diff --git "a/107477/metadata.json" "b/107477/metadata.json" new file mode 100644--- /dev/null +++ "b/107477/metadata.json" @@ -0,0 +1,25057 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "107477", + "quality_score": 0.9416, + "per_segment_quality_scores": [ + { + "start": 189.0, + "end": 189.0, + "probability": 0.0 + }, + { + "start": 189.0, + "end": 189.0, + "probability": 0.0 + }, + { + "start": 189.22, + "end": 190.72, + "probability": 0.5072 + }, + { + "start": 213.7, + "end": 213.7, + "probability": 0.0722 + }, + { + "start": 213.7, + "end": 213.7, + "probability": 0.3907 + }, + { + "start": 213.7, + "end": 216.52, + "probability": 0.7539 + }, + { + "start": 217.44, + "end": 219.98, + "probability": 0.8618 + }, + { + "start": 221.78, + "end": 222.52, + "probability": 0.7582 + }, + { + "start": 223.32, + "end": 223.86, + "probability": 0.9549 + }, + { + "start": 224.42, + "end": 230.1, + "probability": 0.9915 + }, + { + "start": 230.1, + "end": 235.24, + "probability": 0.9286 + }, + { + "start": 236.0, + "end": 240.88, + "probability": 0.985 + }, + { + "start": 241.18, + "end": 242.18, + "probability": 0.7598 + }, + { + "start": 242.84, + "end": 250.84, + "probability": 0.7909 + }, + { + "start": 251.42, + "end": 252.86, + "probability": 0.6973 + }, + { + "start": 254.2, + "end": 256.96, + "probability": 0.8998 + }, + { + "start": 257.04, + "end": 260.36, + "probability": 0.7925 + }, + { + "start": 260.92, + "end": 262.48, + "probability": 0.9876 + }, + { + "start": 263.38, + "end": 263.98, + "probability": 0.6131 + }, + { + "start": 264.64, + "end": 267.68, + "probability": 0.6707 + }, + { + "start": 268.46, + "end": 268.52, + "probability": 0.6593 + }, + { + "start": 268.64, + "end": 270.1, + "probability": 0.7158 + }, + { + "start": 270.16, + "end": 273.64, + "probability": 0.8926 + }, + { + "start": 274.24, + "end": 274.86, + "probability": 0.6703 + }, + { + "start": 274.9, + "end": 276.84, + "probability": 0.8897 + }, + { + "start": 277.16, + "end": 279.86, + "probability": 0.9896 + }, + { + "start": 279.86, + "end": 283.04, + "probability": 0.9337 + }, + { + "start": 283.08, + "end": 284.01, + "probability": 0.7334 + }, + { + "start": 284.16, + "end": 285.0, + "probability": 0.5603 + }, + { + "start": 285.7, + "end": 286.58, + "probability": 0.8417 + }, + { + "start": 286.88, + "end": 290.34, + "probability": 0.98 + }, + { + "start": 290.58, + "end": 291.68, + "probability": 0.6863 + }, + { + "start": 291.7, + "end": 292.04, + "probability": 0.7492 + }, + { + "start": 292.56, + "end": 295.08, + "probability": 0.6092 + }, + { + "start": 295.62, + "end": 297.88, + "probability": 0.7775 + }, + { + "start": 297.88, + "end": 298.68, + "probability": 0.6188 + }, + { + "start": 299.34, + "end": 299.84, + "probability": 0.5337 + }, + { + "start": 299.88, + "end": 300.9, + "probability": 0.9426 + }, + { + "start": 307.16, + "end": 310.56, + "probability": 0.9972 + }, + { + "start": 310.72, + "end": 313.32, + "probability": 0.9787 + }, + { + "start": 313.88, + "end": 315.65, + "probability": 0.7693 + }, + { + "start": 317.34, + "end": 322.08, + "probability": 0.9907 + }, + { + "start": 322.08, + "end": 324.48, + "probability": 0.959 + }, + { + "start": 326.1, + "end": 326.16, + "probability": 0.046 + }, + { + "start": 326.36, + "end": 327.22, + "probability": 0.8129 + }, + { + "start": 327.3, + "end": 328.3, + "probability": 0.7101 + }, + { + "start": 328.44, + "end": 329.34, + "probability": 0.7209 + }, + { + "start": 329.56, + "end": 330.99, + "probability": 0.9771 + }, + { + "start": 331.66, + "end": 332.02, + "probability": 0.8633 + }, + { + "start": 332.64, + "end": 333.1, + "probability": 0.988 + }, + { + "start": 337.16, + "end": 337.8, + "probability": 0.3476 + }, + { + "start": 338.82, + "end": 339.74, + "probability": 0.0019 + }, + { + "start": 342.52, + "end": 344.06, + "probability": 0.9681 + }, + { + "start": 344.22, + "end": 347.12, + "probability": 0.943 + }, + { + "start": 347.12, + "end": 349.92, + "probability": 0.8593 + }, + { + "start": 350.24, + "end": 351.5, + "probability": 0.521 + }, + { + "start": 352.96, + "end": 353.96, + "probability": 0.9777 + }, + { + "start": 354.94, + "end": 358.92, + "probability": 0.9884 + }, + { + "start": 359.34, + "end": 361.52, + "probability": 0.9977 + }, + { + "start": 362.08, + "end": 364.86, + "probability": 0.9528 + }, + { + "start": 365.52, + "end": 368.2, + "probability": 0.9839 + }, + { + "start": 368.36, + "end": 368.48, + "probability": 0.4615 + }, + { + "start": 368.52, + "end": 368.7, + "probability": 0.7877 + }, + { + "start": 368.78, + "end": 370.06, + "probability": 0.9846 + }, + { + "start": 370.32, + "end": 371.38, + "probability": 0.7349 + }, + { + "start": 372.14, + "end": 373.38, + "probability": 0.8003 + }, + { + "start": 373.56, + "end": 374.9, + "probability": 0.6616 + }, + { + "start": 375.58, + "end": 377.38, + "probability": 0.9635 + }, + { + "start": 378.32, + "end": 380.76, + "probability": 0.9448 + }, + { + "start": 380.92, + "end": 383.08, + "probability": 0.9733 + }, + { + "start": 383.7, + "end": 385.84, + "probability": 0.9954 + }, + { + "start": 386.14, + "end": 388.66, + "probability": 0.9866 + }, + { + "start": 389.44, + "end": 391.46, + "probability": 0.9932 + }, + { + "start": 391.46, + "end": 394.86, + "probability": 0.9822 + }, + { + "start": 395.62, + "end": 398.52, + "probability": 0.9965 + }, + { + "start": 399.12, + "end": 401.6, + "probability": 0.9839 + }, + { + "start": 401.6, + "end": 403.64, + "probability": 0.9961 + }, + { + "start": 404.66, + "end": 406.52, + "probability": 0.9801 + }, + { + "start": 406.62, + "end": 407.8, + "probability": 0.9391 + }, + { + "start": 408.72, + "end": 412.12, + "probability": 0.9968 + }, + { + "start": 412.34, + "end": 415.42, + "probability": 0.9982 + }, + { + "start": 416.02, + "end": 419.96, + "probability": 0.9927 + }, + { + "start": 424.0, + "end": 424.64, + "probability": 0.4924 + }, + { + "start": 426.32, + "end": 428.56, + "probability": 0.8271 + }, + { + "start": 435.1, + "end": 435.26, + "probability": 0.1494 + }, + { + "start": 435.3, + "end": 438.22, + "probability": 0.7481 + }, + { + "start": 439.08, + "end": 441.94, + "probability": 0.9441 + }, + { + "start": 442.18, + "end": 443.38, + "probability": 0.977 + }, + { + "start": 443.92, + "end": 445.78, + "probability": 0.9966 + }, + { + "start": 446.34, + "end": 450.12, + "probability": 0.8951 + }, + { + "start": 450.92, + "end": 453.08, + "probability": 0.9418 + }, + { + "start": 453.48, + "end": 457.16, + "probability": 0.8833 + }, + { + "start": 457.58, + "end": 458.96, + "probability": 0.6599 + }, + { + "start": 459.0, + "end": 461.7, + "probability": 0.8317 + }, + { + "start": 461.76, + "end": 463.66, + "probability": 0.972 + }, + { + "start": 464.64, + "end": 467.08, + "probability": 0.7964 + }, + { + "start": 467.7, + "end": 468.56, + "probability": 0.9659 + }, + { + "start": 469.12, + "end": 469.82, + "probability": 0.7388 + }, + { + "start": 469.86, + "end": 471.02, + "probability": 0.9288 + }, + { + "start": 471.56, + "end": 474.52, + "probability": 0.8418 + }, + { + "start": 475.2, + "end": 478.38, + "probability": 0.8865 + }, + { + "start": 479.06, + "end": 481.96, + "probability": 0.7327 + }, + { + "start": 482.3, + "end": 482.96, + "probability": 0.4939 + }, + { + "start": 483.4, + "end": 486.22, + "probability": 0.8342 + }, + { + "start": 486.26, + "end": 489.72, + "probability": 0.9559 + }, + { + "start": 490.74, + "end": 492.92, + "probability": 0.9019 + }, + { + "start": 493.34, + "end": 494.11, + "probability": 0.6411 + }, + { + "start": 494.5, + "end": 495.98, + "probability": 0.8962 + }, + { + "start": 496.4, + "end": 497.52, + "probability": 0.9741 + }, + { + "start": 498.06, + "end": 498.44, + "probability": 0.8672 + }, + { + "start": 498.5, + "end": 500.52, + "probability": 0.8795 + }, + { + "start": 500.86, + "end": 502.92, + "probability": 0.9812 + }, + { + "start": 503.6, + "end": 503.98, + "probability": 0.5928 + }, + { + "start": 504.14, + "end": 504.64, + "probability": 0.5753 + }, + { + "start": 504.72, + "end": 506.0, + "probability": 0.9805 + }, + { + "start": 506.42, + "end": 507.22, + "probability": 0.6315 + }, + { + "start": 507.52, + "end": 508.24, + "probability": 0.8427 + }, + { + "start": 508.54, + "end": 509.54, + "probability": 0.891 + }, + { + "start": 510.48, + "end": 514.9, + "probability": 0.916 + }, + { + "start": 515.22, + "end": 516.04, + "probability": 0.985 + }, + { + "start": 516.74, + "end": 520.06, + "probability": 0.9619 + }, + { + "start": 520.7, + "end": 524.14, + "probability": 0.849 + }, + { + "start": 524.92, + "end": 525.24, + "probability": 0.7861 + }, + { + "start": 525.78, + "end": 527.24, + "probability": 0.9843 + }, + { + "start": 528.16, + "end": 530.68, + "probability": 0.9523 + }, + { + "start": 531.36, + "end": 534.1, + "probability": 0.9517 + }, + { + "start": 534.86, + "end": 535.98, + "probability": 0.9314 + }, + { + "start": 537.28, + "end": 538.06, + "probability": 0.7026 + }, + { + "start": 538.6, + "end": 542.3, + "probability": 0.9757 + }, + { + "start": 542.9, + "end": 547.74, + "probability": 0.9845 + }, + { + "start": 548.16, + "end": 550.06, + "probability": 0.9525 + }, + { + "start": 550.88, + "end": 552.24, + "probability": 0.9283 + }, + { + "start": 553.62, + "end": 556.26, + "probability": 0.9741 + }, + { + "start": 557.68, + "end": 558.8, + "probability": 0.901 + }, + { + "start": 558.82, + "end": 560.36, + "probability": 0.6607 + }, + { + "start": 560.76, + "end": 563.14, + "probability": 0.9276 + }, + { + "start": 564.06, + "end": 566.86, + "probability": 0.8145 + }, + { + "start": 567.32, + "end": 570.72, + "probability": 0.9614 + }, + { + "start": 570.82, + "end": 572.16, + "probability": 0.8583 + }, + { + "start": 572.24, + "end": 572.98, + "probability": 0.8602 + }, + { + "start": 573.06, + "end": 573.6, + "probability": 0.9482 + }, + { + "start": 573.72, + "end": 574.7, + "probability": 0.9134 + }, + { + "start": 575.08, + "end": 577.0, + "probability": 0.9424 + }, + { + "start": 577.5, + "end": 581.88, + "probability": 0.8737 + }, + { + "start": 582.48, + "end": 585.5, + "probability": 0.7759 + }, + { + "start": 586.04, + "end": 586.26, + "probability": 0.5549 + }, + { + "start": 587.22, + "end": 587.6, + "probability": 0.5429 + }, + { + "start": 587.76, + "end": 588.96, + "probability": 0.8093 + }, + { + "start": 590.58, + "end": 592.36, + "probability": 0.8886 + }, + { + "start": 597.5, + "end": 598.86, + "probability": 0.7194 + }, + { + "start": 599.86, + "end": 601.24, + "probability": 0.8175 + }, + { + "start": 601.84, + "end": 602.08, + "probability": 0.4539 + }, + { + "start": 602.34, + "end": 606.64, + "probability": 0.9701 + }, + { + "start": 607.88, + "end": 609.98, + "probability": 0.954 + }, + { + "start": 610.88, + "end": 613.9, + "probability": 0.8525 + }, + { + "start": 614.62, + "end": 616.64, + "probability": 0.2788 + }, + { + "start": 616.92, + "end": 619.86, + "probability": 0.979 + }, + { + "start": 621.06, + "end": 623.18, + "probability": 0.9838 + }, + { + "start": 624.56, + "end": 627.6, + "probability": 0.9964 + }, + { + "start": 628.16, + "end": 631.34, + "probability": 0.8894 + }, + { + "start": 631.96, + "end": 635.34, + "probability": 0.8332 + }, + { + "start": 635.96, + "end": 638.6, + "probability": 0.9321 + }, + { + "start": 639.5, + "end": 640.06, + "probability": 0.8163 + }, + { + "start": 641.14, + "end": 644.98, + "probability": 0.9046 + }, + { + "start": 645.58, + "end": 647.72, + "probability": 0.9944 + }, + { + "start": 648.62, + "end": 649.66, + "probability": 0.9465 + }, + { + "start": 649.78, + "end": 654.2, + "probability": 0.9293 + }, + { + "start": 655.06, + "end": 658.86, + "probability": 0.9922 + }, + { + "start": 659.08, + "end": 664.44, + "probability": 0.9932 + }, + { + "start": 664.72, + "end": 665.32, + "probability": 0.8236 + }, + { + "start": 665.38, + "end": 665.8, + "probability": 0.899 + }, + { + "start": 666.14, + "end": 666.38, + "probability": 0.6817 + }, + { + "start": 668.42, + "end": 668.78, + "probability": 0.5629 + }, + { + "start": 668.8, + "end": 670.74, + "probability": 0.8895 + }, + { + "start": 678.36, + "end": 679.42, + "probability": 0.6711 + }, + { + "start": 679.66, + "end": 680.42, + "probability": 0.8616 + }, + { + "start": 680.62, + "end": 682.66, + "probability": 0.9966 + }, + { + "start": 683.38, + "end": 688.96, + "probability": 0.938 + }, + { + "start": 689.46, + "end": 693.18, + "probability": 0.9893 + }, + { + "start": 694.32, + "end": 695.89, + "probability": 0.7933 + }, + { + "start": 696.78, + "end": 698.52, + "probability": 0.9049 + }, + { + "start": 699.06, + "end": 702.08, + "probability": 0.9783 + }, + { + "start": 702.08, + "end": 706.48, + "probability": 0.9297 + }, + { + "start": 707.32, + "end": 709.1, + "probability": 0.971 + }, + { + "start": 709.62, + "end": 711.74, + "probability": 0.9871 + }, + { + "start": 712.88, + "end": 714.3, + "probability": 0.9858 + }, + { + "start": 715.12, + "end": 715.9, + "probability": 0.9805 + }, + { + "start": 716.42, + "end": 717.56, + "probability": 0.9892 + }, + { + "start": 718.08, + "end": 720.7, + "probability": 0.991 + }, + { + "start": 721.34, + "end": 722.98, + "probability": 0.9735 + }, + { + "start": 723.34, + "end": 727.02, + "probability": 0.9872 + }, + { + "start": 727.66, + "end": 731.44, + "probability": 0.9985 + }, + { + "start": 731.76, + "end": 733.7, + "probability": 0.7681 + }, + { + "start": 733.82, + "end": 739.12, + "probability": 0.9711 + }, + { + "start": 739.76, + "end": 744.34, + "probability": 0.9885 + }, + { + "start": 744.34, + "end": 749.38, + "probability": 0.998 + }, + { + "start": 750.4, + "end": 750.64, + "probability": 0.6293 + }, + { + "start": 752.8, + "end": 753.4, + "probability": 0.585 + }, + { + "start": 753.4, + "end": 756.52, + "probability": 0.8629 + }, + { + "start": 768.7, + "end": 769.88, + "probability": 0.581 + }, + { + "start": 770.98, + "end": 776.8, + "probability": 0.9576 + }, + { + "start": 777.32, + "end": 779.6, + "probability": 0.9927 + }, + { + "start": 779.74, + "end": 782.46, + "probability": 0.9446 + }, + { + "start": 783.32, + "end": 787.74, + "probability": 0.9734 + }, + { + "start": 787.92, + "end": 790.44, + "probability": 0.8058 + }, + { + "start": 791.06, + "end": 792.52, + "probability": 0.7592 + }, + { + "start": 793.04, + "end": 797.42, + "probability": 0.9619 + }, + { + "start": 798.06, + "end": 800.18, + "probability": 0.9726 + }, + { + "start": 800.76, + "end": 806.94, + "probability": 0.9628 + }, + { + "start": 807.58, + "end": 808.32, + "probability": 0.5955 + }, + { + "start": 808.5, + "end": 809.36, + "probability": 0.8713 + }, + { + "start": 809.78, + "end": 813.02, + "probability": 0.6318 + }, + { + "start": 813.46, + "end": 816.86, + "probability": 0.9387 + }, + { + "start": 817.42, + "end": 821.04, + "probability": 0.968 + }, + { + "start": 821.1, + "end": 823.84, + "probability": 0.9976 + }, + { + "start": 824.48, + "end": 827.32, + "probability": 0.9889 + }, + { + "start": 827.88, + "end": 831.6, + "probability": 0.9824 + }, + { + "start": 831.92, + "end": 832.76, + "probability": 0.7622 + }, + { + "start": 832.9, + "end": 835.24, + "probability": 0.8466 + }, + { + "start": 835.34, + "end": 835.92, + "probability": 0.9361 + }, + { + "start": 836.14, + "end": 837.01, + "probability": 0.793 + }, + { + "start": 837.86, + "end": 839.08, + "probability": 0.9535 + }, + { + "start": 839.14, + "end": 840.84, + "probability": 0.8192 + }, + { + "start": 841.34, + "end": 842.56, + "probability": 0.8669 + }, + { + "start": 842.64, + "end": 847.24, + "probability": 0.6405 + }, + { + "start": 848.14, + "end": 849.46, + "probability": 0.9069 + }, + { + "start": 849.62, + "end": 851.3, + "probability": 0.9313 + }, + { + "start": 851.66, + "end": 853.14, + "probability": 0.9639 + }, + { + "start": 853.64, + "end": 857.36, + "probability": 0.9688 + }, + { + "start": 857.44, + "end": 858.48, + "probability": 0.9067 + }, + { + "start": 858.56, + "end": 859.0, + "probability": 0.8609 + }, + { + "start": 859.4, + "end": 860.42, + "probability": 0.9425 + }, + { + "start": 860.58, + "end": 861.72, + "probability": 0.9651 + }, + { + "start": 862.1, + "end": 863.08, + "probability": 0.7648 + }, + { + "start": 863.44, + "end": 865.16, + "probability": 0.9465 + }, + { + "start": 867.44, + "end": 867.82, + "probability": 0.5177 + }, + { + "start": 867.92, + "end": 869.38, + "probability": 0.8448 + }, + { + "start": 876.35, + "end": 880.18, + "probability": 0.834 + }, + { + "start": 881.38, + "end": 887.52, + "probability": 0.9812 + }, + { + "start": 887.78, + "end": 890.18, + "probability": 0.9393 + }, + { + "start": 891.56, + "end": 894.48, + "probability": 0.9951 + }, + { + "start": 894.48, + "end": 898.0, + "probability": 0.9078 + }, + { + "start": 899.08, + "end": 903.96, + "probability": 0.9814 + }, + { + "start": 903.96, + "end": 909.04, + "probability": 0.9977 + }, + { + "start": 909.84, + "end": 915.9, + "probability": 0.9954 + }, + { + "start": 916.3, + "end": 921.36, + "probability": 0.9929 + }, + { + "start": 921.5, + "end": 924.5, + "probability": 0.9824 + }, + { + "start": 925.56, + "end": 927.9, + "probability": 0.9884 + }, + { + "start": 928.2, + "end": 931.52, + "probability": 0.9631 + }, + { + "start": 932.52, + "end": 937.0, + "probability": 0.9951 + }, + { + "start": 937.58, + "end": 940.2, + "probability": 0.9967 + }, + { + "start": 940.8, + "end": 944.0, + "probability": 0.9882 + }, + { + "start": 944.84, + "end": 947.32, + "probability": 0.9884 + }, + { + "start": 947.92, + "end": 948.36, + "probability": 0.7918 + }, + { + "start": 949.88, + "end": 951.52, + "probability": 0.8752 + }, + { + "start": 953.16, + "end": 955.94, + "probability": 0.8214 + }, + { + "start": 956.52, + "end": 958.0, + "probability": 0.726 + }, + { + "start": 977.94, + "end": 979.38, + "probability": 0.0438 + }, + { + "start": 1009.0, + "end": 1009.84, + "probability": 0.0135 + }, + { + "start": 1060.54, + "end": 1062.94, + "probability": 0.0628 + }, + { + "start": 1066.6, + "end": 1068.0, + "probability": 0.1653 + }, + { + "start": 1071.26, + "end": 1072.06, + "probability": 0.1035 + }, + { + "start": 1193.64, + "end": 1194.54, + "probability": 0.2655 + }, + { + "start": 1209.86, + "end": 1210.4, + "probability": 0.0064 + }, + { + "start": 1230.87, + "end": 1232.1, + "probability": 0.0738 + }, + { + "start": 1254.22, + "end": 1254.88, + "probability": 0.0306 + }, + { + "start": 1254.88, + "end": 1259.22, + "probability": 0.026 + }, + { + "start": 1268.53, + "end": 1271.82, + "probability": 0.1104 + }, + { + "start": 1272.8, + "end": 1274.2, + "probability": 0.0917 + }, + { + "start": 1274.82, + "end": 1280.04, + "probability": 0.013 + }, + { + "start": 1280.32, + "end": 1281.98, + "probability": 0.1616 + }, + { + "start": 1281.98, + "end": 1285.3, + "probability": 0.1345 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.0, + "end": 1305.0, + "probability": 0.0 + }, + { + "start": 1305.26, + "end": 1305.26, + "probability": 0.0202 + }, + { + "start": 1305.26, + "end": 1305.36, + "probability": 0.03 + }, + { + "start": 1305.36, + "end": 1305.86, + "probability": 0.0969 + }, + { + "start": 1307.28, + "end": 1309.34, + "probability": 0.9136 + }, + { + "start": 1310.34, + "end": 1310.68, + "probability": 0.7784 + }, + { + "start": 1311.68, + "end": 1313.21, + "probability": 0.9414 + }, + { + "start": 1313.96, + "end": 1319.48, + "probability": 0.9248 + }, + { + "start": 1320.56, + "end": 1322.94, + "probability": 0.9842 + }, + { + "start": 1323.76, + "end": 1327.84, + "probability": 0.9799 + }, + { + "start": 1328.3, + "end": 1332.68, + "probability": 0.9787 + }, + { + "start": 1332.88, + "end": 1335.7, + "probability": 0.9875 + }, + { + "start": 1336.4, + "end": 1341.0, + "probability": 0.9969 + }, + { + "start": 1342.24, + "end": 1346.38, + "probability": 0.9976 + }, + { + "start": 1346.38, + "end": 1350.74, + "probability": 0.9993 + }, + { + "start": 1351.4, + "end": 1353.14, + "probability": 0.8522 + }, + { + "start": 1353.7, + "end": 1354.86, + "probability": 0.9829 + }, + { + "start": 1358.06, + "end": 1359.92, + "probability": 0.8544 + }, + { + "start": 1361.46, + "end": 1361.66, + "probability": 0.0245 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.2715 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.3104 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.3498 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.381 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.4055 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.4264 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.3741 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.4714 + }, + { + "start": 1361.66, + "end": 1361.66, + "probability": 0.1016 + }, + { + "start": 1361.66, + "end": 1363.54, + "probability": 0.4571 + }, + { + "start": 1378.96, + "end": 1378.98, + "probability": 0.2622 + }, + { + "start": 1379.04, + "end": 1379.57, + "probability": 0.4645 + }, + { + "start": 1380.24, + "end": 1381.26, + "probability": 0.7951 + }, + { + "start": 1382.3, + "end": 1383.0, + "probability": 0.8576 + }, + { + "start": 1384.68, + "end": 1387.42, + "probability": 0.7866 + }, + { + "start": 1387.7, + "end": 1389.01, + "probability": 0.5258 + }, + { + "start": 1389.88, + "end": 1391.84, + "probability": 0.8823 + }, + { + "start": 1392.92, + "end": 1393.56, + "probability": 0.9717 + }, + { + "start": 1395.68, + "end": 1396.94, + "probability": 0.5896 + }, + { + "start": 1398.38, + "end": 1403.06, + "probability": 0.7794 + }, + { + "start": 1404.72, + "end": 1404.92, + "probability": 0.13 + }, + { + "start": 1405.84, + "end": 1410.18, + "probability": 0.9794 + }, + { + "start": 1411.2, + "end": 1412.28, + "probability": 0.7827 + }, + { + "start": 1413.58, + "end": 1414.78, + "probability": 0.8038 + }, + { + "start": 1414.78, + "end": 1418.5, + "probability": 0.9863 + }, + { + "start": 1419.4, + "end": 1420.26, + "probability": 0.3524 + }, + { + "start": 1421.54, + "end": 1425.76, + "probability": 0.9453 + }, + { + "start": 1426.0, + "end": 1426.7, + "probability": 0.8177 + }, + { + "start": 1427.3, + "end": 1430.36, + "probability": 0.9941 + }, + { + "start": 1430.74, + "end": 1433.36, + "probability": 0.9565 + }, + { + "start": 1433.8, + "end": 1434.72, + "probability": 0.8336 + }, + { + "start": 1434.9, + "end": 1437.25, + "probability": 0.9862 + }, + { + "start": 1438.16, + "end": 1440.04, + "probability": 0.999 + }, + { + "start": 1440.78, + "end": 1441.94, + "probability": 0.9806 + }, + { + "start": 1443.26, + "end": 1444.03, + "probability": 0.5343 + }, + { + "start": 1444.16, + "end": 1445.64, + "probability": 0.6959 + }, + { + "start": 1445.78, + "end": 1448.18, + "probability": 0.9927 + }, + { + "start": 1448.2, + "end": 1448.76, + "probability": 0.8668 + }, + { + "start": 1450.66, + "end": 1456.34, + "probability": 0.7861 + }, + { + "start": 1456.34, + "end": 1465.22, + "probability": 0.9971 + }, + { + "start": 1466.9, + "end": 1468.06, + "probability": 0.8104 + }, + { + "start": 1469.32, + "end": 1469.94, + "probability": 0.7678 + }, + { + "start": 1470.6, + "end": 1470.72, + "probability": 0.8782 + }, + { + "start": 1471.46, + "end": 1472.5, + "probability": 0.8899 + }, + { + "start": 1473.66, + "end": 1474.34, + "probability": 0.9397 + }, + { + "start": 1474.52, + "end": 1475.34, + "probability": 0.9005 + }, + { + "start": 1475.72, + "end": 1477.32, + "probability": 0.917 + }, + { + "start": 1477.4, + "end": 1481.16, + "probability": 0.9329 + }, + { + "start": 1481.28, + "end": 1485.54, + "probability": 0.9087 + }, + { + "start": 1485.76, + "end": 1489.04, + "probability": 0.7144 + }, + { + "start": 1490.08, + "end": 1492.18, + "probability": 0.9937 + }, + { + "start": 1493.1, + "end": 1498.9, + "probability": 0.9808 + }, + { + "start": 1499.46, + "end": 1500.4, + "probability": 0.641 + }, + { + "start": 1501.3, + "end": 1502.56, + "probability": 0.9333 + }, + { + "start": 1506.38, + "end": 1507.48, + "probability": 0.7466 + }, + { + "start": 1508.22, + "end": 1509.05, + "probability": 0.6639 + }, + { + "start": 1510.18, + "end": 1513.62, + "probability": 0.915 + }, + { + "start": 1513.62, + "end": 1517.91, + "probability": 0.9902 + }, + { + "start": 1519.36, + "end": 1520.6, + "probability": 0.8265 + }, + { + "start": 1521.38, + "end": 1524.4, + "probability": 0.9878 + }, + { + "start": 1524.49, + "end": 1528.66, + "probability": 0.9988 + }, + { + "start": 1530.46, + "end": 1534.84, + "probability": 0.9251 + }, + { + "start": 1534.96, + "end": 1535.6, + "probability": 0.9707 + }, + { + "start": 1537.76, + "end": 1538.78, + "probability": 0.1557 + }, + { + "start": 1538.78, + "end": 1543.04, + "probability": 0.9291 + }, + { + "start": 1543.12, + "end": 1549.48, + "probability": 0.8026 + }, + { + "start": 1550.38, + "end": 1553.24, + "probability": 0.9954 + }, + { + "start": 1554.36, + "end": 1557.76, + "probability": 0.5082 + }, + { + "start": 1559.3, + "end": 1561.0, + "probability": 0.8391 + }, + { + "start": 1561.92, + "end": 1565.88, + "probability": 0.8291 + }, + { + "start": 1566.52, + "end": 1570.36, + "probability": 0.9956 + }, + { + "start": 1572.24, + "end": 1574.08, + "probability": 0.4412 + }, + { + "start": 1575.06, + "end": 1579.84, + "probability": 0.6669 + }, + { + "start": 1579.9, + "end": 1580.44, + "probability": 0.5743 + }, + { + "start": 1580.54, + "end": 1582.24, + "probability": 0.644 + }, + { + "start": 1582.24, + "end": 1584.08, + "probability": 0.6723 + }, + { + "start": 1584.76, + "end": 1588.88, + "probability": 0.6609 + }, + { + "start": 1591.18, + "end": 1593.33, + "probability": 0.8652 + }, + { + "start": 1594.46, + "end": 1596.9, + "probability": 0.9019 + }, + { + "start": 1597.5, + "end": 1598.24, + "probability": 0.8559 + }, + { + "start": 1599.56, + "end": 1601.52, + "probability": 0.9946 + }, + { + "start": 1602.56, + "end": 1603.56, + "probability": 0.9972 + }, + { + "start": 1604.62, + "end": 1606.16, + "probability": 0.9374 + }, + { + "start": 1607.0, + "end": 1607.56, + "probability": 0.7818 + }, + { + "start": 1609.34, + "end": 1613.96, + "probability": 0.8833 + }, + { + "start": 1613.96, + "end": 1618.36, + "probability": 0.9342 + }, + { + "start": 1618.87, + "end": 1620.94, + "probability": 0.9641 + }, + { + "start": 1623.12, + "end": 1629.99, + "probability": 0.9944 + }, + { + "start": 1630.8, + "end": 1631.72, + "probability": 0.7993 + }, + { + "start": 1632.2, + "end": 1633.68, + "probability": 0.8315 + }, + { + "start": 1637.02, + "end": 1638.68, + "probability": 0.9073 + }, + { + "start": 1639.5, + "end": 1640.56, + "probability": 0.9966 + }, + { + "start": 1641.16, + "end": 1641.92, + "probability": 0.9531 + }, + { + "start": 1644.32, + "end": 1645.36, + "probability": 0.9182 + }, + { + "start": 1647.16, + "end": 1648.48, + "probability": 0.8651 + }, + { + "start": 1649.06, + "end": 1651.32, + "probability": 0.825 + }, + { + "start": 1652.42, + "end": 1655.78, + "probability": 0.9879 + }, + { + "start": 1656.76, + "end": 1657.2, + "probability": 0.9445 + }, + { + "start": 1657.76, + "end": 1659.68, + "probability": 0.9508 + }, + { + "start": 1660.2, + "end": 1660.48, + "probability": 0.7517 + }, + { + "start": 1661.74, + "end": 1662.68, + "probability": 0.9307 + }, + { + "start": 1665.1, + "end": 1668.1, + "probability": 0.9724 + }, + { + "start": 1670.06, + "end": 1678.34, + "probability": 0.9484 + }, + { + "start": 1679.68, + "end": 1682.16, + "probability": 0.9707 + }, + { + "start": 1683.32, + "end": 1684.88, + "probability": 0.9531 + }, + { + "start": 1685.54, + "end": 1692.34, + "probability": 0.9973 + }, + { + "start": 1693.08, + "end": 1697.04, + "probability": 0.9932 + }, + { + "start": 1697.8, + "end": 1700.68, + "probability": 0.9919 + }, + { + "start": 1701.74, + "end": 1702.08, + "probability": 0.887 + }, + { + "start": 1702.6, + "end": 1703.16, + "probability": 0.8862 + }, + { + "start": 1704.04, + "end": 1704.44, + "probability": 0.9902 + }, + { + "start": 1704.96, + "end": 1705.64, + "probability": 0.9269 + }, + { + "start": 1706.9, + "end": 1707.94, + "probability": 0.8202 + }, + { + "start": 1708.34, + "end": 1711.8, + "probability": 0.7992 + }, + { + "start": 1712.32, + "end": 1714.24, + "probability": 0.9972 + }, + { + "start": 1715.02, + "end": 1716.76, + "probability": 0.9573 + }, + { + "start": 1717.68, + "end": 1719.12, + "probability": 0.9907 + }, + { + "start": 1719.76, + "end": 1724.62, + "probability": 0.9525 + }, + { + "start": 1725.9, + "end": 1726.14, + "probability": 0.6226 + }, + { + "start": 1728.08, + "end": 1730.46, + "probability": 0.9787 + }, + { + "start": 1730.54, + "end": 1736.6, + "probability": 0.8169 + }, + { + "start": 1736.76, + "end": 1737.68, + "probability": 0.9801 + }, + { + "start": 1738.74, + "end": 1740.38, + "probability": 0.9831 + }, + { + "start": 1762.62, + "end": 1762.72, + "probability": 0.4471 + }, + { + "start": 1762.72, + "end": 1763.82, + "probability": 0.3974 + }, + { + "start": 1765.4, + "end": 1766.58, + "probability": 0.9625 + }, + { + "start": 1766.98, + "end": 1769.1, + "probability": 0.9157 + }, + { + "start": 1771.74, + "end": 1776.7, + "probability": 0.974 + }, + { + "start": 1776.96, + "end": 1777.82, + "probability": 0.8606 + }, + { + "start": 1778.84, + "end": 1779.36, + "probability": 0.7549 + }, + { + "start": 1780.02, + "end": 1786.16, + "probability": 0.972 + }, + { + "start": 1786.92, + "end": 1789.26, + "probability": 0.8486 + }, + { + "start": 1790.42, + "end": 1795.26, + "probability": 0.9884 + }, + { + "start": 1796.86, + "end": 1800.56, + "probability": 0.6141 + }, + { + "start": 1801.2, + "end": 1803.38, + "probability": 0.9365 + }, + { + "start": 1803.86, + "end": 1807.14, + "probability": 0.958 + }, + { + "start": 1808.48, + "end": 1809.38, + "probability": 0.7957 + }, + { + "start": 1810.22, + "end": 1812.16, + "probability": 0.9737 + }, + { + "start": 1814.88, + "end": 1816.68, + "probability": 0.7266 + }, + { + "start": 1817.82, + "end": 1818.72, + "probability": 0.96 + }, + { + "start": 1819.74, + "end": 1820.44, + "probability": 0.7735 + }, + { + "start": 1821.08, + "end": 1823.92, + "probability": 0.8648 + }, + { + "start": 1824.74, + "end": 1828.0, + "probability": 0.8823 + }, + { + "start": 1828.92, + "end": 1835.16, + "probability": 0.7866 + }, + { + "start": 1836.04, + "end": 1837.96, + "probability": 0.9824 + }, + { + "start": 1838.42, + "end": 1841.26, + "probability": 0.7923 + }, + { + "start": 1841.74, + "end": 1842.84, + "probability": 0.8508 + }, + { + "start": 1843.58, + "end": 1845.9, + "probability": 0.8476 + }, + { + "start": 1847.08, + "end": 1848.92, + "probability": 0.9889 + }, + { + "start": 1850.94, + "end": 1853.32, + "probability": 0.9631 + }, + { + "start": 1854.14, + "end": 1857.42, + "probability": 0.6982 + }, + { + "start": 1858.24, + "end": 1859.38, + "probability": 0.6988 + }, + { + "start": 1861.08, + "end": 1864.1, + "probability": 0.8669 + }, + { + "start": 1864.9, + "end": 1867.1, + "probability": 0.866 + }, + { + "start": 1867.74, + "end": 1870.32, + "probability": 0.8509 + }, + { + "start": 1871.06, + "end": 1872.52, + "probability": 0.8043 + }, + { + "start": 1873.94, + "end": 1876.14, + "probability": 0.6293 + }, + { + "start": 1877.22, + "end": 1881.34, + "probability": 0.9958 + }, + { + "start": 1882.5, + "end": 1883.52, + "probability": 0.9641 + }, + { + "start": 1885.48, + "end": 1887.54, + "probability": 0.8977 + }, + { + "start": 1888.38, + "end": 1889.08, + "probability": 0.9578 + }, + { + "start": 1889.7, + "end": 1891.04, + "probability": 0.9655 + }, + { + "start": 1891.58, + "end": 1895.36, + "probability": 0.9775 + }, + { + "start": 1895.78, + "end": 1899.4, + "probability": 0.9841 + }, + { + "start": 1900.14, + "end": 1903.26, + "probability": 0.9077 + }, + { + "start": 1904.78, + "end": 1905.9, + "probability": 0.7373 + }, + { + "start": 1906.1, + "end": 1907.8, + "probability": 0.6723 + }, + { + "start": 1907.98, + "end": 1912.06, + "probability": 0.9852 + }, + { + "start": 1912.94, + "end": 1915.06, + "probability": 0.8395 + }, + { + "start": 1916.24, + "end": 1921.32, + "probability": 0.8804 + }, + { + "start": 1921.76, + "end": 1924.38, + "probability": 0.7047 + }, + { + "start": 1925.26, + "end": 1926.82, + "probability": 0.7484 + }, + { + "start": 1927.98, + "end": 1930.7, + "probability": 0.6704 + }, + { + "start": 1932.14, + "end": 1936.5, + "probability": 0.9238 + }, + { + "start": 1938.0, + "end": 1938.08, + "probability": 0.0426 + }, + { + "start": 1938.08, + "end": 1941.4, + "probability": 0.6446 + }, + { + "start": 1943.16, + "end": 1944.24, + "probability": 0.6848 + }, + { + "start": 1944.36, + "end": 1949.88, + "probability": 0.8583 + }, + { + "start": 1951.72, + "end": 1955.14, + "probability": 0.9392 + }, + { + "start": 1956.46, + "end": 1957.28, + "probability": 0.6675 + }, + { + "start": 1958.68, + "end": 1963.84, + "probability": 0.7674 + }, + { + "start": 1965.18, + "end": 1966.52, + "probability": 0.9896 + }, + { + "start": 1967.32, + "end": 1968.66, + "probability": 0.9893 + }, + { + "start": 1969.36, + "end": 1972.1, + "probability": 0.9857 + }, + { + "start": 1972.56, + "end": 1973.28, + "probability": 0.845 + }, + { + "start": 1973.36, + "end": 1974.59, + "probability": 0.7441 + }, + { + "start": 1978.52, + "end": 1980.98, + "probability": 0.9439 + }, + { + "start": 1981.82, + "end": 1987.16, + "probability": 0.9978 + }, + { + "start": 1988.2, + "end": 1989.34, + "probability": 0.8801 + }, + { + "start": 1990.48, + "end": 1991.28, + "probability": 0.8835 + }, + { + "start": 1992.4, + "end": 1995.58, + "probability": 0.9515 + }, + { + "start": 1996.28, + "end": 2002.62, + "probability": 0.9175 + }, + { + "start": 2003.14, + "end": 2003.98, + "probability": 0.946 + }, + { + "start": 2005.28, + "end": 2008.16, + "probability": 0.9388 + }, + { + "start": 2008.16, + "end": 2010.98, + "probability": 0.9884 + }, + { + "start": 2011.8, + "end": 2014.96, + "probability": 0.978 + }, + { + "start": 2016.18, + "end": 2021.26, + "probability": 0.9461 + }, + { + "start": 2021.26, + "end": 2025.02, + "probability": 0.7174 + }, + { + "start": 2025.58, + "end": 2030.74, + "probability": 0.967 + }, + { + "start": 2031.34, + "end": 2031.8, + "probability": 0.5479 + }, + { + "start": 2032.68, + "end": 2033.7, + "probability": 0.8673 + }, + { + "start": 2034.26, + "end": 2035.64, + "probability": 0.825 + }, + { + "start": 2036.44, + "end": 2038.02, + "probability": 0.8867 + }, + { + "start": 2038.14, + "end": 2039.3, + "probability": 0.9095 + }, + { + "start": 2039.68, + "end": 2040.82, + "probability": 0.749 + }, + { + "start": 2041.46, + "end": 2042.3, + "probability": 0.9945 + }, + { + "start": 2043.1, + "end": 2045.9, + "probability": 0.8564 + }, + { + "start": 2046.9, + "end": 2050.0, + "probability": 0.9347 + }, + { + "start": 2051.78, + "end": 2053.3, + "probability": 0.9897 + }, + { + "start": 2054.46, + "end": 2055.74, + "probability": 0.9931 + }, + { + "start": 2056.4, + "end": 2058.9, + "probability": 0.9974 + }, + { + "start": 2059.98, + "end": 2061.08, + "probability": 0.7479 + }, + { + "start": 2062.26, + "end": 2062.56, + "probability": 0.6182 + }, + { + "start": 2064.4, + "end": 2064.98, + "probability": 0.9396 + }, + { + "start": 2066.38, + "end": 2071.04, + "probability": 0.9839 + }, + { + "start": 2071.66, + "end": 2074.26, + "probability": 0.9589 + }, + { + "start": 2075.34, + "end": 2079.58, + "probability": 0.9963 + }, + { + "start": 2080.32, + "end": 2084.28, + "probability": 0.9659 + }, + { + "start": 2086.06, + "end": 2088.76, + "probability": 0.9863 + }, + { + "start": 2089.96, + "end": 2090.72, + "probability": 0.9873 + }, + { + "start": 2091.7, + "end": 2094.7, + "probability": 0.8272 + }, + { + "start": 2095.64, + "end": 2096.04, + "probability": 0.6415 + }, + { + "start": 2096.1, + "end": 2096.96, + "probability": 0.9635 + }, + { + "start": 2097.4, + "end": 2102.14, + "probability": 0.9722 + }, + { + "start": 2103.04, + "end": 2103.92, + "probability": 0.7574 + }, + { + "start": 2104.7, + "end": 2105.92, + "probability": 0.9692 + }, + { + "start": 2106.98, + "end": 2107.52, + "probability": 0.6047 + }, + { + "start": 2110.32, + "end": 2112.38, + "probability": 0.944 + }, + { + "start": 2112.5, + "end": 2115.3, + "probability": 0.8208 + }, + { + "start": 2115.42, + "end": 2115.72, + "probability": 0.5731 + }, + { + "start": 2117.56, + "end": 2118.84, + "probability": 0.9887 + }, + { + "start": 2143.46, + "end": 2143.56, + "probability": 0.2531 + }, + { + "start": 2143.62, + "end": 2144.38, + "probability": 0.4439 + }, + { + "start": 2146.1, + "end": 2147.39, + "probability": 0.8685 + }, + { + "start": 2148.54, + "end": 2154.46, + "probability": 0.9849 + }, + { + "start": 2155.6, + "end": 2160.62, + "probability": 0.9836 + }, + { + "start": 2162.04, + "end": 2162.92, + "probability": 0.5296 + }, + { + "start": 2163.54, + "end": 2164.54, + "probability": 0.7601 + }, + { + "start": 2167.06, + "end": 2171.28, + "probability": 0.9927 + }, + { + "start": 2172.54, + "end": 2174.98, + "probability": 0.8387 + }, + { + "start": 2176.04, + "end": 2180.18, + "probability": 0.9951 + }, + { + "start": 2181.08, + "end": 2182.4, + "probability": 0.944 + }, + { + "start": 2182.94, + "end": 2184.84, + "probability": 0.9657 + }, + { + "start": 2185.44, + "end": 2186.56, + "probability": 0.8761 + }, + { + "start": 2187.56, + "end": 2189.24, + "probability": 0.9966 + }, + { + "start": 2189.86, + "end": 2190.92, + "probability": 0.834 + }, + { + "start": 2191.82, + "end": 2192.7, + "probability": 0.6423 + }, + { + "start": 2195.2, + "end": 2195.96, + "probability": 0.5634 + }, + { + "start": 2196.98, + "end": 2198.9, + "probability": 0.7686 + }, + { + "start": 2199.9, + "end": 2201.6, + "probability": 0.9725 + }, + { + "start": 2203.04, + "end": 2203.96, + "probability": 0.9722 + }, + { + "start": 2205.92, + "end": 2209.8, + "probability": 0.9541 + }, + { + "start": 2211.44, + "end": 2212.82, + "probability": 0.8177 + }, + { + "start": 2214.36, + "end": 2217.48, + "probability": 0.913 + }, + { + "start": 2218.62, + "end": 2219.24, + "probability": 0.8371 + }, + { + "start": 2220.2, + "end": 2220.86, + "probability": 0.7129 + }, + { + "start": 2221.78, + "end": 2223.06, + "probability": 0.9665 + }, + { + "start": 2224.28, + "end": 2226.8, + "probability": 0.9956 + }, + { + "start": 2227.92, + "end": 2228.8, + "probability": 0.6758 + }, + { + "start": 2229.74, + "end": 2230.76, + "probability": 0.9738 + }, + { + "start": 2231.9, + "end": 2233.04, + "probability": 0.9175 + }, + { + "start": 2234.84, + "end": 2236.44, + "probability": 0.8255 + }, + { + "start": 2237.62, + "end": 2238.46, + "probability": 0.636 + }, + { + "start": 2239.38, + "end": 2241.16, + "probability": 0.8306 + }, + { + "start": 2241.86, + "end": 2242.48, + "probability": 0.7339 + }, + { + "start": 2243.16, + "end": 2244.94, + "probability": 0.8733 + }, + { + "start": 2245.58, + "end": 2245.96, + "probability": 0.9471 + }, + { + "start": 2247.72, + "end": 2249.66, + "probability": 0.9914 + }, + { + "start": 2250.78, + "end": 2251.52, + "probability": 0.9598 + }, + { + "start": 2252.58, + "end": 2255.74, + "probability": 0.7983 + }, + { + "start": 2258.24, + "end": 2260.02, + "probability": 0.9926 + }, + { + "start": 2260.96, + "end": 2262.28, + "probability": 0.7859 + }, + { + "start": 2263.52, + "end": 2266.58, + "probability": 0.6228 + }, + { + "start": 2268.02, + "end": 2271.0, + "probability": 0.9885 + }, + { + "start": 2271.66, + "end": 2272.72, + "probability": 0.9814 + }, + { + "start": 2273.42, + "end": 2275.36, + "probability": 0.993 + }, + { + "start": 2276.86, + "end": 2281.42, + "probability": 0.9914 + }, + { + "start": 2282.34, + "end": 2284.78, + "probability": 0.9893 + }, + { + "start": 2286.24, + "end": 2289.4, + "probability": 0.9296 + }, + { + "start": 2290.52, + "end": 2293.52, + "probability": 0.9447 + }, + { + "start": 2294.5, + "end": 2295.82, + "probability": 0.9753 + }, + { + "start": 2296.96, + "end": 2297.6, + "probability": 0.9771 + }, + { + "start": 2298.78, + "end": 2300.58, + "probability": 0.5732 + }, + { + "start": 2301.32, + "end": 2303.7, + "probability": 0.9843 + }, + { + "start": 2305.33, + "end": 2310.18, + "probability": 0.9617 + }, + { + "start": 2311.1, + "end": 2313.62, + "probability": 0.9852 + }, + { + "start": 2314.98, + "end": 2316.18, + "probability": 0.9971 + }, + { + "start": 2317.08, + "end": 2318.96, + "probability": 0.9065 + }, + { + "start": 2319.86, + "end": 2322.1, + "probability": 0.6382 + }, + { + "start": 2322.96, + "end": 2323.64, + "probability": 0.8808 + }, + { + "start": 2324.32, + "end": 2324.9, + "probability": 0.9814 + }, + { + "start": 2325.42, + "end": 2327.5, + "probability": 0.9584 + }, + { + "start": 2329.08, + "end": 2332.24, + "probability": 0.9719 + }, + { + "start": 2332.9, + "end": 2335.72, + "probability": 0.9484 + }, + { + "start": 2336.58, + "end": 2339.02, + "probability": 0.9772 + }, + { + "start": 2340.42, + "end": 2348.0, + "probability": 0.9895 + }, + { + "start": 2348.72, + "end": 2351.2, + "probability": 0.9645 + }, + { + "start": 2353.1, + "end": 2354.16, + "probability": 0.994 + }, + { + "start": 2355.22, + "end": 2356.52, + "probability": 0.6628 + }, + { + "start": 2357.14, + "end": 2358.88, + "probability": 0.7728 + }, + { + "start": 2359.68, + "end": 2361.98, + "probability": 0.8749 + }, + { + "start": 2363.62, + "end": 2365.66, + "probability": 0.9741 + }, + { + "start": 2366.64, + "end": 2368.62, + "probability": 0.9839 + }, + { + "start": 2369.74, + "end": 2376.92, + "probability": 0.9883 + }, + { + "start": 2378.0, + "end": 2379.67, + "probability": 0.8655 + }, + { + "start": 2380.62, + "end": 2384.4, + "probability": 0.9677 + }, + { + "start": 2385.18, + "end": 2386.64, + "probability": 0.9761 + }, + { + "start": 2387.86, + "end": 2391.22, + "probability": 0.882 + }, + { + "start": 2391.8, + "end": 2392.4, + "probability": 0.8634 + }, + { + "start": 2394.3, + "end": 2394.8, + "probability": 0.855 + }, + { + "start": 2395.72, + "end": 2396.44, + "probability": 0.4282 + }, + { + "start": 2397.0, + "end": 2397.92, + "probability": 0.779 + }, + { + "start": 2398.6, + "end": 2400.36, + "probability": 0.759 + }, + { + "start": 2401.22, + "end": 2403.46, + "probability": 0.9991 + }, + { + "start": 2404.28, + "end": 2406.02, + "probability": 0.9901 + }, + { + "start": 2406.62, + "end": 2409.62, + "probability": 0.9705 + }, + { + "start": 2410.32, + "end": 2411.56, + "probability": 0.9932 + }, + { + "start": 2412.16, + "end": 2413.0, + "probability": 0.9105 + }, + { + "start": 2415.06, + "end": 2420.6, + "probability": 0.9081 + }, + { + "start": 2421.34, + "end": 2424.18, + "probability": 0.9151 + }, + { + "start": 2425.54, + "end": 2427.14, + "probability": 0.9858 + }, + { + "start": 2427.84, + "end": 2430.4, + "probability": 0.8613 + }, + { + "start": 2431.3, + "end": 2436.36, + "probability": 0.9844 + }, + { + "start": 2437.9, + "end": 2439.38, + "probability": 0.8459 + }, + { + "start": 2440.36, + "end": 2443.44, + "probability": 0.8529 + }, + { + "start": 2445.0, + "end": 2447.46, + "probability": 0.9835 + }, + { + "start": 2448.66, + "end": 2453.21, + "probability": 0.9961 + }, + { + "start": 2453.92, + "end": 2456.5, + "probability": 0.8628 + }, + { + "start": 2458.54, + "end": 2460.42, + "probability": 0.937 + }, + { + "start": 2461.06, + "end": 2462.4, + "probability": 0.9995 + }, + { + "start": 2464.14, + "end": 2466.3, + "probability": 0.9691 + }, + { + "start": 2466.92, + "end": 2470.1, + "probability": 0.999 + }, + { + "start": 2471.0, + "end": 2473.26, + "probability": 0.9404 + }, + { + "start": 2474.08, + "end": 2475.68, + "probability": 0.9985 + }, + { + "start": 2476.28, + "end": 2478.7, + "probability": 0.9967 + }, + { + "start": 2479.24, + "end": 2483.38, + "probability": 0.9873 + }, + { + "start": 2483.38, + "end": 2487.46, + "probability": 0.995 + }, + { + "start": 2488.3, + "end": 2491.54, + "probability": 0.9836 + }, + { + "start": 2492.36, + "end": 2498.52, + "probability": 0.9541 + }, + { + "start": 2499.32, + "end": 2503.88, + "probability": 0.9966 + }, + { + "start": 2504.58, + "end": 2511.28, + "probability": 0.9889 + }, + { + "start": 2512.02, + "end": 2516.4, + "probability": 0.9526 + }, + { + "start": 2516.48, + "end": 2517.04, + "probability": 0.9457 + }, + { + "start": 2517.26, + "end": 2520.88, + "probability": 0.9868 + }, + { + "start": 2521.92, + "end": 2525.92, + "probability": 0.9907 + }, + { + "start": 2526.58, + "end": 2528.32, + "probability": 0.9705 + }, + { + "start": 2529.06, + "end": 2533.64, + "probability": 0.9888 + }, + { + "start": 2533.86, + "end": 2534.98, + "probability": 0.9604 + }, + { + "start": 2535.52, + "end": 2541.4, + "probability": 0.9984 + }, + { + "start": 2541.58, + "end": 2547.38, + "probability": 0.9877 + }, + { + "start": 2548.16, + "end": 2554.14, + "probability": 0.6695 + }, + { + "start": 2554.96, + "end": 2559.2, + "probability": 0.9931 + }, + { + "start": 2559.9, + "end": 2561.64, + "probability": 0.8228 + }, + { + "start": 2562.38, + "end": 2562.94, + "probability": 0.9976 + }, + { + "start": 2563.66, + "end": 2565.46, + "probability": 0.7747 + }, + { + "start": 2566.12, + "end": 2566.68, + "probability": 0.6673 + }, + { + "start": 2567.48, + "end": 2570.38, + "probability": 0.99 + }, + { + "start": 2571.0, + "end": 2572.1, + "probability": 0.8514 + }, + { + "start": 2572.88, + "end": 2576.3, + "probability": 0.9434 + }, + { + "start": 2577.0, + "end": 2578.66, + "probability": 0.9802 + }, + { + "start": 2579.62, + "end": 2581.04, + "probability": 0.8417 + }, + { + "start": 2581.9, + "end": 2582.38, + "probability": 0.7874 + }, + { + "start": 2583.44, + "end": 2584.38, + "probability": 0.9492 + }, + { + "start": 2585.12, + "end": 2588.56, + "probability": 0.916 + }, + { + "start": 2589.4, + "end": 2590.6, + "probability": 0.8519 + }, + { + "start": 2591.74, + "end": 2592.72, + "probability": 0.9751 + }, + { + "start": 2594.86, + "end": 2597.18, + "probability": 0.9365 + }, + { + "start": 2598.4, + "end": 2600.12, + "probability": 0.9946 + }, + { + "start": 2600.68, + "end": 2601.84, + "probability": 0.9923 + }, + { + "start": 2602.5, + "end": 2603.82, + "probability": 0.731 + }, + { + "start": 2604.68, + "end": 2607.49, + "probability": 0.9524 + }, + { + "start": 2609.54, + "end": 2610.56, + "probability": 0.9963 + }, + { + "start": 2611.12, + "end": 2612.66, + "probability": 0.9902 + }, + { + "start": 2614.08, + "end": 2616.66, + "probability": 0.8945 + }, + { + "start": 2618.04, + "end": 2618.71, + "probability": 0.6105 + }, + { + "start": 2619.3, + "end": 2621.12, + "probability": 0.9951 + }, + { + "start": 2622.42, + "end": 2623.66, + "probability": 0.7971 + }, + { + "start": 2624.36, + "end": 2626.92, + "probability": 0.989 + }, + { + "start": 2627.7, + "end": 2628.62, + "probability": 0.9407 + }, + { + "start": 2630.96, + "end": 2631.82, + "probability": 0.97 + }, + { + "start": 2635.12, + "end": 2637.14, + "probability": 0.7706 + }, + { + "start": 2638.04, + "end": 2640.22, + "probability": 0.9949 + }, + { + "start": 2640.22, + "end": 2644.18, + "probability": 0.9951 + }, + { + "start": 2644.74, + "end": 2647.0, + "probability": 0.9803 + }, + { + "start": 2647.78, + "end": 2649.82, + "probability": 0.918 + }, + { + "start": 2651.14, + "end": 2654.42, + "probability": 0.9121 + }, + { + "start": 2655.42, + "end": 2659.12, + "probability": 0.9929 + }, + { + "start": 2660.94, + "end": 2665.6, + "probability": 0.9373 + }, + { + "start": 2666.46, + "end": 2669.32, + "probability": 0.9567 + }, + { + "start": 2669.96, + "end": 2673.72, + "probability": 0.9026 + }, + { + "start": 2674.3, + "end": 2675.22, + "probability": 0.8793 + }, + { + "start": 2676.06, + "end": 2679.8, + "probability": 0.9022 + }, + { + "start": 2680.02, + "end": 2680.66, + "probability": 0.9405 + }, + { + "start": 2681.16, + "end": 2683.74, + "probability": 0.9871 + }, + { + "start": 2684.26, + "end": 2685.16, + "probability": 0.7482 + }, + { + "start": 2685.7, + "end": 2686.52, + "probability": 0.8305 + }, + { + "start": 2687.22, + "end": 2689.46, + "probability": 0.8899 + }, + { + "start": 2689.66, + "end": 2690.04, + "probability": 0.7441 + }, + { + "start": 2691.34, + "end": 2695.0, + "probability": 0.9036 + }, + { + "start": 2695.64, + "end": 2699.1, + "probability": 0.9785 + }, + { + "start": 2699.74, + "end": 2700.3, + "probability": 0.9832 + }, + { + "start": 2700.96, + "end": 2703.34, + "probability": 0.9627 + }, + { + "start": 2704.14, + "end": 2708.54, + "probability": 0.6616 + }, + { + "start": 2710.0, + "end": 2713.0, + "probability": 0.9934 + }, + { + "start": 2713.1, + "end": 2715.4, + "probability": 0.9735 + }, + { + "start": 2716.08, + "end": 2717.28, + "probability": 0.7138 + }, + { + "start": 2717.92, + "end": 2718.34, + "probability": 0.936 + }, + { + "start": 2719.1, + "end": 2720.9, + "probability": 0.9583 + }, + { + "start": 2721.5, + "end": 2722.34, + "probability": 0.7646 + }, + { + "start": 2723.66, + "end": 2728.18, + "probability": 0.9975 + }, + { + "start": 2728.18, + "end": 2732.48, + "probability": 0.9973 + }, + { + "start": 2733.2, + "end": 2734.96, + "probability": 0.9916 + }, + { + "start": 2735.82, + "end": 2736.6, + "probability": 0.993 + }, + { + "start": 2737.74, + "end": 2738.32, + "probability": 0.5249 + }, + { + "start": 2739.12, + "end": 2742.62, + "probability": 0.9979 + }, + { + "start": 2743.36, + "end": 2746.12, + "probability": 0.9776 + }, + { + "start": 2746.86, + "end": 2748.86, + "probability": 0.9927 + }, + { + "start": 2749.4, + "end": 2751.72, + "probability": 0.9984 + }, + { + "start": 2752.36, + "end": 2756.06, + "probability": 0.9663 + }, + { + "start": 2756.58, + "end": 2758.16, + "probability": 0.8037 + }, + { + "start": 2758.64, + "end": 2759.22, + "probability": 0.909 + }, + { + "start": 2759.52, + "end": 2760.74, + "probability": 0.9731 + }, + { + "start": 2761.08, + "end": 2761.2, + "probability": 0.8498 + }, + { + "start": 2761.88, + "end": 2766.14, + "probability": 0.9838 + }, + { + "start": 2767.46, + "end": 2769.2, + "probability": 0.8142 + }, + { + "start": 2770.42, + "end": 2772.48, + "probability": 0.9889 + }, + { + "start": 2773.16, + "end": 2775.82, + "probability": 0.9961 + }, + { + "start": 2776.68, + "end": 2777.78, + "probability": 0.9775 + }, + { + "start": 2778.36, + "end": 2779.64, + "probability": 0.9241 + }, + { + "start": 2780.2, + "end": 2782.06, + "probability": 0.7964 + }, + { + "start": 2782.58, + "end": 2783.78, + "probability": 0.7726 + }, + { + "start": 2784.16, + "end": 2787.44, + "probability": 0.9985 + }, + { + "start": 2787.44, + "end": 2791.42, + "probability": 0.9812 + }, + { + "start": 2792.14, + "end": 2792.58, + "probability": 0.6612 + }, + { + "start": 2793.3, + "end": 2793.68, + "probability": 0.7489 + }, + { + "start": 2794.08, + "end": 2795.56, + "probability": 0.9904 + }, + { + "start": 2796.32, + "end": 2797.64, + "probability": 0.8003 + }, + { + "start": 2798.34, + "end": 2801.74, + "probability": 0.8462 + }, + { + "start": 2802.4, + "end": 2806.92, + "probability": 0.9946 + }, + { + "start": 2807.8, + "end": 2808.46, + "probability": 0.7318 + }, + { + "start": 2809.0, + "end": 2812.4, + "probability": 0.9296 + }, + { + "start": 2813.12, + "end": 2813.91, + "probability": 0.8057 + }, + { + "start": 2814.78, + "end": 2816.4, + "probability": 0.9961 + }, + { + "start": 2816.92, + "end": 2820.8, + "probability": 0.6096 + }, + { + "start": 2821.46, + "end": 2822.76, + "probability": 0.5538 + }, + { + "start": 2823.28, + "end": 2826.26, + "probability": 0.9482 + }, + { + "start": 2827.36, + "end": 2830.96, + "probability": 0.986 + }, + { + "start": 2831.44, + "end": 2831.96, + "probability": 0.9633 + }, + { + "start": 2832.22, + "end": 2833.36, + "probability": 0.8024 + }, + { + "start": 2833.92, + "end": 2836.74, + "probability": 0.966 + }, + { + "start": 2837.32, + "end": 2839.34, + "probability": 0.9346 + }, + { + "start": 2840.64, + "end": 2842.0, + "probability": 0.9496 + }, + { + "start": 2842.42, + "end": 2844.46, + "probability": 0.9954 + }, + { + "start": 2844.96, + "end": 2846.66, + "probability": 0.9358 + }, + { + "start": 2847.26, + "end": 2851.14, + "probability": 0.8523 + }, + { + "start": 2852.16, + "end": 2853.62, + "probability": 0.9978 + }, + { + "start": 2854.16, + "end": 2855.02, + "probability": 0.8656 + }, + { + "start": 2855.64, + "end": 2857.3, + "probability": 0.6862 + }, + { + "start": 2857.98, + "end": 2859.02, + "probability": 0.7224 + }, + { + "start": 2860.56, + "end": 2860.96, + "probability": 0.6353 + }, + { + "start": 2861.02, + "end": 2862.9, + "probability": 0.72 + }, + { + "start": 2865.6, + "end": 2868.26, + "probability": 0.0693 + }, + { + "start": 2887.34, + "end": 2887.78, + "probability": 0.7446 + }, + { + "start": 2889.66, + "end": 2890.68, + "probability": 0.7279 + }, + { + "start": 2892.52, + "end": 2893.78, + "probability": 0.8879 + }, + { + "start": 2895.68, + "end": 2897.44, + "probability": 0.893 + }, + { + "start": 2898.86, + "end": 2901.1, + "probability": 0.9791 + }, + { + "start": 2901.92, + "end": 2902.86, + "probability": 0.7445 + }, + { + "start": 2903.98, + "end": 2907.12, + "probability": 0.9928 + }, + { + "start": 2909.64, + "end": 2911.18, + "probability": 0.9837 + }, + { + "start": 2912.82, + "end": 2913.52, + "probability": 0.5931 + }, + { + "start": 2913.6, + "end": 2919.92, + "probability": 0.9707 + }, + { + "start": 2921.78, + "end": 2924.54, + "probability": 0.9666 + }, + { + "start": 2926.36, + "end": 2927.3, + "probability": 0.9248 + }, + { + "start": 2928.02, + "end": 2929.64, + "probability": 0.894 + }, + { + "start": 2930.68, + "end": 2935.32, + "probability": 0.9878 + }, + { + "start": 2936.54, + "end": 2938.78, + "probability": 0.9927 + }, + { + "start": 2939.72, + "end": 2943.52, + "probability": 0.9934 + }, + { + "start": 2944.94, + "end": 2947.66, + "probability": 0.7596 + }, + { + "start": 2948.42, + "end": 2950.02, + "probability": 0.9922 + }, + { + "start": 2950.8, + "end": 2954.13, + "probability": 0.998 + }, + { + "start": 2954.4, + "end": 2958.2, + "probability": 0.9998 + }, + { + "start": 2959.88, + "end": 2962.9, + "probability": 0.998 + }, + { + "start": 2963.9, + "end": 2966.9, + "probability": 0.8691 + }, + { + "start": 2967.76, + "end": 2969.82, + "probability": 0.9842 + }, + { + "start": 2971.2, + "end": 2972.58, + "probability": 0.8397 + }, + { + "start": 2973.2, + "end": 2973.6, + "probability": 0.3717 + }, + { + "start": 2974.84, + "end": 2980.26, + "probability": 0.7749 + }, + { + "start": 2980.86, + "end": 2984.56, + "probability": 0.981 + }, + { + "start": 2985.46, + "end": 2986.98, + "probability": 0.7652 + }, + { + "start": 2988.44, + "end": 2992.4, + "probability": 0.9619 + }, + { + "start": 2993.1, + "end": 2993.68, + "probability": 0.7743 + }, + { + "start": 2994.54, + "end": 2995.0, + "probability": 0.9392 + }, + { + "start": 2996.2, + "end": 2999.28, + "probability": 0.9202 + }, + { + "start": 3000.12, + "end": 3001.76, + "probability": 0.7073 + }, + { + "start": 3002.52, + "end": 3005.94, + "probability": 0.9841 + }, + { + "start": 3007.2, + "end": 3009.62, + "probability": 0.9899 + }, + { + "start": 3010.42, + "end": 3011.86, + "probability": 0.8109 + }, + { + "start": 3012.48, + "end": 3016.62, + "probability": 0.9917 + }, + { + "start": 3017.64, + "end": 3020.56, + "probability": 0.6652 + }, + { + "start": 3021.22, + "end": 3022.38, + "probability": 0.927 + }, + { + "start": 3022.46, + "end": 3023.64, + "probability": 0.9636 + }, + { + "start": 3023.76, + "end": 3024.98, + "probability": 0.9752 + }, + { + "start": 3025.56, + "end": 3028.1, + "probability": 0.8948 + }, + { + "start": 3028.74, + "end": 3032.56, + "probability": 0.9549 + }, + { + "start": 3034.04, + "end": 3036.56, + "probability": 0.7186 + }, + { + "start": 3036.9, + "end": 3040.06, + "probability": 0.6645 + }, + { + "start": 3040.22, + "end": 3041.28, + "probability": 0.8388 + }, + { + "start": 3042.98, + "end": 3043.99, + "probability": 0.9851 + }, + { + "start": 3044.44, + "end": 3049.02, + "probability": 0.9641 + }, + { + "start": 3049.74, + "end": 3051.44, + "probability": 0.5979 + }, + { + "start": 3051.54, + "end": 3054.7, + "probability": 0.9324 + }, + { + "start": 3055.54, + "end": 3056.42, + "probability": 0.9292 + }, + { + "start": 3056.58, + "end": 3057.38, + "probability": 0.5012 + }, + { + "start": 3057.44, + "end": 3061.58, + "probability": 0.9188 + }, + { + "start": 3062.26, + "end": 3066.56, + "probability": 0.9205 + }, + { + "start": 3067.18, + "end": 3070.86, + "probability": 0.9705 + }, + { + "start": 3072.3, + "end": 3077.48, + "probability": 0.9787 + }, + { + "start": 3078.22, + "end": 3081.5, + "probability": 0.9895 + }, + { + "start": 3082.2, + "end": 3085.74, + "probability": 0.8581 + }, + { + "start": 3086.94, + "end": 3090.64, + "probability": 0.9744 + }, + { + "start": 3090.74, + "end": 3091.64, + "probability": 0.9941 + }, + { + "start": 3092.38, + "end": 3092.94, + "probability": 0.9862 + }, + { + "start": 3093.6, + "end": 3095.14, + "probability": 0.9084 + }, + { + "start": 3095.18, + "end": 3095.7, + "probability": 0.6539 + }, + { + "start": 3095.76, + "end": 3101.18, + "probability": 0.9812 + }, + { + "start": 3102.5, + "end": 3103.6, + "probability": 0.9581 + }, + { + "start": 3104.74, + "end": 3108.64, + "probability": 0.9219 + }, + { + "start": 3109.38, + "end": 3113.28, + "probability": 0.968 + }, + { + "start": 3114.46, + "end": 3116.84, + "probability": 0.8594 + }, + { + "start": 3117.46, + "end": 3119.66, + "probability": 0.8952 + }, + { + "start": 3120.36, + "end": 3123.42, + "probability": 0.9808 + }, + { + "start": 3125.24, + "end": 3125.9, + "probability": 0.7039 + }, + { + "start": 3126.08, + "end": 3126.6, + "probability": 0.9735 + }, + { + "start": 3126.76, + "end": 3130.06, + "probability": 0.7399 + }, + { + "start": 3130.68, + "end": 3133.18, + "probability": 0.9545 + }, + { + "start": 3134.14, + "end": 3139.22, + "probability": 0.9941 + }, + { + "start": 3140.1, + "end": 3142.86, + "probability": 0.6996 + }, + { + "start": 3143.04, + "end": 3148.42, + "probability": 0.9363 + }, + { + "start": 3149.24, + "end": 3151.84, + "probability": 0.9969 + }, + { + "start": 3151.84, + "end": 3155.26, + "probability": 0.9991 + }, + { + "start": 3156.0, + "end": 3159.5, + "probability": 0.9878 + }, + { + "start": 3160.02, + "end": 3161.3, + "probability": 0.976 + }, + { + "start": 3162.78, + "end": 3166.54, + "probability": 0.9927 + }, + { + "start": 3167.34, + "end": 3171.68, + "probability": 0.8741 + }, + { + "start": 3172.42, + "end": 3174.86, + "probability": 0.9813 + }, + { + "start": 3175.52, + "end": 3176.22, + "probability": 0.9271 + }, + { + "start": 3176.74, + "end": 3180.16, + "probability": 0.9796 + }, + { + "start": 3180.9, + "end": 3186.42, + "probability": 0.9967 + }, + { + "start": 3187.58, + "end": 3188.64, + "probability": 0.8121 + }, + { + "start": 3189.08, + "end": 3191.96, + "probability": 0.9324 + }, + { + "start": 3192.82, + "end": 3196.54, + "probability": 0.76 + }, + { + "start": 3197.94, + "end": 3200.5, + "probability": 0.8464 + }, + { + "start": 3201.28, + "end": 3203.96, + "probability": 0.9069 + }, + { + "start": 3204.02, + "end": 3205.46, + "probability": 0.6966 + }, + { + "start": 3206.14, + "end": 3208.58, + "probability": 0.6086 + }, + { + "start": 3209.14, + "end": 3212.28, + "probability": 0.8506 + }, + { + "start": 3212.86, + "end": 3216.26, + "probability": 0.7565 + }, + { + "start": 3216.88, + "end": 3220.28, + "probability": 0.6528 + }, + { + "start": 3220.98, + "end": 3224.74, + "probability": 0.883 + }, + { + "start": 3225.22, + "end": 3227.2, + "probability": 0.6237 + }, + { + "start": 3227.34, + "end": 3227.64, + "probability": 0.7227 + }, + { + "start": 3230.76, + "end": 3232.98, + "probability": 0.9068 + }, + { + "start": 3265.4, + "end": 3267.42, + "probability": 0.9346 + }, + { + "start": 3267.56, + "end": 3270.26, + "probability": 0.8438 + }, + { + "start": 3270.58, + "end": 3272.88, + "probability": 0.7742 + }, + { + "start": 3273.62, + "end": 3276.22, + "probability": 0.9967 + }, + { + "start": 3276.44, + "end": 3277.12, + "probability": 0.7564 + }, + { + "start": 3277.38, + "end": 3277.82, + "probability": 0.8738 + }, + { + "start": 3278.18, + "end": 3278.56, + "probability": 0.7955 + }, + { + "start": 3279.64, + "end": 3282.78, + "probability": 0.8799 + }, + { + "start": 3283.34, + "end": 3286.76, + "probability": 0.9126 + }, + { + "start": 3287.34, + "end": 3292.54, + "probability": 0.9983 + }, + { + "start": 3293.06, + "end": 3293.64, + "probability": 0.5804 + }, + { + "start": 3294.6, + "end": 3298.68, + "probability": 0.9978 + }, + { + "start": 3299.88, + "end": 3304.2, + "probability": 0.8971 + }, + { + "start": 3304.44, + "end": 3305.22, + "probability": 0.6644 + }, + { + "start": 3305.34, + "end": 3307.3, + "probability": 0.998 + }, + { + "start": 3307.84, + "end": 3309.2, + "probability": 0.6108 + }, + { + "start": 3309.74, + "end": 3310.74, + "probability": 0.8619 + }, + { + "start": 3312.02, + "end": 3314.62, + "probability": 0.9967 + }, + { + "start": 3315.16, + "end": 3319.32, + "probability": 0.9745 + }, + { + "start": 3320.08, + "end": 3321.4, + "probability": 0.8154 + }, + { + "start": 3322.4, + "end": 3325.7, + "probability": 0.9009 + }, + { + "start": 3325.7, + "end": 3329.7, + "probability": 0.9324 + }, + { + "start": 3330.16, + "end": 3331.52, + "probability": 0.9864 + }, + { + "start": 3332.42, + "end": 3334.0, + "probability": 0.793 + }, + { + "start": 3334.42, + "end": 3335.22, + "probability": 0.8807 + }, + { + "start": 3335.68, + "end": 3338.32, + "probability": 0.9644 + }, + { + "start": 3338.86, + "end": 3343.68, + "probability": 0.9815 + }, + { + "start": 3344.22, + "end": 3345.76, + "probability": 0.6808 + }, + { + "start": 3346.2, + "end": 3349.28, + "probability": 0.8623 + }, + { + "start": 3349.7, + "end": 3350.2, + "probability": 0.4318 + }, + { + "start": 3350.28, + "end": 3350.62, + "probability": 0.9411 + }, + { + "start": 3351.16, + "end": 3351.96, + "probability": 0.7778 + }, + { + "start": 3352.76, + "end": 3355.36, + "probability": 0.9878 + }, + { + "start": 3356.24, + "end": 3361.16, + "probability": 0.929 + }, + { + "start": 3361.3, + "end": 3364.76, + "probability": 0.9862 + }, + { + "start": 3365.24, + "end": 3369.78, + "probability": 0.9819 + }, + { + "start": 3370.42, + "end": 3374.1, + "probability": 0.9425 + }, + { + "start": 3374.6, + "end": 3378.3, + "probability": 0.9771 + }, + { + "start": 3378.3, + "end": 3382.42, + "probability": 0.9985 + }, + { + "start": 3383.62, + "end": 3386.34, + "probability": 0.6995 + }, + { + "start": 3386.64, + "end": 3387.02, + "probability": 0.8925 + }, + { + "start": 3387.38, + "end": 3391.8, + "probability": 0.9743 + }, + { + "start": 3392.44, + "end": 3395.12, + "probability": 0.9738 + }, + { + "start": 3395.8, + "end": 3396.7, + "probability": 0.7871 + }, + { + "start": 3397.76, + "end": 3401.34, + "probability": 0.958 + }, + { + "start": 3402.06, + "end": 3402.92, + "probability": 0.9843 + }, + { + "start": 3403.56, + "end": 3404.76, + "probability": 0.9897 + }, + { + "start": 3405.3, + "end": 3408.46, + "probability": 0.9282 + }, + { + "start": 3409.26, + "end": 3413.56, + "probability": 0.752 + }, + { + "start": 3414.48, + "end": 3415.88, + "probability": 0.8622 + }, + { + "start": 3416.14, + "end": 3417.52, + "probability": 0.8997 + }, + { + "start": 3417.92, + "end": 3419.0, + "probability": 0.8572 + }, + { + "start": 3419.48, + "end": 3421.08, + "probability": 0.9417 + }, + { + "start": 3421.82, + "end": 3424.32, + "probability": 0.9307 + }, + { + "start": 3424.74, + "end": 3426.48, + "probability": 0.9621 + }, + { + "start": 3426.82, + "end": 3429.68, + "probability": 0.9794 + }, + { + "start": 3431.2, + "end": 3434.84, + "probability": 0.944 + }, + { + "start": 3436.64, + "end": 3437.14, + "probability": 0.523 + }, + { + "start": 3437.58, + "end": 3439.2, + "probability": 0.9111 + }, + { + "start": 3439.5, + "end": 3440.4, + "probability": 0.9948 + }, + { + "start": 3440.92, + "end": 3446.64, + "probability": 0.9827 + }, + { + "start": 3447.26, + "end": 3448.24, + "probability": 0.8381 + }, + { + "start": 3449.02, + "end": 3450.04, + "probability": 0.538 + }, + { + "start": 3450.78, + "end": 3455.58, + "probability": 0.66 + }, + { + "start": 3455.74, + "end": 3456.82, + "probability": 0.7679 + }, + { + "start": 3457.88, + "end": 3458.18, + "probability": 0.739 + }, + { + "start": 3458.24, + "end": 3465.56, + "probability": 0.8128 + }, + { + "start": 3466.2, + "end": 3468.9, + "probability": 0.9863 + }, + { + "start": 3469.92, + "end": 3470.22, + "probability": 0.9301 + }, + { + "start": 3470.96, + "end": 3473.48, + "probability": 0.9223 + }, + { + "start": 3474.16, + "end": 3479.32, + "probability": 0.7744 + }, + { + "start": 3479.32, + "end": 3482.94, + "probability": 0.9445 + }, + { + "start": 3483.64, + "end": 3487.16, + "probability": 0.9424 + }, + { + "start": 3487.56, + "end": 3488.12, + "probability": 0.901 + }, + { + "start": 3488.46, + "end": 3489.5, + "probability": 0.9765 + }, + { + "start": 3489.6, + "end": 3491.18, + "probability": 0.7871 + }, + { + "start": 3491.68, + "end": 3492.76, + "probability": 0.5051 + }, + { + "start": 3493.06, + "end": 3493.56, + "probability": 0.8395 + }, + { + "start": 3494.22, + "end": 3496.4, + "probability": 0.9697 + }, + { + "start": 3497.72, + "end": 3501.96, + "probability": 0.8795 + }, + { + "start": 3503.22, + "end": 3505.46, + "probability": 0.8691 + }, + { + "start": 3506.7, + "end": 3507.0, + "probability": 0.7404 + }, + { + "start": 3507.08, + "end": 3512.8, + "probability": 0.8697 + }, + { + "start": 3512.8, + "end": 3515.12, + "probability": 0.5055 + }, + { + "start": 3516.38, + "end": 3519.04, + "probability": 0.9597 + }, + { + "start": 3519.76, + "end": 3523.78, + "probability": 0.9838 + }, + { + "start": 3523.84, + "end": 3527.22, + "probability": 0.8428 + }, + { + "start": 3528.08, + "end": 3528.48, + "probability": 0.8045 + }, + { + "start": 3529.02, + "end": 3531.04, + "probability": 0.8867 + }, + { + "start": 3531.6, + "end": 3532.51, + "probability": 0.5828 + }, + { + "start": 3532.96, + "end": 3536.14, + "probability": 0.9243 + }, + { + "start": 3536.88, + "end": 3538.24, + "probability": 0.9625 + }, + { + "start": 3539.0, + "end": 3542.9, + "probability": 0.9695 + }, + { + "start": 3544.0, + "end": 3544.7, + "probability": 0.5877 + }, + { + "start": 3544.74, + "end": 3547.32, + "probability": 0.9399 + }, + { + "start": 3547.68, + "end": 3550.24, + "probability": 0.8766 + }, + { + "start": 3550.8, + "end": 3551.4, + "probability": 0.9392 + }, + { + "start": 3551.56, + "end": 3552.2, + "probability": 0.9674 + }, + { + "start": 3552.44, + "end": 3554.38, + "probability": 0.7781 + }, + { + "start": 3554.6, + "end": 3559.02, + "probability": 0.9868 + }, + { + "start": 3559.82, + "end": 3562.44, + "probability": 0.9957 + }, + { + "start": 3562.44, + "end": 3567.54, + "probability": 0.9852 + }, + { + "start": 3568.4, + "end": 3569.02, + "probability": 0.9688 + }, + { + "start": 3569.98, + "end": 3571.7, + "probability": 0.8644 + }, + { + "start": 3572.36, + "end": 3573.94, + "probability": 0.9634 + }, + { + "start": 3575.04, + "end": 3578.04, + "probability": 0.9725 + }, + { + "start": 3578.52, + "end": 3579.28, + "probability": 0.9428 + }, + { + "start": 3580.02, + "end": 3581.0, + "probability": 0.8396 + }, + { + "start": 3581.62, + "end": 3583.28, + "probability": 0.8904 + }, + { + "start": 3583.62, + "end": 3586.98, + "probability": 0.7899 + }, + { + "start": 3587.78, + "end": 3590.22, + "probability": 0.8217 + }, + { + "start": 3592.9, + "end": 3593.48, + "probability": 0.7971 + }, + { + "start": 3597.08, + "end": 3597.9, + "probability": 0.7976 + }, + { + "start": 3628.96, + "end": 3629.1, + "probability": 0.2504 + }, + { + "start": 3629.1, + "end": 3629.28, + "probability": 0.6749 + }, + { + "start": 3631.06, + "end": 3633.24, + "probability": 0.9551 + }, + { + "start": 3633.72, + "end": 3634.28, + "probability": 0.9313 + }, + { + "start": 3635.72, + "end": 3636.62, + "probability": 0.7351 + }, + { + "start": 3638.0, + "end": 3641.0, + "probability": 0.7225 + }, + { + "start": 3645.74, + "end": 3649.34, + "probability": 0.9803 + }, + { + "start": 3650.58, + "end": 3651.12, + "probability": 0.9894 + }, + { + "start": 3652.26, + "end": 3653.24, + "probability": 0.5452 + }, + { + "start": 3654.32, + "end": 3654.94, + "probability": 0.9277 + }, + { + "start": 3655.54, + "end": 3656.5, + "probability": 0.9156 + }, + { + "start": 3656.86, + "end": 3659.88, + "probability": 0.8822 + }, + { + "start": 3660.08, + "end": 3660.46, + "probability": 0.4493 + }, + { + "start": 3660.58, + "end": 3660.9, + "probability": 0.6962 + }, + { + "start": 3664.84, + "end": 3669.32, + "probability": 0.9763 + }, + { + "start": 3669.46, + "end": 3670.24, + "probability": 0.5344 + }, + { + "start": 3670.3, + "end": 3670.72, + "probability": 0.9145 + }, + { + "start": 3671.52, + "end": 3672.94, + "probability": 0.6091 + }, + { + "start": 3674.0, + "end": 3674.64, + "probability": 0.999 + }, + { + "start": 3675.26, + "end": 3680.98, + "probability": 0.9321 + }, + { + "start": 3681.88, + "end": 3682.2, + "probability": 0.5455 + }, + { + "start": 3683.2, + "end": 3685.32, + "probability": 0.9736 + }, + { + "start": 3686.62, + "end": 3688.1, + "probability": 0.8947 + }, + { + "start": 3688.98, + "end": 3690.25, + "probability": 0.8652 + }, + { + "start": 3690.86, + "end": 3694.28, + "probability": 0.9893 + }, + { + "start": 3694.32, + "end": 3695.76, + "probability": 0.8006 + }, + { + "start": 3696.98, + "end": 3697.74, + "probability": 0.5608 + }, + { + "start": 3699.16, + "end": 3702.62, + "probability": 0.9479 + }, + { + "start": 3703.36, + "end": 3706.2, + "probability": 0.8974 + }, + { + "start": 3706.86, + "end": 3708.5, + "probability": 0.7048 + }, + { + "start": 3708.9, + "end": 3710.84, + "probability": 0.8208 + }, + { + "start": 3711.88, + "end": 3718.74, + "probability": 0.942 + }, + { + "start": 3718.9, + "end": 3719.42, + "probability": 0.1938 + }, + { + "start": 3721.68, + "end": 3724.66, + "probability": 0.7393 + }, + { + "start": 3724.94, + "end": 3726.58, + "probability": 0.9307 + }, + { + "start": 3728.24, + "end": 3729.56, + "probability": 0.925 + }, + { + "start": 3730.85, + "end": 3734.0, + "probability": 0.9749 + }, + { + "start": 3734.41, + "end": 3737.56, + "probability": 0.1068 + }, + { + "start": 3739.0, + "end": 3743.06, + "probability": 0.9886 + }, + { + "start": 3744.3, + "end": 3746.61, + "probability": 0.9878 + }, + { + "start": 3747.34, + "end": 3749.37, + "probability": 0.7184 + }, + { + "start": 3752.1, + "end": 3753.0, + "probability": 0.0278 + }, + { + "start": 3754.04, + "end": 3756.22, + "probability": 0.9571 + }, + { + "start": 3756.56, + "end": 3757.52, + "probability": 0.8365 + }, + { + "start": 3757.96, + "end": 3758.66, + "probability": 0.8315 + }, + { + "start": 3758.78, + "end": 3761.84, + "probability": 0.7598 + }, + { + "start": 3763.36, + "end": 3764.32, + "probability": 0.8348 + }, + { + "start": 3764.96, + "end": 3768.48, + "probability": 0.7351 + }, + { + "start": 3768.48, + "end": 3771.44, + "probability": 0.9925 + }, + { + "start": 3771.74, + "end": 3773.02, + "probability": 0.9934 + }, + { + "start": 3773.06, + "end": 3775.8, + "probability": 0.9384 + }, + { + "start": 3776.5, + "end": 3777.56, + "probability": 0.9908 + }, + { + "start": 3778.6, + "end": 3780.5, + "probability": 0.9983 + }, + { + "start": 3780.5, + "end": 3783.86, + "probability": 0.9913 + }, + { + "start": 3784.96, + "end": 3786.96, + "probability": 0.9836 + }, + { + "start": 3787.38, + "end": 3790.32, + "probability": 0.8788 + }, + { + "start": 3792.94, + "end": 3794.14, + "probability": 0.9005 + }, + { + "start": 3794.26, + "end": 3794.54, + "probability": 0.7395 + }, + { + "start": 3794.68, + "end": 3795.9, + "probability": 0.9865 + }, + { + "start": 3796.06, + "end": 3796.54, + "probability": 0.729 + }, + { + "start": 3797.14, + "end": 3798.5, + "probability": 0.9308 + }, + { + "start": 3799.16, + "end": 3802.2, + "probability": 0.9622 + }, + { + "start": 3802.66, + "end": 3804.84, + "probability": 0.9962 + }, + { + "start": 3805.54, + "end": 3806.6, + "probability": 0.7643 + }, + { + "start": 3807.8, + "end": 3808.22, + "probability": 0.4643 + }, + { + "start": 3810.32, + "end": 3811.18, + "probability": 0.9034 + }, + { + "start": 3811.7, + "end": 3815.69, + "probability": 0.9859 + }, + { + "start": 3816.4, + "end": 3819.06, + "probability": 0.862 + }, + { + "start": 3819.1, + "end": 3822.24, + "probability": 0.8693 + }, + { + "start": 3822.52, + "end": 3823.78, + "probability": 0.9644 + }, + { + "start": 3825.34, + "end": 3826.54, + "probability": 0.501 + }, + { + "start": 3829.76, + "end": 3832.88, + "probability": 0.6028 + }, + { + "start": 3834.72, + "end": 3836.76, + "probability": 0.9375 + }, + { + "start": 3837.28, + "end": 3842.38, + "probability": 0.8241 + }, + { + "start": 3842.5, + "end": 3843.0, + "probability": 0.7751 + }, + { + "start": 3845.52, + "end": 3848.1, + "probability": 0.8481 + }, + { + "start": 3848.28, + "end": 3848.92, + "probability": 0.3644 + }, + { + "start": 3850.0, + "end": 3854.3, + "probability": 0.9681 + }, + { + "start": 3854.88, + "end": 3855.42, + "probability": 0.7173 + }, + { + "start": 3856.14, + "end": 3857.38, + "probability": 0.939 + }, + { + "start": 3858.4, + "end": 3859.6, + "probability": 0.9985 + }, + { + "start": 3860.16, + "end": 3861.78, + "probability": 0.9333 + }, + { + "start": 3861.84, + "end": 3862.78, + "probability": 0.658 + }, + { + "start": 3863.8, + "end": 3865.92, + "probability": 0.8493 + }, + { + "start": 3866.16, + "end": 3868.76, + "probability": 0.9974 + }, + { + "start": 3868.82, + "end": 3869.2, + "probability": 0.7527 + }, + { + "start": 3870.16, + "end": 3870.92, + "probability": 0.3773 + }, + { + "start": 3871.84, + "end": 3873.92, + "probability": 0.8593 + }, + { + "start": 3874.04, + "end": 3874.74, + "probability": 0.9109 + }, + { + "start": 3874.76, + "end": 3876.95, + "probability": 0.9742 + }, + { + "start": 3877.98, + "end": 3882.26, + "probability": 0.9878 + }, + { + "start": 3884.06, + "end": 3885.44, + "probability": 0.9984 + }, + { + "start": 3886.56, + "end": 3890.14, + "probability": 0.7559 + }, + { + "start": 3892.26, + "end": 3896.7, + "probability": 0.8466 + }, + { + "start": 3897.96, + "end": 3900.88, + "probability": 0.7132 + }, + { + "start": 3901.66, + "end": 3903.48, + "probability": 0.8149 + }, + { + "start": 3904.4, + "end": 3908.5, + "probability": 0.9946 + }, + { + "start": 3908.5, + "end": 3912.26, + "probability": 0.9929 + }, + { + "start": 3912.9, + "end": 3915.24, + "probability": 0.8386 + }, + { + "start": 3915.82, + "end": 3916.6, + "probability": 0.5707 + }, + { + "start": 3916.78, + "end": 3918.18, + "probability": 0.9511 + }, + { + "start": 3919.84, + "end": 3922.32, + "probability": 0.9816 + }, + { + "start": 3923.12, + "end": 3925.8, + "probability": 0.9583 + }, + { + "start": 3925.88, + "end": 3927.02, + "probability": 0.9124 + }, + { + "start": 3928.0, + "end": 3930.04, + "probability": 0.9081 + }, + { + "start": 3930.6, + "end": 3934.24, + "probability": 0.9456 + }, + { + "start": 3935.08, + "end": 3937.7, + "probability": 0.9932 + }, + { + "start": 3938.94, + "end": 3942.52, + "probability": 0.9027 + }, + { + "start": 3942.96, + "end": 3948.54, + "probability": 0.9946 + }, + { + "start": 3950.6, + "end": 3952.66, + "probability": 0.647 + }, + { + "start": 3952.94, + "end": 3956.92, + "probability": 0.8848 + }, + { + "start": 3957.04, + "end": 3958.52, + "probability": 0.5661 + }, + { + "start": 3958.9, + "end": 3961.24, + "probability": 0.7662 + }, + { + "start": 3962.0, + "end": 3965.96, + "probability": 0.9958 + }, + { + "start": 3968.74, + "end": 3973.2, + "probability": 0.7549 + }, + { + "start": 3973.8, + "end": 3974.78, + "probability": 0.906 + }, + { + "start": 3975.02, + "end": 3977.92, + "probability": 0.6858 + }, + { + "start": 3978.42, + "end": 3978.54, + "probability": 0.4644 + }, + { + "start": 3980.16, + "end": 3986.86, + "probability": 0.9928 + }, + { + "start": 3987.68, + "end": 3990.74, + "probability": 0.914 + }, + { + "start": 3990.82, + "end": 3992.11, + "probability": 0.8525 + }, + { + "start": 3994.14, + "end": 3996.68, + "probability": 0.9774 + }, + { + "start": 3996.68, + "end": 3999.34, + "probability": 0.9595 + }, + { + "start": 3999.54, + "end": 4000.58, + "probability": 0.6863 + }, + { + "start": 4002.4, + "end": 4004.26, + "probability": 0.8367 + }, + { + "start": 4004.5, + "end": 4004.84, + "probability": 0.2756 + }, + { + "start": 4004.94, + "end": 4006.38, + "probability": 0.8486 + }, + { + "start": 4007.9, + "end": 4008.78, + "probability": 0.6202 + }, + { + "start": 4008.92, + "end": 4009.98, + "probability": 0.9065 + }, + { + "start": 4010.34, + "end": 4011.56, + "probability": 0.698 + }, + { + "start": 4011.66, + "end": 4013.16, + "probability": 0.767 + }, + { + "start": 4013.7, + "end": 4016.18, + "probability": 0.9917 + }, + { + "start": 4016.32, + "end": 4017.54, + "probability": 0.9902 + }, + { + "start": 4018.18, + "end": 4019.36, + "probability": 0.6835 + }, + { + "start": 4020.58, + "end": 4023.72, + "probability": 0.911 + }, + { + "start": 4024.48, + "end": 4030.4, + "probability": 0.924 + }, + { + "start": 4030.84, + "end": 4033.24, + "probability": 0.9887 + }, + { + "start": 4033.6, + "end": 4033.86, + "probability": 0.777 + }, + { + "start": 4034.86, + "end": 4036.64, + "probability": 0.6466 + }, + { + "start": 4036.82, + "end": 4038.98, + "probability": 0.935 + }, + { + "start": 4063.88, + "end": 4064.86, + "probability": 0.615 + }, + { + "start": 4065.64, + "end": 4066.66, + "probability": 0.9443 + }, + { + "start": 4067.52, + "end": 4068.5, + "probability": 0.9423 + }, + { + "start": 4069.44, + "end": 4071.64, + "probability": 0.9856 + }, + { + "start": 4072.48, + "end": 4074.7, + "probability": 0.9595 + }, + { + "start": 4075.44, + "end": 4076.26, + "probability": 0.943 + }, + { + "start": 4078.06, + "end": 4083.74, + "probability": 0.97 + }, + { + "start": 4084.96, + "end": 4086.78, + "probability": 0.8702 + }, + { + "start": 4087.8, + "end": 4090.36, + "probability": 0.9082 + }, + { + "start": 4091.34, + "end": 4094.44, + "probability": 0.9726 + }, + { + "start": 4095.72, + "end": 4099.12, + "probability": 0.9974 + }, + { + "start": 4100.16, + "end": 4100.84, + "probability": 0.9458 + }, + { + "start": 4102.34, + "end": 4107.58, + "probability": 0.9576 + }, + { + "start": 4108.66, + "end": 4110.64, + "probability": 0.96 + }, + { + "start": 4112.2, + "end": 4118.8, + "probability": 0.993 + }, + { + "start": 4119.56, + "end": 4124.52, + "probability": 0.988 + }, + { + "start": 4126.34, + "end": 4132.62, + "probability": 0.9192 + }, + { + "start": 4133.26, + "end": 4139.12, + "probability": 0.9926 + }, + { + "start": 4140.74, + "end": 4146.54, + "probability": 0.9343 + }, + { + "start": 4146.96, + "end": 4146.96, + "probability": 0.6877 + }, + { + "start": 4146.96, + "end": 4147.46, + "probability": 0.3335 + }, + { + "start": 4148.46, + "end": 4154.22, + "probability": 0.9248 + }, + { + "start": 4154.22, + "end": 4160.46, + "probability": 0.9823 + }, + { + "start": 4161.38, + "end": 4165.14, + "probability": 0.9947 + }, + { + "start": 4166.28, + "end": 4169.56, + "probability": 0.882 + }, + { + "start": 4170.28, + "end": 4172.52, + "probability": 0.909 + }, + { + "start": 4173.48, + "end": 4179.66, + "probability": 0.9943 + }, + { + "start": 4180.46, + "end": 4183.41, + "probability": 0.9465 + }, + { + "start": 4184.02, + "end": 4185.14, + "probability": 0.7342 + }, + { + "start": 4185.72, + "end": 4187.46, + "probability": 0.4414 + }, + { + "start": 4187.86, + "end": 4193.06, + "probability": 0.8759 + }, + { + "start": 4193.58, + "end": 4197.06, + "probability": 0.9897 + }, + { + "start": 4197.86, + "end": 4203.76, + "probability": 0.9448 + }, + { + "start": 4204.52, + "end": 4207.66, + "probability": 0.9897 + }, + { + "start": 4208.84, + "end": 4210.66, + "probability": 0.9628 + }, + { + "start": 4211.48, + "end": 4214.58, + "probability": 0.977 + }, + { + "start": 4214.58, + "end": 4218.22, + "probability": 0.7021 + }, + { + "start": 4218.94, + "end": 4221.7, + "probability": 0.9965 + }, + { + "start": 4222.78, + "end": 4226.36, + "probability": 0.8845 + }, + { + "start": 4226.92, + "end": 4229.38, + "probability": 0.8687 + }, + { + "start": 4229.94, + "end": 4232.98, + "probability": 0.9802 + }, + { + "start": 4233.5, + "end": 4234.32, + "probability": 0.9227 + }, + { + "start": 4235.28, + "end": 4237.66, + "probability": 0.7842 + }, + { + "start": 4238.24, + "end": 4239.46, + "probability": 0.8997 + }, + { + "start": 4240.14, + "end": 4241.28, + "probability": 0.7375 + }, + { + "start": 4241.84, + "end": 4243.48, + "probability": 0.9238 + }, + { + "start": 4243.96, + "end": 4250.08, + "probability": 0.9135 + }, + { + "start": 4250.32, + "end": 4251.2, + "probability": 0.7191 + }, + { + "start": 4251.32, + "end": 4254.34, + "probability": 0.8517 + }, + { + "start": 4255.8, + "end": 4257.7, + "probability": 0.945 + }, + { + "start": 4258.6, + "end": 4261.34, + "probability": 0.9543 + }, + { + "start": 4262.68, + "end": 4263.72, + "probability": 0.8379 + }, + { + "start": 4263.9, + "end": 4265.0, + "probability": 0.8655 + }, + { + "start": 4265.46, + "end": 4266.42, + "probability": 0.873 + }, + { + "start": 4266.48, + "end": 4267.06, + "probability": 0.9168 + }, + { + "start": 4267.48, + "end": 4269.98, + "probability": 0.7341 + }, + { + "start": 4270.32, + "end": 4276.37, + "probability": 0.9388 + }, + { + "start": 4277.94, + "end": 4279.8, + "probability": 0.9056 + }, + { + "start": 4280.4, + "end": 4281.46, + "probability": 0.7228 + }, + { + "start": 4281.52, + "end": 4281.96, + "probability": 0.7183 + }, + { + "start": 4282.32, + "end": 4283.08, + "probability": 0.533 + }, + { + "start": 4283.52, + "end": 4285.8, + "probability": 0.9763 + }, + { + "start": 4286.24, + "end": 4289.5, + "probability": 0.9417 + }, + { + "start": 4290.3, + "end": 4294.1, + "probability": 0.9808 + }, + { + "start": 4294.1, + "end": 4297.68, + "probability": 0.9722 + }, + { + "start": 4298.24, + "end": 4299.74, + "probability": 0.9565 + }, + { + "start": 4300.12, + "end": 4300.52, + "probability": 0.6703 + }, + { + "start": 4301.02, + "end": 4303.02, + "probability": 0.7584 + }, + { + "start": 4303.2, + "end": 4304.22, + "probability": 0.9145 + }, + { + "start": 4305.84, + "end": 4308.44, + "probability": 0.7132 + }, + { + "start": 4308.96, + "end": 4310.14, + "probability": 0.9268 + }, + { + "start": 4310.66, + "end": 4313.18, + "probability": 0.9789 + }, + { + "start": 4314.04, + "end": 4317.64, + "probability": 0.9307 + }, + { + "start": 4318.72, + "end": 4323.92, + "probability": 0.876 + }, + { + "start": 4323.92, + "end": 4329.08, + "probability": 0.9893 + }, + { + "start": 4330.04, + "end": 4330.84, + "probability": 0.7077 + }, + { + "start": 4331.3, + "end": 4333.58, + "probability": 0.9706 + }, + { + "start": 4333.82, + "end": 4336.54, + "probability": 0.999 + }, + { + "start": 4336.54, + "end": 4340.78, + "probability": 0.981 + }, + { + "start": 4341.28, + "end": 4346.22, + "probability": 0.9878 + }, + { + "start": 4347.02, + "end": 4348.56, + "probability": 0.9867 + }, + { + "start": 4349.76, + "end": 4353.18, + "probability": 0.9936 + }, + { + "start": 4353.18, + "end": 4356.42, + "probability": 0.9958 + }, + { + "start": 4357.18, + "end": 4360.9, + "probability": 0.9498 + }, + { + "start": 4361.72, + "end": 4365.38, + "probability": 0.9562 + }, + { + "start": 4366.08, + "end": 4367.86, + "probability": 0.9805 + }, + { + "start": 4368.48, + "end": 4372.58, + "probability": 0.9943 + }, + { + "start": 4373.54, + "end": 4376.6, + "probability": 0.708 + }, + { + "start": 4377.46, + "end": 4383.98, + "probability": 0.9838 + }, + { + "start": 4384.58, + "end": 4388.6, + "probability": 0.9277 + }, + { + "start": 4388.6, + "end": 4392.88, + "probability": 0.9843 + }, + { + "start": 4393.76, + "end": 4395.06, + "probability": 0.9231 + }, + { + "start": 4396.0, + "end": 4399.68, + "probability": 0.9906 + }, + { + "start": 4400.3, + "end": 4402.06, + "probability": 0.9539 + }, + { + "start": 4402.64, + "end": 4404.82, + "probability": 0.8295 + }, + { + "start": 4405.5, + "end": 4408.78, + "probability": 0.9769 + }, + { + "start": 4409.78, + "end": 4412.42, + "probability": 0.4046 + }, + { + "start": 4413.44, + "end": 4414.34, + "probability": 0.5518 + }, + { + "start": 4414.4, + "end": 4415.52, + "probability": 0.9537 + }, + { + "start": 4444.52, + "end": 4445.32, + "probability": 0.6718 + }, + { + "start": 4446.26, + "end": 4446.8, + "probability": 0.8239 + }, + { + "start": 4447.5, + "end": 4448.12, + "probability": 0.7144 + }, + { + "start": 4449.52, + "end": 4450.42, + "probability": 0.8732 + }, + { + "start": 4451.98, + "end": 4452.6, + "probability": 0.8618 + }, + { + "start": 4453.7, + "end": 4454.46, + "probability": 0.7163 + }, + { + "start": 4455.22, + "end": 4455.68, + "probability": 0.7173 + }, + { + "start": 4457.08, + "end": 4459.3, + "probability": 0.9695 + }, + { + "start": 4459.42, + "end": 4459.64, + "probability": 0.4954 + }, + { + "start": 4460.86, + "end": 4464.22, + "probability": 0.8548 + }, + { + "start": 4465.28, + "end": 4468.14, + "probability": 0.8978 + }, + { + "start": 4468.94, + "end": 4470.54, + "probability": 0.9913 + }, + { + "start": 4472.36, + "end": 4473.78, + "probability": 0.8584 + }, + { + "start": 4474.56, + "end": 4475.8, + "probability": 0.7164 + }, + { + "start": 4476.54, + "end": 4478.82, + "probability": 0.9657 + }, + { + "start": 4479.72, + "end": 4480.76, + "probability": 0.9673 + }, + { + "start": 4481.82, + "end": 4482.92, + "probability": 0.8152 + }, + { + "start": 4483.6, + "end": 4488.62, + "probability": 0.8992 + }, + { + "start": 4489.34, + "end": 4491.48, + "probability": 0.9749 + }, + { + "start": 4493.62, + "end": 4495.38, + "probability": 0.9962 + }, + { + "start": 4495.88, + "end": 4496.18, + "probability": 0.7823 + }, + { + "start": 4496.3, + "end": 4498.4, + "probability": 0.8488 + }, + { + "start": 4498.72, + "end": 4499.16, + "probability": 0.9824 + }, + { + "start": 4501.63, + "end": 4503.6, + "probability": 0.9985 + }, + { + "start": 4504.3, + "end": 4507.86, + "probability": 0.9896 + }, + { + "start": 4508.86, + "end": 4510.02, + "probability": 0.99 + }, + { + "start": 4511.08, + "end": 4514.92, + "probability": 0.989 + }, + { + "start": 4516.72, + "end": 4519.52, + "probability": 0.9517 + }, + { + "start": 4520.9, + "end": 4521.95, + "probability": 0.9908 + }, + { + "start": 4522.8, + "end": 4524.26, + "probability": 0.978 + }, + { + "start": 4524.9, + "end": 4526.91, + "probability": 0.9958 + }, + { + "start": 4528.22, + "end": 4529.34, + "probability": 0.9655 + }, + { + "start": 4529.5, + "end": 4530.38, + "probability": 0.8985 + }, + { + "start": 4530.62, + "end": 4531.71, + "probability": 0.9199 + }, + { + "start": 4532.0, + "end": 4536.14, + "probability": 0.9955 + }, + { + "start": 4536.76, + "end": 4540.46, + "probability": 0.9756 + }, + { + "start": 4542.18, + "end": 4542.96, + "probability": 0.5026 + }, + { + "start": 4543.06, + "end": 4543.66, + "probability": 0.3755 + }, + { + "start": 4543.72, + "end": 4545.7, + "probability": 0.9868 + }, + { + "start": 4545.9, + "end": 4547.7, + "probability": 0.9779 + }, + { + "start": 4548.56, + "end": 4550.36, + "probability": 0.9317 + }, + { + "start": 4550.74, + "end": 4552.06, + "probability": 0.9341 + }, + { + "start": 4552.98, + "end": 4556.9, + "probability": 0.8441 + }, + { + "start": 4557.44, + "end": 4560.4, + "probability": 0.7679 + }, + { + "start": 4560.98, + "end": 4563.38, + "probability": 0.8482 + }, + { + "start": 4564.84, + "end": 4570.14, + "probability": 0.9366 + }, + { + "start": 4570.14, + "end": 4574.82, + "probability": 0.9873 + }, + { + "start": 4576.2, + "end": 4578.52, + "probability": 0.9858 + }, + { + "start": 4579.28, + "end": 4583.99, + "probability": 0.9185 + }, + { + "start": 4584.4, + "end": 4588.6, + "probability": 0.9926 + }, + { + "start": 4590.32, + "end": 4592.88, + "probability": 0.9094 + }, + { + "start": 4594.54, + "end": 