diff --git "a/5395/metadata.json" "b/5395/metadata.json" new file mode 100644--- /dev/null +++ "b/5395/metadata.json" @@ -0,0 +1,17357 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "5395", + "quality_score": 0.8607, + "per_segment_quality_scores": [ + { + "start": 73.46, + "end": 77.8, + "probability": 0.0093 + }, + { + "start": 79.82, + "end": 84.24, + "probability": 0.1211 + }, + { + "start": 98.82, + "end": 100.4, + "probability": 0.1473 + }, + { + "start": 100.8, + "end": 101.3, + "probability": 0.2724 + }, + { + "start": 102.78, + "end": 102.86, + "probability": 0.1103 + }, + { + "start": 102.86, + "end": 103.38, + "probability": 0.1149 + }, + { + "start": 106.6, + "end": 106.98, + "probability": 0.1848 + }, + { + "start": 111.6, + "end": 114.82, + "probability": 0.0341 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 181.0, + "end": 181.0, + "probability": 0.0 + }, + { + "start": 185.58, + "end": 186.42, + "probability": 0.44 + }, + { + "start": 187.4, + "end": 188.32, + "probability": 0.6946 + }, + { + "start": 188.32, + "end": 192.36, + "probability": 0.6735 + }, + { + "start": 193.18, + "end": 194.88, + "probability": 0.1164 + }, + { + "start": 195.28, + "end": 200.66, + "probability": 0.863 + }, + { + "start": 201.56, + "end": 204.34, + "probability": 0.4706 + }, + { + "start": 205.06, + "end": 206.06, + "probability": 0.9497 + }, + { + "start": 207.72, + "end": 210.36, + "probability": 0.3021 + }, + { + "start": 211.14, + "end": 211.24, + "probability": 0.7702 + }, + { + "start": 211.34, + "end": 213.22, + "probability": 0.7921 + }, + { + "start": 213.8, + "end": 214.64, + "probability": 0.221 + }, + { + "start": 215.7, + "end": 218.92, + "probability": 0.5757 + }, + { + "start": 220.82, + "end": 222.48, + "probability": 0.7728 + }, + { + "start": 228.01, + "end": 230.34, + "probability": 0.0262 + }, + { + "start": 230.38, + "end": 230.78, + "probability": 0.1488 + }, + { + "start": 231.58, + "end": 233.74, + "probability": 0.0698 + }, + { + "start": 234.58, + "end": 236.7, + "probability": 0.0932 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.0, + "end": 310.0, + "probability": 0.0 + }, + { + "start": 310.5, + "end": 314.54, + "probability": 0.9168 + }, + { + "start": 315.0, + "end": 319.66, + "probability": 0.9675 + }, + { + "start": 319.66, + "end": 325.1, + "probability": 0.9927 + }, + { + "start": 325.92, + "end": 327.4, + "probability": 0.9716 + }, + { + "start": 327.74, + "end": 329.32, + "probability": 0.8779 + }, + { + "start": 329.7, + "end": 331.92, + "probability": 0.8445 + }, + { + "start": 331.98, + "end": 337.12, + "probability": 0.9103 + }, + { + "start": 338.78, + "end": 341.18, + "probability": 0.9958 + }, + { + "start": 342.08, + "end": 343.14, + "probability": 0.5396 + }, + { + "start": 343.76, + "end": 345.52, + "probability": 0.8162 + }, + { + "start": 346.08, + "end": 350.92, + "probability": 0.9911 + }, + { + "start": 350.92, + "end": 356.32, + "probability": 0.5956 + }, + { + "start": 357.08, + "end": 359.46, + "probability": 0.5631 + }, + { + "start": 360.12, + "end": 362.56, + "probability": 0.9845 + }, + { + "start": 363.22, + "end": 365.67, + "probability": 0.8962 + }, + { + "start": 366.46, + "end": 370.34, + "probability": 0.9927 + }, + { + "start": 370.34, + "end": 375.26, + "probability": 0.9061 + }, + { + "start": 376.6, + "end": 380.2, + "probability": 0.7485 + }, + { + "start": 381.5, + "end": 382.84, + "probability": 0.8984 + }, + { + "start": 383.98, + "end": 387.78, + "probability": 0.9775 + }, + { + "start": 388.72, + "end": 389.62, + "probability": 0.8672 + }, + { + "start": 390.16, + "end": 392.28, + "probability": 0.6732 + }, + { + "start": 392.48, + "end": 392.74, + "probability": 0.9134 + }, + { + "start": 395.22, + "end": 396.9, + "probability": 0.7726 + }, + { + "start": 397.58, + "end": 401.92, + "probability": 0.9372 + }, + { + "start": 402.72, + "end": 403.31, + "probability": 0.4997 + }, + { + "start": 404.62, + "end": 405.52, + "probability": 0.7124 + }, + { + "start": 406.44, + "end": 406.64, + "probability": 0.8635 + }, + { + "start": 407.3, + "end": 408.24, + "probability": 0.7547 + }, + { + "start": 409.3, + "end": 410.62, + "probability": 0.5659 + }, + { + "start": 411.06, + "end": 412.66, + "probability": 0.579 + }, + { + "start": 412.76, + "end": 414.32, + "probability": 0.1268 + }, + { + "start": 414.62, + "end": 415.78, + "probability": 0.8959 + }, + { + "start": 416.84, + "end": 423.68, + "probability": 0.879 + }, + { + "start": 424.22, + "end": 425.17, + "probability": 0.6194 + }, + { + "start": 425.8, + "end": 429.22, + "probability": 0.7982 + }, + { + "start": 429.82, + "end": 434.3, + "probability": 0.9546 + }, + { + "start": 434.86, + "end": 435.1, + "probability": 0.6084 + }, + { + "start": 435.24, + "end": 439.44, + "probability": 0.997 + }, + { + "start": 439.73, + "end": 443.42, + "probability": 0.9979 + }, + { + "start": 443.42, + "end": 446.34, + "probability": 0.9515 + }, + { + "start": 446.96, + "end": 450.26, + "probability": 0.9869 + }, + { + "start": 450.8, + "end": 452.0, + "probability": 0.7163 + }, + { + "start": 453.26, + "end": 454.52, + "probability": 0.864 + }, + { + "start": 455.24, + "end": 457.2, + "probability": 0.9836 + }, + { + "start": 457.4, + "end": 457.94, + "probability": 0.2726 + }, + { + "start": 458.38, + "end": 458.8, + "probability": 0.7701 + }, + { + "start": 458.8, + "end": 459.68, + "probability": 0.9588 + }, + { + "start": 460.2, + "end": 461.8, + "probability": 0.9014 + }, + { + "start": 462.66, + "end": 465.66, + "probability": 0.2584 + }, + { + "start": 469.34, + "end": 470.08, + "probability": 0.3815 + }, + { + "start": 471.02, + "end": 472.62, + "probability": 0.7631 + }, + { + "start": 473.2, + "end": 474.46, + "probability": 0.9256 + }, + { + "start": 475.36, + "end": 476.68, + "probability": 0.8973 + }, + { + "start": 477.64, + "end": 482.54, + "probability": 0.9841 + }, + { + "start": 482.62, + "end": 484.6, + "probability": 0.6611 + }, + { + "start": 484.76, + "end": 486.92, + "probability": 0.7201 + }, + { + "start": 487.26, + "end": 487.9, + "probability": 0.6688 + }, + { + "start": 487.96, + "end": 489.32, + "probability": 0.7083 + }, + { + "start": 489.78, + "end": 491.58, + "probability": 0.5544 + }, + { + "start": 491.7, + "end": 492.32, + "probability": 0.5441 + }, + { + "start": 492.32, + "end": 492.74, + "probability": 0.6495 + }, + { + "start": 492.84, + "end": 493.84, + "probability": 0.6006 + }, + { + "start": 494.34, + "end": 495.08, + "probability": 0.8052 + }, + { + "start": 495.28, + "end": 495.6, + "probability": 0.0029 + }, + { + "start": 509.84, + "end": 510.04, + "probability": 0.0023 + }, + { + "start": 510.04, + "end": 512.2, + "probability": 0.6723 + }, + { + "start": 512.2, + "end": 512.98, + "probability": 0.7216 + }, + { + "start": 514.56, + "end": 515.9, + "probability": 0.6206 + }, + { + "start": 519.58, + "end": 520.64, + "probability": 0.4333 + }, + { + "start": 520.72, + "end": 525.34, + "probability": 0.9804 + }, + { + "start": 526.16, + "end": 526.86, + "probability": 0.5798 + }, + { + "start": 526.96, + "end": 528.22, + "probability": 0.563 + }, + { + "start": 528.72, + "end": 530.3, + "probability": 0.9598 + }, + { + "start": 530.74, + "end": 532.28, + "probability": 0.7375 + }, + { + "start": 532.72, + "end": 533.28, + "probability": 0.6191 + }, + { + "start": 533.54, + "end": 533.74, + "probability": 0.2728 + }, + { + "start": 533.74, + "end": 533.74, + "probability": 0.6754 + }, + { + "start": 533.74, + "end": 535.6, + "probability": 0.7393 + }, + { + "start": 536.0, + "end": 539.04, + "probability": 0.7002 + }, + { + "start": 539.6, + "end": 541.58, + "probability": 0.4305 + }, + { + "start": 542.42, + "end": 543.6, + "probability": 0.7145 + }, + { + "start": 544.04, + "end": 544.96, + "probability": 0.5616 + }, + { + "start": 546.3, + "end": 546.98, + "probability": 0.3077 + }, + { + "start": 547.02, + "end": 547.7, + "probability": 0.7375 + }, + { + "start": 547.7, + "end": 548.18, + "probability": 0.7108 + }, + { + "start": 549.18, + "end": 551.78, + "probability": 0.9639 + }, + { + "start": 552.34, + "end": 553.0, + "probability": 0.7633 + }, + { + "start": 553.62, + "end": 553.74, + "probability": 0.5144 + }, + { + "start": 553.74, + "end": 554.28, + "probability": 0.2918 + }, + { + "start": 559.62, + "end": 560.86, + "probability": 0.8714 + }, + { + "start": 562.49, + "end": 563.96, + "probability": 0.6435 + }, + { + "start": 563.96, + "end": 564.1, + "probability": 0.0101 + }, + { + "start": 564.16, + "end": 564.18, + "probability": 0.0253 + }, + { + "start": 564.3, + "end": 564.36, + "probability": 0.1044 + }, + { + "start": 564.36, + "end": 564.38, + "probability": 0.0904 + }, + { + "start": 564.38, + "end": 564.38, + "probability": 0.1809 + }, + { + "start": 564.38, + "end": 565.98, + "probability": 0.8857 + }, + { + "start": 566.06, + "end": 568.0, + "probability": 0.5796 + }, + { + "start": 570.23, + "end": 573.36, + "probability": 0.4972 + }, + { + "start": 573.46, + "end": 576.22, + "probability": 0.7079 + }, + { + "start": 577.02, + "end": 581.03, + "probability": 0.5922 + }, + { + "start": 582.0, + "end": 584.76, + "probability": 0.9912 + }, + { + "start": 604.22, + "end": 604.7, + "probability": 0.4945 + }, + { + "start": 605.1, + "end": 607.06, + "probability": 0.7861 + }, + { + "start": 607.59, + "end": 608.3, + "probability": 0.939 + }, + { + "start": 609.78, + "end": 611.2, + "probability": 0.9023 + }, + { + "start": 611.88, + "end": 612.69, + "probability": 0.2828 + }, + { + "start": 613.86, + "end": 617.41, + "probability": 0.9262 + }, + { + "start": 618.38, + "end": 622.76, + "probability": 0.9968 + }, + { + "start": 622.92, + "end": 625.6, + "probability": 0.9873 + }, + { + "start": 626.66, + "end": 629.58, + "probability": 0.7062 + }, + { + "start": 629.86, + "end": 634.44, + "probability": 0.9958 + }, + { + "start": 635.94, + "end": 639.34, + "probability": 0.7338 + }, + { + "start": 639.58, + "end": 642.98, + "probability": 0.8444 + }, + { + "start": 643.26, + "end": 647.08, + "probability": 0.9954 + }, + { + "start": 649.0, + "end": 650.7, + "probability": 0.9836 + }, + { + "start": 650.88, + "end": 654.8, + "probability": 0.9954 + }, + { + "start": 655.76, + "end": 659.42, + "probability": 0.9946 + }, + { + "start": 659.48, + "end": 663.86, + "probability": 0.9857 + }, + { + "start": 664.78, + "end": 668.88, + "probability": 0.9709 + }, + { + "start": 669.06, + "end": 670.84, + "probability": 0.9971 + }, + { + "start": 671.4, + "end": 675.16, + "probability": 0.89 + }, + { + "start": 675.76, + "end": 676.9, + "probability": 0.9196 + }, + { + "start": 678.0, + "end": 681.06, + "probability": 0.5022 + }, + { + "start": 681.72, + "end": 683.74, + "probability": 0.7145 + }, + { + "start": 683.82, + "end": 685.31, + "probability": 0.6764 + }, + { + "start": 686.58, + "end": 689.02, + "probability": 0.4884 + }, + { + "start": 689.28, + "end": 689.52, + "probability": 0.6901 + }, + { + "start": 689.72, + "end": 696.14, + "probability": 0.9242 + }, + { + "start": 696.96, + "end": 700.96, + "probability": 0.9707 + }, + { + "start": 702.2, + "end": 704.32, + "probability": 0.9651 + }, + { + "start": 704.86, + "end": 707.12, + "probability": 0.9936 + }, + { + "start": 708.1, + "end": 709.02, + "probability": 0.2016 + }, + { + "start": 709.62, + "end": 709.9, + "probability": 0.0447 + }, + { + "start": 711.86, + "end": 717.48, + "probability": 0.5626 + }, + { + "start": 717.86, + "end": 718.1, + "probability": 0.0015 + }, + { + "start": 718.1, + "end": 718.62, + "probability": 0.561 + }, + { + "start": 732.72, + "end": 734.4, + "probability": 0.547 + }, + { + "start": 734.52, + "end": 737.78, + "probability": 0.8148 + }, + { + "start": 739.1, + "end": 740.88, + "probability": 0.4694 + }, + { + "start": 740.98, + "end": 742.46, + "probability": 0.7572 + }, + { + "start": 742.98, + "end": 744.8, + "probability": 0.8827 + }, + { + "start": 745.26, + "end": 746.9, + "probability": 0.0918 + }, + { + "start": 747.0, + "end": 750.3, + "probability": 0.3193 + }, + { + "start": 750.86, + "end": 752.2, + "probability": 0.7699 + }, + { + "start": 752.34, + "end": 752.42, + "probability": 0.526 + }, + { + "start": 755.36, + "end": 755.96, + "probability": 0.5442 + }, + { + "start": 756.2, + "end": 763.36, + "probability": 0.0773 + }, + { + "start": 769.56, + "end": 771.36, + "probability": 0.4475 + }, + { + "start": 771.48, + "end": 774.28, + "probability": 0.6137 + }, + { + "start": 774.38, + "end": 776.34, + "probability": 0.5232 + }, + { + "start": 776.72, + "end": 780.54, + "probability": 0.9689 + }, + { + "start": 780.7, + "end": 782.88, + "probability": 0.9892 + }, + { + "start": 783.0, + "end": 784.5, + "probability": 0.8311 + }, + { + "start": 785.12, + "end": 786.1, + "probability": 0.6726 + }, + { + "start": 786.16, + "end": 787.88, + "probability": 0.8013 + }, + { + "start": 791.22, + "end": 793.46, + "probability": 0.6745 + }, + { + "start": 794.0, + "end": 798.58, + "probability": 0.9819 + }, + { + "start": 799.22, + "end": 803.32, + "probability": 0.9995 + }, + { + "start": 803.32, + "end": 807.22, + "probability": 0.9984 + }, + { + "start": 808.0, + "end": 811.18, + "probability": 0.8607 + }, + { + "start": 811.32, + "end": 811.92, + "probability": 0.6653 + }, + { + "start": 812.2, + "end": 813.28, + "probability": 0.9065 + }, + { + "start": 814.12, + "end": 819.88, + "probability": 0.9951 + }, + { + "start": 820.6, + "end": 821.86, + "probability": 0.9013 + }, + { + "start": 822.5, + "end": 825.02, + "probability": 0.9133 + }, + { + "start": 825.36, + "end": 828.6, + "probability": 0.9864 + }, + { + "start": 829.06, + "end": 829.84, + "probability": 0.6947 + }, + { + "start": 830.5, + "end": 833.4, + "probability": 0.901 + }, + { + "start": 834.1, + "end": 835.95, + "probability": 0.7713 + }, + { + "start": 837.02, + "end": 838.14, + "probability": 0.8062 + }, + { + "start": 839.42, + "end": 841.88, + "probability": 0.822 + }, + { + "start": 842.56, + "end": 843.88, + "probability": 0.7467 + }, + { + "start": 843.98, + "end": 845.38, + "probability": 0.7255 + }, + { + "start": 845.86, + "end": 848.94, + "probability": 0.8425 + }, + { + "start": 849.16, + "end": 851.64, + "probability": 0.9857 + }, + { + "start": 851.64, + "end": 853.62, + "probability": 0.9959 + }, + { + "start": 854.18, + "end": 854.58, + "probability": 0.7579 + }, + { + "start": 855.1, + "end": 856.52, + "probability": 0.6174 + }, + { + "start": 858.2, + "end": 863.32, + "probability": 0.571 + }, + { + "start": 863.32, + "end": 867.68, + "probability": 0.031 + }, + { + "start": 867.9, + "end": 867.98, + "probability": 0.1217 + }, + { + "start": 867.98, + "end": 871.02, + "probability": 0.022 + }, + { + "start": 871.24, + "end": 871.46, + "probability": 0.0668 + }, + { + "start": 897.51, + "end": 900.72, + "probability": 0.7555 + }, + { + "start": 901.72, + "end": 903.6, + "probability": 0.5184 + }, + { + "start": 904.52, + "end": 905.05, + "probability": 0.6624 + }, + { + "start": 907.76, + "end": 908.1, + "probability": 0.0181 + }, + { + "start": 908.82, + "end": 912.68, + "probability": 0.8374 + }, + { + "start": 912.68, + "end": 914.56, + "probability": 0.7988 + }, + { + "start": 915.24, + "end": 918.56, + "probability": 0.5692 + }, + { + "start": 918.56, + "end": 920.22, + "probability": 0.8489 + }, + { + "start": 920.44, + "end": 920.87, + "probability": 0.1328 + }, + { + "start": 921.5, + "end": 922.74, + "probability": 0.8492 + }, + { + "start": 923.1, + "end": 924.2, + "probability": 0.6305 + }, + { + "start": 924.9, + "end": 927.44, + "probability": 0.6797 + }, + { + "start": 930.74, + "end": 935.72, + "probability": 0.9921 + }, + { + "start": 936.2, + "end": 936.58, + "probability": 0.7287 + }, + { + "start": 936.58, + "end": 939.6, + "probability": 0.8936 + }, + { + "start": 939.6, + "end": 940.14, + "probability": 0.6755 + }, + { + "start": 940.3, + "end": 941.84, + "probability": 0.8811 + }, + { + "start": 942.06, + "end": 943.6, + "probability": 0.4006 + }, + { + "start": 955.22, + "end": 956.72, + "probability": 0.9097 + }, + { + "start": 959.58, + "end": 960.14, + "probability": 0.2166 + }, + { + "start": 960.3, + "end": 961.26, + "probability": 0.108 + }, + { + "start": 962.08, + "end": 962.6, + "probability": 0.2558 + }, + { + "start": 964.94, + "end": 965.08, + "probability": 0.0317 + }, + { + "start": 965.18, + "end": 965.18, + "probability": 0.0451 + }, + { + "start": 965.18, + "end": 965.18, + "probability": 0.2982 + }, + { + "start": 965.18, + "end": 967.5, + "probability": 0.5571 + }, + { + "start": 968.06, + "end": 971.88, + "probability": 0.7301 + }, + { + "start": 972.84, + "end": 973.48, + "probability": 0.003 + }, + { + "start": 973.64, + "end": 975.56, + "probability": 0.1358 + }, + { + "start": 975.76, + "end": 978.06, + "probability": 0.8722 + }, + { + "start": 978.18, + "end": 979.88, + "probability": 0.9351 + }, + { + "start": 980.72, + "end": 986.36, + "probability": 0.9482 + }, + { + "start": 986.54, + "end": 987.04, + "probability": 0.8779 + }, + { + "start": 987.12, + "end": 991.06, + "probability": 0.9392 + }, + { + "start": 991.6, + "end": 991.98, + "probability": 0.9007 + }, + { + "start": 992.6, + "end": 994.88, + "probability": 0.9131 + }, + { + "start": 995.16, + "end": 996.88, + "probability": 0.9891 + }, + { + "start": 997.56, + "end": 1000.88, + "probability": 0.9088 + }, + { + "start": 1000.88, + "end": 1004.66, + "probability": 0.8775 + }, + { + "start": 1005.46, + "end": 1007.46, + "probability": 0.1626 + }, + { + "start": 1008.96, + "end": 1012.5, + "probability": 0.9772 + }, + { + "start": 1013.2, + "end": 1013.9, + "probability": 0.8012 + }, + { + "start": 1014.4, + "end": 1018.32, + "probability": 0.9923 + }, + { + "start": 1018.32, + "end": 1021.58, + "probability": 0.9945 + }, + { + "start": 1021.78, + "end": 1024.9, + "probability": 0.98 + }, + { + "start": 1024.9, + "end": 1025.48, + "probability": 0.4938 + }, + { + "start": 1025.56, + "end": 1026.92, + "probability": 0.8513 + }, + { + "start": 1027.2, + "end": 1028.72, + "probability": 0.7693 + }, + { + "start": 1029.28, + "end": 1033.5, + "probability": 0.9788 + }, + { + "start": 1033.5, + "end": 1037.82, + "probability": 0.9281 + }, + { + "start": 1038.54, + "end": 1042.06, + "probability": 0.9019 + }, + { + "start": 1042.72, + "end": 1047.58, + "probability": 0.9676 + }, + { + "start": 1048.04, + "end": 1048.48, + "probability": 0.5011 + }, + { + "start": 1048.68, + "end": 1051.76, + "probability": 0.9696 + }, + { + "start": 1051.76, + "end": 1055.04, + "probability": 0.9988 + }, + { + "start": 1055.64, + "end": 1058.12, + "probability": 0.9142 + }, + { + "start": 1058.58, + "end": 1063.06, + "probability": 0.7421 + }, + { + "start": 1063.06, + "end": 1067.64, + "probability": 0.9336 + }, + { + "start": 1067.88, + "end": 1069.44, + "probability": 0.8682 + }, + { + "start": 1069.98, + "end": 1076.28, + "probability": 0.9534 + }, + { + "start": 1076.46, + "end": 1080.44, + "probability": 0.8481 + }, + { + "start": 1080.98, + "end": 1081.8, + "probability": 0.6992 + }, + { + "start": 1082.14, + "end": 1085.82, + "probability": 0.982 + }, + { + "start": 1085.98, + "end": 1087.0, + "probability": 0.5146 + }, + { + "start": 1088.5, + "end": 1089.14, + "probability": 0.414 + }, + { + "start": 1089.14, + "end": 1091.14, + "probability": 0.7195 + }, + { + "start": 1091.34, + "end": 1092.54, + "probability": 0.7305 + }, + { + "start": 1092.98, + "end": 1093.46, + "probability": 0.5785 + }, + { + "start": 1093.62, + "end": 1093.96, + "probability": 0.9263 + }, + { + "start": 1094.7, + "end": 1096.4, + "probability": 0.5031 + }, + { + "start": 1097.12, + "end": 1097.26, + "probability": 0.3736 + }, + { + "start": 1097.6, + "end": 1098.38, + "probability": 0.75 + }, + { + "start": 1098.84, + "end": 1101.36, + "probability": 0.9095 + }, + { + "start": 1102.32, + "end": 1106.0, + "probability": 0.7492 + }, + { + "start": 1106.58, + "end": 1108.74, + "probability": 0.9338 + }, + { + "start": 1108.9, + "end": 1112.72, + "probability": 0.8331 + }, + { + "start": 1113.02, + "end": 1113.88, + "probability": 0.7028 + }, + { + "start": 1113.88, + "end": 1113.9, + "probability": 0.6475 + }, + { + "start": 1114.26, + "end": 1118.04, + "probability": 0.9808 + }, + { + "start": 1118.3, + "end": 1122.26, + "probability": 0.95 + }, + { + "start": 1122.26, + "end": 1127.44, + "probability": 0.8482 + }, + { + "start": 1127.9, + "end": 1130.08, + "probability": 0.9419 + }, + { + "start": 1130.64, + "end": 1133.36, + "probability": 0.9217 + }, + { + "start": 1133.88, + "end": 1134.96, + "probability": 0.8694 + }, + { + "start": 1135.66, + "end": 1137.76, + "probability": 0.9772 + }, + { + "start": 1141.62, + "end": 1144.18, + "probability": 0.79 + }, + { + "start": 1145.24, + "end": 1145.74, + "probability": 0.0239 + }, + { + "start": 1146.26, + "end": 1149.86, + "probability": 0.5849 + }, + { + "start": 1150.56, + "end": 1152.38, + "probability": 0.6125 + }, + { + "start": 1152.84, + "end": 1154.76, + "probability": 0.5985 + }, + { + "start": 1155.06, + "end": 1155.56, + "probability": 0.6784 + }, + { + "start": 1155.6, + "end": 1156.16, + "probability": 0.7449 + }, + { + "start": 1156.56, + "end": 1158.78, + "probability": 0.001 + }, + { + "start": 1167.0, + "end": 1169.34, + "probability": 0.0778 + }, + { + "start": 1171.84, + "end": 1175.22, + "probability": 0.0452 + }, + { + "start": 1176.22, + "end": 1178.54, + "probability": 0.4015 + }, + { + "start": 1178.66, + "end": 1185.02, + "probability": 0.9952 + }, + { + "start": 1185.56, + "end": 1186.64, + "probability": 0.1526 + }, + { + "start": 1187.38, + "end": 1188.94, + "probability": 0.8128 + }, + { + "start": 1189.68, + "end": 1189.88, + "probability": 0.0571 + }, + { + "start": 1189.88, + "end": 1190.6, + "probability": 0.4519 + }, + { + "start": 1190.6, + "end": 1192.06, + "probability": 0.7852 + }, + { + "start": 1192.46, + "end": 1194.86, + "probability": 0.8873 + }, + { + "start": 1194.86, + "end": 1197.14, + "probability": 0.9166 + }, + { + "start": 1197.28, + "end": 1198.12, + "probability": 0.8741 + }, + { + "start": 1198.4, + "end": 1200.0, + "probability": 0.7876 + }, + { + "start": 1202.18, + "end": 1203.34, + "probability": 0.0122 + }, + { + "start": 1218.78, + "end": 1223.0, + "probability": 0.324 + }, + { + "start": 1223.9, + "end": 1224.98, + "probability": 0.1951 + }, + { + "start": 1224.98, + "end": 1224.98, + "probability": 0.1066 + }, + { + "start": 1224.98, + "end": 1224.98, + "probability": 0.0107 + }, + { + "start": 1224.98, + "end": 1225.2, + "probability": 0.1649 + }, + { + "start": 1225.2, + "end": 1226.14, + "probability": 0.5435 + }, + { + "start": 1226.66, + "end": 1228.0, + "probability": 0.9652 + }, + { + "start": 1228.8, + "end": 1230.68, + "probability": 0.1006 + }, + { + "start": 1231.88, + "end": 1234.06, + "probability": 0.5212 + }, + { + "start": 1234.72, + "end": 1235.94, + "probability": 0.3639 + }, + { + "start": 1237.78, + "end": 1240.12, + "probability": 0.5405 + }, + { + "start": 1240.24, + "end": 1241.2, + "probability": 0.7765 + }, + { + "start": 1241.38, + "end": 1243.94, + "probability": 0.9734 + }, + { + "start": 1244.08, + "end": 1245.74, + "probability": 0.7219 + }, + { + "start": 1246.24, + "end": 1251.62, + "probability": 0.9869 + }, + { + "start": 1252.3, + "end": 1260.1, + "probability": 0.993 + }, + { + "start": 1260.1, + "end": 1266.42, + "probability": 0.9993 + }, + { + "start": 1266.5, + "end": 1266.94, + "probability": 0.7865 + }, + { + "start": 1267.52, + "end": 1269.44, + "probability": 0.9642 + }, + { + "start": 1270.1, + "end": 1270.1, + "probability": 0.5368 + }, + { + "start": 1270.1, + "end": 1276.72, + "probability": 0.8636 + }, + { + "start": 1278.8, + "end": 1281.46, + "probability": 0.9894 + }, + { + "start": 1281.82, + "end": 1285.86, + "probability": 0.531 + }, + { + "start": 1286.28, + "end": 1288.2, + "probability": 0.3968 + }, + { + "start": 1288.32, + "end": 1289.32, + "probability": 0.4534 + }, + { + "start": 1289.88, + "end": 1292.32, + "probability": 0.9571 + }, + { + "start": 1292.96, + "end": 1294.18, + "probability": 0.9404 + }, + { + "start": 1294.32, + "end": 1295.7, + "probability": 0.8501 + }, + { + "start": 1296.2, + "end": 1300.62, + "probability": 0.988 + }, + { + "start": 1300.98, + "end": 1302.24, + "probability": 0.9771 + }, + { + "start": 1302.98, + "end": 1304.14, + "probability": 0.2551 + }, + { + "start": 1304.44, + "end": 1304.78, + "probability": 0.0281 + }, + { + "start": 1315.06, + "end": 1315.54, + "probability": 0.2928 + }, + { + "start": 1316.56, + "end": 1317.34, + "probability": 0.1644 + }, + { + "start": 1317.34, + "end": 1318.66, + "probability": 0.5446 + }, + { + "start": 1319.7, + "end": 1320.74, + "probability": 0.7017 + }, + { + "start": 1320.82, + "end": 1321.42, + "probability": 0.5474 + }, + { + "start": 1322.62, + "end": 1327.3, + "probability": 0.7926 + }, + { + "start": 1328.3, + "end": 1333.3, + "probability": 0.9487 + }, + { + "start": 1333.3, + "end": 1337.48, + "probability": 0.9918 + }, + { + "start": 1339.94, + "end": 1341.6, + "probability": 0.5852 + }, + { + "start": 1342.14, + "end": 1343.7, + "probability": 0.8882 + }, + { + "start": 1344.76, + "end": 1346.17, + "probability": 0.328 + }, + { + "start": 1346.86, + "end": 1348.69, + "probability": 0.19 + }, + { + "start": 1349.7, + "end": 1354.48, + "probability": 0.929 + }, + { + "start": 1355.38, + "end": 1358.96, + "probability": 0.8341 + }, + { + "start": 1358.96, + "end": 1361.42, + "probability": 0.9946 + }, + { + "start": 1362.26, + "end": 1364.22, + "probability": 0.7498 + }, + { + "start": 1365.14, + "end": 1367.8, + "probability": 0.7621 + }, + { + "start": 1369.65, + "end": 1372.92, + "probability": 0.9527 + }, + { + "start": 1373.7, + "end": 1376.74, + "probability": 0.5596 + }, + { + "start": 1377.92, + "end": 1379.78, + "probability": 0.9805 + }, + { + "start": 1380.58, + "end": 1386.16, + "probability": 0.9233 + }, + { + "start": 1386.6, + "end": 1387.14, + "probability": 0.7267 + }, + { + "start": 1387.18, + "end": 1387.74, + "probability": 0.7628 + }, + { + "start": 1387.8, + "end": 1388.34, + "probability": 0.8227 + }, + { + "start": 1388.46, + "end": 1389.1, + "probability": 0.8344 + }, + { + "start": 1389.16, + "end": 1389.86, + "probability": 0.9256 + }, + { + "start": 1389.92, + "end": 1390.76, + "probability": 0.905 + }, + { + "start": 1391.42, + "end": 1392.78, + "probability": 0.8744 + }, + { + "start": 1392.9, + "end": 1393.6, + "probability": 0.6144 + }, + { + "start": 1393.62, + "end": 1394.54, + "probability": 0.7927 + }, + { + "start": 1394.62, + "end": 1395.3, + "probability": 0.7092 + }, + { + "start": 1395.34, + "end": 1396.22, + "probability": 0.8483 + }, + { + "start": 1397.12, + "end": 1399.18, + "probability": 0.7789 + }, + { + "start": 1400.96, + "end": 1402.78, + "probability": 0.9048 + }, + { + "start": 1403.12, + "end": 1406.96, + "probability": 0.7473 + }, + { + "start": 1407.58, + "end": 1411.47, + "probability": 0.9961 + }, + { + "start": 1413.3, + "end": 1414.64, + "probability": 0.6634 + }, + { + "start": 1414.7, + "end": 1417.78, + "probability": 0.9638 + }, + { + "start": 1418.66, + "end": 1420.84, + "probability": 0.905 + }, + { + "start": 1420.84, + "end": 1424.4, + "probability": 0.7524 + }, + { + "start": 1425.32, + "end": 1428.58, + "probability": 0.5736 + }, + { + "start": 1429.64, + "end": 1435.95, + "probability": 0.9432 + }, + { + "start": 1436.38, + "end": 1441.22, + "probability": 0.9993 + }, + { + "start": 1441.88, + "end": 1444.58, + "probability": 0.965 + }, + { + "start": 1446.2, + "end": 1447.82, + "probability": 0.9996 + }, + { + "start": 1448.78, + "end": 1452.58, + "probability": 0.9992 + }, + { + "start": 1453.42, + "end": 1458.6, + "probability": 0.8264 + }, + { + "start": 1459.52, + "end": 1461.98, + "probability": 0.9268 + }, + { + "start": 1462.54, + "end": 1464.88, + "probability": 0.9956 + }, + { + "start": 1464.88, + "end": 1469.5, + "probability": 0.9468 + }, + { + "start": 1469.56, + "end": 1473.24, + "probability": 0.9867 + }, + { + "start": 1473.92, + "end": 1480.9, + "probability": 0.9719 + }, + { + "start": 1481.8, + "end": 1484.82, + "probability": 0.7708 + }, + { + "start": 1485.82, + "end": 1488.48, + "probability": 0.9604 + }, + { + "start": 1490.36, + "end": 1492.88, + "probability": 0.9878 + }, + { + "start": 1493.58, + "end": 1496.5, + "probability": 0.9055 + }, + { + "start": 1497.28, + "end": 1499.12, + "probability": 0.91 + }, + { + "start": 1499.6, + "end": 1502.92, + "probability": 0.9456 + }, + { + "start": 1503.62, + "end": 1505.32, + "probability": 0.9814 + }, + { + "start": 1506.56, + "end": 1507.0, + "probability": 0.8683 + }, + { + "start": 1507.1, + "end": 1509.78, + "probability": 0.7101 + }, + { + "start": 1509.78, + "end": 1512.9, + "probability": 0.9972 + }, + { + "start": 1514.26, + "end": 1517.32, + "probability": 0.8634 + }, + { + "start": 1517.9, + "end": 1519.12, + "probability": 0.9094 + }, + { + "start": 1519.86, + "end": 1523.36, + "probability": 0.9993 + }, + { + "start": 1525.1, + "end": 1526.94, + "probability": 0.8997 + }, + { + "start": 