diff --git "a/130775/metadata.json" "b/130775/metadata.json" new file mode 100644--- /dev/null +++ "b/130775/metadata.json" @@ -0,0 +1,44842 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "130775", + "quality_score": 0.8191, + "per_segment_quality_scores": [ + { + "start": 47.5, + "end": 48.94, + "probability": 0.7965 + }, + { + "start": 49.14, + "end": 49.75, + "probability": 0.8981 + }, + { + "start": 50.08, + "end": 51.68, + "probability": 0.984 + }, + { + "start": 51.86, + "end": 55.1, + "probability": 0.6747 + }, + { + "start": 55.3, + "end": 60.38, + "probability": 0.7183 + }, + { + "start": 60.74, + "end": 62.86, + "probability": 0.9522 + }, + { + "start": 63.32, + "end": 66.04, + "probability": 0.801 + }, + { + "start": 66.3, + "end": 68.74, + "probability": 0.9801 + }, + { + "start": 69.16, + "end": 70.94, + "probability": 0.9927 + }, + { + "start": 71.0, + "end": 73.16, + "probability": 0.9088 + }, + { + "start": 73.7, + "end": 78.64, + "probability": 0.9954 + }, + { + "start": 78.7, + "end": 78.96, + "probability": 0.811 + }, + { + "start": 87.76, + "end": 90.94, + "probability": 0.6959 + }, + { + "start": 91.3, + "end": 92.24, + "probability": 0.7469 + }, + { + "start": 92.88, + "end": 97.84, + "probability": 0.797 + }, + { + "start": 98.64, + "end": 105.12, + "probability": 0.8217 + }, + { + "start": 106.78, + "end": 108.94, + "probability": 0.9669 + }, + { + "start": 110.12, + "end": 113.02, + "probability": 0.939 + }, + { + "start": 113.64, + "end": 114.63, + "probability": 0.935 + }, + { + "start": 116.0, + "end": 118.08, + "probability": 0.895 + }, + { + "start": 121.46, + "end": 123.46, + "probability": 0.7192 + }, + { + "start": 124.08, + "end": 125.68, + "probability": 0.6067 + }, + { + "start": 126.42, + "end": 127.0, + "probability": 0.9926 + }, + { + "start": 127.98, + "end": 129.6, + "probability": 0.1573 + }, + { + "start": 129.64, + "end": 129.86, + "probability": 0.2993 + }, + { + "start": 131.87, + "end": 133.02, + "probability": 0.153 + }, + { + "start": 134.06, + "end": 136.54, + "probability": 0.6925 + }, + { + "start": 136.54, + "end": 136.61, + "probability": 0.4897 + }, + { + "start": 137.08, + "end": 139.04, + "probability": 0.9085 + }, + { + "start": 139.04, + "end": 141.25, + "probability": 0.8833 + }, + { + "start": 142.12, + "end": 145.56, + "probability": 0.1372 + }, + { + "start": 146.82, + "end": 147.16, + "probability": 0.1706 + }, + { + "start": 147.16, + "end": 147.6, + "probability": 0.4041 + }, + { + "start": 148.36, + "end": 150.9, + "probability": 0.9679 + }, + { + "start": 151.98, + "end": 153.26, + "probability": 0.9789 + }, + { + "start": 154.74, + "end": 157.66, + "probability": 0.8118 + }, + { + "start": 158.96, + "end": 161.12, + "probability": 0.9749 + }, + { + "start": 162.02, + "end": 166.3, + "probability": 0.9971 + }, + { + "start": 166.44, + "end": 167.06, + "probability": 0.8914 + }, + { + "start": 167.54, + "end": 168.28, + "probability": 0.9995 + }, + { + "start": 170.41, + "end": 170.82, + "probability": 0.0552 + }, + { + "start": 170.82, + "end": 175.66, + "probability": 0.9779 + }, + { + "start": 175.8, + "end": 176.42, + "probability": 0.8076 + }, + { + "start": 176.64, + "end": 178.32, + "probability": 0.8079 + }, + { + "start": 178.4, + "end": 179.68, + "probability": 0.9966 + }, + { + "start": 180.1, + "end": 180.8, + "probability": 0.9912 + }, + { + "start": 181.18, + "end": 182.5, + "probability": 0.1743 + }, + { + "start": 183.6, + "end": 187.23, + "probability": 0.5553 + }, + { + "start": 187.5, + "end": 192.26, + "probability": 0.9378 + }, + { + "start": 192.56, + "end": 194.62, + "probability": 0.8145 + }, + { + "start": 195.72, + "end": 196.4, + "probability": 0.2728 + }, + { + "start": 196.4, + "end": 197.54, + "probability": 0.561 + }, + { + "start": 197.76, + "end": 199.57, + "probability": 0.9937 + }, + { + "start": 200.08, + "end": 201.08, + "probability": 0.7968 + }, + { + "start": 201.2, + "end": 202.38, + "probability": 0.9956 + }, + { + "start": 202.42, + "end": 204.72, + "probability": 0.7882 + }, + { + "start": 205.0, + "end": 207.12, + "probability": 0.9447 + }, + { + "start": 207.14, + "end": 208.53, + "probability": 0.9979 + }, + { + "start": 209.64, + "end": 210.82, + "probability": 0.9639 + }, + { + "start": 211.62, + "end": 214.22, + "probability": 0.9985 + }, + { + "start": 215.22, + "end": 218.7, + "probability": 0.7508 + }, + { + "start": 220.06, + "end": 224.84, + "probability": 0.8569 + }, + { + "start": 225.44, + "end": 227.58, + "probability": 0.8369 + }, + { + "start": 228.44, + "end": 231.82, + "probability": 0.9941 + }, + { + "start": 231.94, + "end": 233.08, + "probability": 0.9742 + }, + { + "start": 233.7, + "end": 234.56, + "probability": 0.8398 + }, + { + "start": 234.64, + "end": 235.88, + "probability": 0.973 + }, + { + "start": 235.98, + "end": 237.72, + "probability": 0.9243 + }, + { + "start": 237.9, + "end": 238.2, + "probability": 0.8838 + }, + { + "start": 238.74, + "end": 239.48, + "probability": 0.294 + }, + { + "start": 239.84, + "end": 241.22, + "probability": 0.8618 + }, + { + "start": 243.2, + "end": 244.32, + "probability": 0.9083 + }, + { + "start": 244.4, + "end": 244.92, + "probability": 0.9786 + }, + { + "start": 245.0, + "end": 247.36, + "probability": 0.9962 + }, + { + "start": 248.52, + "end": 249.86, + "probability": 0.9956 + }, + { + "start": 250.94, + "end": 258.52, + "probability": 0.9891 + }, + { + "start": 258.52, + "end": 261.82, + "probability": 0.9996 + }, + { + "start": 262.34, + "end": 264.43, + "probability": 0.8545 + }, + { + "start": 265.64, + "end": 269.48, + "probability": 0.9985 + }, + { + "start": 269.9, + "end": 273.04, + "probability": 0.9856 + }, + { + "start": 273.86, + "end": 278.62, + "probability": 0.9631 + }, + { + "start": 278.84, + "end": 279.66, + "probability": 0.8474 + }, + { + "start": 280.6, + "end": 283.86, + "probability": 0.9518 + }, + { + "start": 283.96, + "end": 284.76, + "probability": 0.797 + }, + { + "start": 284.9, + "end": 287.58, + "probability": 0.9972 + }, + { + "start": 287.62, + "end": 288.76, + "probability": 0.9839 + }, + { + "start": 289.06, + "end": 289.84, + "probability": 0.7021 + }, + { + "start": 289.92, + "end": 290.48, + "probability": 0.9985 + }, + { + "start": 290.6, + "end": 291.68, + "probability": 0.9883 + }, + { + "start": 292.96, + "end": 294.42, + "probability": 0.9707 + }, + { + "start": 294.6, + "end": 298.2, + "probability": 0.9937 + }, + { + "start": 299.16, + "end": 301.6, + "probability": 0.9358 + }, + { + "start": 301.7, + "end": 302.6, + "probability": 0.7637 + }, + { + "start": 303.0, + "end": 303.52, + "probability": 0.4949 + }, + { + "start": 303.52, + "end": 303.84, + "probability": 0.5211 + }, + { + "start": 303.94, + "end": 306.28, + "probability": 0.9688 + }, + { + "start": 306.98, + "end": 309.14, + "probability": 0.9503 + }, + { + "start": 309.42, + "end": 310.66, + "probability": 0.9948 + }, + { + "start": 311.1, + "end": 311.84, + "probability": 0.61 + }, + { + "start": 312.0, + "end": 313.04, + "probability": 0.9221 + }, + { + "start": 313.28, + "end": 314.1, + "probability": 0.9806 + }, + { + "start": 314.1, + "end": 315.51, + "probability": 0.8643 + }, + { + "start": 316.52, + "end": 319.52, + "probability": 0.9686 + }, + { + "start": 320.98, + "end": 326.0, + "probability": 0.9948 + }, + { + "start": 326.14, + "end": 327.64, + "probability": 0.6003 + }, + { + "start": 328.08, + "end": 329.4, + "probability": 0.9853 + }, + { + "start": 330.64, + "end": 331.52, + "probability": 0.8511 + }, + { + "start": 331.96, + "end": 332.38, + "probability": 0.8135 + }, + { + "start": 332.44, + "end": 332.98, + "probability": 0.9137 + }, + { + "start": 333.0, + "end": 334.14, + "probability": 0.9609 + }, + { + "start": 334.28, + "end": 336.8, + "probability": 0.9808 + }, + { + "start": 339.54, + "end": 340.38, + "probability": 0.9727 + }, + { + "start": 340.76, + "end": 341.86, + "probability": 0.7357 + }, + { + "start": 341.94, + "end": 342.62, + "probability": 0.8845 + }, + { + "start": 342.7, + "end": 343.74, + "probability": 0.8336 + }, + { + "start": 344.4, + "end": 345.26, + "probability": 0.9669 + }, + { + "start": 346.08, + "end": 346.34, + "probability": 0.9581 + }, + { + "start": 347.68, + "end": 348.92, + "probability": 0.9541 + }, + { + "start": 348.92, + "end": 352.0, + "probability": 0.7958 + }, + { + "start": 354.51, + "end": 356.64, + "probability": 0.6702 + }, + { + "start": 358.68, + "end": 358.68, + "probability": 0.0517 + }, + { + "start": 358.68, + "end": 361.96, + "probability": 0.5673 + }, + { + "start": 362.04, + "end": 362.84, + "probability": 0.8352 + }, + { + "start": 362.92, + "end": 365.06, + "probability": 0.9854 + }, + { + "start": 366.42, + "end": 369.32, + "probability": 0.9822 + }, + { + "start": 369.36, + "end": 370.64, + "probability": 0.7599 + }, + { + "start": 371.12, + "end": 371.98, + "probability": 0.5905 + }, + { + "start": 372.14, + "end": 373.2, + "probability": 0.9538 + }, + { + "start": 373.66, + "end": 375.85, + "probability": 0.9394 + }, + { + "start": 376.36, + "end": 377.36, + "probability": 0.8952 + }, + { + "start": 377.44, + "end": 379.4, + "probability": 0.9956 + }, + { + "start": 380.56, + "end": 383.84, + "probability": 0.998 + }, + { + "start": 384.3, + "end": 384.78, + "probability": 0.8432 + }, + { + "start": 384.88, + "end": 386.38, + "probability": 0.9827 + }, + { + "start": 386.46, + "end": 387.78, + "probability": 0.02 + }, + { + "start": 389.66, + "end": 391.9, + "probability": 0.0237 + }, + { + "start": 391.9, + "end": 392.68, + "probability": 0.0949 + }, + { + "start": 394.54, + "end": 394.76, + "probability": 0.0798 + }, + { + "start": 394.76, + "end": 394.76, + "probability": 0.0198 + }, + { + "start": 394.76, + "end": 394.76, + "probability": 0.0465 + }, + { + "start": 394.76, + "end": 396.1, + "probability": 0.3865 + }, + { + "start": 396.78, + "end": 397.1, + "probability": 0.1816 + }, + { + "start": 397.74, + "end": 400.78, + "probability": 0.9798 + }, + { + "start": 402.46, + "end": 403.18, + "probability": 0.6539 + }, + { + "start": 404.32, + "end": 406.06, + "probability": 0.9783 + }, + { + "start": 406.14, + "end": 406.84, + "probability": 0.7188 + }, + { + "start": 406.94, + "end": 408.77, + "probability": 0.9702 + }, + { + "start": 408.96, + "end": 412.97, + "probability": 0.9963 + }, + { + "start": 415.54, + "end": 415.88, + "probability": 0.0518 + }, + { + "start": 416.06, + "end": 417.86, + "probability": 0.9354 + }, + { + "start": 417.9, + "end": 419.26, + "probability": 0.873 + }, + { + "start": 419.5, + "end": 419.76, + "probability": 0.925 + }, + { + "start": 420.92, + "end": 421.96, + "probability": 0.8855 + }, + { + "start": 422.96, + "end": 425.08, + "probability": 0.9853 + }, + { + "start": 425.62, + "end": 426.58, + "probability": 0.6313 + }, + { + "start": 427.36, + "end": 430.84, + "probability": 0.9894 + }, + { + "start": 430.99, + "end": 433.11, + "probability": 0.3846 + }, + { + "start": 433.24, + "end": 433.8, + "probability": 0.6208 + }, + { + "start": 433.8, + "end": 436.34, + "probability": 0.3902 + }, + { + "start": 436.48, + "end": 437.06, + "probability": 0.8702 + }, + { + "start": 437.08, + "end": 439.5, + "probability": 0.9413 + }, + { + "start": 439.54, + "end": 440.36, + "probability": 0.6797 + }, + { + "start": 440.76, + "end": 443.74, + "probability": 0.7282 + }, + { + "start": 443.92, + "end": 444.96, + "probability": 0.7054 + }, + { + "start": 445.24, + "end": 449.46, + "probability": 0.9218 + }, + { + "start": 449.68, + "end": 451.12, + "probability": 0.9043 + }, + { + "start": 451.18, + "end": 451.53, + "probability": 0.9355 + }, + { + "start": 452.32, + "end": 455.5, + "probability": 0.9535 + }, + { + "start": 455.6, + "end": 458.5, + "probability": 0.6206 + }, + { + "start": 459.06, + "end": 462.62, + "probability": 0.875 + }, + { + "start": 463.32, + "end": 464.38, + "probability": 0.6719 + }, + { + "start": 465.22, + "end": 465.56, + "probability": 0.9413 + }, + { + "start": 465.86, + "end": 466.66, + "probability": 0.9694 + }, + { + "start": 466.74, + "end": 468.36, + "probability": 0.9081 + }, + { + "start": 468.8, + "end": 470.58, + "probability": 0.9954 + }, + { + "start": 471.52, + "end": 472.48, + "probability": 0.669 + }, + { + "start": 473.06, + "end": 475.0, + "probability": 0.8786 + }, + { + "start": 475.1, + "end": 476.03, + "probability": 0.9961 + }, + { + "start": 476.52, + "end": 477.54, + "probability": 0.7973 + }, + { + "start": 479.1, + "end": 480.84, + "probability": 0.916 + }, + { + "start": 480.92, + "end": 481.64, + "probability": 0.9651 + }, + { + "start": 483.0, + "end": 485.7, + "probability": 0.8705 + }, + { + "start": 486.18, + "end": 487.8, + "probability": 0.9558 + }, + { + "start": 488.34, + "end": 491.12, + "probability": 0.9535 + }, + { + "start": 491.88, + "end": 492.6, + "probability": 0.9844 + }, + { + "start": 493.48, + "end": 494.06, + "probability": 0.5727 + }, + { + "start": 495.06, + "end": 498.78, + "probability": 0.911 + }, + { + "start": 499.72, + "end": 501.42, + "probability": 0.8269 + }, + { + "start": 502.68, + "end": 503.22, + "probability": 0.731 + }, + { + "start": 503.32, + "end": 503.44, + "probability": 0.832 + }, + { + "start": 503.48, + "end": 503.58, + "probability": 0.4533 + }, + { + "start": 503.62, + "end": 504.4, + "probability": 0.6169 + }, + { + "start": 504.48, + "end": 507.88, + "probability": 0.9951 + }, + { + "start": 507.92, + "end": 509.76, + "probability": 0.96 + }, + { + "start": 509.82, + "end": 510.88, + "probability": 0.8643 + }, + { + "start": 511.0, + "end": 512.38, + "probability": 0.7717 + }, + { + "start": 512.94, + "end": 513.44, + "probability": 0.4594 + }, + { + "start": 513.5, + "end": 513.68, + "probability": 0.8119 + }, + { + "start": 513.7, + "end": 514.66, + "probability": 0.9775 + }, + { + "start": 514.72, + "end": 515.82, + "probability": 0.9443 + }, + { + "start": 516.12, + "end": 520.9, + "probability": 0.9582 + }, + { + "start": 521.44, + "end": 524.6, + "probability": 0.973 + }, + { + "start": 524.68, + "end": 525.44, + "probability": 0.9961 + }, + { + "start": 526.3, + "end": 527.14, + "probability": 0.7849 + }, + { + "start": 527.24, + "end": 531.08, + "probability": 0.8988 + }, + { + "start": 531.2, + "end": 535.96, + "probability": 0.988 + }, + { + "start": 535.96, + "end": 539.46, + "probability": 0.9932 + }, + { + "start": 539.8, + "end": 540.84, + "probability": 0.971 + }, + { + "start": 540.96, + "end": 541.46, + "probability": 0.9266 + }, + { + "start": 541.54, + "end": 542.16, + "probability": 0.778 + }, + { + "start": 542.8, + "end": 545.2, + "probability": 0.9886 + }, + { + "start": 545.48, + "end": 548.22, + "probability": 0.2366 + }, + { + "start": 548.74, + "end": 552.66, + "probability": 0.0906 + }, + { + "start": 552.66, + "end": 552.66, + "probability": 0.3553 + }, + { + "start": 552.66, + "end": 552.7, + "probability": 0.1734 + }, + { + "start": 552.7, + "end": 555.38, + "probability": 0.9985 + }, + { + "start": 555.6, + "end": 555.6, + "probability": 0.1265 + }, + { + "start": 555.6, + "end": 557.99, + "probability": 0.7344 + }, + { + "start": 558.06, + "end": 565.48, + "probability": 0.6927 + }, + { + "start": 566.53, + "end": 567.08, + "probability": 0.0415 + }, + { + "start": 567.24, + "end": 567.56, + "probability": 0.0894 + }, + { + "start": 568.7, + "end": 570.5, + "probability": 0.702 + }, + { + "start": 570.8, + "end": 573.5, + "probability": 0.7839 + }, + { + "start": 574.04, + "end": 576.52, + "probability": 0.9657 + }, + { + "start": 577.34, + "end": 580.5, + "probability": 0.9422 + }, + { + "start": 581.26, + "end": 582.78, + "probability": 0.7976 + }, + { + "start": 583.86, + "end": 587.48, + "probability": 0.9944 + }, + { + "start": 587.58, + "end": 589.02, + "probability": 0.9267 + }, + { + "start": 589.5, + "end": 591.78, + "probability": 0.9954 + }, + { + "start": 592.42, + "end": 593.69, + "probability": 0.9878 + }, + { + "start": 594.2, + "end": 595.08, + "probability": 0.9888 + }, + { + "start": 596.04, + "end": 598.25, + "probability": 0.9976 + }, + { + "start": 600.1, + "end": 600.92, + "probability": 0.5932 + }, + { + "start": 603.38, + "end": 605.34, + "probability": 0.8913 + }, + { + "start": 606.82, + "end": 611.82, + "probability": 0.9902 + }, + { + "start": 612.64, + "end": 614.34, + "probability": 0.9066 + }, + { + "start": 615.12, + "end": 616.38, + "probability": 0.9991 + }, + { + "start": 617.02, + "end": 620.4, + "probability": 0.9965 + }, + { + "start": 620.52, + "end": 621.6, + "probability": 0.9956 + }, + { + "start": 621.66, + "end": 622.36, + "probability": 0.8686 + }, + { + "start": 623.86, + "end": 627.5, + "probability": 0.9916 + }, + { + "start": 627.76, + "end": 628.27, + "probability": 0.9778 + }, + { + "start": 629.88, + "end": 633.06, + "probability": 0.9952 + }, + { + "start": 633.06, + "end": 636.08, + "probability": 0.9976 + }, + { + "start": 636.64, + "end": 636.84, + "probability": 0.81 + }, + { + "start": 636.92, + "end": 641.18, + "probability": 0.9984 + }, + { + "start": 641.56, + "end": 642.38, + "probability": 0.91 + }, + { + "start": 642.76, + "end": 643.73, + "probability": 0.8641 + }, + { + "start": 644.68, + "end": 645.2, + "probability": 0.865 + }, + { + "start": 645.32, + "end": 647.73, + "probability": 0.6293 + }, + { + "start": 647.84, + "end": 648.78, + "probability": 0.8242 + }, + { + "start": 648.84, + "end": 649.38, + "probability": 0.8849 + }, + { + "start": 649.44, + "end": 649.88, + "probability": 0.9001 + }, + { + "start": 651.6, + "end": 653.4, + "probability": 0.99 + }, + { + "start": 653.78, + "end": 656.4, + "probability": 0.9591 + }, + { + "start": 656.64, + "end": 658.06, + "probability": 0.9952 + }, + { + "start": 658.46, + "end": 659.56, + "probability": 0.9048 + }, + { + "start": 660.24, + "end": 661.22, + "probability": 0.9654 + }, + { + "start": 661.32, + "end": 664.48, + "probability": 0.9884 + }, + { + "start": 666.18, + "end": 669.48, + "probability": 0.9677 + }, + { + "start": 670.12, + "end": 671.08, + "probability": 0.9942 + }, + { + "start": 672.18, + "end": 672.72, + "probability": 0.7149 + }, + { + "start": 673.08, + "end": 675.98, + "probability": 0.9987 + }, + { + "start": 676.1, + "end": 677.52, + "probability": 0.9629 + }, + { + "start": 677.52, + "end": 678.28, + "probability": 0.722 + }, + { + "start": 678.42, + "end": 681.0, + "probability": 0.8541 + }, + { + "start": 681.52, + "end": 688.24, + "probability": 0.9924 + }, + { + "start": 688.24, + "end": 692.1, + "probability": 0.9983 + }, + { + "start": 693.08, + "end": 697.42, + "probability": 0.9971 + }, + { + "start": 698.28, + "end": 701.54, + "probability": 0.9922 + }, + { + "start": 701.54, + "end": 705.14, + "probability": 0.981 + }, + { + "start": 706.18, + "end": 707.64, + "probability": 0.99 + }, + { + "start": 707.72, + "end": 709.02, + "probability": 0.9345 + }, + { + "start": 709.7, + "end": 711.49, + "probability": 0.9483 + }, + { + "start": 712.18, + "end": 713.06, + "probability": 0.9381 + }, + { + "start": 713.48, + "end": 714.42, + "probability": 0.9576 + }, + { + "start": 714.84, + "end": 720.76, + "probability": 0.986 + }, + { + "start": 721.28, + "end": 729.06, + "probability": 0.9963 + }, + { + "start": 729.06, + "end": 732.1, + "probability": 0.9949 + }, + { + "start": 732.66, + "end": 738.26, + "probability": 0.999 + }, + { + "start": 738.7, + "end": 740.1, + "probability": 0.7602 + }, + { + "start": 740.76, + "end": 742.08, + "probability": 0.9883 + }, + { + "start": 742.1, + "end": 744.56, + "probability": 0.9385 + }, + { + "start": 744.68, + "end": 745.94, + "probability": 0.9513 + }, + { + "start": 746.02, + "end": 749.14, + "probability": 0.999 + }, + { + "start": 764.88, + "end": 767.45, + "probability": 0.8178 + }, + { + "start": 768.38, + "end": 773.58, + "probability": 0.9292 + }, + { + "start": 774.48, + "end": 775.2, + "probability": 0.1114 + }, + { + "start": 775.2, + "end": 777.46, + "probability": 0.6171 + }, + { + "start": 777.46, + "end": 778.72, + "probability": 0.0775 + }, + { + "start": 787.8, + "end": 789.3, + "probability": 0.9886 + }, + { + "start": 789.84, + "end": 790.88, + "probability": 0.8234 + }, + { + "start": 791.5, + "end": 795.99, + "probability": 0.9102 + }, + { + "start": 796.74, + "end": 805.83, + "probability": 0.9928 + }, + { + "start": 806.62, + "end": 806.78, + "probability": 0.0047 + }, + { + "start": 808.88, + "end": 810.26, + "probability": 0.7406 + }, + { + "start": 810.9, + "end": 813.38, + "probability": 0.9092 + }, + { + "start": 813.5, + "end": 815.84, + "probability": 0.854 + }, + { + "start": 816.2, + "end": 819.1, + "probability": 0.7192 + }, + { + "start": 825.0, + "end": 831.3, + "probability": 0.9831 + }, + { + "start": 831.3, + "end": 838.36, + "probability": 0.9968 + }, + { + "start": 839.26, + "end": 842.52, + "probability": 0.8106 + }, + { + "start": 843.89, + "end": 846.02, + "probability": 0.975 + }, + { + "start": 846.2, + "end": 849.88, + "probability": 0.9937 + }, + { + "start": 852.01, + "end": 856.88, + "probability": 0.9943 + }, + { + "start": 856.94, + "end": 865.84, + "probability": 0.9985 + }, + { + "start": 866.24, + "end": 868.54, + "probability": 0.9926 + }, + { + "start": 868.6, + "end": 873.56, + "probability": 0.9943 + }, + { + "start": 873.56, + "end": 878.56, + "probability": 0.981 + }, + { + "start": 880.46, + "end": 884.64, + "probability": 0.9978 + }, + { + "start": 886.42, + "end": 897.22, + "probability": 0.9984 + }, + { + "start": 897.22, + "end": 901.94, + "probability": 0.9995 + }, + { + "start": 901.94, + "end": 908.38, + "probability": 0.9997 + }, + { + "start": 908.62, + "end": 913.82, + "probability": 0.9854 + }, + { + "start": 914.0, + "end": 915.04, + "probability": 0.903 + }, + { + "start": 916.16, + "end": 918.66, + "probability": 0.9914 + }, + { + "start": 919.56, + "end": 924.38, + "probability": 0.993 + }, + { + "start": 925.3, + "end": 928.58, + "probability": 0.991 + }, + { + "start": 929.52, + "end": 932.8, + "probability": 0.8333 + }, + { + "start": 933.04, + "end": 937.5, + "probability": 0.9698 + }, + { + "start": 937.74, + "end": 939.7, + "probability": 0.9561 + }, + { + "start": 940.42, + "end": 943.68, + "probability": 0.9981 + }, + { + "start": 944.7, + "end": 949.82, + "probability": 0.9752 + }, + { + "start": 950.02, + "end": 954.2, + "probability": 0.9148 + }, + { + "start": 954.94, + "end": 960.08, + "probability": 0.993 + }, + { + "start": 961.96, + "end": 970.6, + "probability": 0.9948 + }, + { + "start": 970.6, + "end": 977.9, + "probability": 0.9979 + }, + { + "start": 978.64, + "end": 980.06, + "probability": 0.8833 + }, + { + "start": 980.5, + "end": 988.12, + "probability": 0.9863 + }, + { + "start": 988.9, + "end": 993.68, + "probability": 0.9856 + }, + { + "start": 995.84, + "end": 1000.42, + "probability": 0.9995 + }, + { + "start": 1000.42, + "end": 1005.74, + "probability": 0.9984 + }, + { + "start": 1005.92, + "end": 1010.04, + "probability": 0.9965 + }, + { + "start": 1012.04, + "end": 1014.56, + "probability": 0.9863 + }, + { + "start": 1014.56, + "end": 1015.0, + "probability": 0.6678 + }, + { + "start": 1015.2, + "end": 1017.92, + "probability": 0.7747 + }, + { + "start": 1018.54, + "end": 1018.96, + "probability": 0.5195 + }, + { + "start": 1019.6, + "end": 1022.4, + "probability": 0.9551 + }, + { + "start": 1023.16, + "end": 1027.56, + "probability": 0.9932 + }, + { + "start": 1028.22, + "end": 1034.64, + "probability": 0.9938 + }, + { + "start": 1035.4, + "end": 1036.98, + "probability": 0.7359 + }, + { + "start": 1037.12, + "end": 1042.46, + "probability": 0.8461 + }, + { + "start": 1043.28, + "end": 1047.76, + "probability": 0.9902 + }, + { + "start": 1047.76, + "end": 1051.78, + "probability": 0.9987 + }, + { + "start": 1051.98, + "end": 1053.3, + "probability": 0.9568 + }, + { + "start": 1053.74, + "end": 1059.06, + "probability": 0.9914 + }, + { + "start": 1059.06, + "end": 1065.28, + "probability": 0.998 + }, + { + "start": 1065.92, + "end": 1069.54, + "probability": 0.9989 + }, + { + "start": 1070.26, + "end": 1072.48, + "probability": 0.9832 + }, + { + "start": 1072.62, + "end": 1076.94, + "probability": 0.9902 + }, + { + "start": 1078.2, + "end": 1080.76, + "probability": 0.9983 + }, + { + "start": 1081.52, + "end": 1084.24, + "probability": 0.8925 + }, + { + "start": 1085.94, + "end": 1090.4, + "probability": 0.9939 + }, + { + "start": 1091.5, + "end": 1097.72, + "probability": 0.9982 + }, + { + "start": 1097.72, + "end": 1103.68, + "probability": 0.9988 + }, + { + "start": 1105.32, + "end": 1107.91, + "probability": 0.9941 + }, + { + "start": 1112.24, + "end": 1113.82, + "probability": 0.8141 + }, + { + "start": 1115.35, + "end": 1119.04, + "probability": 0.9116 + }, + { + "start": 1119.68, + "end": 1122.04, + "probability": 0.9556 + }, + { + "start": 1122.88, + "end": 1130.84, + "probability": 0.9885 + }, + { + "start": 1131.32, + "end": 1137.24, + "probability": 0.9946 + }, + { + "start": 1137.41, + "end": 1144.32, + "probability": 0.999 + }, + { + "start": 1145.1, + "end": 1146.04, + "probability": 0.9451 + }, + { + "start": 1146.06, + "end": 1147.68, + "probability": 0.8988 + }, + { + "start": 1147.76, + "end": 1148.8, + "probability": 0.6925 + }, + { + "start": 1149.62, + "end": 1153.38, + "probability": 0.9912 + }, + { + "start": 1153.46, + "end": 1155.22, + "probability": 0.9878 + }, + { + "start": 1156.5, + "end": 1161.74, + "probability": 0.9565 + }, + { + "start": 1161.74, + "end": 1166.16, + "probability": 0.9941 + }, + { + "start": 1166.8, + "end": 1171.22, + "probability": 0.9912 + }, + { + "start": 1171.22, + "end": 1174.64, + "probability": 0.9901 + }, + { + "start": 1175.2, + "end": 1178.52, + "probability": 0.9985 + }, + { + "start": 1179.32, + "end": 1185.92, + "probability": 0.9961 + }, + { + "start": 1186.14, + "end": 1186.86, + "probability": 0.9946 + }, + { + "start": 1186.96, + "end": 1188.8, + "probability": 0.8955 + }, + { + "start": 1189.2, + "end": 1192.44, + "probability": 0.9985 + }, + { + "start": 1192.7, + "end": 1196.24, + "probability": 0.9987 + }, + { + "start": 1196.24, + "end": 1200.7, + "probability": 0.9976 + }, + { + "start": 1200.84, + "end": 1201.72, + "probability": 0.7806 + }, + { + "start": 1201.84, + "end": 1202.46, + "probability": 0.728 + }, + { + "start": 1202.6, + "end": 1205.14, + "probability": 0.8776 + }, + { + "start": 1205.14, + "end": 1207.76, + "probability": 0.9963 + }, + { + "start": 1207.76, + "end": 1208.08, + "probability": 0.766 + }, + { + "start": 1208.08, + "end": 1208.1, + "probability": 0.3577 + }, + { + "start": 1208.14, + "end": 1215.46, + "probability": 0.991 + }, + { + "start": 1215.46, + "end": 1220.1, + "probability": 0.9979 + }, + { + "start": 1220.18, + "end": 1220.82, + "probability": 0.7413 + }, + { + "start": 1220.88, + "end": 1222.16, + "probability": 0.9886 + }, + { + "start": 1222.26, + "end": 1226.98, + "probability": 0.9949 + }, + { + "start": 1227.6, + "end": 1230.74, + "probability": 0.9973 + }, + { + "start": 1230.8, + "end": 1232.82, + "probability": 0.8919 + }, + { + "start": 1233.26, + "end": 1237.94, + "probability": 0.9985 + }, + { + "start": 1237.94, + "end": 1243.36, + "probability": 0.9983 + }, + { + "start": 1244.02, + "end": 1245.66, + "probability": 0.1928 + }, + { + "start": 1245.66, + "end": 1247.12, + "probability": 0.6101 + }, + { + "start": 1247.12, + "end": 1248.56, + "probability": 0.687 + }, + { + "start": 1248.76, + "end": 1252.1, + "probability": 0.9955 + }, + { + "start": 1252.28, + "end": 1252.28, + "probability": 0.1123 + }, + { + "start": 1252.28, + "end": 1253.84, + "probability": 0.7734 + }, + { + "start": 1254.0, + "end": 1259.04, + "probability": 0.6726 + }, + { + "start": 1259.64, + "end": 1264.06, + "probability": 0.4736 + }, + { + "start": 1264.2, + "end": 1267.88, + "probability": 0.9789 + }, + { + "start": 1268.14, + "end": 1268.14, + "probability": 0.1035 + }, + { + "start": 1268.14, + "end": 1268.14, + "probability": 0.1335 + }, + { + "start": 1268.14, + "end": 1269.7, + "probability": 0.4957 + }, + { + "start": 1270.18, + "end": 1272.72, + "probability": 0.9692 + }, + { + "start": 1272.86, + "end": 1273.26, + "probability": 0.7288 + }, + { + "start": 1273.72, + "end": 1273.98, + "probability": 0.0261 + }, + { + "start": 1275.22, + "end": 1285.44, + "probability": 0.0326 + }, + { + "start": 1286.36, + "end": 1286.36, + "probability": 0.066 + }, + { + "start": 1286.36, + "end": 1286.36, + "probability": 0.0891 + }, + { + "start": 1286.36, + "end": 1286.36, + "probability": 0.0161 + }, + { + "start": 1286.36, + "end": 1286.36, + "probability": 0.1446 + }, + { + "start": 1286.36, + "end": 1289.62, + "probability": 0.5652 + }, + { + "start": 1289.77, + "end": 1292.0, + "probability": 0.1672 + }, + { + "start": 1292.0, + "end": 1292.14, + "probability": 0.2577 + }, + { + "start": 1292.14, + "end": 1294.35, + "probability": 0.9775 + }, + { + "start": 1294.96, + "end": 1300.3, + "probability": 0.9904 + }, + { + "start": 1300.5, + "end": 1308.0, + "probability": 0.9983 + }, + { + "start": 1308.82, + "end": 1309.78, + "probability": 0.8946 + }, + { + "start": 1309.88, + "end": 1310.66, + "probability": 0.5347 + }, + { + "start": 1310.76, + "end": 1314.78, + "probability": 0.8534 + }, + { + "start": 1315.04, + "end": 1315.96, + "probability": 0.0258 + }, + { + "start": 1315.96, + "end": 1318.48, + "probability": 0.9836 + }, + { + "start": 1322.7, + "end": 1322.82, + "probability": 0.0141 + }, + { + "start": 1324.62, + "end": 1325.62, + "probability": 0.0541 + }, + { + "start": 1325.62, + "end": 1325.62, + "probability": 0.1327 + }, + { + "start": 1325.62, + "end": 1325.62, + "probability": 0.172 + }, + { + "start": 1325.62, + "end": 1328.26, + "probability": 0.4148 + }, + { + "start": 1328.62, + "end": 1331.68, + "probability": 0.7715 + }, + { + "start": 1332.08, + "end": 1332.92, + "probability": 0.7926 + }, + { + "start": 1333.82, + "end": 1334.44, + "probability": 0.7238 + }, + { + "start": 1334.56, + "end": 1335.44, + "probability": 0.5659 + }, + { + "start": 1335.88, + "end": 1336.92, + "probability": 0.0446 + }, + { + "start": 1337.0, + "end": 1337.6, + "probability": 0.2478 + }, + { + "start": 1337.6, + "end": 1340.48, + "probability": 0.8973 + }, + { + "start": 1340.52, + "end": 1341.64, + "probability": 0.5867 + }, + { + "start": 1342.02, + "end": 1345.52, + "probability": 0.9943 + }, + { + "start": 1345.76, + "end": 1345.76, + "probability": 0.0428 + }, + { + "start": 1345.76, + "end": 1348.12, + "probability": 0.6777 + }, + { + "start": 1348.28, + "end": 1350.48, + "probability": 0.1238 + }, + { + "start": 1350.48, + "end": 1350.88, + "probability": 0.4592 + }, + { + "start": 1350.88, + "end": 1351.85, + "probability": 0.6362 + }, + { + "start": 1352.26, + "end": 1352.26, + "probability": 0.1879 + }, + { + "start": 1352.26, + "end": 1352.26, + "probability": 0.0344 + }, + { + "start": 1352.26, + "end": 1353.58, + "probability": 0.5537 + }, + { + "start": 1353.7, + "end": 1357.74, + "probability": 0.9908 + }, + { + "start": 1357.94, + "end": 1361.42, + "probability": 0.9913 + }, + { + "start": 1361.5, + "end": 1363.3, + "probability": 0.8781 + }, + { + "start": 1363.9, + "end": 1365.94, + "probability": 0.6164 + }, + { + "start": 1366.4, + "end": 1366.52, + "probability": 0.0173 + }, + { + "start": 1366.52, + "end": 1372.34, + "probability": 0.2425 + }, + { + "start": 1373.1, + "end": 1376.33, + "probability": 0.331 + }, + { + "start": 1376.78, + "end": 1377.32, + "probability": 0.0532 + }, + { + "start": 1377.32, + "end": 1380.94, + "probability": 0.5037 + }, + { + "start": 1380.94, + "end": 1381.6, + "probability": 0.0867 + }, + { + "start": 1381.72, + "end": 1385.58, + "probability": 0.9049 + }, + { + "start": 1385.62, + "end": 1386.46, + "probability": 0.1176 + }, + { + "start": 1386.58, + "end": 1392.8, + "probability": 0.8812 + }, + { + "start": 1393.48, + "end": 1397.22, + "probability": 0.9607 + }, + { + "start": 1397.78, + "end": 1398.48, + "probability": 0.1619 + }, + { + "start": 1399.3, + "end": 1399.51, + "probability": 0.0393 + }, + { + "start": 1399.84, + "end": 1399.86, + "probability": 0.0971 + }, + { + "start": 1399.86, + "end": 1401.96, + "probability": 0.6417 + }, + { + "start": 1402.36, + "end": 1405.68, + "probability": 0.9784 + }, + { + "start": 1406.18, + "end": 1407.96, + "probability": 0.9831 + }, + { + "start": 1408.56, + "end": 1410.32, + "probability": 0.9546 + }, + { + "start": 1410.72, + "end": 1414.84, + "probability": 0.9956 + }, + { + "start": 1415.24, + "end": 1419.32, + "probability": 0.9696 + }, + { + "start": 1420.66, + "end": 1425.68, + "probability": 0.988 + }, + { + "start": 1426.44, + "end": 1429.28, + "probability": 0.9618 + }, + { + "start": 1429.82, + "end": 1431.74, + "probability": 0.863 + }, + { + "start": 1431.76, + "end": 1433.31, + "probability": 0.4056 + }, + { + "start": 1434.7, + "end": 1441.14, + "probability": 0.9561 + }, + { + "start": 1441.22, + "end": 1441.82, + "probability": 0.7753 + }, + { + "start": 1442.02, + "end": 1442.38, + "probability": 0.547 + }, + { + "start": 1442.42, + "end": 1445.34, + "probability": 0.9767 + }, + { + "start": 1445.4, + "end": 1447.12, + "probability": 0.9874 + }, + { + "start": 1461.28, + "end": 1464.44, + "probability": 0.6484 + }, + { + "start": 1470.44, + "end": 1472.06, + "probability": 0.6249 + }, + { + "start": 1472.76, + "end": 1476.14, + "probability": 0.4452 + }, + { + "start": 1479.2, + "end": 1482.92, + "probability": 0.9073 + }, + { + "start": 1485.4, + "end": 1487.1, + "probability": 0.7673 + }, + { + "start": 1488.28, + "end": 1492.64, + "probability": 0.9976 + }, + { + "start": 1494.1, + "end": 1495.07, + "probability": 0.9961 + }, + { + "start": 1496.04, + "end": 1497.36, + "probability": 0.9731 + }, + { + "start": 1498.34, + "end": 1499.82, + "probability": 0.9014 + }, + { + "start": 1500.54, + "end": 1504.02, + "probability": 0.9912 + }, + { + "start": 1504.62, + "end": 1505.38, + "probability": 0.607 + }, + { + "start": 1505.48, + "end": 1510.6, + "probability": 0.7784 + }, + { + "start": 1511.04, + "end": 1515.1, + "probability": 0.9923 + }, + { + "start": 1515.38, + "end": 1520.46, + "probability": 0.9386 + }, + { + "start": 1521.1, + "end": 1526.36, + "probability": 0.9934 + }, + { + "start": 1527.21, + "end": 1534.06, + "probability": 0.9746 + }, + { + "start": 1534.12, + "end": 1538.88, + "probability": 0.8751 + }, + { + "start": 1539.72, + "end": 1540.72, + "probability": 0.8458 + }, + { + "start": 1541.28, + "end": 1542.96, + "probability": 0.8345 + }, + { + "start": 1544.14, + "end": 1550.06, + "probability": 0.9563 + }, + { + "start": 1551.54, + "end": 1559.62, + "probability": 0.9939 + }, + { + "start": 1561.02, + "end": 1564.74, + "probability": 0.9989 + }, + { + "start": 1566.78, + "end": 1575.96, + "probability": 0.9874 + }, + { + "start": 1576.08, + "end": 1579.44, + "probability": 0.9604 + }, + { + "start": 1579.52, + "end": 1583.9, + "probability": 0.7441 + }, + { + "start": 1584.9, + "end": 1584.9, + "probability": 0.1576 + }, + { + "start": 1584.9, + "end": 1585.14, + "probability": 0.0587 + }, + { + "start": 1585.16, + "end": 1586.24, + "probability": 0.7543 + }, + { + "start": 1586.24, + "end": 1586.24, + "probability": 0.44 + }, + { + "start": 1586.26, + "end": 1586.84, + "probability": 0.5547 + }, + { + "start": 1587.4, + "end": 1589.0, + "probability": 0.72 + }, + { + "start": 1589.12, + "end": 1589.24, + "probability": 0.3296 + }, + { + "start": 1589.24, + "end": 1591.04, + "probability": 0.9123 + }, + { + "start": 1591.04, + "end": 1592.58, + "probability": 0.9761 + }, + { + "start": 1592.58, + "end": 1594.36, + "probability": 0.8521 + }, + { + "start": 1594.36, + "end": 1597.06, + "probability": 0.7542 + }, + { + "start": 1597.06, + "end": 1597.68, + "probability": 0.4398 + }, + { + "start": 1607.72, + "end": 1608.77, + "probability": 0.0116 + }, + { + "start": 1609.02, + "end": 1610.79, + "probability": 0.3232 + }, + { + "start": 1612.88, + "end": 1613.26, + "probability": 0.0815 + }, + { + "start": 1613.26, + "end": 1613.26, + "probability": 0.0468 + }, + { + "start": 1613.26, + "end": 1613.26, + "probability": 0.2841 + }, + { + "start": 1613.26, + "end": 1614.52, + "probability": 0.2637 + }, + { + "start": 1615.22, + "end": 1618.49, + "probability": 0.1432 + }, + { + "start": 1619.66, + "end": 1619.66, + "probability": 0.1288 + }, + { + "start": 1624.3, + "end": 1627.1, + "probability": 0.1081 + }, + { + "start": 1627.27, + "end": 1627.39, + "probability": 0.0114 + }, + { + "start": 1627.4, + "end": 1628.03, + "probability": 0.0071 + }, + { + "start": 1628.74, + "end": 1628.86, + "probability": 0.0849 + }, + { + "start": 1628.86, + "end": 1631.76, + "probability": 0.0564 + }, + { + "start": 1632.12, + "end": 1633.5, + "probability": 0.0092 + }, + { + "start": 1640.22, + "end": 1641.02, + "probability": 0.2865 + }, + { + "start": 1642.72, + "end": 1643.08, + "probability": 0.1402 + }, + { + "start": 1643.08, + "end": 1648.2, + "probability": 0.0306 + }, + { + "start": 1648.2, + "end": 1648.68, + "probability": 0.1084 + }, + { + "start": 1648.68, + "end": 1648.7, + "probability": 0.0976 + }, + { + "start": 1648.7, + "end": 1648.82, + "probability": 0.0952 + }, + { + "start": 1649.32, + "end": 1649.48, + "probability": 0.1537 + }, + { + "start": 1649.48, + "end": 1654.68, + "probability": 0.0949 + }, + { + "start": 1657.6, + "end": 1658.98, + "probability": 0.0295 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1659.0, + "end": 1659.0, + "probability": 0.0 + }, + { + "start": 1667.46, + "end": 1669.98, + "probability": 0.9072 + }, + { + "start": 1669.98, + "end": 1670.0, + "probability": 0.695 + }, + { + "start": 1670.0, + "end": 1673.08, + "probability": 0.5535 + }, + { + "start": 1673.24, + "end": 1674.5, + "probability": 0.5982 + }, + { + "start": 1674.5, + "end": 1674.6, + "probability": 0.2864 + }, + { + "start": 1674.6, + "end": 1676.84, + "probability": 0.8477 + }, + { + "start": 1677.14, + "end": 1677.7, + "probability": 0.6919 + }, + { + "start": 1677.72, + "end": 1679.0, + "probability": 0.7772 + }, + { + "start": 1679.06, + "end": 1681.34, + "probability": 0.607 + }, + { + "start": 1681.34, + "end": 1682.78, + "probability": 0.7257 + }, + { + "start": 1683.73, + "end": 1683.8, + "probability": 0.783 + }, + { + "start": 1683.8, + "end": 1687.48, + "probability": 0.9534 + }, + { + "start": 1687.66, + "end": 1688.1, + "probability": 0.9414 + }, + { + "start": 1688.1, + "end": 1688.92, + "probability": 0.8853 + }, + { + "start": 1688.92, + "end": 1690.42, + "probability": 0.8953 + }, + { + "start": 1691.14, + "end": 1692.16, + "probability": 0.6185 + }, + { + "start": 1692.16, + "end": 1694.46, + "probability": 0.5313 + }, + { + "start": 1694.46, + "end": 1694.6, + "probability": 0.1721 + }, + { + "start": 1694.6, + "end": 1694.6, + "probability": 0.019 + }, + { + "start": 1694.6, + "end": 1694.77, + "probability": 0.0345 + }, + { + "start": 1694.92, + "end": 1695.38, + "probability": 0.6469 + }, + { + "start": 1695.84, + "end": 1696.68, + "probability": 0.7027 + }, + { + "start": 1696.68, + "end": 1697.34, + "probability": 0.8374 + }, + { + "start": 1697.54, + "end": 1700.66, + "probability": 0.9639 + }, + { + "start": 1700.66, + "end": 1701.16, + "probability": 0.2492 + }, + { + "start": 1701.2, + "end": 1702.62, + "probability": 0.8981 + }, + { + "start": 1703.06, + "end": 1703.66, + "probability": 0.8812 + }, + { + "start": 1703.86, + "end": 1706.14, + "probability": 0.7881 + }, + { + "start": 1706.3, + "end": 1707.65, + "probability": 0.9036 + }, + { + "start": 1708.3, + "end": 1712.46, + "probability": 0.4208 + }, + { + "start": 1712.46, + "end": 1714.04, + "probability": 0.7607 + }, + { + "start": 1714.1, + "end": 1716.82, + "probability": 0.2062 + }, + { + "start": 1717.18, + "end": 1720.08, + "probability": 0.1307 + }, + { + "start": 1720.48, + "end": 1723.42, + "probability": 0.3084 + }, + { + "start": 1723.5, + "end": 1728.38, + "probability": 0.364 + }, + { + "start": 1728.74, + "end": 1729.04, + "probability": 0.6001 + }, + { + "start": 1731.74, + "end": 1732.88, + "probability": 0.3967 + }, + { + "start": 1736.6, + "end": 1741.84, + "probability": 0.7477 + }, + { + "start": 1743.82, + "end": 1745.72, + "probability": 0.9937 + }, + { + "start": 1745.82, + "end": 1749.02, + "probability": 0.8272 + }, + { + "start": 1749.16, + "end": 1750.1, + "probability": 0.5418 + }, + { + "start": 1750.12, + "end": 1752.32, + "probability": 0.9963 + }, + { + "start": 1752.34, + "end": 1756.04, + "probability": 0.9778 + }, + { + "start": 1756.35, + "end": 1757.12, + "probability": 0.5542 + }, + { + "start": 1757.12, + "end": 1762.0, + "probability": 0.9927 + }, + { + "start": 1762.08, + "end": 1762.64, + "probability": 0.5123 + }, + { + "start": 1762.66, + "end": 1764.24, + "probability": 0.991 + }, + { + "start": 1764.44, + "end": 1766.52, + "probability": 0.9864 + }, + { + "start": 1767.0, + "end": 1771.88, + "probability": 0.9926 + }, + { + "start": 1771.9, + "end": 1772.78, + "probability": 0.7762 + }, + { + "start": 1772.88, + "end": 1773.96, + "probability": 0.6822 + }, + { + "start": 1774.68, + "end": 1775.4, + "probability": 0.6016 + }, + { + "start": 1775.58, + "end": 1778.62, + "probability": 0.5501 + }, + { + "start": 1778.74, + "end": 1781.62, + "probability": 0.6785 + }, + { + "start": 1781.98, + "end": 1783.72, + "probability": 0.95 + }, + { + "start": 1784.1, + "end": 1786.06, + "probability": 0.7769 + }, + { + "start": 1786.5, + "end": 1788.04, + "probability": 0.7327 + }, + { + "start": 1789.96, + "end": 1791.48, + "probability": 0.1584 + }, + { + "start": 1792.76, + "end": 1794.06, + "probability": 0.008 + }, + { + "start": 1796.4, + "end": 1798.88, + "probability": 0.1232 + }, + { + "start": 1801.56, + "end": 1802.02, + "probability": 0.7164 + }, + { + "start": 1802.02, + "end": 1802.02, + "probability": 0.1562 + }, + { + "start": 1802.02, + "end": 1803.74, + "probability": 0.866 + }, + { + "start": 1804.34, + "end": 1809.0, + "probability": 0.934 + }, + { + "start": 1809.3, + "end": 1811.56, + "probability": 0.7045 + }, + { + "start": 1811.66, + "end": 1812.52, + "probability": 0.8397 + }, + { + "start": 1812.6, + "end": 1813.34, + "probability": 0.7646 + }, + { + "start": 1813.6, + "end": 1815.36, + "probability": 0.9546 + }, + { + "start": 1815.36, + "end": 1818.1, + "probability": 0.7636 + }, + { + "start": 1818.24, + "end": 1819.44, + "probability": 0.9609 + }, + { + "start": 1819.52, + "end": 1822.3, + "probability": 0.9553 + }, + { + "start": 1822.3, + "end": 1826.56, + "probability": 0.9944 + }, + { + "start": 1827.22, + "end": 1830.1, + "probability": 0.2642 + }, + { + "start": 1830.3, + "end": 1832.76, + "probability": 0.6697 + }, + { + "start": 1833.58, + "end": 1840.78, + "probability": 0.0036 + }, + { + "start": 1842.28, + "end": 1844.92, + "probability": 0.9678 + }, + { + "start": 1845.6, + "end": 1847.24, + "probability": 0.7671 + }, + { + "start": 1847.4, + "end": 1850.92, + "probability": 0.9978 + }, + { + "start": 1851.18, + "end": 1853.46, + "probability": 0.9658 + }, + { + "start": 1853.68, + "end": 1854.88, + "probability": 0.5989 + }, + { + "start": 1855.48, + "end": 1858.2, + "probability": 0.8032 + }, + { + "start": 1859.6, + "end": 1863.42, + "probability": 0.9912 + }, + { + "start": 1863.42, + "end": 1864.86, + "probability": 0.9758 + }, + { + "start": 1874.6, + "end": 1875.58, + "probability": 0.335 + }, + { + "start": 1875.64, + "end": 1877.14, + "probability": 0.08 + }, + { + "start": 1877.22, + "end": 1878.84, + "probability": 0.9193 + }, + { + "start": 1878.96, + "end": 1879.24, + "probability": 0.0561 + }, + { + "start": 1880.94, + "end": 1882.22, + "probability": 0.0956 + }, + { + "start": 1883.08, + "end": 1884.2, + "probability": 0.5784 + }, + { + "start": 1884.28, + "end": 1884.35, + "probability": 0.126 + }, + { + "start": 1884.92, + "end": 1886.26, + "probability": 0.3341 + }, + { + "start": 1886.32, + "end": 1888.24, + "probability": 0.6672 + }, + { + "start": 1893.96, + "end": 1896.88, + "probability": 0.7634 + }, + { + "start": 1902.98, + "end": 1904.14, + "probability": 0.6121 + }, + { + "start": 1904.5, + "end": 1909.34, + "probability": 0.9972 + }, + { + "start": 1910.84, + "end": 1913.48, + "probability": 0.8003 + }, + { + "start": 1913.54, + "end": 1915.0, + "probability": 0.9434 + }, + { + "start": 1915.14, + "end": 1916.28, + "probability": 0.6246 + }, + { + "start": 1916.68, + "end": 1918.18, + "probability": 0.863 + }, + { + "start": 1919.04, + "end": 1921.19, + "probability": 0.9863 + }, + { + "start": 1921.92, + "end": 1924.32, + "probability": 0.689 + }, + { + "start": 1924.36, + "end": 1927.4, + "probability": 0.984 + }, + { + "start": 1927.44, + "end": 1928.1, + "probability": 0.7643 + }, + { + "start": 1928.48, + "end": 1929.32, + "probability": 0.6713 + }, + { + "start": 1929.92, + "end": 1932.06, + "probability": 0.9889 + }, + { + "start": 1932.78, + "end": 1938.76, + "probability": 0.8484 + }, + { + "start": 1939.52, + "end": 1944.34, + "probability": 0.9728 + }, + { + "start": 1944.74, + "end": 1951.28, + "probability": 0.8787 + }, + { + "start": 1951.6, + "end": 1955.1, + "probability": 0.9648 + }, + { + "start": 1955.62, + "end": 1961.28, + "probability": 0.9949 + }, + { + "start": 1961.28, + "end": 1965.7, + "probability": 0.9959 + }, + { + "start": 1966.3, + "end": 1967.82, + "probability": 0.9863 + }, + { + "start": 1968.34, + "end": 1969.54, + "probability": 0.9281 + }, + { + "start": 1970.02, + "end": 1974.4, + "probability": 0.9902 + }, + { + "start": 1974.48, + "end": 1976.58, + "probability": 0.4072 + }, + { + "start": 1977.52, + "end": 1978.92, + "probability": 0.8489 + }, + { + "start": 1979.04, + "end": 1981.24, + "probability": 0.6952 + }, + { + "start": 1981.6, + "end": 1982.1, + "probability": 0.9333 + }, + { + "start": 1982.36, + "end": 1983.06, + "probability": 0.8647 + }, + { + "start": 1983.3, + "end": 1984.2, + "probability": 0.9756 + }, + { + "start": 1984.52, + "end": 1987.08, + "probability": 0.9535 + }, + { + "start": 1987.46, + "end": 1987.89, + "probability": 0.9619 + }, + { + "start": 1987.96, + "end": 1988.9, + "probability": 0.8306 + }, + { + "start": 1989.1, + "end": 1991.8, + "probability": 0.9927 + }, + { + "start": 1992.14, + "end": 1993.66, + "probability": 0.7663 + }, + { + "start": 1993.92, + "end": 1996.38, + "probability": 0.9105 + }, + { + "start": 1996.68, + "end": 1997.66, + "probability": 0.9445 + }, + { + "start": 1998.74, + "end": 2001.66, + "probability": 0.9824 + }, + { + "start": 2002.02, + "end": 2003.2, + "probability": 0.7025 + }, + { + "start": 2004.22, + "end": 2010.62, + "probability": 0.9609 + }, + { + "start": 2010.98, + "end": 2011.94, + "probability": 0.6691 + }, + { + "start": 2013.22, + "end": 2015.06, + "probability": 0.7939 + }, + { + "start": 2015.16, + "end": 2015.86, + "probability": 0.9585 + }, + { + "start": 2015.86, + "end": 2017.46, + "probability": 0.7463 + }, + { + "start": 2017.72, + "end": 2018.88, + "probability": 0.9961 + }, + { + "start": 2019.18, + "end": 2020.72, + "probability": 0.7902 + }, + { + "start": 2021.2, + "end": 2023.86, + "probability": 0.9208 + }, + { + "start": 2024.46, + "end": 2028.08, + "probability": 0.9974 + }, + { + "start": 2028.16, + "end": 2029.07, + "probability": 0.902 + }, + { + "start": 2029.52, + "end": 2033.52, + "probability": 0.9978 + }, + { + "start": 2034.06, + "end": 2034.84, + "probability": 0.9084 + }, + { + "start": 2035.0, + "end": 2035.14, + "probability": 0.7942 + }, + { + "start": 2035.22, + "end": 2036.34, + "probability": 0.7089 + }, + { + "start": 2036.56, + "end": 2038.7, + "probability": 0.9843 + }, + { + "start": 2039.14, + "end": 2040.42, + "probability": 0.879 + }, + { + "start": 2040.66, + "end": 2043.2, + "probability": 0.9402 + }, + { + "start": 2045.82, + "end": 2046.59, + "probability": 0.5556 + }, + { + "start": 2047.32, + "end": 2047.58, + "probability": 0.7657 + }, + { + "start": 2047.7, + "end": 2050.96, + "probability": 0.9439 + }, + { + "start": 2051.1, + "end": 2051.6, + "probability": 0.3269 + }, + { + "start": 2052.88, + "end": 2053.76, + "probability": 0.9017 + }, + { + "start": 2054.28, + "end": 2055.92, + "probability": 0.9567 + }, + { + "start": 2056.64, + "end": 2058.53, + "probability": 0.7072 + }, + { + "start": 2058.74, + "end": 2060.0, + "probability": 0.9893 + }, + { + "start": 2060.4, + "end": 2060.78, + "probability": 0.5184 + }, + { + "start": 2061.66, + "end": 2067.1, + "probability": 0.8748 + }, + { + "start": 2067.66, + "end": 2070.42, + "probability": 0.9996 + }, + { + "start": 2071.38, + "end": 2073.52, + "probability": 0.9416 + }, + { + "start": 2073.8, + "end": 2074.7, + "probability": 0.7669 + }, + { + "start": 2074.76, + "end": 2076.04, + "probability": 0.8859 + }, + { + "start": 2076.72, + "end": 2079.14, + "probability": 0.903 + }, + { + "start": 2079.14, + "end": 2082.3, + "probability": 0.9902 + }, + { + "start": 2082.84, + "end": 2084.58, + "probability": 0.9096 + }, + { + "start": 2085.12, + "end": 2086.84, + "probability": 0.3949 + }, + { + "start": 2087.54, + "end": 2087.9, + "probability": 0.8255 + }, + { + "start": 2088.06, + "end": 2089.4, + "probability": 0.9569 + }, + { + "start": 2089.48, + "end": 2092.78, + "probability": 0.9932 + }, + { + "start": 2093.38, + "end": 2094.34, + "probability": 0.96 + }, + { + "start": 2094.98, + "end": 2097.2, + "probability": 0.8874 + }, + { + "start": 2097.5, + "end": 2100.8, + "probability": 0.997 + }, + { + "start": 2101.52, + "end": 2102.88, + "probability": 0.9818 + }, + { + "start": 2103.78, + "end": 2107.2, + "probability": 0.9202 + }, + { + "start": 2107.56, + "end": 2109.5, + "probability": 0.9494 + }, + { + "start": 2110.16, + "end": 2110.4, + "probability": 0.6847 + }, + { + "start": 2110.52, + "end": 2111.16, + "probability": 0.9784 + }, + { + "start": 2111.74, + "end": 2114.68, + "probability": 0.7898 + }, + { + "start": 2115.26, + "end": 2116.22, + "probability": 0.9435 + }, + { + "start": 2116.32, + "end": 2119.0, + "probability": 0.9587 + }, + { + "start": 2119.68, + "end": 2121.86, + "probability": 0.898 + }, + { + "start": 2122.46, + "end": 2124.68, + "probability": 0.9161 + }, + { + "start": 2125.12, + "end": 2126.56, + "probability": 0.9738 + }, + { + "start": 2127.14, + "end": 2129.7, + "probability": 0.9457 + }, + { + "start": 2130.32, + "end": 2131.7, + "probability": 0.9917 + }, + { + "start": 2132.14, + "end": 2134.74, + "probability": 0.997 + }, + { + "start": 2135.1, + "end": 2138.7, + "probability": 0.9967 + }, + { + "start": 2139.12, + "end": 2140.52, + "probability": 0.9946 + }, + { + "start": 2141.22, + "end": 2142.44, + "probability": 0.9731 + }, + { + "start": 2143.0, + "end": 2143.7, + "probability": 0.8163 + }, + { + "start": 2144.14, + "end": 2146.04, + "probability": 0.8521 + }, + { + "start": 2146.14, + "end": 2148.1, + "probability": 0.9959 + }, + { + "start": 2148.1, + "end": 2150.32, + "probability": 0.9691 + }, + { + "start": 2151.62, + "end": 2153.54, + "probability": 0.5939 + }, + { + "start": 2153.6, + "end": 2156.76, + "probability": 0.9565 + }, + { + "start": 2156.96, + "end": 2158.68, + "probability": 0.8514 + }, + { + "start": 2158.74, + "end": 2160.34, + "probability": 0.932 + }, + { + "start": 2160.78, + "end": 2163.86, + "probability": 0.9849 + }, + { + "start": 2164.78, + "end": 2167.38, + "probability": 0.6861 + }, + { + "start": 2167.84, + "end": 2170.64, + "probability": 0.8332 + }, + { + "start": 2171.1, + "end": 2172.35, + "probability": 0.9974 + }, + { + "start": 2172.88, + "end": 2176.32, + "probability": 0.9966 + }, + { + "start": 2176.9, + "end": 2177.84, + "probability": 0.6518 + }, + { + "start": 2178.2, + "end": 2181.4, + "probability": 0.9957 + }, + { + "start": 2181.54, + "end": 2182.91, + "probability": 0.9982 + }, + { + "start": 2183.92, + "end": 2186.38, + "probability": 0.8784 + }, + { + "start": 2186.98, + "end": 2189.06, + "probability": 0.9004 + }, + { + "start": 2189.6, + "end": 2190.28, + "probability": 0.6216 + }, + { + "start": 2191.04, + "end": 2195.06, + "probability": 0.7615 + }, + { + "start": 2195.26, + "end": 2196.12, + "probability": 0.9617 + }, + { + "start": 2196.48, + "end": 2198.12, + "probability": 0.774 + }, + { + "start": 2198.86, + "end": 2200.0, + "probability": 0.815 + }, + { + "start": 2201.28, + "end": 2202.36, + "probability": 0.9072 + }, + { + "start": 2202.76, + "end": 2204.24, + "probability": 0.9146 + }, + { + "start": 2205.14, + "end": 2207.88, + "probability": 0.9954 + }, + { + "start": 2208.18, + "end": 2209.2, + "probability": 0.9048 + }, + { + "start": 2209.9, + "end": 2213.22, + "probability": 0.9542 + }, + { + "start": 2213.22, + "end": 2216.82, + "probability": 0.9512 + }, + { + "start": 2217.4, + "end": 2219.6, + "probability": 0.9906 + }, + { + "start": 2219.78, + "end": 2222.1, + "probability": 0.9534 + }, + { + "start": 2222.48, + "end": 2223.66, + "probability": 0.8447 + }, + { + "start": 2223.74, + "end": 2224.66, + "probability": 0.9511 + }, + { + "start": 2225.3, + "end": 2228.06, + "probability": 0.9775 + }, + { + "start": 2228.3, + "end": 2229.58, + "probability": 0.5974 + }, + { + "start": 2229.94, + "end": 2231.82, + "probability": 0.9982 + }, + { + "start": 2232.4, + "end": 2235.42, + "probability": 0.8223 + }, + { + "start": 2236.34, + "end": 2239.0, + "probability": 0.9776 + }, + { + "start": 2239.76, + "end": 2242.66, + "probability": 0.9001 + }, + { + "start": 2243.9, + "end": 2244.58, + "probability": 0.8523 + }, + { + "start": 2244.68, + "end": 2245.48, + "probability": 0.8414 + }, + { + "start": 2245.58, + "end": 2248.46, + "probability": 0.9345 + }, + { + "start": 2248.62, + "end": 2249.82, + "probability": 0.9896 + }, + { + "start": 2250.32, + "end": 2251.45, + "probability": 0.7151 + }, + { + "start": 2251.64, + "end": 2252.48, + "probability": 0.8804 + }, + { + "start": 2253.16, + "end": 2256.94, + "probability": 0.9362 + }, + { + "start": 2257.44, + "end": 2259.38, + "probability": 0.8176 + }, + { + "start": 2260.16, + "end": 2261.02, + "probability": 0.0232 + }, + { + "start": 2261.78, + "end": 2262.26, + "probability": 0.5204 + }, + { + "start": 2262.44, + "end": 2263.7, + "probability": 0.901 + }, + { + "start": 2263.7, + "end": 2265.04, + "probability": 0.5497 + }, + { + "start": 2265.06, + "end": 2267.16, + "probability": 0.9136 + }, + { + "start": 2267.2, + "end": 2269.16, + "probability": 0.853 + }, + { + "start": 2269.42, + "end": 2271.16, + "probability": 0.9754 + }, + { + "start": 2271.3, + "end": 2271.66, + "probability": 0.9661 + }, + { + "start": 2272.1, + "end": 2272.7, + "probability": 0.751 + }, + { + "start": 2272.82, + "end": 2273.58, + "probability": 0.7728 + }, + { + "start": 2273.84, + "end": 2275.84, + "probability": 0.9425 + }, + { + "start": 2276.1, + "end": 2277.92, + "probability": 0.9816 + }, + { + "start": 2278.46, + "end": 2284.44, + "probability": 0.9948 + }, + { + "start": 2284.44, + "end": 2288.66, + "probability": 0.9985 + }, + { + "start": 2289.02, + "end": 2292.36, + "probability": 0.9971 + }, + { + "start": 2292.88, + "end": 2299.26, + "probability": 0.998 + }, + { + "start": 2299.56, + "end": 2303.08, + "probability": 0.9926 + }, + { + "start": 2303.08, + "end": 2306.4, + "probability": 0.9971 + }, + { + "start": 2307.5, + "end": 2311.06, + "probability": 0.998 + }, + { + "start": 2311.86, + "end": 2315.5, + "probability": 0.9667 + }, + { + "start": 2316.02, + "end": 2318.86, + "probability": 0.9775 + }, + { + "start": 2319.04, + "end": 2320.28, + "probability": 0.9833 + }, + { + "start": 2320.76, + "end": 2322.7, + "probability": 0.9927 + }, + { + "start": 2322.92, + "end": 2323.4, + "probability": 0.471 + }, + { + "start": 2324.16, + "end": 2326.16, + "probability": 0.8608 + }, + { + "start": 2326.66, + "end": 2327.6, + "probability": 0.9523 + }, + { + "start": 2328.3, + "end": 2330.04, + "probability": 0.7488 + }, + { + "start": 2330.44, + "end": 2332.44, + "probability": 0.9915 + }, + { + "start": 2332.94, + "end": 2335.74, + "probability": 0.935 + }, + { + "start": 2335.96, + "end": 2336.9, + "probability": 0.8881 + }, + { + "start": 2337.04, + "end": 2338.8, + "probability": 0.9329 + }, + { + "start": 2339.1, + "end": 2340.64, + "probability": 0.8284 + }, + { + "start": 2341.3, + "end": 2344.5, + "probability": 0.8612 + }, + { + "start": 2344.82, + "end": 2348.04, + "probability": 0.9933 + }, + { + "start": 2349.7, + "end": 2350.68, + "probability": 0.1395 + }, + { + "start": 2351.1, + "end": 2351.58, + "probability": 0.468 + }, + { + "start": 2351.98, + "end": 2352.34, + "probability": 0.5838 + }, + { + "start": 2352.6, + "end": 2352.78, + "probability": 0.3834 + }, + { + "start": 2353.36, + "end": 2354.22, + "probability": 0.9408 + }, + { + "start": 2354.74, + "end": 2356.68, + "probability": 0.7396 + }, + { + "start": 2357.42, + "end": 2358.38, + "probability": 0.8934 + }, + { + "start": 2358.46, + "end": 2359.7, + "probability": 0.9561 + }, + { + "start": 2360.08, + "end": 2361.66, + "probability": 0.936 + }, + { + "start": 2362.42, + "end": 2364.66, + "probability": 0.9751 + }, + { + "start": 2365.06, + "end": 2369.6, + "probability": 0.9928 + }, + { + "start": 2370.34, + "end": 2374.88, + "probability": 0.9751 + }, + { + "start": 2375.1, + "end": 2379.64, + "probability": 0.9913 + }, + { + "start": 2380.18, + "end": 2380.9, + "probability": 0.9014 + }, + { + "start": 2381.64, + "end": 2383.46, + "probability": 0.8681 + }, + { + "start": 2384.24, + "end": 2386.48, + "probability": 0.9227 + }, + { + "start": 2387.4, + "end": 2388.46, + "probability": 0.9937 + }, + { + "start": 2388.74, + "end": 2391.78, + "probability": 0.9755 + }, + { + "start": 2392.7, + "end": 2398.64, + "probability": 0.9945 + }, + { + "start": 2399.26, + "end": 2399.88, + "probability": 0.5731 + }, + { + "start": 2400.34, + "end": 2403.64, + "probability": 0.9873 + }, + { + "start": 2404.18, + "end": 2407.04, + "probability": 0.95 + }, + { + "start": 2407.04, + "end": 2408.98, + "probability": 0.6776 + }, + { + "start": 2409.66, + "end": 2411.56, + "probability": 0.5921 + }, + { + "start": 2411.82, + "end": 2412.82, + "probability": 0.005 + }, + { + "start": 2415.69, + "end": 2415.76, + "probability": 0.2404 + }, + { + "start": 2415.76, + "end": 2416.89, + "probability": 0.7896 + }, + { + "start": 2417.6, + "end": 2420.78, + "probability": 0.9743 + }, + { + "start": 2421.06, + "end": 2421.42, + "probability": 0.7877 + }, + { + "start": 2421.5, + "end": 2422.2, + "probability": 0.7394 + }, + { + "start": 2422.3, + "end": 2423.04, + "probability": 0.9287 + }, + { + "start": 2423.2, + "end": 2424.1, + "probability": 0.7688 + }, + { + "start": 2424.34, + "end": 2424.96, + "probability": 0.8675 + }, + { + "start": 2425.28, + "end": 2426.2, + "probability": 0.948 + }, + { + "start": 2426.28, + "end": 2427.6, + "probability": 0.9578 + }, + { + "start": 2427.94, + "end": 2429.36, + "probability": 0.9854 + }, + { + "start": 2429.74, + "end": 2432.92, + "probability": 0.9598 + }, + { + "start": 2432.98, + "end": 2434.82, + "probability": 0.5563 + }, + { + "start": 2435.28, + "end": 2436.76, + "probability": 0.8345 + }, + { + "start": 2436.92, + "end": 2437.0, + "probability": 0.7701 + }, + { + "start": 2437.06, + "end": 2438.78, + "probability": 0.9511 + }, + { + "start": 2438.84, + "end": 2440.07, + "probability": 0.7085 + }, + { + "start": 2440.12, + "end": 2440.82, + "probability": 0.8828 + }, + { + "start": 2441.5, + "end": 2442.34, + "probability": 0.9925 + }, + { + "start": 2443.5, + "end": 2443.76, + "probability": 0.9431 + }, + { + "start": 2444.32, + "end": 2447.3, + "probability": 0.9437 + }, + { + "start": 2448.14, + "end": 2449.11, + "probability": 0.6078 + }, + { + "start": 2449.28, + "end": 2451.8, + "probability": 0.9387 + }, + { + "start": 2452.32, + "end": 2453.9, + "probability": 0.9722 + }, + { + "start": 2454.58, + "end": 2456.26, + "probability": 0.9168 + }, + { + "start": 2456.96, + "end": 2459.98, + "probability": 0.9784 + }, + { + "start": 2460.54, + "end": 2462.88, + "probability": 0.9985 + }, + { + "start": 2462.88, + "end": 2466.78, + "probability": 0.9476 + }, + { + "start": 2466.96, + "end": 2469.1, + "probability": 0.9615 + }, + { + "start": 2469.72, + "end": 2470.6, + "probability": 0.9072 + }, + { + "start": 2471.2, + "end": 2475.26, + "probability": 0.9916 + }, + { + "start": 2475.26, + "end": 2478.2, + "probability": 0.9976 + }, + { + "start": 2479.34, + "end": 2481.9, + "probability": 0.9541 + }, + { + "start": 2482.14, + "end": 2486.64, + "probability": 0.9859 + }, + { + "start": 2487.1, + "end": 2492.9, + "probability": 0.9869 + }, + { + "start": 2493.54, + "end": 2497.52, + "probability": 0.9374 + }, + { + "start": 2497.76, + "end": 2498.88, + "probability": 0.98 + }, + { + "start": 2499.06, + "end": 2499.78, + "probability": 0.9508 + }, + { + "start": 2500.04, + "end": 2502.94, + "probability": 0.9878 + }, + { + "start": 2503.1, + "end": 2504.76, + "probability": 0.9802 + }, + { + "start": 2504.86, + "end": 2505.04, + "probability": 0.3968 + }, + { + "start": 2505.04, + "end": 2505.86, + "probability": 0.9594 + }, + { + "start": 2506.32, + "end": 2508.9, + "probability": 0.9904 + }, + { + "start": 2508.9, + "end": 2512.46, + "probability": 0.9779 + }, + { + "start": 2514.26, + "end": 2515.0, + "probability": 0.8134 + }, + { + "start": 2515.42, + "end": 2518.46, + "probability": 0.9312 + }, + { + "start": 2518.8, + "end": 2519.02, + "probability": 0.8997 + }, + { + "start": 2519.64, + "end": 2520.6, + "probability": 0.6471 + }, + { + "start": 2521.7, + "end": 2525.02, + "probability": 0.9808 + }, + { + "start": 2525.02, + "end": 2528.82, + "probability": 0.9994 + }, + { + "start": 2528.98, + "end": 2529.96, + "probability": 0.9566 + }, + { + "start": 2542.27, + "end": 2546.54, + "probability": 0.6728 + }, + { + "start": 2546.56, + "end": 2548.08, + "probability": 0.6373 + }, + { + "start": 2548.68, + "end": 2553.32, + "probability": 0.987 + }, + { + "start": 2553.32, + "end": 2559.32, + "probability": 0.9934 + }, + { + "start": 2560.02, + "end": 2561.28, + "probability": 0.6123 + }, + { + "start": 2561.38, + "end": 2561.9, + "probability": 0.7447 + }, + { + "start": 2562.06, + "end": 2567.62, + "probability": 0.9812 + }, + { + "start": 2568.24, + "end": 2568.74, + "probability": 0.6681 + }, + { + "start": 2568.8, + "end": 2570.24, + "probability": 0.6882 + }, + { + "start": 2570.62, + "end": 2575.44, + "probability": 0.9922 + }, + { + "start": 2576.04, + "end": 2579.08, + "probability": 0.9918 + }, + { + "start": 2580.16, + "end": 2584.66, + "probability": 0.9858 + }, + { + "start": 2584.78, + "end": 2588.68, + "probability": 0.8378 + }, + { + "start": 2588.68, + "end": 2594.7, + "probability": 0.9917 + }, + { + "start": 2594.7, + "end": 2599.2, + "probability": 0.9954 + }, + { + "start": 2599.88, + "end": 2605.12, + "probability": 0.9707 + }, + { + "start": 2605.12, + "end": 2610.18, + "probability": 0.9812 + }, + { + "start": 2610.96, + "end": 2616.62, + "probability": 0.9763 + }, + { + "start": 2617.28, + "end": 2618.76, + "probability": 0.7274 + }, + { + "start": 2619.76, + "end": 2623.84, + "probability": 0.8533 + }, + { + "start": 2624.02, + "end": 2626.54, + "probability": 0.9319 + }, + { + "start": 2627.58, + "end": 2629.0, + "probability": 0.8415 + }, + { + "start": 2629.02, + "end": 2631.09, + "probability": 0.9976 + }, + { + "start": 2631.6, + "end": 2632.98, + "probability": 0.9437 + }, + { + "start": 2633.82, + "end": 2634.24, + "probability": 0.4974 + }, + { + "start": 2634.46, + "end": 2637.2, + "probability": 0.9907 + }, + { + "start": 2637.2, + "end": 2643.88, + "probability": 0.9431 + }, + { + "start": 2644.32, + "end": 2644.34, + "probability": 0.2489 + }, + { + "start": 2644.34, + "end": 2644.34, + "probability": 0.2277 + }, + { + "start": 2644.34, + "end": 2644.34, + "probability": 0.4861 + }, + { + "start": 2644.34, + "end": 2646.08, + "probability": 0.8347 + }, + { + "start": 2646.35, + "end": 2651.24, + "probability": 0.4648 + }, + { + "start": 2652.27, + "end": 2657.82, + "probability": 0.977 + }, + { + "start": 2657.94, + "end": 2659.3, + "probability": 0.9041 + }, + { + "start": 2659.72, + "end": 2663.24, + "probability": 0.9938 + }, + { + "start": 2663.36, + "end": 2664.6, + "probability": 0.9936 + }, + { + "start": 2664.76, + "end": 2667.56, + "probability": 0.9291 + }, + { + "start": 2667.56, + "end": 2671.34, + "probability": 0.9427 + }, + { + "start": 2671.46, + "end": 2672.22, + "probability": 0.7717 + }, + { + "start": 2672.7, + "end": 2673.5, + "probability": 0.4098 + }, + { + "start": 2673.5, + "end": 2673.68, + "probability": 0.2335 + }, + { + "start": 2673.76, + "end": 2675.06, + "probability": 0.8956 + }, + { + "start": 2675.14, + "end": 2678.96, + "probability": 0.9868 + }, + { + "start": 2678.96, + "end": 2682.9, + "probability": 0.9963 + }, + { + "start": 2682.9, + "end": 2683.56, + "probability": 0.6063 + }, + { + "start": 2685.36, + "end": 2689.16, + "probability": 0.9643 + }, + { + "start": 2689.16, + "end": 2692.78, + "probability": 0.8777 + }, + { + "start": 2692.8, + "end": 2698.18, + "probability": 0.9688 + }, + { + "start": 2702.14, + "end": 2702.76, + "probability": 0.1286 + }, + { + "start": 2703.22, + "end": 2704.3, + "probability": 0.592 + }, + { + "start": 2704.44, + "end": 2707.92, + "probability": 0.5448 + }, + { + "start": 2708.06, + "end": 2713.08, + "probability": 0.5541 + }, + { + "start": 2713.18, + "end": 2715.66, + "probability": 0.2848 + }, + { + "start": 2715.68, + "end": 2718.36, + "probability": 0.0656 + }, + { + "start": 2720.42, + "end": 2726.04, + "probability": 0.0421 + }, + { + "start": 2726.35, + "end": 2728.02, + "probability": 0.245 + }, + { + "start": 2729.74, + "end": 2730.68, + "probability": 0.283 + }, + { + "start": 2738.86, + "end": 2739.28, + "probability": 0.0156 + }, + { + "start": 2739.28, + "end": 2744.96, + "probability": 0.0292 + }, + { + "start": 2744.96, + "end": 2745.18, + "probability": 0.0805 + }, + { + "start": 2745.18, + "end": 2746.02, + "probability": 0.0606 + }, + { + "start": 2749.3, + "end": 2751.22, + "probability": 0.3263 + }, + { + "start": 2754.1, + "end": 2754.16, + "probability": 0.0046 + }, + { + "start": 2756.66, + "end": 2757.36, + "probability": 0.0053 + }, + { + "start": 2757.36, + "end": 2757.92, + "probability": 0.0877 + }, + { + "start": 2758.08, + "end": 2761.04, + "probability": 0.3637 + }, + { + "start": 2761.04, + "end": 2761.08, + "probability": 0.0465 + }, + { + "start": 2761.66, + "end": 2762.4, + "probability": 0.1976 + }, + { + "start": 2762.9, + "end": 2763.18, + "probability": 0.1769 + }, + { + "start": 2765.18, + "end": 2769.94, + "probability": 0.0465 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2778.0, + "end": 2778.0, + "probability": 0.0 + }, + { + "start": 2782.64, + "end": 2783.88, + "probability": 0.5953 + }, + { + "start": 2784.0, + "end": 2785.02, + "probability": 0.699 + }, + { + "start": 2785.54, + "end": 2787.32, + "probability": 0.8822 + }, + { + "start": 2787.68, + "end": 2790.56, + "probability": 0.9919 + }, + { + "start": 2790.92, + "end": 2793.56, + "probability": 0.9951 + }, + { + "start": 2793.84, + "end": 2800.18, + "probability": 0.9933 + }, + { + "start": 2800.46, + "end": 2801.7, + "probability": 0.9077 + }, + { + "start": 2802.06, + "end": 2802.7, + "probability": 0.6955 + }, + { + "start": 2803.96, + "end": 2804.76, + "probability": 0.6511 + }, + { + "start": 2805.22, + "end": 2811.28, + "probability": 0.7639 + }, + { + "start": 2811.42, + "end": 2814.5, + "probability": 0.964 + }, + { + "start": 2817.84, + "end": 2819.4, + "probability": 0.8252 + }, + { + "start": 2819.4, + "end": 2821.64, + "probability": 0.7557 + }, + { + "start": 2821.78, + "end": 2821.9, + "probability": 0.5209 + }, + { + "start": 2821.9, + "end": 2823.5, + "probability": 0.5559 + }, + { + "start": 2826.34, + "end": 2829.34, + "probability": 0.5765 + }, + { + "start": 2829.38, + "end": 2835.56, + "probability": 0.1332 + }, + { + "start": 2840.36, + "end": 2841.58, + "probability": 0.0046 + }, + { + "start": 2841.68, + "end": 2841.86, + "probability": 0.7067 + }, + { + "start": 2842.06, + "end": 2842.06, + "probability": 0.5446 + }, + { + "start": 2842.06, + "end": 2842.06, + "probability": 0.4592 + }, + { + "start": 2842.06, + "end": 2846.8, + "probability": 0.6865 + }, + { + "start": 2847.14, + "end": 2849.26, + "probability": 0.8088 + }, + { + "start": 2852.82, + "end": 2854.72, + "probability": 0.9946 + }, + { + "start": 2854.88, + "end": 2856.82, + "probability": 0.7599 + }, + { + "start": 2856.92, + "end": 2858.62, + "probability": 0.5431 + }, + { + "start": 2858.82, + "end": 2861.6, + "probability": 0.9201 + }, + { + "start": 2861.6, + "end": 2864.86, + "probability": 0.9702 + }, + { + "start": 2865.32, + "end": 2866.22, + "probability": 0.7471 + }, + { + "start": 2866.28, + "end": 2868.88, + "probability": 0.7804 + }, + { + "start": 2869.06, + "end": 2871.26, + "probability": 0.8346 + }, + { + "start": 2871.72, + "end": 2872.92, + "probability": 0.904 + }, + { + "start": 2873.1, + "end": 2874.24, + "probability": 0.5298 + }, + { + "start": 2874.76, + "end": 2876.62, + "probability": 0.9956 + }, + { + "start": 2876.78, + "end": 2880.82, + "probability": 0.9982 + }, + { + "start": 2881.3, + "end": 2883.18, + "probability": 0.9382 + }, + { + "start": 2896.52, + "end": 2897.67, + "probability": 0.7447 + }, + { + "start": 2898.3, + "end": 2900.64, + "probability": 0.529 + }, + { + "start": 2901.18, + "end": 2907.04, + "probability": 0.9889 + }, + { + "start": 2908.2, + "end": 2911.0, + "probability": 0.9863 + }, + { + "start": 2912.04, + "end": 2912.6, + "probability": 0.5084 + }, + { + "start": 2913.44, + "end": 2916.04, + "probability": 0.9654 + }, + { + "start": 2916.1, + "end": 2921.14, + "probability": 0.9866 + }, + { + "start": 2922.02, + "end": 2925.97, + "probability": 0.9936 + }, + { + "start": 2926.36, + "end": 2928.18, + "probability": 0.9814 + }, + { + "start": 2929.08, + "end": 2935.44, + "probability": 0.9958 + }, + { + "start": 2936.74, + "end": 2937.78, + "probability": 0.7699 + }, + { + "start": 2938.36, + "end": 2942.82, + "probability": 0.9941 + }, + { + "start": 2942.82, + "end": 2946.44, + "probability": 0.9979 + }, + { + "start": 2947.78, + "end": 2952.04, + "probability": 0.9894 + }, + { + "start": 2952.22, + "end": 2953.38, + "probability": 0.7544 + }, + { + "start": 2953.58, + "end": 2956.28, + "probability": 0.3682 + }, + { + "start": 2956.98, + "end": 2958.02, + "probability": 0.8297 + }, + { + "start": 2958.7, + "end": 2961.53, + "probability": 0.8747 + }, + { + "start": 2963.32, + "end": 2963.84, + "probability": 0.7446 + }, + { + "start": 2967.18, + "end": 2969.48, + "probability": 0.89 + }, + { + "start": 2970.8, + "end": 2971.14, + "probability": 0.41 + }, + { + "start": 2971.22, + "end": 2971.68, + "probability": 0.9323 + }, + { + "start": 2971.82, + "end": 2974.02, + "probability": 0.9888 + }, + { + "start": 2974.02, + "end": 2977.56, + "probability": 0.9986 + }, + { + "start": 2978.3, + "end": 2980.15, + "probability": 0.9993 + }, + { + "start": 2981.18, + "end": 2981.92, + "probability": 0.8972 + }, + { + "start": 2982.22, + "end": 2983.68, + "probability": 0.9591 + }, + { + "start": 2984.48, + "end": 2985.14, + "probability": 0.6007 + }, + { + "start": 2985.56, + "end": 2986.48, + "probability": 0.8594 + }, + { + "start": 2986.92, + "end": 2990.7, + "probability": 0.6519 + }, + { + "start": 2990.7, + "end": 2995.88, + "probability": 0.9837 + }, + { + "start": 2996.52, + "end": 2997.43, + "probability": 0.9244 + }, + { + "start": 2998.2, + "end": 3002.08, + "probability": 0.9805 + }, + { + "start": 3002.08, + "end": 3007.14, + "probability": 0.9996 + }, + { + "start": 3007.6, + "end": 3010.82, + "probability": 0.8037 + }, + { + "start": 3011.92, + "end": 3015.7, + "probability": 0.997 + }, + { + "start": 3015.7, + "end": 3021.2, + "probability": 0.9826 + }, + { + "start": 3021.22, + "end": 3026.68, + "probability": 0.9959 + }, + { + "start": 3026.74, + "end": 3027.46, + "probability": 0.6451 + }, + { + "start": 3027.66, + "end": 3032.08, + "probability": 0.9402 + }, + { + "start": 3032.08, + "end": 3037.51, + "probability": 0.9984 + }, + { + "start": 3038.12, + "end": 3038.92, + "probability": 0.4242 + }, + { + "start": 3039.28, + "end": 3043.24, + "probability": 0.9873 + }, + { + "start": 3043.67, + "end": 3048.26, + "probability": 0.9969 + }, + { + "start": 3049.12, + "end": 3049.76, + "probability": 0.657 + }, + { + "start": 3049.96, + "end": 3053.44, + "probability": 0.8891 + }, + { + "start": 3053.94, + "end": 3061.36, + "probability": 0.984 + }, + { + "start": 3062.46, + "end": 3063.72, + "probability": 0.7371 + }, + { + "start": 3064.36, + "end": 3069.28, + "probability": 0.9982 + }, + { + "start": 3069.28, + "end": 3075.62, + "probability": 0.9966 + }, + { + "start": 3076.46, + "end": 3081.84, + "probability": 0.9954 + }, + { + "start": 3082.52, + "end": 3083.26, + "probability": 0.7583 + }, + { + "start": 3083.76, + "end": 3084.14, + "probability": 0.6477 + }, + { + "start": 3084.26, + "end": 3085.12, + "probability": 0.7288 + }, + { + "start": 3085.26, + "end": 3085.7, + "probability": 0.8202 + }, + { + "start": 3085.76, + "end": 3087.32, + "probability": 0.8465 + }, + { + "start": 3087.6, + "end": 3089.26, + "probability": 0.9948 + }, + { + "start": 3089.88, + "end": 3093.38, + "probability": 0.9944 + }, + { + "start": 3093.88, + "end": 3095.74, + "probability": 0.8878 + }, + { + "start": 3095.9, + "end": 3097.14, + "probability": 0.9815 + }, + { + "start": 3098.16, + "end": 3099.54, + "probability": 0.9866 + }, + { + "start": 3100.04, + "end": 3101.36, + "probability": 0.9969 + }, + { + "start": 3101.82, + "end": 3104.42, + "probability": 0.9944 + }, + { + "start": 3104.9, + "end": 3108.2, + "probability": 0.7655 + }, + { + "start": 3108.62, + "end": 3113.02, + "probability": 0.9849 + }, + { + "start": 3113.62, + "end": 3118.52, + "probability": 0.9939 + }, + { + "start": 3118.66, + "end": 3123.38, + "probability": 0.9951 + }, + { + "start": 3124.1, + "end": 3124.8, + "probability": 0.6845 + }, + { + "start": 3125.02, + "end": 3126.4, + "probability": 0.9251 + }, + { + "start": 3126.74, + "end": 3131.62, + "probability": 0.8719 + }, + { + "start": 3131.62, + "end": 3136.22, + "probability": 0.9741 + }, + { + "start": 3143.06, + "end": 3146.52, + "probability": 0.7795 + }, + { + "start": 3146.52, + "end": 3150.26, + "probability": 0.9993 + }, + { + "start": 3150.98, + "end": 3153.42, + "probability": 0.9988 + }, + { + "start": 3153.8, + "end": 3156.74, + "probability": 0.9853 + }, + { + "start": 3157.5, + "end": 3157.9, + "probability": 0.5634 + }, + { + "start": 3158.4, + "end": 3159.74, + "probability": 0.7505 + }, + { + "start": 3160.08, + "end": 3163.76, + "probability": 0.9834 + }, + { + "start": 3163.98, + "end": 3169.46, + "probability": 0.6885 + }, + { + "start": 3170.18, + "end": 3176.0, + "probability": 0.9949 + }, + { + "start": 3176.52, + "end": 3176.96, + "probability": 0.6272 + }, + { + "start": 3177.97, + "end": 3178.48, + "probability": 0.4728 + }, + { + "start": 3179.82, + "end": 3181.94, + "probability": 0.8592 + }, + { + "start": 3182.04, + "end": 3188.42, + "probability": 0.9682 + }, + { + "start": 3188.54, + "end": 3188.92, + "probability": 0.579 + }, + { + "start": 3189.66, + "end": 3194.0, + "probability": 0.9712 + }, + { + "start": 3194.58, + "end": 3197.56, + "probability": 0.9957 + }, + { + "start": 3198.04, + "end": 3198.38, + "probability": 0.4637 + }, + { + "start": 3198.48, + "end": 3199.96, + "probability": 0.5722 + }, + { + "start": 3200.8, + "end": 3203.02, + "probability": 0.8383 + }, + { + "start": 3203.1, + "end": 3204.72, + "probability": 0.9888 + }, + { + "start": 3205.04, + "end": 3209.72, + "probability": 0.9714 + }, + { + "start": 3210.14, + "end": 3211.4, + "probability": 0.9755 + }, + { + "start": 3212.32, + "end": 3217.86, + "probability": 0.9718 + }, + { + "start": 3217.86, + "end": 3223.5, + "probability": 0.9602 + }, + { + "start": 3223.5, + "end": 3229.3, + "probability": 0.9967 + }, + { + "start": 3229.88, + "end": 3230.18, + "probability": 0.6524 + }, + { + "start": 3230.46, + "end": 3232.55, + "probability": 0.7095 + }, + { + "start": 3232.66, + "end": 3239.86, + "probability": 0.9976 + }, + { + "start": 3239.96, + "end": 3240.96, + "probability": 0.879 + }, + { + "start": 3251.7, + "end": 3255.36, + "probability": 0.6567 + }, + { + "start": 3255.44, + "end": 3256.62, + "probability": 0.5771 + }, + { + "start": 3256.86, + "end": 3261.26, + "probability": 0.9911 + }, + { + "start": 3262.08, + "end": 3272.48, + "probability": 0.9845 + }, + { + "start": 3273.0, + "end": 3274.78, + "probability": 0.9855 + }, + { + "start": 3275.52, + "end": 3277.16, + "probability": 0.5616 + }, + { + "start": 3277.3, + "end": 3286.9, + "probability": 0.9482 + }, + { + "start": 3286.9, + "end": 3293.52, + "probability": 0.9912 + }, + { + "start": 3294.48, + "end": 3295.72, + "probability": 0.9309 + }, + { + "start": 3295.84, + "end": 3296.28, + "probability": 0.9004 + }, + { + "start": 3296.86, + "end": 3297.9, + "probability": 0.8022 + }, + { + "start": 3298.72, + "end": 3300.78, + "probability": 0.4371 + }, + { + "start": 3301.22, + "end": 3305.66, + "probability": 0.9835 + }, + { + "start": 3306.4, + "end": 3310.4, + "probability": 0.9933 + }, + { + "start": 3311.46, + "end": 3315.5, + "probability": 0.9907 + }, + { + "start": 3315.5, + "end": 3318.56, + "probability": 0.9937 + }, + { + "start": 3319.3, + "end": 3326.72, + "probability": 0.9878 + }, + { + "start": 3327.14, + "end": 3330.34, + "probability": 0.8721 + }, + { + "start": 3330.72, + "end": 3333.28, + "probability": 0.9863 + }, + { + "start": 3333.44, + "end": 3335.5, + "probability": 0.9286 + }, + { + "start": 3335.98, + "end": 3338.94, + "probability": 0.9966 + }, + { + "start": 3338.94, + "end": 3339.64, + "probability": 0.7235 + }, + { + "start": 3339.76, + "end": 3341.94, + "probability": 0.8787 + }, + { + "start": 3342.02, + "end": 3342.72, + "probability": 0.7057 + }, + { + "start": 3343.26, + "end": 3348.32, + "probability": 0.9961 + }, + { + "start": 3348.38, + "end": 3349.64, + "probability": 0.9433 + }, + { + "start": 3358.58, + "end": 3359.82, + "probability": 0.5842 + }, + { + "start": 3361.7, + "end": 3364.82, + "probability": 0.9484 + }, + { + "start": 3365.7, + "end": 3373.2, + "probability": 0.9884 + }, + { + "start": 3373.9, + "end": 3376.6, + "probability": 0.8005 + }, + { + "start": 3376.98, + "end": 3378.76, + "probability": 0.9438 + }, + { + "start": 3379.56, + "end": 3384.82, + "probability": 0.9871 + }, + { + "start": 3385.54, + "end": 3389.94, + "probability": 0.9136 + }, + { + "start": 3392.44, + "end": 3397.9, + "probability": 0.9659 + }, + { + "start": 3397.9, + "end": 3402.34, + "probability": 0.992 + }, + { + "start": 3404.38, + "end": 3408.58, + "probability": 0.9619 + }, + { + "start": 3408.94, + "end": 3410.26, + "probability": 0.5178 + }, + { + "start": 3411.18, + "end": 3412.26, + "probability": 0.8586 + }, + { + "start": 3415.4, + "end": 3420.62, + "probability": 0.9902 + }, + { + "start": 3423.74, + "end": 3426.48, + "probability": 0.9953 + }, + { + "start": 3427.06, + "end": 3432.06, + "probability": 0.7657 + }, + { + "start": 3434.6, + "end": 3435.0, + "probability": 0.7267 + }, + { + "start": 3436.38, + "end": 3438.92, + "probability": 0.9253 + }, + { + "start": 3442.8, + "end": 3445.74, + "probability": 0.7766 + }, + { + "start": 3445.96, + "end": 3446.56, + "probability": 0.7341 + }, + { + "start": 3447.06, + "end": 3448.08, + "probability": 0.7121 + }, + { + "start": 3450.22, + "end": 3452.74, + "probability": 0.9946 + }, + { + "start": 3453.44, + "end": 3457.74, + "probability": 0.7479 + }, + { + "start": 3458.26, + "end": 3458.99, + "probability": 0.9668 + }, + { + "start": 3459.88, + "end": 3463.0, + "probability": 0.637 + }, + { + "start": 3463.64, + "end": 3465.42, + "probability": 0.9354 + }, + { + "start": 3466.48, + "end": 3469.33, + "probability": 0.642 + }, + { + "start": 3471.06, + "end": 3473.3, + "probability": 0.9845 + }, + { + "start": 3474.57, + "end": 3477.62, + "probability": 0.4933 + }, + { + "start": 3478.18, + "end": 3480.07, + "probability": 0.6917 + }, + { + "start": 3480.3, + "end": 3482.92, + "probability": 0.5957 + }, + { + "start": 3483.5, + "end": 3489.42, + "probability": 0.9597 + }, + { + "start": 3489.42, + "end": 3490.58, + "probability": 0.7524 + }, + { + "start": 3490.66, + "end": 3496.64, + "probability": 0.6181 + }, + { + "start": 3497.02, + "end": 3503.0, + "probability": 0.2154 + }, + { + "start": 3505.3, + "end": 3507.68, + "probability": 0.6825 + }, + { + "start": 3509.66, + "end": 3512.0, + "probability": 0.4931 + }, + { + "start": 3512.0, + "end": 3516.6, + "probability": 0.6302 + }, + { + "start": 3516.98, + "end": 3519.11, + "probability": 0.7532 + }, + { + "start": 3521.8, + "end": 3524.82, + "probability": 0.7011 + }, + { + "start": 3525.54, + "end": 3529.66, + "probability": 0.874 + }, + { + "start": 3529.78, + "end": 3533.34, + "probability": 0.9734 + }, + { + "start": 3533.74, + "end": 3536.73, + "probability": 0.8182 + }, + { + "start": 3537.82, + "end": 3540.56, + "probability": 0.5326 + }, + { + "start": 3542.22, + "end": 3545.28, + "probability": 0.2766 + }, + { + "start": 3545.84, + "end": 3547.06, + "probability": 0.6213 + }, + { + "start": 3547.74, + "end": 3549.18, + "probability": 0.9174 + }, + { + "start": 3549.34, + "end": 3552.32, + "probability": 0.9875 + }, + { + "start": 3552.46, + "end": 3554.2, + "probability": 0.6387 + }, + { + "start": 3554.4, + "end": 3556.4, + "probability": 0.8389 + }, + { + "start": 3556.52, + "end": 3559.52, + "probability": 0.9858 + }, + { + "start": 3559.88, + "end": 3561.12, + "probability": 0.8414 + }, + { + "start": 3561.18, + "end": 3562.4, + "probability": 0.8986 + }, + { + "start": 3568.46, + "end": 3569.56, + "probability": 0.6702 + }, + { + "start": 3569.74, + "end": 3570.88, + "probability": 0.7833 + }, + { + "start": 3571.2, + "end": 3579.72, + "probability": 0.6771 + }, + { + "start": 3581.1, + "end": 3585.16, + "probability": 0.8718 + }, + { + "start": 3585.64, + "end": 3590.27, + "probability": 0.9831 + }, + { + "start": 3591.58, + "end": 3593.02, + "probability": 0.4337 + }, + { + "start": 3597.04, + "end": 3600.42, + "probability": 0.7226 + }, + { + "start": 3600.84, + "end": 3603.26, + "probability": 0.9922 + }, + { + "start": 3603.78, + "end": 3607.4, + "probability": 0.9882 + }, + { + "start": 3607.4, + "end": 3613.72, + "probability": 0.96 + }, + { + "start": 3616.78, + "end": 3620.82, + "probability": 0.8074 + }, + { + "start": 3621.32, + "end": 3624.9, + "probability": 0.9907 + }, + { + "start": 3625.2, + "end": 3626.3, + "probability": 0.9512 + }, + { + "start": 3629.98, + "end": 3634.82, + "probability": 0.8919 + }, + { + "start": 3635.86, + "end": 3638.36, + "probability": 0.9946 + }, + { + "start": 3638.54, + "end": 3642.22, + "probability": 0.9749 + }, + { + "start": 3642.42, + "end": 3646.52, + "probability": 0.8596 + }, + { + "start": 3646.96, + "end": 3648.38, + "probability": 0.8821 + }, + { + "start": 3648.84, + "end": 3653.24, + "probability": 0.2425 + }, + { + "start": 3653.36, + "end": 3654.36, + "probability": 0.4903 + }, + { + "start": 3654.86, + "end": 3657.74, + "probability": 0.9958 + }, + { + "start": 3657.74, + "end": 3662.06, + "probability": 0.9976 + }, + { + "start": 3662.14, + "end": 3663.22, + "probability": 0.5806 + }, + { + "start": 3663.66, + "end": 3664.24, + "probability": 0.0747 + }, + { + "start": 3664.5, + "end": 3666.92, + "probability": 0.9561 + }, + { + "start": 3666.92, + "end": 3670.06, + "probability": 0.9995 + }, + { + "start": 3670.12, + "end": 3673.25, + "probability": 0.9051 + }, + { + "start": 3674.26, + "end": 3678.18, + "probability": 0.0445 + }, + { + "start": 3678.36, + "end": 3681.18, + "probability": 0.0088 + }, + { + "start": 3683.0, + "end": 3683.76, + "probability": 0.0189 + }, + { + "start": 3683.98, + "end": 3687.34, + "probability": 0.7884 + }, + { + "start": 3687.42, + "end": 3688.62, + "probability": 0.7146 + }, + { + "start": 3688.74, + "end": 3689.94, + "probability": 0.9362 + }, + { + "start": 3690.38, + "end": 3692.42, + "probability": 0.9912 + }, + { + "start": 3693.04, + "end": 3694.5, + "probability": 0.9912 + }, + { + "start": 3695.02, + "end": 3697.2, + "probability": 0.9615 + }, + { + "start": 3697.78, + "end": 3701.0, + "probability": 0.9192 + }, + { + "start": 3701.22, + "end": 3704.64, + "probability": 0.9871 + }, + { + "start": 3704.86, + "end": 3705.34, + "probability": 0.3162 + }, + { + "start": 3705.54, + "end": 3707.48, + "probability": 0.9933 + }, + { + "start": 3707.7, + "end": 3711.94, + "probability": 0.9873 + }, + { + "start": 3712.04, + "end": 3713.56, + "probability": 0.9516 + }, + { + "start": 3714.0, + "end": 3719.54, + "probability": 0.9914 + }, + { + "start": 3719.96, + "end": 3720.5, + "probability": 0.4859 + }, + { + "start": 3720.6, + "end": 3721.14, + "probability": 0.595 + }, + { + "start": 3721.54, + "end": 3724.62, + "probability": 0.8794 + }, + { + "start": 3724.72, + "end": 3724.98, + "probability": 0.834 + }, + { + "start": 3725.06, + "end": 3725.98, + "probability": 0.9589 + }, + { + "start": 3726.28, + "end": 3728.38, + "probability": 0.9168 + }, + { + "start": 3728.44, + "end": 3731.86, + "probability": 0.9845 + }, + { + "start": 3732.28, + "end": 3733.14, + "probability": 0.3815 + }, + { + "start": 3734.3, + "end": 3738.04, + "probability": 0.8652 + }, + { + "start": 3738.72, + "end": 3741.46, + "probability": 0.8391 + }, + { + "start": 3741.54, + "end": 3742.69, + "probability": 0.959 + }, + { + "start": 3743.62, + "end": 3745.22, + "probability": 0.9988 + }, + { + "start": 3745.58, + "end": 3746.98, + "probability": 0.991 + }, + { + "start": 3747.36, + "end": 3749.66, + "probability": 0.9766 + }, + { + "start": 3749.94, + "end": 3751.32, + "probability": 0.907 + }, + { + "start": 3751.62, + "end": 3753.84, + "probability": 0.6867 + }, + { + "start": 3754.42, + "end": 3757.68, + "probability": 0.9985 + }, + { + "start": 3758.14, + "end": 3763.72, + "probability": 0.9884 + }, + { + "start": 3764.22, + "end": 3770.52, + "probability": 0.9899 + }, + { + "start": 3770.94, + "end": 3771.68, + "probability": 0.7426 + }, + { + "start": 3772.26, + "end": 3773.46, + "probability": 0.5437 + }, + { + "start": 3773.46, + "end": 3773.46, + "probability": 0.4029 + }, + { + "start": 3773.46, + "end": 3776.44, + "probability": 0.4993 + }, + { + "start": 3777.83, + "end": 3780.14, + "probability": 0.7462 + }, + { + "start": 3780.34, + "end": 3781.14, + "probability": 0.8557 + }, + { + "start": 3781.48, + "end": 3786.12, + "probability": 0.6749 + }, + { + "start": 3786.12, + "end": 3791.88, + "probability": 0.2135 + }, + { + "start": 3791.88, + "end": 3796.76, + "probability": 0.7504 + }, + { + "start": 3796.82, + "end": 3798.48, + "probability": 0.9633 + }, + { + "start": 3798.8, + "end": 3801.84, + "probability": 0.8605 + }, + { + "start": 3802.34, + "end": 3804.42, + "probability": 0.9492 + }, + { + "start": 3804.42, + "end": 3806.78, + "probability": 0.6463 + }, + { + "start": 3807.34, + "end": 3808.26, + "probability": 0.0314 + }, + { + "start": 3809.54, + "end": 3811.04, + "probability": 0.0553 + }, + { + "start": 3811.04, + "end": 3814.84, + "probability": 0.9889 + }, + { + "start": 3814.86, + "end": 3817.3, + "probability": 0.1859 + }, + { + "start": 3817.3, + "end": 3818.14, + "probability": 0.2114 + }, + { + "start": 3818.38, + "end": 3819.82, + "probability": 0.3041 + }, + { + "start": 3819.92, + "end": 3821.23, + "probability": 0.5184 + }, + { + "start": 3821.64, + "end": 3823.12, + "probability": 0.527 + }, + { + "start": 3823.24, + "end": 3823.6, + "probability": 0.429 + }, + { + "start": 3823.68, + "end": 3826.68, + "probability": 0.5923 + }, + { + "start": 3826.76, + "end": 3830.46, + "probability": 0.8141 + }, + { + "start": 3830.96, + "end": 3834.04, + "probability": 0.9931 + }, + { + "start": 3834.04, + "end": 3837.04, + "probability": 0.9704 + }, + { + "start": 3837.3, + "end": 3837.3, + "probability": 0.3006 + }, + { + "start": 3837.3, + "end": 3837.3, + "probability": 0.4296 + }, + { + "start": 3837.3, + "end": 3837.74, + "probability": 0.271 + }, + { + "start": 3838.1, + "end": 3839.16, + "probability": 0.7289 + }, + { + "start": 3839.8, + "end": 3847.92, + "probability": 0.9912 + }, + { + "start": 3847.92, + "end": 3851.5, + "probability": 0.9766 + }, + { + "start": 3851.6, + "end": 3852.98, + "probability": 0.4972 + }, + { + "start": 3853.42, + "end": 3855.42, + "probability": 0.9261 + }, + { + "start": 3855.78, + "end": 3857.42, + "probability": 0.9871 + }, + { + "start": 3857.76, + "end": 3860.2, + "probability": 0.9958 + }, + { + "start": 3860.74, + "end": 3861.88, + "probability": 0.9475 + }, + { + "start": 3862.28, + "end": 3867.18, + "probability": 0.9738 + }, + { + "start": 3867.28, + "end": 3867.74, + "probability": 0.4965 + }, + { + "start": 3869.66, + "end": 3869.88, + "probability": 0.004 + }, + { + "start": 3869.88, + "end": 3870.82, + "probability": 0.245 + }, + { + "start": 3870.82, + "end": 3871.94, + "probability": 0.9081 + }, + { + "start": 3871.94, + "end": 3874.06, + "probability": 0.9756 + }, + { + "start": 3874.48, + "end": 3878.84, + "probability": 0.9241 + }, + { + "start": 3878.84, + "end": 3883.28, + "probability": 0.4395 + }, + { + "start": 3884.38, + "end": 3889.4, + "probability": 0.3739 + }, + { + "start": 3889.52, + "end": 3890.5, + "probability": 0.684 + }, + { + "start": 3890.58, + "end": 3892.48, + "probability": 0.8691 + }, + { + "start": 3892.54, + "end": 3896.86, + "probability": 0.8956 + }, + { + "start": 3897.22, + "end": 3898.48, + "probability": 0.856 + }, + { + "start": 3898.54, + "end": 3900.12, + "probability": 0.6562 + }, + { + "start": 3900.34, + "end": 3902.0, + "probability": 0.8831 + }, + { + "start": 3902.34, + "end": 3904.53, + "probability": 0.8835 + }, + { + "start": 3905.2, + "end": 3905.2, + "probability": 0.0465 + }, + { + "start": 3905.2, + "end": 3906.46, + "probability": 0.6321 + }, + { + "start": 3907.45, + "end": 3907.66, + "probability": 0.4993 + }, + { + "start": 3907.66, + "end": 3908.44, + "probability": 0.8058 + }, + { + "start": 3908.56, + "end": 3908.56, + "probability": 0.0868 + }, + { + "start": 3908.56, + "end": 3909.3, + "probability": 0.6372 + }, + { + "start": 3909.7, + "end": 3911.24, + "probability": 0.6524 + }, + { + "start": 3911.98, + "end": 3912.6, + "probability": 0.7877 + }, + { + "start": 3912.74, + "end": 3913.6, + "probability": 0.4153 + }, + { + "start": 3913.6, + "end": 3913.9, + "probability": 0.0806 + }, + { + "start": 3913.94, + "end": 3914.48, + "probability": 0.7224 + }, + { + "start": 3914.72, + "end": 3916.93, + "probability": 0.8582 + }, + { + "start": 3917.06, + "end": 3918.72, + "probability": 0.7917 + }, + { + "start": 3918.72, + "end": 3919.6, + "probability": 0.2087 + }, + { + "start": 3919.6, + "end": 3919.6, + "probability": 0.1901 + }, + { + "start": 3919.86, + "end": 3921.04, + "probability": 0.6352 + }, + { + "start": 3921.34, + "end": 3925.68, + "probability": 0.9406 + }, + { + "start": 3925.74, + "end": 3928.19, + "probability": 0.8379 + }, + { + "start": 3928.34, + "end": 3931.4, + "probability": 0.8253 + }, + { + "start": 3931.52, + "end": 3933.02, + "probability": 0.9868 + }, + { + "start": 3933.08, + "end": 3936.68, + "probability": 0.1143 + }, + { + "start": 3937.16, + "end": 3937.58, + "probability": 0.4605 + }, + { + "start": 3937.62, + "end": 3938.8, + "probability": 0.2159 + }, + { + "start": 3939.0, + "end": 3940.36, + "probability": 0.5783 + }, + { + "start": 3941.92, + "end": 3942.06, + "probability": 0.0441 + }, + { + "start": 3942.06, + "end": 3942.9, + "probability": 0.1372 + }, + { + "start": 3943.2, + "end": 3943.88, + "probability": 0.8567 + }, + { + "start": 3943.96, + "end": 3944.8, + "probability": 0.5556 + }, + { + "start": 3944.8, + "end": 3945.04, + "probability": 0.5143 + }, + { + "start": 3945.08, + "end": 3950.55, + "probability": 0.8776 + }, + { + "start": 3950.56, + "end": 3954.18, + "probability": 0.3145 + }, + { + "start": 3954.22, + "end": 3955.34, + "probability": 0.9584 + }, + { + "start": 3955.8, + "end": 3955.8, + "probability": 0.1999 + }, + { + "start": 3956.24, + "end": 3959.69, + "probability": 0.6038 + }, + { + "start": 3963.98, + "end": 3968.72, + "probability": 0.9159 + }, + { + "start": 3968.72, + "end": 3973.44, + "probability": 0.9735 + }, + { + "start": 3973.48, + "end": 3981.19, + "probability": 0.9988 + }, + { + "start": 3983.46, + "end": 3984.14, + "probability": 0.0191 + }, + { + "start": 3984.14, + "end": 3984.14, + "probability": 0.0351 + }, + { + "start": 3984.14, + "end": 3985.92, + "probability": 0.4869 + }, + { + "start": 3985.96, + "end": 3986.52, + "probability": 0.4562 + }, + { + "start": 3987.12, + "end": 3987.47, + "probability": 0.0657 + }, + { + "start": 3991.54, + "end": 3993.46, + "probability": 0.3558 + }, + { + "start": 3993.83, + "end": 3998.58, + "probability": 0.6301 + }, + { + "start": 3999.51, + "end": 4001.84, + "probability": 0.4208 + }, + { + "start": 4002.18, + "end": 4003.46, + "probability": 0.5987 + }, + { + "start": 4003.7, + "end": 4005.6, + "probability": 0.9211 + }, + { + "start": 4006.18, + "end": 4008.32, + "probability": 0.9915 + }, + { + "start": 4008.76, + "end": 4011.55, + "probability": 0.9974 + }, + { + "start": 4012.02, + "end": 4017.18, + "probability": 0.9538 + }, + { + "start": 4017.6, + "end": 4019.48, + "probability": 0.867 + }, + { + "start": 4020.26, + "end": 4023.96, + "probability": 0.976 + }, + { + "start": 4024.2, + "end": 4025.56, + "probability": 0.9436 + }, + { + "start": 4025.92, + "end": 4027.1, + "probability": 0.8188 + }, + { + "start": 4027.46, + "end": 4028.76, + "probability": 0.4034 + }, + { + "start": 4028.94, + "end": 4032.68, + "probability": 0.8962 + }, + { + "start": 4032.92, + "end": 4032.96, + "probability": 0.0697 + }, + { + "start": 4032.96, + "end": 4034.57, + "probability": 0.9417 + }, + { + "start": 4035.06, + "end": 4036.94, + "probability": 0.8182 + }, + { + "start": 4036.96, + "end": 4039.96, + "probability": 0.999 + }, + { + "start": 4040.48, + "end": 4043.46, + "probability": 0.9476 + }, + { + "start": 4043.6, + "end": 4045.56, + "probability": 0.741 + }, + { + "start": 4045.8, + "end": 4050.16, + "probability": 0.9968 + }, + { + "start": 4050.6, + "end": 4054.34, + "probability": 0.9917 + }, + { + "start": 4054.8, + "end": 4058.3, + "probability": 0.9977 + }, + { + "start": 4058.3, + "end": 4060.62, + "probability": 0.9779 + }, + { + "start": 4060.76, + "end": 4061.94, + "probability": 0.6692 + }, + { + "start": 4064.67, + "end": 4070.08, + "probability": 0.93 + }, + { + "start": 4070.08, + "end": 4075.0, + "probability": 0.9958 + }, + { + "start": 4075.16, + "end": 4077.54, + "probability": 0.7639 + }, + { + "start": 4077.9, + "end": 4079.88, + "probability": 0.9868 + }, + { + "start": 4080.36, + "end": 4081.3, + "probability": 0.4796 + }, + { + "start": 4081.56, + "end": 4085.72, + "probability": 0.9684 + }, + { + "start": 4085.9, + "end": 4087.76, + "probability": 0.9979 + }, + { + "start": 4087.94, + "end": 4089.34, + "probability": 0.9093 + }, + { + "start": 4089.46, + "end": 4089.7, + "probability": 0.0171 + }, + { + "start": 4089.7, + "end": 4090.46, + "probability": 0.6484 + }, + { + "start": 4090.46, + "end": 4095.22, + "probability": 0.9466 + }, + { + "start": 4095.38, + "end": 4096.12, + "probability": 0.6615 + }, + { + "start": 4096.18, + "end": 4098.82, + "probability": 0.7386 + }, + { + "start": 4098.82, + "end": 4101.78, + "probability": 0.9813 + }, + { + "start": 4101.78, + "end": 4102.24, + "probability": 0.2014 + }, + { + "start": 4102.24, + "end": 4106.44, + "probability": 0.2026 + }, + { + "start": 4110.24, + "end": 4116.11, + "probability": 0.0448 + }, + { + "start": 4118.2, + "end": 4118.2, + "probability": 0.0388 + }, + { + "start": 4118.2, + "end": 4120.58, + "probability": 0.1969 + }, + { + "start": 4121.16, + "end": 4122.64, + "probability": 0.0472 + }, + { + "start": 4122.68, + "end": 4122.92, + "probability": 0.194 + }, + { + "start": 4122.92, + "end": 4125.5, + "probability": 0.7966 + }, + { + "start": 4127.88, + "end": 4129.34, + "probability": 0.0899 + }, + { + "start": 4129.34, + "end": 4130.78, + "probability": 0.0577 + }, + { + "start": 4130.86, + "end": 4131.84, + "probability": 0.2041 + }, + { + "start": 4132.0, + "end": 4133.92, + "probability": 0.0758 + }, + { + "start": 4133.92, + "end": 4133.94, + "probability": 0.171 + }, + { + "start": 4134.1, + "end": 4134.52, + "probability": 0.0417 + }, + { + "start": 4134.52, + "end": 4135.26, + "probability": 0.058 + }, + { + "start": 4135.26, + "end": 4136.73, + "probability": 0.0794 + }, + { + "start": 4137.02, + "end": 4138.14, + "probability": 0.0283 + }, + { + "start": 4139.28, + "end": 4139.72, + "probability": 0.0979 + }, + { + "start": 4140.56, + "end": 4140.84, + "probability": 0.0068 + }, + { + "start": 4142.0, + "end": 4144.38, + "probability": 0.089 + }, + { + "start": 4144.5, + "end": 4145.76, + "probability": 0.362 + }, + { + "start": 4146.0, + "end": 4147.8, + "probability": 0.3571 + }, + { + "start": 4148.1, + "end": 4149.56, + "probability": 0.1296 + }, + { + "start": 4149.64, + "end": 4150.98, + "probability": 0.3616 + }, + { + "start": 4156.36, + "end": 4157.42, + "probability": 0.6462 + }, + { + "start": 4158.12, + "end": 4158.66, + "probability": 0.1793 + }, + { + "start": 4158.66, + "end": 4161.54, + "probability": 0.1084 + }, + { + "start": 4161.8, + "end": 4162.58, + "probability": 0.1703 + }, + { + "start": 4162.92, + "end": 4163.68, + "probability": 0.1721 + }, + { + "start": 4163.88, + "end": 4164.88, + "probability": 0.1171 + }, + { + "start": 4164.94, + "end": 4165.1, + "probability": 0.0766 + }, + { + "start": 4165.1, + "end": 4165.88, + "probability": 0.0422 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.0, + "end": 4172.0, + "probability": 0.0 + }, + { + "start": 4172.12, + "end": 4172.32, + "probability": 0.011 + }, + { + "start": 4172.46, + "end": 4172.82, + "probability": 0.2453 + }, + { + "start": 4172.82, + "end": 4175.84, + "probability": 0.8511 + }, + { + "start": 4175.94, + "end": 4176.18, + "probability": 0.7 + }, + { + "start": 4176.18, + "end": 4177.7, + "probability": 0.608 + }, + { + "start": 4177.78, + "end": 4178.12, + "probability": 0.8323 + }, + { + "start": 4178.12, + "end": 4179.61, + "probability": 0.9161 + }, + { + "start": 4180.54, + "end": 4180.9, + "probability": 0.7629 + }, + { + "start": 4180.9, + "end": 4183.16, + "probability": 0.9767 + }, + { + "start": 4183.26, + "end": 4183.56, + "probability": 0.2879 + }, + { + "start": 4183.56, + "end": 4183.56, + "probability": 0.225 + }, + { + "start": 4183.8, + "end": 4184.98, + "probability": 0.6483 + }, + { + "start": 4184.98, + "end": 4185.68, + "probability": 0.6645 + }, + { + "start": 4185.76, + "end": 4186.04, + "probability": 0.854 + }, + { + "start": 4186.2, + "end": 4188.22, + "probability": 0.9973 + }, + { + "start": 4188.24, + "end": 4188.66, + "probability": 0.7866 + }, + { + "start": 4188.74, + "end": 4190.74, + "probability": 0.9926 + }, + { + "start": 4190.82, + "end": 4191.76, + "probability": 0.8025 + }, + { + "start": 4191.82, + "end": 4193.42, + "probability": 0.9615 + }, + { + "start": 4193.42, + "end": 4194.86, + "probability": 0.128 + }, + { + "start": 4195.14, + "end": 4196.54, + "probability": 0.4201 + }, + { + "start": 4196.94, + "end": 4199.16, + "probability": 0.9868 + }, + { + "start": 4199.38, + "end": 4200.78, + "probability": 0.155 + }, + { + "start": 4200.78, + "end": 4202.22, + "probability": 0.1544 + }, + { + "start": 4202.34, + "end": 4203.6, + "probability": 0.5893 + }, + { + "start": 4204.16, + "end": 4206.04, + "probability": 0.7609 + }, + { + "start": 4206.48, + "end": 4210.4, + "probability": 0.778 + }, + { + "start": 4210.46, + "end": 4212.58, + "probability": 0.4403 + }, + { + "start": 4212.78, + "end": 4216.1, + "probability": 0.9966 + }, + { + "start": 4216.2, + "end": 4217.64, + "probability": 0.9738 + }, + { + "start": 4218.2, + "end": 4220.16, + "probability": 0.9321 + }, + { + "start": 4220.48, + "end": 4222.14, + "probability": 0.9358 + }, + { + "start": 4222.38, + "end": 4224.34, + "probability": 0.6809 + }, + { + "start": 4224.34, + "end": 4225.2, + "probability": 0.5504 + }, + { + "start": 4225.46, + "end": 4228.4, + "probability": 0.5395 + }, + { + "start": 4228.4, + "end": 4229.44, + "probability": 0.9731 + }, + { + "start": 4229.56, + "end": 4230.28, + "probability": 0.3877 + }, + { + "start": 4230.5, + "end": 4231.88, + "probability": 0.195 + }, + { + "start": 4232.14, + "end": 4234.16, + "probability": 0.4393 + }, + { + "start": 4234.56, + "end": 4237.0, + "probability": 0.3425 + }, + { + "start": 4237.04, + "end": 4238.06, + "probability": 0.0802 + }, + { + "start": 4238.24, + "end": 4239.45, + "probability": 0.1437 + }, + { + "start": 4239.64, + "end": 4240.48, + "probability": 0.7805 + }, + { + "start": 4240.92, + "end": 4242.18, + "probability": 0.8406 + }, + { + "start": 4242.32, + "end": 4242.98, + "probability": 0.1854 + }, + { + "start": 4242.98, + "end": 4246.34, + "probability": 0.0587 + }, + { + "start": 4246.42, + "end": 4246.88, + "probability": 0.3292 + }, + { + "start": 4246.92, + "end": 4247.44, + "probability": 0.6459 + }, + { + "start": 4247.52, + "end": 4248.7, + "probability": 0.8318 + }, + { + "start": 4248.98, + "end": 4253.46, + "probability": 0.5493 + }, + { + "start": 4253.54, + "end": 4257.84, + "probability": 0.8364 + }, + { + "start": 4258.1, + "end": 4259.6, + "probability": 0.9682 + }, + { + "start": 4260.08, + "end": 4260.94, + "probability": 0.9762 + }, + { + "start": 4261.04, + "end": 4262.2, + "probability": 0.966 + }, + { + "start": 4262.36, + "end": 4263.8, + "probability": 0.249 + }, + { + "start": 4264.38, + "end": 4264.92, + "probability": 0.5076 + }, + { + "start": 4265.24, + "end": 4265.24, + "probability": 0.5122 + }, + { + "start": 4265.24, + "end": 4265.6, + "probability": 0.864 + }, + { + "start": 4265.6, + "end": 4265.6, + "probability": 0.7045 + }, + { + "start": 4265.64, + "end": 4266.83, + "probability": 0.845 + }, + { + "start": 4267.28, + "end": 4268.22, + "probability": 0.7149 + }, + { + "start": 4268.7, + "end": 4269.82, + "probability": 0.6749 + }, + { + "start": 4269.84, + "end": 4271.54, + "probability": 0.1827 + }, + { + "start": 4273.0, + "end": 4273.16, + "probability": 0.0319 + }, + { + "start": 4273.16, + "end": 4273.16, + "probability": 0.2251 + }, + { + "start": 4273.16, + "end": 4273.16, + "probability": 0.0298 + }, + { + "start": 4273.16, + "end": 4274.28, + "probability": 0.2141 + }, + { + "start": 4274.56, + "end": 4278.88, + "probability": 0.7443 + }, + { + "start": 4278.94, + "end": 4280.97, + "probability": 0.9087 + }, + { + "start": 4283.3, + "end": 4283.3, + "probability": 0.0264 + }, + { + "start": 4283.3, + "end": 4283.3, + "probability": 0.0171 + }, + { + "start": 4283.3, + "end": 4283.3, + "probability": 0.2206 + }, + { + "start": 4283.3, + "end": 4285.06, + "probability": 0.1046 + }, + { + "start": 4286.4, + "end": 4290.48, + "probability": 0.1288 + }, + { + "start": 4291.0, + "end": 4293.72, + "probability": 0.0953 + }, + { + "start": 4295.08, + "end": 4295.56, + "probability": 0.1561 + }, + { + "start": 4295.56, + "end": 4296.34, + "probability": 0.3847 + }, + { + "start": 4296.98, + "end": 4298.28, + "probability": 0.7435 + }, + { + "start": 4299.46, + "end": 4304.34, + "probability": 0.6434 + }, + { + "start": 4304.92, + "end": 4306.5, + "probability": 0.8237 + }, + { + "start": 4308.02, + "end": 4310.48, + "probability": 0.9637 + }, + { + "start": 4310.8, + "end": 4315.6, + "probability": 0.9861 + }, + { + "start": 4315.64, + "end": 4316.54, + "probability": 0.7722 + }, + { + "start": 4317.56, + "end": 4320.6, + "probability": 0.9973 + }, + { + "start": 4321.87, + "end": 4324.1, + "probability": 0.8286 + }, + { + "start": 4325.16, + "end": 4328.66, + "probability": 0.9906 + }, + { + "start": 4328.66, + "end": 4333.54, + "probability": 0.936 + }, + { + "start": 4333.56, + "end": 4333.56, + "probability": 0.3913 + }, + { + "start": 4333.64, + "end": 4335.72, + "probability": 0.8973 + }, + { + "start": 4336.04, + "end": 4337.12, + "probability": 0.8092 + }, + { + "start": 4337.68, + "end": 4338.9, + "probability": 0.7724 + }, + { + "start": 4338.92, + "end": 4341.66, + "probability": 0.9939 + }, + { + "start": 4341.8, + "end": 4344.62, + "probability": 0.9735 + }, + { + "start": 4344.82, + "end": 4348.8, + "probability": 0.9849 + }, + { + "start": 4349.26, + "end": 4350.82, + "probability": 0.9946 + }, + { + "start": 4351.04, + "end": 4352.71, + "probability": 0.9131 + }, + { + "start": 4353.32, + "end": 4356.64, + "probability": 0.996 + }, + { + "start": 4356.9, + "end": 4358.42, + "probability": 0.9714 + }, + { + "start": 4359.48, + "end": 4360.69, + "probability": 0.98 + }, + { + "start": 4361.94, + "end": 4362.0, + "probability": 0.3623 + }, + { + "start": 4362.02, + "end": 4364.62, + "probability": 0.9558 + }, + { + "start": 4365.48, + "end": 4369.9, + "probability": 0.9983 + }, + { + "start": 4369.9, + "end": 4373.06, + "probability": 0.999 + }, + { + "start": 4374.42, + "end": 4377.42, + "probability": 0.9202 + }, + { + "start": 4378.12, + "end": 4380.02, + "probability": 0.8288 + }, + { + "start": 4380.24, + "end": 4386.66, + "probability": 0.9986 + }, + { + "start": 4386.74, + "end": 4388.8, + "probability": 0.588 + }, + { + "start": 4388.8, + "end": 4393.86, + "probability": 0.9989 + }, + { + "start": 4395.52, + "end": 4397.06, + "probability": 0.9028 + }, + { + "start": 4398.34, + "end": 4403.14, + "probability": 0.3422 + }, + { + "start": 4403.14, + "end": 4406.86, + "probability": 0.9915 + }, + { + "start": 4406.9, + "end": 4409.64, + "probability": 0.9804 + }, + { + "start": 4410.86, + "end": 4411.56, + "probability": 0.7496 + }, + { + "start": 4411.84, + "end": 4412.98, + "probability": 0.9342 + }, + { + "start": 4413.02, + "end": 4415.54, + "probability": 0.7643 + }, + { + "start": 4415.54, + "end": 4417.08, + "probability": 0.9894 + }, + { + "start": 4417.14, + "end": 4418.48, + "probability": 0.8241 + }, + { + "start": 4418.66, + "end": 4420.04, + "probability": 0.9757 + }, + { + "start": 4420.44, + "end": 4421.78, + "probability": 0.9852 + }, + { + "start": 4421.92, + "end": 4422.98, + "probability": 0.8158 + }, + { + "start": 4423.16, + "end": 4424.52, + "probability": 0.9559 + }, + { + "start": 4424.68, + "end": 4426.0, + "probability": 0.944 + }, + { + "start": 4426.83, + "end": 4437.84, + "probability": 0.9907 + }, + { + "start": 4439.52, + "end": 4443.76, + "probability": 0.9563 + }, + { + "start": 4443.86, + "end": 4444.96, + "probability": 0.7447 + }, + { + "start": 4445.1, + "end": 4446.24, + "probability": 0.9232 + }, + { + "start": 4447.12, + "end": 4452.46, + "probability": 0.9798 + }, + { + "start": 4453.78, + "end": 4459.32, + "probability": 0.9952 + }, + { + "start": 4460.26, + "end": 4463.08, + "probability": 0.964 + }, + { + "start": 4463.08, + "end": 4471.62, + "probability": 0.9983 + }, + { + "start": 4471.7, + "end": 4474.76, + "probability": 0.6388 + }, + { + "start": 4475.22, + "end": 4476.52, + "probability": 0.7687 + }, + { + "start": 4476.68, + "end": 4477.0, + "probability": 0.592 + }, + { + "start": 4477.58, + "end": 4479.22, + "probability": 0.4603 + }, + { + "start": 4479.44, + "end": 4480.66, + "probability": 0.9988 + }, + { + "start": 4481.34, + "end": 4483.9, + "probability": 0.9956 + }, + { + "start": 4483.94, + "end": 4484.2, + "probability": 0.4235 + }, + { + "start": 4484.28, + "end": 4484.28, + "probability": 0.2232 + }, + { + "start": 4484.38, + "end": 4486.94, + "probability": 0.5824 + }, + { + "start": 4486.96, + "end": 4487.68, + "probability": 0.7464 + }, + { + "start": 4487.7, + "end": 4491.02, + "probability": 0.8798 + }, + { + "start": 4491.06, + "end": 4494.46, + "probability": 0.6549 + }, + { + "start": 4494.84, + "end": 4494.84, + "probability": 0.0435 + }, + { + "start": 4494.84, + "end": 4494.84, + "probability": 0.1127 + }, + { + "start": 4494.84, + "end": 4494.84, + "probability": 0.5789 + }, + { + "start": 4494.84, + "end": 4499.78, + "probability": 0.5317 + }, + { + "start": 4500.26, + "end": 4501.12, + "probability": 0.8762 + }, + { + "start": 4502.18, + "end": 4502.38, + "probability": 0.3828 + }, + { + "start": 4502.7, + "end": 4504.62, + "probability": 0.8313 + }, + { + "start": 4506.76, + "end": 4512.5, + "probability": 0.9975 + }, + { + "start": 4512.94, + "end": 4517.2, + "probability": 0.8767 + }, + { + "start": 4517.3, + "end": 4517.76, + "probability": 0.838 + }, + { + "start": 4518.02, + "end": 4520.36, + "probability": 0.8563 + }, + { + "start": 4520.74, + "end": 4523.0, + "probability": 0.0322 + }, + { + "start": 4524.0, + "end": 4526.48, + "probability": 0.5506 + }, + { + "start": 4527.2, + "end": 4529.7, + "probability": 0.9457 + }, + { + "start": 4531.24, + "end": 4533.42, + "probability": 0.646 + }, + { + "start": 4534.0, + "end": 4536.72, + "probability": 0.9195 + }, + { + "start": 4537.88, + "end": 4543.04, + "probability": 0.908 + }, + { + "start": 4544.64, + "end": 4547.34, + "probability": 0.6458 + }, + { + "start": 4547.94, + "end": 4551.06, + "probability": 0.7674 + }, + { + "start": 4552.14, + "end": 4554.08, + "probability": 0.9334 + }, + { + "start": 4556.74, + "end": 4560.26, + "probability": 0.9296 + }, + { + "start": 4563.4, + "end": 4569.54, + "probability": 0.9313 + }, + { + "start": 4570.12, + "end": 4575.54, + "probability": 0.9825 + }, + { + "start": 4578.48, + "end": 4580.58, + "probability": 0.8312 + }, + { + "start": 4581.4, + "end": 4584.32, + "probability": 0.9769 + }, + { + "start": 4586.26, + "end": 4589.0, + "probability": 0.9577 + }, + { + "start": 4589.3, + "end": 4591.14, + "probability": 0.8994 + }, + { + "start": 4591.38, + "end": 4593.48, + "probability": 0.931 + }, + { + "start": 4594.02, + "end": 4596.3, + "probability": 0.9779 + }, + { + "start": 4596.76, + "end": 4598.66, + "probability": 0.9809 + }, + { + "start": 4599.06, + "end": 4600.8, + "probability": 0.9709 + }, + { + "start": 4604.62, + "end": 4607.86, + "probability": 0.8526 + }, + { + "start": 4608.48, + "end": 4611.26, + "probability": 0.9129 + }, + { + "start": 4611.8, + "end": 4613.54, + "probability": 0.9209 + }, + { + "start": 4614.17, + "end": 4620.92, + "probability": 0.873 + }, + { + "start": 4621.74, + "end": 4623.02, + "probability": 0.9927 + }, + { + "start": 4623.02, + "end": 4625.84, + "probability": 0.9822 + }, + { + "start": 4626.34, + "end": 4628.42, + "probability": 0.9448 + }, + { + "start": 4629.14, + "end": 4631.88, + "probability": 0.554 + }, + { + "start": 4633.36, + "end": 4641.04, + "probability": 0.9593 + }, + { + "start": 4641.56, + "end": 4646.08, + "probability": 0.7625 + }, + { + "start": 4650.7, + "end": 4653.58, + "probability": 0.5395 + }, + { + "start": 4654.54, + "end": 4656.58, + "probability": 0.9282 + }, + { + "start": 4657.48, + "end": 4659.54, + "probability": 0.9314 + }, + { + "start": 4660.06, + "end": 4661.82, + "probability": 0.9409 + }, + { + "start": 4662.98, + "end": 4664.66, + "probability": 0.9648 + }, + { + "start": 4666.08, + "end": 4668.56, + "probability": 0.8849 + }, + { + "start": 4669.12, + "end": 4674.8, + "probability": 0.9824 + }, + { + "start": 4675.62, + "end": 4678.8, + "probability": 0.7447 + }, + { + "start": 4679.74, + "end": 4683.22, + "probability": 0.7715 + }, + { + "start": 4683.98, + "end": 4686.0, + "probability": 0.7174 + }, + { + "start": 4686.68, + "end": 4690.36, + "probability": 0.9383 + }, + { + "start": 4690.9, + "end": 4694.2, + "probability": 0.9044 + }, + { + "start": 4694.72, + "end": 4696.74, + "probability": 0.9958 + }, + { + "start": 4698.28, + "end": 4707.06, + "probability": 0.7483 + }, + { + "start": 4708.4, + "end": 4709.9, + "probability": 0.8173 + }, + { + "start": 4712.36, + "end": 4713.46, + "probability": 0.5094 + }, + { + "start": 4714.58, + "end": 4717.28, + "probability": 0.8614 + }, + { + "start": 4717.8, + "end": 4720.34, + "probability": 0.8896 + }, + { + "start": 4721.54, + "end": 4722.94, + "probability": 0.8855 + }, + { + "start": 4725.28, + "end": 4728.2, + "probability": 0.9751 + }, + { + "start": 4728.76, + "end": 4730.74, + "probability": 0.9836 + }, + { + "start": 4731.38, + "end": 4733.92, + "probability": 0.9922 + }, + { + "start": 4734.72, + "end": 4737.44, + "probability": 0.9878 + }, + { + "start": 4738.12, + "end": 4743.7, + "probability": 0.7263 + }, + { + "start": 4746.62, + "end": 4750.16, + "probability": 0.6455 + }, + { + "start": 4751.96, + "end": 4755.44, + "probability": 0.951 + }, + { + "start": 4756.1, + "end": 4757.7, + "probability": 0.9716 + }, + { + "start": 4758.72, + "end": 4762.12, + "probability": 0.9497 + }, + { + "start": 4763.12, + "end": 4765.32, + "probability": 0.8135 + }, + { + "start": 4765.96, + "end": 4769.74, + "probability": 0.9896 + }, + { + "start": 4771.88, + "end": 4772.74, + "probability": 0.6091 + }, + { + "start": 4773.42, + "end": 4775.38, + "probability": 0.8722 + }, + { + "start": 4775.9, + "end": 4779.12, + "probability": 0.8413 + }, + { + "start": 4779.92, + "end": 4781.96, + "probability": 0.929 + }, + { + "start": 4783.8, + "end": 4786.52, + "probability": 0.8403 + }, + { + "start": 4787.22, + "end": 4789.26, + "probability": 0.9348 + }, + { + "start": 4789.68, + "end": 4792.98, + "probability": 0.9488 + }, + { + "start": 4793.4, + "end": 4795.18, + "probability": 0.988 + }, + { + "start": 4795.22, + "end": 4797.8, + "probability": 0.6214 + }, + { + "start": 4798.36, + "end": 4800.86, + "probability": 0.842 + }, + { + "start": 4802.37, + "end": 4806.3, + "probability": 0.8292 + }, + { + "start": 4807.18, + "end": 4809.32, + "probability": 0.9837 + }, + { + "start": 4811.14, + "end": 4812.9, + "probability": 0.9264 + }, + { + "start": 4815.94, + "end": 4819.52, + "probability": 0.7747 + }, + { + "start": 4820.6, + "end": 4822.4, + "probability": 0.8512 + }, + { + "start": 4825.24, + "end": 4829.26, + "probability": 0.6395 + }, + { + "start": 4829.8, + "end": 4831.86, + "probability": 0.9305 + }, + { + "start": 4832.64, + "end": 4835.08, + "probability": 0.8652 + }, + { + "start": 4836.28, + "end": 4838.48, + "probability": 0.8522 + }, + { + "start": 4840.32, + "end": 4843.38, + "probability": 0.9802 + }, + { + "start": 4845.36, + "end": 4847.9, + "probability": 0.9722 + }, + { + "start": 4848.46, + "end": 4851.46, + "probability": 0.9597 + }, + { + "start": 4852.8, + "end": 4854.98, + "probability": 0.7351 + }, + { + "start": 4855.86, + "end": 4857.7, + "probability": 0.8649 + }, + { + "start": 4860.94, + "end": 4863.3, + "probability": 0.8834 + }, + { + "start": 4864.62, + "end": 4867.3, + "probability": 0.8158 + }, + { + "start": 4873.1, + "end": 4878.24, + "probability": 0.5239 + }, + { + "start": 4879.1, + "end": 4882.82, + "probability": 0.8657 + }, + { + "start": 4883.72, + "end": 4887.3, + "probability": 0.9779 + }, + { + "start": 4888.08, + "end": 4890.98, + "probability": 0.9873 + }, + { + "start": 4891.7, + "end": 4897.42, + "probability": 0.9815 + }, + { + "start": 4898.6, + "end": 4899.9, + "probability": 0.4652 + }, + { + "start": 4902.54, + "end": 4905.16, + "probability": 0.764 + }, + { + "start": 4905.72, + "end": 4907.94, + "probability": 0.9725 + }, + { + "start": 4910.96, + "end": 4912.08, + "probability": 0.4285 + }, + { + "start": 4913.12, + "end": 4916.8, + "probability": 0.8986 + }, + { + "start": 4917.48, + "end": 4921.42, + "probability": 0.9301 + }, + { + "start": 4922.52, + "end": 4924.16, + "probability": 0.8267 + }, + { + "start": 4924.76, + "end": 4926.56, + "probability": 0.9741 + }, + { + "start": 4928.92, + "end": 4931.68, + "probability": 0.8735 + }, + { + "start": 4932.78, + "end": 4934.48, + "probability": 0.9697 + }, + { + "start": 4936.38, + "end": 4937.82, + "probability": 0.9744 + }, + { + "start": 4940.06, + "end": 4940.86, + "probability": 0.4505 + }, + { + "start": 4942.22, + "end": 4945.0, + "probability": 0.8185 + }, + { + "start": 4945.7, + "end": 4950.72, + "probability": 0.9502 + }, + { + "start": 4953.94, + "end": 4957.68, + "probability": 0.98 + }, + { + "start": 4958.3, + "end": 4961.06, + "probability": 0.9438 + }, + { + "start": 4961.92, + "end": 4966.04, + "probability": 0.9929 + }, + { + "start": 4966.92, + "end": 4967.94, + "probability": 0.5604 + }, + { + "start": 4971.46, + "end": 4975.04, + "probability": 0.5541 + }, + { + "start": 4978.4, + "end": 4979.48, + "probability": 0.0654 + }, + { + "start": 4983.36, + "end": 4984.94, + "probability": 0.7394 + }, + { + "start": 4988.82, + "end": 4993.64, + "probability": 0.6006 + }, + { + "start": 4994.18, + "end": 4994.62, + "probability": 0.8048 + }, + { + "start": 4995.44, + "end": 4996.3, + "probability": 0.2233 + }, + { + "start": 4996.86, + "end": 4997.28, + "probability": 0.9414 + }, + { + "start": 4998.72, + "end": 5000.2, + "probability": 0.6839 + }, + { + "start": 5001.06, + "end": 5004.86, + "probability": 0.9314 + }, + { + "start": 5006.3, + "end": 5008.18, + "probability": 0.8114 + }, + { + "start": 5009.18, + "end": 5011.38, + "probability": 0.9261 + }, + { + "start": 5012.82, + "end": 5015.02, + "probability": 0.8403 + }, + { + "start": 5016.7, + "end": 5019.86, + "probability": 0.9911 + }, + { + "start": 5020.78, + "end": 5025.2, + "probability": 0.9197 + }, + { + "start": 5025.72, + "end": 5027.98, + "probability": 0.7739 + }, + { + "start": 5029.24, + "end": 5032.3, + "probability": 0.9653 + }, + { + "start": 5033.28, + "end": 5034.64, + "probability": 0.9616 + }, + { + "start": 5036.42, + "end": 5038.56, + "probability": 0.7878 + }, + { + "start": 5039.34, + "end": 5040.9, + "probability": 0.9052 + }, + { + "start": 5041.72, + "end": 5046.06, + "probability": 0.9616 + }, + { + "start": 5047.58, + "end": 5048.52, + "probability": 0.7887 + }, + { + "start": 5049.38, + "end": 5050.28, + "probability": 0.5909 + }, + { + "start": 5051.64, + "end": 5054.14, + "probability": 0.9619 + }, + { + "start": 5054.56, + "end": 5060.3, + "probability": 0.9202 + }, + { + "start": 5060.94, + "end": 5062.62, + "probability": 0.6469 + }, + { + "start": 5063.52, + "end": 5066.06, + "probability": 0.9513 + }, + { + "start": 5066.78, + "end": 5070.28, + "probability": 0.9907 + }, + { + "start": 5071.04, + "end": 5071.78, + "probability": 0.9901 + }, + { + "start": 5073.18, + "end": 5074.06, + "probability": 0.9425 + }, + { + "start": 5076.58, + "end": 5077.32, + "probability": 0.9739 + }, + { + "start": 5080.42, + "end": 5081.0, + "probability": 0.3942 + }, + { + "start": 5082.36, + "end": 5089.78, + "probability": 0.9922 + }, + { + "start": 5091.98, + "end": 5092.3, + "probability": 0.3347 + }, + { + "start": 5093.62, + "end": 5094.8, + "probability": 0.4546 + }, + { + "start": 5095.14, + "end": 5096.18, + "probability": 0.0015 + }, + { + "start": 5099.62, + "end": 5100.08, + "probability": 0.0549 + }, + { + "start": 5108.85, + "end": 5109.76, + "probability": 0.0344 + }, + { + "start": 5121.06, + "end": 5121.44, + "probability": 0.1217 + }, + { + "start": 5121.44, + "end": 5121.96, + "probability": 0.0255 + }, + { + "start": 5123.36, + "end": 5123.48, + "probability": 0.0713 + }, + { + "start": 5129.31, + "end": 5134.98, + "probability": 0.0573 + }, + { + "start": 5147.06, + "end": 5153.44, + "probability": 0.1166 + }, + { + "start": 5153.82, + "end": 5155.44, + "probability": 0.0765 + }, + { + "start": 5262.0, + "end": 5262.0, + "probability": 0.0 + }, + { + "start": 5262.0, + "end": 5262.0, + "probability": 0.0 + }, + { + "start": 5262.32, + "end": 5262.76, + "probability": 0.6138 + }, + { + "start": 5262.76, + "end": 5265.42, + "probability": 0.4521 + }, + { + "start": 5265.42, + "end": 5268.7, + "probability": 0.7218 + }, + { + "start": 5269.48, + "end": 5270.64, + "probability": 0.91 + }, + { + "start": 5271.64, + "end": 5272.84, + "probability": 0.7717 + }, + { + "start": 5293.82, + "end": 5296.04, + "probability": 0.5671 + }, + { + "start": 5297.6, + "end": 5301.94, + "probability": 0.9756 + }, + { + "start": 5302.04, + "end": 5306.86, + "probability": 0.9967 + }, + { + "start": 5307.58, + "end": 5312.0, + "probability": 0.8306 + }, + { + "start": 5312.0, + "end": 5318.32, + "probability": 0.9981 + }, + { + "start": 5318.62, + "end": 5320.32, + "probability": 0.8204 + }, + { + "start": 5321.18, + "end": 5326.12, + "probability": 0.9987 + }, + { + "start": 5326.12, + "end": 5330.96, + "probability": 0.9963 + }, + { + "start": 5331.58, + "end": 5333.85, + "probability": 0.9543 + }, + { + "start": 5334.56, + "end": 5336.1, + "probability": 0.9279 + }, + { + "start": 5336.7, + "end": 5343.44, + "probability": 0.9886 + }, + { + "start": 5343.62, + "end": 5344.92, + "probability": 0.5393 + }, + { + "start": 5345.46, + "end": 5349.12, + "probability": 0.7045 + }, + { + "start": 5349.34, + "end": 5349.86, + "probability": 0.51 + }, + { + "start": 5351.18, + "end": 5353.22, + "probability": 0.8012 + }, + { + "start": 5354.04, + "end": 5358.96, + "probability": 0.9644 + }, + { + "start": 5358.96, + "end": 5364.44, + "probability": 0.9989 + }, + { + "start": 5365.08, + "end": 5370.21, + "probability": 0.9343 + }, + { + "start": 5371.8, + "end": 5377.0, + "probability": 0.9724 + }, + { + "start": 5377.74, + "end": 5378.22, + "probability": 0.8219 + }, + { + "start": 5378.8, + "end": 5380.42, + "probability": 0.9982 + }, + { + "start": 5380.94, + "end": 5381.52, + "probability": 0.8984 + }, + { + "start": 5382.02, + "end": 5385.38, + "probability": 0.9771 + }, + { + "start": 5385.48, + "end": 5388.84, + "probability": 0.6941 + }, + { + "start": 5389.64, + "end": 5389.74, + "probability": 0.0742 + }, + { + "start": 5389.74, + "end": 5389.74, + "probability": 0.0799 + }, + { + "start": 5389.74, + "end": 5390.16, + "probability": 0.1787 + }, + { + "start": 5390.22, + "end": 5391.26, + "probability": 0.8011 + }, + { + "start": 5391.38, + "end": 5395.24, + "probability": 0.6549 + }, + { + "start": 5395.24, + "end": 5401.32, + "probability": 0.8959 + }, + { + "start": 5402.14, + "end": 5406.76, + "probability": 0.7264 + }, + { + "start": 5407.46, + "end": 5410.32, + "probability": 0.9961 + }, + { + "start": 5410.76, + "end": 5413.42, + "probability": 0.991 + }, + { + "start": 5413.78, + "end": 5417.88, + "probability": 0.9906 + }, + { + "start": 5417.88, + "end": 5422.84, + "probability": 0.9915 + }, + { + "start": 5423.44, + "end": 5428.14, + "probability": 0.9605 + }, + { + "start": 5428.38, + "end": 5428.8, + "probability": 0.6493 + }, + { + "start": 5428.88, + "end": 5429.32, + "probability": 0.8227 + }, + { + "start": 5429.38, + "end": 5434.32, + "probability": 0.917 + }, + { + "start": 5434.92, + "end": 5437.24, + "probability": 0.9543 + }, + { + "start": 5437.72, + "end": 5443.84, + "probability": 0.9983 + }, + { + "start": 5444.38, + "end": 5447.54, + "probability": 0.9973 + }, + { + "start": 5448.02, + "end": 5452.06, + "probability": 0.9871 + }, + { + "start": 5452.06, + "end": 5454.42, + "probability": 0.9983 + }, + { + "start": 5455.96, + "end": 5457.16, + "probability": 0.6814 + }, + { + "start": 5457.48, + "end": 5458.78, + "probability": 0.8857 + }, + { + "start": 5459.54, + "end": 5461.3, + "probability": 0.7533 + }, + { + "start": 5461.36, + "end": 5463.0, + "probability": 0.8301 + }, + { + "start": 5463.1, + "end": 5465.3, + "probability": 0.8665 + }, + { + "start": 5465.86, + "end": 5466.14, + "probability": 0.1684 + }, + { + "start": 5466.14, + "end": 5466.14, + "probability": 0.0801 + }, + { + "start": 5466.14, + "end": 5473.4, + "probability": 0.9655 + }, + { + "start": 5473.4, + "end": 5479.8, + "probability": 0.9862 + }, + { + "start": 5480.54, + "end": 5483.26, + "probability": 0.1495 + }, + { + "start": 5483.26, + "end": 5485.52, + "probability": 0.8235 + }, + { + "start": 5485.56, + "end": 5486.11, + "probability": 0.1932 + }, + { + "start": 5486.42, + "end": 5486.72, + "probability": 0.1282 + }, + { + "start": 5486.76, + "end": 5492.12, + "probability": 0.9945 + }, + { + "start": 5493.46, + "end": 5495.86, + "probability": 0.9915 + }, + { + "start": 5496.56, + "end": 5498.56, + "probability": 0.8334 + }, + { + "start": 5498.88, + "end": 5501.54, + "probability": 0.7489 + }, + { + "start": 5502.46, + "end": 5504.38, + "probability": 0.9468 + }, + { + "start": 5504.82, + "end": 5505.58, + "probability": 0.948 + }, + { + "start": 5505.6, + "end": 5513.94, + "probability": 0.9954 + }, + { + "start": 5514.58, + "end": 5522.6, + "probability": 0.9858 + }, + { + "start": 5523.54, + "end": 5526.4, + "probability": 0.3484 + }, + { + "start": 5526.4, + "end": 5528.09, + "probability": 0.8462 + }, + { + "start": 5528.86, + "end": 5534.62, + "probability": 0.854 + }, + { + "start": 5534.88, + "end": 5540.9, + "probability": 0.9845 + }, + { + "start": 5541.2, + "end": 5541.85, + "probability": 0.8478 + }, + { + "start": 5543.04, + "end": 5546.2, + "probability": 0.9798 + }, + { + "start": 5546.6, + "end": 5548.98, + "probability": 0.999 + }, + { + "start": 5549.32, + "end": 5553.36, + "probability": 0.9976 + }, + { + "start": 5553.44, + "end": 5557.56, + "probability": 0.995 + }, + { + "start": 5557.82, + "end": 5558.74, + "probability": 0.8923 + }, + { + "start": 5558.88, + "end": 5559.66, + "probability": 0.7876 + }, + { + "start": 5560.16, + "end": 5562.32, + "probability": 0.9865 + }, + { + "start": 5562.66, + "end": 5564.84, + "probability": 0.9759 + }, + { + "start": 5565.8, + "end": 5567.64, + "probability": 0.6267 + }, + { + "start": 5567.94, + "end": 5571.43, + "probability": 0.9785 + }, + { + "start": 5572.36, + "end": 5572.38, + "probability": 0.0481 + }, + { + "start": 5572.38, + "end": 5579.72, + "probability": 0.9956 + }, + { + "start": 5580.44, + "end": 5588.6, + "probability": 0.9881 + }, + { + "start": 5589.1, + "end": 5591.12, + "probability": 0.8962 + }, + { + "start": 5591.28, + "end": 5591.68, + "probability": 0.8199 + }, + { + "start": 5592.02, + "end": 5594.42, + "probability": 0.1417 + }, + { + "start": 5594.66, + "end": 5598.14, + "probability": 0.1996 + }, + { + "start": 5599.32, + "end": 5600.84, + "probability": 0.7715 + }, + { + "start": 5600.96, + "end": 5604.28, + "probability": 0.9282 + }, + { + "start": 5604.52, + "end": 5607.28, + "probability": 0.75 + }, + { + "start": 5608.08, + "end": 5610.5, + "probability": 0.9574 + }, + { + "start": 5611.06, + "end": 5613.54, + "probability": 0.9889 + }, + { + "start": 5615.92, + "end": 5616.7, + "probability": 0.4383 + }, + { + "start": 5617.76, + "end": 5619.24, + "probability": 0.2763 + }, + { + "start": 5619.58, + "end": 5621.14, + "probability": 0.8837 + }, + { + "start": 5623.11, + "end": 5626.63, + "probability": 0.1396 + }, + { + "start": 5627.06, + "end": 5628.62, + "probability": 0.285 + }, + { + "start": 5629.26, + "end": 5634.96, + "probability": 0.1336 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.0, + "end": 5734.0, + "probability": 0.0 + }, + { + "start": 5734.14, + "end": 5735.84, + "probability": 0.0251 + }, + { + "start": 5735.96, + "end": 5737.26, + "probability": 0.6407 + }, + { + "start": 5739.78, + "end": 5740.04, + "probability": 0.129 + }, + { + "start": 5740.04, + "end": 5740.32, + "probability": 0.0089 + }, + { + "start": 5740.48, + "end": 5740.48, + "probability": 0.0276 + }, + { + "start": 5740.5, + "end": 5742.0, + "probability": 0.6785 + }, + { + "start": 5742.08, + "end": 5744.02, + "probability": 0.8331 + }, + { + "start": 5746.12, + "end": 5747.14, + "probability": 0.2747 + }, + { + "start": 5747.14, + "end": 5747.84, + "probability": 0.3074 + }, + { + "start": 5748.12, + "end": 5748.12, + "probability": 0.2453 + }, + { + "start": 5748.12, + "end": 5749.26, + "probability": 0.1513 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.0, + "end": 5854.0, + "probability": 0.0 + }, + { + "start": 5854.44, + "end": 5855.98, + "probability": 0.978 + }, + { + "start": 5856.36, + "end": 5857.28, + "probability": 0.5391 + }, + { + "start": 5857.76, + "end": 5860.9, + "probability": 0.1992 + }, + { + "start": 5861.08, + "end": 5861.08, + "probability": 0.1897 + }, + { + "start": 5861.08, + "end": 5861.42, + "probability": 0.0129 + }, + { + "start": 5861.42, + "end": 5865.94, + "probability": 0.8101 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.0, + "end": 5987.0, + "probability": 0.0 + }, + { + "start": 5987.54, + "end": 5987.78, + "probability": 0.1037 + }, + { + "start": 5988.18, + "end": 5988.96, + "probability": 0.1166 + }, + { + "start": 5999.76, + "end": 6003.34, + "probability": 0.1486 + }, + { + "start": 6004.28, + "end": 6006.38, + "probability": 0.0195 + }, + { + "start": 6009.82, + "end": 6011.96, + "probability": 0.0621 + }, + { + "start": 6011.96, + "end": 6012.58, + "probability": 0.0829 + }, + { + "start": 6012.92, + "end": 6012.98, + "probability": 0.026 + }, + { + "start": 6014.68, + "end": 6016.3, + "probability": 0.0971 + }, + { + "start": 6016.3, + "end": 6017.02, + "probability": 0.0761 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.0, + "end": 6107.0, + "probability": 0.0 + }, + { + "start": 6107.04, + "end": 6107.76, + "probability": 0.0272 + }, + { + "start": 6107.76, + "end": 6107.88, + "probability": 0.0647 + }, + { + "start": 6108.16, + "end": 6112.6, + "probability": 0.9604 + }, + { + "start": 6113.12, + "end": 6114.44, + "probability": 0.8867 + }, + { + "start": 6114.5, + "end": 6118.48, + "probability": 0.7391 + }, + { + "start": 6118.58, + "end": 6120.8, + "probability": 0.972 + }, + { + "start": 6120.9, + "end": 6122.16, + "probability": 0.9083 + }, + { + "start": 6122.28, + "end": 6125.04, + "probability": 0.9622 + }, + { + "start": 6125.16, + "end": 6126.45, + "probability": 0.5243 + }, + { + "start": 6127.16, + "end": 6128.48, + "probability": 0.4728 + }, + { + "start": 6128.58, + "end": 6129.22, + "probability": 0.6895 + }, + { + "start": 6129.42, + "end": 6132.84, + "probability": 0.9938 + }, + { + "start": 6132.86, + "end": 6134.0, + "probability": 0.8037 + }, + { + "start": 6134.28, + "end": 6135.94, + "probability": 0.8023 + }, + { + "start": 6136.7, + "end": 6141.04, + "probability": 0.802 + }, + { + "start": 6141.18, + "end": 6143.56, + "probability": 0.9683 + }, + { + "start": 6143.94, + "end": 6143.98, + "probability": 0.4201 + }, + { + "start": 6144.0, + "end": 6144.34, + "probability": 0.5217 + }, + { + "start": 6144.34, + "end": 6146.2, + "probability": 0.9961 + }, + { + "start": 6146.22, + "end": 6147.2, + "probability": 0.7422 + }, + { + "start": 6147.4, + "end": 6150.4, + "probability": 0.9231 + }, + { + "start": 6150.98, + "end": 6152.91, + "probability": 0.9585 + }, + { + "start": 6153.76, + "end": 6155.98, + "probability": 0.5812 + }, + { + "start": 6156.1, + "end": 6157.46, + "probability": 0.9556 + }, + { + "start": 6157.6, + "end": 6158.28, + "probability": 0.5669 + }, + { + "start": 6158.32, + "end": 6158.78, + "probability": 0.8026 + }, + { + "start": 6158.96, + "end": 6159.48, + "probability": 0.8564 + }, + { + "start": 6159.6, + "end": 6160.68, + "probability": 0.8081 + }, + { + "start": 6160.86, + "end": 6163.17, + "probability": 0.889 + }, + { + "start": 6163.52, + "end": 6165.14, + "probability": 0.7393 + }, + { + "start": 6165.2, + "end": 6166.36, + "probability": 0.8862 + }, + { + "start": 6166.42, + "end": 6166.86, + "probability": 0.5668 + }, + { + "start": 6166.98, + "end": 6168.26, + "probability": 0.9602 + }, + { + "start": 6168.32, + "end": 6169.1, + "probability": 0.5027 + }, + { + "start": 6169.3, + "end": 6172.32, + "probability": 0.9539 + }, + { + "start": 6173.92, + "end": 6175.72, + "probability": 0.8295 + }, + { + "start": 6176.06, + "end": 6177.48, + "probability": 0.9263 + }, + { + "start": 6177.58, + "end": 6179.78, + "probability": 0.9851 + }, + { + "start": 6179.92, + "end": 6181.46, + "probability": 0.9568 + }, + { + "start": 6181.6, + "end": 6181.82, + "probability": 0.7534 + }, + { + "start": 6181.96, + "end": 6183.18, + "probability": 0.7207 + }, + { + "start": 6183.44, + "end": 6184.42, + "probability": 0.9364 + }, + { + "start": 6184.46, + "end": 6185.96, + "probability": 0.8317 + }, + { + "start": 6185.98, + "end": 6187.48, + "probability": 0.9941 + }, + { + "start": 6188.1, + "end": 6189.68, + "probability": 0.4784 + }, + { + "start": 6189.7, + "end": 6190.14, + "probability": 0.1132 + }, + { + "start": 6190.75, + "end": 6191.1, + "probability": 0.0216 + }, + { + "start": 6191.24, + "end": 6195.1, + "probability": 0.1277 + }, + { + "start": 6195.24, + "end": 6196.88, + "probability": 0.0967 + }, + { + "start": 6197.32, + "end": 6197.32, + "probability": 0.126 + }, + { + "start": 6197.32, + "end": 6197.32, + "probability": 0.0526 + }, + { + "start": 6197.54, + "end": 6198.36, + "probability": 0.1107 + }, + { + "start": 6198.64, + "end": 6199.1, + "probability": 0.0155 + }, + { + "start": 6199.1, + "end": 6199.1, + "probability": 0.0583 + }, + { + "start": 6199.1, + "end": 6199.1, + "probability": 0.0512 + }, + { + "start": 6199.1, + "end": 6199.1, + "probability": 0.0343 + }, + { + "start": 6199.1, + "end": 6199.31, + "probability": 0.4387 + }, + { + "start": 6200.42, + "end": 6202.18, + "probability": 0.6599 + }, + { + "start": 6203.34, + "end": 6205.38, + "probability": 0.9845 + }, + { + "start": 6205.4, + "end": 6206.38, + "probability": 0.9019 + }, + { + "start": 6207.42, + "end": 6210.44, + "probability": 0.9964 + }, + { + "start": 6210.72, + "end": 6212.54, + "probability": 0.9981 + }, + { + "start": 6213.0, + "end": 6213.7, + "probability": 0.8971 + }, + { + "start": 6213.82, + "end": 6215.36, + "probability": 0.9048 + }, + { + "start": 6215.6, + "end": 6217.26, + "probability": 0.9535 + }, + { + "start": 6217.54, + "end": 6217.98, + "probability": 0.8561 + }, + { + "start": 6218.02, + "end": 6219.26, + "probability": 0.8361 + }, + { + "start": 6219.65, + "end": 6223.9, + "probability": 0.8862 + }, + { + "start": 6224.1, + "end": 6226.38, + "probability": 0.9072 + }, + { + "start": 6226.58, + "end": 6229.55, + "probability": 0.9814 + }, + { + "start": 6229.98, + "end": 6234.34, + "probability": 0.9864 + }, + { + "start": 6234.54, + "end": 6235.84, + "probability": 0.9894 + }, + { + "start": 6236.0, + "end": 6240.24, + "probability": 0.9679 + }, + { + "start": 6240.46, + "end": 6241.72, + "probability": 0.9385 + }, + { + "start": 6242.14, + "end": 6243.68, + "probability": 0.6953 + }, + { + "start": 6244.3, + "end": 6246.75, + "probability": 0.9966 + }, + { + "start": 6247.3, + "end": 6252.8, + "probability": 0.9846 + }, + { + "start": 6253.32, + "end": 6254.48, + "probability": 0.7413 + }, + { + "start": 6255.34, + "end": 6256.18, + "probability": 0.3049 + }, + { + "start": 6256.18, + "end": 6256.32, + "probability": 0.4038 + }, + { + "start": 6256.88, + "end": 6258.94, + "probability": 0.6552 + }, + { + "start": 6259.14, + "end": 6260.24, + "probability": 0.8148 + }, + { + "start": 6260.9, + "end": 6267.89, + "probability": 0.9883 + }, + { + "start": 6268.14, + "end": 6268.42, + "probability": 0.9147 + }, + { + "start": 6268.46, + "end": 6269.68, + "probability": 0.8094 + }, + { + "start": 6269.76, + "end": 6271.6, + "probability": 0.9331 + }, + { + "start": 6271.72, + "end": 6274.15, + "probability": 0.9907 + }, + { + "start": 6274.7, + "end": 6277.1, + "probability": 0.9895 + }, + { + "start": 6277.54, + "end": 6281.66, + "probability": 0.9838 + }, + { + "start": 6281.88, + "end": 6283.09, + "probability": 0.8733 + }, + { + "start": 6283.56, + "end": 6284.88, + "probability": 0.9531 + }, + { + "start": 6285.68, + "end": 6286.86, + "probability": 0.9668 + }, + { + "start": 6287.0, + "end": 6291.62, + "probability": 0.9922 + }, + { + "start": 6291.96, + "end": 6293.56, + "probability": 0.8358 + }, + { + "start": 6293.68, + "end": 6294.26, + "probability": 0.7809 + }, + { + "start": 6294.34, + "end": 6294.78, + "probability": 0.6212 + }, + { + "start": 6295.24, + "end": 6297.02, + "probability": 0.9638 + }, + { + "start": 6297.08, + "end": 6298.46, + "probability": 0.9727 + }, + { + "start": 6298.84, + "end": 6299.44, + "probability": 0.8161 + }, + { + "start": 6299.48, + "end": 6299.92, + "probability": 0.8341 + }, + { + "start": 6300.48, + "end": 6301.89, + "probability": 0.9886 + }, + { + "start": 6302.8, + "end": 6304.38, + "probability": 0.9542 + }, + { + "start": 6305.32, + "end": 6306.42, + "probability": 0.9667 + }, + { + "start": 6306.58, + "end": 6307.08, + "probability": 0.5164 + }, + { + "start": 6307.46, + "end": 6309.98, + "probability": 0.988 + }, + { + "start": 6310.08, + "end": 6312.16, + "probability": 0.8809 + }, + { + "start": 6312.4, + "end": 6313.32, + "probability": 0.8908 + }, + { + "start": 6313.38, + "end": 6314.8, + "probability": 0.9492 + }, + { + "start": 6315.32, + "end": 6320.2, + "probability": 0.8391 + }, + { + "start": 6321.18, + "end": 6321.72, + "probability": 0.8631 + }, + { + "start": 6321.92, + "end": 6322.64, + "probability": 0.8209 + }, + { + "start": 6322.64, + "end": 6325.6, + "probability": 0.7584 + }, + { + "start": 6325.94, + "end": 6327.84, + "probability": 0.8817 + }, + { + "start": 6327.9, + "end": 6328.36, + "probability": 0.4177 + }, + { + "start": 6328.8, + "end": 6329.5, + "probability": 0.8476 + }, + { + "start": 6329.88, + "end": 6330.38, + "probability": 0.5006 + }, + { + "start": 6330.38, + "end": 6332.18, + "probability": 0.4935 + }, + { + "start": 6332.18, + "end": 6333.86, + "probability": 0.9458 + }, + { + "start": 6334.16, + "end": 6335.22, + "probability": 0.6206 + }, + { + "start": 6335.6, + "end": 6336.34, + "probability": 0.9163 + }, + { + "start": 6336.42, + "end": 6337.82, + "probability": 0.8981 + }, + { + "start": 6337.98, + "end": 6340.56, + "probability": 0.9244 + }, + { + "start": 6341.26, + "end": 6343.9, + "probability": 0.8906 + }, + { + "start": 6344.18, + "end": 6347.48, + "probability": 0.9831 + }, + { + "start": 6347.68, + "end": 6347.72, + "probability": 0.6971 + }, + { + "start": 6347.74, + "end": 6349.44, + "probability": 0.9757 + }, + { + "start": 6349.82, + "end": 6350.34, + "probability": 0.9509 + }, + { + "start": 6351.06, + "end": 6354.34, + "probability": 0.702 + }, + { + "start": 6354.52, + "end": 6355.16, + "probability": 0.3701 + }, + { + "start": 6356.06, + "end": 6356.92, + "probability": 0.7593 + }, + { + "start": 6357.98, + "end": 6359.22, + "probability": 0.1442 + }, + { + "start": 6359.22, + "end": 6359.56, + "probability": 0.2501 + }, + { + "start": 6360.1, + "end": 6360.9, + "probability": 0.1452 + }, + { + "start": 6360.9, + "end": 6361.11, + "probability": 0.196 + }, + { + "start": 6362.0, + "end": 6362.6, + "probability": 0.897 + }, + { + "start": 6362.94, + "end": 6364.08, + "probability": 0.5014 + }, + { + "start": 6365.02, + "end": 6367.04, + "probability": 0.5319 + }, + { + "start": 6370.78, + "end": 6371.86, + "probability": 0.157 + }, + { + "start": 6373.03, + "end": 6375.8, + "probability": 0.7431 + }, + { + "start": 6375.82, + "end": 6378.3, + "probability": 0.9949 + }, + { + "start": 6379.04, + "end": 6380.81, + "probability": 0.7385 + }, + { + "start": 6380.98, + "end": 6382.58, + "probability": 0.8371 + }, + { + "start": 6383.36, + "end": 6384.92, + "probability": 0.9971 + }, + { + "start": 6385.04, + "end": 6385.86, + "probability": 0.9912 + }, + { + "start": 6386.38, + "end": 6386.92, + "probability": 0.6209 + }, + { + "start": 6387.64, + "end": 6391.45, + "probability": 0.6981 + }, + { + "start": 6392.91, + "end": 6394.56, + "probability": 0.8739 + }, + { + "start": 6395.04, + "end": 6397.8, + "probability": 0.4425 + }, + { + "start": 6397.98, + "end": 6399.26, + "probability": 0.9641 + }, + { + "start": 6399.98, + "end": 6401.01, + "probability": 0.2597 + }, + { + "start": 6401.16, + "end": 6401.88, + "probability": 0.8552 + }, + { + "start": 6402.78, + "end": 6403.24, + "probability": 0.9116 + }, + { + "start": 6403.34, + "end": 6404.98, + "probability": 0.7614 + }, + { + "start": 6405.18, + "end": 6405.56, + "probability": 0.6588 + }, + { + "start": 6405.62, + "end": 6406.3, + "probability": 0.9261 + }, + { + "start": 6406.5, + "end": 6407.16, + "probability": 0.9749 + }, + { + "start": 6407.26, + "end": 6407.42, + "probability": 0.5408 + }, + { + "start": 6407.46, + "end": 6409.82, + "probability": 0.7651 + }, + { + "start": 6410.72, + "end": 6413.88, + "probability": 0.9556 + }, + { + "start": 6414.04, + "end": 6416.43, + "probability": 0.7162 + }, + { + "start": 6416.78, + "end": 6418.2, + "probability": 0.8206 + }, + { + "start": 6418.28, + "end": 6418.78, + "probability": 0.9861 + }, + { + "start": 6419.18, + "end": 6421.94, + "probability": 0.8681 + }, + { + "start": 6422.32, + "end": 6423.64, + "probability": 0.9125 + }, + { + "start": 6423.66, + "end": 6428.85, + "probability": 0.974 + }, + { + "start": 6430.0, + "end": 6431.36, + "probability": 0.2116 + }, + { + "start": 6432.36, + "end": 6435.24, + "probability": 0.9572 + }, + { + "start": 6436.32, + "end": 6436.56, + "probability": 0.5038 + }, + { + "start": 6436.68, + "end": 6439.4, + "probability": 0.9285 + }, + { + "start": 6439.66, + "end": 6441.04, + "probability": 0.7426 + }, + { + "start": 6441.2, + "end": 6445.82, + "probability": 0.9863 + }, + { + "start": 6445.82, + "end": 6449.82, + "probability": 0.9999 + }, + { + "start": 6449.92, + "end": 6450.79, + "probability": 0.9805 + }, + { + "start": 6451.66, + "end": 6453.92, + "probability": 0.9985 + }, + { + "start": 6454.7, + "end": 6459.76, + "probability": 0.9952 + }, + { + "start": 6459.94, + "end": 6461.09, + "probability": 0.855 + }, + { + "start": 6462.88, + "end": 6467.0, + "probability": 0.9963 + }, + { + "start": 6468.08, + "end": 6469.02, + "probability": 0.7117 + }, + { + "start": 6469.5, + "end": 6472.5, + "probability": 0.9943 + }, + { + "start": 