4596.9, + "probability": 0.9161 + }, + { + "start": 4598.16, + "end": 4600.82, + "probability": 0.8239 + }, + { + "start": 4600.94, + "end": 4602.32, + "probability": 0.938 + }, + { + "start": 4602.44, + "end": 4605.08, + "probability": 0.9968 + }, + { + "start": 4606.68, + "end": 4611.16, + "probability": 0.9917 + }, + { + "start": 4612.32, + "end": 4613.52, + "probability": 0.9907 + }, + { + "start": 4614.18, + "end": 4614.58, + "probability": 0.8599 + }, + { + "start": 4615.18, + "end": 4616.09, + "probability": 0.9951 + }, + { + "start": 4617.5, + "end": 4619.78, + "probability": 0.8702 + }, + { + "start": 4620.76, + "end": 4623.01, + "probability": 0.9905 + }, + { + "start": 4623.78, + "end": 4624.06, + "probability": 0.8189 + }, + { + "start": 4626.12, + "end": 4626.92, + "probability": 0.9475 + }, + { + "start": 4627.04, + "end": 4627.94, + "probability": 0.5497 + }, + { + "start": 4627.98, + "end": 4631.14, + "probability": 0.9933 + }, + { + "start": 4633.16, + "end": 4636.24, + "probability": 0.9153 + }, + { + "start": 4637.52, + "end": 4637.54, + "probability": 0.6735 + }, + { + "start": 4637.66, + "end": 4638.6, + "probability": 0.665 + }, + { + "start": 4638.86, + "end": 4642.3, + "probability": 0.9636 + }, + { + "start": 4643.2, + "end": 4644.38, + "probability": 0.9907 + }, + { + "start": 4645.48, + "end": 4650.08, + "probability": 0.985 + }, + { + "start": 4650.86, + "end": 4652.76, + "probability": 0.8661 + }, + { + "start": 4654.28, + "end": 4656.08, + "probability": 0.9031 + }, + { + "start": 4656.84, + "end": 4660.62, + "probability": 0.9221 + }, + { + "start": 4661.68, + "end": 4664.08, + "probability": 0.9976 + }, + { + "start": 4664.64, + "end": 4668.4, + "probability": 0.7957 + }, + { + "start": 4669.82, + "end": 4672.14, + "probability": 0.8379 + }, + { + "start": 4672.72, + "end": 4675.6, + "probability": 0.748 + }, + { + "start": 4678.8, + "end": 4679.1, + "probability": 0.744 + }, + { + "start": 4680.76, + "end": 4683.62, + "probability": 0.9761 + }, + { + "start": 4685.34, + "end": 4686.74, + "probability": 0.7294 + }, + { + "start": 4687.34, + "end": 4688.64, + "probability": 0.9512 + }, + { + "start": 4689.96, + "end": 4691.24, + "probability": 0.8796 + }, + { + "start": 4692.2, + "end": 4693.26, + "probability": 0.8867 + }, + { + "start": 4694.3, + "end": 4696.9, + "probability": 0.9264 + }, + { + "start": 4697.88, + "end": 4700.86, + "probability": 0.9746 + }, + { + "start": 4701.46, + "end": 4702.3, + "probability": 0.954 + }, + { + "start": 4703.1, + "end": 4704.42, + "probability": 0.9007 + }, + { + "start": 4705.86, + "end": 4711.48, + "probability": 0.9925 + }, + { + "start": 4712.36, + "end": 4713.54, + "probability": 0.967 + }, + { + "start": 4714.44, + "end": 4716.22, + "probability": 0.942 + }, + { + "start": 4717.36, + "end": 4719.68, + "probability": 0.9929 + }, + { + "start": 4721.64, + "end": 4722.06, + "probability": 0.7468 + }, + { + "start": 4723.28, + "end": 4724.58, + "probability": 0.9138 + }, + { + "start": 4726.2, + "end": 4729.74, + "probability": 0.9958 + }, + { + "start": 4730.72, + "end": 4734.36, + "probability": 0.9977 + }, + { + "start": 4734.78, + "end": 4737.82, + "probability": 0.9789 + }, + { + "start": 4738.38, + "end": 4738.58, + "probability": 0.9731 + }, + { + "start": 4740.14, + "end": 4744.14, + "probability": 0.9952 + }, + { + "start": 4745.36, + "end": 4749.59, + "probability": 0.9965 + }, + { + "start": 4750.38, + "end": 4751.04, + "probability": 0.9612 + }, + { + "start": 4752.22, + "end": 4752.6, + "probability": 0.5815 + }, + { + "start": 4753.8, + "end": 4755.5, + "probability": 0.8868 + }, + { + "start": 4756.8, + "end": 4757.14, + "probability": 0.9026 + }, + { + "start": 4757.7, + "end": 4758.7, + "probability": 0.8618 + }, + { + "start": 4759.5, + "end": 4761.64, + "probability": 0.9954 + }, + { + "start": 4762.26, + "end": 4763.2, + "probability": 0.7551 + }, + { + "start": 4763.8, + "end": 4764.66, + "probability": 0.8914 + }, + { + "start": 4765.4, + "end": 4766.38, + "probability": 0.8433 + }, + { + "start": 4767.04, + "end": 4768.32, + "probability": 0.031 + }, + { + "start": 4770.24, + "end": 4773.88, + "probability": 0.9513 + }, + { + "start": 4774.92, + "end": 4777.25, + "probability": 0.973 + }, + { + "start": 4808.34, + "end": 4809.52, + "probability": 0.568 + }, + { + "start": 4811.0, + "end": 4811.82, + "probability": 0.8016 + }, + { + "start": 4813.82, + "end": 4814.54, + "probability": 0.785 + }, + { + "start": 4815.14, + "end": 4816.58, + "probability": 0.781 + }, + { + "start": 4818.48, + "end": 4826.18, + "probability": 0.9672 + }, + { + "start": 4827.22, + "end": 4830.88, + "probability": 0.987 + }, + { + "start": 4832.24, + "end": 4836.58, + "probability": 0.9841 + }, + { + "start": 4837.02, + "end": 4838.28, + "probability": 0.7518 + }, + { + "start": 4839.32, + "end": 4842.34, + "probability": 0.1492 + }, + { + "start": 4843.82, + "end": 4846.22, + "probability": 0.9036 + }, + { + "start": 4847.76, + "end": 4851.2, + "probability": 0.9849 + }, + { + "start": 4852.04, + "end": 4855.94, + "probability": 0.9875 + }, + { + "start": 4857.52, + "end": 4858.78, + "probability": 0.85 + }, + { + "start": 4859.26, + "end": 4863.86, + "probability": 0.9762 + }, + { + "start": 4865.2, + "end": 4865.81, + "probability": 0.9405 + }, + { + "start": 4868.18, + "end": 4869.72, + "probability": 0.9919 + }, + { + "start": 4870.74, + "end": 4876.54, + "probability": 0.9979 + }, + { + "start": 4878.48, + "end": 4882.04, + "probability": 0.9888 + }, + { + "start": 4883.84, + "end": 4886.66, + "probability": 0.9946 + }, + { + "start": 4887.84, + "end": 4891.26, + "probability": 0.9945 + }, + { + "start": 4893.7, + "end": 4894.78, + "probability": 0.7223 + }, + { + "start": 4895.4, + "end": 4899.2, + "probability": 0.9654 + }, + { + "start": 4900.14, + "end": 4901.36, + "probability": 0.9013 + }, + { + "start": 4902.1, + "end": 4903.4, + "probability": 0.9308 + }, + { + "start": 4904.02, + "end": 4906.06, + "probability": 0.9409 + }, + { + "start": 4906.62, + "end": 4907.62, + "probability": 0.9777 + }, + { + "start": 4909.44, + "end": 4910.3, + "probability": 0.8111 + }, + { + "start": 4911.02, + "end": 4912.56, + "probability": 0.8944 + }, + { + "start": 4913.08, + "end": 4915.68, + "probability": 0.992 + }, + { + "start": 4917.24, + "end": 4919.62, + "probability": 0.9396 + }, + { + "start": 4920.42, + "end": 4924.84, + "probability": 0.8408 + }, + { + "start": 4924.84, + "end": 4928.76, + "probability": 0.9324 + }, + { + "start": 4929.52, + "end": 4932.02, + "probability": 0.923 + }, + { + "start": 4934.12, + "end": 4935.14, + "probability": 0.8299 + }, + { + "start": 4936.2, + "end": 4938.18, + "probability": 0.981 + }, + { + "start": 4939.26, + "end": 4940.0, + "probability": 0.7808 + }, + { + "start": 4941.24, + "end": 4943.22, + "probability": 0.9928 + }, + { + "start": 4943.84, + "end": 4946.46, + "probability": 0.963 + }, + { + "start": 4948.16, + "end": 4950.16, + "probability": 0.9966 + }, + { + "start": 4950.8, + "end": 4952.14, + "probability": 0.9697 + }, + { + "start": 4952.7, + "end": 4953.22, + "probability": 0.9273 + }, + { + "start": 4953.88, + "end": 4961.48, + "probability": 0.9697 + }, + { + "start": 4962.24, + "end": 4964.89, + "probability": 0.5586 + }, + { + "start": 4966.2, + "end": 4966.96, + "probability": 0.9825 + }, + { + "start": 4968.6, + "end": 4973.14, + "probability": 0.9943 + }, + { + "start": 4974.06, + "end": 4976.24, + "probability": 0.9937 + }, + { + "start": 4977.84, + "end": 4983.02, + "probability": 0.9707 + }, + { + "start": 4984.08, + "end": 4985.9, + "probability": 0.9717 + }, + { + "start": 4986.56, + "end": 4988.18, + "probability": 0.9528 + }, + { + "start": 4988.72, + "end": 4989.94, + "probability": 0.9902 + }, + { + "start": 4990.72, + "end": 4991.86, + "probability": 0.7067 + }, + { + "start": 4992.48, + "end": 4993.46, + "probability": 0.9867 + }, + { + "start": 4994.36, + "end": 5001.2, + "probability": 0.9829 + }, + { + "start": 5002.48, + "end": 5006.5, + "probability": 0.9952 + }, + { + "start": 5007.64, + "end": 5010.18, + "probability": 0.9841 + }, + { + "start": 5011.12, + "end": 5015.08, + "probability": 0.9896 + }, + { + "start": 5015.74, + "end": 5020.48, + "probability": 0.9754 + }, + { + "start": 5022.22, + "end": 5025.56, + "probability": 0.9583 + }, + { + "start": 5026.84, + "end": 5028.32, + "probability": 0.9401 + }, + { + "start": 5029.16, + "end": 5030.2, + "probability": 0.8467 + }, + { + "start": 5031.1, + "end": 5032.36, + "probability": 0.9736 + }, + { + "start": 5033.52, + "end": 5037.44, + "probability": 0.6559 + }, + { + "start": 5038.2, + "end": 5038.58, + "probability": 0.9943 + }, + { + "start": 5040.4, + "end": 5042.16, + "probability": 0.9614 + }, + { + "start": 5043.76, + "end": 5044.54, + "probability": 0.8427 + }, + { + "start": 5045.24, + "end": 5046.66, + "probability": 0.9969 + }, + { + "start": 5047.52, + "end": 5049.82, + "probability": 0.999 + }, + { + "start": 5051.8, + "end": 5052.06, + "probability": 0.742 + }, + { + "start": 5053.7, + "end": 5054.68, + "probability": 0.9987 + }, + { + "start": 5055.42, + "end": 5061.04, + "probability": 0.9948 + }, + { + "start": 5061.04, + "end": 5065.1, + "probability": 0.9959 + }, + { + "start": 5066.4, + "end": 5067.46, + "probability": 0.963 + }, + { + "start": 5068.08, + "end": 5072.28, + "probability": 0.9994 + }, + { + "start": 5072.28, + "end": 5076.18, + "probability": 0.9972 + }, + { + "start": 5078.92, + "end": 5079.96, + "probability": 0.8632 + }, + { + "start": 5080.78, + "end": 5081.5, + "probability": 0.8921 + }, + { + "start": 5082.02, + "end": 5086.0, + "probability": 0.9738 + }, + { + "start": 5086.58, + "end": 5087.7, + "probability": 0.9978 + }, + { + "start": 5089.06, + "end": 5089.72, + "probability": 0.8892 + }, + { + "start": 5090.58, + "end": 5092.74, + "probability": 0.8649 + }, + { + "start": 5095.34, + "end": 5095.78, + "probability": 0.6041 + }, + { + "start": 5096.36, + "end": 5098.18, + "probability": 0.8954 + }, + { + "start": 5099.72, + "end": 5102.52, + "probability": 0.9677 + }, + { + "start": 5103.42, + "end": 5108.86, + "probability": 0.9966 + }, + { + "start": 5109.8, + "end": 5110.66, + "probability": 0.9961 + }, + { + "start": 5111.32, + "end": 5112.72, + "probability": 0.681 + }, + { + "start": 5113.46, + "end": 5114.92, + "probability": 0.9713 + }, + { + "start": 5116.88, + "end": 5120.06, + "probability": 0.9902 + }, + { + "start": 5120.84, + "end": 5124.62, + "probability": 0.9715 + }, + { + "start": 5125.6, + "end": 5126.3, + "probability": 0.9467 + }, + { + "start": 5127.42, + "end": 5128.44, + "probability": 0.9573 + }, + { + "start": 5129.34, + "end": 5131.2, + "probability": 0.9465 + }, + { + "start": 5132.84, + "end": 5134.42, + "probability": 0.9058 + }, + { + "start": 5135.56, + "end": 5137.16, + "probability": 0.9941 + }, + { + "start": 5137.72, + "end": 5138.42, + "probability": 0.9305 + }, + { + "start": 5140.28, + "end": 5140.74, + "probability": 0.9578 + }, + { + "start": 5141.26, + "end": 5144.04, + "probability": 0.994 + }, + { + "start": 5144.9, + "end": 5145.64, + "probability": 0.9431 + }, + { + "start": 5146.46, + "end": 5147.42, + "probability": 0.8024 + }, + { + "start": 5148.44, + "end": 5149.94, + "probability": 0.6928 + }, + { + "start": 5151.34, + "end": 5157.8, + "probability": 0.985 + }, + { + "start": 5158.54, + "end": 5159.24, + "probability": 0.9688 + }, + { + "start": 5160.76, + "end": 5161.48, + "probability": 0.6837 + }, + { + "start": 5162.06, + "end": 5162.76, + "probability": 0.5358 + }, + { + "start": 5163.5, + "end": 5165.09, + "probability": 0.9961 + }, + { + "start": 5166.34, + "end": 5169.9, + "probability": 0.9989 + }, + { + "start": 5170.48, + "end": 5174.8, + "probability": 0.9995 + }, + { + "start": 5176.4, + "end": 5180.08, + "probability": 0.9304 + }, + { + "start": 5181.1, + "end": 5185.04, + "probability": 0.998 + }, + { + "start": 5186.64, + "end": 5190.18, + "probability": 0.8656 + }, + { + "start": 5191.12, + "end": 5194.42, + "probability": 0.8182 + }, + { + "start": 5195.1, + "end": 5200.9, + "probability": 0.9536 + }, + { + "start": 5202.4, + "end": 5205.2, + "probability": 0.7886 + }, + { + "start": 5205.84, + "end": 5207.3, + "probability": 0.9891 + }, + { + "start": 5208.04, + "end": 5208.74, + "probability": 0.9176 + }, + { + "start": 5209.56, + "end": 5214.76, + "probability": 0.9702 + }, + { + "start": 5215.8, + "end": 5216.36, + "probability": 0.6436 + }, + { + "start": 5217.52, + "end": 5219.74, + "probability": 0.9907 + }, + { + "start": 5220.54, + "end": 5221.36, + "probability": 0.984 + }, + { + "start": 5221.92, + "end": 5224.56, + "probability": 0.9243 + }, + { + "start": 5225.44, + "end": 5226.38, + "probability": 0.9412 + }, + { + "start": 5227.14, + "end": 5227.34, + "probability": 0.7674 + }, + { + "start": 5229.7, + "end": 5232.14, + "probability": 0.766 + }, + { + "start": 5232.36, + "end": 5234.62, + "probability": 0.9595 + }, + { + "start": 5254.58, + "end": 5256.54, + "probability": 0.7629 + }, + { + "start": 5257.66, + "end": 5258.18, + "probability": 0.7009 + }, + { + "start": 5259.3, + "end": 5262.18, + "probability": 0.9888 + }, + { + "start": 5263.84, + "end": 5266.26, + "probability": 0.5937 + }, + { + "start": 5267.14, + "end": 5268.58, + "probability": 0.7015 + }, + { + "start": 5269.48, + "end": 5271.78, + "probability": 0.451 + }, + { + "start": 5272.7, + "end": 5274.84, + "probability": 0.9023 + }, + { + "start": 5275.58, + "end": 5278.1, + "probability": 0.9877 + }, + { + "start": 5280.72, + "end": 5283.8, + "probability": 0.7852 + }, + { + "start": 5283.88, + "end": 5284.74, + "probability": 0.8203 + }, + { + "start": 5287.58, + "end": 5288.46, + "probability": 0.5126 + }, + { + "start": 5289.36, + "end": 5290.88, + "probability": 0.9454 + }, + { + "start": 5291.64, + "end": 5292.36, + "probability": 0.7416 + }, + { + "start": 5293.28, + "end": 5294.32, + "probability": 0.9775 + }, + { + "start": 5295.26, + "end": 5296.86, + "probability": 0.9702 + }, + { + "start": 5297.64, + "end": 5299.74, + "probability": 0.9564 + }, + { + "start": 5300.56, + "end": 5302.46, + "probability": 0.9031 + }, + { + "start": 5303.18, + "end": 5303.34, + "probability": 0.989 + }, + { + "start": 5304.08, + "end": 5305.42, + "probability": 0.8511 + }, + { + "start": 5307.04, + "end": 5308.38, + "probability": 0.8653 + }, + { + "start": 5309.04, + "end": 5309.76, + "probability": 0.9054 + }, + { + "start": 5310.66, + "end": 5311.68, + "probability": 0.986 + }, + { + "start": 5312.54, + "end": 5314.04, + "probability": 0.835 + }, + { + "start": 5315.16, + "end": 5316.3, + "probability": 0.9699 + }, + { + "start": 5316.98, + "end": 5317.4, + "probability": 0.982 + }, + { + "start": 5318.14, + "end": 5318.72, + "probability": 0.9839 + }, + { + "start": 5319.48, + "end": 5319.78, + "probability": 0.7523 + }, + { + "start": 5320.76, + "end": 5321.36, + "probability": 0.9821 + }, + { + "start": 5322.58, + "end": 5322.78, + "probability": 0.8588 + }, + { + "start": 5324.22, + "end": 5324.88, + "probability": 0.4849 + }, + { + "start": 5325.72, + "end": 5327.72, + "probability": 0.5869 + }, + { + "start": 5328.7, + "end": 5330.18, + "probability": 0.9414 + }, + { + "start": 5331.4, + "end": 5332.56, + "probability": 0.97 + }, + { + "start": 5333.28, + "end": 5333.96, + "probability": 0.9706 + }, + { + "start": 5335.08, + "end": 5335.92, + "probability": 0.984 + }, + { + "start": 5336.94, + "end": 5339.81, + "probability": 0.7857 + }, + { + "start": 5340.8, + "end": 5343.2, + "probability": 0.9666 + }, + { + "start": 5344.28, + "end": 5345.37, + "probability": 0.9388 + }, + { + "start": 5346.2, + "end": 5348.32, + "probability": 0.8422 + }, + { + "start": 5349.76, + "end": 5352.42, + "probability": 0.9233 + }, + { + "start": 5353.0, + "end": 5353.12, + "probability": 0.3388 + }, + { + "start": 5354.96, + "end": 5356.76, + "probability": 0.7138 + }, + { + "start": 5357.66, + "end": 5359.72, + "probability": 0.9956 + }, + { + "start": 5360.72, + "end": 5363.4, + "probability": 0.9481 + }, + { + "start": 5364.0, + "end": 5365.84, + "probability": 0.9455 + }, + { + "start": 5366.58, + "end": 5367.34, + "probability": 0.8047 + }, + { + "start": 5368.08, + "end": 5369.56, + "probability": 0.996 + }, + { + "start": 5370.24, + "end": 5371.3, + "probability": 0.91 + }, + { + "start": 5372.12, + "end": 5373.98, + "probability": 0.8726 + }, + { + "start": 5374.54, + "end": 5375.14, + "probability": 0.9717 + }, + { + "start": 5375.88, + "end": 5376.92, + "probability": 0.9839 + }, + { + "start": 5377.9, + "end": 5378.88, + "probability": 0.9984 + }, + { + "start": 5379.46, + "end": 5383.56, + "probability": 0.9979 + }, + { + "start": 5384.58, + "end": 5384.9, + "probability": 0.8175 + }, + { + "start": 5385.52, + "end": 5388.82, + "probability": 0.9903 + }, + { + "start": 5390.82, + "end": 5393.12, + "probability": 0.998 + }, + { + "start": 5393.74, + "end": 5395.53, + "probability": 0.6616 + }, + { + "start": 5396.54, + "end": 5399.54, + "probability": 0.6851 + }, + { + "start": 5400.32, + "end": 5402.22, + "probability": 0.9924 + }, + { + "start": 5403.32, + "end": 5404.46, + "probability": 0.9847 + }, + { + "start": 5405.04, + "end": 5408.02, + "probability": 0.9888 + }, + { + "start": 5409.2, + "end": 5411.58, + "probability": 0.9733 + }, + { + "start": 5412.46, + "end": 5413.44, + "probability": 0.9101 + }, + { + "start": 5414.16, + "end": 5415.92, + "probability": 0.9408 + }, + { + "start": 5416.76, + "end": 5418.5, + "probability": 0.9788 + }, + { + "start": 5419.44, + "end": 5422.14, + "probability": 0.9913 + }, + { + "start": 5422.94, + "end": 5424.72, + "probability": 0.985 + }, + { + "start": 5425.96, + "end": 5428.14, + "probability": 0.9982 + }, + { + "start": 5428.56, + "end": 5431.19, + "probability": 0.9976 + }, + { + "start": 5432.46, + "end": 5433.38, + "probability": 0.9313 + }, + { + "start": 5433.74, + "end": 5436.64, + "probability": 0.9795 + }, + { + "start": 5437.72, + "end": 5438.62, + "probability": 0.8889 + }, + { + "start": 5438.9, + "end": 5439.82, + "probability": 0.802 + }, + { + "start": 5440.9, + "end": 5441.9, + "probability": 0.9803 + }, + { + "start": 5443.44, + "end": 5446.98, + "probability": 0.9561 + }, + { + "start": 5448.32, + "end": 5449.36, + "probability": 0.965 + }, + { + "start": 5450.68, + "end": 5451.26, + "probability": 0.7372 + }, + { + "start": 5452.0, + "end": 5453.92, + "probability": 0.9368 + }, + { + "start": 5454.62, + "end": 5455.02, + "probability": 0.8877 + }, + { + "start": 5456.0, + "end": 5458.74, + "probability": 0.9894 + }, + { + "start": 5459.72, + "end": 5461.52, + "probability": 0.9868 + }, + { + "start": 5462.1, + "end": 5463.58, + "probability": 0.9463 + }, + { + "start": 5464.38, + "end": 5466.04, + "probability": 0.9876 + }, + { + "start": 5466.72, + "end": 5469.54, + "probability": 0.9349 + }, + { + "start": 5470.72, + "end": 5474.04, + "probability": 0.9691 + }, + { + "start": 5474.04, + "end": 5478.16, + "probability": 0.9911 + }, + { + "start": 5478.92, + "end": 5479.9, + "probability": 0.6577 + }, + { + "start": 5480.8, + "end": 5481.1, + "probability": 0.8468 + }, + { + "start": 5481.54, + "end": 5481.9, + "probability": 0.9814 + }, + { + "start": 5482.34, + "end": 5485.9, + "probability": 0.9774 + }, + { + "start": 5486.4, + "end": 5486.64, + "probability": 0.8536 + }, + { + "start": 5487.66, + "end": 5488.36, + "probability": 0.6496 + }, + { + "start": 5488.36, + "end": 5490.5, + "probability": 0.848 + }, + { + "start": 5492.38, + "end": 5492.66, + "probability": 0.8017 + }, + { + "start": 5513.08, + "end": 5513.76, + "probability": 0.624 + }, + { + "start": 5514.54, + "end": 5516.5, + "probability": 0.9862 + }, + { + "start": 5516.6, + "end": 5519.56, + "probability": 0.8673 + }, + { + "start": 5520.64, + "end": 5523.14, + "probability": 0.8635 + }, + { + "start": 5524.14, + "end": 5528.42, + "probability": 0.9995 + }, + { + "start": 5528.42, + "end": 5533.98, + "probability": 0.999 + }, + { + "start": 5535.14, + "end": 5536.34, + "probability": 0.6628 + }, + { + "start": 5536.5, + "end": 5541.94, + "probability": 0.9978 + }, + { + "start": 5542.84, + "end": 5544.18, + "probability": 0.9973 + }, + { + "start": 5545.44, + "end": 5548.0, + "probability": 0.9977 + }, + { + "start": 5548.66, + "end": 5549.44, + "probability": 0.832 + }, + { + "start": 5549.62, + "end": 5552.8, + "probability": 0.8467 + }, + { + "start": 5553.58, + "end": 5556.14, + "probability": 0.9097 + }, + { + "start": 5556.72, + "end": 5560.46, + "probability": 0.7198 + }, + { + "start": 5561.66, + "end": 5564.2, + "probability": 0.9335 + }, + { + "start": 5564.2, + "end": 5568.06, + "probability": 0.9952 + }, + { + "start": 5568.8, + "end": 5570.84, + "probability": 0.9424 + }, + { + "start": 5571.6, + "end": 5573.08, + "probability": 0.9899 + }, + { + "start": 5573.74, + "end": 5576.26, + "probability": 0.9976 + }, + { + "start": 5577.52, + "end": 5581.36, + "probability": 0.9971 + }, + { + "start": 5581.36, + "end": 5585.9, + "probability": 0.9949 + }, + { + "start": 5586.54, + "end": 5587.82, + "probability": 0.7278 + }, + { + "start": 5588.02, + "end": 5591.08, + "probability": 0.9827 + }, + { + "start": 5591.26, + "end": 5591.66, + "probability": 0.8638 + }, + { + "start": 5591.9, + "end": 5592.28, + "probability": 0.9715 + }, + { + "start": 5592.86, + "end": 5595.2, + "probability": 0.9825 + }, + { + "start": 5596.68, + "end": 5599.78, + "probability": 0.9987 + }, + { + "start": 5599.98, + "end": 5602.66, + "probability": 0.9911 + }, + { + "start": 5603.36, + "end": 5608.48, + "probability": 0.9971 + }, + { + "start": 5609.54, + "end": 5610.66, + "probability": 0.9714 + }, + { + "start": 5611.1, + "end": 5613.1, + "probability": 0.9329 + }, + { + "start": 5614.6, + "end": 5621.32, + "probability": 0.946 + }, + { + "start": 5621.84, + "end": 5623.84, + "probability": 0.7493 + }, + { + "start": 5624.52, + "end": 5626.32, + "probability": 0.9191 + }, + { + "start": 5628.04, + "end": 5631.84, + "probability": 0.9792 + }, + { + "start": 5632.58, + "end": 5636.14, + "probability": 0.9965 + }, + { + "start": 5636.14, + "end": 5640.26, + "probability": 0.9991 + }, + { + "start": 5640.98, + "end": 5643.16, + "probability": 0.9955 + }, + { + "start": 5643.94, + "end": 5647.76, + "probability": 0.9879 + }, + { + "start": 5649.04, + "end": 5654.62, + "probability": 0.9988 + }, + { + "start": 5654.62, + "end": 5660.38, + "probability": 0.9993 + }, + { + "start": 5662.06, + "end": 5666.1, + "probability": 0.9982 + }, + { + "start": 5666.12, + "end": 5671.1, + "probability": 0.9995 + }, + { + "start": 5671.1, + "end": 5675.4, + "probability": 0.999 + }, + { + "start": 5676.84, + "end": 5678.18, + "probability": 0.9987 + }, + { + "start": 5678.74, + "end": 5683.22, + "probability": 0.998 + }, + { + "start": 5683.22, + "end": 5688.36, + "probability": 0.987 + }, + { + "start": 5689.42, + "end": 5694.02, + "probability": 0.988 + }, + { + "start": 5694.02, + "end": 5697.04, + "probability": 0.9703 + }, + { + "start": 5698.02, + "end": 5702.16, + "probability": 0.9974 + }, + { + "start": 5702.16, + "end": 5705.74, + "probability": 0.9976 + }, + { + "start": 5706.34, + "end": 5711.2, + "probability": 0.9766 + }, + { + "start": 5711.94, + "end": 5715.56, + "probability": 0.9099 + }, + { + "start": 5715.56, + "end": 5718.24, + "probability": 0.9974 + }, + { + "start": 5719.46, + "end": 5724.26, + "probability": 0.9884 + }, + { + "start": 5724.26, + "end": 5729.3, + "probability": 0.9979 + }, + { + "start": 5730.26, + "end": 5734.02, + "probability": 0.8007 + }, + { + "start": 5734.02, + "end": 5737.98, + "probability": 0.9966 + }, + { + "start": 5738.82, + "end": 5741.82, + "probability": 0.981 + }, + { + "start": 5742.36, + "end": 5745.82, + "probability": 0.9937 + }, + { + "start": 5746.28, + "end": 5747.52, + "probability": 0.9019 + }, + { + "start": 5748.08, + "end": 5751.36, + "probability": 0.9965 + }, + { + "start": 5752.56, + "end": 5757.38, + "probability": 0.9861 + }, + { + "start": 5758.04, + "end": 5764.66, + "probability": 0.9933 + }, + { + "start": 5765.32, + "end": 5769.72, + "probability": 0.9998 + }, + { + "start": 5770.3, + "end": 5772.84, + "probability": 0.9972 + }, + { + "start": 5773.86, + "end": 5779.96, + "probability": 0.9968 + }, + { + "start": 5781.48, + "end": 5784.88, + "probability": 0.9976 + }, + { + "start": 5784.88, + "end": 5789.04, + "probability": 0.9991 + }, + { + "start": 5789.04, + "end": 5793.8, + "probability": 0.9997 + }, + { + "start": 5794.42, + "end": 5796.9, + "probability": 0.9938 + }, + { + "start": 5796.94, + "end": 5800.34, + "probability": 0.9972 + }, + { + "start": 5800.58, + "end": 5801.36, + "probability": 0.4835 + }, + { + "start": 5801.7, + "end": 5805.9, + "probability": 0.9858 + }, + { + "start": 5805.9, + "end": 5809.64, + "probability": 0.9771 + }, + { + "start": 5811.54, + "end": 5812.26, + "probability": 0.6628 + }, + { + "start": 5813.32, + "end": 5814.8, + "probability": 0.5439 + }, + { + "start": 5814.92, + "end": 5815.96, + "probability": 0.8782 + }, + { + "start": 5816.1, + "end": 5817.46, + "probability": 0.9069 + }, + { + "start": 5818.32, + "end": 5821.92, + "probability": 0.9585 + }, + { + "start": 5822.44, + "end": 5825.24, + "probability": 0.9857 + }, + { + "start": 5825.32, + "end": 5828.78, + "probability": 0.9996 + }, + { + "start": 5829.82, + "end": 5832.7, + "probability": 0.9685 + }, + { + "start": 5833.24, + "end": 5836.56, + "probability": 0.9919 + }, + { + "start": 5837.42, + "end": 5843.0, + "probability": 0.9501 + }, + { + "start": 5843.72, + "end": 5846.36, + "probability": 0.9858 + }, + { + "start": 5847.4, + "end": 5849.8, + "probability": 0.9493 + }, + { + "start": 5850.58, + "end": 5852.62, + "probability": 0.9937 + }, + { + "start": 5852.84, + "end": 5854.64, + "probability": 0.8007 + }, + { + "start": 5855.22, + "end": 5857.32, + "probability": 0.5617 + }, + { + "start": 5857.5, + "end": 5857.88, + "probability": 0.5002 + }, + { + "start": 5857.96, + "end": 5860.56, + "probability": 0.6655 + }, + { + "start": 5860.7, + "end": 5861.82, + "probability": 0.866 + }, + { + "start": 5862.4, + "end": 5865.0, + "probability": 0.9768 + }, + { + "start": 5865.52, + "end": 5867.86, + "probability": 0.9792 + }, + { + "start": 5868.84, + "end": 5870.68, + "probability": 0.8566 + }, + { + "start": 5870.72, + "end": 5872.6, + "probability": 0.9195 + }, + { + "start": 5873.26, + "end": 5877.36, + "probability": 0.9778 + }, + { + "start": 5878.08, + "end": 5878.3, + "probability": 0.5197 + }, + { + "start": 5878.44, + "end": 5879.34, + "probability": 0.8239 + }, + { + "start": 5879.44, + "end": 5881.56, + "probability": 0.9932 + }, + { + "start": 5882.06, + "end": 5882.94, + "probability": 0.9791 + }, + { + "start": 5883.0, + "end": 5884.56, + "probability": 0.7283 + }, + { + "start": 5884.72, + "end": 5885.04, + "probability": 0.8402 + }, + { + "start": 5886.0, + "end": 5890.14, + "probability": 0.9955 + }, + { + "start": 5890.14, + "end": 5896.74, + "probability": 0.99 + }, + { + "start": 5896.96, + "end": 5897.74, + "probability": 0.8743 + }, + { + "start": 5898.3, + "end": 5901.46, + "probability": 0.9637 + }, + { + "start": 5901.92, + "end": 5902.32, + "probability": 0.5566 + }, + { + "start": 5903.48, + "end": 5905.52, + "probability": 0.8664 + }, + { + "start": 5906.3, + "end": 5908.78, + "probability": 0.6044 + }, + { + "start": 5925.48, + "end": 5926.42, + "probability": 0.7324 + }, + { + "start": 5927.32, + "end": 5929.36, + "probability": 0.901 + }, + { + "start": 5930.46, + "end": 5932.14, + "probability": 0.9081 + }, + { + "start": 5934.14, + "end": 5937.04, + "probability": 0.8316 + }, + { + "start": 5938.28, + "end": 5940.46, + "probability": 0.9818 + }, + { + "start": 5943.96, + "end": 5946.76, + "probability": 0.9939 + }, + { + "start": 5948.16, + "end": 5950.86, + "probability": 0.9467 + }, + { + "start": 5951.22, + "end": 5952.41, + "probability": 0.9213 + }, + { + "start": 5953.76, + "end": 5956.77, + "probability": 0.9834 + }, + { + "start": 5957.76, + "end": 5960.48, + "probability": 0.9458 + }, + { + "start": 5961.86, + "end": 5962.74, + "probability": 0.7219 + }, + { + "start": 5966.3, + "end": 5968.16, + "probability": 0.9872 + }, + { + "start": 5968.7, + "end": 5968.86, + "probability": 0.9948 + }, + { + "start": 5969.5, + "end": 5970.1, + "probability": 0.9891 + }, + { + "start": 5971.14, + "end": 5972.76, + "probability": 0.7863 + }, + { + "start": 5973.12, + "end": 5975.12, + "probability": 0.8848 + }, + { + "start": 5975.36, + "end": 5976.1, + "probability": 0.8583 + }, + { + "start": 5976.72, + "end": 5978.78, + "probability": 0.9925 + }, + { + "start": 5980.94, + "end": 5982.6, + "probability": 0.8843 + }, + { + "start": 5983.4, + "end": 5985.4, + "probability": 0.9977 + }, + { + "start": 5986.74, + "end": 5990.26, + "probability": 0.9995 + }, + { + "start": 5990.26, + "end": 5994.9, + "probability": 0.9915 + }, + { + "start": 5995.76, + "end": 5998.62, + "probability": 0.9996 + }, + { + "start": 6000.1, + "end": 6004.7, + "probability": 0.9965 + }, + { + "start": 6005.8, + "end": 6006.98, + "probability": 0.9978 + }, + { + "start": 6007.02, + "end": 6008.8, + "probability": 0.8794 + }, + { + "start": 6010.18, + "end": 6011.98, + "probability": 0.9567 + }, + { + "start": 6013.78, + "end": 6014.98, + "probability": 0.8586 + }, + { + "start": 6015.3, + "end": 6016.86, + "probability": 0.6259 + }, + { + "start": 6016.9, + "end": 6017.0, + "probability": 0.377 + }, + { + "start": 6017.08, + "end": 6018.06, + "probability": 0.9976 + }, + { + "start": 6019.28, + "end": 6021.86, + "probability": 0.9995 + }, + { + "start": 6022.68, + "end": 6024.32, + "probability": 0.9901 + }, + { + "start": 6025.3, + "end": 6026.2, + "probability": 0.9987 + }, + { + "start": 6027.22, + "end": 6028.88, + "probability": 0.9973 + }, + { + "start": 6030.7, + "end": 6032.86, + "probability": 0.8218 + }, + { + "start": 6034.72, + "end": 6037.94, + "probability": 0.9775 + }, + { + "start": 6039.44, + "end": 6043.81, + "probability": 0.9955 + }, + { + "start": 6043.98, + "end": 6045.46, + "probability": 0.7809 + }, + { + "start": 6045.82, + "end": 6047.48, + "probability": 0.9924 + }, + { + "start": 6049.74, + "end": 6052.08, + "probability": 0.9336 + }, + { + "start": 6053.6, + "end": 6054.32, + "probability": 0.8645 + }, + { + "start": 6055.08, + "end": 6059.08, + "probability": 0.981 + }, + { + "start": 6059.08, + "end": 6063.18, + "probability": 0.9914 + }, + { + "start": 6063.82, + "end": 6066.0, + "probability": 0.9966 + }, + { + "start": 6066.62, + "end": 6067.46, + "probability": 0.9959 + }, + { + "start": 6068.3, + "end": 6071.26, + "probability": 0.9621 + }, + { + "start": 6071.78, + "end": 6075.42, + "probability": 0.9955 + }, + { + "start": 6075.42, + "end": 6078.7, + "probability": 0.9609 + }, + { + "start": 6079.58, + "end": 6080.16, + "probability": 0.6343 + }, + { + "start": 6082.28, + "end": 6083.92, + "probability": 0.925 + }, + { + "start": 6084.9, + "end": 6088.04, + "probability": 0.7856 + }, + { + "start": 6088.6, + "end": 6093.64, + "probability": 0.8778 + }, + { + "start": 6094.66, + "end": 6095.54, + "probability": 0.9967 + }, + { + "start": 6096.2, + "end": 6097.18, + "probability": 0.9852 + }, + { + "start": 6098.24, + "end": 6099.04, + "probability": 0.9819 + }, + { + "start": 6100.34, + "end": 6101.84, + "probability": 0.9186 + }, + { + "start": 6102.62, + "end": 6103.18, + "probability": 0.8888 + }, + { + "start": 6105.32, + "end": 6106.46, + "probability": 0.9033 + }, + { + "start": 6107.22, + "end": 6107.94, + "probability": 0.4477 + }, + { + "start": 6108.74, + "end": 6108.8, + "probability": 0.8745 + }, + { + "start": 6109.52, + "end": 6110.84, + "probability": 0.9627 + }, + { + "start": 6112.18, + "end": 6113.36, + "probability": 0.9547 + }, + { + "start": 6114.7, + "end": 6115.46, + "probability": 0.9885 + }, + { + "start": 6117.16, + "end": 6119.18, + "probability": 0.9941 + }, + { + "start": 6119.74, + "end": 6123.44, + "probability": 0.9819 + }, + { + "start": 6124.86, + "end": 6126.18, + "probability": 0.9908 + }, + { + "start": 6127.9, + "end": 6128.26, + "probability": 0.7776 + }, + { + "start": 6128.8, + "end": 6129.1, + "probability": 0.8513 + }, + { + "start": 6130.82, + "end": 6131.38, + "probability": 0.7001 + }, + { + "start": 6132.94, + "end": 6134.98, + "probability": 0.8001 + }, + { + "start": 6136.02, + "end": 6138.68, + "probability": 0.9891 + }, + { + "start": 6138.68, + "end": 6141.22, + "probability": 0.9777 + }, + { + "start": 6142.38, + "end": 6144.0, + "probability": 0.9983 + }, + { + "start": 6144.04, + "end": 6146.3, + "probability": 0.9983 + }, + { + "start": 6146.76, + "end": 6149.14, + "probability": 0.9917 + }, + { + "start": 6149.32, + "end": 6150.74, + "probability": 0.9985 + }, + { + "start": 6151.42, + "end": 6152.24, + "probability": 0.9976 + }, + { + "start": 6153.3, + "end": 6155.96, + "probability": 0.9797 + }, + { + "start": 6156.24, + "end": 6158.94, + "probability": 0.9809 + }, + { + "start": 6159.72, + "end": 6160.24, + "probability": 0.9488 + }, + { + "start": 6160.86, + "end": 6161.34, + "probability": 0.6346 + }, + { + "start": 6161.44, + "end": 6162.06, + "probability": 0.7783 + }, + { + "start": 6162.16, + "end": 6166.76, + "probability": 0.7689 + }, + { + "start": 6167.04, + "end": 6169.78, + "probability": 0.936 + }, + { + "start": 6170.86, + "end": 6172.8, + "probability": 0.9742 + }, + { + "start": 6174.42, + "end": 6175.48, + "probability": 0.9495 + }, + { + "start": 6176.5, + "end": 6179.16, + "probability": 0.7623 + }, + { + "start": 6179.68, + "end": 6180.4, + "probability": 0.6191 + }, + { + "start": 6180.4, + "end": 6181.46, + "probability": 0.5236 + }, + { + "start": 6181.66, + "end": 6182.97, + "probability": 0.989 + }, + { + "start": 6183.56, + "end": 6185.5, + "probability": 0.9984 + }, + { + "start": 6186.2, + "end": 6187.88, + "probability": 0.9888 + }, + { + "start": 6188.54, + "end": 6189.02, + "probability": 0.0002 + }, + { + "start": 6190.44, + "end": 6192.42, + "probability": 0.9248 + }, + { + "start": 6194.28, + "end": 6196.0, + "probability": 0.8092 + }, + { + "start": 6196.78, + "end": 6197.7, + "probability": 0.9858 + }, + { + "start": 6198.56, + "end": 6199.12, + "probability": 0.9847 + }, + { + "start": 6200.2, + "end": 6202.02, + "probability": 0.843 + }, + { + "start": 6203.54, + "end": 6205.1, + "probability": 0.965 + }, + { + "start": 6205.36, + "end": 6210.14, + "probability": 0.979 + }, + { + "start": 6210.98, + "end": 6213.2, + "probability": 0.9982 + }, + { + "start": 6214.0, + "end": 6215.78, + "probability": 0.9146 + }, + { + "start": 6216.54, + "end": 6218.6, + "probability": 0.9961 + }, + { + "start": 6219.18, + "end": 6220.68, + "probability": 0.9981 + }, + { + "start": 6221.58, + "end": 6222.72, + "probability": 0.9978 + }, + { + "start": 6222.84, + "end": 6224.98, + "probability": 0.9925 + }, + { + "start": 6225.38, + "end": 6232.7, + "probability": 0.8125 + }, + { + "start": 6233.3, + "end": 6234.34, + "probability": 0.9868 + }, + { + "start": 6234.94, + "end": 6235.78, + "probability": 0.998 + }, + { + "start": 6236.7, + "end": 6237.42, + "probability": 0.7383 + }, + { + "start": 6238.42, + "end": 6239.22, + "probability": 0.9029 + }, + { + "start": 6240.04, + "end": 6240.82, + "probability": 0.6893 + }, + { + "start": 6241.54, + "end": 6244.96, + "probability": 0.9907 + }, + { + "start": 6246.14, + "end": 6246.96, + "probability": 0.9576 + }, + { + "start": 6247.74, + "end": 6252.32, + "probability": 0.9927 + }, + { + "start": 6253.16, + "end": 6253.88, + "probability": 0.7416 + }, + { + "start": 6253.92, + "end": 6256.34, + "probability": 0.9727 + }, + { + "start": 6256.96, + "end": 6257.48, + "probability": 0.7031 + }, + { + "start": 6258.65, + "end": 6260.26, + "probability": 0.998 + }, + { + "start": 6260.5, + "end": 6262.66, + "probability": 0.9744 + }, + { + "start": 6263.32, + "end": 6265.5, + "probability": 0.9885 + }, + { + "start": 6266.18, + "end": 6267.0, + "probability": 0.9399 + }, + { + "start": 6268.0, + "end": 6268.62, + "probability": 0.9431 + }, + { + "start": 6269.5, + "end": 6269.74, + "probability": 0.9766 + }, + { + "start": 6270.82, + "end": 6273.02, + "probability": 0.8192 + }, + { + "start": 6273.7, + "end": 6279.98, + "probability": 0.7222 + }, + { + "start": 6280.44, + "end": 6283.36, + "probability": 0.8669 + }, + { + "start": 6283.98, + "end": 6285.36, + "probability": 0.896 + }, + { + "start": 6287.02, + "end": 6288.58, + "probability": 0.9536 + }, + { + "start": 6290.2, + "end": 6291.64, + "probability": 0.9926 + }, + { + "start": 6292.3, + "end": 6293.4, + "probability": 0.9994 + }, + { + "start": 6294.4, + "end": 6296.76, + "probability": 0.8765 + }, + { + "start": 6297.3, + "end": 6298.76, + "probability": 0.8814 + }, + { + "start": 6300.48, + "end": 6301.32, + "probability": 0.3894 + }, + { + "start": 6303.44, + "end": 6306.0, + "probability": 0.9926 + }, + { + "start": 6306.8, + "end": 6310.82, + "probability": 0.9875 + }, + { + "start": 6311.24, + "end": 6312.19, + "probability": 0.853 + }, + { + "start": 6313.92, + "end": 6315.18, + "probability": 0.9658 + }, + { + "start": 6315.56, + "end": 6318.54, + "probability": 0.9529 + }, + { + "start": 6320.18, + "end": 6324.1, + "probability": 0.9897 + }, + { + "start": 6324.74, + "end": 6326.96, + "probability": 0.9976 + }, + { + "start": 6327.46, + "end": 6329.28, + "probability": 0.9987 + }, + { + "start": 6330.08, + "end": 6331.18, + "probability": 0.913 + }, + { + "start": 6331.94, + "end": 6332.76, + "probability": 0.8965 + }, + { + "start": 6333.52, + "end": 6334.74, + "probability": 0.7127 + }, + { + "start": 6335.8, + "end": 6339.6, + "probability": 0.9858 + }, + { + "start": 6340.58, + "end": 6341.88, + "probability": 0.8599 + }, + { + "start": 6342.54, + "end": 6343.5, + "probability": 0.6995 + }, + { + "start": 6343.66, + "end": 6346.14, + "probability": 0.9692 + }, + { + "start": 6347.9, + "end": 6350.46, + "probability": 0.9969 + }, + { + "start": 6351.04, + "end": 6353.02, + "probability": 0.9916 + }, + { + "start": 6353.16, + "end": 6353.68, + "probability": 0.4776 + }, + { + "start": 6354.34, + "end": 6355.86, + "probability": 0.8628 + }, + { + "start": 6356.04, + "end": 6360.38, + "probability": 0.9656 + }, + { + "start": 6361.1, + "end": 6364.8, + "probability": 0.8687 + }, + { + "start": 6365.38, + "end": 6368.36, + "probability": 0.9831 + }, + { + "start": 6369.0, + "end": 6370.8, + "probability": 0.9863 + }, + { + "start": 6371.58, + "end": 6374.86, + "probability": 0.9172 + }, + { + "start": 6375.46, + "end": 6382.0, + "probability": 0.9989 + }, + { + "start": 6382.64, + "end": 6386.04, + "probability": 0.8574 + }, + { + "start": 6386.58, + "end": 6389.5, + "probability": 0.8005 + }, + { + "start": 6390.06, + "end": 6391.94, + "probability": 0.9418 + }, + { + "start": 6392.6, + "end": 6398.04, + "probability": 0.999 + }, + { + "start": 6398.56, + "end": 6401.42, + "probability": 0.9928 + }, + { + "start": 6402.16, + "end": 6403.28, + "probability": 0.5491 + }, + { + "start": 6403.4, + "end": 6405.0, + "probability": 0.9736 + }, + { + "start": 6405.32, + "end": 6405.76, + "probability": 0.8232 + }, + { + "start": 6409.92, + "end": 6413.24, + "probability": 0.246 + }, + { + "start": 6414.3, + "end": 6416.4, + "probability": 0.6761 + }, + { + "start": 6417.28, + "end": 6417.9, + "probability": 0.8015 + }, + { + "start": 6418.0, + "end": 6421.74, + "probability": 0.9744 + }, + { + "start": 6421.94, + "end": 6425.7, + "probability": 0.969 + }, + { + "start": 6426.14, + "end": 6429.18, + "probability": 0.9454 + }, + { + "start": 6430.06, + "end": 6431.1, + "probability": 0.8921 + }, + { + "start": 6431.84, + "end": 6432.72, + "probability": 0.7702 + }, + { + "start": 6433.24, + "end": 6435.12, + "probability": 0.9655 + }, + { + "start": 6436.06, + "end": 6436.26, + "probability": 0.84 + }, + { + "start": 6469.6, + "end": 6471.86, + "probability": 0.0859 + }, + { + "start": 6476.22, + "end": 6477.8, + "probability": 0.1362 + }, + { + "start": 6477.84, + "end": 6478.44, + "probability": 0.0118 + }, + { + "start": 6478.7, + "end": 6479.98, + "probability": 0.0689 + }, + { + "start": 6480.14, + "end": 6484.22, + "probability": 0.245 + }, + { + "start": 6484.5, + "end": 6485.36, + "probability": 0.1003 + }, + { + "start": 6596.42, + "end": 6598.5, + "probability": 0.738 + }, + { + "start": 6598.96, + "end": 6601.36, + "probability": 0.8171 + }, + { + "start": 6601.44, + "end": 6601.8, + "probability": 0.9184 + }, + { + "start": 6614.16, + "end": 6616.62, + "probability": 0.7723 + }, + { + "start": 6617.16, + "end": 6618.24, + "probability": 0.7232 + }, + { + "start": 6618.84, + "end": 6623.28, + "probability": 0.9841 + }, + { + "start": 6623.54, + "end": 6625.84, + "probability": 0.663 + }, + { + "start": 6626.02, + "end": 6629.36, + "probability": 0.8532 + }, + { + "start": 6630.32, + "end": 6634.16, + "probability": 0.9949 + }, + { + "start": 6634.16, + "end": 6637.8, + "probability": 0.9706 + }, + { + "start": 6638.38, + "end": 6642.76, + "probability": 0.9441 + }, + { + "start": 6642.76, + "end": 6646.58, + "probability": 0.9812 + }, + { + "start": 6647.18, + "end": 6650.91, + "probability": 0.9854 + }, + { + "start": 6651.5, + "end": 6653.64, + "probability": 0.9828 + }, + { + "start": 6654.28, + "end": 6656.89, + "probability": 0.757 + }, + { + "start": 6658.68, + "end": 6659.8, + "probability": 0.6668 + }, + { + "start": 6660.48, + "end": 6665.44, + "probability": 0.8123 + }, + { + "start": 6665.72, + "end": 6669.64, + "probability": 0.6576 + }, + { + "start": 6669.64, + "end": 6670.66, + "probability": 0.6836 + }, + { + "start": 6671.26, + "end": 6678.34, + "probability": 0.9846 + }, + { + "start": 6678.85, + "end": 6693.12, + "probability": 0.335 + }, + { + "start": 6693.72, + "end": 6697.48, + "probability": 0.9536 + }, + { + "start": 6698.24, + "end": 6702.16, + "probability": 0.9849 + }, + { + "start": 6702.68, + "end": 6703.62, + "probability": 0.803 + }, + { + "start": 6703.98, + "end": 6706.67, + "probability": 0.9861 + }, + { + "start": 6707.8, + "end": 6711.56, + "probability": 0.984 + }, + { + "start": 6711.56, + "end": 6715.9, + "probability": 0.9925 + }, + { + "start": 6716.7, + "end": 6721.72, + "probability": 0.9934 + }, + { + "start": 6721.86, + "end": 6725.16, + "probability": 0.9751 + }, + { + "start": 6725.16, + "end": 6726.82, + "probability": 0.9688 + }, + { + "start": 6727.91, + "end": 6729.75, + "probability": 0.7428 + }, + { + "start": 6730.44, + "end": 6730.8, + "probability": 0.4475 + }, + { + "start": 6730.8, + "end": 6733.64, + "probability": 0.9523 + }, + { + "start": 6733.64, + "end": 6736.36, + "probability": 0.9412 + }, + { + "start": 6736.38, + "end": 6739.54, + "probability": 0.9926 + }, + { + "start": 6740.6, + "end": 6744.7, + "probability": 0.9729 + }, + { + "start": 6744.94, + "end": 6749.88, + "probability": 0.9912 + }, + { + "start": 6749.88, + "end": 6754.06, + "probability": 0.998 + }, + { + "start": 6754.28, + "end": 6759.9, + "probability": 0.998 + }, + { + "start": 6760.58, + "end": 6763.8, + "probability": 0.9986 + }, + { + "start": 6764.6, + "end": 6767.98, + "probability": 0.994 + }, + { + "start": 6768.62, + "end": 6773.47, + "probability": 0.9974 + }, + { + "start": 6773.72, + "end": 6777.74, + "probability": 0.9983 + }, + { + "start": 6778.9, + "end": 6781.7, + "probability": 0.9908 + }, + { + "start": 6781.7, + "end": 6784.96, + "probability": 0.9986 + }, + { + "start": 6785.6, + "end": 6786.44, + "probability": 0.992 + }, + { + "start": 6787.08, + "end": 6788.18, + "probability": 0.9701 + }, + { + "start": 6789.44, + "end": 6794.6, + "probability": 0.9678 + }, + { + "start": 6795.12, + "end": 6797.64, + "probability": 0.9603 + }, + { + "start": 6797.64, + "end": 6802.36, + "probability": 0.9723 + }, + { + "start": 6803.18, + "end": 6803.66, + "probability": 0.5523 + }, + { + "start": 6804.38, + "end": 6805.84, + "probability": 0.7436 + }, + { + "start": 6806.36, + "end": 6807.06, + "probability": 0.9185 + }, + { + "start": 