1527.06, + "end": 1529.14, + "probability": 0.9869 + }, + { + "start": 1529.14, + "end": 1532.8, + "probability": 0.991 + }, + { + "start": 1533.06, + "end": 1534.3, + "probability": 0.9346 + }, + { + "start": 1535.3, + "end": 1536.56, + "probability": 0.9577 + }, + { + "start": 1538.02, + "end": 1541.16, + "probability": 0.9744 + }, + { + "start": 1541.16, + "end": 1544.58, + "probability": 0.9983 + }, + { + "start": 1545.46, + "end": 1546.64, + "probability": 0.5572 + }, + { + "start": 1547.3, + "end": 1551.2, + "probability": 0.9728 + }, + { + "start": 1551.86, + "end": 1555.1, + "probability": 0.9967 + }, + { + "start": 1555.92, + "end": 1557.48, + "probability": 0.7264 + }, + { + "start": 1557.6, + "end": 1558.36, + "probability": 0.6652 + }, + { + "start": 1558.78, + "end": 1559.3, + "probability": 0.8243 + }, + { + "start": 1559.84, + "end": 1564.04, + "probability": 0.989 + }, + { + "start": 1564.82, + "end": 1567.34, + "probability": 0.9913 + }, + { + "start": 1567.38, + "end": 1569.14, + "probability": 0.9222 + }, + { + "start": 1569.92, + "end": 1571.3, + "probability": 0.9824 + }, + { + "start": 1572.56, + "end": 1575.8, + "probability": 0.7727 + }, + { + "start": 1575.92, + "end": 1578.74, + "probability": 0.9926 + }, + { + "start": 1579.52, + "end": 1583.88, + "probability": 0.9843 + }, + { + "start": 1584.68, + "end": 1588.4, + "probability": 0.9977 + }, + { + "start": 1588.48, + "end": 1591.04, + "probability": 0.9958 + }, + { + "start": 1591.66, + "end": 1592.84, + "probability": 0.9941 + }, + { + "start": 1593.44, + "end": 1594.06, + "probability": 0.3439 + }, + { + "start": 1594.86, + "end": 1597.24, + "probability": 0.9891 + }, + { + "start": 1597.24, + "end": 1600.42, + "probability": 0.9906 + }, + { + "start": 1600.54, + "end": 1602.96, + "probability": 0.7271 + }, + { + "start": 1602.96, + "end": 1605.62, + "probability": 0.9889 + }, + { + "start": 1606.2, + "end": 1607.12, + "probability": 0.5672 + }, + { + "start": 1607.84, + "end": 1610.54, + "probability": 0.7758 + }, + { + "start": 1611.22, + "end": 1613.36, + "probability": 0.9901 + }, + { + "start": 1613.36, + "end": 1615.98, + "probability": 0.9829 + }, + { + "start": 1616.54, + "end": 1617.58, + "probability": 0.9872 + }, + { + "start": 1618.62, + "end": 1622.94, + "probability": 0.9974 + }, + { + "start": 1623.76, + "end": 1627.52, + "probability": 0.9907 + }, + { + "start": 1628.13, + "end": 1631.6, + "probability": 0.9927 + }, + { + "start": 1631.68, + "end": 1633.74, + "probability": 0.7791 + }, + { + "start": 1633.88, + "end": 1634.68, + "probability": 0.7437 + }, + { + "start": 1635.28, + "end": 1639.82, + "probability": 0.9886 + }, + { + "start": 1639.9, + "end": 1645.5, + "probability": 0.9893 + }, + { + "start": 1646.08, + "end": 1647.96, + "probability": 0.9385 + }, + { + "start": 1647.96, + "end": 1650.96, + "probability": 0.9961 + }, + { + "start": 1651.04, + "end": 1654.76, + "probability": 0.9958 + }, + { + "start": 1655.9, + "end": 1659.1, + "probability": 0.8777 + }, + { + "start": 1659.98, + "end": 1659.98, + "probability": 0.0524 + }, + { + "start": 1659.98, + "end": 1664.36, + "probability": 0.8865 + }, + { + "start": 1664.36, + "end": 1668.44, + "probability": 0.9118 + }, + { + "start": 1668.82, + "end": 1670.25, + "probability": 0.9946 + }, + { + "start": 1670.58, + "end": 1673.52, + "probability": 0.932 + }, + { + "start": 1674.62, + "end": 1679.14, + "probability": 0.9642 + }, + { + "start": 1679.22, + "end": 1679.84, + "probability": 0.3505 + }, + { + "start": 1679.96, + "end": 1681.9, + "probability": 0.8591 + }, + { + "start": 1682.02, + "end": 1684.78, + "probability": 0.8808 + }, + { + "start": 1684.92, + "end": 1685.48, + "probability": 0.5738 + }, + { + "start": 1686.08, + "end": 1687.71, + "probability": 0.9831 + }, + { + "start": 1689.68, + "end": 1690.28, + "probability": 0.4406 + }, + { + "start": 1690.36, + "end": 1691.4, + "probability": 0.3788 + }, + { + "start": 1691.4, + "end": 1695.82, + "probability": 0.6721 + }, + { + "start": 1697.14, + "end": 1703.32, + "probability": 0.9854 + }, + { + "start": 1703.86, + "end": 1705.14, + "probability": 0.8151 + }, + { + "start": 1705.5, + "end": 1706.76, + "probability": 0.5099 + }, + { + "start": 1707.46, + "end": 1712.5, + "probability": 0.9531 + }, + { + "start": 1713.42, + "end": 1713.8, + "probability": 0.5151 + }, + { + "start": 1713.88, + "end": 1716.62, + "probability": 0.9672 + }, + { + "start": 1716.62, + "end": 1720.18, + "probability": 0.9931 + }, + { + "start": 1720.98, + "end": 1725.28, + "probability": 0.9868 + }, + { + "start": 1725.52, + "end": 1730.02, + "probability": 0.9979 + }, + { + "start": 1730.02, + "end": 1735.58, + "probability": 0.928 + }, + { + "start": 1735.86, + "end": 1740.36, + "probability": 0.1831 + }, + { + "start": 1740.36, + "end": 1743.22, + "probability": 0.9881 + }, + { + "start": 1743.86, + "end": 1748.66, + "probability": 0.9088 + }, + { + "start": 1749.32, + "end": 1752.96, + "probability": 0.699 + }, + { + "start": 1753.34, + "end": 1758.12, + "probability": 0.9668 + }, + { + "start": 1759.92, + "end": 1760.7, + "probability": 0.7312 + }, + { + "start": 1760.74, + "end": 1763.36, + "probability": 0.9662 + }, + { + "start": 1763.36, + "end": 1766.98, + "probability": 0.9381 + }, + { + "start": 1766.98, + "end": 1768.42, + "probability": 0.9781 + }, + { + "start": 1768.54, + "end": 1768.96, + "probability": 0.7292 + }, + { + "start": 1769.48, + "end": 1771.02, + "probability": 0.9486 + }, + { + "start": 1772.1, + "end": 1775.36, + "probability": 0.9954 + }, + { + "start": 1775.36, + "end": 1778.0, + "probability": 0.9561 + }, + { + "start": 1780.32, + "end": 1783.74, + "probability": 0.5993 + }, + { + "start": 1785.48, + "end": 1791.04, + "probability": 0.9887 + }, + { + "start": 1791.34, + "end": 1792.2, + "probability": 0.2834 + }, + { + "start": 1792.44, + "end": 1793.54, + "probability": 0.8247 + }, + { + "start": 1794.24, + "end": 1796.28, + "probability": 0.902 + }, + { + "start": 1796.5, + "end": 1798.54, + "probability": 0.9874 + }, + { + "start": 1799.16, + "end": 1801.3, + "probability": 0.737 + }, + { + "start": 1802.38, + "end": 1807.88, + "probability": 0.9163 + }, + { + "start": 1809.56, + "end": 1812.48, + "probability": 0.7448 + }, + { + "start": 1813.06, + "end": 1815.64, + "probability": 0.9854 + }, + { + "start": 1816.7, + "end": 1817.38, + "probability": 0.6128 + }, + { + "start": 1818.22, + "end": 1821.82, + "probability": 0.9948 + }, + { + "start": 1822.44, + "end": 1823.76, + "probability": 0.7781 + }, + { + "start": 1824.82, + "end": 1827.64, + "probability": 0.9644 + }, + { + "start": 1828.04, + "end": 1830.76, + "probability": 0.9833 + }, + { + "start": 1830.86, + "end": 1832.88, + "probability": 0.7734 + }, + { + "start": 1833.42, + "end": 1834.92, + "probability": 0.7793 + }, + { + "start": 1835.02, + "end": 1835.7, + "probability": 0.6816 + }, + { + "start": 1836.26, + "end": 1839.18, + "probability": 0.9121 + }, + { + "start": 1839.98, + "end": 1842.78, + "probability": 0.8731 + }, + { + "start": 1843.04, + "end": 1850.36, + "probability": 0.6664 + }, + { + "start": 1851.02, + "end": 1854.38, + "probability": 0.9955 + }, + { + "start": 1855.12, + "end": 1858.68, + "probability": 0.9919 + }, + { + "start": 1859.58, + "end": 1860.4, + "probability": 0.8646 + }, + { + "start": 1861.46, + "end": 1865.38, + "probability": 0.9173 + }, + { + "start": 1865.6, + "end": 1868.0, + "probability": 0.9706 + }, + { + "start": 1868.74, + "end": 1871.36, + "probability": 0.9701 + }, + { + "start": 1871.54, + "end": 1871.99, + "probability": 0.8202 + }, + { + "start": 1874.76, + "end": 1877.9, + "probability": 0.9956 + }, + { + "start": 1877.9, + "end": 1881.6, + "probability": 0.8817 + }, + { + "start": 1882.48, + "end": 1887.5, + "probability": 0.9798 + }, + { + "start": 1887.7, + "end": 1888.64, + "probability": 0.9842 + }, + { + "start": 1889.24, + "end": 1891.64, + "probability": 0.9957 + }, + { + "start": 1892.48, + "end": 1895.78, + "probability": 0.993 + }, + { + "start": 1896.38, + "end": 1898.48, + "probability": 0.9968 + }, + { + "start": 1899.12, + "end": 1901.84, + "probability": 0.8916 + }, + { + "start": 1902.38, + "end": 1905.42, + "probability": 0.9753 + }, + { + "start": 1906.02, + "end": 1909.01, + "probability": 0.9724 + }, + { + "start": 1909.36, + "end": 1912.96, + "probability": 0.9932 + }, + { + "start": 1913.84, + "end": 1915.34, + "probability": 0.6387 + }, + { + "start": 1915.9, + "end": 1917.56, + "probability": 0.9827 + }, + { + "start": 1918.2, + "end": 1919.74, + "probability": 0.5951 + }, + { + "start": 1920.04, + "end": 1921.88, + "probability": 0.9421 + }, + { + "start": 1922.1, + "end": 1925.04, + "probability": 0.9671 + }, + { + "start": 1925.26, + "end": 1929.36, + "probability": 0.9498 + }, + { + "start": 1931.44, + "end": 1934.44, + "probability": 0.4612 + }, + { + "start": 1935.22, + "end": 1936.25, + "probability": 0.3684 + }, + { + "start": 1936.42, + "end": 1938.28, + "probability": 0.7733 + }, + { + "start": 1938.38, + "end": 1939.72, + "probability": 0.9971 + }, + { + "start": 1939.82, + "end": 1941.64, + "probability": 0.9821 + }, + { + "start": 1942.12, + "end": 1943.34, + "probability": 0.9954 + }, + { + "start": 1943.44, + "end": 1944.3, + "probability": 0.992 + }, + { + "start": 1945.04, + "end": 1946.34, + "probability": 0.9569 + }, + { + "start": 1946.68, + "end": 1947.96, + "probability": 0.9919 + }, + { + "start": 1949.02, + "end": 1953.04, + "probability": 0.0462 + }, + { + "start": 1953.04, + "end": 1953.64, + "probability": 0.2456 + }, + { + "start": 1954.46, + "end": 1956.04, + "probability": 0.4997 + }, + { + "start": 1957.92, + "end": 1958.95, + "probability": 0.8656 + }, + { + "start": 1959.24, + "end": 1959.28, + "probability": 0.8907 + }, + { + "start": 1960.82, + "end": 1962.16, + "probability": 0.9011 + }, + { + "start": 1962.34, + "end": 1965.88, + "probability": 0.994 + }, + { + "start": 1965.98, + "end": 1968.46, + "probability": 0.5086 + }, + { + "start": 1968.86, + "end": 1970.16, + "probability": 0.8087 + }, + { + "start": 1970.48, + "end": 1972.9, + "probability": 0.4694 + }, + { + "start": 1973.04, + "end": 1973.84, + "probability": 0.9496 + }, + { + "start": 1974.0, + "end": 1974.62, + "probability": 0.5483 + }, + { + "start": 1974.88, + "end": 1977.44, + "probability": 0.9951 + }, + { + "start": 1978.16, + "end": 1982.08, + "probability": 0.8145 + }, + { + "start": 1983.18, + "end": 1983.52, + "probability": 0.0167 + }, + { + "start": 1983.52, + "end": 1984.52, + "probability": 0.15 + }, + { + "start": 1987.03, + "end": 1989.44, + "probability": 0.2944 + }, + { + "start": 1989.52, + "end": 1993.26, + "probability": 0.8801 + }, + { + "start": 1993.28, + "end": 1993.84, + "probability": 0.5832 + }, + { + "start": 1994.36, + "end": 1994.82, + "probability": 0.284 + }, + { + "start": 1994.9, + "end": 1996.44, + "probability": 0.9389 + }, + { + "start": 1996.94, + "end": 1997.89, + "probability": 0.9282 + }, + { + "start": 1998.6, + "end": 2001.4, + "probability": 0.7363 + }, + { + "start": 2001.94, + "end": 2006.44, + "probability": 0.9948 + }, + { + "start": 2007.62, + "end": 2007.72, + "probability": 0.3929 + }, + { + "start": 2008.64, + "end": 2008.94, + "probability": 0.1435 + }, + { + "start": 2008.94, + "end": 2011.25, + "probability": 0.2781 + }, + { + "start": 2012.12, + "end": 2015.22, + "probability": 0.5542 + }, + { + "start": 2015.36, + "end": 2015.46, + "probability": 0.3785 + }, + { + "start": 2015.5, + "end": 2015.62, + "probability": 0.0821 + }, + { + "start": 2015.66, + "end": 2016.62, + "probability": 0.8167 + }, + { + "start": 2016.66, + "end": 2018.54, + "probability": 0.7989 + }, + { + "start": 2018.58, + "end": 2019.16, + "probability": 0.3906 + }, + { + "start": 2019.28, + "end": 2022.14, + "probability": 0.7456 + }, + { + "start": 2022.22, + "end": 2024.6, + "probability": 0.7417 + }, + { + "start": 2024.68, + "end": 2026.86, + "probability": 0.8486 + }, + { + "start": 2026.9, + "end": 2028.44, + "probability": 0.8943 + }, + { + "start": 2028.9, + "end": 2031.58, + "probability": 0.9858 + }, + { + "start": 2032.26, + "end": 2035.0, + "probability": 0.7726 + }, + { + "start": 2035.16, + "end": 2036.0, + "probability": 0.6383 + }, + { + "start": 2036.6, + "end": 2040.74, + "probability": 0.9907 + }, + { + "start": 2040.82, + "end": 2041.26, + "probability": 0.0153 + }, + { + "start": 2041.5, + "end": 2044.54, + "probability": 0.7673 + }, + { + "start": 2044.62, + "end": 2045.0, + "probability": 0.7082 + }, + { + "start": 2045.78, + "end": 2047.01, + "probability": 0.936 + }, + { + "start": 2048.03, + "end": 2050.66, + "probability": 0.9497 + }, + { + "start": 2050.8, + "end": 2052.49, + "probability": 0.2525 + }, + { + "start": 2052.84, + "end": 2053.34, + "probability": 0.4896 + }, + { + "start": 2053.82, + "end": 2055.36, + "probability": 0.7323 + }, + { + "start": 2055.44, + "end": 2056.14, + "probability": 0.5814 + }, + { + "start": 2056.26, + "end": 2057.28, + "probability": 0.9366 + }, + { + "start": 2057.5, + "end": 2058.58, + "probability": 0.7507 + }, + { + "start": 2058.88, + "end": 2060.38, + "probability": 0.803 + }, + { + "start": 2060.8, + "end": 2061.29, + "probability": 0.9502 + }, + { + "start": 2061.84, + "end": 2062.12, + "probability": 0.7512 + }, + { + "start": 2062.28, + "end": 2065.16, + "probability": 0.8413 + }, + { + "start": 2065.56, + "end": 2067.31, + "probability": 0.986 + }, + { + "start": 2067.9, + "end": 2070.16, + "probability": 0.656 + }, + { + "start": 2070.74, + "end": 2071.88, + "probability": 0.6984 + }, + { + "start": 2071.9, + "end": 2075.44, + "probability": 0.9908 + }, + { + "start": 2075.9, + "end": 2077.56, + "probability": 0.3586 + }, + { + "start": 2077.74, + "end": 2081.28, + "probability": 0.354 + }, + { + "start": 2081.28, + "end": 2085.36, + "probability": 0.7299 + }, + { + "start": 2085.44, + "end": 2086.1, + "probability": 0.7394 + }, + { + "start": 2086.46, + "end": 2087.17, + "probability": 0.5082 + }, + { + "start": 2087.86, + "end": 2090.38, + "probability": 0.8511 + }, + { + "start": 2090.46, + "end": 2091.4, + "probability": 0.7871 + }, + { + "start": 2091.46, + "end": 2092.72, + "probability": 0.8201 + }, + { + "start": 2092.74, + "end": 2095.32, + "probability": 0.8825 + }, + { + "start": 2095.46, + "end": 2099.14, + "probability": 0.9897 + }, + { + "start": 2099.5, + "end": 2100.48, + "probability": 0.9812 + }, + { + "start": 2100.7, + "end": 2101.97, + "probability": 0.9644 + }, + { + "start": 2102.1, + "end": 2105.26, + "probability": 0.9956 + }, + { + "start": 2105.36, + "end": 2107.26, + "probability": 0.924 + }, + { + "start": 2107.72, + "end": 2108.32, + "probability": 0.6616 + }, + { + "start": 2108.48, + "end": 2109.22, + "probability": 0.7615 + }, + { + "start": 2109.58, + "end": 2110.26, + "probability": 0.7518 + }, + { + "start": 2110.4, + "end": 2114.88, + "probability": 0.9266 + }, + { + "start": 2115.4, + "end": 2118.14, + "probability": 0.9951 + }, + { + "start": 2118.8, + "end": 2119.3, + "probability": 0.9128 + }, + { + "start": 2120.32, + "end": 2120.88, + "probability": 0.6905 + }, + { + "start": 2121.56, + "end": 2124.06, + "probability": 0.6869 + }, + { + "start": 2124.64, + "end": 2126.5, + "probability": 0.8314 + }, + { + "start": 2127.06, + "end": 2128.56, + "probability": 0.8223 + }, + { + "start": 2128.68, + "end": 2130.96, + "probability": 0.9873 + }, + { + "start": 2131.48, + "end": 2132.06, + "probability": 0.7524 + }, + { + "start": 2132.24, + "end": 2133.42, + "probability": 0.9766 + }, + { + "start": 2134.04, + "end": 2135.26, + "probability": 0.9121 + }, + { + "start": 2136.0, + "end": 2136.34, + "probability": 0.5045 + }, + { + "start": 2136.36, + "end": 2137.82, + "probability": 0.4251 + }, + { + "start": 2138.28, + "end": 2141.26, + "probability": 0.9238 + }, + { + "start": 2141.84, + "end": 2143.16, + "probability": 0.8513 + }, + { + "start": 2143.74, + "end": 2145.23, + "probability": 0.8628 + }, + { + "start": 2145.52, + "end": 2147.12, + "probability": 0.4321 + }, + { + "start": 2147.64, + "end": 2148.89, + "probability": 0.9434 + }, + { + "start": 2150.32, + "end": 2150.82, + "probability": 0.0417 + }, + { + "start": 2154.82, + "end": 2156.36, + "probability": 0.6421 + }, + { + "start": 2157.72, + "end": 2158.98, + "probability": 0.5645 + }, + { + "start": 2159.22, + "end": 2160.84, + "probability": 0.9954 + }, + { + "start": 2161.7, + "end": 2164.72, + "probability": 0.9463 + }, + { + "start": 2165.3, + "end": 2167.02, + "probability": 0.6866 + }, + { + "start": 2168.34, + "end": 2170.8, + "probability": 0.7393 + }, + { + "start": 2171.94, + "end": 2178.9, + "probability": 0.7164 + }, + { + "start": 2179.98, + "end": 2182.28, + "probability": 0.9924 + }, + { + "start": 2185.74, + "end": 2188.88, + "probability": 0.9058 + }, + { + "start": 2190.0, + "end": 2192.78, + "probability": 0.9909 + }, + { + "start": 2193.42, + "end": 2196.0, + "probability": 0.8678 + }, + { + "start": 2197.14, + "end": 2197.98, + "probability": 0.8551 + }, + { + "start": 2199.14, + "end": 2200.56, + "probability": 0.2523 + }, + { + "start": 2201.72, + "end": 2203.06, + "probability": 0.4001 + }, + { + "start": 2205.06, + "end": 2207.9, + "probability": 0.9979 + }, + { + "start": 2208.82, + "end": 2209.5, + "probability": 0.8409 + }, + { + "start": 2210.77, + "end": 2213.62, + "probability": 0.7933 + }, + { + "start": 2213.82, + "end": 2213.89, + "probability": 0.2297 + }, + { + "start": 2214.62, + "end": 2218.1, + "probability": 0.9401 + }, + { + "start": 2219.3, + "end": 2221.72, + "probability": 0.869 + }, + { + "start": 2222.3, + "end": 2224.38, + "probability": 0.8343 + }, + { + "start": 2225.22, + "end": 2228.78, + "probability": 0.9766 + }, + { + "start": 2230.36, + "end": 2231.0, + "probability": 0.5053 + }, + { + "start": 2231.02, + "end": 2231.62, + "probability": 0.7101 + }, + { + "start": 2231.72, + "end": 2232.44, + "probability": 0.4047 + }, + { + "start": 2232.44, + "end": 2232.65, + "probability": 0.571 + }, + { + "start": 2234.66, + "end": 2235.78, + "probability": 0.8396 + }, + { + "start": 2236.92, + "end": 2237.46, + "probability": 0.8018 + }, + { + "start": 2238.26, + "end": 2242.24, + "probability": 0.9915 + }, + { + "start": 2244.08, + "end": 2249.76, + "probability": 0.8843 + }, + { + "start": 2252.5, + "end": 2255.18, + "probability": 0.6928 + }, + { + "start": 2255.94, + "end": 2261.54, + "probability": 0.7822 + }, + { + "start": 2262.48, + "end": 2263.38, + "probability": 0.933 + }, + { + "start": 2264.18, + "end": 2265.5, + "probability": 0.8714 + }, + { + "start": 2266.88, + "end": 2269.4, + "probability": 0.9694 + }, + { + "start": 2270.62, + "end": 2272.34, + "probability": 0.5897 + }, + { + "start": 2273.32, + "end": 2274.72, + "probability": 0.9588 + }, + { + "start": 2275.88, + "end": 2278.1, + "probability": 0.9928 + }, + { + "start": 2279.3, + "end": 2282.1, + "probability": 0.9722 + }, + { + "start": 2283.7, + "end": 2285.04, + "probability": 0.7462 + }, + { + "start": 2286.0, + "end": 2286.28, + "probability": 0.8635 + }, + { + "start": 2287.32, + "end": 2290.58, + "probability": 0.9512 + }, + { + "start": 2291.9, + "end": 2296.46, + "probability": 0.9701 + }, + { + "start": 2297.88, + "end": 2300.7, + "probability": 0.9532 + }, + { + "start": 2301.68, + "end": 2305.32, + "probability": 0.6742 + }, + { + "start": 2306.04, + "end": 2307.62, + "probability": 0.9355 + }, + { + "start": 2308.88, + "end": 2316.26, + "probability": 0.7915 + }, + { + "start": 2317.36, + "end": 2322.54, + "probability": 0.971 + }, + { + "start": 2323.46, + "end": 2324.76, + "probability": 0.8033 + }, + { + "start": 2325.3, + "end": 2331.88, + "probability": 0.8477 + }, + { + "start": 2333.02, + "end": 2334.06, + "probability": 0.3556 + }, + { + "start": 2334.9, + "end": 2337.36, + "probability": 0.5786 + }, + { + "start": 2338.24, + "end": 2339.68, + "probability": 0.8035 + }, + { + "start": 2340.52, + "end": 2341.72, + "probability": 0.9167 + }, + { + "start": 2342.5, + "end": 2343.42, + "probability": 0.889 + }, + { + "start": 2344.52, + "end": 2349.54, + "probability": 0.5673 + }, + { + "start": 2349.54, + "end": 2351.06, + "probability": 0.9138 + }, + { + "start": 2351.78, + "end": 2354.42, + "probability": 0.9636 + }, + { + "start": 2357.2, + "end": 2357.66, + "probability": 0.7025 + }, + { + "start": 2358.48, + "end": 2363.42, + "probability": 0.5951 + }, + { + "start": 2364.3, + "end": 2367.7, + "probability": 0.9938 + }, + { + "start": 2368.72, + "end": 2370.94, + "probability": 0.694 + }, + { + "start": 2371.48, + "end": 2372.82, + "probability": 0.9529 + }, + { + "start": 2374.42, + "end": 2375.46, + "probability": 0.6121 + }, + { + "start": 2376.28, + "end": 2378.62, + "probability": 0.9528 + }, + { + "start": 2379.42, + "end": 2381.62, + "probability": 0.9875 + }, + { + "start": 2382.14, + "end": 2383.18, + "probability": 0.9515 + }, + { + "start": 2383.92, + "end": 2387.74, + "probability": 0.661 + }, + { + "start": 2388.04, + "end": 2388.92, + "probability": 0.979 + }, + { + "start": 2390.06, + "end": 2393.42, + "probability": 0.9231 + }, + { + "start": 2394.72, + "end": 2398.16, + "probability": 0.8527 + }, + { + "start": 2398.92, + "end": 2400.1, + "probability": 0.8408 + }, + { + "start": 2401.22, + "end": 2402.52, + "probability": 0.9589 + }, + { + "start": 2403.3, + "end": 2404.92, + "probability": 0.7384 + }, + { + "start": 2406.4, + "end": 2407.48, + "probability": 0.9819 + }, + { + "start": 2408.1, + "end": 2410.78, + "probability": 0.6979 + }, + { + "start": 2411.46, + "end": 2413.94, + "probability": 0.9518 + }, + { + "start": 2415.24, + "end": 2416.72, + "probability": 0.4169 + }, + { + "start": 2417.44, + "end": 2419.96, + "probability": 0.7966 + }, + { + "start": 2420.52, + "end": 2422.1, + "probability": 0.9631 + }, + { + "start": 2422.74, + "end": 2424.6, + "probability": 0.9958 + }, + { + "start": 2425.36, + "end": 2428.74, + "probability": 0.8499 + }, + { + "start": 2429.64, + "end": 2430.8, + "probability": 0.4961 + }, + { + "start": 2431.18, + "end": 2432.54, + "probability": 0.9071 + }, + { + "start": 2433.26, + "end": 2434.62, + "probability": 0.515 + }, + { + "start": 2436.56, + "end": 2436.66, + "probability": 0.0455 + }, + { + "start": 2438.64, + "end": 2441.26, + "probability": 0.9907 + }, + { + "start": 2442.26, + "end": 2446.1, + "probability": 0.8154 + }, + { + "start": 2460.48, + "end": 2461.3, + "probability": 0.6338 + }, + { + "start": 2461.5, + "end": 2462.16, + "probability": 0.6702 + }, + { + "start": 2462.32, + "end": 2463.12, + "probability": 0.9111 + }, + { + "start": 2463.3, + "end": 2466.57, + "probability": 0.9066 + }, + { + "start": 2466.7, + "end": 2469.72, + "probability": 0.979 + }, + { + "start": 2471.56, + "end": 2473.25, + "probability": 0.8615 + }, + { + "start": 2474.36, + "end": 2478.72, + "probability": 0.7705 + }, + { + "start": 2479.92, + "end": 2483.52, + "probability": 0.9253 + }, + { + "start": 2483.62, + "end": 2485.02, + "probability": 0.6591 + }, + { + "start": 2485.36, + "end": 2487.6, + "probability": 0.8477 + }, + { + "start": 2488.36, + "end": 2494.16, + "probability": 0.6002 + }, + { + "start": 2496.36, + "end": 2496.46, + "probability": 0.0502 + }, + { + "start": 2496.46, + "end": 2497.3, + "probability": 0.3793 + }, + { + "start": 2497.88, + "end": 2500.67, + "probability": 0.8659 + }, + { + "start": 2501.5, + "end": 2502.56, + "probability": 0.8464 + }, + { + "start": 2503.1, + "end": 2504.02, + "probability": 0.9635 + }, + { + "start": 2504.26, + "end": 2506.76, + "probability": 0.8887 + }, + { + "start": 2506.9, + "end": 2511.32, + "probability": 0.654 + }, + { + "start": 2511.4, + "end": 2512.28, + "probability": 0.9022 + }, + { + "start": 2512.36, + "end": 2512.98, + "probability": 0.2581 + }, + { + "start": 2512.98, + "end": 2514.58, + "probability": 0.4583 + }, + { + "start": 2516.08, + "end": 2518.04, + "probability": 0.9438 + }, + { + "start": 2518.7, + "end": 2522.08, + "probability": 0.9891 + }, + { + "start": 2522.08, + "end": 2527.0, + "probability": 0.9707 + }, + { + "start": 2527.64, + "end": 2528.94, + "probability": 0.7048 + }, + { + "start": 2529.4, + "end": 2533.26, + "probability": 0.9199 + }, + { + "start": 2534.06, + "end": 2536.02, + "probability": 0.7243 + }, + { + "start": 2536.8, + "end": 2542.2, + "probability": 0.9174 + }, + { + "start": 2543.62, + "end": 2544.76, + "probability": 0.3519 + }, + { + "start": 2544.88, + "end": 2545.61, + "probability": 0.9027 + }, + { + "start": 2546.12, + "end": 2547.93, + "probability": 0.947 + }, + { + "start": 2548.2, + "end": 2549.14, + "probability": 0.7331 + }, + { + "start": 2549.9, + "end": 2550.34, + "probability": 0.9678 + }, + { + "start": 2551.44, + "end": 2552.92, + "probability": 0.7467 + }, + { + "start": 2553.52, + "end": 2555.68, + "probability": 0.9756 + }, + { + "start": 2556.28, + "end": 2557.88, + "probability": 0.6499 + }, + { + "start": 2558.76, + "end": 2561.82, + "probability": 0.7791 + }, + { + "start": 2562.7, + "end": 2563.66, + "probability": 0.9025 + }, + { + "start": 2564.48, + "end": 2567.14, + "probability": 0.9626 + }, + { + "start": 2567.33, + "end": 2568.35, + "probability": 0.8099 + }, + { + "start": 2568.76, + "end": 2573.16, + "probability": 0.991 + }, + { + "start": 2573.44, + "end": 2574.86, + "probability": 0.9117 + }, + { + "start": 2574.92, + "end": 2578.08, + "probability": 0.9927 + }, + { + "start": 2578.58, + "end": 2581.02, + "probability": 0.9917 + }, + { + "start": 2581.3, + "end": 2586.34, + "probability": 0.9768 + }, + { + "start": 2586.66, + "end": 2587.72, + "probability": 0.8029 + }, + { + "start": 2588.0, + "end": 2589.66, + "probability": 0.8822 + }, + { + "start": 2590.7, + "end": 2591.15, + "probability": 0.7402 + }, + { + "start": 2591.24, + "end": 2594.44, + "probability": 0.8988 + }, + { + "start": 2595.02, + "end": 2597.56, + "probability": 0.6848 + }, + { + "start": 2598.32, + "end": 2600.62, + "probability": 0.8685 + }, + { + "start": 2601.2, + "end": 2602.9, + "probability": 0.991 + }, + { + "start": 2603.9, + "end": 2605.22, + "probability": 0.8087 + }, + { + "start": 2605.86, + "end": 2606.96, + "probability": 0.3972 + }, + { + "start": 2607.52, + "end": 2610.34, + "probability": 0.501 + }, + { + "start": 2611.2, + "end": 2611.48, + "probability": 0.6471 + }, + { + "start": 2612.3, + "end": 2612.76, + "probability": 0.5541 + }, + { + "start": 2613.36, + "end": 2614.72, + "probability": 0.4523 + }, + { + "start": 2616.26, + "end": 2617.98, + "probability": 0.8843 + }, + { + "start": 2622.44, + "end": 2623.34, + "probability": 0.4637 + }, + { + "start": 2624.0, + "end": 2624.44, + "probability": 0.2972 + }, + { + "start": 2624.82, + "end": 2624.96, + "probability": 0.6304 + }, + { + "start": 2625.22, + "end": 2626.56, + "probability": 0.9001 + }, + { + "start": 2626.82, + "end": 2627.26, + "probability": 0.4515 + }, + { + "start": 2628.02, + "end": 2629.94, + "probability": 0.8886 + }, + { + "start": 2630.56, + "end": 2636.32, + "probability": 0.8506 + }, + { + "start": 2636.9, + "end": 2643.28, + "probability": 0.9846 + }, + { + "start": 2643.86, + "end": 2646.06, + "probability": 0.7504 + }, + { + "start": 2646.1, + "end": 2650.04, + "probability": 0.5788 + }, + { + "start": 2650.68, + "end": 2672.56, + "probability": 0.0078 + }, + { + "start": 2672.56, + "end": 2673.66, + "probability": 0.2814 + }, + { + "start": 2674.28, + "end": 2674.66, + "probability": 0.8565 + }, + { + "start": 2675.38, + "end": 2677.0, + "probability": 0.535 + }, + { + "start": 2677.2, + "end": 2680.54, + "probability": 0.8435 + }, + { + "start": 2680.54, + "end": 2683.66, + "probability": 0.1269 + }, + { + "start": 2685.36, + "end": 2685.86, + "probability": 0.0124 + }, + { + "start": 2685.86, + "end": 2685.86, + "probability": 0.0046 + }, + { + "start": 2685.86, + "end": 2685.92, + "probability": 0.1778 + }, + { + "start": 2685.92, + "end": 2686.2, + "probability": 0.1317 + }, + { + "start": 2686.76, + "end": 2688.18, + "probability": 0.751 + }, + { + "start": 2688.28, + "end": 2688.58, + "probability": 0.7268 + }, + { + "start": 2688.84, + "end": 2692.96, + "probability": 0.9669 + }, + { + "start": 2693.52, + "end": 2694.96, + "probability": 0.0111 + }, + { + "start": 2696.42, + "end": 2696.8, + "probability": 0.0073 + }, + { + "start": 2697.9, + "end": 2698.36, + "probability": 0.0066 + }, + { + "start": 2703.72, + "end": 2704.88, + "probability": 0.0029 + }, + { + "start": 2712.1, + "end": 2718.48, + "probability": 0.1301 + }, + { + "start": 2718.93, + "end": 2720.98, + "probability": 0.0242 + }, + { + "start": 2721.76, + "end": 2722.14, + "probability": 0.0636 + }, + { + "start": 2723.4, + "end": 2724.84, + "probability": 0.0986 + }, + { + "start": 2724.86, + "end": 2726.57, + "probability": 0.1076 + }, + { + "start": 2728.84, + "end": 2733.22, + "probability": 0.1459 + }, + { + "start": 2733.22, + "end": 2735.86, + "probability": 0.0094 + }, + { + "start": 2740.94, + "end": 2740.94, + "probability": 0.0036 + }, + { + "start": 2741.0, + "end": 2741.0, + "probability": 0.0 + }, + { + "start": 2741.0, + "end": 2741.0, + "probability": 0.0 + }, + { + "start": 2741.0, + "end": 2741.0, + "probability": 0.0 + }, + { + "start": 2741.0, + "end": 2741.0, + "probability": 0.0 + }, + { + "start": 2741.0, + "end": 2741.0, + "probability": 0.0 + }, + { + "start": 2743.1, + "end": 2743.1, + "probability": 0.164 + }, + { + "start": 2743.12, + "end": 2743.96, + "probability": 0.5712 + }, + { + "start": 2744.5, + "end": 2745.2, + "probability": 0.8547 + }, + { + "start": 2746.5, + "end": 2747.57, + "probability": 0.7499 + }, + { + "start": 2748.3, + "end": 2750.2, + "probability": 0.9151 + }, + { + "start": 2750.4, + "end": 2753.96, + "probability": 0.9901 + }, + { + "start": 2754.56, + "end": 2760.52, + "probability": 0.7453 + }, + { + "start": 2760.8, + "end": 2762.98, + "probability": 0.5524 + }, + { + "start": 2763.22, + "end": 2767.06, + "probability": 0.5861 + }, + { + "start": 2767.46, + "end": 2768.1, + "probability": 0.719 + }, + { + "start": 2768.22, + "end": 2768.74, + "probability": 0.8672 + }, + { + "start": 2768.8, + "end": 2769.42, + "probability": 0.703 + }, + { + "start": 2769.62, + "end": 2770.8, + "probability": 0.3564 + }, + { + "start": 2770.9, + "end": 2773.98, + "probability": 0.3881 + }, + { + "start": 2773.98, + "end": 2775.8, + "probability": 0.5003 + }, + { + "start": 2776.56, + "end": 2778.04, + "probability": 0.712 + }, + { + "start": 2779.7, + "end": 2781.36, + "probability": 0.5089 + }, + { + "start": 2781.72, + "end": 2785.8, + "probability": 0.6193 + }, + { + "start": 2785.8, + "end": 2789.3, + "probability": 0.6419 + }, + { + "start": 2789.72, + "end": 2798.14, + "probability": 0.873 + }, + { + "start": 2798.26, + "end": 2798.78, + "probability": 0.7821 + }, + { + "start": 2799.14, + "end": 2800.36, + "probability": 0.7612 + }, + { + "start": 2800.78, + "end": 2804.52, + "probability": 0.9214 + }, + { + "start": 2804.8, + "end": 2806.5, + "probability": 0.9268 + }, + { + "start": 2807.28, + "end": 2808.66, + "probability": 0.5726 + }, + { + "start": 2808.66, + "end": 2813.3, + "probability": 0.3719 + }, + { + "start": 2813.64, + "end": 2815.62, + "probability": 0.7275 + }, + { + "start": 2815.76, + "end": 2818.0, + "probability": 0.9536 + }, + { + "start": 2818.18, + "end": 2821.76, + "probability": 0.638 + }, + { + "start": 2822.36, + "end": 2825.72, + "probability": 0.5904 + }, + { + "start": 2826.14, + "end": 2828.9, + "probability": 0.9451 + }, + { + "start": 2829.92, + "end": 2831.88, + "probability": 0.6328 + }, + { + "start": 2832.6, + "end": 2837.74, + "probability": 0.8695 + }, + { + "start": 2839.24, + "end": 2840.7, + "probability": 0.6109 + }, + { + "start": 2841.8, + "end": 2845.84, + "probability": 0.5304 + }, + { + "start": 2846.52, + "end": 2847.84, + "probability": 0.5455 + }, + { + "start": 2848.02, + "end": 2851.34, + "probability": 0.8932 + }, + { + "start": 2851.34, + "end": 2856.34, + "probability": 0.7178 + }, + { + "start": 2857.52, + "end": 2859.16, + "probability": 0.5108 + }, + { + "start": 2861.06, + "end": 2867.46, + "probability": 0.6621 + }, + { + "start": 2868.32, + "end": 2870.02, + "probability": 0.8752 + }, + { + "start": 2870.98, + "end": 2877.14, + "probability": 0.8672 + }, + { + "start": 2877.66, + "end": 2879.8, + "probability": 0.6718 + }, + { + "start": 2880.6, + "end": 2881.5, + "probability": 0.4314 + }, + { + "start": 2881.68, + "end": 2884.42, + "probability": 0.5846 + }, + { + "start": 2884.42, + "end": 2885.7, + "probability": 0.6435 + }, + { + "start": 2889.42, + "end": 2892.86, + "probability": 0.7373 + }, + { + "start": 2894.12, + "end": 2897.68, + "probability": 0.9268 + }, + { + "start": 2897.72, + "end": 2898.76, + "probability": 0.611 + }, + { + "start": 2899.86, + "end": 2903.5, + "probability": 0.943 + }, + { + "start": 2904.84, + "end": 2906.6, + "probability": 0.0483 + }, + { + "start": 2907.72, + "end": 2909.96, + "probability": 0.5216 + }, + { + "start": 2910.72, + "end": 2911.68, + "probability": 0.7493 + }, + { + "start": 2912.28, + "end": 2916.36, + "probability": 0.9817 + }, + { + "start": 2917.26, + "end": 2920.94, + "probability": 0.7615 + }, + { + "start": 2921.86, + "end": 2923.3, + "probability": 0.8118 + }, + { + "start": 2924.02, + "end": 2924.98, + "probability": 0.5784 + }, + { + "start": 2925.82, + "end": 2929.26, + "probability": 0.9834 + }, + { + "start": 2930.12, + "end": 2932.96, + "probability": 0.6065 + }, + { + "start": 2933.54, + "end": 2936.38, + "probability": 0.6644 + }, + { + "start": 2937.58, + "end": 2938.52, + "probability": 0.5934 + }, + { + "start": 2940.1, + "end": 2942.32, + "probability": 0.5544 + }, + { + "start": 2942.46, + "end": 2945.0, + "probability": 0.5407 + }, + { + "start": 2946.16, + "end": 2948.94, + "probability": 0.627 + }, + { + "start": 2951.98, + "end": 2957.0, + "probability": 0.4114 + }, + { + "start": 2957.7, + "end": 2963.34, + "probability": 0.3197 + }, + { + "start": 2963.95, + "end": 2966.68, + "probability": 0.9316 + }, + { + "start": 2966.8, + "end": 2968.22, + "probability": 0.7432 + }, + { + "start": 2972.8, + "end": 2975.08, + "probability": 0.9313 + }, + { + "start": 2975.92, + "end": 2982.83, + "probability": 0.971 + }, + { + "start": 2983.9, + "end": 2986.62, + "probability": 0.998 + }, + { + "start": 2987.5, + "end": 2989.56, + "probability": 0.5421 + }, + { + "start": 2989.76, + "end": 2990.66, + "probability": 0.8862 + }, + { + "start": 2991.88, + "end": 2995.94, + "probability": 0.9904 + }, + { + "start": 2996.04, + "end": 2997.04, + "probability": 0.8713 + }, + { + "start": 2998.1, + "end": 2998.78, + "probability": 0.3651 + }, + { + "start": 2998.96, + "end": 3003.82, + "probability": 0.9785 + }, + { + "start": 3004.04, + "end": 3006.28, + "probability": 0.8711 + }, + { + "start": 3006.58, + "end": 3007.68, + "probability": 0.3179 + }, + { + "start": 3007.96, + "end": 3008.72, + "probability": 0.7215 + }, + { + "start": 3009.56, + "end": 3010.86, + "probability": 0.3107 + }, + { + "start": 3010.86, + "end": 3013.82, + "probability": 0.7166 + }, + { + "start": 3014.34, + "end": 3014.46, + "probability": 0.8 + }, + { + "start": 3014.46, + "end": 3015.8, + "probability": 0.4099 + }, + { + "start": 3016.6, + "end": 3018.2, + "probability": 0.8985 + }, + { + "start": 3018.28, + "end": 3019.24, + "probability": 0.8593 + }, + { + "start": 3019.72, + "end": 3024.08, + "probability": 0.8504 + }, + { + "start": 3024.18, + "end": 3027.54, + "probability": 0.9645 + }, + { + "start": 3028.04, + "end": 3030.84, + "probability": 0.3741 + }, + { + "start": 3031.16, + "end": 3033.0, + "probability": 0.8522 + }, + { + "start": 3033.7, + "end": 3036.16, + "probability": 0.9275 + }, + { + "start": 3036.7, + "end": 3039.26, + "probability": 0.6406 + }, + { + "start": 3041.71, + "end": 3043.16, + "probability": 0.8657 + }, + { + "start": 3043.98, + "end": 3044.98, + "probability": 0.7152 + }, + { + "start": 3045.08, + "end": 3045.96, + "probability": 0.9448 + }, + { + "start": 3046.08, + "end": 3047.32, + "probability": 0.6704 + }, + { + "start": 3047.42, + "end": 3050.24, + "probability": 0.9647 + }, + { + "start": 3050.73, + "end": 3053.52, + "probability": 0.9926 + }, + { + "start": 3053.58, + "end": 3056.12, + "probability": 0.8386 + }, + { + "start": 3056.56, + "end": 3060.66, + "probability": 0.8344 + }, + { + "start": 3061.12, + "end": 3063.2, + "probability": 0.5906 + }, + { + "start": 3063.6, + "end": 3064.77, + "probability": 0.7617 + }, + { + "start": 3064.88, + "end": 3065.58, + "probability": 0.6148 + }, + { + "start": 3065.84, + "end": 3067.96, + "probability": 0.7597 + }, + { + "start": 3069.54, + "end": 3069.54, + "probability": 0.1525 + }, + { + "start": 3069.54, + "end": 3069.62, + "probability": 0.424 + }, + { + "start": 3069.62, + "end": 3071.2, + "probability": 0.7113 + }, + { + "start": 3071.28, + "end": 3076.4, + "probability": 0.4763 + }, + { + "start": 3076.4, + "end": 3078.34, + "probability": 0.7364 + }, + { + "start": 3078.68, + "end": 3080.74, + "probability": 0.9072 + }, + { + "start": 3080.98, + "end": 3083.1, + "probability": 0.5365 + }, + { + "start": 3083.9, + "end": 3085.78, + "probability": 0.7854 + }, + { + "start": 3087.1, + "end": 3088.08, + "probability": 0.0334 + }, + { + "start": 3088.76, + "end": 3092.38, + "probability": 0.3081 + }, + { + "start": 3092.38, + "end": 3093.5, + "probability": 0.0223 + }, + { + "start": 3094.52, + "end": 3095.34, + "probability": 0.3753 + }, + { + "start": 3095.86, + "end": 3098.72, + "probability": 0.5599 + }, + { + "start": 3099.7, + "end": 3103.98, + "probability": 0.9561 + }, + { + "start": 3104.4, + "end": 3104.96, + "probability": 0.6989 + }, + { + "start": 3105.08, + "end": 3110.76, + "probability": 0.958 + }, + { + "start": 3111.66, + "end": 3113.6, + "probability": 0.9386 + }, + { + "start": 3113.92, + "end": 3115.38, + "probability": 0.9748 + }, + { + "start": 3115.84, + "end": 3117.66, + "probability": 0.5795 + }, + { + "start": 3117.78, + "end": 3118.84, + "probability": 0.6818 + }, + { + "start": 3119.02, + "end": 3119.86, + "probability": 0.7558 + }, + { + "start": 3120.58, + "end": 3123.66, + "probability": 0.9327 + }, + { + "start": 3123.98, + "end": 3125.46, + "probability": 0.6024 + }, + { + "start": 3126.04, + "end": 3128.9, + "probability": 0.9846 + }, + { + "start": 3129.84, + "end": 3130.3, + "probability": 0.6743 + }, + { + "start": 3130.62, + "end": 3133.02, + "probability": 0.6932 + }, + { + "start": 3133.56, + "end": 3136.68, + "probability": 0.9413 + }, + { + "start": 3138.69, + "end": 3141.68, + "probability": 0.761 + }, + { + "start": 3142.26, + "end": 3146.02, + "probability": 0.8625 + }, + { + "start": 3147.16, + "end": 3150.38, + "probability": 0.7953 + }, + { + "start": 3151.32, + "end": 3151.68, + "probability": 0.3659 + }, + { + "start": 3151.68, + "end": 3151.76, + "probability": 0.5111 + }, + { + "start": 3151.76, + "end": 3152.24, + "probability": 0.8604 + }, + { + "start": 3152.32, + "end": 3158.66, + "probability": 0.9196 + }, + { + "start": 3159.0, + "end": 3159.5, + "probability": 0.5033 + }, + { + "start": 3159.8, + "end": 3160.3, + "probability": 0.6113 + }, + { + "start": 3161.0, + "end": 3163.68, + "probability": 0.8662 + }, + { + "start": 3163.72, + "end": 3166.8, + "probability": 0.7757 + }, + { + "start": 3167.16, + "end": 3169.34, + "probability": 0.7909 + }, + { + "start": 3170.12, + "end": 3170.42, + "probability": 0.8812 + }, + { + "start": 3171.72, + "end": 3173.96, + "probability": 0.3776 + }, + { + "start": 3174.32, + "end": 3175.74, + "probability": 0.4768 + }, + { + "start": 3175.82, + "end": 3177.45, + "probability": 0.2275 + }, + { + "start": 3178.08, + "end": 3178.68, + "probability": 0.4101 + }, + { + "start": 3178.72, + "end": 3178.84, + "probability": 0.1176 + }, + { + "start": 3179.34, + "end": 3182.22, + "probability": 0.7312 + }, + { + "start": 3182.56, + "end": 3182.98, + "probability": 0.0504 + }, + { + "start": 3182.98, + "end": 3184.22, + "probability": 0.2997 + }, + { + "start": 3184.76, + "end": 3187.82, + "probability": 0.8113 + }, + { + "start": 3188.38, + "end": 3188.82, + "probability": 0.579 + }, + { + "start": 3189.36, + "end": 3193.12, + "probability": 0.6641 + }, + { + "start": 3193.56, + "end": 3195.32, + "probability": 0.7108 + }, + { + "start": 3196.26, + "end": 3197.06, + "probability": 0.7676 + }, + { + "start": 3198.08, + "end": 3204.2, + "probability": 0.9727 + }, + { + "start": 3205.04, + "end": 3205.66, + "probability": 0.7187 + }, + { + "start": 3205.92, + "end": 3206.88, + "probability": 0.5204 + }, + { + "start": 3216.1, + "end": 3220.02, + "probability": 0.7064 + }, + { + "start": 3220.8, + "end": 3221.72, + "probability": 0.735 + }, + { + "start": 3222.5, + "end": 3223.12, + "probability": 0.4517 + }, + { + "start": 3223.94, + "end": 3225.54, + "probability": 0.8053 + }, + { + "start": 3226.6, + "end": 3227.28, + "probability": 0.6096 + }, + { + "start": 3227.8, + "end": 3228.46, + "probability": 0.5959 + }, + { + "start": 3229.54, + "end": 3230.16, + "probability": 0.9806 + }, + { + "start": 3230.98, + "end": 3231.54, + "probability": 0.5865 + }, + { + "start": 3232.28, + "end": 3234.66, + "probability": 0.8435 + }, + { + "start": 3235.28, + "end": 3235.88, + "probability": 0.3144 + }, + { + "start": 3235.96, + "end": 3237.36, + "probability": 0.8098 + }, + { + "start": 3237.82, + "end": 3238.58, + "probability": 0.6758 + }, + { + "start": 3238.68, + "end": 3239.5, + "probability": 0.7588 + }, + { + "start": 3240.84, + "end": 3240.96, + "probability": 0.5544 + }, + { + "start": 3241.62, + "end": 3243.8, + "probability": 0.606 + }, + { + "start": 3243.92, + "end": 3244.8, + "probability": 0.5464 + }, + { + "start": 3245.0, + "end": 3245.9, + "probability": 0.9312 + }, + { + "start": 3246.94, + "end": 3248.12, + "probability": 0.8225 + }, + { + "start": 3248.32, + "end": 3249.14, + "probability": 0.8483 + }, + { + "start": 3249.42, + "end": 3251.1, + "probability": 0.8943 + }, + { + "start": 3251.16, + "end": 3252.66, + "probability": 0.908 + }, + { + "start": 3253.22, + "end": 3257.94, + "probability": 0.8903 + }, + { + "start": 3258.64, + "end": 3260.86, + "probability": 0.8923 + }, + { + "start": 3261.7, + "end": 3267.38, + "probability": 0.9883 + }, + { + "start": 3268.86, + "end": 3270.33, + "probability": 0.7428 + }, + { + "start": 3271.62, + "end": 3275.38, + "probability": 0.7518 + }, + { + "start": 3276.06, + "end": 3276.68, + "probability": 0.8291 + }, + { + "start": 3276.8, + "end": 3280.18, + "probability": 0.2469 + }, + { + "start": 3280.18, + "end": 3280.64, + "probability": 0.15 + }, + { + "start": 3281.32, + "end": 3285.02, + "probability": 0.9149 + }, + { + "start": 3285.66, + "end": 3287.8, + "probability": 0.9725 + }, + { + "start": 3288.68, + "end": 3289.7, + "probability": 0.4782 + }, + { + "start": 3290.42, + "end": 3290.98, + "probability": 0.8521 + }, + { + "start": 3291.5, + "end": 3293.94, + "probability": 0.7633 + }, + { + "start": 3294.54, + "end": 3295.78, + "probability": 0.5131 + }, + { + "start": 3295.9, + "end": 3296.32, + "probability": 0.7503 + }, + { + "start": 3296.44, + "end": 3297.54, + "probability": 0.8657 + }, + { + "start": 3297.7, + "end": 3300.0, + "probability": 0.7972 + }, + { + "start": 3300.94, + "end": 3302.14, + "probability": 0.1593 + }, + { + "start": 3302.5, + "end": 3302.74, + "probability": 0.4575 + }, + { + "start": 3303.6, + "end": 3304.86, + "probability": 0.8567 + }, + { + "start": 3304.98, + "end": 3305.71, + "probability": 0.3503 + }, + { + "start": 3306.26, + "end": 3308.7, + "probability": 0.6908 + }, + { + "start": 3308.8, + "end": 3311.24, + "probability": 0.9596 + }, + { + "start": 3312.14, + "end": 3314.06, + "probability": 0.8826 + }, + { + "start": 3314.54, + "end": 3316.01, + "probability": 0.4633 + }, + { + "start": 3316.58, + "end": 3318.72, + "probability": 0.9725 + }, + { + "start": 3318.76, + "end": 3321.22, + "probability": 0.9755 + }, + { + "start": 3322.16, + "end": 3325.8, + "probability": 0.6666 + }, + { + "start": 3327.16, + "end": 3327.88, + "probability": 0.5954 + }, + { + "start": 3327.88, + "end": 3329.02, + "probability": 0.2927 + }, + { + "start": 3331.3, + "end": 3335.7, + "probability": 0.8896 + }, + { + "start": 3336.07, + "end": 3338.26, + "probability": 0.9033 + }, + { + "start": 3339.12, + "end": 3340.14, + "probability": 0.2388 + }, + { + "start": 3340.76, + "end": 3341.72, + "probability": 0.5637 + }, + { + "start": 3341.82, + "end": 3342.62, + "probability": 0.6507 + }, + { + "start": 3342.66, + "end": 3343.34, + "probability": 0.708 + }, + { + "start": 3343.42, + "end": 3344.48, + "probability": 0.5181 + }, + { + "start": 3344.94, + "end": 3347.58, + "probability": 0.4783 + }, + { + "start": 3347.82, + "end": 3348.76, + "probability": 0.6383 + }, + { + "start": 3349.58, + "end": 3350.54, + "probability": 0.4378 + }, + { + "start": 3351.1, + "end": 3351.66, + "probability": 0.5081 + }, + { + "start": 3352.62, + "end": 3354.54, + "probability": 0.9036 + }, + { + "start": 3354.88, + "end": 3356.3, + "probability": 0.9495 + }, + { + "start": 3356.42, + "end": 3358.54, + "probability": 0.9932 + }, + { + "start": 3359.56, + "end": 3360.97, + "probability": 0.8425 + }, + { + "start": 3361.74, + "end": 3362.48, + "probability": 0.7085 + }, + { + "start": 3362.54, + "end": 3364.69, + "probability": 0.8389 + }, + { + "start": 3365.18, + "end": 3367.58, + "probability": 0.7408 + }, + { + "start": 3368.02, + "end": 3370.22, + "probability": 0.9246 + }, + { + "start": 3370.72, + "end": 3372.48, + "probability": 0.8249 + }, + { + "start": 3372.92, + "end": 3373.8, + "probability": 0.813 + }, + { + "start": 3374.02, + "end": 3374.42, + "probability": 0.6442 + }, + { + "start": 3374.58, + "end": 3374.68, + "probability": 0.8048 + }, + { + "start": 3375.76, + "end": 3376.3, + "probability": 0.5551 + }, + { + "start": 3376.52, + "end": 3378.5, + "probability": 0.8882 + }, + { + "start": 3379.22, + "end": 3380.4, + "probability": 0.981 + }, + { + "start": 3384.24, + "end": 3386.04, + "probability": 0.8333 + }, + { + "start": 3386.82, + "end": 3391.32, + "probability": 0.8695 + }, + { + "start": 3391.48, + "end": 3393.08, + "probability": 0.8619 + }, + { + "start": 3393.78, + "end": 3394.28, + "probability": 0.5248 + }, + { + "start": 3394.36, + "end": 3396.45, + "probability": 0.8141 + }, + { + "start": 3397.28, + "end": 3398.28, + "probability": 0.7627 + }, + { + "start": 3398.62, + "end": 3398.94, + "probability": 0.6677 + }, + { + "start": 3399.0, + "end": 3399.8, + "probability": 0.6914 + }, + { + "start": 3400.06, + "end": 3402.78, + "probability": 0.9698 + }, + { + "start": 3403.54, + "end": 3404.44, + "probability": 0.9324 + }, + { + "start": 3405.38, + "end": 3408.44, + "probability": 0.8302 + }, + { + "start": 3409.1, + "end": 3410.68, + "probability": 0.8536 + }, + { + "start": 3411.9, + "end": 3414.78, + "probability": 0.9782 + }, + { + "start": 3414.92, + "end": 3417.36, + "probability": 0.6489 + }, + { + "start": 3418.38, + "end": 3420.4, + "probability": 0.9899 + }, + { + "start": 3421.12, + "end": 3422.98, + "probability": 0.8589 + }, + { + "start": 3423.54, + "end": 3427.92, + "probability": 0.637 + }, + { + "start": 3428.68, + "end": 3431.42, + "probability": 0.7581 + }, + { + "start": 3431.98, + "end": 3434.44, + "probability": 0.6567 + }, + { + "start": 3435.06, + "end": 3437.22, + "probability": 0.8906 + }, + { + "start": 3437.94, + "end": 3440.24, + "probability": 0.9564 + }, + { + "start": 3440.36, + "end": 3444.38, + "probability": 0.9162 + }, + { + "start": 3444.94, + "end": 3446.76, + "probability": 0.9144 + }, + { + "start": 3447.46, + "end": 3447.56, + "probability": 0.9268 + }, + { + "start": 3452.94, + "end": 3453.72, + "probability": 0.7989 + }, + { + "start": 3454.48, + "end": 3454.56, + "probability": 0.3371 + }, + { + "start": 3454.71, + "end": 3458.04, + "probability": 0.7585 + }, + { + "start": 3458.22, + "end": 3461.14, + "probability": 0.9131 + }, + { + "start": 3461.76, + "end": 3464.5, + "probability": 0.6634 + }, + { + "start": 3465.12, + "end": 3468.34, + "probability": 0.5881 + }, + { + "start": 3468.52, + "end": 3474.3, + "probability": 0.7456 + }, + { + "start": 3474.48, + "end": 3475.28, + "probability": 0.7861 + }, + { + "start": 3475.9, + "end": 3477.72, + "probability": 0.639 + }, + { + "start": 3477.98, + "end": 3479.31, + "probability": 0.9717 + }, + { + "start": 3480.04, + "end": 3481.46, + "probability": 0.5051 + }, + { + "start": 3481.56, + "end": 3482.04, + "probability": 0.4193 + }, + { + "start": 3482.26, + "end": 3485.42, + "probability": 0.5677 + }, + { + "start": 3486.12, + "end": 3488.72, + "probability": 0.7498 + }, + { + "start": 3491.04, + "end": 3494.48, + "probability": 0.5769 + }, + { + "start": 3494.48, + "end": 3496.04, + "probability": 0.9211 + }, + { + "start": 3496.1, + "end": 3498.96, + "probability": 0.5974 + }, + { + "start": 3499.42, + "end": 3503.18, + "probability": 0.8739 + }, + { + "start": 3503.64, + "end": 3505.16, + "probability": 0.5475 + }, + { + "start": 3505.68, + "end": 3506.44, + "probability": 0.7233 + }, + { + "start": 3506.64, + "end": 3506.76, + "probability": 0.3946 + }, + { + "start": 3506.88, + "end": 3507.18, + "probability": 0.8638 + }, + { + "start": 3507.3, + "end": 3510.5, + "probability": 0.8566 + }, + { + "start": 3510.58, + "end": 3514.34, + "probability": 0.934 + }, + { + "start": 3514.88, + "end": 3516.78, + "probability": 0.9319 + }, + { + "start": 3517.5, + "end": 3519.48, + "probability": 0.8478 + }, + { + "start": 3520.32, + "end": 3521.74, + "probability": 0.9656 + }, + { + "start": 3521.84, + "end": 3526.18, + "probability": 0.9297 + }, + { + "start": 3526.82, + "end": 3528.38, + "probability": 0.7345 + }, + { + "start": 3529.22, + "end": 3536.41, + "probability": 0.8267 + }, + { + "start": 3538.38, + "end": 3544.94, + "probability": 0.7899 + }, + { + "start": 3545.1, + "end": 3547.26, + "probability": 0.4502 + }, + { + "start": 3547.32, + "end": 3548.04, + "probability": 0.3612 + }, + { + "start": 3548.58, + "end": 3551.38, + "probability": 0.8716 + }, + { + "start": 3552.26, + "end": 3553.16, + "probability": 0.5144 + }, + { + "start": 3553.2, + "end": 3553.86, + "probability": 0.8034 + }, + { + "start": 3553.94, + "end": 3554.4, + "probability": 0.6178 + }, + { + "start": 3554.48, + "end": 3555.06, + "probability": 0.4598 + }, + { + "start": 3556.18, + "end": 3557.02, + "probability": 0.5149 + }, + { + "start": 3558.22, + "end": 3558.66, + "probability": 0.7724 + }, + { + "start": 3559.38, + "end": 3561.18, + "probability": 0.9763 + }, + { + "start": 3561.86, + "end": 3565.3, + "probability": 0.9727 + }, + { + "start": 3566.12, + "end": 3569.7, + "probability": 0.9562 + }, + { + "start": 3569.98, + "end": 3571.42, + "probability": 0.337 + }, + { + "start": 3572.17, + "end": 3572.46, + "probability": 0.7067 + }, + { + "start": 3572.46, + "end": 3577.03, + "probability": 0.7104 + }, + { + "start": 3577.5, + "end": 3581.4, + "probability": 0.9354 + }, + { + "start": 3581.48, + "end": 3581.92, + "probability": 0.941 + }, + { + "start": 3582.5, + "end": 3584.08, + "probability": 0.7942 + }, + { + "start": 3584.62, + "end": 3586.36, + "probability": 0.9057 + }, + { + "start": 3586.4, + "end": 3588.28, + "probability": 0.806 + }, + { + "start": 3588.52, + "end": 3590.14, + "probability": 0.8784 + }, + { + "start": 3590.22, + "end": 3591.94, + "probability": 0.8185 + }, + { + "start": 3593.58, + "end": 3593.98, + "probability": 0.7533 + }, + { + "start": 3594.64, + "end": 3599.06, + "probability": 0.9543 + }, + { + "start": 3599.42, + "end": 3601.38, + "probability": 0.9318 + }, + { + "start": 3601.46, + "end": 3604.66, + "probability": 0.9461 + }, + { + "start": 3604.66, + "end": 3604.9, + "probability": 0.6045 + }, + { + "start": 3605.28, + "end": 3605.96, + "probability": 0.6769 + }, + { + "start": 3606.06, + "end": 3607.12, + "probability": 0.9359 + }, + { + "start": 3608.3, + "end": 3608.83, + "probability": 0.6833 + }, + { + "start": 3609.0, + "end": 3611.9, + "probability": 0.6733 + }, + { + "start": 3612.06, + "end": 3614.23, + "probability": 0.7252 + }, + { + "start": 3614.58, + "end": 3615.5, + "probability": 0.8959 + }, + { + "start": 3615.62, + "end": 3617.0, + "probability": 0.9597 + }, + { + "start": 3618.02, + "end": 3620.3, + "probability": 0.9822 + }, + { + "start": 3620.8, + "end": 3621.92, + "probability": 0.9397 + }, + { + "start": 3622.08, + "end": 3622.57, + "probability": 0.665 + }, + { + "start": 3623.66, + "end": 3627.44, + "probability": 0.826 + }, + { + "start": 3627.56, + "end": 3629.16, + "probability": 0.789 + }, + { + "start": 3629.56, + "end": 3631.42, + "probability": 0.9785 + }, + { + "start": 3632.32, + "end": 3633.84, + "probability": 0.5581 + }, + { + "start": 3633.94, + "end": 3636.5, + "probability": 0.6845 + }, + { + "start": 3636.72, + "end": 3637.06, + "probability": 0.8981 + }, + { + "start": 3637.62, + "end": 3639.16, + "probability": 0.9075 + }, + { + "start": 3639.84, + "end": 3641.82, + "probability": 0.8466 + }, + { + "start": 3642.66, + "end": 3644.88, + "probability": 0.7755 + }, + { + "start": 3645.26, + "end": 3647.78, + "probability": 0.5729 + }, + { + "start": 3648.2, + "end": 3649.92, + "probability": 0.972 + }, + { + "start": 3650.58, + "end": 3652.88, + "probability": 0.8279 + }, + { + "start": 3654.12, + "end": 3656.0, + "probability": 0.8648 + }, + { + "start": 3656.78, + "end": 3657.5, + "probability": 0.0627 + }, + { + "start": 3657.68, + "end": 3657.68, + "probability": 0.3544 + }, + { + "start": 3657.68, + "end": 3659.02, + "probability": 0.136 + }, + { + "start": 3659.48, + "end": 3661.74, + "probability": 0.8268 + }, + { + "start": 3662.3, + "end": 3665.62, + "probability": 0.7534 + }, + { + "start": 3668.92, + "end": 3670.12, + "probability": 0.8424 + }, + { + "start": 3672.54, + "end": 3673.56, + "probability": 0.6888 + }, + { + "start": 3676.02, + "end": 3676.28, + "probability": 0.7708 + }, + { + "start": 3676.86, + "end": 3678.21, + "probability": 0.6586 + }, + { + "start": 3679.78, + "end": 3684.35, + "probability": 0.9832 + }, + { + "start": 3686.72, + "end": 3691.8, + "probability": 0.9957 + }, + { + "start": 3693.28, + "end": 3697.9, + "probability": 0.9707 + }, + { + "start": 3698.96, + "end": 3702.28, + "probability": 0.9661 + }, + { + "start": 3702.6, + "end": 3704.82, + "probability": 0.1912 + }, + { + "start": 3704.96, + "end": 3705.54, + "probability": 0.0133 + }, + { + "start": 3706.9, + "end": 3708.97, + "probability": 0.9917 + }, + { + "start": 3709.04, + "end": 3712.08, + "probability": 0.9935 + }, + { + "start": 3713.24, + "end": 3716.42, + "probability": 0.9928 + }, + { + "start": 3717.22, + "end": 3720.7, + "probability": 0.981 + }, + { + "start": 3721.52, + "end": 3724.62, + "probability": 0.998 + }, + { + "start": 3725.46, + "end": 3727.92, + "probability": 0.9916 + }, + { + "start": 3728.2, + "end": 3731.82, + "probability": 0.9836 + }, + { + "start": 3733.06, + "end": 3734.84, + "probability": 0.9912 + }, + { + "start": 3740.14, + "end": 3741.36, + "probability": 0.8984 + }, + { + "start": 3742.62, + "end": 3743.48, + "probability": 0.6857 + }, + { + "start": 3744.84, + "end": 3747.14, + "probability": 0.9757 + }, + { + "start": 3747.74, + "end": 3748.94, + "probability": 0.9363 + }, + { + "start": 3749.5, + "end": 3751.72, + "probability": 0.9933 + }, + { + "start": 3752.72, + "end": 3756.9, + "probability": 0.9808 + }, + { + "start": 3757.46, + "end": 3758.64, + "probability": 0.9745 + }, + { + "start": 3758.68, + "end": 3763.62, + "probability": 0.9907 + }, + { + "start": 3764.38, + "end": 3765.62, + "probability": 0.998 + }, + { + "start": 3766.54, + "end": 3768.22, + "probability": 0.8451 + }, + { + "start": 3768.52, + "end": 3769.94, + "probability": 0.989 + }, + { + "start": 3770.6, + "end": 3770.86, + "probability": 0.7275 + }, + { + "start": 3771.54, + "end": 3773.72, + "probability": 0.5262 + }, + { + "start": 3773.78, + "end": 3774.41, + "probability": 0.8306 + }, + { + "start": 3775.54, + "end": 3777.64, + "probability": 0.992 + }, + { + "start": 3779.78, + "end": 3781.26, + "probability": 0.2652 + }, + { + "start": 3784.78, + "end": 3788.36, + "probability": 0.8896 + }, + { + "start": 3789.66, + "end": 3791.36, + "probability": 0.99 + }, + { + "start": 3791.98, + "end": 3792.78, + "probability": 0.5267 + }, + { + "start": 3794.12, + "end": 3796.56, + "probability": 0.9897 + }, + { + "start": 3797.02, + "end": 3797.92, + "probability": 0.2515 + }, + { + "start": 3798.86, + "end": 3801.9, + "probability": 0.9499 + }, + { + "start": 3804.2, + "end": 3804.32, + "probability": 0.8531 + }, + { + "start": 3805.86, + "end": 3806.02, + "probability": 0.5235 + }, + { + "start": 3807.76, + "end": 3808.78, + "probability": 0.7389 + }, + { + "start": 3809.82, + "end": 3810.98, + "probability": 0.9535 + }, + { + "start": 3811.2, + "end": 3816.96, + "probability": 0.7837 + }, + { + "start": 3817.3, + "end": 3818.82, + "probability": 0.9464 + }, + { + "start": 3820.34, + "end": 3827.54, + "probability": 0.9649 + }, + { + "start": 3828.48, + "end": 3832.22, + "probability": 0.9044 + }, + { + "start": 3833.66, + "end": 3840.72, + "probability": 0.9922 + }, + { + "start": 3841.4, + "end": 3843.12, + "probability": 0.9662 + }, + { + "start": 3843.26, + "end": 3844.86, + "probability": 0.8092 + }, + { + "start": 3845.62, + "end": 3848.34, + "probability": 0.9668 + }, + { + "start": 3849.22, + "end": 3853.19, + "probability": 0.9456 + }, + { + "start": 3856.26, + "end": 3860.26, + "probability": 0.9656 + }, + { + "start": 3861.3, + "end": 3869.49, + "probability": 0.9842 + }, + { + "start": 3871.3, + "end": 3875.51, + "probability": 0.9949 + }, + { + "start": 3876.28, + "end": 3876.64, + "probability": 0.4983 + }, + { + "start": 3876.74, + "end": 3878.66, + "probability": 0.9977 + }, + { + "start": 3878.72, + "end": 3882.48, + "probability": 0.8706 + }, + { + "start": 3883.42, + "end": 3886.1, + "probability": 0.9644 + }, + { + "start": 3886.72, + "end": 3887.52, + "probability": 0.7897 + }, + { + "start": 3888.14, + "end": 3888.96, + "probability": 0.9344 + }, + { + "start": 3889.08, + "end": 3891.56, + "probability": 0.932 + }, + { + "start": 3891.62, + "end": 3892.58, + "probability": 0.942 + }, + { + "start": 