6473.24, + "end": 6476.3, + "probability": 0.9707 + }, + { + "start": 6476.44, + "end": 6477.82, + "probability": 0.5534 + }, + { + "start": 6478.68, + "end": 6481.94, + "probability": 0.8658 + }, + { + "start": 6482.16, + "end": 6485.72, + "probability": 0.9941 + }, + { + "start": 6486.4, + "end": 6491.36, + "probability": 0.9787 + }, + { + "start": 6491.56, + "end": 6492.6, + "probability": 0.6818 + }, + { + "start": 6492.74, + "end": 6498.48, + "probability": 0.9966 + }, + { + "start": 6499.14, + "end": 6501.12, + "probability": 0.9931 + }, + { + "start": 6501.12, + "end": 6503.88, + "probability": 0.9659 + }, + { + "start": 6504.6, + "end": 6505.0, + "probability": 0.3985 + }, + { + "start": 6505.58, + "end": 6511.68, + "probability": 0.8756 + }, + { + "start": 6511.68, + "end": 6514.92, + "probability": 0.997 + }, + { + "start": 6515.58, + "end": 6519.84, + "probability": 0.9692 + }, + { + "start": 6520.2, + "end": 6523.5, + "probability": 0.9613 + }, + { + "start": 6523.5, + "end": 6525.72, + "probability": 0.9977 + }, + { + "start": 6526.18, + "end": 6527.28, + "probability": 0.9151 + }, + { + "start": 6527.9, + "end": 6529.04, + "probability": 0.9567 + }, + { + "start": 6529.48, + "end": 6533.46, + "probability": 0.9913 + }, + { + "start": 6533.62, + "end": 6537.94, + "probability": 0.9756 + }, + { + "start": 6538.42, + "end": 6540.5, + "probability": 0.9795 + }, + { + "start": 6541.96, + "end": 6543.08, + "probability": 0.8275 + }, + { + "start": 6543.44, + "end": 6547.0, + "probability": 0.7966 + }, + { + "start": 6547.6, + "end": 6553.52, + "probability": 0.8405 + }, + { + "start": 6554.54, + "end": 6560.52, + "probability": 0.7656 + }, + { + "start": 6560.68, + "end": 6561.98, + "probability": 0.5682 + }, + { + "start": 6562.08, + "end": 6566.3, + "probability": 0.9924 + }, + { + "start": 6566.3, + "end": 6571.9, + "probability": 0.7651 + }, + { + "start": 6572.08, + "end": 6574.64, + "probability": 0.9928 + }, + { + "start": 6575.2, + "end": 6580.2, + "probability": 0.9301 + }, + { + "start": 6580.76, + "end": 6581.08, + "probability": 0.2048 + }, + { + "start": 6581.74, + "end": 6585.52, + "probability": 0.9256 + }, + { + "start": 6586.0, + "end": 6588.32, + "probability": 0.9085 + }, + { + "start": 6590.18, + "end": 6592.7, + "probability": 0.9928 + }, + { + "start": 6592.7, + "end": 6594.6, + "probability": 0.9844 + }, + { + "start": 6594.68, + "end": 6595.57, + "probability": 0.8203 + }, + { + "start": 6596.14, + "end": 6596.64, + "probability": 0.8737 + }, + { + "start": 6597.18, + "end": 6600.4, + "probability": 0.8868 + }, + { + "start": 6601.12, + "end": 6604.14, + "probability": 0.9664 + }, + { + "start": 6604.78, + "end": 6605.48, + "probability": 0.8582 + }, + { + "start": 6605.76, + "end": 6610.7, + "probability": 0.9907 + }, + { + "start": 6610.7, + "end": 6616.42, + "probability": 0.988 + }, + { + "start": 6616.56, + "end": 6619.1, + "probability": 0.9042 + }, + { + "start": 6620.6, + "end": 6622.62, + "probability": 0.8306 + }, + { + "start": 6622.7, + "end": 6625.12, + "probability": 0.7114 + }, + { + "start": 6625.2, + "end": 6629.86, + "probability": 0.6487 + }, + { + "start": 6630.2, + "end": 6630.48, + "probability": 0.4828 + }, + { + "start": 6631.24, + "end": 6636.12, + "probability": 0.8883 + }, + { + "start": 6636.12, + "end": 6638.92, + "probability": 0.9889 + }, + { + "start": 6639.42, + "end": 6642.98, + "probability": 0.9588 + }, + { + "start": 6644.04, + "end": 6646.4, + "probability": 0.9856 + }, + { + "start": 6646.84, + "end": 6648.12, + "probability": 0.7333 + }, + { + "start": 6649.08, + "end": 6650.64, + "probability": 0.9192 + }, + { + "start": 6651.22, + "end": 6653.74, + "probability": 0.9536 + }, + { + "start": 6653.74, + "end": 6656.2, + "probability": 0.9989 + }, + { + "start": 6656.78, + "end": 6660.64, + "probability": 0.9957 + }, + { + "start": 6661.4, + "end": 6664.4, + "probability": 0.9421 + }, + { + "start": 6664.83, + "end": 6667.12, + "probability": 0.8688 + }, + { + "start": 6667.4, + "end": 6667.4, + "probability": 0.0635 + }, + { + "start": 6667.42, + "end": 6667.8, + "probability": 0.7014 + }, + { + "start": 6667.84, + "end": 6668.36, + "probability": 0.8994 + }, + { + "start": 6668.44, + "end": 6674.26, + "probability": 0.9519 + }, + { + "start": 6674.26, + "end": 6679.66, + "probability": 0.9436 + }, + { + "start": 6679.74, + "end": 6682.78, + "probability": 0.5003 + }, + { + "start": 6683.52, + "end": 6683.98, + "probability": 0.0386 + }, + { + "start": 6684.04, + "end": 6684.48, + "probability": 0.551 + }, + { + "start": 6684.64, + "end": 6686.6, + "probability": 0.7537 + }, + { + "start": 6686.6, + "end": 6689.28, + "probability": 0.9939 + }, + { + "start": 6689.38, + "end": 6689.84, + "probability": 0.5698 + }, + { + "start": 6689.94, + "end": 6690.18, + "probability": 0.3848 + }, + { + "start": 6690.24, + "end": 6690.64, + "probability": 0.6821 + }, + { + "start": 6691.12, + "end": 6693.62, + "probability": 0.5164 + }, + { + "start": 6694.12, + "end": 6696.0, + "probability": 0.3443 + }, + { + "start": 6696.0, + "end": 6697.26, + "probability": 0.625 + }, + { + "start": 6697.54, + "end": 6699.31, + "probability": 0.7833 + }, + { + "start": 6699.9, + "end": 6700.54, + "probability": 0.8794 + }, + { + "start": 6700.86, + "end": 6702.3, + "probability": 0.3254 + }, + { + "start": 6702.6, + "end": 6703.29, + "probability": 0.4891 + }, + { + "start": 6703.38, + "end": 6704.27, + "probability": 0.7954 + }, + { + "start": 6704.7, + "end": 6708.04, + "probability": 0.96 + }, + { + "start": 6708.04, + "end": 6709.02, + "probability": 0.6274 + }, + { + "start": 6709.08, + "end": 6710.7, + "probability": 0.7903 + }, + { + "start": 6710.94, + "end": 6712.08, + "probability": 0.9678 + }, + { + "start": 6712.08, + "end": 6714.12, + "probability": 0.8099 + }, + { + "start": 6714.2, + "end": 6714.83, + "probability": 0.97 + }, + { + "start": 6715.06, + "end": 6717.2, + "probability": 0.9251 + }, + { + "start": 6717.32, + "end": 6718.14, + "probability": 0.4677 + }, + { + "start": 6719.64, + "end": 6720.42, + "probability": 0.5626 + }, + { + "start": 6720.84, + "end": 6722.84, + "probability": 0.6435 + }, + { + "start": 6722.84, + "end": 6725.54, + "probability": 0.3327 + }, + { + "start": 6725.86, + "end": 6725.86, + "probability": 0.1163 + }, + { + "start": 6725.86, + "end": 6726.34, + "probability": 0.5874 + }, + { + "start": 6726.46, + "end": 6729.0, + "probability": 0.8689 + }, + { + "start": 6729.1, + "end": 6730.06, + "probability": 0.763 + }, + { + "start": 6730.24, + "end": 6732.24, + "probability": 0.5112 + }, + { + "start": 6733.99, + "end": 6735.76, + "probability": 0.8323 + }, + { + "start": 6735.94, + "end": 6737.52, + "probability": 0.8288 + }, + { + "start": 6737.74, + "end": 6740.58, + "probability": 0.78 + }, + { + "start": 6740.92, + "end": 6742.73, + "probability": 0.823 + }, + { + "start": 6743.28, + "end": 6744.56, + "probability": 0.5906 + }, + { + "start": 6744.66, + "end": 6749.44, + "probability": 0.9045 + }, + { + "start": 6749.64, + "end": 6751.96, + "probability": 0.5701 + }, + { + "start": 6754.3, + "end": 6755.56, + "probability": 0.7795 + }, + { + "start": 6755.6, + "end": 6760.64, + "probability": 0.4659 + }, + { + "start": 6760.8, + "end": 6762.72, + "probability": 0.7678 + }, + { + "start": 6762.8, + "end": 6763.7, + "probability": 0.9247 + }, + { + "start": 6763.8, + "end": 6765.12, + "probability": 0.6589 + }, + { + "start": 6765.12, + "end": 6765.54, + "probability": 0.858 + }, + { + "start": 6765.58, + "end": 6766.48, + "probability": 0.979 + }, + { + "start": 6766.6, + "end": 6766.84, + "probability": 0.8249 + }, + { + "start": 6767.52, + "end": 6772.4, + "probability": 0.9659 + }, + { + "start": 6772.54, + "end": 6772.92, + "probability": 0.753 + }, + { + "start": 6772.92, + "end": 6777.82, + "probability": 0.9947 + }, + { + "start": 6777.88, + "end": 6780.6, + "probability": 0.9921 + }, + { + "start": 6781.22, + "end": 6785.92, + "probability": 0.9954 + }, + { + "start": 6786.56, + "end": 6788.72, + "probability": 0.7157 + }, + { + "start": 6788.84, + "end": 6791.53, + "probability": 0.6413 + }, + { + "start": 6792.1, + "end": 6792.68, + "probability": 0.6722 + }, + { + "start": 6792.78, + "end": 6793.7, + "probability": 0.9024 + }, + { + "start": 6794.04, + "end": 6794.48, + "probability": 0.4403 + }, + { + "start": 6794.7, + "end": 6796.02, + "probability": 0.7212 + }, + { + "start": 6796.16, + "end": 6798.16, + "probability": 0.8284 + }, + { + "start": 6798.64, + "end": 6801.92, + "probability": 0.9984 + }, + { + "start": 6802.16, + "end": 6804.06, + "probability": 0.7728 + }, + { + "start": 6804.14, + "end": 6807.11, + "probability": 0.4995 + }, + { + "start": 6807.9, + "end": 6810.54, + "probability": 0.3189 + }, + { + "start": 6812.28, + "end": 6814.48, + "probability": 0.6616 + }, + { + "start": 6815.78, + "end": 6817.72, + "probability": 0.5187 + }, + { + "start": 6817.82, + "end": 6820.42, + "probability": 0.0251 + }, + { + "start": 6821.5, + "end": 6821.98, + "probability": 0.2358 + }, + { + "start": 6822.58, + "end": 6826.84, + "probability": 0.3533 + }, + { + "start": 6826.84, + "end": 6829.86, + "probability": 0.7001 + }, + { + "start": 6830.14, + "end": 6831.08, + "probability": 0.8461 + }, + { + "start": 6831.62, + "end": 6835.22, + "probability": 0.6577 + }, + { + "start": 6835.36, + "end": 6836.9, + "probability": 0.9027 + }, + { + "start": 6837.3, + "end": 6842.26, + "probability": 0.9724 + }, + { + "start": 6842.4, + "end": 6847.76, + "probability": 0.9041 + }, + { + "start": 6847.84, + "end": 6850.62, + "probability": 0.5159 + }, + { + "start": 6851.3, + "end": 6854.96, + "probability": 0.9552 + }, + { + "start": 6855.32, + "end": 6857.08, + "probability": 0.7455 + }, + { + "start": 6857.54, + "end": 6858.8, + "probability": 0.0527 + }, + { + "start": 6861.04, + "end": 6861.12, + "probability": 0.1262 + }, + { + "start": 6861.12, + "end": 6861.92, + "probability": 0.3779 + }, + { + "start": 6862.26, + "end": 6863.33, + "probability": 0.9759 + }, + { + "start": 6863.5, + "end": 6866.58, + "probability": 0.9929 + }, + { + "start": 6867.18, + "end": 6869.28, + "probability": 0.8022 + }, + { + "start": 6869.6, + "end": 6873.54, + "probability": 0.2482 + }, + { + "start": 6874.46, + "end": 6875.57, + "probability": 0.2937 + }, + { + "start": 6875.96, + "end": 6876.72, + "probability": 0.7362 + }, + { + "start": 6885.36, + "end": 6886.74, + "probability": 0.959 + }, + { + "start": 6887.02, + "end": 6887.64, + "probability": 0.6603 + }, + { + "start": 6887.68, + "end": 6888.34, + "probability": 0.8867 + }, + { + "start": 6888.36, + "end": 6893.32, + "probability": 0.9834 + }, + { + "start": 6893.32, + "end": 6896.48, + "probability": 0.9954 + }, + { + "start": 6896.58, + "end": 6897.76, + "probability": 0.916 + }, + { + "start": 6898.38, + "end": 6901.46, + "probability": 0.7502 + }, + { + "start": 6901.46, + "end": 6903.62, + "probability": 0.9932 + }, + { + "start": 6903.7, + "end": 6904.44, + "probability": 0.6951 + }, + { + "start": 6905.04, + "end": 6906.54, + "probability": 0.9185 + }, + { + "start": 6906.9, + "end": 6909.48, + "probability": 0.8389 + }, + { + "start": 6909.64, + "end": 6912.82, + "probability": 0.0453 + }, + { + "start": 6912.82, + "end": 6913.96, + "probability": 0.5728 + }, + { + "start": 6914.68, + "end": 6918.54, + "probability": 0.9865 + }, + { + "start": 6918.9, + "end": 6920.7, + "probability": 0.8468 + }, + { + "start": 6921.04, + "end": 6923.02, + "probability": 0.9934 + }, + { + "start": 6923.1, + "end": 6923.66, + "probability": 0.9311 + }, + { + "start": 6923.98, + "end": 6926.64, + "probability": 0.954 + }, + { + "start": 6926.82, + "end": 6927.26, + "probability": 0.9442 + }, + { + "start": 6927.96, + "end": 6931.2, + "probability": 0.9524 + }, + { + "start": 6931.64, + "end": 6933.26, + "probability": 0.9844 + }, + { + "start": 6933.4, + "end": 6934.12, + "probability": 0.8965 + }, + { + "start": 6934.34, + "end": 6937.92, + "probability": 0.8765 + }, + { + "start": 6938.69, + "end": 6943.06, + "probability": 0.6863 + }, + { + "start": 6943.42, + "end": 6945.5, + "probability": 0.6241 + }, + { + "start": 6945.98, + "end": 6948.74, + "probability": 0.6665 + }, + { + "start": 6948.84, + "end": 6949.4, + "probability": 0.8973 + }, + { + "start": 6949.48, + "end": 6950.1, + "probability": 0.7996 + }, + { + "start": 6950.24, + "end": 6953.34, + "probability": 0.9583 + }, + { + "start": 6954.1, + "end": 6955.18, + "probability": 0.5308 + }, + { + "start": 6956.0, + "end": 6956.3, + "probability": 0.856 + }, + { + "start": 6956.9, + "end": 6959.68, + "probability": 0.883 + }, + { + "start": 6959.84, + "end": 6962.39, + "probability": 0.8495 + }, + { + "start": 6963.84, + "end": 6964.18, + "probability": 0.776 + }, + { + "start": 6965.48, + "end": 6970.18, + "probability": 0.9016 + }, + { + "start": 6970.32, + "end": 6971.35, + "probability": 0.9479 + }, + { + "start": 6972.86, + "end": 6973.28, + "probability": 0.0833 + }, + { + "start": 6973.36, + "end": 6973.74, + "probability": 0.8144 + }, + { + "start": 6974.16, + "end": 6975.44, + "probability": 0.791 + }, + { + "start": 6976.66, + "end": 6979.56, + "probability": 0.0654 + }, + { + "start": 6979.74, + "end": 6979.84, + "probability": 0.6605 + }, + { + "start": 6979.94, + "end": 6981.7, + "probability": 0.9207 + }, + { + "start": 6981.82, + "end": 6981.84, + "probability": 0.5287 + }, + { + "start": 6981.84, + "end": 6986.78, + "probability": 0.8723 + }, + { + "start": 6987.3, + "end": 6988.5, + "probability": 0.7696 + }, + { + "start": 6988.88, + "end": 6991.66, + "probability": 0.6746 + }, + { + "start": 6991.86, + "end": 6994.92, + "probability": 0.8774 + }, + { + "start": 6995.02, + "end": 6995.94, + "probability": 0.457 + }, + { + "start": 6995.98, + "end": 6996.6, + "probability": 0.7466 + }, + { + "start": 6996.76, + "end": 6997.8, + "probability": 0.9575 + }, + { + "start": 6998.2, + "end": 6999.32, + "probability": 0.7125 + }, + { + "start": 6999.38, + "end": 7000.58, + "probability": 0.9772 + }, + { + "start": 7000.8, + "end": 7001.7, + "probability": 0.8245 + }, + { + "start": 7001.8, + "end": 7002.66, + "probability": 0.8609 + }, + { + "start": 7002.78, + "end": 7005.56, + "probability": 0.7937 + }, + { + "start": 7005.58, + "end": 7006.14, + "probability": 0.3191 + }, + { + "start": 7006.32, + "end": 7006.86, + "probability": 0.7313 + }, + { + "start": 7007.16, + "end": 7008.6, + "probability": 0.6312 + }, + { + "start": 7008.64, + "end": 7009.42, + "probability": 0.7294 + }, + { + "start": 7018.84, + "end": 7022.48, + "probability": 0.95 + }, + { + "start": 7022.68, + "end": 7027.1, + "probability": 0.9561 + }, + { + "start": 7027.2, + "end": 7028.62, + "probability": 0.8093 + }, + { + "start": 7029.42, + "end": 7029.94, + "probability": 0.8102 + }, + { + "start": 7030.18, + "end": 7034.38, + "probability": 0.9658 + }, + { + "start": 7036.76, + "end": 7040.96, + "probability": 0.8285 + }, + { + "start": 7041.08, + "end": 7044.18, + "probability": 0.9595 + }, + { + "start": 7044.24, + "end": 7045.22, + "probability": 0.9244 + }, + { + "start": 7046.33, + "end": 7048.14, + "probability": 0.4981 + }, + { + "start": 7048.26, + "end": 7049.02, + "probability": 0.9443 + }, + { + "start": 7049.18, + "end": 7050.76, + "probability": 0.8915 + }, + { + "start": 7050.82, + "end": 7051.46, + "probability": 0.8603 + }, + { + "start": 7051.52, + "end": 7052.1, + "probability": 0.9667 + }, + { + "start": 7052.1, + "end": 7052.62, + "probability": 0.7845 + }, + { + "start": 7052.78, + "end": 7053.38, + "probability": 0.6223 + }, + { + "start": 7053.64, + "end": 7054.36, + "probability": 0.9714 + }, + { + "start": 7054.5, + "end": 7056.32, + "probability": 0.8701 + }, + { + "start": 7056.56, + "end": 7058.52, + "probability": 0.9104 + }, + { + "start": 7059.56, + "end": 7062.32, + "probability": 0.8919 + }, + { + "start": 7063.52, + "end": 7066.76, + "probability": 0.9351 + }, + { + "start": 7066.92, + "end": 7067.3, + "probability": 0.7423 + }, + { + "start": 7067.38, + "end": 7068.94, + "probability": 0.954 + }, + { + "start": 7069.14, + "end": 7069.2, + "probability": 0.0067 + }, + { + "start": 7069.26, + "end": 7070.58, + "probability": 0.9924 + }, + { + "start": 7071.34, + "end": 7073.56, + "probability": 0.9772 + }, + { + "start": 7074.5, + "end": 7075.34, + "probability": 0.9292 + }, + { + "start": 7075.76, + "end": 7078.09, + "probability": 0.9463 + }, + { + "start": 7078.9, + "end": 7079.88, + "probability": 0.9478 + }, + { + "start": 7079.9, + "end": 7080.96, + "probability": 0.9854 + }, + { + "start": 7081.06, + "end": 7081.44, + "probability": 0.953 + }, + { + "start": 7082.98, + "end": 7083.58, + "probability": 0.0557 + }, + { + "start": 7084.02, + "end": 7087.42, + "probability": 0.9834 + }, + { + "start": 7087.62, + "end": 7088.48, + "probability": 0.9788 + }, + { + "start": 7089.1, + "end": 7090.34, + "probability": 0.973 + }, + { + "start": 7090.56, + "end": 7091.64, + "probability": 0.8065 + }, + { + "start": 7091.66, + "end": 7092.64, + "probability": 0.4498 + }, + { + "start": 7092.8, + "end": 7093.08, + "probability": 0.7037 + }, + { + "start": 7093.3, + "end": 7096.28, + "probability": 0.665 + }, + { + "start": 7096.68, + "end": 7098.12, + "probability": 0.5196 + }, + { + "start": 7098.2, + "end": 7099.42, + "probability": 0.7925 + }, + { + "start": 7099.58, + "end": 7103.12, + "probability": 0.9974 + }, + { + "start": 7103.62, + "end": 7105.72, + "probability": 0.8151 + }, + { + "start": 7105.74, + "end": 7106.43, + "probability": 0.7375 + }, + { + "start": 7106.62, + "end": 7109.0, + "probability": 0.8976 + }, + { + "start": 7109.18, + "end": 7110.49, + "probability": 0.9858 + }, + { + "start": 7110.76, + "end": 7111.96, + "probability": 0.8992 + }, + { + "start": 7112.24, + "end": 7115.2, + "probability": 0.9867 + }, + { + "start": 7115.84, + "end": 7117.74, + "probability": 0.8141 + }, + { + "start": 7117.88, + "end": 7118.92, + "probability": 0.886 + }, + { + "start": 7119.44, + "end": 7120.26, + "probability": 0.7358 + }, + { + "start": 7120.34, + "end": 7121.28, + "probability": 0.7732 + }, + { + "start": 7121.36, + "end": 7122.06, + "probability": 0.7701 + }, + { + "start": 7122.4, + "end": 7123.78, + "probability": 0.7137 + }, + { + "start": 7124.4, + "end": 7128.44, + "probability": 0.9155 + }, + { + "start": 7128.58, + "end": 7129.62, + "probability": 0.7789 + }, + { + "start": 7129.98, + "end": 7135.6, + "probability": 0.9728 + }, + { + "start": 7135.82, + "end": 7141.22, + "probability": 0.9104 + }, + { + "start": 7141.46, + "end": 7144.48, + "probability": 0.9934 + }, + { + "start": 7145.2, + "end": 7146.0, + "probability": 0.681 + }, + { + "start": 7146.16, + "end": 7149.18, + "probability": 0.9974 + }, + { + "start": 7149.5, + "end": 7153.36, + "probability": 0.8691 + }, + { + "start": 7153.88, + "end": 7157.84, + "probability": 0.8105 + }, + { + "start": 7157.92, + "end": 7159.92, + "probability": 0.9975 + }, + { + "start": 7160.26, + "end": 7165.34, + "probability": 0.9802 + }, + { + "start": 7165.8, + "end": 7166.54, + "probability": 0.9454 + }, + { + "start": 7166.62, + "end": 7167.92, + "probability": 0.9834 + }, + { + "start": 7168.16, + "end": 7169.82, + "probability": 0.9238 + }, + { + "start": 7170.76, + "end": 7172.56, + "probability": 0.9878 + }, + { + "start": 7173.3, + "end": 7174.04, + "probability": 0.9832 + }, + { + "start": 7174.24, + "end": 7175.44, + "probability": 0.6571 + }, + { + "start": 7175.52, + "end": 7182.61, + "probability": 0.9261 + }, + { + "start": 7183.42, + "end": 7187.0, + "probability": 0.8976 + }, + { + "start": 7187.46, + "end": 7189.9, + "probability": 0.8764 + }, + { + "start": 7189.98, + "end": 7191.48, + "probability": 0.991 + }, + { + "start": 7191.54, + "end": 7193.3, + "probability": 0.8955 + }, + { + "start": 7193.46, + "end": 7194.34, + "probability": 0.8394 + }, + { + "start": 7194.44, + "end": 7195.85, + "probability": 0.97 + }, + { + "start": 7196.12, + "end": 7201.08, + "probability": 0.7494 + }, + { + "start": 7201.34, + "end": 7202.68, + "probability": 0.8971 + }, + { + "start": 7203.46, + "end": 7204.28, + "probability": 0.859 + }, + { + "start": 7204.7, + "end": 7207.78, + "probability": 0.9893 + }, + { + "start": 7208.08, + "end": 7210.18, + "probability": 0.9775 + }, + { + "start": 7210.42, + "end": 7211.49, + "probability": 0.6027 + }, + { + "start": 7211.94, + "end": 7212.32, + "probability": 0.8609 + }, + { + "start": 7212.7, + "end": 7215.0, + "probability": 0.7508 + }, + { + "start": 7215.18, + "end": 7215.64, + "probability": 0.6527 + }, + { + "start": 7215.7, + "end": 7216.56, + "probability": 0.9049 + }, + { + "start": 7217.0, + "end": 7219.5, + "probability": 0.9894 + }, + { + "start": 7219.82, + "end": 7221.76, + "probability": 0.8922 + }, + { + "start": 7221.96, + "end": 7224.4, + "probability": 0.9974 + }, + { + "start": 7224.4, + "end": 7228.26, + "probability": 0.9302 + }, + { + "start": 7228.42, + "end": 7228.96, + "probability": 0.483 + }, + { + "start": 7232.38, + "end": 7235.04, + "probability": 0.9375 + }, + { + "start": 7239.62, + "end": 7242.56, + "probability": 0.8174 + }, + { + "start": 7242.68, + "end": 7245.0, + "probability": 0.8444 + }, + { + "start": 7245.56, + "end": 7249.9, + "probability": 0.6221 + }, + { + "start": 7250.44, + "end": 7255.81, + "probability": 0.2508 + }, + { + "start": 7256.28, + "end": 7261.52, + "probability": 0.6551 + }, + { + "start": 7263.24, + "end": 7263.9, + "probability": 0.051 + }, + { + "start": 7263.9, + "end": 7266.02, + "probability": 0.9082 + }, + { + "start": 7266.26, + "end": 7271.28, + "probability": 0.8009 + }, + { + "start": 7271.3, + "end": 7272.94, + "probability": 0.6717 + }, + { + "start": 7273.02, + "end": 7273.02, + "probability": 0.3211 + }, + { + "start": 7273.02, + "end": 7273.66, + "probability": 0.177 + }, + { + "start": 7273.78, + "end": 7275.34, + "probability": 0.7839 + }, + { + "start": 7275.96, + "end": 7276.94, + "probability": 0.6672 + }, + { + "start": 7277.1, + "end": 7278.62, + "probability": 0.958 + }, + { + "start": 7278.76, + "end": 7280.58, + "probability": 0.957 + }, + { + "start": 7281.08, + "end": 7282.04, + "probability": 0.8676 + }, + { + "start": 7282.26, + "end": 7283.64, + "probability": 0.896 + }, + { + "start": 7284.2, + "end": 7285.76, + "probability": 0.7777 + }, + { + "start": 7294.24, + "end": 7295.5, + "probability": 0.5034 + }, + { + "start": 7295.56, + "end": 7296.72, + "probability": 0.5268 + }, + { + "start": 7299.2, + "end": 7299.79, + "probability": 0.1453 + }, + { + "start": 7300.04, + "end": 7300.24, + "probability": 0.714 + }, + { + "start": 7300.28, + "end": 7301.34, + "probability": 0.8674 + }, + { + "start": 7301.38, + "end": 7304.78, + "probability": 0.9367 + }, + { + "start": 7305.9, + "end": 7310.18, + "probability": 0.9897 + }, + { + "start": 7311.52, + "end": 7315.6, + "probability": 0.9912 + }, + { + "start": 7315.6, + "end": 7318.18, + "probability": 0.9789 + }, + { + "start": 7324.96, + "end": 7326.92, + "probability": 0.9976 + }, + { + "start": 7328.24, + "end": 7331.86, + "probability": 0.9884 + }, + { + "start": 7332.7, + "end": 7334.24, + "probability": 0.9755 + }, + { + "start": 7335.86, + "end": 7336.94, + "probability": 0.9878 + }, + { + "start": 7337.58, + "end": 7339.26, + "probability": 0.9605 + }, + { + "start": 7339.52, + "end": 7346.42, + "probability": 0.9921 + }, + { + "start": 7347.44, + "end": 7351.4, + "probability": 0.8812 + }, + { + "start": 7352.5, + "end": 7357.74, + "probability": 0.9789 + }, + { + "start": 7358.38, + "end": 7361.6, + "probability": 0.9813 + }, + { + "start": 7362.7, + "end": 7364.18, + "probability": 0.9731 + }, + { + "start": 7364.66, + "end": 7367.98, + "probability": 0.9928 + }, + { + "start": 7369.16, + "end": 7370.78, + "probability": 0.764 + }, + { + "start": 7371.1, + "end": 7375.1, + "probability": 0.9855 + }, + { + "start": 7375.24, + "end": 7377.04, + "probability": 0.7785 + }, + { + "start": 7377.12, + "end": 7380.1, + "probability": 0.9854 + }, + { + "start": 7380.38, + "end": 7382.04, + "probability": 0.9915 + }, + { + "start": 7382.9, + "end": 7383.36, + "probability": 0.6704 + }, + { + "start": 7384.48, + "end": 7386.34, + "probability": 0.842 + }, + { + "start": 7386.56, + "end": 7386.76, + "probability": 0.7342 + }, + { + "start": 7387.62, + "end": 7388.94, + "probability": 0.8209 + }, + { + "start": 7389.08, + "end": 7392.7, + "probability": 0.9762 + }, + { + "start": 7393.86, + "end": 7398.6, + "probability": 0.6807 + }, + { + "start": 7399.42, + "end": 7402.76, + "probability": 0.928 + }, + { + "start": 7402.86, + "end": 7404.08, + "probability": 0.9897 + }, + { + "start": 7404.68, + "end": 7406.9, + "probability": 0.9056 + }, + { + "start": 7407.7, + "end": 7408.58, + "probability": 0.8119 + }, + { + "start": 7409.8, + "end": 7410.66, + "probability": 0.821 + }, + { + "start": 7412.3, + "end": 7414.18, + "probability": 0.9558 + }, + { + "start": 7414.72, + "end": 7416.68, + "probability": 0.973 + }, + { + "start": 7417.38, + "end": 7419.68, + "probability": 0.8875 + }, + { + "start": 7420.42, + "end": 7422.54, + "probability": 0.8636 + }, + { + "start": 7423.08, + "end": 7424.14, + "probability": 0.9638 + }, + { + "start": 7424.26, + "end": 7428.9, + "probability": 0.9765 + }, + { + "start": 7429.54, + "end": 7431.96, + "probability": 0.9649 + }, + { + "start": 7432.64, + "end": 7433.16, + "probability": 0.7269 + }, + { + "start": 7434.28, + "end": 7436.98, + "probability": 0.9812 + }, + { + "start": 7437.66, + "end": 7441.34, + "probability": 0.8608 + }, + { + "start": 7441.9, + "end": 7443.04, + "probability": 0.5432 + }, + { + "start": 7443.6, + "end": 7447.9, + "probability": 0.958 + }, + { + "start": 7448.92, + "end": 7450.46, + "probability": 0.9919 + }, + { + "start": 7450.56, + "end": 7454.88, + "probability": 0.985 + }, + { + "start": 7456.92, + "end": 7458.94, + "probability": 0.8689 + }, + { + "start": 7459.64, + "end": 7463.44, + "probability": 0.8954 + }, + { + "start": 7464.32, + "end": 7468.86, + "probability": 0.8594 + }, + { + "start": 7469.56, + "end": 7470.92, + "probability": 0.973 + }, + { + "start": 7471.0, + "end": 7475.88, + "probability": 0.9873 + }, + { + "start": 7477.1, + "end": 7480.18, + "probability": 0.9801 + }, + { + "start": 7481.08, + "end": 7485.14, + "probability": 0.9299 + }, + { + "start": 7485.76, + "end": 7487.56, + "probability": 0.9573 + }, + { + "start": 7488.16, + "end": 7492.36, + "probability": 0.9714 + }, + { + "start": 7493.38, + "end": 7496.18, + "probability": 0.9674 + }, + { + "start": 7497.38, + "end": 7500.26, + "probability": 0.9949 + }, + { + "start": 7500.9, + "end": 7506.34, + "probability": 0.998 + }, + { + "start": 7506.72, + "end": 7512.58, + "probability": 0.9863 + }, + { + "start": 7513.62, + "end": 7517.42, + "probability": 0.8723 + }, + { + "start": 7518.24, + "end": 7520.56, + "probability": 0.9335 + }, + { + "start": 7521.0, + "end": 7523.18, + "probability": 0.9879 + }, + { + "start": 7523.98, + "end": 7526.5, + "probability": 0.8983 + }, + { + "start": 7526.94, + "end": 7530.24, + "probability": 0.9845 + }, + { + "start": 7531.5, + "end": 7538.04, + "probability": 0.993 + }, + { + "start": 7539.5, + "end": 7540.62, + "probability": 0.7399 + }, + { + "start": 7541.48, + "end": 7542.64, + "probability": 0.8151 + }, + { + "start": 7543.42, + "end": 7546.78, + "probability": 0.8796 + }, + { + "start": 7547.4, + "end": 7552.82, + "probability": 0.9782 + }, + { + "start": 7553.16, + "end": 7554.68, + "probability": 0.7927 + }, + { + "start": 7555.34, + "end": 7557.56, + "probability": 0.9828 + }, + { + "start": 7559.96, + "end": 7561.7, + "probability": 0.8787 + }, + { + "start": 7562.36, + "end": 7566.46, + "probability": 0.9834 + }, + { + "start": 7566.46, + "end": 7571.08, + "probability": 0.8782 + }, + { + "start": 7571.7, + "end": 7574.32, + "probability": 0.9823 + }, + { + "start": 7575.3, + "end": 7580.26, + "probability": 0.9104 + }, + { + "start": 7580.32, + "end": 7580.58, + "probability": 0.6645 + }, + { + "start": 7581.66, + "end": 7585.16, + "probability": 0.9873 + }, + { + "start": 7585.68, + "end": 7586.94, + "probability": 0.9318 + }, + { + "start": 7587.7, + "end": 7589.74, + "probability": 0.8317 + }, + { + "start": 7590.44, + "end": 7597.22, + "probability": 0.9894 + }, + { + "start": 7598.64, + "end": 7600.12, + "probability": 0.7636 + }, + { + "start": 7601.14, + "end": 7601.92, + "probability": 0.9518 + }, + { + "start": 7602.7, + "end": 7604.46, + "probability": 0.9808 + }, + { + "start": 7605.06, + "end": 7606.34, + "probability": 0.9176 + }, + { + "start": 7607.14, + "end": 7608.78, + "probability": 0.9799 + }, + { + "start": 7609.44, + "end": 7611.46, + "probability": 0.9657 + }, + { + "start": 7613.34, + "end": 7615.86, + "probability": 0.979 + }, + { + "start": 7617.08, + "end": 7618.78, + "probability": 0.816 + }, + { + "start": 7619.84, + "end": 7621.14, + "probability": 0.948 + }, + { + "start": 7621.2, + "end": 7624.72, + "probability": 0.8882 + }, + { + "start": 7625.4, + "end": 7627.34, + "probability": 0.9712 + }, + { + "start": 7627.88, + "end": 7632.1, + "probability": 0.9834 + }, + { + "start": 7632.88, + "end": 7633.44, + "probability": 0.5409 + }, + { + "start": 7634.14, + "end": 7635.38, + "probability": 0.9502 + }, + { + "start": 7636.6, + "end": 7638.96, + "probability": 0.9724 + }, + { + "start": 7639.5, + "end": 7640.66, + "probability": 0.9663 + }, + { + "start": 7641.26, + "end": 7641.86, + "probability": 0.8283 + }, + { + "start": 7642.4, + "end": 7643.48, + "probability": 0.9827 + }, + { + "start": 7644.12, + "end": 7647.48, + "probability": 0.9985 + }, + { + "start": 7647.48, + "end": 7651.96, + "probability": 0.5752 + }, + { + "start": 7652.74, + "end": 7653.28, + "probability": 0.6728 + }, + { + "start": 7653.92, + "end": 7657.38, + "probability": 0.915 + }, + { + "start": 7658.46, + "end": 7658.96, + "probability": 0.9113 + }, + { + "start": 7660.48, + "end": 7661.12, + "probability": 0.7274 + }, + { + "start": 7661.2, + "end": 7664.94, + "probability": 0.9678 + }, + { + "start": 7664.94, + "end": 7667.84, + "probability": 0.517 + }, + { + "start": 7667.84, + "end": 7668.4, + "probability": 0.4713 + }, + { + "start": 7669.58, + "end": 7671.46, + "probability": 0.8741 + }, + { + "start": 7672.06, + "end": 7675.18, + "probability": 0.9883 + }, + { + "start": 7675.96, + "end": 7677.16, + "probability": 0.9417 + }, + { + "start": 7677.86, + "end": 7680.94, + "probability": 0.9635 + }, + { + "start": 7681.12, + "end": 7683.46, + "probability": 0.9131 + }, + { + "start": 7683.52, + "end": 7684.48, + "probability": 0.5869 + }, + { + "start": 7684.48, + "end": 7685.64, + "probability": 0.3231 + }, + { + "start": 7685.9, + "end": 7686.5, + "probability": 0.6213 + }, + { + "start": 7687.46, + "end": 7690.36, + "probability": 0.4139 + }, + { + "start": 7691.04, + "end": 7696.32, + "probability": 0.9007 + }, + { + "start": 7696.7, + "end": 7697.92, + "probability": 0.7223 + }, + { + "start": 7698.68, + "end": 7700.02, + "probability": 0.7858 + }, + { + "start": 7700.48, + "end": 7705.74, + "probability": 0.8941 + }, + { + "start": 7706.3, + "end": 7709.88, + "probability": 0.7345 + }, + { + "start": 7710.66, + "end": 7713.02, + "probability": 0.9282 + }, + { + "start": 7713.62, + "end": 7718.26, + "probability": 0.9647 + }, + { + "start": 7718.96, + "end": 7723.48, + "probability": 0.9232 + }, + { + "start": 7723.48, + "end": 7725.04, + "probability": 0.3507 + }, + { + "start": 7725.54, + "end": 7728.58, + "probability": 0.9594 + }, + { + "start": 7728.84, + "end": 7732.4, + "probability": 0.8111 + }, + { + "start": 7732.54, + "end": 7737.14, + "probability": 0.9797 + }, + { + "start": 7737.34, + "end": 7741.97, + "probability": 0.9951 + }, + { + "start": 7743.46, + "end": 7746.52, + "probability": 0.9968 + }, + { + "start": 7747.36, + "end": 7749.56, + "probability": 0.8986 + }, + { + "start": 7750.04, + "end": 7753.92, + "probability": 0.9549 + }, + { + "start": 7756.82, + "end": 7761.18, + "probability": 0.9214 + }, + { + "start": 7761.76, + "end": 7762.82, + "probability": 0.8542 + }, + { + "start": 7763.34, + "end": 7764.08, + "probability": 0.9892 + }, + { + "start": 7764.78, + "end": 7767.62, + "probability": 0.8947 + }, + { + "start": 7768.24, + "end": 7770.62, + "probability": 0.9792 + }, + { + "start": 7771.82, + "end": 7773.64, + "probability": 0.8826 + }, + { + "start": 7774.52, + "end": 7777.8, + "probability": 0.9357 + }, + { + "start": 7778.48, + "end": 7779.2, + "probability": 0.9743 + }, + { + "start": 7779.76, + "end": 7780.78, + "probability": 0.987 + }, + { + "start": 7781.7, + "end": 7787.34, + "probability": 0.9731 + }, + { + "start": 7788.56, + "end": 7793.78, + "probability": 0.9869 + }, + { + "start": 7794.68, + "end": 7795.43, + "probability": 0.9875 + }, + { + "start": 7797.28, + "end": 7800.72, + "probability": 0.9774 + }, + { + "start": 7801.84, + "end": 7804.76, + "probability": 0.9032 + }, + { + "start": 7805.34, + "end": 7806.54, + "probability": 0.9567 + }, + { + "start": 7807.36, + "end": 7808.94, + "probability": 0.6315 + }, + { + "start": 7808.94, + "end": 7810.18, + "probability": 0.543 + }, + { + "start": 7810.18, + "end": 7812.28, + "probability": 0.7269 + }, + { + "start": 7812.6, + "end": 7819.3, + "probability": 0.8498 + }, + { + "start": 7819.36, + "end": 7820.32, + "probability": 0.8279 + }, + { + "start": 7821.18, + "end": 7824.22, + "probability": 0.8969 + }, + { + "start": 7824.42, + "end": 7828.6, + "probability": 0.9871 + }, + { + "start": 7828.7, + "end": 7831.48, + "probability": 0.8837 + }, + { + "start": 7832.56, + "end": 7836.66, + "probability": 0.9705 + }, + { + "start": 7837.14, + "end": 7837.68, + "probability": 0.8209 + }, + { + "start": 7837.86, + "end": 7838.54, + "probability": 0.6286 + }, + { + "start": 7838.62, + "end": 7842.18, + "probability": 0.9862 + }, + { + "start": 7842.18, + "end": 7844.86, + "probability": 0.9928 + }, + { + "start": 7845.34, + "end": 7845.92, + "probability": 0.6523 + }, + { + "start": 7848.04, + "end": 7849.34, + "probability": 0.9675 + }, + { + "start": 7850.74, + "end": 7850.94, + "probability": 0.3901 + }, + { + "start": 7875.9, + "end": 7877.06, + "probability": 0.6373 + }, + { + "start": 7877.26, + "end": 7879.14, + "probability": 0.8041 + }, + { + "start": 7879.34, + "end": 7883.48, + "probability": 0.9834 + }, + { + "start": 7883.48, + "end": 7890.2, + "probability": 0.9935 + }, + { + "start": 7890.28, + "end": 7892.04, + "probability": 0.9973 + }, + { + "start": 7893.66, + "end": 7894.68, + "probability": 0.4651 + }, + { + "start": 7894.68, + "end": 7894.86, + "probability": 0.7154 + }, + { + "start": 7894.96, + "end": 7895.78, + "probability": 0.9208 + }, + { + "start": 7896.0, + "end": 7897.86, + "probability": 0.9961 + }, + { + "start": 7897.86, + "end": 7900.88, + "probability": 0.9401 + }, + { + "start": 7901.06, + "end": 7901.4, + "probability": 0.4094 + }, + { + "start": 7901.48, + "end": 7908.65, + "probability": 0.8433 + }, + { + "start": 7909.26, + "end": 7910.08, + "probability": 0.9353 + }, + { + "start": 7910.14, + "end": 7910.4, + "probability": 0.7697 + }, + { + "start": 7910.44, + "end": 7911.43, + "probability": 0.8883 + }, + { + "start": 7911.58, + "end": 7911.84, + "probability": 0.44 + }, + { + "start": 7913.46, + "end": 7913.84, + "probability": 0.0602 + }, + { + "start": 7913.84, + "end": 7913.84, + "probability": 0.2619 + }, + { + "start": 7913.84, + "end": 7915.34, + "probability": 0.5095 + }, + { + "start": 7916.44, + "end": 7917.36, + "probability": 0.9861 + }, + { + "start": 7917.48, + "end": 7918.2, + "probability": 0.3722 + }, + { + "start": 7918.28, + "end": 7919.98, + "probability": 0.9723 + }, + { + "start": 7920.1, + "end": 7925.94, + "probability": 0.5984 + }, + { + "start": 7926.46, + "end": 7930.42, + "probability": 0.7508 + }, + { + "start": 7930.42, + "end": 7931.48, + "probability": 0.836 + }, + { + "start": 7931.58, + "end": 7931.6, + "probability": 0.2126 + }, + { + "start": 7931.64, + "end": 7931.78, + "probability": 0.0842 + }, + { + "start": 7933.35, + "end": 7936.96, + "probability": 0.0455 + }, + { + "start": 7937.0, + "end": 7937.08, + "probability": 0.0589 + }, + { + "start": 7937.08, + "end": 7937.08, + "probability": 0.2182 + }, + { + "start": 7937.08, + "end": 7937.08, + "probability": 0.0098 + }, + { + "start": 7937.08, + "end": 7937.08, + "probability": 0.3686 + }, + { + "start": 7937.08, + "end": 7940.56, + "probability": 0.7984 + }, + { + "start": 7941.1, + "end": 7942.62, + "probability": 0.6932 + }, + { + "start": 7942.76, + "end": 7946.22, + "probability": 0.6802 + }, + { + "start": 7946.4, + "end": 7950.58, + "probability": 0.7529 + }, + { + "start": 7951.92, + "end": 7957.1, + "probability": 0.9563 + }, + { + "start": 7957.14, + "end": 7958.1, + "probability": 0.9046 + }, + { + "start": 7958.7, + "end": 7962.0, + "probability": 0.9987 + }, + { + "start": 7962.52, + "end": 7964.0, + "probability": 0.7288 + }, + { + "start": 7964.04, + "end": 7964.62, + "probability": 0.8029 + }, + { + "start": 7964.86, + "end": 7966.76, + "probability": 0.9197 + }, + { + "start": 7966.82, + "end": 7967.74, + "probability": 0.9166 + }, + { + "start": 7968.61, + "end": 7971.22, + "probability": 0.9483 + }, + { + "start": 7971.26, + "end": 7972.6, + "probability": 0.6666 + }, + { + "start": 7972.7, + "end": 7976.94, + "probability": 0.9326 + }, + { + "start": 7977.04, + "end": 7979.6, + "probability": 0.9771 + }, + { + "start": 7979.74, + "end": 7980.58, + "probability": 0.347 + }, + { + "start": 7980.72, + "end": 7982.72, + "probability": 0.2971 + }, + { + "start": 7983.0, + "end": 7987.68, + "probability": 0.9332 + }, + { + "start": 7987.74, + "end": 7990.48, + "probability": 0.7929 + }, + { + "start": 7991.08, + "end": 7994.47, + "probability": 0.8952 + }, + { + "start": 7994.72, + "end": 7999.08, + "probability": 0.9209 + }, + { + "start": 7999.08, + "end": 8002.24, + "probability": 0.9958 + }, + { + "start": 8002.36, + "end": 8006.38, + "probability": 0.993 + }, + { + "start": 8008.7, + "end": 8009.08, + "probability": 0.6464 + }, + { + "start": 8009.1, + "end": 8013.56, + "probability": 0.9955 + }, + { + "start": 8013.56, + "end": 8016.94, + "probability": 0.9814 + }, + { + "start": 8017.8, + "end": 8020.16, + "probability": 0.8455 + }, + { + "start": 8020.32, + "end": 8024.9, + "probability": 0.9826 + }, + { + "start": 8025.88, + "end": 8028.92, + "probability": 0.9824 + }, + { + "start": 8028.92, + "end": 8032.1, + "probability": 0.9827 + }, + { + "start": 8032.16, + "end": 8036.88, + "probability": 0.9985 + }, + { + "start": 8037.74, + "end": 8040.67, + "probability": 0.9072 + }, + { + "start": 8040.7, + "end": 8044.44, + "probability": 0.9974 + }, + { + "start": 8044.94, + "end": 8050.28, + "probability": 0.9661 + }, + { + "start": 8050.37, + "end": 8056.48, + "probability": 0.9985 + }, + { + "start": 8057.08, + "end": 8057.56, + "probability": 0.1565 + }, + { + "start": 8057.56, + "end": 8059.51, + "probability": 0.7576 + }, + { + "start": 8059.92, + "end": 8062.28, + "probability": 0.6643 + }, + { + "start": 8062.42, + "end": 8065.4, + "probability": 0.9979 + }, + { + "start": 8065.5, + "end": 8066.56, + "probability": 0.7036 + }, + { + "start": 8066.64, + "end": 8068.94, + "probability": 0.1993 + }, + { + "start": 8069.06, + "end": 8069.26, + "probability": 0.7634 + }, + { + "start": 8069.36, + "end": 8069.54, + "probability": 0.4283 + }, + { + "start": 8069.66, + "end": 8074.26, + "probability": 0.9634 + }, + { + "start": 8074.26, + "end": 8076.34, + "probability": 0.9162 + }, + { + "start": 8076.66, + "end": 8078.92, + "probability": 0.9937 + }, + { + "start": 8079.0, + "end": 8080.02, + "probability": 0.7133 + }, + { + "start": 8080.56, + "end": 8083.09, + "probability": 0.9977 + }, + { + "start": 8083.18, + "end": 8088.12, + "probability": 0.9904 + }, + { + "start": 8089.12, + "end": 8092.42, + "probability": 0.876 + }, + { + "start": 8092.52, + "end": 8094.47, + "probability": 0.9232 + }, + { + "start": 8095.08, + "end": 8098.06, + "probability": 0.977 + }, + { + "start": 8098.06, + "end": 8100.56, + "probability": 0.9981 + }, + { + "start": 8100.82, + "end": 8105.2, + "probability": 0.8945 + }, + { + "start": 8106.44, + "end": 8108.94, + "probability": 0.8271 + }, + { + "start": 8109.04, + "end": 8114.74, + "probability": 0.9812 + }, + { + "start": 8115.52, + "end": 8117.22, + "probability": 0.7979 + }, + { + "start": 8117.4, + "end": 8120.26, + "probability": 0.9775 + }, + { + "start": 8120.3, + "end": 8121.16, + "probability": 0.2165 + }, + { + "start": 8121.16, + "end": 8123.34, + "probability": 0.8896 + }, + { + "start": 8125.32, + "end": 8126.68, + "probability": 0.0286 + }, + { + "start": 8126.68, + "end": 8127.26, + "probability": 0.0393 + }, + { + "start": 8129.7, + "end": 8135.22, + "probability": 0.9942 + }, + { + "start": 8135.38, + "end": 8137.52, + "probability": 0.1132 + }, + { + "start": 8137.52, + "end": 8138.4, + "probability": 0.181 + }, + { + "start": 8138.42, + "end": 8143.94, + "probability": 0.9682 + }, + { + "start": 8144.64, + "end": 8145.72, + "probability": 0.9983 + }, + { + "start": 8149.9, + "end": 8153.08, + "probability": 0.7441 + }, + { + "start": 8153.24, + "end": 8153.96, + "probability": 0.8393 + }, + { + "start": 8154.12, + "end": 8156.42, + "probability": 0.8998 + }, + { + "start": 8156.42, + "end": 8160.72, + "probability": 0.9803 + }, + { + "start": 8160.82, + "end": 8163.28, + "probability": 0.9933 + }, + { + "start": 8164.36, + "end": 8165.8, + "probability": 0.9875 + }, + { + "start": 8165.94, + "end": 8170.42, + "probability": 0.997 + }, + { + "start": 8170.42, + "end": 8172.84, + "probability": 0.9985 + }, + { + "start": 8174.12, + "end": 8180.38, + "probability": 0.994 + }, + { + "start": 8180.38, + "end": 8184.64, + "probability": 0.9976 + }, + { + "start": 8184.9, + "end": 8186.24, + "probability": 0.9233 + }, + { + "start": 8186.54, + "end": 8187.78, + "probability": 0.9146 + }, + { + "start": 8187.9, + "end": 8191.51, + "probability": 0.7279 + }, + { + "start": 8192.06, + "end": 8196.76, + "probability": 0.9036 + }, + { + "start": 8197.12, + "end": 8200.68, + "probability": 0.9482 + }, + { + "start": 8201.2, + "end": 8204.52, + "probability": 0.9812 + }, + { + "start": 8204.66, + "end": 8206.81, + "probability": 0.989 + }, + { + "start": 8207.3, + "end": 8208.09, + "probability": 0.9517 + }, + { + "start": 8208.54, + "end": 8210.08, + "probability": 0.5537 + }, + { + "start": 8210.26, + "end": 8211.34, + "probability": 0.052 + }, + { + "start": 8211.34, + "end": 8212.58, + "probability": 0.781 + }, + { + "start": 8213.42, + "end": 8216.4, + "probability": 0.7075 + }, + { + "start": 8216.56, + "end": 8218.86, + "probability": 0.9593 + }, + { + "start": 8219.28, + "end": 8220.48, + "probability": 0.9939 + }, + { + "start": 8222.03, + "end": 8225.1, + "probability": 0.7172 + }, + { + "start": 8225.24, + "end": 8227.66, + "probability": 0.9985 + }, + { + "start": 8227.66, + "end": 8230.44, + "probability": 0.9378 + }, + { + "start": 8230.46, + "end": 8231.58, + "probability": 0.4441 + }, + { + "start": 8231.68, + "end": 8233.64, + "probability": 0.7668 + }, + { + "start": 8233.94, + "end": 8234.18, + "probability": 0.3728 + }, + { + "start": 8235.56, + "end": 8236.08, + "probability": 0.052 + }, + { + "start": 8236.08, + "end": 8236.4, + "probability": 0.4684 + }, + { + "start": 8236.54, + "end": 8241.02, + "probability": 0.9937 + }, + { + "start": 8241.16, + "end": 8243.18, + "probability": 0.9948 + }, + { + "start": 8243.22, + "end": 8244.44, + "probability": 0.9839 + }, + { + "start": 8244.92, + "end": 8246.34, + "probability": 0.93 + }, + { + "start": 8246.38, + "end": 8249.34, + "probability": 0.9276 + }, + { + "start": 8249.7, + "end": 8253.48, + "probability": 0.7765 + }, + { + "start": 8257.84, + "end": 8260.98, + "probability": 0.7909 + }, + { + "start": 8261.5, + "end": 8264.82, + "probability": 0.953 + }, + { + "start": 8266.26, + "end": 8269.1, + "probability": 0.989 + }, + { + "start": 8270.0, + "end": 8270.56, + "probability": 0.5828 + }, + { + "start": 8271.13, + "end": 8277.9, + "probability": 0.9328 + }, + { + "start": 8278.08, + "end": 8279.36, + "probability": 0.7374 + }, + { + "start": 8279.42, + "end": 8281.5, + "probability": 0.9878 + }, + { + "start": 8282.4, + "end": 8285.26, + "probability": 0.8857 + }, + { + "start": 8286.38, + "end": 8290.4, + "probability": 0.6651 + }, + { + "start": 8290.56, + "end": 8293.48, + "probability": 0.9277 + }, + { + "start": 8293.48, + "end": 8297.22, + "probability": 0.9909 + }, + { + "start": 8298.08, + "end": 8300.04, + "probability": 0.9983 + }, + { + "start": 8300.16, + "end": 8301.64, + "probability": 0.9497 + }, + { + "start": 8302.3, + "end": 8305.28, + "probability": 0.9051 + }, + { + "start": 8305.4, + "end": 8310.38, + "probability": 0.9881 + }, + { + "start": 8310.85, + "end": 8315.56, + "probability": 0.9879 + }, + { + "start": 8315.64, + "end": 8316.78, + "probability": 0.6292 + }, + { + "start": 8317.22, + "end": 8319.96, + "probability": 0.5202 + }, + { + "start": 8320.32, + "end": 8324.76, + "probability": 0.962 + }, + { + "start": 8324.76, + "end": 8329.38, + "probability": 0.9873 + }, + { + "start": 8329.48, + "end": 8333.0, + "probability": 0.9973 + }, + { + "start": 8334.14, + "end": 8337.6, + "probability": 0.9902 + }, + { + "start": 8341.02, + "end": 8343.78, + "probability": 0.9949 + }, + { + "start": 8343.84, + "end": 8345.08, + "probability": 0.9995 + }, + { + "start": 8345.24, + "end": 8351.86, + "probability": 0.9007 + }, + { + "start": 8352.08, + "end": 8353.31, + "probability": 0.4585 + }, + { + "start": 8354.62, + "end": 8356.0, + "probability": 0.1726 + }, + { + "start": 8356.14, + "end": 8356.66, + "probability": 0.3975 + }, + { + "start": 8356.68, + "end": 8359.12, + "probability": 0.0924 + }, + { + "start": 8359.4, + "end": 8359.98, + "probability": 0.4169 + }, + { + "start": 8360.04, + "end": 8364.5, + "probability": 0.5254 + }, + { + "start": 8364.62, + "end": 8365.4, + "probability": 0.5082 + }, + { + "start": 8365.74, + "end": 8366.52, + "probability": 0.5714 + }, + { + "start": 8366.56, + "end": 8366.88, + "probability": 0.6033 + }, + { + "start": 8366.98, + "end": 8371.78, + "probability": 0.8923 + }, + { + "start": 8371.86, + "end": 8372.16, + "probability": 0.5499 + }, + { + "start": 8372.2, + "end": 8372.42, + "probability": 0.1522 + }, + { + "start": 8372.42, + "end": 8373.04, + "probability": 0.9084 + }, + { + "start": 8373.1, + "end": 8375.98, + "probability": 0.9597 + }, + { + "start": 8376.2, + "end": 8377.84, + "probability": 0.8645 + }, + { + "start": 8378.82, + "end": 8381.06, + "probability": 0.9706 + }, + { + "start": 8381.16, + "end": 8382.74, + "probability": 0.2728 + }, + { + "start": 8382.84, + "end": 8383.1, + "probability": 0.0382 + }, + { + "start": 8383.1, + "end": 8384.5, + "probability": 0.6061 + }, + { + "start": 8384.54, + "end": 8384.66, + "probability": 0.1446 + }, + { + "start": 8384.66, + "end": 8387.18, + "probability": 0.9902 + }, + { + "start": 8387.18, + "end": 8389.58, + "probability": 0.9923 + }, + { + "start": 8389.68, + "end": 8391.02, + "probability": 0.5401 + }, + { + "start": 8391.18, + "end": 8393.32, + "probability": 0.6695 + }, + { + "start": 8393.87, + "end": 8395.3, + "probability": 0.4317 + }, + { + "start": 8395.3, + "end": 8395.8, + "probability": 0.5812 + }, + { + "start": 8395.8, + "end": 8399.25, + "probability": 0.9431 + }, + { + "start": 8399.88, + "end": 8402.39, + "probability": 0.9958 + }, + { + "start": 8402.56, + "end": 8406.56, + "probability": 0.1696 + }, + { + "start": 8406.6, + "end": 8412.0, + "probability": 0.3376 + }, + { + "start": 8412.12, + "end": 8414.08, + "probability": 0.937 + }, + { + "start": 8414.18, + "end": 8414.76, + "probability": 0.936 + }, + { + "start": 8415.04, + "end": 8416.44, + "probability": 0.9769 + }, + { + "start": 8416.6, + "end": 8418.04, + "probability": 0.8969 + }, + { + "start": 8418.64, + "end": 8422.24, + "probability": 0.9458 + }, + { + "start": 8422.28, + "end": 8423.36, + "probability": 0.9946 + }, + { + "start": 8423.68, + "end": 8423.78, + "probability": 0.5699 + }, + { + "start": 8423.8, + "end": 8424.7, + "probability": 0.6972 + }, + { + "start": 8424.78, + "end": 8426.46, + "probability": 0.8131 + }, + { + "start": 8426.68, + "end": 8427.99, + "probability": 0.7855 + }, + { + "start": 8428.2, + "end": 8432.58, + "probability": 0.8753 + }, + { + "start": 8432.76, + "end": 8433.76, + "probability": 0.6166 + }, + { + "start": 8433.86, + "end": 8434.08, + "probability": 0.0796 + }, + { + "start": 8434.08, + "end": 8436.58, + "probability": 0.86 + }, + { + "start": 8436.78, + "end": 8439.58, + "probability": 0.6879 + }, + { + "start": 8439.62, + "end": 8440.6, + "probability": 0.9396 + }, + { + "start": 8440.88, + "end": 8443.2, + "probability": 0.8854 + }, + { + "start": 8443.32, + "end": 8445.04, + "probability": 0.9821 + }, + { + "start": 8445.14, + "end": 8447.02, + "probability": 0.9924 + }, + { + "start": 8447.02, + "end": 8452.0, + "probability": 0.8933 + }, + { + "start": 8452.12, + "end": 8452.72, + "probability": 0.7638 + }, + { + "start": 8452.74, + "end": 8457.6, + "probability": 0.9956 + }, + { + "start": 8457.8, + "end": 8458.0, + "probability": 0.7246 + }, + { + "start": 8458.06, + "end": 8461.48, + "probability": 0.9875 + }, + { + "start": 8461.54, + "end": 8465.32, + "probability": 0.9967 + }, + { + "start": 8465.9, + "end": 8467.72, + "probability": 0.9491 + }, + { + "start": 8467.9, + "end": 8468.56, + "probability": 0.7729 + }, + { + "start": 8468.58, + "end": 8469.3, + "probability": 0.8668 + }, + { + "start": 8469.52, + "end": 8473.39, + "probability": 0.9746 + }, + { + "start": 8474.12, + "end": 8474.66, + "probability": 0.3124 + }, + { + "start": 8474.66, + "end": 8474.66, + "probability": 0.0259 + }, + { + "start": 8474.66, + "end": 8475.42, + "probability": 0.3242 + }, + { + "start": 8475.58, + "end": 8477.28, + "probability": 0.4404 + }, + { + "start": 8477.38, + "end": 8481.36, + "probability": 0.9766 + }, + { + "start": 8481.48, + "end": 8483.62, + "probability": 0.6997 + }, + { + "start": 8483.76, + "end": 8485.43, + "probability": 0.8576 + }, + { + "start": 8485.68, + "end": 8486.68, + "probability": 0.6973 + }, + { + "start": 8486.9, + "end": 8488.28, + "probability": 0.0307 + }, + { + "start": 8488.28, + "end": 8489.7, + "probability": 0.8411 + }, + { + "start": 8489.78, + "end": 8490.64, + "probability": 0.8628 + }, + { + "start": 8492.99, + "end": 8495.52, + "probability": 0.3588 + }, + { + "start": 8495.52, + "end": 8497.86, + "probability": 0.9974 + }, + { + "start": 8506.98, + "end": 8507.14, + "probability": 0.4436 + }, + { + "start": 8507.18, + "end": 8510.78, + "probability": 0.8628 + }, + { + "start": 8510.84, + "end": 8512.86, + "probability": 0.5954 + }, + { + "start": 8513.02, + "end": 8514.38, + "probability": 0.5912 + }, + { + "start": 8515.32, + "end": 8517.2, + "probability": 0.9919 + }, + { + "start": 8517.72, + "end": 8520.98, + "probability": 0.9989 + }, + { + "start": 8521.52, + "end": 8522.72, + "probability": 0.9263 + }, + { + "start": 8530.52, + "end": 8531.04, + "probability": 0.4121 + }, + { + "start": 8531.08, + "end": 8532.18, + "probability": 0.9081 + }, + { + "start": 8536.66, + "end": 8538.88, + "probability": 0.2264 + }, + { + "start": 8538.88, + "end": 8542.24, + "probability": 0.5381 + }, + { + "start": 8542.34, + "end": 8544.36, + "probability": 0.9572 + }, + { + "start": 8544.52, + "end": 8544.76, + "probability": 0.838 + }, + { + "start": 8544.82, + "end": 8547.42, + "probability": 0.929 + }, + { + "start": 8547.42, + "end": 8547.44, + "probability": 0.0658 + }, + { + "start": 8547.44, + "end": 8556.46, + "probability": 0.6365 + }, + { + "start": 8558.06, + "end": 8558.06, + "probability": 0.0845 + }, + { + "start": 8558.06, + "end": 8559.66, + "probability": 0.6599 + }, + { + "start": 8559.82, + "end": 8562.26, + "probability": 0.9754 + }, + { + "start": 8563.72, + "end": 8565.52, + "probability": 0.9116 + }, + { + "start": 8565.6, + "end": 8568.94, + "probability": 0.9928 + }, + { + "start": 8569.04, + "end": 8569.92, + "probability": 0.9798 + }, + { + "start": 8571.0, + "end": 8574.0, + "probability": 0.9593 + }, + { + "start": 8575.32, + "end": 8577.78, + "probability": 0.6285 + }, + { + "start": 8579.01, + "end": 8581.56, + "probability": 0.9969 + }, + { + "start": 8582.82, + "end": 8586.1, + "probability": 0.9829 + }, + { + "start": 8586.86, + "end": 8589.98, + "probability": 0.9568 + }, + { + "start": 8591.78, + "end": 8594.92, + "probability": 0.9019 + }, + { + "start": 8595.74, + "end": 8597.61, + "probability": 0.9896 + }, + { + "start": 8598.1, + "end": 8599.92, + "probability": 0.9842 + }, + { + "start": 8600.68, + "end": 8602.62, + "probability": 0.9994 + }, + { + "start": 8603.34, + "end": 8604.6, + "probability": 0.6138 + }, + { + "start": 8606.02, + "end": 8608.44, + "probability": 0.847 + }, + { + "start": 8610.62, + "end": 8611.26, + "probability": 0.9851 + }, + { + "start": 8612.2, + "end": 8614.06, + "probability": 0.9034 + }, + { + "start": 8614.68, + "end": 8615.3, + "probability": 0.7628 + }, + { + "start": 8616.18, + "end": 8617.46, + "probability": 0.9163 + }, + { + "start": 8619.0, + "end": 8619.88, + "probability": 0.9838 + }, + { + "start": 8620.56, + "end": 8623.12, + "probability": 0.9925 + }, + { + "start": 8623.22, + "end": 8624.84, + "probability": 0.9624 + }, + { + "start": 8626.28, + "end": 8629.04, + "probability": 0.9261 + }, + { + "start": 8630.32, + "end": 8633.18, + "probability": 0.9771 + }, + { + "start": 8634.82, + "end": 8636.02, + "probability": 0.836 + }, + { + "start": 8638.56, + "end": 8640.42, + "probability": 0.999 + }, + { + "start": 8643.46, + "end": 8645.18, + "probability": 0.7158 + }, + { + "start": 8646.8, + "end": 8646.86, + "probability": 0.0912 + }, + { + "start": 8647.64, + "end": 8647.74, + "probability": 0.9971 + }, + { + "start": 8652.26, + "end": 8653.42, + "probability": 0.5339 + }, + { + "start": 8656.22, + "end": 8657.52, + "probability": 0.9866 + }, + { + "start": 8658.54, + "end": 8662.3, + "probability": 0.9458 + }, + { + "start": 8664.44, + "end": 8666.94, + "probability": 0.9223 + }, + { + "start": 8668.32, + "end": 8668.8, + "probability": 0.6734 + }, + { + "start": 8670.28, + "end": 8670.76, + "probability": 0.6021 + }, + { + "start": 8672.06, + "end": 8674.1, + "probability": 0.9533 + }, + { + "start": 8676.06, + "end": 8681.06, + "probability": 0.9302 + }, + { + "start": 8681.2, + "end": 8683.38, + "probability": 0.9985 + }, + { + "start": 8684.4, + "end": 8687.48, + "probability": 0.9951 + }, + { + "start": 8689.3, + "end": 8691.38, + "probability": 0.9952 + }, + { + "start": 8692.8, + "end": 8696.68, + "probability": 0.9906 + }, + { + "start": 8697.66, + "end": 8701.18, + "probability": 0.9884 + }, + { + "start": 8703.67, + "end": 8705.54, + "probability": 0.9998 + }, + { + "start": 8708.86, + "end": 8710.36, + "probability": 0.9995 + }, + { + "start": 8711.32, + "end": 8713.5, + "probability": 0.9827 + }, + { + "start": 8714.86, + "end": 8717.22, + "probability": 0.998 + }, + { + "start": 8718.42, + "end": 8719.86, + "probability": 0.9913 + }, + { + "start": 8724.04, + "end": 8725.44, + "probability": 0.9537 + }, + { + "start": 8726.42, + "end": 8728.94, + "probability": 0.9924 + }, + { + "start": 8729.02, + "end": 8730.76, + "probability": 0.9536 + }, + { + "start": 8731.56, + "end": 8735.82, + "probability": 0.9861 + }, + { + "start": 8737.2, + "end": 8738.2, + "probability": 0.733 + }, + { + "start": 8738.3, + "end": 8739.26, + "probability": 0.9147 + }, + { + "start": 8740.6, + "end": 8742.46, + "probability": 0.9653 + }, + { + "start": 8743.42, + "end": 8747.08, + "probability": 0.97 + }, + { + "start": 8747.36, + "end": 8748.16, + "probability": 0.8208 + }, + { + "start": 8749.12, + "end": 8749.26, + "probability": 0.7188 + }, + { + "start": 8750.96, + "end": 8753.38, + "probability": 0.8827 + }, + { + "start": 8756.94, + "end": 8758.82, + "probability": 0.9834 + }, + { + "start": 8761.78, + "end": 8767.56, + "probability": 0.9653 + }, + { + "start": 8767.8, + "end": 8769.48, + "probability": 0.9728 + }, + { + "start": 8769.6, + "end": 8770.86, + "probability": 0.9375 + }, + { + "start": 8771.76, + "end": 8772.62, + "probability": 0.8494 + }, + { + "start": 8774.06, + "end": 8776.62, + "probability": 0.9841 + }, + { + "start": 8776.98, + "end": 8778.22, + "probability": 0.9856 + }, + { + "start": 8780.1, + "end": 8783.44, + "probability": 0.8383 + }, + { + "start": 8786.0, + "end": 8787.56, + "probability": 0.9431 + }, + { + "start": 8791.02, + "end": 8792.38, + "probability": 0.7308 + }, + { + "start": 8792.6, + "end": 8794.96, + "probability": 0.9785 + }, + { + "start": 8796.34, + "end": 8801.1, + "probability": 0.9943 + }, + { + "start": 8801.2, + "end": 8804.62, + "probability": 0.938 + }, + { + "start": 8805.54, + "end": 8807.24, + "probability": 0.996 + }, + { + "start": 8809.14, + "end": 8809.82, + "probability": 0.9176 + }, + { + "start": 8810.38, + "end": 8816.14, + "probability": 0.9846 + }, + { + "start": 8816.86, + "end": 8818.14, + "probability": 0.9446 + }, + { + "start": 8822.96, + "end": 8824.48, + "probability": 0.7281 + }, + { + "start": 8824.58, + "end": 8825.32, + "probability": 0.6985 + }, + { + "start": 8825.4, + "end": 8827.84, + "probability": 0.9678 + }, + { + "start": 8829.14, + "end": 8831.96, + "probability": 0.805 + }, + { + "start": 8832.34, + "end": 8833.54, + "probability": 0.7677 + }, + { + "start": 8834.04, + "end": 8835.88, + "probability": 0.854 + }, + { + "start": 8839.62, + "end": 8843.64, + "probability": 0.8762 + }, + { + "start": 8845.06, + "end": 8845.42, + "probability": 0.9453 + }, + { + "start": 8846.94, + "end": 8848.44, + "probability": 0.989 + }, + { + "start": 8849.9, + "end": 8851.86, + "probability": 0.9739 + }, + { + "start": 8854.96, + "end": 8859.96, + "probability": 0.9964 + }, + { + "start": 8860.02, + "end": 8860.96, + "probability": 0.8776 + }, + { + "start": 8863.36, + "end": 8864.32, + "probability": 0.7797 + }, + { + "start": 8866.08, + "end": 8867.74, + "probability": 0.8401 + }, + { + "start": 8867.86, + "end": 8868.48, + "probability": 0.6468 + }, + { + "start": 8868.56, + "end": 8869.5, + "probability": 0.8109 + }, + { + "start": 8869.5, + "end": 8876.6, + "probability": 0.9359 + }, + { + "start": 8879.0, + "end": 8880.12, + "probability": 0.7606 + }, + { + "start": 8884.1, + "end": 8888.04, + "probability": 0.9773 + }, + { + "start": 8891.6, + "end": 8892.66, + "probability": 0.7661 + }, + { + "start": 8895.16, + "end": 8898.36, + "probability": 0.9983 + }, + { + "start": 8899.72, + "end": 8903.76, + "probability": 0.9591 + }, + { + "start": 8904.96, + "end": 8906.98, + "probability": 0.9956 + }, + { + "start": 8907.12, + "end": 8911.54, + "probability": 0.8682 + }, + { + "start": 8912.7, + "end": 8912.96, + "probability": 0.8937 + }, + { + "start": 8912.96, + "end": 8917.36, + "probability": 0.9901 + }, + { + "start": 8919.52, + "end": 8920.44, + "probability": 0.6998 + }, + { + "start": 8921.84, + "end": 8922.86, + "probability": 0.7467 + }, + { + "start": 8922.98, + "end": 8924.52, + "probability": 0.995 + }, + { + "start": 8925.18, + "end": 8926.48, + "probability": 0.9612 + }, + { + "start": 8926.54, + "end": 8928.82, + "probability": 0.937 + }, + { + "start": 8929.26, + "end": 8930.5, + "probability": 0.9554 + }, + { + "start": 8931.96, + "end": 8937.28, + "probability": 0.9821 + }, + { + "start": 8938.84, + "end": 8940.16, + "probability": 0.9135 + }, + { + "start": 8943.36, + "end": 8946.72, + "probability": 0.9965 + }, + { + "start": 8948.96, + "end": 8951.4, + "probability": 0.9949 + }, + { + "start": 8952.06, + "end": 8952.76, + "probability": 0.7821 + }, + { + "start": 8953.72, + "end": 8957.1, + "probability": 0.9858 + }, + { + "start": 8957.51, + "end": 8959.24, + "probability": 0.3345 + }, + { + "start": 8961.22, + "end": 8964.74, + "probability": 0.9897 + }, + { + "start": 8968.4, + "end": 8972.12, + "probability": 0.9709 + }, + { + "start": 8973.06, + "end": 8974.86, + "probability": 0.7866 + }, + { + "start": 8975.62, + "end": 8978.08, + "probability": 0.9512 + }, + { + "start": 8979.66, + "end": 8981.12, + "probability": 0.9985 + }, + { + "start": 8981.72, + "end": 8985.84, + "probability": 0.5293 + }, + { + "start": 8986.54, + "end": 8987.08, + "probability": 0.7759 + }, + { + "start": 8987.18, + "end": 8990.98, + "probability": 0.9753 + }, + { + "start": 8991.84, + "end": 8993.3, + "probability": 0.3967 + }, + { + "start": 8993.86, + "end": 8995.48, + "probability": 0.9629 + }, + { + "start": 8997.26, + "end": 9000.16, + "probability": 0.969 + }, + { + "start": 9001.44, + "end": 9006.48, + "probability": 0.9941 + }, + { + "start": 9008.56, + "end": 9011.0, + "probability": 0.9895 + }, + { + "start": 9012.88, + "end": 9019.76, + "probability": 0.9978 + }, + { + "start": 9019.96, + "end": 9022.2, + "probability": 0.979 + }, + { + "start": 9023.32, + "end": 9024.28, + "probability": 0.9423 + }, + { + "start": 9027.36, + "end": 9032.44, + "probability": 0.9946 + }, + { + "start": 9032.96, + "end": 9033.32, + "probability": 0.5244 + }, + { + "start": 9035.76, + "end": 9036.2, + "probability": 0.8832 + }, + { + "start": 9036.94, + "end": 9038.62, + "probability": 0.7097 + }, + { + "start": 9039.38, + "end": 9041.98, + "probability": 0.9912 + }, + { + "start": 9042.02, + "end": 9042.86, + "probability": 0.9451 + }, + { + "start": 9042.92, + "end": 9043.38, + "probability": 0.6144 + }, + { + "start": 9043.82, + "end": 9047.18, + "probability": 0.8656 + }, + { + "start": 9048.36, + "end": 9049.26, + "probability": 0.7282 + }, + { + "start": 9050.54, + "end": 9051.22, + "probability": 0.6544 + }, + { + "start": 9053.94, + "end": 9059.56, + "probability": 0.9348 + }, + { + "start": 9060.34, + "end": 9061.54, + "probability": 0.9336 + }, + { + "start": 9062.72, + "end": 9066.54, + "probability": 0.998 + }, + { + "start": 9066.6, + "end": 9067.18, + "probability": 0.6553 + }, + { + "start": 9068.34, + "end": 9070.98, + "probability": 0.929 + }, + { + "start": 9075.48, + "end": 9079.3, + "probability": 0.9712 + }, + { + "start": 9079.44, + "end": 9080.3, + "probability": 0.9888 + }, + { + "start": 9080.52, + "end": 9089.62, + "probability": 0.9987 + }, + { + "start": 9090.62, + "end": 9094.3, + "probability": 0.9971 + }, + { + "start": 9094.38, + "end": 9094.74, + "probability": 0.9531 + }, + { + "start": 9097.4, + "end": 9098.62, + "probability": 0.9935 + }, + { + "start": 9098.64, + "end": 9100.18, + "probability": 0.8658 + }, + { + "start": 9100.2, + "end": 9101.46, + "probability": 0.7549 + }, + { + "start": 9103.18, + "end": 9104.0, + "probability": 0.7219 + }, + { + "start": 9104.04, + "end": 9105.46, + "probability": 0.8235 + }, + { + "start": 9105.52, + "end": 9107.48, + "probability": 0.9828 + }, + { + "start": 9111.12, + "end": 9114.82, + "probability": 0.9952 + }, + { + "start": 9116.5, + "end": 9117.28, + "probability": 0.7177 + }, + { + "start": 9117.41, + "end": 9119.36, + "probability": 0.7568 + }, + { + "start": 9120.06, + "end": 9120.77, + "probability": 0.2952 + }, + { + "start": 9121.34, + "end": 9127.72, + "probability": 0.9102 + }, + { + "start": 9128.3, + "end": 9131.74, + "probability": 0.9372 + }, + { + "start": 9131.9, + "end": 9135.82, + "probability": 0.986 + }, + { + "start": 9136.46, + "end": 9137.82, + "probability": 0.9666 + }, + { + "start": 9138.08, + "end": 9139.06, + "probability": 0.4565 + }, + { + "start": 9139.2, + "end": 9140.12, + "probability": 0.7942 + }, + { + "start": 9140.93, + "end": 9141.14, + "probability": 0.1774 + }, + { + "start": 9141.14, + "end": 9141.64, + "probability": 0.4854 + }, + { + "start": 9141.74, + "end": 9142.08, + "probability": 0.6007 + }, + { + "start": 9142.4, + "end": 9143.8, + "probability": 0.8169 + }, + { + "start": 9144.3, + "end": 9147.4, + "probability": 0.4896 + }, + { + "start": 9149.87, + "end": 9150.28, + "probability": 0.1136 + }, + { + "start": 9150.36, + "end": 9150.54, + "probability": 0.0615 + }, + { + "start": 9150.54, + "end": 9150.54, + "probability": 0.1791 + }, + { + "start": 9150.54, + "end": 9151.06, + "probability": 0.0848 + }, + { + "start": 9151.18, + "end": 9152.98, + "probability": 0.2368 + }, + { + "start": 9152.98, + "end": 9161.22, + "probability": 0.8356 + }, + { + "start": 9161.31, + "end": 9162.6, + "probability": 0.2462 + }, + { + "start": 9162.6, + "end": 9163.88, + "probability": 0.3152 + }, + { + "start": 9164.0, + "end": 9166.44, + "probability": 0.1937 + }, + { + "start": 9166.56, + "end": 9167.66, + "probability": 0.676 + }, + { + "start": 9167.66, + "end": 9170.79, + "probability": 0.9858 + }, + { + "start": 9173.34, + "end": 9174.16, + "probability": 0.0338 + }, + { + "start": 9174.16, + "end": 9174.16, + "probability": 0.4101 + }, + { + "start": 9174.16, + "end": 9175.24, + "probability": 0.7333 + }, + { + "start": 9175.3, + "end": 9176.88, + "probability": 0.8362 + }, + { + "start": 9177.0, + "end": 9179.5, + "probability": 0.9731 + }, + { + "start": 9180.02, + "end": 9181.02, + "probability": 0.9888 + }, + { + "start": 9181.48, + "end": 9183.36, + "probability": 0.9902 + }, + { + "start": 9185.06, + "end": 9186.32, + "probability": 0.9154 + }, + { + "start": 9187.34, + "end": 9187.96, + "probability": 0.4115 + }, + { + "start": 9188.82, + "end": 9192.02, + "probability": 0.9145 + }, + { + "start": 9192.68, + "end": 9195.94, + "probability": 0.9753 + }, + { + "start": 9195.94, + "end": 9196.1, + "probability": 0.5559 + }, + { + "start": 9196.28, + "end": 9197.2, + "probability": 0.4498 + }, + { + "start": 9198.52, + "end": 9201.14, + "probability": 0.5402 + }, + { + "start": 9201.22, + "end": 9202.86, + "probability": 0.9778 + }, + { + "start": 9203.62, + "end": 9205.16, + "probability": 0.6866 + }, + { + "start": 9205.86, + "end": 9206.68, + "probability": 0.8521 + }, + { + "start": 9207.24, + "end": 9210.46, + "probability": 0.8843 + }, + { + "start": 9211.64, + "end": 9212.6, + "probability": 0.9431 + }, + { + "start": 9214.54, + "end": 9215.3, + "probability": 0.6936 + }, + { + "start": 9215.64, + "end": 9216.42, + "probability": 0.7053 + }, + { + "start": 9216.66, + "end": 9219.92, + "probability": 0.9407 + }, + { + "start": 9221.28, + "end": 9223.4, + "probability": 0.2065 + }, + { + "start": 9223.48, + "end": 9224.22, + "probability": 0.1964 + }, + { + "start": 9224.24, + "end": 9226.34, + "probability": 0.7645 + }, + { + "start": 9226.96, + "end": 9227.64, + "probability": 0.7167 + }, + { + "start": 9228.2, + "end": 9229.1, + "probability": 0.9629 + }, + { + "start": 9229.24, + "end": 9231.1, + "probability": 0.4122 + }, + { + "start": 9231.22, + "end": 9233.32, + "probability": 0.5966 + }, + { + "start": 9233.32, + "end": 9237.26, + "probability": 0.0341 + }, + { + "start": 9237.44, + "end": 9237.74, + "probability": 0.0249 + }, + { + "start": 9238.58, + "end": 9238.8, + "probability": 0.1869 + }, + { + "start": 9238.86, + "end": 9239.56, + "probability": 0.7448 + }, + { + "start": 9239.72, + "end": 9240.72, + "probability": 0.9155 + }, + { + "start": 9240.98, + "end": 9244.12, + "probability": 0.1048 + }, + { + "start": 9244.32, + "end": 9245.56, + "probability": 0.6786 + }, + { + "start": 9246.24, + "end": 9246.92, + "probability": 0.096 + }, + { + "start": 9247.02, + "end": 9249.16, + "probability": 0.7891 + }, + { + "start": 9249.2, + "end": 9249.86, + "probability": 0.2926 + }, + { + "start": 9268.32, + "end": 9271.76, + "probability": 0.5245 + }, + { + "start": 9273.3, + "end": 9273.46, + "probability": 0.0307 + }, + { + "start": 9274.53, + "end": 9276.76, + "probability": 0.0657 + }, + { + "start": 9290.92, + "end": 9292.2, + "probability": 0.177 + }, + { + "start": 9293.06, + "end": 9296.62, + "probability": 0.6623 + }, + { + "start": 9296.8, + "end": 9300.56, + "probability": 0.0363 + }, + { + "start": 9300.74, + "end": 9302.88, + "probability": 0.8188 + }, + { + "start": 9302.88, + "end": 9306.1, + "probability": 0.926 + }, + { + "start": 9306.1, + "end": 9307.3, + "probability": 0.6964 + }, + { + "start": 9308.36, + "end": 9309.26, + "probability": 0.5997 + }, + { + "start": 9309.88, + "end": 9311.02, + "probability": 0.7735 + }, + { + "start": 9311.36, + "end": 9313.4, + "probability": 0.1991 + }, + { + "start": 9313.54, + "end": 9314.88, + "probability": 0.9675 + }, + { + "start": 9315.28, + "end": 9317.6, + "probability": 0.71 + }, + { + "start": 9317.74, + "end": 9320.94, + "probability": 0.252 + }, + { + "start": 9320.94, + "end": 9321.1, + "probability": 0.3082 + }, + { + "start": 9321.48, + "end": 9328.52, + "probability": 0.6842 + }, + { + "start": 9328.52, + "end": 9329.7, + "probability": 0.181 + }, + { + "start": 9330.44, + "end": 9333.2, + "probability": 0.4429 + }, + { + "start": 9333.26, + "end": 9333.46, + "probability": 0.0701 + }, + { + "start": 9333.66, + "end": 9333.68, + "probability": 0.2674 + }, + { + "start": 9333.68, + "end": 9333.86, + "probability": 0.7632 + }, + { + "start": 9333.88, + "end": 9336.1, + "probability": 0.9978 + }, + { + "start": 9336.18, + "end": 9337.42, + "probability": 0.9783 + }, + { + "start": 9337.72, + "end": 9339.44, + "probability": 0.9207 + }, + { + "start": 9339.44, + "end": 9340.44, + "probability": 0.09 + }, + { + "start": 9341.3, + "end": 9341.56, + "probability": 0.1353 + }, + { + "start": 9341.56, + "end": 9344.4, + "probability": 0.77 + }, + { + "start": 9344.76, + "end": 9345.54, + "probability": 0.0764 + }, + { + "start": 9346.28, + "end": 9347.12, + "probability": 0.2135 + }, + { + "start": 9350.7, + "end": 9351.32, + "probability": 0.6668 + }, + { + "start": 9351.52, + "end": 9352.62, + "probability": 0.8744 + }, + { + "start": 9353.18, + "end": 9355.64, + "probability": 0.9858 + }, + { + "start": 9355.98, + "end": 9358.26, + "probability": 0.9441 + }, + { + "start": 9358.44, + "end": 9359.66, + "probability": 0.5416 + }, + { + "start": 9359.81, + "end": 9361.38, + "probability": 0.6562 + }, + { + "start": 9361.56, + "end": 9363.48, + "probability": 0.9382 + }, + { + "start": 9365.04, + "end": 9365.7, + "probability": 0.0384 + }, + { + "start": 9365.84, + "end": 9366.48, + "probability": 0.0495 + }, + { + "start": 9367.12, + "end": 9367.22, + "probability": 0.0387 + }, + { + "start": 9367.46, + "end": 9369.1, + "probability": 0.2281 + }, + { + "start": 9369.2, + "end": 9370.46, + "probability": 0.9992 + }, + { + "start": 9375.78, + "end": 9376.82, + "probability": 0.1131 + }, + { + "start": 9377.18, + "end": 9378.88, + "probability": 0.973 + }, + { + "start": 9378.98, + "end": 9379.81, + "probability": 0.8672 + }, + { + "start": 9380.36, + "end": 9381.5, + "probability": 0.9688 + }, + { + "start": 9381.62, + "end": 9381.82, + "probability": 0.48 + }, + { + "start": 9382.18, + "end": 9383.29, + "probability": 0.9932 + }, + { + "start": 9384.64, + "end": 9385.76, + "probability": 0.7706 + }, + { + "start": 9385.78, + "end": 9385.98, + "probability": 0.223 + }, + { + "start": 9386.72, + "end": 9387.96, + "probability": 0.9783 + }, + { + "start": 9388.58, + "end": 9390.44, + "probability": 0.2576 + }, + { + "start": 9391.24, + "end": 9391.96, + "probability": 0.0546 + }, + { + "start": 9391.96, + "end": 9391.96, + "probability": 0.0265 + }, + { + "start": 9391.96, + "end": 9392.06, + "probability": 0.0402 + }, + { + "start": 9392.2, + "end": 9396.4, + "probability": 0.9507 + }, + { + "start": 9396.84, + "end": 9398.04, + "probability": 0.5454 + }, + { + "start": 9398.32, + "end": 9399.68, + "probability": 0.9723 + }, + { + "start": 9400.34, + "end": 9402.86, + "probability": 0.976 + }, + { + "start": 9403.28, + "end": 9404.34, + "probability": 0.979 + }, + { + "start": 9404.34, + "end": 9405.37, + "probability": 0.9447 + }, + { + "start": 9405.84, + "end": 9408.22, + "probability": 0.8931 + }, + { + "start": 9408.32, + "end": 9410.56, + "probability": 0.9756 + }, + { + "start": 9411.02, + "end": 9411.42, + "probability": 0.8174 + }, + { + "start": 9411.86, + "end": 9412.08, + "probability": 0.2523 + }, + { + "start": 9412.3, + "end": 9413.28, + "probability": 0.6792 + }, + { + "start": 9413.98, + "end": 9415.3, + "probability": 0.1715 + }, + { + "start": 9415.48, + "end": 9415.48, + "probability": 0.2481 + }, + { + "start": 9415.48, + "end": 9415.62, + "probability": 0.5362 + }, + { + "start": 9415.62, + "end": 9416.08, + "probability": 0.8514 + }, + { + "start": 9416.14, + "end": 9416.28, + "probability": 0.2479 + }, + { + "start": 9416.68, + "end": 9419.94, + "probability": 0.9974 + }, + { + "start": 9420.28, + "end": 9420.72, + "probability": 0.2935 + }, + { + "start": 9420.74, + "end": 9421.26, + "probability": 0.5967 + }, + { + "start": 9421.46, + "end": 9423.9, + "probability": 0.9276 + }, + { + "start": 9424.42, + "end": 9425.66, + "probability": 0.9159 + }, + { + "start": 9425.88, + "end": 9426.74, + "probability": 0.1157 + }, + { + "start": 9427.0, + "end": 9427.34, + "probability": 0.4376 + }, + { + "start": 9427.34, + "end": 9428.22, + "probability": 0.3862 + }, + { + "start": 9428.24, + "end": 9429.44, + "probability": 0.3318 + }, + { + "start": 9429.44, + "end": 9430.64, + "probability": 0.062 + }, + { + "start": 9431.02, + "end": 9431.98, + "probability": 0.0198 + }, + { + "start": 9431.98, + "end": 9435.3, + "probability": 0.6886 + }, + { + "start": 9435.3, + "end": 9436.82, + "probability": 0.3592 + }, + { + "start": 9436.82, + "end": 9437.54, + "probability": 0.7734 + }, + { + "start": 9438.06, + "end": 9439.08, + "probability": 0.4688 + }, + { + "start": 9439.22, + "end": 9440.92, + "probability": 0.4418 + }, + { + "start": 9441.06, + "end": 9441.52, + "probability": 0.8004 + }, + { + "start": 9441.7, + "end": 9442.15, + "probability": 0.0411 + }, + { + "start": 9442.38, + "end": 9443.94, + "probability": 0.2472 + }, + { + "start": 9443.94, + "end": 9444.72, + "probability": 0.426 + }, + { + "start": 9445.34, + "end": 9445.94, + "probability": 0.5 + }, + { + "start": 9446.14, + "end": 9446.9, + "probability": 0.559 + }, + { + "start": 9447.46, + "end": 9448.51, + "probability": 0.5165 + }, + { + "start": 9448.88, + "end": 9450.24, + "probability": 0.573 + }, + { + "start": 9450.26, + "end": 9451.46, + "probability": 0.5743 + }, + { + "start": 9451.46, + "end": 9452.14, + "probability": 0.5228 + }, + { + "start": 9452.62, + "end": 9453.52, + "probability": 0.0454 + }, + { + "start": 9453.52, + "end": 9457.26, + "probability": 0.8014 + }, + { + "start": 9457.6, + "end": 9458.26, + "probability": 0.0336 + }, + { + "start": 9460.92, + "end": 9462.38, + "probability": 0.1006 + }, + { + "start": 9463.44, + "end": 9464.94, + "probability": 0.1624 + }, + { + "start": 9464.94, + "end": 9464.94, + "probability": 0.0459 + }, + { + "start": 9464.94, + "end": 9465.1, + "probability": 0.0214 + }, + { + "start": 9465.1, + "end": 9465.1, + "probability": 0.2913 + }, + { + "start": 9465.1, + "end": 9465.31, + "probability": 0.5065 + }, + { + "start": 9465.88, + "end": 9466.8, + "probability": 0.6079 + }, + { + "start": 9466.8, + "end": 9466.8, + "probability": 0.1312 + }, + { + "start": 9466.8, + "end": 9466.8, + "probability": 0.545 + }, + { + "start": 9466.8, + "end": 9467.8, + "probability": 0.2755 + }, + { + "start": 9468.72, + "end": 9469.52, + "probability": 0.4995 + }, + { + "start": 9469.82, + "end": 9470.22, + "probability": 0.1898 + }, + { + "start": 9470.3, + "end": 9471.0, + "probability": 0.4468 + }, + { + "start": 9471.24, + "end": 9473.28, + "probability": 0.9464 + }, + { + "start": 9473.34, + "end": 9473.48, + "probability": 0.9575 + }, + { + "start": 9473.48, + "end": 9473.74, + "probability": 0.5735 + }, + { + "start": 9474.0, + "end": 9475.84, + "probability": 0.9708 + }, + { + "start": 9475.88, + "end": 9476.7, + "probability": 0.969 + }, + { + "start": 9476.7, + "end": 9477.6, + "probability": 0.8795 + }, + { + "start": 9478.02, + "end": 9480.22, + "probability": 0.2287 + }, + { + "start": 9480.22, + "end": 9484.14, + "probability": 0.6243 + }, + { + "start": 9484.52, + "end": 9485.16, + "probability": 0.3635 + }, + { + "start": 9485.7, + "end": 9485.74, + "probability": 0.6227 + }, + { + "start": 9485.74, + "end": 9486.16, + "probability": 0.482 + }, + { + "start": 9486.38, + "end": 9487.06, + "probability": 0.6686 + }, + { + "start": 9488.06, + "end": 9491.68, + "probability": 0.442 + }, + { + "start": 9491.76, + "end": 9494.58, + "probability": 0.8633 + }, + { + "start": 9494.7, + "end": 9495.08, + "probability": 0.4292 + }, + { + "start": 9495.14, + "end": 9495.4, + "probability": 0.2779 + }, + { + "start": 9495.42, + "end": 9497.11, + "probability": 0.9412 + }, + { + "start": 9497.28, + "end": 9498.16, + "probability": 0.886 + }, + { + "start": 9498.28, + "end": 9499.14, + "probability": 0.8545 + }, + { + "start": 9499.34, + "end": 9501.14, + "probability": 0.621 + }, + { + "start": 9502.43, + "end": 9505.5, + "probability": 0.8338 + }, + { + "start": 9508.96, + "end": 9510.06, + "probability": 0.0867 + }, + { + "start": 9510.06, + "end": 9511.02, + "probability": 0.0427 + }, + { + "start": 9511.36, + "end": 9512.66, + "probability": 0.4614 + }, + { + "start": 9513.0, + "end": 9516.94, + "probability": 0.6026 + }, + { + "start": 9517.18, + "end": 9518.12, + "probability": 0.5799 + }, + { + "start": 9518.2, + "end": 9518.68, + "probability": 0.9182 + }, + { + "start": 9518.98, + "end": 9520.02, + "probability": 0.3333 + }, + { + "start": 9520.45, + "end": 9521.96, + "probability": 0.7693 + }, + { + "start": 9522.0, + "end": 9523.88, + "probability": 0.8546 + }, + { + "start": 9524.32, + "end": 9526.52, + "probability": 0.9605 + }, + { + "start": 9526.72, + "end": 9530.12, + "probability": 0.0559 + }, + { + "start": 9530.12, + "end": 9534.8, + "probability": 0.7368 + }, + { + "start": 9534.8, + "end": 9535.42, + "probability": 0.0508 + }, + { + "start": 9535.6, + "end": 9536.48, + "probability": 0.785 + }, + { + "start": 9536.54, + "end": 9537.2, + "probability": 0.7649 + }, + { + "start": 9537.44, + "end": 9543.4, + "probability": 0.777 + }, + { + "start": 9543.58, + "end": 9544.46, + "probability": 0.224 + }, + { + "start": 9544.58, + "end": 9545.44, + "probability": 0.0388 + }, + { + "start": 9545.44, + "end": 9545.44, + "probability": 0.0078 + }, + { + "start": 9545.44, + "end": 9545.44, + "probability": 0.0799 + }, + { + "start": 9545.44, + "end": 9547.6, + "probability": 0.3803 + }, + { + "start": 9547.6, + "end": 9551.62, + "probability": 0.5614 + }, + { + "start": 9551.62, + "end": 9554.6, + "probability": 0.5165 + }, + { + "start": 9554.66, + "end": 9555.42, + "probability": 0.3686 + }, + { + "start": 9555.6, + "end": 9558.74, + "probability": 0.6533 + }, + { + "start": 9558.84, + "end": 9559.82, + "probability": 0.3884 + }, + { + "start": 9560.58, + "end": 9563.3, + "probability": 0.4058 + }, + { + "start": 9563.38, + "end": 9565.04, + "probability": 0.7273 + }, + { + "start": 9565.04, + "end": 9565.9, + "probability": 0.7061 + }, + { + "start": 9566.51, + "end": 9567.35, + "probability": 0.165 + }, + { + "start": 9567.68, + "end": 9567.75, + "probability": 0.2377 + }, + { + "start": 9567.92, + "end": 9568.92, + "probability": 0.2466 + }, + { + "start": 9569.08, + "end": 9570.04, + "probability": 0.6064 + }, + { + "start": 9570.12, + "end": 9570.68, + "probability": 0.6491 + }, + { + "start": 9570.98, + "end": 9572.62, + "probability": 0.2568 + }, + { + "start": 9572.84, + "end": 9574.4, + "probability": 0.2794 + }, + { + "start": 9574.42, + "end": 9574.68, + "probability": 0.1233 + }, + { + "start": 9575.91, + "end": 9576.3, + "probability": 0.2174 + }, + { + "start": 9576.36, + "end": 9578.36, + "probability": 0.3459 + }, + { + "start": 9578.38, + "end": 9580.58, + "probability": 0.6304 + }, + { + "start": 9580.58, + "end": 9581.8, + "probability": 0.4255 + }, + { + "start": 9581.8, + "end": 9582.88, + "probability": 0.4325 + }, + { + "start": 9584.3, + "end": 9589.58, + "probability": 0.1123 + }, + { + "start": 9589.58, + "end": 9589.88, + "probability": 0.1148 + }, + { + "start": 9590.12, + "end": 9590.84, + "probability": 0.2715 + }, + { + "start": 9591.0, + "end": 9592.3, + "probability": 0.324 + }, + { + "start": 9592.48, + "end": 9593.1, + "probability": 0.0196 + }, + { + "start": 9593.68, + "end": 9594.28, + "probability": 0.7427 + }, + { + "start": 9594.38, + "end": 9595.0, + "probability": 0.6538 + }, + { + "start": 9596.3, + "end": 9596.54, + "probability": 0.0286 + }, + { + "start": 9596.54, + "end": 9597.44, + "probability": 0.2001 + }, + { + "start": 9598.18, + "end": 9600.0, + "probability": 0.5682 + }, + { + "start": 9600.06, + "end": 9603.9, + "probability": 0.8717 + }, + { + "start": 9603.9, + "end": 9606.36, + "probability": 0.8348 + }, + { + "start": 9606.42, + "end": 9607.34, + "probability": 0.1041 + }, + { + "start": 9607.36, + "end": 9609.96, + "probability": 0.5705 + }, + { + "start": 9610.04, + "end": 9610.28, + "probability": 0.416 + }, + { + "start": 9610.38, + "end": 9614.4, + "probability": 0.9749 + }, + { + "start": 9614.4, + "end": 9616.72, + "probability": 0.7566 + }, + { + "start": 9616.76, + "end": 9619.64, + "probability": 0.7197 + }, + { + "start": 9619.74, + "end": 9622.86, + "probability": 0.9546 + }, + { + "start": 9622.86, + "end": 9624.64, + "probability": 0.7332 + }, + { + "start": 9624.76, + "end": 9628.56, + "probability": 0.7368 + }, + { + "start": 9629.08, + "end": 9630.06, + "probability": 0.3385 + }, + { + "start": 9630.14, + "end": 9633.04, + "probability": 0.2975 + }, + { + "start": 9633.68, + "end": 9635.76, + "probability": 0.6552 + }, + { + "start": 9635.76, + "end": 9637.4, + "probability": 0.1047 + }, + { + "start": 9639.56, + "end": 9639.68, + "probability": 0.1183 + }, + { + "start": 9639.68, + "end": 9639.68, + "probability": 0.1737 + }, + { + "start": 9639.68, + "end": 9640.98, + "probability": 0.5102 + }, + { + "start": 9640.98, + "end": 9640.98, + "probability": 0.1595 + }, + { + "start": 9640.98, + "end": 9641.8, + "probability": 0.5055 + }, + { + "start": 9642.42, + "end": 9644.64, + "probability": 0.1686 + }, + { + "start": 9647.15, + "end": 9650.04, + "probability": 0.6569 + }, + { + "start": 9650.04, + "end": 9654.58, + "probability": 0.8096 + }, + { + "start": 9654.68, + "end": 9655.06, + "probability": 0.746 + }, + { + "start": 9655.98, + "end": 9658.5, + "probability": 0.6367 + }, + { + "start": 9659.97, + "end": 9663.7, + "probability": 0.9663 + }, + { + "start": 9663.86, + "end": 9664.46, + "probability": 0.8995 + }, + { + "start": 9666.34, + "end": 9667.36, + "probability": 0.6103 + }, + { + "start": 9668.08, + "end": 9668.34, + "probability": 0.173 + }, + { + "start": 9668.4, + "end": 9670.44, + "probability": 0.5934 + }, + { + "start": 9670.5, + "end": 9671.41, + "probability": 0.4347 + }, + { + "start": 9673.1, + "end": 9673.68, + "probability": 0.6589 + }, + { + "start": 9674.2, + "end": 9674.4, + "probability": 0.8115 + }, + { + "start": 9675.0, + "end": 9677.3, + "probability": 0.8843 + }, + { + "start": 9681.08, + "end": 9683.44, + "probability": 0.8419 + }, + { + "start": 9683.44, + "end": 9685.84, + "probability": 0.5709 + }, + { + "start": 9686.28, + "end": 9688.18, + "probability": 0.5115 + }, + { + "start": 9688.3, + "end": 9689.19, + "probability": 0.9144 + }, + { + "start": 9689.88, + "end": 9691.34, + "probability": 0.4546 + }, + { + "start": 9692.42, + "end": 9694.24, + "probability": 0.5029 + }, + { + "start": 9694.3, + "end": 9694.84, + "probability": 0.6258 + }, + { + "start": 9695.0, + "end": 9696.68, + "probability": 0.9888 + }, + { + "start": 9696.78, + "end": 9698.18, + "probability": 0.3796 + }, + { + "start": 9698.6, + "end": 9700.34, + "probability": 0.9603 + }, + { + "start": 9700.72, + "end": 9702.98, + "probability": 0.9523 + }, + { + "start": 9703.18, + "end": 9704.14, + "probability": 0.8901 + }, + { + "start": 9704.78, + "end": 9705.12, + "probability": 0.9222 + }, + { + "start": 9705.66, + "end": 9707.3, + "probability": 0.6759 + }, + { + "start": 9707.58, + "end": 9710.18, + "probability": 0.2507 + }, + { + "start": 9710.2, + "end": 9710.56, + "probability": 0.0535 + }, + { + "start": 9710.56, + "end": 9710.56, + "probability": 0.1852 + }, + { + "start": 9710.56, + "end": 9714.44, + "probability": 0.9312 + }, + { + "start": 9714.66, + "end": 9718.48, + "probability": 0.9604 + }, + { + "start": 9719.22, + "end": 9720.52, + "probability": 0.9163 + }, + { + "start": 9720.56, + "end": 9723.11, + "probability": 0.6737 + }, + { + "start": 9723.74, + "end": 9724.72, + "probability": 0.6479 + }, + { + "start": 9725.32, + "end": 9728.84, + "probability": 0.7735 + }, + { + "start": 9734.9, + "end": 9737.52, + "probability": 0.2784 + }, + { + "start": 9737.64, + "end": 9738.26, + "probability": 0.542 + }, + { + "start": 9738.64, + "end": 9740.88, + "probability": 0.5637 + }, + { + "start": 9740.96, + "end": 9743.38, + "probability": 0.856 + }, + { + "start": 9743.6, + "end": 9744.44, + "probability": 0.4882 + }, + { + "start": 9744.56, + "end": 9745.32, + "probability": 0.5605 + }, + { + "start": 9745.34, + "end": 9748.3, + "probability": 0.8577 + }, + { + "start": 9748.3, + "end": 9751.56, + "probability": 0.9202 + }, + { + "start": 9752.1, + "end": 9754.08, + "probability": 0.5685 + }, + { + "start": 9754.12, + "end": 9754.98, + "probability": 0.8433 + }, + { + "start": 9755.04, + "end": 9756.72, + "probability": 0.231 + }, + { + "start": 9756.92, + "end": 9757.08, + "probability": 0.6465 + }, + { + "start": 9757.72, + "end": 9760.86, + "probability": 0.1778 + }, + { + "start": 9761.06, + "end": 9762.78, + "probability": 0.4415 + }, + { + "start": 9763.22, + "end": 9764.52, + "probability": 0.7635 + }, + { + "start": 9764.66, + "end": 9765.34, + "probability": 0.4039 + }, + { + "start": 9765.52, + "end": 9767.62, + "probability": 0.9893 + }, + { + "start": 9768.86, + "end": 9770.62, + "probability": 0.9647 + }, + { + "start": 9771.14, + "end": 9772.98, + "probability": 0.6201 + }, + { + "start": 9774.64, + "end": 9776.44, + "probability": 0.9609 + }, + { + "start": 9778.71, + "end": 9780.73, + "probability": 0.5405 + }, + { + "start": 9782.44, + "end": 9784.96, + "probability": 0.3262 + }, + { + "start": 9786.1, + "end": 9789.26, + "probability": 0.688 + }, + { + "start": 9789.48, + "end": 9791.88, + "probability": 0.745 + }, + { + "start": 9792.3, + "end": 9794.32, + "probability": 0.908 + }, + { + "start": 9794.44, + "end": 9795.78, + "probability": 0.929 + }, + { + "start": 9803.4, + "end": 9804.26, + "probability": 0.316 + }, + { + "start": 9805.31, + "end": 9808.75, + "probability": 0.9261 + }, + { + "start": 9809.16, + "end": 9810.7, + "probability": 0.9541 + }, + { + "start": 9810.76, + "end": 9811.66, + "probability": 0.917 + }, + { + "start": 9811.74, + "end": 9812.3, + "probability": 0.9589 + }, + { + "start": 9812.44, + "end": 9813.58, + "probability": 0.8926 + }, + { + "start": 9813.66, + "end": 9814.76, + "probability": 0.9835 + }, + { + "start": 9814.92, + "end": 9818.02, + "probability": 0.9855 + }, + { + "start": 9818.16, + "end": 9819.96, + "probability": 0.9973 + }, + { + "start": 9820.2, + "end": 9820.52, + "probability": 0.4884 + }, + { + "start": 9820.6, + "end": 9822.84, + "probability": 0.6774 + }, + { + "start": 9823.04, + "end": 9823.38, + "probability": 0.4877 + }, + { + "start": 9823.64, + "end": 9824.47, + "probability": 0.9592 + }, + { + "start": 9824.84, + "end": 9828.7, + "probability": 0.9674 + }, + { + "start": 9829.66, + "end": 9831.87, + "probability": 0.98 + }, + { + "start": 9832.62, + "end": 9835.58, + "probability": 0.9581 + }, + { + "start": 9835.78, + "end": 9837.19, + "probability": 0.978 + }, + { + "start": 9837.42, + "end": 9837.9, + "probability": 0.6537 + }, + { + "start": 9838.08, + "end": 9840.42, + "probability": 0.9879 + }, + { + "start": 9841.06, + "end": 9848.86, + "probability": 0.991 + }, + { + "start": 9848.98, + "end": 9851.12, + "probability": 0.0424 + }, + { + "start": 9851.28, + "end": 9853.48, + "probability": 0.1584 + }, + { + "start": 9853.98, + "end": 9857.07, + "probability": 0.1127 + }, + { + "start": 9858.32, + "end": 9861.54, + "probability": 0.3743 + }, + { + "start": 9861.94, + "end": 9867.6, + "probability": 0.9963 + }, + { + "start": 9867.6, + "end": 9872.88, + "probability": 0.9621 + }, + { + "start": 9873.18, + "end": 9874.7, + "probability": 0.7144 + }, + { + "start": 9874.86, + "end": 9875.82, + "probability": 0.7662 + }, + { + "start": 9876.7, + "end": 9879.06, + "probability": 0.866 + }, + { + "start": 9879.54, + "end": 9883.26, + "probability": 0.9961 + }, + { + "start": 9883.98, + "end": 9885.52, + "probability": 0.8893 + }, + { + "start": 9885.64, + "end": 9887.18, + "probability": 0.1816 + }, + { + "start": 9887.18, + "end": 9892.68, + "probability": 0.7168 + }, + { + "start": 9892.9, + "end": 9897.4, + "probability": 0.103 + }, + { + "start": 9897.4, + "end": 9897.58, + "probability": 0.0058 + }, + { + "start": 9897.62, + "end": 9897.88, + "probability": 0.2807 + }, + { + "start": 9898.06, + "end": 9899.3, + "probability": 0.454 + }, + { + "start": 9899.76, + "end": 9900.78, + "probability": 0.5589 + }, + { + "start": 9900.96, + "end": 9901.1, + "probability": 0.0095 + }, + { + "start": 9901.96, + "end": 9902.39, + "probability": 0.4713 + }, + { + "start": 9905.54, + "end": 9912.1, + "probability": 0.0519 + }, + { + "start": 9912.52, + "end": 9912.72, + "probability": 0.2594 + }, + { + "start": 9912.72, + "end": 9912.72, + "probability": 0.0179 + }, + { + "start": 9912.72, + "end": 9912.72, + "probability": 0.2283 + }, + { + "start": 9912.72, + "end": 9914.04, + "probability": 0.0213 + }, + { + "start": 9914.16, + "end": 9914.56, + "probability": 0.6226 + }, + { + "start": 9914.74, + "end": 9916.84, + "probability": 0.9609 + }, + { + "start": 9917.0, + "end": 9919.04, + "probability": 0.8464 + }, + { + "start": 9919.1, + "end": 9919.84, + "probability": 0.3838 + }, + { + "start": 9920.04, + "end": 9920.96, + "probability": 0.905 + }, + { + "start": 9921.78, + "end": 9924.12, + "probability": 0.7792 + }, + { + "start": 9925.3, + "end": 9929.12, + "probability": 0.9858 + }, + { + "start": 9929.96, + "end": 9930.2, + "probability": 0.7829 + }, + { + "start": 9930.28, + "end": 9931.34, + "probability": 0.7514 + }, + { + "start": 9931.46, + "end": 9932.56, + "probability": 0.9688 + }, + { + "start": 9932.58, + "end": 9935.1, + "probability": 0.8238 + }, + { + "start": 9935.94, + "end": 9941.46, + "probability": 0.9833 + }, + { + "start": 9942.36, + "end": 9943.2, + "probability": 0.5734 + }, + { + "start": 9943.62, + "end": 9945.74, + "probability": 0.925 + }, + { + "start": 9945.88, + "end": 9947.51, + "probability": 0.9023 + }, + { + "start": 9947.66, + "end": 9950.7, + "probability": 0.8853 + }, + { + "start": 9951.2, + "end": 9956.44, + "probability": 0.9467 + }, + { + "start": 9956.8, + "end": 9960.54, + "probability": 0.9985 + }, + { + "start": 9960.54, + "end": 9964.04, + "probability": 0.9935 + }, + { + "start": 9964.3, + "end": 9966.22, + "probability": 0.8542 + }, + { + "start": 9966.56, + "end": 9968.82, + "probability": 0.8459 + }, + { + "start": 9969.08, + "end": 9970.08, + "probability": 0.9656 + }, + { + "start": 9970.18, + "end": 9972.34, + "probability": 0.9512 + }, + { + "start": 9972.56, + "end": 9973.74, + "probability": 0.9568 + }, + { + "start": 9974.2, + "end": 9977.32, + "probability": 0.9918 + }, + { + "start": 9978.16, + "end": 9979.02, + "probability": 0.9961 + }, + { + "start": 9979.84, + "end": 9980.36, + "probability": 0.9565 + }, + { + "start": 9980.46, + "end": 9983.24, + "probability": 0.9883 + }, + { + "start": 9983.3, + "end": 9983.85, + "probability": 0.535 + }, + { + "start": 9984.0, + "end": 9984.72, + "probability": 0.9714 + }, + { + "start": 9986.3, + "end": 9986.92, + "probability": 0.9713 + }, + { + "start": 9987.52, + "end": 9988.42, + "probability": 0.0877 + }, + { + "start": 9989.44, + "end": 9991.86, + "probability": 0.1706 + }, + { + "start": 9992.64, + "end": 9995.5, + "probability": 0.5605 + }, + { + "start": 9996.38, + "end": 10000.76, + "probability": 0.359 + }, + { + "start": 10000.8, + "end": 10002.12, + "probability": 0.9747 + }, + { + "start": 10002.18, + "end": 10002.2, + "probability": 0.0266 + }, + { + "start": 10002.2, + "end": 10003.18, + "probability": 0.7813 + }, + { + "start": 10003.18, + "end": 10003.9, + "probability": 0.8087 + }, + { + "start": 10003.9, + "end": 10005.08, + "probability": 0.4527 + }, + { + "start": 10005.08, + "end": 10007.4, + "probability": 0.8801 + }, + { + "start": 10007.48, + "end": 10009.3, + "probability": 0.9221 + }, + { + "start": 10009.62, + "end": 10012.14, + "probability": 0.8744 + }, + { + "start": 10012.62, + "end": 10015.62, + "probability": 0.7649 + }, + { + "start": 10015.94, + "end": 10017.08, + "probability": 0.9644 + }, + { + "start": 10019.04, + "end": 10021.86, + "probability": 0.7242 + }, + { + "start": 10022.54, + "end": 10023.66, + "probability": 0.656 + }, + { + "start": 10023.7, + "end": 10025.06, + "probability": 0.6778 + }, + { + "start": 10025.08, + "end": 10027.44, + "probability": 0.8914 + }, + { + "start": 10027.56, + "end": 10028.78, + "probability": 0.6499 + }, + { + "start": 10030.21, + "end": 10031.54, + "probability": 0.7896 + }, + { + "start": 10031.6, + "end": 10032.8, + "probability": 0.5257 + }, + { + "start": 10033.76, + "end": 10034.46, + "probability": 0.1069 + }, + { + "start": 10034.46, + "end": 10035.32, + "probability": 0.1661 + }, + { + "start": 10036.18, + "end": 10036.3, + "probability": 0.2238 + }, + { + "start": 10036.3, + "end": 10041.08, + "probability": 0.7391 + }, + { + "start": 10041.08, + "end": 10041.08, + "probability": 0.6294 + }, + { + "start": 10041.18, + "end": 10041.18, + "probability": 0.2877 + }, + { + "start": 10041.2, + "end": 10041.29, + "probability": 0.1548 + }, + { + "start": 10042.26, + "end": 10044.52, + "probability": 0.6641 + }, + { + "start": 10044.52, + "end": 10045.76, + "probability": 0.8242 + }, + { + "start": 10045.76, + "end": 10046.28, + "probability": 0.0367 + }, + { + "start": 10046.82, + "end": 10047.8, + "probability": 0.0298 + }, + { + "start": 10047.88, + "end": 10049.22, + "probability": 0.5909 + }, + { + "start": 10049.22, + "end": 10050.16, + "probability": 0.9276 + }, + { + "start": 10050.26, + "end": 10051.34, + "probability": 0.5293 + }, + { + "start": 10051.52, + "end": 10051.52, + "probability": 0.0309 + }, + { + "start": 10051.64, + "end": 10051.74, + "probability": 0.0311 + }, + { + "start": 10051.74, + "end": 10052.18, + "probability": 0.4724 + }, + { + "start": 10052.48, + "end": 10053.34, + "probability": 0.1746 + }, + { + "start": 10053.34, + "end": 10054.96, + "probability": 0.226 + }, + { + "start": 10054.96, + "end": 10057.4, + "probability": 0.9165 + }, + { + "start": 10057.4, + "end": 10058.94, + "probability": 0.4995 + }, + { + "start": 10059.14, + "end": 10059.68, + "probability": 0.8232 + }, + { + "start": 10060.02, + "end": 10063.42, + "probability": 0.6562 + }, + { + "start": 10063.94, + "end": 10065.08, + "probability": 0.0756 + }, + { + "start": 10065.08, + "end": 10065.6, + "probability": 0.2259 + }, + { + "start": 10065.92, + "end": 10067.14, + "probability": 0.6161 + }, + { + "start": 10067.28, + "end": 10071.24, + "probability": 0.9476 + }, + { + "start": 10071.6, + "end": 10071.86, + "probability": 0.2343 + }, + { + "start": 10071.86, + "end": 10073.87, + "probability": 0.6406 + }, + { + "start": 10074.62, + "end": 10076.18, + "probability": 0.0438 + }, + { + "start": 10076.34, + "end": 10077.66, + "probability": 0.0762 + }, + { + "start": 10077.66, + "end": 10080.02, + "probability": 0.3695 + }, + { + "start": 10080.08, + "end": 10081.14, + "probability": 0.5317 + }, + { + "start": 10081.34, + "end": 10082.2, + "probability": 0.8911 + }, + { + "start": 10082.3, + "end": 10083.0, + "probability": 0.5953 + }, + { + "start": 10083.2, + "end": 10083.88, + "probability": 0.2549 + }, + { + "start": 10083.88, + "end": 10084.04, + "probability": 0.051 + }, + { + "start": 10084.04, + "end": 10086.1, + "probability": 0.6977 + }, + { + "start": 10086.24, + "end": 10088.24, + "probability": 0.8722 + }, + { + "start": 10088.4, + "end": 10090.4, + "probability": 0.6847 + }, + { + "start": 10090.86, + "end": 10090.88, + "probability": 0.0614 + }, + { + "start": 10090.88, + "end": 10094.16, + "probability": 0.8203 + }, + { + "start": 10094.76, + "end": 10096.46, + "probability": 0.501 + }, + { + "start": 10096.46, + "end": 10098.54, + "probability": 0.3882 + }, + { + "start": 10098.54, + "end": 10099.86, + "probability": 0.243 + }, + { + "start": 10100.04, + "end": 10101.15, + "probability": 0.5207 + }, + { + "start": 10101.44, + "end": 10106.94, + "probability": 0.7639 + }, + { + "start": 10107.2, + "end": 10111.72, + "probability": 0.997 + }, + { + "start": 10112.2, + "end": 10114.6, + "probability": 0.781 + }, + { + "start": 10114.6, + "end": 10118.74, + "probability": 0.9969 + }, + { + "start": 10118.74, + "end": 10121.52, + "probability": 0.9681 + }, + { + "start": 10121.52, + "end": 10123.78, + "probability": 0.9313 + }, + { + "start": 10124.5, + "end": 10126.64, + "probability": 0.9966 + }, + { + "start": 10128.18, + "end": 10131.42, + "probability": 0.5801 + }, + { + "start": 10131.48, + "end": 10135.34, + "probability": 0.9253 + }, + { + "start": 10135.88, + "end": 10137.82, + "probability": 0.9946 + }, + { + "start": 10137.82, + "end": 10142.88, + "probability": 0.9111 + }, + { + "start": 10143.46, + "end": 10143.46, + "probability": 0.4294 + }, + { + "start": 10143.48, + "end": 10144.8, + "probability": 0.7714 + }, + { + "start": 10144.84, + "end": 10145.52, + "probability": 0.8095 + }, + { + "start": 10145.52, + "end": 10145.68, + "probability": 0.6467 + }, + { + "start": 10145.68, + "end": 10147.48, + "probability": 0.4414 + }, + { + "start": 10147.84, + "end": 10148.9, + "probability": 0.7778 + }, + { + "start": 10149.14, + "end": 10149.65, + "probability": 0.8384 + }, + { + "start": 10150.48, + "end": 10152.14, + "probability": 0.3146 + }, + { + "start": 10154.08, + "end": 10155.74, + "probability": 0.6339 + }, + { + "start": 10155.74, + "end": 10158.44, + "probability": 0.0244 + }, + { + "start": 10158.44, + "end": 10158.44, + "probability": 0.1366 + }, + { + "start": 10158.44, + "end": 10159.18, + "probability": 0.1362 + }, + { + "start": 10159.18, + "end": 10159.82, + "probability": 0.4907 + }, + { + "start": 10159.9, + "end": 10161.36, + "probability": 0.2884 + }, + { + "start": 10162.46, + "end": 10162.74, + "probability": 0.4532 + }, + { + "start": 10163.78, + "end": 10164.04, + "probability": 0.6968 + }, + { + "start": 10164.22, + "end": 10166.68, + "probability": 0.0233 + }, + { + "start": 10166.7, + "end": 10166.97, + "probability": 0.3977 + }, + { + "start": 10167.66, + "end": 10173.36, + "probability": 0.1917 + }, + { + "start": 10173.7, + "end": 10174.45, + "probability": 0.4387 + }, + { + "start": 10174.88, + "end": 10174.88, + "probability": 0.7751 + }, + { + "start": 10174.88, + "end": 10178.32, + "probability": 0.6405 + }, + { + "start": 10180.08, + "end": 10180.54, + "probability": 0.0014 + }, + { + "start": 10180.54, + "end": 10181.46, + "probability": 0.0694 + }, + { + "start": 10181.46, + "end": 10181.76, + "probability": 0.1076 + }, + { + "start": 10182.28, + "end": 10182.42, + "probability": 0.4029 + }, + { + "start": 10182.64, + "end": 10182.92, + "probability": 0.0318 + }, + { + "start": 10182.92, + "end": 10183.8, + "probability": 0.2446 + }, + { + "start": 10185.08, + "end": 10187.64, + "probability": 0.0283 + }, + { + "start": 10187.64, + "end": 10192.14, + "probability": 0.9476 + }, + { + "start": 10192.46, + "end": 10192.78, + "probability": 0.4387 + }, + { + "start": 10192.92, + "end": 10194.16, + "probability": 0.7151 + }, + { + "start": 10194.26, + "end": 10196.64, + "probability": 0.9803 + }, + { + "start": 10196.78, + "end": 10199.68, + "probability": 0.7744 + }, + { + "start": 10200.32, + "end": 10200.34, + "probability": 0.4997 + }, + { + "start": 10200.34, + "end": 10201.32, + "probability": 0.3173 + }, + { + "start": 10202.16, + "end": 10203.92, + "probability": 0.9944 + }, + { + "start": 10203.94, + "end": 10204.1, + "probability": 0.0175 + }, + { + "start": 10204.1, + "end": 10204.22, + "probability": 0.0732 + }, + { + "start": 10204.22, + "end": 10204.22, + "probability": 0.0729 + }, + { + "start": 10204.22, + "end": 10204.22, + "probability": 0.3154 + }, + { + "start": 10204.22, + "end": 10205.08, + "probability": 0.4998 + }, + { + "start": 10205.08, + "end": 10207.56, + "probability": 0.5962 + }, + { + "start": 10211.46, + "end": 10211.94, + "probability": 0.4396 + }, + { + "start": 10212.82, + "end": 10213.86, + "probability": 0.1624 + }, + { + "start": 10214.34, + "end": 10214.58, + "probability": 0.0535 + }, + { + "start": 10214.59, + "end": 10214.8, + "probability": 0.0301 + }, + { + "start": 10214.8, + "end": 10216.06, + "probability": 0.2462 + }, + { + "start": 10216.84, + "end": 10219.02, + "probability": 0.0627 + }, + { + "start": 10219.3, + "end": 10220.7, + "probability": 0.1832 + }, + { + "start": 10220.98, + "end": 10222.6, + "probability": 0.215 + }, + { + "start": 10222.6, + "end": 10223.15, + "probability": 0.179 + }, + { + "start": 10224.22, + "end": 10224.8, + "probability": 0.0305 + }, + { + "start": 10224.8, + "end": 10225.6, + "probability": 0.2005 + }, + { + "start": 10225.6, + "end": 10226.82, + "probability": 0.1085 + }, + { + "start": 10228.74, + "end": 10229.64, + "probability": 0.1846 + }, + { + "start": 10231.4, + "end": 10232.92, + "probability": 0.0213 + }, + { + "start": 10234.2, + "end": 10236.42, + "probability": 0.2514 + }, + { + "start": 10236.6, + "end": 10240.54, + "probability": 0.9909 + }, + { + "start": 10242.84, + "end": 10246.92, + "probability": 0.3907 + }, + { + "start": 10247.04, + "end": 10248.67, + "probability": 0.9289 + }, + { + "start": 10249.06, + "end": 10251.52, + "probability": 0.9916 + }, + { + "start": 10252.18, + "end": 10254.15, + "probability": 0.687 + }, + { + "start": 10255.1, + "end": 10262.44, + "probability": 0.9727 + }, + { + "start": 10262.54, + "end": 10263.52, + "probability": 0.6905 + }, + { + "start": 10263.78, + "end": 10268.24, + "probability": 0.8699 + }, + { + "start": 10268.6, + "end": 10273.7, + "probability": 0.9498 + }, + { + "start": 10274.3, + "end": 10276.36, + "probability": 0.9368 + }, + { + "start": 10276.92, + "end": 10278.9, + "probability": 0.5215 + }, + { + "start": 10279.18, + "end": 10279.68, + "probability": 0.3411 + }, + { + "start": 10280.02, + "end": 10282.18, + "probability": 0.9229 + }, + { + "start": 10282.54, + "end": 10283.78, + "probability": 0.8458 + }, + { + "start": 10284.02, + "end": 10286.14, + "probability": 0.6477 + }, + { + "start": 10286.28, + "end": 10287.76, + "probability": 0.5123 + }, + { + "start": 10288.54, + "end": 10290.74, + "probability": 0.9888 + }, + { + "start": 10291.04, + "end": 10291.88, + "probability": 0.6804 + }, + { + "start": 10292.0, + "end": 10293.04, + "probability": 0.6657 + }, + { + "start": 10293.42, + "end": 10295.42, + "probability": 0.7622 + }, + { + "start": 10296.36, + "end": 10299.48, + "probability": 0.9985 + }, + { + "start": 10300.42, + "end": 10302.48, + "probability": 0.9927 + }, + { + "start": 10302.54, + "end": 10303.12, + "probability": 0.4302 + }, + { + "start": 10303.26, + "end": 10304.2, + "probability": 0.0533 + }, + { + "start": 10306.46, + "end": 10307.92, + "probability": 0.742 + }, + { + "start": 10307.94, + "end": 10309.64, + "probability": 0.8446 + }, + { + "start": 10309.96, + "end": 10311.44, + "probability": 0.6725 + }, + { + "start": 10312.42, + "end": 10315.35, + "probability": 0.9646 + }, + { + "start": 10315.44, + "end": 10319.66, + "probability": 0.4686 + }, + { + "start": 10319.74, + "end": 10320.82, + "probability": 0.9705 + }, + { + "start": 10320.98, + "end": 10322.24, + "probability": 0.6587 + }, + { + "start": 10322.76, + "end": 10324.78, + "probability": 0.9045 + }, + { + "start": 10324.86, + "end": 10325.5, + "probability": 0.8097 + }, + { + "start": 10325.56, + "end": 10331.22, + "probability": 0.9967 + }, + { + "start": 10331.82, + "end": 10332.12, + "probability": 0.059 + }, + { + "start": 10332.12, + "end": 10334.0, + "probability": 0.6816 + }, + { + "start": 10334.54, + "end": 10337.24, + "probability": 0.9863 + }, + { + "start": 10337.4, + "end": 10338.46, + "probability": 0.4442 + }, + { + "start": 10340.32, + "end": 10342.14, + "probability": 0.5263 + }, + { + "start": 10342.52, + "end": 10343.78, + "probability": 0.3845 + }, + { + "start": 10343.94, + "end": 10343.94, + "probability": 0.019 + }, + { + "start": 10343.94, + "end": 10343.94, + "probability": 0.1287 + }, + { + "start": 10343.94, + "end": 10343.94, + "probability": 0.2433 + }, + { + "start": 10343.94, + "end": 10343.94, + "probability": 0.4788 + }, + { + "start": 10343.94, + "end": 10347.22, + "probability": 0.3257 + }, + { + "start": 10347.34, + "end": 10349.14, + "probability": 0.7438 + }, + { + "start": 10349.14, + "end": 10352.5, + "probability": 0.5999 + }, + { + "start": 10352.58, + "end": 10354.76, + "probability": 0.6159 + }, + { + "start": 10354.78, + "end": 10356.38, + "probability": 0.6803 + }, + { + "start": 10356.77, + "end": 10361.77, + "probability": 0.2452 + }, + { + "start": 10362.22, + "end": 10364.36, + "probability": 0.7088 + }, + { + "start": 10364.36, + "end": 10364.36, + "probability": 0.1045 + }, + { + "start": 10364.36, + "end": 10364.36, + "probability": 0.2522 + }, + { + "start": 10364.36, + "end": 10366.16, + "probability": 0.2404 + }, + { + "start": 10367.48, + "end": 10370.32, + "probability": 0.0547 + }, + { + "start": 10375.57, + "end": 10378.88, + "probability": 0.1343 + }, + { + "start": 10378.88, + "end": 10380.66, + "probability": 0.7513 + }, + { + "start": 10382.72, + "end": 10386.38, + "probability": 0.4537 + }, + { + "start": 10390.74, + "end": 10393.44, + "probability": 0.6241 + }, + { + "start": 10393.6, + "end": 10394.62, + "probability": 0.8558 + }, + { + "start": 10395.55, + "end": 10398.28, + "probability": 0.638 + }, + { + "start": 10399.34, + "end": 10401.44, + "probability": 0.0591 + }, + { + "start": 10401.56, + "end": 10406.32, + "probability": 0.4434 + }, + { + "start": 10406.32, + "end": 10408.4, + "probability": 0.6703 + }, + { + "start": 10409.68, + "end": 10410.98, + "probability": 0.7395 + }, + { + "start": 10411.06, + "end": 10412.04, + "probability": 0.565 + }, + { + "start": 10412.3, + "end": 10414.94, + "probability": 0.9843 + }, + { + "start": 10416.4, + "end": 10418.06, + "probability": 0.9971 + }, + { + "start": 10418.5, + "end": 10419.32, + "probability": 0.9258 + }, + { + "start": 10419.46, + "end": 10425.36, + "probability": 0.9001 + }, + { + "start": 10426.16, + "end": 10427.74, + "probability": 0.7616 + }, + { + "start": 10428.1, + "end": 10430.5, + "probability": 0.9868 + }, + { + "start": 10431.0, + "end": 10432.16, + "probability": 0.955 + }, + { + "start": 10432.7, + "end": 10433.74, + "probability": 0.9873 + }, + { + "start": 10434.46, + "end": 10436.32, + "probability": 0.9414 + }, + { + "start": 10437.14, + "end": 10438.4, + "probability": 0.9581 + }, + { + "start": 10438.48, + "end": 10439.86, + "probability": 0.7087 + }, + { + "start": 10440.56, + "end": 10441.83, + "probability": 0.9937 + }, + { + "start": 10442.32, + "end": 10443.8, + "probability": 0.6705 + }, + { + "start": 10443.84, + "end": 10445.82, + "probability": 0.883 + }, + { + "start": 10445.96, + "end": 10448.94, + "probability": 0.9949 + }, + { + "start": 10449.36, + "end": 10451.22, + "probability": 0.9941 + }, + { + "start": 10451.9, + "end": 10455.14, + "probability": 0.9837 + }, + { + "start": 10455.9, + "end": 10457.08, + "probability": 0.5424 + }, + { + "start": 10457.08, + "end": 10460.96, + "probability": 0.8687 + }, + { + "start": 10460.96, + "end": 10461.16, + "probability": 0.7996 + }, + { + "start": 10461.16, + "end": 10463.56, + "probability": 0.3702 + }, + { + "start": 10465.35, + "end": 10466.78, + "probability": 0.7217 + }, + { + "start": 10472.98, + "end": 10475.6, + "probability": 0.6279 + }, + { + "start": 10481.94, + "end": 10483.1, + "probability": 0.7147 + }, + { + "start": 10483.2, + "end": 10486.66, + "probability": 0.9594 + }, + { + "start": 10486.66, + "end": 10490.06, + "probability": 0.9934 + }, + { + "start": 10490.26, + "end": 10491.42, + "probability": 0.6446 + }, + { + "start": 10492.0, + "end": 10492.75, + "probability": 0.994 + }, + { + "start": 10494.96, + "end": 10495.76, + "probability": 0.0662 + }, + { + "start": 10496.76, + "end": 10500.44, + "probability": 0.5149 + }, + { + "start": 10500.99, + "end": 10501.54, + "probability": 0.7134 + }, + { + "start": 10502.44, + "end": 10503.72, + "probability": 0.6568 + }, + { + "start": 10504.93, + "end": 10510.2, + "probability": 0.6295 + }, + { + "start": 10510.76, + "end": 10511.02, + "probability": 0.4508 + }, + { + "start": 10511.54, + "end": 10512.0, + "probability": 0.733 + }, + { + "start": 10512.84, + "end": 10513.84, + "probability": 0.6499 + }, + { + "start": 10514.11, + "end": 10516.1, + "probability": 0.858 + }, + { + "start": 10516.32, + "end": 10517.62, + "probability": 0.7129 + }, + { + "start": 10518.1, + "end": 10521.18, + "probability": 0.9383 + }, + { + "start": 10521.34, + "end": 10524.86, + "probability": 0.9902 + }, + { + "start": 10525.3, + "end": 10527.48, + "probability": 0.8723 + }, + { + "start": 10528.7, + "end": 10532.44, + "probability": 0.3596 + }, + { + "start": 10532.44, + "end": 10535.82, + "probability": 0.1132 + }, + { + "start": 10535.82, + "end": 10536.56, + "probability": 0.6903 + }, + { + "start": 10551.0, + "end": 10552.04, + "probability": 0.5994 + }, + { + "start": 10556.12, + "end": 10559.12, + "probability": 0.7546 + }, + { + "start": 10561.16, + "end": 10564.12, + "probability": 0.9963 + }, + { + "start": 10564.12, + "end": 10567.2, + "probability": 0.9947 + }, + { + "start": 10568.54, + "end": 10570.26, + "probability": 0.9026 + }, + { + "start": 10572.98, + "end": 10576.24, + "probability": 0.9985 + }, + { + "start": 10576.24, + "end": 10580.82, + "probability": 0.9954 + }, + { + "start": 10581.88, + "end": 10582.46, + "probability": 0.5907 + }, + { + "start": 10582.6, + "end": 10583.76, + "probability": 0.8978 + }, + { + "start": 10583.86, + "end": 10587.1, + "probability": 0.9697 + }, + { + "start": 10587.86, + "end": 10590.12, + "probability": 0.9709 + }, + { + "start": 10591.42, + "end": 10596.58, + "probability": 0.9929 + }, + { + "start": 10598.68, + "end": 10603.26, + "probability": 0.9963 + }, + { + "start": 10604.86, + "end": 10607.7, + "probability": 0.9496 + }, + { + "start": 10609.06, + "end": 10612.42, + "probability": 0.9959 + }, + { + "start": 10612.73, + "end": 10618.42, + "probability": 0.9033 + }, + { + "start": 10620.54, + "end": 10624.9, + "probability": 0.9863 + }, + { + "start": 10625.14, + "end": 10628.24, + "probability": 0.9993 + }, + { + "start": 10629.54, + "end": 10630.38, + "probability": 0.9841 + }, + { + "start": 10631.94, + "end": 10633.56, + "probability": 0.8943 + }, + { + "start": 10635.36, + "end": 10637.24, + "probability": 0.9945 + }, + { + "start": 10639.24, + "end": 10641.44, + "probability": 0.9851 + }, + { + "start": 10642.5, + "end": 10644.94, + "probability": 0.9993 + }, + { + "start": 10646.22, + "end": 10649.62, + "probability": 0.9952 + }, + { + "start": 10649.62, + "end": 10655.86, + "probability": 0.978 + }, + { + "start": 10656.94, + "end": 10658.18, + "probability": 0.7388 + }, + { + "start": 10659.52, + "end": 10661.18, + "probability": 0.9111 + }, + { + "start": 10661.94, + "end": 10663.88, + "probability": 0.9125 + }, + { + "start": 10665.06, + "end": 10669.8, + "probability": 0.9977 + }, + { + "start": 10671.14, + "end": 10674.44, + "probability": 0.9985 + }, + { + "start": 10675.66, + "end": 10678.26, + "probability": 0.9995 + }, + { + "start": 10678.26, + "end": 10683.18, + "probability": 0.9955 + }, + { + "start": 10683.32, + "end": 10684.94, + "probability": 0.9005 + }, + { + "start": 10686.14, + "end": 10693.12, + "probability": 0.9969 + }, + { + "start": 10697.91, + "end": 10699.7, + "probability": 0.6313 + }, + { + "start": 10699.7, + "end": 10703.92, + "probability": 0.9932 + }, + { + "start": 10703.94, + "end": 10705.95, + "probability": 0.968 + }, + { + "start": 10707.12, + "end": 10709.8, + "probability": 0.9965 + }, + { + "start": 10711.04, + "end": 10715.44, + "probability": 0.9966 + }, + { + "start": 10716.36, + "end": 10721.48, + "probability": 0.9946 + }, + { + "start": 10721.48, + "end": 10729.12, + "probability": 0.998 + }, + { + "start": 10729.94, + "end": 10731.08, + "probability": 0.8955 + }, + { + "start": 10735.72, + "end": 10738.62, + "probability": 0.8165 + }, + { + "start": 10739.34, + "end": 10740.5, + "probability": 0.8716 + }, + { + "start": 10741.06, + "end": 10744.12, + "probability": 0.466 + }, + { + "start": 10744.76, + "end": 10747.82, + "probability": 0.9735 + }, + { + "start": 10750.84, + "end": 10754.18, + "probability": 0.9891 + }, + { + "start": 10754.18, + "end": 10757.96, + "probability": 0.9428 + }, + { + "start": 10758.44, + "end": 10766.02, + "probability": 0.9883 + }, + { + "start": 10767.04, + "end": 10771.7, + "probability": 0.9682 + }, + { + "start": 10772.86, + "end": 10775.96, + "probability": 0.9883 + }, + { + "start": 10776.58, + "end": 10779.6, + "probability": 0.8656 + }, + { + "start": 10781.5, + "end": 10785.03, + "probability": 0.9322 + }, + { + "start": 10785.94, + "end": 10791.04, + "probability": 0.9973 + }, + { + "start": 10791.86, + "end": 10794.78, + "probability": 0.9859 + }, + { + "start": 10794.78, + "end": 10799.8, + "probability": 0.9979 + }, + { + "start": 10802.52, + "end": 10808.6, + "probability": 0.998 + }, + { + "start": 10809.22, + "end": 10813.97, + "probability": 0.9966 + }, + { + "start": 10815.1, + "end": 10818.94, + "probability": 0.9695 + }, + { + "start": 10819.24, + "end": 10822.46, + "probability": 0.9798 + }, + { + "start": 10823.9, + "end": 10830.32, + "probability": 0.996 + }, + { + "start": 10832.42, + "end": 10836.18, + "probability": 0.8067 + }, + { + "start": 10836.3, + "end": 10837.76, + "probability": 0.9436 + }, + { + "start": 10837.84, + "end": 10838.32, + "probability": 0.7935 + }, + { + "start": 10838.48, + "end": 10839.94, + "probability": 0.8132 + }, + { + "start": 10840.24, + "end": 10841.67, + "probability": 0.8627 + }, + { + "start": 10842.36, + "end": 10845.46, + "probability": 0.9709 + }, + { + "start": 10847.5, + "end": 10849.12, + "probability": 0.9424 + }, + { + "start": 10850.26, + "end": 10852.7, + "probability": 0.8807 + }, + { + "start": 10853.16, + "end": 10856.68, + "probability": 0.9994 + }, + { + "start": 10857.42, + "end": 10857.98, + "probability": 0.8165 + }, + { + "start": 10858.94, + "end": 10860.04, + "probability": 0.9728 + }, + { + "start": 10860.14, + "end": 10862.68, + "probability": 0.9923 + }, + { + "start": 10863.7, + "end": 10866.83, + "probability": 0.9919 + }, + { + "start": 10867.88, + "end": 10873.34, + "probability": 0.9733 + }, + { + "start": 10873.68, + "end": 10874.72, + "probability": 0.8509 + }, + { + "start": 10875.04, + "end": 10877.5, + "probability": 0.9258 + }, + { + "start": 10878.66, + "end": 10882.0, + "probability": 0.971 + }, + { + "start": 10882.58, + "end": 10883.26, + "probability": 0.8433 + }, + { + "start": 10884.46, + "end": 10885.04, + "probability": 0.8201 + }, + { + "start": 10887.56, + "end": 10888.66, + "probability": 0.5594 + }, + { + "start": 10888.7, + "end": 10888.9, + "probability": 0.1641 + }, + { + "start": 10888.9, + "end": 10889.56, + "probability": 0.7713 + }, + { + "start": 10896.84, + "end": 10897.1, + "probability": 0.1699 + }, + { + "start": 10913.34, + "end": 10914.82, + "probability": 0.242 + }, + { + "start": 10917.04, + "end": 10918.48, + "probability": 0.4642 + }, + { + "start": 10918.68, + "end": 10919.78, + "probability": 0.9088 + }, + { + "start": 10919.82, + "end": 10920.86, + "probability": 0.6711 + }, + { + "start": 10922.56, + "end": 10926.4, + "probability": 0.9719 + }, + { + "start": 10927.2, + "end": 10927.2, + "probability": 0.3207 + }, + { + "start": 10927.2, + "end": 10927.2, + "probability": 0.4955 + }, + { + "start": 10927.2, + "end": 10927.88, + "probability": 0.8856 + }, + { + "start": 10928.5, + "end": 10934.4, + "probability": 0.999 + }, + { + "start": 10934.4, + "end": 10939.46, + "probability": 0.9976 + }, + { + "start": 10939.98, + "end": 10943.1, + "probability": 0.9902 + }, + { + "start": 10943.84, + "end": 10944.8, + "probability": 0.6477 + }, + { + "start": 10944.8, + "end": 10946.94, + "probability": 0.8969 + }, + { + "start": 10946.94, + "end": 10949.1, + "probability": 0.9955 + }, + { + "start": 10949.66, + "end": 10951.1, + "probability": 0.9717 + }, + { + "start": 10951.26, + "end": 10952.18, + "probability": 0.8296 + }, + { + "start": 10952.3, + "end": 10953.54, + "probability": 0.9083 + }, + { + "start": 10954.22, + "end": 10954.56, + "probability": 0.806 + }, + { + "start": 10954.68, + "end": 10955.88, + "probability": 0.9518 + }, + { + "start": 10956.02, + "end": 10959.76, + "probability": 0.9949 + }, + { + "start": 10959.76, + "end": 10965.68, + "probability": 0.9979 + }, + { + "start": 10966.24, + "end": 10969.26, + "probability": 0.937 + }, + { + "start": 10970.14, + "end": 10970.8, + "probability": 0.9751 + }, + { + "start": 10971.46, + "end": 10974.58, + "probability": 0.9864 + }, + { + "start": 10974.58, + "end": 10979.44, + "probability": 0.9885 + }, + { + "start": 10979.88, + "end": 10980.44, + "probability": 0.7359 + }, + { + "start": 10980.54, + "end": 10984.26, + "probability": 0.8916 + }, + { + "start": 10984.26, + "end": 10988.86, + "probability": 0.9977 + }, + { + "start": 10989.52, + "end": 10990.12, + "probability": 0.7537 + }, + { + "start": 10990.22, + "end": 10993.2, + "probability": 0.9819 + }, + { + "start": 10993.36, + "end": 10995.58, + "probability": 0.8731 + }, + { + "start": 10995.58, + "end": 10999.96, + "probability": 0.9976 + }, + { + "start": 11000.36, + "end": 11002.36, + "probability": 0.1258 + }, + { + "start": 11002.36, + "end": 11002.48, + "probability": 0.1372 + }, + { + "start": 11003.34, + "end": 11003.66, + "probability": 0.3392 + }, + { + "start": 11003.68, + "end": 11005.62, + "probability": 0.5307 + }, + { + "start": 11005.8, + "end": 11007.94, + "probability": 0.7791 + }, + { + "start": 11008.9, + "end": 11010.0, + "probability": 0.7501 + }, + { + "start": 11010.2, + "end": 11012.8, + "probability": 0.9713 + }, + { + "start": 11013.32, + "end": 11017.58, + "probability": 0.9631 + }, + { + "start": 11018.4, + "end": 11022.5, + "probability": 0.8852 + }, + { + "start": 11022.5, + "end": 11027.02, + "probability": 0.9977 + }, + { + "start": 11027.42, + "end": 11029.38, + "probability": 0.6351 + }, + { + "start": 11029.98, + "end": 11032.64, + "probability": 0.8674 + }, + { + "start": 11032.78, + "end": 11037.08, + "probability": 0.9915 + }, + { + "start": 11037.52, + "end": 11038.78, + "probability": 0.9939 + }, + { + "start": 11038.98, + "end": 11040.24, + "probability": 0.98 + }, + { + "start": 11041.38, + "end": 11045.86, + "probability": 0.994 + }, + { + "start": 11046.32, + "end": 11048.92, + "probability": 0.9985 + }, + { + "start": 11049.34, + "end": 11053.16, + "probability": 0.9972 + }, + { + "start": 11053.16, + "end": 11056.74, + "probability": 0.9974 + }, + { + "start": 11057.14, + "end": 11057.96, + "probability": 0.8375 + }, + { + "start": 11058.34, + "end": 11062.12, + "probability": 0.9849 + }, + { + "start": 11062.12, + "end": 11067.54, + "probability": 0.9961 + }, + { + "start": 11067.54, + "end": 11068.9, + "probability": 0.5064 + }, + { + "start": 11069.08, + "end": 11073.06, + "probability": 0.9865 + }, + { + "start": 11073.36, + "end": 11078.12, + "probability": 0.9883 + }, + { + "start": 11078.62, + "end": 11080.64, + "probability": 0.931 + }, + { + "start": 11080.68, + "end": 11085.58, + "probability": 0.9038 + }, + { + "start": 11085.58, + "end": 11085.58, + "probability": 0.1735 + }, + { + "start": 11085.58, + "end": 11090.6, + "probability": 0.7011 + }, + { + "start": 11090.64, + "end": 11092.86, + "probability": 0.998 + }, + { + "start": 11093.26, + "end": 11093.28, + "probability": 0.1774 + }, + { + "start": 11093.28, + "end": 11098.26, + "probability": 0.9861 + }, + { + "start": 11098.26, + "end": 11101.18, + "probability": 0.9963 + }, + { + "start": 11101.28, + "end": 11104.88, + "probability": 0.9529 + }, + { + "start": 11105.6, + "end": 11105.92, + "probability": 0.0163 + }, + { + "start": 11105.92, + "end": 11111.38, + "probability": 0.6221 + }, + { + "start": 11111.62, + "end": 11112.8, + "probability": 0.1149 + }, + { + "start": 11112.88, + "end": 11114.48, + "probability": 0.7486 + }, + { + "start": 11114.68, + "end": 11118.14, + "probability": 0.9687 + }, + { + "start": 11118.84, + "end": 11119.54, + "probability": 0.5083 + }, + { + "start": 11123.06, + "end": 11124.32, + "probability": 0.0928 + }, + { + "start": 11124.32, + "end": 11126.96, + "probability": 0.3452 + }, + { + "start": 11126.96, + "end": 11131.9, + "probability": 0.9972 + }, + { + "start": 11132.62, + "end": 11135.74, + "probability": 0.986 + }, + { + "start": 11135.74, + "end": 11139.8, + "probability": 0.9681 + }, + { + "start": 11140.32, + "end": 11146.46, + "probability": 0.9701 + }, + { + "start": 11146.9, + "end": 11150.68, + "probability": 0.9951 + }, + { + "start": 11150.68, + "end": 11154.02, + "probability": 0.998 + }, + { + "start": 11154.1, + "end": 11155.92, + "probability": 0.9976 + }, + { + "start": 11157.42, + "end": 11161.99, + "probability": 0.9897 + }, + { + "start": 11162.58, + "end": 11166.38, + "probability": 0.8433 + }, + { + "start": 11166.78, + "end": 11170.36, + "probability": 0.9033 + }, + { + "start": 11170.58, + "end": 11176.0, + "probability": 0.9902 + }, + { + "start": 11177.12, + "end": 11181.92, + "probability": 0.9913 + }, + { + "start": 11182.3, + "end": 11184.18, + "probability": 0.9843 + }, + { + "start": 11184.56, + "end": 11186.04, + "probability": 0.9969 + }, + { + "start": 11186.58, + "end": 11193.24, + "probability": 0.8113 + }, + { + "start": 11193.82, + "end": 11194.72, + "probability": 0.8789 + }, + { + "start": 11194.92, + "end": 11195.65, + "probability": 0.9386 + }, + { + "start": 11195.84, + "end": 11199.58, + "probability": 0.985 + }, + { + "start": 11199.68, + "end": 11200.78, + "probability": 0.9922 + }, + { + "start": 11202.16, + "end": 11206.7, + "probability": 0.9969 + }, + { + "start": 11207.26, + "end": 11213.22, + "probability": 0.9914 + }, + { + "start": 11213.22, + "end": 11219.18, + "probability": 0.9991 + }, + { + "start": 11219.56, + "end": 11222.24, + "probability": 0.9079 + }, + { + "start": 11222.7, + "end": 11225.36, + "probability": 0.9717 + }, + { + "start": 11226.0, + "end": 11230.52, + "probability": 0.9925 + }, + { + "start": 11231.34, + "end": 11234.44, + "probability": 0.5221 + }, + { + "start": 11234.58, + "end": 11234.72, + "probability": 0.1628 + }, + { + "start": 11234.72, + "end": 11234.72, + "probability": 0.132 + }, + { + "start": 11234.72, + "end": 11234.72, + "probability": 0.1152 + }, + { + "start": 11234.72, + "end": 11237.34, + "probability": 0.3803 + }, + { + "start": 11237.92, + "end": 11238.94, + "probability": 0.1721 + }, + { + "start": 11240.38, + "end": 11240.44, + "probability": 0.1575 + }, + { + "start": 11240.44, + "end": 11242.82, + "probability": 0.7112 + }, + { + "start": 11247.96, + "end": 11248.26, + "probability": 0.052 + }, + { + "start": 11248.26, + "end": 11248.26, + "probability": 0.0626 + }, + { + "start": 11248.26, + "end": 11248.26, + "probability": 0.0386 + }, + { + "start": 11248.26, + "end": 11250.16, + "probability": 0.3079 + }, + { + "start": 11250.52, + "end": 11252.2, + "probability": 0.608 + }, + { + "start": 11253.14, + "end": 11253.98, + "probability": 0.901 + }, + { + "start": 11254.1, + "end": 11257.5, + "probability": 0.953 + }, + { + "start": 11257.72, + "end": 11259.62, + "probability": 0.9684 + }, + { + "start": 11259.64, + "end": 11259.74, + "probability": 0.025 + }, + { + "start": 11259.74, + "end": 11262.56, + "probability": 0.9839 + }, + { + "start": 11263.1, + "end": 11263.5, + "probability": 0.8373 + }, + { + "start": 11263.56, + "end": 11265.68, + "probability": 0.9521 + }, + { + "start": 11266.24, + "end": 11269.46, + "probability": 0.999 + }, + { + "start": 11269.7, + "end": 11271.04, + "probability": 0.9779 + }, + { + "start": 11271.34, + "end": 11273.48, + "probability": 0.9311 + }, + { + "start": 11273.58, + "end": 11276.46, + "probability": 0.9478 + }, + { + "start": 11276.82, + "end": 11278.58, + "probability": 0.9324 + }, + { + "start": 11278.78, + "end": 11279.9, + "probability": 0.9279 + }, + { + "start": 11280.18, + "end": 11282.48, + "probability": 0.9919 + }, + { + "start": 11282.5, + "end": 11286.6, + "probability": 0.9939 + }, + { + "start": 11287.2, + "end": 11287.8, + "probability": 0.9407 + }, + { + "start": 11288.16, + "end": 11292.76, + "probability": 0.986 + }, + { + "start": 11292.88, + "end": 11297.1, + "probability": 0.6172 + }, + { + "start": 11297.1, + "end": 11298.53, + "probability": 0.8587 + }, + { + "start": 11299.02, + "end": 11299.58, + "probability": 0.0622 + }, + { + "start": 11299.7, + "end": 11301.64, + "probability": 0.6118 + }, + { + "start": 11301.84, + "end": 11305.86, + "probability": 0.9615 + }, + { + "start": 11305.92, + "end": 11306.02, + "probability": 0.4625 + }, + { + "start": 11306.18, + "end": 11307.33, + "probability": 0.8433 + }, + { + "start": 11307.62, + "end": 11311.1, + "probability": 0.9888 + }, + { + "start": 11311.42, + "end": 11314.76, + "probability": 0.9819 + }, + { + "start": 11315.14, + "end": 11316.3, + "probability": 0.9685 + }, + { + "start": 11316.4, + "end": 11318.46, + "probability": 0.9926 + }, + { + "start": 11318.6, + "end": 11320.46, + "probability": 0.9715 + }, + { + "start": 11320.56, + "end": 11322.02, + "probability": 0.9626 + }, + { + "start": 11322.62, + "end": 11322.84, + "probability": 0.6329 + }, + { + "start": 11322.98, + "end": 11324.14, + "probability": 0.9481 + }, + { + "start": 11324.66, + "end": 11327.18, + "probability": 0.9952 + }, + { + "start": 11327.18, + "end": 11330.1, + "probability": 0.9972 + }, + { + "start": 11330.48, + "end": 11331.59, + "probability": 0.8114 + }, + { + "start": 11332.2, + "end": 11333.86, + "probability": 0.9009 + }, + { + "start": 11338.54, + "end": 11342.46, + "probability": 0.9168 + }, + { + "start": 11344.7, + "end": 11347.24, + "probability": 0.3051 + }, + { + "start": 11347.32, + "end": 11354.38, + "probability": 0.6115 + }, + { + "start": 11354.64, + "end": 11356.84, + "probability": 0.9616 + }, + { + "start": 11357.28, + "end": 11359.4, + "probability": 0.6767 + }, + { + "start": 11359.64, + "end": 11362.46, + "probability": 0.8889 + }, + { + "start": 11362.78, + "end": 11364.34, + "probability": 0.6452 + }, + { + "start": 11367.64, + "end": 11368.56, + "probability": 0.6514 + }, + { + "start": 11368.88, + "end": 11371.87, + "probability": 0.9972 + }, + { + "start": 11371.98, + "end": 11373.76, + "probability": 0.205 + }, + { + "start": 11373.76, + "end": 11375.9, + "probability": 0.528 + }, + { + "start": 11375.94, + "end": 11376.94, + "probability": 0.7414 + }, + { + "start": 11377.06, + "end": 11379.16, + "probability": 0.9909 + }, + { + "start": 11379.72, + "end": 11384.76, + "probability": 0.2368 + }, + { + "start": 11385.44, + "end": 11385.64, + "probability": 0.0347 + }, + { + "start": 11386.92, + "end": 11388.9, + "probability": 0.197 + }, + { + "start": 11388.9, + "end": 11388.9, + "probability": 0.0139 + }, + { + "start": 11388.96, + "end": 11393.34, + "probability": 0.9747 + }, + { + "start": 11393.58, + "end": 11398.01, + "probability": 0.9948 + }, + { + "start": 11398.36, + "end": 11400.36, + "probability": 0.9651 + }, + { + "start": 11400.36, + "end": 11404.22, + "probability": 0.9966 + }, + { + "start": 11404.28, + "end": 11404.9, + "probability": 0.532 + }, + { + "start": 11404.94, + "end": 11406.27, + "probability": 0.9995 + }, + { + "start": 11410.2, + "end": 11413.66, + "probability": 0.7078 + }, + { + "start": 11414.08, + "end": 11416.04, + "probability": 0.9941 + }, + { + "start": 11426.28, + "end": 11428.96, + "probability": 0.7742 + }, + { + "start": 11430.75, + "end": 11435.38, + "probability": 0.999 + }, + { + "start": 11436.22, + "end": 11438.7, + "probability": 0.882 + }, + { + "start": 11439.26, + "end": 11446.94, + "probability": 0.929 + }, + { + "start": 11447.44, + "end": 11448.92, + "probability": 0.9983 + }, + { + "start": 11449.42, + "end": 11452.76, + "probability": 0.873 + }, + { + "start": 11453.0, + "end": 11453.78, + "probability": 0.9084 + }, + { + "start": 11453.8, + "end": 11454.25, + "probability": 0.8867 + }, + { + "start": 11455.76, + "end": 11456.71, + "probability": 0.018 + }, + { + "start": 11457.08, + "end": 11459.46, + "probability": 0.2603 + }, + { + "start": 11461.08, + "end": 11461.52, + "probability": 0.5997 + }, + { + "start": 11461.52, + "end": 11461.82, + "probability": 0.2199 + }, + { + "start": 11461.82, + "end": 11462.54, + "probability": 0.3696 + }, + { + "start": 11463.36, + "end": 11464.88, + "probability": 0.8708 + }, + { + "start": 11465.52, + "end": 11465.52, + "probability": 0.2477 + }, + { + "start": 11466.48, + "end": 11467.71, + "probability": 0.8749 + }, + { + "start": 11468.54, + "end": 11471.24, + "probability": 0.0892 + }, + { + "start": 11471.24, + "end": 11472.2, + "probability": 0.5509 + }, + { + "start": 11472.36, + "end": 11474.76, + "probability": 0.7891 + }, + { + "start": 11474.94, + "end": 11480.0, + "probability": 0.9631 + }, + { + "start": 11480.0, + "end": 11481.24, + "probability": 0.8475 + }, + { + "start": 11482.08, + "end": 11505.04, + "probability": 0.1757 + }, + { + "start": 11505.04, + "end": 11507.98, + "probability": 0.2412 + }, + { + "start": 11508.2, + "end": 11510.64, + "probability": 0.2344 + }, + { + "start": 11510.94, + "end": 11512.83, + "probability": 0.1297 + }, + { + "start": 11513.06, + "end": 11514.9, + "probability": 0.5131 + }, + { + "start": 11514.9, + "end": 11514.9, + "probability": 0.4681 + }, + { + "start": 11514.9, + "end": 11514.9, + "probability": 0.2017 + }, + { + "start": 11515.28, + "end": 11516.68, + "probability": 0.2427 + }, + { + "start": 11517.58, + "end": 11518.64, + "probability": 0.41 + }, + { + "start": 11520.62, + "end": 11523.58, + "probability": 0.0103 + }, + { + "start": 11528.16, + "end": 11531.06, + "probability": 0.1094 + }, + { + "start": 11546.26, + "end": 11547.64, + "probability": 0.1341 + }, + { + "start": 11547.64, + "end": 11548.53, + "probability": 0.039 + }, + { + "start": 11549.7, + "end": 11551.76, + "probability": 0.0165 + }, + { + "start": 11551.76, + "end": 11553.88, + "probability": 0.3376 + }, + { + "start": 11553.88, + "end": 11553.92, + "probability": 0.1355 + }, + { + "start": 11554.89, + "end": 11555.55, + "probability": 0.0847 + }, + { + "start": 11556.62, + "end": 11558.84, + "probability": 0.1474 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.0, + "end": 11559.0, + "probability": 0.0 + }, + { + "start": 11559.02, + "end": 11559.2, + "probability": 0.0011 + }, + { + "start": 11559.2, + "end": 11559.2, + "probability": 0.1606 + }, + { + "start": 11559.2, + "end": 11559.2, + "probability": 0.0836 + }, + { + "start": 11559.2, + "end": 11559.2, + "probability": 0.1767 + }, + { + "start": 11559.2, + "end": 11559.2, + "probability": 0.0751 + }, + { + "start": 11559.2, + "end": 11562.16, + "probability": 0.6723 + }, + { + "start": 11562.44, + "end": 11564.32, + "probability": 0.965 + }, + { + "start": 11564.6, + "end": 11565.48, + "probability": 0.0696 + }, + { + "start": 11565.48, + "end": 11565.48, + "probability": 0.3439 + }, + { + "start": 11565.48, + "end": 11565.76, + "probability": 0.4299 + }, + { + "start": 11565.94, + "end": 11566.82, + "probability": 0.563 + }, + { + "start": 11567.36, + "end": 11569.26, + "probability": 0.7418 + }, + { + "start": 11580.48, + "end": 11582.24, + "probability": 0.4263 + }, + { + "start": 11583.18, + "end": 11585.5, + "probability": 0.0114 + }, + { + "start": 11605.26, + "end": 11608.32, + "probability": 0.3495 + }, + { + "start": 11608.48, + "end": 11610.8, + "probability": 0.6667 + }, + { + "start": 11610.8, + "end": 11611.99, + "probability": 0.7459 + }, + { + "start": 11613.1, + "end": 11613.1, + "probability": 0.5855 + }, + { + "start": 11613.1, + "end": 11613.1, + "probability": 0.2685 + }, + { + "start": 11613.1, + "end": 11613.1, + "probability": 0.4308 + }, + { + "start": 11613.1, + "end": 11613.2, + "probability": 0.0701 + }, + { + "start": 11613.2, + "end": 11613.2, + "probability": 0.3674 + }, + { + "start": 11622.34, + "end": 11622.54, + "probability": 0.8341 + }, + { + "start": 11622.58, + "end": 11624.44, + "probability": 0.6648 + }, + { + "start": 11624.76, + "end": 11625.88, + "probability": 0.2136 + }, + { + "start": 11626.28, + "end": 11627.5, + "probability": 0.3254 + }, + { + "start": 11628.02, + "end": 11630.32, + "probability": 0.1674 + }, + { + "start": 11630.46, + "end": 11631.96, + "probability": 0.8391 + }, + { + "start": 11632.16, + "end": 11634.24, + "probability": 0.9904 + }, + { + "start": 11634.48, + "end": 11638.5, + "probability": 0.9893 + }, + { + "start": 11638.54, + "end": 11644.04, + "probability": 0.9871 + }, + { + "start": 11644.52, + "end": 11645.38, + "probability": 0.7713 + }, + { + "start": 11645.68, + "end": 11649.28, + "probability": 0.4185 + }, + { + "start": 11649.28, + "end": 11649.34, + "probability": 0.3197 + }, + { + "start": 11649.34, + "end": 11649.92, + "probability": 0.5631 + }, + { + "start": 11649.98, + "end": 11651.06, + "probability": 0.9587 + }, + { + "start": 11651.3, + "end": 11651.94, + "probability": 0.7086 + }, + { + "start": 11653.04, + "end": 11656.39, + "probability": 0.6885 + }, + { + "start": 11657.78, + "end": 11663.7, + "probability": 0.9753 + }, + { + "start": 11664.26, + "end": 11664.38, + "probability": 0.4065 + }, + { + "start": 11664.54, + "end": 11665.56, + "probability": 0.9521 + }, + { + "start": 11665.64, + "end": 11666.5, + "probability": 0.5349 + }, + { + "start": 11666.62, + "end": 11667.38, + "probability": 0.7363 + }, + { + "start": 11667.72, + "end": 11668.56, + "probability": 0.8354 + }, + { + "start": 11668.78, + "end": 11671.6, + "probability": 0.9827 + }, + { + "start": 11672.3, + "end": 11677.26, + "probability": 0.9725 + }, + { + "start": 11677.76, + "end": 11681.2, + "probability": 0.9992 + }, + { + "start": 11681.2, + "end": 11685.28, + "probability": 0.998 + }, + { + "start": 11685.46, + "end": 11687.64, + "probability": 0.9101 + }, + { + "start": 11688.12, + "end": 11690.26, + "probability": 0.9353 + }, + { + "start": 11690.54, + "end": 11693.16, + "probability": 0.6598 + }, + { + "start": 11693.86, + "end": 11695.68, + "probability": 0.8642 + }, + { + "start": 11695.88, + "end": 11697.84, + "probability": 0.957 + }, + { + "start": 11697.92, + "end": 11699.62, + "probability": 0.8931 + }, + { + "start": 11699.68, + "end": 11701.54, + "probability": 0.7301 + }, + { + "start": 11701.92, + "end": 11704.84, + "probability": 0.8148 + }, + { + "start": 11704.94, + "end": 11705.42, + "probability": 0.6288 + }, + { + "start": 11707.12, + "end": 11708.62, + "probability": 0.9619 + }, + { + "start": 11711.19, + "end": 11717.3, + "probability": 0.0409 + }, + { + "start": 11717.3, + "end": 11723.28, + "probability": 0.9708 + }, + { + "start": 11723.36, + "end": 11727.56, + "probability": 0.7856 + }, + { + "start": 11727.98, + "end": 11731.86, + "probability": 0.9563 + }, + { + "start": 11733.56, + "end": 11734.48, + "probability": 0.9515 + }, + { + "start": 11735.52, + "end": 11738.32, + "probability": 0.655 + }, + { + "start": 11738.86, + "end": 11741.48, + "probability": 0.9857 + }, + { + "start": 11741.86, + "end": 11743.12, + "probability": 0.9569 + }, + { + "start": 11743.22, + "end": 11744.52, + "probability": 0.7778 + }, + { + "start": 11744.88, + "end": 11745.54, + "probability": 0.6943 + }, + { + "start": 11745.98, + "end": 11747.34, + "probability": 0.9656 + }, + { + "start": 11748.6, + "end": 11752.28, + "probability": 0.7878 + }, + { + "start": 11752.7, + "end": 11756.08, + "probability": 0.9923 + }, + { + "start": 11758.92, + "end": 11763.34, + "probability": 0.9319 + }, + { + "start": 11764.02, + "end": 11766.16, + "probability": 0.9902 + }, + { + "start": 11766.22, + "end": 11767.62, + "probability": 0.7546 + }, + { + "start": 11767.74, + "end": 11768.6, + "probability": 0.9971 + }, + { + "start": 11769.26, + "end": 11771.46, + "probability": 0.848 + }, + { + "start": 11771.76, + "end": 11774.86, + "probability": 0.8864 + }, + { + "start": 11775.12, + "end": 11776.16, + "probability": 0.9254 + }, + { + "start": 11776.48, + "end": 11777.54, + "probability": 0.8704 + }, + { + "start": 11778.0, + "end": 11778.94, + "probability": 0.9734 + }, + { + "start": 11779.0, + "end": 11779.72, + "probability": 0.8467 + }, + { + "start": 11780.24, + "end": 11782.34, + "probability": 0.9836 + }, + { + "start": 11782.62, + "end": 11785.38, + "probability": 0.8904 + }, + { + "start": 11785.72, + "end": 11786.68, + "probability": 0.8008 + }, + { + "start": 11787.2, + "end": 11790.92, + "probability": 0.9799 + }, + { + "start": 11790.92, + "end": 11795.42, + "probability": 0.9998 + }, + { + "start": 11796.06, + "end": 11800.52, + "probability": 0.9864 + }, + { + "start": 11800.98, + "end": 11801.62, + "probability": 0.8498 + }, + { + "start": 11802.34, + "end": 11805.14, + "probability": 0.9927 + }, + { + "start": 11805.82, + "end": 11809.48, + "probability": 0.9879 + }, + { + "start": 11809.48, + "end": 11813.42, + "probability": 0.9986 + }, + { + "start": 11813.52, + "end": 11814.68, + "probability": 0.4908 + }, + { + "start": 11814.86, + "end": 11819.06, + "probability": 0.9165 + }, + { + "start": 11819.68, + "end": 11820.79, + "probability": 0.1634 + }, + { + "start": 11821.08, + "end": 11823.46, + "probability": 0.8997 + }, + { + "start": 11823.66, + "end": 11825.66, + "probability": 0.9897 + }, + { + "start": 11825.84, + "end": 11826.32, + "probability": 0.5499 + }, + { + "start": 11826.32, + "end": 11826.98, + "probability": 0.688 + }, + { + "start": 11827.98, + "end": 11828.38, + "probability": 0.9443 + }, + { + "start": 11828.52, + "end": 11834.7, + "probability": 0.9274 + }, + { + "start": 11834.9, + "end": 11840.16, + "probability": 0.7253 + }, + { + "start": 11841.14, + "end": 11842.16, + "probability": 0.6115 + }, + { + "start": 11842.84, + "end": 11843.24, + "probability": 0.3889 + }, + { + "start": 11846.6, + "end": 11849.46, + "probability": 0.2728 + }, + { + "start": 11849.46, + "end": 11849.46, + "probability": 0.3169 + }, + { + "start": 11851.56, + "end": 11853.88, + "probability": 0.0287 + }, + { + "start": 11856.88, + "end": 11859.42, + "probability": 0.8596 + }, + { + "start": 11860.0, + "end": 11861.6, + "probability": 0.9746 + }, + { + "start": 11861.74, + "end": 11862.68, + "probability": 0.6694 + }, + { + "start": 11863.1, + "end": 11865.52, + "probability": 0.897 + }, + { + "start": 11866.52, + "end": 11867.56, + "probability": 0.8115 + }, + { + "start": 11867.82, + "end": 11870.92, + "probability": 0.9735 + }, + { + "start": 11870.92, + "end": 11874.82, + "probability": 0.9861 + }, + { + "start": 11875.48, + "end": 11876.48, + "probability": 0.4696 + }, + { + "start": 11877.7, + "end": 11881.28, + "probability": 0.8438 + }, + { + "start": 11882.38, + "end": 11886.02, + "probability": 0.9679 + }, + { + "start": 11886.06, + "end": 11887.56, + "probability": 0.823 + }, + { + "start": 11893.44, + "end": 11896.6, + "probability": 0.9692 + }, + { + "start": 11898.16, + "end": 11899.88, + "probability": 0.7244 + }, + { + "start": 11900.28, + "end": 11902.04, + "probability": 0.8508 + }, + { + "start": 11903.08, + "end": 11906.66, + "probability": 0.9926 + }, + { + "start": 11906.72, + "end": 11909.98, + "probability": 0.9988 + }, + { + "start": 11910.44, + "end": 11912.12, + "probability": 0.9952 + }, + { + "start": 11912.64, + "end": 11913.8, + "probability": 0.793 + }, + { + "start": 11921.06, + "end": 11926.04, + "probability": 0.9844 + }, + { + "start": 11926.76, + "end": 11928.52, + "probability": 0.9572 + }, + { + "start": 11929.95, + "end": 11932.08, + "probability": 0.8869 + }, + { + "start": 11932.68, + "end": 11935.18, + "probability": 0.3648 + }, + { + "start": 11935.8, + "end": 11937.68, + "probability": 0.934 + }, + { + "start": 11938.2, + "end": 11939.52, + "probability": 0.1957 + }, + { + "start": 11940.18, + "end": 11943.16, + "probability": 0.1934 + }, + { + "start": 11945.67, + "end": 11947.3, + "probability": 0.1723 + }, + { + "start": 11973.14, + "end": 11977.18, + "probability": 0.998 + }, + { + "start": 11977.18, + "end": 11980.92, + "probability": 0.9998 + }, + { + "start": 11981.08, + "end": 11982.13, + "probability": 0.8909 + }, + { + "start": 11983.44, + "end": 11985.45, + "probability": 0.985 + }, + { + "start": 11986.3, + "end": 11988.64, + "probability": 0.9973 + }, + { + "start": 11989.44, + "end": 11996.78, + "probability": 0.9686 + }, + { + "start": 11996.88, + "end": 11997.66, + "probability": 0.8307 + }, + { + "start": 11997.66, + "end": 11998.64, + "probability": 0.903 + }, + { + "start": 11999.18, + "end": 12000.26, + "probability": 0.7369 + }, + { + "start": 12000.32, + "end": 12003.12, + "probability": 0.8939 + }, + { + "start": 12003.5, + "end": 12008.64, + "probability": 0.9728 + }, + { + "start": 12009.02, + "end": 12011.76, + "probability": 0.9855 + }, + { + "start": 12011.92, + "end": 12014.28, + "probability": 0.957 + }, + { + "start": 