6807.22, + "end": 6810.56, + "probability": 0.9641 + }, + { + "start": 6810.88, + "end": 6813.24, + "probability": 0.9796 + }, + { + "start": 6813.36, + "end": 6814.88, + "probability": 0.7826 + }, + { + "start": 6815.38, + "end": 6817.0, + "probability": 0.6599 + }, + { + "start": 6817.52, + "end": 6819.14, + "probability": 0.8029 + }, + { + "start": 6819.78, + "end": 6820.64, + "probability": 0.467 + }, + { + "start": 6821.0, + "end": 6821.46, + "probability": 0.4943 + }, + { + "start": 6822.1, + "end": 6823.16, + "probability": 0.4422 + }, + { + "start": 6823.54, + "end": 6824.02, + "probability": 0.7051 + }, + { + "start": 6825.34, + "end": 6827.8, + "probability": 0.7848 + }, + { + "start": 6828.24, + "end": 6829.86, + "probability": 0.8433 + }, + { + "start": 6829.92, + "end": 6830.36, + "probability": 0.855 + }, + { + "start": 6830.46, + "end": 6831.37, + "probability": 0.891 + }, + { + "start": 6832.14, + "end": 6833.46, + "probability": 0.4752 + }, + { + "start": 6835.1, + "end": 6841.6, + "probability": 0.788 + }, + { + "start": 6842.98, + "end": 6846.02, + "probability": 0.5951 + }, + { + "start": 6846.48, + "end": 6848.78, + "probability": 0.6897 + }, + { + "start": 6848.96, + "end": 6849.72, + "probability": 0.5369 + }, + { + "start": 6849.86, + "end": 6851.22, + "probability": 0.779 + }, + { + "start": 6851.9, + "end": 6854.18, + "probability": 0.7959 + }, + { + "start": 6854.54, + "end": 6856.6, + "probability": 0.9859 + }, + { + "start": 6857.12, + "end": 6858.58, + "probability": 0.5815 + }, + { + "start": 6859.14, + "end": 6861.66, + "probability": 0.7611 + }, + { + "start": 6864.7, + "end": 6865.11, + "probability": 0.7476 + }, + { + "start": 6865.74, + "end": 6866.28, + "probability": 0.2498 + }, + { + "start": 6867.02, + "end": 6867.22, + "probability": 0.8872 + }, + { + "start": 6867.98, + "end": 6868.08, + "probability": 0.5422 + }, + { + "start": 6868.28, + "end": 6869.06, + "probability": 0.8165 + }, + { + "start": 6869.24, + "end": 6870.06, + "probability": 0.8733 + }, + { + "start": 6870.32, + "end": 6871.86, + "probability": 0.8999 + }, + { + "start": 6871.94, + "end": 6874.48, + "probability": 0.985 + }, + { + "start": 6874.7, + "end": 6875.92, + "probability": 0.9214 + }, + { + "start": 6876.94, + "end": 6877.98, + "probability": 0.7034 + }, + { + "start": 6878.18, + "end": 6880.81, + "probability": 0.7123 + }, + { + "start": 6882.02, + "end": 6884.46, + "probability": 0.6602 + }, + { + "start": 6884.86, + "end": 6886.44, + "probability": 0.9135 + }, + { + "start": 6886.82, + "end": 6889.54, + "probability": 0.8667 + }, + { + "start": 6889.68, + "end": 6892.8, + "probability": 0.7503 + }, + { + "start": 6893.1, + "end": 6893.88, + "probability": 0.9301 + }, + { + "start": 6894.26, + "end": 6898.46, + "probability": 0.9543 + }, + { + "start": 6898.92, + "end": 6901.12, + "probability": 0.6181 + }, + { + "start": 6901.76, + "end": 6902.88, + "probability": 0.953 + }, + { + "start": 6903.12, + "end": 6903.4, + "probability": 0.5761 + }, + { + "start": 6904.0, + "end": 6904.72, + "probability": 0.5125 + }, + { + "start": 6905.04, + "end": 6906.19, + "probability": 0.4632 + }, + { + "start": 6906.46, + "end": 6909.1, + "probability": 0.5453 + }, + { + "start": 6909.92, + "end": 6914.88, + "probability": 0.6961 + }, + { + "start": 6916.72, + "end": 6919.24, + "probability": 0.96 + }, + { + "start": 6923.14, + "end": 6924.44, + "probability": 0.6102 + }, + { + "start": 6942.12, + "end": 6942.48, + "probability": 0.5236 + }, + { + "start": 6942.48, + "end": 6942.48, + "probability": 0.0758 + }, + { + "start": 6942.48, + "end": 6943.96, + "probability": 0.6432 + }, + { + "start": 6945.3, + "end": 6951.06, + "probability": 0.6696 + }, + { + "start": 6952.54, + "end": 6953.5, + "probability": 0.4301 + }, + { + "start": 6954.22, + "end": 6959.02, + "probability": 0.9893 + }, + { + "start": 6960.96, + "end": 6961.38, + "probability": 0.7468 + }, + { + "start": 6981.64, + "end": 6986.18, + "probability": 0.1891 + }, + { + "start": 6987.06, + "end": 6987.34, + "probability": 0.04 + }, + { + "start": 6987.34, + "end": 6987.48, + "probability": 0.6504 + }, + { + "start": 6987.48, + "end": 6987.83, + "probability": 0.2827 + }, + { + "start": 6988.64, + "end": 6989.4, + "probability": 0.9486 + }, + { + "start": 6989.54, + "end": 6990.28, + "probability": 0.8082 + }, + { + "start": 6991.52, + "end": 6995.04, + "probability": 0.9963 + }, + { + "start": 6996.06, + "end": 7000.6, + "probability": 0.9996 + }, + { + "start": 7001.26, + "end": 7002.38, + "probability": 0.7368 + }, + { + "start": 7002.6, + "end": 7005.62, + "probability": 0.8143 + }, + { + "start": 7006.76, + "end": 7009.3, + "probability": 0.1869 + }, + { + "start": 7009.54, + "end": 7010.14, + "probability": 0.7317 + }, + { + "start": 7010.56, + "end": 7011.98, + "probability": 0.8031 + }, + { + "start": 7012.02, + "end": 7013.16, + "probability": 0.2473 + }, + { + "start": 7013.84, + "end": 7014.48, + "probability": 0.9327 + }, + { + "start": 7021.26, + "end": 7024.34, + "probability": 0.6747 + }, + { + "start": 7024.68, + "end": 7025.06, + "probability": 0.5081 + }, + { + "start": 7025.64, + "end": 7026.32, + "probability": 0.6785 + }, + { + "start": 7026.4, + "end": 7026.66, + "probability": 0.7274 + }, + { + "start": 7030.05, + "end": 7032.01, + "probability": 0.747 + }, + { + "start": 7032.72, + "end": 7033.7, + "probability": 0.7742 + }, + { + "start": 7033.94, + "end": 7034.74, + "probability": 0.9686 + }, + { + "start": 7035.04, + "end": 7036.12, + "probability": 0.797 + }, + { + "start": 7036.84, + "end": 7038.64, + "probability": 0.5985 + }, + { + "start": 7038.94, + "end": 7040.98, + "probability": 0.575 + }, + { + "start": 7041.98, + "end": 7043.36, + "probability": 0.9834 + }, + { + "start": 7043.5, + "end": 7044.62, + "probability": 0.8496 + }, + { + "start": 7044.8, + "end": 7048.42, + "probability": 0.7439 + }, + { + "start": 7048.58, + "end": 7049.58, + "probability": 0.7758 + }, + { + "start": 7049.68, + "end": 7051.32, + "probability": 0.5019 + }, + { + "start": 7051.5, + "end": 7052.12, + "probability": 0.7788 + }, + { + "start": 7052.92, + "end": 7054.28, + "probability": 0.5125 + }, + { + "start": 7054.84, + "end": 7057.81, + "probability": 0.9939 + }, + { + "start": 7059.54, + "end": 7060.62, + "probability": 0.5773 + }, + { + "start": 7060.8, + "end": 7062.46, + "probability": 0.9398 + }, + { + "start": 7062.56, + "end": 7063.42, + "probability": 0.9604 + }, + { + "start": 7063.82, + "end": 7065.76, + "probability": 0.948 + }, + { + "start": 7066.56, + "end": 7068.0, + "probability": 0.9571 + }, + { + "start": 7068.66, + "end": 7069.74, + "probability": 0.9375 + }, + { + "start": 7070.36, + "end": 7072.54, + "probability": 0.5892 + }, + { + "start": 7073.16, + "end": 7075.9, + "probability": 0.9765 + }, + { + "start": 7076.6, + "end": 7077.85, + "probability": 0.8519 + }, + { + "start": 7078.24, + "end": 7084.02, + "probability": 0.9808 + }, + { + "start": 7085.0, + "end": 7087.02, + "probability": 0.9985 + }, + { + "start": 7087.92, + "end": 7092.22, + "probability": 0.8426 + }, + { + "start": 7092.28, + "end": 7097.02, + "probability": 0.9262 + }, + { + "start": 7097.1, + "end": 7102.28, + "probability": 0.8867 + }, + { + "start": 7102.34, + "end": 7103.02, + "probability": 0.8713 + }, + { + "start": 7103.42, + "end": 7104.22, + "probability": 0.5545 + }, + { + "start": 7104.4, + "end": 7104.94, + "probability": 0.6563 + }, + { + "start": 7105.66, + "end": 7107.0, + "probability": 0.953 + }, + { + "start": 7107.58, + "end": 7113.58, + "probability": 0.9816 + }, + { + "start": 7114.0, + "end": 7115.92, + "probability": 0.9669 + }, + { + "start": 7116.5, + "end": 7121.87, + "probability": 0.9761 + }, + { + "start": 7122.82, + "end": 7125.52, + "probability": 0.9937 + }, + { + "start": 7125.6, + "end": 7127.82, + "probability": 0.7993 + }, + { + "start": 7127.9, + "end": 7128.36, + "probability": 0.8796 + }, + { + "start": 7128.48, + "end": 7131.32, + "probability": 0.9985 + }, + { + "start": 7131.94, + "end": 7135.92, + "probability": 0.7656 + }, + { + "start": 7136.7, + "end": 7140.16, + "probability": 0.7836 + }, + { + "start": 7140.38, + "end": 7143.66, + "probability": 0.7438 + }, + { + "start": 7144.3, + "end": 7144.86, + "probability": 0.5866 + }, + { + "start": 7145.64, + "end": 7146.66, + "probability": 0.8589 + }, + { + "start": 7147.9, + "end": 7149.98, + "probability": 0.7489 + }, + { + "start": 7150.1, + "end": 7154.1, + "probability": 0.9182 + }, + { + "start": 7154.62, + "end": 7159.1, + "probability": 0.6792 + }, + { + "start": 7159.12, + "end": 7160.56, + "probability": 0.6379 + }, + { + "start": 7160.74, + "end": 7161.3, + "probability": 0.8547 + }, + { + "start": 7161.5, + "end": 7162.3, + "probability": 0.6844 + }, + { + "start": 7162.32, + "end": 7167.06, + "probability": 0.9911 + }, + { + "start": 7167.14, + "end": 7169.33, + "probability": 0.9938 + }, + { + "start": 7170.18, + "end": 7172.7, + "probability": 0.9753 + }, + { + "start": 7173.26, + "end": 7175.78, + "probability": 0.9746 + }, + { + "start": 7176.06, + "end": 7178.94, + "probability": 0.9952 + }, + { + "start": 7179.54, + "end": 7181.62, + "probability": 0.9894 + }, + { + "start": 7183.18, + "end": 7186.38, + "probability": 0.8801 + }, + { + "start": 7187.74, + "end": 7189.08, + "probability": 0.9896 + }, + { + "start": 7190.32, + "end": 7193.26, + "probability": 0.9294 + }, + { + "start": 7193.76, + "end": 7195.94, + "probability": 0.9941 + }, + { + "start": 7196.8, + "end": 7199.84, + "probability": 0.9523 + }, + { + "start": 7200.7, + "end": 7201.78, + "probability": 0.9429 + }, + { + "start": 7203.34, + "end": 7206.52, + "probability": 0.8718 + }, + { + "start": 7206.7, + "end": 7207.68, + "probability": 0.6712 + }, + { + "start": 7208.42, + "end": 7208.42, + "probability": 0.8921 + }, + { + "start": 7209.0, + "end": 7211.74, + "probability": 0.9829 + }, + { + "start": 7212.5, + "end": 7215.58, + "probability": 0.9979 + }, + { + "start": 7215.86, + "end": 7216.65, + "probability": 0.9328 + }, + { + "start": 7216.76, + "end": 7218.16, + "probability": 0.9225 + }, + { + "start": 7218.6, + "end": 7219.68, + "probability": 0.8799 + }, + { + "start": 7220.98, + "end": 7221.62, + "probability": 0.9711 + }, + { + "start": 7222.66, + "end": 7223.04, + "probability": 0.7763 + }, + { + "start": 7224.24, + "end": 7225.54, + "probability": 0.9611 + }, + { + "start": 7226.86, + "end": 7227.32, + "probability": 0.6733 + }, + { + "start": 7227.54, + "end": 7228.53, + "probability": 0.9653 + }, + { + "start": 7229.06, + "end": 7232.74, + "probability": 0.9648 + }, + { + "start": 7233.84, + "end": 7235.36, + "probability": 0.5679 + }, + { + "start": 7235.54, + "end": 7237.14, + "probability": 0.8487 + }, + { + "start": 7237.3, + "end": 7238.5, + "probability": 0.8744 + }, + { + "start": 7238.54, + "end": 7240.86, + "probability": 0.9762 + }, + { + "start": 7241.7, + "end": 7243.52, + "probability": 0.7428 + }, + { + "start": 7243.84, + "end": 7245.68, + "probability": 0.7914 + }, + { + "start": 7245.94, + "end": 7246.58, + "probability": 0.9591 + }, + { + "start": 7247.22, + "end": 7247.86, + "probability": 0.682 + }, + { + "start": 7248.0, + "end": 7252.78, + "probability": 0.9283 + }, + { + "start": 7253.1, + "end": 7253.68, + "probability": 0.8158 + }, + { + "start": 7254.03, + "end": 7256.21, + "probability": 0.993 + }, + { + "start": 7256.5, + "end": 7259.68, + "probability": 0.8614 + }, + { + "start": 7259.8, + "end": 7260.48, + "probability": 0.6976 + }, + { + "start": 7261.18, + "end": 7262.5, + "probability": 0.9954 + }, + { + "start": 7263.24, + "end": 7264.02, + "probability": 0.6814 + }, + { + "start": 7264.84, + "end": 7265.96, + "probability": 0.8867 + }, + { + "start": 7266.56, + "end": 7269.34, + "probability": 0.9833 + }, + { + "start": 7269.38, + "end": 7271.94, + "probability": 0.9873 + }, + { + "start": 7272.74, + "end": 7275.38, + "probability": 0.9839 + }, + { + "start": 7275.94, + "end": 7279.52, + "probability": 0.8286 + }, + { + "start": 7279.82, + "end": 7280.64, + "probability": 0.8319 + }, + { + "start": 7281.0, + "end": 7282.28, + "probability": 0.9123 + }, + { + "start": 7282.68, + "end": 7283.0, + "probability": 0.4748 + }, + { + "start": 7283.06, + "end": 7283.38, + "probability": 0.8521 + }, + { + "start": 7283.92, + "end": 7286.32, + "probability": 0.9033 + }, + { + "start": 7286.52, + "end": 7286.74, + "probability": 0.7405 + }, + { + "start": 7287.2, + "end": 7287.64, + "probability": 0.6704 + }, + { + "start": 7287.78, + "end": 7288.7, + "probability": 0.8194 + }, + { + "start": 7290.18, + "end": 7290.82, + "probability": 0.5234 + }, + { + "start": 7291.56, + "end": 7293.38, + "probability": 0.0427 + }, + { + "start": 7293.38, + "end": 7293.82, + "probability": 0.6165 + }, + { + "start": 7293.86, + "end": 7294.28, + "probability": 0.8961 + }, + { + "start": 7296.5, + "end": 7299.06, + "probability": 0.8745 + }, + { + "start": 7299.6, + "end": 7300.5, + "probability": 0.4769 + }, + { + "start": 7300.62, + "end": 7300.96, + "probability": 0.5957 + }, + { + "start": 7302.1, + "end": 7304.2, + "probability": 0.9598 + }, + { + "start": 7305.18, + "end": 7307.72, + "probability": 0.8354 + }, + { + "start": 7309.02, + "end": 7309.68, + "probability": 0.9343 + }, + { + "start": 7310.38, + "end": 7313.8, + "probability": 0.7985 + }, + { + "start": 7313.96, + "end": 7315.54, + "probability": 0.9478 + }, + { + "start": 7316.0, + "end": 7318.85, + "probability": 0.895 + }, + { + "start": 7319.1, + "end": 7319.92, + "probability": 0.482 + }, + { + "start": 7320.82, + "end": 7323.18, + "probability": 0.9142 + }, + { + "start": 7323.74, + "end": 7328.34, + "probability": 0.99 + }, + { + "start": 7328.66, + "end": 7330.89, + "probability": 0.9839 + }, + { + "start": 7331.5, + "end": 7331.8, + "probability": 0.2602 + }, + { + "start": 7331.96, + "end": 7332.06, + "probability": 0.8546 + }, + { + "start": 7333.6, + "end": 7334.06, + "probability": 0.7419 + }, + { + "start": 7334.14, + "end": 7336.8, + "probability": 0.8301 + }, + { + "start": 7336.86, + "end": 7339.1, + "probability": 0.8271 + }, + { + "start": 7339.36, + "end": 7341.34, + "probability": 0.1812 + }, + { + "start": 7342.59, + "end": 7345.98, + "probability": 0.0126 + }, + { + "start": 7345.98, + "end": 7346.14, + "probability": 0.1723 + }, + { + "start": 7346.96, + "end": 7346.96, + "probability": 0.3342 + }, + { + "start": 7346.96, + "end": 7348.3, + "probability": 0.5786 + }, + { + "start": 7348.92, + "end": 7354.44, + "probability": 0.9872 + }, + { + "start": 7354.72, + "end": 7355.28, + "probability": 0.7805 + }, + { + "start": 7355.92, + "end": 7357.6, + "probability": 0.5772 + }, + { + "start": 7358.26, + "end": 7359.12, + "probability": 0.7405 + }, + { + "start": 7361.18, + "end": 7361.48, + "probability": 0.683 + }, + { + "start": 7362.56, + "end": 7364.88, + "probability": 0.6068 + }, + { + "start": 7368.08, + "end": 7370.5, + "probability": 0.312 + }, + { + "start": 7370.96, + "end": 7373.36, + "probability": 0.0454 + }, + { + "start": 7400.4, + "end": 7402.22, + "probability": 0.9969 + }, + { + "start": 7402.9, + "end": 7403.78, + "probability": 0.6614 + }, + { + "start": 7403.9, + "end": 7405.78, + "probability": 0.8525 + }, + { + "start": 7406.8, + "end": 7407.46, + "probability": 0.5295 + }, + { + "start": 7407.64, + "end": 7409.63, + "probability": 0.9143 + }, + { + "start": 7410.04, + "end": 7411.9, + "probability": 0.9592 + }, + { + "start": 7412.7, + "end": 7414.12, + "probability": 0.9351 + }, + { + "start": 7415.04, + "end": 7416.94, + "probability": 0.8555 + }, + { + "start": 7417.0, + "end": 7417.22, + "probability": 0.6103 + }, + { + "start": 7417.24, + "end": 7418.98, + "probability": 0.5708 + }, + { + "start": 7419.08, + "end": 7419.34, + "probability": 0.8596 + }, + { + "start": 7420.4, + "end": 7421.94, + "probability": 0.5008 + }, + { + "start": 7422.84, + "end": 7423.88, + "probability": 0.7955 + }, + { + "start": 7423.94, + "end": 7426.84, + "probability": 0.8135 + }, + { + "start": 7429.46, + "end": 7432.56, + "probability": 0.064 + }, + { + "start": 7436.6, + "end": 7437.08, + "probability": 0.1095 + }, + { + "start": 7437.08, + "end": 7437.96, + "probability": 0.4657 + }, + { + "start": 7438.4, + "end": 7439.42, + "probability": 0.9379 + }, + { + "start": 7439.48, + "end": 7441.82, + "probability": 0.9946 + }, + { + "start": 7442.54, + "end": 7446.58, + "probability": 0.6807 + }, + { + "start": 7446.76, + "end": 7448.66, + "probability": 0.7593 + }, + { + "start": 7449.74, + "end": 7453.06, + "probability": 0.7255 + }, + { + "start": 7453.08, + "end": 7457.42, + "probability": 0.8675 + }, + { + "start": 7458.2, + "end": 7460.42, + "probability": 0.9911 + }, + { + "start": 7461.7, + "end": 7464.22, + "probability": 0.9827 + }, + { + "start": 7465.0, + "end": 7466.34, + "probability": 0.9858 + }, + { + "start": 7466.52, + "end": 7468.48, + "probability": 0.9097 + }, + { + "start": 7469.14, + "end": 7472.94, + "probability": 0.929 + }, + { + "start": 7473.72, + "end": 7476.56, + "probability": 0.8362 + }, + { + "start": 7477.48, + "end": 7479.36, + "probability": 0.8934 + }, + { + "start": 7480.06, + "end": 7481.12, + "probability": 0.8994 + }, + { + "start": 7482.48, + "end": 7484.34, + "probability": 0.9847 + }, + { + "start": 7484.94, + "end": 7486.34, + "probability": 0.9854 + }, + { + "start": 7486.88, + "end": 7488.52, + "probability": 0.9571 + }, + { + "start": 7489.68, + "end": 7491.02, + "probability": 0.7775 + }, + { + "start": 7491.44, + "end": 7494.63, + "probability": 0.9767 + }, + { + "start": 7495.4, + "end": 7496.03, + "probability": 0.7559 + }, + { + "start": 7496.68, + "end": 7499.26, + "probability": 0.7107 + }, + { + "start": 7499.54, + "end": 7502.06, + "probability": 0.9325 + }, + { + "start": 7502.24, + "end": 7503.52, + "probability": 0.4161 + }, + { + "start": 7503.68, + "end": 7505.22, + "probability": 0.9377 + }, + { + "start": 7506.2, + "end": 7508.34, + "probability": 0.7907 + }, + { + "start": 7508.58, + "end": 7512.26, + "probability": 0.7992 + }, + { + "start": 7512.44, + "end": 7512.88, + "probability": 0.5104 + }, + { + "start": 7512.98, + "end": 7513.88, + "probability": 0.9583 + }, + { + "start": 7514.5, + "end": 7516.99, + "probability": 0.997 + }, + { + "start": 7518.32, + "end": 7519.8, + "probability": 0.967 + }, + { + "start": 7519.94, + "end": 7522.08, + "probability": 0.9655 + }, + { + "start": 7522.36, + "end": 7523.04, + "probability": 0.953 + }, + { + "start": 7524.12, + "end": 7526.14, + "probability": 0.9021 + }, + { + "start": 7526.78, + "end": 7528.92, + "probability": 0.7613 + }, + { + "start": 7529.6, + "end": 7529.9, + "probability": 0.2079 + }, + { + "start": 7530.02, + "end": 7530.76, + "probability": 0.9578 + }, + { + "start": 7531.7, + "end": 7532.34, + "probability": 0.9238 + }, + { + "start": 7534.12, + "end": 7535.75, + "probability": 0.9214 + }, + { + "start": 7536.8, + "end": 7537.88, + "probability": 0.8033 + }, + { + "start": 7537.96, + "end": 7543.84, + "probability": 0.969 + }, + { + "start": 7544.5, + "end": 7545.28, + "probability": 0.7578 + }, + { + "start": 7545.46, + "end": 7547.3, + "probability": 0.6219 + }, + { + "start": 7547.56, + "end": 7549.42, + "probability": 0.6749 + }, + { + "start": 7549.5, + "end": 7551.36, + "probability": 0.8953 + }, + { + "start": 7551.9, + "end": 7556.14, + "probability": 0.8447 + }, + { + "start": 7556.2, + "end": 7557.47, + "probability": 0.7977 + }, + { + "start": 7557.74, + "end": 7558.42, + "probability": 0.6818 + }, + { + "start": 7558.48, + "end": 7559.72, + "probability": 0.9449 + }, + { + "start": 7560.38, + "end": 7562.0, + "probability": 0.9119 + }, + { + "start": 7562.34, + "end": 7564.94, + "probability": 0.8951 + }, + { + "start": 7565.58, + "end": 7567.26, + "probability": 0.9745 + }, + { + "start": 7567.36, + "end": 7569.04, + "probability": 0.945 + }, + { + "start": 7569.54, + "end": 7573.56, + "probability": 0.9194 + }, + { + "start": 7574.76, + "end": 7576.48, + "probability": 0.8368 + }, + { + "start": 7578.26, + "end": 7580.96, + "probability": 0.8145 + }, + { + "start": 7581.52, + "end": 7582.54, + "probability": 0.7886 + }, + { + "start": 7583.72, + "end": 7584.48, + "probability": 0.7052 + }, + { + "start": 7584.58, + "end": 7585.02, + "probability": 0.8181 + }, + { + "start": 7585.08, + "end": 7586.0, + "probability": 0.6936 + }, + { + "start": 7586.02, + "end": 7587.2, + "probability": 0.9606 + }, + { + "start": 7587.94, + "end": 7589.8, + "probability": 0.7656 + }, + { + "start": 7590.14, + "end": 7590.44, + "probability": 0.6867 + }, + { + "start": 7590.62, + "end": 7591.82, + "probability": 0.1197 + }, + { + "start": 7591.98, + "end": 7593.52, + "probability": 0.8894 + }, + { + "start": 7593.82, + "end": 7594.0, + "probability": 0.45 + }, + { + "start": 7594.0, + "end": 7594.58, + "probability": 0.7211 + }, + { + "start": 7594.76, + "end": 7597.92, + "probability": 0.9976 + }, + { + "start": 7598.0, + "end": 7599.42, + "probability": 0.9027 + }, + { + "start": 7600.22, + "end": 7600.9, + "probability": 0.6718 + }, + { + "start": 7601.04, + "end": 7601.26, + "probability": 0.6525 + }, + { + "start": 7601.5, + "end": 7602.62, + "probability": 0.2575 + }, + { + "start": 7604.52, + "end": 7606.04, + "probability": 0.7105 + }, + { + "start": 7606.3, + "end": 7611.1, + "probability": 0.8086 + }, + { + "start": 7611.38, + "end": 7611.48, + "probability": 0.0582 + }, + { + "start": 7613.32, + "end": 7614.98, + "probability": 0.0075 + }, + { + "start": 7616.78, + "end": 7617.74, + "probability": 0.189 + }, + { + "start": 7617.74, + "end": 7618.76, + "probability": 0.1004 + }, + { + "start": 7625.92, + "end": 7627.45, + "probability": 0.2683 + }, + { + "start": 7627.82, + "end": 7630.74, + "probability": 0.5345 + }, + { + "start": 7631.06, + "end": 7631.46, + "probability": 0.1572 + }, + { + "start": 7631.56, + "end": 7633.48, + "probability": 0.6136 + }, + { + "start": 7633.58, + "end": 7634.34, + "probability": 0.2667 + }, + { + "start": 7636.19, + "end": 7638.6, + "probability": 0.3119 + }, + { + "start": 7638.76, + "end": 7638.98, + "probability": 0.1894 + }, + { + "start": 7640.28, + "end": 7641.64, + "probability": 0.2073 + }, + { + "start": 7642.08, + "end": 7643.34, + "probability": 0.2653 + }, + { + "start": 7644.86, + "end": 7646.4, + "probability": 0.3869 + }, + { + "start": 7646.44, + "end": 7647.14, + "probability": 0.7996 + }, + { + "start": 7647.24, + "end": 7648.04, + "probability": 0.3828 + }, + { + "start": 7648.62, + "end": 7649.38, + "probability": 0.7046 + }, + { + "start": 7650.28, + "end": 7651.06, + "probability": 0.8753 + }, + { + "start": 7651.06, + "end": 7652.73, + "probability": 0.6768 + }, + { + "start": 7653.16, + "end": 7654.6, + "probability": 0.6678 + }, + { + "start": 7654.69, + "end": 7657.32, + "probability": 0.8939 + }, + { + "start": 7658.3, + "end": 7658.98, + "probability": 0.9149 + }, + { + "start": 7659.86, + "end": 7660.68, + "probability": 0.9847 + }, + { + "start": 7663.12, + "end": 7664.34, + "probability": 0.9409 + }, + { + "start": 7665.94, + "end": 7668.82, + "probability": 0.4209 + }, + { + "start": 7673.78, + "end": 7675.0, + "probability": 0.9341 + }, + { + "start": 7675.24, + "end": 7675.66, + "probability": 0.0553 + }, + { + "start": 7676.38, + "end": 7677.24, + "probability": 0.1371 + }, + { + "start": 7677.34, + "end": 7677.68, + "probability": 0.367 + }, + { + "start": 7677.88, + "end": 7679.42, + "probability": 0.2503 + }, + { + "start": 7680.7, + "end": 7682.54, + "probability": 0.6602 + }, + { + "start": 7683.58, + "end": 7683.74, + "probability": 0.7033 + }, + { + "start": 7685.36, + "end": 7686.74, + "probability": 0.7119 + }, + { + "start": 7686.82, + "end": 7687.16, + "probability": 0.8604 + }, + { + "start": 7687.2, + "end": 7688.1, + "probability": 0.9548 + }, + { + "start": 7688.72, + "end": 7689.44, + "probability": 0.2355 + }, + { + "start": 7691.2, + "end": 7692.86, + "probability": 0.9944 + }, + { + "start": 7693.76, + "end": 7695.06, + "probability": 0.8783 + }, + { + "start": 7696.4, + "end": 7698.92, + "probability": 0.9177 + }, + { + "start": 7699.54, + "end": 7700.32, + "probability": 0.9529 + }, + { + "start": 7702.28, + "end": 7703.4, + "probability": 0.9976 + }, + { + "start": 7704.04, + "end": 7706.88, + "probability": 0.9847 + }, + { + "start": 7708.08, + "end": 7709.38, + "probability": 0.9889 + }, + { + "start": 7710.22, + "end": 7710.62, + "probability": 0.9281 + }, + { + "start": 7714.34, + "end": 7716.88, + "probability": 0.7896 + }, + { + "start": 7717.8, + "end": 7720.86, + "probability": 0.971 + }, + { + "start": 7722.0, + "end": 7725.34, + "probability": 0.9808 + }, + { + "start": 7726.0, + "end": 7727.14, + "probability": 0.8751 + }, + { + "start": 7728.22, + "end": 7730.58, + "probability": 0.8419 + }, + { + "start": 7732.74, + "end": 7736.06, + "probability": 0.9928 + }, + { + "start": 7737.38, + "end": 7738.88, + "probability": 0.9269 + }, + { + "start": 7739.84, + "end": 7740.86, + "probability": 0.9172 + }, + { + "start": 7741.44, + "end": 7743.02, + "probability": 0.7526 + }, + { + "start": 7743.98, + "end": 7746.24, + "probability": 0.9971 + }, + { + "start": 7746.86, + "end": 7747.74, + "probability": 0.9877 + }, + { + "start": 7749.48, + "end": 7750.2, + "probability": 0.7456 + }, + { + "start": 7751.7, + "end": 7752.26, + "probability": 0.921 + }, + { + "start": 7753.4, + "end": 7755.54, + "probability": 0.9868 + }, + { + "start": 7756.34, + "end": 7757.26, + "probability": 0.9402 + }, + { + "start": 7757.88, + "end": 7759.12, + "probability": 0.8698 + }, + { + "start": 7760.0, + "end": 7760.64, + "probability": 0.912 + }, + { + "start": 7763.32, + "end": 7765.92, + "probability": 0.986 + }, + { + "start": 7767.22, + "end": 7768.82, + "probability": 0.9937 + }, + { + "start": 7769.44, + "end": 7771.76, + "probability": 0.9904 + }, + { + "start": 7773.52, + "end": 7774.94, + "probability": 0.908 + }, + { + "start": 7776.2, + "end": 7776.68, + "probability": 0.9145 + }, + { + "start": 7778.36, + "end": 7780.1, + "probability": 0.9536 + }, + { + "start": 7780.5, + "end": 7782.32, + "probability": 0.9222 + }, + { + "start": 7783.1, + "end": 7785.4, + "probability": 0.9307 + }, + { + "start": 7786.44, + "end": 7790.25, + "probability": 0.9932 + }, + { + "start": 7790.72, + "end": 7792.9, + "probability": 0.9492 + }, + { + "start": 7793.76, + "end": 7796.54, + "probability": 0.9913 + }, + { + "start": 7797.2, + "end": 7799.64, + "probability": 0.991 + }, + { + "start": 7801.38, + "end": 7804.06, + "probability": 0.886 + }, + { + "start": 7804.82, + "end": 7809.74, + "probability": 0.9866 + }, + { + "start": 7811.06, + "end": 7814.06, + "probability": 0.7313 + }, + { + "start": 7814.58, + "end": 7816.96, + "probability": 0.7953 + }, + { + "start": 7817.66, + "end": 7821.6, + "probability": 0.982 + }, + { + "start": 7821.66, + "end": 7822.24, + "probability": 0.9485 + }, + { + "start": 7823.02, + "end": 7823.3, + "probability": 0.7279 + }, + { + "start": 7825.34, + "end": 7826.76, + "probability": 0.9552 + }, + { + "start": 7827.48, + "end": 7829.42, + "probability": 0.9932 + }, + { + "start": 7830.48, + "end": 7832.32, + "probability": 0.8381 + }, + { + "start": 7833.64, + "end": 7836.6, + "probability": 0.9701 + }, + { + "start": 7837.96, + "end": 7840.56, + "probability": 0.9811 + }, + { + "start": 7842.04, + "end": 7844.46, + "probability": 0.6781 + }, + { + "start": 7844.46, + "end": 7846.76, + "probability": 0.915 + }, + { + "start": 7847.28, + "end": 7849.14, + "probability": 0.9754 + }, + { + "start": 7849.6, + "end": 7850.78, + "probability": 0.9172 + }, + { + "start": 7851.38, + "end": 7853.14, + "probability": 0.8777 + }, + { + "start": 7853.86, + "end": 7856.24, + "probability": 0.9982 + }, + { + "start": 7856.94, + "end": 7861.12, + "probability": 0.908 + }, + { + "start": 7861.72, + "end": 7865.26, + "probability": 0.8987 + }, + { + "start": 7865.76, + "end": 7866.68, + "probability": 0.9333 + }, + { + "start": 7867.16, + "end": 7867.96, + "probability": 0.9868 + }, + { + "start": 7868.56, + "end": 7869.28, + "probability": 0.9855 + }, + { + "start": 7869.68, + "end": 7874.24, + "probability": 0.998 + }, + { + "start": 7877.18, + "end": 7879.04, + "probability": 0.9985 + }, + { + "start": 7879.7, + "end": 7881.08, + "probability": 0.9128 + }, + { + "start": 7881.6, + "end": 7882.52, + "probability": 0.5931 + }, + { + "start": 7882.8, + "end": 7885.0, + "probability": 0.9474 + }, + { + "start": 7885.5, + "end": 7888.4, + "probability": 0.9079 + }, + { + "start": 7888.52, + "end": 7889.78, + "probability": 0.9821 + }, + { + "start": 7890.4, + "end": 7891.2, + "probability": 0.7477 + }, + { + "start": 7891.42, + "end": 7893.48, + "probability": 0.8968 + }, + { + "start": 7893.78, + "end": 7894.78, + "probability": 0.8803 + }, + { + "start": 7895.28, + "end": 7896.36, + "probability": 0.8425 + }, + { + "start": 7897.02, + "end": 7900.7, + "probability": 0.987 + }, + { + "start": 7901.78, + "end": 7905.6, + "probability": 0.9872 + }, + { + "start": 7906.98, + "end": 7908.62, + "probability": 0.9922 + }, + { + "start": 7909.2, + "end": 7912.84, + "probability": 0.9963 + }, + { + "start": 7913.5, + "end": 7915.86, + "probability": 0.9976 + }, + { + "start": 7916.34, + "end": 7917.1, + "probability": 0.9837 + }, + { + "start": 7917.34, + "end": 7917.86, + "probability": 0.9267 + }, + { + "start": 7917.88, + "end": 7918.86, + "probability": 0.8676 + }, + { + "start": 7919.48, + "end": 7921.0, + "probability": 0.977 + }, + { + "start": 7922.0, + "end": 7923.16, + "probability": 0.9694 + }, + { + "start": 7923.62, + "end": 7924.46, + "probability": 0.9608 + }, + { + "start": 7924.78, + "end": 7926.84, + "probability": 0.9006 + }, + { + "start": 7927.84, + "end": 7929.72, + "probability": 0.6514 + }, + { + "start": 7929.76, + "end": 7930.44, + "probability": 0.8639 + }, + { + "start": 7930.62, + "end": 7932.62, + "probability": 0.9651 + }, + { + "start": 7933.68, + "end": 7936.52, + "probability": 0.9985 + }, + { + "start": 7937.32, + "end": 7941.18, + "probability": 0.9972 + }, + { + "start": 7941.56, + "end": 7941.86, + "probability": 0.9106 + }, + { + "start": 7943.3, + "end": 7945.3, + "probability": 0.9751 + }, + { + "start": 7946.16, + "end": 7947.78, + "probability": 0.8433 + }, + { + "start": 7948.56, + "end": 7950.82, + "probability": 0.9581 + }, + { + "start": 7951.44, + "end": 7951.98, + "probability": 0.8402 + }, + { + "start": 7952.82, + "end": 7954.0, + "probability": 0.9566 + }, + { + "start": 7954.7, + "end": 7958.32, + "probability": 0.9972 + }, + { + "start": 7959.02, + "end": 7960.78, + "probability": 0.9626 + }, + { + "start": 7961.28, + "end": 7963.46, + "probability": 0.998 + }, + { + "start": 7964.04, + "end": 7967.02, + "probability": 0.9919 + }, + { + "start": 7967.02, + "end": 7969.48, + "probability": 0.9951 + }, + { + "start": 7969.84, + "end": 7970.42, + "probability": 0.8876 + }, + { + "start": 7970.76, + "end": 7971.46, + "probability": 0.6283 + }, + { + "start": 7972.1, + "end": 7974.22, + "probability": 0.9892 + }, + { + "start": 7974.34, + "end": 7974.72, + "probability": 0.4929 + }, + { + "start": 7974.84, + "end": 7976.8, + "probability": 0.963 + }, + { + "start": 7977.48, + "end": 7980.8, + "probability": 0.9664 + }, + { + "start": 7981.36, + "end": 7982.6, + "probability": 0.9708 + }, + { + "start": 7983.2, + "end": 7985.08, + "probability": 0.9848 + }, + { + "start": 7985.66, + "end": 7987.8, + "probability": 0.9647 + }, + { + "start": 7988.4, + "end": 7988.94, + "probability": 0.7738 + }, + { + "start": 7989.76, + "end": 7994.06, + "probability": 0.9988 + }, + { + "start": 7994.64, + "end": 7996.16, + "probability": 0.9789 + }, + { + "start": 7996.78, + "end": 7997.48, + "probability": 0.5772 + }, + { + "start": 7998.06, + "end": 7998.9, + "probability": 0.6486 + }, + { + "start": 7999.1, + "end": 8000.04, + "probability": 0.9265 + }, + { + "start": 8000.08, + "end": 8004.04, + "probability": 0.994 + }, + { + "start": 8004.56, + "end": 8008.0, + "probability": 0.9903 + }, + { + "start": 8008.8, + "end": 8011.2, + "probability": 0.9958 + }, + { + "start": 8011.2, + "end": 8013.52, + "probability": 0.9977 + }, + { + "start": 8014.32, + "end": 8016.7, + "probability": 0.8743 + }, + { + "start": 8017.7, + "end": 8021.12, + "probability": 0.9854 + }, + { + "start": 8023.06, + "end": 8027.32, + "probability": 0.655 + }, + { + "start": 8028.06, + "end": 8031.96, + "probability": 0.6859 + }, + { + "start": 8032.84, + "end": 8036.7, + "probability": 0.8813 + }, + { + "start": 8037.3, + "end": 8038.85, + "probability": 0.8489 + }, + { + "start": 8041.14, + "end": 8041.58, + "probability": 0.1301 + }, + { + "start": 8042.82, + "end": 8043.9, + "probability": 0.7145 + }, + { + "start": 8044.16, + "end": 8045.08, + "probability": 0.4101 + }, + { + "start": 8045.4, + "end": 8046.38, + "probability": 0.9023 + }, + { + "start": 8073.86, + "end": 8074.2, + "probability": 0.0414 + }, + { + "start": 8074.2, + "end": 8074.95, + "probability": 0.5793 + }, + { + "start": 8076.96, + "end": 8077.72, + "probability": 0.2998 + }, + { + "start": 8079.08, + "end": 8080.3, + "probability": 0.7768 + }, + { + "start": 8081.02, + "end": 8081.3, + "probability": 0.5491 + }, + { + "start": 8081.46, + "end": 8085.88, + "probability": 0.9534 + }, + { + "start": 8086.64, + "end": 8087.14, + "probability": 0.8113 + }, + { + "start": 8087.74, + "end": 8091.22, + "probability": 0.8436 + }, + { + "start": 8092.36, + "end": 8094.12, + "probability": 0.8193 + }, + { + "start": 8094.44, + "end": 8097.5, + "probability": 0.9808 + }, + { + "start": 8098.22, + "end": 8100.72, + "probability": 0.8247 + }, + { + "start": 8100.78, + "end": 8105.18, + "probability": 0.9951 + }, + { + "start": 8106.0, + "end": 8106.54, + "probability": 0.9363 + }, + { + "start": 8107.5, + "end": 8108.92, + "probability": 0.9014 + }, + { + "start": 8110.18, + "end": 8112.96, + "probability": 0.2575 + }, + { + "start": 8113.54, + "end": 8113.54, + "probability": 0.0401 + }, + { + "start": 8114.28, + "end": 8116.84, + "probability": 0.7868 + }, + { + "start": 8117.74, + "end": 8121.94, + "probability": 0.9534 + }, + { + "start": 8123.28, + "end": 8125.04, + "probability": 0.8163 + }, + { + "start": 8125.42, + "end": 8125.68, + "probability": 0.1035 + }, + { + "start": 8125.96, + "end": 8127.02, + "probability": 0.1333 + }, + { + "start": 8127.48, + "end": 8129.9, + "probability": 0.53 + }, + { + "start": 8130.62, + "end": 8131.78, + "probability": 0.4976 + }, + { + "start": 8132.12, + "end": 8136.56, + "probability": 0.8944 + }, + { + "start": 8136.86, + "end": 8138.08, + "probability": 0.7891 + }, + { + "start": 8138.16, + "end": 8138.98, + "probability": 0.5115 + }, + { + "start": 8139.1, + "end": 8140.26, + "probability": 0.7674 + }, + { + "start": 8140.32, + "end": 8142.66, + "probability": 0.876 + }, + { + "start": 8142.88, + "end": 8143.6, + "probability": 0.8169 + }, + { + "start": 8144.0, + "end": 8148.12, + "probability": 0.9207 + }, + { + "start": 8148.58, + "end": 8151.0, + "probability": 0.9964 + }, + { + "start": 8151.96, + "end": 8155.06, + "probability": 0.8635 + }, + { + "start": 8155.32, + "end": 8156.04, + "probability": 0.873 + }, + { + "start": 8156.16, + "end": 8156.36, + "probability": 0.3807 + }, + { + "start": 8156.46, + "end": 8156.62, + "probability": 0.6219 + }, + { + "start": 8157.06, + "end": 8158.18, + "probability": 0.5804 + }, + { + "start": 8158.68, + "end": 8159.3, + "probability": 0.9983 + }, + { + "start": 8160.58, + "end": 8162.38, + "probability": 0.4748 + }, + { + "start": 8162.38, + "end": 8163.15, + "probability": 0.5283 + }, + { + "start": 8163.54, + "end": 8164.76, + "probability": 0.7125 + }, + { + "start": 8164.94, + "end": 8166.28, + "probability": 0.4622 + }, + { + "start": 8166.38, + "end": 8166.44, + "probability": 0.2385 + }, + { + "start": 8166.5, + "end": 8167.9, + "probability": 0.2797 + }, + { + "start": 8168.06, + "end": 8170.54, + "probability": 0.6234 + }, + { + "start": 8171.1, + "end": 8173.26, + "probability": 0.9319 + }, + { + "start": 8173.3, + "end": 8173.32, + "probability": 0.7354 + }, + { + "start": 8174.0, + "end": 8176.06, + "probability": 0.9878 + }, + { + "start": 8176.72, + "end": 8179.84, + "probability": 0.9754 + }, + { + "start": 8180.48, + "end": 8185.34, + "probability": 0.926 + }, + { + "start": 8185.44, + "end": 8187.26, + "probability": 0.6996 + }, + { + "start": 8187.44, + "end": 8188.96, + "probability": 0.9136 + }, + { + "start": 8189.72, + "end": 8191.22, + "probability": 0.5001 + }, + { + "start": 8191.42, + "end": 8191.6, + "probability": 0.821 + }, + { + "start": 8192.58, + "end": 8193.3, + "probability": 0.6546 + }, + { + "start": 8193.38, + "end": 8195.06, + "probability": 0.9819 + }, + { + "start": 8195.4, + "end": 8198.38, + "probability": 0.9641 + }, + { + "start": 8199.12, + "end": 8201.4, + "probability": 0.8838 + }, + { + "start": 8201.86, + "end": 8205.58, + "probability": 0.9907 + }, + { + "start": 8205.8, + "end": 8207.3, + "probability": 0.7778 + }, + { + "start": 8207.54, + "end": 8208.68, + "probability": 0.631 + }, + { + "start": 8209.26, + "end": 8213.78, + "probability": 0.8001 + }, + { + "start": 8214.16, + "end": 8216.9, + "probability": 0.6387 + }, + { + "start": 8217.06, + "end": 8220.36, + "probability": 0.6666 + }, + { + "start": 8220.56, + "end": 8221.26, + "probability": 0.8762 + }, + { + "start": 8221.68, + "end": 8222.84, + "probability": 0.8904 + }, + { + "start": 8223.02, + "end": 8223.38, + "probability": 0.8269 + }, + { + "start": 8223.5, + "end": 8227.24, + "probability": 0.8929 + }, + { + "start": 8227.52, + "end": 8229.34, + "probability": 0.8723 + }, + { + "start": 8229.82, + "end": 8233.82, + "probability": 0.9167 + }, + { + "start": 8233.96, + "end": 8234.4, + "probability": 0.4103 + }, + { + "start": 8234.9, + "end": 8237.48, + "probability": 0.9879 + }, + { + "start": 8238.18, + "end": 8240.22, + "probability": 0.8127 + }, + { + "start": 8240.52, + "end": 8242.3, + "probability": 0.8552 + }, + { + "start": 8242.62, + "end": 8243.32, + "probability": 0.7594 + }, + { + "start": 8243.96, + "end": 8244.88, + "probability": 0.7455 + }, + { + "start": 8244.96, + "end": 8245.76, + "probability": 0.6751 + }, + { + "start": 8246.0, + "end": 8246.92, + "probability": 0.873 + }, + { + "start": 8247.44, + "end": 8248.13, + "probability": 0.9421 + }, + { + "start": 8248.7, + "end": 8249.35, + "probability": 0.9043 + }, + { + "start": 8249.9, + "end": 8253.76, + "probability": 0.9585 + }, + { + "start": 8253.8, + "end": 8255.8, + "probability": 0.8881 + }, + { + "start": 8255.9, + "end": 8256.12, + "probability": 0.3701 + }, + { + "start": 8256.56, + "end": 8257.16, + "probability": 0.7411 + }, + { + "start": 8257.44, + "end": 8259.42, + "probability": 0.9954 + }, + { + "start": 8259.84, + "end": 8261.6, + "probability": 0.7886 + }, + { + "start": 8261.6, + "end": 8262.78, + "probability": 0.5468 + }, + { + "start": 8262.92, + "end": 8266.58, + "probability": 0.9681 + }, + { + "start": 8267.08, + "end": 8268.5, + "probability": 0.9971 + }, + { + "start": 8269.48, + "end": 8271.62, + "probability": 0.9546 + }, + { + "start": 8272.36, + "end": 8278.26, + "probability": 0.7235 + }, + { + "start": 8278.34, + "end": 8281.64, + "probability": 0.8663 + }, + { + "start": 8281.9, + "end": 8284.18, + "probability": 0.7575 + }, + { + "start": 8284.76, + "end": 8285.92, + "probability": 0.979 + }, + { + "start": 8286.52, + "end": 8289.88, + "probability": 0.9305 + }, + { + "start": 8290.06, + "end": 8291.5, + "probability": 0.6406 + }, + { + "start": 8292.9, + "end": 8295.44, + "probability": 0.5361 + }, + { + "start": 8295.54, + "end": 8298.92, + "probability": 0.8759 + }, + { + "start": 8299.02, + "end": 8300.06, + "probability": 0.6307 + }, + { + "start": 8300.14, + "end": 8302.54, + "probability": 0.7001 + }, + { + "start": 8303.02, + "end": 8304.41, + "probability": 0.338 + }, + { + "start": 8304.72, + "end": 8308.52, + "probability": 0.9668 + }, + { + "start": 8308.62, + "end": 8310.88, + "probability": 0.935 + }, + { + "start": 8311.48, + "end": 8313.8, + "probability": 0.7495 + }, + { + "start": 8314.44, + "end": 8318.28, + "probability": 0.6626 + }, + { + "start": 8318.4, + "end": 8319.18, + "probability": 0.8287 + }, + { + "start": 8319.74, + "end": 8323.68, + "probability": 0.993 + }, + { + "start": 8324.56, + "end": 8326.26, + "probability": 0.8406 + }, + { + "start": 8326.48, + "end": 8327.9, + "probability": 0.9983 + }, + { + "start": 8328.84, + "end": 8329.98, + "probability": 0.6957 + }, + { + "start": 8330.16, + "end": 8330.96, + "probability": 0.5001 + }, + { + "start": 8331.76, + "end": 8333.44, + "probability": 0.7788 + }, + { + "start": 8333.54, + "end": 8334.2, + "probability": 0.4008 + }, + { + "start": 8334.26, + "end": 8335.48, + "probability": 0.6972 + }, + { + "start": 8335.58, + "end": 8337.02, + "probability": 0.9058 + }, + { + "start": 8337.14, + "end": 8338.34, + "probability": 0.7562 + }, + { + "start": 8338.84, + "end": 8340.68, + "probability": 0.5914 + }, + { + "start": 8341.4, + "end": 8345.5, + "probability": 0.5325 + }, + { + "start": 8346.58, + "end": 8349.78, + "probability": 0.6989 + }, + { + "start": 8350.1, + "end": 8351.36, + "probability": 0.7738 + }, + { + "start": 8352.46, + "end": 8355.76, + "probability": 0.1618 + }, + { + "start": 8355.86, + "end": 8358.48, + "probability": 0.8371 + }, + { + "start": 8358.88, + "end": 8360.3, + "probability": 0.9352 + }, + { + "start": 8360.34, + "end": 8361.28, + "probability": 0.6852 + }, + { + "start": 8361.54, + "end": 8362.58, + "probability": 0.8494 + }, + { + "start": 8362.64, + "end": 8363.99, + "probability": 0.7337 + }, + { + "start": 8364.42, + "end": 8365.34, + "probability": 0.54 + }, + { + "start": 8366.12, + "end": 8367.02, + "probability": 0.6016 + }, + { + "start": 8367.24, + "end": 8370.24, + "probability": 0.7754 + }, + { + "start": 8370.4, + "end": 8371.62, + "probability": 0.9082 + }, + { + "start": 8371.7, + "end": 8372.92, + "probability": 0.4703 + }, + { + "start": 8372.94, + "end": 8373.88, + "probability": 0.6865 + }, + { + "start": 8374.74, + "end": 8377.7, + "probability": 0.7336 + }, + { + "start": 8378.62, + "end": 8380.36, + "probability": 0.6501 + }, + { + "start": 8380.84, + "end": 8381.75, + "probability": 0.8741 + }, + { + "start": 8382.14, + "end": 8382.64, + "probability": 0.8445 + }, + { + "start": 8382.84, + "end": 8383.3, + "probability": 0.8742 + }, + { + "start": 8383.64, + "end": 8384.22, + "probability": 0.9061 + }, + { + "start": 8384.28, + "end": 8384.76, + "probability": 0.8042 + }, + { + "start": 8385.06, + "end": 8387.12, + "probability": 0.7813 + }, + { + "start": 8387.2, + "end": 8393.5, + "probability": 0.8975 + }, + { + "start": 8393.56, + "end": 8395.72, + "probability": 0.8071 + }, + { + "start": 8396.34, + "end": 8400.62, + "probability": 0.6888 + }, + { + "start": 8401.16, + "end": 8404.36, + "probability": 0.8807 + }, + { + "start": 8405.02, + "end": 8407.98, + "probability": 0.9469 + }, + { + "start": 8408.24, + "end": 8409.0, + "probability": 0.5513 + }, + { + "start": 8409.16, + "end": 8410.32, + "probability": 0.5872 + }, + { + "start": 8410.78, + "end": 8413.98, + "probability": 0.8497 + }, + { + "start": 8414.24, + "end": 8416.2, + "probability": 0.9543 + }, + { + "start": 8416.98, + "end": 8417.8, + "probability": 0.9333 + }, + { + "start": 8418.34, + "end": 8419.38, + "probability": 0.5266 + }, + { + "start": 8419.72, + "end": 8420.08, + "probability": 0.6093 + }, + { + "start": 8420.58, + "end": 8424.54, + "probability": 0.9514 + }, + { + "start": 8424.94, + "end": 8428.56, + "probability": 0.6981 + }, + { + "start": 8428.76, + "end": 8429.66, + "probability": 0.8072 + }, + { + "start": 8430.28, + "end": 8431.46, + "probability": 0.9633 + }, + { + "start": 8432.22, + "end": 8434.48, + "probability": 0.9478 + }, + { + "start": 8434.82, + "end": 8437.78, + "probability": 0.6064 + }, + { + "start": 8438.4, + "end": 8441.14, + "probability": 0.996 + }, + { + "start": 8441.14, + "end": 8443.84, + "probability": 