability": 0.9839 + }, + { + "start": 4929.54, + "end": 4933.48, + "probability": 0.9978 + }, + { + "start": 4934.34, + "end": 4936.14, + "probability": 0.9949 + }, + { + "start": 4936.76, + "end": 4937.76, + "probability": 0.8983 + }, + { + "start": 4938.5, + "end": 4941.68, + "probability": 0.7988 + }, + { + "start": 4941.86, + "end": 4944.7, + "probability": 0.502 + }, + { + "start": 4945.38, + "end": 4946.24, + "probability": 0.4714 + }, + { + "start": 4948.2, + "end": 4951.06, + "probability": 0.8509 + }, + { + "start": 4951.98, + "end": 4957.9, + "probability": 0.8994 + }, + { + "start": 4959.06, + "end": 4962.5, + "probability": 0.9792 + }, + { + "start": 4966.08, + "end": 4966.76, + "probability": 0.6138 + }, + { + "start": 4967.5, + "end": 4969.72, + "probability": 0.772 + }, + { + "start": 4970.24, + "end": 4973.72, + "probability": 0.9954 + }, + { + "start": 4975.24, + "end": 4976.48, + "probability": 0.9587 + }, + { + "start": 4976.76, + "end": 4977.74, + "probability": 0.8971 + }, + { + "start": 4977.9, + "end": 4979.12, + "probability": 0.6769 + }, + { + "start": 4980.1, + "end": 4981.46, + "probability": 0.6213 + }, + { + "start": 4982.88, + "end": 4986.52, + "probability": 0.9132 + }, + { + "start": 4987.2, + "end": 4988.36, + "probability": 0.8032 + }, + { + "start": 4989.5, + "end": 4991.16, + "probability": 0.8544 + }, + { + "start": 4992.7, + "end": 4993.64, + "probability": 0.7516 + }, + { + "start": 4995.34, + "end": 4999.6, + "probability": 0.9945 + }, + { + "start": 5000.76, + "end": 5003.88, + "probability": 0.3339 + }, + { + "start": 5004.86, + "end": 5005.54, + "probability": 0.2615 + }, + { + "start": 5005.66, + "end": 5007.16, + "probability": 0.48 + }, + { + "start": 5008.44, + "end": 5008.7, + "probability": 0.442 + }, + { + "start": 5009.32, + "end": 5011.34, + "probability": 0.444 + }, + { + "start": 5011.52, + "end": 5013.98, + "probability": 0.2241 + }, + { + "start": 5014.56, + "end": 5015.6, + "probability": 0.5797 + }, + { + "start": 5016.8, + "end": 5017.06, + "probability": 0.791 + }, + { + "start": 5017.1, + "end": 5017.1, + "probability": 0.7655 + }, + { + "start": 5017.12, + "end": 5017.12, + "probability": 0.7124 + }, + { + "start": 5017.12, + "end": 5017.12, + "probability": 0.6577 + }, + { + "start": 5017.12, + "end": 5019.16, + "probability": 0.0482 + }, + { + "start": 5019.36, + "end": 5019.68, + "probability": 0.8582 + }, + { + "start": 5019.82, + "end": 5020.2, + "probability": 0.9456 + }, + { + "start": 5020.32, + "end": 5020.46, + "probability": 0.247 + }, + { + "start": 5020.6, + "end": 5021.34, + "probability": 0.7711 + }, + { + "start": 5021.48, + "end": 5022.12, + "probability": 0.2442 + }, + { + "start": 5022.14, + "end": 5022.74, + "probability": 0.7828 + }, + { + "start": 5022.84, + "end": 5024.82, + "probability": 0.7485 + }, + { + "start": 5024.82, + "end": 5025.18, + "probability": 0.672 + }, + { + "start": 5027.5, + "end": 5031.66, + "probability": 0.9821 + }, + { + "start": 5032.36, + "end": 5039.22, + "probability": 0.9849 + }, + { + "start": 5039.58, + "end": 5041.42, + "probability": 0.7613 + }, + { + "start": 5042.44, + "end": 5044.3, + "probability": 0.6979 + }, + { + "start": 5044.52, + "end": 5049.32, + "probability": 0.9937 + }, + { + "start": 5049.42, + "end": 5050.14, + "probability": 0.9534 + }, + { + "start": 5050.22, + "end": 5050.64, + "probability": 0.5881 + }, + { + "start": 5050.68, + "end": 5051.12, + "probability": 