diff --git "a/38090/metadata.json" "b/38090/metadata.json" new file mode 100644--- /dev/null +++ "b/38090/metadata.json" @@ -0,0 +1,28477 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "38090", + "quality_score": 0.896, + "per_segment_quality_scores": [ + { + "start": 85.9, + "end": 87.46, + "probability": 0.353 + }, + { + "start": 88.92, + "end": 90.16, + "probability": 0.6857 + }, + { + "start": 91.02, + "end": 92.5, + "probability": 0.8311 + }, + { + "start": 93.08, + "end": 94.2, + "probability": 0.7654 + }, + { + "start": 94.3, + "end": 95.84, + "probability": 0.9595 + }, + { + "start": 105.16, + "end": 107.04, + "probability": 0.765 + }, + { + "start": 107.28, + "end": 111.61, + "probability": 0.9198 + }, + { + "start": 111.68, + "end": 114.58, + "probability": 0.9526 + }, + { + "start": 115.44, + "end": 115.54, + "probability": 0.0136 + }, + { + "start": 121.14, + "end": 122.74, + "probability": 0.0827 + }, + { + "start": 122.74, + "end": 125.72, + "probability": 0.6928 + }, + { + "start": 126.66, + "end": 129.32, + "probability": 0.8149 + }, + { + "start": 131.58, + "end": 132.78, + "probability": 0.1899 + }, + { + "start": 133.76, + "end": 136.36, + "probability": 0.691 + }, + { + "start": 138.12, + "end": 139.34, + "probability": 0.6973 + }, + { + "start": 140.52, + "end": 141.42, + "probability": 0.8672 + }, + { + "start": 141.5, + "end": 142.94, + "probability": 0.5775 + }, + { + "start": 144.66, + "end": 149.0, + "probability": 0.8938 + }, + { + "start": 149.38, + "end": 150.26, + "probability": 0.4035 + }, + { + "start": 150.8, + "end": 152.7, + "probability": 0.9966 + }, + { + "start": 153.46, + "end": 154.42, + "probability": 0.9024 + }, + { + "start": 155.46, + "end": 160.82, + "probability": 0.9162 + }, + { + "start": 161.26, + "end": 163.06, + "probability": 0.9022 + }, + { + "start": 164.06, + "end": 166.56, + "probability": 0.9977 + }, + { + "start": 168.98, + "end": 173.88, + "probability": 0.763 + }, + { + "start": 174.64, + "end": 179.46, + "probability": 0.5503 + }, + { + "start": 180.14, + "end": 185.26, + "probability": 0.9561 + }, + { + "start": 186.32, + "end": 188.46, + "probability": 0.8069 + }, + { + "start": 188.98, + "end": 190.5, + "probability": 0.8342 + }, + { + "start": 191.18, + "end": 195.52, + "probability": 0.9433 + }, + { + "start": 195.58, + "end": 196.58, + "probability": 0.7087 + }, + { + "start": 197.0, + "end": 197.78, + "probability": 0.6598 + }, + { + "start": 197.8, + "end": 198.58, + "probability": 0.2283 + }, + { + "start": 200.98, + "end": 205.96, + "probability": 0.5614 + }, + { + "start": 205.96, + "end": 211.24, + "probability": 0.9834 + }, + { + "start": 211.26, + "end": 216.7, + "probability": 0.9844 + }, + { + "start": 217.86, + "end": 222.98, + "probability": 0.9421 + }, + { + "start": 222.98, + "end": 228.56, + "probability": 0.8945 + }, + { + "start": 230.6, + "end": 232.1, + "probability": 0.8986 + }, + { + "start": 232.62, + "end": 234.96, + "probability": 0.9903 + }, + { + "start": 236.79, + "end": 239.92, + "probability": 0.9897 + }, + { + "start": 239.92, + "end": 244.2, + "probability": 0.6598 + }, + { + "start": 245.2, + "end": 247.44, + "probability": 0.0604 + }, + { + "start": 248.24, + "end": 250.14, + "probability": 0.0692 + }, + { + "start": 251.42, + "end": 252.93, + "probability": 0.6993 + }, + { + "start": 253.88, + "end": 258.26, + "probability": 0.059 + }, + { + "start": 258.92, + "end": 259.02, + "probability": 0.0232 + }, + { + "start": 259.02, + "end": 260.42, + "probability": 0.7332 + }, + { + "start": 261.2, + "end": 262.3, + "probability": 0.7449 + }, + { + "start": 263.1, + "end": 265.82, + "probability": 0.7045 + }, + { + "start": 266.46, + "end": 266.94, + "probability": 0.0713 + }, + { + "start": 267.5, + "end": 268.2, + "probability": 0.0332 + }, + { + "start": 268.3, + "end": 271.58, + "probability": 0.8737 + }, + { + "start": 272.12, + "end": 275.06, + "probability": 0.9058 + }, + { + "start": 275.06, + "end": 275.46, + "probability": 0.597 + }, + { + "start": 275.56, + "end": 278.16, + "probability": 0.9448 + }, + { + "start": 278.28, + "end": 282.42, + "probability": 0.9678 + }, + { + "start": 283.74, + "end": 288.02, + "probability": 0.7207 + }, + { + "start": 288.96, + "end": 291.44, + "probability": 0.7429 + }, + { + "start": 291.66, + "end": 292.93, + "probability": 0.8395 + }, + { + "start": 293.84, + "end": 295.8, + "probability": 0.678 + }, + { + "start": 296.0, + "end": 296.48, + "probability": 0.9751 + }, + { + "start": 297.34, + "end": 298.8, + "probability": 0.8947 + }, + { + "start": 298.9, + "end": 301.52, + "probability": 0.8684 + }, + { + "start": 301.6, + "end": 303.02, + "probability": 0.9491 + }, + { + "start": 303.42, + "end": 304.66, + "probability": 0.9209 + }, + { + "start": 305.18, + "end": 306.04, + "probability": 0.9641 + }, + { + "start": 306.18, + "end": 308.22, + "probability": 0.9321 + }, + { + "start": 308.58, + "end": 310.36, + "probability": 0.9799 + }, + { + "start": 310.74, + "end": 312.14, + "probability": 0.8714 + }, + { + "start": 312.26, + "end": 313.84, + "probability": 0.6851 + }, + { + "start": 313.96, + "end": 315.46, + "probability": 0.7654 + }, + { + "start": 316.16, + "end": 317.84, + "probability": 0.9671 + }, + { + "start": 318.6, + "end": 320.44, + "probability": 0.706 + }, + { + "start": 321.2, + "end": 321.98, + "probability": 0.8719 + }, + { + "start": 322.1, + "end": 323.88, + "probability": 0.7501 + }, + { + "start": 324.0, + "end": 324.8, + "probability": 0.8443 + }, + { + "start": 325.34, + "end": 326.04, + "probability": 0.694 + }, + { + "start": 327.08, + "end": 327.44, + "probability": 0.2047 + }, + { + "start": 327.58, + "end": 328.76, + "probability": 0.9454 + }, + { + "start": 329.34, + "end": 331.76, + "probability": 0.8628 + }, + { + "start": 332.42, + "end": 335.42, + "probability": 0.9545 + }, + { + "start": 335.42, + "end": 337.52, + "probability": 0.9945 + }, + { + "start": 337.98, + "end": 338.88, + "probability": 0.8708 + }, + { + "start": 339.76, + "end": 342.62, + "probability": 0.817 + }, + { + "start": 343.76, + "end": 345.38, + "probability": 0.969 + }, + { + "start": 345.48, + "end": 347.54, + "probability": 0.9499 + }, + { + "start": 347.56, + "end": 348.08, + "probability": 0.5113 + }, + { + "start": 348.16, + "end": 349.5, + "probability": 0.9146 + }, + { + "start": 349.84, + "end": 350.42, + "probability": 0.9132 + }, + { + "start": 350.84, + "end": 351.82, + "probability": 0.9554 + }, + { + "start": 353.62, + "end": 357.72, + "probability": 0.8075 + }, + { + "start": 357.84, + "end": 358.82, + "probability": 0.7517 + }, + { + "start": 359.77, + "end": 362.86, + "probability": 0.9222 + }, + { + "start": 362.86, + "end": 365.98, + "probability": 0.7517 + }, + { + "start": 366.42, + "end": 367.08, + "probability": 0.6547 + }, + { + "start": 367.68, + "end": 369.02, + "probability": 0.9436 + }, + { + "start": 369.06, + "end": 371.22, + "probability": 0.6542 + }, + { + "start": 371.82, + "end": 374.4, + "probability": 0.7706 + }, + { + "start": 374.82, + "end": 377.52, + "probability": 0.9412 + }, + { + "start": 377.94, + "end": 378.68, + "probability": 0.7637 + }, + { + "start": 378.92, + "end": 380.78, + "probability": 0.9519 + }, + { + "start": 381.42, + "end": 383.68, + "probability": 0.9164 + }, + { + "start": 384.24, + "end": 386.42, + "probability": 0.8525 + }, + { + "start": 386.42, + "end": 387.34, + "probability": 0.8843 + }, + { + "start": 387.74, + "end": 388.88, + "probability": 0.2679 + }, + { + "start": 388.92, + "end": 389.44, + "probability": 0.6711 + }, + { + "start": 390.06, + "end": 391.34, + "probability": 0.9622 + }, + { + "start": 391.94, + "end": 392.26, + "probability": 0.5531 + }, + { + "start": 392.26, + "end": 393.92, + "probability": 0.9172 + }, + { + "start": 394.26, + "end": 395.52, + "probability": 0.9927 + }, + { + "start": 395.58, + "end": 396.16, + "probability": 0.6985 + }, + { + "start": 396.44, + "end": 396.98, + "probability": 0.7411 + }, + { + "start": 398.04, + "end": 400.84, + "probability": 0.8864 + }, + { + "start": 401.06, + "end": 401.92, + "probability": 0.4817 + }, + { + "start": 401.92, + "end": 407.46, + "probability": 0.9922 + }, + { + "start": 407.78, + "end": 408.54, + "probability": 0.7019 + }, + { + "start": 412.86, + "end": 414.0, + "probability": 0.5331 + }, + { + "start": 420.56, + "end": 422.9, + "probability": 0.9937 + }, + { + "start": 423.18, + "end": 426.12, + "probability": 0.9449 + }, + { + "start": 427.18, + "end": 433.14, + "probability": 0.9714 + }, + { + "start": 433.74, + "end": 434.8, + "probability": 0.9772 + }, + { + "start": 435.48, + "end": 438.4, + "probability": 0.9919 + }, + { + "start": 439.02, + "end": 439.98, + "probability": 0.8613 + }, + { + "start": 441.28, + "end": 442.24, + "probability": 0.8612 + }, + { + "start": 443.26, + "end": 444.14, + "probability": 0.67 + }, + { + "start": 445.0, + "end": 449.98, + "probability": 0.9695 + }, + { + "start": 451.92, + "end": 454.32, + "probability": 0.8965 + }, + { + "start": 454.6, + "end": 457.7, + "probability": 0.992 + }, + { + "start": 459.3, + "end": 459.72, + "probability": 0.835 + }, + { + "start": 460.36, + "end": 461.04, + "probability": 0.4679 + }, + { + "start": 461.2, + "end": 463.17, + "probability": 0.9604 + }, + { + "start": 465.22, + "end": 465.64, + "probability": 0.0733 + }, + { + "start": 467.66, + "end": 468.36, + "probability": 0.1467 + }, + { + "start": 468.36, + "end": 471.53, + "probability": 0.7172 + }, + { + "start": 472.58, + "end": 477.94, + "probability": 0.9744 + }, + { + "start": 478.08, + "end": 479.12, + "probability": 0.9055 + }, + { + "start": 479.46, + "end": 480.49, + "probability": 0.9504 + }, + { + "start": 481.22, + "end": 483.42, + "probability": 0.7493 + }, + { + "start": 483.64, + "end": 488.1, + "probability": 0.9858 + }, + { + "start": 488.68, + "end": 492.56, + "probability": 0.9462 + }, + { + "start": 493.12, + "end": 496.24, + "probability": 0.929 + }, + { + "start": 496.34, + "end": 498.38, + "probability": 0.8899 + }, + { + "start": 498.54, + "end": 499.88, + "probability": 0.9948 + }, + { + "start": 500.04, + "end": 503.12, + "probability": 0.9512 + }, + { + "start": 503.2, + "end": 504.75, + "probability": 0.801 + }, + { + "start": 505.02, + "end": 508.98, + "probability": 0.9785 + }, + { + "start": 509.14, + "end": 512.06, + "probability": 0.9916 + }, + { + "start": 512.28, + "end": 514.18, + "probability": 0.1403 + }, + { + "start": 514.18, + "end": 516.1, + "probability": 0.6952 + }, + { + "start": 516.12, + "end": 517.42, + "probability": 0.8299 + }, + { + "start": 517.74, + "end": 518.97, + "probability": 0.7729 + }, + { + "start": 519.5, + "end": 520.86, + "probability": 0.7846 + }, + { + "start": 521.58, + "end": 525.38, + "probability": 0.892 + }, + { + "start": 526.29, + "end": 529.32, + "probability": 0.6473 + }, + { + "start": 529.84, + "end": 535.28, + "probability": 0.9907 + }, + { + "start": 535.74, + "end": 540.7, + "probability": 0.748 + }, + { + "start": 541.46, + "end": 544.86, + "probability": 0.801 + }, + { + "start": 544.94, + "end": 548.1, + "probability": 0.9398 + }, + { + "start": 548.7, + "end": 550.12, + "probability": 0.7601 + }, + { + "start": 550.84, + "end": 556.06, + "probability": 0.737 + }, + { + "start": 556.16, + "end": 557.39, + "probability": 0.9812 + }, + { + "start": 557.74, + "end": 563.1, + "probability": 0.6698 + }, + { + "start": 564.14, + "end": 566.42, + "probability": 0.9795 + }, + { + "start": 567.44, + "end": 569.28, + "probability": 0.86 + }, + { + "start": 569.92, + "end": 573.86, + "probability": 0.8633 + }, + { + "start": 573.96, + "end": 577.44, + "probability": 0.7944 + }, + { + "start": 578.08, + "end": 578.42, + "probability": 0.3668 + }, + { + "start": 578.84, + "end": 581.96, + "probability": 0.8158 + }, + { + "start": 582.5, + "end": 582.7, + "probability": 0.4872 + }, + { + "start": 582.78, + "end": 585.62, + "probability": 0.9188 + }, + { + "start": 585.72, + "end": 590.38, + "probability": 0.8855 + }, + { + "start": 590.8, + "end": 591.8, + "probability": 0.1847 + }, + { + "start": 591.96, + "end": 593.5, + "probability": 0.9973 + }, + { + "start": 594.24, + "end": 597.24, + "probability": 0.9754 + }, + { + "start": 597.82, + "end": 602.22, + "probability": 0.8887 + }, + { + "start": 602.26, + "end": 604.28, + "probability": 0.7907 + }, + { + "start": 604.38, + "end": 605.64, + "probability": 0.5547 + }, + { + "start": 605.72, + "end": 606.64, + "probability": 0.9322 + }, + { + "start": 607.16, + "end": 607.66, + "probability": 0.9166 + }, + { + "start": 607.98, + "end": 608.24, + "probability": 0.7588 + }, + { + "start": 608.72, + "end": 610.52, + "probability": 0.9651 + }, + { + "start": 610.56, + "end": 613.86, + "probability": 0.8995 + }, + { + "start": 614.44, + "end": 614.56, + "probability": 0.3211 + }, + { + "start": 614.62, + "end": 615.98, + "probability": 0.5221 + }, + { + "start": 616.97, + "end": 621.74, + "probability": 0.8063 + }, + { + "start": 622.06, + "end": 626.64, + "probability": 0.8466 + }, + { + "start": 627.66, + "end": 629.76, + "probability": 0.6472 + }, + { + "start": 630.24, + "end": 636.44, + "probability": 0.9963 + }, + { + "start": 636.92, + "end": 639.1, + "probability": 0.9838 + }, + { + "start": 639.26, + "end": 643.28, + "probability": 0.9786 + }, + { + "start": 643.84, + "end": 645.54, + "probability": 0.7751 + }, + { + "start": 646.16, + "end": 646.54, + "probability": 0.71 + }, + { + "start": 646.74, + "end": 650.28, + "probability": 0.8075 + }, + { + "start": 650.42, + "end": 652.06, + "probability": 0.9354 + }, + { + "start": 652.26, + "end": 653.0, + "probability": 0.9653 + }, + { + "start": 653.18, + "end": 655.28, + "probability": 0.8544 + }, + { + "start": 655.82, + "end": 660.46, + "probability": 0.9247 + }, + { + "start": 660.86, + "end": 668.26, + "probability": 0.919 + }, + { + "start": 668.88, + "end": 673.54, + "probability": 0.9919 + }, + { + "start": 674.16, + "end": 677.1, + "probability": 0.5355 + }, + { + "start": 677.18, + "end": 678.35, + "probability": 0.9596 + }, + { + "start": 678.96, + "end": 679.74, + "probability": 0.9509 + }, + { + "start": 681.44, + "end": 681.88, + "probability": 0.1336 + }, + { + "start": 682.06, + "end": 684.08, + "probability": 0.1396 + }, + { + "start": 685.04, + "end": 685.83, + "probability": 0.481 + }, + { + "start": 686.64, + "end": 687.18, + "probability": 0.3923 + }, + { + "start": 687.48, + "end": 688.22, + "probability": 0.6024 + }, + { + "start": 688.26, + "end": 690.6, + "probability": 0.4202 + }, + { + "start": 691.34, + "end": 697.86, + "probability": 0.2991 + }, + { + "start": 699.52, + "end": 706.92, + "probability": 0.7044 + }, + { + "start": 707.02, + "end": 707.54, + "probability": 0.7265 + }, + { + "start": 707.6, + "end": 710.64, + "probability": 0.8381 + }, + { + "start": 710.64, + "end": 714.88, + "probability": 0.9783 + }, + { + "start": 714.96, + "end": 715.82, + "probability": 0.6699 + }, + { + "start": 716.24, + "end": 719.92, + "probability": 0.9282 + }, + { + "start": 720.08, + "end": 722.0, + "probability": 0.9146 + }, + { + "start": 722.68, + "end": 722.68, + "probability": 0.1592 + }, + { + "start": 723.6, + "end": 726.98, + "probability": 0.029 + }, + { + "start": 727.56, + "end": 728.9, + "probability": 0.0501 + }, + { + "start": 730.34, + "end": 732.4, + "probability": 0.0483 + }, + { + "start": 732.4, + "end": 732.54, + "probability": 0.0792 + }, + { + "start": 732.54, + "end": 732.54, + "probability": 0.0347 + }, + { + "start": 732.54, + "end": 732.54, + "probability": 0.4821 + }, + { + "start": 732.54, + "end": 732.98, + "probability": 0.4768 + }, + { + "start": 733.16, + "end": 734.2, + "probability": 0.4699 + }, + { + "start": 734.74, + "end": 742.14, + "probability": 0.879 + }, + { + "start": 742.7, + "end": 747.68, + "probability": 0.9834 + }, + { + "start": 747.68, + "end": 752.0, + "probability": 0.9917 + }, + { + "start": 752.46, + "end": 759.52, + "probability": 0.9906 + }, + { + "start": 759.86, + "end": 760.42, + "probability": 0.4763 + }, + { + "start": 760.86, + "end": 761.68, + "probability": 0.9706 + }, + { + "start": 762.06, + "end": 763.78, + "probability": 0.9701 + }, + { + "start": 764.04, + "end": 764.44, + "probability": 0.7704 + }, + { + "start": 764.52, + "end": 765.06, + "probability": 0.8389 + }, + { + "start": 765.4, + "end": 770.02, + "probability": 0.9766 + }, + { + "start": 770.2, + "end": 772.08, + "probability": 0.9735 + }, + { + "start": 772.26, + "end": 774.34, + "probability": 0.5222 + }, + { + "start": 774.72, + "end": 775.48, + "probability": 0.1517 + }, + { + "start": 775.84, + "end": 777.24, + "probability": 0.0804 + }, + { + "start": 777.72, + "end": 778.95, + "probability": 0.054 + }, + { + "start": 779.74, + "end": 780.5, + "probability": 0.363 + }, + { + "start": 780.94, + "end": 782.06, + "probability": 0.2597 + }, + { + "start": 782.06, + "end": 782.7, + "probability": 0.2048 + }, + { + "start": 783.02, + "end": 787.52, + "probability": 0.974 + }, + { + "start": 787.72, + "end": 791.82, + "probability": 0.9976 + }, + { + "start": 792.54, + "end": 795.72, + "probability": 0.9181 + }, + { + "start": 796.0, + "end": 801.52, + "probability": 0.9508 + }, + { + "start": 801.76, + "end": 804.44, + "probability": 0.1319 + }, + { + "start": 807.24, + "end": 807.24, + "probability": 0.0836 + }, + { + "start": 807.24, + "end": 807.84, + "probability": 0.5508 + }, + { + "start": 808.06, + "end": 809.88, + "probability": 0.1726 + }, + { + "start": 810.42, + "end": 812.5, + "probability": 0.1123 + }, + { + "start": 812.72, + "end": 813.08, + "probability": 0.2132 + }, + { + "start": 813.66, + "end": 815.66, + "probability": 0.201 + }, + { + "start": 816.7, + "end": 817.04, + "probability": 0.0909 + }, + { + "start": 817.18, + "end": 818.09, + "probability": 0.1494 + }, + { + "start": 821.12, + "end": 821.88, + "probability": 0.1062 + }, + { + "start": 822.12, + "end": 823.44, + "probability": 0.281 + }, + { + "start": 823.76, + "end": 824.1, + "probability": 0.1226 + }, + { + "start": 825.6, + "end": 826.14, + "probability": 0.1547 + }, + { + "start": 826.14, + "end": 826.14, + "probability": 0.1268 + }, + { + "start": 826.14, + "end": 827.06, + "probability": 0.3791 + }, + { + "start": 828.04, + "end": 831.72, + "probability": 0.7495 + }, + { + "start": 831.84, + "end": 832.78, + "probability": 0.585 + }, + { + "start": 833.0, + "end": 834.66, + "probability": 0.5728 + }, + { + "start": 835.4, + "end": 835.72, + "probability": 0.3179 + }, + { + "start": 836.48, + "end": 839.06, + "probability": 0.9951 + }, + { + "start": 839.18, + "end": 844.48, + "probability": 0.9842 + }, + { + "start": 845.22, + "end": 850.38, + "probability": 0.8451 + }, + { + "start": 850.6, + "end": 851.7, + "probability": 0.7768 + }, + { + "start": 852.12, + "end": 854.86, + "probability": 0.9297 + }, + { + "start": 855.56, + "end": 856.86, + "probability": 0.9648 + }, + { + "start": 857.04, + "end": 857.38, + "probability": 0.4784 + }, + { + "start": 857.44, + "end": 858.4, + "probability": 0.7512 + }, + { + "start": 858.46, + "end": 859.96, + "probability": 0.911 + }, + { + "start": 860.02, + "end": 866.62, + "probability": 0.9619 + }, + { + "start": 866.82, + "end": 866.82, + "probability": 0.679 + }, + { + "start": 866.82, + "end": 870.18, + "probability": 0.7642 + }, + { + "start": 870.86, + "end": 874.86, + "probability": 0.8961 + }, + { + "start": 875.22, + "end": 877.12, + "probability": 0.6586 + }, + { + "start": 877.12, + "end": 880.64, + "probability": 0.8741 + }, + { + "start": 881.02, + "end": 881.44, + "probability": 0.703 + }, + { + "start": 882.14, + "end": 884.98, + "probability": 0.877 + }, + { + "start": 885.12, + "end": 887.9, + "probability": 0.9153 + }, + { + "start": 888.52, + "end": 892.7, + "probability": 0.9919 + }, + { + "start": 892.7, + "end": 897.54, + "probability": 0.9943 + }, + { + "start": 898.5, + "end": 901.62, + "probability": 0.7393 + }, + { + "start": 901.94, + "end": 902.12, + "probability": 0.012 + }, + { + "start": 902.7, + "end": 902.7, + "probability": 0.0257 + }, + { + "start": 902.7, + "end": 903.69, + "probability": 0.0116 + }, + { + "start": 904.76, + "end": 906.46, + "probability": 0.574 + }, + { + "start": 906.46, + "end": 908.9, + "probability": 0.655 + }, + { + "start": 909.04, + "end": 915.22, + "probability": 0.6265 + }, + { + "start": 915.46, + "end": 915.72, + "probability": 0.796 + }, + { + "start": 915.9, + "end": 917.34, + "probability": 0.719 + }, + { + "start": 917.44, + "end": 918.56, + "probability": 0.8701 + }, + { + "start": 918.72, + "end": 922.38, + "probability": 0.8411 + }, + { + "start": 923.9, + "end": 926.48, + "probability": 0.9751 + }, + { + "start": 926.74, + "end": 929.92, + "probability": 0.9733 + }, + { + "start": 930.8, + "end": 933.54, + "probability": 0.9966 + }, + { + "start": 934.22, + "end": 936.1, + "probability": 0.9782 + }, + { + "start": 937.4, + "end": 942.58, + "probability": 0.9942 + }, + { + "start": 942.86, + "end": 943.32, + "probability": 0.8978 + }, + { + "start": 943.84, + "end": 946.14, + "probability": 0.9965 + }, + { + "start": 947.44, + "end": 951.84, + "probability": 0.984 + }, + { + "start": 952.38, + "end": 958.52, + "probability": 0.9978 + }, + { + "start": 958.94, + "end": 959.52, + "probability": 0.624 + }, + { + "start": 959.96, + "end": 960.24, + "probability": 0.8761 + }, + { + "start": 961.58, + "end": 965.0, + "probability": 0.7492 + }, + { + "start": 965.0, + "end": 969.38, + "probability": 0.998 + }, + { + "start": 970.26, + "end": 973.56, + "probability": 0.9775 + }, + { + "start": 974.06, + "end": 976.62, + "probability": 0.9651 + }, + { + "start": 977.42, + "end": 982.8, + "probability": 0.9855 + }, + { + "start": 983.52, + "end": 986.24, + "probability": 0.9563 + }, + { + "start": 986.76, + "end": 990.66, + "probability": 0.8088 + }, + { + "start": 990.76, + "end": 995.32, + "probability": 0.9931 + }, + { + "start": 996.4, + "end": 1000.66, + "probability": 0.7527 + }, + { + "start": 1001.82, + "end": 1005.42, + "probability": 0.8928 + }, + { + "start": 1006.16, + "end": 1008.14, + "probability": 0.9904 + }, + { + "start": 1008.18, + "end": 1012.58, + "probability": 0.9905 + }, + { + "start": 1013.06, + "end": 1015.1, + "probability": 0.9965 + }, + { + "start": 1016.18, + "end": 1019.36, + "probability": 0.8976 + }, + { + "start": 1019.36, + "end": 1023.04, + "probability": 0.999 + }, + { + "start": 1023.52, + "end": 1028.2, + "probability": 0.981 + }, + { + "start": 1028.6, + "end": 1031.9, + "probability": 0.9389 + }, + { + "start": 1033.36, + "end": 1035.46, + "probability": 0.9932 + }, + { + "start": 1035.64, + "end": 1035.74, + "probability": 0.5063 + }, + { + "start": 1036.34, + "end": 1038.3, + "probability": 0.7272 + }, + { + "start": 1038.46, + "end": 1042.46, + "probability": 0.9477 + }, + { + "start": 1044.04, + "end": 1045.5, + "probability": 0.7382 + }, + { + "start": 1045.6, + "end": 1049.38, + "probability": 0.9519 + }, + { + "start": 1049.62, + "end": 1052.02, + "probability": 0.9924 + }, + { + "start": 1052.58, + "end": 1056.2, + "probability": 0.9318 + }, + { + "start": 1056.7, + "end": 1058.04, + "probability": 0.7456 + }, + { + "start": 1058.22, + "end": 1059.44, + "probability": 0.8218 + }, + { + "start": 1060.75, + "end": 1063.18, + "probability": 0.7917 + }, + { + "start": 1063.2, + "end": 1063.8, + "probability": 0.3534 + }, + { + "start": 1064.6, + "end": 1064.7, + "probability": 0.7623 + }, + { + "start": 1064.8, + "end": 1065.0, + "probability": 0.8336 + }, + { + "start": 1065.0, + "end": 1065.84, + "probability": 0.9229 + }, + { + "start": 1065.94, + "end": 1069.02, + "probability": 0.5854 + }, + { + "start": 1069.22, + "end": 1070.34, + "probability": 0.6739 + }, + { + "start": 1070.34, + "end": 1070.34, + "probability": 0.6303 + }, + { + "start": 1070.34, + "end": 1071.3, + "probability": 0.8102 + }, + { + "start": 1071.38, + "end": 1076.32, + "probability": 0.7251 + }, + { + "start": 1076.38, + "end": 1077.66, + "probability": 0.7806 + }, + { + "start": 1077.86, + "end": 1078.8, + "probability": 0.5075 + }, + { + "start": 1079.42, + "end": 1081.36, + "probability": 0.9114 + }, + { + "start": 1081.52, + "end": 1084.3, + "probability": 0.8631 + }, + { + "start": 1084.68, + "end": 1085.56, + "probability": 0.8012 + }, + { + "start": 1085.66, + "end": 1086.84, + "probability": 0.9253 + }, + { + "start": 1087.28, + "end": 1088.92, + "probability": 0.971 + }, + { + "start": 1089.06, + "end": 1092.02, + "probability": 0.9099 + }, + { + "start": 1092.54, + "end": 1096.22, + "probability": 0.9906 + }, + { + "start": 1096.27, + "end": 1101.86, + "probability": 0.8099 + }, + { + "start": 1102.0, + "end": 1104.44, + "probability": 0.9895 + }, + { + "start": 1105.14, + "end": 1109.66, + "probability": 0.9941 + }, + { + "start": 1110.14, + "end": 1111.7, + "probability": 0.7878 + }, + { + "start": 1111.78, + "end": 1113.18, + "probability": 0.954 + }, + { + "start": 1113.36, + "end": 1115.02, + "probability": 0.7361 + }, + { + "start": 1115.7, + "end": 1116.02, + "probability": 0.481 + }, + { + "start": 1116.24, + "end": 1116.6, + "probability": 0.3652 + }, + { + "start": 1116.64, + "end": 1118.5, + "probability": 0.8343 + }, + { + "start": 1118.7, + "end": 1119.08, + "probability": 0.8241 + }, + { + "start": 1119.62, + "end": 1122.04, + "probability": 0.7719 + }, + { + "start": 1123.38, + "end": 1124.56, + "probability": 0.0512 + }, + { + "start": 1124.56, + "end": 1124.78, + "probability": 0.0419 + }, + { + "start": 1124.78, + "end": 1124.78, + "probability": 0.0828 + }, + { + "start": 1124.78, + "end": 1126.34, + "probability": 0.1617 + }, + { + "start": 1126.34, + "end": 1127.52, + "probability": 0.3158 + }, + { + "start": 1128.1, + "end": 1128.34, + "probability": 0.5712 + }, + { + "start": 1129.0, + "end": 1130.22, + "probability": 0.6696 + }, + { + "start": 1130.8, + "end": 1131.56, + "probability": 0.7552 + }, + { + "start": 1131.62, + "end": 1133.17, + "probability": 0.9009 + }, + { + "start": 1133.34, + "end": 1133.78, + "probability": 0.7571 + }, + { + "start": 1134.26, + "end": 1136.22, + "probability": 0.9358 + }, + { + "start": 1136.28, + "end": 1136.66, + "probability": 0.9256 + }, + { + "start": 1137.72, + "end": 1140.26, + "probability": 0.8927 + }, + { + "start": 1141.74, + "end": 1145.7, + "probability": 0.9925 + }, + { + "start": 1145.72, + "end": 1149.46, + "probability": 0.9355 + }, + { + "start": 1150.46, + "end": 1151.68, + "probability": 0.9589 + }, + { + "start": 1152.3, + "end": 1152.94, + "probability": 0.9557 + }, + { + "start": 1153.48, + "end": 1157.16, + "probability": 0.8442 + }, + { + "start": 1157.82, + "end": 1159.5, + "probability": 0.9895 + }, + { + "start": 1160.1, + "end": 1161.36, + "probability": 0.959 + }, + { + "start": 1161.98, + "end": 1164.2, + "probability": 0.965 + }, + { + "start": 1164.88, + "end": 1168.4, + "probability": 0.9622 + }, + { + "start": 1168.56, + "end": 1169.76, + "probability": 0.7255 + }, + { + "start": 1169.92, + "end": 1170.72, + "probability": 0.7343 + }, + { + "start": 1170.78, + "end": 1174.12, + "probability": 0.8438 + }, + { + "start": 1174.2, + "end": 1174.88, + "probability": 0.6874 + }, + { + "start": 1175.68, + "end": 1183.42, + "probability": 0.9369 + }, + { + "start": 1183.82, + "end": 1185.58, + "probability": 0.9719 + }, + { + "start": 1185.68, + "end": 1186.5, + "probability": 0.5297 + }, + { + "start": 1186.54, + "end": 1189.5, + "probability": 0.7621 + }, + { + "start": 1190.1, + "end": 1196.38, + "probability": 0.918 + }, + { + "start": 1197.62, + "end": 1200.6, + "probability": 0.4727 + }, + { + "start": 1200.66, + "end": 1201.08, + "probability": 0.9786 + }, + { + "start": 1201.14, + "end": 1201.48, + "probability": 0.7496 + }, + { + "start": 1201.58, + "end": 1203.84, + "probability": 0.7888 + }, + { + "start": 1203.9, + "end": 1205.02, + "probability": 0.8146 + }, + { + "start": 1205.58, + "end": 1208.18, + "probability": 0.9937 + }, + { + "start": 1208.18, + "end": 1210.42, + "probability": 0.9978 + }, + { + "start": 1210.64, + "end": 1214.5, + "probability": 0.7159 + }, + { + "start": 1215.08, + "end": 1220.3, + "probability": 0.9829 + }, + { + "start": 1220.3, + "end": 1222.98, + "probability": 0.9536 + }, + { + "start": 1223.04, + "end": 1225.06, + "probability": 0.8695 + }, + { + "start": 1225.5, + "end": 1228.5, + "probability": 0.9781 + }, + { + "start": 1229.26, + "end": 1235.38, + "probability": 0.6621 + }, + { + "start": 1236.6, + "end": 1243.22, + "probability": 0.9598 + }, + { + "start": 1245.8, + "end": 1247.74, + "probability": 0.9021 + }, + { + "start": 1248.06, + "end": 1250.52, + "probability": 0.92 + }, + { + "start": 1250.58, + "end": 1251.3, + "probability": 0.5795 + }, + { + "start": 1251.46, + "end": 1252.6, + "probability": 0.5805 + }, + { + "start": 1252.72, + "end": 1253.28, + "probability": 0.631 + }, + { + "start": 1253.38, + "end": 1254.16, + "probability": 0.7248 + }, + { + "start": 1254.64, + "end": 1256.56, + "probability": 0.8801 + }, + { + "start": 1256.74, + "end": 1259.26, + "probability": 0.9541 + }, + { + "start": 1259.96, + "end": 1260.14, + "probability": 0.4899 + }, + { + "start": 1260.18, + "end": 1262.26, + "probability": 0.956 + }, + { + "start": 1262.44, + "end": 1266.44, + "probability": 0.9079 + }, + { + "start": 1266.56, + "end": 1267.38, + "probability": 0.9124 + }, + { + "start": 1267.5, + "end": 1268.06, + "probability": 0.8064 + }, + { + "start": 1268.22, + "end": 1270.52, + "probability": 0.9556 + }, + { + "start": 1271.18, + "end": 1272.8, + "probability": 0.9012 + }, + { + "start": 1272.9, + "end": 1274.94, + "probability": 0.5829 + }, + { + "start": 1275.02, + "end": 1278.1, + "probability": 0.9172 + }, + { + "start": 1278.76, + "end": 1282.82, + "probability": 0.8621 + }, + { + "start": 1282.82, + "end": 1288.24, + "probability": 0.9422 + }, + { + "start": 1288.62, + "end": 1289.66, + "probability": 0.4365 + }, + { + "start": 1290.26, + "end": 1291.7, + "probability": 0.7119 + }, + { + "start": 1291.98, + "end": 1293.34, + "probability": 0.9136 + }, + { + "start": 1293.44, + "end": 1295.28, + "probability": 0.9163 + }, + { + "start": 1295.8, + "end": 1298.84, + "probability": 0.9564 + }, + { + "start": 1299.02, + "end": 1299.44, + "probability": 0.7297 + }, + { + "start": 1299.48, + "end": 1302.04, + "probability": 0.6193 + }, + { + "start": 1302.28, + "end": 1304.32, + "probability": 0.5109 + }, + { + "start": 1305.38, + "end": 1307.06, + "probability": 0.6583 + }, + { + "start": 1307.06, + "end": 1308.52, + "probability": 0.4849 + }, + { + "start": 1308.76, + "end": 1309.66, + "probability": 0.4582 + }, + { + "start": 1309.72, + "end": 1313.7, + "probability": 0.7897 + }, + { + "start": 1313.78, + "end": 1316.6, + "probability": 0.9491 + }, + { + "start": 1316.62, + "end": 1317.78, + "probability": 0.7555 + }, + { + "start": 1318.38, + "end": 1322.66, + "probability": 0.9722 + }, + { + "start": 1323.9, + "end": 1327.88, + "probability": 0.9951 + }, + { + "start": 1328.34, + "end": 1333.7, + "probability": 0.9978 + }, + { + "start": 1333.78, + "end": 1334.1, + "probability": 0.5759 + }, + { + "start": 1334.34, + "end": 1335.9, + "probability": 0.7482 + }, + { + "start": 1335.92, + "end": 1337.72, + "probability": 0.5406 + }, + { + "start": 1337.86, + "end": 1340.1, + "probability": 0.9757 + }, + { + "start": 1341.74, + "end": 1345.72, + "probability": 0.0329 + }, + { + "start": 1346.76, + "end": 1347.42, + "probability": 0.8115 + }, + { + "start": 1349.7, + "end": 1350.7, + "probability": 0.94 + }, + { + "start": 1363.6, + "end": 1367.06, + "probability": 0.7211 + }, + { + "start": 1367.72, + "end": 1373.27, + "probability": 0.7915 + }, + { + "start": 1375.0, + "end": 1377.38, + "probability": 0.6574 + }, + { + "start": 1378.64, + "end": 1379.6, + "probability": 0.686 + }, + { + "start": 1380.74, + "end": 1387.2, + "probability": 0.9473 + }, + { + "start": 1388.44, + "end": 1391.1, + "probability": 0.9303 + }, + { + "start": 1392.56, + "end": 1393.52, + "probability": 0.669 + }, + { + "start": 1394.45, + "end": 1397.46, + "probability": 0.021 + }, + { + "start": 1397.78, + "end": 1398.96, + "probability": 0.041 + }, + { + "start": 1399.64, + "end": 1401.82, + "probability": 0.4931 + }, + { + "start": 1401.88, + "end": 1402.89, + "probability": 0.6608 + }, + { + "start": 1404.08, + "end": 1407.92, + "probability": 0.9424 + }, + { + "start": 1408.04, + "end": 1414.78, + "probability": 0.9067 + }, + { + "start": 1415.24, + "end": 1419.2, + "probability": 0.9243 + }, + { + "start": 1419.6, + "end": 1421.38, + "probability": 0.6863 + }, + { + "start": 1421.98, + "end": 1431.92, + "probability": 0.8925 + }, + { + "start": 1432.02, + "end": 1432.94, + "probability": 0.1391 + }, + { + "start": 1433.48, + "end": 1437.26, + "probability": 0.961 + }, + { + "start": 1437.26, + "end": 1441.26, + "probability": 0.9222 + }, + { + "start": 1442.0, + "end": 1444.16, + "probability": 0.886 + }, + { + "start": 1446.66, + "end": 1453.82, + "probability": 0.9648 + }, + { + "start": 1453.94, + "end": 1457.44, + "probability": 0.8511 + }, + { + "start": 1457.86, + "end": 1459.44, + "probability": 0.8723 + }, + { + "start": 1460.02, + "end": 1463.22, + "probability": 0.9388 + }, + { + "start": 1463.22, + "end": 1466.86, + "probability": 0.7736 + }, + { + "start": 1467.56, + "end": 1469.86, + "probability": 0.651 + }, + { + "start": 1469.86, + "end": 1471.96, + "probability": 0.9466 + }, + { + "start": 1472.7, + "end": 1476.36, + "probability": 0.9025 + }, + { + "start": 1476.36, + "end": 1478.86, + "probability": 0.9935 + }, + { + "start": 1479.46, + "end": 1481.34, + "probability": 0.6515 + }, + { + "start": 1482.6, + "end": 1485.9, + "probability": 0.9274 + }, + { + "start": 1486.2, + "end": 1487.66, + "probability": 0.2674 + }, + { + "start": 1487.84, + "end": 1488.76, + "probability": 0.3549 + }, + { + "start": 1488.86, + "end": 1492.96, + "probability": 0.6598 + }, + { + "start": 1493.14, + "end": 1496.32, + "probability": 0.7772 + }, + { + "start": 1496.32, + "end": 1496.32, + "probability": 0.0806 + }, + { + "start": 1496.32, + "end": 1496.32, + "probability": 0.0089 + }, + { + "start": 1496.32, + "end": 1497.98, + "probability": 0.7429 + }, + { + "start": 1499.06, + "end": 1499.6, + "probability": 0.2653 + }, + { + "start": 1499.64, + "end": 1501.1, + "probability": 0.1709 + }, + { + "start": 1501.1, + "end": 1501.32, + "probability": 0.2774 + }, + { + "start": 1501.32, + "end": 1502.04, + "probability": 0.7559 + }, + { + "start": 1502.14, + "end": 1503.36, + "probability": 0.8717 + }, + { + "start": 1503.56, + "end": 1505.54, + "probability": 0.9639 + }, + { + "start": 1505.58, + "end": 1507.3, + "probability": 0.9487 + }, + { + "start": 1507.84, + "end": 1508.58, + "probability": 0.4353 + }, + { + "start": 1508.66, + "end": 1510.0, + "probability": 0.887 + }, + { + "start": 1510.9, + "end": 1511.66, + "probability": 0.7737 + }, + { + "start": 1512.28, + "end": 1515.58, + "probability": 0.9321 + }, + { + "start": 1515.84, + "end": 1517.54, + "probability": 0.8133 + }, + { + "start": 1518.9, + "end": 1522.74, + "probability": 0.9917 + }, + { + "start": 1522.84, + "end": 1524.38, + "probability": 0.4992 + }, + { + "start": 1525.36, + "end": 1529.96, + "probability": 0.9218 + }, + { + "start": 1531.18, + "end": 1533.42, + "probability": 0.9978 + }, + { + "start": 1533.66, + "end": 1537.1, + "probability": 0.9841 + }, + { + "start": 1538.08, + "end": 1543.16, + "probability": 0.9356 + }, + { + "start": 1545.12, + "end": 1547.34, + "probability": 0.8029 + }, + { + "start": 1548.22, + "end": 1549.74, + "probability": 0.994 + }, + { + "start": 1550.84, + "end": 1557.02, + "probability": 0.7474 + }, + { + "start": 1558.72, + "end": 1561.98, + "probability": 0.9473 + }, + { + "start": 1562.7, + "end": 1565.8, + "probability": 0.9875 + }, + { + "start": 1568.4, + "end": 1573.18, + "probability": 0.9478 + }, + { + "start": 1573.3, + "end": 1578.4, + "probability": 0.9742 + }, + { + "start": 1578.56, + "end": 1584.34, + "probability": 0.9839 + }, + { + "start": 1586.0, + "end": 1590.1, + "probability": 0.0295 + }, + { + "start": 1593.0, + "end": 1593.28, + "probability": 0.0246 + }, + { + "start": 1593.28, + "end": 1593.28, + "probability": 0.0279 + }, + { + "start": 1593.28, + "end": 1593.64, + "probability": 0.0657 + }, + { + "start": 1593.64, + "end": 1597.2, + "probability": 0.9766 + }, + { + "start": 1598.82, + "end": 1601.04, + "probability": 0.8768 + }, + { + "start": 1601.2, + "end": 1603.23, + "probability": 0.8503 + }, + { + "start": 1605.66, + "end": 1609.12, + "probability": 0.9919 + }, + { + "start": 1610.6, + "end": 1611.64, + "probability": 0.8624 + }, + { + "start": 1611.9, + "end": 1614.14, + "probability": 0.9619 + }, + { + "start": 1615.08, + "end": 1619.32, + "probability": 0.9832 + }, + { + "start": 1620.26, + "end": 1626.6, + "probability": 0.9561 + }, + { + "start": 1626.72, + "end": 1629.2, + "probability": 0.8927 + }, + { + "start": 1629.3, + "end": 1630.54, + "probability": 0.9976 + }, + { + "start": 1631.18, + "end": 1633.46, + "probability": 0.9982 + }, + { + "start": 1634.54, + "end": 1639.42, + "probability": 0.9725 + }, + { + "start": 1640.5, + "end": 1641.98, + "probability": 0.7312 + }, + { + "start": 1642.36, + "end": 1643.97, + "probability": 0.9864 + }, + { + "start": 1644.2, + "end": 1649.84, + "probability": 0.9959 + }, + { + "start": 1650.16, + "end": 1651.8, + "probability": 0.7979 + }, + { + "start": 1651.96, + "end": 1655.08, + "probability": 0.994 + }, + { + "start": 1655.97, + "end": 1661.02, + "probability": 0.9661 + }, + { + "start": 1661.16, + "end": 1664.42, + "probability": 0.7621 + }, + { + "start": 1664.68, + "end": 1671.16, + "probability": 0.9373 + }, + { + "start": 1671.16, + "end": 1674.6, + "probability": 0.8712 + }, + { + "start": 1674.86, + "end": 1678.96, + "probability": 0.9893 + }, + { + "start": 1679.12, + "end": 1679.12, + "probability": 0.0751 + }, + { + "start": 1679.12, + "end": 1679.12, + "probability": 0.291 + }, + { + "start": 1679.12, + "end": 1681.78, + "probability": 0.9824 + }, + { + "start": 1682.06, + "end": 1688.74, + "probability": 0.9863 + }, + { + "start": 1688.9, + "end": 1690.86, + "probability": 0.8223 + }, + { + "start": 1691.48, + "end": 1693.06, + "probability": 0.9447 + }, + { + "start": 1693.58, + "end": 1695.64, + "probability": 0.9537 + }, + { + "start": 1696.2, + "end": 1696.64, + "probability": 0.7832 + }, + { + "start": 1697.4, + "end": 1700.46, + "probability": 0.7634 + }, + { + "start": 1700.54, + "end": 1704.26, + "probability": 0.9899 + }, + { + "start": 1705.34, + "end": 1708.52, + "probability": 0.9966 + }, + { + "start": 1708.6, + "end": 1709.82, + "probability": 0.9749 + }, + { + "start": 1710.86, + "end": 1712.1, + "probability": 0.8109 + }, + { + "start": 1713.6, + "end": 1714.54, + "probability": 0.6926 + }, + { + "start": 1714.54, + "end": 1718.64, + "probability": 0.8391 + }, + { + "start": 1719.02, + "end": 1720.8, + "probability": 0.9309 + }, + { + "start": 1721.3, + "end": 1722.24, + "probability": 0.5673 + }, + { + "start": 1722.44, + "end": 1725.98, + "probability": 0.9346 + }, + { + "start": 1725.98, + "end": 1730.9, + "probability": 0.9963 + }, + { + "start": 1732.0, + "end": 1732.58, + "probability": 0.5279 + }, + { + "start": 1732.74, + "end": 1735.54, + "probability": 0.9365 + }, + { + "start": 1742.06, + "end": 1744.28, + "probability": 0.7117 + }, + { + "start": 1745.88, + "end": 1751.3, + "probability": 0.9733 + }, + { + "start": 1751.88, + "end": 1755.86, + "probability": 0.8655 + }, + { + "start": 1755.86, + "end": 1758.82, + "probability": 0.9877 + }, + { + "start": 1759.46, + "end": 1761.44, + "probability": 0.9188 + }, + { + "start": 1762.3, + "end": 1763.3, + "probability": 0.6449 + }, + { + "start": 1763.86, + "end": 1766.62, + "probability": 0.9348 + }, + { + "start": 1767.24, + "end": 1767.52, + "probability": 0.8989 + }, + { + "start": 1768.42, + "end": 1772.62, + "probability": 0.7917 + }, + { + "start": 1773.5, + "end": 1775.12, + "probability": 0.7418 + }, + { + "start": 1775.2, + "end": 1776.18, + "probability": 0.7322 + }, + { + "start": 1777.48, + "end": 1778.78, + "probability": 0.6766 + }, + { + "start": 1779.0, + "end": 1781.04, + "probability": 0.8347 + }, + { + "start": 1781.34, + "end": 1782.64, + "probability": 0.7035 + }, + { + "start": 1783.7, + "end": 1788.44, + "probability": 0.9596 + }, + { + "start": 1789.82, + "end": 1794.8, + "probability": 0.9823 + }, + { + "start": 1795.92, + "end": 1797.86, + "probability": 0.9959 + }, + { + "start": 1798.68, + "end": 1801.56, + "probability": 0.9808 + }, + { + "start": 1806.94, + "end": 1809.06, + "probability": 0.9985 + }, + { + "start": 1809.22, + "end": 1809.94, + "probability": 0.7207 + }, + { + "start": 1810.0, + "end": 1816.24, + "probability": 0.945 + }, + { + "start": 1817.76, + "end": 1820.06, + "probability": 0.9589 + }, + { + "start": 1820.86, + "end": 1822.58, + "probability": 0.7435 + }, + { + "start": 1825.04, + "end": 1825.96, + "probability": 0.7737 + }, + { + "start": 1827.32, + "end": 1831.0, + "probability": 0.9916 + }, + { + "start": 1831.82, + "end": 1836.0, + "probability": 0.4165 + }, + { + "start": 1837.14, + "end": 1839.33, + "probability": 0.6772 + }, + { + "start": 1839.64, + "end": 1843.52, + "probability": 0.8356 + }, + { + "start": 1843.6, + "end": 1847.9, + "probability": 0.9589 + }, + { + "start": 1849.14, + "end": 1852.32, + "probability": 0.9511 + }, + { + "start": 1853.8, + "end": 1855.66, + "probability": 0.979 + }, + { + "start": 1856.08, + "end": 1858.92, + "probability": 0.9938 + }, + { + "start": 1858.92, + "end": 1859.02, + "probability": 0.7031 + }, + { + "start": 1860.64, + "end": 1862.78, + "probability": 0.6292 + }, + { + "start": 1863.98, + "end": 1865.62, + "probability": 0.2872 + }, + { + "start": 1865.62, + "end": 1865.78, + "probability": 0.1389 + }, + { + "start": 1867.24, + "end": 1867.8, + "probability": 0.5471 + }, + { + "start": 1867.92, + "end": 1868.54, + "probability": 0.8453 + }, + { + "start": 1868.7, + "end": 1871.58, + "probability": 0.9495 + }, + { + "start": 1871.68, + "end": 1872.33, + "probability": 0.7984 + }, + { + "start": 1873.14, + "end": 1873.66, + "probability": 0.832 + }, + { + "start": 1874.3, + "end": 1877.82, + "probability": 0.8204 + }, + { + "start": 1877.88, + "end": 1880.84, + "probability": 0.9386 + }, + { + "start": 1880.94, + "end": 1881.68, + "probability": 0.4868 + }, + { + "start": 1881.84, + "end": 1881.98, + "probability": 0.4462 + }, + { + "start": 1882.1, + "end": 1886.14, + "probability": 0.9802 + }, + { + "start": 1886.4, + "end": 1888.42, + "probability": 0.7336 + }, + { + "start": 1889.2, + "end": 1891.98, + "probability": 0.2787 + }, + { + "start": 1891.98, + "end": 1895.78, + "probability": 0.9832 + }, + { + "start": 1896.5, + "end": 1897.92, + "probability": 0.6355 + }, + { + "start": 1898.86, + "end": 1899.44, + "probability": 0.778 + }, + { + "start": 1899.94, + "end": 1902.56, + "probability": 0.9291 + }, + { + "start": 1903.1, + "end": 1905.64, + "probability": 0.9875 + }, + { + "start": 1905.66, + "end": 1906.92, + "probability": 0.6473 + }, + { + "start": 1907.28, + "end": 1910.8, + "probability": 0.9266 + }, + { + "start": 1911.1, + "end": 1912.66, + "probability": 0.875 + }, + { + "start": 1913.58, + "end": 1919.36, + "probability": 0.9804 + }, + { + "start": 1920.0, + "end": 1922.74, + "probability": 0.9884 + }, + { + "start": 1922.96, + "end": 1924.1, + "probability": 0.9268 + }, + { + "start": 1924.92, + "end": 1925.96, + "probability": 0.8572 + }, + { + "start": 1926.56, + "end": 1928.9, + "probability": 0.9475 + }, + { + "start": 1929.06, + "end": 1931.48, + "probability": 0.994 + }, + { + "start": 1932.22, + "end": 1935.98, + "probability": 0.9972 + }, + { + "start": 1936.8, + "end": 1938.06, + "probability": 0.6142 + }, + { + "start": 1938.14, + "end": 1940.04, + "probability": 0.8721 + }, + { + "start": 1947.24, + "end": 1947.66, + "probability": 0.6752 + }, + { + "start": 1948.4, + "end": 1955.18, + "probability": 0.95 + }, + { + "start": 1955.36, + "end": 1957.98, + "probability": 0.646 + }, + { + "start": 1959.42, + "end": 1961.22, + "probability": 0.8208 + }, + { + "start": 1961.24, + "end": 1963.78, + "probability": 0.915 + }, + { + "start": 1964.54, + "end": 1968.32, + "probability": 0.9814 + }, + { + "start": 1968.86, + "end": 1969.58, + "probability": 0.6337 + }, + { + "start": 1969.64, + "end": 1970.36, + "probability": 0.8821 + }, + { + "start": 1970.42, + "end": 1972.16, + "probability": 0.9167 + }, + { + "start": 1972.2, + "end": 1972.86, + "probability": 0.6396 + }, + { + "start": 1973.42, + "end": 1977.78, + "probability": 0.9027 + }, + { + "start": 1978.28, + "end": 1980.31, + "probability": 0.6875 + }, + { + "start": 1980.68, + "end": 1982.54, + "probability": 0.5501 + }, + { + "start": 1982.84, + "end": 1984.44, + "probability": 0.8563 + }, + { + "start": 1984.48, + "end": 1984.66, + "probability": 0.738 + }, + { + "start": 1985.06, + "end": 1990.6, + "probability": 0.9192 + }, + { + "start": 1991.44, + "end": 1996.5, + "probability": 0.9854 + }, + { + "start": 1996.64, + "end": 2000.18, + "probability": 0.7748 + }, + { + "start": 2000.4, + "end": 2001.2, + "probability": 0.7481 + }, + { + "start": 2001.52, + "end": 2006.2, + "probability": 0.776 + }, + { + "start": 2006.24, + "end": 2007.56, + "probability": 0.3884 + }, + { + "start": 2007.94, + "end": 2013.04, + "probability": 0.8449 + }, + { + "start": 2014.49, + "end": 2017.46, + "probability": 0.4904 + }, + { + "start": 2018.88, + "end": 2027.16, + "probability": 0.9416 + }, + { + "start": 2027.26, + "end": 2028.38, + "probability": 0.7688 + }, + { + "start": 2028.74, + "end": 2030.74, + "probability": 0.8947 + }, + { + "start": 2031.3, + "end": 2034.26, + "probability": 0.8914 + }, + { + "start": 2034.84, + "end": 2036.86, + "probability": 0.8472 + }, + { + "start": 2037.48, + "end": 2041.42, + "probability": 0.876 + }, + { + "start": 2041.74, + "end": 2046.72, + "probability": 0.9671 + }, + { + "start": 2047.34, + "end": 2051.3, + "probability": 0.7984 + }, + { + "start": 2051.94, + "end": 2053.64, + "probability": 0.6831 + }, + { + "start": 2053.8, + "end": 2056.28, + "probability": 0.931 + }, + { + "start": 2056.68, + "end": 2057.56, + "probability": 0.9806 + }, + { + "start": 2057.88, + "end": 2060.26, + "probability": 0.518 + }, + { + "start": 2060.8, + "end": 2061.66, + "probability": 0.8311 + }, + { + "start": 2061.74, + "end": 2062.06, + "probability": 0.8214 + }, + { + "start": 2062.24, + "end": 2062.54, + "probability": 0.8577 + }, + { + "start": 2062.6, + "end": 2065.8, + "probability": 0.9813 + }, + { + "start": 2065.8, + "end": 2069.3, + "probability": 0.9985 + }, + { + "start": 2069.46, + "end": 2070.42, + "probability": 0.998 + }, + { + "start": 2070.64, + "end": 2071.14, + "probability": 0.8047 + }, + { + "start": 2071.3, + "end": 2073.18, + "probability": 0.7738 + }, + { + "start": 2073.26, + "end": 2073.68, + "probability": 0.1898 + }, + { + "start": 2073.9, + "end": 2074.82, + "probability": 0.4319 + }, + { + "start": 2074.86, + "end": 2075.02, + "probability": 0.751 + }, + { + "start": 2075.18, + "end": 2075.28, + "probability": 0.5802 + }, + { + "start": 2075.28, + "end": 2076.34, + "probability": 0.8662 + }, + { + "start": 2076.56, + "end": 2078.28, + "probability": 0.7078 + }, + { + "start": 2080.06, + "end": 2083.76, + "probability": 0.6537 + }, + { + "start": 2084.36, + "end": 2087.2, + "probability": 0.7652 + }, + { + "start": 2087.22, + "end": 2090.92, + "probability": 0.6592 + }, + { + "start": 2092.06, + "end": 2093.14, + "probability": 0.644 + }, + { + "start": 2093.26, + "end": 2094.09, + "probability": 0.942 + }, + { + "start": 2095.24, + "end": 2096.42, + "probability": 0.3691 + }, + { + "start": 2096.87, + "end": 2100.7, + "probability": 0.8342 + }, + { + "start": 2101.64, + "end": 2104.4, + "probability": 0.7086 + }, + { + "start": 2104.52, + "end": 2104.94, + "probability": 0.4517 + }, + { + "start": 2105.06, + "end": 2105.8, + "probability": 0.5925 + }, + { + "start": 2105.8, + "end": 2106.62, + "probability": 0.193 + }, + { + "start": 2106.8, + "end": 2108.42, + "probability": 0.5286 + }, + { + "start": 2108.46, + "end": 2110.14, + "probability": 0.9445 + }, + { + "start": 2110.26, + "end": 2110.82, + "probability": 0.6627 + }, + { + "start": 2111.58, + "end": 2115.04, + "probability": 0.8979 + }, + { + "start": 2115.48, + "end": 2115.98, + "probability": 0.7178 + }, + { + "start": 2116.04, + "end": 2118.64, + "probability": 0.8513 + }, + { + "start": 2118.64, + "end": 2122.04, + "probability": 0.7712 + }, + { + "start": 2122.82, + "end": 2127.05, + "probability": 0.939 + }, + { + "start": 2127.36, + "end": 2128.1, + "probability": 0.6631 + }, + { + "start": 2128.18, + "end": 2133.78, + "probability": 0.759 + }, + { + "start": 2134.34, + "end": 2136.64, + "probability": 0.9048 + }, + { + "start": 2137.76, + "end": 2138.96, + "probability": 0.9191 + }, + { + "start": 2140.41, + "end": 2144.22, + "probability": 0.7891 + }, + { + "start": 