diff --git "a/13873/metadata.json" "b/13873/metadata.json" new file mode 100644--- /dev/null +++ "b/13873/metadata.json" @@ -0,0 +1,18052 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "13873", + "quality_score": 0.836, + "per_segment_quality_scores": [ + { + "start": 35.08, + "end": 36.74, + "probability": 0.24 + }, + { + "start": 37.76, + "end": 38.46, + "probability": 0.1329 + }, + { + "start": 41.87, + "end": 43.66, + "probability": 0.0497 + }, + { + "start": 77.26, + "end": 84.36, + "probability": 0.6354 + }, + { + "start": 85.02, + "end": 88.02, + "probability": 0.9927 + }, + { + "start": 88.96, + "end": 90.92, + "probability": 0.7728 + }, + { + "start": 93.06, + "end": 94.94, + "probability": 0.7627 + }, + { + "start": 95.26, + "end": 97.86, + "probability": 0.5439 + }, + { + "start": 98.96, + "end": 100.36, + "probability": 0.5192 + }, + { + "start": 101.46, + "end": 102.85, + "probability": 0.7145 + }, + { + "start": 104.92, + "end": 108.72, + "probability": 0.9494 + }, + { + "start": 109.0, + "end": 112.54, + "probability": 0.3269 + }, + { + "start": 112.66, + "end": 114.8, + "probability": 0.9502 + }, + { + "start": 114.84, + "end": 116.02, + "probability": 0.9845 + }, + { + "start": 116.32, + "end": 117.27, + "probability": 0.9862 + }, + { + "start": 117.4, + "end": 118.26, + "probability": 0.8381 + }, + { + "start": 118.52, + "end": 121.74, + "probability": 0.8193 + }, + { + "start": 123.64, + "end": 125.94, + "probability": 0.5944 + }, + { + "start": 125.98, + "end": 130.02, + "probability": 0.2945 + }, + { + "start": 131.78, + "end": 133.44, + "probability": 0.4918 + }, + { + "start": 133.7, + "end": 135.24, + "probability": 0.8474 + }, + { + "start": 136.46, + "end": 137.64, + "probability": 0.658 + }, + { + "start": 137.76, + "end": 139.12, + "probability": 0.8389 + }, + { + "start": 139.22, + "end": 141.02, + "probability": 0.9764 + }, + { + "start": 141.5, + "end": 142.28, + "probability": 0.654 + }, + { + "start": 142.3, + "end": 146.08, + "probability": 0.6944 + }, + { + "start": 146.6, + "end": 147.22, + "probability": 0.028 + }, + { + "start": 147.68, + "end": 149.98, + "probability": 0.1699 + }, + { + "start": 150.44, + "end": 153.74, + "probability": 0.8605 + }, + { + "start": 154.28, + "end": 154.28, + "probability": 0.4599 + }, + { + "start": 154.94, + "end": 156.78, + "probability": 0.8833 + }, + { + "start": 157.24, + "end": 160.72, + "probability": 0.3856 + }, + { + "start": 160.84, + "end": 161.98, + "probability": 0.6072 + }, + { + "start": 162.56, + "end": 166.68, + "probability": 0.9263 + }, + { + "start": 167.18, + "end": 168.96, + "probability": 0.5584 + }, + { + "start": 169.2, + "end": 170.7, + "probability": 0.9805 + }, + { + "start": 171.28, + "end": 173.64, + "probability": 0.9595 + }, + { + "start": 174.18, + "end": 174.7, + "probability": 0.1986 + }, + { + "start": 175.36, + "end": 175.48, + "probability": 0.1636 + }, + { + "start": 176.08, + "end": 179.46, + "probability": 0.917 + }, + { + "start": 180.0, + "end": 184.22, + "probability": 0.7538 + }, + { + "start": 184.78, + "end": 185.66, + "probability": 0.758 + }, + { + "start": 186.26, + "end": 187.2, + "probability": 0.7482 + }, + { + "start": 190.89, + "end": 192.86, + "probability": 0.5484 + }, + { + "start": 192.86, + "end": 194.22, + "probability": 0.3445 + }, + { + "start": 194.6, + "end": 198.82, + "probability": 0.8682 + }, + { + "start": 199.32, + "end": 201.38, + "probability": 0.2056 + }, + { + "start": 201.82, + "end": 203.5, + "probability": 0.6114 + }, + { + "start": 204.14, + "end": 206.2, + "probability": 0.8042 + }, + { + "start": 208.02, + "end": 214.2, + "probability": 0.0118 + }, + { + "start": 215.86, + "end": 219.66, + "probability": 0.1247 + }, + { + "start": 220.34, + "end": 221.5, + "probability": 0.0304 + }, + { + "start": 241.84, + "end": 244.06, + "probability": 0.0312 + }, + { + "start": 247.92, + "end": 250.54, + "probability": 0.3769 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 274.0, + "end": 274.0, + "probability": 0.0 + }, + { + "start": 278.62, + "end": 279.86, + "probability": 0.0372 + }, + { + "start": 279.86, + "end": 280.96, + "probability": 0.0498 + }, + { + "start": 280.96, + "end": 287.6, + "probability": 0.2645 + }, + { + "start": 287.6, + "end": 291.18, + "probability": 0.4175 + }, + { + "start": 291.4, + "end": 294.02, + "probability": 0.0013 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 399.0, + "end": 399.0, + "probability": 0.0 + }, + { + "start": 405.34, + "end": 405.92, + "probability": 0.7587 + }, + { + "start": 406.08, + "end": 407.46, + "probability": 0.4148 + }, + { + "start": 407.62, + "end": 413.66, + "probability": 0.4726 + }, + { + "start": 413.72, + "end": 418.66, + "probability": 0.6263 + }, + { + "start": 418.76, + "end": 420.98, + "probability": 0.5936 + }, + { + "start": 420.98, + "end": 424.52, + "probability": 0.6466 + }, + { + "start": 425.26, + "end": 427.8, + "probability": 0.5556 + }, + { + "start": 427.94, + "end": 434.72, + "probability": 0.3434 + }, + { + "start": 434.92, + "end": 436.57, + "probability": 0.5973 + }, + { + "start": 437.62, + "end": 440.46, + "probability": 0.166 + }, + { + "start": 441.8, + "end": 441.8, + "probability": 0.1525 + }, + { + "start": 441.8, + "end": 443.91, + "probability": 0.19 + }, + { + "start": 444.6, + "end": 448.88, + "probability": 0.7348 + }, + { + "start": 449.16, + "end": 449.88, + "probability": 0.9551 + }, + { + "start": 450.06, + "end": 451.08, + "probability": 0.9119 + }, + { + "start": 451.12, + "end": 452.43, + "probability": 0.8613 + }, + { + "start": 452.62, + "end": 453.1, + "probability": 0.8189 + }, + { + "start": 453.48, + "end": 453.66, + "probability": 0.2601 + }, + { + "start": 453.84, + "end": 454.36, + "probability": 0.6051 + }, + { + "start": 454.46, + "end": 456.34, + "probability": 0.9818 + }, + { + "start": 456.94, + "end": 458.5, + "probability": 0.9348 + }, + { + "start": 458.68, + "end": 464.72, + "probability": 0.802 + }, + { + "start": 465.16, + "end": 465.82, + "probability": 0.603 + }, + { + "start": 466.04, + "end": 466.58, + "probability": 0.7933 + }, + { + "start": 466.6, + "end": 467.22, + "probability": 0.6216 + }, + { + "start": 467.32, + "end": 468.02, + "probability": 0.9014 + }, + { + "start": 468.16, + "end": 469.6, + "probability": 0.7624 + }, + { + "start": 469.66, + "end": 471.04, + "probability": 0.9149 + }, + { + "start": 471.62, + "end": 473.32, + "probability": 0.5576 + }, + { + "start": 474.12, + "end": 479.22, + "probability": 0.9867 + }, + { + "start": 479.5, + "end": 485.04, + "probability": 0.9877 + }, + { + "start": 485.14, + "end": 487.64, + "probability": 0.4982 + }, + { + "start": 487.86, + "end": 488.64, + "probability": 0.6539 + }, + { + "start": 488.82, + "end": 493.16, + "probability": 0.92 + }, + { + "start": 493.4, + "end": 494.38, + "probability": 0.578 + }, + { + "start": 494.68, + "end": 496.36, + "probability": 0.585 + }, + { + "start": 496.66, + "end": 496.9, + "probability": 0.2682 + }, + { + "start": 497.04, + "end": 500.5, + "probability": 0.9244 + }, + { + "start": 500.56, + "end": 502.44, + "probability": 0.9634 + }, + { + "start": 502.86, + "end": 505.64, + "probability": 0.9937 + }, + { + "start": 506.12, + "end": 506.62, + "probability": 0.7789 + }, + { + "start": 506.74, + "end": 511.72, + "probability": 0.9645 + }, + { + "start": 512.54, + "end": 516.72, + "probability": 0.8888 + }, + { + "start": 517.28, + "end": 519.66, + "probability": 0.9207 + }, + { + "start": 520.0, + "end": 520.9, + "probability": 0.6971 + }, + { + "start": 521.1, + "end": 523.46, + "probability": 0.96 + }, + { + "start": 523.64, + "end": 526.32, + "probability": 0.908 + }, + { + "start": 527.04, + "end": 530.0, + "probability": 0.7614 + }, + { + "start": 530.54, + "end": 532.14, + "probability": 0.7438 + }, + { + "start": 532.34, + "end": 533.2, + "probability": 0.6933 + }, + { + "start": 533.46, + "end": 535.22, + "probability": 0.7715 + }, + { + "start": 535.36, + "end": 538.4, + "probability": 0.759 + }, + { + "start": 538.68, + "end": 543.58, + "probability": 0.911 + }, + { + "start": 543.6, + "end": 545.88, + "probability": 0.8099 + }, + { + "start": 546.36, + "end": 548.22, + "probability": 0.9238 + }, + { + "start": 548.68, + "end": 551.2, + "probability": 0.6985 + }, + { + "start": 552.14, + "end": 558.12, + "probability": 0.7301 + }, + { + "start": 558.22, + "end": 561.62, + "probability": 0.7466 + }, + { + "start": 562.08, + "end": 565.4, + "probability": 0.8877 + }, + { + "start": 566.58, + "end": 569.83, + "probability": 0.7035 + }, + { + "start": 570.44, + "end": 573.9, + "probability": 0.914 + }, + { + "start": 574.02, + "end": 575.32, + "probability": 0.9009 + }, + { + "start": 577.42, + "end": 578.34, + "probability": 0.5391 + }, + { + "start": 579.64, + "end": 581.3, + "probability": 0.7282 + }, + { + "start": 583.18, + "end": 584.88, + "probability": 0.9963 + }, + { + "start": 585.8, + "end": 590.26, + "probability": 0.9182 + }, + { + "start": 592.26, + "end": 592.82, + "probability": 0.3843 + }, + { + "start": 593.04, + "end": 594.54, + "probability": 0.9873 + }, + { + "start": 595.74, + "end": 597.48, + "probability": 0.9968 + }, + { + "start": 598.28, + "end": 599.62, + "probability": 0.9538 + }, + { + "start": 601.4, + "end": 613.22, + "probability": 0.9646 + }, + { + "start": 614.06, + "end": 618.4, + "probability": 0.8436 + }, + { + "start": 618.4, + "end": 621.8, + "probability": 0.9958 + }, + { + "start": 623.58, + "end": 625.06, + "probability": 0.8917 + }, + { + "start": 626.1, + "end": 629.08, + "probability": 0.9492 + }, + { + "start": 632.06, + "end": 635.26, + "probability": 0.9009 + }, + { + "start": 635.5, + "end": 637.14, + "probability": 0.7095 + }, + { + "start": 638.06, + "end": 644.8, + "probability": 0.9787 + }, + { + "start": 647.22, + "end": 652.6, + "probability": 0.992 + }, + { + "start": 653.08, + "end": 659.92, + "probability": 0.9854 + }, + { + "start": 661.26, + "end": 662.82, + "probability": 0.8138 + }, + { + "start": 663.64, + "end": 667.04, + "probability": 0.6755 + }, + { + "start": 667.58, + "end": 669.22, + "probability": 0.8084 + }, + { + "start": 669.86, + "end": 673.26, + "probability": 0.9692 + }, + { + "start": 673.8, + "end": 677.56, + "probability": 0.9875 + }, + { + "start": 678.06, + "end": 684.62, + "probability": 0.9976 + }, + { + "start": 685.24, + "end": 694.94, + "probability": 0.824 + }, + { + "start": 696.72, + "end": 698.34, + "probability": 0.648 + }, + { + "start": 701.36, + "end": 703.8, + "probability": 0.0326 + }, + { + "start": 705.02, + "end": 710.82, + "probability": 0.859 + }, + { + "start": 711.42, + "end": 712.62, + "probability": 0.7714 + }, + { + "start": 713.14, + "end": 717.05, + "probability": 0.9844 + }, + { + "start": 719.0, + "end": 720.8, + "probability": 0.746 + }, + { + "start": 721.34, + "end": 727.2, + "probability": 0.8997 + }, + { + "start": 727.2, + "end": 732.5, + "probability": 0.6299 + }, + { + "start": 733.2, + "end": 739.54, + "probability": 0.4993 + }, + { + "start": 741.14, + "end": 744.28, + "probability": 0.9771 + }, + { + "start": 744.54, + "end": 749.22, + "probability": 0.9035 + }, + { + "start": 750.08, + "end": 755.36, + "probability": 0.8691 + }, + { + "start": 756.87, + "end": 758.94, + "probability": 0.6171 + }, + { + "start": 760.22, + "end": 762.36, + "probability": 0.666 + }, + { + "start": 762.36, + "end": 766.45, + "probability": 0.719 + }, + { + "start": 767.18, + "end": 773.58, + "probability": 0.9884 + }, + { + "start": 776.24, + "end": 779.54, + "probability": 0.9962 + }, + { + "start": 780.34, + "end": 781.78, + "probability": 0.944 + }, + { + "start": 782.1, + "end": 783.4, + "probability": 0.7365 + }, + { + "start": 783.46, + "end": 784.38, + "probability": 0.8308 + }, + { + "start": 784.78, + "end": 786.96, + "probability": 0.9963 + }, + { + "start": 787.82, + "end": 793.08, + "probability": 0.9808 + }, + { + "start": 793.1, + "end": 796.1, + "probability": 0.9131 + }, + { + "start": 799.02, + "end": 809.92, + "probability": 0.9844 + }, + { + "start": 810.04, + "end": 813.18, + "probability": 0.9854 + }, + { + "start": 813.5, + "end": 816.64, + "probability": 0.9957 + }, + { + "start": 817.04, + "end": 821.94, + "probability": 0.9429 + }, + { + "start": 822.0, + "end": 825.5, + "probability": 0.8332 + }, + { + "start": 826.88, + "end": 828.02, + "probability": 0.9792 + }, + { + "start": 828.24, + "end": 831.82, + "probability": 0.9717 + }, + { + "start": 832.12, + "end": 834.8, + "probability": 0.8782 + }, + { + "start": 835.08, + "end": 838.7, + "probability": 0.9897 + }, + { + "start": 839.48, + "end": 840.68, + "probability": 0.9599 + }, + { + "start": 840.74, + "end": 846.32, + "probability": 0.9404 + }, + { + "start": 847.2, + "end": 849.68, + "probability": 0.7451 + }, + { + "start": 850.9, + "end": 854.32, + "probability": 0.9612 + }, + { + "start": 854.94, + "end": 857.48, + "probability": 0.2874 + }, + { + "start": 857.5, + "end": 859.2, + "probability": 0.7495 + }, + { + "start": 860.24, + "end": 863.34, + "probability": 0.9608 + }, + { + "start": 865.14, + "end": 868.66, + "probability": 0.9585 + }, + { + "start": 870.84, + "end": 873.18, + "probability": 0.2799 + }, + { + "start": 874.1, + "end": 876.26, + "probability": 0.9954 + }, + { + "start": 876.26, + "end": 880.32, + "probability": 0.9989 + }, + { + "start": 880.94, + "end": 883.86, + "probability": 0.7759 + }, + { + "start": 885.48, + "end": 886.48, + "probability": 0.9281 + }, + { + "start": 886.58, + "end": 887.42, + "probability": 0.6392 + }, + { + "start": 887.56, + "end": 890.82, + "probability": 0.9961 + }, + { + "start": 892.56, + "end": 894.3, + "probability": 0.8995 + }, + { + "start": 894.34, + "end": 895.18, + "probability": 0.9501 + }, + { + "start": 896.04, + "end": 898.82, + "probability": 0.7172 + }, + { + "start": 902.12, + "end": 907.94, + "probability": 0.963 + }, + { + "start": 910.86, + "end": 914.16, + "probability": 0.6382 + }, + { + "start": 916.18, + "end": 916.58, + "probability": 0.6101 + }, + { + "start": 919.16, + "end": 921.94, + "probability": 0.7776 + }, + { + "start": 922.2, + "end": 922.66, + "probability": 0.2532 + }, + { + "start": 925.48, + "end": 926.7, + "probability": 0.2989 + }, + { + "start": 927.06, + "end": 927.86, + "probability": 0.5534 + }, + { + "start": 929.44, + "end": 932.18, + "probability": 0.7665 + }, + { + "start": 933.16, + "end": 935.16, + "probability": 0.9489 + }, + { + "start": 935.46, + "end": 937.12, + "probability": 0.873 + }, + { + "start": 937.84, + "end": 942.16, + "probability": 0.8713 + }, + { + "start": 943.32, + "end": 944.88, + "probability": 0.5497 + }, + { + "start": 945.32, + "end": 946.2, + "probability": 0.5792 + }, + { + "start": 946.82, + "end": 948.62, + "probability": 0.8794 + }, + { + "start": 948.64, + "end": 949.88, + "probability": 0.891 + }, + { + "start": 949.96, + "end": 951.68, + "probability": 0.943 + }, + { + "start": 952.06, + "end": 953.48, + "probability": 0.796 + }, + { + "start": 954.82, + "end": 958.74, + "probability": 0.9577 + }, + { + "start": 959.32, + "end": 959.9, + "probability": 0.9124 + }, + { + "start": 960.56, + "end": 964.2, + "probability": 0.695 + }, + { + "start": 965.16, + "end": 967.52, + "probability": 0.8564 + }, + { + "start": 968.66, + "end": 971.3, + "probability": 0.9492 + }, + { + "start": 971.64, + "end": 972.48, + "probability": 0.6898 + }, + { + "start": 972.52, + "end": 973.16, + "probability": 0.8606 + }, + { + "start": 973.6, + "end": 974.39, + "probability": 0.946 + }, + { + "start": 974.64, + "end": 975.54, + "probability": 0.7095 + }, + { + "start": 976.14, + "end": 982.42, + "probability": 0.9601 + }, + { + "start": 983.12, + "end": 984.12, + "probability": 0.6035 + }, + { + "start": 984.16, + "end": 985.36, + "probability": 0.7308 + }, + { + "start": 985.76, + "end": 986.06, + "probability": 0.611 + }, + { + "start": 986.42, + "end": 986.44, + "probability": 0.578 + }, + { + "start": 986.68, + "end": 990.4, + "probability": 0.8355 + }, + { + "start": 990.7, + "end": 991.8, + "probability": 0.7585 + }, + { + "start": 992.24, + "end": 993.18, + "probability": 0.42 + }, + { + "start": 994.1, + "end": 998.36, + "probability": 0.8944 + }, + { + "start": 999.62, + "end": 1004.02, + "probability": 0.7901 + }, + { + "start": 1006.8, + "end": 1008.62, + "probability": 0.916 + }, + { + "start": 1009.24, + "end": 1016.88, + "probability": 0.9629 + }, + { + "start": 1017.56, + "end": 1020.12, + "probability": 0.7503 + }, + { + "start": 1020.62, + "end": 1022.46, + "probability": 0.8267 + }, + { + "start": 1022.86, + "end": 1023.7, + "probability": 0.978 + }, + { + "start": 1023.94, + "end": 1027.9, + "probability": 0.8799 + }, + { + "start": 1027.9, + "end": 1035.28, + "probability": 0.7744 + }, + { + "start": 1035.46, + "end": 1039.52, + "probability": 0.9941 + }, + { + "start": 1039.52, + "end": 1044.02, + "probability": 0.7545 + }, + { + "start": 1044.76, + "end": 1045.64, + "probability": 0.7879 + }, + { + "start": 1047.5, + "end": 1048.14, + "probability": 0.0011 + }, + { + "start": 1054.5, + "end": 1054.78, + "probability": 0.1577 + }, + { + "start": 1054.78, + "end": 1062.88, + "probability": 0.7704 + }, + { + "start": 1062.88, + "end": 1069.94, + "probability": 0.8632 + }, + { + "start": 1071.96, + "end": 1074.74, + "probability": 0.9961 + }, + { + "start": 1075.3, + "end": 1079.86, + "probability": 0.7332 + }, + { + "start": 1079.92, + "end": 1082.0, + "probability": 0.9951 + }, + { + "start": 1083.1, + "end": 1083.8, + "probability": 0.9216 + }, + { + "start": 1085.12, + "end": 1089.42, + "probability": 0.9845 + }, + { + "start": 1091.38, + "end": 1099.02, + "probability": 0.9465 + }, + { + "start": 1099.98, + "end": 1104.37, + "probability": 0.7892 + }, + { + "start": 1106.22, + "end": 1111.24, + "probability": 0.8577 + }, + { + "start": 1111.28, + "end": 1111.66, + "probability": 0.4654 + }, + { + "start": 1111.82, + "end": 1114.8, + "probability": 0.8829 + }, + { + "start": 1115.32, + "end": 1117.5, + "probability": 0.8864 + }, + { + "start": 1117.76, + "end": 1121.64, + "probability": 0.6787 + }, + { + "start": 1121.9, + "end": 1128.45, + "probability": 0.6892 + }, + { + "start": 1128.98, + "end": 1132.52, + "probability": 0.9609 + }, + { + "start": 1133.12, + "end": 1134.58, + "probability": 0.7678 + }, + { + "start": 1135.0, + "end": 1137.98, + "probability": 0.9784 + }, + { + "start": 1137.98, + "end": 1143.1, + "probability": 0.8726 + }, + { + "start": 1144.12, + "end": 1145.56, + "probability": 0.8098 + }, + { + "start": 1145.92, + "end": 1148.06, + "probability": 0.6459 + }, + { + "start": 1148.18, + "end": 1149.04, + "probability": 0.6762 + }, + { + "start": 1149.48, + "end": 1154.98, + "probability": 0.9862 + }, + { + "start": 1155.4, + "end": 1159.28, + "probability": 0.9553 + }, + { + "start": 1159.52, + "end": 1161.98, + "probability": 0.9806 + }, + { + "start": 1162.06, + "end": 1163.28, + "probability": 0.5353 + }, + { + "start": 1163.62, + "end": 1165.54, + "probability": 0.9373 + }, + { + "start": 1165.9, + "end": 1167.94, + "probability": 0.8564 + }, + { + "start": 1168.08, + "end": 1168.66, + "probability": 0.1991 + }, + { + "start": 1169.28, + "end": 1171.16, + "probability": 0.4377 + }, + { + "start": 1171.32, + "end": 1172.76, + "probability": 0.7886 + }, + { + "start": 1173.38, + "end": 1174.04, + "probability": 0.554 + }, + { + "start": 1174.18, + "end": 1175.04, + "probability": 0.9419 + }, + { + "start": 1175.48, + "end": 1176.36, + "probability": 0.0749 + }, + { + "start": 1177.16, + "end": 1179.14, + "probability": 0.8886 + }, + { + "start": 1179.7, + "end": 1182.41, + "probability": 0.7217 + }, + { + "start": 1182.78, + "end": 1185.42, + "probability": 0.9814 + }, + { + "start": 1185.6, + "end": 1187.32, + "probability": 0.9153 + }, + { + "start": 1188.34, + "end": 1192.38, + "probability": 0.9775 + }, + { + "start": 1192.92, + "end": 1195.24, + "probability": 0.9022 + }, + { + "start": 1195.4, + "end": 1197.02, + "probability": 0.7526 + }, + { + "start": 1197.3, + "end": 1199.45, + "probability": 0.9548 + }, + { + "start": 1200.1, + "end": 1201.0, + "probability": 0.9932 + }, + { + "start": 1201.26, + "end": 1202.22, + "probability": 0.8555 + }, + { + "start": 1202.28, + "end": 1202.74, + "probability": 0.4373 + }, + { + "start": 1203.3, + "end": 1203.3, + "probability": 0.2531 + }, + { + "start": 1203.3, + "end": 1204.66, + "probability": 0.731 + }, + { + "start": 1204.9, + "end": 1206.28, + "probability": 0.7737 + }, + { + "start": 1206.52, + "end": 1207.4, + "probability": 0.6203 + }, + { + "start": 1207.58, + "end": 1209.18, + "probability": 0.2952 + }, + { + "start": 1209.46, + "end": 1211.58, + "probability": 0.9871 + }, + { + "start": 1211.88, + "end": 1213.52, + "probability": 0.3261 + }, + { + "start": 1213.7, + "end": 1215.86, + "probability": 0.6856 + }, + { + "start": 1216.26, + "end": 1217.98, + "probability": 0.2245 + }, + { + "start": 1218.3, + "end": 1220.14, + "probability": 0.8229 + }, + { + "start": 1220.4, + "end": 1220.4, + "probability": 0.0556 + }, + { + "start": 1220.4, + "end": 1222.62, + "probability": 0.2519 + }, + { + "start": 1222.84, + "end": 1223.62, + "probability": 0.5794 + }, + { + "start": 1223.82, + "end": 1228.12, + "probability": 0.7722 + }, + { + "start": 1228.54, + "end": 1232.04, + "probability": 0.9884 + }, + { + "start": 1232.2, + "end": 1233.18, + "probability": 0.178 + }, + { + "start": 1233.32, + "end": 1234.62, + "probability": 0.7089 + }, + { + "start": 1234.64, + "end": 1237.42, + "probability": 0.5286 + }, + { + "start": 1238.54, + "end": 1238.54, + "probability": 0.3285 + }, + { + "start": 1238.54, + "end": 1239.64, + "probability": 0.819 + }, + { + "start": 1239.8, + "end": 1240.76, + "probability": 0.7491 + }, + { + "start": 1240.88, + "end": 1241.88, + "probability": 0.8232 + }, + { + "start": 1242.4, + "end": 1246.2, + "probability": 0.759 + }, + { + "start": 1246.28, + "end": 1253.22, + "probability": 0.839 + }, + { + "start": 1254.26, + "end": 1258.78, + "probability": 0.9868 + }, + { + "start": 1259.16, + "end": 1262.4, + "probability": 0.8774 + }, + { + "start": 1263.4, + "end": 1268.64, + "probability": 0.8466 + }, + { + "start": 1270.64, + "end": 1271.4, + "probability": 0.7232 + }, + { + "start": 1271.4, + "end": 1273.28, + "probability": 0.6927 + }, + { + "start": 1273.54, + "end": 1275.46, + "probability": 0.8748 + }, + { + "start": 1275.88, + "end": 1277.08, + "probability": 0.9746 + }, + { + "start": 1278.22, + "end": 1280.48, + "probability": 0.9186 + }, + { + "start": 1281.6, + "end": 1284.24, + "probability": 0.9659 + }, + { + "start": 1284.8, + "end": 1287.2, + "probability": 0.9553 + }, + { + "start": 1287.28, + "end": 1288.65, + "probability": 0.9756 + }, + { + "start": 1289.18, + "end": 1289.69, + "probability": 0.8285 + }, + { + "start": 1290.44, + "end": 1293.1, + "probability": 0.8813 + }, + { + "start": 1293.3, + "end": 1295.94, + "probability": 0.7506 + }, + { + "start": 1296.3, + "end": 1298.74, + "probability": 0.993 + }, + { + "start": 1298.98, + "end": 1301.48, + "probability": 0.8438 + }, + { + "start": 1301.56, + "end": 1303.44, + "probability": 0.923 + }, + { + "start": 1304.28, + "end": 1304.77, + "probability": 0.9371 + }, + { + "start": 1304.86, + "end": 1306.82, + "probability": 0.9883 + }, + { + "start": 1306.94, + "end": 1308.1, + "probability": 0.9917 + }, + { + "start": 1308.54, + "end": 1311.15, + "probability": 0.9958 + }, + { + "start": 1311.94, + "end": 1315.66, + "probability": 0.9875 + }, + { + "start": 1315.7, + "end": 1317.14, + "probability": 0.8484 + }, + { + "start": 1317.2, + "end": 1319.31, + "probability": 0.9382 + }, + { + "start": 1319.86, + "end": 1320.77, + "probability": 0.8943 + }, + { + "start": 1321.16, + "end": 1322.66, + "probability": 0.9985 + }, + { + "start": 1322.72, + "end": 1325.32, + "probability": 0.9368 + }, + { + "start": 1326.8, + "end": 1330.82, + "probability": 0.0493 + }, + { + "start": 1331.4, + "end": 1334.16, + "probability": 0.9373 + }, + { + "start": 1334.74, + "end": 1337.84, + "probability": 0.8047 + }, + { + "start": 1338.32, + "end": 1341.51, + "probability": 0.683 + }, + { + "start": 1343.16, + "end": 1344.82, + "probability": 0.3727 + }, + { + "start": 1344.9, + "end": 1346.32, + "probability": 0.9971 + }, + { + "start": 1346.52, + "end": 1350.66, + "probability": 0.733 + }, + { + "start": 1351.16, + "end": 1352.68, + "probability": 0.9922 + }, + { + "start": 1353.16, + "end": 1357.22, + "probability": 0.9446 + }, + { + "start": 1358.74, + "end": 1362.58, + "probability": 0.9938 + }, + { + "start": 1363.1, + "end": 1365.86, + "probability": 0.9985 + }, + { + "start": 1366.16, + "end": 1367.0, + "probability": 0.8542 + }, + { + "start": 1367.12, + "end": 1367.96, + "probability": 0.7544 + }, + { + "start": 1368.28, + "end": 1374.44, + "probability": 0.9561 + }, + { + "start": 1374.74, + "end": 1376.46, + "probability": 0.9294 + }, + { + "start": 1376.88, + "end": 1378.0, + "probability": 0.7101 + }, + { + "start": 1378.24, + "end": 1381.7, + "probability": 0.9863 + }, + { + "start": 1382.14, + "end": 1385.9, + "probability": 0.9622 + }, + { + "start": 1386.7, + "end": 1391.64, + "probability": 0.9682 + }, + { + "start": 1393.32, + "end": 1399.5, + "probability": 0.9589 + }, + { + "start": 1399.78, + "end": 1404.66, + "probability": 0.7217 + }, + { + "start": 1404.7, + "end": 1405.78, + "probability": 0.9321 + }, + { + "start": 1406.28, + "end": 1409.18, + "probability": 0.9843 + }, + { + "start": 1409.66, + "end": 1416.16, + "probability": 0.2621 + }, + { + "start": 1416.2, + "end": 1416.2, + "probability": 0.3528 + }, + { + "start": 1416.2, + "end": 1418.94, + "probability": 0.7933 + }, + { + "start": 1419.42, + "end": 1419.8, + "probability": 0.9584 + }, + { + "start": 1419.9, + "end": 1421.38, + "probability": 0.9268 + }, + { + "start": 1421.44, + "end": 1421.86, + "probability": 0.8271 + }, + { + "start": 1422.26, + "end": 1423.17, + "probability": 0.8575 + }, + { + "start": 1423.48, + "end": 1424.5, + "probability": 0.605 + }, + { + "start": 1424.9, + "end": 1427.68, + "probability": 0.9261 + }, + { + "start": 1427.68, + "end": 1430.1, + "probability": 0.8893 + }, + { + "start": 1430.74, + "end": 1435.48, + "probability": 0.7735 + }, + { + "start": 1435.58, + "end": 1436.12, + "probability": 0.5806 + }, + { + "start": 1436.3, + "end": 1437.5, + "probability": 0.5264 + }, + { + "start": 1437.6, + "end": 1440.81, + "probability": 0.777 + }, + { + "start": 1442.16, + "end": 1447.06, + "probability": 0.9923 + }, + { + "start": 1447.92, + "end": 1448.84, + "probability": 0.5221 + }, + { + "start": 1449.52, + "end": 1451.12, + "probability": 0.6489 + }, + { + "start": 1452.16, + "end": 1453.36, + "probability": 0.9121 + }, + { + "start": 1453.9, + "end": 1455.69, + "probability": 0.7245 + }, + { + "start": 1455.78, + "end": 1456.82, + "probability": 0.8406 + }, + { + "start": 1457.42, + "end": 1458.78, + "probability": 0.9946 + }, + { + "start": 1458.92, + "end": 1459.52, + "probability": 0.7096 + }, + { + "start": 1459.92, + "end": 1461.54, + "probability": 0.608 + }, + { + "start": 1461.96, + "end": 1464.56, + "probability": 0.7484 + }, + { + "start": 1465.14, + "end": 1465.14, + "probability": 0.1242 + }, + { + "start": 1465.14, + "end": 1465.82, + "probability": 0.0879 + }, + { + "start": 1465.88, + "end": 1466.98, + "probability": 0.8471 + }, + { + "start": 1467.08, + "end": 1470.66, + "probability": 0.8753 + }, + { + "start": 1470.86, + "end": 1471.42, + "probability": 0.6837 + }, + { + "start": 1473.56, + "end": 1476.9, + "probability": 0.9915 + }, + { + "start": 1477.0, + "end": 1478.88, + "probability": 0.9966 + }, + { + "start": 1478.88, + "end": 1482.0, + "probability": 0.9854 + }, + { + "start": 1482.28, + "end": 1486.0, + "probability": 0.9395 + }, + { + "start": 1486.42, + "end": 1487.56, + "probability": 0.7527 + }, + { + "start": 1487.92, + "end": 1492.2, + "probability": 0.7768 + }, + { + "start": 1492.98, + "end": 1497.18, + "probability": 0.9952 + }, + { + "start": 1497.52, + "end": 1499.16, + "probability": 0.9985 + }, + { + "start": 1499.8, + "end": 1503.49, + "probability": 0.9346 + }, + { + "start": 1504.1, + "end": 1505.18, + "probability": 0.9805 + }, + { + "start": 1505.5, + "end": 1506.48, + "probability": 0.7278 + }, + { + "start": 1506.58, + "end": 1508.8, + "probability": 0.7173 + }, + { + "start": 1508.94, + "end": 1510.2, + "probability": 0.8907 + }, + { + "start": 1511.3, + "end": 1514.04, + "probability": 0.968 + }, + { + "start": 1514.04, + "end": 1517.6, + "probability": 0.9127 + }, + { + "start": 1518.04, + "end": 1520.3, + "probability": 0.8331 + }, + { + "start": 1520.62, + "end": 1522.72, + "probability": 0.835 + }, + { + "start": 1522.88, + "end": 1524.88, + "probability": 0.9979 + }, + { + "start": 1524.96, + "end": 1525.32, + "probability": 0.7914 + }, + { + "start": 1525.64, + "end": 1526.38, + "probability": 0.6939 + }, + { + "start": 1527.4, + "end": 1529.82, + "probability": 0.6634 + }, + { + "start": 1530.76, + "end": 1534.82, + "probability": 0.8031 + }, + { + "start": 1535.78, + "end": 1535.84, + "probability": 0.2734 + }, + { + "start": 1560.2, + "end": 1561.24, + "probability": 0.2556 + }, + { + "start": 1561.5, + "end": 1562.16, + "probability": 0.6388 + }, + { + "start": 1562.28, + "end": 1563.88, + "probability": 0.9925 + }, + { + "start": 1567.28, + "end": 1567.66, + "probability": 0.2365 + }, + { + "start": 1567.66, + "end": 1568.0, + "probability": 0.6313 + }, + { + "start": 1568.14, + "end": 1568.55, + "probability": 0.3393 + }, + { + "start": 1568.96, + "end": 1570.07, + "probability": 0.8705 + }, + { + "start": 1570.7, + "end": 1572.64, + "probability": 0.9851 + }, + { + "start": 1573.22, + "end": 1573.43, + "probability": 0.1335 + }, + { + "start": 1574.02, + "end": 1574.94, + "probability": 0.2698 + }, + { + "start": 1574.94, + "end": 1575.26, + "probability": 0.623 + }, + { + "start": 1575.3, + "end": 1577.44, + "probability": 0.8589 + }, + { + "start": 1577.84, + "end": 1579.48, + "probability": 0.937 + }, + { + "start": 1580.42, + "end": 1583.82, + "probability": 0.7955 + }, + { + "start": 1584.02, + "end": 1585.12, + "probability": 0.7662 + }, + { + "start": 1585.34, + "end": 1585.74, + "probability": 0.8521 + }, + { + "start": 1586.82, + "end": 1588.42, + "probability": 0.9239 + }, + { + "start": 1589.2, + "end": 1591.04, + "probability": 0.6986 + }, + { + "start": 1591.12, + "end": 1591.9, + "probability": 0.6822 + }, + { + "start": 1591.98, + "end": 1593.36, + "probability": 0.771 + }, + { + "start": 1593.38, + "end": 1595.28, + "probability": 0.8511 + }, + { + "start": 1595.66, + "end": 1597.04, + "probability": 0.4884 + }, + { + "start": 1597.22, + "end": 1601.66, + "probability": 0.7247 + }, + { + "start": 1601.8, + "end": 1603.84, + "probability": 0.8846 + }, + { + "start": 1604.06, + "end": 1606.22, + "probability": 0.8551 + }, + { + "start": 1606.52, + "end": 1609.27, + "probability": 0.1842 + }, + { + "start": 1610.26, + "end": 1610.56, + "probability": 0.1629 + }, + { + "start": 1610.98, + "end": 1612.88, + "probability": 0.973 + }, + { + "start": 1613.78, + "end": 1617.74, + "probability": 0.9192 + }, + { + "start": 1617.74, + "end": 1622.32, + "probability": 0.9316 + }, + { + "start": 1622.32, + "end": 1624.24, + "probability": 0.5997 + }, + { + "start": 1624.28, + "end": 1625.12, + "probability": 0.4165 + }, + { + "start": 1625.32, + "end": 1628.56, + "probability": 0.9946 + }, + { + "start": 1628.78, + "end": 1629.5, + "probability": 0.7016 + }, + { + "start": 1629.98, + "end": 1630.76, + "probability": 0.7725 + }, + { + "start": 1630.8, + "end": 1631.52, + "probability": 0.1499 + }, + { + "start": 1631.62, + "end": 1632.94, + "probability": 0.5056 + }, + { + "start": 1633.12, + "end": 1633.52, + "probability": 0.3981 + }, + { + "start": 1634.68, + "end": 1637.06, + "probability": 0.8926 + }, + { + "start": 1637.78, + "end": 1639.2, + "probability": 0.9742 + }, + { + "start": 1641.44, + "end": 1643.44, + "probability": 0.9518 + }, + { + "start": 1643.7, + "end": 1647.44, + "probability": 0.8352 + }, + { + "start": 1649.16, + "end": 1651.67, + "probability": 0.9733 + }, + { + "start": 1651.94, + "end": 1654.7, + "probability": 0.9102 + }, + { + "start": 1655.3, + "end": 1658.02, + "probability": 0.8804 + }, + { + "start": 1658.3, + "end": 1658.8, + "probability": 0.1994 + }, + { + "start": 1658.86, + "end": 1661.54, + "probability": 0.9093 + }, + { + "start": 1661.96, + "end": 1663.14, + "probability": 0.9054 + }, + { + "start": 1663.66, + "end": 1666.1, + "probability": 0.6164 + }, + { + "start": 1666.16, + "end": 1667.09, + "probability": 0.9863 + }, + { + "start": 1667.74, + "end": 1668.58, + "probability": 0.9805 + }, + { + "start": 1669.54, + "end": 1670.28, + "probability": 0.8063 + }, + { + "start": 1670.4, + "end": 1671.86, + "probability": 0.3574 + }, + { + "start": 1671.96, + "end": 1676.0, + "probability": 0.9532 + }, + { + "start": 1676.04, + "end": 1676.46, + "probability": 0.7714 + }, + { + "start": 1677.52, + "end": 1680.6, + "probability": 0.9761 + }, + { + "start": 1680.6, + "end": 1685.38, + "probability": 0.9464 + }, + { + "start": 1685.58, + "end": 1692.58, + "probability": 0.9141 + }, + { + "start": 1692.58, + "end": 1697.8, + "probability": 0.9197 + }, + { + "start": 1699.52, + "end": 1704.68, + "probability": 0.6987 + }, + { + "start": 1705.26, + "end": 1706.22, + "probability": 0.894 + }, + { + "start": 1706.9, + "end": 1707.16, + "probability": 0.0449 + }, + { + "start": 1707.22, + "end": 1708.22, + "probability": 0.711 + }, + { + "start": 1708.42, + "end": 1709.36, + "probability": 0.9824 + }, + { + "start": 1710.58, + "end": 1710.97, + "probability": 0.9767 + }, + { + "start": 1711.26, + "end": 1714.8, + "probability": 0.9379 + }, + { + "start": 1715.4, + "end": 1718.3, + "probability": 0.8687 + }, + { + "start": 1719.22, + "end": 1724.13, + "probability": 0.9095 + }, + { + "start": 1724.36, + "end": 1728.56, + "probability": 0.9825 + }, + { + "start": 1729.26, + "end": 1729.68, + "probability": 0.1708 + }, + { + "start": 1729.68, + "end": 1731.92, + "probability": 0.9193 + }, + { + "start": 1731.92, + "end": 1736.34, + "probability": 0.6553 + }, + { + "start": 1736.52, + "end": 1737.04, + "probability": 0.836 + }, + { + "start": 1737.14, + "end": 1737.66, + "probability": 0.537 + }, + { + "start": 1739.06, + "end": 1739.44, + "probability": 0.6249 + }, + { + "start": 1739.54, + "end": 1740.0, + "probability": 0.7378 + }, + { + "start": 1740.0, + "end": 1742.92, + "probability": 0.747 + }, + { + "start": 1743.0, + "end": 1749.0, + "probability": 0.7777 + }, + { + "start": 1750.1, + "end": 1754.1, + "probability": 0.6898 + }, + { + "start": 1754.7, + "end": 1756.44, + "probability": 0.9868 + }, + { + "start": 1756.94, + "end": 1760.36, + "probability": 0.9567 + }, + { + "start": 1761.22, + "end": 1761.86, + "probability": 0.8246 + }, + { + "start": 1763.08, + "end": 1765.94, + "probability": 0.6836 + }, + { + "start": 1766.14, + "end": 1766.42, + "probability": 0.2534 + }, + { + "start": 1766.42, + "end": 1766.42, + "probability": 0.4601 + }, + { + "start": 1766.42, + "end": 1768.96, + "probability": 0.4892 + }, + { + "start": 1769.4, + "end": 1769.4, + "probability": 0.0163 + }, + { + "start": 1770.36, + "end": 1771.48, + "probability": 0.0762 + }, + { + "start": 1771.48, + "end": 1771.48, + "probability": 0.2964 + }, + { + "start": 1771.48, + "end": 1771.48, + "probability": 0.2124 + }, + { + "start": 1771.48, + "end": 1771.48, + "probability": 0.0255 + }, + { + "start": 1771.48, + "end": 1771.48, + "probability": 0.1473 + }, + { + "start": 1771.48, + "end": 1772.2, + "probability": 0.6109 + }, + { + "start": 1773.06, + "end": 1776.98, + "probability": 0.5833 + }, + { + "start": 1777.02, + "end": 1777.7, + "probability": 0.856 + }, + { + "start": 1778.5, + "end": 1779.96, + "probability": 0.8182 + }, + { + "start": 1780.16, + "end": 1781.92, + "probability": 0.3995 + }, + { + "start": 1781.96, + "end": 1782.58, + "probability": 0.3153 + }, + { + "start": 1783.78, + "end": 1784.36, + "probability": 0.6832 + }, + { + "start": 1784.62, + "end": 1785.2, + "probability": 0.7185 + }, + { + "start": 1786.28, + "end": 1791.52, + "probability": 0.6314 + }, + { + "start": 1791.52, + "end": 1796.92, + "probability": 0.906 + }, + { + "start": 1797.1, + "end": 1799.16, + "probability": 0.9424 + }, + { + "start": 1799.37, + "end": 1806.66, + "probability": 0.585 + }, + { + "start": 1807.34, + "end": 1809.8, + "probability": 0.7673 + }, + { + "start": 1809.84, + "end": 1810.14, + "probability": 0.5532 + }, + { + "start": 1810.28, + "end": 1811.46, + "probability": 0.8511 + }, + { + "start": 1812.06, + "end": 1813.54, + "probability": 0.7512 + }, + { + "start": 1813.58, + "end": 1816.16, + "probability": 0.7822 + }, + { + "start": 1816.26, + "end": 1816.48, + "probability": 0.5418 + }, + { + "start": 1816.6, + "end": 1820.6, + "probability": 0.8219 + }, + { + "start": 1820.6, + "end": 1824.32, + "probability": 0.8218 + }, + { + "start": 1825.64, + "end": 1830.24, + "probability": 0.8366 + }, + { + "start": 1830.26, + "end": 1833.2, + "probability": 0.8462 + }, + { + "start": 1833.2, + "end": 1836.34, + "probability": 0.7612 + }, + { + "start": 1836.94, + "end": 1839.52, + "probability": 0.981 + }, + { + "start": 1839.88, + "end": 1842.62, + "probability": 0.9616 + }, + { + "start": 1843.6, + "end": 1845.18, + "probability": 0.9175 + }, + { + "start": 1845.66, + "end": 1847.78, + "probability": 0.7117 + }, + { + "start": 1847.78, + "end": 1850.64, + "probability": 0.9237 + }, + { + "start": 1850.8, + "end": 1851.42, + "probability": 0.7766 + }, + { + "start": 1852.02, + "end": 1852.74, + "probability": 0.64 + }, + { + "start": 1854.88, + "end": 1857.12, + "probability": 0.6429 + }, + { + "start": 1857.12, + "end": 1859.28, + "probability": 0.9442 + }, + { + "start": 1859.7, + "end": 1863.22, + "probability": 0.8208 + }, + { + "start": 1864.02, + "end": 1865.52, + "probability": 0.6875 + }, + { + "start": 1866.1, + "end": 1869.44, + "probability": 0.833 + }, + { + "start": 1869.66, + "end": 1870.13, + "probability": 0.7492 + }, + { + "start": 1870.78, + "end": 1870.96, + "probability": 0.6574 + }, + { + "start": 1871.04, + "end": 1874.42, + "probability": 0.8933 + }, + { + "start": 1874.42, + "end": 1876.36, + "probability": 0.9826 + }, + { + "start": 1877.24, + "end": 1878.27, + "probability": 0.6055 + }, + { + "start": 1878.48, + "end": 1883.83, + "probability": 0.7563 + }, + { + "start": 1884.46, + "end": 1884.82, + "probability": 0.7067 + }, + { + "start": 1885.02, + "end": 1885.02, + "probability": 0.4219 + }, + { + "start": 1885.02, + "end": 1888.16, + "probability": 0.8126 + }, + { + "start": 1888.72, + "end": 1888.96, + "probability": 0.3595 + }, + { + "start": 1889.64, + "end": 1890.44, + "probability": 0.8646 + }, + { + "start": 1891.7, + "end": 1894.86, + "probability": 0.5075 + }, + { + "start": 1896.0, + "end": 1898.4, + "probability": 0.6751 + }, + { + "start": 1899.56, + "end": 1899.56, + "probability": 0.4606 + }, + { + "start": 1899.56, + "end": 1900.28, + "probability": 0.7097 + }, + { + "start": 1901.32, + "end": 1902.82, + "probability": 0.4832 + }, + { + "start": 1902.86, + "end": 1904.26, + "probability": 0.6316 + }, + { + "start": 1904.34, + "end": 1904.9, + "probability": 0.2035 + }, + { + "start": 1904.9, + "end": 1907.74, + "probability": 0.9587 + }, + { + "start": 1907.78, + "end": 1908.94, + "probability": 0.9084 + }, + { + "start": 1909.0, + "end": 1909.5, + "probability": 0.8483 + }, + { + "start": 1910.02, + "end": 1910.96, + "probability": 0.4601 + }, + { + "start": 1913.84, + "end": 1915.08, + "probability": 0.3998 + }, + { + "start": 1915.28, + "end": 1916.32, + "probability": 0.3724 + }, + { + "start": 1916.32, + "end": 1917.54, + "probability": 0.4822 + }, + { + "start": 1917.7, + "end": 1921.46, + "probability": 0.8304 + }, + { + "start": 1921.82, + "end": 1922.78, + "probability": 0.6634 + }, + { + "start": 1923.3, + "end": 1923.58, + "probability": 0.4307 + }, + { + "start": 1924.42, + "end": 1924.88, + "probability": 0.6656 + }, + { + "start": 1925.04, + "end": 1925.26, + "probability": 0.8584 + }, + { + "start": 1925.62, + "end": 1927.04, + "probability": 0.472 + }, + { + "start": 1927.3, + "end": 1929.54, + "probability": 0.6289 + }, + { + "start": 1930.08, + "end": 1932.18, + "probability": 0.8283 + }, + { + "start": 1932.6, + "end": 1933.36, + "probability": 0.6416 + }, + { + "start": 1933.54, + "end": 1935.34, + "probability": 0.7238 + }, + { + "start": 1935.34, + "end": 1938.54, + "probability": 0.8329 + }, + { + "start": 1938.66, + "end": 1939.6, + "probability": 0.9241 + }, + { + "start": 1946.94, + "end": 1948.97, + "probability": 0.7451 + }, + { + "start": 1950.04, + "end": 1951.34, + "probability": 0.867 + }, + { + "start": 1952.76, + "end": 1953.24, + "probability": 0.3348 + }, + { + "start": 1953.24, + "end": 1953.58, + "probability": 0.2851 + }, + { + "start": 1953.7, + "end": 1953.7, + "probability": 0.1723 + }, + { + "start": 1953.7, + "end": 1958.56, + "probability": 0.9744 + }, + { + "start": 1958.68, + "end": 1959.61, + "probability": 0.8918 + }, + { + "start": 1960.22, + "end": 1961.2, + "probability": 0.6359 + }, + { + "start": 1961.44, + "end": 1965.76, + "probability": 0.9865 + }, + { + "start": 1967.0, + "end": 1968.42, + "probability": 0.8847 + }, + { + "start": 1968.96, + "end": 1969.26, + "probability": 0.8364 + }, + { + "start": 1969.94, + "end": 1972.26, + "probability": 0.0096 + }, + { + "start": 1973.34, + "end": 1976.78, + "probability": 0.4109 + }, + { + "start": 1977.68, + "end": 1977.82, + "probability": 0.0007 + }, + { + "start": 1979.12, + "end": 1979.12, + "probability": 0.0529 + }, + { + "start": 1979.12, + "end": 1979.12, + "probability": 0.0576 + }, + { + "start": 1979.12, + "end": 1979.47, + "probability": 0.2163 + }, + { + "start": 1980.6, + "end": 1981.62, + "probability": 0.5558 + }, + { + "start": 1983.42, + "end": 1985.76, + "probability": 0.9316 + }, + { + "start": 1987.38, + "end": 1988.28, + "probability": 0.9325 + }, + { + "start": 1990.62, + "end": 1991.6, + "probability": 0.5207 + }, + { + "start": 1991.68, + "end": 1992.52, + "probability": 0.6564 + }, + { + "start": 1992.74, + "end": 1993.96, + "probability": 0.8506 + }, + { + "start": 1994.38, + "end": 1996.86, + "probability": 0.8784 + }, + { + "start": 1997.6, + "end": 2001.51, + "probability": 0.9922 + }, + { + "start": 2002.66, + "end": 2002.78, + "probability": 0.2897 + }, + { + "start": 2002.78, + "end": 2002.78, + "probability": 0.5075 + }, + { + "start": 2002.78, + "end": 2003.38, + "probability": 0.2768 + }, + { + "start": 2003.42, + "end": 2004.26, + "probability": 0.5496 + }, + { + "start": 2004.9, + "end": 2008.4, + "probability": 0.7343 + }, + { + "start": 2008.58, + "end": 2008.68, + "probability": 0.4973 + }, + { + "start": 2009.48, + "end": 2010.42, + "probability": 0.7891 + }, + { + "start": 2011.74, + "end": 2011.98, + "probability": 0.5224 + }, + { + "start": 2012.42, + "end": 2016.98, + "probability": 0.9765 + }, + { + "start": 2017.56, + "end": 2020.34, + "probability": 0.981 + }, + { + "start": 2021.0, + "end": 2026.0, + "probability": 0.8478 + }, + { + "start": 2026.5, + "end": 2031.9, + "probability": 0.9282 + }, + { + "start": 2032.3, + "end": 2034.36, + "probability": 0.989 + }, + { + "start": 2034.5, + "end": 2036.58, + "probability": 0.966 + }, + { + "start": 2036.68, + "end": 2040.8, + "probability": 0.9783 + }, + { + "start": 2041.48, + "end": 2043.68, + "probability": 0.9353 + }, + { + "start": 2043.82, + "end": 2045.54, + "probability": 0.9788 + }, + { + "start": 2045.68, + "end": 2051.56, + "probability": 0.9822 + }, + { + "start": 2052.02, + "end": 2053.82, + "probability": 0.909 + }, + { + "start": 2054.7, + "end": 2058.84, + "probability": 0.8975 + }, + { + "start": 2059.52, + "end": 2062.84, + "probability": 0.9932 + }, + { + "start": 2062.96, + "end": 2064.09, + "probability": 0.9951 + }, + { + "start": 2064.8, + "end": 2065.42, + "probability": 0.9683 + }, + { + "start": 2065.44, + "end": 2066.98, + "probability": 0.9919 + }, + { + "start": 2067.22, + "end": 2068.46, + "probability": 0.9548 + }, + { + "start": 2068.72, + "end": 2069.78, + "probability": 0.9583 + }, + { + "start": 2069.9, + "end": 2071.78, + "probability": 0.9976 + }, + { + "start": 2073.51, + "end": 2075.76, + "probability": 0.9102 + }, + { + "start": 2076.52, + "end": 2080.02, + "probability": 0.9627 + }, + { + "start": 2080.34, + "end": 2084.34, + "probability": 0.9193 + }, + { + "start": 2085.0, + "end": 2085.6, + "probability": 0.9751 + }, + { + "start": 2085.74, + "end": 2086.4, + "probability": 0.9791 + }, + { + "start": 2086.66, + "end": 2088.68, + "probability": 0.9985 + }, + { + "start": 2089.16, + "end": 2089.48, + "probability": 0.4752 + }, + { + "start": 2089.54, + "end": 2090.24, + "probability": 0.6443 + }, + { + "start": 2090.56, + "end": 2091.6, + "probability": 0.9117 + }, + { + "start": 2092.04, + "end": 2094.76, + "probability": 0.9957 + }, + { + "start": 2094.88, + "end": 2096.92, + "probability": 0.9741 + }, + { + "start": 2097.04, + "end": 2098.86, + "probability": 0.8337 + }, + { + "start": 2100.18, + "end": 2101.2, + "probability": 0.9644 + }, + { + "start": 2102.1, + "end": 2104.28, + "probability": 0.9797 + }, + { + "start": 2104.62, + "end": 2106.56, + "probability": 0.9348 + }, + { + "start": 2107.02, + "end": 2107.72, + "probability": 0.6728 + }, + { + "start": 2107.88, + "end": 2111.82, + "probability": 0.9553 + }, + { + "start": 2112.7, + "end": 2113.1, + "probability": 0.7899 + }, + { + "start": 2113.32, + "end": 2116.5, + "probability": 0.7666 + }, + { + "start": 2116.96, + "end": 2118.42, + "probability": 0.9374 + }, + { + "start": 2118.9, + "end": 2121.26, + "probability": 0.9616 + }, + { + "start": 2121.6, + "end": 2122.78, + "probability": 0.6953 + }, + { + "start": 2122.88, + "end": 2124.82, + "probability": 0.8569 + }, + { + "start": 2125.34, + "end": 2126.52, + "probability": 0.6006 + }, + { + "start": 2127.14, + "end": 2129.72, + "probability": 0.9878 + }, + { + "start": 2129.84, + "end": 2130.61, + "probability": 0.5302 + }, + { + "start": 2130.92, + "end": 2132.3, + "probability": 0.9569 + }, + { + "start": 2133.38, + "end": 2138.08, + "probability": 0.9901 + }, + { + "start": 2138.36, + "end": 2139.14, + "probability": 0.9609 + }, + { + "start": 2139.42, + "end": 2140.27, + "probability": 0.9946 + }, + { + "start": 2140.7, + "end": 2141.28, + "probability": 0.9446 + }, + { + "start": 2141.38, + "end": 2142.22, + "probability": 0.9968 + }, + { + "start": 2142.38, + "end": 2144.0, + "probability": 0.9983 + }, + { + "start": 2146.24, + "end": 2150.66, + "probability": 0.5924 + }, + { + "start": 2151.22, + "end": 2154.06, + "probability": 0.9667 + }, + { + "start": 2154.14, + "end": 2154.88, + "probability": 0.8003 + }, + { + "start": 2154.92, + "end": 2156.7, + "probability": 0.929 + }, + { + "start": 2156.76, + "end": 2158.1, + "probability": 0.7785 + }, + { + "start": 2158.78, + "end": 2159.28, + "probability": 0.9764 + }, + { + "start": 2159.84, + "end": 2161.9, + "probability": 0.9851 + }, + { + "start": 2163.84, + "end": 2166.56, + "probability": 0.7756 + }, + { + "start": 2166.56, + "end": 2168.66, + "probability": 0.9969 + }, + { + "start": 2168.76, + "end": 2171.02, + "probability": 0.9972 + }, + { + "start": 2172.16, + "end": 2175.9, + "probability": 0.9908 + }, + { + "start": 2176.46, + "end": 2176.96, + "probability": 0.7872 + }, + { + "start": 2177.08, + "end": 2182.98, + "probability": 0.9967 + }, + { + "start": 2183.54, + "end": 2189.0, + "probability": 0.9047 + }, + { + "start": 2189.7, + "end": 2189.94, + "probability": 0.8414 + }, + { + "start": 2190.0, + "end": 2190.8, + "probability": 0.6925 + }, + { + "start": 2191.02, + "end": 2193.46, + "probability": 0.9667 + }, + { + "start": 2193.6, + "end": 2194.54, + "probability": 0.9333 + }, + { + "start": 2194.66, + "end": 2196.8, + "probability": 0.9637 + }, + { + "start": 2196.92, + "end": 2197.27, + "probability": 0.8987 + }, + { + "start": 2197.76, + "end": 2203.16, + "probability": 0.9983 + }, + { + "start": 2203.54, + "end": 2204.78, + "probability": 0.8178 + }, + { + "start": 2205.08, + "end": 2209.7, + "probability": 0.9772 + }, + { + "start": 2211.36, + "end": 2213.84, + "probability": 0.9489 + }, + { + "start": 2214.58, + "end": 2217.74, + "probability": 0.9495 + }, + { + "start": 2217.86, + "end": 2220.4, + "probability": 0.9551 + }, + { + "start": 2220.52, + "end": 2222.3, + "probability": 0.9566 + }, + { + "start": 2222.54, + "end": 2223.84, + "probability": 0.8952 + }, + { + "start": 2224.12, + "end": 2227.88, + "probability": 0.8945 + }, + { + "start": 2227.96, + "end": 2228.62, + "probability": 0.5891 + }, + { + "start": 2228.92, + "end": 2230.13, + "probability": 0.8363 + }, + { + "start": 2231.28, + "end": 2237.86, + "probability": 0.9784 + }, + { + "start": 2238.42, + "end": 2240.74, + "probability": 0.9343 + }, + { + "start": 2240.8, + "end": 2242.64, + "probability": 0.9774 + }, + { + "start": 2242.76, + "end": 2245.42, + "probability": 0.9459 + }, + { + "start": 2246.26, + "end": 2253.4, + "probability": 0.9727 + }, + { + "start": 2253.84, + "end": 2257.22, + "probability": 0.9741 + }, + { + "start": 2257.82, + "end": 2263.68, + "probability": 0.9761 + }, + { + "start": 2264.92, + "end": 2267.92, + "probability": 0.9844 + }, + { + "start": 2268.14, + "end": 2270.3, + "probability": 0.9876 + }, + { + "start": 2271.22, + "end": 2274.04, + "probability": 0.9937 + }, + { + "start": 2274.62, + "end": 2278.9, + "probability": 0.9657 + }, + { + "start": 2280.26, + "end": 2288.14, + "probability": 0.9967 + }, + { + "start": 2288.62, + "end": 2290.46, + "probability": 0.6868 + }, + { + "start": 2290.5, + "end": 2291.34, + "probability": 0.7936 + }, + { + "start": 2291.38, + "end": 2292.8, + "probability": 0.952 + }, + { + "start": 2292.86, + "end": 2295.38, + "probability": 0.9834 + }, + { + "start": 2295.64, + "end": 2298.32, + "probability": 0.9175 + }, + { + "start": 2298.4, + "end": 2299.62, + "probability": 0.8818 + }, + { + "start": 2299.68, + "end": 2301.3, + "probability": 0.9938 + }, + { + "start": 2301.62, + "end": 2302.34, + "probability": 0.7035 + }, + { + "start": 2302.94, + "end": 2303.86, + "probability": 0.6992 + }, + { + "start": 2303.98, + "end": 2307.68, + "probability": 0.9062 + }, + { + "start": 2307.92, + "end": 2310.74, + "probability": 0.96 + }, + { + "start": 2311.6, + "end": 2311.98, + "probability": 0.9064 + }, + { + "start": 2312.76, + "end": 2316.16, + "probability": 0.9919 + }, + { + "start": 2317.54, + "end": 2319.6, + "probability": 0.9535 + }, + { + "start": 2319.7, + "end": 2321.46, + "probability": 0.7181 + }, + { + "start": 2322.14, + "end": 2322.87, + "probability": 0.8585 + }, + { + "start": 2324.39, + "end": 2327.2, + "probability": 0.8705 + }, + { + "start": 2327.42, + "end": 2329.4, + "probability": 0.8909 + }, + { + "start": 2330.9, + "end": 2332.98, + "probability": 0.2853 + }, + { + "start": 2333.4, + "end": 2333.62, + "probability": 0.7776 + }, + { + "start": 2333.74, + "end": 2335.86, + "probability": 0.5887 + }, + { + "start": 2336.0, + "end": 2337.7, + "probability": 0.4496 + }, + { + "start": 2338.42, + "end": 2339.9, + "probability": 0.2198 + }, + { + "start": 2340.06, + "end": 2341.92, + "probability": 0.2921 + }, + { + "start": 2341.92, + "end": 2342.65, + "probability": 0.4623 + }, + { + "start": 2343.02, + "end": 2343.57, + "probability": 0.0592 + }, + { + "start": 2343.74, + "end": 2345.18, + "probability": 0.1409 + }, + { + "start": 2346.15, + "end": 2347.56, + "probability": 0.7701 + }, + { + "start": 2347.92, + "end": 2348.6, + "probability": 0.8 + }, + { + "start": 2354.96, + "end": 2357.22, + "probability": 0.9653 + }, + { + "start": 2359.46, + "end": 2359.94, + "probability": 0.0653 + }, + { + "start": 2360.08, + "end": 2360.22, + "probability": 0.2615 + }, + { + "start": 2361.06, + "end": 2366.48, + "probability": 0.4093 + }, + { + "start": 2366.52, + "end": 2370.3, + "probability": 0.71 + }, + { + "start": 2372.34, + "end": 2375.04, + "probability": 0.9919 + }, + { + "start": 2375.04, + "end": 2376.8, + "probability": 0.552 + }, + { + "start": 2377.0, + "end": 2378.88, + "probability": 0.9517 + }, + { + "start": 2378.92, + "end": 2380.08, + "probability": 0.975 + }, + { + "start": 2380.32, + "end": 2380.62, + "probability": 0.981 + }, + { + "start": 2381.5, + "end": 2383.64, + "probability": 0.7081 + }, + { + "start": 2383.64, + "end": 2384.6, + "probability": 0.9093 + }, + { + "start": 2384.66, + "end": 2385.2, + "probability": 0.4864 + }, + { + "start": 2385.22, + "end": 2386.96, + "probability": 0.7555 + }, + { + "start": 2387.08, + "end": 2390.56, + "probability": 0.8384 + }, + { + "start": 2390.7, + "end": 2393.54, + "probability": 0.895 + }, + { + "start": 2393.68, + "end": 2394.37, + "probability": 0.9456 + }, + { + "start": 2395.82, + "end": 2397.96, + "probability": 0.988 + }, + { + "start": 2398.06, + "end": 2398.58, + "probability": 0.971 + }, + { + "start": 2398.64, + "end": 2400.4, + "probability": 0.7284 + }, + { + "start": 2400.42, + "end": 2401.82, + "probability": 0.9414 + }, + { + "start": 2401.82, + "end": 2403.24, + "probability": 0.2003 + }, + { + "start": 2403.56, + "end": 2407.56, + "probability": 0.8288 + }, + { + "start": 2408.1, + "end": 2410.17, + "probability": 0.9958 + }, + { + "start": 2411.22, + "end": 2415.34, + "probability": 0.9345 + }, + { + "start": 2415.96, + "end": 2416.5, + "probability": 0.7761 + }, + { + "start": 2416.76, + "end": 2417.32, + "probability": 0.8289 + }, + { + "start": 2417.36, + "end": 2418.08, + "probability": 0.6579 + }, + { + "start": 2418.12, + "end": 2421.82, + "probability": 0.8399 + }, + { + "start": 2422.96, + "end": 2429.9, + "probability": 0.7998 + }, + { + "start": 2430.06, + "end": 2431.02, + "probability": 0.6311 + }, + { + "start": 2433.62, + "end": 2434.4, + "probability": 0.1019 + }, + { + "start": 2435.08, + "end": 2437.08, + "probability": 0.8724 + }, + { + "start": 2437.56, + "end": 2438.08, + "probability": 0.7521 + }, + { + "start": 2438.3, + "end": 2443.08, + "probability": 0.9407 + }, + { + "start": 2443.18, + "end": 2446.8, + "probability": 0.9424 + }, + { + "start": 2447.34, + "end": 2447.76, + "probability": 0.2691 + }, + { + "start": 2448.36, + "end": 2450.38, + "probability": 0.9442 + }, + { + "start": 2450.44, + "end": 2451.42, + "probability": 0.8781 + }, + { + "start": 2451.46, + "end": 2452.56, + "probability": 0.4282 + }, + { + "start": 2452.76, + "end": 2454.18, + "probability": 0.8302 + }, + { + "start": 2454.54, + "end": 2457.4, + "probability": 0.9883 + }, + { + "start": 2457.48, + "end": 2459.44, + "probability": 0.9941 + }, + { + "start": 2460.06, + "end": 2463.0, + "probability": 0.9932 + }, + { + "start": 2463.08, + "end": 2464.86, + "probability": 0.9969 + }, + { + "start": 2464.9, + "end": 2465.5, + "probability": 0.8022 + }, + { + "start": 2465.68, + "end": 2466.56, + "probability": 0.962 + }, + { + "start": 2467.2, + "end": 2470.6, + "probability": 0.8784 + }, + { + "start": 2472.1, + "end": 2474.76, + "probability": 0.9858 + }, + { + "start": 2474.84, + "end": 2476.14, + "probability": 0.5958 + }, + { + "start": 2476.36, + "end": 2477.24, + "probability": 0.7703 + }, + { + "start": 2477.4, + "end": 2478.64, + "probability": 0.9591 + }, + { + "start": 2479.12, + "end": 2481.9, + "probability": 0.9824 + }, + { + "start": 2482.02, + "end": 2484.86, + "probability": 0.8517 + }, + { + "start": 2484.88, + "end": 2487.16, + "probability": 0.9939 + }, + { + "start": 2488.2, + "end": 2492.46, + "probability": 0.9953 + }, + { + "start": 2493.26, + "end": 2495.46, + "probability": 0.9741 + }, + { + "start": 2495.52, + "end": 2496.36, + "probability": 0.9593 + }, + { + "start": 2496.44, + "end": 2498.22, + "probability": 0.8773 + }, + { + "start": 2499.02, + "end": 2502.84, + "probability": 0.9394 + }, + { + "start": 2503.16, + "end": 2504.75, + "probability": 0.9178 + }, + { + "start": 2505.04, + "end": 2507.6, + "probability": 0.939 + }, + { + "start": 2507.96, + "end": 2510.04, + "probability": 0.9962 + }, + { + "start": 2510.38, + "end": 2511.08, + "probability": 0.9701 + }, + { + "start": 2511.18, + "end": 2511.84, + "probability": 0.8337 + }, + { + "start": 2511.86, + "end": 2514.58, + "probability": 0.9901 + }, + { + "start": 2514.58, + "end": 2517.6, + "probability": 0.9379 + }, + { + "start": 2518.96, + "end": 2524.56, + "probability": 0.9525 + }, + { + "start": 2524.72, + "end": 2525.26, + "probability": 0.4896 + }, + { + "start": 2525.82, + "end": 2526.48, + "probability": 0.8279 + }, + { + "start": 2526.64, + "end": 2528.62, + "probability": 0.9738 + }, + { + "start": 2528.76, + "end": 2531.04, + "probability": 0.8965 + }, + { + "start": 2531.26, + "end": 2531.88, + "probability": 0.5787 + }, + { + "start": 2531.96, + "end": 2534.56, + "probability": 0.9449 + }, + { + "start": 2534.96, + "end": 2540.7, + "probability": 0.8486 + }, + { + "start": 2540.92, + "end": 2542.4, + "probability": 0.9514 + }, + { + "start": 2543.5, + "end": 2545.02, + "probability": 0.9102 + }, + { + "start": 2545.36, + "end": 2547.72, + "probability": 0.8974 + }, + { + "start": 2547.8, + "end": 2549.78, + "probability": 0.577 + }, + { + "start": 2550.04, + "end": 2550.8, + "probability": 0.8589 + }, + { + "start": 2550.92, + "end": 2551.82, + "probability": 0.9556 + }, + { + "start": 2553.02, + "end": 2555.3, + "probability": 0.4987 + }, + { + "start": 2557.96, + "end": 2558.14, + "probability": 0.0141 + }, + { + "start": 2558.14, + "end": 2558.14, + "probability": 0.2778 + }, + { + "start": 2558.14, + "end": 2558.77, + "probability": 0.6729 + }, + { + "start": 2559.7, + "end": 2561.24, + "probability": 0.2043 + }, + { + "start": 2561.24, + "end": 2562.58, + "probability": 0.6615 + }, + { + "start": 2563.44, + "end": 2565.24, + "probability": 0.8812 + }, + { + "start": 2565.8, + "end": 2566.1, + "probability": 0.6458 + }, + { + "start": 2566.14, + "end": 2566.76, + "probability": 0.3687 + }, + { + "start": 2566.98, + "end": 2569.62, + "probability": 0.9448 + }, + { + "start": 2569.74, + "end": 