0.9315 + }, + { + "start": 8444.34, + "end": 8446.96, + "probability": 0.5242 + }, + { + "start": 8447.58, + "end": 8448.92, + "probability": 0.8013 + }, + { + "start": 8449.16, + "end": 8451.54, + "probability": 0.9928 + }, + { + "start": 8452.4, + "end": 8456.54, + "probability": 0.7933 + }, + { + "start": 8457.08, + "end": 8459.68, + "probability": 0.7867 + }, + { + "start": 8459.88, + "end": 8461.92, + "probability": 0.987 + }, + { + "start": 8462.5, + "end": 8464.8, + "probability": 0.4073 + }, + { + "start": 8465.78, + "end": 8467.3, + "probability": 0.6825 + }, + { + "start": 8468.54, + "end": 8469.72, + "probability": 0.6413 + }, + { + "start": 8471.94, + "end": 8475.42, + "probability": 0.8944 + }, + { + "start": 8475.86, + "end": 8479.06, + "probability": 0.7119 + }, + { + "start": 8479.12, + "end": 8483.16, + "probability": 0.9285 + }, + { + "start": 8483.5, + "end": 8484.74, + "probability": 0.4872 + }, + { + "start": 8485.16, + "end": 8485.82, + "probability": 0.999 + }, + { + "start": 8486.72, + "end": 8487.7, + "probability": 0.6173 + }, + { + "start": 8487.76, + "end": 8488.34, + "probability": 0.6857 + }, + { + "start": 8488.84, + "end": 8491.64, + "probability": 0.9977 + }, + { + "start": 8491.64, + "end": 8496.66, + "probability": 0.9102 + }, + { + "start": 8496.78, + "end": 8497.1, + "probability": 0.7905 + }, + { + "start": 8497.56, + "end": 8497.94, + "probability": 0.447 + }, + { + "start": 8521.96, + "end": 8521.96, + "probability": 0.3143 + }, + { + "start": 8521.96, + "end": 8522.14, + "probability": 0.2512 + }, + { + "start": 8522.66, + "end": 8524.44, + "probability": 0.6007 + }, + { + "start": 8526.44, + "end": 8528.3, + "probability": 0.9701 + }, + { + "start": 8529.14, + "end": 8531.94, + "probability": 0.9907 + }, + { + "start": 8531.94, + "end": 8535.76, + "probability": 0.9401 + }, + { + "start": 8537.52, + "end": 8538.12, + "probability": 0.6983 + }, + { + "start": 8539.3, + "end": 8544.1, + "probability": 0.9624 + }, + { + "start": 8545.3, + "end": 8547.02, + "probability": 0.9831 + }, + { + "start": 8548.08, + "end": 8550.28, + "probability": 0.99 + }, + { + "start": 8550.82, + "end": 8552.18, + "probability": 0.9857 + }, + { + "start": 8552.9, + "end": 8556.44, + "probability": 0.9992 + }, + { + "start": 8556.6, + "end": 8560.08, + "probability": 0.9673 + }, + { + "start": 8561.72, + "end": 8564.76, + "probability": 0.9779 + }, + { + "start": 8566.0, + "end": 8571.7, + "probability": 0.9622 + }, + { + "start": 8572.22, + "end": 8575.04, + "probability": 0.9807 + }, + { + "start": 8575.94, + "end": 8579.68, + "probability": 0.9968 + }, + { + "start": 8580.84, + "end": 8583.5, + "probability": 0.9391 + }, + { + "start": 8583.5, + "end": 8587.1, + "probability": 0.9869 + }, + { + "start": 8588.3, + "end": 8592.08, + "probability": 0.9781 + }, + { + "start": 8592.74, + "end": 8593.78, + "probability": 0.4969 + }, + { + "start": 8595.22, + "end": 8596.92, + "probability": 0.9852 + }, + { + "start": 8597.0, + "end": 8598.22, + "probability": 0.9875 + }, + { + "start": 8598.3, + "end": 8600.58, + "probability": 0.976 + }, + { + "start": 8600.66, + "end": 8602.2, + "probability": 0.9588 + }, + { + "start": 8602.8, + "end": 8605.74, + "probability": 0.6706 + }, + { + "start": 8606.42, + "end": 8608.62, + "probability": 0.9504 + }, + { + "start": 8609.7, + "end": 8610.48, + "probability": 0.5849 + }, + { + "start": 8611.06, + "end": 8612.66, + "probability": 0.6806 + }, + { + "start": 8613.38, + "end": 8615.84, + "probability": 0.9768 + }, + { + "start": 8615.84, + "end": 8618.4, + "probability": 0.7383 + }, + { + "start": 8620.26, + "end": 8621.36, + "probability": 0.875 + }, + { + "start": 8622.66, + "end": 8626.88, + "probability": 0.8354 + }, + { + "start": 8627.66, + "end": 8631.84, + "probability": 0.9914 + }, + { + "start": 8631.96, + "end": 8632.66, + "probability": 0.8132 + }, + { + "start": 8633.5, + "end": 8638.02, + "probability": 0.9901 + }, + { + "start": 8638.8, + "end": 8641.52, + "probability": 0.9949 + }, + { + "start": 8642.86, + "end": 8646.34, + "probability": 0.7181 + }, + { + "start": 8646.34, + "end": 8647.74, + "probability": 0.7705 + }, + { + "start": 8649.72, + "end": 8654.04, + "probability": 0.7926 + }, + { + "start": 8654.84, + "end": 8656.34, + "probability": 0.979 + }, + { + "start": 8657.3, + "end": 8660.04, + "probability": 0.9512 + }, + { + "start": 8660.84, + "end": 8665.28, + "probability": 0.8858 + }, + { + "start": 8665.9, + "end": 8668.02, + "probability": 0.8902 + }, + { + "start": 8668.96, + "end": 8673.98, + "probability": 0.9893 + }, + { + "start": 8675.2, + "end": 8677.7, + "probability": 0.7938 + }, + { + "start": 8678.02, + "end": 8680.24, + "probability": 0.9912 + }, + { + "start": 8681.78, + "end": 8687.2, + "probability": 0.9701 + }, + { + "start": 8688.18, + "end": 8690.36, + "probability": 0.9601 + }, + { + "start": 8691.48, + "end": 8693.6, + "probability": 0.9978 + }, + { + "start": 8694.26, + "end": 8699.34, + "probability": 0.9851 + }, + { + "start": 8699.8, + "end": 8703.8, + "probability": 0.9185 + }, + { + "start": 8704.78, + "end": 8705.14, + "probability": 0.9971 + }, + { + "start": 8706.06, + "end": 8711.06, + "probability": 0.9977 + }, + { + "start": 8711.8, + "end": 8716.58, + "probability": 0.965 + }, + { + "start": 8716.66, + "end": 8717.44, + "probability": 0.7917 + }, + { + "start": 8718.38, + "end": 8719.34, + "probability": 0.6235 + }, + { + "start": 8720.18, + "end": 8721.24, + "probability": 0.8432 + }, + { + "start": 8749.1, + "end": 8751.4, + "probability": 0.5895 + }, + { + "start": 8752.86, + "end": 8757.6, + "probability": 0.9128 + }, + { + "start": 8758.8, + "end": 8759.58, + "probability": 0.9434 + }, + { + "start": 8760.22, + "end": 8763.4, + "probability": 0.9652 + }, + { + "start": 8764.02, + "end": 8764.86, + "probability": 0.8826 + }, + { + "start": 8766.14, + "end": 8771.42, + "probability": 0.9657 + }, + { + "start": 8772.18, + "end": 8772.58, + "probability": 0.7375 + }, + { + "start": 8773.98, + "end": 8776.66, + "probability": 0.9949 + }, + { + "start": 8776.66, + "end": 8780.34, + "probability": 0.9766 + }, + { + "start": 8780.98, + "end": 8782.24, + "probability": 0.8044 + }, + { + "start": 8783.5, + "end": 8787.32, + "probability": 0.9867 + }, + { + "start": 8788.12, + "end": 8793.76, + "probability": 0.9889 + }, + { + "start": 8793.76, + "end": 8800.2, + "probability": 0.9979 + }, + { + "start": 8801.74, + "end": 8807.36, + "probability": 0.9949 + }, + { + "start": 8807.36, + "end": 8812.74, + "probability": 0.9988 + }, + { + "start": 8814.12, + "end": 8814.44, + "probability": 0.5589 + }, + { + "start": 8815.24, + "end": 8815.76, + "probability": 0.7744 + }, + { + "start": 8818.92, + "end": 8819.82, + "probability": 0.9241 + }, + { + "start": 8820.78, + "end": 8822.88, + "probability": 0.9658 + }, + { + "start": 8823.6, + "end": 8826.36, + "probability": 0.9431 + }, + { + "start": 8827.0, + "end": 8827.82, + "probability": 0.9857 + }, + { + "start": 8829.38, + "end": 8834.58, + "probability": 0.9805 + }, + { + "start": 8834.58, + "end": 8838.48, + "probability": 0.997 + }, + { + "start": 8838.82, + "end": 8842.5, + "probability": 0.9985 + }, + { + "start": 8843.34, + "end": 8845.02, + "probability": 0.9419 + }, + { + "start": 8845.5, + "end": 8847.44, + "probability": 0.9658 + }, + { + "start": 8848.84, + "end": 8853.64, + "probability": 0.992 + }, + { + "start": 8854.24, + "end": 8857.88, + "probability": 0.9919 + }, + { + "start": 8858.94, + "end": 8863.74, + "probability": 0.9906 + }, + { + "start": 8864.84, + "end": 8868.98, + "probability": 0.9465 + }, + { + "start": 8869.12, + "end": 8874.42, + "probability": 0.9956 + }, + { + "start": 8875.14, + "end": 8877.86, + "probability": 0.9653 + }, + { + "start": 8878.54, + "end": 8880.94, + "probability": 0.998 + }, + { + "start": 8881.46, + "end": 8882.18, + "probability": 0.9963 + }, + { + "start": 8883.42, + "end": 8887.98, + "probability": 0.9819 + }, + { + "start": 8889.26, + "end": 8892.46, + "probability": 0.9946 + }, + { + "start": 8893.14, + "end": 8896.34, + "probability": 0.9943 + }, + { + "start": 8897.38, + "end": 8900.1, + "probability": 0.9478 + }, + { + "start": 8900.1, + "end": 8903.62, + "probability": 0.9836 + }, + { + "start": 8904.76, + "end": 8907.86, + "probability": 0.9799 + }, + { + "start": 8909.32, + "end": 8910.03, + "probability": 0.5322 + }, + { + "start": 8910.78, + "end": 8913.46, + "probability": 0.9885 + }, + { + "start": 8913.76, + "end": 8914.66, + "probability": 0.6978 + }, + { + "start": 8915.22, + "end": 8918.0, + "probability": 0.998 + }, + { + "start": 8918.6, + "end": 8919.8, + "probability": 0.9907 + }, + { + "start": 8920.96, + "end": 8923.6, + "probability": 0.8268 + }, + { + "start": 8924.02, + "end": 8927.02, + "probability": 0.9985 + }, + { + "start": 8928.46, + "end": 8931.8, + "probability": 0.9893 + }, + { + "start": 8932.7, + "end": 8938.2, + "probability": 0.9864 + }, + { + "start": 8938.6, + "end": 8943.78, + "probability": 0.9997 + }, + { + "start": 8945.14, + "end": 8947.82, + "probability": 0.9814 + }, + { + "start": 8948.4, + "end": 8949.6, + "probability": 0.8027 + }, + { + "start": 8950.14, + "end": 8953.04, + "probability": 0.998 + }, + { + "start": 8953.04, + "end": 8960.5, + "probability": 0.7639 + }, + { + "start": 8961.18, + "end": 8965.78, + "probability": 0.9871 + }, + { + "start": 8967.36, + "end": 8971.6, + "probability": 0.9917 + }, + { + "start": 8971.6, + "end": 8976.14, + "probability": 0.9855 + }, + { + "start": 8977.24, + "end": 8984.76, + "probability": 0.7232 + }, + { + "start": 8985.2, + "end": 8991.6, + "probability": 0.9679 + }, + { + "start": 8992.08, + "end": 8995.8, + "probability": 0.8665 + }, + { + "start": 8995.8, + "end": 8998.48, + "probability": 0.7607 + }, + { + "start": 8999.16, + "end": 9001.7, + "probability": 0.798 + }, + { + "start": 9002.46, + "end": 9005.7, + "probability": 0.9595 + }, + { + "start": 9005.7, + "end": 9008.4, + "probability": 0.9809 + }, + { + "start": 9009.78, + "end": 9012.74, + "probability": 0.9822 + }, + { + "start": 9013.2, + "end": 9017.58, + "probability": 0.8518 + }, + { + "start": 9020.98, + "end": 9021.78, + "probability": 0.6898 + }, + { + "start": 9023.06, + "end": 9024.64, + "probability": 0.8175 + }, + { + "start": 9025.7, + "end": 9030.06, + "probability": 0.9946 + }, + { + "start": 9030.58, + "end": 9033.76, + "probability": 0.9938 + }, + { + "start": 9033.92, + "end": 9036.06, + "probability": 0.9338 + }, + { + "start": 9036.48, + "end": 9038.84, + "probability": 0.978 + }, + { + "start": 9039.4, + "end": 9039.54, + "probability": 0.9904 + }, + { + "start": 9040.54, + "end": 9042.02, + "probability": 0.827 + }, + { + "start": 9043.0, + "end": 9045.6, + "probability": 0.9945 + }, + { + "start": 9045.9, + "end": 9048.64, + "probability": 0.9967 + }, + { + "start": 9049.68, + "end": 9054.88, + "probability": 0.9755 + }, + { + "start": 9054.92, + "end": 9063.28, + "probability": 0.9692 + }, + { + "start": 9063.76, + "end": 9065.3, + "probability": 0.8804 + }, + { + "start": 9066.04, + "end": 9066.78, + "probability": 0.9157 + }, + { + "start": 9067.78, + "end": 9070.74, + "probability": 0.9792 + }, + { + "start": 9072.18, + "end": 9073.48, + "probability": 0.9498 + }, + { + "start": 9074.44, + "end": 9077.32, + "probability": 0.9818 + }, + { + "start": 9078.02, + "end": 9081.24, + "probability": 0.6172 + }, + { + "start": 9081.78, + "end": 9082.68, + "probability": 0.9966 + }, + { + "start": 9092.86, + "end": 9098.34, + "probability": 0.9912 + }, + { + "start": 9099.44, + "end": 9104.94, + "probability": 0.9858 + }, + { + "start": 9105.52, + "end": 9107.83, + "probability": 0.6945 + }, + { + "start": 9108.66, + "end": 9111.96, + "probability": 0.7208 + }, + { + "start": 9112.76, + "end": 9116.58, + "probability": 0.9868 + }, + { + "start": 9117.2, + "end": 9122.18, + "probability": 0.9977 + }, + { + "start": 9122.48, + "end": 9122.68, + "probability": 0.6353 + }, + { + "start": 9123.3, + "end": 9123.52, + "probability": 0.4421 + }, + { + "start": 9126.14, + "end": 9127.38, + "probability": 0.4672 + }, + { + "start": 9140.58, + "end": 9140.58, + "probability": 0.2125 + }, + { + "start": 9140.58, + "end": 9140.58, + "probability": 0.1262 + }, + { + "start": 9140.58, + "end": 9140.58, + "probability": 0.126 + }, + { + "start": 9140.58, + "end": 9141.0, + "probability": 0.022 + }, + { + "start": 9158.14, + "end": 9162.82, + "probability": 0.7648 + }, + { + "start": 9164.34, + "end": 9164.9, + "probability": 0.9964 + }, + { + "start": 9165.84, + "end": 9166.6, + "probability": 0.9705 + }, + { + "start": 9167.16, + "end": 9168.36, + "probability": 0.5185 + }, + { + "start": 9169.76, + "end": 9172.0, + "probability": 0.7636 + }, + { + "start": 9172.74, + "end": 9176.4, + "probability": 0.9872 + }, + { + "start": 9176.58, + "end": 9177.38, + "probability": 0.7232 + }, + { + "start": 9180.66, + "end": 9182.34, + "probability": 0.9554 + }, + { + "start": 9183.16, + "end": 9186.28, + "probability": 0.9181 + }, + { + "start": 9187.44, + "end": 9188.34, + "probability": 0.6225 + }, + { + "start": 9189.06, + "end": 9189.72, + "probability": 0.7434 + }, + { + "start": 9190.72, + "end": 9192.08, + "probability": 0.8407 + }, + { + "start": 9192.6, + "end": 9193.76, + "probability": 0.8547 + }, + { + "start": 9194.68, + "end": 9199.84, + "probability": 0.9917 + }, + { + "start": 9200.78, + "end": 9206.32, + "probability": 0.8221 + }, + { + "start": 9207.62, + "end": 9212.06, + "probability": 0.9897 + }, + { + "start": 9212.28, + "end": 9212.9, + "probability": 0.7781 + }, + { + "start": 9213.0, + "end": 9213.78, + "probability": 0.9373 + }, + { + "start": 9215.04, + "end": 9216.58, + "probability": 0.988 + }, + { + "start": 9217.5, + "end": 9218.36, + "probability": 0.892 + }, + { + "start": 9218.86, + "end": 9224.36, + "probability": 0.9878 + }, + { + "start": 9228.12, + "end": 9229.94, + "probability": 0.7203 + }, + { + "start": 9230.64, + "end": 9233.84, + "probability": 0.9535 + }, + { + "start": 9234.12, + "end": 9242.36, + "probability": 0.9944 + }, + { + "start": 9243.42, + "end": 9249.71, + "probability": 0.9948 + }, + { + "start": 9250.9, + "end": 9255.28, + "probability": 0.9955 + }, + { + "start": 9255.42, + "end": 9256.36, + "probability": 0.7077 + }, + { + "start": 9257.48, + "end": 9258.12, + "probability": 0.7175 + }, + { + "start": 9259.58, + "end": 9261.53, + "probability": 0.9175 + }, + { + "start": 9262.9, + "end": 9263.3, + "probability": 0.8818 + }, + { + "start": 9264.04, + "end": 9268.06, + "probability": 0.9668 + }, + { + "start": 9269.5, + "end": 9271.38, + "probability": 0.8799 + }, + { + "start": 9273.44, + "end": 9277.88, + "probability": 0.96 + }, + { + "start": 9278.2, + "end": 9279.54, + "probability": 0.9244 + }, + { + "start": 9280.34, + "end": 9284.92, + "probability": 0.9911 + }, + { + "start": 9285.14, + "end": 9286.34, + "probability": 0.8994 + }, + { + "start": 9287.1, + "end": 9290.98, + "probability": 0.8315 + }, + { + "start": 9291.78, + "end": 9295.8, + "probability": 0.9726 + }, + { + "start": 9295.96, + "end": 9297.8, + "probability": 0.9581 + }, + { + "start": 9297.94, + "end": 9299.4, + "probability": 0.2568 + }, + { + "start": 9301.6, + "end": 9302.28, + "probability": 0.7287 + }, + { + "start": 9303.0, + "end": 9303.82, + "probability": 0.8229 + }, + { + "start": 9304.66, + "end": 9313.36, + "probability": 0.9458 + }, + { + "start": 9314.18, + "end": 9316.2, + "probability": 0.9887 + }, + { + "start": 9317.58, + "end": 9321.22, + "probability": 0.7856 + }, + { + "start": 9322.08, + "end": 9327.58, + "probability": 0.8284 + }, + { + "start": 9327.88, + "end": 9327.9, + "probability": 0.6102 + }, + { + "start": 9328.08, + "end": 9329.7, + "probability": 0.8657 + }, + { + "start": 9330.34, + "end": 9337.1, + "probability": 0.8395 + }, + { + "start": 9337.98, + "end": 9341.4, + "probability": 0.8375 + }, + { + "start": 9345.86, + "end": 9351.87, + "probability": 0.9962 + }, + { + "start": 9353.2, + "end": 9357.74, + "probability": 0.9921 + }, + { + "start": 9360.94, + "end": 9361.2, + "probability": 0.5301 + }, + { + "start": 9361.5, + "end": 9364.54, + "probability": 0.9849 + }, + { + "start": 9364.66, + "end": 9365.04, + "probability": 0.5767 + }, + { + "start": 9365.04, + "end": 9371.02, + "probability": 0.9792 + }, + { + "start": 9371.22, + "end": 9372.44, + "probability": 0.7716 + }, + { + "start": 9372.68, + "end": 9374.6, + "probability": 0.5598 + }, + { + "start": 9375.42, + "end": 9380.7, + "probability": 0.8232 + }, + { + "start": 9381.42, + "end": 9385.88, + "probability": 0.7524 + }, + { + "start": 9386.92, + "end": 9387.36, + "probability": 0.2443 + }, + { + "start": 9387.36, + "end": 9390.6, + "probability": 0.8186 + }, + { + "start": 9391.24, + "end": 9396.44, + "probability": 0.8368 + }, + { + "start": 9397.22, + "end": 9402.06, + "probability": 0.8709 + }, + { + "start": 9402.36, + "end": 9402.76, + "probability": 0.8781 + }, + { + "start": 9403.48, + "end": 9404.34, + "probability": 0.8048 + }, + { + "start": 9404.42, + "end": 9411.12, + "probability": 0.9699 + }, + { + "start": 9411.6, + "end": 9412.66, + "probability": 0.6103 + }, + { + "start": 9413.3, + "end": 9415.98, + "probability": 0.9824 + }, + { + "start": 9416.6, + "end": 9417.76, + "probability": 0.9555 + }, + { + "start": 9417.98, + "end": 9421.08, + "probability": 0.5459 + }, + { + "start": 9421.56, + "end": 9421.56, + "probability": 0.0283 + }, + { + "start": 9421.56, + "end": 9425.29, + "probability": 0.9953 + }, + { + "start": 9425.9, + "end": 9429.08, + "probability": 0.9952 + }, + { + "start": 9429.3, + "end": 9430.22, + "probability": 0.916 + }, + { + "start": 9430.88, + "end": 9432.18, + "probability": 0.9684 + }, + { + "start": 9432.64, + "end": 9433.46, + "probability": 0.8399 + }, + { + "start": 9433.62, + "end": 9434.92, + "probability": 0.8997 + }, + { + "start": 9435.42, + "end": 9438.28, + "probability": 0.9756 + }, + { + "start": 9438.44, + "end": 9439.14, + "probability": 0.8742 + }, + { + "start": 9439.9, + "end": 9442.02, + "probability": 0.9684 + }, + { + "start": 9442.12, + "end": 9444.94, + "probability": 0.9913 + }, + { + "start": 9445.1, + "end": 9452.88, + "probability": 0.8436 + }, + { + "start": 9453.54, + "end": 9455.22, + "probability": 0.9898 + }, + { + "start": 9455.36, + "end": 9463.76, + "probability": 0.979 + }, + { + "start": 9464.54, + "end": 9465.88, + "probability": 0.7478 + }, + { + "start": 9466.56, + "end": 9466.66, + "probability": 0.331 + }, + { + "start": 9466.76, + "end": 9470.62, + "probability": 0.6749 + }, + { + "start": 9470.72, + "end": 9471.78, + "probability": 0.265 + }, + { + "start": 9472.06, + "end": 9472.64, + "probability": 0.759 + }, + { + "start": 9473.24, + "end": 9474.2, + "probability": 0.8781 + }, + { + "start": 9474.26, + "end": 9476.2, + "probability": 0.9863 + }, + { + "start": 9476.46, + "end": 9478.02, + "probability": 0.8396 + }, + { + "start": 9478.9, + "end": 9482.1, + "probability": 0.9139 + }, + { + "start": 9482.26, + "end": 9483.08, + "probability": 0.8199 + }, + { + "start": 9483.94, + "end": 9489.28, + "probability": 0.785 + }, + { + "start": 9489.42, + "end": 9493.3, + "probability": 0.6672 + }, + { + "start": 9493.92, + "end": 9498.7, + "probability": 0.8425 + }, + { + "start": 9499.82, + "end": 9504.16, + "probability": 0.6854 + }, + { + "start": 9504.16, + "end": 9506.32, + "probability": 0.9653 + }, + { + "start": 9508.98, + "end": 9509.26, + "probability": 0.0082 + }, + { + "start": 9509.26, + "end": 9511.76, + "probability": 0.8905 + }, + { + "start": 9512.76, + "end": 9514.56, + "probability": 0.9772 + }, + { + "start": 9515.08, + "end": 9515.5, + "probability": 0.6548 + }, + { + "start": 9516.14, + "end": 9519.32, + "probability": 0.9146 + }, + { + "start": 9519.56, + "end": 9524.7, + "probability": 0.9777 + }, + { + "start": 9524.72, + "end": 9526.92, + "probability": 0.9123 + }, + { + "start": 9527.54, + "end": 9531.18, + "probability": 0.7085 + }, + { + "start": 9531.76, + "end": 9535.62, + "probability": 0.9817 + }, + { + "start": 9536.02, + "end": 9540.54, + "probability": 0.9366 + }, + { + "start": 9540.92, + "end": 9541.16, + "probability": 0.38 + }, + { + "start": 9542.7, + "end": 9542.7, + "probability": 0.6127 + }, + { + "start": 9542.7, + "end": 9543.62, + "probability": 0.465 + }, + { + "start": 9544.14, + "end": 9545.82, + "probability": 0.5587 + }, + { + "start": 9546.48, + "end": 9547.34, + "probability": 0.504 + }, + { + "start": 9547.94, + "end": 9551.02, + "probability": 0.2733 + }, + { + "start": 9584.5, + "end": 9585.82, + "probability": 0.6965 + }, + { + "start": 9587.34, + "end": 9593.56, + "probability": 0.9697 + }, + { + "start": 9594.52, + "end": 9595.4, + "probability": 0.6565 + }, + { + "start": 9596.18, + "end": 9597.5, + "probability": 0.5661 + }, + { + "start": 9597.88, + "end": 9598.86, + "probability": 0.714 + }, + { + "start": 9600.88, + "end": 9602.66, + "probability": 0.9893 + }, + { + "start": 9606.02, + "end": 9609.58, + "probability": 0.9993 + }, + { + "start": 9610.38, + "end": 9614.4, + "probability": 0.9992 + }, + { + "start": 9615.7, + "end": 9616.45, + "probability": 0.7783 + }, + { + "start": 9617.86, + "end": 9618.62, + "probability": 0.7715 + }, + { + "start": 9619.8, + "end": 9621.24, + "probability": 0.9697 + }, + { + "start": 9621.56, + "end": 9624.31, + "probability": 0.9883 + }, + { + "start": 9625.02, + "end": 9627.3, + "probability": 0.9513 + }, + { + "start": 9628.38, + "end": 9630.38, + "probability": 0.9455 + }, + { + "start": 9630.96, + "end": 9632.08, + "probability": 0.647 + }, + { + "start": 9634.14, + "end": 9635.62, + "probability": 0.9939 + }, + { + "start": 9636.96, + "end": 9641.94, + "probability": 0.9994 + }, + { + "start": 9642.7, + "end": 9647.04, + "probability": 0.997 + }, + { + "start": 9648.96, + "end": 9651.44, + "probability": 0.9915 + }, + { + "start": 9652.72, + "end": 9655.73, + "probability": 0.9958 + }, + { + "start": 9656.24, + "end": 9660.06, + "probability": 0.8315 + }, + { + "start": 9661.08, + "end": 9662.12, + "probability": 0.8083 + }, + { + "start": 9663.75, + "end": 9665.82, + "probability": 0.9688 + }, + { + "start": 9666.0, + "end": 9667.08, + "probability": 0.8995 + }, + { + "start": 9668.06, + "end": 9672.14, + "probability": 0.9924 + }, + { + "start": 9672.48, + "end": 9673.62, + "probability": 0.9575 + }, + { + "start": 9675.22, + "end": 9678.96, + "probability": 0.8962 + }, + { + "start": 9678.96, + "end": 9681.64, + "probability": 0.9673 + }, + { + "start": 9682.2, + "end": 9683.92, + "probability": 0.8307 + }, + { + "start": 9684.06, + "end": 9686.52, + "probability": 0.7883 + }, + { + "start": 9687.24, + "end": 9688.04, + "probability": 0.786 + }, + { + "start": 9688.2, + "end": 9688.2, + "probability": 0.931 + }, + { + "start": 9688.2, + "end": 9690.0, + "probability": 0.8595 + }, + { + "start": 9690.42, + "end": 9692.73, + "probability": 0.906 + }, + { + "start": 9693.56, + "end": 9697.68, + "probability": 0.5323 + }, + { + "start": 9698.28, + "end": 9699.98, + "probability": 0.7189 + }, + { + "start": 9700.96, + "end": 9703.1, + "probability": 0.979 + }, + { + "start": 9703.6, + "end": 9703.72, + "probability": 0.3566 + }, + { + "start": 9703.82, + "end": 9704.86, + "probability": 0.9628 + }, + { + "start": 9705.88, + "end": 9708.28, + "probability": 0.9719 + }, + { + "start": 9710.1, + "end": 9713.54, + "probability": 0.9475 + }, + { + "start": 9713.82, + "end": 9714.48, + "probability": 0.5999 + }, + { + "start": 9714.6, + "end": 9715.98, + "probability": 0.989 + }, + { + "start": 9717.56, + "end": 9721.0, + "probability": 0.9675 + }, + { + "start": 9721.0, + "end": 9725.16, + "probability": 0.9895 + }, + { + "start": 9726.46, + "end": 9731.12, + "probability": 0.9469 + }, + { + "start": 9732.62, + "end": 9737.5, + "probability": 0.9602 + }, + { + "start": 9738.24, + "end": 9739.58, + "probability": 0.7186 + }, + { + "start": 9740.48, + "end": 9741.38, + "probability": 0.8049 + }, + { + "start": 9742.12, + "end": 9746.02, + "probability": 0.761 + }, + { + "start": 9747.24, + "end": 9748.82, + "probability": 0.9995 + }, + { + "start": 9749.86, + "end": 9751.76, + "probability": 0.9985 + }, + { + "start": 9752.78, + "end": 9753.6, + "probability": 0.9985 + }, + { + "start": 9754.38, + "end": 9760.44, + "probability": 0.9949 + }, + { + "start": 9760.58, + "end": 9760.98, + "probability": 0.746 + }, + { + "start": 9761.02, + "end": 9762.14, + "probability": 0.9505 + }, + { + "start": 9762.62, + "end": 9764.5, + "probability": 0.7861 + }, + { + "start": 9765.1, + "end": 9765.68, + "probability": 0.0745 + }, + { + "start": 9765.68, + "end": 9767.62, + "probability": 0.9192 + }, + { + "start": 9767.86, + "end": 9768.54, + "probability": 0.4224 + }, + { + "start": 9769.24, + "end": 9772.2, + "probability": 0.9084 + }, + { + "start": 9773.2, + "end": 9777.64, + "probability": 0.9801 + }, + { + "start": 9777.74, + "end": 9779.71, + "probability": 0.9345 + }, + { + "start": 9780.2, + "end": 9781.63, + "probability": 0.7933 + }, + { + "start": 9781.98, + "end": 9786.56, + "probability": 0.9935 + }, + { + "start": 9788.42, + "end": 9789.6, + "probability": 0.9971 + }, + { + "start": 9791.82, + "end": 9793.94, + "probability": 0.9181 + }, + { + "start": 9793.96, + "end": 9796.66, + "probability": 0.9694 + }, + { + "start": 9797.66, + "end": 9799.1, + "probability": 0.9976 + }, + { + "start": 9799.22, + "end": 9799.96, + "probability": 0.8677 + }, + { + "start": 9800.22, + "end": 9801.52, + "probability": 0.8431 + }, + { + "start": 9801.72, + "end": 9802.72, + "probability": 0.9227 + }, + { + "start": 9803.5, + "end": 9807.15, + "probability": 0.9738 + }, + { + "start": 9807.96, + "end": 9809.96, + "probability": 0.8738 + }, + { + "start": 9810.96, + "end": 9813.24, + "probability": 0.9595 + }, + { + "start": 9815.22, + "end": 9817.34, + "probability": 0.8821 + }, + { + "start": 9818.2, + "end": 9819.14, + "probability": 0.9342 + }, + { + "start": 9819.42, + "end": 9820.8, + "probability": 0.9633 + }, + { + "start": 9820.84, + "end": 9825.9, + "probability": 0.9331 + }, + { + "start": 9825.9, + "end": 9827.22, + "probability": 0.0821 + }, + { + "start": 9828.38, + "end": 9829.7, + "probability": 0.981 + }, + { + "start": 9829.86, + "end": 9830.95, + "probability": 0.9746 + }, + { + "start": 9832.64, + "end": 9834.68, + "probability": 0.8181 + }, + { + "start": 9835.42, + "end": 9839.74, + "probability": 0.9265 + }, + { + "start": 9840.58, + "end": 9842.13, + "probability": 0.7413 + }, + { + "start": 9843.0, + "end": 9843.58, + "probability": 0.8511 + }, + { + "start": 9844.46, + "end": 9848.24, + "probability": 0.9188 + }, + { + "start": 9849.38, + "end": 9852.32, + "probability": 0.8543 + }, + { + "start": 9853.94, + "end": 9854.72, + "probability": 0.9978 + }, + { + "start": 9855.82, + "end": 9856.84, + "probability": 0.9799 + }, + { + "start": 9858.06, + "end": 9859.26, + "probability": 0.2297 + }, + { + "start": 9860.42, + "end": 9860.92, + "probability": 0.2479 + }, + { + "start": 9862.74, + "end": 9863.64, + "probability": 0.9578 + }, + { + "start": 9863.74, + "end": 9864.24, + "probability": 0.9579 + }, + { + "start": 9864.5, + "end": 9865.06, + "probability": 0.8752 + }, + { + "start": 9865.1, + "end": 9866.1, + "probability": 0.9945 + }, + { + "start": 9867.18, + "end": 9868.4, + "probability": 0.7643 + }, + { + "start": 9869.08, + "end": 9871.84, + "probability": 0.9597 + }, + { + "start": 9872.82, + "end": 9874.76, + "probability": 0.8514 + }, + { + "start": 9875.22, + "end": 9876.86, + "probability": 0.9976 + }, + { + "start": 9877.56, + "end": 9881.84, + "probability": 0.9735 + }, + { + "start": 9882.52, + "end": 9884.36, + "probability": 0.9853 + }, + { + "start": 9885.78, + "end": 9889.22, + "probability": 0.8313 + }, + { + "start": 9891.34, + "end": 9892.16, + "probability": 0.9272 + }, + { + "start": 9893.1, + "end": 9894.96, + "probability": 0.9948 + }, + { + "start": 9895.78, + "end": 9896.52, + "probability": 0.7511 + }, + { + "start": 9896.6, + "end": 9897.9, + "probability": 0.7608 + }, + { + "start": 9898.02, + "end": 9900.18, + "probability": 0.8578 + }, + { + "start": 9900.28, + "end": 9901.23, + "probability": 0.6344 + }, + { + "start": 9901.74, + "end": 9903.46, + "probability": 0.9897 + }, + { + "start": 9904.06, + "end": 9904.28, + "probability": 0.3703 + }, + { + "start": 9904.44, + "end": 9905.88, + "probability": 0.9746 + }, + { + "start": 9905.96, + "end": 9907.17, + "probability": 0.9893 + }, + { + "start": 9908.62, + "end": 9911.24, + "probability": 0.9406 + }, + { + "start": 9912.1, + "end": 9915.28, + "probability": 0.851 + }, + { + "start": 9916.66, + "end": 9917.72, + "probability": 0.7806 + }, + { + "start": 9919.08, + "end": 9919.8, + "probability": 0.9534 + }, + { + "start": 9920.44, + "end": 9921.5, + "probability": 0.9806 + }, + { + "start": 9922.24, + "end": 9924.0, + "probability": 0.963 + }, + { + "start": 9924.94, + "end": 9927.86, + "probability": 0.9131 + }, + { + "start": 9928.5, + "end": 9933.5, + "probability": 0.9951 + }, + { + "start": 9933.64, + "end": 9937.54, + "probability": 0.9995 + }, + { + "start": 9938.56, + "end": 9939.82, + "probability": 0.9663 + }, + { + "start": 9941.4, + "end": 9944.18, + "probability": 0.9912 + }, + { + "start": 9945.36, + "end": 9946.3, + "probability": 0.6654 + }, + { + "start": 9946.34, + "end": 9947.06, + "probability": 0.6559 + }, + { + "start": 9947.38, + "end": 9949.42, + "probability": 0.6778 + }, + { + "start": 9951.22, + "end": 9953.6, + "probability": 0.9963 + }, + { + "start": 9954.94, + "end": 9957.26, + "probability": 0.9764 + }, + { + "start": 9957.52, + "end": 9958.5, + "probability": 0.978 + }, + { + "start": 9958.68, + "end": 9959.72, + "probability": 0.9645 + }, + { + "start": 9959.78, + "end": 9960.06, + "probability": 0.6476 + }, + { + "start": 9961.64, + "end": 9964.08, + "probability": 0.8972 + }, + { + "start": 9964.66, + "end": 9965.56, + "probability": 0.7957 + }, + { + "start": 9965.7, + "end": 9967.77, + "probability": 0.9182 + }, + { + "start": 9968.38, + "end": 9970.84, + "probability": 0.9919 + }, + { + "start": 9971.8, + "end": 9973.38, + "probability": 0.9639 + }, + { + "start": 9974.94, + "end": 9977.44, + "probability": 0.9771 + }, + { + "start": 9978.82, + "end": 9979.76, + "probability": 0.7593 + }, + { + "start": 9980.78, + "end": 9983.02, + "probability": 0.9673 + }, + { + "start": 9983.68, + "end": 9985.44, + "probability": 0.8679 + }, + { + "start": 9986.04, + "end": 9987.72, + "probability": 0.8875 + }, + { + "start": 9988.36, + "end": 9991.48, + "probability": 0.9888 + }, + { + "start": 9991.48, + "end": 9994.28, + "probability": 0.9971 + }, + { + "start": 9995.04, + "end": 9996.38, + "probability": 0.8271 + }, + { + "start": 9997.28, + "end": 9997.58, + "probability": 0.8544 + }, + { + "start": 9998.46, + "end": 9999.56, + "probability": 0.7545 + }, + { + "start": 10000.42, + "end": 10001.66, + "probability": 0.9994 + }, + { + "start": 10002.88, + "end": 10006.78, + "probability": 0.9989 + }, + { + "start": 10007.52, + "end": 10010.32, + "probability": 0.8617 + }, + { + "start": 10010.86, + "end": 10011.62, + "probability": 0.9947 + }, + { + "start": 10012.36, + "end": 10012.5, + "probability": 0.6531 + }, + { + "start": 10012.6, + "end": 10014.71, + "probability": 0.9803 + }, + { + "start": 10015.1, + "end": 10016.28, + "probability": 0.7508 + }, + { + "start": 10017.36, + "end": 10021.92, + "probability": 0.9934 + }, + { + "start": 10022.94, + "end": 10025.06, + "probability": 0.8269 + }, + { + "start": 10026.14, + "end": 10027.68, + "probability": 0.7031 + }, + { + "start": 10028.46, + "end": 10029.84, + "probability": 0.9756 + }, + { + "start": 10030.2, + "end": 10030.48, + "probability": 0.6987 + }, + { + "start": 10031.06, + "end": 10034.1, + "probability": 0.9683 + }, + { + "start": 10034.44, + "end": 10036.32, + "probability": 0.9849 + }, + { + "start": 10036.6, + "end": 10040.3, + "probability": 0.908 + }, + { + "start": 10040.42, + "end": 10041.84, + "probability": 0.9478 + }, + { + "start": 10043.26, + "end": 10044.08, + "probability": 0.9954 + }, + { + "start": 10044.1, + "end": 10045.96, + "probability": 0.9974 + }, + { + "start": 10046.08, + "end": 10047.32, + "probability": 0.6504 + }, + { + "start": 10047.98, + "end": 10050.72, + "probability": 0.9041 + }, + { + "start": 10051.4, + "end": 10052.46, + "probability": 0.9927 + }, + { + "start": 10052.48, + "end": 10053.78, + "probability": 0.9382 + }, + { + "start": 10053.82, + "end": 10055.06, + "probability": 0.8802 + }, + { + "start": 10055.36, + "end": 10058.2, + "probability": 0.9077 + }, + { + "start": 10058.48, + "end": 10059.78, + "probability": 0.281 + }, + { + "start": 10062.16, + "end": 10062.18, + "probability": 0.0559 + }, + { + "start": 10062.18, + "end": 10062.58, + "probability": 0.102 + }, + { + "start": 10062.58, + "end": 10066.08, + "probability": 0.9624 + }, + { + "start": 10066.16, + "end": 10066.96, + "probability": 0.903 + }, + { + "start": 10067.18, + "end": 10068.05, + "probability": 0.9302 + }, + { + "start": 10068.88, + "end": 10069.78, + "probability": 0.7542 + }, + { + "start": 10069.88, + "end": 10072.26, + "probability": 0.9917 + }, + { + "start": 10072.96, + "end": 10073.86, + "probability": 0.9348 + }, + { + "start": 10074.66, + "end": 10075.06, + "probability": 0.7016 + }, + { + "start": 10075.84, + "end": 10076.6, + "probability": 0.4908 + }, + { + "start": 10076.66, + "end": 10079.02, + "probability": 0.1797 + }, + { + "start": 10082.22, + "end": 10083.28, + "probability": 0.6742 + }, + { + "start": 10084.32, + "end": 10085.4, + "probability": 0.3658 + }, + { + "start": 10086.82, + "end": 10087.82, + "probability": 0.2812 + }, + { + "start": 10089.52, + "end": 10091.18, + "probability": 0.7669 + }, + { + "start": 10092.9, + "end": 10095.88, + "probability": 0.9691 + }, + { + "start": 10097.1, + "end": 10099.26, + "probability": 0.7734 + }, + { + "start": 10100.34, + "end": 10102.12, + "probability": 0.9675 + }, + { + "start": 10103.14, + "end": 10104.74, + "probability": 0.8931 + }, + { + "start": 10105.72, + "end": 10106.86, + "probability": 0.9272 + }, + { + "start": 10108.2, + "end": 10111.7, + "probability": 0.9128 + }, + { + "start": 10112.16, + "end": 10114.74, + "probability": 0.9329 + }, + { + "start": 10115.44, + "end": 10119.38, + "probability": 0.9927 + }, + { + "start": 10120.92, + "end": 10124.84, + "probability": 0.9321 + }, + { + "start": 10125.76, + "end": 10126.7, + "probability": 0.9581 + }, + { + "start": 10128.9, + "end": 10130.08, + "probability": 0.8639 + }, + { + "start": 10130.84, + "end": 10133.66, + "probability": 0.9917 + }, + { + "start": 10134.5, + "end": 10136.04, + "probability": 0.9967 + }, + { + "start": 10136.92, + "end": 10141.48, + "probability": 0.9796 + }, + { + "start": 10142.16, + "end": 10142.86, + "probability": 0.8971 + }, + { + "start": 10143.66, + "end": 10144.7, + "probability": 0.9971 + }, + { + "start": 10146.18, + "end": 10147.26, + "probability": 0.9443 + }, + { + "start": 10147.5, + "end": 10148.06, + "probability": 0.8372 + }, + { + "start": 10148.66, + "end": 10149.3, + "probability": 0.9954 + }, + { + "start": 10149.92, + "end": 10151.26, + "probability": 0.946 + }, + { + "start": 10152.02, + "end": 10152.32, + "probability": 0.7397 + }, + { + "start": 10152.42, + "end": 10153.62, + "probability": 0.9839 + }, + { + "start": 10154.04, + "end": 10156.48, + "probability": 0.9108 + }, + { + "start": 10157.46, + "end": 10161.04, + "probability": 0.9897 + }, + { + "start": 10162.2, + "end": 10164.08, + "probability": 0.7363 + }, + { + "start": 10164.64, + "end": 10168.12, + "probability": 0.9707 + }, + { + "start": 10168.78, + "end": 10170.84, + "probability": 0.8553 + }, + { + "start": 10171.92, + "end": 10174.28, + "probability": 0.9971 + }, + { + "start": 10174.84, + "end": 10178.06, + "probability": 0.9865 + }, + { + "start": 10178.64, + "end": 10181.42, + "probability": 0.9879 + }, + { + "start": 10182.2, + "end": 10183.8, + "probability": 0.8528 + }, + { + "start": 10184.46, + "end": 10187.96, + "probability": 0.8355 + }, + { + "start": 10188.46, + "end": 10189.88, + "probability": 0.9944 + }, + { + "start": 10190.66, + "end": 10193.08, + "probability": 0.9266 + }, + { + "start": 10193.86, + "end": 10197.3, + "probability": 0.9944 + }, + { + "start": 10198.48, + "end": 10200.78, + "probability": 0.9915 + }, + { + "start": 10201.06, + "end": 10201.6, + "probability": 0.7132 + }, + { + "start": 10201.78, + "end": 10202.88, + "probability": 0.8354 + }, + { + "start": 10203.74, + "end": 10207.82, + "probability": 0.9917 + }, + { + "start": 10207.82, + "end": 10210.76, + "probability": 0.9893 + }, + { + "start": 10211.8, + "end": 10212.72, + "probability": 0.8979 + }, + { + "start": 10213.86, + "end": 10215.8, + "probability": 0.9852 + }, + { + "start": 10215.9, + "end": 10217.14, + "probability": 0.5064 + }, + { + "start": 10217.62, + "end": 10220.18, + "probability": 0.4593 + }, + { + "start": 10220.86, + "end": 10222.46, + "probability": 0.8623 + }, + { + "start": 10224.12, + "end": 10229.68, + "probability": 0.9058 + }, + { + "start": 10230.22, + "end": 10230.72, + "probability": 0.7085 + }, + { + "start": 10231.1, + "end": 10235.9, + "probability": 0.9885 + }, + { + "start": 10236.44, + "end": 10236.68, + "probability": 0.4578 + }, + { + "start": 10236.78, + "end": 10237.4, + "probability": 0.6105 + }, + { + "start": 10237.54, + "end": 10240.64, + "probability": 0.4868 + }, + { + "start": 10240.64, + "end": 10243.66, + "probability": 0.9766 + }, + { + "start": 10244.12, + "end": 10245.18, + "probability": 0.6863 + }, + { + "start": 10245.86, + "end": 10248.92, + "probability": 0.7897 + }, + { + "start": 10249.42, + "end": 10253.3, + "probability": 0.9888 + }, + { + "start": 10254.14, + "end": 10256.04, + "probability": 0.4438 + }, + { + "start": 10257.08, + "end": 10261.82, + "probability": 0.8478 + }, + { + "start": 10262.4, + "end": 10266.2, + "probability": 0.9958 + }, + { + "start": 10267.04, + "end": 10270.32, + "probability": 0.9762 + }, + { + "start": 10270.98, + "end": 10272.24, + "probability": 0.9777 + }, + { + "start": 10272.88, + "end": 10276.94, + "probability": 0.9932 + }, + { + "start": 10277.32, + "end": 10277.42, + "probability": 0.5436 + }, + { + "start": 10277.96, + "end": 10282.88, + "probability": 0.9766 + }, + { + "start": 10283.9, + "end": 10286.1, + "probability": 0.9307 + }, + { + "start": 10287.08, + "end": 10287.4, + "probability": 0.6326 + }, + { + "start": 10288.22, + "end": 10291.38, + "probability": 0.9885 + }, + { + "start": 10292.0, + "end": 10293.76, + "probability": 0.8707 + }, + { + "start": 10294.38, + "end": 10295.1, + "probability": 0.7445 + }, + { + "start": 10295.54, + "end": 10296.06, + "probability": 0.7199 + }, + { + "start": 10296.86, + "end": 10300.32, + "probability": 0.9454 + }, + { + "start": 10301.52, + "end": 10303.42, + "probability": 0.9896 + }, + { + "start": 10304.22, + "end": 10306.0, + "probability": 0.8154 + }, + { + "start": 10306.42, + "end": 10310.7, + "probability": 0.9204 + }, + { + "start": 10311.62, + "end": 10313.88, + "probability": 0.8824 + }, + { + "start": 10314.96, + "end": 10318.72, + "probability": 0.9873 + }, + { + "start": 10319.46, + "end": 10319.98, + "probability": 0.7498 + }, + { + "start": 10320.06, + "end": 10322.78, + "probability": 0.9915 + }, + { + "start": 10323.62, + "end": 10326.34, + "probability": 0.9989 + }, + { + "start": 10326.34, + "end": 10329.66, + "probability": 0.998 + }, + { + "start": 10329.82, + "end": 10330.46, + "probability": 0.7399 + }, + { + "start": 10330.76, + "end": 10332.18, + "probability": 0.9309 + }, + { + "start": 10332.7, + "end": 10333.14, + "probability": 0.955 + }, + { + "start": 10333.98, + "end": 10335.02, + "probability": 0.9937 + }, + { + "start": 10336.54, + "end": 10336.78, + "probability": 0.3423 + }, + { + "start": 10336.84, + "end": 10337.08, + "probability": 0.8505 + }, + { + "start": 10337.22, + "end": 10341.52, + "probability": 0.9087 + }, + { + "start": 10342.48, + "end": 10344.7, + "probability": 0.9736 + }, + { + "start": 10345.26, + "end": 10346.4, + "probability": 0.9436 + }, + { + "start": 10346.98, + "end": 10349.39, + "probability": 0.9683 + }, + { + "start": 10350.06, + "end": 10352.14, + "probability": 0.9885 + }, + { + "start": 10352.68, + "end": 10354.12, + "probability": 0.8938 + }, + { + "start": 10354.78, + "end": 10356.2, + "probability": 0.8326 + }, + { + "start": 10356.96, + "end": 10360.68, + "probability": 0.8149 + }, + { + "start": 10361.24, + "end": 10362.32, + "probability": 0.8536 + }, + { + "start": 10362.74, + "end": 10364.58, + "probability": 0.9347 + }, + { + "start": 10364.96, + "end": 10365.8, + "probability": 0.7228 + }, + { + "start": 10365.88, + "end": 10366.72, + "probability": 0.8426 + }, + { + "start": 10366.84, + "end": 10367.0, + "probability": 0.6865 + }, + { + "start": 10368.2, + "end": 10369.22, + "probability": 0.5905 + }, + { + "start": 10369.72, + "end": 10374.08, + "probability": 0.673 + }, + { + "start": 10391.4, + "end": 10392.1, + "probability": 0.6484 + }, + { + "start": 10392.38, + "end": 10393.3, + "probability": 0.7077 + }, + { + "start": 10393.64, + "end": 10394.5, + "probability": 0.7722 + }, + { + "start": 10394.68, + "end": 10395.6, + "probability": 0.8807 + }, + { + "start": 10395.66, + "end": 10396.7, + "probability": 0.8873 + }, + { + "start": 10397.64, + "end": 10399.02, + "probability": 0.9633 + }, + { + "start": 10399.16, + "end": 10400.38, + "probability": 0.9844 + }, + { + "start": 10400.54, + "end": 10401.24, + "probability": 0.9113 + }, + { + "start": 10401.72, + "end": 10404.4, + "probability": 0.9417 + }, + { + "start": 10404.62, + "end": 10406.3, + "probability": 0.962 + }, + { + "start": 10407.2, + "end": 10417.22, + "probability": 0.9446 + }, + { + "start": 10417.62, + "end": 10418.2, + "probability": 0.8508 + }, + { + "start": 10419.12, + "end": 10423.34, + "probability": 0.8249 + }, + { + "start": 10423.88, + "end": 10424.73, + "probability": 0.9787 + }, + { + "start": 10425.86, + "end": 10430.1, + "probability": 0.9074 + }, + { + "start": 10430.26, + "end": 10434.44, + "probability": 0.9686 + }, + { + "start": 10434.58, + "end": 10437.25, + "probability": 0.68 + }, + { + "start": 10438.5, + "end": 10443.32, + "probability": 0.9322 + }, + { + "start": 10443.86, + "end": 10447.52, + "probability": 0.9824 + }, + { + "start": 10448.26, + "end": 10448.46, + "probability": 0.4361 + }, + { + "start": 10448.58, + "end": 10448.9, + "probability": 0.8168 + }, + { + "start": 10448.98, + "end": 10453.22, + "probability": 0.995 + }, + { + "start": 10453.76, + "end": 10455.94, + "probability": 0.9931 + }, + { + "start": 10456.38, + "end": 10459.55, + "probability": 0.9846 + }, + { + "start": 10461.34, + "end": 10463.12, + "probability": 0.6574 + }, + { + "start": 10463.36, + "end": 10468.43, + "probability": 0.9373 + }, + { + "start": 10469.7, + "end": 10471.74, + "probability": 0.9574 + }, + { + "start": 10471.92, + "end": 10476.22, + "probability": 0.9944 + }, + { + "start": 10476.62, + "end": 10479.08, + "probability": 0.6717 + }, + { + "start": 10479.86, + "end": 10481.42, + "probability": 0.5741 + }, + { + "start": 10481.94, + "end": 10483.54, + "probability": 0.789 + }, + { + "start": 10484.08, + "end": 10485.28, + "probability": 0.8579 + }, + { + "start": 10485.94, + "end": 10488.94, + "probability": 0.9963 + }, + { + "start": 10489.24, + "end": 10492.04, + "probability": 0.9856 + }, + { + "start": 10492.86, + "end": 10495.62, + "probability": 0.9718 + }, + { + "start": 10496.14, + "end": 10498.12, + "probability": 0.6869 + }, + { + "start": 10498.24, + "end": 10499.44, + "probability": 0.8917 + }, + { + "start": 10499.66, + "end": 10505.52, + "probability": 0.9412 + }, + { + "start": 10505.9, + "end": 10509.68, + "probability": 0.9532 + }, + { + "start": 10510.38, + "end": 10512.8, + "probability": 0.9883 + }, + { + "start": 10512.9, + "end": 10513.28, + "probability": 0.6414 + }, + { + "start": 10513.4, + "end": 10514.48, + "probability": 