2144.48, + "end": 2145.14, + "probability": 0.0527 + }, + { + "start": 2145.14, + "end": 2145.14, + "probability": 0.1181 + }, + { + "start": 2145.2, + "end": 2148.36, + "probability": 0.7064 + }, + { + "start": 2149.22, + "end": 2151.9, + "probability": 0.9834 + }, + { + "start": 2153.16, + "end": 2154.16, + "probability": 0.8491 + }, + { + "start": 2156.04, + "end": 2160.16, + "probability": 0.7158 + }, + { + "start": 2160.92, + "end": 2166.04, + "probability": 0.9894 + }, + { + "start": 2166.04, + "end": 2169.5, + "probability": 0.8686 + }, + { + "start": 2170.46, + "end": 2178.72, + "probability": 0.9199 + }, + { + "start": 2179.46, + "end": 2179.88, + "probability": 0.6523 + }, + { + "start": 2179.9, + "end": 2183.36, + "probability": 0.9303 + }, + { + "start": 2183.44, + "end": 2185.29, + "probability": 0.7726 + }, + { + "start": 2186.06, + "end": 2188.1, + "probability": 0.8568 + }, + { + "start": 2188.76, + "end": 2192.72, + "probability": 0.146 + }, + { + "start": 2193.58, + "end": 2195.18, + "probability": 0.0585 + }, + { + "start": 2195.18, + "end": 2195.18, + "probability": 0.1524 + }, + { + "start": 2195.18, + "end": 2195.18, + "probability": 0.0818 + }, + { + "start": 2195.18, + "end": 2195.78, + "probability": 0.3044 + }, + { + "start": 2196.02, + "end": 2196.06, + "probability": 0.1312 + }, + { + "start": 2196.06, + "end": 2197.16, + "probability": 0.7838 + }, + { + "start": 2199.7, + "end": 2204.2, + "probability": 0.7361 + }, + { + "start": 2205.06, + "end": 2207.3, + "probability": 0.6226 + }, + { + "start": 2207.46, + "end": 2208.36, + "probability": 0.5993 + }, + { + "start": 2209.18, + "end": 2212.54, + "probability": 0.9931 + }, + { + "start": 2213.04, + "end": 2216.18, + "probability": 0.8167 + }, + { + "start": 2217.36, + "end": 2222.3, + "probability": 0.9648 + }, + { + "start": 2223.04, + "end": 2230.12, + "probability": 0.9958 + }, + { + "start": 2230.72, + "end": 2235.94, + "probability": 0.8751 + }, + { + "start": 2236.7, + "end": 2238.36, + "probability": 0.8566 + }, + { + "start": 2239.94, + "end": 2241.95, + "probability": 0.9001 + }, + { + "start": 2243.5, + "end": 2249.5, + "probability": 0.9919 + }, + { + "start": 2250.36, + "end": 2255.74, + "probability": 0.833 + }, + { + "start": 2256.38, + "end": 2259.88, + "probability": 0.7827 + }, + { + "start": 2259.88, + "end": 2262.22, + "probability": 0.9792 + }, + { + "start": 2263.04, + "end": 2266.46, + "probability": 0.9922 + }, + { + "start": 2269.3, + "end": 2272.72, + "probability": 0.8853 + }, + { + "start": 2273.26, + "end": 2276.52, + "probability": 0.8483 + }, + { + "start": 2277.59, + "end": 2279.88, + "probability": 0.8488 + }, + { + "start": 2280.74, + "end": 2281.4, + "probability": 0.9943 + }, + { + "start": 2282.28, + "end": 2283.44, + "probability": 0.9735 + }, + { + "start": 2284.04, + "end": 2285.8, + "probability": 0.9968 + }, + { + "start": 2287.0, + "end": 2288.3, + "probability": 0.7368 + }, + { + "start": 2288.98, + "end": 2291.46, + "probability": 0.9979 + }, + { + "start": 2292.47, + "end": 2295.97, + "probability": 0.9219 + }, + { + "start": 2297.0, + "end": 2299.32, + "probability": 0.9392 + }, + { + "start": 2299.42, + "end": 2300.82, + "probability": 0.9941 + }, + { + "start": 2301.72, + "end": 2304.02, + "probability": 0.986 + }, + { + "start": 2304.52, + "end": 2305.68, + "probability": 0.8435 + }, + { + "start": 2306.36, + "end": 2308.1, + "probability": 0.9162 + }, + { + "start": 2308.78, + "end": 2314.44, + "probability": 0.9816 + }, + { + "start": 2315.06, + "end": 2316.44, + "probability": 0.9614 + }, + { + "start": 2317.22, + "end": 2317.92, + "probability": 0.5893 + }, + { + "start": 2319.84, + "end": 2321.98, + "probability": 0.9908 + }, + { + "start": 2322.52, + "end": 2326.14, + "probability": 0.9078 + }, + { + "start": 2326.94, + "end": 2330.58, + "probability": 0.9131 + }, + { + "start": 2331.24, + "end": 2333.4, + "probability": 0.9905 + }, + { + "start": 2335.0, + "end": 2337.84, + "probability": 0.6493 + }, + { + "start": 2338.54, + "end": 2342.22, + "probability": 0.9021 + }, + { + "start": 2343.18, + "end": 2344.9, + "probability": 0.8747 + }, + { + "start": 2345.62, + "end": 2349.52, + "probability": 0.9801 + }, + { + "start": 2350.32, + "end": 2351.46, + "probability": 0.9961 + }, + { + "start": 2351.56, + "end": 2353.7, + "probability": 0.6171 + }, + { + "start": 2354.96, + "end": 2355.9, + "probability": 0.7505 + }, + { + "start": 2356.28, + "end": 2358.52, + "probability": 0.9734 + }, + { + "start": 2360.18, + "end": 2361.94, + "probability": 0.9716 + }, + { + "start": 2363.34, + "end": 2364.98, + "probability": 0.9114 + }, + { + "start": 2365.42, + "end": 2368.36, + "probability": 0.9969 + }, + { + "start": 2369.04, + "end": 2370.12, + "probability": 0.7384 + }, + { + "start": 2371.12, + "end": 2373.24, + "probability": 0.8432 + }, + { + "start": 2374.02, + "end": 2377.08, + "probability": 0.9234 + }, + { + "start": 2377.62, + "end": 2378.32, + "probability": 0.819 + }, + { + "start": 2379.18, + "end": 2381.28, + "probability": 0.9551 + }, + { + "start": 2381.7, + "end": 2383.41, + "probability": 0.8837 + }, + { + "start": 2384.24, + "end": 2388.24, + "probability": 0.9474 + }, + { + "start": 2388.44, + "end": 2392.4, + "probability": 0.9683 + }, + { + "start": 2392.96, + "end": 2394.78, + "probability": 0.848 + }, + { + "start": 2395.4, + "end": 2397.18, + "probability": 0.9849 + }, + { + "start": 2397.98, + "end": 2401.3, + "probability": 0.9701 + }, + { + "start": 2402.42, + "end": 2406.76, + "probability": 0.9459 + }, + { + "start": 2407.46, + "end": 2411.46, + "probability": 0.7254 + }, + { + "start": 2411.46, + "end": 2415.28, + "probability": 0.9887 + }, + { + "start": 2415.92, + "end": 2423.64, + "probability": 0.9905 + }, + { + "start": 2424.26, + "end": 2425.66, + "probability": 0.9191 + }, + { + "start": 2426.3, + "end": 2427.08, + "probability": 0.8053 + }, + { + "start": 2427.26, + "end": 2432.4, + "probability": 0.9755 + }, + { + "start": 2433.34, + "end": 2439.46, + "probability": 0.9873 + }, + { + "start": 2440.32, + "end": 2442.74, + "probability": 0.9969 + }, + { + "start": 2443.54, + "end": 2445.82, + "probability": 0.8869 + }, + { + "start": 2446.3, + "end": 2448.2, + "probability": 0.877 + }, + { + "start": 2449.36, + "end": 2455.18, + "probability": 0.9956 + }, + { + "start": 2455.76, + "end": 2457.94, + "probability": 0.9987 + }, + { + "start": 2458.52, + "end": 2459.62, + "probability": 0.6361 + }, + { + "start": 2460.34, + "end": 2463.42, + "probability": 0.5207 + }, + { + "start": 2463.52, + "end": 2464.44, + "probability": 0.5518 + }, + { + "start": 2465.26, + "end": 2467.98, + "probability": 0.9071 + }, + { + "start": 2468.66, + "end": 2471.34, + "probability": 0.4752 + }, + { + "start": 2472.78, + "end": 2475.44, + "probability": 0.8847 + }, + { + "start": 2476.16, + "end": 2477.74, + "probability": 0.5314 + }, + { + "start": 2478.26, + "end": 2479.46, + "probability": 0.6252 + }, + { + "start": 2479.96, + "end": 2482.84, + "probability": 0.6617 + }, + { + "start": 2483.5, + "end": 2485.3, + "probability": 0.9486 + }, + { + "start": 2486.58, + "end": 2489.24, + "probability": 0.8208 + }, + { + "start": 2490.28, + "end": 2491.38, + "probability": 0.95 + }, + { + "start": 2491.44, + "end": 2495.1, + "probability": 0.9908 + }, + { + "start": 2495.1, + "end": 2497.62, + "probability": 0.9797 + }, + { + "start": 2498.36, + "end": 2498.78, + "probability": 0.8988 + }, + { + "start": 2499.36, + "end": 2501.38, + "probability": 0.9748 + }, + { + "start": 2501.46, + "end": 2502.72, + "probability": 0.9927 + }, + { + "start": 2503.24, + "end": 2505.24, + "probability": 0.9963 + }, + { + "start": 2505.68, + "end": 2506.96, + "probability": 0.9673 + }, + { + "start": 2508.06, + "end": 2509.82, + "probability": 0.9522 + }, + { + "start": 2509.96, + "end": 2511.5, + "probability": 0.978 + }, + { + "start": 2511.92, + "end": 2514.4, + "probability": 0.9888 + }, + { + "start": 2515.26, + "end": 2519.48, + "probability": 0.8792 + }, + { + "start": 2519.9, + "end": 2521.66, + "probability": 0.7288 + }, + { + "start": 2522.92, + "end": 2528.51, + "probability": 0.8341 + }, + { + "start": 2529.22, + "end": 2531.56, + "probability": 0.991 + }, + { + "start": 2532.36, + "end": 2535.08, + "probability": 0.965 + }, + { + "start": 2535.74, + "end": 2537.42, + "probability": 0.9919 + }, + { + "start": 2538.3, + "end": 2538.42, + "probability": 0.1548 + }, + { + "start": 2538.42, + "end": 2543.24, + "probability": 0.814 + }, + { + "start": 2544.54, + "end": 2546.78, + "probability": 0.7158 + }, + { + "start": 2547.62, + "end": 2550.14, + "probability": 0.8378 + }, + { + "start": 2550.82, + "end": 2551.94, + "probability": 0.9678 + }, + { + "start": 2552.4, + "end": 2553.31, + "probability": 0.9961 + }, + { + "start": 2554.76, + "end": 2556.94, + "probability": 0.9329 + }, + { + "start": 2557.08, + "end": 2560.62, + "probability": 0.727 + }, + { + "start": 2561.22, + "end": 2564.1, + "probability": 0.9919 + }, + { + "start": 2564.9, + "end": 2569.02, + "probability": 0.9426 + }, + { + "start": 2569.84, + "end": 2571.5, + "probability": 0.7964 + }, + { + "start": 2573.16, + "end": 2575.86, + "probability": 0.9457 + }, + { + "start": 2576.58, + "end": 2577.54, + "probability": 0.8535 + }, + { + "start": 2578.18, + "end": 2579.26, + "probability": 0.9228 + }, + { + "start": 2580.0, + "end": 2582.8, + "probability": 0.9902 + }, + { + "start": 2583.78, + "end": 2586.62, + "probability": 0.9536 + }, + { + "start": 2587.62, + "end": 2590.26, + "probability": 0.9779 + }, + { + "start": 2591.4, + "end": 2595.3, + "probability": 0.8482 + }, + { + "start": 2595.88, + "end": 2598.48, + "probability": 0.881 + }, + { + "start": 2599.22, + "end": 2600.12, + "probability": 0.9469 + }, + { + "start": 2600.96, + "end": 2601.48, + "probability": 0.9494 + }, + { + "start": 2601.6, + "end": 2602.66, + "probability": 0.7699 + }, + { + "start": 2602.98, + "end": 2604.6, + "probability": 0.9449 + }, + { + "start": 2606.98, + "end": 2609.6, + "probability": 0.781 + }, + { + "start": 2610.48, + "end": 2612.5, + "probability": 0.9043 + }, + { + "start": 2613.14, + "end": 2616.88, + "probability": 0.9341 + }, + { + "start": 2617.84, + "end": 2620.16, + "probability": 0.848 + }, + { + "start": 2620.34, + "end": 2621.17, + "probability": 0.9858 + }, + { + "start": 2622.64, + "end": 2624.36, + "probability": 0.9846 + }, + { + "start": 2625.48, + "end": 2627.38, + "probability": 0.9795 + }, + { + "start": 2628.16, + "end": 2630.86, + "probability": 0.822 + }, + { + "start": 2632.16, + "end": 2635.62, + "probability": 0.9375 + }, + { + "start": 2635.8, + "end": 2635.8, + "probability": 0.0189 + }, + { + "start": 2635.8, + "end": 2638.5, + "probability": 0.7443 + }, + { + "start": 2639.24, + "end": 2639.98, + "probability": 0.9395 + }, + { + "start": 2640.24, + "end": 2641.3, + "probability": 0.956 + }, + { + "start": 2641.42, + "end": 2642.89, + "probability": 0.9953 + }, + { + "start": 2643.96, + "end": 2645.68, + "probability": 0.9595 + }, + { + "start": 2646.3, + "end": 2648.66, + "probability": 0.7863 + }, + { + "start": 2649.82, + "end": 2652.16, + "probability": 0.5383 + }, + { + "start": 2653.0, + "end": 2655.56, + "probability": 0.9819 + }, + { + "start": 2656.36, + "end": 2657.38, + "probability": 0.8534 + }, + { + "start": 2658.34, + "end": 2660.04, + "probability": 0.9106 + }, + { + "start": 2660.84, + "end": 2664.58, + "probability": 0.7202 + }, + { + "start": 2665.68, + "end": 2670.06, + "probability": 0.9806 + }, + { + "start": 2670.76, + "end": 2674.28, + "probability": 0.8547 + }, + { + "start": 2675.46, + "end": 2676.16, + "probability": 0.8162 + }, + { + "start": 2676.76, + "end": 2680.12, + "probability": 0.926 + }, + { + "start": 2680.84, + "end": 2683.16, + "probability": 0.9546 + }, + { + "start": 2684.0, + "end": 2685.32, + "probability": 0.8383 + }, + { + "start": 2685.94, + "end": 2690.46, + "probability": 0.9933 + }, + { + "start": 2691.22, + "end": 2694.08, + "probability": 0.9355 + }, + { + "start": 2694.92, + "end": 2696.88, + "probability": 0.7822 + }, + { + "start": 2697.56, + "end": 2699.7, + "probability": 0.9827 + }, + { + "start": 2700.3, + "end": 2700.85, + "probability": 0.7847 + }, + { + "start": 2702.24, + "end": 2703.46, + "probability": 0.4112 + }, + { + "start": 2703.52, + "end": 2704.46, + "probability": 0.8533 + }, + { + "start": 2705.1, + "end": 2709.42, + "probability": 0.955 + }, + { + "start": 2709.6, + "end": 2714.06, + "probability": 0.5626 + }, + { + "start": 2715.02, + "end": 2715.84, + "probability": 0.3696 + }, + { + "start": 2715.96, + "end": 2722.7, + "probability": 0.7349 + }, + { + "start": 2722.7, + "end": 2725.98, + "probability": 0.9051 + }, + { + "start": 2726.02, + "end": 2727.3, + "probability": 0.7316 + }, + { + "start": 2727.76, + "end": 2728.72, + "probability": 0.796 + }, + { + "start": 2728.88, + "end": 2730.38, + "probability": 0.7398 + }, + { + "start": 2731.24, + "end": 2733.88, + "probability": 0.9697 + }, + { + "start": 2733.88, + "end": 2737.72, + "probability": 0.985 + }, + { + "start": 2738.52, + "end": 2739.48, + "probability": 0.8748 + }, + { + "start": 2740.7, + "end": 2743.0, + "probability": 0.9664 + }, + { + "start": 2743.68, + "end": 2745.51, + "probability": 0.9468 + }, + { + "start": 2746.7, + "end": 2749.22, + "probability": 0.6987 + }, + { + "start": 2749.9, + "end": 2752.9, + "probability": 0.8757 + }, + { + "start": 2753.9, + "end": 2755.18, + "probability": 0.85 + }, + { + "start": 2755.26, + "end": 2757.52, + "probability": 0.8206 + }, + { + "start": 2758.34, + "end": 2762.34, + "probability": 0.9118 + }, + { + "start": 2763.1, + "end": 2766.58, + "probability": 0.9302 + }, + { + "start": 2767.62, + "end": 2768.06, + "probability": 0.3342 + }, + { + "start": 2768.36, + "end": 2772.54, + "probability": 0.9435 + }, + { + "start": 2772.54, + "end": 2777.32, + "probability": 0.8391 + }, + { + "start": 2777.32, + "end": 2781.06, + "probability": 0.8881 + }, + { + "start": 2781.6, + "end": 2783.26, + "probability": 0.6988 + }, + { + "start": 2783.52, + "end": 2783.84, + "probability": 0.8145 + }, + { + "start": 2794.08, + "end": 2794.42, + "probability": 0.3042 + }, + { + "start": 2794.42, + "end": 2795.12, + "probability": 0.5796 + }, + { + "start": 2796.0, + "end": 2796.68, + "probability": 0.733 + }, + { + "start": 2798.1, + "end": 2803.08, + "probability": 0.9756 + }, + { + "start": 2803.46, + "end": 2803.46, + "probability": 0.8984 + }, + { + "start": 2804.06, + "end": 2806.34, + "probability": 0.9881 + }, + { + "start": 2806.96, + "end": 2811.78, + "probability": 0.9092 + }, + { + "start": 2811.9, + "end": 2816.8, + "probability": 0.8751 + }, + { + "start": 2817.78, + "end": 2820.16, + "probability": 0.7703 + }, + { + "start": 2820.34, + "end": 2824.18, + "probability": 0.6129 + }, + { + "start": 2824.86, + "end": 2826.92, + "probability": 0.0069 + }, + { + "start": 2827.2, + "end": 2827.22, + "probability": 0.0723 + }, + { + "start": 2827.22, + "end": 2827.22, + "probability": 0.039 + }, + { + "start": 2827.22, + "end": 2827.4, + "probability": 0.0375 + }, + { + "start": 2827.42, + "end": 2827.42, + "probability": 0.3676 + }, + { + "start": 2827.42, + "end": 2829.54, + "probability": 0.9445 + }, + { + "start": 2829.62, + "end": 2831.52, + "probability": 0.8267 + }, + { + "start": 2831.64, + "end": 2833.86, + "probability": 0.981 + }, + { + "start": 2833.92, + "end": 2837.74, + "probability": 0.9519 + }, + { + "start": 2837.82, + "end": 2838.32, + "probability": 0.8342 + }, + { + "start": 2838.34, + "end": 2839.61, + "probability": 0.7946 + }, + { + "start": 2839.68, + "end": 2840.98, + "probability": 0.9908 + }, + { + "start": 2841.06, + "end": 2842.3, + "probability": 0.9263 + }, + { + "start": 2842.3, + "end": 2844.0, + "probability": 0.9347 + }, + { + "start": 2844.92, + "end": 2845.72, + "probability": 0.0915 + }, + { + "start": 2848.7, + "end": 2849.1, + "probability": 0.0687 + }, + { + "start": 2849.1, + "end": 2849.1, + "probability": 0.0304 + }, + { + "start": 2849.1, + "end": 2849.1, + "probability": 0.1839 + }, + { + "start": 2849.1, + "end": 2849.1, + "probability": 0.3979 + }, + { + "start": 2849.1, + "end": 2851.8, + "probability": 0.6342 + }, + { + "start": 2851.84, + "end": 2855.08, + "probability": 0.9216 + }, + { + "start": 2855.92, + "end": 2860.42, + "probability": 0.8614 + }, + { + "start": 2860.96, + "end": 2863.66, + "probability": 0.9518 + }, + { + "start": 2863.66, + "end": 2866.54, + "probability": 0.9069 + }, + { + "start": 2867.2, + "end": 2867.94, + "probability": 0.6569 + }, + { + "start": 2868.06, + "end": 2872.08, + "probability": 0.8643 + }, + { + "start": 2872.74, + "end": 2874.28, + "probability": 0.561 + }, + { + "start": 2874.38, + "end": 2875.0, + "probability": 0.8892 + }, + { + "start": 2876.02, + "end": 2878.54, + "probability": 0.6929 + }, + { + "start": 2878.64, + "end": 2880.08, + "probability": 0.7402 + }, + { + "start": 2880.2, + "end": 2880.88, + "probability": 0.3401 + }, + { + "start": 2880.88, + "end": 2881.56, + "probability": 0.532 + }, + { + "start": 2882.84, + "end": 2886.96, + "probability": 0.7395 + }, + { + "start": 2888.3, + "end": 2890.94, + "probability": 0.3965 + }, + { + "start": 2891.7, + "end": 2894.24, + "probability": 0.9026 + }, + { + "start": 2895.1, + "end": 2897.0, + "probability": 0.9925 + }, + { + "start": 2897.6, + "end": 2899.42, + "probability": 0.7889 + }, + { + "start": 2899.98, + "end": 2900.08, + "probability": 0.9982 + }, + { + "start": 2900.82, + "end": 2904.1, + "probability": 0.7756 + }, + { + "start": 2905.0, + "end": 2906.44, + "probability": 0.785 + }, + { + "start": 2906.48, + "end": 2910.28, + "probability": 0.9781 + }, + { + "start": 2910.9, + "end": 2913.92, + "probability": 0.9379 + }, + { + "start": 2914.84, + "end": 2917.26, + "probability": 0.9902 + }, + { + "start": 2918.06, + "end": 2920.64, + "probability": 0.9062 + }, + { + "start": 2921.99, + "end": 2925.26, + "probability": 0.6111 + }, + { + "start": 2925.7, + "end": 2927.34, + "probability": 0.9904 + }, + { + "start": 2927.84, + "end": 2928.76, + "probability": 0.9761 + }, + { + "start": 2929.6, + "end": 2936.32, + "probability": 0.7078 + }, + { + "start": 2936.8, + "end": 2939.36, + "probability": 0.9927 + }, + { + "start": 2940.24, + "end": 2942.12, + "probability": 0.8243 + }, + { + "start": 2942.9, + "end": 2945.26, + "probability": 0.967 + }, + { + "start": 2945.82, + "end": 2949.3, + "probability": 0.8887 + }, + { + "start": 2949.92, + "end": 2956.2, + "probability": 0.9905 + }, + { + "start": 2956.2, + "end": 2961.16, + "probability": 0.9984 + }, + { + "start": 2962.4, + "end": 2962.82, + "probability": 0.5173 + }, + { + "start": 2962.9, + "end": 2964.82, + "probability": 0.99 + }, + { + "start": 2964.94, + "end": 2965.02, + "probability": 0.2392 + }, + { + "start": 2965.24, + "end": 2967.48, + "probability": 0.9901 + }, + { + "start": 2975.4, + "end": 2976.02, + "probability": 0.7939 + }, + { + "start": 2976.1, + "end": 2979.92, + "probability": 0.9899 + }, + { + "start": 2979.92, + "end": 2983.72, + "probability": 0.8294 + }, + { + "start": 2984.44, + "end": 2988.98, + "probability": 0.9831 + }, + { + "start": 2989.66, + "end": 2991.06, + "probability": 0.917 + }, + { + "start": 2991.54, + "end": 2992.84, + "probability": 0.9857 + }, + { + "start": 2993.02, + "end": 2995.56, + "probability": 0.9945 + }, + { + "start": 2996.46, + "end": 2998.92, + "probability": 0.8961 + }, + { + "start": 2999.46, + "end": 3001.16, + "probability": 0.9965 + }, + { + "start": 3001.32, + "end": 3001.86, + "probability": 0.9696 + }, + { + "start": 3002.46, + "end": 3004.14, + "probability": 0.6555 + }, + { + "start": 3005.02, + "end": 3006.98, + "probability": 0.9946 + }, + { + "start": 3007.6, + "end": 3012.24, + "probability": 0.9977 + }, + { + "start": 3012.9, + "end": 3015.8, + "probability": 0.8784 + }, + { + "start": 3016.56, + "end": 3019.2, + "probability": 0.9968 + }, + { + "start": 3019.42, + "end": 3019.52, + "probability": 0.6851 + }, + { + "start": 3019.64, + "end": 3020.96, + "probability": 0.543 + }, + { + "start": 3021.34, + "end": 3022.44, + "probability": 0.8853 + }, + { + "start": 3022.56, + "end": 3023.04, + "probability": 0.4292 + }, + { + "start": 3023.04, + "end": 3023.16, + "probability": 0.124 + }, + { + "start": 3023.44, + "end": 3027.72, + "probability": 0.8672 + }, + { + "start": 3027.78, + "end": 3029.58, + "probability": 0.7021 + }, + { + "start": 3030.74, + "end": 3032.16, + "probability": 0.7132 + }, + { + "start": 3032.94, + "end": 3036.72, + "probability": 0.8222 + }, + { + "start": 3037.36, + "end": 3037.46, + "probability": 0.5228 + }, + { + "start": 3037.52, + "end": 3038.5, + "probability": 0.8978 + }, + { + "start": 3038.56, + "end": 3042.96, + "probability": 0.9866 + }, + { + "start": 3043.92, + "end": 3045.26, + "probability": 0.679 + }, + { + "start": 3046.26, + "end": 3047.38, + "probability": 0.8396 + }, + { + "start": 3047.54, + "end": 3049.66, + "probability": 0.9235 + }, + { + "start": 3050.9, + "end": 3053.1, + "probability": 0.7922 + }, + { + "start": 3053.48, + "end": 3055.1, + "probability": 0.7854 + }, + { + "start": 3057.84, + "end": 3059.76, + "probability": 0.9679 + }, + { + "start": 3061.0, + "end": 3062.38, + "probability": 0.5068 + }, + { + "start": 3063.86, + "end": 3065.92, + "probability": 0.809 + }, + { + "start": 3066.58, + "end": 3069.5, + "probability": 0.9704 + }, + { + "start": 3070.48, + "end": 3073.92, + "probability": 0.8929 + }, + { + "start": 3074.08, + "end": 3075.88, + "probability": 0.7627 + }, + { + "start": 3076.82, + "end": 3077.96, + "probability": 0.467 + }, + { + "start": 3078.54, + "end": 3080.08, + "probability": 0.9649 + }, + { + "start": 3080.14, + "end": 3081.86, + "probability": 0.7809 + }, + { + "start": 3083.14, + "end": 3091.24, + "probability": 0.7531 + }, + { + "start": 3091.8, + "end": 3093.31, + "probability": 0.5979 + }, + { + "start": 3094.14, + "end": 3097.04, + "probability": 0.8082 + }, + { + "start": 3097.72, + "end": 3099.24, + "probability": 0.7878 + }, + { + "start": 3099.98, + "end": 3102.76, + "probability": 0.3055 + }, + { + "start": 3103.58, + "end": 3108.23, + "probability": 0.9672 + }, + { + "start": 3109.42, + "end": 3111.68, + "probability": 0.9842 + }, + { + "start": 3112.42, + "end": 3116.98, + "probability": 0.8805 + }, + { + "start": 3117.24, + "end": 3118.0, + "probability": 0.4913 + }, + { + "start": 3118.74, + "end": 3121.36, + "probability": 0.822 + }, + { + "start": 3122.02, + "end": 3122.42, + "probability": 0.7166 + }, + { + "start": 3123.78, + "end": 3124.44, + "probability": 0.5615 + }, + { + "start": 3125.09, + "end": 3126.65, + "probability": 0.6594 + }, + { + "start": 3128.32, + "end": 3129.88, + "probability": 0.9772 + }, + { + "start": 3130.6, + "end": 3134.42, + "probability": 0.9399 + }, + { + "start": 3134.98, + "end": 3135.78, + "probability": 0.96 + }, + { + "start": 3136.4, + "end": 3141.53, + "probability": 0.876 + }, + { + "start": 3141.68, + "end": 3145.74, + "probability": 0.9922 + }, + { + "start": 3147.24, + "end": 3151.4, + "probability": 0.9874 + }, + { + "start": 3151.4, + "end": 3154.94, + "probability": 0.9836 + }, + { + "start": 3156.22, + "end": 3158.84, + "probability": 0.9746 + }, + { + "start": 3160.22, + "end": 3162.68, + "probability": 0.7763 + }, + { + "start": 3162.88, + "end": 3169.58, + "probability": 0.9826 + }, + { + "start": 3169.58, + "end": 3173.28, + "probability": 0.9736 + }, + { + "start": 3173.48, + "end": 3174.78, + "probability": 0.5522 + }, + { + "start": 3175.16, + "end": 3178.66, + "probability": 0.6544 + }, + { + "start": 3178.72, + "end": 3179.7, + "probability": 0.9253 + }, + { + "start": 3181.28, + "end": 3184.38, + "probability": 0.23 + }, + { + "start": 3185.72, + "end": 3186.96, + "probability": 0.9573 + }, + { + "start": 3187.18, + "end": 3189.5, + "probability": 0.9914 + }, + { + "start": 3189.64, + "end": 3191.0, + "probability": 0.8545 + }, + { + "start": 3192.14, + "end": 3194.08, + "probability": 0.9482 + }, + { + "start": 3194.86, + "end": 3198.64, + "probability": 0.9914 + }, + { + "start": 3208.7, + "end": 3208.86, + "probability": 0.2399 + }, + { + "start": 3208.86, + "end": 3209.12, + "probability": 0.3059 + }, + { + "start": 3209.12, + "end": 3210.4, + "probability": 0.8178 + }, + { + "start": 3210.56, + "end": 3212.64, + "probability": 0.9865 + }, + { + "start": 3213.38, + "end": 3214.92, + "probability": 0.818 + }, + { + "start": 3215.16, + "end": 3219.72, + "probability": 0.9853 + }, + { + "start": 3221.52, + "end": 3223.14, + "probability": 0.8968 + }, + { + "start": 3223.54, + "end": 3224.34, + "probability": 0.4174 + }, + { + "start": 3224.5, + "end": 3226.62, + "probability": 0.988 + }, + { + "start": 3226.72, + "end": 3230.46, + "probability": 0.9415 + }, + { + "start": 3230.46, + "end": 3234.0, + "probability": 0.9932 + }, + { + "start": 3234.96, + "end": 3238.78, + "probability": 0.9966 + }, + { + "start": 3238.78, + "end": 3243.3, + "probability": 0.9967 + }, + { + "start": 3243.58, + "end": 3246.5, + "probability": 0.8563 + }, + { + "start": 3247.82, + "end": 3252.88, + "probability": 0.9272 + }, + { + "start": 3253.54, + "end": 3256.08, + "probability": 0.9966 + }, + { + "start": 3256.66, + "end": 3260.54, + "probability": 0.9943 + }, + { + "start": 3260.54, + "end": 3263.52, + "probability": 0.9949 + }, + { + "start": 3265.6, + "end": 3270.08, + "probability": 0.9982 + }, + { + "start": 3270.36, + "end": 3277.2, + "probability": 0.9868 + }, + { + "start": 3282.16, + "end": 3285.9, + "probability": 0.8311 + }, + { + "start": 3286.88, + "end": 3292.6, + "probability": 0.9985 + }, + { + "start": 3293.16, + "end": 3297.66, + "probability": 0.9927 + }, + { + "start": 3298.76, + "end": 3300.48, + "probability": 0.8177 + }, + { + "start": 3300.94, + "end": 3303.38, + "probability": 0.9808 + }, + { + "start": 3303.48, + "end": 3308.08, + "probability": 0.9938 + }, + { + "start": 3308.08, + "end": 3311.08, + "probability": 0.9805 + }, + { + "start": 3312.46, + "end": 3313.04, + "probability": 0.6449 + }, + { + "start": 3313.14, + "end": 3314.14, + "probability": 0.9497 + }, + { + "start": 3314.5, + "end": 3317.52, + "probability": 0.8895 + }, + { + "start": 3317.62, + "end": 3319.64, + "probability": 0.9143 + }, + { + "start": 3319.72, + "end": 3320.88, + "probability": 0.6769 + }, + { + "start": 3321.32, + "end": 3323.06, + "probability": 0.9829 + }, + { + "start": 3323.58, + "end": 3327.7, + "probability": 0.9971 + }, + { + "start": 3327.7, + "end": 3333.14, + "probability": 0.9883 + }, + { + "start": 3333.64, + "end": 3338.52, + "probability": 0.92 + }, + { + "start": 3338.52, + "end": 3343.1, + "probability": 0.9939 + }, + { + "start": 3345.08, + "end": 3349.72, + "probability": 0.9896 + }, + { + "start": 3350.48, + "end": 3356.72, + "probability": 0.9921 + }, + { + "start": 3357.26, + "end": 3358.8, + "probability": 0.9839 + }, + { + "start": 3359.6, + "end": 3365.18, + "probability": 0.9816 + }, + { + "start": 3365.72, + "end": 3368.7, + "probability": 0.9153 + }, + { + "start": 3369.48, + "end": 3370.5, + "probability": 0.8105 + }, + { + "start": 3375.24, + "end": 3376.6, + "probability": 0.3126 + }, + { + "start": 3377.94, + "end": 3378.6, + "probability": 0.8728 + }, + { + "start": 3378.88, + "end": 3380.62, + "probability": 0.793 + }, + { + "start": 3381.12, + "end": 3383.12, + "probability": 0.8322 + }, + { + "start": 3384.0, + "end": 3388.96, + "probability": 0.96 + }, + { + "start": 3389.4, + "end": 3392.36, + "probability": 0.9352 + }, + { + "start": 3392.82, + "end": 3396.28, + "probability": 0.5403 + }, + { + "start": 3396.98, + "end": 3401.94, + "probability": 0.9635 + }, + { + "start": 3410.42, + "end": 3414.12, + "probability": 0.9224 + }, + { + "start": 3416.54, + "end": 3418.74, + "probability": 0.7867 + }, + { + "start": 3419.26, + "end": 3421.6, + "probability": 0.807 + }, + { + "start": 3423.04, + "end": 3424.24, + "probability": 0.7404 + }, + { + "start": 3424.66, + "end": 3430.4, + "probability": 0.9737 + }, + { + "start": 3430.72, + "end": 3435.36, + "probability": 0.8098 + }, + { + "start": 3436.04, + "end": 3440.6, + "probability": 0.993 + }, + { + "start": 3440.6, + "end": 3445.68, + "probability": 0.9907 + }, + { + "start": 3446.24, + "end": 3453.2, + "probability": 0.7323 + }, + { + "start": 3453.94, + "end": 3458.88, + "probability": 0.8395 + }, + { + "start": 3458.88, + "end": 3464.0, + "probability": 0.9946 + }, + { + "start": 3464.7, + "end": 3471.36, + "probability": 0.9907 + }, + { + "start": 3471.36, + "end": 3478.66, + "probability": 0.9826 + }, + { + "start": 3479.42, + "end": 3487.1, + "probability": 0.9932 + }, + { + "start": 3487.52, + "end": 3491.62, + "probability": 0.9917 + }, + { + "start": 3492.28, + "end": 3496.4, + "probability": 0.9515 + }, + { + "start": 3496.72, + "end": 3503.74, + "probability": 0.9163 + }, + { + "start": 3505.6, + "end": 3505.98, + "probability": 0.6626 + }, + { + "start": 3506.44, + "end": 3514.86, + "probability": 0.9938 + }, + { + "start": 3515.34, + "end": 3516.48, + "probability": 0.457 + }, + { + "start": 3516.62, + "end": 3523.7, + "probability": 0.9661 + }, + { + "start": 3524.56, + "end": 3530.06, + "probability": 0.761 + }, + { + "start": 3530.6, + "end": 3536.16, + "probability": 0.9537 + }, + { + "start": 3536.16, + "end": 3540.56, + "probability": 0.9818 + }, + { + "start": 3540.66, + "end": 3546.02, + "probability": 0.9761 + }, + { + "start": 3546.54, + "end": 3549.92, + "probability": 0.9989 + }, + { + "start": 3550.48, + "end": 3550.96, + "probability": 0.9839 + }, + { + "start": 3551.4, + "end": 3551.7, + "probability": 0.7119 + }, + { + "start": 3558.3, + "end": 3561.48, + "probability": 0.6656 + }, + { + "start": 3561.54, + "end": 3562.7, + "probability": 0.7822 + }, + { + "start": 3562.8, + "end": 3563.04, + "probability": 0.8505 + }, + { + "start": 3577.78, + "end": 3578.6, + "probability": 0.9729 + }, + { + "start": 3581.94, + "end": 3583.26, + "probability": 0.7924 + }, + { + "start": 3584.26, + "end": 3584.6, + "probability": 0.9858 + }, + { + "start": 3586.64, + "end": 3587.42, + "probability": 0.8442 + }, + { + "start": 3587.5, + "end": 3587.78, + "probability": 0.3877 + }, + { + "start": 3587.78, + "end": 3588.72, + "probability": 0.9761 + }, + { + "start": 3589.16, + "end": 3591.12, + "probability": 0.9587 + }, + { + "start": 3591.22, + "end": 3591.98, + "probability": 0.9131 + }, + { + "start": 3592.08, + "end": 3592.48, + "probability": 0.5861 + }, + { + "start": 3592.56, + "end": 3594.26, + "probability": 0.8572 + }, + { + "start": 3594.4, + "end": 3594.54, + "probability": 0.0386 + }, + { + "start": 3594.8, + "end": 3595.38, + "probability": 0.6991 + }, + { + "start": 3595.52, + "end": 3595.64, + "probability": 0.0669 + }, + { + "start": 3595.76, + "end": 3596.1, + "probability": 0.3147 + }, + { + "start": 3596.18, + "end": 3597.74, + "probability": 0.8471 + }, + { + "start": 3597.82, + "end": 3599.36, + "probability": 0.9047 + }, + { + "start": 3599.42, + "end": 3601.64, + "probability": 0.9804 + }, + { + "start": 3602.46, + "end": 3604.28, + "probability": 0.414 + }, + { + "start": 3604.28, + "end": 3605.08, + "probability": 0.9139 + }, + { + "start": 3605.12, + "end": 3606.1, + "probability": 0.9263 + }, + { + "start": 3606.18, + "end": 3606.48, + "probability": 0.8125 + }, + { + "start": 3606.52, + "end": 3607.4, + "probability": 0.7935 + }, + { + "start": 3608.26, + "end": 3609.74, + "probability": 0.779 + }, + { + "start": 3609.82, + "end": 3613.36, + "probability": 0.8962 + }, + { + "start": 3614.12, + "end": 3618.62, + "probability": 0.9961 + }, + { + "start": 3619.28, + "end": 3621.02, + "probability": 0.9977 + }, + { + "start": 3621.9, + "end": 3624.28, + "probability": 0.9817 + }, + { + "start": 3624.48, + "end": 3625.12, + "probability": 0.7404 + }, + { + "start": 3625.64, + "end": 3628.12, + "probability": 0.9886 + }, + { + "start": 3629.32, + "end": 3633.5, + "probability": 0.9925 + }, + { + "start": 3634.14, + "end": 3636.1, + "probability": 0.9974 + }, + { + "start": 3636.88, + "end": 3638.44, + "probability": 0.924 + }, + { + "start": 3638.98, + "end": 3641.14, + "probability": 0.9445 + }, + { + "start": 3641.16, + "end": 3643.64, + "probability": 0.9515 + }, + { + "start": 3643.72, + "end": 3646.82, + "probability": 0.9839 + }, + { + "start": 3647.64, + "end": 3649.26, + "probability": 0.9061 + }, + { + "start": 3649.48, + "end": 3651.4, + "probability": 0.9606 + }, + { + "start": 3652.0, + "end": 3655.78, + "probability": 0.9791 + }, + { + "start": 3656.52, + "end": 3658.44, + "probability": 0.9963 + }, + { + "start": 3658.44, + "end": 3661.46, + "probability": 0.9153 + }, + { + "start": 3662.16, + "end": 3664.86, + "probability": 0.9832 + }, + { + "start": 3664.86, + "end": 3668.24, + "probability": 0.9937 + }, + { + "start": 3668.78, + "end": 3671.24, + "probability": 0.9749 + }, + { + "start": 3671.68, + "end": 3674.08, + "probability": 0.9913 + }, + { + "start": 3674.76, + "end": 3677.68, + "probability": 0.9898 + }, + { + "start": 3677.68, + "end": 3680.36, + "probability": 0.9965 + }, + { + "start": 3681.5, + "end": 3684.78, + "probability": 0.9975 + }, + { + "start": 3684.78, + "end": 3688.48, + "probability": 0.9963 + }, + { + "start": 3688.58, + "end": 3690.06, + "probability": 0.9614 + }, + { + "start": 3690.2, + "end": 3693.62, + "probability": 0.9364 + }, + { + "start": 3694.1, + "end": 3695.94, + "probability": 0.8901 + }, + { + "start": 3695.98, + "end": 3698.16, + "probability": 0.993 + }, + { + "start": 3699.16, + "end": 3699.68, + "probability": 0.828 + }, + { + "start": 3699.84, + "end": 3703.4, + "probability": 0.996 + }, + { + "start": 3703.4, + "end": 3707.58, + "probability": 0.9907 + }, + { + "start": 3707.74, + "end": 3708.38, + "probability": 0.9631 + }, + { + "start": 3709.06, + "end": 3710.38, + "probability": 0.8837 + }, + { + "start": 3710.86, + "end": 3711.06, + "probability": 0.7313 + }, + { + "start": 3712.76, + "end": 3713.36, + "probability": 0.6728 + }, + { + "start": 3714.72, + "end": 3716.54, + "probability": 0.801 + }, + { + "start": 3717.54, + "end": 3720.38, + "probability": 0.7546 + }, + { + "start": 3721.0, + "end": 3723.84, + "probability": 0.9838 + }, + { + "start": 3724.4, + "end": 3724.46, + "probability": 0.2197 + }, + { + "start": 3724.46, + "end": 3724.7, + "probability": 0.4525 + }, + { + "start": 3724.78, + "end": 3726.74, + "probability": 0.9877 + }, + { + "start": 3728.48, + "end": 3728.58, + "probability": 0.0001 + }, + { + "start": 3732.46, + "end": 3735.82, + "probability": 0.9844 + }, + { + "start": 3735.84, + "end": 3738.2, + "probability": 0.8526 + }, + { + "start": 3738.74, + "end": 3742.0, + "probability": 0.5483 + }, + { + "start": 3742.74, + "end": 3747.72, + "probability": 0.3038 + }, + { + "start": 3748.82, + "end": 3750.76, + "probability": 0.0251 + }, + { + "start": 3759.4, + "end": 3759.86, + "probability": 0.0677 + }, + { + "start": 3759.86, + "end": 3759.86, + "probability": 0.109 + }, + { + "start": 3759.86, + "end": 3761.36, + "probability": 0.595 + }, + { + "start": 3761.44, + "end": 3763.32, + "probability": 0.6928 + }, + { + "start": 3763.76, + "end": 3766.44, + "probability": 0.9078 + }, + { + "start": 3766.72, + "end": 3769.08, + "probability": 0.8425 + }, + { + "start": 3772.02, + "end": 3772.12, + "probability": 0.0025 + }, + { + "start": 3772.12, + "end": 3772.52, + "probability": 0.0998 + }, + { + "start": 3773.1, + "end": 3774.06, + "probability": 0.2239 + }, + { + "start": 3774.06, + "end": 3775.52, + "probability": 0.5311 + }, + { + "start": 3776.68, + "end": 3778.54, + "probability": 0.04 + }, + { + "start": 3784.26, + "end": 3785.06, + "probability": 0.1419 + }, + { + "start": 3786.4, + "end": 3790.04, + "probability": 0.9927 + }, + { + "start": 3790.18, + "end": 3792.82, + "probability": 0.5978 + }, + { + "start": 3793.88, + "end": 3795.24, + "probability": 0.7008 + }, + { + "start": 3796.9, + "end": 3797.6, + "probability": 0.3038 + }, + { + "start": 3797.66, + "end": 3798.84, + "probability": 0.8596 + }, + { + "start": 3798.96, + "end": 3800.16, + "probability": 0.7921 + }, + { + "start": 3801.02, + "end": 3805.32, + "probability": 0.9749 + }, + { + "start": 3805.58, + "end": 3806.8, + "probability": 0.5802 + }, + { + "start": 3806.8, + "end": 3806.9, + "probability": 0.6519 + }, + { + "start": 3807.4, + "end": 3809.44, + "probability": 0.9492 + }, + { + "start": 3809.56, + "end": 3809.76, + "probability": 0.5198 + }, + { + "start": 3809.84, + "end": 3810.84, + "probability": 0.8656 + }, + { + "start": 3812.12, + "end": 3814.26, + "probability": 0.3639 + }, + { + "start": 3814.32, + "end": 3816.66, + "probability": 0.8737 + }, + { + "start": 3817.14, + "end": 3820.2, + "probability": 0.9687 + }, + { + "start": 3820.64, + "end": 3821.16, + "probability": 0.6499 + }, + { + "start": 3821.42, + "end": 3823.8, + "probability": 0.9735 + }, + { + "start": 3824.38, + "end": 3826.94, + "probability": 0.987 + }, + { + "start": 3827.02, + "end": 3829.22, + "probability": 0.8844 + }, + { + "start": 3829.38, + "end": 3831.04, + "probability": 0.1926 + }, + { + "start": 3831.96, + "end": 3834.88, + "probability": 0.7817 + }, + { + "start": 3835.16, + "end": 3836.0, + "probability": 0.7945 + }, + { + "start": 3836.92, + "end": 3837.62, + "probability": 0.7365 + }, + { + "start": 3841.58, + "end": 3844.74, + "probability": 0.6766 + }, + { + "start": 3845.74, + "end": 3850.72, + "probability": 0.9926 + }, + { + "start": 3851.44, + "end": 3852.92, + "probability": 0.6686 + }, + { + "start": 3853.42, + "end": 3854.74, + "probability": 0.9539 + }, + { + "start": 3854.86, + "end": 3855.24, + "probability": 0.6437 + }, + { + "start": 3855.26, + "end": 3856.62, + "probability": 0.9967 + }, + { + "start": 3860.86, + "end": 3864.36, + "probability": 0.9784 + }, + { + "start": 3864.36, + "end": 3867.56, + "probability": 0.9987 + }, + { + "start": 3868.18, + "end": 3870.72, + "probability": 0.8973 + }, + { + "start": 3871.32, + "end": 3873.76, + "probability": 0.8866 + }, + { + "start": 3873.88, + "end": 3875.74, + "probability": 0.6094 + }, + { + "start": 3875.76, + "end": 3879.06, + "probability": 0.879 + }, + { + "start": 3879.42, + "end": 3880.94, + "probability": 0.9009 + }, + { + "start": 3881.38, + "end": 3885.26, + "probability": 0.9638 + }, + { + "start": 3885.6, + "end": 3887.22, + "probability": 0.8479 + }, + { + "start": 3887.32, + "end": 3887.86, + "probability": 0.8397 + }, + { + "start": 3888.4, + "end": 3890.99, + "probability": 0.9888 + }, + { + "start": 3891.7, + "end": 3894.5, + "probability": 0.9971 + }, + { + "start": 3894.98, + "end": 3899.18, + "probability": 0.9448 + }, + { + "start": 3899.26, + "end": 3900.6, + "probability": 0.9221 + }, + { + "start": 3901.24, + "end": 3907.92, + "probability": 0.9827 + }, + { + "start": 3908.36, + "end": 3913.98, + "probability": 0.9878 + }, + { + "start": 3914.44, + "end": 3916.82, + "probability": 0.9847 + }, + { + "start": 3917.26, + "end": 3921.56, + "probability": 0.9919 + }, + { + "start": 3922.14, + "end": 3927.02, + "probability": 0.9837 + }, + { + "start": 3927.42, + "end": 3929.92, + "probability": 0.8936 + }, + { + "start": 3930.36, + "end": 3935.52, + "probability": 0.9937 + }, + { + "start": 3936.16, + "end": 3939.62, + "probability": 0.9909 + }, + { + "start": 3940.18, + "end": 3940.28, + "probability": 0.4569 + }, + { + "start": 3940.9, + "end": 3941.84, + "probability": 0.6724 + }, + { + "start": 3942.24, + "end": 3943.84, + "probability": 0.9507 + }, + { + "start": 3944.32, + "end": 3946.1, + "probability": 0.9507 + }, + { + "start": 3947.04, + "end": 3948.98, + "probability": 0.9626 + }, + { + "start": 3949.34, + "end": 3951.18, + "probability": 0.8486 + }, + { + "start": 3951.56, + "end": 3954.3, + "probability": 0.9941 + }, + { + "start": 3954.3, + "end": 3957.92, + "probability": 0.9933 + }, + { + "start": 3959.06, + "end": 3959.56, + "probability": 0.4259 + }, + { + "start": 3959.92, + "end": 3965.69, + "probability": 0.9491 + }, + { + "start": 3966.32, + "end": 3970.82, + "probability": 0.9971 + }, + { + "start": 3970.82, + "end": 3975.28, + "probability": 0.9979 + }, + { + "start": 3975.88, + "end": 3976.66, + "probability": 0.7389 + }, + { + "start": 3976.9, + "end": 3977.4, + "probability": 0.8699 + }, + { + "start": 3977.76, + "end": 3978.2, + "probability": 0.9301 + }, + { + "start": 3978.34, + "end": 3978.84, + "probability": 0.8615 + }, + { + "start": 3979.24, + "end": 3982.08, + "probability": 0.9706 + }, + { + "start": 3982.66, + "end": 3984.64, + "probability": 0.8752 + }, + { + "start": 3985.12, + "end": 3987.24, + "probability": 0.9856 + }, + { + "start": 3987.44, + "end": 3992.02, + "probability": 0.7623 + }, + { + "start": 3992.56, + "end": 3993.42, + "probability": 0.7754 + }, + { + "start": 3993.62, + "end": 3996.78, + "probability": 0.9942 + }, + { + "start": 3997.12, + "end": 4002.04, + "probability": 0.9769 + }, + { + "start": 4002.46, + "end": 4006.02, + "probability": 0.9956 + }, + { + "start": 4006.32, + "end": 4006.62, + "probability": 0.7861 + }, + { + "start": 4007.24, + "end": 4010.46, + "probability": 0.9795 + }, + { + "start": 4011.3, + "end": 4013.86, + "probability": 0.7772 + }, + { + "start": 4013.94, + "end": 4014.7, + "probability": 0.7713 + }, + { + "start": 4024.04, + "end": 4025.3, + "probability": 0.4735 + }, + { + "start": 4026.36, + "end": 4028.0, + "probability": 0.759 + }, + { + "start": 4029.98, + "end": 4032.54, + "probability": 0.8623 + }, + { + "start": 4033.36, + "end": 4036.3, + "probability": 0.9968 + }, + { + "start": 4037.9, + "end": 4040.2, + "probability": 0.9219 + }, + { + "start": 4041.18, + "end": 4043.64, + "probability": 0.9825 + }, + { + "start": 4044.22, + "end": 4046.34, + "probability": 0.9513 + }, + { + "start": 4046.84, + "end": 4048.04, + "probability": 0.8525 + }, + { + "start": 4048.14, + "end": 4048.68, + "probability": 0.6707 + }, + { + "start": 4049.1, + "end": 4049.98, + "probability": 0.9829 + }, + { + "start": 4050.66, + "end": 4051.86, + "probability": 0.9095 + }, + { + "start": 4052.06, + "end": 4052.72, + "probability": 0.918 + }, + { + "start": 4052.78, + "end": 4057.58, + "probability": 0.9624 + }, + { + "start": 4058.42, + "end": 4059.32, + "probability": 0.4132 + }, + { + "start": 4059.88, + "end": 4061.04, + "probability": 0.6524 + }, + { + "start": 4062.52, + "end": 4062.96, + "probability": 0.6221 + }, + { + "start": 4063.44, + "end": 4064.2, + "probability": 0.8848 + }, + { + "start": 4064.24, + "end": 4067.0, + "probability": 0.9534 + }, + { + "start": 4067.28, + "end": 4068.18, + "probability": 0.7936 + }, + { + "start": 4068.84, + "end": 4072.2, + "probability": 0.9832 + }, + { + "start": 4072.32, + "end": 4073.28, + "probability": 0.9874 + }, + { + "start": 4073.32, + "end": 4074.4, + "probability": 0.9465 + }, + { + "start": 4075.08, + "end": 4077.7, + "probability": 0.9734 + }, + { + "start": 4078.14, + "end": 4083.26, + "probability": 0.9865 + }, + { + "start": 4083.26, + "end": 4087.54, + "probability": 0.8743 + }, + { + "start": 4087.82, + "end": 4088.82, + "probability": 0.6788 + }, + { + "start": 4088.92, + "end": 4089.6, + "probability": 0.5587 + }, + { + "start": 4089.66, + "end": 4097.68, + "probability": 0.9867 + }, + { + "start": 4097.88, + "end": 4098.8, + "probability": 0.8883 + }, + { + "start": 4098.98, + "end": 4100.3, + "probability": 0.9839 + }, + { + "start": 4100.34, + "end": 4102.08, + "probability": 0.8353 + }, + { + "start": 4102.46, + "end": 4104.16, + "probability": 0.9966 + }, + { + "start": 4104.44, + "end": 4105.64, + "probability": 0.9783 + }, + { + "start": 4105.7, + "end": 4107.44, + "probability": 0.9525 + }, + { + "start": 4107.58, + "end": 4109.54, + "probability": 0.9782 + }, + { + "start": 4110.22, + "end": 4112.24, + "probability": 0.9953 + }, + { + "start": 4112.58, + "end": 4112.84, + "probability": 0.4661 + }, + { + "start": 4112.98, + "end": 4114.48, + "probability": 0.9636 + }, + { + "start": 4115.3, + "end": 4116.42, + "probability": 0.923 + }, + { + "start": 4117.04, + "end": 4117.86, + "probability": 0.907 + }, + { + "start": 4118.4, + "end": 4123.02, + "probability": 0.7616 + }, + { + "start": 4123.84, + "end": 4127.04, + "probability": 0.9749 + }, + { + "start": 4127.76, + "end": 4131.22, + "probability": 0.9783 + }, + { + "start": 4131.96, + "end": 4132.34, + "probability": 0.4692 + }, + { + "start": 4132.48, + "end": 4134.02, + "probability": 0.8478 + }, + { + "start": 4134.16, + "end": 4136.77, + "probability": 0.9859 + }, + { + "start": 4137.74, + "end": 4141.18, + "probability": 0.7313 + }, + { + "start": 4141.76, + "end": 4143.02, + "probability": 0.795 + }, + { + "start": 4143.12, + "end": 4146.34, + "probability": 0.9845 + }, + { + "start": 4147.38, + "end": 4149.26, + "probability": 0.9961 + }, + { + "start": 4149.32, + "end": 4152.36, + "probability": 0.9141 + }, + { + "start": 4152.82, + "end": 4154.04, + "probability": 0.9473 + }, + { + "start": 4154.7, + "end": 4157.2, + "probability": 0.983 + }, + { + "start": 4157.42, + "end": 4158.94, + "probability": 0.8311 + }, + { + "start": 4159.46, + "end": 4161.82, + "probability": 0.9293 + }, + { + "start": 4162.34, + "end": 4164.42, + "probability": 0.9822 + }, + { + "start": 4164.42, + "end": 4166.06, + "probability": 0.9336 + }, + { + "start": 4166.68, + "end": 4171.2, + "probability": 0.8716 + }, + { + "start": 4171.2, + "end": 4173.92, + "probability": 0.9985 + }, + { + "start": 4174.46, + "end": 4177.88, + "probability": 0.9749 + }, + { + "start": 4178.72, + "end": 4180.56, + "probability": 0.7242 + }, + { + "start": 4180.84, + "end": 4183.42, + "probability": 0.8784 + }, + { + "start": 4184.14, + "end": 4188.16, + "probability": 0.9219 + }, + { + "start": 4188.74, + "end": 4189.72, + "probability": 0.8488 + }, + { + "start": 4189.96, + "end": 4192.14, + "probability": 0.9111 + }, + { + "start": 4192.64, + "end": 4194.34, + "probability": 0.5433 + }, + { + "start": 4194.44, + "end": 4194.74, + "probability": 0.3946 + }, + { + "start": 4194.88, + "end": 4195.56, + "probability": 0.558 + }, + { + "start": 4195.68, + "end": 4197.84, + "probability": 0.8483 + }, + { + "start": 4198.24, + "end": 4201.4, + "probability": 0.7641 + }, + { + "start": 4201.44, + "end": 4204.42, + "probability": 0.8769 + }, + { + "start": 4204.98, + "end": 4207.06, + "probability": 0.9941 + }, + { + "start": 4207.86, + "end": 4211.56, + "probability": 0.8708 + }, + { + "start": 4212.3, + "end": 4214.68, + "probability": 0.9707 + }, + { + "start": 4214.82, + "end": 4216.76, + "probability": 0.7495 + }, + { + "start": 4216.88, + "end": 4217.52, + "probability": 0.5518 + }, + { + "start": 4218.06, + "end": 4219.65, + "probability": 0.9395 + }, + { + "start": 4220.1, + "end": 4224.34, + "probability": 0.9867 + }, + { + "start": 4225.02, + "end": 4226.08, + "probability": 0.9513 + }, + { + "start": 4226.22, + "end": 4226.7, + "probability": 0.7704 + }, + { + "start": 4227.0, + "end": 4228.12, + "probability": 0.9829 + }, + { + "start": 4228.22, + "end": 4229.6, + "probability": 0.9298 + }, + { + "start": 4229.7, + "end": 4230.18, + "probability": 0.8789 + }, + { + "start": 4230.64, + "end": 4232.83, + "probability": 0.7397 + }, + { + "start": 4233.16, + "end": 4234.52, + "probability": 0.776 + }, + { + "start": 4235.04, + "end": 4239.7, + "probability": 0.9587 + }, + { + "start": 4240.1, + "end": 4241.76, + "probability": 0.988 + }, + { + "start": 4243.94, + "end": 4246.98, + "probability": 0.8757 + }, + { + "start": 4247.72, + "end": 4250.16, + "probability": 0.5095 + }, + { + "start": 4251.76, + "end": 4254.68, + "probability": 0.9941 + }, + { + "start": 4254.68, + "end": 4257.2, + "probability": 0.9548 + }, + { + "start": 4257.8, + "end": 4261.82, + "probability": 0.6429 + }, + { + "start": 4271.33, + "end": 4274.08, + "probability": 0.0402 + }, + { + "start": 4282.84, + "end": 4283.18, + "probability": 0.0031 + }, + { + "start": 4283.18, + "end": 4283.18, + "probability": 0.0884 + }, + { + "start": 4283.18, + "end": 4283.34, + "probability": 0.0313 + }, + { + "start": 4283.34, + "end": 4283.54, + "probability": 0.2163 + }, + { + "start": 4283.54, + "end": 4285.54, + "probability": 0.7569 + }, + { + "start": 4285.96, + "end": 4289.26, + "probability": 0.7949 + }, + { + "start": 4289.8, + "end": 4290.66, + "probability": 0.0533 + }, + { + "start": 4292.08, + "end": 4292.28, + "probability": 0.3148 + }, + { + "start": 4293.24, + "end": 4293.5, + "probability": 0.0621 + }, + { + "start": 4293.66, + "end": 4298.22, + "probability": 0.9366 + }, + { + "start": 4298.5, + "end": 4301.04, + "probability": 0.896 + }, + { + "start": 4302.44, + "end": 4303.46, + "probability": 0.7556 + }, + { + "start": 4305.68, + "end": 4305.68, + "probability": 0.6048 + }, + { + "start": 4305.68, + "end": 4307.1, + "probability": 0.7781 + }, + { + "start": 4307.26, + "end": 4308.0, + "probability": 0.5876 + }, + { + "start": 4308.4, + "end": 4310.08, + "probability": 0.4355 + }, + { + "start": 4310.08, + "end": 4310.16, + "probability": 0.5959 + }, + { + "start": 4310.26, + "end": 4312.3, + "probability": 