diff --git "a/10031/metadata.json" "b/10031/metadata.json" new file mode 100644--- /dev/null +++ "b/10031/metadata.json" @@ -0,0 +1,48077 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10031", + "quality_score": 0.8822, + "per_segment_quality_scores": [ + { + "start": 41.06, + "end": 42.46, + "probability": 0.7478 + }, + { + "start": 43.6, + "end": 45.48, + "probability": 0.9102 + }, + { + "start": 46.76, + "end": 48.72, + "probability": 0.6846 + }, + { + "start": 50.38, + "end": 53.14, + "probability": 0.4436 + }, + { + "start": 54.36, + "end": 56.54, + "probability": 0.6805 + }, + { + "start": 56.74, + "end": 59.16, + "probability": 0.9914 + }, + { + "start": 60.22, + "end": 62.76, + "probability": 0.7254 + }, + { + "start": 63.66, + "end": 64.92, + "probability": 0.7432 + }, + { + "start": 65.02, + "end": 66.38, + "probability": 0.8219 + }, + { + "start": 66.48, + "end": 70.58, + "probability": 0.9797 + }, + { + "start": 70.58, + "end": 75.72, + "probability": 0.8481 + }, + { + "start": 76.52, + "end": 78.54, + "probability": 0.1384 + }, + { + "start": 79.16, + "end": 81.26, + "probability": 0.7478 + }, + { + "start": 81.78, + "end": 84.42, + "probability": 0.8353 + }, + { + "start": 84.8, + "end": 86.4, + "probability": 0.684 + }, + { + "start": 86.5, + "end": 87.84, + "probability": 0.8754 + }, + { + "start": 88.42, + "end": 92.68, + "probability": 0.7137 + }, + { + "start": 93.22, + "end": 94.02, + "probability": 0.9006 + }, + { + "start": 94.82, + "end": 96.65, + "probability": 0.5281 + }, + { + "start": 97.48, + "end": 99.62, + "probability": 0.9542 + }, + { + "start": 100.14, + "end": 103.04, + "probability": 0.7836 + }, + { + "start": 103.62, + "end": 104.38, + "probability": 0.7358 + }, + { + "start": 104.74, + "end": 108.32, + "probability": 0.9901 + }, + { + "start": 109.06, + "end": 112.82, + "probability": 0.8616 + }, + { + "start": 113.5, + "end": 115.94, + "probability": 0.502 + }, + { + "start": 119.13, + "end": 123.98, + "probability": 0.8015 + }, + { + "start": 124.36, + "end": 124.88, + "probability": 0.718 + }, + { + "start": 125.44, + "end": 125.9, + "probability": 0.6114 + }, + { + "start": 126.02, + "end": 126.86, + "probability": 0.7484 + }, + { + "start": 127.88, + "end": 130.22, + "probability": 0.8359 + }, + { + "start": 130.66, + "end": 133.6, + "probability": 0.9362 + }, + { + "start": 133.84, + "end": 134.58, + "probability": 0.7384 + }, + { + "start": 135.24, + "end": 142.24, + "probability": 0.928 + }, + { + "start": 143.08, + "end": 147.4, + "probability": 0.993 + }, + { + "start": 147.8, + "end": 153.8, + "probability": 0.9863 + }, + { + "start": 153.8, + "end": 160.78, + "probability": 0.9915 + }, + { + "start": 160.9, + "end": 162.16, + "probability": 0.7645 + }, + { + "start": 163.58, + "end": 170.92, + "probability": 0.8843 + }, + { + "start": 171.88, + "end": 175.0, + "probability": 0.9001 + }, + { + "start": 175.0, + "end": 179.04, + "probability": 0.9941 + }, + { + "start": 179.74, + "end": 184.08, + "probability": 0.8381 + }, + { + "start": 185.28, + "end": 185.88, + "probability": 0.7297 + }, + { + "start": 186.24, + "end": 192.32, + "probability": 0.9717 + }, + { + "start": 192.42, + "end": 195.4, + "probability": 0.9417 + }, + { + "start": 195.74, + "end": 198.94, + "probability": 0.7387 + }, + { + "start": 199.5, + "end": 204.74, + "probability": 0.4352 + }, + { + "start": 205.78, + "end": 211.78, + "probability": 0.975 + }, + { + "start": 212.22, + "end": 214.63, + "probability": 0.8911 + }, + { + "start": 215.66, + "end": 219.78, + "probability": 0.9248 + }, + { + "start": 220.56, + "end": 221.44, + "probability": 0.9905 + }, + { + "start": 222.34, + "end": 223.44, + "probability": 0.9707 + }, + { + "start": 223.52, + "end": 228.66, + "probability": 0.9007 + }, + { + "start": 228.74, + "end": 229.9, + "probability": 0.9238 + }, + { + "start": 234.76, + "end": 236.18, + "probability": 0.7121 + }, + { + "start": 238.98, + "end": 240.26, + "probability": 0.4175 + }, + { + "start": 240.34, + "end": 240.34, + "probability": 0.3359 + }, + { + "start": 240.34, + "end": 240.76, + "probability": 0.7778 + }, + { + "start": 240.86, + "end": 242.16, + "probability": 0.7878 + }, + { + "start": 243.16, + "end": 245.26, + "probability": 0.6938 + }, + { + "start": 245.3, + "end": 247.02, + "probability": 0.5751 + }, + { + "start": 247.06, + "end": 250.08, + "probability": 0.5515 + }, + { + "start": 250.08, + "end": 251.4, + "probability": 0.7378 + }, + { + "start": 251.86, + "end": 252.76, + "probability": 0.5194 + }, + { + "start": 252.86, + "end": 256.2, + "probability": 0.8888 + }, + { + "start": 256.66, + "end": 258.14, + "probability": 0.6963 + }, + { + "start": 258.24, + "end": 259.94, + "probability": 0.816 + }, + { + "start": 260.06, + "end": 263.6, + "probability": 0.9842 + }, + { + "start": 263.98, + "end": 265.7, + "probability": 0.9705 + }, + { + "start": 265.74, + "end": 266.58, + "probability": 0.8408 + }, + { + "start": 266.68, + "end": 270.58, + "probability": 0.8255 + }, + { + "start": 270.74, + "end": 270.96, + "probability": 0.7029 + }, + { + "start": 271.4, + "end": 273.14, + "probability": 0.7569 + }, + { + "start": 274.39, + "end": 278.14, + "probability": 0.7076 + }, + { + "start": 278.58, + "end": 280.2, + "probability": 0.6553 + }, + { + "start": 280.82, + "end": 282.78, + "probability": 0.7128 + }, + { + "start": 283.16, + "end": 283.94, + "probability": 0.6788 + }, + { + "start": 284.18, + "end": 286.62, + "probability": 0.7204 + }, + { + "start": 287.0, + "end": 289.92, + "probability": 0.6877 + }, + { + "start": 290.4, + "end": 298.16, + "probability": 0.8844 + }, + { + "start": 298.36, + "end": 299.94, + "probability": 0.5766 + }, + { + "start": 300.42, + "end": 302.0, + "probability": 0.8796 + }, + { + "start": 302.12, + "end": 302.62, + "probability": 0.621 + }, + { + "start": 302.68, + "end": 305.46, + "probability": 0.9058 + }, + { + "start": 306.02, + "end": 308.88, + "probability": 0.8417 + }, + { + "start": 310.0, + "end": 313.24, + "probability": 0.9497 + }, + { + "start": 313.54, + "end": 314.48, + "probability": 0.7561 + }, + { + "start": 314.6, + "end": 315.26, + "probability": 0.9561 + }, + { + "start": 315.42, + "end": 316.84, + "probability": 0.9066 + }, + { + "start": 317.26, + "end": 319.86, + "probability": 0.6742 + }, + { + "start": 319.86, + "end": 324.36, + "probability": 0.9722 + }, + { + "start": 325.1, + "end": 329.78, + "probability": 0.9027 + }, + { + "start": 330.36, + "end": 333.66, + "probability": 0.9572 + }, + { + "start": 334.26, + "end": 334.98, + "probability": 0.599 + }, + { + "start": 335.56, + "end": 337.78, + "probability": 0.6959 + }, + { + "start": 338.3, + "end": 340.44, + "probability": 0.9778 + }, + { + "start": 340.86, + "end": 341.52, + "probability": 0.63 + }, + { + "start": 341.72, + "end": 343.18, + "probability": 0.9303 + }, + { + "start": 346.58, + "end": 349.04, + "probability": 0.916 + }, + { + "start": 349.84, + "end": 352.02, + "probability": 0.5351 + }, + { + "start": 353.44, + "end": 354.8, + "probability": 0.8156 + }, + { + "start": 355.32, + "end": 356.6, + "probability": 0.8977 + }, + { + "start": 356.98, + "end": 358.94, + "probability": 0.904 + }, + { + "start": 359.16, + "end": 360.76, + "probability": 0.9912 + }, + { + "start": 361.48, + "end": 365.34, + "probability": 0.9334 + }, + { + "start": 365.88, + "end": 366.68, + "probability": 0.6516 + }, + { + "start": 367.66, + "end": 368.27, + "probability": 0.4514 + }, + { + "start": 369.04, + "end": 370.38, + "probability": 0.7943 + }, + { + "start": 372.54, + "end": 375.78, + "probability": 0.9442 + }, + { + "start": 377.52, + "end": 379.78, + "probability": 0.8542 + }, + { + "start": 380.12, + "end": 381.74, + "probability": 0.9456 + }, + { + "start": 382.42, + "end": 384.94, + "probability": 0.8595 + }, + { + "start": 385.1, + "end": 386.98, + "probability": 0.9878 + }, + { + "start": 387.1, + "end": 389.52, + "probability": 0.9055 + }, + { + "start": 390.24, + "end": 390.54, + "probability": 0.8132 + }, + { + "start": 390.82, + "end": 393.36, + "probability": 0.9492 + }, + { + "start": 393.36, + "end": 395.76, + "probability": 0.9314 + }, + { + "start": 396.08, + "end": 396.84, + "probability": 0.6678 + }, + { + "start": 397.26, + "end": 399.22, + "probability": 0.5903 + }, + { + "start": 399.22, + "end": 400.64, + "probability": 0.6892 + }, + { + "start": 401.22, + "end": 403.7, + "probability": 0.7627 + }, + { + "start": 404.56, + "end": 407.86, + "probability": 0.8193 + }, + { + "start": 408.28, + "end": 408.4, + "probability": 0.8016 + }, + { + "start": 408.42, + "end": 409.26, + "probability": 0.9771 + }, + { + "start": 409.52, + "end": 412.46, + "probability": 0.4136 + }, + { + "start": 412.96, + "end": 416.14, + "probability": 0.7143 + }, + { + "start": 416.28, + "end": 419.04, + "probability": 0.6195 + }, + { + "start": 419.68, + "end": 422.64, + "probability": 0.8467 + }, + { + "start": 423.24, + "end": 424.2, + "probability": 0.9051 + }, + { + "start": 424.92, + "end": 426.76, + "probability": 0.6011 + }, + { + "start": 429.93, + "end": 430.54, + "probability": 0.009 + }, + { + "start": 430.54, + "end": 431.28, + "probability": 0.1935 + }, + { + "start": 431.7, + "end": 432.34, + "probability": 0.9133 + }, + { + "start": 433.3, + "end": 435.06, + "probability": 0.8633 + }, + { + "start": 435.62, + "end": 437.22, + "probability": 0.7535 + }, + { + "start": 437.4, + "end": 440.78, + "probability": 0.8451 + }, + { + "start": 441.22, + "end": 441.58, + "probability": 0.4978 + }, + { + "start": 441.94, + "end": 443.8, + "probability": 0.9473 + }, + { + "start": 444.08, + "end": 444.18, + "probability": 0.9033 + }, + { + "start": 444.34, + "end": 445.4, + "probability": 0.9833 + }, + { + "start": 445.48, + "end": 448.74, + "probability": 0.6904 + }, + { + "start": 448.84, + "end": 453.38, + "probability": 0.9491 + }, + { + "start": 454.58, + "end": 456.26, + "probability": 0.6416 + }, + { + "start": 456.5, + "end": 459.72, + "probability": 0.7928 + }, + { + "start": 460.34, + "end": 460.78, + "probability": 0.3264 + }, + { + "start": 460.9, + "end": 464.1, + "probability": 0.916 + }, + { + "start": 465.08, + "end": 468.72, + "probability": 0.622 + }, + { + "start": 468.82, + "end": 469.73, + "probability": 0.809 + }, + { + "start": 470.2, + "end": 470.96, + "probability": 0.5313 + }, + { + "start": 471.86, + "end": 474.4, + "probability": 0.5868 + }, + { + "start": 477.58, + "end": 481.02, + "probability": 0.9928 + }, + { + "start": 481.18, + "end": 482.32, + "probability": 0.8769 + }, + { + "start": 482.86, + "end": 484.2, + "probability": 0.9652 + }, + { + "start": 484.3, + "end": 484.52, + "probability": 0.7179 + }, + { + "start": 484.6, + "end": 484.82, + "probability": 0.9075 + }, + { + "start": 484.9, + "end": 485.1, + "probability": 0.8025 + }, + { + "start": 485.18, + "end": 485.62, + "probability": 0.8151 + }, + { + "start": 485.92, + "end": 489.56, + "probability": 0.9946 + }, + { + "start": 490.94, + "end": 491.26, + "probability": 0.3176 + }, + { + "start": 491.28, + "end": 491.28, + "probability": 0.0339 + }, + { + "start": 491.28, + "end": 493.6, + "probability": 0.7955 + }, + { + "start": 493.64, + "end": 494.74, + "probability": 0.9603 + }, + { + "start": 495.98, + "end": 499.44, + "probability": 0.6447 + }, + { + "start": 499.64, + "end": 500.02, + "probability": 0.459 + }, + { + "start": 500.5, + "end": 501.82, + "probability": 0.9358 + }, + { + "start": 502.04, + "end": 502.44, + "probability": 0.4097 + }, + { + "start": 502.48, + "end": 503.2, + "probability": 0.2666 + }, + { + "start": 503.36, + "end": 503.74, + "probability": 0.5845 + }, + { + "start": 503.88, + "end": 504.84, + "probability": 0.6394 + }, + { + "start": 504.84, + "end": 506.2, + "probability": 0.7369 + }, + { + "start": 506.22, + "end": 510.82, + "probability": 0.9697 + }, + { + "start": 510.9, + "end": 512.68, + "probability": 0.9102 + }, + { + "start": 513.14, + "end": 515.07, + "probability": 0.9183 + }, + { + "start": 515.58, + "end": 516.04, + "probability": 0.9008 + }, + { + "start": 516.16, + "end": 519.24, + "probability": 0.9533 + }, + { + "start": 519.68, + "end": 521.31, + "probability": 0.9795 + }, + { + "start": 521.98, + "end": 524.76, + "probability": 0.9769 + }, + { + "start": 524.96, + "end": 526.36, + "probability": 0.3511 + }, + { + "start": 526.36, + "end": 527.41, + "probability": 0.9841 + }, + { + "start": 527.42, + "end": 528.95, + "probability": 0.866 + }, + { + "start": 529.82, + "end": 533.96, + "probability": 0.8761 + }, + { + "start": 534.02, + "end": 536.62, + "probability": 0.9874 + }, + { + "start": 536.68, + "end": 538.14, + "probability": 0.9972 + }, + { + "start": 538.92, + "end": 540.68, + "probability": 0.6741 + }, + { + "start": 540.74, + "end": 543.38, + "probability": 0.9484 + }, + { + "start": 543.7, + "end": 544.54, + "probability": 0.9558 + }, + { + "start": 544.6, + "end": 545.7, + "probability": 0.8246 + }, + { + "start": 546.02, + "end": 550.04, + "probability": 0.9951 + }, + { + "start": 550.38, + "end": 551.28, + "probability": 0.7918 + }, + { + "start": 551.78, + "end": 553.06, + "probability": 0.9844 + }, + { + "start": 553.54, + "end": 554.52, + "probability": 0.6906 + }, + { + "start": 554.56, + "end": 556.64, + "probability": 0.9316 + }, + { + "start": 556.64, + "end": 558.49, + "probability": 0.8435 + }, + { + "start": 558.56, + "end": 561.98, + "probability": 0.4814 + }, + { + "start": 562.06, + "end": 562.46, + "probability": 0.4365 + }, + { + "start": 563.09, + "end": 565.72, + "probability": 0.8466 + }, + { + "start": 566.4, + "end": 568.64, + "probability": 0.6205 + }, + { + "start": 568.64, + "end": 568.7, + "probability": 0.1807 + }, + { + "start": 568.7, + "end": 570.86, + "probability": 0.8551 + }, + { + "start": 570.88, + "end": 571.46, + "probability": 0.4376 + }, + { + "start": 572.24, + "end": 576.9, + "probability": 0.9697 + }, + { + "start": 577.24, + "end": 581.56, + "probability": 0.9949 + }, + { + "start": 581.86, + "end": 582.8, + "probability": 0.7713 + }, + { + "start": 582.82, + "end": 583.08, + "probability": 0.6338 + }, + { + "start": 583.08, + "end": 583.92, + "probability": 0.4816 + }, + { + "start": 584.18, + "end": 584.94, + "probability": 0.658 + }, + { + "start": 584.96, + "end": 586.52, + "probability": 0.9194 + }, + { + "start": 586.54, + "end": 588.26, + "probability": 0.9551 + }, + { + "start": 588.96, + "end": 590.36, + "probability": 0.5286 + }, + { + "start": 590.56, + "end": 590.56, + "probability": 0.2562 + }, + { + "start": 590.96, + "end": 591.96, + "probability": 0.9264 + }, + { + "start": 592.3, + "end": 593.32, + "probability": 0.9031 + }, + { + "start": 593.44, + "end": 594.32, + "probability": 0.8379 + }, + { + "start": 594.46, + "end": 597.24, + "probability": 0.9945 + }, + { + "start": 597.58, + "end": 599.14, + "probability": 0.9948 + }, + { + "start": 600.04, + "end": 601.06, + "probability": 0.7666 + }, + { + "start": 601.14, + "end": 602.14, + "probability": 0.5081 + }, + { + "start": 602.36, + "end": 604.06, + "probability": 0.8799 + }, + { + "start": 604.38, + "end": 605.04, + "probability": 0.9688 + }, + { + "start": 605.22, + "end": 607.58, + "probability": 0.9844 + }, + { + "start": 607.7, + "end": 608.06, + "probability": 0.9703 + }, + { + "start": 609.08, + "end": 611.81, + "probability": 0.9969 + }, + { + "start": 612.52, + "end": 613.38, + "probability": 0.8004 + }, + { + "start": 613.46, + "end": 614.94, + "probability": 0.8918 + }, + { + "start": 615.48, + "end": 616.6, + "probability": 0.9985 + }, + { + "start": 617.0, + "end": 620.02, + "probability": 0.9983 + }, + { + "start": 620.08, + "end": 620.7, + "probability": 0.1156 + }, + { + "start": 620.86, + "end": 624.3, + "probability": 0.9951 + }, + { + "start": 625.02, + "end": 625.57, + "probability": 0.9072 + }, + { + "start": 625.84, + "end": 626.56, + "probability": 0.6018 + }, + { + "start": 626.68, + "end": 628.06, + "probability": 0.9202 + }, + { + "start": 628.14, + "end": 630.52, + "probability": 0.9893 + }, + { + "start": 630.8, + "end": 631.96, + "probability": 0.9741 + }, + { + "start": 632.02, + "end": 633.36, + "probability": 0.5745 + }, + { + "start": 633.36, + "end": 635.84, + "probability": 0.6473 + }, + { + "start": 637.72, + "end": 642.98, + "probability": 0.3436 + }, + { + "start": 643.06, + "end": 645.72, + "probability": 0.7281 + }, + { + "start": 646.54, + "end": 649.48, + "probability": 0.7853 + }, + { + "start": 650.84, + "end": 652.32, + "probability": 0.4429 + }, + { + "start": 652.86, + "end": 653.94, + "probability": 0.1668 + }, + { + "start": 654.34, + "end": 660.44, + "probability": 0.9949 + }, + { + "start": 660.6, + "end": 661.02, + "probability": 0.7015 + }, + { + "start": 661.48, + "end": 663.66, + "probability": 0.9583 + }, + { + "start": 664.0, + "end": 667.34, + "probability": 0.998 + }, + { + "start": 667.74, + "end": 670.98, + "probability": 0.9971 + }, + { + "start": 671.41, + "end": 672.38, + "probability": 0.5518 + }, + { + "start": 672.62, + "end": 673.6, + "probability": 0.8747 + }, + { + "start": 673.86, + "end": 674.64, + "probability": 0.5126 + }, + { + "start": 674.74, + "end": 676.52, + "probability": 0.9536 + }, + { + "start": 676.98, + "end": 677.4, + "probability": 0.5228 + }, + { + "start": 678.0, + "end": 679.48, + "probability": 0.3641 + }, + { + "start": 679.56, + "end": 680.0, + "probability": 0.9285 + }, + { + "start": 681.5, + "end": 682.66, + "probability": 0.922 + }, + { + "start": 682.7, + "end": 685.54, + "probability": 0.988 + }, + { + "start": 685.54, + "end": 690.12, + "probability": 0.8071 + }, + { + "start": 690.86, + "end": 694.98, + "probability": 0.9971 + }, + { + "start": 695.16, + "end": 697.28, + "probability": 0.8978 + }, + { + "start": 697.94, + "end": 702.66, + "probability": 0.7757 + }, + { + "start": 703.24, + "end": 704.6, + "probability": 0.9971 + }, + { + "start": 705.02, + "end": 705.98, + "probability": 0.9373 + }, + { + "start": 706.7, + "end": 710.26, + "probability": 0.8677 + }, + { + "start": 710.36, + "end": 710.48, + "probability": 0.6746 + }, + { + "start": 710.58, + "end": 711.72, + "probability": 0.9638 + }, + { + "start": 712.46, + "end": 715.12, + "probability": 0.7583 + }, + { + "start": 715.16, + "end": 717.48, + "probability": 0.9857 + }, + { + "start": 717.58, + "end": 718.9, + "probability": 0.9287 + }, + { + "start": 719.56, + "end": 722.78, + "probability": 0.7886 + }, + { + "start": 723.42, + "end": 726.2, + "probability": 0.988 + }, + { + "start": 726.3, + "end": 729.26, + "probability": 0.891 + }, + { + "start": 730.24, + "end": 735.7, + "probability": 0.9868 + }, + { + "start": 736.04, + "end": 737.22, + "probability": 0.9985 + }, + { + "start": 737.38, + "end": 738.78, + "probability": 0.897 + }, + { + "start": 739.3, + "end": 740.18, + "probability": 0.9788 + }, + { + "start": 740.26, + "end": 742.46, + "probability": 0.9587 + }, + { + "start": 742.58, + "end": 743.36, + "probability": 0.7975 + }, + { + "start": 744.04, + "end": 747.48, + "probability": 0.9431 + }, + { + "start": 747.56, + "end": 747.92, + "probability": 0.7461 + }, + { + "start": 747.98, + "end": 749.1, + "probability": 0.5658 + }, + { + "start": 749.82, + "end": 751.54, + "probability": 0.8811 + }, + { + "start": 753.24, + "end": 753.98, + "probability": 0.5037 + }, + { + "start": 758.6, + "end": 760.98, + "probability": 0.7741 + }, + { + "start": 761.78, + "end": 765.02, + "probability": 0.8208 + }, + { + "start": 766.04, + "end": 766.9, + "probability": 0.9176 + }, + { + "start": 767.32, + "end": 769.14, + "probability": 0.9924 + }, + { + "start": 770.16, + "end": 772.66, + "probability": 0.9655 + }, + { + "start": 773.42, + "end": 774.65, + "probability": 0.4855 + }, + { + "start": 775.38, + "end": 776.5, + "probability": 0.9572 + }, + { + "start": 777.46, + "end": 778.88, + "probability": 0.9922 + }, + { + "start": 779.68, + "end": 781.04, + "probability": 0.9873 + }, + { + "start": 781.64, + "end": 787.24, + "probability": 0.9881 + }, + { + "start": 787.96, + "end": 788.78, + "probability": 0.8683 + }, + { + "start": 788.88, + "end": 789.9, + "probability": 0.824 + }, + { + "start": 790.16, + "end": 792.96, + "probability": 0.9683 + }, + { + "start": 792.96, + "end": 796.96, + "probability": 0.916 + }, + { + "start": 797.56, + "end": 801.06, + "probability": 0.946 + }, + { + "start": 801.18, + "end": 802.98, + "probability": 0.7794 + }, + { + "start": 803.54, + "end": 811.04, + "probability": 0.9868 + }, + { + "start": 811.76, + "end": 813.6, + "probability": 0.8413 + }, + { + "start": 814.34, + "end": 815.76, + "probability": 0.7119 + }, + { + "start": 817.41, + "end": 820.64, + "probability": 0.8489 + }, + { + "start": 821.2, + "end": 821.8, + "probability": 0.9701 + }, + { + "start": 821.88, + "end": 826.46, + "probability": 0.9209 + }, + { + "start": 827.16, + "end": 827.58, + "probability": 0.8853 + }, + { + "start": 827.92, + "end": 830.64, + "probability": 0.9854 + }, + { + "start": 831.08, + "end": 831.36, + "probability": 0.2907 + }, + { + "start": 831.74, + "end": 833.58, + "probability": 0.9968 + }, + { + "start": 834.4, + "end": 835.44, + "probability": 0.6912 + }, + { + "start": 836.12, + "end": 838.1, + "probability": 0.8003 + }, + { + "start": 838.52, + "end": 839.88, + "probability": 0.7125 + }, + { + "start": 839.98, + "end": 840.71, + "probability": 0.9395 + }, + { + "start": 841.42, + "end": 842.5, + "probability": 0.9766 + }, + { + "start": 844.1, + "end": 845.3, + "probability": 0.2061 + }, + { + "start": 845.3, + "end": 846.63, + "probability": 0.5678 + }, + { + "start": 847.54, + "end": 848.68, + "probability": 0.757 + }, + { + "start": 849.2, + "end": 850.74, + "probability": 0.9296 + }, + { + "start": 851.12, + "end": 853.6, + "probability": 0.9661 + }, + { + "start": 853.64, + "end": 854.12, + "probability": 0.9597 + }, + { + "start": 854.54, + "end": 857.98, + "probability": 0.8606 + }, + { + "start": 858.1, + "end": 859.04, + "probability": 0.6711 + }, + { + "start": 859.75, + "end": 862.28, + "probability": 0.9944 + }, + { + "start": 862.86, + "end": 865.36, + "probability": 0.9912 + }, + { + "start": 865.78, + "end": 866.9, + "probability": 0.9965 + }, + { + "start": 867.72, + "end": 869.18, + "probability": 0.8712 + }, + { + "start": 869.6, + "end": 872.14, + "probability": 0.896 + }, + { + "start": 872.68, + "end": 874.38, + "probability": 0.6084 + }, + { + "start": 874.66, + "end": 877.86, + "probability": 0.9827 + }, + { + "start": 877.86, + "end": 880.54, + "probability": 0.9327 + }, + { + "start": 881.06, + "end": 881.9, + "probability": 0.6252 + }, + { + "start": 882.06, + "end": 882.48, + "probability": 0.5079 + }, + { + "start": 882.52, + "end": 884.28, + "probability": 0.9246 + }, + { + "start": 884.42, + "end": 886.62, + "probability": 0.741 + }, + { + "start": 886.66, + "end": 893.18, + "probability": 0.9959 + }, + { + "start": 895.36, + "end": 898.4, + "probability": 0.5312 + }, + { + "start": 898.5, + "end": 899.32, + "probability": 0.7272 + }, + { + "start": 899.9, + "end": 901.34, + "probability": 0.858 + }, + { + "start": 902.0, + "end": 903.96, + "probability": 0.9824 + }, + { + "start": 904.2, + "end": 905.56, + "probability": 0.9388 + }, + { + "start": 906.74, + "end": 907.94, + "probability": 0.7602 + }, + { + "start": 909.2, + "end": 911.74, + "probability": 0.0221 + }, + { + "start": 911.74, + "end": 912.3, + "probability": 0.3021 + }, + { + "start": 912.85, + "end": 916.5, + "probability": 0.8347 + }, + { + "start": 917.02, + "end": 917.48, + "probability": 0.9759 + }, + { + "start": 918.0, + "end": 919.78, + "probability": 0.8312 + }, + { + "start": 919.9, + "end": 920.63, + "probability": 0.8101 + }, + { + "start": 921.02, + "end": 922.94, + "probability": 0.6258 + }, + { + "start": 923.56, + "end": 925.3, + "probability": 0.9664 + }, + { + "start": 925.4, + "end": 925.78, + "probability": 0.5123 + }, + { + "start": 925.82, + "end": 928.14, + "probability": 0.8152 + }, + { + "start": 928.34, + "end": 929.3, + "probability": 0.5971 + }, + { + "start": 929.3, + "end": 929.7, + "probability": 0.5175 + }, + { + "start": 929.72, + "end": 929.95, + "probability": 0.7017 + }, + { + "start": 931.04, + "end": 932.11, + "probability": 0.9708 + }, + { + "start": 932.86, + "end": 933.09, + "probability": 0.656 + }, + { + "start": 933.62, + "end": 936.96, + "probability": 0.9349 + }, + { + "start": 937.68, + "end": 942.02, + "probability": 0.9609 + }, + { + "start": 942.94, + "end": 945.5, + "probability": 0.8193 + }, + { + "start": 945.56, + "end": 946.5, + "probability": 0.8136 + }, + { + "start": 946.58, + "end": 947.14, + "probability": 0.5075 + }, + { + "start": 947.9, + "end": 950.02, + "probability": 0.9279 + }, + { + "start": 950.5, + "end": 950.92, + "probability": 0.5595 + }, + { + "start": 951.0, + "end": 952.04, + "probability": 0.9499 + }, + { + "start": 952.24, + "end": 954.06, + "probability": 0.9953 + }, + { + "start": 954.98, + "end": 957.42, + "probability": 0.6512 + }, + { + "start": 957.58, + "end": 958.96, + "probability": 0.7898 + }, + { + "start": 959.0, + "end": 960.02, + "probability": 0.9803 + }, + { + "start": 960.58, + "end": 961.88, + "probability": 0.8924 + }, + { + "start": 963.22, + "end": 970.34, + "probability": 0.9075 + }, + { + "start": 970.42, + "end": 972.8, + "probability": 0.9866 + }, + { + "start": 973.41, + "end": 974.84, + "probability": 0.805 + }, + { + "start": 975.52, + "end": 977.07, + "probability": 0.9753 + }, + { + "start": 977.8, + "end": 978.58, + "probability": 0.8886 + }, + { + "start": 979.78, + "end": 980.55, + "probability": 0.4101 + }, + { + "start": 980.88, + "end": 981.18, + "probability": 0.8272 + }, + { + "start": 981.74, + "end": 988.44, + "probability": 0.4649 + }, + { + "start": 988.76, + "end": 991.1, + "probability": 0.9447 + }, + { + "start": 992.18, + "end": 993.08, + "probability": 0.7172 + }, + { + "start": 993.86, + "end": 995.88, + "probability": 0.7524 + }, + { + "start": 997.16, + "end": 998.18, + "probability": 0.9453 + }, + { + "start": 998.62, + "end": 1003.54, + "probability": 0.7832 + }, + { + "start": 1003.6, + "end": 1004.52, + "probability": 0.7473 + }, + { + "start": 1004.6, + "end": 1005.18, + "probability": 0.913 + }, + { + "start": 1005.56, + "end": 1011.56, + "probability": 0.7631 + }, + { + "start": 1012.76, + "end": 1015.4, + "probability": 0.6351 + }, + { + "start": 1015.48, + "end": 1016.35, + "probability": 0.7728 + }, + { + "start": 1016.8, + "end": 1020.06, + "probability": 0.9572 + }, + { + "start": 1020.3, + "end": 1021.4, + "probability": 0.7523 + }, + { + "start": 1022.12, + "end": 1024.16, + "probability": 0.9682 + }, + { + "start": 1024.2, + "end": 1026.5, + "probability": 0.9827 + }, + { + "start": 1026.66, + "end": 1027.78, + "probability": 0.6273 + }, + { + "start": 1028.1, + "end": 1033.4, + "probability": 0.9965 + }, + { + "start": 1033.72, + "end": 1034.44, + "probability": 0.6664 + }, + { + "start": 1034.48, + "end": 1035.54, + "probability": 0.6639 + }, + { + "start": 1035.54, + "end": 1039.09, + "probability": 0.6923 + }, + { + "start": 1039.44, + "end": 1040.2, + "probability": 0.5581 + }, + { + "start": 1040.56, + "end": 1042.31, + "probability": 0.6368 + }, + { + "start": 1042.78, + "end": 1044.56, + "probability": 0.9961 + }, + { + "start": 1044.68, + "end": 1046.46, + "probability": 0.5617 + }, + { + "start": 1046.6, + "end": 1047.5, + "probability": 0.4994 + }, + { + "start": 1048.12, + "end": 1049.94, + "probability": 0.6742 + }, + { + "start": 1050.66, + "end": 1051.58, + "probability": 0.9643 + }, + { + "start": 1051.7, + "end": 1051.94, + "probability": 0.6661 + }, + { + "start": 1051.94, + "end": 1052.74, + "probability": 0.9917 + }, + { + "start": 1053.82, + "end": 1055.36, + "probability": 0.9544 + }, + { + "start": 1055.78, + "end": 1058.52, + "probability": 0.9155 + }, + { + "start": 1059.12, + "end": 1059.22, + "probability": 0.5043 + }, + { + "start": 1059.32, + "end": 1060.24, + "probability": 0.9606 + }, + { + "start": 1060.3, + "end": 1063.6, + "probability": 0.9318 + }, + { + "start": 1063.92, + "end": 1064.34, + "probability": 0.5947 + }, + { + "start": 1064.52, + "end": 1065.86, + "probability": 0.9644 + }, + { + "start": 1066.68, + "end": 1067.98, + "probability": 0.8912 + }, + { + "start": 1068.42, + "end": 1069.77, + "probability": 0.7084 + }, + { + "start": 1070.7, + "end": 1072.54, + "probability": 0.9926 + }, + { + "start": 1072.68, + "end": 1073.42, + "probability": 0.7725 + }, + { + "start": 1073.42, + "end": 1075.16, + "probability": 0.874 + }, + { + "start": 1075.24, + "end": 1075.79, + "probability": 0.7798 + }, + { + "start": 1076.48, + "end": 1079.73, + "probability": 0.9554 + }, + { + "start": 1080.6, + "end": 1082.44, + "probability": 0.9888 + }, + { + "start": 1082.48, + "end": 1085.58, + "probability": 0.9918 + }, + { + "start": 1086.52, + "end": 1087.02, + "probability": 0.6449 + }, + { + "start": 1087.28, + "end": 1090.24, + "probability": 0.7271 + }, + { + "start": 1090.66, + "end": 1093.54, + "probability": 0.8533 + }, + { + "start": 1094.1, + "end": 1095.9, + "probability": 0.4823 + }, + { + "start": 1096.34, + "end": 1098.36, + "probability": 0.6804 + }, + { + "start": 1098.86, + "end": 1102.78, + "probability": 0.9016 + }, + { + "start": 1102.9, + "end": 1103.94, + "probability": 0.9811 + }, + { + "start": 1104.52, + "end": 1105.48, + "probability": 0.5035 + }, + { + "start": 1106.12, + "end": 1106.34, + "probability": 0.0323 + }, + { + "start": 1106.34, + "end": 1106.34, + "probability": 0.2308 + }, + { + "start": 1106.34, + "end": 1107.1, + "probability": 0.4565 + }, + { + "start": 1107.18, + "end": 1108.15, + "probability": 0.9036 + }, + { + "start": 1108.56, + "end": 1109.74, + "probability": 0.816 + }, + { + "start": 1110.45, + "end": 1115.28, + "probability": 0.8081 + }, + { + "start": 1115.56, + "end": 1118.05, + "probability": 0.0734 + }, + { + "start": 1122.4, + "end": 1124.7, + "probability": 0.9815 + }, + { + "start": 1124.86, + "end": 1125.44, + "probability": 0.6513 + }, + { + "start": 1125.8, + "end": 1127.06, + "probability": 0.7826 + }, + { + "start": 1127.22, + "end": 1133.42, + "probability": 0.9398 + }, + { + "start": 1133.92, + "end": 1137.12, + "probability": 0.9647 + }, + { + "start": 1137.12, + "end": 1138.62, + "probability": 0.7478 + }, + { + "start": 1138.68, + "end": 1139.0, + "probability": 0.428 + }, + { + "start": 1139.76, + "end": 1142.64, + "probability": 0.7204 + }, + { + "start": 1142.78, + "end": 1144.76, + "probability": 0.6298 + }, + { + "start": 1144.98, + "end": 1146.94, + "probability": 0.8094 + }, + { + "start": 1147.18, + "end": 1152.12, + "probability": 0.3554 + }, + { + "start": 1152.12, + "end": 1153.47, + "probability": 0.1792 + }, + { + "start": 1156.76, + "end": 1160.9, + "probability": 0.9512 + }, + { + "start": 1162.18, + "end": 1162.98, + "probability": 0.457 + }, + { + "start": 1163.16, + "end": 1166.44, + "probability": 0.9356 + }, + { + "start": 1166.6, + "end": 1169.46, + "probability": 0.993 + }, + { + "start": 1169.46, + "end": 1172.18, + "probability": 0.9728 + }, + { + "start": 1172.62, + "end": 1173.7, + "probability": 0.997 + }, + { + "start": 1174.32, + "end": 1174.86, + "probability": 0.742 + }, + { + "start": 1174.94, + "end": 1177.24, + "probability": 0.9893 + }, + { + "start": 1177.72, + "end": 1180.08, + "probability": 0.9535 + }, + { + "start": 1180.66, + "end": 1184.28, + "probability": 0.8911 + }, + { + "start": 1185.78, + "end": 1186.48, + "probability": 0.6828 + }, + { + "start": 1187.06, + "end": 1189.64, + "probability": 0.9781 + }, + { + "start": 1191.56, + "end": 1193.16, + "probability": 0.4485 + }, + { + "start": 1193.22, + "end": 1195.46, + "probability": 0.5691 + }, + { + "start": 1195.88, + "end": 1197.68, + "probability": 0.8698 + }, + { + "start": 1197.74, + "end": 1199.12, + "probability": 0.9335 + }, + { + "start": 1199.56, + "end": 1201.4, + "probability": 0.9753 + }, + { + "start": 1203.02, + "end": 1204.94, + "probability": 0.4977 + }, + { + "start": 1205.24, + "end": 1207.6, + "probability": 0.9572 + }, + { + "start": 1208.54, + "end": 1209.1, + "probability": 0.5176 + }, + { + "start": 1210.42, + "end": 1212.1, + "probability": 0.7744 + }, + { + "start": 1213.1, + "end": 1216.66, + "probability": 0.9326 + }, + { + "start": 1217.22, + "end": 1217.72, + "probability": 0.7746 + }, + { + "start": 1219.17, + "end": 1219.77, + "probability": 0.0822 + }, + { + "start": 1219.86, + "end": 1222.62, + "probability": 0.932 + }, + { + "start": 1223.46, + "end": 1225.34, + "probability": 0.9545 + }, + { + "start": 1226.52, + "end": 1231.18, + "probability": 0.9651 + }, + { + "start": 1232.3, + "end": 1238.08, + "probability": 0.9979 + }, + { + "start": 1238.62, + "end": 1239.84, + "probability": 0.8148 + }, + { + "start": 1240.47, + "end": 1242.22, + "probability": 0.7759 + }, + { + "start": 1242.99, + "end": 1245.53, + "probability": 0.9482 + }, + { + "start": 1246.04, + "end": 1246.73, + "probability": 0.3686 + }, + { + "start": 1248.32, + "end": 1248.75, + "probability": 0.6545 + }, + { + "start": 1249.86, + "end": 1254.16, + "probability": 0.8236 + }, + { + "start": 1254.22, + "end": 1255.16, + "probability": 0.5317 + }, + { + "start": 1256.24, + "end": 1257.7, + "probability": 0.7536 + }, + { + "start": 1258.56, + "end": 1260.46, + "probability": 0.8955 + }, + { + "start": 1262.04, + "end": 1267.12, + "probability": 0.9323 + }, + { + "start": 1268.7, + "end": 1269.54, + "probability": 0.4606 + }, + { + "start": 1271.28, + "end": 1272.3, + "probability": 0.551 + }, + { + "start": 1272.84, + "end": 1273.42, + "probability": 0.5217 + }, + { + "start": 1274.76, + "end": 1278.46, + "probability": 0.9935 + }, + { + "start": 1279.68, + "end": 1281.86, + "probability": 0.9668 + }, + { + "start": 1282.92, + "end": 1288.8, + "probability": 0.9933 + }, + { + "start": 1289.94, + "end": 1290.34, + "probability": 0.9334 + }, + { + "start": 1290.54, + "end": 1294.28, + "probability": 0.9928 + }, + { + "start": 1294.66, + "end": 1296.52, + "probability": 0.9789 + }, + { + "start": 1297.24, + "end": 1299.8, + "probability": 0.9709 + }, + { + "start": 1300.6, + "end": 1303.38, + "probability": 0.9756 + }, + { + "start": 1304.16, + "end": 1307.12, + "probability": 0.9837 + }, + { + "start": 1307.12, + "end": 1312.66, + "probability": 0.9884 + }, + { + "start": 1312.92, + "end": 1314.0, + "probability": 0.9915 + }, + { + "start": 1314.1, + "end": 1315.62, + "probability": 0.9419 + }, + { + "start": 1316.92, + "end": 1319.18, + "probability": 0.929 + }, + { + "start": 1320.88, + "end": 1322.28, + "probability": 0.985 + }, + { + "start": 1322.98, + "end": 1324.08, + "probability": 0.7893 + }, + { + "start": 1324.18, + "end": 1327.58, + "probability": 0.9846 + }, + { + "start": 1327.66, + "end": 1330.34, + "probability": 0.9634 + }, + { + "start": 1330.5, + "end": 1331.18, + "probability": 0.9465 + }, + { + "start": 1331.32, + "end": 1332.08, + "probability": 0.9659 + }, + { + "start": 1332.16, + "end": 1333.04, + "probability": 0.4974 + }, + { + "start": 1333.14, + "end": 1336.14, + "probability": 0.6474 + }, + { + "start": 1336.4, + "end": 1336.9, + "probability": 0.2572 + }, + { + "start": 1337.6, + "end": 1341.92, + "probability": 0.829 + }, + { + "start": 1342.58, + "end": 1347.86, + "probability": 0.9873 + }, + { + "start": 1348.62, + "end": 1350.14, + "probability": 0.9939 + }, + { + "start": 1350.42, + "end": 1351.38, + "probability": 0.7352 + }, + { + "start": 1352.4, + "end": 1353.66, + "probability": 0.9262 + }, + { + "start": 1354.32, + "end": 1357.4, + "probability": 0.989 + }, + { + "start": 1360.68, + "end": 1364.0, + "probability": 0.9783 + }, + { + "start": 1365.1, + "end": 1365.73, + "probability": 0.9067 + }, + { + "start": 1366.16, + "end": 1367.0, + "probability": 0.0605 + }, + { + "start": 1367.12, + "end": 1371.32, + "probability": 0.5304 + }, + { + "start": 1372.62, + "end": 1385.12, + "probability": 0.9628 + }, + { + "start": 1386.64, + "end": 1387.88, + "probability": 0.5408 + }, + { + "start": 1388.42, + "end": 1391.56, + "probability": 0.9566 + }, + { + "start": 1391.96, + "end": 1394.28, + "probability": 0.9779 + }, + { + "start": 1394.84, + "end": 1395.14, + "probability": 0.2649 + }, + { + "start": 1395.14, + "end": 1395.9, + "probability": 0.6769 + }, + { + "start": 1396.28, + "end": 1397.93, + "probability": 0.9091 + }, + { + "start": 1398.42, + "end": 1399.18, + "probability": 0.7072 + }, + { + "start": 1399.64, + "end": 1401.4, + "probability": 0.8985 + }, + { + "start": 1401.6, + "end": 1403.4, + "probability": 0.9485 + }, + { + "start": 1403.46, + "end": 1404.56, + "probability": 0.9658 + }, + { + "start": 1404.6, + "end": 1406.82, + "probability": 0.795 + }, + { + "start": 1408.98, + "end": 1409.72, + "probability": 0.7658 + }, + { + "start": 1409.9, + "end": 1410.68, + "probability": 0.7502 + }, + { + "start": 1410.96, + "end": 1413.9, + "probability": 0.9885 + }, + { + "start": 1414.42, + "end": 1415.43, + "probability": 0.6128 + }, + { + "start": 1416.7, + "end": 1416.8, + "probability": 0.5669 + }, + { + "start": 1417.9, + "end": 1419.44, + "probability": 0.7305 + }, + { + "start": 1419.5, + "end": 1421.2, + "probability": 0.8022 + }, + { + "start": 1422.96, + "end": 1425.54, + "probability": 0.7643 + }, + { + "start": 1426.1, + "end": 1427.2, + "probability": 0.7621 + }, + { + "start": 1428.6, + "end": 1429.74, + "probability": 0.5281 + }, + { + "start": 1430.68, + "end": 1436.62, + "probability": 0.9443 + }, + { + "start": 1437.82, + "end": 1439.84, + "probability": 0.9971 + }, + { + "start": 1440.36, + "end": 1441.38, + "probability": 0.5824 + }, + { + "start": 1442.08, + "end": 1443.23, + "probability": 0.9805 + }, + { + "start": 1444.08, + "end": 1445.72, + "probability": 0.9492 + }, + { + "start": 1446.78, + "end": 1451.68, + "probability": 0.9857 + }, + { + "start": 1452.8, + "end": 1454.08, + "probability": 0.9753 + }, + { + "start": 1454.36, + "end": 1456.67, + "probability": 0.9893 + }, + { + "start": 1457.64, + "end": 1459.84, + "probability": 0.9225 + }, + { + "start": 1460.26, + "end": 1462.16, + "probability": 0.7178 + }, + { + "start": 1463.02, + "end": 1464.28, + "probability": 0.9661 + }, + { + "start": 1464.72, + "end": 1468.2, + "probability": 0.7842 + }, + { + "start": 1468.98, + "end": 1469.88, + "probability": 0.3223 + }, + { + "start": 1469.96, + "end": 1471.04, + "probability": 0.6895 + }, + { + "start": 1471.06, + "end": 1471.56, + "probability": 0.6049 + }, + { + "start": 1471.9, + "end": 1474.26, + "probability": 0.9946 + }, + { + "start": 1474.66, + "end": 1476.3, + "probability": 0.9658 + }, + { + "start": 1477.08, + "end": 1478.22, + "probability": 0.2879 + }, + { + "start": 1479.04, + "end": 1480.7, + "probability": 0.8438 + }, + { + "start": 1481.24, + "end": 1484.68, + "probability": 0.8496 + }, + { + "start": 1486.06, + "end": 1490.64, + "probability": 0.8705 + }, + { + "start": 1490.9, + "end": 1492.01, + "probability": 0.9868 + }, + { + "start": 1493.2, + "end": 1495.0, + "probability": 0.9852 + }, + { + "start": 1495.42, + "end": 1496.02, + "probability": 0.4798 + }, + { + "start": 1496.44, + "end": 1498.92, + "probability": 0.411 + }, + { + "start": 1500.16, + "end": 1501.65, + "probability": 0.939 + }, + { + "start": 1502.54, + "end": 1504.76, + "probability": 0.9971 + }, + { + "start": 1505.28, + "end": 1507.25, + "probability": 0.999 + }, + { + "start": 1507.96, + "end": 1509.64, + "probability": 0.7272 + }, + { + "start": 1510.42, + "end": 1514.06, + "probability": 0.9942 + }, + { + "start": 1514.36, + "end": 1518.42, + "probability": 0.9958 + }, + { + "start": 1518.86, + "end": 1521.22, + "probability": 0.7259 + }, + { + "start": 1521.7, + "end": 1525.12, + "probability": 0.4822 + }, + { + "start": 1525.56, + "end": 1526.5, + "probability": 0.3502 + }, + { + "start": 1526.52, + "end": 1528.34, + "probability": 0.3605 + }, + { + "start": 1528.76, + "end": 1532.62, + "probability": 0.9937 + }, + { + "start": 1532.98, + "end": 1535.76, + "probability": 0.5211 + }, + { + "start": 1536.78, + "end": 1538.78, + "probability": 0.695 + }, + { + "start": 1539.12, + "end": 1539.74, + "probability": 0.9702 + }, + { + "start": 1540.74, + "end": 1541.35, + "probability": 0.7144 + }, + { + "start": 1542.0, + "end": 1544.24, + "probability": 0.8484 + }, + { + "start": 1544.32, + "end": 1545.34, + "probability": 0.9543 + }, + { + "start": 1545.84, + "end": 1549.56, + "probability": 0.9425 + }, + { + "start": 1549.6, + "end": 1550.26, + "probability": 0.8813 + }, + { + "start": 1551.6, + "end": 1552.72, + "probability": 0.7407 + }, + { + "start": 1553.2, + "end": 1554.41, + "probability": 0.5385 + }, + { + "start": 1555.3, + "end": 1555.72, + "probability": 0.5099 + }, + { + "start": 1555.92, + "end": 1556.94, + "probability": 0.5525 + }, + { + "start": 1557.02, + "end": 1557.82, + "probability": 0.7688 + }, + { + "start": 1558.12, + "end": 1560.02, + "probability": 0.9668 + }, + { + "start": 1560.22, + "end": 1562.44, + "probability": 0.8665 + }, + { + "start": 1562.44, + "end": 1566.06, + "probability": 0.7188 + }, + { + "start": 1566.22, + "end": 1567.88, + "probability": 0.7675 + }, + { + "start": 1569.32, + "end": 1574.2, + "probability": 0.7602 + }, + { + "start": 1574.7, + "end": 1576.1, + "probability": 0.9493 + }, + { + "start": 1576.54, + "end": 1579.48, + "probability": 0.8879 + }, + { + "start": 1580.76, + "end": 1582.96, + "probability": 0.5569 + }, + { + "start": 1583.12, + "end": 1587.16, + "probability": 0.8557 + }, + { + "start": 1587.82, + "end": 1589.64, + "probability": 0.8369 + }, + { + "start": 1590.1, + "end": 1596.1, + "probability": 0.8878 + }, + { + "start": 1596.58, + "end": 1598.24, + "probability": 0.9631 + }, + { + "start": 1598.66, + "end": 1602.7, + "probability": 0.9902 + }, + { + "start": 1603.48, + "end": 1607.54, + "probability": 0.6705 + }, + { + "start": 1608.1, + "end": 1610.1, + "probability": 0.9329 + }, + { + "start": 1610.2, + "end": 1611.15, + "probability": 0.9006 + }, + { + "start": 1611.34, + "end": 1612.54, + "probability": 0.9777 + }, + { + "start": 1612.74, + "end": 1617.14, + "probability": 0.7394 + }, + { + "start": 1617.72, + "end": 1620.06, + "probability": 0.8526 + }, + { + "start": 1620.7, + "end": 1624.86, + "probability": 0.9181 + }, + { + "start": 1624.86, + "end": 1627.96, + "probability": 0.9847 + }, + { + "start": 1628.26, + "end": 1628.54, + "probability": 0.9492 + }, + { + "start": 1629.26, + "end": 1632.42, + "probability": 0.9696 + }, + { + "start": 1632.42, + "end": 1636.36, + "probability": 0.9643 + }, + { + "start": 1636.76, + "end": 1639.1, + "probability": 0.5683 + }, + { + "start": 1639.12, + "end": 1639.3, + "probability": 0.3449 + }, + { + "start": 1639.3, + "end": 1640.38, + "probability": 0.7372 + }, + { + "start": 1642.48, + "end": 1644.36, + "probability": 0.9528 + }, + { + "start": 1644.56, + "end": 1645.24, + "probability": 0.3698 + }, + { + "start": 1645.56, + "end": 1646.68, + "probability": 0.7174 + }, + { + "start": 1646.86, + "end": 1647.79, + "probability": 0.662 + }, + { + "start": 1651.39, + "end": 1654.34, + "probability": 0.5638 + }, + { + "start": 1654.48, + "end": 1655.98, + "probability": 0.8667 + }, + { + "start": 1656.22, + "end": 1657.76, + "probability": 0.8984 + }, + { + "start": 1658.62, + "end": 1660.36, + "probability": 0.6781 + }, + { + "start": 1660.36, + "end": 1664.42, + "probability": 0.8122 + }, + { + "start": 1664.84, + "end": 1667.42, + "probability": 0.7432 + }, + { + "start": 1667.54, + "end": 1668.5, + "probability": 0.7177 + }, + { + "start": 1669.28, + "end": 1673.02, + "probability": 0.9941 + }, + { + "start": 1673.98, + "end": 1674.78, + "probability": 0.8345 + }, + { + "start": 1674.9, + "end": 1675.48, + "probability": 0.6633 + }, + { + "start": 1675.58, + "end": 1678.12, + "probability": 0.9878 + }, + { + "start": 1678.58, + "end": 1679.14, + "probability": 0.6733 + }, + { + "start": 1679.64, + "end": 1682.76, + "probability": 0.9971 + }, + { + "start": 1683.4, + "end": 1684.38, + "probability": 0.6834 + }, + { + "start": 1684.46, + "end": 1684.48, + "probability": 0.3307 + }, + { + "start": 1684.48, + "end": 1685.28, + "probability": 0.41 + }, + { + "start": 1685.76, + "end": 1687.76, + "probability": 0.8137 + }, + { + "start": 1687.84, + "end": 1693.02, + "probability": 0.7838 + }, + { + "start": 1693.02, + "end": 1693.28, + "probability": 0.0346 + }, + { + "start": 1693.28, + "end": 1696.69, + "probability": 0.9744 + }, + { + "start": 1697.3, + "end": 1701.58, + "probability": 0.7242 + }, + { + "start": 1701.64, + "end": 1704.34, + "probability": 0.9592 + }, + { + "start": 1704.42, + "end": 1706.14, + "probability": 0.58 + }, + { + "start": 1707.12, + "end": 1709.64, + "probability": 0.9937 + }, + { + "start": 1709.66, + "end": 1712.54, + "probability": 0.9517 + }, + { + "start": 1713.4, + "end": 1715.68, + "probability": 0.201 + }, + { + "start": 1715.74, + "end": 1719.98, + "probability": 0.9865 + }, + { + "start": 1720.18, + "end": 1721.32, + "probability": 0.8749 + }, + { + "start": 1721.68, + "end": 1722.62, + "probability": 0.9951 + }, + { + "start": 1722.76, + "end": 1725.52, + "probability": 0.9888 + }, + { + "start": 1725.52, + "end": 1728.86, + "probability": 0.9845 + }, + { + "start": 1729.4, + "end": 1730.24, + "probability": 0.946 + }, + { + "start": 1730.3, + "end": 1730.88, + "probability": 0.5952 + }, + { + "start": 1730.98, + "end": 1731.36, + "probability": 0.8617 + }, + { + "start": 1731.46, + "end": 1736.52, + "probability": 0.9953 + }, + { + "start": 1736.62, + "end": 1738.96, + "probability": 0.9974 + }, + { + "start": 1739.12, + "end": 1739.56, + "probability": 0.5312 + }, + { + "start": 1739.66, + "end": 1742.24, + "probability": 0.777 + }, + { + "start": 1742.66, + "end": 1747.78, + "probability": 0.8989 + }, + { + "start": 1748.02, + "end": 1750.44, + "probability": 0.6279 + }, + { + "start": 1750.76, + "end": 1752.68, + "probability": 0.9556 + }, + { + "start": 1754.32, + "end": 1755.24, + "probability": 0.7044 + }, + { + "start": 1755.32, + "end": 1755.92, + "probability": 0.6777 + }, + { + "start": 1756.12, + "end": 1756.48, + "probability": 0.561 + }, + { + "start": 1756.66, + "end": 1760.42, + "probability": 0.6603 + }, + { + "start": 1760.56, + "end": 1762.94, + "probability": 0.8566 + }, + { + "start": 1763.5, + "end": 1765.31, + "probability": 0.9844 + }, + { + "start": 1766.44, + "end": 1766.54, + "probability": 0.1381 + }, + { + "start": 1766.92, + "end": 1768.7, + "probability": 0.97 + }, + { + "start": 1768.76, + "end": 1769.24, + "probability": 0.8298 + }, + { + "start": 1769.9, + "end": 1771.52, + "probability": 0.8169 + }, + { + "start": 1771.6, + "end": 1772.28, + "probability": 0.8863 + }, + { + "start": 1772.42, + "end": 1776.98, + "probability": 0.989 + }, + { + "start": 1777.1, + "end": 1779.84, + "probability": 0.8628 + }, + { + "start": 1779.84, + "end": 1783.32, + "probability": 0.9772 + }, + { + "start": 1783.44, + "end": 1785.01, + "probability": 0.6869 + }, + { + "start": 1785.24, + "end": 1785.28, + "probability": 0.9121 + }, + { + "start": 1785.9, + "end": 1787.36, + "probability": 0.6719 + }, + { + "start": 1787.84, + "end": 1792.32, + "probability": 0.9854 + }, + { + "start": 1792.68, + "end": 1793.52, + "probability": 0.9938 + }, + { + "start": 1794.72, + "end": 1795.92, + "probability": 0.7493 + }, + { + "start": 1797.64, + "end": 1798.69, + "probability": 0.7818 + }, + { + "start": 1803.7, + "end": 1805.06, + "probability": 0.7485 + }, + { + "start": 1806.76, + "end": 1807.66, + "probability": 0.6317 + }, + { + "start": 1809.22, + "end": 1810.2, + "probability": 0.9956 + }, + { + "start": 1813.46, + "end": 1818.24, + "probability": 0.9747 + }, + { + "start": 1820.34, + "end": 1823.54, + "probability": 0.9917 + }, + { + "start": 1824.7, + "end": 1825.3, + "probability": 0.951 + }, + { + "start": 1825.84, + "end": 1828.12, + "probability": 0.9754 + }, + { + "start": 1829.58, + "end": 1831.4, + "probability": 0.8601 + }, + { + "start": 1836.7, + "end": 1837.52, + "probability": 0.7334 + }, + { + "start": 1838.3, + "end": 1838.92, + "probability": 0.9993 + }, + { + "start": 1839.96, + "end": 1841.16, + "probability": 0.9976 + }, + { + "start": 1841.36, + "end": 1844.32, + "probability": 0.8017 + }, + { + "start": 1844.7, + "end": 1846.4, + "probability": 0.9824 + }, + { + "start": 1846.46, + "end": 1847.6, + "probability": 0.8824 + }, + { + "start": 1848.14, + "end": 1852.78, + "probability": 0.9939 + }, + { + "start": 1853.46, + "end": 1855.66, + "probability": 0.9052 + }, + { + "start": 1856.38, + "end": 1857.2, + "probability": 0.5766 + }, + { + "start": 1857.32, + "end": 1858.71, + "probability": 0.5577 + }, + { + "start": 1859.16, + "end": 1863.86, + "probability": 0.8579 + }, + { + "start": 1864.24, + "end": 1867.46, + "probability": 0.9889 + }, + { + "start": 1867.84, + "end": 1869.14, + "probability": 0.7539 + }, + { + "start": 1869.8, + "end": 1873.0, + "probability": 0.9978 + }, + { + "start": 1873.04, + "end": 1877.34, + "probability": 0.9512 + }, + { + "start": 1877.78, + "end": 1881.28, + "probability": 0.988 + }, + { + "start": 1881.92, + "end": 1883.62, + "probability": 0.9941 + }, + { + "start": 1884.64, + "end": 1887.24, + "probability": 0.9973 + }, + { + "start": 1888.02, + "end": 1891.8, + "probability": 0.9927 + }, + { + "start": 1892.16, + "end": 1894.38, + "probability": 0.899 + }, + { + "start": 1897.42, + "end": 1897.84, + "probability": 0.4687 + }, + { + "start": 1897.86, + "end": 1899.97, + "probability": 0.6712 + }, + { + "start": 1901.88, + "end": 1903.42, + "probability": 0.6044 + }, + { + "start": 1903.64, + "end": 1905.94, + "probability": 0.349 + }, + { + "start": 1906.28, + "end": 1907.18, + "probability": 0.1987 + }, + { + "start": 1907.38, + "end": 1909.64, + "probability": 0.4241 + }, + { + "start": 1909.68, + "end": 1909.94, + "probability": 0.0298 + }, + { + "start": 1910.06, + "end": 1910.94, + "probability": 0.3892 + }, + { + "start": 1911.24, + "end": 1911.84, + "probability": 0.674 + }, + { + "start": 1911.84, + "end": 1914.2, + "probability": 0.8368 + }, + { + "start": 1914.34, + "end": 1914.96, + "probability": 0.758 + }, + { + "start": 1915.1, + "end": 1915.78, + "probability": 0.5446 + }, + { + "start": 1916.04, + "end": 1920.1, + "probability": 0.9153 + }, + { + "start": 1920.38, + "end": 1921.18, + "probability": 0.3776 + }, + { + "start": 1921.2, + "end": 1925.4, + "probability": 0.9705 + }, + { + "start": 1927.14, + "end": 1928.42, + "probability": 0.0731 + }, + { + "start": 1929.14, + "end": 1929.66, + "probability": 0.5813 + }, + { + "start": 1929.76, + "end": 1930.34, + "probability": 0.4957 + }, + { + "start": 1930.34, + "end": 1930.74, + "probability": 0.3831 + }, + { + "start": 1930.94, + "end": 1934.74, + "probability": 0.241 + }, + { + "start": 1934.92, + "end": 1934.92, + "probability": 0.1236 + }, + { + "start": 1934.92, + "end": 1935.8, + "probability": 0.8937 + }, + { + "start": 1935.88, + "end": 1938.4, + "probability": 0.9945 + }, + { + "start": 1938.46, + "end": 1941.02, + "probability": 0.741 + }, + { + "start": 1941.22, + "end": 1941.98, + "probability": 0.4397 + }, + { + "start": 1941.98, + "end": 1946.03, + "probability": 0.9548 + }, + { + "start": 1946.28, + "end": 1947.5, + "probability": 0.9498 + }, + { + "start": 1947.62, + "end": 1949.76, + "probability": 0.838 + }, + { + "start": 1949.84, + "end": 1950.86, + "probability": 0.9107 + }, + { + "start": 1951.92, + "end": 1953.94, + "probability": 0.9016 + }, + { + "start": 1954.06, + "end": 1955.28, + "probability": 0.8324 + }, + { + "start": 1955.62, + "end": 1960.96, + "probability": 0.9427 + }, + { + "start": 1961.34, + "end": 1962.0, + "probability": 0.9696 + }, + { + "start": 1962.38, + "end": 1963.18, + "probability": 0.1561 + }, + { + "start": 1963.7, + "end": 1964.48, + "probability": 0.5168 + }, + { + "start": 1965.68, + "end": 1967.56, + "probability": 0.0166 + }, + { + "start": 1967.56, + "end": 1967.56, + "probability": 0.1199 + }, + { + "start": 1967.56, + "end": 1968.16, + "probability": 0.3871 + }, + { + "start": 1968.34, + "end": 1971.74, + "probability": 0.5524 + }, + { + "start": 1972.0, + "end": 1973.58, + "probability": 0.82 + }, + { + "start": 1974.46, + "end": 1974.76, + "probability": 0.013 + }, + { + "start": 1975.04, + "end": 1975.48, + "probability": 0.2425 + }, + { + "start": 1975.48, + "end": 1976.34, + "probability": 0.4115 + }, + { + "start": 1977.62, + "end": 1978.34, + "probability": 0.5249 + }, + { + "start": 1978.34, + "end": 1979.22, + "probability": 0.123 + }, + { + "start": 1979.34, + "end": 1980.0, + "probability": 0.3984 + }, + { + "start": 1980.14, + "end": 1982.32, + "probability": 0.4972 + }, + { + "start": 1985.02, + "end": 1987.4, + "probability": 0.9014 + }, + { + "start": 1987.4, + "end": 1991.58, + "probability": 0.6777 + }, + { + "start": 1995.08, + "end": 1995.4, + "probability": 0.1917 + }, + { + "start": 1995.54, + "end": 1997.6, + "probability": 0.7694 + }, + { + "start": 1998.7, + "end": 2002.08, + "probability": 0.8808 + }, + { + "start": 2002.08, + "end": 2008.3, + "probability": 0.2149 + }, + { + "start": 2009.22, + "end": 2009.34, + "probability": 0.0907 + }, + { + "start": 2009.34, + "end": 2009.34, + "probability": 0.0182 + }, + { + "start": 2009.34, + "end": 2009.34, + "probability": 0.0245 + }, + { + "start": 2009.34, + "end": 2010.76, + "probability": 0.1131 + }, + { + "start": 2011.7, + "end": 2016.39, + "probability": 0.9377 + }, + { + "start": 2016.68, + "end": 2022.36, + "probability": 0.8168 + }, + { + "start": 2022.62, + "end": 2024.72, + "probability": 0.8575 + }, + { + "start": 2025.24, + "end": 2031.36, + "probability": 0.9846 + }, + { + "start": 2031.94, + "end": 2034.44, + "probability": 0.9724 + }, + { + "start": 2034.82, + "end": 2036.67, + "probability": 0.9221 + }, + { + "start": 2036.96, + "end": 2038.5, + "probability": 0.5961 + }, + { + "start": 2038.58, + "end": 2039.58, + "probability": 0.9056 + }, + { + "start": 2039.88, + "end": 2040.32, + "probability": 0.666 + }, + { + "start": 2042.78, + "end": 2045.0, + "probability": 0.2235 + }, + { + "start": 2046.24, + "end": 2048.82, + "probability": 0.2316 + }, + { + "start": 2049.96, + "end": 2050.2, + "probability": 0.148 + }, + { + "start": 2050.2, + "end": 2050.55, + "probability": 0.348 + }, + { + "start": 2051.54, + "end": 2052.94, + "probability": 0.9932 + }, + { + "start": 2053.26, + "end": 2056.34, + "probability": 0.9058 + }, + { + "start": 2057.2, + "end": 2059.4, + "probability": 0.7821 + }, + { + "start": 2061.74, + "end": 2061.74, + "probability": 0.1707 + }, + { + "start": 2061.74, + "end": 2062.16, + "probability": 0.3053 + }, + { + "start": 2062.28, + "end": 2063.36, + "probability": 0.8165 + }, + { + "start": 2063.84, + "end": 2067.18, + "probability": 0.7868 + }, + { + "start": 2067.66, + "end": 2072.08, + "probability": 0.9922 + }, + { + "start": 2072.08, + "end": 2077.68, + "probability": 0.9959 + }, + { + "start": 2078.26, + "end": 2079.32, + "probability": 0.999 + }, + { + "start": 2080.36, + "end": 2081.23, + "probability": 0.8992 + }, + { + "start": 2082.06, + "end": 2084.18, + "probability": 0.9772 + }, + { + "start": 2084.84, + "end": 2086.02, + "probability": 0.9954 + }, + { + "start": 2086.38, + "end": 2086.6, + "probability": 0.6012 + }, + { + "start": 2086.86, + "end": 2087.52, + "probability": 0.8835 + }, + { + "start": 2087.6, + "end": 2092.14, + "probability": 0.987 + }, + { + "start": 2092.5, + "end": 2094.92, + "probability": 0.998 + }, + { + "start": 2095.56, + "end": 2096.43, + "probability": 0.7336 + }, + { + "start": 2096.56, + "end": 2098.24, + "probability": 0.9825 + }, + { + "start": 2098.82, + "end": 2099.42, + "probability": 0.9917 + }, + { + "start": 2099.94, + "end": 2103.06, + "probability": 0.9513 + }, + { + "start": 2103.14, + "end": 2103.96, + "probability": 0.7968 + }, + { + "start": 2104.68, + "end": 2105.42, + "probability": 0.6906 + }, + { + "start": 2105.88, + "end": 2107.46, + "probability": 0.0879 + }, + { + "start": 2107.46, + "end": 2108.96, + "probability": 0.2211 + }, + { + "start": 2109.08, + "end": 2110.68, + "probability": 0.6624 + }, + { + "start": 2110.82, + "end": 2112.66, + "probability": 0.7155 + }, + { + "start": 2112.9, + "end": 2118.04, + "probability": 0.5108 + }, + { + "start": 2118.16, + "end": 2118.8, + "probability": 0.2496 + }, + { + "start": 2119.08, + "end": 2123.1, + "probability": 0.0308 + }, + { + "start": 2123.28, + "end": 2124.08, + "probability": 0.4827 + }, + { + "start": 2124.14, + "end": 2124.83, + "probability": 0.0079 + }, + { + "start": 2125.3, + "end": 2127.46, + "probability": 0.2327 + }, + { + "start": 2127.54, + "end": 2127.95, + "probability": 0.5491 + }, + { + "start": 2128.8, + "end": 2131.7, + "probability": 0.7234 + }, + { + "start": 2131.78, + "end": 2133.6, + "probability": 0.5123 + }, + { + "start": 2133.78, + "end": 2135.24, + "probability": 0.0905 + }, + { + "start": 2136.81, + "end": 2136.88, + "probability": 0.0119 + }, + { + "start": 2136.88, + "end": 2137.2, + "probability": 0.1309 + }, + { + "start": 2137.28, + "end": 2139.24, + "probability": 0.5912 + }, + { + "start": 2139.36, + "end": 2141.44, + "probability": 0.9375 + }, + { + "start": 2141.5, + "end": 2142.7, + "probability": 0.9717 + }, + { + "start": 2142.88, + "end": 2144.26, + "probability": 0.7449 + }, + { + "start": 2144.28, + "end": 2146.0, + "probability": 0.8335 + }, + { + "start": 2146.22, + "end": 2147.8, + "probability": 0.9468 + }, + { + "start": 2148.06, + "end": 2149.62, + "probability": 0.5582 + }, + { + "start": 2149.94, + "end": 2151.72, + "probability": 0.8413 + }, + { + "start": 2152.34, + "end": 2152.98, + "probability": 0.4638 + }, + { + "start": 2153.18, + "end": 2154.85, + "probability": 0.9429 + }, + { + "start": 2155.24, + "end": 2155.24, + "probability": 0.3831 + }, + { + "start": 2155.3, + "end": 2159.38, + "probability": 0.9661 + }, + { + "start": 2159.38, + "end": 2163.04, + "probability": 0.7782 + }, + { + "start": 2163.62, + "end": 2165.85, + "probability": 0.3593 + }, + { + "start": 2166.44, + "end": 2166.52, + "probability": 0.1564 + }, + { + "start": 2171.16, + "end": 2171.66, + "probability": 0.4796 + }, + { + "start": 2171.66, + "end": 2174.04, + "probability": 0.5662 + }, + { + "start": 2174.12, + "end": 2175.28, + "probability": 0.7577 + }, + { + "start": 2175.66, + "end": 2177.42, + "probability": 0.9854 + }, + { + "start": 2177.72, + "end": 2178.42, + "probability": 0.8627 + }, + { + "start": 2178.54, + "end": 2181.96, + "probability": 0.9804 + }, + { + "start": 2182.2, + "end": 2183.2, + "probability": 0.748 + }, + { + "start": 2183.32, + "end": 2185.5, + "probability": 0.9893 + }, + { + "start": 2185.64, + "end": 2186.98, + "probability": 0.9294 + }, + { + "start": 2187.14, + "end": 2188.46, + "probability": 0.811 + }, + { + "start": 2188.46, + "end": 2189.22, + "probability": 0.0584 + }, + { + "start": 2189.5, + "end": 2190.66, + "probability": 0.2169 + }, + { + "start": 2190.68, + "end": 2195.12, + "probability": 0.9881 + }, + { + "start": 2195.26, + "end": 2196.46, + "probability": 0.5885 + }, + { + "start": 2197.24, + "end": 2198.42, + "probability": 0.6218 + }, + { + "start": 2199.28, + "end": 2202.46, + "probability": 0.9684 + }, + { + "start": 2202.56, + "end": 2203.12, + "probability": 0.6416 + }, + { + "start": 2203.12, + "end": 2203.86, + "probability": 0.9702 + }, + { + "start": 2204.2, + "end": 2207.16, + "probability": 0.7798 + }, + { + "start": 2208.3, + "end": 2209.34, + "probability": 0.6126 + }, + { + "start": 2210.0, + "end": 2210.66, + "probability": 0.8876 + }, + { + "start": 2210.92, + "end": 2213.62, + "probability": 0.9912 + }, + { + "start": 2215.0, + "end": 2220.08, + "probability": 0.9938 + }, + { + "start": 2221.02, + "end": 2221.84, + "probability": 0.7943 + }, + { + "start": 2222.72, + "end": 2225.33, + "probability": 0.9799 + }, + { + "start": 2225.98, + "end": 2228.96, + "probability": 0.6435 + }, + { + "start": 2229.88, + "end": 2231.02, + "probability": 0.9251 + }, + { + "start": 2231.96, + "end": 2233.3, + "probability": 0.9542 + }, + { + "start": 2234.14, + "end": 2237.94, + "probability": 0.8726 + }, + { + "start": 2238.42, + "end": 2239.26, + "probability": 0.9637 + }, + { + "start": 2239.5, + "end": 2240.12, + "probability": 0.7445 + }, + { + "start": 2240.32, + "end": 2242.0, + "probability": 0.9953 + }, + { + "start": 2243.08, + "end": 2247.18, + "probability": 0.9771 + }, + { + "start": 2247.86, + "end": 2250.28, + "probability": 0.8062 + }, + { + "start": 2250.84, + "end": 2251.98, + "probability": 0.915 + }, + { + "start": 2252.74, + "end": 2254.06, + "probability": 0.9989 + }, + { + "start": 2254.86, + "end": 2256.7, + "probability": 0.9285 + }, + { + "start": 2257.38, + "end": 2260.37, + "probability": 0.9616 + }, + { + "start": 2261.2, + "end": 2264.62, + "probability": 0.9827 + }, + { + "start": 2265.44, + "end": 2267.76, + "probability": 0.9063 + }, + { + "start": 2267.98, + "end": 2269.96, + "probability": 0.9307 + }, + { + "start": 2270.06, + "end": 2270.48, + "probability": 0.9227 + }, + { + "start": 2271.4, + "end": 2275.48, + "probability": 0.9916 + }, + { + "start": 2275.58, + "end": 2276.52, + "probability": 0.7726 + }, + { + "start": 2276.7, + "end": 2279.58, + "probability": 0.8653 + }, + { + "start": 2280.0, + "end": 2282.54, + "probability": 0.9961 + }, + { + "start": 2282.54, + "end": 2285.74, + "probability": 0.9362 + }, + { + "start": 2285.94, + "end": 2286.77, + "probability": 0.9932 + }, + { + "start": 2287.56, + "end": 2291.2, + "probability": 0.9976 + }, + { + "start": 2292.46, + "end": 2295.24, + "probability": 0.8146 + }, + { + "start": 2295.69, + "end": 2297.64, + "probability": 0.8877 + }, + { + "start": 2298.26, + "end": 2299.04, + "probability": 0.5792 + }, + { + "start": 2299.12, + "end": 2300.9, + "probability": 0.8961 + }, + { + "start": 2301.18, + "end": 2302.86, + "probability": 0.9918 + }, + { + "start": 2303.26, + "end": 2305.2, + "probability": 0.8915 + }, + { + "start": 2305.36, + "end": 2307.24, + "probability": 0.737 + }, + { + "start": 2307.4, + "end": 2309.42, + "probability": 0.5621 + }, + { + "start": 2310.1, + "end": 2312.34, + "probability": 0.8306 + }, + { + "start": 2312.46, + "end": 2313.36, + "probability": 0.8551 + }, + { + "start": 2313.56, + "end": 2316.84, + "probability": 0.9927 + }, + { + "start": 2317.04, + "end": 2318.3, + "probability": 0.9667 + }, + { + "start": 2318.5, + "end": 2319.1, + "probability": 0.7218 + }, + { + "start": 2319.22, + "end": 2321.74, + "probability": 0.9385 + }, + { + "start": 2322.08, + "end": 2322.42, + "probability": 0.7743 + }, + { + "start": 2322.72, + "end": 2324.86, + "probability": 0.9814 + }, + { + "start": 2325.6, + "end": 2326.46, + "probability": 0.9812 + }, + { + "start": 2326.54, + "end": 2327.24, + "probability": 0.9876 + }, + { + "start": 2327.32, + "end": 2327.94, + "probability": 0.5975 + }, + { + "start": 2328.22, + "end": 2329.4, + "probability": 0.9222 + }, + { + "start": 2330.4, + "end": 2332.69, + "probability": 0.9889 + }, + { + "start": 2333.0, + "end": 2334.54, + "probability": 0.7688 + }, + { + "start": 2335.08, + "end": 2336.92, + "probability": 0.2758 + }, + { + "start": 2336.94, + "end": 2336.94, + "probability": 0.2645 + }, + { + "start": 2337.2, + "end": 2339.68, + "probability": 0.7098 + }, + { + "start": 2339.68, + "end": 2339.84, + "probability": 0.2527 + }, + { + "start": 2339.98, + "end": 2340.58, + "probability": 0.3162 + }, + { + "start": 2340.76, + "end": 2341.44, + "probability": 0.4411 + }, + { + "start": 2341.52, + "end": 2343.18, + "probability": 0.9976 + }, + { + "start": 2343.3, + "end": 2343.48, + "probability": 0.3826 + }, + { + "start": 2343.52, + "end": 2343.76, + "probability": 0.5653 + }, + { + "start": 2343.8, + "end": 2344.62, + "probability": 0.9539 + }, + { + "start": 2344.92, + "end": 2346.34, + "probability": 0.9064 + }, + { + "start": 2347.5, + "end": 2352.58, + "probability": 0.8658 + }, + { + "start": 2353.2, + "end": 2354.12, + "probability": 0.6639 + }, + { + "start": 2354.26, + "end": 2358.94, + "probability": 0.9106 + }, + { + "start": 2359.66, + "end": 2361.32, + "probability": 0.9366 + }, + { + "start": 2361.42, + "end": 2363.08, + "probability": 0.9966 + }, + { + "start": 2363.28, + "end": 2365.23, + "probability": 0.9575 + }, + { + "start": 2365.84, + "end": 2366.8, + "probability": 0.9976 + }, + { + "start": 2366.94, + "end": 2367.54, + "probability": 0.2536 + }, + { + "start": 2367.62, + "end": 2368.28, + "probability": 0.9337 + }, + { + "start": 2368.36, + "end": 2369.21, + "probability": 0.7897 + }, + { + "start": 2369.92, + "end": 2371.56, + "probability": 0.9766 + }, + { + "start": 2371.62, + "end": 2373.19, + "probability": 0.9612 + }, + { + "start": 2373.34, + "end": 2375.58, + "probability": 0.9986 + }, + { + "start": 2376.28, + "end": 2376.8, + "probability": 0.7564 + }, + { + "start": 2377.9, + "end": 2380.36, + "probability": 0.8337 + }, + { + "start": 2380.44, + "end": 2381.38, + "probability": 0.9377 + }, + { + "start": 2381.44, + "end": 2383.12, + "probability": 0.6395 + }, + { + "start": 2383.9, + "end": 2387.22, + "probability": 0.9816 + }, + { + "start": 2387.22, + "end": 2389.58, + "probability": 0.7697 + }, + { + "start": 2390.54, + "end": 2392.42, + "probability": 0.9351 + }, + { + "start": 2392.56, + "end": 2393.88, + "probability": 0.9937 + }, + { + "start": 2394.32, + "end": 2396.38, + "probability": 0.4922 + }, + { + "start": 2396.94, + "end": 2398.08, + "probability": 0.6815 + }, + { + "start": 2398.68, + "end": 2398.68, + "probability": 0.1022 + }, + { + "start": 2400.24, + "end": 2401.68, + "probability": 0.5306 + }, + { + "start": 2402.16, + "end": 2405.8, + "probability": 0.8824 + }, + { + "start": 2405.9, + "end": 2407.0, + "probability": 0.6419 + }, + { + "start": 2407.42, + "end": 2409.18, + "probability": 0.99 + }, + { + "start": 2409.9, + "end": 2413.62, + "probability": 0.9216 + }, + { + "start": 2414.16, + "end": 2418.31, + "probability": 0.7441 + }, + { + "start": 2419.38, + "end": 2421.52, + "probability": 0.5665 + }, + { + "start": 2423.0, + "end": 2425.08, + "probability": 0.9932 + }, + { + "start": 2425.9, + "end": 2427.0, + "probability": 0.7438 + }, + { + "start": 2427.0, + "end": 2428.62, + "probability": 0.4413 + }, + { + "start": 2428.62, + "end": 2430.04, + "probability": 0.3384 + }, + { + "start": 2431.86, + "end": 2434.04, + "probability": 0.6469 + }, + { + "start": 2434.38, + "end": 2438.02, + "probability": 0.6637 + }, + { + "start": 2438.16, + "end": 2444.62, + "probability": 0.9859 + }, + { + "start": 2444.62, + "end": 2448.28, + "probability": 0.9937 + }, + { + "start": 2449.14, + "end": 2449.6, + "probability": 0.5832 + }, + { + "start": 2449.98, + "end": 2450.64, + "probability": 0.8022 + }, + { + "start": 2450.66, + "end": 2451.14, + "probability": 0.933 + }, + { + "start": 2451.38, + "end": 2453.82, + "probability": 0.9465 + }, + { + "start": 2454.18, + "end": 2454.24, + "probability": 0.0097 + }, + { + "start": 2454.82, + "end": 2455.6, + "probability": 0.7132 + }, + { + "start": 2455.72, + "end": 2457.12, + "probability": 0.7366 + }, + { + "start": 2457.12, + "end": 2458.28, + "probability": 0.776 + }, + { + "start": 2459.18, + "end": 2461.4, + "probability": 0.4661 + }, + { + "start": 2461.4, + "end": 2462.52, + "probability": 0.8857 + }, + { + "start": 2462.78, + "end": 2462.92, + "probability": 0.6943 + }, + { + "start": 2462.92, + "end": 2463.94, + "probability": 0.7782 + }, + { + "start": 2463.96, + "end": 2464.54, + "probability": 0.7013 + }, + { + "start": 2464.54, + "end": 2465.44, + "probability": 0.5204 + }, + { + "start": 2465.6, + "end": 2468.18, + "probability": 0.611 + }, + { + "start": 2469.27, + "end": 2471.66, + "probability": 0.5464 + }, + { + "start": 2471.76, + "end": 2472.08, + "probability": 0.3439 + }, + { + "start": 2472.1, + "end": 2476.26, + "probability": 0.9294 + }, + { + "start": 2476.96, + "end": 2477.42, + "probability": 0.3829 + }, + { + "start": 2477.68, + "end": 2478.65, + "probability": 0.9617 + }, + { + "start": 2479.08, + "end": 2480.6, + "probability": 0.8745 + }, + { + "start": 2480.64, + "end": 2482.16, + "probability": 0.9108 + }, + { + "start": 2482.64, + "end": 2483.12, + "probability": 0.5956 + }, + { + "start": 2483.3, + "end": 2484.32, + "probability": 0.5156 + }, + { + "start": 2484.32, + "end": 2485.76, + "probability": 0.9396 + }, + { + "start": 2486.84, + "end": 2487.84, + "probability": 0.7338 + }, + { + "start": 2487.94, + "end": 2488.42, + "probability": 0.5591 + }, + { + "start": 2488.68, + "end": 2491.22, + "probability": 0.6421 + }, + { + "start": 2491.22, + "end": 2495.56, + "probability": 0.8641 + }, + { + "start": 2495.86, + "end": 2497.12, + "probability": 0.4355 + }, + { + "start": 2498.04, + "end": 2498.88, + "probability": 0.6292 + }, + { + "start": 2499.04, + "end": 2499.32, + "probability": 0.5006 + }, + { + "start": 2500.24, + "end": 2503.16, + "probability": 0.5665 + }, + { + "start": 2503.4, + "end": 2508.2, + "probability": 0.988 + }, + { + "start": 2508.7, + "end": 2510.48, + "probability": 0.9626 + }, + { + "start": 2513.0, + "end": 2513.64, + "probability": 0.594 + }, + { + "start": 2513.8, + "end": 2515.34, + "probability": 0.9954 + }, + { + "start": 2515.4, + "end": 2516.26, + "probability": 0.6505 + }, + { + "start": 2516.52, + "end": 2517.78, + "probability": 0.8 + }, + { + "start": 2518.54, + "end": 2519.18, + "probability": 0.8862 + }, + { + "start": 2521.06, + "end": 2526.66, + "probability": 0.952 + }, + { + "start": 2527.48, + "end": 2529.6, + "probability": 0.9714 + }, + { + "start": 2530.68, + "end": 2532.14, + "probability": 0.9951 + }, + { + "start": 2532.82, + "end": 2535.46, + "probability": 0.9157 + }, + { + "start": 2536.14, + "end": 2538.04, + "probability": 0.9639 + }, + { + "start": 2539.5, + "end": 2541.54, + "probability": 0.9574 + }, + { + "start": 2542.16, + "end": 2545.38, + "probability": 0.974 + }, + { + "start": 2546.84, + "end": 2552.48, + "probability": 0.9111 + }, + { + "start": 2553.0, + "end": 2558.46, + "probability": 0.7454 + }, + { + "start": 2559.16, + "end": 2565.1, + "probability": 0.9269 + }, + { + "start": 2566.34, + "end": 2567.88, + "probability": 0.8936 + }, + { + "start": 2568.6, + "end": 2573.08, + "probability": 0.9868 + }, + { + "start": 2573.68, + "end": 2575.66, + "probability": 0.6924 + }, + { + "start": 2577.86, + "end": 2580.7, + "probability": 0.8284 + }, + { + "start": 2581.4, + "end": 2585.2, + "probability": 0.9578 + }, + { + "start": 2586.42, + "end": 2590.06, + "probability": 0.8312 + }, + { + "start": 2590.56, + "end": 2593.22, + "probability": 0.815 + }, + { + "start": 2594.22, + "end": 2596.82, + "probability": 0.8678 + }, + { + "start": 2597.4, + "end": 2599.54, + "probability": 0.916 + }, + { + "start": 2600.76, + "end": 2605.46, + "probability": 0.896 + }, + { + "start": 2606.66, + "end": 2606.76, + "probability": 0.1666 + }, + { + "start": 2608.8, + "end": 2609.9, + "probability": 0.109 + }, + { + "start": 2609.92, + "end": 2611.39, + "probability": 0.4361 + }, + { + "start": 2612.02, + "end": 2613.14, + "probability": 0.2972 + }, + { + "start": 2613.26, + "end": 2614.32, + "probability": 0.7641 + }, + { + "start": 2615.89, + "end": 2623.12, + "probability": 0.9892 + }, + { + "start": 2623.88, + "end": 2627.9, + "probability": 0.7748 + }, + { + "start": 2628.96, + "end": 2629.68, + "probability": 0.9877 + }, + { + "start": 2630.36, + "end": 2632.76, + "probability": 0.9792 + }, + { + "start": 2633.34, + "end": 2636.76, + "probability": 0.7662 + }, + { + "start": 2637.7, + "end": 2640.86, + "probability": 0.5593 + }, + { + "start": 2641.76, + "end": 2643.5, + "probability": 0.9333 + }, + { + "start": 2644.06, + "end": 2646.88, + "probability": 0.5709 + }, + { + "start": 2647.18, + "end": 2647.48, + "probability": 0.923 + }, + { + "start": 2648.14, + "end": 2649.12, + "probability": 0.7627 + }, + { + "start": 2649.92, + "end": 2654.06, + "probability": 0.6936 + }, + { + "start": 2654.34, + "end": 2657.04, + "probability": 0.6656 + }, + { + "start": 2657.24, + "end": 2659.58, + "probability": 0.9409 + }, + { + "start": 2660.1, + "end": 2665.24, + "probability": 0.9802 + }, + { + "start": 2665.62, + "end": 2667.06, + "probability": 0.6916 + }, + { + "start": 2667.58, + "end": 2668.46, + "probability": 0.975 + }, + { + "start": 2669.12, + "end": 2670.5, + "probability": 0.7198 + }, + { + "start": 2671.42, + "end": 2678.32, + "probability": 0.9543 + }, + { + "start": 2678.76, + "end": 2682.06, + "probability": 0.8208 + }, + { + "start": 2682.38, + "end": 2683.54, + "probability": 0.8987 + }, + { + "start": 2684.08, + "end": 2685.42, + "probability": 0.7896 + }, + { + "start": 2685.68, + "end": 2686.92, + "probability": 0.8846 + }, + { + "start": 2687.38, + "end": 2688.8, + "probability": 0.9114 + }, + { + "start": 2689.44, + "end": 2689.88, + "probability": 0.7793 + }, + { + "start": 2689.96, + "end": 2695.8, + "probability": 0.727 + }, + { + "start": 2696.74, + "end": 2699.78, + "probability": 0.8184 + }, + { + "start": 2699.88, + "end": 2701.66, + "probability": 0.8387 + }, + { + "start": 2701.98, + "end": 2704.42, + "probability": 0.9578 + }, + { + "start": 2705.04, + "end": 2706.52, + "probability": 0.8532 + }, + { + "start": 2706.58, + "end": 2707.08, + "probability": 0.9203 + }, + { + "start": 2707.14, + "end": 2707.9, + "probability": 0.7181 + }, + { + "start": 2708.14, + "end": 2716.86, + "probability": 0.8556 + }, + { + "start": 2717.34, + "end": 2721.62, + "probability": 0.929 + }, + { + "start": 2721.96, + "end": 2723.12, + "probability": 0.8048 + }, + { + "start": 2723.22, + "end": 2723.84, + "probability": 0.6466 + }, + { + "start": 2724.24, + "end": 2724.54, + "probability": 0.4824 + }, + { + "start": 2724.66, + "end": 2727.56, + "probability": 0.944 + }, + { + "start": 2727.96, + "end": 2730.6, + "probability": 0.3975 + }, + { + "start": 2730.84, + "end": 2731.56, + "probability": 0.8017 + }, + { + "start": 2731.88, + "end": 2737.1, + "probability": 0.9789 + }, + { + "start": 2737.8, + "end": 2737.86, + "probability": 0.2572 + }, + { + "start": 2737.86, + "end": 2738.48, + "probability": 0.5743 + }, + { + "start": 2743.14, + "end": 2744.08, + "probability": 0.5833 + }, + { + "start": 2744.64, + "end": 2744.82, + "probability": 0.7222 + }, + { + "start": 2749.7, + "end": 2751.06, + "probability": 0.4649 + }, + { + "start": 2751.16, + "end": 2751.86, + "probability": 0.868 + }, + { + "start": 2752.0, + "end": 2755.3, + "probability": 0.916 + }, + { + "start": 2756.04, + "end": 2760.12, + "probability": 0.9846 + }, + { + "start": 2761.24, + "end": 2764.14, + "probability": 0.7396 + }, + { + "start": 2764.36, + "end": 2766.68, + "probability": 0.7573 + }, + { + "start": 2766.9, + "end": 2767.54, + "probability": 0.5535 + }, + { + "start": 2767.62, + "end": 2768.74, + "probability": 0.9133 + }, + { + "start": 2769.64, + "end": 2770.88, + "probability": 0.9406 + }, + { + "start": 2771.56, + "end": 2774.56, + "probability": 0.9857 + }, + { + "start": 2775.42, + "end": 2775.48, + "probability": 0.5792 + }, + { + "start": 2775.48, + "end": 2776.93, + "probability": 0.981 + }, + { + "start": 2777.44, + "end": 2779.76, + "probability": 0.9109 + }, + { + "start": 2779.9, + "end": 2780.82, + "probability": 0.3788 + }, + { + "start": 2781.02, + "end": 2784.0, + "probability": 0.7201 + }, + { + "start": 2784.36, + "end": 2785.02, + "probability": 0.8104 + }, + { + "start": 2785.48, + "end": 2786.18, + "probability": 0.6933 + }, + { + "start": 2786.36, + "end": 2787.7, + "probability": 0.9194 + }, + { + "start": 2787.74, + "end": 2792.18, + "probability": 0.9492 + }, + { + "start": 2792.24, + "end": 2795.62, + "probability": 0.9965 + }, + { + "start": 2795.62, + "end": 2799.6, + "probability": 0.9987 + }, + { + "start": 2799.96, + "end": 2805.88, + "probability": 0.9722 + }, + { + "start": 2805.88, + "end": 2809.76, + "probability": 0.9819 + }, + { + "start": 2809.86, + "end": 2810.08, + "probability": 0.1626 + }, + { + "start": 2810.08, + "end": 2810.4, + "probability": 0.3641 + }, + { + "start": 2811.16, + "end": 2817.68, + "probability": 0.7274 + }, + { + "start": 2817.78, + "end": 2819.1, + "probability": 0.6921 + }, + { + "start": 2819.46, + "end": 2821.68, + "probability": 0.9727 + }, + { + "start": 2822.0, + "end": 2824.64, + "probability": 0.9906 + }, + { + "start": 2825.2, + "end": 2828.2, + "probability": 0.7904 + }, + { + "start": 2828.76, + "end": 2829.1, + "probability": 0.2022 + }, + { + "start": 2830.1, + "end": 2832.3, + "probability": 0.233 + }, + { + "start": 2833.16, + "end": 2834.18, + "probability": 0.3214 + }, + { + "start": 2834.18, + "end": 2836.88, + "probability": 0.2997 + }, + { + "start": 2839.04, + "end": 2843.78, + "probability": 0.7432 + }, + { + "start": 2844.0, + "end": 2844.24, + "probability": 0.5493 + }, + { + "start": 2844.64, + "end": 2847.7, + "probability": 0.7007 + }, + { + "start": 2848.18, + "end": 2852.02, + "probability": 0.723 + }, + { + "start": 2852.64, + "end": 2854.52, + "probability": 0.9121 + }, + { + "start": 2855.08, + "end": 2860.62, + "probability": 0.9971 + }, + { + "start": 2861.04, + "end": 2866.46, + "probability": 0.9482 + }, + { + "start": 2866.7, + "end": 2867.92, + "probability": 0.6663 + }, + { + "start": 2867.94, + "end": 2869.5, + "probability": 0.5237 + }, + { + "start": 2869.84, + "end": 2872.96, + "probability": 0.9722 + }, + { + "start": 2873.46, + "end": 2874.78, + "probability": 0.6294 + }, + { + "start": 2875.18, + "end": 2878.08, + "probability": 0.8684 + }, + { + "start": 2878.44, + "end": 2878.92, + "probability": 0.7534 + }, + { + "start": 2879.0, + "end": 2879.42, + "probability": 0.7085 + }, + { + "start": 2879.94, + "end": 2881.28, + "probability": 0.8446 + }, + { + "start": 2881.62, + "end": 2882.96, + "probability": 0.9529 + }, + { + "start": 2883.04, + "end": 2885.58, + "probability": 0.8818 + }, + { + "start": 2885.64, + "end": 2887.35, + "probability": 0.2145 + }, + { + "start": 2887.54, + "end": 2887.94, + "probability": 0.284 + }, + { + "start": 2888.76, + "end": 2892.34, + "probability": 0.5971 + }, + { + "start": 2892.38, + "end": 2893.16, + "probability": 0.6502 + }, + { + "start": 2893.82, + "end": 2894.56, + "probability": 0.6792 + }, + { + "start": 2894.64, + "end": 2895.36, + "probability": 0.8273 + }, + { + "start": 2895.46, + "end": 2895.7, + "probability": 0.7247 + }, + { + "start": 2895.8, + "end": 2898.54, + "probability": 0.9841 + }, + { + "start": 2898.58, + "end": 2900.5, + "probability": 0.9521 + }, + { + "start": 2901.54, + "end": 2905.46, + "probability": 0.9402 + }, + { + "start": 2905.98, + "end": 2909.2, + "probability": 0.9613 + }, + { + "start": 2909.2, + "end": 2911.16, + "probability": 0.9821 + }, + { + "start": 2911.16, + "end": 2913.22, + "probability": 0.9648 + }, + { + "start": 2913.86, + "end": 2914.56, + "probability": 0.1316 + }, + { + "start": 2915.22, + "end": 2917.6, + "probability": 0.9781 + }, + { + "start": 2918.12, + "end": 2920.32, + "probability": 0.9777 + }, + { + "start": 2921.0, + "end": 2925.64, + "probability": 0.93 + }, + { + "start": 2926.26, + "end": 2926.86, + "probability": 0.8989 + }, + { + "start": 2926.96, + "end": 2927.72, + "probability": 0.567 + }, + { + "start": 2927.74, + "end": 2929.12, + "probability": 0.7401 + }, + { + "start": 2929.74, + "end": 2935.72, + "probability": 0.98 + }, + { + "start": 2935.72, + "end": 2940.06, + "probability": 0.8777 + }, + { + "start": 2940.32, + "end": 2944.02, + "probability": 0.913 + }, + { + "start": 2944.5, + "end": 2947.98, + "probability": 0.9935 + }, + { + "start": 2948.64, + "end": 2950.74, + "probability": 0.9938 + }, + { + "start": 2950.84, + "end": 2952.02, + "probability": 0.9753 + }, + { + "start": 2952.36, + "end": 2954.74, + "probability": 0.7684 + }, + { + "start": 2955.38, + "end": 2958.06, + "probability": 0.9474 + }, + { + "start": 2958.2, + "end": 2958.52, + "probability": 0.5324 + }, + { + "start": 2958.54, + "end": 2959.46, + "probability": 0.5686 + }, + { + "start": 2959.46, + "end": 2960.46, + "probability": 0.5305 + }, + { + "start": 2961.06, + "end": 2963.8, + "probability": 0.9572 + }, + { + "start": 2964.36, + "end": 2970.8, + "probability": 0.9404 + }, + { + "start": 2971.02, + "end": 2971.51, + "probability": 0.1224 + }, + { + "start": 2971.76, + "end": 2974.14, + "probability": 0.8093 + }, + { + "start": 2974.24, + "end": 2974.48, + "probability": 0.0117 + }, + { + "start": 2974.48, + "end": 2975.4, + "probability": 0.4657 + }, + { + "start": 2975.52, + "end": 2978.36, + "probability": 0.7965 + }, + { + "start": 2978.5, + "end": 2979.56, + "probability": 0.9594 + }, + { + "start": 2979.96, + "end": 2982.42, + "probability": 0.7592 + }, + { + "start": 2982.84, + "end": 2984.12, + "probability": 0.7461 + }, + { + "start": 2984.22, + "end": 2986.12, + "probability": 0.9133 + }, + { + "start": 2986.2, + "end": 2987.8, + "probability": 0.8563 + }, + { + "start": 2988.66, + "end": 2992.76, + "probability": 0.9895 + }, + { + "start": 2993.7, + "end": 2996.36, + "probability": 0.986 + }, + { + "start": 2996.48, + "end": 2997.76, + "probability": 0.9165 + }, + { + "start": 2998.38, + "end": 2998.7, + "probability": 0.6614 + }, + { + "start": 2999.28, + "end": 3004.72, + "probability": 0.9819 + }, + { + "start": 3004.82, + "end": 3007.66, + "probability": 0.9789 + }, + { + "start": 3007.66, + "end": 3010.46, + "probability": 0.9806 + }, + { + "start": 3010.58, + "end": 3015.42, + "probability": 0.7858 + }, + { + "start": 3015.5, + "end": 3018.58, + "probability": 0.9863 + }, + { + "start": 3018.94, + "end": 3019.57, + "probability": 0.6442 + }, + { + "start": 3019.84, + "end": 3020.64, + "probability": 0.9294 + }, + { + "start": 3020.88, + "end": 3022.1, + "probability": 0.8557 + }, + { + "start": 3022.22, + "end": 3025.76, + "probability": 0.8984 + }, + { + "start": 3026.04, + "end": 3026.57, + "probability": 0.8652 + }, + { + "start": 3026.72, + "end": 3027.5, + "probability": 0.7922 + }, + { + "start": 3027.7, + "end": 3028.34, + "probability": 0.5078 + }, + { + "start": 3028.5, + "end": 3030.06, + "probability": 0.8626 + }, + { + "start": 3030.64, + "end": 3031.58, + "probability": 0.1586 + }, + { + "start": 3031.58, + "end": 3033.56, + "probability": 0.7414 + }, + { + "start": 3033.8, + "end": 3036.48, + "probability": 0.9419 + }, + { + "start": 3036.62, + "end": 3038.06, + "probability": 0.5932 + }, + { + "start": 3040.24, + "end": 3042.32, + "probability": 0.9794 + }, + { + "start": 3042.96, + "end": 3044.42, + "probability": 0.9564 + }, + { + "start": 3044.84, + "end": 3047.78, + "probability": 0.9797 + }, + { + "start": 3048.26, + "end": 3050.68, + "probability": 0.9872 + }, + { + "start": 3051.38, + "end": 3056.88, + "probability": 0.9826 + }, + { + "start": 3057.52, + "end": 3063.44, + "probability": 0.9934 + }, + { + "start": 3065.02, + "end": 3066.18, + "probability": 0.5239 + }, + { + "start": 3068.38, + "end": 3074.68, + "probability": 0.9629 + }, + { + "start": 3076.02, + "end": 3077.88, + "probability": 0.9088 + }, + { + "start": 3079.52, + "end": 3080.94, + "probability": 0.7462 + }, + { + "start": 3081.64, + "end": 3083.82, + "probability": 0.9976 + }, + { + "start": 3084.22, + "end": 3087.88, + "probability": 0.8252 + }, + { + "start": 3088.1, + "end": 3090.42, + "probability": 0.536 + }, + { + "start": 3090.7, + "end": 