diff --git "a/70929/metadata.json" "b/70929/metadata.json" new file mode 100644--- /dev/null +++ "b/70929/metadata.json" @@ -0,0 +1,32222 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "70929", + "quality_score": 0.8752, + "per_segment_quality_scores": [ + { + "start": 0.14, + "end": 0.98, + "probability": 0.0497 + }, + { + "start": 0.98, + "end": 1.58, + "probability": 0.077 + }, + { + "start": 2.04, + "end": 7.08, + "probability": 0.0731 + }, + { + "start": 60.32, + "end": 61.16, + "probability": 0.0004 + }, + { + "start": 63.06, + "end": 66.26, + "probability": 0.848 + }, + { + "start": 69.3, + "end": 72.76, + "probability": 0.9932 + }, + { + "start": 73.66, + "end": 74.58, + "probability": 0.8348 + }, + { + "start": 75.8, + "end": 78.17, + "probability": 0.7109 + }, + { + "start": 79.0, + "end": 80.52, + "probability": 0.2835 + }, + { + "start": 81.36, + "end": 83.14, + "probability": 0.9956 + }, + { + "start": 84.04, + "end": 86.3, + "probability": 0.7634 + }, + { + "start": 87.36, + "end": 90.56, + "probability": 0.9912 + }, + { + "start": 92.92, + "end": 94.22, + "probability": 0.999 + }, + { + "start": 94.74, + "end": 96.88, + "probability": 0.7977 + }, + { + "start": 97.42, + "end": 98.64, + "probability": 0.9966 + }, + { + "start": 98.72, + "end": 99.02, + "probability": 0.7533 + }, + { + "start": 99.06, + "end": 100.18, + "probability": 0.9768 + }, + { + "start": 100.66, + "end": 103.36, + "probability": 0.9855 + }, + { + "start": 108.9, + "end": 111.72, + "probability": 0.7449 + }, + { + "start": 113.16, + "end": 116.54, + "probability": 0.9731 + }, + { + "start": 116.54, + "end": 119.74, + "probability": 0.98 + }, + { + "start": 121.18, + "end": 123.72, + "probability": 0.9751 + }, + { + "start": 123.72, + "end": 126.2, + "probability": 0.9859 + }, + { + "start": 126.9, + "end": 127.46, + "probability": 0.4039 + }, + { + "start": 127.6, + "end": 128.52, + "probability": 0.652 + }, + { + "start": 129.52, + "end": 134.9, + "probability": 0.9801 + }, + { + "start": 136.62, + "end": 137.48, + "probability": 0.5882 + }, + { + "start": 137.93, + "end": 138.6, + "probability": 0.805 + }, + { + "start": 139.68, + "end": 140.9, + "probability": 0.7601 + }, + { + "start": 141.02, + "end": 142.94, + "probability": 0.5801 + }, + { + "start": 143.06, + "end": 144.28, + "probability": 0.8705 + }, + { + "start": 144.48, + "end": 145.2, + "probability": 0.99 + }, + { + "start": 147.94, + "end": 155.62, + "probability": 0.9989 + }, + { + "start": 156.54, + "end": 162.04, + "probability": 0.9993 + }, + { + "start": 162.04, + "end": 165.88, + "probability": 0.9894 + }, + { + "start": 167.02, + "end": 167.72, + "probability": 0.4143 + }, + { + "start": 168.64, + "end": 171.64, + "probability": 0.9683 + }, + { + "start": 175.18, + "end": 177.68, + "probability": 0.9918 + }, + { + "start": 178.64, + "end": 183.52, + "probability": 0.9689 + }, + { + "start": 184.2, + "end": 187.58, + "probability": 0.5178 + }, + { + "start": 188.96, + "end": 191.62, + "probability": 0.9794 + }, + { + "start": 192.36, + "end": 192.52, + "probability": 0.896 + }, + { + "start": 195.44, + "end": 196.38, + "probability": 0.8955 + }, + { + "start": 196.68, + "end": 201.74, + "probability": 0.9912 + }, + { + "start": 201.74, + "end": 204.18, + "probability": 0.9933 + }, + { + "start": 204.96, + "end": 205.52, + "probability": 0.7772 + }, + { + "start": 206.18, + "end": 207.12, + "probability": 0.9207 + }, + { + "start": 207.24, + "end": 208.38, + "probability": 0.934 + }, + { + "start": 208.5, + "end": 209.44, + "probability": 0.8953 + }, + { + "start": 209.58, + "end": 211.64, + "probability": 0.6859 + }, + { + "start": 212.2, + "end": 215.16, + "probability": 0.9839 + }, + { + "start": 215.16, + "end": 218.52, + "probability": 0.9967 + }, + { + "start": 219.22, + "end": 223.44, + "probability": 0.8993 + }, + { + "start": 223.74, + "end": 227.2, + "probability": 0.9955 + }, + { + "start": 227.2, + "end": 231.08, + "probability": 0.9998 + }, + { + "start": 232.16, + "end": 234.68, + "probability": 0.7839 + }, + { + "start": 236.02, + "end": 238.16, + "probability": 0.9804 + }, + { + "start": 238.4, + "end": 240.08, + "probability": 0.9813 + }, + { + "start": 240.18, + "end": 242.34, + "probability": 0.9826 + }, + { + "start": 242.56, + "end": 244.34, + "probability": 0.9807 + }, + { + "start": 244.76, + "end": 245.26, + "probability": 0.7114 + }, + { + "start": 245.36, + "end": 246.8, + "probability": 0.849 + }, + { + "start": 247.22, + "end": 248.7, + "probability": 0.8976 + }, + { + "start": 249.26, + "end": 253.84, + "probability": 0.8945 + }, + { + "start": 254.66, + "end": 259.2, + "probability": 0.9925 + }, + { + "start": 260.5, + "end": 264.58, + "probability": 0.9194 + }, + { + "start": 265.18, + "end": 268.42, + "probability": 0.9647 + }, + { + "start": 269.91, + "end": 273.51, + "probability": 0.9668 + }, + { + "start": 275.16, + "end": 281.72, + "probability": 0.999 + }, + { + "start": 282.54, + "end": 284.1, + "probability": 0.9601 + }, + { + "start": 284.22, + "end": 287.48, + "probability": 0.9755 + }, + { + "start": 288.24, + "end": 289.06, + "probability": 0.6631 + }, + { + "start": 290.86, + "end": 293.44, + "probability": 0.9529 + }, + { + "start": 294.18, + "end": 297.5, + "probability": 0.9204 + }, + { + "start": 298.14, + "end": 299.26, + "probability": 0.7727 + }, + { + "start": 300.54, + "end": 304.98, + "probability": 0.9839 + }, + { + "start": 305.68, + "end": 311.24, + "probability": 0.9679 + }, + { + "start": 312.08, + "end": 312.16, + "probability": 0.4151 + }, + { + "start": 312.94, + "end": 313.48, + "probability": 0.7236 + }, + { + "start": 313.58, + "end": 318.32, + "probability": 0.9652 + }, + { + "start": 319.1, + "end": 324.42, + "probability": 0.98 + }, + { + "start": 325.3, + "end": 326.14, + "probability": 0.7634 + }, + { + "start": 327.04, + "end": 330.82, + "probability": 0.9806 + }, + { + "start": 330.82, + "end": 335.68, + "probability": 0.9944 + }, + { + "start": 337.4, + "end": 342.84, + "probability": 0.9785 + }, + { + "start": 342.92, + "end": 343.38, + "probability": 0.7169 + }, + { + "start": 343.46, + "end": 343.94, + "probability": 0.7667 + }, + { + "start": 344.72, + "end": 346.54, + "probability": 0.9411 + }, + { + "start": 346.68, + "end": 348.52, + "probability": 0.988 + }, + { + "start": 348.58, + "end": 354.98, + "probability": 0.9728 + }, + { + "start": 355.54, + "end": 361.14, + "probability": 0.9631 + }, + { + "start": 361.32, + "end": 362.56, + "probability": 0.8941 + }, + { + "start": 362.6, + "end": 368.34, + "probability": 0.992 + }, + { + "start": 368.74, + "end": 373.74, + "probability": 0.9636 + }, + { + "start": 374.46, + "end": 375.16, + "probability": 0.8399 + }, + { + "start": 376.1, + "end": 377.44, + "probability": 0.9927 + }, + { + "start": 378.98, + "end": 383.76, + "probability": 0.9575 + }, + { + "start": 384.14, + "end": 387.48, + "probability": 0.9023 + }, + { + "start": 388.5, + "end": 390.52, + "probability": 0.8192 + }, + { + "start": 391.03, + "end": 392.88, + "probability": 0.8372 + }, + { + "start": 393.06, + "end": 395.7, + "probability": 0.9838 + }, + { + "start": 396.06, + "end": 396.98, + "probability": 0.915 + }, + { + "start": 397.46, + "end": 398.28, + "probability": 0.8166 + }, + { + "start": 398.4, + "end": 402.42, + "probability": 0.9962 + }, + { + "start": 402.78, + "end": 406.36, + "probability": 0.994 + }, + { + "start": 407.06, + "end": 408.26, + "probability": 0.7896 + }, + { + "start": 408.34, + "end": 408.78, + "probability": 0.5552 + }, + { + "start": 409.08, + "end": 414.88, + "probability": 0.982 + }, + { + "start": 414.88, + "end": 417.94, + "probability": 0.99 + }, + { + "start": 418.0, + "end": 421.2, + "probability": 0.9553 + }, + { + "start": 421.46, + "end": 424.66, + "probability": 0.7989 + }, + { + "start": 425.28, + "end": 427.47, + "probability": 0.8512 + }, + { + "start": 428.28, + "end": 428.7, + "probability": 0.9274 + }, + { + "start": 430.02, + "end": 432.98, + "probability": 0.9923 + }, + { + "start": 433.52, + "end": 435.78, + "probability": 0.9937 + }, + { + "start": 436.28, + "end": 438.22, + "probability": 0.8072 + }, + { + "start": 438.32, + "end": 440.34, + "probability": 0.9631 + }, + { + "start": 441.22, + "end": 442.1, + "probability": 0.9495 + }, + { + "start": 442.5, + "end": 445.82, + "probability": 0.9881 + }, + { + "start": 446.18, + "end": 447.56, + "probability": 0.8521 + }, + { + "start": 447.72, + "end": 448.64, + "probability": 0.9792 + }, + { + "start": 448.86, + "end": 452.46, + "probability": 0.781 + }, + { + "start": 452.96, + "end": 454.75, + "probability": 0.9951 + }, + { + "start": 455.48, + "end": 457.8, + "probability": 0.9764 + }, + { + "start": 457.9, + "end": 458.76, + "probability": 0.7485 + }, + { + "start": 459.0, + "end": 459.98, + "probability": 0.9598 + }, + { + "start": 460.44, + "end": 461.8, + "probability": 0.7598 + }, + { + "start": 461.9, + "end": 464.48, + "probability": 0.96 + }, + { + "start": 464.58, + "end": 465.6, + "probability": 0.9549 + }, + { + "start": 466.1, + "end": 466.38, + "probability": 0.469 + }, + { + "start": 466.42, + "end": 466.74, + "probability": 0.8715 + }, + { + "start": 466.8, + "end": 469.48, + "probability": 0.9523 + }, + { + "start": 469.54, + "end": 469.98, + "probability": 0.5317 + }, + { + "start": 470.2, + "end": 470.92, + "probability": 0.6086 + }, + { + "start": 471.22, + "end": 477.39, + "probability": 0.9946 + }, + { + "start": 477.52, + "end": 480.54, + "probability": 0.9992 + }, + { + "start": 481.18, + "end": 482.46, + "probability": 0.9963 + }, + { + "start": 483.5, + "end": 492.56, + "probability": 0.9828 + }, + { + "start": 493.22, + "end": 495.54, + "probability": 0.9843 + }, + { + "start": 496.26, + "end": 497.32, + "probability": 0.9813 + }, + { + "start": 499.4, + "end": 500.24, + "probability": 0.0593 + }, + { + "start": 500.24, + "end": 500.52, + "probability": 0.1991 + }, + { + "start": 500.58, + "end": 501.66, + "probability": 0.9599 + }, + { + "start": 502.76, + "end": 506.06, + "probability": 0.9935 + }, + { + "start": 506.06, + "end": 509.96, + "probability": 0.9736 + }, + { + "start": 510.48, + "end": 512.28, + "probability": 0.9672 + }, + { + "start": 512.44, + "end": 512.74, + "probability": 0.6517 + }, + { + "start": 512.86, + "end": 513.3, + "probability": 0.8627 + }, + { + "start": 513.36, + "end": 514.64, + "probability": 0.7884 + }, + { + "start": 515.26, + "end": 518.64, + "probability": 0.9223 + }, + { + "start": 519.16, + "end": 519.86, + "probability": 0.922 + }, + { + "start": 520.02, + "end": 521.92, + "probability": 0.9653 + }, + { + "start": 521.96, + "end": 522.58, + "probability": 0.9509 + }, + { + "start": 522.62, + "end": 525.24, + "probability": 0.8995 + }, + { + "start": 525.86, + "end": 526.38, + "probability": 0.5383 + }, + { + "start": 527.34, + "end": 530.8, + "probability": 0.9983 + }, + { + "start": 530.96, + "end": 534.28, + "probability": 0.8759 + }, + { + "start": 534.8, + "end": 535.74, + "probability": 0.9892 + }, + { + "start": 537.64, + "end": 538.48, + "probability": 0.6152 + }, + { + "start": 539.18, + "end": 540.2, + "probability": 0.845 + }, + { + "start": 540.28, + "end": 542.82, + "probability": 0.8274 + }, + { + "start": 542.9, + "end": 549.32, + "probability": 0.9533 + }, + { + "start": 549.46, + "end": 551.38, + "probability": 0.9004 + }, + { + "start": 551.58, + "end": 552.26, + "probability": 0.5422 + }, + { + "start": 552.84, + "end": 555.04, + "probability": 0.9058 + }, + { + "start": 555.4, + "end": 557.58, + "probability": 0.8983 + }, + { + "start": 557.62, + "end": 559.22, + "probability": 0.9678 + }, + { + "start": 559.62, + "end": 560.7, + "probability": 0.7188 + }, + { + "start": 561.4, + "end": 564.16, + "probability": 0.9719 + }, + { + "start": 564.56, + "end": 567.82, + "probability": 0.965 + }, + { + "start": 568.4, + "end": 572.58, + "probability": 0.9059 + }, + { + "start": 572.84, + "end": 577.52, + "probability": 0.5732 + }, + { + "start": 579.02, + "end": 579.02, + "probability": 0.2126 + }, + { + "start": 579.02, + "end": 581.98, + "probability": 0.9874 + }, + { + "start": 582.12, + "end": 583.62, + "probability": 0.9845 + }, + { + "start": 584.54, + "end": 586.18, + "probability": 0.8559 + }, + { + "start": 586.4, + "end": 589.06, + "probability": 0.9946 + }, + { + "start": 589.62, + "end": 593.78, + "probability": 0.9859 + }, + { + "start": 593.84, + "end": 598.26, + "probability": 0.9904 + }, + { + "start": 599.12, + "end": 605.05, + "probability": 0.9869 + }, + { + "start": 606.38, + "end": 610.28, + "probability": 0.9979 + }, + { + "start": 610.34, + "end": 612.12, + "probability": 0.9679 + }, + { + "start": 612.74, + "end": 615.78, + "probability": 0.7917 + }, + { + "start": 616.3, + "end": 616.84, + "probability": 0.6807 + }, + { + "start": 617.84, + "end": 619.7, + "probability": 0.9028 + }, + { + "start": 621.5, + "end": 627.1, + "probability": 0.9764 + }, + { + "start": 627.82, + "end": 628.48, + "probability": 0.9741 + }, + { + "start": 628.58, + "end": 633.06, + "probability": 0.9924 + }, + { + "start": 634.12, + "end": 638.88, + "probability": 0.9486 + }, + { + "start": 639.0, + "end": 639.2, + "probability": 0.8101 + }, + { + "start": 639.36, + "end": 640.78, + "probability": 0.8202 + }, + { + "start": 640.94, + "end": 650.0, + "probability": 0.992 + }, + { + "start": 650.5, + "end": 651.1, + "probability": 0.8951 + }, + { + "start": 651.9, + "end": 652.68, + "probability": 0.6388 + }, + { + "start": 653.2, + "end": 655.58, + "probability": 0.994 + }, + { + "start": 655.58, + "end": 660.26, + "probability": 0.9749 + }, + { + "start": 660.68, + "end": 662.34, + "probability": 0.902 + }, + { + "start": 662.44, + "end": 665.86, + "probability": 0.8798 + }, + { + "start": 666.7, + "end": 669.98, + "probability": 0.8402 + }, + { + "start": 670.68, + "end": 675.46, + "probability": 0.9995 + }, + { + "start": 675.5, + "end": 678.04, + "probability": 0.9989 + }, + { + "start": 678.12, + "end": 680.36, + "probability": 0.9728 + }, + { + "start": 680.7, + "end": 682.58, + "probability": 0.998 + }, + { + "start": 682.58, + "end": 686.68, + "probability": 0.9694 + }, + { + "start": 686.78, + "end": 690.96, + "probability": 0.9976 + }, + { + "start": 691.02, + "end": 691.72, + "probability": 0.9872 + }, + { + "start": 692.58, + "end": 692.94, + "probability": 0.8554 + }, + { + "start": 693.56, + "end": 696.9, + "probability": 0.9159 + }, + { + "start": 697.16, + "end": 698.69, + "probability": 0.9971 + }, + { + "start": 699.64, + "end": 702.16, + "probability": 0.988 + }, + { + "start": 702.72, + "end": 704.36, + "probability": 0.8877 + }, + { + "start": 704.56, + "end": 708.08, + "probability": 0.9831 + }, + { + "start": 708.78, + "end": 709.36, + "probability": 0.9087 + }, + { + "start": 709.82, + "end": 711.06, + "probability": 0.7875 + }, + { + "start": 711.22, + "end": 717.36, + "probability": 0.9874 + }, + { + "start": 717.44, + "end": 718.14, + "probability": 0.738 + }, + { + "start": 718.54, + "end": 719.92, + "probability": 0.7438 + }, + { + "start": 720.58, + "end": 721.74, + "probability": 0.947 + }, + { + "start": 721.84, + "end": 724.98, + "probability": 0.9985 + }, + { + "start": 725.01, + "end": 728.38, + "probability": 0.9963 + }, + { + "start": 728.68, + "end": 728.9, + "probability": 0.7941 + }, + { + "start": 729.76, + "end": 730.02, + "probability": 0.5672 + }, + { + "start": 730.14, + "end": 730.9, + "probability": 0.7156 + }, + { + "start": 730.98, + "end": 731.52, + "probability": 0.8802 + }, + { + "start": 731.66, + "end": 732.9, + "probability": 0.7017 + }, + { + "start": 733.0, + "end": 733.24, + "probability": 0.3354 + }, + { + "start": 733.26, + "end": 734.16, + "probability": 0.7314 + }, + { + "start": 734.22, + "end": 735.78, + "probability": 0.8397 + }, + { + "start": 736.22, + "end": 738.22, + "probability": 0.9352 + }, + { + "start": 738.3, + "end": 741.74, + "probability": 0.8328 + }, + { + "start": 742.24, + "end": 742.68, + "probability": 0.8722 + }, + { + "start": 742.9, + "end": 743.4, + "probability": 0.8884 + }, + { + "start": 743.46, + "end": 746.96, + "probability": 0.998 + }, + { + "start": 747.07, + "end": 752.38, + "probability": 0.9984 + }, + { + "start": 753.0, + "end": 753.38, + "probability": 0.5126 + }, + { + "start": 753.38, + "end": 756.72, + "probability": 0.6046 + }, + { + "start": 756.76, + "end": 762.78, + "probability": 0.9701 + }, + { + "start": 762.92, + "end": 764.16, + "probability": 0.9272 + }, + { + "start": 764.18, + "end": 768.74, + "probability": 0.9262 + }, + { + "start": 769.0, + "end": 769.82, + "probability": 0.8779 + }, + { + "start": 769.98, + "end": 771.72, + "probability": 0.905 + }, + { + "start": 771.78, + "end": 774.54, + "probability": 0.9196 + }, + { + "start": 774.72, + "end": 776.58, + "probability": 0.9821 + }, + { + "start": 777.18, + "end": 781.22, + "probability": 0.9494 + }, + { + "start": 781.88, + "end": 788.12, + "probability": 0.9792 + }, + { + "start": 788.22, + "end": 789.82, + "probability": 0.8639 + }, + { + "start": 790.36, + "end": 797.58, + "probability": 0.9775 + }, + { + "start": 797.74, + "end": 800.26, + "probability": 0.9047 + }, + { + "start": 800.9, + "end": 805.36, + "probability": 0.9901 + }, + { + "start": 806.48, + "end": 806.84, + "probability": 0.4061 + }, + { + "start": 807.02, + "end": 808.68, + "probability": 0.7697 + }, + { + "start": 813.32, + "end": 814.72, + "probability": 0.5834 + }, + { + "start": 814.8, + "end": 815.36, + "probability": 0.721 + }, + { + "start": 815.54, + "end": 818.88, + "probability": 0.9941 + }, + { + "start": 819.01, + "end": 824.04, + "probability": 0.7419 + }, + { + "start": 824.86, + "end": 828.16, + "probability": 0.9843 + }, + { + "start": 828.4, + "end": 832.94, + "probability": 0.9945 + }, + { + "start": 832.94, + "end": 837.32, + "probability": 0.9981 + }, + { + "start": 837.7, + "end": 840.78, + "probability": 0.9914 + }, + { + "start": 841.32, + "end": 844.8, + "probability": 0.9898 + }, + { + "start": 845.14, + "end": 846.9, + "probability": 0.9884 + }, + { + "start": 847.86, + "end": 848.86, + "probability": 0.7192 + }, + { + "start": 849.1, + "end": 851.74, + "probability": 0.9789 + }, + { + "start": 851.9, + "end": 854.86, + "probability": 0.8591 + }, + { + "start": 855.76, + "end": 863.44, + "probability": 0.973 + }, + { + "start": 864.08, + "end": 866.14, + "probability": 0.9957 + }, + { + "start": 866.22, + "end": 868.42, + "probability": 0.9249 + }, + { + "start": 869.54, + "end": 870.16, + "probability": 0.8962 + }, + { + "start": 870.28, + "end": 871.64, + "probability": 0.845 + }, + { + "start": 871.98, + "end": 877.0, + "probability": 0.9612 + }, + { + "start": 877.16, + "end": 877.8, + "probability": 0.6144 + }, + { + "start": 877.92, + "end": 879.3, + "probability": 0.9255 + }, + { + "start": 879.32, + "end": 881.54, + "probability": 0.869 + }, + { + "start": 882.04, + "end": 882.96, + "probability": 0.7649 + }, + { + "start": 883.64, + "end": 887.02, + "probability": 0.9884 + }, + { + "start": 887.66, + "end": 890.52, + "probability": 0.9247 + }, + { + "start": 891.16, + "end": 892.88, + "probability": 0.9805 + }, + { + "start": 893.18, + "end": 894.22, + "probability": 0.9777 + }, + { + "start": 894.56, + "end": 896.5, + "probability": 0.9833 + }, + { + "start": 896.9, + "end": 898.07, + "probability": 0.7605 + }, + { + "start": 898.4, + "end": 899.86, + "probability": 0.8012 + }, + { + "start": 900.02, + "end": 900.57, + "probability": 0.9067 + }, + { + "start": 901.06, + "end": 901.88, + "probability": 0.884 + }, + { + "start": 902.2, + "end": 903.57, + "probability": 0.9429 + }, + { + "start": 904.14, + "end": 904.88, + "probability": 0.5561 + }, + { + "start": 904.94, + "end": 907.28, + "probability": 0.9461 + }, + { + "start": 907.72, + "end": 908.48, + "probability": 0.6804 + }, + { + "start": 908.54, + "end": 909.18, + "probability": 0.8699 + }, + { + "start": 909.24, + "end": 914.34, + "probability": 0.9873 + }, + { + "start": 914.42, + "end": 914.8, + "probability": 0.803 + }, + { + "start": 915.89, + "end": 917.54, + "probability": 0.6619 + }, + { + "start": 917.66, + "end": 919.0, + "probability": 0.72 + }, + { + "start": 919.06, + "end": 922.02, + "probability": 0.9664 + }, + { + "start": 926.18, + "end": 929.56, + "probability": 0.6104 + }, + { + "start": 930.32, + "end": 933.3, + "probability": 0.9177 + }, + { + "start": 933.3, + "end": 937.14, + "probability": 0.998 + }, + { + "start": 938.5, + "end": 942.28, + "probability": 0.9977 + }, + { + "start": 943.56, + "end": 947.56, + "probability": 0.6111 + }, + { + "start": 948.1, + "end": 951.12, + "probability": 0.7444 + }, + { + "start": 951.78, + "end": 954.36, + "probability": 0.9946 + }, + { + "start": 954.68, + "end": 959.38, + "probability": 0.8127 + }, + { + "start": 959.94, + "end": 960.62, + "probability": 0.4898 + }, + { + "start": 961.1, + "end": 962.08, + "probability": 0.9601 + }, + { + "start": 962.16, + "end": 963.12, + "probability": 0.9569 + }, + { + "start": 963.94, + "end": 968.02, + "probability": 0.936 + }, + { + "start": 968.5, + "end": 971.36, + "probability": 0.9837 + }, + { + "start": 971.96, + "end": 974.28, + "probability": 0.9486 + }, + { + "start": 974.88, + "end": 975.08, + "probability": 0.6284 + }, + { + "start": 975.2, + "end": 975.76, + "probability": 0.348 + }, + { + "start": 975.94, + "end": 978.68, + "probability": 0.7517 + }, + { + "start": 979.04, + "end": 981.4, + "probability": 0.3963 + }, + { + "start": 982.72, + "end": 987.52, + "probability": 0.902 + }, + { + "start": 988.88, + "end": 994.14, + "probability": 0.944 + }, + { + "start": 994.44, + "end": 998.78, + "probability": 0.9891 + }, + { + "start": 999.54, + "end": 1005.38, + "probability": 0.9908 + }, + { + "start": 1005.38, + "end": 1008.94, + "probability": 0.9975 + }, + { + "start": 1010.0, + "end": 1012.52, + "probability": 0.5323 + }, + { + "start": 1014.06, + "end": 1015.88, + "probability": 0.9404 + }, + { + "start": 1016.62, + "end": 1020.76, + "probability": 0.9906 + }, + { + "start": 1021.66, + "end": 1026.64, + "probability": 0.9882 + }, + { + "start": 1027.28, + "end": 1031.44, + "probability": 0.9976 + }, + { + "start": 1031.72, + "end": 1035.06, + "probability": 0.9703 + }, + { + "start": 1035.96, + "end": 1039.28, + "probability": 0.9839 + }, + { + "start": 1039.28, + "end": 1042.08, + "probability": 0.9876 + }, + { + "start": 1042.5, + "end": 1043.98, + "probability": 0.9985 + }, + { + "start": 1045.16, + "end": 1047.6, + "probability": 0.9851 + }, + { + "start": 1047.76, + "end": 1054.5, + "probability": 0.9421 + }, + { + "start": 1054.96, + "end": 1058.0, + "probability": 0.9987 + }, + { + "start": 1058.6, + "end": 1060.22, + "probability": 0.9446 + }, + { + "start": 1060.42, + "end": 1061.8, + "probability": 0.832 + }, + { + "start": 1061.94, + "end": 1062.46, + "probability": 0.7606 + }, + { + "start": 1064.86, + "end": 1069.5, + "probability": 0.9957 + }, + { + "start": 1070.7, + "end": 1072.92, + "probability": 0.9501 + }, + { + "start": 1073.3, + "end": 1074.1, + "probability": 0.68 + }, + { + "start": 1074.2, + "end": 1078.32, + "probability": 0.9554 + }, + { + "start": 1078.5, + "end": 1080.16, + "probability": 0.8143 + }, + { + "start": 1080.76, + "end": 1083.54, + "probability": 0.9885 + }, + { + "start": 1084.28, + "end": 1084.28, + "probability": 0.0829 + }, + { + "start": 1084.28, + "end": 1086.42, + "probability": 0.808 + }, + { + "start": 1087.24, + "end": 1089.3, + "probability": 0.6691 + }, + { + "start": 1090.08, + "end": 1092.2, + "probability": 0.9775 + }, + { + "start": 1092.76, + "end": 1094.32, + "probability": 0.7523 + }, + { + "start": 1094.7, + "end": 1096.63, + "probability": 0.8242 + }, + { + "start": 1096.98, + "end": 1098.48, + "probability": 0.8156 + }, + { + "start": 1098.96, + "end": 1102.2, + "probability": 0.9945 + }, + { + "start": 1102.3, + "end": 1103.1, + "probability": 0.8716 + }, + { + "start": 1103.22, + "end": 1104.04, + "probability": 0.7703 + }, + { + "start": 1104.44, + "end": 1107.82, + "probability": 0.9849 + }, + { + "start": 1108.48, + "end": 1112.58, + "probability": 0.9963 + }, + { + "start": 1112.84, + "end": 1114.04, + "probability": 0.8744 + }, + { + "start": 1114.4, + "end": 1115.18, + "probability": 0.9333 + }, + { + "start": 1115.52, + "end": 1117.66, + "probability": 0.9936 + }, + { + "start": 1117.84, + "end": 1118.94, + "probability": 0.9889 + }, + { + "start": 1119.52, + "end": 1122.18, + "probability": 0.9899 + }, + { + "start": 1122.82, + "end": 1127.1, + "probability": 0.9724 + }, + { + "start": 1127.74, + "end": 1131.16, + "probability": 0.953 + }, + { + "start": 1131.72, + "end": 1133.2, + "probability": 0.9533 + }, + { + "start": 1133.5, + "end": 1137.24, + "probability": 0.957 + }, + { + "start": 1137.88, + "end": 1140.74, + "probability": 0.8064 + }, + { + "start": 1141.16, + "end": 1144.69, + "probability": 0.9816 + }, + { + "start": 1145.14, + "end": 1145.9, + "probability": 0.9985 + }, + { + "start": 1146.32, + "end": 1148.32, + "probability": 0.9862 + }, + { + "start": 1149.3, + "end": 1151.98, + "probability": 0.9979 + }, + { + "start": 1151.98, + "end": 1155.54, + "probability": 0.9022 + }, + { + "start": 1155.54, + "end": 1157.36, + "probability": 0.8917 + }, + { + "start": 1158.0, + "end": 1162.16, + "probability": 0.9901 + }, + { + "start": 1162.56, + "end": 1163.47, + "probability": 0.5009 + }, + { + "start": 1164.18, + "end": 1168.86, + "probability": 0.9912 + }, + { + "start": 1169.0, + "end": 1169.44, + "probability": 0.9403 + }, + { + "start": 1169.56, + "end": 1170.32, + "probability": 0.723 + }, + { + "start": 1170.48, + "end": 1171.36, + "probability": 0.8088 + }, + { + "start": 1171.66, + "end": 1173.62, + "probability": 0.9119 + }, + { + "start": 1173.72, + "end": 1174.9, + "probability": 0.7368 + }, + { + "start": 1175.2, + "end": 1176.54, + "probability": 0.9258 + }, + { + "start": 1176.9, + "end": 1179.6, + "probability": 0.9888 + }, + { + "start": 1180.16, + "end": 1181.5, + "probability": 0.9616 + }, + { + "start": 1181.84, + "end": 1183.02, + "probability": 0.8357 + }, + { + "start": 1183.18, + "end": 1184.78, + "probability": 0.9961 + }, + { + "start": 1184.98, + "end": 1186.22, + "probability": 0.981 + }, + { + "start": 1186.56, + "end": 1191.12, + "probability": 0.9597 + }, + { + "start": 1191.86, + "end": 1192.6, + "probability": 0.7372 + }, + { + "start": 1192.68, + "end": 1193.36, + "probability": 0.7816 + }, + { + "start": 1193.46, + "end": 1194.36, + "probability": 0.7078 + }, + { + "start": 1194.8, + "end": 1195.94, + "probability": 0.9602 + }, + { + "start": 1196.12, + "end": 1199.76, + "probability": 0.9875 + }, + { + "start": 1199.96, + "end": 1201.14, + "probability": 0.9492 + }, + { + "start": 1201.32, + "end": 1202.9, + "probability": 0.8071 + }, + { + "start": 1203.92, + "end": 1204.86, + "probability": 0.8842 + }, + { + "start": 1204.98, + "end": 1205.92, + "probability": 0.8263 + }, + { + "start": 1205.96, + "end": 1207.22, + "probability": 0.8174 + }, + { + "start": 1207.62, + "end": 1208.82, + "probability": 0.931 + }, + { + "start": 1209.32, + "end": 1211.84, + "probability": 0.9938 + }, + { + "start": 1211.92, + "end": 1212.86, + "probability": 0.8971 + }, + { + "start": 1212.92, + "end": 1215.58, + "probability": 0.9727 + }, + { + "start": 1215.62, + "end": 1217.32, + "probability": 0.9985 + }, + { + "start": 1217.68, + "end": 1221.58, + "probability": 0.9963 + }, + { + "start": 1221.86, + "end": 1222.94, + "probability": 0.7884 + }, + { + "start": 1223.22, + "end": 1224.04, + "probability": 0.9609 + }, + { + "start": 1224.28, + "end": 1224.5, + "probability": 0.9343 + }, + { + "start": 1228.3, + "end": 1229.82, + "probability": 0.9194 + }, + { + "start": 1230.6, + "end": 1237.42, + "probability": 0.9977 + }, + { + "start": 1237.84, + "end": 1239.06, + "probability": 0.8871 + }, + { + "start": 1239.18, + "end": 1240.02, + "probability": 0.8523 + }, + { + "start": 1240.5, + "end": 1241.95, + "probability": 0.9758 + }, + { + "start": 1242.4, + "end": 1244.04, + "probability": 0.7753 + }, + { + "start": 1244.8, + "end": 1247.12, + "probability": 0.9599 + }, + { + "start": 1247.7, + "end": 1248.48, + "probability": 0.8306 + }, + { + "start": 1248.94, + "end": 1250.34, + "probability": 0.8213 + }, + { + "start": 1250.56, + "end": 1253.0, + "probability": 0.4097 + }, + { + "start": 1253.28, + "end": 1256.44, + "probability": 0.9572 + }, + { + "start": 1256.6, + "end": 1262.81, + "probability": 0.9314 + }, + { + "start": 1263.42, + "end": 1266.96, + "probability": 0.9954 + }, + { + "start": 1267.02, + "end": 1268.74, + "probability": 0.9817 + }, + { + "start": 1269.1, + "end": 1270.16, + "probability": 0.9826 + }, + { + "start": 1270.84, + "end": 1271.16, + "probability": 0.938 + }, + { + "start": 1272.02, + "end": 1274.46, + "probability": 0.9969 + }, + { + "start": 1275.0, + "end": 1277.7, + "probability": 0.9476 + }, + { + "start": 1278.32, + "end": 1279.16, + "probability": 0.5815 + }, + { + "start": 1279.44, + "end": 1281.52, + "probability": 0.9471 + }, + { + "start": 1282.08, + "end": 1283.84, + "probability": 0.8905 + }, + { + "start": 1284.0, + "end": 1285.44, + "probability": 0.9415 + }, + { + "start": 1285.92, + "end": 1286.42, + "probability": 0.9165 + }, + { + "start": 1287.02, + "end": 1288.28, + "probability": 0.9935 + }, + { + "start": 1288.32, + "end": 1292.06, + "probability": 0.7466 + }, + { + "start": 1292.16, + "end": 1294.98, + "probability": 0.9964 + }, + { + "start": 1296.04, + "end": 1296.36, + "probability": 0.5346 + }, + { + "start": 1297.02, + "end": 1298.63, + "probability": 0.7125 + }, + { + "start": 1299.78, + "end": 1303.66, + "probability": 0.9836 + }, + { + "start": 1303.82, + "end": 1304.45, + "probability": 0.6274 + }, + { + "start": 1305.22, + "end": 1306.48, + "probability": 0.8394 + }, + { + "start": 1307.02, + "end": 1311.6, + "probability": 0.9629 + }, + { + "start": 1312.0, + "end": 1313.18, + "probability": 0.5512 + }, + { + "start": 1314.24, + "end": 1315.58, + "probability": 0.7622 + }, + { + "start": 1315.6, + "end": 1317.3, + "probability": 0.9728 + }, + { + "start": 1318.55, + "end": 1320.88, + "probability": 0.5582 + }, + { + "start": 1320.92, + "end": 1322.88, + "probability": 0.9839 + }, + { + "start": 1323.32, + "end": 1326.62, + "probability": 0.9595 + }, + { + "start": 1326.78, + "end": 1327.46, + "probability": 0.6101 + }, + { + "start": 1328.48, + "end": 1330.74, + "probability": 0.7205 + }, + { + "start": 1331.3, + "end": 1336.34, + "probability": 0.9935 + }, + { + "start": 1337.64, + "end": 1340.58, + "probability": 0.8118 + }, + { + "start": 1341.56, + "end": 1344.48, + "probability": 0.994 + }, + { + "start": 1344.56, + "end": 1346.48, + "probability": 0.9948 + }, + { + "start": 1347.0, + "end": 1349.42, + "probability": 0.8854 + }, + { + "start": 1350.3, + "end": 1353.14, + "probability": 0.9517 + }, + { + "start": 1353.76, + "end": 1359.28, + "probability": 0.9893 + }, + { + "start": 1359.82, + "end": 1362.26, + "probability": 0.9883 + }, + { + "start": 1362.62, + "end": 1363.3, + "probability": 0.8404 + }, + { + "start": 1363.48, + "end": 1369.64, + "probability": 0.9922 + }, + { + "start": 1369.94, + "end": 1370.7, + "probability": 0.6244 + }, + { + "start": 1371.08, + "end": 1371.64, + "probability": 0.56 + }, + { + "start": 1372.08, + "end": 1372.8, + "probability": 0.9426 + }, + { + "start": 1373.0, + "end": 1375.6, + "probability": 0.8962 + }, + { + "start": 1376.12, + "end": 1379.26, + "probability": 0.9894 + }, + { + "start": 1379.8, + "end": 1383.64, + "probability": 0.8894 + }, + { + "start": 1384.48, + "end": 1388.54, + "probability": 0.9729 + }, + { + "start": 1388.72, + "end": 1389.76, + "probability": 0.8653 + }, + { + "start": 1390.14, + "end": 1392.34, + "probability": 0.7725 + }, + { + "start": 1392.82, + "end": 1394.4, + "probability": 0.9294 + }, + { + "start": 1394.52, + "end": 1396.2, + "probability": 0.9795 + }, + { + "start": 1396.64, + "end": 1397.96, + "probability": 0.9458 + }, + { + "start": 1399.08, + "end": 1403.56, + "probability": 0.9736 + }, + { + "start": 1404.06, + "end": 1407.18, + "probability": 0.7948 + }, + { + "start": 1407.26, + "end": 1408.18, + "probability": 0.6623 + }, + { + "start": 1408.22, + "end": 1408.86, + "probability": 0.4511 + }, + { + "start": 1408.94, + "end": 1411.82, + "probability": 0.6395 + }, + { + "start": 1412.0, + "end": 1414.74, + "probability": 0.9953 + }, + { + "start": 1415.66, + "end": 1418.38, + "probability": 0.9966 + }, + { + "start": 1418.58, + "end": 1419.14, + "probability": 0.7837 + }, + { + "start": 1419.74, + "end": 1420.84, + "probability": 0.777 + }, + { + "start": 1420.96, + "end": 1424.8, + "probability": 0.9951 + }, + { + "start": 1425.32, + "end": 1426.38, + "probability": 0.9957 + }, + { + "start": 1426.5, + "end": 1428.46, + "probability": 0.904 + }, + { + "start": 1429.2, + "end": 1430.74, + "probability": 0.9238 + }, + { + "start": 1431.12, + "end": 1435.5, + "probability": 0.75 + }, + { + "start": 1435.52, + "end": 1438.62, + "probability": 0.9783 + }, + { + "start": 1438.86, + "end": 1439.18, + "probability": 0.8277 + }, + { + "start": 1439.28, + "end": 1440.66, + "probability": 0.7835 + }, + { + "start": 1440.96, + "end": 1442.64, + "probability": 0.9227 + }, + { + "start": 1443.24, + "end": 1447.16, + "probability": 0.9377 + }, + { + "start": 1447.4, + "end": 1449.04, + "probability": 0.7638 + }, + { + "start": 1449.46, + "end": 1449.78, + "probability": 0.7303 + }, + { + "start": 1450.3, + "end": 1452.4, + "probability": 0.8502 + }, + { + "start": 1452.46, + "end": 1453.46, + "probability": 0.6992 + }, + { + "start": 1453.62, + "end": 1454.48, + "probability": 0.6448 + }, + { + "start": 1455.2, + "end": 1457.92, + "probability": 0.9883 + }, + { + "start": 1457.92, + "end": 1463.75, + "probability": 0.6718 + }, + { + "start": 1463.98, + "end": 1466.66, + "probability": 0.9727 + }, + { + "start": 1467.96, + "end": 1471.0, + "probability": 0.907 + }, + { + "start": 1471.94, + "end": 1473.11, + "probability": 0.0583 + }, + { + "start": 1474.32, + "end": 1474.98, + "probability": 0.1288 + }, + { + "start": 1477.66, + "end": 1478.2, + "probability": 0.9283 + }, + { + "start": 1479.32, + "end": 1481.48, + "probability": 0.8354 + }, + { + "start": 1481.76, + "end": 1484.8, + "probability": 0.145 + }, + { + "start": 1485.54, + "end": 1488.56, + "probability": 0.639 + }, + { + "start": 1489.12, + "end": 1489.82, + "probability": 0.8052 + }, + { + "start": 1490.12, + "end": 1492.1, + "probability": 0.7633 + }, + { + "start": 1492.96, + "end": 1498.52, + "probability": 0.8915 + }, + { + "start": 1498.52, + "end": 1502.32, + "probability": 0.9937 + }, + { + "start": 1502.66, + "end": 1506.0, + "probability": 0.9854 + }, + { + "start": 1506.78, + "end": 1512.74, + "probability": 0.9908 + }, + { + "start": 1512.74, + "end": 1518.88, + "probability": 0.9556 + }, + { + "start": 1519.42, + "end": 1521.14, + "probability": 0.5779 + }, + { + "start": 1522.2, + "end": 1524.86, + "probability": 0.9027 + }, + { + "start": 1526.2, + "end": 1526.64, + "probability": 0.4332 + }, + { + "start": 1526.72, + "end": 1527.78, + "probability": 0.8024 + }, + { + "start": 1528.72, + "end": 1529.94, + "probability": 0.6262 + }, + { + "start": 1530.04, + "end": 1531.52, + "probability": 0.9449 + }, + { + "start": 1532.12, + "end": 1534.72, + "probability": 0.9879 + }, + { + "start": 1534.72, + "end": 1537.9, + "probability": 0.8612 + }, + { + "start": 1538.58, + "end": 1540.82, + "probability": 0.9941 + }, + { + "start": 1541.48, + "end": 1545.7, + "probability": 0.7901 + }, + { + "start": 1546.26, + "end": 1547.3, + "probability": 0.7067 + }, + { + "start": 1548.0, + "end": 1553.8, + "probability": 0.9462 + }, + { + "start": 1554.3, + "end": 1557.92, + "probability": 0.6969 + }, + { + "start": 1558.74, + "end": 1562.26, + "probability": 0.923 + }, + { + "start": 1562.4, + "end": 1563.44, + "probability": 0.9836 + }, + { + "start": 1564.1, + "end": 1565.24, + "probability": 0.9033 + }, + { + "start": 1566.2, + "end": 1571.88, + "probability": 0.9771 + }, + { + "start": 1573.44, + "end": 1574.08, + "probability": 0.4701 + }, + { + "start": 1574.88, + "end": 1575.98, + "probability": 0.634 + }, + { + "start": 1576.28, + "end": 1576.72, + "probability": 0.8564 + }, + { + "start": 1577.7, + "end": 1579.6, + "probability": 0.5758 + }, + { + "start": 1582.6, + "end": 1586.22, + "probability": 0.9944 + }, + { + "start": 1587.02, + "end": 1588.56, + "probability": 0.9871 + }, + { + "start": 1588.58, + "end": 1593.22, + "probability": 0.5062 + }, + { + "start": 1593.34, + "end": 1595.96, + "probability": 0.9565 + }, + { + "start": 1596.78, + "end": 1597.82, + "probability": 0.9951 + }, + { + "start": 1598.06, + "end": 1601.2, + "probability": 0.6348 + }, + { + "start": 1601.68, + "end": 1603.66, + "probability": 0.9397 + }, + { + "start": 1604.02, + "end": 1608.5, + "probability": 0.9746 + }, + { + "start": 1608.54, + "end": 1611.36, + "probability": 0.7942 + }, + { + "start": 1611.64, + "end": 1612.28, + "probability": 0.5739 + }, + { + "start": 1612.68, + "end": 1613.2, + "probability": 0.2961 + }, + { + "start": 1613.24, + "end": 1614.88, + "probability": 0.8043 + }, + { + "start": 1616.7, + "end": 1619.58, + "probability": 0.8461 + }, + { + "start": 1621.82, + "end": 1623.44, + "probability": 0.7807 + }, + { + "start": 1624.3, + "end": 1625.12, + "probability": 0.9463 + }, + { + "start": 1625.38, + "end": 1629.36, + "probability": 0.9983 + }, + { + "start": 1629.36, + "end": 1633.18, + "probability": 0.9723 + }, + { + "start": 1633.72, + "end": 1638.1, + "probability": 0.9728 + }, + { + "start": 1638.9, + "end": 1639.42, + "probability": 0.8936 + }, + { + "start": 1639.56, + "end": 1641.9, + "probability": 0.9457 + }, + { + "start": 1642.06, + "end": 1644.62, + "probability": 0.9972 + }, + { + "start": 1645.8, + "end": 1648.84, + "probability": 0.9352 + }, + { + "start": 1648.96, + "end": 1650.1, + "probability": 0.8532 + }, + { + "start": 1650.5, + "end": 1654.22, + "probability": 0.9818 + }, + { + "start": 1654.22, + "end": 1658.5, + "probability": 0.9939 + }, + { + "start": 1659.06, + "end": 1661.14, + "probability": 0.8075 + }, + { + "start": 1661.2, + "end": 1663.99, + "probability": 0.9894 + }, + { + "start": 1664.7, + "end": 1667.68, + "probability": 0.9411 + }, + { + "start": 1668.48, + "end": 1669.14, + "probability": 0.8488 + }, + { + "start": 1669.24, + "end": 1670.76, + "probability": 0.9302 + }, + { + "start": 1670.92, + "end": 1672.64, + "probability": 0.6722 + }, + { + "start": 1672.76, + "end": 1674.92, + "probability": 0.983 + }, + { + "start": 1675.28, + "end": 1677.34, + "probability": 0.9717 + }, + { + "start": 1677.8, + "end": 1680.3, + "probability": 0.9944 + }, + { + "start": 1681.04, + "end": 1682.82, + "probability": 0.922 + }, + { + "start": 1682.9, + "end": 1685.46, + "probability": 0.9193 + }, + { + "start": 1686.02, + "end": 1688.44, + "probability": 0.8572 + }, + { + "start": 1688.56, + "end": 1690.31, + "probability": 0.9357 + }, + { + "start": 1690.52, + "end": 1691.52, + "probability": 0.9616 + }, + { + "start": 1691.96, + "end": 1694.62, + "probability": 0.9869 + }, + { + "start": 1695.04, + "end": 1697.7, + "probability": 0.9891 + }, + { + "start": 1697.7, + "end": 1699.92, + "probability": 0.9928 + }, + { + "start": 1701.68, + "end": 1701.96, + "probability": 0.5045 + }, + { + "start": 1702.06, + "end": 1703.04, + "probability": 0.8783 + }, + { + "start": 1703.74, + "end": 1705.8, + "probability": 0.7468 + }, + { + "start": 1706.38, + "end": 1707.22, + "probability": 0.9067 + }, + { + "start": 1707.64, + "end": 1712.26, + "probability": 0.957 + }, + { + "start": 1713.38, + "end": 1717.02, + "probability": 0.8977 + }, + { + "start": 1717.28, + "end": 1717.96, + "probability": 0.7165 + }, + { + "start": 1718.84, + "end": 1724.44, + "probability": 0.8291 + }, + { + "start": 1725.65, + "end": 1726.7, + "probability": 0.4382 + }, + { + "start": 1727.06, + "end": 1730.1, + "probability": 0.9561 + }, + { + "start": 1731.44, + "end": 1736.46, + "probability": 0.7619 + }, + { + "start": 1736.76, + "end": 1740.84, + "probability": 0.8561 + }, + { + "start": 1741.22, + "end": 1741.98, + "probability": 0.6592 + }, + { + "start": 1744.24, + "end": 1745.68, + "probability": 0.8491 + }, + { + "start": 1745.76, + "end": 1747.02, + "probability": 0.6925 + }, + { + "start": 1747.26, + "end": 1749.22, + "probability": 0.9198 + }, + { + "start": 1750.98, + "end": 1753.28, + "probability": 0.8896 + }, + { + "start": 1753.9, + "end": 1757.28, + "probability": 0.9808 + }, + { + "start": 1757.44, + "end": 1760.8, + "probability": 0.9385 + }, + { + "start": 1762.88, + "end": 1764.56, + "probability": 0.7949 + }, + { + "start": 1765.66, + "end": 1769.54, + "probability": 0.5541 + }, + { + "start": 1769.74, + "end": 1774.9, + "probability": 0.5929 + }, + { + "start": 1775.58, + "end": 1776.16, + "probability": 0.8755 + }, + { + "start": 1776.22, + "end": 1776.9, + "probability": 0.9022 + }, + { + "start": 1776.98, + "end": 1780.12, + "probability": 0.8146 + }, + { + "start": 1781.62, + "end": 1783.72, + "probability": 0.9323 + }, + { + "start": 1783.8, + "end": 1786.8, + "probability": 0.9707 + }, + { + "start": 1787.46, + "end": 1788.42, + "probability": 0.8615 + }, + { + "start": 1790.16, + "end": 1798.9, + "probability": 0.8095 + }, + { + "start": 1799.7, + "end": 1800.66, + "probability": 0.9031 + }, + { + "start": 1802.84, + "end": 1807.02, + "probability": 0.5968 + }, + { + "start": 1810.02, + "end": 1811.45, + "probability": 0.8595 + }, + { + "start": 1812.46, + "end": 1812.56, + "probability": 0.327 + }, + { + "start": 1814.32, + "end": 1815.66, + "probability": 0.5262 + }, + { + "start": 1816.58, + "end": 1821.82, + "probability": 0.7422 + }, + { + "start": 1822.48, + "end": 1823.14, + "probability": 0.7711 + }, + { + "start": 1824.74, + "end": 1826.48, + "probability": 0.9388 + }, + { + "start": 1826.62, + "end": 1829.14, + "probability": 0.7112 + }, + { + "start": 1830.74, + "end": 1833.92, + "probability": 0.6925 + }, + { + "start": 1834.44, + "end": 1838.43, + "probability": 0.8051 + }, + { + "start": 1839.18, + "end": 1845.56, + "probability": 0.8768 + }, + { + "start": 1845.7, + "end": 1849.04, + "probability": 0.9712 + }, + { + "start": 1850.24, + "end": 1853.96, + "probability": 0.9893 + }, + { + "start": 1855.16, + "end": 1857.5, + "probability": 0.9678 + }, + { + "start": 1859.26, + "end": 1865.64, + "probability": 0.892 + }, + { + "start": 1866.46, + "end": 1869.78, + "probability": 0.9812 + }, + { + "start": 1871.0, + "end": 1872.88, + "probability": 0.9775 + }, + { + "start": 1872.98, + "end": 1873.42, + "probability": 0.4813 + }, + { + "start": 1873.52, + "end": 1876.92, + "probability": 0.8733 + }, + { + "start": 1877.3, + "end": 1879.68, + "probability": 0.5381 + }, + { + "start": 1880.5, + "end": 1881.56, + "probability": 0.6913 + }, + { + "start": 1883.06, + "end": 1883.48, + "probability": 0.5869 + }, + { + "start": 1883.62, + "end": 1887.36, + "probability": 0.8843 + }, + { + "start": 1888.16, + "end": 1890.66, + "probability": 0.844 + }, + { + "start": 1891.9, + "end": 1897.7, + "probability": 0.7295 + }, + { + "start": 1900.04, + "end": 1900.62, + "probability": 0.6654 + }, + { + "start": 1900.78, + "end": 1901.04, + "probability": 0.8725 + }, + { + "start": 1901.18, + "end": 1902.58, + "probability": 0.5029 + }, + { + "start": 1902.96, + "end": 1905.5, + "probability": 0.7908 + }, + { + "start": 1906.26, + "end": 1907.38, + "probability": 0.8599 + }, + { + "start": 1909.2, + "end": 1912.06, + "probability": 0.1441 + }, + { + "start": 1912.24, + "end": 1914.82, + "probability": 0.7641 + }, + { + "start": 1919.26, + "end": 1921.24, + "probability": 0.8003 + }, + { + "start": 1921.84, + "end": 1927.28, + "probability": 0.9922 + }, + { + "start": 1927.36, + "end": 1929.02, + "probability": 0.6222 + }, + { + "start": 1929.6, + "end": 1931.0, + "probability": 0.6491 + }, + { + "start": 1931.35, + "end": 1933.45, + "probability": 0.7816 + }, + { + "start": 1933.9, + "end": 1935.82, + "probability": 0.9788 + }, + { + "start": 1935.92, + "end": 1937.68, + "probability": 0.7233 + }, + { + "start": 1937.72, + "end": 1940.38, + "probability": 0.7374 + }, + { + "start": 1940.6, + "end": 1940.84, + "probability": 0.7642 + }, + { + "start": 1941.78, + "end": 1945.84, + "probability": 0.9635 + }, + { + "start": 1946.54, + "end": 1950.78, + "probability": 0.9867 + }, + { + "start": 1951.6, + "end": 1954.92, + "probability": 0.483 + }, + { + "start": 1955.44, + "end": 1957.9, + "probability": 0.6665 + }, + { + "start": 1958.94, + "end": 1961.68, + "probability": 0.7317 + }, + { + "start": 1962.16, + "end": 1965.26, + "probability": 0.9357 + }, + { + "start": 1965.38, + "end": 1968.36, + "probability": 0.9491 + }, + { + "start": 1968.96, + "end": 1969.46, + "probability": 0.4729 + }, + { + "start": 1970.4, + "end": 1972.42, + "probability": 0.9285 + }, + { + "start": 1973.5, + "end": 1974.42, + "probability": 0.8298 + }, + { + "start": 1974.76, + "end": 1974.88, + "probability": 0.2799 + }, + { + "start": 1975.02, + "end": 1977.06, + "probability": 0.8616 + }, + { + "start": 1977.08, + "end": 1979.04, + "probability": 0.2243 + }, + { + "start": 1980.2, + "end": 1982.4, + "probability": 0.6005 + }, + { + "start": 1982.74, + "end": 1983.38, + "probability": 0.3461 + }, + { + "start": 1983.48, + "end": 1986.26, + "probability": 0.9122 + }, + { + "start": 1987.3, + "end": 1988.0, + "probability": 0.8779 + }, + { + "start": 1988.32, + "end": 1988.86, + "probability": 0.8695 + }, + { + "start": 1989.0, + "end": 1989.56, + "probability": 0.8335 + }, + { + "start": 1991.0, + "end": 1992.7, + "probability": 0.6851 + }, + { + "start": 1993.9, + "end": 1998.26, + "probability": 0.8479 + }, + { + "start": 1998.98, + "end": 2002.4, + "probability": 0.979 + }, + { + "start": 2002.82, + "end": 2006.72, + "probability": 0.9619 + }, + { + "start": 2006.84, + "end": 2007.26, + "probability": 0.9349 + }, + { + "start": 2007.86, + "end": 2008.76, + "probability": 0.6402 + }, + { + "start": 2009.32, + "end": 2014.58, + "probability": 0.9951 + }, + { + "start": 2015.64, + "end": 2018.04, + "probability": 0.8397 + }, + { + "start": 2018.32, + "end": 2021.7, + "probability": 0.9935 + }, + { + "start": 2022.0, + "end": 2022.92, + "probability": 0.5335 + }, + { + "start": 2022.96, + "end": 2023.64, + "probability": 0.8393 + }, + { + "start": 2024.46, + "end": 2025.48, + "probability": 0.6208 + }, + { + "start": 2026.08, + "end": 2028.84, + "probability": 0.9805 + }, + { + "start": 2028.84, + "end": 2032.6, + "probability": 0.9323 + }, + { + "start": 2033.4, + "end": 2037.24, + "probability": 0.9559 + }, + { + "start": 2037.42, + "end": 2039.66, + "probability": 0.9575 + }, + { + "start": 2040.26, + "end": 2046.98, + "probability": 0.9675 + }, + { + "start": 2047.12, + "end": 2050.74, + "probability": 0.9548 + }, + { + "start": 2050.76, + "end": 2051.96, + "probability": 0.8857 + }, + { + "start": 2052.9, + "end": 2054.68, + "probability": 0.9008 + }, + { + "start": 2054.76, + "end": 2057.68, + "probability": 0.7992 + }, + { + "start": 2058.3, + "end": 2064.04, + "probability": 0.9888 + }, + { + "start": 2064.76, + "end": 2067.58, + "probability": 0.9875 + }, + { + "start": 2068.3, + "end": 2071.14, + "probability": 0.9858 + }, + { + "start": 2071.24, + "end": 2073.16, + "probability": 0.4045 + }, + { + "start": 2073.84, + "end": 2079.38, + "probability": 0.9465 + }, + { + "start": 2079.66, + "end": 2082.56, + "probability": 0.9819 + }, + { + "start": 2082.56, + "end": 2085.26, + "probability": 0.972 + }, + { + "start": 2085.36, + "end": 2087.99, + "probability": 0.9696 + }, + { + "start": 2089.24, + "end": 2090.46, + "probability": 0.9772 + }, + { + "start": 2090.8, + "end": 2092.1, + "probability": 0.8755 + }, + { + "start": 2092.7, + "end": 2096.58, + "probability": 0.9697 + }, + { + "start": 2098.98, + "end": 2102.92, + "probability": 0.9951 + }, + { + "start": 2103.08, + "end": 2103.32, + "probability": 0.608 + }, + { + "start": 2103.48, + "end": 2109.76, + "probability": 0.9694 + }, + { + "start": 2110.82, + "end": 2113.18, + "probability": 0.9928 + }, + { + "start": 2113.42, + "end": 2115.22, + "probability": 0.7478 + }, + { + "start": 2115.84, + "end": 2116.7, + "probability": 0.9916 + }, + { + "start": 2117.32, + "end": 2119.51, + "probability": 0.9329 + }, + { + "start": 2119.92, + "end": 2121.82, + "probability": 0.9623 + }, + { + "start": 2121.98, + "end": 2126.28, + "probability": 0.9953 + }, + { + "start": 2126.78, + "end": 2132.44, + "probability": 0.9912 + }, + { + "start": 2132.6, + "end": 2133.18, + "probability": 0.902 + }, + { + "start": 2133.66, + "end": 2136.78, + "probability": 0.9728 + }, + { + "start": 2137.58, + "end": 2141.96, + "probability": 0.9968 + }, + { + "start": 2142.04, + "end": 2142.98, + "probability": 0.75 + }, + { + "start": 2143.12, + "end": 2143.34, + "probability": 0.7804 + }, + { + "start": 2143.66, + "end": 2144.12, + "probability": 0.7024 + }, + { + "start": 2144.56, + "end": 2154.18, + "probability": 0.9875 + }, + { + "start": 2154.32, + "end": 2155.88, + "probability": 0.999 + }, + { + "start": 2156.54, + "end": 2161.8, + "probability": 0.9963 + }, + { + "start": 2161.88, + "end": 2162.5, + "probability": 0.7518 + }, + { + "start": 2163.64, + "end": 2170.4, + "probability": 0.9798 + }, + { + "start": 2170.4, + "end": 2175.12, + "probability": 0.9691 + }, + { + "start": 2175.32, + "end": 2180.26, + "probability": 0.9938 + }, + { + "start": 2180.36, + "end": 2182.42, + "probability": 0.9976 + }, + { + "start": 2182.74, + "end": 2184.58, + "probability": 0.9606 + }, + { + "start": 2185.1, + "end": 2187.12, + "probability": 0.9217 + }, + { + "start": 2188.04, + "end": 2192.98, + "probability": 0.9278 + }, + { + "start": 2193.12, + "end": 2195.56, + "probability": 0.6843 + }, + { + "start": 2196.34, + "end": 2197.08, + "probability": 0.8159 + }, + { + "start": 2197.28, + "end": 2203.82, + "probability": 0.9965 + }, + { + "start": 2203.88, + "end": 2204.44, + "probability": 0.498 + }, + { + "start": 2204.72, + "end": 2211.24, + "probability": 0.9916 + }, + { + "start": 2211.26, + "end": 2213.86, + "probability": 0.9937 + }, + { + "start": 2213.86, + "end": 2220.62, + "probability": 0.9994 + }, + { + "start": 2221.34, + "end": 2222.14, + "probability": 0.8494 + }, + { + "start": 2222.22, + "end": 2223.36, + "probability": 0.9765 + }, + { + "start": 2223.48, + "end": 2227.42, + "probability": 0.9949 + }, + { + "start": 2228.3, + "end": 2231.18, + "probability": 0.9915 + }, + { + "start": 2231.32, + "end": 2234.42, + "probability": 0.9408 + }, + { + "start": 2234.94, + "end": 2237.98, + "probability": 0.9443 + }, + { + "start": 2238.16, + "end": 2240.32, + "probability": 0.9614 + }, + { + "start": 2240.78, + "end": 2245.12, + "probability": 0.9421 + }, + { + "start": 2245.18, + "end": 2248.79, + "probability": 0.9915 + }, + { + "start": 2249.36, + "end": 2253.72, + "probability": 0.9941 + }, + { + "start": 2253.88, + "end": 2256.8, + "probability": 0.7812 + }, + { + "start": 2256.86, + "end": 2261.34, + "probability": 0.9377 + }, + { + "start": 2261.34, + "end": 2265.4, + "probability": 0.9971 + }, + { + "start": 2265.66, + "end": 2270.86, + "probability": 0.9767 + }, + { + "start": 2272.06, + "end": 2276.66, + "probability": 0.9269 + }, + { + "start": 2276.86, + "end": 2278.72, + "probability": 0.9951 + }, + { + "start": 2278.88, + "end": 2284.04, + "probability": 0.5561 + }, + { + "start": 2284.04, + "end": 2289.14, + "probability": 0.9978 + }, + { + "start": 2292.12, + "end": 2295.78, + "probability": 0.9604 + }, + { + "start": 2295.92, + "end": 2300.1, + "probability": 0.995 + }, + { + "start": 2300.9, + "end": 2305.9, + "probability": 0.9556 + }, + { + "start": 2306.36, + "end": 2310.5, + "probability": 0.9155 + }, + { + "start": 2310.7, + "end": 2312.08, + "probability": 0.9573 + }, + { + "start": 2312.26, + "end": 2315.06, + "probability": 0.7949 + }, + { + "start": 2315.24, + "end": 2319.22, + "probability": 0.9898 + }, + { + "start": 2319.8, + "end": 2323.04, + "probability": 