0.9724 + }, + { + "start": 10515.0, + "end": 10522.78, + "probability": 0.8146 + }, + { + "start": 10525.12, + "end": 10529.46, + "probability": 0.9738 + }, + { + "start": 10529.58, + "end": 10530.05, + "probability": 0.9973 + }, + { + "start": 10530.9, + "end": 10536.16, + "probability": 0.9675 + }, + { + "start": 10536.94, + "end": 10538.98, + "probability": 0.5386 + }, + { + "start": 10539.04, + "end": 10540.06, + "probability": 0.9525 + }, + { + "start": 10540.12, + "end": 10544.36, + "probability": 0.9355 + }, + { + "start": 10544.84, + "end": 10549.08, + "probability": 0.9968 + }, + { + "start": 10549.78, + "end": 10551.1, + "probability": 0.72 + }, + { + "start": 10551.5, + "end": 10552.06, + "probability": 0.8262 + }, + { + "start": 10552.5, + "end": 10555.86, + "probability": 0.9871 + }, + { + "start": 10556.38, + "end": 10557.14, + "probability": 0.5204 + }, + { + "start": 10557.26, + "end": 10558.28, + "probability": 0.9604 + }, + { + "start": 10558.86, + "end": 10561.47, + "probability": 0.9893 + }, + { + "start": 10563.5, + "end": 10566.3, + "probability": 0.8057 + }, + { + "start": 10566.82, + "end": 10573.4, + "probability": 0.7969 + }, + { + "start": 10573.58, + "end": 10574.68, + "probability": 0.65 + }, + { + "start": 10575.0, + "end": 10576.0, + "probability": 0.9617 + }, + { + "start": 10576.08, + "end": 10576.8, + "probability": 0.876 + }, + { + "start": 10578.28, + "end": 10579.14, + "probability": 0.4954 + }, + { + "start": 10580.8, + "end": 10581.54, + "probability": 0.3774 + }, + { + "start": 10581.54, + "end": 10583.28, + "probability": 0.6974 + }, + { + "start": 10583.44, + "end": 10583.62, + "probability": 0.4459 + }, + { + "start": 10583.78, + "end": 10584.18, + "probability": 0.7771 + }, + { + "start": 10585.32, + "end": 10585.94, + "probability": 0.8637 + }, + { + "start": 10586.3, + "end": 10588.06, + "probability": 0.9399 + }, + { + "start": 10589.14, + "end": 10593.02, + "probability": 0.9938 + }, + { + "start": 10593.76, + "end": 10596.22, + "probability": 0.998 + }, + { + "start": 10597.1, + "end": 10600.74, + "probability": 0.9105 + }, + { + "start": 10601.2, + "end": 10601.68, + "probability": 0.9215 + }, + { + "start": 10602.02, + "end": 10603.6, + "probability": 0.9127 + }, + { + "start": 10604.0, + "end": 10605.58, + "probability": 0.8993 + }, + { + "start": 10606.46, + "end": 10608.7, + "probability": 0.9985 + }, + { + "start": 10609.46, + "end": 10611.84, + "probability": 0.6978 + }, + { + "start": 10611.94, + "end": 10613.82, + "probability": 0.9903 + }, + { + "start": 10614.32, + "end": 10615.52, + "probability": 0.9992 + }, + { + "start": 10615.58, + "end": 10617.8, + "probability": 0.8572 + }, + { + "start": 10618.9, + "end": 10623.98, + "probability": 0.7148 + }, + { + "start": 10624.54, + "end": 10625.24, + "probability": 0.8887 + }, + { + "start": 10625.34, + "end": 10626.56, + "probability": 0.8366 + }, + { + "start": 10626.76, + "end": 10628.34, + "probability": 0.8523 + }, + { + "start": 10628.4, + "end": 10629.04, + "probability": 0.6121 + }, + { + "start": 10629.8, + "end": 10631.68, + "probability": 0.8241 + }, + { + "start": 10632.76, + "end": 10635.06, + "probability": 0.9946 + }, + { + "start": 10635.06, + "end": 10638.94, + "probability": 0.9294 + }, + { + "start": 10640.1, + "end": 10643.14, + "probability": 0.4958 + }, + { + "start": 10643.74, + "end": 10645.82, + "probability": 0.7261 + }, + { + "start": 10646.38, + "end": 10647.6, + "probability": 0.6548 + }, + { + "start": 10648.3, + "end": 10651.28, + "probability": 0.9966 + }, + { + "start": 10651.82, + "end": 10654.82, + "probability": 0.9901 + }, + { + "start": 10655.0, + "end": 10658.88, + "probability": 0.9849 + }, + { + "start": 10659.36, + "end": 10660.48, + "probability": 0.7561 + }, + { + "start": 10660.76, + "end": 10662.5, + "probability": 0.9917 + }, + { + "start": 10663.62, + "end": 10664.38, + "probability": 0.7096 + }, + { + "start": 10665.36, + "end": 10666.94, + "probability": 0.1703 + }, + { + "start": 10666.94, + "end": 10668.2, + "probability": 0.1132 + }, + { + "start": 10668.8, + "end": 10669.52, + "probability": 0.2289 + }, + { + "start": 10670.04, + "end": 10670.32, + "probability": 0.0503 + }, + { + "start": 10673.06, + "end": 10675.2, + "probability": 0.3306 + }, + { + "start": 10676.18, + "end": 10676.88, + "probability": 0.4832 + }, + { + "start": 10677.02, + "end": 10677.68, + "probability": 0.8477 + }, + { + "start": 10677.78, + "end": 10679.44, + "probability": 0.8594 + }, + { + "start": 10679.8, + "end": 10681.1, + "probability": 0.9851 + }, + { + "start": 10681.58, + "end": 10683.38, + "probability": 0.9747 + }, + { + "start": 10684.48, + "end": 10686.06, + "probability": 0.9846 + }, + { + "start": 10687.04, + "end": 10689.74, + "probability": 0.9878 + }, + { + "start": 10689.94, + "end": 10690.22, + "probability": 0.5072 + }, + { + "start": 10690.32, + "end": 10692.62, + "probability": 0.786 + }, + { + "start": 10692.7, + "end": 10696.46, + "probability": 0.9954 + }, + { + "start": 10696.9, + "end": 10699.96, + "probability": 0.9953 + }, + { + "start": 10700.04, + "end": 10700.69, + "probability": 0.9355 + }, + { + "start": 10701.44, + "end": 10707.36, + "probability": 0.7879 + }, + { + "start": 10707.4, + "end": 10708.58, + "probability": 0.7153 + }, + { + "start": 10708.7, + "end": 10709.58, + "probability": 0.9805 + }, + { + "start": 10709.82, + "end": 10713.02, + "probability": 0.963 + }, + { + "start": 10713.54, + "end": 10714.8, + "probability": 0.5278 + }, + { + "start": 10715.3, + "end": 10716.88, + "probability": 0.7808 + }, + { + "start": 10717.16, + "end": 10719.09, + "probability": 0.9484 + }, + { + "start": 10719.58, + "end": 10720.19, + "probability": 0.724 + }, + { + "start": 10720.96, + "end": 10723.58, + "probability": 0.9849 + }, + { + "start": 10724.42, + "end": 10726.34, + "probability": 0.8079 + }, + { + "start": 10726.56, + "end": 10728.74, + "probability": 0.9364 + }, + { + "start": 10729.34, + "end": 10732.22, + "probability": 0.8882 + }, + { + "start": 10732.32, + "end": 10734.42, + "probability": 0.9482 + }, + { + "start": 10735.0, + "end": 10736.31, + "probability": 0.9954 + }, + { + "start": 10736.72, + "end": 10742.4, + "probability": 0.9977 + }, + { + "start": 10743.4, + "end": 10743.92, + "probability": 0.8506 + }, + { + "start": 10744.26, + "end": 10744.82, + "probability": 0.7466 + }, + { + "start": 10745.16, + "end": 10746.36, + "probability": 0.9487 + }, + { + "start": 10746.84, + "end": 10751.02, + "probability": 0.2153 + }, + { + "start": 10751.6, + "end": 10754.0, + "probability": 0.9642 + }, + { + "start": 10754.48, + "end": 10757.46, + "probability": 0.7465 + }, + { + "start": 10757.46, + "end": 10760.2, + "probability": 0.9066 + }, + { + "start": 10760.3, + "end": 10761.92, + "probability": 0.9932 + }, + { + "start": 10762.66, + "end": 10764.3, + "probability": 0.9567 + }, + { + "start": 10764.76, + "end": 10766.7, + "probability": 0.9937 + }, + { + "start": 10767.24, + "end": 10768.96, + "probability": 0.8657 + }, + { + "start": 10769.34, + "end": 10771.02, + "probability": 0.9948 + }, + { + "start": 10771.96, + "end": 10775.08, + "probability": 0.9985 + }, + { + "start": 10775.08, + "end": 10777.5, + "probability": 0.9702 + }, + { + "start": 10777.54, + "end": 10780.66, + "probability": 0.9945 + }, + { + "start": 10780.84, + "end": 10783.04, + "probability": 0.8537 + }, + { + "start": 10785.04, + "end": 10785.04, + "probability": 0.0186 + }, + { + "start": 10785.04, + "end": 10790.84, + "probability": 0.9807 + }, + { + "start": 10791.3, + "end": 10794.04, + "probability": 0.9556 + }, + { + "start": 10794.52, + "end": 10797.8, + "probability": 0.8688 + }, + { + "start": 10798.0, + "end": 10800.02, + "probability": 0.5006 + }, + { + "start": 10800.32, + "end": 10801.32, + "probability": 0.8739 + }, + { + "start": 10801.9, + "end": 10802.98, + "probability": 0.5016 + }, + { + "start": 10803.4, + "end": 10806.42, + "probability": 0.9348 + }, + { + "start": 10807.32, + "end": 10810.1, + "probability": 0.9956 + }, + { + "start": 10810.56, + "end": 10811.3, + "probability": 0.998 + }, + { + "start": 10811.66, + "end": 10814.51, + "probability": 0.9272 + }, + { + "start": 10815.18, + "end": 10817.88, + "probability": 0.9082 + }, + { + "start": 10819.78, + "end": 10821.14, + "probability": 0.9956 + }, + { + "start": 10822.06, + "end": 10823.5, + "probability": 0.1778 + }, + { + "start": 10823.52, + "end": 10824.35, + "probability": 0.0666 + }, + { + "start": 10825.54, + "end": 10828.92, + "probability": 0.2576 + }, + { + "start": 10828.92, + "end": 10833.78, + "probability": 0.3631 + }, + { + "start": 10833.98, + "end": 10835.34, + "probability": 0.2726 + }, + { + "start": 10835.62, + "end": 10836.6, + "probability": 0.07 + }, + { + "start": 10836.6, + "end": 10838.4, + "probability": 0.9482 + }, + { + "start": 10840.2, + "end": 10841.16, + "probability": 0.5896 + }, + { + "start": 10841.94, + "end": 10846.92, + "probability": 0.9985 + }, + { + "start": 10847.46, + "end": 10848.24, + "probability": 0.9972 + }, + { + "start": 10848.42, + "end": 10848.78, + "probability": 0.4795 + }, + { + "start": 10849.22, + "end": 10850.96, + "probability": 0.833 + }, + { + "start": 10852.08, + "end": 10856.98, + "probability": 0.9407 + }, + { + "start": 10857.34, + "end": 10860.3, + "probability": 0.9185 + }, + { + "start": 10862.0, + "end": 10865.34, + "probability": 0.9821 + }, + { + "start": 10866.12, + "end": 10868.6, + "probability": 0.8889 + }, + { + "start": 10868.76, + "end": 10869.26, + "probability": 0.8455 + }, + { + "start": 10870.22, + "end": 10872.78, + "probability": 0.6961 + }, + { + "start": 10872.78, + "end": 10875.86, + "probability": 0.9878 + }, + { + "start": 10876.32, + "end": 10877.22, + "probability": 0.8044 + }, + { + "start": 10877.34, + "end": 10880.02, + "probability": 0.9502 + }, + { + "start": 10880.44, + "end": 10881.94, + "probability": 0.6246 + }, + { + "start": 10882.0, + "end": 10886.14, + "probability": 0.9771 + }, + { + "start": 10889.25, + "end": 10892.66, + "probability": 0.8853 + }, + { + "start": 10893.34, + "end": 10894.28, + "probability": 0.7824 + }, + { + "start": 10894.92, + "end": 10898.32, + "probability": 0.9971 + }, + { + "start": 10898.56, + "end": 10899.09, + "probability": 0.9924 + }, + { + "start": 10899.92, + "end": 10905.42, + "probability": 0.9915 + }, + { + "start": 10905.96, + "end": 10911.02, + "probability": 0.9943 + }, + { + "start": 10912.22, + "end": 10916.85, + "probability": 0.939 + }, + { + "start": 10917.52, + "end": 10919.72, + "probability": 0.5423 + }, + { + "start": 10920.14, + "end": 10921.06, + "probability": 0.7144 + }, + { + "start": 10921.78, + "end": 10923.76, + "probability": 0.988 + }, + { + "start": 10924.26, + "end": 10927.96, + "probability": 0.9275 + }, + { + "start": 10928.74, + "end": 10930.8, + "probability": 0.7641 + }, + { + "start": 10930.88, + "end": 10931.86, + "probability": 0.9827 + }, + { + "start": 10932.62, + "end": 10934.38, + "probability": 0.8357 + }, + { + "start": 10934.88, + "end": 10938.28, + "probability": 0.9983 + }, + { + "start": 10938.66, + "end": 10940.56, + "probability": 0.9941 + }, + { + "start": 10940.78, + "end": 10942.58, + "probability": 0.9993 + }, + { + "start": 10942.96, + "end": 10944.97, + "probability": 0.6577 + }, + { + "start": 10945.16, + "end": 10947.36, + "probability": 0.9937 + }, + { + "start": 10948.12, + "end": 10949.95, + "probability": 0.9875 + }, + { + "start": 10950.16, + "end": 10951.88, + "probability": 0.9364 + }, + { + "start": 10952.54, + "end": 10956.08, + "probability": 0.9456 + }, + { + "start": 10956.64, + "end": 10957.9, + "probability": 0.8362 + }, + { + "start": 10959.08, + "end": 10963.1, + "probability": 0.4999 + }, + { + "start": 10963.18, + "end": 10966.14, + "probability": 0.9604 + }, + { + "start": 10966.14, + "end": 10968.22, + "probability": 0.8466 + }, + { + "start": 10969.04, + "end": 10971.76, + "probability": 0.991 + }, + { + "start": 10971.88, + "end": 10973.98, + "probability": 0.9916 + }, + { + "start": 10974.12, + "end": 10977.3, + "probability": 0.9471 + }, + { + "start": 10978.86, + "end": 10979.64, + "probability": 0.7447 + }, + { + "start": 10979.84, + "end": 10981.98, + "probability": 0.9592 + }, + { + "start": 10981.98, + "end": 10984.42, + "probability": 0.9907 + }, + { + "start": 10985.46, + "end": 10986.85, + "probability": 0.9827 + }, + { + "start": 10987.66, + "end": 10992.0, + "probability": 0.9748 + }, + { + "start": 10992.76, + "end": 10994.38, + "probability": 0.8493 + }, + { + "start": 10994.6, + "end": 10996.66, + "probability": 0.8417 + }, + { + "start": 10997.18, + "end": 10999.3, + "probability": 0.9091 + }, + { + "start": 11000.24, + "end": 11003.04, + "probability": 0.9535 + }, + { + "start": 11003.18, + "end": 11005.18, + "probability": 0.995 + }, + { + "start": 11005.5, + "end": 11006.06, + "probability": 0.2984 + }, + { + "start": 11007.16, + "end": 11009.9, + "probability": 0.9438 + }, + { + "start": 11010.24, + "end": 11012.6, + "probability": 0.9935 + }, + { + "start": 11013.24, + "end": 11016.82, + "probability": 0.9947 + }, + { + "start": 11017.52, + "end": 11021.36, + "probability": 0.9373 + }, + { + "start": 11021.58, + "end": 11024.58, + "probability": 0.8869 + }, + { + "start": 11025.16, + "end": 11028.88, + "probability": 0.9672 + }, + { + "start": 11029.04, + "end": 11032.58, + "probability": 0.9482 + }, + { + "start": 11033.16, + "end": 11035.64, + "probability": 0.9884 + }, + { + "start": 11035.8, + "end": 11036.82, + "probability": 0.9983 + }, + { + "start": 11037.76, + "end": 11040.22, + "probability": 0.9747 + }, + { + "start": 11040.62, + "end": 11041.14, + "probability": 0.3727 + }, + { + "start": 11041.28, + "end": 11041.87, + "probability": 0.9324 + }, + { + "start": 11042.1, + "end": 11046.79, + "probability": 0.9462 + }, + { + "start": 11047.72, + "end": 11050.42, + "probability": 0.8703 + }, + { + "start": 11051.0, + "end": 11056.28, + "probability": 0.9802 + }, + { + "start": 11056.74, + "end": 11057.14, + "probability": 0.7161 + }, + { + "start": 11057.94, + "end": 11059.46, + "probability": 0.8369 + }, + { + "start": 11059.56, + "end": 11059.94, + "probability": 0.8401 + }, + { + "start": 11060.38, + "end": 11061.3, + "probability": 0.4751 + }, + { + "start": 11061.82, + "end": 11066.42, + "probability": 0.9037 + }, + { + "start": 11066.94, + "end": 11068.28, + "probability": 0.7494 + }, + { + "start": 11068.86, + "end": 11070.54, + "probability": 0.767 + }, + { + "start": 11071.26, + "end": 11072.86, + "probability": 0.7634 + }, + { + "start": 11073.02, + "end": 11075.05, + "probability": 0.9775 + }, + { + "start": 11075.38, + "end": 11077.63, + "probability": 0.9802 + }, + { + "start": 11078.08, + "end": 11080.1, + "probability": 0.9242 + }, + { + "start": 11080.72, + "end": 11083.5, + "probability": 0.9902 + }, + { + "start": 11083.6, + "end": 11086.92, + "probability": 0.9614 + }, + { + "start": 11087.8, + "end": 11088.54, + "probability": 0.6151 + }, + { + "start": 11089.06, + "end": 11090.94, + "probability": 0.7399 + }, + { + "start": 11091.64, + "end": 11092.12, + "probability": 0.5181 + }, + { + "start": 11092.3, + "end": 11093.48, + "probability": 0.8044 + }, + { + "start": 11094.48, + "end": 11099.14, + "probability": 0.9782 + }, + { + "start": 11099.28, + "end": 11100.06, + "probability": 0.8937 + }, + { + "start": 11100.46, + "end": 11101.28, + "probability": 0.9869 + }, + { + "start": 11101.64, + "end": 11102.44, + "probability": 0.8887 + }, + { + "start": 11102.88, + "end": 11104.1, + "probability": 0.7888 + }, + { + "start": 11104.64, + "end": 11106.04, + "probability": 0.6295 + }, + { + "start": 11106.14, + "end": 11106.7, + "probability": 0.812 + }, + { + "start": 11106.92, + "end": 11108.68, + "probability": 0.8423 + }, + { + "start": 11110.1, + "end": 11111.48, + "probability": 0.0489 + }, + { + "start": 11112.44, + "end": 11117.1, + "probability": 0.7455 + }, + { + "start": 11117.38, + "end": 11121.9, + "probability": 0.9957 + }, + { + "start": 11122.66, + "end": 11124.42, + "probability": 0.867 + }, + { + "start": 11125.22, + "end": 11128.66, + "probability": 0.9688 + }, + { + "start": 11129.12, + "end": 11131.97, + "probability": 0.9629 + }, + { + "start": 11132.12, + "end": 11138.4, + "probability": 0.9602 + }, + { + "start": 11139.2, + "end": 11140.94, + "probability": 0.5211 + }, + { + "start": 11141.76, + "end": 11144.02, + "probability": 0.9167 + }, + { + "start": 11144.48, + "end": 11149.01, + "probability": 0.9905 + }, + { + "start": 11150.16, + "end": 11152.48, + "probability": 0.8698 + }, + { + "start": 11153.14, + "end": 11154.72, + "probability": 0.9048 + }, + { + "start": 11154.98, + "end": 11159.8, + "probability": 0.9946 + }, + { + "start": 11160.22, + "end": 11160.92, + "probability": 0.8091 + }, + { + "start": 11161.0, + "end": 11161.47, + "probability": 0.9448 + }, + { + "start": 11162.04, + "end": 11163.52, + "probability": 0.9128 + }, + { + "start": 11163.52, + "end": 11165.9, + "probability": 0.9646 + }, + { + "start": 11166.06, + "end": 11170.3, + "probability": 0.998 + }, + { + "start": 11170.3, + "end": 11174.94, + "probability": 0.9943 + }, + { + "start": 11175.44, + "end": 11175.9, + "probability": 0.551 + }, + { + "start": 11176.7, + "end": 11180.65, + "probability": 0.9639 + }, + { + "start": 11181.06, + "end": 11182.75, + "probability": 0.9808 + }, + { + "start": 11183.74, + "end": 11184.58, + "probability": 0.9927 + }, + { + "start": 11184.76, + "end": 11187.92, + "probability": 0.9834 + }, + { + "start": 11188.54, + "end": 11194.22, + "probability": 0.8365 + }, + { + "start": 11194.54, + "end": 11197.96, + "probability": 0.9907 + }, + { + "start": 11198.12, + "end": 11199.24, + "probability": 0.7284 + }, + { + "start": 11199.4, + "end": 11200.2, + "probability": 0.9937 + }, + { + "start": 11201.04, + "end": 11204.16, + "probability": 0.9958 + }, + { + "start": 11204.2, + "end": 11206.44, + "probability": 0.9969 + }, + { + "start": 11208.28, + "end": 11210.42, + "probability": 0.8457 + }, + { + "start": 11210.72, + "end": 11213.24, + "probability": 0.6576 + }, + { + "start": 11213.8, + "end": 11215.17, + "probability": 0.8325 + }, + { + "start": 11215.64, + "end": 11217.62, + "probability": 0.8254 + }, + { + "start": 11218.14, + "end": 11219.02, + "probability": 0.9525 + }, + { + "start": 11219.02, + "end": 11221.38, + "probability": 0.9878 + }, + { + "start": 11221.58, + "end": 11223.94, + "probability": 0.9056 + }, + { + "start": 11224.54, + "end": 11225.46, + "probability": 0.3376 + }, + { + "start": 11226.32, + "end": 11230.74, + "probability": 0.9305 + }, + { + "start": 11231.36, + "end": 11232.48, + "probability": 0.9906 + }, + { + "start": 11233.34, + "end": 11236.96, + "probability": 0.9536 + }, + { + "start": 11237.56, + "end": 11237.88, + "probability": 0.9145 + }, + { + "start": 11239.24, + "end": 11241.84, + "probability": 0.7648 + }, + { + "start": 11241.88, + "end": 11244.88, + "probability": 0.9574 + }, + { + "start": 11244.94, + "end": 11246.0, + "probability": 0.9397 + }, + { + "start": 11246.48, + "end": 11249.48, + "probability": 0.994 + }, + { + "start": 11249.78, + "end": 11254.3, + "probability": 0.96 + }, + { + "start": 11254.82, + "end": 11258.07, + "probability": 0.9739 + }, + { + "start": 11258.34, + "end": 11259.56, + "probability": 0.9647 + }, + { + "start": 11260.46, + "end": 11261.94, + "probability": 0.9641 + }, + { + "start": 11262.02, + "end": 11263.06, + "probability": 0.9498 + }, + { + "start": 11263.48, + "end": 11265.42, + "probability": 0.9779 + }, + { + "start": 11265.64, + "end": 11268.94, + "probability": 0.8263 + }, + { + "start": 11269.04, + "end": 11269.78, + "probability": 0.455 + }, + { + "start": 11270.34, + "end": 11274.56, + "probability": 0.9819 + }, + { + "start": 11275.26, + "end": 11276.74, + "probability": 0.3574 + }, + { + "start": 11276.84, + "end": 11278.56, + "probability": 0.8803 + }, + { + "start": 11279.16, + "end": 11281.68, + "probability": 0.7744 + }, + { + "start": 11281.74, + "end": 11282.96, + "probability": 0.8626 + }, + { + "start": 11283.24, + "end": 11284.02, + "probability": 0.9937 + }, + { + "start": 11284.06, + "end": 11284.9, + "probability": 0.9688 + }, + { + "start": 11284.94, + "end": 11288.4, + "probability": 0.9675 + }, + { + "start": 11288.4, + "end": 11290.88, + "probability": 0.9983 + }, + { + "start": 11291.5, + "end": 11297.56, + "probability": 0.9938 + }, + { + "start": 11298.32, + "end": 11300.22, + "probability": 0.8124 + }, + { + "start": 11300.96, + "end": 11305.28, + "probability": 0.969 + }, + { + "start": 11305.7, + "end": 11308.02, + "probability": 0.9587 + }, + { + "start": 11308.12, + "end": 11309.54, + "probability": 0.9751 + }, + { + "start": 11310.0, + "end": 11310.24, + "probability": 0.7716 + }, + { + "start": 11311.22, + "end": 11311.74, + "probability": 0.7592 + }, + { + "start": 11313.22, + "end": 11315.1, + "probability": 0.8241 + }, + { + "start": 11317.3, + "end": 11317.7, + "probability": 0.02 + }, + { + "start": 11318.36, + "end": 11319.62, + "probability": 0.1063 + }, + { + "start": 11339.56, + "end": 11339.74, + "probability": 0.0766 + }, + { + "start": 11339.74, + "end": 11339.78, + "probability": 0.3533 + }, + { + "start": 11339.78, + "end": 11339.78, + "probability": 0.3951 + }, + { + "start": 11339.78, + "end": 11339.78, + "probability": 0.4989 + }, + { + "start": 11339.78, + "end": 11339.8, + "probability": 0.5342 + }, + { + "start": 11339.8, + "end": 11339.8, + "probability": 0.5289 + }, + { + "start": 11339.8, + "end": 11339.8, + "probability": 0.5242 + }, + { + "start": 11339.8, + "end": 11339.8, + "probability": 0.5357 + }, + { + "start": 11339.8, + "end": 11339.8, + "probability": 0.5588 + }, + { + "start": 11339.8, + "end": 11339.8, + "probability": 0.1433 + }, + { + "start": 11339.8, + "end": 11340.08, + "probability": 0.0285 + }, + { + "start": 11340.08, + "end": 11340.22, + "probability": 0.265 + }, + { + "start": 11356.14, + "end": 11358.1, + "probability": 0.6289 + }, + { + "start": 11359.04, + "end": 11360.6, + "probability": 0.8603 + }, + { + "start": 11361.38, + "end": 11361.98, + "probability": 0.7834 + }, + { + "start": 11362.28, + "end": 11366.44, + "probability": 0.9312 + }, + { + "start": 11367.62, + "end": 11369.72, + "probability": 0.9922 + }, + { + "start": 11370.04, + "end": 11372.94, + "probability": 0.9956 + }, + { + "start": 11374.08, + "end": 11375.98, + "probability": 0.7165 + }, + { + "start": 11376.72, + "end": 11379.8, + "probability": 0.6816 + }, + { + "start": 11379.8, + "end": 11381.4, + "probability": 0.9796 + }, + { + "start": 11382.18, + "end": 11384.86, + "probability": 0.9732 + }, + { + "start": 11386.8, + "end": 11389.42, + "probability": 0.9903 + }, + { + "start": 11390.6, + "end": 11393.36, + "probability": 0.7138 + }, + { + "start": 11393.38, + "end": 11394.28, + "probability": 0.7732 + }, + { + "start": 11394.82, + "end": 11395.92, + "probability": 0.9976 + }, + { + "start": 11396.9, + "end": 11398.98, + "probability": 0.988 + }, + { + "start": 11401.0, + "end": 11402.28, + "probability": 0.9841 + }, + { + "start": 11403.6, + "end": 11404.76, + "probability": 0.9602 + }, + { + "start": 11405.98, + "end": 11407.3, + "probability": 0.8765 + }, + { + "start": 11409.12, + "end": 11410.78, + "probability": 0.9917 + }, + { + "start": 11411.72, + "end": 11412.74, + "probability": 0.9852 + }, + { + "start": 11413.28, + "end": 11415.58, + "probability": 0.9767 + }, + { + "start": 11416.48, + "end": 11417.1, + "probability": 0.9876 + }, + { + "start": 11417.92, + "end": 11418.4, + "probability": 0.9696 + }, + { + "start": 11419.82, + "end": 11422.28, + "probability": 0.9931 + }, + { + "start": 11425.64, + "end": 11430.0, + "probability": 0.9983 + }, + { + "start": 11431.04, + "end": 11435.66, + "probability": 0.9938 + }, + { + "start": 11436.92, + "end": 11439.74, + "probability": 0.9756 + }, + { + "start": 11440.28, + "end": 11440.66, + "probability": 0.9695 + }, + { + "start": 11444.26, + "end": 11444.7, + "probability": 0.8002 + }, + { + "start": 11444.82, + "end": 11445.6, + "probability": 0.8051 + }, + { + "start": 11445.96, + "end": 11449.36, + "probability": 0.9905 + }, + { + "start": 11450.14, + "end": 11451.68, + "probability": 0.9612 + }, + { + "start": 11454.44, + "end": 11455.48, + "probability": 0.8061 + }, + { + "start": 11456.72, + "end": 11461.0, + "probability": 0.9958 + }, + { + "start": 11463.72, + "end": 11464.24, + "probability": 0.9697 + }, + { + "start": 11465.3, + "end": 11465.96, + "probability": 0.9873 + }, + { + "start": 11466.14, + "end": 11466.76, + "probability": 0.8797 + }, + { + "start": 11467.22, + "end": 11467.96, + "probability": 0.813 + }, + { + "start": 11468.08, + "end": 11468.7, + "probability": 0.7239 + }, + { + "start": 11470.06, + "end": 11472.62, + "probability": 0.9967 + }, + { + "start": 11473.54, + "end": 11475.18, + "probability": 0.7764 + }, + { + "start": 11475.68, + "end": 11480.08, + "probability": 0.7527 + }, + { + "start": 11480.44, + "end": 11481.48, + "probability": 0.0326 + }, + { + "start": 11482.04, + "end": 11483.1, + "probability": 0.1652 + }, + { + "start": 11483.38, + "end": 11484.18, + "probability": 0.9888 + }, + { + "start": 11485.46, + "end": 11488.64, + "probability": 0.9487 + }, + { + "start": 11488.96, + "end": 11489.55, + "probability": 0.6953 + }, + { + "start": 11490.22, + "end": 11491.82, + "probability": 0.0434 + }, + { + "start": 11493.12, + "end": 11493.3, + "probability": 0.1085 + }, + { + "start": 11493.3, + "end": 11495.56, + "probability": 0.587 + }, + { + "start": 11496.38, + "end": 11497.3, + "probability": 0.9338 + }, + { + "start": 11498.6, + "end": 11498.82, + "probability": 0.7091 + }, + { + "start": 11499.5, + "end": 11502.82, + "probability": 0.9966 + }, + { + "start": 11503.48, + "end": 11504.62, + "probability": 0.9051 + }, + { + "start": 11505.44, + "end": 11508.56, + "probability": 0.998 + }, + { + "start": 11508.78, + "end": 11510.28, + "probability": 0.9689 + }, + { + "start": 11511.02, + "end": 11512.08, + "probability": 0.9543 + }, + { + "start": 11512.64, + "end": 11512.92, + "probability": 0.9466 + }, + { + "start": 11513.48, + "end": 11514.86, + "probability": 0.9878 + }, + { + "start": 11515.24, + "end": 11515.99, + "probability": 0.9724 + }, + { + "start": 11516.36, + "end": 11517.34, + "probability": 0.6472 + }, + { + "start": 11517.48, + "end": 11521.22, + "probability": 0.9827 + }, + { + "start": 11521.7, + "end": 11522.26, + "probability": 0.8394 + }, + { + "start": 11523.16, + "end": 11525.76, + "probability": 0.9984 + }, + { + "start": 11526.32, + "end": 11526.52, + "probability": 0.9927 + }, + { + "start": 11527.12, + "end": 11530.04, + "probability": 0.9097 + }, + { + "start": 11530.72, + "end": 11534.88, + "probability": 0.9274 + }, + { + "start": 11535.06, + "end": 11536.07, + "probability": 0.9932 + }, + { + "start": 11536.32, + "end": 11537.98, + "probability": 0.9093 + }, + { + "start": 11538.44, + "end": 11540.8, + "probability": 0.911 + }, + { + "start": 11541.38, + "end": 11541.62, + "probability": 0.535 + }, + { + "start": 11541.76, + "end": 11547.56, + "probability": 0.9233 + }, + { + "start": 11547.86, + "end": 11548.88, + "probability": 0.902 + }, + { + "start": 11549.38, + "end": 11550.0, + "probability": 0.9781 + }, + { + "start": 11550.66, + "end": 11553.08, + "probability": 0.9961 + }, + { + "start": 11553.72, + "end": 11555.98, + "probability": 0.9828 + }, + { + "start": 11556.58, + "end": 11557.74, + "probability": 0.8698 + }, + { + "start": 11559.08, + "end": 11560.56, + "probability": 0.9807 + }, + { + "start": 11561.24, + "end": 11568.1, + "probability": 0.9147 + }, + { + "start": 11568.62, + "end": 11572.58, + "probability": 0.9171 + }, + { + "start": 11573.5, + "end": 11578.0, + "probability": 0.9924 + }, + { + "start": 11578.36, + "end": 11579.36, + "probability": 0.8513 + }, + { + "start": 11579.84, + "end": 11581.0, + "probability": 0.893 + }, + { + "start": 11581.52, + "end": 11583.36, + "probability": 0.9924 + }, + { + "start": 11584.64, + "end": 11587.29, + "probability": 0.9472 + }, + { + "start": 11588.02, + "end": 11589.1, + "probability": 0.7598 + }, + { + "start": 11590.28, + "end": 11593.1, + "probability": 0.9802 + }, + { + "start": 11593.22, + "end": 11597.14, + "probability": 0.6466 + }, + { + "start": 11597.7, + "end": 11597.82, + "probability": 0.9954 + }, + { + "start": 11598.9, + "end": 11602.78, + "probability": 0.9604 + }, + { + "start": 11603.64, + "end": 11605.8, + "probability": 0.9966 + }, + { + "start": 11606.5, + "end": 11607.68, + "probability": 0.971 + }, + { + "start": 11608.9, + "end": 11610.42, + "probability": 0.7629 + }, + { + "start": 11610.98, + "end": 11613.72, + "probability": 0.9927 + }, + { + "start": 11614.78, + "end": 11618.76, + "probability": 0.9927 + }, + { + "start": 11619.14, + "end": 11622.76, + "probability": 0.9832 + }, + { + "start": 11623.48, + "end": 11627.6, + "probability": 0.9193 + }, + { + "start": 11627.94, + "end": 11629.36, + "probability": 0.9501 + }, + { + "start": 11630.36, + "end": 11631.98, + "probability": 0.8669 + }, + { + "start": 11632.84, + "end": 11633.9, + "probability": 0.9805 + }, + { + "start": 11634.42, + "end": 11634.98, + "probability": 0.6083 + }, + { + "start": 11635.52, + "end": 11640.56, + "probability": 0.9852 + }, + { + "start": 11641.62, + "end": 11642.14, + "probability": 0.8626 + }, + { + "start": 11643.28, + "end": 11645.12, + "probability": 0.9917 + }, + { + "start": 11645.78, + "end": 11648.82, + "probability": 0.8354 + }, + { + "start": 11648.9, + "end": 11649.8, + "probability": 0.6113 + }, + { + "start": 11649.94, + "end": 11650.14, + "probability": 0.4884 + }, + { + "start": 11651.04, + "end": 11651.24, + "probability": 0.9003 + }, + { + "start": 11653.36, + "end": 11655.62, + "probability": 0.9897 + }, + { + "start": 11656.0, + "end": 11662.42, + "probability": 0.9002 + }, + { + "start": 11663.22, + "end": 11664.44, + "probability": 0.9609 + }, + { + "start": 11664.98, + "end": 11667.64, + "probability": 0.9966 + }, + { + "start": 11668.34, + "end": 11670.5, + "probability": 0.7116 + }, + { + "start": 11670.76, + "end": 11671.59, + "probability": 0.7928 + }, + { + "start": 11672.02, + "end": 11673.7, + "probability": 0.5718 + }, + { + "start": 11674.14, + "end": 11675.86, + "probability": 0.9663 + }, + { + "start": 11677.16, + "end": 11679.12, + "probability": 0.8658 + }, + { + "start": 11680.04, + "end": 11685.84, + "probability": 0.9515 + }, + { + "start": 11686.6, + "end": 11687.26, + "probability": 0.9061 + }, + { + "start": 11688.12, + "end": 11690.14, + "probability": 0.9976 + }, + { + "start": 11690.9, + "end": 11696.06, + "probability": 0.9722 + }, + { + "start": 11697.02, + "end": 11699.3, + "probability": 0.9906 + }, + { + "start": 11700.16, + "end": 11702.84, + "probability": 0.6608 + }, + { + "start": 11703.4, + "end": 11704.86, + "probability": 0.6284 + }, + { + "start": 11705.76, + "end": 11710.12, + "probability": 0.9433 + }, + { + "start": 11710.36, + "end": 11713.18, + "probability": 0.9945 + }, + { + "start": 11713.94, + "end": 11715.92, + "probability": 0.9224 + }, + { + "start": 11716.38, + "end": 11718.66, + "probability": 0.9937 + }, + { + "start": 11719.18, + "end": 11721.66, + "probability": 0.9942 + }, + { + "start": 11722.48, + "end": 11724.64, + "probability": 0.9867 + }, + { + "start": 11725.08, + "end": 11726.86, + "probability": 0.9985 + }, + { + "start": 11727.5, + "end": 11730.46, + "probability": 0.9608 + }, + { + "start": 11731.0, + "end": 11732.16, + "probability": 0.9134 + }, + { + "start": 11732.68, + "end": 11735.2, + "probability": 0.9977 + }, + { + "start": 11735.9, + "end": 11739.23, + "probability": 0.9946 + }, + { + "start": 11739.72, + "end": 11741.48, + "probability": 0.8918 + }, + { + "start": 11742.46, + "end": 11745.2, + "probability": 0.931 + }, + { + "start": 11745.74, + "end": 11750.82, + "probability": 0.988 + }, + { + "start": 11751.36, + "end": 11752.52, + "probability": 0.9467 + }, + { + "start": 11753.08, + "end": 11753.32, + "probability": 0.9989 + }, + { + "start": 11753.92, + "end": 11754.18, + "probability": 0.9069 + }, + { + "start": 11755.62, + "end": 11756.32, + "probability": 0.8875 + }, + { + "start": 11756.44, + "end": 11759.26, + "probability": 0.9831 + }, + { + "start": 11760.14, + "end": 11761.56, + "probability": 0.7184 + }, + { + "start": 11761.94, + "end": 11764.3, + "probability": 0.9908 + }, + { + "start": 11765.16, + "end": 11769.82, + "probability": 0.9958 + }, + { + "start": 11769.98, + "end": 11773.96, + "probability": 0.984 + }, + { + "start": 11775.0, + "end": 11775.62, + "probability": 0.753 + }, + { + "start": 11775.96, + "end": 11776.98, + "probability": 0.9369 + }, + { + "start": 11777.84, + "end": 11778.54, + "probability": 0.7075 + }, + { + "start": 11778.64, + "end": 11781.68, + "probability": 0.6881 + }, + { + "start": 11782.66, + "end": 11785.32, + "probability": 0.9469 + }, + { + "start": 11786.04, + "end": 11787.44, + "probability": 0.8948 + }, + { + "start": 11787.8, + "end": 11790.42, + "probability": 0.9965 + }, + { + "start": 11790.78, + "end": 11792.08, + "probability": 0.9377 + }, + { + "start": 11792.56, + "end": 11792.8, + "probability": 0.4659 + }, + { + "start": 11792.92, + "end": 11795.3, + "probability": 0.6198 + }, + { + "start": 11795.76, + "end": 11797.57, + "probability": 0.854 + }, + { + "start": 11798.94, + "end": 11800.3, + "probability": 0.4705 + }, + { + "start": 11821.1, + "end": 11823.0, + "probability": 0.4947 + }, + { + "start": 11824.28, + "end": 11826.48, + "probability": 0.9788 + }, + { + "start": 11827.9, + "end": 11829.74, + "probability": 0.8979 + }, + { + "start": 11830.44, + "end": 11835.85, + "probability": 0.9375 + }, + { + "start": 11837.18, + "end": 11839.04, + "probability": 0.7847 + }, + { + "start": 11839.68, + "end": 11841.52, + "probability": 0.9902 + }, + { + "start": 11841.52, + "end": 11845.74, + "probability": 0.9727 + }, + { + "start": 11847.14, + "end": 11848.78, + "probability": 0.9867 + }, + { + "start": 11849.16, + "end": 11850.94, + "probability": 0.9424 + }, + { + "start": 11851.88, + "end": 11854.5, + "probability": 0.9618 + }, + { + "start": 11855.74, + "end": 11860.85, + "probability": 0.9914 + }, + { + "start": 11861.3, + "end": 11861.74, + "probability": 0.983 + }, + { + "start": 11861.82, + "end": 11862.68, + "probability": 0.8973 + }, + { + "start": 11862.94, + "end": 11863.74, + "probability": 0.76 + }, + { + "start": 11864.54, + "end": 11867.18, + "probability": 0.9965 + }, + { + "start": 11867.74, + "end": 11868.98, + "probability": 0.9898 + }, + { + "start": 11869.8, + "end": 11872.22, + "probability": 0.991 + }, + { + "start": 11873.02, + "end": 11877.12, + "probability": 0.9976 + }, + { + "start": 11878.6, + "end": 11882.38, + "probability": 0.9876 + }, + { + "start": 11882.52, + "end": 11885.12, + "probability": 0.6858 + }, + { + "start": 11885.54, + "end": 11886.5, + "probability": 0.7802 + }, + { + "start": 11887.4, + "end": 11889.76, + "probability": 0.6041 + }, + { + "start": 11890.54, + "end": 11894.8, + "probability": 0.824 + }, + { + "start": 11895.6, + "end": 11901.08, + "probability": 0.674 + }, + { + "start": 11903.34, + "end": 11906.62, + "probability": 0.9927 + }, + { + "start": 11906.62, + "end": 11909.82, + "probability": 0.9402 + }, + { + "start": 11911.52, + "end": 11913.85, + "probability": 0.9475 + }, + { + "start": 11914.84, + "end": 11915.6, + "probability": 0.5994 + }, + { + "start": 11916.24, + "end": 11918.66, + "probability": 0.9571 + }, + { + "start": 11919.86, + "end": 11923.14, + "probability": 0.9741 + }, + { + "start": 11924.06, + "end": 11926.54, + "probability": 0.9946 + }, + { + "start": 11926.54, + "end": 11930.34, + "probability": 0.9653 + }, + { + "start": 11930.4, + "end": 11931.36, + "probability": 0.8701 + }, + { + "start": 11931.48, + "end": 11932.56, + "probability": 0.8361 + }, + { + "start": 11933.88, + "end": 11936.94, + "probability": 0.9792 + }, + { + "start": 11937.88, + "end": 11940.88, + "probability": 0.9959 + }, + { + "start": 11940.88, + "end": 11943.06, + "probability": 0.9994 + }, + { + "start": 11944.22, + "end": 11946.7, + "probability": 0.7893 + }, + { + "start": 11947.3, + "end": 11948.06, + "probability": 0.7439 + }, + { + "start": 11949.18, + "end": 11950.78, + "probability": 0.9067 + }, + { + "start": 11951.36, + "end": 11954.04, + "probability": 0.9745 + }, + { + "start": 11954.58, + "end": 11956.4, + "probability": 0.889 + }, + { + "start": 11956.46, + "end": 11958.8, + "probability": 0.9761 + }, + { + "start": 11959.54, + "end": 11963.74, + "probability": 0.7499 + }, + { + "start": 11964.62, + "end": 11967.66, + "probability": 0.9363 + }, + { + "start": 11968.3, + "end": 11968.64, + "probability": 0.7288 + }, + { + "start": 11968.78, + "end": 11969.82, + "probability": 0.9288 + }, + { + "start": 11970.42, + "end": 11971.88, + "probability": 0.9886 + }, + { + "start": 11973.1, + "end": 11975.92, + "probability": 0.8136 + }, + { + "start": 11976.1, + "end": 11977.72, + "probability": 0.9976 + }, + { + "start": 11978.16, + "end": 11979.06, + "probability": 0.9646 + }, + { + "start": 11980.02, + "end": 11982.82, + "probability": 0.9917 + }, + { + "start": 11982.82, + "end": 11986.92, + "probability": 0.9877 + }, + { + "start": 11987.74, + "end": 11988.52, + "probability": 0.797 + }, + { + "start": 11989.94, + "end": 11992.56, + "probability": 0.9987 + }, + { + "start": 11993.2, + "end": 11995.54, + "probability": 0.6071 + }, + { + "start": 11995.72, + "end": 11998.38, + "probability": 0.825 + }, + { + "start": 11999.24, + "end": 12001.52, + "probability": 0.9901 + }, + { + "start": 12001.68, + "end": 12002.8, + "probability": 0.8667 + }, + { + "start": 12003.78, + "end": 12009.32, + "probability": 0.9919 + }, + { + "start": 12011.78, + "end": 12013.8, + "probability": 0.9981 + }, + { + "start": 12014.8, + "end": 12018.3, + "probability": 0.8989 + }, + { + "start": 12019.0, + "end": 12019.7, + "probability": 0.8419 + }, + { + "start": 12020.38, + "end": 12023.62, + "probability": 0.9851 + }, + { + "start": 12024.98, + "end": 12025.78, + "probability": 0.7094 + }, + { + "start": 12026.16, + "end": 12028.02, + "probability": 0.9922 + }, + { + "start": 12028.26, + "end": 12030.38, + "probability": 0.9975 + }, + { + "start": 12031.4, + "end": 12032.82, + "probability": 0.9564 + }, + { + "start": 12033.42, + "end": 12034.28, + "probability": 0.9629 + }, + { + "start": 12036.92, + "end": 12039.66, + "probability": 0.9508 + }, + { + "start": 12040.7, + "end": 12043.88, + "probability": 0.99 + }, + { + "start": 12044.06, + "end": 12047.3, + "probability": 0.995 + }, + { + "start": 12048.18, + "end": 12051.6, + "probability": 0.9993 + }, + { + "start": 12052.18, + "end": 12055.36, + "probability": 0.9994 + }, + { + "start": 12056.52, + "end": 12060.04, + "probability": 0.9995 + }, + { + "start": 12060.56, + "end": 12063.02, + "probability": 0.9946 + }, + { + "start": 12063.72, + "end": 12064.4, + "probability": 0.8892 + }, + { + "start": 12065.42, + "end": 12067.64, + "probability": 0.9994 + }, + { + "start": 12068.58, + "end": 12071.92, + "probability": 0.9944 + }, + { + "start": 12072.78, + "end": 12073.68, + "probability": 0.6027 + }, + { + "start": 12073.86, + "end": 12076.42, + "probability": 0.8398 + }, + { + "start": 12076.44, + "end": 12078.36, + "probability": 0.8139 + }, + { + "start": 12078.5, + "end": 12081.68, + "probability": 0.992 + }, + { + "start": 12081.68, + "end": 12084.26, + "probability": 0.9988 + }, + { + "start": 12086.16, + "end": 12086.56, + "probability": 0.6958 + }, + { + "start": 12086.78, + "end": 12089.4, + "probability": 0.9924 + }, + { + "start": 12089.5, + "end": 12089.96, + "probability": 0.8502 + }, + { + "start": 12090.2, + "end": 12091.34, + "probability": 0.9548 + }, + { + "start": 12092.04, + "end": 12096.48, + "probability": 0.9629 + }, + { + "start": 12096.56, + "end": 12097.86, + "probability": 0.9519 + }, + { + "start": 12099.2, + "end": 12101.96, + "probability": 0.988 + }, + { + "start": 12103.1, + "end": 12105.08, + "probability": 0.9562 + }, + { + "start": 12105.12, + "end": 12106.76, + "probability": 0.9216 + }, + { + "start": 12107.0, + "end": 12107.58, + "probability": 0.7599 + }, + { + "start": 12108.2, + "end": 12111.48, + "probability": 0.9971 + }, + { + "start": 12111.48, + "end": 12115.4, + "probability": 0.9663 + }, + { + "start": 12117.46, + "end": 12120.86, + "probability": 0.9938 + }, + { + "start": 12121.04, + "end": 12123.24, + "probability": 0.9967 + }, + { + "start": 12123.94, + "end": 12126.06, + "probability": 0.9967 + }, + { + "start": 12129.16, + "end": 12131.86, + "probability": 0.9956 + }, + { + "start": 12132.16, + "end": 12133.58, + "probability": 0.7087 + }, + { + "start": 12134.06, + "end": 12135.78, + "probability": 0.9675 + }, + { + "start": 12137.7, + "end": 12138.8, + "probability": 0.9641 + }, + { + "start": 12139.16, + "end": 12141.02, + "probability": 0.9041 + }, + { + "start": 12141.24, + "end": 12141.58, + "probability": 0.9538 + }, + { + "start": 12142.9, + "end": 12147.7, + "probability": 0.972 + }, + { + "start": 12148.38, + "end": 12150.0, + "probability": 0.9523 + }, + { + "start": 12150.66, + "end": 12153.17, + "probability": 0.9976 + }, + { + "start": 12153.66, + "end": 12155.05, + "probability": 0.861 + }, + { + "start": 12156.22, + "end": 12158.24, + "probability": 0.9917 + }, + { + "start": 12159.46, + "end": 12160.96, + "probability": 0.7617 + }, + { + "start": 12161.12, + "end": 12167.32, + "probability": 0.8204 + }, + { + "start": 12167.96, + "end": 12168.88, + "probability": 0.9116 + }, + { + "start": 12168.98, + "end": 12171.94, + "probability": 0.9831 + }, + { + "start": 12172.72, + "end": 12175.7, + "probability": 0.988 + }, + { + "start": 12176.3, + "end": 12180.3, + "probability": 0.996 + }, + { + "start": 12180.3, + "end": 12184.04, + "probability": 0.9963 + }, + { + "start": 12185.38, + "end": 12188.74, + "probability": 0.9873 + }, + { + "start": 12189.36, + "end": 12191.32, + "probability": 0.995 + }, + { + "start": 12191.46, + "end": 12194.88, + "probability": 0.9791 + }, + { + "start": 12195.06, + "end": 12195.48, + "probability": 0.8099 + }, + { + "start": 12196.42, + "end": 12196.92, + "probability": 0.4763 + }, + { + "start": 12198.2, + "end": 12199.34, + "probability": 0.8291 + }, + { + "start": 12200.92, + "end": 12202.52, + "probability": 0.0355 + }, + { + "start": 12226.58, + "end": 12226.82, + "probability": 0.1499 + }, + { + "start": 12231.02, + "end": 12231.7, + "probability": 0.6786 + }, + { + "start": 12232.3, + "end": 12233.94, + "probability": 0.5392 + }, + { + "start": 12235.14, + "end": 12237.08, + "probability": 0.7517 + }, + { + "start": 12238.5, + "end": 12241.96, + "probability": 0.9294 + }, + { + "start": 12241.96, + "end": 12245.26, + "probability": 0.9841 + }, + { + "start": 12246.0, + "end": 12246.64, + "probability": 0.401 + }, + { + "start": 12249.53, + "end": 12252.43, + "probability": 0.4583 + }, + { + "start": 12253.32, + "end": 12254.1, + "probability": 0.7784 + }, + { + "start": 12254.26, + "end": 12258.6, + "probability": 0.9017 + }, + { + "start": 12259.88, + "end": 12260.52, + "probability": 0.7523 + }, + { + "start": 12261.24, + "end": 12262.9, + "probability": 0.9387 + }, + { + "start": 12264.48, + "end": 12266.16, + "probability": 0.9683 + }, + { + "start": 12266.78, + "end": 12267.74, + "probability": 0.7067 + }, + { + "start": 12268.4, + "end": 12269.24, + "probability": 0.6338 + }, + { + "start": 12269.88, + "end": 12271.7, + "probability": 0.9449 + }, + { + "start": 12272.82, + "end": 12273.5, + "probability": 0.7477 + }, + { + "start": 12274.14, + "end": 12277.88, + "probability": 0.7799 + }, + { + "start": 12279.12, + "end": 12282.73, + "probability": 0.9772 + }, + { + "start": 12284.58, + "end": 12291.86, + "probability": 0.9734 + }, + { + "start": 12292.58, + "end": 12294.36, + "probability": 0.9898 + }, + { + "start": 12295.72, + "end": 12298.8, + "probability": 0.6559 + }, + { + "start": 12300.12, + "end": 12301.38, + "probability": 0.988 + }, + { + "start": 12301.48, + "end": 12303.44, + "probability": 0.8551 + }, + { + "start": 12304.1, + "end": 12307.68, + "probability": 0.8936 + }, + { + "start": 12307.68, + "end": 12310.84, + "probability": 0.8997 + }, + { + "start": 12312.38, + "end": 12313.5, + "probability": 0.8885 + }, + { + "start": 12314.12, + "end": 12314.94, + "probability": 0.8594 + }, + { + "start": 12316.04, + "end": 12316.4, + "probability": 0.9252 + }, + { + "start": 12317.92, + "end": 12325.16, + "probability": 0.9491 + }, + { + "start": 12325.5, + "end": 12329.24, + "probability": 0.7036 + }, + { + "start": 12331.08, + "end": 12333.44, + "probability": 0.9665 + }, + { + "start": 12334.46, + "end": 12335.9, + "probability": 0.9727 + }, + { + "start": 12337.0, + "end": 12337.72, + "probability": 0.6883 + }, + { + "start": 12338.0, + "end": 12340.5, + "probability": 0.4111 + }, + { + "start": 12341.78, + "end": 12342.84, + "probability": 0.9847 + }, + { + "start": 12345.06, + "end": 12348.26, + "probability": 0.987 + }, + { + "start": 12349.32, + "end": 12352.7, + "probability": 0.7805 + }, + { + "start": 12353.7, + "end": 12355.82, + "probability": 0.9739 + }, + { + "start": 12357.02, + "end": 12359.85, + "probability": 0.6697 + }, + { + "start": 12360.18, + "end": 12361.16, + "probability": 0.9513 + }, + { + "start": 12362.06, + "end": 12362.92, + "probability": 0.7613 + }, + { + "start": 12365.36, + "end": 12368.4, + "probability": 0.7215 + }, + { + "start": 12369.1, + "end": 12370.48, + "probability": 0.9524 + }, + { + "start": 12370.9, + "end": 12373.34, + "probability": 0.8464 + }, + { + "start": 12373.94, + "end": 12375.14, + "probability": 0.6894 + }, + { + "start": 12376.24, + "end": 12377.48, + "probability": 0.8464 + }, + { + "start": 12379.38, + "end": 12380.16, + "probability": 0.7952 + }, + { + "start": 12381.32, + "end": 12381.86, + "probability": 0.6899 + }, + { + "start": 12384.14, + "end": 12388.5, + "probability": 0.9972 + }, + { + "start": 12388.58, + "end": 12392.18, + "probability": 0.9932 + }, + { + "start": 12393.14, + "end": 12393.84, + "probability": 0.9696 + }, + { + "start": 12395.18, + "end": 12395.76, + "probability": 0.455 + }, + { + "start": 12396.96, + "end": 12398.2, + "probability": 0.6851 + }, + { + "start": 12398.8, + "end": 12399.34, + "probability": 0.05 + }, + { + "start": 12400.04, + "end": 12402.26, + "probability": 0.9705 + }, + { + "start": 12403.3, + "end": 12406.92, + "probability": 0.9932 + }, + { + "start": 12408.86, + "end": 12411.24, + "probability": 0.9011 + }, + { + "start": 12411.72, + "end": 12412.46, + "probability": 0.7931 + }, + { + "start": 12412.58, + "end": 12413.18, + "probability": 0.6645 + }, + { + "start": 12413.44, + "end": 12414.38, + "probability": 0.9948 + }, + { + "start": 12414.44, + "end": 12414.76, + "probability": 0.2459 + }, + { + "start": 12415.54, + "end": 12417.48, + "probability": 0.7836 + }, + { + "start": 12418.26, + "end": 12420.38, + "probability": 0.9824 + }, + { + "start": 12421.78, + "end": 12422.0, + "probability": 0.7381 + }, + { + "start": 12422.9, + "end": 12423.46, + "probability": 0.8248 + }, + { + "start": 12424.86, + "end": 12429.8, + "probability": 0.7185 + }, + { + "start": 12429.96, + "end": 12431.22, + "probability": 0.8279 + }, + { + "start": 12431.34, + "end": 12431.96, + "probability": 0.9166 + }, + { + "start": 12433.32, + "end": 12437.94, + "probability": 0.9574 + }, + { + "start": 12438.82, + "end": 12442.28, + "probability": 0.9126 + }, + { + "start": 12442.9, + "end": 12444.5, + "probability": 0.6046 + }, + { + "start": 12446.34, + "end": 12446.76, + "probability": 0.6885 + }, + { + "start": 12449.16, + "end": 12453.12, + "probability": 0.8925 + }, + { + "start": 12453.38, + "end": 12453.54, + "probability": 0.5284 + }, + { + "start": 12453.54, + "end": 12454.7, + "probability": 0.8754 + }, + { + "start": 12455.44, + "end": 12456.18, + "probability": 0.8307 + }, + { + "start": 12460.24, + "end": 12460.76, + "probability": 0.4142 + }, + { + "start": 12462.44, + "end": 12464.81, + "probability": 0.7824 + }, + { + "start": 12466.54, + "end": 12467.8, + "probability": 0.7876 + }, + { + "start": 12469.0, + "end": 12471.4, + "probability": 0.9154 + }, + { + "start": 12472.48, + "end": 12475.12, + "probability": 0.8806 + }, + { + "start": 12475.4, + "end": 12477.3, + "probability": 0.7612 + }, + { + "start": 12478.04, + "end": 12478.96, + "probability": 0.9121 + }, + { + "start": 12480.1, + "end": 12482.78, + "probability": 0.2586 + }, + { + "start": 12483.62, + "end": 12485.44, + "probability": 0.8516 + }, + { + "start": 12485.62, + "end": 12485.86, + "probability": 0.6571 + }, + { + "start": 12486.2, + "end": 12489.02, + "probability": 0.8647 + }, + { + "start": 12489.94, + "end": 12492.92, + "probability": 0.9908 + }, + { + "start": 12493.88, + "end": 12498.4, + "probability": 0.8433 + }, + { + "start": 12498.82, + "end": 12499.44, + "probability": 0.5808 + }, + { + "start": 12499.88, + "end": 12502.75, + "probability": 0.631 + }, + { + "start": 12503.26, + "end": 12505.98, + "probability": 0.8109 + }, + { + "start": 12506.02, + "end": 12507.0, + "probability": 0.8337 + }, + { + "start": 12507.0, + "end": 12509.26, + "probability": 0.9945 + }, + { + "start": 12510.0, + "end": 12513.02, + "probability": 0.9851 + }, + { + "start": 12513.02, + "end": 12516.82, + "probability": 0.9858 + }, + { + "start": 12518.58, + "end": 12520.15, + "probability": 0.5134 + }, + { + "start": 12520.72, + "end": 12523.6, + "probability": 0.9983 + }, + { + "start": 12523.92, + "end": 12525.17, + "probability": 0.9731 + }, + { + "start": 12525.86, + "end": 12526.3, + "probability": 0.6778 + }, + { + "start": 12526.52, + "end": 12527.12, + "probability": 0.5654 + }, + { + "start": 12527.24, + "end": 12527.92, + "probability": 0.6285 + }, + { + "start": 12528.24, + "end": 12530.66, + "probability": 0.7444 + }, + { + "start": 12533.36, + "end": 12534.62, + "probability": 0.7505 + }, + { + "start": 12534.92, + "end": 12537.16, + "probability": 0.4259 + }, + { + "start": 12537.3, + "end": 12538.11, + "probability": 0.8757 + }, + { + "start": 12538.32, + "end": 12543.16, + "probability": 0.9763 + }, + { + "start": 12543.38, + "end": 12546.18, + "probability": 0.7495 + }, + { + "start": 12547.4, + "end": 12550.28, + "probability": 0.9857 + }, + { + "start": 12550.4, + "end": 12551.48, + "probability": 0.3714 + }, + { + "start": 12552.24, + "end": 12552.76, + "probability": 0.9882 + }, + { + "start": 12553.36, + "end": 12554.62, + "probability": 0.6741 + }, + { + "start": 12554.8, + "end": 12555.96, + "probability": 0.5522 + }, + { + "start": 12556.08, + "end": 12558.38, + "probability": 0.9855 + }, + { + "start": 12558.82, + "end": 12559.52, + "probability": 0.7916 + }, + { + "start": 12559.64, + "end": 12560.76, + "probability": 0.7405 + }, + { + "start": 12560.86, + "end": 12561.3, + "probability": 0.9203 + }, + { + "start": 12562.92, + "end": 12564.48, + "probability": 0.8752 + }, + { + "start": 12564.84, + "end": 12566.52, + "probability": 0.9263 + }, + { + "start": 12567.06, + "end": 12570.64, + "probability": 0.7789 + }, + { + "start": 12571.38, + "end": 12574.66, + "probability": 0.9135 + }, + { + "start": 12575.24, + "end": 12576.28, + "probability": 0.9253 + }, + { + "start": 12576.36, + "end": 12577.91, + "probability": 0.7292 + }, + { + "start": 12578.0, + "end": 12579.74, + "probability": 0.688 + }, + { + "start": 12580.36, + "end": 12581.5, + "probability": 0.691 + }, + { + "start": 12582.24, + "end": 12587.34, + "probability": 0.7563 + }, + { + "start": 12587.34, + "end": 12587.44, + "probability": 0.5192 + }, + { + "start": 12588.1, + "end": 12588.5, + "probability": 0.6948 + }, + { + "start": 12588.7, + "end": 12589.72, + "probability": 0.5948 + }, + { + "start": 12590.04, + "end": 12591.4, + "probability": 0.4227 + }, + { + "start": 12626.76, + "end": 12628.46, + "probability": 0.6877 + }, + { + "start": 12629.44, + "end": 12632.14, + "probability": 0.9701 + }, + { + "start": 12633.06, + "end": 12633.82, + "probability": 0.8235 + }, + { + "start": 12633.96, + "end": 12638.94, + "probability": 0.9802 + }, + { + "start": 12639.6, + "end": 12639.84, + "probability": 0.7864 + }, + { + "start": 12640.56, + "end": 12642.36, + "probability": 0.993 + }, + { + "start": 12643.44, + "end": 12644.11, + "probability": 0.28 + }, + { + "start": 12645.16, + "end": 12647.44, + "probability": 0.9596 + }, + { + "start": 12648.16, + "end": 12649.38, + "probability": 0.8641 + }, + { + "start": 12650.38, + "end": 12652.18, + "probability": 0.5202 + }, + { + "start": 12653.1, + "end": 12653.68, + "probability": 0.6438 + }, + { + "start": 12653.9, + "end": 12657.48, + "probability": 0.9869 + }, + { + "start": 12657.48, + "end": 12660.88, + "probability": 0.9942 + }, + { + "start": 12661.64, + "end": 12664.86, + "probability": 0.9661 + }, + { + "start": 12665.26, + "end": 12668.48, + "probability": 0.984 + }, + { + "start": 12669.14, + "end": 12669.44, + "probability": 0.4225 + }, + { + "start": 12669.54, + "end": 12670.74, + "probability": 0.8315 + }, + { + "start": 12671.12, + "end": 12671.9, + "probability": 0.8573 + }, + { + "start": 12672.4, + "end": 12673.42, + "probability": 0.9732 + }, + { + "start": 12673.86, + "end": 12675.7, + "probability": 0.9007 + }, + { + "start": 12676.3, + "end": 12677.86, + "probability": 0.8092 + }, + { + "start": 12678.4, + "end": 12682.82, + "probability": 0.941 + }, + { + "start": 12683.34, + "end": 12683.96, + "probability": 0.8997 + }, + { + "start": 12684.02, + "end": 12684.72, + "probability": 0.9557 + }, + { + "start": 12684.86, + "end": 12685.54, + "probability": 0.8569 + }, + { + "start": 12685.6, + "end": 12686.3, + "probability": 0.9835 + }, + { + "start": 12686.76, + "end": 12687.32, + "probability": 0.8898 + }, + { + "start": 12687.42, + "end": 12688.06, + "probability": 0.7145 + }, + { + "start": 12688.2, + "end": 12689.72, + "probability": 0.8888 + }, + { + "start": 12690.68, + "end": 12695.86, + "probability": 0.9634 + }, + { + "start": 12696.74, + "end": 12702.68, + "probability": 0.9258 + }, + { + "start": 12702.68, + "end": 12707.82, + "probability": 0.9348 + }, + { + "start": 12708.28, + "end": 12714.12, + "probability": 0.9622 + }, + { + "start": 12714.98, + "end": 12721.28, + "probability": 0.7515 + }, + { + "start": 12722.58, + "end": 12726.3, + "probability": 0.9789 + }, + { + "start": 12727.0, + "end": 12729.44, + "probability": 0.7201 + }, + { + "start": 12730.02, + "end": 12736.18, + "probability": 0.8579 + }, + { + "start": 12736.5, + "end": 12736.5, + "probability": 0.0 + }, + { + "start": 12737.08, + "end": 12738.72, + "probability": 0.7278 + }, + { + "start": 12739.3, + "end": 12744.42, + "probability": 0.863 + }, + { + "start": 12744.94, + "end": 12748.18, + "probability": 0.6376 + }, + { + "start": 12748.86, + "end": 12749.2, + "probability": 0.7615 + }, + { + "start": 12749.26, + "end": 12750.34, + "probability": 0.8751 + }, + { + "start": 12750.82, + "end": 12752.52, + "probability": 0.7875 + }, + { + "start": 12752.82, + "end": 12753.7, + "probability": 0.7179 + }, + { + "start": 12754.2, + "end": 12755.54, + "probability": 0.91 + }, + { + "start": 12755.72, + "end": 12756.96, + "probability": 0.9389 + }, + { + "start": 12757.48, + "end": 12759.24, + "probability": 0.6428 + }, + { + "start": 12759.38, + "end": 12761.64, + "probability": 0.8478 + }, + { + "start": 12762.08, + "end": 12767.16, + "probability": 0.9929 + }, + { + "start": 12767.3, + "end": 12769.36, + "probability": 0.6904 + }, + { + "start": 12769.9, + "end": 12772.54, + "probability": 0.7345 + }, + { + "start": 12773.26, + "end": 12776.88, + "probability": 0.7663 + }, + { + "start": 12777.54, + "end": 12781.3, + "probability": 0.7345 + }, + { + "start": 12782.16, + "end": 12785.54, + "probability": 0.9838 + }, + { + "start": 12785.54, + "end": 12788.88, + "probability": 0.92 + }, + { + "start": 12789.38, + "end": 12793.18, + "probability": 0.9829 + }, + { + "start": 12795.04, + "end": 12798.32, + "probability": 0.7654 + }, + { + "start": 12799.48, + "end": 12802.36, + "probability": 0.9956 + }, + { + "start": 12802.94, + "end": 12808.22, + "probability": 0.9911 + }, + { + "start": 12809.04, + "end": 12811.48, + "probability": 0.9989 + }, + { + "start": 12812.04, + "end": 12817.92, + "probability": 0.9872 + }, + { + "start": 12819.0, + "end": 12819.66, + "probability": 0.682 + }, + { + "start": 12820.46, + "end": 12824.92, + "probability": 0.8868 + }, + { + "start": 12825.54, + "end": 12830.22, + "probability": 0.9578 + }, + { + "start": 12831.04, + "end": 12831.98, + "probability": 0.9525 + }, + { + "start": 12832.52, + "end": 12833.44, + "probability": 0.8947 + }, + { + "start": 12833.8, + "end": 12837.63, + "probability": 0.9403 + }, + { + "start": 12838.28, + "end": 12841.42, + "probability": 0.593 + }, + { + "start": 12841.98, + "end": 12844.6, + "probability": 0.9774 + }, + { + "start": 12844.86, + "end": 12847.72, + "probability": 0.9976 + }, + { + "start": 12848.58, + "end": 12850.2, + "probability": 0.9417 + }, + { + "start": 12850.42, + "end": 12851.22, + "probability": 0.9722 + }, + { + "start": 12851.64, + "end": 12855.26, + "probability": 0.9967 + }, + { + "start": 12856.0, + "end": 12859.6, + "probability": 0.9934 + }, + { + "start": 12859.6, + "end": 12862.72, + "probability": 0.9981 + }, + { + "start": 12863.2, + "end": 12864.7, + "probability": 0.7441 + }, + { + "start": 12864.9, + "end": 12867.78, + "probability": 0.9843 + }, + { + "start": 12868.2, + "end": 12869.54, + "probability": 0.7231 + }, + { + "start": 12870.24, + "end": 12872.12, + "probability": 0.9349 + }, + { + "start": 12873.76, + "end": 12875.02, + "probability": 0.7432 + }, + { + "start": 12875.08, + "end": 12879.58, + "probability": 0.9557 + }, + { + "start": 12879.8, + "end": 12883.58, + "probability": 0.9805 + }, + { + "start": 12883.8, + "end": 12886.4, + "probability": 0.8633 + }, + { + "start": 12886.46, + "end": 12889.26, + "probability": 0.9575 + }, + { + "start": 12889.36, + "end": 12890.25, + "probability": 0.9583 + }, + { + "start": 12890.92, + "end": 12895.56, + "probability": 0.8427 + }, + { + "start": 12896.1, + "end": 12897.62, + "probability": 0.9562 + }, + { + "start": 12898.32, + "end": 12899.48, + "probability": 0.8982 + }, + { + "start": 12900.22, + "end": 12903.58, + "probability": 0.9689 + }, + { + "start": 12904.84, + "end": 12905.34, + "probability": 0.4939 + }, + { + "start": 12905.52, + "end": 12908.8, + "probability": 0.9948 + }, + { + "start": 12909.3, + "end": 12915.34, + "probability": 0.987 + }, + { + "start": 12915.86, + "end": 12917.06, + "probability": 0.8913 + }, + { + "start": 12917.18, + "end": 12920.74, + "probability": 0.9812 + }, + { + "start": 12921.48, + "end": 12923.64, + "probability": 0.8625 + }, + { + "start": 12924.3, + "end": 12929.7, + "probability": 0.9799 + }, + { + "start": 12930.28, + "end": 12934.66, + "probability": 0.9909 + }, + { + "start": 12935.14, + "end": 12936.36, + "probability": 0.978 + }, + { + "start": 12937.5, + "end": 12939.24, + "probability": 0.6689 + }, + { + "start": 12939.36, + "end": 12943.76, + "probability": 0.8615 + }, + { + "start": 12944.5, + "end": 12944.74, + "probability": 0.5999 + }, + { + "start": 12945.32, + "end": 12946.76, + "probability": 0.543 + }, + { + "start": 12950.62, + "end": 12950.84, + "probability": 0.513 + }, + { + "start": 12952.98, + "end": 12953.3, + "probability": 0.4105 + }, + { + "start": 12955.98, + "end": 12956.44, + "probability": 0.5609 + }, + { + "start": 12958.04, + "end": 12959.16, + "probability": 0.6412 + }, + { + "start": 12980.76, + "end": 12981.46, + "probability": 0.4302 + }, + { + "start": 12982.4, + "end": 12983.74, + "probability": 0.5443 + }, + { + "start": 12984.8, + "end": 12986.18, + "probability": 0.7642 + }, + { + "start": 12986.72, + "end": 12990.7, + "probability": 0.8943 + }, + { + "start": 12991.46, + "end": 12992.82, + "probability": 0.8821 + }, + { + "start": 12993.4, + "end": 12995.48, + "probability": 0.9976 + }, + { + "start": 12996.7, + "end": 12998.6, + "probability": 0.9733 + }, + { + "start": 12999.3, + "end": 13001.36, + "probability": 0.9023 + }, + { + "start": 13002.42, + "end": 13003.94, + "probability": 0.9875 + }, + { + "start": 13004.82, + "end": 13005.66, + "probability": 0.998 + }, + { + "start": 13006.44, + "end": 13008.28, + "probability": 0.9883 + }, + { + "start": 13008.8, + "end": 13009.24, + "probability": 0.9185 + }, + { + "start": 13010.72, + "end": 13011.62, + "probability": 0.917 + }, + { + "start": 13012.16, + "end": 13013.8, + "probability": 0.7886 + }, + { + "start": 13014.5, + "end": 13015.7, + "probability": 0.8876 + }, + { + "start": 13016.24, + "end": 13020.52, + "probability": 0.9933 + }, + { + "start": 13020.52, + "end": 13025.44, + "probability": 0.9735 + }, + { + "start": 13026.34, + "end": 13028.96, + "probability": 0.9398 + }, + { + "start": 13029.28, + "end": 13030.16, + "probability": 0.8464 + }, + { + "start": 13030.98, + "end": 13032.66, + "probability": 0.8791 + }, + { + "start": 13033.34, + "end": 13035.4, + "probability": 0.9743 + }, + { + "start": 13035.4, + "end": 13038.64, + "probability": 0.9147 + }, + { + "start": 13039.4, + "end": 13043.48, + "probability": 0.9924 + }, + { + "start": 13044.16, + "end": 13045.2, + "probability": 0.7834 + }, + { + "start": 13045.86, + "end": 13047.76, + "probability": 0.9968 + }, + { + "start": 13048.34, + "end": 13052.88, + "probability": 0.921 + }, + { + "start": 13053.36, + "end": 13055.28, + "probability": 0.9244 + }, + { + "start": 13056.42, + "end": 13059.22, + "probability": 0.9986 + }, + { + "start": 13059.22, + "end": 13062.22, + "probability": 0.9597 + }, + { + "start": 13063.36, + "end": 13067.46, + "probability": 0.8239 + }, + { + "start": 13068.52, + "end": 13073.76, + "probability": 0.9918 + }, + { + "start": 13074.38, + "end": 13078.7, + "probability": 0.9958 + }, + { + "start": 13079.28, + "end": 13084.18, + "probability": 0.9981 + }, + { + "start": 13084.98, + "end": 13087.34, + "probability": 0.983 + }, + { + "start": 13087.66, + "end": 13089.98, + "probability": 0.9936 + }, + { + "start": 13090.38, + "end": 13092.82, + "probability": 0.9907 + }, + { + "start": 13094.04, + "end": 13094.94, + "probability": 0.9854 + }, + { + "start": 13095.8, + "end": 13100.76, + "probability": 0.9973 + }, + { + "start": 13101.34, + "end": 13106.06, + "probability": 0.9974 + }, + { + "start": 13106.74, + "end": 13108.1, + "probability": 0.5727 + }, + { + "start": 13108.2, + "end": 13112.76, + "probability": 0.8948 + }, + { + "start": 13112.76, + "end": 13116.16, + "probability": 0.9978 + }, + { + "start": 13116.76, + "end": 13119.74, + "probability": 0.9978 + }, + { + "start": 13120.24, + "end": 13123.26, + "probability": 0.9972 + }, + { + "start": 13123.76, + "end": 13128.16, + "probability": 0.9683 + }, + { + "start": 13128.7, + "end": 13134.02, + "probability": 0.9937 + }, + { + "start": 13135.38, + "end": 13140.46, + "probability": 0.9868 + }, + { + "start": 13141.08, + "end": 13142.92, + "probability": 0.9722 + }, + { + "start": 13143.58, + "end": 13145.02, + "probability": 0.9818 + }, + { + "start": 13145.76, + "end": 13149.58, + "probability": 0.9634 + }, + { + "start": 13150.1, + "end": 13154.44, + "probability": 0.9902 + }, + { + "start": 13154.88, + "end": 13159.14, + "probability": 0.9853 + }, + { + "start": 13161.16, + "end": 13164.28, + "probability": 0.9832 + }, + { + "start": 13165.48, + "end": 13167.62, + "probability": 0.9702 + }, + { + "start": 13167.74, + "end": 13172.6, + "probability": 0.9774 + }, + { + "start": 13173.1, + "end": 13176.94, + "probability": 0.9934 + }, + { + "start": 13176.94, + "end": 13177.78, + "probability": 0.806 + }, + { + "start": 13178.4, + "end": 13181.94, + "probability": 0.7403 + }, + { + "start": 13182.58, + "end": 13182.74, + "probability": 0.4109 + }, + { + "start": 13182.8, + "end": 13186.68, + "probability": 0.9456 + }, + { + "start": 13187.12, + "end": 13189.96, + "probability": 0.9961 + }, + { + "start": 13189.96, + "end": 13192.98, + "probability": 0.9961 + }, + { + "start": 13193.68, + "end": 13197.04, + "probability": 0.9806 + }, + { + "start": 13197.16, + "end": 13199.9, + "probability": 0.9702 + }, + { + "start": 13199.9, + "end": 13203.46, + "probability": 0.9924 + }, + { + "start": 13204.02, + "end": 13206.2, + "probability": 0.992 + }, + { + "start": 13206.68, + "end": 13208.9, + "probability": 0.9725 + }, + { + "start": 13209.1, + "end": 13209.72, + "probability": 0.9328 + }, + { + "start": 13210.86, + "end": 13211.4, + "probability": 0.7443 + }, + { + "start": 13211.78, + "end": 13212.92, + "probability": 0.6457 + }, + { + "start": 13213.96, + "end": 13216.03, + "probability": 0.6544 + }, + { + "start": 13217.84, + "end": 13218.6, + "probability": 0.4483 + }, + { + "start": 13220.12, + "end": 13222.24, + "probability": 0.7964 + }, + { + "start": 13255.74, + "end": 13256.72, + "probability": 0.6347 + }, + { + "start": 13257.34, + "end": 13258.48, + "probability": 0.7088 + }, + { + "start": 13261.34, + "end": 13262.04, + "probability": 0.6555 + }, + { + "start": 13263.64, + "end": 13265.18, + "probability": 0.8093 + }, + { + "start": 13265.9, + "end": 13268.18, + "probability": 0.9899 + }, + { + "start": 13269.44, + "end": 13272.82, + "probability": 0.9951 + }, + { + "start": 13276.1, + "end": 13284.38, + "probability": 0.9904 + }, + { + "start": 13285.58, + "end": 13288.12, + "probability": 0.9937 + }, + { + "start": 13289.02, + "end": 13293.08, + "probability": 0.9929 + }, + { + "start": 13294.28, + "end": 13294.8, + "probability": 0.586 + }, + { + "start": 13295.86, + "end": 13296.52, + "probability": 0.9748 + }, + { + "start": 13297.94, + "end": 13301.04, + "probability": 0.9915 + }, + { + "start": 13303.08, + "end": 13303.32, + "probability": 0.8848 + }, + { + "start": 13304.54, + "end": 13305.38, + "probability": 0.8227 + }, + { + "start": 13306.52, + "end": 13309.38, + "probability": 0.9006 + }, + { + "start": 13311.04, + "end": 13313.0, + "probability": 0.8507 + }, + { + "start": 13314.18, + "end": 13314.78, + "probability": 0.9995 + }, + { + "start": 13316.24, + "end": 13317.44, + "probability": 0.7516 + }, + { + "start": 13318.38, + "end": 13320.5, + "probability": 0.801 + }, + { + "start": 13322.08, + "end": 13322.62, + "probability": 0.83 + }, + { + "start": 13323.88, + "end": 13326.88, + "probability": 0.6348 + }, + { + "start": 13328.02, + "end": 13334.54, + "probability": 0.99 + }, + { + "start": 13335.44, + "end": 13341.56, + "probability": 0.9922 + }, + { + "start": 13342.58, + "end": 13343.26, + "probability": 0.6869 + }, + { + "start": 13343.86, + "end": 13346.7, + "probability": 0.9921 + }, + { + "start": 13348.6, + "end": 13350.64, + "probability": 0.9948 + }, + { + "start": 13351.7, + "end": 13354.12, + "probability": 0.6361 + }, + { + "start": 13355.74, + "end": 13362.9, + "probability": 0.9939 + }, + { + "start": 13363.78, + "end": 13368.04, + "probability": 0.9684 + }, + { + "start": 13368.68, + "end": 13371.96, + "probability": 0.8459 + }, + { + "start": 13373.24, + "end": 13373.52, + "probability": 0.8893 + }, + { + "start": 13375.76, + "end": 13376.0, + "probability": 0.8166 + }, + { + "start": 13379.7, + "end": 13385.58, + "probability": 0.9009 + }, + { + "start": 13387.0, + "end": 13388.78, + "probability": 0.9543 + }, + { + "start": 13391.04, + "end": 13392.62, + "probability": 0.8202 + }, + { + "start": 13393.76, + "end": 13395.1, + "probability": 0.9825 + }, + { + "start": 13396.48, + "end": 13399.6, + "probability": 0.8906 + }, + { + "start": 13401.32, + "end": 13401.7, + "probability": 0.5446 + }, + { + "start": 13403.54, + "end": 13405.2, + "probability": 0.9975 + }, + { + "start": 13405.98, + "end": 13408.16, + "probability": 0.9707 + }, + { + "start": 13409.42, + "end": 13416.12, + "probability": 0.9581 + }, + { + "start": 13417.06, + "end": 13422.8, + "probability": 0.9941 + }, + { + "start": 13423.64, + "end": 13426.62, + "probability": 0.9691 + }, + { + "start": 13428.2, + "end": 13433.76, + "probability": 0.972 + }, + { + "start": 13434.56, + "end": 13438.2, + "probability": 0.9927 + }, + { + "start": 13439.78, + "end": 13444.04, + "probability": 0.8855 + }, + { + "start": 13446.52, + "end": 13448.06, + "probability": 0.9493 + }, + { + "start": 13449.24, + "end": 13453.16, + "probability": 0.9939 + }, + { + "start": 13454.0, + "end": 13455.3, + "probability": 0.6884 + }, + { + "start": 13457.96, + "end": 13459.22, + "probability": 0.7983 + }, + { + "start": 13461.04, + "end": 13463.74, + "probability": 0.8818 + }, + { + "start": 13464.9, + "end": 13466.04, + "probability": 0.8492 + }, + { + "start": 13467.6, + "end": 13469.22, + "probability": 0.8486 + }, + { + "start": 13470.16, + "end": 13473.28, + "probability": 0.7578 + }, + { + "start": 13474.52, + "end": 13477.58, + "probability": 0.9749 + }, + { + "start": 13478.82, + "end": 13479.46, + "probability": 0.4201 + }, + { + "start": 13480.38, + "end": 13482.18, + "probability": 0.8726 + }, + { + "start": 13483.12, + "end": 13485.54, + "probability": 0.7423 + }, + { + "start": 13486.5, + "end": 13491.54, + "probability": 0.9867 + }, + { + "start": 13492.94, + "end": 13493.86, + "probability": 0.9823 + }, + { + "start": 13497.22, + "end": 13497.88, + "probability": 0.5741 + }, + { + "start": 13499.78, + "end": 13503.02, + "probability": 0.6843 + }, + { + "start": 13504.08, + "end": 13508.1, + "probability": 0.9966 + }, + { + "start": 13509.06, + "end": 13510.6, + "probability": 0.7409 + }, + { + "start": 13511.66, + "end": 13513.14, + "probability": 0.9032 + }, + { + "start": 13515.72, + "end": 13516.52, + "probability": 0.7627 + }, + { + "start": 13517.7, + "end": 13518.54, + "probability": 0.5995 + }, + { + "start": 13519.18, + "end": 13520.02, + "probability": 0.653 + }, + { + "start": 13520.7, + "end": 13529.14, + "probability": 0.8964 + }, + { + "start": 13530.52, + "end": 13532.2, + "probability": 0.6964 + }, + { + "start": 13533.34, + "end": 13535.76, + "probability": 0.8713 + }, + { + "start": 13537.04, + "end": 13538.02, + "probability": 0.6448 + }, + { + "start": 13541.2, + "end": 13544.73, + "probability": 0.8267 + }, + { + "start": 13547.08, + "end": 13548.56, + "probability": 0.9932 + }, + { + "start": 13551.16, + "end": 13552.36, + "probability": 0.676 + }, + { + "start": 13553.96, + "end": 13558.3, + "probability": 0.5392 + }, + { + "start": 13559.66, + "end": 13562.54, + "probability": 0.6591 + }, + { + "start": 13563.34, + "end": 13564.06, + "probability": 0.7177 + }, + { + "start": 13564.86, + "end": 13565.38, + "probability": 0.6559 + }, + { + "start": 13566.5, + "end": 13567.74, + "probability": 0.4913 + }, + { + "start": 13571.08, + "end": 13571.96, + "probability": 0.4993 + }, + { + "start": 13573.46, + "end": 13576.4, + "probability": 0.9858 + }, + { + "start": 13577.22, + "end": 13579.68, + "probability": 0.9641 + }, + { + "start": 13580.82, + "end": 13584.72, + "probability": 0.9057 + }, + { + "start": 13585.32, + "end": 13588.86, + "probability": 0.9678 + }, + { + "start": 13594.26, + "end": 13595.74, + "probability": 0.9556 + }, + { + "start": 13595.94, + "end": 13597.6, + "probability": 0.9421 + }, + { + "start": 13597.76, + "end": 13599.7, + "probability": 0.8248 + }, + { + "start": 13600.04, + "end": 13601.02, + "probability": 0.9638 + }, + { + "start": 13601.18, + "end": 13601.96, + "probability": 0.9842 + }, + { + "start": 13602.0, + "end": 13602.78, + "probability": 0.8278 + }, + { + "start": 13603.4, + "end": 13605.6, + "probability": 0.9059 + }, + { + "start": 13606.26, + "end": 13611.36, + "probability": 0.9636 + }, + { + "start": 13613.46, + "end": 13616.52, + "probability": 0.9989 + }, + { + "start": 13617.54, + "end": 13620.04, + "probability": 0.9978 + }, + { + "start": 13622.06, + "end": 13623.88, + "probability": 0.8217 + }, + { + "start": 13625.44, + "end": 13628.32, + "probability": 0.957 + }, + { + "start": 13630.6, + "end": 13632.14, + "probability": 0.988 + }, + { + "start": 13633.16, + "end": 13637.38, + "probability": 0.9969 + }, + { + "start": 13638.94, + "end": 13640.3, + "probability": 0.5547 + }, + { + "start": 13642.5, + "end": 13645.12, + "probability": 0.92 + }, + { + "start": 13646.62, + "end": 13649.16, + "probability": 0.7733 + }, + { + "start": 13651.52, + "end": 13653.44, + "probability": 0.8111 + }, + { + "start": 13654.2, + "end": 13655.4, + "probability": 0.8757 + }, + { + "start": 13656.9, + "end": 13659.88, + "probability": 0.9741 + }, + { + "start": 13661.1, + "end": 13663.64, + "probability": 0.8299 + }, + { + "start": 13664.88, + "end": 13671.12, + "probability": 0.8122 + }, + { + "start": 13671.86, + "end": 13675.78, + "probability": 0.9941 + }, + { + "start": 13677.26, + "end": 13678.32, + "probability": 0.8744 + }, + { + "start": 13679.74, + "end": 13682.5, + "probability": 0.979 + }, + { + "start": 13684.42, + "end": 13688.72, + "probability": 0.983 + }, + { + "start": 13689.9, + "end": 13691.76, + "probability": 0.8883 + }, + { + "start": 13693.14, + "end": 13693.68, + "probability": 0.3431 + }, + { + "start": 13694.34, + "end": 13695.88, + "probability": 0.9976 + }, + { + "start": 13696.54, + "end": 13697.74, + "probability": 0.9831 + }, + { + "start": 13698.64, + "end": 13699.72, + "probability": 0.7119 + }, + { + "start": 13700.26, + "end": 13704.64, + "probability": 0.9651 + }, + { + "start": 13705.5, + "end": 13706.8, + "probability": 0.6894 + }, + { + "start": 13708.06, + "end": 13710.06, + "probability": 0.9227 + }, + { + "start": 13711.48, + "end": 13711.94, + "probability": 0.9857 + }, + { + "start": 13714.18, + "end": 13718.66, + "probability": 0.8682 + }, + { + "start": 13719.64, + "end": 13720.78, + "probability": 0.9501 + }, + { + "start": 13722.48, + "end": 13723.72, + "probability": 0.5084 + }, + { + "start": 13725.2, + "end": 13725.54, + "probability": 0.9478 + }, + { + "start": 13726.74, + "end": 13727.3, + "probability": 0.5196 + }, + { + "start": 13728.28, + "end": 13729.06, + "probability": 0.7574 + }, + { + "start": 13729.7, + "end": 13730.54, + "probability": 0.6426 + }, + { + "start": 13731.4, + "end": 13733.16, + "probability": 0.5887 + }, + { + "start": 13734.4, + "end": 13735.18, + "probability": 0.828 + }, + { + "start": 13735.18, + "end": 13735.28, + "probability": 0.6383 + }, + { + "start": 13738.24, + "end": 13739.08, + "probability": 0.9628 + }, + { + "start": 13739.28, + "end": 13741.24, + "probability": 0.872 + }, + { + "start": 13742.34, + "end": 13743.3, + "probability": 0.622 + }, + { + "start": 13744.84, + "end": 13745.63, + "probability": 0.0183 + }, + { + "start": 13748.06, + "end": 13750.3, + "probability": 0.8692 + }, + { + "start": 13750.36, + "end": 13751.36, + "probability": 0.0718 + }, + { + "start": 13751.58, + "end": 13753.12, + "probability": 0.9637 + }, + { + "start": 13753.4, + "end": 13753.64, + "probability": 0.0575 + }, + { + "start": 13753.86, + "end": 13758.12, + "probability": 0.969 + }, + { + "start": 13758.6, + "end": 13760.04, + "probability": 0.6786 + }, + { + "start": 13760.48, + "end": 13760.66, + "probability": 0.2236 + }, + { + "start": 13760.66, + "end": 13764.64, + "probability": 0.659 + }, + { + "start": 13764.84, + "end": 13766.26, + "probability": 0.9354 + }, + { + "start": 13766.64, + "end": 13768.07, + "probability": 0.4711 + }, + { + "start": 13768.32, + "end": 13771.08, + "probability": 0.8436 + }, + { + "start": 13771.9, + "end": 13774.14, + "probability": 0.5611 + }, + { + "start": 13774.16, + "end": 13775.18, + "probability": 0.8629 + }, + { + "start": 13775.74, + "end": 13775.96, + "probability": 0.0825 + }, + { + "start": 13775.96, + "end": 13777.28, + "probability": 0.6796 + }, + { + "start": 13777.44, + "end": 13780.06, + "probability": 0.8993 + }, + { + "start": 13780.14, + "end": 13780.78, + "probability": 0.1947 + }, + { + "start": 13780.78, + "end": 13781.34, + "probability": 0.2476 + }, + { + "start": 13781.46, + "end": 13781.46, + "probability": 0.2531 + }, + { + "start": 13781.5, + "end": 13781.56, + "probability": 0.478 + }, + { + "start": 13781.56, + "end": 13784.85, + "probability": 0.8713 + }, + { + "start": 13787.3, + "end": 13788.18, + "probability": 0.255 + }, + { + "start": 13788.18, + "end": 13789.02, + "probability": 0.1503 + }, + { + "start": 13791.43, + "end": 13792.64, + "probability": 0.0235 + }, + { + "start": 13795.06, + "end": 13796.2, + "probability": 0.2036 + }, + { + "start": 13797.34, + "end": 13797.34, + "probability": 0.4817 + }, + { + "start": 13797.34, + "end": 13800.48, + "probability": 0.3505 + }, + { + "start": 13801.58, + "end": 13802.2, + "probability": 0.1466 + }, + { + "start": 13802.2, + "end": 13802.22, + "probability": 0.0221 + }, + { + "start": 13802.22, + "end": 13802.22, + "probability": 0.1194 + }, + { + "start": 13802.22, + "end": 13802.22, + "probability": 0.0517 + }, + { + "start": 13802.22, + "end": 13802.22, + "probability": 0.0415 + }, + { + "start": 13802.22, + "end": 13802.54, + "probability": 0.1115 + }, + { + "start": 13802.54, + "end": 13805.34, + "probability": 0.3736 + }, + { + "start": 13806.4, + "end": 13809.3, + "probability": 0.5551 + }, + { + "start": 13810.16, + "end": 13812.88, + "probability": 0.6677 + }, + { + "start": 13814.62, + "end": 13815.54, + "probability": 0.8737 + }, + { + "start": 13816.8, + "end": 13818.12, + "probability": 0.9856 + }, + { + "start": 13818.86, + "end": 13820.72, + "probability": 0.692 + }, + { + "start": 13822.56, + "end": 13826.44, + "probability": 0.978 + }, + { + "start": 13827.1, + "end": 13828.62, + "probability": 0.9342 + }, + { + "start": 13829.58, + "end": 13830.4, + "probability": 0.4639 + }, + { + "start": 13831.96, + "end": 13832.9, + "probability": 0.6836 + }, + { + "start": 13833.98, + "end": 13835.08, + "probability": 0.7161 + }, + { + "start": 13835.72, + "end": 13837.36, + "probability": 0.9639 + }, + { + "start": 13838.26, + "end": 13839.6, + "probability": 0.8591 + }, + { + "start": 13840.72, + "end": 13843.74, + "probability": 0.9013 + }, + { + "start": 13845.32, + "end": 13845.86, + "probability": 0.7897 + }, + { + "start": 13847.36, + "end": 13848.44, + "probability": 0.9593 + }, + { + "start": 13849.32, + "end": 13850.92, + "probability": 0.8891 + }, + { + "start": 13851.42, + "end": 13855.98, + "probability": 0.3862 + }, + { + "start": 13856.88, + "end": 13857.66, + "probability": 0.6614 + }, + { + "start": 13857.78, + "end": 13863.82, + "probability": 0.976 + }, + { + "start": 13864.54, + "end": 13864.54, + "probability": 0.3103 + }, + { + "start": 13864.54, + "end": 13866.46, + "probability": 0.8579 + }, + { + "start": 13867.41, + "end": 13869.44, + "probability": 0.8341 + }, + { + "start": 13870.28, + "end": 13871.94, + "probability": 0.6421 + }, + { + "start": 13872.94, + "end": 13875.76, + "probability": 0.7177 + }, + { + "start": 13875.94, + "end": 13876.82, + "probability": 0.3785 + }, + { + "start": 13878.48, + "end": 13878.58, + "probability": 0.0017 + }, + { + "start": 13878.58, + "end": 13878.86, + "probability": 0.0901 + }, + { + "start": 13879.98, + "end": 13881.08, + "probability": 0.3196 + }, + { + "start": 13881.66, + "end": 13881.92, + "probability": 0.368 + }, + { + "start": 13881.94, + "end": 13882.52, + "probability": 0.5921 + }, + { + "start": 13883.26, + "end": 13883.4, + "probability": 0.2291 + }, + { + "start": 13883.98, + "end": 13884.72, + "probability": 0.6053 + }, + { + "start": 13885.36, + "end": 13886.46, + "probability": 0.8082 + }, + { + "start": 13886.66, + "end": 13887.62, + "probability": 0.4132 + }, + { + "start": 13888.04, + "end": 13888.78, + "probability": 0.9421 + }, + { + "start": 13888.82, + "end": 13889.28, + "probability": 0.5734 + }, + { + "start": 13889.34, + "end": 13889.78, + "probability": 0.5546 + }, + { + "start": 13890.24, + "end": 13891.3, + "probability": 0.7439 + }, + { + "start": 13891.74, + "end": 13891.76, + "probability": 0.1277 + }, + { + "start": 13891.82, + "end": 13893.86, + "probability": 0.6026 + }, + { + "start": 13894.56, + "end": 13896.52, + "probability": 0.9412 + }, + { + "start": 13896.7, + "end": 13897.52, + "probability": 0.8332 + }, + { + "start": 13897.98, + "end": 13898.7, + "probability": 0.8975 + }, + { + "start": 13898.8, + "end": 13901.86, + "probability": 0.2528 + }, + { + "start": 13904.56, + "end": 13904.8, + "probability": 0.1727 + }, + { + "start": 13904.8, + "end": 13904.8, + "probability": 0.0683 + }, + { + "start": 13904.8, + "end": 13904.8, + "probability": 0.0273 + }, + { + "start": 13904.8, + "end": 13905.08, + "probability": 0.3627 + }, + { + "start": 13906.32, + "end": 13906.9, + "probability": 0.22 + }, + { + "start": 13908.84, + "end": 13910.12, + "probability": 0.3897 + }, + { + "start": 13912.94, + "end": 13913.22, + "probability": 0.3443 + }, + { + "start": 13914.6, + "end": 13915.02, + "probability": 0.7059 + }, + { + "start": 13915.66, + "end": 13916.24, + "probability": 0.6408 + }, + { + "start": 13916.94, + "end": 13919.16, + "probability": 0.4603 + }, + { + "start": 13920.02, + "end": 13922.28, + "probability": 0.7878 + }, + { + "start": 13922.96, + "end": 13924.68, + "probability": 0.4408 + }, + { + "start": 13924.98, + "end": 13927.11, + "probability": 0.0329 + }, + { + "start": 13928.04, + "end": 13929.62, + "probability": 0.3691 + }, + { + "start": 13929.62, + "end": 13930.08, + "probability": 0.0345 + }, + { + "start": 13931.76, + "end": 13932.64, + "probability": 0.74 + }, + { + "start": 13932.98, + "end": 13933.22, + "probability": 0.9104 + }, + { + "start": 13934.0, + "end": 13934.66, + "probability": 0.6737 + }, + { + "start": 13935.24, + "end": 13935.68, + "probability": 0.0348 + }, + { + "start": 13937.18, + "end": 13937.87, + "probability": 0.5797 + }, + { + "start": 13946.4, + "end": 13946.4, + "probability": 0.1883 + }, + { + "start": 13946.4, + "end": 13946.98, + "probability": 0.1224 + }, + { + "start": 13948.98, + "end": 13949.28, + "probability": 0.065 + }, + { + "start": 13949.28, + "end": 13949.6, + "probability": 0.3322 + }, + { + "start": 13950.0, + "end": 13956.08, + "probability": 0.5881 + }, + { + "start": 13956.8, + "end": 13958.82, + "probability": 0.7946 + }, + { + "start": 13959.08, + "end": 13961.48, + "probability": 0.9661 + }, + { + "start": 13961.58, + "end": 13962.66, + "probability": 0.6218 + }, + { + "start": 13964.9, + "end": 13967.96, + "probability": 0.8741 + }, + { + "start": 13968.34, + "end": 13968.83, + "probability": 0.9088 + }, + { + "start": 13969.7, + "end": 13971.62, + "probability": 0.915 + }, + { + "start": 13971.7, + "end": 13971.92, + "probability": 0.8293 + }, + { + "start": 13972.26, + "end": 13973.82, + "probability": 0.9244 + }, + { + "start": 13974.48, + "end": 13977.14, + "probability": 0.6856 + }, + { + "start": 13977.88, + "end": 13978.75, + "probability": 0.9709 + }, + { + "start": 13980.38, + "end": 13982.88, + "probability": 0.9554 + }, + { + "start": 13983.84, + "end": 13984.42, + "probability": 0.9049 + }, + { + "start": 13985.54, + "end": 13987.3, + "probability": 0.7567 + }, + { + "start": 13989.26, + "end": 13992.44, + "probability": 0.9954 + }, + { + "start": 13993.88, + "end": 13998.64, + "probability": 0.7582 + }, + { + "start": 13999.32, + "end": 14002.16, + "probability": 0.9968 + }, + { + "start": 14002.46, + "end": 14006.18, + "probability": 0.994 + }, + { + "start": 14006.84, + "end": 14008.44, + "probability": 0.9613 + }, + { + "start": 14009.16, + "end": 14010.06, + "probability": 0.9731 + }, + { + "start": 14011.22, + "end": 14012.54, + "probability": 0.9813 + }, + { + "start": 14013.96, + "end": 14018.2, + "probability": 0.9966 + }, + { + "start": 14018.26, + "end": 14018.36, + "probability": 0.7281 + }, + { + "start": 14019.52, + "end": 14020.67, + "probability": 0.9951 + }, + { + "start": 14020.94, + "end": 14021.5, + "probability": 0.9971 + }, + { + "start": 14023.28, + "end": 14025.34, + "probability": 0.9872 + }, + { + "start": 14025.92, + "end": 14029.67, + "probability": 0.9638 + }, + { + "start": 14030.0, + "end": 14034.12, + "probability": 0.9391 + }, + { + "start": 14035.2, + "end": 14038.56, + "probability": 0.9966 + }, + { + "start": 14039.44, + "end": 14043.16, + "probability": 0.9819 + }, + { + "start": 14044.5, + "end": 14047.46, + "probability": 0.7219 + }, + { + "start": 14048.4, + "end": 14051.44, + "probability": 0.9206 + }, + { + "start": 14052.33, + "end": 14055.22, + "probability": 0.8936 + }, + { + "start": 14056.94, + "end": 14059.6, + "probability": 0.9741 + }, + { + "start": 14060.4, + "end": 14063.16, + "probability": 0.923 + }, + { + "start": 14064.02, + "end": 14064.84, + "probability": 0.8193 + }, + { + "start": 14066.46, + "end": 14066.96, + "probability": 0.9795 + }, + { + "start": 14067.86, + "end": 14068.64, + "probability": 0.9122 + }, + { + "start": 14068.94, + "end": 14069.64, + "probability": 0.9588 + }, + { + "start": 14070.08, + "end": 14070.84, + "probability": 0.7673 + }, + { + "start": 14071.24, + "end": 14072.22, + "probability": 0.8983 + }, + { + "start": 14072.44, + "end": 14073.08, + "probability": 0.9867 + }, + { + "start": 14073.22, + "end": 14074.44, + "probability": 0.9846 + }, + { + "start": 14074.7, + "end": 14075.5, + "probability": 0.9458 + }, + { + "start": 14075.88, + "end": 14076.58, + "probability": 0.8497 + }, + { + "start": 14077.1, + "end": 14078.48, + "probability": 0.9004 + }, + { + "start": 14078.54, + "end": 14080.54, + "probability": 0.9227 + }, + { + "start": 14081.22, + "end": 14084.16, + "probability": 0.9889 + }, + { + "start": 14084.7, + "end": 14087.74, + "probability": 0.9772 + }, + { + "start": 14088.28, + "end": 14090.2, + "probability": 0.9583 + }, + { + "start": 14090.82, + "end": 14091.24, + "probability": 0.9868 + }, + { + "start": 14092.52, + "end": 14096.14, + "probability": 0.9786 + }, + { + "start": 14096.56, + "end": 14096.9, + "probability": 0.873 + }, + { + "start": 14097.62, + "end": 14099.9, + "probability": 0.9644 + }, + { + "start": 14100.54, + "end": 14103.22, + "probability": 0.9971 + }, + { + "start": 14103.42, + "end": 14104.68, + "probability": 0.9527 + }, + { + "start": 14105.08, + "end": 14106.82, + "probability": 0.7115 + }, + { + "start": 14107.16, + "end": 14107.64, + "probability": 0.957 + }, + { + "start": 14109.42, + "end": 14111.34, + "probability": 0.9216 + }, + { + "start": 14112.1, + "end": 14114.13, + "probability": 0.9925 + }, + { + "start": 14115.1, + "end": 14119.38, + "probability": 0.7186 + }, + { + "start": 14119.58, + "end": 14120.06, + "probability": 0.8265 + }, + { + "start": 14120.68, + "end": 14121.2, + "probability": 0.7282 + }, + { + "start": 14123.4, + "end": 14126.04, + "probability": 0.4999 + }, + { + "start": 14126.06, + "end": 14127.54, + "probability": 0.5902 + }, + { + "start": 14127.64, + "end": 14127.84, + "probability": 0.6233 + }, + { + "start": 14128.98, + "end": 14132.22, + "probability": 0.8086 + }, + { + "start": 14132.3, + "end": 14132.54, + "probability": 0.0857 + }, + { + "start": 14133.0, + "end": 14134.18, + "probability": 0.7473 + }, + { + "start": 14135.04, + "end": 14137.96, + "probability": 0.8384 + }, + { + "start": 14139.1, + "end": 14142.54, + "probability": 0.4981 + }, + { + "start": 14143.1, + "end": 14147.32, + "probability": 0.8899 + }, + { + "start": 14148.52, + "end": 14152.3, + "probability": 0.8664 + }, + { + "start": 14153.22, + "end": 14155.34, + "probability": 0.6966 + }, + { + "start": 14156.28, + "end": 14158.24, + "probability": 0.8824 + }, + { + "start": 14159.48, + "end": 14161.2, + "probability": 0.9788 + }, + { + "start": 14164.28, + "end": 14164.3, + "probability": 0.021 + }, + { + "start": 14164.3, + "end": 14166.56, + "probability": 0.521 + }, + { + "start": 14167.46, + "end": 14170.06, + "probability": 0.9692 + }, + { + "start": 14170.74, + "end": 14172.76, + "probability": 0.9158 + }, + { + "start": 14173.18, + "end": 14173.78, + "probability": 0.4443 + }, + { + "start": 14173.98, + "end": 14174.84, + "probability": 0.8759 + }, + { + "start": 14175.04, + "end": 14176.9, + "probability": 0.9581 + }, + { + "start": 14177.92, + "end": 14178.5, + "probability": 0.8859 + }, + { + "start": 14179.1, + "end": 14179.34, + "probability": 0.8068 + }, + { + "start": 