3092.2, + "probability": 0.6973 + }, + { + "start": 3092.32, + "end": 3095.54, + "probability": 0.8024 + }, + { + "start": 3096.08, + "end": 3097.34, + "probability": 0.9033 + }, + { + "start": 3098.74, + "end": 3103.4, + "probability": 0.988 + }, + { + "start": 3104.52, + "end": 3108.62, + "probability": 0.7609 + }, + { + "start": 3108.84, + "end": 3110.3, + "probability": 0.9641 + }, + { + "start": 3110.36, + "end": 3111.2, + "probability": 0.6552 + }, + { + "start": 3112.28, + "end": 3116.14, + "probability": 0.9858 + }, + { + "start": 3116.78, + "end": 3117.98, + "probability": 0.9969 + }, + { + "start": 3119.36, + "end": 3121.96, + "probability": 0.9919 + }, + { + "start": 3122.56, + "end": 3124.08, + "probability": 0.845 + }, + { + "start": 3124.96, + "end": 3127.16, + "probability": 0.7861 + }, + { + "start": 3127.9, + "end": 3129.4, + "probability": 0.9386 + }, + { + "start": 3129.94, + "end": 3130.48, + "probability": 0.8499 + }, + { + "start": 3130.92, + "end": 3131.64, + "probability": 0.6732 + }, + { + "start": 3131.76, + "end": 3134.34, + "probability": 0.9824 + }, + { + "start": 3135.1, + "end": 3137.68, + "probability": 0.8956 + }, + { + "start": 3137.83, + "end": 3140.34, + "probability": 0.6765 + }, + { + "start": 3142.5, + "end": 3144.66, + "probability": 0.2846 + }, + { + "start": 3145.06, + "end": 3148.04, + "probability": 0.9257 + }, + { + "start": 3151.4, + "end": 3157.06, + "probability": 0.8245 + }, + { + "start": 3157.66, + "end": 3159.16, + "probability": 0.9444 + }, + { + "start": 3160.08, + "end": 3166.3, + "probability": 0.8026 + }, + { + "start": 3168.2, + "end": 3170.8, + "probability": 0.9275 + }, + { + "start": 3171.16, + "end": 3175.46, + "probability": 0.9692 + }, + { + "start": 3175.5, + "end": 3176.03, + "probability": 0.6338 + }, + { + "start": 3176.44, + "end": 3177.7, + "probability": 0.6828 + }, + { + "start": 3177.9, + "end": 3178.3, + "probability": 0.6085 + }, + { + "start": 3178.34, + "end": 3180.56, + "probability": 0.848 + }, + { + "start": 3181.02, + "end": 3186.08, + "probability": 0.9069 + }, + { + "start": 3186.26, + "end": 3187.78, + "probability": 0.7081 + }, + { + "start": 3188.3, + "end": 3188.82, + "probability": 0.3862 + }, + { + "start": 3188.91, + "end": 3193.62, + "probability": 0.8611 + }, + { + "start": 3193.96, + "end": 3195.04, + "probability": 0.9604 + }, + { + "start": 3195.6, + "end": 3196.8, + "probability": 0.6295 + }, + { + "start": 3196.94, + "end": 3197.92, + "probability": 0.9122 + }, + { + "start": 3197.98, + "end": 3198.26, + "probability": 0.7102 + }, + { + "start": 3198.3, + "end": 3199.32, + "probability": 0.7525 + }, + { + "start": 3199.88, + "end": 3200.54, + "probability": 0.6116 + }, + { + "start": 3202.16, + "end": 3205.74, + "probability": 0.7925 + }, + { + "start": 3205.92, + "end": 3206.36, + "probability": 0.8067 + }, + { + "start": 3207.1, + "end": 3208.74, + "probability": 0.7461 + }, + { + "start": 3209.44, + "end": 3212.86, + "probability": 0.8049 + }, + { + "start": 3213.4, + "end": 3215.56, + "probability": 0.9912 + }, + { + "start": 3215.56, + "end": 3218.5, + "probability": 0.9904 + }, + { + "start": 3219.14, + "end": 3220.1, + "probability": 0.6626 + }, + { + "start": 3220.66, + "end": 3222.16, + "probability": 0.7878 + }, + { + "start": 3222.56, + "end": 3225.32, + "probability": 0.9507 + }, + { + "start": 3225.62, + "end": 3226.1, + "probability": 0.5469 + }, + { + "start": 3226.24, + "end": 3227.52, + "probability": 0.8685 + }, + { + "start": 3228.3, + "end": 3229.14, + "probability": 0.9374 + }, + { + "start": 3229.32, + "end": 3230.66, + "probability": 0.82 + }, + { + "start": 3231.64, + "end": 3236.67, + "probability": 0.9405 + }, + { + "start": 3240.28, + "end": 3243.38, + "probability": 0.6797 + }, + { + "start": 3244.52, + "end": 3245.24, + "probability": 0.3507 + }, + { + "start": 3245.3, + "end": 3246.46, + "probability": 0.9812 + }, + { + "start": 3246.62, + "end": 3252.76, + "probability": 0.8102 + }, + { + "start": 3253.48, + "end": 3255.42, + "probability": 0.6474 + }, + { + "start": 3256.34, + "end": 3259.76, + "probability": 0.952 + }, + { + "start": 3259.76, + "end": 3263.6, + "probability": 0.7422 + }, + { + "start": 3264.5, + "end": 3269.34, + "probability": 0.8927 + }, + { + "start": 3270.18, + "end": 3272.06, + "probability": 0.5355 + }, + { + "start": 3272.16, + "end": 3273.61, + "probability": 0.7426 + }, + { + "start": 3274.08, + "end": 3275.44, + "probability": 0.9846 + }, + { + "start": 3276.3, + "end": 3279.24, + "probability": 0.9951 + }, + { + "start": 3280.04, + "end": 3281.52, + "probability": 0.8906 + }, + { + "start": 3282.38, + "end": 3288.78, + "probability": 0.9843 + }, + { + "start": 3289.44, + "end": 3291.14, + "probability": 0.9604 + }, + { + "start": 3291.9, + "end": 3295.0, + "probability": 0.9945 + }, + { + "start": 3295.94, + "end": 3298.62, + "probability": 0.9777 + }, + { + "start": 3299.44, + "end": 3302.6, + "probability": 0.9759 + }, + { + "start": 3303.26, + "end": 3305.72, + "probability": 0.998 + }, + { + "start": 3307.2, + "end": 3308.7, + "probability": 0.9792 + }, + { + "start": 3309.74, + "end": 3310.65, + "probability": 0.8296 + }, + { + "start": 3311.48, + "end": 3312.92, + "probability": 0.6742 + }, + { + "start": 3313.44, + "end": 3319.52, + "probability": 0.9932 + }, + { + "start": 3320.3, + "end": 3323.66, + "probability": 0.9827 + }, + { + "start": 3323.66, + "end": 3326.58, + "probability": 0.7599 + }, + { + "start": 3327.42, + "end": 3330.24, + "probability": 0.9072 + }, + { + "start": 3330.76, + "end": 3332.84, + "probability": 0.9126 + }, + { + "start": 3333.22, + "end": 3335.4, + "probability": 0.9917 + }, + { + "start": 3335.98, + "end": 3340.44, + "probability": 0.9954 + }, + { + "start": 3341.06, + "end": 3343.4, + "probability": 0.9922 + }, + { + "start": 3344.2, + "end": 3345.06, + "probability": 0.8325 + }, + { + "start": 3350.46, + "end": 3351.52, + "probability": 0.7215 + }, + { + "start": 3351.62, + "end": 3357.12, + "probability": 0.8799 + }, + { + "start": 3358.42, + "end": 3363.66, + "probability": 0.9261 + }, + { + "start": 3363.96, + "end": 3368.7, + "probability": 0.9951 + }, + { + "start": 3369.96, + "end": 3370.2, + "probability": 0.3808 + }, + { + "start": 3370.28, + "end": 3370.72, + "probability": 0.8105 + }, + { + "start": 3371.06, + "end": 3373.04, + "probability": 0.5434 + }, + { + "start": 3374.48, + "end": 3376.02, + "probability": 0.9198 + }, + { + "start": 3391.66, + "end": 3392.44, + "probability": 0.7104 + }, + { + "start": 3392.58, + "end": 3393.06, + "probability": 0.6641 + }, + { + "start": 3393.5, + "end": 3393.68, + "probability": 0.4375 + }, + { + "start": 3393.78, + "end": 3398.52, + "probability": 0.9825 + }, + { + "start": 3399.91, + "end": 3403.8, + "probability": 0.7032 + }, + { + "start": 3404.06, + "end": 3406.2, + "probability": 0.4518 + }, + { + "start": 3406.8, + "end": 3407.48, + "probability": 0.7582 + }, + { + "start": 3408.3, + "end": 3414.62, + "probability": 0.9974 + }, + { + "start": 3415.52, + "end": 3416.3, + "probability": 0.3955 + }, + { + "start": 3416.62, + "end": 3422.24, + "probability": 0.9925 + }, + { + "start": 3422.32, + "end": 3423.76, + "probability": 0.7997 + }, + { + "start": 3423.76, + "end": 3424.55, + "probability": 0.6651 + }, + { + "start": 3424.8, + "end": 3425.6, + "probability": 0.5444 + }, + { + "start": 3425.98, + "end": 3426.44, + "probability": 0.7614 + }, + { + "start": 3426.68, + "end": 3432.23, + "probability": 0.9762 + }, + { + "start": 3432.9, + "end": 3436.02, + "probability": 0.8901 + }, + { + "start": 3436.36, + "end": 3439.58, + "probability": 0.9967 + }, + { + "start": 3439.76, + "end": 3442.76, + "probability": 0.7826 + }, + { + "start": 3443.16, + "end": 3445.14, + "probability": 0.8685 + }, + { + "start": 3445.5, + "end": 3447.98, + "probability": 0.9429 + }, + { + "start": 3448.34, + "end": 3449.58, + "probability": 0.4683 + }, + { + "start": 3449.8, + "end": 3451.18, + "probability": 0.6801 + }, + { + "start": 3451.46, + "end": 3455.8, + "probability": 0.7894 + }, + { + "start": 3456.02, + "end": 3457.28, + "probability": 0.9854 + }, + { + "start": 3458.6, + "end": 3463.66, + "probability": 0.6536 + }, + { + "start": 3463.74, + "end": 3465.36, + "probability": 0.9782 + }, + { + "start": 3465.64, + "end": 3470.2, + "probability": 0.9801 + }, + { + "start": 3470.2, + "end": 3474.56, + "probability": 0.9698 + }, + { + "start": 3474.58, + "end": 3475.12, + "probability": 0.3074 + }, + { + "start": 3475.66, + "end": 3475.9, + "probability": 0.2321 + }, + { + "start": 3476.64, + "end": 3478.3, + "probability": 0.8321 + }, + { + "start": 3478.68, + "end": 3478.94, + "probability": 0.2973 + }, + { + "start": 3478.94, + "end": 3479.18, + "probability": 0.5061 + }, + { + "start": 3479.26, + "end": 3481.0, + "probability": 0.581 + }, + { + "start": 3482.62, + "end": 3484.48, + "probability": 0.9698 + }, + { + "start": 3485.5, + "end": 3486.34, + "probability": 0.8591 + }, + { + "start": 3486.38, + "end": 3487.56, + "probability": 0.8577 + }, + { + "start": 3488.68, + "end": 3488.96, + "probability": 0.8367 + }, + { + "start": 3490.08, + "end": 3490.94, + "probability": 0.649 + }, + { + "start": 3492.02, + "end": 3495.24, + "probability": 0.8864 + }, + { + "start": 3495.52, + "end": 3495.94, + "probability": 0.7581 + }, + { + "start": 3496.24, + "end": 3502.16, + "probability": 0.9497 + }, + { + "start": 3502.78, + "end": 3503.98, + "probability": 0.7363 + }, + { + "start": 3505.42, + "end": 3506.58, + "probability": 0.6068 + }, + { + "start": 3507.44, + "end": 3508.1, + "probability": 0.8586 + }, + { + "start": 3509.28, + "end": 3510.72, + "probability": 0.8483 + }, + { + "start": 3511.5, + "end": 3514.08, + "probability": 0.9352 + }, + { + "start": 3515.14, + "end": 3518.32, + "probability": 0.9946 + }, + { + "start": 3519.08, + "end": 3521.8, + "probability": 0.9922 + }, + { + "start": 3522.14, + "end": 3523.94, + "probability": 0.96 + }, + { + "start": 3524.5, + "end": 3528.62, + "probability": 0.949 + }, + { + "start": 3529.2, + "end": 3532.18, + "probability": 0.8873 + }, + { + "start": 3532.7, + "end": 3537.08, + "probability": 0.9722 + }, + { + "start": 3537.78, + "end": 3539.38, + "probability": 0.9209 + }, + { + "start": 3539.9, + "end": 3543.24, + "probability": 0.9761 + }, + { + "start": 3543.4, + "end": 3543.92, + "probability": 0.6402 + }, + { + "start": 3544.02, + "end": 3546.0, + "probability": 0.9857 + }, + { + "start": 3546.5, + "end": 3547.84, + "probability": 0.5306 + }, + { + "start": 3548.26, + "end": 3548.88, + "probability": 0.5193 + }, + { + "start": 3548.98, + "end": 3552.96, + "probability": 0.8303 + }, + { + "start": 3553.84, + "end": 3556.26, + "probability": 0.7874 + }, + { + "start": 3556.46, + "end": 3559.58, + "probability": 0.8745 + }, + { + "start": 3559.6, + "end": 3560.04, + "probability": 0.4893 + }, + { + "start": 3560.48, + "end": 3561.64, + "probability": 0.7117 + }, + { + "start": 3562.3, + "end": 3565.76, + "probability": 0.9644 + }, + { + "start": 3567.96, + "end": 3570.16, + "probability": 0.1123 + }, + { + "start": 3570.7, + "end": 3571.6, + "probability": 0.9946 + }, + { + "start": 3572.54, + "end": 3576.52, + "probability": 0.8416 + }, + { + "start": 3576.72, + "end": 3577.48, + "probability": 0.8633 + }, + { + "start": 3577.56, + "end": 3579.16, + "probability": 0.9653 + }, + { + "start": 3579.32, + "end": 3580.2, + "probability": 0.455 + }, + { + "start": 3581.04, + "end": 3582.26, + "probability": 0.6468 + }, + { + "start": 3584.87, + "end": 3587.24, + "probability": 0.6694 + }, + { + "start": 3587.98, + "end": 3588.53, + "probability": 0.8676 + }, + { + "start": 3590.32, + "end": 3596.22, + "probability": 0.7517 + }, + { + "start": 3597.24, + "end": 3598.55, + "probability": 0.9174 + }, + { + "start": 3598.8, + "end": 3600.92, + "probability": 0.824 + }, + { + "start": 3602.04, + "end": 3603.72, + "probability": 0.9491 + }, + { + "start": 3603.9, + "end": 3604.7, + "probability": 0.7053 + }, + { + "start": 3604.82, + "end": 3605.66, + "probability": 0.8141 + }, + { + "start": 3605.88, + "end": 3607.31, + "probability": 0.8224 + }, + { + "start": 3607.66, + "end": 3608.32, + "probability": 0.8962 + }, + { + "start": 3608.44, + "end": 3610.48, + "probability": 0.9715 + }, + { + "start": 3611.2, + "end": 3612.17, + "probability": 0.998 + }, + { + "start": 3612.76, + "end": 3614.1, + "probability": 0.9678 + }, + { + "start": 3614.66, + "end": 3618.04, + "probability": 0.9761 + }, + { + "start": 3618.42, + "end": 3619.22, + "probability": 0.6595 + }, + { + "start": 3619.9, + "end": 3620.86, + "probability": 0.5073 + }, + { + "start": 3620.94, + "end": 3622.66, + "probability": 0.9562 + }, + { + "start": 3623.6, + "end": 3626.12, + "probability": 0.6425 + }, + { + "start": 3626.38, + "end": 3626.8, + "probability": 0.864 + }, + { + "start": 3627.18, + "end": 3629.23, + "probability": 0.8213 + }, + { + "start": 3629.5, + "end": 3631.0, + "probability": 0.9969 + }, + { + "start": 3631.66, + "end": 3633.5, + "probability": 0.5395 + }, + { + "start": 3634.28, + "end": 3640.4, + "probability": 0.678 + }, + { + "start": 3640.62, + "end": 3641.52, + "probability": 0.9032 + }, + { + "start": 3642.24, + "end": 3643.12, + "probability": 0.982 + }, + { + "start": 3643.44, + "end": 3645.38, + "probability": 0.8662 + }, + { + "start": 3645.46, + "end": 3645.98, + "probability": 0.9183 + }, + { + "start": 3646.3, + "end": 3647.55, + "probability": 0.9061 + }, + { + "start": 3648.12, + "end": 3653.34, + "probability": 0.9491 + }, + { + "start": 3653.34, + "end": 3658.54, + "probability": 0.8635 + }, + { + "start": 3658.82, + "end": 3659.38, + "probability": 0.8757 + }, + { + "start": 3659.46, + "end": 3663.36, + "probability": 0.8226 + }, + { + "start": 3663.72, + "end": 3664.4, + "probability": 0.8478 + }, + { + "start": 3664.58, + "end": 3666.88, + "probability": 0.6872 + }, + { + "start": 3666.98, + "end": 3668.72, + "probability": 0.8461 + }, + { + "start": 3669.08, + "end": 3672.34, + "probability": 0.9555 + }, + { + "start": 3672.74, + "end": 3673.46, + "probability": 0.8891 + }, + { + "start": 3674.24, + "end": 3674.96, + "probability": 0.6646 + }, + { + "start": 3675.8, + "end": 3678.06, + "probability": 0.8448 + }, + { + "start": 3678.8, + "end": 3679.7, + "probability": 0.48 + }, + { + "start": 3681.04, + "end": 3683.16, + "probability": 0.981 + }, + { + "start": 3683.2, + "end": 3684.5, + "probability": 0.701 + }, + { + "start": 3684.94, + "end": 3686.78, + "probability": 0.9958 + }, + { + "start": 3687.58, + "end": 3689.2, + "probability": 0.8922 + }, + { + "start": 3689.56, + "end": 3690.66, + "probability": 0.9902 + }, + { + "start": 3691.0, + "end": 3692.28, + "probability": 0.9631 + }, + { + "start": 3694.08, + "end": 3698.8, + "probability": 0.7155 + }, + { + "start": 3699.34, + "end": 3701.34, + "probability": 0.8492 + }, + { + "start": 3701.74, + "end": 3702.98, + "probability": 0.8674 + }, + { + "start": 3703.44, + "end": 3705.24, + "probability": 0.9875 + }, + { + "start": 3705.32, + "end": 3707.28, + "probability": 0.9824 + }, + { + "start": 3707.92, + "end": 3708.6, + "probability": 0.932 + }, + { + "start": 3708.7, + "end": 3714.56, + "probability": 0.8401 + }, + { + "start": 3714.66, + "end": 3716.38, + "probability": 0.8792 + }, + { + "start": 3716.8, + "end": 3722.3, + "probability": 0.9919 + }, + { + "start": 3723.08, + "end": 3724.74, + "probability": 0.938 + }, + { + "start": 3724.96, + "end": 3725.84, + "probability": 0.6884 + }, + { + "start": 3725.88, + "end": 3728.29, + "probability": 0.8054 + }, + { + "start": 3728.88, + "end": 3730.0, + "probability": 0.7896 + }, + { + "start": 3730.28, + "end": 3733.96, + "probability": 0.9954 + }, + { + "start": 3734.34, + "end": 3735.14, + "probability": 0.9539 + }, + { + "start": 3735.32, + "end": 3737.84, + "probability": 0.8723 + }, + { + "start": 3740.08, + "end": 3746.14, + "probability": 0.9688 + }, + { + "start": 3746.4, + "end": 3747.2, + "probability": 0.6312 + }, + { + "start": 3747.32, + "end": 3750.16, + "probability": 0.9919 + }, + { + "start": 3751.04, + "end": 3751.92, + "probability": 0.6552 + }, + { + "start": 3752.88, + "end": 3754.16, + "probability": 0.7638 + }, + { + "start": 3754.38, + "end": 3757.94, + "probability": 0.6678 + }, + { + "start": 3758.8, + "end": 3764.84, + "probability": 0.9522 + }, + { + "start": 3765.46, + "end": 3771.06, + "probability": 0.8667 + }, + { + "start": 3771.06, + "end": 3775.54, + "probability": 0.7197 + }, + { + "start": 3775.9, + "end": 3776.52, + "probability": 0.4063 + }, + { + "start": 3777.32, + "end": 3779.52, + "probability": 0.7406 + }, + { + "start": 3780.06, + "end": 3780.46, + "probability": 0.9663 + }, + { + "start": 3783.0, + "end": 3785.08, + "probability": 0.8197 + }, + { + "start": 3785.78, + "end": 3789.12, + "probability": 0.9535 + }, + { + "start": 3789.34, + "end": 3791.83, + "probability": 0.9158 + }, + { + "start": 3792.94, + "end": 3793.54, + "probability": 0.4897 + }, + { + "start": 3793.64, + "end": 3794.6, + "probability": 0.8865 + }, + { + "start": 3794.68, + "end": 3795.66, + "probability": 0.854 + }, + { + "start": 3795.74, + "end": 3796.68, + "probability": 0.9766 + }, + { + "start": 3796.88, + "end": 3797.52, + "probability": 0.9676 + }, + { + "start": 3797.68, + "end": 3798.42, + "probability": 0.9018 + }, + { + "start": 3798.62, + "end": 3798.82, + "probability": 0.8457 + }, + { + "start": 3799.24, + "end": 3799.84, + "probability": 0.7046 + }, + { + "start": 3800.76, + "end": 3802.28, + "probability": 0.7062 + }, + { + "start": 3802.44, + "end": 3807.34, + "probability": 0.8096 + }, + { + "start": 3808.81, + "end": 3815.16, + "probability": 0.9928 + }, + { + "start": 3815.8, + "end": 3820.02, + "probability": 0.8803 + }, + { + "start": 3820.78, + "end": 3823.14, + "probability": 0.6393 + }, + { + "start": 3823.8, + "end": 3829.48, + "probability": 0.9476 + }, + { + "start": 3829.96, + "end": 3831.24, + "probability": 0.8285 + }, + { + "start": 3831.42, + "end": 3834.0, + "probability": 0.9492 + }, + { + "start": 3834.52, + "end": 3837.38, + "probability": 0.9797 + }, + { + "start": 3837.94, + "end": 3842.58, + "probability": 0.9951 + }, + { + "start": 3843.68, + "end": 3845.16, + "probability": 0.9338 + }, + { + "start": 3845.4, + "end": 3849.16, + "probability": 0.9917 + }, + { + "start": 3849.6, + "end": 3851.82, + "probability": 0.9591 + }, + { + "start": 3852.08, + "end": 3854.5, + "probability": 0.8926 + }, + { + "start": 3854.6, + "end": 3859.56, + "probability": 0.9484 + }, + { + "start": 3860.78, + "end": 3863.34, + "probability": 0.991 + }, + { + "start": 3864.54, + "end": 3868.32, + "probability": 0.8618 + }, + { + "start": 3868.74, + "end": 3869.34, + "probability": 0.5017 + }, + { + "start": 3870.08, + "end": 3871.52, + "probability": 0.9198 + }, + { + "start": 3871.98, + "end": 3875.4, + "probability": 0.8805 + }, + { + "start": 3875.5, + "end": 3876.5, + "probability": 0.9255 + }, + { + "start": 3888.12, + "end": 3889.08, + "probability": 0.7633 + }, + { + "start": 3889.24, + "end": 3890.04, + "probability": 0.8717 + }, + { + "start": 3890.16, + "end": 3891.08, + "probability": 0.756 + }, + { + "start": 3891.92, + "end": 3894.52, + "probability": 0.8597 + }, + { + "start": 3894.52, + "end": 3898.1, + "probability": 0.6567 + }, + { + "start": 3898.32, + "end": 3900.76, + "probability": 0.74 + }, + { + "start": 3901.6, + "end": 3904.14, + "probability": 0.9336 + }, + { + "start": 3904.14, + "end": 3907.56, + "probability": 0.8938 + }, + { + "start": 3908.44, + "end": 3912.22, + "probability": 0.856 + }, + { + "start": 3913.18, + "end": 3915.8, + "probability": 0.8404 + }, + { + "start": 3915.88, + "end": 3918.28, + "probability": 0.6502 + }, + { + "start": 3918.46, + "end": 3919.28, + "probability": 0.7025 + }, + { + "start": 3919.8, + "end": 3920.42, + "probability": 0.6517 + }, + { + "start": 3920.62, + "end": 3922.92, + "probability": 0.9336 + }, + { + "start": 3923.06, + "end": 3924.06, + "probability": 0.6369 + }, + { + "start": 3924.08, + "end": 3924.6, + "probability": 0.3491 + }, + { + "start": 3928.68, + "end": 3930.42, + "probability": 0.6484 + }, + { + "start": 3931.26, + "end": 3931.92, + "probability": 0.4532 + }, + { + "start": 3931.92, + "end": 3932.26, + "probability": 0.4109 + }, + { + "start": 3932.3, + "end": 3932.94, + "probability": 0.7776 + }, + { + "start": 3933.26, + "end": 3937.98, + "probability": 0.7416 + }, + { + "start": 3938.0, + "end": 3938.86, + "probability": 0.7324 + }, + { + "start": 3938.96, + "end": 3939.3, + "probability": 0.6735 + }, + { + "start": 3940.28, + "end": 3940.62, + "probability": 0.3276 + }, + { + "start": 3940.94, + "end": 3940.94, + "probability": 0.4929 + }, + { + "start": 3940.94, + "end": 3941.32, + "probability": 0.6665 + }, + { + "start": 3941.4, + "end": 3944.46, + "probability": 0.9424 + }, + { + "start": 3944.66, + "end": 3953.72, + "probability": 0.9739 + }, + { + "start": 3954.54, + "end": 3955.0, + "probability": 0.4089 + }, + { + "start": 3955.14, + "end": 3959.27, + "probability": 0.9948 + }, + { + "start": 3960.04, + "end": 3962.62, + "probability": 0.7326 + }, + { + "start": 3963.38, + "end": 3963.48, + "probability": 0.3949 + }, + { + "start": 3963.82, + "end": 3967.72, + "probability": 0.9902 + }, + { + "start": 3968.16, + "end": 3968.78, + "probability": 0.565 + }, + { + "start": 3968.8, + "end": 3971.38, + "probability": 0.5633 + }, + { + "start": 3971.68, + "end": 3972.84, + "probability": 0.7695 + }, + { + "start": 3973.66, + "end": 3976.54, + "probability": 0.0377 + }, + { + "start": 3977.46, + "end": 3978.24, + "probability": 0.0128 + }, + { + "start": 3998.54, + "end": 4001.72, + "probability": 0.5682 + }, + { + "start": 4002.16, + "end": 4004.39, + "probability": 0.3641 + }, + { + "start": 4004.6, + "end": 4005.7, + "probability": 0.0202 + }, + { + "start": 4005.7, + "end": 4007.58, + "probability": 0.2501 + }, + { + "start": 4008.34, + "end": 4008.6, + "probability": 0.0196 + }, + { + "start": 4008.6, + "end": 4011.9, + "probability": 0.1673 + }, + { + "start": 4013.62, + "end": 4013.96, + "probability": 0.0581 + }, + { + "start": 4014.54, + "end": 4014.98, + "probability": 0.0918 + }, + { + "start": 4015.22, + "end": 4020.06, + "probability": 0.0212 + }, + { + "start": 4020.06, + "end": 4025.24, + "probability": 0.0329 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.0, + "end": 4075.0, + "probability": 0.0 + }, + { + "start": 4075.18, + "end": 4075.46, + "probability": 0.0192 + }, + { + "start": 4075.46, + "end": 4075.78, + "probability": 0.1619 + }, + { + "start": 4075.78, + "end": 4077.22, + "probability": 0.1732 + }, + { + "start": 4077.28, + "end": 4077.86, + "probability": 0.3265 + }, + { + "start": 4078.22, + "end": 4082.02, + "probability": 0.03 + }, + { + "start": 4087.04, + "end": 4087.06, + "probability": 0.093 + }, + { + "start": 4087.58, + "end": 4091.4, + "probability": 0.0268 + }, + { + "start": 4091.4, + "end": 4093.36, + "probability": 0.0247 + }, + { + "start": 4093.85, + "end": 4096.4, + "probability": 0.088 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4202.0, + "end": 4202.0, + "probability": 0.0 + }, + { + "start": 4204.2, + "end": 4204.2, + "probability": 0.3726 + }, + { + "start": 4204.2, + "end": 4207.7, + "probability": 0.7959 + }, + { + "start": 4207.84, + "end": 4209.44, + "probability": 0.7801 + }, + { + "start": 4210.32, + "end": 4211.58, + "probability": 0.7632 + }, + { + "start": 4211.66, + "end": 4214.68, + "probability": 0.9436 + }, + { + "start": 4214.68, + "end": 4217.48, + "probability": 0.7187 + }, + { + "start": 4217.9, + "end": 4218.64, + "probability": 0.6041 + }, + { + "start": 4218.7, + "end": 4221.1, + "probability": 0.818 + }, + { + "start": 4221.74, + "end": 4222.6, + "probability": 0.5919 + }, + { + "start": 4222.68, + "end": 4225.7, + "probability": 0.9735 + }, + { + "start": 4226.16, + "end": 4226.66, + "probability": 0.4951 + }, + { + "start": 4227.12, + "end": 4230.18, + "probability": 0.7417 + }, + { + "start": 4230.18, + "end": 4231.28, + "probability": 0.9522 + }, + { + "start": 4231.66, + "end": 4232.06, + "probability": 0.2748 + }, + { + "start": 4232.18, + "end": 4232.9, + "probability": 0.7201 + }, + { + "start": 4232.94, + "end": 4233.3, + "probability": 0.8713 + }, + { + "start": 4233.42, + "end": 4234.14, + "probability": 0.6105 + }, + { + "start": 4234.16, + "end": 4234.58, + "probability": 0.6162 + }, + { + "start": 4235.2, + "end": 4238.72, + "probability": 0.9061 + }, + { + "start": 4239.1, + "end": 4240.48, + "probability": 0.8855 + }, + { + "start": 4240.52, + "end": 4243.61, + "probability": 0.8236 + }, + { + "start": 4244.98, + "end": 4246.74, + "probability": 0.649 + }, + { + "start": 4247.12, + "end": 4249.4, + "probability": 0.9673 + }, + { + "start": 4254.28, + "end": 4256.22, + "probability": 0.6032 + }, + { + "start": 4259.82, + "end": 4261.76, + "probability": 0.4431 + }, + { + "start": 4262.0, + "end": 4262.94, + "probability": 0.5888 + }, + { + "start": 4263.88, + "end": 4264.8, + "probability": 0.9095 + }, + { + "start": 4264.84, + "end": 4265.66, + "probability": 0.9459 + }, + { + "start": 4265.72, + "end": 4268.24, + "probability": 0.9775 + }, + { + "start": 4269.18, + "end": 4274.6, + "probability": 0.8923 + }, + { + "start": 4275.78, + "end": 4283.34, + "probability": 0.9546 + }, + { + "start": 4284.16, + "end": 4286.02, + "probability": 0.9761 + }, + { + "start": 4287.02, + "end": 4289.1, + "probability": 0.9844 + }, + { + "start": 4289.14, + "end": 4296.08, + "probability": 0.9352 + }, + { + "start": 4296.16, + "end": 4297.0, + "probability": 0.7589 + }, + { + "start": 4297.02, + "end": 4298.04, + "probability": 0.8623 + }, + { + "start": 4298.14, + "end": 4299.18, + "probability": 0.7558 + }, + { + "start": 4299.96, + "end": 4301.88, + "probability": 0.9565 + }, + { + "start": 4302.54, + "end": 4304.92, + "probability": 0.994 + }, + { + "start": 4304.94, + "end": 4308.88, + "probability": 0.9512 + }, + { + "start": 4309.74, + "end": 4311.26, + "probability": 0.6592 + }, + { + "start": 4311.34, + "end": 4311.96, + "probability": 0.7194 + }, + { + "start": 4312.1, + "end": 4312.68, + "probability": 0.8997 + }, + { + "start": 4312.76, + "end": 4313.24, + "probability": 0.8059 + }, + { + "start": 4313.28, + "end": 4314.24, + "probability": 0.8243 + }, + { + "start": 4314.3, + "end": 4314.68, + "probability": 0.5229 + }, + { + "start": 4316.12, + "end": 4320.0, + "probability": 0.9503 + }, + { + "start": 4320.66, + "end": 4322.74, + "probability": 0.9924 + }, + { + "start": 4323.28, + "end": 4326.2, + "probability": 0.9935 + }, + { + "start": 4327.0, + "end": 4329.24, + "probability": 0.7332 + }, + { + "start": 4329.54, + "end": 4330.88, + "probability": 0.8707 + }, + { + "start": 4330.9, + "end": 4331.56, + "probability": 0.7552 + }, + { + "start": 4332.34, + "end": 4333.78, + "probability": 0.9189 + }, + { + "start": 4334.42, + "end": 4336.14, + "probability": 0.8583 + }, + { + "start": 4336.26, + "end": 4337.3, + "probability": 0.8604 + }, + { + "start": 4337.5, + "end": 4340.22, + "probability": 0.905 + }, + { + "start": 4340.39, + "end": 4344.82, + "probability": 0.9775 + }, + { + "start": 4344.86, + "end": 4345.96, + "probability": 0.7041 + }, + { + "start": 4346.72, + "end": 4347.68, + "probability": 0.7412 + }, + { + "start": 4347.78, + "end": 4348.73, + "probability": 0.9761 + }, + { + "start": 4349.54, + "end": 4353.96, + "probability": 0.9393 + }, + { + "start": 4354.82, + "end": 4356.64, + "probability": 0.9153 + }, + { + "start": 4356.7, + "end": 4358.0, + "probability": 0.8132 + }, + { + "start": 4358.12, + "end": 4359.48, + "probability": 0.5163 + }, + { + "start": 4359.64, + "end": 4360.72, + "probability": 0.9032 + }, + { + "start": 4361.92, + "end": 4362.78, + "probability": 0.9549 + }, + { + "start": 4363.0, + "end": 4368.14, + "probability": 0.9839 + }, + { + "start": 4368.68, + "end": 4371.02, + "probability": 0.8607 + }, + { + "start": 4371.68, + "end": 4374.91, + "probability": 0.7767 + }, + { + "start": 4377.1, + "end": 4378.78, + "probability": 0.863 + }, + { + "start": 4379.84, + "end": 4382.54, + "probability": 0.9894 + }, + { + "start": 4383.84, + "end": 4384.76, + "probability": 0.877 + }, + { + "start": 4384.8, + "end": 4385.6, + "probability": 0.9809 + }, + { + "start": 4385.68, + "end": 4387.42, + "probability": 0.7371 + }, + { + "start": 4388.14, + "end": 4390.3, + "probability": 0.9959 + }, + { + "start": 4390.92, + "end": 4392.02, + "probability": 0.0387 + }, + { + "start": 4393.24, + "end": 4396.74, + "probability": 0.742 + }, + { + "start": 4397.16, + "end": 4398.16, + "probability": 0.7906 + }, + { + "start": 4398.58, + "end": 4399.66, + "probability": 0.9766 + }, + { + "start": 4400.0, + "end": 4401.02, + "probability": 0.9723 + }, + { + "start": 4401.14, + "end": 4402.92, + "probability": 0.9607 + }, + { + "start": 4403.74, + "end": 4405.1, + "probability": 0.9145 + }, + { + "start": 4405.26, + "end": 4408.2, + "probability": 0.9404 + }, + { + "start": 4408.26, + "end": 4409.18, + "probability": 0.8643 + }, + { + "start": 4409.3, + "end": 4410.58, + "probability": 0.8535 + }, + { + "start": 4411.0, + "end": 4411.82, + "probability": 0.7894 + }, + { + "start": 4411.88, + "end": 4412.98, + "probability": 0.9569 + }, + { + "start": 4413.04, + "end": 4414.26, + "probability": 0.7822 + }, + { + "start": 4414.62, + "end": 4415.3, + "probability": 0.9554 + }, + { + "start": 4415.4, + "end": 4417.78, + "probability": 0.2893 + }, + { + "start": 4419.14, + "end": 4419.32, + "probability": 0.2402 + }, + { + "start": 4419.32, + "end": 4419.32, + "probability": 0.0524 + }, + { + "start": 4419.32, + "end": 4421.46, + "probability": 0.6707 + }, + { + "start": 4422.2, + "end": 4423.37, + "probability": 0.9309 + }, + { + "start": 4424.18, + "end": 4424.76, + "probability": 0.8317 + }, + { + "start": 4425.48, + "end": 4426.06, + "probability": 0.9424 + }, + { + "start": 4426.84, + "end": 4428.04, + "probability": 0.8386 + }, + { + "start": 4429.34, + "end": 4430.68, + "probability": 0.9352 + }, + { + "start": 4430.8, + "end": 4431.99, + "probability": 0.9781 + }, + { + "start": 4432.52, + "end": 4434.64, + "probability": 0.9649 + }, + { + "start": 4435.2, + "end": 4437.32, + "probability": 0.9579 + }, + { + "start": 4438.36, + "end": 4440.5, + "probability": 0.9089 + }, + { + "start": 4440.62, + "end": 4441.03, + "probability": 0.6162 + }, + { + "start": 4441.58, + "end": 4442.1, + "probability": 0.9503 + }, + { + "start": 4442.44, + "end": 4447.06, + "probability": 0.9606 + }, + { + "start": 4447.74, + "end": 4449.36, + "probability": 0.8087 + }, + { + "start": 4455.9, + "end": 4461.18, + "probability": 0.9109 + }, + { + "start": 4462.22, + "end": 4463.08, + "probability": 0.6431 + }, + { + "start": 4463.2, + "end": 4464.12, + "probability": 0.8037 + }, + { + "start": 4464.72, + "end": 4466.0, + "probability": 0.6684 + }, + { + "start": 4466.86, + "end": 4468.0, + "probability": 0.5469 + }, + { + "start": 4468.88, + "end": 4470.1, + "probability": 0.9893 + }, + { + "start": 4471.08, + "end": 4477.62, + "probability": 0.9469 + }, + { + "start": 4478.62, + "end": 4479.52, + "probability": 0.8896 + }, + { + "start": 4480.1, + "end": 4480.9, + "probability": 0.7632 + }, + { + "start": 4481.32, + "end": 4483.96, + "probability": 0.9036 + }, + { + "start": 4484.06, + "end": 4486.78, + "probability": 0.9668 + }, + { + "start": 4486.88, + "end": 4487.72, + "probability": 0.9166 + }, + { + "start": 4488.16, + "end": 4489.2, + "probability": 0.7472 + }, + { + "start": 4490.32, + "end": 4491.22, + "probability": 0.8879 + }, + { + "start": 4491.22, + "end": 4493.18, + "probability": 0.6033 + }, + { + "start": 4496.66, + "end": 4499.78, + "probability": 0.0252 + }, + { + "start": 4500.88, + "end": 4505.78, + "probability": 0.1331 + }, + { + "start": 4507.72, + "end": 4510.5, + "probability": 0.5649 + }, + { + "start": 4511.24, + "end": 4512.44, + "probability": 0.778 + }, + { + "start": 4513.12, + "end": 4513.12, + "probability": 0.1046 + }, + { + "start": 4513.12, + "end": 4515.01, + "probability": 0.9902 + }, + { + "start": 4515.8, + "end": 4517.42, + "probability": 0.8641 + }, + { + "start": 4517.56, + "end": 4518.72, + "probability": 0.6438 + }, + { + "start": 4518.82, + "end": 4519.0, + "probability": 0.0215 + }, + { + "start": 4519.02, + "end": 4522.18, + "probability": 0.542 + }, + { + "start": 4522.88, + "end": 4525.72, + "probability": 0.8745 + }, + { + "start": 4526.26, + "end": 4528.86, + "probability": 0.9803 + }, + { + "start": 4529.62, + "end": 4531.08, + "probability": 0.9928 + }, + { + "start": 4531.78, + "end": 4533.88, + "probability": 0.9917 + }, + { + "start": 4534.68, + "end": 4536.5, + "probability": 0.7504 + }, + { + "start": 4536.54, + "end": 4537.85, + "probability": 0.5897 + }, + { + "start": 4538.72, + "end": 4541.88, + "probability": 0.9425 + }, + { + "start": 4542.44, + "end": 4543.48, + "probability": 0.7432 + }, + { + "start": 4543.56, + "end": 4544.04, + "probability": 0.8902 + }, + { + "start": 4544.3, + "end": 4546.34, + "probability": 0.9648 + }, + { + "start": 4547.4, + "end": 4549.3, + "probability": 0.8678 + }, + { + "start": 4549.48, + "end": 4550.88, + "probability": 0.9851 + }, + { + "start": 4551.5, + "end": 4554.06, + "probability": 0.9026 + }, + { + "start": 4554.44, + "end": 4555.58, + "probability": 0.8503 + }, + { + "start": 4555.98, + "end": 4558.16, + "probability": 0.9487 + }, + { + "start": 4558.8, + "end": 4560.6, + "probability": 0.9709 + }, + { + "start": 4560.84, + "end": 4561.02, + "probability": 0.147 + }, + { + "start": 4561.12, + "end": 4561.52, + "probability": 0.7388 + }, + { + "start": 4561.94, + "end": 4566.88, + "probability": 0.7892 + }, + { + "start": 4566.88, + "end": 4570.9, + "probability": 0.9299 + }, + { + "start": 4571.18, + "end": 4573.12, + "probability": 0.7076 + }, + { + "start": 4573.46, + "end": 4574.04, + "probability": 0.4112 + }, + { + "start": 4574.08, + "end": 4574.6, + "probability": 0.5463 + }, + { + "start": 4574.76, + "end": 4575.1, + "probability": 0.3215 + }, + { + "start": 4575.18, + "end": 4575.88, + "probability": 0.5197 + }, + { + "start": 4575.88, + "end": 4576.3, + "probability": 0.6134 + }, + { + "start": 4579.34, + "end": 4584.53, + "probability": 0.0337 + }, + { + "start": 4587.7, + "end": 4592.7, + "probability": 0.0269 + }, + { + "start": 4593.3, + "end": 4593.74, + "probability": 0.0268 + }, + { + "start": 4593.74, + "end": 4593.74, + "probability": 0.1102 + }, + { + "start": 4593.74, + "end": 4593.74, + "probability": 0.0871 + }, + { + "start": 4593.74, + "end": 4595.72, + "probability": 0.3034 + }, + { + "start": 4595.94, + "end": 4595.94, + "probability": 0.042 + }, + { + "start": 4595.94, + "end": 4595.94, + "probability": 0.065 + }, + { + "start": 4595.94, + "end": 4600.94, + "probability": 0.8238 + }, + { + "start": 4600.94, + "end": 4606.22, + "probability": 0.9838 + }, + { + "start": 4606.7, + "end": 4608.88, + "probability": 0.9976 + }, + { + "start": 4609.24, + "end": 4610.06, + "probability": 0.8995 + }, + { + "start": 4610.3, + "end": 4613.46, + "probability": 0.9868 + }, + { + "start": 4613.5, + "end": 4613.92, + "probability": 0.976 + }, + { + "start": 4614.7, + "end": 4620.88, + "probability": 0.7205 + }, + { + "start": 4622.39, + "end": 4626.38, + "probability": 0.7324 + }, + { + "start": 4627.5, + "end": 4627.66, + "probability": 0.463 + }, + { + "start": 4627.97, + "end": 4629.48, + "probability": 0.191 + }, + { + "start": 4629.48, + "end": 4629.66, + "probability": 0.0918 + }, + { + "start": 4629.66, + "end": 4629.7, + "probability": 0.6553 + }, + { + "start": 4629.9, + "end": 4630.54, + "probability": 0.9491 + }, + { + "start": 4630.86, + "end": 4636.32, + "probability": 0.5921 + }, + { + "start": 4636.32, + "end": 4638.32, + "probability": 0.3647 + }, + { + "start": 4638.96, + "end": 4640.46, + "probability": 0.9889 + }, + { + "start": 4642.48, + "end": 4646.0, + "probability": 0.6764 + }, + { + "start": 4646.9, + "end": 4650.5, + "probability": 0.5578 + }, + { + "start": 4650.82, + "end": 4651.84, + "probability": 0.0857 + }, + { + "start": 4652.06, + "end": 4654.78, + "probability": 0.1596 + }, + { + "start": 4655.38, + "end": 4660.36, + "probability": 0.7201 + }, + { + "start": 4660.78, + "end": 4663.28, + "probability": 0.9268 + }, + { + "start": 4663.28, + "end": 4666.34, + "probability": 0.8531 + }, + { + "start": 4666.46, + "end": 4667.36, + "probability": 0.3653 + }, + { + "start": 4667.76, + "end": 4671.04, + "probability": 0.9963 + }, + { + "start": 4671.44, + "end": 4674.3, + "probability": 0.6388 + }, + { + "start": 4676.44, + "end": 4676.72, + "probability": 0.016 + }, + { + "start": 4679.76, + "end": 4680.68, + "probability": 0.2849 + }, + { + "start": 4680.68, + "end": 4681.12, + "probability": 0.2874 + }, + { + "start": 4681.12, + "end": 4682.64, + "probability": 0.6029 + }, + { + "start": 4683.48, + "end": 4687.06, + "probability": 0.7368 + }, + { + "start": 4687.26, + "end": 4688.82, + "probability": 0.7698 + }, + { + "start": 4689.1, + "end": 4690.3, + "probability": 0.7221 + }, + { + "start": 4690.8, + "end": 4691.7, + "probability": 0.9958 + }, + { + "start": 4694.36, + "end": 4696.22, + "probability": 0.7497 + }, + { + "start": 4696.74, + "end": 4698.16, + "probability": 0.5229 + }, + { + "start": 4699.12, + "end": 4701.48, + "probability": 0.8702 + }, + { + "start": 4701.98, + "end": 4702.3, + "probability": 0.2482 + }, + { + "start": 4702.44, + "end": 4703.02, + "probability": 0.582 + }, + { + "start": 4703.22, + "end": 4706.6, + "probability": 0.9878 + }, + { + "start": 4706.66, + "end": 4709.04, + "probability": 0.5009 + }, + { + "start": 4709.46, + "end": 4710.36, + "probability": 0.8252 + }, + { + "start": 4712.52, + "end": 4714.28, + "probability": 0.8874 + }, + { + "start": 4714.86, + "end": 4716.58, + "probability": 0.3045 + }, + { + "start": 4716.58, + "end": 4717.42, + "probability": 0.3496 + }, + { + "start": 4717.42, + "end": 4717.84, + "probability": 0.444 + }, + { + "start": 4718.0, + "end": 4722.26, + "probability": 0.9382 + }, + { + "start": 4723.14, + "end": 4726.48, + "probability": 0.9972 + }, + { + "start": 4727.46, + "end": 4729.88, + "probability": 0.8144 + }, + { + "start": 4730.52, + "end": 4732.52, + "probability": 0.567 + }, + { + "start": 4733.4, + "end": 4733.88, + "probability": 0.6366 + }, + { + "start": 4733.96, + "end": 4734.5, + "probability": 0.9362 + }, + { + "start": 4735.68, + "end": 4737.34, + "probability": 0.0849 + }, + { + "start": 4737.68, + "end": 4739.2, + "probability": 0.9005 + }, + { + "start": 4739.26, + "end": 4746.26, + "probability": 0.7671 + }, + { + "start": 4746.62, + "end": 4748.88, + "probability": 0.8471 + }, + { + "start": 4750.34, + "end": 4753.14, + "probability": 0.8872 + }, + { + "start": 4756.1, + "end": 4760.56, + "probability": 0.884 + }, + { + "start": 4762.2, + "end": 4763.24, + "probability": 0.4694 + }, + { + "start": 4764.52, + "end": 4765.88, + "probability": 0.9269 + }, + { + "start": 4767.12, + "end": 4767.56, + "probability": 0.7445 + }, + { + "start": 4767.56, + "end": 4773.62, + "probability": 0.9577 + }, + { + "start": 4774.06, + "end": 4776.62, + "probability": 0.7473 + }, + { + "start": 4776.8, + "end": 4778.96, + "probability": 0.0798 + }, + { + "start": 4778.96, + "end": 4782.24, + "probability": 0.6832 + }, + { + "start": 4782.72, + "end": 4783.18, + "probability": 0.4324 + }, + { + "start": 4783.18, + "end": 4784.42, + "probability": 0.7141 + }, + { + "start": 4784.56, + "end": 4786.8, + "probability": 0.87 + }, + { + "start": 4787.52, + "end": 4793.51, + "probability": 0.9588 + }, + { + "start": 4794.52, + "end": 4795.54, + "probability": 0.4231 + }, + { + "start": 4795.54, + "end": 4795.98, + "probability": 0.5379 + }, + { + "start": 4796.2, + "end": 4796.48, + "probability": 0.1159 + }, + { + "start": 4796.56, + "end": 4797.18, + "probability": 0.6481 + }, + { + "start": 4797.88, + "end": 4798.6, + "probability": 0.915 + }, + { + "start": 4798.7, + "end": 4801.1, + "probability": 0.9739 + }, + { + "start": 4802.94, + "end": 4804.6, + "probability": 0.9053 + }, + { + "start": 4804.7, + "end": 4805.38, + "probability": 0.8111 + }, + { + "start": 4805.54, + "end": 4806.7, + "probability": 0.9117 + }, + { + "start": 4807.54, + "end": 4808.58, + "probability": 0.9386 + }, + { + "start": 4809.44, + "end": 4812.58, + "probability": 0.6859 + }, + { + "start": 4813.16, + "end": 4814.04, + "probability": 0.8144 + }, + { + "start": 4814.48, + "end": 4819.2, + "probability": 0.9627 + }, + { + "start": 4819.5, + "end": 4824.56, + "probability": 0.9175 + }, + { + "start": 4824.72, + "end": 4826.28, + "probability": 0.6431 + }, + { + "start": 4826.64, + "end": 4827.7, + "probability": 0.628 + }, + { + "start": 4828.26, + "end": 4834.06, + "probability": 0.8807 + }, + { + "start": 4834.24, + "end": 4835.46, + "probability": 0.8203 + }, + { + "start": 4835.9, + "end": 4838.56, + "probability": 0.9731 + }, + { + "start": 4838.86, + "end": 4839.74, + "probability": 0.6313 + }, + { + "start": 4839.92, + "end": 4844.1, + "probability": 0.8619 + }, + { + "start": 4844.18, + "end": 4846.3, + "probability": 0.9566 + }, + { + "start": 4846.4, + "end": 4848.58, + "probability": 0.6707 + }, + { + "start": 4848.62, + "end": 4851.38, + "probability": 0.9121 + }, + { + "start": 4851.46, + "end": 4855.84, + "probability": 0.8903 + }, + { + "start": 4856.0, + "end": 4856.34, + "probability": 0.6615 + }, + { + "start": 4856.74, + "end": 4859.9, + "probability": 0.8582 + }, + { + "start": 4860.28, + "end": 4860.94, + "probability": 0.501 + }, + { + "start": 4861.4, + "end": 4864.96, + "probability": 0.9062 + }, + { + "start": 4867.5, + "end": 4868.32, + "probability": 0.9058 + }, + { + "start": 4868.58, + "end": 4870.66, + "probability": 0.9699 + }, + { + "start": 4872.01, + "end": 4874.72, + "probability": 0.5803 + }, + { + "start": 4875.18, + "end": 4877.98, + "probability": 0.3717 + }, + { + "start": 4878.16, + "end": 4879.5, + "probability": 0.7762 + }, + { + "start": 4879.72, + "end": 4881.2, + "probability": 0.8705 + }, + { + "start": 4881.46, + "end": 4884.76, + "probability": 0.9837 + }, + { + "start": 4885.16, + "end": 4885.68, + "probability": 0.8838 + }, + { + "start": 4886.06, + "end": 4886.62, + "probability": 0.6219 + }, + { + "start": 4886.82, + "end": 4888.32, + "probability": 0.7575 + }, + { + "start": 4889.54, + "end": 4890.38, + "probability": 0.8206 + }, + { + "start": 4891.8, + "end": 4896.0, + "probability": 0.8774 + }, + { + "start": 4896.0, + "end": 4899.94, + "probability": 0.993 + }, + { + "start": 4905.82, + "end": 4906.56, + "probability": 0.7964 + }, + { + "start": 4907.24, + "end": 4907.48, + "probability": 0.5808 + }, + { + "start": 4908.78, + "end": 4913.36, + "probability": 0.702 + }, + { + "start": 4914.1, + "end": 4915.08, + "probability": 0.6812 + }, + { + "start": 4917.44, + "end": 4919.9, + "probability": 0.9488 + }, + { + "start": 4920.3, + "end": 4923.86, + "probability": 0.7867 + }, + { + "start": 4925.74, + "end": 4930.76, + "probability": 0.6971 + }, + { + "start": 4932.46, + "end": 4936.08, + "probability": 0.2412 + }, + { + "start": 4936.42, + "end": 4940.58, + "probability": 0.8878 + }, + { + "start": 4941.36, + "end": 4942.26, + "probability": 0.8915 + }, + { + "start": 4943.3, + "end": 4945.08, + "probability": 0.5911 + }, + { + "start": 4945.22, + "end": 4949.52, + "probability": 0.7308 + }, + { + "start": 4949.68, + "end": 4950.56, + "probability": 0.2022 + }, + { + "start": 4950.92, + "end": 4955.42, + "probability": 0.7747 + }, + { + "start": 4955.84, + "end": 4956.96, + "probability": 0.917 + }, + { + "start": 4957.76, + "end": 4961.22, + "probability": 0.7998 + }, + { + "start": 4961.42, + "end": 4964.64, + "probability": 0.8906 + }, + { + "start": 4965.2, + "end": 4970.64, + "probability": 0.8878 + }, + { + "start": 4970.92, + "end": 4973.86, + "probability": 0.7223 + }, + { + "start": 4974.0, + "end": 4974.76, + "probability": 0.6501 + }, + { + "start": 4976.74, + "end": 4978.7, + "probability": 0.6751 + }, + { + "start": 4978.74, + "end": 4981.02, + "probability": 0.6646 + }, + { + "start": 4982.28, + "end": 4983.94, + "probability": 0.5163 + }, + { + "start": 4984.1, + "end": 4985.7, + "probability": 0.5437 + }, + { + "start": 4985.78, + "end": 4990.24, + "probability": 0.5606 + }, + { + "start": 4990.24, + "end": 4994.14, + "probability": 0.7248 + }, + { + "start": 4994.26, + "end": 4995.64, + "probability": 0.5873 + }, + { + "start": 4996.44, + "end": 4997.34, + "probability": 0.6634 + }, + { + "start": 4997.44, + "end": 5001.16, + "probability": 0.7621 + }, + { + "start": 5001.16, + "end": 5007.94, + "probability": 0.7821 + }, + { + "start": 5008.7, + "end": 5008.8, + "probability": 0.1217 + }, + { + "start": 5008.84, + "end": 5009.1, + "probability": 0.379 + }, + { + "start": 5009.16, + "end": 5011.55, + "probability": 0.7866 + }, + { + "start": 5012.5, + "end": 5018.02, + "probability": 0.6831 + }, + { + "start": 5018.26, + "end": 5022.62, + "probability": 0.8174 + }, + { + "start": 5022.84, + "end": 5025.1, + "probability": 0.9448 + }, + { + "start": 5025.1, + "end": 5028.28, + "probability": 0.8648 + }, + { + "start": 5029.14, + "end": 5031.44, + "probability": 0.9773 + }, + { + "start": 5031.44, + "end": 5033.66, + "probability": 0.5914 + }, + { + "start": 5033.84, + "end": 5035.26, + "probability": 0.929 + }, + { + "start": 5035.86, + "end": 5037.96, + "probability": 0.9237 + }, + { + "start": 5038.06, + "end": 5040.86, + "probability": 0.9131 + }, + { + "start": 5041.06, + "end": 5044.04, + "probability": 0.8308 + }, + { + "start": 5044.26, + "end": 5048.7, + "probability": 0.6609 + }, + { + "start": 5048.7, + "end": 5052.88, + "probability": 0.9263 + }, + { + "start": 5053.28, + "end": 5055.46, + "probability": 0.4457 + }, + { + "start": 5055.56, + "end": 5057.66, + "probability": 0.3428 + }, + { + "start": 5057.78, + "end": 5059.72, + "probability": 0.7687 + }, + { + "start": 5059.72, + "end": 5062.62, + "probability": 0.8721 + }, + { + "start": 5063.64, + "end": 5064.4, + "probability": 0.6205 + }, + { + "start": 5064.54, + "end": 5065.42, + "probability": 0.6951 + }, + { + "start": 5065.52, + "end": 5067.72, + "probability": 0.8188 + }, + { + "start": 5067.72, + "end": 5071.42, + "probability": 0.6363 + }, + { + "start": 5071.56, + "end": 5071.88, + "probability": 0.757 + }, + { + "start": 5072.64, + "end": 5074.92, + "probability": 0.7649 + }, + { + "start": 5075.52, + "end": 5079.14, + "probability": 0.654 + }, + { + "start": 5079.14, + "end": 5082.62, + "probability": 0.7623 + }, + { + "start": 5083.32, + "end": 5086.04, + "probability": 0.9744 + }, + { + "start": 5086.58, + "end": 5087.12, + "probability": 0.4209 + }, + { + "start": 5087.32, + "end": 5088.34, + "probability": 0.853 + }, + { + "start": 5088.46, + "end": 5090.7, + "probability": 0.7416 + }, + { + "start": 5090.7, + "end": 5093.86, + "probability": 0.8738 + }, + { + "start": 5093.98, + "end": 5098.94, + "probability": 0.8937 + }, + { + "start": 5099.0, + "end": 5101.34, + "probability": 0.6774 + }, + { + "start": 5101.34, + "end": 5104.32, + "probability": 0.8707 + }, + { + "start": 5104.48, + "end": 5107.36, + "probability": 0.6875 + }, + { + "start": 5108.44, + "end": 5111.66, + "probability": 0.9055 + }, + { + "start": 5112.7, + "end": 5115.62, + "probability": 0.839 + }, + { + "start": 5115.62, + "end": 5119.04, + "probability": 0.7904 + }, + { + "start": 5119.54, + "end": 5123.82, + "probability": 0.6771 + }, + { + "start": 5124.6, + "end": 5124.98, + "probability": 0.5701 + }, + { + "start": 5125.04, + "end": 5128.56, + "probability": 0.6391 + }, + { + "start": 5129.2, + "end": 5137.02, + "probability": 0.8521 + }, + { + "start": 5137.1, + "end": 5137.3, + "probability": 0.6396 + }, + { + "start": 5137.44, + "end": 5139.84, + "probability": 0.9082 + }, + { + "start": 5140.04, + "end": 5142.34, + "probability": 0.7983 + }, + { + "start": 5142.52, + "end": 5143.52, + "probability": 0.6827 + }, + { + "start": 5144.16, + "end": 5147.06, + "probability": 0.8453 + }, + { + "start": 5147.06, + "end": 5151.78, + "probability": 0.5275 + }, + { + "start": 5151.78, + "end": 5154.04, + "probability": 0.2025 + }, + { + "start": 5154.87, + "end": 5159.36, + "probability": 0.7517 + }, + { + "start": 5159.44, + "end": 5160.24, + "probability": 0.7705 + }, + { + "start": 5160.64, + "end": 5163.84, + "probability": 0.951 + }, + { + "start": 5164.32, + "end": 5164.68, + "probability": 0.7165 + }, + { + "start": 5164.86, + "end": 5168.04, + "probability": 0.5865 + }, + { + "start": 5168.04, + "end": 5171.12, + "probability": 0.4494 + }, + { + "start": 5171.52, + "end": 5176.72, + "probability": 0.906 + }, + { + "start": 5177.16, + "end": 5177.66, + "probability": 0.3132 + }, + { + "start": 5177.72, + "end": 5178.8, + "probability": 0.6089 + }, + { + "start": 5178.8, + "end": 5179.8, + "probability": 0.4197 + }, + { + "start": 5179.8, + "end": 5180.96, + "probability": 0.6552 + }, + { + "start": 5181.0, + "end": 5182.44, + "probability": 0.8396 + }, + { + "start": 5182.96, + "end": 5185.76, + "probability": 0.9863 + }, + { + "start": 5185.76, + "end": 5186.2, + "probability": 0.2798 + }, + { + "start": 5186.28, + "end": 5190.5, + "probability": 0.9944 + }, + { + "start": 5190.58, + "end": 5191.04, + "probability": 0.8466 + }, + { + "start": 5191.32, + "end": 5193.97, + "probability": 0.9893 + }, + { + "start": 5194.36, + "end": 5195.48, + "probability": 0.8889 + }, + { + "start": 5195.54, + "end": 5199.02, + "probability": 0.9806 + }, + { + "start": 5199.66, + "end": 5199.98, + "probability": 0.8549 + }, + { + "start": 5200.06, + "end": 5202.16, + "probability": 0.7524 + }, + { + "start": 5202.8, + "end": 5204.66, + "probability": 0.9799 + }, + { + "start": 5205.88, + "end": 5207.9, + "probability": 0.7247 + }, + { + "start": 5209.9, + "end": 5211.64, + "probability": 0.9036 + }, + { + "start": 5212.96, + "end": 5216.68, + "probability": 0.9744 + }, + { + "start": 5217.18, + "end": 5218.12, + "probability": 0.3621 + }, + { + "start": 5218.32, + "end": 5220.62, + "probability": 0.8423 + }, + { + "start": 5220.94, + "end": 5223.34, + "probability": 0.3729 + }, + { + "start": 5223.76, + "end": 5224.26, + "probability": 0.5607 + }, + { + "start": 5224.3, + "end": 5224.96, + "probability": 0.6867 + }, + { + "start": 5225.02, + "end": 5225.72, + "probability": 0.5089 + }, + { + "start": 5225.72, + "end": 5226.36, + "probability": 0.2513 + }, + { + "start": 5242.92, + "end": 5246.6, + "probability": 0.0531 + }, + { + "start": 5246.6, + "end": 5246.6, + "probability": 0.051 + }, + { + "start": 5246.6, + "end": 5246.6, + "probability": 0.04 + }, + { + "start": 5246.6, + "end": 5247.68, + "probability": 0.1603 + }, + { + "start": 5247.68, + "end": 5248.72, + "probability": 0.6796 + }, + { + "start": 5263.36, + "end": 5263.92, + "probability": 0.0345 + }, + { + "start": 5264.79, + "end": 5268.54, + "probability": 0.0681 + }, + { + "start": 5270.69, + "end": 5272.94, + "probability": 0.0324 + }, + { + "start": 5272.94, + "end": 5273.22, + "probability": 0.216 + }, + { + "start": 5274.22, + "end": 5274.86, + "probability": 0.0117 + }, + { + "start": 5275.0, + "end": 5275.84, + "probability": 0.0338 + }, + { + "start": 5275.84, + "end": 5281.54, + "probability": 0.0521 + }, + { + "start": 5283.76, + "end": 5287.78, + "probability": 0.0211 + }, + { + "start": 5287.78, + "end": 5288.78, + "probability": 0.331 + }, + { + "start": 5290.54, + "end": 5292.28, + "probability": 0.0523 + }, + { + "start": 5294.4, + "end": 5297.46, + "probability": 0.0245 + }, + { + "start": 5297.46, + "end": 5298.68, + "probability": 0.0142 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.0, + "end": 5299.0, + "probability": 0.0 + }, + { + "start": 5299.08, + "end": 5304.1, + "probability": 0.0027 + }, + { + "start": 5304.1, + "end": 5304.5, + "probability": 0.1269 + }, + { + "start": 5307.68, + "end": 5309.22, + "probability": 0.0196 + }, + { + "start": 5311.94, + "end": 5312.94, + "probability": 0.5488 + }, + { + "start": 5312.94, + "end": 5314.92, + "probability": 0.1588 + }, + { + "start": 5314.92, + "end": 5314.92, + "probability": 0.0277 + }, + { + "start": 5314.92, + "end": 5314.92, + "probability": 0.0144 + }, + { + "start": 5314.92, + "end": 5314.92, + "probability": 0.1692 + }, + { + "start": 5314.92, + "end": 5317.02, + "probability": 0.6746 + }, + { + "start": 5322.1, + "end": 5325.0, + "probability": 0.5626 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5434.0, + "end": 5434.0, + "probability": 0.0 + }, + { + "start": 5435.48, + "end": 5439.36, + "probability": 0.2654 + }, + { + "start": 5442.74, + "end": 5444.32, + "probability": 0.0891 + }, + { + "start": 5450.6, + "end": 5453.36, + "probability": 0.1361 + }, + { + "start": 5460.1, + "end": 5461.82, + "probability": 0.0034 + }, + { + "start": 5463.06, + "end": 5464.64, + "probability": 0.5112 + }, + { + "start": 5464.96, + "end": 5465.52, + "probability": 0.1097 + }, + { + "start": 5465.52, + "end": 5467.96, + "probability": 0.2738 + }, + { + "start": 5468.4, + "end": 5468.92, + "probability": 0.078 + }, + { + "start": 5471.68, + "end": 5473.18, + "probability": 0.0849 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5572.6, + "end": 5575.04, + "probability": 0.0715 + }, + { + "start": 5577.06, + "end": 5579.86, + "probability": 0.0494 + }, + { + "start": 5584.76, + "end": 5586.68, + "probability": 0.0789 + }, + { + "start": 5588.72, + "end": 5591.6, + "probability": 0.1394 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.0, + "end": 5695.0, + "probability": 0.0 + }, + { + "start": 5695.28, + "end": 5695.56, + "probability": 0.0602 + }, + { + "start": 5695.56, + "end": 5695.56, + "probability": 0.0377 + }, + { + "start": 5695.56, + "end": 5697.36, + "probability": 0.6386 + }, + { + "start": 5697.8, + "end": 5699.98, + "probability": 0.7474 + }, + { + "start": 5700.44, + "end": 5702.14, + "probability": 0.8887 + }, + { + "start": 5705.06, + "end": 5705.06, + "probability": 0.0408 + }, + { + "start": 5705.06, + "end": 5707.21, + "probability": 0.7148 + }, + { + "start": 5707.34, + "end": 5708.9, + "probability": 0.9715 + }, + { + "start": 5709.92, + "end": 5711.98, + "probability": 0.9214 + }, + { + "start": 5712.82, + "end": 5719.46, + "probability": 0.9798 + }, + { + "start": 5720.18, + "end": 5722.32, + "probability": 0.9771 + }, + { + "start": 5722.48, + "end": 5724.62, + "probability": 0.8972 + }, + { + "start": 5724.84, + "end": 5725.24, + "probability": 0.6888 + }, + { + "start": 5725.4, + "end": 5727.78, + "probability": 0.8635 + }, + { + "start": 5727.82, + "end": 5730.28, + "probability": 0.9101 + }, + { + "start": 5730.34, + "end": 5731.82, + "probability": 0.8178 + }, + { + "start": 5731.9, + "end": 5732.6, + "probability": 0.9548 + }, + { + "start": 5732.86, + "end": 5738.38, + "probability": 0.9874 + }, + { + "start": 5740.62, + "end": 5742.5, + "probability": 0.8622 + }, + { + "start": 5743.1, + "end": 5744.98, + "probability": 0.8538 + }, + { + "start": 5745.06, + "end": 5749.56, + "probability": 0.9708 + }, + { + "start": 5749.78, + "end": 5753.98, + "probability": 0.9401 + }, + { + "start": 5754.16, + "end": 5754.44, + "probability": 0.7316 + }, + { + "start": 5754.44, + "end": 5758.98, + "probability": 0.9628 + }, + { + "start": 5758.98, + "end": 5763.46, + "probability": 0.9949 + }, + { + "start": 5764.58, + "end": 5769.32, + "probability": 0.992 + }, + { + "start": 5769.86, + "end": 5776.5, + "probability": 0.9857 + }, + { + "start": 5776.86, + "end": 5779.84, + "probability": 0.991 + }, + { + "start": 5780.49, + "end": 5785.3, + "probability": 0.8953 + }, + { + "start": 5785.66, + "end": 5790.74, + "probability": 0.9816 + }, + { + "start": 5790.74, + "end": 5795.0, + "probability": 0.9732 + }, + { + "start": 5795.1, + "end": 5796.8, + "probability": 0.9091 + }, + { + "start": 5796.9, + "end": 5798.07, + "probability": 0.9834 + }, + { + "start": 5798.74, + "end": 5801.28, + "probability": 0.9812 + }, + { + "start": 5801.34, + "end": 5803.48, + "probability": 0.9833 + }, + { + "start": 5804.28, + "end": 5805.14, + "probability": 0.6722 + }, + { + "start": 5805.18, + "end": 5805.42, + "probability": 0.8225 + }, + { + "start": 5805.84, + "end": 5810.08, + "probability": 0.83 + }, + { + "start": 5810.8, + "end": 5810.84, + "probability": 0.7678 + }, + { + "start": 5810.98, + "end": 5811.26, + "probability": 0.9767 + }, + { + "start": 5811.5, + "end": 5815.5, + "probability": 0.9159 + }, + { + "start": 5815.86, + "end": 5817.18, + "probability": 0.8199 + }, + { + "start": 5817.92, + "end": 5818.66, + "probability": 0.1523 + }, + { + "start": 5819.66, + "end": 5819.74, + "probability": 0.6312 + }, + { + "start": 5821.34, + "end": 5822.08, + "probability": 0.1574 + }, + { + "start": 5822.58, + "end": 5826.5, + "probability": 0.9494 + }, + { + "start": 5826.62, + "end": 5827.48, + "probability": 0.6187 + }, + { + "start": 5827.86, + "end": 5829.78, + "probability": 0.9678 + }, + { + "start": 5829.98, + "end": 5831.42, + "probability": 0.8588 + }, + { + "start": 5831.62, + "end": 5832.9, + "probability": 0.3476 + }, + { + "start": 5832.94, + "end": 5836.24, + "probability": 0.2177 + }, + { + "start": 5836.36, + "end": 5839.36, + "probability": 0.7944 + }, + { + "start": 5840.38, + "end": 5842.94, + "probability": 0.6048 + }, + { + "start": 5842.96, + "end": 5843.22, + "probability": 0.1526 + }, + { + "start": 5843.22, + "end": 5844.02, + "probability": 0.9398 + }, + { + "start": 5844.38, + "end": 5847.5, + "probability": 0.9131 + }, + { + "start": 5847.5, + "end": 5850.62, + "probability": 0.7079 + }, + { + "start": 5851.24, + "end": 5855.76, + "probability": 0.9702 + }, + { + "start": 5855.86, + "end": 5861.16, + "probability": 0.973 + }, + { + "start": 5862.16, + "end": 5863.98, + "probability": 0.8018 + }, + { + "start": 5864.42, + "end": 5865.52, + "probability": 0.9333 + }, + { + "start": 5865.66, + "end": 5867.94, + "probability": 0.7889 + }, + { + "start": 5868.46, + "end": 5873.7, + "probability": 0.7509 + }, + { + "start": 5874.2, + "end": 5875.58, + "probability": 0.804 + }, + { + "start": 5875.64, + "end": 5876.76, + "probability": 0.5626 + }, + { + "start": 5878.42, + "end": 5883.06, + "probability": 0.3309 + }, + { + "start": 5885.7, + "end": 5887.16, + "probability": 0.3206 + }, + { + "start": 5887.74, + "end": 5888.37, + "probability": 0.3647 + }, + { + "start": 5888.88, + "end": 5894.88, + "probability": 0.9746 + }, + { + "start": 5894.88, + "end": 5900.5, + "probability": 0.9965 + }, + { + "start": 5901.3, + "end": 5901.74, + "probability": 0.6284 + }, + { + "start": 5902.0, + "end": 5904.34, + "probability": 0.9312 + }, + { + "start": 5906.54, + "end": 5907.36, + "probability": 0.744 + }, + { + "start": 5907.5, + "end": 5910.38, + "probability": 0.9922 + }, + { + "start": 5911.0, + "end": 5912.56, + "probability": 0.9568 + }, + { + "start": 5913.04, + "end": 5913.44, + "probability": 0.6885 + }, + { + "start": 5913.44, + "end": 5917.96, + "probability": 0.8618 + }, + { + "start": 5924.1, + "end": 5926.18, + "probability": 0.6055 + }, + { + "start": 5926.88, + "end": 5928.4, + "probability": 0.6593 + }, + { + "start": 5929.16, + "end": 5933.82, + "probability": 0.9709 + }, + { + "start": 5933.84, + "end": 5938.02, + "probability": 0.8599 + }, + { + "start": 5946.06, + "end": 5947.48, + "probability": 0.2512 + }, + { + "start": 5954.52, + "end": 5956.14, + "probability": 0.6866 + }, + { + "start": 5957.0, + "end": 5962.78, + "probability": 0.833 + }, + { + "start": 5962.78, + "end": 5967.4, + "probability": 0.9038 + }, + { + "start": 5967.44, + "end": 5969.31, + "probability": 0.9008 + }, + { + "start": 5970.48, + "end": 5973.46, + "probability": 0.9312 + }, + { + "start": 5973.62, + "end": 5977.38, + "probability": 0.9239 + }, + { + "start": 5978.08, + "end": 5979.24, + "probability": 0.4465 + }, + { + "start": 5979.98, + "end": 5982.4, + "probability": 0.866 + }, + { + "start": 5983.06, + "end": 5985.56, + "probability": 0.9464 + }, + { + "start": 5986.1, + "end": 5992.58, + "probability": 0.9624 + }, + { + "start": 5993.22, + "end": 5995.58, + "probability": 0.9553 + }, + { + "start": 5998.46, + "end": 6000.2, + "probability": 0.9001 + }, + { + "start": 6000.88, + "end": 6002.7, + "probability": 0.9877 + }, + { + "start": 6003.7, + "end": 6004.9, + "probability": 0.3988 + }, + { + "start": 6005.0, + "end": 6005.74, + "probability": 0.5457 + }, + { + "start": 6005.84, + "end": 6006.18, + "probability": 0.8941 + }, + { + "start": 6006.68, + "end": 6012.08, + "probability": 0.9976 + }, + { + "start": 6012.72, + "end": 6014.38, + "probability": 0.9569 + }, + { + "start": 6014.48, + "end": 6015.6, + "probability": 0.8974 + }, + { + "start": 6016.1, + "end": 6018.2, + "probability": 0.7334 + }, + { + "start": 6018.74, + "end": 6023.38, + "probability": 0.6525 + }, + { + "start": 6023.46, + "end": 6024.9, + "probability": 0.9257 + }, + { + "start": 6025.12, + "end": 6028.36, + "probability": 0.8314 + }, + { + "start": 6028.46, + "end": 6029.34, + "probability": 0.7056 + }, + { + "start": 6029.52, + "end": 6030.16, + "probability": 0.8362 + }, + { + "start": 6031.56, + "end": 6038.2, + "probability": 0.9598 + }, + { + "start": 6038.24, + "end": 6047.28, + "probability": 0.9486 + }, + { + "start": 6047.82, + "end": 6052.4, + "probability": 0.9783 + }, + { + "start": 6052.92, + "end": 6052.92, + "probability": 0.0012 + }, + { + "start": 6056.2, + "end": 6057.32, + "probability": 0.2083 + }, + { + "start": 6057.95, + "end": 6066.0, + "probability": 0.8678 + }, + { + "start": 6066.82, + "end": 6073.42, + "probability": 0.9431 + }, + { + "start": 6073.52, + "end": 6078.2, + "probability": 0.9613 + }, + { + "start": 6078.6, + "end": 6082.48, + "probability": 0.7346 + }, + { + "start": 6082.58, + "end": 6084.72, + "probability": 0.998 + }, + { + "start": 6085.31, + "end": 6088.08, + "probability": 0.9128 + }, + { + "start": 6088.58, + "end": 6093.16, + "probability": 0.9701 + }, + { + "start": 6093.72, + "end": 6099.86, + "probability": 0.9884 + }, + { + "start": 6100.06, + "end": 6101.28, + "probability": 0.6781 + }, + { + "start": 6101.96, + "end": 6105.96, + "probability": 0.5301 + }, + { + "start": 6107.24, + "end": 6112.56, + "probability": 0.9855 + }, + { + "start": 6113.04, + "end": 6115.08, + "probability": 0.9992 + }, + { + "start": 6115.6, + "end": 6121.98, + "probability": 0.825 + }, + { + "start": 6122.5, + "end": 6124.58, + "probability": 0.7578 + }, + { + "start": 6125.22, + "end": 6131.4, + "probability": 0.8936 + }, + { + "start": 6131.46, + "end": 6136.82, + "probability": 0.6648 + }, + { + "start": 6137.84, + "end": 6146.54, + "probability": 0.8557 + }, + { + "start": 6146.88, + "end": 6148.3, + "probability": 0.9638 + }, + { + "start": 6151.44, + "end": 6152.2, + "probability": 0.8895 + }, + { + "start": 6152.82, + "end": 6155.89, + "probability": 0.573 + }, + { + "start": 6156.1, + "end": 6160.6, + "probability": 0.9844 + }, + { + "start": 6160.96, + "end": 6166.54, + "probability": 0.9648 + }, + { + "start": 6167.12, + "end": 6171.2, + "probability": 0.9925 + }, + { + "start": 6171.58, + "end": 6173.12, + "probability": 0.7435 + }, + { + "start": 6175.41, + "end": 6179.8, + "probability": 0.8973 + }, + { + "start": 6180.36, + "end": 6180.6, + "probability": 0.633 + }, + { + "start": 6181.06, + "end": 6181.5, + "probability": 0.6166 + }, + { + "start": 6181.72, + "end": 6185.54, + "probability": 0.8213 + }, + { + "start": 6186.38, + "end": 6188.58, + "probability": 0.7343 + }, + { + "start": 6190.58, + "end": 6196.62, + "probability": 0.9828 + }, + { + "start": 6205.98, + "end": 6205.98, + "probability": 0.0583 + }, + { + "start": 6205.98, + "end": 6207.74, + "probability": 0.3683 + }, + { + "start": 6209.15, + "end": 6212.38, + "probability": 0.9844 + }, + { + "start": 6213.3, + "end": 6214.44, + "probability": 0.5576 + }, + { + "start": 6215.14, + "end": 6216.81, + "probability": 0.778 + }, + { + "start": 6217.54, + "end": 6219.88, + "probability": 0.6598 + }, + { + "start": 6220.04, + "end": 6220.74, + "probability": 0.5675 + }, + { + "start": 6223.42, + "end": 6224.98, + "probability": 0.7741 + }, + { + "start": 6225.1, + "end": 6229.1, + "probability": 0.849 + }, + { + "start": 6231.32, + "end": 6236.56, + "probability": 0.9909 + }, + { + "start": 6237.1, + "end": 6242.96, + "probability": 0.9809 + }, + { + "start": 6242.96, + "end": 6248.18, + "probability": 0.9788 + }, + { + "start": 6248.2, + "end": 6251.76, + "probability": 0.9749 + }, + { + "start": 6252.34, + "end": 6255.56, + "probability": 0.9929 + }, + { + "start": 6255.56, + "end": 6256.99, + "probability": 0.9946 + }, + { + "start": 6258.4, + "end": 6260.92, + "probability": 0.8226 + }, + { + "start": 6261.12, + "end": 6261.62, + "probability": 0.6577 + }, + { + "start": 6262.06, + "end": 6264.88, + "probability": 0.9163 + }, + { + "start": 6265.0, + "end": 6266.64, + "probability": 0.9576 + }, + { + "start": 6268.16, + "end": 6269.63, + "probability": 0.9504 + }, + { + "start": 6269.88, + "end": 6270.02, + "probability": 0.2287 + }, + { + "start": 6270.5, + "end": 6276.8, + "probability": 0.9091 + }, + { + "start": 6281.62, + "end": 6282.32, + "probability": 0.6559 + }, + { + "start": 6282.42, + "end": 6283.9, + "probability": 0.4276 + }, + { + "start": 6284.94, + "end": 6287.28, + "probability": 0.5081 + }, + { + "start": 6287.34, + "end": 6290.7, + "probability": 0.9841 + }, + { + "start": 6290.92, + "end": 6291.46, + "probability": 0.3124 + }, + { + "start": 6292.2, + "end": 6293.1, + "probability": 0.5775 + }, + { + "start": 6293.1, + "end": 6294.4, + "probability": 0.6879 + }, + { + "start": 6294.44, + "end": 6294.48, + "probability": 0.1984 + }, + { + "start": 6295.37, + "end": 6298.76, + "probability": 0.9795 + }, + { + "start": 6298.88, + "end": 6299.92, + "probability": 0.8008 + }, + { + "start": 6301.36, + "end": 6304.16, + "probability": 0.5401 + }, + { + "start": 6305.04, + "end": 6307.18, + "probability": 0.8458 + }, + { + "start": 6307.92, + "end": 6312.5, + "probability": 0.6277 + }, + { + "start": 6313.52, + "end": 6319.94, + "probability": 0.9731 + }, + { + "start": 6320.0, + "end": 6321.1, + "probability": 0.8955 + }, + { + "start": 6321.22, + "end": 6323.34, + "probability": 0.8142 + }, + { + "start": 6323.5, + "end": 6325.0, + "probability": 0.9901 + }, + { + "start": 6325.36, + "end": 6327.98, + "probability": 0.907 + }, + { + "start": 6331.4, + "end": 6331.98, + "probability": 0.502 + }, + { + "start": 6331.98, + "end": 6331.98, + "probability": 0.7621 + }, + { + "start": 6331.98, + "end": 6333.18, + "probability": 0.8029 + }, + { + "start": 6333.44, + "end": 6333.96, + "probability": 0.8563 + }, + { + "start": 6334.34, + "end": 6335.26, + "probability": 0.8006 + }, + { + "start": 6335.3, + "end": 6340.58, + "probability": 0.6503 + }, + { + "start": 6340.58, + "end": 6345.44, + "probability": 0.8748 + }, + { + "start": 6345.94, + "end": 6348.78, + "probability": 0.562 + }, + { + "start": 6351.24, + "end": 6351.6, + "probability": 0.2232 + }, + { + "start": 6363.02, + "end": 6366.54, + "probability": 0.5006 + }, + { + "start": 6367.0, + "end": 6368.76, + "probability": 0.1799 + }, + { + "start": 6369.28, + "end": 6371.26, + "probability": 0.987 + }, + { + "start": 6371.38, + "end": 6375.16, + "probability": 0.8925 + }, + { + "start": 6375.36, + "end": 6376.24, + "probability": 0.5577 + }, + { + "start": 6376.66, + "end": 6378.24, + "probability": 0.7906 + }, + { + "start": 6378.56, + "end": 6380.76, + "probability": 0.9661 + }, + { + "start": 6381.28, + "end": 6381.92, + "probability": 0.6315 + }, + { + "start": 6382.06, + "end": 6382.32, + "probability": 0.8264 + }, + { + "start": 6382.46, + "end": 6385.16, + "probability": 0.9383 + }, + { + "start": 6385.18, + "end": 6386.66, + "probability": 0.4603 + }, + { + "start": 6387.64, + "end": 6394.3, + "probability": 0.9685 + }, + { + "start": 6394.92, + "end": 6396.94, + "probability": 0.6272 + }, + { + "start": 6397.38, + "end": 6398.12, + "probability": 0.6585 + }, + { + "start": 6411.92, + "end": 6413.16, + "probability": 0.588 + }, + { + "start": 6416.56, + "end": 6417.5, + "probability": 0.2063 + }, + { + "start": 6417.87, + "end": 6419.44, + "probability": 0.0946 + }, + { + "start": 6419.6, + "end": 6420.44, + "probability": 0.5349 + }, + { + "start": 6420.5, + "end": 6424.62, + "probability": 0.9199 + }, + { + "start": 6425.72, + "end": 6427.34, + "probability": 0.9343 + }, + { + "start": 6428.7, + "end": 6430.74, + "probability": 0.9958 + }, + { + "start": 6431.94, + "end": 6433.5, + "probability": 0.7538 + }, + { + "start": 6435.4, + "end": 6436.88, + "probability": 0.7957 + }, + { + "start": 6438.06, + "end": 6439.4, + "probability": 0.8841 + }, + { + "start": 6440.38, + "end": 6442.4, + "probability": 0.939 + }, + { + "start": 6442.78, + "end": 6446.02, + "probability": 0.9752 + }, + { + "start": 6446.48, + "end": 6447.9, + "probability": 0.5984 + }, + { + "start": 6447.92, + "end": 6448.22, + "probability": 0.5844 + }, + { + "start": 6448.52, + "end": 6448.8, + "probability": 0.6659 + }, + { + "start": 6449.04, + "end": 6452.56, + "probability": 0.7514 + }, + { + "start": 6454.06, + "end": 6460.52, + "probability": 0.9282 + }, + { + "start": 6461.6, + "end": 6464.34, + "probability": 0.995 + }, + { + "start": 6465.54, + "end": 6466.46, + "probability": 0.7047 + }, + { + "start": 6467.94, + "end": 6472.86, + "probability": 0.9318 + }, + { + "start": 6472.86, + "end": 6477.0, + "probability": 0.9869 + }, + { + "start": 6477.26, + "end": 6488.6, + "probability": 0.9727 + }, + { + "start": 6490.02, + "end": 6495.14, + "probability": 0.9486 + }, + { + "start": 6497.0, + "end": 6498.98, + "probability": 0.9634 + }, + { + "start": 6499.76, + "end": 6502.16, + "probability": 0.9098 + }, + { + "start": 6505.52, + "end": 6510.86, + "probability": 0.9549 + }, + { + "start": 6512.66, + "end": 6516.58, + "probability": 0.9922 + }, + { + "start": 6517.78, + "end": 6519.3, + "probability": 0.9819 + }, + { + "start": 6520.2, + "end": 6523.86, + "probability": 0.9473 + }, + { + "start": 6525.5, + "end": 6529.92, + "probability": 0.8 + }, + { + "start": 6533.12, + "end": 6535.72, + "probability": 0.7427 + }, + { + "start": 6535.78, + "end": 6536.78, + "probability": 0.7613 + }, + { + "start": 6537.72, + "end": 6543.06, + "probability": 0.7278 + }, + { + "start": 6543.06, + "end": 6543.06, + "probability": 0.9619 + }, + { + "start": 6544.38, + "end": 6547.34, + "probability": 0.9188 + }, + { + "start": 6549.3, + "end": 6550.94, + "probability": 0.6122 + }, + { + "start": 6552.0, + "end": 6553.44, + "probability": 0.9088 + }, + { + "start": 6553.62, + "end": 6556.64, + "probability": 0.9326 + }, + { + "start": 6557.58, + "end": 6557.96, + "probability": 0.4708 + }, + { + "start": 6558.26, + "end": 6561.7, + "probability": 0.9638 + }, + { + "start": 6562.74, + "end": 6569.18, + "probability": 0.9653 + }, + { + "start": 6570.46, + "end": 6572.02, + "probability": 0.9987 + }, + { + "start": 6572.88, + "end": 6574.96, + "probability": 0.9362 + }, + { + "start": 6575.58, + "end": 6579.82, + "probability": 0.9878 + }, + { + "start": 6580.34, + "end": 6582.88, + "probability": 0.7968 + }, + { + "start": 6583.14, + "end": 6583.62, + "probability": 0.4896 + }, + { + "start": 6584.1, + "end": 6587.12, + "probability": 0.9474 + }, + { + "start": 6587.28, + "end": 6588.78, + "probability": 0.9877 + }, + { + "start": 6589.28, + "end": 6590.74, + "probability": 0.9907 + }, + { + "start": 6591.08, + "end": 6592.46, + "probability": 0.6483 + }, + { + "start": 6593.52, + "end": 6594.58, + "probability": 0.9275 + }, + { + "start": 6595.54, + "end": 6598.66, + "probability": 0.7969 + }, + { + "start": 6598.96, + "end": 6599.06, + "probability": 0.5148 + }, + { + "start": 6599.62, + "end": 6599.62, + "probability": 0.4293 + }, + { + "start": 6599.62, + "end": 6600.36, + "probability": 0.7302 + }, + { + "start": 6601.34, + "end": 6603.1, + "probability": 0.512 + }, + { + "start": 6604.44, + "end": 6608.6, + "probability": 0.6872 + }, + { + "start": 6608.62, + "end": 6609.66, + "probability": 0.8027 + }, + { + "start": 6610.92, + "end": 6611.12, + "probability": 0.3892 + }, + { + "start": 6611.28, + "end": 6611.93, + "probability": 0.8989 + }, + { + "start": 6612.04, + "end": 6615.98, + "probability": 0.9449 + }, + { + "start": 6616.06, + "end": 6616.76, + "probability": 0.8806 + }, + { + "start": 6617.14, + "end": 6620.84, + "probability": 0.8792 + }, + { + "start": 6620.94, + "end": 6623.28, + "probability": 0.8267 + }, + { + "start": 6623.62, + "end": 6625.8, + "probability": 0.9735 + }, + { + "start": 6625.88, + "end": 6628.56, + "probability": 0.8732 + }, + { + "start": 6628.88, + "end": 6633.28, + "probability": 0.98 + }, + { + "start": 6634.44, + "end": 6636.06, + "probability": 0.9659 + }, + { + "start": 6637.04, + "end": 6639.56, + "probability": 0.9573 + }, + { + "start": 6639.72, + "end": 6642.12, + "probability": 0.9814 + }, + { + "start": 6642.22, + "end": 6642.6, + "probability": 0.8954 + }, + { + "start": 6642.96, + "end": 6643.4, + "probability": 0.655 + }, + { + "start": 6643.44, + "end": 6643.88, + "probability": 0.8927 + }, + { + "start": 6646.0, + "end": 6646.96, + "probability": 0.3538 + }, + { + "start": 6650.54, + "end": 6652.74, + "probability": 0.9611 + }, + { + "start": 6652.74, + "end": 6655.58, + "probability": 0.6465 + }, + { + "start": 6662.07, + "end": 6666.64, + "probability": 0.9856 + }, + { + "start": 6668.08, + "end": 6669.1, + "probability": 0.5719 + }, + { + "start": 6669.48, + "end": 6671.46, + "probability": 0.0282 + }, + { + "start": 6671.56, + "end": 6672.94, + "probability": 0.5416 + }, + { + "start": 6674.44, + "end": 6675.7, + "probability": 0.6505 + }, + { + "start": 6677.22, + "end": 6678.8, + "probability": 0.7866 + }, + { + "start": 6681.48, + "end": 6684.04, + "probability": 0.8462 + }, + { + "start": 6684.7, + "end": 6686.68, + "probability": 0.981 + }, + { + "start": 6687.5, + "end": 6688.44, + "probability": 0.8199 + }, + { + "start": 6689.3, + "end": 6690.04, + "probability": 0.2735 + }, + { + "start": 6690.04, + "end": 6691.4, + "probability": 0.3886 + }, + { + "start": 6691.48, + "end": 6692.76, + "probability": 0.871 + }, + { + "start": 6692.86, + "end": 6695.16, + "probability": 0.1113 + }, + { + "start": 6695.6, + "end": 6696.32, + "probability": 0.0426 + }, + { + "start": 6696.32, + "end": 6696.6, + "probability": 0.658 + }, + { + "start": 6697.12, + "end": 6701.26, + "probability": 0.5439 + }, + { + "start": 6701.32, + "end": 6701.7, + "probability": 0.9282 + }, + { + "start": 6702.44, + "end": 6704.16, + "probability": 0.9339 + }, + { + "start": 6704.62, + "end": 6706.3, + "probability": 0.1571 + }, + { + "start": 6706.46, + "end": 6707.4, + "probability": 0.1838 + }, + { + "start": 6707.4, + "end": 6708.92, + "probability": 0.3296 + }, + { + "start": 6709.06, + "end": 6711.06, + "probability": 0.2069 + }, + { + "start": 6711.06, + "end": 6712.74, + "probability": 0.1613 + }, + { + "start": 6712.74, + "end": 6713.32, + "probability": 0.1609 + }, + { + "start": 6713.66, + "end": 6714.32, + "probability": 0.0044 + }, + { + "start": 6714.32, + "end": 6718.1, + "probability": 0.3293 + }, + { + "start": 6718.36, + "end": 6719.48, + "probability": 0.6368 + }, + { + "start": 6719.6, + "end": 6720.06, + "probability": 0.3319 + }, + { + "start": 6721.04, + "end": 6721.84, + "probability": 0.857 + }, + { + "start": 6722.4, + "end": 6725.08, + "probability": 0.329 + }, + { + "start": 6725.68, + "end": 6727.52, + "probability": 0.9294 + }, + { + "start": 6727.64, + "end": 6729.99, + "probability": 0.9933 + }, + { + "start": 6731.16, + "end": 6735.22, + "probability": 0.8143 + }, + { + "start": 6735.22, + "end": 6739.12, + "probability": 0.8714 + }, + { + "start": 6739.98, + "end": 6740.24, + "probability": 0.5887 + }, + { + "start": 6740.24, + "end": 6743.62, + "probability": 0.9788 + }, + { + "start": 6744.74, + "end": 6748.42, + "probability": 0.6427 + }, + { + "start": 6749.12, + "end": 6750.38, + "probability": 0.8709 + }, + { + "start": 6750.84, + "end": 6758.68, + "probability": 0.984 + }, + { + "start": 6758.68, + "end": 6766.5, + "probability": 0.9684 + }, + { + "start": 6767.06, + "end": 6770.2, + "probability": 0.9856 + }, + { + "start": 6771.24, + "end": 6774.36, + "probability": 0.7384 + }, + { + "start": 6775.54, + "end": 6778.44, + "probability": 0.9772 + }, + { + "start": 6778.48, + "end": 6779.64, + "probability": 0.662 + }, + { + "start": 6779.72, + "end": 6782.72, + "probability": 0.8543 + }, + { + "start": 6783.08, + "end": 6785.0, + "probability": 0.7817 + }, + { + "start": 6786.42, + "end": 6788.04, + "probability": 0.0355 + }, + { + "start": 6788.06, + "end": 6789.96, + "probability": 0.7159 + }, + { + "start": 6790.5, + "end": 6792.3, + "probability": 0.9251 + }, + { + "start": 6792.4, + "end": 6792.94, + "probability": 0.6387 + }, + { + "start": 6793.48, + "end": 6794.58, + "probability": 0.9158 + }, + { + "start": 6796.08, + "end": 6799.78, + "probability": 0.6006 + }, + { + "start": 6799.9, + "end": 6801.22, + "probability": 0.9395 + }, + { + "start": 6801.28, + "end": 6801.94, + "probability": 0.8558 + }, + { + "start": 6803.32, + "end": 6808.06, + "probability": 0.9139 + }, + { + "start": 6809.48, + "end": 6815.58, + "probability": 0.8924 + }, + { + "start": 6816.28, + "end": 6820.2, + "probability": 0.9732 + }, + { + "start": 6820.2, + "end": 6824.7, + "probability": 0.9985 + }, + { + "start": 6824.88, + "end": 6827.62, + "probability": 0.7996 + }, + { + "start": 6828.02, + "end": 6829.4, + "probability": 0.6583 + }, + { + "start": 6829.74, + "end": 6830.44, + "probability": 0.4952 + }, + { + "start": 6830.44, + "end": 6831.14, + "probability": 0.396 + }, + { + "start": 6831.22, + "end": 6836.4, + "probability": 0.8688 + }, + { + "start": 6836.7, + "end": 6837.4, + "probability": 0.7731 + }, + { + "start": 6842.08, + "end": 6844.12, + "probability": 0.3705 + }, + { + "start": 6844.32, + "end": 6846.06, + "probability": 0.7398 + }, + { + "start": 6847.86, + "end": 6849.92, + "probability": 0.5032 + }, + { + "start": 6850.38, + "end": 6853.7, + "probability": 0.9885 + }, + { + "start": 6854.22, + "end": 6856.05, + "probability": 0.4763 + }, + { + "start": 6860.76, + "end": 6861.14, + "probability": 0.4314 + }, + { + "start": 6861.22, + "end": 6862.36, + "probability": 0.574 + }, + { + "start": 6863.62, + "end": 6864.64, + "probability": 0.7856 + }, + { + "start": 6865.02, + "end": 6865.32, + "probability": 0.7938 + }, + { + "start": 6865.66, + "end": 6867.58, + "probability": 0.5007 + }, + { + "start": 6867.62, + "end": 6867.62, + "probability": 0.1816 + }, + { + "start": 6867.62, + "end": 6867.84, + "probability": 0.2853 + }, + { + "start": 6868.28, + "end": 6869.92, + "probability": 0.0522 + }, + { + "start": 6870.08, + "end": 6870.8, + "probability": 0.2643 + }, + { + "start": 6870.82, + "end": 6871.76, + "probability": 0.5053 + }, + { + "start": 6872.66, + "end": 6880.18, + "probability": 0.9906 + }, + { + "start": 6880.68, + "end": 6889.68, + "probability": 0.9729 + }, + { + "start": 6890.7, + "end": 6890.96, + "probability": 0.7469 + }, + { + "start": 6891.54, + "end": 6894.28, + "probability": 0.5473 + }, + { + "start": 6894.28, + "end": 6895.86, + "probability": 0.5483 + }, + { + "start": 6895.88, + "end": 6896.9, + "probability": 0.7111 + }, + { + "start": 6897.52, + "end": 6898.9, + "probability": 0.9597 + }, + { + "start": 6899.0, + "end": 6901.02, + "probability": 0.8546 + }, + { + "start": 6902.0, + "end": 6905.38, + "probability": 0.9969 + }, + { + "start": 6905.38, + "end": 6910.56, + "probability": 0.9491 + }, + { + "start": 6911.54, + "end": 6912.82, + "probability": 0.2407 + }, + { + "start": 6913.64, + "end": 6915.42, + "probability": 0.6715 + }, + { + "start": 6916.12, + "end": 6924.7, + "probability": 0.8265 + }, + { + "start": 6924.94, + "end": 6925.76, + "probability": 0.6625 + }, + { + "start": 6926.18, + "end": 6928.54, + "probability": 0.9846 + }, + { + "start": 6928.62, + "end": 6931.8, + "probability": 0.9924 + }, + { + "start": 6932.46, + "end": 6935.7, + "probability": 0.8992 + }, + { + "start": 6936.32, + "end": 6936.8, + "probability": 0.0838 + }, + { + "start": 6937.58, + "end": 6939.0, + "probability": 0.0712 + }, + { + "start": 6940.26, + "end": 6942.82, + "probability": 0.8374 + }, + { + "start": 6943.2, + "end": 6943.68, + "probability": 0.3555 + }, + { + "start": 6943.8, + "end": 6947.74, + "probability": 0.989 + }, + { + "start": 6947.74, + "end": 6951.84, + "probability": 0.9987 + }, + { + "start": 6952.26, + "end": 6955.2, + "probability": 0.745 + }, + { + "start": 6955.34, + "end": 6957.44, + "probability": 0.7007 + }, + { + "start": 6958.4, + "end": 6961.5, + "probability": 0.9303 + }, + { + "start": 6961.72, + "end": 6964.92, + "probability": 0.9004 + }, + { + "start": 6965.44, + "end": 6966.34, + "probability": 0.7878 + }, + { + "start": 6967.52, + "end": 6969.96, + "probability": 0.9704 + }, + { + "start": 6971.46, + "end": 6974.22, + "probability": 0.7603 + }, + { + "start": 6977.92, + "end": 6979.98, + "probability": 0.6437 + }, + { + "start": 6980.14, + "end": 6980.88, + "probability": 0.8433 + }, + { + "start": 6981.0, + "end": 6982.36, + "probability": 0.8947 + }, + { + "start": 6983.74, + "end": 6987.76, + "probability": 0.7868 + }, + { + "start": 6989.07, + "end": 6991.64, + "probability": 0.9538 + }, + { + "start": 6991.84, + "end": 6993.28, + "probability": 0.6771 + }, + { + "start": 6993.58, + "end": 6994.32, + "probability": 0.6691 + }, + { + "start": 6994.5, + "end": 6995.26, + "probability": 0.7965 + }, + { + "start": 6995.26, + "end": 6995.36, + "probability": 0.7382 + }, + { + "start": 6996.16, + "end": 6998.02, + "probability": 0.8246 + }, + { + "start": 6999.32, + "end": 7002.48, + "probability": 0.9454 + }, + { + "start": 7004.18, + "end": 7004.68, + "probability": 0.6429 + }, + { + "start": 7005.78, + "end": 7010.52, + "probability": 0.8752 + }, + { + "start": 7011.08, + "end": 7013.88, + "probability": 0.8992 + }, + { + "start": 7014.54, + "end": 7017.72, + "probability": 0.9922 + }, + { + "start": 7017.72, + "end": 7020.88, + "probability": 0.7668 + }, + { + "start": 7021.06, + "end": 7023.0, + "probability": 0.7475 + }, + { + "start": 7023.52, + "end": 7026.44, + "probability": 0.9937 + }, + { + "start": 7027.76, + "end": 7028.04, + "probability": 0.5208 + }, + { + "start": 7028.7, + "end": 7029.56, + "probability": 0.6246 + }, + { + "start": 7030.36, + "end": 7032.78, + "probability": 0.8645 + }, + { + "start": 7033.86, + "end": 7040.7, + "probability": 0.9846 + }, + { + "start": 7040.7, + "end": 7048.56, + "probability": 0.9594 + }, + { + "start": 7049.62, + "end": 7053.96, + "probability": 0.9663 + }, + { + "start": 7055.2, + "end": 7057.56, + "probability": 0.6173 + }, + { + "start": 7059.3, + "end": 7065.46, + "probability": 0.9549 + }, + { + "start": 7066.88, + "end": 7067.76, + "probability": 0.3463 + }, + { + "start": 7067.82, + "end": 7069.06, + "probability": 0.9667 + }, + { + "start": 7069.14, + "end": 7069.54, + "probability": 0.7105 + }, + { + "start": 7069.6, + "end": 7070.7, + "probability": 0.7896 + }, + { + "start": 7070.78, + "end": 7072.32, + "probability": 0.9752 + }, + { + "start": 7072.92, + "end": 7074.16, + "probability": 0.7993 + }, + { + "start": 7074.68, + "end": 7079.7, + "probability": 0.9816 + }, + { + "start": 