3892.72, + "end": 3895.14, + "probability": 0.9728 + }, + { + "start": 3895.52, + "end": 3896.42, + "probability": 0.8944 + }, + { + "start": 3897.04, + "end": 3902.08, + "probability": 0.9342 + }, + { + "start": 3902.58, + "end": 3903.51, + "probability": 0.9824 + }, + { + "start": 3904.52, + "end": 3906.6, + "probability": 0.9828 + }, + { + "start": 3907.55, + "end": 3912.74, + "probability": 0.9731 + }, + { + "start": 3913.34, + "end": 3915.15, + "probability": 0.9632 + }, + { + "start": 3916.32, + "end": 3918.02, + "probability": 0.7761 + }, + { + "start": 3918.66, + "end": 3920.56, + "probability": 0.9682 + }, + { + "start": 3921.24, + "end": 3922.8, + "probability": 0.5616 + }, + { + "start": 3924.64, + "end": 3926.5, + "probability": 0.6478 + }, + { + "start": 3927.36, + "end": 3929.62, + "probability": 0.9937 + }, + { + "start": 3931.98, + "end": 3932.68, + "probability": 0.423 + }, + { + "start": 3938.08, + "end": 3939.67, + "probability": 0.9196 + }, + { + "start": 3940.86, + "end": 3941.54, + "probability": 0.3979 + }, + { + "start": 3941.58, + "end": 3942.96, + "probability": 0.8936 + }, + { + "start": 3943.7, + "end": 3947.16, + "probability": 0.6135 + }, + { + "start": 3947.52, + "end": 3948.48, + "probability": 0.5098 + }, + { + "start": 3949.08, + "end": 3950.2, + "probability": 0.4199 + }, + { + "start": 3950.2, + "end": 3950.62, + "probability": 0.3394 + }, + { + "start": 3951.02, + "end": 3952.74, + "probability": 0.4983 + }, + { + "start": 3952.78, + "end": 3954.66, + "probability": 0.6164 + }, + { + "start": 3954.74, + "end": 3956.01, + "probability": 0.7829 + }, + { + "start": 3956.16, + "end": 3956.72, + "probability": 0.6238 + }, + { + "start": 3956.78, + "end": 3959.1, + "probability": 0.7146 + }, + { + "start": 3959.64, + "end": 3963.8, + "probability": 0.6232 + }, + { + "start": 3964.74, + "end": 3966.8, + "probability": 0.6649 + }, + { + "start": 3967.0, + "end": 3968.3, + "probability": 0.9458 + }, + { + "start": 3968.5, + "end": 3971.04, + "probability": 0.9552 + }, + { + "start": 3971.18, + "end": 3978.16, + "probability": 0.8125 + }, + { + "start": 3978.34, + "end": 3980.32, + "probability": 0.9006 + }, + { + "start": 3981.2, + "end": 3983.46, + "probability": 0.9112 + }, + { + "start": 3983.52, + "end": 3983.7, + "probability": 0.7017 + }, + { + "start": 3983.8, + "end": 3987.44, + "probability": 0.865 + }, + { + "start": 3987.5, + "end": 3988.54, + "probability": 0.9091 + }, + { + "start": 3988.66, + "end": 3990.72, + "probability": 0.9367 + }, + { + "start": 3990.78, + "end": 3994.2, + "probability": 0.518 + }, + { + "start": 3994.32, + "end": 3995.28, + "probability": 0.3401 + }, + { + "start": 3995.32, + "end": 3996.49, + "probability": 0.7409 + }, + { + "start": 3997.08, + "end": 3999.18, + "probability": 0.8566 + }, + { + "start": 4002.08, + "end": 4004.08, + "probability": 0.6649 + }, + { + "start": 4004.22, + "end": 4004.6, + "probability": 0.4904 + }, + { + "start": 4005.08, + "end": 4006.74, + "probability": 0.879 + }, + { + "start": 4007.48, + "end": 4007.96, + "probability": 0.6414 + }, + { + "start": 4008.02, + "end": 4009.14, + "probability": 0.8574 + }, + { + "start": 4009.62, + "end": 4009.62, + "probability": 0.3758 + }, + { + "start": 4009.62, + "end": 4011.37, + "probability": 0.9841 + }, + { + "start": 4011.62, + "end": 4012.84, + "probability": 0.8189 + }, + { + "start": 4012.98, + "end": 4014.04, + "probability": 0.6731 + }, + { + "start": 4014.64, + "end": 4016.36, + "probability": 0.5591 + }, + { + "start": 4017.04, + "end": 4018.12, + "probability": 0.7637 + }, + { + "start": 4018.88, + "end": 4021.54, + "probability": 0.8623 + }, + { + "start": 4022.62, + "end": 4025.42, + "probability": 0.8805 + }, + { + "start": 4025.66, + "end": 4029.16, + "probability": 0.9848 + }, + { + "start": 4029.2, + "end": 4034.44, + "probability": 0.9382 + }, + { + "start": 4034.8, + "end": 4039.48, + "probability": 0.9915 + }, + { + "start": 4039.6, + "end": 4040.06, + "probability": 0.6371 + }, + { + "start": 4040.48, + "end": 4043.56, + "probability": 0.9854 + }, + { + "start": 4043.62, + "end": 4047.24, + "probability": 0.999 + }, + { + "start": 4047.76, + "end": 4051.12, + "probability": 0.8433 + }, + { + "start": 4051.22, + "end": 4052.1, + "probability": 0.7154 + }, + { + "start": 4052.12, + "end": 4053.3, + "probability": 0.8169 + }, + { + "start": 4053.78, + "end": 4058.3, + "probability": 0.9587 + }, + { + "start": 4058.62, + "end": 4060.36, + "probability": 0.9917 + }, + { + "start": 4060.54, + "end": 4061.81, + "probability": 0.8402 + }, + { + "start": 4062.24, + "end": 4065.04, + "probability": 0.9809 + }, + { + "start": 4065.42, + "end": 4065.7, + "probability": 0.4184 + }, + { + "start": 4065.76, + "end": 4066.34, + "probability": 0.8355 + }, + { + "start": 4066.48, + "end": 4070.08, + "probability": 0.9026 + }, + { + "start": 4070.74, + "end": 4073.59, + "probability": 0.9745 + }, + { + "start": 4074.04, + "end": 4076.34, + "probability": 0.7472 + }, + { + "start": 4076.46, + "end": 4078.12, + "probability": 0.9518 + }, + { + "start": 4078.22, + "end": 4079.44, + "probability": 0.73 + }, + { + "start": 4079.58, + "end": 4080.82, + "probability": 0.804 + }, + { + "start": 4081.44, + "end": 4083.54, + "probability": 0.7991 + }, + { + "start": 4083.66, + "end": 4084.34, + "probability": 0.7034 + }, + { + "start": 4085.06, + "end": 4086.34, + "probability": 0.751 + }, + { + "start": 4086.96, + "end": 4088.52, + "probability": 0.8309 + }, + { + "start": 4088.96, + "end": 4090.6, + "probability": 0.7747 + }, + { + "start": 4090.74, + "end": 4095.08, + "probability": 0.963 + }, + { + "start": 4095.38, + "end": 4096.06, + "probability": 0.8967 + }, + { + "start": 4096.64, + "end": 4097.26, + "probability": 0.956 + }, + { + "start": 4097.36, + "end": 4097.91, + "probability": 0.5771 + }, + { + "start": 4098.04, + "end": 4098.94, + "probability": 0.0341 + }, + { + "start": 4099.12, + "end": 4100.16, + "probability": 0.4139 + }, + { + "start": 4100.5, + "end": 4102.52, + "probability": 0.9393 + }, + { + "start": 4102.92, + "end": 4104.57, + "probability": 0.9514 + }, + { + "start": 4104.66, + "end": 4105.08, + "probability": 0.5004 + }, + { + "start": 4106.12, + "end": 4107.28, + "probability": 0.1312 + }, + { + "start": 4107.32, + "end": 4113.62, + "probability": 0.8101 + }, + { + "start": 4113.78, + "end": 4114.26, + "probability": 0.4961 + }, + { + "start": 4114.9, + "end": 4117.52, + "probability": 0.906 + }, + { + "start": 4117.74, + "end": 4118.56, + "probability": 0.6866 + }, + { + "start": 4118.64, + "end": 4119.08, + "probability": 0.8224 + }, + { + "start": 4119.46, + "end": 4124.08, + "probability": 0.974 + }, + { + "start": 4124.18, + "end": 4125.64, + "probability": 0.9429 + }, + { + "start": 4126.0, + "end": 4127.18, + "probability": 0.821 + }, + { + "start": 4127.3, + "end": 4127.76, + "probability": 0.8801 + }, + { + "start": 4127.82, + "end": 4130.5, + "probability": 0.9457 + }, + { + "start": 4130.54, + "end": 4131.72, + "probability": 0.9387 + }, + { + "start": 4132.24, + "end": 4134.48, + "probability": 0.5673 + }, + { + "start": 4134.6, + "end": 4135.14, + "probability": 0.7345 + }, + { + "start": 4135.22, + "end": 4139.42, + "probability": 0.978 + }, + { + "start": 4139.72, + "end": 4142.0, + "probability": 0.9707 + }, + { + "start": 4142.02, + "end": 4144.89, + "probability": 0.9451 + }, + { + "start": 4145.0, + "end": 4145.48, + "probability": 0.575 + }, + { + "start": 4145.54, + "end": 4149.06, + "probability": 0.9111 + }, + { + "start": 4149.64, + "end": 4150.66, + "probability": 0.56 + }, + { + "start": 4150.84, + "end": 4152.66, + "probability": 0.7269 + }, + { + "start": 4152.84, + "end": 4153.74, + "probability": 0.8824 + }, + { + "start": 4153.78, + "end": 4159.72, + "probability": 0.9653 + }, + { + "start": 4160.94, + "end": 4162.28, + "probability": 0.7569 + }, + { + "start": 4162.7, + "end": 4164.44, + "probability": 0.864 + }, + { + "start": 4164.88, + "end": 4166.0, + "probability": 0.9746 + }, + { + "start": 4166.14, + "end": 4167.16, + "probability": 0.8186 + }, + { + "start": 4167.58, + "end": 4171.18, + "probability": 0.9705 + }, + { + "start": 4171.2, + "end": 4174.46, + "probability": 0.9942 + }, + { + "start": 4174.7, + "end": 4175.9, + "probability": 0.5994 + }, + { + "start": 4175.96, + "end": 4177.58, + "probability": 0.9959 + }, + { + "start": 4177.94, + "end": 4180.56, + "probability": 0.9741 + }, + { + "start": 4180.88, + "end": 4181.2, + "probability": 0.7798 + }, + { + "start": 4181.5, + "end": 4181.72, + "probability": 0.7561 + }, + { + "start": 4182.82, + "end": 4184.8, + "probability": 0.9822 + }, + { + "start": 4185.6, + "end": 4187.86, + "probability": 0.9985 + }, + { + "start": 4188.64, + "end": 4189.08, + "probability": 0.9604 + }, + { + "start": 4189.7, + "end": 4190.48, + "probability": 0.9299 + }, + { + "start": 4204.26, + "end": 4204.34, + "probability": 0.0599 + }, + { + "start": 4204.34, + "end": 4206.62, + "probability": 0.6624 + }, + { + "start": 4207.22, + "end": 4207.46, + "probability": 0.8428 + }, + { + "start": 4207.98, + "end": 4208.78, + "probability": 0.759 + }, + { + "start": 4209.98, + "end": 4213.0, + "probability": 0.9833 + }, + { + "start": 4213.14, + "end": 4215.48, + "probability": 0.7811 + }, + { + "start": 4216.18, + "end": 4218.86, + "probability": 0.9524 + }, + { + "start": 4219.42, + "end": 4223.88, + "probability": 0.9755 + }, + { + "start": 4224.04, + "end": 4225.78, + "probability": 0.6271 + }, + { + "start": 4226.2, + "end": 4226.84, + "probability": 0.4262 + }, + { + "start": 4227.36, + "end": 4229.41, + "probability": 0.7502 + }, + { + "start": 4230.28, + "end": 4234.36, + "probability": 0.9751 + }, + { + "start": 4234.86, + "end": 4236.74, + "probability": 0.9395 + }, + { + "start": 4237.14, + "end": 4239.41, + "probability": 0.7977 + }, + { + "start": 4241.18, + "end": 4242.42, + "probability": 0.8897 + }, + { + "start": 4242.56, + "end": 4243.76, + "probability": 0.9929 + }, + { + "start": 4244.32, + "end": 4247.96, + "probability": 0.9819 + }, + { + "start": 4248.7, + "end": 4249.36, + "probability": 0.9551 + }, + { + "start": 4249.52, + "end": 4250.1, + "probability": 0.8032 + }, + { + "start": 4250.44, + "end": 4253.34, + "probability": 0.4719 + }, + { + "start": 4253.84, + "end": 4256.34, + "probability": 0.9945 + }, + { + "start": 4257.04, + "end": 4261.46, + "probability": 0.8855 + }, + { + "start": 4263.58, + "end": 4266.94, + "probability": 0.6577 + }, + { + "start": 4267.76, + "end": 4270.32, + "probability": 0.761 + }, + { + "start": 4271.38, + "end": 4272.98, + "probability": 0.9911 + }, + { + "start": 4274.48, + "end": 4275.74, + "probability": 0.9289 + }, + { + "start": 4275.82, + "end": 4277.04, + "probability": 0.843 + }, + { + "start": 4278.38, + "end": 4280.84, + "probability": 0.9427 + }, + { + "start": 4282.08, + "end": 4282.96, + "probability": 0.8394 + }, + { + "start": 4284.04, + "end": 4285.38, + "probability": 0.9717 + }, + { + "start": 4286.5, + "end": 4290.46, + "probability": 0.9126 + }, + { + "start": 4291.62, + "end": 4297.22, + "probability": 0.9346 + }, + { + "start": 4297.42, + "end": 4298.48, + "probability": 0.9085 + }, + { + "start": 4298.62, + "end": 4299.9, + "probability": 0.7323 + }, + { + "start": 4300.62, + "end": 4302.52, + "probability": 0.9883 + }, + { + "start": 4303.62, + "end": 4306.52, + "probability": 0.9956 + }, + { + "start": 4307.52, + "end": 4309.24, + "probability": 0.9951 + }, + { + "start": 4310.1, + "end": 4318.96, + "probability": 0.9897 + }, + { + "start": 4321.0, + "end": 4323.5, + "probability": 0.9927 + }, + { + "start": 4323.6, + "end": 4325.09, + "probability": 0.9564 + }, + { + "start": 4325.84, + "end": 4328.52, + "probability": 0.9666 + }, + { + "start": 4329.06, + "end": 4332.78, + "probability": 0.8509 + }, + { + "start": 4334.38, + "end": 4334.86, + "probability": 0.1763 + }, + { + "start": 4334.92, + "end": 4336.0, + "probability": 0.6428 + }, + { + "start": 4336.12, + "end": 4338.36, + "probability": 0.9606 + }, + { + "start": 4339.5, + "end": 4340.68, + "probability": 0.3593 + }, + { + "start": 4341.86, + "end": 4345.36, + "probability": 0.4364 + }, + { + "start": 4346.38, + "end": 4350.74, + "probability": 0.9091 + }, + { + "start": 4351.46, + "end": 4354.1, + "probability": 0.9751 + }, + { + "start": 4355.66, + "end": 4358.48, + "probability": 0.7479 + }, + { + "start": 4359.04, + "end": 4360.76, + "probability": 0.9512 + }, + { + "start": 4361.34, + "end": 4363.04, + "probability": 0.9932 + }, + { + "start": 4363.86, + "end": 4369.86, + "probability": 0.8884 + }, + { + "start": 4370.34, + "end": 4372.68, + "probability": 0.6768 + }, + { + "start": 4373.62, + "end": 4376.16, + "probability": 0.8571 + }, + { + "start": 4376.58, + "end": 4377.89, + "probability": 0.9138 + }, + { + "start": 4379.14, + "end": 4380.46, + "probability": 0.9233 + }, + { + "start": 4380.56, + "end": 4381.75, + "probability": 0.9231 + }, + { + "start": 4382.4, + "end": 4386.46, + "probability": 0.8839 + }, + { + "start": 4387.2, + "end": 4388.32, + "probability": 0.9361 + }, + { + "start": 4388.84, + "end": 4389.54, + "probability": 0.979 + }, + { + "start": 4389.62, + "end": 4391.54, + "probability": 0.981 + }, + { + "start": 4392.34, + "end": 4392.72, + "probability": 0.9726 + }, + { + "start": 4393.2, + "end": 4394.32, + "probability": 0.9902 + }, + { + "start": 4395.12, + "end": 4400.12, + "probability": 0.793 + }, + { + "start": 4400.52, + "end": 4402.81, + "probability": 0.939 + }, + { + "start": 4403.28, + "end": 4407.53, + "probability": 0.9368 + }, + { + "start": 4408.48, + "end": 4409.76, + "probability": 0.9269 + }, + { + "start": 4410.18, + "end": 4411.32, + "probability": 0.984 + }, + { + "start": 4411.32, + "end": 4412.3, + "probability": 0.9976 + }, + { + "start": 4412.4, + "end": 4413.34, + "probability": 0.8684 + }, + { + "start": 4413.98, + "end": 4418.34, + "probability": 0.9907 + }, + { + "start": 4419.1, + "end": 4421.18, + "probability": 0.7229 + }, + { + "start": 4421.24, + "end": 4426.4, + "probability": 0.8284 + }, + { + "start": 4427.48, + "end": 4429.96, + "probability": 0.9213 + }, + { + "start": 4430.7, + "end": 4431.38, + "probability": 0.9026 + }, + { + "start": 4432.0, + "end": 4434.0, + "probability": 0.9783 + }, + { + "start": 4434.04, + "end": 4434.72, + "probability": 0.907 + }, + { + "start": 4435.16, + "end": 4435.62, + "probability": 0.5304 + }, + { + "start": 4435.8, + "end": 4436.64, + "probability": 0.9968 + }, + { + "start": 4436.68, + "end": 4437.58, + "probability": 0.5178 + }, + { + "start": 4437.76, + "end": 4439.1, + "probability": 0.6927 + }, + { + "start": 4439.18, + "end": 4439.58, + "probability": 0.8773 + }, + { + "start": 4441.06, + "end": 4442.98, + "probability": 0.8936 + }, + { + "start": 4443.02, + "end": 4443.62, + "probability": 0.8535 + }, + { + "start": 4444.24, + "end": 4445.12, + "probability": 0.9556 + }, + { + "start": 4445.4, + "end": 4446.46, + "probability": 0.6773 + }, + { + "start": 4446.46, + "end": 4446.5, + "probability": 0.0588 + }, + { + "start": 4446.5, + "end": 4446.74, + "probability": 0.7381 + }, + { + "start": 4447.04, + "end": 4447.46, + "probability": 0.5506 + }, + { + "start": 4447.86, + "end": 4448.42, + "probability": 0.7716 + }, + { + "start": 4448.86, + "end": 4449.82, + "probability": 0.6588 + }, + { + "start": 4449.84, + "end": 4450.14, + "probability": 0.362 + }, + { + "start": 4450.22, + "end": 4450.8, + "probability": 0.3391 + }, + { + "start": 4450.86, + "end": 4451.86, + "probability": 0.9486 + }, + { + "start": 4452.24, + "end": 4452.73, + "probability": 0.213 + }, + { + "start": 4453.54, + "end": 4454.26, + "probability": 0.4436 + }, + { + "start": 4454.6, + "end": 4455.84, + "probability": 0.0658 + }, + { + "start": 4455.84, + "end": 4455.84, + "probability": 0.0623 + }, + { + "start": 4455.84, + "end": 4455.84, + "probability": 0.4455 + }, + { + "start": 4455.84, + "end": 4455.94, + "probability": 0.2758 + }, + { + "start": 4456.02, + "end": 4456.08, + "probability": 0.3829 + }, + { + "start": 4456.5, + "end": 4457.52, + "probability": 0.4263 + }, + { + "start": 4457.64, + "end": 4458.0, + "probability": 0.4538 + }, + { + "start": 4458.06, + "end": 4458.42, + "probability": 0.8489 + }, + { + "start": 4459.54, + "end": 4459.76, + "probability": 0.9638 + }, + { + "start": 4460.58, + "end": 4462.94, + "probability": 0.8671 + }, + { + "start": 4463.52, + "end": 4464.1, + "probability": 0.9081 + }, + { + "start": 4464.64, + "end": 4465.6, + "probability": 0.9667 + }, + { + "start": 4466.84, + "end": 4470.52, + "probability": 0.8062 + }, + { + "start": 4470.64, + "end": 4472.06, + "probability": 0.7595 + }, + { + "start": 4472.46, + "end": 4473.98, + "probability": 0.9878 + }, + { + "start": 4474.64, + "end": 4477.42, + "probability": 0.9584 + }, + { + "start": 4477.56, + "end": 4478.56, + "probability": 0.8952 + }, + { + "start": 4478.98, + "end": 4480.18, + "probability": 0.9143 + }, + { + "start": 4480.8, + "end": 4481.86, + "probability": 0.9584 + }, + { + "start": 4482.08, + "end": 4482.72, + "probability": 0.9945 + }, + { + "start": 4482.9, + "end": 4483.52, + "probability": 0.7413 + }, + { + "start": 4483.64, + "end": 4484.5, + "probability": 0.5745 + }, + { + "start": 4484.6, + "end": 4485.53, + "probability": 0.9236 + }, + { + "start": 4486.16, + "end": 4486.66, + "probability": 0.8381 + }, + { + "start": 4487.44, + "end": 4488.4, + "probability": 0.8647 + }, + { + "start": 4488.72, + "end": 4490.52, + "probability": 0.9561 + }, + { + "start": 4490.66, + "end": 4491.7, + "probability": 0.947 + }, + { + "start": 4492.18, + "end": 4493.58, + "probability": 0.5929 + }, + { + "start": 4494.46, + "end": 4498.58, + "probability": 0.9295 + }, + { + "start": 4498.76, + "end": 4500.4, + "probability": 0.9587 + }, + { + "start": 4500.96, + "end": 4502.12, + "probability": 0.998 + }, + { + "start": 4502.58, + "end": 4503.18, + "probability": 0.4668 + }, + { + "start": 4503.3, + "end": 4504.66, + "probability": 0.8412 + }, + { + "start": 4505.02, + "end": 4507.42, + "probability": 0.9976 + }, + { + "start": 4508.86, + "end": 4511.92, + "probability": 0.9792 + }, + { + "start": 4512.84, + "end": 4519.22, + "probability": 0.6686 + }, + { + "start": 4519.34, + "end": 4520.58, + "probability": 0.9434 + }, + { + "start": 4521.36, + "end": 4523.4, + "probability": 0.9935 + }, + { + "start": 4523.66, + "end": 4524.32, + "probability": 0.7154 + }, + { + "start": 4524.76, + "end": 4526.86, + "probability": 0.9307 + }, + { + "start": 4527.26, + "end": 4528.74, + "probability": 0.9541 + }, + { + "start": 4529.06, + "end": 4529.64, + "probability": 0.8559 + }, + { + "start": 4530.2, + "end": 4532.19, + "probability": 0.9785 + }, + { + "start": 4532.52, + "end": 4532.74, + "probability": 0.8615 + }, + { + "start": 4534.06, + "end": 4535.7, + "probability": 0.7595 + }, + { + "start": 4535.82, + "end": 4537.6, + "probability": 0.9956 + }, + { + "start": 4538.86, + "end": 4541.26, + "probability": 0.8089 + }, + { + "start": 4560.58, + "end": 4562.4, + "probability": 0.5651 + }, + { + "start": 4564.0, + "end": 4571.96, + "probability": 0.9528 + }, + { + "start": 4572.1, + "end": 4573.14, + "probability": 0.8049 + }, + { + "start": 4573.5, + "end": 4574.32, + "probability": 0.9135 + }, + { + "start": 4574.42, + "end": 4575.24, + "probability": 0.9383 + }, + { + "start": 4575.98, + "end": 4576.66, + "probability": 0.9618 + }, + { + "start": 4578.46, + "end": 4583.84, + "probability": 0.8321 + }, + { + "start": 4583.94, + "end": 4584.58, + "probability": 0.9412 + }, + { + "start": 4584.7, + "end": 4586.24, + "probability": 0.7309 + }, + { + "start": 4588.88, + "end": 4590.94, + "probability": 0.9479 + }, + { + "start": 4592.4, + "end": 4592.7, + "probability": 0.5352 + }, + { + "start": 4595.24, + "end": 4598.26, + "probability": 0.9658 + }, + { + "start": 4598.48, + "end": 4599.88, + "probability": 0.5522 + }, + { + "start": 4601.26, + "end": 4603.18, + "probability": 0.7889 + }, + { + "start": 4604.76, + "end": 4604.86, + "probability": 0.7533 + }, + { + "start": 4605.48, + "end": 4607.46, + "probability": 0.8903 + }, + { + "start": 4607.46, + "end": 4609.14, + "probability": 0.7472 + }, + { + "start": 4610.18, + "end": 4612.74, + "probability": 0.731 + }, + { + "start": 4613.46, + "end": 4615.12, + "probability": 0.8547 + }, + { + "start": 4616.84, + "end": 4617.08, + "probability": 0.4859 + }, + { + "start": 4617.5, + "end": 4617.88, + "probability": 0.735 + }, + { + "start": 4618.18, + "end": 4618.76, + "probability": 0.3161 + }, + { + "start": 4618.8, + "end": 4620.4, + "probability": 0.9161 + }, + { + "start": 4620.48, + "end": 4621.1, + "probability": 0.7781 + }, + { + "start": 4621.58, + "end": 4622.32, + "probability": 0.8156 + }, + { + "start": 4622.38, + "end": 4622.88, + "probability": 0.9038 + }, + { + "start": 4624.82, + "end": 4625.54, + "probability": 0.8102 + }, + { + "start": 4629.01, + "end": 4632.74, + "probability": 0.7874 + }, + { + "start": 4634.02, + "end": 4635.84, + "probability": 0.8857 + }, + { + "start": 4637.18, + "end": 4638.06, + "probability": 0.8593 + }, + { + "start": 4638.62, + "end": 4639.82, + "probability": 0.9084 + }, + { + "start": 4640.92, + "end": 4644.32, + "probability": 0.9659 + }, + { + "start": 4645.64, + "end": 4646.48, + "probability": 0.9414 + }, + { + "start": 4650.98, + "end": 4655.04, + "probability": 0.9669 + }, + { + "start": 4655.34, + "end": 4657.68, + "probability": 0.967 + }, + { + "start": 4658.74, + "end": 4660.96, + "probability": 0.748 + }, + { + "start": 4661.9, + "end": 4663.74, + "probability": 0.9595 + }, + { + "start": 4664.54, + "end": 4667.56, + "probability": 0.9724 + }, + { + "start": 4668.62, + "end": 4669.44, + "probability": 0.7566 + }, + { + "start": 4669.76, + "end": 4671.12, + "probability": 0.996 + }, + { + "start": 4671.56, + "end": 4675.6, + "probability": 0.7955 + }, + { + "start": 4676.94, + "end": 4677.28, + "probability": 0.7633 + }, + { + "start": 4677.4, + "end": 4682.58, + "probability": 0.974 + }, + { + "start": 4684.18, + "end": 4686.6, + "probability": 0.9703 + }, + { + "start": 4687.54, + "end": 4690.68, + "probability": 0.9154 + }, + { + "start": 4691.78, + "end": 4697.18, + "probability": 0.9428 + }, + { + "start": 4698.3, + "end": 4701.78, + "probability": 0.9239 + }, + { + "start": 4701.94, + "end": 4706.6, + "probability": 0.9907 + }, + { + "start": 4707.94, + "end": 4710.8, + "probability": 0.9794 + }, + { + "start": 4710.92, + "end": 4712.94, + "probability": 0.7241 + }, + { + "start": 4713.6, + "end": 4718.08, + "probability": 0.7836 + }, + { + "start": 4718.7, + "end": 4721.28, + "probability": 0.9897 + }, + { + "start": 4721.38, + "end": 4723.24, + "probability": 0.7477 + }, + { + "start": 4724.12, + "end": 4727.32, + "probability": 0.998 + }, + { + "start": 4728.92, + "end": 4732.92, + "probability": 0.7926 + }, + { + "start": 4733.84, + "end": 4735.84, + "probability": 0.9355 + }, + { + "start": 4735.9, + "end": 4736.9, + "probability": 0.5835 + }, + { + "start": 4736.98, + "end": 4741.12, + "probability": 0.9645 + }, + { + "start": 4741.5, + "end": 4744.56, + "probability": 0.9979 + }, + { + "start": 4744.9, + "end": 4745.24, + "probability": 0.3526 + }, + { + "start": 4745.36, + "end": 4746.14, + "probability": 0.8981 + }, + { + "start": 4746.32, + "end": 4746.74, + "probability": 0.2823 + }, + { + "start": 4747.32, + "end": 4749.81, + "probability": 0.9159 + }, + { + "start": 4751.2, + "end": 4751.6, + "probability": 0.6953 + }, + { + "start": 4751.68, + "end": 4752.9, + "probability": 0.9233 + }, + { + "start": 4753.08, + "end": 4758.76, + "probability": 0.989 + }, + { + "start": 4759.32, + "end": 4763.94, + "probability": 0.8213 + }, + { + "start": 4764.76, + "end": 4765.12, + "probability": 0.6174 + }, + { + "start": 4765.28, + "end": 4766.28, + "probability": 0.9912 + }, + { + "start": 4766.32, + "end": 4767.06, + "probability": 0.797 + }, + { + "start": 4767.18, + "end": 4768.2, + "probability": 0.8083 + }, + { + "start": 4768.3, + "end": 4770.6, + "probability": 0.6234 + }, + { + "start": 4771.5, + "end": 4774.34, + "probability": 0.7313 + }, + { + "start": 4774.9, + "end": 4778.88, + "probability": 0.5049 + }, + { + "start": 4778.88, + "end": 4780.34, + "probability": 0.9969 + }, + { + "start": 4780.42, + "end": 4781.24, + "probability": 0.8226 + }, + { + "start": 4781.82, + "end": 4783.54, + "probability": 0.8536 + }, + { + "start": 4783.64, + "end": 4784.24, + "probability": 0.8252 + }, + { + "start": 4784.36, + "end": 4785.4, + "probability": 0.7321 + }, + { + "start": 4786.42, + "end": 4788.24, + "probability": 0.9691 + }, + { + "start": 4788.82, + "end": 4790.96, + "probability": 0.9651 + }, + { + "start": 4791.9, + "end": 4796.24, + "probability": 0.9014 + }, + { + "start": 4796.88, + "end": 4798.04, + "probability": 0.9863 + }, + { + "start": 4798.92, + "end": 4800.24, + "probability": 0.82 + }, + { + "start": 4800.32, + "end": 4800.42, + "probability": 0.4455 + }, + { + "start": 4802.21, + "end": 4804.32, + "probability": 0.9364 + }, + { + "start": 4804.54, + "end": 4805.26, + "probability": 0.7007 + }, + { + "start": 4805.38, + "end": 4805.62, + "probability": 0.7043 + }, + { + "start": 4805.78, + "end": 4806.5, + "probability": 0.7362 + }, + { + "start": 4807.42, + "end": 4808.74, + "probability": 0.9933 + }, + { + "start": 4809.2, + "end": 4813.14, + "probability": 0.6536 + }, + { + "start": 4813.64, + "end": 4817.02, + "probability": 0.9048 + }, + { + "start": 4817.02, + "end": 4820.12, + "probability": 0.9938 + }, + { + "start": 4821.0, + "end": 4824.56, + "probability": 0.8442 + }, + { + "start": 4825.3, + "end": 4828.44, + "probability": 0.9897 + }, + { + "start": 4829.12, + "end": 4833.28, + "probability": 0.9862 + }, + { + "start": 4834.08, + "end": 4839.58, + "probability": 0.9977 + }, + { + "start": 4839.98, + "end": 4844.46, + "probability": 0.9966 + }, + { + "start": 4845.12, + "end": 4850.82, + "probability": 0.8724 + }, + { + "start": 4850.96, + "end": 4852.22, + "probability": 0.9494 + }, + { + "start": 4852.52, + "end": 4858.7, + "probability": 0.7204 + }, + { + "start": 4858.98, + "end": 4860.11, + "probability": 0.5803 + }, + { + "start": 4860.92, + "end": 4862.28, + "probability": 0.8384 + }, + { + "start": 4862.34, + "end": 4864.26, + "probability": 0.9971 + }, + { + "start": 4865.66, + "end": 4867.92, + "probability": 0.9823 + }, + { + "start": 4868.02, + "end": 4869.92, + "probability": 0.6969 + }, + { + "start": 4873.58, + "end": 4875.4, + "probability": 0.5096 + }, + { + "start": 4876.14, + "end": 4876.84, + "probability": 0.2671 + }, + { + "start": 4877.64, + "end": 4880.12, + "probability": 0.7945 + }, + { + "start": 4886.26, + "end": 4888.0, + "probability": 0.6643 + }, + { + "start": 4889.16, + "end": 4890.08, + "probability": 0.3192 + }, + { + "start": 4890.92, + "end": 4893.8, + "probability": 0.6447 + }, + { + "start": 4894.46, + "end": 4896.32, + "probability": 0.8701 + }, + { + "start": 4897.04, + "end": 4900.82, + "probability": 0.9626 + }, + { + "start": 4902.26, + "end": 4904.52, + "probability": 0.9379 + }, + { + "start": 4904.62, + "end": 4905.23, + "probability": 0.9976 + }, + { + "start": 4906.08, + "end": 4908.68, + "probability": 0.9959 + }, + { + "start": 4909.54, + "end": 4912.48, + "probability": 0.9828 + }, + { + "start": 4913.56, + "end": 4919.22, + "probability": 0.9598 + }, + { + "start": 4919.92, + "end": 4921.82, + "probability": 0.8406 + }, + { + "start": 4923.54, + "end": 4928.28, + "probability": 0.6519 + }, + { + "start": 4930.56, + "end": 4932.26, + "probability": 0.9951 + }, + { + "start": 4934.18, + "end": 4935.66, + "probability": 0.087 + }, + { + "start": 4936.74, + "end": 4941.42, + "probability": 0.9775 + }, + { + "start": 4942.02, + "end": 4944.44, + "probability": 0.3654 + }, + { + "start": 4944.52, + "end": 4947.5, + "probability": 0.9878 + }, + { + "start": 4949.4, + "end": 4950.38, + "probability": 0.9922 + }, + { + "start": 4950.66, + "end": 4951.22, + "probability": 0.8145 + }, + { + "start": 4951.7, + "end": 4952.52, + "probability": 0.96 + }, + { + "start": 4952.74, + "end": 4953.28, + "probability": 0.6738 + }, + { + "start": 4955.7, + "end": 4956.42, + "probability": 0.978 + }, + { + "start": 4957.46, + "end": 4964.04, + "probability": 0.9883 + }, + { + "start": 4965.5, + "end": 4966.36, + "probability": 0.8887 + }, + { + "start": 4968.66, + "end": 4970.68, + "probability": 0.429 + }, + { + "start": 4972.54, + "end": 4973.24, + "probability": 0.6875 + }, + { + "start": 4974.02, + "end": 4975.14, + "probability": 0.9863 + }, + { + "start": 4976.3, + "end": 4976.88, + "probability": 0.9406 + }, + { + "start": 4977.66, + "end": 4980.82, + "probability": 0.9759 + }, + { + "start": 4981.3, + "end": 4982.86, + "probability": 0.8103 + }, + { + "start": 4984.74, + "end": 4985.98, + "probability": 0.8987 + }, + { + "start": 4986.12, + "end": 4987.14, + "probability": 0.8925 + }, + { + "start": 4987.18, + "end": 4988.14, + "probability": 0.6783 + }, + { + "start": 4990.96, + "end": 4993.52, + "probability": 0.778 + }, + { + "start": 4994.08, + "end": 4995.19, + "probability": 0.9976 + }, + { + "start": 4996.42, + "end": 4998.88, + "probability": 0.8354 + }, + { + "start": 4999.96, + "end": 5002.5, + "probability": 0.9415 + }, + { + "start": 5003.48, + "end": 5005.9, + "probability": 0.951 + }, + { + "start": 5006.62, + "end": 5007.38, + "probability": 0.8768 + }, + { + "start": 5008.34, + "end": 5009.74, + "probability": 0.9944 + }, + { + "start": 5012.3, + "end": 5014.84, + "probability": 0.4511 + }, + { + "start": 5015.62, + "end": 5020.56, + "probability": 0.9924 + }, + { + "start": 5021.48, + "end": 5025.76, + "probability": 0.8533 + }, + { + "start": 5026.86, + "end": 5027.0, + "probability": 0.8973 + }, + { + "start": 5028.44, + "end": 5030.5, + "probability": 0.8688 + }, + { + "start": 5031.32, + "end": 5032.64, + "probability": 0.9741 + }, + { + "start": 5033.84, + "end": 5036.36, + "probability": 0.8116 + }, + { + "start": 5037.44, + "end": 5039.16, + "probability": 0.6286 + }, + { + "start": 5039.48, + "end": 5039.76, + "probability": 0.3965 + }, + { + "start": 5039.76, + "end": 5040.38, + "probability": 0.7232 + }, + { + "start": 5041.6, + "end": 5043.42, + "probability": 0.8612 + }, + { + "start": 5044.12, + "end": 5045.6, + "probability": 0.9561 + }, + { + "start": 5045.74, + "end": 5047.24, + "probability": 0.7656 + }, + { + "start": 5048.02, + "end": 5050.04, + "probability": 0.9612 + }, + { + "start": 5050.96, + "end": 5051.48, + "probability": 0.2134 + }, + { + "start": 5051.52, + "end": 5053.08, + "probability": 0.7027 + }, + { + "start": 5053.46, + "end": 5054.5, + "probability": 0.3305 + }, + { + "start": 5055.8, + "end": 5058.26, + "probability": 0.9973 + }, + { + "start": 5059.16, + "end": 5061.4, + "probability": 0.9516 + }, + { + "start": 5061.92, + "end": 5065.14, + "probability": 0.9065 + }, + { + "start": 5066.38, + "end": 5068.5, + "probability": 0.8622 + }, + { + "start": 5069.26, + "end": 5072.1, + "probability": 0.9974 + }, + { + "start": 5072.58, + "end": 5073.38, + "probability": 0.728 + }, + { + "start": 5074.08, + "end": 5077.14, + "probability": 0.9751 + }, + { + "start": 5077.82, + "end": 5079.32, + "probability": 0.7392 + }, + { + "start": 5079.5, + "end": 5080.46, + "probability": 0.9961 + }, + { + "start": 5082.04, + "end": 5091.56, + "probability": 0.7603 + }, + { + "start": 5092.02, + "end": 5094.16, + "probability": 0.8751 + }, + { + "start": 5094.22, + "end": 5095.16, + "probability": 0.8017 + }, + { + "start": 5095.56, + "end": 5095.98, + "probability": 0.9577 + }, + { + "start": 5096.38, + "end": 5096.77, + "probability": 0.9874 + }, + { + "start": 5097.34, + "end": 5097.7, + "probability": 0.9878 + }, + { + "start": 5098.52, + "end": 5099.21, + "probability": 0.9888 + }, + { + "start": 5099.58, + "end": 5100.19, + "probability": 0.9233 + }, + { + "start": 5100.3, + "end": 5101.16, + "probability": 0.9541 + }, + { + "start": 5102.04, + "end": 5102.98, + "probability": 0.9434 + }, + { + "start": 5103.64, + "end": 5104.76, + "probability": 0.4903 + }, + { + "start": 5105.46, + "end": 5108.12, + "probability": 0.1249 + }, + { + "start": 5108.22, + "end": 5109.26, + "probability": 0.6742 + }, + { + "start": 5111.3, + "end": 5112.84, + "probability": 0.991 + }, + { + "start": 5114.38, + "end": 5118.38, + "probability": 0.979 + }, + { + "start": 5120.06, + "end": 5121.0, + "probability": 0.0562 + }, + { + "start": 5122.88, + "end": 5127.7, + "probability": 0.2767 + }, + { + "start": 5127.7, + "end": 5128.22, + "probability": 0.5442 + }, + { + "start": 5128.52, + "end": 5129.44, + "probability": 0.9521 + }, + { + "start": 5130.32, + "end": 5131.72, + "probability": 0.7447 + }, + { + "start": 5131.74, + "end": 5131.86, + "probability": 0.7503 + }, + { + "start": 5132.28, + "end": 5132.68, + "probability": 0.0525 + }, + { + "start": 5133.98, + "end": 5134.58, + "probability": 0.2416 + }, + { + "start": 5135.12, + "end": 5138.84, + "probability": 0.2354 + }, + { + "start": 5140.52, + "end": 5142.64, + "probability": 0.9616 + }, + { + "start": 5142.7, + "end": 5143.1, + "probability": 0.5045 + }, + { + "start": 5144.24, + "end": 5145.82, + "probability": 0.7182 + }, + { + "start": 5146.34, + "end": 5147.32, + "probability": 0.6383 + }, + { + "start": 5148.2, + "end": 5152.28, + "probability": 0.6774 + }, + { + "start": 5153.1, + "end": 5155.44, + "probability": 0.6674 + }, + { + "start": 5155.7, + "end": 5156.32, + "probability": 0.7545 + }, + { + "start": 5157.5, + "end": 5157.62, + "probability": 0.6685 + }, + { + "start": 5157.62, + "end": 5159.77, + "probability": 0.8853 + }, + { + "start": 5159.9, + "end": 5160.78, + "probability": 0.9718 + }, + { + "start": 5161.62, + "end": 5165.86, + "probability": 0.7345 + }, + { + "start": 5167.34, + "end": 5168.52, + "probability": 0.0626 + }, + { + "start": 5170.2, + "end": 5172.08, + "probability": 0.2191 + }, + { + "start": 5174.75, + "end": 5176.74, + "probability": 0.4854 + }, + { + "start": 5177.94, + "end": 5180.64, + "probability": 0.6394 + }, + { + "start": 5180.64, + "end": 5182.88, + "probability": 0.9888 + }, + { + "start": 5183.7, + "end": 5185.66, + "probability": 0.967 + }, + { + "start": 5186.54, + "end": 5188.07, + "probability": 0.7852 + }, + { + "start": 5189.24, + "end": 5190.46, + "probability": 0.8691 + }, + { + "start": 5190.52, + "end": 5191.72, + "probability": 0.9393 + }, + { + "start": 5192.56, + "end": 5195.26, + "probability": 0.662 + }, + { + "start": 5196.08, + "end": 5199.86, + "probability": 0.9916 + }, + { + "start": 5200.56, + "end": 5201.62, + "probability": 0.497 + }, + { + "start": 5203.72, + "end": 5204.66, + "probability": 0.6351 + }, + { + "start": 5204.74, + "end": 5207.58, + "probability": 0.9832 + }, + { + "start": 5208.22, + "end": 5209.16, + "probability": 0.52 + }, + { + "start": 5211.0, + "end": 5212.44, + "probability": 0.5773 + }, + { + "start": 5214.26, + "end": 5214.6, + "probability": 0.9012 + }, + { + "start": 5215.2, + "end": 5215.94, + "probability": 0.8498 + }, + { + "start": 5216.12, + "end": 5218.31, + "probability": 0.6848 + }, + { + "start": 5218.64, + "end": 5219.98, + "probability": 0.9058 + }, + { + "start": 5220.02, + "end": 5220.62, + "probability": 0.5472 + }, + { + "start": 5223.1, + "end": 5224.78, + "probability": 0.4992 + }, + { + "start": 5225.46, + "end": 5226.3, + "probability": 0.3649 + }, + { + "start": 5227.0, + "end": 5228.92, + "probability": 0.938 + }, + { + "start": 5229.68, + "end": 5230.72, + "probability": 0.9956 + }, + { + "start": 5231.9, + "end": 5233.72, + "probability": 0.6677 + }, + { + "start": 5233.86, + "end": 5234.18, + "probability": 0.8879 + }, + { + "start": 5235.22, + "end": 5237.2, + "probability": 0.9109 + }, + { + "start": 5239.14, + "end": 5241.42, + "probability": 0.8517 + }, + { + "start": 5241.76, + "end": 5246.0, + "probability": 0.8496 + }, + { + "start": 5249.16, + "end": 5251.24, + "probability": 0.7437 + }, + { + "start": 5251.56, + "end": 5255.5, + "probability": 0.5071 + }, + { + "start": 5255.8, + "end": 5257.2, + "probability": 0.8553 + }, + { + "start": 5259.02, + "end": 5261.68, + "probability": 0.8095 + }, + { + "start": 5261.76, + "end": 5263.9, + "probability": 0.5619 + }, + { + "start": 5263.94, + "end": 5264.44, + "probability": 0.7892 + }, + { + "start": 5264.54, + "end": 5267.22, + "probability": 0.9645 + }, + { + "start": 5268.06, + "end": 5269.12, + "probability": 0.8624 + }, + { + "start": 5280.08, + "end": 5281.0, + "probability": 0.0189 + }, + { + "start": 5294.12, + "end": 5299.4, + "probability": 0.0824 + }, + { + "start": 5300.02, + "end": 5301.54, + "probability": 0.3736 + }, + { + "start": 5302.12, + "end": 5302.84, + "probability": 0.2515 + }, + { + "start": 5303.58, + "end": 5309.44, + "probability": 0.8521 + }, + { + "start": 5310.98, + "end": 5312.7, + "probability": 0.2788 + }, + { + "start": 5313.68, + "end": 5314.26, + "probability": 0.4786 + }, + { + "start": 5315.66, + "end": 5316.96, + "probability": 0.628 + }, + { + "start": 5325.16, + "end": 5330.2, + "probability": 0.9649 + }, + { + "start": 5333.56, + "end": 5333.56, + "probability": 0.0302 + }, + { + "start": 5333.56, + "end": 5333.56, + "probability": 0.0284 + }, + { + "start": 5333.56, + "end": 5335.36, + "probability": 0.6918 + }, + { + "start": 5335.92, + "end": 5338.5, + "probability": 0.9852 + }, + { + "start": 5338.92, + "end": 5340.1, + "probability": 0.9518 + }, + { + "start": 5359.2, + "end": 5359.96, + "probability": 0.3654 + }, + { + "start": 5360.06, + "end": 5361.52, + "probability": 0.9464 + }, + { + "start": 5362.28, + "end": 5363.88, + "probability": 0.6031 + }, + { + "start": 5366.7, + "end": 5372.33, + "probability": 0.9657 + }, + { + "start": 5372.96, + "end": 5377.32, + "probability": 0.9004 + }, + { + "start": 5378.42, + "end": 5380.26, + "probability": 0.9983 + }, + { + "start": 5380.8, + "end": 5383.64, + "probability": 0.9989 + }, + { + "start": 5384.8, + "end": 5385.4, + "probability": 0.8935 + }, + { + "start": 5386.7, + "end": 5388.49, + "probability": 0.9525 + }, + { + "start": 5389.96, + "end": 5391.2, + "probability": 0.9912 + }, + { + "start": 5392.3, + "end": 5393.74, + "probability": 0.9421 + }, + { + "start": 5394.72, + "end": 5395.78, + "probability": 0.96 + }, + { + "start": 5396.4, + "end": 5397.62, + "probability": 0.9991 + }, + { + "start": 5398.2, + "end": 5400.56, + "probability": 0.9515 + }, + { + "start": 5400.58, + "end": 5401.48, + "probability": 0.7407 + }, + { + "start": 5402.28, + "end": 5404.22, + "probability": 0.6124 + }, + { + "start": 5404.72, + "end": 5408.04, + "probability": 0.7799 + }, + { + "start": 5408.94, + "end": 5411.16, + "probability": 0.9424 + }, + { + "start": 5411.7, + "end": 5414.0, + "probability": 0.9837 + }, + { + "start": 5415.16, + "end": 5418.58, + "probability": 0.9932 + }, + { + "start": 5419.52, + "end": 5422.44, + "probability": 0.855 + }, + { + "start": 5422.54, + "end": 5423.04, + "probability": 0.6979 + }, + { + "start": 5423.98, + "end": 5424.56, + "probability": 0.8565 + }, + { + "start": 5426.72, + "end": 5429.21, + "probability": 0.8051 + }, + { + "start": 5429.96, + "end": 5433.04, + "probability": 0.7946 + }, + { + "start": 5433.48, + "end": 5434.66, + "probability": 0.9974 + }, + { + "start": 5436.7, + "end": 5438.3, + "probability": 0.773 + }, + { + "start": 5438.82, + "end": 5439.96, + "probability": 0.8359 + }, + { + "start": 5440.58, + "end": 5441.44, + "probability": 0.9419 + }, + { + "start": 5442.3, + "end": 5446.42, + "probability": 0.8843 + }, + { + "start": 5446.86, + "end": 5447.82, + "probability": 0.8204 + }, + { + "start": 5447.88, + "end": 5448.66, + "probability": 0.7125 + }, + { + "start": 5449.14, + "end": 5453.15, + "probability": 0.9521 + }, + { + "start": 5454.02, + "end": 5456.4, + "probability": 0.9971 + }, + { + "start": 5457.24, + "end": 5457.87, + "probability": 0.8638 + }, + { + "start": 5458.1, + "end": 5459.58, + "probability": 0.9025 + }, + { + "start": 5459.86, + "end": 5463.76, + "probability": 0.7519 + }, + { + "start": 5463.76, + "end": 5466.22, + "probability": 0.7924 + }, + { + "start": 5466.64, + "end": 5470.58, + "probability": 0.9869 + }, + { + "start": 5471.56, + "end": 5475.7, + "probability": 0.5879 + }, + { + "start": 5476.38, + "end": 5479.28, + "probability": 0.9164 + }, + { + "start": 5480.24, + "end": 5482.96, + "probability": 0.5052 + }, + { + "start": 5484.18, + "end": 5490.98, + "probability": 0.934 + }, + { + "start": 5491.6, + "end": 5493.64, + "probability": 0.528 + }, + { + "start": 5495.74, + "end": 5496.44, + "probability": 0.2366 + }, + { + "start": 5497.26, + "end": 5500.46, + "probability": 0.6104 + }, + { + "start": 5500.98, + "end": 5503.32, + "probability": 0.5442 + }, + { + "start": 5504.0, + "end": 5505.33, + "probability": 0.7676 + }, + { + "start": 5505.96, + "end": 5507.82, + "probability": 0.7204 + }, + { + "start": 5508.26, + "end": 5509.46, + "probability": 0.8785 + }, + { + "start": 5509.46, + "end": 5509.92, + "probability": 0.8084 + }, + { + "start": 5510.38, + "end": 5513.16, + "probability": 0.8996 + }, + { + "start": 5513.7, + "end": 5516.64, + "probability": 0.4338 + }, + { + "start": 5516.64, + "end": 5517.34, + "probability": 0.4569 + }, + { + "start": 5517.34, + "end": 5518.14, + "probability": 0.6036 + }, + { + "start": 5518.44, + "end": 5521.6, + "probability": 0.8987 + }, + { + "start": 5521.94, + "end": 5522.4, + "probability": 0.8914 + }, + { + "start": 5522.64, + "end": 5524.38, + "probability": 0.9575 + }, + { + "start": 5525.2, + "end": 5525.74, + "probability": 0.8125 + }, + { + "start": 5526.54, + "end": 5528.3, + "probability": 0.7303 + }, + { + "start": 5528.94, + "end": 5530.88, + "probability": 0.9235 + }, + { + "start": 5536.14, + "end": 5536.64, + "probability": 0.2378 + }, + { + "start": 5537.54, + "end": 5539.56, + "probability": 0.9828 + }, + { + "start": 5540.08, + "end": 5542.94, + "probability": 0.9478 + }, + { + "start": 5543.77, + "end": 5546.9, + "probability": 0.9952 + }, + { + "start": 5547.44, + "end": 5548.7, + "probability": 0.6735 + }, + { + "start": 5548.78, + "end": 5549.58, + "probability": 0.7783 + }, + { + "start": 5549.72, + "end": 5550.2, + "probability": 0.7292 + }, + { + "start": 5550.34, + "end": 5551.14, + "probability": 0.6695 + }, + { + "start": 5551.6, + "end": 5553.84, + "probability": 0.1731 + }, + { + "start": 5554.68, + "end": 5556.12, + "probability": 0.86 + }, + { + "start": 5556.74, + "end": 5557.5, + "probability": 0.5687 + }, + { + "start": 5557.88, + "end": 5559.12, + "probability": 0.783 + }, + { + "start": 5560.22, + "end": 5560.98, + "probability": 0.8994 + }, + { + "start": 5561.22, + "end": 5563.78, + "probability": 0.436 + }, + { + "start": 5564.64, + "end": 5565.5, + "probability": 0.3132 + }, + { + "start": 5566.06, + "end": 5571.4, + "probability": 0.6961 + }, + { + "start": 5571.88, + "end": 5573.78, + "probability": 0.9355 + }, + { + "start": 5573.98, + "end": 5574.95, + "probability": 0.5483 + }, + { + "start": 5575.08, + "end": 5576.84, + "probability": 0.9734 + }, + { + "start": 5577.3, + "end": 5581.98, + "probability": 0.8531 + }, + { + "start": 5582.62, + "end": 5583.7, + "probability": 0.9668 + }, + { + "start": 5588.94, + "end": 5592.44, + "probability": 0.6803 + }, + { + "start": 5593.06, + "end": 5594.64, + "probability": 0.7685 + }, + { + "start": 5595.24, + "end": 5596.6, + "probability": 0.9285 + }, + { + "start": 5597.1, + "end": 5598.68, + "probability": 0.8911 + }, + { + "start": 5598.82, + "end": 5599.8, + "probability": 0.8015 + }, + { + "start": 5600.46, + "end": 5602.6, + "probability": 0.8095 + }, + { + "start": 5603.54, + "end": 5605.95, + "probability": 0.9885 + }, + { + "start": 5606.48, + "end": 5607.5, + "probability": 0.8763 + }, + { + "start": 5607.92, + "end": 5610.06, + "probability": 0.6816 + }, + { + "start": 5610.18, + "end": 5611.06, + "probability": 0.6535 + }, + { + "start": 5611.34, + "end": 5612.54, + "probability": 0.6536 + }, + { + "start": 5612.78, + "end": 5613.82, + "probability": 0.3645 + }, + { + "start": 5614.18, + "end": 5615.46, + "probability": 0.317 + }, + { + "start": 5615.72, + "end": 5618.68, + "probability": 0.3085 + }, + { + "start": 5618.7, + "end": 5620.38, + "probability": 0.4439 + }, + { + "start": 5620.54, + "end": 5625.34, + "probability": 0.9391 + }, + { + "start": 5626.16, + "end": 5626.26, + "probability": 0.2737 + }, + { + "start": 5626.34, + "end": 5628.76, + "probability": 0.9651 + }, + { + "start": 5628.94, + "end": 5629.66, + "probability": 0.5961 + }, + { + "start": 5629.96, + "end": 5631.08, + "probability": 0.7344 + }, + { + "start": 5631.2, + "end": 5631.4, + "probability": 0.8249 + }, + { + "start": 5632.06, + "end": 5633.98, + "probability": 0.8787 + }, + { + "start": 5634.76, + "end": 5636.86, + "probability": 0.8029 + }, + { + "start": 5637.42, + "end": 5638.84, + "probability": 0.9895 + }, + { + "start": 5639.46, + "end": 5640.6, + "probability": 0.9502 + }, + { + "start": 5641.86, + "end": 5645.76, + "probability": 0.6414 + }, + { + "start": 5646.7, + "end": 5648.3, + "probability": 0.4853 + }, + { + "start": 5649.92, + "end": 5651.66, + "probability": 0.8911 + }, + { + "start": 5653.98, + "end": 5654.0, + "probability": 0.2847 + }, + { + "start": 5654.0, + "end": 5654.0, + "probability": 0.4438 + }, + { + "start": 5654.0, + "end": 5655.96, + "probability": 0.9629 + }, + { + "start": 5656.3, + "end": 5658.08, + "probability": 0.9636 + }, + { + "start": 5679.44, + "end": 5683.88, + "probability": 0.6924 + }, + { + "start": 5685.78, + "end": 5688.56, + "probability": 0.4822 + }, + { + "start": 5689.22, + "end": 5690.84, + "probability": 0.3275 + }, + { + "start": 5692.1, + "end": 5694.7, + "probability": 0.941 + }, + { + "start": 5694.78, + "end": 5696.28, + "probability": 0.9466 + }, + { + "start": 5696.36, + "end": 5698.74, + "probability": 0.9257 + }, + { + "start": 5698.9, + "end": 5703.74, + "probability": 0.9956 + }, + { + "start": 5704.1, + "end": 5705.92, + "probability": 0.8838 + }, + { + "start": 5706.04, + "end": 5706.64, + "probability": 0.8502 + }, + { + "start": 5706.98, + "end": 5708.6, + "probability": 0.7358 + }, + { + "start": 5709.3, + "end": 5709.9, + "probability": 0.4993 + }, + { + "start": 5710.96, + "end": 5711.16, + "probability": 0.5167 + }, + { + "start": 5711.22, + "end": 5712.84, + "probability": 0.6993 + }, + { + "start": 5712.88, + "end": 5714.6, + "probability": 0.7362 + }, + { + "start": 5714.9, + "end": 5716.21, + "probability": 0.9832 + }, + { + "start": 5717.22, + "end": 5718.46, + "probability": 0.7224 + }, + { + "start": 5718.98, + "end": 5719.14, + "probability": 0.3769 + }, + { + "start": 5719.24, + "end": 5720.72, + "probability": 0.9512 + }, + { + "start": 5720.84, + "end": 5724.08, + "probability": 0.9756 + }, + { + "start": 5725.04, + "end": 5726.48, + "probability": 0.6319 + }, + { + "start": 5727.08, + "end": 5727.86, + "probability": 0.7874 + }, + { + "start": 5728.38, + "end": 5731.56, + "probability": 0.9727 + }, + { + "start": 5732.08, + "end": 5733.58, + "probability": 0.8682 + }, + { + "start": 5734.04, + "end": 5734.63, + "probability": 0.6281 + }, + { + "start": 5735.08, + "end": 5736.22, + "probability": 0.9629 + }, + { + "start": 5738.96, + "end": 5739.52, + "probability": 0.8267 + }, + { + "start": 5740.6, + "end": 5741.2, + "probability": 0.918 + }, + { + "start": 5741.32, + "end": 5743.7, + "probability": 0.9476 + }, + { + "start": 5744.08, + "end": 5747.88, + "probability": 0.6148 + }, + { + "start": 5748.22, + "end": 5748.84, + "probability": 0.5107 + }, + { + "start": 5748.96, + "end": 5750.26, + "probability": 0.6034 + }, + { + "start": 5751.28, + "end": 5753.46, + "probability": 0.9966 + }, + { + "start": 5753.98, + "end": 5755.54, + "probability": 0.9133 + }, + { + "start": 5756.26, + "end": 5756.98, + "probability": 0.9292 + }, + { + "start": 5758.16, + "end": 5759.16, + "probability": 0.9641 + }, + { + "start": 5759.22, + "end": 5760.2, + "probability": 0.7609 + }, + { + "start": 5760.38, + "end": 5761.4, + "probability": 0.649 + }, + { + "start": 5764.16, + "end": 5765.66, + "probability": 0.996 + }, + { + "start": 5765.72, + "end": 5767.82, + "probability": 0.9561 + }, + { + "start": 5768.0, + "end": 5769.02, + "probability": 0.5385 + }, + { + "start": 5770.14, + "end": 5771.9, + "probability": 0.6484 + }, + { + "start": 5773.08, + "end": 5775.58, + "probability": 0.6636 + }, + { + "start": 5776.0, + "end": 5776.94, + "probability": 0.9512 + }, + { + "start": 5777.34, + "end": 5781.72, + "probability": 0.8501 + }, + { + "start": 5782.26, + "end": 5783.78, + "probability": 0.7565 + }, + { + "start": 5784.28, + "end": 5787.42, + "probability": 0.9847 + }, + { + "start": 5788.16, + "end": 5789.5, + "probability": 0.6077 + }, + { + "start": 5790.14, + "end": 5791.76, + "probability": 0.5863 + }, + { + "start": 5792.54, + "end": 5796.36, + "probability": 0.9917 + }, + { + "start": 5796.98, + "end": 5799.46, + "probability": 0.9355 + }, + { + "start": 5799.9, + "end": 5801.84, + "probability": 0.916 + }, + { + "start": 5803.74, + "end": 5805.02, + "probability": 0.8488 + }, + { + "start": 5806.0, + "end": 5807.44, + "probability": 0.9581 + }, + { + "start": 5808.42, + "end": 5811.68, + "probability": 0.9631 + }, + { + "start": 5812.98, + "end": 5814.74, + "probability": 0.9574 + }, + { + "start": 5815.16, + "end": 5820.08, + "probability": 0.9702 + }, + { + "start": 5820.18, + "end": 5820.5, + "probability": 0.7211 + }, + { + "start": 5821.38, + "end": 5822.74, + "probability": 0.9366 + }, + { + "start": 5825.16, + "end": 5829.48, + "probability": 0.7458 + }, + { + "start": 5830.38, + "end": 5831.08, + "probability": 0.3233 + }, + { + "start": 5832.82, + "end": 5834.84, + "probability": 0.7712 + }, + { + "start": 5834.88, + "end": 5837.1, + "probability": 0.9917 + }, + { + "start": 5838.54, + "end": 5841.56, + "probability": 0.8062 + }, + { + "start": 5841.66, + "end": 5843.54, + "probability": 0.8936 + }, + { + "start": 5844.48, + "end": 5845.62, + "probability": 0.929 + }, + { + "start": 5845.86, + "end": 5847.66, + "probability": 0.7688 + }, + { + "start": 5848.03, + "end": 5848.72, + "probability": 0.9278 + }, + { + "start": 5850.08, + "end": 5852.12, + "probability": 0.9922 + }, + { + "start": 5853.16, + "end": 5854.8, + "probability": 0.8895 + }, + { + "start": 5854.88, + "end": 5855.6, + "probability": 0.9563 + }, + { + "start": 5855.76, + "end": 5858.18, + "probability": 0.9132 + }, + { + "start": 5858.28, + "end": 5859.26, + "probability": 0.7061 + }, + { + "start": 5859.94, + "end": 5861.3, + "probability": 0.9641 + }, + { + "start": 5861.4, + "end": 5863.84, + "probability": 0.8808 + }, + { + "start": 5864.48, + "end": 5866.29, + "probability": 0.9513 + }, + { + "start": 5869.4, + "end": 5874.08, + "probability": 0.6458 + }, + { + "start": 5874.88, + "end": 5876.56, + "probability": 0.991 + }, + { + "start": 5877.08, + "end": 5881.04, + "probability": 0.9135 + }, + { + "start": 5881.5, + "end": 5883.38, + "probability": 0.575 + }, + { + "start": 5884.04, + "end": 5889.64, + "probability": 0.8983 + }, + { + "start": 5889.64, + "end": 5893.06, + "probability": 0.9302 + }, + { + "start": 5894.88, + "end": 5895.46, + "probability": 0.6577 + }, + { + "start": 5895.52, + "end": 5896.24, + "probability": 0.6311 + }, + { + "start": 5896.42, + "end": 5902.94, + "probability": 0.8663 + }, + { + "start": 5903.24, + "end": 5906.86, + "probability": 0.8891 + }, + { + "start": 5907.4, + "end": 5907.9, + "probability": 0.7239 + }, + { + "start": 5909.06, + "end": 5910.78, + "probability": 0.8779 + }, + { + "start": 5910.88, + "end": 5912.05, + "probability": 0.999 + }, + { + "start": 5912.76, + "end": 5913.52, + "probability": 0.7062 + }, + { + "start": 5915.34, + "end": 5917.46, + "probability": 0.9886 + }, + { + "start": 5918.18, + "end": 5922.18, + "probability": 0.1184 + }, + { + "start": 5938.66, + "end": 5938.76, + "probability": 0.4733 + }, + { + "start": 5940.18, + "end": 5942.4, + "probability": 0.7331 + }, + { + "start": 5942.48, + "end": 5945.16, + "probability": 0.9944 + }, + { + "start": 5946.1, + "end": 5948.12, + "probability": 0.9978 + }, + { + "start": 5948.24, + "end": 5948.66, + "probability": 0.8405 + }, + { + "start": 5950.08, + "end": 5950.76, + "probability": 0.7323 + }, + { + "start": 5951.38, + "end": 5954.88, + "probability": 0.8337 + }, + { + "start": 5955.94, + "end": 5959.8, + "probability": 0.7403 + }, + { + "start": 5960.82, + "end": 5965.32, + "probability": 0.9739 + }, + { + "start": 5966.02, + "end": 5967.96, + "probability": 0.9674 + }, + { + "start": 5968.56, + "end": 5971.02, + "probability": 0.9872 + }, + { + "start": 5971.62, + "end": 5972.58, + "probability": 0.9851 + }, + { + "start": 5972.88, + "end": 5974.26, + "probability": 0.8306 + }, + { + "start": 5975.14, + "end": 5978.2, + "probability": 0.963 + }, + { + "start": 5979.54, + "end": 5981.48, + "probability": 0.9712 + }, + { + "start": 5983.28, + "end": 5984.55, + "probability": 0.9941 + }, + { + "start": 5985.6, + "end": 5987.34, + "probability": 0.959 + }, + { + "start": 5988.08, + "end": 5990.8, + "probability": 0.3609 + }, + { + "start": 5990.92, + "end": 5992.32, + "probability": 0.7913 + }, + { + "start": 5993.66, + "end": 5994.5, + "probability": 0.833 + }, + { + "start": 5997.3, + "end": 6003.86, + "probability": 0.9773 + }, + { + "start": 6005.48, + "end": 6006.36, + "probability": 0.8962 + }, + { + "start": 6007.42, + "end": 6009.24, + "probability": 0.9385 + }, + { + "start": 6010.44, + "end": 6012.28, + "probability": 0.9837 + }, + { + "start": 6013.18, + "end": 6014.74, + "probability": 0.8637 + }, + { + "start": 6015.44, + "end": 6017.66, + "probability": 0.8685 + }, + { + "start": 6018.24, + "end": 6019.58, + "probability": 0.9739 + }, + { + "start": 6021.4, + "end": 6021.88, + "probability": 0.8063 + }, + { + "start": 6023.1, + "end": 6024.79, + "probability": 0.9243 + }, + { + "start": 6026.76, + "end": 6028.32, + "probability": 0.9644 + }, + { + "start": 6029.76, + "end": 6030.72, + "probability": 0.902 + }, + { + "start": 6031.92, + "end": 6032.96, + "probability": 0.9706 + }, + { + "start": 6034.34, + "end": 6035.41, + "probability": 0.9481 + }, + { + "start": 6035.68, + "end": 6036.34, + "probability": 0.7381 + }, + { + "start": 6037.12, + "end": 6039.64, + "probability": 0.8882 + }, + { + "start": 6040.3, + "end": 6041.48, + "probability": 0.9885 + }, + { + "start": 6042.4, + "end": 6043.74, + "probability": 0.9928 + }, + { + "start": 6044.52, + "end": 6048.4, + "probability": 0.9051 + }, + { + "start": 6049.0, + "end": 6051.3, + "probability": 0.9738 + }, + { + "start": 6052.14, + "end": 6053.78, + "probability": 0.7432 + }, + { + "start": 6054.54, + "end": 6055.38, + "probability": 0.793 + }, + { + "start": 6055.62, + "end": 6058.42, + "probability": 0.9614 + }, + { + "start": 6058.66, + "end": 6059.54, + "probability": 0.9664 + }, + { + "start": 6061.42, + "end": 6064.42, + "probability": 0.9788 + }, + { + "start": 6065.28, + "end": 6066.92, + "probability": 0.8773 + }, + { + "start": 6067.44, + "end": 6068.86, + "probability": 0.9221 + }, + { + "start": 6070.54, + "end": 6072.94, + "probability": 0.8851 + }, + { + "start": 6074.48, + "end": 6076.78, + "probability": 0.8457 + }, + { + "start": 6078.02, + "end": 6078.72, + "probability": 0.9461 + }, + { + "start": 6079.64, + "end": 6082.75, + "probability": 0.991 + }, + { + "start": 6084.32, + "end": 6085.48, + "probability": 0.7251 + }, + { + "start": 6087.14, + "end": 6088.28, + "probability": 0.9911 + }, + { + "start": 6089.26, + "end": 6090.08, + "probability": 0.7243 + }, + { + "start": 6091.0, + "end": 6092.94, + "probability": 0.8911 + }, + { + "start": 6094.28, + "end": 6096.02, + "probability": 0.9945 + }, + { + "start": 6096.86, + "end": 6097.32, + "probability": 0.9635 + }, + { + "start": 6098.06, + "end": 6100.3, + "probability": 0.9324 + }, + { + "start": 6100.96, + "end": 6103.34, + "probability": 0.9365 + }, + { + "start": 6104.12, + "end": 6106.44, + "probability": 0.8905 + }, + { + "start": 6107.59, + "end": 6109.44, + "probability": 0.1221 + }, + { + "start": 6110.42, + "end": 6111.66, + "probability": 0.7943 + }, + { + "start": 6112.36, + "end": 6114.56, + "probability": 0.9917 + }, + { + "start": 6115.16, + "end": 6118.66, + "probability": 0.9819 + }, + { + "start": 6120.8, + "end": 6123.28, + "probability": 0.9834 + }, + { + "start": 6124.94, + "end": 6125.3, + "probability": 0.6909 + }, + { + "start": 6125.96, + "end": 6127.08, + "probability": 0.9944 + }, + { + "start": 6127.94, + "end": 6128.77, + "probability": 0.8057 + }, + { + "start": 6129.34, + "end": 6130.58, + "probability": 0.8499 + }, + { + "start": 6131.56, + "end": 6132.94, + "probability": 0.9951 + }, + { + "start": 6134.48, + "end": 6136.84, + "probability": 0.9673 + }, + { + "start": 6137.58, + "end": 6139.36, + "probability": 0.9792 + }, + { + "start": 6140.28, + "end": 6143.08, + "probability": 0.6436 + }, + { + "start": 6143.24, + "end": 6144.68, + "probability": 0.9665 + }, + { + "start": 6145.9, + "end": 6147.56, + "probability": 0.9082 + }, + { + "start": 6148.38, + "end": 6150.28, + "probability": 0.8214 + }, + { + "start": 6150.32, + "end": 6151.04, + "probability": 0.9784 + }, + { + "start": 6152.36, + "end": 6153.28, + "probability": 0.9404 + }, + { + "start": 6153.88, + "end": 6154.6, + "probability": 0.7812 + }, + { + "start": 6154.76, + "end": 6156.06, + "probability": 0.9946 + }, + { + "start": 6156.62, + "end": 6157.6, + "probability": 0.7911 + }, + { + "start": 6158.38, + "end": 6159.8, + "probability": 0.8743 + }, + { + "start": 6173.08, + "end": 6174.76, + "probability": 0.7573 + }, + { + "start": 6176.42, + "end": 6177.7, + "probability": 0.9983 + }, + { + "start": 6179.2, + "end": 6181.98, + "probability": 0.9211 + }, + { + "start": 6182.9, + "end": 6183.44, + "probability": 0.7212 + }, + { + "start": 6184.58, + "end": 6185.84, + "probability": 0.8419 + }, + { + "start": 6186.72, + "end": 6188.65, + "probability": 0.9958 + }, + { + "start": 6189.62, + "end": 6194.18, + "probability": 0.9674 + }, + { + "start": 6196.06, + "end": 6198.66, + "probability": 0.9015 + }, + { + "start": 6199.86, + "end": 6203.64, + "probability": 0.8992 + }, + { + "start": 6204.38, + "end": 6208.06, + "probability": 0.9677 + }, + { + "start": 6208.58, + "end": 6209.66, + "probability": 0.9641 + }, + { + "start": 6209.7, + "end": 6212.74, + "probability": 0.9614 + }, + { + "start": 6213.76, + "end": 6215.52, + "probability": 0.9355 + }, + { + "start": 6216.86, + "end": 6218.44, + "probability": 0.953 + }, + { + "start": 6219.44, + "end": 6221.16, + "probability": 0.9519 + }, + { + "start": 6222.16, + "end": 6224.24, + "probability": 0.9083 + }, + { + "start": 6225.24, + "end": 6228.3, + "probability": 0.9882 + }, + { + "start": 6228.46, + "end": 6230.44, + "probability": 0.9783 + }, + { + "start": 6231.06, + "end": 6233.46, + "probability": 0.8826 + }, + { + "start": 6233.66, + "end": 6234.99, + "probability": 0.9723 + }, + { + "start": 6235.8, + "end": 6236.94, + "probability": 0.9706 + }, + { + "start": 6238.12, + "end": 6241.38, + "probability": 0.9858 + }, + { + "start": 6242.78, + "end": 6244.04, + "probability": 0.6626 + }, + { + "start": 6245.1, + "end": 6245.24, + "probability": 0.492 + }, + { + "start": 6245.26, + "end": 6246.5, + "probability": 0.8286 + }, + { + "start": 6246.56, + "end": 6249.74, + "probability": 0.779 + }, + { + "start": 6249.82, + "end": 6251.72, + "probability": 0.9891 + }, + { + "start": 6252.96, + "end": 6254.22, + "probability": 0.9989 + }, + { + "start": 6254.98, + "end": 6257.48, + "probability": 0.962 + }, + { + "start": 6259.38, + "end": 6259.68, + "probability": 0.6663 + }, + { + "start": 6260.72, + "end": 6264.72, + "probability": 0.9436 + }, + { + "start": 6265.88, + "end": 6269.16, + "probability": 0.9976 + }, + { + "start": 6270.1, + "end": 6271.6, + "probability": 0.9539 + }, + { + "start": 6272.18, + "end": 6273.58, + "probability": 0.4871 + }, + { + "start": 6274.96, + "end": 6276.46, + "probability": 0.9284 + }, + { + "start": 6277.94, + "end": 6278.18, + "probability": 0.8624 + }, + { + "start": 6279.46, + "end": 6281.88, + "probability": 0.646 + }, + { + "start": 6282.86, + "end": 6285.06, + "probability": 0.9863 + }, + { + "start": 6285.22, + "end": 6285.6, + "probability": 0.4273 + }, + { + "start": 6286.42, + "end": 6289.46, + "probability": 0.9867 + }, + { + "start": 6289.46, + "end": 6291.44, + "probability": 0.9947 + }, + { + "start": 6293.06, + "end": 6294.46, + "probability": 0.4485 + }, + { + "start": 6295.12, + "end": 6295.8, + "probability": 0.7178 + }, + { + "start": 6297.04, + "end": 6298.28, + "probability": 0.8726 + }, + { + "start": 6300.08, + "end": 6303.22, + "probability": 0.6704 + }, + { + "start": 6304.34, + "end": 6311.14, + "probability": 0.9911 + }, + { + "start": 6311.88, + "end": 6315.08, + "probability": 0.9194 + }, + { + "start": 6317.24, + "end": 6318.48, + "probability": 0.5804 + }, + { + "start": 6319.36, + "end": 6319.88, + "probability": 0.9343 + }, + { + "start": 6320.24, + "end": 6321.62, + "probability": 0.834 + }, + { + "start": 6323.16, + "end": 6324.84, + "probability": 0.9878 + }, + { + "start": 6324.96, + "end": 6326.2, + "probability": 0.9959 + }, + { + "start": 6327.3, + "end": 6330.12, + "probability": 0.9475 + }, + { + "start": 6330.8, + "end": 6332.7, + "probability": 0.7781 + }, + { + "start": 6334.72, + "end": 6336.01, + "probability": 0.9849 + }, + { + "start": 6337.76, + "end": 6346.28, + "probability": 0.9878 + }, + { + "start": 6347.58, + "end": 6348.68, + "probability": 0.9102 + }, + { + "start": 6349.74, + "end": 6351.24, + "probability": 0.6595 + }, + { + "start": 6351.98, + "end": 6352.97, + "probability": 0.9766 + }, + { + "start": 6354.14, + "end": 6356.4, + "probability": 0.9868 + }, + { + "start": 6357.94, + "end": 6361.9, + "probability": 0.9971 + }, + { + "start": 6362.3, + "end": 6364.52, + "probability": 0.8328 + }, + { + "start": 6364.86, + "end": 6365.84, + "probability": 0.8965 + }, + { + "start": 6366.34, + "end": 6367.62, + "probability": 0.9146 + }, + { + "start": 6368.52, + "end": 6370.94, + "probability": 0.8068 + }, + { + "start": 6371.68, + "end": 6373.18, + "probability": 0.6617 + }, + { + "start": 6373.9, + "end": 6375.14, + "probability": 0.8263 + }, + { + "start": 6376.16, + "end": 6380.0, + "probability": 0.946 + }, + { + "start": 6380.5, + "end": 6386.12, + "probability": 0.9938 + }, + { + "start": 6386.46, + "end": 6387.4, + "probability": 0.8061 + }, + { + "start": 6387.68, + "end": 6390.86, + "probability": 0.9944 + }, + { + "start": 6391.0, + "end": 6391.2, + "probability": 0.3228 + }, + { + "start": 6391.22, + "end": 6392.3, + "probability": 0.6958 + }, + { + "start": 6392.8, + "end": 6395.9, + "probability": 0.986 + }, + { + "start": 6396.2, + "end": 6396.44, + "probability": 0.7897 + }, + { + "start": 6396.48, + "end": 6398.46, + "probability": 0.9507 + }, + { + "start": 6399.04, + "end": 6401.24, + "probability": 0.998 + }, + { + "start": 6402.78, + "end": 6404.88, + "probability": 0.5888 + }, + { + "start": 6419.9, + "end": 6419.9, + "probability": 0.2084 + }, + { + "start": 6420.0, + "end": 6421.22, + "probability": 0.3559 + }, + { + "start": 6421.28, + "end": 6424.06, + "probability": 0.6663 + }, + { + "start": 6424.54, + "end": 6425.62, + "probability": 0.6873 + }, + { + "start": 6426.92, + "end": 6429.86, + "probability": 0.9908 + }, + { + "start": 6431.52, + "end": 6435.62, + "probability": 0.9812 + }, + { + "start": 6436.66, + "end": 6438.6, + "probability": 0.8677 + }, + { + "start": 6439.18, + "end": 6440.58, + "probability": 0.8755 + }, + { + "start": 6441.4, + "end": 6442.72, + "probability": 0.8876 + }, + { + "start": 6443.9, + "end": 6447.28, + "probability": 0.7942 + }, + { + "start": 6448.22, + "end": 6450.86, + "probability": 0.9387 + }, + { + "start": 6451.8, + "end": 6453.28, + "probability": 0.9682 + }, + { + "start": 6454.18, + "end": 6454.8, + "probability": 0.9744 + }, + { + "start": 6454.94, + "end": 6459.32, + "probability": 0.8052 + }, + { + "start": 6459.4, + "end": 6460.5, + "probability": 0.7748 + }, + { + "start": 6460.54, + "end": 6461.52, + "probability": 0.8599 + }, + { + "start": 6462.28, + "end": 6463.42, + "probability": 0.8586 + }, + { + "start": 6464.66, + "end": 6465.44, + "probability": 0.8081 + }, + { + "start": 6465.58, + "end": 6469.32, + "probability": 0.9602 + }, + { + "start": 6470.52, + "end": 6471.74, + "probability": 0.981 + }, + { + "start": 6472.34, + "end": 6473.84, + "probability": 0.9639 + }, + { + "start": 6474.72, + "end": 6475.1, + "probability": 0.5628 + }, + { + "start": 6475.62, + "end": 6476.52, + "probability": 0.915 + }, + { + "start": 6477.1, + "end": 6478.74, + "probability": 0.7922 + }, + { + "start": 6479.26, + "end": 6480.8, + "probability": 0.9857 + }, + { + "start": 6481.68, + "end": 6484.16, + "probability": 0.9761 + }, + { + "start": 6484.68, + "end": 6486.1, + "probability": 0.9391 + }, + { + "start": 6487.99, + "end": 6490.1, + "probability": 0.5709 + }, + { + "start": 6491.42, + "end": 6493.06, + "probability": 0.9722 + }, + { + "start": 6493.14, + "end": 6494.22, + "probability": 0.7944 + }, + { + "start": 6494.3, + "end": 6495.74, + "probability": 0.7773 + }, + { + "start": 6495.82, + "end": 6496.74, + "probability": 0.9597 + }, + { + "start": 6497.44, + "end": 6500.02, + "probability": 0.841 + }, + { + "start": 6500.54, + "end": 6503.32, + "probability": 0.8695 + }, + { + "start": 6504.08, + "end": 6505.68, + "probability": 0.983 + }, + { + "start": 6510.88, + "end": 6513.76, + "probability": 0.6006 + }, + { + "start": 6513.86, + "end": 6514.14, + "probability": 0.5549 + }, + { + "start": 6514.22, + "end": 6517.78, + "probability": 0.9982 + }, + { + "start": 6518.86, + "end": 6522.38, + "probability": 0.9686 + }, + { + "start": 6522.92, + "end": 6524.28, + "probability": 0.9789 + }, + { + "start": 6524.8, + "end": 6526.58, + "probability": 0.9819 + }, + { + "start": 6526.6, + "end": 6527.02, + "probability": 0.9513 + }, + { + "start": 6528.12, + "end": 6530.02, + "probability": 0.9895 + }, + { + "start": 6530.48, + "end": 6533.3, + "probability": 0.9873 + }, + { + "start": 6534.46, + "end": 6536.3, + "probability": 0.8528 + }, + { + "start": 6546.52, + "end": 6547.1, + "probability": 0.6621 + }, + { + "start": 6547.16, + "end": 6548.56, + "probability": 0.8076 + }, + { + "start": 6548.77, + "end": 6551.18, + "probability": 0.8359 + }, + { + "start": 6551.3, + "end": 6552.52, + "probability": 0.9388 + }, + { + "start": 6553.22, + "end": 6556.88, + "probability": 0.8034 + }, + { + "start": 6557.22, + "end": 6558.9, + "probability": 0.9733 + }, + { + "start": 6559.3, + "end": 6560.76, + "probability": 0.9801 + }, + { + "start": 6560.88, + "end": 6562.26, + "probability": 0.9549 + }, + { + "start": 6562.64, + "end": 6564.9, + "probability": 0.7409 + }, + { + "start": 6565.44, + "end": 6568.62, + "probability": 0.9934 + }, + { + "start": 6568.96, + "end": 6569.6, + "probability": 0.7778 + }, + { + "start": 6569.64, + "end": 6572.58, + "probability": 0.967 + }, + { + "start": 6573.23, + "end": 6576.94, + "probability": 0.9251 + }, + { + "start": 6577.02, + "end": 6580.24, + "probability": 0.8993 + }, + { + "start": 6580.66, + "end": 6584.78, + "probability": 0.9868 + }, + { + "start": 6584.78, + "end": 6589.16, + "probability": 0.9997 + }, + { + "start": 6589.96, + "end": 6590.58, + "probability": 0.8499 + }, + { + "start": 6591.12, + "end": 6595.72, + "probability": 0.9868 + }, + { + "start": 6596.24, + "end": 6599.58, + "probability": 0.7866 + }, + { + "start": 6600.16, + "end": 6602.04, + "probability": 0.9272 + }, + { + "start": 6602.3, + "end": 6603.38, + "probability": 0.8682 + }, + { + "start": 6603.48, + "end": 6608.02, + "probability": 0.8159 + }, + { + "start": 6608.44, + "end": 6610.96, + "probability": 0.9779 + }, + { + "start": 6612.42, + "end": 6616.98, + "probability": 0.9949 + }, + { + "start": 6617.62, + "end": 6618.02, + "probability": 0.6919 + }, + { + "start": 6618.44, + "end": 6622.1, + "probability": 0.9901 + }, + { + "start": 6622.71, + "end": 6627.58, + "probability": 0.9933 + }, + { + "start": 6627.58, + "end": 6630.78, + "probability": 0.9956 + }, + { + "start": 6630.92, + "end": 6632.4, + "probability": 0.9182 + }, + { + "start": 6632.98, + "end": 6638.2, + "probability": 0.998 + }, + { + "start": 6639.7, + "end": 6644.3, + "probability": 0.5216 + }, + { + "start": 6644.98, + "end": 6646.68, + "probability": 0.9746 + }, + { + "start": 6647.32, + "end": 6649.76, + "probability": 0.9878 + }, + { + "start": 6650.32, + "end": 6651.04, + "probability": 0.5558 + }, + { + "start": 6651.18, + "end": 6656.06, + "probability": 0.998 + }, + { + "start": 6657.08, + "end": 6657.58, + "probability": 0.0208 + }, + { + "start": 6657.92, + "end": 6661.74, + "probability": 0.9688 + }, + { + "start": 6661.74, + "end": 6664.32, + "probability": 0.9451 + }, + { + "start": 6665.5, + "end": 6667.09, + "probability": 0.903 + }, + { + "start": 6667.7, + "end": 6669.56, + "probability": 0.998 + }, + { + "start": 6670.32, + "end": 6674.6, + "probability": 0.9947 + }, + { + "start": 6674.6, + "end": 6679.02, + "probability": 0.9783 + }, + { + "start": 6679.46, + "end": 6684.54, + "probability": 0.6702 + }, + { + "start": 6684.54, + "end": 6688.88, + "probability": 0.989 + }, + { + "start": 6689.16, + "end": 6689.78, + "probability": 0.8158 + }, + { + "start": 6691.47, + "end": 6696.14, + "probability": 0.9924 + }, + { + "start": 6697.46, + "end": 6701.68, + "probability": 0.965 + }, + { + "start": 6702.38, + "end": 6706.52, + "probability": 0.7896 + }, + { + "start": 6707.04, + "end": 6708.9, + "probability": 0.9658 + }, + { + "start": 6709.28, + "end": 6709.76, + "probability": 0.6479 + }, + { + "start": 6710.54, + "end": 6712.38, + "probability": 0.6512 + }, + { + "start": 6712.64, + "end": 6714.04, + "probability": 0.9647 + }, + { + "start": 6714.34, + "end": 6718.1, + "probability": 0.9951 + }, + { + "start": 6718.78, + "end": 6720.62, + "probability": 0.957 + }, + { + "start": 6720.72, + "end": 6723.06, + "probability": 0.3952 + }, + { + "start": 6723.36, + "end": 6726.06, + "probability": 0.98 + }, + { + "start": 6726.62, + "end": 6727.56, + "probability": 0.7882 + }, + { + "start": 6727.68, + "end": 6728.22, + "probability": 0.7293 + }, + { + "start": 6728.38, + "end": 6729.86, + "probability": 0.719 + }, + { + "start": 6730.04, + "end": 6733.72, + "probability": 0.9922 + }, + { + "start": 6734.4, + "end": 6737.74, + "probability": 0.9937 + }, + { + "start": 6738.28, + "end": 6739.5, + "probability": 0.979 + }, + { + "start": 6739.98, + "end": 6743.42, + "probability": 0.9823 + }, + { + "start": 6743.58, + "end": 6744.48, + "probability": 0.6664 + }, + { + "start": 6744.54, + "end": 6746.04, + "probability": 0.9688 + }, + { + "start": 6746.48, + "end": 6747.68, + "probability": 0.9261 + }, + { + "start": 6747.94, + "end": 6748.36, + "probability": 0.8362 + }, + { + "start": 6748.84, + "end": 6750.04, + "probability": 0.8853 + }, + { + "start": 6751.72, + "end": 6752.46, + "probability": 0.6608 + }, + { + "start": 6753.84, + "end": 6756.58, + "probability": 0.9964 + }, + { + "start": 6757.16, + "end": 6758.8, + "probability": 0.8264 + }, + { + "start": 6760.86, + "end": 6762.34, + "probability": 0.6989 + }, + { + "start": 6764.07, + "end": 6766.62, + "probability": 0.9862 + }, + { + "start": 6768.16, + "end": 6769.82, + "probability": 0.9754 + }, + { + "start": 6770.22, + "end": 6770.71, + "probability": 0.494 + }, + { + "start": 6773.86, + "end": 6773.86, + "probability": 0.1732 + }, + { + "start": 6773.86, + "end": 6773.86, + "probability": 0.0568 + }, + { + "start": 6773.86, + "end": 6775.26, + "probability": 0.7794 + }, + { + "start": 6776.26, + "end": 6777.22, + "probability": 0.9502 + }, + { + "start": 6778.08, + "end": 6778.88, + "probability": 0.7741 + }, + { + "start": 6780.38, + "end": 6781.82, + "probability": 0.8629 + }, + { + "start": 6782.98, + "end": 6785.46, + "probability": 0.8343 + }, + { + "start": 6786.46, + "end": 6787.77, + "probability": 0.9818 + }, + { + "start": 6788.14, + "end": 6788.72, + "probability": 0.4681 + }, + { + "start": 6788.84, + "end": 6790.3, + "probability": 0.8496 + }, + { + "start": 6791.28, + "end": 6792.66, + "probability": 0.9248 + }, + { + "start": 6793.86, + "end": 6795.22, + "probability": 0.964 + }, + { + "start": 6796.54, + "end": 6798.46, + "probability": 0.702 + }, + { + "start": 6800.1, + "end": 6801.22, + "probability": 0.8577 + }, + { + "start": 6802.5, + "end": 6804.1, + "probability": 0.778 + }, + { + "start": 6804.54, + "end": 6806.32, + "probability": 0.9958 + }, + { + "start": 6806.88, + "end": 6808.06, + "probability": 0.891 + }, + { + "start": 6808.7, + "end": 6809.58, + "probability": 0.9644 + }, + { + "start": 6810.42, + "end": 6811.22, + "probability": 0.9106 + }, + { + "start": 6812.12, + "end": 6817.7, + "probability": 0.9888 + }, + { + "start": 6818.18, + "end": 6820.66, + "probability": 0.9956 + }, + { + "start": 6821.32, + "end": 6822.7, + "probability": 0.9712 + }, + { + "start": 6823.14, + "end": 6823.86, + "probability": 0.6896 + }, + { + "start": 6824.2, + "end": 6825.06, + "probability": 0.9824 + }, + { + "start": 6826.46, + "end": 6829.66, + "probability": 0.976 + }, + { + "start": 6831.06, + "end": 6833.11, + "probability": 0.938 + }, + { + "start": 6834.34, + "end": 6835.42, + "probability": 0.4304 + }, + { + "start": 6835.94, + "end": 6837.32, + "probability": 0.8245 + }, + { + "start": 6838.3, + "end": 6840.5, + "probability": 0.9413 + }, + { + "start": 6841.48, + "end": 6843.16, + "probability": 0.4788 + }, + { + "start": 6843.32, + "end": 6847.0, + "probability": 0.7248 + }, + { + "start": 6848.2, + "end": 6851.86, + "probability": 0.976 + }, + { + "start": 6852.98, + "end": 6854.96, + "probability": 0.9896 + }, + { + "start": 6855.88, + "end": 6856.52, + "probability": 0.9466 + }, + { + "start": 6857.5, + "end": 6860.24, + "probability": 0.9487 + }, + { + "start": 6861.52, + "end": 6866.14, + "probability": 0.9935 + }, + { + "start": 6867.16, + "end": 6869.92, + "probability": 0.6973 + }, + { + "start": 6870.66, + "end": 6873.56, + "probability": 0.9971 + }, + { + "start": 6874.96, + "end": 6878.24, + "probability": 0.9877 + }, + { + "start": 6878.78, + "end": 6879.5, + "probability": 0.4876 + }, + { + "start": 6880.34, + "end": 6881.26, + "probability": 0.4897 + }, + { + "start": 6881.48, + "end": 6882.54, + "probability": 0.5391 + }, + { + "start": 6882.64, + "end": 6883.96, + "probability": 0.915 + }, + { + "start": 6884.4, + "end": 6886.7, + "probability": 0.8259 + }, + { + "start": 6887.18, + "end": 6892.02, + "probability": 0.8267 + }, + { + "start": 6892.18, + "end": 6892.84, + "probability": 0.5592 + }, + { + "start": 6893.12, + "end": 6893.66, + "probability": 0.9756 + }, + { + "start": 6894.84, + "end": 6897.58, + "probability": 0.9517 + }, + { + "start": 6899.34, + "end": 6900.96, + "probability": 0.9786 + }, + { + "start": 6901.94, + "end": 6903.14, + "probability": 0.9841 + }, + { + "start": 6904.92, + "end": 6906.88, + "probability": 0.9976 + }, + { + "start": 6907.88, + "end": 6909.84, + "probability": 0.9937 + }, + { + "start": 6910.42, + "end": 6910.92, + "probability": 0.7407 + }, + { + "start": 6912.04, + "end": 6915.8, + "probability": 0.5074 + }, + { + "start": 6916.76, + "end": 6917.9, + "probability": 0.9906 + }, + { + "start": 6918.46, + "end": 6918.72, + "probability": 0.6264 + }, + { + "start": 6920.08, + "end": 6922.32, + "probability": 0.8136 + }, + { + "start": 6922.5, + "end": 6925.2, + "probability": 0.607 + }, + { + "start": 6925.9, + "end": 6926.78, + "probability": 0.9108 + }, + { + "start": 6927.34, + "end": 6928.26, + "probability": 0.9338 + }, + { + "start": 6928.88, + "end": 6930.66, + "probability": 0.9956 + }, + { + "start": 6931.68, + "end": 6932.56, + "probability": 0.9958 + }, + { + "start": 6933.26, + "end": 6933.92, + "probability": 0.7579 + }, + { + "start": 6934.44, + "end": 6936.83, + "probability": 0.9978 + }, + { + "start": 6937.56, + "end": 6939.86, + "probability": 0.7747 + }, + { + "start": 6940.22, + "end": 6941.85, + "probability": 0.6224 + }, + { + "start": 6942.46, + "end": 6944.62, + "probability": 0.827 + }, + { + "start": 6945.7, + "end": 6949.14, + "probability": 0.9568 + }, + { + "start": 6950.08, + "end": 6952.96, + "probability": 0.6141 + }, + { + "start": 6953.94, + "end": 6956.68, + "probability": 0.9886 + }, + { + "start": 6958.67, + "end": 6961.64, + "probability": 0.9299 + }, + { + "start": 6962.24, + "end": 6962.98, + "probability": 0.4673 + }, + { + "start": 6963.27, + "end": 6965.64, + "probability": 0.2706 + }, + { + "start": 6965.78, + "end": 6966.28, + "probability": 0.4639 + }, + { + "start": 6966.54, + "end": 6968.38, + "probability": 0.7439 + }, + { + "start": 6968.58, + "end": 6971.3, + "probability": 0.9747 + }, + { + "start": 6971.3, + "end": 6974.1, + "probability": 0.9709 + }, + { + "start": 6974.66, + "end": 6975.8, + "probability": 0.998 + }, + { + "start": 6976.36, + "end": 6977.42, + "probability": 0.539 + }, + { + "start": 6978.42, + "end": 6979.46, + "probability": 0.5974 + }, + { + "start": 6979.82, + "end": 6980.06, + "probability": 0.5963 + }, + { + "start": 6980.16, + "end": 6981.2, + "probability": 0.4435 + }, + { + "start": 6981.5, + "end": 6983.78, + "probability": 0.9849 + }, + { + "start": 6984.18, + "end": 6984.62, + "probability": 0.8894 + }, + { + "start": 6984.66, + "end": 6987.56, + "probability": 0.9617 + }, + { + "start": 6987.66, + "end": 6989.94, + "probability": 0.7775 + }, + { + "start": 6990.38, + "end": 6991.29, + "probability": 0.4207 + }, + { + "start": 6991.56, + "end": 6993.26, + "probability": 0.6006 + }, + { + "start": 6993.72, + "end": 6994.6, + "probability": 0.9034 + }, + { + "start": 6995.0, + "end": 6996.44, + "probability": 0.7335 + }, + { + "start": 6996.48, + "end": 6997.42, + "probability": 0.5883 + }, + { + "start": 6997.44, + "end": 6998.42, + "probability": 0.4209 + }, + { + "start": 6999.18, + "end": 7001.44, + "probability": 0.9128 + }, + { + "start": 7003.32, + "end": 7005.78, + "probability": 0.862 + }, + { + "start": 7006.5, + "end": 7008.7, + "probability": 0.6519 + }, + { + "start": 7009.56, + "end": 7011.1, + "probability": 0.6142 + }, + { + "start": 7011.54, + "end": 7015.16, + "probability": 0.8955 + }, + { + "start": 7015.16, + "end": 7015.9, + "probability": 0.4856 + }, + { + "start": 7016.44, + "end": 7016.96, + "probability": 0.873 + }, + { + "start": 7017.02, + "end": 7017.79, + "probability": 0.7086 + }, + { + "start": 7018.08, + "end": 7018.54, + "probability": 0.7692 + }, + { + "start": 7018.58, + "end": 7019.22, + "probability": 0.669 + }, + { + "start": 7019.94, + "end": 7020.82, + "probability": 0.9423 + }, + { + "start": 7021.06, + "end": 7021.58, + "probability": 0.4587 + }, + { + "start": 7022.36, + "end": 7026.34, + "probability": 0.9114 + }, + { + "start": 7026.76, + "end": 7027.92, + "probability": 0.9117 + }, + { + "start": 7028.6, + "end": 7030.31, + "probability": 0.9905 + }, + { + "start": 7030.58, + "end": 7033.08, + "probability": 0.6273 + }, + { + "start": 7033.64, + "end": 7034.06, + "probability": 0.7585 + }, + { + "start": 7034.36, + "end": 7038.08, + "probability": 0.7375 + }, + { + "start": 7038.2, + "end": 7038.76, + "probability": 0.4364 + }, + { + "start": 7039.0, + "end": 7042.88, + "probability": 0.9897 + }, + { + "start": 7044.22, + "end": 7047.48, + "probability": 0.8329 + }, + { + "start": 7047.54, + "end": 7048.76, + "probability": 0.7389 + }, + { + "start": 7049.18, + "end": 7053.78, + "probability": 0.9878 + }, + { + "start": 7055.36, + "end": 7057.45, + "probability": 0.7932 + }, + { + "start": 7059.1, + "end": 7061.08, + "probability": 0.9228 + }, + { + "start": 7061.7, + "end": 7063.46, + "probability": 0.9292 + }, + { + "start": 7064.02, + "end": 7064.64, + "probability": 0.6406 + }, + { + "start": 7066.12, + "end": 7066.36, + "probability": 0.9199 + }, + { + "start": 7067.06, + "end": 7069.91, + "probability": 0.9054 + }, + { + "start": 7082.68, + "end": 7083.72, + "probability": 0.6294 + }, + { + "start": 7085.1, + "end": 7089.96, + "probability": 0.6584 + }, + { + "start": 7092.18, + "end": 7093.52, + "probability": 0.8567 + }, + { + "start": 7094.34, + "end": 7097.06, + "probability": 0.7378 + }, + { + "start": 7097.88, + "end": 7101.08, + "probability": 0.8608 + }, + { + "start": 7101.4, + "end": 7104.44, + "probability": 0.9908 + }, + { + "start": 7104.74, + "end": 7105.88, + "probability": 0.8015 + }, + { + "start": 7106.7, + "end": 7107.04, + "probability": 0.0545 + }, + { + "start": 7107.64, + "end": 7112.36, + "probability": 0.9963 + }, + { + "start": 7113.18, + "end": 7114.36, + "probability": 0.989 + }, + { + "start": 7114.96, + "end": 7116.08, + "probability": 0.9436 + }, + { + "start": 7116.38, + "end": 7120.14, + "probability": 0.9583 + }, + { + "start": 7120.5, + "end": 7120.74, + "probability": 0.4417 + }, + { + "start": 7120.82, + "end": 7124.94, + "probability": 0.8452 + }, + { + "start": 7125.36, + "end": 7126.0, + "probability": 0.9272 + }, + { + "start": 7127.3, + "end": 7132.16, + "probability": 0.9813 + }, + { + "start": 7132.16, + "end": 7138.12, + "probability": 0.9644 + }, + { + "start": 7138.78, + "end": 7142.04, + "probability": 0.5697 + }, + { + "start": 7142.74, + "end": 7144.26, + "probability": 0.7847 + }, + { + "start": 7144.92, + "end": 7145.62, + "probability": 0.5244 + }, + { + "start": 7145.82, + "end": 7146.44, + "probability": 0.3709 + }, + { + "start": 7147.0, + "end": 7150.42, + "probability": 0.9612 + }, + { + "start": 7151.36, + "end": 7152.78, + "probability": 0.0028 + }, + { + "start": 7152.78, + "end": 7156.68, + "probability": 0.984 + }, + { + "start": 7156.68, + "end": 7159.34, + "probability": 0.9271 + }, + { + "start": 7159.88, + "end": 7161.5, + "probability": 0.3421 + }, + { + "start": 7162.6, + "end": 7163.42, + "probability": 0.4209 + }, + { + "start": 7164.16, + "end": 7165.0, + "probability": 0.6684 + }, + { + "start": 7165.06, + "end": 7165.92, + "probability": 0.7524 + }, + { + "start": 7165.98, + "end": 7167.74, + "probability": 0.7656 + }, + { + "start": 7168.72, + "end": 7168.94, + "probability": 0.0004 + }, + { + "start": 7169.92, + "end": 7175.2, + "probability": 0.8022 + }, + { + "start": 7175.86, + "end": 7179.42, + "probability": 0.7627 + }, + { + "start": 7180.18, + "end": 7182.28, + "probability": 0.4659 + }, + { + "start": 7182.64, + "end": 7184.84, + "probability": 0.9097 + }, + { + "start": 7185.22, + "end": 7189.62, + "probability": 0.9111 + }, + { + "start": 7191.1, + "end": 7191.18, + "probability": 0.4004 + }, + { + "start": 7192.36, + "end": 7195.94, + "probability": 0.9524 + }, + { + "start": 7196.18, + "end": 7196.7, + "probability": 0.837 + }, + { + "start": 7197.2, + "end": 7198.44, + "probability": 0.8696 + }, + { + "start": 7199.45, + "end": 7201.66, + "probability": 0.9679 + }, + { + "start": 7201.72, + "end": 7202.74, + "probability": 0.4608 + }, + { + "start": 7203.32, + "end": 7204.16, + "probability": 0.6329 + }, + { + "start": 7204.86, + "end": 7207.74, + "probability": 0.6324 + }, + { + "start": 7208.54, + "end": 7210.41, + "probability": 0.5048 + }, + { + "start": 7211.26, + "end": 7212.34, + "probability": 0.1132 + }, + { + "start": 7212.46, + "end": 7214.86, + "probability": 0.873 + }, + { + "start": 7215.1, + "end": 7216.68, + "probability": 0.9318 + }, + { + "start": 7217.1, + "end": 7219.62, + "probability": 0.546 + }, + { + "start": 7220.22, + "end": 7222.16, + "probability": 0.9866 + }, + { + "start": 7222.9, + "end": 7223.78, + "probability": 0.6927 + }, + { + "start": 7224.18, + "end": 7230.28, + "probability": 0.9546 + }, + { + "start": 7231.12, + "end": 7235.7, + "probability": 0.1301 + }, + { + "start": 7238.02, + "end": 7240.72, + "probability": 0.8531 + }, + { + "start": 7240.96, + "end": 7242.7, + "probability": 0.0063 + }, + { + "start": 7244.6, + "end": 7250.5, + "probability": 0.4442 + }, + { + "start": 7250.78, + "end": 7250.96, + "probability": 0.6504 + }, + { + "start": 7250.96, + "end": 7252.8, + "probability": 0.5745 + }, + { + "start": 7253.02, + "end": 7255.04, + "probability": 0.7442 + }, + { + "start": 7256.06, + "end": 7259.72, + "probability": 0.6316 + }, + { + "start": 7260.16, + "end": 7264.0, + "probability": 0.9676 + }, + { + "start": 7264.3, + "end": 7265.4, + "probability": 0.7181 + }, + { + "start": 7265.4, + "end": 7265.42, + "probability": 0.469 + }, + { + "start": 7265.44, + "end": 7267.34, + "probability": 0.8882 + }, + { + "start": 7276.64, + "end": 7277.68, + "probability": 0.5336 + }, + { + "start": 7279.44, + "end": 7280.44, + "probability": 0.8848 + }, + { + "start": 7282.84, + "end": 7285.52, + "probability": 0.1275 + }, + { + "start": 7286.9, + "end": 7289.7, + "probability": 0.738 + }, + { + "start": 7290.7, + "end": 7292.82, + "probability": 0.8253 + }, + { + "start": 7294.58, + "end": 7298.98, + "probability": 0.9849 + }, + { + "start": 7299.6, + "end": 7301.04, + "probability": 0.9353 + }, + { + "start": 7301.08, + "end": 7301.78, + "probability": 0.9927 + }, + { + "start": 7302.8, + "end": 7304.3, + "probability": 0.8662 + }, + { + "start": 7306.26, + "end": 7308.06, + "probability": 0.9964 + }, + { + "start": 7308.64, + "end": 7312.4, + "probability": 0.793 + }, + { + "start": 7312.88, + "end": 7318.92, + "probability": 0.9936 + }, + { + "start": 7319.46, + "end": 7321.56, + "probability": 0.8005 + }, + { + "start": 7322.56, + "end": 7325.54, + "probability": 0.8363 + }, + { + "start": 7326.28, + "end": 7328.46, + "probability": 0.9991 + }, + { + "start": 7328.94, + "end": 7333.34, + "probability": 0.9824 + }, + { + "start": 7333.4, + "end": 7334.3, + "probability": 0.9577 + }, + { + "start": 7335.26, + "end": 7336.62, + "probability": 0.9871 + }, + { + "start": 7337.38, + "end": 7338.58, + "probability": 0.7487 + }, + { + "start": 7339.08, + "end": 7340.2, + "probability": 0.9097 + }, + { + "start": 7340.6, + "end": 7342.37, + "probability": 0.9145 + }, + { + "start": 7343.0, + "end": 7344.0, + "probability": 0.9731 + }, + { + "start": 7344.1, + "end": 7345.15, + "probability": 0.9381 + }, + { + "start": 7345.72, + "end": 7349.6, + "probability": 0.9792 + }, + { + "start": 7350.02, + "end": 7350.48, + "probability": 0.7134 + }, + { + "start": 7352.06, + "end": 7354.4, + "probability": 0.8426 + }, + { + "start": 7355.52, + "end": 7357.88, + "probability": 0.72 + }, + { + "start": 7358.68, + "end": 7366.46, + "probability": 0.8252 + }, + { + "start": 7366.72, + "end": 7367.98, + "probability": 0.9631 + }, + { + "start": 7369.18, + "end": 7369.44, + "probability": 0.8423 + }, + { + "start": 7372.1, + "end": 7373.98, + "probability": 0.7525 + }, + { + "start": 7375.24, + "end": 7375.68, + "probability": 0.7886 + }, + { + "start": 7375.74, + "end": 7379.1, + "probability": 0.9897 + }, + { + "start": 7380.24, + "end": 7385.88, + "probability": 0.9085 + }, + { + "start": 7385.96, + "end": 7387.18, + "probability": 0.9587 + }, + { + "start": 7389.66, + "end": 7391.82, + "probability": 0.1204 + }, + { + "start": 7392.76, + "end": 7392.76, + "probability": 0.1226 + }, + { + "start": 7392.76, + "end": 7392.76, + "probability": 0.1624 + }, + { + "start": 7392.76, + "end": 7394.56, + "probability": 0.7289 + }, + { + "start": 7395.5, + "end": 7397.14, + "probability": 0.9031 + }, + { + "start": 7397.66, + "end": 7399.66, + "probability": 0.9891 + }, + { + "start": 7400.58, + "end": 7402.0, + "probability": 0.7416 + }, + { + "start": 7403.28, + "end": 7404.46, + "probability": 0.3676 + }, + { + "start": 7405.0, + "end": 7405.8, + "probability": 0.9668 + }, + { + "start": 7407.1, + "end": 7408.1, + "probability": 0.9053 + }, + { + "start": 7410.22, + "end": 7410.22, + "probability": 0.1162 + }, + { + "start": 7410.22, + "end": 7411.88, + "probability": 0.871 + }, + { + "start": 7412.66, + "end": 7415.04, + "probability": 0.9468 + }, + { + "start": 7416.48, + "end": 7418.26, + "probability": 0.6651 + }, + { + "start": 7418.78, + "end": 7424.12, + "probability": 0.7827 + }, + { + "start": 7424.7, + "end": 7426.39, + "probability": 0.7535 + }, + { + "start": 7426.94, + "end": 7427.52, + "probability": 0.9718 + }, + { + "start": 7428.3, + "end": 7429.78, + "probability": 0.6764 + }, + { + "start": 7430.6, + "end": 7431.98, + "probability": 0.9827 + }, + { + "start": 7432.82, + "end": 7433.6, + "probability": 0.7346 + }, + { + "start": 7434.16, + "end": 7435.22, + "probability": 0.6113 + }, + { + "start": 7435.38, + "end": 7436.14, + "probability": 0.7692 + }, + { + "start": 7436.84, + "end": 7439.76, + "probability": 0.9451 + }, + { + "start": 7440.78, + "end": 7444.26, + "probability": 0.795 + }, + { + "start": 7444.76, + "end": 7446.86, + "probability": 0.7601 + }, + { + "start": 7446.86, + "end": 7449.38, + "probability": 0.6478 + }, + { + "start": 7450.6, + "end": 7452.86, + "probability": 0.9961 + }, + { + "start": 7453.66, + "end": 7455.9, + "probability": 0.8447 + }, + { + "start": 7456.56, + "end": 7457.82, + "probability": 0.8247 + }, + { + "start": 7457.92, + "end": 7458.66, + "probability": 0.3171 + }, + { + "start": 7459.1, + "end": 7460.5, + "probability": 0.917 + }, + { + "start": 7461.32, + "end": 7465.82, + "probability": 0.9705 + }, + { + "start": 7466.54, + "end": 7467.19, + "probability": 0.5131 + }, + { + "start": 7469.0, + "end": 7469.74, + "probability": 0.538 + }, + { + "start": 7469.8, + "end": 7474.0, + "probability": 0.8794 + }, + { + "start": 7474.1, + "end": 7474.66, + "probability": 0.7588 + }, + { + "start": 7475.64, + "end": 7476.5, + "probability": 0.7431 + }, + { + "start": 7477.22, + "end": 7482.76, + "probability": 0.9357 + }, + { + "start": 7483.36, + "end": 7484.48, + "probability": 0.929 + }, + { + "start": 7484.56, + "end": 7490.48, + "probability": 0.2185 + }, + { + "start": 7492.14, + "end": 7494.86, + "probability": 0.8281 + }, + { + "start": 7495.52, + "end": 7496.07, + "probability": 0.8556 + }, + { + "start": 7497.36, + "end": 7500.44, + "probability": 0.6291 + }, + { + "start": 7500.7, + "end": 7502.2, + "probability": 0.2172 + }, + { + "start": 7502.72, + "end": 7503.58, + "probability": 0.7918 + }, + { + "start": 7504.86, + "end": 7507.02, + "probability": 0.4064 + }, + { + "start": 7508.78, + "end": 7512.98, + "probability": 0.9948 + }, + { + "start": 7513.7, + "end": 7516.0, + "probability": 0.9556 + }, + { + "start": 7517.32, + "end": 7518.68, + "probability": 0.983 + }, + { + "start": 7519.34, + "end": 7521.18, + "probability": 0.9126 + }, + { + "start": 7522.08, + "end": 7523.82, + "probability": 0.5306 + }, + { + "start": 7524.94, + "end": 7525.36, + "probability": 0.8213 + }, + { + "start": 7526.58, + "end": 7527.76, + "probability": 0.9481 + }, + { + "start": 7529.44, + "end": 7533.41, + "probability": 0.9658 + }, + { + "start": 7534.32, + "end": 7535.76, + "probability": 0.998 + }, + { + "start": 7536.66, + "end": 7537.68, + "probability": 0.9897 + }, + { + "start": 7538.8, + "end": 7540.44, + "probability": 0.93 + }, + { + "start": 7541.54, + "end": 7541.88, + "probability": 0.9879 + }, + { + "start": 7543.06, + "end": 7544.74, + "probability": 0.5986 + }, + { + "start": 7545.64, + "end": 7547.22, + "probability": 0.7974 + }, + { + "start": 7547.98, + "end": 7548.5, + "probability": 0.8779 + }, + { + "start": 7549.4, + "end": 7550.36, + "probability": 0.5405 + }, + { + "start": 7551.28, + "end": 7553.32, + "probability": 0.6621 + }, + { + "start": 7554.0, + "end": 7555.88, + "probability": 0.6615 + }, + { + "start": 7556.2, + "end": 7557.24, + "probability": 0.8271 + }, + { + "start": 7557.78, + "end": 7558.72, + "probability": 0.6538 + }, + { + "start": 7558.98, + "end": 7560.16, + "probability": 0.4872 + }, + { + "start": 7560.44, + "end": 7563.12, + "probability": 0.2466 + }, + { + "start": 7564.58, + "end": 7566.26, + "probability": 0.0442 + }, + { + "start": 7567.04, + "end": 7568.36, + "probability": 0.2221 + }, + { + "start": 7569.54, + "end": 7570.18, + "probability": 0.773 + }, + { + "start": 7570.36, + "end": 7572.72, + "probability": 0.9398 + }, + { + "start": 7572.72, + "end": 7572.72, + "probability": 0.4056 + }, + { + "start": 7572.84, + "end": 7572.86, + "probability": 0.4968 + }, + { + "start": 7575.59, + "end": 7579.56, + "probability": 0.9853 + }, + { + "start": 7579.56, + "end": 7584.0, + "probability": 0.9995 + }, + { + "start": 7584.76, + "end": 7587.74, + "probability": 0.7741 + }, + { + "start": 7589.46, + "end": 7591.41, + "probability": 0.8989 + }, + { + "start": 7591.46, + "end": 7596.22, + "probability": 0.9736 + }, + { + "start": 7596.66, + "end": 7600.4, + "probability": 0.7522 + }, + { + "start": 7602.26, + "end": 7610.04, + "probability": 0.8589 + }, + { + "start": 7610.2, + "end": 7611.68, + "probability": 0.6982 + }, + { + "start": 7612.12, + "end": 7612.7, + "probability": 0.6562 + }, + { + "start": 7612.84, + "end": 7614.8, + "probability": 0.9399 + }, + { + "start": 7615.32, + "end": 7617.02, + "probability": 0.6177 + }, + { + "start": 7617.8, + "end": 7619.8, + "probability": 0.4991 + }, + { + "start": 7620.7, + "end": 7623.16, + "probability": 0.926 + }, + { + "start": 7626.44, + "end": 7630.02, + "probability": 0.2002 + }, + { + "start": 7630.64, + "end": 7632.5, + "probability": 0.7777 + }, + { + "start": 7635.5, + "end": 7637.64, + "probability": 0.884 + }, + { + "start": 7639.76, + "end": 7642.44, + "probability": 0.7952 + }, + { + "start": 7642.58, + "end": 7643.64, + "probability": 0.979 + }, + { + "start": 7644.73, + "end": 7650.54, + "probability": 0.9855 + }, + { + "start": 7652.4, + "end": 7655.98, + "probability": 0.9744 + }, + { + "start": 7656.98, + "end": 7658.14, + "probability": 0.811 + }, + { + "start": 7659.32, + "end": 7663.84, + "probability": 0.9614 + }, + { + "start": 7664.76, + "end": 7665.36, + "probability": 0.5804 + }, + { + "start": 7665.54, + "end": 7667.72, + "probability": 0.7144 + }, + { + "start": 7669.02, + "end": 7670.64, + "probability": 0.7444 + }, + { + "start": 7670.82, + "end": 7671.2, + "probability": 0.2622 + }, + { + "start": 7671.36, + "end": 7672.78, + "probability": 0.9912 + }, + { + "start": 7673.06, + "end": 7673.57, + "probability": 0.6104 + }, + { + "start": 7673.98, + "end": 7674.22, + "probability": 0.8886 + }, + { + "start": 7675.56, + "end": 7678.42, + "probability": 0.9844 + }, + { + "start": 7679.92, + "end": 7683.16, + "probability": 0.9971 + }, + { + "start": 7684.44, + "end": 7685.6, + "probability": 0.9479 + }, + { + "start": 7686.54, + "end": 7693.7, + "probability": 0.7999 + }, + { + "start": 7694.06, + "end": 7695.94, + "probability": 0.9637 + }, + { + "start": 7697.28, + "end": 7697.84, + "probability": 0.9771 + }, + { + "start": 7698.54, + "end": 7700.86, + "probability": 0.9862 + }, + { + "start": 7702.34, + "end": 7706.28, + "probability": 0.9938 + }, + { + "start": 7706.9, + "end": 7710.92, + "probability": 0.9495 + }, + { + "start": 7712.26, + "end": 7713.52, + "probability": 0.4669 + }, + { + "start": 7714.22, + "end": 7716.14, + "probability": 0.9407 + }, + { + "start": 7716.92, + "end": 7721.72, + "probability": 0.9743 + }, + { + "start": 7723.12, + "end": 7728.9, + "probability": 0.8242 + }, + { + "start": 7730.04, + "end": 7730.88, + "probability": 0.3628 + }, + { + "start": 7731.46, + "end": 7732.34, + "probability": 0.629 + }, + { + "start": 7732.36, + "end": 7734.74, + "probability": 0.8611 + }, + { + "start": 7734.84, + "end": 7737.2, + "probability": 0.9245 + }, + { + "start": 7738.22, + "end": 7742.66, + "probability": 0.997 + }, + { + "start": 7743.24, + "end": 7746.97, + "probability": 0.9905 + }, + { + "start": 7748.06, + "end": 7754.56, + "probability": 0.991 + }, + { + "start": 7754.64, + "end": 7755.36, + "probability": 0.8107 + }, + { + "start": 7755.48, + "end": 7761.38, + "probability": 0.517 + }, + { + "start": 7761.38, + "end": 7761.72, + "probability": 0.5426 + }, + { + "start": 7762.5, + "end": 7765.5, + "probability": 0.8746 + }, + { + "start": 7766.78, + "end": 7769.08, + "probability": 0.9654 + }, + { + "start": 7769.7, + "end": 7771.64, + "probability": 0.9432 + }, + { + "start": 7772.72, + "end": 7774.3, + "probability": 0.9834 + }, + { + "start": 7774.72, + "end": 7777.72, + "probability": 0.8505 + }, + { + "start": 7779.2, + "end": 7787.56, + "probability": 0.9714 + }, + { + "start": 7788.62, + "end": 7789.8, + "probability": 0.7115 + }, + { + "start": 7790.72, + "end": 7794.94, + "probability": 0.7622 + }, + { + "start": 7795.26, + "end": 7799.04, + "probability": 0.8317 + }, + { + "start": 7799.66, + "end": 7805.44, + "probability": 0.9624 + }, + { + "start": 7805.44, + "end": 7808.3, + "probability": 0.9919 + }, + { + "start": 7808.8, + "end": 7811.62, + "probability": 0.9453 + }, + { + "start": 7812.42, + "end": 7814.58, + "probability": 0.9951 + }, + { + "start": 7815.26, + "end": 7817.16, + "probability": 0.9716 + }, + { + "start": 7818.22, + "end": 7819.84, + "probability": 0.8636 + }, + { + "start": 7820.28, + "end": 7820.96, + "probability": 0.6948 + }, + { + "start": 7821.3, + "end": 7826.62, + "probability": 0.987 + }, + { + "start": 7827.12, + "end": 7831.44, + "probability": 0.9663 + }, + { + "start": 7831.74, + "end": 7841.28, + "probability": 0.8176 + }, + { + "start": 7842.84, + "end": 7851.24, + "probability": 0.9877 + }, + { + "start": 7851.24, + "end": 7857.9, + "probability": 0.9308 + }, + { + "start": 7857.9, + "end": 7861.82, + "probability": 0.9976 + }, + { + "start": 7862.84, + "end": 7863.4, + "probability": 0.32 + }, + { + "start": 7864.88, + "end": 7869.88, + "probability": 0.8762 + }, + { + "start": 7870.02, + "end": 7871.66, + "probability": 0.982 + }, + { + "start": 7872.1, + "end": 7873.22, + "probability": 0.8667 + }, + { + "start": 7873.3, + "end": 7875.99, + "probability": 0.9811 + }, + { + "start": 7877.98, + "end": 7879.48, + "probability": 0.7286 + }, + { + "start": 7881.34, + "end": 7882.24, + "probability": 0.6938 + }, + { + "start": 7883.44, + "end": 7887.62, + "probability": 0.3363 + }, + { + "start": 7888.22, + "end": 7889.14, + "probability": 0.1172 + }, + { + "start": 7889.36, + "end": 7891.77, + "probability": 0.3588 + }, + { + "start": 7893.1, + "end": 7893.26, + "probability": 0.2928 + }, + { + "start": 7893.26, + "end": 7895.7, + "probability": 0.9528 + }, + { + "start": 7896.2, + "end": 7897.84, + "probability": 0.1092 + }, + { + "start": 7898.4, + "end": 7899.24, + "probability": 0.4817 + }, + { + "start": 7899.78, + "end": 7902.2, + "probability": 0.0937 + }, + { + "start": 7903.43, + "end": 7907.36, + "probability": 0.8405 + }, + { + "start": 7908.8, + "end": 7913.86, + "probability": 0.9883 + }, + { + "start": 7915.48, + "end": 7916.6, + "probability": 0.9722 + }, + { + "start": 7917.54, + "end": 7921.08, + "probability": 0.9705 + }, + { + "start": 7921.2, + "end": 7923.6, + "probability": 0.8848 + }, + { + "start": 7925.84, + "end": 7927.18, + "probability": 0.864 + }, + { + "start": 7928.0, + "end": 7928.16, + "probability": 0.0518 + }, + { + "start": 7928.16, + "end": 7930.56, + "probability": 0.9204 + }, + { + "start": 7930.6, + "end": 7933.8, + "probability": 0.9816 + }, + { + "start": 7933.96, + "end": 7936.26, + "probability": 0.978 + }, + { + "start": 7937.36, + "end": 7939.54, + "probability": 0.8125 + }, + { + "start": 7940.1, + "end": 7940.86, + "probability": 0.5078 + }, + { + "start": 7941.8, + "end": 7943.52, + "probability": 0.9785 + }, + { + "start": 7943.66, + "end": 7949.12, + "probability": 0.846 + }, + { + "start": 7949.2, + "end": 7951.0, + "probability": 0.9951 + }, + { + "start": 7952.19, + "end": 7956.04, + "probability": 0.7336 + }, + { + "start": 7956.66, + "end": 7958.52, + "probability": 0.9663 + }, + { + "start": 7959.1, + "end": 7960.58, + "probability": 0.9968 + }, + { + "start": 7961.38, + "end": 7962.2, + "probability": 0.9256 + }, + { + "start": 7962.2, + "end": 7963.92, + "probability": 0.6301 + }, + { + "start": 7963.96, + "end": 7967.02, + "probability": 0.9303 + }, + { + "start": 7967.88, + "end": 7971.2, + "probability": 0.9374 + }, + { + "start": 7971.58, + "end": 7977.35, + "probability": 0.9005 + }, + { + "start": 7977.36, + "end": 7982.76, + "probability": 0.9711 + }, + { + "start": 7982.76, + "end": 7982.98, + "probability": 0.2653 + }, + { + "start": 7983.2, + "end": 7983.84, + "probability": 0.5729 + }, + { + "start": 7984.3, + "end": 7987.22, + "probability": 0.9458 + }, + { + "start": 7987.66, + "end": 7990.5, + "probability": 0.981 + }, + { + "start": 7990.74, + "end": 7992.94, + "probability": 0.6007 + }, + { + "start": 7994.78, + "end": 7994.78, + "probability": 0.1687 + }, + { + "start": 7994.78, + "end": 7994.78, + "probability": 0.1268 + }, + { + "start": 7994.78, + "end": 7994.78, + "probability": 0.3545 + }, + { + "start": 7994.78, + "end": 7997.76, + "probability": 0.8612 + }, + { + "start": 7997.88, + "end": 8000.79, + "probability": 0.9888 + }, + { + "start": 8001.08, + "end": 8002.99, + "probability": 0.8618 + }, + { + "start": 8003.78, + "end": 8004.94, + "probability": 0.9282 + }, + { + "start": 8005.24, + "end": 8008.02, + "probability": 0.7537 + }, + { + "start": 8008.24, + "end": 8009.1, + "probability": 0.8676 + }, + { + "start": 8009.18, + "end": 8009.66, + "probability": 0.8765 + }, + { + "start": 8010.06, + "end": 8013.26, + "probability": 0.9329 + }, + { + "start": 8013.58, + "end": 8014.8, + "probability": 0.9505 + }, + { + "start": 8014.96, + "end": 8016.02, + "probability": 0.9355 + }, + { + "start": 8016.28, + "end": 8018.08, + "probability": 0.9878 + }, + { + "start": 8018.52, + "end": 8021.68, + "probability": 0.2329 + }, + { + "start": 8021.68, + "end": 8022.88, + "probability": 0.6548 + }, + { + "start": 8023.46, + "end": 8023.54, + "probability": 0.3924 + }, + { + "start": 8023.54, + "end": 8026.54, + "probability": 0.7201 + }, + { + "start": 8027.26, + "end": 8029.22, + "probability": 0.9339 + }, + { + "start": 8029.34, + "end": 8031.7, + "probability": 0.7723 + }, + { + "start": 8031.78, + "end": 8032.7, + "probability": 0.9819 + }, + { + "start": 8033.02, + "end": 8035.9, + "probability": 0.9827 + }, + { + "start": 8036.14, + "end": 8039.22, + "probability": 0.813 + }, + { + "start": 8039.64, + "end": 8040.74, + "probability": 0.5999 + }, + { + "start": 8040.82, + "end": 8042.18, + "probability": 0.9414 + }, + { + "start": 8042.18, + "end": 8042.34, + "probability": 0.695 + }, + { + "start": 8043.5, + "end": 8046.0, + "probability": 0.8946 + }, + { + "start": 8047.8, + "end": 8051.18, + "probability": 0.9434 + }, + { + "start": 8051.94, + "end": 8052.1, + "probability": 0.5791 + }, + { + "start": 8052.62, + "end": 8053.98, + "probability": 0.9316 + }, + { + "start": 8056.04, + "end": 8058.08, + "probability": 0.9771 + }, + { + "start": 8058.9, + "end": 8061.94, + "probability": 0.9977 + }, + { + "start": 8065.73, + "end": 8067.28, + "probability": 0.0321 + }, + { + "start": 8067.5, + "end": 8069.94, + "probability": 0.9487 + }, + { + "start": 8070.28, + "end": 8072.26, + "probability": 0.6433 + }, + { + "start": 8072.5, + "end": 8075.5, + "probability": 0.8084 + }, + { + "start": 8075.66, + "end": 8076.1, + "probability": 0.6253 + }, + { + "start": 8076.92, + "end": 8077.56, + "probability": 0.8056 + }, + { + "start": 8079.32, + "end": 8079.74, + "probability": 0.0317 + }, + { + "start": 8079.74, + "end": 8081.46, + "probability": 0.863 + }, + { + "start": 8081.76, + "end": 8084.0, + "probability": 0.982 + }, + { + "start": 8084.18, + "end": 8085.96, + "probability": 0.6448 + }, + { + "start": 8086.64, + "end": 8088.32, + "probability": 0.6649 + }, + { + "start": 8088.86, + "end": 8089.44, + "probability": 0.9713 + }, + { + "start": 8089.96, + "end": 8091.56, + "probability": 0.9977 + }, + { + "start": 8092.24, + "end": 8095.02, + "probability": 0.975 + }, + { + "start": 8095.46, + "end": 8097.4, + "probability": 0.924 + }, + { + "start": 8098.89, + "end": 8100.88, + "probability": 0.8989 + }, + { + "start": 8101.0, + "end": 8101.84, + "probability": 0.7585 + }, + { + "start": 8101.88, + "end": 8103.66, + "probability": 0.9614 + }, + { + "start": 8103.74, + "end": 8104.08, + "probability": 0.0054 + }, + { + "start": 8105.26, + "end": 8106.18, + "probability": 0.0545 + }, + { + "start": 8106.18, + "end": 8107.68, + "probability": 0.1368 + }, + { + "start": 8107.84, + "end": 8107.84, + "probability": 0.1091 + }, + { + "start": 8107.84, + "end": 8109.82, + "probability": 0.6424 + }, + { + "start": 8110.22, + "end": 8110.38, + "probability": 0.2821 + }, + { + "start": 8110.38, + "end": 8110.72, + "probability": 0.3755 + }, + { + "start": 8110.76, + "end": 8112.72, + "probability": 0.6692 + }, + { + "start": 8112.76, + "end": 8117.26, + "probability": 0.6334 + }, + { + "start": 8118.92, + "end": 8119.72, + "probability": 0.8823 + }, + { + "start": 8119.98, + "end": 8120.82, + "probability": 0.9902 + }, + { + "start": 8120.9, + "end": 8122.23, + "probability": 0.8049 + }, + { + "start": 8123.3, + "end": 8125.71, + "probability": 0.7308 + }, + { + "start": 8126.88, + "end": 8128.2, + "probability": 0.1466 + }, + { + "start": 8128.62, + "end": 8129.44, + "probability": 0.8298 + }, + { + "start": 8133.94, + "end": 8137.12, + "probability": 0.3283 + }, + { + "start": 8137.7, + "end": 8139.34, + "probability": 0.9908 + }, + { + "start": 8139.54, + "end": 8141.62, + "probability": 0.175 + }, + { + "start": 8141.64, + "end": 8143.51, + "probability": 0.7573 + }, + { + "start": 8144.0, + "end": 8145.2, + "probability": 0.6725 + }, + { + "start": 8146.34, + "end": 8147.32, + "probability": 0.9612 + }, + { + "start": 8148.56, + "end": 8152.02, + "probability": 0.948 + }, + { + "start": 8153.12, + "end": 8155.12, + "probability": 0.4443 + }, + { + "start": 8155.12, + "end": 8155.83, + "probability": 0.7163 + }, + { + "start": 8156.16, + "end": 8156.42, + "probability": 0.4257 + }, + { + "start": 8156.42, + "end": 8156.42, + "probability": 0.2574 + }, + { + "start": 8156.42, + "end": 8156.64, + "probability": 0.6987 + }, + { + "start": 8156.84, + "end": 8162.74, + "probability": 0.8755 + }, + { + "start": 8162.74, + "end": 8168.14, + "probability": 0.6376 + }, + { + "start": 8168.34, + "end": 8171.02, + "probability": 0.5623 + }, + { + "start": 8171.34, + "end": 8171.34, + "probability": 0.0454 + }, + { + "start": 8171.34, + "end": 8171.34, + "probability": 0.5276 + }, + { + "start": 8171.34, + "end": 8172.04, + "probability": 0.9712 + }, + { + "start": 8172.9, + "end": 8173.16, + "probability": 0.953 + }, + { + "start": 8178.18, + "end": 8179.7, + "probability": 0.9829 + }, + { + "start": 8180.46, + "end": 8186.88, + "probability": 0.9973 + }, + { + "start": 8189.34, + "end": 8193.06, + "probability": 0.8619 + }, + { + "start": 8193.92, + "end": 8195.38, + "probability": 0.9958 + }, + { + "start": 8195.96, + "end": 8198.8, + "probability": 0.8548 + }, + { + "start": 8198.84, + "end": 8199.6, + "probability": 0.8825 + }, + { + "start": 8200.1, + "end": 8200.58, + "probability": 0.7399 + }, + { + "start": 8200.76, + "end": 8202.66, + "probability": 0.593 + }, + { + "start": 8204.16, + "end": 8210.48, + "probability": 0.6541 + }, + { + "start": 8210.6, + "end": 8211.34, + "probability": 0.948 + }, + { + "start": 8212.14, + "end": 8214.99, + "probability": 0.98 + }, + { + "start": 8216.02, + "end": 8216.3, + "probability": 0.0166 + }, + { + "start": 8216.3, + "end": 8217.0, + "probability": 0.6885 + }, + { + "start": 8217.79, + "end": 8220.66, + "probability": 0.9968 + }, + { + "start": 8220.72, + "end": 8223.68, + "probability": 0.9624 + }, + { + "start": 8224.52, + "end": 8224.64, + "probability": 0.3582 + }, + { + "start": 8224.86, + "end": 8229.8, + "probability": 0.9773 + }, + { + "start": 8239.02, + "end": 8241.16, + "probability": 0.2565 + }, + { + "start": 8241.68, + "end": 8242.56, + "probability": 0.8347 + }, + { + "start": 8243.9, + "end": 8245.14, + "probability": 0.9846 + }, + { + "start": 8246.34, + "end": 8249.02, + "probability": 0.9976 + }, + { + "start": 8249.8, + "end": 8250.94, + "probability": 0.9461 + }, + { + "start": 8251.64, + "end": 8252.8, + "probability": 0.6672 + }, + { + "start": 8253.76, + "end": 8256.26, + "probability": 0.9471 + }, + { + "start": 8280.72, + "end": 8281.24, + "probability": 0.1494 + }, + { + "start": 8285.54, + "end": 8286.74, + "probability": 0.8777 + }, + { + "start": 8288.1, + "end": 8288.98, + "probability": 0.9822 + }, + { + "start": 8290.16, + "end": 8290.62, + "probability": 0.9335 + }, + { + "start": 8291.22, + "end": 8292.13, + "probability": 0.9867 + }, + { + "start": 8293.5, + "end": 8296.98, + "probability": 0.82 + }, + { + "start": 8297.86, + "end": 8299.74, + "probability": 0.9888 + }, + { + "start": 8300.3, + "end": 8301.92, + "probability": 0.9883 + }, + { + "start": 8303.24, + "end": 8308.21, + "probability": 0.7604 + }, + { + "start": 8309.5, + "end": 8312.24, + "probability": 0.8959 + }, + { + "start": 8314.68, + "end": 8315.54, + "probability": 0.9645 + }, + { + "start": 8317.26, + "end": 8318.64, + "probability": 0.9121 + }, + { + "start": 8320.34, + "end": 8321.5, + "probability": 0.8196 + }, + { + "start": 8322.5, + "end": 8325.92, + "probability": 0.8698 + }, + { + "start": 8327.56, + "end": 8331.42, + "probability": 0.9948 + }, + { + "start": 8331.42, + "end": 8336.36, + "probability": 0.9993 + }, + { + "start": 8336.94, + "end": 8338.48, + "probability": 0.9952 + }, + { + "start": 8339.72, + "end": 8343.42, + "probability": 0.9985 + }, + { + "start": 8344.24, + "end": 8345.94, + "probability": 0.7019 + }, + { + "start": 8346.72, + "end": 8348.94, + "probability": 0.9192 + }, + { + "start": 8349.92, + "end": 8352.22, + "probability": 0.981 + }, + { + "start": 8352.82, + "end": 8353.46, + "probability": 0.9747 + }, + { + "start": 8354.14, + "end": 8357.52, + "probability": 0.8878 + }, + { + "start": 8358.92, + "end": 8366.06, + "probability": 0.9647 + }, + { + "start": 8367.38, + "end": 8372.82, + "probability": 0.9883 + }, + { + "start": 8373.92, + "end": 8377.08, + "probability": 0.9891 + }, + { + "start": 8378.08, + "end": 8379.08, + "probability": 0.5625 + }, + { + "start": 8379.62, + "end": 8382.72, + "probability": 0.9889 + }, + { + "start": 8384.38, + "end": 8385.76, + "probability": 0.5521 + }, + { + "start": 8386.28, + "end": 8387.44, + "probability": 0.8916 + }, + { + "start": 8388.64, + "end": 8393.48, + "probability": 0.9795 + }, + { + "start": 8395.2, + "end": 8398.64, + "probability": 0.9375 + }, + { + "start": 8399.84, + "end": 8400.94, + "probability": 0.6378 + }, + { + "start": 8401.88, + "end": 8405.0, + "probability": 0.813 + }, + { + "start": 8405.74, + "end": 8407.2, + "probability": 0.7593 + }, + { + "start": 8407.9, + "end": 8409.56, + "probability": 0.9412 + }, + { + "start": 8410.12, + "end": 8416.08, + "probability": 0.9941 + }, + { + "start": 8417.72, + "end": 8420.64, + "probability": 0.9398 + }, + { + "start": 8421.42, + "end": 8423.66, + "probability": 0.8333 + }, + { + "start": 8424.28, + "end": 8425.12, + "probability": 0.623 + }, + { + "start": 8425.76, + "end": 8427.88, + "probability": 0.9339 + }, + { + "start": 8428.54, + "end": 8429.32, + "probability": 0.9756 + }, + { + "start": 8430.8, + "end": 8437.92, + "probability": 0.9927 + }, + { + "start": 8438.44, + "end": 8443.7, + "probability": 0.995 + }, + { + "start": 8445.24, + "end": 8452.34, + "probability": 0.9942 + }, + { + "start": 8453.12, + "end": 8456.48, + "probability": 0.9924 + }, + { + "start": 8456.52, + "end": 8458.84, + "probability": 0.9418 + }, + { + "start": 8459.9, + "end": 8463.26, + "probability": 0.6319 + }, + { + "start": 8463.78, + "end": 8464.3, + "probability": 0.9734 + }, + { + "start": 8465.72, + "end": 8468.88, + "probability": 0.9845 + }, + { + "start": 8468.88, + "end": 8473.08, + "probability": 0.9858 + }, + { + "start": 8473.66, + "end": 8476.54, + "probability": 0.9865 + }, + { + "start": 8477.72, + "end": 8481.04, + "probability": 0.9673 + }, + { + "start": 8482.14, + "end": 8486.2, + "probability": 0.9499 + }, + { + "start": 8486.92, + "end": 8487.76, + "probability": 0.5955 + }, + { + "start": 8488.4, + "end": 8492.38, + "probability": 0.9967 + }, + { + "start": 8492.38, + "end": 8495.78, + "probability": 0.9996 + }, + { + "start": 8496.72, + "end": 8499.48, + "probability": 0.9971 + }, + { + "start": 8500.12, + "end": 8504.02, + "probability": 0.9976 + }, + { + "start": 8504.6, + "end": 8506.94, + "probability": 0.9977 + }, + { + "start": 8508.26, + "end": 8509.52, + "probability": 0.8884 + }, + { + "start": 8510.38, + "end": 8512.0, + "probability": 0.8016 + }, + { + "start": 8513.32, + "end": 8516.03, + "probability": 0.9641 + }, + { + "start": 8517.36, + "end": 8520.12, + "probability": 0.9472 + }, + { + "start": 8520.2, + "end": 8520.74, + "probability": 0.7321 + }, + { + "start": 8521.84, + "end": 8524.36, + "probability": 0.6931 + }, + { + "start": 8525.98, + "end": 8526.6, + "probability": 0.875 + }, + { + "start": 8527.18, + "end": 8530.0, + "probability": 0.8704 + }, + { + "start": 8531.04, + "end": 8531.86, + "probability": 0.8189 + }, + { + "start": 8532.96, + "end": 8537.08, + "probability": 0.9902 + }, + { + "start": 8537.68, + "end": 8538.84, + "probability": 0.8016 + }, + { + "start": 8540.22, + "end": 8545.04, + "probability": 0.8412 + }, + { + "start": 8546.32, + "end": 8547.42, + "probability": 0.9692 + }, + { + "start": 8548.44, + "end": 8548.92, + "probability": 0.956 + }, + { + "start": 8549.6, + "end": 8550.32, + "probability": 0.9852 + }, + { + "start": 8551.62, + "end": 8555.21, + "probability": 0.5874 + }, + { + "start": 8555.42, + "end": 8556.84, + "probability": 0.923 + }, + { + "start": 8558.16, + "end": 8559.9, + "probability": 0.5857 + }, + { + "start": 8561.4, + "end": 8565.42, + "probability": 0.6842 + }, + { + "start": 8567.9, + "end": 8569.1, + "probability": 0.8108 + }, + { + "start": 8572.08, + "end": 8572.42, + "probability": 0.6773 + }, + { + "start": 8574.68, + "end": 8576.22, + "probability": 0.8117 + }, + { + "start": 8578.0, + "end": 8581.52, + "probability": 0.8154 + }, + { + "start": 8582.32, + "end": 8583.0, + "probability": 0.6852 + }, + { + "start": 8585.74, + "end": 8586.48, + "probability": 0.7632 + }, + { + "start": 8589.22, + "end": 8592.24, + "probability": 0.9874 + }, + { + "start": 8593.76, + "end": 8596.94, + "probability": 0.9955 + }, + { + "start": 8598.4, + "end": 8600.42, + "probability": 0.8616 + }, + { + "start": 8601.64, + "end": 8602.48, + "probability": 0.7856 + }, + { + "start": 8603.74, + "end": 8604.74, + "probability": 0.9485 + }, + { + "start": 8605.98, + "end": 8607.1, + "probability": 0.7875 + }, + { + "start": 8608.26, + "end": 8609.68, + "probability": 0.8645 + }, + { + "start": 8611.28, + "end": 8612.56, + "probability": 0.9144 + }, + { + "start": 8613.96, + "end": 8616.6, + "probability": 0.7812 + }, + { + "start": 8618.08, + "end": 8619.32, + "probability": 0.5686 + }, + { + "start": 8620.52, + "end": 8622.26, + "probability": 0.6845 + }, + { + "start": 8623.44, + "end": 8631.26, + "probability": 0.9393 + }, + { + "start": 8632.38, + "end": 8635.34, + "probability": 0.9169 + }, + { + "start": 8637.04, + "end": 8637.74, + "probability": 0.8617 + }, + { + "start": 8639.02, + "end": 8640.52, + "probability": 0.7031 + }, + { + "start": 8642.74, + "end": 8643.38, + "probability": 0.8831 + }, + { + "start": 8644.68, + "end": 8647.14, + "probability": 0.9565 + }, + { + "start": 8648.26, + "end": 8649.04, + "probability": 0.9876 + }, + { + "start": 8650.28, + "end": 8654.6, + "probability": 0.9135 + }, + { + "start": 8655.56, + "end": 8656.56, + "probability": 0.859 + }, + { + "start": 8658.12, + "end": 8658.76, + "probability": 0.349 + }, + { + "start": 8659.74, + "end": 8662.0, + "probability": 0.694 + }, + { + "start": 8662.64, + "end": 8663.54, + "probability": 0.531 + }, + { + "start": 8664.24, + "end": 8666.04, + "probability": 0.9574 + }, + { + "start": 8667.5, + "end": 8670.62, + "probability": 0.953 + }, + { + "start": 8671.32, + "end": 8676.76, + "probability": 0.9141 + }, + { + "start": 8677.52, + "end": 8681.16, + "probability": 0.7963 + }, + { + "start": 8681.92, + "end": 8683.62, + "probability": 0.8039 + }, + { + "start": 8684.66, + "end": 8685.62, + "probability": 0.7866 + }, + { + "start": 8686.44, + "end": 8689.0, + "probability": 0.6988 + }, + { + "start": 8689.94, + "end": 8690.42, + "probability": 0.9197 + }, + { + "start": 8691.52, + "end": 8692.14, + "probability": 0.7156 + }, + { + "start": 8692.84, + "end": 8697.16, + "probability": 0.8297 + }, + { + "start": 8697.94, + "end": 8699.0, + "probability": 0.9038 + }, + { + "start": 8699.82, + "end": 8702.48, + "probability": 0.9855 + }, + { + "start": 8703.28, + "end": 8707.98, + "probability": 0.9528 + }, + { + "start": 8708.68, + "end": 8711.18, + "probability": 0.7868 + }, + { + "start": 8712.3, + "end": 8713.14, + "probability": 0.8362 + }, + { + "start": 8715.1, + "end": 8717.84, + "probability": 0.5099 + }, + { + "start": 8718.92, + "end": 8723.74, + "probability": 0.9656 + }, + { + "start": 8724.5, + "end": 8725.44, + "probability": 0.9025 + }, + { + "start": 8726.02, + "end": 8728.32, + "probability": 0.6777 + }, + { + "start": 8729.82, + "end": 8731.68, + "probability": 0.9018 + }, + { + "start": 8732.36, + "end": 8734.4, + "probability": 0.7352 + }, + { + "start": 8735.14, + "end": 8740.24, + "probability": 0.7432 + }, + { + "start": 8740.72, + "end": 8741.14, + "probability": 0.9842 + }, + { + "start": 8741.82, + "end": 8743.28, + "probability": 0.5993 + }, + { + "start": 8744.12, + "end": 8747.18, + "probability": 0.8921 + }, + { + "start": 8747.26, + "end": 8750.12, + "probability": 0.8742 + }, + { + "start": 8750.2, + "end": 8753.18, + "probability": 0.9971 + }, + { + "start": 8754.0, + "end": 8759.7, + "probability": 0.9697 + }, + { + "start": 8760.46, + "end": 8760.82, + "probability": 0.7031 + }, + { + "start": 8761.88, + "end": 8766.5, + "probability": 0.9048 + }, + { + "start": 8766.78, + "end": 8767.86, + "probability": 0.6455 + }, + { + "start": 8768.5, + "end": 8771.62, + "probability": 0.6287 + }, + { + "start": 8772.42, + "end": 8774.42, + "probability": 0.7728 + }, + { + "start": 8775.0, + "end": 8776.02, + "probability": 0.6499 + }, + { + "start": 8776.2, + "end": 8777.46, + "probability": 0.8523 + }, + { + "start": 8777.52, + "end": 8778.4, + "probability": 0.808 + }, + { + "start": 8778.88, + "end": 8779.82, + "probability": 0.9841 + }, + { + "start": 8781.0, + "end": 8781.64, + "probability": 0.8062 + }, + { + "start": 8782.36, + "end": 8786.56, + "probability": 0.9699 + }, + { + "start": 8787.52, + "end": 8790.7, + "probability": 0.9897 + }, + { + "start": 8791.48, + "end": 8796.52, + "probability": 0.9922 + }, + { + "start": 8797.78, + "end": 8798.74, + "probability": 0.8434 + }, + { + "start": 8799.54, + "end": 8800.7, + "probability": 0.8195 + }, + { + "start": 8801.48, + "end": 8802.36, + "probability": 0.6857 + }, + { + "start": 8803.16, + "end": 8807.48, + "probability": 0.9207 + }, + { + "start": 8808.28, + "end": 8812.9, + "probability": 0.9765 + }, + { + "start": 8813.5, + "end": 8816.76, + "probability": 0.8481 + }, + { + "start": 8817.48, + "end": 8818.0, + "probability": 0.8331 + }, + { + "start": 8819.24, + "end": 8823.4, + "probability": 0.8862 + }, + { + "start": 8824.0, + "end": 8826.12, + "probability": 0.9059 + }, + { + "start": 8826.76, + "end": 8828.0, + "probability": 0.9156 + }, + { + "start": 8829.04, + "end": 8829.86, + "probability": 0.6113 + }, + { + "start": 8830.5, + "end": 8834.3, + "probability": 0.8791 + }, + { + "start": 8835.04, + "end": 8836.68, + "probability": 0.722 + }, + { + "start": 8837.32, + "end": 8839.2, + "probability": 0.9968 + }, + { + "start": 8840.5, + "end": 8840.84, + "probability": 0.8847 + }, + { + "start": 8841.56, + "end": 8846.04, + "probability": 0.9881 + }, + { + "start": 8847.3, + "end": 8851.54, + "probability": 0.9089 + }, + { + "start": 8852.48, + "end": 8858.0, + "probability": 0.903 + }, + { + "start": 8859.06, + "end": 8866.18, + "probability": 0.9878 + }, + { + "start": 8866.5, + "end": 8867.56, + "probability": 0.6121 + }, + { + "start": 8868.26, + "end": 8873.06, + "probability": 0.9467 + }, + { + "start": 8873.3, + "end": 8878.16, + "probability": 0.9793 + }, + { + "start": 8878.76, + "end": 8879.56, + "probability": 0.9763 + }, + { + "start": 8880.18, + "end": 8881.22, + "probability": 0.9909 + }, + { + "start": 8882.02, + "end": 8882.86, + "probability": 0.9744 + }, + { + "start": 8883.86, + "end": 8885.08, + "probability": 0.5739 + }, + { + "start": 8885.62, + "end": 8888.96, + "probability": 0.994 + }, + { + "start": 8889.7, + "end": 8891.72, + "probability": 0.9918 + }, + { + "start": 8892.68, + "end": 8899.96, + "probability": 0.981 + }, + { + "start": 8900.64, + "end": 8905.7, + "probability": 0.8828 + }, + { + "start": 8906.5, + "end": 8908.06, + "probability": 0.9712 + }, + { + "start": 8908.72, + "end": 8910.3, + "probability": 0.7287 + }, + { + "start": 8911.04, + "end": 8911.68, + "probability": 0.9496 + }, + { + "start": 8912.32, + "end": 8916.64, + "probability": 0.9705 + }, + { + "start": 8917.4, + "end": 8918.14, + "probability": 0.989 + }, + { + "start": 8918.74, + "end": 8919.96, + "probability": 0.731 + }, + { + "start": 8920.1, + "end": 8920.56, + "probability": 0.983 + }, + { + "start": 8921.24, + "end": 8924.04, + "probability": 0.8992 + }, + { + "start": 8924.68, + "end": 8925.82, + "probability": 0.9551 + }, + { + "start": 8926.56, + "end": 8928.08, + "probability": 0.8901 + }, + { + "start": 8928.76, + "end": 8932.96, + "probability": 0.9895 + }, + { + "start": 8933.74, + "end": 8935.06, + "probability": 0.9826 + }, + { + "start": 8935.94, + "end": 8937.2, + "probability": 0.5671 + }, + { + "start": 8937.9, + "end": 8941.78, + "probability": 0.9845 + }, + { + "start": 8942.42, + "end": 8942.92, + "probability": 0.9961 + }, + { + "start": 8943.52, + "end": 8944.36, + "probability": 0.9222 + }, + { + "start": 8944.94, + "end": 8947.74, + "probability": 0.9867 + }, + { + "start": 8948.54, + "end": 8951.26, + "probability": 0.8848 + }, + { + "start": 8951.92, + "end": 8955.16, + "probability": 0.8807 + }, + { + "start": 8955.78, + "end": 8957.94, + "probability": 0.8938 + }, + { + "start": 8958.54, + "end": 8959.0, + "probability": 0.981 + }, + { + "start": 8960.72, + "end": 8961.88, + "probability": 0.7236 + }, + { + "start": 8962.5, + "end": 8963.14, + "probability": 0.8251 + }, + { + "start": 8963.86, + "end": 8966.34, + "probability": 0.9918 + }, + { + "start": 8967.56, + "end": 8967.88, + "probability": 0.4872 + }, + { + "start": 8968.46, + "end": 8970.32, + "probability": 0.781 + }, + { + "start": 8970.98, + "end": 8974.98, + "probability": 0.9523 + }, + { + "start": 8975.82, + "end": 8979.04, + "probability": 0.5067 + }, + { + "start": 8979.66, + "end": 8982.24, + "probability": 0.9949 + }, + { + "start": 8983.0, + "end": 8984.74, + "probability": 0.9481 + }, + { + "start": 8985.64, + "end": 8986.76, + "probability": 0.8311 + }, + { + "start": 8987.36, + "end": 8989.0, + "probability": 0.772 + }, + { + "start": 8989.66, + "end": 8991.28, + "probability": 0.8507 + }, + { + "start": 8992.1, + "end": 8994.41, + "probability": 0.9549 + }, + { + "start": 8995.2, + "end": 8998.12, + "probability": 0.9907 + }, + { + "start": 8998.72, + "end": 8999.97, + "probability": 0.9682 + }, + { + "start": 9000.74, + "end": 9002.9, + "probability": 0.988 + }, + { + "start": 9003.66, + "end": 9006.08, + "probability": 0.6627 + }, + { + "start": 9006.86, + "end": 9008.34, + "probability": 0.9569 + }, + { + "start": 9009.34, + "end": 9011.52, + "probability": 0.8898 + }, + { + "start": 9012.18, + "end": 9014.8, + "probability": 0.8326 + }, + { + "start": 9015.56, + "end": 9015.76, + "probability": 0.7935 + }, + { + "start": 9016.74, + "end": 9018.02, + "probability": 0.6619 + }, + { + "start": 9018.68, + "end": 9019.2, + "probability": 0.6439 + }, + { + "start": 9019.78, + "end": 9020.24, + "probability": 0.8284 + }, + { + "start": 9020.7, + "end": 9024.96, + "probability": 0.7747 + }, + { + "start": 9025.98, + "end": 9030.84, + "probability": 0.952 + }, + { + "start": 9031.58, + "end": 9033.2, + "probability": 0.6385 + }, + { + "start": 9034.36, + "end": 9036.5, + "probability": 0.3415 + }, + { + "start": 9039.16, + "end": 9041.5, + "probability": 0.7557 + }, + { + "start": 9051.24, + "end": 9054.66, + "probability": 0.9083 + }, + { + "start": 9054.92, + "end": 9056.56, + "probability": 0.4846 + }, + { + "start": 9059.64, + "end": 9062.6, + "probability": 0.8202 + }, + { + "start": 9063.94, + "end": 9065.38, + "probability": 0.104 + }, + { + "start": 9066.54, + "end": 9067.28, + "probability": 0.8389 + }, + { + "start": 9068.2, + "end": 9070.72, + "probability": 0.7029 + }, + { + "start": 9071.4, + "end": 9072.66, + "probability": 0.3901 + }, + { + "start": 9073.98, + "end": 9076.28, + "probability": 0.7855 + }, + { + "start": 9078.5, + "end": 9080.24, + "probability": 0.2306 + }, + { + "start": 9081.32, + "end": 9082.52, + "probability": 0.5406 + }, + { + "start": 9084.37, + "end": 9086.77, + "probability": 0.0347 + }, + { + "start": 9102.87, + "end": 9104.2, + "probability": 0.0479 + }, + { + "start": 9110.38, + "end": 9111.36, + "probability": 0.0175 + }, + { + "start": 9118.68, + "end": 9123.1, + "probability": 0.0715 + }, + { + "start": 9123.92, + "end": 9124.26, + "probability": 0.0264 + }, + { + "start": 9124.26, + "end": 9124.26, + "probability": 0.0925 + }, + { + "start": 9124.26, + "end": 9124.46, + "probability": 0.1826 + }, + { + "start": 9124.54, + "end": 9125.46, + "probability": 0.038 + }, + { + "start": 9126.68, + "end": 9127.3, + "probability": 0.6834 + }, + { + "start": 9135.92, + "end": 9136.72, + "probability": 0.0618 + }, + { + "start": 9146.76, + "end": 9149.54, + "probability": 0.3648 + }, + { + "start": 9149.54, + "end": 9151.5, + "probability": 0.0975 + }, + { + "start": 9153.0, + "end": 9156.78, + "probability": 0.9631 + }, + { + "start": 9157.64, + "end": 9158.5, + "probability": 0.9445 + }, + { + "start": 9160.28, + "end": 9161.88, + "probability": 0.8933 + }, + { + "start": 9162.88, + "end": 9166.74, + "probability": 0.9945 + }, + { + "start": 9167.18, + "end": 9168.26, + "probability": 0.825 + }, + { + "start": 9168.68, + "end": 9173.24, + "probability": 0.9956 + }, + { + "start": 9175.39, + "end": 9178.64, + "probability": 0.8236 + }, + { + "start": 9179.3, + "end": 9179.94, + "probability": 0.2602 + }, + { + "start": 9180.44, + "end": 9184.82, + "probability": 0.6088 + }, + { + "start": 9187.74, + "end": 9192.34, + "probability": 0.9749 + }, + { + "start": 9193.05, + "end": 9198.44, + "probability": 0.7535 + }, + { + "start": 9198.44, + "end": 9203.36, + "probability": 0.5325 + }, + { + "start": 9203.9, + "end": 9205.94, + "probability": 0.8727 + }, + { + "start": 9206.1, + "end": 9211.0, + "probability": 0.9485 + }, + { + "start": 9212.8, + "end": 9215.56, + "probability": 0.8633 + }, + { + "start": 9216.64, + "end": 9219.28, + "probability": 0.9968 + }, + { + "start": 9219.8, + "end": 9223.38, + "probability": 0.9968 + }, + { + "start": 9223.38, + "end": 9227.88, + "probability": 0.9969 + }, + { + "start": 9229.02, + "end": 9232.5, + "probability": 0.9908 + }, + { + "start": 9233.84, + "end": 9238.74, + "probability": 0.9955 + }, + { + "start": 9239.44, + "end": 9244.56, + "probability": 0.9951 + }, + { + "start": 9245.38, + "end": 9250.04, + "probability": 0.9988 + }, + { + "start": 9250.04, + "end": 9254.48, + "probability": 0.9852 + }, + { + "start": 9255.0, + "end": 9260.84, + "probability": 0.9611 + }, + { + "start": 9262.6, + "end": 9267.36, + "probability": 0.4018 + }, + { + "start": 9267.36, + "end": 9270.18, + "probability": 0.9972 + }, + { + "start": 9270.62, + "end": 9276.94, + "probability": 0.9948 + }, + { + "start": 9276.94, + "end": 9282.9, + "probability": 0.9983 + }, + { + "start": 9283.42, + "end": 9283.84, + "probability": 0.7496 + }, + { + "start": 9284.08, + "end": 9286.28, + "probability": 0.7965 + }, + { + "start": 9286.94, + "end": 9288.64, + "probability": 0.9463 + }, + { + "start": 9290.8, + "end": 9291.64, + "probability": 0.9409 + }, + { + "start": 9292.38, + "end": 9294.18, + "probability": 0.7384 + }, + { + "start": 9294.7, + "end": 9299.44, + "probability": 0.3041 + }, + { + "start": 9300.14, + "end": 9301.16, + "probability": 0.6243 + }, + { + "start": 9301.26, + "end": 9303.84, + "probability": 0.9941 + }, + { + "start": 9304.56, + "end": 9305.88, + "probability": 0.9917 + }, + { + "start": 9306.38, + "end": 9310.78, + "probability": 0.9478 + }, + { + "start": 9310.78, + "end": 9314.28, + "probability": 0.9969 + }, + { + "start": 9315.1, + "end": 9317.14, + "probability": 0.9345 + }, + { + "start": 9317.36, + "end": 9319.24, + "probability": 0.689 + }, + { + "start": 9319.76, + "end": 9320.9, + "probability": 0.5045 + }, + { + "start": 9321.32, + "end": 9321.94, + "probability": 0.9321 + }, + { + "start": 9326.54, + "end": 9329.08, + "probability": 0.7657 + }, + { + "start": 9329.86, + "end": 9333.72, + "probability": 0.9846 + }, + { + "start": 9334.26, + "end": 9338.56, + "probability": 0.9891 + }, + { + "start": 9339.62, + "end": 9344.6, + "probability": 0.8872 + }, + { + "start": 9345.74, + "end": 9350.22, + "probability": 0.9535 + }, + { + "start": 9350.22, + "end": 9355.58, + "probability": 0.989 + }, + { + "start": 9355.58, + "end": 9365.16, + "probability": 0.9925 + }, + { + "start": 9365.88, + "end": 9366.98, + "probability": 0.9542 + }, + { + "start": 9367.9, + "end": 9371.36, + "probability": 0.9849 + }, + { + "start": 9371.42, + "end": 9372.24, + "probability": 0.8313 + }, + { + "start": 9372.42, + "end": 9373.64, + "probability": 0.9143 + }, + { + "start": 9374.26, + "end": 9377.84, + "probability": 0.9946 + }, + { + "start": 9378.5, + "end": 9380.3, + "probability": 0.9867 + }, + { + "start": 9381.24, + "end": 9382.88, + "probability": 0.8277 + }, + { + "start": 9383.86, + "end": 9385.86, + "probability": 0.7481 + }, + { + "start": 9386.74, + "end": 9388.58, + "probability": 0.9569 + }, + { + "start": 9388.58, + "end": 9391.66, + "probability": 0.9956 + }, + { + "start": 9392.26, + "end": 9394.0, + "probability": 0.976 + }, + { + "start": 9395.18, + "end": 9399.98, + "probability": 0.9847 + }, + { + "start": 9400.62, + "end": 9403.84, + "probability": 0.9969 + }, + { + "start": 9403.96, + "end": 9406.38, + "probability": 0.9965 + }, + { + "start": 9406.96, + "end": 9408.62, + "probability": 0.8788 + }, + { + "start": 9410.62, + "end": 9412.92, + "probability": 0.9434 + }, + { + "start": 9412.92, + "end": 9416.74, + "probability": 0.9977 + }, + { + "start": 9417.6, + "end": 9421.68, + "probability": 0.9254 + }, + { + "start": 9421.9, + "end": 9424.82, + "probability": 0.9781 + }, + { + "start": 9425.58, + "end": 9428.16, + "probability": 0.9868 + }, + { + "start": 9428.86, + "end": 9434.8, + "probability": 0.9973 + }, + { + "start": 9436.0, + "end": 9440.08, + "probability": 0.9889 + }, + { + "start": 9440.78, + "end": 9443.44, + "probability": 0.9927 + }, + { + "start": 9443.44, + "end": 9446.34, + "probability": 0.9855 + }, + { + "start": 9447.22, + "end": 9449.92, + "probability": 0.9938 + }, + { + "start": 9450.44, + "end": 9452.84, + "probability": 0.9912 + }, + { + "start": 9452.84, + "end": 9455.62, + "probability": 0.9994 + }, + { + "start": 9456.78, + "end": 9461.08, + "probability": 0.8352 + }, + { + "start": 9461.96, + "end": 9465.8, + "probability": 0.9059 + }, + { + "start": 9466.72, + "end": 9471.12, + "probability": 0.9946 + }, + { + "start": 9471.82, + "end": 9477.16, + "probability": 0.8899 + }, + { + "start": 9477.86, + "end": 9479.25, + "probability": 0.9181 + }, + { + "start": 9479.5, + "end": 9482.32, + "probability": 0.9427 + }, + { + "start": 9483.32, + "end": 9485.68, + "probability": 0.999 + }, + { + "start": 9487.32, + "end": 9489.72, + "probability": 0.9966 + }, + { + "start": 9490.7, + "end": 9495.06, + "probability": 0.9948 + }, + { + "start": 9495.68, + "end": 9499.98, + "probability": 0.929 + }, + { + "start": 9500.58, + "end": 9504.06, + "probability": 0.9909 + }, + { + "start": 9504.7, + "end": 9504.96, + "probability": 0.5506 + }, + { + "start": 9505.1, + "end": 9505.64, + "probability": 0.8734 + }, + { + "start": 9505.88, + "end": 9507.96, + "probability": 0.9712 + }, + { + "start": 9508.76, + "end": 9510.98, + "probability": 0.9953 + }, + { + "start": 9511.89, + "end": 9516.22, + "probability": 0.9835 + }, + { + "start": 9516.94, + "end": 9517.66, + "probability": 0.7524 + }, + { + "start": 9517.88, + "end": 9520.8, + "probability": 0.9813 + }, + { + "start": 9521.4, + "end": 9524.94, + "probability": 0.9976 + }, + { + "start": 9525.74, + "end": 9527.98, + "probability": 0.9781 + }, + { + "start": 9528.22, + "end": 9531.93, + "probability": 0.9857 + }, + { + "start": 9532.24, + "end": 9534.14, + "probability": 0.9929 + }, + { + "start": 9534.72, + "end": 9540.62, + "probability": 0.9976 + }, + { + "start": 9540.78, + "end": 9540.98, + "probability": 0.8167 + }, + { + "start": 9542.0, + "end": 9543.16, + "probability": 0.5287 + }, + { + "start": 9543.22, + "end": 9549.04, + "probability": 0.9183 + }, + { + "start": 9549.56, + "end": 9550.54, + "probability": 0.6079 + }, + { + "start": 9551.26, + "end": 9552.1, + "probability": 0.9172 + }, + { + "start": 9552.66, + "end": 9553.12, + "probability": 0.8789 + }, + { + "start": 9554.0, + "end": 9555.22, + "probability": 0.4976 + }, + { + "start": 9555.9, + "end": 9559.02, + "probability": 0.9951 + }, + { + "start": 9561.04, + "end": 9562.32, + "probability": 0.8273 + }, + { + "start": 9578.14, + "end": 9580.6, + "probability": 0.8013 + }, + { + "start": 9581.58, + "end": 9584.2, + "probability": 0.9395 + }, + { + "start": 9585.02, + "end": 9587.7, + "probability": 0.8677 + }, + { + "start": 9588.62, + "end": 9590.68, + "probability": 0.9556 + }, + { + "start": 9590.72, + "end": 9598.7, + "probability": 0.8352 + }, + { + "start": 9599.4, + "end": 9607.22, + "probability": 0.7708 + }, + { + "start": 9607.74, + "end": 9610.52, + "probability": 0.8462 + }, + { + "start": 9611.22, + "end": 9611.92, + "probability": 0.3135 + }, + { + "start": 9611.98, + "end": 9616.08, + "probability": 0.67 + }, + { + "start": 9616.54, + "end": 9620.72, + "probability": 0.9773 + }, + { + "start": 9621.18, + "end": 9622.48, + "probability": 0.816 + }, + { + "start": 9622.98, + "end": 9624.56, + "probability": 0.7089 + }, + { + "start": 9625.22, + "end": 9630.48, + "probability": 0.9417 + }, + { + "start": 9630.5, + "end": 9634.38, + "probability": 0.8699 + }, + { + "start": 9634.76, + "end": 9638.82, + "probability": 0.968 + }, + { + "start": 9639.02, + "end": 9644.76, + "probability": 0.8356 + }, + { + "start": 9645.34, + "end": 9649.48, + "probability": 0.9738 + }, + { + "start": 9649.56, + "end": 9650.32, + "probability": 0.7045 + }, + { + "start": 9650.68, + "end": 9655.04, + "probability": 0.9822 + }, + { + "start": 9655.12, + "end": 9656.0, + "probability": 0.9988 + }, + { + "start": 9656.82, + "end": 9660.64, + "probability": 0.9985 + }, + { + "start": 9661.12, + "end": 9661.6, + "probability": 0.5995 + }, + { + "start": 9661.94, + "end": 9665.86, + "probability": 0.7518 + }, + { + "start": 9666.5, + "end": 9669.12, + "probability": 0.9051 + }, + { + "start": 9669.12, + "end": 9672.78, + "probability": 0.9629 + }, + { + "start": 9672.86, + "end": 9673.24, + "probability": 0.832 + }, + { + "start": 9673.78, + "end": 9674.64, + "probability": 0.6219 + }, + { + "start": 9675.02, + "end": 9677.7, + "probability": 0.9894 + }, + { + "start": 9678.18, + "end": 9682.36, + "probability": 0.9764 + }, + { + "start": 9682.76, + "end": 9683.5, + "probability": 0.9196 + }, + { + "start": 9683.56, + "end": 9684.42, + "probability": 0.961 + }, + { + "start": 9684.68, + "end": 9685.42, + "probability": 0.7546 + }, + { + "start": 9686.38, + "end": 9686.38, + "probability": 0.3797 + }, + { + "start": 9686.38, + "end": 9688.7, + "probability": 0.9189 + }, + { + "start": 9688.8, + "end": 9690.98, + "probability": 0.5459 + }, + { + "start": 9691.04, + "end": 9693.92, + "probability": 0.544 + }, + { + "start": 9694.08, + "end": 9694.34, + "probability": 0.9093 + }, + { + "start": 9694.84, + "end": 9695.36, + "probability": 0.7473 + }, + { + "start": 9695.44, + "end": 9696.8, + "probability": 0.6064 + }, + { + "start": 9697.02, + "end": 9699.02, + "probability": 0.5833 + }, + { + "start": 9699.06, + "end": 9700.26, + "probability": 0.7747 + }, + { + "start": 9700.44, + "end": 9700.64, + "probability": 0.2197 + }, + { + "start": 9701.02, + "end": 9701.28, + "probability": 0.7029 + }, + { + "start": 9701.84, + "end": 9703.7, + "probability": 0.9546 + }, + { + "start": 9704.3, + "end": 9705.0, + "probability": 0.9165 + }, + { + "start": 9705.58, + "end": 9706.16, + "probability": 0.378 + }, + { + "start": 9706.6, + "end": 9706.68, + "probability": 0.1098 + }, + { + "start": 9706.68, + "end": 9708.48, + "probability": 0.8242 + }, + { + "start": 9709.22, + "end": 9711.6, + "probability": 0.9748 + }, + { + "start": 9732.69, + "end": 9739.64, + "probability": 0.2384 + }, + { + "start": 9740.18, + "end": 9740.5, + "probability": 0.0472 + }, + { + "start": 9741.1, + "end": 9743.22, + "probability": 0.071 + }, + { + "start": 9744.16, + "end": 9750.52, + "probability": 0.7141 + }, + { + "start": 9752.62, + "end": 9752.62, + "probability": 0.3706 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.0, + "end": 9839.0, + "probability": 0.0 + }, + { + "start": 9839.78, + "end": 9841.16, + "probability": 0.063 + }, + { + "start": 9842.8, + "end": 9844.92, + "probability": 0.8933 + }, + { + "start": 9846.1, + "end": 9860.08, + "probability": 0.5865 + }, + { + "start": 9860.08, + "end": 9866.7, + "probability": 0.9819 + }, + { + "start": 9866.8, + "end": 9868.02, + "probability": 0.8023 + }, + { + "start": 9868.26, + "end": 9870.16, + "probability": 0.6234 + }, + { + "start": 9871.78, + "end": 9879.08, + "probability": 0.4912 + }, + { + "start": 9880.08, + "end": 9880.58, + "probability": 0.6642 + }, + { + "start": 9881.44, + "end": 9882.22, + "probability": 0.9434 + }, + { + "start": 9882.96, + "end": 9889.7, + "probability": 0.6885 + }, + { + "start": 9890.36, + "end": 9893.74, + "probability": 0.951 + }, + { + "start": 9895.12, + "end": 9900.34, + "probability": 0.8073 + }, + { + "start": 9900.56, + "end": 9901.28, + "probability": 0.9796 + }, + { + "start": 9902.04, + "end": 9909.7, + "probability": 0.746 + }, + { + "start": 9909.88, + "end": 9912.64, + "probability": 0.9307 + }, + { + "start": 9913.76, + "end": 9918.14, + "probability": 0.4215 + }, + { + "start": 9918.7, + "end": 9923.98, + "probability": 0.8067 + }, + { + "start": 9924.26, + "end": 9926.84, + "probability": 0.8905 + }, + { + "start": 9927.08, + "end": 9931.48, + "probability": 0.7693 + }, + { + "start": 9932.02, + "end": 9936.62, + "probability": 0.6667 + }, + { + "start": 9936.62, + "end": 9942.92, + "probability": 0.8389 + }, + { + "start": 9943.78, + "end": 9949.66, + "probability": 0.6833 + }, + { + "start": 9949.66, + "end": 9956.98, + "probability": 0.8154 + }, + { + "start": 9957.12, + "end": 9960.64, + "probability": 0.7334 + }, + { + "start": 9960.98, + "end": 9962.54, + "probability": 0.8045 + }, + { + "start": 9963.08, + "end": 9968.06, + "probability": 0.9521 + }, + { + "start": 9968.08, + "end": 9972.98, + "probability": 0.7766 + }, + { + "start": 9974.24, + "end": 9981.32, + "probability": 0.9089 + }, + { + "start": 9981.96, + "end": 9987.66, + "probability": 0.9849 + }, + { + "start": 9987.66, + "end": 9993.04, + "probability": 0.9257 + }, + { + "start": 9993.78, + "end": 9999.06, + "probability": 0.7079 + }, + { + "start": 9999.56, + "end": 10006.18, + "probability": 0.8999 + }, + { + "start": 10006.26, + "end": 10007.7, + "probability": 0.7838 + }, + { + "start": 10007.78, + "end": 10008.28, + "probability": 0.8721 + }, + { + "start": 10008.64, + "end": 10009.34, + "probability": 0.9451 + }, + { + "start": 10011.94, + "end": 10013.52, + "probability": 0.7634 + }, + { + "start": 10016.62, + "end": 10030.0, + "probability": 0.3885 + }, + { + "start": 10030.28, + "end": 10038.26, + "probability": 0.808 + }, + { + "start": 10038.46, + "end": 10039.18, + "probability": 0.3541 + }, + { + "start": 10041.04, + "end": 10046.24, + "probability": 0.9375 + }, + { + "start": 10046.84, + "end": 10054.14, + "probability": 0.6627 + }, + { + "start": 10055.08, + "end": 10059.24, + "probability": 0.8796 + }, + { + "start": 10059.24, + "end": 10061.82, + "probability": 0.7738 + }, + { + "start": 10063.02, + "end": 10065.08, + "probability": 0.5881 + }, + { + "start": 10065.36, + "end": 10067.58, + "probability": 0.9919 + }, + { + "start": 10068.1, + "end": 10068.86, + "probability": 0.8921 + }, + { + "start": 10069.62, + "end": 10071.58, + "probability": 0.5245 + }, + { + "start": 10071.7, + "end": 10076.98, + "probability": 0.9862 + }, + { + "start": 10078.0, + "end": 10080.26, + "probability": 0.8866 + }, + { + "start": 10080.98, + "end": 10084.2, + "probability": 0.7703 + }, + { + "start": 10084.44, + "end": 10085.86, + "probability": 0.8296 + }, + { + "start": 10085.98, + "end": 10086.62, + "probability": 0.9692 + }, + { + "start": 10086.68, + "end": 10087.18, + "probability": 0.8564 + }, + { + "start": 10087.58, + "end": 10090.0, + "probability": 0.9368 + }, + { + "start": 10090.32, + "end": 10094.06, + "probability": 0.9299 + }, + { + "start": 10094.12, + "end": 10094.62, + "probability": 0.6564 + }, + { + "start": 10094.78, + "end": 10095.1, + "probability": 0.2547 + }, + { + "start": 10095.12, + "end": 10096.94, + "probability": 0.9273 + }, + { + "start": 10097.04, + "end": 10098.94, + "probability": 0.5996 + }, + { + "start": 10099.88, + "end": 10103.38, + "probability": 0.6908 + }, + { + "start": 10104.06, + "end": 10107.52, + "probability": 0.9137 + }, + { + "start": 10107.54, + "end": 10110.56, + "probability": 0.9878 + }, + { + "start": 10111.18, + "end": 10117.02, + "probability": 0.9092 + }, + { + "start": 10117.34, + "end": 10119.56, + "probability": 0.9543 + }, + { + "start": 10120.5, + "end": 10120.5, + "probability": 0.7422 + }, + { + "start": 10125.0, + "end": 10128.46, + "probability": 0.7524 + }, + { + "start": 10128.94, + "end": 10132.14, + "probability": 0.5744 + }, + { + "start": 10132.76, + "end": 10135.84, + "probability": 0.9555 + }, + { + "start": 10136.46, + "end": 10142.33, + "probability": 0.9666 + }, + { + "start": 10143.09, + "end": 10146.43, + "probability": 0.7306 + }, + { + "start": 10146.99, + "end": 10149.59, + "probability": 0.8541 + }, + { + "start": 10150.01, + "end": 10154.01, + "probability": 0.9841 + }, + { + "start": 10154.19, + "end": 10156.87, + "probability": 0.4503 + }, + { + "start": 10156.97, + "end": 10161.45, + "probability": 0.9395 + }, + { + "start": 10161.45, + "end": 10165.95, + "probability": 0.9169 + }, + { + "start": 10166.75, + "end": 10169.77, + "probability": 0.4694 + }, + { + "start": 10170.07, + "end": 10170.93, + "probability": 0.7112 + }, + { + "start": 10171.27, + "end": 10174.55, + "probability": 0.9856 + }, + { + "start": 10175.89, + "end": 10177.01, + "probability": 0.493 + }, + { + "start": 10177.03, + "end": 10177.37, + "probability": 0.2753 + }, + { + "start": 10178.21, + "end": 10180.34, + "probability": 0.8406 + }, + { + "start": 10181.29, + "end": 10183.45, + "probability": 0.6805 + }, + { + "start": 10183.77, + "end": 10189.93, + "probability": 0.6454 + }, + { + "start": 10192.37, + "end": 10194.51, + "probability": 0.6551 + }, + { + "start": 10197.55, + "end": 10203.59, + "probability": 0.8467 + }, + { + "start": 10204.17, + "end": 10206.21, + "probability": 0.7564 + }, + { + "start": 10206.77, + "end": 10215.31, + "probability": 0.078 + }, + { + "start": 10216.71, + "end": 10221.01, + "probability": 0.0042 + }, + { + "start": 10223.21, + "end": 10223.57, + "probability": 0.029 + }, + { + "start": 10231.73, + "end": 10234.23, + "probability": 0.0498 + }, + { + "start": 10234.85, + "end": 10235.97, + "probability": 0.0867 + }, + { + "start": 10240.21, + "end": 10241.47, + "probability": 0.0443 + }, + { + "start": 10250.63, + "end": 10251.13, + "probability": 0.0024 + }, + { + "start": 10251.2, + "end": 10253.73, + "probability": 0.0285 + }, + { + "start": 10254.59, + "end": 10258.39, + "probability": 0.0698 + }, + { + "start": 10258.71, + "end": 10260.99, + "probability": 0.0434 + }, + { + "start": 10260.99, + "end": 10262.31, + "probability": 0.0753 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.0, + "end": 10280.0, + "probability": 0.0 + }, + { + "start": 10280.32, + "end": 10280.32, + "probability": 0.158 + }, + { + "start": 10280.32, + "end": 10280.74, + "probability": 0.1651 + }, + { + "start": 10281.42, + "end": 10287.72, + "probability": 0.7952 + }, + { + "start": 10288.3, + "end": 10288.8, + "probability": 0.8923 + }, + { + "start": 10289.46, + "end": 10292.68, + "probability": 0.5726 + }, + { + "start": 10294.02, + "end": 10294.62, + "probability": 0.0741 + }, + { + "start": 10294.62, + "end": 10294.62, + "probability": 0.0119 + }, + { + "start": 10294.62, + "end": 10294.62, + "probability": 0.0308 + }, + { + "start": 10294.64, + "end": 10294.64, + "probability": 0.0783 + }, + { + "start": 10295.26, + "end": 10296.94, + "probability": 0.5676 + }, + { + "start": 10300.08, + "end": 10303.02, + "probability": 0.7925 + }, + { + "start": 10345.7, + "end": 10345.7, + "probability": 0.0 + }, + { + "start": 10345.7, + "end": 10345.7, + "probability": 0.0 + }, + { + "start": 10345.7, + "end": 10345.7, + "probability": 0.0 + } + ], + "segments_count": 3468, + "words_count": 17271, + "avg_words_per_segment": 4.9801, + "avg_segment_duration": 2.0642, + "avg_words_per_minute": 100.1634, + "plenum_id": "5395", + "duration": 10345.7, + "title": null, + "plenum_date": "2009-12-21" +} \ No newline at end of file