2571.9, + "probability": 0.9471 + }, + { + "start": 2571.92, + "end": 2573.54, + "probability": 0.0853 + }, + { + "start": 2574.28, + "end": 2576.58, + "probability": 0.9248 + }, + { + "start": 2576.66, + "end": 2578.56, + "probability": 0.8601 + }, + { + "start": 2578.68, + "end": 2581.76, + "probability": 0.9915 + }, + { + "start": 2582.42, + "end": 2585.16, + "probability": 0.9932 + }, + { + "start": 2585.3, + "end": 2587.06, + "probability": 0.9906 + }, + { + "start": 2587.76, + "end": 2588.24, + "probability": 0.9302 + }, + { + "start": 2588.3, + "end": 2589.38, + "probability": 0.9735 + }, + { + "start": 2590.3, + "end": 2596.62, + "probability": 0.6778 + }, + { + "start": 2598.76, + "end": 2601.29, + "probability": 0.9888 + }, + { + "start": 2603.15, + "end": 2605.58, + "probability": 0.9041 + }, + { + "start": 2606.44, + "end": 2608.08, + "probability": 0.4719 + }, + { + "start": 2608.14, + "end": 2610.34, + "probability": 0.7256 + }, + { + "start": 2610.71, + "end": 2616.2, + "probability": 0.9832 + }, + { + "start": 2616.32, + "end": 2617.6, + "probability": 0.9992 + }, + { + "start": 2617.62, + "end": 2618.86, + "probability": 0.9966 + }, + { + "start": 2619.22, + "end": 2620.34, + "probability": 0.7361 + }, + { + "start": 2620.64, + "end": 2622.54, + "probability": 0.9971 + }, + { + "start": 2622.58, + "end": 2623.5, + "probability": 0.973 + }, + { + "start": 2623.58, + "end": 2624.66, + "probability": 0.8999 + }, + { + "start": 2625.24, + "end": 2625.36, + "probability": 0.7245 + }, + { + "start": 2625.5, + "end": 2628.56, + "probability": 0.8777 + }, + { + "start": 2628.84, + "end": 2630.4, + "probability": 0.9479 + }, + { + "start": 2630.46, + "end": 2631.02, + "probability": 0.6602 + }, + { + "start": 2631.4, + "end": 2633.46, + "probability": 0.6006 + }, + { + "start": 2633.62, + "end": 2633.72, + "probability": 0.7905 + }, + { + "start": 2633.86, + "end": 2634.66, + "probability": 0.9378 + }, + { + "start": 2634.74, + "end": 2637.7, + "probability": 0.8925 + }, + { + "start": 2638.04, + "end": 2639.22, + "probability": 0.4361 + }, + { + "start": 2640.16, + "end": 2640.56, + "probability": 0.4771 + }, + { + "start": 2640.66, + "end": 2640.94, + "probability": 0.6015 + }, + { + "start": 2641.02, + "end": 2643.92, + "probability": 0.6531 + }, + { + "start": 2644.62, + "end": 2645.8, + "probability": 0.6645 + }, + { + "start": 2645.86, + "end": 2649.72, + "probability": 0.9717 + }, + { + "start": 2649.72, + "end": 2652.58, + "probability": 0.8004 + }, + { + "start": 2653.14, + "end": 2657.64, + "probability": 0.9967 + }, + { + "start": 2658.4, + "end": 2662.78, + "probability": 0.975 + }, + { + "start": 2662.78, + "end": 2666.64, + "probability": 0.9228 + }, + { + "start": 2667.66, + "end": 2669.22, + "probability": 0.9358 + }, + { + "start": 2669.22, + "end": 2671.24, + "probability": 0.9809 + }, + { + "start": 2672.04, + "end": 2674.2, + "probability": 0.9314 + }, + { + "start": 2674.88, + "end": 2676.2, + "probability": 0.8028 + }, + { + "start": 2676.96, + "end": 2678.28, + "probability": 0.9379 + }, + { + "start": 2678.62, + "end": 2679.6, + "probability": 0.6633 + }, + { + "start": 2679.82, + "end": 2680.56, + "probability": 0.7863 + }, + { + "start": 2680.94, + "end": 2682.46, + "probability": 0.8527 + }, + { + "start": 2682.48, + "end": 2683.02, + "probability": 0.7177 + }, + { + "start": 2683.34, + "end": 2683.96, + "probability": 0.5732 + }, + { + "start": 2684.2, + "end": 2686.18, + "probability": 0.7889 + }, + { + "start": 2702.78, + "end": 2706.72, + "probability": 0.6257 + }, + { + "start": 2707.38, + "end": 2707.94, + "probability": 0.7218 + }, + { + "start": 2709.46, + "end": 2713.46, + "probability": 0.8812 + }, + { + "start": 2715.76, + "end": 2716.42, + "probability": 0.3796 + }, + { + "start": 2716.88, + "end": 2719.62, + "probability": 0.6169 + }, + { + "start": 2721.2, + "end": 2724.66, + "probability": 0.96 + }, + { + "start": 2724.66, + "end": 2727.58, + "probability": 0.9964 + }, + { + "start": 2728.72, + "end": 2730.72, + "probability": 0.8099 + }, + { + "start": 2730.72, + "end": 2738.46, + "probability": 0.7998 + }, + { + "start": 2739.64, + "end": 2740.34, + "probability": 0.8372 + }, + { + "start": 2741.4, + "end": 2744.84, + "probability": 0.6573 + }, + { + "start": 2746.12, + "end": 2749.26, + "probability": 0.7336 + }, + { + "start": 2750.4, + "end": 2751.02, + "probability": 0.8735 + }, + { + "start": 2752.66, + "end": 2755.78, + "probability": 0.9092 + }, + { + "start": 2755.84, + "end": 2756.82, + "probability": 0.7498 + }, + { + "start": 2757.3, + "end": 2758.02, + "probability": 0.9131 + }, + { + "start": 2759.06, + "end": 2759.9, + "probability": 0.9133 + }, + { + "start": 2760.22, + "end": 2761.22, + "probability": 0.8775 + }, + { + "start": 2761.46, + "end": 2762.55, + "probability": 0.9326 + }, + { + "start": 2764.38, + "end": 2767.22, + "probability": 0.9942 + }, + { + "start": 2768.48, + "end": 2769.58, + "probability": 0.9489 + }, + { + "start": 2770.32, + "end": 2770.94, + "probability": 0.5464 + }, + { + "start": 2772.14, + "end": 2775.76, + "probability": 0.7038 + }, + { + "start": 2776.16, + "end": 2780.5, + "probability": 0.6836 + }, + { + "start": 2780.5, + "end": 2783.16, + "probability": 0.8169 + }, + { + "start": 2783.98, + "end": 2786.74, + "probability": 0.8924 + }, + { + "start": 2786.96, + "end": 2787.87, + "probability": 0.5474 + }, + { + "start": 2790.58, + "end": 2793.44, + "probability": 0.5572 + }, + { + "start": 2793.44, + "end": 2794.18, + "probability": 0.5221 + }, + { + "start": 2794.52, + "end": 2797.17, + "probability": 0.6048 + }, + { + "start": 2798.68, + "end": 2801.0, + "probability": 0.8438 + }, + { + "start": 2801.08, + "end": 2801.74, + "probability": 0.8892 + }, + { + "start": 2801.76, + "end": 2802.4, + "probability": 0.6558 + }, + { + "start": 2802.66, + "end": 2804.74, + "probability": 0.8237 + }, + { + "start": 2805.44, + "end": 2807.77, + "probability": 0.8452 + }, + { + "start": 2809.02, + "end": 2810.74, + "probability": 0.6911 + }, + { + "start": 2811.46, + "end": 2811.8, + "probability": 0.7161 + }, + { + "start": 2812.36, + "end": 2816.12, + "probability": 0.3932 + }, + { + "start": 2816.34, + "end": 2818.94, + "probability": 0.9557 + }, + { + "start": 2819.66, + "end": 2820.26, + "probability": 0.4667 + }, + { + "start": 2820.64, + "end": 2823.7, + "probability": 0.9258 + }, + { + "start": 2824.02, + "end": 2824.92, + "probability": 0.9731 + }, + { + "start": 2825.04, + "end": 2826.8, + "probability": 0.9023 + }, + { + "start": 2827.1, + "end": 2831.66, + "probability": 0.7458 + }, + { + "start": 2831.82, + "end": 2834.1, + "probability": 0.6753 + }, + { + "start": 2834.26, + "end": 2835.95, + "probability": 0.9067 + }, + { + "start": 2836.44, + "end": 2837.78, + "probability": 0.8481 + }, + { + "start": 2837.84, + "end": 2840.64, + "probability": 0.6807 + }, + { + "start": 2841.34, + "end": 2842.16, + "probability": 0.442 + }, + { + "start": 2842.26, + "end": 2844.7, + "probability": 0.1871 + }, + { + "start": 2844.8, + "end": 2845.92, + "probability": 0.3037 + }, + { + "start": 2846.04, + "end": 2846.5, + "probability": 0.6188 + }, + { + "start": 2846.68, + "end": 2848.16, + "probability": 0.2245 + }, + { + "start": 2848.16, + "end": 2848.44, + "probability": 0.0047 + }, + { + "start": 2848.9, + "end": 2850.24, + "probability": 0.6651 + }, + { + "start": 2850.24, + "end": 2851.06, + "probability": 0.2796 + }, + { + "start": 2851.06, + "end": 2851.58, + "probability": 0.2775 + }, + { + "start": 2851.88, + "end": 2853.96, + "probability": 0.3976 + }, + { + "start": 2853.96, + "end": 2854.54, + "probability": 0.2266 + }, + { + "start": 2854.98, + "end": 2855.64, + "probability": 0.5788 + }, + { + "start": 2855.64, + "end": 2857.62, + "probability": 0.9691 + }, + { + "start": 2857.76, + "end": 2859.56, + "probability": 0.9243 + }, + { + "start": 2859.64, + "end": 2861.48, + "probability": 0.9175 + }, + { + "start": 2861.58, + "end": 2862.44, + "probability": 0.9739 + }, + { + "start": 2862.62, + "end": 2863.86, + "probability": 0.9805 + }, + { + "start": 2863.94, + "end": 2864.28, + "probability": 0.8503 + }, + { + "start": 2864.38, + "end": 2865.58, + "probability": 0.8982 + }, + { + "start": 2865.58, + "end": 2866.41, + "probability": 0.8373 + }, + { + "start": 2866.58, + "end": 2868.84, + "probability": 0.4834 + }, + { + "start": 2868.98, + "end": 2869.72, + "probability": 0.7705 + }, + { + "start": 2869.78, + "end": 2870.94, + "probability": 0.7412 + }, + { + "start": 2871.18, + "end": 2873.92, + "probability": 0.9064 + }, + { + "start": 2874.06, + "end": 2876.4, + "probability": 0.4173 + }, + { + "start": 2876.8, + "end": 2878.18, + "probability": 0.8457 + }, + { + "start": 2878.44, + "end": 2879.75, + "probability": 0.9777 + }, + { + "start": 2879.9, + "end": 2883.6, + "probability": 0.8533 + }, + { + "start": 2884.22, + "end": 2884.98, + "probability": 0.7743 + }, + { + "start": 2885.66, + "end": 2887.28, + "probability": 0.9272 + }, + { + "start": 2887.42, + "end": 2888.44, + "probability": 0.7988 + }, + { + "start": 2888.82, + "end": 2890.68, + "probability": 0.5406 + }, + { + "start": 2891.38, + "end": 2892.76, + "probability": 0.7754 + }, + { + "start": 2892.76, + "end": 2893.21, + "probability": 0.7093 + }, + { + "start": 2893.56, + "end": 2895.2, + "probability": 0.96 + }, + { + "start": 2895.42, + "end": 2897.7, + "probability": 0.905 + }, + { + "start": 2898.14, + "end": 2903.46, + "probability": 0.8085 + }, + { + "start": 2903.52, + "end": 2904.66, + "probability": 0.6597 + }, + { + "start": 2904.84, + "end": 2905.44, + "probability": 0.5522 + }, + { + "start": 2905.6, + "end": 2910.58, + "probability": 0.8413 + }, + { + "start": 2911.28, + "end": 2913.24, + "probability": 0.63 + }, + { + "start": 2915.28, + "end": 2920.28, + "probability": 0.7649 + }, + { + "start": 2920.4, + "end": 2921.9, + "probability": 0.4029 + }, + { + "start": 2922.08, + "end": 2922.29, + "probability": 0.3854 + }, + { + "start": 2923.96, + "end": 2924.52, + "probability": 0.7819 + }, + { + "start": 2924.62, + "end": 2930.28, + "probability": 0.8789 + }, + { + "start": 2930.44, + "end": 2934.16, + "probability": 0.9492 + }, + { + "start": 2934.16, + "end": 2937.3, + "probability": 0.9336 + }, + { + "start": 2937.46, + "end": 2942.1, + "probability": 0.0078 + }, + { + "start": 2942.51, + "end": 2943.18, + "probability": 0.0243 + }, + { + "start": 2943.18, + "end": 2943.84, + "probability": 0.0679 + }, + { + "start": 2943.9, + "end": 2943.9, + "probability": 0.0332 + }, + { + "start": 2943.9, + "end": 2944.04, + "probability": 0.3956 + }, + { + "start": 2944.04, + "end": 2944.54, + "probability": 0.2993 + }, + { + "start": 2944.54, + "end": 2945.84, + "probability": 0.4304 + }, + { + "start": 2945.84, + "end": 2946.52, + "probability": 0.5477 + }, + { + "start": 2946.58, + "end": 2949.48, + "probability": 0.6109 + }, + { + "start": 2949.74, + "end": 2952.77, + "probability": 0.7625 + }, + { + "start": 2953.22, + "end": 2955.26, + "probability": 0.6493 + }, + { + "start": 2955.52, + "end": 2957.48, + "probability": 0.8677 + }, + { + "start": 2957.62, + "end": 2958.98, + "probability": 0.8501 + }, + { + "start": 2959.16, + "end": 2961.14, + "probability": 0.2421 + }, + { + "start": 2963.38, + "end": 2964.88, + "probability": 0.0357 + }, + { + "start": 2965.14, + "end": 2965.14, + "probability": 0.6926 + }, + { + "start": 2965.14, + "end": 2967.08, + "probability": 0.6102 + }, + { + "start": 2967.28, + "end": 2968.08, + "probability": 0.0158 + }, + { + "start": 2968.22, + "end": 2969.52, + "probability": 0.0484 + }, + { + "start": 2969.52, + "end": 2972.94, + "probability": 0.0825 + }, + { + "start": 2973.16, + "end": 2973.92, + "probability": 0.4549 + }, + { + "start": 2974.04, + "end": 2974.04, + "probability": 0.2809 + }, + { + "start": 2974.1, + "end": 2975.08, + "probability": 0.3014 + }, + { + "start": 2975.86, + "end": 2979.12, + "probability": 0.0145 + }, + { + "start": 2979.12, + "end": 2979.12, + "probability": 0.2688 + }, + { + "start": 2979.12, + "end": 2979.12, + "probability": 0.0583 + }, + { + "start": 2979.12, + "end": 2979.12, + "probability": 0.0699 + }, + { + "start": 2979.12, + "end": 2979.68, + "probability": 0.0864 + }, + { + "start": 2979.8, + "end": 2980.12, + "probability": 0.2988 + }, + { + "start": 2980.2, + "end": 2984.02, + "probability": 0.915 + }, + { + "start": 2984.22, + "end": 2985.08, + "probability": 0.6479 + }, + { + "start": 2985.2, + "end": 2986.56, + "probability": 0.5276 + }, + { + "start": 2988.14, + "end": 2988.68, + "probability": 0.29 + }, + { + "start": 2989.02, + "end": 2989.96, + "probability": 0.7689 + }, + { + "start": 2990.52, + "end": 2990.96, + "probability": 0.8755 + }, + { + "start": 2992.44, + "end": 2994.42, + "probability": 0.5845 + }, + { + "start": 2995.06, + "end": 2997.98, + "probability": 0.8123 + }, + { + "start": 2998.24, + "end": 3000.06, + "probability": 0.9824 + }, + { + "start": 3000.18, + "end": 3001.36, + "probability": 0.5867 + }, + { + "start": 3001.5, + "end": 3001.76, + "probability": 0.6113 + }, + { + "start": 3001.92, + "end": 3002.87, + "probability": 0.5452 + }, + { + "start": 3003.46, + "end": 3005.02, + "probability": 0.7883 + }, + { + "start": 3005.12, + "end": 3006.2, + "probability": 0.9662 + }, + { + "start": 3007.78, + "end": 3009.09, + "probability": 0.7864 + }, + { + "start": 3009.62, + "end": 3011.44, + "probability": 0.6015 + }, + { + "start": 3012.02, + "end": 3012.2, + "probability": 0.6179 + }, + { + "start": 3012.3, + "end": 3013.4, + "probability": 0.7303 + }, + { + "start": 3013.94, + "end": 3014.28, + "probability": 0.533 + }, + { + "start": 3014.8, + "end": 3016.22, + "probability": 0.6499 + }, + { + "start": 3016.22, + "end": 3019.34, + "probability": 0.6382 + }, + { + "start": 3019.42, + "end": 3020.65, + "probability": 0.6282 + }, + { + "start": 3020.7, + "end": 3020.78, + "probability": 0.1863 + }, + { + "start": 3020.78, + "end": 3021.22, + "probability": 0.2527 + }, + { + "start": 3021.22, + "end": 3022.86, + "probability": 0.8904 + }, + { + "start": 3023.26, + "end": 3024.8, + "probability": 0.8135 + }, + { + "start": 3024.96, + "end": 3026.48, + "probability": 0.5629 + }, + { + "start": 3027.26, + "end": 3027.36, + "probability": 0.4746 + }, + { + "start": 3027.64, + "end": 3028.94, + "probability": 0.583 + }, + { + "start": 3029.41, + "end": 3031.34, + "probability": 0.3843 + }, + { + "start": 3031.58, + "end": 3031.76, + "probability": 0.183 + }, + { + "start": 3031.86, + "end": 3032.98, + "probability": 0.7172 + }, + { + "start": 3032.98, + "end": 3034.38, + "probability": 0.4891 + }, + { + "start": 3034.86, + "end": 3035.76, + "probability": 0.6754 + }, + { + "start": 3036.76, + "end": 3037.94, + "probability": 0.8944 + }, + { + "start": 3038.86, + "end": 3039.76, + "probability": 0.621 + }, + { + "start": 3040.86, + "end": 3042.16, + "probability": 0.7183 + }, + { + "start": 3042.24, + "end": 3042.8, + "probability": 0.4694 + }, + { + "start": 3043.0, + "end": 3043.94, + "probability": 0.635 + }, + { + "start": 3044.22, + "end": 3044.8, + "probability": 0.8573 + }, + { + "start": 3045.88, + "end": 3047.42, + "probability": 0.9938 + }, + { + "start": 3048.12, + "end": 3048.6, + "probability": 0.4773 + }, + { + "start": 3049.0, + "end": 3051.4, + "probability": 0.9323 + }, + { + "start": 3052.0, + "end": 3052.58, + "probability": 0.9517 + }, + { + "start": 3054.32, + "end": 3056.9, + "probability": 0.9681 + }, + { + "start": 3057.24, + "end": 3057.94, + "probability": 0.6194 + }, + { + "start": 3058.16, + "end": 3059.14, + "probability": 0.9642 + }, + { + "start": 3059.5, + "end": 3062.38, + "probability": 0.9694 + }, + { + "start": 3063.04, + "end": 3064.0, + "probability": 0.9861 + }, + { + "start": 3064.34, + "end": 3065.86, + "probability": 0.9862 + }, + { + "start": 3065.86, + "end": 3066.1, + "probability": 0.7133 + }, + { + "start": 3066.5, + "end": 3067.18, + "probability": 0.8391 + }, + { + "start": 3067.3, + "end": 3068.16, + "probability": 0.713 + }, + { + "start": 3068.36, + "end": 3068.72, + "probability": 0.5919 + }, + { + "start": 3070.54, + "end": 3070.86, + "probability": 0.3379 + }, + { + "start": 3071.4, + "end": 3072.0, + "probability": 0.2603 + }, + { + "start": 3073.12, + "end": 3077.06, + "probability": 0.9653 + }, + { + "start": 3078.52, + "end": 3080.54, + "probability": 0.9014 + }, + { + "start": 3082.64, + "end": 3085.54, + "probability": 0.9185 + }, + { + "start": 3087.08, + "end": 3089.76, + "probability": 0.777 + }, + { + "start": 3090.16, + "end": 3090.4, + "probability": 0.4997 + }, + { + "start": 3090.64, + "end": 3092.86, + "probability": 0.9154 + }, + { + "start": 3095.14, + "end": 3098.18, + "probability": 0.5817 + }, + { + "start": 3098.58, + "end": 3100.5, + "probability": 0.8109 + }, + { + "start": 3101.94, + "end": 3104.0, + "probability": 0.953 + }, + { + "start": 3104.04, + "end": 3104.5, + "probability": 0.7892 + }, + { + "start": 3104.74, + "end": 3105.98, + "probability": 0.7908 + }, + { + "start": 3106.28, + "end": 3107.2, + "probability": 0.6445 + }, + { + "start": 3107.52, + "end": 3108.72, + "probability": 0.851 + }, + { + "start": 3110.52, + "end": 3111.14, + "probability": 0.7122 + }, + { + "start": 3111.26, + "end": 3112.62, + "probability": 0.0595 + }, + { + "start": 3113.26, + "end": 3115.72, + "probability": 0.7534 + }, + { + "start": 3116.42, + "end": 3118.6, + "probability": 0.9331 + }, + { + "start": 3122.0, + "end": 3123.5, + "probability": 0.7927 + }, + { + "start": 3123.54, + "end": 3125.3, + "probability": 0.7866 + }, + { + "start": 3126.02, + "end": 3127.16, + "probability": 0.9678 + }, + { + "start": 3128.66, + "end": 3130.02, + "probability": 0.7475 + }, + { + "start": 3130.68, + "end": 3132.38, + "probability": 0.981 + }, + { + "start": 3134.52, + "end": 3137.66, + "probability": 0.7044 + }, + { + "start": 3138.8, + "end": 3139.24, + "probability": 0.3709 + }, + { + "start": 3139.24, + "end": 3140.04, + "probability": 0.8801 + }, + { + "start": 3140.1, + "end": 3141.93, + "probability": 0.5157 + }, + { + "start": 3142.5, + "end": 3143.38, + "probability": 0.4165 + }, + { + "start": 3143.8, + "end": 3144.14, + "probability": 0.9296 + }, + { + "start": 3144.9, + "end": 3145.66, + "probability": 0.9377 + }, + { + "start": 3146.4, + "end": 3149.88, + "probability": 0.9398 + }, + { + "start": 3151.28, + "end": 3153.26, + "probability": 0.8043 + }, + { + "start": 3165.26, + "end": 3165.5, + "probability": 0.4647 + }, + { + "start": 3165.5, + "end": 3165.5, + "probability": 0.2965 + }, + { + "start": 3165.5, + "end": 3165.5, + "probability": 0.1813 + }, + { + "start": 3165.5, + "end": 3165.9, + "probability": 0.4855 + }, + { + "start": 3166.12, + "end": 3166.78, + "probability": 0.8279 + }, + { + "start": 3167.28, + "end": 3167.9, + "probability": 0.4787 + }, + { + "start": 3168.08, + "end": 3170.64, + "probability": 0.9531 + }, + { + "start": 3171.54, + "end": 3173.7, + "probability": 0.1813 + }, + { + "start": 3175.48, + "end": 3178.44, + "probability": 0.258 + }, + { + "start": 3179.0, + "end": 3182.14, + "probability": 0.3022 + }, + { + "start": 3182.14, + "end": 3182.24, + "probability": 0.2448 + }, + { + "start": 3182.52, + "end": 3185.76, + "probability": 0.1737 + }, + { + "start": 3185.84, + "end": 3188.66, + "probability": 0.8318 + }, + { + "start": 3189.16, + "end": 3190.64, + "probability": 0.9892 + }, + { + "start": 3191.16, + "end": 3192.48, + "probability": 0.9504 + }, + { + "start": 3192.86, + "end": 3197.06, + "probability": 0.7081 + }, + { + "start": 3197.78, + "end": 3198.9, + "probability": 0.8105 + }, + { + "start": 3199.0, + "end": 3199.5, + "probability": 0.9036 + }, + { + "start": 3199.98, + "end": 3201.11, + "probability": 0.6197 + }, + { + "start": 3201.58, + "end": 3203.28, + "probability": 0.6267 + }, + { + "start": 3204.38, + "end": 3206.12, + "probability": 0.957 + }, + { + "start": 3206.34, + "end": 3207.06, + "probability": 0.5621 + }, + { + "start": 3207.18, + "end": 3207.5, + "probability": 0.5346 + }, + { + "start": 3209.08, + "end": 3211.1, + "probability": 0.939 + }, + { + "start": 3211.94, + "end": 3213.31, + "probability": 0.9463 + }, + { + "start": 3214.06, + "end": 3215.34, + "probability": 0.8296 + }, + { + "start": 3215.52, + "end": 3216.73, + "probability": 0.7214 + }, + { + "start": 3217.4, + "end": 3218.51, + "probability": 0.5248 + }, + { + "start": 3218.82, + "end": 3219.9, + "probability": 0.6797 + }, + { + "start": 3221.72, + "end": 3225.88, + "probability": 0.3644 + }, + { + "start": 3226.3, + "end": 3227.38, + "probability": 0.3162 + }, + { + "start": 3227.52, + "end": 3229.74, + "probability": 0.79 + }, + { + "start": 3229.86, + "end": 3233.84, + "probability": 0.7966 + }, + { + "start": 3233.92, + "end": 3235.0, + "probability": 0.9357 + }, + { + "start": 3235.2, + "end": 3235.66, + "probability": 0.7638 + }, + { + "start": 3236.12, + "end": 3239.02, + "probability": 0.9909 + }, + { + "start": 3239.88, + "end": 3240.96, + "probability": 0.6524 + }, + { + "start": 3241.5, + "end": 3242.54, + "probability": 0.98 + }, + { + "start": 3243.16, + "end": 3245.74, + "probability": 0.5369 + }, + { + "start": 3246.02, + "end": 3246.4, + "probability": 0.8936 + }, + { + "start": 3246.94, + "end": 3247.26, + "probability": 0.851 + }, + { + "start": 3247.76, + "end": 3248.62, + "probability": 0.8224 + }, + { + "start": 3249.76, + "end": 3250.8, + "probability": 0.6428 + }, + { + "start": 3251.42, + "end": 3252.66, + "probability": 0.7959 + }, + { + "start": 3253.4, + "end": 3253.92, + "probability": 0.7686 + }, + { + "start": 3257.74, + "end": 3257.74, + "probability": 0.0062 + }, + { + "start": 3259.34, + "end": 3259.78, + "probability": 0.9895 + }, + { + "start": 3260.48, + "end": 3262.26, + "probability": 0.8615 + }, + { + "start": 3263.64, + "end": 3264.78, + "probability": 0.8633 + }, + { + "start": 3264.88, + "end": 3265.7, + "probability": 0.928 + }, + { + "start": 3265.7, + "end": 3266.39, + "probability": 0.7491 + }, + { + "start": 3266.48, + "end": 3269.48, + "probability": 0.8467 + }, + { + "start": 3270.68, + "end": 3271.54, + "probability": 0.7355 + }, + { + "start": 3272.76, + "end": 3276.18, + "probability": 0.8404 + }, + { + "start": 3277.04, + "end": 3278.29, + "probability": 0.833 + }, + { + "start": 3280.06, + "end": 3281.04, + "probability": 0.7498 + }, + { + "start": 3281.12, + "end": 3283.66, + "probability": 0.8951 + }, + { + "start": 3283.74, + "end": 3284.6, + "probability": 0.3255 + }, + { + "start": 3285.76, + "end": 3286.4, + "probability": 0.9727 + }, + { + "start": 3287.18, + "end": 3287.86, + "probability": 0.9409 + }, + { + "start": 3289.72, + "end": 3292.34, + "probability": 0.9098 + }, + { + "start": 3306.02, + "end": 3311.04, + "probability": 0.7826 + }, + { + "start": 3312.36, + "end": 3315.98, + "probability": 0.5326 + }, + { + "start": 3318.08, + "end": 3321.98, + "probability": 0.9537 + }, + { + "start": 3323.72, + "end": 3324.44, + "probability": 0.6796 + }, + { + "start": 3325.08, + "end": 3329.72, + "probability": 0.876 + }, + { + "start": 3331.38, + "end": 3331.8, + "probability": 0.8408 + }, + { + "start": 3333.4, + "end": 3335.02, + "probability": 0.9351 + }, + { + "start": 3335.6, + "end": 3336.65, + "probability": 0.9071 + }, + { + "start": 3337.5, + "end": 3340.06, + "probability": 0.8345 + }, + { + "start": 3340.66, + "end": 3345.16, + "probability": 0.918 + }, + { + "start": 3346.8, + "end": 3347.92, + "probability": 0.0848 + }, + { + "start": 3347.92, + "end": 3349.76, + "probability": 0.7027 + }, + { + "start": 3349.86, + "end": 3350.74, + "probability": 0.524 + }, + { + "start": 3352.26, + "end": 3354.32, + "probability": 0.513 + }, + { + "start": 3354.52, + "end": 3354.94, + "probability": 0.6139 + }, + { + "start": 3354.98, + "end": 3359.64, + "probability": 0.349 + }, + { + "start": 3360.86, + "end": 3362.7, + "probability": 0.8237 + }, + { + "start": 3363.78, + "end": 3364.78, + "probability": 0.376 + }, + { + "start": 3364.88, + "end": 3367.42, + "probability": 0.3462 + }, + { + "start": 3368.42, + "end": 3370.86, + "probability": 0.8786 + }, + { + "start": 3371.18, + "end": 3371.88, + "probability": 0.8965 + }, + { + "start": 3372.12, + "end": 3374.88, + "probability": 0.7319 + }, + { + "start": 3375.12, + "end": 3375.5, + "probability": 0.3857 + }, + { + "start": 3375.9, + "end": 3380.38, + "probability": 0.5737 + }, + { + "start": 3380.58, + "end": 3383.24, + "probability": 0.8556 + }, + { + "start": 3384.16, + "end": 3386.2, + "probability": 0.9316 + }, + { + "start": 3386.28, + "end": 3386.28, + "probability": 0.5424 + }, + { + "start": 3386.28, + "end": 3390.64, + "probability": 0.8203 + }, + { + "start": 3391.12, + "end": 3391.5, + "probability": 0.3924 + }, + { + "start": 3391.66, + "end": 3392.82, + "probability": 0.4089 + }, + { + "start": 3392.9, + "end": 3393.84, + "probability": 0.5469 + }, + { + "start": 3394.72, + "end": 3396.04, + "probability": 0.8166 + }, + { + "start": 3397.0, + "end": 3398.1, + "probability": 0.585 + }, + { + "start": 3398.14, + "end": 3399.7, + "probability": 0.9086 + }, + { + "start": 3401.96, + "end": 3402.98, + "probability": 0.545 + }, + { + "start": 3404.43, + "end": 3407.0, + "probability": 0.9424 + }, + { + "start": 3409.11, + "end": 3411.92, + "probability": 0.5361 + }, + { + "start": 3412.6, + "end": 3413.3, + "probability": 0.9555 + }, + { + "start": 3413.54, + "end": 3414.18, + "probability": 0.6795 + }, + { + "start": 3415.2, + "end": 3417.4, + "probability": 0.6579 + }, + { + "start": 3421.16, + "end": 3422.02, + "probability": 0.8008 + }, + { + "start": 3422.52, + "end": 3424.85, + "probability": 0.2298 + }, + { + "start": 3425.0, + "end": 3426.4, + "probability": 0.8439 + }, + { + "start": 3426.96, + "end": 3429.04, + "probability": 0.6681 + }, + { + "start": 3429.86, + "end": 3429.96, + "probability": 0.4174 + }, + { + "start": 3430.98, + "end": 3431.18, + "probability": 0.7529 + }, + { + "start": 3432.3, + "end": 3432.58, + "probability": 0.3558 + }, + { + "start": 3433.34, + "end": 3434.74, + "probability": 0.8175 + }, + { + "start": 3436.02, + "end": 3437.32, + "probability": 0.788 + }, + { + "start": 3437.56, + "end": 3440.16, + "probability": 0.0653 + }, + { + "start": 3441.02, + "end": 3442.68, + "probability": 0.9906 + }, + { + "start": 3443.6, + "end": 3444.36, + "probability": 0.8503 + }, + { + "start": 3444.92, + "end": 3446.54, + "probability": 0.9256 + }, + { + "start": 3447.24, + "end": 3449.66, + "probability": 0.9064 + }, + { + "start": 3450.76, + "end": 3452.9, + "probability": 0.5223 + }, + { + "start": 3453.7, + "end": 3454.88, + "probability": 0.3315 + }, + { + "start": 3455.96, + "end": 3456.68, + "probability": 0.5963 + }, + { + "start": 3456.92, + "end": 3457.54, + "probability": 0.363 + }, + { + "start": 3458.24, + "end": 3460.92, + "probability": 0.8818 + }, + { + "start": 3461.74, + "end": 3463.6, + "probability": 0.7872 + }, + { + "start": 3464.34, + "end": 3465.88, + "probability": 0.8455 + }, + { + "start": 3466.18, + "end": 3466.96, + "probability": 0.7141 + }, + { + "start": 3467.22, + "end": 3467.7, + "probability": 0.3979 + }, + { + "start": 3468.1, + "end": 3470.58, + "probability": 0.7603 + }, + { + "start": 3470.82, + "end": 3471.4, + "probability": 0.6596 + }, + { + "start": 3471.52, + "end": 3473.49, + "probability": 0.8796 + }, + { + "start": 3473.7, + "end": 3474.7, + "probability": 0.942 + }, + { + "start": 3474.8, + "end": 3475.4, + "probability": 0.8496 + }, + { + "start": 3475.46, + "end": 3476.08, + "probability": 0.8694 + }, + { + "start": 3477.1, + "end": 3478.42, + "probability": 0.9717 + }, + { + "start": 3478.96, + "end": 3479.02, + "probability": 0.342 + }, + { + "start": 3481.84, + "end": 3483.44, + "probability": 0.6013 + }, + { + "start": 3484.12, + "end": 3486.08, + "probability": 0.7266 + }, + { + "start": 3486.72, + "end": 3487.4, + "probability": 0.6957 + }, + { + "start": 3488.6, + "end": 3489.74, + "probability": 0.5803 + }, + { + "start": 3491.14, + "end": 3491.58, + "probability": 0.7747 + }, + { + "start": 3492.38, + "end": 3493.68, + "probability": 0.6898 + }, + { + "start": 3494.22, + "end": 3495.16, + "probability": 0.8745 + }, + { + "start": 3496.04, + "end": 3498.0, + "probability": 0.8625 + }, + { + "start": 3499.1, + "end": 3500.72, + "probability": 0.8933 + }, + { + "start": 3501.5, + "end": 3502.3, + "probability": 0.7087 + }, + { + "start": 3503.8, + "end": 3504.22, + "probability": 0.8962 + }, + { + "start": 3504.32, + "end": 3505.22, + "probability": 0.7399 + }, + { + "start": 3505.38, + "end": 3507.04, + "probability": 0.9122 + }, + { + "start": 3508.02, + "end": 3510.14, + "probability": 0.9604 + }, + { + "start": 3510.94, + "end": 3516.94, + "probability": 0.7596 + }, + { + "start": 3517.5, + "end": 3520.25, + "probability": 0.9807 + }, + { + "start": 3521.28, + "end": 3522.14, + "probability": 0.9147 + }, + { + "start": 3523.7, + "end": 3524.89, + "probability": 0.9644 + }, + { + "start": 3525.22, + "end": 3527.68, + "probability": 0.933 + }, + { + "start": 3528.52, + "end": 3529.26, + "probability": 