12014.78, + "end": 12016.48, + "probability": 0.233 + }, + { + "start": 12016.52, + "end": 12019.3, + "probability": 0.6869 + }, + { + "start": 12019.36, + "end": 12023.0, + "probability": 0.9785 + }, + { + "start": 12023.82, + "end": 12026.62, + "probability": 0.9768 + }, + { + "start": 12027.5, + "end": 12030.82, + "probability": 0.9708 + }, + { + "start": 12030.82, + "end": 12036.8, + "probability": 0.9247 + }, + { + "start": 12037.24, + "end": 12038.62, + "probability": 0.6993 + }, + { + "start": 12039.26, + "end": 12044.36, + "probability": 0.9967 + }, + { + "start": 12044.72, + "end": 12045.94, + "probability": 0.9785 + }, + { + "start": 12046.18, + "end": 12047.92, + "probability": 0.9928 + }, + { + "start": 12048.16, + "end": 12049.66, + "probability": 0.9972 + }, + { + "start": 12050.3, + "end": 12050.3, + "probability": 0.0394 + }, + { + "start": 12050.3, + "end": 12053.06, + "probability": 0.9758 + }, + { + "start": 12053.88, + "end": 12055.8, + "probability": 0.8464 + }, + { + "start": 12056.28, + "end": 12060.26, + "probability": 0.998 + }, + { + "start": 12060.66, + "end": 12063.16, + "probability": 0.9962 + }, + { + "start": 12063.5, + "end": 12065.78, + "probability": 0.9756 + }, + { + "start": 12066.58, + "end": 12067.86, + "probability": 0.978 + }, + { + "start": 12068.14, + "end": 12070.18, + "probability": 0.8621 + }, + { + "start": 12070.24, + "end": 12071.38, + "probability": 0.8954 + }, + { + "start": 12071.5, + "end": 12074.12, + "probability": 0.8041 + }, + { + "start": 12074.12, + "end": 12074.56, + "probability": 0.6976 + }, + { + "start": 12074.62, + "end": 12075.82, + "probability": 0.8046 + }, + { + "start": 12076.3, + "end": 12078.68, + "probability": 0.9784 + }, + { + "start": 12078.78, + "end": 12079.56, + "probability": 0.7749 + }, + { + "start": 12079.6, + "end": 12083.9, + "probability": 0.856 + }, + { + "start": 12083.9, + "end": 12083.9, + "probability": 0.0322 + }, + { + "start": 12083.9, + "end": 12085.26, + "probability": 0.7527 + }, + { + "start": 12085.28, + "end": 12089.6, + "probability": 0.6468 + }, + { + "start": 12089.8, + "end": 12093.42, + "probability": 0.8845 + }, + { + "start": 12093.72, + "end": 12094.46, + "probability": 0.5581 + }, + { + "start": 12094.46, + "end": 12097.0, + "probability": 0.1095 + }, + { + "start": 12097.0, + "end": 12097.3, + "probability": 0.0499 + }, + { + "start": 12097.3, + "end": 12097.58, + "probability": 0.2182 + }, + { + "start": 12098.52, + "end": 12103.2, + "probability": 0.9858 + }, + { + "start": 12103.66, + "end": 12107.64, + "probability": 0.9944 + }, + { + "start": 12107.8, + "end": 12109.5, + "probability": 0.9371 + }, + { + "start": 12109.88, + "end": 12111.16, + "probability": 0.9438 + }, + { + "start": 12111.9, + "end": 12113.14, + "probability": 0.3706 + }, + { + "start": 12113.58, + "end": 12119.86, + "probability": 0.9583 + }, + { + "start": 12120.18, + "end": 12123.08, + "probability": 0.9978 + }, + { + "start": 12123.08, + "end": 12125.92, + "probability": 0.9951 + }, + { + "start": 12126.5, + "end": 12127.6, + "probability": 0.9381 + }, + { + "start": 12127.76, + "end": 12130.12, + "probability": 0.9497 + }, + { + "start": 12130.62, + "end": 12132.58, + "probability": 0.9839 + }, + { + "start": 12132.98, + "end": 12134.98, + "probability": 0.9843 + }, + { + "start": 12135.04, + "end": 12137.42, + "probability": 0.9905 + }, + { + "start": 12137.68, + "end": 12138.8, + "probability": 0.8505 + }, + { + "start": 12139.42, + "end": 12148.72, + "probability": 0.9072 + }, + { + "start": 12149.26, + "end": 12150.74, + "probability": 0.9907 + }, + { + "start": 12150.96, + "end": 12153.92, + "probability": 0.9914 + }, + { + "start": 12154.56, + "end": 12158.94, + "probability": 0.8618 + }, + { + "start": 12158.94, + "end": 12161.24, + "probability": 0.8206 + }, + { + "start": 12161.66, + "end": 12163.08, + "probability": 0.8862 + }, + { + "start": 12163.38, + "end": 12165.54, + "probability": 0.8071 + }, + { + "start": 12165.98, + "end": 12169.24, + "probability": 0.7976 + }, + { + "start": 12169.52, + "end": 12171.7, + "probability": 0.9942 + }, + { + "start": 12172.32, + "end": 12174.34, + "probability": 0.9307 + }, + { + "start": 12175.28, + "end": 12176.48, + "probability": 0.9303 + }, + { + "start": 12177.12, + "end": 12181.1, + "probability": 0.9805 + }, + { + "start": 12181.36, + "end": 12183.56, + "probability": 0.999 + }, + { + "start": 12184.22, + "end": 12185.3, + "probability": 0.3403 + }, + { + "start": 12185.84, + "end": 12191.04, + "probability": 0.9831 + }, + { + "start": 12191.44, + "end": 12192.12, + "probability": 0.7086 + }, + { + "start": 12192.16, + "end": 12195.32, + "probability": 0.9102 + }, + { + "start": 12196.62, + "end": 12198.76, + "probability": 0.8911 + }, + { + "start": 12199.08, + "end": 12200.82, + "probability": 0.9404 + }, + { + "start": 12201.52, + "end": 12203.06, + "probability": 0.9604 + }, + { + "start": 12203.62, + "end": 12205.38, + "probability": 0.8164 + }, + { + "start": 12205.88, + "end": 12207.62, + "probability": 0.9916 + }, + { + "start": 12208.12, + "end": 12211.02, + "probability": 0.9885 + }, + { + "start": 12211.62, + "end": 12216.2, + "probability": 0.991 + }, + { + "start": 12216.2, + "end": 12221.12, + "probability": 0.9303 + }, + { + "start": 12222.4, + "end": 12228.06, + "probability": 0.9186 + }, + { + "start": 12229.14, + "end": 12231.96, + "probability": 0.8806 + }, + { + "start": 12232.58, + "end": 12235.52, + "probability": 0.9489 + }, + { + "start": 12236.58, + "end": 12240.56, + "probability": 0.9753 + }, + { + "start": 12241.22, + "end": 12242.3, + "probability": 0.3489 + }, + { + "start": 12242.96, + "end": 12244.16, + "probability": 0.9386 + }, + { + "start": 12244.48, + "end": 12248.28, + "probability": 0.9839 + }, + { + "start": 12249.36, + "end": 12252.54, + "probability": 0.9632 + }, + { + "start": 12253.46, + "end": 12259.2, + "probability": 0.9976 + }, + { + "start": 12259.2, + "end": 12264.86, + "probability": 0.9985 + }, + { + "start": 12265.84, + "end": 12268.5, + "probability": 0.9893 + }, + { + "start": 12268.93, + "end": 12272.46, + "probability": 0.9956 + }, + { + "start": 12273.2, + "end": 12277.7, + "probability": 0.9984 + }, + { + "start": 12278.24, + "end": 12279.04, + "probability": 0.7428 + }, + { + "start": 12279.7, + "end": 12284.5, + "probability": 0.9715 + }, + { + "start": 12284.92, + "end": 12286.18, + "probability": 0.9883 + }, + { + "start": 12286.68, + "end": 12287.82, + "probability": 0.9842 + }, + { + "start": 12288.28, + "end": 12289.56, + "probability": 0.9827 + }, + { + "start": 12291.1, + "end": 12292.58, + "probability": 0.8491 + }, + { + "start": 12293.14, + "end": 12294.8, + "probability": 0.8026 + }, + { + "start": 12294.9, + "end": 12300.6, + "probability": 0.9696 + }, + { + "start": 12301.34, + "end": 12302.88, + "probability": 0.853 + }, + { + "start": 12303.5, + "end": 12307.98, + "probability": 0.9485 + }, + { + "start": 12308.48, + "end": 12310.8, + "probability": 0.9907 + }, + { + "start": 12311.3, + "end": 12313.14, + "probability": 0.9648 + }, + { + "start": 12313.46, + "end": 12317.68, + "probability": 0.9727 + }, + { + "start": 12318.24, + "end": 12319.28, + "probability": 0.9901 + }, + { + "start": 12319.72, + "end": 12320.94, + "probability": 0.8603 + }, + { + "start": 12321.44, + "end": 12324.6, + "probability": 0.8369 + }, + { + "start": 12325.02, + "end": 12328.42, + "probability": 0.9679 + }, + { + "start": 12328.86, + "end": 12330.0, + "probability": 0.9755 + }, + { + "start": 12330.08, + "end": 12331.84, + "probability": 0.9942 + }, + { + "start": 12332.18, + "end": 12334.8, + "probability": 0.9624 + }, + { + "start": 12335.26, + "end": 12336.88, + "probability": 0.6646 + }, + { + "start": 12337.04, + "end": 12340.14, + "probability": 0.9837 + }, + { + "start": 12340.14, + "end": 12344.2, + "probability": 0.9625 + }, + { + "start": 12344.48, + "end": 12346.36, + "probability": 0.9267 + }, + { + "start": 12347.04, + "end": 12350.32, + "probability": 0.9592 + }, + { + "start": 12351.24, + "end": 12352.68, + "probability": 0.9809 + }, + { + "start": 12353.0, + "end": 12353.78, + "probability": 0.6899 + }, + { + "start": 12357.1, + "end": 12357.82, + "probability": 0.7938 + }, + { + "start": 12358.72, + "end": 12365.0, + "probability": 0.7881 + }, + { + "start": 12365.06, + "end": 12366.06, + "probability": 0.8184 + }, + { + "start": 12367.08, + "end": 12368.66, + "probability": 0.5023 + }, + { + "start": 12368.86, + "end": 12369.42, + "probability": 0.2835 + }, + { + "start": 12369.52, + "end": 12371.52, + "probability": 0.0635 + }, + { + "start": 12371.52, + "end": 12374.24, + "probability": 0.1718 + }, + { + "start": 12386.28, + "end": 12389.48, + "probability": 0.1467 + }, + { + "start": 12390.02, + "end": 12392.02, + "probability": 0.3307 + }, + { + "start": 12397.08, + "end": 12400.76, + "probability": 0.7172 + }, + { + "start": 12400.88, + "end": 12403.42, + "probability": 0.9294 + }, + { + "start": 12403.52, + "end": 12404.86, + "probability": 0.8228 + }, + { + "start": 12404.94, + "end": 12406.66, + "probability": 0.9886 + }, + { + "start": 12407.04, + "end": 12409.78, + "probability": 0.5585 + }, + { + "start": 12409.84, + "end": 12412.48, + "probability": 0.6008 + }, + { + "start": 12417.18, + "end": 12419.72, + "probability": 0.6296 + }, + { + "start": 12422.0, + "end": 12427.18, + "probability": 0.8514 + }, + { + "start": 12427.18, + "end": 12431.72, + "probability": 0.9684 + }, + { + "start": 12432.6, + "end": 12434.1, + "probability": 0.6584 + }, + { + "start": 12434.18, + "end": 12437.08, + "probability": 0.7185 + }, + { + "start": 12438.44, + "end": 12440.86, + "probability": 0.9705 + }, + { + "start": 12440.86, + "end": 12444.64, + "probability": 0.9874 + }, + { + "start": 12445.89, + "end": 12452.68, + "probability": 0.8462 + }, + { + "start": 12453.14, + "end": 12453.42, + "probability": 0.4123 + }, + { + "start": 12453.62, + "end": 12457.68, + "probability": 0.9548 + }, + { + "start": 12457.68, + "end": 12460.74, + "probability": 0.9671 + }, + { + "start": 12461.4, + "end": 12461.98, + "probability": 0.5743 + }, + { + "start": 12462.54, + "end": 12465.44, + "probability": 0.8375 + }, + { + "start": 12466.26, + "end": 12470.88, + "probability": 0.9055 + }, + { + "start": 12471.96, + "end": 12473.38, + "probability": 0.9555 + }, + { + "start": 12474.12, + "end": 12476.02, + "probability": 0.923 + }, + { + "start": 12476.94, + "end": 12480.48, + "probability": 0.9946 + }, + { + "start": 12481.56, + "end": 12487.12, + "probability": 0.993 + }, + { + "start": 12488.76, + "end": 12492.26, + "probability": 0.8414 + }, + { + "start": 12493.6, + "end": 12495.9, + "probability": 0.9968 + }, + { + "start": 12495.9, + "end": 12499.52, + "probability": 0.9775 + }, + { + "start": 12500.08, + "end": 12504.58, + "probability": 0.9883 + }, + { + "start": 12504.72, + "end": 12506.7, + "probability": 0.6659 + }, + { + "start": 12507.36, + "end": 12507.74, + "probability": 0.5018 + }, + { + "start": 12507.82, + "end": 12511.38, + "probability": 0.9907 + }, + { + "start": 12511.6, + "end": 12515.72, + "probability": 0.9477 + }, + { + "start": 12516.02, + "end": 12516.3, + "probability": 0.7458 + }, + { + "start": 12516.36, + "end": 12517.08, + "probability": 0.8345 + }, + { + "start": 12517.5, + "end": 12522.7, + "probability": 0.8537 + }, + { + "start": 12523.7, + "end": 12528.0, + "probability": 0.9493 + }, + { + "start": 12529.18, + "end": 12530.78, + "probability": 0.9088 + }, + { + "start": 12531.3, + "end": 12533.4, + "probability": 0.9397 + }, + { + "start": 12533.72, + "end": 12534.38, + "probability": 0.1379 + }, + { + "start": 12540.16, + "end": 12541.38, + "probability": 0.0095 + }, + { + "start": 12542.4, + "end": 12542.88, + "probability": 0.7355 + }, + { + "start": 12543.78, + "end": 12544.58, + "probability": 0.6602 + }, + { + "start": 12546.12, + "end": 12547.16, + "probability": 0.8343 + }, + { + "start": 12547.24, + "end": 12549.1, + "probability": 0.9665 + }, + { + "start": 12549.1, + "end": 12550.58, + "probability": 0.9894 + }, + { + "start": 12551.0, + "end": 12552.02, + "probability": 0.6211 + }, + { + "start": 12553.06, + "end": 12553.7, + "probability": 0.9879 + }, + { + "start": 12557.78, + "end": 12563.44, + "probability": 0.7835 + }, + { + "start": 12565.46, + "end": 12570.36, + "probability": 0.8987 + }, + { + "start": 12572.12, + "end": 12574.08, + "probability": 0.7181 + }, + { + "start": 12575.4, + "end": 12576.22, + "probability": 0.737 + }, + { + "start": 12579.8, + "end": 12583.6, + "probability": 0.9886 + }, + { + "start": 12583.74, + "end": 12584.92, + "probability": 0.9839 + }, + { + "start": 12586.6, + "end": 12594.28, + "probability": 0.9941 + }, + { + "start": 12595.04, + "end": 12596.58, + "probability": 0.9748 + }, + { + "start": 12597.88, + "end": 12598.98, + "probability": 0.9695 + }, + { + "start": 12600.14, + "end": 12603.36, + "probability": 0.9866 + }, + { + "start": 12604.06, + "end": 12604.8, + "probability": 0.9157 + }, + { + "start": 12604.94, + "end": 12605.94, + "probability": 0.7568 + }, + { + "start": 12606.1, + "end": 12606.45, + "probability": 0.9503 + }, + { + "start": 12606.76, + "end": 12607.04, + "probability": 0.8883 + }, + { + "start": 12607.18, + "end": 12607.82, + "probability": 0.6552 + }, + { + "start": 12609.86, + "end": 12610.54, + "probability": 0.9342 + }, + { + "start": 12610.84, + "end": 12611.58, + "probability": 0.8077 + }, + { + "start": 12611.94, + "end": 12617.82, + "probability": 0.9235 + }, + { + "start": 12618.48, + "end": 12620.7, + "probability": 0.9561 + }, + { + "start": 12620.82, + "end": 12621.54, + "probability": 0.9081 + }, + { + "start": 12621.8, + "end": 12624.36, + "probability": 0.9474 + }, + { + "start": 12625.58, + "end": 12629.76, + "probability": 0.889 + }, + { + "start": 12629.9, + "end": 12633.42, + "probability": 0.9777 + }, + { + "start": 12633.54, + "end": 12634.74, + "probability": 0.7018 + }, + { + "start": 12634.76, + "end": 12636.3, + "probability": 0.9524 + }, + { + "start": 12637.72, + "end": 12638.86, + "probability": 0.8809 + }, + { + "start": 12640.02, + "end": 12642.66, + "probability": 0.6182 + }, + { + "start": 12642.72, + "end": 12646.86, + "probability": 0.8774 + }, + { + "start": 12647.62, + "end": 12650.62, + "probability": 0.9934 + }, + { + "start": 12651.38, + "end": 12656.48, + "probability": 0.9873 + }, + { + "start": 12657.1, + "end": 12660.08, + "probability": 0.9616 + }, + { + "start": 12660.36, + "end": 12662.3, + "probability": 0.8494 + }, + { + "start": 12663.36, + "end": 12666.24, + "probability": 0.7295 + }, + { + "start": 12668.28, + "end": 12669.68, + "probability": 0.8871 + }, + { + "start": 12670.32, + "end": 12671.58, + "probability": 0.9499 + }, + { + "start": 12672.42, + "end": 12674.08, + "probability": 0.9708 + }, + { + "start": 12674.16, + "end": 12674.7, + "probability": 0.9264 + }, + { + "start": 12674.86, + "end": 12675.04, + "probability": 0.9514 + }, + { + "start": 12675.1, + "end": 12680.2, + "probability": 0.9867 + }, + { + "start": 12680.52, + "end": 12682.14, + "probability": 0.3499 + }, + { + "start": 12682.24, + "end": 12684.88, + "probability": 0.9749 + }, + { + "start": 12685.1, + "end": 12688.92, + "probability": 0.9401 + }, + { + "start": 12690.36, + "end": 12690.96, + "probability": 0.491 + }, + { + "start": 12693.38, + "end": 12697.2, + "probability": 0.9969 + }, + { + "start": 12698.42, + "end": 12699.9, + "probability": 0.9871 + }, + { + "start": 12700.06, + "end": 12706.36, + "probability": 0.9888 + }, + { + "start": 12707.14, + "end": 12708.8, + "probability": 0.998 + }, + { + "start": 12712.46, + "end": 12713.42, + "probability": 0.6249 + }, + { + "start": 12713.98, + "end": 12717.88, + "probability": 0.9958 + }, + { + "start": 12718.8, + "end": 12719.32, + "probability": 0.9124 + }, + { + "start": 12720.28, + "end": 12723.44, + "probability": 0.8669 + }, + { + "start": 12725.5, + "end": 12728.6, + "probability": 0.9956 + }, + { + "start": 12728.8, + "end": 12731.78, + "probability": 0.9888 + }, + { + "start": 12733.1, + "end": 12736.04, + "probability": 0.9845 + }, + { + "start": 12736.04, + "end": 12736.98, + "probability": 0.9409 + }, + { + "start": 12737.02, + "end": 12738.04, + "probability": 0.8733 + }, + { + "start": 12738.34, + "end": 12739.02, + "probability": 0.8735 + }, + { + "start": 12739.02, + "end": 12740.3, + "probability": 0.9297 + }, + { + "start": 12740.36, + "end": 12745.64, + "probability": 0.9711 + }, + { + "start": 12745.72, + "end": 12746.78, + "probability": 0.8402 + }, + { + "start": 12746.86, + "end": 12748.28, + "probability": 0.9924 + }, + { + "start": 12748.28, + "end": 12748.48, + "probability": 0.6684 + }, + { + "start": 12748.48, + "end": 12749.54, + "probability": 0.9814 + }, + { + "start": 12749.84, + "end": 12750.9, + "probability": 0.7714 + }, + { + "start": 12750.94, + "end": 12752.6, + "probability": 0.9292 + }, + { + "start": 12752.62, + "end": 12752.8, + "probability": 0.4573 + }, + { + "start": 12752.8, + "end": 12752.86, + "probability": 0.4645 + }, + { + "start": 12752.86, + "end": 12753.44, + "probability": 0.6164 + }, + { + "start": 12753.84, + "end": 12756.68, + "probability": 0.8853 + }, + { + "start": 12756.92, + "end": 12758.08, + "probability": 0.7018 + }, + { + "start": 12758.42, + "end": 12759.18, + "probability": 0.78 + }, + { + "start": 12759.22, + "end": 12759.66, + "probability": 0.871 + }, + { + "start": 12762.34, + "end": 12766.88, + "probability": 0.736 + }, + { + "start": 12766.88, + "end": 12770.12, + "probability": 0.8664 + }, + { + "start": 12770.8, + "end": 12773.86, + "probability": 0.6168 + }, + { + "start": 12795.58, + "end": 12798.22, + "probability": 0.6038 + }, + { + "start": 12798.22, + "end": 12801.36, + "probability": 0.9182 + }, + { + "start": 12801.5, + "end": 12802.22, + "probability": 0.3322 + }, + { + "start": 12802.72, + "end": 12807.42, + "probability": 0.9696 + }, + { + "start": 12809.4, + "end": 12810.26, + "probability": 0.0317 + }, + { + "start": 12812.72, + "end": 12815.38, + "probability": 0.1648 + }, + { + "start": 12818.04, + "end": 12821.1, + "probability": 0.0119 + }, + { + "start": 12822.5, + "end": 12823.0, + "probability": 0.0378 + }, + { + "start": 12823.0, + "end": 12826.61, + "probability": 0.0617 + }, + { + "start": 12827.52, + "end": 12827.96, + "probability": 0.0321 + }, + { + "start": 12831.6, + "end": 12831.6, + "probability": 0.0094 + }, + { + "start": 12832.22, + "end": 12835.82, + "probability": 0.0629 + }, + { + "start": 12835.82, + "end": 12837.76, + "probability": 0.205 + }, + { + "start": 12839.22, + "end": 12841.52, + "probability": 0.0324 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.0, + "end": 12878.0, + "probability": 0.0 + }, + { + "start": 12878.76, + "end": 12880.72, + "probability": 0.0561 + }, + { + "start": 12880.98, + "end": 12886.08, + "probability": 0.0365 + }, + { + "start": 12889.46, + "end": 12890.62, + "probability": 0.11 + }, + { + "start": 12893.84, + "end": 12895.38, + "probability": 0.2044 + }, + { + "start": 12898.54, + "end": 12900.4, + "probability": 0.1602 + }, + { + "start": 12900.94, + "end": 12901.46, + "probability": 0.1334 + }, + { + "start": 12901.46, + "end": 12901.46, + "probability": 0.1403 + }, + { + "start": 12902.08, + "end": 12903.92, + "probability": 0.9748 + }, + { + "start": 12904.88, + "end": 12906.21, + "probability": 0.7808 + }, + { + "start": 12906.58, + "end": 12910.82, + "probability": 0.8611 + }, + { + "start": 12911.1, + "end": 12911.5, + "probability": 0.0097 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.0, + "end": 13001.0, + "probability": 0.0 + }, + { + "start": 13001.26, + "end": 13003.84, + "probability": 0.6124 + }, + { + "start": 13003.84, + "end": 13005.28, + "probability": 0.488 + }, + { + "start": 13005.34, + "end": 13006.32, + "probability": 0.7363 + }, + { + "start": 13006.36, + "end": 13009.38, + "probability": 0.9868 + }, + { + "start": 13009.44, + "end": 13010.32, + "probability": 0.9919 + }, + { + "start": 13010.4, + "end": 13011.76, + "probability": 0.9799 + }, + { + "start": 13011.82, + "end": 13013.17, + "probability": 0.5692 + }, + { + "start": 13013.74, + "end": 13014.48, + "probability": 0.2615 + }, + { + "start": 13014.64, + "end": 13017.38, + "probability": 0.9468 + }, + { + "start": 13018.06, + "end": 13019.9, + "probability": 0.979 + }, + { + "start": 13020.56, + "end": 13022.77, + "probability": 0.9429 + }, + { + "start": 13023.5, + "end": 13026.32, + "probability": 0.9944 + }, + { + "start": 13026.8, + "end": 13029.58, + "probability": 0.9985 + }, + { + "start": 13031.16, + "end": 13031.86, + "probability": 0.8831 + }, + { + "start": 13031.98, + "end": 13032.56, + "probability": 0.7613 + }, + { + "start": 13032.66, + "end": 13033.62, + "probability": 0.8054 + }, + { + "start": 13034.0, + "end": 13035.2, + "probability": 0.9692 + }, + { + "start": 13035.86, + "end": 13041.32, + "probability": 0.9646 + }, + { + "start": 13046.66, + "end": 13047.02, + "probability": 0.9443 + }, + { + "start": 13047.78, + "end": 13048.46, + "probability": 0.9286 + }, + { + "start": 13048.9, + "end": 13049.48, + "probability": 0.9702 + }, + { + "start": 13050.26, + "end": 13052.06, + "probability": 0.9661 + }, + { + "start": 13053.6, + "end": 13055.74, + "probability": 0.9961 + }, + { + "start": 13055.74, + "end": 13058.52, + "probability": 0.5403 + }, + { + "start": 13058.94, + "end": 13063.74, + "probability": 0.8626 + }, + { + "start": 13064.24, + "end": 13066.42, + "probability": 0.0639 + }, + { + "start": 13066.42, + "end": 13067.32, + "probability": 0.6065 + }, + { + "start": 13068.6, + "end": 13071.43, + "probability": 0.9966 + }, + { + "start": 13072.42, + "end": 13076.7, + "probability": 0.937 + }, + { + "start": 13077.96, + "end": 13079.72, + "probability": 0.9737 + }, + { + "start": 13080.28, + "end": 13081.86, + "probability": 0.0491 + }, + { + "start": 13082.06, + "end": 13083.52, + "probability": 0.0992 + }, + { + "start": 13083.98, + "end": 13084.48, + "probability": 0.3396 + }, + { + "start": 13084.92, + "end": 13088.26, + "probability": 0.4087 + }, + { + "start": 13088.34, + "end": 13089.84, + "probability": 0.8561 + }, + { + "start": 13089.98, + "end": 13094.62, + "probability": 0.7747 + }, + { + "start": 13095.0, + "end": 13096.44, + "probability": 0.0651 + }, + { + "start": 13096.66, + "end": 13098.88, + "probability": 0.8772 + }, + { + "start": 13099.72, + "end": 13101.66, + "probability": 0.0239 + }, + { + "start": 13101.66, + "end": 13102.88, + "probability": 0.7889 + }, + { + "start": 13103.02, + "end": 13104.72, + "probability": 0.897 + }, + { + "start": 13105.2, + "end": 13107.28, + "probability": 0.7839 + }, + { + "start": 13107.52, + "end": 13109.85, + "probability": 0.8184 + }, + { + "start": 13111.76, + "end": 13114.74, + "probability": 0.9766 + }, + { + "start": 13115.08, + "end": 13116.24, + "probability": 0.8097 + }, + { + "start": 13116.58, + "end": 13118.6, + "probability": 0.9937 + }, + { + "start": 13119.14, + "end": 13119.96, + "probability": 0.2992 + }, + { + "start": 13120.28, + "end": 13122.08, + "probability": 0.9755 + }, + { + "start": 13122.78, + "end": 13124.96, + "probability": 0.9907 + }, + { + "start": 13125.76, + "end": 13127.48, + "probability": 0.9653 + }, + { + "start": 13128.18, + "end": 13129.2, + "probability": 0.9672 + }, + { + "start": 13130.42, + "end": 13132.48, + "probability": 0.9441 + }, + { + "start": 13133.06, + "end": 13136.64, + "probability": 0.9596 + }, + { + "start": 13137.54, + "end": 13140.62, + "probability": 0.9958 + }, + { + "start": 13141.16, + "end": 13141.92, + "probability": 0.761 + }, + { + "start": 13142.38, + "end": 13143.42, + "probability": 0.6842 + }, + { + "start": 13143.46, + "end": 13143.68, + "probability": 0.718 + }, + { + "start": 13143.78, + "end": 13144.54, + "probability": 0.9001 + }, + { + "start": 13144.68, + "end": 13145.24, + "probability": 0.5035 + }, + { + "start": 13145.24, + "end": 13146.42, + "probability": 0.7771 + }, + { + "start": 13146.76, + "end": 13150.5, + "probability": 0.0133 + }, + { + "start": 13150.5, + "end": 13151.58, + "probability": 0.9249 + }, + { + "start": 13152.52, + "end": 13155.08, + "probability": 0.9856 + }, + { + "start": 13155.26, + "end": 13159.36, + "probability": 0.9956 + }, + { + "start": 13160.24, + "end": 13165.94, + "probability": 0.9845 + }, + { + "start": 13166.62, + "end": 13169.1, + "probability": 0.9759 + }, + { + "start": 13171.8, + "end": 13175.88, + "probability": 0.9922 + }, + { + "start": 13177.49, + "end": 13181.1, + "probability": 0.9917 + }, + { + "start": 13181.82, + "end": 13182.68, + "probability": 0.9392 + }, + { + "start": 13183.48, + "end": 13184.36, + "probability": 0.8241 + }, + { + "start": 13184.96, + "end": 13186.46, + "probability": 0.9798 + }, + { + "start": 13189.64, + "end": 13192.02, + "probability": 0.9556 + }, + { + "start": 13192.98, + "end": 13195.94, + "probability": 0.983 + }, + { + "start": 13196.86, + "end": 13199.02, + "probability": 0.926 + }, + { + "start": 13199.28, + "end": 13201.78, + "probability": 0.889 + }, + { + "start": 13201.8, + "end": 13204.5, + "probability": 0.9604 + }, + { + "start": 13204.94, + "end": 13206.02, + "probability": 0.8957 + }, + { + "start": 13207.26, + "end": 13208.12, + "probability": 0.7896 + }, + { + "start": 13208.84, + "end": 13209.96, + "probability": 0.9654 + }, + { + "start": 13211.64, + "end": 13213.54, + "probability": 0.8291 + }, + { + "start": 13214.2, + "end": 13215.18, + "probability": 0.9885 + }, + { + "start": 13215.8, + "end": 13216.62, + "probability": 0.6592 + }, + { + "start": 13216.68, + "end": 13220.0, + "probability": 0.976 + }, + { + "start": 13220.52, + "end": 13223.12, + "probability": 0.9648 + }, + { + "start": 13223.38, + "end": 13225.72, + "probability": 0.9847 + }, + { + "start": 13226.38, + "end": 13229.34, + "probability": 0.8983 + }, + { + "start": 13229.36, + "end": 13231.04, + "probability": 0.5662 + }, + { + "start": 13231.06, + "end": 13233.72, + "probability": 0.8029 + }, + { + "start": 13234.3, + "end": 13235.74, + "probability": 0.7163 + }, + { + "start": 13237.02, + "end": 13240.62, + "probability": 0.9551 + }, + { + "start": 13240.68, + "end": 13241.64, + "probability": 0.9553 + }, + { + "start": 13242.16, + "end": 13242.64, + "probability": 0.1991 + }, + { + "start": 13242.9, + "end": 13244.52, + "probability": 0.8601 + }, + { + "start": 13257.86, + "end": 13260.82, + "probability": 0.9954 + }, + { + "start": 13271.96, + "end": 13273.54, + "probability": 0.2326 + }, + { + "start": 13284.06, + "end": 13284.74, + "probability": 0.0022 + }, + { + "start": 13287.22, + "end": 13291.72, + "probability": 0.2921 + }, + { + "start": 13293.4, + "end": 13294.48, + "probability": 0.003 + }, + { + "start": 13294.48, + "end": 13295.99, + "probability": 0.0822 + }, + { + "start": 13296.26, + "end": 13298.0, + "probability": 0.0782 + }, + { + "start": 13299.24, + "end": 13299.78, + "probability": 0.2594 + }, + { + "start": 13299.8, + "end": 13300.9, + "probability": 0.0934 + }, + { + "start": 13300.9, + "end": 13301.3, + "probability": 0.1979 + }, + { + "start": 13302.32, + "end": 13302.32, + "probability": 0.1662 + }, + { + "start": 13303.0, + "end": 13303.0, + "probability": 0.2785 + }, + { + "start": 13303.2, + "end": 13306.62, + "probability": 0.0348 + }, + { + "start": 13309.74, + "end": 13312.28, + "probability": 0.1643 + }, + { + "start": 13312.74, + "end": 13315.52, + "probability": 0.165 + }, + { + "start": 13321.22, + "end": 13326.06, + "probability": 0.0101 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13346.0, + "end": 13346.0, + "probability": 0.0 + }, + { + "start": 13353.38, + "end": 13354.98, + "probability": 0.2428 + }, + { + "start": 13355.24, + "end": 13356.98, + "probability": 0.2158 + }, + { + "start": 13357.04, + "end": 13357.66, + "probability": 0.1856 + }, + { + "start": 13357.66, + "end": 13357.66, + "probability": 0.1292 + }, + { + "start": 13357.66, + "end": 13359.32, + "probability": 0.1619 + }, + { + "start": 13360.42, + "end": 13362.55, + "probability": 0.1824 + }, + { + "start": 13364.16, + "end": 13365.54, + "probability": 0.0995 + }, + { + "start": 13365.54, + "end": 13366.1, + "probability": 0.0594 + }, + { + "start": 13366.58, + "end": 13368.26, + "probability": 0.0886 + }, + { + "start": 13369.12, + "end": 13370.54, + "probability": 0.7573 + }, + { + "start": 13370.54, + "end": 13370.76, + "probability": 0.4236 + }, + { + "start": 13370.76, + "end": 13372.02, + "probability": 0.6815 + }, + { + "start": 13372.64, + "end": 13374.4, + "probability": 0.1411 + }, + { + "start": 13381.7, + "end": 13383.6, + "probability": 0.4959 + }, + { + "start": 13383.86, + "end": 13387.1, + "probability": 0.3366 + }, + { + "start": 13388.4, + "end": 13391.94, + "probability": 0.0601 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.0, + "end": 13466.0, + "probability": 0.0 + }, + { + "start": 13466.12, + "end": 13466.18, + "probability": 0.1115 + }, + { + "start": 13466.18, + "end": 13466.98, + "probability": 0.6346 + }, + { + "start": 13467.7, + "end": 13470.48, + "probability": 0.968 + }, + { + "start": 13470.54, + "end": 13474.6, + "probability": 0.9858 + }, + { + "start": 13475.1, + "end": 13480.54, + "probability": 0.9995 + }, + { + "start": 13481.82, + "end": 13488.36, + "probability": 0.998 + }, + { + "start": 13488.4, + "end": 13491.06, + "probability": 0.9968 + }, + { + "start": 13492.34, + "end": 13495.1, + "probability": 0.3514 + }, + { + "start": 13496.42, + "end": 13497.16, + "probability": 0.5209 + }, + { + "start": 13499.56, + "end": 13500.04, + "probability": 0.1094 + }, + { + "start": 13500.52, + "end": 13501.94, + "probability": 0.4974 + }, + { + "start": 13501.94, + "end": 13502.64, + "probability": 0.0408 + }, + { + "start": 13502.72, + "end": 13505.58, + "probability": 0.01 + }, + { + "start": 13506.36, + "end": 13508.42, + "probability": 0.1605 + }, + { + "start": 13508.76, + "end": 13509.62, + "probability": 0.0471 + }, + { + "start": 13517.33, + "end": 13518.56, + "probability": 0.0913 + }, + { + "start": 13518.74, + "end": 13519.11, + "probability": 0.1589 + }, + { + "start": 13519.34, + "end": 13522.5, + "probability": 0.5067 + }, + { + "start": 13522.5, + "end": 13523.1, + "probability": 0.422 + }, + { + "start": 13523.84, + "end": 13524.14, + "probability": 0.0421 + }, + { + "start": 13524.14, + "end": 13524.14, + "probability": 0.0428 + }, + { + "start": 13524.14, + "end": 13524.14, + "probability": 0.0415 + }, + { + "start": 13524.14, + "end": 13524.82, + "probability": 0.1727 + }, + { + "start": 13524.82, + "end": 13524.82, + "probability": 0.2165 + }, + { + "start": 13524.82, + "end": 13524.82, + "probability": 0.2113 + }, + { + "start": 13524.82, + "end": 13524.82, + "probability": 0.0666 + }, + { + "start": 13524.82, + "end": 13524.82, + "probability": 0.1121 + }, + { + "start": 13524.82, + "end": 13526.13, + "probability": 0.6533 + }, + { + "start": 13526.5, + "end": 13527.6, + "probability": 0.8323 + }, + { + "start": 13527.76, + "end": 13528.64, + "probability": 0.9561 + }, + { + "start": 13529.74, + "end": 13529.74, + "probability": 0.3169 + }, + { + "start": 13529.74, + "end": 13530.66, + "probability": 0.3251 + }, + { + "start": 13530.72, + "end": 13532.1, + "probability": 0.4268 + }, + { + "start": 13532.28, + "end": 13532.98, + "probability": 0.0226 + }, + { + "start": 13532.98, + "end": 13532.98, + "probability": 0.4402 + }, + { + "start": 13532.98, + "end": 13533.52, + "probability": 0.9255 + }, + { + "start": 13533.77, + "end": 13534.66, + "probability": 0.3313 + }, + { + "start": 13534.74, + "end": 13536.8, + "probability": 0.8118 + }, + { + "start": 13537.02, + "end": 13537.7, + "probability": 0.5608 + }, + { + "start": 13537.98, + "end": 13539.52, + "probability": 0.7241 + }, + { + "start": 13540.26, + "end": 13543.84, + "probability": 0.9905 + }, + { + "start": 13543.9, + "end": 13544.12, + "probability": 0.4736 + }, + { + "start": 13544.16, + "end": 13544.7, + "probability": 0.817 + }, + { + "start": 13544.8, + "end": 13545.6, + "probability": 0.7389 + }, + { + "start": 13545.6, + "end": 13546.18, + "probability": 0.7904 + }, + { + "start": 13546.5, + "end": 13547.72, + "probability": 0.6887 + }, + { + "start": 13547.78, + "end": 13550.17, + "probability": 0.9644 + }, + { + "start": 13550.74, + "end": 13551.22, + "probability": 0.5844 + }, + { + "start": 13551.7, + "end": 13552.62, + "probability": 0.5214 + }, + { + "start": 13553.08, + "end": 13554.92, + "probability": 0.5217 + }, + { + "start": 13555.06, + "end": 13556.8, + "probability": 0.8584 + }, + { + "start": 13557.04, + "end": 13558.68, + "probability": 0.8774 + }, + { + "start": 13558.8, + "end": 13560.92, + "probability": 0.9934 + }, + { + "start": 13561.18, + "end": 13565.08, + "probability": 0.6005 + }, + { + "start": 13565.42, + "end": 13567.84, + "probability": 0.4305 + }, + { + "start": 13568.36, + "end": 13570.64, + "probability": 0.9469 + }, + { + "start": 13570.66, + "end": 13574.02, + "probability": 0.5106 + }, + { + "start": 13574.16, + "end": 13575.38, + "probability": 0.7562 + }, + { + "start": 13575.68, + "end": 13578.6, + "probability": 0.8782 + }, + { + "start": 13578.84, + "end": 13580.94, + "probability": 0.7316 + }, + { + "start": 13582.64, + "end": 13583.42, + "probability": 0.7505 + }, + { + "start": 13584.62, + "end": 13585.84, + "probability": 0.7387 + }, + { + "start": 13587.22, + "end": 13587.22, + "probability": 0.1353 + }, + { + "start": 13587.22, + "end": 13587.22, + "probability": 0.2532 + }, + { + "start": 13587.22, + "end": 13588.72, + "probability": 0.3947 + }, + { + "start": 13589.06, + "end": 13593.44, + "probability": 0.5841 + }, + { + "start": 13593.44, + "end": 13593.92, + "probability": 0.118 + }, + { + "start": 13594.66, + "end": 13595.85, + "probability": 0.3707 + }, + { + "start": 13597.24, + "end": 13598.02, + "probability": 0.4498 + }, + { + "start": 13599.84, + "end": 13601.76, + "probability": 0.7216 + }, + { + "start": 13603.32, + "end": 13606.32, + "probability": 0.7579 + }, + { + "start": 13607.47, + "end": 13608.4, + "probability": 0.1869 + }, + { + "start": 13608.4, + "end": 13609.17, + "probability": 0.2049 + }, + { + "start": 13610.36, + "end": 13610.5, + "probability": 0.0786 + }, + { + "start": 13611.16, + "end": 13612.8, + "probability": 0.1596 + }, + { + "start": 13613.18, + "end": 13621.02, + "probability": 0.1781 + }, + { + "start": 13621.8, + "end": 13625.28, + "probability": 0.0051 + }, + { + "start": 13626.01, + "end": 13626.93, + "probability": 0.4307 + }, + { + "start": 13628.36, + "end": 13628.92, + "probability": 0.528 + }, + { + "start": 13633.24, + "end": 13636.0, + "probability": 0.098 + }, + { + "start": 13636.68, + "end": 13639.02, + "probability": 0.1715 + }, + { + "start": 13639.02, + "end": 13639.26, + "probability": 0.0486 + }, + { + "start": 13639.54, + "end": 13640.72, + "probability": 0.3241 + }, + { + "start": 13640.8, + "end": 13642.36, + "probability": 0.7656 + }, + { + "start": 13646.88, + "end": 13649.18, + "probability": 0.8614 + }, + { + "start": 13659.5, + "end": 13663.82, + "probability": 0.3156 + }, + { + "start": 13665.69, + "end": 13667.0, + "probability": 0.0384 + }, + { + "start": 13667.12, + "end": 13667.78, + "probability": 0.033 + }, + { + "start": 13667.78, + "end": 13670.2, + "probability": 0.1548 + }, + { + "start": 13672.19, + "end": 13672.32, + "probability": 0.1282 + }, + { + "start": 13672.32, + "end": 13673.14, + "probability": 0.3552 + }, + { + "start": 13673.74, + "end": 13673.9, + "probability": 0.2935 + }, + { + "start": 13673.9, + "end": 13675.3, + "probability": 0.2819 + }, + { + "start": 13675.36, + "end": 13677.94, + "probability": 0.5082 + }, + { + "start": 13678.12, + "end": 13682.9, + "probability": 0.1811 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.0, + "end": 13688.0, + "probability": 0.0 + }, + { + "start": 13688.1, + "end": 13689.61, + "probability": 0.0109 + }, + { + "start": 13690.6, + "end": 13693.22, + "probability": 0.6991 + }, + { + "start": 13693.26, + "end": 13694.74, + "probability": 0.951 + }, + { + "start": 13694.74, + "end": 13696.34, + "probability": 0.9971 + }, + { + "start": 13696.5, + "end": 13697.18, + "probability": 0.0256 + }, + { + "start": 13697.2, + "end": 13698.84, + "probability": 0.999 + }, + { + "start": 13699.32, + "end": 13700.46, + "probability": 0.6699 + }, + { + "start": 13700.72, + "end": 13701.38, + "probability": 0.6505 + }, + { + "start": 13701.38, + "end": 13702.38, + "probability": 0.6071 + }, + { + "start": 13702.38, + "end": 13704.06, + "probability": 0.6664 + }, + { + "start": 13704.16, + "end": 13705.32, + "probability": 0.9029 + }, + { + "start": 13706.02, + "end": 13707.34, + "probability": 0.5982 + }, + { + "start": 13709.12, + "end": 13713.48, + "probability": 0.9932 + }, + { + "start": 13713.48, + "end": 13716.64, + "probability": 0.9272 + }, + { + "start": 13716.8, + "end": 13719.14, + "probability": 0.2912 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.0, + "end": 13828.0, + "probability": 0.0 + }, + { + "start": 13828.26, + "end": 13829.24, + "probability": 0.0422 + }, + { + "start": 13829.24, + "end": 13829.76, + "probability": 0.8359 + }, + { + "start": 13830.18, + "end": 13830.2, + "probability": 0.1713 + }, + { + "start": 13830.2, + "end": 13830.56, + "probability": 0.2793 + }, + { + "start": 13830.66, + "end": 13832.04, + "probability": 0.5269 + }, + { + "start": 13832.5, + "end": 13835.72, + "probability": 0.7984 + }, + { + "start": 13835.72, + "end": 13836.3, + "probability": 0.6347 + }, + { + "start": 13836.42, + "end": 13840.92, + "probability": 0.8885 + }, + { + "start": 13853.66, + "end": 13854.32, + "probability": 0.0154 + }, + { + "start": 13854.32, + "end": 13855.4, + "probability": 0.0333 + }, + { + "start": 13858.55, + "end": 13860.68, + "probability": 0.2067 + }, + { + "start": 13860.98, + "end": 13862.48, + "probability": 0.0783 + }, + { + "start": 13864.74, + "end": 13867.84, + "probability": 0.132 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.0, + "end": 13948.0, + "probability": 0.0 + }, + { + "start": 13948.1, + "end": 13948.82, + "probability": 0.0629 + }, + { + "start": 13949.1, + "end": 13951.08, + "probability": 0.3296 + }, + { + "start": 13951.26, + "end": 13953.12, + "probability": 0.6122 + }, + { + "start": 13953.12, + "end": 13954.12, + "probability": 0.1331 + }, + { + "start": 13956.08, + "end": 13958.3, + "probability": 0.534 + }, + { + "start": 13961.08, + "end": 13965.34, + "probability": 0.3561 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.0, + "end": 14075.0, + "probability": 0.0 + }, + { + "start": 14075.44, + "end": 14075.52, + "probability": 0.1448 + }, + { + "start": 14075.52, + "end": 14075.52, + "probability": 0.0324 + }, + { + "start": 14075.52, + "end": 14075.66, + "probability": 0.0571 + }, + { + "start": 14075.66, + "end": 14076.06, + "probability": 0.251 + }, + { + "start": 14076.6, + "end": 14079.98, + "probability": 0.672 + }, + { + "start": 14080.08, + "end": 14081.0, + "probability": 0.8038 + }, + { + "start": 14082.2, + "end": 14085.46, + "probability": 0.9954 + }, + { + "start": 14085.56, + "end": 14086.7, + "probability": 0.87 + }, + { + "start": 14087.18, + "end": 14092.04, + "probability": 0.9191 + }, + { + "start": 14092.88, + "end": 14093.16, + "probability": 0.7325 + }, + { + "start": 14093.2, + "end": 14096.46, + "probability": 0.9945 + }, + { + "start": 14097.02, + "end": 14099.44, + "probability": 0.9948 + }, + { + "start": 14099.5, + "end": 14100.16, + "probability": 0.8097 + }, + { + "start": 14100.24, + "end": 14101.12, + "probability": 0.9471 + }, + { + "start": 14104.82, + "end": 14109.48, + "probability": 0.6998 + }, + { + "start": 14109.52, + "end": 14110.38, + "probability": 0.7473 + }, + { + "start": 14112.1, + "end": 14112.66, + "probability": 0.8658 + }, + { + "start": 14112.88, + "end": 14113.56, + "probability": 0.7867 + }, + { + "start": 14113.86, + "end": 14115.44, + "probability": 0.98 + }, + { + "start": 14115.64, + "end": 14117.48, + "probability": 0.9824 + }, + { + "start": 14117.48, + "end": 14118.1, + "probability": 0.873 + }, + { + "start": 14118.18, + "end": 14121.9, + "probability": 0.9893 + }, + { + "start": 14123.1, + "end": 14125.34, + "probability": 0.1642 + }, + { + "start": 14125.48, + "end": 14129.9, + "probability": 0.0346 + }, + { + "start": 14129.96, + "end": 14130.6, + "probability": 0.1349 + }, + { + "start": 14131.88, + "end": 14132.38, + "probability": 0.0238 + }, + { + "start": 14132.38, + "end": 14133.38, + "probability": 0.179 + }, + { + "start": 14133.6, + "end": 14138.06, + "probability": 0.0392 + }, + { + "start": 14138.9, + "end": 14141.2, + "probability": 0.0117 + }, + { + "start": 14141.2, + "end": 14143.2, + "probability": 0.0522 + }, + { + "start": 14143.54, + "end": 14144.26, + "probability": 0.065 + }, + { + "start": 14144.96, + "end": 14145.38, + "probability": 0.1911 + }, + { + "start": 14146.34, + "end": 14149.42, + "probability": 0.0163 + }, + { + "start": 14150.04, + "end": 14150.84, + "probability": 0.3834 + }, + { + "start": 14153.36, + "end": 14154.46, + "probability": 0.1809 + }, + { + "start": 14161.06, + "end": 14162.42, + "probability": 0.2036 + }, + { + "start": 14162.74, + "end": 14163.62, + "probability": 0.759 + }, + { + "start": 14163.9, + "end": 14164.44, + "probability": 0.9029 + }, + { + "start": 14164.74, + "end": 14165.76, + "probability": 0.937 + }, + { + "start": 14165.92, + "end": 14166.94, + "probability": 0.5001 + }, + { + "start": 14166.94, + "end": 14168.0, + "probability": 0.7434 + }, + { + "start": 14168.82, + "end": 14171.26, + "probability": 0.1874 + }, + { + "start": 14203.0, + "end": 14203.0, + "probability": 0.0 + }, + { + "start": 14203.0, + "end": 14203.0, + "probability": 0.0 + }, + { + "start": 14203.0, + "end": 14203.0, + "probability": 0.0 + }, + { + "start": 14203.0, + "end": 14203.0, + "probability": 0.0 + }, + { + "start": 14203.3, + "end": 14204.28, + "probability": 0.2016 + }, + { + "start": 14204.5, + "end": 14205.32, + "probability": 0.0811 + }, + { + "start": 14206.52, + "end": 14208.76, + "probability": 0.4084 + }, + { + "start": 14209.1, + "end": 14215.18, + "probability": 0.329 + }, + { + "start": 14216.12, + "end": 14217.12, + "probability": 0.1822 + }, + { + "start": 14219.18, + "end": 14225.76, + "probability": 0.1274 + }, + { + "start": 14225.88, + "end": 14226.52, + "probability": 0.1831 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.0, + "end": 14330.0, + "probability": 0.0 + }, + { + "start": 14330.18, + "end": 14330.24, + "probability": 0.0759 + }, + { + "start": 14330.24, + "end": 14330.24, + "probability": 0.0955 + }, + { + "start": 14330.24, + "end": 14330.24, + "probability": 0.0907 + }, + { + "start": 14330.24, + "end": 14331.98, + "probability": 0.3854 + }, + { + "start": 14332.12, + "end": 14334.06, + "probability": 0.8221 + }, + { + "start": 14334.34, + "end": 14337.08, + "probability": 0.9943 + }, + { + "start": 14337.54, + "end": 14342.42, + "probability": 0.9645 + }, + { + "start": 14342.86, + "end": 14347.12, + "probability": 0.9585 + }, + { + "start": 14347.68, + "end": 14348.76, + "probability": 0.7901 + }, + { + "start": 14348.96, + "end": 14349.78, + "probability": 0.8442 + }, + { + "start": 14350.12, + "end": 14353.34, + "probability": 0.9429 + }, + { + "start": 14353.86, + "end": 14355.12, + "probability": 0.996 + }, + { + "start": 14355.56, + "end": 14356.66, + "probability": 0.6118 + }, + { + "start": 14356.72, + "end": 14357.58, + "probability": 0.9438 + }, + { + "start": 14358.16, + "end": 14360.8, + "probability": 0.9121 + }, + { + "start": 14361.44, + "end": 14364.52, + "probability": 0.9573 + }, + { + "start": 14365.38, + "end": 14367.3, + "probability": 0.8475 + }, + { + "start": 14367.38, + "end": 14369.07, + "probability": 0.9971 + }, + { + "start": 14369.72, + "end": 14372.2, + "probability": 0.8268 + }, + { + "start": 14372.22, + "end": 14373.54, + "probability": 0.5347 + }, + { + "start": 14373.54, + "end": 14375.1, + "probability": 0.676 + }, + { + "start": 14375.8, + "end": 14376.28, + "probability": 0.4073 + }, + { + "start": 14376.38, + "end": 14381.18, + "probability": 0.9655 + }, + { + "start": 14381.3, + "end": 14383.04, + "probability": 0.7756 + }, + { + "start": 14383.48, + "end": 14383.88, + "probability": 0.3254 + }, + { + "start": 14383.88, + "end": 14386.9, + "probability": 0.2116 + }, + { + "start": 14387.18, + "end": 14389.0, + "probability": 0.194 + }, + { + "start": 14390.02, + "end": 14390.02, + "probability": 0.1533 + }, + { + "start": 14390.02, + "end": 14390.44, + "probability": 0.0872 + }, + { + "start": 14390.76, + "end": 14391.6, + "probability": 0.3157 + }, + { + "start": 14391.6, + "end": 14394.44, + "probability": 0.4823 + }, + { + "start": 14394.82, + "end": 14396.64, + "probability": 0.4164 + }, + { + "start": 14396.72, + "end": 14397.6, + "probability": 0.6875 + }, + { + "start": 14397.68, + "end": 14399.04, + "probability": 0.751 + }, + { + "start": 14399.26, + "end": 14400.54, + "probability": 0.9526 + }, + { + "start": 14400.98, + "end": 14403.1, + "probability": 0.7275 + }, + { + "start": 14403.2, + "end": 14404.4, + "probability": 0.9568 + }, + { + "start": 14404.5, + "end": 14405.46, + "probability": 0.6364 + }, + { + "start": 14405.54, + "end": 14406.99, + "probability": 0.923 + }, + { + "start": 14407.58, + "end": 14408.54, + "probability": 0.981 + }, + { + "start": 14408.56, + "end": 14412.32, + "probability": 0.9404 + }, + { + "start": 14412.32, + "end": 14414.68, + "probability": 0.6309 + }, + { + "start": 14414.68, + "end": 14416.48, + "probability": 0.7445 + }, + { + "start": 14416.58, + "end": 14420.8, + "probability": 0.9932 + }, + { + "start": 14420.8, + "end": 14425.14, + "probability": 0.9967 + }, + { + "start": 14425.68, + "end": 14427.1, + "probability": 0.7287 + }, + { + "start": 14427.1, + "end": 14427.34, + "probability": 0.7605 + }, + { + "start": 14427.42, + "end": 14429.67, + "probability": 0.8026 + }, + { + "start": 14430.84, + "end": 14431.66, + "probability": 0.8524 + }, + { + "start": 14431.84, + "end": 14432.8, + "probability": 0.183 + }, + { + "start": 14432.8, + "end": 14432.8, + "probability": 0.0917 + }, + { + "start": 14432.88, + "end": 14433.52, + "probability": 0.1689 + }, + { + "start": 14433.7, + "end": 14436.0, + "probability": 0.8911 + }, + { + "start": 14436.0, + "end": 14439.9, + "probability": 0.9521 + }, + { + "start": 14439.9, + "end": 14442.32, + "probability": 0.4425 + }, + { + "start": 14444.72, + "end": 14445.44, + "probability": 0.0344 + }, + { + "start": 14451.66, + "end": 14451.68, + "probability": 0.228 + }, + { + "start": 14452.32, + "end": 14453.88, + "probability": 0.5761 + }, + { + "start": 14456.02, + "end": 14457.22, + "probability": 0.3695 + }, + { + "start": 14457.68, + "end": 14458.68, + "probability": 0.2314 + }, + { + "start": 14458.86, + "end": 14461.88, + "probability": 0.024 + }, + { + "start": 14463.26, + "end": 14463.26, + "probability": 0.0855 + }, + { + "start": 14463.26, + "end": 14464.6, + "probability": 0.1014 + }, + { + "start": 14464.62, + "end": 14465.16, + "probability": 0.1678 + }, + { + "start": 14466.72, + "end": 14467.44, + "probability": 0.0695 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.0, + "end": 14584.0, + "probability": 0.0 + }, + { + "start": 14584.34, + "end": 14584.34, + "probability": 0.0983 + }, + { + "start": 14584.34, + "end": 14584.84, + "probability": 0.8329 + }, + { + "start": 14586.01, + "end": 14588.78, + "probability": 0.8333 + }, + { + "start": 14588.8, + "end": 14589.82, + "probability": 0.9108 + }, + { + "start": 14590.58, + "end": 14591.88, + "probability": 0.8813 + }, + { + "start": 14595.6, + "end": 14596.56, + "probability": 0.8861 + }, + { + "start": 14596.66, + "end": 14600.02, + "probability": 0.7457 + }, + { + "start": 14602.02, + "end": 14605.32, + "probability": 0.8655 + }, + { + "start": 14605.88, + "end": 14608.58, + "probability": 0.6525 + }, + { + "start": 14608.58, + "end": 14610.24, + "probability": 0.7281 + }, + { + "start": 14610.26, + "end": 14611.06, + "probability": 0.9075 + }, + { + "start": 14611.18, + "end": 14612.16, + "probability": 0.9836 + }, + { + "start": 14612.54, + "end": 14613.04, + "probability": 0.9078 + }, + { + "start": 14625.95, + "end": 14630.24, + "probability": 0.7469 + }, + { + "start": 14632.02, + "end": 14634.72, + "probability": 0.9974 + }, + { + "start": 14636.24, + "end": 14636.76, + "probability": 0.9248 + }, + { + "start": 14637.46, + "end": 14640.16, + "probability": 0.998 + }, + { + "start": 14640.66, + "end": 14647.92, + "probability": 0.9745 + }, + { + "start": 14649.18, + "end": 14652.48, + "probability": 0.9952 + }, + { + "start": 14653.58, + "end": 14655.86, + "probability": 0.9899 + }, + { + "start": 14657.0, + "end": 14658.84, + "probability": 0.9926 + }, + { + "start": 14660.1, + "end": 14662.68, + "probability": 0.8462 + }, + { + "start": 14663.94, + "end": 14667.24, + "probability": 0.9978 + }, + { + "start": 14667.24, + "end": 14672.56, + "probability": 0.9879 + }, + { + "start": 14672.62, + "end": 14673.74, + "probability": 0.9941 + }, + { + "start": 14673.86, + "end": 14674.26, + "probability": 0.8381 + }, + { + "start": 14675.74, + "end": 14678.48, + "probability": 0.9691 + }, + { + "start": 14680.0, + "end": 14683.88, + "probability": 0.9974 + }, + { + "start": 14685.48, + "end": 14687.0, + "probability": 0.9956 + }, + { + "start": 14688.36, + "end": 14690.46, + "probability": 0.9956 + }, + { + "start": 14691.32, + "end": 14695.5, + "probability": 0.9878 + }, + { + "start": 14696.58, + "end": 14697.54, + "probability": 0.9536 + }, + { + "start": 14698.22, + "end": 14699.84, + "probability": 0.9943 + }, + { + "start": 14700.72, + "end": 14702.38, + "probability": 0.8273 + }, + { + "start": 14703.56, + "end": 14704.72, + "probability": 0.9697 + }, + { + "start": 14705.72, + "end": 14708.66, + "probability": 0.9864 + }, + { + "start": 14710.46, + "end": 14712.12, + "probability": 0.9934 + }, + { + "start": 14712.28, + "end": 14716.24, + "probability": 0.9926 + }, + { + "start": 14717.28, + "end": 14717.78, + "probability": 0.6967 + }, + { + "start": 14719.04, + "end": 14722.48, + "probability": 0.9806 + }, + { + "start": 14723.16, + "end": 14724.2, + "probability": 0.9808 + }, + { + "start": 14724.22, + "end": 14728.08, + "probability": 0.9868 + }, + { + "start": 14728.08, + "end": 14731.06, + "probability": 0.9979 + }, + { + "start": 14732.2, + "end": 14732.68, + "probability": 0.658 + }, + { + "start": 14732.68, + "end": 14734.62, + "probability": 0.863 + }, + { + "start": 14734.78, + "end": 14736.4, + "probability": 0.9937 + }, + { + "start": 14737.56, + "end": 14739.68, + "probability": 0.8978 + }, + { + "start": 14741.52, + "end": 14742.33, + "probability": 0.9574 + }, + { + "start": 14743.5, + "end": 14746.6, + "probability": 0.9357 + }, + { + "start": 14747.1, + "end": 14751.98, + "probability": 0.9861 + }, + { + "start": 14753.3, + "end": 14755.92, + "probability": 0.9959 + }, + { + "start": 14756.76, + "end": 14757.78, + "probability": 0.8563 + }, + { + "start": 14759.2, + "end": 14764.34, + "probability": 0.993 + }, + { + "start": 14765.04, + "end": 14768.28, + "probability": 0.9907 + }, + { + "start": 14768.64, + "end": 14769.8, + "probability": 0.9966 + }, + { + "start": 14769.92, + "end": 14772.26, + "probability": 0.9811 + }, + { + "start": 14772.7, + "end": 14774.18, + "probability": 0.5933 + }, + { + "start": 14775.26, + "end": 14777.66, + "probability": 0.9968 + }, + { + "start": 14778.56, + "end": 14779.73, + "probability": 0.9106 + }, + { + "start": 14780.96, + "end": 14782.74, + "probability": 0.9968 + }, + { + "start": 14782.84, + "end": 14788.08, + "probability": 0.9951 + }, + { + "start": 14790.44, + "end": 14791.68, + "probability": 0.9563 + }, + { + "start": 14792.34, + "end": 14794.76, + "probability": 0.9937 + }, + { + "start": 14795.36, + "end": 14798.32, + "probability": 0.9985 + }, + { + "start": 14799.28, + "end": 14804.94, + "probability": 0.9525 + }, + { + "start": 14805.06, + "end": 14805.96, + "probability": 0.774 + }, + { + "start": 14806.94, + "end": 14812.5, + "probability": 0.9693 + }, + { + "start": 14812.5, + "end": 14813.46, + "probability": 0.808 + }, + { + "start": 14814.2, + "end": 14815.74, + "probability": 0.996 + }, + { + "start": 14816.62, + "end": 14818.18, + "probability": 0.7865 + }, + { + "start": 14818.26, + "end": 14820.06, + "probability": 0.9812 + }, + { + "start": 14820.88, + "end": 14822.22, + "probability": 0.9766 + }, + { + "start": 14822.28, + "end": 14827.56, + "probability": 0.9776 + }, + { + "start": 14828.36, + "end": 14832.5, + "probability": 0.8398 + }, + { + "start": 14833.38, + "end": 14834.98, + "probability": 0.5745 + }, + { + "start": 14835.6, + "end": 14839.6, + "probability": 0.9891 + }, + { + "start": 14839.92, + "end": 14840.24, + "probability": 0.8493 + }, + { + "start": 14840.3, + "end": 14841.5, + "probability": 0.9941 + }, + { + "start": 14841.54, + "end": 14843.12, + "probability": 0.7459 + }, + { + "start": 14843.52, + "end": 14848.08, + "probability": 0.9977 + }, + { + "start": 14848.08, + "end": 14853.9, + "probability": 0.9645 + }, + { + "start": 14854.02, + "end": 14855.26, + "probability": 0.8527 + }, + { + "start": 14855.32, + "end": 14855.84, + "probability": 0.8542 + }, + { + "start": 14856.8, + "end": 14859.98, + "probability": 0.861 + }, + { + "start": 14860.47, + "end": 14866.9, + "probability": 0.1089 + }, + { + "start": 14868.09, + "end": 14872.46, + "probability": 0.4678 + }, + { + "start": 14873.02, + "end": 14875.02, + "probability": 0.7723 + }, + { + "start": 14875.06, + "end": 14876.92, + "probability": 0.9965 + }, + { + "start": 14877.5, + "end": 14879.46, + "probability": 0.8253 + }, + { + "start": 14880.12, + "end": 14884.08, + "probability": 0.9753 + }, + { + "start": 14884.42, + "end": 14891.24, + "probability": 0.9966 + }, + { + "start": 14891.24, + "end": 14897.68, + "probability": 0.9354 + }, + { + "start": 14898.1, + "end": 14898.94, + "probability": 0.055 + }, + { + "start": 14899.66, + "end": 14899.66, + "probability": 0.1877 + }, + { + "start": 14899.66, + "end": 14899.66, + "probability": 0.0612 + }, + { + "start": 14899.66, + "end": 14901.38, + "probability": 0.2928 + }, + { + "start": 14902.52, + "end": 14907.04, + "probability": 0.8822 + }, + { + "start": 14907.89, + "end": 14912.68, + "probability": 0.9964 + }, + { + "start": 14912.95, + "end": 14913.44, + "probability": 0.036 + }, + { + "start": 14913.64, + "end": 14914.2, + "probability": 0.7187 + }, + { + "start": 14914.46, + "end": 14917.5, + "probability": 0.9427 + }, + { + "start": 14917.56, + "end": 14920.32, + "probability": 0.9264 + }, + { + "start": 14920.76, + "end": 14922.56, + "probability": 0.9897 + }, + { + "start": 14923.3, + "end": 14927.38, + "probability": 0.9873 + }, + { + "start": 14928.04, + "end": 14929.02, + "probability": 0.4901 + }, + { + "start": 14929.32, + "end": 14930.4, + "probability": 0.3306 + }, + { + "start": 14930.48, + "end": 14933.0, + "probability": 0.788 + }, + { + "start": 14939.28, + "end": 14940.0, + "probability": 0.975 + }, + { + "start": 14940.44, + "end": 14943.58, + "probability": 0.9573 + }, + { + "start": 14943.74, + "end": 14944.5, + "probability": 0.2631 + }, + { + "start": 14945.36, + "end": 14945.96, + "probability": 0.0081 + }, + { + "start": 14946.42, + "end": 14948.7, + "probability": 0.7127 + }, + { + "start": 14948.74, + "end": 14951.82, + "probability": 0.8478 + }, + { + "start": 14952.22, + "end": 14952.22, + "probability": 0.087 + }, + { + "start": 14952.22, + "end": 14953.34, + "probability": 0.6224 + }, + { + "start": 14954.2, + "end": 14954.32, + "probability": 0.7082 + }, + { + "start": 14954.84, + "end": 14954.84, + "probability": 0.5346 + }, + { + "start": 14954.84, + "end": 14956.1, + "probability": 0.8531 + }, + { + "start": 14956.2, + "end": 14958.4, + "probability": 0.1851 + }, + { + "start": 14960.4, + "end": 14961.34, + "probability": 0.3566 + }, + { + "start": 14961.74, + "end": 14964.82, + "probability": 0.9603 + }, + { + "start": 14965.26, + "end": 14966.54, + "probability": 0.0925 + }, + { + "start": 14966.8, + "end": 14967.28, + "probability": 0.8716 + }, + { + "start": 14967.54, + "end": 14968.36, + "probability": 0.6606 + }, + { + "start": 14968.38, + "end": 14969.72, + "probability": 0.8813 + }, + { + "start": 14969.8, + "end": 14972.08, + "probability": 0.4778 + }, + { + "start": 14972.5, + "end": 14975.48, + "probability": 0.3669 + }, + { + "start": 14975.48, + "end": 14975.74, + "probability": 0.3147 + }, + { + "start": 14975.74, + "end": 14979.28, + "probability": 0.5071 + }, + { + "start": 14979.28, + "end": 14985.92, + "probability": 0.9941 + }, + { + "start": 14986.06, + "end": 14986.2, + "probability": 0.032 + }, + { + "start": 14986.2, + "end": 14986.2, + "probability": 0.2985 + }, + { + "start": 14986.2, + "end": 14988.62, + "probability": 0.6556 + }, + { + "start": 14988.98, + "end": 14992.94, + "probability": 0.9941 + }, + { + "start": 14993.16, + "end": 14998.42, + "probability": 0.9873 + }, + { + "start": 14999.06, + "end": 14999.92, + "probability": 0.7112 + }, + { + "start": 15000.92, + "end": 15003.26, + "probability": 0.9177 + }, + { + "start": 15003.34, + "end": 15004.52, + "probability": 0.9184 + }, + { + "start": 15006.2, + "end": 15008.62, + "probability": 0.875 + }, + { + "start": 15009.16, + "end": 15010.68, + "probability": 0.9381 + }, + { + "start": 15010.82, + "end": 15014.38, + "probability": 0.987 + }, + { + "start": 15014.62, + "end": 15018.04, + "probability": 0.9958 + }, + { + "start": 15018.44, + "end": 15023.76, + "probability": 0.9187 + }, + { + "start": 15023.76, + "end": 15023.98, + "probability": 0.4091 + }, + { + "start": 15030.1, + "end": 15031.64, + "probability": 0.3363 + }, + { + "start": 15031.66, + "end": 15032.84, + "probability": 0.3362 + }, + { + "start": 15032.84, + "end": 15036.12, + "probability": 0.5734 + }, + { + "start": 15037.24, + "end": 15038.42, + "probability": 0.1362 + }, + { + "start": 15038.42, + "end": 15042.38, + "probability": 0.2434 + }, + { + "start": 15042.48, + "end": 15042.84, + "probability": 0.4861 + }, + { + "start": 15044.04, + "end": 15045.08, + "probability": 0.3289 + }, + { + "start": 15050.56, + "end": 15051.76, + "probability": 0.0577 + }, + { + "start": 15052.8, + "end": 15054.9, + "probability": 0.0653 + }, + { + "start": 15055.12, + "end": 15055.12, + "probability": 0.5459 + }, + { + "start": 15055.16, + "end": 15056.54, + "probability": 0.1141 + }, + { + "start": 15056.54, + "end": 15059.05, + "probability": 0.0748 + }, + { + "start": 15062.16, + "end": 15064.22, + "probability": 0.1097 + }, + { + "start": 15065.36, + "end": 15067.96, + "probability": 0.1547 + }, + { + "start": 15068.86, + "end": 15070.94, + "probability": 0.1321 + }, + { + "start": 15071.78, + "end": 15074.08, + "probability": 0.0406 + }, + { + "start": 15074.08, + "end": 15075.68, + "probability": 0.1533 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.0, + "end": 15359.0, + "probability": 0.0 + }, + { + "start": 15359.14, + "end": 15360.68, + "probability": 0.0246 + }, + { + "start": 15363.64, + "end": 15364.66, + "probability": 0.4824 + }, + { + "start": 15365.6, + "end": 15370.6, + "probability": 0.9062 + }, + { + "start": 15371.56, + "end": 15373.7, + "probability": 0.9797 + }, + { + "start": 15376.06, + "end": 15380.0, + "probability": 0.9583 + }, + { + "start": 15380.58, + "end": 15382.4, + "probability": 0.7962 + }, + { + "start": 15385.14, + "end": 15388.24, + "probability": 0.9766 + }, + { + "start": 15389.68, + "end": 15389.96, + "probability": 0.9941 + }, + { + "start": 15390.72, + "end": 15394.58, + "probability": 0.7852 + }, + { + "start": 15395.26, + "end": 15401.14, + "probability": 0.7281 + }, + { + "start": 15402.0, + "end": 15404.5, + "probability": 0.972 + }, + { + "start": 15405.74, + "end": 15407.24, + "probability": 0.8346 + }, + { + "start": 15408.67, + "end": 15411.06, + "probability": 0.8368 + }, + { + "start": 15412.18, + "end": 15419.04, + "probability": 0.9829 + }, + { + "start": 15419.98, + "end": 15421.7, + "probability": 0.5518 + }, + { + "start": 15422.62, + "end": 15424.04, + "probability": 0.984 + }, + { + "start": 15424.95, + "end": 15427.32, + "probability": 0.9811 + }, + { + "start": 15429.8, + "end": 15432.56, + "probability": 0.9366 + }, + { + "start": 15433.24, + "end": 15433.72, + "probability": 0.9919 + }, + { + "start": 15434.3, + "end": 15435.42, + "probability": 0.8363 + }, + { + "start": 15436.3, + "end": 15444.14, + "probability": 0.7876 + }, + { + "start": 15445.04, + "end": 15450.12, + "probability": 0.8459 + }, + { + "start": 15450.92, + "end": 15453.1, + "probability": 0.9836 + }, + { + "start": 15453.92, + "end": 15455.66, + "probability": 0.9844 + }, + { + "start": 15456.66, + "end": 15458.5, + "probability": 0.9681 + }, + { + "start": 15462.18, + "end": 15467.44, + "probability": 0.9029 + }, + { + "start": 15468.48, + "end": 15474.06, + "probability": 0.9808 + }, + { + "start": 15475.34, + "end": 15476.56, + "probability": 0.807 + }, + { + "start": 15477.18, + "end": 15484.26, + "probability": 0.9155 + }, + { + "start": 15485.86, + "end": 15491.4, + "probability": 0.9445 + }, + { + "start": 15494.5, + "end": 15495.68, + "probability": 0.5036 + }, + { + "start": 15496.74, + "end": 15500.4, + "probability": 0.7752 + }, + { + "start": 15501.66, + "end": 15503.54, + "probability": 0.8869 + }, + { + "start": 15505.24, + "end": 15506.3, + "probability": 0.9763 + }, + { + "start": 15509.33, + "end": 15513.4, + "probability": 0.8892 + }, + { + "start": 15514.12, + "end": 15517.16, + "probability": 0.9377 + }, + { + "start": 15521.38, + "end": 15527.42, + "probability": 0.8586 + }, + { + "start": 15528.02, + "end": 15531.1, + "probability": 0.819 + }, + { + "start": 15531.74, + "end": 15536.1, + "probability": 0.9806 + }, + { + "start": 15536.82, + "end": 15539.0, + "probability": 0.9204 + }, + { + "start": 15539.6, + "end": 15542.62, + "probability": 0.6578 + }, + { + "start": 15547.66, + "end": 15548.5, + "probability": 0.7804 + }, + { + "start": 15555.96, + "end": 15558.46, + "probability": 0.677 + }, + { + "start": 15559.9, + "end": 15560.56, + "probability": 0.2188 + }, + { + "start": 15562.22, + "end": 15565.84, + "probability": 0.8905 + }, + { + "start": 15566.94, + "end": 15570.56, + "probability": 0.9591 + }, + { + "start": 15571.66, + "end": 15574.28, + "probability": 0.9406 + }, + { + "start": 15575.86, + "end": 15576.74, + "probability": 0.9888 + }, + { + "start": 15577.98, + "end": 15582.42, + "probability": 0.8848 + }, + { + "start": 15583.08, + "end": 15585.98, + "probability": 0.9868 + }, + { + "start": 15586.78, + "end": 15589.22, + "probability": 0.9758 + }, + { + "start": 15590.58, + "end": 15591.48, + "probability": 0.9954 + }, + { + "start": 15592.02, + "end": 15593.1, + "probability": 0.9564 + }, + { + "start": 15594.1, + "end": 15596.4, + "probability": 0.9936 + }, + { + "start": 15597.22, + "end": 15599.24, + "probability": 0.9855 + }, + { + "start": 15599.94, + "end": 15604.48, + "probability": 0.9336 + }, + { + "start": 15605.14, + "end": 15607.64, + "probability": 0.9794 + }, + { + "start": 15608.2, + "end": 15610.18, + "probability": 0.5958 + }, + { + "start": 15610.98, + "end": 15612.96, + "probability": 0.9779 + }, + { + "start": 15613.5, + "end": 15615.26, + "probability": 0.5076 + }, + { + "start": 15615.8, + "end": 15617.92, + "probability": 0.9148 + }, + { + "start": 15619.42, + "end": 15621.56, + "probability": 0.9759 + }, + { + "start": 15622.64, + "end": 15627.48, + "probability": 0.989 + }, + { + "start": 15628.24, + "end": 15632.76, + "probability": 0.9883 + }, + { + "start": 15634.72, + "end": 15637.2, + "probability": 0.845 + }, + { + "start": 15638.8, + "end": 15640.76, + "probability": 0.9876 + }, + { + "start": 15641.94, + "end": 15642.74, + "probability": 0.9921 + }, + { + "start": 15644.3, + "end": 15645.02, + "probability": 0.5895 + }, + { + "start": 15646.26, + "end": 15647.04, + "probability": 0.9963 + }, + { + "start": 15650.02, + "end": 15654.28, + "probability": 0.9985 + }, + { + "start": 15655.96, + "end": 15657.86, + "probability": 0.5881 + }, + { + "start": 15665.28, + "end": 15665.66, + "probability": 0.1553 + }, + { + "start": 15669.12, + "end": 15674.08, + "probability": 0.1296 + }, + { + "start": 15677.12, + "end": 15677.74, + "probability": 0.0478 + }, + { + "start": 15679.76, + "end": 15680.3, + "probability": 0.0254 + }, + { + "start": 15683.84, + "end": 15685.74, + "probability": 0.0075 + }, + { + "start": 15717.84, + "end": 15718.6, + "probability": 0.0114 + }, + { + "start": 15719.72, + "end": 15721.66, + "probability": 0.0206 + }, + { + "start": 15745.04, + "end": 15746.98, + "probability": 0.0656 + }, + { + "start": 15749.16, + "end": 15752.98, + "probability": 0.0633 + }, + { + "start": 15761.82, + "end": 15762.46, + "probability": 0.24 + }, + { + "start": 15764.94, + "end": 15765.44, + "probability": 0.0228 + }, + { + "start": 15790.44, + "end": 15790.9, + "probability": 0.0288 + }, + { + "start": 15791.02, + "end": 15794.72, + "probability": 0.3699 + }, + { + "start": 15795.76, + "end": 15795.92, + "probability": 0.0786 + }, + { + "start": 15796.96, + "end": 15797.97, + "probability": 0.0721 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.0, + "end": 15885.0, + "probability": 0.0 + }, + { + "start": 15885.44, + "end": 15890.54, + "probability": 0.9318 + }, + { + "start": 15892.32, + "end": 15896.44, + "probability": 0.9779 + }, + { + "start": 15897.04, + "end": 15898.8, + "probability": 0.9599 + }, + { + "start": 15899.96, + "end": 15902.9, + "probability": 0.7413 + }, + { + "start": 15903.64, + "end": 15906.56, + "probability": 0.1692 + }, + { + "start": 15906.56, + "end": 15907.08, + "probability": 0.0432 + }, + { + "start": 15907.2, + "end": 15907.3, + "probability": 0.1994 + }, + { + "start": 15907.3, + "end": 15907.76, + "probability": 0.258 + }, + { + "start": 15909.14, + "end": 15909.64, + "probability": 0.8137 + }, + { + "start": 15909.72, + "end": 15914.24, + "probability": 0.9458 + }, + { + "start": 15914.58, + "end": 15917.02, + "probability": 0.9774 + }, + { + "start": 15917.62, + "end": 15917.9, + "probability": 0.0843 + }, + { + "start": 15917.92, + "end": 15919.26, + "probability": 0.5607 + }, + { + "start": 15922.36, + "end": 15926.4, + "probability": 0.5616 + }, + { + "start": 15926.86, + "end": 15928.88, + "probability": 0.6098 + }, + { + "start": 15929.58, + "end": 15932.51, + "probability": 0.8939 + }, + { + "start": 15933.4, + "end": 15934.54, + "probability": 0.2845 + }, + { + "start": 15934.6, + "end": 15935.22, + "probability": 0.1225 + }, + { + "start": 15935.36, + "end": 15937.6, + "probability": 0.9009 + }, + { + "start": 15938.38, + "end": 15938.94, + "probability": 0.7958 + }, + { + "start": 15939.58, + "end": 15941.16, + "probability": 0.8811 + }, + { + "start": 15942.06, + "end": 15944.32, + "probability": 0.9245 + }, + { + "start": 15945.2, + "end": 15947.92, + "probability": 0.9951 + }, + { + "start": 15948.42, + "end": 15949.28, + "probability": 0.9268 + }, + { + "start": 15949.48, + "end": 15952.26, + "probability": 0.4424 + }, + { + "start": 15952.44, + "end": 15954.08, + "probability": 0.9701 + }, + { + "start": 15954.78, + "end": 15956.16, + "probability": 0.6539 + }, + { + "start": 15957.02, + "end": 15958.0, + "probability": 0.727 + }, + { + "start": 15958.1, + "end": 15959.08, + "probability": 0.9608 + }, + { + "start": 15959.18, + "end": 15964.14, + "probability": 0.9707 + }, + { + "start": 15964.34, + "end": 15966.81, + "probability": 0.8745 + }, + { + "start": 15966.92, + "end": 15967.56, + "probability": 0.0914 + }, + { + "start": 15968.31, + "end": 15971.52, + "probability": 0.0586 + }, + { + "start": 15972.18, + "end": 15972.18, + "probability": 0.029 + }, + { + "start": 15978.0, + "end": 15978.8, + "probability": 0.2994 + }, + { + "start": 15983.16, + "end": 15987.82, + "probability": 0.5324 + }, + { + "start": 15988.0, + "end": 15988.0, + "probability": 0.246 + }, + { + "start": 15988.0, + "end": 15988.0, + "probability": 0.2473 + }, + { + "start": 15988.0, + "end": 15993.18, + "probability": 0.8459 + }, + { + "start": 15993.9, + "end": 16000.4, + "probability": 0.9812 + }, + { + "start": 16001.3, + "end": 16008.0, + "probability": 0.6782 + }, + { + "start": 16008.58, + "end": 16011.36, + "probability": 0.7058 + }, + { + "start": 16011.94, + "end": 16014.54, + "probability": 0.9903 + }, + { + "start": 16015.56, + "end": 16017.24, + "probability": 0.9666 + }, + { + "start": 16017.84, + "end": 16019.12, + "probability": 0.7232 + }, + { + "start": 16019.68, + "end": 16025.34, + "probability": 0.7685 + }, + { + "start": 16025.34, + "end": 16030.48, + "probability": 0.979 + }, + { + "start": 16031.72, + "end": 16037.24, + "probability": 0.9756 + }, + { + "start": 16037.7, + "end": 16039.38, + "probability": 0.8547 + }, + { + "start": 16040.02, + "end": 16041.06, + "probability": 0.9106 + }, + { + "start": 16042.86, + "end": 16045.2, + "probability": 0.8318 + }, + { + "start": 16045.72, + "end": 16047.8, + "probability": 0.6224 + }, + { + "start": 16048.38, + "end": 16051.28, + "probability": 0.8094 + }, + { + "start": 16052.1, + "end": 16058.4, + "probability": 0.828 + }, + { + "start": 16059.18, + "end": 16062.72, + "probability": 0.9873 + }, + { + "start": 16063.68, + "end": 16066.26, + "probability": 0.8817 + }, + { + "start": 16066.84, + "end": 16068.2, + "probability": 0.5432 + }, + { + "start": 16068.44, + "end": 16069.26, + "probability": 0.1176 + }, + { + "start": 16070.47, + "end": 16071.42, + "probability": 0.1257 + }, + { + "start": 16071.62, + "end": 16072.2, + "probability": 0.4599 + }, + { + "start": 16080.06, + "end": 16080.92, + "probability": 0.1303 + }, + { + "start": 16080.98, + "end": 16083.48, + "probability": 0.3067 + }, + { + "start": 16083.89, + "end": 16091.96, + "probability": 0.8003 + }, + { + "start": 16092.22, + "end": 16100.16, + "probability": 0.9336 + }, + { + "start": 16101.32, + "end": 16102.6, + "probability": 0.8083 + }, + { + "start": 16103.5, + "end": 16112.78, + "probability": 0.9466 + }, + { + "start": 16115.31, + "end": 16119.26, + "probability": 0.8414 + }, + { + "start": 16120.62, + "end": 16124.38, + "probability": 0.9868 + }, + { + "start": 16124.38, + "end": 16128.16, + "probability": 0.9937 + }, + { + "start": 16128.84, + "end": 16130.28, + "probability": 0.7675 + }, + { + "start": 16131.34, + "end": 16131.94, + "probability": 0.8375 + }, + { + "start": 16134.34, + "end": 16140.44, + "probability": 0.849 + }, + { + "start": 16141.04, + "end": 16141.34, + "probability": 0.7754 + }, + { + "start": 16141.42, + "end": 16148.24, + "probability": 0.9932 + }, + { + "start": 16149.44, + "end": 16152.62, + "probability": 0.8548 + }, + { + "start": 16153.6, + "end": 16157.08, + "probability": 0.9425 + }, + { + "start": 16157.62, + "end": 16161.94, + "probability": 0.8931 + }, + { + "start": 16162.72, + "end": 16165.98, + "probability": 0.7474 + }, + { + "start": 16168.02, + "end": 16171.96, + "probability": 0.8353 + }, + { + "start": 16173.4, + "end": 16177.82, + "probability": 0.9723 + }, + { + "start": 16177.82, + "end": 16182.36, + "probability": 0.9934 + }, + { + "start": 16183.32, + "end": 16189.86, + "probability": 0.9993 + }, + { + "start": 16190.64, + "end": 16193.7, + "probability": 0.997 + }, + { + "start": 16193.7, + "end": 16198.74, + "probability": 0.8158 + }, + { + "start": 16200.06, + "end": 16204.46, + "probability": 0.9106 + }, + { + "start": 16204.46, + "end": 16208.24, + "probability": 0.9937 + }, + { + "start": 16209.98, + "end": 16210.0, + "probability": 0.7622 + }, + { + "start": 16210.52, + "end": 16215.0, + "probability": 0.9934 + }, + { + "start": 16216.08, + "end": 16221.36, + "probability": 0.7524 + }, + { + "start": 16222.51, + "end": 16231.1, + "probability": 0.8333 + }, + { + "start": 16231.1, + "end": 16237.32, + "probability": 0.9918 + }, + { + "start": 16238.34, + "end": 16238.68, + "probability": 0.5101 + }, + { + "start": 16239.24, + "end": 16243.48, + "probability": 0.9811 + }, + { + "start": 16243.48, + "end": 16247.52, + "probability": 0.9967 + }, + { + "start": 16248.36, + "end": 16250.34, + "probability": 0.9136 + }, + { + "start": 16250.9, + "end": 16254.04, + "probability": 0.9869 + }, + { + "start": 16254.04, + "end": 16257.9, + "probability": 0.7248 + }, + { + "start": 16258.76, + "end": 16263.14, + "probability": 0.8635 + }, + { + "start": 16263.68, + "end": 16264.22, + "probability": 0.4776 + }, + { + "start": 16264.82, + "end": 16265.97, + "probability": 0.962 + }, + { + "start": 16267.16, + "end": 16270.56, + "probability": 0.9934 + }, + { + "start": 16272.72, + "end": 16278.56, + "probability": 0.9395 + }, + { + "start": 16278.56, + "end": 16284.64, + "probability": 0.9802 + }, + { + "start": 16285.64, + "end": 16288.74, + "probability": 0.9957 + }, + { + "start": 16288.74, + "end": 16293.24, + "probability": 0.9116 + }, + { + "start": 16293.44, + "end": 16294.6, + "probability": 0.9762 + }, + { + "start": 16295.9, + "end": 16298.36, + "probability": 0.7906 + }, + { + "start": 16299.32, + "end": 16303.5, + "probability": 0.9956 + }, + { + "start": 16303.52, + "end": 16307.8, + "probability": 0.9992 + }, + { + "start": 16308.48, + "end": 16310.82, + "probability": 0.4794 + }, + { + "start": 16312.16, + "end": 16313.24, + "probability": 0.3989 + }, + { + "start": 16313.62, + "end": 16317.06, + "probability": 0.7991 + }, + { + "start": 16317.06, + "end": 16320.94, + "probability": 0.9312 + }, + { + "start": 16321.66, + "end": 16326.58, + "probability": 0.5318 + }, + { + "start": 16327.04, + "end": 16328.24, + "probability": 0.859 + }, + { + "start": 16329.76, + "end": 16333.6, + "probability": 0.9302 + }, + { + "start": 16334.14, + "end": 16336.64, + "probability": 0.6267 + }, + { + "start": 16337.18, + "end": 16341.88, + "probability": 0.9928 + }, + { + "start": 16342.5, + "end": 16343.68, + "probability": 0.8121 + }, + { + "start": 16343.78, + "end": 16344.52, + "probability": 0.9689 + }, + { + "start": 16344.98, + "end": 16346.1, + "probability": 0.7839 + }, + { + "start": 16346.92, + "end": 16348.87, + "probability": 0.9932 + }, + { + "start": 16349.98, + "end": 16352.42, + "probability": 0.5783 + }, + { + "start": 16353.92, + "end": 16356.8, + "probability": 0.5112 + }, + { + "start": 16357.64, + "end": 16357.8, + "probability": 0.2578 + }, + { + "start": 16358.48, + "end": 16359.86, + "probability": 0.957 + }, + { + "start": 16359.92, + "end": 16363.7, + "probability": 0.9925 + }, + { + "start": 16364.7, + "end": 16370.9, + "probability": 0.9866 + }, + { + "start": 16371.36, + "end": 16376.28, + "probability": 0.9942 + }, + { + "start": 16376.94, + "end": 16379.78, + "probability": 0.8894 + }, + { + "start": 16380.88, + "end": 16381.32, + "probability": 0.5768 + }, + { + "start": 16382.5, + "end": 16383.54, + "probability": 0.8672 + }, + { + "start": 16384.48, + "end": 16388.52, + "probability": 0.9907 + }, + { + "start": 16388.52, + "end": 16390.86, + "probability": 0.9595 + }, + { + "start": 16391.22, + "end": 16394.8, + "probability": 0.9937 + }, + { + "start": 16395.9, + "end": 16398.28, + "probability": 0.7903 + }, + { + "start": 16398.34, + "end": 16401.08, + "probability": 0.9114 + }, + { + "start": 16402.08, + "end": 16402.84, + "probability": 0.8779 + }, + { + "start": 16403.26, + "end": 16404.78, + "probability": 0.9753 + }, + { + "start": 16405.94, + "end": 16409.38, + "probability": 0.7817 + }, + { + "start": 16410.02, + "end": 16411.68, + "probability": 0.8052 + }, + { + "start": 16411.84, + "end": 16412.96, + "probability": 0.8035 + }, + { + "start": 16413.96, + "end": 16417.8, + "probability": 0.9971 + }, + { + "start": 16418.52, + "end": 16422.16, + "probability": 0.7481 + }, + { + "start": 16422.16, + "end": 16426.5, + "probability": 0.9863 + }, + { + "start": 16427.1, + "end": 16429.14, + "probability": 0.7908 + }, + { + "start": 16429.86, + "end": 16435.54, + "probability": 0.9949 + }, + { + "start": 16436.36, + "end": 16438.64, + "probability": 0.9321 + }, + { + "start": 16439.14, + "end": 16440.58, + "probability": 0.8067 + }, + { + "start": 16440.98, + "end": 16443.42, + "probability": 0.9556 + }, + { + "start": 16443.52, + "end": 16444.47, + "probability": 0.4971 + }, + { + "start": 16445.48, + "end": 16449.4, + "probability": 0.8645 + }, + { + "start": 16450.6, + "end": 16452.02, + "probability": 0.9938 + }, + { + "start": 16452.62, + "end": 16455.2, + "probability": 0.9843 + }, + { + "start": 16455.66, + "end": 16462.06, + "probability": 0.8631 + }, + { + "start": 16463.06, + "end": 16466.18, + "probability": 0.5418 + }, + { + "start": 16466.18, + "end": 16469.58, + "probability": 0.9982 + }, + { + "start": 16470.48, + "end": 16473.32, + "probability": 0.996 + }, + { + "start": 16473.84, + "end": 16476.84, + "probability": 0.8425 + }, + { + "start": 16478.08, + "end": 16478.5, + "probability": 0.6651 + }, + { + "start": 16479.24, + "end": 16480.38, + "probability": 0.9989 + }, + { + "start": 16481.42, + "end": 16482.32, + "probability": 0.9446 + }, + { + "start": 16482.44, + "end": 16483.6, + "probability": 0.6715 + }, + { + "start": 16484.06, + "end": 16489.42, + "probability": 0.8673 + }, + { + "start": 16490.16, + "end": 16492.9, + "probability": 0.8719 + }, + { + "start": 16493.54, + "end": 16495.1, + "probability": 0.9627 + }, + { + "start": 16495.64, + "end": 16498.62, + "probability": 0.9426 + }, + { + "start": 16498.78, + "end": 16503.68, + "probability": 0.9874 + }, + { + "start": 16504.42, + "end": 16510.42, + "probability": 0.8917 + }, + { + "start": 16510.98, + "end": 16516.48, + "probability": 0.9978 + }, + { + "start": 16516.84, + "end": 16517.34, + "probability": 0.9265 + }, + { + "start": 16517.78, + "end": 16520.86, + "probability": 0.9569 + }, + { + "start": 16521.6, + "end": 16524.2, + "probability": 0.9806 + }, + { + "start": 16524.6, + "end": 16526.92, + "probability": 0.9358 + }, + { + "start": 16527.46, + "end": 16529.54, + "probability": 0.7219 + }, + { + "start": 16530.94, + "end": 16531.38, + "probability": 0.6225 + }, + { + "start": 16531.92, + "end": 16532.72, + "probability": 0.5116 + }, + { + "start": 16533.4, + "end": 16535.34, + "probability": 0.9603 + }, + { + "start": 16535.62, + "end": 16535.68, + "probability": 0.3005 + }, + { + "start": 16552.54, + "end": 16554.66, + "probability": 0.6851 + }, + { + "start": 16555.78, + "end": 16557.34, + "probability": 0.7229 + }, + { + "start": 16557.7, + "end": 16558.39, + "probability": 0.9743 + }, + { + "start": 16559.44, + "end": 16565.26, + "probability": 0.9852 + }, + { + "start": 16566.68, + "end": 16567.88, + "probability": 0.7539 + }, + { + "start": 16568.84, + "end": 16572.74, + "probability": 0.9952 + }, + { + "start": 16572.84, + "end": 16573.33, + "probability": 0.9004 + }, + { + "start": 16574.86, + "end": 16577.9, + "probability": 0.7096 + }, + { + "start": 16578.32, + "end": 16578.94, + "probability": 0.556 + }, + { + "start": 16578.98, + "end": 16582.0, + "probability": 0.9887 + }, + { + "start": 16582.74, + "end": 16584.89, + "probability": 0.9775 + }, + { + "start": 16585.32, + "end": 16587.66, + "probability": 0.9908 + }, + { + "start": 16588.24, + "end": 16589.82, + "probability": 0.998 + }, + { + "start": 16590.46, + "end": 16591.1, + "probability": 0.8491 + }, + { + "start": 16591.28, + "end": 16593.04, + "probability": 0.9729 + }, + { + "start": 16593.62, + "end": 16594.13, + "probability": 0.8533 + }, + { + "start": 16595.36, + "end": 16598.38, + "probability": 0.9951 + }, + { + "start": 16602.26, + "end": 16602.38, + "probability": 0.0279 + }, + { + "start": 16602.92, + "end": 16607.26, + "probability": 0.998 + }, + { + "start": 16607.26, + "end": 16610.98, + "probability": 0.991 + }, + { + "start": 16610.98, + "end": 16614.0, + "probability": 0.9974 + }, + { + "start": 16614.62, + "end": 16616.68, + "probability": 0.9973 + }, + { + "start": 16617.34, + "end": 16618.58, + "probability": 0.8081 + }, + { + "start": 16619.2, + "end": 16621.02, + "probability": 0.9429 + }, + { + "start": 16621.18, + "end": 16625.16, + "probability": 0.7069 + }, + { + "start": 16625.72, + "end": 16626.96, + "probability": 0.8086 + }, + { + "start": 16627.94, + "end": 16629.46, + "probability": 0.8852 + }, + { + "start": 16631.52, + "end": 16631.86, + "probability": 0.5052 + }, + { + "start": 16632.02, + "end": 16632.24, + "probability": 0.021 + }, + { + "start": 16632.24, + "end": 16634.0, + "probability": 0.9389 + }, + { + "start": 16634.02, + "end": 16635.38, + "probability": 0.9736 + }, + { + "start": 16635.88, + "end": 16635.98, + "probability": 0.5204 + }, + { + "start": 16635.98, + "end": 16636.74, + "probability": 0.6874 + }, + { + "start": 16636.86, + "end": 16639.46, + "probability": 0.9691 + }, + { + "start": 16640.04, + "end": 16642.06, + "probability": 0.9988 + }, + { + "start": 16642.2, + "end": 16644.61, + "probability": 0.9976 + }, + { + "start": 16645.04, + "end": 16650.16, + "probability": 0.9966 + }, + { + "start": 16650.36, + "end": 16651.94, + "probability": 0.9719 + }, + { + "start": 16652.32, + "end": 16656.16, + "probability": 0.9851 + }, + { + "start": 16656.64, + "end": 16658.38, + "probability": 0.9623 + }, + { + "start": 16658.76, + "end": 16660.66, + "probability": 0.7529 + }, + { + "start": 16661.82, + "end": 16664.64, + "probability": 0.817 + }, + { + "start": 16664.92, + "end": 16665.48, + "probability": 0.7524 + }, + { + "start": 16665.5, + "end": 16668.68, + "probability": 0.9733 + }, + { + "start": 16669.34, + "end": 16670.58, + "probability": 0.9478 + }, + { + "start": 16671.62, + "end": 16672.46, + "probability": 0.0826 + }, + { + "start": 16672.46, + "end": 16673.28, + "probability": 0.5752 + }, + { + "start": 16673.52, + "end": 16675.42, + "probability": 0.9893 + }, + { + "start": 16675.96, + "end": 16679.18, + "probability": 0.9909 + }, + { + "start": 16679.96, + "end": 16681.26, + "probability": 0.9526 + }, + { + "start": 16681.34, + "end": 16681.74, + "probability": 0.8748 + }, + { + "start": 16681.76, + "end": 16682.64, + "probability": 0.888 + }, + { + "start": 16682.74, + "end": 16686.9, + "probability": 0.9844 + }, + { + "start": 16686.98, + "end": 16690.12, + "probability": 0.9912 + }, + { + "start": 16690.8, + "end": 16691.76, + "probability": 0.3995 + }, + { + "start": 16691.76, + "end": 16692.14, + "probability": 0.1666 + }, + { + "start": 16692.14, + "end": 16692.62, + "probability": 0.3835 + }, + { + "start": 16692.9, + "end": 16694.13, + "probability": 0.7322 + }, + { + "start": 16694.32, + "end": 16696.1, + "probability": 0.9094 + }, + { + "start": 16696.42, + "end": 16698.68, + "probability": 0.8644 + }, + { + "start": 16699.14, + "end": 16703.54, + "probability": 0.9989 + }, + { + "start": 16703.96, + "end": 16704.93, + "probability": 0.9587 + }, + { + "start": 16705.18, + "end": 16705.38, + "probability": 0.038 + }, + { + "start": 16705.38, + "end": 16706.22, + "probability": 0.7625 + }, + { + "start": 16707.01, + "end": 16709.58, + "probability": 0.7755 + }, + { + "start": 16709.68, + "end": 16711.16, + "probability": 0.8616 + }, + { + "start": 16711.4, + "end": 16715.36, + "probability": 0.6903 + }, + { + "start": 16715.6, + "end": 16716.78, + "probability": 0.7843 + }, + { + "start": 16716.84, + "end": 16717.54, + "probability": 0.6596 + }, + { + "start": 16717.6, + "end": 16721.3, + "probability": 0.7793 + }, + { + "start": 16721.94, + "end": 16723.53, + "probability": 0.9486 + }, + { + "start": 16724.14, + "end": 16726.3, + "probability": 0.987 + }, + { + "start": 16727.84, + "end": 16727.84, + "probability": 0.0837 + }, + { + "start": 16727.84, + "end": 16727.84, + "probability": 0.1314 + }, + { + "start": 16727.84, + "end": 16728.16, + "probability": 0.7651 + }, + { + "start": 16728.6, + "end": 16730.06, + "probability": 0.9045 + }, + { + "start": 16730.56, + "end": 16734.88, + "probability": 0.9902 + }, + { + "start": 16735.2, + "end": 16737.04, + "probability": 0.9808 + }, + { + "start": 16737.08, + "end": 16739.9, + "probability": 0.976 + }, + { + "start": 16742.3, + "end": 16744.32, + "probability": 0.3756 + }, + { + "start": 16744.4, + "end": 16745.1, + "probability": 0.0274 + }, + { + "start": 16745.74, + "end": 16747.8, + "probability": 0.704 + }, + { + "start": 16747.92, + "end": 16751.69, + "probability": 0.9705 + }, + { + "start": 16752.12, + "end": 16752.32, + "probability": 0.0375 + }, + { + "start": 16752.32, + "end": 16754.42, + "probability": 0.7649 + }, + { + "start": 16755.18, + "end": 16755.42, + "probability": 0.0233 + }, + { + "start": 16755.42, + "end": 16755.42, + "probability": 0.0838 + }, + { + "start": 16755.42, + "end": 16755.42, + "probability": 0.1374 + }, + { + "start": 16755.42, + "end": 16756.34, + "probability": 0.3652 + }, + { + "start": 16756.48, + "end": 16761.1, + "probability": 0.902 + }, + { + "start": 16761.5, + "end": 16764.22, + "probability": 0.9897 + }, + { + "start": 16764.78, + "end": 16766.86, + "probability": 0.8782 + }, + { + "start": 16767.2, + "end": 16770.78, + "probability": 0.904 + }, + { + "start": 16770.92, + "end": 16774.86, + "probability": 0.3458 + }, + { + "start": 16775.2, + "end": 16775.68, + "probability": 0.7803 + }, + { + "start": 16775.68, + "end": 16775.72, + "probability": 0.1731 + }, + { + "start": 16775.72, + "end": 16775.94, + "probability": 0.3079 + }, + { + "start": 16776.2, + "end": 16778.6, + "probability": 0.9775 + }, + { + "start": 16780.16, + "end": 16783.38, + "probability": 0.9781 + }, + { + "start": 16783.52, + "end": 16784.54, + "probability": 0.6998 + }, + { + "start": 16784.76, + "end": 16785.54, + "probability": 0.0594 + }, + { + "start": 16786.96, + "end": 16786.96, + "probability": 0.2818 + }, + { + "start": 16786.98, + "end": 16788.94, + "probability": 0.7805 + }, + { + "start": 16789.1, + "end": 16790.86, + "probability": 0.9934 + }, + { + "start": 16790.96, + "end": 16792.62, + "probability": 0.999 + }, + { + "start": 16792.78, + "end": 16794.32, + "probability": 0.963 + }, + { + "start": 16795.02, + "end": 16796.66, + "probability": 0.2969 + }, + { + "start": 16796.8, + "end": 16799.6, + "probability": 0.2302 + }, + { + "start": 16800.18, + "end": 16801.18, + "probability": 0.0558 + }, + { + "start": 16801.18, + "end": 16803.94, + "probability": 0.167 + }, + { + "start": 16804.82, + "end": 16807.38, + "probability": 0.0458 + }, + { + "start": 16810.34, + "end": 16814.6, + "probability": 0.883 + }, + { + "start": 16815.2, + "end": 16817.26, + "probability": 0.9217 + }, + { + "start": 16817.26, + "end": 16820.41, + "probability": 0.1855 + }, + { + "start": 16820.94, + "end": 16823.56, + "probability": 0.5014 + }, + { + "start": 16823.9, + "end": 16824.58, + "probability": 0.6461 + }, + { + "start": 16824.66, + "end": 16825.9, + "probability": 0.7999 + }, + { + "start": 16825.92, + "end": 16828.12, + "probability": 0.8303 + }, + { + "start": 16828.64, + "end": 16829.7, + "probability": 0.9959 + }, + { + "start": 16830.2, + "end": 16832.26, + "probability": 0.8425 + }, + { + "start": 16832.38, + "end": 16834.84, + "probability": 0.9844 + }, + { + "start": 16835.22, + "end": 16837.3, + "probability": 0.9523 + }, + { + "start": 16839.64, + "end": 16846.84, + "probability": 0.6918 + }, + { + "start": 16847.04, + "end": 16848.14, + "probability": 0.5592 + }, + { + "start": 16848.22, + "end": 16850.38, + "probability": 0.2219 + }, + { + "start": 16850.54, + "end": 16854.52, + "probability": 0.7889 + }, + { + "start": 16854.92, + "end": 16860.86, + "probability": 0.989 + }, + { + "start": 16860.92, + "end": 16862.6, + "probability": 0.7652 + }, + { + "start": 16862.84, + "end": 16866.34, + "probability": 0.9496 + }, + { + "start": 16866.52, + "end": 16868.28, + "probability": 0.9198 + }, + { + "start": 16869.2, + "end": 16874.68, + "probability": 0.9947 + }, + { + "start": 16874.92, + "end": 16877.14, + "probability": 0.992 + }, + { + "start": 16877.22, + "end": 16878.12, + "probability": 0.7319 + }, + { + "start": 16878.5, + "end": 16884.72, + "probability": 0.9955 + }, + { + "start": 16884.78, + "end": 16886.04, + "probability": 0.761 + }, + { + "start": 16886.06, + "end": 16889.2, + "probability": 0.9766 + }, + { + "start": 16890.75, + "end": 16892.74, + "probability": 0.9937 + }, + { + "start": 16892.98, + "end": 16895.44, + "probability": 0.9951 + }, + { + "start": 16896.1, + "end": 16898.62, + "probability": 0.9776 + }, + { + "start": 16898.92, + "end": 16899.58, + "probability": 0.7269 + }, + { + "start": 16903.94, + "end": 16906.12, + "probability": 0.4017 + }, + { + "start": 16917.64, + "end": 16918.0, + "probability": 0.0266 + }, + { + "start": 16918.88, + "end": 16919.22, + "probability": 0.051 + }, + { + "start": 16920.34, + "end": 16924.38, + "probability": 0.8152 + }, + { + "start": 16925.4, + "end": 16926.06, + "probability": 0.9607 + }, + { + "start": 16927.1, + "end": 16933.28, + "probability": 0.7207 + }, + { + "start": 16933.84, + "end": 16936.2, + "probability": 0.9827 + }, + { + "start": 16937.34, + "end": 16938.02, + "probability": 0.8478 + }, + { + "start": 16938.14, + "end": 16940.82, + "probability": 0.9805 + }, + { + "start": 16941.54, + "end": 16944.96, + "probability": 0.8466 + }, + { + "start": 16945.4, + "end": 16948.22, + "probability": 0.9263 + }, + { + "start": 16948.86, + "end": 16950.96, + "probability": 0.9926 + }, + { + "start": 16951.7, + "end": 16955.8, + "probability": 0.9941 + }, + { + "start": 16956.28, + "end": 16960.06, + "probability": 0.9939 + }, + { + "start": 16960.62, + "end": 16964.98, + "probability": 0.9163 + }, + { + "start": 16965.52, + "end": 16970.64, + "probability": 0.9937 + }, + { + "start": 16971.16, + "end": 16974.26, + "probability": 0.9824 + }, + { + "start": 16974.98, + "end": 16978.86, + "probability": 0.9814 + }, + { + "start": 16978.86, + "end": 16984.88, + "probability": 0.996 + }, + { + "start": 16985.46, + "end": 16988.06, + "probability": 0.8836 + }, + { + "start": 16988.8, + "end": 16991.48, + "probability": 0.9576 + }, + { + "start": 16992.12, + "end": 16996.14, + "probability": 0.9953 + }, + { + "start": 16996.14, + "end": 17000.8, + "probability": 0.9313 + }, + { + "start": 17001.36, + "end": 17005.3, + "probability": 0.9984 + }, + { + "start": 17005.84, + "end": 17009.8, + "probability": 0.9838 + }, + { + "start": 17009.96, + "end": 17010.66, + "probability": 0.6897 + }, + { + "start": 17010.66, + "end": 17012.12, + "probability": 0.244 + }, + { + "start": 17012.16, + "end": 17014.0, + "probability": 0.8542 + }, + { + "start": 17014.3, + "end": 17015.32, + "probability": 0.8232 + }, + { + "start": 17016.12, + "end": 17018.64, + "probability": 0.8053 + }, + { + "start": 17019.14, + "end": 17023.02, + "probability": 0.9742 + }, + { + "start": 17023.38, + "end": 17027.16, + "probability": 0.9983 + }, + { + "start": 17028.14, + "end": 17032.8, + "probability": 0.8924 + }, + { + "start": 17033.32, + "end": 17037.96, + "probability": 0.8052 + }, + { + "start": 17037.96, + "end": 17041.96, + "probability": 0.9976 + }, + { + "start": 17042.28, + "end": 17045.04, + "probability": 0.91 + }, + { + "start": 17045.86, + "end": 17048.06, + "probability": 0.9954 + }, + { + "start": 17049.14, + "end": 17053.82, + "probability": 0.8429 + }, + { + "start": 17054.38, + "end": 17056.46, + "probability": 0.7117 + }, + { + "start": 17056.48, + "end": 17057.84, + "probability": 0.7744 + }, + { + "start": 17057.98, + "end": 17061.8, + "probability": 0.9336 + }, + { + "start": 17062.5, + "end": 17065.46, + "probability": 0.9272 + }, + { + "start": 17065.94, + "end": 17070.98, + "probability": 0.9893 + }, + { + "start": 17071.54, + "end": 17072.78, + "probability": 0.8382 + }, + { + "start": 17073.36, + "end": 17074.8, + "probability": 0.887 + }, + { + "start": 17074.92, + "end": 17078.44, + "probability": 0.9342 + }, + { + "start": 17078.96, + "end": 17083.24, + "probability": 0.9179 + }, + { + "start": 17083.62, + "end": 17085.32, + "probability": 0.7466 + }, + { + "start": 17086.28, + "end": 17092.12, + "probability": 0.9142 + }, + { + "start": 17092.6, + "end": 17094.48, + "probability": 0.682 + }, + { + "start": 17094.62, + "end": 17099.44, + "probability": 0.9074 + }, + { + "start": 17099.76, + "end": 17105.24, + "probability": 0.8951 + }, + { + "start": 17105.76, + "end": 17107.56, + "probability": 0.8454 + }, + { + "start": 17108.62, + "end": 17113.11, + "probability": 0.9963 + }, + { + "start": 17113.26, + "end": 17113.97, + "probability": 0.7291 + }, + { + "start": 17114.56, + "end": 17115.94, + "probability": 0.9597 + }, + { + "start": 17116.38, + "end": 17118.58, + "probability": 0.9124 + }, + { + "start": 17119.18, + "end": 17122.66, + "probability": 0.9985 + }, + { + "start": 17124.22, + "end": 17124.96, + "probability": 0.6643 + }, + { + "start": 17125.34, + "end": 17126.8, + "probability": 0.812 + }, + { + "start": 17131.84, + "end": 17133.98, + "probability": 0.9839 + }, + { + "start": 17133.98, + "end": 17136.84, + "probability": 0.8331 + }, + { + "start": 17136.94, + "end": 17139.1, + "probability": 0.5312 + }, + { + "start": 17148.44, + "end": 17148.88, + "probability": 0.8652 + }, + { + "start": 17150.32, + "end": 17152.84, + "probability": 0.4276 + }, + { + "start": 17153.14, + "end": 17156.0, + "probability": 0.5113 + }, + { + "start": 17156.58, + "end": 17157.44, + "probability": 0.6921 + }, + { + "start": 17157.96, + "end": 17158.92, + "probability": 0.4966 + }, + { + "start": 17162.16, + "end": 17165.8, + "probability": 0.8562 + }, + { + "start": 17169.86, + "end": 17171.96, + "probability": 0.9927 + }, + { + "start": 17172.36, + "end": 17174.22, + "probability": 0.993 + }, + { + "start": 17181.22, + "end": 17183.84, + "probability": 0.9854 + }, + { + "start": 17184.74, + "end": 17186.5, + "probability": 0.7825 + }, + { + "start": 17186.74, + "end": 17187.64, + "probability": 0.8914 + }, + { + "start": 17187.76, + "end": 17189.86, + "probability": 0.5273 + }, + { + "start": 17190.8, + "end": 17197.04, + "probability": 0.7949 + }, + { + "start": 17198.02, + "end": 17199.1, + "probability": 0.3917 + }, + { + "start": 17199.36, + "end": 17202.1, + "probability": 0.0251 + }, + { + "start": 17214.74, + "end": 17217.9, + "probability": 0.9187 + }, + { + "start": 17217.94, + "end": 17219.54, + "probability": 0.7474 + }, + { + "start": 17219.85, + "end": 17222.32, + "probability": 0.8532 + }, + { + "start": 17222.4, + "end": 17223.4, + "probability": 0.8769 + }, + { + "start": 17223.48, + "end": 17224.2, + "probability": 0.9681 + }, + { + "start": 17224.26, + "end": 17225.5, + "probability": 0.9941 + }, + { + "start": 17225.72, + "end": 17226.54, + "probability": 0.9783 + }, + { + "start": 17226.58, + "end": 17227.68, + "probability": 0.7754 + }, + { + "start": 17228.96, + "end": 17230.16, + "probability": 0.9858 + }, + { + "start": 17230.82, + "end": 17231.88, + "probability": 0.7922 + }, + { + "start": 17232.38, + "end": 17233.9, + "probability": 0.666 + }, + { + "start": 17240.12, + "end": 17243.02, + "probability": 0.8132 + }, + { + "start": 17243.62, + "end": 17244.88, + "probability": 0.3615 + }, + { + "start": 17245.08, + "end": 17246.5, + "probability": 0.6313 + }, + { + "start": 17246.7, + "end": 17248.24, + "probability": 0.6635 + }, + { + "start": 17248.68, + "end": 17249.72, + "probability": 0.6332 + }, + { + "start": 17249.84, + "end": 17250.96, + "probability": 0.8735 + }, + { + "start": 17251.06, + "end": 17251.92, + "probability": 0.8401 + }, + { + "start": 17252.0, + "end": 17253.1, + "probability": 0.8838 + }, + { + "start": 17253.22, + "end": 17254.52, + "probability": 0.8016 + }, + { + "start": 17254.96, + "end": 17256.26, + "probability": 0.8954 + }, + { + "start": 17256.82, + "end": 17263.34, + "probability": 0.4717 + }, + { + "start": 17265.06, + "end": 17271.27, + "probability": 0.7398 + }, + { + "start": 17273.2, + "end": 17274.58, + "probability": 0.5344 + }, + { + "start": 17274.68, + "end": 17275.18, + "probability": 0.8861 + }, + { + "start": 17275.74, + "end": 17277.38, + "probability": 0.96 + }, + { + "start": 17277.9, + "end": 17278.78, + "probability": 0.9921 + }, + { + "start": 17279.36, + "end": 17280.42, + "probability": 0.4875 + }, + { + "start": 17281.66, + "end": 17282.16, + "probability": 0.7769 + }, + { + "start": 17282.22, + "end": 17282.6, + "probability": 0.9902 + }, + { + "start": 17284.74, + "end": 17285.49, + "probability": 0.976 + }, + { + "start": 17286.3, + "end": 17286.9, + "probability": 0.7151 + }, + { + "start": 17287.44, + "end": 17290.08, + "probability": 0.8221 + }, + { + "start": 17295.16, + "end": 17295.86, + "probability": 0.6003 + }, + { + "start": 17296.88, + "end": 17298.82, + "probability": 0.9045 + }, + { + "start": 17298.94, + "end": 17300.24, + "probability": 0.2993 + }, + { + "start": 17300.78, + "end": 17301.4, + "probability": 0.8089 + }, + { + "start": 17302.04, + "end": 17304.52, + "probability": 0.8797 + }, + { + "start": 17305.06, + "end": 17305.68, + "probability": 0.5776 + }, + { + "start": 17306.2, + "end": 17307.0, + "probability": 0.9298 + }, + { + "start": 17307.14, + "end": 17307.98, + "probability": 0.688 + }, + { + "start": 17308.1, + "end": 17308.98, + "probability": 0.8978 + }, + { + "start": 17309.46, + "end": 17313.39, + "probability": 0.4595 + }, + { + "start": 17314.46, + "end": 17317.66, + "probability": 0.3359 + }, + { + "start": 17318.54, + "end": 17319.64, + "probability": 0.9222 + }, + { + "start": 17320.42, + "end": 17321.88, + "probability": 0.8861 + }, + { + "start": 17323.05, + "end": 17325.1, + "probability": 0.7625 + }, + { + "start": 17326.28, + "end": 17328.38, + "probability": 0.644 + }, + { + "start": 17329.1, + "end": 17330.04, + "probability": 0.8832 + }, + { + "start": 17330.12, + "end": 17331.5, + "probability": 0.9414 + }, + { + "start": 17332.42, + "end": 17333.94, + "probability": 0.9655 + }, + { + "start": 17334.16, + "end": 17337.04, + "probability": 0.982 + }, + { + "start": 17338.54, + "end": 17341.32, + "probability": 0.6104 + }, + { + "start": 17343.36, + "end": 17348.02, + "probability": 0.9933 + }, + { + "start": 17348.8, + "end": 17350.1, + "probability": 0.1141 + }, + { + "start": 17351.55, + "end": 17355.88, + "probability": 0.1055 + }, + { + "start": 17356.0, + "end": 17356.08, + "probability": 0.2617 + }, + { + "start": 17357.28, + "end": 17357.4, + "probability": 0.3625 + }, + { + "start": 17380.36, + "end": 17381.52, + "probability": 0.4728 + }, + { + "start": 17381.72, + "end": 17384.7, + "probability": 0.6785 + }, + { + "start": 17384.8, + "end": 17387.56, + "probability": 0.0347 + }, + { + "start": 17388.18, + "end": 17388.6, + "probability": 0.0759 + }, + { + "start": 17404.22, + "end": 17405.64, + "probability": 0.2363 + }, + { + "start": 17418.58, + "end": 17421.22, + "probability": 0.9199 + }, + { + "start": 17421.74, + "end": 17421.94, + "probability": 0.0009 + }, + { + "start": 17428.42, + "end": 17428.42, + "probability": 0.2478 + }, + { + "start": 17428.42, + "end": 17430.06, + "probability": 0.5215 + }, + { + "start": 17431.34, + "end": 17433.19, + "probability": 0.3322 + }, + { + "start": 17435.94, + "end": 17441.84, + "probability": 0.9927 + }, + { + "start": 17442.82, + "end": 17449.74, + "probability": 0.9033 + }, + { + "start": 17449.74, + "end": 17455.22, + "probability": 0.9955 + }, + { + "start": 17456.35, + "end": 17464.04, + "probability": 0.9966 + }, + { + "start": 17464.04, + "end": 17467.06, + "probability": 0.073 + }, + { + "start": 17467.18, + "end": 17473.06, + "probability": 0.9873 + }, + { + "start": 17473.14, + "end": 17473.36, + "probability": 0.292 + }, + { + "start": 17473.36, + "end": 17474.36, + "probability": 0.6271 + }, + { + "start": 17474.46, + "end": 17476.04, + "probability": 0.5784 + }, + { + "start": 17476.06, + "end": 17488.64, + "probability": 0.9548 + }, + { + "start": 17488.74, + "end": 17492.94, + "probability": 0.9429 + }, + { + "start": 17494.82, + "end": 17498.48, + "probability": 0.6876 + }, + { + "start": 17498.62, + "end": 17498.62, + "probability": 0.1055 + }, + { + "start": 17498.64, + "end": 17499.84, + "probability": 0.6063 + }, + { + "start": 17499.84, + "end": 17500.6, + "probability": 0.7239 + }, + { + "start": 17501.08, + "end": 17503.98, + "probability": 0.9835 + }, + { + "start": 17505.96, + "end": 17508.86, + "probability": 0.5685 + }, + { + "start": 17508.86, + "end": 17512.9, + "probability": 0.6309 + }, + { + "start": 17513.2, + "end": 17514.92, + "probability": 0.8165 + }, + { + "start": 17515.08, + "end": 17515.94, + "probability": 0.7538 + }, + { + "start": 17516.0, + "end": 17517.24, + "probability": 0.9742 + }, + { + "start": 17517.36, + "end": 17518.42, + "probability": 0.9287 + }, + { + "start": 17518.5, + "end": 17519.4, + "probability": 0.9668 + }, + { + "start": 17519.5, + "end": 17520.56, + "probability": 0.9708 + }, + { + "start": 17520.76, + "end": 17521.66, + "probability": 0.7366 + }, + { + "start": 17522.2, + "end": 17527.2, + "probability": 0.334 + }, + { + "start": 17527.92, + "end": 17530.24, + "probability": 0.6855 + }, + { + "start": 17530.86, + "end": 17532.92, + "probability": 0.0661 + }, + { + "start": 17532.92, + "end": 17532.92, + "probability": 0.3095 + }, + { + "start": 17532.92, + "end": 17532.92, + "probability": 0.3191 + }, + { + "start": 17532.92, + "end": 17532.92, + "probability": 0.4362 + }, + { + "start": 17532.92, + "end": 17535.62, + "probability": 0.5996 + }, + { + "start": 17535.74, + "end": 17540.02, + "probability": 0.7798 + }, + { + "start": 17540.02, + "end": 17540.48, + "probability": 0.4356 + }, + { + "start": 17540.74, + "end": 17547.62, + "probability": 0.902 + }, + { + "start": 17548.8, + "end": 17549.8, + "probability": 0.7948 + }, + { + "start": 17550.34, + "end": 17552.32, + "probability": 0.8789 + }, + { + "start": 17553.92, + "end": 17558.56, + "probability": 0.9722 + }, + { + "start": 17559.7, + "end": 17561.58, + "probability": 0.9642 + }, + { + "start": 17562.36, + "end": 17568.58, + "probability": 0.9968 + }, + { + "start": 17569.5, + "end": 17572.28, + "probability": 0.6601 + }, + { + "start": 17572.98, + "end": 17575.48, + "probability": 0.9021 + }, + { + "start": 17578.54, + "end": 17582.34, + "probability": 0.9393 + }, + { + "start": 17583.18, + "end": 17592.58, + "probability": 0.6273 + }, + { + "start": 17593.04, + "end": 17594.02, + "probability": 0.4907 + }, + { + "start": 17594.36, + "end": 17595.48, + "probability": 0.9199 + }, + { + "start": 17595.48, + "end": 17596.52, + "probability": 0.0307 + }, + { + "start": 17596.8, + "end": 17598.22, + "probability": 0.8414 + }, + { + "start": 17598.76, + "end": 17600.16, + "probability": 0.7177 + }, + { + "start": 17600.3, + "end": 17605.04, + "probability": 0.9782 + }, + { + "start": 17605.68, + "end": 17606.26, + "probability": 0.3682 + }, + { + "start": 17606.48, + "end": 17609.34, + "probability": 0.7488 + }, + { + "start": 17609.34, + "end": 17611.08, + "probability": 0.1028 + }, + { + "start": 17611.4, + "end": 17616.8, + "probability": 0.8594 + }, + { + "start": 17617.16, + "end": 17618.0, + "probability": 0.6848 + }, + { + "start": 17618.0, + "end": 17622.1, + "probability": 0.9756 + }, + { + "start": 17622.68, + "end": 17631.92, + "probability": 0.9682 + }, + { + "start": 17632.28, + "end": 17633.68, + "probability": 0.6046 + }, + { + "start": 17633.72, + "end": 17643.74, + "probability": 0.9343 + }, + { + "start": 17645.22, + "end": 17649.42, + "probability": 0.4548 + }, + { + "start": 17649.42, + "end": 17652.04, + "probability": 0.6984 + }, + { + "start": 17653.14, + "end": 17654.28, + "probability": 0.5355 + }, + { + "start": 17654.28, + "end": 17654.28, + "probability": 0.0305 + }, + { + "start": 17654.28, + "end": 17654.68, + "probability": 0.3333 + }, + { + "start": 17654.8, + "end": 17654.9, + "probability": 0.3141 + }, + { + "start": 17654.9, + "end": 17654.9, + "probability": 0.0311 + }, + { + "start": 17654.9, + "end": 17655.39, + "probability": 0.3512 + }, + { + "start": 17656.8, + "end": 17662.66, + "probability": 0.8038 + }, + { + "start": 17663.28, + "end": 17665.28, + "probability": 0.212 + }, + { + "start": 17666.04, + "end": 17672.1, + "probability": 0.537 + }, + { + "start": 17672.1, + "end": 17676.96, + "probability": 0.7485 + }, + { + "start": 17684.66, + "end": 17689.5, + "probability": 0.7453 + }, + { + "start": 17689.68, + "end": 17690.34, + "probability": 0.0145 + }, + { + "start": 17691.0, + "end": 17691.24, + "probability": 0.2435 + }, + { + "start": 17691.24, + "end": 17691.56, + "probability": 0.5506 + }, + { + "start": 17691.66, + "end": 17692.96, + "probability": 0.8939 + }, + { + "start": 17694.24, + "end": 17696.36, + "probability": 0.8324 + }, + { + "start": 17701.36, + "end": 17702.48, + "probability": 0.2997 + }, + { + "start": 17702.96, + "end": 17704.08, + "probability": 0.9587 + }, + { + "start": 17704.68, + "end": 17706.32, + "probability": 0.938 + }, + { + "start": 17706.44, + "end": 17707.42, + "probability": 0.6235 + }, + { + "start": 17707.64, + "end": 17707.72, + "probability": 0.7515 + }, + { + "start": 17707.72, + "end": 17707.72, + "probability": 0.7682 + }, + { + "start": 17707.72, + "end": 17708.86, + "probability": 0.6128 + }, + { + "start": 17710.94, + "end": 17712.28, + "probability": 0.8972 + }, + { + "start": 17713.2, + "end": 17714.99, + "probability": 0.9839 + }, + { + "start": 17715.52, + "end": 17719.58, + "probability": 0.7275 + }, + { + "start": 17719.96, + "end": 17721.66, + "probability": 0.9554 + }, + { + "start": 17723.18, + "end": 17725.7, + "probability": 0.5149 + }, + { + "start": 17725.78, + "end": 17726.36, + "probability": 0.4313 + }, + { + "start": 17728.06, + "end": 17728.3, + "probability": 0.137 + }, + { + "start": 17728.8, + "end": 17734.88, + "probability": 0.0264 + }, + { + "start": 17736.9, + "end": 17738.38, + "probability": 0.3893 + }, + { + "start": 17739.04, + "end": 17741.36, + "probability": 0.847 + }, + { + "start": 17741.58, + "end": 17743.06, + "probability": 0.9756 + }, + { + "start": 17743.74, + "end": 17745.24, + "probability": 0.9741 + }, + { + "start": 17745.28, + "end": 17746.86, + "probability": 0.9663 + }, + { + "start": 17747.42, + "end": 17749.0, + "probability": 0.8474 + }, + { + "start": 17749.06, + "end": 17750.42, + "probability": 0.8455 + }, + { + "start": 17750.6, + "end": 17751.84, + "probability": 0.9451 + }, + { + "start": 17751.88, + "end": 17752.54, + "probability": 0.0392 + }, + { + "start": 17752.64, + "end": 17754.8, + "probability": 0.6886 + }, + { + "start": 17754.8, + "end": 17761.68, + "probability": 0.9524 + }, + { + "start": 17761.78, + "end": 17762.4, + "probability": 0.5786 + }, + { + "start": 17762.44, + "end": 17765.1, + "probability": 0.9946 + }, + { + "start": 17765.92, + "end": 17768.74, + "probability": 0.5373 + }, + { + "start": 17768.86, + "end": 17770.36, + "probability": 0.9849 + }, + { + "start": 17770.64, + "end": 17772.66, + "probability": 0.9314 + }, + { + "start": 17772.8, + "end": 17773.64, + "probability": 0.3519 + }, + { + "start": 17773.84, + "end": 17774.26, + "probability": 0.5815 + }, + { + "start": 17774.64, + "end": 17775.88, + "probability": 0.7314 + }, + { + "start": 17776.1, + "end": 17777.86, + "probability": 0.6583 + }, + { + "start": 17777.9, + "end": 17779.14, + "probability": 0.6872 + }, + { + "start": 17779.14, + "end": 17781.34, + "probability": 0.8794 + }, + { + "start": 17781.58, + "end": 17782.7, + "probability": 0.996 + }, + { + "start": 17782.84, + "end": 17783.64, + "probability": 0.9133 + }, + { + "start": 17783.66, + "end": 17786.24, + "probability": 0.9891 + }, + { + "start": 17786.24, + "end": 17790.18, + "probability": 0.9748 + }, + { + "start": 17790.38, + "end": 17791.18, + "probability": 0.7707 + }, + { + "start": 17791.38, + "end": 17793.12, + "probability": 0.6763 + }, + { + "start": 17793.48, + "end": 17794.18, + "probability": 0.5545 + }, + { + "start": 17794.34, + "end": 17795.22, + "probability": 0.846 + }, + { + "start": 17795.94, + "end": 17799.6, + "probability": 0.8643 + }, + { + "start": 17802.05, + "end": 17803.9, + "probability": 0.8613 + }, + { + "start": 17804.0, + "end": 17805.58, + "probability": 0.5576 + }, + { + "start": 17806.22, + "end": 17809.4, + "probability": 0.5085 + }, + { + "start": 17810.12, + "end": 17814.42, + "probability": 0.0469 + }, + { + "start": 17814.68, + "end": 17815.98, + "probability": 0.2846 + }, + { + "start": 17816.02, + "end": 17817.24, + "probability": 0.1207 + }, + { + "start": 17817.5, + "end": 17819.64, + "probability": 0.2567 + }, + { + "start": 17821.14, + "end": 17822.66, + "probability": 0.5647 + }, + { + "start": 17825.92, + "end": 17827.54, + "probability": 0.2781 + }, + { + "start": 17832.08, + "end": 17833.54, + "probability": 0.7792 + }, + { + "start": 17833.84, + "end": 17835.66, + "probability": 0.9011 + }, + { + "start": 17835.78, + "end": 17836.34, + "probability": 0.5675 + }, + { + "start": 17836.5, + "end": 17837.34, + "probability": 0.6072 + }, + { + "start": 17837.62, + "end": 17839.96, + "probability": 0.1443 + }, + { + "start": 17840.56, + "end": 17841.98, + "probability": 0.2891 + }, + { + "start": 17841.98, + "end": 17843.44, + "probability": 0.1536 + }, + { + "start": 17843.44, + "end": 17847.52, + "probability": 0.9461 + }, + { + "start": 17847.7, + "end": 17852.16, + "probability": 0.4361 + }, + { + "start": 17852.16, + "end": 17852.72, + "probability": 0.036 + }, + { + "start": 17853.08, + "end": 17853.94, + "probability": 0.4251 + }, + { + "start": 17854.12, + "end": 17856.5, + "probability": 0.6109 + }, + { + "start": 17856.62, + "end": 17858.48, + "probability": 0.9828 + }, + { + "start": 17858.58, + "end": 17859.04, + "probability": 0.6801 + }, + { + "start": 17859.46, + "end": 17860.86, + "probability": 0.5846 + }, + { + "start": 17860.92, + "end": 17862.62, + "probability": 0.9664 + }, + { + "start": 17862.85, + "end": 17866.04, + "probability": 0.9829 + }, + { + "start": 17866.12, + "end": 17869.6, + "probability": 0.9217 + }, + { + "start": 17870.64, + "end": 17874.3, + "probability": 0.9643 + }, + { + "start": 17875.76, + "end": 17877.0, + "probability": 0.9399 + }, + { + "start": 17877.5, + "end": 17883.36, + "probability": 0.819 + }, + { + "start": 17883.56, + "end": 17887.68, + "probability": 0.9799 + }, + { + "start": 17888.36, + "end": 17893.58, + "probability": 0.986 + }, + { + "start": 17893.8, + "end": 17895.0, + "probability": 0.9116 + }, + { + "start": 17895.2, + "end": 17901.36, + "probability": 0.9141 + }, + { + "start": 17901.92, + "end": 17903.48, + "probability": 0.8405 + }, + { + "start": 17903.7, + "end": 17904.88, + "probability": 0.3808 + }, + { + "start": 17905.0, + "end": 17913.02, + "probability": 0.891 + }, + { + "start": 17913.42, + "end": 17914.48, + "probability": 0.4949 + }, + { + "start": 17914.78, + "end": 17916.32, + "probability": 0.0091 + }, + { + "start": 17917.86, + "end": 17917.96, + "probability": 0.1508 + }, + { + "start": 17918.7, + "end": 17920.52, + "probability": 0.351 + }, + { + "start": 17920.58, + "end": 17926.4, + "probability": 0.7092 + }, + { + "start": 17927.02, + "end": 17929.36, + "probability": 0.9144 + }, + { + "start": 17930.06, + "end": 17932.62, + "probability": 0.3788 + }, + { + "start": 17932.62, + "end": 17934.22, + "probability": 0.3275 + }, + { + "start": 17934.74, + "end": 17939.42, + "probability": 0.595 + }, + { + "start": 17939.86, + "end": 17942.02, + "probability": 0.7122 + }, + { + "start": 17942.1, + "end": 17943.0, + "probability": 0.0884 + }, + { + "start": 17943.04, + "end": 17943.32, + "probability": 0.1396 + }, + { + "start": 17943.32, + "end": 17946.26, + "probability": 0.5893 + }, + { + "start": 17946.78, + "end": 17952.3, + "probability": 0.515 + }, + { + "start": 17952.8, + "end": 17954.98, + "probability": 0.8735 + }, + { + "start": 17955.0, + "end": 17955.54, + "probability": 0.5448 + }, + { + "start": 17959.13, + "end": 17960.04, + "probability": 0.2783 + }, + { + "start": 17960.2, + "end": 17964.42, + "probability": 0.8417 + }, + { + "start": 17965.08, + "end": 17967.72, + "probability": 0.9924 + }, + { + "start": 17967.88, + "end": 17973.72, + "probability": 0.9912 + }, + { + "start": 17973.9, + "end": 17977.24, + "probability": 0.75 + }, + { + "start": 17977.28, + "end": 17979.58, + "probability": 0.7166 + }, + { + "start": 17979.66, + "end": 17980.36, + "probability": 0.7594 + }, + { + "start": 17980.52, + "end": 17982.22, + "probability": 0.7707 + }, + { + "start": 17984.57, + "end": 17988.18, + "probability": 0.4898 + }, + { + "start": 17988.78, + "end": 17994.7, + "probability": 0.6231 + }, + { + "start": 17994.7, + "end": 17995.5, + "probability": 0.2955 + }, + { + "start": 17995.5, + "end": 17999.65, + "probability": 0.873 + }, + { + "start": 17999.88, + "end": 18003.8, + "probability": 0.9775 + }, + { + "start": 18004.2, + "end": 18010.16, + "probability": 0.9897 + }, + { + "start": 18010.16, + "end": 18016.48, + "probability": 0.7827 + }, + { + "start": 18016.62, + "end": 18021.02, + "probability": 0.9955 + }, + { + "start": 18021.64, + "end": 18026.42, + "probability": 0.7582 + }, + { + "start": 18027.9, + "end": 18034.62, + "probability": 0.9917 + }, + { + "start": 18034.84, + "end": 18037.1, + "probability": 0.9231 + }, + { + "start": 18037.16, + "end": 18039.64, + "probability": 0.8969 + }, + { + "start": 18040.02, + "end": 18042.62, + "probability": 0.3705 + }, + { + "start": 18043.14, + "end": 18045.62, + "probability": 0.8151 + }, + { + "start": 18046.24, + "end": 18047.38, + "probability": 0.4442 + }, + { + "start": 18047.64, + "end": 18048.26, + "probability": 0.6801 + }, + { + "start": 18048.36, + "end": 18048.56, + "probability": 0.9164 + }, + { + "start": 18048.56, + "end": 18049.72, + "probability": 0.4275 + }, + { + "start": 18049.84, + "end": 18057.14, + "probability": 0.6719 + }, + { + "start": 18058.46, + "end": 18059.0, + "probability": 0.1041 + }, + { + "start": 18060.66, + "end": 18061.08, + "probability": 0.2292 + }, + { + "start": 18061.08, + "end": 18062.04, + "probability": 0.2538 + }, + { + "start": 18062.2, + "end": 18062.82, + "probability": 0.6998 + }, + { + "start": 18062.92, + "end": 18065.24, + "probability": 0.8144 + }, + { + "start": 18065.26, + "end": 18067.22, + "probability": 0.5326 + }, + { + "start": 18067.22, + "end": 18067.68, + "probability": 0.0478 + }, + { + "start": 18068.09, + "end": 18068.58, + "probability": 0.2816 + }, + { + "start": 18068.66, + "end": 18072.66, + "probability": 0.9813 + }, + { + "start": 18072.74, + "end": 18073.8, + "probability": 0.0769 + }, + { + "start": 18074.04, + "end": 18079.8, + "probability": 0.9525 + }, + { + "start": 18080.16, + "end": 18082.68, + "probability": 0.15 + }, + { + "start": 18083.08, + "end": 18088.16, + "probability": 0.4591 + }, + { + "start": 18094.22, + "end": 18100.0, + "probability": 0.3652 + }, + { + "start": 18103.3, + "end": 18105.58, + "probability": 0.4666 + }, + { + "start": 18107.12, + "end": 18109.57, + "probability": 0.8106 + }, + { + "start": 18109.72, + "end": 18111.06, + "probability": 0.1407 + }, + { + "start": 18111.06, + "end": 18111.28, + "probability": 0.2494 + }, + { + "start": 18114.58, + "end": 18115.56, + "probability": 0.2122 + }, + { + "start": 18115.76, + "end": 18116.86, + "probability": 0.0278 + }, + { + "start": 18116.86, + "end": 18119.86, + "probability": 0.084 + }, + { + "start": 18119.86, + "end": 18120.18, + "probability": 0.5804 + }, + { + "start": 18122.5, + "end": 18124.42, + "probability": 0.1332 + }, + { + "start": 18124.42, + "end": 18124.52, + "probability": 0.0013 + }, + { + "start": 18133.0, + "end": 18136.24, + "probability": 0.0199 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.0, + "end": 18152.0, + "probability": 0.0 + }, + { + "start": 18152.34, + "end": 18152.62, + "probability": 0.4633 + }, + { + "start": 18152.62, + "end": 18152.98, + "probability": 0.1201 + }, + { + "start": 18152.98, + "end": 18153.7, + "probability": 0.2854 + }, + { + "start": 18154.94, + "end": 18156.2, + "probability": 0.2194 + }, + { + "start": 18156.34, + "end": 18157.68, + "probability": 0.5293 + }, + { + "start": 18160.91, + "end": 18165.8, + "probability": 0.5143 + }, + { + "start": 18167.21, + "end": 18176.02, + "probability": 0.6427 + }, + { + "start": 18176.14, + "end": 18176.52, + "probability": 0.8614 + }, + { + "start": 18176.62, + "end": 18179.02, + "probability": 0.0834 + }, + { + "start": 18179.38, + "end": 18179.62, + "probability": 0.0306 + }, + { + "start": 18179.62, + "end": 18180.58, + "probability": 0.049 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18285.0, + "end": 18285.0, + "probability": 0.0 + }, + { + "start": 18286.12, + "end": 18289.56, + "probability": 0.0661 + }, + { + "start": 18290.06, + "end": 18290.06, + "probability": 0.0753 + }, + { + "start": 18290.78, + "end": 18294.28, + "probability": 0.0694 + }, + { + "start": 18294.8, + "end": 18295.6, + "probability": 0.0336 + }, + { + "start": 18296.4, + "end": 18297.18, + "probability": 0.1249 + }, + { + "start": 18298.54, + "end": 18299.02, + "probability": 0.0046 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.0, + "end": 18409.0, + "probability": 0.0 + }, + { + "start": 18409.86, + "end": 18412.26, + "probability": 0.9208 + }, + { + "start": 18412.38, + "end": 18413.94, + "probability": 0.7277 + }, + { + "start": 18414.22, + "end": 18417.18, + "probability": 0.9862 + }, + { + "start": 18417.48, + "end": 18420.82, + "probability": 0.9604 + }, + { + "start": 18421.36, + "end": 18423.28, + "probability": 0.7239 + }, + { + "start": 18423.4, + "end": 18425.04, + "probability": 0.874 + }, + { + "start": 18425.54, + "end": 18426.78, + "probability": 0.4453 + }, + { + "start": 18426.92, + "end": 18427.24, + "probability": 0.5704 + }, + { + "start": 18427.32, + "end": 18428.98, + "probability": 0.6382 + }, + { + "start": 18429.64, + "end": 18431.08, + "probability": 0.7669 + }, + { + "start": 18431.4, + "end": 18432.28, + "probability": 0.3182 + }, + { + "start": 18433.84, + "end": 18433.88, + "probability": 0.0084 + }, + { + "start": 18433.88, + "end": 18435.27, + "probability": 0.2211 + }, + { + "start": 18435.72, + "end": 18436.96, + "probability": 0.3324 + }, + { + "start": 18437.02, + "end": 18438.04, + "probability": 0.5645 + }, + { + "start": 18438.42, + "end": 18438.88, + "probability": 0.2852 + }, + { + "start": 18441.3, + "end": 18441.98, + "probability": 0.521 + }, + { + "start": 18442.08, + "end": 18442.32, + "probability": 0.7397 + }, + { + "start": 18442.62, + "end": 18444.0, + "probability": 0.9846 + }, + { + "start": 18444.34, + "end": 18447.48, + "probability": 0.9896 + }, + { + "start": 18447.48, + "end": 18450.84, + "probability": 0.9888 + }, + { + "start": 18451.22, + "end": 18452.32, + "probability": 0.8237 + }, + { + "start": 18452.42, + "end": 18453.66, + "probability": 0.8086 + }, + { + "start": 18453.92, + "end": 18458.5, + "probability": 0.8489 + }, + { + "start": 18458.7, + "end": 18459.56, + "probability": 0.5308 + }, + { + "start": 18459.94, + "end": 18460.88, + "probability": 0.613 + }, + { + "start": 18461.02, + "end": 18462.64, + "probability": 0.9037 + }, + { + "start": 18463.24, + "end": 18463.34, + "probability": 0.4647 + }, + { + "start": 18464.28, + "end": 18468.2, + "probability": 0.9824 + }, + { + "start": 18468.24, + "end": 18468.52, + "probability": 0.9671 + }, + { + "start": 18468.92, + "end": 18469.3, + "probability": 0.4788 + }, + { + "start": 18469.86, + "end": 18471.82, + "probability": 0.7415 + }, + { + "start": 18472.24, + "end": 18474.06, + "probability": 0.9963 + }, + { + "start": 18474.44, + "end": 18477.02, + "probability": 0.9794 + }, + { + "start": 18477.02, + "end": 18480.4, + "probability": 0.8391 + }, + { + "start": 18480.72, + "end": 18482.4, + "probability": 0.9694 + }, + { + "start": 18482.9, + "end": 18483.78, + "probability": 0.7614 + }, + { + "start": 18483.92, + "end": 18484.32, + "probability": 0.7605 + }, + { + "start": 18484.78, + "end": 18487.14, + "probability": 0.9986 + }, + { + "start": 18487.14, + "end": 18489.56, + "probability": 0.9842 + }, + { + "start": 18490.04, + "end": 18490.14, + "probability": 0.7167 + }, + { + "start": 18491.08, + "end": 18491.68, + "probability": 0.589 + }, + { + "start": 18492.08, + "end": 18494.74, + "probability": 0.9879 + }, + { + "start": 18494.74, + "end": 18498.36, + "probability": 0.996 + }, + { + "start": 18498.68, + "end": 18502.94, + "probability": 0.9902 + }, + { + "start": 18502.94, + "end": 18506.26, + "probability": 0.9982 + }, + { + "start": 18506.42, + "end": 18509.42, + "probability": 0.9919 + }, + { + "start": 18510.1, + "end": 18512.58, + "probability": 0.8708 + }, + { + "start": 18512.68, + "end": 18513.12, + "probability": 0.9373 + }, + { + "start": 18513.8, + "end": 18516.4, + "probability": 0.9687 + }, + { + "start": 18516.84, + "end": 18517.4, + "probability": 0.9327 + }, + { + "start": 18517.48, + "end": 18518.36, + "probability": 0.9623 + }, + { + "start": 18518.44, + "end": 18519.14, + "probability": 0.0789 + }, + { + "start": 18519.88, + "end": 18521.56, + "probability": 0.368 + }, + { + "start": 18523.74, + "end": 18524.2, + "probability": 0.0329 + }, + { + "start": 18524.74, + "end": 18525.88, + "probability": 0.4929 + }, + { + "start": 18526.98, + "end": 18529.76, + "probability": 0.3616 + }, + { + "start": 18530.0, + "end": 18531.26, + "probability": 0.0779 + }, + { + "start": 18531.34, + "end": 18531.94, + "probability": 0.1403 + }, + { + "start": 18531.98, + "end": 18533.38, + "probability": 0.7766 + }, + { + "start": 18533.76, + "end": 18534.2, + "probability": 0.2671 + }, + { + "start": 18534.48, + "end": 18536.16, + "probability": 0.9127 + }, + { + "start": 18536.24, + "end": 18537.39, + "probability": 0.7729 + }, + { + "start": 18538.1, + "end": 18539.0, + "probability": 0.7716 + }, + { + "start": 18539.4, + "end": 18539.9, + "probability": 0.8481 + }, + { + "start": 18539.96, + "end": 18540.52, + "probability": 0.9453 + }, + { + "start": 18540.58, + "end": 18540.96, + "probability": 0.5217 + }, + { + "start": 18541.02, + "end": 18542.28, + "probability": 0.9512 + }, + { + "start": 18542.98, + "end": 18544.58, + "probability": 0.9762 + }, + { + "start": 18544.76, + "end": 18547.12, + "probability": 0.9906 + }, + { + "start": 18547.66, + "end": 18550.08, + "probability": 0.9929 + }, + { + "start": 18550.08, + "end": 18553.56, + "probability": 0.993 + }, + { + "start": 18553.68, + "end": 18554.72, + "probability": 0.7501 + }, + { + "start": 18555.16, + "end": 18557.28, + "probability": 0.8439 + }, + { + "start": 18557.92, + "end": 18562.12, + "probability": 0.9932 + }, + { + "start": 18562.54, + "end": 18565.2, + "probability": 0.9972 + }, + { + "start": 18565.2, + "end": 18568.42, + "probability": 0.9959 + }, + { + "start": 18568.68, + "end": 18569.62, + "probability": 0.8466 + }, + { + "start": 18570.32, + "end": 18571.76, + "probability": 0.811 + }, + { + "start": 18572.04, + "end": 18574.32, + "probability": 0.5362 + }, + { + "start": 18574.46, + "end": 18576.54, + "probability": 0.1423 + }, + { + "start": 18576.74, + "end": 18577.96, + "probability": 0.7971 + }, + { + "start": 18578.0, + "end": 18579.25, + "probability": 0.8252 + }, + { + "start": 18579.72, + "end": 18580.74, + "probability": 0.8745 + }, + { + "start": 18580.92, + "end": 18585.0, + "probability": 0.9976 + }, + { + "start": 18585.3, + "end": 18587.6, + "probability": 0.9877 + }, + { + "start": 18588.12, + "end": 18588.94, + "probability": 0.697 + }, + { + "start": 18589.5, + "end": 18590.25, + "probability": 0.9495 + }, + { + "start": 18590.54, + "end": 18591.26, + "probability": 0.8597 + }, + { + "start": 18591.26, + "end": 18594.78, + "probability": 0.9225 + }, + { + "start": 18595.12, + "end": 18596.46, + "probability": 0.2648 + }, + { + "start": 18596.52, + "end": 18596.84, + "probability": 0.7843 + }, + { + "start": 18596.86, + "end": 18597.34, + "probability": 0.4658 + }, + { + "start": 18597.58, + "end": 18602.46, + "probability": 0.6686 + }, + { + "start": 18603.72, + "end": 18606.94, + "probability": 0.9932 + }, + { + "start": 18606.98, + "end": 18607.28, + "probability": 0.734 + }, + { + "start": 18607.4, + "end": 18607.78, + "probability": 0.4664 + }, + { + "start": 18608.26, + "end": 18610.1, + "probability": 0.4901 + }, + { + "start": 18610.5, + "end": 18610.96, + "probability": 0.4943 + }, + { + "start": 18611.08, + "end": 18612.0, + "probability": 0.8708 + }, + { + "start": 18612.34, + "end": 18613.14, + "probability": 0.7009 + }, + { + "start": 18613.54, + "end": 18617.66, + "probability": 0.9932 + }, + { + "start": 18617.66, + "end": 18622.14, + "probability": 0.9964 + }, + { + "start": 18622.72, + "end": 18624.04, + "probability": 0.873 + }, + { + "start": 18624.86, + "end": 18626.18, + "probability": 0.9228 + }, + { + "start": 18626.56, + "end": 18628.7, + "probability": 0.9945 + }, + { + "start": 18629.04, + "end": 18633.62, + "probability": 0.8266 + }, + { + "start": 18634.12, + "end": 18634.55, + "probability": 0.7549 + }, + { + "start": 18635.06, + "end": 18637.26, + "probability": 0.9648 + }, + { + "start": 18637.9, + "end": 18643.16, + "probability": 0.9157 + }, + { + "start": 18643.62, + "end": 18644.96, + "probability": 0.8194 + }, + { + "start": 18645.0, + "end": 18650.7, + "probability": 0.997 + }, + { + "start": 18651.26, + "end": 18651.64, + "probability": 0.393 + }, + { + "start": 18652.14, + "end": 18652.38, + "probability": 0.5305 + }, + { + "start": 18652.46, + "end": 18655.34, + "probability": 0.9911 + }, + { + "start": 18656.24, + "end": 18656.88, + "probability": 0.2594 + }, + { + "start": 18656.94, + "end": 18661.12, + "probability": 0.9795 + }, + { + "start": 18661.84, + "end": 18664.82, + "probability": 0.9711 + }, + { + "start": 18665.52, + "end": 18668.92, + "probability": 0.9705 + }, + { + "start": 18669.28, + "end": 18672.06, + "probability": 0.9235 + }, + { + "start": 18672.56, + "end": 18675.88, + "probability": 0.9962 + }, + { + "start": 18676.16, + "end": 18676.66, + "probability": 0.7455 + }, + { + "start": 18676.92, + "end": 18677.54, + "probability": 0.9694 + }, + { + "start": 18677.88, + "end": 18678.74, + "probability": 0.5681 + }, + { + "start": 18679.12, + "end": 18679.4, + "probability": 0.3455 + }, + { + "start": 18679.48, + "end": 18680.0, + "probability": 0.3914 + }, + { + "start": 18680.54, + "end": 18683.18, + "probability": 0.9675 + }, + { + "start": 18683.18, + "end": 18686.92, + "probability": 0.9948 + }, + { + "start": 18687.66, + "end": 18691.08, + "probability": 0.992 + }, + { + "start": 18691.56, + "end": 18691.98, + "probability": 0.4957 + }, + { + "start": 18692.4, + "end": 18693.24, + "probability": 0.8278 + }, + { + "start": 18693.44, + "end": 18699.6, + "probability": 0.9496 + }, + { + "start": 18700.08, + "end": 18703.04, + "probability": 0.9942 + }, + { + "start": 18703.04, + "end": 18706.02, + "probability": 0.9479 + }, + { + "start": 18706.46, + "end": 18708.66, + "probability": 0.8201 + }, + { + "start": 18708.72, + "end": 18710.68, + "probability": 0.5449 + }, + { + "start": 18710.7, + "end": 18711.54, + "probability": 0.7991 + }, + { + "start": 18712.08, + "end": 18712.62, + "probability": 0.8019 + }, + { + "start": 18712.64, + "end": 18713.32, + "probability": 0.87 + }, + { + "start": 18713.4, + "end": 18714.8, + "probability": 0.931 + }, + { + "start": 18715.16, + "end": 18716.58, + "probability": 0.9847 + }, + { + "start": 18716.64, + "end": 18721.18, + "probability": 0.988 + }, + { + "start": 18721.24, + "end": 18725.22, + "probability": 0.9751 + }, + { + "start": 18726.32, + "end": 18729.1, + "probability": 0.9845 + }, + { + "start": 18729.44, + "end": 18732.42, + "probability": 0.8957 + }, + { + "start": 18732.42, + "end": 18735.94, + "probability": 0.9954 + }, + { + "start": 18736.8, + "end": 18738.08, + "probability": 0.5313 + }, + { + "start": 18738.62, + "end": 18739.94, + "probability": 0.9912 + }, + { + "start": 18740.42, + "end": 18744.52, + "probability": 0.9937 + }, + { + "start": 18744.92, + "end": 18746.64, + "probability": 0.5629 + }, + { + "start": 18747.7, + "end": 18750.42, + "probability": 0.9364 + }, + { + "start": 18750.68, + "end": 18753.52, + "probability": 0.9967 + }, + { + "start": 18753.96, + "end": 18757.3, + "probability": 0.8784 + }, + { + "start": 18757.76, + "end": 18761.16, + "probability": 0.9935 + }, + { + "start": 18761.78, + "end": 18763.66, + "probability": 0.8035 + }, + { + "start": 18764.28, + "end": 18765.92, + "probability": 0.9989 + }, + { + "start": 18766.26, + "end": 18769.24, + "probability": 0.9989 + }, + { + "start": 18769.24, + "end": 18772.58, + "probability": 0.9952 + }, + { + "start": 18772.86, + "end": 18774.67, + "probability": 0.9556 + }, + { + "start": 18775.24, + "end": 18776.3, + "probability": 0.975 + }, + { + "start": 18776.54, + "end": 18780.4, + "probability": 0.9185 + }, + { + "start": 18780.6, + "end": 18781.44, + "probability": 0.98 + }, + { + "start": 18782.48, + "end": 18782.56, + "probability": 0.0047 + }, + { + "start": 18785.64, + "end": 18786.5, + "probability": 0.8418 + }, + { + "start": 18787.08, + "end": 18788.36, + "probability": 0.7878 + }, + { + "start": 18788.88, + "end": 18791.04, + "probability": 0.9839 + }, + { + "start": 18791.4, + "end": 18792.66, + "probability": 0.9583 + }, + { + "start": 18792.72, + "end": 18796.2, + "probability": 0.9906 + }, + { + "start": 18796.68, + "end": 18797.24, + "probability": 0.9727 + }, + { + "start": 18797.6, + "end": 18801.46, + "probability": 0.9995 + }, + { + "start": 18802.02, + "end": 18805.32, + "probability": 0.9905 + }, + { + "start": 18805.34, + "end": 18808.86, + "probability": 0.9956 + }, + { + "start": 18809.32, + "end": 18810.2, + "probability": 0.9026 + }, + { + "start": 18810.52, + "end": 18811.0, + "probability": 0.5135 + }, + { + "start": 18811.1, + "end": 18812.08, + "probability": 0.8154 + }, + { + "start": 18812.94, + "end": 18814.3, + "probability": 0.9468 + }, + { + "start": 18814.78, + "end": 18816.72, + "probability": 0.9621 + }, + { + "start": 18817.08, + "end": 18818.5, + "probability": 0.6983 + }, + { + "start": 18818.78, + "end": 18819.92, + "probability": 0.8819 + }, + { + "start": 18819.98, + "end": 18821.94, + "probability": 0.9203 + }, + { + "start": 18822.62, + "end": 18825.22, + "probability": 0.838 + }, + { + "start": 18825.96, + "end": 18826.74, + "probability": 0.8226 + }, + { + "start": 18827.68, + "end": 18831.22, + "probability": 0.9901 + }, + { + "start": 18831.74, + "end": 18832.42, + "probability": 0.8997 + }, + { + "start": 18832.74, + "end": 18833.34, + "probability": 0.9634 + }, + { + "start": 18833.68, + "end": 18837.58, + "probability": 0.8999 + }, + { + "start": 18837.58, + "end": 18841.3, + "probability": 0.9953 + }, + { + "start": 18841.74, + "end": 18842.94, + "probability": 0.9095 + }, + { + "start": 18843.52, + "end": 18846.28, + "probability": 0.9902 + }, + { + "start": 18846.68, + "end": 18848.92, + "probability": 0.9678 + }, + { + "start": 18849.38, + "end": 18852.84, + "probability": 0.9981 + }, + { + "start": 18853.22, + "end": 18855.38, + "probability": 0.9964 + }, + { + "start": 18855.52, + "end": 18857.12, + "probability": 0.9973 + }, + { + "start": 18857.57, + "end": 18862.36, + "probability": 0.8229 + }, + { + "start": 18862.52, + "end": 18862.94, + "probability": 0.7777 + }, + { + "start": 18863.4, + "end": 18866.66, + "probability": 0.9929 + }, + { + "start": 18866.86, + "end": 18870.42, + "probability": 0.9941 + }, + { + "start": 18871.02, + "end": 18877.58, + "probability": 0.9709 + }, + { + "start": 18877.58, + "end": 18877.6, + "probability": 0.0403 + }, + { + "start": 18877.6, + "end": 18877.94, + "probability": 0.2673 + }, + { + "start": 18878.36, + "end": 18878.46, + "probability": 0.6316 + }, + { + "start": 18879.74, + "end": 18880.48, + "probability": 0.7886 + }, + { + "start": 18881.52, + "end": 18884.32, + "probability": 0.0844 + }, + { + "start": 18884.8, + "end": 18885.6, + "probability": 0.2449 + }, + { + "start": 18885.76, + "end": 18886.12, + "probability": 0.4984 + }, + { + "start": 18886.2, + "end": 18887.54, + "probability": 0.9092 + }, + { + "start": 18888.14, + "end": 18889.06, + "probability": 0.8954 + }, + { + "start": 18889.67, + "end": 18890.26, + "probability": 0.8496 + }, + { + "start": 18890.4, + "end": 18893.82, + "probability": 0.9861 + }, + { + "start": 18894.62, + "end": 18896.78, + "probability": 0.9938 + }, + { + "start": 18897.22, + "end": 18900.5, + "probability": 0.9055 + }, + { + "start": 18900.6, + "end": 18901.5, + "probability": 0.5793 + }, + { + "start": 18901.82, + "end": 18902.88, + "probability": 0.896 + }, + { + "start": 18903.78, + "end": 18905.82, + "probability": 0.4486 + }, + { + "start": 18906.52, + "end": 18907.3, + "probability": 0.9431 + }, + { + "start": 18907.9, + "end": 18911.58, + "probability": 0.9659 + }, + { + "start": 18912.18, + "end": 18913.3, + "probability": 0.9819 + }, + { + "start": 18913.74, + "end": 18916.76, + "probability": 0.9806 + }, + { + "start": 18917.2, + "end": 18919.39, + "probability": 0.9758 + }, + { + "start": 18919.76, + "end": 18922.54, + "probability": 0.8967 + }, + { + "start": 18922.92, + "end": 18927.84, + "probability": 0.9992 + }, + { + "start": 18928.28, + "end": 18929.88, + "probability": 0.7419 + }, + { + "start": 18930.22, + "end": 18931.26, + "probability": 0.767 + }, + { + "start": 18931.8, + "end": 18934.32, + "probability": 0.9721 + }, + { + "start": 18934.44, + "end": 18934.78, + "probability": 0.5655 + }, + { + "start": 18935.06, + "end": 18936.32, + "probability": 0.9916 + }, + { + "start": 18936.62, + "end": 18937.86, + "probability": 0.8621 + }, + { + "start": 18938.6, + "end": 18939.76, + "probability": 0.8994 + }, + { + "start": 18940.46, + "end": 18940.48, + "probability": 0.2338 + }, + { + "start": 18940.48, + "end": 18943.76, + "probability": 0.9934 + }, + { + "start": 18944.04, + "end": 18945.54, + "probability": 0.9956 + }, + { + "start": 18945.72, + "end": 18947.0, + "probability": 0.7039 + }, + { + "start": 18947.98, + "end": 18950.54, + "probability": 0.5403 + }, + { + "start": 18951.28, + "end": 18953.1, + "probability": 0.2333 + }, + { + "start": 18954.62, + "end": 18955.68, + "probability": 0.7824 + }, + { + "start": 18955.86, + "end": 18956.46, + "probability": 0.0254 + }, + { + "start": 18957.1, + "end": 18957.14, + "probability": 0.2249 + }, + { + "start": 18957.2, + "end": 18959.38, + "probability": 0.4628 + }, + { + "start": 18959.78, + "end": 18964.48, + "probability": 0.0171 + }, + { + "start": 18964.52, + "end": 18967.68, + "probability": 0.4771 + }, + { + "start": 18968.5, + "end": 18969.2, + "probability": 0.7805 + }, + { + "start": 18970.36, + "end": 18970.82, + "probability": 0.804 + }, + { + "start": 18971.12, + "end": 18971.78, + "probability": 0.2873 + }, + { + "start": 18972.76, + "end": 18974.0, + "probability": 0.3674 + }, + { + "start": 18974.0, + "end": 18974.02, + "probability": 0.231 + }, + { + "start": 18974.08, + "end": 18976.14, + "probability": 0.7713 + }, + { + "start": 18976.7, + "end": 18979.96, + "probability": 0.0612 + }, + { + "start": 18980.66, + "end": 18980.66, + "probability": 0.1717 + }, + { + "start": 18980.66, + "end": 18980.66, + "probability": 0.0107 + }, + { + "start": 18980.66, + "end": 18980.8, + "probability": 0.1625 + }, + { + "start": 18981.98, + "end": 18983.16, + "probability": 0.8734 + }, + { + "start": 18983.28, + "end": 18984.32, + "probability": 0.8052 + }, + { + "start": 18985.72, + "end": 18986.66, + "probability": 0.4304 + }, + { + "start": 18988.8, + "end": 18992.18, + "probability": 0.9915 + }, + { + "start": 18992.86, + "end": 18995.18, + "probability": 0.9758 + }, + { + "start": 18995.98, + "end": 18997.0, + "probability": 0.7299 + }, + { + "start": 18998.34, + "end": 18999.92, + "probability": 0.0386 + }, + { + "start": 19000.1, + "end": 19000.28, + "probability": 0.6409 + }, + { + "start": 19000.28, + "end": 19002.72, + "probability": 0.611 + }, + { + "start": 19003.8, + "end": 19006.42, + "probability": 0.7039 + }, + { + "start": 19006.42, + "end": 19007.8, + "probability": 0.5592 + }, + { + "start": 19007.8, + "end": 19009.0, + "probability": 0.5103 + }, + { + "start": 19009.18, + "end": 19011.1, + "probability": 0.6922 + }, + { + "start": 19011.1, + "end": 19016.94, + "probability": 0.2014 + }, + { + "start": 19016.96, + "end": 19016.96, + "probability": 0.3448 + }, + { + "start": 19017.02, + "end": 19018.44, + "probability": 0.488 + }, + { + "start": 19019.51, + "end": 19021.82, + "probability": 0.1341 + }, + { + "start": 19021.88, + "end": 19022.58, + "probability": 0.1674 + }, + { + "start": 19024.38, + "end": 19026.58, + "probability": 0.9907 + }, + { + "start": 19027.08, + "end": 19028.64, + "probability": 0.0124 + }, + { + "start": 19030.1, + "end": 19031.56, + "probability": 0.197 + }, + { + "start": 19031.7, + "end": 19034.78, + "probability": 0.7393 + }, + { + "start": 19035.32, + "end": 19039.48, + "probability": 0.9983 + }, + { + "start": 19042.56, + "end": 19042.56, + "probability": 0.0443 + }, + { + "start": 19042.56, + "end": 19045.8, + "probability": 0.3938 + }, + { + "start": 19046.54, + "end": 19047.26, + "probability": 0.4637 + }, + { + "start": 19047.74, + "end": 19051.64, + "probability": 0.5013 + }, + { + "start": 19052.32, + "end": 19056.7, + "probability": 0.7106 + }, + { + "start": 19056.84, + "end": 19058.26, + "probability": 0.7535 + }, + { + "start": 19058.4, + "end": 19059.26, + "probability": 0.2042 + }, + { + "start": 19059.3, + "end": 19059.64, + "probability": 0.4034 + }, + { + "start": 19059.64, + "end": 19060.51, + "probability": 0.3938 + }, + { + "start": 19060.84, + "end": 19062.04, + "probability": 0.2374 + }, + { + "start": 19062.62, + "end": 19063.92, + "probability": 0.7829 + }, + { + "start": 19064.24, + "end": 19065.82, + "probability": 0.7463 + }, + { + "start": 19066.74, + "end": 19067.16, + "probability": 0.7261 + }, + { + "start": 19068.76, + "end": 19070.18, + "probability": 0.9395 + }, + { + "start": 19070.2, + "end": 19071.53, + "probability": 0.208 + }, + { + "start": 19072.78, + "end": 19073.47, + "probability": 0.0633 + }, + { + "start": 19076.2, + "end": 19079.98, + "probability": 0.1866 + }, + { + "start": 19079.98, + "end": 19083.16, + "probability": 0.2063 + }, + { + "start": 19083.56, + "end": 19084.9, + "probability": 0.1819 + }, + { + "start": 19085.04, + "end": 19085.7, + "probability": 0.447 + }, + { + "start": 19085.7, + "end": 19086.76, + "probability": 0.0291 + }, + { + "start": 19087.84, + "end": 19089.16, + "probability": 0.0845 + }, + { + "start": 19089.16, + "end": 19089.9, + "probability": 0.1543 + }, + { + "start": 19090.38, + "end": 19091.5, + "probability": 0.3413 + }, + { + "start": 19091.5, + "end": 19092.78, + "probability": 0.0468 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.0, + "end": 19099.0, + "probability": 0.0 + }, + { + "start": 19099.16, + "end": 19099.34, + "probability": 0.1882 + }, + { + "start": 19099.34, + "end": 19099.88, + "probability": 0.1999 + }, + { + "start": 19099.88, + "end": 19103.38, + "probability": 0.6901 + }, + { + "start": 19104.4, + "end": 19106.72, + "probability": 0.8769 + }, + { + "start": 19107.4, + "end": 19112.5, + "probability": 0.8061 + }, + { + "start": 19112.72, + "end": 19118.26, + "probability": 0.8804 + }, + { + "start": 19118.42, + "end": 19118.86, + "probability": 0.0849 + }, + { + "start": 19119.28, + "end": 19121.04, + "probability": 0.954 + }, + { + "start": 19121.88, + "end": 19126.08, + "probability": 0.9595 + }, + { + "start": 19126.76, + "end": 19129.66, + "probability": 0.9868 + }, + { + "start": 19129.66, + "end": 19133.4, + "probability": 0.9741 + }, + { + "start": 19134.04, + "end": 19134.94, + "probability": 0.6538 + }, + { + "start": 19135.54, + "end": 19140.1, + "probability": 0.9883 + }, + { + "start": 19140.1, + "end": 19144.2, + "probability": 0.9837 + }, + { + "start": 19145.04, + "end": 19146.88, + "probability": 0.9525 + }, + { + "start": 19147.42, + "end": 19148.78, + "probability": 0.8286 + }, + { + "start": 19148.94, + "end": 19150.94, + "probability": 0.8218 + }, + { + "start": 19151.14, + "end": 19153.3, + "probability": 0.7698 + }, + { + "start": 19154.0, + "end": 19156.52, + "probability": 0.8977 + }, + { + "start": 19156.68, + "end": 19158.2, + "probability": 0.137 + }, + { + "start": 19158.2, + "end": 19158.8, + "probability": 0.4112 + }, + { + "start": 19159.46, + "end": 19163.6, + "probability": 0.3778 + }, + { + "start": 19164.5, + "end": 19166.9, + "probability": 0.7 + }, + { + "start": 19167.44, + "end": 19170.4, + "probability": 0.5592 + }, + { + "start": 19170.96, + "end": 19172.44, + "probability": 0.2118 + }, + { + "start": 19172.52, + "end": 19172.88, + "probability": 0.2489 + }, + { + "start": 19172.88, + "end": 19173.38, + "probability": 0.4456 + }, + { + "start": 19173.92, + "end": 19175.4, + "probability": 0.4544 + }, + { + "start": 19176.0, + "end": 19179.39, + "probability": 0.6143 + }, + { + "start": 19180.86, + "end": 19181.42, + "probability": 0.7122 + }, + { + "start": 19181.46, + "end": 19182.04, + "probability": 0.3008 + }, + { + "start": 19187.1, + "end": 19190.28, + "probability": 0.556 + }, + { + "start": 19193.66, + "end": 19195.14, + "probability": 0.5762 + }, + { + "start": 19204.54, + "end": 19205.31, + "probability": 0.8091 + }, + { + "start": 19206.02, + "end": 19207.96, + "probability": 0.7531 + }, + { + "start": 19209.36, + "end": 19211.56, + "probability": 0.3816 + }, + { + "start": 19211.68, + "end": 19213.7, + "probability": 0.0784 + }, + { + "start": 19214.96, + "end": 19216.98, + "probability": 0.0965 + }, + { + "start": 19217.3, + "end": 19220.3, + "probability": 0.6665 + }, + { + "start": 19220.4, + "end": 19222.89, + "probability": 