0.9958 + }, + { + "start": 4312.5, + "end": 4313.98, + "probability": 0.9044 + }, + { + "start": 4314.94, + "end": 4315.08, + "probability": 0.0022 + }, + { + "start": 4315.08, + "end": 4315.08, + "probability": 0.4144 + }, + { + "start": 4315.08, + "end": 4315.82, + "probability": 0.6339 + }, + { + "start": 4316.96, + "end": 4319.88, + "probability": 0.9525 + }, + { + "start": 4320.98, + "end": 4324.0, + "probability": 0.6546 + }, + { + "start": 4324.0, + "end": 4325.76, + "probability": 0.7525 + }, + { + "start": 4325.84, + "end": 4326.28, + "probability": 0.1771 + }, + { + "start": 4327.34, + "end": 4332.28, + "probability": 0.6911 + }, + { + "start": 4332.6, + "end": 4333.18, + "probability": 0.7841 + }, + { + "start": 4342.12, + "end": 4346.64, + "probability": 0.4947 + }, + { + "start": 4347.62, + "end": 4347.96, + "probability": 0.8121 + }, + { + "start": 4348.1, + "end": 4349.86, + "probability": 0.8744 + }, + { + "start": 4349.94, + "end": 4350.96, + "probability": 0.8221 + }, + { + "start": 4351.68, + "end": 4354.46, + "probability": 0.9823 + }, + { + "start": 4354.6, + "end": 4356.36, + "probability": 0.9667 + }, + { + "start": 4357.52, + "end": 4361.6, + "probability": 0.8661 + }, + { + "start": 4363.48, + "end": 4363.98, + "probability": 0.741 + }, + { + "start": 4364.14, + "end": 4364.6, + "probability": 0.7782 + }, + { + "start": 4364.72, + "end": 4368.44, + "probability": 0.9973 + }, + { + "start": 4368.44, + "end": 4371.88, + "probability": 0.995 + }, + { + "start": 4372.5, + "end": 4373.82, + "probability": 0.9478 + }, + { + "start": 4375.14, + "end": 4378.04, + "probability": 0.8836 + }, + { + "start": 4378.6, + "end": 4380.77, + "probability": 0.9778 + }, + { + "start": 4381.72, + "end": 4383.84, + "probability": 0.9644 + }, + { + "start": 4384.7, + "end": 4385.26, + "probability": 0.9435 + }, + { + "start": 4385.74, + "end": 4388.08, + "probability": 0.9976 + }, + { + "start": 4388.84, + "end": 4389.66, + "probability": 0.516 + }, + { + "start": 4390.58, + "end": 4395.3, + "probability": 0.8588 + }, + { + "start": 4395.76, + "end": 4396.72, + "probability": 0.7241 + }, + { + "start": 4396.86, + "end": 4399.82, + "probability": 0.9897 + }, + { + "start": 4400.7, + "end": 4403.9, + "probability": 0.8079 + }, + { + "start": 4403.9, + "end": 4407.74, + "probability": 0.9937 + }, + { + "start": 4408.66, + "end": 4410.88, + "probability": 0.9851 + }, + { + "start": 4411.36, + "end": 4414.26, + "probability": 0.8819 + }, + { + "start": 4414.78, + "end": 4418.96, + "probability": 0.995 + }, + { + "start": 4419.76, + "end": 4424.3, + "probability": 0.9646 + }, + { + "start": 4424.56, + "end": 4426.4, + "probability": 0.9896 + }, + { + "start": 4427.2, + "end": 4429.48, + "probability": 0.994 + }, + { + "start": 4430.36, + "end": 4434.94, + "probability": 0.9832 + }, + { + "start": 4435.68, + "end": 4438.04, + "probability": 0.9858 + }, + { + "start": 4438.62, + "end": 4440.1, + "probability": 0.8031 + }, + { + "start": 4440.7, + "end": 4441.96, + "probability": 0.7271 + }, + { + "start": 4442.48, + "end": 4448.3, + "probability": 0.9789 + }, + { + "start": 4449.22, + "end": 4453.38, + "probability": 0.9648 + }, + { + "start": 4454.22, + "end": 4458.16, + "probability": 0.8835 + }, + { + "start": 4459.34, + "end": 4462.04, + "probability": 0.9452 + }, + { + "start": 4462.64, + "end": 4464.12, + "probability": 0.9778 + }, + { + "start": 4464.7, + "end": 4469.24, + "probability": 0.9717 + }, + { + "start": 4469.32, + "end": 4470.74, + "probability": 0.9733 + }, + { + "start": 4471.2, + "end": 4471.74, + "probability": 0.6162 + }, + { + "start": 4471.82, + "end": 4472.38, + "probability": 0.8119 + }, + { + "start": 4472.5, + "end": 4474.96, + "probability": 0.9688 + }, + { + "start": 4475.54, + "end": 4478.64, + "probability": 0.9216 + }, + { + "start": 4478.68, + "end": 4480.0, + "probability": 0.8455 + }, + { + "start": 4480.58, + "end": 4481.96, + "probability": 0.8913 + }, + { + "start": 4482.0, + "end": 4482.22, + "probability": 0.8715 + }, + { + "start": 4482.78, + "end": 4484.76, + "probability": 0.9606 + }, + { + "start": 4485.04, + "end": 4487.32, + "probability": 0.6888 + }, + { + "start": 4487.4, + "end": 4488.16, + "probability": 0.7776 + }, + { + "start": 4498.8, + "end": 4502.1, + "probability": 0.725 + }, + { + "start": 4502.64, + "end": 4506.44, + "probability": 0.9781 + }, + { + "start": 4507.54, + "end": 4511.1, + "probability": 0.9945 + }, + { + "start": 4511.26, + "end": 4515.24, + "probability": 0.9568 + }, + { + "start": 4515.4, + "end": 4518.78, + "probability": 0.9304 + }, + { + "start": 4518.78, + "end": 4521.96, + "probability": 0.924 + }, + { + "start": 4525.66, + "end": 4526.48, + "probability": 0.5609 + }, + { + "start": 4526.6, + "end": 4528.82, + "probability": 0.9911 + }, + { + "start": 4529.24, + "end": 4532.8, + "probability": 0.9912 + }, + { + "start": 4533.46, + "end": 4536.78, + "probability": 0.9784 + }, + { + "start": 4536.78, + "end": 4538.34, + "probability": 0.9388 + }, + { + "start": 4538.44, + "end": 4542.98, + "probability": 0.5032 + }, + { + "start": 4542.98, + "end": 4543.58, + "probability": 0.9394 + }, + { + "start": 4544.68, + "end": 4548.06, + "probability": 0.0753 + }, + { + "start": 4565.42, + "end": 4566.06, + "probability": 0.0237 + }, + { + "start": 4566.06, + "end": 4566.16, + "probability": 0.096 + }, + { + "start": 4566.16, + "end": 4566.16, + "probability": 0.028 + }, + { + "start": 4566.16, + "end": 4566.16, + "probability": 0.6295 + }, + { + "start": 4566.16, + "end": 4566.16, + "probability": 0.6976 + }, + { + "start": 4566.16, + "end": 4570.02, + "probability": 0.6511 + }, + { + "start": 4570.36, + "end": 4575.64, + "probability": 0.9372 + }, + { + "start": 4576.54, + "end": 4578.94, + "probability": 0.3115 + }, + { + "start": 4579.08, + "end": 4579.38, + "probability": 0.4258 + }, + { + "start": 4579.9, + "end": 4585.24, + "probability": 0.8665 + }, + { + "start": 4585.42, + "end": 4586.4, + "probability": 0.953 + }, + { + "start": 4588.92, + "end": 4590.14, + "probability": 0.7146 + }, + { + "start": 4590.24, + "end": 4592.36, + "probability": 0.6132 + }, + { + "start": 4592.7, + "end": 4593.94, + "probability": 0.6357 + }, + { + "start": 4595.76, + "end": 4597.7, + "probability": 0.7751 + }, + { + "start": 4598.46, + "end": 4602.68, + "probability": 0.9839 + }, + { + "start": 4602.68, + "end": 4607.14, + "probability": 0.8888 + }, + { + "start": 4607.66, + "end": 4610.7, + "probability": 0.2947 + }, + { + "start": 4611.34, + "end": 4614.5, + "probability": 0.6278 + }, + { + "start": 4614.52, + "end": 4615.16, + "probability": 0.8642 + }, + { + "start": 4635.96, + "end": 4638.3, + "probability": 0.6312 + }, + { + "start": 4639.76, + "end": 4645.84, + "probability": 0.9546 + }, + { + "start": 4646.64, + "end": 4650.3, + "probability": 0.9932 + }, + { + "start": 4650.78, + "end": 4652.32, + "probability": 0.9954 + }, + { + "start": 4652.64, + "end": 4655.56, + "probability": 0.9696 + }, + { + "start": 4656.32, + "end": 4659.36, + "probability": 0.9708 + }, + { + "start": 4659.84, + "end": 4661.34, + "probability": 0.9829 + }, + { + "start": 4661.82, + "end": 4663.92, + "probability": 0.9915 + }, + { + "start": 4664.48, + "end": 4665.74, + "probability": 0.8837 + }, + { + "start": 4666.28, + "end": 4668.98, + "probability": 0.9753 + }, + { + "start": 4669.12, + "end": 4670.34, + "probability": 0.9199 + }, + { + "start": 4670.88, + "end": 4671.97, + "probability": 0.99 + }, + { + "start": 4672.92, + "end": 4677.28, + "probability": 0.9519 + }, + { + "start": 4677.68, + "end": 4679.9, + "probability": 0.9905 + }, + { + "start": 4680.32, + "end": 4686.26, + "probability": 0.9955 + }, + { + "start": 4686.5, + "end": 4688.6, + "probability": 0.9137 + }, + { + "start": 4688.66, + "end": 4689.7, + "probability": 0.9132 + }, + { + "start": 4691.12, + "end": 4691.98, + "probability": 0.8676 + }, + { + "start": 4692.7, + "end": 4693.98, + "probability": 0.5061 + }, + { + "start": 4694.42, + "end": 4698.42, + "probability": 0.9863 + }, + { + "start": 4698.42, + "end": 4702.38, + "probability": 0.9726 + }, + { + "start": 4703.16, + "end": 4706.38, + "probability": 0.9226 + }, + { + "start": 4706.9, + "end": 4711.25, + "probability": 0.5921 + }, + { + "start": 4712.56, + "end": 4715.54, + "probability": 0.9276 + }, + { + "start": 4716.36, + "end": 4718.18, + "probability": 0.8524 + }, + { + "start": 4719.12, + "end": 4723.88, + "probability": 0.9768 + }, + { + "start": 4724.6, + "end": 4728.66, + "probability": 0.9961 + }, + { + "start": 4729.12, + "end": 4734.22, + "probability": 0.9878 + }, + { + "start": 4735.24, + "end": 4738.04, + "probability": 0.9832 + }, + { + "start": 4738.04, + "end": 4741.58, + "probability": 0.9882 + }, + { + "start": 4742.1, + "end": 4747.66, + "probability": 0.975 + }, + { + "start": 4748.86, + "end": 4751.86, + "probability": 0.9944 + }, + { + "start": 4752.32, + "end": 4754.64, + "probability": 0.9304 + }, + { + "start": 4755.24, + "end": 4758.36, + "probability": 0.967 + }, + { + "start": 4759.08, + "end": 4762.82, + "probability": 0.9833 + }, + { + "start": 4764.4, + "end": 4767.74, + "probability": 0.6445 + }, + { + "start": 4768.32, + "end": 4771.3, + "probability": 0.9224 + }, + { + "start": 4772.2, + "end": 4776.54, + "probability": 0.9765 + }, + { + "start": 4776.94, + "end": 4780.76, + "probability": 0.9925 + }, + { + "start": 4780.76, + "end": 4785.12, + "probability": 0.9968 + }, + { + "start": 4785.16, + "end": 4786.7, + "probability": 0.8654 + }, + { + "start": 4788.02, + "end": 4790.2, + "probability": 0.9054 + }, + { + "start": 4790.74, + "end": 4792.92, + "probability": 0.9814 + }, + { + "start": 4793.66, + "end": 4798.96, + "probability": 0.9736 + }, + { + "start": 4799.68, + "end": 4805.02, + "probability": 0.994 + }, + { + "start": 4805.96, + "end": 4810.08, + "probability": 0.9788 + }, + { + "start": 4810.48, + "end": 4813.1, + "probability": 0.9934 + }, + { + "start": 4813.68, + "end": 4814.92, + "probability": 0.9407 + }, + { + "start": 4815.32, + "end": 4818.26, + "probability": 0.9858 + }, + { + "start": 4819.52, + "end": 4820.38, + "probability": 0.8994 + }, + { + "start": 4820.44, + "end": 4827.2, + "probability": 0.9932 + }, + { + "start": 4828.4, + "end": 4830.18, + "probability": 0.9906 + }, + { + "start": 4830.24, + "end": 4832.86, + "probability": 0.994 + }, + { + "start": 4833.62, + "end": 4837.22, + "probability": 0.9936 + }, + { + "start": 4837.22, + "end": 4842.36, + "probability": 0.8989 + }, + { + "start": 4842.94, + "end": 4847.18, + "probability": 0.9182 + }, + { + "start": 4847.18, + "end": 4851.12, + "probability": 0.9424 + }, + { + "start": 4851.74, + "end": 4856.08, + "probability": 0.9924 + }, + { + "start": 4856.7, + "end": 4858.12, + "probability": 0.9712 + }, + { + "start": 4858.86, + "end": 4860.58, + "probability": 0.9655 + }, + { + "start": 4862.72, + "end": 4863.74, + "probability": 0.6969 + }, + { + "start": 4863.86, + "end": 4867.76, + "probability": 0.9657 + }, + { + "start": 4868.6, + "end": 4869.75, + "probability": 0.8867 + }, + { + "start": 4870.78, + "end": 4873.1, + "probability": 0.9966 + }, + { + "start": 4874.22, + "end": 4878.68, + "probability": 0.9965 + }, + { + "start": 4879.14, + "end": 4883.48, + "probability": 0.9857 + }, + { + "start": 4883.98, + "end": 4886.32, + "probability": 0.972 + }, + { + "start": 4887.52, + "end": 4892.78, + "probability": 0.9976 + }, + { + "start": 4894.02, + "end": 4896.7, + "probability": 0.9884 + }, + { + "start": 4896.92, + "end": 4897.56, + "probability": 0.9445 + }, + { + "start": 4898.0, + "end": 4899.94, + "probability": 0.9763 + }, + { + "start": 4900.68, + "end": 4902.52, + "probability": 0.9947 + }, + { + "start": 4903.12, + "end": 4905.74, + "probability": 0.9367 + }, + { + "start": 4906.32, + "end": 4910.74, + "probability": 0.9941 + }, + { + "start": 4911.44, + "end": 4914.18, + "probability": 0.9946 + }, + { + "start": 4915.24, + "end": 4919.28, + "probability": 0.9858 + }, + { + "start": 4919.28, + "end": 4923.6, + "probability": 0.9455 + }, + { + "start": 4924.22, + "end": 4924.78, + "probability": 0.8514 + }, + { + "start": 4925.5, + "end": 4930.56, + "probability": 0.9956 + }, + { + "start": 4931.46, + "end": 4935.96, + "probability": 0.9954 + }, + { + "start": 4936.76, + "end": 4940.9, + "probability": 0.9855 + }, + { + "start": 4940.9, + "end": 4945.16, + "probability": 0.6128 + }, + { + "start": 4945.56, + "end": 4946.86, + "probability": 0.8789 + }, + { + "start": 4948.88, + "end": 4951.34, + "probability": 0.9912 + }, + { + "start": 4952.28, + "end": 4957.98, + "probability": 0.7495 + }, + { + "start": 4958.34, + "end": 4962.68, + "probability": 0.9678 + }, + { + "start": 4962.68, + "end": 4966.84, + "probability": 0.9963 + }, + { + "start": 4967.88, + "end": 4971.84, + "probability": 0.9982 + }, + { + "start": 4972.54, + "end": 4974.08, + "probability": 0.9977 + }, + { + "start": 4974.98, + "end": 4977.04, + "probability": 0.8967 + }, + { + "start": 4977.56, + "end": 4982.42, + "probability": 0.9731 + }, + { + "start": 4982.94, + "end": 4985.4, + "probability": 0.9969 + }, + { + "start": 4986.8, + "end": 4990.66, + "probability": 0.9938 + }, + { + "start": 4991.04, + "end": 4994.62, + "probability": 0.99 + }, + { + "start": 4994.88, + "end": 4995.34, + "probability": 0.7498 + }, + { + "start": 4996.66, + "end": 4999.0, + "probability": 0.9729 + }, + { + "start": 4999.66, + "end": 5002.98, + "probability": 0.9178 + }, + { + "start": 5024.12, + "end": 5026.58, + "probability": 0.6113 + }, + { + "start": 5027.3, + "end": 5028.34, + "probability": 0.9422 + }, + { + "start": 5028.9, + "end": 5029.68, + "probability": 0.8434 + }, + { + "start": 5030.62, + "end": 5035.1, + "probability": 0.9883 + }, + { + "start": 5035.1, + "end": 5041.26, + "probability": 0.9928 + }, + { + "start": 5042.42, + "end": 5044.28, + "probability": 0.7978 + }, + { + "start": 5045.12, + "end": 5049.56, + "probability": 0.9856 + }, + { + "start": 5050.3, + "end": 5054.18, + "probability": 0.8107 + }, + { + "start": 5055.12, + "end": 5060.2, + "probability": 0.9263 + }, + { + "start": 5061.24, + "end": 5064.12, + "probability": 0.9882 + }, + { + "start": 5065.3, + "end": 5070.34, + "probability": 0.999 + }, + { + "start": 5070.94, + "end": 5077.72, + "probability": 0.9966 + }, + { + "start": 5078.58, + "end": 5078.96, + "probability": 0.2243 + }, + { + "start": 5079.14, + "end": 5082.58, + "probability": 0.9874 + }, + { + "start": 5082.58, + "end": 5085.64, + "probability": 0.9961 + }, + { + "start": 5086.5, + "end": 5090.54, + "probability": 0.9556 + }, + { + "start": 5090.54, + "end": 5095.02, + "probability": 0.9883 + }, + { + "start": 5095.58, + "end": 5097.8, + "probability": 0.8972 + }, + { + "start": 5099.06, + "end": 5101.54, + "probability": 0.9352 + }, + { + "start": 5101.56, + "end": 5104.7, + "probability": 0.9598 + }, + { + "start": 5105.3, + "end": 5107.76, + "probability": 0.9912 + }, + { + "start": 5108.68, + "end": 5113.08, + "probability": 0.9735 + }, + { + "start": 5113.16, + "end": 5113.64, + "probability": 0.7362 + }, + { + "start": 5117.22, + "end": 5119.18, + "probability": 0.9718 + }, + { + "start": 5119.26, + "end": 5121.72, + "probability": 0.9806 + }, + { + "start": 5122.56, + "end": 5125.36, + "probability": 0.9938 + }, + { + "start": 5125.36, + "end": 5128.38, + "probability": 0.9133 + }, + { + "start": 5129.1, + "end": 5132.52, + "probability": 0.4437 + }, + { + "start": 5132.92, + "end": 5134.34, + "probability": 0.1085 + }, + { + "start": 5138.06, + "end": 5143.88, + "probability": 0.0246 + }, + { + "start": 5143.88, + "end": 5146.04, + "probability": 0.023 + }, + { + "start": 5146.62, + "end": 5149.46, + "probability": 0.0917 + }, + { + "start": 5150.32, + "end": 5150.74, + "probability": 0.0287 + }, + { + "start": 5150.74, + "end": 5152.58, + "probability": 0.292 + }, + { + "start": 5153.12, + "end": 5156.11, + "probability": 0.9643 + }, + { + "start": 5157.6, + "end": 5159.8, + "probability": 0.5405 + }, + { + "start": 5160.54, + "end": 5162.38, + "probability": 0.3506 + }, + { + "start": 5162.46, + "end": 5164.12, + "probability": 0.834 + }, + { + "start": 5165.18, + "end": 5167.96, + "probability": 0.9649 + }, + { + "start": 5168.6, + "end": 5169.14, + "probability": 0.8397 + }, + { + "start": 5169.7, + "end": 5170.14, + "probability": 0.9865 + }, + { + "start": 5170.98, + "end": 5172.96, + "probability": 0.784 + }, + { + "start": 5172.96, + "end": 5175.34, + "probability": 0.9429 + }, + { + "start": 5175.54, + "end": 5176.36, + "probability": 0.5115 + }, + { + "start": 5177.82, + "end": 5179.76, + "probability": 0.9126 + }, + { + "start": 5180.82, + "end": 5188.44, + "probability": 0.674 + }, + { + "start": 5188.44, + "end": 5189.66, + "probability": 0.8242 + }, + { + "start": 5190.2, + "end": 5190.24, + "probability": 0.5794 + }, + { + "start": 5190.24, + "end": 5191.8, + "probability": 0.8132 + }, + { + "start": 5191.96, + "end": 5193.2, + "probability": 0.4952 + }, + { + "start": 5193.28, + "end": 5194.64, + "probability": 0.6833 + }, + { + "start": 5194.74, + "end": 5195.62, + "probability": 0.6488 + }, + { + "start": 5195.62, + "end": 5196.9, + "probability": 0.7891 + }, + { + "start": 5197.16, + "end": 5202.12, + "probability": 0.874 + }, + { + "start": 5202.28, + "end": 5203.92, + "probability": 0.6819 + }, + { + "start": 5204.52, + "end": 5205.38, + "probability": 0.7647 + }, + { + "start": 5215.43, + "end": 5218.5, + "probability": 0.7341 + }, + { + "start": 5219.48, + "end": 5220.6, + "probability": 0.3557 + }, + { + "start": 5221.84, + "end": 5224.38, + "probability": 0.7037 + }, + { + "start": 5226.97, + "end": 5229.64, + "probability": 0.0311 + }, + { + "start": 5229.64, + "end": 5230.76, + "probability": 0.1782 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.0, + "end": 5323.0, + "probability": 0.0 + }, + { + "start": 5323.24, + "end": 5323.58, + "probability": 0.0925 + }, + { + "start": 5323.9, + "end": 5325.27, + "probability": 0.9578 + }, + { + "start": 5326.08, + "end": 5328.24, + "probability": 0.639 + }, + { + "start": 5329.16, + "end": 5331.64, + "probability": 0.8 + }, + { + "start": 5331.64, + "end": 5334.22, + "probability": 0.7845 + }, + { + "start": 5334.56, + "end": 5338.78, + "probability": 0.6913 + }, + { + "start": 5339.84, + "end": 5342.64, + "probability": 0.7162 + }, + { + "start": 5344.14, + "end": 5347.22, + "probability": 0.9158 + }, + { + "start": 5347.7, + "end": 5350.22, + "probability": 0.9095 + }, + { + "start": 5351.0, + "end": 5352.76, + "probability": 0.6752 + }, + { + "start": 5353.18, + "end": 5358.62, + "probability": 0.9477 + }, + { + "start": 5358.66, + "end": 5358.98, + "probability": 0.4171 + }, + { + "start": 5359.12, + "end": 5359.7, + "probability": 0.8992 + }, + { + "start": 5359.88, + "end": 5362.88, + "probability": 0.9925 + }, + { + "start": 5364.6, + "end": 5365.32, + "probability": 0.5845 + }, + { + "start": 5365.5, + "end": 5366.26, + "probability": 0.8081 + }, + { + "start": 5366.42, + "end": 5367.4, + "probability": 0.6255 + }, + { + "start": 5367.98, + "end": 5370.18, + "probability": 0.9692 + }, + { + "start": 5371.16, + "end": 5375.96, + "probability": 0.9734 + }, + { + "start": 5376.74, + "end": 5378.0, + "probability": 0.9939 + }, + { + "start": 5380.66, + "end": 5383.34, + "probability": 0.6054 + }, + { + "start": 5384.66, + "end": 5388.7, + "probability": 0.8536 + }, + { + "start": 5389.28, + "end": 5389.56, + "probability": 0.7665 + }, + { + "start": 5391.36, + "end": 5393.92, + "probability": 0.812 + }, + { + "start": 5394.66, + "end": 5397.78, + "probability": 0.9185 + }, + { + "start": 5397.8, + "end": 5398.48, + "probability": 0.7797 + }, + { + "start": 5408.48, + "end": 5409.62, + "probability": 0.4411 + }, + { + "start": 5411.36, + "end": 5412.5, + "probability": 0.6918 + }, + { + "start": 5413.52, + "end": 5416.56, + "probability": 0.9974 + }, + { + "start": 5416.56, + "end": 5419.38, + "probability": 0.9952 + }, + { + "start": 5419.68, + "end": 5420.66, + "probability": 0.7785 + }, + { + "start": 5420.7, + "end": 5422.0, + "probability": 0.9724 + }, + { + "start": 5423.0, + "end": 5428.2, + "probability": 0.9938 + }, + { + "start": 5428.26, + "end": 5428.76, + "probability": 0.8191 + }, + { + "start": 5429.74, + "end": 5432.72, + "probability": 0.9744 + }, + { + "start": 5432.72, + "end": 5436.52, + "probability": 0.9851 + }, + { + "start": 5437.66, + "end": 5440.28, + "probability": 0.9986 + }, + { + "start": 5440.74, + "end": 5443.18, + "probability": 0.9894 + }, + { + "start": 5443.92, + "end": 5446.86, + "probability": 0.9958 + }, + { + "start": 5447.72, + "end": 5451.94, + "probability": 0.9946 + }, + { + "start": 5451.94, + "end": 5456.72, + "probability": 0.9924 + }, + { + "start": 5458.34, + "end": 5458.82, + "probability": 0.4041 + }, + { + "start": 5459.02, + "end": 5462.18, + "probability": 0.9976 + }, + { + "start": 5462.28, + "end": 5466.06, + "probability": 0.9976 + }, + { + "start": 5466.92, + "end": 5470.2, + "probability": 0.9743 + }, + { + "start": 5470.2, + "end": 5474.02, + "probability": 0.9977 + }, + { + "start": 5474.5, + "end": 5475.94, + "probability": 0.7594 + }, + { + "start": 5476.78, + "end": 5480.72, + "probability": 0.981 + }, + { + "start": 5481.78, + "end": 5486.68, + "probability": 0.8888 + }, + { + "start": 5486.68, + "end": 5489.66, + "probability": 0.9802 + }, + { + "start": 5489.74, + "end": 5495.66, + "probability": 0.9288 + }, + { + "start": 5496.32, + "end": 5499.24, + "probability": 0.8965 + }, + { + "start": 5499.86, + "end": 5500.6, + "probability": 0.8593 + }, + { + "start": 5500.82, + "end": 5503.48, + "probability": 0.9971 + }, + { + "start": 5503.48, + "end": 5506.74, + "probability": 0.9992 + }, + { + "start": 5507.04, + "end": 5510.74, + "probability": 0.9957 + }, + { + "start": 5510.74, + "end": 5514.44, + "probability": 0.994 + }, + { + "start": 5514.62, + "end": 5519.7, + "probability": 0.988 + }, + { + "start": 5520.7, + "end": 5522.24, + "probability": 0.8791 + }, + { + "start": 5522.46, + "end": 5523.52, + "probability": 0.7774 + }, + { + "start": 5524.0, + "end": 5527.16, + "probability": 0.9924 + }, + { + "start": 5527.32, + "end": 5531.92, + "probability": 0.9975 + }, + { + "start": 5532.08, + "end": 5536.42, + "probability": 0.6523 + }, + { + "start": 5536.6, + "end": 5537.62, + "probability": 0.8809 + }, + { + "start": 5537.96, + "end": 5539.32, + "probability": 0.8647 + }, + { + "start": 5539.5, + "end": 5541.78, + "probability": 0.9741 + }, + { + "start": 5542.48, + "end": 5546.76, + "probability": 0.8648 + }, + { + "start": 5547.42, + "end": 5549.64, + "probability": 0.8357 + }, + { + "start": 5550.36, + "end": 5552.3, + "probability": 0.5743 + }, + { + "start": 5552.52, + "end": 5558.74, + "probability": 0.9868 + }, + { + "start": 5559.22, + "end": 5561.86, + "probability": 0.9599 + }, + { + "start": 5563.02, + "end": 5569.86, + "probability": 0.9894 + }, + { + "start": 5569.86, + "end": 5575.44, + "probability": 0.9973 + }, + { + "start": 5576.12, + "end": 5582.16, + "probability": 0.9827 + }, + { + "start": 5582.66, + "end": 5586.06, + "probability": 0.7891 + }, + { + "start": 5586.78, + "end": 5591.06, + "probability": 0.9943 + }, + { + "start": 5591.72, + "end": 5593.32, + "probability": 0.9402 + }, + { + "start": 5593.62, + "end": 5594.78, + "probability": 0.8583 + }, + { + "start": 5594.84, + "end": 5596.36, + "probability": 0.9176 + }, + { + "start": 5596.8, + "end": 5598.6, + "probability": 0.886 + }, + { + "start": 5598.68, + "end": 5598.9, + "probability": 0.703 + }, + { + "start": 5599.88, + "end": 5603.54, + "probability": 0.9716 + }, + { + "start": 5604.0, + "end": 5606.36, + "probability": 0.9979 + }, + { + "start": 5607.58, + "end": 5611.44, + "probability": 0.8761 + }, + { + "start": 5612.06, + "end": 5612.26, + "probability": 0.5135 + }, + { + "start": 5612.26, + "end": 5617.46, + "probability": 0.9441 + }, + { + "start": 5617.52, + "end": 5621.12, + "probability": 0.6989 + }, + { + "start": 5627.88, + "end": 5630.26, + "probability": 0.5707 + }, + { + "start": 5631.26, + "end": 5633.52, + "probability": 0.8218 + }, + { + "start": 5633.72, + "end": 5637.04, + "probability": 0.6176 + }, + { + "start": 5637.28, + "end": 5639.49, + "probability": 0.8945 + }, + { + "start": 5640.58, + "end": 5641.12, + "probability": 0.4763 + }, + { + "start": 5641.5, + "end": 5645.54, + "probability": 0.949 + }, + { + "start": 5646.04, + "end": 5649.89, + "probability": 0.9697 + }, + { + "start": 5650.4, + "end": 5654.16, + "probability": 0.9657 + }, + { + "start": 5655.06, + "end": 5656.5, + "probability": 0.5538 + }, + { + "start": 5656.56, + "end": 5657.38, + "probability": 0.9395 + }, + { + "start": 5657.5, + "end": 5658.32, + "probability": 0.8949 + }, + { + "start": 5658.5, + "end": 5659.33, + "probability": 0.9268 + }, + { + "start": 5659.88, + "end": 5662.54, + "probability": 0.9496 + }, + { + "start": 5662.62, + "end": 5663.3, + "probability": 0.9777 + }, + { + "start": 5663.44, + "end": 5666.08, + "probability": 0.8036 + }, + { + "start": 5666.3, + "end": 5667.84, + "probability": 0.7472 + }, + { + "start": 5668.18, + "end": 5671.22, + "probability": 0.9925 + }, + { + "start": 5671.52, + "end": 5673.46, + "probability": 0.8784 + }, + { + "start": 5673.66, + "end": 5674.66, + "probability": 0.5784 + }, + { + "start": 5674.7, + "end": 5675.84, + "probability": 0.8473 + }, + { + "start": 5676.34, + "end": 5677.58, + "probability": 0.2167 + }, + { + "start": 5679.88, + "end": 5681.72, + "probability": 0.03 + }, + { + "start": 5681.72, + "end": 5682.06, + "probability": 0.1442 + }, + { + "start": 5682.52, + "end": 5684.18, + "probability": 0.9011 + }, + { + "start": 5684.22, + "end": 5685.44, + "probability": 0.8392 + }, + { + "start": 5685.58, + "end": 5686.54, + "probability": 0.8917 + }, + { + "start": 5686.64, + "end": 5686.92, + "probability": 0.8181 + }, + { + "start": 5687.9, + "end": 5693.08, + "probability": 0.956 + }, + { + "start": 5695.88, + "end": 5696.76, + "probability": 0.7581 + }, + { + "start": 5700.18, + "end": 5702.9, + "probability": 0.5869 + }, + { + "start": 5712.92, + "end": 5713.7, + "probability": 0.0746 + }, + { + "start": 5713.7, + "end": 5713.7, + "probability": 0.0495 + }, + { + "start": 5713.7, + "end": 5713.7, + "probability": 0.1162 + }, + { + "start": 5713.7, + "end": 5713.7, + "probability": 0.2829 + }, + { + "start": 5713.7, + "end": 5716.66, + "probability": 0.4519 + }, + { + "start": 5717.16, + "end": 5719.34, + "probability": 0.9447 + }, + { + "start": 5720.12, + "end": 5723.32, + "probability": 0.9872 + }, + { + "start": 5723.52, + "end": 5725.4, + "probability": 0.4365 + }, + { + "start": 5726.28, + "end": 5728.36, + "probability": 0.9435 + }, + { + "start": 5732.1, + "end": 5733.68, + "probability": 0.7675 + }, + { + "start": 5743.66, + "end": 5746.92, + "probability": 0.7681 + }, + { + "start": 5748.36, + "end": 5752.86, + "probability": 0.9407 + }, + { + "start": 5752.9, + "end": 5753.64, + "probability": 0.8486 + }, + { + "start": 5754.5, + "end": 5756.24, + "probability": 0.8828 + }, + { + "start": 5756.4, + "end": 5757.36, + "probability": 0.8328 + }, + { + "start": 5758.2, + "end": 5763.5, + "probability": 0.9482 + }, + { + "start": 5764.3, + "end": 5765.52, + "probability": 0.3938 + }, + { + "start": 5766.04, + "end": 5771.22, + "probability": 0.7568 + }, + { + "start": 5772.88, + "end": 5779.96, + "probability": 0.9819 + }, + { + "start": 5781.22, + "end": 5782.74, + "probability": 0.8743 + }, + { + "start": 5783.56, + "end": 5786.68, + "probability": 0.769 + }, + { + "start": 5787.56, + "end": 5792.44, + "probability": 0.9431 + }, + { + "start": 5792.48, + "end": 5793.28, + "probability": 0.484 + }, + { + "start": 5794.14, + "end": 5799.12, + "probability": 0.9521 + }, + { + "start": 5800.2, + "end": 5803.34, + "probability": 0.8783 + }, + { + "start": 5803.34, + "end": 5806.34, + "probability": 0.9771 + }, + { + "start": 5806.74, + "end": 5807.5, + "probability": 0.5843 + }, + { + "start": 5807.94, + "end": 5811.38, + "probability": 0.8905 + }, + { + "start": 5812.9, + "end": 5813.49, + "probability": 0.4191 + }, + { + "start": 5813.74, + "end": 5819.92, + "probability": 0.9797 + }, + { + "start": 5820.68, + "end": 5822.82, + "probability": 0.7805 + }, + { + "start": 5823.44, + "end": 5826.96, + "probability": 0.9738 + }, + { + "start": 5826.96, + "end": 5831.1, + "probability": 0.9954 + }, + { + "start": 5831.27, + "end": 5834.74, + "probability": 0.6934 + }, + { + "start": 5835.54, + "end": 5836.48, + "probability": 0.7321 + }, + { + "start": 5837.34, + "end": 5837.98, + "probability": 0.7559 + }, + { + "start": 5838.64, + "end": 5840.84, + "probability": 0.9936 + }, + { + "start": 5841.28, + "end": 5841.92, + "probability": 0.865 + }, + { + "start": 5842.02, + "end": 5844.28, + "probability": 0.9081 + }, + { + "start": 5845.16, + "end": 5849.98, + "probability": 0.9771 + }, + { + "start": 5850.72, + "end": 5856.08, + "probability": 0.9978 + }, + { + "start": 5856.54, + "end": 5862.54, + "probability": 0.8089 + }, + { + "start": 5864.68, + "end": 5866.86, + "probability": 0.9651 + }, + { + "start": 5867.28, + "end": 5872.32, + "probability": 0.8958 + }, + { + "start": 5872.74, + "end": 5875.64, + "probability": 0.9962 + }, + { + "start": 5876.58, + "end": 5882.18, + "probability": 0.9842 + }, + { + "start": 5882.34, + "end": 5884.94, + "probability": 0.9948 + }, + { + "start": 5884.94, + "end": 5888.52, + "probability": 0.991 + }, + { + "start": 5889.6, + "end": 5890.74, + "probability": 0.7877 + }, + { + "start": 5890.9, + "end": 5897.7, + "probability": 0.9849 + }, + { + "start": 5898.2, + "end": 5901.82, + "probability": 0.992 + }, + { + "start": 5902.56, + "end": 5905.22, + "probability": 0.8327 + }, + { + "start": 5906.46, + "end": 5908.68, + "probability": 0.8423 + }, + { + "start": 5909.36, + "end": 5911.2, + "probability": 0.9756 + }, + { + "start": 5912.26, + "end": 5915.32, + "probability": 0.9037 + }, + { + "start": 5915.92, + "end": 5919.38, + "probability": 0.8388 + }, + { + "start": 5919.88, + "end": 5925.06, + "probability": 0.9498 + }, + { + "start": 5925.06, + "end": 5927.82, + "probability": 0.999 + }, + { + "start": 5929.88, + "end": 5931.58, + "probability": 0.9827 + }, + { + "start": 5933.56, + "end": 5934.82, + "probability": 0.8628 + }, + { + "start": 5934.9, + "end": 5935.5, + "probability": 0.7781 + }, + { + "start": 5935.62, + "end": 5939.26, + "probability": 0.9888 + }, + { + "start": 5939.26, + "end": 5945.62, + "probability": 0.9945 + }, + { + "start": 5946.46, + "end": 5949.92, + "probability": 0.9325 + }, + { + "start": 5949.96, + "end": 5952.5, + "probability": 0.9976 + }, + { + "start": 5953.16, + "end": 5954.4, + "probability": 0.2837 + }, + { + "start": 5954.62, + "end": 5956.24, + "probability": 0.6547 + }, + { + "start": 5956.4, + "end": 5956.54, + "probability": 0.6475 + }, + { + "start": 5957.28, + "end": 5958.65, + "probability": 0.5114 + }, + { + "start": 5960.04, + "end": 5964.68, + "probability": 0.8127 + }, + { + "start": 5964.68, + "end": 5968.85, + "probability": 0.8265 + }, + { + "start": 5970.14, + "end": 5973.28, + "probability": 0.9856 + }, + { + "start": 5973.94, + "end": 5974.62, + "probability": 0.5677 + }, + { + "start": 5974.84, + "end": 5976.74, + "probability": 0.8379 + }, + { + "start": 5977.22, + "end": 5981.26, + "probability": 0.8223 + }, + { + "start": 5982.51, + "end": 5985.38, + "probability": 0.9197 + }, + { + "start": 5985.86, + "end": 5989.32, + "probability": 0.8462 + }, + { + "start": 5991.3, + "end": 5992.42, + "probability": 0.6411 + }, + { + "start": 5993.94, + "end": 5998.64, + "probability": 0.8955 + }, + { + "start": 5998.72, + "end": 6000.0, + "probability": 0.9437 + }, + { + "start": 6000.8, + "end": 6002.2, + "probability": 0.4148 + }, + { + "start": 6002.29, + "end": 6005.7, + "probability": 0.8757 + }, + { + "start": 6006.01, + "end": 6006.08, + "probability": 0.4939 + }, + { + "start": 6006.08, + "end": 6006.2, + "probability": 0.2947 + }, + { + "start": 6006.78, + "end": 6010.44, + "probability": 0.8585 + }, + { + "start": 6011.56, + "end": 6013.76, + "probability": 0.8604 + }, + { + "start": 6014.36, + "end": 6016.0, + "probability": 0.8362 + }, + { + "start": 6016.18, + "end": 6016.98, + "probability": 0.8093 + }, + { + "start": 6017.28, + "end": 6018.9, + "probability": 0.9785 + }, + { + "start": 6019.68, + "end": 6024.8, + "probability": 0.9964 + }, + { + "start": 6025.64, + "end": 6025.94, + "probability": 0.4866 + }, + { + "start": 6026.26, + "end": 6034.3, + "probability": 0.9437 + }, + { + "start": 6034.3, + "end": 6040.08, + "probability": 0.9771 + }, + { + "start": 6041.86, + "end": 6045.06, + "probability": 0.9753 + }, + { + "start": 6045.16, + "end": 6046.11, + "probability": 0.9945 + }, + { + "start": 6046.48, + "end": 6047.51, + "probability": 0.9904 + }, + { + "start": 6047.7, + "end": 6048.92, + "probability": 0.947 + }, + { + "start": 6049.34, + "end": 6050.48, + "probability": 0.7231 + }, + { + "start": 6050.84, + "end": 6055.88, + "probability": 0.8188 + }, + { + "start": 6056.0, + "end": 6061.02, + "probability": 0.6706 + }, + { + "start": 6062.24, + "end": 6064.96, + "probability": 0.9876 + }, + { + "start": 6066.74, + "end": 6069.82, + "probability": 0.9302 + }, + { + "start": 6070.9, + "end": 6074.96, + "probability": 0.8615 + }, + { + "start": 6075.62, + "end": 6076.38, + "probability": 0.5145 + }, + { + "start": 6076.46, + "end": 6076.84, + "probability": 0.6006 + }, + { + "start": 6076.96, + "end": 6079.32, + "probability": 0.9737 + }, + { + "start": 6080.14, + "end": 6085.76, + "probability": 0.9331 + }, + { + "start": 6085.76, + "end": 6091.68, + "probability": 0.9985 + }, + { + "start": 6092.28, + "end": 6092.68, + "probability": 0.1333 + }, + { + "start": 6092.88, + "end": 6093.64, + "probability": 0.3057 + }, + { + "start": 6093.82, + "end": 6098.6, + "probability": 0.9728 + }, + { + "start": 6099.12, + "end": 6100.82, + "probability": 0.924 + }, + { + "start": 6101.96, + "end": 6105.3, + "probability": 0.8381 + }, + { + "start": 6106.12, + "end": 6108.46, + "probability": 0.3899 + }, + { + "start": 6109.32, + "end": 6112.52, + "probability": 0.7815 + }, + { + "start": 6113.3, + "end": 6116.04, + "probability": 0.9307 + }, + { + "start": 6117.18, + "end": 6122.41, + "probability": 0.8757 + }, + { + "start": 6122.76, + "end": 6126.9, + "probability": 0.9268 + }, + { + "start": 6128.08, + "end": 6129.56, + "probability": 0.7217 + }, + { + "start": 6129.6, + "end": 6130.46, + "probability": 0.9595 + }, + { + "start": 6130.66, + "end": 6131.32, + "probability": 0.7491 + }, + { + "start": 6131.7, + "end": 6135.9, + "probability": 0.8 + }, + { + "start": 6136.74, + "end": 6140.58, + "probability": 0.9111 + }, + { + "start": 6142.02, + "end": 6142.42, + "probability": 0.7706 + }, + { + "start": 6142.94, + "end": 6146.6, + "probability": 0.977 + }, + { + "start": 6146.6, + "end": 6150.14, + "probability": 0.9941 + }, + { + "start": 6150.76, + "end": 6151.06, + "probability": 0.3928 + }, + { + "start": 6151.16, + "end": 6158.56, + "probability": 0.9798 + }, + { + "start": 6159.24, + "end": 6163.6, + "probability": 0.9564 + }, + { + "start": 6165.52, + "end": 6166.54, + "probability": 0.4592 + }, + { + "start": 6167.12, + "end": 6174.76, + "probability": 0.9717 + }, + { + "start": 6175.32, + "end": 6177.43, + "probability": 0.6298 + }, + { + "start": 6178.1, + "end": 6182.4, + "probability": 0.8488 + }, + { + "start": 6182.82, + "end": 6186.9, + "probability": 0.9401 + }, + { + "start": 6187.34, + "end": 6189.44, + "probability": 0.8756 + }, + { + "start": 6190.46, + "end": 6192.2, + "probability": 0.9774 + }, + { + "start": 6192.8, + "end": 6195.83, + "probability": 0.8572 + }, + { + "start": 6196.14, + "end": 6200.98, + "probability": 0.9886 + }, + { + "start": 6201.42, + "end": 6206.42, + "probability": 0.9951 + }, + { + "start": 6207.34, + "end": 6207.78, + "probability": 0.2969 + }, + { + "start": 6208.02, + "end": 6211.08, + "probability": 0.9365 + }, + { + "start": 6211.08, + "end": 6215.06, + "probability": 0.9832 + }, + { + "start": 6217.46, + "end": 6224.02, + "probability": 0.9147 + }, + { + "start": 6224.08, + "end": 6226.9, + "probability": 0.9872 + }, + { + "start": 6227.6, + "end": 6232.74, + "probability": 0.8003 + }, + { + "start": 6233.36, + "end": 6235.38, + "probability": 0.924 + }, + { + "start": 6235.96, + "end": 6239.1, + "probability": 0.9909 + }, + { + "start": 6239.14, + "end": 6242.98, + "probability": 0.8154 + }, + { + "start": 6244.1, + "end": 6244.8, + "probability": 0.739 + }, + { + "start": 6244.9, + "end": 6247.74, + "probability": 0.8953 + }, + { + "start": 6247.76, + "end": 6248.74, + "probability": 0.6565 + }, + { + "start": 6249.16, + "end": 6250.12, + "probability": 0.8767 + }, + { + "start": 6250.44, + "end": 6254.86, + "probability": 0.9926 + }, + { + "start": 6255.66, + "end": 6259.34, + "probability": 0.9904 + }, + { + "start": 6260.16, + "end": 6264.24, + "probability": 0.9886 + }, + { + "start": 6264.92, + "end": 6267.1, + "probability": 0.9845 + }, + { + "start": 6267.18, + "end": 6268.18, + "probability": 0.4592 + }, + { + "start": 6268.6, + "end": 6269.91, + "probability": 0.9746 + }, + { + "start": 6270.46, + "end": 6274.24, + "probability": 0.9878 + }, + { + "start": 6274.24, + "end": 6277.15, + "probability": 0.9388 + }, + { + "start": 6278.16, + "end": 6282.06, + "probability": 0.7656 + }, + { + "start": 6283.12, + "end": 6285.62, + "probability": 0.8584 + }, + { + "start": 6286.26, + "end": 6287.84, + "probability": 0.8838 + }, + { + "start": 6289.06, + "end": 6293.2, + "probability": 0.5431 + }, + { + "start": 6293.71, + "end": 6297.9, + "probability": 0.9824 + }, + { + "start": 6298.32, + "end": 6300.42, + "probability": 0.8487 + }, + { + "start": 6302.26, + "end": 6303.1, + "probability": 0.8489 + }, + { + "start": 6303.62, + "end": 6309.46, + "probability": 0.9347 + }, + { + "start": 6309.82, + "end": 6310.86, + "probability": 0.9647 + }, + { + "start": 6311.54, + "end": 6312.52, + "probability": 0.7627 + }, + { + "start": 6313.22, + "end": 6319.88, + "probability": 0.9945 + }, + { + "start": 6320.5, + "end": 6325.94, + "probability": 0.9867 + }, + { + "start": 6326.6, + "end": 6329.92, + "probability": 0.9832 + }, + { + "start": 6329.98, + "end": 6330.62, + "probability": 0.6776 + }, + { + "start": 6331.46, + "end": 6332.14, + "probability": 0.4655 + }, + { + "start": 6332.92, + "end": 6334.14, + "probability": 0.7324 + }, + { + "start": 6334.66, + "end": 6336.54, + "probability": 0.8982 + }, + { + "start": 6337.06, + "end": 6339.02, + "probability": 0.9613 + }, + { + "start": 6339.82, + "end": 6344.46, + "probability": 0.9938 + }, + { + "start": 6345.34, + "end": 6349.36, + "probability": 0.9871 + }, + { + "start": 6351.82, + "end": 6352.4, + "probability": 0.0072 + }, + { + "start": 6353.04, + "end": 6355.1, + "probability": 0.0329 + }, + { + "start": 6355.66, + "end": 6357.82, + "probability": 0.6759 + }, + { + "start": 6358.86, + "end": 6361.8, + "probability": 0.6316 + }, + { + "start": 6361.84, + "end": 6363.24, + "probability": 0.8341 + }, + { + "start": 6363.84, + "end": 6363.84, + "probability": 0.634 + }, + { + "start": 6363.84, + "end": 6365.76, + "probability": 0.5554 + }, + { + "start": 6366.48, + "end": 6367.18, + "probability": 0.6785 + }, + { + "start": 6367.22, + "end": 6368.5, + "probability": 0.9564 + }, + { + "start": 6368.54, + "end": 6370.1, + "probability": 0.9798 + }, + { + "start": 6372.66, + "end": 6375.04, + "probability": 0.0343 + }, + { + "start": 6375.04, + "end": 6379.26, + "probability": 0.939 + }, + { + "start": 6379.26, + "end": 6383.78, + "probability": 0.9741 + }, + { + "start": 6384.3, + "end": 6384.54, + "probability": 0.167 + }, + { + "start": 6385.16, + "end": 6387.34, + "probability": 0.672 + }, + { + "start": 6387.48, + "end": 6388.4, + "probability": 0.9062 + }, + { + "start": 6388.4, + "end": 6393.45, + "probability": 0.9565 + }, + { + "start": 6394.02, + "end": 6395.42, + "probability": 0.2827 + }, + { + "start": 6395.42, + "end": 6395.48, + "probability": 0.0676 + }, + { + "start": 6395.48, + "end": 6395.48, + "probability": 0.0735 + }, + { + "start": 6395.48, + "end": 6397.15, + "probability": 0.2422 + }, + { + "start": 6398.12, + "end": 6406.44, + "probability": 0.9651 + }, + { + "start": 6406.44, + "end": 6407.42, + "probability": 0.2642 + }, + { + "start": 6407.54, + "end": 6408.56, + "probability": 0.6956 + }, + { + "start": 6409.2, + "end": 6410.36, + "probability": 0.3251 + }, + { + "start": 6410.89, + "end": 6415.3, + "probability": 0.7996 + }, + { + "start": 6417.24, + "end": 6419.74, + "probability": 0.599 + }, + { + "start": 6419.76, + "end": 6420.38, + "probability": 0.7096 + }, + { + "start": 6420.54, + "end": 6421.69, + "probability": 0.1384 + }, + { + "start": 6423.06, + "end": 6428.02, + "probability": 0.9964 + }, + { + "start": 6428.58, + "end": 6430.24, + "probability": 0.9818 + }, + { + "start": 6434.18, + "end": 6435.5, + "probability": 0.5914 + }, + { + "start": 6437.6, + "end": 6439.5, + "probability": 0.8826 + }, + { + "start": 6439.62, + "end": 6441.48, + "probability": 0.8475 + }, + { + "start": 6441.62, + "end": 6445.7, + "probability": 0.9929 + }, + { + "start": 6445.8, + "end": 6446.44, + "probability": 0.9688 + }, + { + "start": 6447.0, + "end": 6448.38, + "probability": 0.9897 + }, + { + "start": 6449.28, + "end": 6450.26, + "probability": 0.9761 + }, + { + "start": 6451.54, + "end": 6452.86, + "probability": 0.7693 + }, + { + "start": 6455.2, + "end": 6455.94, + "probability": 0.3336 + }, + { + "start": 6455.94, + "end": 6456.37, + "probability": 0.533 + }, + { + "start": 6456.54, + "end": 6457.28, + "probability": 0.7013 + }, + { + "start": 6457.44, + "end": 6458.4, + "probability": 0.7372 + }, + { + "start": 6460.12, + "end": 6463.02, + "probability": 0.3487 + }, + { + "start": 6463.64, + "end": 6471.96, + "probability": 0.6898 + }, + { + "start": 6472.12, + "end": 6472.61, + "probability": 0.0098 + }, + { + "start": 6474.64, + "end": 6475.24, + "probability": 0.2265 + }, + { + "start": 6475.24, + "end": 6475.94, + "probability": 0.558 + }, + { + "start": 6476.32, + "end": 6478.02, + "probability": 0.9806 + }, + { + "start": 6478.14, + "end": 6480.04, + "probability": 0.8556 + }, + { + "start": 6481.8, + "end": 6483.68, + "probability": 0.4356 + }, + { + "start": 6483.78, + "end": 6485.28, + "probability": 0.6895 + }, + { + "start": 6487.84, + "end": 6490.88, + "probability": 0.931 + }, + { + "start": 6490.88, + "end": 6494.6, + "probability": 0.9913 + }, + { + "start": 6494.6, + "end": 6498.7, + "probability": 0.9948 + }, + { + "start": 6498.98, + "end": 6504.52, + "probability": 0.8341 + }, + { + "start": 6504.92, + "end": 6505.94, + "probability": 0.9061 + }, + { + "start": 6507.42, + "end": 6511.3, + "probability": 0.7455 + }, + { + "start": 6511.4, + "end": 6511.9, + "probability": 0.6152 + }, + { + "start": 6512.82, + "end": 6514.54, + "probability": 0.7503 + }, + { + "start": 6514.58, + "end": 6517.36, + "probability": 0.8052 + }, + { + "start": 6518.2, + "end": 6519.74, + "probability": 0.9073 + }, + { + "start": 6519.84, + "end": 6522.24, + "probability": 0.9901 + }, + { + "start": 6522.24, + "end": 6524.86, + "probability": 0.8728 + }, + { + "start": 6525.86, + "end": 6528.74, + "probability": 0.9923 + }, + { + "start": 6528.74, + "end": 6532.12, + "probability": 0.9959 + }, + { + "start": 6532.84, + "end": 6536.06, + "probability": 0.7173 + }, + { + "start": 6536.16, + "end": 6539.5, + "probability": 0.9647 + }, + { + "start": 6540.72, + "end": 6544.04, + "probability": 0.967 + }, + { + "start": 6544.86, + "end": 6550.08, + "probability": 0.9891 + }, + { + "start": 6551.18, + "end": 6554.24, + "probability": 0.8223 + }, + { + "start": 6554.76, + "end": 6560.36, + "probability": 0.9876 + }, + { + "start": 6560.84, + "end": 6561.54, + "probability": 0.6562 + }, + { + "start": 6561.98, + "end": 6569.56, + "probability": 0.9525 + }, + { + "start": 6569.78, + "end": 6571.4, + "probability": 0.942 + }, + { + "start": 6574.22, + "end": 6578.92, + "probability": 0.9977 + }, + { + "start": 6579.0, + "end": 6584.62, + "probability": 0.9167 + }, + { + "start": 6584.72, + "end": 6587.16, + "probability": 0.933 + }, + { + "start": 6587.86, + "end": 6590.97, + "probability": 0.9134 + }, + { + "start": 6591.46, + "end": 6592.3, + "probability": 0.6425 + }, + { + "start": 6592.74, + "end": 6594.34, + "probability": 0.9705 + }, + { + "start": 6594.44, + "end": 6596.88, + "probability": 0.9785 + }, + { + "start": 6597.02, + "end": 6597.98, + "probability": 0.8423 + }, + { + "start": 6598.38, + "end": 6602.04, + "probability": 0.9958 + }, + { + "start": 6602.76, + "end": 6604.56, + "probability": 0.4792 + }, + { + "start": 6604.6, + "end": 6607.3, + "probability": 0.862 + }, + { + "start": 6607.4, + "end": 6607.76, + "probability": 0.7421 + }, + { + "start": 6609.23, + "end": 6613.42, + "probability": 0.9773 + }, + { + "start": 6613.94, + "end": 6615.78, + "probability": 0.7572 + }, + { + "start": 6616.36, + "end": 6619.22, + "probability": 0.5175 + }, + { + "start": 6620.3, + "end": 6625.52, + "probability": 0.9666 + }, + { + "start": 6627.0, + "end": 6628.04, + "probability": 0.8216 + }, + { + "start": 6628.32, + "end": 6629.8, + "probability": 0.7622 + }, + { + "start": 6643.18, + "end": 6644.34, + "probability": 0.1653 + }, + { + "start": 6644.42, + "end": 6645.18, + "probability": 0.3709 + }, + { + "start": 6645.18, + "end": 6648.14, + "probability": 0.178 + }, + { + "start": 6648.82, + "end": 6650.64, + "probability": 0.8877 + }, + { + "start": 6651.44, + "end": 6653.44, + "probability": 0.7401 + }, + { + "start": 6654.29, + "end": 6656.8, + "probability": 0.4033 + }, + { + "start": 6657.46, + "end": 6657.56, + "probability": 0.5085 + }, + { + "start": 6658.94, + "end": 6659.6, + "probability": 0.4034 + }, + { + "start": 6659.86, + "end": 6661.5, + "probability": 0.8794 + }, + { + "start": 6661.68, + "end": 6668.2, + "probability": 0.9607 + }, + { + "start": 6668.44, + "end": 6669.34, + "probability": 0.65 + }, + { + "start": 6669.76, + "end": 6670.94, + "probability": 0.9404 + }, + { + "start": 6671.08, + "end": 6676.36, + "probability": 0.7477 + }, + { + "start": 6676.74, + "end": 6683.7, + "probability": 0.8033 + }, + { + "start": 6684.38, + "end": 6686.26, + "probability": 0.9966 + }, + { + "start": 6686.36, + "end": 6687.24, + "probability": 0.8964 + }, + { + "start": 6689.76, + "end": 6689.88, + "probability": 0.8857 + }, + { + "start": 6690.04, + "end": 6695.76, + "probability": 0.9835 + }, + { + "start": 6695.96, + "end": 6700.02, + "probability": 0.6401 + }, + { + "start": 6701.58, + "end": 6701.72, + "probability": 0.2254 + }, + { + "start": 6706.42, + "end": 6710.54, + "probability": 0.0434 + }, + { + "start": 6716.38, + "end": 6716.8, + "probability": 0.0473 + }, + { + "start": 6717.76, + "end": 6717.76, + "probability": 0.4877 + }, + { + "start": 6718.74, + "end": 6724.66, + "probability": 0.6867 + }, + { + "start": 6725.46, + "end": 6728.58, + "probability": 0.9794 + }, + { + "start": 6728.58, + "end": 6732.88, + "probability": 0.9513 + }, + { + "start": 6733.44, + "end": 6741.98, + "probability": 0.9442 + }, + { + "start": 6743.56, + "end": 6748.2, + "probability": 0.9833 + }, + { + "start": 6748.6, + "end": 6751.32, + "probability": 0.9937 + }, + { + "start": 6751.56, + "end": 6756.84, + "probability": 0.9079 + }, + { + "start": 6756.86, + "end": 6757.4, + "probability": 0.8649 + }, + { + "start": 6772.62, + "end": 6774.7, + "probability": 0.6587 + }, + { + "start": 6775.88, + "end": 6781.88, + "probability": 0.9899 + }, + { + "start": 6781.88, + "end": 6789.4, + "probability": 0.9987 + }, + { + "start": 6790.62, + "end": 6790.7, + "probability": 0.9165 + }, + { + "start": 6791.52, + "end": 6793.12, + "probability": 0.6423 + }, + { + "start": 6793.68, + "end": 6798.16, + "probability": 0.9843 + }, + { + "start": 6799.8, + "end": 6805.78, + "probability": 0.9481 + }, + { + "start": 6805.78, + "end": 6810.84, + "probability": 0.9972 + }, + { + "start": 6811.34, + "end": 6812.58, + "probability": 0.9319 + }, + { + "start": 6812.74, + "end": 6813.56, + "probability": 0.8183 + }, + { + "start": 6813.92, + "end": 6814.76, + "probability": 0.9354 + }, + { + "start": 6814.86, + "end": 6815.65, + "probability": 0.897 + }, + { + "start": 6817.62, + "end": 6821.98, + "probability": 0.6121 + }, + { + "start": 6822.74, + "end": 6822.76, + "probability": 0.0775 + }, + { + "start": 6822.76, + "end": 6824.36, + "probability": 0.8372 + }, + { + "start": 6824.62, + "end": 6828.16, + "probability": 0.9843 + }, + { + "start": 6828.58, + "end": 6831.18, + "probability": 0.9992 + }, + { + "start": 6831.96, + "end": 6835.94, + "probability": 0.7857 + }, + { + "start": 6836.9, + "end": 6838.7, + "probability": 0.7995 + }, + { + "start": 6838.9, + "end": 6839.98, + "probability": 0.9541 + }, + { + "start": 6840.14, + "end": 6842.76, + "probability": 0.9932 + }, + { + "start": 6843.34, + "end": 6844.88, + "probability": 0.9924 + }, + { + "start": 6846.94, + "end": 6849.62, + "probability": 