0.4604 + }, + { + "start": 3529.34, + "end": 3531.94, + "probability": 0.4575 + }, + { + "start": 3532.04, + "end": 3533.78, + "probability": 0.8094 + }, + { + "start": 3533.96, + "end": 3534.54, + "probability": 0.9766 + }, + { + "start": 3534.68, + "end": 3535.34, + "probability": 0.8822 + }, + { + "start": 3535.64, + "end": 3536.18, + "probability": 0.7578 + }, + { + "start": 3536.44, + "end": 3536.94, + "probability": 0.7467 + }, + { + "start": 3537.04, + "end": 3539.68, + "probability": 0.5457 + }, + { + "start": 3540.18, + "end": 3541.58, + "probability": 0.362 + }, + { + "start": 3542.49, + "end": 3543.84, + "probability": 0.7426 + }, + { + "start": 3544.18, + "end": 3544.58, + "probability": 0.6433 + }, + { + "start": 3546.48, + "end": 3548.34, + "probability": 0.7729 + }, + { + "start": 3550.3, + "end": 3553.38, + "probability": 0.8385 + }, + { + "start": 3553.92, + "end": 3555.28, + "probability": 0.8904 + }, + { + "start": 3555.82, + "end": 3556.7, + "probability": 0.8788 + }, + { + "start": 3557.64, + "end": 3558.22, + "probability": 0.6159 + }, + { + "start": 3558.96, + "end": 3559.42, + "probability": 0.8409 + }, + { + "start": 3560.34, + "end": 3561.16, + "probability": 0.4239 + }, + { + "start": 3562.14, + "end": 3563.12, + "probability": 0.9873 + }, + { + "start": 3564.04, + "end": 3566.0, + "probability": 0.6606 + }, + { + "start": 3567.04, + "end": 3568.78, + "probability": 0.6962 + }, + { + "start": 3569.16, + "end": 3571.34, + "probability": 0.9922 + }, + { + "start": 3572.42, + "end": 3575.44, + "probability": 0.6999 + }, + { + "start": 3578.42, + "end": 3580.62, + "probability": 0.8667 + }, + { + "start": 3581.86, + "end": 3585.9, + "probability": 0.8977 + }, + { + "start": 3586.42, + "end": 3588.59, + "probability": 0.8698 + }, + { + "start": 3592.68, + "end": 3595.84, + "probability": 0.2287 + }, + { + "start": 3598.75, + "end": 3600.32, + "probability": 0.7638 + }, + { + "start": 3602.36, + "end": 3603.8, + "probability": 0.8477 + }, + { + "start": 3606.0, + "end": 3607.54, + "probability": 0.9888 + }, + { + "start": 3607.8, + "end": 3610.96, + "probability": 0.7653 + }, + { + "start": 3611.66, + "end": 3612.2, + "probability": 0.9368 + }, + { + "start": 3612.78, + "end": 3613.2, + "probability": 0.3147 + }, + { + "start": 3614.92, + "end": 3615.6, + "probability": 0.7266 + }, + { + "start": 3617.74, + "end": 3620.36, + "probability": 0.9644 + }, + { + "start": 3620.7, + "end": 3622.62, + "probability": 0.9197 + }, + { + "start": 3623.2, + "end": 3624.08, + "probability": 0.8295 + }, + { + "start": 3625.54, + "end": 3626.34, + "probability": 0.6412 + }, + { + "start": 3628.48, + "end": 3630.64, + "probability": 0.6279 + }, + { + "start": 3632.14, + "end": 3633.74, + "probability": 0.8671 + }, + { + "start": 3633.74, + "end": 3634.8, + "probability": 0.7748 + }, + { + "start": 3635.0, + "end": 3640.04, + "probability": 0.9092 + }, + { + "start": 3640.2, + "end": 3643.22, + "probability": 0.9126 + }, + { + "start": 3643.7, + "end": 3644.76, + "probability": 0.6521 + }, + { + "start": 3644.84, + "end": 3645.82, + "probability": 0.3217 + }, + { + "start": 3645.82, + "end": 3645.98, + "probability": 0.3994 + }, + { + "start": 3646.28, + "end": 3647.63, + "probability": 0.9238 + }, + { + "start": 3648.16, + "end": 3650.05, + "probability": 0.5672 + }, + { + "start": 3650.18, + "end": 3651.6, + "probability": 0.5261 + }, + { + "start": 3651.64, + "end": 3654.44, + "probability": 0.6196 + }, + { + "start": 3654.82, + "end": 3656.36, + "probability": 0.7428 + }, + { + "start": 3657.18, + "end": 3660.73, + "probability": 0.6613 + }, + { + "start": 3661.68, + "end": 3661.88, + "probability": 0.6105 + }, + { + "start": 3662.8, + "end": 3663.26, + "probability": 0.3083 + }, + { + "start": 3663.42, + "end": 3664.02, + "probability": 0.8423 + }, + { + "start": 3664.54, + "end": 3666.62, + "probability": 0.3879 + }, + { + "start": 3666.68, + "end": 3667.04, + "probability": 0.6516 + }, + { + "start": 3667.98, + "end": 3672.49, + "probability": 0.7456 + }, + { + "start": 3676.13, + "end": 3679.02, + "probability": 0.9391 + }, + { + "start": 3680.18, + "end": 3681.26, + "probability": 0.9154 + }, + { + "start": 3683.54, + "end": 3685.58, + "probability": 0.9824 + }, + { + "start": 3686.4, + "end": 3687.72, + "probability": 0.6145 + }, + { + "start": 3688.3, + "end": 3689.68, + "probability": 0.9966 + }, + { + "start": 3691.33, + "end": 3692.08, + "probability": 0.6087 + }, + { + "start": 3692.24, + "end": 3693.46, + "probability": 0.9294 + }, + { + "start": 3694.93, + "end": 3696.06, + "probability": 0.6227 + }, + { + "start": 3696.5, + "end": 3697.1, + "probability": 0.5004 + }, + { + "start": 3697.98, + "end": 3699.58, + "probability": 0.8618 + }, + { + "start": 3701.02, + "end": 3702.02, + "probability": 0.8877 + }, + { + "start": 3702.1, + "end": 3703.84, + "probability": 0.8508 + }, + { + "start": 3704.96, + "end": 3706.26, + "probability": 0.7314 + }, + { + "start": 3706.32, + "end": 3707.52, + "probability": 0.4641 + }, + { + "start": 3707.68, + "end": 3708.0, + "probability": 0.7204 + }, + { + "start": 3708.16, + "end": 3708.68, + "probability": 0.8789 + }, + { + "start": 3709.02, + "end": 3709.32, + "probability": 0.7478 + }, + { + "start": 3709.34, + "end": 3710.76, + "probability": 0.4864 + }, + { + "start": 3710.76, + "end": 3712.22, + "probability": 0.8132 + }, + { + "start": 3712.52, + "end": 3715.96, + "probability": 0.8514 + }, + { + "start": 3716.28, + "end": 3716.6, + "probability": 0.3833 + }, + { + "start": 3716.66, + "end": 3718.76, + "probability": 0.8337 + }, + { + "start": 3719.2, + "end": 3721.9, + "probability": 0.9827 + }, + { + "start": 3721.96, + "end": 3722.46, + "probability": 0.7301 + }, + { + "start": 3723.1, + "end": 3724.08, + "probability": 0.5657 + }, + { + "start": 3724.16, + "end": 3725.84, + "probability": 0.662 + }, + { + "start": 3725.9, + "end": 3728.76, + "probability": 0.8992 + }, + { + "start": 3729.44, + "end": 3730.63, + "probability": 0.8827 + }, + { + "start": 3730.76, + "end": 3732.66, + "probability": 0.9254 + }, + { + "start": 3732.76, + "end": 3734.14, + "probability": 0.8495 + }, + { + "start": 3734.26, + "end": 3734.6, + "probability": 0.5468 + }, + { + "start": 3735.46, + "end": 3736.86, + "probability": 0.6578 + }, + { + "start": 3737.34, + "end": 3738.68, + "probability": 0.3497 + }, + { + "start": 3739.1, + "end": 3740.84, + "probability": 0.9006 + }, + { + "start": 3741.0, + "end": 3742.62, + "probability": 0.6035 + }, + { + "start": 3742.9, + "end": 3745.26, + "probability": 0.9845 + }, + { + "start": 3745.72, + "end": 3746.56, + "probability": 0.8694 + }, + { + "start": 3746.98, + "end": 3750.84, + "probability": 0.8516 + }, + { + "start": 3751.26, + "end": 3752.4, + "probability": 0.8452 + }, + { + "start": 3752.72, + "end": 3754.98, + "probability": 0.7998 + }, + { + "start": 3755.02, + "end": 3756.72, + "probability": 0.888 + }, + { + "start": 3756.74, + "end": 3759.1, + "probability": 0.9639 + }, + { + "start": 3759.5, + "end": 3764.82, + "probability": 0.9327 + }, + { + "start": 3766.08, + "end": 3770.36, + "probability": 0.9264 + }, + { + "start": 3770.74, + "end": 3772.42, + "probability": 0.9937 + }, + { + "start": 3772.74, + "end": 3774.76, + "probability": 0.9886 + }, + { + "start": 3775.04, + "end": 3778.74, + "probability": 0.9926 + }, + { + "start": 3779.18, + "end": 3779.6, + "probability": 0.8842 + }, + { + "start": 3779.66, + "end": 3780.84, + "probability": 0.9961 + }, + { + "start": 3781.0, + "end": 3781.82, + "probability": 0.8776 + }, + { + "start": 3782.12, + "end": 3783.4, + "probability": 0.9606 + }, + { + "start": 3783.92, + "end": 3786.78, + "probability": 0.9681 + }, + { + "start": 3787.26, + "end": 3787.84, + "probability": 0.5127 + }, + { + "start": 3788.5, + "end": 3791.54, + "probability": 0.8836 + }, + { + "start": 3791.96, + "end": 3793.16, + "probability": 0.697 + }, + { + "start": 3793.46, + "end": 3794.42, + "probability": 0.8995 + }, + { + "start": 3794.82, + "end": 3799.62, + "probability": 0.8309 + }, + { + "start": 3799.76, + "end": 3803.82, + "probability": 0.5237 + }, + { + "start": 3804.18, + "end": 3805.28, + "probability": 0.9315 + }, + { + "start": 3805.88, + "end": 3807.59, + "probability": 0.9651 + }, + { + "start": 3808.14, + "end": 3811.4, + "probability": 0.9224 + }, + { + "start": 3811.74, + "end": 3813.92, + "probability": 0.9937 + }, + { + "start": 3813.92, + "end": 3816.16, + "probability": 0.9984 + }, + { + "start": 3816.54, + "end": 3818.7, + "probability": 0.9814 + }, + { + "start": 3819.26, + "end": 3820.8, + "probability": 0.9322 + }, + { + "start": 3821.28, + "end": 3822.84, + "probability": 0.9604 + }, + { + "start": 3823.38, + "end": 3823.58, + "probability": 0.8483 + }, + { + "start": 3823.58, + "end": 3827.42, + "probability": 0.9391 + }, + { + "start": 3827.42, + "end": 3830.56, + "probability": 0.991 + }, + { + "start": 3831.94, + "end": 3834.76, + "probability": 0.6667 + }, + { + "start": 3834.76, + "end": 3837.2, + "probability": 0.8045 + }, + { + "start": 3837.42, + "end": 3841.28, + "probability": 0.8788 + }, + { + "start": 3843.88, + "end": 3846.28, + "probability": 0.8874 + }, + { + "start": 3846.32, + "end": 3847.8, + "probability": 0.8998 + }, + { + "start": 3847.91, + "end": 3851.1, + "probability": 0.5045 + }, + { + "start": 3851.74, + "end": 3854.24, + "probability": 0.9529 + }, + { + "start": 3854.84, + "end": 3857.82, + "probability": 0.9581 + }, + { + "start": 3858.4, + "end": 3862.18, + "probability": 0.7978 + }, + { + "start": 3862.46, + "end": 3862.95, + "probability": 0.5913 + }, + { + "start": 3863.92, + "end": 3867.7, + "probability": 0.8098 + }, + { + "start": 3868.2, + "end": 3868.2, + "probability": 0.4284 + }, + { + "start": 3868.28, + "end": 3868.32, + "probability": 0.0135 + }, + { + "start": 3869.06, + "end": 3869.22, + "probability": 0.3783 + }, + { + "start": 3869.28, + "end": 3869.74, + "probability": 0.5142 + }, + { + "start": 3869.74, + "end": 3871.84, + "probability": 0.5462 + }, + { + "start": 3872.08, + "end": 3875.0, + "probability": 0.9014 + }, + { + "start": 3875.12, + "end": 3877.86, + "probability": 0.771 + }, + { + "start": 3878.0, + "end": 3879.64, + "probability": 0.7512 + }, + { + "start": 3879.64, + "end": 3879.78, + "probability": 0.4624 + }, + { + "start": 3880.16, + "end": 3880.88, + "probability": 0.8896 + }, + { + "start": 3881.0, + "end": 3881.98, + "probability": 0.9408 + }, + { + "start": 3882.02, + "end": 3882.94, + "probability": 0.6611 + }, + { + "start": 3882.98, + "end": 3883.72, + "probability": 0.715 + }, + { + "start": 3883.74, + "end": 3884.86, + "probability": 0.9492 + }, + { + "start": 3884.92, + "end": 3885.56, + "probability": 0.677 + }, + { + "start": 3886.3, + "end": 3886.74, + "probability": 0.657 + }, + { + "start": 3886.9, + "end": 3891.06, + "probability": 0.9381 + }, + { + "start": 3891.52, + "end": 3892.26, + "probability": 0.9055 + }, + { + "start": 3892.36, + "end": 3892.98, + "probability": 0.9639 + }, + { + "start": 3893.38, + "end": 3894.47, + "probability": 0.916 + }, + { + "start": 3895.44, + "end": 3895.94, + "probability": 0.8669 + }, + { + "start": 3895.94, + "end": 3897.18, + "probability": 0.7266 + }, + { + "start": 3898.02, + "end": 3901.2, + "probability": 0.9678 + }, + { + "start": 3901.74, + "end": 3905.52, + "probability": 0.9531 + }, + { + "start": 3905.64, + "end": 3908.84, + "probability": 0.9863 + }, + { + "start": 3908.86, + "end": 3914.6, + "probability": 0.9913 + }, + { + "start": 3914.78, + "end": 3916.12, + "probability": 0.816 + }, + { + "start": 3916.54, + "end": 3919.26, + "probability": 0.8787 + }, + { + "start": 3919.9, + "end": 3922.9, + "probability": 0.8313 + }, + { + "start": 3923.06, + "end": 3924.54, + "probability": 0.9429 + }, + { + "start": 3924.58, + "end": 3927.72, + "probability": 0.861 + }, + { + "start": 3928.1, + "end": 3929.44, + "probability": 0.3077 + }, + { + "start": 3929.48, + "end": 3930.86, + "probability": 0.521 + }, + { + "start": 3931.08, + "end": 3931.08, + "probability": 0.062 + }, + { + "start": 3931.08, + "end": 3931.56, + "probability": 0.3353 + }, + { + "start": 3931.66, + "end": 3933.88, + "probability": 0.8025 + }, + { + "start": 3933.88, + "end": 3934.32, + "probability": 0.3362 + }, + { + "start": 3934.56, + "end": 3936.72, + "probability": 0.8607 + }, + { + "start": 3937.1, + "end": 3938.72, + "probability": 0.8835 + }, + { + "start": 3938.76, + "end": 3940.02, + "probability": 0.8184 + }, + { + "start": 3940.32, + "end": 3941.36, + "probability": 0.7012 + }, + { + "start": 3941.9, + "end": 3944.56, + "probability": 0.3375 + }, + { + "start": 3944.76, + "end": 3945.76, + "probability": 0.7183 + }, + { + "start": 3945.92, + "end": 3948.04, + "probability": 0.8472 + }, + { + "start": 3948.48, + "end": 3950.34, + "probability": 0.7985 + }, + { + "start": 3950.64, + "end": 3951.36, + "probability": 0.7964 + }, + { + "start": 3951.76, + "end": 3957.2, + "probability": 0.924 + }, + { + "start": 3957.6, + "end": 3959.3, + "probability": 0.5081 + }, + { + "start": 3963.92, + "end": 3966.24, + "probability": 0.6961 + }, + { + "start": 3966.66, + "end": 3967.6, + "probability": 0.2435 + }, + { + "start": 3969.38, + "end": 3973.76, + "probability": 0.5477 + }, + { + "start": 3974.38, + "end": 3979.78, + "probability": 0.9829 + }, + { + "start": 3980.12, + "end": 3982.16, + "probability": 0.741 + }, + { + "start": 3983.14, + "end": 3986.76, + "probability": 0.9387 + }, + { + "start": 3987.18, + "end": 3987.88, + "probability": 0.9123 + }, + { + "start": 3988.12, + "end": 3989.99, + "probability": 0.9497 + }, + { + "start": 3991.1, + "end": 3992.22, + "probability": 0.9471 + }, + { + "start": 3992.36, + "end": 3995.28, + "probability": 0.938 + }, + { + "start": 3995.78, + "end": 4000.1, + "probability": 0.9785 + }, + { + "start": 4000.18, + "end": 4000.6, + "probability": 0.7561 + }, + { + "start": 4000.62, + "end": 4001.5, + "probability": 0.6882 + }, + { + "start": 4002.18, + "end": 4006.06, + "probability": 0.7612 + }, + { + "start": 4006.16, + "end": 4009.84, + "probability": 0.9792 + }, + { + "start": 4010.36, + "end": 4013.52, + "probability": 0.9204 + }, + { + "start": 4013.9, + "end": 4014.68, + "probability": 0.8728 + }, + { + "start": 4014.94, + "end": 4017.56, + "probability": 0.6548 + }, + { + "start": 4017.62, + "end": 4019.32, + "probability": 0.5067 + }, + { + "start": 4019.36, + "end": 4023.53, + "probability": 0.7507 + }, + { + "start": 4023.8, + "end": 4024.87, + "probability": 0.7026 + }, + { + "start": 4024.94, + "end": 4030.04, + "probability": 0.9746 + }, + { + "start": 4030.3, + "end": 4031.52, + "probability": 0.968 + }, + { + "start": 4031.6, + "end": 4033.58, + "probability": 0.9154 + }, + { + "start": 4033.7, + "end": 4035.08, + "probability": 0.6957 + }, + { + "start": 4035.22, + "end": 4036.0, + "probability": 0.9267 + }, + { + "start": 4036.06, + "end": 4039.3, + "probability": 0.9924 + }, + { + "start": 4039.52, + "end": 4044.3, + "probability": 0.9729 + }, + { + "start": 4044.78, + "end": 4050.8, + "probability": 0.6409 + }, + { + "start": 4050.92, + "end": 4050.94, + "probability": 0.3266 + }, + { + "start": 4050.94, + "end": 4051.18, + "probability": 0.4654 + }, + { + "start": 4051.2, + "end": 4051.32, + "probability": 0.406 + }, + { + "start": 4051.36, + "end": 4051.43, + "probability": 0.6105 + }, + { + "start": 4051.96, + "end": 4055.76, + "probability": 0.5002 + }, + { + "start": 4058.18, + "end": 4058.5, + "probability": 0.3354 + }, + { + "start": 4059.16, + "end": 4059.3, + "probability": 0.0901 + }, + { + "start": 4059.3, + "end": 4059.42, + "probability": 0.0305 + }, + { + "start": 4059.42, + "end": 4063.24, + "probability": 0.7686 + }, + { + "start": 4063.36, + "end": 4069.26, + "probability": 0.8908 + }, + { + "start": 4069.7, + "end": 4071.18, + "probability": 0.8441 + }, + { + "start": 4071.64, + "end": 4073.32, + "probability": 0.9971 + }, + { + "start": 4073.64, + "end": 4076.7, + "probability": 0.8131 + }, + { + "start": 4076.82, + "end": 4077.46, + "probability": 0.0009 + }, + { + "start": 4078.5, + "end": 4079.32, + "probability": 0.2168 + }, + { + "start": 4079.32, + "end": 4082.42, + "probability": 0.9572 + }, + { + "start": 4082.8, + "end": 4085.14, + "probability": 0.7871 + }, + { + "start": 4085.32, + "end": 4085.95, + "probability": 0.8608 + }, + { + "start": 4086.44, + "end": 4086.48, + "probability": 0.8188 + }, + { + "start": 4087.74, + "end": 4088.54, + "probability": 0.6545 + }, + { + "start": 4088.7, + "end": 4089.82, + "probability": 0.5584 + }, + { + "start": 4089.9, + "end": 4091.17, + "probability": 0.5486 + }, + { + "start": 4091.62, + "end": 4093.06, + "probability": 0.9106 + }, + { + "start": 4093.34, + "end": 4097.84, + "probability": 0.9185 + }, + { + "start": 4097.96, + "end": 4099.0, + "probability": 0.8845 + }, + { + "start": 4099.26, + "end": 4100.47, + "probability": 0.9204 + }, + { + "start": 4100.94, + "end": 4101.3, + "probability": 0.6641 + }, + { + "start": 4102.04, + "end": 4102.88, + "probability": 0.9187 + }, + { + "start": 4103.0, + "end": 4103.58, + "probability": 0.98 + }, + { + "start": 4103.94, + "end": 4105.62, + "probability": 0.7498 + }, + { + "start": 4106.14, + "end": 4108.62, + "probability": 0.4027 + }, + { + "start": 4109.14, + "end": 4111.24, + "probability": 0.6891 + }, + { + "start": 4111.3, + "end": 4112.56, + "probability": 0.9028 + }, + { + "start": 4113.48, + "end": 4115.94, + "probability": 0.745 + }, + { + "start": 4116.5, + "end": 4121.18, + "probability": 0.7124 + }, + { + "start": 4121.4, + "end": 4122.3, + "probability": 0.0384 + }, + { + "start": 4122.42, + "end": 4123.4, + "probability": 0.1544 + }, + { + "start": 4124.5, + "end": 4125.36, + "probability": 0.5776 + }, + { + "start": 4125.46, + "end": 4126.7, + "probability": 0.597 + }, + { + "start": 4126.88, + "end": 4129.8, + "probability": 0.4041 + }, + { + "start": 4130.0, + "end": 4130.06, + "probability": 0.2058 + }, + { + "start": 4130.06, + "end": 4130.14, + "probability": 0.5002 + }, + { + "start": 4130.18, + "end": 4133.2, + "probability": 0.7814 + }, + { + "start": 4133.74, + "end": 4136.98, + "probability": 0.7546 + }, + { + "start": 4137.1, + "end": 4138.06, + "probability": 0.5419 + }, + { + "start": 4138.06, + "end": 4139.7, + "probability": 0.8322 + }, + { + "start": 4139.78, + "end": 4140.1, + "probability": 0.4877 + }, + { + "start": 4140.3, + "end": 4140.68, + "probability": 0.2663 + }, + { + "start": 4140.68, + "end": 4143.64, + "probability": 0.9009 + }, + { + "start": 4143.74, + "end": 4146.9, + "probability": 0.6884 + }, + { + "start": 4147.24, + "end": 4148.34, + "probability": 0.5686 + }, + { + "start": 4148.46, + "end": 4150.36, + "probability": 0.4785 + }, + { + "start": 4150.4, + "end": 4152.78, + "probability": 0.6576 + }, + { + "start": 4153.16, + "end": 4154.08, + "probability": 0.7975 + }, + { + "start": 4154.36, + "end": 4155.7, + "probability": 0.6875 + }, + { + "start": 4155.8, + "end": 4156.77, + "probability": 0.89 + }, + { + "start": 4157.74, + "end": 4158.08, + "probability": 0.6041 + }, + { + "start": 4158.22, + "end": 4161.88, + "probability": 0.6369 + }, + { + "start": 4162.06, + "end": 4162.72, + "probability": 0.7556 + }, + { + "start": 4162.82, + "end": 4166.14, + "probability": 0.8015 + }, + { + "start": 4166.64, + "end": 4167.24, + "probability": 0.8132 + }, + { + "start": 4167.34, + "end": 4169.14, + "probability": 0.9556 + }, + { + "start": 4169.2, + "end": 4170.56, + "probability": 0.8624 + }, + { + "start": 4170.66, + "end": 4171.71, + "probability": 0.0421 + }, + { + "start": 4172.26, + "end": 4174.58, + "probability": 0.9069 + }, + { + "start": 4174.7, + "end": 4175.12, + "probability": 0.4368 + }, + { + "start": 4175.42, + "end": 4176.54, + "probability": 0.4473 + }, + { + "start": 4176.94, + "end": 4179.32, + "probability": 0.9133 + }, + { + "start": 4180.84, + "end": 4183.1, + "probability": 0.9878 + }, + { + "start": 4183.66, + "end": 4184.48, + "probability": 0.8869 + }, + { + "start": 4185.24, + "end": 4186.28, + "probability": 0.9608 + }, + { + "start": 4187.73, + "end": 4190.2, + "probability": 0.481 + }, + { + "start": 4190.62, + "end": 4193.24, + "probability": 0.7392 + }, + { + "start": 4193.52, + "end": 4194.76, + "probability": 0.8374 + }, + { + "start": 4195.12, + "end": 4196.38, + "probability": 0.6555 + }, + { + "start": 4196.4, + "end": 4196.94, + "probability": 0.6567 + }, + { + "start": 4197.32, + "end": 4197.95, + "probability": 0.661 + }, + { + "start": 4198.38, + "end": 4201.78, + "probability": 0.9588 + }, + { + "start": 4201.96, + "end": 4202.38, + "probability": 0.4798 + }, + { + "start": 4203.14, + "end": 4205.14, + "probability": 0.8395 + }, + { + "start": 4205.8, + "end": 4208.42, + "probability": 0.9132 + }, + { + "start": 4208.54, + "end": 4209.38, + "probability": 0.8181 + }, + { + "start": 4209.46, + "end": 4209.98, + "probability": 0.5824 + }, + { + "start": 4210.16, + "end": 4210.98, + "probability": 0.1456 + }, + { + "start": 4210.98, + "end": 4211.64, + "probability": 0.4428 + }, + { + "start": 4212.2, + "end": 4212.94, + "probability": 0.6358 + }, + { + "start": 4212.96, + "end": 4214.55, + "probability": 0.8581 + }, + { + "start": 4214.8, + "end": 4217.72, + "probability": 0.9544 + }, + { + "start": 4218.4, + "end": 4221.36, + "probability": 0.9705 + }, + { + "start": 4221.36, + "end": 4221.44, + "probability": 0.3077 + }, + { + "start": 4221.44, + "end": 4223.24, + "probability": 0.9889 + }, + { + "start": 4223.24, + "end": 4223.78, + "probability": 0.5746 + }, + { + "start": 4223.78, + "end": 4224.8, + "probability": 0.3882 + }, + { + "start": 4225.48, + "end": 4226.7, + "probability": 0.7794 + }, + { + "start": 4226.8, + "end": 4226.92, + "probability": 0.455 + }, + { + "start": 4226.92, + "end": 4227.32, + "probability": 0.4452 + }, + { + "start": 4227.42, + "end": 4229.1, + "probability": 0.5333 + }, + { + "start": 4229.3, + "end": 4229.94, + "probability": 0.8982 + }, + { + "start": 4230.16, + "end": 4233.84, + "probability": 0.7571 + }, + { + "start": 4233.88, + "end": 4235.98, + "probability": 0.9323 + }, + { + "start": 4236.18, + "end": 4236.22, + "probability": 0.2415 + }, + { + "start": 4236.22, + "end": 4236.74, + "probability": 0.8167 + }, + { + "start": 4236.74, + "end": 4238.2, + "probability": 0.8535 + }, + { + "start": 4238.6, + "end": 4239.26, + "probability": 0.2466 + }, + { + "start": 4239.38, + "end": 4242.96, + "probability": 0.7901 + }, + { + "start": 4243.54, + "end": 4244.38, + "probability": 0.9597 + }, + { + "start": 4244.52, + "end": 4245.54, + "probability": 0.8929 + }, + { + "start": 4246.48, + "end": 4247.26, + "probability": 0.9766 + }, + { + "start": 4250.82, + "end": 4252.94, + "probability": 0.9208 + }, + { + "start": 4253.78, + "end": 4259.24, + "probability": 0.9508 + }, + { + "start": 4260.16, + "end": 4261.88, + "probability": 0.947 + }, + { + "start": 4262.94, + "end": 4264.38, + "probability": 0.8074 + }, + { + "start": 4264.7, + "end": 4266.56, + "probability": 0.8873 + }, + { + "start": 4266.72, + "end": 4267.3, + "probability": 0.8699 + }, + { + "start": 4267.36, + "end": 4270.36, + "probability": 0.9744 + }, + { + "start": 4271.64, + "end": 4275.14, + "probability": 0.9972 + }, + { + "start": 4276.09, + "end": 4279.58, + "probability": 0.9064 + }, + { + "start": 4280.54, + "end": 4282.9, + "probability": 0.854 + }, + { + "start": 4282.96, + "end": 4284.26, + "probability": 0.8009 + }, + { + "start": 4285.08, + "end": 4285.66, + "probability": 0.6534 + }, + { + "start": 4286.34, + "end": 4288.12, + "probability": 0.9295 + }, + { + "start": 4288.96, + "end": 4293.5, + "probability": 0.8926 + }, + { + "start": 4293.7, + "end": 4295.5, + "probability": 0.7779 + }, + { + "start": 4296.02, + "end": 4298.86, + "probability": 0.723 + }, + { + "start": 4298.86, + "end": 4302.98, + "probability": 0.9877 + }, + { + "start": 4303.8, + "end": 4307.48, + "probability": 0.8751 + }, + { + "start": 4308.22, + "end": 4310.84, + "probability": 0.9941 + }, + { + "start": 4312.0, + "end": 4313.48, + "probability": 0.7993 + }, + { + "start": 4314.46, + "end": 4315.3, + "probability": 0.7392 + }, + { + "start": 4316.4, + "end": 4320.76, + "probability": 0.6506 + }, + { + "start": 4320.96, + "end": 4322.88, + "probability": 0.7573 + }, + { + "start": 4323.58, + "end": 4327.98, + "probability": 0.9541 + }, + { + "start": 4328.22, + "end": 4329.16, + "probability": 0.8776 + }, + { + "start": 4329.32, + "end": 4332.93, + "probability": 0.9932 + }, + { + "start": 4333.66, + "end": 4334.84, + "probability": 0.8459 + }, + { + "start": 4334.86, + "end": 4337.34, + "probability": 0.6111 + }, + { + "start": 4337.96, + "end": 4338.08, + "probability": 0.3769 + }, + { + "start": 4338.26, + "end": 4339.06, + "probability": 0.6775 + }, + { + "start": 4340.02, + "end": 4345.92, + "probability": 0.9414 + }, + { + "start": 4346.56, + "end": 4347.72, + "probability": 0.9067 + }, + { + "start": 4348.26, + "end": 4349.44, + "probability": 0.6888 + }, + { + "start": 4350.0, + "end": 4351.0, + "probability": 0.782 + }, + { + "start": 4351.74, + "end": 4352.92, + "probability": 0.9227 + }, + { + "start": 4353.5, + "end": 4354.7, + "probability": 0.9829 + }, + { + "start": 4355.58, + "end": 4357.68, + "probability": 0.7439 + }, + { + "start": 4357.76, + "end": 4361.22, + "probability": 0.6638 + }, + { + "start": 4361.48, + "end": 4361.72, + "probability": 0.3699 + }, + { + "start": 4361.82, + "end": 4363.02, + "probability": 0.6934 + }, + { + "start": 4363.76, + "end": 4366.6, + "probability": 0.9161 + }, + { + "start": 4366.76, + "end": 4368.18, + "probability": 0.9902 + }, + { + "start": 4368.18, + "end": 4369.84, + "probability": 0.8066 + }, + { + "start": 4370.02, + "end": 4370.34, + "probability": 0.6922 + }, + { + "start": 4370.66, + "end": 4371.2, + "probability": 0.7072 + }, + { + "start": 4371.34, + "end": 4372.4, + "probability": 0.9829 + }, + { + "start": 4372.92, + "end": 4373.02, + "probability": 0.0755 + }, + { + "start": 4373.52, + "end": 4375.25, + "probability": 0.7933 + }, + { + "start": 4376.14, + "end": 4382.98, + "probability": 0.7701 + }, + { + "start": 4383.5, + "end": 4385.97, + "probability": 0.1874 + }, + { + "start": 4387.24, + "end": 4391.92, + "probability": 0.708 + }, + { + "start": 4395.66, + "end": 4397.0, + "probability": 0.4277 + }, + { + "start": 4397.8, + "end": 4399.58, + "probability": 0.6787 + }, + { + "start": 4400.22, + "end": 4403.44, + "probability": 0.7907 + }, + { + "start": 4404.1, + "end": 4407.52, + "probability": 0.9714 + }, + { + "start": 4408.16, + "end": 4410.12, + "probability": 0.9355 + }, + { + "start": 4411.98, + "end": 4413.64, + "probability": 0.8833 + }, + { + "start": 4413.64, + "end": 4415.04, + "probability": 0.4775 + }, + { + "start": 4415.5, + "end": 4416.82, + "probability": 0.7634 + }, + { + "start": 4417.62, + "end": 4419.26, + "probability": 0.3461 + }, + { + "start": 4419.26, + "end": 4420.56, + "probability": 0.9924 + }, + { + "start": 4423.04, + "end": 4423.82, + "probability": 0.6898 + }, + { + "start": 4425.14, + "end": 4428.74, + "probability": 0.6635 + }, + { + "start": 4430.44, + "end": 4433.58, + "probability": 0.9983 + }, + { + "start": 4433.8, + "end": 4436.2, + "probability": 0.9735 + }, + { + "start": 4437.08, + "end": 4438.64, + "probability": 0.7566 + }, + { + "start": 4439.94, + "end": 4446.36, + "probability": 0.9624 + }, + { + "start": 4446.48, + "end": 4447.66, + "probability": 0.5683 + }, + { + "start": 4448.42, + "end": 4448.86, + "probability": 0.5804 + }, + { + "start": 4449.1, + "end": 4456.08, + "probability": 0.9632 + }, + { + "start": 4456.5, + "end": 4457.9, + "probability": 0.9887 + }, + { + "start": 4458.76, + "end": 4464.45, + "probability": 0.9463 + }, + { + "start": 4465.3, + "end": 4466.72, + "probability": 0.8315 + }, + { + "start": 4467.56, + "end": 4468.68, + "probability": 0.4464 + }, + { + "start": 4469.18, + "end": 4469.7, + "probability": 0.4084 + }, + { + "start": 4469.98, + "end": 4471.4, + "probability": 0.9404 + }, + { + "start": 4472.16, + "end": 4473.3, + "probability": 0.9512 + }, + { + "start": 4475.17, + "end": 4481.74, + "probability": 0.9972 + }, + { + "start": 4481.86, + "end": 4484.64, + "probability": 0.9832 + }, + { + "start": 4487.5, + "end": 4488.18, + "probability": 0.8875 + }, + { + "start": 4489.46, + "end": 4492.96, + "probability": 0.863 + }, + { + "start": 4493.82, + "end": 4496.12, + "probability": 0.7782 + }, + { + "start": 4496.54, + "end": 4498.56, + "probability": 0.998 + }, + { + "start": 4499.26, + "end": 4503.66, + "probability": 0.8469 + }, + { + "start": 4504.54, + "end": 4508.38, + "probability": 0.9724 + }, + { + "start": 4508.52, + "end": 4509.82, + "probability": 0.9941 + }, + { + "start": 4511.3, + "end": 4512.72, + "probability": 0.7409 + }, + { + "start": 4513.42, + "end": 4518.68, + "probability": 0.9902 + }, + { + "start": 4521.02, + "end": 4525.38, + "probability": 0.8316 + }, + { + "start": 4526.84, + "end": 4532.24, + "probability": 0.9879 + }, + { + "start": 4532.34, + "end": 4535.68, + "probability": 0.9277 + }, + { + "start": 4536.58, + "end": 4540.72, + "probability": 0.9158 + }, + { + "start": 4541.54, + "end": 4547.0, + "probability": 0.9325 + }, + { + "start": 4547.64, + "end": 4555.36, + "probability": 0.7819 + }, + { + "start": 4555.52, + "end": 4556.04, + "probability": 0.6462 + }, + { + "start": 4556.56, + "end": 4558.32, + "probability": 0.9561 + }, + { + "start": 4559.32, + "end": 4561.42, + "probability": 0.9118 + }, + { + "start": 4561.94, + "end": 4563.62, + "probability": 0.8851 + }, + { + "start": 4565.66, + "end": 4567.59, + "probability": 0.9729 + }, + { + "start": 4568.32, + "end": 4570.3, + "probability": 0.9493 + }, + { + "start": 4571.18, + "end": 4574.0, + "probability": 0.9966 + }, + { + "start": 4576.05, + "end": 4579.88, + "probability": 0.7238 + }, + { + "start": 4580.76, + "end": 4581.42, + "probability": 0.4992 + }, + { + "start": 4581.74, + "end": 4583.0, + "probability": 0.9443 + }, + { + "start": 4583.42, + "end": 4591.82, + "probability": 0.8647 + }, + { + "start": 4591.84, + "end": 4593.18, + "probability": 0.8751 + }, + { + "start": 4594.76, + "end": 4599.32, + "probability": 0.9789 + }, + { + "start": 4599.42, + "end": 4601.14, + "probability": 0.5283 + }, + { + "start": 4601.14, + "end": 4603.76, + "probability": 0.7567 + }, + { + "start": 4604.4, + "end": 4606.22, + "probability": 0.9956 + }, + { + "start": 4606.84, + "end": 4609.42, + "probability": 0.8862 + }, + { + "start": 4611.68, + "end": 4615.22, + "probability": 0.8729 + }, + { + "start": 4616.22, + "end": 4618.52, + "probability": 0.9972 + }, + { + "start": 4619.7, + "end": 4621.92, + "probability": 0.9722 + }, + { + "start": 4622.66, + "end": 4626.5, + "probability": 0.9956 + }, + { + "start": 4626.68, + "end": 4628.34, + "probability": 0.5972 + }, + { + "start": 4628.84, + "end": 4630.12, + "probability": 0.7397 + }, + { + "start": 4631.3, + "end": 4637.82, + "probability": 0.9796 + }, + { + "start": 4638.28, + "end": 4639.62, + "probability": 0.9969 + }, + { + "start": 4639.8, + "end": 4640.98, + "probability": 0.9593 + }, + { + "start": 4641.4, + "end": 4643.42, + "probability": 0.0028 + }, + { + "start": 4643.42, + "end": 4648.42, + "probability": 0.9594 + }, + { + "start": 4648.84, + "end": 4653.91, + "probability": 0.9757 + }, + { + "start": 4655.76, + "end": 4659.38, + "probability": 0.943 + }, + { + "start": 4660.0, + "end": 4662.98, + "probability": 0.999 + }, + { + "start": 4663.84, + "end": 4670.3, + "probability": 0.9963 + }, + { + "start": 4670.92, + "end": 4677.96, + "probability": 0.9971 + }, + { + "start": 4678.58, + "end": 4681.1, + "probability": 0.9569 + }, + { + "start": 4683.4, + "end": 4685.38, + "probability": 0.9435 + }, + { + "start": 4685.4, + "end": 4689.98, + "probability": 0.9807 + }, + { + "start": 4690.62, + "end": 4692.86, + "probability": 0.7167 + }, + { + "start": 4693.34, + "end": 4694.29, + "probability": 0.6764 + }, + { + "start": 4694.94, + "end": 4698.2, + "probability": 0.7698 + }, + { + "start": 4698.26, + "end": 4699.9, + "probability": 0.729 + }, + { + "start": 4700.74, + "end": 4701.82, + "probability": 0.5383 + }, + { + "start": 4702.66, + "end": 4706.86, + "probability": 0.946 + }, + { + "start": 4707.64, + "end": 4708.64, + "probability": 0.936 + }, + { + "start": 4710.05, + "end": 4711.1, + "probability": 0.1143 + }, + { + "start": 4711.1, + "end": 4716.64, + "probability": 0.9746 + }, + { + "start": 4718.1, + "end": 4722.58, + "probability": 0.9961 + }, + { + "start": 4722.68, + "end": 4723.56, + "probability": 0.9653 + }, + { + "start": 4723.64, + "end": 4725.28, + "probability": 0.6847 + }, + { + "start": 4725.3, + "end": 4726.84, + "probability": 0.6985 + }, + { + "start": 4727.8, + "end": 4730.32, + "probability": 0.9431 + }, + { + "start": 4730.44, + "end": 4732.48, + "probability": 0.8302 + }, + { + "start": 4732.92, + "end": 4735.2, + "probability": 0.7292 + }, + { + "start": 4735.74, + "end": 4738.22, + "probability": 0.8414 + }, + { + "start": 4739.64, + "end": 4740.53, + "probability": 0.2412 + }, + { + "start": 4745.28, + "end": 4746.86, + "probability": 0.9575 + }, + { + "start": 4747.14, + "end": 4747.7, + "probability": 0.6431 + }, + { + "start": 4747.92, + "end": 4748.7, + "probability": 0.5587 + }, + { + "start": 4748.74, + "end": 4750.4, + "probability": 0.8139 + }, + { + "start": 4750.46, + "end": 4750.96, + "probability": 0.0788 + }, + { + "start": 4750.96, + "end": 4751.04, + "probability": 0.1653 + }, + { + "start": 4751.08, + "end": 4751.6, + "probability": 0.5893 + }, + { + "start": 4751.76, + "end": 4751.8, + "probability": 0.1848 + }, + { + "start": 4751.8, + "end": 4751.8, + "probability": 0.217 + }, + { + "start": 4751.8, + "end": 4752.76, + "probability": 0.4486 + }, + { + "start": 4752.8, + "end": 4755.68, + "probability": 0.3242 + }, + { + "start": 4762.98, + "end": 4763.1, + "probability": 0.2594 + }, + { + "start": 4763.1, + "end": 4763.1, + "probability": 0.1565 + }, + { + "start": 4763.1, + "end": 4763.1, + "probability": 0.1099 + }, + { + "start": 4763.1, + "end": 4763.1, + "probability": 0.1745 + }, + { + "start": 4763.1, + "end": 4767.64, + "probability": 0.9215 + }, + { + "start": 4768.08, + "end": 4769.86, + "probability": 0.9879 + }, + { + "start": 4770.74, + "end": 4773.24, + "probability": 0.7249 + }, + { + "start": 4773.32, + "end": 4773.6, + "probability": 0.7651 + }, + { + "start": 4774.36, + "end": 4774.38, + "probability": 0.0548 + }, + { + "start": 4774.38, + "end": 4774.38, + "probability": 0.3385 + }, + { + "start": 4774.38, + "end": 4775.59, + "probability": 0.0267 + }, + { + "start": 4775.78, + "end": 4780.02, + "probability": 0.4806 + }, + { + "start": 4780.26, + "end": 4780.36, + "probability": 0.2065 + }, + { + "start": 4782.7, + "end": 4783.06, + "probability": 0.142 + }, + { + "start": 4783.06, + "end": 4783.06, + "probability": 0.1998 + }, + { + "start": 4783.06, + "end": 4784.9, + "probability": 0.0948 + }, + { + "start": 4785.12, + "end": 4790.2, + "probability": 0.8988 + }, + { + "start": 4791.02, + "end": 4795.26, + "probability": 0.9839 + }, + { + "start": 4795.78, + "end": 4798.38, + "probability": 0.8799 + }, + { + "start": 4798.56, + "end": 4799.34, + "probability": 0.6364 + }, + { + "start": 4799.4, + "end": 4800.62, + "probability": 0.773 + }, + { + "start": 4800.92, + "end": 4802.14, + "probability": 0.9713 + }, + { + "start": 4802.54, + "end": 4802.54, + "probability": 0.1626 + }, + { + "start": 4802.54, + "end": 4806.02, + "probability": 0.5667 + }, + { + "start": 4806.22, + "end": 4808.72, + "probability": 0.9919 + }, + { + "start": 4809.32, + "end": 4811.24, + "probability": 0.8477 + }, + { + "start": 4811.7, + "end": 4816.46, + "probability": 0.9106 + }, + { + "start": 4816.8, + "end": 4817.86, + "probability": 0.8516 + }, + { + "start": 4817.88, + "end": 4820.48, + "probability": 0.8638 + }, + { + "start": 4820.8, + "end": 4822.0, + "probability": 0.7489 + }, + { + "start": 4822.02, + "end": 4822.72, + "probability": 0.921 + }, + { + "start": 4822.9, + "end": 4828.94, + "probability": 0.9326 + }, + { + "start": 4829.84, + "end": 4835.5, + "probability": 0.9956 + }, + { + "start": 4837.54, + "end": 4837.64, + "probability": 0.066 + }, + { + "start": 4838.24, + "end": 4840.72, + "probability": 0.7641 + }, + { + "start": 4841.38, + "end": 4843.2, + "probability": 0.8894 + }, + { + "start": 4843.3, + "end": 4844.08, + "probability": 0.8909 + }, + { + "start": 4844.22, + "end": 4845.1, + "probability": 0.9941 + }, + { + "start": 4845.28, + "end": 4848.08, + "probability": 0.8477 + }, + { + "start": 4848.54, + "end": 4850.44, + "probability": 0.7986 + }, + { + "start": 4850.5, + "end": 4851.06, + "probability": 0.6234 + }, + { + "start": 4851.84, + "end": 4854.26, + "probability": 0.9032 + }, + { + "start": 4855.13, + "end": 4858.34, + "probability": 0.8324 + }, + { + "start": 4858.48, + "end": 4863.76, + "probability": 0.99 + }, + { + "start": 4863.88, + "end": 4866.86, + "probability": 0.6737 + }, + { + "start": 4867.34, + "end": 4867.82, + "probability": 0.8582 + }, + { + "start": 4868.69, + "end": 4877.12, + "probability": 0.7739 + }, + { + "start": 4877.52, + "end": 4879.98, + "probability": 0.7498 + }, + { + "start": 4880.48, + "end": 4883.58, + "probability": 0.9937 + }, + { + "start": 4884.18, + "end": 4890.64, + "probability": 0.937 + }, + { + "start": 4891.2, + "end": 4892.92, + "probability": 0.9135 + }, + { + "start": 4893.78, + "end": 4896.38, + "probability": 0.9788 + }, + { + "start": 4896.68, + "end": 4900.26, + "probability": 0.8794 + }, + { + "start": 4900.26, + "end": 4904.5, + "probability": 0.9954 + }, + { + "start": 4904.94, + "end": 4907.06, + "probability": 0.5785 + }, + { + "start": 4907.82, + "end": 4913.16, + "probability": 0.9141 + }, + { + "start": 4914.16, + "end": 4918.26, + "probability": 0.994 + }, + { + "start": 4918.92, + "end": 4924.22, + "probability": 0.9756 + }, + { + "start": 4924.6, + "end": 4924.92, + "probability": 0.8096 + }, + { + "start": 4925.04, + "end": 4926.5, + "probability": 0.7854 + }, + { + "start": 4926.64, + "end": 4928.88, + "probability": 0.8029 + }, + { + "start": 4929.34, + "end": 4929.98, + "probability": 0.9741 + }, + { + "start": 4930.42, + "end": 4931.36, + "probability": 0.8012 + }, + { + "start": 4931.44, + "end": 4931.44, + "probability": 0.0291 + }, + { + "start": 4931.44, + "end": 4933.79, + "probability": 0.8813 + }, + { + "start": 4934.2, + "end": 4937.5, + "probability": 0.676 + }, + { + "start": 4938.06, + "end": 4940.48, + "probability": 0.6085 + }, + { + "start": 4940.62, + "end": 4941.18, + "probability": 0.9282 + }, + { + "start": 4941.54, + "end": 4947.84, + "probability": 0.9968 + }, + { + "start": 4947.84, + "end": 4955.56, + "probability": 0.9016 + }, + { + "start": 4956.08, + "end": 4957.86, + "probability": 0.8805 + }, + { + "start": 4958.08, + "end": 4959.18, + "probability": 0.7258 + }, + { + "start": 4959.57, + "end": 4961.06, + "probability": 0.1597 + }, + { + "start": 4961.2, + "end": 4962.38, + "probability": 0.7 + }, + { + "start": 4962.5, + "end": 4963.34, + "probability": 0.8738 + }, + { + "start": 4963.42, + "end": 4965.16, + "probability": 0.876 + }, + { + "start": 4965.52, + "end": 4966.9, + "probability": 0.9609 + }, + { + "start": 4967.26, + "end": 4968.34, + "probability": 0.9137 + }, + { + "start": 4968.74, + "end": 4972.0, + "probability": 0.9521 + }, + { + "start": 4972.06, + "end": 4975.09, + "probability": 0.9443 + }, + { + "start": 4977.39, + "end": 4981.64, + "probability": 0.6401 + }, + { + "start": 4981.66, + "end": 4983.54, + "probability": 0.9067 + }, + { + "start": 4984.14, + "end": 4985.24, + "probability": 0.588 + }, + { + "start": 4985.26, + "end": 4988.44, + "probability": 0.9432 + }, + { + "start": 4989.26, + "end": 4991.44, + "probability": 0.9641 + }, + { + "start": 4992.7, + "end": 4996.74, + "probability": 0.9674 + }, + { + "start": 4997.18, + "end": 5000.26, + "probability": 0.9799 + }, + { + "start": 5000.72, + "end": 5004.14, + "probability": 0.9696 + }, + { + "start": 5004.48, + "end": 5011.3, + "probability": 0.8965 + }, + { + "start": 5011.44, + "end": 5011.64, + "probability": 0.682 + }, + { + "start": 5012.34, + "end": 5013.24, + "probability": 0.5063 + }, + { + "start": 5013.34, + "end": 5014.76, + "probability": 0.9675 + }, + { + "start": 5015.12, + "end": 5016.18, + "probability": 0.8745 + }, + { + "start": 5016.24, + "end": 5017.38, + "probability": 0.8089 + }, + { + "start": 5017.46, + "end": 5019.12, + "probability": 0.9526 + }, + { + "start": 5019.52, + "end": 5021.42, + "probability": 0.8768 + }, + { + "start": 5021.7, + "end": 5023.94, + "probability": 0.7708 + }, + { + "start": 5024.0, + "end": 5024.52, + "probability": 0.8832 + }, + { + "start": 5024.58, + "end": 5025.43, + "probability": 0.9512 + }, + { + "start": 5025.96, + "end": 5027.74, + "probability": 0.9736 + }, + { + "start": 5028.32, + "end": 5035.1, + "probability": 0.9111 + }, + { + "start": 5036.06, + "end": 5041.64, + "probability": 0.9955 + }, + { + "start": 5042.48, + "end": 5044.68, + "probability": 0.9854 + }, + { + "start": 5045.38, + "end": 5049.6, + "probability": 0.9904 + }, + { + "start": 5049.64, + "end": 5050.18, + "probability": 0.7178 + }, + { + "start": 5050.48, + "end": 5056.24, + "probability": 0.8809 + }, + { + "start": 5056.6, + "end": 5057.3, + "probability": 0.8879 + }, + { + "start": 5057.76, + "end": 5058.96, + "probability": 0.85 + }, + { + "start": 5059.02, + "end": 5059.92, + "probability": 0.9863 + }, + { + "start": 5060.56, + "end": 5064.22, + "probability": 0.9863 + }, + { + "start": 5064.72, + "end": 5065.98, + "probability": 0.1894 + }, + { + "start": 5066.58, + "end": 5069.82, + "probability": 0.8216 + }, + { + "start": 5070.5, + "end": 5071.76, + "probability": 0.5863 + }, + { + "start": 5072.1, + "end": 5073.9, + "probability": 0.8993 + }, + { + "start": 5074.3, + "end": 5076.1, + "probability": 0.8792 + }, + { + "start": 5076.62, + "end": 5079.56, + "probability": 0.5039 + }, + { + "start": 5079.56, + "end": 5081.56, + "probability": 0.9697 + }, + { + "start": 5083.38, + "end": 5084.0, + "probability": 0.7443 + }, + { + "start": 5084.2, + "end": 5089.8, + "probability": 0.9617 + }, + { + "start": 5090.08, + "end": 5091.2, + "probability": 0.7405 + }, + { + "start": 5091.54, + "end": 5098.24, + "probability": 0.8928 + }, + { + "start": 5098.88, + "end": 5100.52, + "probability": 0.8093 + }, + { + "start": 5100.6, + "end": 5103.68, + "probability": 0.664 + }, + { + "start": 5103.88, + "end": 5103.9, + "probability": 0.6141 + }, + { + "start": 5104.06, + "end": 5106.36, + "probability": 0.7505 + }, + { + "start": 5106.36, + "end": 5108.54, + "probability": 0.84 + }, + { + "start": 5108.64, + "end": 5109.5, + "probability": 0.1631 + }, + { + "start": 5110.22, + "end": 5110.88, + "probability": 0.4797 + }, + { + "start": 5111.74, + "end": 5117.06, + "probability": 0.7743 + }, + { + "start": 5117.06, + "end": 5120.65, + "probability": 0.9736 + }, + { + "start": 5120.84, + "end": 5123.32, + "probability": 0.5787 + }, + { + "start": 5125.06, + "end": 5126.36, + "probability": 0.5792 + }, + { + "start": 5127.16, + "end": 5129.96, + "probability": 0.7302 + }, + { + "start": 5130.08, + "end": 5134.0, + "probability": 0.9076 + }, + { + "start": 5134.92, + "end": 5135.76, + "probability": 0.9631 + }, + { + "start": 5136.5, + "end": 5137.64, + "probability": 0.4383 + }, + { + "start": 5140.13, + "end": 5143.96, + "probability": 0.9614 + }, + { + "start": 5145.28, + "end": 5148.12, + "probability": 0.6065 + }, + { + "start": 5148.28, + "end": 5149.04, + "probability": 0.9257 + }, + { + "start": 5150.36, + "end": 5151.12, + "probability": 0.7177 + }, + { + "start": 5151.7, + "end": 5154.4, + "probability": 0.7446 + }, + { + "start": 5154.62, + "end": 5155.66, + "probability": 0.6544 + }, + { + "start": 5156.3, + "end": 5156.95, + "probability": 0.9008 + }, + { + "start": 5158.04, + "end": 5160.81, + "probability": 0.9834 + }, + { + "start": 5161.44, + "end": 5163.34, + "probability": 0.9198 + }, + { + "start": 5164.12, + "end": 5166.54, + "probability": 0.9108 + }, + { + "start": 5166.58, + "end": 5168.04, + "probability": 0.8821 + }, + { + "start": 5168.8, + "end": 5169.54, + "probability": 0.7429 + }, + { + "start": 5171.28, + "end": 5173.0, + "probability": 0.4581 + }, + { + "start": 5173.0, + "end": 5173.94, + "probability": 0.9529 + }, + { + "start": 5174.16, + "end": 5181.2, + "probability": 0.8554 + }, + { + "start": 5181.36, + "end": 5181.94, + "probability": 0.9214 + }, + { + "start": 5183.66, + "end": 5188.6, + "probability": 0.9919 + }, + { + "start": 5189.44, + "end": 5191.38, + "probability": 0.9878 + }, + { + "start": 5192.22, + "end": 5193.48, + "probability": 0.8344 + }, + { + "start": 5193.58, + "end": 5197.18, + "probability": 0.7943 + }, + { + "start": 5197.24, + "end": 5200.14, + "probability": 0.8665 + }, + { + "start": 5201.24, + "end": 5203.16, + "probability": 0.9102 + }, + { + "start": 5203.28, + "end": 5205.0, + "probability": 0.9382 + }, + { + "start": 5205.32, + "end": 5207.0, + "probability": 0.9932 + }, + { + "start": 5207.14, + "end": 5209.04, + "probability": 0.9692 + }, + { + "start": 5209.3, + "end": 5210.14, + "probability": 0.9502 + }, + { + "start": 5210.86, + "end": 5212.3, + "probability": 0.9817 + }, + { + "start": 5212.46, + "end": 5213.52, + "probability": 0.9688 + }, + { + "start": 5213.86, + "end": 5215.42, + "probability": 0.9783 + }, + { + "start": 5215.46, + "end": 5215.74, + "probability": 0.782 + }, + { + "start": 5215.84, + "end": 5217.02, + "probability": 0.7758 + }, + { + "start": 5217.58, + "end": 5218.2, + "probability": 0.0271 + }, + { + "start": 5218.2, + "end": 5219.1, + "probability": 0.9395 + }, + { + "start": 5219.2, + "end": 5221.98, + "probability": 0.9453 + }, + { + "start": 5222.12, + "end": 5222.44, + "probability": 0.8135 + }, + { + "start": 5222.58, + "end": 5226.64, + "probability": 0.7231 + }, + { + "start": 5226.9, + "end": 5229.02, + "probability": 0.9843 + }, + { + "start": 5231.1, + "end": 5232.14, + "probability": 0.7515 + }, + { + "start": 5232.46, + "end": 5233.68, + "probability": 0.9009 + }, + { + "start": 5234.24, + "end": 5234.56, + "probability": 0.7404 + }, + { + "start": 5234.7, + "end": 5235.04, + "probability": 0.4456 + }, + { + "start": 5235.2, + "end": 5235.82, + "probability": 0.7634 + }, + { + "start": 5236.26, + "end": 5239.07, + "probability": 0.5209 + }, + { + "start": 5240.12, + "end": 5242.72, + "probability": 0.9414 + }, + { + "start": 5243.18, + "end": 5245.48, + "probability": 0.9231 + }, + { + "start": 5246.0, + "end": 5246.5, + "probability": 0.6191 + }, + { + "start": 5246.8, + "end": 5249.95, + "probability": 0.9744 + }, + { + "start": 5250.24, + "end": 5251.36, + "probability": 0.7858 + }, + { + "start": 5251.94, + "end": 5253.14, + "probability": 0.9827 + }, + { + "start": 5253.42, + "end": 5254.28, + "probability": 0.6055 + }, + { + "start": 5254.64, + "end": 5259.98, + "probability": 0.9806 + }, + { + "start": 5261.86, + "end": 5268.14, + "probability": 0.9099 + }, + { + "start": 5268.24, + "end": 5268.9, + "probability": 0.7455 + }, + { + "start": 5269.86, + "end": 5271.08, + "probability": 0.0118 + }, + { + "start": 5271.18, + "end": 5274.14, + "probability": 0.8239 + }, + { + "start": 5274.18, + "end": 5275.9, + "probability": 0.4184 + }, + { + "start": 5276.18, + "end": 5277.74, + "probability": 0.6311 + }, + { + "start": 5278.47, + "end": 5281.12, + "probability": 0.5413 + }, + { + "start": 5282.48, + "end": 5284.4, + "probability": 0.4362 + }, + { + "start": 5284.68, + "end": 5286.4, + "probability": 0.8035 + }, + { + "start": 5286.48, + "end": 5289.64, + "probability": 0.8263 + }, + { + "start": 5289.9, + "end": 5290.74, + "probability": 0.6934 + }, + { + "start": 5290.92, + "end": 5292.1, + "probability": 0.6601 + }, + { + "start": 5292.2, + "end": 5295.38, + "probability": 0.5301 + }, + { + "start": 5295.38, + "end": 5295.38, + "probability": 0.0473 + }, + { + "start": 5295.38, + "end": 5295.52, + "probability": 0.3714 + }, + { + "start": 5295.62, + "end": 5297.88, + "probability": 0.5821 + }, + { + "start": 5298.36, + "end": 5299.24, + "probability": 0.3965 + }, + { + "start": 5299.24, + "end": 5302.78, + "probability": 0.4961 + }, + { + "start": 5302.78, + "end": 5305.22, + "probability": 0.9802 + }, + { + "start": 5305.54, + "end": 5310.7, + "probability": 0.9244 + }, + { + "start": 5310.86, + "end": 5312.56, + "probability": 0.9615 + }, + { + "start": 5312.78, + "end": 5313.2, + "probability": 0.8737 + }, + { + "start": 5313.42, + "end": 5314.9, + "probability": 0.9966 + }, + { + "start": 5315.3, + "end": 5317.08, + "probability": 0.983 + }, + { + "start": 5317.34, + "end": 5320.2, + "probability": 0.8465 + }, + { + "start": 5320.3, + "end": 5323.64, + "probability": 0.8335 + }, + { + "start": 5323.98, + "end": 5326.74, + "probability": 0.997 + }, + { + "start": 5326.74, + "end": 5330.22, + "probability": 0.8784 + }, + { + "start": 5330.7, + "end": 5331.19, + "probability": 0.8571 + }, + { + "start": 5332.02, + "end": 5333.0, + "probability": 0.8774 + }, + { + "start": 5333.24, + "end": 5334.34, + "probability": 0.5988 + }, + { + "start": 5334.42, + "end": 5337.02, + "probability": 0.912 + }, + { + "start": 5337.36, + "end": 5340.36, + "probability": 0.6785 + }, + { + "start": 5340.48, + "end": 5341.74, + "probability": 0.9967 + }, + { + "start": 5341.84, + "end": 5342.9, + "probability": 0.5784 + }, + { + "start": 5343.56, + "end": 5345.85, + "probability": 0.0216 + }, + { + "start": 5347.22, + "end": 5348.7, + "probability": 0.308 + }, + { + "start": 5348.78, + "end": 5348.84, + "probability": 0.1144 + }, + { + "start": 5348.84, + "end": 5350.7, + "probability": 0.2005 + }, + { + "start": 5350.82, + "end": 5353.4, + "probability": 0.7524 + }, + { + "start": 5353.6, + "end": 5355.08, + "probability": 0.7166 + }, + { + "start": 5355.58, + "end": 5358.08, + "probability": 0.9878 + }, + { + "start": 5358.76, + "end": 5360.5, + "probability": 0.8715 + }, + { + "start": 5361.08, + "end": 5361.64, + "probability": 0.8451 + }, + { + "start": 5361.82, + "end": 5362.8, + "probability": 0.8927 + }, + { + "start": 5362.86, + "end": 5364.54, + "probability": 0.9751 + }, + { + "start": 5365.0, + "end": 5367.24, + "probability": 0.7792 + }, + { + "start": 5367.34, + "end": 5368.66, + "probability": 0.9102 + }, + { + "start": 5369.66, + "end": 5371.92, + "probability": 0.6053 + }, + { + "start": 5372.24, + "end": 5373.22, + "probability": 0.0539 + }, + { + "start": 5391.48, + "end": 5396.94, + "probability": 0.6727 + }, + { + "start": 5397.42, + "end": 5401.58, + "probability": 0.9322 + }, + { + "start": 5403.1, + "end": 5403.68, + "probability": 0.7573 + }, + { + "start": 5404.18, + "end": 5406.08, + "probability": 0.7859 + }, + { + "start": 5406.56, + "end": 5407.99, + "probability": 0.9866 + }, + { + "start": 5408.8, + "end": 5411.29, + "probability": 0.9684 + }, + { + "start": 5412.22, + "end": 5414.58, + "probability": 0.8225 + }, + { + "start": 5414.76, + "end": 5416.74, + "probability": 0.8979 + }, + { + "start": 5417.46, + "end": 5419.14, + "probability": 0.8217 + }, + { + "start": 5419.2, + "end": 5419.7, + "probability": 0.9077 + }, + { + "start": 5420.46, + "end": 5424.58, + "probability": 0.9946 + }, + { + "start": 5425.02, + "end": 5425.98, + "probability": 0.9852 + }, + { + "start": 5426.74, + "end": 5429.16, + "probability": 0.9579 + }, + { + "start": 5429.52, + "end": 5436.64, + "probability": 0.9827 + }, + { + "start": 5436.86, + "end": 5438.36, + "probability": 0.9774 + }, + { + "start": 5438.84, + "end": 5439.58, + "probability": 0.54 + }, + { + "start": 5439.62, + "end": 5440.06, + "probability": 0.9061 + }, + { + "start": 5440.92, + "end": 5445.4, + "probability": 0.9932 + }, + { + "start": 5446.6, + "end": 5447.58, + "probability": 0.8079 + }, + { + "start": 5448.36, + "end": 5450.44, + "probability": 0.8688 + }, + { + "start": 5450.72, + "end": 5451.66, + "probability": 0.6385 + }, + { + "start": 5451.76, + "end": 5454.6, + "probability": 0.968 + }, + { + "start": 5455.58, + "end": 5457.94, + "probability": 0.971 + }, + { + "start": 5458.02, + "end": 5458.68, + "probability": 0.6763 + }, + { + "start": 5459.3, + "end": 5463.48, + "probability": 0.86 + }, + { + "start": 5463.56, + "end": 5466.54, + "probability": 0.9563 + }, + { + "start": 5466.76, + "end": 5467.64, + "probability": 0.8785 + }, + { + "start": 5467.76, + "end": 5469.56, + "probability": 0.6127 + }, + { + "start": 5469.96, + "end": 5470.16, + "probability": 0.444 + }, + { + "start": 5470.2, + "end": 5470.5, + "probability": 0.427 + }, + { + "start": 5470.62, + "end": 5473.16, + "probability": 0.8671 + }, + { + "start": 5473.42, + "end": 5473.92, + "probability": 0.8749 + }, + { + "start": 5474.82, + "end": 5479.36, + "probability": 0.9236 + }, + { + "start": 5480.26, + "end": 5485.6, + "probability": 0.9941 + }, + { + "start": 5487.44, + "end": 5490.56, + "probability": 0.7739 + }, + { + "start": 5491.02, + "end": 5493.08, + "probability": 0.9868 + }, + { + "start": 5493.2, + "end": 5494.14, + "probability": 0.9251 + }, + { + "start": 5494.5, + "end": 5495.6, + "probability": 0.8914 + }, + { + "start": 5496.18, + "end": 5496.9, + "probability": 0.7663 + }, + { + "start": 5497.12, + "end": 5498.2, + "probability": 0.6252 + }, + { + "start": 5498.68, + "end": 5500.52, + "probability": 0.9803 + }, + { + "start": 5500.64, + "end": 5502.02, + "probability": 0.9892 + }, + { + "start": 5502.5, + "end": 5506.3, + "probability": 0.9219 + }, + { + "start": 5506.7, + "end": 5507.3, + "probability": 0.5083 + }, + { + "start": 5507.4, + "end": 5508.24, + "probability": 0.9409 + }, + { + "start": 5508.56, + "end": 5509.66, + "probability": 0.2951 + }, + { + "start": 5509.94, + "end": 5513.26, + "probability": 0.9132 + }, + { + "start": 5513.32, + "end": 5514.48, + "probability": 0.6906 + }, + { + "start": 5514.56, + "end": 5517.48, + "probability": 0.9615 + }, + { + "start": 5517.88, + "end": 5519.4, + "probability": 0.9945 + }, + { + "start": 5520.6, + "end": 5520.6, + "probability": 0.4971 + }, + { + "start": 5520.6, + "end": 5520.96, + "probability": 0.4587 + }, + { + "start": 5521.46, + "end": 5523.78, + "probability": 0.7275 + }, + { + "start": 5523.9, + "end": 5524.38, + "probability": 0.6454 + }, + { + "start": 5524.78, + "end": 5527.7, + "probability": 0.8755 + }, + { + "start": 5527.74, + "end": 5528.06, + "probability": 0.7329 + }, + { + "start": 5528.14, + "end": 5529.08, + "probability": 0.9082 + }, + { + "start": 5529.44, + "end": 5531.18, + "probability": 0.6817 + }, + { + "start": 5531.62, + "end": 5533.68, + "probability": 0.8336 + }, + { + "start": 5534.1, + "end": 5536.48, + "probability": 0.9987 + }, + { + "start": 5536.78, + "end": 5538.36, + "probability": 0.7681 + }, + { + "start": 5538.72, + "end": 5539.98, + "probability": 0.8683 + }, + { + "start": 5540.16, + "end": 5540.62, + "probability": 0.9022 + }, + { + "start": 5541.34, + "end": 5545.1, + "probability": 0.4212 + }, + { + "start": 5545.1, + "end": 5545.72, + "probability": 0.0631 + }, + { + "start": 5546.42, + "end": 5550.64, + "probability": 0.5286 + }, + { + "start": 5550.92, + "end": 5552.72, + "probability": 0.9897 + }, + { + "start": 5552.94, + "end": 5554.74, + "probability": 0.9505 + }, + { + "start": 5555.08, + "end": 5555.99, + "probability": 0.9879 + }, + { + "start": 5556.78, + "end": 5557.84, + "probability": 0.9411 + }, + { + "start": 5558.16, + "end": 5561.31, + "probability": 0.9479 + }, + { + "start": 5562.18, + "end": 5563.86, + "probability": 0.9711 + }, + { + "start": 5564.32, + "end": 5565.76, + "probability": 0.864 + }, + { + "start": 5566.08, + "end": 5568.18, + "probability": 0.4591 + }, + { + "start": 5569.48, + "end": 5570.42, + "probability": 0.0509 + }, + { + "start": 5570.6, + "end": 5571.09, + "probability": 0.0805 + }, + { + "start": 5571.22, + "end": 5574.06, + "probability": 0.267 + }, + { + "start": 5574.06, + "end": 5574.62, + "probability": 0.0519 + }, + { + "start": 5575.26, + "end": 5577.08, + "probability": 0.8739 + }, + { + "start": 5577.3, + "end": 5578.22, + "probability": 0.8687 + }, + { + "start": 5579.82, + "end": 5582.8, + "probability": 0.9427 + }, + { + "start": 5582.98, + "end": 5583.84, + "probability": 0.8234 + }, + { + "start": 5583.92, + "end": 5584.08, + "probability": 0.3618 + }, + { + "start": 5584.14, + "end": 5584.94, + "probability": 0.8657 + }, + { + "start": 5585.1, + "end": 5586.06, + "probability": 0.8906 + }, + { + "start": 5586.64, + "end": 5587.58, + "probability": 0.9248 + }, + { + "start": 5587.62, + "end": 5589.14, + "probability": 0.9661 + }, + { + "start": 5589.18, + "end": 5590.34, + "probability": 0.5633 + }, + { + "start": 5591.1, + "end": 5594.08, + "probability": 0.9941 + }, + { + "start": 5594.14, + "end": 5594.42, + "probability": 0.7733 + }, + { + "start": 5594.6, + "end": 5595.12, + "probability": 0.9688 + }, + { + "start": 5596.08, + "end": 5596.88, + "probability": 0.7981 + }, + { + "start": 5597.92, + "end": 5600.02, + "probability": 0.9167 + }, + { + "start": 5601.04, + "end": 5604.12, + "probability": 0.9596 + }, + { + "start": 5604.7, + "end": 5606.39, + "probability": 0.8327 + }, + { + "start": 5607.32, + "end": 5610.6, + "probability": 0.9535 + }, + { + "start": 5611.12, + "end": 5611.56, + "probability": 0.4477 + }, + { + "start": 5612.26, + "end": 5615.98, + "probability": 0.9747 + }, + { + "start": 5616.42, + "end": 5618.04, + "probability": 0.8775 + }, + { + "start": 5618.84, + "end": 5620.58, + "probability": 0.9185 + }, + { + "start": 5621.44, + "end": 5623.3, + "probability": 0.8799 + }, + { + "start": 5624.88, + "end": 5628.58, + "probability": 0.8372 + }, + { + "start": 5628.66, + "end": 5629.56, + "probability": 0.9688 + }, + { + "start": 5630.16, + "end": 5634.28, + "probability": 0.9773 + }, + { + "start": 5634.34, + "end": 5635.2, + "probability": 0.7035 + }, + { + "start": 5635.26, + "end": 5638.14, + "probability": 0.8262 + }, + { + "start": 5638.34, + "end": 5640.74, + "probability": 0.9282 + }, + { + "start": 5640.92, + "end": 5642.62, + "probability": 0.7072 + }, + { + "start": 5643.14, + "end": 