0.9961 + }, + { + "start": 2323.04, + "end": 2326.18, + "probability": 0.9971 + }, + { + "start": 2326.18, + "end": 2329.7, + "probability": 0.9836 + }, + { + "start": 2329.82, + "end": 2333.98, + "probability": 0.7741 + }, + { + "start": 2334.08, + "end": 2337.06, + "probability": 0.9379 + }, + { + "start": 2337.8, + "end": 2343.7, + "probability": 0.9953 + }, + { + "start": 2344.64, + "end": 2346.23, + "probability": 0.9854 + }, + { + "start": 2347.38, + "end": 2348.89, + "probability": 0.8649 + }, + { + "start": 2349.98, + "end": 2354.38, + "probability": 0.9942 + }, + { + "start": 2354.92, + "end": 2361.48, + "probability": 0.9962 + }, + { + "start": 2361.66, + "end": 2362.6, + "probability": 0.8937 + }, + { + "start": 2363.12, + "end": 2364.74, + "probability": 0.7738 + }, + { + "start": 2364.8, + "end": 2364.9, + "probability": 0.0028 + }, + { + "start": 2364.9, + "end": 2365.44, + "probability": 0.733 + }, + { + "start": 2365.76, + "end": 2372.69, + "probability": 0.9767 + }, + { + "start": 2372.78, + "end": 2373.49, + "probability": 0.987 + }, + { + "start": 2374.2, + "end": 2375.25, + "probability": 0.9382 + }, + { + "start": 2376.1, + "end": 2376.91, + "probability": 0.8184 + }, + { + "start": 2377.66, + "end": 2382.04, + "probability": 0.9915 + }, + { + "start": 2382.1, + "end": 2385.23, + "probability": 0.9973 + }, + { + "start": 2385.62, + "end": 2385.8, + "probability": 0.2772 + }, + { + "start": 2386.0, + "end": 2389.7, + "probability": 0.8645 + }, + { + "start": 2390.46, + "end": 2394.37, + "probability": 0.8657 + }, + { + "start": 2395.32, + "end": 2398.32, + "probability": 0.9961 + }, + { + "start": 2398.32, + "end": 2401.84, + "probability": 0.9607 + }, + { + "start": 2402.52, + "end": 2409.02, + "probability": 0.9893 + }, + { + "start": 2409.22, + "end": 2409.58, + "probability": 0.4066 + }, + { + "start": 2410.04, + "end": 2412.32, + "probability": 0.9784 + }, + { + "start": 2412.48, + "end": 2419.4, + "probability": 0.9957 + }, + { + "start": 2420.2, + "end": 2423.1, + "probability": 0.9624 + }, + { + "start": 2423.62, + "end": 2425.28, + "probability": 0.9924 + }, + { + "start": 2425.38, + "end": 2426.5, + "probability": 0.9428 + }, + { + "start": 2426.7, + "end": 2428.64, + "probability": 0.9967 + }, + { + "start": 2429.26, + "end": 2436.98, + "probability": 0.9948 + }, + { + "start": 2436.98, + "end": 2443.76, + "probability": 0.9964 + }, + { + "start": 2443.86, + "end": 2445.02, + "probability": 0.8226 + }, + { + "start": 2445.14, + "end": 2449.81, + "probability": 0.9744 + }, + { + "start": 2450.44, + "end": 2451.96, + "probability": 0.8572 + }, + { + "start": 2452.36, + "end": 2453.9, + "probability": 0.9816 + }, + { + "start": 2454.88, + "end": 2456.12, + "probability": 0.588 + }, + { + "start": 2457.0, + "end": 2458.91, + "probability": 0.9849 + }, + { + "start": 2459.78, + "end": 2460.44, + "probability": 0.3252 + }, + { + "start": 2460.5, + "end": 2464.38, + "probability": 0.8794 + }, + { + "start": 2464.38, + "end": 2470.8, + "probability": 0.9794 + }, + { + "start": 2471.04, + "end": 2473.76, + "probability": 0.6943 + }, + { + "start": 2473.94, + "end": 2479.86, + "probability": 0.9966 + }, + { + "start": 2480.04, + "end": 2485.48, + "probability": 0.9932 + }, + { + "start": 2485.56, + "end": 2491.24, + "probability": 0.9984 + }, + { + "start": 2491.36, + "end": 2496.68, + "probability": 0.9758 + }, + { + "start": 2496.68, + "end": 2500.06, + "probability": 0.9937 + }, + { + "start": 2501.36, + "end": 2502.42, + "probability": 0.8399 + }, + { + "start": 2503.76, + "end": 2504.02, + "probability": 0.4678 + }, + { + "start": 2504.08, + "end": 2504.6, + "probability": 0.9307 + }, + { + "start": 2504.68, + "end": 2505.56, + "probability": 0.9595 + }, + { + "start": 2505.82, + "end": 2509.46, + "probability": 0.9827 + }, + { + "start": 2509.94, + "end": 2511.7, + "probability": 0.8018 + }, + { + "start": 2511.78, + "end": 2515.26, + "probability": 0.8987 + }, + { + "start": 2515.66, + "end": 2517.78, + "probability": 0.9864 + }, + { + "start": 2519.6, + "end": 2522.06, + "probability": 0.8721 + }, + { + "start": 2522.54, + "end": 2526.66, + "probability": 0.9576 + }, + { + "start": 2526.66, + "end": 2531.8, + "probability": 0.9896 + }, + { + "start": 2532.22, + "end": 2532.42, + "probability": 0.7074 + }, + { + "start": 2532.54, + "end": 2533.28, + "probability": 0.617 + }, + { + "start": 2533.42, + "end": 2536.94, + "probability": 0.6598 + }, + { + "start": 2536.94, + "end": 2537.52, + "probability": 0.6253 + }, + { + "start": 2544.4, + "end": 2546.1, + "probability": 0.8468 + }, + { + "start": 2546.18, + "end": 2546.72, + "probability": 0.7724 + }, + { + "start": 2546.9, + "end": 2548.38, + "probability": 0.9709 + }, + { + "start": 2548.48, + "end": 2549.0, + "probability": 0.8642 + }, + { + "start": 2549.06, + "end": 2552.95, + "probability": 0.9736 + }, + { + "start": 2553.8, + "end": 2557.48, + "probability": 0.983 + }, + { + "start": 2558.52, + "end": 2563.84, + "probability": 0.9751 + }, + { + "start": 2564.38, + "end": 2565.64, + "probability": 0.7964 + }, + { + "start": 2565.72, + "end": 2571.16, + "probability": 0.9894 + }, + { + "start": 2571.3, + "end": 2573.86, + "probability": 0.9759 + }, + { + "start": 2574.16, + "end": 2577.0, + "probability": 0.9365 + }, + { + "start": 2577.54, + "end": 2579.18, + "probability": 0.8415 + }, + { + "start": 2579.28, + "end": 2585.36, + "probability": 0.9611 + }, + { + "start": 2585.84, + "end": 2588.68, + "probability": 0.9973 + }, + { + "start": 2589.4, + "end": 2594.0, + "probability": 0.9735 + }, + { + "start": 2594.22, + "end": 2603.86, + "probability": 0.8364 + }, + { + "start": 2604.46, + "end": 2605.06, + "probability": 0.6986 + }, + { + "start": 2605.2, + "end": 2606.42, + "probability": 0.9678 + }, + { + "start": 2606.9, + "end": 2609.9, + "probability": 0.9606 + }, + { + "start": 2610.42, + "end": 2611.14, + "probability": 0.7249 + }, + { + "start": 2611.7, + "end": 2615.6, + "probability": 0.9779 + }, + { + "start": 2615.62, + "end": 2619.98, + "probability": 0.998 + }, + { + "start": 2620.18, + "end": 2622.46, + "probability": 0.9953 + }, + { + "start": 2623.12, + "end": 2627.08, + "probability": 0.9974 + }, + { + "start": 2627.46, + "end": 2629.04, + "probability": 0.9941 + }, + { + "start": 2629.66, + "end": 2632.36, + "probability": 0.9955 + }, + { + "start": 2632.88, + "end": 2634.9, + "probability": 0.9645 + }, + { + "start": 2635.22, + "end": 2637.4, + "probability": 0.9057 + }, + { + "start": 2637.9, + "end": 2639.28, + "probability": 0.3953 + }, + { + "start": 2639.34, + "end": 2641.16, + "probability": 0.8499 + }, + { + "start": 2641.32, + "end": 2642.12, + "probability": 0.5652 + }, + { + "start": 2642.16, + "end": 2643.64, + "probability": 0.9556 + }, + { + "start": 2647.34, + "end": 2648.1, + "probability": 0.7762 + }, + { + "start": 2648.32, + "end": 2655.78, + "probability": 0.814 + }, + { + "start": 2655.78, + "end": 2664.72, + "probability": 0.9362 + }, + { + "start": 2664.84, + "end": 2667.38, + "probability": 0.823 + }, + { + "start": 2668.2, + "end": 2669.86, + "probability": 0.8103 + }, + { + "start": 2670.12, + "end": 2673.8, + "probability": 0.7755 + }, + { + "start": 2674.24, + "end": 2682.62, + "probability": 0.9747 + }, + { + "start": 2682.96, + "end": 2686.72, + "probability": 0.7238 + }, + { + "start": 2686.94, + "end": 2690.04, + "probability": 0.9645 + }, + { + "start": 2690.82, + "end": 2691.82, + "probability": 0.8201 + }, + { + "start": 2692.42, + "end": 2695.48, + "probability": 0.9255 + }, + { + "start": 2695.96, + "end": 2696.7, + "probability": 0.7316 + }, + { + "start": 2696.78, + "end": 2697.2, + "probability": 0.6356 + }, + { + "start": 2697.2, + "end": 2700.52, + "probability": 0.5323 + }, + { + "start": 2700.54, + "end": 2705.22, + "probability": 0.9673 + }, + { + "start": 2705.94, + "end": 2707.16, + "probability": 0.5856 + }, + { + "start": 2707.32, + "end": 2708.9, + "probability": 0.8691 + }, + { + "start": 2709.14, + "end": 2711.2, + "probability": 0.9774 + }, + { + "start": 2713.12, + "end": 2714.57, + "probability": 0.4418 + }, + { + "start": 2714.9, + "end": 2719.3, + "probability": 0.7645 + }, + { + "start": 2719.92, + "end": 2727.46, + "probability": 0.9811 + }, + { + "start": 2727.46, + "end": 2734.52, + "probability": 0.992 + }, + { + "start": 2734.7, + "end": 2736.04, + "probability": 0.8714 + }, + { + "start": 2736.76, + "end": 2739.0, + "probability": 0.8574 + }, + { + "start": 2739.0, + "end": 2740.12, + "probability": 0.9424 + }, + { + "start": 2741.88, + "end": 2746.84, + "probability": 0.9902 + }, + { + "start": 2747.56, + "end": 2750.02, + "probability": 0.7844 + }, + { + "start": 2750.14, + "end": 2754.0, + "probability": 0.6536 + }, + { + "start": 2754.08, + "end": 2756.9, + "probability": 0.7181 + }, + { + "start": 2757.9, + "end": 2760.1, + "probability": 0.8556 + }, + { + "start": 2760.78, + "end": 2764.9, + "probability": 0.9292 + }, + { + "start": 2765.58, + "end": 2766.54, + "probability": 0.654 + }, + { + "start": 2766.82, + "end": 2771.4, + "probability": 0.967 + }, + { + "start": 2771.92, + "end": 2776.12, + "probability": 0.96 + }, + { + "start": 2776.22, + "end": 2776.46, + "probability": 0.718 + }, + { + "start": 2776.6, + "end": 2777.14, + "probability": 0.5539 + }, + { + "start": 2777.32, + "end": 2779.0, + "probability": 0.8792 + }, + { + "start": 2779.6, + "end": 2782.2, + "probability": 0.0773 + }, + { + "start": 2782.36, + "end": 2783.54, + "probability": 0.3503 + }, + { + "start": 2783.68, + "end": 2785.28, + "probability": 0.748 + }, + { + "start": 2785.3, + "end": 2788.16, + "probability": 0.776 + }, + { + "start": 2789.28, + "end": 2795.94, + "probability": 0.9912 + }, + { + "start": 2796.42, + "end": 2798.76, + "probability": 0.9997 + }, + { + "start": 2798.76, + "end": 2802.87, + "probability": 0.9932 + }, + { + "start": 2803.74, + "end": 2808.92, + "probability": 0.991 + }, + { + "start": 2809.7, + "end": 2811.14, + "probability": 0.4959 + }, + { + "start": 2811.2, + "end": 2815.7, + "probability": 0.9912 + }, + { + "start": 2815.7, + "end": 2818.64, + "probability": 0.9836 + }, + { + "start": 2818.68, + "end": 2820.06, + "probability": 0.6489 + }, + { + "start": 2820.72, + "end": 2821.76, + "probability": 0.8752 + }, + { + "start": 2821.84, + "end": 2823.64, + "probability": 0.9185 + }, + { + "start": 2823.96, + "end": 2827.5, + "probability": 0.9279 + }, + { + "start": 2827.5, + "end": 2832.1, + "probability": 0.9512 + }, + { + "start": 2832.22, + "end": 2834.94, + "probability": 0.9958 + }, + { + "start": 2834.94, + "end": 2839.36, + "probability": 0.9237 + }, + { + "start": 2840.52, + "end": 2842.74, + "probability": 0.7965 + }, + { + "start": 2842.88, + "end": 2846.22, + "probability": 0.947 + }, + { + "start": 2846.82, + "end": 2848.34, + "probability": 0.9484 + }, + { + "start": 2848.46, + "end": 2849.3, + "probability": 0.9477 + }, + { + "start": 2849.4, + "end": 2851.96, + "probability": 0.9421 + }, + { + "start": 2852.02, + "end": 2856.79, + "probability": 0.9906 + }, + { + "start": 2857.72, + "end": 2861.5, + "probability": 0.9277 + }, + { + "start": 2861.96, + "end": 2866.47, + "probability": 0.8763 + }, + { + "start": 2867.14, + "end": 2870.24, + "probability": 0.929 + }, + { + "start": 2871.06, + "end": 2872.24, + "probability": 0.9129 + }, + { + "start": 2872.44, + "end": 2874.22, + "probability": 0.9964 + }, + { + "start": 2874.34, + "end": 2879.08, + "probability": 0.8717 + }, + { + "start": 2879.34, + "end": 2882.36, + "probability": 0.7865 + }, + { + "start": 2882.36, + "end": 2885.98, + "probability": 0.9753 + }, + { + "start": 2886.08, + "end": 2887.38, + "probability": 0.9545 + }, + { + "start": 2887.88, + "end": 2888.54, + "probability": 0.897 + }, + { + "start": 2888.7, + "end": 2891.28, + "probability": 0.9976 + }, + { + "start": 2891.28, + "end": 2895.52, + "probability": 0.9998 + }, + { + "start": 2895.58, + "end": 2897.52, + "probability": 0.9954 + }, + { + "start": 2898.36, + "end": 2902.5, + "probability": 0.9941 + }, + { + "start": 2902.7, + "end": 2902.92, + "probability": 0.3243 + }, + { + "start": 2903.02, + "end": 2903.96, + "probability": 0.5626 + }, + { + "start": 2904.0, + "end": 2906.32, + "probability": 0.8964 + }, + { + "start": 2906.52, + "end": 2908.98, + "probability": 0.9541 + }, + { + "start": 2909.3, + "end": 2910.74, + "probability": 0.9747 + }, + { + "start": 2910.74, + "end": 2912.84, + "probability": 0.993 + }, + { + "start": 2913.52, + "end": 2918.7, + "probability": 0.9438 + }, + { + "start": 2919.02, + "end": 2921.78, + "probability": 0.9876 + }, + { + "start": 2921.84, + "end": 2925.16, + "probability": 0.7771 + }, + { + "start": 2925.26, + "end": 2930.14, + "probability": 0.9692 + }, + { + "start": 2930.3, + "end": 2931.6, + "probability": 0.5768 + }, + { + "start": 2932.42, + "end": 2933.58, + "probability": 0.773 + }, + { + "start": 2934.18, + "end": 2940.39, + "probability": 0.9346 + }, + { + "start": 2941.16, + "end": 2942.54, + "probability": 0.878 + }, + { + "start": 2942.84, + "end": 2947.78, + "probability": 0.9922 + }, + { + "start": 2948.02, + "end": 2948.72, + "probability": 0.7711 + }, + { + "start": 2948.84, + "end": 2952.06, + "probability": 0.9698 + }, + { + "start": 2953.04, + "end": 2955.18, + "probability": 0.8333 + }, + { + "start": 2955.92, + "end": 2960.28, + "probability": 0.984 + }, + { + "start": 2960.32, + "end": 2961.3, + "probability": 0.8098 + }, + { + "start": 2961.84, + "end": 2966.24, + "probability": 0.9907 + }, + { + "start": 2966.38, + "end": 2972.08, + "probability": 0.9674 + }, + { + "start": 2972.22, + "end": 2977.98, + "probability": 0.849 + }, + { + "start": 2978.78, + "end": 2984.72, + "probability": 0.9598 + }, + { + "start": 2984.88, + "end": 2987.91, + "probability": 0.8154 + }, + { + "start": 2988.74, + "end": 2991.54, + "probability": 0.5014 + }, + { + "start": 2991.66, + "end": 2992.16, + "probability": 0.5271 + }, + { + "start": 2992.38, + "end": 2993.44, + "probability": 0.5434 + }, + { + "start": 2994.14, + "end": 2995.88, + "probability": 0.8335 + }, + { + "start": 2996.06, + "end": 2997.96, + "probability": 0.9648 + }, + { + "start": 2998.46, + "end": 2999.64, + "probability": 0.779 + }, + { + "start": 2999.94, + "end": 3002.66, + "probability": 0.9579 + }, + { + "start": 3003.14, + "end": 3004.82, + "probability": 0.9745 + }, + { + "start": 3004.84, + "end": 3009.42, + "probability": 0.8377 + }, + { + "start": 3009.42, + "end": 3014.1, + "probability": 0.9918 + }, + { + "start": 3014.16, + "end": 3015.1, + "probability": 0.8471 + }, + { + "start": 3015.86, + "end": 3016.94, + "probability": 0.9069 + }, + { + "start": 3017.84, + "end": 3020.38, + "probability": 0.5082 + }, + { + "start": 3021.18, + "end": 3028.44, + "probability": 0.9977 + }, + { + "start": 3028.56, + "end": 3029.06, + "probability": 0.7706 + }, + { + "start": 3029.22, + "end": 3032.6, + "probability": 0.984 + }, + { + "start": 3032.78, + "end": 3034.98, + "probability": 0.9944 + }, + { + "start": 3034.98, + "end": 3039.42, + "probability": 0.9747 + }, + { + "start": 3039.92, + "end": 3040.62, + "probability": 0.5538 + }, + { + "start": 3040.72, + "end": 3045.3, + "probability": 0.9946 + }, + { + "start": 3045.96, + "end": 3049.72, + "probability": 0.9319 + }, + { + "start": 3049.72, + "end": 3053.24, + "probability": 0.9961 + }, + { + "start": 3053.38, + "end": 3056.96, + "probability": 0.9927 + }, + { + "start": 3056.96, + "end": 3060.56, + "probability": 0.9781 + }, + { + "start": 3061.06, + "end": 3062.68, + "probability": 0.9263 + }, + { + "start": 3063.28, + "end": 3063.62, + "probability": 0.2731 + }, + { + "start": 3063.66, + "end": 3065.68, + "probability": 0.8377 + }, + { + "start": 3066.0, + "end": 3067.12, + "probability": 0.8929 + }, + { + "start": 3067.18, + "end": 3068.9, + "probability": 0.8267 + }, + { + "start": 3069.38, + "end": 3072.38, + "probability": 0.9517 + }, + { + "start": 3072.8, + "end": 3074.54, + "probability": 0.9798 + }, + { + "start": 3074.92, + "end": 3076.78, + "probability": 0.9653 + }, + { + "start": 3076.92, + "end": 3077.54, + "probability": 0.9466 + }, + { + "start": 3077.98, + "end": 3082.2, + "probability": 0.9948 + }, + { + "start": 3082.36, + "end": 3085.16, + "probability": 0.938 + }, + { + "start": 3085.7, + "end": 3087.9, + "probability": 0.9956 + }, + { + "start": 3088.32, + "end": 3090.16, + "probability": 0.9653 + }, + { + "start": 3091.62, + "end": 3094.12, + "probability": 0.9045 + }, + { + "start": 3094.18, + "end": 3096.7, + "probability": 0.9701 + }, + { + "start": 3097.64, + "end": 3101.78, + "probability": 0.9844 + }, + { + "start": 3102.62, + "end": 3103.8, + "probability": 0.2837 + }, + { + "start": 3104.18, + "end": 3104.2, + "probability": 0.1026 + }, + { + "start": 3104.2, + "end": 3107.02, + "probability": 0.6614 + }, + { + "start": 3107.52, + "end": 3108.7, + "probability": 0.867 + }, + { + "start": 3108.98, + "end": 3109.84, + "probability": 0.8694 + }, + { + "start": 3109.96, + "end": 3110.06, + "probability": 0.6832 + }, + { + "start": 3110.44, + "end": 3111.7, + "probability": 0.9126 + }, + { + "start": 3111.9, + "end": 3114.48, + "probability": 0.7397 + }, + { + "start": 3115.08, + "end": 3117.66, + "probability": 0.4537 + }, + { + "start": 3120.3, + "end": 3121.86, + "probability": 0.981 + }, + { + "start": 3122.96, + "end": 3125.9, + "probability": 0.9977 + }, + { + "start": 3126.12, + "end": 3127.18, + "probability": 0.6569 + }, + { + "start": 3127.2, + "end": 3129.02, + "probability": 0.9692 + }, + { + "start": 3129.12, + "end": 3131.54, + "probability": 0.9956 + }, + { + "start": 3132.46, + "end": 3135.82, + "probability": 0.9582 + }, + { + "start": 3138.42, + "end": 3140.52, + "probability": 0.829 + }, + { + "start": 3140.78, + "end": 3142.28, + "probability": 0.862 + }, + { + "start": 3142.38, + "end": 3146.52, + "probability": 0.9849 + }, + { + "start": 3147.04, + "end": 3152.7, + "probability": 0.9976 + }, + { + "start": 3153.2, + "end": 3158.38, + "probability": 0.9873 + }, + { + "start": 3159.16, + "end": 3161.26, + "probability": 0.9904 + }, + { + "start": 3161.5, + "end": 3163.6, + "probability": 0.9818 + }, + { + "start": 3164.08, + "end": 3164.6, + "probability": 0.7514 + }, + { + "start": 3164.68, + "end": 3169.3, + "probability": 0.9358 + }, + { + "start": 3169.68, + "end": 3172.78, + "probability": 0.8649 + }, + { + "start": 3173.14, + "end": 3177.42, + "probability": 0.9901 + }, + { + "start": 3177.78, + "end": 3179.42, + "probability": 0.9694 + }, + { + "start": 3179.96, + "end": 3182.3, + "probability": 0.9059 + }, + { + "start": 3182.4, + "end": 3185.86, + "probability": 0.9904 + }, + { + "start": 3186.18, + "end": 3189.44, + "probability": 0.886 + }, + { + "start": 3189.64, + "end": 3192.54, + "probability": 0.9848 + }, + { + "start": 3192.54, + "end": 3196.3, + "probability": 0.9933 + }, + { + "start": 3197.5, + "end": 3200.92, + "probability": 0.9985 + }, + { + "start": 3201.32, + "end": 3205.98, + "probability": 0.9733 + }, + { + "start": 3206.34, + "end": 3211.34, + "probability": 0.9959 + }, + { + "start": 3211.44, + "end": 3212.91, + "probability": 0.7909 + }, + { + "start": 3213.46, + "end": 3214.04, + "probability": 0.8143 + }, + { + "start": 3214.5, + "end": 3216.33, + "probability": 0.9523 + }, + { + "start": 3216.46, + "end": 3218.74, + "probability": 0.7918 + }, + { + "start": 3219.16, + "end": 3221.44, + "probability": 0.8465 + }, + { + "start": 3221.78, + "end": 3226.52, + "probability": 0.9505 + }, + { + "start": 3226.52, + "end": 3230.64, + "probability": 0.9983 + }, + { + "start": 3231.46, + "end": 3236.4, + "probability": 0.9983 + }, + { + "start": 3236.52, + "end": 3242.34, + "probability": 0.989 + }, + { + "start": 3243.2, + "end": 3245.4, + "probability": 0.9832 + }, + { + "start": 3245.84, + "end": 3249.04, + "probability": 0.9863 + }, + { + "start": 3249.04, + "end": 3252.48, + "probability": 0.9968 + }, + { + "start": 3253.36, + "end": 3255.76, + "probability": 0.9727 + }, + { + "start": 3256.16, + "end": 3258.76, + "probability": 0.995 + }, + { + "start": 3258.92, + "end": 3263.28, + "probability": 0.9981 + }, + { + "start": 3263.38, + "end": 3265.34, + "probability": 0.9948 + }, + { + "start": 3266.0, + "end": 3268.08, + "probability": 0.9043 + }, + { + "start": 3268.48, + "end": 3271.56, + "probability": 0.9912 + }, + { + "start": 3271.56, + "end": 3275.8, + "probability": 0.9686 + }, + { + "start": 3275.9, + "end": 3279.7, + "probability": 0.9937 + }, + { + "start": 3280.06, + "end": 3281.56, + "probability": 0.9995 + }, + { + "start": 3281.62, + "end": 3284.76, + "probability": 0.9794 + }, + { + "start": 3284.96, + "end": 3289.22, + "probability": 0.9119 + }, + { + "start": 3289.26, + "end": 3291.56, + "probability": 0.9857 + }, + { + "start": 3291.64, + "end": 3292.22, + "probability": 0.6361 + }, + { + "start": 3292.54, + "end": 3294.4, + "probability": 0.6766 + }, + { + "start": 3294.52, + "end": 3297.34, + "probability": 0.8402 + }, + { + "start": 3297.52, + "end": 3298.74, + "probability": 0.5643 + }, + { + "start": 3299.64, + "end": 3301.14, + "probability": 0.9705 + }, + { + "start": 3301.88, + "end": 3302.36, + "probability": 0.1298 + }, + { + "start": 3302.96, + "end": 3307.72, + "probability": 0.6608 + }, + { + "start": 3308.34, + "end": 3310.16, + "probability": 0.9945 + }, + { + "start": 3310.4, + "end": 3313.26, + "probability": 0.8922 + }, + { + "start": 3314.64, + "end": 3315.42, + "probability": 0.5076 + }, + { + "start": 3315.8, + "end": 3317.46, + "probability": 0.9961 + }, + { + "start": 3317.62, + "end": 3317.78, + "probability": 0.6393 + }, + { + "start": 3318.5, + "end": 3320.44, + "probability": 0.9665 + }, + { + "start": 3320.54, + "end": 3321.1, + "probability": 0.2823 + }, + { + "start": 3322.3, + "end": 3324.58, + "probability": 0.7138 + }, + { + "start": 3325.52, + "end": 3327.36, + "probability": 0.8227 + }, + { + "start": 3327.4, + "end": 3328.02, + "probability": 0.7975 + }, + { + "start": 3328.06, + "end": 3329.29, + "probability": 0.6245 + }, + { + "start": 3331.68, + "end": 3332.9, + "probability": 0.7665 + }, + { + "start": 3333.22, + "end": 3336.28, + "probability": 0.9358 + }, + { + "start": 3336.28, + "end": 3338.34, + "probability": 0.9507 + }, + { + "start": 3340.4, + "end": 3343.14, + "probability": 0.7727 + }, + { + "start": 3343.18, + "end": 3345.0, + "probability": 0.8009 + }, + { + "start": 3346.06, + "end": 3346.9, + "probability": 0.761 + }, + { + "start": 3347.64, + "end": 3350.22, + "probability": 0.8433 + }, + { + "start": 3350.22, + "end": 3353.56, + "probability": 0.7594 + }, + { + "start": 3354.0, + "end": 3354.66, + "probability": 0.7792 + }, + { + "start": 3355.02, + "end": 3357.68, + "probability": 0.897 + }, + { + "start": 3357.68, + "end": 3358.9, + "probability": 0.7655 + }, + { + "start": 3359.04, + "end": 3360.7, + "probability": 0.598 + }, + { + "start": 3360.7, + "end": 3361.84, + "probability": 0.9444 + }, + { + "start": 3362.74, + "end": 3364.44, + "probability": 0.6221 + }, + { + "start": 3364.46, + "end": 3365.66, + "probability": 0.9575 + }, + { + "start": 3365.72, + "end": 3366.32, + "probability": 0.4946 + }, + { + "start": 3366.46, + "end": 3366.72, + "probability": 0.5486 + }, + { + "start": 3366.8, + "end": 3372.64, + "probability": 0.7568 + }, + { + "start": 3373.0, + "end": 3373.96, + "probability": 0.8459 + }, + { + "start": 3374.56, + "end": 3379.26, + "probability": 0.9421 + }, + { + "start": 3379.26, + "end": 3385.0, + "probability": 0.9795 + }, + { + "start": 3385.2, + "end": 3386.26, + "probability": 0.973 + }, + { + "start": 3386.64, + "end": 3388.6, + "probability": 0.8632 + }, + { + "start": 3388.92, + "end": 3390.2, + "probability": 0.629 + }, + { + "start": 3390.28, + "end": 3391.5, + "probability": 0.9594 + }, + { + "start": 3391.58, + "end": 3392.46, + "probability": 0.8587 + }, + { + "start": 3393.06, + "end": 3394.6, + "probability": 0.8416 + }, + { + "start": 3394.86, + "end": 3396.66, + "probability": 0.774 + }, + { + "start": 3396.86, + "end": 3400.58, + "probability": 0.9443 + }, + { + "start": 3400.92, + "end": 3403.38, + "probability": 0.8447 + }, + { + "start": 3403.84, + "end": 3408.66, + "probability": 0.97 + }, + { + "start": 3408.7, + "end": 3412.22, + "probability": 0.8723 + }, + { + "start": 3412.64, + "end": 3412.8, + "probability": 0.2532 + }, + { + "start": 3412.88, + "end": 3417.56, + "probability": 0.8053 + }, + { + "start": 3418.08, + "end": 3418.64, + "probability": 0.6833 + }, + { + "start": 3418.74, + "end": 3419.36, + "probability": 0.9572 + }, + { + "start": 3419.77, + "end": 3424.66, + "probability": 0.5502 + }, + { + "start": 3424.86, + "end": 3425.18, + "probability": 0.6905 + }, + { + "start": 3425.72, + "end": 3427.98, + "probability": 0.7274 + }, + { + "start": 3428.74, + "end": 3431.04, + "probability": 0.7359 + }, + { + "start": 3431.1, + "end": 3432.1, + "probability": 0.7327 + }, + { + "start": 3432.32, + "end": 3436.02, + "probability": 0.9373 + }, + { + "start": 3445.56, + "end": 3447.88, + "probability": 0.4836 + }, + { + "start": 3448.98, + "end": 3451.36, + "probability": 0.989 + }, + { + "start": 3452.3, + "end": 3455.61, + "probability": 0.992 + }, + { + "start": 3456.6, + "end": 3461.4, + "probability": 0.7826 + }, + { + "start": 3462.22, + "end": 3462.74, + "probability": 0.8792 + }, + { + "start": 3463.42, + "end": 3465.12, + "probability": 0.9959 + }, + { + "start": 3466.04, + "end": 3469.44, + "probability": 0.5928 + }, + { + "start": 3469.44, + "end": 3473.84, + "probability": 0.998 + }, + { + "start": 3476.16, + "end": 3476.8, + "probability": 0.6866 + }, + { + "start": 3478.06, + "end": 3479.7, + "probability": 0.7394 + }, + { + "start": 3480.54, + "end": 3483.72, + "probability": 0.8354 + }, + { + "start": 3484.54, + "end": 3487.02, + "probability": 0.9467 + }, + { + "start": 3489.04, + "end": 3489.46, + "probability": 0.6015 + }, + { + "start": 3490.42, + "end": 3492.88, + "probability": 0.9932 + }, + { + "start": 3493.66, + "end": 3494.86, + "probability": 0.9254 + }, + { + "start": 3495.72, + "end": 3499.1, + "probability": 0.8528 + }, + { + "start": 3499.1, + "end": 3503.74, + "probability": 0.8182 + }, + { + "start": 3504.46, + "end": 3507.78, + "probability": 0.886 + }, + { + "start": 3508.34, + "end": 3512.82, + "probability": 0.8533 + }, + { + "start": 3513.48, + "end": 3515.68, + "probability": 0.8591 + }, + { + "start": 3517.32, + "end": 3518.48, + "probability": 0.8716 + }, + { + "start": 3519.52, + "end": 3520.72, + "probability": 0.9771 + }, + { + "start": 3521.24, + "end": 3526.36, + "probability": 0.9631 + }, + { + "start": 3527.8, + "end": 3530.72, + "probability": 0.9071 + }, + { + "start": 3531.36, + "end": 3531.92, + "probability": 0.8368 + }, + { + "start": 3533.08, + "end": 3535.34, + "probability": 0.9971 + }, + { + "start": 3536.4, + "end": 3538.0, + "probability": 0.5609 + }, + { + "start": 3538.44, + "end": 3542.52, + "probability": 0.6102 + }, + { + "start": 3542.52, + "end": 3545.94, + "probability": 0.8857 + }, + { + "start": 3547.66, + "end": 3551.5, + "probability": 0.8965 + }, + { + "start": 3552.22, + "end": 3553.12, + "probability": 0.9956 + }, + { + "start": 3553.92, + "end": 3559.3, + "probability": 0.9946 + }, + { + "start": 3561.1, + "end": 3562.92, + "probability": 0.7003 + }, + { + "start": 3563.74, + "end": 3565.62, + "probability": 0.9647 + }, + { + "start": 3566.5, + "end": 3568.22, + "probability": 0.7403 + }, + { + "start": 3569.12, + "end": 3570.78, + "probability": 0.9904 + }, + { + "start": 3571.46, + "end": 3573.16, + "probability": 0.9299 + }, + { + "start": 3574.14, + "end": 3574.78, + "probability": 0.6426 + }, + { + "start": 3575.52, + "end": 3577.04, + "probability": 0.9618 + }, + { + "start": 3577.84, + "end": 3579.18, + "probability": 0.9865 + }, + { + "start": 3580.12, + "end": 3581.76, + "probability": 0.9254 + }, + { + "start": 3583.34, + "end": 3584.8, + "probability": 0.8999 + }, + { + "start": 3586.16, + "end": 3588.4, + "probability": 0.8064 + }, + { + "start": 3589.36, + "end": 3594.6, + "probability": 0.9838 + }, + { + "start": 3595.18, + "end": 3597.66, + "probability": 0.9888 + }, + { + "start": 3598.48, + "end": 3599.12, + "probability": 0.5949 + }, + { + "start": 3600.22, + "end": 3600.88, + "probability": 0.8608 + }, + { + "start": 3601.62, + "end": 3604.64, + "probability": 0.7791 + }, + { + "start": 3605.66, + "end": 3607.24, + "probability": 0.9714 + }, + { + "start": 3607.98, + "end": 3608.98, + "probability": 0.9915 + }, + { + "start": 3609.9, + "end": 3611.74, + "probability": 0.7041 + }, + { + "start": 3612.26, + "end": 3614.66, + "probability": 0.9437 + }, + { + "start": 3616.28, + "end": 3617.72, + "probability": 0.921 + }, + { + "start": 3618.6, + "end": 3623.72, + "probability": 0.9852 + }, + { + "start": 3624.68, + "end": 3628.57, + "probability": 0.9304 + }, + { + "start": 3629.02, + "end": 3630.5, + "probability": 0.8394 + }, + { + "start": 3631.68, + "end": 3635.46, + "probability": 0.9688 + }, + { + "start": 3636.06, + "end": 3638.62, + "probability": 0.9444 + }, + { + "start": 3639.42, + "end": 3640.82, + "probability": 0.992 + }, + { + "start": 3641.38, + "end": 3642.94, + "probability": 0.9966 + }, + { + "start": 3643.58, + "end": 3645.86, + "probability": 0.9971 + }, + { + "start": 3645.86, + "end": 3650.04, + "probability": 0.9934 + }, + { + "start": 3650.5, + "end": 3651.82, + "probability": 0.5727 + }, + { + "start": 3651.82, + "end": 3653.74, + "probability": 0.9907 + }, + { + "start": 3654.0, + "end": 3654.36, + "probability": 0.4766 + }, + { + "start": 3654.44, + "end": 3655.68, + "probability": 0.9207 + }, + { + "start": 3656.2, + "end": 3657.1, + "probability": 0.6105 + }, + { + "start": 3658.26, + "end": 3661.26, + "probability": 0.7788 + }, + { + "start": 3662.12, + "end": 3665.57, + "probability": 0.9332 + }, + { + "start": 3666.12, + "end": 3666.46, + "probability": 0.1695 + }, + { + "start": 3666.68, + "end": 3669.08, + "probability": 0.8128 + }, + { + "start": 3669.28, + "end": 3669.98, + "probability": 0.3312 + }, + { + "start": 3670.72, + "end": 3673.36, + "probability": 0.9551 + }, + { + "start": 3674.04, + "end": 3675.84, + "probability": 0.675 + }, + { + "start": 3675.94, + "end": 3676.44, + "probability": 0.7124 + }, + { + "start": 3699.42, + "end": 3701.76, + "probability": 0.1834 + }, + { + "start": 3701.76, + "end": 3701.76, + "probability": 0.0245 + }, + { + "start": 3701.76, + "end": 3701.76, + "probability": 0.1032 + }, + { + "start": 3701.76, + "end": 3702.7, + "probability": 0.8115 + }, + { + "start": 3704.32, + "end": 3704.86, + "probability": 0.0254 + }, + { + "start": 3704.86, + "end": 3704.86, + "probability": 0.0677 + }, + { + "start": 3704.86, + "end": 3704.96, + "probability": 0.0846 + }, + { + "start": 3705.94, + "end": 3706.62, + "probability": 0.5799 + }, + { + "start": 3707.5, + "end": 3711.84, + "probability": 0.8094 + }, + { + "start": 3712.68, + "end": 3716.6, + "probability": 0.5222 + }, + { + "start": 3716.78, + "end": 3717.54, + "probability": 0.4376 + }, + { + "start": 3718.58, + "end": 3721.44, + "probability": 0.9207 + }, + { + "start": 3722.5, + "end": 3723.1, + "probability": 0.7227 + }, + { + "start": 3723.96, + "end": 3726.16, + "probability": 0.5564 + }, + { + "start": 3728.06, + "end": 3730.86, + "probability": 0.9337 + }, + { + "start": 3731.6, + "end": 3733.28, + "probability": 0.7291 + }, + { + "start": 3733.3, + "end": 3734.79, + "probability": 0.8064 + }, + { + "start": 3737.08, + "end": 3738.14, + "probability": 0.7158 + }, + { + "start": 3738.32, + "end": 3740.26, + "probability": 0.8275 + }, + { + "start": 3740.32, + "end": 3741.12, + "probability": 0.8197 + }, + { + "start": 3741.2, + "end": 3742.2, + "probability": 0.7411 + }, + { + "start": 3742.66, + "end": 3744.08, + "probability": 0.9159 + }, + { + "start": 3745.18, + "end": 3747.08, + "probability": 0.9884 + }, + { + "start": 3748.36, + "end": 3750.76, + "probability": 0.974 + }, + { + "start": 3752.02, + "end": 3754.46, + "probability": 0.9949 + }, + { + "start": 3755.12, + "end": 3755.76, + "probability": 0.5387 + }, + { + "start": 3756.82, + "end": 3758.06, + "probability": 0.917 + }, + { + "start": 3759.68, + "end": 3761.08, + "probability": 0.9736 + }, + { + "start": 3762.18, + "end": 3764.51, + "probability": 0.887 + }, + { + "start": 3767.02, + "end": 3768.18, + "probability": 0.9005 + }, + { + "start": 3769.24, + "end": 3770.34, + "probability": 0.8736 + }, + { + "start": 3770.98, + "end": 3772.56, + "probability": 0.8903 + }, + { + "start": 3773.54, + "end": 3775.58, + "probability": 0.9867 + }, + { + "start": 3777.98, + "end": 3778.52, + "probability": 0.5228 + }, + { + "start": 3779.14, + "end": 3782.42, + "probability": 0.8138 + }, + { + "start": 3783.86, + "end": 3784.86, + "probability": 0.952 + }, + { + "start": 3786.56, + "end": 3788.56, + "probability": 0.7951 + }, + { + "start": 3789.5, + "end": 3791.72, + "probability": 0.9353 + }, + { + "start": 3794.58, + "end": 3795.82, + "probability": 0.6702 + }, + { + "start": 3796.5, + "end": 3798.88, + "probability": 0.9807 + }, + { + "start": 3799.46, + "end": 3799.88, + "probability": 0.7366 + }, + { + "start": 3801.2, + "end": 3802.58, + "probability": 0.9968 + }, + { + "start": 3803.18, + "end": 3804.26, + "probability": 0.7563 + }, + { + "start": 3805.2, + "end": 3806.08, + "probability": 0.8514 + }, + { + "start": 3807.5, + "end": 3809.06, + "probability": 0.931 + }, + { + "start": 3809.88, + "end": 3810.88, + "probability": 0.9748 + }, + { + "start": 3811.94, + "end": 3815.1, + "probability": 0.8438 + }, + { + "start": 3815.98, + "end": 3820.22, + "probability": 0.989 + }, + { + "start": 3820.78, + "end": 3825.92, + "probability": 0.9946 + }, + { + "start": 3827.22, + "end": 3828.26, + "probability": 0.9758 + }, + { + "start": 3830.38, + "end": 3832.46, + "probability": 0.9932 + }, + { + "start": 3833.38, + "end": 3834.48, + "probability": 0.9932 + }, + { + "start": 3836.24, + "end": 3838.06, + "probability": 0.815 + }, + { + "start": 3840.04, + "end": 3843.94, + "probability": 0.873 + }, + { + "start": 3844.88, + "end": 3846.46, + "probability": 0.9341 + }, + { + "start": 3848.66, + "end": 3850.66, + "probability": 0.9626 + }, + { + "start": 3851.42, + "end": 3852.08, + "probability": 0.6668 + }, + { + "start": 3852.22, + "end": 3854.16, + "probability": 0.9857 + }, + { + "start": 3855.22, + "end": 3857.86, + "probability": 0.9765 + }, + { + "start": 3859.1, + "end": 3860.36, + "probability": 0.861 + }, + { + "start": 3860.46, + "end": 3862.58, + "probability": 0.8674 + }, + { + "start": 3863.62, + "end": 3866.2, + "probability": 0.9299 + }, + { + "start": 3866.76, + "end": 3868.86, + "probability": 0.9948 + }, + { + "start": 3868.86, + "end": 3872.36, + "probability": 0.9862 + }, + { + "start": 3873.32, + "end": 3873.74, + "probability": 0.4872 + }, + { + "start": 3874.5, + "end": 3879.4, + "probability": 0.9844 + }, + { + "start": 3881.06, + "end": 3883.62, + "probability": 0.9929 + }, + { + "start": 3886.18, + "end": 3886.6, + "probability": 0.9788 + }, + { + "start": 3888.4, + "end": 3891.48, + "probability": 0.9243 + }, + { + "start": 3892.86, + "end": 3895.22, + "probability": 0.8967 + }, + { + "start": 3896.06, + "end": 3897.22, + "probability": 0.8683 + }, + { + "start": 3898.48, + "end": 3902.42, + "probability": 0.8403 + }, + { + "start": 3903.22, + "end": 3906.02, + "probability": 0.9895 + }, + { + "start": 3906.11, + "end": 3908.46, + "probability": 0.9429 + }, + { + "start": 3908.58, + "end": 3909.26, + "probability": 0.7169 + }, + { + "start": 3910.22, + "end": 3911.5, + "probability": 0.5001 + }, + { + "start": 3912.1, + "end": 3914.08, + "probability": 0.8763 + }, + { + "start": 3914.44, + "end": 3916.36, + "probability": 0.9724 + }, + { + "start": 3916.8, + "end": 3917.66, + "probability": 0.8843 + }, + { + "start": 3917.84, + "end": 3921.18, + "probability": 0.9492 + }, + { + "start": 3921.58, + "end": 3922.2, + "probability": 0.8335 + }, + { + "start": 3923.8, + "end": 3926.46, + "probability": 0.9688 + }, + { + "start": 3927.3, + "end": 3931.58, + "probability": 0.9856 + }, + { + "start": 3932.38, + "end": 3933.56, + "probability": 0.933 + }, + { + "start": 3934.16, + "end": 3935.4, + "probability": 0.9954 + }, + { + "start": 3936.5, + "end": 3938.24, + "probability": 0.81 + }, + { + "start": 3939.04, + "end": 3940.48, + "probability": 0.8556 + }, + { + "start": 3941.38, + "end": 3946.84, + "probability": 0.9634 + }, + { + "start": 3947.7, + "end": 3951.28, + "probability": 0.9968 + }, + { + "start": 3952.1, + "end": 3953.66, + "probability": 0.9295 + }, + { + "start": 3954.36, + "end": 3956.02, + "probability": 0.9491 + }, + { + "start": 3957.46, + "end": 3960.86, + "probability": 0.9697 + }, + { + "start": 3961.46, + "end": 3965.26, + "probability": 0.9304 + }, + { + "start": 3966.0, + "end": 3968.18, + "probability": 0.941 + }, + { + "start": 3969.28, + "end": 3970.42, + "probability": 0.9874 + }, + { + "start": 3971.34, + "end": 3972.68, + "probability": 0.2489 + }, + { + "start": 3974.08, + "end": 3975.56, + "probability": 0.061 + }, + { + "start": 3976.54, + "end": 3977.08, + "probability": 0.2472 + }, + { + "start": 3977.62, + "end": 3980.76, + "probability": 0.9823 + }, + { + "start": 3980.86, + "end": 3984.12, + "probability": 0.8771 + }, + { + "start": 3985.54, + "end": 3986.14, + "probability": 0.3335 + }, + { + "start": 3986.78, + "end": 3989.26, + "probability": 0.8371 + }, + { + "start": 3990.22, + "end": 3995.14, + "probability": 0.8655 + }, + { + "start": 3996.16, + "end": 4000.62, + "probability": 0.9417 + }, + { + "start": 4001.6, + "end": 4002.74, + "probability": 0.9879 + }, + { + "start": 4003.5, + "end": 4006.48, + "probability": 0.9856 + }, + { + "start": 4007.48, + "end": 4011.24, + "probability": 0.9776 + }, + { + "start": 4011.48, + "end": 4013.01, + "probability": 0.8131 + }, + { + "start": 4013.5, + "end": 4015.46, + "probability": 0.7234 + }, + { + "start": 4015.78, + "end": 4018.14, + "probability": 0.978 + }, + { + "start": 4019.7, + "end": 4023.84, + "probability": 0.9662 + }, + { + "start": 4024.88, + "end": 4026.02, + "probability": 0.7813 + }, + { + "start": 4027.74, + "end": 4036.34, + "probability": 0.9902 + }, + { + "start": 4037.22, + "end": 4039.2, + "probability": 0.9871 + }, + { + "start": 4040.84, + "end": 4042.56, + "probability": 0.6827 + }, + { + "start": 4043.28, + "end": 4044.28, + "probability": 0.8767 + }, + { + "start": 4044.36, + "end": 4046.06, + "probability": 0.8516 + }, + { + "start": 4046.56, + "end": 4048.25, + "probability": 0.8652 + }, + { + "start": 4048.84, + "end": 4050.7, + "probability": 0.7292 + }, + { + "start": 4051.2, + "end": 4054.76, + "probability": 0.9781 + }, + { + "start": 4054.76, + "end": 4057.68, + "probability": 0.9612 + }, + { + "start": 4058.06, + "end": 4060.78, + "probability": 0.73 + }, + { + "start": 4061.24, + "end": 4066.02, + "probability": 0.9865 + }, + { + "start": 4066.08, + "end": 4067.44, + "probability": 0.9917 + }, + { + "start": 4067.5, + "end": 4068.14, + "probability": 0.8638 + }, + { + "start": 4068.26, + "end": 4068.96, + "probability": 0.8177 + }, + { + "start": 4069.2, + "end": 4070.08, + "probability": 0.9308 + }, + { + "start": 4070.44, + "end": 4074.3, + "probability": 0.9561 + }, + { + "start": 4074.76, + "end": 4075.92, + "probability": 0.8909 + }, + { + "start": 4076.48, + "end": 4078.42, + "probability": 0.9983 + }, + { + "start": 4079.2, + "end": 4079.74, + "probability": 0.5731 + }, + { + "start": 4080.28, + "end": 4082.66, + "probability": 0.7109 + }, + { + "start": 4083.82, + "end": 4086.4, + "probability": 0.7717 + }, + { + "start": 4086.78, + "end": 4088.05, + "probability": 0.9504 + }, + { + "start": 4088.42, + "end": 4089.8, + "probability": 0.9082 + }, + { + "start": 4090.44, + "end": 4091.18, + "probability": 0.8284 + }, + { + "start": 4091.28, + "end": 4092.54, + "probability": 0.7437 + }, + { + "start": 4092.92, + "end": 4096.14, + "probability": 0.9826 + }, + { + "start": 4096.64, + "end": 4097.88, + "probability": 0.9949 + }, + { + "start": 4098.54, + "end": 4099.44, + "probability": 0.836 + }, + { + "start": 4100.08, + "end": 4103.04, + "probability": 0.9262 + }, + { + "start": 4103.78, + "end": 4105.72, + "probability": 0.8035 + }, + { + "start": 4106.18, + "end": 4109.56, + "probability": 0.9299 + }, + { + "start": 4110.02, + "end": 4110.93, + "probability": 0.3518 + }, + { + "start": 4111.12, + "end": 4111.56, + "probability": 0.7977 + }, + { + "start": 4112.54, + "end": 4114.88, + "probability": 0.9431 + }, + { + "start": 4114.96, + "end": 4117.5, + "probability": 0.9691 + }, + { + "start": 4117.98, + "end": 4121.82, + "probability": 0.9412 + }, + { + "start": 4121.88, + "end": 4124.3, + "probability": 0.9938 + }, + { + "start": 4124.98, + "end": 4126.16, + "probability": 0.7296 + }, + { + "start": 4126.7, + "end": 4128.92, + "probability": 0.9277 + }, + { + "start": 4129.04, + "end": 4130.6, + "probability": 0.8665 + }, + { + "start": 4130.98, + "end": 4134.08, + "probability": 0.9786 + }, + { + "start": 4134.54, + "end": 4137.38, + "probability": 0.9969 + }, + { + "start": 4137.48, + "end": 4140.48, + "probability": 0.9631 + }, + { + "start": 4140.48, + "end": 4143.68, + "probability": 0.9789 + }, + { + "start": 4144.12, + "end": 4147.92, + "probability": 0.9827 + }, + { + "start": 4148.3, + "end": 4150.78, + "probability": 0.9016 + }, + { + "start": 4151.24, + "end": 4152.62, + "probability": 0.9925 + }, + { + "start": 4153.58, + "end": 4157.84, + "probability": 0.9904 + }, + { + "start": 4158.78, + "end": 4161.3, + "probability": 0.9819 + }, + { + "start": 4161.3, + "end": 4163.7, + "probability": 0.9906 + }, + { + "start": 4164.12, + "end": 4164.68, + "probability": 0.5169 + }, + { + "start": 4164.82, + "end": 4166.48, + "probability": 0.9704 + }, + { + "start": 4167.38, + "end": 4168.66, + "probability": 0.9919 + }, + { + "start": 4169.3, + "end": 4170.26, + "probability": 0.4938 + }, + { + "start": 4171.26, + "end": 4173.98, + "probability": 0.6211 + }, + { + "start": 4174.36, + "end": 4176.4, + "probability": 0.6547 + }, + { + "start": 4176.84, + "end": 4180.6, + "probability": 0.9724 + }, + { + "start": 4180.6, + "end": 4185.38, + "probability": 0.7492 + }, + { + "start": 4185.76, + "end": 4187.98, + "probability": 0.9799 + }, + { + "start": 4188.26, + "end": 4190.4, + "probability": 0.7878 + }, + { + "start": 4190.72, + "end": 4193.06, + "probability": 0.9025 + }, + { + "start": 4193.88, + "end": 4196.32, + "probability": 0.9004 + }, + { + "start": 4197.24, + "end": 4200.36, + "probability": 0.9966 + }, + { + "start": 4201.12, + "end": 4202.08, + "probability": 0.6845 + }, + { + "start": 4203.56, + "end": 4205.12, + "probability": 0.4411 + }, + { + "start": 4219.92, + "end": 4220.84, + "probability": 0.6108 + }, + { + "start": 4222.6, + "end": 4225.46, + "probability": 0.8582 + }, + { + "start": 4227.16, + "end": 4228.72, + "probability": 0.9484 + }, + { + "start": 4229.98, + "end": 4232.98, + "probability": 0.991 + }, + { + "start": 4233.94, + "end": 4234.94, + "probability": 0.9049 + }, + { + "start": 4235.78, + "end": 4238.2, + "probability": 0.9465 + }, + { + "start": 4240.04, + "end": 4244.48, + "probability": 0.992 + }, + { + "start": 4244.56, + "end": 4246.78, + "probability": 0.9287 + }, + { + "start": 4247.84, + "end": 4248.68, + "probability": 0.471 + }, + { + "start": 4249.26, + "end": 4250.33, + "probability": 0.8929 + }, + { + "start": 4251.58, + "end": 4254.7, + "probability": 0.9545 + }, + { + "start": 4255.26, + "end": 4258.66, + "probability": 0.6646 + }, + { + "start": 4259.06, + "end": 4261.58, + "probability": 0.8473 + }, + { + "start": 4261.78, + "end": 4266.32, + "probability": 0.7942 + }, + { + "start": 4267.6, + "end": 4270.6, + "probability": 0.9694 + }, + { + "start": 4271.64, + "end": 4273.16, + "probability": 0.999 + }, + { + "start": 4274.3, + "end": 4275.8, + "probability": 0.9325 + }, + { + "start": 4276.66, + "end": 4280.46, + "probability": 0.9507 + }, + { + "start": 4280.46, + "end": 4284.76, + "probability": 0.7812 + }, + { + "start": 4285.72, + "end": 4288.68, + "probability": 0.9197 + }, + { + "start": 4288.86, + "end": 4291.72, + "probability": 0.9595 + }, + { + "start": 4293.22, + "end": 4296.56, + "probability": 0.9425 + }, + { + "start": 4297.38, + "end": 4301.72, + "probability": 0.9689 + }, + { + "start": 4302.74, + "end": 4304.9, + "probability": 0.8976 + }, + { + "start": 4306.56, + "end": 4310.54, + "probability": 0.8767 + }, + { + "start": 4311.32, + "end": 4315.74, + "probability": 0.9655 + }, + { + "start": 4316.38, + "end": 4317.04, + "probability": 0.9679 + }, + { + "start": 4317.64, + "end": 4322.02, + "probability": 0.9456 + }, + { + "start": 4322.4, + "end": 4323.48, + "probability": 0.9838 + }, + { + "start": 4324.14, + "end": 4325.0, + "probability": 0.7573 + }, + { + "start": 4325.62, + "end": 4328.84, + "probability": 0.949 + }, + { + "start": 4330.3, + "end": 4335.44, + "probability": 0.9803 + }, + { + "start": 4335.44, + "end": 4343.32, + "probability": 0.9901 + }, + { + "start": 4343.96, + "end": 4347.16, + "probability": 0.9893 + }, + { + "start": 4347.26, + "end": 4348.36, + "probability": 0.7105 + }, + { + "start": 4349.76, + "end": 4351.98, + "probability": 0.962 + }, + { + "start": 4352.62, + "end": 4354.82, + "probability": 0.978 + }, + { + "start": 4355.5, + "end": 4360.84, + "probability": 0.9968 + }, + { + "start": 4361.54, + "end": 4365.28, + "probability": 0.8989 + }, + { + "start": 4366.14, + "end": 4366.76, + "probability": 0.7574 + }, + { + "start": 4367.4, + "end": 4370.22, + "probability": 0.985 + }, + { + "start": 4371.1, + "end": 4374.68, + "probability": 0.9977 + }, + { + "start": 4374.68, + "end": 4379.28, + "probability": 0.9905 + }, + { + "start": 4380.36, + "end": 4383.78, + "probability": 0.9889 + }, + { + "start": 4384.42, + "end": 4387.5, + "probability": 0.9968 + }, + { + "start": 4388.16, + "end": 4391.74, + "probability": 0.9991 + }, + { + "start": 4392.26, + "end": 4394.88, + "probability": 0.9975 + }, + { + "start": 4396.64, + "end": 4401.58, + "probability": 0.9792 + }, + { + "start": 4402.56, + "end": 4405.98, + "probability": 0.9972 + }, + { + "start": 4406.9, + "end": 4408.42, + "probability": 0.8415 + }, + { + "start": 4409.22, + "end": 4413.88, + "probability": 0.7935 + }, + { + "start": 4414.78, + "end": 4421.04, + "probability": 0.9877 + }, + { + "start": 4422.78, + "end": 4425.78, + "probability": 0.9673 + }, + { + "start": 4426.52, + "end": 4428.36, + "probability": 0.9957 + }, + { + "start": 4429.18, + "end": 4433.4, + "probability": 0.9981 + }, + { + "start": 4433.96, + "end": 4439.76, + "probability": 0.9979 + }, + { + "start": 4440.3, + "end": 4441.5, + "probability": 0.6831 + }, + { + "start": 4442.16, + "end": 4446.18, + "probability": 0.8962 + }, + { + "start": 4447.16, + "end": 4451.5, + "probability": 0.9858 + }, + { + "start": 4452.72, + "end": 4455.56, + "probability": 0.8478 + }, + { + "start": 4456.96, + "end": 4457.66, + "probability": 0.8529 + }, + { + "start": 4458.26, + "end": 4459.28, + "probability": 0.9335 + }, + { + "start": 4460.08, + "end": 4464.2, + "probability": 0.9152 + }, + { + "start": 4465.04, + "end": 4470.5, + "probability": 0.8391 + }, + { + "start": 4471.36, + "end": 4473.96, + "probability": 0.7537 + }, + { + "start": 4474.48, + "end": 4479.62, + "probability": 0.8892 + }, + { + "start": 4479.74, + "end": 4482.86, + "probability": 0.9565 + }, + { + "start": 4484.32, + "end": 4484.78, + "probability": 0.6684 + }, + { + "start": 4485.52, + "end": 4486.18, + "probability": 0.9872 + }, + { + "start": 4487.58, + "end": 4489.64, + "probability": 0.9935 + }, + { + "start": 4490.16, + "end": 4491.94, + "probability": 0.9824 + }, + { + "start": 4493.14, + "end": 4496.02, + "probability": 0.9933 + }, + { + "start": 4496.28, + "end": 4500.06, + "probability": 0.9561 + }, + { + "start": 4500.06, + "end": 4503.62, + "probability": 0.9985 + }, + { + "start": 4505.16, + "end": 4506.84, + "probability": 0.9615 + }, + { + "start": 4507.48, + "end": 4510.84, + "probability": 0.9368 + }, + { + "start": 4512.06, + "end": 4518.3, + "probability": 0.9377 + }, + { + "start": 4518.96, + "end": 4524.84, + "probability": 0.9949 + }, + { + "start": 4525.72, + "end": 4528.76, + "probability": 0.7881 + }, + { + "start": 4529.46, + "end": 4534.42, + "probability": 0.9964 + }, + { + "start": 4536.14, + "end": 4537.34, + "probability": 0.616 + }, + { + "start": 4538.82, + "end": 4541.12, + "probability": 0.8178 + }, + { + "start": 4542.18, + "end": 4544.06, + "probability": 0.9952 + }, + { + "start": 4544.2, + "end": 4546.8, + "probability": 0.7458 + }, + { + "start": 4547.94, + "end": 4549.62, + "probability": 0.6724 + }, + { + "start": 4550.2, + "end": 4550.96, + "probability": 0.7211 + }, + { + "start": 4552.04, + "end": 4560.58, + "probability": 0.8635 + }, + { + "start": 4560.86, + "end": 4562.7, + "probability": 0.8916 + }, + { + "start": 4562.72, + "end": 4565.36, + "probability": 0.9601 + }, + { + "start": 4565.94, + "end": 4568.22, + "probability": 0.8862 + }, + { + "start": 4568.98, + "end": 4570.08, + "probability": 0.6021 + }, + { + "start": 4570.64, + "end": 4572.8, + "probability": 0.8639 + }, + { + "start": 4572.9, + "end": 4578.18, + "probability": 0.8984 + }, + { + "start": 4578.76, + "end": 4582.48, + "probability": 0.9683 + }, + { + "start": 4583.14, + "end": 4586.9, + "probability": 0.501 + }, + { + "start": 4587.62, + "end": 4591.3, + "probability": 0.4543 + }, + { + "start": 4591.88, + "end": 4592.14, + "probability": 0.1072 + }, + { + "start": 4592.14, + "end": 4601.36, + "probability": 0.9224 + }, + { + "start": 4601.66, + "end": 4602.56, + "probability": 0.1977 + }, + { + "start": 4602.62, + "end": 4603.4, + "probability": 0.6739 + }, + { + "start": 4603.56, + "end": 4604.2, + "probability": 0.7128 + }, + { + "start": 4604.84, + "end": 4606.22, + "probability": 0.7722 + }, + { + "start": 4606.76, + "end": 4610.04, + "probability": 0.9937 + }, + { + "start": 4610.52, + "end": 4615.54, + "probability": 0.9746 + }, + { + "start": 4615.64, + "end": 4617.54, + "probability": 0.9253 + }, + { + "start": 4618.36, + "end": 4623.6, + "probability": 0.9391 + }, + { + "start": 4623.7, + "end": 4625.08, + "probability": 0.7627 + }, + { + "start": 4625.78, + "end": 4630.94, + "probability": 0.7594 + }, + { + "start": 4631.74, + "end": 4635.22, + "probability": 0.9513 + }, + { + "start": 4635.34, + "end": 4636.58, + "probability": 0.9126 + }, + { + "start": 4636.86, + "end": 4638.76, + "probability": 0.7007 + }, + { + "start": 4639.42, + "end": 4643.82, + "probability": 0.9198 + }, + { + "start": 4644.34, + "end": 4646.8, + "probability": 0.9122 + }, + { + "start": 4647.44, + "end": 4653.0, + "probability": 0.9986 + }, + { + "start": 4653.18, + "end": 4655.64, + "probability": 0.6342 + }, + { + "start": 4656.02, + "end": 4664.06, + "probability": 0.9888 + }, + { + "start": 4664.28, + "end": 4670.12, + "probability": 0.9742 + }, + { + "start": 4670.48, + "end": 4672.78, + "probability": 0.9436 + }, + { + "start": 4673.54, + "end": 4679.44, + "probability": 0.9633 + }, + { + "start": 4679.8, + "end": 4680.48, + "probability": 0.5709 + }, + { + "start": 4680.84, + "end": 4682.16, + "probability": 0.6107 + }, + { + "start": 4682.22, + "end": 4688.38, + "probability": 0.8486 + }, + { + "start": 4689.12, + "end": 4689.94, + "probability": 0.9453 + }, + { + "start": 4690.42, + "end": 4691.84, + "probability": 0.6873 + }, + { + "start": 4692.02, + "end": 4692.92, + "probability": 0.7738 + }, + { + "start": 4693.74, + "end": 4696.88, + "probability": 0.9718 + }, + { + "start": 4696.88, + "end": 4699.48, + "probability": 0.9617 + }, + { + "start": 4700.08, + "end": 4701.54, + "probability": 0.2744 + }, + { + "start": 4701.8, + "end": 4705.06, + "probability": 0.7456 + }, + { + "start": 4705.56, + "end": 4707.38, + "probability": 0.4977 + }, + { + "start": 4707.42, + "end": 4708.12, + "probability": 0.5479 + }, + { + "start": 4709.56, + "end": 4711.38, + "probability": 0.1268 + }, + { + "start": 4727.39, + "end": 4729.1, + "probability": 0.0327 + }, + { + "start": 4729.78, + "end": 4730.06, + "probability": 