0.9852 + }, + { + "start": 6850.78, + "end": 6856.68, + "probability": 0.9881 + }, + { + "start": 6857.34, + "end": 6859.26, + "probability": 0.9025 + }, + { + "start": 6859.42, + "end": 6860.26, + "probability": 0.8751 + }, + { + "start": 6860.48, + "end": 6862.48, + "probability": 0.9896 + }, + { + "start": 6862.64, + "end": 6865.03, + "probability": 0.9155 + }, + { + "start": 6866.22, + "end": 6871.0, + "probability": 0.9275 + }, + { + "start": 6871.8, + "end": 6873.64, + "probability": 0.3651 + }, + { + "start": 6873.72, + "end": 6877.7, + "probability": 0.8324 + }, + { + "start": 6878.0, + "end": 6883.86, + "probability": 0.9664 + }, + { + "start": 6884.92, + "end": 6891.0, + "probability": 0.9016 + }, + { + "start": 6891.28, + "end": 6891.28, + "probability": 0.5358 + }, + { + "start": 6891.28, + "end": 6893.94, + "probability": 0.8945 + }, + { + "start": 6893.94, + "end": 6897.5, + "probability": 0.9864 + }, + { + "start": 6898.62, + "end": 6900.34, + "probability": 0.9973 + }, + { + "start": 6901.06, + "end": 6903.8, + "probability": 0.9183 + }, + { + "start": 6904.32, + "end": 6908.12, + "probability": 0.9745 + }, + { + "start": 6908.96, + "end": 6912.72, + "probability": 0.876 + }, + { + "start": 6912.82, + "end": 6915.96, + "probability": 0.9846 + }, + { + "start": 6917.1, + "end": 6920.06, + "probability": 0.9631 + }, + { + "start": 6920.6, + "end": 6923.44, + "probability": 0.9963 + }, + { + "start": 6923.98, + "end": 6928.28, + "probability": 0.9551 + }, + { + "start": 6928.56, + "end": 6928.56, + "probability": 0.0221 + }, + { + "start": 6928.56, + "end": 6930.68, + "probability": 0.9858 + }, + { + "start": 6930.86, + "end": 6933.66, + "probability": 0.0964 + }, + { + "start": 6933.9, + "end": 6936.44, + "probability": 0.8922 + }, + { + "start": 6937.04, + "end": 6939.82, + "probability": 0.9817 + }, + { + "start": 6939.82, + "end": 6943.56, + "probability": 0.9326 + }, + { + "start": 6944.08, + "end": 6947.36, + "probability": 0.3241 + }, + { + "start": 6947.8, + "end": 6949.26, + "probability": 0.9183 + }, + { + "start": 6949.69, + "end": 6950.16, + "probability": 0.0208 + }, + { + "start": 6951.48, + "end": 6953.22, + "probability": 0.0316 + }, + { + "start": 6953.77, + "end": 6953.98, + "probability": 0.1359 + }, + { + "start": 6954.34, + "end": 6955.36, + "probability": 0.0635 + }, + { + "start": 6955.74, + "end": 6958.32, + "probability": 0.2145 + }, + { + "start": 6961.92, + "end": 6963.59, + "probability": 0.5092 + }, + { + "start": 6966.76, + "end": 6969.7, + "probability": 0.5262 + }, + { + "start": 6970.22, + "end": 6971.24, + "probability": 0.764 + }, + { + "start": 6971.6, + "end": 6974.98, + "probability": 0.768 + }, + { + "start": 6975.84, + "end": 6977.46, + "probability": 0.6398 + }, + { + "start": 6978.06, + "end": 6980.4, + "probability": 0.9509 + }, + { + "start": 6980.86, + "end": 6982.18, + "probability": 0.7889 + }, + { + "start": 6983.9, + "end": 6984.46, + "probability": 0.3871 + }, + { + "start": 6985.52, + "end": 6987.34, + "probability": 0.8953 + }, + { + "start": 6990.02, + "end": 6991.52, + "probability": 0.2424 + }, + { + "start": 6992.82, + "end": 6997.78, + "probability": 0.0501 + }, + { + "start": 6997.78, + "end": 6998.74, + "probability": 0.0437 + }, + { + "start": 6999.36, + "end": 6999.38, + "probability": 0.0333 + }, + { + "start": 6999.38, + "end": 6999.56, + "probability": 0.1143 + }, + { + "start": 6999.58, + "end": 7001.88, + "probability": 0.7317 + }, + { + "start": 7002.36, + "end": 7004.9, + "probability": 0.7374 + }, + { + "start": 7005.65, + "end": 7007.92, + "probability": 0.7688 + }, + { + "start": 7011.4, + "end": 7013.42, + "probability": 0.1728 + }, + { + "start": 7013.42, + "end": 7014.26, + "probability": 0.2073 + }, + { + "start": 7014.6, + "end": 7015.48, + "probability": 0.422 + }, + { + "start": 7015.76, + "end": 7015.76, + "probability": 0.3352 + }, + { + "start": 7015.76, + "end": 7015.76, + "probability": 0.2727 + }, + { + "start": 7015.76, + "end": 7015.9, + "probability": 0.4287 + }, + { + "start": 7016.0, + "end": 7018.9, + "probability": 0.9634 + }, + { + "start": 7019.0, + "end": 7021.08, + "probability": 0.7069 + }, + { + "start": 7023.9, + "end": 7028.32, + "probability": 0.529 + }, + { + "start": 7029.98, + "end": 7031.24, + "probability": 0.266 + }, + { + "start": 7034.52, + "end": 7035.11, + "probability": 0.5477 + }, + { + "start": 7036.16, + "end": 7038.94, + "probability": 0.6757 + }, + { + "start": 7040.14, + "end": 7043.32, + "probability": 0.8899 + }, + { + "start": 7045.36, + "end": 7046.9, + "probability": 0.4862 + }, + { + "start": 7047.22, + "end": 7047.56, + "probability": 0.0245 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.2131 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.019 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.1241 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.1262 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.0463 + }, + { + "start": 7053.12, + "end": 7053.12, + "probability": 0.1154 + }, + { + "start": 7053.12, + "end": 7055.37, + "probability": 0.3576 + }, + { + "start": 7055.76, + "end": 7059.3, + "probability": 0.695 + }, + { + "start": 7060.0, + "end": 7063.42, + "probability": 0.1357 + }, + { + "start": 7064.2, + "end": 7067.4, + "probability": 0.8866 + }, + { + "start": 7067.58, + "end": 7070.96, + "probability": 0.9614 + }, + { + "start": 7071.3, + "end": 7071.7, + "probability": 0.5797 + }, + { + "start": 7077.5, + "end": 7080.58, + "probability": 0.7354 + }, + { + "start": 7081.74, + "end": 7085.14, + "probability": 0.9897 + }, + { + "start": 7086.18, + "end": 7088.22, + "probability": 0.827 + }, + { + "start": 7090.54, + "end": 7091.56, + "probability": 0.7373 + }, + { + "start": 7099.34, + "end": 7100.22, + "probability": 0.9561 + }, + { + "start": 7104.68, + "end": 7106.06, + "probability": 0.9946 + }, + { + "start": 7106.2, + "end": 7109.72, + "probability": 0.9825 + }, + { + "start": 7109.9, + "end": 7111.18, + "probability": 0.7573 + }, + { + "start": 7111.2, + "end": 7112.78, + "probability": 0.7421 + }, + { + "start": 7113.22, + "end": 7113.84, + "probability": 0.6766 + }, + { + "start": 7113.94, + "end": 7115.68, + "probability": 0.6873 + }, + { + "start": 7124.3, + "end": 7124.66, + "probability": 0.6468 + }, + { + "start": 7124.82, + "end": 7126.86, + "probability": 0.9631 + }, + { + "start": 7128.26, + "end": 7131.22, + "probability": 0.5744 + }, + { + "start": 7132.48, + "end": 7133.82, + "probability": 0.9759 + }, + { + "start": 7135.0, + "end": 7138.68, + "probability": 0.8671 + }, + { + "start": 7140.08, + "end": 7143.8, + "probability": 0.967 + }, + { + "start": 7144.64, + "end": 7146.28, + "probability": 0.9962 + }, + { + "start": 7147.2, + "end": 7149.14, + "probability": 0.9932 + }, + { + "start": 7149.98, + "end": 7153.64, + "probability": 0.9967 + }, + { + "start": 7154.6, + "end": 7156.06, + "probability": 0.7634 + }, + { + "start": 7156.08, + "end": 7159.78, + "probability": 0.9533 + }, + { + "start": 7160.82, + "end": 7164.4, + "probability": 0.9801 + }, + { + "start": 7165.28, + "end": 7167.88, + "probability": 0.9709 + }, + { + "start": 7170.24, + "end": 7172.18, + "probability": 0.6139 + }, + { + "start": 7172.98, + "end": 7175.76, + "probability": 0.9938 + }, + { + "start": 7176.42, + "end": 7179.06, + "probability": 0.866 + }, + { + "start": 7179.94, + "end": 7182.12, + "probability": 0.9433 + }, + { + "start": 7183.56, + "end": 7185.88, + "probability": 0.7872 + }, + { + "start": 7187.22, + "end": 7191.86, + "probability": 0.906 + }, + { + "start": 7191.86, + "end": 7195.62, + "probability": 0.9958 + }, + { + "start": 7196.12, + "end": 7201.1, + "probability": 0.8026 + }, + { + "start": 7202.66, + "end": 7205.2, + "probability": 0.7576 + }, + { + "start": 7206.4, + "end": 7212.18, + "probability": 0.9715 + }, + { + "start": 7213.18, + "end": 7215.82, + "probability": 0.9538 + }, + { + "start": 7217.1, + "end": 7220.52, + "probability": 0.9951 + }, + { + "start": 7222.16, + "end": 7226.22, + "probability": 0.994 + }, + { + "start": 7227.22, + "end": 7228.46, + "probability": 0.9989 + }, + { + "start": 7228.98, + "end": 7230.0, + "probability": 0.9868 + }, + { + "start": 7230.24, + "end": 7230.9, + "probability": 0.5591 + }, + { + "start": 7231.64, + "end": 7233.34, + "probability": 0.9535 + }, + { + "start": 7234.1, + "end": 7237.72, + "probability": 0.9507 + }, + { + "start": 7238.68, + "end": 7242.4, + "probability": 0.9854 + }, + { + "start": 7243.34, + "end": 7245.54, + "probability": 0.9916 + }, + { + "start": 7246.24, + "end": 7249.68, + "probability": 0.9539 + }, + { + "start": 7249.72, + "end": 7252.4, + "probability": 0.8801 + }, + { + "start": 7253.32, + "end": 7253.96, + "probability": 0.6841 + }, + { + "start": 7254.06, + "end": 7257.52, + "probability": 0.981 + }, + { + "start": 7258.68, + "end": 7259.74, + "probability": 0.6539 + }, + { + "start": 7260.14, + "end": 7263.78, + "probability": 0.9308 + }, + { + "start": 7264.46, + "end": 7268.48, + "probability": 0.9006 + }, + { + "start": 7269.42, + "end": 7273.14, + "probability": 0.9967 + }, + { + "start": 7274.02, + "end": 7275.38, + "probability": 0.9805 + }, + { + "start": 7276.2, + "end": 7279.5, + "probability": 0.9011 + }, + { + "start": 7280.12, + "end": 7283.36, + "probability": 0.9905 + }, + { + "start": 7283.92, + "end": 7286.76, + "probability": 0.9663 + }, + { + "start": 7286.78, + "end": 7287.3, + "probability": 0.2184 + }, + { + "start": 7288.42, + "end": 7294.52, + "probability": 0.9427 + }, + { + "start": 7294.66, + "end": 7296.48, + "probability": 0.6888 + }, + { + "start": 7297.28, + "end": 7303.52, + "probability": 0.8649 + }, + { + "start": 7304.36, + "end": 7309.06, + "probability": 0.9681 + }, + { + "start": 7309.7, + "end": 7314.68, + "probability": 0.9816 + }, + { + "start": 7314.74, + "end": 7316.1, + "probability": 0.6142 + }, + { + "start": 7317.7, + "end": 7319.04, + "probability": 0.8491 + }, + { + "start": 7319.82, + "end": 7325.04, + "probability": 0.9775 + }, + { + "start": 7325.8, + "end": 7329.4, + "probability": 0.8352 + }, + { + "start": 7330.08, + "end": 7333.58, + "probability": 0.8905 + }, + { + "start": 7334.32, + "end": 7339.04, + "probability": 0.9698 + }, + { + "start": 7339.04, + "end": 7343.4, + "probability": 0.9609 + }, + { + "start": 7344.12, + "end": 7347.92, + "probability": 0.8079 + }, + { + "start": 7348.58, + "end": 7351.92, + "probability": 0.9963 + }, + { + "start": 7352.86, + "end": 7353.7, + "probability": 0.9956 + }, + { + "start": 7354.42, + "end": 7355.64, + "probability": 0.6707 + }, + { + "start": 7356.14, + "end": 7357.58, + "probability": 0.8555 + }, + { + "start": 7357.92, + "end": 7358.86, + "probability": 0.8057 + }, + { + "start": 7359.86, + "end": 7362.58, + "probability": 0.7479 + }, + { + "start": 7363.12, + "end": 7365.76, + "probability": 0.9212 + }, + { + "start": 7366.5, + "end": 7369.46, + "probability": 0.9777 + }, + { + "start": 7370.74, + "end": 7371.98, + "probability": 0.9188 + }, + { + "start": 7372.1, + "end": 7373.5, + "probability": 0.8182 + }, + { + "start": 7374.0, + "end": 7375.32, + "probability": 0.8742 + }, + { + "start": 7375.44, + "end": 7376.34, + "probability": 0.8089 + }, + { + "start": 7377.34, + "end": 7380.84, + "probability": 0.7385 + }, + { + "start": 7382.02, + "end": 7388.06, + "probability": 0.9558 + }, + { + "start": 7389.28, + "end": 7392.06, + "probability": 0.8131 + }, + { + "start": 7392.52, + "end": 7393.72, + "probability": 0.7133 + }, + { + "start": 7393.8, + "end": 7394.18, + "probability": 0.9709 + }, + { + "start": 7394.7, + "end": 7398.32, + "probability": 0.9609 + }, + { + "start": 7398.9, + "end": 7403.46, + "probability": 0.965 + }, + { + "start": 7404.06, + "end": 7405.92, + "probability": 0.9365 + }, + { + "start": 7405.92, + "end": 7409.54, + "probability": 0.9882 + }, + { + "start": 7410.3, + "end": 7413.1, + "probability": 0.9957 + }, + { + "start": 7413.1, + "end": 7416.22, + "probability": 0.8864 + }, + { + "start": 7416.76, + "end": 7417.24, + "probability": 0.6965 + }, + { + "start": 7419.18, + "end": 7419.89, + "probability": 0.9966 + }, + { + "start": 7420.78, + "end": 7423.2, + "probability": 0.943 + }, + { + "start": 7423.2, + "end": 7425.14, + "probability": 0.9007 + }, + { + "start": 7425.88, + "end": 7426.44, + "probability": 0.9714 + }, + { + "start": 7427.06, + "end": 7429.72, + "probability": 0.9895 + }, + { + "start": 7430.34, + "end": 7431.4, + "probability": 0.9198 + }, + { + "start": 7432.38, + "end": 7434.26, + "probability": 0.9648 + }, + { + "start": 7434.8, + "end": 7437.32, + "probability": 0.9772 + }, + { + "start": 7437.32, + "end": 7441.3, + "probability": 0.8967 + }, + { + "start": 7441.38, + "end": 7443.06, + "probability": 0.5591 + }, + { + "start": 7443.36, + "end": 7446.62, + "probability": 0.6341 + }, + { + "start": 7447.32, + "end": 7447.62, + "probability": 0.7816 + }, + { + "start": 7447.66, + "end": 7448.96, + "probability": 0.3952 + }, + { + "start": 7449.02, + "end": 7451.24, + "probability": 0.6439 + }, + { + "start": 7451.34, + "end": 7452.64, + "probability": 0.9351 + }, + { + "start": 7453.1, + "end": 7456.96, + "probability": 0.9573 + }, + { + "start": 7456.96, + "end": 7458.94, + "probability": 0.8629 + }, + { + "start": 7459.1, + "end": 7459.5, + "probability": 0.7679 + }, + { + "start": 7460.16, + "end": 7462.74, + "probability": 0.926 + }, + { + "start": 7463.64, + "end": 7465.56, + "probability": 0.8615 + }, + { + "start": 7469.02, + "end": 7470.6, + "probability": 0.8518 + }, + { + "start": 7477.9, + "end": 7480.54, + "probability": 0.9915 + }, + { + "start": 7480.8, + "end": 7482.06, + "probability": 0.8265 + }, + { + "start": 7482.42, + "end": 7483.38, + "probability": 0.834 + }, + { + "start": 7484.28, + "end": 7487.5, + "probability": 0.902 + }, + { + "start": 7487.5, + "end": 7489.16, + "probability": 0.6533 + }, + { + "start": 7490.54, + "end": 7493.6, + "probability": 0.9994 + }, + { + "start": 7494.22, + "end": 7497.62, + "probability": 0.9974 + }, + { + "start": 7497.82, + "end": 7499.01, + "probability": 0.7416 + }, + { + "start": 7499.74, + "end": 7505.1, + "probability": 0.8196 + }, + { + "start": 7506.04, + "end": 7512.5, + "probability": 0.9922 + }, + { + "start": 7514.22, + "end": 7516.42, + "probability": 0.3979 + }, + { + "start": 7517.14, + "end": 7520.7, + "probability": 0.9849 + }, + { + "start": 7520.8, + "end": 7521.38, + "probability": 0.727 + }, + { + "start": 7522.5, + "end": 7527.6, + "probability": 0.9904 + }, + { + "start": 7531.1, + "end": 7534.34, + "probability": 0.9888 + }, + { + "start": 7534.42, + "end": 7534.72, + "probability": 0.8522 + }, + { + "start": 7536.0, + "end": 7539.4, + "probability": 0.6605 + }, + { + "start": 7539.44, + "end": 7541.52, + "probability": 0.8429 + }, + { + "start": 7541.62, + "end": 7544.04, + "probability": 0.9174 + }, + { + "start": 7544.76, + "end": 7546.66, + "probability": 0.9786 + }, + { + "start": 7546.78, + "end": 7548.84, + "probability": 0.919 + }, + { + "start": 7549.14, + "end": 7549.6, + "probability": 0.5651 + }, + { + "start": 7550.04, + "end": 7553.32, + "probability": 0.4998 + }, + { + "start": 7553.32, + "end": 7557.66, + "probability": 0.9412 + }, + { + "start": 7558.44, + "end": 7561.3, + "probability": 0.8816 + }, + { + "start": 7561.82, + "end": 7563.0, + "probability": 0.9548 + }, + { + "start": 7563.56, + "end": 7566.84, + "probability": 0.953 + }, + { + "start": 7567.42, + "end": 7568.54, + "probability": 0.9482 + }, + { + "start": 7568.7, + "end": 7570.1, + "probability": 0.8677 + }, + { + "start": 7570.18, + "end": 7570.84, + "probability": 0.9054 + }, + { + "start": 7571.22, + "end": 7572.14, + "probability": 0.9114 + }, + { + "start": 7572.26, + "end": 7574.59, + "probability": 0.972 + }, + { + "start": 7576.06, + "end": 7579.32, + "probability": 0.9692 + }, + { + "start": 7579.32, + "end": 7582.24, + "probability": 0.6403 + }, + { + "start": 7582.96, + "end": 7585.28, + "probability": 0.4472 + }, + { + "start": 7587.12, + "end": 7587.92, + "probability": 0.4862 + }, + { + "start": 7588.64, + "end": 7590.3, + "probability": 0.5702 + }, + { + "start": 7590.46, + "end": 7592.3, + "probability": 0.9547 + }, + { + "start": 7592.38, + "end": 7595.14, + "probability": 0.9543 + }, + { + "start": 7595.36, + "end": 7595.68, + "probability": 0.0107 + }, + { + "start": 7595.78, + "end": 7599.36, + "probability": 0.648 + }, + { + "start": 7599.6, + "end": 7600.66, + "probability": 0.7691 + }, + { + "start": 7600.82, + "end": 7601.14, + "probability": 0.9138 + }, + { + "start": 7601.84, + "end": 7603.85, + "probability": 0.9983 + }, + { + "start": 7604.49, + "end": 7604.71, + "probability": 0.1096 + }, + { + "start": 7604.71, + "end": 7605.91, + "probability": 0.6128 + }, + { + "start": 7606.05, + "end": 7606.63, + "probability": 0.7904 + }, + { + "start": 7606.75, + "end": 7607.09, + "probability": 0.4255 + }, + { + "start": 7607.33, + "end": 7608.84, + "probability": 0.9365 + }, + { + "start": 7609.47, + "end": 7609.77, + "probability": 0.054 + }, + { + "start": 7609.83, + "end": 7610.43, + "probability": 0.5334 + }, + { + "start": 7610.85, + "end": 7612.37, + "probability": 0.6505 + }, + { + "start": 7613.11, + "end": 7615.71, + "probability": 0.8773 + }, + { + "start": 7616.17, + "end": 7619.43, + "probability": 0.9952 + }, + { + "start": 7619.88, + "end": 7623.89, + "probability": 0.8117 + }, + { + "start": 7624.33, + "end": 7631.19, + "probability": 0.9941 + }, + { + "start": 7632.15, + "end": 7634.53, + "probability": 0.965 + }, + { + "start": 7634.65, + "end": 7636.15, + "probability": 0.6832 + }, + { + "start": 7636.77, + "end": 7640.0, + "probability": 0.7447 + }, + { + "start": 7640.09, + "end": 7640.87, + "probability": 0.7357 + }, + { + "start": 7642.61, + "end": 7644.82, + "probability": 0.9663 + }, + { + "start": 7648.01, + "end": 7649.03, + "probability": 0.1898 + }, + { + "start": 7667.03, + "end": 7668.09, + "probability": 0.1146 + }, + { + "start": 7668.65, + "end": 7672.85, + "probability": 0.0345 + }, + { + "start": 7674.12, + "end": 7674.63, + "probability": 0.0501 + }, + { + "start": 7674.89, + "end": 7677.79, + "probability": 0.1154 + }, + { + "start": 7678.19, + "end": 7684.88, + "probability": 0.0841 + }, + { + "start": 7685.25, + "end": 7686.07, + "probability": 0.1002 + }, + { + "start": 7687.11, + "end": 7687.45, + "probability": 0.0521 + }, + { + "start": 7687.77, + "end": 7689.63, + "probability": 0.0785 + }, + { + "start": 7689.63, + "end": 7689.63, + "probability": 0.2988 + }, + { + "start": 7695.15, + "end": 7696.73, + "probability": 0.0302 + }, + { + "start": 7700.19, + "end": 7701.71, + "probability": 0.045 + }, + { + "start": 7706.15, + "end": 7706.25, + "probability": 0.0043 + }, + { + "start": 7707.15, + "end": 7707.29, + "probability": 0.017 + }, + { + "start": 7709.01, + "end": 7710.08, + "probability": 0.027 + }, + { + "start": 7713.53, + "end": 7715.21, + "probability": 0.0832 + }, + { + "start": 7715.21, + "end": 7715.21, + "probability": 0.0204 + }, + { + "start": 7717.19, + "end": 7718.27, + "probability": 0.1518 + }, + { + "start": 7721.05, + "end": 7721.43, + "probability": 0.1177 + }, + { + "start": 7721.51, + "end": 7726.43, + "probability": 0.0319 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.0, + "end": 7737.0, + "probability": 0.0 + }, + { + "start": 7737.34, + "end": 7738.62, + "probability": 0.7212 + }, + { + "start": 7738.62, + "end": 7738.62, + "probability": 0.031 + }, + { + "start": 7738.62, + "end": 7740.48, + "probability": 0.9596 + }, + { + "start": 7740.9, + "end": 7743.76, + "probability": 0.9277 + }, + { + "start": 7745.56, + "end": 7752.24, + "probability": 0.9111 + }, + { + "start": 7752.24, + "end": 7757.4, + "probability": 0.9985 + }, + { + "start": 7757.48, + "end": 7760.7, + "probability": 0.9958 + }, + { + "start": 7761.44, + "end": 7764.8, + "probability": 0.9771 + }, + { + "start": 7766.2, + "end": 7766.88, + "probability": 0.8919 + }, + { + "start": 7767.68, + "end": 7770.46, + "probability": 0.9984 + }, + { + "start": 7770.46, + "end": 7774.98, + "probability": 0.9652 + }, + { + "start": 7775.94, + "end": 7779.92, + "probability": 0.9576 + }, + { + "start": 7780.72, + "end": 7784.16, + "probability": 0.9961 + }, + { + "start": 7785.1, + "end": 7786.26, + "probability": 0.9175 + }, + { + "start": 7786.5, + "end": 7789.34, + "probability": 0.9857 + }, + { + "start": 7790.4, + "end": 7794.61, + "probability": 0.9268 + }, + { + "start": 7795.32, + "end": 7795.8, + "probability": 0.9204 + }, + { + "start": 7795.98, + "end": 7796.56, + "probability": 0.9536 + }, + { + "start": 7796.72, + "end": 7798.96, + "probability": 0.9544 + }, + { + "start": 7799.88, + "end": 7801.62, + "probability": 0.8708 + }, + { + "start": 7801.68, + "end": 7803.44, + "probability": 0.9821 + }, + { + "start": 7803.92, + "end": 7805.98, + "probability": 0.8633 + }, + { + "start": 7806.08, + "end": 7808.44, + "probability": 0.8431 + }, + { + "start": 7809.04, + "end": 7811.66, + "probability": 0.937 + }, + { + "start": 7813.62, + "end": 7814.18, + "probability": 0.9148 + }, + { + "start": 7815.12, + "end": 7817.36, + "probability": 0.9922 + }, + { + "start": 7817.92, + "end": 7818.98, + "probability": 0.7927 + }, + { + "start": 7820.4, + "end": 7822.6, + "probability": 0.994 + }, + { + "start": 7823.08, + "end": 7823.14, + "probability": 0.0668 + }, + { + "start": 7823.26, + "end": 7823.7, + "probability": 0.4652 + }, + { + "start": 7823.8, + "end": 7825.16, + "probability": 0.9144 + }, + { + "start": 7825.24, + "end": 7826.66, + "probability": 0.9917 + }, + { + "start": 7827.98, + "end": 7829.02, + "probability": 0.8576 + }, + { + "start": 7829.56, + "end": 7831.86, + "probability": 0.987 + }, + { + "start": 7832.4, + "end": 7836.4, + "probability": 0.9883 + }, + { + "start": 7837.18, + "end": 7841.48, + "probability": 0.9171 + }, + { + "start": 7844.0, + "end": 7846.84, + "probability": 0.9988 + }, + { + "start": 7847.82, + "end": 7851.62, + "probability": 0.9258 + }, + { + "start": 7852.52, + "end": 7853.6, + "probability": 0.8734 + }, + { + "start": 7855.12, + "end": 7858.08, + "probability": 0.9972 + }, + { + "start": 7858.94, + "end": 7859.64, + "probability": 0.8525 + }, + { + "start": 7861.09, + "end": 7865.16, + "probability": 0.9949 + }, + { + "start": 7865.48, + "end": 7866.52, + "probability": 0.9683 + }, + { + "start": 7866.6, + "end": 7867.24, + "probability": 0.972 + }, + { + "start": 7867.38, + "end": 7868.12, + "probability": 0.7656 + }, + { + "start": 7868.28, + "end": 7869.46, + "probability": 0.6788 + }, + { + "start": 7870.12, + "end": 7875.3, + "probability": 0.9528 + }, + { + "start": 7875.78, + "end": 7878.68, + "probability": 0.9985 + }, + { + "start": 7879.22, + "end": 7881.5, + "probability": 0.9996 + }, + { + "start": 7882.2, + "end": 7884.0, + "probability": 0.829 + }, + { + "start": 7885.22, + "end": 7890.58, + "probability": 0.9957 + }, + { + "start": 7890.74, + "end": 7895.07, + "probability": 0.9907 + }, + { + "start": 7895.62, + "end": 7897.86, + "probability": 0.4746 + }, + { + "start": 7897.94, + "end": 7901.44, + "probability": 0.9962 + }, + { + "start": 7901.88, + "end": 7904.4, + "probability": 0.9789 + }, + { + "start": 7904.4, + "end": 7907.38, + "probability": 0.9847 + }, + { + "start": 7908.46, + "end": 7910.54, + "probability": 0.979 + }, + { + "start": 7910.84, + "end": 7911.06, + "probability": 0.8766 + }, + { + "start": 7911.2, + "end": 7911.66, + "probability": 0.9693 + }, + { + "start": 7911.74, + "end": 7913.42, + "probability": 0.9352 + }, + { + "start": 7914.06, + "end": 7917.14, + "probability": 0.993 + }, + { + "start": 7917.14, + "end": 7921.06, + "probability": 0.952 + }, + { + "start": 7921.76, + "end": 7924.34, + "probability": 0.8971 + }, + { + "start": 7924.94, + "end": 7930.3, + "probability": 0.9774 + }, + { + "start": 7932.2, + "end": 7936.72, + "probability": 0.9594 + }, + { + "start": 7936.9, + "end": 7937.36, + "probability": 0.8889 + }, + { + "start": 7937.48, + "end": 7939.14, + "probability": 0.8743 + }, + { + "start": 7939.96, + "end": 7942.34, + "probability": 0.9928 + }, + { + "start": 7944.04, + "end": 7949.02, + "probability": 0.9879 + }, + { + "start": 7950.16, + "end": 7958.78, + "probability": 0.9836 + }, + { + "start": 7958.86, + "end": 7959.6, + "probability": 0.6398 + }, + { + "start": 7959.68, + "end": 7960.66, + "probability": 0.7206 + }, + { + "start": 7961.18, + "end": 7968.32, + "probability": 0.9856 + }, + { + "start": 7968.32, + "end": 7977.13, + "probability": 0.9989 + }, + { + "start": 7978.26, + "end": 7980.9, + "probability": 0.9979 + }, + { + "start": 7980.9, + "end": 7983.54, + "probability": 0.6704 + }, + { + "start": 7983.7, + "end": 7984.36, + "probability": 0.7401 + }, + { + "start": 7984.42, + "end": 7987.78, + "probability": 0.9775 + }, + { + "start": 7988.3, + "end": 7991.32, + "probability": 0.9352 + }, + { + "start": 7991.78, + "end": 7996.02, + "probability": 0.9951 + }, + { + "start": 7996.84, + "end": 8000.04, + "probability": 0.9841 + }, + { + "start": 8000.74, + "end": 8002.25, + "probability": 0.9635 + }, + { + "start": 8002.94, + "end": 8005.62, + "probability": 0.8667 + }, + { + "start": 8005.96, + "end": 8007.66, + "probability": 0.6287 + }, + { + "start": 8007.82, + "end": 8011.34, + "probability": 0.9696 + }, + { + "start": 8011.68, + "end": 8013.36, + "probability": 0.9915 + }, + { + "start": 8013.92, + "end": 8015.78, + "probability": 0.9958 + }, + { + "start": 8016.24, + "end": 8016.6, + "probability": 0.9883 + }, + { + "start": 8017.22, + "end": 8021.09, + "probability": 0.9546 + }, + { + "start": 8023.92, + "end": 8026.32, + "probability": 0.5015 + }, + { + "start": 8026.6, + "end": 8029.8, + "probability": 0.9657 + }, + { + "start": 8030.2, + "end": 8033.1, + "probability": 0.9541 + }, + { + "start": 8034.5, + "end": 8034.94, + "probability": 0.8862 + }, + { + "start": 8035.02, + "end": 8038.58, + "probability": 0.9332 + }, + { + "start": 8038.7, + "end": 8042.44, + "probability": 0.9388 + }, + { + "start": 8042.56, + "end": 8044.98, + "probability": 0.9469 + }, + { + "start": 8045.08, + "end": 8047.46, + "probability": 0.9786 + }, + { + "start": 8047.98, + "end": 8050.24, + "probability": 0.98 + }, + { + "start": 8051.02, + "end": 8053.12, + "probability": 0.9836 + }, + { + "start": 8053.72, + "end": 8054.73, + "probability": 0.991 + }, + { + "start": 8055.12, + "end": 8055.84, + "probability": 0.8641 + }, + { + "start": 8056.04, + "end": 8057.14, + "probability": 0.9688 + }, + { + "start": 8057.8, + "end": 8058.36, + "probability": 0.0595 + }, + { + "start": 8058.9, + "end": 8061.34, + "probability": 0.7886 + }, + { + "start": 8061.44, + "end": 8065.7, + "probability": 0.979 + }, + { + "start": 8067.12, + "end": 8068.68, + "probability": 0.9884 + }, + { + "start": 8069.6, + "end": 8073.46, + "probability": 0.9901 + }, + { + "start": 8074.14, + "end": 8076.9, + "probability": 0.8003 + }, + { + "start": 8077.4, + "end": 8081.6, + "probability": 0.998 + }, + { + "start": 8082.82, + "end": 8085.24, + "probability": 0.9915 + }, + { + "start": 8087.22, + "end": 8090.44, + "probability": 0.998 + }, + { + "start": 8090.44, + "end": 8095.16, + "probability": 0.9708 + }, + { + "start": 8096.22, + "end": 8098.32, + "probability": 0.9989 + }, + { + "start": 8099.7, + "end": 8102.44, + "probability": 0.9969 + }, + { + "start": 8103.04, + "end": 8106.82, + "probability": 0.9986 + }, + { + "start": 8107.32, + "end": 8108.82, + "probability": 0.988 + }, + { + "start": 8109.98, + "end": 8110.88, + "probability": 0.6643 + }, + { + "start": 8110.92, + "end": 8112.04, + "probability": 0.7797 + }, + { + "start": 8112.08, + "end": 8114.38, + "probability": 0.9631 + }, + { + "start": 8114.98, + "end": 8119.28, + "probability": 0.9613 + }, + { + "start": 8119.96, + "end": 8122.62, + "probability": 0.9814 + }, + { + "start": 8123.22, + "end": 8127.48, + "probability": 0.9708 + }, + { + "start": 8128.68, + "end": 8132.68, + "probability": 0.9001 + }, + { + "start": 8133.28, + "end": 8135.52, + "probability": 0.9968 + }, + { + "start": 8136.26, + "end": 8138.5, + "probability": 0.8046 + }, + { + "start": 8138.86, + "end": 8141.83, + "probability": 0.9331 + }, + { + "start": 8143.16, + "end": 8143.66, + "probability": 0.7698 + }, + { + "start": 8144.02, + "end": 8145.06, + "probability": 0.7985 + }, + { + "start": 8145.62, + "end": 8147.6, + "probability": 0.9978 + }, + { + "start": 8148.12, + "end": 8150.3, + "probability": 0.9871 + }, + { + "start": 8150.68, + "end": 8155.82, + "probability": 0.9902 + }, + { + "start": 8156.26, + "end": 8156.86, + "probability": 0.8686 + }, + { + "start": 8157.48, + "end": 8159.56, + "probability": 0.882 + }, + { + "start": 8159.62, + "end": 8161.44, + "probability": 0.6891 + }, + { + "start": 8161.5, + "end": 8162.1, + "probability": 0.8075 + }, + { + "start": 8174.14, + "end": 8176.3, + "probability": 0.6484 + }, + { + "start": 8177.18, + "end": 8178.48, + "probability": 0.8178 + }, + { + "start": 8178.54, + "end": 8180.16, + "probability": 0.9276 + }, + { + "start": 8180.7, + "end": 8183.16, + "probability": 0.9672 + }, + { + "start": 8183.16, + "end": 8185.7, + "probability": 0.9767 + }, + { + "start": 8186.52, + "end": 8189.24, + "probability": 0.9463 + }, + { + "start": 8189.46, + "end": 8190.82, + "probability": 0.9806 + }, + { + "start": 8191.08, + "end": 8192.82, + "probability": 0.7651 + }, + { + "start": 8192.98, + "end": 8194.25, + "probability": 0.978 + }, + { + "start": 8195.4, + "end": 8196.82, + "probability": 0.0724 + }, + { + "start": 8196.82, + "end": 8197.3, + "probability": 0.1326 + }, + { + "start": 8197.82, + "end": 8197.82, + "probability": 0.3552 + }, + { + "start": 8198.16, + "end": 8198.88, + "probability": 0.3512 + }, + { + "start": 8199.82, + "end": 8201.7, + "probability": 0.7321 + }, + { + "start": 8202.88, + "end": 8207.86, + "probability": 0.7419 + }, + { + "start": 8207.98, + "end": 8208.68, + "probability": 0.9136 + }, + { + "start": 8209.8, + "end": 8211.3, + "probability": 0.8594 + }, + { + "start": 8211.4, + "end": 8214.62, + "probability": 0.9945 + }, + { + "start": 8214.76, + "end": 8217.24, + "probability": 0.877 + }, + { + "start": 8217.5, + "end": 8223.06, + "probability": 0.9805 + }, + { + "start": 8223.72, + "end": 8227.18, + "probability": 0.9926 + }, + { + "start": 8227.58, + "end": 8227.76, + "probability": 0.3401 + }, + { + "start": 8228.16, + "end": 8232.22, + "probability": 0.953 + }, + { + "start": 8232.36, + "end": 8236.68, + "probability": 0.9571 + }, + { + "start": 8236.68, + "end": 8242.0, + "probability": 0.9581 + }, + { + "start": 8242.12, + "end": 8246.68, + "probability": 0.9761 + }, + { + "start": 8246.68, + "end": 8251.72, + "probability": 0.9991 + }, + { + "start": 8252.86, + "end": 8253.36, + "probability": 0.5931 + }, + { + "start": 8254.02, + "end": 8258.58, + "probability": 0.9901 + }, + { + "start": 8258.82, + "end": 8259.18, + "probability": 0.8287 + }, + { + "start": 8260.24, + "end": 8265.4, + "probability": 0.9961 + }, + { + "start": 8266.28, + "end": 8267.06, + "probability": 0.6902 + }, + { + "start": 8267.14, + "end": 8268.64, + "probability": 0.9897 + }, + { + "start": 8268.78, + "end": 8274.68, + "probability": 0.9936 + }, + { + "start": 8274.88, + "end": 8279.8, + "probability": 0.9948 + }, + { + "start": 8280.54, + "end": 8283.22, + "probability": 0.9635 + }, + { + "start": 8283.34, + "end": 8284.37, + "probability": 0.8674 + }, + { + "start": 8284.84, + "end": 8292.48, + "probability": 0.9434 + }, + { + "start": 8293.1, + "end": 8299.44, + "probability": 0.9917 + }, + { + "start": 8299.44, + "end": 8304.46, + "probability": 0.9926 + }, + { + "start": 8305.08, + "end": 8308.38, + "probability": 0.798 + }, + { + "start": 8308.9, + "end": 8316.16, + "probability": 0.9766 + }, + { + "start": 8316.92, + "end": 8317.34, + "probability": 0.8096 + }, + { + "start": 8318.06, + "end": 8322.96, + "probability": 0.9938 + }, + { + "start": 8323.29, + "end": 8326.96, + "probability": 0.9941 + }, + { + "start": 8326.96, + "end": 8331.4, + "probability": 0.9985 + }, + { + "start": 8331.94, + "end": 8332.84, + "probability": 0.7139 + }, + { + "start": 8333.32, + "end": 8339.34, + "probability": 0.9946 + }, + { + "start": 8340.04, + "end": 8344.38, + "probability": 0.9831 + }, + { + "start": 8345.46, + "end": 8346.92, + "probability": 0.9993 + }, + { + "start": 8347.6, + "end": 8351.76, + "probability": 0.9574 + }, + { + "start": 8352.72, + "end": 8355.68, + "probability": 0.9976 + }, + { + "start": 8355.8, + "end": 8357.72, + "probability": 0.9563 + }, + { + "start": 8358.28, + "end": 8361.7, + "probability": 0.9955 + }, + { + "start": 8361.84, + "end": 8363.04, + "probability": 0.5522 + }, + { + "start": 8363.7, + "end": 8365.42, + "probability": 0.9957 + }, + { + "start": 8366.26, + "end": 8368.94, + "probability": 0.7767 + }, + { + "start": 8369.72, + "end": 8375.38, + "probability": 0.8881 + }, + { + "start": 8375.38, + "end": 8379.3, + "probability": 0.999 + }, + { + "start": 8380.06, + "end": 8383.7, + "probability": 0.9998 + }, + { + "start": 8385.7, + "end": 8386.78, + "probability": 0.5135 + }, + { + "start": 8389.6, + "end": 8390.44, + "probability": 0.6439 + }, + { + "start": 8391.2, + "end": 8395.24, + "probability": 0.9854 + }, + { + "start": 8395.32, + "end": 8396.58, + "probability": 0.9465 + }, + { + "start": 8396.78, + "end": 8397.7, + "probability": 0.8898 + }, + { + "start": 8397.76, + "end": 8398.55, + "probability": 0.814 + }, + { + "start": 8398.88, + "end": 8402.64, + "probability": 0.9819 + }, + { + "start": 8403.78, + "end": 8407.4, + "probability": 0.9922 + }, + { + "start": 8407.96, + "end": 8412.0, + "probability": 0.9914 + }, + { + "start": 8412.66, + "end": 8418.08, + "probability": 0.9678 + }, + { + "start": 8421.44, + "end": 8422.76, + "probability": 0.878 + }, + { + "start": 8423.78, + "end": 8423.9, + "probability": 0.1924 + }, + { + "start": 8423.96, + "end": 8425.58, + "probability": 0.9961 + }, + { + "start": 8425.7, + "end": 8426.24, + "probability": 0.5227 + }, + { + "start": 8426.36, + "end": 8426.84, + "probability": 0.8837 + }, + { + "start": 8426.98, + "end": 8428.98, + "probability": 0.9551 + }, + { + "start": 8430.2, + "end": 8434.22, + "probability": 0.9984 + }, + { + "start": 8435.32, + "end": 8436.96, + "probability": 0.7766 + }, + { + "start": 8437.66, + "end": 8440.22, + "probability": 0.9989 + }, + { + "start": 8440.22, + "end": 8444.52, + "probability": 0.985 + }, + { + "start": 8444.72, + "end": 8447.24, + "probability": 0.9443 + }, + { + "start": 8447.98, + "end": 8449.16, + "probability": 0.9373 + }, + { + "start": 8449.28, + "end": 8450.1, + "probability": 0.8349 + }, + { + "start": 8450.14, + "end": 8451.54, + "probability": 0.9879 + }, + { + "start": 8451.74, + "end": 8453.34, + "probability": 0.7675 + }, + { + "start": 8454.96, + "end": 8455.9, + "probability": 0.5232 + }, + { + "start": 8456.14, + "end": 8457.8, + "probability": 0.7514 + }, + { + "start": 8459.16, + "end": 8463.66, + "probability": 0.9785 + }, + { + "start": 8463.8, + "end": 8468.45, + "probability": 0.9358 + }, + { + "start": 8468.78, + "end": 8470.02, + "probability": 0.7328 + }, + { + "start": 8470.32, + "end": 8471.0, + "probability": 0.4664 + }, + { + "start": 8471.6, + "end": 8471.82, + "probability": 0.3556 + }, + { + "start": 8472.98, + "end": 8476.06, + "probability": 0.8063 + }, + { + "start": 8476.06, + "end": 8477.14, + "probability": 0.7979 + }, + { + "start": 8481.06, + "end": 8483.48, + "probability": 0.719 + }, + { + "start": 8484.48, + "end": 8485.2, + "probability": 0.5735 + }, + { + "start": 8487.86, + "end": 8487.86, + "probability": 0.7275 + }, + { + "start": 8488.04, + "end": 8492.06, + "probability": 0.0664 + }, + { + "start": 8492.5, + "end": 8493.48, + "probability": 0.0553 + }, + { + "start": 8494.66, + "end": 8496.02, + "probability": 0.0069 + }, + { + "start": 8496.04, + "end": 8496.24, + "probability": 0.0164 + }, + { + "start": 8496.54, + "end": 8497.2, + "probability": 0.0139 + }, + { + "start": 8497.2, + "end": 8500.37, + "probability": 0.2632 + }, + { + "start": 8503.62, + "end": 8504.08, + "probability": 0.0316 + }, + { + "start": 8506.83, + "end": 8507.32, + "probability": 0.148 + }, + { + "start": 8507.32, + "end": 8509.3, + "probability": 0.0218 + }, + { + "start": 8510.86, + "end": 8510.96, + "probability": 0.1863 + }, + { + "start": 8512.42, + "end": 8513.16, + "probability": 0.0265 + }, + { + "start": 8513.16, + "end": 8513.16, + "probability": 0.0331 + }, + { + "start": 8513.16, + "end": 8515.22, + "probability": 0.0668 + }, + { + "start": 8515.42, + "end": 8515.42, + "probability": 0.0006 + }, + { + "start": 8515.42, + "end": 8515.64, + "probability": 0.0205 + }, + { + "start": 8516.1, + "end": 8516.1, + "probability": 0.1633 + }, + { + "start": 8516.1, + "end": 8516.1, + "probability": 0.2558 + }, + { + "start": 8516.1, + "end": 8517.98, + "probability": 0.7619 + }, + { + "start": 8518.72, + "end": 8523.08, + "probability": 0.95 + }, + { + "start": 8523.66, + "end": 8527.34, + "probability": 0.816 + }, + { + "start": 8538.32, + "end": 8541.06, + "probability": 0.9076 + }, + { + "start": 8541.06, + "end": 8543.28, + "probability": 0.393 + }, + { + "start": 8543.4, + "end": 8544.7, + "probability": 0.4469 + }, + { + "start": 8546.84, + "end": 8549.48, + "probability": 0.8428 + }, + { + "start": 8551.28, + "end": 8553.04, + "probability": 0.9678 + }, + { + "start": 8556.6, + "end": 8558.96, + "probability": 0.9974 + }, + { + "start": 8559.08, + "end": 8563.42, + "probability": 0.4782 + }, + { + "start": 8566.06, + "end": 8567.79, + "probability": 0.0643 + }, + { + "start": 8570.44, + "end": 8570.6, + "probability": 0.0143 + }, + { + "start": 8575.65, + "end": 8579.46, + "probability": 0.9969 + }, + { + "start": 8580.16, + "end": 8581.66, + "probability": 0.8036 + }, + { + "start": 8583.2, + "end": 8585.36, + "probability": 0.8818 + }, + { + "start": 8586.3, + "end": 8593.04, + "probability": 0.9626 + }, + { + "start": 8594.64, + "end": 8598.56, + "probability": 0.8149 + }, + { + "start": 8598.7, + "end": 8599.4, + "probability": 0.8663 + }, + { + "start": 8599.64, + "end": 8599.74, + "probability": 0.01 + }, + { + "start": 8599.78, + "end": 8600.58, + "probability": 0.8556 + }, + { + "start": 8601.22, + "end": 8604.58, + "probability": 0.9808 + }, + { + "start": 8605.22, + "end": 8612.44, + "probability": 0.7241 + }, + { + "start": 8613.02, + "end": 8613.42, + "probability": 0.543 + }, + { + "start": 8613.56, + "end": 8614.54, + "probability": 0.8906 + }, + { + "start": 8614.66, + "end": 8618.54, + "probability": 0.9022 + }, + { + "start": 8619.98, + "end": 8620.86, + "probability": 0.5002 + }, + { + "start": 8621.37, + "end": 8624.0, + "probability": 0.5591 + }, + { + "start": 8624.8, + "end": 8628.8, + "probability": 0.9629 + }, + { + "start": 8628.8, + "end": 8634.44, + "probability": 0.9345 + }, + { + "start": 8635.0, + "end": 8638.64, + "probability": 0.9067 + }, + { + "start": 8639.7, + "end": 8641.5, + "probability": 0.7634 + }, + { + "start": 8642.36, + "end": 8645.6, + "probability": 0.9702 + }, + { + "start": 8645.84, + "end": 8648.1, + "probability": 0.9885 + }, + { + "start": 8648.8, + "end": 8650.9, + "probability": 0.9854 + }, + { + "start": 8654.82, + "end": 8657.2, + "probability": 0.9749 + }, + { + "start": 8657.3, + "end": 8661.86, + "probability": 0.8345 + }, + { + "start": 8662.3, + "end": 8666.78, + "probability": 0.9639 + }, + { + "start": 8666.78, + "end": 8673.38, + "probability": 0.9702 + }, + { + "start": 8673.42, + "end": 8675.7, + "probability": 0.9888 + }, + { + "start": 8676.2, + "end": 8681.1, + "probability": 0.9585 + }, + { + "start": 8681.46, + "end": 8684.34, + "probability": 0.9925 + }, + { + "start": 8685.3, + "end": 8688.58, + "probability": 0.986 + }, + { + "start": 8689.06, + "end": 8694.2, + "probability": 0.9911 + }, + { + "start": 8694.78, + "end": 8696.68, + "probability": 0.9362 + }, + { + "start": 8696.76, + "end": 8697.08, + "probability": 0.7894 + }, + { + "start": 8697.12, + "end": 8698.44, + "probability": 0.986 + }, + { + "start": 8699.38, + "end": 8701.7, + "probability": 0.9697 + }, + { + "start": 8701.7, + "end": 8705.66, + "probability": 0.9884 + }, + { + "start": 8706.04, + "end": 8710.16, + "probability": 0.9772 + }, + { + "start": 8710.16, + "end": 8713.98, + "probability": 0.9955 + }, + { + "start": 8715.6, + "end": 8716.4, + "probability": 0.7663 + }, + { + "start": 8716.6, + "end": 8718.62, + "probability": 0.9751 + }, + { + "start": 8719.06, + "end": 8724.02, + "probability": 0.9715 + }, + { + "start": 8724.02, + "end": 8730.02, + "probability": 0.9843 + }, + { + "start": 8730.92, + "end": 8732.82, + "probability": 0.9023 + }, + { + "start": 8733.36, + "end": 8733.38, + "probability": 0.0008 + }, + { + "start": 8734.02, + "end": 8735.26, + "probability": 0.4379 + }, + { + "start": 8735.74, + "end": 8739.24, + "probability": 0.9925 + }, + { + "start": 8739.24, + "end": 8742.08, + "probability": 0.9985 + }, + { + "start": 8742.62, + "end": 8745.12, + "probability": 0.9779 + }, + { + "start": 8746.18, + "end": 8748.88, + "probability": 0.9868 + }, + { + "start": 8748.88, + "end": 8752.62, + "probability": 0.9847 + }, + { + "start": 8754.05, + "end": 8756.6, + "probability": 0.7358 + }, + { + "start": 8757.06, + "end": 8760.9, + "probability": 0.9907 + }, + { + "start": 8761.6, + "end": 8764.94, + "probability": 0.9222 + }, + { + "start": 8765.68, + "end": 8769.42, + "probability": 0.9972 + }, + { + "start": 8770.38, + "end": 8775.04, + "probability": 0.6705 + }, + { + "start": 8775.44, + "end": 8777.56, + "probability": 0.9935 + }, + { + "start": 8778.6, + "end": 8782.68, + "probability": 0.9233 + }, + { + "start": 8783.18, + "end": 8787.78, + "probability": 0.9989 + }, + { + "start": 8788.38, + "end": 8792.76, + "probability": 0.8033 + }, + { + "start": 8792.76, + "end": 8797.44, + "probability": 0.9921 + }, + { + "start": 8797.98, + "end": 8800.24, + "probability": 0.7917 + }, + { + "start": 8800.92, + "end": 8805.84, + "probability": 0.9833 + }, + { + "start": 8805.84, + "end": 8809.9, + "probability": 0.7169 + }, + { + "start": 8810.6, + "end": 8814.8, + "probability": 0.9146 + }, + { + "start": 8816.49, + "end": 8819.12, + "probability": 0.7988 + }, + { + "start": 8820.02, + "end": 8821.0, + "probability": 0.514 + }, + { + "start": 8822.18, + "end": 8829.74, + "probability": 0.9822 + }, + { + "start": 8830.76, + "end": 8831.53, + "probability": 0.9976 + }, + { + "start": 8832.52, + "end": 8833.76, + "probability": 0.8691 + }, + { + "start": 8834.25, + "end": 8836.88, + "probability": 0.9626 + }, + { + "start": 8837.3, + "end": 8842.22, + "probability": 0.9785 + }, + { + "start": 8842.78, + "end": 8845.26, + "probability": 0.9164 + }, + { + "start": 8845.44, + "end": 8845.94, + "probability": 0.6738 + }, + { + "start": 8846.06, + "end": 8850.3, + "probability": 0.7928 + }, + { + "start": 8850.64, + "end": 8853.88, + "probability": 0.9465 + }, + { + "start": 8854.22, + "end": 8858.46, + "probability": 0.9468 + }, + { + "start": 8859.42, + "end": 8863.58, + "probability": 0.7368 + }, + { + "start": 8863.92, + "end": 8870.42, + "probability": 0.8117 + }, + { + "start": 8870.44, + "end": 8874.04, + "probability": 0.7428 + }, + { + "start": 8874.94, + "end": 8879.12, + "probability": 0.5028 + }, + { + "start": 8879.76, + "end": 8882.88, + "probability": 0.8163 + }, + { + "start": 8883.3, + "end": 8884.08, + "probability": 0.6889 + }, + { + "start": 8884.24, + "end": 8885.69, + "probability": 0.9945 + }, + { + "start": 8886.4, + "end": 8893.44, + "probability": 0.7377 + }, + { + "start": 8893.88, + "end": 8897.98, + "probability": 0.9961 + }, + { + "start": 8898.26, + "end": 8898.54, + "probability": 0.556 + }, + { + "start": 8898.78, + "end": 8903.32, + "probability": 0.3795 + }, + { + "start": 8903.66, + "end": 8906.14, + "probability": 0.9541 + }, + { + "start": 8906.98, + "end": 8913.3, + "probability": 0.9095 + }, + { + "start": 8913.8, + "end": 8914.14, + "probability": 0.38 + }, + { + "start": 8914.2, + "end": 8914.54, + "probability": 0.7673 + }, + { + "start": 8914.56, + "end": 8917.62, + "probability": 0.9976 + }, + { + "start": 8917.62, + "end": 8919.18, + "probability": 0.935 + }, + { + "start": 8919.68, + "end": 8921.12, + "probability": 0.9399 + }, + { + "start": 8921.7, + "end": 8932.24, + "probability": 0.97 + }, + { + "start": 8932.74, + "end": 8935.7, + "probability": 0.9302 + }, + { + "start": 8935.7, + "end": 8936.76, + "probability": 0.781 + }, + { + "start": 8936.82, + "end": 8937.2, + "probability": 0.4032 + }, + { + "start": 8937.2, + "end": 8938.96, + "probability": 0.9834 + }, + { + "start": 8939.04, + "end": 8939.82, + "probability": 0.8731 + }, + { + "start": 8939.9, + "end": 8941.03, + "probability": 0.4179 + }, + { + "start": 8942.02, + "end": 8945.3, + "probability": 0.9035 + }, + { + "start": 8945.42, + "end": 8947.3, + "probability": 0.4804 + }, + { + "start": 8947.48, + "end": 8948.08, + "probability": 0.5977 + }, + { + "start": 8948.44, + "end": 8950.36, + "probability": 0.9881 + }, + { + "start": 8950.84, + "end": 8952.26, + "probability": 0.6682 + }, + { + "start": 8952.72, + "end": 8960.9, + "probability": 0.9867 + }, + { + "start": 8960.92, + "end": 8961.08, + "probability": 0.3793 + }, + { + "start": 8961.08, + "end": 8962.12, + "probability": 0.84 + }, + { + "start": 8962.72, + "end": 8964.19, + "probability": 0.9097 + }, + { + "start": 8965.08, + "end": 8965.78, + "probability": 0.9693 + }, + { + "start": 8965.94, + "end": 8966.92, + "probability": 0.9707 + }, + { + "start": 8966.96, + "end": 8969.52, + "probability": 0.9795 + }, + { + "start": 8970.0, + "end": 8975.38, + "probability": 0.9915 + }, + { + "start": 8975.76, + "end": 8978.4, + "probability": 0.9941 + }, + { + "start": 8978.74, + "end": 8979.66, + "probability": 0.4348 + }, + { + "start": 8980.37, + "end": 8981.84, + "probability": 0.7924 + }, + { + "start": 8982.38, + "end": 8982.78, + "probability": 0.7301 + }, + { + "start": 8982.78, + "end": 8983.42, + "probability": 0.9217 + }, + { + "start": 8983.84, + "end": 8985.64, + "probability": 0.9857 + }, + { + "start": 8985.78, + "end": 8986.27, + "probability": 0.9801 + }, + { + "start": 8986.76, + "end": 8987.34, + "probability": 0.9827 + }, + { + "start": 8987.94, + "end": 8988.94, + "probability": 0.8647 + }, + { + "start": 8989.2, + "end": 8990.18, + "probability": 0.5627 + }, + { + "start": 8990.38, + "end": 8995.66, + "probability": 0.9897 + }, + { + "start": 8996.0, + "end": 8999.72, + "probability": 0.9894 + }, + { + "start": 9000.36, + "end": 9000.36, + "probability": 0.2713 + }, + { + "start": 9000.36, + "end": 9000.46, + "probability": 0.4657 + }, + { + "start": 9001.28, + "end": 9005.3, + "probability": 0.8391 + }, + { + "start": 9005.84, + "end": 9006.34, + "probability": 0.8654 + }, + { + "start": 9006.4, + "end": 9010.12, + "probability": 0.9052 + }, + { + "start": 9010.12, + "end": 9014.18, + "probability": 0.874 + }, + { + "start": 9014.64, + "end": 9017.74, + "probability": 0.9775 + }, + { + "start": 9018.39, + "end": 9020.16, + "probability": 0.5591 + }, + { + "start": 9020.16, + "end": 9020.62, + "probability": 0.4688 + }, + { + "start": 9020.62, + "end": 9024.34, + "probability": 0.7225 + }, + { + "start": 9024.44, + "end": 9029.26, + "probability": 0.9914 + }, + { + "start": 9029.62, + "end": 9030.9, + "probability": 0.9248 + }, + { + "start": 9031.54, + "end": 9039.14, + "probability": 0.9909 + }, + { + "start": 9039.22, + "end": 9042.78, + "probability": 0.8316 + }, + { + "start": 9043.08, + "end": 9043.24, + "probability": 0.4916 + }, + { + "start": 9043.44, + "end": 9046.52, + "probability": 0.8938 + }, + { + "start": 9046.68, + "end": 9049.64, + "probability": 0.9367 + }, + { + "start": 9050.02, + "end": 9054.06, + "probability": 0.9242 + }, + { + "start": 9054.36, + "end": 9055.64, + "probability": 0.5138 + }, + { + "start": 9055.74, + "end": 9057.6, + "probability": 0.8791 + }, + { + "start": 9058.22, + "end": 9060.5, + "probability": 0.9185 + }, + { + "start": 9060.92, + "end": 9063.48, + "probability": 0.8938 + }, + { + "start": 9063.6, + "end": 9064.38, + "probability": 0.938 + }, + { + "start": 9064.9, + "end": 9069.42, + "probability": 0.9814 + }, + { + "start": 9069.5, + "end": 9070.12, + "probability": 0.7057 + }, + { + "start": 9070.58, + "end": 9075.38, + "probability": 0.9526 + }, + { + "start": 9075.8, + "end": 9076.58, + "probability": 0.6057 + }, + { + "start": 9076.72, + "end": 9077.1, + "probability": 0.7911 + }, + { + "start": 9077.2, + "end": 9084.02, + "probability": 0.9943 + }, + { + "start": 9084.14, + "end": 9084.68, + "probability": 0.5267 + }, + { + "start": 9084.96, + "end": 9087.1, + "probability": 0.9273 + }, + { + "start": 9087.72, + "end": 9091.4, + "probability": 0.8542 + }, + { + "start": 9091.48, + "end": 9092.18, + "probability": 0.8202 + }, + { + "start": 9098.42, + "end": 9099.28, + "probability": 0.6875 + }, + { + "start": 9100.02, + "end": 9100.6, + "probability": 0.8592 + }, + { + "start": 9100.66, + "end": 9102.36, + "probability": 0.9425 + }, + { + "start": 9102.62, + "end": 9105.08, + "probability": 0.8929 + }, + { + "start": 9105.34, + "end": 9105.56, + "probability": 0.6805 + }, + { + "start": 9105.68, + "end": 9107.46, + "probability": 0.9728 + }, + { + "start": 9107.56, + "end": 9108.32, + "probability": 0.9536 + }, + { + "start": 9109.18, + "end": 9111.0, + "probability": 0.5749 + }, + { + "start": 9112.5, + "end": 9113.78, + "probability": 0.6371 + }, + { + "start": 9114.86, + "end": 9119.2, + "probability": 0.9882 + }, + { + "start": 9119.36, + "end": 9120.24, + "probability": 0.6726 + }, + { + "start": 9121.54, + "end": 9122.58, + "probability": 0.7659 + }, + { + "start": 9122.58, + "end": 9124.1, + "probability": 0.9787 + }, + { + "start": 9124.54, + "end": 9129.56, + "probability": 0.9899 + }, + { + "start": 9130.48, + "end": 9133.44, + "probability": 0.9269 + }, + { + "start": 9133.88, + "end": 9134.54, + "probability": 0.6931 + }, + { + "start": 9135.18, + "end": 9138.32, + "probability": 0.9971 + }, + { + "start": 9138.32, + "end": 9142.64, + "probability": 0.998 + }, + { + "start": 9143.66, + "end": 9147.8, + "probability": 0.9948 + }, + { + "start": 9148.78, + "end": 9149.04, + "probability": 0.3921 + }, + { + "start": 9149.2, + "end": 9152.42, + "probability": 0.7972 + }, + { + "start": 9152.42, + "end": 9154.76, + "probability": 0.8425 + }, + { + "start": 9155.58, + "end": 9160.5, + "probability": 0.995 + }, + { + "start": 9161.32, + "end": 9162.68, + "probability": 0.9142 + }, + { + "start": 9163.7, + "end": 9169.26, + "probability": 0.9725 + }, + { + "start": 9169.26, + "end": 9173.18, + "probability": 0.9966 + }, + { + "start": 9174.34, + "end": 9174.88, + "probability": 0.9749 + }, + { + "start": 9175.86, + "end": 9177.36, + "probability": 0.9951 + }, + { + "start": 9177.98, + "end": 9182.14, + "probability": 0.9761 + }, + { + "start": 9182.14, + "end": 9186.28, + "probability": 0.9839 + }, + { + "start": 9186.46, + "end": 9189.44, + "probability": 0.9844 + }, + { + "start": 9190.16, + "end": 9190.7, + "probability": 0.8628 + }, + { + "start": 9191.7, + "end": 9194.6, + "probability": 0.9398 + }, + { + "start": 9195.16, + "end": 9200.72, + "probability": 0.9959 + }, + { + "start": 9201.26, + "end": 9205.8, + "probability": 0.9907 + }, + { + "start": 9206.92, + "end": 9207.76, + "probability": 0.926 + }, + { + "start": 9208.4, + "end": 9211.08, + "probability": 0.9191 + }, + { + "start": 9211.68, + "end": 9217.06, + "probability": 0.9687 + }, + { + "start": 9217.06, + "end": 9229.28, + "probability": 0.9888 + }, + { + "start": 9229.28, + "end": 9235.5, + "probability": 0.9922 + }, + { + "start": 9236.06, + "end": 9238.88, + "probability": 0.8557 + }, + { + "start": 9239.56, + "end": 9244.66, + "probability": 0.9767 + }, + { + "start": 9245.12, + "end": 9249.12, + "probability": 0.9834 + }, + { + "start": 9249.8, + "end": 9252.62, + "probability": 0.894 + }, + { + "start": 9252.62, + "end": 9256.06, + "probability": 0.9976 + }, + { + "start": 9256.46, + "end": 9258.3, + "probability": 0.9053 + }, + { + "start": 9259.18, + "end": 9260.1, + "probability": 0.8597 + }, + { + "start": 9260.78, + "end": 9263.76, + "probability": 0.9435 + }, + { + "start": 9263.76, + "end": 9269.32, + "probability": 0.9552 + }, + { + "start": 9269.56, + "end": 9273.3, + "probability": 0.995 + }, + { + "start": 9273.3, + "end": 9276.24, + "probability": 0.935 + }, + { + "start": 9277.36, + "end": 9282.12, + "probability": 0.9969 + }, + { + "start": 9282.52, + "end": 9287.08, + "probability": 0.9919 + }, + { + "start": 9287.18, + "end": 9290.86, + "probability": 0.9945 + }, + { + "start": 9290.86, + "end": 9293.22, + "probability": 0.9551 + }, + { + "start": 9293.94, + "end": 9294.48, + "probability": 0.6848 + }, + { + "start": 9295.94, + "end": 9301.08, + "probability": 0.9785 + }, + { + "start": 9301.08, + "end": 9307.16, + "probability": 0.9959 + }, + { + "start": 9307.92, + "end": 9310.7, + "probability": 0.9896 + }, + { + "start": 9311.36, + "end": 9311.76, + "probability": 0.5942 + }, + { + "start": 9311.92, + "end": 9318.12, + "probability": 0.9869 + }, + { + "start": 9318.12, + "end": 9323.9, + "probability": 0.9919 + }, + { + "start": 9324.6, + "end": 9328.54, + "probability": 0.8758 + }, + { + "start": 9329.02, + "end": 9329.5, + "probability": 0.777 + }, + { + "start": 9330.5, + "end": 9332.28, + "probability": 0.9224 + }, + { + "start": 9332.38, + "end": 9336.14, + "probability": 0.8873 + }, + { + "start": 9336.64, + "end": 9340.06, + "probability": 0.9736 + }, + { + "start": 9340.12, + "end": 9344.24, + "probability": 0.9834 + }, + { + "start": 9344.24, + "end": 9348.54, + "probability": 0.7336 + }, + { + "start": 9348.88, + "end": 9349.62, + "probability": 0.0168 + }, + { + "start": 9349.62, + "end": 9351.02, + "probability": 0.3246 + }, + { + "start": 9351.02, + "end": 9352.22, + "probability": 0.2691 + }, + { + "start": 9352.84, + "end": 9353.1, + "probability": 0.4019 + }, + { + "start": 9353.6, + "end": 9353.6, + "probability": 0.0181 + }, + { + "start": 9353.6, + "end": 9353.6, + "probability": 0.1651 + }, + { + "start": 9353.6, + "end": 9358.72, + "probability": 0.9401 + }, + { + "start": 9358.88, + "end": 9360.0, + "probability": 0.9291 + }, + { + "start": 9360.1, + "end": 9362.34, + "probability": 0.9247 + }, + { + "start": 9363.42, + "end": 9365.84, + "probability": 0.8949 + }, + { + "start": 9367.94, + "end": 9369.88, + "probability": 0.9854 + }, + { + "start": 9370.54, + "end": 9371.62, + "probability": 0.9092 + }, + { + "start": 9372.46, + "end": 9373.74, + "probability": 0.7898 + }, + { + "start": 9373.84, + "end": 9377.32, + "probability": 0.9985 + }, + { + "start": 9377.82, + "end": 9378.93, + "probability": 0.978 + }, + { + "start": 9379.84, + "end": 9381.94, + "probability": 0.9597 + }, + { + "start": 9381.96, + "end": 9383.44, + "probability": 0.7798 + }, + { + "start": 9383.82, + "end": 9385.58, + "probability": 0.9973 + }, + { + "start": 9386.04, + "end": 9387.01, + "probability": 0.8745 + }, + { + "start": 9387.34, + "end": 9390.04, + "probability": 0.9364 + }, + { + "start": 9390.12, + "end": 9391.04, + "probability": 0.91 + }, + { + "start": 9392.52, + "end": 9393.7, + "probability": 0.9419 + }, + { + "start": 9394.42, + "end": 9398.58, + "probability": 0.6545 + }, + { + "start": 9398.6, + "end": 9399.22, + "probability": 0.7931 + }, + { + "start": 9399.58, + "end": 9400.72, + "probability": 0.978 + }, + { + "start": 9401.06, + "end": 9406.06, + "probability": 0.9802 + }, + { + "start": 9406.12, + "end": 9407.48, + "probability": 0.8407 + }, + { + "start": 9407.66, + "end": 9412.0, + "probability": 0.7539 + }, + { + "start": 9412.3, + "end": 9413.8, + "probability": 0.8688 + }, + { + "start": 9414.3, + "end": 9414.86, + "probability": 0.5251 + }, + { + "start": 9414.96, + "end": 9415.24, + "probability": 0.9228 + }, + { + "start": 9415.3, + "end": 9416.22, + "probability": 0.8066 + }, + { + "start": 9416.68, + "end": 9419.86, + "probability": 0.9775 + }, + { + "start": 9420.84, + "end": 9422.06, + "probability": 0.3935 + }, + { + "start": 9423.28, + "end": 9424.94, + "probability": 0.5237 + }, + { + "start": 9425.46, + "end": 9425.84, + "probability": 0.9055 + }, + { + "start": 9425.92, + "end": 9431.24, + "probability": 0.9855 + }, + { + "start": 9433.74, + "end": 9436.86, + "probability": 0.7787 + }, + { + "start": 9437.5, + "end": 9437.78, + "probability": 0.5973 + }, + { + "start": 9437.88, + "end": 9439.16, + "probability": 0.6555 + }, + { + "start": 9439.66, + "end": 9441.88, + "probability": 0.9918 + }, + { + "start": 9441.9, + "end": 9446.16, + "probability": 0.7109 + }, + { + "start": 9446.44, + "end": 9447.36, + "probability": 0.9697 + }, + { + "start": 9447.64, + "end": 9448.56, + "probability": 0.7789 + }, + { + "start": 9448.6, + "end": 9449.7, + "probability": 0.9691 + }, + { + "start": 9451.48, + "end": 9454.06, + "probability": 0.9325 + }, + { + "start": 9454.54, + "end": 9457.22, + "probability": 0.9247 + }, + { + "start": 9457.36, + "end": 9457.64, + "probability": 0.7875 + }, + { + "start": 9458.8, + "end": 9460.76, + "probability": 0.8841 + }, + { + "start": 9461.1, + "end": 9464.76, + "probability": 0.9966 + }, + { + "start": 9464.76, + "end": 9467.42, + "probability": 0.7913 + }, + { + "start": 9467.9, + "end": 9471.18, + "probability": 0.1878 + }, + { + "start": 9479.32, + "end": 9480.76, + "probability": 0.0461 + }, + { + "start": 9489.48, + "end": 9489.9, + "probability": 0.0639 + }, + { + "start": 9489.9, + "end": 9489.92, + "probability": 0.0903 + }, + { + "start": 9489.92, + "end": 9489.92, + "probability": 0.2351 + }, + { + "start": 9489.92, + "end": 9491.94, + "probability": 0.3126 + }, + { + "start": 9493.66, + "end": 9497.08, + "probability": 0.6713 + }, + { + "start": 9498.48, + "end": 9499.74, + "probability": 0.101 + }, + { + "start": 9500.26, + "end": 9503.06, + "probability": 0.9411 + }, + { + "start": 9503.22, + "end": 9506.1, + "probability": 0.9369 + }, + { + "start": 9506.78, + "end": 9513.04, + "probability": 0.6291 + }, + { + "start": 9513.22, + "end": 9515.36, + "probability": 0.7499 + }, + { + "start": 9518.94, + "end": 9519.22, + "probability": 0.304 + }, + { + "start": 9519.26, + "end": 9521.3, + "probability": 0.4178 + }, + { + "start": 9521.3, + "end": 9524.76, + "probability": 0.8824 + }, + { + "start": 9524.88, + "end": 9528.52, + "probability": 0.9939 + }, + { + "start": 9529.38, + "end": 9533.76, + "probability": 0.969 + }, + { + "start": 9534.62, + "end": 9534.84, + "probability": 0.6188 + }, + { + "start": 9535.72, + "end": 9539.34, + "probability": 0.9865 + }, + { + "start": 9540.28, + "end": 9544.32, + "probability": 0.933 + }, + { + "start": 9544.42, + "end": 9547.76, + "probability": 0.9938 + }, + { + "start": 9548.34, + "end": 9548.62, + "probability": 0.1341 + }, + { + "start": 9548.66, + "end": 9550.64, + "probability": 0.9246 + }, + { + "start": 9550.98, + "end": 9552.68, + "probability": 0.9983 + }, + { + "start": 9553.32, + "end": 9555.24, + "probability": 0.978 + }, + { + "start": 9555.34, + "end": 9557.8, + "probability": 0.9587 + }, + { + "start": 9558.58, + "end": 9559.36, + "probability": 0.7225 + }, + { + "start": 9559.5, + "end": 9560.0, + "probability": 0.9036 + }, + { + "start": 9560.1, + "end": 9562.4, + "probability": 0.9847 + }, + { + "start": 9562.68, + "end": 9565.84, + "probability": 0.9717 + }, + { + "start": 9566.5, + "end": 9569.48, + "probability": 0.9535 + }, + { + "start": 9569.98, + "end": 9572.24, + "probability": 0.8766 + }, + { + "start": 9572.84, + "end": 9577.04, + "probability": 0.9988 + }, + { + "start": 9577.84, + "end": 9580.2, + "probability": 0.9141 + }, + { + "start": 9580.36, + "end": 9581.76, + "probability": 0.8385 + }, + { + "start": 9581.92, + "end": 9584.94, + "probability": 0.9882 + }, + { + "start": 9585.08, + "end": 9585.62, + "probability": 0.7877 + }, + { + "start": 9585.76, + "end": 9586.44, + "probability": 0.9651 + }, + { + "start": 9587.28, + "end": 9590.46, + "probability": 0.9751 + }, + { + "start": 9591.1, + "end": 9594.49, + "probability": 0.9342 + }, + { + "start": 9594.84, + "end": 9595.55, + "probability": 0.6377 + }, + { + "start": 9595.92, + "end": 9598.8, + "probability": 0.9808 + }, + { + "start": 9599.38, + "end": 9601.88, + "probability": 0.9297 + }, + { + "start": 9602.18, + "end": 9603.02, + "probability": 0.6897 + }, + { + "start": 9603.66, + "end": 9606.3, + "probability": 0.8994 + }, + { + "start": 9606.38, + "end": 9608.98, + "probability": 0.7241 + }, + { + "start": 9609.26, + "end": 9612.1, + "probability": 0.9807 + }, + { + "start": 9612.54, + "end": 9613.92, + "probability": 0.9671 + }, + { + "start": 9614.52, + "end": 9617.92, + "probability": 0.9989 + }, + { + "start": 9618.22, + "end": 9618.44, + "probability": 0.5623 + }, + { + "start": 9618.5, + "end": 9620.69, + "probability": 0.9102 + }, + { + "start": 9622.49, + "end": 9626.22, + "probability": 0.9518 + }, + { + "start": 9637.48, + "end": 9640.0, + "probability": 0.51 + }, + { + "start": 9641.2, + "end": 9643.9, + "probability": 0.7103 + }, + { + "start": 9644.91, + "end": 9647.36, + "probability": 0.9269 + }, + { + "start": 9647.48, + "end": 9650.12, + "probability": 0.9892 + }, + { + "start": 9650.72, + "end": 9651.44, + "probability": 0.9413 + }, + { + "start": 9652.38, + "end": 9654.68, + "probability": 0.7124 + }, + { + "start": 9654.98, + "end": 9657.0, + "probability": 0.4987 + }, + { + "start": 9657.18, + "end": 9658.43, + "probability": 0.9849 + }, + { + "start": 9658.8, + "end": 9662.12, + "probability": 0.9832 + }, + { + "start": 9662.12, + "end": 9665.52, + "probability": 0.9954 + }, + { + "start": 9666.17, + "end": 9668.16, + "probability": 0.9873 + }, + { + "start": 9668.24, + "end": 9670.36, + "probability": 0.8182 + }, + { + "start": 9670.58, + "end": 9670.82, + "probability": 0.6877 + }, + { + "start": 9671.2, + "end": 9671.54, + "probability": 0.7805 + }, + { + "start": 9671.7, + "end": 9673.12, + "probability": 0.9601 + }, + { + "start": 9673.28, + "end": 9674.22, + "probability": 0.3198 + }, + { + "start": 9674.22, + "end": 9676.16, + "probability": 0.9907 + }, + { + "start": 9676.34, + "end": 9676.58, + "probability": 0.8276 + }, + { + "start": 9677.92, + "end": 9678.0, + "probability": 0.271 + }, + { + "start": 9678.12, + "end": 9680.9, + "probability": 0.9772 + }, + { + "start": 9680.9, + "end": 9684.32, + "probability": 0.9373 + }, + { + "start": 9685.52, + "end": 9687.16, + "probability": 0.8902 + }, + { + "start": 9687.32, + "end": 9690.32, + "probability": 0.9496 + }, + { + "start": 9691.16, + "end": 9691.64, + "probability": 0.2748 + }, + { + "start": 9691.78, + "end": 9694.96, + "probability": 0.7961 + }, + { + "start": 9696.66, + "end": 9699.84, + "probability": 0.929 + }, + { + "start": 9701.02, + "end": 9703.42, + "probability": 0.9644 + }, + { + "start": 9704.22, + "end": 9704.9, + "probability": 0.8947 + }, + { + "start": 9705.62, + "end": 9708.18, + "probability": 0.9803 + }, + { + "start": 9708.18, + "end": 9711.2, + "probability": 0.8167 + }, + { + "start": 9712.4, + "end": 9715.52, + "probability": 0.9135 + }, + { + "start": 9715.56, + "end": 9715.66, + "probability": 0.7192 + }, + { + "start": 9716.52, + "end": 9718.16, + "probability": 0.8944 + }, + { + "start": 9718.36, + "end": 9719.48, + "probability": 0.9274 + }, + { + "start": 9719.58, + "end": 9724.94, + "probability": 0.9661 + }, + { + "start": 9725.92, + "end": 9728.96, + "probability": 0.9492 + }, + { + "start": 9728.96, + "end": 9732.66, + "probability": 0.9261 + }, + { + "start": 9733.24, + "end": 9735.88, + "probability": 0.9099 + }, + { + "start": 9736.18, + "end": 9736.48, + "probability": 0.6277 + }, + { + "start": 9737.32, + "end": 9739.42, + "probability": 0.8254 + }, + { + "start": 9740.14, + "end": 9744.64, + "probability": 0.8468 + }, + { + "start": 9745.14, + "end": 9746.46, + "probability": 0.9316 + }, + { + "start": 9746.54, + "end": 9750.02, + "probability": 0.9807 + }, + { + "start": 9750.68, + "end": 9752.52, + "probability": 0.8678 + }, + { + "start": 9753.04, + "end": 9756.7, + "probability": 0.9888 + }, + { + "start": 9757.16, + "end": 9761.16, + "probability": 0.9872 + }, + { + "start": 9761.24, + "end": 9762.62, + "probability": 0.9972 + }, + { + "start": 9763.14, + "end": 9764.18, + "probability": 0.8158 + }, + { + "start": 9764.38, + "end": 9768.9, + "probability": 0.9963 + }, + { + "start": 9768.9, + "end": 9773.88, + "probability": 0.9963 + }, + { + "start": 9774.8, + "end": 9777.56, + "probability": 0.9978 + }, + { + "start": 9778.42, + "end": 9784.88, + "probability": 0.9855 + }, + { + "start": 9785.76, + "end": 9786.08, + "probability": 0.5444 + }, + { + "start": 9787.12, + "end": 9790.78, + "probability": 0.904 + }, + { + "start": 9790.78, + "end": 9793.34, + "probability": 0.8261 + }, + { + "start": 9793.96, + "end": 9794.76, + "probability": 0.9168 + }, + { + "start": 9795.5, + "end": 9796.66, + "probability": 0.259 + }, + { + "start": 9796.7, + "end": 9800.16, + "probability": 0.9744 + }, + { + "start": 9800.44, + "end": 9800.7, + "probability": 0.7767 + }, + { + "start": 9801.36, + "end": 9803.5, + "probability": 0.926 + }, + { + "start": 9803.7, + "end": 9807.12, + "probability": 0.9399 + }, + { + "start": 9807.3, + "end": 9810.08, + "probability": 0.9569 + }, + { + "start": 9810.85, + "end": 9813.78, + "probability": 0.4107 + }, + { + "start": 9813.86, + "end": 9814.34, + "probability": 0.9184 + }, + { + "start": 9814.68, + "end": 9822.16, + "probability": 0.0802 + }, + { + "start": 9822.16, + "end": 9822.16, + "probability": 0.0441 + }, + { + "start": 9830.72, + "end": 9830.72, + "probability": 0.0833 + }, + { + "start": 9830.72, + "end": 9830.72, + "probability": 0.0244 + }, + { + "start": 9830.72, + "end": 9830.72, + "probability": 0.1969 + }, + { + "start": 9830.72, + "end": 9830.72, + "probability": 0.5335 + }, + { + "start": 9830.72, + "end": 9832.74, + "probability": 0.7052 + }, + { + "start": 9832.82, + "end": 9834.52, + "probability": 0.7594 + }, + { + "start": 9834.86, + "end": 9836.5, + "probability": 0.7732 + }, + { + "start": 9836.6, + "end": 9837.42, + "probability": 0.7245 + }, + { + "start": 9838.04, + "end": 9839.02, + "probability": 0.7013 + }, + { + "start": 9839.12, + "end": 9839.94, + "probability": 0.7908 + }, + { + "start": 9840.64, + "end": 9841.62, + "probability": 0.9751 + }, + { + "start": 9842.7, + "end": 9845.52, + "probability": 0.4698 + }, + { + "start": 9845.52, + "end": 9848.36, + "probability": 0.663 + }, + { + "start": 9848.56, + "end": 9848.96, + "probability": 0.145 + }, + { + "start": 9850.1, + "end": 9853.5, + "probability": 0.9697 + }, + { + "start": 9853.98, + "end": 9854.52, + "probability": 0.4728 + }, + { + "start": 9854.54, + "end": 9855.08, + "probability": 0.7582 + }, + { + "start": 9856.14, + "end": 9857.66, + "probability": 0.8667 + }, + { + "start": 9858.1, + "end": 9859.2, + "probability": 0.9007 + }, + { + "start": 9860.06, + "end": 9861.22, + "probability": 0.2983 + }, + { + "start": 9861.78, + "end": 9863.26, + "probability": 0.7196 + }, + { + "start": 9863.82, + "end": 9867.88, + "probability": 0.9391 + }, + { + "start": 9868.56, + "end": 9870.62, + "probability": 0.9941 + }, + { + "start": 9870.62, + "end": 9872.82, + "probability": 0.5139 + }, + { + "start": 9873.5, + "end": 9877.08, + "probability": 0.8639 + }, + { + "start": 9878.28, + "end": 9879.27, + "probability": 0.4904 + }, + { + "start": 9880.04, + "end": 9883.54, + "probability": 0.9284 + }, + { + "start": 9884.2, + "end": 9887.54, + "probability": 0.8691 + }, + { + "start": 9887.54, + "end": 9891.16, + "probability": 0.9877 + }, + { + "start": 9892.74, + "end": 9897.1, + "probability": 0.9892 + }, + { + "start": 9897.62, + "end": 9899.42, + "probability": 0.5752 + }, + { + "start": 9899.5, + "end": 9900.76, + "probability": 0.6514 + }, + { + "start": 9901.1, + "end": 9901.77, + "probability": 0.9846 + }, + { + "start": 9901.98, + "end": 9903.18, + "probability": 0.6642 + }, + { + "start": 9903.4, + "end": 9904.04, + "probability": 0.8169 + }, + { + "start": 9904.32, + "end": 9905.14, + "probability": 0.9753 + }, + { + "start": 9905.2, + "end": 9905.82, + "probability": 0.7351 + }, + { + "start": 9905.88, + "end": 9906.46, + "probability": 0.7503 + }, + { + "start": 9906.62, + "end": 9906.72, + "probability": 0.6095 + }, + { + "start": 9907.6, + "end": 9911.74, + "probability": 0.6782 + }, + { + "start": 9912.46, + "end": 9914.54, + "probability": 0.972 + }, + { + "start": 9914.54, + "end": 9917.62, + "probability": 0.8611 + }, + { + "start": 9918.1, + "end": 9921.62, + "probability": 0.9234 + }, + { + "start": 9922.42, + "end": 9922.64, + "probability": 0.3329 + }, + { + "start": 9922.72, + "end": 9926.98, + "probability": 0.6983 + }, + { + "start": 9927.98, + "end": 9930.24, + "probability": 0.2901 + }, + { + "start": 9930.64, + "end": 9932.88, + "probability": 0.765 + }, + { + "start": 9932.88, + "end": 9936.14, + "probability": 0.9931 + }, + { + "start": 9936.58, + "end": 9938.34, + "probability": 0.6121 + }, + { + "start": 9938.36, + "end": 9939.62, + "probability": 0.5811 + }, + { + "start": 9939.9, + "end": 9941.38, + "probability": 0.7996 + }, + { + "start": 9941.96, + "end": 9944.1, + "probability": 0.9593 + }, + { + "start": 9944.24, + "end": 9946.66, + "probability": 0.9536 + }, + { + "start": 9954.64, + "end": 9955.54, + "probability": 0.6237 + }, + { + "start": 9955.54, + "end": 9959.78, + "probability": 0.662 + }, + { + "start": 9959.84, + "end": 9960.4, + "probability": 0.855 + }, + { + "start": 9960.54, + "end": 9961.66, + "probability": 0.0165 + }, + { + "start": 9964.36, + "end": 9970.02, + "probability": 0.5579 + }, + { + "start": 9970.74, + "end": 9971.32, + "probability": 0.7393 + }, + { + "start": 9971.84, + "end": 9972.24, + "probability": 0.8121 + }, + { + "start": 9972.33, + "end": 9973.0, + "probability": 0.9199 + }, + { + "start": 9973.12, + "end": 9975.18, + "probability": 0.9597 + }, + { + "start": 9975.7, + "end": 9977.18, + "probability": 0.0398 + }, + { + "start": 9978.46, + "end": 9979.44, + "probability": 0.9171 + }, + { + "start": 9980.04, + "end": 9980.96, + "probability": 0.9377 + }, + { + "start": 9981.66, + "end": 9987.04, + "probability": 0.9343 + }, + { + "start": 9987.9, + "end": 9991.26, + "probability": 0.9949 + }, + { + "start": 9991.98, + "end": 9993.94, + "probability": 0.4291 + }, + { + "start": 9994.22, + "end": 9996.52, + "probability": 0.9811 + }, + { + "start": 9997.4, + "end": 10000.32, + "probability": 0.7508 + }, + { + "start": 10000.32, + "end": 10003.92, + "probability": 0.9816 + }, + { + "start": 10003.98, + "end": 10004.42, + "probability": 0.5011 + }, + { + "start": 10005.76, + "end": 10006.02, + "probability": 0.6611 + }, + { + "start": 10006.56, + "end": 10009.68, + "probability": 0.9836 + }, + { + "start": 10009.84, + "end": 10010.54, + "probability": 0.9261 + }, + { + "start": 10012.02, + "end": 10012.56, + "probability": 0.7131 + }, + { + "start": 10013.12, + "end": 10017.66, + "probability": 0.986 + }, + { + "start": 10017.74, + "end": 10018.16, + "probability": 0.8196 + }, + { + "start": 10018.64, + "end": 10019.42, + "probability": 0.8987 + }, + { + "start": 10020.06, + "end": 10022.46, + "probability": 0.9562 + }, + { + "start": 10022.52, + "end": 10025.02, + "probability": 0.9579 + }, + { + "start": 10026.0, + "end": 10030.96, + "probability": 0.9553 + }, + { + "start": 10031.5, + "end": 10035.36, + "probability": 0.9863 + }, + { + "start": 10035.36, + "end": 10041.12, + "probability": 0.9704 + }, + { + "start": 10042.2, + "end": 10044.54, + "probability": 0.9869 + }, + { + "start": 10044.76, + "end": 10045.52, + "probability": 0.6723 + }, + { + "start": 10046.3, + "end": 10050.24, + "probability": 0.9948 + }, + { + "start": 10050.4, + "end": 10055.24, + "probability": 0.8928 + }, + { + "start": 10055.98, + "end": 10058.86, + "probability": 0.7414 + }, + { + "start": 10059.42, + "end": 10063.16, + "probability": 0.9635 + }, + { + "start": 10063.16, + "end": 10067.7, + "probability": 0.9912 + }, + { + "start": 10067.96, + "end": 10069.34, + "probability": 0.7756 + }, + { + "start": 10069.5, + "end": 10069.68, + "probability": 0.4999 + }, + { + "start": 10070.36, + "end": 10071.34, + "probability": 0.5029 + }, + { + "start": 10072.26, + "end": 10077.4, + "probability": 0.9344 + }, + { + "start": 10077.8, + "end": 10082.06, + "probability": 0.8531 + }, + { + "start": 10082.74, + "end": 10087.46, + "probability": 0.5439 + }, + { + "start": 10087.56, + "end": 10088.24, + "probability": 0.6566 + }, + { + "start": 10090.6, + "end": 10091.3, + "probability": 0.6815 + }, + { + "start": 10091.5, + "end": 10093.5, + "probability": 0.6475 + }, + { + "start": 10093.62, + "end": 10095.56, + "probability": 0.978 + }, + { + "start": 10096.08, + "end": 10096.16, + "probability": 0.0782 + }, + { + "start": 10096.16, + "end": 10096.38, + "probability": 0.3753 + }, + { + "start": 10096.56, + "end": 10101.76, + "probability": 0.9748 + }, + { + "start": 10101.76, + "end": 10104.42, + "probability": 0.7635 + }, + { + "start": 10104.74, + "end": 10108.16, + "probability": 0.5736 + }, + { + "start": 10126.74, + "end": 10126.74, + "probability": 0.4753 + }, + { + "start": 10126.74, + "end": 10127.54, + "probability": 0.1965 + }, + { + "start": 10130.38, + "end": 10134.36, + "probability": 0.1939 + }, + { + "start": 10134.36, + "end": 10134.56, + "probability": 0.0666 + }, + { + "start": 10134.56, + "end": 10135.98, + "probability": 0.0351 + }, + { + "start": 10137.04, + "end": 10141.52, + "probability": 0.2044 + }, + { + "start": 10141.96, + "end": 10143.48, + "probability": 0.4917 + }, + { + "start": 10144.08, + "end": 10145.63, + "probability": 0.0358 + }, + { + "start": 10146.0, + "end": 10146.42, + "probability": 0.1967 + }, + { + "start": 10147.02, + "end": 10149.12, + "probability": 0.0498 + }, + { + "start": 10150.2, + "end": 10152.8, + "probability": 0.0351 + }, + { + "start": 10157.74, + "end": 10160.2, + "probability": 0.3387 + }, + { + "start": 10163.32, + "end": 10166.3, + "probability": 0.0458 + }, + { + "start": 10166.64, + "end": 10171.86, + "probability": 0.0456 + }, + { + "start": 10171.86, + "end": 10172.6, + "probability": 0.0876 + }, + { + "start": 10174.1, + "end": 10177.68, + "probability": 0.0602 + }, + { + "start": 10178.26, + "end": 10179.04, + "probability": 0.025 + }, + { + "start": 10179.58, + "end": 10180.42, + "probability": 0.1511 + }, + { + "start": 10180.42, + "end": 10181.74, + "probability": 0.0451 + }, + { + "start": 10181.74, + "end": 10181.74, + "probability": 0.0361 + }, + { + "start": 10181.96, + "end": 10181.98, + "probability": 0.014 + }, + { + "start": 10182.0, + "end": 10182.0, + "probability": 0.0 + }, + { + "start": 10182.0, + "end": 10182.0, + "probability": 0.0 + }, + { + "start": 10182.0, + "end": 10182.0, + "probability": 0.0 + }, + { + "start": 10192.06, + "end": 10195.62, + "probability": 0.0385 + }, + { + "start": 10195.62, + "end": 10196.32, + "probability": 0.0536 + }, + { + "start": 10196.7, + "end": 10199.52, + "probability": 0.3411 + }, + { + "start": 10202.34, + "end": 10205.84, + "probability": 0.0352 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.0, + "end": 10304.0, + "probability": 0.0 + }, + { + "start": 10304.84, + "end": 10306.0, + "probability": 0.031 + }, + { + "start": 10306.0, + "end": 10306.82, + "probability": 0.1017 + }, + { + "start": 10310.14, + "end": 10310.88, + "probability": 0.01 + }, + { + "start": 10314.32, + "end": 10319.2, + "probability": 0.0265 + }, + { + "start": 10321.04, + "end": 10322.62, + "probability": 0.0254 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.0, + "end": 10432.0, + "probability": 0.0 + }, + { + "start": 10432.2, + "end": 10433.94, + "probability": 0.1444 + }, + { + "start": 10435.24, + "end": 10436.14, + "probability": 0.0574 + }, + { + "start": 10436.68, + "end": 10438.12, + "probability": 0.0782 + }, + { + "start": 10439.96, + "end": 10440.26, + "probability": 0.0187 + }, + { + "start": 10440.92, + "end": 10441.88, + "probability": 0.0352 + }, + { + "start": 10441.88, + "end": 10441.88, + "probability": 0.0538 + }, + { + "start": 10441.88, + "end": 10441.88, + "probability": 0.1786 + }, + { + "start": 10441.88, + "end": 10445.24, + "probability": 0.8349 + }, + { + "start": 10445.26, + "end": 10445.54, + "probability": 0.5665 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.0, + "end": 10557.0, + "probability": 0.0 + }, + { + "start": 10557.24, + "end": 10557.74, + "probability": 0.17 + }, + { + "start": 10557.74, + "end": 10557.74, + "probability": 0.0616 + }, + { + "start": 10557.74, + "end": 10560.6, + "probability": 0.2058 + }, + { + "start": 10562.4, + "end": 10567.64, + "probability": 0.8269 + }, + { + "start": 10569.52, + "end": 10572.16, + "probability": 0.9512 + }, + { + "start": 10572.5, + "end": 10576.72, + "probability": 0.4936 + }, + { + "start": 10576.74, + "end": 10577.34, + "probability": 0.7514 + }, + { + "start": 10577.74, + "end": 10580.62, + "probability": 0.9903 + }, + { + "start": 10580.62, + "end": 10583.7, + "probability": 0.9509 + }, + { + "start": 10583.86, + "end": 10584.16, + "probability": 0.7682 + }, + { + "start": 10584.36, + "end": 10584.64, + "probability": 0.793 + }, + { + "start": 10584.74, + "end": 10587.42, + "probability": 0.8422 + }, + { + "start": 10587.58, + "end": 10589.21, + "probability": 0.7755 + }, + { + "start": 10589.96, + "end": 10590.46, + "probability": 0.5567 + }, + { + "start": 10590.54, + "end": 10592.86, + "probability": 0.7421 + }, + { + "start": 10592.98, + "end": 10593.68, + "probability": 0.6378 + }, + { + "start": 10593.78, + "end": 10595.46, + "probability": 0.0699 + }, + { + "start": 10595.84, + "end": 10597.52, + "probability": 0.9692 + }, + { + "start": 10597.68, + "end": 10599.58, + "probability": 0.7574 + }, + { + "start": 10599.96, + "end": 10601.78, + "probability": 0.146 + }, + { + "start": 10601.88, + "end": 10602.0, + "probability": 0.1057 + }, + { + "start": 10616.04, + "end": 10616.4, + "probability": 0.2129 + }, + { + "start": 10616.4, + "end": 10616.58, + "probability": 0.1249 + }, + { + "start": 10616.58, + "end": 10616.58, + "probability": 0.1301 + }, + { + "start": 10616.58, + "end": 10619.28, + "probability": 0.5036 + }, + { + "start": 10619.44, + "end": 10623.22, + "probability": 0.7042 + }, + { + "start": 10624.1, + "end": 10628.62, + "probability": 0.7687 + }, + { + "start": 10628.72, + "end": 10629.38, + "probability": 0.5514 + }, + { + "start": 10629.54, + "end": 10630.88, + "probability": 0.0658 + }, + { + "start": 10631.6, + "end": 10633.1, + "probability": 0.9331 + }, + { + "start": 10633.1, + "end": 10634.28, + "probability": 0.8456 + }, + { + "start": 10634.9, + "end": 10636.36, + "probability": 0.3258 + }, + { + "start": 10637.94, + "end": 10638.8, + "probability": 0.6079 + }, + { + "start": 10651.1, + "end": 10651.66, + "probability": 0.1096 + }, + { + "start": 10651.66, + "end": 10653.08, + "probability": 0.3605 + }, + { + "start": 10653.58, + "end": 10656.6, + "probability": 0.7851 + }, + { + "start": 10657.18, + "end": 10660.62, + "probability": 0.9532 + }, + { + "start": 10661.76, + "end": 10663.56, + "probability": 0.7121 + }, + { + "start": 10663.92, + "end": 10664.86, + "probability": 0.8217 + }, + { + "start": 10665.96, + "end": 10667.24, + "probability": 0.8896 + }, + { + "start": 10667.34, + "end": 10668.54, + "probability": 0.4849 + }, + { + "start": 10668.6, + "end": 10671.86, + "probability": 0.9272 + }, + { + "start": 10671.86, + "end": 10674.86, + "probability": 0.877 + }, + { + "start": 10675.4, + "end": 10680.56, + "probability": 0.566 + }, + { + "start": 10683.88, + "end": 10683.98, + "probability": 0.7515 + }, + { + "start": 10685.66, + "end": 10688.82, + "probability": 0.991 + }, + { + "start": 10689.3, + "end": 10691.32, + "probability": 0.4787 + }, + { + "start": 10691.32, + "end": 10691.32, + "probability": 0.1375 + }, + { + "start": 10691.32, + "end": 10693.56, + "probability": 0.722 + }, + { + "start": 10693.98, + "end": 10698.64, + "probability": 0.8813 + }, + { + "start": 10700.84, + "end": 10703.48, + "probability": 0.8369 + }, + { + "start": 10721.2, + "end": 10721.88, + "probability": 0.7312 + }, + { + "start": 10724.18, + "end": 10725.48, + "probability": 0.7891 + }, + { + "start": 10728.2, + "end": 10729.34, + "probability": 0.9351 + }, + { + "start": 10732.04, + "end": 10736.9, + "probability": 0.7216 + }, + { + "start": 10738.96, + "end": 10741.56, + "probability": 0.9905 + }, + { + "start": 10743.04, + "end": 10745.18, + "probability": 0.9621 + }, + { + "start": 10746.9, + "end": 10747.8, + "probability": 0.0111 + }, + { + "start": 10749.54, + "end": 10749.74, + "probability": 0.0003 + }, + { + "start": 10753.92, + "end": 10754.9, + "probability": 0.7474 + }, + { + "start": 10758.78, + "end": 10763.52, + "probability": 0.9752 + }, + { + "start": 10765.64, + "end": 10766.54, + "probability": 0.7294 + }, + { + "start": 10768.68, + "end": 10773.06, + "probability": 0.9768 + }, + { + "start": 10776.9, + "end": 10778.08, + "probability": 0.954 + }, + { + "start": 10780.48, + "end": 10782.02, + "probability": 0.9678 + }, + { + "start": 10785.51, + "end": 10788.42, + "probability": 0.7353 + }, + { + "start": 10789.86, + "end": 10791.28, + "probability": 0.9917 + }, + { + "start": 10792.92, + "end": 10794.02, + "probability": 0.9705 + }, + { + "start": 10796.4, + "end": 10797.0, + "probability": 0.5564 + }, + { + "start": 10799.26, + "end": 10799.9, + "probability": 0.9771 + }, + { + "start": 10802.82, + "end": 10804.1, + "probability": 0.9966 + }, + { + "start": 10805.62, + "end": 10806.66, + "probability": 0.4761 + }, + { + "start": 10808.54, + "end": 10809.49, + "probability": 0.8347 + }, + { + "start": 10810.96, + "end": 10813.84, + "probability": 0.969 + }, + { + "start": 10815.04, + "end": 10816.68, + "probability": 0.8745 + }, + { + "start": 10818.22, + "end": 10819.46, + "probability": 0.6319 + }, + { + "start": 10820.86, + "end": 10827.56, + "probability": 0.9939 + }, + { + "start": 10828.1, + "end": 10829.0, + "probability": 0.688 + }, + { + "start": 10830.88, + "end": 10833.6, + "probability": 0.9491 + }, + { + "start": 10835.44, + "end": 10837.26, + "probability": 0.6824 + }, + { + "start": 10838.6, + "end": 10841.18, + "probability": 0.9941 + }, + { + "start": 10842.78, + "end": 10845.86, + "probability": 0.9821 + }, + { + "start": 10845.92, + "end": 10847.36, + "probability": 0.9358 + }, + { + "start": 10849.08, + "end": 10851.56, + "probability": 0.9979 + }, + { + "start": 10853.16, + "end": 10855.08, + "probability": 0.3648 + }, + { + "start": 10856.26, + "end": 10858.78, + "probability": 0.6902 + }, + { + "start": 10859.78, + "end": 10861.24, + "probability": 0.9855 + }, + { + "start": 10862.46, + "end": 10866.88, + "probability": 0.9305 + }, + { + "start": 10867.82, + "end": 10871.14, + "probability": 0.9546 + }, + { + "start": 10872.48, + "end": 10873.52, + "probability": 0.9756 + }, + { + "start": 10874.8, + "end": 10875.74, + "probability": 0.7845 + }, + { + "start": 10876.5, + "end": 10877.56, + "probability": 0.9861 + }, + { + "start": 10880.13, + "end": 10882.45, + "probability": 0.4482 + }, + { + "start": 10883.92, + "end": 10888.02, + "probability": 0.9545 + }, + { + "start": 10888.88, + "end": 10889.68, + "probability": 0.7936 + }, + { + "start": 10891.04, + "end": 10892.2, + "probability": 0.6868 + }, + { + "start": 10892.24, + "end": 10894.34, + "probability": 0.9238 + }, + { + "start": 10894.68, + "end": 10896.42, + "probability": 0.9303 + }, + { + "start": 10897.14, + "end": 10900.6, + "probability": 0.9954 + }, + { + "start": 10901.72, + "end": 10903.08, + "probability": 0.8516 + }, + { + "start": 10905.12, + "end": 10906.68, + "probability": 0.9653 + }, + { + "start": 10908.58, + "end": 10912.42, + "probability": 0.9777 + }, + { + "start": 10914.62, + "end": 10917.7, + "probability": 0.958 + }, + { + "start": 10917.9, + "end": 10919.24, + "probability": 0.9435 + }, + { + "start": 10919.6, + "end": 10922.38, + "probability": 0.5088 + }, + { + "start": 10922.38, + "end": 10923.86, + "probability": 0.6748 + }, + { + "start": 10924.44, + "end": 10927.22, + "probability": 0.8936 + }, + { + "start": 10927.98, + "end": 10928.76, + "probability": 0.9691 + }, + { + "start": 10928.82, + "end": 10929.1, + "probability": 0.8726 + }, + { + "start": 10929.14, + "end": 10931.42, + "probability": 0.9823 + }, + { + "start": 10932.18, + "end": 10936.36, + "probability": 0.98 + }, + { + "start": 10938.14, + "end": 10940.34, + "probability": 0.9592 + }, + { + "start": 10941.78, + "end": 10944.04, + "probability": 0.9882 + }, + { + "start": 10945.04, + "end": 10946.76, + "probability": 0.9867 + }, + { + "start": 10947.96, + "end": 10949.56, + "probability": 0.9736 + }, + { + "start": 10951.12, + "end": 10953.66, + "probability": 0.6457 + }, + { + "start": 10955.0, + "end": 10957.2, + "probability": 0.9723 + }, + { + "start": 10958.32, + "end": 10958.96, + "probability": 0.7828 + }, + { + "start": 10959.74, + "end": 10961.58, + "probability": 0.987 + }, + { + "start": 10962.4, + "end": 10964.34, + "probability": 0.9328 + }, + { + "start": 10965.26, + "end": 10966.52, + "probability": 0.9585 + }, + { + "start": 10967.14, + "end": 10970.08, + "probability": 0.9591 + }, + { + "start": 10970.6, + "end": 10971.64, + "probability": 0.6901 + }, + { + "start": 10974.74, + "end": 10976.72, + "probability": 0.957 + }, + { + "start": 10977.12, + "end": 10978.0, + "probability": 0.8666 + }, + { + "start": 10978.54, + "end": 10979.26, + "probability": 0.6538 + }, + { + "start": 10979.4, + "end": 10981.4, + "probability": 0.8809 + }, + { + "start": 10981.44, + "end": 10981.86, + "probability": 0.9002 + }, + { + "start": 10982.68, + "end": 10983.56, + "probability": 0.7457 + }, + { + "start": 10993.44, + "end": 10995.84, + "probability": 0.6658 + }, + { + "start": 10997.54, + "end": 11001.54, + "probability": 0.853 + }, + { + "start": 11002.44, + "end": 11003.56, + "probability": 0.7301 + }, + { + "start": 11005.02, + "end": 11007.08, + "probability": 0.9613 + }, + { + "start": 11008.34, + "end": 11009.35, + "probability": 0.9288 + }, + { + "start": 11010.6, + "end": 11012.22, + "probability": 0.9956 + }, + { + "start": 11013.12, + "end": 11015.94, + "probability": 0.8091 + }, + { + "start": 11016.52, + "end": 11017.98, + "probability": 0.9303 + }, + { + "start": 11019.04, + "end": 11021.08, + "probability": 0.8301 + }, + { + "start": 11023.64, + "end": 11024.24, + "probability": 0.3048 + }, + { + "start": 11025.2, + "end": 11026.06, + "probability": 0.9872 + }, + { + "start": 11027.88, + "end": 11028.46, + "probability": 0.7729 + }, + { + "start": 11030.34, + "end": 11033.28, + "probability": 0.9188 + }, + { + "start": 11034.06, + "end": 11035.08, + "probability": 0.805 + }, + { + "start": 11035.64, + "end": 11036.8, + "probability": 0.7596 + }, + { + "start": 11036.9, + "end": 11041.86, + "probability": 0.7418 + }, + { + "start": 11043.08, + "end": 11044.0, + "probability": 0.8331 + }, + { + "start": 11044.52, + "end": 11049.86, + "probability": 0.9658 + }, + { + "start": 11051.14, + "end": 11054.06, + "probability": 0.9961 + }, + { + "start": 11054.82, + "end": 11058.5, + "probability": 0.8823 + }, + { + "start": 11061.38, + "end": 11064.82, + "probability": 0.9894 + }, + { + "start": 11065.38, + "end": 11066.18, + "probability": 0.8296 + }, + { + "start": 11066.78, + "end": 11067.84, + "probability": 0.9832 + }, + { + "start": 11070.54, + "end": 11071.32, + "probability": 0.5305 + }, + { + "start": 11071.38, + "end": 11071.96, + "probability": 0.8417 + }, + { + "start": 11072.12, + "end": 11074.3, + "probability": 0.826 + }, + { + "start": 11076.14, + "end": 11082.96, + "probability": 0.8918 + }, + { + "start": 11083.74, + "end": 11087.08, + "probability": 0.9434 + }, + { + "start": 11087.22, + "end": 11089.5, + "probability": 0.7206 + }, + { + "start": 11090.32, + "end": 11090.7, + "probability": 0.4338 + }, + { + "start": 11092.48, + "end": 11094.36, + "probability": 0.6371 + }, + { + "start": 11094.42, + "end": 11099.29, + "probability": 0.9624 + }, + { + "start": 11100.26, + "end": 11105.16, + "probability": 0.9855 + }, + { + "start": 11107.74, + "end": 11117.3, + "probability": 0.9646 + }, + { + "start": 11117.64, + "end": 11118.92, + "probability": 0.9731 + }, + { + "start": 11120.76, + "end": 11124.1, + "probability": 0.9585 + }, + { + "start": 11124.2, + "end": 11124.96, + "probability": 0.5047 + }, + { + "start": 11125.3, + "end": 11126.36, + "probability": 0.3583 + }, + { + "start": 11128.18, + "end": 11133.62, + "probability": 0.6781 + }, + { + "start": 11135.24, + "end": 11138.14, + "probability": 0.6786 + }, + { + "start": 11138.76, + "end": 11139.08, + "probability": 0.7018 + }, + { + "start": 11139.16, + "end": 11142.12, + "probability": 0.8517 + }, + { + "start": 11142.56, + "end": 11145.52, + "probability": 0.9673 + }, + { + "start": 11145.56, + "end": 11147.82, + "probability": 0.9348 + }, + { + "start": 11150.14, + "end": 11155.18, + "probability": 0.9701 + }, + { + "start": 11156.32, + "end": 11157.22, + "probability": 0.7514 + }, + { + "start": 11158.74, + "end": 11159.82, + "probability": 0.9919 + }, + { + "start": 11160.52, + "end": 11161.6, + "probability": 0.7344 + }, + { + "start": 11162.44, + "end": 11163.88, + "probability": 0.8672 + }, + { + "start": 11164.44, + "end": 11167.28, + "probability": 0.9225 + }, + { + "start": 11167.76, + "end": 11168.78, + "probability": 0.9437 + }, + { + "start": 11169.2, + "end": 11169.7, + "probability": 0.8729 + }, + { + "start": 11170.32, + "end": 11172.18, + "probability": 0.9923 + }, + { + "start": 11172.88, + "end": 11174.1, + "probability": 0.9827 + }, + { + "start": 11174.76, + "end": 11175.64, + "probability": 0.9031 + }, + { + "start": 11176.5, + "end": 11177.26, + "probability": 0.2469 + }, + { + "start": 11177.7, + "end": 11178.24, + "probability": 0.8896 + }, + { + "start": 11178.6, + "end": 11179.72, + "probability": 0.939 + }, + { + "start": 11180.06, + "end": 11185.4, + "probability": 0.9638 + }, + { + "start": 11185.56, + "end": 11185.72, + "probability": 0.7619 + }, + { + "start": 11186.5, + "end": 11188.19, + "probability": 0.5952 + }, + { + "start": 11188.36, + "end": 11191.8, + "probability": 0.4012 + }, + { + "start": 11191.8, + "end": 11191.8, + "probability": 0.1239 + }, + { + "start": 11191.8, + "end": 11192.64, + "probability": 0.1546 + }, + { + "start": 11193.64, + "end": 11195.9, + "probability": 0.5869 + }, + { + "start": 11204.71, + "end": 11206.49, + "probability": 0.7466 + }, + { + "start": 11207.34, + "end": 11208.4, + "probability": 0.6716 + }, + { + "start": 11210.04, + "end": 11210.68, + "probability": 0.6737 + }, + { + "start": 11211.88, + "end": 11212.66, + "probability": 0.8557 + }, + { + "start": 11214.32, + "end": 11215.0, + "probability": 0.6805 + }, + { + "start": 11216.08, + "end": 11216.76, + "probability": 0.7942 + }, + { + "start": 11218.24, + "end": 11220.05, + "probability": 0.8552 + }, + { + "start": 11221.1, + "end": 11222.84, + "probability": 0.4023 + }, + { + "start": 11223.64, + "end": 11226.3, + "probability": 0.9062 + }, + { + "start": 11226.34, + "end": 11227.54, + "probability": 0.988 + }, + { + "start": 11228.86, + "end": 11229.94, + "probability": 0.5106 + }, + { + "start": 11230.48, + "end": 11233.7, + "probability": 0.7949 + }, + { + "start": 11234.12, + "end": 11236.42, + "probability": 0.6357 + }, + { + "start": 11236.42, + "end": 11238.64, + "probability": 0.4665 + }, + { + "start": 11238.76, + "end": 11239.66, + "probability": 0.6567 + }, + { + "start": 11239.7, + "end": 11246.3, + "probability": 0.7388 + }, + { + "start": 11247.12, + "end": 11248.64, + "probability": 0.9299 + }, + { + "start": 11248.8, + "end": 11252.14, + "probability": 0.704 + }, + { + "start": 11252.14, + "end": 11256.04, + "probability": 0.985 + }, + { + "start": 11256.42, + "end": 11259.28, + "probability": 0.9868 + }, + { + "start": 11259.81, + "end": 11261.92, + "probability": 0.7804 + }, + { + "start": 11262.52, + "end": 11269.32, + "probability": 0.9245 + }, + { + "start": 11269.96, + "end": 11273.22, + "probability": 0.7407 + }, + { + "start": 11273.86, + "end": 11278.42, + "probability": 0.3436 + }, + { + "start": 11278.86, + "end": 11281.6, + "probability": 0.8545 + }, + { + "start": 11282.18, + "end": 11286.54, + "probability": 0.9266 + }, + { + "start": 11286.94, + "end": 11288.74, + "probability": 0.6798 + }, + { + "start": 11290.18, + "end": 11294.78, + "probability": 0.8552 + }, + { + "start": 11294.92, + "end": 11297.12, + "probability": 0.9409 + }, + { + "start": 11297.82, + "end": 11300.48, + "probability": 0.8744 + }, + { + "start": 11300.54, + "end": 11301.89, + "probability": 0.6487 + }, + { + "start": 11302.3, + "end": 11303.6, + "probability": 0.8662 + }, + { + "start": 11303.72, + "end": 11304.24, + "probability": 0.7863 + }, + { + "start": 11304.34, + "end": 11304.78, + "probability": 0.4523 + }, + { + "start": 11304.84, + "end": 11306.06, + "probability": 0.6137 + }, + { + "start": 11306.08, + "end": 11307.56, + "probability": 0.8159 + }, + { + "start": 11307.74, + "end": 11312.12, + "probability": 0.8203 + }, + { + "start": 11312.12, + "end": 11312.94, + "probability": 0.6745 + }, + { + "start": 11313.04, + "end": 11316.64, + "probability": 0.7334 + }, + { + "start": 11316.74, + "end": 11319.94, + "probability": 0.9919 + }, + { + "start": 11320.5, + "end": 11321.74, + "probability": 0.7562 + }, + { + "start": 11321.78, + "end": 11324.26, + "probability": 0.7759 + }, + { + "start": 11324.46, + "end": 11327.0, + "probability": 0.8986 + }, + { + "start": 11327.04, + "end": 11328.1, + "probability": 0.6524 + }, + { + "start": 11328.6, + "end": 11329.82, + "probability": 0.6791 + }, + { + "start": 11329.88, + "end": 11334.8, + "probability": 0.9799 + }, + { + "start": 11334.9, + "end": 11337.0, + "probability": 0.8878 + }, + { + "start": 11337.08, + "end": 11339.56, + "probability": 0.9001 + }, + { + "start": 11339.84, + "end": 11341.5, + "probability": 0.789 + }, + { + "start": 11341.62, + "end": 11346.02, + "probability": 0.8781 + }, + { + "start": 11346.68, + "end": 11349.08, + "probability": 0.8738 + }, + { + "start": 11349.18, + "end": 11355.28, + "probability": 0.944 + }, + { + "start": 11356.28, + "end": 11358.48, + "probability": 0.8733 + }, + { + "start": 11358.6, + "end": 11359.76, + "probability": 0.5614 + }, + { + "start": 11359.94, + "end": 11360.92, + "probability": 0.7539 + }, + { + "start": 11361.06, + "end": 11362.68, + "probability": 0.7369 + }, + { + "start": 11362.68, + "end": 11363.46, + "probability": 0.9419 + }, + { + "start": 11364.48, + "end": 11367.22, + "probability": 0.9586 + }, + { + "start": 11367.32, + "end": 11368.52, + "probability": 0.2344 + }, + { + "start": 11368.58, + "end": 11370.08, + "probability": 0.8774 + }, + { + "start": 11371.18, + "end": 11375.24, + "probability": 0.8159 + }, + { + "start": 11375.42, + "end": 11379.3, + "probability": 0.9444 + }, + { + "start": 11380.42, + "end": 11382.42, + "probability": 0.5323 + }, + { + "start": 11383.06, + "end": 11385.42, + "probability": 0.7695 + }, + { + "start": 11385.56, + "end": 11386.38, + "probability": 0.8064 + }, + { + "start": 11386.44, + "end": 11387.76, + "probability": 0.665 + }, + { + "start": 11387.96, + "end": 11389.52, + "probability": 0.7756 + }, + { + "start": 11389.92, + "end": 11390.44, + "probability": 0.726 + }, + { + "start": 11390.98, + "end": 11393.4, + "probability": 0.9725 + }, + { + "start": 11393.5, + "end": 11394.11, + "probability": 0.688 + }, + { + "start": 11394.64, + "end": 11395.84, + "probability": 0.8465 + }, + { + "start": 11396.08, + "end": 11398.04, + "probability": 0.9969 + }, + { + "start": 11398.8, + "end": 11401.0, + "probability": 0.4821 + }, + { + "start": 11401.76, + "end": 11402.08, + "probability": 0.4458 + }, + { + "start": 11402.08, + "end": 11404.16, + "probability": 0.7265 + }, + { + "start": 11404.36, + "end": 11406.38, + "probability": 0.8718 + }, + { + "start": 11406.52, + "end": 11407.36, + "probability": 0.6542 + }, + { + "start": 11408.08, + "end": 11410.68, + "probability": 0.8738 + }, + { + "start": 11410.76, + "end": 11413.52, + "probability": 0.8661 + }, + { + "start": 11415.18, + "end": 11417.76, + "probability": 0.978 + }, + { + "start": 11418.0, + "end": 11418.54, + "probability": 0.5184 + }, + { + "start": 11420.12, + "end": 11420.98, + "probability": 0.8093 + }, + { + "start": 11421.06, + "end": 11423.22, + "probability": 0.9606 + }, + { + "start": 11423.28, + "end": 11424.43, + "probability": 0.7729 + }, + { + "start": 11425.22, + "end": 11431.38, + "probability": 0.9004 + }, + { + "start": 11432.4, + "end": 11438.13, + "probability": 0.8298 + }, + { + "start": 11439.0, + "end": 11440.44, + "probability": 0.8309 + }, + { + "start": 11441.18, + "end": 11441.8, + "probability": 0.7019 + }, + { + "start": 11441.86, + "end": 11447.38, + "probability": 0.9436 + }, + { + "start": 11447.52, + "end": 11449.9, + "probability": 0.7997 + }, + { + "start": 11449.98, + "end": 11451.0, + "probability": 0.6326 + }, + { + "start": 11451.66, + "end": 11452.65, + "probability": 0.7244 + }, + { + "start": 11453.16, + "end": 11456.78, + "probability": 0.9729 + }, + { + "start": 11457.28, + "end": 11458.7, + "probability": 0.9652 + }, + { + "start": 11458.94, + "end": 11459.86, + "probability": 0.847 + }, + { + "start": 11460.26, + "end": 11462.56, + "probability": 0.9856 + }, + { + "start": 11463.37, + "end": 11465.76, + "probability": 0.7865 + }, + { + "start": 11465.98, + "end": 11468.64, + "probability": 0.5427 + }, + { + "start": 11468.66, + "end": 11470.44, + "probability": 0.9539 + }, + { + "start": 11470.98, + "end": 11471.86, + "probability": 0.9775 + }, + { + "start": 11473.02, + "end": 11474.76, + "probability": 0.8895 + }, + { + "start": 11475.24, + "end": 11475.58, + "probability": 0.7492 + }, + { + "start": 11475.92, + "end": 11477.28, + "probability": 0.6802 + }, + { + "start": 11477.34, + "end": 11477.98, + "probability": 0.4638 + }, + { + "start": 11478.92, + "end": 11479.98, + "probability": 0.7677 + }, + { + "start": 11481.02, + "end": 