5647.02, + "probability": 0.1225 + }, + { + "start": 5647.02, + "end": 5648.46, + "probability": 0.7825 + }, + { + "start": 5648.9, + "end": 5649.96, + "probability": 0.9719 + }, + { + "start": 5650.04, + "end": 5652.02, + "probability": 0.7732 + }, + { + "start": 5652.62, + "end": 5656.22, + "probability": 0.8344 + }, + { + "start": 5656.7, + "end": 5658.98, + "probability": 0.8279 + }, + { + "start": 5659.36, + "end": 5663.28, + "probability": 0.8398 + }, + { + "start": 5663.4, + "end": 5665.18, + "probability": 0.9615 + }, + { + "start": 5665.86, + "end": 5669.66, + "probability": 0.9874 + }, + { + "start": 5670.38, + "end": 5672.04, + "probability": 0.9691 + }, + { + "start": 5672.56, + "end": 5675.2, + "probability": 0.9701 + }, + { + "start": 5675.78, + "end": 5680.06, + "probability": 0.8072 + }, + { + "start": 5680.24, + "end": 5682.82, + "probability": 0.9795 + }, + { + "start": 5682.98, + "end": 5686.88, + "probability": 0.9773 + }, + { + "start": 5687.52, + "end": 5688.24, + "probability": 0.8744 + }, + { + "start": 5689.08, + "end": 5689.76, + "probability": 0.939 + }, + { + "start": 5690.2, + "end": 5691.38, + "probability": 0.697 + }, + { + "start": 5691.48, + "end": 5693.82, + "probability": 0.8219 + }, + { + "start": 5694.52, + "end": 5698.54, + "probability": 0.9519 + }, + { + "start": 5698.54, + "end": 5703.64, + "probability": 0.7995 + }, + { + "start": 5704.1, + "end": 5705.08, + "probability": 0.9455 + }, + { + "start": 5705.26, + "end": 5706.24, + "probability": 0.7612 + }, + { + "start": 5706.62, + "end": 5708.1, + "probability": 0.9537 + }, + { + "start": 5708.38, + "end": 5709.62, + "probability": 0.9905 + }, + { + "start": 5709.81, + "end": 5712.15, + "probability": 0.9973 + }, + { + "start": 5712.34, + "end": 5713.68, + "probability": 0.7341 + }, + { + "start": 5713.82, + "end": 5715.82, + "probability": 0.825 + }, + { + "start": 5716.02, + "end": 5717.04, + "probability": 0.9928 + }, + { + "start": 5717.54, + "end": 5719.08, + "probability": 0.9912 + }, + { + "start": 5719.76, + "end": 5722.14, + "probability": 0.8782 + }, + { + "start": 5722.56, + "end": 5726.16, + "probability": 0.863 + }, + { + "start": 5726.3, + "end": 5727.22, + "probability": 0.9351 + }, + { + "start": 5727.6, + "end": 5729.44, + "probability": 0.9922 + }, + { + "start": 5729.54, + "end": 5732.81, + "probability": 0.9507 + }, + { + "start": 5733.0, + "end": 5734.36, + "probability": 0.9937 + }, + { + "start": 5734.86, + "end": 5738.5, + "probability": 0.9979 + }, + { + "start": 5738.9, + "end": 5739.86, + "probability": 0.7286 + }, + { + "start": 5740.26, + "end": 5744.16, + "probability": 0.9966 + }, + { + "start": 5744.2, + "end": 5747.94, + "probability": 0.996 + }, + { + "start": 5748.02, + "end": 5749.0, + "probability": 0.9399 + }, + { + "start": 5749.48, + "end": 5750.78, + "probability": 0.4539 + }, + { + "start": 5750.86, + "end": 5753.36, + "probability": 0.9893 + }, + { + "start": 5753.8, + "end": 5755.16, + "probability": 0.9915 + }, + { + "start": 5755.64, + "end": 5758.64, + "probability": 0.8109 + }, + { + "start": 5758.9, + "end": 5762.55, + "probability": 0.8359 + }, + { + "start": 5764.16, + "end": 5766.9, + "probability": 0.9645 + }, + { + "start": 5767.32, + "end": 5768.42, + "probability": 0.9894 + }, + { + "start": 5768.7, + "end": 5769.72, + "probability": 0.8973 + }, + { + "start": 5770.0, + "end": 5771.6, + "probability": 0.9398 + }, + { + "start": 5771.68, + "end": 5773.28, + "probability": 0.9233 + }, + { + "start": 5773.8, + "end": 5774.0, + "probability": 0.7484 + }, + { + "start": 5774.44, + "end": 5777.06, + "probability": 0.7644 + }, + { + "start": 5777.12, + "end": 5779.28, + "probability": 0.8886 + }, + { + "start": 5779.34, + "end": 5781.12, + "probability": 0.7789 + }, + { + "start": 5781.66, + "end": 5782.08, + "probability": 0.4078 + }, + { + "start": 5782.14, + "end": 5784.54, + "probability": 0.6603 + }, + { + "start": 5784.64, + "end": 5786.58, + "probability": 0.6438 + }, + { + "start": 5787.18, + "end": 5789.12, + "probability": 0.842 + }, + { + "start": 5790.82, + "end": 5791.6, + "probability": 0.9162 + }, + { + "start": 5801.28, + "end": 5802.92, + "probability": 0.5961 + }, + { + "start": 5804.38, + "end": 5808.74, + "probability": 0.7901 + }, + { + "start": 5809.36, + "end": 5813.94, + "probability": 0.583 + }, + { + "start": 5813.94, + "end": 5816.18, + "probability": 0.48 + }, + { + "start": 5816.92, + "end": 5818.66, + "probability": 0.9585 + }, + { + "start": 5819.2, + "end": 5821.52, + "probability": 0.9187 + }, + { + "start": 5822.54, + "end": 5830.9, + "probability": 0.9612 + }, + { + "start": 5832.6, + "end": 5839.6, + "probability": 0.9893 + }, + { + "start": 5840.22, + "end": 5841.6, + "probability": 0.7345 + }, + { + "start": 5842.22, + "end": 5844.62, + "probability": 0.9809 + }, + { + "start": 5845.26, + "end": 5846.2, + "probability": 0.8934 + }, + { + "start": 5847.68, + "end": 5851.38, + "probability": 0.8066 + }, + { + "start": 5852.04, + "end": 5855.72, + "probability": 0.9796 + }, + { + "start": 5856.32, + "end": 5858.56, + "probability": 0.9882 + }, + { + "start": 5859.06, + "end": 5862.0, + "probability": 0.9087 + }, + { + "start": 5862.98, + "end": 5864.5, + "probability": 0.7908 + }, + { + "start": 5864.56, + "end": 5865.32, + "probability": 0.9502 + }, + { + "start": 5865.38, + "end": 5869.48, + "probability": 0.9028 + }, + { + "start": 5871.1, + "end": 5876.68, + "probability": 0.8893 + }, + { + "start": 5877.32, + "end": 5879.96, + "probability": 0.9392 + }, + { + "start": 5881.52, + "end": 5884.19, + "probability": 0.9391 + }, + { + "start": 5885.08, + "end": 5888.88, + "probability": 0.9877 + }, + { + "start": 5890.02, + "end": 5892.94, + "probability": 0.887 + }, + { + "start": 5893.76, + "end": 5897.76, + "probability": 0.8669 + }, + { + "start": 5898.26, + "end": 5901.02, + "probability": 0.9166 + }, + { + "start": 5901.48, + "end": 5909.88, + "probability": 0.9954 + }, + { + "start": 5909.88, + "end": 5916.78, + "probability": 0.992 + }, + { + "start": 5917.34, + "end": 5918.44, + "probability": 0.7588 + }, + { + "start": 5918.48, + "end": 5929.12, + "probability": 0.9715 + }, + { + "start": 5930.74, + "end": 5937.38, + "probability": 0.8518 + }, + { + "start": 5937.96, + "end": 5940.12, + "probability": 0.9257 + }, + { + "start": 5941.62, + "end": 5944.96, + "probability": 0.9928 + }, + { + "start": 5946.18, + "end": 5954.2, + "probability": 0.9922 + }, + { + "start": 5956.0, + "end": 5958.0, + "probability": 0.9249 + }, + { + "start": 5960.22, + "end": 5960.83, + "probability": 0.9565 + }, + { + "start": 5962.6, + "end": 5966.36, + "probability": 0.9711 + }, + { + "start": 5968.74, + "end": 5970.2, + "probability": 0.7613 + }, + { + "start": 5971.24, + "end": 5973.34, + "probability": 0.9045 + }, + { + "start": 5973.92, + "end": 5974.4, + "probability": 0.9901 + }, + { + "start": 5975.4, + "end": 5977.36, + "probability": 0.9177 + }, + { + "start": 5978.34, + "end": 5983.32, + "probability": 0.9405 + }, + { + "start": 5984.5, + "end": 5986.78, + "probability": 0.929 + }, + { + "start": 5987.38, + "end": 5989.7, + "probability": 0.9422 + }, + { + "start": 5990.72, + "end": 5994.8, + "probability": 0.9974 + }, + { + "start": 5996.22, + "end": 5997.1, + "probability": 0.7588 + }, + { + "start": 5999.46, + "end": 6003.94, + "probability": 0.8632 + }, + { + "start": 6006.18, + "end": 6015.52, + "probability": 0.9951 + }, + { + "start": 6015.88, + "end": 6017.05, + "probability": 0.6412 + }, + { + "start": 6018.12, + "end": 6022.48, + "probability": 0.935 + }, + { + "start": 6023.16, + "end": 6024.36, + "probability": 0.9421 + }, + { + "start": 6025.22, + "end": 6030.06, + "probability": 0.7108 + }, + { + "start": 6030.64, + "end": 6032.08, + "probability": 0.0079 + }, + { + "start": 6033.08, + "end": 6034.54, + "probability": 0.9062 + }, + { + "start": 6036.02, + "end": 6045.16, + "probability": 0.9777 + }, + { + "start": 6047.12, + "end": 6050.98, + "probability": 0.9077 + }, + { + "start": 6051.76, + "end": 6053.0, + "probability": 0.9759 + }, + { + "start": 6053.08, + "end": 6053.68, + "probability": 0.3915 + }, + { + "start": 6054.04, + "end": 6062.06, + "probability": 0.9834 + }, + { + "start": 6062.56, + "end": 6063.88, + "probability": 0.8586 + }, + { + "start": 6064.52, + "end": 6065.24, + "probability": 0.8875 + }, + { + "start": 6067.22, + "end": 6070.0, + "probability": 0.9311 + }, + { + "start": 6071.42, + "end": 6076.96, + "probability": 0.8368 + }, + { + "start": 6077.94, + "end": 6078.26, + "probability": 0.873 + }, + { + "start": 6079.06, + "end": 6083.66, + "probability": 0.9773 + }, + { + "start": 6084.6, + "end": 6089.54, + "probability": 0.8549 + }, + { + "start": 6091.36, + "end": 6099.7, + "probability": 0.9748 + }, + { + "start": 6099.78, + "end": 6101.04, + "probability": 0.7036 + }, + { + "start": 6101.72, + "end": 6105.08, + "probability": 0.69 + }, + { + "start": 6105.62, + "end": 6106.94, + "probability": 0.854 + }, + { + "start": 6107.46, + "end": 6109.42, + "probability": 0.9763 + }, + { + "start": 6110.14, + "end": 6110.58, + "probability": 0.4569 + }, + { + "start": 6111.84, + "end": 6114.84, + "probability": 0.5715 + }, + { + "start": 6115.94, + "end": 6119.02, + "probability": 0.8789 + }, + { + "start": 6121.36, + "end": 6122.29, + "probability": 0.9216 + }, + { + "start": 6123.64, + "end": 6126.0, + "probability": 0.9527 + }, + { + "start": 6127.08, + "end": 6129.2, + "probability": 0.954 + }, + { + "start": 6130.08, + "end": 6131.58, + "probability": 0.9116 + }, + { + "start": 6132.58, + "end": 6136.62, + "probability": 0.8112 + }, + { + "start": 6137.28, + "end": 6139.68, + "probability": 0.9954 + }, + { + "start": 6140.16, + "end": 6145.28, + "probability": 0.9717 + }, + { + "start": 6145.98, + "end": 6150.78, + "probability": 0.9434 + }, + { + "start": 6152.64, + "end": 6155.04, + "probability": 0.7943 + }, + { + "start": 6155.62, + "end": 6158.94, + "probability": 0.9779 + }, + { + "start": 6160.5, + "end": 6163.0, + "probability": 0.8109 + }, + { + "start": 6163.1, + "end": 6163.64, + "probability": 0.9193 + }, + { + "start": 6164.3, + "end": 6171.44, + "probability": 0.9735 + }, + { + "start": 6172.34, + "end": 6175.62, + "probability": 0.9468 + }, + { + "start": 6176.72, + "end": 6180.12, + "probability": 0.7809 + }, + { + "start": 6180.72, + "end": 6183.8, + "probability": 0.679 + }, + { + "start": 6184.44, + "end": 6186.64, + "probability": 0.7602 + }, + { + "start": 6187.86, + "end": 6190.5, + "probability": 0.9915 + }, + { + "start": 6191.12, + "end": 6199.61, + "probability": 0.8477 + }, + { + "start": 6203.9, + "end": 6207.38, + "probability": 0.888 + }, + { + "start": 6208.12, + "end": 6214.36, + "probability": 0.7369 + }, + { + "start": 6215.36, + "end": 6217.54, + "probability": 0.9523 + }, + { + "start": 6218.3, + "end": 6220.94, + "probability": 0.7751 + }, + { + "start": 6222.1, + "end": 6223.84, + "probability": 0.7789 + }, + { + "start": 6224.2, + "end": 6226.76, + "probability": 0.9474 + }, + { + "start": 6227.02, + "end": 6233.11, + "probability": 0.9968 + }, + { + "start": 6233.5, + "end": 6238.4, + "probability": 0.6419 + }, + { + "start": 6238.66, + "end": 6243.48, + "probability": 0.9788 + }, + { + "start": 6244.74, + "end": 6246.94, + "probability": 0.5469 + }, + { + "start": 6247.06, + "end": 6254.08, + "probability": 0.9204 + }, + { + "start": 6255.22, + "end": 6261.98, + "probability": 0.9022 + }, + { + "start": 6266.08, + "end": 6267.58, + "probability": 0.7668 + }, + { + "start": 6269.3, + "end": 6270.46, + "probability": 0.9177 + }, + { + "start": 6270.82, + "end": 6273.64, + "probability": 0.9762 + }, + { + "start": 6275.7, + "end": 6277.74, + "probability": 0.8899 + }, + { + "start": 6278.3, + "end": 6280.26, + "probability": 0.6648 + }, + { + "start": 6280.84, + "end": 6284.48, + "probability": 0.9012 + }, + { + "start": 6285.18, + "end": 6290.14, + "probability": 0.7435 + }, + { + "start": 6290.68, + "end": 6295.28, + "probability": 0.9536 + }, + { + "start": 6295.62, + "end": 6297.6, + "probability": 0.7407 + }, + { + "start": 6298.58, + "end": 6303.44, + "probability": 0.9911 + }, + { + "start": 6303.78, + "end": 6310.56, + "probability": 0.9827 + }, + { + "start": 6310.56, + "end": 6316.68, + "probability": 0.9614 + }, + { + "start": 6319.04, + "end": 6320.14, + "probability": 0.8755 + }, + { + "start": 6320.28, + "end": 6321.4, + "probability": 0.6267 + }, + { + "start": 6321.56, + "end": 6322.42, + "probability": 0.4754 + }, + { + "start": 6322.42, + "end": 6324.58, + "probability": 0.2538 + }, + { + "start": 6324.62, + "end": 6326.7, + "probability": 0.3115 + }, + { + "start": 6327.12, + "end": 6329.08, + "probability": 0.334 + }, + { + "start": 6329.64, + "end": 6334.84, + "probability": 0.7703 + }, + { + "start": 6335.42, + "end": 6336.32, + "probability": 0.8056 + }, + { + "start": 6336.58, + "end": 6340.7, + "probability": 0.8533 + }, + { + "start": 6340.7, + "end": 6344.58, + "probability": 0.8472 + }, + { + "start": 6344.66, + "end": 6348.84, + "probability": 0.0389 + }, + { + "start": 6349.36, + "end": 6350.66, + "probability": 0.9292 + }, + { + "start": 6350.88, + "end": 6355.81, + "probability": 0.5972 + }, + { + "start": 6356.32, + "end": 6361.8, + "probability": 0.9616 + }, + { + "start": 6361.8, + "end": 6370.18, + "probability": 0.9811 + }, + { + "start": 6370.6, + "end": 6370.6, + "probability": 0.5252 + }, + { + "start": 6370.6, + "end": 6375.36, + "probability": 0.9058 + }, + { + "start": 6376.06, + "end": 6381.2, + "probability": 0.8402 + }, + { + "start": 6381.68, + "end": 6383.46, + "probability": 0.883 + }, + { + "start": 6383.84, + "end": 6389.88, + "probability": 0.9951 + }, + { + "start": 6390.4, + "end": 6392.74, + "probability": 0.3911 + }, + { + "start": 6393.76, + "end": 6398.18, + "probability": 0.8863 + }, + { + "start": 6398.74, + "end": 6402.26, + "probability": 0.931 + }, + { + "start": 6402.8, + "end": 6404.33, + "probability": 0.8516 + }, + { + "start": 6404.9, + "end": 6409.36, + "probability": 0.9526 + }, + { + "start": 6410.14, + "end": 6411.42, + "probability": 0.6667 + }, + { + "start": 6412.3, + "end": 6416.68, + "probability": 0.8954 + }, + { + "start": 6418.1, + "end": 6419.58, + "probability": 0.9282 + }, + { + "start": 6420.38, + "end": 6422.14, + "probability": 0.5396 + }, + { + "start": 6422.84, + "end": 6423.2, + "probability": 0.3328 + }, + { + "start": 6423.76, + "end": 6426.2, + "probability": 0.9032 + }, + { + "start": 6426.94, + "end": 6428.72, + "probability": 0.9785 + }, + { + "start": 6429.42, + "end": 6431.38, + "probability": 0.9629 + }, + { + "start": 6432.4, + "end": 6437.64, + "probability": 0.9268 + }, + { + "start": 6437.72, + "end": 6440.94, + "probability": 0.9316 + }, + { + "start": 6440.96, + "end": 6443.12, + "probability": 0.7968 + }, + { + "start": 6443.7, + "end": 6444.46, + "probability": 0.6402 + }, + { + "start": 6445.52, + "end": 6447.84, + "probability": 0.7908 + }, + { + "start": 6448.42, + "end": 6450.02, + "probability": 0.9328 + }, + { + "start": 6450.76, + "end": 6454.3, + "probability": 0.9408 + }, + { + "start": 6454.9, + "end": 6459.64, + "probability": 0.9966 + }, + { + "start": 6459.64, + "end": 6464.72, + "probability": 0.9412 + }, + { + "start": 6465.78, + "end": 6470.84, + "probability": 0.9934 + }, + { + "start": 6470.92, + "end": 6472.64, + "probability": 0.9087 + }, + { + "start": 6475.68, + "end": 6479.02, + "probability": 0.8152 + }, + { + "start": 6480.3, + "end": 6480.74, + "probability": 0.6363 + }, + { + "start": 6481.74, + "end": 6483.42, + "probability": 0.7193 + }, + { + "start": 6484.98, + "end": 6488.3, + "probability": 0.9266 + }, + { + "start": 6488.4, + "end": 6493.98, + "probability": 0.9764 + }, + { + "start": 6493.98, + "end": 6498.6, + "probability": 0.9662 + }, + { + "start": 6498.76, + "end": 6509.12, + "probability": 0.4905 + }, + { + "start": 6509.9, + "end": 6510.78, + "probability": 0.3196 + }, + { + "start": 6511.08, + "end": 6514.44, + "probability": 0.8328 + }, + { + "start": 6515.37, + "end": 6515.44, + "probability": 0.1349 + }, + { + "start": 6515.44, + "end": 6518.52, + "probability": 0.8675 + }, + { + "start": 6518.8, + "end": 6520.83, + "probability": 0.9594 + }, + { + "start": 6521.26, + "end": 6523.46, + "probability": 0.7547 + }, + { + "start": 6523.68, + "end": 6526.26, + "probability": 0.5036 + }, + { + "start": 6526.36, + "end": 6526.36, + "probability": 0.3225 + }, + { + "start": 6526.36, + "end": 6527.12, + "probability": 0.7039 + }, + { + "start": 6527.36, + "end": 6534.06, + "probability": 0.9683 + }, + { + "start": 6534.4, + "end": 6534.74, + "probability": 0.0252 + }, + { + "start": 6535.17, + "end": 6537.32, + "probability": 0.5306 + }, + { + "start": 6537.44, + "end": 6537.62, + "probability": 0.9541 + }, + { + "start": 6538.0, + "end": 6539.66, + "probability": 0.6303 + }, + { + "start": 6539.7, + "end": 6540.1, + "probability": 0.588 + }, + { + "start": 6540.74, + "end": 6548.7, + "probability": 0.9067 + }, + { + "start": 6549.22, + "end": 6550.64, + "probability": 0.8694 + }, + { + "start": 6551.0, + "end": 6552.04, + "probability": 0.6958 + }, + { + "start": 6552.04, + "end": 6556.44, + "probability": 0.9895 + }, + { + "start": 6556.56, + "end": 6556.94, + "probability": 0.6382 + }, + { + "start": 6557.0, + "end": 6557.42, + "probability": 0.7146 + }, + { + "start": 6557.92, + "end": 6558.66, + "probability": 0.3212 + }, + { + "start": 6559.08, + "end": 6564.22, + "probability": 0.8198 + }, + { + "start": 6564.56, + "end": 6565.94, + "probability": 0.6675 + }, + { + "start": 6566.62, + "end": 6570.0, + "probability": 0.9237 + }, + { + "start": 6571.74, + "end": 6575.74, + "probability": 0.8801 + }, + { + "start": 6575.95, + "end": 6581.7, + "probability": 0.9813 + }, + { + "start": 6582.98, + "end": 6584.14, + "probability": 0.7152 + }, + { + "start": 6585.1, + "end": 6589.54, + "probability": 0.9878 + }, + { + "start": 6590.26, + "end": 6592.52, + "probability": 0.9529 + }, + { + "start": 6593.1, + "end": 6597.66, + "probability": 0.9858 + }, + { + "start": 6599.24, + "end": 6603.54, + "probability": 0.9937 + }, + { + "start": 6604.32, + "end": 6606.58, + "probability": 0.905 + }, + { + "start": 6607.52, + "end": 6610.42, + "probability": 0.9832 + }, + { + "start": 6610.92, + "end": 6615.22, + "probability": 0.9956 + }, + { + "start": 6615.94, + "end": 6622.2, + "probability": 0.9388 + }, + { + "start": 6622.54, + "end": 6626.82, + "probability": 0.9428 + }, + { + "start": 6627.68, + "end": 6631.38, + "probability": 0.998 + }, + { + "start": 6632.08, + "end": 6634.2, + "probability": 0.9895 + }, + { + "start": 6635.4, + "end": 6639.2, + "probability": 0.8478 + }, + { + "start": 6640.6, + "end": 6645.14, + "probability": 0.8225 + }, + { + "start": 6646.18, + "end": 6648.11, + "probability": 0.9907 + }, + { + "start": 6648.82, + "end": 6651.78, + "probability": 0.9375 + }, + { + "start": 6652.36, + "end": 6654.06, + "probability": 0.9921 + }, + { + "start": 6654.82, + "end": 6654.84, + "probability": 0.8721 + }, + { + "start": 6655.4, + "end": 6663.0, + "probability": 0.9892 + }, + { + "start": 6663.56, + "end": 6665.18, + "probability": 0.8408 + }, + { + "start": 6665.78, + "end": 6668.92, + "probability": 0.9068 + }, + { + "start": 6670.24, + "end": 6672.92, + "probability": 0.6657 + }, + { + "start": 6673.48, + "end": 6676.12, + "probability": 0.9909 + }, + { + "start": 6677.26, + "end": 6683.84, + "probability": 0.9419 + }, + { + "start": 6683.84, + "end": 6688.4, + "probability": 0.9956 + }, + { + "start": 6689.96, + "end": 6694.72, + "probability": 0.9589 + }, + { + "start": 6695.94, + "end": 6699.58, + "probability": 0.8818 + }, + { + "start": 6700.8, + "end": 6705.26, + "probability": 0.7803 + }, + { + "start": 6705.28, + "end": 6707.96, + "probability": 0.8777 + }, + { + "start": 6709.14, + "end": 6710.32, + "probability": 0.9066 + }, + { + "start": 6710.48, + "end": 6711.46, + "probability": 0.8794 + }, + { + "start": 6711.9, + "end": 6713.02, + "probability": 0.7243 + }, + { + "start": 6713.76, + "end": 6714.96, + "probability": 0.9978 + }, + { + "start": 6716.28, + "end": 6719.18, + "probability": 0.9113 + }, + { + "start": 6720.12, + "end": 6721.16, + "probability": 0.8104 + }, + { + "start": 6721.32, + "end": 6722.3, + "probability": 0.6873 + }, + { + "start": 6722.46, + "end": 6726.94, + "probability": 0.9918 + }, + { + "start": 6727.82, + "end": 6732.66, + "probability": 0.9984 + }, + { + "start": 6732.66, + "end": 6737.94, + "probability": 0.9905 + }, + { + "start": 6738.36, + "end": 6739.68, + "probability": 0.7546 + }, + { + "start": 6740.08, + "end": 6745.62, + "probability": 0.979 + }, + { + "start": 6746.32, + "end": 6749.24, + "probability": 0.9978 + }, + { + "start": 6749.24, + "end": 6753.42, + "probability": 0.8414 + }, + { + "start": 6754.26, + "end": 6759.78, + "probability": 0.7757 + }, + { + "start": 6760.16, + "end": 6761.28, + "probability": 0.8375 + }, + { + "start": 6762.2, + "end": 6764.58, + "probability": 0.4455 + }, + { + "start": 6764.88, + "end": 6765.76, + "probability": 0.4394 + }, + { + "start": 6767.76, + "end": 6771.94, + "probability": 0.8739 + }, + { + "start": 6772.68, + "end": 6774.42, + "probability": 0.8101 + }, + { + "start": 6775.42, + "end": 6776.32, + "probability": 0.9686 + }, + { + "start": 6777.3, + "end": 6781.16, + "probability": 0.9681 + }, + { + "start": 6781.4, + "end": 6784.62, + "probability": 0.8578 + }, + { + "start": 6784.94, + "end": 6785.6, + "probability": 0.9976 + }, + { + "start": 6786.18, + "end": 6787.77, + "probability": 0.8176 + }, + { + "start": 6788.34, + "end": 6789.34, + "probability": 0.3947 + }, + { + "start": 6789.84, + "end": 6791.48, + "probability": 0.6943 + }, + { + "start": 6792.51, + "end": 6793.56, + "probability": 0.6406 + }, + { + "start": 6793.58, + "end": 6797.28, + "probability": 0.244 + }, + { + "start": 6797.28, + "end": 6799.3, + "probability": 0.3992 + }, + { + "start": 6801.82, + "end": 6805.14, + "probability": 0.8865 + }, + { + "start": 6805.18, + "end": 6805.74, + "probability": 0.5205 + }, + { + "start": 6806.86, + "end": 6807.82, + "probability": 0.9202 + }, + { + "start": 6809.1, + "end": 6811.0, + "probability": 0.985 + }, + { + "start": 6811.56, + "end": 6814.16, + "probability": 0.8474 + }, + { + "start": 6814.2, + "end": 6820.8, + "probability": 0.017 + }, + { + "start": 6820.8, + "end": 6820.8, + "probability": 0.0652 + }, + { + "start": 6820.8, + "end": 6820.8, + "probability": 0.0554 + }, + { + "start": 6820.8, + "end": 6821.06, + "probability": 0.1684 + }, + { + "start": 6821.88, + "end": 6823.68, + "probability": 0.4138 + }, + { + "start": 6824.22, + "end": 6827.58, + "probability": 0.7156 + }, + { + "start": 6827.72, + "end": 6829.9, + "probability": 0.9878 + }, + { + "start": 6830.08, + "end": 6830.9, + "probability": 0.6579 + }, + { + "start": 6832.26, + "end": 6838.42, + "probability": 0.957 + }, + { + "start": 6838.82, + "end": 6840.62, + "probability": 0.9738 + }, + { + "start": 6841.46, + "end": 6846.72, + "probability": 0.718 + }, + { + "start": 6847.3, + "end": 6848.64, + "probability": 0.6503 + }, + { + "start": 6848.82, + "end": 6849.52, + "probability": 0.7647 + }, + { + "start": 6849.68, + "end": 6855.08, + "probability": 0.8841 + }, + { + "start": 6855.64, + "end": 6857.22, + "probability": 0.7098 + }, + { + "start": 6857.56, + "end": 6863.32, + "probability": 0.9714 + }, + { + "start": 6866.8, + "end": 6866.92, + "probability": 0.2112 + }, + { + "start": 6866.92, + "end": 6866.94, + "probability": 0.0772 + }, + { + "start": 6866.94, + "end": 6867.56, + "probability": 0.5318 + }, + { + "start": 6868.5, + "end": 6868.52, + "probability": 0.0335 + }, + { + "start": 6868.94, + "end": 6870.5, + "probability": 0.3122 + }, + { + "start": 6871.7, + "end": 6876.06, + "probability": 0.2435 + }, + { + "start": 6876.38, + "end": 6877.14, + "probability": 0.0203 + }, + { + "start": 6877.52, + "end": 6880.09, + "probability": 0.5881 + }, + { + "start": 6880.82, + "end": 6883.0, + "probability": 0.2593 + }, + { + "start": 6883.54, + "end": 6887.9, + "probability": 0.4694 + }, + { + "start": 6887.98, + "end": 6889.94, + "probability": 0.307 + }, + { + "start": 6890.56, + "end": 6892.94, + "probability": 0.7329 + }, + { + "start": 6893.56, + "end": 6896.9, + "probability": 0.9653 + }, + { + "start": 6896.9, + "end": 6900.2, + "probability": 0.9734 + }, + { + "start": 6902.27, + "end": 6905.9, + "probability": 0.4316 + }, + { + "start": 6906.64, + "end": 6912.52, + "probability": 0.9181 + }, + { + "start": 6912.66, + "end": 6915.06, + "probability": 0.4997 + }, + { + "start": 6915.06, + "end": 6915.8, + "probability": 0.4355 + }, + { + "start": 6916.08, + "end": 6919.82, + "probability": 0.4839 + }, + { + "start": 6920.32, + "end": 6921.96, + "probability": 0.7411 + }, + { + "start": 6922.48, + "end": 6925.98, + "probability": 0.9471 + }, + { + "start": 6926.62, + "end": 6930.56, + "probability": 0.9456 + }, + { + "start": 6930.82, + "end": 6933.62, + "probability": 0.9064 + }, + { + "start": 6934.26, + "end": 6937.44, + "probability": 0.9398 + }, + { + "start": 6938.2, + "end": 6942.26, + "probability": 0.9777 + }, + { + "start": 6942.96, + "end": 6945.06, + "probability": 0.723 + }, + { + "start": 6945.24, + "end": 6946.6, + "probability": 0.6434 + }, + { + "start": 6947.16, + "end": 6948.68, + "probability": 0.7011 + }, + { + "start": 6948.88, + "end": 6949.84, + "probability": 0.8756 + }, + { + "start": 6950.14, + "end": 6956.72, + "probability": 0.62 + }, + { + "start": 6956.74, + "end": 6960.8, + "probability": 0.6504 + }, + { + "start": 6961.2, + "end": 6962.56, + "probability": 0.9834 + }, + { + "start": 6962.66, + "end": 6964.95, + "probability": 0.9633 + }, + { + "start": 6966.24, + "end": 6968.44, + "probability": 0.3195 + }, + { + "start": 6968.52, + "end": 6975.68, + "probability": 0.8924 + }, + { + "start": 6977.94, + "end": 6978.58, + "probability": 0.137 + }, + { + "start": 6978.58, + "end": 6979.25, + "probability": 0.7757 + }, + { + "start": 6980.34, + "end": 6983.18, + "probability": 0.9884 + }, + { + "start": 6983.28, + "end": 6985.94, + "probability": 0.9817 + }, + { + "start": 6986.1, + "end": 6986.58, + "probability": 0.6703 + }, + { + "start": 6986.78, + "end": 6987.34, + "probability": 0.6795 + }, + { + "start": 6987.36, + "end": 6989.5, + "probability": 0.8069 + }, + { + "start": 6989.8, + "end": 6990.24, + "probability": 0.446 + }, + { + "start": 6990.42, + "end": 6993.1, + "probability": 0.583 + }, + { + "start": 6993.14, + "end": 6995.3, + "probability": 0.7407 + }, + { + "start": 6995.94, + "end": 6996.32, + "probability": 0.2885 + }, + { + "start": 6996.34, + "end": 6997.12, + "probability": 0.5911 + }, + { + "start": 6997.32, + "end": 6997.58, + "probability": 0.7175 + }, + { + "start": 6998.48, + "end": 6999.58, + "probability": 0.8802 + }, + { + "start": 7000.04, + "end": 7000.3, + "probability": 0.8226 + }, + { + "start": 7000.4, + "end": 7001.48, + "probability": 0.9111 + }, + { + "start": 7001.78, + "end": 7004.74, + "probability": 0.9819 + }, + { + "start": 7004.82, + "end": 7007.08, + "probability": 0.835 + }, + { + "start": 7008.0, + "end": 7010.54, + "probability": 0.8181 + }, + { + "start": 7010.54, + "end": 7013.24, + "probability": 0.9575 + }, + { + "start": 7014.24, + "end": 7015.16, + "probability": 0.0567 + }, + { + "start": 7015.16, + "end": 7015.44, + "probability": 0.4326 + }, + { + "start": 7016.5, + "end": 7017.92, + "probability": 0.3445 + }, + { + "start": 7018.58, + "end": 7022.4, + "probability": 0.5165 + }, + { + "start": 7022.64, + "end": 7023.88, + "probability": 0.8901 + }, + { + "start": 7024.06, + "end": 7024.7, + "probability": 0.9623 + }, + { + "start": 7025.52, + "end": 7029.7, + "probability": 0.9897 + }, + { + "start": 7030.06, + "end": 7032.78, + "probability": 0.4294 + }, + { + "start": 7033.04, + "end": 7033.12, + "probability": 0.6941 + }, + { + "start": 7033.22, + "end": 7034.46, + "probability": 0.837 + }, + { + "start": 7034.54, + "end": 7035.76, + "probability": 0.8554 + }, + { + "start": 7036.51, + "end": 7039.72, + "probability": 0.7876 + }, + { + "start": 7040.7, + "end": 7044.92, + "probability": 0.5048 + }, + { + "start": 7047.24, + "end": 7051.02, + "probability": 0.7758 + }, + { + "start": 7051.08, + "end": 7052.16, + "probability": 0.783 + }, + { + "start": 7052.66, + "end": 7054.7, + "probability": 0.9253 + }, + { + "start": 7054.86, + "end": 7057.3, + "probability": 0.9586 + }, + { + "start": 7057.42, + "end": 7058.46, + "probability": 0.702 + }, + { + "start": 7059.14, + "end": 7062.06, + "probability": 0.7769 + }, + { + "start": 7062.06, + "end": 7066.04, + "probability": 0.8787 + }, + { + "start": 7066.38, + "end": 7070.08, + "probability": 0.5459 + }, + { + "start": 7070.36, + "end": 7070.36, + "probability": 0.5285 + }, + { + "start": 7070.36, + "end": 7072.08, + "probability": 0.7718 + }, + { + "start": 7072.16, + "end": 7073.26, + "probability": 0.7929 + }, + { + "start": 7073.5, + "end": 7076.68, + "probability": 0.5437 + }, + { + "start": 7077.0, + "end": 7077.98, + "probability": 