0.6932 + }, + { + "start": 5051.52, + "end": 5057.14, + "probability": 0.9603 + }, + { + "start": 5057.48, + "end": 5058.68, + "probability": 0.8357 + }, + { + "start": 5058.76, + "end": 5060.0, + "probability": 0.9343 + }, + { + "start": 5060.68, + "end": 5062.64, + "probability": 0.964 + }, + { + "start": 5063.6, + "end": 5067.52, + "probability": 0.9964 + }, + { + "start": 5069.28, + "end": 5072.8, + "probability": 0.8348 + }, + { + "start": 5073.52, + "end": 5074.9, + "probability": 0.9658 + }, + { + "start": 5076.14, + "end": 5080.92, + "probability": 0.6113 + }, + { + "start": 5081.46, + "end": 5082.38, + "probability": 0.7069 + }, + { + "start": 5083.34, + "end": 5090.08, + "probability": 0.9863 + }, + { + "start": 5090.88, + "end": 5094.4, + "probability": 0.9382 + }, + { + "start": 5095.0, + "end": 5095.78, + "probability": 0.9404 + }, + { + "start": 5097.28, + "end": 5101.26, + "probability": 0.9764 + }, + { + "start": 5102.2, + "end": 5104.82, + "probability": 0.9974 + }, + { + "start": 5105.2, + "end": 5106.22, + "probability": 0.9664 + }, + { + "start": 5106.44, + "end": 5107.7, + "probability": 0.8988 + }, + { + "start": 5108.96, + "end": 5110.38, + "probability": 0.2517 + }, + { + "start": 5111.02, + "end": 5111.56, + "probability": 0.4088 + }, + { + "start": 5111.68, + "end": 5112.32, + "probability": 0.7394 + }, + { + "start": 5112.42, + "end": 5113.52, + "probability": 0.947 + }, + { + "start": 5114.14, + "end": 5117.78, + "probability": 0.4332 + }, + { + "start": 5117.78, + "end": 5117.86, + "probability": 0.23 + }, + { + "start": 5118.0, + "end": 5118.0, + "probability": 0.0991 + }, + { + "start": 5118.0, + "end": 5119.74, + "probability": 0.7067 + }, + { + "start": 5119.76, + "end": 5121.12, + "probability": 0.9095 + }, + { + "start": 5122.02, + "end": 5122.67, + "probability": 0.889 + }, + { + "start": 5124.38, + "end": 5125.4, + "probability": 0.2342 + }, + { + "start": 5125.4, + "end": 5125.4, + "probability": 0.166 + }, + { + "start": 5126.05, + "end": 5128.74, + "probability": 0.6933 + }, + { + "start": 5128.78, + "end": 5130.3, + "probability": 0.9824 + }, + { + "start": 5131.46, + "end": 5134.7, + "probability": 0.8547 + }, + { + "start": 5135.06, + "end": 5139.0, + "probability": 0.7101 + }, + { + "start": 5140.04, + "end": 5143.06, + "probability": 0.7992 + }, + { + "start": 5143.44, + "end": 5145.22, + "probability": 0.9854 + }, + { + "start": 5146.06, + "end": 5148.18, + "probability": 0.9146 + }, + { + "start": 5148.3, + "end": 5150.56, + "probability": 0.771 + }, + { + "start": 5151.1, + "end": 5152.6, + "probability": 0.6729 + }, + { + "start": 5153.14, + "end": 5153.8, + "probability": 0.8467 + }, + { + "start": 5154.68, + "end": 5157.23, + "probability": 0.9866 + }, + { + "start": 5157.68, + "end": 5159.12, + "probability": 0.8247 + }, + { + "start": 5159.32, + "end": 5161.6, + "probability": 0.8757 + }, + { + "start": 5161.9, + "end": 5162.72, + "probability": 0.6942 + }, + { + "start": 5162.8, + "end": 5162.82, + "probability": 0.0918 + }, + { + "start": 5162.82, + "end": 5163.28, + "probability": 0.6306 + }, + { + "start": 5163.3, + "end": 5163.82, + "probability": 0.9146 + }, + { + "start": 5163.86, + "end": 5164.76, + "probability": 0.645 + }, + { + "start": 5165.24, + "end": 5165.72, + "probability": 0.6381 + }, + { + "start": 5166.12, + "end": 5166.84, + "probability": 0.9501 + }, + { + "start": 5167.26, + "end": 5168.68, + "probability": 