0.0143 + }, + { + "start": 4730.06, + "end": 4730.06, + "probability": 0.0633 + }, + { + "start": 4730.06, + "end": 4730.06, + "probability": 0.4481 + }, + { + "start": 4730.06, + "end": 4730.06, + "probability": 0.0679 + }, + { + "start": 4730.06, + "end": 4730.62, + "probability": 0.2169 + }, + { + "start": 4731.14, + "end": 4734.64, + "probability": 0.8424 + }, + { + "start": 4736.92, + "end": 4741.26, + "probability": 0.7864 + }, + { + "start": 4741.52, + "end": 4743.96, + "probability": 0.8823 + }, + { + "start": 4744.76, + "end": 4751.42, + "probability": 0.9393 + }, + { + "start": 4751.76, + "end": 4752.92, + "probability": 0.7882 + }, + { + "start": 4753.42, + "end": 4755.74, + "probability": 0.9354 + }, + { + "start": 4755.94, + "end": 4760.8, + "probability": 0.8623 + }, + { + "start": 4761.4, + "end": 4763.92, + "probability": 0.8732 + }, + { + "start": 4765.38, + "end": 4765.86, + "probability": 0.0146 + }, + { + "start": 4809.28, + "end": 4809.58, + "probability": 0.3367 + }, + { + "start": 4814.78, + "end": 4820.06, + "probability": 0.5168 + }, + { + "start": 4822.05, + "end": 4826.3, + "probability": 0.4989 + }, + { + "start": 4827.3, + "end": 4830.18, + "probability": 0.1103 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4943.0, + "end": 4943.0, + "probability": 0.0 + }, + { + "start": 4966.34, + "end": 4966.82, + "probability": 0.3836 + }, + { + "start": 4972.04, + "end": 4974.84, + "probability": 0.0381 + }, + { + "start": 4975.03, + "end": 4975.24, + "probability": 0.1202 + }, + { + "start": 4975.24, + "end": 4975.24, + "probability": 0.258 + }, + { + "start": 4975.24, + "end": 4975.99, + "probability": 0.2066 + }, + { + "start": 4976.64, + "end": 4977.04, + "probability": 0.4062 + }, + { + "start": 4978.9, + "end": 4980.0, + "probability": 0.0507 + }, + { + "start": 4982.3, + "end": 4983.04, + "probability": 0.0793 + }, + { + "start": 4997.24, + "end": 5000.42, + "probability": 0.0628 + }, + { + "start": 5002.48, + "end": 5004.78, + "probability": 0.0408 + }, + { + "start": 5005.75, + "end": 5007.96, + "probability": 0.0481 + }, + { + "start": 5008.13, + "end": 5009.74, + "probability": 0.2153 + }, + { + "start": 5010.2, + "end": 5012.9, + "probability": 0.3314 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5079.0, + "end": 5079.0, + "probability": 0.0 + }, + { + "start": 5108.76, + "end": 5112.96, + "probability": 0.1023 + }, + { + "start": 5113.02, + "end": 5118.68, + "probability": 0.0643 + }, + { + "start": 5119.52, + "end": 5121.24, + "probability": 0.0952 + }, + { + "start": 5121.94, + "end": 5128.84, + "probability": 0.2449 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.0, + "end": 5363.0, + "probability": 0.0 + }, + { + "start": 5363.18, + "end": 5368.64, + "probability": 0.8752 + }, + { + "start": 5369.64, + "end": 5372.28, + "probability": 0.4494 + }, + { + "start": 5372.38, + "end": 5379.2, + "probability": 0.9982 + }, + { + "start": 5380.02, + "end": 5380.2, + "probability": 0.3938 + }, + { + "start": 5380.3, + "end": 5384.54, + "probability": 0.9851 + }, + { + "start": 5385.06, + "end": 5387.88, + "probability": 0.972 + }, + { + "start": 5388.06, + "end": 5389.56, + "probability": 0.9936 + }, + { + "start": 5389.78, + "end": 5390.48, + "probability": 0.8851 + }, + { + "start": 5390.68, + "end": 5391.56, + "probability": 0.9891 + }, + { + "start": 5392.18, + "end": 5395.74, + "probability": 0.9945 + }, + { + "start": 5396.42, + "end": 5396.58, + "probability": 0.0766 + }, + { + "start": 5397.7, + "end": 5403.5, + "probability": 0.9906 + }, + { + "start": 5404.04, + "end": 5405.3, + "probability": 0.9753 + }, + { + "start": 5406.28, + "end": 5406.54, + "probability": 0.7554 + }, + { + "start": 5408.08, + "end": 5410.86, + "probability": 0.9904 + }, + { + "start": 5411.48, + "end": 5415.88, + "probability": 0.9012 + }, + { + "start": 5416.8, + "end": 5417.64, + "probability": 0.9815 + }, + { + "start": 5418.3, + "end": 5420.9, + "probability": 0.9479 + }, + { + "start": 5427.04, + "end": 5430.22, + "probability": 0.7249 + }, + { + "start": 5431.06, + "end": 5431.98, + "probability": 0.7782 + }, + { + "start": 5432.12, + "end": 5433.52, + "probability": 0.6283 + }, + { + "start": 5433.7, + "end": 5435.34, + "probability": 0.8374 + }, + { + "start": 5436.02, + "end": 5441.04, + "probability": 0.8969 + }, + { + "start": 5441.98, + "end": 5443.56, + "probability": 0.9335 + }, + { + "start": 5444.26, + "end": 5445.28, + "probability": 0.7146 + }, + { + "start": 5446.6, + "end": 5448.32, + "probability": 0.9989 + }, + { + "start": 5449.08, + "end": 5453.96, + "probability": 0.9701 + }, + { + "start": 5454.68, + "end": 5458.78, + "probability": 0.9336 + }, + { + "start": 5459.58, + "end": 5464.78, + "probability": 0.9533 + }, + { + "start": 5465.18, + "end": 5467.46, + "probability": 0.9983 + }, + { + "start": 5467.98, + "end": 5470.52, + "probability": 0.895 + }, + { + "start": 5471.12, + "end": 5474.18, + "probability": 0.8479 + }, + { + "start": 5474.64, + "end": 5479.2, + "probability": 0.9951 + }, + { + "start": 5479.3, + "end": 5481.14, + "probability": 0.855 + }, + { + "start": 5481.96, + "end": 5486.2, + "probability": 0.8959 + }, + { + "start": 5487.08, + "end": 5489.66, + "probability": 0.8657 + }, + { + "start": 5490.3, + "end": 5495.4, + "probability": 0.9881 + }, + { + "start": 5495.76, + "end": 5497.0, + "probability": 0.9666 + }, + { + "start": 5497.4, + "end": 5498.72, + "probability": 0.9902 + }, + { + "start": 5498.78, + "end": 5499.58, + "probability": 0.892 + }, + { + "start": 5501.08, + "end": 5504.12, + "probability": 0.9388 + }, + { + "start": 5505.56, + "end": 5507.5, + "probability": 0.6228 + }, + { + "start": 5508.32, + "end": 5510.92, + "probability": 0.8899 + }, + { + "start": 5511.34, + "end": 5513.76, + "probability": 0.9638 + }, + { + "start": 5514.24, + "end": 5520.44, + "probability": 0.9106 + }, + { + "start": 5520.6, + "end": 5522.5, + "probability": 0.9554 + }, + { + "start": 5523.14, + "end": 5527.28, + "probability": 0.9342 + }, + { + "start": 5527.3, + "end": 5527.86, + "probability": 0.7961 + }, + { + "start": 5528.7, + "end": 5530.18, + "probability": 0.7196 + }, + { + "start": 5530.4, + "end": 5532.92, + "probability": 0.9785 + }, + { + "start": 5533.42, + "end": 5534.36, + "probability": 0.9322 + }, + { + "start": 5534.92, + "end": 5535.82, + "probability": 0.878 + }, + { + "start": 5536.62, + "end": 5540.12, + "probability": 0.7622 + }, + { + "start": 5540.34, + "end": 5544.74, + "probability": 0.9812 + }, + { + "start": 5545.18, + "end": 5546.46, + "probability": 0.9853 + }, + { + "start": 5546.62, + "end": 5549.32, + "probability": 0.8086 + }, + { + "start": 5549.58, + "end": 5551.85, + "probability": 0.9803 + }, + { + "start": 5553.36, + "end": 5557.14, + "probability": 0.9651 + }, + { + "start": 5557.64, + "end": 5559.86, + "probability": 0.9082 + }, + { + "start": 5559.9, + "end": 5562.74, + "probability": 0.8181 + }, + { + "start": 5563.06, + "end": 5565.5, + "probability": 0.9264 + }, + { + "start": 5565.96, + "end": 5572.12, + "probability": 0.99 + }, + { + "start": 5572.68, + "end": 5576.58, + "probability": 0.962 + }, + { + "start": 5576.58, + "end": 5583.34, + "probability": 0.8654 + }, + { + "start": 5583.54, + "end": 5586.46, + "probability": 0.9712 + }, + { + "start": 5586.6, + "end": 5589.3, + "probability": 0.8123 + }, + { + "start": 5589.38, + "end": 5589.96, + "probability": 0.792 + }, + { + "start": 5591.16, + "end": 5594.42, + "probability": 0.7271 + }, + { + "start": 5594.5, + "end": 5597.46, + "probability": 0.9443 + }, + { + "start": 5598.48, + "end": 5601.18, + "probability": 0.952 + }, + { + "start": 5601.18, + "end": 5603.04, + "probability": 0.8015 + }, + { + "start": 5603.64, + "end": 5605.28, + "probability": 0.4806 + }, + { + "start": 5606.16, + "end": 5610.18, + "probability": 0.9636 + }, + { + "start": 5610.82, + "end": 5612.26, + "probability": 0.7328 + }, + { + "start": 5612.28, + "end": 5612.96, + "probability": 0.6477 + }, + { + "start": 5613.54, + "end": 5614.12, + "probability": 0.7277 + }, + { + "start": 5618.19, + "end": 5620.65, + "probability": 0.0582 + }, + { + "start": 5633.68, + "end": 5634.8, + "probability": 0.0391 + }, + { + "start": 5634.8, + "end": 5634.86, + "probability": 0.0386 + }, + { + "start": 5634.86, + "end": 5635.02, + "probability": 0.022 + }, + { + "start": 5635.02, + "end": 5635.02, + "probability": 0.1536 + }, + { + "start": 5635.02, + "end": 5638.96, + "probability": 0.2853 + }, + { + "start": 5639.14, + "end": 5645.08, + "probability": 0.8048 + }, + { + "start": 5646.08, + "end": 5646.9, + "probability": 0.5711 + }, + { + "start": 5646.9, + "end": 5646.98, + "probability": 0.6798 + }, + { + "start": 5646.98, + "end": 5648.64, + "probability": 0.2832 + }, + { + "start": 5650.04, + "end": 5652.5, + "probability": 0.6617 + }, + { + "start": 5653.12, + "end": 5654.06, + "probability": 0.9093 + }, + { + "start": 5654.5, + "end": 5655.57, + "probability": 0.854 + }, + { + "start": 5655.78, + "end": 5657.74, + "probability": 0.6636 + }, + { + "start": 5657.8, + "end": 5658.74, + "probability": 0.9348 + }, + { + "start": 5658.94, + "end": 5660.04, + "probability": 0.106 + }, + { + "start": 5660.84, + "end": 5662.18, + "probability": 0.7508 + }, + { + "start": 5663.3, + "end": 5663.3, + "probability": 0.3196 + }, + { + "start": 5663.3, + "end": 5664.44, + "probability": 0.6402 + }, + { + "start": 5664.74, + "end": 5665.78, + "probability": 0.665 + }, + { + "start": 5665.92, + "end": 5669.08, + "probability": 0.8911 + }, + { + "start": 5669.22, + "end": 5669.74, + "probability": 0.492 + }, + { + "start": 5669.88, + "end": 5673.38, + "probability": 0.9472 + }, + { + "start": 5673.8, + "end": 5676.08, + "probability": 0.7166 + }, + { + "start": 5676.76, + "end": 5681.42, + "probability": 0.9452 + }, + { + "start": 5682.3, + "end": 5685.94, + "probability": 0.9856 + }, + { + "start": 5685.96, + "end": 5691.94, + "probability": 0.8012 + }, + { + "start": 5692.06, + "end": 5693.38, + "probability": 0.3905 + }, + { + "start": 5694.28, + "end": 5695.96, + "probability": 0.7179 + }, + { + "start": 5696.54, + "end": 5700.32, + "probability": 0.8099 + }, + { + "start": 5701.26, + "end": 5702.62, + "probability": 0.8033 + }, + { + "start": 5702.62, + "end": 5703.32, + "probability": 0.4877 + }, + { + "start": 5703.44, + "end": 5705.36, + "probability": 0.5574 + }, + { + "start": 5705.4, + "end": 5707.26, + "probability": 0.8158 + }, + { + "start": 5707.76, + "end": 5708.43, + "probability": 0.9229 + }, + { + "start": 5708.58, + "end": 5709.28, + "probability": 0.9963 + }, + { + "start": 5710.08, + "end": 5712.12, + "probability": 0.9967 + }, + { + "start": 5712.98, + "end": 5713.98, + "probability": 0.6791 + }, + { + "start": 5714.1, + "end": 5715.38, + "probability": 0.7703 + }, + { + "start": 5715.98, + "end": 5720.12, + "probability": 0.9584 + }, + { + "start": 5721.72, + "end": 5725.72, + "probability": 0.9732 + }, + { + "start": 5725.82, + "end": 5726.9, + "probability": 0.971 + }, + { + "start": 5727.32, + "end": 5732.46, + "probability": 0.9883 + }, + { + "start": 5733.32, + "end": 5734.98, + "probability": 0.9155 + }, + { + "start": 5735.46, + "end": 5739.44, + "probability": 0.813 + }, + { + "start": 5739.8, + "end": 5740.3, + "probability": 0.7373 + }, + { + "start": 5740.42, + "end": 5740.58, + "probability": 0.8245 + }, + { + "start": 5740.58, + "end": 5740.8, + "probability": 0.766 + }, + { + "start": 5740.88, + "end": 5742.02, + "probability": 0.7896 + }, + { + "start": 5742.72, + "end": 5743.26, + "probability": 0.7773 + }, + { + "start": 5744.34, + "end": 5745.34, + "probability": 0.9873 + }, + { + "start": 5745.78, + "end": 5746.2, + "probability": 0.7186 + }, + { + "start": 5746.3, + "end": 5749.0, + "probability": 0.9934 + }, + { + "start": 5749.86, + "end": 5751.64, + "probability": 0.9225 + }, + { + "start": 5751.82, + "end": 5754.82, + "probability": 0.979 + }, + { + "start": 5755.22, + "end": 5757.64, + "probability": 0.897 + }, + { + "start": 5757.64, + "end": 5758.06, + "probability": 0.4058 + }, + { + "start": 5758.54, + "end": 5759.64, + "probability": 0.7445 + }, + { + "start": 5759.74, + "end": 5764.48, + "probability": 0.9634 + }, + { + "start": 5765.06, + "end": 5767.16, + "probability": 0.9583 + }, + { + "start": 5767.26, + "end": 5767.98, + "probability": 0.7974 + }, + { + "start": 5768.06, + "end": 5768.56, + "probability": 0.5557 + }, + { + "start": 5768.6, + "end": 5769.92, + "probability": 0.5856 + }, + { + "start": 5769.94, + "end": 5771.06, + "probability": 0.7851 + }, + { + "start": 5771.14, + "end": 5772.7, + "probability": 0.5398 + }, + { + "start": 5773.62, + "end": 5774.86, + "probability": 0.9463 + }, + { + "start": 5775.4, + "end": 5778.5, + "probability": 0.9487 + }, + { + "start": 5780.1, + "end": 5782.04, + "probability": 0.8749 + }, + { + "start": 5782.58, + "end": 5783.82, + "probability": 0.8149 + }, + { + "start": 5783.82, + "end": 5785.2, + "probability": 0.864 + }, + { + "start": 5785.28, + "end": 5786.84, + "probability": 0.9824 + }, + { + "start": 5787.6, + "end": 5790.62, + "probability": 0.8553 + }, + { + "start": 5791.02, + "end": 5792.74, + "probability": 0.9866 + }, + { + "start": 5792.88, + "end": 5797.64, + "probability": 0.7369 + }, + { + "start": 5798.5, + "end": 5800.98, + "probability": 0.9548 + }, + { + "start": 5802.38, + "end": 5804.12, + "probability": 0.6874 + }, + { + "start": 5804.26, + "end": 5809.82, + "probability": 0.9928 + }, + { + "start": 5809.82, + "end": 5810.86, + "probability": 0.8312 + }, + { + "start": 5810.94, + "end": 5811.94, + "probability": 0.6838 + }, + { + "start": 5812.0, + "end": 5816.72, + "probability": 0.9751 + }, + { + "start": 5816.86, + "end": 5817.41, + "probability": 0.5992 + }, + { + "start": 5818.72, + "end": 5820.34, + "probability": 0.8403 + }, + { + "start": 5820.36, + "end": 5821.72, + "probability": 0.9171 + }, + { + "start": 5822.28, + "end": 5824.1, + "probability": 0.9717 + }, + { + "start": 5824.36, + "end": 5826.22, + "probability": 0.7685 + }, + { + "start": 5826.3, + "end": 5826.62, + "probability": 0.5709 + }, + { + "start": 5826.66, + "end": 5826.78, + "probability": 0.7681 + }, + { + "start": 5826.82, + "end": 5827.34, + "probability": 0.6162 + }, + { + "start": 5827.62, + "end": 5831.66, + "probability": 0.991 + }, + { + "start": 5832.34, + "end": 5834.54, + "probability": 0.9409 + }, + { + "start": 5834.82, + "end": 5835.5, + "probability": 0.8848 + }, + { + "start": 5835.58, + "end": 5840.08, + "probability": 0.9698 + }, + { + "start": 5840.82, + "end": 5842.0, + "probability": 0.7027 + }, + { + "start": 5842.18, + "end": 5843.08, + "probability": 0.8154 + }, + { + "start": 5843.16, + "end": 5843.42, + "probability": 0.513 + }, + { + "start": 5844.16, + "end": 5845.0, + "probability": 0.8528 + }, + { + "start": 5845.34, + "end": 5846.68, + "probability": 0.9355 + }, + { + "start": 5846.74, + "end": 5848.08, + "probability": 0.8517 + }, + { + "start": 5848.38, + "end": 5851.02, + "probability": 0.9393 + }, + { + "start": 5851.68, + "end": 5852.24, + "probability": 0.8936 + }, + { + "start": 5852.34, + "end": 5857.38, + "probability": 0.9962 + }, + { + "start": 5858.3, + "end": 5860.42, + "probability": 0.9978 + }, + { + "start": 5860.78, + "end": 5862.04, + "probability": 0.9868 + }, + { + "start": 5862.14, + "end": 5864.12, + "probability": 0.9323 + }, + { + "start": 5864.12, + "end": 5867.62, + "probability": 0.9932 + }, + { + "start": 5867.7, + "end": 5870.78, + "probability": 0.9977 + }, + { + "start": 5870.78, + "end": 5875.24, + "probability": 0.8696 + }, + { + "start": 5875.4, + "end": 5875.8, + "probability": 0.5074 + }, + { + "start": 5876.42, + "end": 5877.24, + "probability": 0.7908 + }, + { + "start": 5877.24, + "end": 5881.04, + "probability": 0.9322 + }, + { + "start": 5881.3, + "end": 5881.83, + "probability": 0.3517 + }, + { + "start": 5882.56, + "end": 5885.24, + "probability": 0.9175 + }, + { + "start": 5885.38, + "end": 5887.52, + "probability": 0.8678 + }, + { + "start": 5887.96, + "end": 5889.18, + "probability": 0.9068 + }, + { + "start": 5889.68, + "end": 5891.76, + "probability": 0.3698 + }, + { + "start": 5892.08, + "end": 5892.9, + "probability": 0.9756 + }, + { + "start": 5893.88, + "end": 5895.88, + "probability": 0.9937 + }, + { + "start": 5896.23, + "end": 5897.08, + "probability": 0.1342 + }, + { + "start": 5898.04, + "end": 5899.08, + "probability": 0.8582 + }, + { + "start": 5899.16, + "end": 5900.62, + "probability": 0.493 + }, + { + "start": 5901.04, + "end": 5902.2, + "probability": 0.9651 + }, + { + "start": 5902.38, + "end": 5905.52, + "probability": 0.9969 + }, + { + "start": 5906.04, + "end": 5909.88, + "probability": 0.9446 + }, + { + "start": 5910.42, + "end": 5911.56, + "probability": 0.8136 + }, + { + "start": 5912.06, + "end": 5914.86, + "probability": 0.9705 + }, + { + "start": 5915.58, + "end": 5916.34, + "probability": 0.8143 + }, + { + "start": 5916.58, + "end": 5918.06, + "probability": 0.9164 + }, + { + "start": 5918.5, + "end": 5919.98, + "probability": 0.9838 + }, + { + "start": 5920.36, + "end": 5920.98, + "probability": 0.8813 + }, + { + "start": 5921.26, + "end": 5922.76, + "probability": 0.9847 + }, + { + "start": 5922.82, + "end": 5925.88, + "probability": 0.9915 + }, + { + "start": 5926.2, + "end": 5927.61, + "probability": 0.9967 + }, + { + "start": 5929.1, + "end": 5930.76, + "probability": 0.6443 + }, + { + "start": 5930.84, + "end": 5930.98, + "probability": 0.5705 + }, + { + "start": 5930.98, + "end": 5931.33, + "probability": 0.916 + }, + { + "start": 5931.56, + "end": 5935.34, + "probability": 0.6936 + }, + { + "start": 5935.42, + "end": 5937.28, + "probability": 0.4358 + }, + { + "start": 5937.38, + "end": 5938.68, + "probability": 0.8654 + }, + { + "start": 5938.86, + "end": 5939.16, + "probability": 0.7212 + }, + { + "start": 5939.62, + "end": 5942.48, + "probability": 0.9896 + }, + { + "start": 5942.48, + "end": 5945.72, + "probability": 0.9456 + }, + { + "start": 5946.04, + "end": 5947.92, + "probability": 0.8813 + }, + { + "start": 5947.96, + "end": 5951.04, + "probability": 0.8333 + }, + { + "start": 5951.16, + "end": 5952.84, + "probability": 0.8194 + }, + { + "start": 5953.06, + "end": 5956.24, + "probability": 0.9444 + }, + { + "start": 5957.06, + "end": 5959.8, + "probability": 0.8394 + }, + { + "start": 5959.86, + "end": 5960.72, + "probability": 0.6166 + }, + { + "start": 5960.74, + "end": 5961.6, + "probability": 0.4402 + }, + { + "start": 5961.6, + "end": 5961.6, + "probability": 0.4207 + }, + { + "start": 5962.14, + "end": 5963.02, + "probability": 0.9388 + }, + { + "start": 5963.02, + "end": 5963.6, + "probability": 0.0928 + }, + { + "start": 5963.82, + "end": 5964.68, + "probability": 0.8086 + }, + { + "start": 5964.8, + "end": 5965.2, + "probability": 0.4171 + }, + { + "start": 5965.22, + "end": 5966.52, + "probability": 0.9604 + }, + { + "start": 5967.0, + "end": 5969.58, + "probability": 0.9983 + }, + { + "start": 5969.58, + "end": 5972.76, + "probability": 0.9825 + }, + { + "start": 5973.0, + "end": 5973.54, + "probability": 0.8271 + }, + { + "start": 5973.78, + "end": 5975.14, + "probability": 0.6501 + }, + { + "start": 5976.19, + "end": 5978.68, + "probability": 0.9899 + }, + { + "start": 5980.18, + "end": 5983.66, + "probability": 0.9096 + }, + { + "start": 5983.78, + "end": 5986.26, + "probability": 0.8313 + }, + { + "start": 5990.63, + "end": 5992.52, + "probability": 0.6066 + }, + { + "start": 5996.16, + "end": 5998.26, + "probability": 0.7241 + }, + { + "start": 5998.3, + "end": 5999.44, + "probability": 0.9063 + }, + { + "start": 6007.48, + "end": 6008.3, + "probability": 0.4952 + }, + { + "start": 6008.36, + "end": 6009.14, + "probability": 0.8491 + }, + { + "start": 6009.46, + "end": 6014.7, + "probability": 0.9897 + }, + { + "start": 6018.58, + "end": 6021.72, + "probability": 0.6578 + }, + { + "start": 6022.62, + "end": 6022.82, + "probability": 0.041 + }, + { + "start": 6022.96, + "end": 6028.7, + "probability": 0.9894 + }, + { + "start": 6029.48, + "end": 6030.46, + "probability": 0.9534 + }, + { + "start": 6030.56, + "end": 6033.9, + "probability": 0.9434 + }, + { + "start": 6034.46, + "end": 6034.6, + "probability": 0.0593 + }, + { + "start": 6035.14, + "end": 6037.38, + "probability": 0.976 + }, + { + "start": 6037.38, + "end": 6041.22, + "probability": 0.9687 + }, + { + "start": 6041.44, + "end": 6042.54, + "probability": 0.979 + }, + { + "start": 6043.36, + "end": 6044.46, + "probability": 0.731 + }, + { + "start": 6044.54, + "end": 6048.7, + "probability": 0.7473 + }, + { + "start": 6049.1, + "end": 6049.6, + "probability": 0.413 + }, + { + "start": 6049.76, + "end": 6050.4, + "probability": 0.7375 + }, + { + "start": 6050.5, + "end": 6051.9, + "probability": 0.8301 + }, + { + "start": 6052.14, + "end": 6052.52, + "probability": 0.7667 + }, + { + "start": 6052.66, + "end": 6055.22, + "probability": 0.6674 + }, + { + "start": 6055.36, + "end": 6056.89, + "probability": 0.9753 + }, + { + "start": 6066.02, + "end": 6068.32, + "probability": 0.3406 + }, + { + "start": 6069.44, + "end": 6070.52, + "probability": 0.7661 + }, + { + "start": 6070.62, + "end": 6071.9, + "probability": 0.9902 + }, + { + "start": 6072.44, + "end": 6073.14, + "probability": 0.6598 + }, + { + "start": 6073.52, + "end": 6075.5, + "probability": 0.9708 + }, + { + "start": 6075.78, + "end": 6078.24, + "probability": 0.9609 + }, + { + "start": 6078.34, + "end": 6079.98, + "probability": 0.9064 + }, + { + "start": 6080.3, + "end": 6080.78, + "probability": 0.9113 + }, + { + "start": 6080.86, + "end": 6082.28, + "probability": 0.7912 + }, + { + "start": 6082.3, + "end": 6084.44, + "probability": 0.7507 + }, + { + "start": 6084.64, + "end": 6085.48, + "probability": 0.8076 + }, + { + "start": 6085.92, + "end": 6088.46, + "probability": 0.964 + }, + { + "start": 6089.04, + "end": 6092.18, + "probability": 0.8745 + }, + { + "start": 6092.72, + "end": 6095.28, + "probability": 0.9842 + }, + { + "start": 6095.28, + "end": 6098.54, + "probability": 0.9674 + }, + { + "start": 6098.68, + "end": 6101.89, + "probability": 0.8831 + }, + { + "start": 6102.04, + "end": 6104.68, + "probability": 0.9602 + }, + { + "start": 6104.96, + "end": 6105.24, + "probability": 0.4006 + }, + { + "start": 6105.28, + "end": 6106.02, + "probability": 0.7465 + }, + { + "start": 6106.08, + "end": 6106.74, + "probability": 0.8974 + }, + { + "start": 6108.06, + "end": 6111.8, + "probability": 0.915 + }, + { + "start": 6111.92, + "end": 6113.06, + "probability": 0.2427 + }, + { + "start": 6114.24, + "end": 6114.8, + "probability": 0.6594 + }, + { + "start": 6114.84, + "end": 6115.94, + "probability": 0.1372 + }, + { + "start": 6115.96, + "end": 6117.06, + "probability": 0.5407 + }, + { + "start": 6117.48, + "end": 6120.2, + "probability": 0.9549 + }, + { + "start": 6120.28, + "end": 6121.82, + "probability": 0.9938 + }, + { + "start": 6121.88, + "end": 6124.06, + "probability": 0.989 + }, + { + "start": 6124.06, + "end": 6127.04, + "probability": 0.999 + }, + { + "start": 6127.42, + "end": 6128.68, + "probability": 0.8038 + }, + { + "start": 6128.94, + "end": 6132.08, + "probability": 0.9703 + }, + { + "start": 6132.2, + "end": 6132.66, + "probability": 0.6792 + }, + { + "start": 6132.74, + "end": 6133.18, + "probability": 0.6224 + }, + { + "start": 6133.24, + "end": 6134.08, + "probability": 0.9413 + }, + { + "start": 6134.18, + "end": 6135.46, + "probability": 0.9895 + }, + { + "start": 6136.1, + "end": 6138.9, + "probability": 0.8387 + }, + { + "start": 6139.12, + "end": 6140.86, + "probability": 0.9573 + }, + { + "start": 6140.92, + "end": 6141.7, + "probability": 0.5923 + }, + { + "start": 6142.16, + "end": 6142.94, + "probability": 0.9097 + }, + { + "start": 6143.06, + "end": 6146.42, + "probability": 0.9102 + }, + { + "start": 6146.5, + "end": 6149.28, + "probability": 0.5356 + }, + { + "start": 6149.62, + "end": 6153.32, + "probability": 0.6977 + }, + { + "start": 6153.54, + "end": 6155.46, + "probability": 0.9824 + }, + { + "start": 6155.62, + "end": 6156.76, + "probability": 0.7312 + }, + { + "start": 6156.96, + "end": 6160.74, + "probability": 0.9267 + }, + { + "start": 6164.57, + "end": 6166.46, + "probability": 0.5406 + }, + { + "start": 6166.48, + "end": 6169.47, + "probability": 0.9946 + }, + { + "start": 6169.88, + "end": 6170.82, + "probability": 0.9005 + }, + { + "start": 6170.9, + "end": 6172.5, + "probability": 0.8438 + }, + { + "start": 6172.62, + "end": 6175.78, + "probability": 0.9851 + }, + { + "start": 6175.88, + "end": 6178.9, + "probability": 0.999 + }, + { + "start": 6178.96, + "end": 6180.18, + "probability": 0.998 + }, + { + "start": 6180.26, + "end": 6184.82, + "probability": 0.9731 + }, + { + "start": 6185.36, + "end": 6187.02, + "probability": 0.5924 + }, + { + "start": 6187.2, + "end": 6188.46, + "probability": 0.96 + }, + { + "start": 6188.78, + "end": 6192.56, + "probability": 0.9445 + }, + { + "start": 6192.72, + "end": 6194.86, + "probability": 0.9727 + }, + { + "start": 6194.94, + "end": 6196.58, + "probability": 0.739 + }, + { + "start": 6196.58, + "end": 6199.96, + "probability": 0.9122 + }, + { + "start": 6199.96, + "end": 6201.7, + "probability": 0.1512 + }, + { + "start": 6201.9, + "end": 6203.54, + "probability": 0.9941 + }, + { + "start": 6203.56, + "end": 6205.32, + "probability": 0.9745 + }, + { + "start": 6205.52, + "end": 6206.18, + "probability": 0.4114 + }, + { + "start": 6206.18, + "end": 6211.04, + "probability": 0.9808 + }, + { + "start": 6211.12, + "end": 6212.2, + "probability": 0.9476 + }, + { + "start": 6212.38, + "end": 6212.6, + "probability": 0.5647 + }, + { + "start": 6212.76, + "end": 6215.12, + "probability": 0.7364 + }, + { + "start": 6216.22, + "end": 6218.86, + "probability": 0.8491 + }, + { + "start": 6219.82, + "end": 6223.4, + "probability": 0.979 + }, + { + "start": 6223.68, + "end": 6229.4, + "probability": 0.987 + }, + { + "start": 6230.12, + "end": 6231.64, + "probability": 0.3299 + }, + { + "start": 6232.74, + "end": 6236.18, + "probability": 0.923 + }, + { + "start": 6236.34, + "end": 6237.59, + "probability": 0.5651 + }, + { + "start": 6237.88, + "end": 6238.66, + "probability": 0.2788 + }, + { + "start": 6238.66, + "end": 6239.42, + "probability": 0.7005 + }, + { + "start": 6246.77, + "end": 6247.92, + "probability": 0.0844 + }, + { + "start": 6247.93, + "end": 6248.26, + "probability": 0.0431 + }, + { + "start": 6259.1, + "end": 6259.74, + "probability": 0.0345 + }, + { + "start": 6259.74, + "end": 6260.58, + "probability": 0.3002 + }, + { + "start": 6261.38, + "end": 6264.38, + "probability": 0.5668 + }, + { + "start": 6264.54, + "end": 6267.16, + "probability": 0.8384 + }, + { + "start": 6268.64, + "end": 6273.04, + "probability": 0.0217 + }, + { + "start": 6275.88, + "end": 6277.26, + "probability": 0.4935 + }, + { + "start": 6277.26, + "end": 6281.04, + "probability": 0.7283 + }, + { + "start": 6281.68, + "end": 6286.1, + "probability": 0.8309 + }, + { + "start": 6286.94, + "end": 6287.38, + "probability": 0.8518 + }, + { + "start": 6287.56, + "end": 6293.7, + "probability": 0.8642 + }, + { + "start": 6294.38, + "end": 6295.44, + "probability": 0.6448 + }, + { + "start": 6295.46, + "end": 6296.18, + "probability": 0.6559 + }, + { + "start": 6296.6, + "end": 6299.96, + "probability": 0.7212 + }, + { + "start": 6300.54, + "end": 6305.38, + "probability": 0.695 + }, + { + "start": 6305.82, + "end": 6308.28, + "probability": 0.947 + }, + { + "start": 6308.4, + "end": 6309.94, + "probability": 0.9609 + }, + { + "start": 6310.38, + "end": 6311.58, + "probability": 0.8224 + }, + { + "start": 6312.02, + "end": 6315.32, + "probability": 0.9963 + }, + { + "start": 6315.32, + "end": 6319.82, + "probability": 0.9249 + }, + { + "start": 6319.82, + "end": 6322.24, + "probability": 0.758 + }, + { + "start": 6325.46, + "end": 6326.24, + "probability": 0.2418 + }, + { + "start": 6326.24, + "end": 6326.48, + "probability": 0.6652 + }, + { + "start": 6326.48, + "end": 6327.82, + "probability": 0.4695 + }, + { + "start": 6329.18, + "end": 6331.76, + "probability": 0.8279 + }, + { + "start": 6331.76, + "end": 6333.46, + "probability": 0.6154 + }, + { + "start": 6333.52, + "end": 6333.52, + "probability": 0.3859 + }, + { + "start": 6333.64, + "end": 6336.45, + "probability": 0.585 + }, + { + "start": 6336.5, + "end": 6336.84, + "probability": 0.9666 + }, + { + "start": 6342.08, + "end": 6344.9, + "probability": 0.47 + }, + { + "start": 6348.94, + "end": 6351.68, + "probability": 0.7556 + }, + { + "start": 6352.2, + "end": 6352.78, + "probability": 0.5485 + }, + { + "start": 6352.86, + "end": 6355.04, + "probability": 0.8989 + }, + { + "start": 6355.06, + "end": 6355.32, + "probability": 0.0681 + }, + { + "start": 6355.86, + "end": 6357.66, + "probability": 0.4169 + }, + { + "start": 6358.32, + "end": 6359.22, + "probability": 0.8008 + }, + { + "start": 6359.7, + "end": 6363.28, + "probability": 0.8096 + }, + { + "start": 6364.56, + "end": 6365.76, + "probability": 0.6983 + }, + { + "start": 6365.84, + "end": 6369.96, + "probability": 0.796 + }, + { + "start": 6370.02, + "end": 6370.78, + "probability": 0.8954 + }, + { + "start": 6372.34, + "end": 6376.98, + "probability": 0.9916 + }, + { + "start": 6377.26, + "end": 6380.02, + "probability": 0.9317 + }, + { + "start": 6380.54, + "end": 6382.96, + "probability": 0.7174 + }, + { + "start": 6383.44, + "end": 6386.43, + "probability": 0.9959 + }, + { + "start": 6386.72, + "end": 6389.24, + "probability": 0.7621 + }, + { + "start": 6390.88, + "end": 6393.06, + "probability": 0.9935 + }, + { + "start": 6396.0, + "end": 6396.5, + "probability": 0.6606 + }, + { + "start": 6400.28, + "end": 6402.56, + "probability": 0.9725 + }, + { + "start": 6402.9, + "end": 6403.26, + "probability": 0.1269 + }, + { + "start": 6403.84, + "end": 6404.32, + "probability": 0.0947 + }, + { + "start": 6404.5, + "end": 6405.26, + "probability": 0.7943 + }, + { + "start": 6406.8, + "end": 6408.41, + "probability": 0.9985 + }, + { + "start": 6417.88, + "end": 6418.5, + "probability": 0.7016 + }, + { + "start": 6419.22, + "end": 6421.16, + "probability": 0.9229 + }, + { + "start": 6421.84, + "end": 6426.96, + "probability": 0.8492 + }, + { + "start": 6427.28, + "end": 6428.4, + "probability": 0.3344 + }, + { + "start": 6437.74, + "end": 6441.54, + "probability": 0.6311 + }, + { + "start": 6442.1, + "end": 6447.62, + "probability": 0.9692 + }, + { + "start": 6447.66, + "end": 6449.14, + "probability": 0.502 + }, + { + "start": 6449.5, + "end": 6451.18, + "probability": 0.9111 + }, + { + "start": 6452.26, + "end": 6453.86, + "probability": 0.8258 + }, + { + "start": 6463.06, + "end": 6464.32, + "probability": 0.7658 + }, + { + "start": 6468.72, + "end": 6473.0, + "probability": 0.7365 + }, + { + "start": 6476.48, + "end": 6481.68, + "probability": 0.9749 + }, + { + "start": 6483.18, + "end": 6483.78, + "probability": 0.6676 + }, + { + "start": 6485.82, + "end": 6486.56, + "probability": 0.7749 + }, + { + "start": 6486.62, + "end": 6489.48, + "probability": 0.9438 + }, + { + "start": 6494.82, + "end": 6495.64, + "probability": 0.833 + }, + { + "start": 6500.26, + "end": 6504.72, + "probability": 0.9705 + }, + { + "start": 6507.16, + "end": 6508.28, + "probability": 0.8699 + }, + { + "start": 6509.74, + "end": 6512.42, + "probability": 0.5127 + }, + { + "start": 6514.2, + "end": 6514.9, + "probability": 0.9271 + }, + { + "start": 6516.34, + "end": 6520.08, + "probability": 0.8818 + }, + { + "start": 6520.28, + "end": 6524.89, + "probability": 0.8802 + }, + { + "start": 6526.28, + "end": 6527.28, + "probability": 0.9151 + }, + { + "start": 6529.46, + "end": 6533.96, + "probability": 0.959 + }, + { + "start": 6535.42, + "end": 6536.24, + "probability": 0.5036 + }, + { + "start": 6537.08, + "end": 6542.48, + "probability": 0.9782 + }, + { + "start": 6543.78, + "end": 6547.84, + "probability": 0.9711 + }, + { + "start": 6549.6, + "end": 6550.7, + "probability": 0.9919 + }, + { + "start": 6553.1, + "end": 6554.72, + "probability": 0.9725 + }, + { + "start": 6557.7, + "end": 6559.1, + "probability": 0.6706 + }, + { + "start": 6560.58, + "end": 6562.18, + "probability": 0.8642 + }, + { + "start": 6563.4, + "end": 6566.36, + "probability": 0.8138 + }, + { + "start": 6567.32, + "end": 6570.94, + "probability": 0.979 + }, + { + "start": 6572.3, + "end": 6577.84, + "probability": 0.8351 + }, + { + "start": 6578.72, + "end": 6582.1, + "probability": 0.5219 + }, + { + "start": 6583.08, + "end": 6583.66, + "probability": 0.6574 + }, + { + "start": 6584.34, + "end": 6588.66, + "probability": 0.9874 + }, + { + "start": 6589.72, + "end": 6595.54, + "probability": 0.9863 + }, + { + "start": 6598.58, + "end": 6602.86, + "probability": 0.9988 + }, + { + "start": 6603.27, + "end": 6607.68, + "probability": 0.9958 + }, + { + "start": 6609.8, + "end": 6614.48, + "probability": 0.746 + }, + { + "start": 6617.22, + "end": 6620.08, + "probability": 0.9974 + }, + { + "start": 6622.6, + "end": 6623.6, + "probability": 0.5186 + }, + { + "start": 6624.12, + "end": 6625.14, + "probability": 0.9529 + }, + { + "start": 6626.28, + "end": 6627.64, + "probability": 0.6832 + }, + { + "start": 6628.72, + "end": 6632.18, + "probability": 0.717 + }, + { + "start": 6633.36, + "end": 6635.96, + "probability": 0.7222 + }, + { + "start": 6638.92, + "end": 6642.46, + "probability": 0.9572 + }, + { + "start": 6642.56, + "end": 6643.76, + "probability": 0.3912 + }, + { + "start": 6644.84, + "end": 6647.5, + "probability": 0.5074 + }, + { + "start": 6648.7, + "end": 6651.72, + "probability": 0.8301 + }, + { + "start": 6653.3, + "end": 6654.74, + "probability": 0.8588 + }, + { + "start": 6655.72, + "end": 6658.9, + "probability": 0.9409 + }, + { + "start": 6659.54, + "end": 6660.48, + "probability": 0.9512 + }, + { + "start": 6661.27, + "end": 6662.96, + "probability": 0.3567 + }, + { + "start": 6663.86, + "end": 6667.1, + "probability": 0.9649 + }, + { + "start": 6667.94, + "end": 6669.14, + "probability": 0.8535 + }, + { + "start": 6669.84, + "end": 6670.72, + "probability": 0.9196 + }, + { + "start": 6671.3, + "end": 6678.44, + "probability": 0.9854 + }, + { + "start": 6679.94, + "end": 6683.88, + "probability": 0.9853 + }, + { + "start": 6686.52, + "end": 6687.88, + "probability": 0.5349 + }, + { + "start": 6688.34, + "end": 6693.88, + "probability": 0.9491 + }, + { + "start": 6694.52, + "end": 6695.58, + "probability": 0.3627 + }, + { + "start": 6696.66, + "end": 6697.34, + "probability": 0.8842 + }, + { + "start": 6700.18, + "end": 6701.02, + "probability": 0.6077 + }, + { + "start": 6701.8, + "end": 6704.29, + "probability": 0.6527 + }, + { + "start": 6705.44, + "end": 6705.54, + "probability": 0.6752 + }, + { + "start": 6707.86, + "end": 6709.52, + "probability": 0.6856 + }, + { + "start": 6710.21, + "end": 6713.39, + "probability": 0.8967 + }, + { + "start": 6714.5, + "end": 6716.96, + "probability": 0.9912 + }, + { + "start": 6717.2, + "end": 6718.38, + "probability": 0.8021 + }, + { + "start": 6719.72, + "end": 6721.3, + "probability": 0.7571 + }, + { + "start": 6724.94, + "end": 6725.88, + "probability": 0.4646 + }, + { + "start": 6727.18, + "end": 6728.44, + "probability": 0.5875 + }, + { + "start": 6729.12, + "end": 6729.78, + "probability": 0.8925 + }, + { + "start": 6730.84, + "end": 6731.34, + "probability": 0.9729 + }, + { + "start": 6732.58, + "end": 6734.5, + "probability": 0.9811 + }, + { + "start": 6736.28, + "end": 6736.94, + "probability": 0.9662 + }, + { + "start": 6738.78, + "end": 6740.4, + "probability": 0.7858 + }, + { + "start": 6742.6, + "end": 6743.88, + "probability": 0.9659 + }, + { + "start": 6746.26, + "end": 6748.12, + "probability": 0.8723 + }, + { + "start": 6750.1, + "end": 6752.92, + "probability": 0.9648 + }, + { + "start": 6754.44, + "end": 6755.1, + "probability": 0.4522 + }, + { + "start": 6755.84, + "end": 6756.68, + "probability": 0.933 + }, + { + "start": 6756.82, + "end": 6757.86, + "probability": 0.9616 + }, + { + "start": 6757.94, + "end": 6758.46, + "probability": 0.8306 + }, + { + "start": 6758.7, + "end": 6760.34, + "probability": 0.9918 + }, + { + "start": 6761.72, + "end": 6762.88, + "probability": 0.9392 + }, + { + "start": 6763.84, + "end": 6764.88, + "probability": 0.975 + }, + { + "start": 6764.94, + "end": 6768.24, + "probability": 0.9516 + }, + { + "start": 6769.04, + "end": 6769.82, + "probability": 0.9399 + }, + { + "start": 6770.66, + "end": 6772.05, + "probability": 0.9873 + }, + { + "start": 6773.58, + "end": 6776.68, + "probability": 0.9819 + }, + { + "start": 6777.54, + "end": 6780.66, + "probability": 0.9857 + }, + { + "start": 6781.62, + "end": 6783.8, + "probability": 0.9442 + }, + { + "start": 6784.86, + "end": 6787.02, + "probability": 0.807 + }, + { + "start": 6787.58, + "end": 6788.92, + "probability": 0.9692 + }, + { + "start": 6789.62, + "end": 6790.7, + "probability": 0.7599 + }, + { + "start": 6791.2, + "end": 6794.98, + "probability": 0.9829 + }, + { + "start": 6795.68, + "end": 6798.04, + "probability": 0.9976 + }, + { + "start": 6798.72, + "end": 6804.12, + "probability": 0.9902 + }, + { + "start": 6805.16, + "end": 6806.98, + "probability": 0.6132 + }, + { + "start": 6808.88, + "end": 6811.08, + "probability": 0.8646 + }, + { + "start": 6812.28, + "end": 6812.88, + "probability": 0.944 + }, + { + "start": 6814.28, + "end": 6818.14, + "probability": 0.7408 + }, + { + "start": 6818.86, + "end": 6820.7, + "probability": 0.6071 + }, + { + "start": 6822.32, + "end": 6823.4, + "probability": 0.7017 + }, + { + "start": 6825.2, + "end": 6826.18, + "probability": 0.7423 + }, + { + "start": 6827.44, + "end": 6832.26, + "probability": 0.9034 + }, + { + "start": 6832.9, + "end": 6834.3, + "probability": 0.8941 + }, + { + "start": 6835.82, + "end": 6839.38, + "probability": 0.9736 + }, + { + "start": 6841.08, + "end": 6841.3, + "probability": 0.8037 + }, + { + "start": 6842.42, + "end": 6844.52, + "probability": 0.7957 + }, + { + "start": 6846.0, + "end": 6847.88, + "probability": 0.9943 + }, + { + "start": 6848.08, + "end": 6848.66, + "probability": 0.9307 + }, + { + "start": 6849.72, + "end": 6850.98, + "probability": 0.8271 + }, + { + "start": 6852.8, + "end": 6854.58, + "probability": 0.9949 + }, + { + "start": 6855.72, + "end": 6857.32, + "probability": 0.9583 + }, + { + "start": 6858.02, + "end": 6861.04, + "probability": 0.9909 + }, + { + "start": 6863.34, + "end": 6866.04, + "probability": 0.4967 + }, + { + "start": 6867.08, + "end": 6868.08, + "probability": 0.8288 + }, + { + "start": 6869.12, + "end": 6872.1, + "probability": 0.9834 + }, + { + "start": 6873.32, + "end": 6876.56, + "probability": 0.9951 + }, + { + "start": 6877.28, + "end": 6886.74, + "probability": 0.9081 + }, + { + "start": 6887.26, + "end": 6889.58, + "probability": 0.9984 + }, + { + "start": 6890.88, + "end": 6893.96, + "probability": 0.9425 + }, + { + "start": 6895.24, + "end": 6900.52, + "probability": 0.9963 + }, + { + "start": 6901.3, + "end": 6902.26, + "probability": 0.9462 + }, + { + "start": 6903.22, + "end": 6904.38, + "probability": 0.7459 + }, + { + "start": 6904.54, + "end": 6906.5, + "probability": 0.9963 + }, + { + "start": 6907.24, + "end": 6907.98, + "probability": 0.9802 + }, + { + "start": 6909.36, + "end": 6911.92, + "probability": 0.9989 + }, + { + "start": 6912.86, + "end": 6916.64, + "probability": 0.9945 + }, + { + "start": 6916.74, + "end": 6918.56, + "probability": 0.7329 + }, + { + "start": 6919.02, + "end": 6920.52, + "probability": 0.5607 + }, + { + "start": 6921.8, + "end": 6925.82, + "probability": 0.9497 + }, + { + "start": 6928.2, + "end": 6931.16, + "probability": 0.814 + }, + { + "start": 6932.14, + "end": 6935.52, + "probability": 0.7695 + }, + { + "start": 6936.14, + "end": 6938.36, + "probability": 0.8578 + }, + { + "start": 6939.12, + "end": 6943.12, + "probability": 0.9261 + }, + { + "start": 6943.64, + "end": 6947.92, + "probability": 0.9587 + }, + { + "start": 6949.64, + "end": 6950.94, + "probability": 0.9877 + }, + { + "start": 6951.78, + "end": 6953.1, + "probability": 0.3063 + }, + { + "start": 6953.64, + "end": 6955.04, + "probability": 0.8906 + }, + { + "start": 6955.6, + "end": 6962.42, + "probability": 0.9869 + }, + { + "start": 6963.62, + "end": 6973.06, + "probability": 0.9873 + }, + { + "start": 6974.22, + "end": 6974.64, + "probability": 0.9163 + }, + { + "start": 6974.9, + "end": 6978.2, + "probability": 0.4966 + }, + { + "start": 6978.2, + "end": 6982.98, + "probability": 0.9651 + }, + { + "start": 6983.22, + "end": 6987.96, + "probability": 0.9974 + }, + { + "start": 6988.68, + "end": 6992.04, + "probability": 0.9813 + }, + { + "start": 6992.76, + "end": 6998.68, + "probability": 0.9628 + }, + { + "start": 6999.38, + "end": 7000.82, + "probability": 0.7001 + }, + { + "start": 7001.7, + "end": 7003.72, + "probability": 0.9995 + }, + { + "start": 7004.38, + "end": 7007.3, + "probability": 0.998 + }, + { + "start": 7008.14, + "end": 7010.76, + "probability": 0.9993 + }, + { + "start": 7011.52, + "end": 7014.74, + "probability": 0.8479 + }, + { + "start": 7015.42, + "end": 7016.38, + "probability": 0.689 + }, + { + "start": 7017.1, + "end": 7022.3, + "probability": 0.9132 + }, + { + "start": 7022.96, + "end": 7025.76, + "probability": 0.9934 + }, + { + "start": 7026.88, + "end": 7028.24, + "probability": 0.7509 + }, + { + "start": 7028.76, + "end": 7029.86, + "probability": 0.8006 + }, + { + "start": 7030.34, + "end": 7031.24, + "probability": 0.8444 + }, + { + "start": 7031.7, + "end": 7032.52, + "probability": 0.9507 + }, + { + "start": 7032.58, + "end": 7033.52, + "probability": 0.8824 + }, + { + "start": 7033.64, + "end": 7034.84, + "probability": 0.9319 + }, + { + "start": 7035.24, + "end": 7036.7, + "probability": 0.8369 + }, + { + "start": 7037.54, + "end": 7042.72, + "probability": 0.936 + }, + { + "start": 7043.4, + "end": 7045.42, + "probability": 0.9456 + }, + { + "start": 7045.86, + "end": 7046.74, + "probability": 0.933 + }, + { + "start": 7047.2, + "end": 7047.97, + "probability": 0.926 + }, + { + "start": 7048.68, + "end": 7051.74, + "probability": 0.9344 + }, + { + "start": 7052.2, + "end": 7057.24, + "probability": 0.8807 + }, + { + "start": 7057.62, + "end": 7058.6, + "probability": 0.9551 + }, + { + "start": 7059.4, + "end": 7063.68, + "probability": 0.9347 + }, + { + "start": 7064.26, + "end": 7066.46, + "probability": 0.9047 + }, + { + "start": 7067.28, + "end": 7071.24, + "probability": 0.9769 + }, + { + "start": 7071.38, + "end": 7071.98, + "probability": 0.8182 + }, + { + "start": 7072.9, + "end": 7073.74, + "probability": 0.7713 + }, + { + "start": 7073.9, + "end": 7078.68, + "probability": 0.9272 + }, + { + "start": 7079.44, + "end": 7083.24, + "probability": 0.9889 + }, + { + "start": 7084.06, + "end": 7085.84, + "probability": 0.7819 + }, + { + "start": 7086.86, + "end": 7089.84, + "probability": 0.5066 + }, + { + "start": 7090.5, + "end": 7095.84, + "probability": 0.6934 + }, + { + "start": 7096.54, + "end": 7099.54, + "probability": 0.9784 + }, + { + "start": 7100.06, + "end": 7100.64, + "probability": 0.8879 + }, + { + "start": 7101.28, + "end": 7103.54, + "probability": 0.965 + }, + { + "start": 7105.62, + "end": 7106.34, + "probability": 0.8986 + }, + { + "start": 7107.78, + "end": 7110.0, + "probability": 0.9172 + }, + { + "start": 7110.78, + "end": 7114.58, + "probability": 0.9482 + }, + { + "start": 7114.68, + "end": 7115.8, + "probability": 0.854 + }, + { + "start": 7116.18, + "end": 7117.46, + "probability": 0.8609 + }, + { + "start": 7117.6, + "end": 7117.98, + "probability": 0.7366 + }, + { + "start": 7118.52, + "end": 7119.12, + "probability": 0.8031 + }, + { + "start": 7119.88, + "end": 7123.5, + "probability": 0.841 + }, + { + "start": 7128.24, + "end": 7131.68, + "probability": 0.9444 + }, + { + "start": 7131.74, + "end": 7133.58, + "probability": 0.7969 + }, + { + "start": 7155.26, + "end": 7156.54, + "probability": 0.8083 + }, + { + "start": 7165.2, + "end": 7165.24, + "probability": 0.6232 + }, + { + "start": 7170.1, + "end": 7172.62, + "probability": 0.5929 + }, + { + "start": 7173.86, + "end": 7178.26, + "probability": 0.9142 + }, + { + "start": 7178.26, + "end": 7184.26, + "probability": 0.9956 + }, + { + "start": 7185.44, + "end": 7191.0, + "probability": 0.7322 + }, + { + "start": 7193.38, + "end": 7195.18, + "probability": 0.8908 + }, + { + "start": 7196.14, + "end": 7199.98, + "probability": 0.9316 + }, + { + "start": 7200.0, + "end": 7202.16, + "probability": 0.9229 + }, + { + "start": 7202.82, + "end": 7205.32, + "probability": 0.7451 + }, + { + "start": 7205.34, + "end": 7206.02, + "probability": 0.487 + }, + { + "start": 7206.1, + "end": 7206.76, + "probability": 0.9844 + }, + { + "start": 7207.38, + "end": 7208.54, + "probability": 0.9168 + }, + { + "start": 7209.82, + "end": 7210.32, + "probability": 0.7365 + }, + { + "start": 7210.4, + "end": 7212.26, + "probability": 0.981 + }, + { + "start": 7212.34, + "end": 7217.42, + "probability": 0.9785 + }, + { + "start": 7217.46, + "end": 7222.98, + "probability": 0.9918 + }, + { + "start": 7224.26, + "end": 7227.84, + "probability": 0.9893 + }, + { + "start": 7228.5, + "end": 7228.88, + "probability": 0.4779 + }, + { + "start": 7228.98, + "end": 7232.98, + "probability": 0.9731 + }, + { + "start": 7233.96, + "end": 7237.18, + "probability": 0.8921 + }, + { + "start": 7237.88, + "end": 7238.76, + "probability": 0.7066 + }, + { + "start": 7238.94, + "end": 7241.7, + "probability": 0.962 + }, + { + "start": 7242.96, + "end": 7247.72, + "probability": 0.9818 + }, + { + "start": 7248.38, + "end": 7251.54, + "probability": 0.9964 + }, + { + "start": 7252.7, + "end": 7256.34, + "probability": 0.9663 + }, + { + "start": 7257.48, + "end": 7259.18, + "probability": 0.7873 + }, + { + "start": 7259.32, + "end": 7261.32, + "probability": 0.9883 + }, + { + "start": 7261.32, + "end": 7264.28, + "probability": 0.6714 + }, + { + "start": 7266.84, + "end": 7270.44, + "probability": 0.8171 + }, + { + "start": 7270.44, + "end": 7273.12, + "probability": 0.9308 + }, + { + "start": 7274.5, + "end": 7275.06, + "probability": 0.467 + }, + { + "start": 7275.46, + "end": 7276.6, + "probability": 0.2322 + }, + { + "start": 7276.82, + "end": 7276.88, + "probability": 0.2529 + }, + { + "start": 7276.88, + "end": 7280.8, + "probability": 0.9622 + }, + { + "start": 7281.8, + "end": 7282.62, + "probability": 0.6691 + }, + { + "start": 7283.54, + "end": 7287.92, + "probability": 0.5902 + }, + { + "start": 7287.92, + "end": 7292.06, + "probability": 0.509 + }, + { + "start": 7294.72, + "end": 7296.48, + "probability": 0.7941 + }, + { + "start": 7296.52, + "end": 7300.26, + "probability": 0.9896 + }, + { + "start": 7300.36, + "end": 7304.5, + "probability": 0.9373 + }, + { + "start": 7305.24, + "end": 7312.68, + "probability": 0.9672 + }, + { + "start": 7313.18, + "end": 7317.58, + "probability": 0.9854 + }, + { + "start": 7318.5, + "end": 7322.2, + "probability": 0.8068 + }, + { + "start": 7322.84, + "end": 7327.1, + "probability": 0.979 + }, + { + "start": 7327.7, + "end": 7328.92, + "probability": 0.9873 + }, + { + "start": 7329.14, + "end": 7329.58, + "probability": 0.7729 + }, + { + "start": 7330.0, + "end": 7330.5, + "probability": 0.671 + }, + { + "start": 7330.6, + "end": 7331.54, + "probability": 0.8921 + }, + { + "start": 7331.76, + "end": 7335.9, + "probability": 0.7718 + }, + { + "start": 7336.74, + "end": 7337.72, + "probability": 0.6144 + }, + { + "start": 7344.98, + "end": 7346.62, + "probability": 0.7405 + }, + { + "start": 7348.42, + "end": 7348.78, + "probability": 0.7418 + }, + { + "start": 7349.58, + "end": 7349.6, + "probability": 0.1409 + }, + { + "start": 7351.34, + "end": 7354.16, + "probability": 0.0065 + }, + { + "start": 7355.36, + "end": 7356.02, + "probability": 0.0184 + }, + { + "start": 7359.34, + "end": 7360.44, + "probability": 0.1024 + }, + { + "start": 7362.54, + "end": 7369.1, + "probability": 0.3375 + }, + { + "start": 7369.26, + "end": 7371.8, + "probability": 0.6568 + }, + { + "start": 7374.02, + "end": 7374.74, + "probability": 0.4029 + }, + { + "start": 7382.28, + "end": 7384.2, + "probability": 0.0786 + }, + { + "start": 7390.72, + "end": 7393.58, + "probability": 0.0265 + }, + { + "start": 7396.34, + "end": 7397.58, + "probability": 0.0927 + }, + { + "start": 7397.58, + "end": 7398.02, + "probability": 0.1064 + }, + { + "start": 7398.37, + "end": 7398.72, + "probability": 0.0626 + }, + { + "start": 7398.72, + "end": 7398.8, + "probability": 0.0416 + }, + { + "start": 7402.46, + "end": 7404.52, + "probability": 0.0762 + }, + { + "start": 7423.84, + "end": 7425.92, + "probability": 0.065 + }, + { + "start": 7425.92, + "end": 7425.92, + "probability": 0.3508 + }, + { + "start": 7425.92, + "end": 7426.02, + "probability": 0.047 + }, + { + "start": 7426.26, + "end": 7426.28, + "probability": 0.0913 + }, + { + "start": 7426.34, + "end": 7426.9, + "probability": 0.2713 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0128 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.0, + "end": 7427.0, + "probability": 0.0 + }, + { + "start": 7427.14, + "end": 7427.56, + "probability": 0.3921 + }, + { + "start": 7427.78, + "end": 7430.82, + "probability": 0.9619 + }, + { + "start": 7431.86, + "end": 7434.38, + "probability": 0.7732 + }, + { + "start": 7434.94, + "end": 7436.44, + "probability": 0.9042 + }, + { + "start": 7437.2, + "end": 7441.34, + "probability": 0.9339 + }, + { + "start": 7445.98, + "end": 7447.58, + "probability": 0.853 + }, + { + "start": 7447.68, + "end": 7450.1, + "probability": 0.999 + }, + { + "start": 7451.06, + "end": 7457.66, + "probability": 0.996 + }, + { + "start": 7457.8, + "end": 7459.54, + "probability": 0.9528 + }, + { + "start": 7459.96, + "end": 7464.44, + "probability": 0.8672 + }, + { + "start": 7465.36, + "end": 7467.24, + "probability": 0.8075 + }, + { + "start": 7467.9, + "end": 7471.94, + "probability": 0.8969 + }, + { + "start": 7473.5, + "end": 7474.58, + "probability": 0.6349 + }, + { + "start": 7475.54, + "end": 7480.22, + "probability": 0.9494 + }, + { + "start": 7481.16, + "end": 7482.92, + "probability": 0.983 + }, + { + "start": 7483.94, + "end": 7488.12, + "probability": 0.9805 + }, + { + "start": 7489.38, + "end": 7491.98, + "probability": 0.9326 + }, + { + "start": 7491.98, + "end": 7495.46, + "probability": 0.8299 + }, + { + "start": 7496.5, + "end": 7500.66, + "probability": 0.7523 + }, + { + "start": 7501.22, + "end": 7506.1, + "probability": 0.8647 + }, + { + "start": 7506.58, + "end": 7509.78, + "probability": 0.8933 + }, + { + "start": 7509.78, + "end": 7513.36, + "probability": 0.9733 + }, + { + "start": 7514.24, + "end": 7516.95, + "probability": 0.9867 + }, + { + "start": 7518.1, + "end": 7522.2, + "probability": 0.9963 + }, + { + "start": 7523.42, + "end": 7526.54, + "probability": 0.9834 + }, + { + "start": 7527.8, + "end": 7530.14, + "probability": 0.8584 + }, + { + "start": 7530.38, + "end": 7532.24, + "probability": 0.9361 + }, + { + "start": 7534.12, + "end": 7535.72, + "probability": 0.9313 + }, + { + "start": 7535.84, + "end": 7539.04, + "probability": 0.9445 + }, + { + "start": 7539.24, + "end": 7542.28, + "probability": 0.9875 + }, + { + "start": 7544.28, + "end": 7547.42, + "probability": 0.9937 + }, + { + "start": 7547.42, + "end": 7550.02, + "probability": 0.9598 + }, + { + "start": 7550.1, + "end": 7555.28, + "probability": 0.9973 + }, + { + "start": 7556.32, + "end": 7559.78, + "probability": 0.9868 + }, + { + "start": 7559.92, + "end": 7560.7, + "probability": 0.7997 + }, + { + "start": 7561.54, + "end": 7565.16, + "probability": 0.8814 + }, + { + "start": 7565.96, + "end": 7568.24, + "probability": 0.9288 + }, + { + "start": 7568.86, + "end": 7571.82, + "probability": 0.9871 + }, + { + "start": 7571.86, + "end": 7572.42, + "probability": 0.7416 + }, + { + "start": 7573.02, + "end": 7574.96, + "probability": 0.9679 + }, + { + "start": 7575.52, + "end": 7575.94, + "probability": 0.9977 + }, + { + "start": 7576.74, + "end": 7578.04, + "probability": 0.9974 + }, + { + "start": 7579.3, + "end": 7580.0, + "probability": 0.8987 + }, + { + "start": 