11481.18, + "probability": 0.6698 + }, + { + "start": 11481.18, + "end": 11482.36, + "probability": 0.1586 + }, + { + "start": 11483.64, + "end": 11483.88, + "probability": 0.1805 + }, + { + "start": 11485.46, + "end": 11486.52, + "probability": 0.0036 + }, + { + "start": 11510.74, + "end": 11511.86, + "probability": 0.2393 + }, + { + "start": 11512.48, + "end": 11516.56, + "probability": 0.9857 + }, + { + "start": 11516.56, + "end": 11516.88, + "probability": 0.4928 + }, + { + "start": 11517.64, + "end": 11521.35, + "probability": 0.8931 + }, + { + "start": 11522.2, + "end": 11524.04, + "probability": 0.9829 + }, + { + "start": 11524.24, + "end": 11526.72, + "probability": 0.6277 + }, + { + "start": 11526.9, + "end": 11531.06, + "probability": 0.9951 + }, + { + "start": 11531.8, + "end": 11534.26, + "probability": 0.6923 + }, + { + "start": 11534.8, + "end": 11536.56, + "probability": 0.7221 + }, + { + "start": 11536.76, + "end": 11545.62, + "probability": 0.9746 + }, + { + "start": 11546.2, + "end": 11549.14, + "probability": 0.9915 + }, + { + "start": 11549.3, + "end": 11553.56, + "probability": 0.9879 + }, + { + "start": 11554.24, + "end": 11556.24, + "probability": 0.9312 + }, + { + "start": 11556.94, + "end": 11560.28, + "probability": 0.965 + }, + { + "start": 11560.9, + "end": 11563.72, + "probability": 0.9019 + }, + { + "start": 11563.76, + "end": 11566.52, + "probability": 0.963 + }, + { + "start": 11566.56, + "end": 11567.7, + "probability": 0.893 + }, + { + "start": 11568.46, + "end": 11571.74, + "probability": 0.93 + }, + { + "start": 11572.4, + "end": 11574.74, + "probability": 0.8052 + }, + { + "start": 11575.4, + "end": 11576.34, + "probability": 0.9813 + }, + { + "start": 11576.46, + "end": 11577.6, + "probability": 0.9908 + }, + { + "start": 11577.74, + "end": 11581.38, + "probability": 0.9731 + }, + { + "start": 11581.7, + "end": 11588.4, + "probability": 0.9958 + }, + { + "start": 11588.94, + "end": 11591.42, + "probability": 0.9213 + }, + { + "start": 11591.78, + "end": 11595.62, + "probability": 0.9862 + }, + { + "start": 11596.24, + "end": 11603.58, + "probability": 0.9682 + }, + { + "start": 11604.68, + "end": 11607.13, + "probability": 0.9807 + }, + { + "start": 11608.18, + "end": 11615.18, + "probability": 0.954 + }, + { + "start": 11615.64, + "end": 11616.2, + "probability": 0.3123 + }, + { + "start": 11616.64, + "end": 11621.58, + "probability": 0.7615 + }, + { + "start": 11621.8, + "end": 11623.08, + "probability": 0.9365 + }, + { + "start": 11623.14, + "end": 11625.56, + "probability": 0.989 + }, + { + "start": 11626.02, + "end": 11629.22, + "probability": 0.9575 + }, + { + "start": 11629.26, + "end": 11631.2, + "probability": 0.9979 + }, + { + "start": 11631.2, + "end": 11634.7, + "probability": 0.9668 + }, + { + "start": 11635.16, + "end": 11641.94, + "probability": 0.892 + }, + { + "start": 11642.54, + "end": 11644.52, + "probability": 0.9963 + }, + { + "start": 11644.72, + "end": 11647.02, + "probability": 0.7189 + }, + { + "start": 11647.56, + "end": 11654.92, + "probability": 0.8752 + }, + { + "start": 11655.18, + "end": 11657.7, + "probability": 0.9616 + }, + { + "start": 11657.84, + "end": 11658.72, + "probability": 0.8461 + }, + { + "start": 11658.92, + "end": 11661.34, + "probability": 0.9905 + }, + { + "start": 11662.1, + "end": 11664.88, + "probability": 0.6657 + }, + { + "start": 11664.94, + "end": 11668.44, + "probability": 0.99 + }, + { + "start": 11669.04, + "end": 11671.62, + "probability": 0.9772 + }, + { + "start": 11671.84, + "end": 11674.62, + "probability": 0.9956 + }, + { + "start": 11674.7, + "end": 11678.72, + "probability": 0.9843 + }, + { + "start": 11679.44, + "end": 11681.96, + "probability": 0.8443 + }, + { + "start": 11682.06, + "end": 11684.46, + "probability": 0.8718 + }, + { + "start": 11684.94, + "end": 11688.7, + "probability": 0.9348 + }, + { + "start": 11688.7, + "end": 11694.84, + "probability": 0.9906 + }, + { + "start": 11695.04, + "end": 11696.14, + "probability": 0.6612 + }, + { + "start": 11696.48, + "end": 11700.66, + "probability": 0.9946 + }, + { + "start": 11700.66, + "end": 11705.86, + "probability": 0.99 + }, + { + "start": 11706.26, + "end": 11708.0, + "probability": 0.9128 + }, + { + "start": 11708.06, + "end": 11712.8, + "probability": 0.8921 + }, + { + "start": 11713.1, + "end": 11716.92, + "probability": 0.9645 + }, + { + "start": 11717.16, + "end": 11719.12, + "probability": 0.6488 + }, + { + "start": 11720.04, + "end": 11722.12, + "probability": 0.745 + }, + { + "start": 11722.7, + "end": 11729.18, + "probability": 0.8571 + }, + { + "start": 11729.92, + "end": 11730.74, + "probability": 0.7989 + }, + { + "start": 11731.44, + "end": 11733.86, + "probability": 0.9423 + }, + { + "start": 11734.0, + "end": 11734.99, + "probability": 0.9951 + }, + { + "start": 11735.62, + "end": 11737.86, + "probability": 0.9581 + }, + { + "start": 11738.0, + "end": 11741.49, + "probability": 0.9889 + }, + { + "start": 11742.82, + "end": 11745.4, + "probability": 0.5673 + }, + { + "start": 11745.52, + "end": 11747.92, + "probability": 0.769 + }, + { + "start": 11748.68, + "end": 11753.18, + "probability": 0.964 + }, + { + "start": 11753.24, + "end": 11755.04, + "probability": 0.9949 + }, + { + "start": 11755.7, + "end": 11756.94, + "probability": 0.9846 + }, + { + "start": 11757.98, + "end": 11759.04, + "probability": 0.7061 + }, + { + "start": 11759.6, + "end": 11765.88, + "probability": 0.9931 + }, + { + "start": 11766.04, + "end": 11766.92, + "probability": 0.8723 + }, + { + "start": 11767.08, + "end": 11768.31, + "probability": 0.9831 + }, + { + "start": 11769.28, + "end": 11776.46, + "probability": 0.959 + }, + { + "start": 11777.14, + "end": 11779.2, + "probability": 0.8374 + }, + { + "start": 11779.74, + "end": 11781.38, + "probability": 0.9763 + }, + { + "start": 11781.86, + "end": 11785.32, + "probability": 0.9977 + }, + { + "start": 11785.8, + "end": 11787.78, + "probability": 0.9756 + }, + { + "start": 11788.48, + "end": 11792.3, + "probability": 0.9943 + }, + { + "start": 11792.42, + "end": 11793.4, + "probability": 0.973 + }, + { + "start": 11793.52, + "end": 11794.28, + "probability": 0.6817 + }, + { + "start": 11794.4, + "end": 11795.16, + "probability": 0.4508 + }, + { + "start": 11795.18, + "end": 11795.84, + "probability": 0.9716 + }, + { + "start": 11795.88, + "end": 11797.18, + "probability": 0.8697 + }, + { + "start": 11797.2, + "end": 11797.46, + "probability": 0.8646 + }, + { + "start": 11798.28, + "end": 11800.14, + "probability": 0.6763 + }, + { + "start": 11801.1, + "end": 11803.78, + "probability": 0.6342 + }, + { + "start": 11832.56, + "end": 11834.82, + "probability": 0.4917 + }, + { + "start": 11834.82, + "end": 11835.54, + "probability": 0.3967 + }, + { + "start": 11835.64, + "end": 11837.34, + "probability": 0.5351 + }, + { + "start": 11837.42, + "end": 11838.38, + "probability": 0.9118 + }, + { + "start": 11838.42, + "end": 11839.3, + "probability": 0.8282 + }, + { + "start": 11840.32, + "end": 11842.08, + "probability": 0.9475 + }, + { + "start": 11842.92, + "end": 11845.62, + "probability": 0.991 + }, + { + "start": 11846.74, + "end": 11849.4, + "probability": 0.9921 + }, + { + "start": 11850.44, + "end": 11853.56, + "probability": 0.9555 + }, + { + "start": 11854.42, + "end": 11858.26, + "probability": 0.9877 + }, + { + "start": 11858.98, + "end": 11860.53, + "probability": 0.6462 + }, + { + "start": 11861.58, + "end": 11866.06, + "probability": 0.9968 + }, + { + "start": 11867.32, + "end": 11869.3, + "probability": 0.8154 + }, + { + "start": 11870.12, + "end": 11870.68, + "probability": 0.9878 + }, + { + "start": 11871.58, + "end": 11874.1, + "probability": 0.9993 + }, + { + "start": 11874.1, + "end": 11877.62, + "probability": 0.9955 + }, + { + "start": 11878.24, + "end": 11879.72, + "probability": 0.9581 + }, + { + "start": 11880.3, + "end": 11880.3, + "probability": 0.3697 + }, + { + "start": 11880.32, + "end": 11883.74, + "probability": 0.9725 + }, + { + "start": 11883.82, + "end": 11884.84, + "probability": 0.9783 + }, + { + "start": 11885.88, + "end": 11888.46, + "probability": 0.7539 + }, + { + "start": 11889.12, + "end": 11889.86, + "probability": 0.8384 + }, + { + "start": 11890.54, + "end": 11892.36, + "probability": 0.9744 + }, + { + "start": 11893.0, + "end": 11894.36, + "probability": 0.9541 + }, + { + "start": 11895.46, + "end": 11899.98, + "probability": 0.9863 + }, + { + "start": 11901.22, + "end": 11907.18, + "probability": 0.7077 + }, + { + "start": 11908.3, + "end": 11910.6, + "probability": 0.9555 + }, + { + "start": 11911.56, + "end": 11913.3, + "probability": 0.7721 + }, + { + "start": 11914.7, + "end": 11915.38, + "probability": 0.7802 + }, + { + "start": 11918.82, + "end": 11921.98, + "probability": 0.897 + }, + { + "start": 11922.12, + "end": 11925.34, + "probability": 0.9943 + }, + { + "start": 11926.72, + "end": 11930.64, + "probability": 0.8123 + }, + { + "start": 11931.84, + "end": 11935.26, + "probability": 0.9983 + }, + { + "start": 11936.0, + "end": 11939.24, + "probability": 0.9289 + }, + { + "start": 11939.3, + "end": 11939.88, + "probability": 0.7899 + }, + { + "start": 11940.28, + "end": 11940.96, + "probability": 0.8187 + }, + { + "start": 11941.02, + "end": 11941.82, + "probability": 0.9612 + }, + { + "start": 11942.48, + "end": 11946.52, + "probability": 0.8984 + }, + { + "start": 11947.32, + "end": 11947.68, + "probability": 0.8827 + }, + { + "start": 11947.76, + "end": 11948.92, + "probability": 0.9878 + }, + { + "start": 11949.06, + "end": 11952.76, + "probability": 0.7728 + }, + { + "start": 11953.28, + "end": 11954.66, + "probability": 0.9199 + }, + { + "start": 11955.22, + "end": 11956.08, + "probability": 0.4599 + }, + { + "start": 11956.98, + "end": 11959.88, + "probability": 0.8425 + }, + { + "start": 11961.56, + "end": 11964.1, + "probability": 0.9625 + }, + { + "start": 11964.72, + "end": 11965.94, + "probability": 0.9958 + }, + { + "start": 11966.72, + "end": 11970.42, + "probability": 0.9253 + }, + { + "start": 11973.02, + "end": 11976.88, + "probability": 0.7845 + }, + { + "start": 11977.78, + "end": 11978.38, + "probability": 0.5698 + }, + { + "start": 11979.02, + "end": 11983.66, + "probability": 0.9912 + }, + { + "start": 11984.64, + "end": 11986.06, + "probability": 0.9097 + }, + { + "start": 11986.9, + "end": 11988.94, + "probability": 0.8434 + }, + { + "start": 11989.52, + "end": 11991.0, + "probability": 0.9783 + }, + { + "start": 11991.8, + "end": 11993.84, + "probability": 0.9216 + }, + { + "start": 11994.84, + "end": 11995.94, + "probability": 0.2697 + }, + { + "start": 11996.5, + "end": 11999.08, + "probability": 0.965 + }, + { + "start": 12000.06, + "end": 12002.92, + "probability": 0.9728 + }, + { + "start": 12003.48, + "end": 12009.32, + "probability": 0.9821 + }, + { + "start": 12010.44, + "end": 12012.83, + "probability": 0.9875 + }, + { + "start": 12013.54, + "end": 12015.4, + "probability": 0.9927 + }, + { + "start": 12015.98, + "end": 12017.14, + "probability": 0.8425 + }, + { + "start": 12017.68, + "end": 12019.52, + "probability": 0.9594 + }, + { + "start": 12020.78, + "end": 12027.08, + "probability": 0.9948 + }, + { + "start": 12027.6, + "end": 12028.74, + "probability": 0.8961 + }, + { + "start": 12029.36, + "end": 12032.46, + "probability": 0.8903 + }, + { + "start": 12033.16, + "end": 12034.98, + "probability": 0.9727 + }, + { + "start": 12036.24, + "end": 12039.4, + "probability": 0.9296 + }, + { + "start": 12040.74, + "end": 12045.04, + "probability": 0.8806 + }, + { + "start": 12045.44, + "end": 12047.0, + "probability": 0.9274 + }, + { + "start": 12047.62, + "end": 12049.6, + "probability": 0.7371 + }, + { + "start": 12050.14, + "end": 12053.12, + "probability": 0.991 + }, + { + "start": 12054.16, + "end": 12056.34, + "probability": 0.953 + }, + { + "start": 12057.02, + "end": 12059.43, + "probability": 0.8431 + }, + { + "start": 12061.3, + "end": 12062.92, + "probability": 0.7879 + }, + { + "start": 12064.32, + "end": 12066.36, + "probability": 0.6521 + }, + { + "start": 12067.18, + "end": 12069.3, + "probability": 0.5709 + }, + { + "start": 12070.16, + "end": 12072.76, + "probability": 0.9381 + }, + { + "start": 12073.28, + "end": 12074.32, + "probability": 0.7539 + }, + { + "start": 12074.32, + "end": 12079.16, + "probability": 0.9863 + }, + { + "start": 12080.02, + "end": 12086.94, + "probability": 0.9887 + }, + { + "start": 12087.56, + "end": 12090.56, + "probability": 0.8875 + }, + { + "start": 12090.96, + "end": 12094.92, + "probability": 0.9953 + }, + { + "start": 12096.42, + "end": 12102.4, + "probability": 0.8599 + }, + { + "start": 12103.1, + "end": 12105.62, + "probability": 0.9923 + }, + { + "start": 12106.24, + "end": 12108.26, + "probability": 0.9844 + }, + { + "start": 12109.32, + "end": 12112.46, + "probability": 0.9946 + }, + { + "start": 12113.32, + "end": 12114.38, + "probability": 0.5118 + }, + { + "start": 12114.48, + "end": 12120.94, + "probability": 0.9855 + }, + { + "start": 12121.72, + "end": 12123.04, + "probability": 0.9132 + }, + { + "start": 12124.46, + "end": 12127.22, + "probability": 0.9979 + }, + { + "start": 12128.08, + "end": 12132.48, + "probability": 0.8914 + }, + { + "start": 12133.34, + "end": 12135.1, + "probability": 0.8646 + }, + { + "start": 12136.3, + "end": 12138.78, + "probability": 0.7879 + }, + { + "start": 12139.42, + "end": 12145.58, + "probability": 0.9541 + }, + { + "start": 12146.22, + "end": 12147.48, + "probability": 0.7549 + }, + { + "start": 12147.58, + "end": 12148.58, + "probability": 0.9189 + }, + { + "start": 12148.66, + "end": 12149.66, + "probability": 0.8168 + }, + { + "start": 12150.66, + "end": 12151.64, + "probability": 0.9104 + }, + { + "start": 12153.36, + "end": 12155.08, + "probability": 0.9241 + }, + { + "start": 12155.6, + "end": 12157.64, + "probability": 0.9859 + }, + { + "start": 12158.2, + "end": 12160.2, + "probability": 0.7063 + }, + { + "start": 12160.84, + "end": 12165.72, + "probability": 0.9819 + }, + { + "start": 12166.9, + "end": 12171.26, + "probability": 0.9925 + }, + { + "start": 12171.78, + "end": 12174.52, + "probability": 0.9548 + }, + { + "start": 12175.7, + "end": 12179.74, + "probability": 0.9574 + }, + { + "start": 12180.28, + "end": 12183.34, + "probability": 0.9304 + }, + { + "start": 12184.12, + "end": 12188.12, + "probability": 0.8333 + }, + { + "start": 12189.64, + "end": 12191.08, + "probability": 0.8818 + }, + { + "start": 12191.62, + "end": 12193.8, + "probability": 0.913 + }, + { + "start": 12194.42, + "end": 12196.02, + "probability": 0.9495 + }, + { + "start": 12196.92, + "end": 12198.18, + "probability": 0.9244 + }, + { + "start": 12199.02, + "end": 12200.64, + "probability": 0.918 + }, + { + "start": 12200.72, + "end": 12201.66, + "probability": 0.5254 + }, + { + "start": 12201.9, + "end": 12203.36, + "probability": 0.9839 + }, + { + "start": 12203.44, + "end": 12205.08, + "probability": 0.7017 + }, + { + "start": 12205.58, + "end": 12206.28, + "probability": 0.9458 + }, + { + "start": 12206.36, + "end": 12207.12, + "probability": 0.8126 + }, + { + "start": 12207.66, + "end": 12210.7, + "probability": 0.7719 + }, + { + "start": 12210.76, + "end": 12211.46, + "probability": 0.9846 + }, + { + "start": 12212.52, + "end": 12214.66, + "probability": 0.6744 + }, + { + "start": 12215.24, + "end": 12215.84, + "probability": 0.6441 + }, + { + "start": 12216.04, + "end": 12217.48, + "probability": 0.7495 + }, + { + "start": 12217.76, + "end": 12219.6, + "probability": 0.3909 + }, + { + "start": 12220.5, + "end": 12221.4, + "probability": 0.4611 + }, + { + "start": 12221.98, + "end": 12222.14, + "probability": 0.1045 + }, + { + "start": 12223.78, + "end": 12224.56, + "probability": 0.4894 + }, + { + "start": 12224.58, + "end": 12226.38, + "probability": 0.8843 + }, + { + "start": 12227.68, + "end": 12227.86, + "probability": 0.3799 + }, + { + "start": 12227.94, + "end": 12228.46, + "probability": 0.6924 + }, + { + "start": 12231.02, + "end": 12234.26, + "probability": 0.8816 + }, + { + "start": 12234.38, + "end": 12234.84, + "probability": 0.9708 + }, + { + "start": 12234.96, + "end": 12238.36, + "probability": 0.9867 + }, + { + "start": 12238.4, + "end": 12239.59, + "probability": 0.9946 + }, + { + "start": 12240.44, + "end": 12241.24, + "probability": 0.0537 + }, + { + "start": 12242.34, + "end": 12245.1, + "probability": 0.8793 + }, + { + "start": 12245.36, + "end": 12247.02, + "probability": 0.0874 + }, + { + "start": 12247.48, + "end": 12248.6, + "probability": 0.8627 + }, + { + "start": 12249.38, + "end": 12250.7, + "probability": 0.2912 + }, + { + "start": 12250.84, + "end": 12251.3, + "probability": 0.7747 + }, + { + "start": 12253.56, + "end": 12254.04, + "probability": 0.8164 + }, + { + "start": 12257.4, + "end": 12259.8, + "probability": 0.8436 + }, + { + "start": 12259.86, + "end": 12261.24, + "probability": 0.6437 + }, + { + "start": 12262.54, + "end": 12263.14, + "probability": 0.6796 + }, + { + "start": 12263.22, + "end": 12263.82, + "probability": 0.5518 + }, + { + "start": 12264.06, + "end": 12265.62, + "probability": 0.1447 + }, + { + "start": 12270.92, + "end": 12275.34, + "probability": 0.17 + }, + { + "start": 12275.52, + "end": 12276.56, + "probability": 0.6489 + }, + { + "start": 12277.48, + "end": 12277.74, + "probability": 0.6446 + }, + { + "start": 12278.14, + "end": 12278.72, + "probability": 0.719 + }, + { + "start": 12280.24, + "end": 12280.88, + "probability": 0.1706 + }, + { + "start": 12280.88, + "end": 12281.98, + "probability": 0.737 + }, + { + "start": 12285.56, + "end": 12287.56, + "probability": 0.2706 + }, + { + "start": 12287.62, + "end": 12287.62, + "probability": 0.0588 + }, + { + "start": 12287.62, + "end": 12287.62, + "probability": 0.5233 + }, + { + "start": 12288.02, + "end": 12289.6, + "probability": 0.6334 + }, + { + "start": 12292.44, + "end": 12292.74, + "probability": 0.0295 + }, + { + "start": 12292.74, + "end": 12292.74, + "probability": 0.2462 + }, + { + "start": 12292.74, + "end": 12293.66, + "probability": 0.0905 + }, + { + "start": 12294.2, + "end": 12295.04, + "probability": 0.6103 + }, + { + "start": 12295.08, + "end": 12296.5, + "probability": 0.8229 + }, + { + "start": 12296.68, + "end": 12297.06, + "probability": 0.5356 + }, + { + "start": 12297.1, + "end": 12298.38, + "probability": 0.6899 + }, + { + "start": 12299.18, + "end": 12299.77, + "probability": 0.4391 + }, + { + "start": 12299.86, + "end": 12301.96, + "probability": 0.9413 + }, + { + "start": 12302.06, + "end": 12302.66, + "probability": 0.6201 + }, + { + "start": 12309.72, + "end": 12310.72, + "probability": 0.6651 + }, + { + "start": 12312.34, + "end": 12314.34, + "probability": 0.8013 + }, + { + "start": 12315.12, + "end": 12320.48, + "probability": 0.9924 + }, + { + "start": 12320.56, + "end": 12321.74, + "probability": 0.7312 + }, + { + "start": 12323.84, + "end": 12325.57, + "probability": 0.7476 + }, + { + "start": 12328.16, + "end": 12331.7, + "probability": 0.6922 + }, + { + "start": 12331.8, + "end": 12332.26, + "probability": 0.095 + }, + { + "start": 12333.92, + "end": 12335.7, + "probability": 0.9795 + }, + { + "start": 12337.58, + "end": 12339.1, + "probability": 0.8992 + }, + { + "start": 12340.46, + "end": 12341.26, + "probability": 0.9778 + }, + { + "start": 12342.52, + "end": 12343.4, + "probability": 0.8167 + }, + { + "start": 12347.52, + "end": 12351.42, + "probability": 0.75 + }, + { + "start": 12351.6, + "end": 12353.02, + "probability": 0.9951 + }, + { + "start": 12354.66, + "end": 12356.66, + "probability": 0.8764 + }, + { + "start": 12358.48, + "end": 12361.52, + "probability": 0.9844 + }, + { + "start": 12363.94, + "end": 12364.62, + "probability": 0.8829 + }, + { + "start": 12364.8, + "end": 12366.26, + "probability": 0.9829 + }, + { + "start": 12366.34, + "end": 12366.96, + "probability": 0.6123 + }, + { + "start": 12368.12, + "end": 12370.34, + "probability": 0.9563 + }, + { + "start": 12370.46, + "end": 12371.74, + "probability": 0.9449 + }, + { + "start": 12373.02, + "end": 12374.86, + "probability": 0.9604 + }, + { + "start": 12375.88, + "end": 12378.7, + "probability": 0.9889 + }, + { + "start": 12378.94, + "end": 12381.1, + "probability": 0.9839 + }, + { + "start": 12381.37, + "end": 12382.48, + "probability": 0.9915 + }, + { + "start": 12382.62, + "end": 12384.18, + "probability": 0.963 + }, + { + "start": 12384.84, + "end": 12386.64, + "probability": 0.8636 + }, + { + "start": 12387.9, + "end": 12388.72, + "probability": 0.9106 + }, + { + "start": 12391.28, + "end": 12392.9, + "probability": 0.9263 + }, + { + "start": 12394.38, + "end": 12396.88, + "probability": 0.9876 + }, + { + "start": 12398.08, + "end": 12398.72, + "probability": 0.6694 + }, + { + "start": 12399.28, + "end": 12400.45, + "probability": 0.9814 + }, + { + "start": 12400.76, + "end": 12403.06, + "probability": 0.9798 + }, + { + "start": 12403.32, + "end": 12405.48, + "probability": 0.9393 + }, + { + "start": 12407.04, + "end": 12411.26, + "probability": 0.8123 + }, + { + "start": 12411.44, + "end": 12415.3, + "probability": 0.9471 + }, + { + "start": 12416.5, + "end": 12421.1, + "probability": 0.8701 + }, + { + "start": 12423.02, + "end": 12423.34, + "probability": 0.6239 + }, + { + "start": 12423.5, + "end": 12424.54, + "probability": 0.9489 + }, + { + "start": 12424.76, + "end": 12429.84, + "probability": 0.8378 + }, + { + "start": 12431.66, + "end": 12433.78, + "probability": 0.9376 + }, + { + "start": 12434.54, + "end": 12435.38, + "probability": 0.939 + }, + { + "start": 12436.38, + "end": 12438.66, + "probability": 0.742 + }, + { + "start": 12439.18, + "end": 12442.04, + "probability": 0.976 + }, + { + "start": 12443.16, + "end": 12444.62, + "probability": 0.9927 + }, + { + "start": 12445.56, + "end": 12454.06, + "probability": 0.5776 + }, + { + "start": 12454.46, + "end": 12455.04, + "probability": 0.9185 + }, + { + "start": 12455.56, + "end": 12456.78, + "probability": 0.948 + }, + { + "start": 12457.04, + "end": 12459.28, + "probability": 0.975 + }, + { + "start": 12460.42, + "end": 12462.86, + "probability": 0.9271 + }, + { + "start": 12463.73, + "end": 12468.08, + "probability": 0.8921 + }, + { + "start": 12468.08, + "end": 12470.26, + "probability": 0.0922 + }, + { + "start": 12471.16, + "end": 12472.04, + "probability": 0.7514 + }, + { + "start": 12473.14, + "end": 12475.26, + "probability": 0.9105 + }, + { + "start": 12475.68, + "end": 12476.16, + "probability": 0.4656 + }, + { + "start": 12476.26, + "end": 12476.94, + "probability": 0.8344 + }, + { + "start": 12477.14, + "end": 12481.72, + "probability": 0.912 + }, + { + "start": 12482.36, + "end": 12484.52, + "probability": 0.9014 + }, + { + "start": 12485.22, + "end": 12487.1, + "probability": 0.8758 + }, + { + "start": 12488.24, + "end": 12490.4, + "probability": 0.7213 + }, + { + "start": 12491.92, + "end": 12493.6, + "probability": 0.352 + }, + { + "start": 12495.29, + "end": 12500.62, + "probability": 0.5604 + }, + { + "start": 12501.42, + "end": 12504.72, + "probability": 0.7382 + }, + { + "start": 12505.56, + "end": 12508.16, + "probability": 0.9259 + }, + { + "start": 12509.16, + "end": 12509.22, + "probability": 0.4221 + }, + { + "start": 12509.86, + "end": 12512.9, + "probability": 0.9515 + }, + { + "start": 12513.52, + "end": 12514.74, + "probability": 0.9505 + }, + { + "start": 12515.72, + "end": 12516.02, + "probability": 0.8865 + }, + { + "start": 12516.1, + "end": 12521.12, + "probability": 0.9932 + }, + { + "start": 12521.36, + "end": 12523.7, + "probability": 0.9729 + }, + { + "start": 12525.28, + "end": 12526.9, + "probability": 0.929 + }, + { + "start": 12527.0, + "end": 12528.45, + "probability": 0.8447 + }, + { + "start": 12529.0, + "end": 12529.54, + "probability": 0.2512 + }, + { + "start": 12529.94, + "end": 12530.6, + "probability": 0.2629 + }, + { + "start": 12530.6, + "end": 12531.28, + "probability": 0.8201 + }, + { + "start": 12531.78, + "end": 12532.48, + "probability": 0.8765 + }, + { + "start": 12532.64, + "end": 12533.46, + "probability": 0.7788 + }, + { + "start": 12533.58, + "end": 12535.8, + "probability": 0.9458 + }, + { + "start": 12535.92, + "end": 12538.68, + "probability": 0.7986 + }, + { + "start": 12539.12, + "end": 12540.88, + "probability": 0.9906 + }, + { + "start": 12541.98, + "end": 12544.68, + "probability": 0.9647 + }, + { + "start": 12546.58, + "end": 12549.42, + "probability": 0.7893 + }, + { + "start": 12549.64, + "end": 12550.34, + "probability": 0.4151 + }, + { + "start": 12550.38, + "end": 12550.62, + "probability": 0.6137 + }, + { + "start": 12550.72, + "end": 12552.96, + "probability": 0.9478 + }, + { + "start": 12553.64, + "end": 12554.46, + "probability": 0.7544 + }, + { + "start": 12554.72, + "end": 12556.52, + "probability": 0.9692 + }, + { + "start": 12556.54, + "end": 12557.0, + "probability": 0.829 + }, + { + "start": 12557.36, + "end": 12558.16, + "probability": 0.9775 + }, + { + "start": 12558.38, + "end": 12560.86, + "probability": 0.8431 + }, + { + "start": 12561.5, + "end": 12563.36, + "probability": 0.993 + }, + { + "start": 12563.48, + "end": 12563.74, + "probability": 0.8167 + }, + { + "start": 12564.5, + "end": 12566.14, + "probability": 0.9775 + }, + { + "start": 12566.3, + "end": 12567.5, + "probability": 0.7738 + }, + { + "start": 12567.68, + "end": 12568.96, + "probability": 0.4698 + }, + { + "start": 12568.98, + "end": 12571.24, + "probability": 0.9178 + }, + { + "start": 12573.68, + "end": 12575.48, + "probability": 0.0806 + }, + { + "start": 12575.76, + "end": 12576.29, + "probability": 0.0552 + }, + { + "start": 12577.44, + "end": 12579.81, + "probability": 0.2345 + }, + { + "start": 12580.78, + "end": 12583.18, + "probability": 0.2263 + }, + { + "start": 12583.82, + "end": 12584.38, + "probability": 0.346 + }, + { + "start": 12585.2, + "end": 12587.46, + "probability": 0.7228 + }, + { + "start": 12593.42, + "end": 12595.74, + "probability": 0.5936 + }, + { + "start": 12596.48, + "end": 12599.34, + "probability": 0.8822 + }, + { + "start": 12600.38, + "end": 12603.18, + "probability": 0.8034 + }, + { + "start": 12603.66, + "end": 12604.28, + "probability": 0.1941 + }, + { + "start": 12604.74, + "end": 12607.8, + "probability": 0.9576 + }, + { + "start": 12608.14, + "end": 12608.96, + "probability": 0.9565 + }, + { + "start": 12609.56, + "end": 12613.52, + "probability": 0.8234 + }, + { + "start": 12614.68, + "end": 12614.98, + "probability": 0.797 + }, + { + "start": 12615.16, + "end": 12619.32, + "probability": 0.9388 + }, + { + "start": 12620.26, + "end": 12621.1, + "probability": 0.9094 + }, + { + "start": 12621.9, + "end": 12623.18, + "probability": 0.7027 + }, + { + "start": 12623.3, + "end": 12625.22, + "probability": 0.9927 + }, + { + "start": 12625.44, + "end": 12626.22, + "probability": 0.5681 + }, + { + "start": 12627.1, + "end": 12628.78, + "probability": 0.7139 + }, + { + "start": 12629.5, + "end": 12631.56, + "probability": 0.874 + }, + { + "start": 12632.86, + "end": 12635.18, + "probability": 0.9377 + }, + { + "start": 12635.7, + "end": 12637.24, + "probability": 0.9178 + }, + { + "start": 12638.3, + "end": 12641.3, + "probability": 0.9583 + }, + { + "start": 12641.78, + "end": 12644.78, + "probability": 0.9815 + }, + { + "start": 12645.4, + "end": 12646.74, + "probability": 0.819 + }, + { + "start": 12647.5, + "end": 12650.74, + "probability": 0.8845 + }, + { + "start": 12651.34, + "end": 12653.42, + "probability": 0.9194 + }, + { + "start": 12654.1, + "end": 12654.96, + "probability": 0.9127 + }, + { + "start": 12655.5, + "end": 12656.74, + "probability": 0.8512 + }, + { + "start": 12656.98, + "end": 12657.0, + "probability": 0.8096 + }, + { + "start": 12657.58, + "end": 12661.36, + "probability": 0.7938 + }, + { + "start": 12661.92, + "end": 12665.3, + "probability": 0.809 + }, + { + "start": 12666.32, + "end": 12667.26, + "probability": 0.8021 + }, + { + "start": 12667.4, + "end": 12668.32, + "probability": 0.8777 + }, + { + "start": 12668.72, + "end": 12672.56, + "probability": 0.6947 + }, + { + "start": 12673.16, + "end": 12673.48, + "probability": 0.7696 + }, + { + "start": 12673.7, + "end": 12676.46, + "probability": 0.8952 + }, + { + "start": 12677.62, + "end": 12678.84, + "probability": 0.7231 + }, + { + "start": 12679.1, + "end": 12680.02, + "probability": 0.7161 + }, + { + "start": 12680.1, + "end": 12680.56, + "probability": 0.8968 + }, + { + "start": 12681.0, + "end": 12682.52, + "probability": 0.7799 + }, + { + "start": 12683.7, + "end": 12686.06, + "probability": 0.6866 + }, + { + "start": 12687.22, + "end": 12689.14, + "probability": 0.9318 + }, + { + "start": 12690.86, + "end": 12694.12, + "probability": 0.8676 + }, + { + "start": 12694.7, + "end": 12696.12, + "probability": 0.9328 + }, + { + "start": 12696.7, + "end": 12697.96, + "probability": 0.9606 + }, + { + "start": 12698.94, + "end": 12699.1, + "probability": 0.6122 + }, + { + "start": 12699.34, + "end": 12699.8, + "probability": 0.8978 + }, + { + "start": 12699.98, + "end": 12702.82, + "probability": 0.9771 + }, + { + "start": 12703.2, + "end": 12704.92, + "probability": 0.9132 + }, + { + "start": 12705.16, + "end": 12706.5, + "probability": 0.9482 + }, + { + "start": 12707.06, + "end": 12707.88, + "probability": 0.8306 + }, + { + "start": 12708.5, + "end": 12709.06, + "probability": 0.8688 + }, + { + "start": 12709.46, + "end": 12713.38, + "probability": 0.9641 + }, + { + "start": 12713.84, + "end": 12720.88, + "probability": 0.9644 + }, + { + "start": 12721.68, + "end": 12722.62, + "probability": 0.9862 + }, + { + "start": 12723.06, + "end": 12726.0, + "probability": 0.9514 + }, + { + "start": 12726.48, + "end": 12727.34, + "probability": 0.9495 + }, + { + "start": 12727.68, + "end": 12728.38, + "probability": 0.9119 + }, + { + "start": 12728.74, + "end": 12729.92, + "probability": 0.9575 + }, + { + "start": 12730.88, + "end": 12733.2, + "probability": 0.7847 + }, + { + "start": 12733.38, + "end": 12737.12, + "probability": 0.8776 + }, + { + "start": 12737.64, + "end": 12738.8, + "probability": 0.823 + }, + { + "start": 12739.2, + "end": 12740.58, + "probability": 0.6908 + }, + { + "start": 12741.38, + "end": 12748.28, + "probability": 0.9725 + }, + { + "start": 12748.7, + "end": 12749.7, + "probability": 0.5015 + }, + { + "start": 12749.74, + "end": 12750.68, + "probability": 0.7347 + }, + { + "start": 12750.96, + "end": 12752.08, + "probability": 0.6744 + }, + { + "start": 12752.62, + "end": 12753.68, + "probability": 0.803 + }, + { + "start": 12754.08, + "end": 12754.64, + "probability": 0.8107 + }, + { + "start": 12755.22, + "end": 12755.8, + "probability": 0.9938 + }, + { + "start": 12756.9, + "end": 12757.94, + "probability": 0.8264 + }, + { + "start": 12759.2, + "end": 12760.86, + "probability": 0.9 + }, + { + "start": 12761.42, + "end": 12766.22, + "probability": 0.9081 + }, + { + "start": 12767.6, + "end": 12771.84, + "probability": 0.932 + }, + { + "start": 12772.3, + "end": 12772.96, + "probability": 0.8535 + }, + { + "start": 12773.82, + "end": 12777.01, + "probability": 0.9031 + }, + { + "start": 12778.22, + "end": 12781.14, + "probability": 0.9824 + }, + { + "start": 12781.48, + "end": 12781.96, + "probability": 0.5534 + }, + { + "start": 12782.36, + "end": 12783.66, + "probability": 0.7957 + }, + { + "start": 12784.5, + "end": 12786.84, + "probability": 0.9539 + }, + { + "start": 12788.16, + "end": 12789.8, + "probability": 0.8931 + }, + { + "start": 12793.26, + "end": 12793.74, + "probability": 0.2586 + }, + { + "start": 12794.96, + "end": 12795.82, + "probability": 0.0 + }, + { + "start": 12795.84, + "end": 12797.98, + "probability": 0.6906 + }, + { + "start": 12798.5, + "end": 12800.18, + "probability": 0.119 + }, + { + "start": 12800.48, + "end": 12801.1, + "probability": 0.3897 + }, + { + "start": 12808.52, + "end": 12809.36, + "probability": 0.6085 + }, + { + "start": 12809.58, + "end": 12811.93, + "probability": 0.8322 + }, + { + "start": 12812.54, + "end": 12813.94, + "probability": 0.9893 + }, + { + "start": 12814.34, + "end": 12814.8, + "probability": 0.3351 + }, + { + "start": 12815.9, + "end": 12817.38, + "probability": 0.711 + }, + { + "start": 12820.36, + "end": 12823.62, + "probability": 0.9199 + }, + { + "start": 12823.82, + "end": 12827.0, + "probability": 0.9747 + }, + { + "start": 12827.68, + "end": 12829.6, + "probability": 0.9943 + }, + { + "start": 12830.5, + "end": 12831.24, + "probability": 0.4149 + }, + { + "start": 12832.26, + "end": 12833.78, + "probability": 0.9596 + }, + { + "start": 12835.22, + "end": 12838.15, + "probability": 0.833 + }, + { + "start": 12839.6, + "end": 12842.26, + "probability": 0.9775 + }, + { + "start": 12842.44, + "end": 12845.22, + "probability": 0.9694 + }, + { + "start": 12846.48, + "end": 12853.02, + "probability": 0.9863 + }, + { + "start": 12854.0, + "end": 12857.86, + "probability": 0.9411 + }, + { + "start": 12859.34, + "end": 12860.92, + "probability": 0.9857 + }, + { + "start": 12861.04, + "end": 12863.8, + "probability": 0.8829 + }, + { + "start": 12864.56, + "end": 12869.26, + "probability": 0.7971 + }, + { + "start": 12870.28, + "end": 12875.06, + "probability": 0.9648 + }, + { + "start": 12875.16, + "end": 12876.4, + "probability": 0.9652 + }, + { + "start": 12877.4, + "end": 12880.27, + "probability": 0.9525 + }, + { + "start": 12881.12, + "end": 12881.68, + "probability": 0.9588 + }, + { + "start": 12882.36, + "end": 12884.26, + "probability": 0.8955 + }, + { + "start": 12884.3, + "end": 12888.34, + "probability": 0.9609 + }, + { + "start": 12889.48, + "end": 12892.5, + "probability": 0.9235 + }, + { + "start": 12893.06, + "end": 12896.92, + "probability": 0.9766 + }, + { + "start": 12897.6, + "end": 12901.11, + "probability": 0.9899 + }, + { + "start": 12902.2, + "end": 12906.0, + "probability": 0.9091 + }, + { + "start": 12906.8, + "end": 12909.86, + "probability": 0.737 + }, + { + "start": 12910.42, + "end": 12911.38, + "probability": 0.9009 + }, + { + "start": 12911.82, + "end": 12913.16, + "probability": 0.5975 + }, + { + "start": 12913.22, + "end": 12914.64, + "probability": 0.8883 + }, + { + "start": 12916.26, + "end": 12917.2, + "probability": 0.8488 + }, + { + "start": 12918.22, + "end": 12919.16, + "probability": 0.7641 + }, + { + "start": 12920.18, + "end": 12921.04, + "probability": 0.9797 + }, + { + "start": 12921.9, + "end": 12923.22, + "probability": 0.782 + }, + { + "start": 12923.36, + "end": 12928.6, + "probability": 0.9894 + }, + { + "start": 12928.9, + "end": 12930.88, + "probability": 0.7068 + }, + { + "start": 12932.04, + "end": 12933.38, + "probability": 0.8674 + }, + { + "start": 12933.48, + "end": 12935.42, + "probability": 0.688 + }, + { + "start": 12935.42, + "end": 12938.94, + "probability": 0.7942 + }, + { + "start": 12939.36, + "end": 12942.1, + "probability": 0.9658 + }, + { + "start": 12942.88, + "end": 12944.28, + "probability": 0.9618 + }, + { + "start": 12944.98, + "end": 12947.27, + "probability": 0.7842 + }, + { + "start": 12948.06, + "end": 12949.2, + "probability": 0.9631 + }, + { + "start": 12950.0, + "end": 12952.62, + "probability": 0.7697 + }, + { + "start": 12953.3, + "end": 12957.24, + "probability": 0.9661 + }, + { + "start": 12959.3, + "end": 12963.72, + "probability": 0.8207 + }, + { + "start": 12963.8, + "end": 12966.14, + "probability": 0.9366 + }, + { + "start": 12967.68, + "end": 12972.24, + "probability": 0.9696 + }, + { + "start": 12972.34, + "end": 12974.02, + "probability": 0.9987 + }, + { + "start": 12974.7, + "end": 12976.72, + "probability": 0.7281 + }, + { + "start": 12977.9, + "end": 12981.16, + "probability": 0.747 + }, + { + "start": 12981.98, + "end": 12986.06, + "probability": 0.7489 + }, + { + "start": 12986.3, + "end": 12989.76, + "probability": 0.976 + }, + { + "start": 12990.32, + "end": 12994.6, + "probability": 0.8712 + }, + { + "start": 12995.42, + "end": 12997.06, + "probability": 0.9888 + }, + { + "start": 12998.26, + "end": 12999.88, + "probability": 0.7815 + }, + { + "start": 13000.68, + "end": 13004.24, + "probability": 0.8936 + }, + { + "start": 13004.82, + "end": 13007.96, + "probability": 0.9954 + }, + { + "start": 13009.04, + "end": 13011.28, + "probability": 0.5953 + }, + { + "start": 13011.34, + "end": 13012.36, + "probability": 0.8614 + }, + { + "start": 13012.98, + "end": 13014.8, + "probability": 0.8572 + }, + { + "start": 13015.4, + "end": 13016.8, + "probability": 0.8548 + }, + { + "start": 13017.0, + "end": 13022.18, + "probability": 0.8831 + }, + { + "start": 13022.3, + "end": 13025.46, + "probability": 0.6748 + }, + { + "start": 13026.02, + "end": 13028.84, + "probability": 0.7394 + }, + { + "start": 13029.22, + "end": 13030.88, + "probability": 0.6257 + }, + { + "start": 13030.94, + "end": 13037.1, + "probability": 0.9115 + }, + { + "start": 13037.38, + "end": 13038.04, + "probability": 0.6277 + }, + { + "start": 13038.12, + "end": 13040.28, + "probability": 0.8556 + }, + { + "start": 13040.3, + "end": 13040.89, + "probability": 0.5879 + }, + { + "start": 13041.42, + "end": 13044.84, + "probability": 0.9661 + }, + { + "start": 13045.02, + "end": 13045.65, + "probability": 0.9163 + }, + { + "start": 13046.62, + "end": 13049.84, + "probability": 0.8379 + }, + { + "start": 13050.6, + "end": 13052.9, + "probability": 0.9429 + }, + { + "start": 13052.96, + "end": 13055.64, + "probability": 0.9668 + }, + { + "start": 13056.12, + "end": 13059.38, + "probability": 0.7504 + }, + { + "start": 13059.88, + "end": 13064.96, + "probability": 0.9875 + }, + { + "start": 13065.26, + "end": 13066.57, + "probability": 0.9906 + }, + { + "start": 13067.14, + "end": 13068.27, + "probability": 0.9973 + }, + { + "start": 13068.98, + "end": 13070.18, + "probability": 0.9578 + }, + { + "start": 13070.34, + "end": 13071.18, + "probability": 0.7827 + }, + { + "start": 13071.68, + "end": 13072.56, + "probability": 0.6441 + }, + { + "start": 13072.74, + "end": 13074.9, + "probability": 0.9229 + }, + { + "start": 13075.28, + "end": 13076.42, + "probability": 0.8561 + }, + { + "start": 13077.04, + "end": 13078.66, + "probability": 0.9552 + }, + { + "start": 13079.56, + "end": 13080.44, + "probability": 0.9441 + }, + { + "start": 13081.46, + "end": 13083.92, + "probability": 0.7529 + }, + { + "start": 13084.88, + "end": 13087.22, + "probability": 0.8485 + }, + { + "start": 13087.36, + "end": 13087.94, + "probability": 0.5836 + }, + { + "start": 13088.02, + "end": 13089.08, + "probability": 0.8396 + }, + { + "start": 13089.2, + "end": 13089.9, + "probability": 0.8311 + }, + { + "start": 13089.9, + "end": 13090.44, + "probability": 0.7837 + }, + { + "start": 13105.22, + "end": 13106.38, + "probability": 0.9045 + }, + { + "start": 13108.56, + "end": 13109.66, + "probability": 0.8268 + }, + { + "start": 13109.84, + "end": 13111.7, + "probability": 0.9553 + }, + { + "start": 13111.76, + "end": 13112.7, + "probability": 0.6123 + }, + { + "start": 13114.5, + "end": 13117.4, + "probability": 0.7542 + }, + { + "start": 13118.68, + "end": 13120.9, + "probability": 0.9901 + }, + { + "start": 13122.22, + "end": 13124.92, + "probability": 0.9873 + }, + { + "start": 13126.9, + "end": 13129.32, + "probability": 0.9805 + }, + { + "start": 13130.92, + "end": 13132.86, + "probability": 0.9058 + }, + { + "start": 13134.06, + "end": 13137.86, + "probability": 0.954 + }, + { + "start": 13139.18, + "end": 13140.38, + "probability": 0.6601 + }, + { + "start": 13141.9, + "end": 13143.32, + "probability": 0.9991 + }, + { + "start": 13144.7, + "end": 13145.34, + "probability": 0.9814 + }, + { + "start": 13146.82, + "end": 13149.34, + "probability": 0.9878 + }, + { + "start": 13150.3, + "end": 13151.1, + "probability": 0.9425 + }, + { + "start": 13152.42, + "end": 13156.79, + "probability": 0.9976 + }, + { + "start": 13158.12, + "end": 13163.12, + "probability": 0.9924 + }, + { + "start": 13164.14, + "end": 13165.06, + "probability": 0.5174 + }, + { + "start": 13165.64, + "end": 13169.24, + "probability": 0.7566 + }, + { + "start": 13169.88, + "end": 13171.46, + "probability": 0.8821 + }, + { + "start": 13172.58, + "end": 13173.78, + "probability": 0.9464 + }, + { + "start": 13175.04, + "end": 13175.42, + "probability": 0.8179 + }, + { + "start": 13176.22, + "end": 13176.82, + "probability": 0.9749 + }, + { + "start": 13177.46, + "end": 13178.7, + "probability": 0.7432 + }, + { + "start": 13179.36, + "end": 13180.32, + "probability": 0.9214 + }, + { + "start": 13182.48, + "end": 13183.98, + "probability": 0.8582 + }, + { + "start": 13184.86, + "end": 13186.26, + "probability": 0.8124 + }, + { + "start": 13187.24, + "end": 13187.76, + "probability": 0.9122 + }, + { + "start": 13189.82, + "end": 13195.08, + "probability": 0.9917 + }, + { + "start": 13196.02, + "end": 13196.72, + "probability": 0.8648 + }, + { + "start": 13197.66, + "end": 13200.7, + "probability": 0.9859 + }, + { + "start": 13203.28, + "end": 13204.12, + "probability": 0.9979 + }, + { + "start": 13206.34, + "end": 13209.08, + "probability": 0.9878 + }, + { + "start": 13209.64, + "end": 13212.18, + "probability": 0.8737 + }, + { + "start": 13212.78, + "end": 13214.1, + "probability": 0.998 + }, + { + "start": 13214.72, + "end": 13220.22, + "probability": 0.9982 + }, + { + "start": 13221.04, + "end": 13222.5, + "probability": 0.9941 + }, + { + "start": 13224.14, + "end": 13226.7, + "probability": 0.9691 + }, + { + "start": 13227.3, + "end": 13229.72, + "probability": 0.943 + }, + { + "start": 13230.18, + "end": 13230.48, + "probability": 0.7362 + }, + { + "start": 13231.48, + "end": 13233.42, + "probability": 0.9673 + }, + { + "start": 13234.04, + "end": 13236.2, + "probability": 0.6776 + }, + { + "start": 13236.28, + "end": 13236.62, + "probability": 0.9545 + }, + { + "start": 13249.52, + "end": 13250.2, + "probability": 0.6172 + }, + { + "start": 13250.34, + "end": 13250.88, + "probability": 0.7446 + }, + { + "start": 13251.04, + "end": 13253.83, + "probability": 0.7364 + }, + { + "start": 13255.64, + "end": 13257.07, + "probability": 0.7454 + }, + { + "start": 13259.24, + "end": 13261.68, + "probability": 0.6336 + }, + { + "start": 13262.5, + "end": 13264.0, + "probability": 0.4819 + }, + { + "start": 13264.04, + "end": 13264.04, + "probability": 0.3005 + }, + { + "start": 13264.06, + "end": 13266.24, + "probability": 0.6483 + }, + { + "start": 13266.68, + "end": 13267.36, + "probability": 0.9563 + }, + { + "start": 13267.96, + "end": 13271.58, + "probability": 0.7331 + }, + { + "start": 13272.06, + "end": 13272.62, + "probability": 0.2383 + }, + { + "start": 13272.8, + "end": 13273.68, + "probability": 0.6026 + }, + { + "start": 13274.0, + "end": 13275.58, + "probability": 0.6998 + }, + { + "start": 13275.66, + "end": 13276.87, + "probability": 0.1552 + }, + { + "start": 13277.24, + "end": 13278.1, + "probability": 0.4843 + }, + { + "start": 13278.1, + "end": 13281.62, + "probability": 0.8774 + }, + { + "start": 13281.82, + "end": 13283.28, + "probability": 0.9905 + }, + { + "start": 13283.98, + "end": 13284.83, + "probability": 0.5336 + }, + { + "start": 13285.32, + "end": 13287.58, + "probability": 0.764 + }, + { + "start": 13287.76, + "end": 13289.04, + "probability": 0.0839 + }, + { + "start": 13289.28, + "end": 13290.66, + "probability": 0.5569 + }, + { + "start": 13293.4, + "end": 13296.24, + "probability": 0.9985 + }, + { + "start": 13296.88, + "end": 13298.18, + "probability": 0.9873 + }, + { + "start": 13298.82, + "end": 13301.08, + "probability": 0.9608 + }, + { + "start": 13301.78, + "end": 13303.68, + "probability": 0.9963 + }, + { + "start": 13304.18, + "end": 13306.58, + "probability": 0.9938 + }, + { + "start": 13307.18, + "end": 13308.34, + "probability": 0.8968 + }, + { + "start": 13309.1, + "end": 13311.98, + "probability": 0.8787 + }, + { + "start": 13312.1, + "end": 13313.48, + "probability": 0.9246 + }, + { + "start": 13313.62, + "end": 13315.04, + "probability": 0.9583 + }, + { + "start": 13316.46, + "end": 13318.88, + "probability": 0.8365 + }, + { + "start": 13319.32, + "end": 13321.68, + "probability": 0.9553 + }, + { + "start": 13322.38, + "end": 13324.68, + "probability": 0.9022 + }, + { + "start": 13324.72, + "end": 13325.62, + "probability": 0.7327 + }, + { + "start": 13325.78, + "end": 13326.06, + "probability": 0.6882 + }, + { + "start": 13326.12, + "end": 13327.98, + "probability": 0.7299 + }, + { + "start": 13328.58, + "end": 13330.9, + "probability": 0.7999 + }, + { + "start": 13331.5, + "end": 13335.3, + "probability": 0.8466 + }, + { + "start": 13336.72, + "end": 13339.06, + "probability": 0.6611 + }, + { + "start": 13339.72, + "end": 13342.18, + "probability": 0.7775 + }, + { + "start": 13342.44, + "end": 13345.1, + "probability": 0.7692 + }, + { + "start": 13345.72, + "end": 13349.09, + "probability": 0.9834 + }, + { + "start": 13349.86, + "end": 13353.42, + "probability": 0.8577 + }, + { + "start": 13353.46, + "end": 13355.44, + "probability": 0.9563 + }, + { + "start": 13355.56, + "end": 13360.62, + "probability": 0.9836 + }, + { + "start": 13360.82, + "end": 13362.4, + "probability": 0.989 + }, + { + "start": 13363.58, + "end": 13364.98, + "probability": 0.9541 + }, + { + "start": 13365.6, + "end": 13366.88, + "probability": 0.7751 + }, + { + "start": 13368.46, + "end": 13370.52, + "probability": 0.9824 + }, + { + "start": 13370.64, + "end": 13374.18, + "probability": 0.9937 + }, + { + "start": 13374.36, + "end": 13375.7, + "probability": 0.7907 + }, + { + "start": 13376.1, + "end": 13377.42, + "probability": 0.9893 + }, + { + "start": 13377.6, + "end": 13378.94, + "probability": 0.887 + }, + { + "start": 13380.18, + "end": 13381.88, + "probability": 0.8956 + }, + { + "start": 13382.16, + "end": 13383.96, + "probability": 0.9657 + }, + { + "start": 13384.04, + "end": 13384.9, + "probability": 0.7656 + }, + { + "start": 13386.12, + "end": 13388.0, + "probability": 0.9665 + }, + { + "start": 13388.18, + "end": 13388.6, + "probability": 0.3052 + }, + { + "start": 13388.7, + "end": 13390.32, + "probability": 0.4817 + }, + { + "start": 13390.84, + "end": 13391.91, + "probability": 0.9149 + }, + { + "start": 13392.1, + "end": 13397.02, + "probability": 0.6386 + }, + { + "start": 13398.1, + "end": 13402.6, + "probability": 0.9958 + }, + { + "start": 13404.3, + "end": 13408.94, + "probability": 0.9958 + }, + { + "start": 13408.94, + "end": 13412.4, + "probability": 0.9976 + }, + { + "start": 13412.54, + "end": 13415.22, + "probability": 0.9239 + }, + { + "start": 13415.92, + "end": 13420.0, + "probability": 0.9926 + }, + { + "start": 13421.16, + "end": 13424.26, + "probability": 0.9844 + }, + { + "start": 13424.56, + "end": 13425.56, + "probability": 0.2986 + }, + { + "start": 13425.78, + "end": 13426.61, + "probability": 0.5354 + }, + { + "start": 13427.54, + "end": 13431.45, + "probability": 0.9647 + }, + { + "start": 13432.24, + "end": 13435.16, + "probability": 0.9701 + }, + { + "start": 13435.16, + "end": 13438.64, + "probability": 0.9294 + }, + { + "start": 13438.88, + "end": 13441.26, + "probability": 0.4996 + }, + { + "start": 13441.74, + "end": 13442.46, + "probability": 0.0499 + }, + { + "start": 13442.58, + "end": 13444.96, + "probability": 0.9043 + }, + { + "start": 13445.18, + "end": 13446.9, + "probability": 0.985 + }, + { + "start": 13447.8, + "end": 13448.64, + "probability": 0.6613 + }, + { + "start": 13449.16, + "end": 13451.4, + "probability": 0.9769 + }, + { + "start": 13451.5, + "end": 13452.96, + "probability": 0.6592 + }, + { + "start": 13452.96, + "end": 13453.28, + "probability": 0.1858 + }, + { + "start": 13453.86, + "end": 13457.02, + "probability": 0.9975 + }, + { + "start": 13457.02, + "end": 13461.24, + "probability": 0.9924 + }, + { + "start": 13462.18, + "end": 13462.7, + "probability": 0.5058 + }, + { + "start": 13462.98, + "end": 13465.74, + "probability": 0.6666 + }, + { + "start": 13466.44, + "end": 13469.56, + "probability": 0.8558 + }, + { + "start": 13470.26, + "end": 13473.2, + "probability": 0.9574 + }, + { + "start": 13473.4, + "end": 13476.2, + "probability": 0.92 + }, + { + "start": 13477.4, + "end": 13479.18, + "probability": 0.6624 + }, + { + "start": 13479.32, + "end": 13481.86, + "probability": 0.9929 + }, + { + "start": 13482.78, + "end": 13484.94, + "probability": 0.7831 + }, + { + "start": 13485.16, + "end": 13486.42, + "probability": 0.9182 + }, + { + "start": 13487.02, + "end": 13488.16, + "probability": 0.975 + }, + { + "start": 13488.62, + "end": 13490.78, + "probability": 0.988 + }, + { + "start": 13490.88, + "end": 13491.8, + "probability": 0.9846 + }, + { + "start": 13491.9, + "end": 13492.44, + "probability": 0.9704 + }, + { + "start": 13492.56, + "end": 13495.4, + "probability": 0.8665 + }, + { + "start": 13496.2, + "end": 13497.74, + "probability": 0.7447 + }, + { + "start": 13497.94, + "end": 13501.22, + "probability": 0.9569 + }, + { + "start": 13502.14, + "end": 13502.62, + "probability": 0.7969 + }, + { + "start": 13503.36, + "end": 13504.38, + "probability": 0.4241 + }, + { + "start": 13504.78, + "end": 13509.12, + "probability": 0.898 + }, + { + "start": 13509.12, + "end": 13515.02, + "probability": 0.9857 + }, + { + "start": 13515.32, + "end": 13518.26, + "probability": 0.9888 + }, + { + "start": 13518.94, + "end": 13521.34, + "probability": 0.9287 + }, + { + "start": 13522.36, + "end": 13523.36, + "probability": 0.8688 + }, + { + "start": 13524.58, + "end": 13529.84, + "probability": 0.9889 + }, + { + "start": 13530.94, + "end": 13532.1, + "probability": 0.7573 + }, + { + "start": 13532.62, + "end": 13534.24, + "probability": 0.8331 + }, + { + "start": 13536.52, + "end": 13541.4, + "probability": 0.9964 + }, + { + "start": 13542.08, + "end": 13548.26, + "probability": 0.7043 + }, + { + "start": 13549.02, + "end": 13549.8, + "probability": 0.8619 + }, + { + "start": 13549.9, + "end": 13550.88, + "probability": 0.9288 + }, + { + "start": 13551.1, + "end": 13555.42, + "probability": 0.9604 + }, + { + "start": 13555.54, + "end": 13557.6, + "probability": 0.9024 + }, + { + "start": 13557.6, + "end": 13559.62, + "probability": 0.7922 + }, + { + "start": 13560.56, + "end": 13563.06, + "probability": 0.7039 + }, + { + "start": 13563.06, + "end": 13564.98, + "probability": 0.9851 + }, + { + "start": 13565.56, + "end": 13567.58, + "probability": 0.8247 + }, + { + "start": 13568.08, + "end": 13570.4, + "probability": 0.9866 + }, + { + "start": 13570.4, + "end": 13572.98, + "probability": 0.9965 + }, + { + "start": 13573.46, + "end": 13574.9, + "probability": 0.8979 + }, + { + "start": 13576.22, + "end": 13577.02, + "probability": 0.7604 + }, + { + "start": 13578.86, + "end": 13579.04, + "probability": 0.4854 + }, + { + "start": 13580.1, + "end": 13582.2, + "probability": 0.9971 + }, + { + "start": 13582.24, + "end": 13585.16, + "probability": 0.9983 + }, + { + "start": 13585.16, + "end": 13588.76, + "probability": 0.9951 + }, + { + "start": 13589.62, + "end": 13591.6, + "probability": 0.8888 + }, + { + "start": 13592.24, + "end": 13593.16, + "probability": 0.6606 + }, + { + "start": 13593.16, + "end": 13594.14, + "probability": 0.471 + }, + { + "start": 13594.14, + "end": 13595.5, + "probability": 0.5474 + }, + { + "start": 13595.82, + "end": 13596.06, + "probability": 0.5474 + }, + { + "start": 13596.1, + "end": 13599.38, + "probability": 0.8021 + }, + { + "start": 13599.5, + "end": 13601.24, + "probability": 0.8768 + }, + { + "start": 13601.78, + "end": 13603.7, + "probability": 0.957 + }, + { + "start": 13603.8, + "end": 13604.88, + "probability": 0.9541 + }, + { + "start": 13605.24, + "end": 13606.02, + "probability": 0.7398 + }, + { + "start": 13606.14, + "end": 13606.9, + "probability": 0.7351 + }, + { + "start": 13607.2, + "end": 13607.38, + "probability": 0.6577 + }, + { + "start": 13607.4, + "end": 13607.98, + "probability": 0.7588 + }, + { + "start": 13608.06, + "end": 13609.16, + "probability": 0.829 + }, + { + "start": 13609.54, + "end": 13611.58, + "probability": 0.7427 + }, + { + "start": 13612.02, + "end": 13612.1, + "probability": 0.7957 + }, + { + "start": 13612.22, + "end": 13613.74, + "probability": 0.8955 + }, + { + "start": 13613.86, + "end": 13615.92, + "probability": 0.8817 + }, + { + "start": 13616.08, + "end": 13616.97, + "probability": 0.6793 + }, + { + "start": 13618.28, + "end": 13620.48, + "probability": 0.95 + }, + { + "start": 13621.36, + "end": 13622.22, + "probability": 0.5188 + }, + { + "start": 13622.98, + "end": 13626.58, + "probability": 0.7995 + }, + { + "start": 13626.84, + "end": 13629.26, + "probability": 0.7834 + }, + { + "start": 13630.16, + "end": 13631.96, + "probability": 0.9827 + }, + { + "start": 13631.96, + "end": 13634.38, + "probability": 0.7622 + }, + { + "start": 13634.9, + "end": 13637.38, + "probability": 0.6526 + }, + { + "start": 13637.8, + "end": 13641.24, + "probability": 0.9883 + }, + { + "start": 13641.24, + "end": 13644.74, + "probability": 0.9733 + }, + { + "start": 13645.06, + "end": 13646.64, + "probability": 0.9739 + }, + { + "start": 13646.74, + "end": 13647.94, + "probability": 0.6987 + }, + { + "start": 13648.26, + "end": 13648.84, + "probability": 0.4267 + }, + { + "start": 13648.84, + "end": 13650.58, + "probability": 0.9116 + }, + { + "start": 13650.58, + "end": 13650.7, + "probability": 0.4535 + }, + { + "start": 13651.3, + "end": 13651.76, + "probability": 0.1975 + }, + { + "start": 13651.76, + "end": 13654.32, + "probability": 0.4014 + }, + { + "start": 13654.72, + "end": 13655.58, + "probability": 0.8428 + }, + { + "start": 13656.72, + "end": 13659.06, + "probability": 0.958 + }, + { + "start": 13659.08, + "end": 13660.68, + "probability": 0.8902 + }, + { + "start": 13661.14, + "end": 13662.48, + "probability": 0.9323 + }, + { + "start": 13663.06, + "end": 13664.66, + "probability": 0.8658 + }, + { + "start": 13664.86, + "end": 13666.78, + "probability": 0.8748 + }, + { + "start": 13666.78, + "end": 13671.16, + "probability": 0.9774 + }, + { + "start": 13671.6, + "end": 13674.6, + "probability": 0.9426 + }, + { + "start": 13675.26, + "end": 13676.0, + "probability": 0.5247 + }, + { + "start": 13676.96, + "end": 13677.64, + "probability": 0.7218 + }, + { + "start": 13678.3, + "end": 13678.82, + "probability": 0.6127 + }, + { + "start": 13679.18, + "end": 13680.2, + "probability": 0.7087 + }, + { + "start": 13680.4, + "end": 13682.6, + "probability": 0.0978 + }, + { + "start": 13682.6, + "end": 13683.46, + "probability": 0.1333 + }, + { + "start": 13683.78, + "end": 13684.16, + "probability": 0.3112 + }, + { + "start": 13684.24, + "end": 13688.7, + "probability": 0.9417 + }, + { + "start": 13690.71, + "end": 13694.78, + "probability": 0.9925 + }, + { + "start": 13694.88, + "end": 13695.46, + "probability": 0.8301 + }, + { + "start": 13695.82, + "end": 13696.42, + "probability": 0.5932 + }, + { + "start": 13696.58, + "end": 13697.62, + "probability": 0.9647 + }, + { + "start": 13698.5, + "end": 13700.46, + "probability": 0.8691 + }, + { + "start": 13701.9, + "end": 13707.36, + "probability": 0.8256 + }, + { + "start": 13708.78, + "end": 13709.48, + "probability": 0.4713 + }, + { + "start": 13710.04, + "end": 13712.94, + "probability": 0.9148 + }, + { + "start": 13713.64, + "end": 13714.56, + "probability": 0.8523 + }, + { + "start": 13715.48, + "end": 13717.4, + "probability": 0.9834 + }, + { + "start": 13717.76, + "end": 13721.66, + "probability": 0.9221 + }, + { + "start": 13723.34, + "end": 13724.18, + "probability": 0.9425 + }, + { + "start": 13725.36, + "end": 13726.14, + "probability": 0.9285 + }, + { + "start": 13726.96, + "end": 13730.4, + "probability": 0.9243 + }, + { + "start": 13730.4, + "end": 13733.58, + "probability": 0.9628 + }, + { + "start": 13734.02, + "end": 13735.88, + "probability": 0.8078 + }, + { + "start": 13736.3, + "end": 13737.6, + "probability": 0.9429 + }, + { + "start": 13737.72, + "end": 13738.92, + "probability": 0.786 + }, + { + "start": 13739.48, + "end": 13742.06, + "probability": 0.9937 + }, + { + "start": 13742.14, + "end": 13744.28, + "probability": 0.4841 + }, + { + "start": 13744.28, + "end": 13746.36, + "probability": 0.9817 + }, + { + "start": 13747.0, + "end": 13748.36, + "probability": 0.8263 + }, + { + "start": 13748.48, + "end": 13750.44, + "probability": 0.9972 + }, + { + "start": 13752.08, + "end": 13755.42, + "probability": 0.7255 + }, + { + "start": 13755.58, + "end": 13757.9, + "probability": 0.6126 + }, + { + "start": 13758.06, + "end": 13758.42, + "probability": 0.7477 + }, + { + "start": 13758.48, + "end": 13763.24, + "probability": 0.9755 + }, + { + "start": 13763.6, + "end": 13764.34, + "probability": 0.8718 + }, + { + "start": 13766.02, + "end": 13768.02, + "probability": 0.9841 + }, + { + "start": 13768.86, + "end": 13771.08, + "probability": 0.9221 + }, + { + "start": 13771.22, + "end": 13772.08, + "probability": 0.7529 + }, + { + "start": 13772.72, + "end": 13774.94, + "probability": 0.9347 + }, + { + "start": 13774.94, + "end": 13776.96, + "probability": 0.9573 + }, + { + "start": 13777.58, + "end": 13780.56, + "probability": 0.7758 + }, + { + "start": 13780.66, + "end": 13781.9, + "probability": 0.8562 + }, + { + "start": 13782.7, + "end": 13786.48, + "probability": 0.7676 + }, + { + "start": 13787.98, + "end": 13790.2, + "probability": 0.9447 + }, + { + "start": 13790.9, + "end": 13792.83, + "probability": 0.9915 + }, + { + "start": 13793.1, + "end": 13796.02, + "probability": 0.945 + }, + { + "start": 13796.1, + "end": 13797.64, + "probability": 0.7694 + }, + { + "start": 13797.74, + "end": 13800.02, + "probability": 0.7581 + }, + { + "start": 13801.82, + "end": 13803.18, + "probability": 0.0502 + }, + { + "start": 13803.18, + "end": 13803.18, + "probability": 0.0498 + }, + { + "start": 13803.18, + "end": 13803.48, + "probability": 0.3359 + }, + { + "start": 13803.52, + "end": 13805.94, + "probability": 0.7137 + }, + { + "start": 13806.54, + "end": 13808.5, + "probability": 0.8596 + }, + { + "start": 13811.0, + "end": 13814.24, + "probability": 0.8888 + }, + { + "start": 13814.32, + "end": 13815.24, + "probability": 0.8866 + }, + { + "start": 13815.3, + "end": 13818.66, + "probability": 0.812 + }, + { + "start": 13819.38, + "end": 13819.48, + "probability": 0.3459 + }, + { + "start": 13819.48, + "end": 13821.24, + "probability": 0.7107 + }, + { + "start": 13822.68, + "end": 13823.98, + "probability": 0.4885 + }, + { + "start": 13824.34, + "end": 13824.44, + "probability": 0.4551 + }, + { + "start": 13825.22, + "end": 13826.37, + "probability": 0.8574 + }, + { + "start": 13826.84, + "end": 13827.84, + "probability": 0.7283 + }, + { + "start": 13828.06, + "end": 13831.62, + "probability": 0.5719 + }, + { + "start": 13831.8, + "end": 13832.46, + "probability": 0.8283 + }, + { + "start": 13832.46, + "end": 13835.28, + "probability": 0.9492 + }, + { + "start": 13835.28, + "end": 13838.74, + "probability": 0.9912 + }, + { + "start": 13840.06, + "end": 13843.3, + "probability": 0.2446 + }, + { + "start": 13843.83, + "end": 13845.72, + "probability": 0.8571 + }, + { + "start": 13845.75, + "end": 13847.45, + "probability": 0.947 + }, + { + "start": 13847.63, + "end": 13847.93, + "probability": 0.2999 + }, + { + "start": 13848.05, + "end": 13851.42, + "probability": 0.7837 + }, + { + "start": 13852.07, + "end": 13852.86, + "probability": 0.7541 + }, + { + "start": 13853.66, + "end": 13856.95, + "probability": 0.9868 + }, + { + "start": 13857.18, + "end": 13859.11, + "probability": 0.979 + }, + { + "start": 13859.11, + "end": 13862.27, + "probability": 0.9631 + }, + { + "start": 13862.49, + "end": 13863.55, + "probability": 0.8649 + }, + { + "start": 13865.51, + "end": 13869.33, + "probability": 0.9238 + }, + { + "start": 13870.12, + "end": 13873.98, + "probability": 0.9966 + }, + { + "start": 13874.77, + "end": 13878.31, + "probability": 0.9224 + }, + { + "start": 13878.97, + "end": 13881.45, + "probability": 0.9624 + }, + { + "start": 13881.73, + "end": 13882.73, + "probability": 0.6749 + }, + { + "start": 13882.83, + "end": 13884.01, + "probability": 0.7096 + }, + { + "start": 13885.63, + "end": 13886.85, + "probability": 0.5245 + }, + { + "start": 13886.85, + "end": 13887.13, + "probability": 0.9371 + }, + { + "start": 13887.31, + "end": 13887.89, + "probability": 0.2728 + }, + { + "start": 13888.01, + "end": 13889.81, + "probability": 0.9929 + }, + { + "start": 13889.85, + "end": 13896.05, + "probability": 0.9049 + }, + { + "start": 13896.33, + "end": 13898.75, + "probability": 0.9817 + }, + { + "start": 13899.37, + "end": 13901.67, + "probability": 0.9519 + }, + { + "start": 13902.55, + "end": 13907.05, + "probability": 0.9807 + }, + { + "start": 13907.21, + "end": 13908.27, + "probability": 0.6047 + }, + { + "start": 13908.37, + "end": 13910.71, + "probability": 0.7309 + }, + { + "start": 13911.25, + "end": 13913.35, + "probability": 0.1195 + }, + { + "start": 13913.45, + "end": 13915.56, + "probability": 0.777 + }, + { + "start": 13916.21, + "end": 13917.31, + "probability": 0.9707 + }, + { + "start": 13917.39, + "end": 13917.59, + "probability": 0.4731 + }, + { + "start": 13917.73, + "end": 13919.91, + "probability": 0.6161 + }, + { + "start": 13920.43, + "end": 13922.39, + "probability": 0.9098 + }, + { + "start": 13922.47, + "end": 13923.19, + "probability": 0.849 + }, + { + "start": 13924.19, + "end": 13926.21, + "probability": 0.434 + }, + { + "start": 13926.21, + "end": 13927.99, + "probability": 0.7177 + }, + { + "start": 13929.31, + "end": 13931.59, + "probability": 0.542 + }, + { + "start": 13932.03, + "end": 13933.85, + "probability": 0.8038 + }, + { + "start": 13940.49, + "end": 13941.97, + "probability": 0.6275 + }, + { + "start": 13942.69, + "end": 13944.53, + "probability": 0.87 + }, + { + "start": 13945.57, + "end": 13947.55, + "probability": 0.7489 + }, + { + "start": 13947.99, + "end": 13951.23, + "probability": 0.9714 + }, + { + "start": 13952.19, + "end": 13955.81, + "probability": 0.9038 + }, + { + "start": 13957.75, + "end": 13958.95, + "probability": 0.8628 + }, + { + "start": 13959.67, + "end": 13961.55, + "probability": 0.5202 + }, + { + "start": 13962.79, + "end": 13965.73, + "probability": 0.8986 + }, + { + "start": 13966.45, + "end": 13970.63, + "probability": 0.9256 + }, + { + "start": 13971.79, + "end": 13971.91, + "probability": 0.384 + }, + { + "start": 13972.01, + "end": 13972.73, + "probability": 0.9478 + }, + { + "start": 13972.81, + "end": 13977.81, + "probability": 0.9093 + }, + { + "start": 13978.27, + "end": 13979.11, + "probability": 0.8468 + }, + { + "start": 13979.19, + "end": 13980.75, + "probability": 0.8096 + }, + { + "start": 13982.01, + "end": 13987.57, + "probability": 0.9792 + }, + { + "start": 13988.37, + "end": 13993.25, + "probability": 0.986 + }, + { + "start": 13993.35, + "end": 13993.87, + "probability": 0.773 + }, + { + "start": 13993.97, + "end": 13998.01, + "probability": 0.9065 + }, + { + "start": 13998.39, + "end": 13999.01, + "probability": 0.6375 + }, + { + "start": 13999.53, + "end": 14001.77, + "probability": 0.988 + }, + { + "start": 14002.29, + "end": 14006.71, + "probability": 0.95 + }, + { + "start": 14006.79, + "end": 14007.71, + "probability": 0.9679 + }, + { + "start": 14007.71, + "end": 14008.81, + "probability": 0.9322 + }, + { + "start": 14009.19, + "end": 14010.15, + "probability": 0.9351 + }, + { + "start": 14010.71, + "end": 14013.63, + "probability": 0.9745 + }, + { + "start": 14013.81, + "end": 14016.06, + "probability": 0.8692 + }, + { + "start": 14017.15, + "end": 14020.41, + "probability": 0.9886 + }, + { + "start": 14020.89, + "end": 14025.05, + "probability": 0.9664 + }, + { + "start": 14025.41, + "end": 14029.17, + "probability": 0.9473 + }, + { + "start": 14029.31, + "end": 14032.79, + "probability": 0.9949 + }, + { + "start": 14034.39, + "end": 14036.21, + "probability": 0.8806 + }, + { + "start": 14036.69, + "end": 14038.55, + "probability": 0.6363 + }, + { + "start": 14039.43, + "end": 14041.61, + "probability": 0.9247 + }, + { + "start": 14042.01, + "end": 14042.49, + "probability": 0.5931 + }, + { + "start": 14042.49, + "end": 14042.99, + "probability": 0.5837 + }, + { + "start": 14043.03, + "end": 14043.81, + "probability": 0.8463 + }, + { + "start": 14062.83, + "end": 14062.83, + "probability": 0.248 + }, + { + "start": 14062.83, + "end": 14064.93, + "probability": 0.5274 + }, + { + "start": 14065.59, + "end": 14066.95, + "probability": 0.7404 + }, + { + "start": 14067.35, + "end": 14068.27, + "probability": 0.9006 + }, + { + "start": 14068.39, + "end": 14069.53, + "probability": 0.0101 + }, + { + "start": 14069.53, + "end": 14069.53, + "probability": 0.2919 + }, + { + "start": 14069.53, + "end": 14069.53, + "probability": 0.0411 + }, + { + "start": 14069.53, + "end": 14071.23, + "probability": 0.8189 + }, + { + "start": 14072.01, + "end": 14072.53, + "probability": 0.4782 + }, + { + "start": 14072.61, + "end": 14073.83, + "probability": 0.8986 + }, + { + "start": 14073.87, + "end": 14074.31, + "probability": 0.5058 + }, + { + "start": 14074.35, + "end": 14075.43, + "probability": 0.6755 + }, + { + "start": 14075.49, + "end": 14075.91, + "probability": 0.6555 + }, + { + "start": 14077.39, + "end": 14078.16, + "probability": 0.5392 + }, + { + "start": 14079.01, + "end": 14079.31, + "probability": 0.7094 + }, + { + "start": 14079.77, + "end": 14080.11, + "probability": 0.3792 + }, + { + "start": 14088.47, + "end": 14088.87, + "probability": 0.706 + }, + { + "start": 14091.39, + "end": 14093.45, + "probability": 0.75 + }, + { + "start": 14095.27, + "end": 14102.17, + "probability": 0.9388 + }, + { + "start": 14103.53, + "end": 14106.92, + "probability": 0.8465 + }, + { + "start": 14110.52, + "end": 14113.39, + "probability": 0.9941 + }, + { + "start": 14114.61, + "end": 14115.59, + "probability": 0.9829 + }, + { + "start": 14116.27, + "end": 14117.17, + "probability": 0.9634 + }, + { + "start": 14117.93, + "end": 14119.17, + "probability": 0.9626 + }, + { + "start": 14120.87, + "end": 14121.75, + "probability": 0.6962 + }, + { + "start": 14124.01, + "end": 14127.23, + "probability": 0.8906 + }, + { + "start": 14128.49, + "end": 14129.11, + "probability": 0.717 + }, + { + "start": 14131.29, + "end": 14134.79, + "probability": 0.9602 + }, + { + "start": 14135.91, + "end": 14136.39, + "probability": 0.8385 + }, + { + "start": 14143.05, + "end": 14144.9, + "probability": 0.9221 + }, + { + "start": 14148.63, + "end": 14148.73, + "probability": 0.6952 + }, + { + "start": 14150.89, + "end": 14155.25, + "probability": 0.8968 + }, + { + "start": 14156.55, + "end": 14157.23, + "probability": 0.561 + }, + { + "start": 14158.07, + "end": 14158.91, + "probability": 0.9109 + }, + { + "start": 14159.41, + "end": 14160.39, + "probability": 0.9884 + }, + { + "start": 14163.35, + "end": 14165.19, + "probability": 0.9799 + }, + { + "start": 14165.83, + "end": 14168.11, + "probability": 0.943 + }, + { + "start": 14168.97, + "end": 14170.31, + "probability": 0.993 + }, + { + "start": 14170.99, + "end": 14173.35, + "probability": 0.99 + }, + { + "start": 14174.01, + "end": 14180.91, + "probability": 0.938 + }, + { + "start": 14180.91, + "end": 14184.79, + "probability": 0.9984 + }, + { + "start": 14186.37, + "end": 14190.54, + "probability": 0.934 + }, + { + "start": 14192.31, + "end": 14193.69, + "probability": 0.9412 + }, + { + "start": 14198.99, + "end": 14200.49, + "probability": 0.8784 + }, + { + "start": 14201.15, + "end": 14201.75, + "probability": 0.8882 + }, + { + "start": 14203.11, + "end": 14207.07, + "probability": 0.7087 + }, + { + "start": 14208.15, + "end": 14208.65, + "probability": 0.9778 + }, + { + "start": 14209.17, + "end": 14211.87, + "probability": 0.7377 + }, + { + "start": 14212.43, + "end": 14213.43, + "probability": 0.6835 + }, + { + "start": 14214.81, + "end": 14215.67, + "probability": 0.869 + }, + { + "start": 14220.49, + "end": 14221.31, + "probability": 0.864 + }, + { + "start": 14221.89, + "end": 14222.57, + "probability": 0.8604 + }, + { + "start": 14223.61, + "end": 14224.49, + "probability": 0.9004 + }, + { + "start": 14225.85, + "end": 14226.75, + "probability": 0.9171 + }, + { + "start": 14226.93, + "end": 14229.63, + "probability": 0.6528 + }, + { + "start": 14229.77, + "end": 14232.83, + "probability": 0.9512 + }, + { + "start": 14233.99, + "end": 14235.63, + "probability": 0.7644 + }, + { + "start": 14236.63, + "end": 14237.89, + "probability": 0.7987 + }, + { + "start": 14237.97, + "end": 14239.35, + "probability": 0.7446 + }, + { + "start": 14241.01, + "end": 14241.61, + "probability": 0.8355 + }, + { + "start": 14242.65, + "end": 14250.89, + "probability": 0.9473 + }, + { + "start": 14251.61, + "end": 14252.35, + "probability": 0.8185 + }, + { + "start": 14253.77, + "end": 14254.67, + "probability": 0.7118 + }, + { + "start": 14256.65, + "end": 14258.73, + "probability": 0.9886 + }, + { + "start": 14260.07, + "end": 14262.57, + "probability": 0.9657 + }, + { + "start": 14263.47, + "end": 14267.27, + "probability": 0.9833 + }, + { + "start": 14267.95, + "end": 14269.11, + "probability": 0.958 + }, + { + "start": 14270.99, + "end": 14274.39, + "probability": 0.989 + }, + { + "start": 14275.47, + "end": 14278.31, + "probability": 0.9261 + }, + { + "start": 14278.43, + "end": 14279.73, + "probability": 0.9151 + }, + { + "start": 14279.77, + "end": 14280.69, + "probability": 0.8388 + }, + { + "start": 14282.13, + "end": 14283.03, + "probability": 0.987 + }, + { + "start": 14283.55, + "end": 14287.51, + "probability": 0.9747 + }, + { + "start": 14288.35, + "end": 14292.27, + "probability": 0.9671 + }, + { + "start": 14292.47, + "end": 14292.91, + "probability": 0.7957 + }, + { + "start": 14293.79, + "end": 14294.99, + "probability": 0.9434 + }, + { + "start": 14295.73, + "end": 14299.23, + "probability": 0.9695 + }, + { + "start": 14300.39, + "end": 14300.97, + "probability": 0.2949 + }, + { + "start": 14301.85, + "end": 14303.87, + "probability": 0.9791 + }, + { + "start": 14304.67, + "end": 14306.65, + "probability": 0.7227 + }, + { + "start": 14307.29, + "end": 14309.17, + "probability": 0.6739 + }, + { + "start": 14310.69, + "end": 14311.97, + "probability": 0.8931 + }, + { + "start": 14312.39, + "end": 14313.27, + "probability": 0.9388 + }, + { + "start": 14313.35, + "end": 14313.81, + "probability": 0.9497 + }, + { + "start": 14314.21, + "end": 14317.49, + "probability": 0.9596 + }, + { + "start": 14318.65, + "end": 14319.69, + "probability": 0.759 + }, + { + "start": 14320.25, + "end": 14321.15, + "probability": 0.9096 + }, + { + "start": 14322.99, + "end": 14326.66, + "probability": 0.9951 + }, + { + "start": 14328.35, + "end": 14331.91, + "probability": 0.9269 + }, + { + "start": 14332.65, + "end": 14334.71, + "probability": 0.9982 + }, + { + "start": 14335.69, + "end": 14339.77, + "probability": 0.9364 + }, + { + "start": 14341.75, + "end": 14343.81, + "probability": 0.704 + }, + { + "start": 14344.27, + "end": 14344.27, + "probability": 0.1495 + }, + { + "start": 14344.27, + "end": 14344.93, + "probability": 0.203 + }, + { + "start": 14345.66, + "end": 14351.61, + "probability": 0.6819 + }, + { + "start": 14352.47, + "end": 14355.47, + "probability": 0.4641 + }, + { + "start": 14356.49, + "end": 14357.27, + "probability": 0.5536 + }, + { + "start": 14357.85, + "end": 14359.85, + "probability": 0.9893 + }, + { + "start": 14362.93, + "end": 14364.23, + "probability": 0.9941 + }, + { + "start": 14366.93, + "end": 14369.0, + "probability": 0.9911 + }, + { + "start": 14370.53, + "end": 14374.19, + "probability": 0.9299 + }, + { + "start": 14377.39, + "end": 14378.05, + "probability": 0.8038 + }, + { + "start": 14379.79, + "end": 14380.37, + "probability": 0.783 + }, + { + "start": 14380.75, + "end": 14383.67, + "probability": 0.9331 + }, + { + "start": 14384.01, + "end": 14386.39, + "probability": 0.7137 + }, + { + "start": 14386.91, + "end": 14387.91, + "probability": 0.701 + }, + { + "start": 14389.71, + "end": 14390.79, + "probability": 0.6656 + }, + { + "start": 14393.75, + "end": 14395.61, + "probability": 0.8792 + }, + { + "start": 14397.75, + "end": 14399.35, + "probability": 0.9904 + }, + { + "start": 14400.01, + "end": 14401.83, + "probability": 0.9681 + }, + { + "start": 14403.37, + "end": 14404.53, + "probability": 0.7984 + }, + { + "start": 14405.33, + "end": 14406.65, + "probability": 0.7634 + }, + { + "start": 14407.83, + "end": 14408.43, + "probability": 0.633 + }, + { + "start": 14409.03, + "end": 14410.61, + "probability": 0.9517 + }, + { + "start": 14410.65, + "end": 14410.87, + "probability": 0.8574 + }, + { + "start": 14410.89, + "end": 14413.11, + "probability": 0.9644 + }, + { + "start": 14414.53, + "end": 14416.73, + "probability": 0.8759 + }, + { + "start": 14417.05, + "end": 14417.43, + "probability": 0.3445 + }, + { + "start": 14417.49, + "end": 14417.59, + "probability": 0.8294 + }, + { + "start": 14418.17, + "end": 14418.83, + "probability": 0.6955 + }, + { + "start": 14419.59, + "end": 14426.45, + "probability": 0.9478 + }, + { + "start": 14428.75, + "end": 14428.85, + "probability": 0.4489 + }, + { + "start": 14428.93, + "end": 14431.21, + "probability": 0.959 + }, + { + "start": 14431.83, + "end": 14431.95, + "probability": 0.4137 + }, + { + "start": 14432.07, + "end": 14434.55, + "probability": 0.9961 + }, + { + "start": 14434.55, + "end": 14437.65, + "probability": 0.998 + }, + { + "start": 14437.97, + "end": 14438.69, + "probability": 0.7033 + }, + { + "start": 14438.83, + "end": 14441.51, + "probability": 0.7812 + }, + { + "start": 14442.47, + "end": 14444.37, + "probability": 0.7701 + }, + { + "start": 14445.03, + "end": 14445.61, + "probability": 0.7391 + }, + { + "start": 14446.51, + "end": 14449.71, + "probability": 0.9707 + }, + { + "start": 14449.77, + "end": 14451.12, + "probability": 0.8806 + }, + { + "start": 14452.47, + "end": 14455.41, + "probability": 0.9576 + }, + { + "start": 14455.88, + "end": 14457.21, + "probability": 0.0638 + }, + { + "start": 14457.21, + "end": 14457.49, + "probability": 0.6871 + }, + { + "start": 14458.87, + "end": 14459.91, + "probability": 0.7682 + }, + { + "start": 14460.07, + "end": 14462.91, + "probability": 0.7475 + }, + { + "start": 14463.55, + "end": 14468.47, + "probability": 0.9843 + }, + { + "start": 14468.75, + "end": 14470.29, + "probability": 0.6912 + }, + { + "start": 14470.87, + "end": 14472.11, + "probability": 0.5785 + }, + { + "start": 14472.17, + "end": 14474.47, + "probability": 0.7607 + }, + { + "start": 14476.49, + "end": 14477.43, + "probability": 0.9258 + }, + { + "start": 14481.37, + "end": 14482.03, + "probability": 0.557 + }, + { + "start": 14482.05, + "end": 14482.15, + "probability": 0.888 + }, + { + "start": 14488.27, + "end": 14490.51, + "probability": 0.7522 + }, + { + "start": 14492.65, + "end": 14495.45, + "probability": 0.7099 + }, + { + "start": 14496.51, + "end": 14502.27, + "probability": 0.9917 + }, + { + "start": 14502.73, + "end": 14504.63, + "probability": 0.9985 + }, + { + "start": 14506.01, + "end": 14506.47, + "probability": 0.9868 + }, + { + "start": 14507.31, + "end": 14508.33, + "probability": 0.9121 + }, + { + "start": 14508.75, + "end": 14510.43, + "probability": 0.7671 + }, + { + "start": 14511.39, + "end": 14514.93, + "probability": 0.9692 + }, + { + "start": 14514.93, + "end": 14519.23, + "probability": 0.867 + }, + { + "start": 14519.31, + "end": 14520.13, + "probability": 0.6978 + }, + { + "start": 14522.75, + "end": 14530.55, + "probability": 0.9354 + }, + { + "start": 14532.07, + "end": 14533.45, + "probability": 0.9829 + }, + { + "start": 14534.65, + "end": 14538.21, + "probability": 0.6827 + }, + { + "start": 14538.79, + "end": 14543.19, + "probability": 0.6092 + }, + { + "start": 14544.75, + "end": 14549.53, + "probability": 0.9839 + }, + { + "start": 14549.95, + "end": 14556.47, + "probability": 0.9023 + }, + { + "start": 14556.67, + "end": 14559.07, + "probability": 0.8177 + }, + { + "start": 14559.37, + "end": 14559.72, + "probability": 0.7584 + }, + { + "start": 14560.09, + "end": 14562.47, + "probability": 0.7146 + }, + { + "start": 14562.59, + "end": 14568.33, + "probability": 0.9757 + }, + { + "start": 14568.45, + "end": 14569.35, + "probability": 0.8713 + }, + { + "start": 14569.51, + "end": 14570.23, + "probability": 0.8112 + }, + { + "start": 14571.03, + "end": 14574.55, + "probability": 0.9843 + }, + { + "start": 14576.65, + "end": 14577.91, + "probability": 0.633 + }, + { + "start": 14577.91, + "end": 14580.65, + "probability": 0.9487 + }, + { + "start": 14582.79, + "end": 14585.95, + "probability": 0.7446 + }, + { + "start": 14587.19, + "end": 14588.27, + "probability": 0.6185 + }, + { + "start": 14588.35, + "end": 14589.79, + "probability": 0.9687 + }, + { + "start": 14590.25, + "end": 14592.79, + "probability": 0.6385 + }, + { + "start": 14593.51, + "end": 14596.63, + "probability": 0.6881 + }, + { + "start": 14597.71, + "end": 14599.51, + "probability": 0.3159 + }, + { + "start": 14601.33, + "end": 14602.87, + "probability": 0.7512 + }, + { + "start": 14602.93, + "end": 14604.07, + "probability": 0.8302 + }, + { + "start": 14604.68, + "end": 14606.81, + "probability": 0.5935 + }, + { + "start": 14609.35, + "end": 14612.59, + "probability": 0.9534 + }, + { + "start": 14613.17, + "end": 14614.99, + "probability": 0.7083 + }, + { + "start": 14616.25, + "end": 14618.51, + "probability": 0.9907 + }, + { + "start": 14619.53, + "end": 14619.89, + "probability": 0.7949 + }, + { + "start": 14620.59, + "end": 14626.99, + "probability": 0.8972 + }, + { + "start": 14629.03, + "end": 14631.43, + "probability": 0.9686 + }, + { + "start": 14631.67, + "end": 14637.05, + "probability": 0.9829 + }, + { + "start": 14638.29, + "end": 14638.91, + "probability": 0.8797 + }, + { + "start": 14639.51, + "end": 14641.89, + "probability": 0.9709 + }, + { + "start": 14642.83, + "end": 14644.6, + "probability": 0.7917 + }, + { + "start": 14645.15, + "end": 14646.17, + "probability": 0.8774 + }, + { + "start": 14646.29, + "end": 14648.33, + "probability": 0.9308 + }, + { + "start": 14648.69, + "end": 14651.51, + "probability": 0.9578 + }, + { + "start": 14652.11, + "end": 14654.23, + "probability": 0.8669 + }, + { + "start": 14654.81, + "end": 14657.39, + "probability": 0.9949 + }, + { + "start": 14657.49, + "end": 14659.03, + "probability": 0.9429 + }, + { + "start": 14659.41, + "end": 14661.15, + "probability": 0.9862 + }, + { + "start": 14662.5, + "end": 14665.75, + "probability": 0.9396 + }, + { + "start": 14667.19, + "end": 14669.03, + "probability": 0.8869 + }, + { + "start": 14670.29, + "end": 14673.83, + "probability": 0.9723 + }, + { + "start": 14674.67, + "end": 14675.91, + "probability": 0.85 + }, + { + "start": 14677.63, + "end": 14682.41, + "probability": 0.9909 + }, + { + "start": 14682.51, + "end": 14683.37, + "probability": 0.6009 + }, + { + "start": 14685.39, + "end": 14690.39, + "probability": 0.9927 + }, + { + "start": 14692.69, + "end": 14694.44, + "probability": 0.8442 + }, + { + "start": 14697.01, + "end": 14699.59, + "probability": 0.9953 + }, + { + "start": 14699.65, + "end": 14702.35, + "probability": 0.8978 + }, + { + "start": 14702.47, + "end": 14703.47, + "probability": 0.6512 + }, + { + "start": 14704.03, + "end": 14704.99, + "probability": 0.9098 + }, + { + "start": 14706.53, + "end": 14708.43, + "probability": 0.7776 + }, + { + "start": 14708.49, + "end": 14712.17, + "probability": 0.9888 + }, + { + "start": 14712.29, + "end": 14713.49, + "probability": 0.9828 + }, + { + "start": 14713.81, + "end": 14715.93, + "probability": 0.9866 + }, + { + "start": 14716.65, + "end": 14721.85, + "probability": 0.9986 + }, + { + "start": 14722.71, + "end": 14724.96, + "probability": 0.9673 + }, + { + "start": 14726.25, + "end": 14732.07, + "probability": 0.774 + }, + { + "start": 14732.89, + "end": 14736.89, + "probability": 0.9881 + }, + { + "start": 14737.41, + "end": 14738.87, + "probability": 0.8957 + }, + { + "start": 14739.53, + "end": 14740.79, + "probability": 0.7773 + }, + { + "start": 14741.33, + "end": 14743.33, + "probability": 0.7984 + }, + { + "start": 14743.45, + "end": 14745.51, + "probability": 0.9148 + }, + { + "start": 14745.57, + "end": 14746.47, + "probability": 0.6853 + }, + { + "start": 14746.47, + "end": 14747.29, + "probability": 0.6909 + }, + { + "start": 14747.57, + "end": 14750.13, + "probability": 0.9512 + }, + { + "start": 14750.71, + "end": 14751.49, + "probability": 0.9177 + }, + { + "start": 14752.03, + "end": 14755.17, + "probability": 0.8259 + }, + { + "start": 14756.21, + "end": 14757.01, + "probability": 0.9506 + }, + { + "start": 14757.91, + "end": 14759.41, + "probability": 0.9912 + }, + { + "start": 14760.23, + "end": 14761.85, + "probability": 0.5276 + }, + { + "start": 14762.79, + "end": 14766.33, + "probability": 0.6178 + }, + { + "start": 14766.43, + "end": 14767.23, + "probability": 0.9366 + }, + { + "start": 14767.29, + "end": 14768.57, + "probability": 0.8491 + }, + { + "start": 14768.65, + "end": 14769.45, + "probability": 0.9795 + }, + { + "start": 14769.53, + "end": 14772.39, + "probability": 0.9559 + }, + { + "start": 14773.15, + "end": 14774.49, + "probability": 0.8235 + }, + { + "start": 14775.13, + "end": 14780.21, + "probability": 0.8807 + }, + { + "start": 14780.37, + "end": 14780.47, + "probability": 0.8066 + }, + { + "start": 14782.51, + "end": 14784.55, + "probability": 0.8311 + }, + { + "start": 14785.79, + "end": 14787.71, + "probability": 0.7931 + }, + { + "start": 14788.27, + "end": 14790.27, + "probability": 0.6929 + }, + { + "start": 14790.35, + "end": 14791.85, + "probability": 0.9603 + }, + { + "start": 14793.01, + "end": 14795.49, + "probability": 0.9967 + }, + { + "start": 14795.49, + "end": 14798.75, + "probability": 0.9948 + }, + { + "start": 14801.23, + "end": 14802.47, + "probability": 0.9812 + }, + { + "start": 14803.39, + "end": 14804.25, + "probability": 0.6916 + }, + { + "start": 14804.79, + "end": 14807.99, + "probability": 0.962 + }, + { + "start": 14808.07, + "end": 14808.93, + "probability": 0.6414 + }, + { + "start": 14809.73, + "end": 14812.53, + "probability": 0.8406 + }, + { + "start": 14814.07, + "end": 14814.99, + "probability": 0.7281 + }, + { + "start": 14816.17, + "end": 14819.51, + "probability": 0.7797 + }, + { + "start": 14820.53, + "end": 14823.23, + "probability": 0.6882 + }, + { + "start": 14824.15, + "end": 14829.79, + "probability": 0.9637 + }, + { + "start": 14829.89, + "end": 14830.37, + "probability": 0.7514 + }, + { + "start": 14830.41, + "end": 14830.79, + "probability": 0.8842 + }, + { + "start": 14830.87, + "end": 14831.49, + "probability": 0.7157 + }, + { + "start": 14831.85, + "end": 14832.49, + "probability": 0.989 + }, + { + "start": 14833.61, + "end": 14836.87, + "probability": 0.7856 + }, + { + "start": 14837.51, + "end": 14841.21, + "probability": 0.9049 + }, + { + "start": 14842.09, + "end": 14842.59, + "probability": 0.4497 + }, + { + "start": 14843.33, + "end": 14847.55, + "probability": 0.973 + }, + { + "start": 14848.17, + "end": 14849.91, + "probability": 0.9951 + }, + { + "start": 14850.23, + "end": 14853.05, + "probability": 0.7945 + }, + { + "start": 14854.09, + "end": 14856.39, + "probability": 0.5802 + }, + { + "start": 14856.91, + "end": 14860.35, + "probability": 0.6396 + }, + { + "start": 14861.27, + "end": 14862.71, + "probability": 0.1919 + }, + { + "start": 14862.71, + "end": 14863.23, + "probability": 0.6218 + }, + { + "start": 14863.31, + "end": 14863.85, + "probability": 0.2936 + }, + { + "start": 14864.45, + "end": 14864.57, + "probability": 0.1253 + }, + { + "start": 14864.71, + "end": 14869.03, + "probability": 0.8641 + }, + { + "start": 14869.07, + "end": 14869.86, + "probability": 0.6882 + }, + { + "start": 14870.51, + "end": 14872.65, + "probability": 0.5696 + }, + { + "start": 14872.83, + "end": 14874.37, + "probability": 0.8404 + }, + { + "start": 14874.49, + "end": 14875.25, + "probability": 0.8017 + }, + { + "start": 14875.33, + "end": 14880.09, + "probability": 0.8036 + }, + { + "start": 14880.67, + "end": 14882.71, + "probability": 0.586 + }, + { + "start": 14882.85, + "end": 14883.41, + "probability": 0.6319 + }, + { + "start": 14885.01, + "end": 14887.05, + "probability": 0.1989 + }, + { + "start": 14887.45, + "end": 14888.47, + "probability": 0.9422 + }, + { + "start": 14888.47, + "end": 14888.49, + "probability": 0.3515 + }, + { + "start": 14888.49, + "end": 14889.12, + "probability": 0.8057 + }, + { + "start": 14889.29, + "end": 14890.27, + "probability": 0.5302 + }, + { + "start": 14890.65, + "end": 14892.77, + "probability": 0.9606 + }, + { + "start": 14893.13, + "end": 14894.67, + "probability": 0.481 + }, + { + "start": 14894.93, + "end": 14897.03, + "probability": 0.9867 + }, + { + "start": 14897.19, + "end": 14899.38, + "probability": 0.9975 + }, + { + "start": 14899.69, + "end": 14901.55, + "probability": 0.0636 + }, + { + "start": 14901.55, + "end": 14902.81, + "probability": 0.3347 + }, + { + "start": 14903.03, + "end": 14904.89, + "probability": 0.5057 + }, + { + "start": 14906.53, + "end": 14908.41, + "probability": 0.2424 + }, + { + "start": 14908.55, + "end": 14909.03, + "probability": 0.1404 + }, + { + "start": 14909.03, + "end": 14909.03, + "probability": 0.255 + }, + { + "start": 14909.03, + "end": 14910.52, + "probability": 0.5984 + }, + { + "start": 14910.87, + "end": 14911.39, + "probability": 0.4532 + }, + { + "start": 14911.39, + "end": 14912.28, + "probability": 0.2649 + }, + { + "start": 14912.79, + "end": 14916.37, + "probability": 0.9937 + }, + { + "start": 14916.37, + "end": 14919.69, + "probability": 0.9997 + }, + { + "start": 14919.85, + "end": 14921.94, + "probability": 0.3444 + }, + { + "start": 14922.05, + "end": 14923.79, + "probability": 0.4226 + }, + { + "start": 14923.89, + "end": 14924.17, + "probability": 0.0654 + }, + { + "start": 14924.75, + "end": 14925.85, + "probability": 0.2122 + }, + { + "start": 14925.91, + "end": 14928.49, + "probability": 0.5387 + }, + { + "start": 14929.27, + "end": 14930.19, + "probability": 0.0768 + }, + { + "start": 14930.49, + "end": 14934.93, + "probability": 0.9978 + }, + { + "start": 14935.03, + "end": 14935.21, + "probability": 0.1293 + }, + { + "start": 14935.21, + "end": 14936.37, + "probability": 0.2247 + }, + { + "start": 14937.0, + "end": 14938.87, + "probability": 0.1674 + }, + { + "start": 14939.09, + "end": 14940.73, + "probability": 0.5914 + }, + { + "start": 14941.05, + "end": 14941.05, + "probability": 0.2248 + }, + { + "start": 14941.05, + "end": 14941.05, + "probability": 0.1265 + }, + { + "start": 14941.05, + "end": 14941.51, + "probability": 0.3224 + }, + { + "start": 14941.57, + "end": 14943.39, + "probability": 0.7516 + }, + { + "start": 14943.85, + "end": 14946.83, + "probability": 0.9274 + }, + { + "start": 14946.93, + "end": 14948.93, + "probability": 0.3106 + }, + { + "start": 14949.29, + "end": 14950.61, + "probability": 0.9016 + }, + { + "start": 14950.71, + "end": 14951.07, + "probability": 0.0755 + }, + { + "start": 14951.27, + "end": 14951.61, + "probability": 0.7743 + }, + { + "start": 14951.83, + "end": 14952.37, + "probability": 0.018 + }, + { + "start": 14952.37, + "end": 14954.12, + "probability": 0.9053 + }, + { + "start": 14954.72, + "end": 14957.02, + "probability": 0.9785 + }, + { + "start": 14957.18, + "end": 14958.22, + "probability": 0.3844 + }, + { + "start": 14958.28, + "end": 14959.8, + "probability": 0.834 + }, + { + "start": 14959.88, + "end": 14960.66, + "probability": 0.8926 + }, + { + "start": 14960.74, + "end": 14961.73, + "probability": 0.9688 + }, + { + "start": 14961.94, + "end": 14962.78, + "probability": 0.7156 + }, + { + "start": 14962.98, + "end": 14963.94, + "probability": 0.8098 + }, + { + "start": 14964.04, + "end": 14965.08, + "probability": 0.9305 + }, + { + "start": 14965.38, + "end": 14966.82, + "probability": 0.9204 + }, + { + "start": 14967.34, + "end": 14969.84, + "probability": 0.975 + }, + { + "start": 14969.92, + "end": 14971.9, + "probability": 0.9941 + }, + { + "start": 14972.38, + "end": 14975.64, + "probability": 0.9922 + }, + { + "start": 14976.08, + "end": 14979.92, + "probability": 0.8684 + }, + { + "start": 14979.98, + "end": 14983.27, + "probability": 0.9954 + }, + { + "start": 14983.54, + "end": 14985.13, + "probability": 0.9795 + }, + { + "start": 14985.26, + "end": 14986.08, + "probability": 0.9585 + }, + { + "start": 14986.36, + "end": 14988.74, + "probability": 0.9951 + }, + { + "start": 14989.22, + "end": 14990.18, + "probability": 0.9583 + }, + { + "start": 14990.26, + "end": 14991.42, + "probability": 0.8252 + }, + { + "start": 14993.74, + "end": 14995.26, + "probability": 0.8079 + }, + { + "start": 14996.1, + "end": 15000.44, + "probability": 0.984 + }, + { + "start": 15000.58, + "end": 15001.55, + "probability": 0.978 + }, + { + "start": 15001.78, + "end": 15002.41, + "probability": 0.7178 + }, + { + "start": 15002.52, + "end": 15002.73, + "probability": 0.0946 + }, + { + "start": 15003.2, + "end": 15004.23, + "probability": 0.3896 + }, + { + "start": 15005.3, + "end": 15006.32, + "probability": 0.494 + }, + { + "start": 15007.86, + "end": 15008.08, + "probability": 0.14 + }, + { + "start": 15008.19, + "end": 15008.38, + "probability": 0.1326 + }, + { + "start": 15008.38, + "end": 15008.95, + "probability": 0.1887 + }, + { + "start": 15009.4, + "end": 15010.46, + "probability": 0.5366 + }, + { + "start": 15013.02, + "end": 15013.36, + "probability": 0.0204 + }, + { + "start": 15013.92, + "end": 15014.54, + "probability": 0.0215 + }, + { + "start": 15014.54, + "end": 15015.0, + "probability": 0.0651 + }, + { + "start": 15015.0, + "end": 15018.42, + "probability": 0.2152 + }, + { + "start": 15020.48, + "end": 15022.18, + "probability": 0.11 + }, + { + "start": 15023.8, + "end": 15025.32, + "probability": 0.095 + }, + { + "start": 15025.32, + "end": 15025.66, + "probability": 0.2115 + }, + { + "start": 15025.66, + "end": 15027.7, + "probability": 0.1298 + }, + { + "start": 15029.14, + "end": 15029.14, + "probability": 0.0424 + }, + { + "start": 15029.14, + "end": 15029.48, + "probability": 0.4922 + }, + { + "start": 15029.48, + "end": 15037.86, + "probability": 0.0465 + }, + { + "start": 15037.88, + "end": 15043.32, + "probability": 0.1028 + }, + { + "start": 15044.76, + "end": 15044.9, + "probability": 0.0002 + }, + { + "start": 15044.9, + "end": 15046.8, + "probability": 0.0922 + }, + { + "start": 15046.8, + "end": 15047.22, + "probability": 0.1671 + }, + { + "start": 15047.74, + "end": 15048.76, + "probability": 0.3216 + }, + { + "start": 15050.52, + "end": 15055.09, + "probability": 0.0367 + }, + { + "start": 15056.07, + "end": 15056.82, + "probability": 0.0519 + }, + { + "start": 15056.82, + "end": 15057.7, + "probability": 0.0677 + }, + { + "start": 15057.7, + "end": 15057.7, + "probability": 0.1674 + }, + { + "start": 15057.7, + "end": 15057.94, + "probability": 0.1786 + }, + { + "start": 15058.86, + "end": 15060.84, + "probability": 0.038 + }, + { + "start": 15062.92, + "end": 15062.92, + "probability": 0.0463 + }, + { + "start": 15062.92, + "end": 15063.82, + "probability": 0.2272 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.0, + "probability": 0.0 + }, + { + "start": 15080.0, + "end": 15080.64, + "probability": 0.1281 + }, + { + "start": 15080.64, + "end": 15080.64, + "probability": 0.104 + }, + { + "start": 15080.64, + "end": 15081.1, + "probability": 0.6353 + }, + { + "start": 15083.0, + "end": 15084.96, + "probability": 0.7225 + }, + { + "start": 15085.98, + "end": 15088.56, + "probability": 0.9474 + }, + { + "start": 15088.64, + "end": 15089.12, + "probability": 0.2846 + }, + { + "start": 15089.86, + "end": 15090.86, + "probability": 0.7772 + }, + { + "start": 15091.0, + "end": 15093.84, + "probability": 0.7583 + }, + { + "start": 15094.84, + "end": 15096.14, + "probability": 0.7599 + }, + { + "start": 15097.26, + "end": 15099.8, + "probability": 0.9457 + }, + { + "start": 15099.8, + "end": 15102.28, + "probability": 0.7828 + }, + { + "start": 15102.8, + "end": 15107.11, + "probability": 0.9938 + }, + { + "start": 15107.82, + "end": 15110.66, + "probability": 0.7324 + }, + { + "start": 15110.66, + "end": 15113.54, + "probability": 0.9803 + }, + { + "start": 15114.18, + "end": 15114.78, + "probability": 0.7892 + }, + { + "start": 15115.32, + "end": 15120.88, + "probability": 0.8842 + }, + { + "start": 15121.0, + "end": 15122.84, + "probability": 0.9431 + }, + { + "start": 15122.96, + "end": 15123.58, + "probability": 0.6931 + }, + { + "start": 15123.9, + "end": 15126.32, + "probability": 0.7377 + }, + { + "start": 15126.44, + "end": 15128.0, + "probability": 0.8131 + }, + { + "start": 15129.02, + "end": 15129.81, + "probability": 0.6328 + }, + { + "start": 15129.96, + "end": 15130.6, + "probability": 0.8867 + }, + { + "start": 15131.26, + "end": 15131.74, + "probability": 0.7992 + }, + { + "start": 15131.9, + "end": 15132.66, + "probability": 0.9866 + }, + { + "start": 15133.1, + "end": 15134.54, + "probability": 0.9126 + }, + { + "start": 15135.04, + "end": 15135.98, + "probability": 0.8392 + }, + { + "start": 15136.18, + "end": 15137.28, + "probability": 0.8618 + }, + { + "start": 15137.74, + "end": 15141.12, + "probability": 0.9272 + }, + { + "start": 15142.22, + "end": 15143.52, + "probability": 0.5897 + }, + { + "start": 15143.7, + "end": 15145.8, + "probability": 0.9981 + }, + { + "start": 15146.06, + "end": 15146.94, + "probability": 0.8838 + }, + { + "start": 15147.16, + "end": 15150.58, + "probability": 0.9838 + }, + { + "start": 15150.6, + "end": 15152.83, + "probability": 0.9502 + }, + { + "start": 15153.6, + "end": 15153.6, + "probability": 0.0565 + }, + { + "start": 15153.6, + "end": 15155.9, + "probability": 0.6525 + }, + { + "start": 15156.28, + "end": 15157.06, + "probability": 0.9053 + }, + { + "start": 15157.14, + "end": 15159.28, + "probability": 0.7644 + }, + { + "start": 15159.28, + "end": 15159.94, + "probability": 0.072 + }, + { + "start": 15159.94, + "end": 15161.54, + "probability": 0.0877 + }, + { + "start": 15162.5, + "end": 15162.82, + "probability": 0.7724 + }, + { + "start": 15162.88, + "end": 15164.6, + "probability": 0.7298 + }, + { + "start": 15164.68, + "end": 15164.96, + "probability": 0.192 + }, + { + "start": 15164.96, + "end": 15165.06, + "probability": 0.1124 + }, + { + "start": 15165.06, + "end": 15166.3, + "probability": 0.9272 + }, + { + "start": 15166.32, + "end": 15167.08, + "probability": 0.8301 + }, + { + "start": 15167.18, + "end": 15167.78, + "probability": 0.2851 + }, + { + "start": 15167.82, + "end": 15168.5, + "probability": 0.7661 + }, + { + "start": 15168.6, + "end": 15169.2, + "probability": 0.8659 + }, + { + "start": 15169.4, + "end": 15172.61, + "probability": 0.9323 + }, + { + "start": 15173.52, + "end": 15174.3, + "probability": 0.5752 + }, + { + "start": 15174.48, + "end": 15176.2, + "probability": 0.71 + }, + { + "start": 15177.34, + "end": 15178.58, + "probability": 0.5176 + }, + { + "start": 15178.64, + "end": 15181.12, + "probability": 0.9049 + }, + { + "start": 15181.12, + "end": 15184.46, + "probability": 0.9979 + }, + { + "start": 15185.0, + "end": 15187.76, + "probability": 0.8917 + }, + { + "start": 15187.86, + "end": 15188.61, + "probability": 0.9652 + }, + { + "start": 15189.16, + "end": 15190.46, + "probability": 0.9918 + }, + { + "start": 15191.48, + "end": 15193.06, + "probability": 0.9523 + }, + { + "start": 15194.62, + "end": 15197.36, + "probability": 0.8246 + }, + { + "start": 15197.44, + "end": 15198.22, + "probability": 0.9732 + }, + { + "start": 15198.84, + "end": 15201.14, + "probability": 0.9977 + }, + { + "start": 15201.28, + "end": 15202.02, + "probability": 0.8565 + }, + { + "start": 15202.94, + "end": 15206.14, + "probability": 0.992 + }, + { + "start": 15206.14, + "end": 15209.74, + "probability": 0.999 + }, + { + "start": 15210.58, + "end": 15212.68, + "probability": 0.9994 + }, + { + "start": 15212.68, + "end": 15215.56, + "probability": 0.8328 + }, + { + "start": 15215.68, + "end": 15218.44, + "probability": 0.9301 + }, + { + "start": 15218.44, + "end": 15220.52, + "probability": 0.9915 + }, + { + "start": 15220.6, + "end": 15220.76, + "probability": 0.5181 + }, + { + "start": 15220.78, + "end": 15221.84, + "probability": 0.8092 + }, + { + "start": 15222.46, + "end": 15224.7, + "probability": 0.8999 + }, + { + "start": 15225.12, + "end": 15227.74, + "probability": 0.9987 + }, + { + "start": 15228.3, + "end": 15228.98, + "probability": 0.6755 + }, + { + "start": 15229.56, + "end": 15232.76, + "probability": 0.9971 + }, + { + "start": 15233.56, + "end": 15234.58, + "probability": 0.865 + }, + { + "start": 15236.34, + "end": 15238.92, + "probability": 0.9243 + }, + { + "start": 15239.5, + "end": 15241.6, + "probability": 0.9518 + }, + { + "start": 15242.1, + "end": 15242.76, + "probability": 0.9874 + }, + { + "start": 15242.82, + "end": 15247.54, + "probability": 0.9875 + }, + { + "start": 15248.02, + "end": 15248.66, + "probability": 0.7133 + }, + { + "start": 15248.76, + "end": 15251.68, + "probability": 0.9888 + }, + { + "start": 15252.3, + "end": 15253.9, + "probability": 0.9449 + }, + { + "start": 15253.9, + "end": 15256.5, + "probability": 0.7787 + }, + { + "start": 15256.94, + "end": 15260.32, + "probability": 0.9801 + }, + { + "start": 15260.84, + "end": 15263.06, + "probability": 0.9688 + }, + { + "start": 15263.14, + "end": 15264.52, + "probability": 0.9541 + }, + { + "start": 15265.08, + "end": 15266.56, + "probability": 0.8808 + }, + { + "start": 15267.08, + "end": 15268.46, + "probability": 0.9609 + }, + { + "start": 15269.14, + "end": 15270.22, + "probability": 0.7791 + }, + { + "start": 15270.44, + "end": 15271.88, + "probability": 0.9897 + }, + { + "start": 15272.2, + "end": 15274.56, + "probability": 0.9614 + }, + { + "start": 15274.66, + "end": 15276.76, + "probability": 0.6574 + }, + { + "start": 15277.64, + "end": 15278.83, + "probability": 0.9217 + }, + { + "start": 15279.9, + "end": 15282.58, + "probability": 0.7822 + }, + { + "start": 15282.72, + "end": 15287.55, + "probability": 0.969 + }, + { + "start": 15288.98, + "end": 15292.38, + "probability": 0.7746 + }, + { + "start": 15292.5, + "end": 15293.84, + "probability": 0.9834 + }, + { + "start": 15294.28, + "end": 15295.36, + "probability": 0.894 + }, + { + "start": 15295.38, + "end": 