0.9927 + }, + { + "start": 5169.22, + "end": 5172.73, + "probability": 0.9816 + }, + { + "start": 5172.96, + "end": 5173.38, + "probability": 0.5412 + }, + { + "start": 5174.44, + "end": 5174.74, + "probability": 0.8678 + }, + { + "start": 5174.82, + "end": 5175.66, + "probability": 0.7645 + }, + { + "start": 5175.76, + "end": 5175.94, + "probability": 0.3843 + }, + { + "start": 5176.06, + "end": 5178.4, + "probability": 0.9019 + }, + { + "start": 5178.54, + "end": 5180.28, + "probability": 0.9505 + }, + { + "start": 5180.92, + "end": 5188.26, + "probability": 0.9924 + }, + { + "start": 5189.08, + "end": 5191.24, + "probability": 0.783 + }, + { + "start": 5191.68, + "end": 5193.64, + "probability": 0.639 + }, + { + "start": 5194.14, + "end": 5197.88, + "probability": 0.924 + }, + { + "start": 5198.42, + "end": 5200.6, + "probability": 0.9028 + }, + { + "start": 5201.32, + "end": 5202.88, + "probability": 0.9705 + }, + { + "start": 5205.62, + "end": 5207.92, + "probability": 0.9012 + }, + { + "start": 5208.52, + "end": 5211.3, + "probability": 0.9937 + }, + { + "start": 5211.78, + "end": 5213.16, + "probability": 0.976 + }, + { + "start": 5213.64, + "end": 5215.78, + "probability": 0.8766 + }, + { + "start": 5216.42, + "end": 5217.2, + "probability": 0.9209 + }, + { + "start": 5218.34, + "end": 5221.34, + "probability": 0.9786 + }, + { + "start": 5222.1, + "end": 5225.48, + "probability": 0.9902 + }, + { + "start": 5226.14, + "end": 5227.86, + "probability": 0.8992 + }, + { + "start": 5227.94, + "end": 5228.86, + "probability": 0.9878 + }, + { + "start": 5228.94, + "end": 5229.38, + "probability": 0.2922 + }, + { + "start": 5232.24, + "end": 5234.82, + "probability": 0.9252 + }, + { + "start": 5236.06, + "end": 5237.57, + "probability": 0.749 + }, + { + "start": 5238.3, + "end": 5246.4, + "probability": 0.7808 + }, + { + "start": 5248.02, + "end": 5249.5, + "probability": 0.9436 + }, + { + "start": 5250.5, + "end": 5251.7, + "probability": 0.5141 + }, + { + "start": 5252.55, + "end": 5255.72, + "probability": 0.5056 + }, + { + "start": 5256.64, + "end": 5259.36, + "probability": 0.6551 + }, + { + "start": 5259.36, + "end": 5259.38, + "probability": 0.4053 + }, + { + "start": 5259.38, + "end": 5259.38, + "probability": 0.2588 + }, + { + "start": 5259.38, + "end": 5259.38, + "probability": 0.0829 + }, + { + "start": 5259.38, + "end": 5260.28, + "probability": 0.7737 + }, + { + "start": 5261.3, + "end": 5264.82, + "probability": 0.5623 + }, + { + "start": 5265.12, + "end": 5266.22, + "probability": 0.1257 + }, + { + "start": 5266.96, + "end": 5266.96, + "probability": 0.0692 + }, + { + "start": 5266.96, + "end": 5270.14, + "probability": 0.7595 + }, + { + "start": 5271.08, + "end": 5273.86, + "probability": 0.4407 + }, + { + "start": 5274.24, + "end": 5275.64, + "probability": 0.9434 + }, + { + "start": 5275.64, + "end": 5277.72, + "probability": 0.9944 + }, + { + "start": 5278.34, + "end": 5279.18, + "probability": 0.9153 + }, + { + "start": 5279.8, + "end": 5282.72, + "probability": 0.9335 + }, + { + "start": 5282.98, + "end": 5284.99, + "probability": 0.722 + }, + { + "start": 5285.18, + "end": 5286.54, + "probability": 0.9907 + }, + { + "start": 5287.1, + "end": 5288.48, + "probability": 0.8564 + }, + { + "start": 5288.9, + "end": 5290.06, + "probability": 0.9668 + }, + { + "start": 5290.72, + "end": 5292.48, + "probability": 0.9714 + }, + { + "start": 5293.22, + "end": 