7079.7, + "end": 7084.74, + "probability": 0.9854 + }, + { + "start": 7085.28, + "end": 7087.3, + "probability": 0.8242 + }, + { + "start": 7087.38, + "end": 7088.06, + "probability": 0.9781 + }, + { + "start": 7088.72, + "end": 7091.58, + "probability": 0.8516 + }, + { + "start": 7092.48, + "end": 7095.26, + "probability": 0.885 + }, + { + "start": 7096.2, + "end": 7098.96, + "probability": 0.9934 + }, + { + "start": 7100.08, + "end": 7102.44, + "probability": 0.8451 + }, + { + "start": 7103.3, + "end": 7106.32, + "probability": 0.929 + }, + { + "start": 7107.04, + "end": 7112.4, + "probability": 0.5795 + }, + { + "start": 7113.2, + "end": 7115.44, + "probability": 0.9951 + }, + { + "start": 7116.62, + "end": 7118.14, + "probability": 0.5682 + }, + { + "start": 7119.28, + "end": 7123.54, + "probability": 0.9858 + }, + { + "start": 7124.1, + "end": 7127.88, + "probability": 0.983 + }, + { + "start": 7129.86, + "end": 7138.3, + "probability": 0.897 + }, + { + "start": 7138.68, + "end": 7139.64, + "probability": 0.3466 + }, + { + "start": 7139.64, + "end": 7140.44, + "probability": 0.5305 + }, + { + "start": 7140.44, + "end": 7142.52, + "probability": 0.9966 + }, + { + "start": 7142.8, + "end": 7143.4, + "probability": 0.2757 + }, + { + "start": 7143.74, + "end": 7145.14, + "probability": 0.9245 + }, + { + "start": 7145.36, + "end": 7145.64, + "probability": 0.4845 + }, + { + "start": 7146.3, + "end": 7147.58, + "probability": 0.9858 + }, + { + "start": 7147.74, + "end": 7148.82, + "probability": 0.4708 + }, + { + "start": 7148.82, + "end": 7149.52, + "probability": 0.4078 + }, + { + "start": 7149.7, + "end": 7150.06, + "probability": 0.2009 + }, + { + "start": 7150.2, + "end": 7150.3, + "probability": 0.2003 + }, + { + "start": 7150.46, + "end": 7152.42, + "probability": 0.5062 + }, + { + "start": 7152.56, + "end": 7153.7, + "probability": 0.8865 + }, + { + "start": 7154.76, + "end": 7160.4, + "probability": 0.7765 + }, + { + "start": 7160.66, + "end": 7160.98, + "probability": 0.4972 + }, + { + "start": 7161.06, + "end": 7162.22, + "probability": 0.4917 + }, + { + "start": 7163.12, + "end": 7168.02, + "probability": 0.7611 + }, + { + "start": 7169.26, + "end": 7171.36, + "probability": 0.8315 + }, + { + "start": 7172.2, + "end": 7174.14, + "probability": 0.9426 + }, + { + "start": 7175.42, + "end": 7177.5, + "probability": 0.8413 + }, + { + "start": 7178.22, + "end": 7186.74, + "probability": 0.9467 + }, + { + "start": 7186.78, + "end": 7189.66, + "probability": 0.6296 + }, + { + "start": 7190.78, + "end": 7191.84, + "probability": 0.8906 + }, + { + "start": 7193.2, + "end": 7193.94, + "probability": 0.7556 + }, + { + "start": 7194.32, + "end": 7196.22, + "probability": 0.8345 + }, + { + "start": 7196.3, + "end": 7198.2, + "probability": 0.5425 + }, + { + "start": 7198.5, + "end": 7199.74, + "probability": 0.8967 + }, + { + "start": 7199.82, + "end": 7201.06, + "probability": 0.4569 + }, + { + "start": 7201.4, + "end": 7202.34, + "probability": 0.5371 + }, + { + "start": 7202.74, + "end": 7202.98, + "probability": 0.2036 + }, + { + "start": 7203.02, + "end": 7204.44, + "probability": 0.9207 + }, + { + "start": 7204.72, + "end": 7207.02, + "probability": 0.9854 + }, + { + "start": 7207.66, + "end": 7208.68, + "probability": 0.9937 + }, + { + "start": 7208.7, + "end": 7212.54, + "probability": 0.7641 + }, + { + "start": 7213.26, + "end": 7214.46, + "probability": 0.7961 + }, + { + "start": 7214.86, + "end": 7217.22, + "probability": 0.7759 + }, + { + "start": 7218.02, + "end": 7219.68, + "probability": 0.9932 + }, + { + "start": 7220.18, + "end": 7222.86, + "probability": 0.6898 + }, + { + "start": 7223.64, + "end": 7224.32, + "probability": 0.8721 + }, + { + "start": 7224.34, + "end": 7225.8, + "probability": 0.9692 + }, + { + "start": 7225.88, + "end": 7228.48, + "probability": 0.9775 + }, + { + "start": 7228.6, + "end": 7229.1, + "probability": 0.8999 + }, + { + "start": 7230.36, + "end": 7233.32, + "probability": 0.5896 + }, + { + "start": 7233.46, + "end": 7234.49, + "probability": 0.9409 + }, + { + "start": 7235.26, + "end": 7237.11, + "probability": 0.9711 + }, + { + "start": 7237.68, + "end": 7240.02, + "probability": 0.983 + }, + { + "start": 7241.16, + "end": 7244.2, + "probability": 0.7635 + }, + { + "start": 7244.96, + "end": 7246.44, + "probability": 0.9401 + }, + { + "start": 7247.94, + "end": 7250.2, + "probability": 0.9048 + }, + { + "start": 7250.92, + "end": 7254.32, + "probability": 0.9687 + }, + { + "start": 7255.24, + "end": 7258.12, + "probability": 0.9988 + }, + { + "start": 7258.96, + "end": 7261.98, + "probability": 0.9476 + }, + { + "start": 7262.06, + "end": 7263.16, + "probability": 0.6577 + }, + { + "start": 7263.48, + "end": 7263.96, + "probability": 0.6889 + }, + { + "start": 7264.06, + "end": 7266.08, + "probability": 0.9071 + }, + { + "start": 7266.48, + "end": 7267.46, + "probability": 0.797 + }, + { + "start": 7268.08, + "end": 7269.76, + "probability": 0.6958 + }, + { + "start": 7270.36, + "end": 7272.68, + "probability": 0.789 + }, + { + "start": 7272.7, + "end": 7273.33, + "probability": 0.2411 + }, + { + "start": 7273.44, + "end": 7273.92, + "probability": 0.1064 + }, + { + "start": 7274.14, + "end": 7276.82, + "probability": 0.5057 + }, + { + "start": 7277.26, + "end": 7278.96, + "probability": 0.7431 + }, + { + "start": 7279.24, + "end": 7281.58, + "probability": 0.9111 + }, + { + "start": 7282.16, + "end": 7284.5, + "probability": 0.5944 + }, + { + "start": 7284.88, + "end": 7286.2, + "probability": 0.6573 + }, + { + "start": 7287.02, + "end": 7289.36, + "probability": 0.9768 + }, + { + "start": 7290.1, + "end": 7293.08, + "probability": 0.888 + }, + { + "start": 7293.86, + "end": 7294.79, + "probability": 0.5036 + }, + { + "start": 7295.06, + "end": 7299.54, + "probability": 0.9451 + }, + { + "start": 7300.1, + "end": 7302.34, + "probability": 0.9243 + }, + { + "start": 7302.86, + "end": 7304.88, + "probability": 0.9865 + }, + { + "start": 7305.82, + "end": 7309.88, + "probability": 0.857 + }, + { + "start": 7310.22, + "end": 7312.92, + "probability": 0.9843 + }, + { + "start": 7313.62, + "end": 7318.44, + "probability": 0.8384 + }, + { + "start": 7318.7, + "end": 7322.2, + "probability": 0.992 + }, + { + "start": 7322.32, + "end": 7323.5, + "probability": 0.7398 + }, + { + "start": 7323.9, + "end": 7326.68, + "probability": 0.7789 + }, + { + "start": 7327.64, + "end": 7331.02, + "probability": 0.7733 + }, + { + "start": 7331.76, + "end": 7332.52, + "probability": 0.9866 + }, + { + "start": 7332.64, + "end": 7333.06, + "probability": 0.6812 + }, + { + "start": 7333.14, + "end": 7334.74, + "probability": 0.9089 + }, + { + "start": 7335.14, + "end": 7339.88, + "probability": 0.6779 + }, + { + "start": 7340.22, + "end": 7341.33, + "probability": 0.6437 + }, + { + "start": 7341.46, + "end": 7342.06, + "probability": 0.7265 + }, + { + "start": 7342.56, + "end": 7344.42, + "probability": 0.8945 + }, + { + "start": 7344.96, + "end": 7345.88, + "probability": 0.7946 + }, + { + "start": 7346.6, + "end": 7348.01, + "probability": 0.8079 + }, + { + "start": 7349.58, + "end": 7356.46, + "probability": 0.9294 + }, + { + "start": 7356.46, + "end": 7359.46, + "probability": 0.9888 + }, + { + "start": 7359.56, + "end": 7359.94, + "probability": 0.6518 + }, + { + "start": 7360.24, + "end": 7364.22, + "probability": 0.9688 + }, + { + "start": 7364.74, + "end": 7366.56, + "probability": 0.9104 + }, + { + "start": 7367.36, + "end": 7371.04, + "probability": 0.8843 + }, + { + "start": 7371.38, + "end": 7372.0, + "probability": 0.4338 + }, + { + "start": 7372.54, + "end": 7373.6, + "probability": 0.6955 + }, + { + "start": 7374.32, + "end": 7375.58, + "probability": 0.9849 + }, + { + "start": 7376.38, + "end": 7377.7, + "probability": 0.9993 + }, + { + "start": 7378.14, + "end": 7380.06, + "probability": 0.9097 + }, + { + "start": 7380.96, + "end": 7382.12, + "probability": 0.9414 + }, + { + "start": 7382.3, + "end": 7383.34, + "probability": 0.7449 + }, + { + "start": 7383.72, + "end": 7386.14, + "probability": 0.964 + }, + { + "start": 7387.26, + "end": 7388.36, + "probability": 0.7532 + }, + { + "start": 7388.72, + "end": 7390.58, + "probability": 0.8818 + }, + { + "start": 7390.98, + "end": 7392.46, + "probability": 0.9495 + }, + { + "start": 7392.72, + "end": 7393.4, + "probability": 0.9519 + }, + { + "start": 7393.7, + "end": 7397.06, + "probability": 0.8269 + }, + { + "start": 7397.32, + "end": 7398.12, + "probability": 0.6159 + }, + { + "start": 7398.32, + "end": 7398.94, + "probability": 0.5419 + }, + { + "start": 7399.24, + "end": 7402.16, + "probability": 0.9923 + }, + { + "start": 7403.18, + "end": 7406.0, + "probability": 0.8702 + }, + { + "start": 7413.93, + "end": 7415.68, + "probability": 0.3569 + }, + { + "start": 7418.02, + "end": 7421.74, + "probability": 0.5635 + }, + { + "start": 7422.2, + "end": 7425.21, + "probability": 0.3189 + }, + { + "start": 7425.84, + "end": 7427.48, + "probability": 0.509 + }, + { + "start": 7428.45, + "end": 7433.28, + "probability": 0.7722 + }, + { + "start": 7434.04, + "end": 7435.9, + "probability": 0.7001 + }, + { + "start": 7437.42, + "end": 7439.72, + "probability": 0.6607 + }, + { + "start": 7440.64, + "end": 7444.72, + "probability": 0.5215 + }, + { + "start": 7447.24, + "end": 7450.62, + "probability": 0.8219 + }, + { + "start": 7451.14, + "end": 7452.62, + "probability": 0.7144 + }, + { + "start": 7456.28, + "end": 7458.24, + "probability": 0.2657 + }, + { + "start": 7458.88, + "end": 7462.26, + "probability": 0.5611 + }, + { + "start": 7462.84, + "end": 7463.9, + "probability": 0.6863 + }, + { + "start": 7464.32, + "end": 7465.67, + "probability": 0.5884 + }, + { + "start": 7469.64, + "end": 7470.58, + "probability": 0.3891 + }, + { + "start": 7470.66, + "end": 7478.5, + "probability": 0.8796 + }, + { + "start": 7478.6, + "end": 7479.08, + "probability": 0.6841 + }, + { + "start": 7479.8, + "end": 7481.36, + "probability": 0.8995 + }, + { + "start": 7482.08, + "end": 7483.02, + "probability": 0.7338 + }, + { + "start": 7483.84, + "end": 7485.7, + "probability": 0.9938 + }, + { + "start": 7486.52, + "end": 7487.66, + "probability": 0.9673 + }, + { + "start": 7487.8, + "end": 7488.64, + "probability": 0.8983 + }, + { + "start": 7489.14, + "end": 7489.5, + "probability": 0.8557 + }, + { + "start": 7489.6, + "end": 7491.8, + "probability": 0.6686 + }, + { + "start": 7492.82, + "end": 7494.42, + "probability": 0.8572 + }, + { + "start": 7494.46, + "end": 7496.6, + "probability": 0.9394 + }, + { + "start": 7496.78, + "end": 7499.42, + "probability": 0.845 + }, + { + "start": 7501.48, + "end": 7502.41, + "probability": 0.8756 + }, + { + "start": 7503.24, + "end": 7503.98, + "probability": 0.9403 + }, + { + "start": 7504.26, + "end": 7505.7, + "probability": 0.9091 + }, + { + "start": 7505.94, + "end": 7507.68, + "probability": 0.6935 + }, + { + "start": 7507.88, + "end": 7512.48, + "probability": 0.9856 + }, + { + "start": 7512.92, + "end": 7516.28, + "probability": 0.9119 + }, + { + "start": 7516.72, + "end": 7517.8, + "probability": 0.8792 + }, + { + "start": 7518.22, + "end": 7519.4, + "probability": 0.7625 + }, + { + "start": 7519.46, + "end": 7520.08, + "probability": 0.7316 + }, + { + "start": 7520.14, + "end": 7520.9, + "probability": 0.678 + }, + { + "start": 7521.24, + "end": 7521.94, + "probability": 0.7957 + }, + { + "start": 7522.06, + "end": 7522.16, + "probability": 0.598 + }, + { + "start": 7522.38, + "end": 7523.52, + "probability": 0.8462 + }, + { + "start": 7523.98, + "end": 7525.42, + "probability": 0.8667 + }, + { + "start": 7525.76, + "end": 7527.8, + "probability": 0.7739 + }, + { + "start": 7528.14, + "end": 7529.59, + "probability": 0.8246 + }, + { + "start": 7530.3, + "end": 7531.04, + "probability": 0.9585 + }, + { + "start": 7531.6, + "end": 7533.9, + "probability": 0.9966 + }, + { + "start": 7534.6, + "end": 7536.46, + "probability": 0.6681 + }, + { + "start": 7536.88, + "end": 7537.54, + "probability": 0.6756 + }, + { + "start": 7538.24, + "end": 7542.54, + "probability": 0.9294 + }, + { + "start": 7542.8, + "end": 7544.68, + "probability": 0.9916 + }, + { + "start": 7545.1, + "end": 7548.84, + "probability": 0.9707 + }, + { + "start": 7549.2, + "end": 7550.5, + "probability": 0.6776 + }, + { + "start": 7550.96, + "end": 7554.5, + "probability": 0.8639 + }, + { + "start": 7554.5, + "end": 7555.14, + "probability": 0.8843 + }, + { + "start": 7555.54, + "end": 7559.04, + "probability": 0.9363 + }, + { + "start": 7559.42, + "end": 7560.56, + "probability": 0.4872 + }, + { + "start": 7560.94, + "end": 7562.12, + "probability": 0.8228 + }, + { + "start": 7562.34, + "end": 7563.68, + "probability": 0.4999 + }, + { + "start": 7564.04, + "end": 7565.48, + "probability": 0.7487 + }, + { + "start": 7565.54, + "end": 7567.98, + "probability": 0.6139 + }, + { + "start": 7569.34, + "end": 7570.68, + "probability": 0.2016 + }, + { + "start": 7571.54, + "end": 7574.34, + "probability": 0.5939 + }, + { + "start": 7574.68, + "end": 7578.28, + "probability": 0.7656 + }, + { + "start": 7578.64, + "end": 7580.7, + "probability": 0.8875 + }, + { + "start": 7580.78, + "end": 7581.36, + "probability": 0.7789 + }, + { + "start": 7581.64, + "end": 7582.96, + "probability": 0.9383 + }, + { + "start": 7583.0, + "end": 7583.88, + "probability": 0.6386 + }, + { + "start": 7584.32, + "end": 7585.9, + "probability": 0.7922 + }, + { + "start": 7586.1, + "end": 7588.4, + "probability": 0.874 + }, + { + "start": 7588.94, + "end": 7590.78, + "probability": 0.5754 + }, + { + "start": 7590.82, + "end": 7591.56, + "probability": 0.7697 + }, + { + "start": 7595.66, + "end": 7596.68, + "probability": 0.7789 + }, + { + "start": 7597.7, + "end": 7602.76, + "probability": 0.9987 + }, + { + "start": 7603.6, + "end": 7607.66, + "probability": 0.8887 + }, + { + "start": 7607.88, + "end": 7611.1, + "probability": 0.8734 + }, + { + "start": 7611.38, + "end": 7613.46, + "probability": 0.9932 + }, + { + "start": 7615.7, + "end": 7616.46, + "probability": 0.538 + }, + { + "start": 7616.78, + "end": 7617.44, + "probability": 0.2736 + }, + { + "start": 7618.47, + "end": 7621.5, + "probability": 0.6613 + }, + { + "start": 7621.74, + "end": 7623.78, + "probability": 0.6133 + }, + { + "start": 7623.9, + "end": 7624.48, + "probability": 0.4249 + }, + { + "start": 7624.6, + "end": 7629.94, + "probability": 0.937 + }, + { + "start": 7629.94, + "end": 7634.2, + "probability": 0.9206 + }, + { + "start": 7634.6, + "end": 7636.64, + "probability": 0.6464 + }, + { + "start": 7637.1, + "end": 7638.18, + "probability": 0.7893 + }, + { + "start": 7638.82, + "end": 7641.9, + "probability": 0.6413 + }, + { + "start": 7642.78, + "end": 7646.89, + "probability": 0.997 + }, + { + "start": 7649.64, + "end": 7650.86, + "probability": 0.5224 + }, + { + "start": 7653.48, + "end": 7655.68, + "probability": 0.9832 + }, + { + "start": 7656.7, + "end": 7658.78, + "probability": 0.5895 + }, + { + "start": 7658.84, + "end": 7661.06, + "probability": 0.9593 + }, + { + "start": 7661.16, + "end": 7665.4, + "probability": 0.9932 + }, + { + "start": 7665.5, + "end": 7667.62, + "probability": 0.4519 + }, + { + "start": 7668.08, + "end": 7670.64, + "probability": 0.9922 + }, + { + "start": 7671.2, + "end": 7673.68, + "probability": 0.9329 + }, + { + "start": 7674.22, + "end": 7675.2, + "probability": 0.5415 + }, + { + "start": 7675.26, + "end": 7675.86, + "probability": 0.9163 + }, + { + "start": 7679.28, + "end": 7681.56, + "probability": 0.9316 + }, + { + "start": 7683.48, + "end": 7687.16, + "probability": 0.9982 + }, + { + "start": 7687.16, + "end": 7691.44, + "probability": 0.8894 + }, + { + "start": 7691.62, + "end": 7692.78, + "probability": 0.8699 + }, + { + "start": 7693.68, + "end": 7694.54, + "probability": 0.9824 + }, + { + "start": 7695.88, + "end": 7700.05, + "probability": 0.3901 + }, + { + "start": 7700.94, + "end": 7702.18, + "probability": 0.968 + }, + { + "start": 7702.3, + "end": 7703.64, + "probability": 0.9792 + }, + { + "start": 7703.82, + "end": 7705.24, + "probability": 0.9872 + }, + { + "start": 7705.6, + "end": 7706.94, + "probability": 0.8938 + }, + { + "start": 7708.18, + "end": 7711.42, + "probability": 0.7803 + }, + { + "start": 7713.1, + "end": 7713.94, + "probability": 0.5135 + }, + { + "start": 7715.24, + "end": 7716.72, + "probability": 0.9224 + }, + { + "start": 7717.96, + "end": 7720.24, + "probability": 0.7714 + }, + { + "start": 7720.56, + "end": 7723.74, + "probability": 0.6865 + }, + { + "start": 7724.28, + "end": 7729.32, + "probability": 0.9926 + }, + { + "start": 7729.32, + "end": 7732.86, + "probability": 0.9932 + }, + { + "start": 7733.4, + "end": 7735.06, + "probability": 0.9341 + }, + { + "start": 7735.7, + "end": 7739.78, + "probability": 0.9644 + }, + { + "start": 7740.6, + "end": 7741.12, + "probability": 0.6716 + }, + { + "start": 7741.3, + "end": 7744.08, + "probability": 0.9971 + }, + { + "start": 7744.52, + "end": 7745.68, + "probability": 0.74 + }, + { + "start": 7745.82, + "end": 7747.24, + "probability": 0.9773 + }, + { + "start": 7747.3, + "end": 7748.22, + "probability": 0.9424 + }, + { + "start": 7748.6, + "end": 7749.46, + "probability": 0.6771 + }, + { + "start": 7749.76, + "end": 7754.04, + "probability": 0.9351 + }, + { + "start": 7754.18, + "end": 7755.34, + "probability": 0.7341 + }, + { + "start": 7755.9, + "end": 7757.94, + "probability": 0.7094 + }, + { + "start": 7758.1, + "end": 7758.24, + "probability": 0.5287 + }, + { + "start": 7758.36, + "end": 7759.6, + "probability": 0.9188 + }, + { + "start": 7759.76, + "end": 7761.16, + "probability": 0.9118 + }, + { + "start": 7761.3, + "end": 7762.76, + "probability": 0.8281 + }, + { + "start": 7762.86, + "end": 7763.66, + "probability": 0.8994 + }, + { + "start": 7763.8, + "end": 7764.04, + "probability": 0.4053 + }, + { + "start": 7764.44, + "end": 7767.34, + "probability": 0.9868 + }, + { + "start": 7767.98, + "end": 7769.28, + "probability": 0.8947 + }, + { + "start": 7770.0, + "end": 7770.98, + "probability": 0.811 + }, + { + "start": 7771.04, + "end": 7773.24, + "probability": 0.9823 + }, + { + "start": 7773.4, + "end": 7773.85, + "probability": 0.9857 + }, + { + "start": 7775.3, + "end": 7777.5, + "probability": 0.9617 + }, + { + "start": 7779.42, + "end": 7781.7, + "probability": 0.8915 + }, + { + "start": 7782.72, + "end": 7788.34, + "probability": 0.9714 + }, + { + "start": 7789.14, + "end": 7790.8, + "probability": 0.7808 + }, + { + "start": 7791.48, + "end": 7795.16, + "probability": 0.8794 + }, + { + "start": 7795.7, + "end": 7802.64, + "probability": 0.9639 + }, + { + "start": 7803.2, + "end": 7804.38, + "probability": 0.732 + }, + { + "start": 7804.76, + "end": 7807.98, + "probability": 0.9932 + }, + { + "start": 7808.12, + "end": 7808.68, + "probability": 0.7136 + }, + { + "start": 7810.12, + "end": 7813.3, + "probability": 0.9969 + }, + { + "start": 7814.06, + "end": 7814.7, + "probability": 0.1945 + }, + { + "start": 7814.7, + "end": 7815.05, + "probability": 0.8594 + }, + { + "start": 7816.54, + "end": 7817.18, + "probability": 0.5323 + }, + { + "start": 7817.64, + "end": 7819.54, + "probability": 0.7469 + }, + { + "start": 7819.7, + "end": 7824.64, + "probability": 0.8124 + }, + { + "start": 7825.98, + "end": 7830.56, + "probability": 0.471 + }, + { + "start": 7830.58, + "end": 7836.54, + "probability": 0.964 + }, + { + "start": 7836.72, + "end": 7838.16, + "probability": 0.8812 + }, + { + "start": 7839.38, + "end": 7840.7, + "probability": 0.4635 + }, + { + "start": 7842.0, + "end": 7849.68, + "probability": 0.5577 + }, + { + "start": 7850.22, + "end": 7851.36, + "probability": 0.9528 + }, + { + "start": 7852.6, + "end": 7856.98, + "probability": 0.0262 + }, + { + "start": 7856.98, + "end": 7862.42, + "probability": 0.1267 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.0, + "end": 7964.0, + "probability": 0.0 + }, + { + "start": 7964.4, + "end": 7965.8, + "probability": 0.0418 + }, + { + "start": 7965.8, + "end": 7965.8, + "probability": 0.0042 + }, + { + "start": 7965.8, + "end": 7965.8, + "probability": 0.0844 + }, + { + "start": 7965.8, + "end": 7968.0, + "probability": 0.7583 + }, + { + "start": 7968.26, + "end": 7969.32, + "probability": 0.5934 + }, + { + "start": 7971.25, + "end": 7975.4, + "probability": 0.963 + }, + { + "start": 7975.52, + "end": 7976.4, + "probability": 0.6593 + }, + { + "start": 7976.91, + "end": 7977.22, + "probability": 0.5186 + }, + { + "start": 7977.37, + "end": 7979.78, + "probability": 0.8122 + }, + { + "start": 7979.88, + "end": 7981.88, + "probability": 0.9883 + }, + { + "start": 7982.32, + "end": 7983.16, + "probability": 0.9568 + }, + { + "start": 7983.9, + "end": 7984.84, + "probability": 0.9807 + }, + { + "start": 7984.9, + "end": 7985.7, + "probability": 0.7539 + }, + { + "start": 7985.76, + "end": 7992.4, + "probability": 0.9827 + }, + { + "start": 7992.94, + "end": 7996.52, + "probability": 0.7563 + }, + { + "start": 7997.12, + "end": 7998.1, + "probability": 0.7923 + }, + { + "start": 7998.3, + "end": 8000.94, + "probability": 0.9925 + }, + { + "start": 8000.94, + "end": 8004.52, + "probability": 0.9885 + }, + { + "start": 8004.76, + "end": 8005.04, + "probability": 0.7728 + }, + { + "start": 8005.94, + "end": 8006.22, + "probability": 0.5389 + }, + { + "start": 8006.46, + "end": 8008.52, + "probability": 0.5612 + }, + { + "start": 8009.3, + "end": 8009.56, + "probability": 0.35 + }, + { + "start": 8020.12, + "end": 8021.28, + "probability": 0.5727 + }, + { + "start": 8021.8, + "end": 8024.06, + "probability": 0.9156 + }, + { + "start": 8024.74, + "end": 8025.58, + "probability": 0.9021 + }, + { + "start": 8025.68, + "end": 8028.12, + "probability": 0.7727 + }, + { + "start": 8028.76, + "end": 8031.68, + "probability": 0.8403 + }, + { + "start": 8032.62, + "end": 8035.58, + "probability": 0.7559 + }, + { + "start": 8036.28, + "end": 8037.56, + "probability": 0.3591 + }, + { + "start": 8038.56, + "end": 8039.8, + "probability": 0.6547 + }, + { + "start": 8039.98, + "end": 8040.44, + "probability": 0.887 + }, + { + "start": 8040.54, + "end": 8043.36, + "probability": 0.8999 + }, + { + "start": 8043.92, + "end": 8045.16, + "probability": 0.5495 + }, + { + "start": 8045.64, + "end": 8048.29, + "probability": 0.6668 + }, + { + "start": 8048.66, + "end": 8050.46, + "probability": 0.8101 + }, + { + "start": 8050.66, + "end": 8051.04, + "probability": 0.7691 + }, + { + "start": 8051.24, + "end": 8055.22, + "probability": 0.8385 + }, + { + "start": 8055.94, + "end": 8057.55, + "probability": 0.9967 + }, + { + "start": 8057.92, + "end": 8059.4, + "probability": 0.7697 + }, + { + "start": 8059.7, + "end": 8066.5, + "probability": 0.9769 + }, + { + "start": 8066.76, + "end": 8069.64, + "probability": 0.7941 + }, + { + "start": 8070.2, + "end": 8073.2, + "probability": 0.5358 + }, + { + "start": 8073.4, + "end": 8073.84, + "probability": 0.6708 + }, + { + "start": 8074.1, + "end": 8074.42, + "probability": 0.6767 + }, + { + "start": 8074.48, + "end": 8075.32, + "probability": 0.7891 + }, + { + "start": 8076.16, + "end": 8077.5, + "probability": 0.4485 + }, + { + "start": 8077.9, + "end": 8078.76, + "probability": 0.3023 + }, + { + "start": 8079.62, + "end": 8080.12, + "probability": 0.7344 + }, + { + "start": 8080.4, + "end": 8080.76, + "probability": 0.1734 + }, + { + "start": 8080.84, + "end": 8083.82, + "probability": 0.7705 + }, + { + "start": 8084.1, + "end": 8085.3, + "probability": 0.7617 + }, + { + "start": 8085.48, + "end": 8086.48, + "probability": 0.7626 + }, + { + "start": 8086.82, + "end": 8088.37, + "probability": 0.6389 + }, + { + "start": 8089.42, + "end": 8091.3, + "probability": 0.7427 + }, + { + "start": 8091.94, + "end": 8092.62, + "probability": 0.5826 + }, + { + "start": 8092.68, + "end": 8095.1, + "probability": 0.8289 + }, + { + "start": 8095.32, + "end": 8096.16, + "probability": 0.9453 + }, + { + "start": 8096.52, + "end": 8097.37, + "probability": 0.8809 + }, + { + "start": 8097.64, + "end": 8099.11, + "probability": 0.9648 + }, + { + "start": 8099.74, + "end": 8100.56, + "probability": 0.8459 + }, + { + "start": 8100.94, + "end": 8102.36, + "probability": 0.7929 + }, + { + "start": 8103.26, + "end": 8104.27, + "probability": 0.9257 + }, + { + "start": 8105.06, + "end": 8107.64, + "probability": 0.963 + }, + { + "start": 8108.26, + "end": 8109.82, + "probability": 0.8237 + }, + { + "start": 8109.82, + "end": 8111.02, + "probability": 0.6756 + }, + { + "start": 8111.24, + "end": 8117.98, + "probability": 0.9346 + }, + { + "start": 8118.3, + "end": 8118.94, + "probability": 0.3695 + }, + { + "start": 8119.32, + "end": 8120.74, + "probability": 0.5971 + }, + { + "start": 8120.84, + "end": 8122.93, + "probability": 0.3611 + }, + { + "start": 8123.72, + "end": 8126.58, + "probability": 0.423 + }, + { + "start": 8126.8, + "end": 8127.34, + "probability": 0.5512 + }, + { + "start": 8127.5, + "end": 8128.32, + "probability": 0.673 + }, + { + "start": 8128.76, + "end": 8130.44, + "probability": 0.8517 + }, + { + "start": 8130.52, + "end": 8131.26, + "probability": 0.6111 + }, + { + "start": 8131.58, + "end": 8132.76, + "probability": 0.7922 + }, + { + "start": 8132.88, + "end": 8134.52, + "probability": 0.8213 + }, + { + "start": 8134.74, + "end": 8135.32, + "probability": 0.8233 + }, + { + "start": 8135.34, + "end": 8138.28, + "probability": 0.5418 + }, + { + "start": 8138.64, + "end": 8140.06, + "probability": 0.6705 + }, + { + "start": 8140.06, + "end": 8142.86, + "probability": 0.7024 + }, + { + "start": 8144.42, + "end": 8149.62, + "probability": 0.9271 + }, + { + "start": 8149.62, + "end": 8151.8, + "probability": 0.7196 + }, + { + "start": 8152.14, + "end": 8153.68, + "probability": 0.4869 + }, + { + "start": 8153.98, + "end": 8155.56, + "probability": 0.9304 + }, + { + "start": 8155.7, + "end": 8156.64, + "probability": 0.2518 + }, + { + "start": 8156.82, + "end": 8157.46, + "probability": 0.6188 + }, + { + "start": 8157.58, + "end": 8158.28, + "probability": 0.7098 + }, + { + "start": 8158.3, + "end": 8159.12, + "probability": 0.7336 + }, + { + "start": 8168.36, + "end": 8175.72, + "probability": 0.0239 + }, + { + "start": 8175.72, + "end": 8176.7, + "probability": 0.0319 + }, + { + "start": 8177.1, + "end": 8178.98, + "probability": 0.0377 + }, + { + "start": 8178.98, + "end": 8180.74, + "probability": 0.5793 + }, + { + "start": 8185.08, + "end": 8185.92, + "probability": 0.6925 + }, + { + "start": 8186.02, + "end": 8188.66, + "probability": 0.9893 + }, + { + "start": 8189.32, + "end": 8193.58, + "probability": 0.9941 + }, + { + "start": 8194.16, + "end": 8197.74, + "probability": 0.7273 + }, + { + "start": 8198.3, + "end": 8201.1, + "probability": 0.9861 + }, + { + "start": 8201.6, + "end": 8202.6, + "probability": 0.7352 + }, + { + "start": 8203.08, + "end": 8207.96, + "probability": 0.8487 + }, + { + "start": 8208.7, + "end": 8208.72, + "probability": 0.0007 + }, + { + "start": 8209.7, + "end": 8210.28, + "probability": 0.8489 + }, + { + "start": 8213.42, + "end": 8217.22, + "probability": 0.8377 + }, + { + "start": 8217.56, + "end": 8221.2, + "probability": 0.8114 + }, + { + "start": 8221.32, + "end": 8221.9, + "probability": 0.8034 + }, + { + "start": 8222.6, + "end": 8223.86, + "probability": 0.6821 + }, + { + "start": 8224.02, + "end": 8224.02, + "probability": 0.1633 + }, + { + "start": 8224.06, + "end": 8224.54, + "probability": 0.4493 + }, + { + "start": 8224.7, + "end": 8225.8, + "probability": 0.8711 + }, + { + "start": 8226.04, + "end": 8228.82, + "probability": 0.9941 + }, + { + "start": 8229.24, + "end": 8231.98, + "probability": 0.9973 + }, + { + "start": 8232.06, + "end": 8232.12, + "probability": 0.4 + }, + { + "start": 8232.28, + "end": 8232.28, + "probability": 0.5659 + }, + { + "start": 8232.36, + "end": 8232.72, + "probability": 0.0541 + }, + { + "start": 8232.98, + "end": 8236.8, + "probability": 0.9866 + }, + { + "start": 8238.94, + "end": 8245.38, + "probability": 0.7747 + }, + { + "start": 8245.48, + "end": 8246.62, + "probability": 0.2468 + }, + { + "start": 8246.62, + "end": 8248.08, + "probability": 0.7744 + }, + { + "start": 8248.7, + "end": 8250.02, + "probability": 0.7637 + }, + { + "start": 8256.72, + "end": 8258.08, + "probability": 0.7185 + }, + { + "start": 8258.3, + "end": 8258.74, + "probability": 0.461 + }, + { + "start": 8258.76, + "end": 8259.82, + "probability": 0.9386 + }, + { + "start": 8259.98, + "end": 8264.26, + "probability": 0.992 + }, + { + "start": 8264.26, + "end": 8269.68, + "probability": 0.9883 + }, + { + "start": 8269.8, + "end": 8276.94, + "probability": 0.9696 + }, + { + "start": 8276.94, + "end": 8281.66, + "probability": 0.9927 + }, + { + "start": 8281.84, + "end": 8284.0, + "probability": 0.4846 + }, + { + "start": 8284.46, + "end": 8290.4, + "probability": 0.851 + }, + { + "start": 8290.68, + "end": 8290.96, + "probability": 0.6728 + }, + { + "start": 8291.08, + "end": 8292.38, + "probability": 0.4549 + }, + { + "start": 8292.7, + "end": 8294.24, + "probability": 0.9696 + }, + { + "start": 8294.36, + "end": 8295.22, + "probability": 0.9164 + }, + { + "start": 8295.38, + "end": 8295.7, + "probability": 0.9043 + }, + { + "start": 8295.92, + "end": 8297.46, + "probability": 0.7201 + }, + { + "start": 8297.94, + "end": 8300.16, + "probability": 0.9624 + }, + { + "start": 8300.28, + "end": 8303.38, + "probability": 0.8102 + }, + { + "start": 8303.52, + "end": 8306.0, + "probability": 0.9147 + }, + { + "start": 8306.08, + "end": 8308.56, + "probability": 0.9824 + }, + { + "start": 8309.14, + "end": 8310.48, + "probability": 0.9439 + }, + { + "start": 8311.16, + "end": 8311.24, + "probability": 0.4749 + }, + { + "start": 8311.36, + "end": 8314.02, + "probability": 0.8893 + }, + { + "start": 8314.52, + "end": 8315.22, + "probability": 0.7992 + }, + { + "start": 8315.34, + "end": 8316.02, + "probability": 0.9662 + }, + { + "start": 8316.16, + "end": 8316.86, + "probability": 0.9752 + }, + { + "start": 8317.56, + "end": 8321.32, + "probability": 0.9568 + }, + { + "start": 8323.78, + "end": 8325.46, + "probability": 0.7994 + }, + { + "start": 8325.5, + "end": 8327.23, + "probability": 0.6231 + }, + { + "start": 8327.98, + "end": 8329.72, + "probability": 0.92 + }, + { + "start": 8330.12, + "end": 8330.64, + "probability": 0.9005 + }, + { + "start": 8330.94, + "end": 8331.08, + "probability": 0.2923 + }, + { + "start": 8331.24, + "end": 8331.74, + "probability": 0.4784 + }, + { + "start": 8331.8, + "end": 8332.44, + "probability": 0.931 + }, + { + "start": 8332.5, + "end": 8332.72, + "probability": 0.5687 + }, + { + "start": 8332.8, + "end": 8333.64, + "probability": 0.8743 + }, + { + "start": 8333.64, + "end": 8335.46, + "probability": 0.9512 + }, + { + "start": 8336.38, + "end": 8339.85, + "probability": 0.7988 + }, + { + "start": 8341.08, + "end": 8341.42, + "probability": 0.8354 + }, + { + "start": 8342.12, + "end": 8342.98, + "probability": 0.8645 + }, + { + "start": 8343.08, + "end": 8343.98, + "probability": 0.8653 + }, + { + "start": 8344.06, + "end": 8344.74, + "probability": 0.9914 + }, + { + "start": 8344.74, + "end": 8346.74, + "probability": 0.9713 + }, + { + "start": 8347.12, + "end": 8347.78, + "probability": 0.993 + }, + { + "start": 8347.92, + "end": 8349.52, + "probability": 0.8326 + }, + { + "start": 8349.66, + "end": 8350.32, + "probability": 0.7057 + }, + { + "start": 8350.36, + "end": 8351.98, + "probability": 0.8878 + }, + { + "start": 8352.06, + "end": 8352.66, + "probability": 0.7124 + }, + { + "start": 8352.8, + "end": 8353.6, + "probability": 0.7088 + }, + { + "start": 8353.7, + "end": 8354.62, + "probability": 0.9149 + }, + { + "start": 8355.02, + "end": 8355.94, + "probability": 0.8561 + }, + { + "start": 8356.1, + "end": 8357.12, + "probability": 0.9828 + }, + { + "start": 8357.2, + "end": 8357.64, + "probability": 0.9295 + }, + { + "start": 8359.04, + "end": 8364.02, + "probability": 0.9392 + }, + { + "start": 8364.04, + "end": 8365.2, + "probability": 0.7789 + }, + { + "start": 8365.42, + "end": 8366.6, + "probability": 0.6624 + }, + { + "start": 8367.5, + "end": 8369.42, + "probability": 0.88 + }, + { + "start": 8369.88, + "end": 8370.56, + "probability": 0.8486 + }, + { + "start": 8370.82, + "end": 8371.66, + "probability": 0.9577 + }, + { + "start": 8371.76, + "end": 8372.9, + "probability": 0.9329 + }, + { + "start": 8373.18, + "end": 8374.08, + "probability": 0.9429 + }, + { + "start": 8374.22, + "end": 8375.06, + "probability": 0.966 + }, + { + "start": 8375.16, + "end": 8376.52, + "probability": 0.9948 + }, + { + "start": 8376.6, + "end": 8377.3, + "probability": 0.9966 + }, + { + "start": 8377.58, + "end": 8378.7, + "probability": 0.5404 + }, + { + "start": 8379.0, + "end": 8379.9, + "probability": 0.6879 + }, + { + "start": 8380.58, + "end": 8385.24, + "probability": 0.9461 + }, + { + "start": 8385.3, + "end": 8386.44, + "probability": 0.9453 + }, + { + "start": 8386.6, + "end": 8387.78, + "probability": 0.77 + }, + { + "start": 8388.2, + "end": 8389.58, + "probability": 0.9239 + }, + { + "start": 8389.58, + "end": 8391.18, + "probability": 0.9861 + }, + { + "start": 8391.26, + "end": 8392.68, + "probability": 0.7999 + }, + { + "start": 8393.2, + "end": 8396.9, + "probability": 0.8525 + }, + { + "start": 8397.94, + "end": 8398.84, + "probability": 0.6969 + }, + { + "start": 8399.0, + "end": 8402.98, + "probability": 0.7738 + }, + { + "start": 8403.58, + "end": 8407.21, + "probability": 0.7026 + }, + { + "start": 8407.86, + "end": 8409.08, + "probability": 0.9022 + }, + { + "start": 8409.24, + "end": 8411.4, + "probability": 0.847 + }, + { + "start": 8411.7, + "end": 8412.52, + "probability": 0.7932 + }, + { + "start": 8412.62, + "end": 8413.91, + "probability": 0.9741 + }, + { + "start": 8414.18, + "end": 8415.82, + "probability": 0.9866 + }, + { + "start": 8416.02, + "end": 8417.58, + "probability": 0.7617 + }, + { + "start": 8418.02, + "end": 8419.04, + "probability": 0.6946 + }, + { + "start": 8419.14, + "end": 8420.52, + "probability": 0.9729 + }, + { + "start": 8420.6, + "end": 8422.1, + "probability": 0.8601 + }, + { + "start": 8422.96, + "end": 8423.98, + "probability": 0.9072 + }, + { + "start": 8424.04, + "end": 8424.5, + "probability": 0.9363 + }, + { + "start": 8424.64, + "end": 8427.96, + "probability": 0.9411 + }, + { + "start": 8428.04, + "end": 8430.72, + "probability": 0.9857 + }, + { + "start": 8431.24, + "end": 8431.78, + "probability": 0.6815 + }, + { + "start": 8432.1, + "end": 8432.3, + "probability": 0.3566 + }, + { + "start": 8432.44, + "end": 8433.78, + "probability": 0.932 + }, + { + "start": 8434.24, + "end": 8434.8, + "probability": 0.5778 + }, + { + "start": 8435.24, + "end": 8435.76, + "probability": 0.9497 + }, + { + "start": 8435.86, + "end": 8436.7, + "probability": 0.9886 + }, + { + "start": 8436.7, + "end": 8438.66, + "probability": 0.9697 + }, + { + "start": 8438.74, + "end": 8439.6, + "probability": 0.9154 + }, + { + "start": 8440.38, + "end": 8440.98, + "probability": 0.7426 + }, + { + "start": 8441.16, + "end": 8444.92, + "probability": 0.8987 + }, + { + "start": 8445.06, + "end": 8445.56, + "probability": 0.8157 + }, + { + "start": 8445.6, + "end": 8446.52, + "probability": 0.897 + }, + { + "start": 8446.62, + "end": 8447.16, + "probability": 0.9822 + }, + { + "start": 8447.24, + "end": 8448.14, + "probability": 0.9795 + }, + { + "start": 8448.26, + "end": 8450.24, + "probability": 0.9526 + }, + { + "start": 8450.62, + "end": 8451.16, + "probability": 0.833 + }, + { + "start": 8451.54, + "end": 8452.72, + "probability": 0.9841 + }, + { + "start": 8453.06, + "end": 8454.74, + "probability": 0.9883 + }, + { + "start": 8454.76, + "end": 8456.84, + "probability": 0.9701 + }, + { + "start": 8457.36, + "end": 8461.56, + "probability": 0.9398 + }, + { + "start": 8461.7, + "end": 8465.0, + "probability": 0.9359 + }, + { + "start": 8465.18, + "end": 8467.6, + "probability": 0.9854 + }, + { + "start": 8469.44, + "end": 8469.6, + "probability": 0.4205 + }, + { + "start": 8469.68, + "end": 8470.66, + "probability": 0.7318 + }, + { + "start": 8471.14, + "end": 8474.66, + "probability": 0.9823 + }, + { + "start": 8475.22, + "end": 8479.72, + "probability": 0.9975 + }, + { + "start": 8480.22, + "end": 8482.54, + "probability": 0.9883 + }, + { + "start": 8482.74, + "end": 8484.1, + "probability": 0.8756 + }, + { + "start": 8484.2, + "end": 8485.24, + "probability": 0.9792 + }, + { + "start": 8485.68, + "end": 8488.74, + "probability": 0.9895 + }, + { + "start": 8488.74, + "end": 8492.94, + "probability": 0.8765 + }, + { + "start": 8493.1, + "end": 8494.8, + "probability": 0.1435 + }, + { + "start": 8494.92, + "end": 8495.88, + "probability": 0.6563 + }, + { + "start": 8496.44, + "end": 8501.24, + "probability": 0.9521 + }, + { + "start": 8501.34, + "end": 8502.3, + "probability": 0.7086 + }, + { + "start": 8502.5, + "end": 8503.6, + "probability": 0.7632 + }, + { + "start": 8504.1, + "end": 8505.02, + "probability": 0.7349 + }, + { + "start": 8505.16, + "end": 8506.38, + "probability": 0.939 + }, + { + "start": 8506.44, + "end": 8509.94, + "probability": 0.5254 + }, + { + "start": 8510.08, + "end": 8510.94, + "probability": 0.7218 + }, + { + "start": 8511.06, + "end": 8514.88, + "probability": 0.985 + }, + { + "start": 8515.92, + "end": 8516.68, + "probability": 0.719 + }, + { + "start": 8516.76, + "end": 8517.7, + "probability": 0.958 + }, + { + "start": 8517.76, + "end": 8518.6, + "probability": 0.9445 + }, + { + "start": 8518.92, + "end": 8521.48, + "probability": 0.9961 + }, + { + "start": 8522.0, + "end": 8526.4, + "probability": 0.9248 + }, + { + "start": 8526.54, + "end": 8528.02, + "probability": 0.9128 + }, + { + "start": 8528.12, + "end": 8529.04, + "probability": 0.9049 + }, + { + "start": 8529.12, + "end": 8530.56, + "probability": 0.8477 + }, + { + "start": 8530.66, + "end": 8535.24, + "probability": 0.9252 + }, + { + "start": 8535.38, + "end": 8537.22, + "probability": 0.5384 + }, + { + "start": 8537.78, + "end": 8538.34, + "probability": 0.5801 + }, + { + "start": 8538.38, + "end": 8540.84, + "probability": 0.4861 + }, + { + "start": 8545.06, + "end": 8546.5, + "probability": 0.7628 + }, + { + "start": 8546.5, + "end": 8548.68, + "probability": 0.5148 + }, + { + "start": 8548.8, + "end": 8551.01, + "probability": 0.6089 + }, + { + "start": 8553.4, + "end": 8555.94, + "probability": 0.6859 + }, + { + "start": 8556.08, + "end": 8557.86, + "probability": 0.7522 + }, + { + "start": 8558.52, + "end": 8562.34, + "probability": 0.9355 + }, + { + "start": 8562.6, + "end": 8563.04, + "probability": 0.8251 + }, + { + "start": 8563.22, + "end": 8564.44, + "probability": 0.7817 + }, + { + "start": 8564.44, + "end": 8569.42, + "probability": 0.9536 + }, + { + "start": 8569.42, + "end": 8572.02, + "probability": 0.5695 + }, + { + "start": 8574.25, + "end": 8576.22, + "probability": 0.5442 + }, + { + "start": 8576.28, + "end": 8578.28, + "probability": 0.6725 + }, + { + "start": 8578.54, + "end": 8579.66, + "probability": 0.6699 + }, + { + "start": 8580.14, + "end": 8585.6, + "probability": 0.051 + }, + { + "start": 8585.6, + "end": 8593.44, + "probability": 0.0364 + }, + { + "start": 8596.9, + "end": 8596.9, + "probability": 0.0503 + }, + { + "start": 8596.9, + "end": 8598.26, + "probability": 0.0601 + }, + { + "start": 8598.38, + "end": 8600.3, + "probability": 0.7542 + }, + { + "start": 8600.42, + "end": 8601.9, + "probability": 0.6044 + }, + { + "start": 8602.16, + "end": 8604.82, + "probability": 0.9635 + }, + { + "start": 8604.82, + "end": 8609.08, + "probability": 0.6697 + }, + { + "start": 8609.22, + "end": 8610.48, + "probability": 0.4033 + }, + { + "start": 8611.97, + "end": 8614.68, + "probability": 0.7565 + }, + { + "start": 8615.46, + "end": 8617.64, + "probability": 0.9792 + }, + { + "start": 8618.26, + "end": 8621.16, + "probability": 0.7684 + }, + { + "start": 8621.48, + "end": 8623.86, + "probability": 0.7715 + }, + { + "start": 8625.48, + "end": 8626.82, + "probability": 0.9473 + }, + { + "start": 8627.16, + "end": 8632.08, + "probability": 0.9604 + }, + { + "start": 8632.08, + "end": 8636.76, + "probability": 0.9725 + }, + { + "start": 8637.3, + "end": 8637.86, + "probability": 0.299 + }, + { + "start": 8638.6, + "end": 8641.33, + "probability": 0.4388 + }, + { + "start": 8641.78, + "end": 8643.1, + "probability": 0.6324 + }, + { + "start": 8643.66, + "end": 8647.82, + "probability": 0.947 + }, + { + "start": 8648.24, + "end": 8648.56, + "probability": 0.9268 + }, + { + "start": 8648.98, + "end": 8651.66, + "probability": 0.7288 + }, + { + "start": 8652.86, + "end": 8657.48, + "probability": 0.9896 + }, + { + "start": 8657.48, + "end": 8660.86, + "probability": 0.9943 + }, + { + "start": 8661.06, + "end": 8662.48, + "probability": 0.2103 + }, + { + "start": 8663.04, + "end": 8663.24, + "probability": 0.4814 + }, + { + "start": 8663.24, + "end": 8665.01, + "probability": 0.9157 + }, + { + "start": 8665.64, + "end": 8670.1, + "probability": 0.9336 + }, + { + "start": 8671.6, + "end": 8672.3, + "probability": 0.4623 + }, + { + "start": 8673.44, + "end": 8677.5, + "probability": 0.9847 + }, + { + "start": 8677.56, + "end": 8678.56, + "probability": 0.9992 + }, + { + "start": 8679.08, + "end": 8683.34, + "probability": 0.9969 + }, + { + "start": 8683.46, + "end": 8689.02, + "probability": 0.9743 + }, + { + "start": 8689.94, + "end": 8693.02, + "probability": 0.8217 + }, + { + "start": 8693.76, + "end": 8699.62, + "probability": 0.9566 + }, + { + "start": 8700.14, + "end": 8702.12, + "probability": 0.8595 + }, + { + "start": 8703.2, + "end": 8707.08, + "probability": 0.9882 + }, + { + "start": 8707.8, + "end": 8711.54, + "probability": 0.9896 + }, + { + "start": 8711.54, + "end": 8716.2, + "probability": 0.9909 + }, + { + "start": 8716.56, + "end": 8718.08, + "probability": 0.998 + }, + { + "start": 8718.64, + "end": 8719.24, + "probability": 0.4212 + }, + { + "start": 8719.32, + "end": 8719.32, + "probability": 0.3596 + }, + { + "start": 8719.32, + "end": 8722.6, + "probability": 0.7281 + }, + { + "start": 8723.22, + "end": 8726.02, + "probability": 0.823 + }, + { + "start": 8726.82, + "end": 8728.12, + "probability": 0.7253 + }, + { + "start": 8728.5, + "end": 8729.1, + "probability": 0.8407 + }, + { + "start": 8730.02, + "end": 8731.96, + "probability": 0.8924 + }, + { + "start": 8732.7, + "end": 8733.66, + "probability": 0.9512 + }, + { + "start": 8733.94, + "end": 8737.66, + "probability": 0.7504 + }, + { + "start": 8737.66, + "end": 8741.72, + "probability": 0.9888 + }, + { + "start": 8741.72, + "end": 8745.56, + "probability": 0.458 + }, + { + "start": 8745.94, + "end": 8747.28, + "probability": 0.4497 + }, + { + "start": 8747.5, + "end": 8748.22, + "probability": 0.6107 + }, + { + "start": 8748.66, + "end": 8749.2, + "probability": 0.6616 + }, + { + "start": 8749.3, + "end": 8749.86, + "probability": 0.7126 + }, + { + "start": 8749.88, + "end": 8750.28, + "probability": 0.9012 + }, + { + "start": 8750.36, + "end": 8751.22, + "probability": 0.7117 + }, + { + "start": 8767.6, + "end": 8769.64, + "probability": 0.5574 + }, + { + "start": 8775.58, + "end": 8782.34, + "probability": 0.1633 + }, + { + "start": 8782.34, + "end": 8784.4, + "probability": 0.0262 + }, + { + "start": 8786.47, + "end": 8788.64, + "probability": 0.036 + }, + { + "start": 8792.7, + "end": 8792.82, + "probability": 0.0 + }, + { + "start": 8798.92, + "end": 8803.4, + "probability": 0.0077 + }, + { + "start": 8804.08, + "end": 8805.56, + "probability": 0.0622 + }, + { + "start": 8806.68, + "end": 8809.68, + "probability": 0.1151 + }, + { + "start": 8809.96, + "end": 8811.1, + "probability": 0.0242 + }, + { + "start": 8811.76, + "end": 8813.92, + "probability": 0.0345 + }, + { + "start": 8816.04, + "end": 8816.14, + "probability": 0.1352 + }, + { + "start": 8817.18, + "end": 8820.9, + "probability": 0.0868 + }, + { + "start": 8820.9, + "end": 8821.0, + "probability": 0.0671 + }, + { + "start": 8821.0, + "end": 8823.4, + "probability": 0.0672 + }, + { + "start": 8825.16, + "end": 8827.76, + "probability": 0.0713 + }, + { + "start": 8828.34, + "end": 8828.74, + "probability": 0.0204 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8830.49, + "end": 8834.16, + "probability": 0.6669 + }, + { + "start": 8834.68, + "end": 8835.56, + "probability": 0.786 + }, + { + "start": 8854.2, + "end": 8855.58, + "probability": 0.2681 + }, + { + "start": 8855.58, + "end": 8857.18, + "probability": 0.7202 + }, + { + "start": 8859.06, + "end": 8862.74, + "probability": 0.9401 + }, + { + "start": 8862.74, + "end": 8866.24, + "probability": 0.9969 + }, + { + "start": 8867.34, + "end": 8867.34, + "probability": 0.4646 + }, + { + "start": 8867.36, + "end": 8868.12, + "probability": 0.4392 + }, + { + "start": 8868.96, + "end": 8870.78, + "probability": 0.704 + }, + { + "start": 8870.82, + "end": 8870.98, + "probability": 0.3622 + }, + { + "start": 8871.04, + "end": 8871.78, + "probability": 0.0374 + }, + { + "start": 8871.78, + "end": 8873.51, + "probability": 0.2902 + }, + { + "start": 8874.2, + "end": 8875.74, + "probability": 0.542 + }, + { + "start": 8875.88, + "end": 8880.7, + "probability": 0.7844 + }, + { + "start": 8881.64, + "end": 8885.0, + "probability": 0.8506 + }, + { + "start": 8886.28, + "end": 8887.3, + "probability": 0.9533 + }, + { + "start": 8888.76, + "end": 8890.3, + "probability": 0.9773 + }, + { + "start": 8891.18, + "end": 8896.5, + "probability": 0.9629 + }, + { + "start": 8896.72, + "end": 8897.44, + "probability": 0.7327 + }, + { + "start": 8897.6, + "end": 8898.14, + "probability": 0.7946 + }, + { + "start": 8898.14, + "end": 8899.14, + "probability": 0.637 + }, + { + "start": 8901.42, + "end": 8907.26, + "probability": 0.936 + }, + { + "start": 8909.06, + "end": 8909.73, + "probability": 0.5778 + }, + { + "start": 8911.04, + "end": 8912.28, + "probability": 0.8146 + }, + { + "start": 8912.86, + "end": 8914.28, + "probability": 0.7801 + }, + { + "start": 8914.74, + "end": 8922.86, + "probability": 0.9491 + }, + { + "start": 8923.98, + "end": 8925.94, + "probability": 0.9876 + }, + { + "start": 8926.96, + "end": 8930.48, + "probability": 0.9414 + }, + { + "start": 8931.2, + "end": 8936.8, + "probability": 0.9484 + }, + { + "start": 8937.88, + "end": 8940.0, + "probability": 0.9493 + }, + { + "start": 8941.12, + "end": 8942.42, + "probability": 0.7751 + }, + { + "start": 8943.68, + "end": 8948.08, + "probability": 0.9326 + }, + { + "start": 8949.1, + "end": 8949.68, + "probability": 0.8326 + }, + { + "start": 8950.42, + "end": 8952.92, + "probability": 0.5502 + }, + { + "start": 8953.24, + "end": 8953.9, + "probability": 0.4948 + }, + { + "start": 8954.94, + "end": 8958.56, + "probability": 0.9385 + }, + { + "start": 8959.78, + "end": 8961.04, + "probability": 0.8708 + }, + { + "start": 8962.74, + "end": 8965.06, + "probability": 0.9319 + }, + { + "start": 8966.02, + "end": 8968.73, + "probability": 0.9895 + }, + { + "start": 8969.84, + "end": 8971.24, + "probability": 0.9914 + }, + { + "start": 8973.06, + "end": 8975.08, + "probability": 0.7523 + }, + { + "start": 8975.76, + "end": 8977.8, + "probability": 0.3811 + }, + { + "start": 8979.06, + "end": 8979.88, + "probability": 0.8334 + }, + { + "start": 8982.12, + "end": 8984.06, + "probability": 0.6668 + }, + { + "start": 8985.7, + "end": 8987.72, + "probability": 0.9215 + }, + { + "start": 8991.92, + "end": 8995.52, + "probability": 0.5574 + }, + { + "start": 8996.88, + "end": 9000.72, + "probability": 0.9645 + }, + { + "start": 9003.71, + "end": 9004.58, + "probability": 0.6765 + }, + { + "start": 9004.72, + "end": 9005.9, + "probability": 0.2778 + }, + { + "start": 9006.58, + "end": 9007.14, + "probability": 0.8955 + }, + { + "start": 9011.0, + "end": 9011.8, + "probability": 0.8717 + }, + { + "start": 9012.12, + "end": 9015.1, + "probability": 0.7945 + }, + { + "start": 9015.56, + "end": 9018.12, + "probability": 0.9959 + }, + { + "start": 9018.66, + "end": 9019.28, + "probability": 0.9172 + }, + { + "start": 9019.58, + "end": 9020.84, + "probability": 0.2595 + }, + { + "start": 9021.38, + "end": 9024.2, + "probability": 0.9097 + }, + { + "start": 9025.06, + "end": 9025.38, + "probability": 0.9249 + }, + { + "start": 9026.16, + "end": 9026.28, + "probability": 0.3227 + }, + { + "start": 9026.9, + "end": 9027.76, + "probability": 0.9971 + }, + { + "start": 9029.26, + "end": 9030.16, + "probability": 0.9808 + }, + { + "start": 9032.36, + "end": 9037.46, + "probability": 0.8994 + }, + { + "start": 9038.1, + "end": 9039.98, + "probability": 0.4753 + }, + { + "start": 9041.5, + "end": 9043.96, + "probability": 0.9636 + }, + { + "start": 9044.0, + "end": 9044.4, + "probability": 0.2229 + }, + { + "start": 9044.64, + "end": 9050.68, + "probability": 0.8188 + }, + { + "start": 9050.82, + "end": 9051.94, + "probability": 0.9973 + }, + { + "start": 9052.62, + "end": 9053.06, + "probability": 0.7578 + }, + { + "start": 9056.52, + "end": 9060.52, + "probability": 0.9298 + }, + { + "start": 9062.12, + "end": 9066.92, + "probability": 0.9969 + }, + { + "start": 9068.26, + "end": 9070.83, + "probability": 0.7322 + }, + { + "start": 9072.4, + "end": 9075.52, + "probability": 0.8801 + }, + { + "start": 9077.62, + "end": 9079.9, + "probability": 0.9972 + }, + { + "start": 9080.98, + "end": 9082.36, + "probability": 0.9096 + }, + { + "start": 9083.48, + "end": 9085.3, + "probability": 0.9075 + }, + { + "start": 9086.3, + "end": 9087.64, + "probability": 0.7453 + }, + { + "start": 9088.46, + "end": 9090.94, + "probability": 0.6682 + }, + { + "start": 9095.14, + "end": 9096.74, + "probability": 0.5757 + }, + { + "start": 9097.8, + "end": 9104.78, + "probability": 0.947 + }, + { + "start": 9106.32, + "end": 9108.36, + "probability": 0.9382 + }, + { + "start": 9109.12, + "end": 9110.26, + "probability": 0.9809 + }, + { + "start": 9111.46, + "end": 9111.92, + "probability": 0.6876 + }, + { + "start": 9112.16, + "end": 9112.82, + "probability": 0.6804 + }, + { + "start": 9113.14, + "end": 9113.9, + "probability": 0.1627 + }, + { + "start": 9114.0, + "end": 9115.22, + "probability": 0.3177 + }, + { + "start": 9115.34, + "end": 9117.46, + "probability": 0.9646 + }, + { + "start": 9119.0, + "end": 9119.46, + "probability": 0.7775 + }, + { + "start": 9122.02, + "end": 9126.44, + "probability": 0.595 + }, + { + "start": 9127.36, + "end": 9129.76, + "probability": 0.9854 + }, + { + "start": 9130.76, + "end": 9132.7, + "probability": 0.8649 + }, + { + "start": 9133.48, + "end": 9136.54, + "probability": 0.9625 + }, + { + "start": 9137.04, + "end": 9140.86, + "probability": 0.8447 + }, + { + "start": 9140.86, + "end": 9144.42, + "probability": 0.9941 + }, + { + "start": 9145.74, + "end": 9148.68, + "probability": 0.8084 + }, + { + "start": 9149.8, + "end": 9152.12, + "probability": 0.9868 + }, + { + "start": 9153.06, + "end": 9157.42, + "probability": 0.7986 + }, + { + "start": 9157.74, + "end": 9157.78, + "probability": 0.1189 + }, + { + "start": 9158.62, + "end": 9160.6, + "probability": 0.7655 + }, + { + "start": 9161.68, + "end": 9165.74, + "probability": 0.8965 + }, + { + "start": 9166.48, + "end": 9170.24, + "probability": 0.972 + }, + { + "start": 9171.16, + "end": 9173.62, + "probability": 0.8604 + }, + { + "start": 9174.46, + "end": 9175.34, + "probability": 0.9543 + }, + { + "start": 9175.5, + "end": 9176.72, + "probability": 0.7228 + }, + { + "start": 9177.18, + "end": 9179.0, + "probability": 0.8541 + }, + { + "start": 9179.04, + "end": 9179.66, + "probability": 0.5149 + }, + { + "start": 9179.78, + "end": 9180.32, + "probability": 0.864 + }, + { + "start": 9180.82, + "end": 9182.94, + "probability": 0.9573 + }, + { + "start": 9183.42, + "end": 9185.41, + "probability": 0.9878 + }, + { + "start": 9186.18, + "end": 9188.1, + "probability": 0.864 + }, + { + "start": 9188.6, + "end": 9190.18, + "probability": 0.7476 + }, + { + "start": 9191.22, + "end": 9198.32, + "probability": 0.9889 + }, + { + "start": 9198.56, + "end": 9199.82, + "probability": 0.466 + }, + { + "start": 9199.84, + "end": 9201.5, + "probability": 0.9847 + }, + { + "start": 9202.16, + "end": 9203.34, + "probability": 0.94 + }, + { + "start": 9203.82, + "end": 9205.32, + "probability": 0.6317 + }, + { + "start": 9205.7, + "end": 9206.32, + "probability": 0.8162 + }, + { + "start": 9207.22, + "end": 9208.72, + "probability": 0.81 + }, + { + "start": 9212.02, + "end": 9214.86, + "probability": 0.7285 + }, + { + "start": 9214.88, + "end": 9216.02, + "probability": 0.8738 + }, + { + "start": 9217.08, + "end": 9219.32, + "probability": 0.9797 + }, + { + "start": 9220.3, + "end": 9221.84, + "probability": 0.9457 + }, + { + "start": 9222.44, + "end": 9225.96, + "probability": 0.999 + }, + { + "start": 9227.02, + "end": 9232.72, + "probability": 0.9863 + }, + { + "start": 9233.56, + "end": 9234.18, + "probability": 0.7257 + }, + { + "start": 9234.76, + "end": 9239.96, + "probability": 0.9915 + }, + { + "start": 9240.48, + "end": 9242.14, + "probability": 0.9862 + }, + { + "start": 9242.74, + "end": 9243.58, + "probability": 0.9792 + }, + { + "start": 9244.24, + "end": 9245.6, + "probability": 0.6798 + }, + { + "start": 9246.04, + "end": 9249.84, + "probability": 0.9304 + }, + { + "start": 9250.02, + "end": 9252.3, + "probability": 0.7784 + }, + { + "start": 9252.84, + "end": 9257.78, + "probability": 0.9085 + }, + { + "start": 9258.54, + "end": 9260.2, + "probability": 0.9375 + }, + { + "start": 9262.12, + "end": 9263.88, + "probability": 0.8746 + }, + { + "start": 9265.64, + "end": 9270.74, + "probability": 0.6925 + }, + { + "start": 9273.42, + "end": 9277.12, + "probability": 0.9784 + }, + { + "start": 9277.72, + "end": 9278.67, + "probability": 0.9954 + }, + { + "start": 9279.74, + "end": 9280.65, + "probability": 0.9647 + }, + { + "start": 9281.02, + "end": 9282.86, + "probability": 0.9966 + }, + { + "start": 9283.52, + "end": 9290.46, + "probability": 0.8998 + }, + { + "start": 9291.74, + "end": 9294.08, + "probability": 0.994 + }, + { + "start": 9294.22, + "end": 9294.74, + "probability": 0.8848 + }, + { + "start": 9294.96, + "end": 9296.14, + "probability": 0.6515 + }, + { + "start": 9297.8, + "end": 9300.75, + "probability": 0.9163 + }, + { + "start": 9301.72, + "end": 9303.14, + "probability": 0.9799 + }, + { + "start": 9303.24, + "end": 9304.72, + "probability": 0.8212 + }, + { + "start": 9304.94, + "end": 9306.92, + "probability": 0.5568 + }, + { + "start": 9307.94, + "end": 9308.82, + "probability": 0.7595 + }, + { + "start": 9308.9, + "end": 9310.02, + "probability": 0.7482 + }, + { + "start": 9311.32, + "end": 9316.86, + "probability": 0.9891 + }, + { + "start": 9317.66, + "end": 9319.82, + "probability": 0.9065 + }, + { + "start": 9320.4, + "end": 9322.92, + "probability": 0.7427 + }, + { + "start": 9324.18, + "end": 9327.38, + "probability": 0.8422 + }, + { + "start": 9328.68, + "end": 9331.66, + "probability": 0.9304 + }, + { + "start": 9335.66, + "end": 9336.9, + "probability": 0.6218 + }, + { + "start": 9338.02, + "end": 9339.76, + "probability": 0.96 + }, + { + "start": 9341.62, + "end": 9342.38, + "probability": 0.5515 + }, + { + "start": 9344.6, + "end": 9348.38, + "probability": 0.9729 + }, + { + "start": 9349.74, + "end": 9350.58, + "probability": 0.9814 + }, + { + "start": 9352.44, + "end": 9354.88, + "probability": 0.8325 + }, + { + "start": 9356.26, + "end": 9359.38, + "probability": 0.9907 + }, + { + "start": 9361.15, + "end": 9363.92, + "probability": 0.8333 + }, + { + "start": 9364.64, + "end": 9365.18, + "probability": 0.7653 + }, + { + "start": 9366.04, + "end": 9372.18, + "probability": 0.963 + }, + { + "start": 9372.32, + "end": 9373.26, + "probability": 0.7944 + }, + { + "start": 9373.44, + "end": 9374.28, + "probability": 0.9641 + }, + { + "start": 9375.0, + "end": 9376.52, + "probability": 0.9246 + }, + { + "start": 9376.86, + "end": 9377.72, + "probability": 0.9319 + }, + { + "start": 9377.8, + "end": 9378.62, + "probability": 0.8587 + }, + { + "start": 9378.76, + "end": 9379.58, + "probability": 0.4863 + }, + { + "start": 9380.38, + "end": 9382.1, + "probability": 0.892 + }, + { + "start": 9383.32, + "end": 9386.0, + "probability": 0.8442 + }, + { + "start": 9386.54, + "end": 9389.58, + "probability": 0.943 + }, + { + "start": 9390.88, + "end": 9393.6, + "probability": 0.9619 + }, + { + "start": 9394.16, + "end": 9398.52, + "probability": 0.9741 + }, + { + "start": 9399.42, + "end": 9403.66, + "probability": 0.6766 + }, + { + "start": 9404.3, + "end": 9405.68, + "probability": 0.9866 + }, + { + "start": 9406.32, + "end": 9407.56, + "probability": 0.9795 + }, + { + "start": 9408.8, + "end": 9413.94, + "probability": 0.9641 + }, + { + "start": 9414.88, + "end": 9419.84, + "probability": 0.8739 + }, + { + "start": 9419.84, + "end": 9421.37, + "probability": 0.6212 + }, + { + "start": 9422.62, + "end": 9426.3, + "probability": 0.7141 + }, + { + "start": 9427.0, + "end": 9428.64, + "probability": 0.8145 + }, + { + "start": 9428.86, + "end": 9431.1, + "probability": 0.4752 + }, + { + "start": 9436.48, + "end": 9441.82, + "probability": 0.4747 + }, + { + "start": 9442.64, + "end": 9442.82, + "probability": 0.3574 + }, + { + "start": 9442.82, + "end": 9443.7, + "probability": 0.7418 + }, + { + "start": 9443.82, + "end": 9450.32, + "probability": 0.9275 + }, + { + "start": 9450.62, + "end": 9451.4, + "probability": 0.7365 + }, + { + "start": 9451.48, + "end": 9452.14, + "probability": 0.5108 + }, + { + "start": 9452.18, + "end": 9461.24, + "probability": 0.9909 + }, + { + "start": 9461.28, + "end": 9463.0, + "probability": 0.5965 + }, + { + "start": 9464.22, + "end": 9465.94, + "probability": 0.2705 + }, + { + "start": 9467.02, + "end": 9468.96, + "probability": 0.1395 + }, + { + "start": 9468.96, + "end": 9468.98, + "probability": 0.618 + }, + { + "start": 9469.08, + "end": 9469.94, + "probability": 0.8701 + }, + { + "start": 9470.0, + "end": 9471.0, + "probability": 0.8069 + }, + { + "start": 9471.06, + "end": 9471.14, + "probability": 0.749 + }, + { + "start": 9471.34, + "end": 9473.0, + "probability": 0.8736 + }, + { + "start": 9473.3, + "end": 9475.68, + "probability": 0.6587 + }, + { + "start": 9475.78, + "end": 9477.1, + "probability": 0.5769 + }, + { + "start": 9477.48, + "end": 9478.48, + "probability": 0.8307 + }, + { + "start": 9478.56, + "end": 9479.18, + "probability": 0.8774 + }, + { + "start": 9479.22, + "end": 9480.08, + "probability": 0.9917 + }, + { + "start": 9480.3, + "end": 9481.06, + "probability": 0.7196 + }, + { + "start": 9481.26, + "end": 9481.82, + "probability": 0.8169 + }, + { + "start": 9481.88, + "end": 9484.24, + "probability": 0.9536 + }, + { + "start": 9484.52, + "end": 9486.12, + "probability": 0.9846 + }, + { + "start": 9486.66, + "end": 9489.11, + "probability": 0.8766 + }, + { + "start": 9489.72, + "end": 9490.88, + "probability": 0.8504 + }, + { + "start": 9490.92, + "end": 9493.22, + "probability": 0.4862 + }, + { + "start": 9493.4, + "end": 9494.99, + "probability": 0.9703 + }, + { + "start": 9495.04, + "end": 9495.2, + "probability": 0.025 + }, + { + "start": 9495.3, + "end": 9499.06, + "probability": 0.8885 + }, + { + "start": 9499.84, + "end": 9501.96, + "probability": 0.9238 + }, + { + "start": 9502.34, + "end": 9504.06, + "probability": 0.8341 + }, + { + "start": 9504.22, + "end": 9505.94, + "probability": 0.748 + }, + { + "start": 9505.98, + "end": 9508.74, + "probability": 0.8453 + }, + { + "start": 9508.76, + "end": 9508.98, + "probability": 0.319 + }, + { + "start": 9509.18, + "end": 9511.54, + "probability": 0.9644 + }, + { + "start": 9511.98, + "end": 9514.68, + "probability": 0.9894 + }, + { + "start": 9514.96, + "end": 9516.56, + "probability": 0.863 + }, + { + "start": 9516.7, + "end": 9519.02, + "probability": 0.7105 + }, + { + "start": 9519.62, + "end": 9521.02, + "probability": 0.7447 + }, + { + "start": 9521.02, + "end": 9526.76, + "probability": 0.9893 + }, + { + "start": 9527.14, + "end": 9530.1, + "probability": 0.8056 + }, + { + "start": 9530.84, + "end": 9531.44, + "probability": 0.8675 + }, + { + "start": 9531.98, + "end": 9532.7, + "probability": 0.4701 + }, + { + "start": 9533.3, + "end": 9534.6, + "probability": 0.4216 + }, + { + "start": 9534.74, + "end": 9535.24, + "probability": 0.4281 + }, + { + "start": 9535.5, + "end": 9538.58, + "probability": 0.8533 + }, + { + "start": 9539.68, + "end": 9548.68, + "probability": 0.9799 + }, + { + "start": 9549.4, + "end": 9550.02, + "probability": 0.0532 + }, + { + "start": 9550.02, + "end": 9550.16, + "probability": 0.2052 + }, + { + "start": 9550.16, + "end": 9551.78, + "probability": 0.1677 + }, + { + "start": 9552.34, + "end": 9557.5, + "probability": 0.2335 + }, + { + "start": 9557.74, + "end": 9559.62, + "probability": 0.1594 + }, + { + "start": 9560.04, + "end": 9563.22, + "probability": 0.8978 + }, + { + "start": 9563.7, + "end": 9563.9, + "probability": 0.177 + }, + { + "start": 9564.12, + "end": 9568.04, + "probability": 0.98 + }, + { + "start": 9568.28, + "end": 9569.24, + "probability": 0.7454 + }, + { + "start": 9569.52, + "end": 9572.42, + "probability": 0.9139 + }, + { + "start": 9572.66, + "end": 9573.88, + "probability": 0.8345 + }, + { + "start": 9573.94, + "end": 9579.12, + "probability": 0.9399 + }, + { + "start": 9579.6, + "end": 9581.0, + "probability": 0.6141 + }, + { + "start": 9581.2, + "end": 9581.84, + "probability": 0.7189 + }, + { + "start": 9581.94, + "end": 9582.52, + "probability": 0.5907 + }, + { + "start": 9582.54, + "end": 9582.96, + "probability": 0.7218 + }, + { + "start": 9583.18, + "end": 9583.9, + "probability": 0.8236 + }, + { + "start": 9584.06, + "end": 9584.72, + "probability": 0.6088 + }, + { + "start": 9584.78, + "end": 9585.88, + "probability": 0.5134 + }, + { + "start": 9586.16, + "end": 9587.48, + "probability": 0.6448 + }, + { + "start": 9589.58, + "end": 9591.14, + "probability": 0.8333 + }, + { + "start": 9596.36, + "end": 9597.1, + "probability": 0.5783 + }, + { + "start": 9597.16, + "end": 9598.22, + "probability": 0.7537 + }, + { + "start": 9598.22, + "end": 9600.46, + "probability": 0.9822 + }, + { + "start": 9600.46, + "end": 9602.9, + "probability": 0.9969 + }, + { + "start": 9603.66, + "end": 9604.74, + "probability": 0.7974 + }, + { + "start": 9604.8, + "end": 9605.38, + "probability": 0.6867 + }, + { + "start": 9605.52, + "end": 9605.94, + "probability": 0.7992 + }, + { + "start": 9606.1, + "end": 9606.3, + "probability": 0.3183 + }, + { + "start": 9606.36, + "end": 9606.98, + "probability": 0.8125 + }, + { + "start": 9607.08, + "end": 9607.6, + "probability": 0.5819 + }, + { + "start": 9607.64, + "end": 9608.78, + "probability": 0.4439 + }, + { + "start": 9609.34, + "end": 9615.78, + "probability": 0.9784 + }, + { + "start": 9615.78, + "end": 9620.86, + "probability": 0.9937 + }, + { + "start": 9621.9, + "end": 9625.64, + "probability": 0.9974 + }, + { + "start": 9626.32, + "end": 9628.32, + "probability": 0.9976 + }, + { + "start": 9629.0, + "end": 9634.58, + "probability": 0.9972 + }, + { + "start": 9635.6, + "end": 9642.28, + "probability": 0.9762 + }, + { + "start": 9642.5, + "end": 9643.14, + "probability": 0.7344 + }, + { + "start": 9643.44, + "end": 9644.58, + "probability": 0.5153 + }, + { + "start": 9648.12, + "end": 9651.84, + "probability": 0.8218 + }, + { + "start": 9658.84, + "end": 9662.62, + "probability": 0.5372 + }, + { + "start": 9662.76, + "end": 9664.22, + "probability": 0.6054 + }, + { + "start": 9664.48, + "end": 9666.98, + "probability": 0.7717 + }, + { + "start": 9667.24, + "end": 9668.4, + "probability": 0.723 + }, + { + "start": 9669.62, + "end": 9673.88, + "probability": 0.9913 + }, + { + "start": 9674.02, + "end": 9675.14, + "probability": 0.668 + }, + { + "start": 9676.0, + "end": 9681.36, + "probability": 0.9956 + }, + { + "start": 9681.88, + "end": 9686.04, + "probability": 0.9887 + }, + { + "start": 9686.84, + "end": 9690.72, + "probability": 0.9512 + }, + { + "start": 9690.72, + "end": 9694.0, + "probability": 0.9971 + }, + { + "start": 9694.0, + "end": 9697.62, + "probability": 0.9971 + }, + { + "start": 9698.1, + "end": 9701.52, + "probability": 0.9907 + }, + { + "start": 9702.1, + "end": 9706.28, + "probability": 0.9895 + }, + { + "start": 9707.3, + "end": 9713.26, + "probability": 0.972 + }, + { + "start": 9713.78, + "end": 9717.42, + "probability": 0.9909 + }, + { + "start": 9717.42, + "end": 9720.68, + "probability": 0.9888 + }, + { + "start": 9721.14, + "end": 9722.76, + "probability": 0.9733 + }, + { + "start": 9722.86, + "end": 9724.2, + "probability": 0.919 + }, + { + "start": 9724.58, + "end": 9729.08, + "probability": 0.9944 + }, + { + "start": 9729.46, + "end": 9731.08, + "probability": 0.981 + }, + { + "start": 9731.24, + "end": 9732.86, + "probability": 0.9648 + }, + { + "start": 9733.36, + "end": 9736.7, + "probability": 0.6887 + }, + { + "start": 9738.5, + "end": 9741.38, + "probability": 0.5774 + }, + { + "start": 9751.5, + "end": 9752.26, + "probability": 0.4498 + }, + { + "start": 9752.4, + "end": 9756.94, + "probability": 0.9398 + }, + { + "start": 9756.98, + "end": 9759.74, + "probability": 0.9982 + }, + { + "start": 9761.24, + "end": 9764.08, + "probability": 0.9901 + }, + { + "start": 9764.08, + "end": 9767.26, + "probability": 0.8977 + }, + { + "start": 9767.88, + "end": 9769.54, + "probability": 0.6204 + }, + { + "start": 9769.78, + "end": 9770.86, + "probability": 0.4853 + }, + { + "start": 9770.98, + "end": 9774.28, + "probability": 0.9491 + }, + { + "start": 9775.24, + "end": 9777.78, + "probability": 0.7578 + }, + { + "start": 9777.78, + "end": 9780.86, + "probability": 0.9946 + }, + { + "start": 9781.38, + "end": 9786.9, + "probability": 0.8506 + }, + { + "start": 9787.76, + "end": 9788.54, + "probability": 0.5717 + }, + { + "start": 9788.74, + "end": 9792.36, + "probability": 0.9616 + }, + { + "start": 9792.46, + "end": 9793.74, + "probability": 0.9177 + }, + { + "start": 9794.32, + "end": 9796.54, + "probability": 0.9035 + }, + { + "start": 9796.54, + "end": 9799.92, + "probability": 0.923 + }, + { + "start": 9800.4, + "end": 9801.24, + "probability": 0.651 + }, + { + "start": 9801.32, + "end": 9804.66, + "probability": 0.8408 + }, + { + "start": 9805.32, + "end": 9809.32, + "probability": 0.8877 + }, + { + "start": 9809.32, + "end": 9813.58, + "probability": 0.9873 + }, + { + "start": 9814.06, + "end": 9817.02, + "probability": 0.9363 + }, + { + "start": 9817.08, + "end": 9817.34, + "probability": 0.6913 + }, + { + "start": 9817.48, + "end": 9820.16, + "probability": 0.7472 + }, + { + "start": 9820.56, + "end": 9822.78, + "probability": 0.9765 + }, + { + "start": 9823.79, + "end": 9826.4, + "probability": 0.8531 + }, + { + "start": 9826.78, + "end": 9831.16, + "probability": 0.874 + }, + { + "start": 9842.18, + "end": 9842.18, + "probability": 0.7472 + }, + { + "start": 9842.18, + "end": 9843.26, + "probability": 0.522 + }, + { + "start": 9843.86, + "end": 9845.42, + "probability": 0.6362 + }, + { + "start": 9846.26, + "end": 9847.2, + "probability": 0.7034 + }, + { + "start": 9847.24, + "end": 9849.8, + "probability": 0.9904 + }, + { + "start": 9849.8, + "end": 9852.26, + "probability": 0.9979 + }, + { + "start": 9853.2, + "end": 9857.02, + "probability": 0.7977 + }, + { + "start": 9857.18, + "end": 9862.5, + "probability": 0.963 + }, + { + "start": 9863.16, + "end": 9865.14, + "probability": 0.8252 + }, + { + "start": 9865.3, + "end": 9870.8, + "probability": 0.986 + }, + { + "start": 9870.8, + "end": 9875.44, + "probability": 0.9988 + }, + { + "start": 9875.54, + "end": 9876.24, + "probability": 0.8228 + }, + { + "start": 9876.7, + "end": 9882.88, + "probability": 0.9792 + }, + { + "start": 9882.9, + "end": 9883.88, + "probability": 0.8262 + }, + { + "start": 9884.34, + "end": 9889.24, + "probability": 0.9976 + }, + { + "start": 9889.66, + "end": 9894.42, + "probability": 0.9977 + }, + { + "start": 9894.9, + "end": 9898.68, + "probability": 0.9491 + }, + { + "start": 9898.68, + "end": 9901.0, + "probability": 0.975 + }, + { + "start": 9901.38, + "end": 9903.78, + "probability": 0.855 + }, + { + "start": 9904.36, + "end": 9904.7, + "probability": 0.3336 + }, + { + "start": 9905.32, + "end": 9908.16, + "probability": 0.6822 + }, + { + "start": 9908.64, + "end": 9910.34, + "probability": 0.8981 + }, + { + "start": 9926.12, + "end": 9926.68, + "probability": 0.6433 + }, + { + "start": 9926.84, + "end": 9926.84, + "probability": 0.4482 + }, + { + "start": 9926.84, + "end": 9927.7, + "probability": 0.7422 + }, + { + "start": 9927.76, + "end": 9929.1, + "probability": 0.771 + }, + { + "start": 9929.16, + "end": 9932.2, + "probability": 0.9657 + }, + { + "start": 9932.2, + "end": 9936.42, + "probability": 0.9951 + }, + { + "start": 9937.22, + "end": 9942.58, + "probability": 0.9988 + }, + { + "start": 9942.58, + "end": 9947.76, + "probability": 0.9192 + }, + { + "start": 9948.44, + "end": 9950.92, + "probability": 0.9181 + }, + { + "start": 9952.06, + "end": 9956.42, + "probability": 0.9697 + }, + { + "start": 9957.34, + "end": 9961.3, + "probability": 0.9965 + }, + { + "start": 9961.3, + "end": 9965.28, + "probability": 0.9917 + }, + { + "start": 9965.94, + "end": 9970.82, + "probability": 0.9973 + }, + { + "start": 9971.26, + "end": 9974.9, + "probability": 0.9968 + }, + { + "start": 9975.44, + "end": 9978.6, + "probability": 0.9977 + }, + { + "start": 9979.62, + "end": 9984.1, + "probability": 0.8583 + }, + { + "start": 9984.1, + "end": 9988.04, + "probability": 0.9885 + }, + { + "start": 9988.22, + "end": 9989.54, + "probability": 0.907 + }, + { + "start": 9990.28, + "end": 9994.34, + "probability": 0.9927 + }, + { + "start": 9995.3, + "end": 9999.22, + "probability": 0.8501 + }, + { + "start": 9999.28, + "end": 10001.7, + "probability": 0.9861 + }, + { + "start": 10002.3, + "end": 10004.7, + "probability": 0.9318 + }, + { + "start": 10005.14, + "end": 10006.52, + "probability": 0.7549 + }, + { + "start": 10006.64, + "end": 10008.62, + "probability": 0.978 + }, + { + "start": 10009.7, + "end": 10014.08, + "probability": 0.9935 + }, + { + "start": 10014.08, + "end": 10018.34, + "probability": 0.9999 + }, + { + "start": 10018.44, + "end": 10020.14, + "probability": 0.7703 + }, + { + "start": 10020.58, + "end": 10023.1, + "probability": 0.9233 + }, + { + "start": 10023.54, + "end": 10026.08, + "probability": 0.0098 + }, + { + "start": 10026.34, + "end": 10028.32, + "probability": 0.7918 + }, + { + "start": 10029.48, + "end": 10031.14, + "probability": 0.9624 + }, + { + "start": 10034.16, + "end": 10036.36, + "probability": 0.9524 + }, + { + "start": 10037.34, + "end": 10037.68, + "probability": 0.0237 + }, + { + "start": 10039.58, + "end": 10040.28, + "probability": 0.0922 + }, + { + "start": 10041.7, + "end": 10043.14, + "probability": 0.8566 + }, + { + "start": 10049.74, + "end": 10053.34, + "probability": 0.6905 + }, + { + "start": 10053.36, + "end": 10054.07, + "probability": 0.9025 + }, + { + "start": 10054.18, + "end": 10054.48, + "probability": 0.6888 + }, + { + "start": 10055.26, + "end": 10059.32, + "probability": 0.9187 + }, + { + "start": 10060.04, + "end": 10061.98, + "probability": 0.9941 + }, + { + "start": 10062.76, + "end": 10066.6, + "probability": 0.9624 + }, + { + "start": 10066.6, + "end": 10070.34, + "probability": 0.9532 + }, + { + "start": 10071.2, + "end": 10075.88, + "probability": 0.985 + }, + { + "start": 10076.06, + "end": 10083.1, + "probability": 0.9713 + }, + { + "start": 10084.3, + "end": 10086.82, + "probability": 0.982 + }, + { + "start": 10086.82, + "end": 10090.14, + "probability": 0.9873 + }, + { + "start": 10091.14, + "end": 10094.86, + "probability": 0.9259 + }, + { + "start": 10095.54, + "end": 10099.46, + "probability": 0.9574 + }, + { + "start": 10099.46, + "end": 10103.42, + "probability": 0.9878 + }, + { + "start": 10104.3, + "end": 10109.14, + "probability": 0.7535 + }, + { + "start": 10109.56, + "end": 10112.84, + "probability": 0.9971 + }, + { + "start": 10114.4, + "end": 10115.96, + "probability": 0.6633 + }, + { + "start": 10116.26, + "end": 10119.64, + "probability": 0.5825 + }, + { + "start": 10132.34, + "end": 10136.44, + "probability": 0.9361 + }, + { + "start": 10137.44, + "end": 10137.9, + "probability": 0.4829 + }, + { + "start": 10139.62, + "end": 10140.12, + "probability": 0.3789 + }, + { + "start": 10141.48, + "end": 10142.88, + "probability": 0.8602 + }, + { + "start": 10143.46, + "end": 10149.8, + "probability": 0.9993 + }, + { + "start": 10150.64, + "end": 10154.64, + "probability": 0.9604 + }, + { + "start": 10154.64, + "end": 10161.78, + "probability": 0.9979 + }, + { + "start": 10162.36, + "end": 10164.14, + "probability": 0.8797 + }, + { + "start": 10165.76, + "end": 10169.42, + "probability": 0.9834 + }, + { + "start": 10169.42, + "end": 10172.22, + "probability": 0.9994 + }, + { + "start": 10172.78, + "end": 10174.52, + "probability": 0.9688 + }, + { + "start": 10174.98, + "end": 10178.4, + "probability": 0.966 + }, + { + "start": 10178.98, + "end": 10181.68, + "probability": 0.978 + }, + { + "start": 10181.68, + "end": 10187.36, + "probability": 0.9922 + }, + { + "start": 10187.54, + "end": 10189.72, + "probability": 0.1323 + }, + { + "start": 10191.16, + "end": 10192.02, + "probability": 0.9111 + }, + { + "start": 10193.12, + "end": 10193.84, + "probability": 0.7972 + }, + { + "start": 10197.98, + "end": 10200.22, + "probability": 0.8505 + }, + { + "start": 10203.47, + "end": 10207.56, + "probability": 0.7634 + }, + { + "start": 10209.0, + "end": 10210.54, + "probability": 0.5694 + }, + { + "start": 10210.54, + "end": 10212.06, + "probability": 0.6682 + }, + { + "start": 10219.16, + "end": 10219.42, + "probability": 0.6859 + }, + { + "start": 10219.52, + "end": 10221.3, + "probability": 0.9938 + }, + { + "start": 10221.52, + "end": 10225.14, + "probability": 0.9829 + }, + { + "start": 10225.28, + "end": 10227.34, + "probability": 0.9263 + }, + { + "start": 10227.44, + "end": 10230.34, + "probability": 0.7712 + }, + { + "start": 10231.0, + "end": 10234.46, + "probability": 0.9696 + }, + { + "start": 10234.62, + "end": 10236.72, + "probability": 0.9836 + }, + { + "start": 10237.26, + "end": 10240.3, + "probability": 0.7308 + }, + { + "start": 10240.58, + "end": 10241.2, + "probability": 0.6633 + }, + { + "start": 10241.28, + "end": 10241.82, + "probability": 0.5861 + }, + { + "start": 10241.9, + "end": 10242.48, + "probability": 0.6779 + }, + { + "start": 10242.5, + "end": 10243.36, + "probability": 0.8973 + }, + { + "start": 10243.38, + "end": 10243.72, + "probability": 0.8621 + }, + { + "start": 10255.38, + "end": 10256.32, + "probability": 0.3452 + }, + { + "start": 10257.19, + "end": 10259.84, + "probability": 0.9486 + }, + { + "start": 10260.64, + "end": 10262.2, + "probability": 0.0216 + }, + { + "start": 10262.2, + "end": 10263.77, + "probability": 0.1557 + }, + { + "start": 10264.5, + "end": 10265.98, + "probability": 0.9637 + }, + { + "start": 10266.7, + "end": 10270.29, + "probability": 0.6656 + }, + { + "start": 10271.8, + "end": 10274.54, + "probability": 0.5289 + }, + { + "start": 10274.56, + "end": 10275.08, + "probability": 0.3646 + }, + { + "start": 10275.22, + "end": 10275.82, + "probability": 0.6316 + }, + { + "start": 10275.84, + "end": 10276.3, + "probability": 0.8154 + }, + { + "start": 10276.38, + "end": 10277.16, + "probability": 0.866 + }, + { + "start": 10280.16, + "end": 10285.9, + "probability": 0.0613 + }, + { + "start": 10294.0, + "end": 10294.36, + "probability": 0.1189 + }, + { + "start": 10294.36, + "end": 10296.48, + "probability": 0.5363 + }, + { + "start": 10296.6, + "end": 10301.44, + "probability": 0.8975 + }, + { + "start": 10302.44, + "end": 10306.78, + "probability": 0.9313 + }, + { + "start": 10307.48, + "end": 10308.12, + "probability": 0.5954 + }, + { + "start": 10308.22, + "end": 10309.18, + "probability": 0.4155 + }, + { + "start": 10309.18, + "end": 10309.38, + "probability": 0.1994 + }, + { + "start": 10309.48, + "end": 10310.52, + "probability": 0.4039 + }, + { + "start": 10318.78, + "end": 10324.2, + "probability": 0.121 + }, + { + "start": 10324.98, + "end": 10328.48, + "probability": 0.5373 + }, + { + "start": 10328.58, + "end": 10330.14, + "probability": 0.9588 + }, + { + "start": 10330.94, + "end": 10335.94, + "probability": 0.8848 + }, + { + "start": 10336.3, + "end": 10336.94, + "probability": 0.546 + }, + { + "start": 10337.04, + "end": 10337.5, + "probability": 0.2033 + }, + { + "start": 10337.62, + "end": 10338.16, + "probability": 0.4864 + }, + { + "start": 10338.16, + "end": 10339.18, + "probability": 0.6005 + }, + { + "start": 10346.44, + "end": 10350.39, + "probability": 0.0972 + }, + { + "start": 10351.34, + "end": 10356.58, + "probability": 0.613 + }, + { + "start": 10356.68, + "end": 10359.28, + "probability": 0.8711 + }, + { + "start": 10360.04, + "end": 10362.46, + "probability": 0.9361 + }, + { + "start": 10363.18, + "end": 10364.72, + "probability": 0.5114 + }, + { + "start": 10364.8, + "end": 10365.32, + "probability": 0.4306 + }, + { + "start": 10365.34, + "end": 10365.84, + "probability": 0.5686 + }, + { + "start": 10366.02, + "end": 10366.62, + "probability": 0.3227 + }, + { + "start": 10371.7, + "end": 10372.16, + "probability": 0.6037 + }, + { + "start": 10373.7, + "end": 10374.05, + "probability": 0.0262 + }, + { + "start": 10377.64, + "end": 10378.32, + "probability": 0.4849 + }, + { + "start": 10379.52, + "end": 10380.94, + "probability": 0.0198 + }, + { + "start": 10381.04, + "end": 10384.04, + "probability": 0.6671 + }, + { + "start": 10384.32, + "end": 10387.64, + "probability": 0.6765 + }, + { + "start": 10388.14, + "end": 10391.36, + "probability": 0.8086 + }, + { + "start": 10391.84, + "end": 10396.66, + "probability": 0.6447 + }, + { + "start": 10396.66, + "end": 10397.1, + "probability": 0.3788 + }, + { + "start": 10399.1, + "end": 10400.38, + "probability": 0.1689 + }, + { + "start": 10400.66, + "end": 10401.26, + "probability": 0.088 + }, + { + "start": 10401.26, + "end": 10402.36, + "probability": 0.0762 + }, + { + "start": 10405.92, + "end": 10409.86, + "probability": 0.1271 + }, + { + "start": 10409.86, + "end": 10414.38, + "probability": 0.5471 + }, + { + "start": 10414.66, + "end": 10417.22, + "probability": 0.7734 + }, + { + "start": 10417.76, + "end": 10420.48, + "probability": 0.6947 + }, + { + "start": 10420.76, + "end": 10421.54, + "probability": 0.7441 + }, + { + "start": 10421.6, + "end": 10422.1, + "probability": 0.4697 + }, + { + "start": 10422.14, + "end": 10422.4, + "probability": 0.6678 + }, + { + "start": 10422.46, + "end": 10423.38, + "probability": 0.9175 + }, + { + "start": 10423.68, + "end": 10424.54, + "probability": 0.5869 + }, + { + "start": 10424.64, + "end": 10426.58, + "probability": 0.5258 + }, + { + "start": 10426.64, + "end": 10427.2, + "probability": 0.5816 + }, + { + "start": 10427.26, + "end": 10427.88, + "probability": 0.5945 + }, + { + "start": 10427.94, + "end": 10428.48, + "probability": 0.2967 + }, + { + "start": 10429.02, + "end": 10438.32, + "probability": 0.0351 + }, + { + "start": 10443.04, + "end": 10446.24, + "probability": 0.7202 + }, + { + "start": 10446.36, + "end": 10449.94, + "probability": 0.7288 + }, + { + "start": 10450.06, + "end": 10450.66, + "probability": 0.6671 + }, + { + "start": 10450.8, + "end": 10451.3, + "probability": 0.487 + }, + { + "start": 10451.3, + "end": 10451.86, + "probability": 0.6502 + }, + { + "start": 10451.86, + "end": 10452.68, + "probability": 0.8613 + }, + { + "start": 10452.84, + "end": 10453.48, + "probability": 0.5943 + }, + { + "start": 10453.54, + "end": 10454.5, + "probability": 0.642 + }, + { + "start": 10454.72, + "end": 10456.42, + "probability": 0.8074 + }, + { + "start": 10457.78, + "end": 10460.38, + "probability": 0.9778 + }, + { + "start": 10460.8, + "end": 10461.36, + "probability": 0.55 + }, + { + "start": 10461.48, + "end": 10465.46, + "probability": 0.9857 + }, + { + "start": 10465.46, + "end": 10469.9, + "probability": 0.8741 + }, + { + "start": 10470.36, + "end": 10477.26, + "probability": 0.9554 + }, + { + "start": 10477.26, + "end": 10480.18, + "probability": 0.3366 + }, + { + "start": 10480.48, + "end": 10481.5, + "probability": 0.4991 + }, + { + "start": 10481.88, + "end": 10484.3, + "probability": 0.2401 + }, + { + "start": 10487.88, + "end": 10489.36, + "probability": 0.1461 + }, + { + "start": 10491.12, + "end": 10491.82, + "probability": 0.0357 + }, + { + "start": 10495.08, + "end": 10496.58, + "probability": 0.0422 + }, + { + "start": 10496.58, + "end": 10499.3, + "probability": 0.6403 + }, + { + "start": 10502.9, + "end": 10503.76, + "probability": 0.6248 + }, + { + "start": 10514.86, + "end": 10516.18, + "probability": 0.6675 + }, + { + "start": 10517.08, + "end": 10519.62, + "probability": 0.9795 + }, + { + "start": 10521.9, + "end": 10525.16, + "probability": 0.8273 + }, + { + "start": 10526.36, + "end": 10529.66, + "probability": 0.9945 + }, + { + "start": 10530.52, + "end": 10534.9, + "probability": 0.9887 + }, + { + "start": 10535.14, + "end": 10537.65, + "probability": 0.7223 + }, + { + "start": 10538.66, + "end": 10542.42, + "probability": 0.8552 + }, + { + "start": 10543.72, + "end": 10548.4, + "probability": 0.9823 + }, + { + "start": 10549.66, + "end": 10557.48, + "probability": 0.9839 + }, + { + "start": 10557.78, + "end": 10560.96, + "probability": 0.8886 + }, + { + "start": 10561.9, + "end": 10562.9, + "probability": 0.7952 + }, + { + "start": 10563.12, + "end": 10568.9, + "probability": 0.9603 + }, + { + "start": 10570.02, + "end": 10574.62, + "probability": 0.7409 + }, + { + "start": 10575.36, + "end": 10576.06, + "probability": 0.4407 + }, + { + "start": 10577.34, + "end": 10581.62, + "probability": 0.9925 + }, + { + "start": 10581.82, + "end": 10584.54, + "probability": 0.9342 + }, + { + "start": 10585.32, + "end": 10586.54, + "probability": 0.7247 + }, + { + "start": 10586.78, + "end": 10592.74, + "probability": 0.9667 + }, + { + "start": 10593.18, + "end": 10597.28, + "probability": 0.9933 + }, + { + "start": 10597.28, + "end": 10602.48, + "probability": 0.9983 + }, + { + "start": 10603.12, + "end": 10604.4, + "probability": 0.5426 + }, + { + "start": 10605.12, + "end": 10608.44, + "probability": 0.7097 + }, + { + "start": 10608.96, + "end": 10616.44, + "probability": 0.908 + }, + { + "start": 10616.78, + "end": 10619.66, + "probability": 0.9834 + }, + { + "start": 10619.84, + "end": 10621.0, + "probability": 0.6479 + }, + { + "start": 10621.62, + "end": 10623.76, + "probability": 0.9715 + }, + { + "start": 10624.2, + "end": 10627.5, + "probability": 0.9825 + }, + { + "start": 10628.64, + "end": 10637.24, + "probability": 0.9803 + }, + { + "start": 10637.96, + "end": 10641.48, + "probability": 0.6229 + }, + { + "start": 10642.28, + "end": 10643.26, + "probability": 0.8029 + }, + { + "start": 10643.34, + "end": 10650.82, + "probability": 0.9697 + }, + { + "start": 10651.52, + "end": 10653.4, + "probability": 0.8768 + }, + { + "start": 10653.58, + "end": 10654.98, + "probability": 0.9589 + }, + { + "start": 10655.14, + "end": 10658.48, + "probability": 0.9853 + }, + { + "start": 10658.76, + "end": 10664.96, + "probability": 0.9766 + }, + { + "start": 10665.6, + "end": 10668.1, + "probability": 0.7253 + }, + { + "start": 10668.66, + "end": 10670.94, + "probability": 0.6766 + }, + { + "start": 10671.04, + "end": 10671.98, + "probability": 