0.1015 + }, + { + "start": 19223.32, + "end": 19223.78, + "probability": 0.3453 + }, + { + "start": 19224.32, + "end": 19227.34, + "probability": 0.7171 + }, + { + "start": 19227.46, + "end": 19227.82, + "probability": 0.6286 + }, + { + "start": 19228.04, + "end": 19229.28, + "probability": 0.6724 + }, + { + "start": 19229.34, + "end": 19229.8, + "probability": 0.5699 + }, + { + "start": 19230.14, + "end": 19231.04, + "probability": 0.9729 + }, + { + "start": 19232.48, + "end": 19237.34, + "probability": 0.6244 + }, + { + "start": 19237.92, + "end": 19240.9, + "probability": 0.6347 + }, + { + "start": 19241.88, + "end": 19242.12, + "probability": 0.7176 + }, + { + "start": 19242.42, + "end": 19242.58, + "probability": 0.8473 + }, + { + "start": 19243.0, + "end": 19243.16, + "probability": 0.7547 + }, + { + "start": 19243.56, + "end": 19243.56, + "probability": 0.7481 + }, + { + "start": 19243.78, + "end": 19246.88, + "probability": 0.655 + }, + { + "start": 19247.96, + "end": 19249.56, + "probability": 0.6782 + }, + { + "start": 19249.56, + "end": 19252.88, + "probability": 0.9238 + }, + { + "start": 19254.82, + "end": 19256.64, + "probability": 0.4854 + }, + { + "start": 19256.64, + "end": 19256.78, + "probability": 0.6591 + }, + { + "start": 19257.3, + "end": 19258.16, + "probability": 0.694 + }, + { + "start": 19258.26, + "end": 19259.36, + "probability": 0.5083 + }, + { + "start": 19259.8, + "end": 19261.0, + "probability": 0.7205 + }, + { + "start": 19261.1, + "end": 19265.27, + "probability": 0.7488 + }, + { + "start": 19265.88, + "end": 19266.96, + "probability": 0.4784 + }, + { + "start": 19267.12, + "end": 19268.94, + "probability": 0.9828 + }, + { + "start": 19269.4, + "end": 19270.36, + "probability": 0.4957 + }, + { + "start": 19270.44, + "end": 19271.04, + "probability": 0.689 + }, + { + "start": 19271.16, + "end": 19273.62, + "probability": 0.9344 + }, + { + "start": 19274.46, + "end": 19277.4, + "probability": 0.5706 + }, + { + "start": 19278.14, + "end": 19280.02, + "probability": 0.9116 + }, + { + "start": 19281.24, + "end": 19283.62, + "probability": 0.6055 + }, + { + "start": 19284.22, + "end": 19284.54, + "probability": 0.0049 + }, + { + "start": 19285.56, + "end": 19286.34, + "probability": 0.7467 + }, + { + "start": 19286.46, + "end": 19290.21, + "probability": 0.7537 + }, + { + "start": 19292.94, + "end": 19293.52, + "probability": 0.6492 + }, + { + "start": 19293.6, + "end": 19294.06, + "probability": 0.8436 + }, + { + "start": 19294.14, + "end": 19295.98, + "probability": 0.5479 + }, + { + "start": 19295.98, + "end": 19296.82, + "probability": 0.2482 + }, + { + "start": 19296.82, + "end": 19303.78, + "probability": 0.5039 + }, + { + "start": 19303.94, + "end": 19304.34, + "probability": 0.6218 + }, + { + "start": 19304.48, + "end": 19304.92, + "probability": 0.7126 + }, + { + "start": 19304.96, + "end": 19305.88, + "probability": 0.5356 + }, + { + "start": 19306.06, + "end": 19306.68, + "probability": 0.9372 + }, + { + "start": 19306.82, + "end": 19313.67, + "probability": 0.2103 + }, + { + "start": 19315.89, + "end": 19316.7, + "probability": 0.0938 + }, + { + "start": 19316.7, + "end": 19319.0, + "probability": 0.1112 + }, + { + "start": 19319.0, + "end": 19319.7, + "probability": 0.0338 + }, + { + "start": 19319.7, + "end": 19321.5, + "probability": 0.3017 + }, + { + "start": 19337.58, + "end": 19345.66, + "probability": 0.0464 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.0, + "end": 19392.0, + "probability": 0.0 + }, + { + "start": 19392.28, + "end": 19395.38, + "probability": 0.6247 + }, + { + "start": 19396.2, + "end": 19397.32, + "probability": 0.742 + }, + { + "start": 19398.16, + "end": 19399.2, + "probability": 0.8299 + }, + { + "start": 19399.5, + "end": 19399.5, + "probability": 0.0394 + }, + { + "start": 19399.5, + "end": 19399.5, + "probability": 0.1845 + }, + { + "start": 19399.5, + "end": 19399.5, + "probability": 0.2868 + }, + { + "start": 19399.5, + "end": 19399.5, + "probability": 0.1038 + }, + { + "start": 19399.5, + "end": 19399.64, + "probability": 0.0242 + }, + { + "start": 19399.72, + "end": 19403.22, + "probability": 0.6774 + }, + { + "start": 19405.72, + "end": 19407.92, + "probability": 0.1417 + }, + { + "start": 19408.28, + "end": 19410.56, + "probability": 0.6466 + }, + { + "start": 19412.38, + "end": 19416.7, + "probability": 0.8218 + }, + { + "start": 19417.82, + "end": 19419.76, + "probability": 0.7671 + }, + { + "start": 19421.2, + "end": 19421.8, + "probability": 0.9489 + }, + { + "start": 19423.32, + "end": 19431.7, + "probability": 0.9456 + }, + { + "start": 19433.26, + "end": 19438.26, + "probability": 0.9112 + }, + { + "start": 19439.26, + "end": 19441.68, + "probability": 0.8779 + }, + { + "start": 19443.36, + "end": 19447.78, + "probability": 0.8573 + }, + { + "start": 19449.52, + "end": 19451.7, + "probability": 0.5502 + }, + { + "start": 19452.88, + "end": 19453.84, + "probability": 0.3786 + }, + { + "start": 19454.9, + "end": 19457.7, + "probability": 0.6155 + }, + { + "start": 19458.42, + "end": 19465.3, + "probability": 0.9864 + }, + { + "start": 19466.4, + "end": 19466.96, + "probability": 0.9427 + }, + { + "start": 19468.72, + "end": 19471.24, + "probability": 0.8085 + }, + { + "start": 19472.34, + "end": 19473.54, + "probability": 0.9297 + }, + { + "start": 19475.22, + "end": 19476.56, + "probability": 0.9713 + }, + { + "start": 19477.22, + "end": 19479.72, + "probability": 0.7218 + }, + { + "start": 19479.84, + "end": 19483.18, + "probability": 0.8358 + }, + { + "start": 19483.82, + "end": 19487.8, + "probability": 0.881 + }, + { + "start": 19490.1, + "end": 19491.2, + "probability": 0.9042 + }, + { + "start": 19492.08, + "end": 19493.34, + "probability": 0.9475 + }, + { + "start": 19494.92, + "end": 19503.1, + "probability": 0.926 + }, + { + "start": 19503.94, + "end": 19513.42, + "probability": 0.976 + }, + { + "start": 19515.06, + "end": 19524.94, + "probability": 0.8054 + }, + { + "start": 19525.8, + "end": 19531.0, + "probability": 0.8803 + }, + { + "start": 19532.1, + "end": 19535.02, + "probability": 0.9971 + }, + { + "start": 19536.08, + "end": 19543.26, + "probability": 0.9805 + }, + { + "start": 19543.74, + "end": 19545.26, + "probability": 0.5433 + }, + { + "start": 19546.06, + "end": 19547.18, + "probability": 0.9692 + }, + { + "start": 19549.06, + "end": 19550.48, + "probability": 0.9014 + }, + { + "start": 19551.92, + "end": 19553.32, + "probability": 0.8984 + }, + { + "start": 19554.26, + "end": 19556.6, + "probability": 0.9224 + }, + { + "start": 19557.42, + "end": 19563.62, + "probability": 0.9792 + }, + { + "start": 19564.2, + "end": 19567.4, + "probability": 0.7427 + }, + { + "start": 19569.02, + "end": 19572.6, + "probability": 0.9479 + }, + { + "start": 19574.08, + "end": 19585.28, + "probability": 0.9883 + }, + { + "start": 19585.74, + "end": 19588.44, + "probability": 0.9454 + }, + { + "start": 19589.76, + "end": 19592.36, + "probability": 0.7518 + }, + { + "start": 19593.06, + "end": 19595.38, + "probability": 0.6892 + }, + { + "start": 19596.26, + "end": 19601.2, + "probability": 0.9683 + }, + { + "start": 19603.06, + "end": 19606.08, + "probability": 0.8334 + }, + { + "start": 19606.92, + "end": 19607.8, + "probability": 0.9871 + }, + { + "start": 19608.32, + "end": 19615.27, + "probability": 0.9692 + }, + { + "start": 19617.8, + "end": 19622.36, + "probability": 0.9087 + }, + { + "start": 19622.52, + "end": 19624.46, + "probability": 0.8263 + }, + { + "start": 19624.6, + "end": 19625.0, + "probability": 0.6469 + }, + { + "start": 19625.08, + "end": 19625.56, + "probability": 0.56 + }, + { + "start": 19627.12, + "end": 19627.92, + "probability": 0.9194 + }, + { + "start": 19629.18, + "end": 19631.34, + "probability": 0.9895 + }, + { + "start": 19632.48, + "end": 19633.42, + "probability": 0.6542 + }, + { + "start": 19635.04, + "end": 19637.68, + "probability": 0.7164 + }, + { + "start": 19638.74, + "end": 19640.04, + "probability": 0.8901 + }, + { + "start": 19641.36, + "end": 19642.5, + "probability": 0.9827 + }, + { + "start": 19643.28, + "end": 19645.22, + "probability": 0.5474 + }, + { + "start": 19645.94, + "end": 19646.54, + "probability": 0.8083 + }, + { + "start": 19648.4, + "end": 19652.7, + "probability": 0.8882 + }, + { + "start": 19653.78, + "end": 19658.72, + "probability": 0.9901 + }, + { + "start": 19659.14, + "end": 19659.24, + "probability": 0.1526 + }, + { + "start": 19659.72, + "end": 19659.82, + "probability": 0.0679 + }, + { + "start": 19660.18, + "end": 19660.92, + "probability": 0.51 + }, + { + "start": 19661.06, + "end": 19664.18, + "probability": 0.9799 + }, + { + "start": 19664.48, + "end": 19665.59, + "probability": 0.7729 + }, + { + "start": 19669.2, + "end": 19672.58, + "probability": 0.9775 + }, + { + "start": 19673.54, + "end": 19676.48, + "probability": 0.6677 + }, + { + "start": 19677.16, + "end": 19679.4, + "probability": 0.887 + }, + { + "start": 19680.7, + "end": 19683.6, + "probability": 0.6683 + }, + { + "start": 19684.82, + "end": 19686.26, + "probability": 0.9023 + }, + { + "start": 19688.42, + "end": 19689.42, + "probability": 0.9271 + }, + { + "start": 19690.02, + "end": 19691.06, + "probability": 0.963 + }, + { + "start": 19691.96, + "end": 19693.9, + "probability": 0.9919 + }, + { + "start": 19695.02, + "end": 19695.44, + "probability": 0.7891 + }, + { + "start": 19695.44, + "end": 19698.0, + "probability": 0.7885 + }, + { + "start": 19698.82, + "end": 19701.42, + "probability": 0.88 + }, + { + "start": 19702.38, + "end": 19705.08, + "probability": 0.95 + }, + { + "start": 19706.38, + "end": 19711.98, + "probability": 0.8446 + }, + { + "start": 19711.98, + "end": 19717.44, + "probability": 0.995 + }, + { + "start": 19718.2, + "end": 19720.12, + "probability": 0.2779 + }, + { + "start": 19721.46, + "end": 19732.98, + "probability": 0.7917 + }, + { + "start": 19733.68, + "end": 19737.34, + "probability": 0.9819 + }, + { + "start": 19738.78, + "end": 19741.42, + "probability": 0.9904 + }, + { + "start": 19741.54, + "end": 19745.44, + "probability": 0.8916 + }, + { + "start": 19746.1, + "end": 19749.58, + "probability": 0.9631 + }, + { + "start": 19750.28, + "end": 19750.86, + "probability": 0.7396 + }, + { + "start": 19751.4, + "end": 19753.96, + "probability": 0.9858 + }, + { + "start": 19754.6, + "end": 19759.48, + "probability": 0.966 + }, + { + "start": 19760.78, + "end": 19761.66, + "probability": 0.7629 + }, + { + "start": 19762.82, + "end": 19763.68, + "probability": 0.8867 + }, + { + "start": 19765.06, + "end": 19766.66, + "probability": 0.8276 + }, + { + "start": 19767.86, + "end": 19771.2, + "probability": 0.9907 + }, + { + "start": 19772.68, + "end": 19776.26, + "probability": 0.9871 + }, + { + "start": 19777.64, + "end": 19780.92, + "probability": 0.9492 + }, + { + "start": 19781.96, + "end": 19782.7, + "probability": 0.9539 + }, + { + "start": 19784.42, + "end": 19785.4, + "probability": 0.9834 + }, + { + "start": 19786.76, + "end": 19788.42, + "probability": 0.6543 + }, + { + "start": 19789.68, + "end": 19790.28, + "probability": 0.5488 + }, + { + "start": 19791.48, + "end": 19792.74, + "probability": 0.9979 + }, + { + "start": 19793.52, + "end": 19794.54, + "probability": 0.9676 + }, + { + "start": 19795.6, + "end": 19797.86, + "probability": 0.8772 + }, + { + "start": 19799.02, + "end": 19800.22, + "probability": 0.919 + }, + { + "start": 19801.18, + "end": 19802.76, + "probability": 0.9579 + }, + { + "start": 19803.74, + "end": 19812.74, + "probability": 0.9845 + }, + { + "start": 19813.28, + "end": 19814.62, + "probability": 0.708 + }, + { + "start": 19815.42, + "end": 19817.0, + "probability": 0.4856 + }, + { + "start": 19818.18, + "end": 19819.06, + "probability": 0.6961 + }, + { + "start": 19819.68, + "end": 19821.08, + "probability": 0.967 + }, + { + "start": 19822.12, + "end": 19823.72, + "probability": 0.9621 + }, + { + "start": 19824.44, + "end": 19825.26, + "probability": 0.8208 + }, + { + "start": 19826.18, + "end": 19827.06, + "probability": 0.7641 + }, + { + "start": 19827.58, + "end": 19828.78, + "probability": 0.8405 + }, + { + "start": 19829.7, + "end": 19837.88, + "probability": 0.9885 + }, + { + "start": 19838.42, + "end": 19841.88, + "probability": 0.75 + }, + { + "start": 19843.04, + "end": 19849.36, + "probability": 0.9907 + }, + { + "start": 19850.3, + "end": 19851.7, + "probability": 0.9458 + }, + { + "start": 19852.66, + "end": 19855.38, + "probability": 0.9556 + }, + { + "start": 19855.9, + "end": 19863.0, + "probability": 0.9969 + }, + { + "start": 19864.8, + "end": 19868.22, + "probability": 0.9935 + }, + { + "start": 19868.96, + "end": 19870.4, + "probability": 0.9941 + }, + { + "start": 19872.3, + "end": 19872.94, + "probability": 0.4449 + }, + { + "start": 19874.47, + "end": 19877.74, + "probability": 0.0388 + }, + { + "start": 19882.14, + "end": 19885.4, + "probability": 0.0024 + }, + { + "start": 19886.74, + "end": 19886.98, + "probability": 0.028 + }, + { + "start": 19964.52, + "end": 19965.32, + "probability": 0.2935 + }, + { + "start": 19965.51, + "end": 19967.58, + "probability": 0.0281 + }, + { + "start": 19975.5, + "end": 19975.68, + "probability": 0.0736 + }, + { + "start": 19975.68, + "end": 19975.68, + "probability": 0.1866 + }, + { + "start": 19975.68, + "end": 19975.68, + "probability": 0.1957 + }, + { + "start": 19975.68, + "end": 19975.68, + "probability": 0.2348 + }, + { + "start": 19975.68, + "end": 19977.64, + "probability": 0.3514 + }, + { + "start": 19982.14, + "end": 19984.26, + "probability": 0.7497 + }, + { + "start": 19985.0, + "end": 19985.94, + "probability": 0.631 + }, + { + "start": 19988.36, + "end": 19989.18, + "probability": 0.7178 + }, + { + "start": 19990.46, + "end": 19996.48, + "probability": 0.9773 + }, + { + "start": 19996.48, + "end": 20001.78, + "probability": 0.998 + }, + { + "start": 20001.78, + "end": 20008.22, + "probability": 0.9738 + }, + { + "start": 20010.0, + "end": 20011.8, + "probability": 0.9382 + }, + { + "start": 20012.82, + "end": 20016.0, + "probability": 0.8502 + }, + { + "start": 20016.96, + "end": 20017.71, + "probability": 0.98 + }, + { + "start": 20018.68, + "end": 20022.2, + "probability": 0.9952 + }, + { + "start": 20024.34, + "end": 20025.2, + "probability": 0.9951 + }, + { + "start": 20025.36, + "end": 20029.82, + "probability": 0.7917 + }, + { + "start": 20030.5, + "end": 20031.22, + "probability": 0.6413 + }, + { + "start": 20031.92, + "end": 20036.1, + "probability": 0.9919 + }, + { + "start": 20036.95, + "end": 20043.44, + "probability": 0.991 + }, + { + "start": 20043.94, + "end": 20046.24, + "probability": 0.984 + }, + { + "start": 20046.98, + "end": 20050.84, + "probability": 0.7857 + }, + { + "start": 20052.68, + "end": 20053.64, + "probability": 0.9498 + }, + { + "start": 20055.26, + "end": 20057.44, + "probability": 0.7079 + }, + { + "start": 20057.5, + "end": 20059.94, + "probability": 0.9449 + }, + { + "start": 20060.8, + "end": 20064.1, + "probability": 0.9077 + }, + { + "start": 20065.2, + "end": 20069.04, + "probability": 0.8591 + }, + { + "start": 20069.04, + "end": 20072.98, + "probability": 0.9893 + }, + { + "start": 20074.32, + "end": 20078.2, + "probability": 0.9937 + }, + { + "start": 20079.34, + "end": 20079.9, + "probability": 0.7588 + }, + { + "start": 20080.56, + "end": 20082.54, + "probability": 0.9855 + }, + { + "start": 20083.26, + "end": 20087.28, + "probability": 0.9908 + }, + { + "start": 20088.54, + "end": 20092.27, + "probability": 0.9641 + }, + { + "start": 20093.0, + "end": 20094.8, + "probability": 0.8762 + }, + { + "start": 20095.14, + "end": 20097.04, + "probability": 0.9303 + }, + { + "start": 20099.3, + "end": 20101.14, + "probability": 0.9874 + }, + { + "start": 20102.18, + "end": 20103.72, + "probability": 0.979 + }, + { + "start": 20104.4, + "end": 20107.82, + "probability": 0.9855 + }, + { + "start": 20107.82, + "end": 20110.4, + "probability": 0.9808 + }, + { + "start": 20111.86, + "end": 20115.4, + "probability": 0.987 + }, + { + "start": 20115.4, + "end": 20118.88, + "probability": 0.9301 + }, + { + "start": 20119.68, + "end": 20125.06, + "probability": 0.9874 + }, + { + "start": 20125.24, + "end": 20126.56, + "probability": 0.946 + }, + { + "start": 20127.12, + "end": 20127.76, + "probability": 0.9833 + }, + { + "start": 20129.34, + "end": 20131.68, + "probability": 0.9882 + }, + { + "start": 20132.42, + "end": 20134.72, + "probability": 0.9951 + }, + { + "start": 20136.78, + "end": 20137.52, + "probability": 0.9254 + }, + { + "start": 20139.04, + "end": 20142.92, + "probability": 0.8634 + }, + { + "start": 20144.32, + "end": 20146.36, + "probability": 0.8249 + }, + { + "start": 20146.94, + "end": 20152.28, + "probability": 0.9819 + }, + { + "start": 20153.26, + "end": 20155.3, + "probability": 0.8782 + }, + { + "start": 20156.0, + "end": 20156.96, + "probability": 0.9371 + }, + { + "start": 20157.54, + "end": 20160.1, + "probability": 0.9927 + }, + { + "start": 20160.3, + "end": 20161.4, + "probability": 0.9891 + }, + { + "start": 20162.26, + "end": 20162.96, + "probability": 0.7453 + }, + { + "start": 20164.82, + "end": 20167.48, + "probability": 0.9564 + }, + { + "start": 20167.48, + "end": 20170.32, + "probability": 0.9941 + }, + { + "start": 20171.96, + "end": 20174.78, + "probability": 0.9423 + }, + { + "start": 20175.3, + "end": 20180.2, + "probability": 0.9964 + }, + { + "start": 20180.78, + "end": 20182.64, + "probability": 0.8701 + }, + { + "start": 20183.06, + "end": 20183.92, + "probability": 0.7535 + }, + { + "start": 20184.36, + "end": 20185.88, + "probability": 0.7815 + }, + { + "start": 20186.34, + "end": 20192.46, + "probability": 0.8618 + }, + { + "start": 20193.9, + "end": 20195.02, + "probability": 0.7477 + }, + { + "start": 20195.78, + "end": 20198.66, + "probability": 0.9991 + }, + { + "start": 20199.2, + "end": 20202.56, + "probability": 0.9468 + }, + { + "start": 20202.62, + "end": 20203.14, + "probability": 0.9709 + }, + { + "start": 20204.12, + "end": 20207.46, + "probability": 0.9992 + }, + { + "start": 20208.96, + "end": 20210.08, + "probability": 0.9386 + }, + { + "start": 20210.7, + "end": 20213.66, + "probability": 0.9829 + }, + { + "start": 20214.92, + "end": 20220.76, + "probability": 0.9709 + }, + { + "start": 20221.14, + "end": 20222.32, + "probability": 0.9158 + }, + { + "start": 20223.12, + "end": 20224.62, + "probability": 0.9463 + }, + { + "start": 20224.62, + "end": 20227.44, + "probability": 0.98 + }, + { + "start": 20227.62, + "end": 20231.82, + "probability": 0.9316 + }, + { + "start": 20232.62, + "end": 20235.14, + "probability": 0.9602 + }, + { + "start": 20236.52, + "end": 20237.4, + "probability": 0.8918 + }, + { + "start": 20238.96, + "end": 20240.94, + "probability": 0.9423 + }, + { + "start": 20242.62, + "end": 20243.78, + "probability": 0.941 + }, + { + "start": 20243.92, + "end": 20245.46, + "probability": 0.3901 + }, + { + "start": 20245.62, + "end": 20246.64, + "probability": 0.6094 + }, + { + "start": 20246.78, + "end": 20248.15, + "probability": 0.7771 + }, + { + "start": 20248.52, + "end": 20253.04, + "probability": 0.7157 + }, + { + "start": 20253.32, + "end": 20253.4, + "probability": 0.5334 + }, + { + "start": 20253.4, + "end": 20253.54, + "probability": 0.4332 + }, + { + "start": 20253.54, + "end": 20256.74, + "probability": 0.9475 + }, + { + "start": 20257.16, + "end": 20260.14, + "probability": 0.9812 + }, + { + "start": 20260.68, + "end": 20261.52, + "probability": 0.9428 + }, + { + "start": 20261.66, + "end": 20263.06, + "probability": 0.9569 + }, + { + "start": 20263.58, + "end": 20265.9, + "probability": 0.9363 + }, + { + "start": 20266.08, + "end": 20266.84, + "probability": 0.2528 + }, + { + "start": 20267.28, + "end": 20271.0, + "probability": 0.8101 + }, + { + "start": 20271.28, + "end": 20271.6, + "probability": 0.7506 + }, + { + "start": 20272.28, + "end": 20274.08, + "probability": 0.8099 + }, + { + "start": 20274.6, + "end": 20277.02, + "probability": 0.8912 + }, + { + "start": 20277.74, + "end": 20280.6, + "probability": 0.9883 + }, + { + "start": 20280.72, + "end": 20284.4, + "probability": 0.9631 + }, + { + "start": 20284.58, + "end": 20284.78, + "probability": 0.7593 + }, + { + "start": 20284.8, + "end": 20289.46, + "probability": 0.615 + }, + { + "start": 20289.54, + "end": 20291.62, + "probability": 0.8394 + }, + { + "start": 20291.9, + "end": 20292.2, + "probability": 0.8625 + }, + { + "start": 20292.24, + "end": 20293.06, + "probability": 0.9775 + }, + { + "start": 20293.2, + "end": 20293.9, + "probability": 0.187 + }, + { + "start": 20294.06, + "end": 20296.22, + "probability": 0.9362 + }, + { + "start": 20297.02, + "end": 20299.6, + "probability": 0.6274 + }, + { + "start": 20300.2, + "end": 20300.86, + "probability": 0.9673 + }, + { + "start": 20300.98, + "end": 20302.46, + "probability": 0.9928 + }, + { + "start": 20302.56, + "end": 20305.1, + "probability": 0.9565 + }, + { + "start": 20306.02, + "end": 20306.16, + "probability": 0.7047 + }, + { + "start": 20306.24, + "end": 20306.96, + "probability": 0.4838 + }, + { + "start": 20307.08, + "end": 20310.68, + "probability": 0.9781 + }, + { + "start": 20310.78, + "end": 20312.54, + "probability": 0.8027 + }, + { + "start": 20312.56, + "end": 20312.96, + "probability": 0.5892 + }, + { + "start": 20313.18, + "end": 20314.8, + "probability": 0.9843 + }, + { + "start": 20315.58, + "end": 20316.33, + "probability": 0.6971 + }, + { + "start": 20316.46, + "end": 20319.94, + "probability": 0.9974 + }, + { + "start": 20320.46, + "end": 20322.14, + "probability": 0.7377 + }, + { + "start": 20322.24, + "end": 20324.18, + "probability": 0.993 + }, + { + "start": 20325.08, + "end": 20328.04, + "probability": 0.9346 + }, + { + "start": 20328.12, + "end": 20330.6, + "probability": 0.9941 + }, + { + "start": 20331.12, + "end": 20332.78, + "probability": 0.9702 + }, + { + "start": 20333.82, + "end": 20333.82, + "probability": 0.0154 + }, + { + "start": 20334.38, + "end": 20334.96, + "probability": 0.2769 + }, + { + "start": 20335.6, + "end": 20336.82, + "probability": 0.9954 + }, + { + "start": 20337.0, + "end": 20339.28, + "probability": 0.2193 + }, + { + "start": 20341.58, + "end": 20342.44, + "probability": 0.4896 + }, + { + "start": 20345.75, + "end": 20348.52, + "probability": 0.9834 + }, + { + "start": 20349.36, + "end": 20353.92, + "probability": 0.5339 + }, + { + "start": 20354.28, + "end": 20355.71, + "probability": 0.6426 + }, + { + "start": 20356.56, + "end": 20358.08, + "probability": 0.6404 + }, + { + "start": 20358.68, + "end": 20361.46, + "probability": 0.7639 + }, + { + "start": 20362.04, + "end": 20364.34, + "probability": 0.8439 + }, + { + "start": 20364.38, + "end": 20365.64, + "probability": 0.6807 + }, + { + "start": 20365.78, + "end": 20366.56, + "probability": 0.6795 + }, + { + "start": 20367.04, + "end": 20369.56, + "probability": 0.9272 + }, + { + "start": 20369.64, + "end": 20371.14, + "probability": 0.9974 + }, + { + "start": 20371.7, + "end": 20372.64, + "probability": 0.5236 + }, + { + "start": 20372.72, + "end": 20374.56, + "probability": 0.949 + }, + { + "start": 20375.24, + "end": 20381.9, + "probability": 0.9749 + }, + { + "start": 20382.26, + "end": 20383.02, + "probability": 0.8011 + }, + { + "start": 20384.02, + "end": 20387.72, + "probability": 0.9668 + }, + { + "start": 20388.32, + "end": 20391.86, + "probability": 0.9921 + }, + { + "start": 20392.12, + "end": 20392.28, + "probability": 0.8777 + }, + { + "start": 20392.36, + "end": 20396.14, + "probability": 0.9963 + }, + { + "start": 20396.14, + "end": 20400.42, + "probability": 0.9553 + }, + { + "start": 20400.6, + "end": 20404.16, + "probability": 0.9729 + }, + { + "start": 20404.7, + "end": 20408.14, + "probability": 0.563 + }, + { + "start": 20408.9, + "end": 20412.2, + "probability": 0.9617 + }, + { + "start": 20412.88, + "end": 20413.92, + "probability": 0.5306 + }, + { + "start": 20415.3, + "end": 20416.98, + "probability": 0.931 + }, + { + "start": 20419.32, + "end": 20419.84, + "probability": 0.983 + }, + { + "start": 20419.88, + "end": 20422.38, + "probability": 0.9534 + }, + { + "start": 20422.52, + "end": 20428.32, + "probability": 0.9657 + }, + { + "start": 20428.66, + "end": 20429.38, + "probability": 0.4566 + }, + { + "start": 20429.72, + "end": 20430.58, + "probability": 0.9083 + }, + { + "start": 20431.52, + "end": 20435.4, + "probability": 0.9928 + }, + { + "start": 20435.4, + "end": 20436.87, + "probability": 0.9282 + }, + { + "start": 20437.9, + "end": 20440.32, + "probability": 0.8446 + }, + { + "start": 20441.04, + "end": 20443.5, + "probability": 0.957 + }, + { + "start": 20443.6, + "end": 20444.82, + "probability": 0.661 + }, + { + "start": 20445.5, + "end": 20450.08, + "probability": 0.9766 + }, + { + "start": 20450.94, + "end": 20451.28, + "probability": 0.4617 + }, + { + "start": 20451.46, + "end": 20454.9, + "probability": 0.8861 + }, + { + "start": 20455.34, + "end": 20458.0, + "probability": 0.9592 + }, + { + "start": 20458.14, + "end": 20462.2, + "probability": 0.9984 + }, + { + "start": 20462.2, + "end": 20465.8, + "probability": 0.9797 + }, + { + "start": 20467.96, + "end": 20470.64, + "probability": 0.989 + }, + { + "start": 20471.72, + "end": 20478.66, + "probability": 0.9877 + }, + { + "start": 20479.54, + "end": 20481.96, + "probability": 0.9671 + }, + { + "start": 20483.64, + "end": 20484.22, + "probability": 0.6759 + }, + { + "start": 20484.94, + "end": 20489.64, + "probability": 0.9316 + }, + { + "start": 20489.72, + "end": 20490.52, + "probability": 0.9707 + }, + { + "start": 20491.72, + "end": 20493.38, + "probability": 0.881 + }, + { + "start": 20494.2, + "end": 20495.38, + "probability": 0.9155 + }, + { + "start": 20495.48, + "end": 20496.42, + "probability": 0.9668 + }, + { + "start": 20496.54, + "end": 20497.74, + "probability": 0.7747 + }, + { + "start": 20497.88, + "end": 20500.6, + "probability": 0.9694 + }, + { + "start": 20501.14, + "end": 20503.56, + "probability": 0.9369 + }, + { + "start": 20503.56, + "end": 20507.2, + "probability": 0.9972 + }, + { + "start": 20507.78, + "end": 20512.26, + "probability": 0.9968 + }, + { + "start": 20512.38, + "end": 20513.3, + "probability": 0.9854 + }, + { + "start": 20513.38, + "end": 20514.0, + "probability": 0.667 + }, + { + "start": 20514.06, + "end": 20514.96, + "probability": 0.9856 + }, + { + "start": 20515.26, + "end": 20516.42, + "probability": 0.9966 + }, + { + "start": 20517.16, + "end": 20519.54, + "probability": 0.8569 + }, + { + "start": 20520.48, + "end": 20524.18, + "probability": 0.9502 + }, + { + "start": 20524.28, + "end": 20524.54, + "probability": 0.481 + }, + { + "start": 20524.58, + "end": 20525.2, + "probability": 0.9181 + }, + { + "start": 20525.3, + "end": 20526.18, + "probability": 0.9262 + }, + { + "start": 20526.56, + "end": 20531.56, + "probability": 0.973 + }, + { + "start": 20531.92, + "end": 20535.32, + "probability": 0.9858 + }, + { + "start": 20535.68, + "end": 20539.5, + "probability": 0.9434 + }, + { + "start": 20539.5, + "end": 20542.28, + "probability": 0.7205 + }, + { + "start": 20542.36, + "end": 20542.92, + "probability": 0.8174 + }, + { + "start": 20543.52, + "end": 20544.12, + "probability": 0.4391 + }, + { + "start": 20544.22, + "end": 20544.64, + "probability": 0.9131 + }, + { + "start": 20544.76, + "end": 20546.6, + "probability": 0.9907 + }, + { + "start": 20546.66, + "end": 20547.4, + "probability": 0.9388 + }, + { + "start": 20548.02, + "end": 20550.76, + "probability": 0.9973 + }, + { + "start": 20552.0, + "end": 20552.76, + "probability": 0.7875 + }, + { + "start": 20553.92, + "end": 20556.52, + "probability": 0.7827 + }, + { + "start": 20557.02, + "end": 20559.94, + "probability": 0.966 + }, + { + "start": 20560.48, + "end": 20564.14, + "probability": 0.996 + }, + { + "start": 20564.8, + "end": 20565.36, + "probability": 0.8793 + }, + { + "start": 20565.44, + "end": 20569.79, + "probability": 0.9952 + }, + { + "start": 20570.4, + "end": 20574.52, + "probability": 0.9976 + }, + { + "start": 20574.52, + "end": 20580.82, + "probability": 0.8505 + }, + { + "start": 20580.98, + "end": 20582.02, + "probability": 0.8745 + }, + { + "start": 20582.7, + "end": 20586.74, + "probability": 0.9531 + }, + { + "start": 20587.3, + "end": 20590.3, + "probability": 0.9963 + }, + { + "start": 20590.3, + "end": 20594.03, + "probability": 0.8028 + }, + { + "start": 20594.44, + "end": 20594.72, + "probability": 0.6257 + }, + { + "start": 20595.52, + "end": 20595.92, + "probability": 0.6776 + }, + { + "start": 20597.18, + "end": 20597.48, + "probability": 0.9387 + }, + { + "start": 20597.66, + "end": 20599.92, + "probability": 0.3133 + }, + { + "start": 20600.66, + "end": 20600.94, + "probability": 0.3333 + }, + { + "start": 20601.0, + "end": 20601.0, + "probability": 0.6721 + }, + { + "start": 20601.08, + "end": 20602.5, + "probability": 0.5924 + }, + { + "start": 20603.82, + "end": 20606.24, + "probability": 0.5769 + }, + { + "start": 20606.72, + "end": 20607.18, + "probability": 0.0072 + }, + { + "start": 20610.12, + "end": 20611.28, + "probability": 0.7025 + }, + { + "start": 20613.4, + "end": 20617.22, + "probability": 0.5867 + }, + { + "start": 20618.12, + "end": 20619.9, + "probability": 0.8366 + }, + { + "start": 20626.84, + "end": 20628.5, + "probability": 0.6943 + }, + { + "start": 20629.82, + "end": 20630.56, + "probability": 0.7681 + }, + { + "start": 20631.08, + "end": 20635.22, + "probability": 0.885 + }, + { + "start": 20636.62, + "end": 20644.74, + "probability": 0.7739 + }, + { + "start": 20645.74, + "end": 20646.48, + "probability": 0.9612 + }, + { + "start": 20646.6, + "end": 20647.84, + "probability": 0.9773 + }, + { + "start": 20647.96, + "end": 20653.24, + "probability": 0.9908 + }, + { + "start": 20654.32, + "end": 20659.78, + "probability": 0.9916 + }, + { + "start": 20659.9, + "end": 20661.86, + "probability": 0.9995 + }, + { + "start": 20662.56, + "end": 20667.26, + "probability": 0.9565 + }, + { + "start": 20667.52, + "end": 20669.12, + "probability": 0.8856 + }, + { + "start": 20669.22, + "end": 20669.97, + "probability": 0.8853 + }, + { + "start": 20670.3, + "end": 20673.62, + "probability": 0.7939 + }, + { + "start": 20673.86, + "end": 20674.32, + "probability": 0.5859 + }, + { + "start": 20674.54, + "end": 20676.8, + "probability": 0.9636 + }, + { + "start": 20676.94, + "end": 20678.96, + "probability": 0.7208 + }, + { + "start": 20679.52, + "end": 20682.66, + "probability": 0.9854 + }, + { + "start": 20683.32, + "end": 20685.4, + "probability": 0.9558 + }, + { + "start": 20686.32, + "end": 20689.28, + "probability": 0.974 + }, + { + "start": 20689.32, + "end": 20690.38, + "probability": 0.579 + }, + { + "start": 20690.62, + "end": 20691.8, + "probability": 0.9226 + }, + { + "start": 20691.82, + "end": 20692.77, + "probability": 0.8989 + }, + { + "start": 20693.14, + "end": 20693.44, + "probability": 0.7241 + }, + { + "start": 20694.38, + "end": 20696.4, + "probability": 0.9722 + }, + { + "start": 20696.58, + "end": 20700.74, + "probability": 0.7957 + }, + { + "start": 20700.9, + "end": 20701.0, + "probability": 0.3517 + }, + { + "start": 20701.4, + "end": 20702.92, + "probability": 0.9973 + }, + { + "start": 20703.44, + "end": 20706.53, + "probability": 0.979 + }, + { + "start": 20706.82, + "end": 20709.0, + "probability": 0.9937 + }, + { + "start": 20709.02, + "end": 20715.48, + "probability": 0.984 + }, + { + "start": 20715.54, + "end": 20720.86, + "probability": 0.9345 + }, + { + "start": 20721.36, + "end": 20726.72, + "probability": 0.9962 + }, + { + "start": 20727.24, + "end": 20728.08, + "probability": 0.9135 + }, + { + "start": 20728.4, + "end": 20732.3, + "probability": 0.9752 + }, + { + "start": 20732.44, + "end": 20736.68, + "probability": 0.9842 + }, + { + "start": 20737.4, + "end": 20741.34, + "probability": 0.7964 + }, + { + "start": 20741.9, + "end": 20742.81, + "probability": 0.9041 + }, + { + "start": 20743.98, + "end": 20744.6, + "probability": 0.9177 + }, + { + "start": 20751.4, + "end": 20753.12, + "probability": 0.4847 + }, + { + "start": 20753.24, + "end": 20756.66, + "probability": 0.9115 + }, + { + "start": 20757.0, + "end": 20760.8, + "probability": 0.8411 + }, + { + "start": 20761.42, + "end": 20765.92, + "probability": 0.9305 + }, + { + "start": 20766.02, + "end": 20767.54, + "probability": 0.0424 + }, + { + "start": 20767.56, + "end": 20768.08, + "probability": 0.0351 + }, + { + "start": 20768.08, + "end": 20770.66, + "probability": 0.8242 + }, + { + "start": 20771.32, + "end": 20772.06, + "probability": 0.3165 + }, + { + "start": 20774.02, + "end": 20777.84, + "probability": 0.5124 + }, + { + "start": 20778.06, + "end": 20781.1, + "probability": 0.6402 + }, + { + "start": 20782.24, + "end": 20785.34, + "probability": 0.7559 + }, + { + "start": 20785.86, + "end": 20792.09, + "probability": 0.4027 + }, + { + "start": 20793.12, + "end": 20793.76, + "probability": 0.358 + }, + { + "start": 20795.16, + "end": 20797.12, + "probability": 0.0185 + }, + { + "start": 20797.24, + "end": 20798.62, + "probability": 0.0106 + }, + { + "start": 20799.18, + "end": 20799.68, + "probability": 0.0707 + }, + { + "start": 20801.02, + "end": 20802.28, + "probability": 0.0451 + }, + { + "start": 20805.66, + "end": 20807.98, + "probability": 0.0842 + }, + { + "start": 20808.58, + "end": 20809.47, + "probability": 0.585 + }, + { + "start": 20810.64, + "end": 20813.14, + "probability": 0.6475 + }, + { + "start": 20813.5, + "end": 20816.58, + "probability": 0.6977 + }, + { + "start": 20816.88, + "end": 20818.24, + "probability": 0.4606 + }, + { + "start": 20819.23, + "end": 20820.34, + "probability": 0.4192 + }, + { + "start": 20820.34, + "end": 20820.82, + "probability": 0.7502 + }, + { + "start": 20821.02, + "end": 20822.14, + "probability": 0.8873 + }, + { + "start": 20823.24, + "end": 20823.86, + "probability": 0.5096 + }, + { + "start": 20824.04, + "end": 20824.82, + "probability": 0.5026 + }, + { + "start": 20824.82, + "end": 20829.66, + "probability": 0.8722 + }, + { + "start": 20829.76, + "end": 20833.56, + "probability": 0.4469 + }, + { + "start": 20834.52, + "end": 20837.02, + "probability": 0.8443 + }, + { + "start": 20837.9, + "end": 20839.63, + "probability": 0.9583 + }, + { + "start": 20839.82, + "end": 20843.44, + "probability": 0.8953 + }, + { + "start": 20843.44, + "end": 20846.52, + "probability": 0.8318 + }, + { + "start": 20847.04, + "end": 20848.66, + "probability": 0.5612 + }, + { + "start": 20849.36, + "end": 20852.24, + "probability": 0.8599 + }, + { + "start": 20852.74, + "end": 20855.46, + "probability": 0.7706 + }, + { + "start": 20856.32, + "end": 20860.08, + "probability": 0.7694 + }, + { + "start": 20860.68, + "end": 20864.6, + "probability": 0.9106 + }, + { + "start": 20864.92, + "end": 20865.58, + "probability": 0.9434 + }, + { + "start": 20873.04, + "end": 20875.0, + "probability": 0.8738 + }, + { + "start": 20875.12, + "end": 20875.38, + "probability": 0.7628 + }, + { + "start": 20876.32, + "end": 20877.18, + "probability": 0.8447 + }, + { + "start": 20877.32, + "end": 20878.6, + "probability": 0.8124 + }, + { + "start": 20878.6, + "end": 20882.56, + "probability": 0.7861 + }, + { + "start": 20883.16, + "end": 20892.5, + "probability": 0.7448 + }, + { + "start": 20892.9, + "end": 20893.6, + "probability": 0.5848 + }, + { + "start": 20893.98, + "end": 20896.49, + "probability": 0.7761 + }, + { + "start": 20896.88, + "end": 20897.72, + "probability": 0.0521 + }, + { + "start": 20897.72, + "end": 20898.18, + "probability": 0.7656 + }, + { + "start": 20899.04, + "end": 20899.14, + "probability": 0.6118 + }, + { + "start": 20899.24, + "end": 20900.81, + "probability": 0.6997 + }, + { + "start": 20901.22, + "end": 20903.72, + "probability": 0.9863 + }, + { + "start": 20903.78, + "end": 20905.32, + "probability": 0.3904 + }, + { + "start": 20905.54, + "end": 20906.58, + "probability": 0.6425 + }, + { + "start": 20906.58, + "end": 20907.68, + "probability": 0.5895 + }, + { + "start": 20908.42, + "end": 20909.12, + "probability": 0.4604 + }, + { + "start": 20909.76, + "end": 20911.32, + "probability": 0.6581 + }, + { + "start": 20911.76, + "end": 20912.04, + "probability": 0.5219 + }, + { + "start": 20912.14, + "end": 20916.58, + "probability": 0.5231 + }, + { + "start": 20917.1, + "end": 20918.82, + "probability": 0.9022 + }, + { + "start": 20919.5, + "end": 20923.7, + "probability": 0.9924 + }, + { + "start": 20924.6, + "end": 20927.06, + "probability": 0.8481 + }, + { + "start": 20927.7, + "end": 20931.22, + "probability": 0.9896 + }, + { + "start": 20931.22, + "end": 20935.84, + "probability": 0.9912 + }, + { + "start": 20936.2, + "end": 20938.72, + "probability": 0.9871 + }, + { + "start": 20938.8, + "end": 20940.65, + "probability": 0.9953 + }, + { + "start": 20942.1, + "end": 20944.54, + "probability": 0.9829 + }, + { + "start": 20945.12, + "end": 20948.26, + "probability": 0.9812 + }, + { + "start": 20949.16, + "end": 20953.08, + "probability": 0.94 + }, + { + "start": 20953.32, + "end": 20955.0, + "probability": 0.9428 + }, + { + "start": 20955.38, + "end": 20958.32, + "probability": 0.946 + }, + { + "start": 20958.92, + "end": 20963.3, + "probability": 0.9966 + }, + { + "start": 20963.3, + "end": 20967.7, + "probability": 0.9833 + }, + { + "start": 20968.06, + "end": 20968.92, + "probability": 0.5069 + }, + { + "start": 20969.9, + "end": 20972.28, + "probability": 0.8339 + }, + { + "start": 20972.86, + "end": 20976.42, + "probability": 0.9976 + }, + { + "start": 20976.9, + "end": 20979.54, + "probability": 0.8052 + }, + { + "start": 20980.24, + "end": 20981.74, + "probability": 0.8493 + }, + { + "start": 20982.36, + "end": 20983.96, + "probability": 0.9364 + }, + { + "start": 20984.56, + "end": 20985.38, + "probability": 0.6978 + }, + { + "start": 20985.52, + "end": 20988.56, + "probability": 0.998 + }, + { + "start": 20989.38, + "end": 20994.72, + "probability": 0.9983 + }, + { + "start": 20995.58, + "end": 20997.84, + "probability": 0.9934 + }, + { + "start": 20998.52, + "end": 21000.46, + "probability": 0.9989 + }, + { + "start": 21001.06, + "end": 21004.66, + "probability": 0.9922 + }, + { + "start": 21005.42, + "end": 21009.42, + "probability": 0.9969 + }, + { + "start": 21009.42, + "end": 21013.18, + "probability": 0.9991 + }, + { + "start": 21013.54, + "end": 21015.82, + "probability": 0.9976 + }, + { + "start": 21016.76, + "end": 21021.4, + "probability": 0.9786 + }, + { + "start": 21021.4, + "end": 21026.34, + "probability": 0.9988 + }, + { + "start": 21027.0, + "end": 21032.1, + "probability": 0.9912 + }, + { + "start": 21032.98, + "end": 21037.02, + "probability": 0.9971 + }, + { + "start": 21037.02, + "end": 21041.02, + "probability": 0.9997 + }, + { + "start": 21041.88, + "end": 21044.18, + "probability": 0.545 + }, + { + "start": 21045.4, + "end": 21051.7, + "probability": 0.9517 + }, + { + "start": 21051.7, + "end": 21055.18, + "probability": 0.9971 + }, + { + "start": 21056.08, + "end": 21059.58, + "probability": 0.9908 + }, + { + "start": 21060.26, + "end": 21061.66, + "probability": 0.686 + }, + { + "start": 21061.68, + "end": 21067.4, + "probability": 0.9683 + }, + { + "start": 21067.78, + "end": 21069.9, + "probability": 0.7965 + }, + { + "start": 21070.2, + "end": 21075.94, + "probability": 0.9517 + }, + { + "start": 21076.84, + "end": 21080.84, + "probability": 0.948 + }, + { + "start": 21081.22, + "end": 21084.06, + "probability": 0.9607 + }, + { + "start": 21084.16, + "end": 21084.54, + "probability": 0.8294 + }, + { + "start": 21085.32, + "end": 21088.12, + "probability": 0.5676 + }, + { + "start": 21088.28, + "end": 21089.56, + "probability": 0.7617 + }, + { + "start": 21089.9, + "end": 21090.92, + "probability": 0.9485 + }, + { + "start": 21091.32, + "end": 21093.58, + "probability": 0.9903 + }, + { + "start": 21094.32, + "end": 21095.36, + "probability": 0.2797 + }, + { + "start": 21095.44, + "end": 21097.72, + "probability": 0.609 + }, + { + "start": 21098.32, + "end": 21099.21, + "probability": 0.9619 + }, + { + "start": 21100.42, + "end": 21104.8, + "probability": 0.9645 + }, + { + "start": 21104.94, + "end": 21106.7, + "probability": 0.9093 + }, + { + "start": 21107.56, + "end": 21110.84, + "probability": 0.9933 + }, + { + "start": 21111.42, + "end": 21114.04, + "probability": 0.9901 + }, + { + "start": 21114.78, + "end": 21117.8, + "probability": 0.9806 + }, + { + "start": 21118.38, + "end": 21122.92, + "probability": 0.9929 + }, + { + "start": 21123.34, + "end": 21128.92, + "probability": 0.9937 + }, + { + "start": 21128.92, + "end": 21135.34, + "probability": 0.9771 + }, + { + "start": 21136.12, + "end": 21137.52, + "probability": 0.8803 + }, + { + "start": 21137.88, + "end": 21140.38, + "probability": 0.9907 + }, + { + "start": 21141.08, + "end": 21144.72, + "probability": 0.9978 + }, + { + "start": 21145.92, + "end": 21150.94, + "probability": 0.9902 + }, + { + "start": 21151.3, + "end": 21154.28, + "probability": 0.9431 + }, + { + "start": 21154.74, + "end": 21155.72, + "probability": 0.9829 + }, + { + "start": 21156.4, + "end": 21160.02, + "probability": 0.9927 + }, + { + "start": 21162.58, + "end": 21165.9, + "probability": 0.9913 + }, + { + "start": 21166.42, + "end": 21166.88, + "probability": 0.6299 + }, + { + "start": 21167.52, + "end": 21168.55, + "probability": 0.9053 + }, + { + "start": 21169.42, + "end": 21172.72, + "probability": 0.788 + }, + { + "start": 21173.48, + "end": 21174.52, + "probability": 0.8413 + }, + { + "start": 21175.08, + "end": 21175.98, + "probability": 0.9285 + }, + { + "start": 21176.84, + "end": 21182.9, + "probability": 0.9883 + }, + { + "start": 21182.9, + "end": 21190.02, + "probability": 0.9831 + }, + { + "start": 21190.48, + "end": 21191.02, + "probability": 0.7525 + }, + { + "start": 21191.36, + "end": 21192.74, + "probability": 0.6781 + }, + { + "start": 21193.28, + "end": 21197.0, + "probability": 0.9456 + }, + { + "start": 21197.64, + "end": 21204.98, + "probability": 0.9627 + }, + { + "start": 21205.5, + "end": 21209.86, + "probability": 0.9915 + }, + { + "start": 21210.42, + "end": 21214.66, + "probability": 0.8303 + }, + { + "start": 21215.16, + "end": 21218.94, + "probability": 0.9966 + }, + { + "start": 21219.46, + "end": 21223.92, + "probability": 0.9739 + }, + { + "start": 21224.28, + "end": 21226.22, + "probability": 0.9286 + }, + { + "start": 21227.02, + "end": 21229.42, + "probability": 0.8185 + }, + { + "start": 21229.5, + "end": 21235.26, + "probability": 0.988 + }, + { + "start": 21235.94, + "end": 21239.96, + "probability": 0.7991 + }, + { + "start": 21240.52, + "end": 21245.86, + "probability": 0.99 + }, + { + "start": 21246.48, + "end": 21250.86, + "probability": 0.989 + }, + { + "start": 21251.46, + "end": 21252.2, + "probability": 0.7576 + }, + { + "start": 21252.86, + "end": 21256.94, + "probability": 0.9941 + }, + { + "start": 21256.94, + "end": 21260.06, + "probability": 0.9979 + }, + { + "start": 21260.94, + "end": 21264.12, + "probability": 0.9609 + }, + { + "start": 21264.74, + "end": 21269.84, + "probability": 0.9937 + }, + { + "start": 21270.32, + "end": 21273.2, + "probability": 0.993 + }, + { + "start": 21274.04, + "end": 21275.58, + "probability": 0.9714 + }, + { + "start": 21276.26, + "end": 21282.36, + "probability": 0.9812 + }, + { + "start": 21282.36, + "end": 21288.84, + "probability": 0.999 + }, + { + "start": 21289.4, + "end": 21295.7, + "probability": 0.995 + }, + { + "start": 21296.22, + "end": 21301.5, + "probability": 0.3013 + }, + { + "start": 21301.72, + "end": 21302.82, + "probability": 0.0998 + }, + { + "start": 21302.86, + "end": 21304.68, + "probability": 0.3831 + }, + { + "start": 21304.68, + "end": 21308.44, + "probability": 0.9886 + }, + { + "start": 21308.62, + "end": 21309.86, + "probability": 0.4556 + }, + { + "start": 21310.16, + "end": 21311.08, + "probability": 0.7389 + }, + { + "start": 21311.72, + "end": 21314.52, + "probability": 0.7522 + }, + { + "start": 21314.52, + "end": 21314.52, + "probability": 0.2412 + }, + { + "start": 21314.52, + "end": 21315.82, + "probability": 0.7119 + }, + { + "start": 21315.9, + "end": 21316.62, + "probability": 0.9619 + }, + { + "start": 21316.62, + "end": 21317.42, + "probability": 0.4583 + }, + { + "start": 21317.98, + "end": 21319.9, + "probability": 0.0143 + }, + { + "start": 21320.08, + "end": 21324.56, + "probability": 0.9479 + }, + { + "start": 21324.88, + "end": 21329.16, + "probability": 0.9961 + }, + { + "start": 21329.74, + "end": 21333.44, + "probability": 0.9792 + }, + { + "start": 21333.62, + "end": 21334.18, + "probability": 0.2973 + }, + { + "start": 21334.26, + "end": 21334.88, + "probability": 0.5818 + }, + { + "start": 21335.04, + "end": 21337.04, + "probability": 0.7949 + }, + { + "start": 21341.86, + "end": 21344.18, + "probability": 0.6591 + }, + { + "start": 21344.4, + "end": 21348.26, + "probability": 0.7522 + }, + { + "start": 21349.38, + "end": 21351.1, + "probability": 0.9176 + }, + { + "start": 21351.34, + "end": 21355.34, + "probability": 0.8159 + }, + { + "start": 21355.38, + "end": 21359.06, + "probability": 0.9541 + }, + { + "start": 21361.5, + "end": 21366.94, + "probability": 0.8949 + }, + { + "start": 21367.56, + "end": 21369.02, + "probability": 0.9059 + }, + { + "start": 21370.02, + "end": 21371.78, + "probability": 0.8993 + }, + { + "start": 21371.94, + "end": 21372.9, + "probability": 0.96 + }, + { + "start": 21374.88, + "end": 21375.6, + "probability": 0.5897 + }, + { + "start": 21376.3, + "end": 21378.72, + "probability": 0.9561 + }, + { + "start": 21380.36, + "end": 21381.54, + "probability": 0.9784 + }, + { + "start": 21381.74, + "end": 21385.42, + "probability": 0.9944 + }, + { + "start": 21385.8, + "end": 21386.64, + "probability": 0.98 + }, + { + "start": 21387.04, + "end": 21388.16, + "probability": 0.9733 + }, + { + "start": 21388.2, + "end": 21390.22, + "probability": 0.9953 + }, + { + "start": 21390.38, + "end": 21394.18, + "probability": 0.9442 + }, + { + "start": 21395.7, + "end": 21397.72, + "probability": 0.9732 + }, + { + "start": 21398.34, + "end": 21399.38, + "probability": 0.9261 + }, + { + "start": 21400.08, + "end": 21401.46, + "probability": 0.9573 + }, + { + "start": 21401.54, + "end": 21402.96, + "probability": 0.9409 + }, + { + "start": 21403.14, + "end": 21404.2, + "probability": 0.7021 + }, + { + "start": 21404.96, + "end": 21406.4, + "probability": 0.998 + }, + { + "start": 21407.3, + "end": 21408.76, + "probability": 0.7806 + }, + { + "start": 21409.66, + "end": 21415.18, + "probability": 0.8587 + }, + { + "start": 21416.92, + "end": 21419.94, + "probability": 0.9948 + }, + { + "start": 21420.5, + "end": 21422.2, + "probability": 0.9254 + }, + { + "start": 21423.46, + "end": 21425.78, + "probability": 0.9896 + }, + { + "start": 21426.38, + "end": 21427.06, + "probability": 0.9378 + }, + { + "start": 21427.64, + "end": 21430.36, + "probability": 0.8668 + }, + { + "start": 21430.36, + "end": 21431.04, + "probability": 0.9124 + }, + { + "start": 21431.12, + "end": 21431.84, + "probability": 0.8765 + }, + { + "start": 21432.18, + "end": 21433.06, + "probability": 0.9327 + }, + { + "start": 21433.44, + "end": 21436.21, + "probability": 0.9885 + }, + { + "start": 21436.52, + "end": 21438.28, + "probability": 0.9912 + }, + { + "start": 21439.54, + "end": 21440.54, + "probability": 0.8391 + }, + { + "start": 21440.66, + "end": 21441.72, + "probability": 0.7001 + }, + { + "start": 21441.96, + "end": 21444.7, + "probability": 0.9963 + }, + { + "start": 21445.86, + "end": 21449.4, + "probability": 0.9912 + }, + { + "start": 21452.18, + "end": 21454.54, + "probability": 0.9746 + }, + { + "start": 21455.86, + "end": 21456.8, + "probability": 0.5921 + }, + { + "start": 21456.88, + "end": 21457.94, + "probability": 0.8723 + }, + { + "start": 21460.14, + "end": 21463.0, + "probability": 0.9893 + }, + { + "start": 21465.3, + "end": 21469.06, + "probability": 0.9564 + }, + { + "start": 21469.72, + "end": 21470.34, + "probability": 0.8016 + }, + { + "start": 21470.96, + "end": 21472.86, + "probability": 0.9772 + }, + { + "start": 21474.22, + "end": 21477.52, + "probability": 0.641 + }, + { + "start": 21478.84, + "end": 21481.12, + "probability": 0.9685 + }, + { + "start": 21482.56, + "end": 21487.08, + "probability": 0.9857 + }, + { + "start": 21488.58, + "end": 21489.47, + "probability": 0.9904 + }, + { + "start": 21490.7, + "end": 21491.26, + "probability": 0.691 + }, + { + "start": 21492.62, + "end": 21495.54, + "probability": 0.9736 + }, + { + "start": 21495.58, + "end": 21497.24, + "probability": 0.9263 + }, + { + "start": 21497.66, + "end": 21500.32, + "probability": 0.9961 + }, + { + "start": 21500.32, + "end": 21504.5, + "probability": 0.999 + }, + { + "start": 21504.94, + "end": 21506.66, + "probability": 0.9053 + }, + { + "start": 21507.8, + "end": 21509.8, + "probability": 0.772 + }, + { + "start": 21510.5, + "end": 21512.8, + "probability": 0.7621 + }, + { + "start": 21513.9, + "end": 21515.2, + "probability": 0.8533 + }, + { + "start": 21516.68, + "end": 21520.7, + "probability": 0.9902 + }, + { + "start": 21521.54, + "end": 21522.54, + "probability": 0.9836 + }, + { + "start": 21522.76, + "end": 21524.78, + "probability": 0.9974 + }, + { + "start": 21525.34, + "end": 21527.18, + "probability": 0.916 + }, + { + "start": 21528.98, + "end": 21530.8, + "probability": 0.9727 + }, + { + "start": 21530.98, + "end": 21531.6, + "probability": 0.9164 + }, + { + "start": 21532.0, + "end": 21532.5, + "probability": 0.8886 + }, + { + "start": 21532.96, + "end": 21533.58, + "probability": 0.9804 + }, + { + "start": 21533.88, + "end": 21536.34, + "probability": 0.962 + }, + { + "start": 21536.7, + "end": 21538.48, + "probability": 0.7601 + }, + { + "start": 21539.92, + "end": 21541.56, + "probability": 0.8624 + }, + { + "start": 21542.3, + "end": 21545.22, + "probability": 0.9816 + }, + { + "start": 21545.84, + "end": 21546.6, + "probability": 0.9879 + }, + { + "start": 21547.14, + "end": 21547.92, + "probability": 0.4364 + }, + { + "start": 21548.18, + "end": 21549.42, + "probability": 0.795 + }, + { + "start": 21550.88, + "end": 21554.84, + "probability": 0.8042 + }, + { + "start": 21575.34, + "end": 21578.28, + "probability": 0.6194 + }, + { + "start": 21578.92, + "end": 21578.92, + "probability": 0.6787 + }, + { + "start": 21578.92, + "end": 21580.68, + "probability": 0.8649 + }, + { + "start": 21581.66, + "end": 21582.04, + "probability": 0.9344 + }, + { + "start": 21600.98, + "end": 21601.9, + "probability": 0.6124 + }, + { + "start": 21603.72, + "end": 21604.88, + "probability": 0.6661 + }, + { + "start": 21605.54, + "end": 21608.92, + "probability": 0.9967 + }, + { + "start": 21609.38, + "end": 21612.16, + "probability": 0.978 + }, + { + "start": 21613.24, + "end": 21615.68, + "probability": 0.9871 + }, + { + "start": 21616.54, + "end": 21618.0, + "probability": 0.9992 + }, + { + "start": 21619.16, + "end": 21622.38, + "probability": 0.9795 + }, + { + "start": 21622.7, + "end": 21623.19, + "probability": 0.6067 + }, + { + "start": 21624.16, + "end": 21626.68, + "probability": 0.842 + }, + { + "start": 21628.1, + "end": 21631.68, + "probability": 0.9961 + }, + { + "start": 21632.44, + "end": 21633.34, + "probability": 0.9835 + }, + { + "start": 21633.54, + "end": 21634.44, + "probability": 0.9802 + }, + { + "start": 21634.92, + "end": 21637.76, + "probability": 0.9927 + }, + { + "start": 21637.76, + "end": 21643.2, + "probability": 0.9963 + }, + { + "start": 21644.14, + "end": 21644.46, + "probability": 0.5792 + }, + { + "start": 21645.22, + "end": 21646.04, + "probability": 0.8031 + }, + { + "start": 21646.82, + "end": 21647.82, + "probability": 0.8997 + }, + { + "start": 21648.22, + "end": 21652.08, + "probability": 0.9919 + }, + { + "start": 21652.64, + "end": 21654.38, + "probability": 0.998 + }, + { + "start": 21655.12, + "end": 21659.14, + "probability": 0.9834 + }, + { + "start": 21659.16, + "end": 21662.38, + "probability": 0.9868 + }, + { + "start": 21662.96, + "end": 21668.56, + "probability": 0.9911 + }, + { + "start": 21669.22, + "end": 21670.5, + "probability": 0.8909 + }, + { + "start": 21671.66, + "end": 21673.44, + "probability": 0.664 + }, + { + "start": 21675.3, + "end": 21676.66, + "probability": 0.9734 + }, + { + "start": 21677.6, + "end": 21678.62, + "probability": 0.9479 + }, + { + "start": 21678.9, + "end": 21679.7, + "probability": 0.2659 + }, + { + "start": 21679.82, + "end": 21680.26, + "probability": 0.6863 + }, + { + "start": 21681.0, + "end": 21684.67, + "probability": 0.9966 + }, + { + "start": 21685.0, + "end": 21689.14, + "probability": 0.9983 + }, + { + "start": 21689.8, + "end": 21689.92, + "probability": 0.0564 + }, + { + "start": 21689.92, + "end": 21694.18, + "probability": 0.9599 + }, + { + "start": 21694.96, + "end": 21695.24, + "probability": 0.9093 + }, + { + "start": 21696.42, + "end": 21697.3, + "probability": 0.6853 + }, + { + "start": 21697.46, + "end": 21697.7, + "probability": 0.938 + }, + { + "start": 21698.52, + "end": 21699.42, + "probability": 0.0439 + }, + { + "start": 21699.98, + "end": 21700.8, + "probability": 0.9053 + }, + { + "start": 21700.88, + "end": 21702.58, + "probability": 0.932 + }, + { + "start": 21703.22, + "end": 21703.54, + "probability": 0.032 + }, + { + "start": 21703.56, + "end": 21704.88, + "probability": 0.3937 + }, + { + "start": 21705.72, + "end": 21706.58, + "probability": 0.6343 + }, + { + "start": 21707.18, + "end": 21710.7, + "probability": 0.9331 + }, + { + "start": 21711.64, + "end": 21713.94, + "probability": 0.9968 + }, + { + "start": 21714.0, + "end": 21715.44, + "probability": 0.8875 + }, + { + "start": 21715.52, + "end": 21716.02, + "probability": 0.8522 + }, + { + "start": 21716.48, + "end": 21718.38, + "probability": 0.9201 + }, + { + "start": 21719.3, + "end": 21719.88, + "probability": 0.8616 + }, + { + "start": 21720.66, + "end": 21727.2, + "probability": 0.9644 + }, + { + "start": 21727.84, + "end": 21728.36, + "probability": 0.911 + }, + { + "start": 21728.48, + "end": 21728.86, + "probability": 0.5643 + }, + { + "start": 21728.96, + "end": 21733.3, + "probability": 0.9512 + }, + { + "start": 21734.04, + "end": 21738.16, + "probability": 0.9637 + }, + { + "start": 21739.96, + "end": 21740.7, + "probability": 0.0822 + }, + { + "start": 21740.74, + "end": 21741.82, + "probability": 0.7909 + }, + { + "start": 21742.04, + "end": 21743.78, + "probability": 0.9315 + }, + { + "start": 21744.16, + "end": 21749.22, + "probability": 0.8768 + }, + { + "start": 21749.48, + "end": 21752.66, + "probability": 0.7725 + }, + { + "start": 21753.2, + "end": 21760.24, + "probability": 0.9949 + }, + { + "start": 21761.04, + "end": 21763.48, + "probability": 0.999 + }, + { + "start": 21764.02, + "end": 21766.48, + "probability": 0.7806 + }, + { + "start": 21767.16, + "end": 21768.02, + "probability": 0.494 + }, + { + "start": 21768.96, + "end": 21774.62, + "probability": 0.9528 + }, + { + "start": 21775.1, + "end": 21775.34, + "probability": 0.7308 + }, + { + "start": 21775.82, + "end": 21776.66, + "probability": 0.8996 + }, + { + "start": 21777.14, + "end": 21777.78, + "probability": 0.8076 + }, + { + "start": 21777.9, + "end": 21780.96, + "probability": 0.8586 + }, + { + "start": 21781.82, + "end": 21784.18, + "probability": 0.9733 + }, + { + "start": 21785.26, + "end": 21785.66, + "probability": 0.1026 + }, + { + "start": 21785.82, + "end": 21786.7, + "probability": 0.6709 + }, + { + "start": 21786.72, + "end": 21787.44, + "probability": 0.7403 + }, + { + "start": 21787.5, + "end": 21788.64, + "probability": 0.8503 + }, + { + "start": 21788.98, + "end": 21789.18, + "probability": 0.1421 + }, + { + "start": 21789.32, + "end": 21789.8, + "probability": 0.4304 + }, + { + "start": 21789.82, + "end": 21790.0, + "probability": 0.808 + }, + { + "start": 21790.64, + "end": 21791.18, + "probability": 0.8745 + }, + { + "start": 21791.5, + "end": 21792.7, + "probability": 0.9466 + }, + { + "start": 21793.04, + "end": 21793.88, + "probability": 0.9529 + }, + { + "start": 21794.26, + "end": 21800.58, + "probability": 0.9625 + }, + { + "start": 21801.2, + "end": 21805.34, + "probability": 0.8913 + }, + { + "start": 21805.9, + "end": 21809.8, + "probability": 0.9959 + }, + { + "start": 21811.68, + "end": 21815.22, + "probability": 0.8558 + }, + { + "start": 21815.58, + "end": 21817.14, + "probability": 0.7847 + }, + { + "start": 21817.68, + "end": 21818.84, + "probability": 0.9866 + }, + { + "start": 21819.44, + "end": 21823.28, + "probability": 0.9995 + }, + { + "start": 21824.08, + "end": 21824.96, + "probability": 0.7532 + }, + { + "start": 21825.48, + "end": 21826.12, + "probability": 0.9163 + }, + { + "start": 21827.06, + "end": 21831.5, + "probability": 0.9989 + }, + { + "start": 21831.5, + "end": 21835.72, + "probability": 0.9899 + }, + { + "start": 21836.84, + "end": 21837.56, + "probability": 0.9921 + }, + { + "start": 21838.7, + "end": 21844.12, + "probability": 0.9996 + }, + { + "start": 21844.12, + "end": 21848.38, + "probability": 0.9985 + }, + { + "start": 21849.12, + "end": 21852.56, + "probability": 0.9866 + }, + { + "start": 21852.68, + "end": 21853.62, + "probability": 0.9609 + }, + { + "start": 21853.7, + "end": 21853.94, + "probability": 0.5644 + }, + { + "start": 21854.8, + "end": 21857.7, + "probability": 0.9314 + }, + { + "start": 21858.26, + "end": 21860.28, + "probability": 0.9991 + }, + { + "start": 21860.34, + "end": 21864.76, + "probability": 0.9209 + }, + { + "start": 21866.02, + "end": 21867.08, + "probability": 0.8054 + }, + { + "start": 21867.88, + "end": 21868.46, + "probability": 0.7427 + }, + { + "start": 21868.78, + "end": 21869.42, + "probability": 0.7145 + }, + { + "start": 21870.78, + "end": 21871.28, + "probability": 0.8166 + }, + { + "start": 21872.06, + "end": 21874.2, + "probability": 0.9816 + }, + { + "start": 21874.72, + "end": 21876.86, + "probability": 0.9453 + }, + { + "start": 21877.28, + "end": 21878.06, + "probability": 0.859 + }, + { + "start": 21879.36, + "end": 21880.3, + "probability": 0.844 + }, + { + "start": 21881.06, + "end": 21884.56, + "probability": 0.8755 + }, + { + "start": 21884.64, + "end": 21887.94, + "probability": 0.9208 + }, + { + "start": 21889.0, + "end": 21890.32, + "probability": 0.9517 + }, + { + "start": 21891.02, + "end": 21892.06, + "probability": 0.5371 + }, + { + "start": 21892.76, + "end": 21894.9, + "probability": 0.9934 + }, + { + "start": 21895.5, + "end": 21896.62, + "probability": 0.9023 + }, + { + "start": 21897.36, + "end": 21898.2, + "probability": 0.7814 + }, + { + "start": 21898.66, + "end": 21899.82, + "probability": 0.9666 + }, + { + "start": 21900.56, + "end": 21901.77, + "probability": 0.8789 + }, + { + "start": 21903.39, + "end": 21906.22, + "probability": 0.8967 + }, + { + "start": 21907.02, + "end": 21908.32, + "probability": 0.4932 + }, + { + "start": 21908.92, + "end": 21909.98, + "probability": 0.9645 + }, + { + "start": 21910.68, + "end": 21911.68, + "probability": 0.9389 + }, + { + "start": 21913.48, + "end": 21915.02, + "probability": 0.7316 + }, + { + "start": 21915.1, + "end": 21915.42, + "probability": 0.9677 + }, + { + "start": 21915.66, + "end": 21916.3, + "probability": 0.8271 + }, + { + "start": 21917.04, + "end": 21917.94, + "probability": 0.9576 + }, + { + "start": 21918.6, + "end": 21920.64, + "probability": 0.9609 + }, + { + "start": 21921.2, + "end": 21922.04, + "probability": 0.9787 + }, + { + "start": 21922.14, + "end": 21922.68, + "probability": 0.9762 + }, + { + "start": 21922.82, + "end": 21924.68, + "probability": 0.9929 + }, + { + "start": 21924.68, + "end": 21927.64, + "probability": 0.9562 + }, + { + "start": 21928.56, + "end": 21931.34, + "probability": 0.9935 + }, + { + "start": 21931.34, + "end": 21935.32, + "probability": 0.9827 + }, + { + "start": 21935.46, + "end": 21936.78, + "probability": 0.9578 + }, + { + "start": 21937.46, + "end": 21940.68, + "probability": 0.9881 + }, + { + "start": 21941.2, + "end": 21941.84, + "probability": 0.6536 + }, + { + "start": 21941.98, + "end": 21946.9, + "probability": 0.9809 + }, + { + "start": 21947.6, + "end": 21948.44, + "probability": 0.8506 + }, + { + "start": 21949.04, + "end": 21953.8, + "probability": 0.9955 + }, + { + "start": 21954.78, + "end": 21955.86, + "probability": 0.7406 + }, + { + "start": 21956.5, + "end": 21958.42, + "probability": 0.8256 + }, + { + "start": 21959.0, + "end": 21961.88, + "probability": 0.9925 + }, + { + "start": 21961.88, + "end": 21965.56, + "probability": 0.961 + }, + { + "start": 21966.24, + "end": 21966.76, + "probability": 0.7669 + }, + { + "start": 21966.82, + "end": 21967.46, + "probability": 0.8929 + }, + { + "start": 21967.52, + "end": 21968.28, + "probability": 0.9853 + }, + { + "start": 21968.32, + "end": 21969.2, + "probability": 0.8268 + }, + { + "start": 21969.62, + "end": 21971.16, + "probability": 0.993 + }, + { + "start": 21971.84, + "end": 21974.36, + "probability": 0.9445 + }, + { + "start": 21975.24, + "end": 21980.88, + "probability": 0.9863 + }, + { + "start": 21981.32, + "end": 21982.32, + "probability": 0.9461 + }, + { + "start": 21982.64, + "end": 21983.16, + "probability": 0.9468 + }, + { + "start": 21984.12, + "end": 21985.34, + "probability": 0.8135 + }, + { + "start": 21985.66, + "end": 21991.22, + "probability": 0.9866 + }, + { + "start": 21991.7, + "end": 21992.16, + "probability": 0.7807 + }, + { + "start": 21992.32, + "end": 21992.78, + "probability": 0.9442 + }, + { + "start": 21992.9, + "end": 21996.61, + "probability": 0.9899 + }, + { + "start": 21997.32, + "end": 21997.64, + "probability": 0.6629 + }, + { + "start": 21997.84, + "end": 21999.0, + "probability": 0.8978 + }, + { + "start": 21999.36, + "end": 22002.06, + "probability": 0.9986 + }, + { + "start": 22002.77, + "end": 22005.82, + "probability": 0.8987 + }, + { + "start": 22005.94, + "end": 22008.74, + "probability": 0.5723 + }, + { + "start": 22009.14, + "end": 22010.38, + "probability": 0.8516 + }, + { + "start": 22010.94, + "end": 22010.96, + "probability": 0.0774 + }, + { + "start": 22010.96, + "end": 22011.78, + "probability": 0.2244 + }, + { + "start": 22012.48, + "end": 22013.06, + "probability": 0.3042 + }, + { + "start": 22013.06, + "end": 22013.06, + "probability": 0.0155 + }, + { + "start": 22013.34, + "end": 22016.98, + "probability": 0.9574 + }, + { + "start": 22017.82, + "end": 22020.16, + "probability": 0.9412 + }, + { + "start": 22020.54, + "end": 22022.62, + "probability": 0.9951 + }, + { + "start": 22022.7, + "end": 22023.68, + "probability": 0.6795 + }, + { + "start": 22023.82, + "end": 22024.24, + "probability": 0.125 + }, + { + "start": 22024.24, + "end": 22025.0, + "probability": 0.8597 + }, + { + "start": 22025.2, + "end": 22025.78, + "probability": 0.8191 + }, + { + "start": 22025.92, + "end": 22027.04, + "probability": 0.906 + }, + { + "start": 22027.74, + "end": 22028.1, + "probability": 0.3896 + }, + { + "start": 22028.1, + "end": 22029.44, + "probability": 0.0763 + }, + { + "start": 22029.54, + "end": 22030.6, + "probability": 0.4771 + }, + { + "start": 22031.0, + "end": 22032.06, + "probability": 0.7867 + }, + { + "start": 22032.36, + "end": 22032.48, + "probability": 0.0221 + }, + { + "start": 22032.48, + "end": 22032.48, + "probability": 0.1462 + }, + { + "start": 22032.48, + "end": 22035.54, + "probability": 0.4823 + }, + { + "start": 22035.7, + "end": 22037.54, + "probability": 0.6525 + }, + { + "start": 22037.64, + "end": 22037.78, + "probability": 0.1812 + }, + { + "start": 22037.78, + "end": 22038.98, + "probability": 0.9475 + }, + { + "start": 22039.32, + "end": 22041.8, + "probability": 0.9897 + }, + { + "start": 22042.18, + "end": 22044.04, + "probability": 0.9458 + }, + { + "start": 22044.6, + "end": 22045.54, + "probability": 0.9528 + }, + { + "start": 22045.88, + "end": 22046.02, + "probability": 0.0734 + }, + { + "start": 22046.16, + "end": 22047.64, + "probability": 0.9774 + }, + { + "start": 22047.94, + "end": 22048.78, + "probability": 0.9324 + }, + { + "start": 22048.92, + "end": 22050.28, + "probability": 0.9503 + }, + { + "start": 22051.14, + "end": 22052.24, + "probability": 0.3418 + }, + { + "start": 22052.36, + "end": 22052.48, + "probability": 0.7002 + }, + { + "start": 22052.54, + "end": 22053.08, + "probability": 0.463 + }, + { + "start": 22053.08, + "end": 22054.78, + "probability": 0.7917 + }, + { + "start": 22055.22, + "end": 22058.84, + "probability": 0.9932 + }, + { + "start": 22058.86, + "end": 22060.24, + "probability": 0.8953 + }, + { + "start": 22060.66, + "end": 22061.31, + "probability": 0.9163 + }, + { + "start": 22061.78, + "end": 22062.7, + "probability": 0.9766 + }, + { + "start": 22063.02, + "end": 22066.38, + "probability": 0.9658 + }, + { + "start": 22066.38, + "end": 22067.83, + "probability": 0.9835 + }, + { + "start": 22067.94, + "end": 22068.8, + "probability": 0.5482 + }, + { + "start": 22068.86, + "end": 22069.78, + "probability": 0.4412 + }, + { + "start": 22069.78, + "end": 22070.88, + "probability": 0.7521 + }, + { + "start": 22071.1, + "end": 22072.0, + "probability": 0.8053 + }, + { + "start": 22072.08, + "end": 22072.67, + "probability": 0.7562 + }, + { + "start": 22074.98, + "end": 22075.28, + "probability": 0.0194 + }, + { + "start": 22075.28, + "end": 22075.56, + "probability": 0.1976 + }, + { + "start": 22075.6, + "end": 22076.44, + "probability": 0.8683 + }, + { + "start": 22076.86, + "end": 22077.7, + "probability": 0.5911 + }, + { + "start": 22077.88, + "end": 22081.34, + "probability": 0.8764 + }, + { + "start": 22081.36, + "end": 22084.72, + "probability": 0.5831 + }, + { + "start": 22084.8, + "end": 22085.33, + "probability": 0.7359 + }, + { + "start": 22085.92, + "end": 22086.72, + "probability": 0.7099 + }, + { + "start": 22087.2, + "end": 22087.38, + "probability": 0.1544 + }, + { + "start": 22087.42, + "end": 22087.42, + "probability": 0.2227 + }, + { + "start": 22087.56, + "end": 22088.04, + "probability": 0.5581 + }, + { + "start": 22088.22, + "end": 22088.8, + "probability": 0.7278 + }, + { + "start": 22088.84, + "end": 22091.44, + "probability": 0.7634 + }, + { + "start": 22091.54, + "end": 22092.32, + "probability": 0.8461 + }, + { + "start": 22092.5, + "end": 22095.36, + "probability": 0.9546 + }, + { + "start": 22095.36, + "end": 22096.46, + "probability": 0.1337 + }, + { + "start": 22097.64, + "end": 22097.64, + "probability": 0.1427 + }, + { + "start": 22097.64, + "end": 22100.0, + "probability": 0.895 + }, + { + "start": 22100.18, + "end": 22103.48, + "probability": 0.9287 + }, + { + "start": 22104.24, + "end": 22107.48, + "probability": 0.9569 + }, + { + "start": 22108.04, + "end": 22108.96, + "probability": 0.9708 + }, + { + "start": 22109.4, + "end": 22111.3, + "probability": 0.9895 + }, + { + "start": 22111.8, + "end": 22116.78, + "probability": 0.9971 + }, + { + "start": 22116.86, + "end": 22117.32, + "probability": 0.8769 + }, + { + "start": 22117.38, + "end": 22118.5, + "probability": 0.8493 + }, + { + "start": 22118.62, + "end": 22119.14, + "probability": 0.4511 + }, + { + "start": 22119.2, + "end": 22120.96, + "probability": 0.6147 + }, + { + "start": 22121.12, + "end": 22125.6, + "probability": 0.8811 + }, + { + "start": 22126.4, + "end": 22127.22, + "probability": 0.703 + }, + { + "start": 22127.96, + "end": 22129.26, + "probability": 0.8601 + }, + { + "start": 22129.76, + "end": 22133.24, + "probability": 0.9106 + }, + { + "start": 22133.36, + "end": 22133.78, + "probability": 0.8503 + }, + { + "start": 22134.06, + "end": 22135.92, + "probability": 0.9703 + }, + { + "start": 22136.12, + "end": 22136.84, + "probability": 0.7575 + }, + { + "start": 22137.22, + "end": 22139.38, + "probability": 0.9966 + }, + { + "start": 22139.38, + "end": 22140.72, + "probability": 0.9741 + }, + { + "start": 22141.06, + "end": 22142.24, + "probability": 0.6811 + }, + { + "start": 22142.42, + "end": 22144.07, + "probability": 0.8174 + }, + { + "start": 22144.62, + "end": 22145.26, + "probability": 0.2801 + }, + { + "start": 22145.8, + "end": 22145.9, + "probability": 0.1982 + }, + { + "start": 22145.9, + "end": 22147.62, + "probability": 0.8875 + }, + { + "start": 22147.88, + "end": 22149.94, + "probability": 0.7102 + }, + { + "start": 22150.28, + "end": 22151.84, + "probability": 0.9449 + }, + { + "start": 22152.64, + "end": 22156.8, + "probability": 0.8926 + }, + { + "start": 22157.8, + "end": 22160.7, + "probability": 0.9972 + }, + { + "start": 22160.84, + "end": 22161.28, + "probability": 0.7672 + }, + { + "start": 22162.16, + "end": 22163.32, + "probability": 0.6743 + }, + { + "start": 22163.44, + "end": 22164.55, + "probability": 0.4353 + }, + { + "start": 22165.88, + "end": 22168.66, + "probability": 0.8804 + }, + { + "start": 22168.72, + "end": 22170.28, + "probability": 0.9694 + }, + { + "start": 22175.44, + "end": 22178.1, + "probability": 0.6952 + }, + { + "start": 22178.16, + "end": 22181.9, + "probability": 0.9843 + }, + { + "start": 22181.9, + "end": 22185.9, + "probability": 0.993 + }, + { + "start": 22186.62, + "end": 22189.08, + "probability": 0.6551 + }, + { + "start": 22189.22, + "end": 22194.38, + "probability": 0.9938 + }, + { + "start": 22194.68, + "end": 22196.76, + "probability": 0.7527 + }, + { + "start": 22197.2, + "end": 22198.0, + "probability": 0.4584 + }, + { + "start": 22198.22, + "end": 22198.74, + "probability": 0.7983 + }, + { + "start": 22198.92, + "end": 22203.08, + "probability": 0.9922 + }, + { + "start": 22203.08, + "end": 22207.22, + "probability": 0.9992 + }, + { + "start": 22207.56, + "end": 22210.32, + "probability": 0.9863 + }, + { + "start": 22210.8, + "end": 22213.0, + "probability": 0.7703 + }, + { + "start": 22213.5, + "end": 22214.22, + "probability": 0.5365 + }, + { + "start": 22214.74, + "end": 22219.56, + "probability": 0.9773 + }, + { + "start": 22219.56, + "end": 22223.4, + "probability": 0.9946 + }, + { + "start": 22223.68, + "end": 22224.04, + "probability": 0.9038 + }, + { + "start": 22224.98, + "end": 22226.82, + "probability": 0.9967 + }, + { + "start": 22227.6, + "end": 22229.55, + "probability": 0.8083 + }, + { + "start": 22230.46, + "end": 22232.6, + "probability": 0.9639 + }, + { + "start": 22233.42, + "end": 22237.36, + "probability": 0.9954 + }, + { + "start": 22238.14, + "end": 22239.16, + "probability": 0.7602 + }, + { + "start": 22240.08, + "end": 22244.32, + "probability": 0.9983 + }, + { + "start": 22244.82, + "end": 22250.1, + "probability": 0.9903 + }, + { + "start": 22250.7, + "end": 22252.74, + "probability": 0.7582 + }, + { + "start": 22252.98, + "end": 22253.5, + "probability": 0.0338 + }, + { + "start": 22254.06, + "end": 22254.06, + "probability": 0.0197 + }, + { + "start": 22254.06, + "end": 22255.12, + "probability": 0.5696 + }, + { + "start": 22255.76, + "end": 22262.86, + "probability": 