5296.72, + "probability": 0.7407 + }, + { + "start": 5297.44, + "end": 5298.9, + "probability": 0.9493 + }, + { + "start": 5299.92, + "end": 5300.83, + "probability": 0.6491 + }, + { + "start": 5301.24, + "end": 5301.75, + "probability": 0.6674 + }, + { + "start": 5302.3, + "end": 5303.04, + "probability": 0.9832 + }, + { + "start": 5303.78, + "end": 5305.72, + "probability": 0.9481 + }, + { + "start": 5307.38, + "end": 5314.76, + "probability": 0.8803 + }, + { + "start": 5314.84, + "end": 5315.24, + "probability": 0.8998 + }, + { + "start": 5315.86, + "end": 5318.04, + "probability": 0.9741 + }, + { + "start": 5318.86, + "end": 5320.04, + "probability": 0.808 + }, + { + "start": 5321.54, + "end": 5322.98, + "probability": 0.9354 + }, + { + "start": 5324.0, + "end": 5326.92, + "probability": 0.9819 + }, + { + "start": 5328.02, + "end": 5330.7, + "probability": 0.9059 + }, + { + "start": 5331.92, + "end": 5332.16, + "probability": 0.5158 + }, + { + "start": 5332.68, + "end": 5333.53, + "probability": 0.9935 + }, + { + "start": 5334.34, + "end": 5337.14, + "probability": 0.9452 + }, + { + "start": 5337.86, + "end": 5340.56, + "probability": 0.9858 + }, + { + "start": 5340.74, + "end": 5343.15, + "probability": 0.9961 + }, + { + "start": 5343.64, + "end": 5345.2, + "probability": 0.9303 + }, + { + "start": 5345.66, + "end": 5346.59, + "probability": 0.9897 + }, + { + "start": 5347.18, + "end": 5350.26, + "probability": 0.9873 + }, + { + "start": 5351.14, + "end": 5353.0, + "probability": 0.9502 + }, + { + "start": 5353.08, + "end": 5353.96, + "probability": 0.9861 + }, + { + "start": 5354.92, + "end": 5355.44, + "probability": 0.7124 + }, + { + "start": 5356.02, + "end": 5358.32, + "probability": 0.8883 + }, + { + "start": 5358.96, + "end": 5360.12, + "probability": 0.609 + }, + { + "start": 5360.42, + "end": 5361.56, + "probability": 0.7988 + }, + { + "start": 5361.62, + "end": 5363.1, + "probability": 0.6509 + }, + { + "start": 5363.22, + "end": 5363.62, + "probability": 0.8042 + }, + { + "start": 5364.18, + "end": 5366.48, + "probability": 0.9897 + }, + { + "start": 5367.0, + "end": 5369.2, + "probability": 0.9918 + }, + { + "start": 5370.64, + "end": 5371.48, + "probability": 0.5979 + }, + { + "start": 5372.86, + "end": 5374.72, + "probability": 0.9478 + }, + { + "start": 5375.34, + "end": 5376.0, + "probability": 0.6957 + }, + { + "start": 5376.94, + "end": 5380.18, + "probability": 0.8866 + }, + { + "start": 5380.26, + "end": 5382.84, + "probability": 0.9743 + }, + { + "start": 5383.28, + "end": 5385.2, + "probability": 0.9773 + }, + { + "start": 5385.3, + "end": 5385.68, + "probability": 0.5113 + }, + { + "start": 5386.98, + "end": 5390.22, + "probability": 0.7444 + }, + { + "start": 5390.8, + "end": 5394.9, + "probability": 0.7933 + }, + { + "start": 5395.9, + "end": 5400.32, + "probability": 0.6884 + }, + { + "start": 5401.2, + "end": 5403.58, + "probability": 0.9858 + }, + { + "start": 5405.36, + "end": 5407.96, + "probability": 0.9207 + }, + { + "start": 5409.38, + "end": 5410.46, + "probability": 0.7709 + }, + { + "start": 5410.68, + "end": 5411.46, + "probability": 0.9244 + }, + { + "start": 5411.52, + "end": 5414.74, + "probability": 0.9111 + }, + { + "start": 5414.78, + "end": 5415.73, + "probability": 0.9595 + }, + { + "start": 5417.06, + "end": 5419.68, + "probability": 0.8654 + }, + { + "start": 5419.88, + "end": 5424.5, + "probability": 0.8997 + }, + { + "start": 5426.22, + "end": 