7580.84, + "end": 7582.26, + "probability": 0.8254 + }, + { + "start": 7582.46, + "end": 7587.24, + "probability": 0.9395 + }, + { + "start": 7587.68, + "end": 7594.04, + "probability": 0.9911 + }, + { + "start": 7594.58, + "end": 7594.9, + "probability": 0.126 + }, + { + "start": 7594.98, + "end": 7596.77, + "probability": 0.9995 + }, + { + "start": 7597.4, + "end": 7597.64, + "probability": 0.0074 + }, + { + "start": 7597.68, + "end": 7599.7, + "probability": 0.995 + }, + { + "start": 7599.84, + "end": 7600.66, + "probability": 0.9634 + }, + { + "start": 7601.0, + "end": 7601.84, + "probability": 0.7193 + }, + { + "start": 7602.42, + "end": 7603.78, + "probability": 0.9513 + }, + { + "start": 7603.9, + "end": 7605.06, + "probability": 0.7761 + }, + { + "start": 7605.86, + "end": 7606.7, + "probability": 0.6465 + }, + { + "start": 7606.84, + "end": 7610.78, + "probability": 0.9792 + }, + { + "start": 7611.6, + "end": 7615.7, + "probability": 0.8713 + }, + { + "start": 7616.26, + "end": 7620.6, + "probability": 0.998 + }, + { + "start": 7620.72, + "end": 7625.26, + "probability": 0.9927 + }, + { + "start": 7625.4, + "end": 7626.58, + "probability": 0.4931 + }, + { + "start": 7627.46, + "end": 7631.22, + "probability": 0.7174 + }, + { + "start": 7631.84, + "end": 7633.92, + "probability": 0.8953 + }, + { + "start": 7634.7, + "end": 7634.98, + "probability": 0.624 + }, + { + "start": 7635.04, + "end": 7635.56, + "probability": 0.9717 + }, + { + "start": 7636.0, + "end": 7636.28, + "probability": 0.7524 + }, + { + "start": 7636.36, + "end": 7637.64, + "probability": 0.4976 + }, + { + "start": 7642.34, + "end": 7643.6, + "probability": 0.714 + }, + { + "start": 7643.66, + "end": 7644.72, + "probability": 0.8563 + }, + { + "start": 7644.86, + "end": 7647.0, + "probability": 0.7673 + }, + { + "start": 7647.66, + "end": 7648.88, + "probability": 0.8586 + }, + { + "start": 7649.34, + "end": 7649.64, + "probability": 0.2898 + }, + { + "start": 7649.78, + "end": 7650.52, + "probability": 0.5547 + }, + { + "start": 7651.74, + "end": 7654.56, + "probability": 0.9802 + }, + { + "start": 7654.82, + "end": 7656.28, + "probability": 0.2697 + }, + { + "start": 7656.64, + "end": 7656.64, + "probability": 0.1106 + }, + { + "start": 7656.64, + "end": 7658.38, + "probability": 0.8594 + }, + { + "start": 7658.42, + "end": 7660.9, + "probability": 0.8414 + }, + { + "start": 7662.0, + "end": 7663.41, + "probability": 0.9769 + }, + { + "start": 7665.34, + "end": 7668.28, + "probability": 0.782 + }, + { + "start": 7670.62, + "end": 7671.62, + "probability": 0.814 + }, + { + "start": 7672.82, + "end": 7673.74, + "probability": 0.8083 + }, + { + "start": 7673.76, + "end": 7675.06, + "probability": 0.9717 + }, + { + "start": 7675.24, + "end": 7675.9, + "probability": 0.9005 + }, + { + "start": 7676.36, + "end": 7680.58, + "probability": 0.31 + }, + { + "start": 7683.0, + "end": 7688.36, + "probability": 0.9968 + }, + { + "start": 7690.06, + "end": 7696.44, + "probability": 0.9011 + }, + { + "start": 7696.44, + "end": 7700.8, + "probability": 0.9985 + }, + { + "start": 7702.24, + "end": 7706.78, + "probability": 0.8417 + }, + { + "start": 7707.78, + "end": 7710.56, + "probability": 0.9968 + }, + { + "start": 7711.8, + "end": 7712.74, + "probability": 0.7349 + }, + { + "start": 7713.72, + "end": 7714.78, + "probability": 0.6887 + }, + { + "start": 7715.74, + "end": 7718.38, + "probability": 0.9956 + }, + { + "start": 7719.02, + "end": 7719.62, + "probability": 0.9797 + }, + { + "start": 7720.72, + "end": 7723.43, + "probability": 0.9831 + }, + { + "start": 7725.06, + "end": 7726.73, + "probability": 0.7311 + }, + { + "start": 7729.04, + "end": 7730.71, + "probability": 0.9951 + }, + { + "start": 7731.9, + "end": 7737.3, + "probability": 0.9961 + }, + { + "start": 7738.5, + "end": 7740.62, + "probability": 0.5865 + }, + { + "start": 7741.38, + "end": 7742.94, + "probability": 0.7731 + }, + { + "start": 7743.52, + "end": 7748.96, + "probability": 0.988 + }, + { + "start": 7749.74, + "end": 7757.22, + "probability": 0.9974 + }, + { + "start": 7757.8, + "end": 7760.54, + "probability": 0.8191 + }, + { + "start": 7761.94, + "end": 7766.24, + "probability": 0.877 + }, + { + "start": 7766.84, + "end": 7767.88, + "probability": 0.9654 + }, + { + "start": 7768.56, + "end": 7769.9, + "probability": 0.8493 + }, + { + "start": 7770.64, + "end": 7773.22, + "probability": 0.9888 + }, + { + "start": 7773.9, + "end": 7774.27, + "probability": 0.9438 + }, + { + "start": 7776.24, + "end": 7778.6, + "probability": 0.9981 + }, + { + "start": 7779.36, + "end": 7782.3, + "probability": 0.9976 + }, + { + "start": 7783.74, + "end": 7785.24, + "probability": 0.7073 + }, + { + "start": 7787.1, + "end": 7792.28, + "probability": 0.9388 + }, + { + "start": 7793.28, + "end": 7799.08, + "probability": 0.9985 + }, + { + "start": 7799.94, + "end": 7804.6, + "probability": 0.9921 + }, + { + "start": 7806.16, + "end": 7812.24, + "probability": 0.9178 + }, + { + "start": 7812.78, + "end": 7814.48, + "probability": 0.8013 + }, + { + "start": 7814.72, + "end": 7816.98, + "probability": 0.9854 + }, + { + "start": 7817.82, + "end": 7820.18, + "probability": 0.9964 + }, + { + "start": 7821.16, + "end": 7827.74, + "probability": 0.998 + }, + { + "start": 7827.94, + "end": 7830.34, + "probability": 0.897 + }, + { + "start": 7831.06, + "end": 7832.24, + "probability": 0.8508 + }, + { + "start": 7832.98, + "end": 7835.16, + "probability": 0.9963 + }, + { + "start": 7836.32, + "end": 7837.72, + "probability": 0.8765 + }, + { + "start": 7838.5, + "end": 7838.74, + "probability": 0.3971 + }, + { + "start": 7838.78, + "end": 7839.36, + "probability": 0.8947 + }, + { + "start": 7839.5, + "end": 7843.34, + "probability": 0.5961 + }, + { + "start": 7843.98, + "end": 7849.92, + "probability": 0.9972 + }, + { + "start": 7850.94, + "end": 7855.08, + "probability": 0.9944 + }, + { + "start": 7856.04, + "end": 7856.52, + "probability": 0.8734 + }, + { + "start": 7857.32, + "end": 7860.42, + "probability": 0.5473 + }, + { + "start": 7861.02, + "end": 7863.34, + "probability": 0.9949 + }, + { + "start": 7864.0, + "end": 7865.98, + "probability": 0.941 + }, + { + "start": 7866.46, + "end": 7869.9, + "probability": 0.9654 + }, + { + "start": 7871.64, + "end": 7875.56, + "probability": 0.9968 + }, + { + "start": 7875.82, + "end": 7878.8, + "probability": 0.9497 + }, + { + "start": 7879.84, + "end": 7882.16, + "probability": 0.9969 + }, + { + "start": 7884.16, + "end": 7888.26, + "probability": 0.8604 + }, + { + "start": 7888.52, + "end": 7890.08, + "probability": 0.7271 + }, + { + "start": 7890.18, + "end": 7893.24, + "probability": 0.9935 + }, + { + "start": 7893.84, + "end": 7895.72, + "probability": 0.5698 + }, + { + "start": 7896.28, + "end": 7896.7, + "probability": 0.3432 + }, + { + "start": 7897.22, + "end": 7897.48, + "probability": 0.7062 + }, + { + "start": 7897.78, + "end": 7899.64, + "probability": 0.8817 + }, + { + "start": 7900.24, + "end": 7901.22, + "probability": 0.8035 + }, + { + "start": 7901.52, + "end": 7901.52, + "probability": 0.0016 + }, + { + "start": 7901.52, + "end": 7903.24, + "probability": 0.8452 + }, + { + "start": 7903.76, + "end": 7905.0, + "probability": 0.8976 + }, + { + "start": 7905.02, + "end": 7905.02, + "probability": 0.3645 + }, + { + "start": 7905.04, + "end": 7906.1, + "probability": 0.7454 + }, + { + "start": 7906.12, + "end": 7907.68, + "probability": 0.4863 + }, + { + "start": 7907.72, + "end": 7908.56, + "probability": 0.7934 + }, + { + "start": 7909.52, + "end": 7910.46, + "probability": 0.1222 + }, + { + "start": 7910.86, + "end": 7914.16, + "probability": 0.928 + }, + { + "start": 7914.88, + "end": 7917.86, + "probability": 0.9692 + }, + { + "start": 7918.46, + "end": 7919.82, + "probability": 0.9854 + }, + { + "start": 7921.0, + "end": 7927.5, + "probability": 0.9683 + }, + { + "start": 7928.42, + "end": 7930.62, + "probability": 0.9979 + }, + { + "start": 7930.62, + "end": 7935.02, + "probability": 0.9928 + }, + { + "start": 7935.72, + "end": 7937.08, + "probability": 0.9738 + }, + { + "start": 7937.9, + "end": 7940.66, + "probability": 0.9993 + }, + { + "start": 7941.38, + "end": 7942.2, + "probability": 0.9869 + }, + { + "start": 7943.96, + "end": 7944.9, + "probability": 0.0932 + }, + { + "start": 7944.9, + "end": 7944.9, + "probability": 0.2625 + }, + { + "start": 7944.9, + "end": 7945.68, + "probability": 0.6663 + }, + { + "start": 7945.84, + "end": 7948.8, + "probability": 0.7484 + }, + { + "start": 7949.3, + "end": 7951.35, + "probability": 0.7866 + }, + { + "start": 7952.0, + "end": 7953.32, + "probability": 0.8958 + }, + { + "start": 7953.52, + "end": 7954.66, + "probability": 0.9785 + }, + { + "start": 7955.3, + "end": 7956.94, + "probability": 0.8633 + }, + { + "start": 7957.28, + "end": 7959.98, + "probability": 0.9814 + }, + { + "start": 7960.72, + "end": 7961.14, + "probability": 0.4849 + }, + { + "start": 7961.22, + "end": 7965.96, + "probability": 0.9918 + }, + { + "start": 7966.56, + "end": 7971.42, + "probability": 0.9989 + }, + { + "start": 7971.42, + "end": 7976.42, + "probability": 0.9989 + }, + { + "start": 7976.56, + "end": 7979.32, + "probability": 0.9788 + }, + { + "start": 7980.24, + "end": 7981.44, + "probability": 0.8679 + }, + { + "start": 7982.56, + "end": 7990.62, + "probability": 0.9961 + }, + { + "start": 7991.28, + "end": 7991.48, + "probability": 0.3775 + }, + { + "start": 7991.48, + "end": 7993.24, + "probability": 0.8959 + }, + { + "start": 7993.74, + "end": 7994.46, + "probability": 0.9407 + }, + { + "start": 7994.52, + "end": 7997.18, + "probability": 0.9778 + }, + { + "start": 7997.78, + "end": 8003.9, + "probability": 0.9845 + }, + { + "start": 8004.48, + "end": 8008.14, + "probability": 0.9256 + }, + { + "start": 8008.24, + "end": 8010.7, + "probability": 0.6729 + }, + { + "start": 8010.96, + "end": 8011.48, + "probability": 0.6765 + }, + { + "start": 8012.22, + "end": 8014.52, + "probability": 0.9758 + }, + { + "start": 8015.22, + "end": 8017.82, + "probability": 0.9978 + }, + { + "start": 8018.5, + "end": 8021.08, + "probability": 0.9356 + }, + { + "start": 8021.72, + "end": 8025.56, + "probability": 0.9932 + }, + { + "start": 8026.06, + "end": 8028.82, + "probability": 0.9587 + }, + { + "start": 8029.36, + "end": 8029.76, + "probability": 0.7088 + }, + { + "start": 8031.12, + "end": 8033.78, + "probability": 0.5325 + }, + { + "start": 8033.94, + "end": 8038.06, + "probability": 0.868 + }, + { + "start": 8043.7, + "end": 8044.96, + "probability": 0.0121 + }, + { + "start": 8049.08, + "end": 8052.78, + "probability": 0.5987 + }, + { + "start": 8053.42, + "end": 8055.52, + "probability": 0.7271 + }, + { + "start": 8056.14, + "end": 8058.88, + "probability": 0.9553 + }, + { + "start": 8059.06, + "end": 8060.5, + "probability": 0.9458 + }, + { + "start": 8060.64, + "end": 8063.2, + "probability": 0.0939 + }, + { + "start": 8063.5, + "end": 8064.62, + "probability": 0.5157 + }, + { + "start": 8065.58, + "end": 8066.64, + "probability": 0.1013 + }, + { + "start": 8067.96, + "end": 8068.73, + "probability": 0.0168 + }, + { + "start": 8068.78, + "end": 8068.78, + "probability": 0.1654 + }, + { + "start": 8068.78, + "end": 8068.78, + "probability": 0.1699 + }, + { + "start": 8068.78, + "end": 8069.46, + "probability": 0.1345 + }, + { + "start": 8069.58, + "end": 8070.8, + "probability": 0.5211 + }, + { + "start": 8070.8, + "end": 8071.25, + "probability": 0.2775 + }, + { + "start": 8078.76, + "end": 8085.49, + "probability": 0.9622 + }, + { + "start": 8086.42, + "end": 8090.76, + "probability": 0.9784 + }, + { + "start": 8091.84, + "end": 8092.7, + "probability": 0.7723 + }, + { + "start": 8093.28, + "end": 8095.6, + "probability": 0.6899 + }, + { + "start": 8097.68, + "end": 8100.18, + "probability": 0.9871 + }, + { + "start": 8100.9, + "end": 8101.52, + "probability": 0.7485 + }, + { + "start": 8101.94, + "end": 8103.6, + "probability": 0.8049 + }, + { + "start": 8103.6, + "end": 8104.1, + "probability": 0.7891 + }, + { + "start": 8104.44, + "end": 8107.46, + "probability": 0.9492 + }, + { + "start": 8108.58, + "end": 8110.1, + "probability": 0.812 + }, + { + "start": 8110.12, + "end": 8113.7, + "probability": 0.9797 + }, + { + "start": 8113.82, + "end": 8114.98, + "probability": 0.8432 + }, + { + "start": 8115.34, + "end": 8117.02, + "probability": 0.8035 + }, + { + "start": 8117.88, + "end": 8119.32, + "probability": 0.3417 + }, + { + "start": 8119.98, + "end": 8121.78, + "probability": 0.8896 + }, + { + "start": 8123.36, + "end": 8127.72, + "probability": 0.9302 + }, + { + "start": 8128.04, + "end": 8129.08, + "probability": 0.988 + }, + { + "start": 8130.38, + "end": 8135.66, + "probability": 0.9989 + }, + { + "start": 8137.06, + "end": 8139.02, + "probability": 0.5745 + }, + { + "start": 8139.1, + "end": 8144.66, + "probability": 0.8361 + }, + { + "start": 8147.54, + "end": 8148.32, + "probability": 0.991 + }, + { + "start": 8149.5, + "end": 8152.96, + "probability": 0.9165 + }, + { + "start": 8153.14, + "end": 8155.46, + "probability": 0.9564 + }, + { + "start": 8156.06, + "end": 8156.76, + "probability": 0.8197 + }, + { + "start": 8156.86, + "end": 8157.54, + "probability": 0.8477 + }, + { + "start": 8158.0, + "end": 8162.8, + "probability": 0.9159 + }, + { + "start": 8163.66, + "end": 8166.76, + "probability": 0.8875 + }, + { + "start": 8167.28, + "end": 8169.65, + "probability": 0.9858 + }, + { + "start": 8170.66, + "end": 8171.2, + "probability": 0.8853 + }, + { + "start": 8171.26, + "end": 8172.3, + "probability": 0.2315 + }, + { + "start": 8172.48, + "end": 8173.94, + "probability": 0.8156 + }, + { + "start": 8175.5, + "end": 8175.6, + "probability": 0.6328 + }, + { + "start": 8175.66, + "end": 8178.46, + "probability": 0.9915 + }, + { + "start": 8179.12, + "end": 8180.14, + "probability": 0.9468 + }, + { + "start": 8180.88, + "end": 8189.44, + "probability": 0.9941 + }, + { + "start": 8190.68, + "end": 8192.38, + "probability": 0.9712 + }, + { + "start": 8192.76, + "end": 8197.26, + "probability": 0.9813 + }, + { + "start": 8197.62, + "end": 8200.68, + "probability": 0.9907 + }, + { + "start": 8200.68, + "end": 8203.32, + "probability": 0.9933 + }, + { + "start": 8205.04, + "end": 8207.48, + "probability": 0.9955 + }, + { + "start": 8207.86, + "end": 8208.28, + "probability": 0.246 + }, + { + "start": 8208.34, + "end": 8211.36, + "probability": 0.9897 + }, + { + "start": 8211.9, + "end": 8212.55, + "probability": 0.8413 + }, + { + "start": 8214.0, + "end": 8215.62, + "probability": 0.9137 + }, + { + "start": 8216.5, + "end": 8217.72, + "probability": 0.9272 + }, + { + "start": 8217.74, + "end": 8220.28, + "probability": 0.8964 + }, + { + "start": 8220.66, + "end": 8226.1, + "probability": 0.9193 + }, + { + "start": 8228.5, + "end": 8230.7, + "probability": 0.8413 + }, + { + "start": 8231.36, + "end": 8232.12, + "probability": 0.9749 + }, + { + "start": 8233.72, + "end": 8234.22, + "probability": 0.8823 + }, + { + "start": 8234.48, + "end": 8236.94, + "probability": 0.9119 + }, + { + "start": 8237.22, + "end": 8237.99, + "probability": 0.9336 + }, + { + "start": 8238.36, + "end": 8241.13, + "probability": 0.9985 + }, + { + "start": 8242.28, + "end": 8243.58, + "probability": 0.8191 + }, + { + "start": 8243.64, + "end": 8245.18, + "probability": 0.9501 + }, + { + "start": 8245.26, + "end": 8246.6, + "probability": 0.9756 + }, + { + "start": 8246.78, + "end": 8247.82, + "probability": 0.8192 + }, + { + "start": 8248.3, + "end": 8250.14, + "probability": 0.833 + }, + { + "start": 8250.5, + "end": 8250.96, + "probability": 0.6155 + }, + { + "start": 8251.04, + "end": 8252.38, + "probability": 0.8159 + }, + { + "start": 8252.5, + "end": 8253.82, + "probability": 0.647 + }, + { + "start": 8254.36, + "end": 8256.96, + "probability": 0.8738 + }, + { + "start": 8258.38, + "end": 8260.18, + "probability": 0.3965 + }, + { + "start": 8260.24, + "end": 8261.04, + "probability": 0.4742 + }, + { + "start": 8261.22, + "end": 8262.14, + "probability": 0.8277 + }, + { + "start": 8262.22, + "end": 8265.36, + "probability": 0.9729 + }, + { + "start": 8265.5, + "end": 8266.74, + "probability": 0.9668 + }, + { + "start": 8266.86, + "end": 8268.14, + "probability": 0.8731 + }, + { + "start": 8268.2, + "end": 8275.98, + "probability": 0.7386 + }, + { + "start": 8276.2, + "end": 8277.38, + "probability": 0.7819 + }, + { + "start": 8277.62, + "end": 8278.64, + "probability": 0.4187 + }, + { + "start": 8278.8, + "end": 8278.8, + "probability": 0.8989 + }, + { + "start": 8279.42, + "end": 8281.88, + "probability": 0.87 + }, + { + "start": 8283.02, + "end": 8283.84, + "probability": 0.4983 + }, + { + "start": 8284.7, + "end": 8287.46, + "probability": 0.9425 + }, + { + "start": 8289.18, + "end": 8289.58, + "probability": 0.6501 + }, + { + "start": 8289.6, + "end": 8289.82, + "probability": 0.718 + }, + { + "start": 8289.98, + "end": 8293.08, + "probability": 0.9858 + }, + { + "start": 8294.0, + "end": 8294.82, + "probability": 0.6302 + }, + { + "start": 8296.66, + "end": 8297.62, + "probability": 0.0684 + }, + { + "start": 8297.7, + "end": 8301.2, + "probability": 0.9802 + }, + { + "start": 8301.64, + "end": 8304.26, + "probability": 0.9922 + }, + { + "start": 8304.26, + "end": 8308.78, + "probability": 0.9963 + }, + { + "start": 8310.66, + "end": 8311.42, + "probability": 0.7414 + }, + { + "start": 8311.66, + "end": 8312.08, + "probability": 0.4683 + }, + { + "start": 8312.08, + "end": 8312.62, + "probability": 0.4608 + }, + { + "start": 8313.38, + "end": 8314.06, + "probability": 0.9423 + }, + { + "start": 8315.04, + "end": 8315.76, + "probability": 0.8589 + }, + { + "start": 8316.84, + "end": 8322.04, + "probability": 0.9843 + }, + { + "start": 8322.28, + "end": 8324.66, + "probability": 0.0964 + }, + { + "start": 8327.14, + "end": 8327.34, + "probability": 0.1665 + }, + { + "start": 8330.96, + "end": 8331.06, + "probability": 0.1134 + }, + { + "start": 8334.2, + "end": 8335.12, + "probability": 0.6281 + }, + { + "start": 8335.12, + "end": 8341.6, + "probability": 0.9985 + }, + { + "start": 8343.12, + "end": 8345.2, + "probability": 0.9845 + }, + { + "start": 8345.78, + "end": 8347.32, + "probability": 0.9912 + }, + { + "start": 8347.72, + "end": 8350.6, + "probability": 0.9595 + }, + { + "start": 8350.96, + "end": 8351.44, + "probability": 0.5681 + }, + { + "start": 8351.54, + "end": 8351.76, + "probability": 0.5422 + }, + { + "start": 8351.82, + "end": 8351.96, + "probability": 0.4514 + }, + { + "start": 8353.82, + "end": 8355.16, + "probability": 0.5314 + }, + { + "start": 8355.9, + "end": 8358.94, + "probability": 0.7302 + }, + { + "start": 8360.1, + "end": 8360.78, + "probability": 0.2153 + }, + { + "start": 8361.02, + "end": 8362.52, + "probability": 0.7909 + }, + { + "start": 8363.0, + "end": 8363.7, + "probability": 0.3317 + }, + { + "start": 8364.0, + "end": 8367.1, + "probability": 0.7572 + }, + { + "start": 8367.94, + "end": 8369.68, + "probability": 0.67 + }, + { + "start": 8370.56, + "end": 8374.76, + "probability": 0.1924 + }, + { + "start": 8375.38, + "end": 8376.42, + "probability": 0.3572 + }, + { + "start": 8377.02, + "end": 8377.64, + "probability": 0.9504 + }, + { + "start": 8378.22, + "end": 8380.78, + "probability": 0.9748 + }, + { + "start": 8381.5, + "end": 8381.64, + "probability": 0.4075 + }, + { + "start": 8381.84, + "end": 8382.26, + "probability": 0.6192 + }, + { + "start": 8382.3, + "end": 8384.4, + "probability": 0.9426 + }, + { + "start": 8384.78, + "end": 8385.38, + "probability": 0.6714 + }, + { + "start": 8385.48, + "end": 8386.56, + "probability": 0.7487 + }, + { + "start": 8387.58, + "end": 8389.99, + "probability": 0.9944 + }, + { + "start": 8391.44, + "end": 8396.12, + "probability": 0.6224 + }, + { + "start": 8396.3, + "end": 8401.32, + "probability": 0.038 + }, + { + "start": 8401.32, + "end": 8401.36, + "probability": 0.0641 + }, + { + "start": 8401.36, + "end": 8401.36, + "probability": 0.1977 + }, + { + "start": 8401.36, + "end": 8402.39, + "probability": 0.7464 + }, + { + "start": 8403.28, + "end": 8403.84, + "probability": 0.4895 + }, + { + "start": 8403.92, + "end": 8406.13, + "probability": 0.9636 + }, + { + "start": 8407.02, + "end": 8407.46, + "probability": 0.8245 + }, + { + "start": 8407.46, + "end": 8407.46, + "probability": 0.434 + }, + { + "start": 8407.66, + "end": 8407.94, + "probability": 0.4515 + }, + { + "start": 8407.94, + "end": 8408.6, + "probability": 0.8925 + }, + { + "start": 8409.06, + "end": 8409.64, + "probability": 0.3342 + }, + { + "start": 8409.74, + "end": 8410.16, + "probability": 0.4247 + }, + { + "start": 8410.2, + "end": 8414.46, + "probability": 0.7393 + }, + { + "start": 8414.46, + "end": 8415.42, + "probability": 0.7648 + }, + { + "start": 8415.54, + "end": 8416.54, + "probability": 0.2831 + }, + { + "start": 8416.74, + "end": 8418.04, + "probability": 0.9686 + }, + { + "start": 8418.08, + "end": 8418.52, + "probability": 0.7632 + }, + { + "start": 8418.96, + "end": 8419.28, + "probability": 0.4338 + }, + { + "start": 8419.46, + "end": 8422.74, + "probability": 0.6078 + }, + { + "start": 8423.2, + "end": 8425.08, + "probability": 0.8677 + }, + { + "start": 8432.32, + "end": 8433.86, + "probability": 0.8432 + }, + { + "start": 8433.96, + "end": 8434.2, + "probability": 0.8061 + }, + { + "start": 8435.4, + "end": 8436.66, + "probability": 0.7919 + }, + { + "start": 8436.76, + "end": 8437.94, + "probability": 0.6092 + }, + { + "start": 8438.06, + "end": 8439.58, + "probability": 0.8728 + }, + { + "start": 8440.0, + "end": 8443.3, + "probability": 0.9937 + }, + { + "start": 8443.84, + "end": 8447.0, + "probability": 0.1477 + }, + { + "start": 8447.66, + "end": 8449.46, + "probability": 0.8916 + }, + { + "start": 8450.89, + "end": 8455.27, + "probability": 0.9825 + }, + { + "start": 8460.2, + "end": 8463.2, + "probability": 0.8888 + }, + { + "start": 8463.26, + "end": 8463.8, + "probability": 0.7027 + }, + { + "start": 8463.88, + "end": 8464.82, + "probability": 0.8329 + }, + { + "start": 8465.24, + "end": 8469.82, + "probability": 0.9812 + }, + { + "start": 8469.82, + "end": 8470.84, + "probability": 0.0119 + }, + { + "start": 8472.06, + "end": 8474.24, + "probability": 0.6281 + }, + { + "start": 8474.32, + "end": 8476.5, + "probability": 0.4977 + }, + { + "start": 8477.34, + "end": 8484.88, + "probability": 0.0363 + }, + { + "start": 8486.92, + "end": 8487.12, + "probability": 0.0819 + }, + { + "start": 8487.12, + "end": 8487.16, + "probability": 0.3227 + }, + { + "start": 8487.16, + "end": 8487.16, + "probability": 0.0351 + }, + { + "start": 8487.16, + "end": 8488.91, + "probability": 0.151 + }, + { + "start": 8489.16, + "end": 8490.58, + "probability": 0.1118 + }, + { + "start": 8491.22, + "end": 8493.98, + "probability": 0.7925 + }, + { + "start": 8495.36, + "end": 8499.0, + "probability": 0.9382 + }, + { + "start": 8499.42, + "end": 8503.16, + "probability": 0.7412 + }, + { + "start": 8504.86, + "end": 8512.76, + "probability": 0.9818 + }, + { + "start": 8516.42, + "end": 8518.02, + "probability": 0.631 + }, + { + "start": 8518.04, + "end": 8518.7, + "probability": 0.8869 + }, + { + "start": 8518.96, + "end": 8520.96, + "probability": 0.7848 + }, + { + "start": 8521.04, + "end": 8526.86, + "probability": 0.9192 + }, + { + "start": 8527.0, + "end": 8532.38, + "probability": 0.9917 + }, + { + "start": 8532.68, + "end": 8534.6, + "probability": 0.9386 + }, + { + "start": 8534.68, + "end": 8537.38, + "probability": 0.925 + }, + { + "start": 8537.56, + "end": 8538.6, + "probability": 0.9038 + }, + { + "start": 8539.34, + "end": 8540.91, + "probability": 0.9709 + }, + { + "start": 8541.98, + "end": 8542.86, + "probability": 0.8853 + }, + { + "start": 8543.0, + "end": 8546.08, + "probability": 0.9885 + }, + { + "start": 8546.42, + "end": 8547.84, + "probability": 0.8611 + }, + { + "start": 8548.28, + "end": 8550.4, + "probability": 0.6797 + }, + { + "start": 8551.08, + "end": 8551.48, + "probability": 0.5059 + }, + { + "start": 8551.52, + "end": 8557.02, + "probability": 0.9754 + }, + { + "start": 8557.56, + "end": 8559.32, + "probability": 0.9966 + }, + { + "start": 8559.66, + "end": 8566.26, + "probability": 0.9749 + }, + { + "start": 8566.84, + "end": 8568.36, + "probability": 0.9868 + }, + { + "start": 8568.36, + "end": 8569.45, + "probability": 0.7306 + }, + { + "start": 8570.12, + "end": 8571.0, + "probability": 0.649 + }, + { + "start": 8571.06, + "end": 8576.04, + "probability": 0.9505 + }, + { + "start": 8576.18, + "end": 8577.24, + "probability": 0.907 + }, + { + "start": 8577.66, + "end": 8580.64, + "probability": 0.99 + }, + { + "start": 8581.12, + "end": 8585.2, + "probability": 0.9841 + }, + { + "start": 8586.52, + "end": 8588.04, + "probability": 0.8848 + }, + { + "start": 8589.24, + "end": 8590.72, + "probability": 0.7516 + }, + { + "start": 8591.48, + "end": 8595.96, + "probability": 0.8874 + }, + { + "start": 8596.68, + "end": 8600.92, + "probability": 0.6104 + }, + { + "start": 8601.56, + "end": 8602.04, + "probability": 0.5582 + }, + { + "start": 8602.08, + "end": 8610.34, + "probability": 0.9685 + }, + { + "start": 8611.12, + "end": 8614.96, + "probability": 0.9396 + }, + { + "start": 8615.28, + "end": 8616.8, + "probability": 0.8931 + }, + { + "start": 8617.16, + "end": 8621.9, + "probability": 0.9966 + }, + { + "start": 8622.65, + "end": 8626.86, + "probability": 0.9916 + }, + { + "start": 8627.48, + "end": 8628.5, + "probability": 0.8515 + }, + { + "start": 8628.66, + "end": 8629.52, + "probability": 0.746 + }, + { + "start": 8629.86, + "end": 8631.46, + "probability": 0.9929 + }, + { + "start": 8632.04, + "end": 8638.12, + "probability": 0.8687 + }, + { + "start": 8638.22, + "end": 8639.48, + "probability": 0.9761 + }, + { + "start": 8639.9, + "end": 8642.68, + "probability": 0.9611 + }, + { + "start": 8643.36, + "end": 8645.1, + "probability": 0.9905 + }, + { + "start": 8645.58, + "end": 8646.36, + "probability": 0.8232 + }, + { + "start": 8646.5, + "end": 8648.18, + "probability": 0.9855 + }, + { + "start": 8648.96, + "end": 8652.24, + "probability": 0.9896 + }, + { + "start": 8652.24, + "end": 8655.56, + "probability": 0.9907 + }, + { + "start": 8655.74, + "end": 8657.54, + "probability": 0.959 + }, + { + "start": 8658.02, + "end": 8659.36, + "probability": 0.8999 + }, + { + "start": 8659.86, + "end": 8660.8, + "probability": 0.6682 + }, + { + "start": 8661.16, + "end": 8662.28, + "probability": 0.9818 + }, + { + "start": 8662.5, + "end": 8667.46, + "probability": 0.9889 + }, + { + "start": 8667.86, + "end": 8668.91, + "probability": 0.9777 + }, + { + "start": 8669.5, + "end": 8671.68, + "probability": 0.9463 + }, + { + "start": 8671.96, + "end": 8673.14, + "probability": 0.9663 + }, + { + "start": 8673.7, + "end": 8676.16, + "probability": 0.9305 + }, + { + "start": 8676.62, + "end": 8683.98, + "probability": 0.9631 + }, + { + "start": 8683.98, + "end": 8687.58, + "probability": 0.9989 + }, + { + "start": 8688.22, + "end": 8692.5, + "probability": 0.8016 + }, + { + "start": 8692.94, + "end": 8695.42, + "probability": 0.9873 + }, + { + "start": 8695.7, + "end": 8697.41, + "probability": 0.9349 + }, + { + "start": 8698.26, + "end": 8705.7, + "probability": 0.9857 + }, + { + "start": 8705.7, + "end": 8710.84, + "probability": 0.9423 + }, + { + "start": 8711.5, + "end": 8715.84, + "probability": 0.9546 + }, + { + "start": 8716.96, + "end": 8720.74, + "probability": 0.9971 + }, + { + "start": 8720.74, + "end": 8726.44, + "probability": 0.9989 + }, + { + "start": 8726.56, + "end": 8727.5, + "probability": 0.7656 + }, + { + "start": 8727.9, + "end": 8730.26, + "probability": 0.9972 + }, + { + "start": 8731.24, + "end": 8737.66, + "probability": 0.9608 + }, + { + "start": 8737.75, + "end": 8742.74, + "probability": 0.9983 + }, + { + "start": 8743.28, + "end": 8744.14, + "probability": 0.9231 + }, + { + "start": 8745.82, + "end": 8751.2, + "probability": 0.9795 + }, + { + "start": 8752.02, + "end": 8754.44, + "probability": 0.9974 + }, + { + "start": 8754.82, + "end": 8756.52, + "probability": 0.9615 + }, + { + "start": 8757.64, + "end": 8765.18, + "probability": 0.989 + }, + { + "start": 8765.52, + "end": 8769.52, + "probability": 0.991 + }, + { + "start": 8770.16, + "end": 8771.44, + "probability": 0.9949 + }, + { + "start": 8772.2, + "end": 8774.44, + "probability": 0.9808 + }, + { + "start": 8775.46, + "end": 8775.96, + "probability": 0.1493 + }, + { + "start": 8776.9, + "end": 8781.04, + "probability": 0.9565 + }, + { + "start": 8781.72, + "end": 8782.54, + "probability": 0.8745 + }, + { + "start": 8783.06, + "end": 8785.98, + "probability": 0.9983 + }, + { + "start": 8786.52, + "end": 8791.78, + "probability": 0.9951 + }, + { + "start": 8792.5, + "end": 8799.44, + "probability": 0.9985 + }, + { + "start": 8799.84, + "end": 8800.7, + "probability": 0.8286 + }, + { + "start": 8801.26, + "end": 8807.46, + "probability": 0.9974 + }, + { + "start": 8807.52, + "end": 8808.14, + "probability": 0.9375 + }, + { + "start": 8808.5, + "end": 8809.54, + "probability": 0.7595 + }, + { + "start": 8809.96, + "end": 8813.66, + "probability": 0.9956 + }, + { + "start": 8814.1, + "end": 8816.6, + "probability": 0.9935 + }, + { + "start": 8816.6, + "end": 8822.56, + "probability": 0.9623 + }, + { + "start": 8823.0, + "end": 8825.04, + "probability": 0.9915 + }, + { + "start": 8825.54, + "end": 8830.86, + "probability": 0.9724 + }, + { + "start": 8831.78, + "end": 8836.46, + "probability": 0.9987 + }, + { + "start": 8837.14, + "end": 8841.84, + "probability": 0.9971 + }, + { + "start": 8842.28, + "end": 8847.18, + "probability": 0.9939 + }, + { + "start": 8847.9, + "end": 8850.22, + "probability": 0.985 + }, + { + "start": 8851.18, + "end": 8852.94, + "probability": 0.9902 + }, + { + "start": 8853.62, + "end": 8857.9, + "probability": 0.9934 + }, + { + "start": 8858.76, + "end": 8860.9, + "probability": 0.9988 + }, + { + "start": 8861.18, + "end": 8862.86, + "probability": 0.9143 + }, + { + "start": 8863.5, + "end": 8867.09, + "probability": 0.9962 + }, + { + "start": 8869.67, + "end": 8871.87, + "probability": 0.4517 + }, + { + "start": 8872.5, + "end": 8875.66, + "probability": 0.8889 + }, + { + "start": 8875.96, + "end": 8877.88, + "probability": 0.9909 + }, + { + "start": 8878.48, + "end": 8880.8, + "probability": 0.9818 + }, + { + "start": 8881.34, + "end": 8884.4, + "probability": 0.9856 + }, + { + "start": 8885.06, + "end": 8889.12, + "probability": 0.8553 + }, + { + "start": 8891.42, + "end": 8894.14, + "probability": 0.96 + }, + { + "start": 8894.76, + "end": 8897.94, + "probability": 0.9912 + }, + { + "start": 8897.94, + "end": 8901.12, + "probability": 0.9761 + }, + { + "start": 8901.7, + "end": 8906.44, + "probability": 0.9781 + }, + { + "start": 8906.96, + "end": 8912.24, + "probability": 0.7053 + }, + { + "start": 8912.24, + "end": 8917.4, + "probability": 0.9948 + }, + { + "start": 8917.82, + "end": 8919.34, + "probability": 0.9545 + }, + { + "start": 8919.9, + "end": 8920.1, + "probability": 0.392 + }, + { + "start": 8920.1, + "end": 8926.1, + "probability": 0.902 + }, + { + "start": 8926.66, + "end": 8927.78, + "probability": 0.9688 + }, + { + "start": 8928.4, + "end": 8931.14, + "probability": 0.9822 + }, + { + "start": 8931.58, + "end": 8937.6, + "probability": 0.9982 + }, + { + "start": 8937.6, + "end": 8943.64, + "probability": 0.9956 + }, + { + "start": 8944.96, + "end": 8949.68, + "probability": 0.9727 + }, + { + "start": 8949.88, + "end": 8953.66, + "probability": 0.9098 + }, + { + "start": 8954.46, + "end": 8955.86, + "probability": 0.8623 + }, + { + "start": 8956.52, + "end": 8959.06, + "probability": 0.9845 + }, + { + "start": 8959.64, + "end": 8962.26, + "probability": 0.9955 + }, + { + "start": 8963.16, + "end": 8967.58, + "probability": 0.9526 + }, + { + "start": 8967.74, + "end": 8969.46, + "probability": 0.7358 + }, + { + "start": 8969.92, + "end": 8971.56, + "probability": 0.915 + }, + { + "start": 8972.22, + "end": 8975.84, + "probability": 0.8345 + }, + { + "start": 8976.22, + "end": 8979.2, + "probability": 0.9978 + }, + { + "start": 8979.2, + "end": 8984.2, + "probability": 0.9929 + }, + { + "start": 8984.6, + "end": 8985.38, + "probability": 0.9164 + }, + { + "start": 8985.78, + "end": 8989.88, + "probability": 0.9706 + }, + { + "start": 8990.56, + "end": 8994.14, + "probability": 0.9915 + }, + { + "start": 8994.68, + "end": 8995.9, + "probability": 0.9993 + }, + { + "start": 8997.0, + "end": 9002.62, + "probability": 0.988 + }, + { + "start": 9003.22, + "end": 9007.76, + "probability": 0.753 + }, + { + "start": 9008.32, + "end": 9010.1, + "probability": 0.5889 + }, + { + "start": 9010.76, + "end": 9016.66, + "probability": 0.9954 + }, + { + "start": 9017.08, + "end": 9019.58, + "probability": 0.9746 + }, + { + "start": 9020.2, + "end": 9023.22, + "probability": 0.8422 + }, + { + "start": 9023.74, + "end": 9026.48, + "probability": 0.8698 + }, + { + "start": 9026.52, + "end": 9028.7, + "probability": 0.9493 + }, + { + "start": 9028.7, + "end": 9031.86, + "probability": 0.9948 + }, + { + "start": 9032.28, + "end": 9033.28, + "probability": 0.9285 + }, + { + "start": 9033.86, + "end": 9037.6, + "probability": 0.9812 + }, + { + "start": 9038.18, + "end": 9042.66, + "probability": 0.9448 + }, + { + "start": 9043.26, + "end": 9043.92, + "probability": 0.5163 + }, + { + "start": 9044.44, + "end": 9048.42, + "probability": 0.9941 + }, + { + "start": 9048.96, + "end": 9052.94, + "probability": 0.9805 + }, + { + "start": 9052.94, + "end": 9058.22, + "probability": 0.9967 + }, + { + "start": 9058.58, + "end": 9059.08, + "probability": 0.7698 + }, + { + "start": 9059.58, + "end": 9061.88, + "probability": 0.9766 + }, + { + "start": 9062.06, + "end": 9064.48, + "probability": 0.9095 + }, + { + "start": 9065.28, + "end": 9069.3, + "probability": 0.9691 + }, + { + "start": 9069.98, + "end": 9071.34, + "probability": 0.8575 + }, + { + "start": 9071.56, + "end": 9073.56, + "probability": 0.4087 + }, + { + "start": 9074.06, + "end": 9078.34, + "probability": 0.9915 + }, + { + "start": 9082.98, + "end": 9086.77, + "probability": 0.9525 + }, + { + "start": 9090.2, + "end": 9094.76, + "probability": 0.74 + }, + { + "start": 9096.24, + "end": 9101.02, + "probability": 0.9949 + }, + { + "start": 9102.62, + "end": 9107.78, + "probability": 0.8318 + }, + { + "start": 9108.56, + "end": 9110.52, + "probability": 0.9932 + }, + { + "start": 9110.52, + "end": 9114.68, + "probability": 0.986 + }, + { + "start": 9115.9, + "end": 9117.02, + "probability": 0.6185 + }, + { + "start": 9117.38, + "end": 9117.84, + "probability": 0.8276 + }, + { + "start": 9119.92, + "end": 9123.9, + "probability": 0.9432 + }, + { + "start": 9124.8, + "end": 9126.42, + "probability": 0.9829 + }, + { + "start": 9127.52, + "end": 9132.8, + "probability": 0.9686 + }, + { + "start": 9132.92, + "end": 9133.96, + "probability": 0.721 + }, + { + "start": 9134.08, + "end": 9135.36, + "probability": 0.8265 + }, + { + "start": 9135.84, + "end": 9139.54, + "probability": 0.9972 + }, + { + "start": 9140.88, + "end": 9143.3, + "probability": 0.875 + }, + { + "start": 9143.86, + "end": 9145.58, + "probability": 0.9645 + }, + { + "start": 9145.84, + "end": 9146.96, + "probability": 0.8899 + }, + { + "start": 9147.36, + "end": 9149.46, + "probability": 0.9935 + }, + { + "start": 9150.28, + "end": 9153.52, + "probability": 0.9989 + }, + { + "start": 9153.52, + "end": 9155.76, + "probability": 0.9995 + }, + { + "start": 9156.56, + "end": 9157.3, + "probability": 0.3279 + }, + { + "start": 9158.08, + "end": 9160.42, + "probability": 0.989 + }, + { + "start": 9160.52, + "end": 9164.14, + "probability": 0.9873 + }, + { + "start": 9164.56, + "end": 9166.48, + "probability": 0.9976 + }, + { + "start": 9167.06, + "end": 9170.9, + "probability": 0.7042 + }, + { + "start": 9171.42, + "end": 9174.52, + "probability": 0.9365 + }, + { + "start": 9175.52, + "end": 9179.76, + "probability": 0.9949 + }, + { + "start": 9180.06, + "end": 9182.64, + "probability": 0.9722 + }, + { + "start": 9182.64, + "end": 9185.26, + "probability": 0.9854 + }, + { + "start": 9185.52, + "end": 9188.9, + "probability": 0.9813 + }, + { + "start": 9188.96, + "end": 9192.16, + "probability": 0.9752 + }, + { + "start": 9192.82, + "end": 9194.24, + "probability": 0.8439 + }, + { + "start": 9195.08, + "end": 9197.34, + "probability": 0.9967 + }, + { + "start": 9197.9, + "end": 9201.28, + "probability": 0.9666 + }, + { + "start": 9201.7, + "end": 9206.86, + "probability": 0.9279 + }, + { + "start": 9207.96, + "end": 9208.96, + "probability": 0.5855 + }, + { + "start": 9209.08, + "end": 9213.62, + "probability": 0.943 + }, + { + "start": 9214.62, + "end": 9215.25, + "probability": 0.9933 + }, + { + "start": 9216.56, + "end": 9218.96, + "probability": 0.9496 + }, + { + "start": 9219.42, + "end": 9221.34, + "probability": 0.9122 + }, + { + "start": 9221.38, + "end": 9221.94, + "probability": 0.9427 + }, + { + "start": 9222.02, + "end": 9222.66, + "probability": 0.8549 + }, + { + "start": 9223.8, + "end": 9225.16, + "probability": 0.978 + }, + { + "start": 9225.44, + "end": 9228.53, + "probability": 0.9744 + }, + { + "start": 9228.74, + "end": 9229.24, + "probability": 0.8076 + }, + { + "start": 9229.94, + "end": 9231.1, + "probability": 0.8569 + }, + { + "start": 9232.14, + "end": 9237.16, + "probability": 0.9857 + }, + { + "start": 9237.16, + "end": 9243.42, + "probability": 0.9533 + }, + { + "start": 9244.68, + "end": 9246.04, + "probability": 0.867 + }, + { + "start": 9246.68, + "end": 9248.08, + "probability": 0.7219 + }, + { + "start": 9248.66, + "end": 9249.64, + "probability": 0.6258 + }, + { + "start": 9250.62, + "end": 9251.06, + "probability": 0.9282 + }, + { + "start": 9251.44, + "end": 9254.14, + "probability": 0.9874 + }, + { + "start": 9254.14, + "end": 9258.08, + "probability": 0.9943 + }, + { + "start": 9258.44, + "end": 9261.64, + "probability": 0.9883 + }, + { + "start": 9262.04, + "end": 9265.94, + "probability": 0.9907 + }, + { + "start": 9266.8, + "end": 9270.66, + "probability": 0.9957 + }, + { + "start": 9271.22, + "end": 9272.48, + "probability": 0.8957 + }, + { + "start": 9272.76, + "end": 9277.06, + "probability": 0.9988 + }, + { + "start": 9278.02, + "end": 9281.16, + "probability": 0.9583 + }, + { + "start": 9282.08, + "end": 9286.6, + "probability": 0.9449 + }, + { + "start": 9287.44, + "end": 9289.56, + "probability": 0.9702 + }, + { + "start": 9289.64, + "end": 9294.3, + "probability": 0.8938 + }, + { + "start": 9294.3, + "end": 9298.44, + "probability": 0.9946 + }, + { + "start": 9298.78, + "end": 9300.46, + "probability": 0.9819 + }, + { + "start": 9303.12, + "end": 9305.08, + "probability": 0.8516 + }, + { + "start": 9306.34, + "end": 9308.14, + "probability": 0.998 + }, + { + "start": 9309.12, + "end": 9311.42, + "probability": 0.9185 + }, + { + "start": 9311.44, + "end": 9311.52, + "probability": 0.8187 + }, + { + "start": 9311.58, + "end": 9311.62, + "probability": 0.7685 + }, + { + "start": 9311.62, + "end": 9313.16, + "probability": 0.9985 + }, + { + "start": 9313.96, + "end": 9315.02, + "probability": 0.9714 + }, + { + "start": 9315.28, + "end": 9317.82, + "probability": 0.9956 + }, + { + "start": 9318.9, + "end": 9319.8, + "probability": 0.6916 + }, + { + "start": 9320.9, + "end": 9321.72, + "probability": 0.8388 + }, + { + "start": 9322.62, + "end": 9324.7, + "probability": 0.9668 + }, + { + "start": 9325.28, + "end": 9326.62, + "probability": 0.991 + }, + { + "start": 9328.0, + "end": 9328.6, + "probability": 0.9993 + }, + { + "start": 9329.18, + "end": 9330.94, + "probability": 0.9486 + }, + { + "start": 9332.14, + "end": 9335.38, + "probability": 0.9961 + }, + { + "start": 9336.56, + "end": 9339.0, + "probability": 0.999 + }, + { + "start": 9339.34, + "end": 9342.06, + "probability": 0.9883 + }, + { + "start": 9342.24, + "end": 9343.32, + "probability": 0.9606 + }, + { + "start": 9344.52, + "end": 9347.8, + "probability": 0.9962 + }, + { + "start": 9347.94, + "end": 9352.68, + "probability": 0.9902 + }, + { + "start": 9352.96, + "end": 9353.85, + "probability": 0.999 + }, + { + "start": 9354.88, + "end": 9356.74, + "probability": 0.9104 + }, + { + "start": 9357.0, + "end": 9359.04, + "probability": 0.9982 + }, + { + "start": 9359.58, + "end": 9360.58, + "probability": 0.7969 + }, + { + "start": 9361.36, + "end": 9362.9, + "probability": 0.9224 + }, + { + "start": 9363.48, + "end": 9365.52, + "probability": 0.9648 + }, + { + "start": 9365.96, + "end": 9368.44, + "probability": 0.9959 + }, + { + "start": 9369.74, + "end": 9370.96, + "probability": 0.4981 + }, + { + "start": 9371.2, + "end": 9373.48, + "probability": 0.985 + }, + { + "start": 9374.79, + "end": 9376.68, + "probability": 0.9565 + }, + { + "start": 9376.82, + "end": 9378.98, + "probability": 0.9893 + }, + { + "start": 9379.2, + "end": 9379.6, + "probability": 0.4757 + }, + { + "start": 9379.64, + "end": 9382.16, + "probability": 0.9492 + }, + { + "start": 9383.16, + "end": 9385.98, + "probability": 0.9658 + }, + { + "start": 9385.98, + "end": 9388.32, + "probability": 0.993 + }, + { + "start": 9388.42, + "end": 9389.02, + "probability": 0.0363 + }, + { + "start": 9389.02, + "end": 9395.32, + "probability": 0.0846 + }, + { + "start": 9396.42, + "end": 9396.42, + "probability": 0.011 + }, + { + "start": 9396.42, + "end": 9396.42, + "probability": 0.0617 + }, + { + "start": 9396.42, + "end": 9397.12, + "probability": 0.4536 + }, + { + "start": 9398.24, + "end": 9399.02, + "probability": 0.6461 + }, + { + "start": 9400.24, + "end": 9401.18, + "probability": 0.4712 + }, + { + "start": 9402.08, + "end": 9404.46, + "probability": 0.7564 + }, + { + "start": 9404.84, + "end": 9407.56, + "probability": 0.9887 + }, + { + "start": 9408.36, + "end": 9409.67, + "probability": 0.8513 + }, + { + "start": 9410.02, + "end": 9411.0, + "probability": 0.8544 + }, + { + "start": 9411.26, + "end": 9412.46, + "probability": 0.7966 + }, + { + "start": 9413.0, + "end": 9413.96, + "probability": 0.9849 + }, + { + "start": 9414.9, + "end": 9419.6, + "probability": 0.999 + }, + { + "start": 9420.78, + "end": 9423.32, + "probability": 0.9985 + }, + { + "start": 9424.32, + "end": 9425.68, + "probability": 0.8285 + }, + { + "start": 9425.74, + "end": 9427.96, + "probability": 0.9422 + }, + { + "start": 9428.98, + "end": 9430.3, + "probability": 0.9653 + }, + { + "start": 9430.9, + "end": 9432.07, + "probability": 0.9443 + }, + { + "start": 9433.1, + "end": 9437.42, + "probability": 0.9969 + }, + { + "start": 9437.96, + "end": 9441.94, + "probability": 0.9996 + }, + { + "start": 9443.1, + "end": 9444.8, + "probability": 0.9995 + }, + { + "start": 9445.2, + "end": 9448.7, + "probability": 0.9983 + }, + { + "start": 9449.54, + "end": 9451.5, + "probability": 0.9117 + }, + { + "start": 9452.42, + "end": 9455.42, + "probability": 0.9817 + }, + { + "start": 9456.52, + "end": 9458.1, + "probability": 0.9768 + }, + { + "start": 9459.04, + "end": 9460.04, + "probability": 0.9531 + }, + { + "start": 9461.06, + "end": 9463.46, + "probability": 0.9145 + }, + { + "start": 9463.56, + "end": 9463.92, + "probability": 0.9563 + }, + { + "start": 9464.04, + "end": 9465.04, + "probability": 0.8392 + }, + { + "start": 9466.38, + "end": 9469.2, + "probability": 0.8382 + }, + { + "start": 9470.04, + "end": 9475.66, + "probability": 0.9661 + }, + { + "start": 9476.76, + "end": 9478.56, + "probability": 0.8311 + }, + { + "start": 9479.08, + "end": 9479.94, + "probability": 0.6092 + }, + { + "start": 9480.9, + "end": 9482.32, + "probability": 0.9898 + }, + { + "start": 9482.44, + "end": 9483.68, + "probability": 0.9691 + }, + { + "start": 9483.8, + "end": 9485.08, + "probability": 0.9346 + }, + { + "start": 9485.28, + "end": 9487.98, + "probability": 0.9624 + }, + { + "start": 9489.1, + "end": 9490.36, + "probability": 0.9965 + }, + { + "start": 9491.66, + "end": 9495.9, + "probability": 0.9979 + }, + { + "start": 9497.1, + "end": 9499.4, + "probability": 0.9658 + }, + { + "start": 9500.86, + "end": 9501.8, + "probability": 0.9983 + }, + { + "start": 9502.8, + "end": 9504.24, + "probability": 0.6834 + }, + { + "start": 9505.14, + "end": 9508.0, + "probability": 0.9686 + }, + { + "start": 9508.24, + "end": 9509.14, + "probability": 0.641 + }, + { + "start": 9509.46, + "end": 9510.98, + "probability": 0.9997 + }, + { + "start": 9511.64, + "end": 9513.82, + "probability": 0.9892 + }, + { + "start": 9513.88, + "end": 9514.92, + "probability": 0.9673 + }, + { + "start": 9515.3, + "end": 9517.64, + "probability": 0.9893 + }, + { + "start": 9519.26, + "end": 9521.2, + "probability": 0.9943 + }, + { + "start": 9521.9, + "end": 9524.16, + "probability": 0.9749 + }, + { + "start": 9525.58, + "end": 9526.78, + "probability": 0.9933 + }, + { + "start": 9526.88, + "end": 9527.88, + "probability": 0.9758 + }, + { + "start": 9527.94, + "end": 9528.33, + "probability": 0.811 + }, + { + "start": 9528.62, + "end": 9533.18, + "probability": 0.997 + }, + { + "start": 9533.32, + "end": 9534.1, + "probability": 0.972 + }, + { + "start": 9535.38, + "end": 9536.44, + "probability": 0.9923 + }, + { + "start": 9537.26, + "end": 9540.16, + "probability": 0.9515 + }, + { + "start": 9540.78, + "end": 9541.74, + "probability": 0.9955 + }, + { + "start": 9542.34, + "end": 9544.74, + "probability": 0.9976 + }, + { + "start": 9545.2, + "end": 9549.04, + "probability": 0.98 + }, + { + "start": 9549.48, + "end": 9549.8, + "probability": 0.7355 + }, + { + "start": 9551.04, + "end": 9553.66, + "probability": 0.8511 + }, + { + "start": 9553.86, + "end": 9555.68, + "probability": 0.8861 + }, + { + "start": 9557.62, + "end": 9560.52, + "probability": 0.8469 + }, + { + "start": 9562.21, + "end": 9564.4, + "probability": 0.0287 + }, + { + "start": 9565.76, + "end": 9566.46, + "probability": 0.2883 + }, + { + "start": 9566.98, + "end": 9567.92, + "probability": 0.2631 + }, + { + "start": 9569.14, + "end": 9570.96, + "probability": 0.1227 + }, + { + "start": 9586.38, + "end": 9586.98, + "probability": 0.1078 + }, + { + "start": 9598.74, + "end": 9603.82, + "probability": 0.9454 + }, + { + "start": 9605.16, + "end": 9611.42, + "probability": 0.9917 + }, + { + "start": 9611.42, + "end": 9618.68, + "probability": 0.9705 + }, + { + "start": 9619.56, + "end": 9623.06, + "probability": 0.8987 + }, + { + "start": 9623.18, + "end": 9627.24, + "probability": 0.9517 + }, + { + "start": 9628.14, + "end": 9631.86, + "probability": 0.9325 + }, + { + "start": 9632.58, + "end": 9635.66, + "probability": 0.9587 + }, + { + "start": 9636.3, + "end": 9636.44, + "probability": 0.2918 + }, + { + "start": 9637.06, + "end": 9637.92, + "probability": 0.9902 + }, + { + "start": 9640.3, + "end": 9642.42, + "probability": 0.9411 + }, + { + "start": 9643.06, + "end": 9645.06, + "probability": 0.9478 + }, + { + "start": 9645.9, + "end": 9647.9, + "probability": 0.8588 + }, + { + "start": 9648.46, + "end": 9649.94, + "probability": 0.9987 + }, + { + "start": 9651.2, + "end": 9652.16, + "probability": 0.9286 + }, + { + "start": 9653.56, + "end": 9656.64, + "probability": 0.998 + }, + { + "start": 9657.26, + "end": 9659.05, + "probability": 0.9985 + }, + { + "start": 9660.86, + "end": 9661.18, + "probability": 0.874 + }, + { + "start": 9662.58, + "end": 9663.92, + "probability": 0.0987 + }, + { + "start": 9663.96, + "end": 9665.36, + "probability": 0.3597 + }, + { + "start": 9666.76, + "end": 9668.94, + "probability": 0.7332 + }, + { + "start": 9669.68, + "end": 9672.32, + "probability": 0.9816 + }, + { + "start": 9675.4, + "end": 9677.18, + "probability": 0.7859 + }, + { + "start": 9677.28, + "end": 9681.14, + "probability": 0.7066 + }, + { + "start": 9681.82, + "end": 9682.99, + "probability": 0.5392 + }, + { + "start": 9683.76, + "end": 9685.8, + "probability": 0.3119 + }, + { + "start": 9685.92, + "end": 9687.99, + "probability": 0.6649 + }, + { + "start": 9689.42, + "end": 9691.04, + "probability": 0.7856 + }, + { + "start": 9691.52, + "end": 9693.28, + "probability": 0.2224 + }, + { + "start": 9693.6, + "end": 9694.7, + "probability": 0.0549 + }, + { + "start": 9696.66, + "end": 9697.89, + "probability": 0.6255 + }, + { + "start": 9698.46, + "end": 9699.32, + "probability": 0.6354 + }, + { + "start": 9699.44, + "end": 9700.03, + "probability": 0.8871 + }, + { + "start": 9700.82, + "end": 9702.14, + "probability": 0.4779 + }, + { + "start": 9702.14, + "end": 9702.8, + "probability": 0.5163 + }, + { + "start": 9703.86, + "end": 9705.86, + "probability": 0.89 + }, + { + "start": 9707.92, + "end": 9711.42, + "probability": 0.915 + }, + { + "start": 9711.76, + "end": 9716.12, + "probability": 0.8848 + }, + { + "start": 9717.02, + "end": 9719.24, + "probability": 0.1938 + }, + { + "start": 9719.44, + "end": 9720.15, + "probability": 0.9899 + }, + { + "start": 9720.54, + "end": 9722.38, + "probability": 0.9092 + }, + { + "start": 9723.8, + "end": 9725.08, + "probability": 0.0557 + }, + { + "start": 9725.08, + "end": 9727.38, + "probability": 0.3591 + }, + { + "start": 9727.62, + "end": 9729.4, + "probability": 0.3662 + }, + { + "start": 9729.44, + "end": 9730.3, + "probability": 0.1345 + }, + { + "start": 9731.98, + "end": 9735.16, + "probability": 0.3323 + }, + { + "start": 9735.16, + "end": 9735.16, + "probability": 0.4886 + }, + { + "start": 9735.16, + "end": 9735.16, + "probability": 0.0608 + }, + { + "start": 9735.16, + "end": 9735.82, + "probability": 0.2628 + }, + { + "start": 9735.98, + "end": 9736.8, + "probability": 0.3479 + }, + { + "start": 9737.92, + "end": 9739.14, + "probability": 0.9551 + }, + { + "start": 9740.76, + "end": 9741.52, + "probability": 0.7388 + }, + { + "start": 9741.88, + "end": 9743.44, + "probability": 0.1386 + }, + { + "start": 9746.0, + "end": 9746.62, + "probability": 0.0462 + }, + { + "start": 9746.96, + "end": 9747.14, + "probability": 0.097 + }, + { + "start": 9747.14, + "end": 9750.28, + "probability": 0.5588 + }, + { + "start": 9753.0, + "end": 9754.7, + "probability": 0.6832 + }, + { + "start": 9755.5, + "end": 9757.58, + "probability": 0.6734 + }, + { + "start": 9769.42, + "end": 9775.84, + "probability": 0.1813 + }, + { + "start": 9783.3, + "end": 9786.8, + "probability": 0.0742 + }, + { + "start": 9787.97, + "end": 9789.5, + "probability": 0.0187 + }, + { + "start": 9795.22, + "end": 9795.96, + "probability": 0.0386 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.0, + "end": 9840.0, + "probability": 0.0 + }, + { + "start": 9840.14, + "end": 9840.14, + "probability": 0.0241 + }, + { + "start": 9840.14, + "end": 9840.14, + "probability": 0.0771 + }, + { + "start": 9840.14, + "end": 9840.14, + "probability": 0.11 + }, + { + "start": 9840.14, + "end": 9840.64, + "probability": 0.2571 + }, + { + "start": 9841.32, + "end": 9842.39, + "probability": 0.8993 + }, + { + "start": 9842.72, + "end": 9843.73, + "probability": 0.2473 + }, + { + "start": 9843.94, + "end": 9845.97, + "probability": 0.6248 + }, + { + "start": 9847.74, + "end": 9850.58, + "probability": 0.5373 + }, + { + "start": 9850.82, + "end": 9852.6, + "probability": 0.0736 + }, + { + "start": 9852.66, + "end": 9852.7, + "probability": 0.2693 + }, + { + "start": 9852.7, + "end": 9853.32, + "probability": 0.0796 + }, + { + "start": 9853.38, + "end": 9853.38, + "probability": 0.1665 + }, + { + "start": 9853.42, + "end": 9854.42, + "probability": 0.257 + }, + { + "start": 9854.6, + "end": 9854.82, + "probability": 0.8374 + }, + { + "start": 9854.92, + "end": 9856.52, + "probability": 0.9 + }, + { + "start": 9857.02, + "end": 9859.9, + "probability": 0.6991 + }, + { + "start": 9859.92, + "end": 9862.3, + "probability": 0.0425 + }, + { + "start": 9862.52, + "end": 9864.59, + "probability": 0.0628 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.0, + "end": 9978.0, + "probability": 0.0 + }, + { + "start": 9978.4, + "end": 9978.64, + "probability": 0.0001 + }, + { + "start": 9978.64, + "end": 9978.64, + "probability": 0.0815 + }, + { + "start": 9978.64, + "end": 9978.64, + "probability": 0.0809 + }, + { + "start": 9978.64, + "end": 9978.64, + "probability": 0.0645 + }, + { + "start": 9978.64, + "end": 9978.64, + "probability": 0.1072 + }, + { + "start": 9978.64, + "end": 