0.6619 + }, + { + "start": 7077.98, + "end": 7078.22, + "probability": 0.5653 + }, + { + "start": 7078.36, + "end": 7081.74, + "probability": 0.9441 + }, + { + "start": 7081.98, + "end": 7084.06, + "probability": 0.6455 + }, + { + "start": 7084.14, + "end": 7084.72, + "probability": 0.4916 + }, + { + "start": 7085.58, + "end": 7086.86, + "probability": 0.5129 + }, + { + "start": 7087.06, + "end": 7089.48, + "probability": 0.3116 + }, + { + "start": 7089.54, + "end": 7089.54, + "probability": 0.4542 + }, + { + "start": 7089.58, + "end": 7090.88, + "probability": 0.3733 + }, + { + "start": 7092.22, + "end": 7094.76, + "probability": 0.6569 + }, + { + "start": 7094.76, + "end": 7097.68, + "probability": 0.4172 + }, + { + "start": 7099.42, + "end": 7104.12, + "probability": 0.1864 + }, + { + "start": 7113.98, + "end": 7114.08, + "probability": 0.032 + }, + { + "start": 7114.08, + "end": 7114.44, + "probability": 0.2261 + }, + { + "start": 7114.5, + "end": 7115.78, + "probability": 0.8214 + }, + { + "start": 7116.26, + "end": 7117.64, + "probability": 0.635 + }, + { + "start": 7117.72, + "end": 7118.07, + "probability": 0.5095 + }, + { + "start": 7118.26, + "end": 7118.72, + "probability": 0.4644 + }, + { + "start": 7118.86, + "end": 7125.34, + "probability": 0.865 + }, + { + "start": 7125.82, + "end": 7126.76, + "probability": 0.6414 + }, + { + "start": 7127.08, + "end": 7130.24, + "probability": 0.6796 + }, + { + "start": 7130.24, + "end": 7133.32, + "probability": 0.9956 + }, + { + "start": 7134.21, + "end": 7138.78, + "probability": 0.9936 + }, + { + "start": 7139.38, + "end": 7139.82, + "probability": 0.6341 + }, + { + "start": 7141.52, + "end": 7143.9, + "probability": 0.6691 + }, + { + "start": 7143.96, + "end": 7145.07, + "probability": 0.627 + }, + { + "start": 7146.68, + "end": 7147.26, + "probability": 0.9335 + }, + { + "start": 7165.26, + "end": 7165.34, + "probability": 0.2307 + }, + { + "start": 7165.34, + "end": 7167.28, + "probability": 0.5239 + }, + { + "start": 7167.3, + "end": 7167.68, + "probability": 0.3463 + }, + { + "start": 7167.8, + "end": 7170.32, + "probability": 0.9591 + }, + { + "start": 7170.32, + "end": 7173.22, + "probability": 0.9837 + }, + { + "start": 7173.76, + "end": 7175.88, + "probability": 0.8153 + }, + { + "start": 7176.48, + "end": 7178.02, + "probability": 0.5446 + }, + { + "start": 7178.06, + "end": 7178.98, + "probability": 0.9034 + }, + { + "start": 7180.32, + "end": 7181.62, + "probability": 0.8315 + }, + { + "start": 7181.7, + "end": 7181.76, + "probability": 0.2167 + }, + { + "start": 7181.76, + "end": 7182.82, + "probability": 0.7688 + }, + { + "start": 7182.88, + "end": 7185.1, + "probability": 0.7557 + }, + { + "start": 7185.56, + "end": 7188.1, + "probability": 0.9818 + }, + { + "start": 7188.1, + "end": 7192.6, + "probability": 0.9767 + }, + { + "start": 7193.08, + "end": 7194.72, + "probability": 0.3517 + }, + { + "start": 7194.82, + "end": 7195.92, + "probability": 0.629 + }, + { + "start": 7196.46, + "end": 7200.5, + "probability": 0.9393 + }, + { + "start": 7200.5, + "end": 7203.88, + "probability": 0.4218 + }, + { + "start": 7204.32, + "end": 7206.04, + "probability": 0.2794 + }, + { + "start": 7207.24, + "end": 7207.74, + "probability": 0.6283 + }, + { + "start": 7207.82, + "end": 7210.98, + "probability": 0.595 + }, + { + "start": 7212.94, + "end": 7215.28, + "probability": 0.9144 + }, + { + "start": 7215.28, + "end": 7218.46, + "probability": 0.341 + }, + { + "start": 7218.92, + "end": 7220.32, + "probability": 0.2262 + }, + { + "start": 7220.86, + "end": 7224.02, + "probability": 0.7535 + }, + { + "start": 7224.3, + "end": 7224.74, + "probability": 0.348 + }, + { + "start": 7224.84, + "end": 7226.08, + "probability": 0.9989 + }, + { + "start": 7226.68, + "end": 7228.24, + "probability": 0.8139 + }, + { + "start": 7228.3, + "end": 7228.86, + "probability": 0.8846 + }, + { + "start": 7233.74, + "end": 7234.82, + "probability": 0.5415 + }, + { + "start": 7235.16, + "end": 7236.2, + "probability": 0.7964 + }, + { + "start": 7236.42, + "end": 7237.44, + "probability": 0.6638 + }, + { + "start": 7237.86, + "end": 7242.94, + "probability": 0.9878 + }, + { + "start": 7243.18, + "end": 7247.3, + "probability": 0.9299 + }, + { + "start": 7247.94, + "end": 7252.82, + "probability": 0.981 + }, + { + "start": 7253.42, + "end": 7256.24, + "probability": 0.9915 + }, + { + "start": 7256.76, + "end": 7262.6, + "probability": 0.9385 + }, + { + "start": 7262.96, + "end": 7267.4, + "probability": 0.9834 + }, + { + "start": 7268.02, + "end": 7270.92, + "probability": 0.9893 + }, + { + "start": 7270.92, + "end": 7274.64, + "probability": 0.9926 + }, + { + "start": 7275.4, + "end": 7279.78, + "probability": 0.9837 + }, + { + "start": 7280.28, + "end": 7281.36, + "probability": 0.9388 + }, + { + "start": 7281.78, + "end": 7282.92, + "probability": 0.7826 + }, + { + "start": 7283.46, + "end": 7284.3, + "probability": 0.9412 + }, + { + "start": 7284.8, + "end": 7285.7, + "probability": 0.9657 + }, + { + "start": 7285.96, + "end": 7287.18, + "probability": 0.7446 + }, + { + "start": 7287.5, + "end": 7289.64, + "probability": 0.9772 + }, + { + "start": 7290.44, + "end": 7291.46, + "probability": 0.8622 + }, + { + "start": 7291.56, + "end": 7292.86, + "probability": 0.9888 + }, + { + "start": 7292.96, + "end": 7296.4, + "probability": 0.9839 + }, + { + "start": 7296.82, + "end": 7300.73, + "probability": 0.967 + }, + { + "start": 7302.36, + "end": 7309.64, + "probability": 0.9903 + }, + { + "start": 7309.64, + "end": 7316.62, + "probability": 0.9883 + }, + { + "start": 7317.0, + "end": 7319.64, + "probability": 0.9022 + }, + { + "start": 7320.24, + "end": 7327.88, + "probability": 0.9551 + }, + { + "start": 7328.56, + "end": 7330.3, + "probability": 0.6896 + }, + { + "start": 7331.2, + "end": 7334.56, + "probability": 0.9917 + }, + { + "start": 7335.0, + "end": 7339.96, + "probability": 0.9921 + }, + { + "start": 7340.04, + "end": 7344.52, + "probability": 0.9694 + }, + { + "start": 7345.72, + "end": 7348.04, + "probability": 0.3009 + }, + { + "start": 7348.66, + "end": 7352.34, + "probability": 0.9946 + }, + { + "start": 7352.96, + "end": 7356.3, + "probability": 0.6828 + }, + { + "start": 7356.4, + "end": 7356.76, + "probability": 0.96 + }, + { + "start": 7359.84, + "end": 7361.74, + "probability": 0.8475 + }, + { + "start": 7361.82, + "end": 7366.24, + "probability": 0.8348 + }, + { + "start": 7366.36, + "end": 7370.72, + "probability": 0.9861 + }, + { + "start": 7371.92, + "end": 7374.66, + "probability": 0.6738 + }, + { + "start": 7374.96, + "end": 7380.6, + "probability": 0.9741 + }, + { + "start": 7380.6, + "end": 7386.46, + "probability": 0.999 + }, + { + "start": 7386.8, + "end": 7391.76, + "probability": 0.9909 + }, + { + "start": 7392.0, + "end": 7392.66, + "probability": 0.8556 + }, + { + "start": 7393.1, + "end": 7394.78, + "probability": 0.811 + }, + { + "start": 7395.08, + "end": 7397.34, + "probability": 0.9773 + }, + { + "start": 7397.8, + "end": 7402.1, + "probability": 0.7893 + }, + { + "start": 7402.28, + "end": 7403.44, + "probability": 0.932 + }, + { + "start": 7403.78, + "end": 7404.74, + "probability": 0.943 + }, + { + "start": 7405.38, + "end": 7407.0, + "probability": 0.9297 + }, + { + "start": 7407.9, + "end": 7408.34, + "probability": 0.906 + }, + { + "start": 7409.64, + "end": 7410.68, + "probability": 0.7523 + }, + { + "start": 7411.06, + "end": 7411.99, + "probability": 0.8433 + }, + { + "start": 7412.66, + "end": 7416.36, + "probability": 0.9922 + }, + { + "start": 7416.86, + "end": 7420.1, + "probability": 0.994 + }, + { + "start": 7420.52, + "end": 7426.74, + "probability": 0.9974 + }, + { + "start": 7426.9, + "end": 7431.86, + "probability": 0.8686 + }, + { + "start": 7431.86, + "end": 7436.52, + "probability": 0.9985 + }, + { + "start": 7436.9, + "end": 7437.4, + "probability": 0.7444 + }, + { + "start": 7437.72, + "end": 7439.2, + "probability": 0.5375 + }, + { + "start": 7439.44, + "end": 7442.44, + "probability": 0.9019 + }, + { + "start": 7442.98, + "end": 7443.52, + "probability": 0.6351 + }, + { + "start": 7444.78, + "end": 7447.7, + "probability": 0.1272 + }, + { + "start": 7449.96, + "end": 7452.04, + "probability": 0.7753 + }, + { + "start": 7453.2, + "end": 7453.74, + "probability": 0.2099 + }, + { + "start": 7453.74, + "end": 7454.16, + "probability": 0.6763 + }, + { + "start": 7455.16, + "end": 7455.92, + "probability": 0.9485 + }, + { + "start": 7473.54, + "end": 7473.98, + "probability": 0.3845 + }, + { + "start": 7474.16, + "end": 7475.18, + "probability": 0.7183 + }, + { + "start": 7475.26, + "end": 7476.4, + "probability": 0.4296 + }, + { + "start": 7477.62, + "end": 7480.88, + "probability": 0.6841 + }, + { + "start": 7482.98, + "end": 7484.62, + "probability": 0.9399 + }, + { + "start": 7485.18, + "end": 7486.76, + "probability": 0.9192 + }, + { + "start": 7487.88, + "end": 7491.88, + "probability": 0.8856 + }, + { + "start": 7492.98, + "end": 7494.28, + "probability": 0.8125 + }, + { + "start": 7495.02, + "end": 7495.4, + "probability": 0.0386 + }, + { + "start": 7496.2, + "end": 7496.72, + "probability": 0.1506 + }, + { + "start": 7497.38, + "end": 7500.14, + "probability": 0.5969 + }, + { + "start": 7500.32, + "end": 7502.82, + "probability": 0.7932 + }, + { + "start": 7503.18, + "end": 7504.98, + "probability": 0.9969 + }, + { + "start": 7505.88, + "end": 7508.24, + "probability": 0.9951 + }, + { + "start": 7508.36, + "end": 7512.24, + "probability": 0.9508 + }, + { + "start": 7512.98, + "end": 7515.3, + "probability": 0.9767 + }, + { + "start": 7516.16, + "end": 7519.72, + "probability": 0.7888 + }, + { + "start": 7521.42, + "end": 7522.9, + "probability": 0.9771 + }, + { + "start": 7523.96, + "end": 7525.4, + "probability": 0.9609 + }, + { + "start": 7525.46, + "end": 7527.3, + "probability": 0.9484 + }, + { + "start": 7528.66, + "end": 7530.26, + "probability": 0.8316 + }, + { + "start": 7533.22, + "end": 7533.86, + "probability": 0.7837 + }, + { + "start": 7534.96, + "end": 7539.6, + "probability": 0.9964 + }, + { + "start": 7541.2, + "end": 7542.36, + "probability": 0.9478 + }, + { + "start": 7542.42, + "end": 7546.38, + "probability": 0.9934 + }, + { + "start": 7547.52, + "end": 7548.5, + "probability": 0.7106 + }, + { + "start": 7548.88, + "end": 7549.32, + "probability": 0.6785 + }, + { + "start": 7549.6, + "end": 7550.38, + "probability": 0.8085 + }, + { + "start": 7550.68, + "end": 7553.9, + "probability": 0.983 + }, + { + "start": 7554.02, + "end": 7554.4, + "probability": 0.7862 + }, + { + "start": 7557.34, + "end": 7560.54, + "probability": 0.0913 + }, + { + "start": 7560.8, + "end": 7565.5, + "probability": 0.79 + }, + { + "start": 7565.8, + "end": 7566.28, + "probability": 0.4069 + }, + { + "start": 7566.36, + "end": 7567.06, + "probability": 0.4569 + }, + { + "start": 7567.78, + "end": 7572.78, + "probability": 0.9234 + }, + { + "start": 7573.34, + "end": 7576.44, + "probability": 0.8906 + }, + { + "start": 7576.58, + "end": 7577.28, + "probability": 0.7119 + }, + { + "start": 7577.38, + "end": 7579.1, + "probability": 0.7899 + }, + { + "start": 7579.28, + "end": 7580.48, + "probability": 0.7907 + }, + { + "start": 7580.8, + "end": 7582.42, + "probability": 0.663 + }, + { + "start": 7582.7, + "end": 7584.54, + "probability": 0.8313 + }, + { + "start": 7584.72, + "end": 7587.5, + "probability": 0.7842 + }, + { + "start": 7588.04, + "end": 7588.74, + "probability": 0.1063 + }, + { + "start": 7589.08, + "end": 7591.11, + "probability": 0.9717 + }, + { + "start": 7591.82, + "end": 7595.44, + "probability": 0.9283 + }, + { + "start": 7596.34, + "end": 7601.28, + "probability": 0.9799 + }, + { + "start": 7602.04, + "end": 7604.38, + "probability": 0.7493 + }, + { + "start": 7605.32, + "end": 7609.32, + "probability": 0.6777 + }, + { + "start": 7609.4, + "end": 7610.18, + "probability": 0.5303 + }, + { + "start": 7610.7, + "end": 7612.12, + "probability": 0.9102 + }, + { + "start": 7612.32, + "end": 7613.29, + "probability": 0.9082 + }, + { + "start": 7613.48, + "end": 7614.0, + "probability": 0.448 + }, + { + "start": 7615.58, + "end": 7618.3, + "probability": 0.9352 + }, + { + "start": 7618.38, + "end": 7619.32, + "probability": 0.7501 + }, + { + "start": 7619.4, + "end": 7620.9, + "probability": 0.8325 + }, + { + "start": 7620.94, + "end": 7625.3, + "probability": 0.9093 + }, + { + "start": 7648.14, + "end": 7649.06, + "probability": 0.5383 + }, + { + "start": 7649.06, + "end": 7649.64, + "probability": 0.34 + }, + { + "start": 7649.64, + "end": 7652.46, + "probability": 0.6651 + }, + { + "start": 7653.42, + "end": 7660.86, + "probability": 0.9846 + }, + { + "start": 7662.54, + "end": 7664.14, + "probability": 0.8268 + }, + { + "start": 7664.36, + "end": 7666.86, + "probability": 0.9984 + }, + { + "start": 7667.4, + "end": 7668.32, + "probability": 0.9539 + }, + { + "start": 7669.1, + "end": 7670.8, + "probability": 0.9969 + }, + { + "start": 7672.04, + "end": 7673.12, + "probability": 0.9609 + }, + { + "start": 7674.46, + "end": 7677.5, + "probability": 0.9485 + }, + { + "start": 7680.01, + "end": 7684.1, + "probability": 0.9714 + }, + { + "start": 7685.14, + "end": 7686.18, + "probability": 0.5885 + }, + { + "start": 7687.56, + "end": 7688.38, + "probability": 0.8753 + }, + { + "start": 7688.48, + "end": 7689.1, + "probability": 0.752 + }, + { + "start": 7689.24, + "end": 7691.84, + "probability": 0.9564 + }, + { + "start": 7693.96, + "end": 7697.5, + "probability": 0.8123 + }, + { + "start": 7698.16, + "end": 7699.5, + "probability": 0.9869 + }, + { + "start": 7700.08, + "end": 7702.66, + "probability": 0.9854 + }, + { + "start": 7703.54, + "end": 7708.94, + "probability": 0.7943 + }, + { + "start": 7709.56, + "end": 7710.38, + "probability": 0.9679 + }, + { + "start": 7710.98, + "end": 7713.32, + "probability": 0.9854 + }, + { + "start": 7713.82, + "end": 7718.2, + "probability": 0.9751 + }, + { + "start": 7719.62, + "end": 7721.72, + "probability": 0.9241 + }, + { + "start": 7722.94, + "end": 7726.96, + "probability": 0.7444 + }, + { + "start": 7728.08, + "end": 7728.84, + "probability": 0.753 + }, + { + "start": 7729.98, + "end": 7734.68, + "probability": 0.9679 + }, + { + "start": 7734.84, + "end": 7736.18, + "probability": 0.8822 + }, + { + "start": 7736.78, + "end": 7738.37, + "probability": 0.8631 + }, + { + "start": 7739.54, + "end": 7740.7, + "probability": 0.8506 + }, + { + "start": 7741.08, + "end": 7741.66, + "probability": 0.8251 + }, + { + "start": 7741.84, + "end": 7742.36, + "probability": 0.8895 + }, + { + "start": 7742.52, + "end": 7743.04, + "probability": 0.8587 + }, + { + "start": 7743.26, + "end": 7743.88, + "probability": 0.6764 + }, + { + "start": 7744.2, + "end": 7745.0, + "probability": 0.6333 + }, + { + "start": 7746.62, + "end": 7749.88, + "probability": 0.9059 + }, + { + "start": 7750.42, + "end": 7754.44, + "probability": 0.9938 + }, + { + "start": 7754.84, + "end": 7757.04, + "probability": 0.8098 + }, + { + "start": 7757.14, + "end": 7757.72, + "probability": 0.6141 + }, + { + "start": 7758.52, + "end": 7760.06, + "probability": 0.9942 + }, + { + "start": 7760.12, + "end": 7761.44, + "probability": 0.9038 + }, + { + "start": 7761.84, + "end": 7762.76, + "probability": 0.9768 + }, + { + "start": 7763.6, + "end": 7765.48, + "probability": 0.9932 + }, + { + "start": 7766.9, + "end": 7768.9, + "probability": 0.9586 + }, + { + "start": 7770.36, + "end": 7773.5, + "probability": 0.7615 + }, + { + "start": 7774.1, + "end": 7777.38, + "probability": 0.9928 + }, + { + "start": 7778.2, + "end": 7779.28, + "probability": 0.9265 + }, + { + "start": 7780.78, + "end": 7785.9, + "probability": 0.9941 + }, + { + "start": 7786.12, + "end": 7787.34, + "probability": 0.9833 + }, + { + "start": 7788.22, + "end": 7789.36, + "probability": 0.9961 + }, + { + "start": 7790.7, + "end": 7792.99, + "probability": 0.9895 + }, + { + "start": 7793.84, + "end": 7797.3, + "probability": 0.9596 + }, + { + "start": 7797.9, + "end": 7798.92, + "probability": 0.847 + }, + { + "start": 7799.04, + "end": 7802.34, + "probability": 0.8984 + }, + { + "start": 7802.46, + "end": 7803.26, + "probability": 0.8535 + }, + { + "start": 7803.32, + "end": 7804.28, + "probability": 0.9851 + }, + { + "start": 7804.66, + "end": 7805.34, + "probability": 0.7362 + }, + { + "start": 7805.4, + "end": 7807.28, + "probability": 0.9809 + }, + { + "start": 7807.62, + "end": 7808.92, + "probability": 0.9883 + }, + { + "start": 7808.94, + "end": 7809.2, + "probability": 0.4993 + }, + { + "start": 7809.32, + "end": 7810.3, + "probability": 0.668 + }, + { + "start": 7810.68, + "end": 7816.56, + "probability": 0.9796 + }, + { + "start": 7816.72, + "end": 7818.46, + "probability": 0.9864 + }, + { + "start": 7818.8, + "end": 7819.72, + "probability": 0.9469 + }, + { + "start": 7821.06, + "end": 7823.32, + "probability": 0.9946 + }, + { + "start": 7823.52, + "end": 7828.88, + "probability": 0.9436 + }, + { + "start": 7829.64, + "end": 7832.82, + "probability": 0.9785 + }, + { + "start": 7832.98, + "end": 7837.94, + "probability": 0.9947 + }, + { + "start": 7837.94, + "end": 7838.94, + "probability": 0.7056 + }, + { + "start": 7839.62, + "end": 7840.46, + "probability": 0.8972 + }, + { + "start": 7840.84, + "end": 7841.24, + "probability": 0.7599 + }, + { + "start": 7842.02, + "end": 7842.98, + "probability": 0.6392 + }, + { + "start": 7843.02, + "end": 7846.72, + "probability": 0.6224 + }, + { + "start": 7846.88, + "end": 7852.9, + "probability": 0.9292 + }, + { + "start": 7858.14, + "end": 7859.5, + "probability": 0.829 + }, + { + "start": 7860.84, + "end": 7861.08, + "probability": 0.5767 + }, + { + "start": 7864.34, + "end": 7869.04, + "probability": 0.4054 + }, + { + "start": 7870.42, + "end": 7872.38, + "probability": 0.9651 + }, + { + "start": 7874.24, + "end": 7878.32, + "probability": 0.9549 + }, + { + "start": 7878.96, + "end": 7880.56, + "probability": 0.992 + }, + { + "start": 7882.22, + "end": 7885.98, + "probability": 0.9883 + }, + { + "start": 7885.98, + "end": 7889.28, + "probability": 0.6543 + }, + { + "start": 7889.4, + "end": 7890.64, + "probability": 0.9333 + }, + { + "start": 7891.4, + "end": 7892.8, + "probability": 0.874 + }, + { + "start": 7893.58, + "end": 7894.94, + "probability": 0.9419 + }, + { + "start": 7895.34, + "end": 7895.86, + "probability": 0.8984 + }, + { + "start": 7897.4, + "end": 7902.54, + "probability": 0.9896 + }, + { + "start": 7903.18, + "end": 7904.28, + "probability": 0.8945 + }, + { + "start": 7905.52, + "end": 7908.18, + "probability": 0.9878 + }, + { + "start": 7909.28, + "end": 7915.12, + "probability": 0.9691 + }, + { + "start": 7915.12, + "end": 7918.2, + "probability": 0.9576 + }, + { + "start": 7918.26, + "end": 7918.78, + "probability": 0.7723 + }, + { + "start": 7919.64, + "end": 7921.24, + "probability": 0.6835 + }, + { + "start": 7921.86, + "end": 7922.12, + "probability": 0.6653 + }, + { + "start": 7923.34, + "end": 7925.94, + "probability": 0.8232 + }, + { + "start": 7927.16, + "end": 7930.56, + "probability": 0.9519 + }, + { + "start": 7931.46, + "end": 7934.16, + "probability": 0.5299 + }, + { + "start": 7934.2, + "end": 7935.3, + "probability": 0.8835 + }, + { + "start": 7936.24, + "end": 7937.5, + "probability": 0.9805 + }, + { + "start": 7937.6, + "end": 7942.04, + "probability": 0.9688 + }, + { + "start": 7942.32, + "end": 7947.6, + "probability": 0.9985 + }, + { + "start": 7947.84, + "end": 7948.52, + "probability": 0.5291 + }, + { + "start": 7948.72, + "end": 7949.64, + "probability": 0.9043 + }, + { + "start": 7949.7, + "end": 7951.16, + "probability": 0.8672 + }, + { + "start": 7951.96, + "end": 7953.2, + "probability": 0.8074 + }, + { + "start": 7954.02, + "end": 7956.8, + "probability": 0.8732 + }, + { + "start": 7957.4, + "end": 7962.26, + "probability": 0.9922 + }, + { + "start": 7963.94, + "end": 7967.48, + "probability": 0.9268 + }, + { + "start": 7968.06, + "end": 7970.6, + "probability": 0.9637 + }, + { + "start": 7971.12, + "end": 7978.3, + "probability": 0.9771 + }, + { + "start": 7979.26, + "end": 7986.18, + "probability": 0.9945 + }, + { + "start": 7987.15, + "end": 7991.74, + "probability": 0.8901 + }, + { + "start": 7992.28, + "end": 7994.42, + "probability": 0.8731 + }, + { + "start": 7994.78, + "end": 7996.72, + "probability": 0.8069 + }, + { + "start": 7996.74, + "end": 7999.51, + "probability": 0.8617 + }, + { + "start": 8002.02, + "end": 8002.87, + "probability": 0.4116 + }, + { + "start": 8005.5, + "end": 8010.36, + "probability": 0.9137 + }, + { + "start": 8010.6, + "end": 8012.96, + "probability": 0.7037 + }, + { + "start": 8013.7, + "end": 8016.02, + "probability": 0.9941 + }, + { + "start": 8017.64, + "end": 8020.78, + "probability": 0.5476 + }, + { + "start": 8026.28, + "end": 8028.2, + "probability": 0.2648 + }, + { + "start": 8032.12, + "end": 8036.08, + "probability": 0.7211 + }, + { + "start": 8036.62, + "end": 8037.24, + "probability": 0.3506 + }, + { + "start": 8037.96, + "end": 8038.28, + "probability": 0.3302 + }, + { + "start": 8041.96, + "end": 8044.08, + "probability": 0.682 + }, + { + "start": 8044.68, + "end": 8047.38, + "probability": 0.4075 + }, + { + "start": 8049.56, + "end": 8051.18, + "probability": 0.0383 + }, + { + "start": 8051.34, + "end": 8054.38, + "probability": 0.0258 + }, + { + "start": 8056.04, + "end": 8057.76, + "probability": 0.192 + }, + { + "start": 8063.7, + "end": 8068.98, + "probability": 0.1111 + }, + { + "start": 8069.9, + "end": 8069.94, + "probability": 0.0375 + }, + { + "start": 8072.22, + "end": 8075.46, + "probability": 0.0401 + }, + { + "start": 8078.92, + "end": 8080.12, + "probability": 0.1599 + }, + { + "start": 8080.18, + "end": 8080.86, + "probability": 0.1199 + }, + { + "start": 8081.3, + "end": 8086.26, + "probability": 0.2206 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8119.0, + "end": 8119.0, + "probability": 0.0 + }, + { + "start": 8138.18, + "end": 8139.52, + "probability": 0.5055 + }, + { + "start": 8140.14, + "end": 8140.8, + "probability": 0.0629 + }, + { + "start": 8141.38, + "end": 8144.92, + "probability": 0.1551 + }, + { + "start": 8146.06, + "end": 8149.28, + "probability": 0.1817 + }, + { + "start": 8150.18, + "end": 8150.86, + "probability": 0.1058 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.0, + "end": 8249.0, + "probability": 0.0 + }, + { + "start": 8249.24, + "end": 8252.52, + "probability": 0.3842 + }, + { + "start": 8253.26, + "end": 8258.86, + "probability": 0.3697 + }, + { + "start": 8259.9, + "end": 8260.92, + "probability": 0.0726 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8369.0, + "end": 8369.0, + "probability": 0.0 + }, + { + "start": 8400.02, + "end": 8400.86, + "probability": 0.3575 + }, + { + "start": 8401.76, + "end": 8404.34, + "probability": 0.0961 + }, + { + "start": 8404.42, + "end": 8405.84, + "probability": 0.4765 + }, + { + "start": 8410.26, + "end": 8410.26, + "probability": 0.142 + }, + { + "start": 8410.26, + "end": 8410.36, + "probability": 0.0292 + }, + { + "start": 8410.36, + "end": 8412.4, + "probability": 0.262 + }, + { + "start": 8413.14, + "end": 8413.14, + "probability": 0.0551 + }, + { + "start": 8413.14, + "end": 8413.14, + "probability": 0.0163 + }, + { + "start": 8413.14, + "end": 8413.14, + "probability": 0.0781 + }, + { + "start": 8413.14, + "end": 8413.38, + "probability": 0.1145 + }, + { + "start": 8414.62, + "end": 8417.38, + "probability": 0.5165 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.0, + "end": 8498.0, + "probability": 0.0 + }, + { + "start": 8498.08, + "end": 8498.16, + "probability": 0.0495 + }, + { + "start": 8498.16, + "end": 8498.16, + "probability": 0.0236 + }, + { + "start": 8498.16, + "end": 8498.16, + "probability": 0.1899 + }, + { + "start": 8498.16, + "end": 8499.01, + "probability": 0.2261 + }, + { + "start": 8502.2, + "end": 8505.08, + "probability": 0.6804 + }, + { + "start": 8506.14, + "end": 8511.1, + "probability": 0.9858 + }, + { + "start": 8511.74, + "end": 8514.2, + "probability": 0.7365 + }, + { + "start": 8514.58, + "end": 8515.35, + "probability": 0.851 + }, + { + "start": 8515.54, + "end": 8516.88, + "probability": 0.8941 + }, + { + "start": 8517.64, + "end": 8518.24, + "probability": 0.8428 + }, + { + "start": 8519.08, + "end": 8520.22, + "probability": 0.8556 + }, + { + "start": 8520.24, + "end": 8521.4, + "probability": 0.9963 + }, + { + "start": 8521.6, + "end": 8523.56, + "probability": 0.9658 + }, + { + "start": 8524.9, + "end": 8529.2, + "probability": 0.936 + }, + { + "start": 8529.72, + "end": 8530.34, + "probability": 0.901 + }, + { + "start": 8531.1, + "end": 8533.02, + "probability": 0.8811 + }, + { + "start": 8533.5, + "end": 8536.8, + "probability": 0.9747 + }, + { + "start": 8537.56, + "end": 8538.14, + "probability": 0.7 + }, + { + "start": 8538.8, + "end": 8540.96, + "probability": 0.9929 + }, + { + "start": 8541.16, + "end": 8544.98, + "probability": 0.874 + }, + { + "start": 8546.66, + "end": 8548.24, + "probability": 0.9572 + }, + { + "start": 8549.02, + "end": 8552.8, + "probability": 0.8467 + }, + { + "start": 8553.18, + "end": 8555.08, + "probability": 0.9894 + }, + { + "start": 8555.66, + "end": 8556.38, + "probability": 0.4774 + }, + { + "start": 8558.1, + "end": 8558.74, + "probability": 0.3723 + }, + { + "start": 8560.34, + "end": 8561.9, + "probability": 0.5722 + }, + { + "start": 8562.78, + "end": 8563.16, + "probability": 0.4075 + }, + { + "start": 8563.22, + "end": 8565.64, + "probability": 0.8644 + }, + { + "start": 8569.42, + "end": 8571.28, + "probability": 0.7669 + }, + { + "start": 8571.68, + "end": 8574.76, + "probability": 0.6889 + }, + { + "start": 8575.34, + "end": 8576.92, + "probability": 0.6035 + }, + { + "start": 8576.92, + "end": 8578.0, + "probability": 0.9328 + }, + { + "start": 8579.41, + "end": 8582.66, + "probability": 0.9841 + }, + { + "start": 8582.76, + "end": 8584.52, + "probability": 0.8163 + }, + { + "start": 8585.29, + "end": 8587.38, + "probability": 0.8036 + }, + { + "start": 8587.46, + "end": 8589.84, + "probability": 0.9764 + }, + { + "start": 8589.92, + "end": 8593.3, + "probability": 0.8005 + }, + { + "start": 8593.3, + "end": 8597.24, + "probability": 0.9123 + }, + { + "start": 8597.3, + "end": 8598.04, + "probability": 0.5046 + }, + { + "start": 8598.64, + "end": 8600.52, + "probability": 0.4063 + }, + { + "start": 8600.54, + "end": 8602.44, + "probability": 0.9653 + }, + { + "start": 8602.58, + "end": 8603.3, + "probability": 0.4044 + }, + { + "start": 8603.38, + "end": 8608.1, + "probability": 0.9739 + }, + { + "start": 8608.6, + "end": 8611.54, + "probability": 0.9604 + }, + { + "start": 8611.54, + "end": 8614.96, + "probability": 0.9403 + }, + { + "start": 8615.12, + "end": 8618.34, + "probability": 0.9946 + }, + { + "start": 8618.66, + "end": 8619.0, + "probability": 0.8587 + }, + { + "start": 8619.16, + "end": 8622.12, + "probability": 0.9513 + }, + { + "start": 8622.7, + "end": 8626.2, + "probability": 0.995 + }, + { + "start": 8626.2, + "end": 8626.6, + "probability": 0.7982 + }, + { + "start": 8626.7, + "end": 8627.32, + "probability": 0.7041 + }, + { + "start": 8627.5, + "end": 8630.1, + "probability": 0.7987 + }, + { + "start": 8630.26, + "end": 8635.26, + "probability": 0.9741 + }, + { + "start": 8635.26, + "end": 8640.98, + "probability": 0.8084 + }, + { + "start": 8641.06, + "end": 8642.12, + "probability": 0.9919 + }, + { + "start": 8643.56, + "end": 8644.32, + "probability": 0.8617 + }, + { + "start": 8644.38, + "end": 8647.28, + "probability": 0.9066 + }, + { + "start": 8647.38, + "end": 8649.6, + "probability": 0.9895 + }, + { + "start": 8649.96, + "end": 8650.31, + "probability": 0.0876 + }, + { + "start": 8650.6, + "end": 8651.76, + "probability": 0.5369 + }, + { + "start": 8653.14, + "end": 8654.14, + "probability": 0.0103 + }, + { + "start": 8654.18, + "end": 8655.24, + "probability": 0.2079 + }, + { + "start": 8655.24, + "end": 8655.34, + "probability": 0.1789 + }, + { + "start": 8655.8, + "end": 8656.04, + "probability": 0.3917 + }, + { + "start": 8656.1, + "end": 8656.78, + "probability": 0.7771 + }, + { + "start": 8656.82, + "end": 8659.44, + "probability": 0.8473 + }, + { + "start": 8659.58, + "end": 8661.82, + "probability": 0.9575 + }, + { + "start": 8662.34, + "end": 8663.1, + "probability": 0.9433 + }, + { + "start": 8664.14, + "end": 8666.36, + "probability": 0.9621 + }, + { + "start": 8667.48, + "end": 8670.96, + "probability": 0.9374 + }, + { + "start": 8671.92, + "end": 8679.34, + "probability": 0.5264 + }, + { + "start": 8680.4, + "end": 8687.66, + "probability": 0.5895 + }, + { + "start": 8687.82, + "end": 8687.82, + "probability": 0.0674 + }, + { + "start": 8687.84, + "end": 8688.32, + "probability": 0.4957 + }, + { + "start": 8689.04, + "end": 8691.16, + "probability": 0.941 + }, + { + "start": 8691.96, + "end": 8694.62, + "probability": 0.9728 + }, + { + "start": 8694.74, + "end": 8695.94, + "probability": 0.9239 + }, + { + "start": 8697.18, + "end": 8700.86, + "probability": 0.8913 + }, + { + "start": 8701.5, + "end": 8701.94, + "probability": 