5429.62, + "probability": 0.7525 + }, + { + "start": 5430.48, + "end": 5431.52, + "probability": 0.9987 + }, + { + "start": 5432.54, + "end": 5439.36, + "probability": 0.9506 + }, + { + "start": 5440.24, + "end": 5441.56, + "probability": 0.9836 + }, + { + "start": 5442.44, + "end": 5445.54, + "probability": 0.9325 + }, + { + "start": 5446.26, + "end": 5446.88, + "probability": 0.9485 + }, + { + "start": 5447.82, + "end": 5448.64, + "probability": 0.3776 + }, + { + "start": 5448.76, + "end": 5449.39, + "probability": 0.0558 + }, + { + "start": 5449.56, + "end": 5450.76, + "probability": 0.7571 + }, + { + "start": 5450.88, + "end": 5455.06, + "probability": 0.998 + }, + { + "start": 5456.06, + "end": 5458.02, + "probability": 0.9993 + }, + { + "start": 5458.1, + "end": 5459.02, + "probability": 0.9178 + }, + { + "start": 5459.84, + "end": 5460.68, + "probability": 0.9264 + }, + { + "start": 5461.1, + "end": 5462.9, + "probability": 0.9883 + }, + { + "start": 5463.4, + "end": 5464.36, + "probability": 0.9123 + }, + { + "start": 5464.36, + "end": 5464.58, + "probability": 0.4773 + }, + { + "start": 5464.72, + "end": 5465.72, + "probability": 0.856 + }, + { + "start": 5465.84, + "end": 5469.02, + "probability": 0.9218 + }, + { + "start": 5469.02, + "end": 5472.68, + "probability": 0.5389 + }, + { + "start": 5473.14, + "end": 5473.9, + "probability": 0.5089 + }, + { + "start": 5473.98, + "end": 5475.94, + "probability": 0.8676 + }, + { + "start": 5476.14, + "end": 5477.56, + "probability": 0.0238 + }, + { + "start": 5477.68, + "end": 5479.76, + "probability": 0.7429 + }, + { + "start": 5480.52, + "end": 5481.26, + "probability": 0.7507 + }, + { + "start": 5483.96, + "end": 5485.92, + "probability": 0.6671 + }, + { + "start": 5486.64, + "end": 5491.48, + "probability": 0.9924 + }, + { + "start": 5492.08, + "end": 5492.48, + "probability": 0.6878 + }, + { + "start": 5493.28, + "end": 5493.9, + "probability": 0.8476 + }, + { + "start": 5493.98, + "end": 5494.41, + "probability": 0.8441 + }, + { + "start": 5494.82, + "end": 5497.1, + "probability": 0.5503 + }, + { + "start": 5497.28, + "end": 5499.14, + "probability": 0.9819 + }, + { + "start": 5499.82, + "end": 5503.48, + "probability": 0.8636 + }, + { + "start": 5504.02, + "end": 5505.82, + "probability": 0.9364 + }, + { + "start": 5506.26, + "end": 5508.24, + "probability": 0.9958 + }, + { + "start": 5509.2, + "end": 5510.08, + "probability": 0.9641 + }, + { + "start": 5511.31, + "end": 5513.38, + "probability": 0.9102 + }, + { + "start": 5514.32, + "end": 5515.38, + "probability": 0.9684 + }, + { + "start": 5516.1, + "end": 5519.94, + "probability": 0.6872 + }, + { + "start": 5520.96, + "end": 5523.06, + "probability": 0.9773 + }, + { + "start": 5523.84, + "end": 5525.9, + "probability": 0.9054 + }, + { + "start": 5526.72, + "end": 5527.22, + "probability": 0.8802 + }, + { + "start": 5527.88, + "end": 5529.14, + "probability": 0.8697 + }, + { + "start": 5529.86, + "end": 5536.84, + "probability": 0.8495 + }, + { + "start": 5536.92, + "end": 5537.55, + "probability": 0.9688 + }, + { + "start": 5538.4, + "end": 5541.5, + "probability": 0.7241 + }, + { + "start": 5542.66, + "end": 5543.64, + "probability": 0.8695 + }, + { + "start": 5544.82, + "end": 5545.39, + "probability": 0.745 + }, + { + "start": 5547.26, + "end": 5547.36, + "probability": 0.8067 + }, + { + "start": 5549.66, + "end": 5552.84, + "probability": 0.8677 + }, + { + "start": 