0.9585 + }, + { + "start": 22263.52, + "end": 22268.4, + "probability": 0.9019 + }, + { + "start": 22269.56, + "end": 22270.54, + "probability": 0.0365 + }, + { + "start": 22270.54, + "end": 22271.1, + "probability": 0.0431 + }, + { + "start": 22271.24, + "end": 22274.86, + "probability": 0.0486 + }, + { + "start": 22275.06, + "end": 22279.36, + "probability": 0.0819 + }, + { + "start": 22280.58, + "end": 22282.26, + "probability": 0.2463 + }, + { + "start": 22282.96, + "end": 22282.98, + "probability": 0.0223 + }, + { + "start": 22282.98, + "end": 22282.98, + "probability": 0.0328 + }, + { + "start": 22282.98, + "end": 22286.24, + "probability": 0.58 + }, + { + "start": 22286.7, + "end": 22288.98, + "probability": 0.9221 + }, + { + "start": 22289.02, + "end": 22290.8, + "probability": 0.8474 + }, + { + "start": 22291.12, + "end": 22297.84, + "probability": 0.9933 + }, + { + "start": 22298.5, + "end": 22301.76, + "probability": 0.9932 + }, + { + "start": 22301.88, + "end": 22306.86, + "probability": 0.9951 + }, + { + "start": 22307.22, + "end": 22308.68, + "probability": 0.8774 + }, + { + "start": 22309.84, + "end": 22309.84, + "probability": 0.0216 + }, + { + "start": 22309.84, + "end": 22309.84, + "probability": 0.0937 + }, + { + "start": 22309.84, + "end": 22311.3, + "probability": 0.5543 + }, + { + "start": 22311.96, + "end": 22315.16, + "probability": 0.8099 + }, + { + "start": 22315.8, + "end": 22316.52, + "probability": 0.6684 + }, + { + "start": 22316.84, + "end": 22320.96, + "probability": 0.9936 + }, + { + "start": 22320.96, + "end": 22326.26, + "probability": 0.9767 + }, + { + "start": 22326.8, + "end": 22328.49, + "probability": 0.9961 + }, + { + "start": 22329.56, + "end": 22331.18, + "probability": 0.484 + }, + { + "start": 22331.84, + "end": 22337.8, + "probability": 0.9741 + }, + { + "start": 22338.28, + "end": 22343.46, + "probability": 0.998 + }, + { + "start": 22344.06, + "end": 22344.76, + "probability": 0.0989 + }, + { + "start": 22346.7, + "end": 22347.36, + "probability": 0.0418 + }, + { + "start": 22347.36, + "end": 22347.36, + "probability": 0.0141 + }, + { + "start": 22347.36, + "end": 22348.98, + "probability": 0.287 + }, + { + "start": 22349.48, + "end": 22354.64, + "probability": 0.6558 + }, + { + "start": 22354.64, + "end": 22359.94, + "probability": 0.994 + }, + { + "start": 22360.5, + "end": 22365.8, + "probability": 0.6924 + }, + { + "start": 22365.84, + "end": 22367.76, + "probability": 0.9473 + }, + { + "start": 22367.88, + "end": 22373.58, + "probability": 0.995 + }, + { + "start": 22373.88, + "end": 22373.96, + "probability": 0.293 + }, + { + "start": 22373.96, + "end": 22374.8, + "probability": 0.6472 + }, + { + "start": 22374.88, + "end": 22376.14, + "probability": 0.7132 + }, + { + "start": 22376.14, + "end": 22377.88, + "probability": 0.8848 + }, + { + "start": 22378.22, + "end": 22380.32, + "probability": 0.9445 + }, + { + "start": 22380.32, + "end": 22383.68, + "probability": 0.8563 + }, + { + "start": 22384.08, + "end": 22388.38, + "probability": 0.9867 + }, + { + "start": 22388.52, + "end": 22389.34, + "probability": 0.8705 + }, + { + "start": 22389.48, + "end": 22392.85, + "probability": 0.793 + }, + { + "start": 22393.42, + "end": 22394.53, + "probability": 0.7095 + }, + { + "start": 22394.96, + "end": 22397.0, + "probability": 0.9212 + }, + { + "start": 22397.06, + "end": 22399.48, + "probability": 0.7025 + }, + { + "start": 22400.04, + "end": 22402.48, + "probability": 0.7642 + }, + { + "start": 22403.04, + "end": 22411.91, + "probability": 0.0824 + }, + { + "start": 22414.38, + "end": 22415.4, + "probability": 0.0736 + }, + { + "start": 22416.8, + "end": 22418.82, + "probability": 0.6533 + }, + { + "start": 22423.24, + "end": 22423.36, + "probability": 0.128 + }, + { + "start": 22423.36, + "end": 22425.32, + "probability": 0.1962 + }, + { + "start": 22426.2, + "end": 22427.42, + "probability": 0.8977 + }, + { + "start": 22428.7, + "end": 22429.88, + "probability": 0.7485 + }, + { + "start": 22429.98, + "end": 22432.82, + "probability": 0.6897 + }, + { + "start": 22433.52, + "end": 22437.62, + "probability": 0.4989 + }, + { + "start": 22438.5, + "end": 22440.3, + "probability": 0.7119 + }, + { + "start": 22441.22, + "end": 22442.2, + "probability": 0.7257 + }, + { + "start": 22442.3, + "end": 22443.24, + "probability": 0.3726 + }, + { + "start": 22443.34, + "end": 22444.65, + "probability": 0.7032 + }, + { + "start": 22445.22, + "end": 22445.76, + "probability": 0.6801 + }, + { + "start": 22445.88, + "end": 22446.56, + "probability": 0.81 + }, + { + "start": 22446.7, + "end": 22449.52, + "probability": 0.7236 + }, + { + "start": 22449.78, + "end": 22452.42, + "probability": 0.8608 + }, + { + "start": 22452.46, + "end": 22453.54, + "probability": 0.5229 + }, + { + "start": 22454.26, + "end": 22455.58, + "probability": 0.9954 + }, + { + "start": 22455.64, + "end": 22456.1, + "probability": 0.8565 + }, + { + "start": 22456.18, + "end": 22457.8, + "probability": 0.8975 + }, + { + "start": 22457.9, + "end": 22458.16, + "probability": 0.7804 + }, + { + "start": 22459.8, + "end": 22462.34, + "probability": 0.5334 + }, + { + "start": 22462.54, + "end": 22464.42, + "probability": 0.5594 + }, + { + "start": 22464.44, + "end": 22466.58, + "probability": 0.8115 + }, + { + "start": 22467.44, + "end": 22469.74, + "probability": 0.8963 + }, + { + "start": 22469.74, + "end": 22472.94, + "probability": 0.5455 + }, + { + "start": 22473.0, + "end": 22475.18, + "probability": 0.5071 + }, + { + "start": 22475.6, + "end": 22476.84, + "probability": 0.8635 + }, + { + "start": 22477.6, + "end": 22479.66, + "probability": 0.7743 + }, + { + "start": 22479.76, + "end": 22481.02, + "probability": 0.7939 + }, + { + "start": 22481.66, + "end": 22483.04, + "probability": 0.778 + }, + { + "start": 22483.24, + "end": 22483.98, + "probability": 0.9156 + }, + { + "start": 22489.08, + "end": 22490.6, + "probability": 0.6968 + }, + { + "start": 22491.6, + "end": 22493.7, + "probability": 0.8075 + }, + { + "start": 22494.72, + "end": 22494.86, + "probability": 0.0028 + }, + { + "start": 22515.06, + "end": 22516.75, + "probability": 0.0911 + }, + { + "start": 22517.0, + "end": 22521.26, + "probability": 0.2624 + }, + { + "start": 22539.06, + "end": 22541.96, + "probability": 0.0468 + }, + { + "start": 22542.58, + "end": 22547.56, + "probability": 0.0286 + }, + { + "start": 22547.56, + "end": 22548.48, + "probability": 0.4733 + }, + { + "start": 22549.02, + "end": 22551.21, + "probability": 0.2978 + }, + { + "start": 22551.9, + "end": 22552.08, + "probability": 0.002 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22644.0, + "end": 22644.0, + "probability": 0.0 + }, + { + "start": 22661.24, + "end": 22663.3, + "probability": 0.0478 + }, + { + "start": 22663.44, + "end": 22665.68, + "probability": 0.0583 + }, + { + "start": 22665.68, + "end": 22666.3, + "probability": 0.0464 + }, + { + "start": 22667.47, + "end": 22669.35, + "probability": 0.1201 + }, + { + "start": 22669.64, + "end": 22671.14, + "probability": 0.0765 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.0, + "end": 22768.0, + "probability": 0.0 + }, + { + "start": 22768.54, + "end": 22768.8, + "probability": 0.0442 + }, + { + "start": 22768.8, + "end": 22768.8, + "probability": 0.0242 + }, + { + "start": 22768.8, + "end": 22768.8, + "probability": 0.0376 + }, + { + "start": 22768.8, + "end": 22770.32, + "probability": 0.3822 + }, + { + "start": 22771.04, + "end": 22777.54, + "probability": 0.6617 + }, + { + "start": 22778.08, + "end": 22778.32, + "probability": 0.6954 + }, + { + "start": 22778.4, + "end": 22779.6, + "probability": 0.7636 + }, + { + "start": 22779.74, + "end": 22781.1, + "probability": 0.8822 + }, + { + "start": 22781.56, + "end": 22789.24, + "probability": 0.9664 + }, + { + "start": 22789.76, + "end": 22791.0, + "probability": 0.9239 + }, + { + "start": 22791.76, + "end": 22793.66, + "probability": 0.9579 + }, + { + "start": 22794.1, + "end": 22798.4, + "probability": 0.8385 + }, + { + "start": 22798.54, + "end": 22802.0, + "probability": 0.9982 + }, + { + "start": 22802.5, + "end": 22806.52, + "probability": 0.9654 + }, + { + "start": 22807.08, + "end": 22807.68, + "probability": 0.9617 + }, + { + "start": 22807.88, + "end": 22809.24, + "probability": 0.905 + }, + { + "start": 22809.72, + "end": 22811.24, + "probability": 0.9852 + }, + { + "start": 22811.82, + "end": 22813.38, + "probability": 0.9093 + }, + { + "start": 22814.0, + "end": 22815.98, + "probability": 0.9971 + }, + { + "start": 22816.18, + "end": 22816.4, + "probability": 0.7581 + }, + { + "start": 22816.9, + "end": 22818.18, + "probability": 0.739 + }, + { + "start": 22818.42, + "end": 22819.06, + "probability": 0.7422 + }, + { + "start": 22819.1, + "end": 22821.72, + "probability": 0.6093 + }, + { + "start": 22825.14, + "end": 22825.24, + "probability": 0.8826 + }, + { + "start": 22827.14, + "end": 22828.32, + "probability": 0.7572 + }, + { + "start": 22829.06, + "end": 22830.72, + "probability": 0.6831 + }, + { + "start": 22830.88, + "end": 22832.92, + "probability": 0.4365 + }, + { + "start": 22833.28, + "end": 22833.68, + "probability": 0.4915 + }, + { + "start": 22834.88, + "end": 22835.18, + "probability": 0.3298 + }, + { + "start": 22835.32, + "end": 22838.76, + "probability": 0.9719 + }, + { + "start": 22840.76, + "end": 22846.54, + "probability": 0.9443 + }, + { + "start": 22846.68, + "end": 22849.14, + "probability": 0.6569 + }, + { + "start": 22850.08, + "end": 22854.02, + "probability": 0.7348 + }, + { + "start": 22854.02, + "end": 22856.82, + "probability": 0.2688 + }, + { + "start": 22856.94, + "end": 22861.48, + "probability": 0.4507 + }, + { + "start": 22861.86, + "end": 22862.36, + "probability": 0.0355 + }, + { + "start": 22876.3, + "end": 22876.94, + "probability": 0.0752 + }, + { + "start": 22876.94, + "end": 22878.44, + "probability": 0.5343 + }, + { + "start": 22878.5, + "end": 22881.08, + "probability": 0.9835 + }, + { + "start": 22881.56, + "end": 22884.54, + "probability": 0.9043 + }, + { + "start": 22884.54, + "end": 22888.56, + "probability": 0.3434 + }, + { + "start": 22889.12, + "end": 22891.86, + "probability": 0.1982 + }, + { + "start": 22910.27, + "end": 22914.88, + "probability": 0.2792 + }, + { + "start": 22915.4, + "end": 22915.86, + "probability": 0.3451 + }, + { + "start": 22916.4, + "end": 22918.3, + "probability": 0.1209 + }, + { + "start": 22919.66, + "end": 22920.22, + "probability": 0.173 + }, + { + "start": 22920.52, + "end": 22922.56, + "probability": 0.4448 + }, + { + "start": 22923.06, + "end": 22924.12, + "probability": 0.7874 + }, + { + "start": 22925.32, + "end": 22929.88, + "probability": 0.034 + }, + { + "start": 22930.42, + "end": 22930.7, + "probability": 0.0002 + }, + { + "start": 22932.34, + "end": 22933.12, + "probability": 0.0151 + }, + { + "start": 22933.14, + "end": 22933.16, + "probability": 0.0844 + }, + { + "start": 22933.36, + "end": 22933.64, + "probability": 0.1257 + }, + { + "start": 22936.36, + "end": 22936.38, + "probability": 0.1854 + }, + { + "start": 22936.38, + "end": 22937.0, + "probability": 0.3649 + }, + { + "start": 22937.18, + "end": 22939.18, + "probability": 0.6152 + }, + { + "start": 22939.4, + "end": 22941.2, + "probability": 0.4991 + }, + { + "start": 22942.04, + "end": 22943.9, + "probability": 0.8679 + }, + { + "start": 22943.9, + "end": 22946.8, + "probability": 0.8113 + }, + { + "start": 22947.6, + "end": 22949.7, + "probability": 0.737 + }, + { + "start": 22949.8, + "end": 22950.62, + "probability": 0.7881 + }, + { + "start": 22950.76, + "end": 22951.42, + "probability": 0.8987 + }, + { + "start": 22952.08, + "end": 22954.5, + "probability": 0.6186 + }, + { + "start": 22955.4, + "end": 22959.6, + "probability": 0.9162 + }, + { + "start": 22976.16, + "end": 22977.76, + "probability": 0.814 + }, + { + "start": 22980.94, + "end": 22981.78, + "probability": 0.5959 + }, + { + "start": 22982.02, + "end": 22982.82, + "probability": 0.5587 + }, + { + "start": 22983.36, + "end": 22984.06, + "probability": 0.7526 + }, + { + "start": 23000.47, + "end": 23004.46, + "probability": 0.5634 + }, + { + "start": 23005.88, + "end": 23006.4, + "probability": 0.5187 + }, + { + "start": 23007.25, + "end": 23012.12, + "probability": 0.9068 + }, + { + "start": 23014.0, + "end": 23019.02, + "probability": 0.9839 + }, + { + "start": 23022.14, + "end": 23023.0, + "probability": 0.5078 + }, + { + "start": 23024.62, + "end": 23025.78, + "probability": 0.9899 + }, + { + "start": 23027.94, + "end": 23031.48, + "probability": 0.9958 + }, + { + "start": 23032.75, + "end": 23036.14, + "probability": 0.7433 + }, + { + "start": 23037.56, + "end": 23043.04, + "probability": 0.9775 + }, + { + "start": 23044.76, + "end": 23047.28, + "probability": 0.9897 + }, + { + "start": 23047.28, + "end": 23050.04, + "probability": 0.9664 + }, + { + "start": 23050.08, + "end": 23051.64, + "probability": 0.4132 + }, + { + "start": 23052.52, + "end": 23054.58, + "probability": 0.998 + }, + { + "start": 23056.54, + "end": 23059.88, + "probability": 0.8604 + }, + { + "start": 23060.5, + "end": 23063.04, + "probability": 0.9753 + }, + { + "start": 23064.3, + "end": 23065.42, + "probability": 0.6302 + }, + { + "start": 23066.16, + "end": 23068.12, + "probability": 0.9341 + }, + { + "start": 23070.0, + "end": 23072.16, + "probability": 0.8757 + }, + { + "start": 23075.74, + "end": 23080.0, + "probability": 0.898 + }, + { + "start": 23083.66, + "end": 23084.62, + "probability": 0.5957 + }, + { + "start": 23085.88, + "end": 23086.42, + "probability": 0.6787 + }, + { + "start": 23088.18, + "end": 23091.92, + "probability": 0.9039 + }, + { + "start": 23093.1, + "end": 23093.82, + "probability": 0.9796 + }, + { + "start": 23095.44, + "end": 23097.9, + "probability": 0.798 + }, + { + "start": 23102.14, + "end": 23106.4, + "probability": 0.6949 + }, + { + "start": 23107.34, + "end": 23108.04, + "probability": 0.8547 + }, + { + "start": 23108.66, + "end": 23110.64, + "probability": 0.3903 + }, + { + "start": 23110.8, + "end": 23112.36, + "probability": 0.6077 + }, + { + "start": 23116.13, + "end": 23119.84, + "probability": 0.2943 + }, + { + "start": 23120.94, + "end": 23122.34, + "probability": 0.3819 + }, + { + "start": 23123.66, + "end": 23125.69, + "probability": 0.9941 + }, + { + "start": 23126.74, + "end": 23128.12, + "probability": 0.6728 + }, + { + "start": 23128.52, + "end": 23129.92, + "probability": 0.7038 + }, + { + "start": 23132.02, + "end": 23132.74, + "probability": 0.6613 + }, + { + "start": 23134.18, + "end": 23137.54, + "probability": 0.9259 + }, + { + "start": 23138.56, + "end": 23143.57, + "probability": 0.9642 + }, + { + "start": 23143.94, + "end": 23149.5, + "probability": 0.9741 + }, + { + "start": 23150.84, + "end": 23153.2, + "probability": 0.986 + }, + { + "start": 23155.32, + "end": 23159.32, + "probability": 0.9992 + }, + { + "start": 23160.72, + "end": 23164.26, + "probability": 0.7027 + }, + { + "start": 23164.36, + "end": 23165.38, + "probability": 0.938 + }, + { + "start": 23165.5, + "end": 23168.5, + "probability": 0.6328 + }, + { + "start": 23169.32, + "end": 23171.22, + "probability": 0.9993 + }, + { + "start": 23172.36, + "end": 23174.26, + "probability": 0.7691 + }, + { + "start": 23175.22, + "end": 23179.86, + "probability": 0.9863 + }, + { + "start": 23180.98, + "end": 23181.68, + "probability": 0.5631 + }, + { + "start": 23182.54, + "end": 23184.32, + "probability": 0.5927 + }, + { + "start": 23184.34, + "end": 23185.64, + "probability": 0.6084 + }, + { + "start": 23185.78, + "end": 23188.48, + "probability": 0.8501 + }, + { + "start": 23189.34, + "end": 23192.68, + "probability": 0.9545 + }, + { + "start": 23197.42, + "end": 23199.42, + "probability": 0.7669 + }, + { + "start": 23201.2, + "end": 23202.3, + "probability": 0.8259 + }, + { + "start": 23204.24, + "end": 23206.14, + "probability": 0.9917 + }, + { + "start": 23206.58, + "end": 23210.34, + "probability": 0.8785 + }, + { + "start": 23211.26, + "end": 23213.12, + "probability": 0.9106 + }, + { + "start": 23213.92, + "end": 23214.78, + "probability": 0.5184 + }, + { + "start": 23215.46, + "end": 23217.98, + "probability": 0.9935 + }, + { + "start": 23220.45, + "end": 23225.3, + "probability": 0.7864 + }, + { + "start": 23226.32, + "end": 23229.06, + "probability": 0.9793 + }, + { + "start": 23229.64, + "end": 23234.62, + "probability": 0.8151 + }, + { + "start": 23235.34, + "end": 23235.6, + "probability": 0.6546 + }, + { + "start": 23236.04, + "end": 23240.72, + "probability": 0.9039 + }, + { + "start": 23241.32, + "end": 23243.32, + "probability": 0.808 + }, + { + "start": 23244.06, + "end": 23246.32, + "probability": 0.9828 + }, + { + "start": 23246.32, + "end": 23246.78, + "probability": 0.5325 + }, + { + "start": 23246.8, + "end": 23248.06, + "probability": 0.5425 + }, + { + "start": 23248.7, + "end": 23251.68, + "probability": 0.8875 + }, + { + "start": 23251.88, + "end": 23254.64, + "probability": 0.585 + }, + { + "start": 23254.68, + "end": 23255.9, + "probability": 0.994 + }, + { + "start": 23256.66, + "end": 23257.52, + "probability": 0.0584 + }, + { + "start": 23258.1, + "end": 23258.34, + "probability": 0.9924 + }, + { + "start": 23259.26, + "end": 23260.76, + "probability": 0.7288 + }, + { + "start": 23269.04, + "end": 23269.9, + "probability": 0.2157 + }, + { + "start": 23269.92, + "end": 23270.76, + "probability": 0.7182 + }, + { + "start": 23270.86, + "end": 23271.74, + "probability": 0.6482 + }, + { + "start": 23273.3, + "end": 23275.78, + "probability": 0.9855 + }, + { + "start": 23277.78, + "end": 23280.48, + "probability": 0.9561 + }, + { + "start": 23280.48, + "end": 23284.44, + "probability": 0.9895 + }, + { + "start": 23286.08, + "end": 23287.44, + "probability": 0.9956 + }, + { + "start": 23289.58, + "end": 23291.52, + "probability": 0.8133 + }, + { + "start": 23292.52, + "end": 23295.18, + "probability": 0.9875 + }, + { + "start": 23295.74, + "end": 23298.0, + "probability": 0.9643 + }, + { + "start": 23298.94, + "end": 23302.24, + "probability": 0.8161 + }, + { + "start": 23303.22, + "end": 23306.76, + "probability": 0.9926 + }, + { + "start": 23307.18, + "end": 23308.3, + "probability": 0.8776 + }, + { + "start": 23309.48, + "end": 23318.34, + "probability": 0.9121 + }, + { + "start": 23318.46, + "end": 23320.64, + "probability": 0.7989 + }, + { + "start": 23321.98, + "end": 23323.6, + "probability": 0.9971 + }, + { + "start": 23323.82, + "end": 23325.6, + "probability": 0.9824 + }, + { + "start": 23326.12, + "end": 23327.74, + "probability": 0.9902 + }, + { + "start": 23328.52, + "end": 23329.28, + "probability": 0.7556 + }, + { + "start": 23330.34, + "end": 23331.98, + "probability": 0.9869 + }, + { + "start": 23332.64, + "end": 23334.52, + "probability": 0.9138 + }, + { + "start": 23336.02, + "end": 23337.32, + "probability": 0.9949 + }, + { + "start": 23337.9, + "end": 23338.7, + "probability": 0.5866 + }, + { + "start": 23339.4, + "end": 23340.44, + "probability": 0.9763 + }, + { + "start": 23341.36, + "end": 23342.7, + "probability": 0.8004 + }, + { + "start": 23343.9, + "end": 23348.26, + "probability": 0.9056 + }, + { + "start": 23349.06, + "end": 23350.66, + "probability": 0.9155 + }, + { + "start": 23351.84, + "end": 23353.08, + "probability": 0.98 + }, + { + "start": 23355.84, + "end": 23359.48, + "probability": 0.9689 + }, + { + "start": 23360.8, + "end": 23363.24, + "probability": 0.9921 + }, + { + "start": 23363.78, + "end": 23364.7, + "probability": 0.6757 + }, + { + "start": 23365.32, + "end": 23366.72, + "probability": 0.7921 + }, + { + "start": 23366.96, + "end": 23368.42, + "probability": 0.999 + }, + { + "start": 23368.5, + "end": 23373.74, + "probability": 0.9817 + }, + { + "start": 23374.52, + "end": 23378.28, + "probability": 0.9652 + }, + { + "start": 23378.32, + "end": 23380.4, + "probability": 0.81 + }, + { + "start": 23380.54, + "end": 23385.19, + "probability": 0.9903 + }, + { + "start": 23385.52, + "end": 23386.26, + "probability": 0.8061 + }, + { + "start": 23386.3, + "end": 23387.12, + "probability": 0.731 + }, + { + "start": 23387.22, + "end": 23389.16, + "probability": 0.8929 + }, + { + "start": 23389.16, + "end": 23392.16, + "probability": 0.9118 + }, + { + "start": 23392.46, + "end": 23394.26, + "probability": 0.976 + }, + { + "start": 23394.46, + "end": 23395.2, + "probability": 0.6337 + }, + { + "start": 23395.32, + "end": 23397.08, + "probability": 0.9871 + }, + { + "start": 23397.42, + "end": 23400.36, + "probability": 0.8257 + }, + { + "start": 23401.22, + "end": 23402.14, + "probability": 0.9308 + }, + { + "start": 23402.34, + "end": 23403.17, + "probability": 0.1801 + }, + { + "start": 23404.48, + "end": 23404.6, + "probability": 0.0855 + }, + { + "start": 23404.6, + "end": 23406.24, + "probability": 0.8923 + }, + { + "start": 23406.32, + "end": 23407.96, + "probability": 0.9742 + }, + { + "start": 23408.64, + "end": 23412.52, + "probability": 0.9465 + }, + { + "start": 23412.58, + "end": 23413.62, + "probability": 0.9794 + }, + { + "start": 23413.86, + "end": 23415.42, + "probability": 0.9333 + }, + { + "start": 23415.86, + "end": 23416.96, + "probability": 0.9674 + }, + { + "start": 23417.66, + "end": 23419.52, + "probability": 0.9956 + }, + { + "start": 23420.34, + "end": 23422.1, + "probability": 0.9005 + }, + { + "start": 23422.7, + "end": 23425.14, + "probability": 0.9679 + }, + { + "start": 23425.76, + "end": 23429.56, + "probability": 0.9912 + }, + { + "start": 23430.38, + "end": 23434.28, + "probability": 0.9821 + }, + { + "start": 23434.86, + "end": 23438.2, + "probability": 0.6121 + }, + { + "start": 23439.08, + "end": 23441.14, + "probability": 0.9871 + }, + { + "start": 23441.58, + "end": 23442.82, + "probability": 0.9946 + }, + { + "start": 23443.74, + "end": 23447.52, + "probability": 0.9852 + }, + { + "start": 23448.24, + "end": 23452.12, + "probability": 0.9933 + }, + { + "start": 23452.12, + "end": 23454.14, + "probability": 0.5513 + }, + { + "start": 23454.24, + "end": 23455.18, + "probability": 0.8576 + }, + { + "start": 23455.64, + "end": 23456.16, + "probability": 0.3909 + }, + { + "start": 23457.5, + "end": 23459.54, + "probability": 0.5866 + }, + { + "start": 23466.66, + "end": 23468.8, + "probability": 0.4825 + }, + { + "start": 23468.8, + "end": 23470.62, + "probability": 0.6239 + }, + { + "start": 23471.3, + "end": 23471.3, + "probability": 0.0504 + }, + { + "start": 23471.3, + "end": 23471.3, + "probability": 0.1589 + }, + { + "start": 23471.3, + "end": 23471.3, + "probability": 0.2484 + }, + { + "start": 23471.3, + "end": 23474.61, + "probability": 0.3527 + }, + { + "start": 23477.04, + "end": 23480.64, + "probability": 0.963 + }, + { + "start": 23481.54, + "end": 23489.4, + "probability": 0.9826 + }, + { + "start": 23490.3, + "end": 23496.8, + "probability": 0.9186 + }, + { + "start": 23496.9, + "end": 23498.12, + "probability": 0.8311 + }, + { + "start": 23499.14, + "end": 23500.06, + "probability": 0.1146 + }, + { + "start": 23501.84, + "end": 23503.4, + "probability": 0.7562 + }, + { + "start": 23504.54, + "end": 23512.1, + "probability": 0.9995 + }, + { + "start": 23513.56, + "end": 23514.14, + "probability": 0.6538 + }, + { + "start": 23514.74, + "end": 23519.12, + "probability": 0.9956 + }, + { + "start": 23520.94, + "end": 23523.3, + "probability": 0.7428 + }, + { + "start": 23524.06, + "end": 23529.34, + "probability": 0.9912 + }, + { + "start": 23529.8, + "end": 23533.48, + "probability": 0.8857 + }, + { + "start": 23534.92, + "end": 23544.46, + "probability": 0.9285 + }, + { + "start": 23544.58, + "end": 23545.78, + "probability": 0.766 + }, + { + "start": 23546.7, + "end": 23549.26, + "probability": 0.8092 + }, + { + "start": 23549.92, + "end": 23553.5, + "probability": 0.9517 + }, + { + "start": 23554.52, + "end": 23561.02, + "probability": 0.9316 + }, + { + "start": 23561.42, + "end": 23562.88, + "probability": 0.9983 + }, + { + "start": 23564.74, + "end": 23566.26, + "probability": 0.9938 + }, + { + "start": 23566.34, + "end": 23570.52, + "probability": 0.9874 + }, + { + "start": 23571.7, + "end": 23572.72, + "probability": 0.9827 + }, + { + "start": 23573.46, + "end": 23576.4, + "probability": 0.9886 + }, + { + "start": 23576.5, + "end": 23577.72, + "probability": 0.8853 + }, + { + "start": 23578.18, + "end": 23579.12, + "probability": 0.8329 + }, + { + "start": 23579.5, + "end": 23584.64, + "probability": 0.7209 + }, + { + "start": 23586.54, + "end": 23588.46, + "probability": 0.9801 + }, + { + "start": 23588.58, + "end": 23590.2, + "probability": 0.8166 + }, + { + "start": 23590.26, + "end": 23598.06, + "probability": 0.9531 + }, + { + "start": 23598.14, + "end": 23601.6, + "probability": 0.9718 + }, + { + "start": 23602.72, + "end": 23603.34, + "probability": 0.6266 + }, + { + "start": 23604.9, + "end": 23611.8, + "probability": 0.9759 + }, + { + "start": 23613.52, + "end": 23615.14, + "probability": 0.9938 + }, + { + "start": 23615.38, + "end": 23620.8, + "probability": 0.9915 + }, + { + "start": 23621.18, + "end": 23623.8, + "probability": 0.9823 + }, + { + "start": 23625.6, + "end": 23626.96, + "probability": 0.9167 + }, + { + "start": 23627.06, + "end": 23627.76, + "probability": 0.9071 + }, + { + "start": 23627.9, + "end": 23633.82, + "probability": 0.9707 + }, + { + "start": 23634.5, + "end": 23637.0, + "probability": 0.9421 + }, + { + "start": 23637.86, + "end": 23644.22, + "probability": 0.9832 + }, + { + "start": 23644.68, + "end": 23647.8, + "probability": 0.9762 + }, + { + "start": 23647.86, + "end": 23648.3, + "probability": 0.6489 + }, + { + "start": 23648.66, + "end": 23649.3, + "probability": 0.6645 + }, + { + "start": 23649.56, + "end": 23651.06, + "probability": 0.5435 + }, + { + "start": 23651.92, + "end": 23655.14, + "probability": 0.7127 + }, + { + "start": 23655.2, + "end": 23656.92, + "probability": 0.647 + }, + { + "start": 23657.02, + "end": 23658.42, + "probability": 0.9912 + }, + { + "start": 23658.5, + "end": 23659.27, + "probability": 0.5722 + }, + { + "start": 23660.12, + "end": 23662.04, + "probability": 0.2354 + }, + { + "start": 23662.94, + "end": 23665.58, + "probability": 0.9854 + }, + { + "start": 23666.14, + "end": 23667.06, + "probability": 0.9474 + }, + { + "start": 23667.2, + "end": 23667.9, + "probability": 0.3214 + }, + { + "start": 23675.3, + "end": 23675.66, + "probability": 0.1634 + }, + { + "start": 23675.66, + "end": 23676.36, + "probability": 0.2183 + }, + { + "start": 23676.42, + "end": 23677.78, + "probability": 0.6506 + }, + { + "start": 23677.9, + "end": 23678.3, + "probability": 0.7938 + }, + { + "start": 23678.4, + "end": 23681.14, + "probability": 0.8958 + }, + { + "start": 23681.24, + "end": 23685.16, + "probability": 0.9788 + }, + { + "start": 23685.42, + "end": 23691.64, + "probability": 0.9802 + }, + { + "start": 23691.76, + "end": 23692.7, + "probability": 0.7704 + }, + { + "start": 23692.88, + "end": 23693.74, + "probability": 0.7973 + }, + { + "start": 23694.3, + "end": 23695.84, + "probability": 0.8438 + }, + { + "start": 23695.88, + "end": 23701.36, + "probability": 0.9648 + }, + { + "start": 23701.6, + "end": 23702.4, + "probability": 0.8704 + }, + { + "start": 23703.45, + "end": 23707.36, + "probability": 0.9407 + }, + { + "start": 23708.26, + "end": 23712.04, + "probability": 0.9673 + }, + { + "start": 23712.36, + "end": 23717.16, + "probability": 0.8647 + }, + { + "start": 23717.44, + "end": 23719.64, + "probability": 0.6448 + }, + { + "start": 23720.0, + "end": 23722.38, + "probability": 0.8695 + }, + { + "start": 23723.16, + "end": 23731.26, + "probability": 0.9939 + }, + { + "start": 23731.36, + "end": 23732.66, + "probability": 0.8933 + }, + { + "start": 23734.02, + "end": 23734.42, + "probability": 0.8924 + }, + { + "start": 23734.82, + "end": 23736.12, + "probability": 0.7032 + }, + { + "start": 23736.6, + "end": 23740.8, + "probability": 0.9712 + }, + { + "start": 23740.8, + "end": 23745.75, + "probability": 0.9653 + }, + { + "start": 23746.6, + "end": 23750.74, + "probability": 0.8756 + }, + { + "start": 23751.32, + "end": 23753.16, + "probability": 0.9852 + }, + { + "start": 23753.94, + "end": 23758.6, + "probability": 0.7097 + }, + { + "start": 23759.72, + "end": 23762.1, + "probability": 0.854 + }, + { + "start": 23762.52, + "end": 23765.32, + "probability": 0.7032 + }, + { + "start": 23765.36, + "end": 23771.1, + "probability": 0.9839 + }, + { + "start": 23771.52, + "end": 23773.64, + "probability": 0.7361 + }, + { + "start": 23773.86, + "end": 23776.2, + "probability": 0.9333 + }, + { + "start": 23776.66, + "end": 23778.52, + "probability": 0.9814 + }, + { + "start": 23778.78, + "end": 23779.48, + "probability": 0.3507 + }, + { + "start": 23781.9, + "end": 23784.28, + "probability": 0.7528 + }, + { + "start": 23784.82, + "end": 23790.32, + "probability": 0.9764 + }, + { + "start": 23790.78, + "end": 23795.08, + "probability": 0.9838 + }, + { + "start": 23795.7, + "end": 23796.34, + "probability": 0.755 + }, + { + "start": 23796.46, + "end": 23797.28, + "probability": 0.4385 + }, + { + "start": 23797.4, + "end": 23797.84, + "probability": 0.4561 + }, + { + "start": 23798.06, + "end": 23799.54, + "probability": 0.5916 + }, + { + "start": 23799.74, + "end": 23800.52, + "probability": 0.3766 + }, + { + "start": 23800.66, + "end": 23801.3, + "probability": 0.9299 + }, + { + "start": 23801.5, + "end": 23803.14, + "probability": 0.5804 + }, + { + "start": 23803.98, + "end": 23806.94, + "probability": 0.7979 + }, + { + "start": 23806.98, + "end": 23809.32, + "probability": 0.6447 + }, + { + "start": 23809.6, + "end": 23812.86, + "probability": 0.9919 + }, + { + "start": 23812.98, + "end": 23815.06, + "probability": 0.7695 + }, + { + "start": 23815.7, + "end": 23816.94, + "probability": 0.849 + }, + { + "start": 23817.02, + "end": 23823.54, + "probability": 0.8214 + }, + { + "start": 23824.34, + "end": 23829.54, + "probability": 0.9896 + }, + { + "start": 23829.78, + "end": 23831.9, + "probability": 0.8847 + }, + { + "start": 23833.1, + "end": 23836.94, + "probability": 0.9838 + }, + { + "start": 23837.18, + "end": 23838.76, + "probability": 0.9551 + }, + { + "start": 23838.96, + "end": 23840.04, + "probability": 0.3718 + }, + { + "start": 23840.04, + "end": 23842.66, + "probability": 0.9825 + }, + { + "start": 23843.17, + "end": 23844.92, + "probability": 0.495 + }, + { + "start": 23844.92, + "end": 23847.48, + "probability": 0.9255 + }, + { + "start": 23847.48, + "end": 23849.19, + "probability": 0.4574 + }, + { + "start": 23849.3, + "end": 23849.6, + "probability": 0.9236 + }, + { + "start": 23849.6, + "end": 23852.32, + "probability": 0.9957 + }, + { + "start": 23852.36, + "end": 23853.72, + "probability": 0.9524 + }, + { + "start": 23854.24, + "end": 23855.14, + "probability": 0.3205 + }, + { + "start": 23855.14, + "end": 23856.34, + "probability": 0.5598 + }, + { + "start": 23856.42, + "end": 23856.68, + "probability": 0.4286 + }, + { + "start": 23856.84, + "end": 23861.96, + "probability": 0.9946 + }, + { + "start": 23862.0, + "end": 23863.2, + "probability": 0.7516 + }, + { + "start": 23863.24, + "end": 23865.12, + "probability": 0.8487 + }, + { + "start": 23865.12, + "end": 23866.0, + "probability": 0.3572 + }, + { + "start": 23866.38, + "end": 23872.98, + "probability": 0.9731 + }, + { + "start": 23873.54, + "end": 23878.7, + "probability": 0.9966 + }, + { + "start": 23879.14, + "end": 23879.88, + "probability": 0.5641 + }, + { + "start": 23880.62, + "end": 23881.34, + "probability": 0.4968 + }, + { + "start": 23881.96, + "end": 23883.78, + "probability": 0.2575 + }, + { + "start": 23883.78, + "end": 23883.78, + "probability": 0.0607 + }, + { + "start": 23886.18, + "end": 23889.66, + "probability": 0.7515 + }, + { + "start": 23890.0, + "end": 23890.66, + "probability": 0.4691 + }, + { + "start": 23890.98, + "end": 23893.55, + "probability": 0.855 + }, + { + "start": 23893.72, + "end": 23897.48, + "probability": 0.9302 + }, + { + "start": 23898.24, + "end": 23901.0, + "probability": 0.9437 + }, + { + "start": 23901.24, + "end": 23905.78, + "probability": 0.9971 + }, + { + "start": 23906.24, + "end": 23909.22, + "probability": 0.7839 + }, + { + "start": 23909.22, + "end": 23909.24, + "probability": 0.0142 + }, + { + "start": 23909.24, + "end": 23910.22, + "probability": 0.4536 + }, + { + "start": 23910.34, + "end": 23912.36, + "probability": 0.6975 + }, + { + "start": 23912.38, + "end": 23913.34, + "probability": 0.9534 + }, + { + "start": 23913.42, + "end": 23913.86, + "probability": 0.8009 + }, + { + "start": 23914.8, + "end": 23915.82, + "probability": 0.7064 + }, + { + "start": 23916.1, + "end": 23917.84, + "probability": 0.7618 + }, + { + "start": 23927.61, + "end": 23929.44, + "probability": 0.7932 + }, + { + "start": 23930.98, + "end": 23932.86, + "probability": 0.6349 + }, + { + "start": 23933.9, + "end": 23938.18, + "probability": 0.877 + }, + { + "start": 23939.82, + "end": 23942.02, + "probability": 0.8099 + }, + { + "start": 23943.4, + "end": 23944.34, + "probability": 0.7409 + }, + { + "start": 23945.84, + "end": 23946.59, + "probability": 0.9885 + }, + { + "start": 23947.74, + "end": 23949.18, + "probability": 0.9956 + }, + { + "start": 23950.1, + "end": 23950.52, + "probability": 0.9157 + }, + { + "start": 23951.58, + "end": 23952.12, + "probability": 0.9906 + }, + { + "start": 23952.9, + "end": 23953.4, + "probability": 0.9937 + }, + { + "start": 23954.06, + "end": 23954.72, + "probability": 0.9412 + }, + { + "start": 23955.76, + "end": 23956.3, + "probability": 0.8311 + }, + { + "start": 23956.68, + "end": 23959.2, + "probability": 0.8185 + }, + { + "start": 23960.04, + "end": 23961.12, + "probability": 0.9849 + }, + { + "start": 23962.8, + "end": 23969.66, + "probability": 0.924 + }, + { + "start": 23969.8, + "end": 23970.66, + "probability": 0.6136 + }, + { + "start": 23972.2, + "end": 23974.3, + "probability": 0.8962 + }, + { + "start": 23976.24, + "end": 23978.08, + "probability": 0.9844 + }, + { + "start": 23978.22, + "end": 23981.42, + "probability": 0.9666 + }, + { + "start": 23982.66, + "end": 23986.28, + "probability": 0.6238 + }, + { + "start": 23987.42, + "end": 23989.72, + "probability": 0.5462 + }, + { + "start": 23990.9, + "end": 23996.7, + "probability": 0.9336 + }, + { + "start": 23997.54, + "end": 24000.36, + "probability": 0.8649 + }, + { + "start": 24001.76, + "end": 24004.74, + "probability": 0.9903 + }, + { + "start": 24005.2, + "end": 24006.74, + "probability": 0.9857 + }, + { + "start": 24006.9, + "end": 24008.16, + "probability": 0.7979 + }, + { + "start": 24008.66, + "end": 24012.38, + "probability": 0.9388 + }, + { + "start": 24012.74, + "end": 24013.61, + "probability": 0.8704 + }, + { + "start": 24014.1, + "end": 24014.46, + "probability": 0.7195 + }, + { + "start": 24014.82, + "end": 24016.54, + "probability": 0.4719 + }, + { + "start": 24017.16, + "end": 24019.68, + "probability": 0.7246 + }, + { + "start": 24021.06, + "end": 24021.84, + "probability": 0.9074 + }, + { + "start": 24023.26, + "end": 24026.46, + "probability": 0.9075 + }, + { + "start": 24027.28, + "end": 24030.1, + "probability": 0.9469 + }, + { + "start": 24032.96, + "end": 24034.6, + "probability": 0.6216 + }, + { + "start": 24034.62, + "end": 24035.72, + "probability": 0.6917 + }, + { + "start": 24035.78, + "end": 24037.6, + "probability": 0.8445 + }, + { + "start": 24037.72, + "end": 24038.37, + "probability": 0.9243 + }, + { + "start": 24040.24, + "end": 24043.08, + "probability": 0.9914 + }, + { + "start": 24044.02, + "end": 24047.04, + "probability": 0.8695 + }, + { + "start": 24048.22, + "end": 24052.06, + "probability": 0.9953 + }, + { + "start": 24052.44, + "end": 24054.74, + "probability": 0.5802 + }, + { + "start": 24055.24, + "end": 24055.58, + "probability": 0.6709 + }, + { + "start": 24055.7, + "end": 24056.8, + "probability": 0.7995 + }, + { + "start": 24057.06, + "end": 24057.32, + "probability": 0.7249 + }, + { + "start": 24057.48, + "end": 24058.36, + "probability": 0.6359 + }, + { + "start": 24058.48, + "end": 24058.56, + "probability": 0.3782 + }, + { + "start": 24058.64, + "end": 24059.32, + "probability": 0.5719 + }, + { + "start": 24059.92, + "end": 24061.36, + "probability": 0.6394 + }, + { + "start": 24061.84, + "end": 24062.0, + "probability": 0.3286 + }, + { + "start": 24062.0, + "end": 24063.55, + "probability": 0.1371 + }, + { + "start": 24064.0, + "end": 24065.64, + "probability": 0.8639 + }, + { + "start": 24065.74, + "end": 24067.12, + "probability": 0.9972 + }, + { + "start": 24067.78, + "end": 24069.28, + "probability": 0.7162 + }, + { + "start": 24069.34, + "end": 24070.28, + "probability": 0.9978 + }, + { + "start": 24071.5, + "end": 24072.4, + "probability": 0.8372 + }, + { + "start": 24074.66, + "end": 24076.12, + "probability": 0.9976 + }, + { + "start": 24077.52, + "end": 24079.36, + "probability": 0.9917 + }, + { + "start": 24079.52, + "end": 24081.9, + "probability": 0.7565 + }, + { + "start": 24081.98, + "end": 24082.82, + "probability": 0.7617 + }, + { + "start": 24084.0, + "end": 24084.94, + "probability": 0.999 + }, + { + "start": 24085.04, + "end": 24086.02, + "probability": 0.826 + }, + { + "start": 24086.06, + "end": 24086.9, + "probability": 0.9966 + }, + { + "start": 24088.1, + "end": 24089.5, + "probability": 0.9866 + }, + { + "start": 24090.32, + "end": 24092.94, + "probability": 0.9859 + }, + { + "start": 24093.6, + "end": 24094.86, + "probability": 0.9621 + }, + { + "start": 24095.5, + "end": 24096.84, + "probability": 0.9819 + }, + { + "start": 24097.3, + "end": 24099.88, + "probability": 0.9862 + }, + { + "start": 24099.94, + "end": 24101.96, + "probability": 0.9762 + }, + { + "start": 24102.56, + "end": 24103.64, + "probability": 0.8541 + }, + { + "start": 24103.9, + "end": 24104.68, + "probability": 0.9495 + }, + { + "start": 24105.52, + "end": 24107.46, + "probability": 0.9972 + }, + { + "start": 24107.5, + "end": 24108.46, + "probability": 0.9885 + }, + { + "start": 24109.24, + "end": 24110.52, + "probability": 0.9138 + }, + { + "start": 24111.04, + "end": 24115.58, + "probability": 0.8516 + }, + { + "start": 24116.8, + "end": 24118.7, + "probability": 0.9019 + }, + { + "start": 24118.88, + "end": 24119.52, + "probability": 0.8916 + }, + { + "start": 24120.3, + "end": 24120.82, + "probability": 0.8323 + }, + { + "start": 24122.64, + "end": 24125.7, + "probability": 0.9924 + }, + { + "start": 24127.08, + "end": 24127.68, + "probability": 0.981 + }, + { + "start": 24127.72, + "end": 24129.6, + "probability": 0.9928 + }, + { + "start": 24129.72, + "end": 24131.86, + "probability": 0.9751 + }, + { + "start": 24132.1, + "end": 24132.68, + "probability": 0.8715 + }, + { + "start": 24132.74, + "end": 24133.66, + "probability": 0.5831 + }, + { + "start": 24133.74, + "end": 24134.22, + "probability": 0.8395 + }, + { + "start": 24134.24, + "end": 24134.83, + "probability": 0.7442 + }, + { + "start": 24135.06, + "end": 24136.84, + "probability": 0.958 + }, + { + "start": 24137.08, + "end": 24139.34, + "probability": 0.9679 + }, + { + "start": 24139.68, + "end": 24140.25, + "probability": 0.9907 + }, + { + "start": 24140.68, + "end": 24141.04, + "probability": 0.6922 + }, + { + "start": 24142.06, + "end": 24143.24, + "probability": 0.763 + }, + { + "start": 24143.38, + "end": 24144.5, + "probability": 0.8728 + }, + { + "start": 24145.16, + "end": 24149.44, + "probability": 0.9982 + }, + { + "start": 24150.1, + "end": 24152.14, + "probability": 0.994 + }, + { + "start": 24152.14, + "end": 24154.92, + "probability": 0.9977 + }, + { + "start": 24154.94, + "end": 24156.0, + "probability": 0.9237 + }, + { + "start": 24156.5, + "end": 24156.66, + "probability": 0.6664 + }, + { + "start": 24156.68, + "end": 24157.52, + "probability": 0.5101 + }, + { + "start": 24157.56, + "end": 24159.38, + "probability": 0.5996 + }, + { + "start": 24174.9, + "end": 24177.94, + "probability": 0.901 + }, + { + "start": 24178.58, + "end": 24179.1, + "probability": 0.9502 + }, + { + "start": 24185.28, + "end": 24186.96, + "probability": 0.7521 + }, + { + "start": 24188.44, + "end": 24193.02, + "probability": 0.3542 + }, + { + "start": 24195.0, + "end": 24199.44, + "probability": 0.5499 + }, + { + "start": 24200.74, + "end": 24201.98, + "probability": 0.9359 + }, + { + "start": 24203.26, + "end": 24204.54, + "probability": 0.8061 + }, + { + "start": 24205.46, + "end": 24207.02, + "probability": 0.6118 + }, + { + "start": 24209.82, + "end": 24213.28, + "probability": 0.9976 + }, + { + "start": 24213.8, + "end": 24216.06, + "probability": 0.9396 + }, + { + "start": 24216.3, + "end": 24217.44, + "probability": 0.4507 + }, + { + "start": 24217.84, + "end": 24222.98, + "probability": 0.8791 + }, + { + "start": 24224.1, + "end": 24227.32, + "probability": 0.7722 + }, + { + "start": 24228.54, + "end": 24229.4, + "probability": 0.9418 + }, + { + "start": 24230.36, + "end": 24232.06, + "probability": 0.98 + }, + { + "start": 24232.8, + "end": 24236.8, + "probability": 0.9466 + }, + { + "start": 24237.44, + "end": 24238.2, + "probability": 0.9606 + }, + { + "start": 24239.04, + "end": 24242.48, + "probability": 0.9315 + }, + { + "start": 24243.88, + "end": 24244.8, + "probability": 0.6575 + }, + { + "start": 24245.9, + "end": 24248.12, + "probability": 0.9033 + }, + { + "start": 24249.0, + "end": 24251.12, + "probability": 0.9812 + }, + { + "start": 24252.06, + "end": 24253.36, + "probability": 0.8494 + }, + { + "start": 24254.28, + "end": 24258.72, + "probability": 0.9706 + }, + { + "start": 24259.56, + "end": 24264.54, + "probability": 0.9838 + }, + { + "start": 24265.58, + "end": 24266.66, + "probability": 0.7742 + }, + { + "start": 24267.38, + "end": 24270.72, + "probability": 0.9782 + }, + { + "start": 24270.74, + "end": 24271.26, + "probability": 0.8972 + }, + { + "start": 24271.36, + "end": 24274.0, + "probability": 0.5999 + }, + { + "start": 24275.0, + "end": 24276.48, + "probability": 0.9095 + }, + { + "start": 24277.8, + "end": 24278.39, + "probability": 0.896 + }, + { + "start": 24279.74, + "end": 24281.44, + "probability": 0.6853 + }, + { + "start": 24282.8, + "end": 24283.4, + "probability": 0.4346 + }, + { + "start": 24283.78, + "end": 24284.64, + "probability": 0.9383 + }, + { + "start": 24285.12, + "end": 24288.58, + "probability": 0.9126 + }, + { + "start": 24288.58, + "end": 24292.22, + "probability": 0.9814 + }, + { + "start": 24293.3, + "end": 24294.56, + "probability": 0.7975 + }, + { + "start": 24295.28, + "end": 24298.44, + "probability": 0.7019 + }, + { + "start": 24299.06, + "end": 24299.94, + "probability": 0.8184 + }, + { + "start": 24300.88, + "end": 24301.58, + "probability": 0.7915 + }, + { + "start": 24302.06, + "end": 24309.04, + "probability": 0.9961 + }, + { + "start": 24309.98, + "end": 24311.94, + "probability": 0.9875 + }, + { + "start": 24313.52, + "end": 24316.44, + "probability": 0.9849 + }, + { + "start": 24316.52, + "end": 24319.12, + "probability": 0.9629 + }, + { + "start": 24319.26, + "end": 24319.96, + "probability": 0.8883 + }, + { + "start": 24320.8, + "end": 24324.58, + "probability": 0.6647 + }, + { + "start": 24325.1, + "end": 24325.69, + "probability": 0.9533 + }, + { + "start": 24326.76, + "end": 24328.26, + "probability": 0.9534 + }, + { + "start": 24329.02, + "end": 24329.02, + "probability": 0.8813 + }, + { + "start": 24331.2, + "end": 24332.0, + "probability": 0.6202 + }, + { + "start": 24332.2, + "end": 24332.84, + "probability": 0.886 + }, + { + "start": 24332.98, + "end": 24334.3, + "probability": 0.7134 + }, + { + "start": 24334.42, + "end": 24336.88, + "probability": 0.8606 + }, + { + "start": 24337.58, + "end": 24338.74, + "probability": 0.9031 + }, + { + "start": 24339.4, + "end": 24342.38, + "probability": 0.8468 + }, + { + "start": 24342.72, + "end": 24342.98, + "probability": 0.9333 + }, + { + "start": 24344.18, + "end": 24346.56, + "probability": 0.8979 + }, + { + "start": 24347.2, + "end": 24347.86, + "probability": 0.6941 + }, + { + "start": 24348.6, + "end": 24351.42, + "probability": 0.9561 + }, + { + "start": 24352.54, + "end": 24356.54, + "probability": 0.9419 + }, + { + "start": 24357.02, + "end": 24357.86, + "probability": 0.9547 + }, + { + "start": 24358.2, + "end": 24359.0, + "probability": 0.8023 + }, + { + "start": 24359.36, + "end": 24360.44, + "probability": 0.979 + }, + { + "start": 24360.6, + "end": 24365.32, + "probability": 0.9895 + }, + { + "start": 24365.84, + "end": 24366.32, + "probability": 0.9343 + }, + { + "start": 24367.44, + "end": 24368.74, + "probability": 0.5572 + }, + { + "start": 24368.98, + "end": 24373.36, + "probability": 0.9384 + }, + { + "start": 24373.48, + "end": 24373.96, + "probability": 0.8353 + }, + { + "start": 24389.4, + "end": 24391.44, + "probability": 0.684 + }, + { + "start": 24391.98, + "end": 24395.54, + "probability": 0.9904 + }, + { + "start": 24395.7, + "end": 24398.56, + "probability": 0.959 + }, + { + "start": 24399.02, + "end": 24400.48, + "probability": 0.991 + }, + { + "start": 24400.62, + "end": 24401.62, + "probability": 0.9208 + }, + { + "start": 24402.58, + "end": 24405.02, + "probability": 0.7276 + }, + { + "start": 24405.08, + "end": 24408.39, + "probability": 0.9924 + }, + { + "start": 24409.78, + "end": 24413.98, + "probability": 0.9983 + }, + { + "start": 24416.98, + "end": 24422.14, + "probability": 0.9778 + }, + { + "start": 24422.14, + "end": 24426.0, + "probability": 0.8728 + }, + { + "start": 24427.5, + "end": 24429.12, + "probability": 0.9932 + }, + { + "start": 24429.66, + "end": 24431.12, + "probability": 0.9683 + }, + { + "start": 24431.38, + "end": 24432.56, + "probability": 0.6034 + }, + { + "start": 24432.76, + "end": 24437.9, + "probability": 0.9974 + }, + { + "start": 24438.74, + "end": 24440.72, + "probability": 0.9961 + }, + { + "start": 24440.72, + "end": 24443.74, + "probability": 0.9617 + }, + { + "start": 24444.13, + "end": 24447.18, + "probability": 0.9932 + }, + { + "start": 24447.18, + "end": 24451.66, + "probability": 0.9927 + }, + { + "start": 24451.78, + "end": 24453.92, + "probability": 0.9994 + }, + { + "start": 24454.6, + "end": 24457.56, + "probability": 0.9888 + }, + { + "start": 24458.5, + "end": 24460.7, + "probability": 0.9952 + }, + { + "start": 24461.26, + "end": 24463.82, + "probability": 0.981 + }, + { + "start": 24464.72, + "end": 24466.92, + "probability": 0.9485 + }, + { + "start": 24467.2, + "end": 24469.22, + "probability": 0.9924 + }, + { + "start": 24470.0, + "end": 24472.98, + "probability": 0.998 + }, + { + "start": 24473.2, + "end": 24477.26, + "probability": 0.9855 + }, + { + "start": 24478.12, + "end": 24479.08, + "probability": 0.8176 + }, + { + "start": 24479.16, + "end": 24482.92, + "probability": 0.9495 + }, + { + "start": 24483.62, + "end": 24488.12, + "probability": 0.3528 + }, + { + "start": 24489.02, + "end": 24493.12, + "probability": 0.9888 + }, + { + "start": 24493.24, + "end": 24493.68, + "probability": 0.609 + }, + { + "start": 24493.76, + "end": 24495.7, + "probability": 0.494 + }, + { + "start": 24496.34, + "end": 24497.62, + "probability": 0.9576 + }, + { + "start": 24497.78, + "end": 24501.36, + "probability": 0.9971 + }, + { + "start": 24501.74, + "end": 24503.38, + "probability": 0.9336 + }, + { + "start": 24503.52, + "end": 24509.3, + "probability": 0.9875 + }, + { + "start": 24509.92, + "end": 24511.5, + "probability": 0.9761 + }, + { + "start": 24512.02, + "end": 24514.0, + "probability": 0.9761 + }, + { + "start": 24514.6, + "end": 24518.56, + "probability": 0.9857 + }, + { + "start": 24519.32, + "end": 24521.54, + "probability": 0.8577 + }, + { + "start": 24521.62, + "end": 24521.8, + "probability": 0.7909 + }, + { + "start": 24521.84, + "end": 24522.68, + "probability": 0.9719 + }, + { + "start": 24522.78, + "end": 24523.67, + "probability": 0.9404 + }, + { + "start": 24524.46, + "end": 24527.82, + "probability": 0.9974 + }, + { + "start": 24529.04, + "end": 24530.5, + "probability": 0.9576 + }, + { + "start": 24531.02, + "end": 24534.4, + "probability": 0.9987 + }, + { + "start": 24536.31, + "end": 24539.72, + "probability": 0.9736 + }, + { + "start": 24539.94, + "end": 24542.0, + "probability": 0.9939 + }, + { + "start": 24543.12, + "end": 24545.12, + "probability": 0.9985 + }, + { + "start": 24545.42, + "end": 24546.04, + "probability": 0.536 + }, + { + "start": 24546.08, + "end": 24547.5, + "probability": 0.9182 + }, + { + "start": 24547.74, + "end": 24548.5, + "probability": 0.7233 + }, + { + "start": 24548.52, + "end": 24552.28, + "probability": 0.9749 + }, + { + "start": 24552.28, + "end": 24555.66, + "probability": 0.8366 + }, + { + "start": 24556.58, + "end": 24557.98, + "probability": 0.7473 + }, + { + "start": 24558.48, + "end": 24560.0, + "probability": 0.1401 + }, + { + "start": 24560.3, + "end": 24562.14, + "probability": 0.9281 + }, + { + "start": 24562.36, + "end": 24562.62, + "probability": 0.3406 + }, + { + "start": 24565.2, + "end": 24565.46, + "probability": 0.0347 + }, + { + "start": 24566.3, + "end": 24568.6, + "probability": 0.416 + }, + { + "start": 24569.12, + "end": 24571.04, + "probability": 0.6288 + }, + { + "start": 24571.32, + "end": 24577.14, + "probability": 0.9899 + }, + { + "start": 24577.72, + "end": 24580.52, + "probability": 0.9957 + }, + { + "start": 24580.7, + "end": 24582.8, + "probability": 0.9245 + }, + { + "start": 24582.86, + "end": 24583.49, + "probability": 0.2926 + }, + { + "start": 24584.62, + "end": 24586.62, + "probability": 0.5594 + }, + { + "start": 24586.68, + "end": 24588.36, + "probability": 0.2085 + }, + { + "start": 24588.47, + "end": 24591.14, + "probability": 0.8029 + }, + { + "start": 24591.24, + "end": 24593.04, + "probability": 0.4861 + }, + { + "start": 24593.34, + "end": 24593.34, + "probability": 0.0857 + }, + { + "start": 24593.34, + "end": 24593.76, + "probability": 0.5475 + }, + { + "start": 24593.76, + "end": 24594.32, + "probability": 0.3444 + }, + { + "start": 24594.7, + "end": 24597.22, + "probability": 0.1989 + }, + { + "start": 24597.3, + "end": 24597.58, + "probability": 0.0926 + }, + { + "start": 24597.58, + "end": 24598.06, + "probability": 0.0659 + }, + { + "start": 24598.06, + "end": 24598.3, + "probability": 0.1832 + }, + { + "start": 24598.34, + "end": 24599.08, + "probability": 0.0935 + }, + { + "start": 24599.12, + "end": 24600.42, + "probability": 0.0474 + }, + { + "start": 24600.62, + "end": 24601.76, + "probability": 0.2396 + }, + { + "start": 24601.98, + "end": 24605.52, + "probability": 0.8342 + }, + { + "start": 24605.88, + "end": 24609.2, + "probability": 0.92 + }, + { + "start": 24609.32, + "end": 24609.93, + "probability": 0.431 + }, + { + "start": 24610.66, + "end": 24611.59, + "probability": 0.9844 + }, + { + "start": 24611.9, + "end": 24615.3, + "probability": 0.8442 + }, + { + "start": 24615.54, + "end": 24619.16, + "probability": 0.7246 + }, + { + "start": 24619.32, + "end": 24622.44, + "probability": 0.1372 + }, + { + "start": 24622.6, + "end": 24626.08, + "probability": 0.9412 + }, + { + "start": 24626.48, + "end": 24628.6, + "probability": 0.5883 + }, + { + "start": 24628.98, + "end": 24631.84, + "probability": 0.0113 + }, + { + "start": 24631.84, + "end": 24631.94, + "probability": 0.082 + }, + { + "start": 24631.94, + "end": 24632.48, + "probability": 0.2089 + }, + { + "start": 24632.6, + "end": 24634.03, + "probability": 0.9939 + }, + { + "start": 24634.74, + "end": 24636.18, + "probability": 0.8708 + }, + { + "start": 24636.34, + "end": 24639.94, + "probability": 0.7867 + }, + { + "start": 24640.08, + "end": 24644.78, + "probability": 0.9692 + }, + { + "start": 24645.32, + "end": 24647.41, + "probability": 0.9359 + }, + { + "start": 24648.0, + "end": 24649.47, + "probability": 0.9728 + }, + { + "start": 24649.54, + "end": 24650.95, + "probability": 0.9661 + }, + { + "start": 24651.04, + "end": 24652.24, + "probability": 0.9912 + }, + { + "start": 24654.59, + "end": 24658.08, + "probability": 0.8129 + }, + { + "start": 24658.46, + "end": 24659.74, + "probability": 0.2139 + }, + { + "start": 24659.74, + "end": 24660.58, + "probability": 0.8626 + }, + { + "start": 24662.66, + "end": 24665.84, + "probability": 0.8973 + }, + { + "start": 24665.92, + "end": 24666.84, + "probability": 0.5006 + }, + { + "start": 24666.84, + "end": 24667.07, + "probability": 0.7725 + }, + { + "start": 24667.68, + "end": 24668.8, + "probability": 0.5137 + }, + { + "start": 24669.0, + "end": 24669.18, + "probability": 0.1076 + }, + { + "start": 24669.2, + "end": 24669.59, + "probability": 0.0565 + }, + { + "start": 24670.32, + "end": 24672.38, + "probability": 0.9719 + }, + { + "start": 24673.22, + "end": 24674.56, + "probability": 0.3555 + }, + { + "start": 24674.72, + "end": 24676.56, + "probability": 0.5723 + }, + { + "start": 24676.58, + "end": 24677.34, + "probability": 0.1757 + }, + { + "start": 24677.8, + "end": 24678.2, + "probability": 0.8477 + }, + { + "start": 24679.3, + "end": 24681.12, + "probability": 0.998 + }, + { + "start": 24681.12, + "end": 24684.84, + "probability": 0.7312 + }, + { + "start": 24684.86, + "end": 24685.72, + "probability": 0.0485 + }, + { + "start": 24686.24, + "end": 24687.5, + "probability": 0.0528 + }, + { + "start": 24687.78, + "end": 24688.72, + "probability": 0.0244 + }, + { + "start": 24688.82, + "end": 24689.12, + "probability": 0.0329 + }, + { + "start": 24689.12, + "end": 24689.38, + "probability": 0.0261 + }, + { + "start": 24689.9, + "end": 24691.28, + "probability": 0.2894 + }, + { + "start": 24692.22, + "end": 24692.8, + "probability": 0.4944 + }, + { + "start": 24693.26, + "end": 24694.16, + "probability": 0.7285 + }, + { + "start": 24694.26, + "end": 24694.78, + "probability": 0.6457 + }, + { + "start": 24694.88, + "end": 24698.04, + "probability": 0.8601 + }, + { + "start": 24698.14, + "end": 24698.34, + "probability": 0.6426 + }, + { + "start": 24698.38, + "end": 24699.16, + "probability": 0.808 + }, + { + "start": 24699.16, + "end": 24699.82, + "probability": 0.7721 + }, + { + "start": 24700.0, + "end": 24700.52, + "probability": 0.6807 + }, + { + "start": 24701.42, + "end": 24701.82, + "probability": 0.5927 + }, + { + "start": 24701.84, + "end": 24703.76, + "probability": 0.5977 + }, + { + "start": 24703.78, + "end": 24704.32, + "probability": 0.9407 + }, + { + "start": 24705.34, + "end": 24705.62, + "probability": 0.9298 + }, + { + "start": 24705.7, + "end": 24712.28, + "probability": 0.9838 + }, + { + "start": 24713.52, + "end": 24713.96, + "probability": 0.7656 + }, + { + "start": 24716.7, + "end": 24722.6, + "probability": 0.3721 + }, + { + "start": 24726.94, + "end": 24727.78, + "probability": 0.0181 + }, + { + "start": 24729.7, + "end": 24731.72, + "probability": 0.5742 + }, + { + "start": 24731.9, + "end": 24737.64, + "probability": 0.9194 + }, + { + "start": 24738.88, + "end": 24739.84, + "probability": 0.822 + }, + { + "start": 24739.92, + "end": 24743.84, + "probability": 0.6911 + }, + { + "start": 24746.23, + "end": 24749.12, + "probability": 0.7449 + }, + { + "start": 24749.28, + "end": 24752.8, + "probability": 0.926 + }, + { + "start": 24753.2, + "end": 24755.08, + "probability": 0.8075 + }, + { + "start": 24755.24, + "end": 24756.88, + "probability": 0.5925 + }, + { + "start": 24757.54, + "end": 24759.94, + "probability": 0.9309 + }, + { + "start": 24760.78, + "end": 24762.48, + "probability": 0.6185 + }, + { + "start": 24762.96, + "end": 24764.58, + "probability": 0.5248 + }, + { + "start": 24779.4, + "end": 24782.3, + "probability": 0.802 + }, + { + "start": 24782.98, + "end": 24783.72, + "probability": 0.8069 + }, + { + "start": 24783.82, + "end": 24785.1, + "probability": 0.8939 + }, + { + "start": 24785.46, + "end": 24786.92, + "probability": 0.9772 + }, + { + "start": 24787.24, + "end": 24788.4, + "probability": 0.9786 + }, + { + "start": 24788.7, + "end": 24793.38, + "probability": 0.9774 + }, + { + "start": 24794.26, + "end": 24797.02, + "probability": 0.9838 + }, + { + "start": 24797.74, + "end": 24799.8, + "probability": 0.8992 + }, + { + "start": 24800.38, + "end": 24801.47, + "probability": 0.7437 + }, + { + "start": 24802.02, + "end": 24805.1, + "probability": 0.9614 + }, + { + "start": 24805.1, + "end": 24808.22, + "probability": 0.9955 + }, + { + "start": 24808.4, + "end": 24812.68, + "probability": 0.9808 + }, + { + "start": 24813.24, + "end": 24815.1, + "probability": 0.9719 + }, + { + "start": 24815.68, + "end": 24818.24, + "probability": 0.8932 + }, + { + "start": 24818.74, + "end": 24822.62, + "probability": 0.994 + }, + { + "start": 24823.34, + "end": 24824.93, + "probability": 0.9482 + }, + { + "start": 24825.34, + "end": 24827.8, + "probability": 0.7144 + }, + { + "start": 24827.96, + "end": 24832.08, + "probability": 0.7383 + }, + { + "start": 24832.24, + "end": 24835.56, + "probability": 0.9925 + }, + { + "start": 24836.18, + "end": 24843.66, + "probability": 0.9437 + }, + { + "start": 24843.82, + "end": 24846.82, + "probability": 0.998 + }, + { + "start": 24847.36, + "end": 24850.9, + "probability": 0.9182 + }, + { + "start": 24851.56, + "end": 24852.66, + "probability": 0.9695 + }, + { + "start": 24853.24, + "end": 24856.44, + "probability": 0.9583 + }, + { + "start": 24857.08, + "end": 24857.82, + "probability": 0.5031 + }, + { + "start": 24857.86, + "end": 24860.4, + "probability": 0.894 + }, + { + "start": 24860.5, + "end": 24861.44, + "probability": 0.7162 + }, + { + "start": 24861.54, + "end": 24862.92, + "probability": 0.9087 + }, + { + "start": 24863.12, + "end": 24864.92, + "probability": 0.9355 + }, + { + "start": 24865.52, + "end": 24867.66, + "probability": 0.9927 + }, + { + "start": 24867.88, + "end": 24871.94, + "probability": 0.958 + }, + { + "start": 24872.76, + "end": 24875.18, + "probability": 0.9766 + }, + { + "start": 24876.1, + "end": 24877.28, + "probability": 0.9688 + }, + { + "start": 24877.38, + "end": 24879.7, + "probability": 0.9254 + }, + { + "start": 24880.62, + "end": 24883.62, + "probability": 0.9912 + }, + { + "start": 24883.82, + "end": 24886.6, + "probability": 0.8958 + }, + { + "start": 24887.44, + "end": 24890.62, + "probability": 0.9854 + }, + { + "start": 24891.2, + "end": 24893.8, + "probability": 0.9946 + }, + { + "start": 24894.54, + "end": 24895.22, + "probability": 0.9465 + }, + { + "start": 24895.44, + "end": 24895.98, + "probability": 0.7707 + }, + { + "start": 24896.4, + "end": 24898.78, + "probability": 0.9712 + }, + { + "start": 24899.8, + "end": 24902.02, + "probability": 0.9944 + }, + { + "start": 24902.12, + "end": 24903.56, + "probability": 0.7477 + }, + { + "start": 24904.18, + "end": 24905.4, + "probability": 0.7835 + }, + { + "start": 24905.42, + "end": 24908.76, + "probability": 0.9796 + }, + { + "start": 24908.8, + "end": 24911.58, + "probability": 0.9655 + }, + { + "start": 24912.46, + "end": 24914.1, + "probability": 0.4844 + }, + { + "start": 24914.12, + "end": 24915.1, + "probability": 0.9571 + }, + { + "start": 24915.16, + "end": 24917.14, + "probability": 0.6929 + }, + { + "start": 24917.44, + "end": 24920.1, + "probability": 0.994 + }, + { + "start": 24921.02, + "end": 24924.72, + "probability": 0.9658 + }, + { + "start": 24925.78, + "end": 24929.0, + "probability": 0.9763 + }, + { + "start": 24929.06, + "end": 24930.39, + "probability": 0.9854 + }, + { + "start": 24930.74, + "end": 24932.46, + "probability": 0.9053 + }, + { + "start": 24932.54, + "end": 24933.45, + "probability": 0.9469 + }, + { + "start": 24934.64, + "end": 24939.64, + "probability": 0.9334 + }, + { + "start": 24940.08, + "end": 24941.28, + "probability": 0.6888 + }, + { + "start": 24941.4, + "end": 24945.26, + "probability": 0.701 + }, + { + "start": 24945.26, + "end": 24947.92, + "probability": 0.9972 + }, + { + "start": 24948.9, + "end": 24952.24, + "probability": 0.9987 + }, + { + "start": 24952.82, + "end": 24954.94, + "probability": 0.999 + }, + { + "start": 24954.96, + "end": 24956.96, + "probability": 0.9447 + }, + { + "start": 24957.46, + "end": 24960.3, + "probability": 0.9963 + }, + { + "start": 24960.88, + "end": 24963.33, + "probability": 0.9902 + }, + { + "start": 24964.04, + "end": 24965.1, + "probability": 0.8657 + }, + { + "start": 24965.2, + "end": 24966.08, + "probability": 0.7464 + }, + { + "start": 24966.18, + "end": 24968.48, + "probability": 0.9721 + }, + { + "start": 24969.08, + "end": 24972.86, + "probability": 0.8467 + }, + { + "start": 24972.86, + "end": 24977.18, + "probability": 0.8851 + }, + { + "start": 24977.3, + "end": 24977.76, + "probability": 0.7628 + }, + { + "start": 24977.94, + "end": 24979.08, + "probability": 0.5286 + }, + { + "start": 24979.1, + "end": 24981.53, + "probability": 0.3998 + }, + { + "start": 24982.22, + "end": 24985.52, + "probability": 0.8099 + }, + { + "start": 24993.84, + "end": 24995.36, + "probability": 0.4836 + }, + { + "start": 24995.44, + "end": 24996.74, + "probability": 0.0912 + }, + { + "start": 24996.74, + "end": 24997.92, + "probability": 0.0099 + }, + { + "start": 24999.58, + "end": 25000.24, + "probability": 0.0591 + }, + { + "start": 25000.48, + "end": 25002.0, + "probability": 0.7247 + }, + { + "start": 25002.16, + "end": 25005.84, + "probability": 0.7383 + }, + { + "start": 25006.3, + "end": 25006.46, + "probability": 0.0777 + }, + { + "start": 25007.94, + "end": 25007.94, + "probability": 0.0393 + }, + { + "start": 25007.94, + "end": 25010.98, + "probability": 0.9632 + }, + { + "start": 25010.98, + "end": 25013.68, + "probability": 0.6985 + }, + { + "start": 25013.88, + "end": 25015.2, + "probability": 0.8838 + }, + { + "start": 25016.06, + "end": 25019.62, + "probability": 0.9556 + }, + { + "start": 25020.76, + "end": 25023.68, + "probability": 0.7305 + }, + { + "start": 25023.82, + "end": 25024.4, + "probability": 0.8864 + }, + { + "start": 25024.74, + "end": 25028.18, + "probability": 0.9603 + }, + { + "start": 25028.36, + "end": 25029.54, + "probability": 0.9305 + }, + { + "start": 25030.32, + "end": 25031.76, + "probability": 0.8547 + }, + { + "start": 25031.96, + "end": 25032.68, + "probability": 0.7038 + }, + { + "start": 25032.72, + "end": 25033.6, + "probability": 0.8524 + }, + { + "start": 25034.0, + "end": 25037.04, + "probability": 0.7409 + }, + { + "start": 25037.3, + "end": 25038.36, + "probability": 0.7596 + }, + { + "start": 25039.04, + "end": 25041.02, + "probability": 0.9893 + }, + { + "start": 25041.02, + "end": 25043.76, + "probability": 0.9854 + }, + { + "start": 25044.64, + "end": 25046.8, + "probability": 0.8094 + }, + { + "start": 25046.9, + "end": 25047.76, + "probability": 0.842 + }, + { + "start": 25048.3, + "end": 25050.12, + "probability": 0.9416 + }, + { + "start": 25050.18, + "end": 25051.18, + "probability": 0.9951 + }, + { + "start": 25051.86, + "end": 25055.56, + "probability": 0.767 + }, + { + "start": 25056.3, + "end": 25058.12, + "probability": 0.9881 + }, + { + "start": 25058.82, + "end": 25060.62, + "probability": 0.9746 + }, + { + "start": 25060.62, + "end": 25064.04, + "probability": 0.9932 + }, + { + "start": 25065.12, + "end": 25068.28, + "probability": 0.9323 + }, + { + "start": 25068.88, + "end": 25071.12, + "probability": 0.999 + }, + { + "start": 25071.9, + "end": 25075.4, + "probability": 0.9877 + }, + { + "start": 25076.22, + "end": 25078.5, + "probability": 0.9967 + }, + { + "start": 25078.5, + "end": 25081.8, + "probability": 0.9602 + }, + { + "start": 25082.34, + "end": 25085.8, + "probability": 0.6046 + }, + { + "start": 25086.52, + "end": 25090.6, + "probability": 0.9953 + }, + { + "start": 25090.6, + "end": 25093.44, + "probability": 0.9335 + }, + { + "start": 25094.32, + "end": 25099.08, + "probability": 0.949 + }, + { + "start": 25099.08, + "end": 25102.11, + "probability": 0.9714 + }, + { + "start": 25102.42, + "end": 25106.88, + "probability": 0.9783 + }, + { + "start": 25107.84, + "end": 25111.16, + "probability": 0.9877 + }, + { + "start": 25111.36, + "end": 25113.58, + "probability": 0.8357 + }, + { + "start": 25114.04, + "end": 25117.36, + "probability": 0.9648 + }, + { + "start": 25117.92, + "end": 25120.1, + "probability": 0.9797 + }, + { + "start": 25120.2, + "end": 25122.42, + "probability": 0.9453 + }, + { + "start": 25122.42, + "end": 25124.64, + "probability": 0.9633 + }, + { + "start": 25125.2, + "end": 25127.98, + "probability": 0.7648 + }, + { + "start": 25128.78, + "end": 25130.0, + "probability": 0.7157 + }, + { + "start": 25130.18, + "end": 25132.58, + "probability": 0.7716 + }, + { + "start": 25133.36, + "end": 25137.54, + "probability": 0.9029 + }, + { + "start": 25138.06, + "end": 25141.82, + "probability": 0.9704 + }, + { + "start": 25142.5, + "end": 25143.56, + "probability": 0.7553 + }, + { + "start": 25143.64, + "end": 25145.12, + "probability": 0.9104 + }, + { + "start": 25146.12, + "end": 25149.14, + "probability": 0.8037 + }, + { + "start": 25150.22, + "end": 25153.1, + "probability": 0.95 + }, + { + "start": 25153.1, + "end": 25155.56, + "probability": 0.9637 + }, + { + "start": 25155.94, + "end": 25156.94, + "probability": 0.9712 + }, + { + "start": 25158.34, + "end": 25158.96, + "probability": 0.1946 + }, + { + "start": 25159.0, + "end": 25160.0, + "probability": 0.4352 + }, + { + "start": 25160.06, + "end": 25161.74, + "probability": 0.8354 + }, + { + "start": 25163.62, + "end": 25164.2, + "probability": 0.2869 + }, + { + "start": 25164.2, + "end": 25164.2, + "probability": 0.0209 + }, + { + "start": 25164.2, + "end": 25164.42, + "probability": 0.0514 + }, + { + "start": 25164.46, + "end": 25166.14, + "probability": 0.7975 + }, + { + "start": 25166.22, + "end": 25166.8, + "probability": 0.4694 + }, + { + "start": 25167.32, + "end": 25170.44, + "probability": 0.9304 + }, + { + "start": 25172.72, + "end": 25175.28, + "probability": 0.369 + }, + { + "start": 25175.46, + "end": 25178.04, + "probability": 0.8616 + }, + { + "start": 25178.14, + "end": 25183.16, + "probability": 0.0238 + }, + { + "start": 25183.16, + "end": 25191.2, + "probability": 0.8627 + }, + { + "start": 25196.16, + "end": 25200.4, + "probability": 0.8337 + }, + { + "start": 25204.6, + "end": 25205.52, + "probability": 0.5377 + }, + { + "start": 25207.9, + "end": 25213.44, + "probability": 0.7059 + }, + { + "start": 25214.04, + "end": 25215.8, + "probability": 0.5734 + }, + { + "start": 25218.08, + "end": 25219.86, + "probability": 0.7867 + }, + { + "start": 25221.56, + "end": 25224.28, + "probability": 0.9618 + }, + { + "start": 25225.32, + "end": 25227.86, + "probability": 0.8693 + }, + { + "start": 25227.94, + "end": 25229.6, + "probability": 0.9442 + }, + { + "start": 25230.26, + "end": 25231.48, + "probability": 0.8137 + }, + { + "start": 25232.68, + "end": 25236.74, + "probability": 0.688 + }, + { + "start": 25236.74, + "end": 25239.52, + "probability": 0.9872 + }, + { + "start": 25239.52, + "end": 25242.28, + "probability": 0.9702 + }, + { + "start": 25243.0, + "end": 25244.52, + "probability": 0.9761 + }, + { + "start": 25245.32, + "end": 25248.56, + "probability": 0.9041 + }, + { + "start": 25249.18, + "end": 25251.54, + "probability": 0.86 + }, + { + "start": 25252.36, + "end": 25258.9, + "probability": 0.9264 + }, + { + "start": 25259.64, + "end": 25260.52, + "probability": 0.6826 + }, + { + "start": 25260.62, + "end": 25260.88, + "probability": 0.3965 + }, + { + "start": 25261.02, + "end": 25261.96, + "probability": 0.8446 + }, + { + "start": 25262.02, + "end": 25265.58, + "probability": 0.7791 + }, + { + "start": 25266.06, + "end": 25269.28, + "probability": 0.9392 + }, + { + "start": 25269.86, + "end": 25272.06, + "probability": 0.9725 + }, + { + "start": 25272.86, + "end": 25276.2, + "probability": 0.8097 + }, + { + "start": 25276.74, + "end": 25277.84, + "probability": 0.9388 + }, + { + "start": 25277.96, + "end": 25280.68, + "probability": 0.9762 + }, + { + "start": 25282.16, + "end": 25287.42, + "probability": 0.8513 + }, + { + "start": 25287.92, + "end": 25289.08, + "probability": 0.9075 + }, + { + "start": 25289.6, + "end": 25291.9, + "probability": 0.9406 + }, + { + "start": 25292.38, + "end": 25293.02, + "probability": 0.6174 + }, + { + "start": 25293.1, + "end": 25295.04, + "probability": 0.7807 + }, + { + "start": 25295.92, + "end": 25296.92, + "probability": 0.755 + }, + { + "start": 25297.0, + "end": 25299.2, + "probability": 0.7906 + }, + { + "start": 25299.66, + "end": 25302.38, + "probability": 0.9561 + }, + { + "start": 25302.94, + "end": 25305.14, + "probability": 0.9299 + }, + { + "start": 25305.96, + "end": 25307.96, + "probability": 0.979 + }, + { + "start": 25308.48, + "end": 25311.02, + "probability": 0.8971 + }, + { + "start": 25311.08, + "end": 25311.7, + "probability": 0.9267 + }, + { + "start": 25311.9, + "end": 25312.66, + "probability": 0.8872 + }, + { + "start": 25313.04, + "end": 25315.24, + "probability": 0.9979 + }, + { + "start": 25315.88, + "end": 25317.36, + "probability": 0.8906 + }, + { + "start": 25318.82, + "end": 25320.34, + "probability": 0.5436 + }, + { + "start": 25320.5, + "end": 25321.06, + "probability": 0.8401 + }, + { + "start": 25321.12, + "end": 25322.18, + "probability": 0.9574 + }, + { + "start": 25322.81, + "end": 25325.02, + "probability": 0.9644 + }, + { + "start": 25325.1, + "end": 25328.4, + "probability": 0.9163 + }, + { + "start": 25328.98, + "end": 25330.38, + "probability": 0.5729 + }, + { + "start": 25331.04, + "end": 25332.3, + "probability": 0.7166 + }, + { + "start": 25332.6, + "end": 25334.18, + "probability": 0.5319 + }, + { + "start": 25335.22, + "end": 25335.74, + "probability": 0.8198 + }, + { + "start": 25335.82, + "end": 25340.78, + "probability": 0.909 + }, + { + "start": 25342.8, + "end": 25343.72, + "probability": 0.6838 + }, + { + "start": 25345.9, + "end": 25346.84, + "probability": 0.0759 + }, + { + "start": 25348.66, + "end": 25349.68, + "probability": 0.2202 + }, + { + "start": 25353.06, + "end": 25355.34, + "probability": 0.4396 + }, + { + "start": 25358.4, + "end": 25360.94, + "probability": 0.7702 + }, + { + "start": 25361.28, + "end": 25364.02, + "probability": 0.616 + }, + { + "start": 25364.02, + "end": 25366.54, + "probability": 0.9278 + }, + { + "start": 25370.46, + "end": 25372.36, + "probability": 0.7388 + }, + { + "start": 25372.78, + "end": 25374.46, + "probability": 0.7747 + }, + { + "start": 25375.24, + "end": 25376.26, + "probability": 0.5071 + }, + { + "start": 25376.88, + "end": 25378.54, + "probability": 0.8469 + }, + { + "start": 25379.38, + "end": 25380.0, + "probability": 0.943 + }, + { + "start": 25403.62, + "end": 25408.6, + "probability": 0.1008 + }, + { + "start": 25409.44, + "end": 25411.58, + "probability": 0.0519 + } + ], + "segments_count": 8965, + "words_count": 43690, + "avg_words_per_segment": 4.8734, + "avg_segment_duration": 1.9324, + "avg_words_per_minute": 98.3446, + "plenum_id": "130775", + "duration": 26655.24, + "title": null, + "plenum_date": "2024-10-30" +} \ No newline at end of file