9978.64, + "probability": 0.1288 + }, + { + "start": 9978.64, + "end": 9981.01, + "probability": 0.6739 + }, + { + "start": 9982.48, + "end": 9984.02, + "probability": 0.4925 + }, + { + "start": 9984.34, + "end": 9987.16, + "probability": 0.5631 + }, + { + "start": 9990.94, + "end": 9994.54, + "probability": 0.9963 + }, + { + "start": 9994.54, + "end": 9998.16, + "probability": 0.9982 + }, + { + "start": 9998.58, + "end": 10001.46, + "probability": 0.9967 + }, + { + "start": 10001.58, + "end": 10003.95, + "probability": 0.9857 + }, + { + "start": 10006.54, + "end": 10010.12, + "probability": 0.9985 + }, + { + "start": 10010.12, + "end": 10013.86, + "probability": 0.9736 + }, + { + "start": 10014.94, + "end": 10015.54, + "probability": 0.5675 + }, + { + "start": 10015.56, + "end": 10019.14, + "probability": 0.9893 + }, + { + "start": 10019.54, + "end": 10023.8, + "probability": 0.9237 + }, + { + "start": 10023.86, + "end": 10029.52, + "probability": 0.9768 + }, + { + "start": 10029.74, + "end": 10031.3, + "probability": 0.1871 + }, + { + "start": 10031.46, + "end": 10033.24, + "probability": 0.9741 + }, + { + "start": 10034.68, + "end": 10036.92, + "probability": 0.984 + }, + { + "start": 10037.06, + "end": 10038.18, + "probability": 0.8824 + }, + { + "start": 10038.32, + "end": 10038.72, + "probability": 0.2616 + }, + { + "start": 10038.9, + "end": 10041.1, + "probability": 0.9189 + }, + { + "start": 10041.74, + "end": 10044.4, + "probability": 0.8745 + }, + { + "start": 10045.66, + "end": 10047.46, + "probability": 0.9668 + }, + { + "start": 10048.44, + "end": 10052.14, + "probability": 0.9854 + }, + { + "start": 10052.88, + "end": 10056.9, + "probability": 0.9989 + }, + { + "start": 10057.9, + "end": 10060.97, + "probability": 0.9985 + }, + { + "start": 10061.36, + "end": 10062.3, + "probability": 0.9377 + }, + { + "start": 10062.46, + "end": 10067.32, + "probability": 0.9989 + }, + { + "start": 10068.3, + "end": 10072.02, + "probability": 0.9961 + }, + { + "start": 10072.54, + "end": 10073.52, + "probability": 0.8721 + }, + { + "start": 10073.76, + "end": 10075.98, + "probability": 0.9875 + }, + { + "start": 10076.42, + "end": 10079.58, + "probability": 0.9944 + }, + { + "start": 10079.78, + "end": 10080.36, + "probability": 0.9494 + }, + { + "start": 10080.44, + "end": 10082.34, + "probability": 0.9631 + }, + { + "start": 10082.5, + "end": 10083.98, + "probability": 0.9758 + }, + { + "start": 10084.64, + "end": 10089.02, + "probability": 0.9893 + }, + { + "start": 10089.46, + "end": 10090.46, + "probability": 0.889 + }, + { + "start": 10090.54, + "end": 10093.48, + "probability": 0.9578 + }, + { + "start": 10093.62, + "end": 10095.34, + "probability": 0.9945 + }, + { + "start": 10095.62, + "end": 10096.42, + "probability": 0.9514 + }, + { + "start": 10096.52, + "end": 10097.06, + "probability": 0.5226 + }, + { + "start": 10099.02, + "end": 10101.62, + "probability": 0.9827 + }, + { + "start": 10102.62, + "end": 10103.5, + "probability": 0.9639 + }, + { + "start": 10104.24, + "end": 10105.26, + "probability": 0.9482 + }, + { + "start": 10105.28, + "end": 10109.34, + "probability": 0.9956 + }, + { + "start": 10110.1, + "end": 10111.86, + "probability": 0.9976 + }, + { + "start": 10112.42, + "end": 10114.8, + "probability": 0.9949 + }, + { + "start": 10115.0, + "end": 10115.4, + "probability": 0.7565 + }, + { + "start": 10116.12, + "end": 10118.16, + "probability": 0.5645 + }, + { + "start": 10118.34, + "end": 10119.71, + "probability": 0.7352 + }, + { + "start": 10120.4, + "end": 10125.3, + "probability": 0.9871 + }, + { + "start": 10125.3, + "end": 10126.44, + "probability": 0.7397 + }, + { + "start": 10128.74, + "end": 10130.0, + "probability": 0.1575 + }, + { + "start": 10130.98, + "end": 10132.4, + "probability": 0.7202 + }, + { + "start": 10132.5, + "end": 10133.0, + "probability": 0.4171 + }, + { + "start": 10133.06, + "end": 10133.82, + "probability": 0.6057 + }, + { + "start": 10134.86, + "end": 10136.38, + "probability": 0.0728 + }, + { + "start": 10137.46, + "end": 10141.5, + "probability": 0.0853 + }, + { + "start": 10143.24, + "end": 10147.96, + "probability": 0.0221 + }, + { + "start": 10152.2, + "end": 10154.76, + "probability": 0.4216 + }, + { + "start": 10154.76, + "end": 10158.08, + "probability": 0.6808 + }, + { + "start": 10158.52, + "end": 10160.36, + "probability": 0.962 + }, + { + "start": 10160.96, + "end": 10168.52, + "probability": 0.712 + }, + { + "start": 10168.52, + "end": 10173.86, + "probability": 0.9608 + }, + { + "start": 10174.8, + "end": 10176.97, + "probability": 0.6232 + }, + { + "start": 10177.96, + "end": 10178.38, + "probability": 0.5668 + }, + { + "start": 10179.0, + "end": 10181.44, + "probability": 0.9621 + }, + { + "start": 10190.44, + "end": 10193.92, + "probability": 0.6604 + }, + { + "start": 10199.4, + "end": 10200.59, + "probability": 0.5807 + }, + { + "start": 10201.06, + "end": 10202.38, + "probability": 0.4975 + }, + { + "start": 10202.5, + "end": 10204.06, + "probability": 0.7167 + }, + { + "start": 10204.06, + "end": 10205.44, + "probability": 0.5793 + }, + { + "start": 10205.88, + "end": 10206.98, + "probability": 0.8779 + }, + { + "start": 10209.64, + "end": 10211.04, + "probability": 0.6165 + }, + { + "start": 10213.2, + "end": 10217.42, + "probability": 0.8774 + }, + { + "start": 10234.5, + "end": 10234.7, + "probability": 0.0486 + }, + { + "start": 10235.56, + "end": 10237.2, + "probability": 0.6879 + }, + { + "start": 10242.96, + "end": 10243.88, + "probability": 0.5389 + }, + { + "start": 10244.92, + "end": 10251.95, + "probability": 0.8756 + }, + { + "start": 10252.28, + "end": 10259.1, + "probability": 0.9922 + }, + { + "start": 10261.14, + "end": 10265.54, + "probability": 0.8965 + }, + { + "start": 10265.96, + "end": 10267.24, + "probability": 0.8066 + }, + { + "start": 10269.8, + "end": 10281.5, + "probability": 0.8319 + }, + { + "start": 10284.12, + "end": 10289.02, + "probability": 0.8815 + }, + { + "start": 10290.88, + "end": 10292.28, + "probability": 0.9199 + }, + { + "start": 10293.68, + "end": 10294.4, + "probability": 0.8858 + }, + { + "start": 10295.16, + "end": 10296.08, + "probability": 0.5447 + }, + { + "start": 10297.34, + "end": 10299.12, + "probability": 0.7236 + }, + { + "start": 10300.3, + "end": 10304.14, + "probability": 0.6665 + }, + { + "start": 10305.52, + "end": 10306.4, + "probability": 0.788 + }, + { + "start": 10307.74, + "end": 10309.8, + "probability": 0.8221 + }, + { + "start": 10311.22, + "end": 10314.24, + "probability": 0.8024 + }, + { + "start": 10316.82, + "end": 10321.58, + "probability": 0.9163 + }, + { + "start": 10323.88, + "end": 10328.24, + "probability": 0.6422 + }, + { + "start": 10330.68, + "end": 10331.78, + "probability": 0.8943 + }, + { + "start": 10333.68, + "end": 10338.04, + "probability": 0.984 + }, + { + "start": 10339.66, + "end": 10344.79, + "probability": 0.99 + }, + { + "start": 10346.6, + "end": 10349.22, + "probability": 0.6121 + }, + { + "start": 10350.3, + "end": 10351.28, + "probability": 0.7287 + }, + { + "start": 10352.78, + "end": 10356.1, + "probability": 0.9972 + }, + { + "start": 10357.22, + "end": 10360.04, + "probability": 0.8979 + }, + { + "start": 10362.76, + "end": 10367.98, + "probability": 0.9841 + }, + { + "start": 10369.08, + "end": 10370.32, + "probability": 0.8712 + }, + { + "start": 10373.02, + "end": 10373.86, + "probability": 0.6086 + }, + { + "start": 10378.3, + "end": 10381.4, + "probability": 0.7892 + }, + { + "start": 10383.5, + "end": 10385.44, + "probability": 0.2936 + }, + { + "start": 10386.92, + "end": 10388.0, + "probability": 0.7338 + }, + { + "start": 10389.4, + "end": 10394.78, + "probability": 0.7203 + }, + { + "start": 10395.9, + "end": 10397.84, + "probability": 0.9318 + }, + { + "start": 10399.42, + "end": 10399.48, + "probability": 0.0037 + }, + { + "start": 10402.9, + "end": 10404.94, + "probability": 0.6149 + }, + { + "start": 10406.06, + "end": 10407.46, + "probability": 0.8549 + }, + { + "start": 10409.12, + "end": 10410.52, + "probability": 0.7642 + }, + { + "start": 10411.48, + "end": 10413.02, + "probability": 0.4964 + }, + { + "start": 10415.18, + "end": 10419.6, + "probability": 0.8418 + }, + { + "start": 10422.92, + "end": 10428.8, + "probability": 0.8089 + }, + { + "start": 10430.68, + "end": 10431.94, + "probability": 0.9934 + }, + { + "start": 10433.8, + "end": 10439.42, + "probability": 0.9899 + }, + { + "start": 10439.54, + "end": 10440.4, + "probability": 0.4445 + }, + { + "start": 10443.0, + "end": 10445.24, + "probability": 0.7756 + }, + { + "start": 10446.0, + "end": 10447.6, + "probability": 0.9901 + }, + { + "start": 10449.2, + "end": 10450.24, + "probability": 0.8513 + }, + { + "start": 10450.5, + "end": 10454.94, + "probability": 0.7633 + }, + { + "start": 10456.96, + "end": 10462.24, + "probability": 0.9153 + }, + { + "start": 10464.46, + "end": 10467.9, + "probability": 0.9835 + }, + { + "start": 10468.9, + "end": 10473.58, + "probability": 0.874 + }, + { + "start": 10475.3, + "end": 10476.38, + "probability": 0.9141 + }, + { + "start": 10477.5, + "end": 10479.88, + "probability": 0.9197 + }, + { + "start": 10482.0, + "end": 10485.0, + "probability": 0.9473 + }, + { + "start": 10485.9, + "end": 10487.14, + "probability": 0.632 + }, + { + "start": 10487.94, + "end": 10489.12, + "probability": 0.975 + }, + { + "start": 10491.28, + "end": 10492.38, + "probability": 0.8958 + }, + { + "start": 10493.68, + "end": 10498.52, + "probability": 0.7594 + }, + { + "start": 10499.08, + "end": 10504.08, + "probability": 0.6388 + }, + { + "start": 10505.92, + "end": 10509.76, + "probability": 0.9678 + }, + { + "start": 10510.46, + "end": 10511.3, + "probability": 0.8411 + }, + { + "start": 10512.8, + "end": 10515.0, + "probability": 0.9756 + }, + { + "start": 10516.34, + "end": 10524.0, + "probability": 0.9763 + }, + { + "start": 10524.66, + "end": 10528.64, + "probability": 0.994 + }, + { + "start": 10529.88, + "end": 10533.6, + "probability": 0.7892 + }, + { + "start": 10534.46, + "end": 10537.52, + "probability": 0.9585 + }, + { + "start": 10539.66, + "end": 10541.32, + "probability": 0.8822 + }, + { + "start": 10543.14, + "end": 10547.32, + "probability": 0.9885 + }, + { + "start": 10548.64, + "end": 10553.02, + "probability": 0.8248 + }, + { + "start": 10555.12, + "end": 10560.18, + "probability": 0.8341 + }, + { + "start": 10560.24, + "end": 10561.32, + "probability": 0.788 + }, + { + "start": 10562.72, + "end": 10564.92, + "probability": 0.9832 + }, + { + "start": 10565.8, + "end": 10567.24, + "probability": 0.9131 + }, + { + "start": 10568.28, + "end": 10573.12, + "probability": 0.8428 + }, + { + "start": 10574.94, + "end": 10576.72, + "probability": 0.7367 + }, + { + "start": 10578.0, + "end": 10578.63, + "probability": 0.6237 + }, + { + "start": 10579.32, + "end": 10583.98, + "probability": 0.6338 + }, + { + "start": 10585.1, + "end": 10586.86, + "probability": 0.8713 + }, + { + "start": 10589.36, + "end": 10594.22, + "probability": 0.7762 + }, + { + "start": 10596.32, + "end": 10598.94, + "probability": 0.8932 + }, + { + "start": 10600.86, + "end": 10607.38, + "probability": 0.8508 + }, + { + "start": 10608.3, + "end": 10609.02, + "probability": 0.6364 + }, + { + "start": 10610.62, + "end": 10612.48, + "probability": 0.4467 + }, + { + "start": 10613.64, + "end": 10616.54, + "probability": 0.5147 + }, + { + "start": 10618.0, + "end": 10621.06, + "probability": 0.7176 + }, + { + "start": 10621.92, + "end": 10623.28, + "probability": 0.8756 + }, + { + "start": 10625.18, + "end": 10627.18, + "probability": 0.722 + }, + { + "start": 10628.4, + "end": 10629.1, + "probability": 0.8142 + }, + { + "start": 10629.26, + "end": 10633.28, + "probability": 0.7593 + }, + { + "start": 10635.44, + "end": 10637.6, + "probability": 0.9816 + }, + { + "start": 10639.7, + "end": 10642.96, + "probability": 0.9347 + }, + { + "start": 10643.88, + "end": 10646.58, + "probability": 0.9653 + }, + { + "start": 10647.36, + "end": 10649.54, + "probability": 0.5292 + }, + { + "start": 10650.3, + "end": 10651.96, + "probability": 0.5835 + }, + { + "start": 10653.0, + "end": 10654.94, + "probability": 0.9842 + }, + { + "start": 10656.92, + "end": 10658.48, + "probability": 0.9588 + }, + { + "start": 10659.44, + "end": 10660.1, + "probability": 0.9615 + }, + { + "start": 10661.58, + "end": 10663.2, + "probability": 0.8709 + }, + { + "start": 10664.32, + "end": 10667.76, + "probability": 0.8907 + }, + { + "start": 10668.32, + "end": 10669.0, + "probability": 0.5064 + }, + { + "start": 10669.8, + "end": 10670.56, + "probability": 0.7586 + }, + { + "start": 10673.0, + "end": 10677.38, + "probability": 0.6853 + }, + { + "start": 10678.48, + "end": 10679.64, + "probability": 0.8983 + }, + { + "start": 10681.74, + "end": 10684.08, + "probability": 0.9346 + }, + { + "start": 10684.48, + "end": 10692.1, + "probability": 0.8704 + }, + { + "start": 10692.78, + "end": 10693.62, + "probability": 0.5444 + }, + { + "start": 10694.04, + "end": 10694.48, + "probability": 0.8074 + }, + { + "start": 10696.16, + "end": 10697.84, + "probability": 0.611 + }, + { + "start": 10698.06, + "end": 10700.6, + "probability": 0.9271 + }, + { + "start": 10701.36, + "end": 10702.04, + "probability": 0.7416 + }, + { + "start": 10705.12, + "end": 10705.32, + "probability": 0.1887 + }, + { + "start": 10705.32, + "end": 10706.12, + "probability": 0.1724 + }, + { + "start": 10707.02, + "end": 10708.48, + "probability": 0.043 + }, + { + "start": 10745.6, + "end": 10746.66, + "probability": 0.2299 + }, + { + "start": 10750.46, + "end": 10754.3, + "probability": 0.6317 + }, + { + "start": 10758.46, + "end": 10761.34, + "probability": 0.811 + }, + { + "start": 10763.2, + "end": 10767.06, + "probability": 0.9656 + }, + { + "start": 10767.54, + "end": 10768.58, + "probability": 0.8465 + }, + { + "start": 10770.18, + "end": 10773.16, + "probability": 0.5044 + }, + { + "start": 10773.16, + "end": 10777.04, + "probability": 0.8716 + }, + { + "start": 10777.92, + "end": 10780.3, + "probability": 0.957 + }, + { + "start": 10780.32, + "end": 10781.54, + "probability": 0.5417 + }, + { + "start": 10781.64, + "end": 10788.28, + "probability": 0.7792 + }, + { + "start": 10788.28, + "end": 10794.06, + "probability": 0.5761 + }, + { + "start": 10794.5, + "end": 10795.72, + "probability": 0.1902 + }, + { + "start": 10796.6, + "end": 10804.48, + "probability": 0.9178 + }, + { + "start": 10806.6, + "end": 10809.76, + "probability": 0.6987 + }, + { + "start": 10810.14, + "end": 10811.36, + "probability": 0.7993 + }, + { + "start": 10811.64, + "end": 10814.94, + "probability": 0.121 + }, + { + "start": 10816.18, + "end": 10819.16, + "probability": 0.4988 + }, + { + "start": 10822.56, + "end": 10824.22, + "probability": 0.0768 + }, + { + "start": 10824.22, + "end": 10825.46, + "probability": 0.3573 + }, + { + "start": 10825.58, + "end": 10826.06, + "probability": 0.4042 + }, + { + "start": 10826.36, + "end": 10827.1, + "probability": 0.0112 + }, + { + "start": 10827.1, + "end": 10829.42, + "probability": 0.213 + }, + { + "start": 10829.84, + "end": 10831.08, + "probability": 0.6342 + }, + { + "start": 10831.08, + "end": 10831.87, + "probability": 0.297 + }, + { + "start": 10832.54, + "end": 10835.93, + "probability": 0.6937 + }, + { + "start": 10837.48, + "end": 10838.04, + "probability": 0.2763 + }, + { + "start": 10838.94, + "end": 10839.32, + "probability": 0.0129 + }, + { + "start": 10843.2, + "end": 10843.67, + "probability": 0.1584 + }, + { + "start": 10844.06, + "end": 10844.58, + "probability": 0.2388 + }, + { + "start": 10845.37, + "end": 10848.82, + "probability": 0.612 + }, + { + "start": 10849.54, + "end": 10851.14, + "probability": 0.4778 + }, + { + "start": 10851.16, + "end": 10853.3, + "probability": 0.3818 + }, + { + "start": 10853.4, + "end": 10854.6, + "probability": 0.7857 + }, + { + "start": 10857.61, + "end": 10861.27, + "probability": 0.5104 + }, + { + "start": 10866.5, + "end": 10868.24, + "probability": 0.4875 + }, + { + "start": 10880.38, + "end": 10882.2, + "probability": 0.2587 + }, + { + "start": 10882.38, + "end": 10883.02, + "probability": 0.1468 + }, + { + "start": 10883.14, + "end": 10885.3, + "probability": 0.1592 + }, + { + "start": 10885.5, + "end": 10887.9, + "probability": 0.8825 + }, + { + "start": 10887.94, + "end": 10888.1, + "probability": 0.0133 + }, + { + "start": 10889.32, + "end": 10890.02, + "probability": 0.1748 + }, + { + "start": 10890.6, + "end": 10891.58, + "probability": 0.1572 + }, + { + "start": 10891.84, + "end": 10892.7, + "probability": 0.0621 + }, + { + "start": 10893.0, + "end": 10893.46, + "probability": 0.6465 + }, + { + "start": 10893.56, + "end": 10897.88, + "probability": 0.6103 + }, + { + "start": 10898.14, + "end": 10900.34, + "probability": 0.9131 + }, + { + "start": 10901.04, + "end": 10904.26, + "probability": 0.9144 + }, + { + "start": 10904.92, + "end": 10906.66, + "probability": 0.9873 + }, + { + "start": 10908.58, + "end": 10911.0, + "probability": 0.5734 + }, + { + "start": 10911.02, + "end": 10914.54, + "probability": 0.9014 + }, + { + "start": 10916.38, + "end": 10921.44, + "probability": 0.6746 + }, + { + "start": 10921.56, + "end": 10923.88, + "probability": 0.8779 + }, + { + "start": 10924.98, + "end": 10928.68, + "probability": 0.7917 + }, + { + "start": 10928.94, + "end": 10930.01, + "probability": 0.7401 + }, + { + "start": 10932.24, + "end": 10932.98, + "probability": 0.7584 + }, + { + "start": 10934.72, + "end": 10937.52, + "probability": 0.6895 + }, + { + "start": 10938.22, + "end": 10940.46, + "probability": 0.979 + }, + { + "start": 10940.46, + "end": 10945.08, + "probability": 0.8085 + }, + { + "start": 10951.96, + "end": 10952.82, + "probability": 0.4388 + }, + { + "start": 10954.22, + "end": 10955.16, + "probability": 0.4717 + }, + { + "start": 10955.36, + "end": 10959.22, + "probability": 0.2371 + }, + { + "start": 10959.22, + "end": 10960.06, + "probability": 0.051 + }, + { + "start": 10960.66, + "end": 10964.56, + "probability": 0.7745 + }, + { + "start": 10964.58, + "end": 10966.38, + "probability": 0.0234 + }, + { + "start": 10966.38, + "end": 10966.96, + "probability": 0.1971 + }, + { + "start": 10967.04, + "end": 10968.72, + "probability": 0.6561 + }, + { + "start": 10968.72, + "end": 10969.86, + "probability": 0.864 + }, + { + "start": 10970.66, + "end": 10971.36, + "probability": 0.7759 + }, + { + "start": 10971.44, + "end": 10972.26, + "probability": 0.7649 + }, + { + "start": 10972.3, + "end": 10974.89, + "probability": 0.839 + }, + { + "start": 10975.3, + "end": 10977.01, + "probability": 0.5457 + }, + { + "start": 10978.08, + "end": 10978.64, + "probability": 0.1825 + }, + { + "start": 10979.3, + "end": 10980.44, + "probability": 0.7021 + }, + { + "start": 10980.86, + "end": 10981.66, + "probability": 0.8817 + }, + { + "start": 10981.74, + "end": 10982.88, + "probability": 0.8088 + }, + { + "start": 10982.94, + "end": 10983.78, + "probability": 0.5126 + }, + { + "start": 10983.92, + "end": 10987.98, + "probability": 0.7472 + }, + { + "start": 10987.98, + "end": 10991.3, + "probability": 0.973 + }, + { + "start": 10991.3, + "end": 10991.46, + "probability": 0.4752 + }, + { + "start": 10991.56, + "end": 10994.36, + "probability": 0.9106 + }, + { + "start": 10994.36, + "end": 10996.3, + "probability": 0.6785 + }, + { + "start": 10996.56, + "end": 10998.26, + "probability": 0.6708 + }, + { + "start": 11002.1, + "end": 11004.98, + "probability": 0.5966 + }, + { + "start": 11010.46, + "end": 11010.64, + "probability": 0.3399 + }, + { + "start": 11018.48, + "end": 11018.48, + "probability": 0.3332 + }, + { + "start": 11019.48, + "end": 11019.88, + "probability": 0.1947 + }, + { + "start": 11019.88, + "end": 11020.52, + "probability": 0.3898 + }, + { + "start": 11020.68, + "end": 11021.32, + "probability": 0.5711 + }, + { + "start": 11021.4, + "end": 11021.96, + "probability": 0.5616 + }, + { + "start": 11021.96, + "end": 11022.46, + "probability": 0.6948 + }, + { + "start": 11022.46, + "end": 11026.62, + "probability": 0.8013 + }, + { + "start": 11027.08, + "end": 11029.46, + "probability": 0.704 + }, + { + "start": 11032.84, + "end": 11036.76, + "probability": 0.4881 + }, + { + "start": 11037.28, + "end": 11038.02, + "probability": 0.0118 + }, + { + "start": 11038.6, + "end": 11040.5, + "probability": 0.3533 + }, + { + "start": 11041.02, + "end": 11044.08, + "probability": 0.8631 + }, + { + "start": 11044.5, + "end": 11050.52, + "probability": 0.9572 + }, + { + "start": 11051.67, + "end": 11055.84, + "probability": 0.889 + }, + { + "start": 11063.6, + "end": 11065.2, + "probability": 0.7375 + }, + { + "start": 11066.26, + "end": 11068.6, + "probability": 0.6641 + }, + { + "start": 11069.12, + "end": 11069.52, + "probability": 0.5061 + }, + { + "start": 11069.58, + "end": 11070.36, + "probability": 0.4845 + }, + { + "start": 11070.44, + "end": 11071.4, + "probability": 0.7349 + }, + { + "start": 11071.76, + "end": 11074.2, + "probability": 0.9364 + }, + { + "start": 11074.28, + "end": 11075.52, + "probability": 0.6042 + }, + { + "start": 11076.0, + "end": 11077.58, + "probability": 0.972 + }, + { + "start": 11077.62, + "end": 11079.6, + "probability": 0.8794 + }, + { + "start": 11080.54, + "end": 11083.68, + "probability": 0.8726 + }, + { + "start": 11083.68, + "end": 11086.48, + "probability": 0.9943 + }, + { + "start": 11086.9, + "end": 11087.02, + "probability": 0.4514 + }, + { + "start": 11087.22, + "end": 11089.3, + "probability": 0.9907 + }, + { + "start": 11089.5, + "end": 11090.52, + "probability": 0.7415 + }, + { + "start": 11095.52, + "end": 11096.72, + "probability": 0.7115 + }, + { + "start": 11096.8, + "end": 11097.04, + "probability": 0.5284 + }, + { + "start": 11097.04, + "end": 11097.56, + "probability": 0.2348 + }, + { + "start": 11097.56, + "end": 11099.22, + "probability": 0.441 + }, + { + "start": 11099.22, + "end": 11100.18, + "probability": 0.5302 + }, + { + "start": 11100.48, + "end": 11101.14, + "probability": 0.8299 + }, + { + "start": 11101.22, + "end": 11102.38, + "probability": 0.9819 + }, + { + "start": 11102.4, + "end": 11102.9, + "probability": 0.7344 + }, + { + "start": 11103.36, + "end": 11105.07, + "probability": 0.8838 + }, + { + "start": 11105.12, + "end": 11106.92, + "probability": 0.6622 + }, + { + "start": 11107.44, + "end": 11107.76, + "probability": 0.0236 + }, + { + "start": 11107.98, + "end": 11108.14, + "probability": 0.3822 + }, + { + "start": 11108.48, + "end": 11109.2, + "probability": 0.7254 + }, + { + "start": 11109.26, + "end": 11112.08, + "probability": 0.5304 + }, + { + "start": 11112.3, + "end": 11114.62, + "probability": 0.5089 + }, + { + "start": 11114.68, + "end": 11116.54, + "probability": 0.8305 + }, + { + "start": 11116.6, + "end": 11117.55, + "probability": 0.936 + }, + { + "start": 11117.76, + "end": 11119.16, + "probability": 0.5131 + }, + { + "start": 11119.28, + "end": 11121.51, + "probability": 0.9214 + }, + { + "start": 11121.66, + "end": 11122.3, + "probability": 0.33 + }, + { + "start": 11122.58, + "end": 11125.08, + "probability": 0.7555 + }, + { + "start": 11125.66, + "end": 11128.08, + "probability": 0.9531 + }, + { + "start": 11128.28, + "end": 11130.74, + "probability": 0.9961 + }, + { + "start": 11130.9, + "end": 11131.18, + "probability": 0.8 + }, + { + "start": 11131.28, + "end": 11133.8, + "probability": 0.798 + }, + { + "start": 11134.38, + "end": 11137.32, + "probability": 0.9051 + }, + { + "start": 11139.08, + "end": 11140.38, + "probability": 0.3814 + }, + { + "start": 11140.5, + "end": 11141.0, + "probability": 0.6833 + }, + { + "start": 11141.02, + "end": 11142.6, + "probability": 0.7397 + }, + { + "start": 11142.9, + "end": 11145.27, + "probability": 0.7918 + }, + { + "start": 11146.18, + "end": 11146.44, + "probability": 0.7189 + }, + { + "start": 11146.46, + "end": 11149.0, + "probability": 0.8995 + }, + { + "start": 11149.24, + "end": 11151.19, + "probability": 0.9895 + }, + { + "start": 11152.16, + "end": 11153.84, + "probability": 0.9888 + }, + { + "start": 11153.84, + "end": 11156.64, + "probability": 0.3084 + }, + { + "start": 11156.7, + "end": 11157.88, + "probability": 0.3051 + }, + { + "start": 11158.46, + "end": 11160.06, + "probability": 0.9633 + }, + { + "start": 11160.52, + "end": 11164.06, + "probability": 0.9927 + }, + { + "start": 11164.06, + "end": 11167.42, + "probability": 0.7536 + }, + { + "start": 11167.42, + "end": 11170.62, + "probability": 0.8975 + }, + { + "start": 11170.85, + "end": 11173.16, + "probability": 0.9331 + }, + { + "start": 11173.16, + "end": 11175.04, + "probability": 0.7985 + }, + { + "start": 11176.36, + "end": 11178.72, + "probability": 0.8192 + }, + { + "start": 11179.4, + "end": 11181.54, + "probability": 0.9815 + }, + { + "start": 11181.64, + "end": 11182.28, + "probability": 0.8191 + }, + { + "start": 11182.88, + "end": 11183.5, + "probability": 0.9127 + }, + { + "start": 11184.02, + "end": 11185.36, + "probability": 0.9658 + }, + { + "start": 11185.48, + "end": 11185.74, + "probability": 0.525 + }, + { + "start": 11185.82, + "end": 11189.04, + "probability": 0.6465 + }, + { + "start": 11189.62, + "end": 11190.68, + "probability": 0.4152 + }, + { + "start": 11190.88, + "end": 11193.56, + "probability": 0.9451 + }, + { + "start": 11194.14, + "end": 11195.24, + "probability": 0.8286 + }, + { + "start": 11195.34, + "end": 11196.48, + "probability": 0.7254 + }, + { + "start": 11196.5, + "end": 11198.92, + "probability": 0.8331 + }, + { + "start": 11199.26, + "end": 11200.58, + "probability": 0.8499 + }, + { + "start": 11201.02, + "end": 11203.44, + "probability": 0.944 + }, + { + "start": 11203.44, + "end": 11206.7, + "probability": 0.9513 + }, + { + "start": 11207.32, + "end": 11210.56, + "probability": 0.9934 + }, + { + "start": 11210.56, + "end": 11212.64, + "probability": 0.9644 + }, + { + "start": 11213.26, + "end": 11213.9, + "probability": 0.7994 + }, + { + "start": 11214.6, + "end": 11217.72, + "probability": 0.9333 + }, + { + "start": 11217.72, + "end": 11220.3, + "probability": 0.9145 + }, + { + "start": 11220.7, + "end": 11222.12, + "probability": 0.7876 + }, + { + "start": 11222.52, + "end": 11224.02, + "probability": 0.9025 + }, + { + "start": 11224.32, + "end": 11227.12, + "probability": 0.9058 + }, + { + "start": 11227.74, + "end": 11231.2, + "probability": 0.7529 + }, + { + "start": 11231.76, + "end": 11234.02, + "probability": 0.9166 + }, + { + "start": 11234.64, + "end": 11235.24, + "probability": 0.7705 + }, + { + "start": 11235.62, + "end": 11236.62, + "probability": 0.7566 + }, + { + "start": 11236.72, + "end": 11239.26, + "probability": 0.9218 + }, + { + "start": 11239.8, + "end": 11242.26, + "probability": 0.6346 + }, + { + "start": 11242.7, + "end": 11244.74, + "probability": 0.9151 + }, + { + "start": 11244.74, + "end": 11246.56, + "probability": 0.902 + }, + { + "start": 11247.24, + "end": 11248.78, + "probability": 0.2199 + }, + { + "start": 11249.42, + "end": 11250.48, + "probability": 0.4193 + }, + { + "start": 11250.6, + "end": 11250.9, + "probability": 0.4604 + }, + { + "start": 11250.92, + "end": 11251.24, + "probability": 0.7332 + }, + { + "start": 11251.36, + "end": 11253.04, + "probability": 0.7765 + }, + { + "start": 11253.36, + "end": 11254.88, + "probability": 0.6409 + }, + { + "start": 11254.9, + "end": 11258.08, + "probability": 0.9531 + }, + { + "start": 11258.08, + "end": 11261.82, + "probability": 0.9974 + }, + { + "start": 11261.86, + "end": 11262.88, + "probability": 0.8392 + }, + { + "start": 11263.5, + "end": 11263.5, + "probability": 0.0781 + }, + { + "start": 11263.5, + "end": 11263.5, + "probability": 0.4841 + }, + { + "start": 11263.5, + "end": 11266.14, + "probability": 0.563 + }, + { + "start": 11266.64, + "end": 11268.38, + "probability": 0.8627 + }, + { + "start": 11269.08, + "end": 11270.18, + "probability": 0.2283 + }, + { + "start": 11270.42, + "end": 11270.42, + "probability": 0.5109 + }, + { + "start": 11270.42, + "end": 11273.68, + "probability": 0.9836 + }, + { + "start": 11273.68, + "end": 11278.12, + "probability": 0.9642 + }, + { + "start": 11278.5, + "end": 11280.62, + "probability": 0.9632 + }, + { + "start": 11280.62, + "end": 11283.4, + "probability": 0.7887 + }, + { + "start": 11283.48, + "end": 11284.38, + "probability": 0.9138 + }, + { + "start": 11284.72, + "end": 11286.9, + "probability": 0.6842 + }, + { + "start": 11287.2, + "end": 11288.38, + "probability": 0.7366 + }, + { + "start": 11288.76, + "end": 11291.1, + "probability": 0.9707 + }, + { + "start": 11291.1, + "end": 11294.72, + "probability": 0.7597 + }, + { + "start": 11295.08, + "end": 11297.98, + "probability": 0.9648 + }, + { + "start": 11297.98, + "end": 11301.64, + "probability": 0.7247 + }, + { + "start": 11302.14, + "end": 11304.18, + "probability": 0.8749 + }, + { + "start": 11304.28, + "end": 11305.6, + "probability": 0.9576 + }, + { + "start": 11306.18, + "end": 11307.74, + "probability": 0.8263 + }, + { + "start": 11308.08, + "end": 11310.76, + "probability": 0.9487 + }, + { + "start": 11310.84, + "end": 11311.96, + "probability": 0.9928 + }, + { + "start": 11312.34, + "end": 11313.66, + "probability": 0.9036 + }, + { + "start": 11313.88, + "end": 11314.78, + "probability": 0.7423 + }, + { + "start": 11314.9, + "end": 11315.84, + "probability": 0.8742 + }, + { + "start": 11316.3, + "end": 11318.18, + "probability": 0.5709 + }, + { + "start": 11318.2, + "end": 11320.64, + "probability": 0.945 + }, + { + "start": 11321.0, + "end": 11321.48, + "probability": 0.7601 + }, + { + "start": 11323.14, + "end": 11327.98, + "probability": 0.7444 + }, + { + "start": 11328.02, + "end": 11328.56, + "probability": 0.7292 + }, + { + "start": 11329.08, + "end": 11332.76, + "probability": 0.8618 + }, + { + "start": 11333.2, + "end": 11333.62, + "probability": 0.4412 + }, + { + "start": 11333.88, + "end": 11336.48, + "probability": 0.9649 + }, + { + "start": 11336.48, + "end": 11340.42, + "probability": 0.9824 + }, + { + "start": 11341.12, + "end": 11344.5, + "probability": 0.2644 + }, + { + "start": 11344.54, + "end": 11345.12, + "probability": 0.3924 + }, + { + "start": 11346.62, + "end": 11347.76, + "probability": 0.3919 + }, + { + "start": 11347.9, + "end": 11348.28, + "probability": 0.0447 + }, + { + "start": 11363.28, + "end": 11364.24, + "probability": 0.1131 + }, + { + "start": 11365.9, + "end": 11367.5, + "probability": 0.297 + }, + { + "start": 11367.5, + "end": 11373.32, + "probability": 0.8419 + }, + { + "start": 11374.7, + "end": 11376.78, + "probability": 0.6242 + }, + { + "start": 11377.12, + "end": 11381.18, + "probability": 0.8568 + }, + { + "start": 11381.74, + "end": 11383.5, + "probability": 0.9752 + }, + { + "start": 11383.64, + "end": 11385.62, + "probability": 0.8726 + }, + { + "start": 11386.14, + "end": 11386.62, + "probability": 0.6105 + }, + { + "start": 11386.68, + "end": 11387.16, + "probability": 0.6829 + }, + { + "start": 11391.88, + "end": 11396.88, + "probability": 0.017 + }, + { + "start": 11405.52, + "end": 11406.16, + "probability": 0.0083 + }, + { + "start": 11406.16, + "end": 11407.66, + "probability": 0.3871 + }, + { + "start": 11407.78, + "end": 11410.28, + "probability": 0.98 + }, + { + "start": 11410.96, + "end": 11413.5, + "probability": 0.9972 + }, + { + "start": 11414.62, + "end": 11415.9, + "probability": 0.826 + }, + { + "start": 11416.1, + "end": 11419.0, + "probability": 0.2795 + }, + { + "start": 11419.0, + "end": 11419.0, + "probability": 0.2621 + }, + { + "start": 11419.0, + "end": 11419.0, + "probability": 0.0384 + }, + { + "start": 11419.0, + "end": 11419.0, + "probability": 0.371 + }, + { + "start": 11419.0, + "end": 11422.5, + "probability": 0.1038 + }, + { + "start": 11422.5, + "end": 11427.52, + "probability": 0.8534 + }, + { + "start": 11428.22, + "end": 11430.86, + "probability": 0.8637 + }, + { + "start": 11431.28, + "end": 11433.4, + "probability": 0.7223 + }, + { + "start": 11433.74, + "end": 11434.36, + "probability": 0.3104 + }, + { + "start": 11434.46, + "end": 11436.38, + "probability": 0.8505 + }, + { + "start": 11439.44, + "end": 11440.34, + "probability": 0.9525 + }, + { + "start": 11441.9, + "end": 11444.12, + "probability": 0.5469 + }, + { + "start": 11445.36, + "end": 11445.68, + "probability": 0.8096 + }, + { + "start": 11446.32, + "end": 11447.3, + "probability": 0.8614 + }, + { + "start": 11447.92, + "end": 11448.92, + "probability": 0.7607 + }, + { + "start": 11450.3, + "end": 11451.96, + "probability": 0.8339 + }, + { + "start": 11452.74, + "end": 11456.94, + "probability": 0.8398 + }, + { + "start": 11457.52, + "end": 11459.02, + "probability": 0.9469 + }, + { + "start": 11459.56, + "end": 11461.32, + "probability": 0.9836 + }, + { + "start": 11461.92, + "end": 11464.08, + "probability": 0.9767 + }, + { + "start": 11464.64, + "end": 11471.98, + "probability": 0.9925 + }, + { + "start": 11472.64, + "end": 11474.34, + "probability": 0.9447 + }, + { + "start": 11475.1, + "end": 11476.84, + "probability": 0.8281 + }, + { + "start": 11477.48, + "end": 11478.2, + "probability": 0.6927 + }, + { + "start": 11478.92, + "end": 11484.44, + "probability": 0.9073 + }, + { + "start": 11485.26, + "end": 11488.76, + "probability": 0.9614 + }, + { + "start": 11488.76, + "end": 11493.02, + "probability": 0.9975 + }, + { + "start": 11493.94, + "end": 11498.78, + "probability": 0.9971 + }, + { + "start": 11499.72, + "end": 11506.24, + "probability": 0.9961 + }, + { + "start": 11507.02, + "end": 11509.5, + "probability": 0.9951 + }, + { + "start": 11510.28, + "end": 11512.1, + "probability": 0.6956 + }, + { + "start": 11512.62, + "end": 11517.8, + "probability": 0.9894 + }, + { + "start": 11518.3, + "end": 11519.12, + "probability": 0.8094 + }, + { + "start": 11519.7, + "end": 11523.12, + "probability": 0.9902 + }, + { + "start": 11523.12, + "end": 11527.08, + "probability": 0.999 + }, + { + "start": 11527.84, + "end": 11529.62, + "probability": 0.9956 + }, + { + "start": 11530.16, + "end": 11533.64, + "probability": 0.8398 + }, + { + "start": 11534.54, + "end": 11536.0, + "probability": 0.6215 + }, + { + "start": 11536.46, + "end": 11540.28, + "probability": 0.9924 + }, + { + "start": 11540.76, + "end": 11543.3, + "probability": 0.97 + }, + { + "start": 11543.94, + "end": 11547.5, + "probability": 0.9727 + }, + { + "start": 11548.02, + "end": 11549.24, + "probability": 0.8175 + }, + { + "start": 11549.98, + "end": 11555.14, + "probability": 0.998 + }, + { + "start": 11555.76, + "end": 11558.14, + "probability": 0.499 + }, + { + "start": 11558.66, + "end": 11560.3, + "probability": 0.9913 + }, + { + "start": 11560.96, + "end": 11563.56, + "probability": 0.8661 + }, + { + "start": 11564.22, + "end": 11565.46, + "probability": 0.8568 + }, + { + "start": 11566.22, + "end": 11567.16, + "probability": 0.8829 + }, + { + "start": 11567.84, + "end": 11572.06, + "probability": 0.993 + }, + { + "start": 11572.82, + "end": 11575.58, + "probability": 0.9121 + }, + { + "start": 11576.52, + "end": 11577.52, + "probability": 0.8926 + }, + { + "start": 11577.72, + "end": 11582.06, + "probability": 0.1467 + }, + { + "start": 11582.06, + "end": 11583.36, + "probability": 0.6387 + }, + { + "start": 11583.9, + "end": 11585.94, + "probability": 0.8313 + }, + { + "start": 11586.4, + "end": 11587.3, + "probability": 0.9406 + }, + { + "start": 11588.22, + "end": 11591.88, + "probability": 0.9401 + }, + { + "start": 11591.88, + "end": 11595.86, + "probability": 0.9585 + }, + { + "start": 11596.46, + "end": 11599.18, + "probability": 0.9318 + }, + { + "start": 11599.86, + "end": 11601.06, + "probability": 0.5217 + }, + { + "start": 11601.82, + "end": 11602.66, + "probability": 0.9211 + }, + { + "start": 11603.24, + "end": 11605.66, + "probability": 0.9612 + }, + { + "start": 11606.56, + "end": 11608.78, + "probability": 0.8627 + }, + { + "start": 11609.48, + "end": 11612.44, + "probability": 0.9885 + }, + { + "start": 11612.46, + "end": 11612.78, + "probability": 0.604 + }, + { + "start": 11613.5, + "end": 11616.26, + "probability": 0.9755 + }, + { + "start": 11616.76, + "end": 11617.36, + "probability": 0.6869 + }, + { + "start": 11617.44, + "end": 11618.26, + "probability": 0.7537 + }, + { + "start": 11618.7, + "end": 11620.3, + "probability": 0.8116 + }, + { + "start": 11621.08, + "end": 11624.0, + "probability": 0.9673 + }, + { + "start": 11624.0, + "end": 11628.06, + "probability": 0.9124 + }, + { + "start": 11628.6, + "end": 11630.74, + "probability": 0.9971 + }, + { + "start": 11632.48, + "end": 11635.94, + "probability": 0.9805 + }, + { + "start": 11636.7, + "end": 11639.44, + "probability": 0.8848 + }, + { + "start": 11640.32, + "end": 11643.16, + "probability": 0.9089 + }, + { + "start": 11643.16, + "end": 11647.48, + "probability": 0.9559 + }, + { + "start": 11648.26, + "end": 11649.08, + "probability": 0.6702 + }, + { + "start": 11649.26, + "end": 11650.26, + "probability": 0.9491 + }, + { + "start": 11650.4, + "end": 11652.58, + "probability": 0.6412 + }, + { + "start": 11653.22, + "end": 11655.06, + "probability": 0.9919 + }, + { + "start": 11655.12, + "end": 11655.92, + "probability": 0.656 + }, + { + "start": 11656.32, + "end": 11659.18, + "probability": 0.9835 + }, + { + "start": 11659.54, + "end": 11660.4, + "probability": 0.8726 + }, + { + "start": 11661.04, + "end": 11662.28, + "probability": 0.9834 + }, + { + "start": 11662.88, + "end": 11664.42, + "probability": 0.9479 + }, + { + "start": 11664.64, + "end": 11664.64, + "probability": 0.5804 + }, + { + "start": 11664.92, + "end": 11667.26, + "probability": 0.8867 + }, + { + "start": 11667.26, + "end": 11670.3, + "probability": 0.9699 + }, + { + "start": 11670.36, + "end": 11673.66, + "probability": 0.98 + }, + { + "start": 11673.86, + "end": 11674.16, + "probability": 0.8608 + }, + { + "start": 11674.52, + "end": 11674.8, + "probability": 0.6268 + }, + { + "start": 11675.42, + "end": 11676.66, + "probability": 0.4598 + }, + { + "start": 11676.82, + "end": 11678.26, + "probability": 0.9603 + }, + { + "start": 11678.86, + "end": 11681.46, + "probability": 0.5873 + }, + { + "start": 11682.06, + "end": 11683.12, + "probability": 0.9306 + }, + { + "start": 11689.86, + "end": 11693.54, + "probability": 0.9259 + }, + { + "start": 11701.74, + "end": 11704.08, + "probability": 0.7786 + }, + { + "start": 11704.98, + "end": 11708.42, + "probability": 0.9624 + }, + { + "start": 11709.84, + "end": 11712.5, + "probability": 0.9849 + }, + { + "start": 11712.5, + "end": 11715.76, + "probability": 0.999 + }, + { + "start": 11717.1, + "end": 11721.16, + "probability": 0.9928 + }, + { + "start": 11721.16, + "end": 11724.92, + "probability": 0.6957 + }, + { + "start": 11725.62, + "end": 11730.94, + "probability": 0.9961 + }, + { + "start": 11732.3, + "end": 11737.28, + "probability": 0.9985 + }, + { + "start": 11737.28, + "end": 11741.62, + "probability": 0.9974 + }, + { + "start": 11743.08, + "end": 11745.48, + "probability": 0.991 + }, + { + "start": 11746.72, + "end": 11750.52, + "probability": 0.8572 + }, + { + "start": 11751.06, + "end": 11754.56, + "probability": 0.9966 + }, + { + "start": 11756.22, + "end": 11759.2, + "probability": 0.9844 + }, + { + "start": 11759.96, + "end": 11763.56, + "probability": 0.9402 + }, + { + "start": 11764.2, + "end": 11768.64, + "probability": 0.9805 + }, + { + "start": 11769.88, + "end": 11773.12, + "probability": 0.9919 + }, + { + "start": 11773.42, + "end": 11775.58, + "probability": 0.8979 + }, + { + "start": 11776.76, + "end": 11776.9, + "probability": 0.5332 + }, + { + "start": 11776.96, + "end": 11780.12, + "probability": 0.9751 + }, + { + "start": 11780.12, + "end": 11783.1, + "probability": 0.9842 + }, + { + "start": 11783.96, + "end": 11789.78, + "probability": 0.9883 + }, + { + "start": 11789.82, + "end": 11790.62, + "probability": 0.3579 + }, + { + "start": 11790.78, + "end": 11792.48, + "probability": 0.8828 + }, + { + "start": 11793.58, + "end": 11797.7, + "probability": 0.9042 + }, + { + "start": 11798.28, + "end": 11801.82, + "probability": 0.9868 + }, + { + "start": 11801.82, + "end": 11806.1, + "probability": 0.9863 + }, + { + "start": 11807.78, + "end": 11810.18, + "probability": 0.9539 + }, + { + "start": 11810.88, + "end": 11814.56, + "probability": 0.9701 + }, + { + "start": 11815.12, + "end": 11818.08, + "probability": 0.9683 + }, + { + "start": 11819.62, + "end": 11823.78, + "probability": 0.955 + }, + { + "start": 11824.66, + "end": 11827.06, + "probability": 0.9746 + }, + { + "start": 11827.84, + "end": 11830.1, + "probability": 0.6232 + }, + { + "start": 11831.44, + "end": 11835.96, + "probability": 0.9951 + }, + { + "start": 11835.96, + "end": 11841.08, + "probability": 0.9976 + }, + { + "start": 11841.08, + "end": 11847.38, + "probability": 0.9933 + }, + { + "start": 11848.72, + "end": 11854.04, + "probability": 0.9816 + }, + { + "start": 11855.02, + "end": 11857.52, + "probability": 0.9981 + }, + { + "start": 11858.2, + "end": 11863.4, + "probability": 0.9768 + }, + { + "start": 11864.22, + "end": 11867.0, + "probability": 0.8809 + }, + { + "start": 11867.68, + "end": 11869.86, + "probability": 0.878 + }, + { + "start": 11870.58, + "end": 11871.66, + "probability": 0.9912 + }, + { + "start": 11872.34, + "end": 11875.06, + "probability": 0.8779 + }, + { + "start": 11875.06, + "end": 11877.8, + "probability": 0.8277 + }, + { + "start": 11878.54, + "end": 11882.28, + "probability": 0.9956 + }, + { + "start": 11883.64, + "end": 11887.72, + "probability": 0.9924 + }, + { + "start": 11888.14, + "end": 11891.36, + "probability": 0.653 + }, + { + "start": 11892.5, + "end": 11896.04, + "probability": 0.9689 + }, + { + "start": 11896.38, + "end": 11896.92, + "probability": 0.8734 + }, + { + "start": 11897.44, + "end": 11899.44, + "probability": 0.5547 + }, + { + "start": 11899.58, + "end": 11901.76, + "probability": 0.9619 + }, + { + "start": 11902.46, + "end": 11904.34, + "probability": 0.9523 + }, + { + "start": 11905.68, + "end": 11906.1, + "probability": 0.4967 + }, + { + "start": 11915.28, + "end": 11917.0, + "probability": 0.7608 + }, + { + "start": 11919.98, + "end": 11922.56, + "probability": 0.8823 + }, + { + "start": 11923.78, + "end": 11925.36, + "probability": 0.7201 + }, + { + "start": 11926.5, + "end": 11930.82, + "probability": 0.8662 + }, + { + "start": 11930.9, + "end": 11933.1, + "probability": 0.8103 + }, + { + "start": 11933.86, + "end": 11938.68, + "probability": 0.9424 + }, + { + "start": 11939.34, + "end": 11940.32, + "probability": 0.5165 + }, + { + "start": 11941.9, + "end": 11944.72, + "probability": 0.9801 + }, + { + "start": 11945.81, + "end": 11948.1, + "probability": 0.7572 + }, + { + "start": 11948.68, + "end": 11949.46, + "probability": 0.8396 + }, + { + "start": 11949.6, + "end": 11950.64, + "probability": 0.8154 + }, + { + "start": 11951.0, + "end": 11953.08, + "probability": 0.7052 + }, + { + "start": 11953.2, + "end": 11958.36, + "probability": 0.8812 + }, + { + "start": 11958.36, + "end": 11960.12, + "probability": 0.9246 + }, + { + "start": 11961.04, + "end": 11964.88, + "probability": 0.9695 + }, + { + "start": 11965.84, + "end": 11966.48, + "probability": 0.7726 + }, + { + "start": 11966.52, + "end": 11968.86, + "probability": 0.8389 + }, + { + "start": 11968.86, + "end": 11971.96, + "probability": 0.9089 + }, + { + "start": 11972.06, + "end": 11972.52, + "probability": 0.7031 + }, + { + "start": 11973.22, + "end": 11974.96, + "probability": 0.991 + }, + { + "start": 11975.02, + "end": 11976.98, + "probability": 0.8785 + }, + { + "start": 11977.6, + "end": 11980.26, + "probability": 0.958 + }, + { + "start": 11980.86, + "end": 11981.72, + "probability": 0.4885 + }, + { + "start": 11981.86, + "end": 11982.6, + "probability": 0.968 + }, + { + "start": 11983.52, + "end": 11985.62, + "probability": 0.9943 + }, + { + "start": 11987.32, + "end": 11992.0, + "probability": 0.9651 + }, + { + "start": 11992.04, + "end": 11993.04, + "probability": 0.3639 + }, + { + "start": 11993.86, + "end": 11995.5, + "probability": 0.7418 + }, + { + "start": 11997.0, + "end": 11997.5, + "probability": 0.0805 + }, + { + "start": 11997.5, + "end": 12000.62, + "probability": 0.9196 + }, + { + "start": 12000.62, + "end": 12005.22, + "probability": 0.9961 + }, + { + "start": 12005.22, + "end": 12009.0, + "probability": 0.994 + }, + { + "start": 12009.76, + "end": 12010.92, + "probability": 0.0887 + }, + { + "start": 12011.46, + "end": 12016.42, + "probability": 0.9304 + }, + { + "start": 12017.58, + "end": 12020.57, + "probability": 0.9229 + }, + { + "start": 12021.54, + "end": 12024.72, + "probability": 0.6247 + }, + { + "start": 12024.72, + "end": 12025.44, + "probability": 0.5074 + }, + { + "start": 12025.62, + "end": 12027.76, + "probability": 0.9364 + }, + { + "start": 12028.22, + "end": 12029.4, + "probability": 0.7773 + }, + { + "start": 12030.62, + "end": 12033.02, + "probability": 0.7653 + }, + { + "start": 12033.74, + "end": 12035.84, + "probability": 0.9279 + }, + { + "start": 12035.98, + "end": 12037.46, + "probability": 0.9866 + }, + { + "start": 12038.06, + "end": 12040.86, + "probability": 0.9974 + }, + { + "start": 12041.72, + "end": 12042.86, + "probability": 0.993 + }, + { + "start": 12043.02, + "end": 12045.8, + "probability": 0.9959 + }, + { + "start": 12047.44, + "end": 12051.12, + "probability": 0.907 + }, + { + "start": 12051.3, + "end": 12055.72, + "probability": 0.9945 + }, + { + "start": 12056.32, + "end": 12059.6, + "probability": 0.4183 + }, + { + "start": 12061.22, + "end": 12064.02, + "probability": 0.8965 + }, + { + "start": 12064.64, + "end": 12065.66, + "probability": 0.8722 + }, + { + "start": 12066.38, + "end": 12067.02, + "probability": 0.9951 + }, + { + "start": 12067.38, + "end": 12068.06, + "probability": 0.9795 + }, + { + "start": 12068.22, + "end": 12070.06, + "probability": 0.9868 + }, + { + "start": 12070.64, + "end": 12071.38, + "probability": 0.7385 + }, + { + "start": 12072.2, + "end": 12073.92, + "probability": 0.9293 + }, + { + "start": 12074.68, + "end": 12075.34, + "probability": 0.8011 + }, + { + "start": 12075.54, + "end": 12077.3, + "probability": 0.9808 + }, + { + "start": 12077.8, + "end": 12082.12, + "probability": 0.9331 + }, + { + "start": 12083.08, + "end": 12084.16, + "probability": 0.5566 + }, + { + "start": 12084.4, + "end": 12087.77, + "probability": 0.7318 + }, + { + "start": 12089.32, + "end": 12089.94, + "probability": 0.5793 + }, + { + "start": 12090.8, + "end": 12091.44, + "probability": 0.6838 + }, + { + "start": 12092.22, + "end": 12096.1, + "probability": 0.8044 + }, + { + "start": 12097.0, + "end": 12098.54, + "probability": 0.995 + }, + { + "start": 12098.56, + "end": 12099.32, + "probability": 0.7892 + }, + { + "start": 12099.36, + "end": 12100.8, + "probability": 0.7661 + }, + { + "start": 12100.84, + "end": 12101.72, + "probability": 0.7084 + }, + { + "start": 12102.56, + "end": 12105.16, + "probability": 0.9028 + }, + { + "start": 12105.7, + "end": 12107.54, + "probability": 0.9729 + }, + { + "start": 12108.02, + "end": 12110.3, + "probability": 0.9067 + }, + { + "start": 12110.42, + "end": 12111.51, + "probability": 0.7766 + }, + { + "start": 12113.42, + "end": 12113.5, + "probability": 0.0882 + }, + { + "start": 12113.5, + "end": 12114.82, + "probability": 0.5512 + }, + { + "start": 12114.86, + "end": 12117.69, + "probability": 0.8359 + }, + { + "start": 12118.86, + "end": 12122.68, + "probability": 0.9702 + }, + { + "start": 12123.14, + "end": 12123.64, + "probability": 0.9092 + }, + { + "start": 12124.24, + "end": 12127.86, + "probability": 0.9871 + }, + { + "start": 12127.86, + "end": 12131.12, + "probability": 0.9947 + }, + { + "start": 12131.9, + "end": 12132.66, + "probability": 0.5712 + }, + { + "start": 12132.68, + "end": 12138.1, + "probability": 0.7777 + }, + { + "start": 12138.66, + "end": 12141.44, + "probability": 0.7208 + }, + { + "start": 12141.64, + "end": 12144.84, + "probability": 0.9645 + }, + { + "start": 12146.28, + "end": 12147.56, + "probability": 0.8846 + }, + { + "start": 12148.3, + "end": 12151.72, + "probability": 0.9821 + }, + { + "start": 12152.88, + "end": 12154.8, + "probability": 0.8921 + }, + { + "start": 12155.44, + "end": 12157.78, + "probability": 0.9868 + }, + { + "start": 12157.78, + "end": 12157.92, + "probability": 0.3766 + }, + { + "start": 12158.56, + "end": 12160.68, + "probability": 0.4552 + }, + { + "start": 12160.68, + "end": 12162.04, + "probability": 0.8481 + }, + { + "start": 12162.94, + "end": 12163.38, + "probability": 0.0228 + }, + { + "start": 12163.38, + "end": 12163.94, + "probability": 0.3316 + }, + { + "start": 12164.06, + "end": 12164.76, + "probability": 0.3198 + }, + { + "start": 12164.78, + "end": 12166.2, + "probability": 0.7498 + }, + { + "start": 12171.06, + "end": 12173.36, + "probability": 0.8812 + }, + { + "start": 12177.64, + "end": 12178.48, + "probability": 0.8704 + }, + { + "start": 12179.0, + "end": 12180.36, + "probability": 0.3981 + }, + { + "start": 12184.54, + "end": 12188.54, + "probability": 0.5221 + }, + { + "start": 12189.24, + "end": 12191.02, + "probability": 0.3664 + }, + { + "start": 12191.02, + "end": 12193.26, + "probability": 0.6805 + }, + { + "start": 12196.3, + "end": 12201.26, + "probability": 0.9414 + }, + { + "start": 12203.22, + "end": 12203.82, + "probability": 0.6095 + }, + { + "start": 12205.58, + "end": 12206.32, + "probability": 0.8887 + }, + { + "start": 12208.66, + "end": 12209.9, + "probability": 0.8751 + }, + { + "start": 12210.44, + "end": 12211.74, + "probability": 0.4354 + }, + { + "start": 12218.72, + "end": 12219.74, + "probability": 0.5018 + }, + { + "start": 12220.88, + "end": 12221.86, + "probability": 0.6055 + }, + { + "start": 12221.92, + "end": 12224.74, + "probability": 0.974 + }, + { + "start": 12225.14, + "end": 12226.09, + "probability": 0.9508 + }, + { + "start": 12227.46, + "end": 12232.12, + "probability": 0.969 + }, + { + "start": 12233.46, + "end": 12236.32, + "probability": 0.9877 + }, + { + "start": 12236.68, + "end": 12239.98, + "probability": 0.999 + }, + { + "start": 12239.98, + "end": 12243.34, + "probability": 0.9963 + }, + { + "start": 12244.54, + "end": 12246.9, + "probability": 0.9771 + }, + { + "start": 12247.14, + "end": 12251.04, + "probability": 0.9128 + }, + { + "start": 12251.66, + "end": 12254.4, + "probability": 0.9935 + }, + { + "start": 12255.12, + "end": 12257.38, + "probability": 0.8853 + }, + { + "start": 12258.08, + "end": 12259.64, + "probability": 0.9847 + }, + { + "start": 12260.78, + "end": 12266.48, + "probability": 0.9229 + }, + { + "start": 12266.74, + "end": 12267.58, + "probability": 0.8543 + }, + { + "start": 12267.95, + "end": 12271.14, + "probability": 0.9939 + }, + { + "start": 12271.22, + "end": 12272.04, + "probability": 0.8261 + }, + { + "start": 12272.82, + "end": 12274.98, + "probability": 0.9427 + }, + { + "start": 12275.94, + "end": 12278.42, + "probability": 0.9221 + }, + { + "start": 12279.0, + "end": 12280.42, + "probability": 0.7903 + }, + { + "start": 12281.2, + "end": 12283.74, + "probability": 0.9912 + }, + { + "start": 12283.74, + "end": 12286.36, + "probability": 0.9977 + }, + { + "start": 12287.02, + "end": 12289.0, + "probability": 0.698 + }, + { + "start": 12289.08, + "end": 12291.42, + "probability": 0.9898 + }, + { + "start": 12291.9, + "end": 12293.48, + "probability": 0.9798 + }, + { + "start": 12293.54, + "end": 12294.84, + "probability": 0.9056 + }, + { + "start": 12295.86, + "end": 12298.54, + "probability": 0.9453 + }, + { + "start": 12299.4, + "end": 12304.1, + "probability": 0.8914 + }, + { + "start": 12304.54, + "end": 12307.34, + "probability": 0.9392 + }, + { + "start": 12307.94, + "end": 12310.64, + "probability": 0.9337 + }, + { + "start": 12311.46, + "end": 12315.92, + "probability": 0.9443 + }, + { + "start": 12316.52, + "end": 12317.2, + "probability": 0.2623 + }, + { + "start": 12317.92, + "end": 12319.04, + "probability": 0.688 + }, + { + "start": 12320.14, + "end": 12321.62, + "probability": 0.7368 + }, + { + "start": 12321.7, + "end": 12322.62, + "probability": 0.7385 + }, + { + "start": 12322.76, + "end": 12326.62, + "probability": 0.7583 + }, + { + "start": 12327.02, + "end": 