15295.8, + "probability": 0.926 + }, + { + "start": 15295.94, + "end": 15296.79, + "probability": 0.7244 + }, + { + "start": 15297.3, + "end": 15298.7, + "probability": 0.9296 + }, + { + "start": 15298.98, + "end": 15303.34, + "probability": 0.9924 + }, + { + "start": 15303.4, + "end": 15305.72, + "probability": 0.9541 + }, + { + "start": 15306.42, + "end": 15307.82, + "probability": 0.9683 + }, + { + "start": 15308.78, + "end": 15309.7, + "probability": 0.9799 + }, + { + "start": 15310.12, + "end": 15310.91, + "probability": 0.9863 + }, + { + "start": 15311.58, + "end": 15312.9, + "probability": 0.9934 + }, + { + "start": 15313.4, + "end": 15318.6, + "probability": 0.9908 + }, + { + "start": 15319.06, + "end": 15321.36, + "probability": 0.9916 + }, + { + "start": 15322.44, + "end": 15326.5, + "probability": 0.9932 + }, + { + "start": 15326.68, + "end": 15327.46, + "probability": 0.9785 + }, + { + "start": 15328.42, + "end": 15329.12, + "probability": 0.7629 + }, + { + "start": 15329.56, + "end": 15330.62, + "probability": 0.9282 + }, + { + "start": 15331.3, + "end": 15334.09, + "probability": 0.3809 + }, + { + "start": 15335.3, + "end": 15335.78, + "probability": 0.8553 + }, + { + "start": 15335.84, + "end": 15336.68, + "probability": 0.7149 + }, + { + "start": 15337.24, + "end": 15338.59, + "probability": 0.5443 + }, + { + "start": 15338.62, + "end": 15340.28, + "probability": 0.571 + }, + { + "start": 15340.36, + "end": 15341.44, + "probability": 0.8662 + }, + { + "start": 15341.6, + "end": 15344.24, + "probability": 0.9734 + }, + { + "start": 15344.7, + "end": 15345.82, + "probability": 0.6544 + }, + { + "start": 15346.24, + "end": 15347.24, + "probability": 0.9604 + }, + { + "start": 15347.3, + "end": 15348.2, + "probability": 0.9788 + }, + { + "start": 15349.0, + "end": 15353.14, + "probability": 0.9315 + }, + { + "start": 15353.92, + "end": 15357.08, + "probability": 0.9077 + }, + { + "start": 15357.14, + "end": 15357.42, + "probability": 0.0105 + }, + { + "start": 15357.48, + "end": 15357.64, + "probability": 0.8954 + }, + { + "start": 15358.08, + "end": 15358.68, + "probability": 0.7205 + }, + { + "start": 15359.1, + "end": 15359.62, + "probability": 0.5877 + }, + { + "start": 15359.8, + "end": 15360.37, + "probability": 0.8985 + }, + { + "start": 15360.7, + "end": 15364.38, + "probability": 0.9548 + }, + { + "start": 15364.38, + "end": 15365.3, + "probability": 0.9584 + }, + { + "start": 15365.6, + "end": 15366.4, + "probability": 0.9135 + }, + { + "start": 15366.52, + "end": 15370.74, + "probability": 0.9861 + }, + { + "start": 15370.8, + "end": 15371.74, + "probability": 0.6799 + }, + { + "start": 15371.82, + "end": 15372.9, + "probability": 0.923 + }, + { + "start": 15373.04, + "end": 15373.92, + "probability": 0.1561 + }, + { + "start": 15374.4, + "end": 15376.84, + "probability": 0.9536 + }, + { + "start": 15376.84, + "end": 15379.78, + "probability": 0.9512 + }, + { + "start": 15380.02, + "end": 15380.16, + "probability": 0.7329 + }, + { + "start": 15380.18, + "end": 15383.36, + "probability": 0.985 + }, + { + "start": 15383.46, + "end": 15384.32, + "probability": 0.7251 + }, + { + "start": 15384.6, + "end": 15386.44, + "probability": 0.9258 + }, + { + "start": 15386.62, + "end": 15388.54, + "probability": 0.9915 + }, + { + "start": 15389.64, + "end": 15390.1, + "probability": 0.5237 + }, + { + "start": 15390.28, + "end": 15392.5, + "probability": 0.9772 + }, + { + "start": 15392.82, + "end": 15393.62, + "probability": 0.9172 + }, + { + "start": 15393.78, + "end": 15395.6, + "probability": 0.9833 + }, + { + "start": 15395.88, + "end": 15399.78, + "probability": 0.9653 + }, + { + "start": 15399.84, + "end": 15399.92, + "probability": 0.655 + }, + { + "start": 15399.96, + "end": 15403.8, + "probability": 0.9972 + }, + { + "start": 15403.92, + "end": 15404.58, + "probability": 0.8718 + }, + { + "start": 15405.9, + "end": 15406.54, + "probability": 0.7861 + }, + { + "start": 15406.66, + "end": 15411.24, + "probability": 0.9893 + }, + { + "start": 15411.62, + "end": 15413.64, + "probability": 0.6527 + }, + { + "start": 15413.9, + "end": 15414.98, + "probability": 0.9705 + }, + { + "start": 15415.02, + "end": 15416.1, + "probability": 0.9144 + }, + { + "start": 15416.36, + "end": 15417.44, + "probability": 0.8067 + }, + { + "start": 15417.9, + "end": 15422.24, + "probability": 0.9888 + }, + { + "start": 15422.4, + "end": 15422.92, + "probability": 0.8374 + }, + { + "start": 15423.02, + "end": 15423.96, + "probability": 0.8269 + }, + { + "start": 15424.24, + "end": 15424.54, + "probability": 0.681 + }, + { + "start": 15424.54, + "end": 15425.6, + "probability": 0.8334 + }, + { + "start": 15425.76, + "end": 15430.32, + "probability": 0.7801 + }, + { + "start": 15430.6, + "end": 15430.9, + "probability": 0.0205 + }, + { + "start": 15430.9, + "end": 15431.08, + "probability": 0.1761 + }, + { + "start": 15431.08, + "end": 15433.86, + "probability": 0.1072 + }, + { + "start": 15434.0, + "end": 15435.32, + "probability": 0.2531 + }, + { + "start": 15435.32, + "end": 15437.52, + "probability": 0.8678 + }, + { + "start": 15437.54, + "end": 15439.62, + "probability": 0.2758 + }, + { + "start": 15439.62, + "end": 15442.56, + "probability": 0.7271 + }, + { + "start": 15443.0, + "end": 15443.52, + "probability": 0.2925 + }, + { + "start": 15444.8, + "end": 15445.36, + "probability": 0.2539 + }, + { + "start": 15445.48, + "end": 15446.16, + "probability": 0.6252 + }, + { + "start": 15446.32, + "end": 15447.46, + "probability": 0.3851 + }, + { + "start": 15447.56, + "end": 15448.24, + "probability": 0.7882 + }, + { + "start": 15448.87, + "end": 15451.56, + "probability": 0.2094 + }, + { + "start": 15451.62, + "end": 15454.19, + "probability": 0.2072 + }, + { + "start": 15454.2, + "end": 15454.44, + "probability": 0.1835 + }, + { + "start": 15455.02, + "end": 15457.03, + "probability": 0.9899 + }, + { + "start": 15457.58, + "end": 15458.0, + "probability": 0.8335 + }, + { + "start": 15458.24, + "end": 15460.28, + "probability": 0.9033 + }, + { + "start": 15460.72, + "end": 15461.28, + "probability": 0.4166 + }, + { + "start": 15461.64, + "end": 15464.84, + "probability": 0.9689 + }, + { + "start": 15465.06, + "end": 15466.52, + "probability": 0.9701 + }, + { + "start": 15466.74, + "end": 15468.7, + "probability": 0.8783 + }, + { + "start": 15469.04, + "end": 15474.62, + "probability": 0.9931 + }, + { + "start": 15474.62, + "end": 15479.2, + "probability": 0.9978 + }, + { + "start": 15480.12, + "end": 15483.22, + "probability": 0.992 + }, + { + "start": 15483.42, + "end": 15487.12, + "probability": 0.9111 + }, + { + "start": 15487.94, + "end": 15490.22, + "probability": 0.9901 + }, + { + "start": 15491.14, + "end": 15495.1, + "probability": 0.6198 + }, + { + "start": 15495.36, + "end": 15499.8, + "probability": 0.7087 + }, + { + "start": 15499.98, + "end": 15502.3, + "probability": 0.5804 + }, + { + "start": 15502.46, + "end": 15505.38, + "probability": 0.5071 + }, + { + "start": 15505.4, + "end": 15506.32, + "probability": 0.0905 + }, + { + "start": 15506.32, + "end": 15507.18, + "probability": 0.369 + }, + { + "start": 15508.36, + "end": 15509.54, + "probability": 0.7191 + }, + { + "start": 15514.88, + "end": 15515.96, + "probability": 0.7869 + }, + { + "start": 15516.68, + "end": 15517.76, + "probability": 0.5833 + }, + { + "start": 15518.34, + "end": 15519.84, + "probability": 0.5717 + }, + { + "start": 15520.2, + "end": 15521.58, + "probability": 0.2567 + }, + { + "start": 15521.58, + "end": 15521.8, + "probability": 0.1297 + }, + { + "start": 15521.8, + "end": 15522.38, + "probability": 0.355 + }, + { + "start": 15522.38, + "end": 15522.46, + "probability": 0.3855 + }, + { + "start": 15522.86, + "end": 15525.78, + "probability": 0.7201 + }, + { + "start": 15526.3, + "end": 15526.5, + "probability": 0.0266 + }, + { + "start": 15527.08, + "end": 15527.08, + "probability": 0.098 + }, + { + "start": 15527.08, + "end": 15527.57, + "probability": 0.4943 + }, + { + "start": 15527.66, + "end": 15528.48, + "probability": 0.7163 + }, + { + "start": 15528.72, + "end": 15530.14, + "probability": 0.394 + }, + { + "start": 15530.14, + "end": 15530.32, + "probability": 0.6602 + }, + { + "start": 15530.32, + "end": 15531.46, + "probability": 0.5826 + }, + { + "start": 15531.78, + "end": 15534.02, + "probability": 0.8467 + }, + { + "start": 15534.46, + "end": 15535.47, + "probability": 0.3751 + }, + { + "start": 15537.64, + "end": 15537.88, + "probability": 0.0998 + }, + { + "start": 15537.88, + "end": 15539.08, + "probability": 0.6529 + }, + { + "start": 15540.52, + "end": 15544.2, + "probability": 0.9434 + }, + { + "start": 15544.26, + "end": 15547.94, + "probability": 0.9888 + }, + { + "start": 15548.54, + "end": 15549.26, + "probability": 0.8716 + }, + { + "start": 15550.4, + "end": 15551.32, + "probability": 0.9976 + }, + { + "start": 15552.34, + "end": 15554.24, + "probability": 0.9569 + }, + { + "start": 15554.36, + "end": 15557.98, + "probability": 0.9263 + }, + { + "start": 15558.14, + "end": 15558.84, + "probability": 0.8966 + }, + { + "start": 15559.02, + "end": 15561.38, + "probability": 0.8343 + }, + { + "start": 15561.54, + "end": 15562.6, + "probability": 0.529 + }, + { + "start": 15563.96, + "end": 15565.54, + "probability": 0.9875 + }, + { + "start": 15565.8, + "end": 15566.74, + "probability": 0.9446 + }, + { + "start": 15566.84, + "end": 15568.12, + "probability": 0.997 + }, + { + "start": 15568.38, + "end": 15569.28, + "probability": 0.975 + }, + { + "start": 15569.98, + "end": 15572.9, + "probability": 0.9938 + }, + { + "start": 15573.88, + "end": 15577.54, + "probability": 0.9897 + }, + { + "start": 15578.06, + "end": 15579.72, + "probability": 0.9986 + }, + { + "start": 15580.34, + "end": 15582.84, + "probability": 0.946 + }, + { + "start": 15582.94, + "end": 15583.76, + "probability": 0.7153 + }, + { + "start": 15584.2, + "end": 15587.54, + "probability": 0.8821 + }, + { + "start": 15588.1, + "end": 15589.02, + "probability": 0.8978 + }, + { + "start": 15589.2, + "end": 15590.81, + "probability": 0.56 + }, + { + "start": 15592.04, + "end": 15593.3, + "probability": 0.9917 + }, + { + "start": 15593.48, + "end": 15597.04, + "probability": 0.9538 + }, + { + "start": 15597.74, + "end": 15600.54, + "probability": 0.7524 + }, + { + "start": 15601.1, + "end": 15602.56, + "probability": 0.7462 + }, + { + "start": 15602.58, + "end": 15604.08, + "probability": 0.8008 + }, + { + "start": 15604.12, + "end": 15608.42, + "probability": 0.8615 + }, + { + "start": 15608.56, + "end": 15611.32, + "probability": 0.959 + }, + { + "start": 15613.39, + "end": 15615.8, + "probability": 0.9859 + }, + { + "start": 15616.22, + "end": 15617.88, + "probability": 0.8911 + }, + { + "start": 15617.94, + "end": 15619.64, + "probability": 0.9749 + }, + { + "start": 15620.1, + "end": 15621.4, + "probability": 0.9047 + }, + { + "start": 15621.58, + "end": 15625.62, + "probability": 0.9719 + }, + { + "start": 15626.04, + "end": 15628.66, + "probability": 0.9951 + }, + { + "start": 15628.94, + "end": 15630.76, + "probability": 0.7635 + }, + { + "start": 15630.82, + "end": 15633.52, + "probability": 0.9188 + }, + { + "start": 15633.6, + "end": 15634.58, + "probability": 0.5049 + }, + { + "start": 15634.6, + "end": 15637.02, + "probability": 0.644 + }, + { + "start": 15637.02, + "end": 15637.04, + "probability": 0.3101 + }, + { + "start": 15637.04, + "end": 15638.82, + "probability": 0.623 + }, + { + "start": 15638.9, + "end": 15639.7, + "probability": 0.52 + }, + { + "start": 15640.02, + "end": 15642.64, + "probability": 0.7796 + }, + { + "start": 15642.7, + "end": 15643.78, + "probability": 0.8207 + }, + { + "start": 15643.86, + "end": 15644.4, + "probability": 0.6522 + }, + { + "start": 15644.46, + "end": 15645.1, + "probability": 0.7568 + }, + { + "start": 15665.24, + "end": 15667.4, + "probability": 0.1827 + }, + { + "start": 15668.14, + "end": 15670.34, + "probability": 0.4243 + }, + { + "start": 15674.82, + "end": 15675.96, + "probability": 0.061 + }, + { + "start": 15676.94, + "end": 15680.78, + "probability": 0.1142 + }, + { + "start": 15681.15, + "end": 15681.48, + "probability": 0.1355 + }, + { + "start": 15682.14, + "end": 15685.86, + "probability": 0.1899 + }, + { + "start": 15687.63, + "end": 15690.74, + "probability": 0.043 + }, + { + "start": 15692.12, + "end": 15692.58, + "probability": 0.0915 + }, + { + "start": 15712.56, + "end": 15713.04, + "probability": 0.0812 + }, + { + "start": 15713.08, + "end": 15713.74, + "probability": 0.0366 + }, + { + "start": 15714.26, + "end": 15715.12, + "probability": 0.1234 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.0, + "end": 15734.0, + "probability": 0.0 + }, + { + "start": 15734.18, + "end": 15738.54, + "probability": 0.9859 + }, + { + "start": 15740.5, + "end": 15744.16, + "probability": 0.8872 + }, + { + "start": 15745.04, + "end": 15749.98, + "probability": 0.9897 + }, + { + "start": 15749.98, + "end": 15754.98, + "probability": 0.9895 + }, + { + "start": 15756.52, + "end": 15757.4, + "probability": 0.7119 + }, + { + "start": 15757.98, + "end": 15764.76, + "probability": 0.9644 + }, + { + "start": 15765.94, + "end": 15772.12, + "probability": 0.9956 + }, + { + "start": 15772.12, + "end": 15780.14, + "probability": 0.9437 + }, + { + "start": 15780.36, + "end": 15785.34, + "probability": 0.5044 + }, + { + "start": 15786.3, + "end": 15787.96, + "probability": 0.8792 + }, + { + "start": 15789.56, + "end": 15793.16, + "probability": 0.8953 + }, + { + "start": 15794.52, + "end": 15796.62, + "probability": 0.9414 + }, + { + "start": 15797.1, + "end": 15801.84, + "probability": 0.969 + }, + { + "start": 15802.72, + "end": 15806.36, + "probability": 0.7626 + }, + { + "start": 15807.48, + "end": 15808.54, + "probability": 0.6844 + }, + { + "start": 15809.64, + "end": 15812.46, + "probability": 0.8461 + }, + { + "start": 15813.46, + "end": 15818.68, + "probability": 0.7109 + }, + { + "start": 15819.52, + "end": 15823.86, + "probability": 0.8994 + }, + { + "start": 15824.88, + "end": 15831.78, + "probability": 0.7981 + }, + { + "start": 15832.76, + "end": 15833.76, + "probability": 0.7336 + }, + { + "start": 15833.82, + "end": 15834.96, + "probability": 0.936 + }, + { + "start": 15835.3, + "end": 15838.46, + "probability": 0.7987 + }, + { + "start": 15839.5, + "end": 15842.74, + "probability": 0.8853 + }, + { + "start": 15843.5, + "end": 15845.5, + "probability": 0.9863 + }, + { + "start": 15846.84, + "end": 15852.17, + "probability": 0.9492 + }, + { + "start": 15852.3, + "end": 15853.44, + "probability": 0.6782 + }, + { + "start": 15854.62, + "end": 15857.52, + "probability": 0.8835 + }, + { + "start": 15858.28, + "end": 15863.7, + "probability": 0.9563 + }, + { + "start": 15864.44, + "end": 15866.02, + "probability": 0.9557 + }, + { + "start": 15867.0, + "end": 15870.1, + "probability": 0.9805 + }, + { + "start": 15870.8, + "end": 15871.96, + "probability": 0.9945 + }, + { + "start": 15872.9, + "end": 15875.72, + "probability": 0.979 + }, + { + "start": 15877.18, + "end": 15881.98, + "probability": 0.9876 + }, + { + "start": 15883.74, + "end": 15887.3, + "probability": 0.8873 + }, + { + "start": 15888.36, + "end": 15889.96, + "probability": 0.9921 + }, + { + "start": 15890.54, + "end": 15897.54, + "probability": 0.9977 + }, + { + "start": 15897.88, + "end": 15904.76, + "probability": 0.947 + }, + { + "start": 15906.04, + "end": 15911.78, + "probability": 0.9976 + }, + { + "start": 15912.62, + "end": 15914.92, + "probability": 0.803 + }, + { + "start": 15916.28, + "end": 15919.22, + "probability": 0.9974 + }, + { + "start": 15919.78, + "end": 15921.4, + "probability": 0.8562 + }, + { + "start": 15926.5, + "end": 15928.0, + "probability": 0.7761 + }, + { + "start": 15929.14, + "end": 15932.3, + "probability": 0.9876 + }, + { + "start": 15932.96, + "end": 15938.1, + "probability": 0.9884 + }, + { + "start": 15939.04, + "end": 15945.44, + "probability": 0.9366 + }, + { + "start": 15946.48, + "end": 15946.48, + "probability": 0.0862 + }, + { + "start": 15946.48, + "end": 15948.88, + "probability": 0.979 + }, + { + "start": 15950.04, + "end": 15952.82, + "probability": 0.915 + }, + { + "start": 15953.74, + "end": 15956.24, + "probability": 0.9739 + }, + { + "start": 15956.7, + "end": 15958.74, + "probability": 0.9377 + }, + { + "start": 15959.4, + "end": 15964.64, + "probability": 0.9951 + }, + { + "start": 15964.64, + "end": 15972.06, + "probability": 0.9978 + }, + { + "start": 15972.87, + "end": 15975.5, + "probability": 0.9787 + }, + { + "start": 15976.66, + "end": 15978.08, + "probability": 0.6682 + }, + { + "start": 15978.38, + "end": 15983.24, + "probability": 0.9651 + }, + { + "start": 15983.74, + "end": 15988.0, + "probability": 0.8712 + }, + { + "start": 15988.14, + "end": 15991.54, + "probability": 0.6814 + }, + { + "start": 15993.1, + "end": 15996.26, + "probability": 0.8534 + }, + { + "start": 15996.74, + "end": 15998.76, + "probability": 0.5807 + }, + { + "start": 15998.98, + "end": 16004.52, + "probability": 0.61 + }, + { + "start": 16004.88, + "end": 16005.16, + "probability": 0.4842 + }, + { + "start": 16005.66, + "end": 16008.4, + "probability": 0.6623 + }, + { + "start": 16009.14, + "end": 16012.6, + "probability": 0.569 + }, + { + "start": 16012.7, + "end": 16013.04, + "probability": 0.8633 + }, + { + "start": 16026.96, + "end": 16027.9, + "probability": 0.5606 + }, + { + "start": 16028.9, + "end": 16031.26, + "probability": 0.9904 + }, + { + "start": 16032.3, + "end": 16035.52, + "probability": 0.9938 + }, + { + "start": 16035.58, + "end": 16036.66, + "probability": 0.9452 + }, + { + "start": 16036.78, + "end": 16038.38, + "probability": 0.8267 + }, + { + "start": 16038.52, + "end": 16039.88, + "probability": 0.8688 + }, + { + "start": 16039.96, + "end": 16041.36, + "probability": 0.9141 + }, + { + "start": 16042.74, + "end": 16045.64, + "probability": 0.8734 + }, + { + "start": 16046.2, + "end": 16047.28, + "probability": 0.7824 + }, + { + "start": 16047.4, + "end": 16048.08, + "probability": 0.5594 + }, + { + "start": 16048.24, + "end": 16050.7, + "probability": 0.8276 + }, + { + "start": 16051.56, + "end": 16052.78, + "probability": 0.9915 + }, + { + "start": 16052.94, + "end": 16055.3, + "probability": 0.9877 + }, + { + "start": 16055.3, + "end": 16058.34, + "probability": 0.9765 + }, + { + "start": 16059.16, + "end": 16062.56, + "probability": 0.9653 + }, + { + "start": 16063.8, + "end": 16064.6, + "probability": 0.6852 + }, + { + "start": 16064.72, + "end": 16065.68, + "probability": 0.8466 + }, + { + "start": 16065.94, + "end": 16067.44, + "probability": 0.9425 + }, + { + "start": 16067.56, + "end": 16070.62, + "probability": 0.8689 + }, + { + "start": 16071.62, + "end": 16074.96, + "probability": 0.7913 + }, + { + "start": 16075.08, + "end": 16075.8, + "probability": 0.4271 + }, + { + "start": 16075.88, + "end": 16077.8, + "probability": 0.9801 + }, + { + "start": 16078.48, + "end": 16080.76, + "probability": 0.721 + }, + { + "start": 16080.76, + "end": 16083.48, + "probability": 0.9801 + }, + { + "start": 16084.14, + "end": 16086.34, + "probability": 0.9554 + }, + { + "start": 16087.04, + "end": 16089.14, + "probability": 0.7458 + }, + { + "start": 16089.28, + "end": 16094.9, + "probability": 0.9618 + }, + { + "start": 16095.9, + "end": 16096.38, + "probability": 0.7768 + }, + { + "start": 16096.56, + "end": 16098.98, + "probability": 0.9877 + }, + { + "start": 16098.98, + "end": 16102.38, + "probability": 0.974 + }, + { + "start": 16102.52, + "end": 16104.64, + "probability": 0.9725 + }, + { + "start": 16105.34, + "end": 16105.88, + "probability": 0.8818 + }, + { + "start": 16106.22, + "end": 16109.13, + "probability": 0.6927 + }, + { + "start": 16109.6, + "end": 16112.22, + "probability": 0.9857 + }, + { + "start": 16112.22, + "end": 16115.6, + "probability": 0.9912 + }, + { + "start": 16116.56, + "end": 16118.76, + "probability": 0.9913 + }, + { + "start": 16118.84, + "end": 16120.36, + "probability": 0.8009 + }, + { + "start": 16120.42, + "end": 16121.76, + "probability": 0.9001 + }, + { + "start": 16122.56, + "end": 16125.52, + "probability": 0.939 + }, + { + "start": 16125.52, + "end": 16127.9, + "probability": 0.9845 + }, + { + "start": 16128.42, + "end": 16131.16, + "probability": 0.9655 + }, + { + "start": 16131.28, + "end": 16132.8, + "probability": 0.9917 + }, + { + "start": 16133.42, + "end": 16133.82, + "probability": 0.2321 + }, + { + "start": 16133.86, + "end": 16135.22, + "probability": 0.9351 + }, + { + "start": 16135.32, + "end": 16138.6, + "probability": 0.8939 + }, + { + "start": 16139.3, + "end": 16139.78, + "probability": 0.8777 + }, + { + "start": 16140.4, + "end": 16142.94, + "probability": 0.7638 + }, + { + "start": 16143.08, + "end": 16143.3, + "probability": 0.8137 + }, + { + "start": 16143.52, + "end": 16147.04, + "probability": 0.9283 + }, + { + "start": 16147.36, + "end": 16151.26, + "probability": 0.907 + }, + { + "start": 16152.14, + "end": 16154.46, + "probability": 0.9673 + }, + { + "start": 16155.8, + "end": 16160.26, + "probability": 0.98 + }, + { + "start": 16160.8, + "end": 16162.84, + "probability": 0.387 + }, + { + "start": 16163.02, + "end": 16163.32, + "probability": 0.8458 + }, + { + "start": 16163.42, + "end": 16167.36, + "probability": 0.96 + }, + { + "start": 16167.52, + "end": 16168.88, + "probability": 0.9097 + }, + { + "start": 16169.38, + "end": 16171.28, + "probability": 0.762 + }, + { + "start": 16171.84, + "end": 16173.54, + "probability": 0.6597 + }, + { + "start": 16173.64, + "end": 16174.96, + "probability": 0.8782 + }, + { + "start": 16175.4, + "end": 16176.2, + "probability": 0.5466 + }, + { + "start": 16176.34, + "end": 16178.96, + "probability": 0.9869 + }, + { + "start": 16179.94, + "end": 16182.94, + "probability": 0.874 + }, + { + "start": 16184.06, + "end": 16185.98, + "probability": 0.7019 + }, + { + "start": 16186.16, + "end": 16189.52, + "probability": 0.9468 + }, + { + "start": 16189.68, + "end": 16193.08, + "probability": 0.8114 + }, + { + "start": 16193.08, + "end": 16195.16, + "probability": 0.9321 + }, + { + "start": 16196.14, + "end": 16196.74, + "probability": 0.4487 + }, + { + "start": 16196.82, + "end": 16197.58, + "probability": 0.8625 + }, + { + "start": 16197.72, + "end": 16200.66, + "probability": 0.8226 + }, + { + "start": 16200.84, + "end": 16203.52, + "probability": 0.9935 + }, + { + "start": 16203.66, + "end": 16205.98, + "probability": 0.5578 + }, + { + "start": 16206.0, + "end": 16206.98, + "probability": 0.9285 + }, + { + "start": 16207.56, + "end": 16211.36, + "probability": 0.8974 + }, + { + "start": 16211.66, + "end": 16212.04, + "probability": 0.7828 + }, + { + "start": 16213.22, + "end": 16213.86, + "probability": 0.649 + }, + { + "start": 16213.88, + "end": 16214.76, + "probability": 0.813 + }, + { + "start": 16214.86, + "end": 16215.66, + "probability": 0.7299 + }, + { + "start": 16216.74, + "end": 16217.6, + "probability": 0.4512 + }, + { + "start": 16217.98, + "end": 16219.68, + "probability": 0.7039 + }, + { + "start": 16219.9, + "end": 16221.54, + "probability": 0.2258 + }, + { + "start": 16221.66, + "end": 16223.18, + "probability": 0.7084 + }, + { + "start": 16223.22, + "end": 16224.3, + "probability": 0.8201 + }, + { + "start": 16224.34, + "end": 16224.9, + "probability": 0.7449 + }, + { + "start": 16225.04, + "end": 16226.34, + "probability": 0.8764 + }, + { + "start": 16227.42, + "end": 16230.12, + "probability": 0.4422 + }, + { + "start": 16230.56, + "end": 16230.7, + "probability": 0.317 + }, + { + "start": 16230.74, + "end": 16232.06, + "probability": 0.8585 + }, + { + "start": 16232.36, + "end": 16233.04, + "probability": 0.7288 + }, + { + "start": 16233.08, + "end": 16234.32, + "probability": 0.571 + }, + { + "start": 16234.4, + "end": 16234.7, + "probability": 0.4829 + }, + { + "start": 16234.7, + "end": 16235.5, + "probability": 0.4627 + }, + { + "start": 16236.39, + "end": 16238.5, + "probability": 0.7432 + }, + { + "start": 16239.4, + "end": 16240.8, + "probability": 0.8027 + }, + { + "start": 16240.94, + "end": 16241.64, + "probability": 0.6115 + }, + { + "start": 16241.72, + "end": 16242.64, + "probability": 0.4868 + }, + { + "start": 16242.66, + "end": 16243.22, + "probability": 0.5845 + }, + { + "start": 16260.88, + "end": 16260.88, + "probability": 0.2128 + }, + { + "start": 16260.88, + "end": 16260.88, + "probability": 0.6391 + }, + { + "start": 16260.88, + "end": 16263.86, + "probability": 0.4951 + }, + { + "start": 16263.96, + "end": 16264.58, + "probability": 0.7035 + }, + { + "start": 16265.26, + "end": 16266.5, + "probability": 0.4981 + }, + { + "start": 16266.88, + "end": 16268.6, + "probability": 0.7718 + }, + { + "start": 16269.68, + "end": 16271.46, + "probability": 0.6672 + }, + { + "start": 16272.02, + "end": 16274.44, + "probability": 0.8328 + }, + { + "start": 16275.12, + "end": 16276.84, + "probability": 0.9833 + }, + { + "start": 16276.84, + "end": 16279.26, + "probability": 0.8561 + }, + { + "start": 16279.66, + "end": 16281.44, + "probability": 0.9896 + }, + { + "start": 16282.42, + "end": 16283.92, + "probability": 0.9857 + }, + { + "start": 16286.7, + "end": 16287.08, + "probability": 0.3974 + }, + { + "start": 16287.14, + "end": 16287.52, + "probability": 0.6822 + }, + { + "start": 16289.04, + "end": 16290.88, + "probability": 0.9671 + }, + { + "start": 16294.98, + "end": 16296.6, + "probability": 0.7371 + }, + { + "start": 16298.18, + "end": 16300.79, + "probability": 0.9847 + }, + { + "start": 16301.22, + "end": 16303.64, + "probability": 0.9974 + }, + { + "start": 16304.36, + "end": 16305.36, + "probability": 0.9798 + }, + { + "start": 16306.98, + "end": 16308.6, + "probability": 0.7514 + }, + { + "start": 16309.46, + "end": 16311.58, + "probability": 0.9888 + }, + { + "start": 16312.44, + "end": 16314.57, + "probability": 0.9559 + }, + { + "start": 16314.8, + "end": 16316.68, + "probability": 0.9747 + }, + { + "start": 16317.66, + "end": 16318.52, + "probability": 0.5624 + }, + { + "start": 16319.6, + "end": 16322.88, + "probability": 0.9741 + }, + { + "start": 16324.06, + "end": 16325.0, + "probability": 0.9652 + }, + { + "start": 16325.94, + "end": 16326.88, + "probability": 0.6604 + }, + { + "start": 16327.36, + "end": 16328.86, + "probability": 0.8966 + }, + { + "start": 16328.96, + "end": 16330.66, + "probability": 0.5801 + }, + { + "start": 16331.52, + "end": 16331.92, + "probability": 0.714 + }, + { + "start": 16333.52, + "end": 16336.88, + "probability": 0.9808 + }, + { + "start": 16337.5, + "end": 16340.32, + "probability": 0.9818 + }, + { + "start": 16341.66, + "end": 16344.56, + "probability": 0.9531 + }, + { + "start": 16346.12, + "end": 16346.89, + "probability": 0.7339 + }, + { + "start": 16347.72, + "end": 16348.9, + "probability": 0.9089 + }, + { + "start": 16350.02, + "end": 16350.72, + "probability": 0.9727 + }, + { + "start": 16352.1, + "end": 16353.58, + "probability": 0.9268 + }, + { + "start": 16354.76, + "end": 16356.22, + "probability": 0.9394 + }, + { + "start": 16357.46, + "end": 16358.32, + "probability": 0.9423 + }, + { + "start": 16359.44, + "end": 16363.9, + "probability": 0.977 + }, + { + "start": 16365.0, + "end": 16366.5, + "probability": 0.9186 + }, + { + "start": 16367.8, + "end": 16372.04, + "probability": 0.9469 + }, + { + "start": 16372.96, + "end": 16375.62, + "probability": 0.9645 + }, + { + "start": 16376.48, + "end": 16377.08, + "probability": 0.483 + }, + { + "start": 16378.06, + "end": 16379.62, + "probability": 0.8375 + }, + { + "start": 16381.0, + "end": 16382.62, + "probability": 0.9745 + }, + { + "start": 16383.26, + "end": 16387.68, + "probability": 0.9783 + }, + { + "start": 16388.64, + "end": 16391.58, + "probability": 0.9753 + }, + { + "start": 16392.34, + "end": 16394.22, + "probability": 0.9575 + }, + { + "start": 16395.24, + "end": 16397.02, + "probability": 0.8251 + }, + { + "start": 16398.12, + "end": 16403.02, + "probability": 0.9818 + }, + { + "start": 16404.12, + "end": 16406.58, + "probability": 0.9334 + }, + { + "start": 16407.38, + "end": 16411.36, + "probability": 0.9785 + }, + { + "start": 16412.56, + "end": 16413.34, + "probability": 0.9604 + }, + { + "start": 16414.08, + "end": 16417.32, + "probability": 0.9749 + }, + { + "start": 16419.34, + "end": 16422.12, + "probability": 0.9967 + }, + { + "start": 16422.16, + "end": 16422.8, + "probability": 0.7804 + }, + { + "start": 16424.34, + "end": 16425.1, + "probability": 0.8887 + }, + { + "start": 16425.82, + "end": 16429.46, + "probability": 0.9495 + }, + { + "start": 16429.56, + "end": 16433.46, + "probability": 0.9813 + }, + { + "start": 16434.22, + "end": 16437.22, + "probability": 0.9963 + }, + { + "start": 16438.0, + "end": 16439.56, + "probability": 0.8993 + }, + { + "start": 16440.66, + "end": 16443.64, + "probability": 0.9912 + }, + { + "start": 16444.82, + "end": 16447.82, + "probability": 0.9417 + }, + { + "start": 16448.54, + "end": 16450.54, + "probability": 0.9658 + }, + { + "start": 16452.8, + "end": 16454.88, + "probability": 0.8441 + }, + { + "start": 16455.72, + "end": 16457.46, + "probability": 0.9534 + }, + { + "start": 16458.04, + "end": 16460.22, + "probability": 0.9858 + }, + { + "start": 16461.3, + "end": 16463.36, + "probability": 0.9797 + }, + { + "start": 16463.62, + "end": 16466.44, + "probability": 0.9762 + }, + { + "start": 16467.48, + "end": 16472.75, + "probability": 0.998 + }, + { + "start": 16473.8, + "end": 16475.34, + "probability": 0.8736 + }, + { + "start": 16475.9, + "end": 16477.0, + "probability": 0.8868 + }, + { + "start": 16478.5, + "end": 16479.66, + "probability": 0.9683 + }, + { + "start": 16480.74, + "end": 16481.12, + "probability": 0.8441 + }, + { + "start": 16482.02, + "end": 16484.6, + "probability": 0.9247 + }, + { + "start": 16485.42, + "end": 16488.36, + "probability": 0.9644 + }, + { + "start": 16489.44, + "end": 16493.78, + "probability": 0.9918 + }, + { + "start": 16494.8, + "end": 16495.78, + "probability": 0.9907 + }, + { + "start": 16495.84, + "end": 16497.02, + "probability": 0.7933 + }, + { + "start": 16497.48, + "end": 16499.16, + "probability": 0.8218 + }, + { + "start": 16500.06, + "end": 16503.52, + "probability": 0.9624 + }, + { + "start": 16504.36, + "end": 16505.0, + "probability": 0.4819 + }, + { + "start": 16505.7, + "end": 16509.44, + "probability": 0.985 + }, + { + "start": 16510.04, + "end": 16513.18, + "probability": 0.9468 + }, + { + "start": 16513.62, + "end": 16514.42, + "probability": 0.7752 + }, + { + "start": 16514.8, + "end": 16514.96, + "probability": 0.6884 + }, + { + "start": 16516.4, + "end": 16518.92, + "probability": 0.8537 + }, + { + "start": 16519.3, + "end": 16521.4, + "probability": 0.5294 + }, + { + "start": 16521.78, + "end": 16522.62, + "probability": 0.908 + }, + { + "start": 16525.36, + "end": 16527.0, + "probability": 0.2725 + }, + { + "start": 16527.18, + "end": 16527.5, + "probability": 0.7437 + }, + { + "start": 16530.4, + "end": 16530.64, + "probability": 0.0646 + }, + { + "start": 16532.96, + "end": 16535.74, + "probability": 0.0143 + }, + { + "start": 16535.74, + "end": 16535.74, + "probability": 0.1677 + }, + { + "start": 16535.74, + "end": 16535.74, + "probability": 0.0213 + }, + { + "start": 16535.74, + "end": 16535.95, + "probability": 0.2705 + }, + { + "start": 16536.26, + "end": 16537.1, + "probability": 0.8183 + }, + { + "start": 16537.26, + "end": 16537.86, + "probability": 0.5149 + }, + { + "start": 16537.86, + "end": 16537.96, + "probability": 0.5176 + }, + { + "start": 16538.64, + "end": 16538.64, + "probability": 0.3329 + }, + { + "start": 16538.64, + "end": 16540.5, + "probability": 0.7219 + }, + { + "start": 16540.64, + "end": 16541.09, + "probability": 0.814 + }, + { + "start": 16541.24, + "end": 16541.58, + "probability": 0.4174 + }, + { + "start": 16542.56, + "end": 16543.38, + "probability": 0.7397 + }, + { + "start": 16544.26, + "end": 16548.46, + "probability": 0.987 + }, + { + "start": 16548.46, + "end": 16552.12, + "probability": 0.9932 + }, + { + "start": 16552.84, + "end": 16556.36, + "probability": 0.963 + }, + { + "start": 16557.35, + "end": 16558.98, + "probability": 0.7644 + }, + { + "start": 16559.56, + "end": 16561.98, + "probability": 0.7672 + }, + { + "start": 16562.12, + "end": 16565.5, + "probability": 0.9835 + }, + { + "start": 16565.58, + "end": 16567.4, + "probability": 0.8605 + }, + { + "start": 16568.2, + "end": 16570.2, + "probability": 0.9688 + }, + { + "start": 16570.2, + "end": 16573.96, + "probability": 0.911 + }, + { + "start": 16574.06, + "end": 16575.8, + "probability": 0.8911 + }, + { + "start": 16576.28, + "end": 16578.28, + "probability": 0.9341 + }, + { + "start": 16578.44, + "end": 16578.66, + "probability": 0.4177 + }, + { + "start": 16578.7, + "end": 16579.76, + "probability": 0.5726 + }, + { + "start": 16579.84, + "end": 16580.62, + "probability": 0.7376 + }, + { + "start": 16580.72, + "end": 16584.28, + "probability": 0.9602 + }, + { + "start": 16584.86, + "end": 16585.28, + "probability": 0.2659 + }, + { + "start": 16585.28, + "end": 16587.42, + "probability": 0.6256 + }, + { + "start": 16587.66, + "end": 16588.12, + "probability": 0.9571 + }, + { + "start": 16588.84, + "end": 16591.6, + "probability": 0.8318 + }, + { + "start": 16592.12, + "end": 16593.64, + "probability": 0.9949 + }, + { + "start": 16594.2, + "end": 16595.98, + "probability": 0.9989 + }, + { + "start": 16596.63, + "end": 16597.56, + "probability": 0.2263 + }, + { + "start": 16597.56, + "end": 16601.99, + "probability": 0.9027 + }, + { + "start": 16603.2, + "end": 16605.1, + "probability": 0.7942 + }, + { + "start": 16605.72, + "end": 16607.42, + "probability": 0.9696 + }, + { + "start": 16608.24, + "end": 16609.88, + "probability": 0.9807 + }, + { + "start": 16609.96, + "end": 16611.54, + "probability": 0.8705 + }, + { + "start": 16611.72, + "end": 16613.46, + "probability": 0.9167 + }, + { + "start": 16613.84, + "end": 16615.54, + "probability": 0.866 + }, + { + "start": 16616.82, + "end": 16619.26, + "probability": 0.8186 + }, + { + "start": 16619.26, + "end": 16621.78, + "probability": 0.9937 + }, + { + "start": 16622.32, + "end": 16623.14, + "probability": 0.8145 + }, + { + "start": 16623.34, + "end": 16625.58, + "probability": 0.9013 + }, + { + "start": 16626.14, + "end": 16628.32, + "probability": 0.9921 + }, + { + "start": 16628.32, + "end": 16631.82, + "probability": 0.9108 + }, + { + "start": 16632.3, + "end": 16633.76, + "probability": 0.957 + }, + { + "start": 16634.12, + "end": 16637.68, + "probability": 0.9793 + }, + { + "start": 16638.16, + "end": 16640.96, + "probability": 0.7526 + }, + { + "start": 16641.9, + "end": 16645.8, + "probability": 0.9899 + }, + { + "start": 16645.8, + "end": 16649.72, + "probability": 0.9867 + }, + { + "start": 16650.5, + "end": 16653.28, + "probability": 0.9252 + }, + { + "start": 16653.28, + "end": 16657.24, + "probability": 0.9849 + }, + { + "start": 16657.8, + "end": 16660.32, + "probability": 0.9949 + }, + { + "start": 16660.32, + "end": 16663.06, + "probability": 0.8534 + }, + { + "start": 16663.66, + "end": 16665.9, + "probability": 0.9733 + }, + { + "start": 16666.38, + "end": 16667.84, + "probability": 0.9856 + }, + { + "start": 16667.9, + "end": 16668.38, + "probability": 0.7438 + }, + { + "start": 16669.02, + "end": 16673.06, + "probability": 0.7656 + }, + { + "start": 16673.12, + "end": 16674.77, + "probability": 0.6082 + }, + { + "start": 16675.36, + "end": 16676.67, + "probability": 0.773 + }, + { + "start": 16677.56, + "end": 16680.76, + "probability": 0.9233 + }, + { + "start": 16681.38, + "end": 16682.6, + "probability": 0.6304 + }, + { + "start": 16682.66, + "end": 16684.55, + "probability": 0.6945 + }, + { + "start": 16684.9, + "end": 16686.6, + "probability": 0.9098 + }, + { + "start": 16687.3, + "end": 16689.44, + "probability": 0.9938 + }, + { + "start": 16690.0, + "end": 16690.6, + "probability": 0.5245 + }, + { + "start": 16690.84, + "end": 16691.52, + "probability": 0.8657 + }, + { + "start": 16691.58, + "end": 16698.1, + "probability": 0.9551 + }, + { + "start": 16698.54, + "end": 16698.84, + "probability": 0.4732 + }, + { + "start": 16698.96, + "end": 16701.16, + "probability": 0.9705 + }, + { + "start": 16701.18, + "end": 16701.86, + "probability": 0.4937 + }, + { + "start": 16701.9, + "end": 16702.86, + "probability": 0.9043 + }, + { + "start": 16703.26, + "end": 16705.62, + "probability": 0.8669 + }, + { + "start": 16706.3, + "end": 16711.92, + "probability": 0.9417 + }, + { + "start": 16711.98, + "end": 16714.95, + "probability": 0.9938 + }, + { + "start": 16715.42, + "end": 16715.64, + "probability": 0.5993 + }, + { + "start": 16716.8, + "end": 16718.27, + "probability": 0.6705 + }, + { + "start": 16719.56, + "end": 16720.14, + "probability": 0.5603 + }, + { + "start": 16720.18, + "end": 16721.2, + "probability": 0.8249 + }, + { + "start": 16721.78, + "end": 16723.0, + "probability": 0.6026 + }, + { + "start": 16723.5, + "end": 16725.58, + "probability": 0.736 + }, + { + "start": 16726.52, + "end": 16727.22, + "probability": 0.6281 + }, + { + "start": 16727.22, + "end": 16729.58, + "probability": 0.5884 + }, + { + "start": 16729.68, + "end": 16730.52, + "probability": 0.6557 + }, + { + "start": 16730.62, + "end": 16731.02, + "probability": 0.5603 + }, + { + "start": 16731.06, + "end": 16731.48, + "probability": 0.6128 + }, + { + "start": 16731.58, + "end": 16732.06, + "probability": 0.8121 + }, + { + "start": 16748.7, + "end": 16751.7, + "probability": 0.339 + }, + { + "start": 16751.8, + "end": 16752.7, + "probability": 0.4991 + }, + { + "start": 16754.06, + "end": 16754.14, + "probability": 0.1586 + }, + { + "start": 16754.14, + "end": 16754.14, + "probability": 0.1144 + }, + { + "start": 16754.14, + "end": 16754.39, + "probability": 0.252 + }, + { + "start": 16754.5, + "end": 16756.31, + "probability": 0.4141 + }, + { + "start": 16758.04, + "end": 16760.96, + "probability": 0.4062 + }, + { + "start": 16761.5, + "end": 16763.02, + "probability": 0.991 + }, + { + "start": 16763.88, + "end": 16765.96, + "probability": 0.4671 + }, + { + "start": 16767.2, + "end": 16768.32, + "probability": 0.7333 + }, + { + "start": 16768.32, + "end": 16768.68, + "probability": 0.94 + }, + { + "start": 16782.8, + "end": 16785.62, + "probability": 0.5622 + }, + { + "start": 16786.56, + "end": 16793.38, + "probability": 0.8696 + }, + { + "start": 16794.8, + "end": 16798.0, + "probability": 0.9278 + }, + { + "start": 16798.44, + "end": 16803.24, + "probability": 0.9749 + }, + { + "start": 16803.4, + "end": 16804.98, + "probability": 0.9358 + }, + { + "start": 16806.04, + "end": 16809.3, + "probability": 0.8885 + }, + { + "start": 16811.52, + "end": 16812.4, + "probability": 0.7578 + }, + { + "start": 16814.0, + "end": 16814.48, + "probability": 0.592 + }, + { + "start": 16814.5, + "end": 16815.06, + "probability": 0.9514 + }, + { + "start": 16815.14, + "end": 16816.16, + "probability": 0.6032 + }, + { + "start": 16816.24, + "end": 16819.18, + "probability": 0.9436 + }, + { + "start": 16819.18, + "end": 16822.38, + "probability": 0.9803 + }, + { + "start": 16824.18, + "end": 16827.92, + "probability": 0.9873 + }, + { + "start": 16827.92, + "end": 16831.32, + "probability": 0.9941 + }, + { + "start": 16832.46, + "end": 16834.28, + "probability": 0.8165 + }, + { + "start": 16834.98, + "end": 16835.7, + "probability": 0.5282 + }, + { + "start": 16836.68, + "end": 16839.0, + "probability": 0.9686 + }, + { + "start": 16840.4, + "end": 16844.92, + "probability": 0.9157 + }, + { + "start": 16844.92, + "end": 16848.78, + "probability": 0.8915 + }, + { + "start": 16849.98, + "end": 16852.86, + "probability": 0.9857 + }, + { + "start": 16853.64, + "end": 16855.76, + "probability": 0.9976 + }, + { + "start": 16856.28, + "end": 16857.25, + "probability": 0.6295 + }, + { + "start": 16857.98, + "end": 16864.38, + "probability": 0.9738 + }, + { + "start": 16864.94, + "end": 16866.7, + "probability": 0.8847 + }, + { + "start": 16867.48, + "end": 16868.04, + "probability": 0.9108 + }, + { + "start": 16869.38, + "end": 16871.36, + "probability": 0.9035 + }, + { + "start": 16872.28, + "end": 16876.14, + "probability": 0.9653 + }, + { + "start": 16876.18, + "end": 16877.06, + "probability": 0.7094 + }, + { + "start": 16877.92, + "end": 16882.56, + "probability": 0.9131 + }, + { + "start": 16884.26, + "end": 16887.42, + "probability": 0.9956 + }, + { + "start": 16887.42, + "end": 16891.3, + "probability": 0.9817 + }, + { + "start": 16891.78, + "end": 16894.24, + "probability": 0.9818 + }, + { + "start": 16895.38, + "end": 16898.26, + "probability": 0.95 + }, + { + "start": 16898.36, + "end": 16902.5, + "probability": 0.9941 + }, + { + "start": 16903.72, + "end": 16907.08, + "probability": 0.9901 + }, + { + "start": 16908.28, + "end": 16911.36, + "probability": 0.8097 + }, + { + "start": 16911.84, + "end": 16914.84, + "probability": 0.7815 + }, + { + "start": 16914.9, + "end": 16917.0, + "probability": 0.8291 + }, + { + "start": 16917.56, + "end": 16919.7, + "probability": 0.9256 + }, + { + "start": 16920.66, + "end": 16926.4, + "probability": 0.9896 + }, + { + "start": 16927.16, + "end": 16932.84, + "probability": 0.992 + }, + { + "start": 16933.7, + "end": 16936.4, + "probability": 0.8604 + }, + { + "start": 16936.88, + "end": 16939.36, + "probability": 0.8758 + }, + { + "start": 16940.64, + "end": 16942.04, + "probability": 0.9251 + }, + { + "start": 16942.92, + "end": 16947.74, + "probability": 0.9355 + }, + { + "start": 16948.94, + "end": 16949.74, + "probability": 0.6555 + }, + { + "start": 16949.9, + "end": 16953.84, + "probability": 0.9771 + }, + { + "start": 16954.5, + "end": 16956.52, + "probability": 0.7317 + }, + { + "start": 16957.2, + "end": 16960.04, + "probability": 0.9628 + }, + { + "start": 16961.48, + "end": 16963.92, + "probability": 0.7093 + }, + { + "start": 16964.86, + "end": 16970.16, + "probability": 0.8419 + }, + { + "start": 16970.16, + "end": 16975.24, + "probability": 0.9954 + }, + { + "start": 16976.06, + "end": 16978.98, + "probability": 0.89 + }, + { + "start": 16979.52, + "end": 16980.14, + "probability": 0.6019 + }, + { + "start": 16980.26, + "end": 16984.02, + "probability": 0.9366 + }, + { + "start": 16984.1, + "end": 16985.24, + "probability": 0.7966 + }, + { + "start": 16985.62, + "end": 16987.16, + "probability": 0.9366 + }, + { + "start": 16988.16, + "end": 16992.28, + "probability": 0.9902 + }, + { + "start": 16992.6, + "end": 16996.44, + "probability": 0.972 + }, + { + "start": 16996.6, + "end": 16997.82, + "probability": 0.9497 + }, + { + "start": 16998.18, + "end": 17004.28, + "probability": 0.9706 + }, + { + "start": 17005.12, + "end": 17006.68, + "probability": 0.5044 + }, + { + "start": 17007.28, + "end": 17009.24, + "probability": 0.6097 + }, + { + "start": 17010.2, + "end": 17012.9, + "probability": 0.9927 + }, + { + "start": 17013.48, + "end": 17014.64, + "probability": 0.6724 + }, + { + "start": 17018.14, + "end": 17021.96, + "probability": 0.9027 + }, + { + "start": 17023.6, + "end": 17027.8, + "probability": 0.9946 + }, + { + "start": 17027.8, + "end": 17030.94, + "probability": 0.9746 + }, + { + "start": 17031.64, + "end": 17033.82, + "probability": 0.7767 + }, + { + "start": 17034.6, + "end": 17035.66, + "probability": 0.8017 + }, + { + "start": 17035.78, + "end": 17036.98, + "probability": 0.9665 + }, + { + "start": 17037.44, + "end": 17043.96, + "probability": 0.8623 + }, + { + "start": 17043.96, + "end": 17045.94, + "probability": 0.9651 + }, + { + "start": 17046.96, + "end": 17053.02, + "probability": 0.9819 + }, + { + "start": 17053.76, + "end": 17057.52, + "probability": 0.8752 + }, + { + "start": 17058.36, + "end": 17059.8, + "probability": 0.7059 + }, + { + "start": 17059.8, + "end": 17064.7, + "probability": 0.9354 + }, + { + "start": 17065.16, + "end": 17067.04, + "probability": 0.5976 + }, + { + "start": 17068.46, + "end": 17069.94, + "probability": 0.9932 + }, + { + "start": 17070.46, + "end": 17073.6, + "probability": 0.9909 + }, + { + "start": 17073.6, + "end": 17076.18, + "probability": 0.9857 + }, + { + "start": 17077.24, + "end": 17078.26, + "probability": 0.9608 + }, + { + "start": 17080.12, + "end": 17082.28, + "probability": 0.9579 + }, + { + "start": 17083.08, + "end": 17086.96, + "probability": 0.9821 + }, + { + "start": 17088.08, + "end": 17089.0, + "probability": 0.9949 + }, + { + "start": 17090.9, + "end": 17092.46, + "probability": 0.9307 + }, + { + "start": 17092.54, + "end": 17094.66, + "probability": 0.9977 + }, + { + "start": 17095.74, + "end": 17098.1, + "probability": 0.5992 + }, + { + "start": 17098.24, + "end": 17099.04, + "probability": 0.5464 + }, + { + "start": 17099.96, + "end": 17102.88, + "probability": 0.7933 + }, + { + "start": 17104.0, + "end": 17105.94, + "probability": 0.7731 + }, + { + "start": 17106.76, + "end": 17110.42, + "probability": 0.9976 + }, + { + "start": 17111.12, + "end": 17112.86, + "probability": 0.9624 + }, + { + "start": 17113.66, + "end": 17116.2, + "probability": 0.994 + }, + { + "start": 17116.2, + "end": 17120.68, + "probability": 0.9579 + }, + { + "start": 17121.66, + "end": 17123.3, + "probability": 0.8411 + }, + { + "start": 17124.06, + "end": 17125.38, + "probability": 0.7505 + }, + { + "start": 17125.96, + "end": 17126.84, + "probability": 0.7889 + }, + { + "start": 17127.94, + "end": 17128.98, + "probability": 0.9471 + }, + { + "start": 17129.52, + "end": 17131.38, + "probability": 0.9397 + }, + { + "start": 17131.96, + "end": 17134.42, + "probability": 0.9976 + }, + { + "start": 17135.16, + "end": 17139.78, + "probability": 0.9927 + }, + { + "start": 17140.12, + "end": 17140.9, + "probability": 0.9547 + }, + { + "start": 17141.6, + "end": 17143.84, + "probability": 0.9511 + }, + { + "start": 17144.5, + "end": 17145.38, + "probability": 0.8624 + }, + { + "start": 17145.94, + "end": 17146.74, + "probability": 0.9093 + }, + { + "start": 17146.82, + "end": 17149.98, + "probability": 0.9941 + }, + { + "start": 17150.9, + "end": 17154.62, + "probability": 0.6955 + }, + { + "start": 17155.34, + "end": 17157.88, + "probability": 0.6047 + }, + { + "start": 17158.66, + "end": 17160.78, + "probability": 0.9624 + }, + { + "start": 17160.82, + "end": 17165.38, + "probability": 0.8272 + }, + { + "start": 17166.54, + "end": 17170.36, + "probability": 0.9803 + }, + { + "start": 17170.36, + "end": 17173.26, + "probability": 0.9892 + }, + { + "start": 17173.86, + "end": 17175.84, + "probability": 0.9897 + }, + { + "start": 17176.9, + "end": 17177.96, + "probability": 0.5757 + }, + { + "start": 17178.6, + "end": 17180.58, + "probability": 0.9616 + }, + { + "start": 17181.2, + "end": 17182.4, + "probability": 0.6549 + }, + { + "start": 17183.04, + "end": 17183.62, + "probability": 0.8604 + }, + { + "start": 17184.36, + "end": 17185.05, + "probability": 0.559 + }, + { + "start": 17185.66, + "end": 17188.38, + "probability": 0.8755 + }, + { + "start": 17188.46, + "end": 17190.84, + "probability": 0.8888 + }, + { + "start": 17191.62, + "end": 17195.0, + "probability": 0.9966 + }, + { + "start": 17196.08, + "end": 17200.74, + "probability": 0.7959 + }, + { + "start": 17201.62, + "end": 17202.66, + "probability": 0.7726 + }, + { + "start": 17203.4, + "end": 17208.7, + "probability": 0.9883 + }, + { + "start": 17209.5, + "end": 17214.66, + "probability": 0.9404 + }, + { + "start": 17214.66, + "end": 17217.86, + "probability": 0.9971 + }, + { + "start": 17218.62, + "end": 17221.56, + "probability": 0.9985 + }, + { + "start": 17222.52, + "end": 17222.8, + "probability": 0.7363 + }, + { + "start": 17225.34, + "end": 17228.26, + "probability": 0.6807 + }, + { + "start": 17231.64, + "end": 17234.1, + "probability": 0.7788 + }, + { + "start": 17234.64, + "end": 17235.58, + "probability": 0.5589 + }, + { + "start": 17235.88, + "end": 17236.88, + "probability": 0.7469 + }, + { + "start": 17237.2, + "end": 17238.2, + "probability": 0.7962 + }, + { + "start": 17238.32, + "end": 17240.35, + "probability": 0.7318 + }, + { + "start": 17240.56, + "end": 17240.92, + "probability": 0.6066 + }, + { + "start": 17240.94, + "end": 17241.44, + "probability": 0.6007 + }, + { + "start": 17244.28, + "end": 17249.08, + "probability": 0.0149 + }, + { + "start": 17266.2, + "end": 17266.88, + "probability": 0.3044 + }, + { + "start": 17266.88, + "end": 17267.57, + "probability": 0.3074 + }, + { + "start": 17268.02, + "end": 17270.02, + "probability": 0.7881 + }, + { + "start": 17270.3, + "end": 17271.86, + "probability": 0.695 + }, + { + "start": 17272.56, + "end": 17275.24, + "probability": 0.71 + }, + { + "start": 17275.82, + "end": 17276.75, + "probability": 0.5219 + }, + { + "start": 17277.88, + "end": 17280.96, + "probability": 0.8901 + }, + { + "start": 17281.56, + "end": 17281.88, + "probability": 0.2462 + } + ], + "segments_count": 5692, + "words_count": 29319, + "avg_words_per_segment": 5.1509, + "avg_segment_duration": 2.205, + "avg_words_per_minute": 101.6228, + "plenum_id": "38090", + "duration": 17310.48, + "title": null, + "plenum_date": "2014-06-25" +} \ No newline at end of file