5553.16, + "end": 5553.68, + "probability": 0.7462 + }, + { + "start": 5554.36, + "end": 5555.78, + "probability": 0.9482 + }, + { + "start": 5556.34, + "end": 5558.32, + "probability": 0.2779 + }, + { + "start": 5559.34, + "end": 5561.86, + "probability": 0.7254 + }, + { + "start": 5565.02, + "end": 5568.74, + "probability": 0.8069 + }, + { + "start": 5568.88, + "end": 5569.38, + "probability": 0.7614 + }, + { + "start": 5569.48, + "end": 5571.08, + "probability": 0.8173 + }, + { + "start": 5571.24, + "end": 5571.96, + "probability": 0.7576 + }, + { + "start": 5572.0, + "end": 5575.2, + "probability": 0.4031 + }, + { + "start": 5575.2, + "end": 5575.62, + "probability": 0.4794 + }, + { + "start": 5575.72, + "end": 5576.2, + "probability": 0.6213 + }, + { + "start": 5577.34, + "end": 5577.84, + "probability": 0.6895 + }, + { + "start": 5577.94, + "end": 5578.6, + "probability": 0.7178 + }, + { + "start": 5578.64, + "end": 5579.1, + "probability": 0.5995 + }, + { + "start": 5579.14, + "end": 5579.97, + "probability": 0.9839 + }, + { + "start": 5582.14, + "end": 5584.36, + "probability": 0.9941 + }, + { + "start": 5584.74, + "end": 5586.28, + "probability": 0.8753 + }, + { + "start": 5587.14, + "end": 5588.23, + "probability": 0.7875 + }, + { + "start": 5590.9, + "end": 5591.46, + "probability": 0.5495 + }, + { + "start": 5594.14, + "end": 5598.42, + "probability": 0.6805 + }, + { + "start": 5600.46, + "end": 5600.94, + "probability": 0.0711 + }, + { + "start": 5600.94, + "end": 5602.08, + "probability": 0.624 + }, + { + "start": 5602.16, + "end": 5607.06, + "probability": 0.6558 + }, + { + "start": 5607.74, + "end": 5610.2, + "probability": 0.8733 + }, + { + "start": 5610.26, + "end": 5611.98, + "probability": 0.9545 + }, + { + "start": 5612.68, + "end": 5613.96, + "probability": 0.704 + }, + { + "start": 5614.7, + "end": 5619.14, + "probability": 0.9904 + }, + { + "start": 5619.56, + "end": 5620.18, + "probability": 0.6521 + }, + { + "start": 5620.3, + "end": 5622.73, + "probability": 0.666 + }, + { + "start": 5623.2, + "end": 5625.14, + "probability": 0.6747 + }, + { + "start": 5625.7, + "end": 5628.23, + "probability": 0.9482 + }, + { + "start": 5629.0, + "end": 5629.96, + "probability": 0.564 + }, + { + "start": 5630.1, + "end": 5631.8, + "probability": 0.71 + }, + { + "start": 5631.84, + "end": 5632.08, + "probability": 0.6315 + }, + { + "start": 5632.8, + "end": 5634.33, + "probability": 0.7274 + }, + { + "start": 5634.46, + "end": 5636.94, + "probability": 0.9386 + }, + { + "start": 5637.94, + "end": 5639.94, + "probability": 0.9229 + }, + { + "start": 5640.02, + "end": 5640.94, + "probability": 0.5614 + }, + { + "start": 5641.26, + "end": 5643.62, + "probability": 0.9695 + }, + { + "start": 5644.1, + "end": 5645.22, + "probability": 0.8008 + }, + { + "start": 5645.34, + "end": 5646.34, + "probability": 0.988 + }, + { + "start": 5646.46, + "end": 5647.7, + "probability": 0.9257 + }, + { + "start": 5647.78, + "end": 5650.6, + "probability": 0.8533 + }, + { + "start": 5651.06, + "end": 5652.32, + "probability": 0.9813 + }, + { + "start": 5652.48, + "end": 5655.6, + "probability": 0.9771 + }, + { + "start": 5655.6, + "end": 5658.38, + "probability": 0.9883 + }, + { + "start": 5659.0, + "end": 5661.04, + "probability": 0.8483 + }, + { + "start": 5661.96, + "end": 5662.12, + "probability": 0.3166 + }, + { + "start": 5662.12, + "end": 5664.02, + "probability": 0.9947 + }, + { + "start": 