12327.94, + "probability": 0.7485 + }, + { + "start": 12328.14, + "end": 12329.52, + "probability": 0.991 + }, + { + "start": 12329.98, + "end": 12331.14, + "probability": 0.5026 + }, + { + "start": 12331.28, + "end": 12332.06, + "probability": 0.7428 + }, + { + "start": 12332.18, + "end": 12333.96, + "probability": 0.7673 + }, + { + "start": 12334.08, + "end": 12335.62, + "probability": 0.8301 + }, + { + "start": 12336.9, + "end": 12341.02, + "probability": 0.9547 + }, + { + "start": 12341.93, + "end": 12343.78, + "probability": 0.9733 + }, + { + "start": 12344.72, + "end": 12345.92, + "probability": 0.9453 + }, + { + "start": 12346.82, + "end": 12348.28, + "probability": 0.9958 + }, + { + "start": 12348.92, + "end": 12349.38, + "probability": 0.6673 + }, + { + "start": 12349.44, + "end": 12350.26, + "probability": 0.7687 + }, + { + "start": 12350.78, + "end": 12356.94, + "probability": 0.9286 + }, + { + "start": 12357.0, + "end": 12357.54, + "probability": 0.9048 + }, + { + "start": 12357.66, + "end": 12358.68, + "probability": 0.4973 + }, + { + "start": 12359.38, + "end": 12361.18, + "probability": 0.9446 + }, + { + "start": 12362.74, + "end": 12364.82, + "probability": 0.6217 + }, + { + "start": 12365.52, + "end": 12368.66, + "probability": 0.9951 + }, + { + "start": 12368.74, + "end": 12369.96, + "probability": 0.8158 + }, + { + "start": 12370.48, + "end": 12373.8, + "probability": 0.9588 + }, + { + "start": 12374.26, + "end": 12375.44, + "probability": 0.7773 + }, + { + "start": 12375.56, + "end": 12377.08, + "probability": 0.7352 + }, + { + "start": 12377.2, + "end": 12378.08, + "probability": 0.6796 + }, + { + "start": 12379.16, + "end": 12380.06, + "probability": 0.9178 + }, + { + "start": 12380.52, + "end": 12383.86, + "probability": 0.9666 + }, + { + "start": 12383.96, + "end": 12384.19, + "probability": 0.4794 + }, + { + "start": 12385.06, + "end": 12385.38, + "probability": 0.5917 + }, + { + "start": 12385.44, + "end": 12386.12, + "probability": 0.7569 + }, + { + "start": 12386.16, + "end": 12387.7, + "probability": 0.7607 + }, + { + "start": 12388.06, + "end": 12390.02, + "probability": 0.9053 + }, + { + "start": 12390.48, + "end": 12392.04, + "probability": 0.7454 + }, + { + "start": 12392.82, + "end": 12394.26, + "probability": 0.5656 + }, + { + "start": 12395.24, + "end": 12396.16, + "probability": 0.686 + }, + { + "start": 12396.24, + "end": 12396.76, + "probability": 0.9246 + }, + { + "start": 12397.0, + "end": 12397.28, + "probability": 0.6849 + }, + { + "start": 12397.32, + "end": 12397.9, + "probability": 0.9567 + }, + { + "start": 12397.9, + "end": 12398.46, + "probability": 0.9385 + }, + { + "start": 12398.58, + "end": 12399.94, + "probability": 0.9568 + }, + { + "start": 12400.02, + "end": 12400.78, + "probability": 0.7061 + }, + { + "start": 12401.14, + "end": 12401.82, + "probability": 0.7984 + }, + { + "start": 12401.88, + "end": 12405.86, + "probability": 0.8826 + }, + { + "start": 12406.78, + "end": 12408.92, + "probability": 0.7202 + }, + { + "start": 12409.68, + "end": 12412.9, + "probability": 0.8518 + }, + { + "start": 12413.02, + "end": 12413.22, + "probability": 0.2139 + }, + { + "start": 12413.22, + "end": 12413.22, + "probability": 0.5988 + }, + { + "start": 12413.32, + "end": 12414.1, + "probability": 0.8168 + }, + { + "start": 12414.22, + "end": 12416.44, + "probability": 0.9642 + }, + { + "start": 12416.98, + "end": 12419.46, + "probability": 0.8764 + }, + { + "start": 12420.04, + "end": 12421.3, + "probability": 0.8983 + }, + { + "start": 12421.4, + "end": 12422.6, + "probability": 0.7446 + }, + { + "start": 12422.98, + "end": 12425.44, + "probability": 0.9302 + }, + { + "start": 12425.5, + "end": 12429.34, + "probability": 0.8884 + }, + { + "start": 12429.52, + "end": 12432.12, + "probability": 0.9597 + }, + { + "start": 12432.52, + "end": 12432.92, + "probability": 0.7269 + }, + { + "start": 12433.16, + "end": 12436.88, + "probability": 0.8502 + }, + { + "start": 12437.38, + "end": 12438.15, + "probability": 0.9915 + }, + { + "start": 12439.34, + "end": 12441.4, + "probability": 0.8135 + }, + { + "start": 12442.8, + "end": 12445.02, + "probability": 0.2172 + }, + { + "start": 12446.38, + "end": 12447.92, + "probability": 0.2407 + }, + { + "start": 12447.92, + "end": 12449.5, + "probability": 0.5296 + }, + { + "start": 12450.4, + "end": 12451.58, + "probability": 0.6007 + }, + { + "start": 12452.7, + "end": 12454.22, + "probability": 0.7732 + }, + { + "start": 12454.64, + "end": 12455.8, + "probability": 0.9563 + }, + { + "start": 12455.88, + "end": 12457.62, + "probability": 0.8086 + }, + { + "start": 12458.38, + "end": 12461.3, + "probability": 0.9961 + }, + { + "start": 12462.48, + "end": 12466.56, + "probability": 0.9897 + }, + { + "start": 12467.06, + "end": 12467.74, + "probability": 0.4164 + }, + { + "start": 12469.56, + "end": 12471.72, + "probability": 0.0838 + }, + { + "start": 12472.36, + "end": 12474.0, + "probability": 0.1917 + }, + { + "start": 12474.72, + "end": 12478.16, + "probability": 0.8148 + }, + { + "start": 12479.26, + "end": 12479.4, + "probability": 0.5331 + }, + { + "start": 12479.4, + "end": 12481.57, + "probability": 0.974 + }, + { + "start": 12481.7, + "end": 12483.29, + "probability": 0.4704 + }, + { + "start": 12483.62, + "end": 12485.02, + "probability": 0.5864 + }, + { + "start": 12485.26, + "end": 12485.78, + "probability": 0.1897 + }, + { + "start": 12486.02, + "end": 12486.58, + "probability": 0.7827 + }, + { + "start": 12486.72, + "end": 12487.42, + "probability": 0.4887 + }, + { + "start": 12488.62, + "end": 12489.4, + "probability": 0.8428 + }, + { + "start": 12490.9, + "end": 12493.84, + "probability": 0.9318 + }, + { + "start": 12494.88, + "end": 12495.4, + "probability": 0.805 + }, + { + "start": 12495.94, + "end": 12500.86, + "probability": 0.9005 + }, + { + "start": 12502.46, + "end": 12503.18, + "probability": 0.8394 + }, + { + "start": 12504.12, + "end": 12505.88, + "probability": 0.9624 + }, + { + "start": 12507.0, + "end": 12511.5, + "probability": 0.9229 + }, + { + "start": 12512.06, + "end": 12514.22, + "probability": 0.7444 + }, + { + "start": 12515.4, + "end": 12516.9, + "probability": 0.9654 + }, + { + "start": 12517.48, + "end": 12518.96, + "probability": 0.9596 + }, + { + "start": 12521.24, + "end": 12521.82, + "probability": 0.7055 + }, + { + "start": 12524.42, + "end": 12526.44, + "probability": 0.9958 + }, + { + "start": 12527.4, + "end": 12528.04, + "probability": 0.9978 + }, + { + "start": 12528.74, + "end": 12530.54, + "probability": 0.9792 + }, + { + "start": 12531.5, + "end": 12532.66, + "probability": 0.9954 + }, + { + "start": 12533.22, + "end": 12533.66, + "probability": 0.5817 + }, + { + "start": 12535.36, + "end": 12537.34, + "probability": 0.9098 + }, + { + "start": 12537.44, + "end": 12542.94, + "probability": 0.9916 + }, + { + "start": 12543.5, + "end": 12548.0, + "probability": 0.9751 + }, + { + "start": 12549.3, + "end": 12550.64, + "probability": 0.9242 + }, + { + "start": 12551.58, + "end": 12553.4, + "probability": 0.9471 + }, + { + "start": 12554.3, + "end": 12555.18, + "probability": 0.7684 + }, + { + "start": 12555.66, + "end": 12560.3, + "probability": 0.9861 + }, + { + "start": 12561.26, + "end": 12565.94, + "probability": 0.9714 + }, + { + "start": 12568.19, + "end": 12569.98, + "probability": 0.9341 + }, + { + "start": 12570.88, + "end": 12574.96, + "probability": 0.7611 + }, + { + "start": 12575.22, + "end": 12575.76, + "probability": 0.1699 + }, + { + "start": 12575.82, + "end": 12576.86, + "probability": 0.5717 + }, + { + "start": 12578.08, + "end": 12580.04, + "probability": 0.8879 + }, + { + "start": 12580.06, + "end": 12582.76, + "probability": 0.6149 + }, + { + "start": 12584.68, + "end": 12589.02, + "probability": 0.5377 + }, + { + "start": 12589.28, + "end": 12591.88, + "probability": 0.9924 + }, + { + "start": 12592.22, + "end": 12594.98, + "probability": 0.9922 + }, + { + "start": 12597.18, + "end": 12599.36, + "probability": 0.97 + }, + { + "start": 12601.34, + "end": 12608.5, + "probability": 0.9941 + }, + { + "start": 12608.6, + "end": 12609.36, + "probability": 0.739 + }, + { + "start": 12609.88, + "end": 12612.58, + "probability": 0.8325 + }, + { + "start": 12613.52, + "end": 12618.14, + "probability": 0.9854 + }, + { + "start": 12620.18, + "end": 12622.36, + "probability": 0.9537 + }, + { + "start": 12622.92, + "end": 12624.86, + "probability": 0.7444 + }, + { + "start": 12625.22, + "end": 12634.76, + "probability": 0.9406 + }, + { + "start": 12635.85, + "end": 12637.68, + "probability": 0.5839 + }, + { + "start": 12637.84, + "end": 12638.71, + "probability": 0.6604 + }, + { + "start": 12639.86, + "end": 12640.76, + "probability": 0.894 + }, + { + "start": 12645.37, + "end": 12648.42, + "probability": 0.7956 + }, + { + "start": 12649.05, + "end": 12653.43, + "probability": 0.1992 + }, + { + "start": 12653.92, + "end": 12654.62, + "probability": 0.5438 + }, + { + "start": 12655.04, + "end": 12658.14, + "probability": 0.9021 + }, + { + "start": 12659.58, + "end": 12665.74, + "probability": 0.8406 + }, + { + "start": 12665.98, + "end": 12666.7, + "probability": 0.8661 + }, + { + "start": 12666.84, + "end": 12668.22, + "probability": 0.389 + }, + { + "start": 12669.8, + "end": 12672.94, + "probability": 0.9473 + }, + { + "start": 12673.38, + "end": 12674.92, + "probability": 0.7652 + }, + { + "start": 12675.04, + "end": 12677.68, + "probability": 0.5441 + }, + { + "start": 12677.76, + "end": 12678.32, + "probability": 0.4158 + }, + { + "start": 12679.28, + "end": 12681.8, + "probability": 0.0131 + }, + { + "start": 12682.84, + "end": 12683.0, + "probability": 0.1304 + }, + { + "start": 12686.88, + "end": 12692.12, + "probability": 0.0245 + }, + { + "start": 12693.16, + "end": 12694.1, + "probability": 0.1635 + }, + { + "start": 12696.83, + "end": 12700.94, + "probability": 0.0615 + }, + { + "start": 12702.72, + "end": 12704.1, + "probability": 0.0462 + }, + { + "start": 12704.5, + "end": 12706.62, + "probability": 0.3353 + }, + { + "start": 12706.62, + "end": 12712.48, + "probability": 0.0846 + }, + { + "start": 12713.94, + "end": 12714.02, + "probability": 0.127 + }, + { + "start": 12714.02, + "end": 12717.56, + "probability": 0.0634 + }, + { + "start": 12718.74, + "end": 12722.64, + "probability": 0.0224 + }, + { + "start": 12724.04, + "end": 12729.64, + "probability": 0.0956 + }, + { + "start": 12730.64, + "end": 12732.24, + "probability": 0.0729 + }, + { + "start": 12733.06, + "end": 12738.28, + "probability": 0.0268 + }, + { + "start": 12738.86, + "end": 12742.72, + "probability": 0.1638 + }, + { + "start": 12742.72, + "end": 12742.72, + "probability": 0.1814 + }, + { + "start": 12742.72, + "end": 12745.3, + "probability": 0.0668 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.0, + "end": 12774.0, + "probability": 0.0 + }, + { + "start": 12774.16, + "end": 12774.42, + "probability": 0.0965 + }, + { + "start": 12775.92, + "end": 12780.8, + "probability": 0.0558 + }, + { + "start": 12786.92, + "end": 12787.58, + "probability": 0.0271 + }, + { + "start": 12787.58, + "end": 12789.58, + "probability": 0.0965 + }, + { + "start": 12790.66, + "end": 12791.72, + "probability": 0.0304 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.0, + "end": 12900.0, + "probability": 0.0 + }, + { + "start": 12900.2, + "end": 12901.06, + "probability": 0.3769 + }, + { + "start": 12902.1, + "end": 12905.54, + "probability": 0.804 + }, + { + "start": 12906.68, + "end": 12911.02, + "probability": 0.8634 + }, + { + "start": 12911.68, + "end": 12913.28, + "probability": 0.8643 + }, + { + "start": 12913.74, + "end": 12915.64, + "probability": 0.9338 + }, + { + "start": 12916.28, + "end": 12920.3, + "probability": 0.9947 + }, + { + "start": 12921.28, + "end": 12921.88, + "probability": 0.9585 + }, + { + "start": 12923.18, + "end": 12924.38, + "probability": 0.7234 + }, + { + "start": 12925.3, + "end": 12926.84, + "probability": 0.7968 + }, + { + "start": 12927.58, + "end": 12929.84, + "probability": 0.9927 + }, + { + "start": 12930.42, + "end": 12931.3, + "probability": 0.8464 + }, + { + "start": 12931.96, + "end": 12933.56, + "probability": 0.8781 + }, + { + "start": 12934.64, + "end": 12936.28, + "probability": 0.0596 + }, + { + "start": 12936.9, + "end": 12937.74, + "probability": 0.1465 + }, + { + "start": 12938.46, + "end": 12939.24, + "probability": 0.0336 + }, + { + "start": 12940.28, + "end": 12940.86, + "probability": 0.0209 + }, + { + "start": 12940.86, + "end": 12945.6, + "probability": 0.199 + }, + { + "start": 12946.32, + "end": 12948.54, + "probability": 0.9585 + }, + { + "start": 12949.64, + "end": 12951.54, + "probability": 0.9626 + }, + { + "start": 12952.8, + "end": 12953.92, + "probability": 0.9551 + }, + { + "start": 12955.2, + "end": 12957.34, + "probability": 0.9572 + }, + { + "start": 12957.94, + "end": 12960.78, + "probability": 0.7604 + }, + { + "start": 12961.62, + "end": 12964.82, + "probability": 0.5076 + }, + { + "start": 12964.82, + "end": 12966.7, + "probability": 0.9202 + }, + { + "start": 12966.96, + "end": 12969.94, + "probability": 0.6956 + }, + { + "start": 12970.7, + "end": 12979.84, + "probability": 0.9731 + }, + { + "start": 12980.4, + "end": 12981.62, + "probability": 0.3338 + }, + { + "start": 12981.98, + "end": 12986.94, + "probability": 0.8768 + }, + { + "start": 12987.02, + "end": 12988.32, + "probability": 0.9207 + }, + { + "start": 12988.58, + "end": 12988.58, + "probability": 0.6899 + }, + { + "start": 12988.76, + "end": 12990.82, + "probability": 0.9424 + }, + { + "start": 12991.12, + "end": 12991.48, + "probability": 0.3867 + }, + { + "start": 12991.54, + "end": 12992.4, + "probability": 0.8784 + }, + { + "start": 12992.5, + "end": 12993.46, + "probability": 0.98 + }, + { + "start": 12993.94, + "end": 12995.18, + "probability": 0.8705 + }, + { + "start": 12995.72, + "end": 12996.64, + "probability": 0.4483 + }, + { + "start": 12996.86, + "end": 12997.82, + "probability": 0.8247 + }, + { + "start": 12998.28, + "end": 12999.0, + "probability": 0.4989 + }, + { + "start": 12999.16, + "end": 13001.8, + "probability": 0.9451 + }, + { + "start": 13001.94, + "end": 13006.76, + "probability": 0.7451 + }, + { + "start": 13007.26, + "end": 13008.46, + "probability": 0.9023 + }, + { + "start": 13008.56, + "end": 13009.72, + "probability": 0.7859 + }, + { + "start": 13010.34, + "end": 13010.66, + "probability": 0.1817 + }, + { + "start": 13010.66, + "end": 13012.14, + "probability": 0.5713 + }, + { + "start": 13013.34, + "end": 13016.16, + "probability": 0.9837 + }, + { + "start": 13017.34, + "end": 13021.16, + "probability": 0.9971 + }, + { + "start": 13021.48, + "end": 13022.64, + "probability": 0.9844 + }, + { + "start": 13023.28, + "end": 13024.54, + "probability": 0.5894 + }, + { + "start": 13024.62, + "end": 13026.02, + "probability": 0.7 + }, + { + "start": 13026.28, + "end": 13028.0, + "probability": 0.9882 + }, + { + "start": 13028.62, + "end": 13029.52, + "probability": 0.5604 + }, + { + "start": 13029.62, + "end": 13031.06, + "probability": 0.8543 + }, + { + "start": 13031.74, + "end": 13032.54, + "probability": 0.7508 + }, + { + "start": 13032.66, + "end": 13032.9, + "probability": 0.4893 + }, + { + "start": 13032.98, + "end": 13035.08, + "probability": 0.9948 + }, + { + "start": 13036.12, + "end": 13037.9, + "probability": 0.9133 + }, + { + "start": 13038.3, + "end": 13039.38, + "probability": 0.9581 + }, + { + "start": 13039.48, + "end": 13039.86, + "probability": 0.3813 + }, + { + "start": 13039.94, + "end": 13040.1, + "probability": 0.7961 + }, + { + "start": 13040.26, + "end": 13042.54, + "probability": 0.9533 + }, + { + "start": 13048.23, + "end": 13051.2, + "probability": 0.9928 + }, + { + "start": 13051.9, + "end": 13053.98, + "probability": 0.0978 + }, + { + "start": 13053.98, + "end": 13054.0, + "probability": 0.5431 + }, + { + "start": 13054.2, + "end": 13057.26, + "probability": 0.9917 + }, + { + "start": 13057.34, + "end": 13059.76, + "probability": 0.9041 + }, + { + "start": 13060.06, + "end": 13060.56, + "probability": 0.0009 + }, + { + "start": 13060.56, + "end": 13061.0, + "probability": 0.0983 + }, + { + "start": 13061.0, + "end": 13061.5, + "probability": 0.1398 + }, + { + "start": 13061.82, + "end": 13066.04, + "probability": 0.9441 + }, + { + "start": 13066.74, + "end": 13068.88, + "probability": 0.5954 + }, + { + "start": 13069.08, + "end": 13070.32, + "probability": 0.2085 + }, + { + "start": 13070.88, + "end": 13071.2, + "probability": 0.0656 + }, + { + "start": 13071.52, + "end": 13072.96, + "probability": 0.8048 + }, + { + "start": 13074.06, + "end": 13074.82, + "probability": 0.7873 + }, + { + "start": 13075.22, + "end": 13075.32, + "probability": 0.8698 + }, + { + "start": 13077.6, + "end": 13080.56, + "probability": 0.5663 + }, + { + "start": 13081.4, + "end": 13082.2, + "probability": 0.8218 + }, + { + "start": 13083.78, + "end": 13087.5, + "probability": 0.929 + }, + { + "start": 13088.94, + "end": 13090.11, + "probability": 0.6315 + }, + { + "start": 13090.96, + "end": 13092.26, + "probability": 0.6229 + }, + { + "start": 13092.34, + "end": 13092.56, + "probability": 0.5014 + }, + { + "start": 13093.66, + "end": 13094.38, + "probability": 0.6092 + }, + { + "start": 13094.44, + "end": 13098.72, + "probability": 0.9777 + }, + { + "start": 13098.86, + "end": 13100.24, + "probability": 0.7737 + }, + { + "start": 13101.34, + "end": 13103.33, + "probability": 0.8762 + }, + { + "start": 13104.06, + "end": 13106.24, + "probability": 0.6701 + }, + { + "start": 13107.3, + "end": 13111.46, + "probability": 0.7837 + }, + { + "start": 13111.68, + "end": 13114.66, + "probability": 0.99 + }, + { + "start": 13115.22, + "end": 13120.46, + "probability": 0.8867 + }, + { + "start": 13121.58, + "end": 13124.6, + "probability": 0.8315 + }, + { + "start": 13124.6, + "end": 13127.8, + "probability": 0.8091 + }, + { + "start": 13128.76, + "end": 13130.52, + "probability": 0.9425 + }, + { + "start": 13131.04, + "end": 13135.0, + "probability": 0.8478 + }, + { + "start": 13135.66, + "end": 13137.54, + "probability": 0.8264 + }, + { + "start": 13138.26, + "end": 13141.46, + "probability": 0.9048 + }, + { + "start": 13142.14, + "end": 13144.88, + "probability": 0.9683 + }, + { + "start": 13145.04, + "end": 13148.0, + "probability": 0.958 + }, + { + "start": 13148.24, + "end": 13151.74, + "probability": 0.7554 + }, + { + "start": 13151.8, + "end": 13154.78, + "probability": 0.9989 + }, + { + "start": 13155.48, + "end": 13158.76, + "probability": 0.9715 + }, + { + "start": 13159.2, + "end": 13164.46, + "probability": 0.839 + }, + { + "start": 13165.8, + "end": 13166.78, + "probability": 0.5496 + }, + { + "start": 13167.5, + "end": 13171.52, + "probability": 0.9964 + }, + { + "start": 13171.52, + "end": 13175.76, + "probability": 0.9849 + }, + { + "start": 13176.24, + "end": 13179.9, + "probability": 0.8873 + }, + { + "start": 13179.9, + "end": 13184.74, + "probability": 0.9578 + }, + { + "start": 13185.26, + "end": 13186.8, + "probability": 0.6443 + }, + { + "start": 13187.4, + "end": 13190.8, + "probability": 0.9915 + }, + { + "start": 13191.32, + "end": 13191.74, + "probability": 0.5784 + }, + { + "start": 13191.94, + "end": 13195.96, + "probability": 0.6847 + }, + { + "start": 13196.36, + "end": 13200.44, + "probability": 0.9569 + }, + { + "start": 13201.32, + "end": 13205.94, + "probability": 0.9921 + }, + { + "start": 13206.72, + "end": 13209.42, + "probability": 0.9295 + }, + { + "start": 13209.42, + "end": 13211.88, + "probability": 0.883 + }, + { + "start": 13212.9, + "end": 13216.98, + "probability": 0.9712 + }, + { + "start": 13217.07, + "end": 13221.7, + "probability": 0.9728 + }, + { + "start": 13221.96, + "end": 13223.6, + "probability": 0.6316 + }, + { + "start": 13224.06, + "end": 13228.28, + "probability": 0.8627 + }, + { + "start": 13228.62, + "end": 13233.04, + "probability": 0.9146 + }, + { + "start": 13234.78, + "end": 13239.98, + "probability": 0.7658 + }, + { + "start": 13240.6, + "end": 13244.08, + "probability": 0.7387 + }, + { + "start": 13244.08, + "end": 13248.74, + "probability": 0.9797 + }, + { + "start": 13249.64, + "end": 13250.08, + "probability": 0.8015 + }, + { + "start": 13251.44, + "end": 13254.92, + "probability": 0.9736 + }, + { + "start": 13255.4, + "end": 13259.46, + "probability": 0.7741 + }, + { + "start": 13259.74, + "end": 13263.12, + "probability": 0.9626 + }, + { + "start": 13264.94, + "end": 13273.0, + "probability": 0.9491 + }, + { + "start": 13274.08, + "end": 13275.92, + "probability": 0.5707 + }, + { + "start": 13276.66, + "end": 13277.54, + "probability": 0.3796 + }, + { + "start": 13277.76, + "end": 13281.43, + "probability": 0.8239 + }, + { + "start": 13281.6, + "end": 13284.06, + "probability": 0.9897 + }, + { + "start": 13285.2, + "end": 13286.32, + "probability": 0.8699 + }, + { + "start": 13287.68, + "end": 13290.08, + "probability": 0.9219 + }, + { + "start": 13291.04, + "end": 13292.92, + "probability": 0.9458 + }, + { + "start": 13294.32, + "end": 13294.6, + "probability": 0.2529 + }, + { + "start": 13294.86, + "end": 13295.72, + "probability": 0.9409 + }, + { + "start": 13296.4, + "end": 13300.9, + "probability": 0.6844 + }, + { + "start": 13301.84, + "end": 13304.26, + "probability": 0.8321 + }, + { + "start": 13306.0, + "end": 13308.46, + "probability": 0.7773 + }, + { + "start": 13309.3, + "end": 13310.02, + "probability": 0.4189 + }, + { + "start": 13311.4, + "end": 13311.96, + "probability": 0.8841 + }, + { + "start": 13313.84, + "end": 13315.76, + "probability": 0.715 + }, + { + "start": 13317.48, + "end": 13318.34, + "probability": 0.6875 + }, + { + "start": 13319.26, + "end": 13320.42, + "probability": 0.9095 + }, + { + "start": 13321.16, + "end": 13322.06, + "probability": 0.714 + }, + { + "start": 13323.18, + "end": 13324.22, + "probability": 0.057 + }, + { + "start": 13324.76, + "end": 13325.58, + "probability": 0.6614 + }, + { + "start": 13326.32, + "end": 13327.77, + "probability": 0.5848 + }, + { + "start": 13329.34, + "end": 13330.6, + "probability": 0.9437 + }, + { + "start": 13330.66, + "end": 13331.24, + "probability": 0.6874 + }, + { + "start": 13331.5, + "end": 13332.16, + "probability": 0.6476 + }, + { + "start": 13332.26, + "end": 13335.4, + "probability": 0.7662 + }, + { + "start": 13335.74, + "end": 13336.6, + "probability": 0.9653 + }, + { + "start": 13337.48, + "end": 13339.42, + "probability": 0.6587 + }, + { + "start": 13340.62, + "end": 13342.0, + "probability": 0.6072 + }, + { + "start": 13342.66, + "end": 13343.98, + "probability": 0.9343 + }, + { + "start": 13345.28, + "end": 13346.4, + "probability": 0.8233 + }, + { + "start": 13346.48, + "end": 13347.68, + "probability": 0.9284 + }, + { + "start": 13348.3, + "end": 13348.88, + "probability": 0.6017 + }, + { + "start": 13348.92, + "end": 13349.3, + "probability": 0.616 + }, + { + "start": 13349.38, + "end": 13350.18, + "probability": 0.8575 + }, + { + "start": 13350.68, + "end": 13353.32, + "probability": 0.9717 + }, + { + "start": 13354.32, + "end": 13355.08, + "probability": 0.6401 + }, + { + "start": 13355.3, + "end": 13355.94, + "probability": 0.6447 + }, + { + "start": 13357.16, + "end": 13359.28, + "probability": 0.9604 + }, + { + "start": 13361.34, + "end": 13365.84, + "probability": 0.2823 + }, + { + "start": 13366.2, + "end": 13366.58, + "probability": 0.5746 + }, + { + "start": 13367.12, + "end": 13370.36, + "probability": 0.6689 + }, + { + "start": 13370.82, + "end": 13370.92, + "probability": 0.3183 + }, + { + "start": 13370.92, + "end": 13371.24, + "probability": 0.237 + }, + { + "start": 13371.28, + "end": 13373.16, + "probability": 0.7807 + }, + { + "start": 13374.4, + "end": 13376.8, + "probability": 0.18 + }, + { + "start": 13379.12, + "end": 13380.38, + "probability": 0.155 + }, + { + "start": 13380.38, + "end": 13385.9, + "probability": 0.1028 + }, + { + "start": 13386.6, + "end": 13387.08, + "probability": 0.5737 + }, + { + "start": 13388.06, + "end": 13388.28, + "probability": 0.4489 + }, + { + "start": 13389.56, + "end": 13390.14, + "probability": 0.9773 + }, + { + "start": 13391.52, + "end": 13394.92, + "probability": 0.7427 + }, + { + "start": 13394.98, + "end": 13396.4, + "probability": 0.573 + }, + { + "start": 13396.9, + "end": 13397.56, + "probability": 0.5077 + }, + { + "start": 13398.42, + "end": 13403.23, + "probability": 0.5969 + }, + { + "start": 13404.08, + "end": 13405.54, + "probability": 0.5886 + }, + { + "start": 13406.5, + "end": 13409.74, + "probability": 0.6274 + }, + { + "start": 13410.06, + "end": 13411.62, + "probability": 0.6971 + }, + { + "start": 13412.16, + "end": 13413.2, + "probability": 0.9514 + }, + { + "start": 13413.52, + "end": 13414.84, + "probability": 0.9203 + }, + { + "start": 13415.0, + "end": 13415.7, + "probability": 0.7888 + }, + { + "start": 13415.72, + "end": 13415.96, + "probability": 0.7543 + }, + { + "start": 13416.84, + "end": 13419.56, + "probability": 0.6614 + }, + { + "start": 13420.84, + "end": 13424.6, + "probability": 0.5814 + }, + { + "start": 13425.22, + "end": 13426.9, + "probability": 0.758 + }, + { + "start": 13428.12, + "end": 13430.42, + "probability": 0.9722 + }, + { + "start": 13430.48, + "end": 13431.38, + "probability": 0.948 + }, + { + "start": 13431.94, + "end": 13435.18, + "probability": 0.835 + }, + { + "start": 13437.04, + "end": 13438.24, + "probability": 0.6959 + }, + { + "start": 13439.5, + "end": 13443.32, + "probability": 0.876 + }, + { + "start": 13443.38, + "end": 13443.92, + "probability": 0.3424 + }, + { + "start": 13444.18, + "end": 13445.13, + "probability": 0.3787 + }, + { + "start": 13446.86, + "end": 13449.74, + "probability": 0.7822 + }, + { + "start": 13449.84, + "end": 13451.2, + "probability": 0.119 + }, + { + "start": 13451.32, + "end": 13451.5, + "probability": 0.2951 + }, + { + "start": 13451.5, + "end": 13451.5, + "probability": 0.5943 + }, + { + "start": 13451.5, + "end": 13452.52, + "probability": 0.5709 + }, + { + "start": 13452.66, + "end": 13455.66, + "probability": 0.7395 + }, + { + "start": 13458.4, + "end": 13459.34, + "probability": 0.5104 + }, + { + "start": 13461.0, + "end": 13465.1, + "probability": 0.4293 + }, + { + "start": 13465.7, + "end": 13468.06, + "probability": 0.9812 + }, + { + "start": 13468.2, + "end": 13470.4, + "probability": 0.9907 + }, + { + "start": 13471.06, + "end": 13473.88, + "probability": 0.9966 + }, + { + "start": 13474.02, + "end": 13477.5, + "probability": 0.9786 + }, + { + "start": 13478.1, + "end": 13481.76, + "probability": 0.9771 + }, + { + "start": 13481.76, + "end": 13486.24, + "probability": 0.9959 + }, + { + "start": 13486.7, + "end": 13488.52, + "probability": 0.8475 + }, + { + "start": 13488.68, + "end": 13489.3, + "probability": 0.8215 + }, + { + "start": 13489.42, + "end": 13490.68, + "probability": 0.9705 + }, + { + "start": 13491.2, + "end": 13493.72, + "probability": 0.7591 + }, + { + "start": 13494.14, + "end": 13498.5, + "probability": 0.9901 + }, + { + "start": 13498.8, + "end": 13500.06, + "probability": 0.9525 + }, + { + "start": 13500.1, + "end": 13503.98, + "probability": 0.9814 + }, + { + "start": 13503.98, + "end": 13508.34, + "probability": 0.9851 + }, + { + "start": 13508.98, + "end": 13509.3, + "probability": 0.4551 + }, + { + "start": 13509.44, + "end": 13513.76, + "probability": 0.9595 + }, + { + "start": 13514.2, + "end": 13520.79, + "probability": 0.9752 + }, + { + "start": 13521.66, + "end": 13522.4, + "probability": 0.7797 + }, + { + "start": 13522.42, + "end": 13526.88, + "probability": 0.9774 + }, + { + "start": 13527.24, + "end": 13527.92, + "probability": 0.5929 + }, + { + "start": 13528.26, + "end": 13529.7, + "probability": 0.8161 + }, + { + "start": 13529.82, + "end": 13530.18, + "probability": 0.9174 + }, + { + "start": 13530.2, + "end": 13533.06, + "probability": 0.9264 + }, + { + "start": 13533.46, + "end": 13534.26, + "probability": 0.599 + }, + { + "start": 13534.88, + "end": 13535.62, + "probability": 0.7001 + }, + { + "start": 13535.62, + "end": 13536.2, + "probability": 0.751 + }, + { + "start": 13553.32, + "end": 13553.62, + "probability": 0.177 + }, + { + "start": 13553.62, + "end": 13553.62, + "probability": 0.5029 + }, + { + "start": 13553.62, + "end": 13556.48, + "probability": 0.8622 + }, + { + "start": 13556.94, + "end": 13559.48, + "probability": 0.8991 + }, + { + "start": 13559.7, + "end": 13560.2, + "probability": 0.7355 + }, + { + "start": 13561.22, + "end": 13564.04, + "probability": 0.1189 + }, + { + "start": 13564.04, + "end": 13564.04, + "probability": 0.4151 + }, + { + "start": 13564.04, + "end": 13564.04, + "probability": 0.0383 + }, + { + "start": 13564.04, + "end": 13564.04, + "probability": 0.3043 + }, + { + "start": 13564.04, + "end": 13566.26, + "probability": 0.1618 + }, + { + "start": 13566.86, + "end": 13569.22, + "probability": 0.7708 + }, + { + "start": 13570.1, + "end": 13572.12, + "probability": 0.855 + }, + { + "start": 13573.7, + "end": 13575.61, + "probability": 0.8997 + }, + { + "start": 13583.08, + "end": 13585.74, + "probability": 0.8254 + }, + { + "start": 13594.52, + "end": 13597.13, + "probability": 0.5515 + }, + { + "start": 13597.4, + "end": 13599.22, + "probability": 0.7393 + }, + { + "start": 13600.04, + "end": 13601.52, + "probability": 0.653 + }, + { + "start": 13602.98, + "end": 13608.3, + "probability": 0.9893 + }, + { + "start": 13609.58, + "end": 13611.66, + "probability": 0.6958 + }, + { + "start": 13612.48, + "end": 13615.2, + "probability": 0.8373 + }, + { + "start": 13616.06, + "end": 13624.28, + "probability": 0.9696 + }, + { + "start": 13626.18, + "end": 13629.42, + "probability": 0.8729 + }, + { + "start": 13630.68, + "end": 13634.4, + "probability": 0.938 + }, + { + "start": 13635.44, + "end": 13638.38, + "probability": 0.9651 + }, + { + "start": 13639.7, + "end": 13642.04, + "probability": 0.9845 + }, + { + "start": 13643.18, + "end": 13650.82, + "probability": 0.9979 + }, + { + "start": 13651.58, + "end": 13655.4, + "probability": 0.9961 + }, + { + "start": 13657.12, + "end": 13658.26, + "probability": 0.8656 + }, + { + "start": 13658.58, + "end": 13665.32, + "probability": 0.9954 + }, + { + "start": 13666.02, + "end": 13669.6, + "probability": 0.9971 + }, + { + "start": 13670.46, + "end": 13675.74, + "probability": 0.9362 + }, + { + "start": 13676.38, + "end": 13678.52, + "probability": 0.9741 + }, + { + "start": 13679.88, + "end": 13684.1, + "probability": 0.9905 + }, + { + "start": 13685.22, + "end": 13689.0, + "probability": 0.9556 + }, + { + "start": 13689.56, + "end": 13691.2, + "probability": 0.9656 + }, + { + "start": 13692.2, + "end": 13698.32, + "probability": 0.9747 + }, + { + "start": 13698.86, + "end": 13700.38, + "probability": 0.8505 + }, + { + "start": 13701.2, + "end": 13705.88, + "probability": 0.9468 + }, + { + "start": 13705.94, + "end": 13707.24, + "probability": 0.9473 + }, + { + "start": 13707.74, + "end": 13709.82, + "probability": 0.9518 + }, + { + "start": 13710.18, + "end": 13711.18, + "probability": 0.764 + }, + { + "start": 13712.66, + "end": 13714.54, + "probability": 0.9854 + }, + { + "start": 13715.18, + "end": 13719.36, + "probability": 0.9946 + }, + { + "start": 13719.64, + "end": 13724.72, + "probability": 0.9911 + }, + { + "start": 13725.84, + "end": 13726.34, + "probability": 0.8122 + }, + { + "start": 13726.34, + "end": 13727.4, + "probability": 0.7068 + }, + { + "start": 13727.68, + "end": 13731.24, + "probability": 0.9963 + }, + { + "start": 13731.24, + "end": 13734.3, + "probability": 0.9948 + }, + { + "start": 13735.12, + "end": 13739.36, + "probability": 0.9208 + }, + { + "start": 13739.96, + "end": 13741.92, + "probability": 0.9958 + }, + { + "start": 13742.62, + "end": 13746.26, + "probability": 0.9937 + }, + { + "start": 13746.62, + "end": 13747.36, + "probability": 0.9404 + }, + { + "start": 13747.84, + "end": 13748.48, + "probability": 0.5981 + }, + { + "start": 13748.98, + "end": 13754.36, + "probability": 0.9946 + }, + { + "start": 13755.84, + "end": 13758.04, + "probability": 0.8908 + }, + { + "start": 13759.32, + "end": 13762.56, + "probability": 0.9981 + }, + { + "start": 13762.56, + "end": 13765.82, + "probability": 0.9996 + }, + { + "start": 13766.94, + "end": 13771.78, + "probability": 0.8459 + }, + { + "start": 13772.14, + "end": 13775.34, + "probability": 0.9052 + }, + { + "start": 13775.66, + "end": 13778.98, + "probability": 0.9842 + }, + { + "start": 13779.88, + "end": 13781.38, + "probability": 0.7715 + }, + { + "start": 13782.34, + "end": 13784.04, + "probability": 0.9617 + }, + { + "start": 13784.64, + "end": 13788.22, + "probability": 0.9942 + }, + { + "start": 13788.66, + "end": 13792.7, + "probability": 0.9901 + }, + { + "start": 13793.14, + "end": 13793.14, + "probability": 0.1918 + }, + { + "start": 13793.6, + "end": 13793.74, + "probability": 0.198 + }, + { + "start": 13793.82, + "end": 13800.64, + "probability": 0.9907 + }, + { + "start": 13801.1, + "end": 13804.7, + "probability": 0.9553 + }, + { + "start": 13805.12, + "end": 13806.28, + "probability": 0.6381 + }, + { + "start": 13806.66, + "end": 13808.66, + "probability": 0.9363 + }, + { + "start": 13809.94, + "end": 13813.0, + "probability": 0.8429 + }, + { + "start": 13822.46, + "end": 13824.9, + "probability": 0.9441 + }, + { + "start": 13828.26, + "end": 13829.9, + "probability": 0.5397 + }, + { + "start": 13830.88, + "end": 13832.64, + "probability": 0.8935 + }, + { + "start": 13833.5, + "end": 13837.84, + "probability": 0.9796 + }, + { + "start": 13838.66, + "end": 13840.72, + "probability": 0.9836 + }, + { + "start": 13844.76, + "end": 13846.82, + "probability": 0.5904 + }, + { + "start": 13848.28, + "end": 13852.2, + "probability": 0.955 + }, + { + "start": 13853.34, + "end": 13856.98, + "probability": 0.9349 + }, + { + "start": 13857.08, + "end": 13857.74, + "probability": 0.9145 + }, + { + "start": 13857.9, + "end": 13864.06, + "probability": 0.9473 + }, + { + "start": 13865.12, + "end": 13866.5, + "probability": 0.8 + }, + { + "start": 13868.08, + "end": 13869.86, + "probability": 0.6097 + }, + { + "start": 13871.74, + "end": 13876.4, + "probability": 0.8831 + }, + { + "start": 13877.08, + "end": 13880.53, + "probability": 0.9811 + }, + { + "start": 13882.2, + "end": 13884.72, + "probability": 0.1969 + }, + { + "start": 13885.08, + "end": 13886.82, + "probability": 0.6049 + }, + { + "start": 13887.04, + "end": 13888.12, + "probability": 0.6359 + }, + { + "start": 13888.18, + "end": 13891.6, + "probability": 0.9655 + }, + { + "start": 13891.78, + "end": 13893.96, + "probability": 0.9617 + }, + { + "start": 13895.04, + "end": 13896.3, + "probability": 0.7273 + }, + { + "start": 13897.54, + "end": 13898.68, + "probability": 0.9696 + }, + { + "start": 13899.16, + "end": 13902.82, + "probability": 0.9863 + }, + { + "start": 13902.94, + "end": 13903.66, + "probability": 0.8325 + }, + { + "start": 13906.02, + "end": 13907.66, + "probability": 0.9043 + }, + { + "start": 13907.72, + "end": 13908.34, + "probability": 0.6733 + }, + { + "start": 13908.42, + "end": 13908.98, + "probability": 0.7323 + }, + { + "start": 13909.06, + "end": 13910.33, + "probability": 0.9946 + }, + { + "start": 13911.9, + "end": 13913.36, + "probability": 0.9877 + }, + { + "start": 13914.46, + "end": 13915.18, + "probability": 0.8227 + }, + { + "start": 13915.26, + "end": 13917.3, + "probability": 0.8215 + }, + { + "start": 13917.5, + "end": 13918.04, + "probability": 0.847 + }, + { + "start": 13918.1, + "end": 13919.56, + "probability": 0.8857 + }, + { + "start": 13920.98, + "end": 13922.44, + "probability": 0.8101 + }, + { + "start": 13922.56, + "end": 13923.1, + "probability": 0.7387 + }, + { + "start": 13923.2, + "end": 13924.1, + "probability": 0.6665 + }, + { + "start": 13924.3, + "end": 13926.46, + "probability": 0.8039 + }, + { + "start": 13927.04, + "end": 13930.07, + "probability": 0.9971 + }, + { + "start": 13931.0, + "end": 13931.8, + "probability": 0.9893 + }, + { + "start": 13932.86, + "end": 13937.2, + "probability": 0.9985 + }, + { + "start": 13937.48, + "end": 13940.88, + "probability": 0.9968 + }, + { + "start": 13941.6, + "end": 13945.22, + "probability": 0.9975 + }, + { + "start": 13946.72, + "end": 13950.86, + "probability": 0.9985 + }, + { + "start": 13951.46, + "end": 13953.72, + "probability": 0.9939 + }, + { + "start": 13953.98, + "end": 13954.68, + "probability": 0.9738 + }, + { + "start": 13954.74, + "end": 13956.68, + "probability": 0.9627 + }, + { + "start": 13956.7, + "end": 13957.28, + "probability": 0.7224 + }, + { + "start": 13959.06, + "end": 13962.74, + "probability": 0.9966 + }, + { + "start": 13967.24, + "end": 13973.52, + "probability": 0.9985 + }, + { + "start": 13973.72, + "end": 13976.96, + "probability": 0.9991 + }, + { + "start": 13976.96, + "end": 13982.44, + "probability": 0.8612 + }, + { + "start": 13982.5, + "end": 13983.26, + "probability": 0.8908 + }, + { + "start": 13984.0, + "end": 13985.32, + "probability": 0.9613 + }, + { + "start": 13987.12, + "end": 13988.54, + "probability": 0.9447 + }, + { + "start": 13989.62, + "end": 13993.61, + "probability": 0.931 + }, + { + "start": 13994.62, + "end": 13999.82, + "probability": 0.9948 + }, + { + "start": 14000.52, + "end": 14002.1, + "probability": 0.988 + }, + { + "start": 14002.84, + "end": 14005.56, + "probability": 0.9974 + }, + { + "start": 14006.18, + "end": 14010.24, + "probability": 0.8216 + }, + { + "start": 14011.4, + "end": 14015.6, + "probability": 0.9816 + }, + { + "start": 14016.44, + "end": 14017.23, + "probability": 0.7031 + }, + { + "start": 14017.52, + "end": 14019.28, + "probability": 0.9951 + }, + { + "start": 14019.56, + "end": 14021.98, + "probability": 0.9915 + }, + { + "start": 14021.98, + "end": 14025.06, + "probability": 0.9985 + }, + { + "start": 14025.22, + "end": 14025.78, + "probability": 0.5742 + }, + { + "start": 14026.6, + "end": 14027.66, + "probability": 0.8701 + }, + { + "start": 14028.7, + "end": 14030.76, + "probability": 0.969 + }, + { + "start": 14031.04, + "end": 14031.26, + "probability": 0.7344 + }, + { + "start": 14031.32, + "end": 14031.82, + "probability": 0.9013 + }, + { + "start": 14031.94, + "end": 14034.8, + "probability": 0.8563 + }, + { + "start": 14035.58, + "end": 14036.44, + "probability": 0.9005 + }, + { + "start": 14037.24, + "end": 14038.37, + "probability": 0.9927 + }, + { + "start": 14038.9, + "end": 14043.14, + "probability": 0.9826 + }, + { + "start": 14043.14, + "end": 14048.06, + "probability": 0.998 + }, + { + "start": 14048.9, + "end": 14049.28, + "probability": 0.3769 + }, + { + "start": 14049.34, + "end": 14056.2, + "probability": 0.9838 + }, + { + "start": 14056.84, + "end": 14061.8, + "probability": 0.9752 + }, + { + "start": 14062.4, + "end": 14063.52, + "probability": 0.8231 + }, + { + "start": 14063.86, + "end": 14064.94, + "probability": 0.7813 + }, + { + "start": 14065.02, + "end": 14066.2, + "probability": 0.9321 + }, + { + "start": 14066.94, + "end": 14068.88, + "probability": 0.883 + }, + { + "start": 14069.2, + "end": 14069.46, + "probability": 0.7165 + }, + { + "start": 14070.44, + "end": 14072.12, + "probability": 0.9492 + }, + { + "start": 14072.24, + "end": 14074.26, + "probability": 0.8987 + }, + { + "start": 14074.86, + "end": 14076.86, + "probability": 0.9354 + }, + { + "start": 14082.3, + "end": 14084.96, + "probability": 0.8132 + }, + { + "start": 14086.12, + "end": 14086.44, + "probability": 0.0163 + }, + { + "start": 14089.38, + "end": 14089.98, + "probability": 0.0087 + }, + { + "start": 14093.44, + "end": 14094.3, + "probability": 0.4098 + }, + { + "start": 14094.4, + "end": 14095.72, + "probability": 0.7261 + }, + { + "start": 14096.7, + "end": 14099.9, + "probability": 0.9964 + }, + { + "start": 14100.0, + "end": 14102.72, + "probability": 0.7918 + }, + { + "start": 14104.1, + "end": 14105.99, + "probability": 0.9708 + }, + { + "start": 14106.78, + "end": 14107.51, + "probability": 0.991 + }, + { + "start": 14107.94, + "end": 14113.66, + "probability": 0.8956 + }, + { + "start": 14113.84, + "end": 14114.54, + "probability": 0.769 + }, + { + "start": 14114.68, + "end": 14115.08, + "probability": 0.8385 + }, + { + "start": 14115.18, + "end": 14116.23, + "probability": 0.9653 + }, + { + "start": 14117.44, + "end": 14119.92, + "probability": 0.8223 + }, + { + "start": 14120.56, + "end": 14123.32, + "probability": 0.7194 + }, + { + "start": 14124.52, + "end": 14127.9, + "probability": 0.9813 + }, + { + "start": 14128.9, + "end": 14130.88, + "probability": 0.9713 + }, + { + "start": 14130.96, + "end": 14134.08, + "probability": 0.9152 + }, + { + "start": 14134.08, + "end": 14135.62, + "probability": 0.666 + }, + { + "start": 14136.45, + "end": 14137.68, + "probability": 0.9844 + }, + { + "start": 14138.5, + "end": 14141.56, + "probability": 0.983 + }, + { + "start": 14142.0, + "end": 14145.15, + "probability": 0.8066 + }, + { + "start": 14145.78, + "end": 14149.8, + "probability": 0.9669 + }, + { + "start": 14149.98, + "end": 14151.02, + "probability": 0.829 + }, + { + "start": 14151.44, + "end": 14154.24, + "probability": 0.9914 + }, + { + "start": 14154.72, + "end": 14155.51, + "probability": 0.8726 + }, + { + "start": 14155.72, + "end": 14156.48, + "probability": 0.9771 + }, + { + "start": 14156.64, + "end": 14157.44, + "probability": 0.7413 + }, + { + "start": 14158.16, + "end": 14160.96, + "probability": 0.9828 + }, + { + "start": 14161.3, + "end": 14161.76, + "probability": 0.7525 + }, + { + "start": 14162.3, + "end": 14166.06, + "probability": 0.9708 + }, + { + "start": 14166.06, + "end": 14169.72, + "probability": 0.9771 + }, + { + "start": 14169.86, + "end": 14170.46, + "probability": 0.8623 + }, + { + "start": 14170.58, + "end": 14171.5, + "probability": 0.9378 + }, + { + "start": 14172.08, + "end": 14175.0, + "probability": 0.9956 + }, + { + "start": 14176.64, + "end": 14179.64, + "probability": 0.6978 + }, + { + "start": 14180.08, + "end": 14182.9, + "probability": 0.9972 + }, + { + "start": 14182.9, + "end": 14186.62, + "probability": 0.95 + }, + { + "start": 14186.66, + "end": 14190.84, + "probability": 0.9963 + }, + { + "start": 14191.28, + "end": 14195.0, + "probability": 0.996 + }, + { + "start": 14195.38, + "end": 14198.22, + "probability": 0.9909 + }, + { + "start": 14198.54, + "end": 14198.82, + "probability": 0.2532 + }, + { + "start": 14198.88, + "end": 14201.92, + "probability": 0.9154 + }, + { + "start": 14202.28, + "end": 14203.42, + "probability": 0.9411 + }, + { + "start": 14203.9, + "end": 14207.28, + "probability": 0.9895 + }, + { + "start": 14207.28, + "end": 14210.98, + "probability": 0.9963 + }, + { + "start": 14211.6, + "end": 14213.56, + "probability": 0.8719 + }, + { + "start": 14213.68, + "end": 14216.86, + "probability": 0.9953 + }, + { + "start": 14217.9, + "end": 14218.82, + "probability": 0.8961 + }, + { + "start": 14218.94, + "end": 14219.7, + "probability": 0.6805 + }, + { + "start": 14219.74, + "end": 14221.26, + "probability": 0.9761 + }, + { + "start": 14221.8, + "end": 14224.14, + "probability": 0.8876 + }, + { + "start": 14224.26, + "end": 14226.24, + "probability": 0.7016 + }, + { + "start": 14226.3, + "end": 14227.12, + "probability": 0.9379 + }, + { + "start": 14227.58, + "end": 14229.12, + "probability": 0.8907 + }, + { + "start": 14229.98, + "end": 14233.2, + "probability": 0.995 + }, + { + "start": 14233.7, + "end": 14236.12, + "probability": 0.639 + }, + { + "start": 14236.54, + "end": 14241.9, + "probability": 0.9719 + }, + { + "start": 14242.26, + "end": 14246.84, + "probability": 0.9556 + }, + { + "start": 14247.28, + "end": 14248.32, + "probability": 0.643 + }, + { + "start": 14248.4, + "end": 14249.42, + "probability": 0.9872 + }, + { + "start": 14249.82, + "end": 14251.06, + "probability": 0.9664 + }, + { + "start": 14251.36, + "end": 14252.22, + "probability": 0.9799 + }, + { + "start": 14252.58, + "end": 14254.82, + "probability": 0.7445 + }, + { + "start": 14254.88, + "end": 14255.6, + "probability": 0.8542 + }, + { + "start": 14255.64, + "end": 14256.34, + "probability": 0.7827 + }, + { + "start": 14256.46, + "end": 14257.9, + "probability": 0.9749 + }, + { + "start": 14258.54, + "end": 14258.8, + "probability": 0.545 + }, + { + "start": 14258.92, + "end": 14259.16, + "probability": 0.9788 + }, + { + "start": 14259.32, + "end": 14262.06, + "probability": 0.8055 + }, + { + "start": 14262.5, + "end": 14264.42, + "probability": 0.4648 + }, + { + "start": 14264.52, + "end": 14265.36, + "probability": 0.6391 + }, + { + "start": 14265.7, + "end": 14267.62, + "probability": 0.46 + }, + { + "start": 14267.86, + "end": 14268.98, + "probability": 0.6841 + }, + { + "start": 14269.3, + "end": 14270.56, + "probability": 0.9336 + }, + { + "start": 14270.68, + "end": 14275.54, + "probability": 0.9498 + }, + { + "start": 14275.96, + "end": 14277.38, + "probability": 0.9966 + }, + { + "start": 14278.04, + "end": 14280.22, + "probability": 0.9925 + }, + { + "start": 14280.3, + "end": 14281.39, + "probability": 0.8529 + }, + { + "start": 14281.94, + "end": 14286.1, + "probability": 0.9987 + }, + { + "start": 14286.22, + "end": 14287.22, + "probability": 0.9001 + }, + { + "start": 14287.54, + "end": 14289.02, + "probability": 0.835 + }, + { + "start": 14289.68, + "end": 14293.78, + "probability": 0.944 + }, + { + "start": 14294.34, + "end": 14298.18, + "probability": 0.9896 + }, + { + "start": 14298.54, + "end": 14299.36, + "probability": 0.968 + }, + { + "start": 14299.8, + "end": 14300.18, + "probability": 0.7536 + }, + { + "start": 14300.74, + "end": 14304.56, + "probability": 0.627 + }, + { + "start": 14304.56, + "end": 14305.46, + "probability": 0.6063 + }, + { + "start": 14306.54, + "end": 14308.16, + "probability": 0.1566 + }, + { + "start": 14308.96, + "end": 14310.38, + "probability": 0.76 + }, + { + "start": 14319.04, + "end": 14319.26, + "probability": 0.6241 + }, + { + "start": 14322.26, + "end": 14322.8, + "probability": 0.5893 + }, + { + "start": 14322.86, + "end": 14323.96, + "probability": 0.5342 + }, + { + "start": 14326.26, + "end": 14327.84, + "probability": 0.8246 + }, + { + "start": 14329.34, + "end": 14329.78, + "probability": 0.4935 + }, + { + "start": 14330.02, + "end": 14333.92, + "probability": 0.8804 + }, + { + "start": 14334.2, + "end": 14334.98, + "probability": 0.884 + }, + { + "start": 14335.78, + "end": 14337.5, + "probability": 0.811 + }, + { + "start": 14337.56, + "end": 14340.3, + "probability": 0.9495 + }, + { + "start": 14340.38, + "end": 14341.56, + "probability": 0.2505 + }, + { + "start": 14342.12, + "end": 14343.34, + "probability": 0.8359 + }, + { + "start": 14343.4, + "end": 14345.56, + "probability": 0.6078 + }, + { + "start": 14345.56, + "end": 14346.48, + "probability": 0.7061 + }, + { + "start": 14346.62, + "end": 14348.23, + "probability": 0.7095 + }, + { + "start": 14348.5, + "end": 14349.42, + "probability": 0.5986 + }, + { + "start": 14349.52, + "end": 14350.22, + "probability": 0.8117 + }, + { + "start": 14350.44, + "end": 14352.7, + "probability": 0.9244 + }, + { + "start": 14353.3, + "end": 14355.96, + "probability": 0.0786 + }, + { + "start": 14357.08, + "end": 14358.44, + "probability": 0.8429 + }, + { + "start": 14358.56, + "end": 14359.88, + "probability": 0.9772 + }, + { + "start": 14359.94, + "end": 14360.1, + "probability": 0.277 + }, + { + "start": 14361.16, + "end": 14363.96, + "probability": 0.4441 + }, + { + "start": 14364.72, + "end": 14367.58, + "probability": 0.5559 + }, + { + "start": 14367.59, + "end": 14368.09, + "probability": 0.7006 + }, + { + "start": 14369.48, + "end": 14373.74, + "probability": 0.8656 + }, + { + "start": 14374.1, + "end": 14377.46, + "probability": 0.7995 + }, + { + "start": 14377.56, + "end": 14379.46, + "probability": 0.6016 + }, + { + "start": 14379.6, + "end": 14380.2, + "probability": 0.4006 + }, + { + "start": 14380.24, + "end": 14381.17, + "probability": 0.315 + }, + { + "start": 14381.78, + "end": 14382.38, + "probability": 0.3443 + }, + { + "start": 14382.38, + "end": 14382.98, + "probability": 0.5156 + }, + { + "start": 14383.44, + "end": 14384.88, + "probability": 0.4201 + }, + { + "start": 14385.0, + "end": 14386.6, + "probability": 0.1909 + }, + { + "start": 14386.68, + "end": 14387.38, + "probability": 0.9153 + }, + { + "start": 14387.4, + "end": 14388.74, + "probability": 0.33 + }, + { + "start": 14388.86, + "end": 14389.55, + "probability": 0.4337 + }, + { + "start": 14389.86, + "end": 14393.28, + "probability": 0.4244 + }, + { + "start": 14394.15, + "end": 14395.12, + "probability": 0.4954 + }, + { + "start": 14395.2, + "end": 14396.38, + "probability": 0.7348 + }, + { + "start": 14396.86, + "end": 14399.36, + "probability": 0.5933 + }, + { + "start": 14399.72, + "end": 14404.0, + "probability": 0.8674 + }, + { + "start": 14404.06, + "end": 14404.76, + "probability": 0.8384 + }, + { + "start": 14406.9, + "end": 14408.12, + "probability": 0.1166 + }, + { + "start": 14408.12, + "end": 14413.28, + "probability": 0.9637 + }, + { + "start": 14414.26, + "end": 14414.84, + "probability": 0.2845 + }, + { + "start": 14415.16, + "end": 14416.92, + "probability": 0.7157 + }, + { + "start": 14416.92, + "end": 14417.7, + "probability": 0.4482 + }, + { + "start": 14418.0, + "end": 14418.68, + "probability": 0.5822 + }, + { + "start": 14418.94, + "end": 14419.22, + "probability": 0.6447 + }, + { + "start": 14419.74, + "end": 14420.09, + "probability": 0.0582 + }, + { + "start": 14420.66, + "end": 14421.5, + "probability": 0.8927 + }, + { + "start": 14421.7, + "end": 14424.9, + "probability": 0.8741 + }, + { + "start": 14425.22, + "end": 14426.76, + "probability": 0.8364 + }, + { + "start": 14427.5, + "end": 14427.76, + "probability": 0.4819 + }, + { + "start": 14427.84, + "end": 14430.39, + "probability": 0.8462 + }, + { + "start": 14431.58, + "end": 14433.28, + "probability": 0.7288 + }, + { + "start": 14433.6, + "end": 14435.32, + "probability": 0.998 + }, + { + "start": 14436.0, + "end": 14436.3, + "probability": 0.773 + }, + { + "start": 14436.34, + "end": 14437.56, + "probability": 0.5212 + }, + { + "start": 14438.88, + "end": 14440.02, + "probability": 0.0628 + }, + { + "start": 14440.02, + "end": 14443.54, + "probability": 0.5792 + }, + { + "start": 14443.7, + "end": 14444.58, + "probability": 0.721 + }, + { + "start": 14444.7, + "end": 14445.74, + "probability": 0.4543 + }, + { + "start": 14445.8, + "end": 14447.64, + "probability": 0.6885 + }, + { + "start": 14447.82, + "end": 14448.02, + "probability": 0.5641 + }, + { + "start": 14448.02, + "end": 14450.56, + "probability": 0.7482 + }, + { + "start": 14452.38, + "end": 14452.72, + "probability": 0.3129 + }, + { + "start": 14452.74, + "end": 14453.3, + "probability": 0.3664 + }, + { + "start": 14453.4, + "end": 14456.1, + "probability": 0.7101 + }, + { + "start": 14456.58, + "end": 14457.38, + "probability": 0.5433 + }, + { + "start": 14457.46, + "end": 14461.14, + "probability": 0.9187 + }, + { + "start": 14461.24, + "end": 14461.94, + "probability": 0.7498 + }, + { + "start": 14462.02, + "end": 14463.02, + "probability": 0.9529 + }, + { + "start": 14463.12, + "end": 14464.25, + "probability": 0.9847 + }, + { + "start": 14464.76, + "end": 14465.92, + "probability": 0.884 + }, + { + "start": 14467.64, + "end": 14470.08, + "probability": 0.5179 + }, + { + "start": 14470.4, + "end": 14473.89, + "probability": 0.9741 + }, + { + "start": 14474.6, + "end": 14476.48, + "probability": 0.9569 + }, + { + "start": 14476.68, + "end": 14477.16, + "probability": 0.7031 + }, + { + "start": 14477.86, + "end": 14479.96, + "probability": 0.9881 + }, + { + "start": 14480.38, + "end": 14480.56, + "probability": 0.5244 + }, + { + "start": 14480.6, + "end": 14481.09, + "probability": 0.9051 + }, + { + "start": 14481.66, + "end": 14485.46, + "probability": 0.8323 + }, + { + "start": 14486.1, + "end": 14487.72, + "probability": 0.7097 + }, + { + "start": 14488.94, + "end": 14490.32, + "probability": 0.654 + }, + { + "start": 14490.46, + "end": 14491.3, + "probability": 0.773 + }, + { + "start": 14492.48, + "end": 14493.1, + "probability": 0.7179 + }, + { + "start": 14493.2, + "end": 14494.1, + "probability": 0.6601 + }, + { + "start": 14494.2, + "end": 14494.76, + "probability": 0.8264 + }, + { + "start": 14495.36, + "end": 14497.6, + "probability": 0.814 + }, + { + "start": 14498.16, + "end": 14500.1, + "probability": 0.8949 + }, + { + "start": 14500.12, + "end": 14501.08, + "probability": 0.8706 + }, + { + "start": 14501.14, + "end": 14501.4, + "probability": 0.7081 + }, + { + "start": 14501.42, + "end": 14506.68, + "probability": 0.8926 + }, + { + "start": 14506.86, + "end": 14507.4, + "probability": 0.3097 + }, + { + "start": 14507.56, + "end": 14508.48, + "probability": 0.6256 + }, + { + "start": 14508.9, + "end": 14512.04, + "probability": 0.9784 + }, + { + "start": 14512.52, + "end": 14515.64, + "probability": 0.8583 + }, + { + "start": 14515.76, + "end": 14516.54, + "probability": 0.9602 + }, + { + "start": 14516.98, + "end": 14518.08, + "probability": 0.7573 + }, + { + "start": 14519.08, + "end": 14520.71, + "probability": 0.2629 + }, + { + "start": 14521.7, + "end": 14524.66, + "probability": 0.8191 + }, + { + "start": 14525.22, + "end": 14527.0, + "probability": 0.6205 + }, + { + "start": 14527.7, + "end": 14530.74, + "probability": 0.9523 + }, + { + "start": 14531.74, + "end": 14532.88, + "probability": 0.6494 + }, + { + "start": 14532.94, + "end": 14534.76, + "probability": 0.7565 + }, + { + "start": 14535.74, + "end": 14537.0, + "probability": 0.9666 + }, + { + "start": 14537.16, + "end": 14538.86, + "probability": 0.9611 + }, + { + "start": 14539.4, + "end": 14539.84, + "probability": 0.6293 + }, + { + "start": 14539.98, + "end": 14540.38, + "probability": 0.6302 + }, + { + "start": 14540.46, + "end": 14541.12, + "probability": 0.5084 + }, + { + "start": 14541.24, + "end": 14542.82, + "probability": 0.9175 + }, + { + "start": 14543.14, + "end": 14544.1, + "probability": 0.7888 + }, + { + "start": 14544.74, + "end": 14546.28, + "probability": 0.9824 + }, + { + "start": 14547.04, + "end": 14549.8, + "probability": 0.8365 + }, + { + "start": 14550.76, + "end": 14552.11, + "probability": 0.84 + }, + { + "start": 14552.98, + "end": 14558.08, + "probability": 0.9946 + }, + { + "start": 14559.72, + "end": 14563.24, + "probability": 0.6337 + }, + { + "start": 14563.86, + "end": 14566.66, + "probability": 0.9854 + }, + { + "start": 14566.66, + "end": 14569.34, + "probability": 0.8533 + }, + { + "start": 14569.7, + "end": 14570.98, + "probability": 0.9438 + }, + { + "start": 14571.38, + "end": 14572.61, + "probability": 0.626 + }, + { + "start": 14574.16, + "end": 14575.48, + "probability": 0.6622 + }, + { + "start": 14575.72, + "end": 14577.48, + "probability": 0.9282 + }, + { + "start": 14577.52, + "end": 14577.8, + "probability": 0.802 + }, + { + "start": 14577.86, + "end": 14582.46, + "probability": 0.927 + }, + { + "start": 14582.56, + "end": 14586.48, + "probability": 0.9006 + }, + { + "start": 14586.9, + "end": 14589.52, + "probability": 0.9731 + }, + { + "start": 14589.6, + "end": 14590.6, + "probability": 0.6649 + }, + { + "start": 14591.12, + "end": 14592.4, + "probability": 0.8804 + }, + { + "start": 14593.12, + "end": 14594.58, + "probability": 0.8872 + }, + { + "start": 14595.3, + "end": 14597.8, + "probability": 0.5439 + }, + { + "start": 14598.4, + "end": 14602.1, + "probability": 0.824 + }, + { + "start": 14602.86, + "end": 14607.92, + "probability": 0.8948 + }, + { + "start": 14608.7, + "end": 14615.18, + "probability": 0.9954 + }, + { + "start": 14616.4, + "end": 14619.48, + "probability": 0.9751 + }, + { + "start": 14620.92, + "end": 14623.36, + "probability": 0.9733 + }, + { + "start": 14625.34, + "end": 14629.18, + "probability": 0.8941 + }, + { + "start": 14630.0, + "end": 14631.82, + "probability": 0.9377 + }, + { + "start": 14631.98, + "end": 14636.42, + "probability": 0.9915 + }, + { + "start": 14636.42, + "end": 14641.44, + "probability": 0.9949 + }, + { + "start": 14642.86, + "end": 14644.48, + "probability": 0.9548 + }, + { + "start": 14644.8, + "end": 14645.29, + "probability": 0.9019 + }, + { + "start": 14645.52, + "end": 14648.0, + "probability": 0.9956 + }, + { + "start": 14648.12, + "end": 14648.68, + "probability": 0.1769 + }, + { + "start": 14649.4, + "end": 14652.14, + "probability": 0.9661 + }, + { + "start": 14652.22, + "end": 14653.36, + "probability": 0.9237 + }, + { + "start": 14654.88, + "end": 14659.6, + "probability": 0.9277 + }, + { + "start": 14660.14, + "end": 14661.78, + "probability": 0.9976 + }, + { + "start": 14662.24, + "end": 14663.52, + "probability": 0.7243 + }, + { + "start": 14663.58, + "end": 14666.84, + "probability": 0.9128 + }, + { + "start": 14667.2, + "end": 14668.7, + "probability": 0.9351 + }, + { + "start": 14669.68, + "end": 14670.37, + "probability": 0.8633 + }, + { + "start": 14670.54, + "end": 14670.88, + "probability": 0.5182 + }, + { + "start": 14671.02, + "end": 14672.33, + "probability": 0.9956 + }, + { + "start": 14672.74, + "end": 14673.68, + "probability": 0.8704 + }, + { + "start": 14675.32, + "end": 14676.32, + "probability": 0.9919 + }, + { + "start": 14676.86, + "end": 14678.51, + "probability": 0.9988 + }, + { + "start": 14679.92, + "end": 14682.59, + "probability": 0.8401 + }, + { + "start": 14684.74, + "end": 14686.38, + "probability": 0.7565 + }, + { + "start": 14686.6, + "end": 14688.18, + "probability": 0.798 + }, + { + "start": 14688.48, + "end": 14690.68, + "probability": 0.7459 + }, + { + "start": 14692.82, + "end": 14696.38, + "probability": 0.9928 + }, + { + "start": 14697.4, + "end": 14701.74, + "probability": 0.7678 + }, + { + "start": 14701.74, + "end": 14705.32, + "probability": 0.9978 + }, + { + "start": 14707.14, + "end": 14708.46, + "probability": 0.9878 + }, + { + "start": 14709.9, + "end": 14711.14, + "probability": 0.9983 + }, + { + "start": 14711.2, + "end": 14712.58, + "probability": 0.6547 + }, + { + "start": 14712.66, + "end": 14713.2, + "probability": 0.6858 + }, + { + "start": 14713.96, + "end": 14714.4, + "probability": 0.6778 + }, + { + "start": 14715.7, + "end": 14720.14, + "probability": 0.9561 + }, + { + "start": 14721.22, + "end": 14721.5, + "probability": 0.2734 + }, + { + "start": 14721.64, + "end": 14726.22, + "probability": 0.981 + }, + { + "start": 14726.88, + "end": 14727.72, + "probability": 0.9139 + }, + { + "start": 14727.78, + "end": 14728.37, + "probability": 0.998 + }, + { + "start": 14728.9, + "end": 14731.26, + "probability": 0.485 + }, + { + "start": 14732.1, + "end": 14734.36, + "probability": 0.7601 + }, + { + "start": 14735.02, + "end": 14739.18, + "probability": 0.9416 + }, + { + "start": 14739.6, + "end": 14741.4, + "probability": 0.6122 + }, + { + "start": 14741.54, + "end": 14744.66, + "probability": 0.988 + }, + { + "start": 14745.7, + "end": 14746.52, + "probability": 0.9298 + }, + { + "start": 14746.6, + "end": 14748.46, + "probability": 0.7441 + }, + { + "start": 14748.58, + "end": 14749.84, + "probability": 0.8738 + }, + { + "start": 14749.9, + "end": 14750.5, + "probability": 0.5936 + }, + { + "start": 14750.54, + "end": 14751.38, + "probability": 0.9988 + }, + { + "start": 14752.34, + "end": 14754.7, + "probability": 0.8579 + }, + { + "start": 14755.24, + "end": 14756.82, + "probability": 0.9323 + }, + { + "start": 14769.36, + "end": 14769.66, + "probability": 0.9619 + }, + { + "start": 14771.1, + "end": 14771.46, + "probability": 0.0115 + }, + { + "start": 14771.48, + "end": 14773.24, + "probability": 0.0147 + }, + { + "start": 14774.42, + "end": 14777.62, + "probability": 0.1478 + }, + { + "start": 14777.62, + "end": 14777.72, + "probability": 0.0838 + }, + { + "start": 14777.78, + "end": 14778.5, + "probability": 0.0233 + }, + { + "start": 14779.0, + "end": 14779.22, + "probability": 0.0705 + }, + { + "start": 14779.22, + "end": 14779.22, + "probability": 0.1558 + }, + { + "start": 14779.22, + "end": 14779.22, + "probability": 0.0824 + }, + { + "start": 14779.22, + "end": 14785.46, + "probability": 0.4259 + }, + { + "start": 14795.04, + "end": 14795.44, + "probability": 0.0653 + }, + { + "start": 14795.44, + "end": 14795.44, + "probability": 0.09 + }, + { + "start": 14795.44, + "end": 14796.96, + "probability": 0.3329 + }, + { + "start": 14798.28, + "end": 14800.32, + "probability": 0.722 + }, + { + "start": 14800.84, + "end": 14802.62, + "probability": 0.8675 + }, + { + "start": 14803.08, + "end": 14803.26, + "probability": 0.6526 + }, + { + "start": 14803.34, + "end": 14806.84, + "probability": 0.9531 + }, + { + "start": 14807.86, + "end": 14810.08, + "probability": 0.7865 + }, + { + "start": 14810.92, + "end": 14815.18, + "probability": 0.9801 + }, + { + "start": 14816.22, + "end": 14816.68, + "probability": 0.7954 + }, + { + "start": 14818.08, + "end": 14819.42, + "probability": 0.0286 + }, + { + "start": 14821.48, + "end": 14821.88, + "probability": 0.0232 + }, + { + "start": 14821.94, + "end": 14822.2, + "probability": 0.0875 + }, + { + "start": 14822.2, + "end": 14823.86, + "probability": 0.588 + }, + { + "start": 14823.92, + "end": 14826.53, + "probability": 0.5538 + }, + { + "start": 14828.04, + "end": 14830.8, + "probability": 0.6437 + }, + { + "start": 14830.88, + "end": 14832.96, + "probability": 0.9058 + }, + { + "start": 14834.46, + "end": 14838.06, + "probability": 0.4518 + }, + { + "start": 14838.94, + "end": 14840.14, + "probability": 0.021 + }, + { + "start": 14840.14, + "end": 14841.44, + "probability": 0.679 + }, + { + "start": 14845.02, + "end": 14849.18, + "probability": 0.9202 + }, + { + "start": 14849.66, + "end": 14850.6, + "probability": 0.8858 + }, + { + "start": 14850.78, + "end": 14854.52, + "probability": 0.8435 + }, + { + "start": 14854.74, + "end": 14855.82, + "probability": 0.731 + }, + { + "start": 14855.94, + "end": 14857.3, + "probability": 0.7203 + }, + { + "start": 14857.54, + "end": 14858.8, + "probability": 0.9006 + }, + { + "start": 14859.88, + "end": 14863.28, + "probability": 0.9611 + }, + { + "start": 14863.54, + "end": 14864.8, + "probability": 0.8114 + }, + { + "start": 14865.12, + "end": 14866.36, + "probability": 0.1502 + }, + { + "start": 14866.42, + "end": 14867.78, + "probability": 0.8853 + }, + { + "start": 14867.8, + "end": 14868.18, + "probability": 0.2302 + }, + { + "start": 14868.28, + "end": 14868.98, + "probability": 0.4689 + }, + { + "start": 14869.17, + "end": 14872.32, + "probability": 0.6354 + }, + { + "start": 14872.58, + "end": 14872.7, + "probability": 0.1751 + }, + { + "start": 14872.7, + "end": 14872.76, + "probability": 0.0012 + }, + { + "start": 14872.76, + "end": 14874.18, + "probability": 0.875 + }, + { + "start": 14874.32, + "end": 14875.96, + "probability": 0.9227 + }, + { + "start": 14876.24, + "end": 14878.36, + "probability": 0.3433 + }, + { + "start": 14878.4, + "end": 14878.7, + "probability": 0.7769 + }, + { + "start": 14879.14, + "end": 14881.3, + "probability": 0.6168 + }, + { + "start": 14881.4, + "end": 14882.26, + "probability": 0.6344 + }, + { + "start": 14882.32, + "end": 14885.78, + "probability": 0.9854 + }, + { + "start": 14886.32, + "end": 14889.98, + "probability": 0.98 + }, + { + "start": 14891.44, + "end": 14893.94, + "probability": 0.8453 + }, + { + "start": 14894.9, + "end": 14895.58, + "probability": 0.742 + }, + { + "start": 14896.46, + "end": 14898.36, + "probability": 0.7177 + }, + { + "start": 14899.1, + "end": 14902.38, + "probability": 0.9753 + }, + { + "start": 14903.98, + "end": 14908.52, + "probability": 0.996 + }, + { + "start": 14909.46, + "end": 14911.36, + "probability": 0.8515 + }, + { + "start": 14912.02, + "end": 14913.4, + "probability": 0.7926 + }, + { + "start": 14913.92, + "end": 14915.42, + "probability": 0.9911 + }, + { + "start": 14916.34, + "end": 14919.1, + "probability": 0.9833 + }, + { + "start": 14919.1, + "end": 14923.78, + "probability": 0.9951 + }, + { + "start": 14923.92, + "end": 14924.98, + "probability": 0.9762 + }, + { + "start": 14925.82, + "end": 14926.32, + "probability": 0.7787 + }, + { + "start": 14927.22, + "end": 14929.32, + "probability": 0.9437 + }, + { + "start": 14929.32, + "end": 14931.42, + "probability": 0.9667 + }, + { + "start": 14932.28, + "end": 14936.58, + "probability": 0.9734 + }, + { + "start": 14937.84, + "end": 14939.44, + "probability": 0.9014 + }, + { + "start": 14940.16, + "end": 14941.22, + "probability": 0.7935 + }, + { + "start": 14942.6, + "end": 14946.84, + "probability": 0.9938 + }, + { + "start": 14947.66, + "end": 14951.28, + "probability": 0.9458 + }, + { + "start": 14952.32, + "end": 14952.98, + "probability": 0.8564 + }, + { + "start": 14953.6, + "end": 14956.98, + "probability": 0.9525 + }, + { + "start": 14957.72, + "end": 14959.16, + "probability": 0.2339 + }, + { + "start": 14960.32, + "end": 14961.86, + "probability": 0.8943 + }, + { + "start": 14963.0, + "end": 14963.2, + "probability": 0.7292 + }, + { + "start": 14963.54, + "end": 14965.02, + "probability": 0.9785 + }, + { + "start": 14965.08, + "end": 14966.04, + "probability": 0.8221 + }, + { + "start": 14966.52, + "end": 14969.22, + "probability": 0.9087 + }, + { + "start": 14969.24, + "end": 14973.68, + "probability": 0.98 + }, + { + "start": 14975.02, + "end": 14978.12, + "probability": 0.9982 + }, + { + "start": 14978.94, + "end": 14985.1, + "probability": 0.9331 + }, + { + "start": 14986.08, + "end": 14986.72, + "probability": 0.6945 + }, + { + "start": 14986.86, + "end": 14987.94, + "probability": 0.3671 + }, + { + "start": 14988.02, + "end": 14988.32, + "probability": 0.5286 + }, + { + "start": 14988.8, + "end": 14992.44, + "probability": 0.9785 + }, + { + "start": 14992.44, + "end": 14996.7, + "probability": 0.9981 + }, + { + "start": 14996.7, + "end": 15001.4, + "probability": 0.9938 + }, + { + "start": 15001.62, + "end": 15003.06, + "probability": 0.5083 + }, + { + "start": 15003.78, + "end": 15003.86, + "probability": 0.5626 + }, + { + "start": 15003.92, + "end": 15004.8, + "probability": 0.9332 + }, + { + "start": 15004.94, + "end": 15005.56, + "probability": 0.7623 + }, + { + "start": 15005.6, + "end": 15006.06, + "probability": 0.5762 + }, + { + "start": 15006.34, + "end": 15007.38, + "probability": 0.7141 + }, + { + "start": 15008.62, + "end": 15010.24, + "probability": 0.873 + }, + { + "start": 15011.48, + "end": 15012.44, + "probability": 0.9434 + }, + { + "start": 15013.28, + "end": 15014.32, + "probability": 0.7941 + }, + { + "start": 15015.5, + "end": 15016.08, + "probability": 0.7403 + }, + { + "start": 15017.04, + "end": 15018.14, + "probability": 0.5897 + }, + { + "start": 15018.22, + "end": 15020.28, + "probability": 0.9742 + }, + { + "start": 15020.9, + "end": 15024.94, + "probability": 0.9935 + }, + { + "start": 15025.48, + "end": 15027.71, + "probability": 0.9617 + }, + { + "start": 15028.54, + "end": 15029.64, + "probability": 0.9343 + }, + { + "start": 15030.74, + "end": 15031.34, + "probability": 0.6213 + }, + { + "start": 15031.62, + "end": 15032.84, + "probability": 0.799 + }, + { + "start": 15032.96, + "end": 15035.3, + "probability": 0.9893 + }, + { + "start": 15035.52, + "end": 15036.22, + "probability": 0.6028 + }, + { + "start": 15037.18, + "end": 15040.04, + "probability": 0.9956 + }, + { + "start": 15041.06, + "end": 15041.76, + "probability": 0.8636 + }, + { + "start": 15042.44, + "end": 15044.12, + "probability": 0.9881 + }, + { + "start": 15044.5, + "end": 15046.84, + "probability": 0.9722 + }, + { + "start": 15048.02, + "end": 15048.9, + "probability": 0.8116 + }, + { + "start": 15050.14, + "end": 15052.38, + "probability": 0.9966 + }, + { + "start": 15052.38, + "end": 15055.36, + "probability": 0.9565 + }, + { + "start": 15055.6, + "end": 15056.58, + "probability": 0.6462 + }, + { + "start": 15057.36, + "end": 15058.62, + "probability": 0.9752 + }, + { + "start": 15059.88, + "end": 15060.0, + "probability": 0.1179 + }, + { + "start": 15060.0, + "end": 15062.52, + "probability": 0.9371 + }, + { + "start": 15062.58, + "end": 15065.04, + "probability": 0.9969 + }, + { + "start": 15065.86, + "end": 15066.7, + "probability": 0.5207 + }, + { + "start": 15068.49, + "end": 15069.36, + "probability": 0.5672 + }, + { + "start": 15069.88, + "end": 15070.28, + "probability": 0.7002 + }, + { + "start": 15071.54, + "end": 15073.26, + "probability": 0.9935 + }, + { + "start": 15073.7, + "end": 15075.04, + "probability": 0.8802 + }, + { + "start": 15075.34, + "end": 15075.62, + "probability": 0.1408 + }, + { + "start": 15075.9, + "end": 15076.44, + "probability": 0.1529 + }, + { + "start": 15076.44, + "end": 15077.76, + "probability": 0.8181 + }, + { + "start": 15078.48, + "end": 15079.75, + "probability": 0.7959 + }, + { + "start": 15080.86, + "end": 15081.58, + "probability": 0.8837 + }, + { + "start": 15083.1, + "end": 15084.8, + "probability": 0.9094 + }, + { + "start": 15085.78, + "end": 15087.9, + "probability": 0.9495 + }, + { + "start": 15089.3, + "end": 15090.68, + "probability": 0.7642 + }, + { + "start": 15092.18, + "end": 15094.12, + "probability": 0.8131 + }, + { + "start": 15096.82, + "end": 15099.58, + "probability": 0.886 + }, + { + "start": 15099.58, + "end": 15100.7, + "probability": 0.8078 + }, + { + "start": 15102.22, + "end": 15103.32, + "probability": 0.696 + }, + { + "start": 15104.22, + "end": 15106.78, + "probability": 0.9542 + }, + { + "start": 15107.2, + "end": 15107.9, + "probability": 0.9438 + }, + { + "start": 15107.96, + "end": 15108.8, + "probability": 0.8524 + }, + { + "start": 15109.18, + "end": 15110.72, + "probability": 0.7819 + }, + { + "start": 15111.54, + "end": 15113.42, + "probability": 0.9929 + }, + { + "start": 15114.38, + "end": 15118.32, + "probability": 0.9904 + }, + { + "start": 15118.32, + "end": 15120.92, + "probability": 0.9793 + }, + { + "start": 15120.98, + "end": 15122.14, + "probability": 0.8975 + }, + { + "start": 15122.46, + "end": 15122.74, + "probability": 0.8101 + }, + { + "start": 15124.2, + "end": 15124.96, + "probability": 0.8784 + }, + { + "start": 15125.36, + "end": 15127.44, + "probability": 0.8546 + }, + { + "start": 15128.56, + "end": 15131.28, + "probability": 0.7753 + }, + { + "start": 15131.8, + "end": 15132.82, + "probability": 0.7533 + }, + { + "start": 15135.46, + "end": 15137.46, + "probability": 0.9233 + }, + { + "start": 15137.98, + "end": 15140.08, + "probability": 0.9876 + }, + { + "start": 15141.18, + "end": 15143.12, + "probability": 0.9463 + }, + { + "start": 15148.5, + "end": 15149.36, + "probability": 0.6675 + }, + { + "start": 15149.44, + "end": 15150.5, + "probability": 0.8664 + }, + { + "start": 15151.17, + "end": 15153.22, + "probability": 0.9988 + }, + { + "start": 15153.88, + "end": 15155.04, + "probability": 0.9316 + }, + { + "start": 15156.14, + "end": 15159.98, + "probability": 0.989 + }, + { + "start": 15159.98, + "end": 15163.48, + "probability": 0.9891 + }, + { + "start": 15164.42, + "end": 15166.48, + "probability": 0.9827 + }, + { + "start": 15167.38, + "end": 15171.72, + "probability": 0.9941 + }, + { + "start": 15171.8, + "end": 15176.86, + "probability": 0.9717 + }, + { + "start": 15177.86, + "end": 15179.7, + "probability": 0.9873 + }, + { + "start": 15180.56, + "end": 15181.14, + "probability": 0.6232 + }, + { + "start": 15181.34, + "end": 15185.02, + "probability": 0.9926 + }, + { + "start": 15185.56, + "end": 15186.98, + "probability": 0.9915 + }, + { + "start": 15187.98, + "end": 15190.28, + "probability": 0.9791 + }, + { + "start": 15190.84, + "end": 15193.6, + "probability": 0.9987 + }, + { + "start": 15194.48, + "end": 15195.46, + "probability": 0.8215 + }, + { + "start": 15195.78, + "end": 15200.1, + "probability": 0.9784 + }, + { + "start": 15200.84, + "end": 15204.34, + "probability": 0.8214 + }, + { + "start": 15205.32, + "end": 15208.94, + "probability": 0.9652 + }, + { + "start": 15209.7, + "end": 15212.32, + "probability": 0.995 + }, + { + "start": 15212.32, + "end": 15215.26, + "probability": 0.9728 + }, + { + "start": 15216.0, + "end": 15219.58, + "probability": 0.9885 + }, + { + "start": 15220.22, + "end": 15221.6, + "probability": 0.9943 + }, + { + "start": 15222.96, + "end": 15225.08, + "probability": 0.6749 + }, + { + "start": 15225.86, + "end": 15230.64, + "probability": 0.9801 + }, + { + "start": 15231.42, + "end": 15235.06, + "probability": 0.918 + }, + { + "start": 15235.84, + "end": 15236.76, + "probability": 0.88 + }, + { + "start": 15238.04, + "end": 15242.38, + "probability": 0.9906 + }, + { + "start": 15243.22, + "end": 15245.2, + "probability": 0.9187 + }, + { + "start": 15245.52, + "end": 15248.38, + "probability": 0.9628 + }, + { + "start": 15249.28, + "end": 15253.2, + "probability": 0.9927 + }, + { + "start": 15253.72, + "end": 15258.76, + "probability": 0.9967 + }, + { + "start": 15261.56, + "end": 15261.56, + "probability": 0.0579 + }, + { + "start": 15261.56, + "end": 15265.36, + "probability": 0.9024 + }, + { + "start": 15266.08, + "end": 15267.02, + "probability": 0.8279 + }, + { + "start": 15267.16, + "end": 15269.34, + "probability": 0.9971 + }, + { + "start": 15269.34, + "end": 15271.84, + "probability": 0.8117 + }, + { + "start": 15272.02, + "end": 15273.52, + "probability": 0.9273 + }, + { + "start": 15274.48, + "end": 15275.7, + "probability": 0.3371 + }, + { + "start": 15275.72, + "end": 15276.07, + "probability": 0.6474 + }, + { + "start": 15276.54, + "end": 15276.78, + "probability": 0.8752 + }, + { + "start": 15276.78, + "end": 15277.84, + "probability": 0.3281 + }, + { + "start": 15278.02, + "end": 15278.14, + "probability": 0.267 + }, + { + "start": 15278.22, + "end": 15284.42, + "probability": 0.9917 + }, + { + "start": 15284.74, + "end": 15286.16, + "probability": 0.8225 + }, + { + "start": 15286.68, + "end": 15286.78, + "probability": 0.0184 + }, + { + "start": 15286.78, + "end": 15287.66, + "probability": 0.845 + }, + { + "start": 15287.8, + "end": 15289.2, + "probability": 0.9824 + }, + { + "start": 15289.34, + "end": 15290.78, + "probability": 0.8265 + }, + { + "start": 15290.78, + "end": 15291.7, + "probability": 0.3214 + }, + { + "start": 15292.02, + "end": 15295.54, + "probability": 0.9575 + }, + { + "start": 15296.18, + "end": 15296.42, + "probability": 0.212 + }, + { + "start": 15298.0, + "end": 15299.23, + "probability": 0.7672 + }, + { + "start": 15299.68, + "end": 15300.86, + "probability": 0.5132 + }, + { + "start": 15300.86, + "end": 15303.2, + "probability": 0.6161 + }, + { + "start": 15303.92, + "end": 15305.32, + "probability": 0.3637 + }, + { + "start": 15305.56, + "end": 15307.7, + "probability": 0.679 + }, + { + "start": 15307.86, + "end": 15308.84, + "probability": 0.8157 + }, + { + "start": 15309.2, + "end": 15312.9, + "probability": 0.7951 + }, + { + "start": 15313.18, + "end": 15314.02, + "probability": 0.3098 + }, + { + "start": 15314.3, + "end": 15314.4, + "probability": 0.3329 + }, + { + "start": 15314.4, + "end": 15318.97, + "probability": 0.9114 + }, + { + "start": 15320.6, + "end": 15320.98, + "probability": 0.2298 + }, + { + "start": 15320.98, + "end": 15321.3, + "probability": 0.6835 + }, + { + "start": 15322.02, + "end": 15322.84, + "probability": 0.3581 + }, + { + "start": 15323.72, + "end": 15325.72, + "probability": 0.8272 + }, + { + "start": 15326.38, + "end": 15328.64, + "probability": 0.1781 + }, + { + "start": 15329.04, + "end": 15331.2, + "probability": 0.8343 + }, + { + "start": 15331.58, + "end": 15332.68, + "probability": 0.5127 + }, + { + "start": 15332.68, + "end": 15333.06, + "probability": 0.4335 + }, + { + "start": 15333.16, + "end": 15335.64, + "probability": 0.7856 + }, + { + "start": 15335.68, + "end": 15336.02, + "probability": 0.5664 + }, + { + "start": 15336.24, + "end": 15340.38, + "probability": 0.9495 + }, + { + "start": 15340.38, + "end": 15345.52, + "probability": 0.9244 + }, + { + "start": 15345.56, + "end": 15346.26, + "probability": 0.0791 + }, + { + "start": 15346.98, + "end": 15347.4, + "probability": 0.2536 + }, + { + "start": 15347.42, + "end": 15348.0, + "probability": 0.0771 + }, + { + "start": 15348.54, + "end": 15349.52, + "probability": 0.2262 + }, + { + "start": 15349.98, + "end": 15350.38, + "probability": 0.4852 + }, + { + "start": 15350.38, + "end": 15350.66, + "probability": 0.595 + }, + { + "start": 15352.22, + "end": 15354.28, + "probability": 0.8879 + }, + { + "start": 15354.36, + "end": 15355.52, + "probability": 0.795 + }, + { + "start": 15357.26, + "end": 15359.2, + "probability": 0.7483 + }, + { + "start": 15359.92, + "end": 15360.32, + "probability": 0.5974 + }, + { + "start": 15360.32, + "end": 15361.64, + "probability": 0.3831 + }, + { + "start": 15361.72, + "end": 15362.16, + "probability": 0.5632 + }, + { + "start": 15362.22, + "end": 15364.1, + "probability": 0.8794 + }, + { + "start": 15364.9, + "end": 15365.1, + "probability": 0.4032 + }, + { + "start": 15365.48, + "end": 15366.04, + "probability": 0.5051 + }, + { + "start": 15366.62, + "end": 15367.56, + "probability": 0.2615 + }, + { + "start": 15367.7, + "end": 15367.88, + "probability": 0.1549 + }, + { + "start": 15368.26, + "end": 15368.34, + "probability": 0.1667 + }, + { + "start": 15368.34, + "end": 15369.26, + "probability": 0.7896 + }, + { + "start": 15369.9, + "end": 15373.78, + "probability": 0.7793 + }, + { + "start": 15374.62, + "end": 15375.52, + "probability": 0.8687 + }, + { + "start": 15376.06, + "end": 15378.26, + "probability": 0.963 + }, + { + "start": 15378.32, + "end": 15379.54, + "probability": 0.8994 + }, + { + "start": 15380.18, + "end": 15380.98, + "probability": 0.4722 + }, + { + "start": 15381.06, + "end": 15383.24, + "probability": 0.9839 + }, + { + "start": 15383.68, + "end": 15383.68, + "probability": 0.1943 + }, + { + "start": 15383.68, + "end": 15385.6, + "probability": 0.6945 + }, + { + "start": 15386.64, + "end": 15387.02, + "probability": 0.884 + }, + { + "start": 15387.64, + "end": 15387.92, + "probability": 0.7325 + }, + { + "start": 15389.26, + "end": 15391.08, + "probability": 0.5329 + }, + { + "start": 15391.08, + "end": 15391.9, + "probability": 0.9366 + }, + { + "start": 15392.68, + "end": 15393.22, + "probability": 0.064 + }, + { + "start": 15393.22, + "end": 15395.12, + "probability": 0.6781 + }, + { + "start": 15395.22, + "end": 15396.06, + "probability": 0.658 + }, + { + "start": 15396.44, + "end": 15397.08, + "probability": 0.0904 + }, + { + "start": 15397.24, + "end": 15397.86, + "probability": 0.2076 + }, + { + "start": 15398.0, + "end": 15398.22, + "probability": 0.6547 + }, + { + "start": 15398.26, + "end": 15399.34, + "probability": 0.8445 + }, + { + "start": 15399.64, + "end": 15399.88, + "probability": 0.1844 + }, + { + "start": 15400.18, + "end": 15400.66, + "probability": 0.7036 + }, + { + "start": 15400.82, + "end": 15402.82, + "probability": 0.4474 + }, + { + "start": 15402.84, + "end": 15402.92, + "probability": 0.0969 + }, + { + "start": 15403.04, + "end": 15403.64, + "probability": 0.71 + }, + { + "start": 15403.64, + "end": 15403.8, + "probability": 0.8037 + }, + { + "start": 15403.96, + "end": 15404.38, + "probability": 0.3855 + }, + { + "start": 15410.32, + "end": 15412.42, + "probability": 0.1733 + }, + { + "start": 15412.42, + "end": 15418.42, + "probability": 0.993 + }, + { + "start": 15419.08, + "end": 15419.1, + "probability": 0.0241 + }, + { + "start": 15419.16, + "end": 15420.42, + "probability": 0.7889 + }, + { + "start": 15420.5, + "end": 15422.02, + "probability": 0.9033 + }, + { + "start": 15423.28, + "end": 15424.6, + "probability": 0.7152 + }, + { + "start": 15424.74, + "end": 15425.34, + "probability": 0.772 + }, + { + "start": 15425.48, + "end": 15425.58, + "probability": 0.3012 + }, + { + "start": 15425.72, + "end": 15425.72, + "probability": 0.0096 + }, + { + "start": 15425.72, + "end": 15427.42, + "probability": 0.6421 + }, + { + "start": 15427.76, + "end": 15432.41, + "probability": 0.964 + }, + { + "start": 15432.9, + "end": 15433.64, + "probability": 0.9067 + }, + { + "start": 15433.88, + "end": 15436.48, + "probability": 0.9707 + }, + { + "start": 15436.98, + "end": 15442.52, + "probability": 0.9535 + }, + { + "start": 15442.72, + "end": 15445.46, + "probability": 0.7327 + }, + { + "start": 15446.1, + "end": 15446.36, + "probability": 0.4002 + }, + { + "start": 15446.62, + "end": 15450.93, + "probability": 0.984 + }, + { + "start": 15451.74, + "end": 15453.0, + "probability": 0.1247 + }, + { + "start": 15453.0, + "end": 15453.0, + "probability": 0.1823 + }, + { + "start": 15453.0, + "end": 15453.98, + "probability": 0.8199 + }, + { + "start": 15453.98, + "end": 15453.98, + "probability": 0.1325 + }, + { + "start": 15453.98, + "end": 15456.65, + "probability": 0.9866 + }, + { + "start": 15457.1, + "end": 15460.0, + "probability": 0.9993 + }, + { + "start": 15460.0, + "end": 15460.28, + "probability": 0.7239 + }, + { + "start": 15460.5, + "end": 15460.76, + "probability": 0.2498 + }, + { + "start": 15460.86, + "end": 15462.44, + "probability": 0.427 + }, + { + "start": 15464.02, + "end": 15464.28, + "probability": 0.2103 + }, + { + "start": 15464.28, + "end": 15464.5, + "probability": 0.227 + }, + { + "start": 15464.5, + "end": 15465.72, + "probability": 0.3337 + }, + { + "start": 15465.88, + "end": 15466.38, + "probability": 0.4049 + }, + { + "start": 15466.6, + "end": 15469.64, + "probability": 0.9818 + }, + { + "start": 15469.76, + "end": 15470.34, + "probability": 0.8159 + }, + { + "start": 15470.56, + "end": 15472.36, + "probability": 0.9644 + }, + { + "start": 15472.5, + "end": 15477.14, + "probability": 0.9864 + }, + { + "start": 15477.64, + "end": 15480.98, + "probability": 0.9772 + }, + { + "start": 15481.26, + "end": 15483.88, + "probability": 0.6688 + }, + { + "start": 15494.64, + "end": 15495.62, + "probability": 0.3079 + }, + { + "start": 15500.78, + "end": 15501.46, + "probability": 0.2367 + }, + { + "start": 15502.2, + "end": 15505.82, + "probability": 0.6341 + }, + { + "start": 15506.02, + "end": 15508.42, + "probability": 0.9938 + }, + { + "start": 15508.84, + "end": 15512.12, + "probability": 0.995 + }, + { + "start": 15512.24, + "end": 15514.82, + "probability": 0.6368 + }, + { + "start": 15515.04, + "end": 15515.28, + "probability": 0.2704 + }, + { + "start": 15515.36, + "end": 15516.12, + "probability": 0.8462 + }, + { + "start": 15516.4, + "end": 15518.32, + "probability": 0.9888 + }, + { + "start": 15518.76, + "end": 15519.66, + "probability": 0.7695 + }, + { + "start": 15519.66, + "end": 15520.54, + "probability": 0.2784 + }, + { + "start": 15521.06, + "end": 15521.3, + "probability": 0.0881 + }, + { + "start": 15522.04, + "end": 15525.68, + "probability": 0.9927 + }, + { + "start": 15526.46, + "end": 15526.62, + "probability": 0.0718 + }, + { + "start": 15526.62, + "end": 15528.06, + "probability": 0.3306 + }, + { + "start": 15529.86, + "end": 15538.12, + "probability": 0.7935 + }, + { + "start": 15539.3, + "end": 15541.84, + "probability": 0.0615 + }, + { + "start": 15543.28, + "end": 15544.9, + "probability": 0.1019 + }, + { + "start": 15545.14, + "end": 15545.26, + "probability": 0.0147 + }, + { + "start": 15545.26, + "end": 15545.26, + "probability": 0.1888 + }, + { + "start": 15545.26, + "end": 15546.28, + "probability": 0.6303 + }, + { + "start": 15546.32, + "end": 15547.34, + "probability": 0.6274 + }, + { + "start": 15548.12, + "end": 15549.16, + "probability": 0.5145 + }, + { + "start": 15550.76, + "end": 15552.04, + "probability": 0.583 + }, + { + "start": 15553.04, + "end": 15556.82, + "probability": 0.8368 + }, + { + "start": 15558.06, + "end": 15559.6, + "probability": 0.9902 + }, + { + "start": 15560.7, + "end": 15562.16, + "probability": 0.877 + }, + { + "start": 15562.34, + "end": 15565.76, + "probability": 0.765 + }, + { + "start": 15568.62, + "end": 15571.02, + "probability": 0.9774 + }, + { + "start": 15572.1, + "end": 15576.46, + "probability": 0.9615 + }, + { + "start": 15578.16, + "end": 15581.58, + "probability": 0.8484 + }, + { + "start": 15583.0, + "end": 15583.68, + "probability": 0.7096 + }, + { + "start": 15583.78, + "end": 15587.2, + "probability": 0.9863 + }, + { + "start": 15588.54, + "end": 15591.8, + "probability": 0.9721 + }, + { + "start": 15593.48, + "end": 15596.68, + "probability": 0.7601 + }, + { + "start": 15598.66, + "end": 15601.5, + "probability": 0.7423 + }, + { + "start": 15602.9, + "end": 15606.4, + "probability": 0.9897 + }, + { + "start": 15607.22, + "end": 15611.16, + "probability": 0.8195 + }, + { + "start": 15612.86, + "end": 15615.72, + "probability": 0.7677 + }, + { + "start": 15617.02, + "end": 15620.2, + "probability": 0.9395 + }, + { + "start": 15621.92, + "end": 15624.42, + "probability": 0.9697 + }, + { + "start": 15625.92, + "end": 15628.66, + "probability": 0.9711 + }, + { + "start": 15630.42, + "end": 15634.96, + "probability": 0.9789 + }, + { + "start": 15635.7, + "end": 15642.46, + "probability": 0.9966 + }, + { + "start": 15643.26, + "end": 15648.0, + "probability": 0.9824 + }, + { + "start": 15648.22, + "end": 15648.78, + "probability": 0.4193 + }, + { + "start": 15651.56, + "end": 15655.64, + "probability": 0.8344 + }, + { + "start": 15656.62, + "end": 15659.18, + "probability": 0.9978 + }, + { + "start": 15659.32, + "end": 15664.96, + "probability": 0.9889 + }, + { + "start": 15665.8, + "end": 15668.98, + "probability": 0.9194 + }, + { + "start": 15669.0, + "end": 15669.0, + "probability": 0.0 + }, + { + "start": 15669.0, + "end": 15669.0, + "probability": 0.0 + }, + { + "start": 15673.08, + "end": 15675.9, + "probability": 0.9728 + }, + { + "start": 15676.98, + "end": 15680.46, + "probability": 0.999 + }, + { + "start": 15681.86, + "end": 15682.2, + "probability": 0.7909 + }, + { + "start": 15682.36, + "end": 15686.5, + "probability": 0.9102 + }, + { + "start": 15686.5, + "end": 15690.46, + "probability": 0.9701 + }, + { + "start": 15691.26, + "end": 15696.5, + "probability": 0.9515 + }, + { + "start": 15697.86, + "end": 15698.46, + "probability": 0.6037 + }, + { + "start": 15699.24, + "end": 15704.74, + "probability": 0.9919 + }, + { + "start": 15706.26, + "end": 15708.26, + "probability": 0.7818 + }, + { + "start": 15709.16, + "end": 15711.36, + "probability": 0.9371 + }, + { + "start": 15712.64, + "end": 15714.98, + "probability": 0.9724 + }, + { + "start": 15716.0, + "end": 15718.18, + "probability": 0.9985 + }, + { + "start": 15718.96, + "end": 15722.3, + "probability": 0.9995 + }, + { + "start": 15723.28, + "end": 15727.96, + "probability": 0.9922 + }, + { + "start": 15728.48, + "end": 15730.58, + "probability": 0.9961 + }, + { + "start": 15731.58, + "end": 15733.21, + "probability": 0.8039 + }, + { + "start": 15734.46, + "end": 15736.46, + "probability": 0.7078 + }, + { + "start": 15737.6, + "end": 15746.04, + "probability": 0.9792 + }, + { + "start": 15746.72, + "end": 15747.38, + "probability": 0.6972 + }, + { + "start": 15747.98, + "end": 15754.36, + "probability": 0.9546 + }, + { + "start": 15755.02, + "end": 15755.74, + "probability": 0.9641 + }, + { + "start": 15757.52, + "end": 15759.6, + "probability": 0.5476 + }, + { + "start": 15760.24, + "end": 15763.16, + "probability": 0.9849 + }, + { + "start": 15763.16, + "end": 15768.0, + "probability": 0.9905 + }, + { + "start": 15768.2, + "end": 15768.44, + "probability": 0.6832 + }, + { + "start": 15769.32, + "end": 15771.07, + "probability": 0.6457 + }, + { + "start": 15772.06, + "end": 15774.02, + "probability": 0.8118 + }, + { + "start": 15775.42, + "end": 15777.84, + "probability": 0.8678 + }, + { + "start": 15778.56, + "end": 15780.36, + "probability": 0.9845 + }, + { + "start": 15780.94, + "end": 15783.22, + "probability": 0.3014 + }, + { + "start": 15783.38, + "end": 15783.52, + "probability": 0.0232 + }, + { + "start": 15784.12, + "end": 15786.12, + "probability": 0.502 + }, + { + "start": 15786.22, + "end": 15786.94, + "probability": 0.6245 + }, + { + "start": 15787.16, + "end": 15787.16, + "probability": 0.321 + }, + { + "start": 15787.16, + "end": 15788.84, + "probability": 0.7017 + }, + { + "start": 15789.5, + "end": 15791.64, + "probability": 0.7428 + }, + { + "start": 15791.72, + "end": 15793.4, + "probability": 0.8013 + }, + { + "start": 15793.4, + "end": 15793.6, + "probability": 0.5308 + }, + { + "start": 15793.6, + "end": 15793.6, + "probability": 0.1778 + }, + { + "start": 15793.62, + "end": 15794.02, + "probability": 0.1664 + }, + { + "start": 15794.02, + "end": 15795.36, + "probability": 0.6207 + }, + { + "start": 15795.66, + "end": 15796.16, + "probability": 0.6542 + }, + { + "start": 15796.54, + "end": 15797.7, + "probability": 0.9238 + }, + { + "start": 15798.32, + "end": 15800.5, + "probability": 0.9658 + }, + { + "start": 15801.36, + "end": 15803.8, + "probability": 0.8841 + }, + { + "start": 15803.9, + "end": 15805.3, + "probability": 0.9885 + }, + { + "start": 15805.74, + "end": 15807.36, + "probability": 0.9834 + }, + { + "start": 15807.82, + "end": 15808.74, + "probability": 0.6128 + }, + { + "start": 15809.06, + "end": 15810.56, + "probability": 0.8862 + }, + { + "start": 15813.02, + "end": 15815.08, + "probability": 0.5454 + }, + { + "start": 15816.1, + "end": 15816.54, + "probability": 0.597 + }, + { + "start": 15817.36, + "end": 15818.6, + "probability": 0.518 + }, + { + "start": 15818.74, + "end": 15822.24, + "probability": 0.9152 + }, + { + "start": 15822.4, + "end": 15828.5, + "probability": 0.876 + }, + { + "start": 15829.04, + "end": 15830.3, + "probability": 0.9888 + }, + { + "start": 15830.6, + "end": 15831.2, + "probability": 0.6452 + }, + { + "start": 15831.26, + "end": 15832.22, + "probability": 0.7249 + }, + { + "start": 15832.26, + "end": 15833.68, + "probability": 0.7721 + }, + { + "start": 15833.8, + "end": 15835.34, + "probability": 0.986 + }, + { + "start": 15835.44, + "end": 15836.28, + "probability": 0.9277 + }, + { + "start": 15836.82, + "end": 15840.58, + "probability": 0.8727 + }, + { + "start": 15840.82, + "end": 15842.78, + "probability": 0.9961 + }, + { + "start": 15843.38, + "end": 15844.31, + "probability": 0.84 + }, + { + "start": 15844.46, + "end": 15845.58, + "probability": 0.5544 + }, + { + "start": 15845.8, + "end": 15847.38, + "probability": 0.8508 + }, + { + "start": 15848.0, + "end": 15848.82, + "probability": 0.8208 + }, + { + "start": 15848.86, + "end": 15849.44, + "probability": 0.7157 + }, + { + "start": 15849.52, + "end": 15850.02, + "probability": 0.8345 + }, + { + "start": 15850.06, + "end": 15851.34, + "probability": 0.4263 + }, + { + "start": 15851.6, + "end": 15853.3, + "probability": 0.3378 + }, + { + "start": 15854.14, + "end": 15858.4, + "probability": 0.7534 + }, + { + "start": 15858.4, + "end": 15860.82, + "probability": 0.9679 + }, + { + "start": 15861.62, + "end": 15862.38, + "probability": 0.52 + }, + { + "start": 15862.64, + "end": 15863.82, + "probability": 0.8832 + }, + { + "start": 15864.32, + "end": 15866.56, + "probability": 0.5173 + }, + { + "start": 15866.64, + "end": 15867.86, + "probability": 0.956 + }, + { + "start": 15868.24, + "end": 15868.92, + "probability": 0.9409 + }, + { + "start": 15869.08, + "end": 15870.2, + "probability": 0.5482 + }, + { + "start": 15870.7, + "end": 15871.5, + "probability": 0.8181 + }, + { + "start": 15871.62, + "end": 15874.26, + "probability": 0.5003 + }, + { + "start": 15874.32, + "end": 15876.5, + "probability": 0.8535 + }, + { + "start": 15876.84, + "end": 15877.92, + "probability": 0.7111 + }, + { + "start": 15878.54, + "end": 15880.88, + "probability": 0.9688 + }, + { + "start": 15881.0, + "end": 15884.16, + "probability": 0.9909 + }, + { + "start": 15884.44, + "end": 15887.1, + "probability": 0.7642 + }, + { + "start": 15887.16, + "end": 15890.58, + "probability": 0.757 + }, + { + "start": 15890.78, + "end": 15892.28, + "probability": 0.8431 + }, + { + "start": 15892.5, + "end": 15894.36, + "probability": 0.6878 + }, + { + "start": 15894.74, + "end": 15895.26, + "probability": 0.6837 + }, + { + "start": 15895.5, + "end": 15896.58, + "probability": 0.908 + }, + { + "start": 15896.86, + "end": 15900.26, + "probability": 0.9511 + }, + { + "start": 15900.74, + "end": 15903.88, + "probability": 0.9658 + }, + { + "start": 15904.06, + "end": 15904.66, + "probability": 0.6443 + }, + { + "start": 15905.34, + "end": 15908.84, + "probability": 0.7494 + }, + { + "start": 15909.26, + "end": 15909.9, + "probability": 0.663 + }, + { + "start": 15910.32, + "end": 15911.22, + "probability": 0.9082 + }, + { + "start": 15911.76, + "end": 15913.0, + "probability": 0.7588 + }, + { + "start": 15913.22, + "end": 15913.98, + "probability": 0.6404 + }, + { + "start": 15914.34, + "end": 15915.32, + "probability": 0.9421 + }, + { + "start": 15915.64, + "end": 15916.82, + "probability": 0.9297 + }, + { + "start": 15916.94, + "end": 15917.64, + "probability": 0.7821 + }, + { + "start": 15918.2, + "end": 15919.88, + "probability": 0.5833 + }, + { + "start": 15920.56, + "end": 15924.02, + "probability": 0.8998 + }, + { + "start": 15924.32, + "end": 15926.48, + "probability": 0.8199 + }, + { + "start": 15926.88, + "end": 15928.6, + "probability": 0.9976 + }, + { + "start": 15928.88, + "end": 15932.7, + "probability": 0.7619 + }, + { + "start": 15933.28, + "end": 15934.24, + "probability": 0.9431 + }, + { + "start": 15934.54, + "end": 15939.6, + "probability": 0.8019 + }, + { + "start": 15939.74, + "end": 15943.58, + "probability": 0.8363 + }, + { + "start": 15944.18, + "end": 15945.88, + "probability": 0.6799 + }, + { + "start": 15946.34, + "end": 15946.86, + "probability": 0.6996 + }, + { + "start": 15946.94, + "end": 15949.1, + "probability": 0.8384 + }, + { + "start": 15950.52, + "end": 15951.96, + "probability": 0.9709 + }, + { + "start": 15952.3, + "end": 15953.34, + "probability": 0.7087 + }, + { + "start": 15953.46, + "end": 15956.0, + "probability": 0.9639 + }, + { + "start": 15956.44, + "end": 15957.16, + "probability": 0.8643 + }, + { + "start": 15957.32, + "end": 15960.36, + "probability": 0.692 + }, + { + "start": 15960.48, + "end": 15961.76, + "probability": 0.9087 + }, + { + "start": 15962.16, + "end": 15965.42, + "probability": 0.9541 + }, + { + "start": 15965.54, + "end": 15967.12, + "probability": 0.6769 + }, + { + "start": 15968.2, + "end": 15968.76, + "probability": 0.5781 + }, + { + "start": 15969.08, + "end": 15971.36, + "probability": 0.8561 + }, + { + "start": 15972.66, + "end": 15975.72, + "probability": 0.7615 + }, + { + "start": 15976.08, + "end": 15979.26, + "probability": 0.894 + }, + { + "start": 15979.74, + "end": 15980.14, + "probability": 0.184 + }, + { + "start": 15980.3, + "end": 15982.2, + "probability": 0.4087 + }, + { + "start": 15982.52, + "end": 15983.81, + "probability": 0.9548 + }, + { + "start": 15984.18, + "end": 15986.9, + "probability": 0.871 + }, + { + "start": 15987.5, + "end": 15988.34, + "probability": 0.7886 + }, + { + "start": 15988.48, + "end": 15990.1, + "probability": 0.7887 + }, + { + "start": 15990.48, + "end": 15991.9, + "probability": 0.7546 + }, + { + "start": 15992.1, + "end": 15992.88, + "probability": 0.8522 + }, + { + "start": 15994.38, + "end": 15996.38, + "probability": 0.9273 + }, + { + "start": 15997.0, + "end": 15998.12, + "probability": 0.4638 + }, + { + "start": 15998.4, + "end": 15998.98, + "probability": 0.745 + }, + { + "start": 15999.12, + "end": 15999.58, + "probability": 0.4557 + }, + { + "start": 16000.64, + "end": 16001.86, + "probability": 0.9066 + }, + { + "start": 16002.18, + "end": 16003.48, + "probability": 0.9585 + }, + { + "start": 16003.58, + "end": 16004.36, + "probability": 0.941 + }, + { + "start": 16005.52, + "end": 16008.66, + "probability": 0.7026 + }, + { + "start": 16008.76, + "end": 16009.66, + "probability": 0.9799 + }, + { + "start": 16009.68, + "end": 16010.38, + "probability": 0.7721 + }, + { + "start": 16011.12, + "end": 16013.44, + "probability": 0.9927 + }, + { + "start": 16013.5, + "end": 16014.22, + "probability": 0.9124 + }, + { + "start": 16014.44, + "end": 16015.32, + "probability": 0.8979 + }, + { + "start": 16015.42, + "end": 16015.7, + "probability": 0.5803 + }, + { + "start": 16015.8, + "end": 16018.48, + "probability": 0.9432 + }, + { + "start": 16018.68, + "end": 16019.54, + "probability": 0.5289 + }, + { + "start": 16019.74, + "end": 16021.66, + "probability": 0.683 + }, + { + "start": 16021.72, + "end": 16022.23, + "probability": 0.9659 + }, + { + "start": 16022.54, + "end": 16023.33, + "probability": 0.9767 + }, + { + "start": 16023.92, + "end": 16024.45, + "probability": 0.9835 + }, + { + "start": 16024.72, + "end": 16025.38, + "probability": 0.9897 + }, + { + "start": 16026.08, + "end": 16027.4, + "probability": 0.9009 + }, + { + "start": 16028.02, + "end": 16029.44, + "probability": 0.6114 + }, + { + "start": 16029.58, + "end": 16030.12, + "probability": 0.7211 + }, + { + "start": 16030.32, + "end": 16030.6, + "probability": 0.2761 + }, + { + "start": 16030.92, + "end": 16033.76, + "probability": 0.9298 + }, + { + "start": 16034.06, + "end": 16034.64, + "probability": 0.5265 + }, + { + "start": 16034.72, + "end": 16035.68, + "probability": 0.7366 + }, + { + "start": 16035.78, + "end": 16036.53, + "probability": 0.7267 + }, + { + "start": 16036.98, + "end": 16038.92, + "probability": 0.9663 + }, + { + "start": 16039.38, + "end": 16041.47, + "probability": 0.8111 + }, + { + "start": 16041.88, + "end": 16042.94, + "probability": 0.639 + }, + { + "start": 16043.02, + "end": 16043.9, + "probability": 0.9556 + }, + { + "start": 16044.18, + "end": 16044.61, + "probability": 0.9089 + }, + { + "start": 16045.24, + "end": 16046.68, + "probability": 0.9917 + }, + { + "start": 16046.92, + "end": 16050.82, + "probability": 0.9175 + }, + { + "start": 16050.82, + "end": 16051.89, + "probability": 0.9461 + }, + { + "start": 16051.98, + "end": 16053.56, + "probability": 0.9174 + }, + { + "start": 16053.66, + "end": 16055.82, + "probability": 0.998 + }, + { + "start": 16055.9, + "end": 16058.0, + "probability": 0.8812 + }, + { + "start": 16058.04, + "end": 16058.46, + "probability": 0.7687 + }, + { + "start": 16059.44, + "end": 16061.08, + "probability": 0.7899 + }, + { + "start": 16061.38, + "end": 16063.24, + "probability": 0.7865 + }, + { + "start": 16065.1, + "end": 16066.46, + "probability": 0.2461 + }, + { + "start": 16067.18, + "end": 16067.62, + "probability": 0.1286 + }, + { + "start": 16067.62, + "end": 16068.68, + "probability": 0.1996 + }, + { + "start": 16069.2, + "end": 16070.88, + "probability": 0.6479 + }, + { + "start": 16070.98, + "end": 16073.83, + "probability": 0.2071 + }, + { + "start": 16075.76, + "end": 16075.76, + "probability": 0.0232 + }, + { + "start": 16075.76, + "end": 16077.02, + "probability": 0.5389 + }, + { + "start": 16077.02, + "end": 16077.88, + "probability": 0.9839 + }, + { + "start": 16078.6, + "end": 16079.6, + "probability": 0.7535 + }, + { + "start": 16079.66, + "end": 16082.96, + "probability": 0.6925 + }, + { + "start": 16083.38, + "end": 16084.26, + "probability": 0.2147 + }, + { + "start": 16084.26, + "end": 16084.26, + "probability": 0.2961 + }, + { + "start": 16084.26, + "end": 16084.26, + "probability": 0.1613 + }, + { + "start": 16084.26, + "end": 16087.47, + "probability": 0.9424 + }, + { + "start": 16087.7, + "end": 16088.92, + "probability": 0.8879 + }, + { + "start": 16089.82, + "end": 16089.94, + "probability": 0.3574 + }, + { + "start": 16090.08, + "end": 16091.48, + "probability": 0.8486 + }, + { + "start": 16091.58, + "end": 16092.95, + "probability": 0.8227 + }, + { + "start": 16093.66, + "end": 16097.0, + "probability": 0.0244 + }, + { + "start": 16097.62, + "end": 16098.74, + "probability": 0.0395 + }, + { + "start": 16099.32, + "end": 16099.32, + "probability": 0.1573 + }, + { + "start": 16099.32, + "end": 16100.0, + "probability": 0.4093 + }, + { + "start": 16100.28, + "end": 16100.56, + "probability": 0.5156 + }, + { + "start": 16100.7, + "end": 16103.36, + "probability": 0.733 + }, + { + "start": 16103.46, + "end": 16103.97, + "probability": 0.856 + }, + { + "start": 16104.4, + "end": 16105.44, + "probability": 0.8974 + }, + { + "start": 16105.54, + "end": 16105.96, + "probability": 0.8178 + }, + { + "start": 16106.12, + "end": 16106.95, + "probability": 0.9688 + }, + { + "start": 16107.42, + "end": 16109.24, + "probability": 0.5143 + }, + { + "start": 16109.64, + "end": 16111.1, + "probability": 0.4598 + }, + { + "start": 16111.32, + "end": 16112.76, + "probability": 0.9878 + }, + { + "start": 16112.94, + "end": 16114.58, + "probability": 0.8418 + }, + { + "start": 16114.58, + "end": 16115.06, + "probability": 0.1015 + }, + { + "start": 16115.08, + "end": 16116.06, + "probability": 0.1826 + }, + { + "start": 16116.06, + "end": 16117.0, + "probability": 0.3842 + }, + { + "start": 16117.64, + "end": 16118.96, + "probability": 0.0485 + }, + { + "start": 16119.96, + "end": 16119.96, + "probability": 0.0023 + }, + { + "start": 16121.2, + "end": 16122.82, + "probability": 0.1988 + }, + { + "start": 16123.76, + "end": 16123.84, + "probability": 0.189 + }, + { + "start": 16124.36, + "end": 16124.52, + "probability": 0.0427 + }, + { + "start": 16124.52, + "end": 16128.02, + "probability": 0.1021 + }, + { + "start": 16128.28, + "end": 16128.28, + "probability": 0.161 + }, + { + "start": 16128.28, + "end": 16128.28, + "probability": 0.0919 + }, + { + "start": 16128.3, + "end": 16130.3, + "probability": 0.1689 + }, + { + "start": 16131.54, + "end": 16135.1, + "probability": 0.0568 + }, + { + "start": 16135.1, + "end": 16136.7, + "probability": 0.2485 + }, + { + "start": 16136.7, + "end": 16137.78, + "probability": 0.0745 + }, + { + "start": 16138.02, + "end": 16139.38, + "probability": 0.1889 + }, + { + "start": 16140.52, + "end": 16141.9, + "probability": 0.0493 + }, + { + "start": 16142.0, + "end": 16142.0, + "probability": 0.0211 + }, + { + "start": 16142.0, + "end": 16144.24, + "probability": 0.0509 + }, + { + "start": 16144.42, + "end": 16145.22, + "probability": 0.0034 + }, + { + "start": 16145.8, + "end": 16146.72, + "probability": 0.4477 + }, + { + "start": 16147.6, + "end": 16147.98, + "probability": 0.1921 + }, + { + "start": 16148.44, + "end": 16149.99, + "probability": 0.0285 + }, + { + "start": 16151.88, + "end": 16152.24, + "probability": 0.0783 + }, + { + "start": 16152.24, + "end": 16153.36, + "probability": 0.3322 + }, + { + "start": 16157.36, + "end": 16157.8, + "probability": 0.1265 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.0, + "end": 16165.0, + "probability": 0.0 + }, + { + "start": 16165.9, + "end": 16168.62, + "probability": 0.1 + }, + { + "start": 16168.62, + "end": 16170.84, + "probability": 0.2296 + }, + { + "start": 16170.86, + "end": 16172.08, + "probability": 0.2224 + }, + { + "start": 16172.18, + "end": 16173.08, + "probability": 0.5309 + }, + { + "start": 16173.6, + "end": 16177.02, + "probability": 0.3154 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.0, + "end": 16308.0, + "probability": 0.0 + }, + { + "start": 16308.16, + "end": 16310.47, + "probability": 0.0125 + }, + { + "start": 16312.2, + "end": 16312.72, + "probability": 0.0133 + }, + { + "start": 16312.9, + "end": 16317.28, + "probability": 0.031 + }, + { + "start": 16317.6, + "end": 16320.18, + "probability": 0.0153 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16432.0, + "end": 16432.0, + "probability": 0.0 + }, + { + "start": 16443.52, + "end": 16443.62, + "probability": 0.2315 + }, + { + "start": 16444.38, + "end": 16445.75, + "probability": 0.0657 + }, + { + "start": 16447.26, + "end": 16448.16, + "probability": 0.0931 + }, + { + "start": 16448.16, + "end": 16448.16, + "probability": 0.1287 + }, + { + "start": 16448.16, + "end": 16448.7, + "probability": 0.049 + }, + { + "start": 16448.7, + "end": 16451.35, + "probability": 0.0351 + }, + { + "start": 16468.55, + "end": 16470.7, + "probability": 0.0485 + }, + { + "start": 16471.36, + "end": 16472.88, + "probability": 0.0273 + }, + { + "start": 16473.36, + "end": 16475.64, + "probability": 0.029 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16554.0, + "end": 16554.0, + "probability": 0.0 + }, + { + "start": 16557.5, + "end": 16557.62, + "probability": 0.3453 + }, + { + "start": 16557.82, + "end": 16558.58, + "probability": 0.012 + }, + { + "start": 16561.9, + "end": 16564.42, + "probability": 0.0374 + }, + { + "start": 16565.08, + "end": 16566.42, + "probability": 0.1897 + }, + { + "start": 16567.86, + "end": 16568.98, + "probability": 0.0935 + }, + { + "start": 16569.48, + "end": 