14180.18, + "end": 14181.8, + "probability": 0.8167 + }, + { + "start": 14183.22, + "end": 14185.94, + "probability": 0.7533 + }, + { + "start": 14186.62, + "end": 14188.98, + "probability": 0.8555 + }, + { + "start": 14189.72, + "end": 14191.82, + "probability": 0.9955 + }, + { + "start": 14191.94, + "end": 14195.12, + "probability": 0.9535 + }, + { + "start": 14196.7, + "end": 14196.77, + "probability": 0.0044 + }, + { + "start": 14197.1, + "end": 14201.32, + "probability": 0.9121 + }, + { + "start": 14201.86, + "end": 14203.4, + "probability": 0.9749 + }, + { + "start": 14204.14, + "end": 14204.5, + "probability": 0.1828 + }, + { + "start": 14204.54, + "end": 14205.68, + "probability": 0.8517 + }, + { + "start": 14205.88, + "end": 14207.22, + "probability": 0.8508 + }, + { + "start": 14208.2, + "end": 14209.7, + "probability": 0.8832 + }, + { + "start": 14210.32, + "end": 14211.54, + "probability": 0.7058 + }, + { + "start": 14212.0, + "end": 14212.56, + "probability": 0.3351 + }, + { + "start": 14212.86, + "end": 14213.9, + "probability": 0.8668 + }, + { + "start": 14214.02, + "end": 14215.42, + "probability": 0.8923 + }, + { + "start": 14216.06, + "end": 14219.15, + "probability": 0.9521 + }, + { + "start": 14220.72, + "end": 14221.66, + "probability": 0.9882 + }, + { + "start": 14221.86, + "end": 14222.8, + "probability": 0.9705 + }, + { + "start": 14222.92, + "end": 14224.14, + "probability": 0.7841 + }, + { + "start": 14224.34, + "end": 14226.86, + "probability": 0.9847 + }, + { + "start": 14227.28, + "end": 14227.62, + "probability": 0.8102 + }, + { + "start": 14227.98, + "end": 14228.74, + "probability": 0.3288 + }, + { + "start": 14228.86, + "end": 14230.39, + "probability": 0.8728 + }, + { + "start": 14231.36, + "end": 14232.22, + "probability": 0.4992 + }, + { + "start": 14232.58, + "end": 14233.03, + "probability": 0.1486 + }, + { + "start": 14234.54, + "end": 14235.56, + "probability": 0.4629 + }, + { + "start": 14236.86, + "end": 14238.48, + "probability": 0.5627 + }, + { + "start": 14239.86, + "end": 14240.06, + "probability": 0.8003 + }, + { + "start": 14240.72, + "end": 14241.9, + "probability": 0.8938 + }, + { + "start": 14243.38, + "end": 14243.72, + "probability": 0.6732 + }, + { + "start": 14245.36, + "end": 14245.8, + "probability": 0.661 + }, + { + "start": 14246.94, + "end": 14250.8, + "probability": 0.4475 + }, + { + "start": 14263.94, + "end": 14267.3, + "probability": 0.8431 + }, + { + "start": 14268.06, + "end": 14270.44, + "probability": 0.8561 + }, + { + "start": 14271.4, + "end": 14276.0, + "probability": 0.5851 + }, + { + "start": 14276.92, + "end": 14280.04, + "probability": 0.4642 + }, + { + "start": 14281.36, + "end": 14283.92, + "probability": 0.1796 + }, + { + "start": 14283.92, + "end": 14284.3, + "probability": 0.3774 + }, + { + "start": 14284.36, + "end": 14286.16, + "probability": 0.2938 + }, + { + "start": 14287.22, + "end": 14287.22, + "probability": 0.8579 + }, + { + "start": 14290.22, + "end": 14295.1, + "probability": 0.9766 + }, + { + "start": 14295.92, + "end": 14297.48, + "probability": 0.8368 + }, + { + "start": 14298.0, + "end": 14300.48, + "probability": 0.9903 + }, + { + "start": 14300.96, + "end": 14301.86, + "probability": 0.9512 + }, + { + "start": 14302.2, + "end": 14302.54, + "probability": 0.7958 + }, + { + "start": 14303.86, + "end": 14304.3, + "probability": 0.9388 + }, + { + "start": 14304.96, + "end": 14306.69, + "probability": 0.6335 + }, + { + "start": 14308.86, + "end": 14312.22, + "probability": 0.9739 + }, + { + "start": 14312.76, + "end": 14315.02, + "probability": 0.9597 + }, + { + "start": 14315.22, + "end": 14316.86, + "probability": 0.9991 + }, + { + "start": 14317.92, + "end": 14321.59, + "probability": 0.9865 + }, + { + "start": 14322.06, + "end": 14325.68, + "probability": 0.9963 + }, + { + "start": 14325.95, + "end": 14329.29, + "probability": 0.9856 + }, + { + "start": 14329.64, + "end": 14330.62, + "probability": 0.9946 + }, + { + "start": 14331.92, + "end": 14333.9, + "probability": 0.9382 + }, + { + "start": 14333.98, + "end": 14336.78, + "probability": 0.9943 + }, + { + "start": 14337.56, + "end": 14339.08, + "probability": 0.669 + }, + { + "start": 14339.3, + "end": 14340.76, + "probability": 0.4594 + }, + { + "start": 14341.12, + "end": 14341.48, + "probability": 0.3793 + }, + { + "start": 14341.88, + "end": 14342.32, + "probability": 0.6636 + }, + { + "start": 14342.5, + "end": 14344.04, + "probability": 0.9148 + }, + { + "start": 14344.12, + "end": 14344.5, + "probability": 0.6964 + }, + { + "start": 14344.86, + "end": 14346.06, + "probability": 0.9915 + }, + { + "start": 14346.16, + "end": 14349.0, + "probability": 0.9204 + }, + { + "start": 14350.72, + "end": 14352.18, + "probability": 0.9061 + }, + { + "start": 14353.18, + "end": 14354.34, + "probability": 0.9352 + }, + { + "start": 14355.38, + "end": 14357.28, + "probability": 0.9539 + }, + { + "start": 14357.28, + "end": 14359.44, + "probability": 0.9854 + }, + { + "start": 14360.3, + "end": 14361.0, + "probability": 0.7339 + }, + { + "start": 14362.56, + "end": 14364.18, + "probability": 0.8114 + }, + { + "start": 14364.24, + "end": 14365.08, + "probability": 0.4302 + }, + { + "start": 14365.48, + "end": 14366.18, + "probability": 0.8108 + }, + { + "start": 14366.72, + "end": 14367.82, + "probability": 0.9739 + }, + { + "start": 14368.36, + "end": 14370.18, + "probability": 0.9976 + }, + { + "start": 14370.78, + "end": 14372.37, + "probability": 0.7271 + }, + { + "start": 14373.8, + "end": 14377.14, + "probability": 0.7954 + }, + { + "start": 14378.04, + "end": 14379.82, + "probability": 0.9856 + }, + { + "start": 14380.74, + "end": 14381.04, + "probability": 0.8924 + }, + { + "start": 14382.06, + "end": 14384.32, + "probability": 0.9647 + }, + { + "start": 14384.86, + "end": 14386.22, + "probability": 0.978 + }, + { + "start": 14386.32, + "end": 14388.92, + "probability": 0.7948 + }, + { + "start": 14389.72, + "end": 14390.8, + "probability": 0.888 + }, + { + "start": 14391.38, + "end": 14391.48, + "probability": 0.787 + }, + { + "start": 14392.18, + "end": 14392.18, + "probability": 0.5185 + }, + { + "start": 14392.18, + "end": 14393.92, + "probability": 0.6513 + }, + { + "start": 14394.82, + "end": 14398.36, + "probability": 0.9952 + }, + { + "start": 14398.74, + "end": 14400.9, + "probability": 0.9626 + }, + { + "start": 14401.14, + "end": 14402.88, + "probability": 0.9835 + }, + { + "start": 14403.66, + "end": 14405.04, + "probability": 0.9958 + }, + { + "start": 14405.72, + "end": 14408.92, + "probability": 0.8674 + }, + { + "start": 14409.5, + "end": 14412.14, + "probability": 0.9921 + }, + { + "start": 14413.24, + "end": 14415.52, + "probability": 0.9753 + }, + { + "start": 14416.0, + "end": 14417.32, + "probability": 0.9912 + }, + { + "start": 14418.84, + "end": 14420.96, + "probability": 0.9778 + }, + { + "start": 14421.62, + "end": 14422.18, + "probability": 0.7677 + }, + { + "start": 14424.25, + "end": 14426.26, + "probability": 0.9309 + }, + { + "start": 14427.08, + "end": 14429.6, + "probability": 0.9912 + }, + { + "start": 14429.6, + "end": 14433.38, + "probability": 0.9964 + }, + { + "start": 14433.86, + "end": 14435.08, + "probability": 0.8157 + }, + { + "start": 14435.8, + "end": 14437.48, + "probability": 0.9071 + }, + { + "start": 14438.08, + "end": 14440.36, + "probability": 0.6405 + }, + { + "start": 14440.36, + "end": 14444.2, + "probability": 0.9028 + }, + { + "start": 14445.16, + "end": 14447.12, + "probability": 0.8561 + }, + { + "start": 14447.24, + "end": 14447.44, + "probability": 0.5042 + }, + { + "start": 14447.74, + "end": 14448.24, + "probability": 0.7585 + }, + { + "start": 14448.4, + "end": 14449.78, + "probability": 0.9828 + }, + { + "start": 14449.94, + "end": 14450.18, + "probability": 0.8054 + }, + { + "start": 14450.24, + "end": 14450.98, + "probability": 0.7392 + }, + { + "start": 14451.54, + "end": 14454.7, + "probability": 0.9941 + }, + { + "start": 14455.26, + "end": 14458.36, + "probability": 0.8657 + }, + { + "start": 14458.96, + "end": 14461.6, + "probability": 0.9071 + }, + { + "start": 14461.92, + "end": 14464.52, + "probability": 0.9875 + }, + { + "start": 14465.34, + "end": 14465.68, + "probability": 0.5657 + }, + { + "start": 14465.76, + "end": 14466.08, + "probability": 0.9164 + }, + { + "start": 14466.14, + "end": 14468.74, + "probability": 0.9053 + }, + { + "start": 14469.36, + "end": 14472.94, + "probability": 0.8768 + }, + { + "start": 14474.02, + "end": 14476.18, + "probability": 0.9951 + }, + { + "start": 14477.02, + "end": 14478.94, + "probability": 0.9874 + }, + { + "start": 14479.74, + "end": 14482.37, + "probability": 0.8856 + }, + { + "start": 14483.66, + "end": 14484.4, + "probability": 0.7899 + }, + { + "start": 14485.24, + "end": 14487.5, + "probability": 0.9775 + }, + { + "start": 14487.98, + "end": 14489.16, + "probability": 0.931 + }, + { + "start": 14489.82, + "end": 14491.18, + "probability": 0.9884 + }, + { + "start": 14491.22, + "end": 14493.41, + "probability": 0.9834 + }, + { + "start": 14493.86, + "end": 14494.6, + "probability": 0.8827 + }, + { + "start": 14495.46, + "end": 14496.12, + "probability": 0.6792 + }, + { + "start": 14496.38, + "end": 14500.66, + "probability": 0.9966 + }, + { + "start": 14500.66, + "end": 14504.7, + "probability": 0.9897 + }, + { + "start": 14505.52, + "end": 14507.94, + "probability": 0.7332 + }, + { + "start": 14508.58, + "end": 14509.6, + "probability": 0.9143 + }, + { + "start": 14510.74, + "end": 14511.42, + "probability": 0.841 + }, + { + "start": 14512.7, + "end": 14514.02, + "probability": 0.4997 + }, + { + "start": 14514.96, + "end": 14514.96, + "probability": 0.0647 + }, + { + "start": 14515.18, + "end": 14515.72, + "probability": 0.3438 + }, + { + "start": 14515.9, + "end": 14517.93, + "probability": 0.5799 + }, + { + "start": 14520.8, + "end": 14522.78, + "probability": 0.9463 + }, + { + "start": 14523.56, + "end": 14524.42, + "probability": 0.5466 + }, + { + "start": 14524.64, + "end": 14526.34, + "probability": 0.8946 + }, + { + "start": 14527.14, + "end": 14529.0, + "probability": 0.7034 + }, + { + "start": 14529.94, + "end": 14530.36, + "probability": 0.9316 + }, + { + "start": 14530.5, + "end": 14530.96, + "probability": 0.9531 + }, + { + "start": 14531.34, + "end": 14531.6, + "probability": 0.4297 + }, + { + "start": 14531.72, + "end": 14533.5, + "probability": 0.9558 + }, + { + "start": 14534.2, + "end": 14535.06, + "probability": 0.9415 + }, + { + "start": 14535.62, + "end": 14539.44, + "probability": 0.6699 + }, + { + "start": 14540.18, + "end": 14542.72, + "probability": 0.9496 + }, + { + "start": 14543.74, + "end": 14545.26, + "probability": 0.9972 + }, + { + "start": 14545.8, + "end": 14547.5, + "probability": 0.9989 + }, + { + "start": 14548.82, + "end": 14552.8, + "probability": 0.9352 + }, + { + "start": 14553.72, + "end": 14555.42, + "probability": 0.9452 + }, + { + "start": 14556.14, + "end": 14556.68, + "probability": 0.9483 + }, + { + "start": 14557.46, + "end": 14558.34, + "probability": 0.9429 + }, + { + "start": 14558.54, + "end": 14560.08, + "probability": 0.8198 + }, + { + "start": 14560.94, + "end": 14563.02, + "probability": 0.9922 + }, + { + "start": 14563.48, + "end": 14565.02, + "probability": 0.9586 + }, + { + "start": 14565.16, + "end": 14566.06, + "probability": 0.9766 + }, + { + "start": 14566.86, + "end": 14568.02, + "probability": 0.7923 + }, + { + "start": 14569.84, + "end": 14570.2, + "probability": 0.9783 + }, + { + "start": 14571.4, + "end": 14571.9, + "probability": 0.9536 + }, + { + "start": 14573.24, + "end": 14573.94, + "probability": 0.7169 + }, + { + "start": 14575.55, + "end": 14578.84, + "probability": 0.6152 + }, + { + "start": 14579.72, + "end": 14581.22, + "probability": 0.9929 + }, + { + "start": 14581.74, + "end": 14584.82, + "probability": 0.9934 + }, + { + "start": 14585.32, + "end": 14586.26, + "probability": 0.9937 + }, + { + "start": 14589.77, + "end": 14591.08, + "probability": 0.1886 + }, + { + "start": 14591.08, + "end": 14591.08, + "probability": 0.0064 + }, + { + "start": 14591.08, + "end": 14592.6, + "probability": 0.5057 + }, + { + "start": 14593.36, + "end": 14597.46, + "probability": 0.9957 + }, + { + "start": 14598.9, + "end": 14600.62, + "probability": 0.9832 + }, + { + "start": 14601.68, + "end": 14604.74, + "probability": 0.9983 + }, + { + "start": 14604.86, + "end": 14606.99, + "probability": 0.5462 + }, + { + "start": 14607.22, + "end": 14608.44, + "probability": 0.9987 + }, + { + "start": 14609.1, + "end": 14610.74, + "probability": 0.9629 + }, + { + "start": 14611.28, + "end": 14613.34, + "probability": 0.6939 + }, + { + "start": 14615.1, + "end": 14617.06, + "probability": 0.8433 + }, + { + "start": 14617.7, + "end": 14621.34, + "probability": 0.9874 + }, + { + "start": 14622.24, + "end": 14624.28, + "probability": 0.9947 + }, + { + "start": 14624.82, + "end": 14628.08, + "probability": 0.9929 + }, + { + "start": 14628.38, + "end": 14631.2, + "probability": 0.9945 + }, + { + "start": 14632.18, + "end": 14632.74, + "probability": 0.9301 + }, + { + "start": 14633.2, + "end": 14633.68, + "probability": 0.7611 + }, + { + "start": 14634.26, + "end": 14635.24, + "probability": 0.8271 + }, + { + "start": 14636.52, + "end": 14640.6, + "probability": 0.9688 + }, + { + "start": 14641.88, + "end": 14643.6, + "probability": 0.9957 + }, + { + "start": 14644.12, + "end": 14647.56, + "probability": 0.9984 + }, + { + "start": 14647.56, + "end": 14650.58, + "probability": 0.9862 + }, + { + "start": 14651.24, + "end": 14653.62, + "probability": 0.9972 + }, + { + "start": 14653.64, + "end": 14656.84, + "probability": 0.9993 + }, + { + "start": 14657.46, + "end": 14658.52, + "probability": 0.8768 + }, + { + "start": 14658.6, + "end": 14661.0, + "probability": 0.9952 + }, + { + "start": 14661.8, + "end": 14662.22, + "probability": 0.791 + }, + { + "start": 14662.84, + "end": 14666.86, + "probability": 0.9485 + }, + { + "start": 14668.92, + "end": 14670.88, + "probability": 0.9975 + }, + { + "start": 14670.88, + "end": 14673.14, + "probability": 0.995 + }, + { + "start": 14673.9, + "end": 14674.28, + "probability": 0.9114 + }, + { + "start": 14675.32, + "end": 14675.94, + "probability": 0.7942 + }, + { + "start": 14676.4, + "end": 14679.36, + "probability": 0.9909 + }, + { + "start": 14679.7, + "end": 14682.82, + "probability": 0.9934 + }, + { + "start": 14683.66, + "end": 14687.84, + "probability": 0.9938 + }, + { + "start": 14688.42, + "end": 14691.42, + "probability": 0.9861 + }, + { + "start": 14692.12, + "end": 14693.18, + "probability": 0.7975 + }, + { + "start": 14693.82, + "end": 14697.66, + "probability": 0.9995 + }, + { + "start": 14698.14, + "end": 14702.36, + "probability": 0.9805 + }, + { + "start": 14702.54, + "end": 14703.74, + "probability": 0.8361 + }, + { + "start": 14704.34, + "end": 14706.74, + "probability": 0.9895 + }, + { + "start": 14706.84, + "end": 14710.08, + "probability": 0.9897 + }, + { + "start": 14710.16, + "end": 14712.1, + "probability": 0.7558 + }, + { + "start": 14712.7, + "end": 14713.02, + "probability": 0.9784 + }, + { + "start": 14713.9, + "end": 14715.6, + "probability": 0.5817 + }, + { + "start": 14716.28, + "end": 14717.44, + "probability": 0.8265 + }, + { + "start": 14718.16, + "end": 14718.88, + "probability": 0.5619 + }, + { + "start": 14719.6, + "end": 14723.88, + "probability": 0.9438 + }, + { + "start": 14723.98, + "end": 14727.36, + "probability": 0.995 + }, + { + "start": 14729.42, + "end": 14730.83, + "probability": 0.3826 + }, + { + "start": 14732.24, + "end": 14735.58, + "probability": 0.9901 + }, + { + "start": 14736.26, + "end": 14737.14, + "probability": 0.9971 + }, + { + "start": 14738.1, + "end": 14742.0, + "probability": 0.9482 + }, + { + "start": 14742.6, + "end": 14746.16, + "probability": 0.9746 + }, + { + "start": 14746.74, + "end": 14750.36, + "probability": 0.968 + }, + { + "start": 14751.22, + "end": 14753.92, + "probability": 0.8031 + }, + { + "start": 14754.46, + "end": 14756.0, + "probability": 0.9984 + }, + { + "start": 14756.74, + "end": 14759.26, + "probability": 0.978 + }, + { + "start": 14759.98, + "end": 14760.52, + "probability": 0.6249 + }, + { + "start": 14761.62, + "end": 14766.16, + "probability": 0.9954 + }, + { + "start": 14766.48, + "end": 14767.22, + "probability": 0.9973 + }, + { + "start": 14767.74, + "end": 14770.1, + "probability": 0.8077 + }, + { + "start": 14770.68, + "end": 14772.91, + "probability": 0.9839 + }, + { + "start": 14774.7, + "end": 14777.98, + "probability": 0.9878 + }, + { + "start": 14778.46, + "end": 14779.16, + "probability": 0.8768 + }, + { + "start": 14779.56, + "end": 14780.39, + "probability": 0.7947 + }, + { + "start": 14781.28, + "end": 14785.73, + "probability": 0.9972 + }, + { + "start": 14786.3, + "end": 14786.68, + "probability": 0.6275 + }, + { + "start": 14786.8, + "end": 14787.35, + "probability": 0.8748 + }, + { + "start": 14787.56, + "end": 14788.64, + "probability": 0.9971 + }, + { + "start": 14789.94, + "end": 14792.6, + "probability": 0.9952 + }, + { + "start": 14794.26, + "end": 14796.08, + "probability": 0.848 + }, + { + "start": 14796.16, + "end": 14797.92, + "probability": 0.9871 + }, + { + "start": 14798.0, + "end": 14799.12, + "probability": 0.9965 + }, + { + "start": 14799.7, + "end": 14804.92, + "probability": 0.9601 + }, + { + "start": 14804.92, + "end": 14809.86, + "probability": 0.9904 + }, + { + "start": 14810.12, + "end": 14811.96, + "probability": 0.9279 + }, + { + "start": 14812.5, + "end": 14813.32, + "probability": 0.9036 + }, + { + "start": 14814.28, + "end": 14816.18, + "probability": 0.0832 + }, + { + "start": 14816.52, + "end": 14816.96, + "probability": 0.0161 + }, + { + "start": 14817.02, + "end": 14817.96, + "probability": 0.0927 + }, + { + "start": 14818.86, + "end": 14820.04, + "probability": 0.9897 + }, + { + "start": 14821.34, + "end": 14821.58, + "probability": 0.3388 + }, + { + "start": 14822.88, + "end": 14822.88, + "probability": 0.0069 + }, + { + "start": 14822.88, + "end": 14826.55, + "probability": 0.9921 + }, + { + "start": 14827.05, + "end": 14827.33, + "probability": 0.7917 + }, + { + "start": 14827.33, + "end": 14828.99, + "probability": 0.9961 + }, + { + "start": 14829.09, + "end": 14829.79, + "probability": 0.9526 + }, + { + "start": 14830.27, + "end": 14830.93, + "probability": 0.8454 + }, + { + "start": 14831.41, + "end": 14836.23, + "probability": 0.9812 + }, + { + "start": 14836.59, + "end": 14839.97, + "probability": 0.6227 + }, + { + "start": 14840.05, + "end": 14841.91, + "probability": 0.8045 + }, + { + "start": 14842.25, + "end": 14844.51, + "probability": 0.9982 + }, + { + "start": 14845.15, + "end": 14846.02, + "probability": 0.9668 + }, + { + "start": 14847.33, + "end": 14849.75, + "probability": 0.7997 + }, + { + "start": 14849.83, + "end": 14851.21, + "probability": 0.9604 + }, + { + "start": 14851.81, + "end": 14853.41, + "probability": 0.7785 + }, + { + "start": 14854.03, + "end": 14856.51, + "probability": 0.9968 + }, + { + "start": 14857.27, + "end": 14859.81, + "probability": 0.9986 + }, + { + "start": 14859.93, + "end": 14860.67, + "probability": 0.8691 + }, + { + "start": 14861.99, + "end": 14864.95, + "probability": 0.9976 + }, + { + "start": 14865.35, + "end": 14865.59, + "probability": 0.9223 + }, + { + "start": 14866.01, + "end": 14867.83, + "probability": 0.9614 + }, + { + "start": 14867.83, + "end": 14870.55, + "probability": 0.9772 + }, + { + "start": 14871.15, + "end": 14872.65, + "probability": 0.9925 + }, + { + "start": 14873.23, + "end": 14877.33, + "probability": 0.9903 + }, + { + "start": 14877.85, + "end": 14878.87, + "probability": 0.8989 + }, + { + "start": 14879.49, + "end": 14880.77, + "probability": 0.9755 + }, + { + "start": 14881.85, + "end": 14884.55, + "probability": 0.9863 + }, + { + "start": 14884.79, + "end": 14884.99, + "probability": 0.7407 + }, + { + "start": 14885.57, + "end": 14885.89, + "probability": 0.8899 + }, + { + "start": 14886.85, + "end": 14889.69, + "probability": 0.1489 + }, + { + "start": 14893.83, + "end": 14896.33, + "probability": 0.0105 + }, + { + "start": 14897.29, + "end": 14898.05, + "probability": 0.0105 + }, + { + "start": 14898.05, + "end": 14898.83, + "probability": 0.1111 + }, + { + "start": 14898.83, + "end": 14903.59, + "probability": 0.1693 + }, + { + "start": 14904.55, + "end": 14907.41, + "probability": 0.0425 + }, + { + "start": 14908.04, + "end": 14908.61, + "probability": 0.1796 + }, + { + "start": 14908.61, + "end": 14915.65, + "probability": 0.1394 + }, + { + "start": 14917.67, + "end": 14917.95, + "probability": 0.1299 + }, + { + "start": 14918.73, + "end": 14919.47, + "probability": 0.3046 + }, + { + "start": 14921.61, + "end": 14921.73, + "probability": 0.0186 + }, + { + "start": 14924.31, + "end": 14926.23, + "probability": 0.0625 + }, + { + "start": 14926.23, + "end": 14929.76, + "probability": 0.0847 + }, + { + "start": 14931.37, + "end": 14932.87, + "probability": 0.096 + }, + { + "start": 14932.87, + "end": 14932.87, + "probability": 0.07 + }, + { + "start": 14932.87, + "end": 14934.17, + "probability": 0.1658 + }, + { + "start": 14936.63, + "end": 14937.75, + "probability": 0.5655 + }, + { + "start": 14937.83, + "end": 14940.16, + "probability": 0.6798 + }, + { + "start": 14940.35, + "end": 14942.95, + "probability": 0.1031 + }, + { + "start": 14944.31, + "end": 14946.45, + "probability": 0.0979 + }, + { + "start": 14946.67, + "end": 14946.75, + "probability": 0.0167 + }, + { + "start": 14946.81, + "end": 14946.81, + "probability": 0.1199 + }, + { + "start": 14946.81, + "end": 14947.46, + "probability": 0.0633 + }, + { + "start": 14948.43, + "end": 14949.17, + "probability": 0.0784 + }, + { + "start": 14949.17, + "end": 14949.67, + "probability": 0.225 + }, + { + "start": 14953.0, + "end": 14953.0, + "probability": 0.0 + }, + { + "start": 14953.0, + "end": 14953.0, + "probability": 0.0 + }, + { + "start": 14953.0, + "end": 14953.0, + "probability": 0.0 + }, + { + "start": 14956.24, + "end": 14956.38, + "probability": 0.3165 + }, + { + "start": 14959.38, + "end": 14960.31, + "probability": 0.028 + }, + { + "start": 14966.72, + "end": 14968.96, + "probability": 0.0048 + }, + { + "start": 14971.7, + "end": 14973.46, + "probability": 0.0013 + }, + { + "start": 14973.8, + "end": 14975.73, + "probability": 0.0933 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.1, + "end": 15075.56, + "probability": 0.024 + }, + { + "start": 15075.56, + "end": 15076.28, + "probability": 0.2568 + }, + { + "start": 15077.58, + "end": 15081.68, + "probability": 0.9712 + }, + { + "start": 15083.72, + "end": 15085.32, + "probability": 0.9264 + }, + { + "start": 15086.76, + "end": 15087.86, + "probability": 0.9991 + }, + { + "start": 15088.4, + "end": 15089.78, + "probability": 0.9772 + }, + { + "start": 15090.5, + "end": 15091.94, + "probability": 0.852 + }, + { + "start": 15093.2, + "end": 15094.2, + "probability": 0.6829 + }, + { + "start": 15094.98, + "end": 15096.7, + "probability": 0.8843 + }, + { + "start": 15098.57, + "end": 15103.33, + "probability": 0.9922 + }, + { + "start": 15104.0, + "end": 15104.64, + "probability": 0.8405 + }, + { + "start": 15105.18, + "end": 15107.2, + "probability": 0.9847 + }, + { + "start": 15107.74, + "end": 15113.0, + "probability": 0.9715 + }, + { + "start": 15113.8, + "end": 15114.39, + "probability": 0.9839 + }, + { + "start": 15116.41, + "end": 15120.14, + "probability": 0.9954 + }, + { + "start": 15120.46, + "end": 15122.38, + "probability": 0.978 + }, + { + "start": 15123.46, + "end": 15124.78, + "probability": 0.9957 + }, + { + "start": 15125.56, + "end": 15127.82, + "probability": 0.9567 + }, + { + "start": 15131.64, + "end": 15132.62, + "probability": 0.9987 + }, + { + "start": 15133.76, + "end": 15134.63, + "probability": 0.9964 + }, + { + "start": 15135.82, + "end": 15136.34, + "probability": 0.9495 + }, + { + "start": 15136.58, + "end": 15140.66, + "probability": 0.9785 + }, + { + "start": 15141.84, + "end": 15142.72, + "probability": 0.8056 + }, + { + "start": 15143.34, + "end": 15144.3, + "probability": 0.9706 + }, + { + "start": 15144.68, + "end": 15147.36, + "probability": 0.9643 + }, + { + "start": 15147.94, + "end": 15148.48, + "probability": 0.9886 + }, + { + "start": 15150.0, + "end": 15154.9, + "probability": 0.9954 + }, + { + "start": 15155.3, + "end": 15156.6, + "probability": 0.892 + }, + { + "start": 15157.08, + "end": 15158.02, + "probability": 0.9648 + }, + { + "start": 15158.78, + "end": 15163.82, + "probability": 0.8297 + }, + { + "start": 15164.6, + "end": 15166.3, + "probability": 0.7457 + }, + { + "start": 15166.82, + "end": 15168.34, + "probability": 0.6294 + }, + { + "start": 15171.25, + "end": 15174.82, + "probability": 0.7523 + }, + { + "start": 15175.36, + "end": 15177.6, + "probability": 0.954 + }, + { + "start": 15177.74, + "end": 15181.2, + "probability": 0.8297 + }, + { + "start": 15182.56, + "end": 15183.62, + "probability": 0.7891 + }, + { + "start": 15184.18, + "end": 15184.95, + "probability": 0.9842 + }, + { + "start": 15185.5, + "end": 15187.79, + "probability": 0.9881 + }, + { + "start": 15188.32, + "end": 15190.32, + "probability": 0.9815 + }, + { + "start": 15191.18, + "end": 15193.74, + "probability": 0.9814 + }, + { + "start": 15195.76, + "end": 15200.46, + "probability": 0.9919 + }, + { + "start": 15200.52, + "end": 15204.32, + "probability": 0.9663 + }, + { + "start": 15204.84, + "end": 15209.2, + "probability": 0.9965 + }, + { + "start": 15209.88, + "end": 15211.9, + "probability": 0.9785 + }, + { + "start": 15212.26, + "end": 15213.78, + "probability": 0.9465 + }, + { + "start": 15214.56, + "end": 15218.9, + "probability": 0.9849 + }, + { + "start": 15219.44, + "end": 15220.92, + "probability": 0.865 + }, + { + "start": 15221.44, + "end": 15225.42, + "probability": 0.9967 + }, + { + "start": 15226.14, + "end": 15226.4, + "probability": 0.9829 + }, + { + "start": 15227.04, + "end": 15227.74, + "probability": 0.9803 + }, + { + "start": 15229.04, + "end": 15230.62, + "probability": 0.95 + }, + { + "start": 15231.9, + "end": 15232.76, + "probability": 0.3942 + }, + { + "start": 15233.38, + "end": 15237.24, + "probability": 0.978 + }, + { + "start": 15237.98, + "end": 15240.66, + "probability": 0.9924 + }, + { + "start": 15242.12, + "end": 15244.8, + "probability": 0.9808 + }, + { + "start": 15246.0, + "end": 15250.52, + "probability": 0.9559 + }, + { + "start": 15252.76, + "end": 15257.61, + "probability": 0.9819 + }, + { + "start": 15259.66, + "end": 15262.2, + "probability": 0.9173 + }, + { + "start": 15262.3, + "end": 15264.46, + "probability": 0.94 + }, + { + "start": 15266.14, + "end": 15270.66, + "probability": 0.7999 + }, + { + "start": 15271.3, + "end": 15271.78, + "probability": 0.7371 + }, + { + "start": 15271.96, + "end": 15274.74, + "probability": 0.9219 + }, + { + "start": 15275.4, + "end": 15278.28, + "probability": 0.9428 + }, + { + "start": 15278.44, + "end": 15279.73, + "probability": 0.9972 + }, + { + "start": 15280.42, + "end": 15282.1, + "probability": 0.7926 + }, + { + "start": 15282.24, + "end": 15284.86, + "probability": 0.955 + }, + { + "start": 15285.22, + "end": 15286.84, + "probability": 0.8356 + }, + { + "start": 15287.42, + "end": 15288.22, + "probability": 0.8435 + }, + { + "start": 15288.74, + "end": 15291.94, + "probability": 0.9753 + }, + { + "start": 15292.66, + "end": 15297.46, + "probability": 0.9736 + }, + { + "start": 15298.36, + "end": 15301.48, + "probability": 0.9926 + }, + { + "start": 15302.88, + "end": 15303.9, + "probability": 0.7999 + }, + { + "start": 15305.4, + "end": 15306.44, + "probability": 0.8412 + }, + { + "start": 15306.5, + "end": 15310.1, + "probability": 0.9984 + }, + { + "start": 15310.8, + "end": 15311.04, + "probability": 0.6776 + }, + { + "start": 15311.8, + "end": 15313.64, + "probability": 0.9382 + }, + { + "start": 15316.9, + "end": 15320.22, + "probability": 0.9801 + }, + { + "start": 15320.22, + "end": 15324.4, + "probability": 0.9899 + }, + { + "start": 15325.18, + "end": 15327.42, + "probability": 0.7488 + }, + { + "start": 15328.36, + "end": 15329.54, + "probability": 0.9159 + }, + { + "start": 15331.26, + "end": 15332.66, + "probability": 0.9871 + }, + { + "start": 15332.92, + "end": 15338.5, + "probability": 0.9921 + }, + { + "start": 15339.18, + "end": 15339.92, + "probability": 0.8373 + }, + { + "start": 15340.52, + "end": 15344.38, + "probability": 0.9958 + }, + { + "start": 15345.4, + "end": 15347.32, + "probability": 0.7334 + }, + { + "start": 15348.46, + "end": 15352.42, + "probability": 0.9971 + }, + { + "start": 15352.98, + "end": 15354.56, + "probability": 0.9967 + }, + { + "start": 15358.04, + "end": 15360.74, + "probability": 0.9688 + }, + { + "start": 15362.7, + "end": 15363.72, + "probability": 0.9027 + }, + { + "start": 15364.34, + "end": 15368.18, + "probability": 0.9949 + }, + { + "start": 15368.18, + "end": 15373.08, + "probability": 0.9639 + }, + { + "start": 15374.45, + "end": 15377.8, + "probability": 0.939 + }, + { + "start": 15378.96, + "end": 15382.69, + "probability": 0.998 + }, + { + "start": 15383.68, + "end": 15384.46, + "probability": 0.2034 + }, + { + "start": 15392.34, + "end": 15392.82, + "probability": 0.169 + }, + { + "start": 15392.82, + "end": 15393.7, + "probability": 0.4072 + }, + { + "start": 15393.88, + "end": 15396.22, + "probability": 0.8255 + }, + { + "start": 15397.5, + "end": 15398.24, + "probability": 0.9398 + }, + { + "start": 15399.47, + "end": 15402.32, + "probability": 0.9486 + }, + { + "start": 15403.62, + "end": 15404.18, + "probability": 0.8167 + }, + { + "start": 15405.24, + "end": 15405.9, + "probability": 0.7696 + }, + { + "start": 15406.74, + "end": 15408.62, + "probability": 0.9647 + }, + { + "start": 15410.06, + "end": 15413.98, + "probability": 0.9379 + }, + { + "start": 15413.98, + "end": 15420.22, + "probability": 0.9678 + }, + { + "start": 15421.44, + "end": 15423.68, + "probability": 0.8365 + }, + { + "start": 15424.32, + "end": 15427.32, + "probability": 0.876 + }, + { + "start": 15428.72, + "end": 15432.07, + "probability": 0.9751 + }, + { + "start": 15432.38, + "end": 15436.4, + "probability": 0.9713 + }, + { + "start": 15437.76, + "end": 15438.6, + "probability": 0.9907 + }, + { + "start": 15439.22, + "end": 15446.06, + "probability": 0.9866 + }, + { + "start": 15446.44, + "end": 15447.1, + "probability": 0.7396 + }, + { + "start": 15447.56, + "end": 15447.92, + "probability": 0.8835 + }, + { + "start": 15448.68, + "end": 15451.38, + "probability": 0.9014 + }, + { + "start": 15452.22, + "end": 15456.38, + "probability": 0.9524 + }, + { + "start": 15456.7, + "end": 15457.9, + "probability": 0.9447 + }, + { + "start": 15458.38, + "end": 15460.18, + "probability": 0.8181 + }, + { + "start": 15460.86, + "end": 15466.32, + "probability": 0.922 + }, + { + "start": 15466.32, + "end": 15471.38, + "probability": 0.9248 + }, + { + "start": 15472.06, + "end": 15473.2, + "probability": 0.9936 + }, + { + "start": 15473.92, + "end": 15474.52, + "probability": 0.9517 + }, + { + "start": 15475.22, + "end": 15481.38, + "probability": 0.9884 + }, + { + "start": 15481.7, + "end": 15482.2, + "probability": 0.8446 + }, + { + "start": 15483.56, + "end": 15486.54, + "probability": 0.1976 + }, + { + "start": 15486.54, + "end": 15494.36, + "probability": 0.8186 + }, + { + "start": 15497.45, + "end": 15500.78, + "probability": 0.4581 + }, + { + "start": 15501.0, + "end": 15501.46, + "probability": 0.7739 + }, + { + "start": 15502.4, + "end": 15502.72, + "probability": 0.5045 + }, + { + "start": 15503.52, + "end": 15503.52, + "probability": 0.5346 + }, + { + "start": 15504.22, + "end": 15508.93, + "probability": 0.9696 + }, + { + "start": 15510.94, + "end": 15512.1, + "probability": 0.9993 + }, + { + "start": 15513.1, + "end": 15513.52, + "probability": 0.6147 + }, + { + "start": 15514.38, + "end": 15515.32, + "probability": 0.5774 + }, + { + "start": 15515.56, + "end": 15517.36, + "probability": 0.8647 + }, + { + "start": 15517.78, + "end": 15519.54, + "probability": 0.9531 + }, + { + "start": 15520.64, + "end": 15523.14, + "probability": 0.9656 + }, + { + "start": 15523.56, + "end": 15526.9, + "probability": 0.9845 + }, + { + "start": 15527.12, + "end": 15527.86, + "probability": 0.84 + }, + { + "start": 15528.58, + "end": 15530.98, + "probability": 0.5879 + }, + { + "start": 15531.29, + "end": 15533.66, + "probability": 0.9943 + }, + { + "start": 15533.98, + "end": 15536.39, + "probability": 0.7865 + }, + { + "start": 15539.04, + "end": 15541.84, + "probability": 0.9896 + }, + { + "start": 15542.0, + "end": 15543.54, + "probability": 0.9869 + }, + { + "start": 15544.06, + "end": 15545.1, + "probability": 0.7764 + }, + { + "start": 15545.6, + "end": 15547.36, + "probability": 0.9967 + }, + { + "start": 15547.4, + "end": 15554.18, + "probability": 0.974 + }, + { + "start": 15554.76, + "end": 15555.12, + "probability": 0.5199 + }, + { + "start": 15555.98, + "end": 15556.72, + "probability": 0.2093 + }, + { + "start": 15557.26, + "end": 15558.62, + "probability": 0.1014 + }, + { + "start": 15559.54, + "end": 15560.42, + "probability": 0.3979 + }, + { + "start": 15574.4, + "end": 15575.6, + "probability": 0.5599 + }, + { + "start": 15575.6, + "end": 15576.6, + "probability": 0.5048 + }, + { + "start": 15577.02, + "end": 15578.0, + "probability": 0.7689 + }, + { + "start": 15578.1, + "end": 15585.18, + "probability": 0.9779 + }, + { + "start": 15586.1, + "end": 15589.0, + "probability": 0.9943 + }, + { + "start": 15589.1, + "end": 15591.12, + "probability": 0.8186 + }, + { + "start": 15591.46, + "end": 15595.46, + "probability": 0.9784 + }, + { + "start": 15596.24, + "end": 15598.78, + "probability": 0.9908 + }, + { + "start": 15601.72, + "end": 15604.16, + "probability": 0.957 + }, + { + "start": 15605.96, + "end": 15607.44, + "probability": 0.6314 + }, + { + "start": 15608.3, + "end": 15610.14, + "probability": 0.8399 + }, + { + "start": 15610.14, + "end": 15613.14, + "probability": 0.8554 + }, + { + "start": 15614.18, + "end": 15617.88, + "probability": 0.9928 + }, + { + "start": 15618.76, + "end": 15620.22, + "probability": 0.772 + }, + { + "start": 15620.8, + "end": 15624.64, + "probability": 0.9895 + }, + { + "start": 15625.42, + "end": 15630.56, + "probability": 0.791 + }, + { + "start": 15630.62, + "end": 15631.8, + "probability": 0.9915 + }, + { + "start": 15632.36, + "end": 15635.54, + "probability": 0.8979 + }, + { + "start": 15637.02, + "end": 15639.06, + "probability": 0.623 + }, + { + "start": 15640.32, + "end": 15643.48, + "probability": 0.7487 + }, + { + "start": 15643.68, + "end": 15646.42, + "probability": 0.824 + }, + { + "start": 15646.5, + "end": 15647.38, + "probability": 0.7829 + }, + { + "start": 15648.34, + "end": 15652.12, + "probability": 0.979 + }, + { + "start": 15653.46, + "end": 15657.0, + "probability": 0.7273 + }, + { + "start": 15657.1, + "end": 15657.58, + "probability": 0.9756 + }, + { + "start": 15657.82, + "end": 15660.9, + "probability": 0.9548 + }, + { + "start": 15661.26, + "end": 15662.02, + "probability": 0.7744 + }, + { + "start": 15663.14, + "end": 15664.82, + "probability": 0.9637 + }, + { + "start": 15665.5, + "end": 15669.44, + "probability": 0.9932 + }, + { + "start": 15670.1, + "end": 15671.6, + "probability": 0.9954 + }, + { + "start": 15672.48, + "end": 15675.86, + "probability": 0.8403 + }, + { + "start": 15677.4, + "end": 15679.38, + "probability": 0.8503 + }, + { + "start": 15681.76, + "end": 15685.82, + "probability": 0.5648 + }, + { + "start": 15688.04, + "end": 15691.86, + "probability": 0.994 + }, + { + "start": 15691.86, + "end": 15696.92, + "probability": 0.9967 + }, + { + "start": 15696.92, + "end": 15700.26, + "probability": 0.9891 + }, + { + "start": 15702.04, + "end": 15705.7, + "probability": 0.9183 + }, + { + "start": 15706.08, + "end": 15706.5, + "probability": 0.6752 + }, + { + "start": 15706.66, + "end": 15709.48, + "probability": 0.6623 + }, + { + "start": 15711.71, + "end": 15713.9, + "probability": 0.6789 + }, + { + "start": 15714.32, + "end": 15717.9, + "probability": 0.9902 + }, + { + "start": 15717.9, + "end": 15722.56, + "probability": 0.9839 + }, + { + "start": 15723.8, + "end": 15725.26, + "probability": 0.863 + }, + { + "start": 15725.88, + "end": 15729.82, + "probability": 0.9828 + }, + { + "start": 15731.56, + "end": 15735.28, + "probability": 0.9812 + }, + { + "start": 15736.56, + "end": 15740.24, + "probability": 0.9971 + }, + { + "start": 15740.69, + "end": 15743.78, + "probability": 0.9587 + }, + { + "start": 15744.34, + "end": 15747.56, + "probability": 0.9823 + }, + { + "start": 15747.56, + "end": 15747.56, + "probability": 0.4534 + }, + { + "start": 15747.56, + "end": 15750.92, + "probability": 0.2206 + }, + { + "start": 15752.84, + "end": 15753.18, + "probability": 0.5758 + }, + { + "start": 15753.26, + "end": 15753.84, + "probability": 0.682 + }, + { + "start": 15753.96, + "end": 15757.46, + "probability": 0.9688 + }, + { + "start": 15757.52, + "end": 15757.82, + "probability": 0.8836 + }, + { + "start": 15758.18, + "end": 15760.5, + "probability": 0.8572 + }, + { + "start": 15761.2, + "end": 15765.3, + "probability": 0.995 + }, + { + "start": 15765.8, + "end": 15769.12, + "probability": 0.9965 + }, + { + "start": 15769.14, + "end": 15772.36, + "probability": 0.9943 + }, + { + "start": 15773.3, + "end": 15774.8, + "probability": 0.9626 + }, + { + "start": 15774.92, + "end": 15775.6, + "probability": 0.5089 + }, + { + "start": 15776.0, + "end": 15778.16, + "probability": 0.876 + }, + { + "start": 15779.22, + "end": 15782.4, + "probability": 0.9165 + }, + { + "start": 15782.72, + "end": 15783.86, + "probability": 0.9912 + }, + { + "start": 15784.58, + "end": 15789.52, + "probability": 0.9785 + }, + { + "start": 15791.58, + "end": 15797.24, + "probability": 0.9889 + }, + { + "start": 15797.24, + "end": 15801.16, + "probability": 0.9987 + }, + { + "start": 15801.16, + "end": 15806.84, + "probability": 0.6658 + }, + { + "start": 15807.54, + "end": 15812.58, + "probability": 0.9779 + }, + { + "start": 15812.58, + "end": 15818.3, + "probability": 0.9902 + }, + { + "start": 15818.48, + "end": 15819.22, + "probability": 0.8853 + }, + { + "start": 15820.32, + "end": 15822.78, + "probability": 0.725 + }, + { + "start": 15823.28, + "end": 15826.16, + "probability": 0.9584 + }, + { + "start": 15826.28, + "end": 15827.3, + "probability": 0.8978 + }, + { + "start": 15828.12, + "end": 15829.08, + "probability": 0.7407 + }, + { + "start": 15829.2, + "end": 15833.0, + "probability": 0.9978 + }, + { + "start": 15833.0, + "end": 15839.96, + "probability": 0.979 + }, + { + "start": 15840.08, + "end": 15840.26, + "probability": 0.3869 + }, + { + "start": 15840.32, + "end": 15844.52, + "probability": 0.9835 + }, + { + "start": 15844.94, + "end": 15846.24, + "probability": 0.9454 + }, + { + "start": 15846.32, + "end": 15847.14, + "probability": 0.6299 + }, + { + "start": 15847.18, + "end": 15848.66, + "probability": 0.9854 + }, + { + "start": 15849.3, + "end": 15852.24, + "probability": 0.5575 + }, + { + "start": 15852.4, + "end": 15855.28, + "probability": 0.9889 + }, + { + "start": 15855.34, + "end": 15858.38, + "probability": 0.8657 + }, + { + "start": 15858.46, + "end": 15858.94, + "probability": 0.8447 + }, + { + "start": 15860.12, + "end": 15864.28, + "probability": 0.921 + }, + { + "start": 15864.62, + "end": 15865.12, + "probability": 0.7795 + }, + { + "start": 15866.04, + "end": 15868.22, + "probability": 0.9953 + }, + { + "start": 15869.36, + "end": 15870.12, + "probability": 0.5005 + }, + { + "start": 15871.42, + "end": 15873.26, + "probability": 0.9307 + }, + { + "start": 15874.0, + "end": 15877.34, + "probability": 0.9898 + }, + { + "start": 15878.12, + "end": 15879.3, + "probability": 0.9966 + }, + { + "start": 15879.82, + "end": 15881.18, + "probability": 0.9819 + }, + { + "start": 15882.3, + "end": 15884.62, + "probability": 0.8215 + }, + { + "start": 15885.4, + "end": 15887.38, + "probability": 0.925 + }, + { + "start": 15888.88, + "end": 15890.63, + "probability": 0.8896 + }, + { + "start": 15891.52, + "end": 15894.06, + "probability": 0.9773 + }, + { + "start": 15894.16, + "end": 15895.34, + "probability": 0.696 + }, + { + "start": 15896.08, + "end": 15898.18, + "probability": 0.8116 + }, + { + "start": 15898.34, + "end": 15903.9, + "probability": 0.9249 + }, + { + "start": 15904.72, + "end": 15905.87, + "probability": 0.984 + }, + { + "start": 15906.62, + "end": 15908.72, + "probability": 0.9834 + }, + { + "start": 15909.59, + "end": 15913.88, + "probability": 0.9976 + }, + { + "start": 15914.04, + "end": 15917.14, + "probability": 0.9985 + }, + { + "start": 15918.22, + "end": 15920.9, + "probability": 0.999 + }, + { + "start": 15921.04, + "end": 15922.38, + "probability": 0.9321 + }, + { + "start": 15922.96, + "end": 15924.14, + "probability": 0.9278 + }, + { + "start": 15924.88, + "end": 15927.96, + "probability": 0.9985 + }, + { + "start": 15928.02, + "end": 15928.64, + "probability": 0.6039 + }, + { + "start": 15929.24, + "end": 15930.12, + "probability": 0.6384 + }, + { + "start": 15930.66, + "end": 15931.58, + "probability": 0.9982 + }, + { + "start": 15932.78, + "end": 15935.24, + "probability": 0.9778 + }, + { + "start": 15935.38, + "end": 15937.12, + "probability": 0.9441 + }, + { + "start": 15938.12, + "end": 15943.2, + "probability": 0.9087 + }, + { + "start": 15944.42, + "end": 15949.76, + "probability": 0.9841 + }, + { + "start": 15951.3, + "end": 15956.92, + "probability": 0.8523 + }, + { + "start": 15957.1, + "end": 15959.36, + "probability": 0.9558 + }, + { + "start": 15959.5, + "end": 15961.54, + "probability": 0.9775 + }, + { + "start": 15962.46, + "end": 15965.2, + "probability": 0.9797 + }, + { + "start": 15965.36, + "end": 15966.54, + "probability": 0.7559 + }, + { + "start": 15967.1, + "end": 15970.08, + "probability": 0.9253 + }, + { + "start": 15970.56, + "end": 15972.68, + "probability": 0.9966 + }, + { + "start": 15972.96, + "end": 15974.58, + "probability": 0.9948 + }, + { + "start": 15976.14, + "end": 15976.58, + "probability": 0.8877 + }, + { + "start": 15977.68, + "end": 15982.36, + "probability": 0.9922 + }, + { + "start": 15982.38, + "end": 15986.78, + "probability": 0.995 + }, + { + "start": 15987.06, + "end": 15987.94, + "probability": 0.569 + }, + { + "start": 15989.12, + "end": 15990.72, + "probability": 0.5107 + }, + { + "start": 15991.52, + "end": 15995.14, + "probability": 0.9586 + }, + { + "start": 15995.88, + "end": 16002.14, + "probability": 0.9924 + }, + { + "start": 16002.8, + "end": 16005.76, + "probability": 0.9561 + }, + { + "start": 16007.23, + "end": 16011.42, + "probability": 0.9529 + }, + { + "start": 16011.88, + "end": 16013.92, + "probability": 0.8012 + }, + { + "start": 16014.12, + "end": 16014.66, + "probability": 0.2454 + }, + { + "start": 16015.94, + "end": 16017.36, + "probability": 0.901 + }, + { + "start": 16018.08, + "end": 16024.36, + "probability": 0.8861 + }, + { + "start": 16025.04, + "end": 16025.82, + "probability": 0.9268 + }, + { + "start": 16025.96, + "end": 16029.68, + "probability": 0.9829 + }, + { + "start": 16031.1, + "end": 16031.5, + "probability": 0.3701 + }, + { + "start": 16031.5, + "end": 16031.99, + "probability": 0.0909 + }, + { + "start": 16032.44, + "end": 16033.34, + "probability": 0.3179 + }, + { + "start": 16033.4, + "end": 16034.31, + "probability": 0.0072 + }, + { + "start": 16035.66, + "end": 16035.98, + "probability": 0.0239 + }, + { + "start": 16038.28, + "end": 16039.22, + "probability": 0.2599 + }, + { + "start": 16048.21, + "end": 16049.42, + "probability": 0.04 + }, + { + "start": 16091.62, + "end": 16094.76, + "probability": 0.0069 + }, + { + "start": 16096.47, + "end": 16096.47, + "probability": 0.0 + } + ], + "segments_count": 5008, + "words_count": 25274, + "avg_words_per_segment": 5.0467, + "avg_segment_duration": 2.1475, + "avg_words_per_minute": 94.2095, + "plenum_id": "107477", + "duration": 16096.47, + "title": null, + "plenum_date": "2022-05-10" +} \ No newline at end of file