0.7534 + }, + { + "start": 10672.14, + "end": 10673.26, + "probability": 0.9838 + }, + { + "start": 10673.72, + "end": 10676.78, + "probability": 0.9295 + }, + { + "start": 10677.06, + "end": 10681.62, + "probability": 0.7147 + }, + { + "start": 10681.68, + "end": 10687.74, + "probability": 0.9791 + }, + { + "start": 10687.74, + "end": 10691.72, + "probability": 0.9979 + }, + { + "start": 10692.16, + "end": 10695.28, + "probability": 0.9913 + }, + { + "start": 10695.44, + "end": 10701.16, + "probability": 0.981 + }, + { + "start": 10701.32, + "end": 10703.5, + "probability": 0.6684 + }, + { + "start": 10704.3, + "end": 10706.78, + "probability": 0.9772 + }, + { + "start": 10707.5, + "end": 10708.91, + "probability": 0.9878 + }, + { + "start": 10710.66, + "end": 10716.52, + "probability": 0.9681 + }, + { + "start": 10717.2, + "end": 10720.92, + "probability": 0.9978 + }, + { + "start": 10721.56, + "end": 10725.0, + "probability": 0.9597 + }, + { + "start": 10725.66, + "end": 10729.54, + "probability": 0.7186 + }, + { + "start": 10729.54, + "end": 10733.2, + "probability": 0.9455 + }, + { + "start": 10733.74, + "end": 10739.46, + "probability": 0.95 + }, + { + "start": 10739.7, + "end": 10746.52, + "probability": 0.9735 + }, + { + "start": 10746.86, + "end": 10747.32, + "probability": 0.6782 + }, + { + "start": 10747.36, + "end": 10748.1, + "probability": 0.8332 + }, + { + "start": 10748.24, + "end": 10751.28, + "probability": 0.8611 + }, + { + "start": 10751.28, + "end": 10751.96, + "probability": 0.8746 + }, + { + "start": 10752.12, + "end": 10758.0, + "probability": 0.9911 + }, + { + "start": 10758.52, + "end": 10758.88, + "probability": 0.269 + }, + { + "start": 10758.88, + "end": 10760.32, + "probability": 0.5741 + }, + { + "start": 10760.4, + "end": 10762.8, + "probability": 0.8269 + }, + { + "start": 10763.5, + "end": 10764.98, + "probability": 0.9629 + }, + { + "start": 10779.66, + "end": 10782.94, + "probability": 0.8095 + }, + { + "start": 10784.16, + "end": 10789.06, + "probability": 0.9502 + }, + { + "start": 10789.64, + "end": 10793.72, + "probability": 0.814 + }, + { + "start": 10794.86, + "end": 10797.1, + "probability": 0.9844 + }, + { + "start": 10798.32, + "end": 10801.74, + "probability": 0.9093 + }, + { + "start": 10802.94, + "end": 10805.72, + "probability": 0.9751 + }, + { + "start": 10806.66, + "end": 10807.8, + "probability": 0.628 + }, + { + "start": 10809.16, + "end": 10810.24, + "probability": 0.7853 + }, + { + "start": 10811.26, + "end": 10814.92, + "probability": 0.9141 + }, + { + "start": 10815.88, + "end": 10818.3, + "probability": 0.8565 + }, + { + "start": 10819.28, + "end": 10820.58, + "probability": 0.7941 + }, + { + "start": 10822.02, + "end": 10824.92, + "probability": 0.3577 + }, + { + "start": 10827.88, + "end": 10832.92, + "probability": 0.9621 + }, + { + "start": 10834.44, + "end": 10834.62, + "probability": 0.0242 + }, + { + "start": 10834.68, + "end": 10838.38, + "probability": 0.9545 + }, + { + "start": 10839.08, + "end": 10842.38, + "probability": 0.9996 + }, + { + "start": 10843.12, + "end": 10844.56, + "probability": 0.7234 + }, + { + "start": 10845.8, + "end": 10847.5, + "probability": 0.9904 + }, + { + "start": 10847.54, + "end": 10852.06, + "probability": 0.9961 + }, + { + "start": 10852.96, + "end": 10855.6, + "probability": 0.987 + }, + { + "start": 10856.76, + "end": 10858.94, + "probability": 0.9573 + }, + { + "start": 10859.92, + "end": 10862.42, + "probability": 0.8185 + }, + { + "start": 10863.08, + "end": 10865.6, + "probability": 0.6598 + }, + { + "start": 10868.42, + "end": 10868.9, + "probability": 0.1928 + }, + { + "start": 10869.6, + "end": 10873.24, + "probability": 0.8297 + }, + { + "start": 10874.3, + "end": 10878.26, + "probability": 0.9028 + }, + { + "start": 10880.1, + "end": 10880.98, + "probability": 0.6143 + }, + { + "start": 10881.32, + "end": 10885.18, + "probability": 0.7363 + }, + { + "start": 10885.92, + "end": 10893.24, + "probability": 0.9974 + }, + { + "start": 10893.88, + "end": 10898.4, + "probability": 0.9916 + }, + { + "start": 10902.38, + "end": 10905.34, + "probability": 0.587 + }, + { + "start": 10906.16, + "end": 10908.24, + "probability": 0.9666 + }, + { + "start": 10909.48, + "end": 10914.87, + "probability": 0.9838 + }, + { + "start": 10916.58, + "end": 10917.46, + "probability": 0.8591 + }, + { + "start": 10918.46, + "end": 10923.14, + "probability": 0.9878 + }, + { + "start": 10924.12, + "end": 10924.84, + "probability": 0.4836 + }, + { + "start": 10926.44, + "end": 10929.32, + "probability": 0.9164 + }, + { + "start": 10930.38, + "end": 10933.2, + "probability": 0.9328 + }, + { + "start": 10934.34, + "end": 10937.7, + "probability": 0.6626 + }, + { + "start": 10938.5, + "end": 10940.46, + "probability": 0.808 + }, + { + "start": 10941.4, + "end": 10943.78, + "probability": 0.8629 + }, + { + "start": 10944.32, + "end": 10949.84, + "probability": 0.7808 + }, + { + "start": 10950.62, + "end": 10952.52, + "probability": 0.8016 + }, + { + "start": 10952.6, + "end": 10954.34, + "probability": 0.8848 + }, + { + "start": 10954.62, + "end": 10955.86, + "probability": 0.9336 + }, + { + "start": 10956.72, + "end": 10957.18, + "probability": 0.4137 + }, + { + "start": 10957.36, + "end": 10963.6, + "probability": 0.7969 + }, + { + "start": 10964.56, + "end": 10966.22, + "probability": 0.9827 + }, + { + "start": 10967.38, + "end": 10968.72, + "probability": 0.7162 + }, + { + "start": 10969.48, + "end": 10971.02, + "probability": 0.9475 + }, + { + "start": 10971.54, + "end": 10977.52, + "probability": 0.9971 + }, + { + "start": 10978.24, + "end": 10983.38, + "probability": 0.9368 + }, + { + "start": 10985.22, + "end": 10988.08, + "probability": 0.6719 + }, + { + "start": 10989.64, + "end": 10991.38, + "probability": 0.5006 + }, + { + "start": 10991.56, + "end": 10996.0, + "probability": 0.9886 + }, + { + "start": 10996.4, + "end": 10997.56, + "probability": 0.9677 + }, + { + "start": 10998.22, + "end": 11005.68, + "probability": 0.9663 + }, + { + "start": 11005.82, + "end": 11006.88, + "probability": 0.5687 + }, + { + "start": 11007.42, + "end": 11011.24, + "probability": 0.9785 + }, + { + "start": 11012.58, + "end": 11018.16, + "probability": 0.6251 + }, + { + "start": 11018.26, + "end": 11019.18, + "probability": 0.3665 + }, + { + "start": 11019.96, + "end": 11022.29, + "probability": 0.9463 + }, + { + "start": 11023.18, + "end": 11025.1, + "probability": 0.8988 + }, + { + "start": 11025.88, + "end": 11028.74, + "probability": 0.9509 + }, + { + "start": 11029.28, + "end": 11031.08, + "probability": 0.982 + }, + { + "start": 11031.74, + "end": 11040.56, + "probability": 0.9986 + }, + { + "start": 11040.9, + "end": 11042.62, + "probability": 0.2534 + }, + { + "start": 11044.57, + "end": 11046.04, + "probability": 0.6858 + }, + { + "start": 11046.6, + "end": 11051.2, + "probability": 0.9833 + }, + { + "start": 11051.2, + "end": 11056.22, + "probability": 0.9841 + }, + { + "start": 11057.06, + "end": 11058.08, + "probability": 0.6478 + }, + { + "start": 11058.7, + "end": 11063.96, + "probability": 0.9749 + }, + { + "start": 11064.48, + "end": 11066.18, + "probability": 0.9265 + }, + { + "start": 11066.54, + "end": 11069.92, + "probability": 0.9906 + }, + { + "start": 11070.0, + "end": 11070.34, + "probability": 0.5433 + }, + { + "start": 11070.88, + "end": 11072.58, + "probability": 0.8776 + }, + { + "start": 11072.58, + "end": 11075.8, + "probability": 0.6003 + }, + { + "start": 11076.41, + "end": 11078.82, + "probability": 0.7643 + }, + { + "start": 11081.02, + "end": 11081.6, + "probability": 0.6644 + }, + { + "start": 11082.48, + "end": 11082.66, + "probability": 0.6213 + }, + { + "start": 11083.34, + "end": 11083.34, + "probability": 0.1995 + }, + { + "start": 11083.34, + "end": 11084.32, + "probability": 0.9784 + }, + { + "start": 11086.8, + "end": 11088.58, + "probability": 0.2031 + }, + { + "start": 11089.08, + "end": 11089.99, + "probability": 0.7174 + }, + { + "start": 11090.52, + "end": 11091.34, + "probability": 0.2108 + }, + { + "start": 11093.08, + "end": 11093.88, + "probability": 0.5652 + }, + { + "start": 11094.02, + "end": 11095.28, + "probability": 0.2692 + }, + { + "start": 11095.68, + "end": 11098.86, + "probability": 0.6728 + }, + { + "start": 11099.98, + "end": 11101.68, + "probability": 0.8956 + }, + { + "start": 11102.98, + "end": 11104.34, + "probability": 0.9924 + }, + { + "start": 11105.02, + "end": 11105.46, + "probability": 0.978 + }, + { + "start": 11106.4, + "end": 11108.92, + "probability": 0.9863 + }, + { + "start": 11109.68, + "end": 11112.1, + "probability": 0.999 + }, + { + "start": 11112.46, + "end": 11113.26, + "probability": 0.6359 + }, + { + "start": 11113.8, + "end": 11115.9, + "probability": 0.7187 + }, + { + "start": 11117.4, + "end": 11119.28, + "probability": 0.806 + }, + { + "start": 11119.36, + "end": 11120.54, + "probability": 0.8173 + }, + { + "start": 11121.12, + "end": 11121.86, + "probability": 0.846 + }, + { + "start": 11122.58, + "end": 11126.2, + "probability": 0.9106 + }, + { + "start": 11126.72, + "end": 11131.44, + "probability": 0.9807 + }, + { + "start": 11132.62, + "end": 11133.82, + "probability": 0.5016 + }, + { + "start": 11134.92, + "end": 11139.06, + "probability": 0.9711 + }, + { + "start": 11140.28, + "end": 11142.64, + "probability": 0.6643 + }, + { + "start": 11142.74, + "end": 11144.42, + "probability": 0.9061 + }, + { + "start": 11144.8, + "end": 11146.58, + "probability": 0.8555 + }, + { + "start": 11147.28, + "end": 11149.66, + "probability": 0.8717 + }, + { + "start": 11151.2, + "end": 11153.33, + "probability": 0.9222 + }, + { + "start": 11154.32, + "end": 11157.34, + "probability": 0.978 + }, + { + "start": 11157.34, + "end": 11160.14, + "probability": 0.9884 + }, + { + "start": 11160.54, + "end": 11163.32, + "probability": 0.6771 + }, + { + "start": 11164.02, + "end": 11164.74, + "probability": 0.6935 + }, + { + "start": 11165.78, + "end": 11169.24, + "probability": 0.9591 + }, + { + "start": 11169.3, + "end": 11170.26, + "probability": 0.9468 + }, + { + "start": 11170.28, + "end": 11170.93, + "probability": 0.9517 + }, + { + "start": 11171.62, + "end": 11173.94, + "probability": 0.7772 + }, + { + "start": 11175.06, + "end": 11177.2, + "probability": 0.8243 + }, + { + "start": 11177.72, + "end": 11180.06, + "probability": 0.8908 + }, + { + "start": 11180.4, + "end": 11183.38, + "probability": 0.6414 + }, + { + "start": 11183.5, + "end": 11184.85, + "probability": 0.9736 + }, + { + "start": 11185.7, + "end": 11185.8, + "probability": 0.6613 + }, + { + "start": 11187.34, + "end": 11191.52, + "probability": 0.7234 + }, + { + "start": 11193.48, + "end": 11194.36, + "probability": 0.7118 + }, + { + "start": 11194.4, + "end": 11195.54, + "probability": 0.7563 + }, + { + "start": 11197.08, + "end": 11198.38, + "probability": 0.9932 + }, + { + "start": 11199.34, + "end": 11203.73, + "probability": 0.9854 + }, + { + "start": 11203.74, + "end": 11207.62, + "probability": 0.9841 + }, + { + "start": 11208.3, + "end": 11211.26, + "probability": 0.9848 + }, + { + "start": 11211.26, + "end": 11215.88, + "probability": 0.9955 + }, + { + "start": 11216.44, + "end": 11218.92, + "probability": 0.8477 + }, + { + "start": 11218.94, + "end": 11220.02, + "probability": 0.6525 + }, + { + "start": 11220.44, + "end": 11222.04, + "probability": 0.9803 + }, + { + "start": 11222.26, + "end": 11224.38, + "probability": 0.7249 + }, + { + "start": 11224.42, + "end": 11226.24, + "probability": 0.6707 + }, + { + "start": 11227.98, + "end": 11228.44, + "probability": 0.5078 + }, + { + "start": 11228.58, + "end": 11232.72, + "probability": 0.9058 + }, + { + "start": 11233.18, + "end": 11235.41, + "probability": 0.8813 + }, + { + "start": 11235.58, + "end": 11240.54, + "probability": 0.9837 + }, + { + "start": 11241.16, + "end": 11243.56, + "probability": 0.8919 + }, + { + "start": 11243.56, + "end": 11248.48, + "probability": 0.9841 + }, + { + "start": 11248.88, + "end": 11251.62, + "probability": 0.9952 + }, + { + "start": 11252.28, + "end": 11253.3, + "probability": 0.7398 + }, + { + "start": 11253.92, + "end": 11258.14, + "probability": 0.9745 + }, + { + "start": 11259.18, + "end": 11260.88, + "probability": 0.7708 + }, + { + "start": 11261.52, + "end": 11263.6, + "probability": 0.9478 + }, + { + "start": 11264.22, + "end": 11265.4, + "probability": 0.6757 + }, + { + "start": 11265.62, + "end": 11266.86, + "probability": 0.9842 + }, + { + "start": 11266.98, + "end": 11267.92, + "probability": 0.6391 + }, + { + "start": 11268.38, + "end": 11270.12, + "probability": 0.812 + }, + { + "start": 11271.06, + "end": 11273.12, + "probability": 0.5009 + }, + { + "start": 11274.24, + "end": 11274.94, + "probability": 0.7612 + }, + { + "start": 11275.12, + "end": 11277.4, + "probability": 0.6812 + }, + { + "start": 11277.84, + "end": 11281.56, + "probability": 0.9698 + }, + { + "start": 11281.64, + "end": 11284.2, + "probability": 0.9658 + }, + { + "start": 11284.9, + "end": 11287.64, + "probability": 0.9471 + }, + { + "start": 11288.12, + "end": 11290.24, + "probability": 0.583 + }, + { + "start": 11290.44, + "end": 11292.32, + "probability": 0.8418 + }, + { + "start": 11292.7, + "end": 11295.2, + "probability": 0.9756 + }, + { + "start": 11295.6, + "end": 11296.58, + "probability": 0.7636 + }, + { + "start": 11296.7, + "end": 11299.66, + "probability": 0.7374 + }, + { + "start": 11299.72, + "end": 11301.16, + "probability": 0.9461 + }, + { + "start": 11302.38, + "end": 11306.78, + "probability": 0.6953 + }, + { + "start": 11307.46, + "end": 11308.88, + "probability": 0.9195 + }, + { + "start": 11310.42, + "end": 11314.36, + "probability": 0.5825 + }, + { + "start": 11314.9, + "end": 11317.76, + "probability": 0.9937 + }, + { + "start": 11318.34, + "end": 11321.96, + "probability": 0.7703 + }, + { + "start": 11322.08, + "end": 11324.72, + "probability": 0.8094 + }, + { + "start": 11324.88, + "end": 11326.66, + "probability": 0.8054 + }, + { + "start": 11327.28, + "end": 11328.14, + "probability": 0.8621 + }, + { + "start": 11328.64, + "end": 11330.02, + "probability": 0.859 + }, + { + "start": 11330.72, + "end": 11333.86, + "probability": 0.9629 + }, + { + "start": 11334.28, + "end": 11335.78, + "probability": 0.9916 + }, + { + "start": 11336.38, + "end": 11338.46, + "probability": 0.7033 + }, + { + "start": 11338.78, + "end": 11340.8, + "probability": 0.7518 + }, + { + "start": 11341.08, + "end": 11342.72, + "probability": 0.9895 + }, + { + "start": 11342.8, + "end": 11343.77, + "probability": 0.8131 + }, + { + "start": 11344.4, + "end": 11345.56, + "probability": 0.7455 + }, + { + "start": 11345.66, + "end": 11347.36, + "probability": 0.9885 + }, + { + "start": 11347.92, + "end": 11350.14, + "probability": 0.5992 + }, + { + "start": 11351.16, + "end": 11351.46, + "probability": 0.3254 + }, + { + "start": 11352.7, + "end": 11358.72, + "probability": 0.8422 + }, + { + "start": 11358.8, + "end": 11364.4, + "probability": 0.9867 + }, + { + "start": 11364.84, + "end": 11365.68, + "probability": 0.504 + }, + { + "start": 11366.08, + "end": 11366.95, + "probability": 0.568 + }, + { + "start": 11367.48, + "end": 11369.58, + "probability": 0.9553 + }, + { + "start": 11369.76, + "end": 11370.9, + "probability": 0.5595 + }, + { + "start": 11370.98, + "end": 11371.82, + "probability": 0.7158 + }, + { + "start": 11372.2, + "end": 11376.88, + "probability": 0.9261 + }, + { + "start": 11377.32, + "end": 11381.38, + "probability": 0.8496 + }, + { + "start": 11381.86, + "end": 11383.44, + "probability": 0.9897 + }, + { + "start": 11383.52, + "end": 11384.38, + "probability": 0.775 + }, + { + "start": 11384.5, + "end": 11386.03, + "probability": 0.942 + }, + { + "start": 11386.2, + "end": 11386.54, + "probability": 0.4713 + }, + { + "start": 11386.7, + "end": 11387.76, + "probability": 0.7348 + }, + { + "start": 11387.82, + "end": 11388.3, + "probability": 0.937 + }, + { + "start": 11388.5, + "end": 11389.04, + "probability": 0.8785 + }, + { + "start": 11389.4, + "end": 11390.8, + "probability": 0.6363 + }, + { + "start": 11391.28, + "end": 11393.38, + "probability": 0.9349 + }, + { + "start": 11393.7, + "end": 11394.08, + "probability": 0.8097 + }, + { + "start": 11394.96, + "end": 11396.6, + "probability": 0.8532 + }, + { + "start": 11396.74, + "end": 11398.86, + "probability": 0.7343 + }, + { + "start": 11399.54, + "end": 11403.72, + "probability": 0.7304 + }, + { + "start": 11409.28, + "end": 11410.02, + "probability": 0.4804 + }, + { + "start": 11410.12, + "end": 11410.12, + "probability": 0.5436 + }, + { + "start": 11410.12, + "end": 11410.76, + "probability": 0.6523 + }, + { + "start": 11410.94, + "end": 11413.08, + "probability": 0.8813 + }, + { + "start": 11413.94, + "end": 11416.6, + "probability": 0.9149 + }, + { + "start": 11417.36, + "end": 11420.16, + "probability": 0.9897 + }, + { + "start": 11420.8, + "end": 11422.82, + "probability": 0.9756 + }, + { + "start": 11422.96, + "end": 11424.08, + "probability": 0.9819 + }, + { + "start": 11424.62, + "end": 11426.9, + "probability": 0.9974 + }, + { + "start": 11426.98, + "end": 11435.96, + "probability": 0.9531 + }, + { + "start": 11436.34, + "end": 11439.2, + "probability": 0.9352 + }, + { + "start": 11439.32, + "end": 11441.06, + "probability": 0.9861 + }, + { + "start": 11441.8, + "end": 11443.4, + "probability": 0.5879 + }, + { + "start": 11443.8, + "end": 11444.3, + "probability": 0.4534 + }, + { + "start": 11444.92, + "end": 11448.42, + "probability": 0.998 + }, + { + "start": 11448.98, + "end": 11451.82, + "probability": 0.9136 + }, + { + "start": 11452.08, + "end": 11454.06, + "probability": 0.9398 + }, + { + "start": 11454.18, + "end": 11454.78, + "probability": 0.7122 + }, + { + "start": 11455.54, + "end": 11457.58, + "probability": 0.9838 + }, + { + "start": 11457.7, + "end": 11460.32, + "probability": 0.9961 + }, + { + "start": 11460.86, + "end": 11462.28, + "probability": 0.9976 + }, + { + "start": 11462.44, + "end": 11465.66, + "probability": 0.6661 + }, + { + "start": 11466.56, + "end": 11470.02, + "probability": 0.9847 + }, + { + "start": 11470.44, + "end": 11471.68, + "probability": 0.9831 + }, + { + "start": 11471.82, + "end": 11473.2, + "probability": 0.9976 + }, + { + "start": 11474.32, + "end": 11479.82, + "probability": 0.9953 + }, + { + "start": 11479.98, + "end": 11480.48, + "probability": 0.6892 + }, + { + "start": 11481.04, + "end": 11482.38, + "probability": 0.892 + }, + { + "start": 11483.39, + "end": 11489.25, + "probability": 0.7848 + }, + { + "start": 11489.7, + "end": 11491.62, + "probability": 0.9814 + }, + { + "start": 11491.68, + "end": 11493.76, + "probability": 0.7693 + }, + { + "start": 11494.36, + "end": 11498.32, + "probability": 0.9337 + }, + { + "start": 11500.1, + "end": 11506.64, + "probability": 0.9858 + }, + { + "start": 11506.68, + "end": 11506.78, + "probability": 0.4064 + }, + { + "start": 11506.9, + "end": 11507.14, + "probability": 0.7042 + }, + { + "start": 11507.28, + "end": 11509.62, + "probability": 0.9931 + }, + { + "start": 11510.12, + "end": 11513.28, + "probability": 0.9604 + }, + { + "start": 11513.94, + "end": 11518.12, + "probability": 0.7709 + }, + { + "start": 11519.22, + "end": 11522.8, + "probability": 0.9309 + }, + { + "start": 11522.96, + "end": 11524.42, + "probability": 0.9798 + }, + { + "start": 11524.62, + "end": 11525.32, + "probability": 0.7748 + }, + { + "start": 11526.08, + "end": 11527.66, + "probability": 0.9474 + }, + { + "start": 11527.74, + "end": 11530.4, + "probability": 0.9094 + }, + { + "start": 11530.78, + "end": 11536.82, + "probability": 0.9353 + }, + { + "start": 11537.24, + "end": 11538.36, + "probability": 0.8447 + }, + { + "start": 11538.96, + "end": 11542.88, + "probability": 0.9939 + }, + { + "start": 11543.0, + "end": 11543.62, + "probability": 0.8984 + }, + { + "start": 11543.74, + "end": 11544.22, + "probability": 0.9316 + }, + { + "start": 11544.26, + "end": 11546.08, + "probability": 0.9943 + }, + { + "start": 11546.46, + "end": 11547.7, + "probability": 0.6946 + }, + { + "start": 11548.4, + "end": 11550.86, + "probability": 0.7773 + }, + { + "start": 11551.38, + "end": 11552.62, + "probability": 0.9827 + }, + { + "start": 11552.86, + "end": 11555.26, + "probability": 0.9929 + }, + { + "start": 11555.44, + "end": 11556.24, + "probability": 0.6847 + }, + { + "start": 11556.6, + "end": 11557.92, + "probability": 0.8916 + }, + { + "start": 11558.42, + "end": 11559.34, + "probability": 0.7172 + }, + { + "start": 11559.94, + "end": 11561.38, + "probability": 0.8351 + }, + { + "start": 11561.62, + "end": 11562.2, + "probability": 0.6375 + }, + { + "start": 11562.54, + "end": 11564.78, + "probability": 0.8511 + }, + { + "start": 11566.67, + "end": 11572.32, + "probability": 0.7717 + }, + { + "start": 11572.54, + "end": 11575.3, + "probability": 0.9902 + }, + { + "start": 11575.36, + "end": 11578.34, + "probability": 0.4273 + }, + { + "start": 11578.34, + "end": 11579.18, + "probability": 0.3101 + }, + { + "start": 11580.0, + "end": 11582.04, + "probability": 0.9932 + }, + { + "start": 11582.48, + "end": 11586.2, + "probability": 0.9542 + }, + { + "start": 11586.54, + "end": 11588.38, + "probability": 0.7293 + }, + { + "start": 11589.0, + "end": 11589.5, + "probability": 0.6509 + }, + { + "start": 11590.16, + "end": 11592.68, + "probability": 0.9844 + }, + { + "start": 11592.74, + "end": 11593.66, + "probability": 0.7607 + }, + { + "start": 11593.74, + "end": 11594.48, + "probability": 0.9009 + }, + { + "start": 11595.02, + "end": 11598.58, + "probability": 0.9858 + }, + { + "start": 11599.06, + "end": 11602.8, + "probability": 0.9203 + }, + { + "start": 11603.16, + "end": 11604.04, + "probability": 0.9575 + }, + { + "start": 11604.24, + "end": 11609.8, + "probability": 0.9937 + }, + { + "start": 11610.22, + "end": 11613.72, + "probability": 0.9947 + }, + { + "start": 11613.86, + "end": 11614.16, + "probability": 0.8134 + }, + { + "start": 11614.28, + "end": 11615.42, + "probability": 0.9736 + }, + { + "start": 11616.14, + "end": 11617.28, + "probability": 0.6154 + }, + { + "start": 11617.46, + "end": 11617.74, + "probability": 0.5583 + }, + { + "start": 11618.72, + "end": 11621.94, + "probability": 0.6267 + }, + { + "start": 11636.8, + "end": 11637.56, + "probability": 0.6294 + }, + { + "start": 11639.02, + "end": 11640.76, + "probability": 0.7973 + }, + { + "start": 11644.12, + "end": 11647.68, + "probability": 0.9068 + }, + { + "start": 11649.62, + "end": 11651.92, + "probability": 0.9977 + }, + { + "start": 11652.74, + "end": 11654.48, + "probability": 0.981 + }, + { + "start": 11654.54, + "end": 11655.58, + "probability": 0.6843 + }, + { + "start": 11655.92, + "end": 11658.92, + "probability": 0.5687 + }, + { + "start": 11661.04, + "end": 11661.98, + "probability": 0.742 + }, + { + "start": 11662.88, + "end": 11663.66, + "probability": 0.7952 + }, + { + "start": 11665.52, + "end": 11668.92, + "probability": 0.7559 + }, + { + "start": 11668.92, + "end": 11670.92, + "probability": 0.9836 + }, + { + "start": 11673.52, + "end": 11675.72, + "probability": 0.9409 + }, + { + "start": 11677.52, + "end": 11682.3, + "probability": 0.9948 + }, + { + "start": 11682.36, + "end": 11683.5, + "probability": 0.9932 + }, + { + "start": 11685.0, + "end": 11688.58, + "probability": 0.9919 + }, + { + "start": 11688.9, + "end": 11690.56, + "probability": 0.9038 + }, + { + "start": 11691.84, + "end": 11693.22, + "probability": 0.9683 + }, + { + "start": 11693.42, + "end": 11694.74, + "probability": 0.9715 + }, + { + "start": 11695.08, + "end": 11697.73, + "probability": 0.9883 + }, + { + "start": 11698.84, + "end": 11700.8, + "probability": 0.8462 + }, + { + "start": 11703.8, + "end": 11710.58, + "probability": 0.9615 + }, + { + "start": 11712.92, + "end": 11716.04, + "probability": 0.9003 + }, + { + "start": 11716.46, + "end": 11719.84, + "probability": 0.9774 + }, + { + "start": 11720.04, + "end": 11721.16, + "probability": 0.9738 + }, + { + "start": 11721.8, + "end": 11722.2, + "probability": 0.9952 + }, + { + "start": 11723.24, + "end": 11725.88, + "probability": 0.9147 + }, + { + "start": 11727.44, + "end": 11729.58, + "probability": 0.986 + }, + { + "start": 11730.86, + "end": 11733.2, + "probability": 0.8706 + }, + { + "start": 11734.32, + "end": 11739.78, + "probability": 0.8512 + }, + { + "start": 11739.82, + "end": 11740.52, + "probability": 0.8103 + }, + { + "start": 11742.78, + "end": 11748.04, + "probability": 0.9952 + }, + { + "start": 11748.52, + "end": 11749.76, + "probability": 0.9473 + }, + { + "start": 11749.88, + "end": 11751.81, + "probability": 0.9081 + }, + { + "start": 11753.42, + "end": 11756.12, + "probability": 0.9947 + }, + { + "start": 11757.72, + "end": 11758.58, + "probability": 0.8052 + }, + { + "start": 11759.8, + "end": 11763.82, + "probability": 0.9694 + }, + { + "start": 11764.88, + "end": 11765.44, + "probability": 0.9886 + }, + { + "start": 11766.54, + "end": 11767.94, + "probability": 0.8102 + }, + { + "start": 11769.26, + "end": 11775.14, + "probability": 0.9635 + }, + { + "start": 11776.4, + "end": 11777.22, + "probability": 0.8859 + }, + { + "start": 11777.34, + "end": 11778.27, + "probability": 0.8768 + }, + { + "start": 11778.44, + "end": 11781.26, + "probability": 0.9336 + }, + { + "start": 11782.38, + "end": 11783.53, + "probability": 0.9465 + }, + { + "start": 11783.82, + "end": 11788.26, + "probability": 0.9945 + }, + { + "start": 11788.26, + "end": 11791.58, + "probability": 0.9948 + }, + { + "start": 11793.32, + "end": 11796.0, + "probability": 0.9263 + }, + { + "start": 11797.22, + "end": 11804.36, + "probability": 0.8773 + }, + { + "start": 11806.04, + "end": 11809.46, + "probability": 0.4356 + }, + { + "start": 11809.66, + "end": 11813.32, + "probability": 0.5519 + }, + { + "start": 11813.62, + "end": 11814.82, + "probability": 0.5867 + }, + { + "start": 11816.34, + "end": 11820.48, + "probability": 0.75 + }, + { + "start": 11821.34, + "end": 11825.18, + "probability": 0.964 + }, + { + "start": 11825.44, + "end": 11827.66, + "probability": 0.9847 + }, + { + "start": 11828.4, + "end": 11830.58, + "probability": 0.9863 + }, + { + "start": 11830.82, + "end": 11831.84, + "probability": 0.6245 + }, + { + "start": 11831.96, + "end": 11832.74, + "probability": 0.8724 + }, + { + "start": 11832.88, + "end": 11833.94, + "probability": 0.9734 + }, + { + "start": 11835.3, + "end": 11840.28, + "probability": 0.852 + }, + { + "start": 11841.3, + "end": 11845.4, + "probability": 0.8893 + }, + { + "start": 11845.4, + "end": 11848.26, + "probability": 0.9993 + }, + { + "start": 11848.96, + "end": 11849.9, + "probability": 0.8255 + }, + { + "start": 11850.0, + "end": 11852.32, + "probability": 0.4249 + }, + { + "start": 11852.58, + "end": 11852.84, + "probability": 0.5092 + }, + { + "start": 11853.24, + "end": 11854.77, + "probability": 0.5115 + }, + { + "start": 11855.34, + "end": 11855.76, + "probability": 0.455 + }, + { + "start": 11856.44, + "end": 11859.44, + "probability": 0.9983 + }, + { + "start": 11860.24, + "end": 11861.4, + "probability": 0.8626 + }, + { + "start": 11861.6, + "end": 11863.1, + "probability": 0.9675 + }, + { + "start": 11863.2, + "end": 11864.7, + "probability": 0.9268 + }, + { + "start": 11864.84, + "end": 11865.26, + "probability": 0.5776 + }, + { + "start": 11865.42, + "end": 11866.66, + "probability": 0.6303 + }, + { + "start": 11866.82, + "end": 11866.82, + "probability": 0.597 + }, + { + "start": 11866.82, + "end": 11869.58, + "probability": 0.6278 + }, + { + "start": 11870.78, + "end": 11871.88, + "probability": 0.5095 + }, + { + "start": 11872.4, + "end": 11878.3, + "probability": 0.9919 + }, + { + "start": 11878.3, + "end": 11882.22, + "probability": 0.9658 + }, + { + "start": 11883.32, + "end": 11884.44, + "probability": 0.9313 + }, + { + "start": 11884.96, + "end": 11885.8, + "probability": 0.5821 + }, + { + "start": 11886.54, + "end": 11887.74, + "probability": 0.75 + }, + { + "start": 11887.96, + "end": 11889.26, + "probability": 0.9323 + }, + { + "start": 11889.4, + "end": 11891.5, + "probability": 0.8721 + }, + { + "start": 11892.48, + "end": 11895.64, + "probability": 0.8431 + }, + { + "start": 11895.78, + "end": 11897.96, + "probability": 0.7691 + }, + { + "start": 11898.06, + "end": 11900.9, + "probability": 0.9764 + }, + { + "start": 11901.28, + "end": 11902.2, + "probability": 0.9949 + }, + { + "start": 11902.28, + "end": 11904.12, + "probability": 0.9642 + }, + { + "start": 11904.26, + "end": 11905.02, + "probability": 0.8931 + }, + { + "start": 11906.08, + "end": 11907.84, + "probability": 0.8311 + }, + { + "start": 11907.98, + "end": 11909.86, + "probability": 0.9971 + }, + { + "start": 11910.06, + "end": 11913.52, + "probability": 0.9971 + }, + { + "start": 11913.52, + "end": 11917.18, + "probability": 0.95 + }, + { + "start": 11917.82, + "end": 11920.16, + "probability": 0.9466 + }, + { + "start": 11920.88, + "end": 11924.14, + "probability": 0.7661 + }, + { + "start": 11925.06, + "end": 11928.64, + "probability": 0.9603 + }, + { + "start": 11928.64, + "end": 11933.18, + "probability": 0.9967 + }, + { + "start": 11933.82, + "end": 11935.28, + "probability": 0.9621 + }, + { + "start": 11936.0, + "end": 11938.6, + "probability": 0.9689 + }, + { + "start": 11938.74, + "end": 11940.52, + "probability": 0.8081 + }, + { + "start": 11941.2, + "end": 11945.66, + "probability": 0.998 + }, + { + "start": 11945.78, + "end": 11947.38, + "probability": 0.882 + }, + { + "start": 11947.44, + "end": 11952.5, + "probability": 0.9874 + }, + { + "start": 11954.35, + "end": 11957.78, + "probability": 0.9798 + }, + { + "start": 11957.78, + "end": 11960.64, + "probability": 0.9922 + }, + { + "start": 11960.84, + "end": 11962.0, + "probability": 0.9062 + }, + { + "start": 11962.9, + "end": 11963.76, + "probability": 0.6951 + }, + { + "start": 11965.06, + "end": 11966.32, + "probability": 0.9412 + }, + { + "start": 11966.54, + "end": 11968.44, + "probability": 0.8025 + }, + { + "start": 11968.6, + "end": 11970.36, + "probability": 0.9498 + }, + { + "start": 11971.58, + "end": 11972.12, + "probability": 0.8344 + }, + { + "start": 11972.32, + "end": 11974.36, + "probability": 0.9869 + }, + { + "start": 11974.48, + "end": 11976.8, + "probability": 0.7662 + }, + { + "start": 11976.86, + "end": 11981.38, + "probability": 0.9924 + }, + { + "start": 11981.48, + "end": 11982.04, + "probability": 0.5562 + }, + { + "start": 11982.78, + "end": 11984.96, + "probability": 0.9004 + }, + { + "start": 11986.4, + "end": 11988.36, + "probability": 0.9775 + }, + { + "start": 11988.44, + "end": 11991.16, + "probability": 0.9951 + }, + { + "start": 11991.24, + "end": 11992.78, + "probability": 0.9494 + }, + { + "start": 11993.22, + "end": 11994.04, + "probability": 0.9268 + }, + { + "start": 11994.08, + "end": 11996.8, + "probability": 0.978 + }, + { + "start": 11997.86, + "end": 11999.94, + "probability": 0.9921 + }, + { + "start": 12001.45, + "end": 12008.06, + "probability": 0.8958 + }, + { + "start": 12008.74, + "end": 12010.14, + "probability": 0.7239 + }, + { + "start": 12010.4, + "end": 12012.64, + "probability": 0.9833 + }, + { + "start": 12013.26, + "end": 12014.3, + "probability": 0.8907 + }, + { + "start": 12015.02, + "end": 12019.32, + "probability": 0.8631 + }, + { + "start": 12020.44, + "end": 12023.46, + "probability": 0.9905 + }, + { + "start": 12024.2, + "end": 12026.42, + "probability": 0.9947 + }, + { + "start": 12026.42, + "end": 12030.46, + "probability": 0.6628 + }, + { + "start": 12031.36, + "end": 12033.04, + "probability": 0.7975 + }, + { + "start": 12033.86, + "end": 12036.42, + "probability": 0.9927 + }, + { + "start": 12036.66, + "end": 12038.22, + "probability": 0.576 + }, + { + "start": 12038.36, + "end": 12040.34, + "probability": 0.9297 + }, + { + "start": 12040.98, + "end": 12042.12, + "probability": 0.7373 + }, + { + "start": 12042.9, + "end": 12047.4, + "probability": 0.9516 + }, + { + "start": 12047.42, + "end": 12049.19, + "probability": 0.9487 + }, + { + "start": 12049.82, + "end": 12052.58, + "probability": 0.9679 + }, + { + "start": 12053.5, + "end": 12056.58, + "probability": 0.9476 + }, + { + "start": 12056.58, + "end": 12058.88, + "probability": 0.9903 + }, + { + "start": 12058.98, + "end": 12059.42, + "probability": 0.7849 + }, + { + "start": 12059.64, + "end": 12060.1, + "probability": 0.7715 + }, + { + "start": 12061.04, + "end": 12064.56, + "probability": 0.9652 + }, + { + "start": 12065.32, + "end": 12067.52, + "probability": 0.9266 + }, + { + "start": 12067.82, + "end": 12070.86, + "probability": 0.9821 + }, + { + "start": 12072.3, + "end": 12074.02, + "probability": 0.8392 + }, + { + "start": 12074.18, + "end": 12075.9, + "probability": 0.9744 + }, + { + "start": 12076.64, + "end": 12077.62, + "probability": 0.967 + }, + { + "start": 12077.8, + "end": 12084.22, + "probability": 0.9824 + }, + { + "start": 12085.5, + "end": 12089.54, + "probability": 0.9678 + }, + { + "start": 12090.94, + "end": 12092.04, + "probability": 0.5747 + }, + { + "start": 12092.72, + "end": 12093.0, + "probability": 0.4465 + }, + { + "start": 12093.08, + "end": 12094.54, + "probability": 0.8171 + }, + { + "start": 12094.66, + "end": 12096.52, + "probability": 0.951 + }, + { + "start": 12097.68, + "end": 12103.59, + "probability": 0.9795 + }, + { + "start": 12103.94, + "end": 12105.06, + "probability": 0.9398 + }, + { + "start": 12106.26, + "end": 12109.2, + "probability": 0.9795 + }, + { + "start": 12109.32, + "end": 12110.5, + "probability": 0.7681 + }, + { + "start": 12110.82, + "end": 12111.18, + "probability": 0.1444 + }, + { + "start": 12111.74, + "end": 12112.46, + "probability": 0.6675 + }, + { + "start": 12113.76, + "end": 12116.5, + "probability": 0.9097 + }, + { + "start": 12116.66, + "end": 12119.54, + "probability": 0.8437 + }, + { + "start": 12119.84, + "end": 12122.01, + "probability": 0.8931 + }, + { + "start": 12122.34, + "end": 12123.68, + "probability": 0.8181 + }, + { + "start": 12124.44, + "end": 12126.44, + "probability": 0.9304 + }, + { + "start": 12127.04, + "end": 12127.86, + "probability": 0.998 + }, + { + "start": 12129.4, + "end": 12133.76, + "probability": 0.8774 + }, + { + "start": 12133.78, + "end": 12135.38, + "probability": 0.9697 + }, + { + "start": 12136.02, + "end": 12138.88, + "probability": 0.9788 + }, + { + "start": 12138.88, + "end": 12142.2, + "probability": 0.9883 + }, + { + "start": 12142.88, + "end": 12147.7, + "probability": 0.9681 + }, + { + "start": 12148.72, + "end": 12149.4, + "probability": 0.6014 + }, + { + "start": 12149.48, + "end": 12149.68, + "probability": 0.3412 + }, + { + "start": 12149.74, + "end": 12153.3, + "probability": 0.9671 + }, + { + "start": 12153.3, + "end": 12156.9, + "probability": 0.994 + }, + { + "start": 12156.92, + "end": 12158.2, + "probability": 0.8077 + }, + { + "start": 12158.36, + "end": 12160.06, + "probability": 0.9985 + }, + { + "start": 12160.66, + "end": 12162.72, + "probability": 0.9842 + }, + { + "start": 12163.54, + "end": 12164.28, + "probability": 0.8711 + }, + { + "start": 12164.5, + "end": 12165.09, + "probability": 0.8254 + }, + { + "start": 12165.28, + "end": 12169.44, + "probability": 0.656 + }, + { + "start": 12169.78, + "end": 12170.44, + "probability": 0.9473 + }, + { + "start": 12170.56, + "end": 12171.24, + "probability": 0.6587 + }, + { + "start": 12171.52, + "end": 12172.1, + "probability": 0.5338 + }, + { + "start": 12172.96, + "end": 12173.24, + "probability": 0.6717 + }, + { + "start": 12173.36, + "end": 12173.46, + "probability": 0.8183 + }, + { + "start": 12173.54, + "end": 12174.32, + "probability": 0.8165 + }, + { + "start": 12174.46, + "end": 12177.14, + "probability": 0.9709 + }, + { + "start": 12177.82, + "end": 12183.46, + "probability": 0.8678 + }, + { + "start": 12184.0, + "end": 12186.56, + "probability": 0.9552 + }, + { + "start": 12188.76, + "end": 12191.56, + "probability": 0.9905 + }, + { + "start": 12191.56, + "end": 12195.44, + "probability": 0.9082 + }, + { + "start": 12196.54, + "end": 12200.78, + "probability": 0.9855 + }, + { + "start": 12200.92, + "end": 12201.82, + "probability": 0.7305 + }, + { + "start": 12201.9, + "end": 12205.5, + "probability": 0.9585 + }, + { + "start": 12205.68, + "end": 12208.5, + "probability": 0.9685 + }, + { + "start": 12208.66, + "end": 12212.16, + "probability": 0.9861 + }, + { + "start": 12212.68, + "end": 12215.52, + "probability": 0.9864 + }, + { + "start": 12216.16, + "end": 12217.1, + "probability": 0.777 + }, + { + "start": 12217.44, + "end": 12221.6, + "probability": 0.9674 + }, + { + "start": 12222.36, + "end": 12227.42, + "probability": 0.7645 + }, + { + "start": 12227.98, + "end": 12230.68, + "probability": 0.9983 + }, + { + "start": 12230.82, + "end": 12235.84, + "probability": 0.7841 + }, + { + "start": 12235.9, + "end": 12238.12, + "probability": 0.4341 + }, + { + "start": 12238.94, + "end": 12243.1, + "probability": 0.9568 + }, + { + "start": 12244.32, + "end": 12248.22, + "probability": 0.983 + }, + { + "start": 12248.36, + "end": 12255.62, + "probability": 0.9475 + }, + { + "start": 12255.66, + "end": 12257.1, + "probability": 0.3362 + }, + { + "start": 12257.6, + "end": 12264.3, + "probability": 0.8079 + }, + { + "start": 12264.94, + "end": 12265.88, + "probability": 0.7246 + }, + { + "start": 12266.04, + "end": 12266.88, + "probability": 0.9287 + }, + { + "start": 12267.0, + "end": 12267.26, + "probability": 0.478 + }, + { + "start": 12267.34, + "end": 12268.08, + "probability": 0.855 + }, + { + "start": 12269.38, + "end": 12271.76, + "probability": 0.7314 + }, + { + "start": 12273.0, + "end": 12273.2, + "probability": 0.9017 + }, + { + "start": 12273.26, + "end": 12276.14, + "probability": 0.9754 + }, + { + "start": 12277.12, + "end": 12278.58, + "probability": 0.6997 + }, + { + "start": 12279.34, + "end": 12281.14, + "probability": 0.7829 + }, + { + "start": 12281.38, + "end": 12285.9, + "probability": 0.9875 + }, + { + "start": 12286.34, + "end": 12288.36, + "probability": 0.9956 + }, + { + "start": 12288.96, + "end": 12289.9, + "probability": 0.759 + }, + { + "start": 12290.02, + "end": 12290.54, + "probability": 0.4159 + }, + { + "start": 12290.56, + "end": 12291.02, + "probability": 0.439 + }, + { + "start": 12291.14, + "end": 12292.54, + "probability": 0.8582 + }, + { + "start": 12292.92, + "end": 12294.04, + "probability": 0.5022 + }, + { + "start": 12294.64, + "end": 12296.6, + "probability": 0.671 + }, + { + "start": 12297.08, + "end": 12298.7, + "probability": 0.9034 + }, + { + "start": 12299.58, + "end": 12304.76, + "probability": 0.9102 + }, + { + "start": 12305.62, + "end": 12309.44, + "probability": 0.9915 + }, + { + "start": 12310.54, + "end": 12311.56, + "probability": 0.9672 + }, + { + "start": 12311.56, + "end": 12313.32, + "probability": 0.7757 + }, + { + "start": 12313.44, + "end": 12315.52, + "probability": 0.9762 + }, + { + "start": 12323.42, + "end": 12326.98, + "probability": 0.9783 + }, + { + "start": 12329.48, + "end": 12333.14, + "probability": 0.9648 + }, + { + "start": 12334.58, + "end": 12335.62, + "probability": 0.9347 + }, + { + "start": 12336.66, + "end": 12337.82, + "probability": 0.9901 + }, + { + "start": 12338.62, + "end": 12340.3, + "probability": 0.9933 + }, + { + "start": 12341.04, + "end": 12342.9, + "probability": 0.8342 + }, + { + "start": 12343.56, + "end": 12346.92, + "probability": 0.8586 + }, + { + "start": 12348.26, + "end": 12348.26, + "probability": 0.7012 + }, + { + "start": 12349.36, + "end": 12351.22, + "probability": 0.8841 + }, + { + "start": 12351.7, + "end": 12352.58, + "probability": 0.8036 + }, + { + "start": 12352.96, + "end": 12356.34, + "probability": 0.9034 + }, + { + "start": 12357.32, + "end": 12361.2, + "probability": 0.9702 + }, + { + "start": 12361.68, + "end": 12362.12, + "probability": 0.5091 + }, + { + "start": 12363.16, + "end": 12366.52, + "probability": 0.979 + }, + { + "start": 12366.52, + "end": 12369.78, + "probability": 0.9204 + }, + { + "start": 12370.6, + "end": 12372.9, + "probability": 0.9058 + }, + { + "start": 12373.16, + "end": 12374.68, + "probability": 0.7025 + }, + { + "start": 12375.38, + "end": 12377.12, + "probability": 0.9717 + }, + { + "start": 12377.84, + "end": 12379.46, + "probability": 0.9993 + }, + { + "start": 12380.24, + "end": 12382.5, + "probability": 0.7495 + }, + { + "start": 12383.54, + "end": 12387.46, + "probability": 0.9928 + }, + { + "start": 12388.78, + "end": 12390.52, + "probability": 0.8943 + }, + { + "start": 12390.62, + "end": 12391.71, + "probability": 0.9966 + }, + { + "start": 12392.66, + "end": 12395.52, + "probability": 0.5258 + }, + { + "start": 12396.28, + "end": 12400.14, + "probability": 0.9217 + }, + { + "start": 12401.08, + "end": 12402.82, + "probability": 0.9954 + }, + { + "start": 12403.6, + "end": 12406.38, + "probability": 0.8743 + }, + { + "start": 12407.44, + "end": 12409.96, + "probability": 0.957 + }, + { + "start": 12410.26, + "end": 12411.58, + "probability": 0.9434 + }, + { + "start": 12411.68, + "end": 12415.4, + "probability": 0.9941 + }, + { + "start": 12416.66, + "end": 12417.5, + "probability": 0.8875 + }, + { + "start": 12417.62, + "end": 12418.62, + "probability": 0.8901 + }, + { + "start": 12418.72, + "end": 12419.98, + "probability": 0.9937 + }, + { + "start": 12420.12, + "end": 12425.6, + "probability": 0.9694 + }, + { + "start": 12425.84, + "end": 12431.36, + "probability": 0.9956 + }, + { + "start": 12431.46, + "end": 12433.2, + "probability": 0.8509 + }, + { + "start": 12433.26, + "end": 12436.47, + "probability": 0.949 + }, + { + "start": 12437.62, + "end": 12440.33, + "probability": 0.9491 + }, + { + "start": 12441.1, + "end": 12442.68, + "probability": 0.9697 + }, + { + "start": 12442.86, + "end": 12444.4, + "probability": 0.8738 + }, + { + "start": 12445.38, + "end": 12447.06, + "probability": 0.9506 + }, + { + "start": 12447.08, + "end": 12448.5, + "probability": 0.8792 + }, + { + "start": 12448.5, + "end": 12450.1, + "probability": 0.6363 + }, + { + "start": 12451.04, + "end": 12453.34, + "probability": 0.9133 + }, + { + "start": 12454.12, + "end": 12457.28, + "probability": 0.9618 + }, + { + "start": 12457.98, + "end": 12458.98, + "probability": 0.683 + }, + { + "start": 12459.68, + "end": 12460.26, + "probability": 0.8612 + }, + { + "start": 12460.4, + "end": 12460.85, + "probability": 0.8554 + }, + { + "start": 12461.08, + "end": 12463.54, + "probability": 0.947 + }, + { + "start": 12463.64, + "end": 12465.4, + "probability": 0.8773 + }, + { + "start": 12466.26, + "end": 12467.36, + "probability": 0.9409 + }, + { + "start": 12468.24, + "end": 12470.36, + "probability": 0.9825 + }, + { + "start": 12470.38, + "end": 12474.16, + "probability": 0.9713 + }, + { + "start": 12474.92, + "end": 12476.38, + "probability": 0.9425 + }, + { + "start": 12476.5, + "end": 12477.62, + "probability": 0.9873 + }, + { + "start": 12478.22, + "end": 12481.94, + "probability": 0.9968 + }, + { + "start": 12482.7, + "end": 12483.48, + "probability": 0.9498 + }, + { + "start": 12483.82, + "end": 12488.68, + "probability": 0.821 + }, + { + "start": 12488.8, + "end": 12490.52, + "probability": 0.9038 + }, + { + "start": 12490.52, + "end": 12492.28, + "probability": 0.9468 + }, + { + "start": 12492.56, + "end": 12492.94, + "probability": 0.4705 + }, + { + "start": 12493.36, + "end": 12498.6, + "probability": 0.9351 + }, + { + "start": 12499.4, + "end": 12502.38, + "probability": 0.7333 + }, + { + "start": 12502.7, + "end": 12506.2, + "probability": 0.8363 + }, + { + "start": 12506.66, + "end": 12509.12, + "probability": 0.6783 + }, + { + "start": 12509.98, + "end": 12510.48, + "probability": 0.776 + }, + { + "start": 12510.74, + "end": 12513.68, + "probability": 0.9374 + }, + { + "start": 12513.88, + "end": 12518.2, + "probability": 0.9956 + }, + { + "start": 12518.58, + "end": 12518.92, + "probability": 0.7266 + }, + { + "start": 12519.84, + "end": 12521.7, + "probability": 0.814 + }, + { + "start": 12522.32, + "end": 12525.38, + "probability": 0.7487 + }, + { + "start": 12526.08, + "end": 12526.62, + "probability": 0.9265 + }, + { + "start": 12527.44, + "end": 12529.54, + "probability": 0.9828 + }, + { + "start": 12529.72, + "end": 12530.42, + "probability": 0.7905 + }, + { + "start": 12530.78, + "end": 12532.04, + "probability": 0.9456 + }, + { + "start": 12532.22, + "end": 12536.62, + "probability": 0.7234 + }, + { + "start": 12537.76, + "end": 12539.42, + "probability": 0.8531 + }, + { + "start": 12539.88, + "end": 12541.06, + "probability": 0.7847 + }, + { + "start": 12541.94, + "end": 12542.36, + "probability": 0.7544 + }, + { + "start": 12542.98, + "end": 12546.08, + "probability": 0.9771 + }, + { + "start": 12546.3, + "end": 12547.38, + "probability": 0.8467 + }, + { + "start": 12548.66, + "end": 12548.98, + "probability": 0.2466 + }, + { + "start": 12549.06, + "end": 12550.98, + "probability": 0.5382 + }, + { + "start": 12551.1, + "end": 12552.96, + "probability": 0.9956 + }, + { + "start": 12553.54, + "end": 12558.76, + "probability": 0.9871 + }, + { + "start": 12559.48, + "end": 12560.4, + "probability": 0.7242 + }, + { + "start": 12560.56, + "end": 12561.54, + "probability": 0.8446 + }, + { + "start": 12561.86, + "end": 12564.22, + "probability": 0.978 + }, + { + "start": 12565.08, + "end": 12566.28, + "probability": 0.6859 + }, + { + "start": 12567.58, + "end": 12571.73, + "probability": 0.9938 + }, + { + "start": 12571.96, + "end": 12573.42, + "probability": 0.8439 + }, + { + "start": 12574.42, + "end": 12577.2, + "probability": 0.7327 + }, + { + "start": 12577.76, + "end": 12578.8, + "probability": 0.7225 + }, + { + "start": 12579.56, + "end": 12581.44, + "probability": 0.9912 + }, + { + "start": 12581.62, + "end": 12583.7, + "probability": 0.9906 + }, + { + "start": 12584.6, + "end": 12591.98, + "probability": 0.9972 + }, + { + "start": 12592.68, + "end": 12595.3, + "probability": 0.9918 + }, + { + "start": 12595.38, + "end": 12598.92, + "probability": 0.9969 + }, + { + "start": 12600.06, + "end": 12603.56, + "probability": 0.9986 + }, + { + "start": 12603.76, + "end": 12606.52, + "probability": 0.9411 + }, + { + "start": 12607.32, + "end": 12609.36, + "probability": 0.8732 + }, + { + "start": 12609.94, + "end": 12611.42, + "probability": 0.9888 + }, + { + "start": 12611.98, + "end": 12616.76, + "probability": 0.9229 + }, + { + "start": 12616.76, + "end": 12617.94, + "probability": 0.9176 + }, + { + "start": 12618.16, + "end": 12620.8, + "probability": 0.968 + }, + { + "start": 12621.22, + "end": 12622.22, + "probability": 0.9878 + }, + { + "start": 12622.32, + "end": 12623.9, + "probability": 0.7126 + }, + { + "start": 12624.1, + "end": 12626.04, + "probability": 0.9727 + }, + { + "start": 12626.94, + "end": 12629.56, + "probability": 0.9496 + }, + { + "start": 12630.36, + "end": 12631.22, + "probability": 0.7631 + }, + { + "start": 12631.3, + "end": 12632.52, + "probability": 0.8247 + }, + { + "start": 12632.8, + "end": 12633.82, + "probability": 0.9366 + }, + { + "start": 12634.06, + "end": 12634.88, + "probability": 0.7757 + }, + { + "start": 12635.32, + "end": 12636.02, + "probability": 0.604 + }, + { + "start": 12636.9, + "end": 12638.62, + "probability": 0.7409 + }, + { + "start": 12638.7, + "end": 12638.88, + "probability": 0.6835 + }, + { + "start": 12638.9, + "end": 12639.18, + "probability": 0.7261 + }, + { + "start": 12639.26, + "end": 12640.0, + "probability": 0.8752 + }, + { + "start": 12640.06, + "end": 12640.88, + "probability": 0.7671 + }, + { + "start": 12640.94, + "end": 12642.18, + "probability": 0.51 + }, + { + "start": 12642.32, + "end": 12645.02, + "probability": 0.8876 + }, + { + "start": 12645.04, + "end": 12646.26, + "probability": 0.7078 + }, + { + "start": 12646.84, + "end": 12648.3, + "probability": 0.7084 + }, + { + "start": 12648.34, + "end": 12649.28, + "probability": 0.493 + }, + { + "start": 12649.46, + "end": 12649.88, + "probability": 0.8404 + }, + { + "start": 12655.34, + "end": 12656.78, + "probability": 0.0348 + }, + { + "start": 12668.82, + "end": 12669.42, + "probability": 0.4235 + }, + { + "start": 12669.42, + "end": 12671.38, + "probability": 0.5596 + }, + { + "start": 12671.38, + "end": 12671.68, + "probability": 0.3761 + }, + { + "start": 12671.68, + "end": 12672.1, + "probability": 0.6699 + }, + { + "start": 12672.18, + "end": 12676.06, + "probability": 0.6824 + }, + { + "start": 12676.2, + "end": 12678.76, + "probability": 0.729 + }, + { + "start": 12679.86, + "end": 12682.44, + "probability": 0.9264 + }, + { + "start": 12683.04, + "end": 12687.22, + "probability": 0.7548 + }, + { + "start": 12688.26, + "end": 12689.4, + "probability": 0.7185 + }, + { + "start": 12689.54, + "end": 12690.52, + "probability": 0.6063 + }, + { + "start": 12690.64, + "end": 12692.71, + "probability": 0.8546 + }, + { + "start": 12693.54, + "end": 12695.56, + "probability": 0.8797 + }, + { + "start": 12695.56, + "end": 12699.58, + "probability": 0.7802 + }, + { + "start": 12700.06, + "end": 12703.14, + "probability": 0.4279 + }, + { + "start": 12703.74, + "end": 12705.2, + "probability": 0.1635 + }, + { + "start": 12705.88, + "end": 12707.48, + "probability": 0.6143 + }, + { + "start": 12708.1, + "end": 12709.66, + "probability": 0.7386 + }, + { + "start": 12709.66, + "end": 12713.12, + "probability": 0.7402 + }, + { + "start": 12714.18, + "end": 12717.0, + "probability": 0.9576 + }, + { + "start": 12717.04, + "end": 12717.26, + "probability": 0.7376 + }, + { + "start": 12718.4, + "end": 12720.34, + "probability": 0.8057 + }, + { + "start": 12720.7, + "end": 12724.04, + "probability": 0.6683 + }, + { + "start": 12724.58, + "end": 12728.7, + "probability": 0.8315 + }, + { + "start": 12731.15, + "end": 12735.16, + "probability": 0.1165 + }, + { + "start": 12737.56, + "end": 12738.4, + "probability": 0.0573 + }, + { + "start": 12738.4, + "end": 12738.4, + "probability": 0.0856 + }, + { + "start": 12738.4, + "end": 12738.46, + "probability": 0.0578 + }, + { + "start": 12738.46, + "end": 12738.46, + "probability": 0.2235 + }, + { + "start": 12738.46, + "end": 12738.64, + "probability": 0.0916 + }, + { + "start": 12745.34, + "end": 12746.6, + "probability": 0.0501 + }, + { + "start": 12749.16, + "end": 12750.18, + "probability": 0.5595 + }, + { + "start": 12750.38, + "end": 12751.4, + "probability": 0.6236 + }, + { + "start": 12751.58, + "end": 12754.78, + "probability": 0.8673 + }, + { + "start": 12755.68, + "end": 12757.22, + "probability": 0.7989 + }, + { + "start": 12757.98, + "end": 12761.78, + "probability": 0.8982 + }, + { + "start": 12762.78, + "end": 12763.62, + "probability": 0.7751 + }, + { + "start": 12763.8, + "end": 12768.26, + "probability": 0.9755 + }, + { + "start": 12768.52, + "end": 12772.84, + "probability": 0.8239 + }, + { + "start": 12773.76, + "end": 12774.72, + "probability": 0.631 + }, + { + "start": 12774.94, + "end": 12777.0, + "probability": 0.9848 + }, + { + "start": 12777.66, + "end": 12779.8, + "probability": 0.9058 + }, + { + "start": 12779.8, + "end": 12784.6, + "probability": 0.9888 + }, + { + "start": 12785.24, + "end": 12791.54, + "probability": 0.8327 + }, + { + "start": 12792.08, + "end": 12796.44, + "probability": 0.9771 + }, + { + "start": 12796.98, + "end": 12799.38, + "probability": 0.9972 + }, + { + "start": 12799.92, + "end": 12801.28, + "probability": 0.9714 + }, + { + "start": 12802.18, + "end": 12802.92, + "probability": 0.621 + }, + { + "start": 12803.06, + "end": 12805.64, + "probability": 0.9977 + }, + { + "start": 12806.84, + "end": 12807.2, + "probability": 0.322 + }, + { + "start": 12807.52, + "end": 12810.42, + "probability": 0.81 + }, + { + "start": 12811.42, + "end": 12811.74, + "probability": 0.5959 + }, + { + "start": 12811.82, + "end": 12815.26, + "probability": 0.9507 + }, + { + "start": 12815.54, + "end": 12816.36, + "probability": 0.752 + }, + { + "start": 12816.92, + "end": 12820.02, + "probability": 0.9548 + }, + { + "start": 12820.96, + "end": 12824.4, + "probability": 0.7069 + }, + { + "start": 12825.14, + "end": 12830.72, + "probability": 0.9181 + }, + { + "start": 12830.96, + "end": 12831.38, + "probability": 0.3944 + }, + { + "start": 12832.14, + "end": 12835.68, + "probability": 0.8307 + }, + { + "start": 12836.22, + "end": 12837.42, + "probability": 0.9551 + }, + { + "start": 12838.14, + "end": 12844.3, + "probability": 0.9824 + }, + { + "start": 12845.1, + "end": 12847.52, + "probability": 0.9608 + }, + { + "start": 12847.86, + "end": 12851.84, + "probability": 0.9646 + }, + { + "start": 12852.36, + "end": 12856.9, + "probability": 0.9962 + }, + { + "start": 12857.5, + "end": 12861.38, + "probability": 0.9759 + }, + { + "start": 12862.08, + "end": 12865.68, + "probability": 0.9907 + }, + { + "start": 12865.68, + "end": 12870.54, + "probability": 0.995 + }, + { + "start": 12871.18, + "end": 12872.14, + "probability": 0.5534 + }, + { + "start": 12872.98, + "end": 12874.58, + "probability": 0.9939 + }, + { + "start": 12874.9, + "end": 12877.8, + "probability": 0.9722 + }, + { + "start": 12878.4, + "end": 12880.92, + "probability": 0.9615 + }, + { + "start": 12881.54, + "end": 12881.96, + "probability": 0.8123 + }, + { + "start": 12882.04, + "end": 12883.1, + "probability": 0.9088 + }, + { + "start": 12883.58, + "end": 12886.06, + "probability": 0.6841 + }, + { + "start": 12886.58, + "end": 12888.06, + "probability": 0.7725 + }, + { + "start": 12888.46, + "end": 12893.96, + "probability": 0.915 + }, + { + "start": 12894.92, + "end": 12895.44, + "probability": 0.839 + }, + { + "start": 12897.0, + "end": 12898.84, + "probability": 0.9498 + }, + { + "start": 12899.0, + "end": 12900.32, + "probability": 0.8591 + }, + { + "start": 12900.98, + "end": 12903.24, + "probability": 0.4812 + }, + { + "start": 12903.85, + "end": 12907.82, + "probability": 0.9948 + }, + { + "start": 12908.3, + "end": 12910.34, + "probability": 0.913 + }, + { + "start": 12910.94, + "end": 12912.0, + "probability": 0.641 + }, + { + "start": 12912.74, + "end": 12917.13, + "probability": 0.9539 + }, + { + "start": 12918.8, + "end": 12925.0, + "probability": 0.7622 + }, + { + "start": 12925.08, + "end": 12925.7, + "probability": 0.7772 + }, + { + "start": 12925.84, + "end": 12926.48, + "probability": 0.8504 + }, + { + "start": 12926.56, + "end": 12927.2, + "probability": 0.6033 + }, + { + "start": 12927.96, + "end": 12928.5, + "probability": 0.7212 + }, + { + "start": 12929.2, + "end": 12930.22, + "probability": 0.6582 + }, + { + "start": 12930.76, + "end": 12934.88, + "probability": 0.8047 + }, + { + "start": 12935.3, + "end": 12938.12, + "probability": 0.9503 + }, + { + "start": 12938.82, + "end": 12941.6, + "probability": 0.9532 + }, + { + "start": 12942.18, + "end": 12944.42, + "probability": 0.9831 + }, + { + "start": 12944.54, + "end": 12946.14, + "probability": 0.9907 + }, + { + "start": 12946.86, + "end": 12949.12, + "probability": 0.9882 + }, + { + "start": 12951.22, + "end": 12951.72, + "probability": 0.9575 + }, + { + "start": 12951.84, + "end": 12956.64, + "probability": 0.8526 + }, + { + "start": 12956.76, + "end": 12961.3, + "probability": 0.8965 + }, + { + "start": 12961.8, + "end": 12963.15, + "probability": 0.9611 + }, + { + "start": 12963.86, + "end": 12965.66, + "probability": 0.9157 + }, + { + "start": 12965.74, + "end": 12966.52, + "probability": 0.7084 + }, + { + "start": 12966.52, + "end": 12968.73, + "probability": 0.8806 + }, + { + "start": 12969.58, + "end": 12973.78, + "probability": 0.8845 + }, + { + "start": 12974.96, + "end": 12977.97, + "probability": 0.9419 + }, + { + "start": 12978.46, + "end": 12984.16, + "probability": 0.9922 + }, + { + "start": 12984.28, + "end": 12984.66, + "probability": 0.7036 + }, + { + "start": 12984.88, + "end": 12985.8, + "probability": 0.8564 + }, + { + "start": 12985.98, + "end": 12987.64, + "probability": 0.9578 + }, + { + "start": 12987.78, + "end": 12991.16, + "probability": 0.9895 + }, + { + "start": 12991.7, + "end": 12993.22, + "probability": 0.9908 + }, + { + "start": 12993.24, + "end": 12994.65, + "probability": 0.9919 + }, + { + "start": 12994.84, + "end": 12995.63, + "probability": 0.7289 + }, + { + "start": 12996.16, + "end": 13000.64, + "probability": 0.915 + }, + { + "start": 13000.96, + "end": 13001.92, + "probability": 0.1575 + }, + { + "start": 13002.62, + "end": 13003.76, + "probability": 0.9753 + }, + { + "start": 13004.96, + "end": 13005.6, + "probability": 0.6262 + }, + { + "start": 13005.64, + "end": 13008.06, + "probability": 0.4959 + }, + { + "start": 13008.12, + "end": 13010.22, + "probability": 0.5707 + }, + { + "start": 13010.46, + "end": 13015.08, + "probability": 0.7165 + }, + { + "start": 13015.78, + "end": 13016.54, + "probability": 0.8149 + }, + { + "start": 13016.72, + "end": 13019.0, + "probability": 0.8283 + }, + { + "start": 13019.2, + "end": 13022.46, + "probability": 0.9628 + }, + { + "start": 13023.4, + "end": 13025.28, + "probability": 0.8453 + }, + { + "start": 13025.84, + "end": 13030.9, + "probability": 0.9911 + }, + { + "start": 13031.52, + "end": 13033.72, + "probability": 0.4494 + }, + { + "start": 13033.72, + "end": 13035.38, + "probability": 0.7855 + }, + { + "start": 13036.06, + "end": 13037.61, + "probability": 0.9949 + }, + { + "start": 13038.46, + "end": 13043.66, + "probability": 0.985 + }, + { + "start": 13043.8, + "end": 13044.94, + "probability": 0.7733 + }, + { + "start": 13045.06, + "end": 13046.98, + "probability": 0.9617 + }, + { + "start": 13047.1, + "end": 13050.74, + "probability": 0.9917 + }, + { + "start": 13051.26, + "end": 13052.04, + "probability": 0.7825 + }, + { + "start": 13052.16, + "end": 13054.94, + "probability": 0.9964 + }, + { + "start": 13055.46, + "end": 13058.64, + "probability": 0.9966 + }, + { + "start": 13059.22, + "end": 13063.46, + "probability": 0.6342 + }, + { + "start": 13064.36, + "end": 13066.92, + "probability": 0.968 + }, + { + "start": 13067.12, + "end": 13071.52, + "probability": 0.9806 + }, + { + "start": 13072.06, + "end": 13072.69, + "probability": 0.9829 + }, + { + "start": 13072.88, + "end": 13076.26, + "probability": 0.9025 + }, + { + "start": 13076.86, + "end": 13079.08, + "probability": 0.9064 + }, + { + "start": 13079.3, + "end": 13083.34, + "probability": 0.978 + }, + { + "start": 13083.78, + "end": 13087.36, + "probability": 0.9941 + }, + { + "start": 13087.36, + "end": 13087.62, + "probability": 0.2635 + }, + { + "start": 13087.66, + "end": 13089.58, + "probability": 0.4447 + }, + { + "start": 13089.66, + "end": 13091.28, + "probability": 0.3763 + }, + { + "start": 13091.36, + "end": 13091.9, + "probability": 0.2728 + }, + { + "start": 13091.92, + "end": 13092.84, + "probability": 0.5277 + }, + { + "start": 13093.12, + "end": 13094.62, + "probability": 0.6216 + }, + { + "start": 13095.2, + "end": 13096.7, + "probability": 0.9016 + }, + { + "start": 13096.94, + "end": 13098.18, + "probability": 0.7496 + }, + { + "start": 13098.28, + "end": 13099.64, + "probability": 0.9039 + }, + { + "start": 13099.92, + "end": 13101.04, + "probability": 0.819 + }, + { + "start": 13101.34, + "end": 13102.3, + "probability": 0.8658 + }, + { + "start": 13102.32, + "end": 13103.36, + "probability": 0.9339 + }, + { + "start": 13103.38, + "end": 13105.38, + "probability": 0.8469 + }, + { + "start": 13105.5, + "end": 13107.14, + "probability": 0.7479 + }, + { + "start": 13107.48, + "end": 13109.96, + "probability": 0.8689 + }, + { + "start": 13110.34, + "end": 13110.96, + "probability": 0.8882 + }, + { + "start": 13111.12, + "end": 13112.2, + "probability": 0.8344 + }, + { + "start": 13112.38, + "end": 13113.34, + "probability": 0.8289 + }, + { + "start": 13113.4, + "end": 13114.28, + "probability": 0.5634 + }, + { + "start": 13114.28, + "end": 13114.62, + "probability": 0.3725 + }, + { + "start": 13114.64, + "end": 13117.2, + "probability": 0.9093 + }, + { + "start": 13117.3, + "end": 13117.52, + "probability": 0.7156 + }, + { + "start": 13117.52, + "end": 13119.8, + "probability": 0.8257 + }, + { + "start": 13120.22, + "end": 13122.86, + "probability": 0.648 + }, + { + "start": 13123.72, + "end": 13125.56, + "probability": 0.8972 + }, + { + "start": 13134.9, + "end": 13136.28, + "probability": 0.9653 + }, + { + "start": 13138.44, + "end": 13141.14, + "probability": 0.7968 + }, + { + "start": 13142.96, + "end": 13146.72, + "probability": 0.9278 + }, + { + "start": 13147.72, + "end": 13149.24, + "probability": 0.9819 + }, + { + "start": 13150.34, + "end": 13153.4, + "probability": 0.9421 + }, + { + "start": 13155.24, + "end": 13157.44, + "probability": 0.9963 + }, + { + "start": 13158.2, + "end": 13161.08, + "probability": 0.9946 + }, + { + "start": 13162.24, + "end": 13170.54, + "probability": 0.9779 + }, + { + "start": 13171.4, + "end": 13173.48, + "probability": 0.9268 + }, + { + "start": 13174.16, + "end": 13175.6, + "probability": 0.8015 + }, + { + "start": 13175.9, + "end": 13181.86, + "probability": 0.9661 + }, + { + "start": 13182.46, + "end": 13184.8, + "probability": 0.9841 + }, + { + "start": 13185.12, + "end": 13189.16, + "probability": 0.6856 + }, + { + "start": 13190.0, + "end": 13192.7, + "probability": 0.2101 + }, + { + "start": 13192.86, + "end": 13195.14, + "probability": 0.967 + }, + { + "start": 13195.32, + "end": 13199.2, + "probability": 0.981 + }, + { + "start": 13200.14, + "end": 13201.02, + "probability": 0.7163 + }, + { + "start": 13201.54, + "end": 13202.72, + "probability": 0.903 + }, + { + "start": 13202.76, + "end": 13205.38, + "probability": 0.9556 + }, + { + "start": 13205.54, + "end": 13206.24, + "probability": 0.8865 + }, + { + "start": 13206.44, + "end": 13208.88, + "probability": 0.7707 + }, + { + "start": 13209.14, + "end": 13211.08, + "probability": 0.9106 + }, + { + "start": 13211.48, + "end": 13215.86, + "probability": 0.9919 + }, + { + "start": 13216.96, + "end": 13221.8, + "probability": 0.9985 + }, + { + "start": 13222.14, + "end": 13229.7, + "probability": 0.9967 + }, + { + "start": 13230.28, + "end": 13233.76, + "probability": 0.998 + }, + { + "start": 13234.38, + "end": 13239.74, + "probability": 0.9502 + }, + { + "start": 13240.14, + "end": 13246.5, + "probability": 0.9937 + }, + { + "start": 13247.0, + "end": 13253.48, + "probability": 0.9814 + }, + { + "start": 13253.48, + "end": 13258.78, + "probability": 0.9136 + }, + { + "start": 13258.9, + "end": 13260.68, + "probability": 0.7904 + }, + { + "start": 13261.16, + "end": 13264.44, + "probability": 0.9898 + }, + { + "start": 13264.98, + "end": 13267.8, + "probability": 0.9954 + }, + { + "start": 13268.4, + "end": 13269.47, + "probability": 0.9883 + }, + { + "start": 13269.9, + "end": 13273.08, + "probability": 0.9968 + }, + { + "start": 13273.2, + "end": 13275.58, + "probability": 0.669 + }, + { + "start": 13275.98, + "end": 13280.48, + "probability": 0.9419 + }, + { + "start": 13280.66, + "end": 13283.92, + "probability": 0.9953 + }, + { + "start": 13283.92, + "end": 13290.48, + "probability": 0.9197 + }, + { + "start": 13290.58, + "end": 13290.68, + "probability": 0.9641 + }, + { + "start": 13291.36, + "end": 13292.12, + "probability": 0.4806 + }, + { + "start": 13292.72, + "end": 13297.82, + "probability": 0.9799 + }, + { + "start": 13298.36, + "end": 13299.48, + "probability": 0.6439 + }, + { + "start": 13299.54, + "end": 13300.3, + "probability": 0.9199 + }, + { + "start": 13300.76, + "end": 13305.92, + "probability": 0.995 + }, + { + "start": 13306.1, + "end": 13306.66, + "probability": 0.9134 + }, + { + "start": 13307.22, + "end": 13307.4, + "probability": 0.2247 + }, + { + "start": 13307.46, + "end": 13310.16, + "probability": 0.9688 + }, + { + "start": 13310.32, + "end": 13311.84, + "probability": 0.8206 + }, + { + "start": 13311.84, + "end": 13312.8, + "probability": 0.8657 + }, + { + "start": 13313.42, + "end": 13319.02, + "probability": 0.9531 + }, + { + "start": 13319.56, + "end": 13322.9, + "probability": 0.9949 + }, + { + "start": 13323.2, + "end": 13326.22, + "probability": 0.8235 + }, + { + "start": 13326.78, + "end": 13326.96, + "probability": 0.6977 + }, + { + "start": 13327.18, + "end": 13328.94, + "probability": 0.5142 + }, + { + "start": 13329.02, + "end": 13330.48, + "probability": 0.7717 + }, + { + "start": 13330.54, + "end": 13331.06, + "probability": 0.4484 + }, + { + "start": 13331.1, + "end": 13332.68, + "probability": 0.9048 + }, + { + "start": 13335.26, + "end": 13337.52, + "probability": 0.5049 + }, + { + "start": 13338.54, + "end": 13340.9, + "probability": 0.3396 + }, + { + "start": 13340.9, + "end": 13341.28, + "probability": 0.3549 + }, + { + "start": 13341.38, + "end": 13342.64, + "probability": 0.0952 + }, + { + "start": 13345.08, + "end": 13345.92, + "probability": 0.1765 + }, + { + "start": 13347.36, + "end": 13347.76, + "probability": 0.1738 + }, + { + "start": 13351.8, + "end": 13353.66, + "probability": 0.299 + }, + { + "start": 13356.58, + "end": 13357.32, + "probability": 0.5202 + }, + { + "start": 13357.42, + "end": 13358.42, + "probability": 0.8994 + }, + { + "start": 13358.54, + "end": 13359.4, + "probability": 0.8279 + }, + { + "start": 13361.06, + "end": 13361.08, + "probability": 0.7817 + }, + { + "start": 13362.8, + "end": 13363.86, + "probability": 0.9238 + }, + { + "start": 13365.74, + "end": 13367.5, + "probability": 0.9364 + }, + { + "start": 13367.62, + "end": 13370.18, + "probability": 0.971 + }, + { + "start": 13372.36, + "end": 13373.92, + "probability": 0.9939 + }, + { + "start": 13375.24, + "end": 13378.02, + "probability": 0.9135 + }, + { + "start": 13379.0, + "end": 13379.74, + "probability": 0.787 + }, + { + "start": 13380.44, + "end": 13383.72, + "probability": 0.9399 + }, + { + "start": 13384.9, + "end": 13386.76, + "probability": 0.998 + }, + { + "start": 13388.4, + "end": 13389.42, + "probability": 0.5689 + }, + { + "start": 13390.08, + "end": 13393.12, + "probability": 0.9839 + }, + { + "start": 13393.18, + "end": 13394.96, + "probability": 0.7194 + }, + { + "start": 13396.28, + "end": 13399.0, + "probability": 0.6014 + }, + { + "start": 13399.68, + "end": 13400.8, + "probability": 0.8646 + }, + { + "start": 13402.24, + "end": 13404.98, + "probability": 0.882 + }, + { + "start": 13406.08, + "end": 13409.28, + "probability": 0.9503 + }, + { + "start": 13409.76, + "end": 13410.94, + "probability": 0.9874 + }, + { + "start": 13411.18, + "end": 13412.56, + "probability": 0.9939 + }, + { + "start": 13412.68, + "end": 13413.24, + "probability": 0.9684 + }, + { + "start": 13414.08, + "end": 13416.3, + "probability": 0.8519 + }, + { + "start": 13417.4, + "end": 13418.22, + "probability": 0.9237 + }, + { + "start": 13418.3, + "end": 13421.26, + "probability": 0.9941 + }, + { + "start": 13422.36, + "end": 13423.72, + "probability": 0.9841 + }, + { + "start": 13425.02, + "end": 13427.26, + "probability": 0.9964 + }, + { + "start": 13427.3, + "end": 13428.0, + "probability": 0.9908 + }, + { + "start": 13430.58, + "end": 13432.52, + "probability": 0.9503 + }, + { + "start": 13433.5, + "end": 13437.22, + "probability": 0.9978 + }, + { + "start": 13438.0, + "end": 13439.42, + "probability": 0.9107 + }, + { + "start": 13441.04, + "end": 13441.85, + "probability": 0.9636 + }, + { + "start": 13443.92, + "end": 13443.96, + "probability": 0.0292 + }, + { + "start": 13443.96, + "end": 13448.8, + "probability": 0.9609 + }, + { + "start": 13448.9, + "end": 13449.5, + "probability": 0.7258 + }, + { + "start": 13449.74, + "end": 13450.7, + "probability": 0.7284 + }, + { + "start": 13451.52, + "end": 13456.77, + "probability": 0.8944 + }, + { + "start": 13457.28, + "end": 13461.26, + "probability": 0.9803 + }, + { + "start": 13462.46, + "end": 13464.92, + "probability": 0.7605 + }, + { + "start": 13465.82, + "end": 13467.18, + "probability": 0.9443 + }, + { + "start": 13467.34, + "end": 13468.92, + "probability": 0.9963 + }, + { + "start": 13469.54, + "end": 13470.02, + "probability": 0.784 + }, + { + "start": 13470.76, + "end": 13474.84, + "probability": 0.9771 + }, + { + "start": 13474.84, + "end": 13477.1, + "probability": 0.9956 + }, + { + "start": 13478.64, + "end": 13483.96, + "probability": 0.9814 + }, + { + "start": 13484.68, + "end": 13485.4, + "probability": 0.9352 + }, + { + "start": 13486.96, + "end": 13489.86, + "probability": 0.998 + }, + { + "start": 13491.14, + "end": 13494.97, + "probability": 0.9888 + }, + { + "start": 13496.0, + "end": 13499.28, + "probability": 0.9809 + }, + { + "start": 13500.08, + "end": 13501.74, + "probability": 0.891 + }, + { + "start": 13502.24, + "end": 13504.16, + "probability": 0.9933 + }, + { + "start": 13504.9, + "end": 13507.6, + "probability": 0.9512 + }, + { + "start": 13508.54, + "end": 13511.26, + "probability": 0.9885 + }, + { + "start": 13512.34, + "end": 13512.64, + "probability": 0.9043 + }, + { + "start": 13513.1, + "end": 13513.98, + "probability": 0.6886 + }, + { + "start": 13515.08, + "end": 13515.92, + "probability": 0.3356 + }, + { + "start": 13516.46, + "end": 13516.98, + "probability": 0.1108 + }, + { + "start": 13516.98, + "end": 13517.24, + "probability": 0.2544 + }, + { + "start": 13518.42, + "end": 13522.1, + "probability": 0.9279 + }, + { + "start": 13523.44, + "end": 13526.08, + "probability": 0.5755 + }, + { + "start": 13526.28, + "end": 13526.68, + "probability": 0.1825 + }, + { + "start": 13526.84, + "end": 13528.2, + "probability": 0.499 + }, + { + "start": 13530.7, + "end": 13531.74, + "probability": 0.5914 + }, + { + "start": 13531.78, + "end": 13533.98, + "probability": 0.9502 + }, + { + "start": 13534.04, + "end": 13535.69, + "probability": 0.9991 + }, + { + "start": 13536.36, + "end": 13539.5, + "probability": 0.9989 + }, + { + "start": 13540.68, + "end": 13548.56, + "probability": 0.9925 + }, + { + "start": 13548.98, + "end": 13549.8, + "probability": 0.9182 + }, + { + "start": 13550.58, + "end": 13556.8, + "probability": 0.938 + }, + { + "start": 13556.92, + "end": 13558.3, + "probability": 0.9907 + }, + { + "start": 13559.04, + "end": 13559.53, + "probability": 0.9241 + }, + { + "start": 13560.28, + "end": 13561.04, + "probability": 0.7676 + }, + { + "start": 13562.26, + "end": 13563.64, + "probability": 0.9079 + }, + { + "start": 13563.88, + "end": 13564.4, + "probability": 0.7981 + }, + { + "start": 13564.5, + "end": 13566.7, + "probability": 0.9504 + }, + { + "start": 13568.32, + "end": 13570.44, + "probability": 0.8929 + }, + { + "start": 13570.58, + "end": 13572.04, + "probability": 0.9722 + }, + { + "start": 13573.1, + "end": 13577.4, + "probability": 0.8608 + }, + { + "start": 13577.4, + "end": 13581.24, + "probability": 0.9948 + }, + { + "start": 13581.9, + "end": 13583.1, + "probability": 0.8603 + }, + { + "start": 13584.32, + "end": 13587.58, + "probability": 0.9845 + }, + { + "start": 13587.72, + "end": 13588.24, + "probability": 0.9912 + }, + { + "start": 13588.44, + "end": 13589.37, + "probability": 0.9698 + }, + { + "start": 13589.64, + "end": 13591.06, + "probability": 0.9906 + }, + { + "start": 13591.18, + "end": 13592.09, + "probability": 0.9912 + }, + { + "start": 13593.68, + "end": 13595.88, + "probability": 0.5349 + }, + { + "start": 13595.98, + "end": 13596.9, + "probability": 0.215 + }, + { + "start": 13597.8, + "end": 13601.98, + "probability": 0.9918 + }, + { + "start": 13602.2, + "end": 13604.48, + "probability": 0.9625 + }, + { + "start": 13604.56, + "end": 13606.3, + "probability": 0.9976 + }, + { + "start": 13606.96, + "end": 13607.5, + "probability": 0.335 + }, + { + "start": 13607.5, + "end": 13609.18, + "probability": 0.4751 + }, + { + "start": 13609.4, + "end": 13611.82, + "probability": 0.7383 + }, + { + "start": 13612.2, + "end": 13612.22, + "probability": 0.009 + }, + { + "start": 13612.22, + "end": 13616.44, + "probability": 0.9205 + }, + { + "start": 13617.22, + "end": 13617.82, + "probability": 0.4244 + }, + { + "start": 13618.06, + "end": 13618.82, + "probability": 0.1051 + }, + { + "start": 13619.9, + "end": 13621.88, + "probability": 0.7127 + }, + { + "start": 13621.88, + "end": 13622.78, + "probability": 0.518 + }, + { + "start": 13622.86, + "end": 13625.1, + "probability": 0.6847 + }, + { + "start": 13625.18, + "end": 13627.98, + "probability": 0.9028 + }, + { + "start": 13628.32, + "end": 13634.14, + "probability": 0.9756 + }, + { + "start": 13635.7, + "end": 13638.76, + "probability": 0.9899 + }, + { + "start": 13638.86, + "end": 13640.7, + "probability": 0.7515 + }, + { + "start": 13640.98, + "end": 13641.44, + "probability": 0.953 + }, + { + "start": 13641.92, + "end": 13645.72, + "probability": 0.8664 + }, + { + "start": 13645.8, + "end": 13647.6, + "probability": 0.9429 + }, + { + "start": 13648.3, + "end": 13649.9, + "probability": 0.8896 + }, + { + "start": 13650.54, + "end": 13651.42, + "probability": 0.9227 + }, + { + "start": 13657.66, + "end": 13659.58, + "probability": 0.4181 + }, + { + "start": 13667.84, + "end": 13669.29, + "probability": 0.6662 + }, + { + "start": 13670.22, + "end": 13673.86, + "probability": 0.9716 + }, + { + "start": 13675.5, + "end": 13678.6, + "probability": 0.9623 + }, + { + "start": 13679.28, + "end": 13682.44, + "probability": 0.9728 + }, + { + "start": 13684.72, + "end": 13685.1, + "probability": 0.5582 + }, + { + "start": 13685.62, + "end": 13688.54, + "probability": 0.8508 + }, + { + "start": 13689.76, + "end": 13692.82, + "probability": 0.9938 + }, + { + "start": 13693.58, + "end": 13694.26, + "probability": 0.0626 + }, + { + "start": 13694.26, + "end": 13698.52, + "probability": 0.4264 + }, + { + "start": 13698.52, + "end": 13699.88, + "probability": 0.685 + }, + { + "start": 13700.14, + "end": 13704.33, + "probability": 0.9219 + }, + { + "start": 13704.76, + "end": 13705.66, + "probability": 0.9873 + }, + { + "start": 13706.48, + "end": 13710.42, + "probability": 0.7408 + }, + { + "start": 13710.6, + "end": 13713.44, + "probability": 0.8462 + }, + { + "start": 13714.74, + "end": 13716.46, + "probability": 0.9883 + }, + { + "start": 13717.36, + "end": 13720.46, + "probability": 0.9465 + }, + { + "start": 13722.0, + "end": 13730.04, + "probability": 0.9727 + }, + { + "start": 13731.08, + "end": 13732.2, + "probability": 0.9643 + }, + { + "start": 13732.3, + "end": 13734.6, + "probability": 0.9552 + }, + { + "start": 13734.86, + "end": 13736.28, + "probability": 0.8171 + }, + { + "start": 13737.36, + "end": 13744.91, + "probability": 0.9442 + }, + { + "start": 13746.36, + "end": 13750.74, + "probability": 0.8717 + }, + { + "start": 13751.86, + "end": 13755.44, + "probability": 0.5343 + }, + { + "start": 13755.68, + "end": 13758.5, + "probability": 0.9752 + }, + { + "start": 13759.32, + "end": 13767.16, + "probability": 0.8955 + }, + { + "start": 13767.9, + "end": 13774.52, + "probability": 0.743 + }, + { + "start": 13775.94, + "end": 13776.74, + "probability": 0.8492 + }, + { + "start": 13778.52, + "end": 13779.4, + "probability": 0.3679 + }, + { + "start": 13781.6, + "end": 13782.92, + "probability": 0.8689 + }, + { + "start": 13784.7, + "end": 13785.82, + "probability": 0.834 + }, + { + "start": 13786.62, + "end": 13790.6, + "probability": 0.9777 + }, + { + "start": 13792.2, + "end": 13795.74, + "probability": 0.846 + }, + { + "start": 13796.3, + "end": 13799.78, + "probability": 0.9721 + }, + { + "start": 13800.7, + "end": 13810.37, + "probability": 0.8876 + }, + { + "start": 13811.68, + "end": 13812.54, + "probability": 0.7664 + }, + { + "start": 13813.8, + "end": 13816.16, + "probability": 0.9658 + }, + { + "start": 13816.76, + "end": 13821.48, + "probability": 0.9963 + }, + { + "start": 13822.08, + "end": 13823.88, + "probability": 0.7672 + }, + { + "start": 13824.24, + "end": 13825.12, + "probability": 0.6423 + }, + { + "start": 13826.62, + "end": 13830.86, + "probability": 0.9893 + }, + { + "start": 13831.76, + "end": 13834.7, + "probability": 0.9064 + }, + { + "start": 13836.22, + "end": 13840.04, + "probability": 0.9676 + }, + { + "start": 13840.98, + "end": 13843.88, + "probability": 0.8192 + }, + { + "start": 13844.32, + "end": 13845.46, + "probability": 0.8495 + }, + { + "start": 13846.26, + "end": 13848.8, + "probability": 0.994 + }, + { + "start": 13849.5, + "end": 13852.96, + "probability": 0.9902 + }, + { + "start": 13853.56, + "end": 13857.56, + "probability": 0.7392 + }, + { + "start": 13857.72, + "end": 13861.82, + "probability": 0.9061 + }, + { + "start": 13862.08, + "end": 13863.2, + "probability": 0.9673 + }, + { + "start": 13863.38, + "end": 13871.4, + "probability": 0.9484 + }, + { + "start": 13871.4, + "end": 13878.54, + "probability": 0.986 + }, + { + "start": 13879.1, + "end": 13883.66, + "probability": 0.9342 + }, + { + "start": 13884.3, + "end": 13886.34, + "probability": 0.8846 + }, + { + "start": 13886.48, + "end": 13886.84, + "probability": 0.7964 + }, + { + "start": 13887.0, + "end": 13889.5, + "probability": 0.9085 + }, + { + "start": 13889.64, + "end": 13892.14, + "probability": 0.8547 + }, + { + "start": 13892.18, + "end": 13892.76, + "probability": 0.7285 + }, + { + "start": 13892.82, + "end": 13894.2, + "probability": 0.8462 + }, + { + "start": 13904.82, + "end": 13906.08, + "probability": 0.9031 + }, + { + "start": 13910.02, + "end": 13911.08, + "probability": 0.7231 + }, + { + "start": 13911.82, + "end": 13914.02, + "probability": 0.7591 + }, + { + "start": 13915.62, + "end": 13920.04, + "probability": 0.8399 + }, + { + "start": 13921.45, + "end": 13924.28, + "probability": 0.7664 + }, + { + "start": 13924.4, + "end": 13926.28, + "probability": 0.9201 + }, + { + "start": 13927.28, + "end": 13932.44, + "probability": 0.9144 + }, + { + "start": 13932.6, + "end": 13933.02, + "probability": 0.3011 + }, + { + "start": 13933.88, + "end": 13934.5, + "probability": 0.6866 + }, + { + "start": 13935.06, + "end": 13935.6, + "probability": 0.8427 + }, + { + "start": 13936.5, + "end": 13938.48, + "probability": 0.9763 + }, + { + "start": 13938.58, + "end": 13938.84, + "probability": 0.2162 + }, + { + "start": 13938.9, + "end": 13939.52, + "probability": 0.6561 + }, + { + "start": 13939.74, + "end": 13944.26, + "probability": 0.9444 + }, + { + "start": 13944.5, + "end": 13946.52, + "probability": 0.7822 + }, + { + "start": 13947.2, + "end": 13950.66, + "probability": 0.6846 + }, + { + "start": 13950.74, + "end": 13952.68, + "probability": 0.7038 + }, + { + "start": 13953.18, + "end": 13956.68, + "probability": 0.5743 + }, + { + "start": 13957.6, + "end": 13961.48, + "probability": 0.9843 + }, + { + "start": 13961.54, + "end": 13962.14, + "probability": 0.8915 + }, + { + "start": 13962.96, + "end": 13963.86, + "probability": 0.7712 + }, + { + "start": 13963.96, + "end": 13964.74, + "probability": 0.9319 + }, + { + "start": 13964.78, + "end": 13967.06, + "probability": 0.9937 + }, + { + "start": 13968.5, + "end": 13970.38, + "probability": 0.9762 + }, + { + "start": 13970.5, + "end": 13974.42, + "probability": 0.9736 + }, + { + "start": 13974.56, + "end": 13974.96, + "probability": 0.9451 + }, + { + "start": 13975.58, + "end": 13976.4, + "probability": 0.9078 + }, + { + "start": 13976.92, + "end": 13980.64, + "probability": 0.9141 + }, + { + "start": 13981.14, + "end": 13983.84, + "probability": 0.9848 + }, + { + "start": 13984.44, + "end": 13985.42, + "probability": 0.3334 + }, + { + "start": 13987.76, + "end": 13988.08, + "probability": 0.0184 + }, + { + "start": 13988.08, + "end": 13989.0, + "probability": 0.931 + }, + { + "start": 13989.26, + "end": 13996.5, + "probability": 0.9241 + }, + { + "start": 13996.66, + "end": 13997.8, + "probability": 0.9805 + }, + { + "start": 13998.56, + "end": 14000.56, + "probability": 0.9106 + }, + { + "start": 14001.32, + "end": 14004.92, + "probability": 0.8813 + }, + { + "start": 14005.22, + "end": 14007.54, + "probability": 0.89 + }, + { + "start": 14007.68, + "end": 14007.96, + "probability": 0.7779 + }, + { + "start": 14008.5, + "end": 14009.98, + "probability": 0.729 + }, + { + "start": 14010.6, + "end": 14014.48, + "probability": 0.9356 + }, + { + "start": 14014.98, + "end": 14018.21, + "probability": 0.9924 + }, + { + "start": 14019.04, + "end": 14021.7, + "probability": 0.9035 + }, + { + "start": 14022.9, + "end": 14024.68, + "probability": 0.6698 + }, + { + "start": 14025.28, + "end": 14027.92, + "probability": 0.5706 + }, + { + "start": 14028.0, + "end": 14031.66, + "probability": 0.907 + }, + { + "start": 14032.12, + "end": 14035.44, + "probability": 0.635 + }, + { + "start": 14035.7, + "end": 14036.5, + "probability": 0.9252 + }, + { + "start": 14037.14, + "end": 14040.14, + "probability": 0.9939 + }, + { + "start": 14041.38, + "end": 14041.78, + "probability": 0.8546 + }, + { + "start": 14041.84, + "end": 14043.84, + "probability": 0.9771 + }, + { + "start": 14044.1, + "end": 14045.06, + "probability": 0.3854 + }, + { + "start": 14045.2, + "end": 14046.3, + "probability": 0.613 + }, + { + "start": 14046.52, + "end": 14047.5, + "probability": 0.9037 + }, + { + "start": 14048.14, + "end": 14051.12, + "probability": 0.9679 + }, + { + "start": 14051.84, + "end": 14054.44, + "probability": 0.9756 + }, + { + "start": 14055.36, + "end": 14057.36, + "probability": 0.9976 + }, + { + "start": 14057.46, + "end": 14058.3, + "probability": 0.9814 + }, + { + "start": 14058.68, + "end": 14059.26, + "probability": 0.7119 + }, + { + "start": 14059.82, + "end": 14061.1, + "probability": 0.8477 + }, + { + "start": 14061.74, + "end": 14062.69, + "probability": 0.9611 + }, + { + "start": 14063.32, + "end": 14064.92, + "probability": 0.9578 + }, + { + "start": 14065.74, + "end": 14068.06, + "probability": 0.9066 + }, + { + "start": 14068.82, + "end": 14070.98, + "probability": 0.8172 + }, + { + "start": 14071.4, + "end": 14073.14, + "probability": 0.9948 + }, + { + "start": 14073.58, + "end": 14076.32, + "probability": 0.809 + }, + { + "start": 14076.32, + "end": 14079.8, + "probability": 0.9768 + }, + { + "start": 14080.3, + "end": 14081.82, + "probability": 0.9964 + }, + { + "start": 14081.92, + "end": 14082.3, + "probability": 0.4974 + }, + { + "start": 14082.54, + "end": 14084.59, + "probability": 0.9638 + }, + { + "start": 14085.44, + "end": 14088.66, + "probability": 0.7082 + }, + { + "start": 14089.54, + "end": 14091.7, + "probability": 0.9448 + }, + { + "start": 14091.82, + "end": 14095.94, + "probability": 0.886 + }, + { + "start": 14096.87, + "end": 14103.66, + "probability": 0.7437 + }, + { + "start": 14104.08, + "end": 14104.8, + "probability": 0.6144 + }, + { + "start": 14104.86, + "end": 14105.98, + "probability": 0.7383 + }, + { + "start": 14106.66, + "end": 14106.92, + "probability": 0.2879 + }, + { + "start": 14106.92, + "end": 14108.88, + "probability": 0.969 + }, + { + "start": 14109.14, + "end": 14113.4, + "probability": 0.8584 + }, + { + "start": 14114.52, + "end": 14115.46, + "probability": 0.8759 + }, + { + "start": 14126.8, + "end": 14129.14, + "probability": 0.8884 + }, + { + "start": 14135.68, + "end": 14136.84, + "probability": 0.7246 + }, + { + "start": 14137.5, + "end": 14138.46, + "probability": 0.9016 + }, + { + "start": 14140.16, + "end": 14141.44, + "probability": 0.7863 + }, + { + "start": 14143.96, + "end": 14146.84, + "probability": 0.7259 + }, + { + "start": 14147.4, + "end": 14151.78, + "probability": 0.9926 + }, + { + "start": 14153.1, + "end": 14153.72, + "probability": 0.6143 + }, + { + "start": 14154.24, + "end": 14156.48, + "probability": 0.9297 + }, + { + "start": 14157.84, + "end": 14159.6, + "probability": 0.9744 + }, + { + "start": 14159.9, + "end": 14162.26, + "probability": 0.6961 + }, + { + "start": 14163.52, + "end": 14166.01, + "probability": 0.9244 + }, + { + "start": 14166.56, + "end": 14167.72, + "probability": 0.7135 + }, + { + "start": 14167.88, + "end": 14168.64, + "probability": 0.4881 + }, + { + "start": 14168.84, + "end": 14168.86, + "probability": 0.9014 + }, + { + "start": 14170.26, + "end": 14171.82, + "probability": 0.9832 + }, + { + "start": 14173.14, + "end": 14176.52, + "probability": 0.8769 + }, + { + "start": 14176.52, + "end": 14181.12, + "probability": 0.791 + }, + { + "start": 14181.48, + "end": 14182.72, + "probability": 0.7474 + }, + { + "start": 14185.24, + "end": 14186.28, + "probability": 0.4797 + }, + { + "start": 14187.84, + "end": 14189.78, + "probability": 0.7616 + }, + { + "start": 14189.88, + "end": 14190.92, + "probability": 0.4566 + }, + { + "start": 14190.98, + "end": 14191.48, + "probability": 0.6033 + }, + { + "start": 14191.76, + "end": 14192.69, + "probability": 0.5801 + }, + { + "start": 14192.9, + "end": 14194.98, + "probability": 0.3992 + }, + { + "start": 14195.02, + "end": 14196.7, + "probability": 0.7975 + }, + { + "start": 14196.72, + "end": 14199.32, + "probability": 0.5156 + }, + { + "start": 14201.08, + "end": 14204.16, + "probability": 0.619 + }, + { + "start": 14205.88, + "end": 14207.68, + "probability": 0.9232 + }, + { + "start": 14207.9, + "end": 14211.4, + "probability": 0.8975 + }, + { + "start": 14211.66, + "end": 14211.84, + "probability": 0.5505 + }, + { + "start": 14212.02, + "end": 14212.8, + "probability": 0.4574 + }, + { + "start": 14212.8, + "end": 14217.24, + "probability": 0.8613 + }, + { + "start": 14217.46, + "end": 14220.88, + "probability": 0.6586 + }, + { + "start": 14221.06, + "end": 14223.42, + "probability": 0.4992 + }, + { + "start": 14223.5, + "end": 14224.46, + "probability": 0.2775 + }, + { + "start": 14224.58, + "end": 14227.16, + "probability": 0.6039 + }, + { + "start": 14227.24, + "end": 14228.96, + "probability": 0.7194 + }, + { + "start": 14229.0, + "end": 14229.43, + "probability": 0.7595 + }, + { + "start": 14229.8, + "end": 14230.1, + "probability": 0.2915 + }, + { + "start": 14230.2, + "end": 14230.68, + "probability": 0.8205 + }, + { + "start": 14231.0, + "end": 14231.6, + "probability": 0.5984 + }, + { + "start": 14231.7, + "end": 14236.6, + "probability": 0.9797 + }, + { + "start": 14236.66, + "end": 14237.56, + "probability": 0.9998 + }, + { + "start": 14238.58, + "end": 14243.22, + "probability": 0.8917 + }, + { + "start": 14244.62, + "end": 14246.08, + "probability": 0.7702 + }, + { + "start": 14247.22, + "end": 14248.92, + "probability": 0.9806 + }, + { + "start": 14249.48, + "end": 14251.12, + "probability": 0.9881 + }, + { + "start": 14251.22, + "end": 14253.18, + "probability": 0.9023 + }, + { + "start": 14253.36, + "end": 14254.06, + "probability": 0.9963 + }, + { + "start": 14254.88, + "end": 14255.48, + "probability": 0.9793 + }, + { + "start": 14256.8, + "end": 14258.44, + "probability": 0.9945 + }, + { + "start": 14259.5, + "end": 14263.52, + "probability": 0.674 + }, + { + "start": 14263.56, + "end": 14265.36, + "probability": 0.9857 + }, + { + "start": 14265.7, + "end": 14268.34, + "probability": 0.9824 + }, + { + "start": 14268.48, + "end": 14269.29, + "probability": 0.761 + }, + { + "start": 14270.74, + "end": 14272.78, + "probability": 0.998 + }, + { + "start": 14273.68, + "end": 14278.2, + "probability": 0.9212 + }, + { + "start": 14278.34, + "end": 14278.74, + "probability": 0.7523 + }, + { + "start": 14279.46, + "end": 14280.3, + "probability": 0.9554 + }, + { + "start": 14281.02, + "end": 14282.26, + "probability": 0.984 + }, + { + "start": 14283.72, + "end": 14286.92, + "probability": 0.9677 + }, + { + "start": 14286.96, + "end": 14288.2, + "probability": 0.7355 + }, + { + "start": 14288.98, + "end": 14291.98, + "probability": 0.9922 + }, + { + "start": 14292.58, + "end": 14296.98, + "probability": 0.7785 + }, + { + "start": 14297.42, + "end": 14300.64, + "probability": 0.9966 + }, + { + "start": 14301.46, + "end": 14302.64, + "probability": 0.9448 + }, + { + "start": 14302.7, + "end": 14305.88, + "probability": 0.8378 + }, + { + "start": 14305.88, + "end": 14308.54, + "probability": 0.9805 + }, + { + "start": 14309.7, + "end": 14310.0, + "probability": 0.8956 + }, + { + "start": 14310.16, + "end": 14315.18, + "probability": 0.9922 + }, + { + "start": 14315.72, + "end": 14317.24, + "probability": 0.7212 + }, + { + "start": 14318.16, + "end": 14321.0, + "probability": 0.8572 + }, + { + "start": 14321.16, + "end": 14324.34, + "probability": 0.9636 + }, + { + "start": 14324.5, + "end": 14325.88, + "probability": 0.6355 + }, + { + "start": 14326.04, + "end": 14327.22, + "probability": 0.9656 + }, + { + "start": 14328.6, + "end": 14330.98, + "probability": 0.9932 + }, + { + "start": 14330.99, + "end": 14333.56, + "probability": 0.9703 + }, + { + "start": 14334.0, + "end": 14335.68, + "probability": 0.9552 + }, + { + "start": 14335.7, + "end": 14338.62, + "probability": 0.8809 + }, + { + "start": 14340.0, + "end": 14342.08, + "probability": 0.9279 + }, + { + "start": 14342.26, + "end": 14342.72, + "probability": 0.8007 + }, + { + "start": 14342.8, + "end": 14343.58, + "probability": 0.8175 + }, + { + "start": 14343.66, + "end": 14344.2, + "probability": 0.973 + }, + { + "start": 14344.82, + "end": 14346.46, + "probability": 0.6628 + }, + { + "start": 14348.32, + "end": 14352.32, + "probability": 0.9849 + }, + { + "start": 14352.58, + "end": 14357.3, + "probability": 0.9914 + }, + { + "start": 14358.52, + "end": 14360.98, + "probability": 0.9289 + }, + { + "start": 14361.14, + "end": 14361.36, + "probability": 0.6265 + }, + { + "start": 14361.36, + "end": 14365.02, + "probability": 0.9849 + }, + { + "start": 14366.5, + "end": 14368.88, + "probability": 0.9829 + }, + { + "start": 14370.3, + "end": 14372.98, + "probability": 0.9685 + }, + { + "start": 14373.24, + "end": 14376.52, + "probability": 0.9972 + }, + { + "start": 14376.52, + "end": 14379.13, + "probability": 0.9979 + }, + { + "start": 14380.12, + "end": 14385.86, + "probability": 0.9957 + }, + { + "start": 14386.02, + "end": 14386.4, + "probability": 0.7132 + }, + { + "start": 14386.92, + "end": 14390.96, + "probability": 0.8037 + }, + { + "start": 14392.96, + "end": 14393.18, + "probability": 0.008 + }, + { + "start": 14393.18, + "end": 14394.38, + "probability": 0.5127 + }, + { + "start": 14394.5, + "end": 14397.62, + "probability": 0.6322 + }, + { + "start": 14398.68, + "end": 14401.18, + "probability": 0.9777 + }, + { + "start": 14401.66, + "end": 14402.9, + "probability": 0.8921 + }, + { + "start": 14403.42, + "end": 14404.24, + "probability": 0.7929 + }, + { + "start": 14406.24, + "end": 14408.8, + "probability": 0.9885 + }, + { + "start": 14408.92, + "end": 14414.6, + "probability": 0.9957 + }, + { + "start": 14414.76, + "end": 14416.12, + "probability": 0.9106 + }, + { + "start": 14416.78, + "end": 14418.24, + "probability": 0.8227 + }, + { + "start": 14419.32, + "end": 14420.52, + "probability": 0.7007 + }, + { + "start": 14420.54, + "end": 14425.58, + "probability": 0.9712 + }, + { + "start": 14425.62, + "end": 14426.9, + "probability": 0.6478 + }, + { + "start": 14427.44, + "end": 14428.16, + "probability": 0.9261 + }, + { + "start": 14429.02, + "end": 14429.36, + "probability": 0.5553 + }, + { + "start": 14429.44, + "end": 14430.52, + "probability": 0.7398 + }, + { + "start": 14430.6, + "end": 14431.28, + "probability": 0.2467 + }, + { + "start": 14431.28, + "end": 14432.2, + "probability": 0.63 + }, + { + "start": 14432.3, + "end": 14433.34, + "probability": 0.8634 + }, + { + "start": 14433.54, + "end": 14433.98, + "probability": 0.7104 + }, + { + "start": 14435.73, + "end": 14437.56, + "probability": 0.811 + }, + { + "start": 14437.64, + "end": 14438.26, + "probability": 0.9372 + }, + { + "start": 14438.34, + "end": 14438.64, + "probability": 0.8008 + }, + { + "start": 14438.88, + "end": 14439.04, + "probability": 0.8687 + }, + { + "start": 14440.14, + "end": 14442.28, + "probability": 0.9499 + }, + { + "start": 14442.32, + "end": 14446.56, + "probability": 0.825 + }, + { + "start": 14447.14, + "end": 14449.88, + "probability": 0.6738 + }, + { + "start": 14456.54, + "end": 14458.3, + "probability": 0.7236 + }, + { + "start": 14459.66, + "end": 14460.36, + "probability": 0.7631 + }, + { + "start": 14460.9, + "end": 14464.0, + "probability": 0.8586 + }, + { + "start": 14464.04, + "end": 14466.24, + "probability": 0.9902 + }, + { + "start": 14467.1, + "end": 14468.4, + "probability": 0.4991 + }, + { + "start": 14468.72, + "end": 14468.72, + "probability": 0.319 + }, + { + "start": 14468.72, + "end": 14469.94, + "probability": 0.4756 + }, + { + "start": 14470.02, + "end": 14470.64, + "probability": 0.7688 + }, + { + "start": 14472.18, + "end": 14475.42, + "probability": 0.8912 + }, + { + "start": 14475.58, + "end": 14478.68, + "probability": 0.9545 + }, + { + "start": 14479.66, + "end": 14483.66, + "probability": 0.8091 + }, + { + "start": 14484.7, + "end": 14487.62, + "probability": 0.9985 + }, + { + "start": 14487.92, + "end": 14489.94, + "probability": 0.9722 + }, + { + "start": 14490.1, + "end": 14494.04, + "probability": 0.9963 + }, + { + "start": 14494.9, + "end": 14496.78, + "probability": 0.8701 + }, + { + "start": 14497.52, + "end": 14502.84, + "probability": 0.9017 + }, + { + "start": 14503.06, + "end": 14504.84, + "probability": 0.9844 + }, + { + "start": 14505.7, + "end": 14508.96, + "probability": 0.8569 + }, + { + "start": 14510.24, + "end": 14510.56, + "probability": 0.5029 + }, + { + "start": 14510.68, + "end": 14513.34, + "probability": 0.9813 + }, + { + "start": 14513.84, + "end": 14515.32, + "probability": 0.8149 + }, + { + "start": 14515.44, + "end": 14521.66, + "probability": 0.9457 + }, + { + "start": 14522.56, + "end": 14528.64, + "probability": 0.7962 + }, + { + "start": 14529.64, + "end": 14533.8, + "probability": 0.9911 + }, + { + "start": 14533.8, + "end": 14540.0, + "probability": 0.9789 + }, + { + "start": 14540.2, + "end": 14543.0, + "probability": 0.9846 + }, + { + "start": 14543.52, + "end": 14545.68, + "probability": 0.999 + }, + { + "start": 14546.54, + "end": 14552.86, + "probability": 0.9924 + }, + { + "start": 14553.78, + "end": 14556.82, + "probability": 0.9712 + }, + { + "start": 14557.42, + "end": 14559.12, + "probability": 0.8678 + }, + { + "start": 14559.78, + "end": 14566.14, + "probability": 0.9822 + }, + { + "start": 14566.78, + "end": 14567.58, + "probability": 0.9412 + }, + { + "start": 14567.92, + "end": 14568.86, + "probability": 0.6283 + }, + { + "start": 14568.92, + "end": 14571.24, + "probability": 0.9897 + }, + { + "start": 14571.4, + "end": 14571.74, + "probability": 0.6978 + }, + { + "start": 14572.0, + "end": 14572.7, + "probability": 0.9739 + }, + { + "start": 14573.34, + "end": 14574.52, + "probability": 0.9536 + }, + { + "start": 14574.66, + "end": 14576.44, + "probability": 0.9857 + }, + { + "start": 14576.9, + "end": 14579.16, + "probability": 0.8716 + }, + { + "start": 14579.46, + "end": 14580.42, + "probability": 0.8153 + }, + { + "start": 14581.32, + "end": 14586.42, + "probability": 0.9602 + }, + { + "start": 14587.14, + "end": 14590.16, + "probability": 0.9963 + }, + { + "start": 14590.16, + "end": 14593.94, + "probability": 0.9922 + }, + { + "start": 14595.18, + "end": 14598.3, + "probability": 0.9904 + }, + { + "start": 14598.96, + "end": 14600.52, + "probability": 0.9791 + }, + { + "start": 14600.64, + "end": 14606.0, + "probability": 0.9719 + }, + { + "start": 14606.18, + "end": 14607.54, + "probability": 0.9714 + }, + { + "start": 14607.86, + "end": 14609.98, + "probability": 0.9109 + }, + { + "start": 14611.12, + "end": 14611.38, + "probability": 0.4555 + }, + { + "start": 14611.6, + "end": 14611.98, + "probability": 0.8419 + }, + { + "start": 14612.08, + "end": 14614.6, + "probability": 0.9626 + }, + { + "start": 14615.52, + "end": 14618.22, + "probability": 0.8074 + }, + { + "start": 14618.32, + "end": 14620.7, + "probability": 0.6664 + }, + { + "start": 14621.0, + "end": 14623.14, + "probability": 0.9646 + }, + { + "start": 14623.8, + "end": 14624.52, + "probability": 0.7857 + }, + { + "start": 14624.88, + "end": 14626.02, + "probability": 0.9838 + }, + { + "start": 14626.66, + "end": 14633.04, + "probability": 0.9941 + }, + { + "start": 14633.04, + "end": 14639.2, + "probability": 0.9307 + }, + { + "start": 14639.26, + "end": 14641.88, + "probability": 0.9978 + }, + { + "start": 14642.76, + "end": 14649.58, + "probability": 0.8857 + }, + { + "start": 14650.56, + "end": 14653.58, + "probability": 0.957 + }, + { + "start": 14654.46, + "end": 14656.36, + "probability": 0.98 + }, + { + "start": 14656.82, + "end": 14662.5, + "probability": 0.9702 + }, + { + "start": 14663.14, + "end": 14664.76, + "probability": 0.6043 + }, + { + "start": 14665.88, + "end": 14669.04, + "probability": 0.9962 + }, + { + "start": 14670.3, + "end": 14671.44, + "probability": 0.9941 + }, + { + "start": 14671.98, + "end": 14673.02, + "probability": 0.7134 + }, + { + "start": 14673.42, + "end": 14675.74, + "probability": 0.9924 + }, + { + "start": 14676.02, + "end": 14677.12, + "probability": 0.8105 + }, + { + "start": 14678.76, + "end": 14680.56, + "probability": 0.8212 + }, + { + "start": 14681.54, + "end": 14685.48, + "probability": 0.9863 + }, + { + "start": 14688.5, + "end": 14694.38, + "probability": 0.9951 + }, + { + "start": 14695.14, + "end": 14697.74, + "probability": 0.8807 + }, + { + "start": 14698.12, + "end": 14699.22, + "probability": 0.8877 + }, + { + "start": 14699.84, + "end": 14703.76, + "probability": 0.9985 + }, + { + "start": 14704.64, + "end": 14705.84, + "probability": 0.8162 + }, + { + "start": 14706.5, + "end": 14707.24, + "probability": 0.8816 + }, + { + "start": 14707.64, + "end": 14712.1, + "probability": 0.9935 + }, + { + "start": 14712.26, + "end": 14715.82, + "probability": 0.9499 + }, + { + "start": 14716.34, + "end": 14719.28, + "probability": 0.7013 + }, + { + "start": 14719.66, + "end": 14722.46, + "probability": 0.9757 + }, + { + "start": 14723.8, + "end": 14724.94, + "probability": 0.7935 + }, + { + "start": 14725.32, + "end": 14726.18, + "probability": 0.7354 + }, + { + "start": 14726.56, + "end": 14729.38, + "probability": 0.96 + }, + { + "start": 14729.86, + "end": 14730.42, + "probability": 0.2957 + }, + { + "start": 14730.44, + "end": 14732.52, + "probability": 0.4937 + }, + { + "start": 14733.56, + "end": 14735.64, + "probability": 0.9321 + }, + { + "start": 14735.9, + "end": 14738.76, + "probability": 0.8778 + }, + { + "start": 14738.94, + "end": 14743.18, + "probability": 0.6884 + }, + { + "start": 14763.72, + "end": 14765.72, + "probability": 0.7179 + }, + { + "start": 14766.92, + "end": 14770.82, + "probability": 0.9235 + }, + { + "start": 14771.66, + "end": 14775.2, + "probability": 0.9938 + }, + { + "start": 14775.2, + "end": 14776.98, + "probability": 0.9854 + }, + { + "start": 14778.78, + "end": 14779.56, + "probability": 0.5639 + }, + { + "start": 14779.72, + "end": 14784.42, + "probability": 0.9725 + }, + { + "start": 14784.58, + "end": 14786.52, + "probability": 0.9237 + }, + { + "start": 14786.6, + "end": 14788.9, + "probability": 0.9822 + }, + { + "start": 14790.34, + "end": 14795.24, + "probability": 0.9083 + }, + { + "start": 14795.38, + "end": 14795.54, + "probability": 0.6771 + }, + { + "start": 14796.42, + "end": 14798.2, + "probability": 0.9844 + }, + { + "start": 14799.32, + "end": 14799.72, + "probability": 0.5546 + }, + { + "start": 14799.72, + "end": 14803.1, + "probability": 0.9968 + }, + { + "start": 14803.1, + "end": 14807.74, + "probability": 0.9583 + }, + { + "start": 14808.22, + "end": 14809.18, + "probability": 0.8127 + }, + { + "start": 14809.79, + "end": 14811.36, + "probability": 0.9976 + }, + { + "start": 14812.36, + "end": 14814.56, + "probability": 0.524 + }, + { + "start": 14814.88, + "end": 14815.7, + "probability": 0.825 + }, + { + "start": 14816.42, + "end": 14816.96, + "probability": 0.9166 + }, + { + "start": 14817.12, + "end": 14818.2, + "probability": 0.9395 + }, + { + "start": 14818.38, + "end": 14821.32, + "probability": 0.9268 + }, + { + "start": 14821.4, + "end": 14822.06, + "probability": 0.9634 + }, + { + "start": 14822.84, + "end": 14823.32, + "probability": 0.9495 + }, + { + "start": 14824.36, + "end": 14827.64, + "probability": 0.9798 + }, + { + "start": 14828.16, + "end": 14830.0, + "probability": 0.8619 + }, + { + "start": 14830.56, + "end": 14832.26, + "probability": 0.9772 + }, + { + "start": 14833.12, + "end": 14834.3, + "probability": 0.9882 + }, + { + "start": 14834.94, + "end": 14836.28, + "probability": 0.9634 + }, + { + "start": 14840.78, + "end": 14844.64, + "probability": 0.9971 + }, + { + "start": 14845.18, + "end": 14848.7, + "probability": 0.9979 + }, + { + "start": 14850.5, + "end": 14855.08, + "probability": 0.9945 + }, + { + "start": 14855.82, + "end": 14858.84, + "probability": 0.7909 + }, + { + "start": 14859.46, + "end": 14861.12, + "probability": 0.9185 + }, + { + "start": 14861.82, + "end": 14864.06, + "probability": 0.7495 + }, + { + "start": 14865.72, + "end": 14867.1, + "probability": 0.7587 + }, + { + "start": 14867.62, + "end": 14869.38, + "probability": 0.6657 + }, + { + "start": 14869.68, + "end": 14871.26, + "probability": 0.838 + }, + { + "start": 14872.08, + "end": 14876.56, + "probability": 0.9859 + }, + { + "start": 14876.68, + "end": 14877.14, + "probability": 0.9126 + }, + { + "start": 14878.42, + "end": 14879.58, + "probability": 0.9697 + }, + { + "start": 14880.36, + "end": 14886.04, + "probability": 0.9485 + }, + { + "start": 14886.26, + "end": 14889.06, + "probability": 0.9634 + }, + { + "start": 14889.58, + "end": 14889.84, + "probability": 0.8698 + }, + { + "start": 14889.9, + "end": 14894.56, + "probability": 0.835 + }, + { + "start": 14897.8, + "end": 14899.72, + "probability": 0.9685 + }, + { + "start": 14899.92, + "end": 14900.46, + "probability": 0.7167 + }, + { + "start": 14901.46, + "end": 14906.02, + "probability": 0.978 + }, + { + "start": 14906.1, + "end": 14906.98, + "probability": 0.9167 + }, + { + "start": 14907.26, + "end": 14910.92, + "probability": 0.9593 + }, + { + "start": 14912.7, + "end": 14915.55, + "probability": 0.987 + }, + { + "start": 14917.58, + "end": 14919.02, + "probability": 0.9525 + }, + { + "start": 14921.14, + "end": 14925.98, + "probability": 0.9997 + }, + { + "start": 14928.22, + "end": 14930.12, + "probability": 0.9996 + }, + { + "start": 14931.08, + "end": 14934.02, + "probability": 0.9682 + }, + { + "start": 14936.56, + "end": 14941.68, + "probability": 0.996 + }, + { + "start": 14942.34, + "end": 14943.8, + "probability": 0.8844 + }, + { + "start": 14944.04, + "end": 14944.62, + "probability": 0.9854 + }, + { + "start": 14945.38, + "end": 14946.88, + "probability": 0.7607 + }, + { + "start": 14947.8, + "end": 14949.52, + "probability": 0.8937 + }, + { + "start": 14949.72, + "end": 14950.4, + "probability": 0.9478 + }, + { + "start": 14951.44, + "end": 14952.54, + "probability": 0.9635 + }, + { + "start": 14952.62, + "end": 14955.22, + "probability": 0.9734 + }, + { + "start": 14955.88, + "end": 14959.98, + "probability": 0.9427 + }, + { + "start": 14961.04, + "end": 14966.5, + "probability": 0.9309 + }, + { + "start": 14967.46, + "end": 14972.5, + "probability": 0.9355 + }, + { + "start": 14973.61, + "end": 14976.88, + "probability": 0.8998 + }, + { + "start": 14977.32, + "end": 14979.12, + "probability": 0.9893 + }, + { + "start": 14979.12, + "end": 14981.5, + "probability": 0.9976 + }, + { + "start": 14982.5, + "end": 14983.1, + "probability": 0.9342 + }, + { + "start": 14983.88, + "end": 14984.88, + "probability": 0.5902 + }, + { + "start": 14985.92, + "end": 14990.14, + "probability": 0.9863 + }, + { + "start": 14992.06, + "end": 14997.62, + "probability": 0.9968 + }, + { + "start": 14998.28, + "end": 15000.56, + "probability": 0.9987 + }, + { + "start": 15002.22, + "end": 15004.52, + "probability": 0.985 + }, + { + "start": 15005.42, + "end": 15007.58, + "probability": 0.9937 + }, + { + "start": 15007.7, + "end": 15008.7, + "probability": 0.8472 + }, + { + "start": 15009.18, + "end": 15009.48, + "probability": 0.8661 + }, + { + "start": 15010.46, + "end": 15013.9, + "probability": 0.9125 + }, + { + "start": 15014.6, + "end": 15015.8, + "probability": 0.7228 + }, + { + "start": 15015.92, + "end": 15017.14, + "probability": 0.8478 + }, + { + "start": 15017.24, + "end": 15018.28, + "probability": 0.7654 + }, + { + "start": 15019.92, + "end": 15023.58, + "probability": 0.9919 + }, + { + "start": 15024.2, + "end": 15027.08, + "probability": 0.9917 + }, + { + "start": 15027.3, + "end": 15029.94, + "probability": 0.6665 + }, + { + "start": 15030.14, + "end": 15031.7, + "probability": 0.9222 + }, + { + "start": 15032.2, + "end": 15034.62, + "probability": 0.9937 + }, + { + "start": 15035.0, + "end": 15036.54, + "probability": 0.372 + }, + { + "start": 15036.62, + "end": 15038.38, + "probability": 0.6637 + }, + { + "start": 15038.52, + "end": 15041.4, + "probability": 0.9971 + }, + { + "start": 15041.74, + "end": 15042.24, + "probability": 0.3657 + }, + { + "start": 15043.54, + "end": 15046.16, + "probability": 0.9979 + }, + { + "start": 15047.72, + "end": 15049.3, + "probability": 0.6362 + }, + { + "start": 15049.42, + "end": 15051.96, + "probability": 0.9985 + }, + { + "start": 15052.72, + "end": 15053.42, + "probability": 0.9961 + }, + { + "start": 15054.0, + "end": 15055.58, + "probability": 0.936 + }, + { + "start": 15056.54, + "end": 15057.62, + "probability": 0.7924 + }, + { + "start": 15058.8, + "end": 15061.01, + "probability": 0.9961 + }, + { + "start": 15062.46, + "end": 15063.18, + "probability": 0.8252 + }, + { + "start": 15063.71, + "end": 15066.34, + "probability": 0.6641 + }, + { + "start": 15066.4, + "end": 15068.24, + "probability": 0.9591 + }, + { + "start": 15069.0, + "end": 15070.66, + "probability": 0.995 + }, + { + "start": 15073.04, + "end": 15076.5, + "probability": 0.978 + }, + { + "start": 15078.66, + "end": 15080.76, + "probability": 0.9194 + }, + { + "start": 15082.84, + "end": 15083.43, + "probability": 0.9303 + }, + { + "start": 15084.76, + "end": 15086.7, + "probability": 0.9178 + }, + { + "start": 15087.04, + "end": 15091.28, + "probability": 0.9197 + }, + { + "start": 15094.56, + "end": 15097.76, + "probability": 0.9132 + }, + { + "start": 15099.24, + "end": 15100.92, + "probability": 0.996 + }, + { + "start": 15100.96, + "end": 15103.32, + "probability": 0.9383 + }, + { + "start": 15104.6, + "end": 15105.34, + "probability": 0.9359 + }, + { + "start": 15105.76, + "end": 15108.62, + "probability": 0.9971 + }, + { + "start": 15109.42, + "end": 15111.91, + "probability": 0.9574 + }, + { + "start": 15112.16, + "end": 15113.76, + "probability": 0.9451 + }, + { + "start": 15113.78, + "end": 15116.08, + "probability": 0.9882 + }, + { + "start": 15116.62, + "end": 15121.86, + "probability": 0.9824 + }, + { + "start": 15121.92, + "end": 15122.82, + "probability": 0.9075 + }, + { + "start": 15124.12, + "end": 15125.52, + "probability": 0.976 + }, + { + "start": 15126.46, + "end": 15127.12, + "probability": 0.7715 + }, + { + "start": 15130.12, + "end": 15131.24, + "probability": 0.5157 + }, + { + "start": 15133.12, + "end": 15137.91, + "probability": 0.979 + }, + { + "start": 15139.2, + "end": 15139.83, + "probability": 0.9379 + }, + { + "start": 15141.22, + "end": 15143.56, + "probability": 0.929 + }, + { + "start": 15143.68, + "end": 15145.92, + "probability": 0.8329 + }, + { + "start": 15146.5, + "end": 15147.46, + "probability": 0.6733 + }, + { + "start": 15150.02, + "end": 15150.76, + "probability": 0.2158 + }, + { + "start": 15151.46, + "end": 15153.14, + "probability": 0.6128 + }, + { + "start": 15156.42, + "end": 15159.62, + "probability": 0.9989 + }, + { + "start": 15160.66, + "end": 15162.48, + "probability": 0.9854 + }, + { + "start": 15163.06, + "end": 15163.22, + "probability": 0.8755 + }, + { + "start": 15164.72, + "end": 15169.3, + "probability": 0.9937 + }, + { + "start": 15169.58, + "end": 15173.38, + "probability": 0.9967 + }, + { + "start": 15173.48, + "end": 15178.36, + "probability": 0.9981 + }, + { + "start": 15178.74, + "end": 15181.48, + "probability": 0.9146 + }, + { + "start": 15182.26, + "end": 15183.52, + "probability": 0.7037 + }, + { + "start": 15183.72, + "end": 15185.46, + "probability": 0.9764 + }, + { + "start": 15185.9, + "end": 15187.22, + "probability": 0.7698 + }, + { + "start": 15187.64, + "end": 15188.59, + "probability": 0.7806 + }, + { + "start": 15188.78, + "end": 15190.33, + "probability": 0.854 + }, + { + "start": 15191.12, + "end": 15194.3, + "probability": 0.9751 + }, + { + "start": 15195.24, + "end": 15196.6, + "probability": 0.9798 + }, + { + "start": 15197.88, + "end": 15200.5, + "probability": 0.9906 + }, + { + "start": 15203.76, + "end": 15206.56, + "probability": 0.9014 + }, + { + "start": 15207.12, + "end": 15209.3, + "probability": 0.8572 + }, + { + "start": 15210.02, + "end": 15214.08, + "probability": 0.9473 + }, + { + "start": 15214.32, + "end": 15214.82, + "probability": 0.4915 + }, + { + "start": 15215.04, + "end": 15215.46, + "probability": 0.543 + }, + { + "start": 15216.58, + "end": 15219.52, + "probability": 0.6015 + }, + { + "start": 15220.62, + "end": 15221.32, + "probability": 0.8269 + }, + { + "start": 15221.6, + "end": 15226.2, + "probability": 0.9641 + }, + { + "start": 15226.34, + "end": 15226.92, + "probability": 0.8735 + }, + { + "start": 15228.28, + "end": 15230.52, + "probability": 0.5592 + }, + { + "start": 15231.38, + "end": 15233.04, + "probability": 0.6647 + }, + { + "start": 15235.1, + "end": 15239.36, + "probability": 0.9937 + }, + { + "start": 15239.68, + "end": 15241.16, + "probability": 0.998 + }, + { + "start": 15242.3, + "end": 15244.74, + "probability": 0.9485 + }, + { + "start": 15244.8, + "end": 15246.2, + "probability": 0.9868 + }, + { + "start": 15247.26, + "end": 15250.4, + "probability": 0.9746 + }, + { + "start": 15252.42, + "end": 15253.26, + "probability": 0.6658 + }, + { + "start": 15256.1, + "end": 15258.26, + "probability": 0.9673 + }, + { + "start": 15259.48, + "end": 15264.44, + "probability": 0.7901 + }, + { + "start": 15265.48, + "end": 15267.84, + "probability": 0.9964 + }, + { + "start": 15270.0, + "end": 15273.4, + "probability": 0.9979 + }, + { + "start": 15273.48, + "end": 15273.98, + "probability": 0.9597 + }, + { + "start": 15274.42, + "end": 15275.12, + "probability": 0.8125 + }, + { + "start": 15276.1, + "end": 15278.72, + "probability": 0.9109 + }, + { + "start": 15279.56, + "end": 15281.54, + "probability": 0.9589 + }, + { + "start": 15282.22, + "end": 15286.08, + "probability": 0.9705 + }, + { + "start": 15286.88, + "end": 15287.32, + "probability": 0.96 + }, + { + "start": 15288.6, + "end": 15290.56, + "probability": 0.9729 + }, + { + "start": 15291.68, + "end": 15292.38, + "probability": 0.5845 + }, + { + "start": 15292.82, + "end": 15294.2, + "probability": 0.8835 + }, + { + "start": 15295.56, + "end": 15296.06, + "probability": 0.498 + }, + { + "start": 15299.4, + "end": 15302.13, + "probability": 0.9895 + }, + { + "start": 15302.32, + "end": 15302.64, + "probability": 0.7715 + }, + { + "start": 15302.74, + "end": 15305.38, + "probability": 0.9985 + }, + { + "start": 15306.82, + "end": 15307.8, + "probability": 0.583 + }, + { + "start": 15308.76, + "end": 15310.3, + "probability": 0.9344 + }, + { + "start": 15311.7, + "end": 15316.16, + "probability": 0.9936 + }, + { + "start": 15318.08, + "end": 15319.3, + "probability": 0.5953 + }, + { + "start": 15319.88, + "end": 15321.26, + "probability": 0.9412 + }, + { + "start": 15321.56, + "end": 15323.98, + "probability": 0.9909 + }, + { + "start": 15327.3, + "end": 15328.86, + "probability": 0.796 + }, + { + "start": 15328.94, + "end": 15331.44, + "probability": 0.9557 + }, + { + "start": 15332.4, + "end": 15332.58, + "probability": 0.5533 + }, + { + "start": 15332.64, + "end": 15335.4, + "probability": 0.8937 + }, + { + "start": 15335.52, + "end": 15335.88, + "probability": 0.4993 + }, + { + "start": 15335.92, + "end": 15337.56, + "probability": 0.9858 + }, + { + "start": 15340.11, + "end": 15341.14, + "probability": 0.9333 + }, + { + "start": 15341.74, + "end": 15341.82, + "probability": 0.1819 + }, + { + "start": 15341.82, + "end": 15342.36, + "probability": 0.7475 + }, + { + "start": 15342.94, + "end": 15344.2, + "probability": 0.9998 + }, + { + "start": 15344.72, + "end": 15346.56, + "probability": 0.9576 + }, + { + "start": 15347.92, + "end": 15352.2, + "probability": 0.914 + }, + { + "start": 15352.2, + "end": 15354.66, + "probability": 0.9581 + }, + { + "start": 15355.26, + "end": 15357.48, + "probability": 0.9995 + }, + { + "start": 15357.6, + "end": 15360.56, + "probability": 0.9816 + }, + { + "start": 15361.66, + "end": 15365.12, + "probability": 0.9745 + }, + { + "start": 15365.82, + "end": 15369.18, + "probability": 0.8965 + }, + { + "start": 15370.8, + "end": 15374.76, + "probability": 0.8709 + }, + { + "start": 15375.4, + "end": 15376.5, + "probability": 0.877 + }, + { + "start": 15377.84, + "end": 15380.96, + "probability": 0.9565 + }, + { + "start": 15383.26, + "end": 15384.88, + "probability": 0.8474 + }, + { + "start": 15384.96, + "end": 15385.7, + "probability": 0.7573 + }, + { + "start": 15385.78, + "end": 15388.7, + "probability": 0.947 + }, + { + "start": 15391.78, + "end": 15392.2, + "probability": 0.2631 + }, + { + "start": 15392.68, + "end": 15400.34, + "probability": 0.6673 + }, + { + "start": 15400.34, + "end": 15402.96, + "probability": 0.9988 + }, + { + "start": 15407.92, + "end": 15410.02, + "probability": 0.9839 + }, + { + "start": 15412.28, + "end": 15413.46, + "probability": 0.8943 + }, + { + "start": 15415.52, + "end": 15418.92, + "probability": 0.96 + }, + { + "start": 15418.92, + "end": 15421.44, + "probability": 0.9989 + }, + { + "start": 15423.44, + "end": 15424.04, + "probability": 0.7487 + }, + { + "start": 15424.36, + "end": 15427.34, + "probability": 0.8798 + }, + { + "start": 15429.12, + "end": 15429.82, + "probability": 0.6763 + }, + { + "start": 15429.94, + "end": 15431.86, + "probability": 0.6601 + }, + { + "start": 15432.0, + "end": 15435.8, + "probability": 0.7344 + }, + { + "start": 15436.06, + "end": 15437.26, + "probability": 0.7766 + }, + { + "start": 15437.74, + "end": 15439.58, + "probability": 0.8706 + }, + { + "start": 15441.18, + "end": 15442.5, + "probability": 0.8542 + }, + { + "start": 15443.3, + "end": 15444.4, + "probability": 0.9829 + }, + { + "start": 15444.46, + "end": 15445.08, + "probability": 0.7062 + }, + { + "start": 15445.14, + "end": 15448.76, + "probability": 0.6871 + }, + { + "start": 15451.7, + "end": 15453.0, + "probability": 0.9855 + }, + { + "start": 15453.12, + "end": 15455.6, + "probability": 0.7109 + }, + { + "start": 15456.82, + "end": 15459.36, + "probability": 0.8463 + }, + { + "start": 15459.9, + "end": 15462.8, + "probability": 0.963 + }, + { + "start": 15464.08, + "end": 15465.38, + "probability": 0.9121 + }, + { + "start": 15467.24, + "end": 15468.46, + "probability": 0.9968 + }, + { + "start": 15470.38, + "end": 15471.36, + "probability": 0.9518 + }, + { + "start": 15472.62, + "end": 15474.02, + "probability": 0.9927 + }, + { + "start": 15474.3, + "end": 15474.93, + "probability": 0.8763 + }, + { + "start": 15476.66, + "end": 15479.34, + "probability": 0.9478 + }, + { + "start": 15480.44, + "end": 15481.91, + "probability": 0.9985 + }, + { + "start": 15483.52, + "end": 15484.34, + "probability": 0.7519 + }, + { + "start": 15485.84, + "end": 15487.0, + "probability": 0.9006 + }, + { + "start": 15488.26, + "end": 15489.84, + "probability": 0.7031 + }, + { + "start": 15489.92, + "end": 15496.24, + "probability": 0.9937 + }, + { + "start": 15497.6, + "end": 15500.8, + "probability": 0.9979 + }, + { + "start": 15501.74, + "end": 15504.26, + "probability": 0.7436 + }, + { + "start": 15504.46, + "end": 15504.98, + "probability": 0.9235 + }, + { + "start": 15507.2, + "end": 15508.73, + "probability": 0.8732 + }, + { + "start": 15509.78, + "end": 15511.94, + "probability": 0.8894 + }, + { + "start": 15513.2, + "end": 15516.2, + "probability": 0.9826 + }, + { + "start": 15516.88, + "end": 15517.48, + "probability": 0.8828 + }, + { + "start": 15517.56, + "end": 15520.44, + "probability": 0.9902 + }, + { + "start": 15520.96, + "end": 15522.48, + "probability": 0.9917 + }, + { + "start": 15525.44, + "end": 15528.6, + "probability": 0.9817 + }, + { + "start": 15530.14, + "end": 15532.78, + "probability": 0.9968 + }, + { + "start": 15533.72, + "end": 15534.4, + "probability": 0.9142 + }, + { + "start": 15535.9, + "end": 15538.92, + "probability": 0.9698 + }, + { + "start": 15539.24, + "end": 15541.28, + "probability": 0.9593 + }, + { + "start": 15542.36, + "end": 15545.13, + "probability": 0.9928 + }, + { + "start": 15546.16, + "end": 15547.6, + "probability": 0.7682 + }, + { + "start": 15548.76, + "end": 15552.86, + "probability": 0.998 + }, + { + "start": 15554.76, + "end": 15555.3, + "probability": 0.9226 + }, + { + "start": 15555.78, + "end": 15558.47, + "probability": 0.7007 + }, + { + "start": 15559.74, + "end": 15562.36, + "probability": 0.9775 + }, + { + "start": 15566.67, + "end": 15568.58, + "probability": 0.2187 + }, + { + "start": 15569.64, + "end": 15570.94, + "probability": 0.5943 + }, + { + "start": 15572.82, + "end": 15573.62, + "probability": 0.7406 + }, + { + "start": 15573.84, + "end": 15574.86, + "probability": 0.7187 + }, + { + "start": 15575.06, + "end": 15576.74, + "probability": 0.9006 + }, + { + "start": 15577.88, + "end": 15582.4, + "probability": 0.9473 + }, + { + "start": 15582.54, + "end": 15585.18, + "probability": 0.9803 + }, + { + "start": 15586.22, + "end": 15587.88, + "probability": 0.9375 + }, + { + "start": 15588.46, + "end": 15590.28, + "probability": 0.99 + }, + { + "start": 15590.78, + "end": 15592.78, + "probability": 0.9814 + }, + { + "start": 15593.36, + "end": 15598.1, + "probability": 0.9888 + }, + { + "start": 15598.44, + "end": 15599.68, + "probability": 0.9966 + }, + { + "start": 15599.92, + "end": 15600.14, + "probability": 0.8314 + }, + { + "start": 15600.7, + "end": 15604.4, + "probability": 0.9587 + }, + { + "start": 15604.58, + "end": 15605.34, + "probability": 0.9866 + }, + { + "start": 15605.48, + "end": 15606.84, + "probability": 0.9725 + }, + { + "start": 15608.18, + "end": 15613.28, + "probability": 0.9701 + }, + { + "start": 15613.82, + "end": 15619.1, + "probability": 0.9073 + }, + { + "start": 15623.33, + "end": 15626.87, + "probability": 0.5426 + }, + { + "start": 15627.04, + "end": 15629.22, + "probability": 0.9186 + }, + { + "start": 15631.66, + "end": 15633.32, + "probability": 0.7379 + }, + { + "start": 15633.76, + "end": 15637.68, + "probability": 0.9151 + }, + { + "start": 15639.64, + "end": 15640.54, + "probability": 0.7203 + }, + { + "start": 15641.4, + "end": 15643.42, + "probability": 0.9084 + }, + { + "start": 15644.64, + "end": 15645.26, + "probability": 0.9816 + }, + { + "start": 15645.44, + "end": 15648.32, + "probability": 0.9971 + }, + { + "start": 15648.78, + "end": 15651.56, + "probability": 0.9594 + }, + { + "start": 15651.66, + "end": 15653.08, + "probability": 0.9971 + }, + { + "start": 15654.36, + "end": 15655.06, + "probability": 0.5805 + }, + { + "start": 15655.2, + "end": 15655.5, + "probability": 0.8951 + }, + { + "start": 15655.62, + "end": 15656.42, + "probability": 0.7156 + }, + { + "start": 15656.72, + "end": 15657.41, + "probability": 0.8999 + }, + { + "start": 15657.66, + "end": 15658.05, + "probability": 0.8681 + }, + { + "start": 15658.7, + "end": 15659.04, + "probability": 0.1395 + }, + { + "start": 15659.5, + "end": 15662.64, + "probability": 0.8921 + }, + { + "start": 15662.78, + "end": 15663.52, + "probability": 0.1868 + }, + { + "start": 15663.72, + "end": 15664.46, + "probability": 0.6339 + }, + { + "start": 15665.08, + "end": 15667.7, + "probability": 0.974 + }, + { + "start": 15669.42, + "end": 15671.28, + "probability": 0.6724 + }, + { + "start": 15672.12, + "end": 15673.62, + "probability": 0.8145 + }, + { + "start": 15673.66, + "end": 15674.62, + "probability": 0.9692 + }, + { + "start": 15675.0, + "end": 15676.96, + "probability": 0.9751 + }, + { + "start": 15678.48, + "end": 15681.12, + "probability": 0.983 + }, + { + "start": 15684.8, + "end": 15686.26, + "probability": 0.8647 + }, + { + "start": 15686.48, + "end": 15689.96, + "probability": 0.663 + }, + { + "start": 15690.82, + "end": 15693.58, + "probability": 0.9855 + }, + { + "start": 15694.1, + "end": 15695.22, + "probability": 0.9402 + }, + { + "start": 15695.8, + "end": 15697.22, + "probability": 0.9247 + }, + { + "start": 15702.8, + "end": 15705.42, + "probability": 0.9997 + }, + { + "start": 15706.5, + "end": 15708.2, + "probability": 0.9993 + }, + { + "start": 15710.18, + "end": 15711.0, + "probability": 0.9065 + }, + { + "start": 15711.16, + "end": 15712.92, + "probability": 0.9917 + }, + { + "start": 15713.62, + "end": 15714.42, + "probability": 0.8833 + }, + { + "start": 15716.18, + "end": 15719.44, + "probability": 0.9919 + }, + { + "start": 15720.52, + "end": 15721.82, + "probability": 0.7871 + }, + { + "start": 15723.62, + "end": 15727.04, + "probability": 0.7885 + }, + { + "start": 15727.68, + "end": 15727.82, + "probability": 0.4275 + }, + { + "start": 15729.36, + "end": 15729.82, + "probability": 0.9645 + }, + { + "start": 15731.38, + "end": 15732.5, + "probability": 0.759 + }, + { + "start": 15733.28, + "end": 15733.64, + "probability": 0.5569 + }, + { + "start": 15736.14, + "end": 15736.56, + "probability": 0.0782 + }, + { + "start": 15737.1, + "end": 15743.7, + "probability": 0.8619 + }, + { + "start": 15743.74, + "end": 15747.16, + "probability": 0.9902 + }, + { + "start": 15747.64, + "end": 15749.74, + "probability": 0.8075 + }, + { + "start": 15749.9, + "end": 15751.08, + "probability": 0.7879 + }, + { + "start": 15751.68, + "end": 15754.26, + "probability": 0.9749 + }, + { + "start": 15754.36, + "end": 15755.54, + "probability": 0.9643 + }, + { + "start": 15755.66, + "end": 15757.32, + "probability": 0.8851 + }, + { + "start": 15761.18, + "end": 15762.44, + "probability": 0.1362 + }, + { + "start": 15762.7, + "end": 15765.88, + "probability": 0.8841 + }, + { + "start": 15766.66, + "end": 15769.62, + "probability": 0.9552 + }, + { + "start": 15770.94, + "end": 15774.46, + "probability": 0.996 + }, + { + "start": 15774.52, + "end": 15777.3, + "probability": 0.6962 + }, + { + "start": 15779.86, + "end": 15781.84, + "probability": 0.9744 + }, + { + "start": 15782.48, + "end": 15784.12, + "probability": 0.9291 + }, + { + "start": 15785.66, + "end": 15791.02, + "probability": 0.9582 + }, + { + "start": 15791.98, + "end": 15792.52, + "probability": 0.5564 + }, + { + "start": 15792.6, + "end": 15795.46, + "probability": 0.9941 + }, + { + "start": 15795.92, + "end": 15799.7, + "probability": 0.9509 + }, + { + "start": 15800.16, + "end": 15802.06, + "probability": 0.9679 + }, + { + "start": 15802.6, + "end": 15803.1, + "probability": 0.727 + }, + { + "start": 15806.5, + "end": 15808.64, + "probability": 0.8738 + }, + { + "start": 15809.36, + "end": 15811.5, + "probability": 0.8276 + }, + { + "start": 15811.6, + "end": 15812.2, + "probability": 0.9716 + }, + { + "start": 15813.38, + "end": 15816.92, + "probability": 0.7876 + }, + { + "start": 15817.48, + "end": 15818.5, + "probability": 0.8882 + }, + { + "start": 15819.24, + "end": 15824.34, + "probability": 0.8986 + }, + { + "start": 15824.88, + "end": 15825.44, + "probability": 0.8752 + }, + { + "start": 15825.98, + "end": 15830.44, + "probability": 0.9713 + }, + { + "start": 15833.94, + "end": 15834.64, + "probability": 0.5043 + }, + { + "start": 15838.0, + "end": 15839.72, + "probability": 0.9268 + }, + { + "start": 15840.1, + "end": 15843.24, + "probability": 0.772 + }, + { + "start": 15843.24, + "end": 15846.32, + "probability": 0.9603 + }, + { + "start": 15846.36, + "end": 15847.84, + "probability": 0.8706 + }, + { + "start": 15847.92, + "end": 15848.26, + "probability": 0.1783 + }, + { + "start": 15848.5, + "end": 15849.04, + "probability": 0.5762 + }, + { + "start": 15849.32, + "end": 15853.72, + "probability": 0.4662 + }, + { + "start": 15853.98, + "end": 15857.6, + "probability": 0.8818 + }, + { + "start": 15858.52, + "end": 15858.54, + "probability": 0.5962 + }, + { + "start": 15860.5, + "end": 15862.04, + "probability": 0.8618 + }, + { + "start": 15862.5, + "end": 15866.52, + "probability": 0.9924 + }, + { + "start": 15866.52, + "end": 15869.28, + "probability": 0.962 + }, + { + "start": 15869.72, + "end": 15872.84, + "probability": 0.9226 + }, + { + "start": 15873.9, + "end": 15875.86, + "probability": 0.8913 + }, + { + "start": 15876.56, + "end": 15878.22, + "probability": 0.9785 + }, + { + "start": 15878.36, + "end": 15879.68, + "probability": 0.9985 + }, + { + "start": 15880.6, + "end": 15881.08, + "probability": 0.4267 + }, + { + "start": 15881.16, + "end": 15882.9, + "probability": 0.9897 + }, + { + "start": 15883.04, + "end": 15885.24, + "probability": 0.9951 + }, + { + "start": 15886.08, + "end": 15890.12, + "probability": 0.9819 + }, + { + "start": 15891.48, + "end": 15892.42, + "probability": 0.9315 + }, + { + "start": 15892.86, + "end": 15895.62, + "probability": 0.9922 + }, + { + "start": 15897.34, + "end": 15899.52, + "probability": 0.994 + }, + { + "start": 15899.52, + "end": 15901.6, + "probability": 0.9576 + }, + { + "start": 15902.3, + "end": 15906.92, + "probability": 0.9894 + }, + { + "start": 15907.56, + "end": 15908.14, + "probability": 0.7867 + }, + { + "start": 15909.36, + "end": 15912.72, + "probability": 0.9863 + }, + { + "start": 15913.26, + "end": 15914.46, + "probability": 0.905 + }, + { + "start": 15914.58, + "end": 15922.18, + "probability": 0.9755 + }, + { + "start": 15922.8, + "end": 15924.94, + "probability": 0.9803 + }, + { + "start": 15926.18, + "end": 15929.06, + "probability": 0.9806 + }, + { + "start": 15929.7, + "end": 15932.12, + "probability": 0.9768 + }, + { + "start": 15933.98, + "end": 15936.92, + "probability": 0.9329 + }, + { + "start": 15936.92, + "end": 15940.1, + "probability": 0.9952 + }, + { + "start": 15940.66, + "end": 15940.78, + "probability": 0.606 + }, + { + "start": 15940.94, + "end": 15942.3, + "probability": 0.9974 + }, + { + "start": 15942.78, + "end": 15943.66, + "probability": 0.9287 + }, + { + "start": 15944.44, + "end": 15946.2, + "probability": 0.9902 + }, + { + "start": 15947.26, + "end": 15947.64, + "probability": 0.6366 + }, + { + "start": 15949.66, + "end": 15952.32, + "probability": 0.9662 + }, + { + "start": 15952.54, + "end": 15953.18, + "probability": 0.7728 + }, + { + "start": 15954.28, + "end": 15956.66, + "probability": 0.9988 + }, + { + "start": 15957.24, + "end": 15959.16, + "probability": 0.9968 + }, + { + "start": 15959.16, + "end": 15961.84, + "probability": 0.9754 + }, + { + "start": 15962.24, + "end": 15963.18, + "probability": 0.8906 + }, + { + "start": 15963.64, + "end": 15966.3, + "probability": 0.8869 + }, + { + "start": 15967.5, + "end": 15968.9, + "probability": 0.5119 + }, + { + "start": 15969.02, + "end": 15969.9, + "probability": 0.8787 + }, + { + "start": 15970.06, + "end": 15972.64, + "probability": 0.9919 + }, + { + "start": 15973.76, + "end": 15979.3, + "probability": 0.9951 + }, + { + "start": 15979.92, + "end": 15980.86, + "probability": 0.9625 + }, + { + "start": 15981.58, + "end": 15984.32, + "probability": 0.7561 + }, + { + "start": 15985.7, + "end": 15992.44, + "probability": 0.9885 + }, + { + "start": 15993.24, + "end": 15994.28, + "probability": 0.9936 + }, + { + "start": 15995.12, + "end": 15998.34, + "probability": 0.8319 + }, + { + "start": 15999.16, + "end": 16001.38, + "probability": 0.9657 + }, + { + "start": 16002.62, + "end": 16004.06, + "probability": 0.9905 + }, + { + "start": 16004.62, + "end": 16006.48, + "probability": 0.6651 + }, + { + "start": 16007.18, + "end": 16008.62, + "probability": 0.7749 + }, + { + "start": 16008.76, + "end": 16012.88, + "probability": 0.928 + }, + { + "start": 16013.0, + "end": 16015.04, + "probability": 0.9951 + }, + { + "start": 16018.24, + "end": 16020.34, + "probability": 0.6505 + }, + { + "start": 16020.76, + "end": 16025.52, + "probability": 0.7548 + }, + { + "start": 16025.52, + "end": 16029.26, + "probability": 0.6903 + }, + { + "start": 16029.48, + "end": 16031.66, + "probability": 0.225 + }, + { + "start": 16031.66, + "end": 16033.34, + "probability": 0.6561 + }, + { + "start": 16033.78, + "end": 16033.86, + "probability": 0.0148 + }, + { + "start": 16033.86, + "end": 16035.1, + "probability": 0.8369 + }, + { + "start": 16035.16, + "end": 16035.96, + "probability": 0.9922 + }, + { + "start": 16035.96, + "end": 16036.58, + "probability": 0.4311 + }, + { + "start": 16036.66, + "end": 16038.08, + "probability": 0.9336 + }, + { + "start": 16038.2, + "end": 16040.32, + "probability": 0.9984 + }, + { + "start": 16040.4, + "end": 16042.0, + "probability": 0.6937 + }, + { + "start": 16042.14, + "end": 16043.48, + "probability": 0.948 + }, + { + "start": 16044.1, + "end": 16046.46, + "probability": 0.9719 + }, + { + "start": 16047.16, + "end": 16048.8, + "probability": 0.9973 + }, + { + "start": 16049.92, + "end": 16052.96, + "probability": 0.9327 + }, + { + "start": 16053.32, + "end": 16055.74, + "probability": 0.9768 + }, + { + "start": 16056.16, + "end": 16057.54, + "probability": 0.9969 + }, + { + "start": 16057.68, + "end": 16058.76, + "probability": 0.7638 + }, + { + "start": 16059.14, + "end": 16061.12, + "probability": 0.9976 + }, + { + "start": 16061.62, + "end": 16063.24, + "probability": 0.9875 + }, + { + "start": 16064.9, + "end": 16065.1, + "probability": 0.7426 + }, + { + "start": 16065.76, + "end": 16065.94, + "probability": 0.2672 + }, + { + "start": 16066.08, + "end": 16072.32, + "probability": 0.9093 + }, + { + "start": 16072.8, + "end": 16074.96, + "probability": 0.9277 + }, + { + "start": 16075.06, + "end": 16080.26, + "probability": 0.8608 + }, + { + "start": 16080.56, + "end": 16081.78, + "probability": 0.5587 + }, + { + "start": 16081.86, + "end": 16083.32, + "probability": 0.3248 + }, + { + "start": 16083.62, + "end": 16086.19, + "probability": 0.9109 + }, + { + "start": 16086.52, + "end": 16090.94, + "probability": 0.9316 + }, + { + "start": 16091.44, + "end": 16095.32, + "probability": 0.9963 + }, + { + "start": 16095.48, + "end": 16098.26, + "probability": 0.6082 + }, + { + "start": 16099.36, + "end": 16106.86, + "probability": 0.9365 + }, + { + "start": 16106.9, + "end": 16107.88, + "probability": 0.9909 + }, + { + "start": 16110.58, + "end": 16115.28, + "probability": 0.9558 + }, + { + "start": 16115.28, + "end": 16118.08, + "probability": 0.9878 + }, + { + "start": 16119.18, + "end": 16121.18, + "probability": 0.984 + }, + { + "start": 16121.82, + "end": 16123.37, + "probability": 0.9768 + }, + { + "start": 16123.64, + "end": 16125.9, + "probability": 0.9567 + }, + { + "start": 16125.94, + "end": 16127.22, + "probability": 0.9985 + }, + { + "start": 16128.06, + "end": 16128.22, + "probability": 0.2347 + }, + { + "start": 16129.34, + "end": 16134.16, + "probability": 0.9135 + }, + { + "start": 16134.44, + "end": 16135.78, + "probability": 0.6173 + }, + { + "start": 16135.9, + "end": 16139.98, + "probability": 0.944 + }, + { + "start": 16140.84, + "end": 16142.2, + "probability": 0.7457 + }, + { + "start": 16143.0, + "end": 16145.52, + "probability": 0.8825 + }, + { + "start": 16145.72, + "end": 16147.21, + "probability": 0.9412 + }, + { + "start": 16148.0, + "end": 16150.5, + "probability": 0.8901 + }, + { + "start": 16151.26, + "end": 16151.94, + "probability": 0.6834 + }, + { + "start": 16152.02, + "end": 16153.84, + "probability": 0.9725 + }, + { + "start": 16154.0, + "end": 16155.74, + "probability": 0.9003 + }, + { + "start": 16156.68, + "end": 16157.82, + "probability": 0.9147 + }, + { + "start": 16157.92, + "end": 16159.82, + "probability": 0.9712 + }, + { + "start": 16159.96, + "end": 16160.54, + "probability": 0.6593 + }, + { + "start": 16161.02, + "end": 16162.48, + "probability": 0.9896 + }, + { + "start": 16163.04, + "end": 16164.07, + "probability": 0.5437 + }, + { + "start": 16165.26, + "end": 16169.18, + "probability": 0.8998 + }, + { + "start": 16169.72, + "end": 16170.98, + "probability": 0.9932 + }, + { + "start": 16171.2, + "end": 16172.28, + "probability": 0.7372 + }, + { + "start": 16172.68, + "end": 16173.18, + "probability": 0.7742 + }, + { + "start": 16173.4, + "end": 16174.42, + "probability": 0.9878 + }, + { + "start": 16177.42, + "end": 16178.26, + "probability": 0.9072 + }, + { + "start": 16178.44, + "end": 16183.18, + "probability": 0.7191 + }, + { + "start": 16184.5, + "end": 16185.2, + "probability": 0.9579 + }, + { + "start": 16186.32, + "end": 16189.2, + "probability": 0.9633 + }, + { + "start": 16189.28, + "end": 16190.53, + "probability": 0.9961 + }, + { + "start": 16191.18, + "end": 16192.92, + "probability": 0.9282 + }, + { + "start": 16193.44, + "end": 16195.0, + "probability": 0.9536 + }, + { + "start": 16195.0, + "end": 16196.26, + "probability": 0.9403 + }, + { + "start": 16197.04, + "end": 16198.5, + "probability": 0.9729 + }, + { + "start": 16199.38, + "end": 16201.84, + "probability": 0.9854 + }, + { + "start": 16201.88, + "end": 16202.5, + "probability": 0.9123 + }, + { + "start": 16203.78, + "end": 16207.88, + "probability": 0.9562 + }, + { + "start": 16208.76, + "end": 16213.78, + "probability": 0.9968 + }, + { + "start": 16214.38, + "end": 16215.98, + "probability": 0.9136 + }, + { + "start": 16217.08, + "end": 16220.52, + "probability": 0.876 + }, + { + "start": 16220.52, + "end": 16224.16, + "probability": 0.9959 + }, + { + "start": 16225.16, + "end": 16228.76, + "probability": 0.9967 + }, + { + "start": 16228.94, + "end": 16230.12, + "probability": 0.988 + }, + { + "start": 16230.44, + "end": 16231.42, + "probability": 0.8285 + }, + { + "start": 16231.62, + "end": 16232.38, + "probability": 0.6912 + }, + { + "start": 16233.86, + "end": 16235.42, + "probability": 0.6934 + }, + { + "start": 16237.44, + "end": 16238.74, + "probability": 0.9966 + }, + { + "start": 16240.2, + "end": 16242.64, + "probability": 0.9103 + }, + { + "start": 16243.02, + "end": 16244.27, + "probability": 0.7931 + }, + { + "start": 16244.5, + "end": 16245.5, + "probability": 0.9944 + }, + { + "start": 16247.3, + "end": 16251.42, + "probability": 0.8038 + }, + { + "start": 16252.7, + "end": 16254.94, + "probability": 0.8148 + }, + { + "start": 16257.66, + "end": 16258.84, + "probability": 0.4895 + }, + { + "start": 16259.22, + "end": 16259.82, + "probability": 0.915 + }, + { + "start": 16260.16, + "end": 16264.14, + "probability": 0.9692 + }, + { + "start": 16264.14, + "end": 16267.58, + "probability": 0.9877 + }, + { + "start": 16268.44, + "end": 16272.5, + "probability": 0.991 + }, + { + "start": 16274.44, + "end": 16275.14, + "probability": 0.9799 + }, + { + "start": 16275.68, + "end": 16277.02, + "probability": 0.7206 + }, + { + "start": 16277.74, + "end": 16279.24, + "probability": 0.8464 + }, + { + "start": 16279.66, + "end": 16280.86, + "probability": 0.9385 + }, + { + "start": 16281.24, + "end": 16281.89, + "probability": 0.9956 + }, + { + "start": 16282.28, + "end": 16282.86, + "probability": 0.6366 + }, + { + "start": 16283.34, + "end": 16284.38, + "probability": 0.8726 + }, + { + "start": 16284.96, + "end": 16291.61, + "probability": 0.9373 + }, + { + "start": 16291.72, + "end": 16295.0, + "probability": 0.9862 + }, + { + "start": 16295.2, + "end": 16298.86, + "probability": 0.9962 + }, + { + "start": 16299.7, + "end": 16304.32, + "probability": 0.9983 + }, + { + "start": 16304.38, + "end": 16305.22, + "probability": 0.9181 + }, + { + "start": 16305.38, + "end": 16307.1, + "probability": 0.8984 + }, + { + "start": 16307.92, + "end": 16315.57, + "probability": 0.9819 + }, + { + "start": 16315.98, + "end": 16319.24, + "probability": 0.9993 + }, + { + "start": 16319.36, + "end": 16320.42, + "probability": 0.9316 + }, + { + "start": 16321.14, + "end": 16321.58, + "probability": 0.5153 + }, + { + "start": 16321.76, + "end": 16327.1, + "probability": 0.8232 + }, + { + "start": 16327.1, + "end": 16329.46, + "probability": 0.9752 + }, + { + "start": 16330.06, + "end": 16335.42, + "probability": 0.9619 + }, + { + "start": 16335.46, + "end": 16336.86, + "probability": 0.9956 + }, + { + "start": 16339.08, + "end": 16339.87, + "probability": 0.9919 + }, + { + "start": 16343.8, + "end": 16347.24, + "probability": 0.9385 + }, + { + "start": 16347.32, + "end": 16350.38, + "probability": 0.9935 + }, + { + "start": 16351.08, + "end": 16353.72, + "probability": 0.8342 + }, + { + "start": 16354.34, + "end": 16358.04, + "probability": 0.801 + }, + { + "start": 16358.94, + "end": 16360.96, + "probability": 0.8671 + }, + { + "start": 16361.76, + "end": 16362.94, + "probability": 0.9748 + }, + { + "start": 16363.54, + "end": 16365.54, + "probability": 0.9262 + }, + { + "start": 16366.56, + "end": 16368.28, + "probability": 0.9404 + }, + { + "start": 16368.82, + "end": 16370.3, + "probability": 0.9883 + }, + { + "start": 16370.84, + "end": 16374.34, + "probability": 0.985 + }, + { + "start": 16374.9, + "end": 16376.6, + "probability": 0.7422 + }, + { + "start": 16377.2, + "end": 16379.56, + "probability": 0.9995 + }, + { + "start": 16379.74, + "end": 16384.14, + "probability": 0.8961 + }, + { + "start": 16384.22, + "end": 16384.62, + "probability": 0.8257 + }, + { + "start": 16385.24, + "end": 16386.26, + "probability": 0.6748 + }, + { + "start": 16386.36, + "end": 16389.02, + "probability": 0.9702 + }, + { + "start": 16390.48, + "end": 16391.66, + "probability": 0.7004 + }, + { + "start": 16392.73, + "end": 16395.66, + "probability": 0.817 + }, + { + "start": 16398.04, + "end": 16399.37, + "probability": 0.4167 + }, + { + "start": 16403.14, + "end": 16403.44, + "probability": 0.3548 + }, + { + "start": 16403.5, + "end": 16404.24, + "probability": 0.5841 + }, + { + "start": 16406.96, + "end": 16409.42, + "probability": 0.2867 + }, + { + "start": 16411.14, + "end": 16411.72, + "probability": 0.4689 + }, + { + "start": 16416.62, + "end": 16418.54, + "probability": 0.5621 + }, + { + "start": 16419.04, + "end": 16420.02, + "probability": 0.1614 + }, + { + "start": 16420.54, + "end": 16422.68, + "probability": 0.3588 + }, + { + "start": 16423.26, + "end": 16424.96, + "probability": 0.6477 + }, + { + "start": 16425.66, + "end": 16426.94, + "probability": 0.5913 + }, + { + "start": 16427.46, + "end": 16429.48, + "probability": 0.9013 + }, + { + "start": 16432.88, + "end": 16436.37, + "probability": 0.9838 + }, + { + "start": 16436.56, + "end": 16437.06, + "probability": 0.7612 + }, + { + "start": 16438.38, + "end": 16439.8, + "probability": 0.4961 + }, + { + "start": 16440.44, + "end": 16441.88, + "probability": 0.7175 + }, + { + "start": 16442.78, + "end": 16447.08, + "probability": 0.961 + }, + { + "start": 16447.8, + "end": 16451.4, + "probability": 0.8549 + }, + { + "start": 16451.96, + "end": 16454.68, + "probability": 0.74 + }, + { + "start": 16455.26, + "end": 16456.06, + "probability": 0.7013 + }, + { + "start": 16456.36, + "end": 16458.46, + "probability": 0.9288 + }, + { + "start": 16459.2, + "end": 16459.78, + "probability": 0.8626 + }, + { + "start": 16460.38, + "end": 16463.18, + "probability": 0.9404 + }, + { + "start": 16464.22, + "end": 16465.66, + "probability": 0.904 + }, + { + "start": 16465.96, + "end": 16468.48, + "probability": 0.9558 + }, + { + "start": 16468.6, + "end": 16472.6, + "probability": 0.9246 + }, + { + "start": 16473.18, + "end": 16475.76, + "probability": 0.9089 + }, + { + "start": 16475.84, + "end": 16477.7, + "probability": 0.9674 + }, + { + "start": 16477.96, + "end": 16481.66, + "probability": 0.5691 + }, + { + "start": 16482.2, + "end": 16484.58, + "probability": 0.5007 + }, + { + "start": 16484.9, + "end": 16488.57, + "probability": 0.6548 + }, + { + "start": 16489.3, + "end": 16491.26, + "probability": 0.4699 + }, + { + "start": 16492.43, + "end": 16496.7, + "probability": 0.8845 + }, + { + "start": 16497.34, + "end": 16501.3, + "probability": 0.957 + }, + { + "start": 16502.02, + "end": 16503.58, + "probability": 0.7354 + }, + { + "start": 16503.64, + "end": 16507.16, + "probability": 0.9824 + }, + { + "start": 16507.68, + "end": 16509.72, + "probability": 0.9524 + }, + { + "start": 16509.74, + "end": 16512.66, + "probability": 0.9298 + }, + { + "start": 16513.58, + "end": 16513.7, + "probability": 0.8998 + }, + { + "start": 16514.5, + "end": 16515.0, + "probability": 0.7316 + }, + { + "start": 16515.0, + "end": 16515.14, + "probability": 0.0763 + }, + { + "start": 16515.32, + "end": 16518.38, + "probability": 0.766 + }, + { + "start": 16526.36, + "end": 16526.58, + "probability": 0.1548 + }, + { + "start": 16531.28, + "end": 16534.54, + "probability": 0.0859 + }, + { + "start": 16539.42, + "end": 16540.92, + "probability": 0.4475 + }, + { + "start": 16541.04, + "end": 16542.42, + "probability": 0.9332 + }, + { + "start": 16543.02, + "end": 16543.74, + "probability": 0.4114 + }, + { + "start": 16543.82, + "end": 16547.58, + "probability": 0.8479 + }, + { + "start": 16547.68, + "end": 16549.54, + "probability": 0.3352 + }, + { + "start": 16550.26, + "end": 16550.64, + "probability": 0.7597 + }, + { + "start": 16551.16, + "end": 16553.9, + "probability": 0.1372 + }, + { + "start": 16554.08, + "end": 16555.35, + "probability": 0.8911 + }, + { + "start": 16555.52, + "end": 16557.02, + "probability": 0.8239 + }, + { + "start": 16557.08, + "end": 16558.44, + "probability": 0.9521 + }, + { + "start": 16558.44, + "end": 16558.78, + "probability": 0.857 + }, + { + "start": 16559.87, + "end": 16561.48, + "probability": 0.5327 + }, + { + "start": 16561.72, + "end": 16563.64, + "probability": 0.8352 + }, + { + "start": 16564.14, + "end": 16565.07, + "probability": 0.9746 + }, + { + "start": 16565.22, + "end": 16565.82, + "probability": 0.68 + }, + { + "start": 16566.2, + "end": 16568.92, + "probability": 0.8527 + }, + { + "start": 16569.74, + "end": 16570.9, + "probability": 0.8252 + }, + { + "start": 16571.42, + "end": 16574.24, + "probability": 0.7118 + }, + { + "start": 16575.0, + "end": 16576.5, + "probability": 0.766 + }, + { + "start": 16576.86, + "end": 16579.24, + "probability": 0.9429 + }, + { + "start": 16579.92, + "end": 16582.06, + "probability": 0.9546 + }, + { + "start": 16582.74, + "end": 16584.22, + "probability": 0.4619 + }, + { + "start": 16584.86, + "end": 16585.88, + "probability": 0.4566 + }, + { + "start": 16585.94, + "end": 16587.04, + "probability": 0.1337 + }, + { + "start": 16588.04, + "end": 16588.6, + "probability": 0.4576 + }, + { + "start": 16588.78, + "end": 16591.34, + "probability": 0.8149 + }, + { + "start": 16591.74, + "end": 16595.6, + "probability": 0.9879 + }, + { + "start": 16596.62, + "end": 16597.06, + "probability": 0.508 + }, + { + "start": 16597.06, + "end": 16599.76, + "probability": 0.6823 + }, + { + "start": 16599.9, + "end": 16600.12, + "probability": 0.1207 + }, + { + "start": 16600.12, + "end": 16600.12, + "probability": 0.1955 + }, + { + "start": 16600.12, + "end": 16600.12, + "probability": 0.312 + }, + { + "start": 16600.12, + "end": 16600.12, + "probability": 0.0975 + }, + { + "start": 16600.12, + "end": 16602.48, + "probability": 0.6033 + }, + { + "start": 16603.12, + "end": 16605.59, + "probability": 0.9204 + }, + { + "start": 16606.42, + "end": 16610.72, + "probability": 0.614 + }, + { + "start": 16611.3, + "end": 16612.18, + "probability": 0.3853 + }, + { + "start": 16612.78, + "end": 16615.54, + "probability": 0.7335 + }, + { + "start": 16616.22, + "end": 16618.86, + "probability": 0.8202 + }, + { + "start": 16625.8, + "end": 16626.1, + "probability": 0.3169 + }, + { + "start": 16626.16, + "end": 16627.9, + "probability": 0.9819 + }, + { + "start": 16627.96, + "end": 16631.54, + "probability": 0.9932 + }, + { + "start": 16631.8, + "end": 16634.86, + "probability": 0.2284 + }, + { + "start": 16636.5, + "end": 16637.96, + "probability": 0.6367 + }, + { + "start": 16638.26, + "end": 16640.46, + "probability": 0.5276 + }, + { + "start": 16653.06, + "end": 16654.12, + "probability": 0.7569 + }, + { + "start": 16654.8, + "end": 16655.97, + "probability": 0.9072 + }, + { + "start": 16656.34, + "end": 16660.44, + "probability": 0.8971 + }, + { + "start": 16661.4, + "end": 16664.24, + "probability": 0.9588 + }, + { + "start": 16665.1, + "end": 16668.98, + "probability": 0.9878 + }, + { + "start": 16669.64, + "end": 16670.68, + "probability": 0.8754 + }, + { + "start": 16670.78, + "end": 16671.2, + "probability": 0.8503 + }, + { + "start": 16671.26, + "end": 16674.92, + "probability": 0.7295 + }, + { + "start": 16675.28, + "end": 16679.52, + "probability": 0.9836 + }, + { + "start": 16679.52, + "end": 16683.94, + "probability": 0.9944 + }, + { + "start": 16685.34, + "end": 16691.82, + "probability": 0.9572 + }, + { + "start": 16692.54, + "end": 16694.48, + "probability": 0.9917 + }, + { + "start": 16695.8, + "end": 16697.04, + "probability": 0.9155 + }, + { + "start": 16697.22, + "end": 16700.92, + "probability": 0.9931 + }, + { + "start": 16701.56, + "end": 16702.79, + "probability": 0.9014 + }, + { + "start": 16703.44, + "end": 16706.51, + "probability": 0.9961 + }, + { + "start": 16707.02, + "end": 16712.82, + "probability": 0.9269 + }, + { + "start": 16713.19, + "end": 16720.48, + "probability": 0.9473 + }, + { + "start": 16721.02, + "end": 16721.68, + "probability": 0.7108 + }, + { + "start": 16722.52, + "end": 16724.1, + "probability": 0.9939 + }, + { + "start": 16725.2, + "end": 16728.24, + "probability": 0.8566 + }, + { + "start": 16728.28, + "end": 16728.64, + "probability": 0.7713 + }, + { + "start": 16728.74, + "end": 16729.78, + "probability": 0.9502 + }, + { + "start": 16730.09, + "end": 16732.22, + "probability": 0.9226 + }, + { + "start": 16732.92, + "end": 16734.9, + "probability": 0.9441 + }, + { + "start": 16735.52, + "end": 16741.6, + "probability": 0.8854 + }, + { + "start": 16741.64, + "end": 16742.14, + "probability": 0.8275 + }, + { + "start": 16742.18, + "end": 16745.97, + "probability": 0.9582 + }, + { + "start": 16746.7, + "end": 16751.38, + "probability": 0.9785 + }, + { + "start": 16751.52, + "end": 16752.22, + "probability": 0.5108 + }, + { + "start": 16752.3, + "end": 16754.15, + "probability": 0.9944 + }, + { + "start": 16755.0, + "end": 16759.32, + "probability": 0.9644 + }, + { + "start": 16759.32, + "end": 16761.56, + "probability": 0.9901 + }, + { + "start": 16761.7, + "end": 16762.76, + "probability": 0.8326 + }, + { + "start": 16763.12, + "end": 16764.02, + "probability": 0.7063 + }, + { + "start": 16764.06, + "end": 16764.82, + "probability": 0.3161 + }, + { + "start": 16765.86, + "end": 16770.18, + "probability": 0.9837 + }, + { + "start": 16770.6, + "end": 16771.04, + "probability": 0.2851 + }, + { + "start": 16771.16, + "end": 16774.44, + "probability": 0.9308 + }, + { + "start": 16774.62, + "end": 16776.1, + "probability": 0.9895 + }, + { + "start": 16776.28, + "end": 16778.86, + "probability": 0.9787 + }, + { + "start": 16778.86, + "end": 16781.88, + "probability": 0.9915 + }, + { + "start": 16782.82, + "end": 16784.24, + "probability": 0.5018 + }, + { + "start": 16784.92, + "end": 16787.16, + "probability": 0.9299 + }, + { + "start": 16787.68, + "end": 16788.34, + "probability": 0.8841 + }, + { + "start": 16789.1, + "end": 16791.94, + "probability": 0.9894 + }, + { + "start": 16793.14, + "end": 16795.48, + "probability": 0.9686 + }, + { + "start": 16795.52, + "end": 16800.44, + "probability": 0.9603 + }, + { + "start": 16801.02, + "end": 16802.9, + "probability": 0.9441 + }, + { + "start": 16803.88, + "end": 16808.94, + "probability": 0.979 + }, + { + "start": 16808.94, + "end": 16812.54, + "probability": 0.9983 + }, + { + "start": 16812.96, + "end": 16814.62, + "probability": 0.8707 + }, + { + "start": 16815.44, + "end": 16820.0, + "probability": 0.9992 + }, + { + "start": 16820.54, + "end": 16822.97, + "probability": 0.9819 + }, + { + "start": 16823.28, + "end": 16825.02, + "probability": 0.9978 + }, + { + "start": 16825.9, + "end": 16828.54, + "probability": 0.9775 + }, + { + "start": 16829.62, + "end": 16832.78, + "probability": 0.9275 + }, + { + "start": 16833.08, + "end": 16835.94, + "probability": 0.8106 + }, + { + "start": 16836.52, + "end": 16841.78, + "probability": 0.9912 + }, + { + "start": 16842.26, + "end": 16848.14, + "probability": 0.9983 + }, + { + "start": 16848.14, + "end": 16854.26, + "probability": 0.998 + }, + { + "start": 16854.32, + "end": 16856.26, + "probability": 0.997 + }, + { + "start": 16856.38, + "end": 16858.98, + "probability": 0.989 + }, + { + "start": 16859.1, + "end": 16859.88, + "probability": 0.8857 + }, + { + "start": 16861.3, + "end": 16864.48, + "probability": 0.957 + }, + { + "start": 16864.56, + "end": 16867.8, + "probability": 0.7079 + }, + { + "start": 16868.24, + "end": 16873.54, + "probability": 0.9365 + }, + { + "start": 16873.74, + "end": 16874.32, + "probability": 0.5609 + }, + { + "start": 16874.62, + "end": 16877.06, + "probability": 0.8445 + }, + { + "start": 16877.56, + "end": 16882.46, + "probability": 0.9901 + }, + { + "start": 16882.6, + "end": 16886.42, + "probability": 0.9494 + }, + { + "start": 16886.94, + "end": 16892.64, + "probability": 0.9702 + }, + { + "start": 16893.16, + "end": 16895.26, + "probability": 0.759 + }, + { + "start": 16896.06, + "end": 16901.04, + "probability": 0.9962 + }, + { + "start": 16901.54, + "end": 16903.16, + "probability": 0.997 + }, + { + "start": 16903.86, + "end": 16905.78, + "probability": 0.9907 + }, + { + "start": 16906.76, + "end": 16907.66, + "probability": 0.9492 + }, + { + "start": 16907.82, + "end": 16912.66, + "probability": 0.8733 + }, + { + "start": 16913.32, + "end": 16916.38, + "probability": 0.8672 + }, + { + "start": 16916.88, + "end": 16920.36, + "probability": 0.9801 + }, + { + "start": 16920.48, + "end": 16922.04, + "probability": 0.9589 + }, + { + "start": 16922.4, + "end": 16923.84, + "probability": 0.9855 + }, + { + "start": 16924.4, + "end": 16927.04, + "probability": 0.9855 + }, + { + "start": 16927.58, + "end": 16928.94, + "probability": 0.9932 + }, + { + "start": 16929.06, + "end": 16930.94, + "probability": 0.9892 + }, + { + "start": 16931.02, + "end": 16931.7, + "probability": 0.96 + }, + { + "start": 16931.78, + "end": 16933.0, + "probability": 0.8921 + }, + { + "start": 16933.66, + "end": 16935.64, + "probability": 0.9809 + }, + { + "start": 16936.02, + "end": 16938.92, + "probability": 0.9611 + }, + { + "start": 16939.28, + "end": 16940.5, + "probability": 0.9979 + }, + { + "start": 16941.34, + "end": 16941.54, + "probability": 0.9913 + }, + { + "start": 16942.14, + "end": 16945.36, + "probability": 0.9983 + }, + { + "start": 16946.0, + "end": 16947.48, + "probability": 0.9987 + }, + { + "start": 16948.02, + "end": 16950.54, + "probability": 0.9988 + }, + { + "start": 16951.24, + "end": 16956.24, + "probability": 0.9946 + }, + { + "start": 16956.66, + "end": 16959.24, + "probability": 0.9971 + }, + { + "start": 16959.24, + "end": 16961.92, + "probability": 0.9957 + }, + { + "start": 16962.32, + "end": 16968.08, + "probability": 0.9649 + }, + { + "start": 16968.08, + "end": 16968.56, + "probability": 0.5089 + }, + { + "start": 16969.28, + "end": 16974.82, + "probability": 0.9023 + }, + { + "start": 16975.08, + "end": 16978.24, + "probability": 0.9866 + }, + { + "start": 16978.24, + "end": 16980.58, + "probability": 0.996 + }, + { + "start": 16981.6, + "end": 16981.7, + "probability": 0.601 + }, + { + "start": 16981.7, + "end": 16982.06, + "probability": 0.6018 + }, + { + "start": 16984.92, + "end": 16984.92, + "probability": 0.2567 + }, + { + "start": 16984.92, + "end": 16985.56, + "probability": 0.4775 + }, + { + "start": 16985.56, + "end": 16987.7, + "probability": 0.9972 + }, + { + "start": 16988.62, + "end": 16990.38, + "probability": 0.9746 + }, + { + "start": 16990.56, + "end": 16991.52, + "probability": 0.9947 + }, + { + "start": 16992.06, + "end": 16993.58, + "probability": 0.7053 + }, + { + "start": 16994.1, + "end": 16994.5, + "probability": 0.684 + }, + { + "start": 16994.56, + "end": 16995.5, + "probability": 0.9228 + }, + { + "start": 16995.6, + "end": 16997.12, + "probability": 0.6529 + }, + { + "start": 16997.24, + "end": 16997.98, + "probability": 0.7449 + }, + { + "start": 17013.36, + "end": 17014.3, + "probability": 0.6827 + }, + { + "start": 17014.4, + "end": 17014.4, + "probability": 0.164 + }, + { + "start": 17014.54, + "end": 17015.16, + "probability": 0.6331 + }, + { + "start": 17015.26, + "end": 17016.4, + "probability": 0.652 + }, + { + "start": 17017.98, + "end": 17020.96, + "probability": 0.9564 + }, + { + "start": 17021.88, + "end": 17028.04, + "probability": 0.9578 + }, + { + "start": 17028.78, + "end": 17033.02, + "probability": 0.9824 + }, + { + "start": 17034.28, + "end": 17038.0, + "probability": 0.9966 + }, + { + "start": 17039.12, + "end": 17045.88, + "probability": 0.9956 + }, + { + "start": 17045.88, + "end": 17051.92, + "probability": 0.9892 + }, + { + "start": 17052.54, + "end": 17054.33, + "probability": 0.9146 + }, + { + "start": 17055.06, + "end": 17056.08, + "probability": 0.6577 + }, + { + "start": 17056.1, + "end": 17059.82, + "probability": 0.9678 + }, + { + "start": 17060.02, + "end": 17060.9, + "probability": 0.9902 + }, + { + "start": 17061.44, + "end": 17065.78, + "probability": 0.9752 + }, + { + "start": 17065.78, + "end": 17069.68, + "probability": 0.8847 + }, + { + "start": 17070.4, + "end": 17075.6, + "probability": 0.9985 + }, + { + "start": 17076.88, + "end": 17079.26, + "probability": 0.9784 + }, + { + "start": 17081.1, + "end": 17088.44, + "probability": 0.9909 + }, + { + "start": 17089.0, + "end": 17092.62, + "probability": 0.9537 + }, + { + "start": 17092.88, + "end": 17092.88, + "probability": 0.0251 + }, + { + "start": 17093.42, + "end": 17095.22, + "probability": 0.6633 + }, + { + "start": 17095.54, + "end": 17096.16, + "probability": 0.4332 + }, + { + "start": 17096.46, + "end": 17097.0, + "probability": 0.5499 + }, + { + "start": 17097.06, + "end": 17098.98, + "probability": 0.938 + }, + { + "start": 17100.68, + "end": 17102.88, + "probability": 0.5059 + }, + { + "start": 17102.94, + "end": 17103.38, + "probability": 0.8945 + }, + { + "start": 17104.21, + "end": 17108.64, + "probability": 0.9919 + }, + { + "start": 17108.82, + "end": 17111.62, + "probability": 0.9727 + }, + { + "start": 17112.48, + "end": 17117.92, + "probability": 0.948 + }, + { + "start": 17119.32, + "end": 17121.2, + "probability": 0.9549 + }, + { + "start": 17122.36, + "end": 17125.6, + "probability": 0.8005 + }, + { + "start": 17126.06, + "end": 17129.32, + "probability": 0.9843 + }, + { + "start": 17129.58, + "end": 17135.58, + "probability": 0.9384 + }, + { + "start": 17136.6, + "end": 17139.86, + "probability": 0.6295 + }, + { + "start": 17140.3, + "end": 17141.08, + "probability": 0.9827 + }, + { + "start": 17141.72, + "end": 17145.0, + "probability": 0.8473 + }, + { + "start": 17145.04, + "end": 17145.64, + "probability": 0.6944 + }, + { + "start": 17146.16, + "end": 17151.58, + "probability": 0.9757 + }, + { + "start": 17153.52, + "end": 17162.08, + "probability": 0.9937 + }, + { + "start": 17162.8, + "end": 17167.46, + "probability": 0.8472 + }, + { + "start": 17167.94, + "end": 17169.62, + "probability": 0.9696 + }, + { + "start": 17170.14, + "end": 17171.96, + "probability": 0.9222 + }, + { + "start": 17171.98, + "end": 17175.34, + "probability": 0.9379 + }, + { + "start": 17177.48, + "end": 17183.76, + "probability": 0.9974 + }, + { + "start": 17184.36, + "end": 17187.44, + "probability": 0.9946 + }, + { + "start": 17187.44, + "end": 17191.32, + "probability": 0.9988 + }, + { + "start": 17192.04, + "end": 17195.48, + "probability": 0.9263 + }, + { + "start": 17195.54, + "end": 17200.22, + "probability": 0.9862 + }, + { + "start": 17200.62, + "end": 17201.96, + "probability": 0.9661 + }, + { + "start": 17202.22, + "end": 17204.88, + "probability": 0.8986 + }, + { + "start": 17205.0, + "end": 17205.9, + "probability": 0.9862 + }, + { + "start": 17206.3, + "end": 17208.44, + "probability": 0.9333 + }, + { + "start": 17210.0, + "end": 17213.12, + "probability": 0.5801 + }, + { + "start": 17213.94, + "end": 17217.18, + "probability": 0.967 + }, + { + "start": 17217.64, + "end": 17220.14, + "probability": 0.8413 + }, + { + "start": 17220.5, + "end": 17224.9, + "probability": 0.9844 + }, + { + "start": 17225.38, + "end": 17227.48, + "probability": 0.9919 + }, + { + "start": 17227.66, + "end": 17230.68, + "probability": 0.8846 + }, + { + "start": 17231.42, + "end": 17234.42, + "probability": 0.9887 + }, + { + "start": 17235.1, + "end": 17235.2, + "probability": 0.8182 + }, + { + "start": 17236.22, + "end": 17237.36, + "probability": 0.6082 + }, + { + "start": 17237.62, + "end": 17239.28, + "probability": 0.7856 + }, + { + "start": 17241.02, + "end": 17241.26, + "probability": 0.2619 + }, + { + "start": 17256.96, + "end": 17258.16, + "probability": 0.3855 + }, + { + "start": 17258.96, + "end": 17260.7, + "probability": 0.6222 + }, + { + "start": 17261.94, + "end": 17262.8, + "probability": 0.553 + }, + { + "start": 17263.04, + "end": 17264.08, + "probability": 0.9814 + }, + { + "start": 17264.22, + "end": 17265.31, + "probability": 0.9595 + }, + { + "start": 17265.4, + "end": 17266.54, + "probability": 0.9686 + }, + { + "start": 17266.62, + "end": 17267.48, + "probability": 0.6913 + }, + { + "start": 17268.1, + "end": 17270.4, + "probability": 0.9907 + }, + { + "start": 17270.4, + "end": 17273.5, + "probability": 0.9903 + }, + { + "start": 17273.58, + "end": 17274.32, + "probability": 0.7392 + }, + { + "start": 17274.92, + "end": 17276.5, + "probability": 0.9972 + }, + { + "start": 17277.14, + "end": 17279.4, + "probability": 0.9979 + }, + { + "start": 17279.4, + "end": 17281.72, + "probability": 0.9778 + }, + { + "start": 17281.88, + "end": 17283.86, + "probability": 0.9961 + }, + { + "start": 17285.58, + "end": 17288.86, + "probability": 0.9984 + }, + { + "start": 17289.8, + "end": 17290.62, + "probability": 0.554 + }, + { + "start": 17291.48, + "end": 17293.4, + "probability": 0.7569 + }, + { + "start": 17294.4, + "end": 17295.76, + "probability": 0.9907 + }, + { + "start": 17296.48, + "end": 17298.86, + "probability": 0.9531 + }, + { + "start": 17300.22, + "end": 17303.76, + "probability": 0.9951 + }, + { + "start": 17304.48, + "end": 17307.0, + "probability": 0.9922 + }, + { + "start": 17308.24, + "end": 17309.4, + "probability": 0.8047 + }, + { + "start": 17310.02, + "end": 17311.4, + "probability": 0.9431 + }, + { + "start": 17312.34, + "end": 17314.38, + "probability": 0.7865 + }, + { + "start": 17314.9, + "end": 17316.14, + "probability": 0.879 + }, + { + "start": 17316.76, + "end": 17319.94, + "probability": 0.9752 + }, + { + "start": 17320.68, + "end": 17322.08, + "probability": 0.8497 + }, + { + "start": 17322.2, + "end": 17323.04, + "probability": 0.9121 + }, + { + "start": 17323.1, + "end": 17324.34, + "probability": 0.9767 + }, + { + "start": 17325.36, + "end": 17327.96, + "probability": 0.9858 + }, + { + "start": 17328.66, + "end": 17331.28, + "probability": 0.9503 + }, + { + "start": 17331.86, + "end": 17335.04, + "probability": 0.9673 + }, + { + "start": 17336.68, + "end": 17337.88, + "probability": 0.8524 + }, + { + "start": 17338.78, + "end": 17340.5, + "probability": 0.964 + }, + { + "start": 17341.04, + "end": 17342.7, + "probability": 0.9541 + }, + { + "start": 17343.46, + "end": 17349.2, + "probability": 0.9513 + }, + { + "start": 17349.22, + "end": 17350.3, + "probability": 0.6686 + }, + { + "start": 17351.5, + "end": 17354.62, + "probability": 0.9871 + }, + { + "start": 17354.94, + "end": 17356.56, + "probability": 0.8986 + }, + { + "start": 17357.06, + "end": 17362.22, + "probability": 0.9946 + }, + { + "start": 17362.36, + "end": 17363.08, + "probability": 0.949 + }, + { + "start": 17363.2, + "end": 17364.18, + "probability": 0.899 + }, + { + "start": 17365.7, + "end": 17371.94, + "probability": 0.9455 + }, + { + "start": 17372.42, + "end": 17374.46, + "probability": 0.1543 + }, + { + "start": 17374.46, + "end": 17376.36, + "probability": 0.7672 + }, + { + "start": 17376.98, + "end": 17380.24, + "probability": 0.5395 + }, + { + "start": 17381.42, + "end": 17382.4, + "probability": 0.5555 + }, + { + "start": 17382.68, + "end": 17383.92, + "probability": 0.8668 + }, + { + "start": 17383.96, + "end": 17391.6, + "probability": 0.9811 + }, + { + "start": 17391.72, + "end": 17392.4, + "probability": 0.594 + }, + { + "start": 17394.46, + "end": 17397.22, + "probability": 0.7834 + }, + { + "start": 17397.96, + "end": 17398.86, + "probability": 0.929 + }, + { + "start": 17399.58, + "end": 17400.42, + "probability": 0.9175 + }, + { + "start": 17400.94, + "end": 17403.5, + "probability": 0.8129 + }, + { + "start": 17404.18, + "end": 17405.56, + "probability": 0.7584 + }, + { + "start": 17406.22, + "end": 17407.38, + "probability": 0.874 + }, + { + "start": 17409.28, + "end": 17409.62, + "probability": 0.2189 + }, + { + "start": 17410.82, + "end": 17411.52, + "probability": 0.282 + }, + { + "start": 17412.1, + "end": 17413.94, + "probability": 0.6148 + }, + { + "start": 17414.62, + "end": 17420.14, + "probability": 0.7518 + }, + { + "start": 17420.78, + "end": 17423.05, + "probability": 0.9653 + }, + { + "start": 17424.14, + "end": 17427.3, + "probability": 0.5747 + }, + { + "start": 17428.16, + "end": 17429.76, + "probability": 0.2698 + }, + { + "start": 17430.88, + "end": 17431.68, + "probability": 0.9106 + }, + { + "start": 17432.44, + "end": 17433.22, + "probability": 0.7175 + }, + { + "start": 17434.32, + "end": 17436.1, + "probability": 0.8573 + }, + { + "start": 17438.15, + "end": 17440.84, + "probability": 0.7088 + }, + { + "start": 17441.6, + "end": 17442.34, + "probability": 0.9665 + }, + { + "start": 17442.94, + "end": 17443.5, + "probability": 0.9221 + }, + { + "start": 17444.04, + "end": 17444.66, + "probability": 0.8825 + }, + { + "start": 17445.52, + "end": 17446.7, + "probability": 0.8503 + }, + { + "start": 17447.3, + "end": 17447.94, + "probability": 0.8274 + }, + { + "start": 17449.46, + "end": 17451.46, + "probability": 0.3223 + }, + { + "start": 17451.46, + "end": 17451.78, + "probability": 0.7393 + }, + { + "start": 17452.68, + "end": 17452.88, + "probability": 0.9851 + }, + { + "start": 17453.42, + "end": 17454.16, + "probability": 0.6714 + }, + { + "start": 17454.88, + "end": 17455.86, + "probability": 0.6762 + }, + { + "start": 17455.9, + "end": 17456.78, + "probability": 0.9504 + }, + { + "start": 17459.88, + "end": 17460.76, + "probability": 0.159 + }, + { + "start": 17462.86, + "end": 17463.48, + "probability": 0.2092 + }, + { + "start": 17488.12, + "end": 17491.58, + "probability": 0.9959 + }, + { + "start": 17493.14, + "end": 17496.96, + "probability": 0.9565 + }, + { + "start": 17498.28, + "end": 17499.82, + "probability": 0.9497 + }, + { + "start": 17500.76, + "end": 17503.52, + "probability": 0.9824 + }, + { + "start": 17504.5, + "end": 17508.68, + "probability": 0.9941 + }, + { + "start": 17510.12, + "end": 17511.68, + "probability": 0.9519 + }, + { + "start": 17513.22, + "end": 17516.9, + "probability": 0.9917 + }, + { + "start": 17517.8, + "end": 17518.64, + "probability": 0.9836 + }, + { + "start": 17519.84, + "end": 17525.46, + "probability": 0.9907 + }, + { + "start": 17526.72, + "end": 17533.62, + "probability": 0.9898 + }, + { + "start": 17535.68, + "end": 17537.0, + "probability": 0.7411 + }, + { + "start": 17537.86, + "end": 17540.16, + "probability": 0.9951 + }, + { + "start": 17541.28, + "end": 17544.16, + "probability": 0.9969 + }, + { + "start": 17545.0, + "end": 17547.86, + "probability": 0.7734 + }, + { + "start": 17548.12, + "end": 17549.7, + "probability": 0.877 + }, + { + "start": 17550.12, + "end": 17551.72, + "probability": 0.951 + }, + { + "start": 17553.02, + "end": 17558.68, + "probability": 0.9982 + }, + { + "start": 17559.68, + "end": 17562.8, + "probability": 0.9768 + }, + { + "start": 17563.94, + "end": 17565.5, + "probability": 0.8741 + }, + { + "start": 17566.52, + "end": 17574.24, + "probability": 0.9845 + }, + { + "start": 17576.08, + "end": 17577.58, + "probability": 0.9199 + }, + { + "start": 17578.38, + "end": 17579.34, + "probability": 0.8892 + }, + { + "start": 17580.48, + "end": 17583.2, + "probability": 0.9263 + }, + { + "start": 17584.42, + "end": 17585.11, + "probability": 0.7473 + }, + { + "start": 17586.48, + "end": 17587.26, + "probability": 0.9317 + }, + { + "start": 17588.74, + "end": 17591.46, + "probability": 0.9636 + }, + { + "start": 17593.14, + "end": 17594.82, + "probability": 0.9611 + }, + { + "start": 17596.04, + "end": 17599.32, + "probability": 0.5982 + }, + { + "start": 17599.96, + "end": 17600.54, + "probability": 0.8286 + }, + { + "start": 17601.66, + "end": 17605.06, + "probability": 0.7891 + }, + { + "start": 17605.76, + "end": 17607.4, + "probability": 0.8872 + }, + { + "start": 17608.34, + "end": 17615.72, + "probability": 0.9764 + }, + { + "start": 17616.8, + "end": 17618.42, + "probability": 0.868 + }, + { + "start": 17619.02, + "end": 17620.3, + "probability": 0.8761 + }, + { + "start": 17621.56, + "end": 17624.24, + "probability": 0.9871 + }, + { + "start": 17625.42, + "end": 17628.46, + "probability": 0.9597 + }, + { + "start": 17629.38, + "end": 17633.94, + "probability": 0.9949 + }, + { + "start": 17633.94, + "end": 17638.86, + "probability": 0.9861 + }, + { + "start": 17639.7, + "end": 17642.52, + "probability": 0.5721 + }, + { + "start": 17643.4, + "end": 17644.44, + "probability": 0.1652 + }, + { + "start": 17645.42, + "end": 17645.54, + "probability": 0.2526 + }, + { + "start": 17645.54, + "end": 17645.86, + "probability": 0.6141 + }, + { + "start": 17646.7, + "end": 17648.06, + "probability": 0.9713 + }, + { + "start": 17648.08, + "end": 17650.0, + "probability": 0.792 + }, + { + "start": 17650.56, + "end": 17651.64, + "probability": 0.908 + }, + { + "start": 17651.74, + "end": 17654.01, + "probability": 0.9368 + }, + { + "start": 17654.48, + "end": 17655.84, + "probability": 0.9124 + }, + { + "start": 17656.04, + "end": 17657.04, + "probability": 0.8438 + }, + { + "start": 17657.78, + "end": 17658.32, + "probability": 0.8617 + }, + { + "start": 17658.88, + "end": 17659.26, + "probability": 0.9424 + }, + { + "start": 17660.42, + "end": 17661.26, + "probability": 0.9758 + }, + { + "start": 17661.26, + "end": 17662.82, + "probability": 0.9949 + }, + { + "start": 17665.12, + "end": 17669.22, + "probability": 0.9752 + }, + { + "start": 17670.02, + "end": 17675.32, + "probability": 0.2507 + }, + { + "start": 17676.26, + "end": 17677.22, + "probability": 0.7428 + }, + { + "start": 17677.9, + "end": 17681.26, + "probability": 0.9749 + }, + { + "start": 17682.98, + "end": 17685.78, + "probability": 0.9779 + }, + { + "start": 17685.84, + "end": 17688.22, + "probability": 0.9702 + }, + { + "start": 17688.58, + "end": 17693.26, + "probability": 0.9905 + }, + { + "start": 17694.34, + "end": 17695.34, + "probability": 0.879 + }, + { + "start": 17696.1, + "end": 17697.66, + "probability": 0.8604 + }, + { + "start": 17699.16, + "end": 17701.04, + "probability": 0.9985 + }, + { + "start": 17701.92, + "end": 17703.42, + "probability": 