16570.6, + "probability": 0.1875 + }, + { + "start": 16571.22, + "end": 16571.32, + "probability": 0.2575 + }, + { + "start": 16571.32, + "end": 16571.86, + "probability": 0.0174 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16675.0, + "end": 16675.0, + "probability": 0.0 + }, + { + "start": 16703.66, + "end": 16707.8, + "probability": 0.02 + }, + { + "start": 16718.34, + "end": 16719.5, + "probability": 0.0205 + }, + { + "start": 16719.5, + "end": 16722.6, + "probability": 0.0773 + }, + { + "start": 16722.9, + "end": 16724.04, + "probability": 0.1743 + }, + { + "start": 16724.04, + "end": 16724.5, + "probability": 0.0421 + }, + { + "start": 16725.78, + "end": 16729.9, + "probability": 0.1127 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.0, + "end": 16799.0, + "probability": 0.0 + }, + { + "start": 16799.84, + "end": 16800.02, + "probability": 0.0121 + }, + { + "start": 16800.02, + "end": 16800.31, + "probability": 0.0343 + }, + { + "start": 16800.56, + "end": 16800.88, + "probability": 0.2938 + }, + { + "start": 16800.88, + "end": 16801.8, + "probability": 0.1163 + }, + { + "start": 16802.52, + "end": 16806.8, + "probability": 0.1735 + }, + { + "start": 16807.56, + "end": 16809.64, + "probability": 0.0694 + }, + { + "start": 16809.96, + "end": 16810.88, + "probability": 0.19 + }, + { + "start": 16811.56, + "end": 16813.72, + "probability": 0.2211 + }, + { + "start": 16815.24, + "end": 16815.26, + "probability": 0.1163 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16920.0, + "end": 16920.0, + "probability": 0.0 + }, + { + "start": 16924.08, + "end": 16929.14, + "probability": 0.0437 + }, + { + "start": 16929.14, + "end": 16930.18, + "probability": 0.2484 + }, + { + "start": 16930.78, + "end": 16932.22, + "probability": 0.2493 + }, + { + "start": 16932.22, + "end": 16934.76, + "probability": 0.0501 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.0, + "end": 17062.0, + "probability": 0.0 + }, + { + "start": 17062.1, + "end": 17062.5, + "probability": 0.0539 + }, + { + "start": 17064.34, + "end": 17065.68, + "probability": 0.2979 + }, + { + "start": 17066.1, + "end": 17068.76, + "probability": 0.795 + }, + { + "start": 17069.58, + "end": 17071.61, + "probability": 0.6227 + }, + { + "start": 17072.78, + "end": 17074.34, + "probability": 0.8856 + }, + { + "start": 17075.38, + "end": 17077.66, + "probability": 0.924 + }, + { + "start": 17077.78, + "end": 17080.3, + "probability": 0.9902 + }, + { + "start": 17080.3, + "end": 17080.8, + "probability": 0.6006 + }, + { + "start": 17081.46, + "end": 17087.08, + "probability": 0.9941 + }, + { + "start": 17087.88, + "end": 17092.06, + "probability": 0.9494 + }, + { + "start": 17093.14, + "end": 17097.22, + "probability": 0.9972 + }, + { + "start": 17097.22, + "end": 17100.56, + "probability": 0.9843 + }, + { + "start": 17100.74, + "end": 17102.56, + "probability": 0.9266 + }, + { + "start": 17102.74, + "end": 17103.86, + "probability": 0.9712 + }, + { + "start": 17104.4, + "end": 17107.58, + "probability": 0.9526 + }, + { + "start": 17107.62, + "end": 17110.98, + "probability": 0.9844 + }, + { + "start": 17111.3, + "end": 17112.06, + "probability": 0.8573 + }, + { + "start": 17112.64, + "end": 17115.16, + "probability": 0.8134 + }, + { + "start": 17116.6, + "end": 17121.28, + "probability": 0.98 + }, + { + "start": 17122.16, + "end": 17122.48, + "probability": 0.486 + }, + { + "start": 17122.92, + "end": 17124.1, + "probability": 0.9941 + }, + { + "start": 17124.4, + "end": 17125.6, + "probability": 0.9949 + }, + { + "start": 17126.72, + "end": 17127.64, + "probability": 0.9946 + }, + { + "start": 17128.5, + "end": 17135.66, + "probability": 0.9763 + }, + { + "start": 17136.42, + "end": 17141.42, + "probability": 0.9974 + }, + { + "start": 17142.34, + "end": 17148.4, + "probability": 0.9424 + }, + { + "start": 17148.4, + "end": 17151.76, + "probability": 0.9934 + }, + { + "start": 17151.82, + "end": 17152.88, + "probability": 0.8625 + }, + { + "start": 17153.08, + "end": 17153.66, + "probability": 0.9255 + }, + { + "start": 17153.88, + "end": 17161.04, + "probability": 0.9557 + }, + { + "start": 17161.34, + "end": 17162.24, + "probability": 0.7513 + }, + { + "start": 17162.36, + "end": 17167.08, + "probability": 0.9901 + }, + { + "start": 17168.48, + "end": 17169.04, + "probability": 0.927 + }, + { + "start": 17169.94, + "end": 17171.26, + "probability": 0.9922 + }, + { + "start": 17171.6, + "end": 17175.08, + "probability": 0.9938 + }, + { + "start": 17175.68, + "end": 17180.72, + "probability": 0.9854 + }, + { + "start": 17181.32, + "end": 17184.64, + "probability": 0.8784 + }, + { + "start": 17185.78, + "end": 17189.2, + "probability": 0.9288 + }, + { + "start": 17189.84, + "end": 17192.22, + "probability": 0.9441 + }, + { + "start": 17193.06, + "end": 17194.02, + "probability": 0.8336 + }, + { + "start": 17194.58, + "end": 17196.7, + "probability": 0.863 + }, + { + "start": 17197.58, + "end": 17202.68, + "probability": 0.9891 + }, + { + "start": 17203.34, + "end": 17203.97, + "probability": 0.8044 + }, + { + "start": 17204.2, + "end": 17209.52, + "probability": 0.9678 + }, + { + "start": 17209.52, + "end": 17214.52, + "probability": 0.8709 + }, + { + "start": 17214.58, + "end": 17217.27, + "probability": 0.972 + }, + { + "start": 17217.96, + "end": 17220.04, + "probability": 0.5505 + }, + { + "start": 17220.66, + "end": 17224.4, + "probability": 0.8589 + }, + { + "start": 17224.86, + "end": 17226.92, + "probability": 0.5544 + }, + { + "start": 17226.94, + "end": 17233.12, + "probability": 0.8007 + }, + { + "start": 17233.56, + "end": 17238.76, + "probability": 0.9914 + }, + { + "start": 17239.56, + "end": 17242.34, + "probability": 0.9921 + }, + { + "start": 17242.74, + "end": 17243.46, + "probability": 0.5104 + }, + { + "start": 17244.08, + "end": 17245.88, + "probability": 0.9943 + }, + { + "start": 17246.52, + "end": 17250.78, + "probability": 0.9868 + }, + { + "start": 17251.34, + "end": 17254.68, + "probability": 0.9957 + }, + { + "start": 17255.32, + "end": 17256.82, + "probability": 0.732 + }, + { + "start": 17256.82, + "end": 17257.18, + "probability": 0.4383 + }, + { + "start": 17257.32, + "end": 17258.08, + "probability": 0.8657 + }, + { + "start": 17258.18, + "end": 17260.02, + "probability": 0.7911 + }, + { + "start": 17260.54, + "end": 17261.34, + "probability": 0.9316 + }, + { + "start": 17262.8, + "end": 17263.08, + "probability": 0.892 + }, + { + "start": 17263.22, + "end": 17265.38, + "probability": 0.9736 + }, + { + "start": 17265.96, + "end": 17269.06, + "probability": 0.9837 + }, + { + "start": 17269.18, + "end": 17269.44, + "probability": 0.7721 + }, + { + "start": 17269.94, + "end": 17271.32, + "probability": 0.877 + }, + { + "start": 17271.6, + "end": 17275.12, + "probability": 0.9026 + }, + { + "start": 17275.6, + "end": 17277.88, + "probability": 0.9911 + }, + { + "start": 17278.46, + "end": 17280.14, + "probability": 0.9637 + }, + { + "start": 17281.68, + "end": 17282.04, + "probability": 0.9136 + }, + { + "start": 17282.12, + "end": 17289.28, + "probability": 0.8302 + }, + { + "start": 17290.08, + "end": 17290.64, + "probability": 0.6823 + }, + { + "start": 17290.74, + "end": 17291.24, + "probability": 0.4854 + }, + { + "start": 17291.88, + "end": 17293.0, + "probability": 0.9423 + }, + { + "start": 17305.22, + "end": 17309.4, + "probability": 0.7334 + }, + { + "start": 17310.3, + "end": 17313.48, + "probability": 0.8123 + }, + { + "start": 17314.2, + "end": 17317.14, + "probability": 0.9632 + }, + { + "start": 17318.14, + "end": 17319.74, + "probability": 0.6719 + }, + { + "start": 17320.34, + "end": 17320.46, + "probability": 0.1254 + }, + { + "start": 17321.48, + "end": 17325.74, + "probability": 0.9351 + }, + { + "start": 17325.96, + "end": 17325.96, + "probability": 0.0009 + }, + { + "start": 17325.96, + "end": 17327.2, + "probability": 0.7242 + }, + { + "start": 17327.24, + "end": 17328.46, + "probability": 0.7687 + }, + { + "start": 17328.48, + "end": 17329.16, + "probability": 0.6408 + }, + { + "start": 17329.48, + "end": 17330.32, + "probability": 0.6579 + }, + { + "start": 17330.36, + "end": 17331.38, + "probability": 0.7325 + }, + { + "start": 17334.24, + "end": 17336.48, + "probability": 0.995 + }, + { + "start": 17336.7, + "end": 17339.9, + "probability": 0.9803 + }, + { + "start": 17342.62, + "end": 17343.32, + "probability": 0.5973 + }, + { + "start": 17343.4, + "end": 17344.84, + "probability": 0.9759 + }, + { + "start": 17345.74, + "end": 17346.86, + "probability": 0.8167 + }, + { + "start": 17349.1, + "end": 17352.18, + "probability": 0.5192 + }, + { + "start": 17352.86, + "end": 17353.32, + "probability": 0.4101 + }, + { + "start": 17355.46, + "end": 17357.0, + "probability": 0.974 + }, + { + "start": 17357.64, + "end": 17358.3, + "probability": 0.5894 + }, + { + "start": 17359.94, + "end": 17361.02, + "probability": 0.875 + }, + { + "start": 17362.14, + "end": 17362.34, + "probability": 0.8455 + }, + { + "start": 17363.96, + "end": 17366.52, + "probability": 0.6976 + }, + { + "start": 17366.68, + "end": 17370.84, + "probability": 0.9328 + }, + { + "start": 17371.52, + "end": 17372.38, + "probability": 0.8756 + }, + { + "start": 17372.62, + "end": 17372.66, + "probability": 0.3524 + }, + { + "start": 17372.66, + "end": 17374.46, + "probability": 0.9913 + }, + { + "start": 17375.78, + "end": 17376.4, + "probability": 0.8342 + }, + { + "start": 17377.88, + "end": 17381.96, + "probability": 0.9985 + }, + { + "start": 17383.4, + "end": 17384.58, + "probability": 0.9206 + }, + { + "start": 17385.4, + "end": 17385.92, + "probability": 0.957 + }, + { + "start": 17386.62, + "end": 17388.48, + "probability": 0.9951 + }, + { + "start": 17390.08, + "end": 17390.86, + "probability": 0.9615 + }, + { + "start": 17391.92, + "end": 17392.38, + "probability": 0.7556 + }, + { + "start": 17393.1, + "end": 17397.03, + "probability": 0.9814 + }, + { + "start": 17399.82, + "end": 17400.94, + "probability": 0.8555 + }, + { + "start": 17401.58, + "end": 17404.88, + "probability": 0.9708 + }, + { + "start": 17405.4, + "end": 17409.2, + "probability": 0.9951 + }, + { + "start": 17410.8, + "end": 17414.0, + "probability": 0.9973 + }, + { + "start": 17417.0, + "end": 17419.92, + "probability": 0.975 + }, + { + "start": 17421.22, + "end": 17421.58, + "probability": 0.9231 + }, + { + "start": 17423.16, + "end": 17424.08, + "probability": 0.8886 + }, + { + "start": 17424.72, + "end": 17426.82, + "probability": 0.9714 + }, + { + "start": 17427.1, + "end": 17427.56, + "probability": 0.9645 + }, + { + "start": 17429.32, + "end": 17430.33, + "probability": 0.9842 + }, + { + "start": 17431.98, + "end": 17432.43, + "probability": 0.978 + }, + { + "start": 17434.48, + "end": 17435.1, + "probability": 0.9479 + }, + { + "start": 17437.02, + "end": 17440.2, + "probability": 0.8691 + }, + { + "start": 17441.52, + "end": 17443.6, + "probability": 0.7798 + }, + { + "start": 17444.28, + "end": 17447.3, + "probability": 0.746 + }, + { + "start": 17449.42, + "end": 17450.92, + "probability": 0.9877 + }, + { + "start": 17453.1, + "end": 17453.78, + "probability": 0.7682 + }, + { + "start": 17455.18, + "end": 17456.76, + "probability": 0.9932 + }, + { + "start": 17457.28, + "end": 17458.74, + "probability": 0.9858 + }, + { + "start": 17458.9, + "end": 17464.1, + "probability": 0.999 + }, + { + "start": 17465.02, + "end": 17466.54, + "probability": 0.9763 + }, + { + "start": 17467.78, + "end": 17469.14, + "probability": 0.6833 + }, + { + "start": 17469.84, + "end": 17472.42, + "probability": 0.9515 + }, + { + "start": 17472.76, + "end": 17475.74, + "probability": 0.9922 + }, + { + "start": 17477.88, + "end": 17485.04, + "probability": 0.9925 + }, + { + "start": 17485.76, + "end": 17492.3, + "probability": 0.9874 + }, + { + "start": 17492.46, + "end": 17496.2, + "probability": 0.9939 + }, + { + "start": 17497.98, + "end": 17501.48, + "probability": 0.9976 + }, + { + "start": 17502.54, + "end": 17503.68, + "probability": 0.8813 + }, + { + "start": 17504.36, + "end": 17506.08, + "probability": 0.9866 + }, + { + "start": 17507.68, + "end": 17508.7, + "probability": 0.9858 + }, + { + "start": 17508.78, + "end": 17511.58, + "probability": 0.8716 + }, + { + "start": 17512.26, + "end": 17513.18, + "probability": 0.9872 + }, + { + "start": 17514.46, + "end": 17517.86, + "probability": 0.9525 + }, + { + "start": 17518.52, + "end": 17519.14, + "probability": 0.6122 + }, + { + "start": 17519.96, + "end": 17521.0, + "probability": 0.8624 + }, + { + "start": 17521.26, + "end": 17522.86, + "probability": 0.8303 + }, + { + "start": 17524.2, + "end": 17527.42, + "probability": 0.9868 + }, + { + "start": 17527.98, + "end": 17529.5, + "probability": 0.9941 + }, + { + "start": 17530.94, + "end": 17532.36, + "probability": 0.6966 + }, + { + "start": 17532.46, + "end": 17535.6, + "probability": 0.9788 + }, + { + "start": 17536.44, + "end": 17538.12, + "probability": 0.8201 + }, + { + "start": 17539.0, + "end": 17539.76, + "probability": 0.9636 + }, + { + "start": 17540.48, + "end": 17542.6, + "probability": 0.9973 + }, + { + "start": 17543.62, + "end": 17545.78, + "probability": 0.9436 + }, + { + "start": 17546.32, + "end": 17551.8, + "probability": 0.9928 + }, + { + "start": 17552.3, + "end": 17552.58, + "probability": 0.395 + }, + { + "start": 17552.82, + "end": 17554.26, + "probability": 0.8511 + }, + { + "start": 17554.32, + "end": 17557.56, + "probability": 0.8276 + }, + { + "start": 17558.42, + "end": 17559.2, + "probability": 0.7907 + }, + { + "start": 17569.8, + "end": 17571.66, + "probability": 0.9136 + }, + { + "start": 17572.24, + "end": 17573.5, + "probability": 0.9233 + }, + { + "start": 17573.64, + "end": 17575.7, + "probability": 0.7629 + }, + { + "start": 17576.5, + "end": 17577.28, + "probability": 0.6929 + }, + { + "start": 17578.32, + "end": 17580.56, + "probability": 0.6951 + }, + { + "start": 17581.74, + "end": 17582.36, + "probability": 0.9213 + }, + { + "start": 17582.7, + "end": 17587.2, + "probability": 0.9775 + }, + { + "start": 17587.2, + "end": 17590.24, + "probability": 0.9554 + }, + { + "start": 17591.52, + "end": 17593.84, + "probability": 0.5966 + }, + { + "start": 17594.0, + "end": 17598.96, + "probability": 0.9956 + }, + { + "start": 17598.96, + "end": 17603.18, + "probability": 0.9941 + }, + { + "start": 17603.82, + "end": 17605.58, + "probability": 0.9982 + }, + { + "start": 17606.48, + "end": 17610.08, + "probability": 0.9282 + }, + { + "start": 17610.62, + "end": 17612.82, + "probability": 0.8976 + }, + { + "start": 17613.08, + "end": 17615.18, + "probability": 0.9946 + }, + { + "start": 17615.24, + "end": 17619.34, + "probability": 0.9862 + }, + { + "start": 17620.28, + "end": 17620.5, + "probability": 0.4847 + }, + { + "start": 17620.54, + "end": 17625.28, + "probability": 0.9683 + }, + { + "start": 17625.36, + "end": 17625.64, + "probability": 0.9205 + }, + { + "start": 17626.16, + "end": 17626.38, + "probability": 0.7949 + }, + { + "start": 17627.88, + "end": 17630.15, + "probability": 0.981 + }, + { + "start": 17631.86, + "end": 17634.08, + "probability": 0.9724 + }, + { + "start": 17634.7, + "end": 17636.76, + "probability": 0.9373 + }, + { + "start": 17638.56, + "end": 17639.4, + "probability": 0.112 + }, + { + "start": 17639.4, + "end": 17639.4, + "probability": 0.0433 + }, + { + "start": 17639.4, + "end": 17640.26, + "probability": 0.7471 + }, + { + "start": 17640.74, + "end": 17642.37, + "probability": 0.7139 + }, + { + "start": 17642.5, + "end": 17642.7, + "probability": 0.9054 + }, + { + "start": 17642.78, + "end": 17643.22, + "probability": 0.9208 + }, + { + "start": 17643.26, + "end": 17645.14, + "probability": 0.6063 + }, + { + "start": 17645.44, + "end": 17646.2, + "probability": 0.8455 + }, + { + "start": 17646.72, + "end": 17649.54, + "probability": 0.9233 + }, + { + "start": 17649.6, + "end": 17650.99, + "probability": 0.2421 + }, + { + "start": 17651.28, + "end": 17651.7, + "probability": 0.7936 + }, + { + "start": 17651.78, + "end": 17656.86, + "probability": 0.9622 + }, + { + "start": 17656.96, + "end": 17657.7, + "probability": 0.9596 + }, + { + "start": 17657.82, + "end": 17658.56, + "probability": 0.9832 + }, + { + "start": 17658.93, + "end": 17661.86, + "probability": 0.9329 + }, + { + "start": 17661.98, + "end": 17662.82, + "probability": 0.8094 + }, + { + "start": 17662.88, + "end": 17666.56, + "probability": 0.922 + }, + { + "start": 17668.44, + "end": 17673.24, + "probability": 0.8989 + }, + { + "start": 17673.36, + "end": 17675.08, + "probability": 0.9272 + }, + { + "start": 17675.2, + "end": 17675.7, + "probability": 0.9478 + }, + { + "start": 17676.26, + "end": 17679.34, + "probability": 0.9771 + }, + { + "start": 17680.24, + "end": 17684.28, + "probability": 0.8436 + }, + { + "start": 17684.36, + "end": 17685.82, + "probability": 0.7293 + }, + { + "start": 17686.56, + "end": 17689.76, + "probability": 0.9055 + }, + { + "start": 17689.84, + "end": 17693.94, + "probability": 0.8107 + }, + { + "start": 17694.68, + "end": 17696.56, + "probability": 0.9071 + }, + { + "start": 17696.72, + "end": 17696.88, + "probability": 0.3461 + }, + { + "start": 17697.5, + "end": 17698.74, + "probability": 0.9712 + }, + { + "start": 17698.82, + "end": 17700.2, + "probability": 0.8974 + }, + { + "start": 17700.26, + "end": 17700.92, + "probability": 0.8759 + }, + { + "start": 17701.36, + "end": 17702.92, + "probability": 0.8001 + }, + { + "start": 17703.52, + "end": 17703.98, + "probability": 0.9116 + }, + { + "start": 17704.04, + "end": 17706.72, + "probability": 0.9952 + }, + { + "start": 17706.86, + "end": 17707.58, + "probability": 0.7129 + }, + { + "start": 17707.86, + "end": 17709.5, + "probability": 0.8506 + }, + { + "start": 17709.82, + "end": 17711.34, + "probability": 0.9867 + }, + { + "start": 17711.34, + "end": 17713.31, + "probability": 0.9933 + }, + { + "start": 17714.18, + "end": 17716.06, + "probability": 0.8729 + }, + { + "start": 17716.16, + "end": 17716.94, + "probability": 0.8479 + }, + { + "start": 17717.02, + "end": 17717.64, + "probability": 0.7385 + }, + { + "start": 17717.7, + "end": 17718.26, + "probability": 0.3125 + }, + { + "start": 17719.12, + "end": 17721.92, + "probability": 0.8285 + }, + { + "start": 17722.28, + "end": 17724.38, + "probability": 0.946 + }, + { + "start": 17724.44, + "end": 17725.62, + "probability": 0.9087 + }, + { + "start": 17725.74, + "end": 17726.06, + "probability": 0.8341 + }, + { + "start": 17726.14, + "end": 17726.48, + "probability": 0.828 + }, + { + "start": 17726.56, + "end": 17727.52, + "probability": 0.7753 + }, + { + "start": 17728.36, + "end": 17730.84, + "probability": 0.88 + }, + { + "start": 17730.84, + "end": 17732.88, + "probability": 0.9966 + }, + { + "start": 17733.3, + "end": 17736.66, + "probability": 0.9947 + }, + { + "start": 17736.76, + "end": 17737.24, + "probability": 0.9028 + }, + { + "start": 17737.92, + "end": 17740.88, + "probability": 0.8599 + }, + { + "start": 17741.84, + "end": 17741.84, + "probability": 0.3554 + }, + { + "start": 17741.84, + "end": 17742.0, + "probability": 0.722 + }, + { + "start": 17742.08, + "end": 17742.82, + "probability": 0.8373 + }, + { + "start": 17743.02, + "end": 17744.88, + "probability": 0.5749 + }, + { + "start": 17744.98, + "end": 17746.94, + "probability": 0.9447 + }, + { + "start": 17746.94, + "end": 17750.3, + "probability": 0.8368 + }, + { + "start": 17750.38, + "end": 17752.94, + "probability": 0.7142 + }, + { + "start": 17753.38, + "end": 17756.1, + "probability": 0.9268 + }, + { + "start": 17756.16, + "end": 17759.32, + "probability": 0.9901 + }, + { + "start": 17759.86, + "end": 17762.88, + "probability": 0.9856 + }, + { + "start": 17764.2, + "end": 17765.48, + "probability": 0.9904 + }, + { + "start": 17765.62, + "end": 17767.96, + "probability": 0.9877 + }, + { + "start": 17768.0, + "end": 17768.88, + "probability": 0.8931 + }, + { + "start": 17768.96, + "end": 17769.36, + "probability": 0.7534 + }, + { + "start": 17769.38, + "end": 17769.74, + "probability": 0.2274 + }, + { + "start": 17770.18, + "end": 17772.6, + "probability": 0.7674 + }, + { + "start": 17772.7, + "end": 17773.78, + "probability": 0.9587 + }, + { + "start": 17773.82, + "end": 17774.34, + "probability": 0.9652 + }, + { + "start": 17774.42, + "end": 17775.12, + "probability": 0.9586 + }, + { + "start": 17775.22, + "end": 17775.62, + "probability": 0.9354 + }, + { + "start": 17775.7, + "end": 17776.16, + "probability": 0.5412 + }, + { + "start": 17776.46, + "end": 17779.44, + "probability": 0.9814 + }, + { + "start": 17779.44, + "end": 17779.62, + "probability": 0.1702 + }, + { + "start": 17779.74, + "end": 17780.58, + "probability": 0.369 + }, + { + "start": 17780.66, + "end": 17781.98, + "probability": 0.6108 + }, + { + "start": 17782.0, + "end": 17782.04, + "probability": 0.0743 + }, + { + "start": 17782.06, + "end": 17782.48, + "probability": 0.3329 + }, + { + "start": 17782.66, + "end": 17785.36, + "probability": 0.8027 + }, + { + "start": 17785.36, + "end": 17785.62, + "probability": 0.8535 + }, + { + "start": 17785.62, + "end": 17786.06, + "probability": 0.5928 + }, + { + "start": 17786.14, + "end": 17786.68, + "probability": 0.6784 + }, + { + "start": 17786.98, + "end": 17788.76, + "probability": 0.5672 + }, + { + "start": 17788.8, + "end": 17789.78, + "probability": 0.9702 + }, + { + "start": 17790.02, + "end": 17791.55, + "probability": 0.7988 + }, + { + "start": 17791.58, + "end": 17792.07, + "probability": 0.1473 + }, + { + "start": 17792.3, + "end": 17792.36, + "probability": 0.1125 + }, + { + "start": 17792.36, + "end": 17794.54, + "probability": 0.8236 + }, + { + "start": 17795.4, + "end": 17796.31, + "probability": 0.4281 + }, + { + "start": 17797.3, + "end": 17797.66, + "probability": 0.7153 + }, + { + "start": 17797.68, + "end": 17797.76, + "probability": 0.3912 + }, + { + "start": 17797.76, + "end": 17801.22, + "probability": 0.4146 + }, + { + "start": 17801.24, + "end": 17802.1, + "probability": 0.7106 + }, + { + "start": 17802.56, + "end": 17802.84, + "probability": 0.8774 + }, + { + "start": 17802.88, + "end": 17803.4, + "probability": 0.8322 + }, + { + "start": 17804.16, + "end": 17805.76, + "probability": 0.994 + }, + { + "start": 17806.32, + "end": 17808.48, + "probability": 0.8665 + }, + { + "start": 17808.54, + "end": 17809.54, + "probability": 0.8717 + }, + { + "start": 17810.2, + "end": 17810.7, + "probability": 0.7778 + }, + { + "start": 17810.78, + "end": 17811.28, + "probability": 0.4682 + }, + { + "start": 17811.38, + "end": 17813.9, + "probability": 0.9543 + }, + { + "start": 17814.24, + "end": 17816.88, + "probability": 0.9834 + }, + { + "start": 17816.9, + "end": 17817.54, + "probability": 0.6269 + }, + { + "start": 17817.88, + "end": 17817.88, + "probability": 0.627 + }, + { + "start": 17818.02, + "end": 17820.24, + "probability": 0.9604 + }, + { + "start": 17820.58, + "end": 17823.22, + "probability": 0.9781 + }, + { + "start": 17823.8, + "end": 17824.16, + "probability": 0.6505 + }, + { + "start": 17824.26, + "end": 17826.28, + "probability": 0.994 + }, + { + "start": 17826.28, + "end": 17829.44, + "probability": 0.8612 + }, + { + "start": 17829.66, + "end": 17829.66, + "probability": 0.6377 + }, + { + "start": 17829.7, + "end": 17831.38, + "probability": 0.6387 + }, + { + "start": 17831.42, + "end": 17834.06, + "probability": 0.7397 + }, + { + "start": 17834.2, + "end": 17834.44, + "probability": 0.685 + }, + { + "start": 17834.8, + "end": 17835.44, + "probability": 0.027 + }, + { + "start": 17835.44, + "end": 17836.51, + "probability": 0.3944 + }, + { + "start": 17836.86, + "end": 17839.9, + "probability": 0.5896 + }, + { + "start": 17840.05, + "end": 17841.52, + "probability": 0.0093 + }, + { + "start": 17841.52, + "end": 17841.73, + "probability": 0.8892 + }, + { + "start": 17843.04, + "end": 17847.6, + "probability": 0.7795 + }, + { + "start": 17847.7, + "end": 17848.82, + "probability": 0.7189 + }, + { + "start": 17858.86, + "end": 17860.34, + "probability": 0.6901 + }, + { + "start": 17863.92, + "end": 17865.52, + "probability": 0.6589 + }, + { + "start": 17866.48, + "end": 17871.32, + "probability": 0.9469 + }, + { + "start": 17872.68, + "end": 17873.34, + "probability": 0.8246 + }, + { + "start": 17874.12, + "end": 17877.22, + "probability": 0.8356 + }, + { + "start": 17877.86, + "end": 17880.28, + "probability": 0.9958 + }, + { + "start": 17882.3, + "end": 17884.22, + "probability": 0.7212 + }, + { + "start": 17886.86, + "end": 17888.14, + "probability": 0.8189 + }, + { + "start": 17888.82, + "end": 17890.32, + "probability": 0.9484 + }, + { + "start": 17890.5, + "end": 17891.06, + "probability": 0.0534 + }, + { + "start": 17891.18, + "end": 17892.84, + "probability": 0.6637 + }, + { + "start": 17892.88, + "end": 17893.4, + "probability": 0.8452 + }, + { + "start": 17893.68, + "end": 17896.28, + "probability": 0.8021 + }, + { + "start": 17897.56, + "end": 17901.47, + "probability": 0.9776 + }, + { + "start": 17902.02, + "end": 17903.0, + "probability": 0.819 + }, + { + "start": 17903.8, + "end": 17905.4, + "probability": 0.8342 + }, + { + "start": 17906.08, + "end": 17908.04, + "probability": 0.9952 + }, + { + "start": 17908.74, + "end": 17912.84, + "probability": 0.9758 + }, + { + "start": 17913.34, + "end": 17914.74, + "probability": 0.9897 + }, + { + "start": 17915.44, + "end": 17917.12, + "probability": 0.8981 + }, + { + "start": 17917.86, + "end": 17918.96, + "probability": 0.9976 + }, + { + "start": 17919.78, + "end": 17924.98, + "probability": 0.999 + }, + { + "start": 17924.98, + "end": 17928.66, + "probability": 0.9972 + }, + { + "start": 17929.8, + "end": 17930.48, + "probability": 0.8474 + }, + { + "start": 17932.4, + "end": 17935.14, + "probability": 0.9573 + }, + { + "start": 17935.82, + "end": 17939.2, + "probability": 0.9951 + }, + { + "start": 17940.02, + "end": 17943.28, + "probability": 0.9174 + }, + { + "start": 17944.08, + "end": 17947.6, + "probability": 0.8949 + }, + { + "start": 17948.26, + "end": 17950.84, + "probability": 0.9709 + }, + { + "start": 17951.4, + "end": 17955.92, + "probability": 0.9912 + }, + { + "start": 17956.28, + "end": 17959.26, + "probability": 0.9404 + }, + { + "start": 17962.84, + "end": 17964.96, + "probability": 0.2994 + }, + { + "start": 17964.98, + "end": 17966.74, + "probability": 0.9883 + }, + { + "start": 17967.3, + "end": 17967.58, + "probability": 0.8232 + }, + { + "start": 17968.6, + "end": 17976.38, + "probability": 0.9805 + }, + { + "start": 17976.38, + "end": 17981.2, + "probability": 0.9568 + }, + { + "start": 17982.32, + "end": 17983.12, + "probability": 0.5914 + }, + { + "start": 17983.66, + "end": 17984.1, + "probability": 0.6988 + }, + { + "start": 17984.9, + "end": 17986.14, + "probability": 0.7953 + }, + { + "start": 17987.88, + "end": 17988.72, + "probability": 0.923 + }, + { + "start": 17989.62, + "end": 17991.46, + "probability": 0.5708 + }, + { + "start": 17992.2, + "end": 17993.62, + "probability": 0.7893 + }, + { + "start": 17993.68, + "end": 17994.18, + "probability": 0.9645 + }, + { + "start": 17994.4, + "end": 17996.7, + "probability": 0.9049 + }, + { + "start": 17997.7, + "end": 17999.13, + "probability": 0.9297 + }, + { + "start": 18000.3, + "end": 18000.54, + "probability": 0.5374 + }, + { + "start": 18000.56, + "end": 18001.04, + "probability": 0.8885 + }, + { + "start": 18001.42, + "end": 18005.26, + "probability": 0.9669 + }, + { + "start": 18005.58, + "end": 18007.06, + "probability": 0.8405 + }, + { + "start": 18008.14, + "end": 18013.52, + "probability": 0.9592 + }, + { + "start": 18014.88, + "end": 18018.44, + "probability": 0.9383 + }, + { + "start": 18019.84, + "end": 18022.98, + "probability": 0.9951 + }, + { + "start": 18023.5, + "end": 18025.78, + "probability": 0.7333 + }, + { + "start": 18026.32, + "end": 18030.86, + "probability": 0.9965 + }, + { + "start": 18031.3, + "end": 18032.14, + "probability": 0.9889 + }, + { + "start": 18032.68, + "end": 18036.12, + "probability": 0.7282 + }, + { + "start": 18036.78, + "end": 18037.88, + "probability": 0.9276 + }, + { + "start": 18038.5, + "end": 18041.88, + "probability": 0.8494 + }, + { + "start": 18042.32, + "end": 18044.52, + "probability": 0.9462 + }, + { + "start": 18046.06, + "end": 18046.42, + "probability": 0.5513 + }, + { + "start": 18046.62, + "end": 18050.54, + "probability": 0.9933 + }, + { + "start": 18050.54, + "end": 18055.4, + "probability": 0.9762 + }, + { + "start": 18055.96, + "end": 18058.78, + "probability": 0.7223 + }, + { + "start": 18059.36, + "end": 18063.28, + "probability": 0.98 + }, + { + "start": 18063.6, + "end": 18064.46, + "probability": 0.936 + }, + { + "start": 18065.16, + "end": 18069.04, + "probability": 0.9906 + }, + { + "start": 18069.78, + "end": 18073.38, + "probability": 0.9958 + }, + { + "start": 18074.5, + "end": 18075.1, + "probability": 0.6202 + }, + { + "start": 18075.9, + "end": 18080.66, + "probability": 0.8499 + }, + { + "start": 18081.38, + "end": 18086.76, + "probability": 0.9937 + }, + { + "start": 18087.46, + "end": 18090.68, + "probability": 0.9877 + }, + { + "start": 18091.18, + "end": 18091.64, + "probability": 0.4839 + }, + { + "start": 18092.12, + "end": 18093.08, + "probability": 0.9754 + }, + { + "start": 18093.72, + "end": 18097.56, + "probability": 0.8871 + }, + { + "start": 18097.86, + "end": 18102.16, + "probability": 0.9849 + }, + { + "start": 18104.4, + "end": 18105.56, + "probability": 0.0088 + }, + { + "start": 18105.76, + "end": 18111.4, + "probability": 0.3056 + }, + { + "start": 18112.76, + "end": 18113.1, + "probability": 0.2715 + }, + { + "start": 18113.1, + "end": 18117.72, + "probability": 0.326 + }, + { + "start": 18118.36, + "end": 18119.54, + "probability": 0.627 + }, + { + "start": 18119.88, + "end": 18120.55, + "probability": 0.8496 + }, + { + "start": 18120.68, + "end": 18123.52, + "probability": 0.9233 + }, + { + "start": 18123.56, + "end": 18127.2, + "probability": 0.9427 + }, + { + "start": 18127.28, + "end": 18130.12, + "probability": 0.7524 + }, + { + "start": 18130.66, + "end": 18131.38, + "probability": 0.1637 + }, + { + "start": 18131.38, + "end": 18132.46, + "probability": 0.5573 + }, + { + "start": 18133.32, + "end": 18134.81, + "probability": 0.6346 + }, + { + "start": 18135.4, + "end": 18139.9, + "probability": 0.9497 + }, + { + "start": 18140.5, + "end": 18145.56, + "probability": 0.9309 + }, + { + "start": 18145.96, + "end": 18146.96, + "probability": 0.7106 + }, + { + "start": 18147.44, + "end": 18148.79, + "probability": 0.9932 + }, + { + "start": 18149.44, + "end": 18150.3, + "probability": 0.8479 + }, + { + "start": 18150.78, + "end": 18151.44, + "probability": 0.913 + }, + { + "start": 18151.86, + "end": 18154.5, + "probability": 0.806 + }, + { + "start": 18155.2, + "end": 18157.98, + "probability": 0.9609 + }, + { + "start": 18158.08, + "end": 18159.88, + "probability": 0.9574 + }, + { + "start": 18160.1, + "end": 18161.7, + "probability": 0.9733 + }, + { + "start": 18162.82, + "end": 18163.6, + "probability": 0.8855 + }, + { + "start": 18164.12, + "end": 18170.84, + "probability": 0.9956 + }, + { + "start": 18171.34, + "end": 18174.74, + "probability": 0.9938 + }, + { + "start": 18175.38, + "end": 18179.74, + "probability": 0.9932 + }, + { + "start": 18180.06, + "end": 18180.28, + "probability": 0.6829 + }, + { + "start": 18180.54, + "end": 18182.0, + "probability": 0.831 + }, + { + "start": 18183.3, + "end": 18184.32, + "probability": 0.7339 + }, + { + "start": 18185.04, + "end": 18187.1, + "probability": 0.9635 + }, + { + "start": 18187.12, + "end": 18187.9, + "probability": 0.6245 + }, + { + "start": 18188.88, + "end": 18189.72, + "probability": 0.2797 + }, + { + "start": 18189.72, + "end": 18189.72, + "probability": 0.114 + }, + { + "start": 18190.26, + "end": 18190.56, + "probability": 0.1677 + }, + { + "start": 18190.84, + "end": 18193.2, + "probability": 0.4897 + }, + { + "start": 18193.74, + "end": 18194.17, + "probability": 0.7596 + }, + { + "start": 18194.64, + "end": 18194.94, + "probability": 0.581 + }, + { + "start": 18195.62, + "end": 18198.88, + "probability": 0.8981 + }, + { + "start": 18199.44, + "end": 18200.2, + "probability": 0.4564 + }, + { + "start": 18200.24, + "end": 18201.1, + "probability": 0.7582 + }, + { + "start": 18201.32, + "end": 18202.14, + "probability": 0.4079 + }, + { + "start": 18202.68, + "end": 18202.98, + "probability": 0.8583 + }, + { + "start": 18203.68, + "end": 18204.38, + "probability": 0.8803 + }, + { + "start": 18205.22, + "end": 18207.2, + "probability": 0.8363 + }, + { + "start": 18207.86, + "end": 18208.84, + "probability": 0.6594 + }, + { + "start": 18213.3, + "end": 18214.36, + "probability": 0.8621 + }, + { + "start": 18214.46, + "end": 18215.52, + "probability": 0.9374 + }, + { + "start": 18215.58, + "end": 18217.32, + "probability": 0.9873 + }, + { + "start": 18222.86, + "end": 18223.52, + "probability": 0.5358 + }, + { + "start": 18223.62, + "end": 18224.14, + "probability": 0.8019 + }, + { + "start": 18224.32, + "end": 18225.56, + "probability": 0.8345 + }, + { + "start": 18227.55, + "end": 18232.92, + "probability": 0.9773 + }, + { + "start": 18232.94, + "end": 18234.56, + "probability": 0.9118 + }, + { + "start": 18234.66, + "end": 18236.4, + "probability": 0.9542 + }, + { + "start": 18236.96, + "end": 18238.04, + "probability": 0.9634 + }, + { + "start": 18238.12, + "end": 18239.42, + "probability": 0.7617 + }, + { + "start": 18239.7, + "end": 18240.4, + "probability": 0.6965 + }, + { + "start": 18240.5, + "end": 18244.36, + "probability": 0.8566 + }, + { + "start": 18245.82, + "end": 18249.96, + "probability": 0.8903 + }, + { + "start": 18250.04, + "end": 18253.64, + "probability": 0.9775 + }, + { + "start": 18253.64, + "end": 18256.76, + "probability": 0.9938 + }, + { + "start": 18257.5, + "end": 18259.04, + "probability": 0.6538 + }, + { + "start": 18259.96, + "end": 18261.16, + "probability": 0.8857 + }, + { + "start": 18261.28, + "end": 18264.34, + "probability": 0.9918 + }, + { + "start": 18264.86, + "end": 18266.23, + "probability": 0.9949 + }, + { + "start": 18266.76, + "end": 18268.56, + "probability": 0.9241 + }, + { + "start": 18269.08, + "end": 18269.84, + "probability": 0.7454 + }, + { + "start": 18269.94, + "end": 18276.36, + "probability": 0.7516 + }, + { + "start": 18276.76, + "end": 18278.1, + "probability": 0.9557 + }, + { + "start": 18278.2, + "end": 18279.16, + "probability": 0.6902 + }, + { + "start": 18279.28, + "end": 18280.08, + "probability": 0.7231 + }, + { + "start": 18280.36, + "end": 18283.36, + "probability": 0.9828 + }, + { + "start": 18283.66, + "end": 18286.12, + "probability": 0.9791 + }, + { + "start": 18286.46, + "end": 18288.24, + "probability": 0.9609 + }, + { + "start": 18288.7, + "end": 18292.66, + "probability": 0.9944 + }, + { + "start": 18292.68, + "end": 18294.32, + "probability": 0.9604 + }, + { + "start": 18294.32, + "end": 18296.92, + "probability": 0.8001 + }, + { + "start": 18296.98, + "end": 18297.72, + "probability": 0.4077 + }, + { + "start": 18297.72, + "end": 18300.62, + "probability": 0.9877 + }, + { + "start": 18300.78, + "end": 18302.78, + "probability": 0.9325 + }, + { + "start": 18303.08, + "end": 18305.18, + "probability": 0.9944 + }, + { + "start": 18305.54, + "end": 18308.72, + "probability": 0.97 + }, + { + "start": 18308.76, + "end": 18310.64, + "probability": 0.9854 + }, + { + "start": 18310.9, + "end": 18312.7, + "probability": 0.981 + }, + { + "start": 18312.8, + "end": 18313.2, + "probability": 0.7821 + }, + { + "start": 18313.26, + "end": 18314.38, + "probability": 0.7428 + }, + { + "start": 18315.08, + "end": 18320.7, + "probability": 0.9341 + }, + { + "start": 18321.28, + "end": 18321.78, + "probability": 0.3348 + }, + { + "start": 18322.32, + "end": 18322.96, + "probability": 0.5599 + }, + { + "start": 18323.04, + "end": 18323.56, + "probability": 0.5605 + }, + { + "start": 18323.78, + "end": 18324.72, + "probability": 0.7026 + }, + { + "start": 18340.98, + "end": 18341.4, + "probability": 0.165 + }, + { + "start": 18342.38, + "end": 18342.62, + "probability": 0.2956 + }, + { + "start": 18342.7, + "end": 18346.26, + "probability": 0.8507 + }, + { + "start": 18346.46, + "end": 18349.88, + "probability": 0.8868 + }, + { + "start": 18350.62, + "end": 18350.92, + "probability": 0.8651 + }, + { + "start": 18350.98, + "end": 18353.35, + "probability": 0.8687 + }, + { + "start": 18353.78, + "end": 18358.06, + "probability": 0.9138 + }, + { + "start": 18358.06, + "end": 18361.38, + "probability": 0.9284 + }, + { + "start": 18361.46, + "end": 18363.78, + "probability": 0.8491 + }, + { + "start": 18364.56, + "end": 18370.23, + "probability": 0.9491 + }, + { + "start": 18371.76, + "end": 18374.68, + "probability": 0.9712 + }, + { + "start": 18375.86, + "end": 18379.52, + "probability": 0.5505 + }, + { + "start": 18379.84, + "end": 18383.26, + "probability": 0.9956 + }, + { + "start": 18383.96, + "end": 18385.56, + "probability": 0.5529 + }, + { + "start": 18385.6, + "end": 18388.64, + "probability": 0.9768 + }, + { + "start": 18388.72, + "end": 18393.04, + "probability": 0.9979 + }, + { + "start": 18393.04, + "end": 18397.82, + "probability": 0.9967 + }, + { + "start": 18397.86, + "end": 18401.2, + "probability": 0.8542 + }, + { + "start": 18403.16, + "end": 18406.02, + "probability": 0.9968 + }, + { + "start": 18406.92, + "end": 18409.54, + "probability": 0.947 + }, + { + "start": 18410.32, + "end": 18413.78, + "probability": 0.8849 + }, + { + "start": 18414.48, + "end": 18415.68, + "probability": 0.9727 + }, + { + "start": 18415.72, + "end": 18418.98, + "probability": 0.7374 + }, + { + "start": 18419.12, + "end": 18420.2, + "probability": 0.617 + }, + { + "start": 18421.6, + "end": 18423.62, + "probability": 0.9492 + }, + { + "start": 18423.98, + "end": 18426.4, + "probability": 0.9619 + }, + { + "start": 18427.26, + "end": 18435.64, + "probability": 0.9189 + }, + { + "start": 18435.86, + "end": 18441.22, + "probability": 0.7174 + }, + { + "start": 18441.7, + "end": 18442.4, + "probability": 0.8782 + }, + { + "start": 18442.68, + "end": 18443.2, + "probability": 0.7256 + }, + { + "start": 18443.38, + "end": 18447.16, + "probability": 0.9242 + }, + { + "start": 18447.52, + "end": 18450.41, + "probability": 0.9674 + }, + { + "start": 18451.24, + "end": 18454.28, + "probability": 0.839 + }, + { + "start": 18454.32, + "end": 18455.82, + "probability": 0.7705 + }, + { + "start": 18456.74, + "end": 18458.62, + "probability": 0.7748 + }, + { + "start": 18458.8, + "end": 18459.54, + "probability": 0.7766 + }, + { + "start": 18460.26, + "end": 18461.32, + "probability": 0.5353 + }, + { + "start": 18461.44, + "end": 18463.38, + "probability": 0.9185 + }, + { + "start": 18463.86, + "end": 18465.66, + "probability": 0.9635 + }, + { + "start": 18465.74, + "end": 18467.58, + "probability": 0.988 + }, + { + "start": 18468.1, + "end": 18470.87, + "probability": 0.9955 + }, + { + "start": 18470.96, + "end": 18475.08, + "probability": 0.9978 + }, + { + "start": 18475.16, + "end": 18478.56, + "probability": 0.9673 + }, + { + "start": 18479.66, + "end": 18481.78, + "probability": 0.6847 + }, + { + "start": 18481.84, + "end": 18482.54, + "probability": 0.5424 + }, + { + "start": 18483.1, + "end": 18484.22, + "probability": 0.9614 + }, + { + "start": 18484.4, + "end": 18487.96, + "probability": 0.9951 + }, + { + "start": 18487.96, + "end": 18493.18, + "probability": 0.9979 + }, + { + "start": 18493.74, + "end": 18495.2, + "probability": 0.6409 + }, + { + "start": 18495.42, + "end": 18497.7, + "probability": 0.8536 + }, + { + "start": 18497.76, + "end": 18498.44, + "probability": 0.5908 + }, + { + "start": 18498.66, + "end": 18501.32, + "probability": 0.8884 + }, + { + "start": 18501.76, + "end": 18505.16, + "probability": 0.9563 + }, + { + "start": 18505.6, + "end": 18506.24, + "probability": 0.9157 + }, + { + "start": 18506.68, + "end": 18513.42, + "probability": 0.9192 + }, + { + "start": 18513.54, + "end": 18517.64, + "probability": 0.9706 + }, + { + "start": 18517.74, + "end": 18519.3, + "probability": 0.9427 + }, + { + "start": 18519.7, + "end": 18519.88, + "probability": 0.5089 + }, + { + "start": 18519.92, + "end": 18523.82, + "probability": 0.9681 + }, + { + "start": 18524.58, + "end": 18527.86, + "probability": 0.7778 + }, + { + "start": 18528.34, + "end": 18532.62, + "probability": 0.998 + }, + { + "start": 18532.62, + "end": 18535.9, + "probability": 0.6914 + }, + { + "start": 18536.32, + "end": 18538.2, + "probability": 0.7516 + }, + { + "start": 18538.7, + "end": 18542.26, + "probability": 0.8099 + }, + { + "start": 18542.52, + "end": 18543.7, + "probability": 0.812 + }, + { + "start": 18544.2, + "end": 18545.52, + "probability": 0.9215 + }, + { + "start": 18545.82, + "end": 18548.56, + "probability": 0.6709 + }, + { + "start": 18549.02, + "end": 18551.56, + "probability": 0.9909 + }, + { + "start": 18552.06, + "end": 18552.38, + "probability": 0.7443 + }, + { + "start": 18552.4, + "end": 18552.84, + "probability": 0.4395 + }, + { + "start": 18552.9, + "end": 18557.4, + "probability": 0.9919 + }, + { + "start": 18557.4, + "end": 18561.94, + "probability": 0.9842 + }, + { + "start": 18562.38, + "end": 18563.4, + "probability": 0.8795 + }, + { + "start": 18563.6, + "end": 18565.5, + "probability": 0.9301 + }, + { + "start": 18566.18, + "end": 18566.28, + "probability": 0.4628 + }, + { + "start": 18566.62, + "end": 18569.9, + "probability": 0.9727 + }, + { + "start": 18570.16, + "end": 18573.02, + "probability": 0.946 + }, + { + "start": 18573.5, + "end": 18576.3, + "probability": 0.6643 + }, + { + "start": 18577.22, + "end": 18577.42, + "probability": 0.7602 + }, + { + "start": 18577.76, + "end": 18579.17, + "probability": 0.6658 + }, + { + "start": 18579.76, + "end": 18581.5, + "probability": 0.8602 + }, + { + "start": 18583.0, + "end": 18585.56, + "probability": 0.8814 + }, + { + "start": 18585.58, + "end": 18589.16, + "probability": 0.9749 + }, + { + "start": 18589.72, + "end": 18594.36, + "probability": 0.9865 + }, + { + "start": 18594.56, + "end": 18595.5, + "probability": 0.9956 + }, + { + "start": 18596.0, + "end": 18603.38, + "probability": 0.9653 + }, + { + "start": 18603.62, + "end": 18607.96, + "probability": 0.739 + }, + { + "start": 18608.36, + "end": 18613.76, + "probability": 0.986 + }, + { + "start": 18613.82, + "end": 18617.55, + "probability": 0.9962 + }, + { + "start": 18618.82, + "end": 18622.42, + "probability": 0.9644 + }, + { + "start": 18622.9, + "end": 18623.8, + "probability": 0.7447 + }, + { + "start": 18623.82, + "end": 18624.38, + "probability": 0.4508 + }, + { + "start": 18624.42, + "end": 18625.04, + "probability": 0.7343 + }, + { + "start": 18625.16, + "end": 18626.36, + "probability": 0.917 + }, + { + "start": 18626.74, + "end": 18627.78, + "probability": 0.9085 + }, + { + "start": 18627.88, + "end": 18632.54, + "probability": 0.9966 + }, + { + "start": 18633.78, + "end": 18639.2, + "probability": 0.9561 + }, + { + "start": 18639.52, + "end": 18643.46, + "probability": 0.9953 + }, + { + "start": 18645.8, + "end": 18652.56, + "probability": 0.7164 + }, + { + "start": 18652.64, + "end": 18655.66, + "probability": 0.9656 + }, + { + "start": 18656.62, + "end": 18658.86, + "probability": 0.7888 + }, + { + "start": 18659.6, + "end": 18664.96, + "probability": 0.941 + }, + { + "start": 18665.58, + "end": 18670.2, + "probability": 0.896 + }, + { + "start": 18670.66, + "end": 18673.2, + "probability": 0.9662 + }, + { + "start": 18673.44, + "end": 18674.48, + "probability": 0.8173 + }, + { + "start": 18674.72, + "end": 18676.48, + "probability": 0.8983 + }, + { + "start": 18676.58, + "end": 18679.17, + "probability": 0.8101 + }, + { + "start": 18679.72, + "end": 18681.72, + "probability": 0.7783 + }, + { + "start": 18681.84, + "end": 18683.1, + "probability": 0.8446 + }, + { + "start": 18683.3, + "end": 18684.2, + "probability": 0.5007 + }, + { + "start": 18684.3, + "end": 18686.28, + "probability": 0.4593 + }, + { + "start": 18686.68, + "end": 18687.44, + "probability": 0.9047 + }, + { + "start": 18687.78, + "end": 18693.24, + "probability": 0.8894 + }, + { + "start": 18693.58, + "end": 18697.9, + "probability": 0.9899 + }, + { + "start": 18698.0, + "end": 18698.28, + "probability": 0.7909 + }, + { + "start": 18698.52, + "end": 18698.88, + "probability": 0.6818 + }, + { + "start": 18698.96, + "end": 18699.52, + "probability": 0.5279 + }, + { + "start": 18699.7, + "end": 18702.72, + "probability": 0.813 + }, + { + "start": 18703.58, + "end": 18705.06, + "probability": 0.6901 + }, + { + "start": 18705.06, + "end": 18705.38, + "probability": 0.8127 + }, + { + "start": 18705.4, + "end": 18708.26, + "probability": 0.9116 + }, + { + "start": 18708.8, + "end": 18710.44, + "probability": 0.5807 + }, + { + "start": 18710.54, + "end": 18711.84, + "probability": 0.8156 + }, + { + "start": 18711.84, + "end": 18713.08, + "probability": 0.6858 + }, + { + "start": 18713.54, + "end": 18714.22, + "probability": 0.3974 + }, + { + "start": 18714.68, + "end": 18717.92, + "probability": 0.9769 + }, + { + "start": 18717.92, + "end": 18720.72, + "probability": 0.9806 + }, + { + "start": 18721.24, + "end": 18721.34, + "probability": 0.3948 + }, + { + "start": 18721.44, + "end": 18722.8, + "probability": 0.834 + }, + { + "start": 18723.32, + "end": 18725.02, + "probability": 0.9316 + }, + { + "start": 18725.66, + "end": 18726.34, + "probability": 0.4464 + }, + { + "start": 18726.42, + "end": 18727.2, + "probability": 0.902 + }, + { + "start": 18727.58, + "end": 18730.12, + "probability": 0.9456 + }, + { + "start": 18730.26, + "end": 18730.54, + "probability": 0.8111 + }, + { + "start": 18730.62, + "end": 18731.08, + "probability": 0.9006 + }, + { + "start": 18731.42, + "end": 18731.6, + "probability": 0.686 + }, + { + "start": 18731.7, + "end": 18732.84, + "probability": 0.726 + }, + { + "start": 18733.16, + "end": 18734.06, + "probability": 0.7121 + }, + { + "start": 18734.6, + "end": 18737.86, + "probability": 0.5543 + }, + { + "start": 18737.96, + "end": 18740.94, + "probability": 0.7344 + }, + { + "start": 18744.34, + "end": 18745.52, + "probability": 0.3706 + }, + { + "start": 18745.9, + "end": 18746.58, + "probability": 0.8356 + }, + { + "start": 18746.92, + "end": 18750.98, + "probability": 0.9651 + }, + { + "start": 18751.5, + "end": 18754.46, + "probability": 0.9803 + }, + { + "start": 18755.12, + "end": 18757.42, + "probability": 0.9955 + }, + { + "start": 18757.42, + "end": 18760.46, + "probability": 0.9868 + }, + { + "start": 18761.4, + "end": 18764.6, + "probability": 0.8308 + }, + { + "start": 18765.0, + "end": 18766.2, + "probability": 0.8035 + }, + { + "start": 18766.72, + "end": 18769.42, + "probability": 0.9487 + }, + { + "start": 18769.42, + "end": 18772.58, + "probability": 0.0348 + }, + { + "start": 18772.58, + "end": 18772.86, + "probability": 0.1828 + }, + { + "start": 18772.92, + "end": 18775.38, + "probability": 0.6687 + }, + { + "start": 18775.84, + "end": 18778.8, + "probability": 0.7043 + }, + { + "start": 18779.46, + "end": 18783.24, + "probability": 0.6899 + }, + { + "start": 18783.92, + "end": 18787.42, + "probability": 0.8194 + }, + { + "start": 18788.34, + "end": 18789.74, + "probability": 0.6742 + }, + { + "start": 18789.94, + "end": 18793.04, + "probability": 0.9591 + }, + { + "start": 18793.68, + "end": 18795.8, + "probability": 0.8638 + }, + { + "start": 18796.28, + "end": 18796.42, + "probability": 0.4889 + }, + { + "start": 18796.58, + "end": 18800.34, + "probability": 0.985 + }, + { + "start": 18800.44, + "end": 18803.26, + "probability": 0.9912 + }, + { + "start": 18803.84, + "end": 18804.02, + "probability": 0.3973 + }, + { + "start": 18804.93, + "end": 18806.58, + "probability": 0.4919 + }, + { + "start": 18806.94, + "end": 18808.98, + "probability": 0.9485 + }, + { + "start": 18809.88, + "end": 18810.84, + "probability": 0.8681 + }, + { + "start": 18811.62, + "end": 18816.62, + "probability": 0.8155 + }, + { + "start": 18817.2, + "end": 18821.1, + "probability": 0.9886 + }, + { + "start": 18821.58, + "end": 18823.6, + "probability": 0.5125 + }, + { + "start": 18823.8, + "end": 18827.0, + "probability": 0.3418 + }, + { + "start": 18827.34, + "end": 18831.78, + "probability": 0.9875 + }, + { + "start": 18832.54, + "end": 18835.9, + "probability": 0.9646 + }, + { + "start": 18836.56, + "end": 18838.84, + "probability": 0.9995 + }, + { + "start": 18839.54, + "end": 18842.58, + "probability": 0.9127 + }, + { + "start": 18843.2, + "end": 18848.54, + "probability": 0.9862 + }, + { + "start": 18848.8, + "end": 18852.26, + "probability": 0.9211 + }, + { + "start": 18852.66, + "end": 18856.56, + "probability": 0.8721 + }, + { + "start": 18857.1, + "end": 18859.54, + "probability": 0.6398 + }, + { + "start": 18860.06, + "end": 18860.46, + "probability": 0.355 + }, + { + "start": 18860.54, + "end": 18865.2, + "probability": 0.7024 + }, + { + "start": 18865.3, + "end": 18868.4, + "probability": 0.9289 + }, + { + "start": 18868.92, + "end": 18870.62, + "probability": 0.8953 + }, + { + "start": 18871.06, + "end": 18872.26, + "probability": 0.7964 + }, + { + "start": 18872.84, + "end": 18876.8, + "probability": 0.9043 + }, + { + "start": 18877.56, + "end": 18879.96, + "probability": 0.9844 + }, + { + "start": 18880.58, + "end": 18883.16, + "probability": 0.8906 + }, + { + "start": 18883.84, + "end": 18886.84, + "probability": 0.7385 + }, + { + "start": 18886.84, + "end": 18890.54, + "probability": 0.9319 + }, + { + "start": 18891.04, + "end": 18891.76, + "probability": 0.7258 + }, + { + "start": 18892.88, + "end": 18893.94, + "probability": 0.9701 + }, + { + "start": 18894.6, + "end": 18898.96, + "probability": 0.9845 + }, + { + "start": 18899.52, + "end": 18901.32, + "probability": 0.922 + }, + { + "start": 18901.58, + "end": 18901.76, + "probability": 0.6134 + }, + { + "start": 18902.74, + "end": 18903.5, + "probability": 0.5819 + }, + { + "start": 18903.6, + "end": 18906.81, + "probability": 0.841 + }, + { + "start": 18909.48, + "end": 18910.42, + "probability": 0.7326 + }, + { + "start": 18910.48, + "end": 18913.7, + "probability": 0.9734 + }, + { + "start": 18913.78, + "end": 18915.76, + "probability": 0.8958 + }, + { + "start": 18916.34, + "end": 18919.52, + "probability": 0.7704 + }, + { + "start": 18920.08, + "end": 18923.3, + "probability": 0.4166 + }, + { + "start": 18923.84, + "end": 18925.66, + "probability": 0.3323 + }, + { + "start": 18925.66, + "end": 18926.2, + "probability": 0.4888 + }, + { + "start": 18926.24, + "end": 18926.98, + "probability": 0.6613 + }, + { + "start": 18927.6, + "end": 18929.18, + "probability": 0.6226 + }, + { + "start": 18930.29, + "end": 18935.05, + "probability": 0.9419 + }, + { + "start": 18935.3, + "end": 18938.1, + "probability": 0.9949 + }, + { + "start": 18938.82, + "end": 18941.78, + "probability": 0.7675 + }, + { + "start": 18942.78, + "end": 18943.82, + "probability": 0.7942 + }, + { + "start": 18943.84, + "end": 18948.04, + "probability": 0.9376 + }, + { + "start": 18948.64, + "end": 18949.7, + "probability": 0.6072 + }, + { + "start": 18950.64, + "end": 18952.8, + "probability": 0.7168 + }, + { + "start": 18952.96, + "end": 18953.2, + "probability": 0.3957 + }, + { + "start": 18953.28, + "end": 18957.54, + "probability": 0.5209 + }, + { + "start": 18958.31, + "end": 18960.29, + "probability": 0.8318 + }, + { + "start": 18960.86, + "end": 18961.94, + "probability": 0.5262 + }, + { + "start": 18962.02, + "end": 18963.52, + "probability": 0.7642 + }, + { + "start": 18963.92, + "end": 18965.52, + "probability": 0.5128 + }, + { + "start": 18966.08, + "end": 18967.66, + "probability": 0.9438 + }, + { + "start": 18967.74, + "end": 18967.92, + "probability": 0.7534 + }, + { + "start": 18968.66, + "end": 18969.9, + "probability": 0.7038 + }, + { + "start": 18970.54, + "end": 18970.7, + "probability": 0.0002 + } + ], + "segments_count": 6441, + "words_count": 32773, + "avg_words_per_segment": 5.0882, + "avg_segment_duration": 2.0284, + "avg_words_per_minute": 102.8758, + "plenum_id": "70929", + "duration": 19114.11, + "title": null, + "plenum_date": "2018-02-07" +} \ No newline at end of file