5664.68, + "end": 5666.46, + "probability": 0.9884 + }, + { + "start": 5666.6, + "end": 5667.38, + "probability": 0.98 + }, + { + "start": 5667.48, + "end": 5670.62, + "probability": 0.8572 + }, + { + "start": 5670.62, + "end": 5671.48, + "probability": 0.8354 + }, + { + "start": 5672.24, + "end": 5674.44, + "probability": 0.9505 + }, + { + "start": 5675.22, + "end": 5678.48, + "probability": 0.8169 + }, + { + "start": 5679.18, + "end": 5682.8, + "probability": 0.8675 + }, + { + "start": 5683.84, + "end": 5685.72, + "probability": 0.9778 + }, + { + "start": 5686.48, + "end": 5688.92, + "probability": 0.6578 + }, + { + "start": 5692.0, + "end": 5693.5, + "probability": 0.6563 + }, + { + "start": 5693.8, + "end": 5694.72, + "probability": 0.7307 + }, + { + "start": 5695.18, + "end": 5698.32, + "probability": 0.9419 + }, + { + "start": 5698.4, + "end": 5699.28, + "probability": 0.9087 + }, + { + "start": 5699.34, + "end": 5700.52, + "probability": 0.9932 + }, + { + "start": 5701.42, + "end": 5705.32, + "probability": 0.8875 + }, + { + "start": 5705.84, + "end": 5708.2, + "probability": 0.8461 + }, + { + "start": 5709.4, + "end": 5712.64, + "probability": 0.7897 + }, + { + "start": 5713.06, + "end": 5713.96, + "probability": 0.9291 + }, + { + "start": 5714.06, + "end": 5714.5, + "probability": 0.8064 + }, + { + "start": 5714.58, + "end": 5715.2, + "probability": 0.6686 + }, + { + "start": 5716.5, + "end": 5722.78, + "probability": 0.9332 + }, + { + "start": 5724.98, + "end": 5726.1, + "probability": 0.6648 + }, + { + "start": 5737.44, + "end": 5738.12, + "probability": 0.3577 + }, + { + "start": 5738.16, + "end": 5739.14, + "probability": 0.7024 + }, + { + "start": 5739.16, + "end": 5745.62, + "probability": 0.9438 + }, + { + "start": 5746.6, + "end": 5752.85, + "probability": 0.9092 + }, + { + "start": 5753.68, + "end": 5757.58, + "probability": 0.9826 + }, + { + "start": 5758.32, + "end": 5760.84, + "probability": 0.8438 + }, + { + "start": 5761.52, + "end": 5764.2, + "probability": 0.7288 + }, + { + "start": 5764.2, + "end": 5767.39, + "probability": 0.8393 + }, + { + "start": 5767.82, + "end": 5769.74, + "probability": 0.9757 + }, + { + "start": 5770.78, + "end": 5774.16, + "probability": 0.9571 + }, + { + "start": 5774.86, + "end": 5775.96, + "probability": 0.9957 + }, + { + "start": 5776.52, + "end": 5779.48, + "probability": 0.9926 + }, + { + "start": 5780.1, + "end": 5781.44, + "probability": 0.8983 + }, + { + "start": 5782.04, + "end": 5782.24, + "probability": 0.7227 + }, + { + "start": 5783.24, + "end": 5786.42, + "probability": 0.8747 + }, + { + "start": 5787.46, + "end": 5790.52, + "probability": 0.9829 + }, + { + "start": 5791.4, + "end": 5792.27, + "probability": 0.9927 + }, + { + "start": 5793.88, + "end": 5794.46, + "probability": 0.5642 + }, + { + "start": 5795.2, + "end": 5796.13, + "probability": 0.9074 + }, + { + "start": 5797.1, + "end": 5800.14, + "probability": 0.7821 + }, + { + "start": 5800.28, + "end": 5801.32, + "probability": 0.9941 + }, + { + "start": 5801.4, + "end": 5805.54, + "probability": 0.9728 + }, + { + "start": 5806.3, + "end": 5809.34, + "probability": 0.9019 + }, + { + "start": 5811.0, + "end": 5813.54, + "probability": 0.9674 + }, + { + "start": 5813.7, + "end": 5817.24, + "probability": 0.9746 + }, + { + "start": 5817.24, + "end": 5819.72, + "probability": 0.9468 + }, + { + "start": 5821.22, + "end": 5821.98, + "probability": 0.7577 + }, + { + "start": 