0.986 + }, + { + "start": 17704.02, + "end": 17707.21, + "probability": 0.9973 + }, + { + "start": 17709.38, + "end": 17711.52, + "probability": 0.7003 + }, + { + "start": 17712.16, + "end": 17714.76, + "probability": 0.901 + }, + { + "start": 17717.82, + "end": 17718.34, + "probability": 0.9407 + }, + { + "start": 17719.83, + "end": 17722.06, + "probability": 0.5218 + }, + { + "start": 17723.28, + "end": 17724.26, + "probability": 0.9121 + }, + { + "start": 17724.86, + "end": 17727.12, + "probability": 0.9462 + }, + { + "start": 17728.52, + "end": 17729.94, + "probability": 0.7944 + }, + { + "start": 17731.3, + "end": 17734.74, + "probability": 0.9649 + }, + { + "start": 17737.2, + "end": 17739.36, + "probability": 0.8982 + }, + { + "start": 17739.48, + "end": 17741.28, + "probability": 0.748 + }, + { + "start": 17743.86, + "end": 17744.24, + "probability": 0.2677 + }, + { + "start": 17744.24, + "end": 17744.8, + "probability": 0.8205 + }, + { + "start": 17746.08, + "end": 17749.32, + "probability": 0.9909 + }, + { + "start": 17749.58, + "end": 17750.14, + "probability": 0.7648 + }, + { + "start": 17750.3, + "end": 17750.84, + "probability": 0.7075 + }, + { + "start": 17750.86, + "end": 17754.32, + "probability": 0.989 + }, + { + "start": 17758.52, + "end": 17759.62, + "probability": 0.9289 + }, + { + "start": 17762.52, + "end": 17764.04, + "probability": 0.8796 + }, + { + "start": 17764.86, + "end": 17766.66, + "probability": 0.9689 + }, + { + "start": 17767.28, + "end": 17768.06, + "probability": 0.9282 + }, + { + "start": 17768.1, + "end": 17771.32, + "probability": 0.9886 + }, + { + "start": 17771.44, + "end": 17771.94, + "probability": 0.8012 + }, + { + "start": 17772.06, + "end": 17772.82, + "probability": 0.9056 + }, + { + "start": 17773.86, + "end": 17775.04, + "probability": 0.7981 + }, + { + "start": 17776.66, + "end": 17778.24, + "probability": 0.738 + }, + { + "start": 17778.36, + "end": 17779.56, + "probability": 0.4981 + }, + { + "start": 17779.56, + "end": 17781.76, + "probability": 0.956 + }, + { + "start": 17782.4, + "end": 17784.24, + "probability": 0.8872 + }, + { + "start": 17786.26, + "end": 17788.6, + "probability": 0.5945 + }, + { + "start": 17788.9, + "end": 17789.8, + "probability": 0.7113 + }, + { + "start": 17790.62, + "end": 17793.84, + "probability": 0.9893 + }, + { + "start": 17794.58, + "end": 17799.44, + "probability": 0.9303 + }, + { + "start": 17801.12, + "end": 17805.48, + "probability": 0.9757 + }, + { + "start": 17806.72, + "end": 17811.58, + "probability": 0.9332 + }, + { + "start": 17811.66, + "end": 17813.68, + "probability": 0.9945 + }, + { + "start": 17814.32, + "end": 17816.94, + "probability": 0.9987 + }, + { + "start": 17817.96, + "end": 17822.74, + "probability": 0.9207 + }, + { + "start": 17824.14, + "end": 17826.3, + "probability": 0.9657 + }, + { + "start": 17827.7, + "end": 17828.7, + "probability": 0.9988 + }, + { + "start": 17830.58, + "end": 17835.34, + "probability": 0.7844 + }, + { + "start": 17836.6, + "end": 17837.42, + "probability": 0.6257 + }, + { + "start": 17838.26, + "end": 17841.48, + "probability": 0.7021 + }, + { + "start": 17841.74, + "end": 17844.22, + "probability": 0.8955 + }, + { + "start": 17845.34, + "end": 17847.14, + "probability": 0.9245 + }, + { + "start": 17848.04, + "end": 17850.8, + "probability": 0.9932 + }, + { + "start": 17850.88, + "end": 17851.72, + "probability": 0.6078 + }, + { + "start": 17852.5, + "end": 17853.72, + "probability": 0.8012 + }, + { + "start": 17855.38, + "end": 17858.04, + "probability": 0.9985 + }, + { + "start": 17859.24, + "end": 17860.61, + "probability": 0.9188 + }, + { + "start": 17861.96, + "end": 17865.88, + "probability": 0.8972 + }, + { + "start": 17867.9, + "end": 17873.22, + "probability": 0.9518 + }, + { + "start": 17874.18, + "end": 17874.5, + "probability": 0.453 + }, + { + "start": 17875.02, + "end": 17876.64, + "probability": 0.858 + }, + { + "start": 17878.74, + "end": 17883.44, + "probability": 0.9062 + }, + { + "start": 17884.44, + "end": 17885.66, + "probability": 0.9754 + }, + { + "start": 17886.58, + "end": 17889.9, + "probability": 0.7847 + }, + { + "start": 17890.58, + "end": 17892.8, + "probability": 0.912 + }, + { + "start": 17893.78, + "end": 17895.68, + "probability": 0.9845 + }, + { + "start": 17896.04, + "end": 17896.9, + "probability": 0.5532 + }, + { + "start": 17897.16, + "end": 17899.76, + "probability": 0.6933 + }, + { + "start": 17900.14, + "end": 17901.62, + "probability": 0.8865 + }, + { + "start": 17903.84, + "end": 17906.91, + "probability": 0.6982 + }, + { + "start": 17907.64, + "end": 17912.78, + "probability": 0.981 + }, + { + "start": 17913.52, + "end": 17914.58, + "probability": 0.9385 + }, + { + "start": 17914.64, + "end": 17918.3, + "probability": 0.986 + }, + { + "start": 17919.42, + "end": 17925.04, + "probability": 0.9829 + }, + { + "start": 17926.1, + "end": 17927.64, + "probability": 0.9884 + }, + { + "start": 17927.76, + "end": 17928.2, + "probability": 0.7829 + }, + { + "start": 17928.24, + "end": 17928.72, + "probability": 0.7789 + }, + { + "start": 17928.8, + "end": 17929.2, + "probability": 0.776 + }, + { + "start": 17929.24, + "end": 17929.88, + "probability": 0.892 + }, + { + "start": 17930.18, + "end": 17931.64, + "probability": 0.8854 + }, + { + "start": 17931.64, + "end": 17934.7, + "probability": 0.9707 + }, + { + "start": 17935.1, + "end": 17937.94, + "probability": 0.9921 + }, + { + "start": 17939.48, + "end": 17942.02, + "probability": 0.9857 + }, + { + "start": 17942.06, + "end": 17942.32, + "probability": 0.6526 + }, + { + "start": 17942.34, + "end": 17942.62, + "probability": 0.7356 + }, + { + "start": 17944.02, + "end": 17946.4, + "probability": 0.7579 + }, + { + "start": 17949.1, + "end": 17949.64, + "probability": 0.9261 + }, + { + "start": 17952.46, + "end": 17955.94, + "probability": 0.9559 + }, + { + "start": 17956.16, + "end": 17958.14, + "probability": 0.69 + }, + { + "start": 17958.28, + "end": 17958.54, + "probability": 0.0512 + }, + { + "start": 17959.76, + "end": 17962.34, + "probability": 0.9303 + }, + { + "start": 17964.46, + "end": 17967.24, + "probability": 0.9504 + }, + { + "start": 17968.78, + "end": 17969.52, + "probability": 0.8694 + }, + { + "start": 17971.42, + "end": 17972.54, + "probability": 0.8573 + }, + { + "start": 17972.84, + "end": 17975.42, + "probability": 0.9801 + }, + { + "start": 17976.72, + "end": 17978.7, + "probability": 0.9186 + }, + { + "start": 17979.7, + "end": 17982.02, + "probability": 0.6004 + }, + { + "start": 17983.16, + "end": 17990.5, + "probability": 0.9648 + }, + { + "start": 17991.64, + "end": 17994.2, + "probability": 0.9468 + }, + { + "start": 17994.86, + "end": 17995.8, + "probability": 0.9617 + }, + { + "start": 17996.42, + "end": 18000.78, + "probability": 0.9562 + }, + { + "start": 18002.52, + "end": 18002.86, + "probability": 0.9233 + }, + { + "start": 18003.94, + "end": 18005.76, + "probability": 0.6204 + }, + { + "start": 18006.44, + "end": 18008.08, + "probability": 0.8088 + }, + { + "start": 18009.58, + "end": 18013.62, + "probability": 0.7718 + }, + { + "start": 18015.24, + "end": 18016.26, + "probability": 0.8806 + }, + { + "start": 18017.86, + "end": 18019.7, + "probability": 0.9987 + }, + { + "start": 18020.92, + "end": 18026.84, + "probability": 0.9915 + }, + { + "start": 18029.08, + "end": 18030.32, + "probability": 0.9886 + }, + { + "start": 18031.24, + "end": 18033.38, + "probability": 0.9883 + }, + { + "start": 18035.16, + "end": 18036.94, + "probability": 0.9933 + }, + { + "start": 18039.96, + "end": 18044.54, + "probability": 0.9424 + }, + { + "start": 18045.52, + "end": 18048.24, + "probability": 0.9229 + }, + { + "start": 18049.9, + "end": 18052.9, + "probability": 0.7406 + }, + { + "start": 18053.06, + "end": 18058.06, + "probability": 0.8506 + }, + { + "start": 18058.08, + "end": 18060.22, + "probability": 0.6057 + }, + { + "start": 18061.66, + "end": 18065.22, + "probability": 0.7268 + }, + { + "start": 18066.42, + "end": 18069.34, + "probability": 0.9611 + }, + { + "start": 18070.78, + "end": 18072.52, + "probability": 0.8848 + }, + { + "start": 18074.8, + "end": 18077.04, + "probability": 0.9839 + }, + { + "start": 18078.2, + "end": 18078.88, + "probability": 0.7957 + }, + { + "start": 18079.54, + "end": 18080.24, + "probability": 0.8687 + }, + { + "start": 18081.84, + "end": 18088.56, + "probability": 0.9854 + }, + { + "start": 18088.64, + "end": 18090.46, + "probability": 0.9381 + }, + { + "start": 18091.86, + "end": 18094.54, + "probability": 0.9716 + }, + { + "start": 18095.26, + "end": 18096.75, + "probability": 0.9828 + }, + { + "start": 18098.94, + "end": 18100.3, + "probability": 0.7154 + }, + { + "start": 18101.64, + "end": 18104.3, + "probability": 0.9832 + }, + { + "start": 18104.88, + "end": 18105.76, + "probability": 0.9641 + }, + { + "start": 18105.9, + "end": 18106.32, + "probability": 0.9835 + }, + { + "start": 18107.0, + "end": 18107.51, + "probability": 0.9916 + }, + { + "start": 18108.3, + "end": 18110.16, + "probability": 0.8924 + }, + { + "start": 18110.26, + "end": 18111.46, + "probability": 0.9699 + }, + { + "start": 18112.7, + "end": 18115.84, + "probability": 0.9954 + }, + { + "start": 18115.96, + "end": 18116.72, + "probability": 0.668 + }, + { + "start": 18116.8, + "end": 18118.64, + "probability": 0.9114 + }, + { + "start": 18119.4, + "end": 18122.1, + "probability": 0.9652 + }, + { + "start": 18122.78, + "end": 18128.04, + "probability": 0.9916 + }, + { + "start": 18128.3, + "end": 18129.82, + "probability": 0.9975 + }, + { + "start": 18130.18, + "end": 18134.98, + "probability": 0.9987 + }, + { + "start": 18135.28, + "end": 18137.4, + "probability": 0.87 + }, + { + "start": 18137.84, + "end": 18138.32, + "probability": 0.9899 + }, + { + "start": 18140.28, + "end": 18140.88, + "probability": 0.838 + }, + { + "start": 18142.26, + "end": 18144.72, + "probability": 0.6272 + }, + { + "start": 18144.78, + "end": 18146.2, + "probability": 0.9306 + }, + { + "start": 18146.3, + "end": 18146.86, + "probability": 0.6934 + }, + { + "start": 18147.88, + "end": 18149.84, + "probability": 0.5889 + }, + { + "start": 18151.32, + "end": 18154.62, + "probability": 0.8848 + }, + { + "start": 18156.08, + "end": 18160.24, + "probability": 0.9796 + }, + { + "start": 18161.36, + "end": 18163.1, + "probability": 0.9642 + }, + { + "start": 18164.0, + "end": 18164.3, + "probability": 0.7592 + }, + { + "start": 18165.72, + "end": 18166.88, + "probability": 0.686 + }, + { + "start": 18167.82, + "end": 18171.12, + "probability": 0.9297 + }, + { + "start": 18171.98, + "end": 18174.44, + "probability": 0.9774 + }, + { + "start": 18175.6, + "end": 18176.88, + "probability": 0.9945 + }, + { + "start": 18177.66, + "end": 18178.96, + "probability": 0.9957 + }, + { + "start": 18179.3, + "end": 18181.24, + "probability": 0.8868 + }, + { + "start": 18181.98, + "end": 18183.44, + "probability": 0.787 + }, + { + "start": 18183.48, + "end": 18185.5, + "probability": 0.8435 + }, + { + "start": 18188.33, + "end": 18189.1, + "probability": 0.5336 + }, + { + "start": 18189.1, + "end": 18189.68, + "probability": 0.0461 + }, + { + "start": 18189.7, + "end": 18190.44, + "probability": 0.2585 + }, + { + "start": 18190.44, + "end": 18193.52, + "probability": 0.8806 + }, + { + "start": 18194.02, + "end": 18195.26, + "probability": 0.9929 + }, + { + "start": 18196.04, + "end": 18199.09, + "probability": 0.9636 + }, + { + "start": 18199.64, + "end": 18201.68, + "probability": 0.9697 + }, + { + "start": 18201.84, + "end": 18203.62, + "probability": 0.9334 + }, + { + "start": 18204.1, + "end": 18207.9, + "probability": 0.9249 + }, + { + "start": 18208.34, + "end": 18210.88, + "probability": 0.4914 + }, + { + "start": 18212.16, + "end": 18212.16, + "probability": 0.2745 + }, + { + "start": 18212.16, + "end": 18212.82, + "probability": 0.7662 + }, + { + "start": 18213.0, + "end": 18213.82, + "probability": 0.9829 + }, + { + "start": 18213.86, + "end": 18215.5, + "probability": 0.8363 + }, + { + "start": 18215.54, + "end": 18216.06, + "probability": 0.8859 + }, + { + "start": 18216.42, + "end": 18216.72, + "probability": 0.0003 + }, + { + "start": 18217.6, + "end": 18217.6, + "probability": 0.0312 + }, + { + "start": 18217.6, + "end": 18218.34, + "probability": 0.3564 + }, + { + "start": 18218.34, + "end": 18219.32, + "probability": 0.4075 + }, + { + "start": 18219.32, + "end": 18220.2, + "probability": 0.6712 + }, + { + "start": 18220.2, + "end": 18220.32, + "probability": 0.6904 + }, + { + "start": 18220.32, + "end": 18221.12, + "probability": 0.7085 + }, + { + "start": 18221.36, + "end": 18224.32, + "probability": 0.5771 + }, + { + "start": 18224.64, + "end": 18224.64, + "probability": 0.3418 + }, + { + "start": 18224.64, + "end": 18226.53, + "probability": 0.5437 + }, + { + "start": 18227.12, + "end": 18227.7, + "probability": 0.5493 + }, + { + "start": 18228.22, + "end": 18231.08, + "probability": 0.9888 + }, + { + "start": 18231.08, + "end": 18231.78, + "probability": 0.6134 + }, + { + "start": 18231.78, + "end": 18235.88, + "probability": 0.9473 + }, + { + "start": 18236.46, + "end": 18237.74, + "probability": 0.3139 + }, + { + "start": 18237.74, + "end": 18241.36, + "probability": 0.9639 + }, + { + "start": 18241.48, + "end": 18242.56, + "probability": 0.8914 + }, + { + "start": 18242.76, + "end": 18244.48, + "probability": 0.9901 + }, + { + "start": 18244.62, + "end": 18245.74, + "probability": 0.9883 + }, + { + "start": 18245.76, + "end": 18247.26, + "probability": 0.9768 + }, + { + "start": 18247.8, + "end": 18249.1, + "probability": 0.9927 + }, + { + "start": 18250.54, + "end": 18253.86, + "probability": 0.9922 + }, + { + "start": 18254.04, + "end": 18256.34, + "probability": 0.9929 + }, + { + "start": 18257.04, + "end": 18258.0, + "probability": 0.514 + }, + { + "start": 18258.1, + "end": 18258.82, + "probability": 0.8861 + }, + { + "start": 18258.96, + "end": 18259.14, + "probability": 0.4904 + }, + { + "start": 18259.46, + "end": 18260.68, + "probability": 0.9738 + }, + { + "start": 18260.78, + "end": 18262.04, + "probability": 0.9935 + }, + { + "start": 18262.34, + "end": 18263.46, + "probability": 0.9951 + }, + { + "start": 18264.5, + "end": 18267.32, + "probability": 0.989 + }, + { + "start": 18267.74, + "end": 18269.94, + "probability": 0.9396 + }, + { + "start": 18270.46, + "end": 18271.32, + "probability": 0.9587 + }, + { + "start": 18272.46, + "end": 18274.36, + "probability": 0.993 + }, + { + "start": 18274.98, + "end": 18275.78, + "probability": 0.7585 + }, + { + "start": 18276.42, + "end": 18276.95, + "probability": 0.9858 + }, + { + "start": 18277.68, + "end": 18278.14, + "probability": 0.5122 + }, + { + "start": 18278.66, + "end": 18281.54, + "probability": 0.7786 + }, + { + "start": 18282.3, + "end": 18283.54, + "probability": 0.9458 + }, + { + "start": 18284.56, + "end": 18285.62, + "probability": 0.7496 + }, + { + "start": 18286.62, + "end": 18287.56, + "probability": 0.925 + }, + { + "start": 18288.16, + "end": 18288.32, + "probability": 0.8649 + }, + { + "start": 18288.4, + "end": 18289.12, + "probability": 0.1644 + }, + { + "start": 18289.18, + "end": 18291.14, + "probability": 0.8724 + }, + { + "start": 18292.32, + "end": 18294.6, + "probability": 0.998 + }, + { + "start": 18294.88, + "end": 18296.18, + "probability": 0.9185 + }, + { + "start": 18296.22, + "end": 18297.7, + "probability": 0.5762 + }, + { + "start": 18297.7, + "end": 18297.98, + "probability": 0.5812 + }, + { + "start": 18298.28, + "end": 18298.64, + "probability": 0.8606 + }, + { + "start": 18298.94, + "end": 18300.72, + "probability": 0.9091 + }, + { + "start": 18300.82, + "end": 18301.78, + "probability": 0.8813 + }, + { + "start": 18302.72, + "end": 18304.38, + "probability": 0.6329 + }, + { + "start": 18306.1, + "end": 18307.0, + "probability": 0.0919 + }, + { + "start": 18307.12, + "end": 18309.28, + "probability": 0.4845 + }, + { + "start": 18310.62, + "end": 18313.14, + "probability": 0.999 + }, + { + "start": 18314.58, + "end": 18317.24, + "probability": 0.4612 + }, + { + "start": 18317.88, + "end": 18318.52, + "probability": 0.3503 + }, + { + "start": 18318.54, + "end": 18320.18, + "probability": 0.5697 + }, + { + "start": 18320.9, + "end": 18323.52, + "probability": 0.9375 + }, + { + "start": 18323.98, + "end": 18325.1, + "probability": 0.9692 + }, + { + "start": 18326.9, + "end": 18328.02, + "probability": 0.9515 + }, + { + "start": 18328.1, + "end": 18333.28, + "probability": 0.7874 + }, + { + "start": 18333.44, + "end": 18337.94, + "probability": 0.9985 + }, + { + "start": 18338.48, + "end": 18339.9, + "probability": 0.9977 + }, + { + "start": 18340.0, + "end": 18340.78, + "probability": 0.8939 + }, + { + "start": 18341.66, + "end": 18343.2, + "probability": 0.441 + }, + { + "start": 18343.74, + "end": 18346.6, + "probability": 0.9883 + }, + { + "start": 18346.74, + "end": 18347.08, + "probability": 0.5837 + }, + { + "start": 18347.16, + "end": 18347.46, + "probability": 0.9569 + }, + { + "start": 18348.0, + "end": 18348.9, + "probability": 0.9892 + }, + { + "start": 18349.3, + "end": 18351.42, + "probability": 0.9941 + }, + { + "start": 18352.32, + "end": 18354.18, + "probability": 0.9038 + }, + { + "start": 18354.9, + "end": 18355.76, + "probability": 0.8992 + }, + { + "start": 18355.84, + "end": 18357.02, + "probability": 0.9971 + }, + { + "start": 18358.22, + "end": 18359.9, + "probability": 0.9718 + }, + { + "start": 18360.04, + "end": 18361.04, + "probability": 0.9186 + }, + { + "start": 18361.12, + "end": 18362.7, + "probability": 0.9832 + }, + { + "start": 18362.8, + "end": 18362.94, + "probability": 0.9173 + }, + { + "start": 18363.44, + "end": 18365.42, + "probability": 0.8859 + }, + { + "start": 18365.64, + "end": 18367.44, + "probability": 0.926 + }, + { + "start": 18367.6, + "end": 18367.86, + "probability": 0.8151 + }, + { + "start": 18368.98, + "end": 18371.58, + "probability": 0.9413 + }, + { + "start": 18372.08, + "end": 18373.16, + "probability": 0.8309 + }, + { + "start": 18373.3, + "end": 18374.6, + "probability": 0.9492 + }, + { + "start": 18374.74, + "end": 18375.78, + "probability": 0.4029 + }, + { + "start": 18377.58, + "end": 18379.14, + "probability": 0.9526 + }, + { + "start": 18379.3, + "end": 18381.84, + "probability": 0.9951 + }, + { + "start": 18381.9, + "end": 18382.64, + "probability": 0.9235 + }, + { + "start": 18382.76, + "end": 18383.68, + "probability": 0.9789 + }, + { + "start": 18384.02, + "end": 18384.86, + "probability": 0.8925 + }, + { + "start": 18384.96, + "end": 18385.37, + "probability": 0.9064 + }, + { + "start": 18386.16, + "end": 18387.47, + "probability": 0.963 + }, + { + "start": 18388.18, + "end": 18389.42, + "probability": 0.8179 + }, + { + "start": 18392.04, + "end": 18393.28, + "probability": 0.7011 + }, + { + "start": 18394.1, + "end": 18395.22, + "probability": 0.9019 + }, + { + "start": 18395.3, + "end": 18396.22, + "probability": 0.9315 + }, + { + "start": 18396.34, + "end": 18397.14, + "probability": 0.4877 + }, + { + "start": 18397.44, + "end": 18399.69, + "probability": 0.5385 + }, + { + "start": 18400.24, + "end": 18401.54, + "probability": 0.9795 + }, + { + "start": 18402.56, + "end": 18404.18, + "probability": 0.9971 + }, + { + "start": 18404.26, + "end": 18405.62, + "probability": 0.9072 + }, + { + "start": 18406.5, + "end": 18407.5, + "probability": 0.952 + }, + { + "start": 18407.58, + "end": 18408.26, + "probability": 0.633 + }, + { + "start": 18408.26, + "end": 18408.78, + "probability": 0.4295 + }, + { + "start": 18409.34, + "end": 18410.1, + "probability": 0.826 + }, + { + "start": 18410.34, + "end": 18411.48, + "probability": 0.9024 + }, + { + "start": 18411.88, + "end": 18413.6, + "probability": 0.8603 + }, + { + "start": 18413.7, + "end": 18414.12, + "probability": 0.8716 + }, + { + "start": 18414.88, + "end": 18415.42, + "probability": 0.703 + }, + { + "start": 18415.54, + "end": 18415.96, + "probability": 0.792 + }, + { + "start": 18416.02, + "end": 18416.3, + "probability": 0.8468 + }, + { + "start": 18416.66, + "end": 18418.12, + "probability": 0.9976 + }, + { + "start": 18418.86, + "end": 18421.74, + "probability": 0.824 + }, + { + "start": 18421.82, + "end": 18421.92, + "probability": 0.8517 + }, + { + "start": 18422.8, + "end": 18423.32, + "probability": 0.871 + }, + { + "start": 18423.54, + "end": 18424.42, + "probability": 0.9936 + }, + { + "start": 18424.56, + "end": 18425.46, + "probability": 0.8641 + }, + { + "start": 18425.9, + "end": 18427.1, + "probability": 0.9683 + }, + { + "start": 18427.46, + "end": 18427.72, + "probability": 0.7763 + }, + { + "start": 18428.1, + "end": 18428.26, + "probability": 0.4514 + }, + { + "start": 18428.36, + "end": 18430.04, + "probability": 0.9952 + }, + { + "start": 18430.14, + "end": 18432.76, + "probability": 0.9652 + }, + { + "start": 18433.34, + "end": 18434.58, + "probability": 0.8597 + }, + { + "start": 18435.4, + "end": 18436.52, + "probability": 0.3633 + }, + { + "start": 18436.64, + "end": 18437.0, + "probability": 0.536 + }, + { + "start": 18437.0, + "end": 18437.4, + "probability": 0.4112 + }, + { + "start": 18437.59, + "end": 18440.08, + "probability": 0.6277 + }, + { + "start": 18440.48, + "end": 18441.42, + "probability": 0.9485 + }, + { + "start": 18441.58, + "end": 18443.34, + "probability": 0.7713 + }, + { + "start": 18445.88, + "end": 18446.66, + "probability": 0.6995 + }, + { + "start": 18446.78, + "end": 18448.64, + "probability": 0.6828 + }, + { + "start": 18456.78, + "end": 18457.38, + "probability": 0.4634 + }, + { + "start": 18457.66, + "end": 18458.16, + "probability": 0.8362 + }, + { + "start": 18458.96, + "end": 18459.28, + "probability": 0.0861 + }, + { + "start": 18465.22, + "end": 18467.54, + "probability": 0.3137 + }, + { + "start": 18467.6, + "end": 18471.14, + "probability": 0.9863 + }, + { + "start": 18471.98, + "end": 18473.21, + "probability": 0.8726 + }, + { + "start": 18474.38, + "end": 18477.0, + "probability": 0.8998 + }, + { + "start": 18477.8, + "end": 18477.94, + "probability": 0.1063 + }, + { + "start": 18477.94, + "end": 18480.58, + "probability": 0.7822 + }, + { + "start": 18481.34, + "end": 18483.14, + "probability": 0.5877 + }, + { + "start": 18484.52, + "end": 18485.32, + "probability": 0.7579 + }, + { + "start": 18485.42, + "end": 18487.22, + "probability": 0.8884 + }, + { + "start": 18487.24, + "end": 18488.79, + "probability": 0.9963 + }, + { + "start": 18489.96, + "end": 18494.9, + "probability": 0.5092 + }, + { + "start": 18495.18, + "end": 18496.98, + "probability": 0.3898 + }, + { + "start": 18497.28, + "end": 18500.82, + "probability": 0.7063 + }, + { + "start": 18501.0, + "end": 18503.18, + "probability": 0.2595 + }, + { + "start": 18503.6, + "end": 18504.0, + "probability": 0.0117 + }, + { + "start": 18504.0, + "end": 18509.42, + "probability": 0.9642 + }, + { + "start": 18510.56, + "end": 18511.48, + "probability": 0.2585 + }, + { + "start": 18511.64, + "end": 18514.76, + "probability": 0.9951 + }, + { + "start": 18515.46, + "end": 18519.18, + "probability": 0.0117 + }, + { + "start": 18520.26, + "end": 18523.02, + "probability": 0.2215 + }, + { + "start": 18523.02, + "end": 18528.88, + "probability": 0.0891 + }, + { + "start": 18529.58, + "end": 18529.62, + "probability": 0.1213 + }, + { + "start": 18529.62, + "end": 18532.56, + "probability": 0.2724 + }, + { + "start": 18534.92, + "end": 18535.62, + "probability": 0.0309 + }, + { + "start": 18535.62, + "end": 18535.62, + "probability": 0.1557 + }, + { + "start": 18535.62, + "end": 18535.62, + "probability": 0.2152 + }, + { + "start": 18535.62, + "end": 18535.62, + "probability": 0.0566 + }, + { + "start": 18535.62, + "end": 18535.62, + "probability": 0.0494 + }, + { + "start": 18535.62, + "end": 18536.98, + "probability": 0.0416 + }, + { + "start": 18537.26, + "end": 18540.04, + "probability": 0.7603 + }, + { + "start": 18541.22, + "end": 18542.5, + "probability": 0.9096 + }, + { + "start": 18543.62, + "end": 18546.2, + "probability": 0.6581 + }, + { + "start": 18547.18, + "end": 18550.32, + "probability": 0.9946 + }, + { + "start": 18550.32, + "end": 18553.42, + "probability": 0.9832 + }, + { + "start": 18554.2, + "end": 18555.72, + "probability": 0.9733 + }, + { + "start": 18556.4, + "end": 18557.46, + "probability": 0.7539 + }, + { + "start": 18557.9, + "end": 18558.56, + "probability": 0.3238 + }, + { + "start": 18558.64, + "end": 18559.3, + "probability": 0.8777 + }, + { + "start": 18559.56, + "end": 18562.86, + "probability": 0.9206 + }, + { + "start": 18563.5, + "end": 18564.46, + "probability": 0.9168 + }, + { + "start": 18565.06, + "end": 18567.14, + "probability": 0.903 + }, + { + "start": 18567.94, + "end": 18568.42, + "probability": 0.9302 + }, + { + "start": 18569.3, + "end": 18572.24, + "probability": 0.9949 + }, + { + "start": 18573.28, + "end": 18574.28, + "probability": 0.7923 + }, + { + "start": 18575.0, + "end": 18576.64, + "probability": 0.9833 + }, + { + "start": 18577.98, + "end": 18579.28, + "probability": 0.988 + }, + { + "start": 18580.78, + "end": 18584.66, + "probability": 0.9578 + }, + { + "start": 18585.14, + "end": 18586.48, + "probability": 0.7773 + }, + { + "start": 18587.26, + "end": 18590.92, + "probability": 0.9968 + }, + { + "start": 18591.62, + "end": 18594.18, + "probability": 0.9967 + }, + { + "start": 18594.18, + "end": 18596.88, + "probability": 0.9966 + }, + { + "start": 18597.86, + "end": 18601.44, + "probability": 0.9905 + }, + { + "start": 18602.08, + "end": 18605.08, + "probability": 0.8945 + }, + { + "start": 18605.6, + "end": 18605.92, + "probability": 0.6294 + }, + { + "start": 18606.96, + "end": 18608.32, + "probability": 0.9828 + }, + { + "start": 18609.18, + "end": 18610.37, + "probability": 0.7542 + }, + { + "start": 18611.46, + "end": 18611.98, + "probability": 0.6864 + }, + { + "start": 18612.16, + "end": 18614.76, + "probability": 0.9809 + }, + { + "start": 18614.76, + "end": 18617.62, + "probability": 0.9921 + }, + { + "start": 18618.0, + "end": 18618.84, + "probability": 0.6537 + }, + { + "start": 18619.64, + "end": 18619.78, + "probability": 0.8625 + }, + { + "start": 18620.74, + "end": 18623.42, + "probability": 0.9655 + }, + { + "start": 18624.1, + "end": 18624.78, + "probability": 0.9499 + }, + { + "start": 18625.64, + "end": 18629.98, + "probability": 0.9678 + }, + { + "start": 18630.1, + "end": 18632.48, + "probability": 0.9222 + }, + { + "start": 18634.5, + "end": 18634.9, + "probability": 0.8841 + }, + { + "start": 18635.86, + "end": 18636.7, + "probability": 0.9067 + }, + { + "start": 18637.34, + "end": 18639.5, + "probability": 0.7924 + }, + { + "start": 18640.18, + "end": 18642.4, + "probability": 0.9927 + }, + { + "start": 18643.1, + "end": 18645.56, + "probability": 0.8704 + }, + { + "start": 18646.62, + "end": 18649.9, + "probability": 0.9976 + }, + { + "start": 18650.02, + "end": 18652.55, + "probability": 0.9989 + }, + { + "start": 18653.48, + "end": 18655.72, + "probability": 0.9971 + }, + { + "start": 18656.92, + "end": 18660.84, + "probability": 0.9925 + }, + { + "start": 18660.84, + "end": 18663.76, + "probability": 0.9892 + }, + { + "start": 18665.04, + "end": 18665.56, + "probability": 0.9797 + }, + { + "start": 18666.84, + "end": 18668.56, + "probability": 0.9937 + }, + { + "start": 18669.52, + "end": 18671.9, + "probability": 0.9143 + }, + { + "start": 18672.84, + "end": 18674.88, + "probability": 0.9853 + }, + { + "start": 18674.96, + "end": 18677.14, + "probability": 0.8908 + }, + { + "start": 18677.62, + "end": 18679.54, + "probability": 0.9678 + }, + { + "start": 18680.0, + "end": 18681.26, + "probability": 0.9622 + }, + { + "start": 18681.36, + "end": 18682.26, + "probability": 0.9795 + }, + { + "start": 18684.26, + "end": 18684.82, + "probability": 0.1801 + }, + { + "start": 18686.02, + "end": 18691.98, + "probability": 0.9967 + }, + { + "start": 18692.94, + "end": 18694.18, + "probability": 0.8411 + }, + { + "start": 18694.9, + "end": 18698.0, + "probability": 0.9797 + }, + { + "start": 18698.54, + "end": 18701.6, + "probability": 0.9951 + }, + { + "start": 18701.6, + "end": 18704.78, + "probability": 0.9819 + }, + { + "start": 18705.16, + "end": 18709.86, + "probability": 0.9865 + }, + { + "start": 18710.78, + "end": 18712.3, + "probability": 0.9952 + }, + { + "start": 18713.48, + "end": 18714.24, + "probability": 0.6344 + }, + { + "start": 18714.8, + "end": 18716.92, + "probability": 0.8491 + }, + { + "start": 18717.86, + "end": 18719.26, + "probability": 0.9917 + }, + { + "start": 18719.52, + "end": 18722.0, + "probability": 0.9917 + }, + { + "start": 18722.0, + "end": 18725.38, + "probability": 0.9762 + }, + { + "start": 18726.58, + "end": 18727.4, + "probability": 0.9974 + }, + { + "start": 18728.08, + "end": 18729.4, + "probability": 0.9375 + }, + { + "start": 18732.08, + "end": 18733.16, + "probability": 0.449 + }, + { + "start": 18734.16, + "end": 18734.95, + "probability": 0.9939 + }, + { + "start": 18735.64, + "end": 18736.54, + "probability": 0.9627 + }, + { + "start": 18736.74, + "end": 18738.48, + "probability": 0.9189 + }, + { + "start": 18738.58, + "end": 18741.14, + "probability": 0.9948 + }, + { + "start": 18741.86, + "end": 18742.9, + "probability": 0.9919 + }, + { + "start": 18743.74, + "end": 18744.98, + "probability": 0.9402 + }, + { + "start": 18746.34, + "end": 18747.48, + "probability": 0.9946 + }, + { + "start": 18748.56, + "end": 18748.8, + "probability": 0.3466 + }, + { + "start": 18749.2, + "end": 18750.42, + "probability": 0.6394 + }, + { + "start": 18751.16, + "end": 18753.16, + "probability": 0.9284 + }, + { + "start": 18770.98, + "end": 18772.56, + "probability": 0.6182 + }, + { + "start": 18774.46, + "end": 18775.58, + "probability": 0.7119 + }, + { + "start": 18776.26, + "end": 18780.82, + "probability": 0.4601 + }, + { + "start": 18781.58, + "end": 18785.08, + "probability": 0.4286 + }, + { + "start": 18786.98, + "end": 18790.26, + "probability": 0.7252 + }, + { + "start": 18790.76, + "end": 18795.74, + "probability": 0.9961 + }, + { + "start": 18795.74, + "end": 18800.44, + "probability": 0.9535 + }, + { + "start": 18801.6, + "end": 18803.7, + "probability": 0.9945 + }, + { + "start": 18804.34, + "end": 18805.02, + "probability": 0.6585 + }, + { + "start": 18806.4, + "end": 18808.81, + "probability": 0.9814 + }, + { + "start": 18809.7, + "end": 18811.76, + "probability": 0.8288 + }, + { + "start": 18812.32, + "end": 18818.38, + "probability": 0.9711 + }, + { + "start": 18819.72, + "end": 18821.32, + "probability": 0.9988 + }, + { + "start": 18822.84, + "end": 18825.56, + "probability": 0.9703 + }, + { + "start": 18825.66, + "end": 18826.62, + "probability": 0.9922 + }, + { + "start": 18826.68, + "end": 18828.0, + "probability": 0.8767 + }, + { + "start": 18829.74, + "end": 18830.9, + "probability": 0.9779 + }, + { + "start": 18832.18, + "end": 18833.9, + "probability": 0.8138 + }, + { + "start": 18835.12, + "end": 18836.32, + "probability": 0.9458 + }, + { + "start": 18837.2, + "end": 18838.64, + "probability": 0.9404 + }, + { + "start": 18838.78, + "end": 18841.52, + "probability": 0.7166 + }, + { + "start": 18842.98, + "end": 18844.44, + "probability": 0.7211 + }, + { + "start": 18845.38, + "end": 18847.24, + "probability": 0.8282 + }, + { + "start": 18848.74, + "end": 18849.19, + "probability": 0.8546 + }, + { + "start": 18850.58, + "end": 18851.7, + "probability": 0.921 + }, + { + "start": 18851.94, + "end": 18854.48, + "probability": 0.6187 + }, + { + "start": 18855.78, + "end": 18856.4, + "probability": 0.784 + }, + { + "start": 18857.06, + "end": 18859.48, + "probability": 0.9204 + }, + { + "start": 18859.66, + "end": 18860.9, + "probability": 0.9971 + }, + { + "start": 18862.5, + "end": 18864.48, + "probability": 0.8784 + }, + { + "start": 18865.28, + "end": 18866.28, + "probability": 0.8954 + }, + { + "start": 18867.74, + "end": 18870.08, + "probability": 0.6923 + }, + { + "start": 18870.96, + "end": 18872.4, + "probability": 0.7837 + }, + { + "start": 18872.5, + "end": 18874.24, + "probability": 0.913 + }, + { + "start": 18875.96, + "end": 18877.38, + "probability": 0.8456 + }, + { + "start": 18879.84, + "end": 18882.38, + "probability": 0.9382 + }, + { + "start": 18884.6, + "end": 18886.02, + "probability": 0.9348 + }, + { + "start": 18887.24, + "end": 18887.83, + "probability": 0.9758 + }, + { + "start": 18890.04, + "end": 18891.22, + "probability": 0.9839 + }, + { + "start": 18891.98, + "end": 18893.44, + "probability": 0.9801 + }, + { + "start": 18895.08, + "end": 18896.38, + "probability": 0.9888 + }, + { + "start": 18899.42, + "end": 18905.26, + "probability": 0.9973 + }, + { + "start": 18906.56, + "end": 18909.44, + "probability": 0.9431 + }, + { + "start": 18910.92, + "end": 18911.78, + "probability": 0.8813 + }, + { + "start": 18912.8, + "end": 18913.88, + "probability": 0.9741 + }, + { + "start": 18915.06, + "end": 18917.04, + "probability": 0.5806 + }, + { + "start": 18917.6, + "end": 18920.0, + "probability": 0.8542 + }, + { + "start": 18921.32, + "end": 18924.74, + "probability": 0.7573 + }, + { + "start": 18925.68, + "end": 18926.52, + "probability": 0.9672 + }, + { + "start": 18928.44, + "end": 18930.18, + "probability": 0.995 + }, + { + "start": 18931.42, + "end": 18933.54, + "probability": 0.9764 + }, + { + "start": 18934.98, + "end": 18936.0, + "probability": 0.9644 + }, + { + "start": 18936.96, + "end": 18940.32, + "probability": 0.5381 + }, + { + "start": 18940.98, + "end": 18941.62, + "probability": 0.745 + }, + { + "start": 18944.36, + "end": 18946.3, + "probability": 0.9544 + }, + { + "start": 18947.42, + "end": 18950.4, + "probability": 0.9924 + }, + { + "start": 18952.18, + "end": 18954.44, + "probability": 0.9321 + }, + { + "start": 18955.06, + "end": 18956.56, + "probability": 0.9647 + }, + { + "start": 18958.5, + "end": 18960.52, + "probability": 0.8174 + }, + { + "start": 18960.66, + "end": 18961.38, + "probability": 0.7263 + }, + { + "start": 18961.54, + "end": 18963.16, + "probability": 0.9414 + }, + { + "start": 18964.04, + "end": 18965.48, + "probability": 0.9968 + }, + { + "start": 18965.84, + "end": 18970.06, + "probability": 0.9582 + }, + { + "start": 18971.54, + "end": 18973.22, + "probability": 0.9595 + }, + { + "start": 18973.52, + "end": 18974.56, + "probability": 0.4024 + }, + { + "start": 18976.4, + "end": 18979.7, + "probability": 0.9669 + }, + { + "start": 18980.42, + "end": 18983.63, + "probability": 0.999 + }, + { + "start": 18983.64, + "end": 18987.14, + "probability": 0.7664 + }, + { + "start": 18988.62, + "end": 18991.82, + "probability": 0.9761 + }, + { + "start": 18993.04, + "end": 18995.62, + "probability": 0.7591 + }, + { + "start": 18997.14, + "end": 18998.3, + "probability": 0.981 + }, + { + "start": 18998.92, + "end": 18999.72, + "probability": 0.9076 + }, + { + "start": 18999.84, + "end": 19001.18, + "probability": 0.8046 + }, + { + "start": 19001.32, + "end": 19002.52, + "probability": 0.9847 + }, + { + "start": 19004.3, + "end": 19006.7, + "probability": 0.9453 + }, + { + "start": 19007.72, + "end": 19009.46, + "probability": 0.9648 + }, + { + "start": 19010.2, + "end": 19010.84, + "probability": 0.9243 + }, + { + "start": 19011.78, + "end": 19014.08, + "probability": 0.9785 + }, + { + "start": 19015.22, + "end": 19015.96, + "probability": 0.9126 + }, + { + "start": 19016.22, + "end": 19017.5, + "probability": 0.9236 + }, + { + "start": 19017.9, + "end": 19019.66, + "probability": 0.9856 + }, + { + "start": 19020.72, + "end": 19024.6, + "probability": 0.9844 + }, + { + "start": 19024.92, + "end": 19025.98, + "probability": 0.9917 + }, + { + "start": 19026.86, + "end": 19029.72, + "probability": 0.9899 + }, + { + "start": 19030.18, + "end": 19031.34, + "probability": 0.9194 + }, + { + "start": 19032.48, + "end": 19033.94, + "probability": 0.9595 + }, + { + "start": 19034.84, + "end": 19035.9, + "probability": 0.9717 + }, + { + "start": 19036.0, + "end": 19040.36, + "probability": 0.9268 + }, + { + "start": 19040.36, + "end": 19044.54, + "probability": 0.9768 + }, + { + "start": 19046.08, + "end": 19047.1, + "probability": 0.4973 + }, + { + "start": 19047.44, + "end": 19049.47, + "probability": 0.8398 + }, + { + "start": 19078.44, + "end": 19081.16, + "probability": 0.7023 + }, + { + "start": 19083.2, + "end": 19090.14, + "probability": 0.9718 + }, + { + "start": 19091.46, + "end": 19092.72, + "probability": 0.8824 + }, + { + "start": 19094.1, + "end": 19099.52, + "probability": 0.9768 + }, + { + "start": 19101.36, + "end": 19101.9, + "probability": 0.821 + }, + { + "start": 19102.72, + "end": 19107.5, + "probability": 0.9532 + }, + { + "start": 19108.88, + "end": 19114.94, + "probability": 0.9864 + }, + { + "start": 19115.06, + "end": 19115.9, + "probability": 0.7232 + }, + { + "start": 19116.96, + "end": 19119.16, + "probability": 0.9755 + }, + { + "start": 19120.54, + "end": 19122.84, + "probability": 0.9934 + }, + { + "start": 19124.02, + "end": 19124.44, + "probability": 0.6981 + }, + { + "start": 19125.44, + "end": 19126.48, + "probability": 0.8651 + }, + { + "start": 19127.96, + "end": 19128.9, + "probability": 0.8722 + }, + { + "start": 19130.26, + "end": 19132.16, + "probability": 0.8065 + }, + { + "start": 19132.4, + "end": 19134.46, + "probability": 0.9975 + }, + { + "start": 19135.58, + "end": 19139.74, + "probability": 0.9968 + }, + { + "start": 19140.12, + "end": 19142.58, + "probability": 0.9937 + }, + { + "start": 19142.74, + "end": 19144.96, + "probability": 0.6913 + }, + { + "start": 19146.04, + "end": 19149.48, + "probability": 0.8252 + }, + { + "start": 19151.42, + "end": 19155.58, + "probability": 0.9674 + }, + { + "start": 19157.32, + "end": 19160.8, + "probability": 0.767 + }, + { + "start": 19161.86, + "end": 19169.1, + "probability": 0.9919 + }, + { + "start": 19170.46, + "end": 19171.34, + "probability": 0.9548 + }, + { + "start": 19172.02, + "end": 19176.2, + "probability": 0.9045 + }, + { + "start": 19176.4, + "end": 19179.11, + "probability": 0.9897 + }, + { + "start": 19180.12, + "end": 19181.02, + "probability": 0.8921 + }, + { + "start": 19181.12, + "end": 19182.1, + "probability": 0.9277 + }, + { + "start": 19182.12, + "end": 19183.1, + "probability": 0.9927 + }, + { + "start": 19183.72, + "end": 19186.4, + "probability": 0.9782 + }, + { + "start": 19187.96, + "end": 19192.62, + "probability": 0.9847 + }, + { + "start": 19193.49, + "end": 19198.86, + "probability": 0.9776 + }, + { + "start": 19199.94, + "end": 19203.24, + "probability": 0.9545 + }, + { + "start": 19203.24, + "end": 19208.32, + "probability": 0.7459 + }, + { + "start": 19210.58, + "end": 19215.48, + "probability": 0.9966 + }, + { + "start": 19216.12, + "end": 19216.78, + "probability": 0.9754 + }, + { + "start": 19217.5, + "end": 19219.3, + "probability": 0.9979 + }, + { + "start": 19219.96, + "end": 19220.92, + "probability": 0.6429 + }, + { + "start": 19221.94, + "end": 19227.22, + "probability": 0.9973 + }, + { + "start": 19228.68, + "end": 19234.72, + "probability": 0.6116 + }, + { + "start": 19234.72, + "end": 19237.88, + "probability": 0.9976 + }, + { + "start": 19238.38, + "end": 19240.86, + "probability": 0.7999 + }, + { + "start": 19241.46, + "end": 19242.47, + "probability": 0.9536 + }, + { + "start": 19243.9, + "end": 19245.22, + "probability": 0.7413 + }, + { + "start": 19246.1, + "end": 19249.64, + "probability": 0.6676 + }, + { + "start": 19250.84, + "end": 19253.44, + "probability": 0.9785 + }, + { + "start": 19254.56, + "end": 19256.76, + "probability": 0.8112 + }, + { + "start": 19257.14, + "end": 19257.62, + "probability": 0.8742 + }, + { + "start": 19257.78, + "end": 19259.8, + "probability": 0.8323 + }, + { + "start": 19260.16, + "end": 19260.98, + "probability": 0.4889 + }, + { + "start": 19261.0, + "end": 19263.48, + "probability": 0.9812 + }, + { + "start": 19263.48, + "end": 19265.94, + "probability": 0.9058 + }, + { + "start": 19266.72, + "end": 19268.68, + "probability": 0.7921 + }, + { + "start": 19269.38, + "end": 19273.32, + "probability": 0.9952 + }, + { + "start": 19273.82, + "end": 19276.43, + "probability": 0.9663 + }, + { + "start": 19276.9, + "end": 19278.02, + "probability": 0.8757 + }, + { + "start": 19278.32, + "end": 19279.36, + "probability": 0.9912 + }, + { + "start": 19279.64, + "end": 19280.34, + "probability": 0.9366 + }, + { + "start": 19280.5, + "end": 19280.56, + "probability": 0.1158 + }, + { + "start": 19280.7, + "end": 19280.94, + "probability": 0.89 + }, + { + "start": 19281.1, + "end": 19282.1, + "probability": 0.9305 + }, + { + "start": 19282.44, + "end": 19283.88, + "probability": 0.9004 + }, + { + "start": 19284.84, + "end": 19286.38, + "probability": 0.9652 + }, + { + "start": 19289.82, + "end": 19291.44, + "probability": 0.7209 + }, + { + "start": 19298.14, + "end": 19299.24, + "probability": 0.6322 + }, + { + "start": 19305.3, + "end": 19306.94, + "probability": 0.6456 + }, + { + "start": 19308.04, + "end": 19311.12, + "probability": 0.8504 + }, + { + "start": 19312.0, + "end": 19313.94, + "probability": 0.8823 + }, + { + "start": 19314.14, + "end": 19317.98, + "probability": 0.9545 + }, + { + "start": 19319.4, + "end": 19325.26, + "probability": 0.978 + }, + { + "start": 19325.48, + "end": 19327.1, + "probability": 0.5661 + }, + { + "start": 19328.08, + "end": 19333.9, + "probability": 0.9771 + }, + { + "start": 19334.18, + "end": 19335.5, + "probability": 0.5226 + }, + { + "start": 19335.66, + "end": 19336.98, + "probability": 0.85 + }, + { + "start": 19337.16, + "end": 19338.02, + "probability": 0.9615 + }, + { + "start": 19339.14, + "end": 19345.04, + "probability": 0.9988 + }, + { + "start": 19345.86, + "end": 19349.26, + "probability": 0.9703 + }, + { + "start": 19349.92, + "end": 19353.8, + "probability": 0.9393 + }, + { + "start": 19354.04, + "end": 19355.02, + "probability": 0.2544 + }, + { + "start": 19355.7, + "end": 19357.7, + "probability": 0.8277 + }, + { + "start": 19360.3, + "end": 19360.4, + "probability": 0.0461 + }, + { + "start": 19361.22, + "end": 19361.32, + "probability": 0.5208 + }, + { + "start": 19362.22, + "end": 19363.78, + "probability": 0.7901 + }, + { + "start": 19363.84, + "end": 19364.8, + "probability": 0.941 + }, + { + "start": 19365.46, + "end": 19373.18, + "probability": 0.9856 + }, + { + "start": 19374.76, + "end": 19377.64, + "probability": 0.8954 + }, + { + "start": 19377.8, + "end": 19379.36, + "probability": 0.7103 + }, + { + "start": 19380.28, + "end": 19382.2, + "probability": 0.9758 + }, + { + "start": 19383.88, + "end": 19386.6, + "probability": 0.9369 + }, + { + "start": 19386.76, + "end": 19387.12, + "probability": 0.4716 + }, + { + "start": 19387.46, + "end": 19388.52, + "probability": 0.9595 + }, + { + "start": 19388.68, + "end": 19389.3, + "probability": 0.5286 + }, + { + "start": 19390.1, + "end": 19392.84, + "probability": 0.5506 + }, + { + "start": 19393.5, + "end": 19394.66, + "probability": 0.9834 + }, + { + "start": 19395.56, + "end": 19397.02, + "probability": 0.6036 + }, + { + "start": 19398.28, + "end": 19399.38, + "probability": 0.9495 + }, + { + "start": 19401.18, + "end": 19401.74, + "probability": 0.7209 + }, + { + "start": 19403.58, + "end": 19409.42, + "probability": 0.9829 + }, + { + "start": 19409.94, + "end": 19411.06, + "probability": 0.9717 + }, + { + "start": 19412.38, + "end": 19413.66, + "probability": 0.0422 + }, + { + "start": 19413.66, + "end": 19414.46, + "probability": 0.32 + }, + { + "start": 19414.88, + "end": 19415.38, + "probability": 0.6615 + }, + { + "start": 19416.12, + "end": 19417.26, + "probability": 0.9438 + }, + { + "start": 19417.88, + "end": 19418.92, + "probability": 0.7251 + }, + { + "start": 19419.06, + "end": 19422.16, + "probability": 0.8821 + }, + { + "start": 19423.2, + "end": 19425.52, + "probability": 0.8605 + }, + { + "start": 19425.58, + "end": 19428.37, + "probability": 0.9971 + }, + { + "start": 19429.12, + "end": 19430.6, + "probability": 0.9596 + }, + { + "start": 19430.68, + "end": 19432.82, + "probability": 0.8802 + }, + { + "start": 19433.92, + "end": 19434.24, + "probability": 0.4727 + }, + { + "start": 19434.38, + "end": 19435.64, + "probability": 0.9566 + }, + { + "start": 19435.88, + "end": 19437.26, + "probability": 0.8926 + }, + { + "start": 19437.38, + "end": 19439.36, + "probability": 0.8723 + }, + { + "start": 19440.02, + "end": 19440.65, + "probability": 0.7905 + }, + { + "start": 19440.76, + "end": 19443.47, + "probability": 0.8382 + }, + { + "start": 19444.76, + "end": 19445.76, + "probability": 0.9727 + }, + { + "start": 19445.86, + "end": 19446.8, + "probability": 0.9268 + }, + { + "start": 19446.88, + "end": 19449.12, + "probability": 0.9431 + }, + { + "start": 19449.62, + "end": 19450.76, + "probability": 0.9844 + }, + { + "start": 19452.14, + "end": 19453.6, + "probability": 0.9803 + }, + { + "start": 19454.56, + "end": 19458.74, + "probability": 0.9143 + }, + { + "start": 19460.12, + "end": 19462.07, + "probability": 0.9852 + }, + { + "start": 19462.64, + "end": 19464.14, + "probability": 0.7353 + }, + { + "start": 19465.12, + "end": 19468.52, + "probability": 0.9958 + }, + { + "start": 19469.76, + "end": 19476.54, + "probability": 0.9819 + }, + { + "start": 19476.8, + "end": 19478.14, + "probability": 0.882 + }, + { + "start": 19479.16, + "end": 19480.06, + "probability": 0.8812 + }, + { + "start": 19480.3, + "end": 19483.07, + "probability": 0.98 + }, + { + "start": 19483.7, + "end": 19484.54, + "probability": 0.9352 + }, + { + "start": 19485.06, + "end": 19487.84, + "probability": 0.7017 + }, + { + "start": 19488.26, + "end": 19490.24, + "probability": 0.9075 + }, + { + "start": 19491.4, + "end": 19493.3, + "probability": 0.9725 + }, + { + "start": 19494.58, + "end": 19499.29, + "probability": 0.86 + }, + { + "start": 19500.96, + "end": 19502.64, + "probability": 0.9874 + }, + { + "start": 19502.98, + "end": 19504.64, + "probability": 0.8571 + }, + { + "start": 19505.06, + "end": 19506.28, + "probability": 0.9854 + }, + { + "start": 19506.38, + "end": 19509.68, + "probability": 0.9796 + }, + { + "start": 19510.1, + "end": 19512.24, + "probability": 0.8109 + }, + { + "start": 19513.28, + "end": 19514.9, + "probability": 0.7366 + }, + { + "start": 19515.68, + "end": 19517.2, + "probability": 0.2507 + }, + { + "start": 19517.3, + "end": 19518.28, + "probability": 0.5252 + }, + { + "start": 19518.78, + "end": 19519.28, + "probability": 0.8069 + }, + { + "start": 19519.28, + "end": 19520.5, + "probability": 0.9875 + }, + { + "start": 19521.08, + "end": 19523.12, + "probability": 0.9689 + }, + { + "start": 19523.62, + "end": 19525.23, + "probability": 0.9902 + }, + { + "start": 19526.4, + "end": 19526.52, + "probability": 0.1294 + }, + { + "start": 19526.52, + "end": 19527.7, + "probability": 0.6312 + }, + { + "start": 19529.24, + "end": 19530.62, + "probability": 0.9417 + }, + { + "start": 19531.12, + "end": 19531.54, + "probability": 0.2069 + }, + { + "start": 19531.58, + "end": 19532.54, + "probability": 0.9616 + }, + { + "start": 19534.08, + "end": 19537.7, + "probability": 0.8472 + }, + { + "start": 19539.06, + "end": 19541.98, + "probability": 0.7959 + }, + { + "start": 19542.36, + "end": 19545.36, + "probability": 0.9647 + }, + { + "start": 19546.24, + "end": 19547.7, + "probability": 0.8113 + }, + { + "start": 19547.74, + "end": 19548.86, + "probability": 0.7684 + }, + { + "start": 19549.18, + "end": 19550.92, + "probability": 0.7409 + }, + { + "start": 19551.62, + "end": 19553.5, + "probability": 0.9409 + }, + { + "start": 19554.68, + "end": 19555.52, + "probability": 0.9971 + }, + { + "start": 19557.08, + "end": 19559.12, + "probability": 0.9492 + }, + { + "start": 19559.86, + "end": 19562.53, + "probability": 0.4236 + }, + { + "start": 19563.46, + "end": 19566.04, + "probability": 0.2811 + }, + { + "start": 19566.38, + "end": 19566.4, + "probability": 0.1767 + }, + { + "start": 19566.4, + "end": 19568.92, + "probability": 0.1841 + }, + { + "start": 19569.26, + "end": 19571.12, + "probability": 0.5773 + }, + { + "start": 19571.58, + "end": 19574.48, + "probability": 0.676 + }, + { + "start": 19574.82, + "end": 19576.76, + "probability": 0.4176 + }, + { + "start": 19576.76, + "end": 19579.54, + "probability": 0.2333 + }, + { + "start": 19579.9, + "end": 19583.52, + "probability": 0.6437 + }, + { + "start": 19584.2, + "end": 19586.9, + "probability": 0.9444 + }, + { + "start": 19587.64, + "end": 19591.06, + "probability": 0.9019 + }, + { + "start": 19592.04, + "end": 19596.62, + "probability": 0.9943 + }, + { + "start": 19596.62, + "end": 19599.8, + "probability": 0.9566 + }, + { + "start": 19599.86, + "end": 19604.58, + "probability": 0.9967 + }, + { + "start": 19605.72, + "end": 19606.42, + "probability": 0.8721 + }, + { + "start": 19606.78, + "end": 19608.06, + "probability": 0.9386 + }, + { + "start": 19608.5, + "end": 19609.62, + "probability": 0.6014 + }, + { + "start": 19610.26, + "end": 19611.0, + "probability": 0.7162 + }, + { + "start": 19611.58, + "end": 19612.4, + "probability": 0.7361 + }, + { + "start": 19613.14, + "end": 19615.2, + "probability": 0.9746 + }, + { + "start": 19616.38, + "end": 19617.84, + "probability": 0.857 + }, + { + "start": 19620.54, + "end": 19621.88, + "probability": 0.8416 + }, + { + "start": 19622.02, + "end": 19623.34, + "probability": 0.9272 + }, + { + "start": 19624.2, + "end": 19625.24, + "probability": 0.5964 + }, + { + "start": 19648.48, + "end": 19648.66, + "probability": 0.2744 + }, + { + "start": 19648.66, + "end": 19651.18, + "probability": 0.7103 + }, + { + "start": 19651.88, + "end": 19653.26, + "probability": 0.8464 + }, + { + "start": 19653.26, + "end": 19653.44, + "probability": 0.5988 + }, + { + "start": 19653.64, + "end": 19654.94, + "probability": 0.9883 + }, + { + "start": 19656.3, + "end": 19657.14, + "probability": 0.5573 + }, + { + "start": 19659.42, + "end": 19661.62, + "probability": 0.7223 + }, + { + "start": 19662.22, + "end": 19665.8, + "probability": 0.9955 + }, + { + "start": 19666.0, + "end": 19666.64, + "probability": 0.6752 + }, + { + "start": 19666.74, + "end": 19667.69, + "probability": 0.926 + }, + { + "start": 19668.12, + "end": 19672.52, + "probability": 0.9722 + }, + { + "start": 19673.24, + "end": 19674.58, + "probability": 0.7986 + }, + { + "start": 19675.26, + "end": 19676.14, + "probability": 0.774 + }, + { + "start": 19676.34, + "end": 19677.98, + "probability": 0.9917 + }, + { + "start": 19678.48, + "end": 19678.88, + "probability": 0.8182 + }, + { + "start": 19679.9, + "end": 19683.54, + "probability": 0.9771 + }, + { + "start": 19683.88, + "end": 19685.28, + "probability": 0.9177 + }, + { + "start": 19685.44, + "end": 19686.0, + "probability": 0.4873 + }, + { + "start": 19686.24, + "end": 19688.92, + "probability": 0.7584 + }, + { + "start": 19689.38, + "end": 19690.78, + "probability": 0.9492 + }, + { + "start": 19691.38, + "end": 19692.76, + "probability": 0.9636 + }, + { + "start": 19693.2, + "end": 19694.42, + "probability": 0.9867 + }, + { + "start": 19694.82, + "end": 19695.71, + "probability": 0.9712 + }, + { + "start": 19696.1, + "end": 19698.64, + "probability": 0.9502 + }, + { + "start": 19698.94, + "end": 19700.43, + "probability": 0.8511 + }, + { + "start": 19701.4, + "end": 19703.74, + "probability": 0.851 + }, + { + "start": 19703.92, + "end": 19704.38, + "probability": 0.5499 + }, + { + "start": 19704.38, + "end": 19704.58, + "probability": 0.3331 + }, + { + "start": 19704.66, + "end": 19709.18, + "probability": 0.952 + }, + { + "start": 19710.0, + "end": 19712.68, + "probability": 0.7347 + }, + { + "start": 19713.86, + "end": 19718.64, + "probability": 0.9774 + }, + { + "start": 19718.64, + "end": 19725.02, + "probability": 0.9924 + }, + { + "start": 19725.24, + "end": 19726.86, + "probability": 0.7959 + }, + { + "start": 19727.66, + "end": 19733.8, + "probability": 0.1288 + }, + { + "start": 19734.48, + "end": 19737.44, + "probability": 0.8673 + }, + { + "start": 19737.52, + "end": 19738.56, + "probability": 0.9893 + }, + { + "start": 19738.66, + "end": 19741.94, + "probability": 0.3057 + }, + { + "start": 19742.4, + "end": 19745.87, + "probability": 0.5225 + }, + { + "start": 19746.1, + "end": 19747.37, + "probability": 0.9834 + }, + { + "start": 19747.92, + "end": 19750.48, + "probability": 0.9937 + }, + { + "start": 19751.2, + "end": 19755.98, + "probability": 0.8745 + }, + { + "start": 19756.24, + "end": 19758.14, + "probability": 0.9841 + }, + { + "start": 19759.24, + "end": 19760.28, + "probability": 0.8707 + }, + { + "start": 19760.4, + "end": 19761.92, + "probability": 0.9637 + }, + { + "start": 19762.22, + "end": 19762.84, + "probability": 0.5034 + }, + { + "start": 19762.94, + "end": 19766.2, + "probability": 0.9934 + }, + { + "start": 19766.47, + "end": 19771.12, + "probability": 0.71 + }, + { + "start": 19771.62, + "end": 19773.96, + "probability": 0.9934 + }, + { + "start": 19775.61, + "end": 19778.76, + "probability": 0.8368 + }, + { + "start": 19779.24, + "end": 19780.76, + "probability": 0.5365 + }, + { + "start": 19780.88, + "end": 19782.72, + "probability": 0.8401 + }, + { + "start": 19782.76, + "end": 19783.78, + "probability": 0.7598 + }, + { + "start": 19783.9, + "end": 19788.84, + "probability": 0.9693 + }, + { + "start": 19788.94, + "end": 19789.86, + "probability": 0.8538 + }, + { + "start": 19790.26, + "end": 19790.82, + "probability": 0.7577 + }, + { + "start": 19791.14, + "end": 19792.56, + "probability": 0.9297 + }, + { + "start": 19792.6, + "end": 19793.98, + "probability": 0.9924 + }, + { + "start": 19794.36, + "end": 19796.0, + "probability": 0.8075 + }, + { + "start": 19796.0, + "end": 19798.38, + "probability": 0.6748 + }, + { + "start": 19798.8, + "end": 19801.34, + "probability": 0.9045 + }, + { + "start": 19801.34, + "end": 19803.1, + "probability": 0.8623 + }, + { + "start": 19803.44, + "end": 19803.66, + "probability": 0.266 + }, + { + "start": 19803.76, + "end": 19804.84, + "probability": 0.9194 + }, + { + "start": 19804.98, + "end": 19808.84, + "probability": 0.9241 + }, + { + "start": 19809.44, + "end": 19810.39, + "probability": 0.981 + }, + { + "start": 19811.12, + "end": 19813.08, + "probability": 0.8093 + }, + { + "start": 19813.62, + "end": 19815.04, + "probability": 0.9805 + }, + { + "start": 19815.38, + "end": 19816.46, + "probability": 0.9552 + }, + { + "start": 19816.7, + "end": 19818.14, + "probability": 0.9927 + }, + { + "start": 19818.76, + "end": 19821.3, + "probability": 0.9923 + }, + { + "start": 19821.48, + "end": 19824.06, + "probability": 0.9355 + }, + { + "start": 19824.66, + "end": 19825.72, + "probability": 0.5126 + }, + { + "start": 19826.02, + "end": 19828.15, + "probability": 0.9091 + }, + { + "start": 19829.24, + "end": 19833.46, + "probability": 0.9923 + }, + { + "start": 19833.72, + "end": 19836.48, + "probability": 0.9819 + }, + { + "start": 19836.94, + "end": 19838.44, + "probability": 0.9839 + }, + { + "start": 19838.7, + "end": 19842.24, + "probability": 0.8811 + }, + { + "start": 19842.66, + "end": 19844.02, + "probability": 0.965 + }, + { + "start": 19844.58, + "end": 19846.68, + "probability": 0.985 + }, + { + "start": 19847.1, + "end": 19849.44, + "probability": 0.9816 + }, + { + "start": 19850.3, + "end": 19850.75, + "probability": 0.7918 + }, + { + "start": 19851.22, + "end": 19851.56, + "probability": 0.8048 + }, + { + "start": 19851.9, + "end": 19853.7, + "probability": 0.8618 + }, + { + "start": 19854.1, + "end": 19854.74, + "probability": 0.7354 + }, + { + "start": 19855.04, + "end": 19857.08, + "probability": 0.9308 + }, + { + "start": 19857.38, + "end": 19859.44, + "probability": 0.9693 + }, + { + "start": 19859.9, + "end": 19862.58, + "probability": 0.9885 + }, + { + "start": 19862.96, + "end": 19865.1, + "probability": 0.9863 + }, + { + "start": 19865.14, + "end": 19865.84, + "probability": 0.9363 + }, + { + "start": 19865.92, + "end": 19866.62, + "probability": 0.8805 + }, + { + "start": 19866.98, + "end": 19868.44, + "probability": 0.5454 + }, + { + "start": 19868.78, + "end": 19872.44, + "probability": 0.9069 + }, + { + "start": 19873.82, + "end": 19875.37, + "probability": 0.7465 + }, + { + "start": 19876.64, + "end": 19877.54, + "probability": 0.8611 + }, + { + "start": 19878.78, + "end": 19880.08, + "probability": 0.5074 + }, + { + "start": 19904.3, + "end": 19906.74, + "probability": 0.5494 + }, + { + "start": 19908.86, + "end": 19911.94, + "probability": 0.9921 + }, + { + "start": 19911.94, + "end": 19915.28, + "probability": 0.9964 + }, + { + "start": 19916.52, + "end": 19918.08, + "probability": 0.9845 + }, + { + "start": 19919.16, + "end": 19923.5, + "probability": 0.9688 + }, + { + "start": 19926.02, + "end": 19926.7, + "probability": 0.7443 + }, + { + "start": 19927.94, + "end": 19928.92, + "probability": 0.622 + }, + { + "start": 19928.92, + "end": 19932.18, + "probability": 0.96 + }, + { + "start": 19933.58, + "end": 19937.32, + "probability": 0.9939 + }, + { + "start": 19938.04, + "end": 19939.62, + "probability": 0.9906 + }, + { + "start": 19940.46, + "end": 19942.5, + "probability": 0.9937 + }, + { + "start": 19943.74, + "end": 19944.48, + "probability": 0.6069 + }, + { + "start": 19944.76, + "end": 19946.52, + "probability": 0.979 + }, + { + "start": 19946.66, + "end": 19947.16, + "probability": 0.7812 + }, + { + "start": 19948.78, + "end": 19950.68, + "probability": 0.9924 + }, + { + "start": 19951.92, + "end": 19954.5, + "probability": 0.9812 + }, + { + "start": 19954.64, + "end": 19956.64, + "probability": 0.9957 + }, + { + "start": 19958.26, + "end": 19963.98, + "probability": 0.8973 + }, + { + "start": 19965.04, + "end": 19967.54, + "probability": 0.9034 + }, + { + "start": 19969.78, + "end": 19970.46, + "probability": 0.9687 + }, + { + "start": 19972.26, + "end": 19973.6, + "probability": 0.975 + }, + { + "start": 19973.66, + "end": 19976.15, + "probability": 0.779 + }, + { + "start": 19976.74, + "end": 19978.0, + "probability": 0.7754 + }, + { + "start": 19978.12, + "end": 19978.92, + "probability": 0.7936 + }, + { + "start": 19979.5, + "end": 19980.04, + "probability": 0.9572 + }, + { + "start": 19980.5, + "end": 19982.0, + "probability": 0.926 + }, + { + "start": 19982.16, + "end": 19982.98, + "probability": 0.8581 + }, + { + "start": 19983.7, + "end": 19986.0, + "probability": 0.8053 + }, + { + "start": 19986.88, + "end": 19992.08, + "probability": 0.876 + }, + { + "start": 19995.54, + "end": 19995.64, + "probability": 0.0354 + }, + { + "start": 19998.78, + "end": 20000.5, + "probability": 0.9963 + }, + { + "start": 20000.74, + "end": 20004.72, + "probability": 0.9718 + }, + { + "start": 20006.46, + "end": 20010.04, + "probability": 0.9944 + }, + { + "start": 20012.38, + "end": 20015.54, + "probability": 0.9833 + }, + { + "start": 20021.08, + "end": 20022.8, + "probability": 0.9439 + }, + { + "start": 20024.28, + "end": 20028.86, + "probability": 0.9901 + }, + { + "start": 20030.12, + "end": 20032.34, + "probability": 0.8464 + }, + { + "start": 20034.32, + "end": 20036.82, + "probability": 0.9956 + }, + { + "start": 20036.82, + "end": 20041.06, + "probability": 0.9977 + }, + { + "start": 20044.72, + "end": 20048.24, + "probability": 0.6966 + }, + { + "start": 20049.52, + "end": 20055.9, + "probability": 0.8602 + }, + { + "start": 20055.98, + "end": 20058.94, + "probability": 0.9409 + }, + { + "start": 20059.82, + "end": 20065.58, + "probability": 0.9883 + }, + { + "start": 20066.3, + "end": 20070.5, + "probability": 0.8771 + }, + { + "start": 20070.66, + "end": 20072.66, + "probability": 0.9975 + }, + { + "start": 20073.44, + "end": 20073.96, + "probability": 0.83 + }, + { + "start": 20074.1, + "end": 20079.74, + "probability": 0.9943 + }, + { + "start": 20080.16, + "end": 20081.38, + "probability": 0.7299 + }, + { + "start": 20082.02, + "end": 20085.24, + "probability": 0.9805 + }, + { + "start": 20085.38, + "end": 20086.05, + "probability": 0.5455 + }, + { + "start": 20086.6, + "end": 20087.86, + "probability": 0.9749 + }, + { + "start": 20087.98, + "end": 20091.34, + "probability": 0.9896 + }, + { + "start": 20092.66, + "end": 20098.82, + "probability": 0.9706 + }, + { + "start": 20099.74, + "end": 20100.12, + "probability": 0.9807 + }, + { + "start": 20102.7, + "end": 20106.71, + "probability": 0.9941 + }, + { + "start": 20107.42, + "end": 20111.9, + "probability": 0.9954 + }, + { + "start": 20112.56, + "end": 20116.58, + "probability": 0.7503 + }, + { + "start": 20117.58, + "end": 20120.88, + "probability": 0.8757 + }, + { + "start": 20121.76, + "end": 20125.16, + "probability": 0.9863 + }, + { + "start": 20125.52, + "end": 20127.07, + "probability": 0.998 + }, + { + "start": 20127.88, + "end": 20130.18, + "probability": 0.9334 + }, + { + "start": 20130.4, + "end": 20132.88, + "probability": 0.9962 + }, + { + "start": 20133.04, + "end": 20133.56, + "probability": 0.6005 + }, + { + "start": 20134.04, + "end": 20135.84, + "probability": 0.6058 + }, + { + "start": 20135.88, + "end": 20138.54, + "probability": 0.9934 + }, + { + "start": 20139.64, + "end": 20142.5, + "probability": 0.98 + }, + { + "start": 20142.62, + "end": 20144.77, + "probability": 0.9801 + }, + { + "start": 20145.14, + "end": 20147.28, + "probability": 0.9692 + }, + { + "start": 20147.9, + "end": 20149.92, + "probability": 0.9316 + }, + { + "start": 20152.27, + "end": 20157.52, + "probability": 0.991 + }, + { + "start": 20158.72, + "end": 20160.54, + "probability": 0.8548 + }, + { + "start": 20160.66, + "end": 20161.4, + "probability": 0.9656 + }, + { + "start": 20163.0, + "end": 20163.78, + "probability": 0.7634 + }, + { + "start": 20164.74, + "end": 20167.52, + "probability": 0.9353 + }, + { + "start": 20168.76, + "end": 20175.38, + "probability": 0.9783 + }, + { + "start": 20175.38, + "end": 20179.34, + "probability": 0.998 + }, + { + "start": 20179.44, + "end": 20181.46, + "probability": 0.998 + }, + { + "start": 20182.4, + "end": 20185.53, + "probability": 0.8934 + }, + { + "start": 20187.46, + "end": 20192.72, + "probability": 0.9983 + }, + { + "start": 20192.88, + "end": 20194.11, + "probability": 0.7634 + }, + { + "start": 20196.13, + "end": 20200.02, + "probability": 0.9913 + }, + { + "start": 20200.24, + "end": 20201.38, + "probability": 0.9514 + }, + { + "start": 20201.52, + "end": 20201.97, + "probability": 0.6939 + }, + { + "start": 20202.6, + "end": 20204.76, + "probability": 0.989 + }, + { + "start": 20206.0, + "end": 20211.06, + "probability": 0.9926 + }, + { + "start": 20211.56, + "end": 20213.18, + "probability": 0.9959 + }, + { + "start": 20213.3, + "end": 20214.84, + "probability": 0.9628 + }, + { + "start": 20214.96, + "end": 20216.22, + "probability": 0.5936 + }, + { + "start": 20216.3, + "end": 20218.8, + "probability": 0.7928 + }, + { + "start": 20219.4, + "end": 20221.44, + "probability": 0.9826 + }, + { + "start": 20224.66, + "end": 20225.4, + "probability": 0.7395 + }, + { + "start": 20226.64, + "end": 20227.76, + "probability": 0.8115 + }, + { + "start": 20229.44, + "end": 20231.66, + "probability": 0.8241 + }, + { + "start": 20231.8, + "end": 20235.21, + "probability": 0.3761 + }, + { + "start": 20235.52, + "end": 20235.62, + "probability": 0.3483 + }, + { + "start": 20236.26, + "end": 20237.2, + "probability": 0.1213 + }, + { + "start": 20237.78, + "end": 20239.26, + "probability": 0.2859 + }, + { + "start": 20240.48, + "end": 20242.72, + "probability": 0.6652 + }, + { + "start": 20242.9, + "end": 20245.32, + "probability": 0.5126 + }, + { + "start": 20245.56, + "end": 20245.98, + "probability": 0.1456 + }, + { + "start": 20246.16, + "end": 20246.34, + "probability": 0.7616 + }, + { + "start": 20246.64, + "end": 20247.5, + "probability": 0.4805 + }, + { + "start": 20247.5, + "end": 20249.78, + "probability": 0.4533 + }, + { + "start": 20249.9, + "end": 20251.12, + "probability": 0.407 + }, + { + "start": 20251.94, + "end": 20253.8, + "probability": 0.2693 + }, + { + "start": 20254.3, + "end": 20255.62, + "probability": 0.3478 + }, + { + "start": 20256.42, + "end": 20259.94, + "probability": 0.2404 + }, + { + "start": 20259.94, + "end": 20260.46, + "probability": 0.0751 + }, + { + "start": 20260.66, + "end": 20261.43, + "probability": 0.2101 + }, + { + "start": 20263.54, + "end": 20263.56, + "probability": 0.3579 + }, + { + "start": 20263.56, + "end": 20266.78, + "probability": 0.3139 + }, + { + "start": 20266.88, + "end": 20267.24, + "probability": 0.3054 + }, + { + "start": 20267.36, + "end": 20267.64, + "probability": 0.7248 + }, + { + "start": 20267.8, + "end": 20269.25, + "probability": 0.4036 + }, + { + "start": 20270.5, + "end": 20272.24, + "probability": 0.6072 + }, + { + "start": 20273.06, + "end": 20273.06, + "probability": 0.2305 + }, + { + "start": 20273.06, + "end": 20274.09, + "probability": 0.228 + }, + { + "start": 20274.36, + "end": 20276.52, + "probability": 0.73 + }, + { + "start": 20276.52, + "end": 20279.48, + "probability": 0.2933 + }, + { + "start": 20279.72, + "end": 20280.56, + "probability": 0.2072 + }, + { + "start": 20280.56, + "end": 20280.56, + "probability": 0.3523 + }, + { + "start": 20280.56, + "end": 20281.54, + "probability": 0.1096 + }, + { + "start": 20283.56, + "end": 20284.12, + "probability": 0.2963 + }, + { + "start": 20284.24, + "end": 20287.16, + "probability": 0.9478 + }, + { + "start": 20287.68, + "end": 20288.4, + "probability": 0.6415 + }, + { + "start": 20289.26, + "end": 20290.37, + "probability": 0.323 + }, + { + "start": 20296.43, + "end": 20298.5, + "probability": 0.7339 + }, + { + "start": 20298.68, + "end": 20300.29, + "probability": 0.6538 + }, + { + "start": 20300.92, + "end": 20302.92, + "probability": 0.3104 + }, + { + "start": 20303.78, + "end": 20305.14, + "probability": 0.8939 + }, + { + "start": 20306.92, + "end": 20307.92, + "probability": 0.7861 + }, + { + "start": 20308.1, + "end": 20308.53, + "probability": 0.8228 + }, + { + "start": 20308.84, + "end": 20309.89, + "probability": 0.616 + }, + { + "start": 20313.5, + "end": 20318.94, + "probability": 0.3832 + }, + { + "start": 20321.18, + "end": 20322.78, + "probability": 0.5767 + }, + { + "start": 20323.66, + "end": 20324.66, + "probability": 0.4788 + }, + { + "start": 20324.66, + "end": 20328.0, + "probability": 0.8456 + }, + { + "start": 20328.66, + "end": 20330.1, + "probability": 0.9963 + }, + { + "start": 20330.68, + "end": 20331.48, + "probability": 0.6632 + }, + { + "start": 20332.35, + "end": 20335.02, + "probability": 0.6802 + }, + { + "start": 20337.48, + "end": 20338.1, + "probability": 0.5937 + }, + { + "start": 20338.26, + "end": 20340.6, + "probability": 0.4839 + }, + { + "start": 20341.9, + "end": 20343.8, + "probability": 0.792 + }, + { + "start": 20344.54, + "end": 20346.48, + "probability": 0.7848 + }, + { + "start": 20347.28, + "end": 20349.04, + "probability": 0.0773 + }, + { + "start": 20354.05, + "end": 20355.34, + "probability": 0.0212 + }, + { + "start": 20355.34, + "end": 20355.34, + "probability": 0.1444 + }, + { + "start": 20355.34, + "end": 20357.04, + "probability": 0.184 + }, + { + "start": 20357.16, + "end": 20357.16, + "probability": 0.1522 + }, + { + "start": 20357.32, + "end": 20357.91, + "probability": 0.0437 + }, + { + "start": 20362.16, + "end": 20362.38, + "probability": 0.0807 + }, + { + "start": 20362.38, + "end": 20362.38, + "probability": 0.1067 + }, + { + "start": 20362.38, + "end": 20363.1, + "probability": 0.7105 + }, + { + "start": 20364.44, + "end": 20366.42, + "probability": 0.6811 + }, + { + "start": 20366.7, + "end": 20367.3, + "probability": 0.6751 + }, + { + "start": 20367.38, + "end": 20368.42, + "probability": 0.6991 + }, + { + "start": 20368.52, + "end": 20369.6, + "probability": 0.9287 + }, + { + "start": 20370.1, + "end": 20370.92, + "probability": 0.9163 + }, + { + "start": 20371.58, + "end": 20377.74, + "probability": 0.9583 + }, + { + "start": 20377.74, + "end": 20382.82, + "probability": 0.9996 + }, + { + "start": 20385.38, + "end": 20388.62, + "probability": 0.9945 + }, + { + "start": 20388.7, + "end": 20390.28, + "probability": 0.9703 + }, + { + "start": 20390.98, + "end": 20391.77, + "probability": 0.7974 + }, + { + "start": 20392.62, + "end": 20393.0, + "probability": 0.4921 + }, + { + "start": 20393.04, + "end": 20397.12, + "probability": 0.9441 + }, + { + "start": 20397.52, + "end": 20398.48, + "probability": 0.8328 + }, + { + "start": 20399.02, + "end": 20403.8, + "probability": 0.9797 + }, + { + "start": 20403.8, + "end": 20408.48, + "probability": 0.9766 + }, + { + "start": 20408.68, + "end": 20408.78, + "probability": 0.8777 + }, + { + "start": 20409.24, + "end": 20409.82, + "probability": 0.4635 + }, + { + "start": 20410.26, + "end": 20410.8, + "probability": 0.8406 + }, + { + "start": 20411.98, + "end": 20415.13, + "probability": 0.8661 + }, + { + "start": 20415.76, + "end": 20417.2, + "probability": 0.9764 + }, + { + "start": 20417.82, + "end": 20420.6, + "probability": 0.9775 + }, + { + "start": 20421.4, + "end": 20426.88, + "probability": 0.7085 + }, + { + "start": 20427.12, + "end": 20427.84, + "probability": 0.7624 + }, + { + "start": 20428.74, + "end": 20432.1, + "probability": 0.9754 + }, + { + "start": 20433.06, + "end": 20438.86, + "probability": 0.9859 + }, + { + "start": 20441.04, + "end": 20444.22, + "probability": 0.929 + }, + { + "start": 20444.36, + "end": 20450.18, + "probability": 0.9937 + }, + { + "start": 20451.34, + "end": 20452.64, + "probability": 0.9072 + }, + { + "start": 20452.68, + "end": 20454.04, + "probability": 0.9977 + }, + { + "start": 20455.27, + "end": 20459.86, + "probability": 0.8508 + }, + { + "start": 20460.78, + "end": 20465.72, + "probability": 0.9929 + }, + { + "start": 20465.72, + "end": 20470.96, + "probability": 0.9954 + }, + { + "start": 20471.4, + "end": 20473.32, + "probability": 0.9814 + }, + { + "start": 20473.62, + "end": 20475.0, + "probability": 0.6445 + }, + { + "start": 20476.56, + "end": 20479.68, + "probability": 0.8701 + }, + { + "start": 20479.76, + "end": 20480.9, + "probability": 0.9162 + }, + { + "start": 20480.98, + "end": 20481.84, + "probability": 0.9712 + }, + { + "start": 20483.38, + "end": 20486.38, + "probability": 0.9911 + }, + { + "start": 20487.26, + "end": 20488.98, + "probability": 0.9879 + }, + { + "start": 20489.96, + "end": 20492.44, + "probability": 0.6566 + }, + { + "start": 20493.76, + "end": 20497.44, + "probability": 0.987 + }, + { + "start": 20497.44, + "end": 20499.8, + "probability": 0.985 + }, + { + "start": 20500.32, + "end": 20501.88, + "probability": 0.8236 + }, + { + "start": 20503.1, + "end": 20504.02, + "probability": 0.9185 + }, + { + "start": 20505.42, + "end": 20507.24, + "probability": 0.997 + }, + { + "start": 20507.36, + "end": 20509.54, + "probability": 0.7178 + }, + { + "start": 20510.64, + "end": 20513.64, + "probability": 0.8522 + }, + { + "start": 20515.54, + "end": 20519.28, + "probability": 0.894 + }, + { + "start": 20520.64, + "end": 20523.86, + "probability": 0.9882 + }, + { + "start": 20524.74, + "end": 20526.78, + "probability": 0.7925 + }, + { + "start": 20528.0, + "end": 20534.14, + "probability": 0.7891 + }, + { + "start": 20534.92, + "end": 20537.34, + "probability": 0.8394 + }, + { + "start": 20538.76, + "end": 20539.0, + "probability": 0.5413 + }, + { + "start": 20539.04, + "end": 20540.24, + "probability": 0.9556 + }, + { + "start": 20540.46, + "end": 20541.32, + "probability": 0.8856 + }, + { + "start": 20541.44, + "end": 20542.48, + "probability": 0.9446 + }, + { + "start": 20542.88, + "end": 20545.04, + "probability": 0.9806 + }, + { + "start": 20545.2, + "end": 20546.68, + "probability": 0.9891 + }, + { + "start": 20547.98, + "end": 20554.0, + "probability": 0.9846 + }, + { + "start": 20554.0, + "end": 20556.54, + "probability": 0.9652 + }, + { + "start": 20556.66, + "end": 20557.98, + "probability": 0.9389 + }, + { + "start": 20558.8, + "end": 20565.62, + "probability": 0.9985 + }, + { + "start": 20566.04, + "end": 20566.64, + "probability": 0.6461 + }, + { + "start": 20566.66, + "end": 20567.28, + "probability": 0.7723 + }, + { + "start": 20567.36, + "end": 20568.78, + "probability": 0.9851 + }, + { + "start": 20569.96, + "end": 20573.6, + "probability": 0.9951 + }, + { + "start": 20573.6, + "end": 20577.98, + "probability": 0.9592 + }, + { + "start": 20580.12, + "end": 20587.24, + "probability": 0.8909 + }, + { + "start": 20587.82, + "end": 20589.12, + "probability": 0.7579 + }, + { + "start": 20589.14, + "end": 20589.84, + "probability": 0.578 + }, + { + "start": 20589.88, + "end": 20596.72, + "probability": 0.6667 + }, + { + "start": 20596.72, + "end": 20598.14, + "probability": 0.5967 + }, + { + "start": 20598.2, + "end": 20599.44, + "probability": 0.8884 + }, + { + "start": 20600.48, + "end": 20601.92, + "probability": 0.8739 + }, + { + "start": 20602.0, + "end": 20603.22, + "probability": 0.8195 + }, + { + "start": 20603.42, + "end": 20606.02, + "probability": 0.9674 + }, + { + "start": 20607.16, + "end": 20610.38, + "probability": 0.9966 + }, + { + "start": 20610.94, + "end": 20616.3, + "probability": 0.9996 + }, + { + "start": 20616.56, + "end": 20618.02, + "probability": 0.9814 + }, + { + "start": 20618.3, + "end": 20619.66, + "probability": 0.9319 + }, + { + "start": 20619.82, + "end": 20620.84, + "probability": 0.9392 + }, + { + "start": 20621.02, + "end": 20621.66, + "probability": 0.6534 + }, + { + "start": 20621.74, + "end": 20622.7, + "probability": 0.5069 + }, + { + "start": 20623.52, + "end": 20626.26, + "probability": 0.8998 + }, + { + "start": 20626.42, + "end": 20628.7, + "probability": 0.3817 + }, + { + "start": 20628.7, + "end": 20629.92, + "probability": 0.7075 + }, + { + "start": 20631.52, + "end": 20632.7, + "probability": 0.8392 + }, + { + "start": 20632.96, + "end": 20633.24, + "probability": 0.8249 + }, + { + "start": 20633.38, + "end": 20634.06, + "probability": 0.9507 + }, + { + "start": 20634.4, + "end": 20635.48, + "probability": 0.9122 + }, + { + "start": 20635.52, + "end": 20637.5, + "probability": 0.9756 + }, + { + "start": 20638.0, + "end": 20642.42, + "probability": 0.9639 + }, + { + "start": 20643.04, + "end": 20647.3, + "probability": 0.9727 + }, + { + "start": 20648.54, + "end": 20651.6, + "probability": 0.8031 + }, + { + "start": 20651.68, + "end": 20651.82, + "probability": 0.6699 + }, + { + "start": 20651.86, + "end": 20655.02, + "probability": 0.4185 + }, + { + "start": 20655.02, + "end": 20655.94, + "probability": 0.645 + }, + { + "start": 20656.06, + "end": 20657.6, + "probability": 0.925 + }, + { + "start": 20660.04, + "end": 20661.38, + "probability": 0.9241 + }, + { + "start": 20661.78, + "end": 20666.28, + "probability": 0.5571 + }, + { + "start": 20666.28, + "end": 20667.8, + "probability": 0.8841 + }, + { + "start": 20667.88, + "end": 20668.7, + "probability": 0.5781 + }, + { + "start": 20669.26, + "end": 20670.33, + "probability": 0.6891 + }, + { + "start": 20671.28, + "end": 20672.71, + "probability": 0.9497 + }, + { + "start": 20673.3, + "end": 20678.84, + "probability": 0.1564 + }, + { + "start": 20679.16, + "end": 20679.28, + "probability": 0.021 + }, + { + "start": 20679.48, + "end": 20682.12, + "probability": 0.14 + }, + { + "start": 20683.18, + "end": 20685.9, + "probability": 0.6743 + }, + { + "start": 20686.1, + "end": 20686.52, + "probability": 0.1795 + }, + { + "start": 20686.7, + "end": 20689.88, + "probability": 0.4279 + }, + { + "start": 20689.88, + "end": 20692.4, + "probability": 0.7433 + }, + { + "start": 20692.58, + "end": 20694.26, + "probability": 0.8647 + }, + { + "start": 20694.64, + "end": 20695.96, + "probability": 0.9446 + }, + { + "start": 20696.58, + "end": 20698.4, + "probability": 0.9268 + }, + { + "start": 20699.16, + "end": 20699.16, + "probability": 0.3469 + }, + { + "start": 20699.16, + "end": 20701.64, + "probability": 0.835 + }, + { + "start": 20701.64, + "end": 20702.42, + "probability": 0.6693 + }, + { + "start": 20702.7, + "end": 20705.2, + "probability": 0.8469 + }, + { + "start": 20705.42, + "end": 20706.49, + "probability": 0.6653 + }, + { + "start": 20706.72, + "end": 20707.26, + "probability": 0.8561 + }, + { + "start": 20707.56, + "end": 20711.52, + "probability": 0.9858 + }, + { + "start": 20711.74, + "end": 20714.5, + "probability": 0.9876 + }, + { + "start": 20714.56, + "end": 20715.88, + "probability": 0.916 + }, + { + "start": 20716.18, + "end": 20717.46, + "probability": 0.9365 + }, + { + "start": 20717.74, + "end": 20718.68, + "probability": 0.887 + }, + { + "start": 20718.86, + "end": 20719.38, + "probability": 0.6785 + }, + { + "start": 20719.72, + "end": 20723.9, + "probability": 0.8943 + }, + { + "start": 20723.96, + "end": 20725.22, + "probability": 0.9517 + }, + { + "start": 20725.26, + "end": 20726.2, + "probability": 0.8842 + }, + { + "start": 20726.2, + "end": 20726.66, + "probability": 0.5876 + }, + { + "start": 20728.32, + "end": 20730.88, + "probability": 0.9932 + }, + { + "start": 20730.88, + "end": 20736.32, + "probability": 0.8834 + }, + { + "start": 20737.04, + "end": 20738.5, + "probability": 0.3478 + }, + { + "start": 20738.74, + "end": 20739.76, + "probability": 0.9906 + }, + { + "start": 20739.84, + "end": 20740.64, + "probability": 0.9353 + }, + { + "start": 20740.68, + "end": 20741.5, + "probability": 0.6267 + }, + { + "start": 20741.84, + "end": 20743.66, + "probability": 0.9948 + }, + { + "start": 20743.94, + "end": 20746.94, + "probability": 0.7762 + }, + { + "start": 20747.24, + "end": 20748.58, + "probability": 0.8909 + }, + { + "start": 20748.66, + "end": 20750.04, + "probability": 0.8608 + }, + { + "start": 20750.12, + "end": 20752.06, + "probability": 0.7682 + }, + { + "start": 20752.1, + "end": 20753.17, + "probability": 0.972 + }, + { + "start": 20753.3, + "end": 20755.14, + "probability": 0.9479 + }, + { + "start": 20755.48, + "end": 20756.64, + "probability": 0.8928 + }, + { + "start": 20756.76, + "end": 20757.18, + "probability": 0.988 + }, + { + "start": 20757.26, + "end": 20758.28, + "probability": 0.635 + }, + { + "start": 20758.62, + "end": 20760.78, + "probability": 0.9415 + }, + { + "start": 20761.0, + "end": 20762.3, + "probability": 0.8241 + }, + { + "start": 20762.84, + "end": 20767.06, + "probability": 0.9888 + }, + { + "start": 20767.24, + "end": 20768.48, + "probability": 0.7003 + }, + { + "start": 20769.38, + "end": 20773.25, + "probability": 0.9277 + }, + { + "start": 20774.64, + "end": 20776.26, + "probability": 0.5393 + }, + { + "start": 20776.88, + "end": 20780.77, + "probability": 0.5619 + }, + { + "start": 20782.52, + "end": 20784.7, + "probability": 0.7948 + }, + { + "start": 20786.08, + "end": 20788.58, + "probability": 0.7471 + }, + { + "start": 20788.66, + "end": 20790.56, + "probability": 0.9963 + }, + { + "start": 20791.18, + "end": 20792.34, + "probability": 0.8664 + }, + { + "start": 20793.26, + "end": 20795.06, + "probability": 0.8913 + }, + { + "start": 20795.9, + "end": 20796.54, + "probability": 0.7209 + }, + { + "start": 20797.36, + "end": 20798.22, + "probability": 0.8836 + }, + { + "start": 20799.14, + "end": 20799.9, + "probability": 0.9924 + }, + { + "start": 20800.8, + "end": 20801.38, + "probability": 0.5698 + }, + { + "start": 20801.96, + "end": 20803.32, + "probability": 0.9757 + }, + { + "start": 20804.68, + "end": 20806.99, + "probability": 0.9991 + }, + { + "start": 20807.54, + "end": 20811.46, + "probability": 0.8639 + }, + { + "start": 20811.56, + "end": 20812.52, + "probability": 0.8833 + }, + { + "start": 20814.18, + "end": 20815.97, + "probability": 0.8089 + }, + { + "start": 20816.72, + "end": 20819.72, + "probability": 0.9674 + }, + { + "start": 20820.6, + "end": 20822.98, + "probability": 0.9761 + }, + { + "start": 20823.06, + "end": 20824.26, + "probability": 0.9948 + }, + { + "start": 20825.02, + "end": 20830.38, + "probability": 0.9814 + }, + { + "start": 20830.98, + "end": 20831.74, + "probability": 0.8158 + }, + { + "start": 20833.08, + "end": 20834.9, + "probability": 0.8872 + }, + { + "start": 20835.62, + "end": 20839.56, + "probability": 0.9876 + }, + { + "start": 20840.32, + "end": 20841.68, + "probability": 0.8938 + }, + { + "start": 20842.32, + "end": 20844.9, + "probability": 0.9712 + }, + { + "start": 20845.94, + "end": 20846.48, + "probability": 0.6936 + }, + { + "start": 20847.64, + "end": 20848.76, + "probability": 0.8136 + }, + { + "start": 20848.86, + "end": 20849.64, + "probability": 0.7974 + }, + { + "start": 20850.3, + "end": 20851.74, + "probability": 0.8325 + }, + { + "start": 20851.86, + "end": 20853.44, + "probability": 0.6768 + }, + { + "start": 20853.76, + "end": 20856.92, + "probability": 0.9896 + }, + { + "start": 20857.38, + "end": 20859.34, + "probability": 0.8659 + }, + { + "start": 20859.34, + "end": 20862.28, + "probability": 0.9886 + }, + { + "start": 20863.56, + "end": 20865.22, + "probability": 0.8747 + }, + { + "start": 20866.2, + "end": 20869.04, + "probability": 0.9091 + }, + { + "start": 20870.24, + "end": 20871.24, + "probability": 0.9359 + }, + { + "start": 20872.06, + "end": 20874.06, + "probability": 0.8748 + }, + { + "start": 20874.2, + "end": 20875.14, + "probability": 0.7715 + }, + { + "start": 20876.8, + "end": 20877.9, + "probability": 0.3213 + }, + { + "start": 20877.94, + "end": 20880.02, + "probability": 0.2714 + }, + { + "start": 20880.08, + "end": 20881.04, + "probability": 0.8523 + }, + { + "start": 20882.48, + "end": 20884.58, + "probability": 0.4493 + }, + { + "start": 20885.48, + "end": 20888.08, + "probability": 0.3613 + }, + { + "start": 20890.16, + "end": 20893.04, + "probability": 0.1553 + }, + { + "start": 20893.42, + "end": 20893.72, + "probability": 0.343 + }, + { + "start": 20893.72, + "end": 20897.74, + "probability": 0.835 + }, + { + "start": 20898.26, + "end": 20899.32, + "probability": 0.9949 + }, + { + "start": 20899.54, + "end": 20900.04, + "probability": 0.7017 + }, + { + "start": 20900.36, + "end": 20901.06, + "probability": 0.6863 + }, + { + "start": 20901.36, + "end": 20902.2, + "probability": 0.9521 + }, + { + "start": 20902.44, + "end": 20904.94, + "probability": 0.9905 + }, + { + "start": 20905.96, + "end": 20907.02, + "probability": 0.9883 + }, + { + "start": 20907.52, + "end": 20908.74, + "probability": 0.9312 + }, + { + "start": 20908.78, + "end": 20911.18, + "probability": 0.9829 + }, + { + "start": 20911.44, + "end": 20912.31, + "probability": 0.6797 + }, + { + "start": 20912.96, + "end": 20916.32, + "probability": 0.668 + }, + { + "start": 20916.36, + "end": 20917.81, + "probability": 0.9987 + }, + { + "start": 20917.9, + "end": 20918.94, + "probability": 0.8097 + }, + { + "start": 20919.26, + "end": 20922.2, + "probability": 0.9929 + }, + { + "start": 20922.26, + "end": 20923.84, + "probability": 0.8668 + }, + { + "start": 20926.32, + "end": 20927.29, + "probability": 0.9757 + }, + { + "start": 20929.4, + "end": 20931.38, + "probability": 0.7241 + }, + { + "start": 20932.08, + "end": 20933.32, + "probability": 0.718 + }, + { + "start": 20934.04, + "end": 20937.86, + "probability": 0.9783 + }, + { + "start": 20938.64, + "end": 20941.84, + "probability": 0.9766 + }, + { + "start": 20942.88, + "end": 20943.4, + "probability": 0.8613 + }, + { + "start": 20943.44, + "end": 20946.08, + "probability": 0.9402 + }, + { + "start": 20946.22, + "end": 20948.44, + "probability": 0.8572 + }, + { + "start": 20951.26, + "end": 20953.27, + "probability": 0.6636 + }, + { + "start": 20953.66, + "end": 20956.88, + "probability": 0.9757 + }, + { + "start": 20957.2, + "end": 20958.18, + "probability": 0.9258 + }, + { + "start": 20958.28, + "end": 20959.2, + "probability": 0.895 + }, + { + "start": 20962.18, + "end": 20963.56, + "probability": 0.9945 + }, + { + "start": 20963.64, + "end": 20966.9, + "probability": 0.9981 + }, + { + "start": 20966.9, + "end": 20968.85, + "probability": 0.6671 + }, + { + "start": 20969.76, + "end": 20970.71, + "probability": 0.6624 + }, + { + "start": 20973.54, + "end": 20975.04, + "probability": 0.8334 + }, + { + "start": 20976.48, + "end": 20978.4, + "probability": 0.6128 + }, + { + "start": 20978.92, + "end": 20984.18, + "probability": 0.9927 + }, + { + "start": 20984.3, + "end": 20985.5, + "probability": 0.9893 + }, + { + "start": 20985.54, + "end": 20987.34, + "probability": 0.998 + }, + { + "start": 20987.68, + "end": 20993.16, + "probability": 0.9717 + }, + { + "start": 20993.46, + "end": 20994.6, + "probability": 0.7531 + }, + { + "start": 20994.98, + "end": 21000.86, + "probability": 0.8228 + }, + { + "start": 21001.12, + "end": 21004.74, + "probability": 0.9977 + }, + { + "start": 21005.38, + "end": 21008.75, + "probability": 0.1454 + }, + { + "start": 21009.62, + "end": 21012.58, + "probability": 0.6053 + }, + { + "start": 21012.8, + "end": 21013.48, + "probability": 0.8663 + }, + { + "start": 21013.58, + "end": 21018.0, + "probability": 0.3172 + }, + { + "start": 21018.52, + "end": 21021.7, + "probability": 0.9285 + }, + { + "start": 21022.61, + "end": 21024.75, + "probability": 0.1743 + }, + { + "start": 21025.0, + "end": 21025.92, + "probability": 0.3586 + }, + { + "start": 21026.02, + "end": 21027.1, + "probability": 0.9159 + }, + { + "start": 21027.46, + "end": 21035.1, + "probability": 0.7084 + }, + { + "start": 21035.76, + "end": 21039.47, + "probability": 0.3584 + }, + { + "start": 21041.46, + "end": 21043.14, + "probability": 0.7235 + }, + { + "start": 21043.18, + "end": 21043.96, + "probability": 0.717 + }, + { + "start": 21044.08, + "end": 21045.97, + "probability": 0.2062 + }, + { + "start": 21046.92, + "end": 21047.94, + "probability": 0.069 + }, + { + "start": 21047.94, + "end": 21047.94, + "probability": 0.042 + }, + { + "start": 21047.94, + "end": 21047.94, + "probability": 0.1844 + }, + { + "start": 21047.94, + "end": 21053.86, + "probability": 0.6548 + }, + { + "start": 21054.28, + "end": 21055.56, + "probability": 0.1312 + }, + { + "start": 21055.76, + "end": 21056.26, + "probability": 0.8586 + }, + { + "start": 21056.38, + "end": 21059.14, + "probability": 0.7782 + }, + { + "start": 21059.52, + "end": 21061.22, + "probability": 0.8537 + }, + { + "start": 21061.34, + "end": 21062.94, + "probability": 0.9424 + }, + { + "start": 21062.96, + "end": 21064.34, + "probability": 0.95 + }, + { + "start": 21065.12, + "end": 21066.5, + "probability": 0.9235 + }, + { + "start": 21066.56, + "end": 21069.44, + "probability": 0.9907 + }, + { + "start": 21069.56, + "end": 21069.86, + "probability": 0.627 + }, + { + "start": 21070.04, + "end": 21071.34, + "probability": 0.8169 + }, + { + "start": 21071.54, + "end": 21074.28, + "probability": 0.918 + }, + { + "start": 21074.64, + "end": 21077.1, + "probability": 0.9852 + }, + { + "start": 21077.46, + "end": 21079.24, + "probability": 0.5921 + }, + { + "start": 21079.72, + "end": 21080.4, + "probability": 0.8556 + }, + { + "start": 21080.5, + "end": 21080.92, + "probability": 0.5755 + }, + { + "start": 21080.98, + "end": 21081.72, + "probability": 0.6351 + }, + { + "start": 21081.72, + "end": 21082.3, + "probability": 0.3927 + }, + { + "start": 21082.8, + "end": 21083.62, + "probability": 0.8627 + }, + { + "start": 21084.6, + "end": 21088.58, + "probability": 0.994 + }, + { + "start": 21088.74, + "end": 21089.7, + "probability": 0.9248 + }, + { + "start": 21089.72, + "end": 21091.16, + "probability": 0.8249 + }, + { + "start": 21091.86, + "end": 21094.62, + "probability": 0.9926 + }, + { + "start": 21095.28, + "end": 21100.56, + "probability": 0.4992 + }, + { + "start": 21101.14, + "end": 21105.52, + "probability": 0.9941 + }, + { + "start": 21105.52, + "end": 21111.28, + "probability": 0.9921 + }, + { + "start": 21111.5, + "end": 21115.04, + "probability": 0.9808 + }, + { + "start": 21115.1, + "end": 21116.3, + "probability": 0.9008 + }, + { + "start": 21116.7, + "end": 21119.44, + "probability": 0.9712 + }, + { + "start": 21119.48, + "end": 21120.06, + "probability": 0.7778 + }, + { + "start": 21120.34, + "end": 21122.5, + "probability": 0.2838 + }, + { + "start": 21123.3, + "end": 21126.0, + "probability": 0.1833 + }, + { + "start": 21141.92, + "end": 21142.54, + "probability": 0.1033 + }, + { + "start": 21142.54, + "end": 21145.54, + "probability": 0.3927 + }, + { + "start": 21146.06, + "end": 21148.42, + "probability": 0.7645 + }, + { + "start": 21150.76, + "end": 21154.08, + "probability": 0.862 + }, + { + "start": 21155.38, + "end": 21160.94, + "probability": 0.6109 + }, + { + "start": 21161.88, + "end": 21164.36, + "probability": 0.3588 + }, + { + "start": 21164.42, + "end": 21164.74, + "probability": 0.3365 + }, + { + "start": 21164.82, + "end": 21165.52, + "probability": 0.647 + }, + { + "start": 21166.39, + "end": 21167.68, + "probability": 0.0305 + }, + { + "start": 21167.72, + "end": 21168.68, + "probability": 0.4272 + }, + { + "start": 21170.82, + "end": 21171.38, + "probability": 0.2276 + }, + { + "start": 21172.02, + "end": 21175.36, + "probability": 0.7099 + }, + { + "start": 21175.36, + "end": 21178.82, + "probability": 0.8978 + }, + { + "start": 21179.06, + "end": 21179.13, + "probability": 0.0061 + }, + { + "start": 21181.06, + "end": 21182.02, + "probability": 0.4982 + }, + { + "start": 21182.02, + "end": 21185.04, + "probability": 0.6834 + }, + { + "start": 21185.26, + "end": 21187.52, + "probability": 0.8605 + }, + { + "start": 21189.18, + "end": 21189.58, + "probability": 0.8447 + }, + { + "start": 21189.72, + "end": 21194.16, + "probability": 0.9664 + }, + { + "start": 21194.74, + "end": 21198.24, + "probability": 0.4533 + }, + { + "start": 21198.44, + "end": 21199.06, + "probability": 0.6487 + }, + { + "start": 21199.16, + "end": 21199.92, + "probability": 0.8635 + }, + { + "start": 21200.58, + "end": 21203.46, + "probability": 0.9807 + }, + { + "start": 21204.44, + "end": 21207.84, + "probability": 0.9578 + }, + { + "start": 21208.38, + "end": 21212.35, + "probability": 0.7932 + }, + { + "start": 21213.1, + "end": 21214.5, + "probability": 0.7637 + }, + { + "start": 21215.82, + "end": 21216.76, + "probability": 0.9445 + }, + { + "start": 21216.84, + "end": 21218.06, + "probability": 0.9137 + }, + { + "start": 21218.44, + "end": 21221.38, + "probability": 0.7079 + }, + { + "start": 21221.46, + "end": 21222.28, + "probability": 0.526 + }, + { + "start": 21222.58, + "end": 21223.03, + "probability": 0.3867 + }, + { + "start": 21223.64, + "end": 21225.45, + "probability": 0.1974 + }, + { + "start": 21227.28, + "end": 21227.52, + "probability": 0.1237 + }, + { + "start": 21228.18, + "end": 21229.12, + "probability": 0.2155 + }, + { + "start": 21230.54, + "end": 21232.7, + "probability": 0.1089 + }, + { + "start": 21232.82, + "end": 21239.66, + "probability": 0.1795 + }, + { + "start": 21239.66, + "end": 21239.66, + "probability": 0.1398 + }, + { + "start": 21239.66, + "end": 21239.68, + "probability": 0.2658 + }, + { + "start": 21239.84, + "end": 21239.96, + "probability": 0.2069 + }, + { + "start": 21240.52, + "end": 21241.32, + "probability": 0.3032 + }, + { + "start": 21241.88, + "end": 21245.25, + "probability": 0.0294 + }, + { + "start": 21247.58, + "end": 21248.8, + "probability": 0.0918 + }, + { + "start": 21249.14, + "end": 21249.96, + "probability": 0.3141 + }, + { + "start": 21257.24, + "end": 21258.88, + "probability": 0.1947 + }, + { + "start": 21259.04, + "end": 21259.66, + "probability": 0.3291 + }, + { + "start": 21261.12, + "end": 21261.84, + "probability": 0.0774 + }, + { + "start": 21261.84, + "end": 21263.28, + "probability": 0.2084 + }, + { + "start": 21263.74, + "end": 21267.8, + "probability": 0.0362 + }, + { + "start": 21267.8, + "end": 21269.96, + "probability": 0.1836 + }, + { + "start": 21270.84, + "end": 21273.3, + "probability": 0.1985 + }, + { + "start": 21274.78, + "end": 21277.16, + "probability": 0.0994 + }, + { + "start": 21278.94, + "end": 21279.64, + "probability": 0.046 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.0, + "end": 21303.0, + "probability": 0.0 + }, + { + "start": 21303.1, + "end": 21303.64, + "probability": 0.2087 + }, + { + "start": 21303.64, + "end": 21306.78, + "probability": 0.8916 + }, + { + "start": 21306.78, + "end": 21310.14, + "probability": 0.9834 + }, + { + "start": 21310.78, + "end": 21313.66, + "probability": 0.8595 + }, + { + "start": 21315.2, + "end": 21320.42, + "probability": 0.777 + }, + { + "start": 21320.54, + "end": 21322.92, + "probability": 0.6154 + }, + { + "start": 21324.5, + "end": 21325.8, + "probability": 0.8919 + }, + { + "start": 21325.84, + "end": 21328.26, + "probability": 0.7816 + }, + { + "start": 21328.46, + "end": 21329.24, + "probability": 0.4126 + }, + { + "start": 21329.76, + "end": 21333.42, + "probability": 0.8692 + }, + { + "start": 21334.26, + "end": 21337.46, + "probability": 0.7254 + }, + { + "start": 21337.86, + "end": 21342.38, + "probability": 0.8787 + }, + { + "start": 21342.5, + "end": 21343.1, + "probability": 0.3883 + }, + { + "start": 21343.44, + "end": 21347.04, + "probability": 0.635 + }, + { + "start": 21347.52, + "end": 21348.4, + "probability": 0.511 + }, + { + "start": 21348.62, + "end": 21352.6, + "probability": 0.8955 + }, + { + "start": 21352.8, + "end": 21356.12, + "probability": 0.6674 + }, + { + "start": 21358.34, + "end": 21360.16, + "probability": 0.3714 + }, + { + "start": 21360.26, + "end": 21364.26, + "probability": 0.7774 + }, + { + "start": 21364.4, + "end": 21369.04, + "probability": 0.5357 + }, + { + "start": 21369.22, + "end": 21369.44, + "probability": 0.8137 + }, + { + "start": 21370.16, + "end": 21372.54, + "probability": 0.6635 + }, + { + "start": 21372.74, + "end": 21375.58, + "probability": 0.6602 + }, + { + "start": 21376.16, + "end": 21376.36, + "probability": 0.003 + }, + { + "start": 21376.38, + "end": 21380.28, + "probability": 0.2365 + }, + { + "start": 21380.96, + "end": 21381.18, + "probability": 0.297 + }, + { + "start": 21381.18, + "end": 21381.18, + "probability": 0.0126 + }, + { + "start": 21381.78, + "end": 21384.6, + "probability": 0.0792 + }, + { + "start": 21392.1, + "end": 21393.05, + "probability": 0.1436 + }, + { + "start": 21393.56, + "end": 21395.8, + "probability": 0.0913 + }, + { + "start": 21396.02, + "end": 21396.69, + "probability": 0.2338 + }, + { + "start": 21397.94, + "end": 21400.0, + "probability": 0.2093 + }, + { + "start": 21403.12, + "end": 21404.04, + "probability": 0.5042 + }, + { + "start": 21406.11, + "end": 21408.84, + "probability": 0.253 + }, + { + "start": 21409.52, + "end": 21411.72, + "probability": 0.2982 + }, + { + "start": 21411.9, + "end": 21413.09, + "probability": 0.0568 + }, + { + "start": 21413.78, + "end": 21417.8, + "probability": 0.8209 + }, + { + "start": 21417.8, + "end": 21422.08, + "probability": 0.9723 + }, + { + "start": 21435.04, + "end": 21438.38, + "probability": 0.6268 + }, + { + "start": 21439.46, + "end": 21441.31, + "probability": 0.688 + }, + { + "start": 21445.08, + "end": 21451.08, + "probability": 0.9529 + }, + { + "start": 21452.16, + "end": 21456.56, + "probability": 0.9866 + }, + { + "start": 21457.98, + "end": 21463.48, + "probability": 0.809 + }, + { + "start": 21464.58, + "end": 21467.24, + "probability": 0.5908 + }, + { + "start": 21468.1, + "end": 21472.18, + "probability": 0.8928 + }, + { + "start": 21472.9, + "end": 21476.12, + "probability": 0.6823 + }, + { + "start": 21477.4, + "end": 21478.86, + "probability": 0.4267 + }, + { + "start": 21479.02, + "end": 21480.16, + "probability": 0.6906 + }, + { + "start": 21480.44, + "end": 21486.6, + "probability": 0.9048 + }, + { + "start": 21488.0, + "end": 21490.41, + "probability": 0.7083 + }, + { + "start": 21492.5, + "end": 21495.22, + "probability": 0.7638 + }, + { + "start": 21495.8, + "end": 21497.88, + "probability": 0.9463 + }, + { + "start": 21498.46, + "end": 21501.4, + "probability": 0.8514 + }, + { + "start": 21501.92, + "end": 21505.82, + "probability": 0.9629 + }, + { + "start": 21506.14, + "end": 21513.7, + "probability": 0.8486 + }, + { + "start": 21515.46, + "end": 21517.7, + "probability": 0.9908 + }, + { + "start": 21518.9, + "end": 21524.37, + "probability": 0.9625 + }, + { + "start": 21524.7, + "end": 21528.88, + "probability": 0.9981 + }, + { + "start": 21530.14, + "end": 21534.96, + "probability": 0.9102 + }, + { + "start": 21534.96, + "end": 21539.34, + "probability": 0.9669 + }, + { + "start": 21540.06, + "end": 21543.89, + "probability": 0.9978 + }, + { + "start": 21543.98, + "end": 21550.2, + "probability": 0.9489 + }, + { + "start": 21550.3, + "end": 21555.22, + "probability": 0.6613 + }, + { + "start": 21555.4, + "end": 21561.16, + "probability": 0.9836 + }, + { + "start": 21561.56, + "end": 21568.48, + "probability": 0.9849 + }, + { + "start": 21568.48, + "end": 21573.46, + "probability": 0.9247 + }, + { + "start": 21574.02, + "end": 21576.44, + "probability": 0.9812 + }, + { + "start": 21577.08, + "end": 21577.48, + "probability": 0.892 + }, + { + "start": 21577.58, + "end": 21578.36, + "probability": 0.8968 + }, + { + "start": 21578.44, + "end": 21582.3, + "probability": 0.9132 + }, + { + "start": 21582.84, + "end": 21586.62, + "probability": 0.9834 + }, + { + "start": 21587.24, + "end": 21588.34, + "probability": 0.9421 + }, + { + "start": 21589.16, + "end": 21594.46, + "probability": 0.9962 + }, + { + "start": 21594.46, + "end": 21600.06, + "probability": 0.9955 + }, + { + "start": 21600.62, + "end": 21603.66, + "probability": 0.9951 + }, + { + "start": 21603.66, + "end": 21608.38, + "probability": 0.895 + }, + { + "start": 21608.6, + "end": 21611.32, + "probability": 0.8398 + }, + { + "start": 21612.02, + "end": 21612.8, + "probability": 0.5388 + }, + { + "start": 21613.7, + "end": 21615.8, + "probability": 0.7393 + }, + { + "start": 21616.16, + "end": 21620.16, + "probability": 0.981 + }, + { + "start": 21620.28, + "end": 21622.52, + "probability": 0.9285 + }, + { + "start": 21622.7, + "end": 21623.8, + "probability": 0.8489 + }, + { + "start": 21623.84, + "end": 21624.94, + "probability": 0.8637 + }, + { + "start": 21625.6, + "end": 21628.62, + "probability": 0.9067 + }, + { + "start": 21629.66, + "end": 21633.68, + "probability": 0.9951 + }, + { + "start": 21633.68, + "end": 21637.86, + "probability": 0.999 + }, + { + "start": 21638.98, + "end": 21644.35, + "probability": 0.9855 + }, + { + "start": 21645.64, + "end": 21659.78, + "probability": 0.8272 + }, + { + "start": 21660.18, + "end": 21665.48, + "probability": 0.8545 + }, + { + "start": 21666.06, + "end": 21669.4, + "probability": 0.7896 + }, + { + "start": 21669.8, + "end": 21672.04, + "probability": 0.194 + }, + { + "start": 21673.76, + "end": 21677.24, + "probability": 0.3208 + }, + { + "start": 21677.24, + "end": 21677.24, + "probability": 0.0005 + }, + { + "start": 21678.78, + "end": 21679.94, + "probability": 0.0147 + }, + { + "start": 21679.94, + "end": 21681.77, + "probability": 0.3412 + }, + { + "start": 21683.1, + "end": 21684.14, + "probability": 0.2806 + }, + { + "start": 21684.72, + "end": 21685.8, + "probability": 0.4726 + }, + { + "start": 21686.22, + "end": 21687.59, + "probability": 0.1403 + }, + { + "start": 21688.46, + "end": 21691.1, + "probability": 0.0799 + }, + { + "start": 21691.54, + "end": 21694.49, + "probability": 0.8901 + }, + { + "start": 21695.16, + "end": 21696.36, + "probability": 0.382 + }, + { + "start": 21696.86, + "end": 21700.16, + "probability": 0.8239 + }, + { + "start": 21701.0, + "end": 21706.7, + "probability": 0.7666 + }, + { + "start": 21707.64, + "end": 21710.74, + "probability": 0.9984 + }, + { + "start": 21710.78, + "end": 21713.38, + "probability": 0.9702 + }, + { + "start": 21713.64, + "end": 21714.66, + "probability": 0.8566 + }, + { + "start": 21715.38, + "end": 21719.7, + "probability": 0.7168 + }, + { + "start": 21720.24, + "end": 21723.9, + "probability": 0.9748 + }, + { + "start": 21724.48, + "end": 21731.54, + "probability": 0.9727 + }, + { + "start": 21732.7, + "end": 21734.3, + "probability": 0.762 + }, + { + "start": 21735.44, + "end": 21736.84, + "probability": 0.6665 + }, + { + "start": 21737.0, + "end": 21738.24, + "probability": 0.7033 + }, + { + "start": 21738.86, + "end": 21740.16, + "probability": 0.5622 + }, + { + "start": 21740.82, + "end": 21743.38, + "probability": 0.8335 + }, + { + "start": 21746.74, + "end": 21751.74, + "probability": 0.9856 + }, + { + "start": 21752.46, + "end": 21757.26, + "probability": 0.9825 + }, + { + "start": 21757.9, + "end": 21762.52, + "probability": 0.9404 + }, + { + "start": 21765.12, + "end": 21769.02, + "probability": 0.5209 + }, + { + "start": 21769.76, + "end": 21771.66, + "probability": 0.6673 + }, + { + "start": 21771.78, + "end": 21772.94, + "probability": 0.8311 + }, + { + "start": 21773.44, + "end": 21778.3, + "probability": 0.7887 + }, + { + "start": 21778.7, + "end": 21780.1, + "probability": 0.7838 + }, + { + "start": 21780.44, + "end": 21781.08, + "probability": 0.5931 + }, + { + "start": 21781.28, + "end": 21784.16, + "probability": 0.9199 + }, + { + "start": 21785.82, + "end": 21790.48, + "probability": 0.9258 + }, + { + "start": 21791.26, + "end": 21792.48, + "probability": 0.939 + }, + { + "start": 21793.3, + "end": 21799.96, + "probability": 0.9937 + }, + { + "start": 21800.66, + "end": 21802.08, + "probability": 0.9768 + }, + { + "start": 21802.74, + "end": 21807.24, + "probability": 0.5561 + }, + { + "start": 21807.8, + "end": 21810.14, + "probability": 0.7531 + }, + { + "start": 21810.9, + "end": 21814.04, + "probability": 0.2655 + }, + { + "start": 21814.14, + "end": 21815.26, + "probability": 0.289 + }, + { + "start": 21815.34, + "end": 21817.33, + "probability": 0.5044 + }, + { + "start": 21818.12, + "end": 21821.94, + "probability": 0.8431 + }, + { + "start": 21822.12, + "end": 21822.6, + "probability": 0.2902 + }, + { + "start": 21823.26, + "end": 21823.78, + "probability": 0.2505 + }, + { + "start": 21823.96, + "end": 21826.26, + "probability": 0.4705 + }, + { + "start": 21826.52, + "end": 21827.99, + "probability": 0.6416 + }, + { + "start": 21828.16, + "end": 21832.96, + "probability": 0.6671 + }, + { + "start": 21832.96, + "end": 21835.84, + "probability": 0.8532 + }, + { + "start": 21836.42, + "end": 21838.56, + "probability": 0.9521 + }, + { + "start": 21838.6, + "end": 21839.56, + "probability": 0.8331 + }, + { + "start": 21840.06, + "end": 21841.44, + "probability": 0.7134 + }, + { + "start": 21842.0, + "end": 21846.54, + "probability": 0.9475 + }, + { + "start": 21846.64, + "end": 21849.2, + "probability": 0.9583 + }, + { + "start": 21849.76, + "end": 21854.02, + "probability": 0.6995 + }, + { + "start": 21854.84, + "end": 21857.92, + "probability": 0.9806 + }, + { + "start": 21858.08, + "end": 21858.76, + "probability": 0.8685 + }, + { + "start": 21859.26, + "end": 21860.4, + "probability": 0.8506 + }, + { + "start": 21861.0, + "end": 21863.34, + "probability": 0.8018 + }, + { + "start": 21863.96, + "end": 21867.26, + "probability": 0.7304 + }, + { + "start": 21867.94, + "end": 21870.78, + "probability": 0.7766 + }, + { + "start": 21871.3, + "end": 21877.16, + "probability": 0.9634 + }, + { + "start": 21877.72, + "end": 21882.26, + "probability": 0.9893 + }, + { + "start": 21885.73, + "end": 21888.14, + "probability": 0.7821 + }, + { + "start": 21888.74, + "end": 21893.2, + "probability": 0.9099 + }, + { + "start": 21893.3, + "end": 21897.16, + "probability": 0.8658 + }, + { + "start": 21897.16, + "end": 21901.8, + "probability": 0.9883 + }, + { + "start": 21902.5, + "end": 21905.04, + "probability": 0.864 + }, + { + "start": 21905.04, + "end": 21910.1, + "probability": 0.9692 + }, + { + "start": 21910.58, + "end": 21911.5, + "probability": 0.7938 + }, + { + "start": 21911.6, + "end": 21912.34, + "probability": 0.921 + }, + { + "start": 21912.62, + "end": 21913.76, + "probability": 0.9404 + }, + { + "start": 21914.0, + "end": 21919.42, + "probability": 0.7062 + }, + { + "start": 21919.86, + "end": 21923.86, + "probability": 0.9802 + }, + { + "start": 21924.3, + "end": 21924.7, + "probability": 0.3443 + }, + { + "start": 21924.82, + "end": 21925.14, + "probability": 0.905 + }, + { + "start": 21925.26, + "end": 21928.46, + "probability": 0.5735 + }, + { + "start": 21928.78, + "end": 21930.3, + "probability": 0.8231 + }, + { + "start": 21930.68, + "end": 21931.73, + "probability": 0.9219 + }, + { + "start": 21932.32, + "end": 21936.54, + "probability": 0.9643 + }, + { + "start": 21936.94, + "end": 21940.62, + "probability": 0.913 + }, + { + "start": 21941.08, + "end": 21945.32, + "probability": 0.9761 + }, + { + "start": 21945.96, + "end": 21948.7, + "probability": 0.8735 + }, + { + "start": 21949.1, + "end": 21951.44, + "probability": 0.99 + }, + { + "start": 21951.64, + "end": 21953.9, + "probability": 0.9507 + }, + { + "start": 21954.98, + "end": 21956.8, + "probability": 0.761 + }, + { + "start": 21956.84, + "end": 21959.94, + "probability": 0.8917 + }, + { + "start": 21959.98, + "end": 21960.76, + "probability": 0.4989 + }, + { + "start": 21961.5, + "end": 21963.4, + "probability": 0.7549 + }, + { + "start": 21964.06, + "end": 21965.38, + "probability": 0.9655 + }, + { + "start": 21966.0, + "end": 21970.47, + "probability": 0.9347 + }, + { + "start": 21971.12, + "end": 21978.12, + "probability": 0.9479 + }, + { + "start": 21978.28, + "end": 21979.64, + "probability": 0.872 + }, + { + "start": 21980.58, + "end": 21984.46, + "probability": 0.9717 + }, + { + "start": 21984.7, + "end": 21985.62, + "probability": 0.7461 + }, + { + "start": 21985.88, + "end": 21990.92, + "probability": 0.6997 + }, + { + "start": 21991.86, + "end": 21995.06, + "probability": 0.8867 + }, + { + "start": 21995.06, + "end": 21999.56, + "probability": 0.8983 + }, + { + "start": 22000.3, + "end": 22003.72, + "probability": 0.9673 + }, + { + "start": 22003.78, + "end": 22005.94, + "probability": 0.7738 + }, + { + "start": 22006.58, + "end": 22011.02, + "probability": 0.9841 + }, + { + "start": 22011.02, + "end": 22017.22, + "probability": 0.8361 + }, + { + "start": 22017.82, + "end": 22021.18, + "probability": 0.9614 + }, + { + "start": 22021.18, + "end": 22027.74, + "probability": 0.7444 + }, + { + "start": 22028.14, + "end": 22029.78, + "probability": 0.8215 + }, + { + "start": 22030.66, + "end": 22032.52, + "probability": 0.579 + }, + { + "start": 22033.12, + "end": 22037.9, + "probability": 0.9519 + }, + { + "start": 22038.22, + "end": 22042.08, + "probability": 0.8231 + }, + { + "start": 22042.74, + "end": 22046.7, + "probability": 0.8165 + }, + { + "start": 22047.08, + "end": 22049.46, + "probability": 0.5209 + }, + { + "start": 22049.9, + "end": 22050.96, + "probability": 0.7224 + }, + { + "start": 22051.7, + "end": 22057.24, + "probability": 0.9816 + }, + { + "start": 22058.12, + "end": 22062.42, + "probability": 0.9879 + }, + { + "start": 22062.98, + "end": 22065.7, + "probability": 0.9189 + }, + { + "start": 22066.76, + "end": 22070.38, + "probability": 0.9384 + }, + { + "start": 22070.56, + "end": 22071.3, + "probability": 0.7789 + }, + { + "start": 22071.76, + "end": 22072.7, + "probability": 0.9022 + }, + { + "start": 22073.16, + "end": 22075.56, + "probability": 0.9582 + }, + { + "start": 22075.86, + "end": 22077.72, + "probability": 0.9857 + }, + { + "start": 22077.96, + "end": 22079.92, + "probability": 0.926 + }, + { + "start": 22080.06, + "end": 22081.38, + "probability": 0.9137 + }, + { + "start": 22081.58, + "end": 22085.01, + "probability": 0.9695 + }, + { + "start": 22085.24, + "end": 22088.06, + "probability": 0.9851 + }, + { + "start": 22088.1, + "end": 22088.5, + "probability": 0.8313 + }, + { + "start": 22088.66, + "end": 22089.03, + "probability": 0.7893 + }, + { + "start": 22089.36, + "end": 22090.86, + "probability": 0.7328 + }, + { + "start": 22091.38, + "end": 22097.86, + "probability": 0.9858 + }, + { + "start": 22099.26, + "end": 22100.83, + "probability": 0.5096 + }, + { + "start": 22101.14, + "end": 22102.76, + "probability": 0.8087 + }, + { + "start": 22103.82, + "end": 22106.1, + "probability": 0.943 + }, + { + "start": 22106.22, + "end": 22107.52, + "probability": 0.0416 + }, + { + "start": 22109.26, + "end": 22109.96, + "probability": 0.5852 + }, + { + "start": 22110.22, + "end": 22114.74, + "probability": 0.7434 + }, + { + "start": 22114.74, + "end": 22121.52, + "probability": 0.3276 + }, + { + "start": 22129.52, + "end": 22131.98, + "probability": 0.6165 + }, + { + "start": 22133.02, + "end": 22136.78, + "probability": 0.7855 + }, + { + "start": 22136.78, + "end": 22142.04, + "probability": 0.9663 + }, + { + "start": 22144.02, + "end": 22149.36, + "probability": 0.9644 + }, + { + "start": 22149.36, + "end": 22154.8, + "probability": 0.9905 + }, + { + "start": 22156.14, + "end": 22161.9, + "probability": 0.9728 + }, + { + "start": 22163.5, + "end": 22166.2, + "probability": 0.939 + }, + { + "start": 22167.32, + "end": 22170.87, + "probability": 0.8985 + }, + { + "start": 22172.3, + "end": 22174.7, + "probability": 0.9493 + }, + { + "start": 22175.04, + "end": 22181.78, + "probability": 0.9463 + }, + { + "start": 22181.78, + "end": 22186.18, + "probability": 0.8487 + }, + { + "start": 22187.6, + "end": 22188.54, + "probability": 0.7775 + }, + { + "start": 22188.64, + "end": 22190.22, + "probability": 0.879 + }, + { + "start": 22190.24, + "end": 22193.72, + "probability": 0.9974 + }, + { + "start": 22194.48, + "end": 22198.6, + "probability": 0.8975 + }, + { + "start": 22199.96, + "end": 22201.5, + "probability": 0.7268 + }, + { + "start": 22201.58, + "end": 22203.84, + "probability": 0.974 + }, + { + "start": 22204.94, + "end": 22208.92, + "probability": 0.9677 + }, + { + "start": 22210.36, + "end": 22212.2, + "probability": 0.9026 + }, + { + "start": 22212.48, + "end": 22217.66, + "probability": 0.9971 + }, + { + "start": 22217.66, + "end": 22224.16, + "probability": 0.9902 + }, + { + "start": 22225.7, + "end": 22233.46, + "probability": 0.9795 + }, + { + "start": 22233.51, + "end": 22242.84, + "probability": 0.9939 + }, + { + "start": 22242.84, + "end": 22250.44, + "probability": 0.9947 + }, + { + "start": 22252.2, + "end": 22253.66, + "probability": 0.9042 + }, + { + "start": 22254.6, + "end": 22259.32, + "probability": 0.9453 + }, + { + "start": 22259.92, + "end": 22260.48, + "probability": 0.5052 + }, + { + "start": 22261.66, + "end": 22267.26, + "probability": 0.6497 + }, + { + "start": 22267.98, + "end": 22273.3, + "probability": 0.9874 + }, + { + "start": 22273.3, + "end": 22278.68, + "probability": 0.98 + }, + { + "start": 22279.9, + "end": 22281.0, + "probability": 0.6643 + }, + { + "start": 22281.84, + "end": 22287.24, + "probability": 0.9206 + }, + { + "start": 22287.24, + "end": 22291.54, + "probability": 0.9717 + }, + { + "start": 22292.4, + "end": 22295.98, + "probability": 0.9859 + }, + { + "start": 22297.5, + "end": 22300.94, + "probability": 0.9319 + }, + { + "start": 22302.56, + "end": 22303.26, + "probability": 0.7398 + }, + { + "start": 22304.28, + "end": 22308.98, + "probability": 0.8905 + }, + { + "start": 22310.4, + "end": 22313.74, + "probability": 0.9962 + }, + { + "start": 22313.86, + "end": 22319.44, + "probability": 0.7941 + }, + { + "start": 22320.34, + "end": 22324.88, + "probability": 0.9936 + }, + { + "start": 22325.98, + "end": 22328.56, + "probability": 0.9597 + }, + { + "start": 22328.56, + "end": 22331.46, + "probability": 0.9913 + }, + { + "start": 22332.54, + "end": 22338.16, + "probability": 0.9944 + }, + { + "start": 22338.16, + "end": 22346.0, + "probability": 0.9961 + }, + { + "start": 22346.84, + "end": 22349.3, + "probability": 0.922 + }, + { + "start": 22349.82, + "end": 22351.1, + "probability": 0.9538 + }, + { + "start": 22352.34, + "end": 22358.08, + "probability": 0.9812 + }, + { + "start": 22358.2, + "end": 22359.6, + "probability": 0.9117 + }, + { + "start": 22360.28, + "end": 22362.68, + "probability": 0.9014 + }, + { + "start": 22363.48, + "end": 22368.67, + "probability": 0.8825 + }, + { + "start": 22369.34, + "end": 22370.7, + "probability": 0.9675 + }, + { + "start": 22371.1, + "end": 22373.56, + "probability": 0.9689 + }, + { + "start": 22373.56, + "end": 22376.8, + "probability": 0.9917 + }, + { + "start": 22378.4, + "end": 22382.62, + "probability": 0.9146 + }, + { + "start": 22383.32, + "end": 22385.1, + "probability": 0.8391 + }, + { + "start": 22385.96, + "end": 22389.72, + "probability": 0.7425 + }, + { + "start": 22389.94, + "end": 22394.06, + "probability": 0.9657 + }, + { + "start": 22396.28, + "end": 22398.04, + "probability": 0.3778 + }, + { + "start": 22398.08, + "end": 22401.2, + "probability": 0.5284 + }, + { + "start": 22401.62, + "end": 22403.56, + "probability": 0.2215 + }, + { + "start": 22403.9, + "end": 22404.44, + "probability": 0.3022 + }, + { + "start": 22405.05, + "end": 22406.92, + "probability": 0.658 + }, + { + "start": 22410.4, + "end": 22414.44, + "probability": 0.6783 + }, + { + "start": 22416.39, + "end": 22420.16, + "probability": 0.6709 + }, + { + "start": 22420.48, + "end": 22422.92, + "probability": 0.7017 + }, + { + "start": 22423.06, + "end": 22424.82, + "probability": 0.7304 + }, + { + "start": 22427.58, + "end": 22428.34, + "probability": 0.2468 + }, + { + "start": 22428.36, + "end": 22428.36, + "probability": 0.1718 + }, + { + "start": 22428.36, + "end": 22428.82, + "probability": 0.0211 + }, + { + "start": 22429.72, + "end": 22430.38, + "probability": 0.4519 + }, + { + "start": 22431.08, + "end": 22431.56, + "probability": 0.4349 + }, + { + "start": 22431.56, + "end": 22434.58, + "probability": 0.2075 + }, + { + "start": 22435.24, + "end": 22436.6, + "probability": 0.5969 + }, + { + "start": 22436.6, + "end": 22437.54, + "probability": 0.6081 + }, + { + "start": 22437.88, + "end": 22439.26, + "probability": 0.3733 + }, + { + "start": 22439.7, + "end": 22443.3, + "probability": 0.1375 + }, + { + "start": 22443.9, + "end": 22444.98, + "probability": 0.6256 + }, + { + "start": 22444.98, + "end": 22448.52, + "probability": 0.4248 + }, + { + "start": 22448.6, + "end": 22450.52, + "probability": 0.8494 + }, + { + "start": 22451.08, + "end": 22453.42, + "probability": 0.6797 + }, + { + "start": 22453.84, + "end": 22456.7, + "probability": 0.0473 + }, + { + "start": 22457.22, + "end": 22457.6, + "probability": 0.0244 + }, + { + "start": 22457.6, + "end": 22460.06, + "probability": 0.5995 + }, + { + "start": 22460.3, + "end": 22461.3, + "probability": 0.6483 + }, + { + "start": 22461.86, + "end": 22463.66, + "probability": 0.577 + }, + { + "start": 22464.02, + "end": 22465.4, + "probability": 0.2579 + }, + { + "start": 22465.78, + "end": 22468.72, + "probability": 0.2551 + }, + { + "start": 22483.0, + "end": 22485.66, + "probability": 0.7274 + }, + { + "start": 22486.2, + "end": 22488.94, + "probability": 0.8333 + }, + { + "start": 22489.52, + "end": 22491.61, + "probability": 0.799 + }, + { + "start": 22493.04, + "end": 22494.32, + "probability": 0.2553 + }, + { + "start": 22495.02, + "end": 22496.88, + "probability": 0.4836 + }, + { + "start": 22497.32, + "end": 22497.7, + "probability": 0.035 + }, + { + "start": 22497.7, + "end": 22498.52, + "probability": 0.3125 + }, + { + "start": 22498.78, + "end": 22499.34, + "probability": 0.7057 + }, + { + "start": 22515.72, + "end": 22516.8, + "probability": 0.4247 + }, + { + "start": 22517.06, + "end": 22517.78, + "probability": 0.496 + }, + { + "start": 22517.9, + "end": 22522.85, + "probability": 0.1726 + }, + { + "start": 22523.68, + "end": 22524.8, + "probability": 0.1276 + }, + { + "start": 22525.72, + "end": 22527.78, + "probability": 0.803 + }, + { + "start": 22530.64, + "end": 22531.3, + "probability": 0.9951 + }, + { + "start": 22534.02, + "end": 22538.04, + "probability": 0.8059 + }, + { + "start": 22538.74, + "end": 22542.34, + "probability": 0.9639 + }, + { + "start": 22542.46, + "end": 22544.94, + "probability": 0.9189 + }, + { + "start": 22545.64, + "end": 22551.2, + "probability": 0.9888 + }, + { + "start": 22551.72, + "end": 22552.74, + "probability": 0.4719 + }, + { + "start": 22553.92, + "end": 22556.48, + "probability": 0.8857 + }, + { + "start": 22557.58, + "end": 22563.24, + "probability": 0.9589 + }, + { + "start": 22563.34, + "end": 22563.86, + "probability": 0.5416 + }, + { + "start": 22563.92, + "end": 22564.38, + "probability": 0.5111 + }, + { + "start": 22564.6, + "end": 22565.56, + "probability": 0.6208 + }, + { + "start": 22568.32, + "end": 22569.82, + "probability": 0.4623 + }, + { + "start": 22570.34, + "end": 22573.56, + "probability": 0.7544 + }, + { + "start": 22573.94, + "end": 22574.78, + "probability": 0.9012 + }, + { + "start": 22574.9, + "end": 22575.36, + "probability": 0.9439 + }, + { + "start": 22575.5, + "end": 22578.7, + "probability": 0.9561 + }, + { + "start": 22578.96, + "end": 22579.94, + "probability": 0.9573 + }, + { + "start": 22580.78, + "end": 22583.4, + "probability": 0.9346 + }, + { + "start": 22583.94, + "end": 22586.66, + "probability": 0.963 + }, + { + "start": 22586.92, + "end": 22587.52, + "probability": 0.6024 + }, + { + "start": 22587.58, + "end": 22588.12, + "probability": 0.6016 + }, + { + "start": 22589.08, + "end": 22593.32, + "probability": 0.8821 + }, + { + "start": 22594.56, + "end": 22598.84, + "probability": 0.9956 + }, + { + "start": 22599.86, + "end": 22603.44, + "probability": 0.9032 + }, + { + "start": 22604.36, + "end": 22607.34, + "probability": 0.6113 + }, + { + "start": 22607.94, + "end": 22608.5, + "probability": 0.6701 + }, + { + "start": 22608.86, + "end": 22611.02, + "probability": 0.897 + }, + { + "start": 22611.38, + "end": 22614.2, + "probability": 0.9852 + }, + { + "start": 22614.86, + "end": 22617.1, + "probability": 0.9615 + }, + { + "start": 22617.24, + "end": 22618.92, + "probability": 0.9647 + }, + { + "start": 22619.4, + "end": 22620.86, + "probability": 0.9987 + }, + { + "start": 22620.98, + "end": 22621.58, + "probability": 0.5647 + }, + { + "start": 22622.08, + "end": 22626.1, + "probability": 0.9291 + }, + { + "start": 22626.22, + "end": 22627.84, + "probability": 0.7739 + }, + { + "start": 22628.2, + "end": 22630.48, + "probability": 0.9211 + }, + { + "start": 22630.54, + "end": 22633.18, + "probability": 0.6589 + }, + { + "start": 22633.36, + "end": 22634.82, + "probability": 0.8865 + }, + { + "start": 22635.28, + "end": 22636.22, + "probability": 0.8375 + }, + { + "start": 22636.34, + "end": 22638.18, + "probability": 0.6202 + }, + { + "start": 22638.36, + "end": 22639.12, + "probability": 0.792 + }, + { + "start": 22639.54, + "end": 22640.7, + "probability": 0.9771 + }, + { + "start": 22640.84, + "end": 22643.46, + "probability": 0.677 + }, + { + "start": 22643.64, + "end": 22644.72, + "probability": 0.9905 + }, + { + "start": 22645.38, + "end": 22647.23, + "probability": 0.9591 + }, + { + "start": 22648.48, + "end": 22651.08, + "probability": 0.9515 + }, + { + "start": 22651.16, + "end": 22652.94, + "probability": 0.9924 + }, + { + "start": 22653.56, + "end": 22658.04, + "probability": 0.8902 + }, + { + "start": 22658.74, + "end": 22661.06, + "probability": 0.9105 + }, + { + "start": 22661.2, + "end": 22662.64, + "probability": 0.6202 + }, + { + "start": 22662.94, + "end": 22663.57, + "probability": 0.9386 + }, + { + "start": 22663.78, + "end": 22664.0, + "probability": 0.9597 + }, + { + "start": 22664.12, + "end": 22665.82, + "probability": 0.7769 + }, + { + "start": 22666.42, + "end": 22673.56, + "probability": 0.9661 + }, + { + "start": 22674.7, + "end": 22676.54, + "probability": 0.9465 + }, + { + "start": 22676.64, + "end": 22678.92, + "probability": 0.9082 + }, + { + "start": 22679.72, + "end": 22682.74, + "probability": 0.9578 + }, + { + "start": 22683.1, + "end": 22683.98, + "probability": 0.7603 + }, + { + "start": 22684.06, + "end": 22686.34, + "probability": 0.9921 + }, + { + "start": 22686.5, + "end": 22688.4, + "probability": 0.575 + }, + { + "start": 22688.86, + "end": 22689.3, + "probability": 0.7392 + }, + { + "start": 22689.36, + "end": 22692.22, + "probability": 0.7049 + }, + { + "start": 22693.56, + "end": 22694.2, + "probability": 0.871 + }, + { + "start": 22694.6, + "end": 22695.88, + "probability": 0.8684 + }, + { + "start": 22696.0, + "end": 22698.8, + "probability": 0.8963 + }, + { + "start": 22699.3, + "end": 22702.08, + "probability": 0.9008 + }, + { + "start": 22702.3, + "end": 22708.7, + "probability": 0.9655 + }, + { + "start": 22709.14, + "end": 22710.39, + "probability": 0.9902 + }, + { + "start": 22710.7, + "end": 22712.92, + "probability": 0.9099 + }, + { + "start": 22713.38, + "end": 22716.1, + "probability": 0.9821 + }, + { + "start": 22717.32, + "end": 22718.16, + "probability": 0.9166 + }, + { + "start": 22719.6, + "end": 22723.48, + "probability": 0.9715 + }, + { + "start": 22723.76, + "end": 22726.0, + "probability": 0.8204 + }, + { + "start": 22726.0, + "end": 22730.42, + "probability": 0.9568 + }, + { + "start": 22730.62, + "end": 22733.16, + "probability": 0.6419 + }, + { + "start": 22733.38, + "end": 22733.9, + "probability": 0.66 + }, + { + "start": 22733.98, + "end": 22734.82, + "probability": 0.9482 + }, + { + "start": 22735.58, + "end": 22736.58, + "probability": 0.9778 + }, + { + "start": 22737.3, + "end": 22740.51, + "probability": 0.8369 + }, + { + "start": 22740.98, + "end": 22743.5, + "probability": 0.8636 + }, + { + "start": 22743.64, + "end": 22744.88, + "probability": 0.8371 + }, + { + "start": 22746.4, + "end": 22751.46, + "probability": 0.7481 + }, + { + "start": 22751.6, + "end": 22754.58, + "probability": 0.9953 + }, + { + "start": 22755.48, + "end": 22759.48, + "probability": 0.9984 + }, + { + "start": 22759.48, + "end": 22762.66, + "probability": 0.9619 + }, + { + "start": 22763.22, + "end": 22765.1, + "probability": 0.998 + }, + { + "start": 22765.34, + "end": 22767.64, + "probability": 0.9691 + }, + { + "start": 22767.76, + "end": 22770.08, + "probability": 0.9521 + }, + { + "start": 22770.36, + "end": 22773.11, + "probability": 0.9849 + }, + { + "start": 22773.6, + "end": 22779.44, + "probability": 0.9335 + }, + { + "start": 22779.44, + "end": 22782.4, + "probability": 0.9518 + }, + { + "start": 22783.16, + "end": 22784.19, + "probability": 0.8456 + }, + { + "start": 22784.8, + "end": 22785.44, + "probability": 0.7738 + }, + { + "start": 22785.5, + "end": 22787.56, + "probability": 0.999 + }, + { + "start": 22787.74, + "end": 22790.64, + "probability": 0.9477 + }, + { + "start": 22791.0, + "end": 22791.8, + "probability": 0.678 + }, + { + "start": 22792.18, + "end": 22794.04, + "probability": 0.9888 + }, + { + "start": 22794.78, + "end": 22797.04, + "probability": 0.9898 + }, + { + "start": 22797.26, + "end": 22802.04, + "probability": 0.9941 + }, + { + "start": 22802.58, + "end": 22806.38, + "probability": 0.9954 + }, + { + "start": 22806.84, + "end": 22811.94, + "probability": 0.9784 + }, + { + "start": 22811.94, + "end": 22817.66, + "probability": 0.9988 + }, + { + "start": 22819.89, + "end": 22822.64, + "probability": 0.9985 + }, + { + "start": 22823.14, + "end": 22825.74, + "probability": 0.8759 + }, + { + "start": 22826.24, + "end": 22827.66, + "probability": 0.9868 + }, + { + "start": 22827.74, + "end": 22829.39, + "probability": 0.99 + }, + { + "start": 22829.74, + "end": 22834.44, + "probability": 0.9072 + }, + { + "start": 22835.82, + "end": 22835.96, + "probability": 0.0597 + }, + { + "start": 22838.23, + "end": 22845.42, + "probability": 0.8735 + }, + { + "start": 22845.9, + "end": 22846.84, + "probability": 0.9022 + }, + { + "start": 22847.04, + "end": 22851.18, + "probability": 0.9485 + }, + { + "start": 22851.18, + "end": 22855.98, + "probability": 0.938 + }, + { + "start": 22856.28, + "end": 22857.58, + "probability": 0.7994 + }, + { + "start": 22857.76, + "end": 22860.18, + "probability": 0.993 + }, + { + "start": 22860.41, + "end": 22864.0, + "probability": 0.9917 + }, + { + "start": 22864.5, + "end": 22864.84, + "probability": 0.6991 + }, + { + "start": 22865.18, + "end": 22866.36, + "probability": 0.575 + }, + { + "start": 22866.78, + "end": 22868.46, + "probability": 0.6034 + }, + { + "start": 22888.38, + "end": 22890.72, + "probability": 0.7323 + }, + { + "start": 22892.02, + "end": 22895.5, + "probability": 0.8301 + }, + { + "start": 22895.5, + "end": 22899.18, + "probability": 0.9188 + }, + { + "start": 22901.32, + "end": 22905.84, + "probability": 0.9521 + }, + { + "start": 22905.84, + "end": 22909.3, + "probability": 0.9513 + }, + { + "start": 22910.6, + "end": 22912.64, + "probability": 0.6825 + }, + { + "start": 22914.31, + "end": 22918.24, + "probability": 0.9485 + }, + { + "start": 22919.08, + "end": 22921.9, + "probability": 0.3803 + }, + { + "start": 22922.02, + "end": 22925.3, + "probability": 0.84 + }, + { + "start": 22925.3, + "end": 22931.26, + "probability": 0.827 + }, + { + "start": 22931.48, + "end": 22933.38, + "probability": 0.8703 + }, + { + "start": 22933.44, + "end": 22935.28, + "probability": 0.8951 + }, + { + "start": 22936.06, + "end": 22941.24, + "probability": 0.649 + }, + { + "start": 22942.48, + "end": 22944.86, + "probability": 0.9922 + }, + { + "start": 22945.2, + "end": 22948.1, + "probability": 0.9583 + }, + { + "start": 22948.16, + "end": 22949.3, + "probability": 0.4091 + }, + { + "start": 22949.32, + "end": 22955.14, + "probability": 0.978 + }, + { + "start": 22955.28, + "end": 22956.4, + "probability": 0.952 + }, + { + "start": 22956.52, + "end": 22957.88, + "probability": 0.8803 + }, + { + "start": 22958.28, + "end": 22960.34, + "probability": 0.9615 + }, + { + "start": 22960.94, + "end": 22962.38, + "probability": 0.9725 + }, + { + "start": 22962.94, + "end": 22967.0, + "probability": 0.891 + }, + { + "start": 22967.62, + "end": 22969.92, + "probability": 0.8156 + }, + { + "start": 22970.7, + "end": 22972.64, + "probability": 0.7152 + }, + { + "start": 22973.28, + "end": 22974.78, + "probability": 0.8037 + }, + { + "start": 22975.98, + "end": 22978.46, + "probability": 0.8007 + }, + { + "start": 22979.5, + "end": 22982.18, + "probability": 0.8849 + }, + { + "start": 22983.18, + "end": 22986.18, + "probability": 0.8576 + }, + { + "start": 22986.3, + "end": 22988.36, + "probability": 0.6445 + }, + { + "start": 22988.9, + "end": 22992.37, + "probability": 0.6938 + }, + { + "start": 22993.04, + "end": 22994.96, + "probability": 0.9909 + }, + { + "start": 22996.34, + "end": 23004.74, + "probability": 0.9561 + }, + { + "start": 23005.96, + "end": 23012.28, + "probability": 0.7737 + }, + { + "start": 23012.88, + "end": 23015.18, + "probability": 0.881 + }, + { + "start": 23015.66, + "end": 23018.88, + "probability": 0.9655 + }, + { + "start": 23019.06, + "end": 23023.04, + "probability": 0.9478 + }, + { + "start": 23023.6, + "end": 23026.5, + "probability": 0.932 + }, + { + "start": 23027.44, + "end": 23030.3, + "probability": 0.751 + }, + { + "start": 23032.02, + "end": 23040.54, + "probability": 0.9062 + }, + { + "start": 23040.82, + "end": 23042.64, + "probability": 0.6872 + }, + { + "start": 23043.56, + "end": 23047.56, + "probability": 0.9846 + }, + { + "start": 23048.82, + "end": 23049.48, + "probability": 0.79 + }, + { + "start": 23049.62, + "end": 23054.34, + "probability": 0.7957 + }, + { + "start": 23054.34, + "end": 23059.09, + "probability": 0.9977 + }, + { + "start": 23060.36, + "end": 23064.74, + "probability": 0.5969 + }, + { + "start": 23064.8, + "end": 23065.68, + "probability": 0.3789 + }, + { + "start": 23066.2, + "end": 23068.2, + "probability": 0.7822 + }, + { + "start": 23069.14, + "end": 23072.24, + "probability": 0.8548 + }, + { + "start": 23072.5, + "end": 23074.84, + "probability": 0.7094 + }, + { + "start": 23076.39, + "end": 23078.64, + "probability": 0.7262 + }, + { + "start": 23078.72, + "end": 23078.8, + "probability": 0.1009 + }, + { + "start": 23079.0, + "end": 23079.28, + "probability": 0.4576 + }, + { + "start": 23079.44, + "end": 23080.28, + "probability": 0.7675 + }, + { + "start": 23080.42, + "end": 23080.88, + "probability": 0.5122 + }, + { + "start": 23081.84, + "end": 23083.22, + "probability": 0.2185 + }, + { + "start": 23083.36, + "end": 23085.04, + "probability": 0.5319 + }, + { + "start": 23085.24, + "end": 23086.04, + "probability": 0.4683 + }, + { + "start": 23087.06, + "end": 23087.7, + "probability": 0.7304 + }, + { + "start": 23088.48, + "end": 23089.96, + "probability": 0.4568 + }, + { + "start": 23090.3, + "end": 23090.84, + "probability": 0.632 + }, + { + "start": 23091.38, + "end": 23092.34, + "probability": 0.5209 + }, + { + "start": 23092.46, + "end": 23095.72, + "probability": 0.7694 + }, + { + "start": 23096.12, + "end": 23104.82, + "probability": 0.854 + }, + { + "start": 23105.34, + "end": 23111.16, + "probability": 0.8489 + }, + { + "start": 23111.6, + "end": 23115.44, + "probability": 0.8886 + }, + { + "start": 23116.08, + "end": 23120.42, + "probability": 0.9734 + }, + { + "start": 23122.96, + "end": 23125.36, + "probability": 0.762 + }, + { + "start": 23125.76, + "end": 23125.94, + "probability": 0.2799 + }, + { + "start": 23126.06, + "end": 23131.06, + "probability": 0.9646 + }, + { + "start": 23131.3, + "end": 23135.52, + "probability": 0.914 + }, + { + "start": 23136.02, + "end": 23141.0, + "probability": 0.5371 + }, + { + "start": 23141.34, + "end": 23144.32, + "probability": 0.7236 + }, + { + "start": 23144.5, + "end": 23148.16, + "probability": 0.8379 + }, + { + "start": 23148.26, + "end": 23149.18, + "probability": 0.7831 + }, + { + "start": 23149.26, + "end": 23149.82, + "probability": 0.5473 + }, + { + "start": 23150.26, + "end": 23154.52, + "probability": 0.6276 + }, + { + "start": 23154.52, + "end": 23158.6, + "probability": 0.7783 + }, + { + "start": 23158.74, + "end": 23161.5, + "probability": 0.7648 + }, + { + "start": 23161.58, + "end": 23162.28, + "probability": 0.6211 + }, + { + "start": 23163.08, + "end": 23164.0, + "probability": 0.688 + }, + { + "start": 23164.16, + "end": 23164.97, + "probability": 0.8116 + }, + { + "start": 23165.19, + "end": 23167.01, + "probability": 0.8013 + }, + { + "start": 23167.11, + "end": 23168.21, + "probability": 0.2749 + }, + { + "start": 23168.25, + "end": 23170.27, + "probability": 0.9524 + }, + { + "start": 23171.65, + "end": 23173.07, + "probability": 0.6467 + }, + { + "start": 23173.69, + "end": 23174.8, + "probability": 0.6753 + }, + { + "start": 23175.67, + "end": 23177.93, + "probability": 0.8951 + }, + { + "start": 23178.27, + "end": 23179.85, + "probability": 0.5489 + }, + { + "start": 23179.93, + "end": 23180.39, + "probability": 0.8125 + }, + { + "start": 23180.93, + "end": 23181.94, + "probability": 0.9138 + }, + { + "start": 23183.27, + "end": 23184.03, + "probability": 0.8438 + }, + { + "start": 23184.09, + "end": 23184.79, + "probability": 0.8812 + }, + { + "start": 23184.95, + "end": 23187.77, + "probability": 0.4666 + }, + { + "start": 23188.51, + "end": 23190.89, + "probability": 0.1002 + }, + { + "start": 23194.09, + "end": 23197.69, + "probability": 0.3687 + }, + { + "start": 23197.91, + "end": 23199.11, + "probability": 0.4438 + }, + { + "start": 23199.59, + "end": 23203.67, + "probability": 0.1365 + }, + { + "start": 23203.77, + "end": 23208.51, + "probability": 0.2004 + }, + { + "start": 23208.61, + "end": 23209.71, + "probability": 0.5479 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23292.0, + "end": 23292.0, + "probability": 0.0 + }, + { + "start": 23302.12, + "end": 23302.12, + "probability": 0.238 + }, + { + "start": 23302.12, + "end": 23303.7, + "probability": 0.1372 + }, + { + "start": 23305.84, + "end": 23306.58, + "probability": 0.2004 + }, + { + "start": 23307.62, + "end": 23310.42, + "probability": 0.0208 + }, + { + "start": 23311.0, + "end": 23311.26, + "probability": 0.2081 + }, + { + "start": 23312.24, + "end": 23312.34, + "probability": 0.0325 + }, + { + "start": 23315.42, + "end": 23316.48, + "probability": 0.0173 + }, + { + "start": 23316.48, + "end": 23318.68, + "probability": 0.1441 + }, + { + "start": 23319.68, + "end": 23322.5, + "probability": 0.2182 + }, + { + "start": 23327.6, + "end": 23330.2, + "probability": 0.0863 + }, + { + "start": 23331.94, + "end": 23334.36, + "probability": 0.1497 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.0, + "end": 23416.0, + "probability": 0.0 + }, + { + "start": 23416.2, + "end": 23417.36, + "probability": 0.1132 + }, + { + "start": 23418.32, + "end": 23422.82, + "probability": 0.7075 + }, + { + "start": 23423.78, + "end": 23428.26, + "probability": 0.8402 + }, + { + "start": 23428.26, + "end": 23433.9, + "probability": 0.9984 + }, + { + "start": 23434.42, + "end": 23434.54, + "probability": 0.3233 + }, + { + "start": 23434.74, + "end": 23439.24, + "probability": 0.9753 + }, + { + "start": 23441.83, + "end": 23452.74, + "probability": 0.9859 + }, + { + "start": 23453.64, + "end": 23456.8, + "probability": 0.9515 + }, + { + "start": 23457.44, + "end": 23459.26, + "probability": 0.6312 + }, + { + "start": 23459.36, + "end": 23460.06, + "probability": 0.6288 + }, + { + "start": 23460.22, + "end": 23465.96, + "probability": 0.9401 + }, + { + "start": 23466.24, + "end": 23466.92, + "probability": 0.6046 + }, + { + "start": 23467.46, + "end": 23471.34, + "probability": 0.8029 + }, + { + "start": 23472.72, + "end": 23472.92, + "probability": 0.792 + }, + { + "start": 23474.44, + "end": 23476.15, + "probability": 0.3824 + }, + { + "start": 23476.16, + "end": 23476.3, + "probability": 0.4543 + }, + { + "start": 23477.72, + "end": 23480.88, + "probability": 0.7502 + }, + { + "start": 23484.16, + "end": 23491.08, + "probability": 0.4355 + }, + { + "start": 23491.88, + "end": 23495.17, + "probability": 0.261 + }, + { + "start": 23495.38, + "end": 23499.76, + "probability": 0.3648 + }, + { + "start": 23499.84, + "end": 23503.36, + "probability": 0.4918 + }, + { + "start": 23503.82, + "end": 23505.28, + "probability": 0.6918 + }, + { + "start": 23505.9, + "end": 23508.9, + "probability": 0.7029 + }, + { + "start": 23508.9, + "end": 23511.78, + "probability": 0.4684 + }, + { + "start": 23514.21, + "end": 23521.54, + "probability": 0.8501 + }, + { + "start": 23522.18, + "end": 23524.14, + "probability": 0.9841 + }, + { + "start": 23525.26, + "end": 23530.3, + "probability": 0.8146 + }, + { + "start": 23532.54, + "end": 23534.86, + "probability": 0.5336 + }, + { + "start": 23534.96, + "end": 23536.1, + "probability": 0.9192 + }, + { + "start": 23536.26, + "end": 23537.74, + "probability": 0.9845 + }, + { + "start": 23538.5, + "end": 23541.32, + "probability": 0.7356 + }, + { + "start": 23542.8, + "end": 23543.34, + "probability": 0.4071 + }, + { + "start": 23543.66, + "end": 23544.62, + "probability": 0.7743 + }, + { + "start": 23544.7, + "end": 23546.12, + "probability": 0.9849 + }, + { + "start": 23546.86, + "end": 23551.17, + "probability": 0.9193 + }, + { + "start": 23552.08, + "end": 23556.52, + "probability": 0.271 + }, + { + "start": 23557.16, + "end": 23560.1, + "probability": 0.8571 + }, + { + "start": 23560.1, + "end": 23563.32, + "probability": 0.9331 + }, + { + "start": 23564.46, + "end": 23567.32, + "probability": 0.8543 + }, + { + "start": 23568.66, + "end": 23571.28, + "probability": 0.9138 + }, + { + "start": 23572.24, + "end": 23574.08, + "probability": 0.6317 + }, + { + "start": 23574.22, + "end": 23576.48, + "probability": 0.7533 + }, + { + "start": 23577.46, + "end": 23580.42, + "probability": 0.9016 + }, + { + "start": 23581.02, + "end": 23583.7, + "probability": 0.9144 + }, + { + "start": 23584.52, + "end": 23587.46, + "probability": 0.9328 + }, + { + "start": 23587.54, + "end": 23588.52, + "probability": 0.7986 + }, + { + "start": 23588.7, + "end": 23593.02, + "probability": 0.9314 + }, + { + "start": 23593.08, + "end": 23599.36, + "probability": 0.8524 + }, + { + "start": 23599.76, + "end": 23603.32, + "probability": 0.9898 + }, + { + "start": 23604.74, + "end": 23609.2, + "probability": 0.9082 + }, + { + "start": 23609.2, + "end": 23614.86, + "probability": 0.7142 + }, + { + "start": 23614.98, + "end": 23615.78, + "probability": 0.638 + }, + { + "start": 23615.96, + "end": 23616.64, + "probability": 0.6014 + }, + { + "start": 23616.7, + "end": 23617.4, + "probability": 0.6335 + }, + { + "start": 23617.52, + "end": 23618.02, + "probability": 0.8978 + }, + { + "start": 23618.4, + "end": 23619.02, + "probability": 0.962 + }, + { + "start": 23619.12, + "end": 23619.86, + "probability": 0.5012 + }, + { + "start": 23621.2, + "end": 23621.2, + "probability": 0.4937 + }, + { + "start": 23621.76, + "end": 23622.66, + "probability": 0.976 + }, + { + "start": 23623.4, + "end": 23625.16, + "probability": 0.7268 + }, + { + "start": 23626.56, + "end": 23628.76, + "probability": 0.8318 + }, + { + "start": 23629.36, + "end": 23631.2, + "probability": 0.9705 + }, + { + "start": 23631.82, + "end": 23635.94, + "probability": 0.9842 + }, + { + "start": 23635.94, + "end": 23643.6, + "probability": 0.9401 + }, + { + "start": 23644.38, + "end": 23648.56, + "probability": 0.9968 + }, + { + "start": 23649.08, + "end": 23649.76, + "probability": 0.7522 + }, + { + "start": 23649.92, + "end": 23650.36, + "probability": 0.9001 + }, + { + "start": 23650.46, + "end": 23654.9, + "probability": 0.9907 + }, + { + "start": 23655.36, + "end": 23661.48, + "probability": 0.8541 + }, + { + "start": 23662.32, + "end": 23664.9, + "probability": 0.9607 + }, + { + "start": 23665.78, + "end": 23671.0, + "probability": 0.9079 + }, + { + "start": 23672.22, + "end": 23675.14, + "probability": 0.9985 + }, + { + "start": 23675.82, + "end": 23679.4, + "probability": 0.992 + }, + { + "start": 23679.94, + "end": 23682.7, + "probability": 0.7585 + }, + { + "start": 23682.7, + "end": 23685.46, + "probability": 0.8308 + }, + { + "start": 23685.66, + "end": 23686.68, + "probability": 0.8495 + }, + { + "start": 23687.5, + "end": 23688.96, + "probability": 0.9226 + }, + { + "start": 23689.34, + "end": 23694.8, + "probability": 0.9985 + }, + { + "start": 23695.68, + "end": 23696.26, + "probability": 0.6248 + }, + { + "start": 23696.46, + "end": 23697.36, + "probability": 0.7366 + }, + { + "start": 23697.48, + "end": 23698.04, + "probability": 0.8405 + }, + { + "start": 23698.2, + "end": 23698.88, + "probability": 0.4776 + }, + { + "start": 23698.9, + "end": 23699.8, + "probability": 0.6316 + }, + { + "start": 23699.82, + "end": 23701.02, + "probability": 0.011 + }, + { + "start": 23701.72, + "end": 23703.3, + "probability": 0.8392 + }, + { + "start": 23703.9, + "end": 23705.28, + "probability": 0.53 + }, + { + "start": 23705.84, + "end": 23708.66, + "probability": 0.3064 + }, + { + "start": 23709.62, + "end": 23711.02, + "probability": 0.9128 + }, + { + "start": 23714.02, + "end": 23714.82, + "probability": 0.3872 + }, + { + "start": 23714.82, + "end": 23717.0, + "probability": 0.3133 + }, + { + "start": 23717.08, + "end": 23720.93, + "probability": 0.0691 + }, + { + "start": 23723.86, + "end": 23726.68, + "probability": 0.0999 + }, + { + "start": 23728.4, + "end": 23730.46, + "probability": 0.2914 + }, + { + "start": 23730.62, + "end": 23734.38, + "probability": 0.2742 + }, + { + "start": 23734.76, + "end": 23736.16, + "probability": 0.5247 + }, + { + "start": 23736.38, + "end": 23737.96, + "probability": 0.7343 + }, + { + "start": 23737.98, + "end": 23740.14, + "probability": 0.4198 + }, + { + "start": 23740.44, + "end": 23740.78, + "probability": 0.8094 + }, + { + "start": 23741.36, + "end": 23742.7, + "probability": 0.1065 + }, + { + "start": 23744.0, + "end": 23744.7, + "probability": 0.3871 + }, + { + "start": 23744.7, + "end": 23746.2, + "probability": 0.4693 + }, + { + "start": 23746.28, + "end": 23748.42, + "probability": 0.5369 + }, + { + "start": 23748.5, + "end": 23750.18, + "probability": 0.9578 + }, + { + "start": 23750.82, + "end": 23751.22, + "probability": 0.9563 + }, + { + "start": 23752.16, + "end": 23756.2, + "probability": 0.9449 + }, + { + "start": 23756.62, + "end": 23757.78, + "probability": 0.8218 + }, + { + "start": 23758.1, + "end": 23760.22, + "probability": 0.9162 + }, + { + "start": 23761.12, + "end": 23761.92, + "probability": 0.8209 + }, + { + "start": 23762.86, + "end": 23765.22, + "probability": 0.7375 + }, + { + "start": 23765.32, + "end": 23768.18, + "probability": 0.7928 + }, + { + "start": 23768.32, + "end": 23768.48, + "probability": 0.4567 + }, + { + "start": 23769.1, + "end": 23771.34, + "probability": 0.7153 + }, + { + "start": 23771.9, + "end": 23773.5, + "probability": 0.478 + }, + { + "start": 23773.88, + "end": 23782.5, + "probability": 0.8733 + }, + { + "start": 23782.5, + "end": 23785.56, + "probability": 0.9833 + }, + { + "start": 23786.88, + "end": 23788.38, + "probability": 0.673 + }, + { + "start": 23789.72, + "end": 23791.16, + "probability": 0.8707 + }, + { + "start": 23792.08, + "end": 23793.44, + "probability": 0.9899 + }, + { + "start": 23794.28, + "end": 23795.38, + "probability": 0.8002 + }, + { + "start": 23795.54, + "end": 23795.68, + "probability": 0.2187 + }, + { + "start": 23795.98, + "end": 23796.42, + "probability": 0.5232 + }, + { + "start": 23796.54, + "end": 23797.78, + "probability": 0.9027 + }, + { + "start": 23797.82, + "end": 23799.2, + "probability": 0.8923 + }, + { + "start": 23799.74, + "end": 23803.0, + "probability": 0.9971 + }, + { + "start": 23804.28, + "end": 23806.44, + "probability": 0.1039 + }, + { + "start": 23806.44, + "end": 23807.18, + "probability": 0.14 + }, + { + "start": 23809.44, + "end": 23810.3, + "probability": 0.4061 + }, + { + "start": 23810.44, + "end": 23811.12, + "probability": 0.1213 + }, + { + "start": 23811.12, + "end": 23814.6, + "probability": 0.9937 + }, + { + "start": 23814.98, + "end": 23818.2, + "probability": 0.747 + }, + { + "start": 23818.86, + "end": 23821.18, + "probability": 0.6465 + }, + { + "start": 23821.44, + "end": 23823.62, + "probability": 0.9951 + }, + { + "start": 23823.7, + "end": 23825.26, + "probability": 0.7377 + }, + { + "start": 23825.74, + "end": 23827.48, + "probability": 0.9156 + }, + { + "start": 23828.5, + "end": 23829.22, + "probability": 0.7114 + }, + { + "start": 23829.32, + "end": 23831.06, + "probability": 0.9787 + }, + { + "start": 23831.22, + "end": 23833.54, + "probability": 0.957 + }, + { + "start": 23834.82, + "end": 23838.28, + "probability": 0.8888 + }, + { + "start": 23838.56, + "end": 23844.64, + "probability": 0.5776 + }, + { + "start": 23845.2, + "end": 23846.58, + "probability": 0.9838 + }, + { + "start": 23847.1, + "end": 23851.18, + "probability": 0.9508 + }, + { + "start": 23851.34, + "end": 23853.24, + "probability": 0.9227 + }, + { + "start": 23853.42, + "end": 23854.6, + "probability": 0.9858 + }, + { + "start": 23855.42, + "end": 23857.33, + "probability": 0.8511 + }, + { + "start": 23857.5, + "end": 23859.08, + "probability": 0.7898 + }, + { + "start": 23859.64, + "end": 23860.38, + "probability": 0.72 + }, + { + "start": 23860.56, + "end": 23863.22, + "probability": 0.704 + }, + { + "start": 23867.2, + "end": 23868.44, + "probability": 0.6971 + }, + { + "start": 23869.42, + "end": 23870.94, + "probability": 0.9323 + }, + { + "start": 23871.24, + "end": 23871.84, + "probability": 0.8529 + }, + { + "start": 23872.34, + "end": 23872.7, + "probability": 0.8841 + }, + { + "start": 23873.0, + "end": 23873.48, + "probability": 0.8531 + }, + { + "start": 23873.86, + "end": 23876.7, + "probability": 0.7607 + }, + { + "start": 23877.06, + "end": 23879.02, + "probability": 0.9813 + }, + { + "start": 23881.66, + "end": 23887.26, + "probability": 0.9992 + }, + { + "start": 23889.4, + "end": 23890.66, + "probability": 0.5021 + }, + { + "start": 23891.42, + "end": 23892.14, + "probability": 0.429 + }, + { + "start": 23892.14, + "end": 23893.34, + "probability": 0.7423 + }, + { + "start": 23893.46, + "end": 23895.72, + "probability": 0.7284 + }, + { + "start": 23895.72, + "end": 23897.8, + "probability": 0.8161 + }, + { + "start": 23897.84, + "end": 23899.68, + "probability": 0.6873 + }, + { + "start": 23903.0, + "end": 23908.84, + "probability": 0.995 + }, + { + "start": 23909.18, + "end": 23909.38, + "probability": 0.343 + }, + { + "start": 23909.48, + "end": 23909.92, + "probability": 0.7941 + }, + { + "start": 23910.64, + "end": 23913.42, + "probability": 0.9755 + }, + { + "start": 23913.6, + "end": 23917.25, + "probability": 0.9736 + }, + { + "start": 23918.66, + "end": 23920.3, + "probability": 0.7539 + }, + { + "start": 23920.84, + "end": 23925.22, + "probability": 0.6214 + }, + { + "start": 23926.18, + "end": 23927.26, + "probability": 0.744 + }, + { + "start": 23928.0, + "end": 23929.5, + "probability": 0.7579 + }, + { + "start": 23929.88, + "end": 23931.76, + "probability": 0.8506 + }, + { + "start": 23932.1, + "end": 23933.46, + "probability": 0.458 + }, + { + "start": 23933.98, + "end": 23934.98, + "probability": 0.8393 + }, + { + "start": 23935.36, + "end": 23936.52, + "probability": 0.9065 + }, + { + "start": 23937.22, + "end": 23938.32, + "probability": 0.8413 + }, + { + "start": 23938.7, + "end": 23940.72, + "probability": 0.8992 + }, + { + "start": 23940.84, + "end": 23942.9, + "probability": 0.8373 + }, + { + "start": 23943.58, + "end": 23945.86, + "probability": 0.8752 + }, + { + "start": 23946.4, + "end": 23949.72, + "probability": 0.5287 + }, + { + "start": 23949.74, + "end": 23950.5, + "probability": 0.4811 + }, + { + "start": 23950.54, + "end": 23952.26, + "probability": 0.6774 + }, + { + "start": 23952.96, + "end": 23954.74, + "probability": 0.779 + }, + { + "start": 23954.96, + "end": 23956.18, + "probability": 0.5124 + }, + { + "start": 23956.18, + "end": 23956.9, + "probability": 0.0421 + }, + { + "start": 23957.12, + "end": 23960.52, + "probability": 0.705 + }, + { + "start": 23961.36, + "end": 23965.54, + "probability": 0.9354 + }, + { + "start": 23965.7, + "end": 23968.07, + "probability": 0.6889 + }, + { + "start": 23968.5, + "end": 23968.64, + "probability": 0.0302 + }, + { + "start": 23968.64, + "end": 23969.56, + "probability": 0.7056 + }, + { + "start": 23969.64, + "end": 23969.99, + "probability": 0.7835 + }, + { + "start": 23970.3, + "end": 23971.64, + "probability": 0.5285 + }, + { + "start": 23971.7, + "end": 23972.44, + "probability": 0.8923 + }, + { + "start": 23972.56, + "end": 23973.02, + "probability": 0.4402 + }, + { + "start": 23973.02, + "end": 23977.78, + "probability": 0.6386 + }, + { + "start": 23977.8, + "end": 23978.18, + "probability": 0.5346 + }, + { + "start": 23978.28, + "end": 23981.82, + "probability": 0.5067 + }, + { + "start": 23982.66, + "end": 23984.6, + "probability": 0.8845 + }, + { + "start": 23984.66, + "end": 23985.18, + "probability": 0.7626 + }, + { + "start": 23985.3, + "end": 23986.04, + "probability": 0.736 + }, + { + "start": 23986.1, + "end": 23986.7, + "probability": 0.8893 + }, + { + "start": 23987.16, + "end": 23989.8, + "probability": 0.8672 + }, + { + "start": 23990.54, + "end": 23992.92, + "probability": 0.6991 + }, + { + "start": 23993.54, + "end": 23995.54, + "probability": 0.8753 + }, + { + "start": 23996.1, + "end": 23997.74, + "probability": 0.3409 + }, + { + "start": 23997.96, + "end": 24001.42, + "probability": 0.4807 + }, + { + "start": 24001.94, + "end": 24001.94, + "probability": 0.1 + }, + { + "start": 24001.94, + "end": 24001.94, + "probability": 0.1255 + }, + { + "start": 24001.94, + "end": 24002.1, + "probability": 0.2616 + }, + { + "start": 24002.36, + "end": 24006.92, + "probability": 0.8462 + }, + { + "start": 24007.38, + "end": 24012.66, + "probability": 0.9143 + }, + { + "start": 24013.5, + "end": 24018.7, + "probability": 0.9674 + }, + { + "start": 24019.46, + "end": 24020.32, + "probability": 0.604 + }, + { + "start": 24021.08, + "end": 24025.0, + "probability": 0.9584 + }, + { + "start": 24025.78, + "end": 24026.68, + "probability": 0.5659 + }, + { + "start": 24027.68, + "end": 24030.3, + "probability": 0.6662 + }, + { + "start": 24030.58, + "end": 24035.6, + "probability": 0.7362 + }, + { + "start": 24040.7, + "end": 24042.66, + "probability": 0.9633 + }, + { + "start": 24042.74, + "end": 24046.7, + "probability": 0.9987 + }, + { + "start": 24047.56, + "end": 24049.68, + "probability": 0.9976 + }, + { + "start": 24049.68, + "end": 24052.44, + "probability": 0.9578 + }, + { + "start": 24052.48, + "end": 24054.34, + "probability": 0.8076 + }, + { + "start": 24054.42, + "end": 24055.86, + "probability": 0.9871 + }, + { + "start": 24056.38, + "end": 24058.36, + "probability": 0.9517 + }, + { + "start": 24059.0, + "end": 24059.12, + "probability": 0.5282 + }, + { + "start": 24059.2, + "end": 24063.3, + "probability": 0.7777 + }, + { + "start": 24063.3, + "end": 24065.72, + "probability": 0.963 + }, + { + "start": 24067.72, + "end": 24069.98, + "probability": 0.9907 + }, + { + "start": 24069.98, + "end": 24072.16, + "probability": 0.9043 + }, + { + "start": 24075.02, + "end": 24076.28, + "probability": 0.7257 + }, + { + "start": 24076.44, + "end": 24079.06, + "probability": 0.9577 + }, + { + "start": 24079.06, + "end": 24082.12, + "probability": 0.9809 + }, + { + "start": 24082.2, + "end": 24083.56, + "probability": 0.605 + }, + { + "start": 24084.16, + "end": 24084.46, + "probability": 0.1898 + }, + { + "start": 24084.58, + "end": 24084.92, + "probability": 0.4275 + }, + { + "start": 24085.0, + "end": 24087.54, + "probability": 0.928 + }, + { + "start": 24087.76, + "end": 24088.8, + "probability": 0.9092 + }, + { + "start": 24089.82, + "end": 24092.68, + "probability": 0.8021 + }, + { + "start": 24092.78, + "end": 24094.98, + "probability": 0.9865 + }, + { + "start": 24095.1, + "end": 24095.74, + "probability": 0.5294 + }, + { + "start": 24097.12, + "end": 24098.38, + "probability": 0.4835 + }, + { + "start": 24098.48, + "end": 24099.54, + "probability": 0.8836 + }, + { + "start": 24099.62, + "end": 24102.76, + "probability": 0.9828 + }, + { + "start": 24102.76, + "end": 24106.82, + "probability": 0.9955 + }, + { + "start": 24107.56, + "end": 24110.78, + "probability": 0.807 + }, + { + "start": 24111.32, + "end": 24116.12, + "probability": 0.832 + }, + { + "start": 24116.12, + "end": 24119.84, + "probability": 0.9758 + }, + { + "start": 24120.26, + "end": 24123.32, + "probability": 0.9965 + }, + { + "start": 24124.58, + "end": 24125.16, + "probability": 0.7182 + }, + { + "start": 24126.22, + "end": 24129.34, + "probability": 0.358 + }, + { + "start": 24130.38, + "end": 24132.3, + "probability": 0.9825 + }, + { + "start": 24152.38, + "end": 24154.42, + "probability": 0.6301 + }, + { + "start": 24155.35, + "end": 24160.74, + "probability": 0.9823 + }, + { + "start": 24160.86, + "end": 24168.22, + "probability": 0.9884 + }, + { + "start": 24169.24, + "end": 24175.56, + "probability": 0.844 + }, + { + "start": 24175.98, + "end": 24178.92, + "probability": 0.9928 + }, + { + "start": 24179.52, + "end": 24180.5, + "probability": 0.7242 + }, + { + "start": 24181.92, + "end": 24186.24, + "probability": 0.9882 + }, + { + "start": 24187.02, + "end": 24188.68, + "probability": 0.7519 + }, + { + "start": 24189.2, + "end": 24189.72, + "probability": 0.9405 + }, + { + "start": 24189.8, + "end": 24191.36, + "probability": 0.6724 + }, + { + "start": 24191.44, + "end": 24197.3, + "probability": 0.9239 + }, + { + "start": 24197.3, + "end": 24200.64, + "probability": 0.9888 + }, + { + "start": 24201.36, + "end": 24203.62, + "probability": 0.9937 + }, + { + "start": 24203.62, + "end": 24206.98, + "probability": 0.9907 + }, + { + "start": 24207.52, + "end": 24208.82, + "probability": 0.8928 + }, + { + "start": 24208.9, + "end": 24210.24, + "probability": 0.9337 + }, + { + "start": 24210.64, + "end": 24211.96, + "probability": 0.8597 + }, + { + "start": 24212.26, + "end": 24214.9, + "probability": 0.9956 + }, + { + "start": 24215.5, + "end": 24219.92, + "probability": 0.9934 + }, + { + "start": 24220.88, + "end": 24221.78, + "probability": 0.873 + }, + { + "start": 24222.42, + "end": 24223.48, + "probability": 0.962 + }, + { + "start": 24223.88, + "end": 24225.88, + "probability": 0.9963 + }, + { + "start": 24225.88, + "end": 24229.18, + "probability": 0.8614 + }, + { + "start": 24229.88, + "end": 24230.56, + "probability": 0.665 + }, + { + "start": 24230.86, + "end": 24232.3, + "probability": 0.832 + }, + { + "start": 24232.42, + "end": 24233.2, + "probability": 0.8102 + }, + { + "start": 24233.32, + "end": 24237.36, + "probability": 0.9667 + }, + { + "start": 24243.36, + "end": 24245.68, + "probability": 0.8505 + }, + { + "start": 24246.32, + "end": 24248.62, + "probability": 0.6842 + }, + { + "start": 24252.44, + "end": 24257.76, + "probability": 0.7743 + }, + { + "start": 24259.1, + "end": 24261.32, + "probability": 0.8014 + }, + { + "start": 24262.0, + "end": 24262.7, + "probability": 0.9226 + }, + { + "start": 24262.84, + "end": 24266.08, + "probability": 0.9767 + }, + { + "start": 24266.6, + "end": 24269.26, + "probability": 0.858 + }, + { + "start": 24269.88, + "end": 24272.16, + "probability": 0.9529 + }, + { + "start": 24272.92, + "end": 24274.2, + "probability": 0.9984 + }, + { + "start": 24274.8, + "end": 24276.58, + "probability": 0.8088 + }, + { + "start": 24277.22, + "end": 24281.26, + "probability": 0.9157 + }, + { + "start": 24281.8, + "end": 24284.9, + "probability": 0.9741 + }, + { + "start": 24285.44, + "end": 24286.22, + "probability": 0.7666 + }, + { + "start": 24286.3, + "end": 24287.18, + "probability": 0.8504 + }, + { + "start": 24287.64, + "end": 24288.48, + "probability": 0.6023 + }, + { + "start": 24288.64, + "end": 24289.28, + "probability": 0.7397 + }, + { + "start": 24289.88, + "end": 24290.24, + "probability": 0.8464 + }, + { + "start": 24290.26, + "end": 24291.06, + "probability": 0.9683 + }, + { + "start": 24291.14, + "end": 24291.54, + "probability": 0.6984 + }, + { + "start": 24291.54, + "end": 24292.24, + "probability": 0.9881 + }, + { + "start": 24292.32, + "end": 24293.48, + "probability": 0.9668 + }, + { + "start": 24293.92, + "end": 24294.72, + "probability": 0.5147 + }, + { + "start": 24296.48, + "end": 24297.53, + "probability": 0.6185 + }, + { + "start": 24300.06, + "end": 24300.22, + "probability": 0.1427 + }, + { + "start": 24300.36, + "end": 24303.18, + "probability": 0.9491 + }, + { + "start": 24303.68, + "end": 24304.72, + "probability": 0.9681 + }, + { + "start": 24304.84, + "end": 24306.96, + "probability": 0.9586 + }, + { + "start": 24307.78, + "end": 24309.54, + "probability": 0.9172 + }, + { + "start": 24310.44, + "end": 24313.58, + "probability": 0.9585 + }, + { + "start": 24314.46, + "end": 24318.1, + "probability": 0.8953 + }, + { + "start": 24318.1, + "end": 24321.36, + "probability": 0.9149 + }, + { + "start": 24321.98, + "end": 24322.44, + "probability": 0.7212 + }, + { + "start": 24322.54, + "end": 24323.04, + "probability": 0.9355 + }, + { + "start": 24323.12, + "end": 24324.3, + "probability": 0.9874 + }, + { + "start": 24324.32, + "end": 24325.1, + "probability": 0.8949 + }, + { + "start": 24325.32, + "end": 24326.36, + "probability": 0.7029 + }, + { + "start": 24326.92, + "end": 24327.38, + "probability": 0.8909 + }, + { + "start": 24327.44, + "end": 24329.14, + "probability": 0.7688 + }, + { + "start": 24329.2, + "end": 24330.34, + "probability": 0.942 + }, + { + "start": 24330.86, + "end": 24334.56, + "probability": 0.9788 + }, + { + "start": 24335.26, + "end": 24338.84, + "probability": 0.974 + }, + { + "start": 24338.98, + "end": 24339.72, + "probability": 0.7245 + }, + { + "start": 24339.78, + "end": 24340.42, + "probability": 0.5472 + }, + { + "start": 24340.44, + "end": 24340.66, + "probability": 0.9727 + }, + { + "start": 24340.68, + "end": 24341.46, + "probability": 0.7416 + }, + { + "start": 24341.56, + "end": 24341.84, + "probability": 0.6801 + }, + { + "start": 24341.86, + "end": 24342.44, + "probability": 0.9977 + }, + { + "start": 24342.48, + "end": 24343.34, + "probability": 0.8986 + }, + { + "start": 24343.38, + "end": 24344.66, + "probability": 0.9296 + }, + { + "start": 24344.82, + "end": 24345.22, + "probability": 0.3059 + }, + { + "start": 24345.88, + "end": 24346.7, + "probability": 0.8163 + }, + { + "start": 24347.66, + "end": 24353.24, + "probability": 0.9782 + }, + { + "start": 24353.44, + "end": 24356.04, + "probability": 0.8584 + }, + { + "start": 24357.38, + "end": 24358.96, + "probability": 0.6623 + }, + { + "start": 24359.04, + "end": 24362.48, + "probability": 0.9774 + }, + { + "start": 24363.14, + "end": 24365.76, + "probability": 0.7626 + }, + { + "start": 24365.9, + "end": 24367.54, + "probability": 0.9589 + }, + { + "start": 24367.96, + "end": 24372.08, + "probability": 0.985 + }, + { + "start": 24372.7, + "end": 24373.22, + "probability": 0.6364 + }, + { + "start": 24373.28, + "end": 24377.7, + "probability": 0.9398 + }, + { + "start": 24377.7, + "end": 24384.02, + "probability": 0.9279 + }, + { + "start": 24385.48, + "end": 24385.56, + "probability": 0.2473 + }, + { + "start": 24385.58, + "end": 24386.14, + "probability": 0.628 + }, + { + "start": 24388.38, + "end": 24389.58, + "probability": 0.6763 + }, + { + "start": 24389.72, + "end": 24390.18, + "probability": 0.537 + }, + { + "start": 24390.26, + "end": 24390.38, + "probability": 0.232 + }, + { + "start": 24390.46, + "end": 24391.98, + "probability": 0.8944 + }, + { + "start": 24392.0, + "end": 24393.48, + "probability": 0.9838 + }, + { + "start": 24394.0, + "end": 24396.46, + "probability": 0.5528 + }, + { + "start": 24397.0, + "end": 24398.28, + "probability": 0.5592 + }, + { + "start": 24398.28, + "end": 24398.91, + "probability": 0.7595 + }, + { + "start": 24399.42, + "end": 24401.18, + "probability": 0.7648 + }, + { + "start": 24401.28, + "end": 24404.2, + "probability": 0.7107 + }, + { + "start": 24404.28, + "end": 24405.86, + "probability": 0.6245 + }, + { + "start": 24406.48, + "end": 24407.5, + "probability": 0.1285 + }, + { + "start": 24407.5, + "end": 24408.66, + "probability": 0.7289 + }, + { + "start": 24408.74, + "end": 24412.08, + "probability": 0.9229 + }, + { + "start": 24412.2, + "end": 24414.34, + "probability": 0.7443 + }, + { + "start": 24414.46, + "end": 24415.84, + "probability": 0.9209 + }, + { + "start": 24416.14, + "end": 24418.12, + "probability": 0.6486 + }, + { + "start": 24419.34, + "end": 24420.34, + "probability": 0.8957 + }, + { + "start": 24421.64, + "end": 24425.9, + "probability": 0.952 + }, + { + "start": 24425.9, + "end": 24426.66, + "probability": 0.7535 + }, + { + "start": 24427.56, + "end": 24432.4, + "probability": 0.6975 + }, + { + "start": 24432.7, + "end": 24433.66, + "probability": 0.9316 + }, + { + "start": 24434.98, + "end": 24435.98, + "probability": 0.9433 + }, + { + "start": 24437.78, + "end": 24439.66, + "probability": 0.8748 + }, + { + "start": 24441.44, + "end": 24444.76, + "probability": 0.6955 + }, + { + "start": 24444.76, + "end": 24445.48, + "probability": 0.4465 + }, + { + "start": 24447.16, + "end": 24450.22, + "probability": 0.8612 + }, + { + "start": 24451.08, + "end": 24455.06, + "probability": 0.9954 + }, + { + "start": 24455.48, + "end": 24456.38, + "probability": 0.8316 + }, + { + "start": 24457.08, + "end": 24460.36, + "probability": 0.9741 + }, + { + "start": 24460.44, + "end": 24462.42, + "probability": 0.947 + }, + { + "start": 24463.9, + "end": 24467.64, + "probability": 0.9605 + }, + { + "start": 24469.7, + "end": 24474.4, + "probability": 0.8569 + }, + { + "start": 24474.52, + "end": 24478.76, + "probability": 0.8891 + }, + { + "start": 24478.82, + "end": 24481.7, + "probability": 0.9177 + }, + { + "start": 24481.76, + "end": 24484.34, + "probability": 0.9987 + }, + { + "start": 24485.08, + "end": 24489.16, + "probability": 0.9776 + }, + { + "start": 24489.88, + "end": 24493.68, + "probability": 0.9066 + }, + { + "start": 24494.56, + "end": 24497.16, + "probability": 0.9924 + }, + { + "start": 24497.16, + "end": 24500.28, + "probability": 0.9976 + }, + { + "start": 24500.28, + "end": 24503.82, + "probability": 0.9858 + }, + { + "start": 24504.7, + "end": 24508.2, + "probability": 0.9716 + }, + { + "start": 24508.86, + "end": 24510.08, + "probability": 0.8147 + }, + { + "start": 24511.26, + "end": 24516.26, + "probability": 0.9945 + }, + { + "start": 24516.9, + "end": 24521.52, + "probability": 0.9823 + }, + { + "start": 24521.52, + "end": 24525.04, + "probability": 0.999 + }, + { + "start": 24525.98, + "end": 24527.8, + "probability": 0.9074 + }, + { + "start": 24529.33, + "end": 24532.64, + "probability": 0.984 + }, + { + "start": 24536.68, + "end": 24541.82, + "probability": 0.9668 + }, + { + "start": 24543.12, + "end": 24544.94, + "probability": 0.7846 + }, + { + "start": 24545.0, + "end": 24546.46, + "probability": 0.8592 + }, + { + "start": 24547.4, + "end": 24549.7, + "probability": 0.9952 + }, + { + "start": 24550.46, + "end": 24553.24, + "probability": 0.9819 + }, + { + "start": 24555.8, + "end": 24556.1, + "probability": 0.0023 + }, + { + "start": 24557.32, + "end": 24558.14, + "probability": 0.0137 + }, + { + "start": 24558.14, + "end": 24558.22, + "probability": 0.0907 + }, + { + "start": 24558.22, + "end": 24561.53, + "probability": 0.7958 + }, + { + "start": 24562.44, + "end": 24564.9, + "probability": 0.6698 + }, + { + "start": 24567.88, + "end": 24572.5, + "probability": 0.8795 + }, + { + "start": 24572.56, + "end": 24573.96, + "probability": 0.9883 + }, + { + "start": 24574.02, + "end": 24578.74, + "probability": 0.975 + }, + { + "start": 24578.82, + "end": 24580.44, + "probability": 0.9869 + }, + { + "start": 24581.08, + "end": 24582.58, + "probability": 0.8476 + }, + { + "start": 24582.98, + "end": 24584.84, + "probability": 0.9956 + }, + { + "start": 24586.19, + "end": 24588.62, + "probability": 0.9541 + }, + { + "start": 24590.14, + "end": 24593.14, + "probability": 0.8573 + }, + { + "start": 24593.14, + "end": 24594.42, + "probability": 0.284 + }, + { + "start": 24594.54, + "end": 24595.38, + "probability": 0.2184 + }, + { + "start": 24595.76, + "end": 24596.51, + "probability": 0.4043 + }, + { + "start": 24596.88, + "end": 24600.22, + "probability": 0.3006 + }, + { + "start": 24600.36, + "end": 24602.06, + "probability": 0.9445 + }, + { + "start": 24603.38, + "end": 24604.06, + "probability": 0.8934 + }, + { + "start": 24605.06, + "end": 24606.28, + "probability": 0.9884 + }, + { + "start": 24606.34, + "end": 24611.18, + "probability": 0.9008 + }, + { + "start": 24611.94, + "end": 24613.68, + "probability": 0.73 + }, + { + "start": 24613.94, + "end": 24617.52, + "probability": 0.9062 + }, + { + "start": 24618.02, + "end": 24621.04, + "probability": 0.9897 + }, + { + "start": 24621.56, + "end": 24626.34, + "probability": 0.9774 + }, + { + "start": 24626.44, + "end": 24627.76, + "probability": 0.9302 + }, + { + "start": 24627.86, + "end": 24629.36, + "probability": 0.4973 + }, + { + "start": 24629.6, + "end": 24631.06, + "probability": 0.8065 + }, + { + "start": 24631.88, + "end": 24637.84, + "probability": 0.9626 + }, + { + "start": 24637.84, + "end": 24643.12, + "probability": 0.9833 + }, + { + "start": 24643.58, + "end": 24643.78, + "probability": 0.3299 + }, + { + "start": 24644.3, + "end": 24644.96, + "probability": 0.6041 + }, + { + "start": 24645.04, + "end": 24645.54, + "probability": 0.8914 + }, + { + "start": 24645.74, + "end": 24645.84, + "probability": 0.1563 + }, + { + "start": 24645.88, + "end": 24646.18, + "probability": 0.7842 + }, + { + "start": 24646.28, + "end": 24646.91, + "probability": 0.8494 + }, + { + "start": 24647.46, + "end": 24650.45, + "probability": 0.8557 + }, + { + "start": 24650.88, + "end": 24652.84, + "probability": 0.3627 + }, + { + "start": 24652.96, + "end": 24657.74, + "probability": 0.4343 + }, + { + "start": 24658.52, + "end": 24660.6, + "probability": 0.7171 + }, + { + "start": 24660.68, + "end": 24663.26, + "probability": 0.2467 + }, + { + "start": 24664.14, + "end": 24664.14, + "probability": 0.3359 + }, + { + "start": 24668.8, + "end": 24670.56, + "probability": 0.4408 + }, + { + "start": 24670.58, + "end": 24671.51, + "probability": 0.5157 + }, + { + "start": 24672.22, + "end": 24676.11, + "probability": 0.5243 + }, + { + "start": 24685.2, + "end": 24686.42, + "probability": 0.311 + }, + { + "start": 24686.42, + "end": 24689.54, + "probability": 0.8936 + }, + { + "start": 24689.84, + "end": 24697.16, + "probability": 0.8486 + }, + { + "start": 24697.32, + "end": 24699.32, + "probability": 0.8385 + }, + { + "start": 24699.7, + "end": 24702.4, + "probability": 0.8293 + }, + { + "start": 24702.76, + "end": 24704.56, + "probability": 0.8864 + }, + { + "start": 24704.66, + "end": 24708.68, + "probability": 0.8629 + }, + { + "start": 24709.12, + "end": 24712.7, + "probability": 0.99 + }, + { + "start": 24713.06, + "end": 24717.06, + "probability": 0.9611 + }, + { + "start": 24722.72, + "end": 24723.44, + "probability": 0.5933 + }, + { + "start": 24723.56, + "end": 24727.04, + "probability": 0.9269 + }, + { + "start": 24727.06, + "end": 24728.04, + "probability": 0.7091 + }, + { + "start": 24728.18, + "end": 24730.06, + "probability": 0.9953 + }, + { + "start": 24730.82, + "end": 24735.18, + "probability": 0.9963 + }, + { + "start": 24737.32, + "end": 24738.0, + "probability": 0.561 + }, + { + "start": 24738.64, + "end": 24740.41, + "probability": 0.9954 + }, + { + "start": 24741.52, + "end": 24742.22, + "probability": 0.9014 + }, + { + "start": 24743.08, + "end": 24747.0, + "probability": 0.9643 + }, + { + "start": 24747.6, + "end": 24750.02, + "probability": 0.9841 + }, + { + "start": 24750.72, + "end": 24752.7, + "probability": 0.8452 + }, + { + "start": 24753.94, + "end": 24757.84, + "probability": 0.9506 + }, + { + "start": 24758.14, + "end": 24759.3, + "probability": 0.9644 + }, + { + "start": 24759.4, + "end": 24762.1, + "probability": 0.6992 + }, + { + "start": 24762.2, + "end": 24764.94, + "probability": 0.9836 + }, + { + "start": 24765.02, + "end": 24766.16, + "probability": 0.5683 + }, + { + "start": 24767.0, + "end": 24769.32, + "probability": 0.9688 + }, + { + "start": 24769.84, + "end": 24770.1, + "probability": 0.9301 + }, + { + "start": 24771.54, + "end": 24772.46, + "probability": 0.918 + }, + { + "start": 24773.6, + "end": 24782.4, + "probability": 0.8516 + }, + { + "start": 24782.76, + "end": 24786.44, + "probability": 0.9986 + }, + { + "start": 24787.2, + "end": 24790.1, + "probability": 0.9716 + }, + { + "start": 24790.1, + "end": 24795.64, + "probability": 0.9884 + }, + { + "start": 24796.18, + "end": 24798.15, + "probability": 0.9159 + }, + { + "start": 24799.96, + "end": 24800.78, + "probability": 0.8362 + }, + { + "start": 24802.02, + "end": 24805.5, + "probability": 0.9329 + }, + { + "start": 24805.56, + "end": 24810.04, + "probability": 0.9723 + }, + { + "start": 24810.6, + "end": 24810.9, + "probability": 0.6638 + }, + { + "start": 24811.04, + "end": 24811.6, + "probability": 0.4314 + }, + { + "start": 24811.98, + "end": 24814.78, + "probability": 0.9453 + }, + { + "start": 24815.12, + "end": 24816.08, + "probability": 0.9584 + }, + { + "start": 24816.44, + "end": 24817.3, + "probability": 0.6689 + }, + { + "start": 24817.42, + "end": 24817.84, + "probability": 0.4772 + }, + { + "start": 24817.92, + "end": 24819.24, + "probability": 0.9243 + }, + { + "start": 24819.64, + "end": 24823.12, + "probability": 0.9389 + }, + { + "start": 24823.18, + "end": 24823.82, + "probability": 0.8641 + }, + { + "start": 24824.14, + "end": 24826.68, + "probability": 0.9645 + }, + { + "start": 24827.24, + "end": 24834.16, + "probability": 0.9711 + }, + { + "start": 24836.08, + "end": 24838.76, + "probability": 0.6862 + }, + { + "start": 24838.78, + "end": 24842.58, + "probability": 0.8628 + }, + { + "start": 24842.74, + "end": 24844.62, + "probability": 0.8134 + }, + { + "start": 24844.7, + "end": 24847.56, + "probability": 0.9882 + }, + { + "start": 24848.34, + "end": 24849.02, + "probability": 0.7991 + }, + { + "start": 24849.24, + "end": 24849.84, + "probability": 0.2673 + }, + { + "start": 24850.04, + "end": 24853.6, + "probability": 0.7972 + }, + { + "start": 24853.6, + "end": 24857.64, + "probability": 0.9591 + }, + { + "start": 24858.54, + "end": 24862.42, + "probability": 0.9803 + }, + { + "start": 24862.44, + "end": 24865.28, + "probability": 0.9961 + }, + { + "start": 24865.28, + "end": 24868.36, + "probability": 0.9763 + }, + { + "start": 24869.06, + "end": 24870.73, + "probability": 0.9371 + }, + { + "start": 24872.16, + "end": 24875.66, + "probability": 0.9915 + }, + { + "start": 24875.66, + "end": 24879.32, + "probability": 0.9914 + }, + { + "start": 24879.36, + "end": 24881.48, + "probability": 0.5539 + }, + { + "start": 24881.64, + "end": 24884.48, + "probability": 0.9522 + }, + { + "start": 24884.98, + "end": 24888.92, + "probability": 0.9591 + }, + { + "start": 24889.34, + "end": 24892.32, + "probability": 0.9843 + }, + { + "start": 24894.34, + "end": 24897.4, + "probability": 0.8835 + }, + { + "start": 24897.4, + "end": 24901.7, + "probability": 0.9652 + }, + { + "start": 24902.06, + "end": 24905.12, + "probability": 0.9956 + }, + { + "start": 24905.26, + "end": 24906.08, + "probability": 0.8401 + }, + { + "start": 24906.2, + "end": 24909.24, + "probability": 0.8158 + }, + { + "start": 24910.04, + "end": 24911.94, + "probability": 0.8656 + }, + { + "start": 24912.12, + "end": 24916.92, + "probability": 0.9644 + }, + { + "start": 24917.0, + "end": 24920.96, + "probability": 0.9902 + }, + { + "start": 24921.85, + "end": 24923.2, + "probability": 0.0349 + }, + { + "start": 24923.62, + "end": 24924.34, + "probability": 0.595 + }, + { + "start": 24927.56, + "end": 24930.24, + "probability": 0.2927 + }, + { + "start": 24930.66, + "end": 24933.62, + "probability": 0.9637 + }, + { + "start": 24934.48, + "end": 24940.0, + "probability": 0.8094 + }, + { + "start": 24940.18, + "end": 24943.56, + "probability": 0.904 + }, + { + "start": 24945.56, + "end": 24948.33, + "probability": 0.5716 + }, + { + "start": 24949.78, + "end": 24950.26, + "probability": 0.4233 + }, + { + "start": 24950.32, + "end": 24952.9, + "probability": 0.7577 + }, + { + "start": 24952.94, + "end": 24957.68, + "probability": 0.9948 + }, + { + "start": 24957.88, + "end": 24960.06, + "probability": 0.9514 + }, + { + "start": 24961.06, + "end": 24964.26, + "probability": 0.45 + }, + { + "start": 24965.64, + "end": 24972.8, + "probability": 0.8514 + }, + { + "start": 24972.88, + "end": 24974.82, + "probability": 0.7599 + }, + { + "start": 24976.86, + "end": 24981.28, + "probability": 0.9448 + }, + { + "start": 24981.6, + "end": 24985.0, + "probability": 0.7383 + }, + { + "start": 24985.08, + "end": 24987.88, + "probability": 0.654 + }, + { + "start": 24987.96, + "end": 24990.32, + "probability": 0.8508 + }, + { + "start": 24991.28, + "end": 24993.68, + "probability": 0.6592 + }, + { + "start": 24993.86, + "end": 24994.72, + "probability": 0.9163 + }, + { + "start": 24994.92, + "end": 24996.54, + "probability": 0.9785 + }, + { + "start": 24997.52, + "end": 25000.56, + "probability": 0.8908 + }, + { + "start": 25000.76, + "end": 25002.46, + "probability": 0.9915 + }, + { + "start": 25005.38, + "end": 25007.72, + "probability": 0.879 + }, + { + "start": 25008.0, + "end": 25010.64, + "probability": 0.923 + }, + { + "start": 25011.6, + "end": 25013.88, + "probability": 0.9927 + }, + { + "start": 25014.2, + "end": 25018.64, + "probability": 0.9328 + }, + { + "start": 25019.1, + "end": 25022.4, + "probability": 0.9958 + }, + { + "start": 25022.4, + "end": 25027.8, + "probability": 0.8222 + }, + { + "start": 25028.72, + "end": 25029.78, + "probability": 0.8422 + }, + { + "start": 25029.98, + "end": 25038.5, + "probability": 0.9278 + }, + { + "start": 25038.64, + "end": 25040.16, + "probability": 0.7972 + }, + { + "start": 25040.84, + "end": 25041.48, + "probability": 0.6122 + }, + { + "start": 25041.6, + "end": 25043.12, + "probability": 0.9498 + }, + { + "start": 25043.26, + "end": 25044.78, + "probability": 0.9603 + }, + { + "start": 25045.94, + "end": 25050.64, + "probability": 0.9648 + }, + { + "start": 25050.72, + "end": 25051.6, + "probability": 0.681 + }, + { + "start": 25051.64, + "end": 25058.54, + "probability": 0.793 + }, + { + "start": 25058.74, + "end": 25059.96, + "probability": 0.9995 + }, + { + "start": 25060.84, + "end": 25066.74, + "probability": 0.9957 + }, + { + "start": 25066.78, + "end": 25069.82, + "probability": 0.9683 + }, + { + "start": 25069.88, + "end": 25072.62, + "probability": 0.9807 + }, + { + "start": 25073.1, + "end": 25075.0, + "probability": 0.9904 + }, + { + "start": 25075.58, + "end": 25076.64, + "probability": 0.9452 + }, + { + "start": 25079.58, + "end": 25080.3, + "probability": 0.5394 + }, + { + "start": 25081.34, + "end": 25086.56, + "probability": 0.9491 + }, + { + "start": 25086.72, + "end": 25088.22, + "probability": 0.7799 + }, + { + "start": 25089.08, + "end": 25089.96, + "probability": 0.4803 + }, + { + "start": 25090.02, + "end": 25090.72, + "probability": 0.6997 + }, + { + "start": 25091.5, + "end": 25093.42, + "probability": 0.828 + }, + { + "start": 25095.8, + "end": 25098.1, + "probability": 0.1498 + }, + { + "start": 25113.24, + "end": 25114.86, + "probability": 0.7127 + }, + { + "start": 25116.12, + "end": 25120.48, + "probability": 0.7869 + }, + { + "start": 25120.48, + "end": 25122.92, + "probability": 0.8467 + }, + { + "start": 25124.28, + "end": 25129.42, + "probability": 0.4328 + }, + { + "start": 25130.1, + "end": 25134.5, + "probability": 0.9366 + }, + { + "start": 25135.4, + "end": 25136.67, + "probability": 0.7026 + }, + { + "start": 25137.42, + "end": 25140.04, + "probability": 0.3181 + }, + { + "start": 25142.48, + "end": 25143.78, + "probability": 0.6077 + }, + { + "start": 25144.3, + "end": 25145.28, + "probability": 0.6683 + }, + { + "start": 25146.84, + "end": 25149.8, + "probability": 0.9832 + }, + { + "start": 25149.8, + "end": 25152.48, + "probability": 0.986 + }, + { + "start": 25154.98, + "end": 25161.58, + "probability": 0.9064 + }, + { + "start": 25162.96, + "end": 25168.24, + "probability": 0.8736 + }, + { + "start": 25168.84, + "end": 25174.3, + "probability": 0.9912 + }, + { + "start": 25175.3, + "end": 25177.54, + "probability": 0.8953 + }, + { + "start": 25178.32, + "end": 25181.74, + "probability": 0.9893 + }, + { + "start": 25182.78, + "end": 25185.92, + "probability": 0.9338 + }, + { + "start": 25187.34, + "end": 25191.4, + "probability": 0.8396 + }, + { + "start": 25192.66, + "end": 25193.96, + "probability": 0.5367 + }, + { + "start": 25194.8, + "end": 25196.98, + "probability": 0.998 + }, + { + "start": 25198.74, + "end": 25204.6, + "probability": 0.9449 + }, + { + "start": 25204.98, + "end": 25209.4, + "probability": 0.6986 + }, + { + "start": 25209.4, + "end": 25214.0, + "probability": 0.7888 + }, + { + "start": 25214.6, + "end": 25216.86, + "probability": 0.6999 + }, + { + "start": 25217.52, + "end": 25219.64, + "probability": 0.8733 + }, + { + "start": 25220.16, + "end": 25222.7, + "probability": 0.8157 + }, + { + "start": 25223.36, + "end": 25228.78, + "probability": 0.9673 + }, + { + "start": 25229.42, + "end": 25232.92, + "probability": 0.8568 + }, + { + "start": 25233.96, + "end": 25236.84, + "probability": 0.8932 + }, + { + "start": 25237.7, + "end": 25241.68, + "probability": 0.973 + }, + { + "start": 25241.68, + "end": 25245.86, + "probability": 0.9944 + }, + { + "start": 25246.76, + "end": 25247.58, + "probability": 0.6066 + }, + { + "start": 25248.28, + "end": 25251.82, + "probability": 0.582 + }, + { + "start": 25252.34, + "end": 25253.98, + "probability": 0.524 + }, + { + "start": 25254.48, + "end": 25255.88, + "probability": 0.7506 + }, + { + "start": 25256.5, + "end": 25258.16, + "probability": 0.979 + }, + { + "start": 25258.8, + "end": 25261.55, + "probability": 0.9734 + }, + { + "start": 25263.8, + "end": 25265.16, + "probability": 0.6821 + }, + { + "start": 25266.52, + "end": 25270.52, + "probability": 0.9766 + }, + { + "start": 25271.04, + "end": 25277.32, + "probability": 0.9758 + }, + { + "start": 25277.32, + "end": 25281.98, + "probability": 0.9902 + }, + { + "start": 25282.38, + "end": 25287.7, + "probability": 0.9953 + }, + { + "start": 25288.34, + "end": 25289.24, + "probability": 0.9766 + }, + { + "start": 25290.28, + "end": 25294.08, + "probability": 0.9951 + }, + { + "start": 25294.66, + "end": 25300.36, + "probability": 0.6873 + }, + { + "start": 25300.92, + "end": 25302.92, + "probability": 0.9622 + }, + { + "start": 25304.34, + "end": 25304.96, + "probability": 0.6415 + }, + { + "start": 25305.28, + "end": 25306.82, + "probability": 0.7566 + }, + { + "start": 25308.12, + "end": 25310.58, + "probability": 0.6101 + }, + { + "start": 25311.22, + "end": 25313.5, + "probability": 0.7957 + }, + { + "start": 25316.0, + "end": 25318.08, + "probability": 0.5068 + }, + { + "start": 25318.26, + "end": 25319.54, + "probability": 0.631 + }, + { + "start": 25321.98, + "end": 25323.46, + "probability": 0.4993 + }, + { + "start": 25324.62, + "end": 25325.16, + "probability": 0.1505 + }, + { + "start": 25325.76, + "end": 25326.46, + "probability": 0.1418 + }, + { + "start": 25327.08, + "end": 25329.72, + "probability": 0.8688 + }, + { + "start": 25330.14, + "end": 25332.36, + "probability": 0.3146 + }, + { + "start": 25332.36, + "end": 25335.02, + "probability": 0.3648 + }, + { + "start": 25335.22, + "end": 25337.6, + "probability": 0.4013 + }, + { + "start": 25338.16, + "end": 25340.42, + "probability": 0.5292 + }, + { + "start": 25340.82, + "end": 25344.26, + "probability": 0.5874 + }, + { + "start": 25345.22, + "end": 25347.88, + "probability": 0.3423 + }, + { + "start": 25348.56, + "end": 25352.06, + "probability": 0.4136 + }, + { + "start": 25352.06, + "end": 25354.42, + "probability": 0.5935 + }, + { + "start": 25354.7, + "end": 25356.66, + "probability": 0.6825 + }, + { + "start": 25357.54, + "end": 25364.9, + "probability": 0.9897 + }, + { + "start": 25366.06, + "end": 25366.96, + "probability": 0.5477 + }, + { + "start": 25368.9, + "end": 25373.2, + "probability": 0.7398 + }, + { + "start": 25374.14, + "end": 25374.8, + "probability": 0.4422 + }, + { + "start": 25375.92, + "end": 25377.2, + "probability": 0.4927 + }, + { + "start": 25378.12, + "end": 25379.38, + "probability": 0.8628 + }, + { + "start": 25380.78, + "end": 25382.5, + "probability": 0.7254 + }, + { + "start": 25383.1, + "end": 25384.28, + "probability": 0.5658 + }, + { + "start": 25385.46, + "end": 25386.9, + "probability": 0.8088 + }, + { + "start": 25387.8, + "end": 25388.6, + "probability": 0.8882 + }, + { + "start": 25388.64, + "end": 25389.3, + "probability": 0.9879 + }, + { + "start": 25389.8, + "end": 25390.54, + "probability": 0.772 + }, + { + "start": 25390.68, + "end": 25391.54, + "probability": 0.9969 + }, + { + "start": 25391.8, + "end": 25392.44, + "probability": 0.907 + }, + { + "start": 25392.44, + "end": 25392.98, + "probability": 0.9709 + }, + { + "start": 25393.8, + "end": 25396.18, + "probability": 0.9761 + }, + { + "start": 25396.86, + "end": 25397.96, + "probability": 0.5011 + }, + { + "start": 25398.06, + "end": 25400.36, + "probability": 0.7819 + }, + { + "start": 25401.02, + "end": 25405.52, + "probability": 0.9683 + }, + { + "start": 25405.52, + "end": 25418.12, + "probability": 0.9883 + }, + { + "start": 25419.48, + "end": 25422.32, + "probability": 0.8179 + }, + { + "start": 25423.18, + "end": 25430.28, + "probability": 0.9964 + }, + { + "start": 25431.04, + "end": 25435.38, + "probability": 0.9671 + }, + { + "start": 25436.26, + "end": 25441.66, + "probability": 0.9202 + }, + { + "start": 25441.66, + "end": 25449.0, + "probability": 0.9233 + }, + { + "start": 25450.04, + "end": 25455.14, + "probability": 0.9829 + }, + { + "start": 25456.1, + "end": 25457.12, + "probability": 0.8569 + }, + { + "start": 25457.18, + "end": 25461.8, + "probability": 0.9277 + }, + { + "start": 25462.02, + "end": 25465.52, + "probability": 0.9913 + }, + { + "start": 25466.2, + "end": 25468.82, + "probability": 0.988 + }, + { + "start": 25468.9, + "end": 25469.04, + "probability": 0.0859 + }, + { + "start": 25469.14, + "end": 25471.22, + "probability": 0.8613 + }, + { + "start": 25471.3, + "end": 25471.86, + "probability": 0.7241 + }, + { + "start": 25472.44, + "end": 25472.8, + "probability": 0.5639 + }, + { + "start": 25472.8, + "end": 25476.08, + "probability": 0.6272 + }, + { + "start": 25476.18, + "end": 25477.26, + "probability": 0.9595 + }, + { + "start": 25477.78, + "end": 25478.18, + "probability": 0.7045 + }, + { + "start": 25478.4, + "end": 25478.52, + "probability": 0.472 + }, + { + "start": 25478.6, + "end": 25482.0, + "probability": 0.8111 + }, + { + "start": 25483.12, + "end": 25484.12, + "probability": 0.8538 + }, + { + "start": 25484.66, + "end": 25487.62, + "probability": 0.9023 + }, + { + "start": 25488.78, + "end": 25490.41, + "probability": 0.5808 + }, + { + "start": 25492.02, + "end": 25493.3, + "probability": 0.9884 + }, + { + "start": 25494.6, + "end": 25498.2, + "probability": 0.9536 + }, + { + "start": 25499.34, + "end": 25502.9, + "probability": 0.9106 + }, + { + "start": 25504.0, + "end": 25504.76, + "probability": 0.7396 + }, + { + "start": 25505.6, + "end": 25506.52, + "probability": 0.6477 + }, + { + "start": 25507.12, + "end": 25508.62, + "probability": 0.948 + }, + { + "start": 25510.86, + "end": 25512.82, + "probability": 0.991 + }, + { + "start": 25513.44, + "end": 25517.14, + "probability": 0.9816 + }, + { + "start": 25517.3, + "end": 25517.86, + "probability": 0.8323 + }, + { + "start": 25518.76, + "end": 25520.02, + "probability": 0.9653 + }, + { + "start": 25521.28, + "end": 25524.42, + "probability": 0.9646 + }, + { + "start": 25525.1, + "end": 25528.46, + "probability": 0.9004 + }, + { + "start": 25529.62, + "end": 25536.32, + "probability": 0.9146 + }, + { + "start": 25536.48, + "end": 25537.12, + "probability": 0.7797 + }, + { + "start": 25537.88, + "end": 25540.7, + "probability": 0.9959 + }, + { + "start": 25542.26, + "end": 25546.18, + "probability": 0.738 + }, + { + "start": 25546.28, + "end": 25549.08, + "probability": 0.9507 + }, + { + "start": 25550.0, + "end": 25556.62, + "probability": 0.986 + }, + { + "start": 25557.28, + "end": 25563.56, + "probability": 0.8034 + }, + { + "start": 25563.9, + "end": 25565.76, + "probability": 0.9023 + }, + { + "start": 25566.5, + "end": 25568.52, + "probability": 0.524 + }, + { + "start": 25569.2, + "end": 25570.02, + "probability": 0.0595 + }, + { + "start": 25570.02, + "end": 25572.62, + "probability": 0.3928 + }, + { + "start": 25573.18, + "end": 25576.02, + "probability": 0.461 + }, + { + "start": 25576.02, + "end": 25577.92, + "probability": 0.0994 + }, + { + "start": 25578.24, + "end": 25581.7, + "probability": 0.0954 + }, + { + "start": 25581.96, + "end": 25583.84, + "probability": 0.2246 + }, + { + "start": 25585.08, + "end": 25587.56, + "probability": 0.7791 + }, + { + "start": 25589.56, + "end": 25595.08, + "probability": 0.7712 + }, + { + "start": 25595.78, + "end": 25596.74, + "probability": 0.8217 + }, + { + "start": 25597.62, + "end": 25600.56, + "probability": 0.8965 + }, + { + "start": 25602.54, + "end": 25605.38, + "probability": 0.9562 + }, + { + "start": 25606.24, + "end": 25607.56, + "probability": 0.4826 + }, + { + "start": 25607.64, + "end": 25608.2, + "probability": 0.7275 + }, + { + "start": 25608.82, + "end": 25611.2, + "probability": 0.8368 + }, + { + "start": 25612.28, + "end": 25615.04, + "probability": 0.9315 + }, + { + "start": 25616.0, + "end": 25617.81, + "probability": 0.8224 + }, + { + "start": 25620.5, + "end": 25622.39, + "probability": 0.5393 + }, + { + "start": 25622.66, + "end": 25625.1, + "probability": 0.6064 + }, + { + "start": 25625.28, + "end": 25625.35, + "probability": 0.5415 + }, + { + "start": 25626.44, + "end": 25628.32, + "probability": 0.7742 + }, + { + "start": 25628.64, + "end": 25633.78, + "probability": 0.959 + }, + { + "start": 25634.82, + "end": 25635.66, + "probability": 0.6133 + }, + { + "start": 25635.74, + "end": 25636.46, + "probability": 0.7729 + }, + { + "start": 25636.96, + "end": 25639.52, + "probability": 0.9941 + }, + { + "start": 25639.52, + "end": 25642.34, + "probability": 0.9596 + }, + { + "start": 25642.44, + "end": 25644.12, + "probability": 0.8645 + }, + { + "start": 25644.86, + "end": 25647.48, + "probability": 0.9956 + }, + { + "start": 25647.48, + "end": 25649.56, + "probability": 0.9859 + }, + { + "start": 25650.2, + "end": 25652.48, + "probability": 0.9395 + }, + { + "start": 25652.98, + "end": 25655.54, + "probability": 0.7581 + }, + { + "start": 25656.48, + "end": 25658.92, + "probability": 0.7407 + }, + { + "start": 25659.92, + "end": 25664.48, + "probability": 0.7161 + }, + { + "start": 25665.26, + "end": 25672.1, + "probability": 0.9796 + }, + { + "start": 25672.1, + "end": 25677.79, + "probability": 0.9883 + }, + { + "start": 25678.36, + "end": 25679.92, + "probability": 0.9766 + }, + { + "start": 25680.98, + "end": 25684.34, + "probability": 0.9856 + }, + { + "start": 25684.34, + "end": 25687.92, + "probability": 0.9875 + }, + { + "start": 25689.58, + "end": 25695.92, + "probability": 0.9717 + }, + { + "start": 25695.92, + "end": 25701.18, + "probability": 0.9979 + }, + { + "start": 25701.94, + "end": 25704.96, + "probability": 0.9844 + }, + { + "start": 25706.2, + "end": 25707.34, + "probability": 0.8134 + }, + { + "start": 25708.18, + "end": 25711.88, + "probability": 0.9326 + }, + { + "start": 25712.6, + "end": 25718.52, + "probability": 0.9508 + }, + { + "start": 25719.12, + "end": 25722.68, + "probability": 0.9738 + }, + { + "start": 25724.29, + "end": 25727.44, + "probability": 0.7864 + }, + { + "start": 25728.46, + "end": 25729.6, + "probability": 0.9621 + }, + { + "start": 25730.12, + "end": 25732.18, + "probability": 0.7042 + }, + { + "start": 25733.62, + "end": 25734.96, + "probability": 0.9014 + }, + { + "start": 25735.74, + "end": 25742.12, + "probability": 0.994 + }, + { + "start": 25742.12, + "end": 25747.06, + "probability": 0.9607 + }, + { + "start": 25747.74, + "end": 25750.7, + "probability": 0.8983 + }, + { + "start": 25750.7, + "end": 25754.62, + "probability": 0.9953 + }, + { + "start": 25755.36, + "end": 25759.26, + "probability": 0.9644 + }, + { + "start": 25759.9, + "end": 25764.5, + "probability": 0.8327 + }, + { + "start": 25766.82, + "end": 25767.86, + "probability": 0.7356 + }, + { + "start": 25768.52, + "end": 25772.2, + "probability": 0.9916 + }, + { + "start": 25772.2, + "end": 25777.78, + "probability": 0.9913 + }, + { + "start": 25778.42, + "end": 25779.18, + "probability": 0.6068 + }, + { + "start": 25779.9, + "end": 25784.2, + "probability": 0.9907 + }, + { + "start": 25784.74, + "end": 25786.86, + "probability": 0.9277 + }, + { + "start": 25799.12, + "end": 25802.72, + "probability": 0.9617 + }, + { + "start": 25802.72, + "end": 25807.78, + "probability": 0.9803 + }, + { + "start": 25808.36, + "end": 25808.72, + "probability": 0.3951 + }, + { + "start": 25809.14, + "end": 25814.64, + "probability": 0.8947 + }, + { + "start": 25815.06, + "end": 25816.69, + "probability": 0.9698 + }, + { + "start": 25817.42, + "end": 25818.12, + "probability": 0.8262 + }, + { + "start": 25819.16, + "end": 25821.22, + "probability": 0.9531 + }, + { + "start": 25821.98, + "end": 25824.98, + "probability": 0.9629 + }, + { + "start": 25824.98, + "end": 25828.68, + "probability": 0.9214 + }, + { + "start": 25829.32, + "end": 25834.94, + "probability": 0.9915 + }, + { + "start": 25835.6, + "end": 25836.34, + "probability": 0.8051 + }, + { + "start": 25837.18, + "end": 25843.12, + "probability": 0.9506 + }, + { + "start": 25843.12, + "end": 25848.26, + "probability": 0.9401 + }, + { + "start": 25849.16, + "end": 25850.36, + "probability": 0.9948 + }, + { + "start": 25850.92, + "end": 25854.66, + "probability": 0.7786 + }, + { + "start": 25854.66, + "end": 25859.56, + "probability": 0.9312 + }, + { + "start": 25862.02, + "end": 25862.72, + "probability": 0.406 + }, + { + "start": 25863.0, + "end": 25869.0, + "probability": 0.9798 + }, + { + "start": 25870.22, + "end": 25871.02, + "probability": 0.5847 + }, + { + "start": 25871.96, + "end": 25872.34, + "probability": 0.1614 + }, + { + "start": 25872.96, + "end": 25873.62, + "probability": 0.803 + }, + { + "start": 25874.44, + "end": 25879.74, + "probability": 0.6076 + }, + { + "start": 25879.96, + "end": 25882.7, + "probability": 0.2663 + }, + { + "start": 25883.2, + "end": 25887.72, + "probability": 0.9561 + }, + { + "start": 25888.2, + "end": 25890.78, + "probability": 0.993 + }, + { + "start": 25891.34, + "end": 25898.08, + "probability": 0.9613 + }, + { + "start": 25898.08, + "end": 25903.42, + "probability": 0.974 + }, + { + "start": 25904.22, + "end": 25908.36, + "probability": 0.8804 + }, + { + "start": 25908.36, + "end": 25912.38, + "probability": 0.9989 + }, + { + "start": 25912.8, + "end": 25916.68, + "probability": 0.9863 + }, + { + "start": 25918.38, + "end": 25918.98, + "probability": 0.5639 + }, + { + "start": 25919.54, + "end": 25920.3, + "probability": 0.4905 + }, + { + "start": 25921.0, + "end": 25922.42, + "probability": 0.4895 + }, + { + "start": 25923.04, + "end": 25923.54, + "probability": 0.131 + }, + { + "start": 25923.94, + "end": 25926.2, + "probability": 0.1132 + }, + { + "start": 25926.2, + "end": 25926.96, + "probability": 0.372 + }, + { + "start": 25927.1, + "end": 25928.28, + "probability": 0.308 + }, + { + "start": 25928.86, + "end": 25930.19, + "probability": 0.6456 + }, + { + "start": 25931.28, + "end": 25935.52, + "probability": 0.5711 + }, + { + "start": 25936.24, + "end": 25938.48, + "probability": 0.9132 + }, + { + "start": 25941.38, + "end": 25942.96, + "probability": 0.5293 + }, + { + "start": 25944.46, + "end": 25945.72, + "probability": 0.4733 + }, + { + "start": 25947.48, + "end": 25950.76, + "probability": 0.968 + }, + { + "start": 25952.26, + "end": 25958.32, + "probability": 0.8129 + }, + { + "start": 25959.0, + "end": 25962.28, + "probability": 0.9433 + }, + { + "start": 25963.28, + "end": 25963.92, + "probability": 0.6236 + }, + { + "start": 25963.98, + "end": 25966.06, + "probability": 0.7004 + }, + { + "start": 25966.7, + "end": 25967.64, + "probability": 0.6289 + }, + { + "start": 25970.46, + "end": 25972.58, + "probability": 0.7031 + }, + { + "start": 25974.72, + "end": 25977.44, + "probability": 0.5361 + }, + { + "start": 25978.24, + "end": 25980.48, + "probability": 0.8939 + }, + { + "start": 25980.64, + "end": 25982.62, + "probability": 0.8628 + }, + { + "start": 25983.22, + "end": 25986.14, + "probability": 0.9782 + }, + { + "start": 25987.18, + "end": 25991.78, + "probability": 0.9871 + }, + { + "start": 25992.7, + "end": 25995.4, + "probability": 0.8053 + }, + { + "start": 25996.12, + "end": 25998.1, + "probability": 0.9069 + }, + { + "start": 25998.5, + "end": 26000.92, + "probability": 0.9115 + }, + { + "start": 26002.34, + "end": 26003.28, + "probability": 0.9602 + }, + { + "start": 26004.08, + "end": 26007.08, + "probability": 0.9876 + }, + { + "start": 26007.8, + "end": 26008.72, + "probability": 0.6832 + }, + { + "start": 26009.28, + "end": 26010.52, + "probability": 0.899 + }, + { + "start": 26010.7, + "end": 26011.9, + "probability": 0.8247 + }, + { + "start": 26012.22, + "end": 26015.28, + "probability": 0.8447 + }, + { + "start": 26016.92, + "end": 26022.84, + "probability": 0.7216 + }, + { + "start": 26022.84, + "end": 26025.92, + "probability": 0.965 + }, + { + "start": 26026.46, + "end": 26032.14, + "probability": 0.9885 + }, + { + "start": 26033.0, + "end": 26035.12, + "probability": 0.9018 + }, + { + "start": 26036.42, + "end": 26042.32, + "probability": 0.9908 + }, + { + "start": 26043.78, + "end": 26049.32, + "probability": 0.9156 + }, + { + "start": 26050.14, + "end": 26052.82, + "probability": 0.9228 + }, + { + "start": 26053.98, + "end": 26056.52, + "probability": 0.9944 + }, + { + "start": 26057.14, + "end": 26059.38, + "probability": 0.981 + }, + { + "start": 26060.14, + "end": 26064.54, + "probability": 0.7799 + }, + { + "start": 26064.68, + "end": 26066.62, + "probability": 0.7352 + }, + { + "start": 26067.2, + "end": 26072.06, + "probability": 0.845 + }, + { + "start": 26072.7, + "end": 26074.76, + "probability": 0.9862 + }, + { + "start": 26075.72, + "end": 26079.92, + "probability": 0.5101 + }, + { + "start": 26080.44, + "end": 26082.84, + "probability": 0.9663 + }, + { + "start": 26083.4, + "end": 26085.02, + "probability": 0.9099 + }, + { + "start": 26085.66, + "end": 26089.36, + "probability": 0.931 + }, + { + "start": 26091.32, + "end": 26092.7, + "probability": 0.6436 + }, + { + "start": 26093.78, + "end": 26096.58, + "probability": 0.8843 + }, + { + "start": 26097.12, + "end": 26098.32, + "probability": 0.5791 + }, + { + "start": 26099.82, + "end": 26099.82, + "probability": 0.0716 + }, + { + "start": 26099.82, + "end": 26100.04, + "probability": 0.4938 + }, + { + "start": 26100.18, + "end": 26102.28, + "probability": 0.0863 + }, + { + "start": 26110.98, + "end": 26111.3, + "probability": 0.2586 + }, + { + "start": 26111.5, + "end": 26112.86, + "probability": 0.6109 + }, + { + "start": 26114.34, + "end": 26118.84, + "probability": 0.9598 + }, + { + "start": 26119.1, + "end": 26120.07, + "probability": 0.9054 + }, + { + "start": 26120.68, + "end": 26123.7, + "probability": 0.9492 + }, + { + "start": 26124.28, + "end": 26127.24, + "probability": 0.8774 + }, + { + "start": 26127.24, + "end": 26130.26, + "probability": 0.9587 + }, + { + "start": 26131.0, + "end": 26131.7, + "probability": 0.6637 + }, + { + "start": 26132.46, + "end": 26137.16, + "probability": 0.9406 + }, + { + "start": 26138.29, + "end": 26139.96, + "probability": 0.0202 + }, + { + "start": 26139.96, + "end": 26140.92, + "probability": 0.535 + }, + { + "start": 26141.9, + "end": 26146.94, + "probability": 0.978 + }, + { + "start": 26147.62, + "end": 26147.84, + "probability": 0.8038 + }, + { + "start": 26148.68, + "end": 26150.86, + "probability": 0.7335 + }, + { + "start": 26152.2, + "end": 26153.94, + "probability": 0.9243 + }, + { + "start": 26155.02, + "end": 26158.04, + "probability": 0.935 + }, + { + "start": 26158.82, + "end": 26164.88, + "probability": 0.939 + }, + { + "start": 26164.96, + "end": 26167.86, + "probability": 0.9985 + }, + { + "start": 26167.86, + "end": 26172.5, + "probability": 0.9967 + }, + { + "start": 26173.7, + "end": 26175.4, + "probability": 0.8194 + }, + { + "start": 26176.12, + "end": 26179.78, + "probability": 0.829 + }, + { + "start": 26180.5, + "end": 26181.06, + "probability": 0.7117 + }, + { + "start": 26181.14, + "end": 26183.3, + "probability": 0.8368 + }, + { + "start": 26183.74, + "end": 26187.7, + "probability": 0.995 + }, + { + "start": 26188.04, + "end": 26191.56, + "probability": 0.967 + }, + { + "start": 26192.64, + "end": 26197.82, + "probability": 0.5028 + }, + { + "start": 26198.78, + "end": 26204.02, + "probability": 0.971 + }, + { + "start": 26205.34, + "end": 26208.48, + "probability": 0.9402 + }, + { + "start": 26209.58, + "end": 26214.14, + "probability": 0.8339 + }, + { + "start": 26214.8, + "end": 26219.39, + "probability": 0.8728 + }, + { + "start": 26220.1, + "end": 26226.94, + "probability": 0.9237 + }, + { + "start": 26228.0, + "end": 26232.44, + "probability": 0.9519 + }, + { + "start": 26233.5, + "end": 26235.42, + "probability": 0.8735 + }, + { + "start": 26236.04, + "end": 26239.2, + "probability": 0.9944 + }, + { + "start": 26240.6, + "end": 26241.56, + "probability": 0.7875 + }, + { + "start": 26242.1, + "end": 26244.32, + "probability": 0.8826 + }, + { + "start": 26246.88, + "end": 26248.14, + "probability": 0.5376 + }, + { + "start": 26248.86, + "end": 26251.8, + "probability": 0.8191 + }, + { + "start": 26254.06, + "end": 26257.08, + "probability": 0.9252 + }, + { + "start": 26258.16, + "end": 26263.48, + "probability": 0.9819 + }, + { + "start": 26263.48, + "end": 26267.26, + "probability": 0.9751 + }, + { + "start": 26268.54, + "end": 26275.56, + "probability": 0.918 + }, + { + "start": 26275.82, + "end": 26278.58, + "probability": 0.8159 + }, + { + "start": 26279.56, + "end": 26282.82, + "probability": 0.9761 + }, + { + "start": 26282.82, + "end": 26286.18, + "probability": 0.9979 + }, + { + "start": 26287.68, + "end": 26292.08, + "probability": 0.9749 + }, + { + "start": 26292.5, + "end": 26297.84, + "probability": 0.7864 + }, + { + "start": 26299.1, + "end": 26305.46, + "probability": 0.7876 + }, + { + "start": 26307.4, + "end": 26310.66, + "probability": 0.8727 + }, + { + "start": 26311.74, + "end": 26314.1, + "probability": 0.989 + }, + { + "start": 26314.78, + "end": 26321.2, + "probability": 0.726 + }, + { + "start": 26322.34, + "end": 26323.62, + "probability": 0.7405 + }, + { + "start": 26324.42, + "end": 26329.66, + "probability": 0.9753 + }, + { + "start": 26330.58, + "end": 26333.46, + "probability": 0.9869 + }, + { + "start": 26334.06, + "end": 26334.88, + "probability": 0.9607 + }, + { + "start": 26336.0, + "end": 26338.56, + "probability": 0.9851 + }, + { + "start": 26339.08, + "end": 26339.68, + "probability": 0.3235 + }, + { + "start": 26339.8, + "end": 26343.7, + "probability": 0.9708 + }, + { + "start": 26344.66, + "end": 26345.14, + "probability": 0.6369 + }, + { + "start": 26345.86, + "end": 26349.9, + "probability": 0.9873 + }, + { + "start": 26349.9, + "end": 26354.1, + "probability": 0.9941 + }, + { + "start": 26354.2, + "end": 26355.04, + "probability": 0.8325 + }, + { + "start": 26355.18, + "end": 26355.62, + "probability": 0.8577 + }, + { + "start": 26356.32, + "end": 26360.14, + "probability": 0.9464 + }, + { + "start": 26360.14, + "end": 26366.12, + "probability": 0.9931 + }, + { + "start": 26371.84, + "end": 26372.4, + "probability": 0.7498 + }, + { + "start": 26372.72, + "end": 26373.06, + "probability": 0.5516 + }, + { + "start": 26373.1, + "end": 26374.0, + "probability": 0.6278 + }, + { + "start": 26374.58, + "end": 26377.42, + "probability": 0.9616 + }, + { + "start": 26378.2, + "end": 26381.54, + "probability": 0.929 + }, + { + "start": 26382.16, + "end": 26384.92, + "probability": 0.9921 + }, + { + "start": 26385.36, + "end": 26390.66, + "probability": 0.9672 + }, + { + "start": 26391.64, + "end": 26396.04, + "probability": 0.99 + }, + { + "start": 26396.76, + "end": 26399.73, + "probability": 0.8403 + }, + { + "start": 26400.6, + "end": 26403.66, + "probability": 0.9821 + }, + { + "start": 26404.1, + "end": 26406.88, + "probability": 0.9865 + }, + { + "start": 26407.9, + "end": 26408.56, + "probability": 0.74 + }, + { + "start": 26409.12, + "end": 26413.24, + "probability": 0.9844 + }, + { + "start": 26413.92, + "end": 26418.12, + "probability": 0.9573 + }, + { + "start": 26418.96, + "end": 26422.58, + "probability": 0.8953 + }, + { + "start": 26423.38, + "end": 26423.92, + "probability": 0.6667 + }, + { + "start": 26424.08, + "end": 26427.46, + "probability": 0.9891 + }, + { + "start": 26427.46, + "end": 26430.84, + "probability": 0.9975 + }, + { + "start": 26431.48, + "end": 26433.82, + "probability": 0.9788 + }, + { + "start": 26434.54, + "end": 26435.44, + "probability": 0.6643 + }, + { + "start": 26435.56, + "end": 26440.2, + "probability": 0.9538 + }, + { + "start": 26441.0, + "end": 26442.78, + "probability": 0.9526 + }, + { + "start": 26443.58, + "end": 26446.64, + "probability": 0.8178 + }, + { + "start": 26447.24, + "end": 26449.82, + "probability": 0.6754 + }, + { + "start": 26449.82, + "end": 26452.9, + "probability": 0.8513 + }, + { + "start": 26454.22, + "end": 26454.84, + "probability": 0.9939 + }, + { + "start": 26455.46, + "end": 26455.56, + "probability": 0.2133 + }, + { + "start": 26455.58, + "end": 26456.42, + "probability": 0.6716 + }, + { + "start": 26457.07, + "end": 26458.56, + "probability": 0.7965 + }, + { + "start": 26458.62, + "end": 26459.3, + "probability": 0.6059 + }, + { + "start": 26459.3, + "end": 26459.58, + "probability": 0.9006 + }, + { + "start": 26459.9, + "end": 26464.14, + "probability": 0.9766 + }, + { + "start": 26464.56, + "end": 26465.82, + "probability": 0.7478 + }, + { + "start": 26466.84, + "end": 26468.94, + "probability": 0.8751 + }, + { + "start": 26469.64, + "end": 26472.48, + "probability": 0.6777 + }, + { + "start": 26473.0, + "end": 26479.3, + "probability": 0.9725 + }, + { + "start": 26479.82, + "end": 26481.84, + "probability": 0.9856 + }, + { + "start": 26481.84, + "end": 26483.88, + "probability": 0.9388 + }, + { + "start": 26484.04, + "end": 26484.54, + "probability": 0.9535 + }, + { + "start": 26484.76, + "end": 26486.42, + "probability": 0.8811 + }, + { + "start": 26487.38, + "end": 26490.3, + "probability": 0.9907 + }, + { + "start": 26491.52, + "end": 26492.4, + "probability": 0.7869 + }, + { + "start": 26492.58, + "end": 26496.24, + "probability": 0.9827 + }, + { + "start": 26497.04, + "end": 26502.0, + "probability": 0.9768 + }, + { + "start": 26502.64, + "end": 26504.44, + "probability": 0.9688 + }, + { + "start": 26504.56, + "end": 26505.56, + "probability": 0.6664 + }, + { + "start": 26505.88, + "end": 26506.86, + "probability": 0.7661 + }, + { + "start": 26507.16, + "end": 26511.34, + "probability": 0.9902 + }, + { + "start": 26511.6, + "end": 26512.76, + "probability": 0.8481 + }, + { + "start": 26513.56, + "end": 26519.88, + "probability": 0.9414 + }, + { + "start": 26520.12, + "end": 26524.48, + "probability": 0.9813 + }, + { + "start": 26525.12, + "end": 26526.1, + "probability": 0.8083 + }, + { + "start": 26526.38, + "end": 26532.42, + "probability": 0.9544 + }, + { + "start": 26532.56, + "end": 26534.97, + "probability": 0.9897 + }, + { + "start": 26535.42, + "end": 26539.48, + "probability": 0.9863 + }, + { + "start": 26539.48, + "end": 26543.26, + "probability": 0.998 + }, + { + "start": 26543.46, + "end": 26544.2, + "probability": 0.7943 + }, + { + "start": 26544.84, + "end": 26545.1, + "probability": 0.2596 + }, + { + "start": 26545.16, + "end": 26549.84, + "probability": 0.9846 + }, + { + "start": 26550.36, + "end": 26554.48, + "probability": 0.9036 + }, + { + "start": 26554.8, + "end": 26558.92, + "probability": 0.9827 + }, + { + "start": 26561.44, + "end": 26563.42, + "probability": 0.7224 + }, + { + "start": 26564.32, + "end": 26565.54, + "probability": 0.781 + }, + { + "start": 26565.82, + "end": 26568.16, + "probability": 0.8701 + }, + { + "start": 26568.64, + "end": 26569.58, + "probability": 0.506 + }, + { + "start": 26570.64, + "end": 26575.88, + "probability": 0.9683 + }, + { + "start": 26576.36, + "end": 26579.36, + "probability": 0.9805 + }, + { + "start": 26579.48, + "end": 26581.25, + "probability": 0.6528 + }, + { + "start": 26582.48, + "end": 26584.34, + "probability": 0.4533 + }, + { + "start": 26584.44, + "end": 26589.4, + "probability": 0.7153 + }, + { + "start": 26589.48, + "end": 26590.56, + "probability": 0.8831 + }, + { + "start": 26590.74, + "end": 26591.82, + "probability": 0.7157 + }, + { + "start": 26592.14, + "end": 26593.58, + "probability": 0.6861 + }, + { + "start": 26593.72, + "end": 26595.96, + "probability": 0.5038 + }, + { + "start": 26596.12, + "end": 26597.99, + "probability": 0.7712 + }, + { + "start": 26599.9, + "end": 26602.52, + "probability": 0.4031 + }, + { + "start": 26604.14, + "end": 26607.06, + "probability": 0.4573 + }, + { + "start": 26608.75, + "end": 26611.02, + "probability": 0.7749 + }, + { + "start": 26611.1, + "end": 26611.64, + "probability": 0.5364 + }, + { + "start": 26612.18, + "end": 26612.78, + "probability": 0.6236 + }, + { + "start": 26613.44, + "end": 26616.18, + "probability": 0.9494 + }, + { + "start": 26617.78, + "end": 26619.04, + "probability": 0.3849 + }, + { + "start": 26620.22, + "end": 26622.64, + "probability": 0.6509 + }, + { + "start": 26623.0, + "end": 26626.6, + "probability": 0.9491 + }, + { + "start": 26626.6, + "end": 26630.76, + "probability": 0.9904 + }, + { + "start": 26631.4, + "end": 26632.8, + "probability": 0.8646 + }, + { + "start": 26633.1, + "end": 26636.6, + "probability": 0.9878 + }, + { + "start": 26636.6, + "end": 26639.4, + "probability": 0.9972 + }, + { + "start": 26640.0, + "end": 26640.96, + "probability": 0.7114 + }, + { + "start": 26641.52, + "end": 26644.24, + "probability": 0.991 + }, + { + "start": 26644.24, + "end": 26648.26, + "probability": 0.9697 + }, + { + "start": 26649.42, + "end": 26652.4, + "probability": 0.9969 + }, + { + "start": 26652.4, + "end": 26656.3, + "probability": 0.9871 + }, + { + "start": 26657.08, + "end": 26658.56, + "probability": 0.6433 + }, + { + "start": 26658.98, + "end": 26661.58, + "probability": 0.6673 + }, + { + "start": 26663.32, + "end": 26667.6, + "probability": 0.9637 + }, + { + "start": 26668.54, + "end": 26673.66, + "probability": 0.9926 + }, + { + "start": 26674.18, + "end": 26677.14, + "probability": 0.5293 + }, + { + "start": 26677.14, + "end": 26679.46, + "probability": 0.9963 + }, + { + "start": 26680.02, + "end": 26681.66, + "probability": 0.9897 + }, + { + "start": 26682.28, + "end": 26685.8, + "probability": 0.8188 + }, + { + "start": 26687.88, + "end": 26695.56, + "probability": 0.8952 + }, + { + "start": 26696.74, + "end": 26698.92, + "probability": 0.6491 + }, + { + "start": 26701.14, + "end": 26704.12, + "probability": 0.4776 + }, + { + "start": 26704.74, + "end": 26706.78, + "probability": 0.5776 + }, + { + "start": 26707.62, + "end": 26710.14, + "probability": 0.8034 + }, + { + "start": 26710.2, + "end": 26710.56, + "probability": 0.4462 + }, + { + "start": 26710.64, + "end": 26713.64, + "probability": 0.7618 + }, + { + "start": 26713.64, + "end": 26716.2, + "probability": 0.7668 + }, + { + "start": 26716.74, + "end": 26717.12, + "probability": 0.6481 + }, + { + "start": 26717.18, + "end": 26722.62, + "probability": 0.976 + }, + { + "start": 26724.56, + "end": 26725.28, + "probability": 0.797 + }, + { + "start": 26726.14, + "end": 26726.58, + "probability": 0.2571 + }, + { + "start": 26726.58, + "end": 26727.96, + "probability": 0.9518 + }, + { + "start": 26728.28, + "end": 26731.36, + "probability": 0.7628 + }, + { + "start": 26731.48, + "end": 26737.78, + "probability": 0.2957 + }, + { + "start": 26738.88, + "end": 26745.04, + "probability": 0.8766 + }, + { + "start": 26746.84, + "end": 26747.94, + "probability": 0.6208 + }, + { + "start": 26747.96, + "end": 26750.62, + "probability": 0.9976 + }, + { + "start": 26750.62, + "end": 26752.34, + "probability": 0.4341 + }, + { + "start": 26753.56, + "end": 26757.66, + "probability": 0.9893 + }, + { + "start": 26758.2, + "end": 26762.8, + "probability": 0.8358 + }, + { + "start": 26763.18, + "end": 26765.94, + "probability": 0.8519 + }, + { + "start": 26765.94, + "end": 26768.86, + "probability": 0.9917 + }, + { + "start": 26769.36, + "end": 26772.9, + "probability": 0.4647 + }, + { + "start": 26772.9, + "end": 26775.84, + "probability": 0.9608 + }, + { + "start": 26777.26, + "end": 26777.82, + "probability": 0.5247 + }, + { + "start": 26777.82, + "end": 26779.73, + "probability": 0.854 + }, + { + "start": 26780.34, + "end": 26780.97, + "probability": 0.3197 + }, + { + "start": 26781.26, + "end": 26782.75, + "probability": 0.6535 + }, + { + "start": 26783.92, + "end": 26787.2, + "probability": 0.8926 + }, + { + "start": 26787.2, + "end": 26790.74, + "probability": 0.694 + }, + { + "start": 26792.26, + "end": 26793.44, + "probability": 0.9834 + }, + { + "start": 26794.01, + "end": 26797.96, + "probability": 0.3839 + }, + { + "start": 26798.62, + "end": 26801.96, + "probability": 0.5357 + }, + { + "start": 26802.36, + "end": 26802.5, + "probability": 0.0173 + }, + { + "start": 26802.5, + "end": 26803.62, + "probability": 0.1082 + }, + { + "start": 26803.88, + "end": 26805.14, + "probability": 0.5677 + }, + { + "start": 26805.7, + "end": 26806.74, + "probability": 0.4805 + }, + { + "start": 26806.74, + "end": 26809.8, + "probability": 0.3283 + }, + { + "start": 26810.0, + "end": 26811.38, + "probability": 0.4678 + }, + { + "start": 26811.9, + "end": 26815.98, + "probability": 0.2905 + }, + { + "start": 26816.74, + "end": 26818.1, + "probability": 0.8682 + }, + { + "start": 26819.11, + "end": 26824.67, + "probability": 0.5887 + }, + { + "start": 26825.5, + "end": 26826.88, + "probability": 0.3506 + }, + { + "start": 26827.24, + "end": 26828.82, + "probability": 0.7835 + }, + { + "start": 26829.54, + "end": 26832.36, + "probability": 0.9829 + }, + { + "start": 26832.82, + "end": 26834.35, + "probability": 0.8434 + }, + { + "start": 26834.98, + "end": 26835.74, + "probability": 0.9792 + }, + { + "start": 26835.88, + "end": 26837.46, + "probability": 0.6655 + }, + { + "start": 26838.2, + "end": 26838.94, + "probability": 0.7457 + }, + { + "start": 26838.98, + "end": 26839.33, + "probability": 0.3076 + }, + { + "start": 26839.56, + "end": 26841.24, + "probability": 0.8428 + }, + { + "start": 26842.0, + "end": 26845.78, + "probability": 0.8115 + }, + { + "start": 26845.82, + "end": 26847.06, + "probability": 0.6155 + }, + { + "start": 26847.7, + "end": 26848.82, + "probability": 0.7587 + }, + { + "start": 26849.98, + "end": 26851.84, + "probability": 0.9547 + }, + { + "start": 26851.94, + "end": 26852.62, + "probability": 0.8557 + }, + { + "start": 26852.68, + "end": 26853.94, + "probability": 0.8474 + }, + { + "start": 26854.14, + "end": 26855.4, + "probability": 0.8261 + }, + { + "start": 26856.06, + "end": 26857.34, + "probability": 0.958 + }, + { + "start": 26858.04, + "end": 26860.4, + "probability": 0.8967 + }, + { + "start": 26861.0, + "end": 26861.78, + "probability": 0.6675 + }, + { + "start": 26862.66, + "end": 26864.3, + "probability": 0.8658 + }, + { + "start": 26865.28, + "end": 26867.64, + "probability": 0.5329 + }, + { + "start": 26868.08, + "end": 26868.3, + "probability": 0.7551 + }, + { + "start": 26868.42, + "end": 26868.94, + "probability": 0.7088 + }, + { + "start": 26869.4, + "end": 26870.47, + "probability": 0.6 + }, + { + "start": 26870.86, + "end": 26871.0, + "probability": 0.4462 + }, + { + "start": 26871.08, + "end": 26871.32, + "probability": 0.8901 + }, + { + "start": 26871.4, + "end": 26873.64, + "probability": 0.8604 + }, + { + "start": 26873.64, + "end": 26875.76, + "probability": 0.9198 + }, + { + "start": 26876.32, + "end": 26876.98, + "probability": 0.5944 + }, + { + "start": 26877.62, + "end": 26878.86, + "probability": 0.8467 + }, + { + "start": 26879.28, + "end": 26880.64, + "probability": 0.7049 + }, + { + "start": 26880.72, + "end": 26881.5, + "probability": 0.591 + }, + { + "start": 26881.62, + "end": 26882.46, + "probability": 0.517 + }, + { + "start": 26882.56, + "end": 26883.14, + "probability": 0.6907 + }, + { + "start": 26883.98, + "end": 26886.42, + "probability": 0.8454 + }, + { + "start": 26886.66, + "end": 26889.96, + "probability": 0.9441 + }, + { + "start": 26890.6, + "end": 26891.4, + "probability": 0.9836 + }, + { + "start": 26892.02, + "end": 26893.42, + "probability": 0.9508 + }, + { + "start": 26894.58, + "end": 26898.14, + "probability": 0.6194 + }, + { + "start": 26899.1, + "end": 26905.94, + "probability": 0.8783 + }, + { + "start": 26906.7, + "end": 26909.3, + "probability": 0.5254 + }, + { + "start": 26909.92, + "end": 26911.86, + "probability": 0.9705 + }, + { + "start": 26911.86, + "end": 26913.64, + "probability": 0.1124 + }, + { + "start": 26913.96, + "end": 26917.86, + "probability": 0.9465 + }, + { + "start": 26918.44, + "end": 26922.1, + "probability": 0.8661 + }, + { + "start": 26922.12, + "end": 26922.42, + "probability": 0.9667 + }, + { + "start": 26923.3, + "end": 26924.56, + "probability": 0.8704 + }, + { + "start": 26924.66, + "end": 26924.96, + "probability": 0.3789 + }, + { + "start": 26925.02, + "end": 26926.68, + "probability": 0.8241 + }, + { + "start": 26926.96, + "end": 26928.12, + "probability": 0.7495 + }, + { + "start": 26928.74, + "end": 26929.7, + "probability": 0.8809 + }, + { + "start": 26930.02, + "end": 26932.24, + "probability": 0.6826 + }, + { + "start": 26932.46, + "end": 26934.58, + "probability": 0.6358 + }, + { + "start": 26934.62, + "end": 26934.92, + "probability": 0.7353 + }, + { + "start": 26935.0, + "end": 26935.28, + "probability": 0.9473 + }, + { + "start": 26935.38, + "end": 26936.28, + "probability": 0.7834 + }, + { + "start": 26936.92, + "end": 26938.12, + "probability": 0.6279 + }, + { + "start": 26938.44, + "end": 26940.1, + "probability": 0.8528 + }, + { + "start": 26942.96, + "end": 26943.18, + "probability": 0.7458 + }, + { + "start": 26943.26, + "end": 26943.88, + "probability": 0.6361 + }, + { + "start": 26944.66, + "end": 26946.09, + "probability": 0.5966 + }, + { + "start": 26946.66, + "end": 26950.26, + "probability": 0.8185 + }, + { + "start": 26951.34, + "end": 26960.44, + "probability": 0.1595 + }, + { + "start": 26961.66, + "end": 26965.74, + "probability": 0.1043 + }, + { + "start": 26966.1, + "end": 26972.78, + "probability": 0.8305 + }, + { + "start": 26973.02, + "end": 26976.94, + "probability": 0.4885 + }, + { + "start": 26977.06, + "end": 26978.88, + "probability": 0.726 + }, + { + "start": 26978.98, + "end": 26979.2, + "probability": 0.1993 + }, + { + "start": 26979.26, + "end": 26981.33, + "probability": 0.9824 + }, + { + "start": 26981.34, + "end": 26982.26, + "probability": 0.707 + }, + { + "start": 26982.66, + "end": 26985.7, + "probability": 0.9565 + }, + { + "start": 26985.94, + "end": 26987.18, + "probability": 0.5083 + }, + { + "start": 26987.5, + "end": 26988.64, + "probability": 0.959 + }, + { + "start": 26988.98, + "end": 26990.18, + "probability": 0.7887 + }, + { + "start": 26990.32, + "end": 26993.32, + "probability": 0.5726 + }, + { + "start": 26993.32, + "end": 26993.96, + "probability": 0.2486 + }, + { + "start": 26993.96, + "end": 26995.48, + "probability": 0.1278 + }, + { + "start": 26995.7, + "end": 26996.78, + "probability": 0.4135 + }, + { + "start": 26997.0, + "end": 26998.14, + "probability": 0.9762 + }, + { + "start": 26998.44, + "end": 26999.28, + "probability": 0.9106 + }, + { + "start": 26999.44, + "end": 27000.2, + "probability": 0.6569 + }, + { + "start": 27000.44, + "end": 27001.87, + "probability": 0.76 + }, + { + "start": 27002.34, + "end": 27004.64, + "probability": 0.7641 + }, + { + "start": 27005.3, + "end": 27008.0, + "probability": 0.6789 + }, + { + "start": 27008.68, + "end": 27012.36, + "probability": 0.9227 + }, + { + "start": 27013.08, + "end": 27014.3, + "probability": 0.5468 + }, + { + "start": 27014.72, + "end": 27016.58, + "probability": 0.7461 + }, + { + "start": 27018.58, + "end": 27020.62, + "probability": 0.7571 + }, + { + "start": 27021.16, + "end": 27023.17, + "probability": 0.9128 + }, + { + "start": 27023.44, + "end": 27025.46, + "probability": 0.7333 + }, + { + "start": 27026.77, + "end": 27030.04, + "probability": 0.724 + }, + { + "start": 27030.86, + "end": 27035.7, + "probability": 0.9954 + }, + { + "start": 27036.73, + "end": 27038.66, + "probability": 0.2678 + }, + { + "start": 27038.66, + "end": 27041.56, + "probability": 0.9977 + }, + { + "start": 27042.04, + "end": 27045.94, + "probability": 0.9315 + }, + { + "start": 27047.28, + "end": 27049.3, + "probability": 0.8828 + }, + { + "start": 27049.3, + "end": 27051.78, + "probability": 0.8787 + }, + { + "start": 27052.64, + "end": 27054.28, + "probability": 0.577 + }, + { + "start": 27054.36, + "end": 27056.34, + "probability": 0.9752 + }, + { + "start": 27056.34, + "end": 27059.38, + "probability": 0.8387 + }, + { + "start": 27060.1, + "end": 27061.38, + "probability": 0.9731 + }, + { + "start": 27062.64, + "end": 27064.42, + "probability": 0.9224 + }, + { + "start": 27064.88, + "end": 27066.98, + "probability": 0.9524 + }, + { + "start": 27067.54, + "end": 27072.04, + "probability": 0.7474 + }, + { + "start": 27072.14, + "end": 27072.72, + "probability": 0.7794 + }, + { + "start": 27072.88, + "end": 27074.36, + "probability": 0.8234 + }, + { + "start": 27074.4, + "end": 27076.42, + "probability": 0.9083 + }, + { + "start": 27077.3, + "end": 27079.62, + "probability": 0.8934 + }, + { + "start": 27079.62, + "end": 27081.36, + "probability": 0.7313 + }, + { + "start": 27082.06, + "end": 27085.34, + "probability": 0.8957 + }, + { + "start": 27085.76, + "end": 27089.12, + "probability": 0.8132 + }, + { + "start": 27089.26, + "end": 27096.48, + "probability": 0.8053 + }, + { + "start": 27097.46, + "end": 27099.64, + "probability": 0.5853 + }, + { + "start": 27100.22, + "end": 27102.08, + "probability": 0.9376 + }, + { + "start": 27103.52, + "end": 27103.92, + "probability": 0.7962 + }, + { + "start": 27105.16, + "end": 27107.88, + "probability": 0.4815 + }, + { + "start": 27108.46, + "end": 27110.34, + "probability": 0.9698 + }, + { + "start": 27113.98, + "end": 27114.44, + "probability": 0.3722 + }, + { + "start": 27114.48, + "end": 27116.64, + "probability": 0.6141 + }, + { + "start": 27117.92, + "end": 27122.36, + "probability": 0.9687 + }, + { + "start": 27123.54, + "end": 27129.7, + "probability": 0.946 + }, + { + "start": 27130.58, + "end": 27135.62, + "probability": 0.9798 + }, + { + "start": 27135.86, + "end": 27141.56, + "probability": 0.9791 + }, + { + "start": 27142.56, + "end": 27145.5, + "probability": 0.5796 + }, + { + "start": 27146.06, + "end": 27148.14, + "probability": 0.8916 + }, + { + "start": 27149.36, + "end": 27154.72, + "probability": 0.8403 + }, + { + "start": 27155.2, + "end": 27160.84, + "probability": 0.9929 + }, + { + "start": 27161.58, + "end": 27161.65, + "probability": 0.8633 + }, + { + "start": 27162.88, + "end": 27164.28, + "probability": 0.9029 + }, + { + "start": 27166.06, + "end": 27168.46, + "probability": 0.9144 + }, + { + "start": 27168.46, + "end": 27172.72, + "probability": 0.939 + }, + { + "start": 27173.56, + "end": 27174.2, + "probability": 0.8107 + }, + { + "start": 27174.98, + "end": 27175.7, + "probability": 0.7808 + }, + { + "start": 27176.72, + "end": 27180.06, + "probability": 0.5725 + }, + { + "start": 27180.14, + "end": 27181.04, + "probability": 0.286 + }, + { + "start": 27181.18, + "end": 27181.58, + "probability": 0.8182 + }, + { + "start": 27182.4, + "end": 27183.24, + "probability": 0.6274 + }, + { + "start": 27183.78, + "end": 27184.08, + "probability": 0.9935 + }, + { + "start": 27186.1, + "end": 27191.82, + "probability": 0.652 + }, + { + "start": 27193.48, + "end": 27197.1, + "probability": 0.8666 + }, + { + "start": 27197.96, + "end": 27202.44, + "probability": 0.977 + }, + { + "start": 27202.44, + "end": 27206.14, + "probability": 0.4005 + }, + { + "start": 27206.24, + "end": 27206.52, + "probability": 0.5938 + }, + { + "start": 27207.08, + "end": 27208.24, + "probability": 0.8279 + }, + { + "start": 27210.54, + "end": 27213.12, + "probability": 0.7216 + }, + { + "start": 27213.3, + "end": 27216.7, + "probability": 0.4122 + }, + { + "start": 27218.86, + "end": 27222.24, + "probability": 0.9907 + }, + { + "start": 27222.36, + "end": 27223.64, + "probability": 0.9048 + }, + { + "start": 27224.22, + "end": 27229.6, + "probability": 0.9868 + }, + { + "start": 27229.6, + "end": 27232.76, + "probability": 0.9976 + }, + { + "start": 27233.58, + "end": 27237.2, + "probability": 0.9652 + }, + { + "start": 27237.92, + "end": 27238.62, + "probability": 0.4572 + }, + { + "start": 27238.78, + "end": 27242.66, + "probability": 0.9764 + }, + { + "start": 27243.18, + "end": 27243.9, + "probability": 0.9172 + }, + { + "start": 27244.06, + "end": 27244.38, + "probability": 0.8632 + }, + { + "start": 27244.44, + "end": 27247.12, + "probability": 0.9958 + }, + { + "start": 27247.46, + "end": 27249.38, + "probability": 0.9915 + }, + { + "start": 27249.72, + "end": 27253.24, + "probability": 0.996 + }, + { + "start": 27254.22, + "end": 27257.8, + "probability": 0.9932 + }, + { + "start": 27257.92, + "end": 27261.38, + "probability": 0.9868 + }, + { + "start": 27261.54, + "end": 27267.04, + "probability": 0.9729 + }, + { + "start": 27267.5, + "end": 27271.04, + "probability": 0.9971 + }, + { + "start": 27271.9, + "end": 27274.84, + "probability": 0.9773 + }, + { + "start": 27275.74, + "end": 27278.06, + "probability": 0.7478 + }, + { + "start": 27278.8, + "end": 27280.08, + "probability": 0.7396 + }, + { + "start": 27280.14, + "end": 27282.56, + "probability": 0.9951 + }, + { + "start": 27282.56, + "end": 27285.48, + "probability": 0.9923 + }, + { + "start": 27286.6, + "end": 27287.62, + "probability": 0.8499 + }, + { + "start": 27288.3, + "end": 27289.58, + "probability": 0.8035 + }, + { + "start": 27290.26, + "end": 27291.58, + "probability": 0.6739 + }, + { + "start": 27292.44, + "end": 27293.6, + "probability": 0.8111 + }, + { + "start": 27293.72, + "end": 27294.3, + "probability": 0.689 + }, + { + "start": 27294.72, + "end": 27296.12, + "probability": 0.8984 + }, + { + "start": 27297.02, + "end": 27298.86, + "probability": 0.8339 + }, + { + "start": 27299.12, + "end": 27302.24, + "probability": 0.9673 + }, + { + "start": 27302.3, + "end": 27303.04, + "probability": 0.21 + }, + { + "start": 27303.04, + "end": 27304.42, + "probability": 0.7507 + }, + { + "start": 27304.62, + "end": 27308.52, + "probability": 0.9971 + }, + { + "start": 27308.74, + "end": 27309.42, + "probability": 0.3445 + }, + { + "start": 27309.66, + "end": 27311.32, + "probability": 0.9303 + }, + { + "start": 27311.48, + "end": 27314.66, + "probability": 0.9751 + }, + { + "start": 27315.1, + "end": 27316.76, + "probability": 0.7381 + }, + { + "start": 27318.84, + "end": 27321.26, + "probability": 0.6889 + }, + { + "start": 27321.3, + "end": 27322.0, + "probability": 0.4401 + }, + { + "start": 27322.48, + "end": 27324.52, + "probability": 0.2701 + }, + { + "start": 27324.52, + "end": 27325.6, + "probability": 0.7349 + }, + { + "start": 27325.88, + "end": 27329.4, + "probability": 0.9197 + }, + { + "start": 27330.28, + "end": 27332.82, + "probability": 0.9106 + }, + { + "start": 27333.3, + "end": 27335.1, + "probability": 0.9301 + }, + { + "start": 27335.38, + "end": 27335.74, + "probability": 0.78 + }, + { + "start": 27336.0, + "end": 27336.78, + "probability": 0.9982 + }, + { + "start": 27336.84, + "end": 27338.14, + "probability": 0.9878 + }, + { + "start": 27338.76, + "end": 27341.72, + "probability": 0.9394 + }, + { + "start": 27342.28, + "end": 27344.4, + "probability": 0.9934 + }, + { + "start": 27344.44, + "end": 27345.49, + "probability": 0.9327 + }, + { + "start": 27346.06, + "end": 27346.56, + "probability": 0.9218 + }, + { + "start": 27346.72, + "end": 27347.42, + "probability": 0.9689 + }, + { + "start": 27347.78, + "end": 27348.91, + "probability": 0.9927 + }, + { + "start": 27349.38, + "end": 27351.74, + "probability": 0.9855 + }, + { + "start": 27352.8, + "end": 27353.76, + "probability": 0.8332 + }, + { + "start": 27354.0, + "end": 27355.38, + "probability": 0.9138 + }, + { + "start": 27355.54, + "end": 27357.71, + "probability": 0.9951 + }, + { + "start": 27358.26, + "end": 27359.46, + "probability": 0.9332 + }, + { + "start": 27359.58, + "end": 27361.34, + "probability": 0.9981 + }, + { + "start": 27361.98, + "end": 27362.74, + "probability": 0.9756 + }, + { + "start": 27363.02, + "end": 27363.46, + "probability": 0.6185 + }, + { + "start": 27363.94, + "end": 27365.56, + "probability": 0.9883 + }, + { + "start": 27366.92, + "end": 27368.24, + "probability": 0.541 + }, + { + "start": 27368.64, + "end": 27374.23, + "probability": 0.9128 + }, + { + "start": 27374.38, + "end": 27375.24, + "probability": 0.9861 + }, + { + "start": 27375.3, + "end": 27376.36, + "probability": 0.99 + }, + { + "start": 27376.92, + "end": 27378.48, + "probability": 0.9956 + }, + { + "start": 27379.22, + "end": 27380.78, + "probability": 0.9746 + }, + { + "start": 27381.34, + "end": 27382.46, + "probability": 0.9598 + }, + { + "start": 27382.72, + "end": 27385.8, + "probability": 0.988 + }, + { + "start": 27385.8, + "end": 27388.52, + "probability": 0.9976 + }, + { + "start": 27388.56, + "end": 27392.66, + "probability": 0.9955 + }, + { + "start": 27393.06, + "end": 27395.58, + "probability": 0.723 + }, + { + "start": 27395.58, + "end": 27399.56, + "probability": 0.9033 + }, + { + "start": 27400.39, + "end": 27402.62, + "probability": 0.9152 + }, + { + "start": 27402.7, + "end": 27403.84, + "probability": 0.7129 + }, + { + "start": 27403.92, + "end": 27404.89, + "probability": 0.7508 + }, + { + "start": 27405.22, + "end": 27405.52, + "probability": 0.4656 + }, + { + "start": 27405.56, + "end": 27406.22, + "probability": 0.8776 + }, + { + "start": 27406.28, + "end": 27406.96, + "probability": 0.6933 + }, + { + "start": 27407.38, + "end": 27411.96, + "probability": 0.9453 + }, + { + "start": 27412.04, + "end": 27412.8, + "probability": 0.8502 + }, + { + "start": 27413.22, + "end": 27417.94, + "probability": 0.8411 + }, + { + "start": 27418.6, + "end": 27420.86, + "probability": 0.5865 + }, + { + "start": 27421.26, + "end": 27421.88, + "probability": 0.6049 + }, + { + "start": 27421.98, + "end": 27422.72, + "probability": 0.2413 + }, + { + "start": 27422.76, + "end": 27423.46, + "probability": 0.686 + }, + { + "start": 27423.92, + "end": 27424.54, + "probability": 0.2319 + }, + { + "start": 27424.54, + "end": 27425.04, + "probability": 0.4371 + }, + { + "start": 27425.12, + "end": 27425.84, + "probability": 0.1961 + }, + { + "start": 27425.84, + "end": 27426.38, + "probability": 0.3092 + }, + { + "start": 27426.96, + "end": 27429.32, + "probability": 0.5511 + }, + { + "start": 27430.44, + "end": 27433.18, + "probability": 0.931 + }, + { + "start": 27434.72, + "end": 27438.04, + "probability": 0.4131 + }, + { + "start": 27439.86, + "end": 27439.86, + "probability": 0.4261 + }, + { + "start": 27439.86, + "end": 27439.86, + "probability": 0.5451 + }, + { + "start": 27439.86, + "end": 27448.82, + "probability": 0.7829 + }, + { + "start": 27448.82, + "end": 27454.84, + "probability": 0.797 + }, + { + "start": 27455.72, + "end": 27460.8, + "probability": 0.9543 + }, + { + "start": 27461.54, + "end": 27462.4, + "probability": 0.7499 + }, + { + "start": 27462.52, + "end": 27465.98, + "probability": 0.6987 + }, + { + "start": 27465.98, + "end": 27469.4, + "probability": 0.9662 + }, + { + "start": 27470.06, + "end": 27471.68, + "probability": 0.5036 + }, + { + "start": 27472.36, + "end": 27477.4, + "probability": 0.9352 + }, + { + "start": 27477.5, + "end": 27478.52, + "probability": 0.1912 + }, + { + "start": 27479.02, + "end": 27482.3, + "probability": 0.9062 + }, + { + "start": 27482.64, + "end": 27486.9, + "probability": 0.7491 + }, + { + "start": 27486.9, + "end": 27489.52, + "probability": 0.8723 + }, + { + "start": 27491.28, + "end": 27492.06, + "probability": 0.7098 + }, + { + "start": 27494.76, + "end": 27496.34, + "probability": 0.4858 + }, + { + "start": 27496.58, + "end": 27499.78, + "probability": 0.9065 + }, + { + "start": 27499.94, + "end": 27504.13, + "probability": 0.5044 + }, + { + "start": 27504.34, + "end": 27506.81, + "probability": 0.834 + }, + { + "start": 27507.34, + "end": 27509.18, + "probability": 0.7427 + }, + { + "start": 27509.8, + "end": 27510.6, + "probability": 0.5474 + }, + { + "start": 27510.74, + "end": 27511.32, + "probability": 0.708 + }, + { + "start": 27511.56, + "end": 27514.4, + "probability": 0.8719 + }, + { + "start": 27514.5, + "end": 27515.07, + "probability": 0.5855 + }, + { + "start": 27515.32, + "end": 27515.78, + "probability": 0.9272 + }, + { + "start": 27516.02, + "end": 27516.5, + "probability": 0.6353 + }, + { + "start": 27517.54, + "end": 27520.32, + "probability": 0.031 + }, + { + "start": 27522.02, + "end": 27522.34, + "probability": 0.6999 + }, + { + "start": 27523.04, + "end": 27523.62, + "probability": 0.811 + }, + { + "start": 27524.28, + "end": 27529.24, + "probability": 0.53 + }, + { + "start": 27529.4, + "end": 27530.34, + "probability": 0.2499 + }, + { + "start": 27530.58, + "end": 27533.78, + "probability": 0.669 + }, + { + "start": 27533.92, + "end": 27538.56, + "probability": 0.6735 + }, + { + "start": 27540.36, + "end": 27542.62, + "probability": 0.6153 + }, + { + "start": 27543.24, + "end": 27546.0, + "probability": 0.5522 + }, + { + "start": 27546.14, + "end": 27547.56, + "probability": 0.925 + }, + { + "start": 27547.64, + "end": 27548.02, + "probability": 0.766 + }, + { + "start": 27548.08, + "end": 27549.78, + "probability": 0.9015 + }, + { + "start": 27549.88, + "end": 27550.0, + "probability": 0.5624 + }, + { + "start": 27550.88, + "end": 27551.38, + "probability": 0.8723 + }, + { + "start": 27551.44, + "end": 27553.98, + "probability": 0.7038 + }, + { + "start": 27553.98, + "end": 27557.4, + "probability": 0.8274 + }, + { + "start": 27557.49, + "end": 27560.76, + "probability": 0.822 + }, + { + "start": 27561.12, + "end": 27563.49, + "probability": 0.8416 + }, + { + "start": 27564.04, + "end": 27567.78, + "probability": 0.9811 + }, + { + "start": 27567.78, + "end": 27571.86, + "probability": 0.9699 + }, + { + "start": 27574.68, + "end": 27575.94, + "probability": 0.0252 + }, + { + "start": 27575.94, + "end": 27575.94, + "probability": 0.322 + }, + { + "start": 27575.94, + "end": 27576.72, + "probability": 0.2267 + }, + { + "start": 27579.64, + "end": 27584.38, + "probability": 0.7488 + }, + { + "start": 27585.3, + "end": 27589.5, + "probability": 0.9941 + }, + { + "start": 27590.2, + "end": 27591.04, + "probability": 0.6267 + }, + { + "start": 27592.16, + "end": 27599.58, + "probability": 0.9841 + }, + { + "start": 27600.86, + "end": 27605.58, + "probability": 0.9673 + }, + { + "start": 27608.6, + "end": 27608.6, + "probability": 0.6631 + }, + { + "start": 27608.6, + "end": 27610.88, + "probability": 0.9745 + }, + { + "start": 27611.36, + "end": 27613.86, + "probability": 0.8145 + }, + { + "start": 27615.7, + "end": 27615.9, + "probability": 0.1075 + }, + { + "start": 27615.96, + "end": 27619.58, + "probability": 0.7915 + }, + { + "start": 27620.1, + "end": 27621.26, + "probability": 0.812 + }, + { + "start": 27622.52, + "end": 27624.43, + "probability": 0.5785 + }, + { + "start": 27625.64, + "end": 27626.92, + "probability": 0.3027 + }, + { + "start": 27626.96, + "end": 27630.36, + "probability": 0.8214 + }, + { + "start": 27631.18, + "end": 27631.4, + "probability": 0.7093 + }, + { + "start": 27632.9, + "end": 27635.74, + "probability": 0.8788 + }, + { + "start": 27635.74, + "end": 27637.86, + "probability": 0.8526 + }, + { + "start": 27638.3, + "end": 27642.16, + "probability": 0.7754 + }, + { + "start": 27643.02, + "end": 27645.76, + "probability": 0.4861 + }, + { + "start": 27645.86, + "end": 27646.78, + "probability": 0.8149 + }, + { + "start": 27646.86, + "end": 27651.32, + "probability": 0.8567 + }, + { + "start": 27652.12, + "end": 27654.34, + "probability": 0.7928 + }, + { + "start": 27654.62, + "end": 27656.58, + "probability": 0.7619 + }, + { + "start": 27657.42, + "end": 27661.35, + "probability": 0.7592 + }, + { + "start": 27661.7, + "end": 27664.86, + "probability": 0.9958 + }, + { + "start": 27666.22, + "end": 27670.67, + "probability": 0.9484 + }, + { + "start": 27671.2, + "end": 27675.66, + "probability": 0.6694 + }, + { + "start": 27675.72, + "end": 27676.0, + "probability": 0.8254 + }, + { + "start": 27676.06, + "end": 27676.64, + "probability": 0.7345 + }, + { + "start": 27676.84, + "end": 27679.28, + "probability": 0.9693 + }, + { + "start": 27679.72, + "end": 27682.48, + "probability": 0.9818 + }, + { + "start": 27682.58, + "end": 27683.54, + "probability": 0.7564 + }, + { + "start": 27683.92, + "end": 27686.1, + "probability": 0.8317 + }, + { + "start": 27686.22, + "end": 27687.63, + "probability": 0.9692 + }, + { + "start": 27688.26, + "end": 27689.42, + "probability": 0.6712 + }, + { + "start": 27690.22, + "end": 27690.98, + "probability": 0.9503 + }, + { + "start": 27691.1, + "end": 27691.7, + "probability": 0.5356 + }, + { + "start": 27691.86, + "end": 27692.79, + "probability": 0.8806 + }, + { + "start": 27693.22, + "end": 27695.32, + "probability": 0.7169 + }, + { + "start": 27695.74, + "end": 27696.18, + "probability": 0.7358 + }, + { + "start": 27696.26, + "end": 27696.98, + "probability": 0.48 + }, + { + "start": 27697.08, + "end": 27697.98, + "probability": 0.5447 + }, + { + "start": 27698.12, + "end": 27703.28, + "probability": 0.9475 + }, + { + "start": 27703.28, + "end": 27706.9, + "probability": 0.6235 + }, + { + "start": 27708.56, + "end": 27709.12, + "probability": 0.7245 + }, + { + "start": 27709.44, + "end": 27710.18, + "probability": 0.0368 + }, + { + "start": 27710.5, + "end": 27711.06, + "probability": 0.7248 + }, + { + "start": 27712.66, + "end": 27713.46, + "probability": 0.3399 + }, + { + "start": 27713.5, + "end": 27716.18, + "probability": 0.9946 + }, + { + "start": 27716.26, + "end": 27721.24, + "probability": 0.9251 + }, + { + "start": 27721.24, + "end": 27721.56, + "probability": 0.3345 + }, + { + "start": 27721.6, + "end": 27722.34, + "probability": 0.6255 + }, + { + "start": 27722.34, + "end": 27723.54, + "probability": 0.5926 + }, + { + "start": 27723.64, + "end": 27724.02, + "probability": 0.4541 + }, + { + "start": 27724.08, + "end": 27724.82, + "probability": 0.7129 + }, + { + "start": 27725.16, + "end": 27728.62, + "probability": 0.6744 + }, + { + "start": 27729.02, + "end": 27729.76, + "probability": 0.9531 + }, + { + "start": 27729.86, + "end": 27730.44, + "probability": 0.6637 + }, + { + "start": 27730.46, + "end": 27730.98, + "probability": 0.8839 + }, + { + "start": 27731.06, + "end": 27733.42, + "probability": 0.8599 + }, + { + "start": 27733.42, + "end": 27737.74, + "probability": 0.7384 + }, + { + "start": 27738.38, + "end": 27739.52, + "probability": 0.2975 + }, + { + "start": 27739.64, + "end": 27740.48, + "probability": 0.7286 + }, + { + "start": 27740.54, + "end": 27741.52, + "probability": 0.827 + }, + { + "start": 27741.96, + "end": 27744.52, + "probability": 0.9086 + }, + { + "start": 27746.0, + "end": 27746.48, + "probability": 0.7375 + }, + { + "start": 27746.8, + "end": 27749.8, + "probability": 0.5244 + }, + { + "start": 27750.48, + "end": 27751.92, + "probability": 0.9831 + }, + { + "start": 27759.5, + "end": 27764.02, + "probability": 0.4295 + }, + { + "start": 27764.78, + "end": 27769.04, + "probability": 0.9933 + }, + { + "start": 27769.66, + "end": 27772.9, + "probability": 0.957 + }, + { + "start": 27773.5, + "end": 27777.9, + "probability": 0.9942 + }, + { + "start": 27778.54, + "end": 27780.97, + "probability": 0.6768 + }, + { + "start": 27781.66, + "end": 27784.72, + "probability": 0.9941 + }, + { + "start": 27785.52, + "end": 27790.18, + "probability": 0.9963 + }, + { + "start": 27790.93, + "end": 27792.66, + "probability": 0.754 + }, + { + "start": 27792.66, + "end": 27795.78, + "probability": 0.9958 + }, + { + "start": 27797.66, + "end": 27800.88, + "probability": 0.8238 + }, + { + "start": 27800.88, + "end": 27804.08, + "probability": 0.7315 + }, + { + "start": 27804.3, + "end": 27806.18, + "probability": 0.7983 + }, + { + "start": 27806.3, + "end": 27807.02, + "probability": 0.8595 + }, + { + "start": 27807.4, + "end": 27808.64, + "probability": 0.7657 + }, + { + "start": 27808.72, + "end": 27810.5, + "probability": 0.8095 + }, + { + "start": 27810.6, + "end": 27811.64, + "probability": 0.8781 + }, + { + "start": 27812.54, + "end": 27813.72, + "probability": 0.7837 + }, + { + "start": 27813.72, + "end": 27817.32, + "probability": 0.8076 + }, + { + "start": 27817.32, + "end": 27817.86, + "probability": 0.804 + }, + { + "start": 27818.48, + "end": 27818.62, + "probability": 0.6332 + }, + { + "start": 27818.78, + "end": 27819.48, + "probability": 0.4709 + }, + { + "start": 27820.42, + "end": 27824.42, + "probability": 0.8218 + }, + { + "start": 27824.86, + "end": 27830.78, + "probability": 0.8324 + }, + { + "start": 27831.62, + "end": 27835.74, + "probability": 0.9946 + }, + { + "start": 27836.22, + "end": 27839.0, + "probability": 0.3801 + }, + { + "start": 27839.02, + "end": 27840.21, + "probability": 0.3663 + }, + { + "start": 27840.94, + "end": 27845.34, + "probability": 0.8382 + }, + { + "start": 27845.5, + "end": 27851.24, + "probability": 0.8384 + }, + { + "start": 27851.3, + "end": 27852.34, + "probability": 0.2293 + }, + { + "start": 27852.34, + "end": 27854.1, + "probability": 0.7958 + }, + { + "start": 27854.88, + "end": 27857.04, + "probability": 0.5237 + }, + { + "start": 27857.24, + "end": 27858.01, + "probability": 0.5106 + }, + { + "start": 27858.16, + "end": 27859.68, + "probability": 0.405 + }, + { + "start": 27859.78, + "end": 27860.34, + "probability": 0.4162 + }, + { + "start": 27860.4, + "end": 27861.1, + "probability": 0.4993 + }, + { + "start": 27861.16, + "end": 27863.18, + "probability": 0.6443 + }, + { + "start": 27863.4, + "end": 27864.18, + "probability": 0.6247 + }, + { + "start": 27864.76, + "end": 27865.04, + "probability": 0.7612 + }, + { + "start": 27865.22, + "end": 27866.68, + "probability": 0.4378 + }, + { + "start": 27866.7, + "end": 27867.02, + "probability": 0.4528 + }, + { + "start": 27867.16, + "end": 27867.66, + "probability": 0.1518 + }, + { + "start": 27867.68, + "end": 27868.3, + "probability": 0.5293 + }, + { + "start": 27868.84, + "end": 27871.54, + "probability": 0.8997 + }, + { + "start": 27871.54, + "end": 27875.72, + "probability": 0.8005 + }, + { + "start": 27876.1, + "end": 27878.48, + "probability": 0.6812 + }, + { + "start": 27879.0, + "end": 27880.94, + "probability": 0.9597 + }, + { + "start": 27881.08, + "end": 27881.74, + "probability": 0.6166 + }, + { + "start": 27881.84, + "end": 27882.4, + "probability": 0.6615 + }, + { + "start": 27882.48, + "end": 27884.2, + "probability": 0.7754 + }, + { + "start": 27884.32, + "end": 27886.86, + "probability": 0.8921 + }, + { + "start": 27887.0, + "end": 27887.46, + "probability": 0.5673 + }, + { + "start": 27887.46, + "end": 27890.35, + "probability": 0.9485 + }, + { + "start": 27890.82, + "end": 27894.18, + "probability": 0.9336 + }, + { + "start": 27894.24, + "end": 27895.24, + "probability": 0.9102 + }, + { + "start": 27895.34, + "end": 27898.06, + "probability": 0.7769 + }, + { + "start": 27898.2, + "end": 27900.58, + "probability": 0.9039 + }, + { + "start": 27901.06, + "end": 27901.86, + "probability": 0.8776 + }, + { + "start": 27903.02, + "end": 27905.7, + "probability": 0.9493 + }, + { + "start": 27906.06, + "end": 27908.46, + "probability": 0.7765 + }, + { + "start": 27908.92, + "end": 27909.4, + "probability": 0.9044 + }, + { + "start": 27909.52, + "end": 27912.22, + "probability": 0.7948 + }, + { + "start": 27912.66, + "end": 27913.26, + "probability": 0.4233 + }, + { + "start": 27913.48, + "end": 27915.76, + "probability": 0.6992 + }, + { + "start": 27917.18, + "end": 27921.32, + "probability": 0.8001 + }, + { + "start": 27921.32, + "end": 27922.88, + "probability": 0.8396 + }, + { + "start": 27923.02, + "end": 27924.91, + "probability": 0.8605 + }, + { + "start": 27926.14, + "end": 27927.28, + "probability": 0.9948 + }, + { + "start": 27927.76, + "end": 27929.26, + "probability": 0.5897 + }, + { + "start": 27929.38, + "end": 27931.4, + "probability": 0.4241 + }, + { + "start": 27931.5, + "end": 27933.34, + "probability": 0.8643 + }, + { + "start": 27933.4, + "end": 27934.5, + "probability": 0.9774 + }, + { + "start": 27934.56, + "end": 27935.78, + "probability": 0.9185 + }, + { + "start": 27935.82, + "end": 27938.12, + "probability": 0.6656 + }, + { + "start": 27938.36, + "end": 27938.6, + "probability": 0.7444 + }, + { + "start": 27938.71, + "end": 27941.54, + "probability": 0.9731 + }, + { + "start": 27941.92, + "end": 27942.2, + "probability": 0.6433 + }, + { + "start": 27942.24, + "end": 27945.34, + "probability": 0.9574 + }, + { + "start": 27945.78, + "end": 27946.98, + "probability": 0.8485 + }, + { + "start": 27947.36, + "end": 27949.12, + "probability": 0.9199 + }, + { + "start": 27949.3, + "end": 27950.18, + "probability": 0.4998 + }, + { + "start": 27950.18, + "end": 27950.53, + "probability": 0.3108 + }, + { + "start": 27950.92, + "end": 27952.3, + "probability": 0.8522 + }, + { + "start": 27952.36, + "end": 27953.46, + "probability": 0.2632 + }, + { + "start": 27953.7, + "end": 27954.74, + "probability": 0.9421 + }, + { + "start": 27954.88, + "end": 27955.42, + "probability": 0.7296 + }, + { + "start": 27955.46, + "end": 27957.62, + "probability": 0.9371 + }, + { + "start": 27957.88, + "end": 27961.66, + "probability": 0.7957 + }, + { + "start": 27962.12, + "end": 27966.5, + "probability": 0.9966 + }, + { + "start": 27966.58, + "end": 27967.9, + "probability": 0.843 + }, + { + "start": 27968.06, + "end": 27971.16, + "probability": 0.5187 + }, + { + "start": 27971.98, + "end": 27975.22, + "probability": 0.8408 + }, + { + "start": 27976.0, + "end": 27976.2, + "probability": 0.0635 + }, + { + "start": 27976.3, + "end": 27976.32, + "probability": 0.4364 + }, + { + "start": 27976.32, + "end": 27977.1, + "probability": 0.6305 + }, + { + "start": 27977.16, + "end": 27977.34, + "probability": 0.8917 + }, + { + "start": 27977.42, + "end": 27979.84, + "probability": 0.9232 + }, + { + "start": 27980.28, + "end": 27981.98, + "probability": 0.8301 + }, + { + "start": 27982.48, + "end": 27982.98, + "probability": 0.7596 + }, + { + "start": 27983.24, + "end": 27984.02, + "probability": 0.8643 + }, + { + "start": 27984.06, + "end": 27985.34, + "probability": 0.7644 + }, + { + "start": 27985.4, + "end": 27986.02, + "probability": 0.9002 + }, + { + "start": 27987.44, + "end": 27988.56, + "probability": 0.3762 + }, + { + "start": 27988.64, + "end": 27990.14, + "probability": 0.7067 + }, + { + "start": 27990.3, + "end": 27990.86, + "probability": 0.7626 + }, + { + "start": 27991.04, + "end": 27992.41, + "probability": 0.9484 + }, + { + "start": 27992.86, + "end": 27995.1, + "probability": 0.9233 + }, + { + "start": 27995.44, + "end": 27998.18, + "probability": 0.8728 + }, + { + "start": 27999.1, + "end": 28000.38, + "probability": 0.7973 + }, + { + "start": 28000.56, + "end": 28002.24, + "probability": 0.9738 + }, + { + "start": 28002.7, + "end": 28004.22, + "probability": 0.7334 + }, + { + "start": 28004.38, + "end": 28005.72, + "probability": 0.7485 + }, + { + "start": 28006.68, + "end": 28009.78, + "probability": 0.4279 + }, + { + "start": 28009.84, + "end": 28011.24, + "probability": 0.7378 + }, + { + "start": 28012.54, + "end": 28018.14, + "probability": 0.6237 + }, + { + "start": 28018.46, + "end": 28019.24, + "probability": 0.7101 + }, + { + "start": 28019.46, + "end": 28020.94, + "probability": 0.5453 + }, + { + "start": 28020.98, + "end": 28023.38, + "probability": 0.9273 + }, + { + "start": 28024.34, + "end": 28025.0, + "probability": 0.2364 + }, + { + "start": 28025.56, + "end": 28028.1, + "probability": 0.4391 + }, + { + "start": 28028.22, + "end": 28031.54, + "probability": 0.5621 + }, + { + "start": 28031.74, + "end": 28035.24, + "probability": 0.8487 + }, + { + "start": 28035.84, + "end": 28037.94, + "probability": 0.2441 + }, + { + "start": 28038.44, + "end": 28040.86, + "probability": 0.5463 + }, + { + "start": 28043.14, + "end": 28045.94, + "probability": 0.2581 + }, + { + "start": 28046.5, + "end": 28050.51, + "probability": 0.4639 + }, + { + "start": 28050.9, + "end": 28052.46, + "probability": 0.5029 + }, + { + "start": 28052.58, + "end": 28053.34, + "probability": 0.2982 + }, + { + "start": 28053.58, + "end": 28056.4, + "probability": 0.542 + }, + { + "start": 28056.82, + "end": 28060.34, + "probability": 0.7509 + }, + { + "start": 28061.04, + "end": 28062.68, + "probability": 0.6051 + }, + { + "start": 28064.48, + "end": 28065.36, + "probability": 0.704 + }, + { + "start": 28067.04, + "end": 28069.54, + "probability": 0.7768 + }, + { + "start": 28069.56, + "end": 28069.78, + "probability": 0.4676 + }, + { + "start": 28069.88, + "end": 28072.53, + "probability": 0.7515 + }, + { + "start": 28072.9, + "end": 28073.97, + "probability": 0.5084 + }, + { + "start": 28088.13, + "end": 28090.98, + "probability": 0.987 + }, + { + "start": 28090.98, + "end": 28093.82, + "probability": 0.9868 + }, + { + "start": 28094.36, + "end": 28096.42, + "probability": 0.8279 + }, + { + "start": 28096.46, + "end": 28097.28, + "probability": 0.9559 + }, + { + "start": 28098.14, + "end": 28098.7, + "probability": 0.6688 + }, + { + "start": 28100.1, + "end": 28101.48, + "probability": 0.3965 + }, + { + "start": 28101.48, + "end": 28103.22, + "probability": 0.9731 + }, + { + "start": 28103.86, + "end": 28106.6, + "probability": 0.991 + }, + { + "start": 28107.06, + "end": 28109.46, + "probability": 0.9845 + }, + { + "start": 28109.98, + "end": 28111.24, + "probability": 0.658 + }, + { + "start": 28111.24, + "end": 28114.78, + "probability": 0.705 + }, + { + "start": 28115.32, + "end": 28117.5, + "probability": 0.9962 + }, + { + "start": 28117.86, + "end": 28119.16, + "probability": 0.7207 + }, + { + "start": 28119.68, + "end": 28122.36, + "probability": 0.9212 + }, + { + "start": 28122.6, + "end": 28125.98, + "probability": 0.986 + }, + { + "start": 28125.98, + "end": 28129.98, + "probability": 0.9849 + }, + { + "start": 28130.66, + "end": 28132.58, + "probability": 0.6191 + }, + { + "start": 28132.62, + "end": 28134.58, + "probability": 0.4049 + }, + { + "start": 28135.22, + "end": 28135.92, + "probability": 0.8536 + }, + { + "start": 28136.76, + "end": 28138.12, + "probability": 0.4051 + }, + { + "start": 28138.52, + "end": 28139.51, + "probability": 0.7876 + }, + { + "start": 28140.0, + "end": 28142.78, + "probability": 0.6958 + }, + { + "start": 28143.44, + "end": 28145.32, + "probability": 0.9442 + }, + { + "start": 28146.32, + "end": 28147.32, + "probability": 0.7401 + }, + { + "start": 28147.4, + "end": 28149.28, + "probability": 0.5735 + }, + { + "start": 28151.77, + "end": 28153.68, + "probability": 0.7331 + }, + { + "start": 28159.68, + "end": 28163.64, + "probability": 0.8682 + }, + { + "start": 28163.76, + "end": 28165.8, + "probability": 0.9436 + }, + { + "start": 28165.98, + "end": 28166.76, + "probability": 0.7491 + }, + { + "start": 28167.26, + "end": 28170.01, + "probability": 0.9954 + }, + { + "start": 28170.84, + "end": 28173.9, + "probability": 0.5878 + }, + { + "start": 28174.38, + "end": 28177.86, + "probability": 0.965 + }, + { + "start": 28178.14, + "end": 28183.14, + "probability": 0.9512 + }, + { + "start": 28183.8, + "end": 28183.9, + "probability": 0.5878 + }, + { + "start": 28184.0, + "end": 28185.5, + "probability": 0.995 + }, + { + "start": 28185.68, + "end": 28188.66, + "probability": 0.9953 + }, + { + "start": 28189.32, + "end": 28190.44, + "probability": 0.739 + }, + { + "start": 28190.62, + "end": 28193.46, + "probability": 0.9753 + }, + { + "start": 28193.82, + "end": 28195.18, + "probability": 0.9504 + }, + { + "start": 28195.46, + "end": 28197.04, + "probability": 0.7037 + }, + { + "start": 28198.0, + "end": 28201.7, + "probability": 0.7962 + }, + { + "start": 28202.12, + "end": 28205.38, + "probability": 0.9259 + }, + { + "start": 28205.38, + "end": 28207.58, + "probability": 0.4976 + }, + { + "start": 28208.44, + "end": 28208.98, + "probability": 0.7439 + }, + { + "start": 28209.1, + "end": 28213.12, + "probability": 0.7671 + }, + { + "start": 28213.22, + "end": 28215.48, + "probability": 0.7725 + }, + { + "start": 28215.6, + "end": 28218.3, + "probability": 0.6282 + }, + { + "start": 28218.48, + "end": 28219.9, + "probability": 0.1782 + }, + { + "start": 28219.94, + "end": 28221.9, + "probability": 0.2161 + }, + { + "start": 28222.3, + "end": 28225.24, + "probability": 0.4103 + }, + { + "start": 28225.8, + "end": 28228.48, + "probability": 0.6693 + }, + { + "start": 28228.86, + "end": 28230.82, + "probability": 0.5344 + }, + { + "start": 28232.24, + "end": 28234.78, + "probability": 0.0569 + }, + { + "start": 28235.54, + "end": 28236.72, + "probability": 0.3462 + }, + { + "start": 28237.88, + "end": 28239.16, + "probability": 0.35 + }, + { + "start": 28239.4, + "end": 28240.92, + "probability": 0.201 + }, + { + "start": 28241.12, + "end": 28241.4, + "probability": 0.4753 + }, + { + "start": 28241.6, + "end": 28242.58, + "probability": 0.8288 + }, + { + "start": 28243.5, + "end": 28244.13, + "probability": 0.4688 + }, + { + "start": 28244.72, + "end": 28250.34, + "probability": 0.3452 + }, + { + "start": 28250.96, + "end": 28251.92, + "probability": 0.599 + }, + { + "start": 28253.3, + "end": 28259.22, + "probability": 0.978 + }, + { + "start": 28259.52, + "end": 28260.16, + "probability": 0.6825 + }, + { + "start": 28261.52, + "end": 28263.7, + "probability": 0.9913 + }, + { + "start": 28263.7, + "end": 28267.04, + "probability": 0.9672 + }, + { + "start": 28267.72, + "end": 28271.4, + "probability": 0.9897 + }, + { + "start": 28271.52, + "end": 28273.17, + "probability": 0.9111 + }, + { + "start": 28275.1, + "end": 28277.5, + "probability": 0.6954 + }, + { + "start": 28278.18, + "end": 28284.08, + "probability": 0.8679 + }, + { + "start": 28285.36, + "end": 28287.76, + "probability": 0.3896 + }, + { + "start": 28287.83, + "end": 28292.12, + "probability": 0.2824 + }, + { + "start": 28292.24, + "end": 28293.14, + "probability": 0.1537 + }, + { + "start": 28293.66, + "end": 28294.82, + "probability": 0.5187 + }, + { + "start": 28295.14, + "end": 28296.32, + "probability": 0.2787 + }, + { + "start": 28296.32, + "end": 28298.14, + "probability": 0.7004 + }, + { + "start": 28298.22, + "end": 28299.17, + "probability": 0.7075 + }, + { + "start": 28299.44, + "end": 28300.8, + "probability": 0.863 + }, + { + "start": 28301.18, + "end": 28301.88, + "probability": 0.8801 + }, + { + "start": 28302.54, + "end": 28302.86, + "probability": 0.4231 + }, + { + "start": 28302.94, + "end": 28304.08, + "probability": 0.7422 + }, + { + "start": 28304.46, + "end": 28306.56, + "probability": 0.7466 + }, + { + "start": 28308.66, + "end": 28310.06, + "probability": 0.8916 + }, + { + "start": 28310.22, + "end": 28311.44, + "probability": 0.8295 + }, + { + "start": 28311.52, + "end": 28314.6, + "probability": 0.9346 + }, + { + "start": 28314.74, + "end": 28315.82, + "probability": 0.8806 + }, + { + "start": 28316.56, + "end": 28318.87, + "probability": 0.7335 + }, + { + "start": 28319.1, + "end": 28320.66, + "probability": 0.0203 + }, + { + "start": 28320.7, + "end": 28320.96, + "probability": 0.2754 + }, + { + "start": 28321.94, + "end": 28322.78, + "probability": 0.7462 + }, + { + "start": 28323.46, + "end": 28324.83, + "probability": 0.7903 + }, + { + "start": 28325.36, + "end": 28327.48, + "probability": 0.9767 + }, + { + "start": 28328.48, + "end": 28329.74, + "probability": 0.3298 + }, + { + "start": 28330.44, + "end": 28335.46, + "probability": 0.9266 + }, + { + "start": 28336.16, + "end": 28337.11, + "probability": 0.187 + } + ], + "segments_count": 9612, + "words_count": 48898, + "avg_words_per_segment": 5.0872, + "avg_segment_duration": 2.1716, + "avg_words_per_minute": 103.3683, + "plenum_id": "10031", + "duration": 28382.77, + "title": null, + "plenum_date": "2010-11-10" +} \ No newline at end of file