5822.04, + "end": 5823.23, + "probability": 0.9941 + }, + { + "start": 5824.06, + "end": 5827.28, + "probability": 0.254 + }, + { + "start": 5827.52, + "end": 5832.54, + "probability": 0.181 + }, + { + "start": 5832.62, + "end": 5833.0, + "probability": 0.4377 + }, + { + "start": 5833.14, + "end": 5833.52, + "probability": 0.2981 + }, + { + "start": 5833.54, + "end": 5836.62, + "probability": 0.8749 + }, + { + "start": 5837.32, + "end": 5841.9, + "probability": 0.9185 + }, + { + "start": 5843.58, + "end": 5845.94, + "probability": 0.979 + }, + { + "start": 5851.94, + "end": 5853.06, + "probability": 0.3154 + }, + { + "start": 5853.82, + "end": 5855.18, + "probability": 0.6571 + }, + { + "start": 5856.16, + "end": 5860.22, + "probability": 0.8256 + }, + { + "start": 5860.92, + "end": 5862.9, + "probability": 0.5753 + }, + { + "start": 5863.96, + "end": 5868.14, + "probability": 0.9571 + }, + { + "start": 5869.0, + "end": 5871.92, + "probability": 0.7389 + }, + { + "start": 5872.66, + "end": 5875.84, + "probability": 0.9017 + }, + { + "start": 5876.88, + "end": 5878.92, + "probability": 0.755 + }, + { + "start": 5881.68, + "end": 5884.04, + "probability": 0.7145 + }, + { + "start": 5884.16, + "end": 5884.73, + "probability": 0.8958 + }, + { + "start": 5885.46, + "end": 5885.88, + "probability": 0.6713 + }, + { + "start": 5885.98, + "end": 5887.18, + "probability": 0.9284 + }, + { + "start": 5887.42, + "end": 5891.51, + "probability": 0.9419 + }, + { + "start": 5891.86, + "end": 5893.45, + "probability": 0.6807 + }, + { + "start": 5897.38, + "end": 5899.52, + "probability": 0.9518 + }, + { + "start": 5899.76, + "end": 5905.08, + "probability": 0.9843 + }, + { + "start": 5905.94, + "end": 5910.66, + "probability": 0.7645 + }, + { + "start": 5910.8, + "end": 5910.88, + "probability": 0.9235 + }, + { + "start": 5910.98, + "end": 5913.14, + "probability": 0.9457 + }, + { + "start": 5914.58, + "end": 5915.46, + "probability": 0.9266 + }, + { + "start": 5915.96, + "end": 5916.72, + "probability": 0.376 + }, + { + "start": 5916.94, + "end": 5917.46, + "probability": 0.6906 + }, + { + "start": 5919.26, + "end": 5926.98, + "probability": 0.9814 + }, + { + "start": 5928.06, + "end": 5931.1, + "probability": 0.9763 + }, + { + "start": 5931.1, + "end": 5932.94, + "probability": 0.9429 + }, + { + "start": 5933.78, + "end": 5934.34, + "probability": 0.7536 + }, + { + "start": 5936.28, + "end": 5938.92, + "probability": 0.9834 + }, + { + "start": 5939.7, + "end": 5940.54, + "probability": 0.2448 + }, + { + "start": 5941.44, + "end": 5942.4, + "probability": 0.4235 + }, + { + "start": 5943.24, + "end": 5944.68, + "probability": 0.8621 + }, + { + "start": 5945.54, + "end": 5945.92, + "probability": 0.5054 + }, + { + "start": 5947.82, + "end": 5952.44, + "probability": 0.8753 + }, + { + "start": 5957.44, + "end": 5958.62, + "probability": 0.5061 + }, + { + "start": 5958.66, + "end": 5960.22, + "probability": 0.7866 + }, + { + "start": 5960.26, + "end": 5960.82, + "probability": 0.7057 + }, + { + "start": 5961.08, + "end": 5963.82, + "probability": 0.4024 + }, + { + "start": 5964.86, + "end": 5965.98, + "probability": 0.4863 + } + ], + "segments_count": 2014, + "words_count": 10158, + "avg_words_per_segment": 5.0437, + "avg_segment_duration": 2.2587, + "avg_words_per_minute": 101.8688, + "plenum_id": "34752", + "duration": 5982.99, + "title": null, + "plenum_date": "2014-02-04" +} \ No newline at end of file