0.7129 + }, + { + "start": 8702.54, + "end": 8707.72, + "probability": 0.9574 + }, + { + "start": 8707.72, + "end": 8711.02, + "probability": 0.9963 + }, + { + "start": 8711.32, + "end": 8712.82, + "probability": 0.0137 + }, + { + "start": 8714.1, + "end": 8717.46, + "probability": 0.6849 + }, + { + "start": 8717.74, + "end": 8718.8, + "probability": 0.7771 + }, + { + "start": 8719.28, + "end": 8721.86, + "probability": 0.8506 + }, + { + "start": 8722.32, + "end": 8728.84, + "probability": 0.8353 + }, + { + "start": 8728.98, + "end": 8729.4, + "probability": 0.7046 + }, + { + "start": 8729.5, + "end": 8730.74, + "probability": 0.9968 + }, + { + "start": 8731.26, + "end": 8732.34, + "probability": 0.8691 + }, + { + "start": 8735.46, + "end": 8736.12, + "probability": 0.361 + }, + { + "start": 8737.5, + "end": 8737.9, + "probability": 0.5738 + }, + { + "start": 8738.12, + "end": 8741.7, + "probability": 0.9082 + }, + { + "start": 8741.76, + "end": 8742.16, + "probability": 0.7387 + }, + { + "start": 8744.08, + "end": 8746.49, + "probability": 0.8985 + }, + { + "start": 8746.94, + "end": 8748.63, + "probability": 0.7586 + }, + { + "start": 8749.96, + "end": 8754.52, + "probability": 0.6418 + }, + { + "start": 8755.2, + "end": 8758.38, + "probability": 0.9346 + }, + { + "start": 8758.38, + "end": 8762.78, + "probability": 0.9773 + }, + { + "start": 8763.02, + "end": 8765.32, + "probability": 0.9648 + }, + { + "start": 8765.58, + "end": 8767.06, + "probability": 0.6897 + }, + { + "start": 8768.98, + "end": 8770.84, + "probability": 0.7836 + }, + { + "start": 8770.94, + "end": 8772.88, + "probability": 0.4301 + }, + { + "start": 8773.0, + "end": 8773.58, + "probability": 0.4708 + }, + { + "start": 8773.7, + "end": 8774.66, + "probability": 0.5079 + }, + { + "start": 8774.72, + "end": 8776.98, + "probability": 0.5745 + }, + { + "start": 8777.64, + "end": 8777.82, + "probability": 0.2709 + }, + { + "start": 8778.2, + "end": 8778.92, + "probability": 0.9225 + }, + { + "start": 8779.86, + "end": 8779.86, + "probability": 0.2061 + }, + { + "start": 8779.92, + "end": 8781.98, + "probability": 0.9271 + }, + { + "start": 8782.3, + "end": 8786.58, + "probability": 0.915 + }, + { + "start": 8787.64, + "end": 8790.82, + "probability": 0.8577 + }, + { + "start": 8791.88, + "end": 8794.74, + "probability": 0.9974 + }, + { + "start": 8795.72, + "end": 8798.7, + "probability": 0.978 + }, + { + "start": 8800.3, + "end": 8802.32, + "probability": 0.9595 + }, + { + "start": 8802.98, + "end": 8806.38, + "probability": 0.9483 + }, + { + "start": 8807.6, + "end": 8809.08, + "probability": 0.8098 + }, + { + "start": 8809.76, + "end": 8813.32, + "probability": 0.9915 + }, + { + "start": 8814.72, + "end": 8814.94, + "probability": 0.838 + }, + { + "start": 8815.72, + "end": 8816.56, + "probability": 0.9519 + }, + { + "start": 8817.42, + "end": 8818.9, + "probability": 0.9827 + }, + { + "start": 8819.14, + "end": 8820.06, + "probability": 0.0554 + }, + { + "start": 8821.0, + "end": 8824.82, + "probability": 0.9963 + }, + { + "start": 8826.0, + "end": 8826.38, + "probability": 0.6719 + }, + { + "start": 8826.52, + "end": 8827.44, + "probability": 0.9721 + }, + { + "start": 8828.32, + "end": 8830.78, + "probability": 0.9976 + }, + { + "start": 8831.38, + "end": 8831.9, + "probability": 0.7233 + }, + { + "start": 8832.72, + "end": 8836.68, + "probability": 0.9268 + }, + { + "start": 8837.32, + "end": 8838.66, + "probability": 0.9988 + }, + { + "start": 8839.36, + "end": 8840.64, + "probability": 0.9985 + }, + { + "start": 8841.24, + "end": 8842.24, + "probability": 0.8123 + }, + { + "start": 8843.4, + "end": 8846.02, + "probability": 0.9664 + }, + { + "start": 8847.02, + "end": 8851.04, + "probability": 0.9598 + }, + { + "start": 8851.42, + "end": 8852.84, + "probability": 0.8813 + }, + { + "start": 8853.42, + "end": 8855.12, + "probability": 0.9755 + }, + { + "start": 8855.82, + "end": 8857.16, + "probability": 0.9703 + }, + { + "start": 8857.8, + "end": 8861.22, + "probability": 0.9022 + }, + { + "start": 8861.4, + "end": 8861.5, + "probability": 0.3087 + }, + { + "start": 8861.8, + "end": 8864.34, + "probability": 0.7192 + }, + { + "start": 8864.88, + "end": 8867.52, + "probability": 0.9722 + }, + { + "start": 8868.06, + "end": 8871.62, + "probability": 0.9863 + }, + { + "start": 8871.7, + "end": 8876.92, + "probability": 0.9805 + }, + { + "start": 8877.58, + "end": 8879.7, + "probability": 0.5541 + }, + { + "start": 8879.84, + "end": 8885.14, + "probability": 0.9766 + }, + { + "start": 8893.68, + "end": 8896.02, + "probability": 0.8111 + }, + { + "start": 8915.98, + "end": 8918.67, + "probability": 0.2513 + }, + { + "start": 8918.74, + "end": 8921.86, + "probability": 0.8643 + }, + { + "start": 8921.86, + "end": 8922.82, + "probability": 0.1656 + }, + { + "start": 8925.0, + "end": 8929.4, + "probability": 0.6221 + }, + { + "start": 8931.45, + "end": 8937.4, + "probability": 0.0873 + }, + { + "start": 8937.64, + "end": 8940.18, + "probability": 0.0164 + }, + { + "start": 8940.18, + "end": 8942.16, + "probability": 0.0418 + }, + { + "start": 8942.76, + "end": 8943.5, + "probability": 0.0151 + }, + { + "start": 8945.28, + "end": 8946.04, + "probability": 0.0436 + }, + { + "start": 8946.04, + "end": 8946.56, + "probability": 0.0533 + }, + { + "start": 8946.56, + "end": 8946.56, + "probability": 0.0504 + }, + { + "start": 8947.48, + "end": 8947.48, + "probability": 0.0463 + }, + { + "start": 8948.36, + "end": 8953.53, + "probability": 0.0347 + }, + { + "start": 8955.9, + "end": 8959.98, + "probability": 0.0317 + }, + { + "start": 8959.98, + "end": 8959.98, + "probability": 0.1675 + }, + { + "start": 8959.98, + "end": 8959.98, + "probability": 0.052 + }, + { + "start": 8959.98, + "end": 8960.38, + "probability": 0.0358 + }, + { + "start": 8960.38, + "end": 8961.98, + "probability": 0.142 + }, + { + "start": 8962.0, + "end": 8962.0, + "probability": 0.0 + }, + { + "start": 8962.0, + "end": 8962.0, + "probability": 0.0 + }, + { + "start": 8962.0, + "end": 8962.0, + "probability": 0.0 + }, + { + "start": 8962.0, + "end": 8962.0, + "probability": 0.0 + }, + { + "start": 8962.0, + "end": 8962.0, + "probability": 0.0 + }, + { + "start": 8962.2, + "end": 8962.66, + "probability": 0.099 + }, + { + "start": 8963.88, + "end": 8964.76, + "probability": 0.0979 + }, + { + "start": 8964.76, + "end": 8964.76, + "probability": 0.0358 + }, + { + "start": 8964.76, + "end": 8964.76, + "probability": 0.2824 + }, + { + "start": 8964.76, + "end": 8964.76, + "probability": 0.1595 + }, + { + "start": 8964.76, + "end": 8965.1, + "probability": 0.2172 + }, + { + "start": 8965.86, + "end": 8969.22, + "probability": 0.6181 + }, + { + "start": 8970.28, + "end": 8971.01, + "probability": 0.5522 + }, + { + "start": 8973.98, + "end": 8975.64, + "probability": 0.0991 + }, + { + "start": 8977.04, + "end": 8978.84, + "probability": 0.209 + }, + { + "start": 8979.62, + "end": 8979.64, + "probability": 0.0418 + }, + { + "start": 8979.64, + "end": 8979.64, + "probability": 0.1696 + }, + { + "start": 8979.64, + "end": 8981.41, + "probability": 0.4199 + }, + { + "start": 8982.26, + "end": 8983.96, + "probability": 0.0942 + }, + { + "start": 8984.42, + "end": 8985.72, + "probability": 0.399 + }, + { + "start": 8987.32, + "end": 8992.36, + "probability": 0.9695 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9084.0, + "end": 9084.0, + "probability": 0.0 + }, + { + "start": 9087.26, + "end": 9088.44, + "probability": 0.5163 + }, + { + "start": 9089.0, + "end": 9089.02, + "probability": 0.7533 + }, + { + "start": 9089.02, + "end": 9089.66, + "probability": 0.2713 + }, + { + "start": 9089.7, + "end": 9090.16, + "probability": 0.6833 + }, + { + "start": 9091.44, + "end": 9091.96, + "probability": 0.3996 + }, + { + "start": 9092.12, + "end": 9093.1, + "probability": 0.9658 + }, + { + "start": 9093.58, + "end": 9097.5, + "probability": 0.9732 + }, + { + "start": 9098.74, + "end": 9099.84, + "probability": 0.9409 + }, + { + "start": 9101.6, + "end": 9102.62, + "probability": 0.9886 + }, + { + "start": 9104.06, + "end": 9106.78, + "probability": 0.9285 + }, + { + "start": 9107.86, + "end": 9109.56, + "probability": 0.999 + }, + { + "start": 9112.86, + "end": 9113.36, + "probability": 0.3754 + }, + { + "start": 9114.28, + "end": 9115.62, + "probability": 0.8758 + }, + { + "start": 9116.08, + "end": 9117.16, + "probability": 0.8684 + }, + { + "start": 9117.38, + "end": 9118.15, + "probability": 0.9016 + }, + { + "start": 9120.98, + "end": 9123.52, + "probability": 0.9961 + }, + { + "start": 9124.26, + "end": 9124.96, + "probability": 0.9963 + }, + { + "start": 9126.04, + "end": 9127.24, + "probability": 0.3289 + }, + { + "start": 9127.96, + "end": 9131.42, + "probability": 0.8359 + }, + { + "start": 9132.14, + "end": 9134.94, + "probability": 0.8649 + }, + { + "start": 9138.96, + "end": 9140.44, + "probability": 0.6998 + }, + { + "start": 9142.38, + "end": 9143.96, + "probability": 0.9486 + }, + { + "start": 9145.28, + "end": 9146.56, + "probability": 0.8873 + }, + { + "start": 9147.96, + "end": 9148.84, + "probability": 0.6696 + }, + { + "start": 9148.96, + "end": 9150.1, + "probability": 0.9542 + }, + { + "start": 9150.48, + "end": 9151.7, + "probability": 0.9644 + }, + { + "start": 9152.06, + "end": 9153.54, + "probability": 0.7912 + }, + { + "start": 9155.32, + "end": 9156.76, + "probability": 0.1346 + }, + { + "start": 9159.38, + "end": 9161.08, + "probability": 0.8224 + }, + { + "start": 9162.14, + "end": 9168.03, + "probability": 0.994 + }, + { + "start": 9168.78, + "end": 9170.08, + "probability": 0.9985 + }, + { + "start": 9170.96, + "end": 9172.23, + "probability": 0.9966 + }, + { + "start": 9173.5, + "end": 9175.39, + "probability": 0.9917 + }, + { + "start": 9177.02, + "end": 9178.88, + "probability": 0.9812 + }, + { + "start": 9181.68, + "end": 9183.0, + "probability": 0.9901 + }, + { + "start": 9186.04, + "end": 9188.16, + "probability": 0.9983 + }, + { + "start": 9188.8, + "end": 9190.9, + "probability": 0.9701 + }, + { + "start": 9192.96, + "end": 9193.96, + "probability": 0.7645 + }, + { + "start": 9193.98, + "end": 9195.26, + "probability": 0.9946 + }, + { + "start": 9195.48, + "end": 9196.34, + "probability": 0.9932 + }, + { + "start": 9199.38, + "end": 9204.22, + "probability": 0.9729 + }, + { + "start": 9204.96, + "end": 9204.96, + "probability": 0.0189 + }, + { + "start": 9204.96, + "end": 9205.84, + "probability": 0.6191 + }, + { + "start": 9205.9, + "end": 9207.16, + "probability": 0.9932 + }, + { + "start": 9207.22, + "end": 9208.36, + "probability": 0.8628 + }, + { + "start": 9208.9, + "end": 9210.04, + "probability": 0.7533 + }, + { + "start": 9210.76, + "end": 9213.86, + "probability": 0.9957 + }, + { + "start": 9215.22, + "end": 9216.04, + "probability": 0.9858 + }, + { + "start": 9216.16, + "end": 9216.34, + "probability": 0.5013 + }, + { + "start": 9217.76, + "end": 9218.6, + "probability": 0.9296 + }, + { + "start": 9222.26, + "end": 9224.52, + "probability": 0.9965 + }, + { + "start": 9227.44, + "end": 9228.48, + "probability": 0.3787 + }, + { + "start": 9228.58, + "end": 9229.54, + "probability": 0.9937 + }, + { + "start": 9229.68, + "end": 9231.58, + "probability": 0.9812 + }, + { + "start": 9231.9, + "end": 9233.28, + "probability": 0.9807 + }, + { + "start": 9233.44, + "end": 9235.22, + "probability": 0.9912 + }, + { + "start": 9236.16, + "end": 9237.48, + "probability": 0.9977 + }, + { + "start": 9238.04, + "end": 9238.82, + "probability": 0.9897 + }, + { + "start": 9240.34, + "end": 9241.46, + "probability": 0.7192 + }, + { + "start": 9242.76, + "end": 9244.14, + "probability": 0.7676 + }, + { + "start": 9244.84, + "end": 9249.24, + "probability": 0.7843 + }, + { + "start": 9249.64, + "end": 9250.76, + "probability": 0.9849 + }, + { + "start": 9251.22, + "end": 9252.14, + "probability": 0.9529 + }, + { + "start": 9252.22, + "end": 9253.26, + "probability": 0.9943 + }, + { + "start": 9254.12, + "end": 9254.98, + "probability": 0.9808 + }, + { + "start": 9255.1, + "end": 9256.32, + "probability": 0.6243 + }, + { + "start": 9256.44, + "end": 9256.6, + "probability": 0.6389 + }, + { + "start": 9257.3, + "end": 9258.88, + "probability": 0.6145 + }, + { + "start": 9258.9, + "end": 9260.7, + "probability": 0.8401 + }, + { + "start": 9260.72, + "end": 9261.4, + "probability": 0.5703 + }, + { + "start": 9261.7, + "end": 9263.36, + "probability": 0.9914 + }, + { + "start": 9278.76, + "end": 9281.58, + "probability": 0.734 + }, + { + "start": 9283.26, + "end": 9285.6, + "probability": 0.4934 + }, + { + "start": 9286.92, + "end": 9288.7, + "probability": 0.6725 + }, + { + "start": 9292.62, + "end": 9293.52, + "probability": 0.8792 + }, + { + "start": 9294.06, + "end": 9297.02, + "probability": 0.8577 + }, + { + "start": 9298.12, + "end": 9301.02, + "probability": 0.8151 + }, + { + "start": 9302.08, + "end": 9303.12, + "probability": 0.943 + }, + { + "start": 9303.96, + "end": 9305.66, + "probability": 0.9631 + }, + { + "start": 9306.22, + "end": 9312.22, + "probability": 0.9482 + }, + { + "start": 9313.88, + "end": 9314.63, + "probability": 0.963 + }, + { + "start": 9315.2, + "end": 9316.54, + "probability": 0.9141 + }, + { + "start": 9317.16, + "end": 9318.7, + "probability": 0.9479 + }, + { + "start": 9319.64, + "end": 9324.14, + "probability": 0.9869 + }, + { + "start": 9325.04, + "end": 9326.8, + "probability": 0.9159 + }, + { + "start": 9326.98, + "end": 9328.6, + "probability": 0.5233 + }, + { + "start": 9329.04, + "end": 9329.41, + "probability": 0.9854 + }, + { + "start": 9331.04, + "end": 9333.13, + "probability": 0.9587 + }, + { + "start": 9333.46, + "end": 9334.22, + "probability": 0.693 + }, + { + "start": 9334.58, + "end": 9335.06, + "probability": 0.811 + }, + { + "start": 9335.18, + "end": 9335.9, + "probability": 0.5683 + }, + { + "start": 9336.86, + "end": 9337.83, + "probability": 0.9357 + }, + { + "start": 9338.48, + "end": 9339.52, + "probability": 0.9916 + }, + { + "start": 9340.14, + "end": 9341.94, + "probability": 0.789 + }, + { + "start": 9342.36, + "end": 9342.58, + "probability": 0.1632 + }, + { + "start": 9343.76, + "end": 9345.8, + "probability": 0.7033 + }, + { + "start": 9346.2, + "end": 9347.6, + "probability": 0.835 + }, + { + "start": 9348.3, + "end": 9350.34, + "probability": 0.8206 + }, + { + "start": 9350.86, + "end": 9355.1, + "probability": 0.9629 + }, + { + "start": 9355.14, + "end": 9355.28, + "probability": 0.9754 + }, + { + "start": 9355.82, + "end": 9358.38, + "probability": 0.9921 + }, + { + "start": 9358.98, + "end": 9360.08, + "probability": 0.8192 + }, + { + "start": 9360.38, + "end": 9362.02, + "probability": 0.8931 + }, + { + "start": 9363.0, + "end": 9363.48, + "probability": 0.6131 + }, + { + "start": 9364.74, + "end": 9365.82, + "probability": 0.8835 + }, + { + "start": 9365.84, + "end": 9366.58, + "probability": 0.8368 + }, + { + "start": 9366.76, + "end": 9367.62, + "probability": 0.5908 + }, + { + "start": 9367.68, + "end": 9368.08, + "probability": 0.471 + }, + { + "start": 9368.8, + "end": 9370.0, + "probability": 0.4082 + }, + { + "start": 9370.12, + "end": 9370.92, + "probability": 0.8286 + }, + { + "start": 9371.2, + "end": 9372.9, + "probability": 0.9268 + }, + { + "start": 9373.98, + "end": 9375.74, + "probability": 0.802 + }, + { + "start": 9376.4, + "end": 9377.66, + "probability": 0.9137 + }, + { + "start": 9377.8, + "end": 9378.32, + "probability": 0.8971 + }, + { + "start": 9378.52, + "end": 9381.96, + "probability": 0.9421 + }, + { + "start": 9382.6, + "end": 9384.88, + "probability": 0.7135 + }, + { + "start": 9385.7, + "end": 9386.82, + "probability": 0.8936 + }, + { + "start": 9386.98, + "end": 9387.8, + "probability": 0.8721 + }, + { + "start": 9388.4, + "end": 9390.12, + "probability": 0.7319 + }, + { + "start": 9390.78, + "end": 9391.04, + "probability": 0.5499 + }, + { + "start": 9391.58, + "end": 9394.83, + "probability": 0.9824 + }, + { + "start": 9395.38, + "end": 9396.04, + "probability": 0.4155 + }, + { + "start": 9396.32, + "end": 9397.6, + "probability": 0.7949 + }, + { + "start": 9398.08, + "end": 9399.7, + "probability": 0.8592 + }, + { + "start": 9400.06, + "end": 9404.52, + "probability": 0.9354 + }, + { + "start": 9405.26, + "end": 9407.72, + "probability": 0.9873 + }, + { + "start": 9407.88, + "end": 9409.08, + "probability": 0.9539 + }, + { + "start": 9409.4, + "end": 9411.88, + "probability": 0.9725 + }, + { + "start": 9412.98, + "end": 9413.2, + "probability": 0.6848 + }, + { + "start": 9413.24, + "end": 9414.34, + "probability": 0.4731 + }, + { + "start": 9414.84, + "end": 9417.77, + "probability": 0.9671 + }, + { + "start": 9419.12, + "end": 9420.6, + "probability": 0.5009 + }, + { + "start": 9420.68, + "end": 9422.62, + "probability": 0.6958 + }, + { + "start": 9423.2, + "end": 9425.38, + "probability": 0.9751 + }, + { + "start": 9426.04, + "end": 9428.64, + "probability": 0.9878 + }, + { + "start": 9429.36, + "end": 9433.26, + "probability": 0.9795 + }, + { + "start": 9433.78, + "end": 9435.98, + "probability": 0.9863 + }, + { + "start": 9436.52, + "end": 9439.74, + "probability": 0.9915 + }, + { + "start": 9440.28, + "end": 9440.52, + "probability": 0.6473 + }, + { + "start": 9440.68, + "end": 9442.48, + "probability": 0.5715 + }, + { + "start": 9442.5, + "end": 9445.28, + "probability": 0.8343 + }, + { + "start": 9447.52, + "end": 9450.07, + "probability": 0.8023 + }, + { + "start": 9457.28, + "end": 9459.04, + "probability": 0.735 + }, + { + "start": 9459.46, + "end": 9459.76, + "probability": 0.3563 + }, + { + "start": 9460.02, + "end": 9460.32, + "probability": 0.5392 + }, + { + "start": 9461.58, + "end": 9463.22, + "probability": 0.8346 + }, + { + "start": 9464.1, + "end": 9468.42, + "probability": 0.9291 + }, + { + "start": 9469.64, + "end": 9474.92, + "probability": 0.9819 + }, + { + "start": 9475.74, + "end": 9476.94, + "probability": 0.8286 + }, + { + "start": 9477.46, + "end": 9478.3, + "probability": 0.5861 + }, + { + "start": 9480.0, + "end": 9481.62, + "probability": 0.8276 + }, + { + "start": 9482.56, + "end": 9485.46, + "probability": 0.9803 + }, + { + "start": 9485.7, + "end": 9486.04, + "probability": 0.9454 + }, + { + "start": 9486.66, + "end": 9487.1, + "probability": 0.7281 + }, + { + "start": 9487.58, + "end": 9488.68, + "probability": 0.7974 + }, + { + "start": 9488.74, + "end": 9490.74, + "probability": 0.9807 + }, + { + "start": 9492.04, + "end": 9494.3, + "probability": 0.8904 + }, + { + "start": 9494.72, + "end": 9495.94, + "probability": 0.9082 + }, + { + "start": 9497.22, + "end": 9502.62, + "probability": 0.9937 + }, + { + "start": 9503.7, + "end": 9505.7, + "probability": 0.9939 + }, + { + "start": 9507.0, + "end": 9510.66, + "probability": 0.9465 + }, + { + "start": 9511.24, + "end": 9513.52, + "probability": 0.9955 + }, + { + "start": 9514.02, + "end": 9517.62, + "probability": 0.9917 + }, + { + "start": 9518.72, + "end": 9519.4, + "probability": 0.0154 + }, + { + "start": 9519.42, + "end": 9521.0, + "probability": 0.8217 + }, + { + "start": 9521.06, + "end": 9523.06, + "probability": 0.912 + }, + { + "start": 9523.62, + "end": 9525.38, + "probability": 0.9048 + }, + { + "start": 9525.76, + "end": 9528.9, + "probability": 0.9464 + }, + { + "start": 9530.5, + "end": 9531.64, + "probability": 0.9629 + }, + { + "start": 9532.02, + "end": 9532.74, + "probability": 0.9216 + }, + { + "start": 9532.96, + "end": 9534.88, + "probability": 0.4375 + }, + { + "start": 9535.68, + "end": 9536.42, + "probability": 0.9086 + }, + { + "start": 9537.52, + "end": 9538.5, + "probability": 0.9219 + }, + { + "start": 9538.82, + "end": 9543.72, + "probability": 0.9839 + }, + { + "start": 9543.72, + "end": 9548.7, + "probability": 0.998 + }, + { + "start": 9548.98, + "end": 9550.48, + "probability": 0.9929 + }, + { + "start": 9552.06, + "end": 9553.98, + "probability": 0.9346 + }, + { + "start": 9553.98, + "end": 9555.16, + "probability": 0.6247 + }, + { + "start": 9556.64, + "end": 9558.68, + "probability": 0.9857 + }, + { + "start": 9559.14, + "end": 9564.02, + "probability": 0.9912 + }, + { + "start": 9564.54, + "end": 9566.3, + "probability": 0.7922 + }, + { + "start": 9567.26, + "end": 9567.94, + "probability": 0.7913 + }, + { + "start": 9568.14, + "end": 9570.86, + "probability": 0.8108 + }, + { + "start": 9571.68, + "end": 9574.94, + "probability": 0.9917 + }, + { + "start": 9577.44, + "end": 9579.98, + "probability": 0.9949 + }, + { + "start": 9580.16, + "end": 9581.58, + "probability": 0.7177 + }, + { + "start": 9582.36, + "end": 9585.48, + "probability": 0.8233 + }, + { + "start": 9586.34, + "end": 9587.74, + "probability": 0.9342 + }, + { + "start": 9588.46, + "end": 9591.26, + "probability": 0.9497 + }, + { + "start": 9592.02, + "end": 9593.86, + "probability": 0.9977 + }, + { + "start": 9594.4, + "end": 9599.3, + "probability": 0.9739 + }, + { + "start": 9600.02, + "end": 9602.8, + "probability": 0.8087 + }, + { + "start": 9602.86, + "end": 9606.3, + "probability": 0.9878 + }, + { + "start": 9607.68, + "end": 9607.86, + "probability": 0.5984 + }, + { + "start": 9609.4, + "end": 9611.58, + "probability": 0.856 + }, + { + "start": 9612.04, + "end": 9613.22, + "probability": 0.9905 + }, + { + "start": 9613.86, + "end": 9615.16, + "probability": 0.9873 + }, + { + "start": 9616.42, + "end": 9619.86, + "probability": 0.9142 + }, + { + "start": 9619.97, + "end": 9623.12, + "probability": 0.991 + }, + { + "start": 9623.74, + "end": 9625.74, + "probability": 0.7668 + }, + { + "start": 9627.08, + "end": 9628.2, + "probability": 0.9028 + }, + { + "start": 9628.34, + "end": 9631.58, + "probability": 0.9624 + }, + { + "start": 9633.38, + "end": 9638.56, + "probability": 0.9691 + }, + { + "start": 9638.92, + "end": 9643.32, + "probability": 0.9917 + }, + { + "start": 9644.68, + "end": 9650.58, + "probability": 0.9653 + }, + { + "start": 9650.68, + "end": 9654.14, + "probability": 0.8665 + }, + { + "start": 9654.26, + "end": 9657.7, + "probability": 0.8677 + }, + { + "start": 9658.38, + "end": 9659.06, + "probability": 0.749 + }, + { + "start": 9659.86, + "end": 9665.24, + "probability": 0.9917 + }, + { + "start": 9665.78, + "end": 9667.92, + "probability": 0.9964 + }, + { + "start": 9669.04, + "end": 9669.74, + "probability": 0.7894 + }, + { + "start": 9670.06, + "end": 9673.32, + "probability": 0.9694 + }, + { + "start": 9673.32, + "end": 9677.18, + "probability": 0.9526 + }, + { + "start": 9677.72, + "end": 9681.3, + "probability": 0.9944 + }, + { + "start": 9681.88, + "end": 9685.3, + "probability": 0.9919 + }, + { + "start": 9685.46, + "end": 9686.22, + "probability": 0.9221 + }, + { + "start": 9686.58, + "end": 9689.18, + "probability": 0.9329 + }, + { + "start": 9689.26, + "end": 9692.84, + "probability": 0.991 + }, + { + "start": 9693.88, + "end": 9695.46, + "probability": 0.7205 + }, + { + "start": 9695.82, + "end": 9696.24, + "probability": 0.7672 + }, + { + "start": 9696.46, + "end": 9698.32, + "probability": 0.8379 + }, + { + "start": 9698.44, + "end": 9702.06, + "probability": 0.6603 + }, + { + "start": 9703.18, + "end": 9706.04, + "probability": 0.9723 + }, + { + "start": 9708.16, + "end": 9710.0, + "probability": 0.9883 + }, + { + "start": 9722.0, + "end": 9723.28, + "probability": 0.5362 + }, + { + "start": 9725.46, + "end": 9726.46, + "probability": 0.8097 + }, + { + "start": 9727.52, + "end": 9733.74, + "probability": 0.9681 + }, + { + "start": 9734.76, + "end": 9735.64, + "probability": 0.7168 + }, + { + "start": 9736.18, + "end": 9740.74, + "probability": 0.8978 + }, + { + "start": 9742.42, + "end": 9742.82, + "probability": 0.3975 + }, + { + "start": 9743.02, + "end": 9743.96, + "probability": 0.8837 + }, + { + "start": 9744.22, + "end": 9746.5, + "probability": 0.9259 + }, + { + "start": 9746.64, + "end": 9747.8, + "probability": 0.9852 + }, + { + "start": 9748.56, + "end": 9755.74, + "probability": 0.9821 + }, + { + "start": 9756.32, + "end": 9761.34, + "probability": 0.9976 + }, + { + "start": 9762.56, + "end": 9763.48, + "probability": 0.6427 + }, + { + "start": 9764.4, + "end": 9768.4, + "probability": 0.8895 + }, + { + "start": 9769.26, + "end": 9771.52, + "probability": 0.5241 + }, + { + "start": 9772.56, + "end": 9776.14, + "probability": 0.7973 + }, + { + "start": 9776.66, + "end": 9777.45, + "probability": 0.9943 + }, + { + "start": 9778.08, + "end": 9780.98, + "probability": 0.8854 + }, + { + "start": 9782.55, + "end": 9785.52, + "probability": 0.9817 + }, + { + "start": 9786.56, + "end": 9789.06, + "probability": 0.9956 + }, + { + "start": 9790.36, + "end": 9793.68, + "probability": 0.8977 + }, + { + "start": 9794.94, + "end": 9799.76, + "probability": 0.9934 + }, + { + "start": 9799.88, + "end": 9803.34, + "probability": 0.7472 + }, + { + "start": 9804.46, + "end": 9807.4, + "probability": 0.9285 + }, + { + "start": 9808.18, + "end": 9814.84, + "probability": 0.991 + }, + { + "start": 9815.86, + "end": 9818.68, + "probability": 0.9961 + }, + { + "start": 9820.12, + "end": 9823.46, + "probability": 0.9768 + }, + { + "start": 9823.82, + "end": 9827.02, + "probability": 0.9233 + }, + { + "start": 9827.36, + "end": 9831.06, + "probability": 0.9615 + }, + { + "start": 9832.3, + "end": 9833.26, + "probability": 0.8368 + }, + { + "start": 9834.76, + "end": 9838.4, + "probability": 0.5996 + }, + { + "start": 9840.28, + "end": 9844.64, + "probability": 0.9543 + }, + { + "start": 9846.02, + "end": 9846.58, + "probability": 0.7694 + }, + { + "start": 9847.66, + "end": 9853.54, + "probability": 0.9243 + }, + { + "start": 9854.52, + "end": 9855.46, + "probability": 0.541 + }, + { + "start": 9856.3, + "end": 9861.96, + "probability": 0.83 + }, + { + "start": 9863.46, + "end": 9868.86, + "probability": 0.9463 + }, + { + "start": 9869.44, + "end": 9874.72, + "probability": 0.8924 + }, + { + "start": 9875.6, + "end": 9880.6, + "probability": 0.9794 + }, + { + "start": 9880.72, + "end": 9881.14, + "probability": 0.4321 + }, + { + "start": 9881.22, + "end": 9881.76, + "probability": 0.2583 + }, + { + "start": 9882.88, + "end": 9886.56, + "probability": 0.7791 + }, + { + "start": 9887.14, + "end": 9890.46, + "probability": 0.8686 + }, + { + "start": 9891.82, + "end": 9893.02, + "probability": 0.872 + }, + { + "start": 9893.78, + "end": 9897.5, + "probability": 0.9517 + }, + { + "start": 9899.72, + "end": 9901.28, + "probability": 0.7748 + }, + { + "start": 9902.38, + "end": 9905.66, + "probability": 0.9786 + }, + { + "start": 9906.78, + "end": 9914.66, + "probability": 0.9009 + }, + { + "start": 9915.36, + "end": 9920.1, + "probability": 0.9891 + }, + { + "start": 9921.36, + "end": 9924.9, + "probability": 0.9973 + }, + { + "start": 9925.5, + "end": 9927.36, + "probability": 0.9031 + }, + { + "start": 9928.04, + "end": 9932.44, + "probability": 0.8657 + }, + { + "start": 9932.98, + "end": 9934.32, + "probability": 0.4956 + }, + { + "start": 9935.78, + "end": 9941.0, + "probability": 0.995 + }, + { + "start": 9941.88, + "end": 9943.64, + "probability": 0.8441 + }, + { + "start": 9944.52, + "end": 9949.34, + "probability": 0.7842 + }, + { + "start": 9949.86, + "end": 9951.54, + "probability": 0.9803 + }, + { + "start": 9951.88, + "end": 9953.9, + "probability": 0.8588 + }, + { + "start": 9954.14, + "end": 9958.8, + "probability": 0.9871 + }, + { + "start": 9959.52, + "end": 9961.61, + "probability": 0.9583 + }, + { + "start": 9962.42, + "end": 9964.98, + "probability": 0.7741 + }, + { + "start": 9965.56, + "end": 9966.7, + "probability": 0.7672 + }, + { + "start": 9966.78, + "end": 9971.8, + "probability": 0.9925 + }, + { + "start": 9972.22, + "end": 9973.5, + "probability": 0.9889 + }, + { + "start": 9974.04, + "end": 9975.76, + "probability": 0.6613 + }, + { + "start": 9976.36, + "end": 9977.3, + "probability": 0.7488 + }, + { + "start": 9978.2, + "end": 9980.14, + "probability": 0.7495 + }, + { + "start": 9980.86, + "end": 9983.14, + "probability": 0.9824 + }, + { + "start": 9983.52, + "end": 9986.18, + "probability": 0.983 + }, + { + "start": 9986.48, + "end": 9991.26, + "probability": 0.9635 + }, + { + "start": 9991.82, + "end": 9993.02, + "probability": 0.6772 + }, + { + "start": 9993.1, + "end": 10002.34, + "probability": 0.9339 + }, + { + "start": 10003.06, + "end": 10003.52, + "probability": 0.5333 + }, + { + "start": 10004.58, + "end": 10007.58, + "probability": 0.9949 + }, + { + "start": 10008.18, + "end": 10009.54, + "probability": 0.9131 + }, + { + "start": 10010.1, + "end": 10013.3, + "probability": 0.9902 + }, + { + "start": 10013.96, + "end": 10014.56, + "probability": 0.6972 + }, + { + "start": 10016.04, + "end": 10018.54, + "probability": 0.9857 + }, + { + "start": 10018.66, + "end": 10019.84, + "probability": 0.8618 + }, + { + "start": 10021.16, + "end": 10022.8, + "probability": 0.7493 + }, + { + "start": 10024.48, + "end": 10026.42, + "probability": 0.8449 + }, + { + "start": 10028.34, + "end": 10031.14, + "probability": 0.8865 + }, + { + "start": 10032.26, + "end": 10033.46, + "probability": 0.9213 + }, + { + "start": 10034.72, + "end": 10039.6, + "probability": 0.8892 + }, + { + "start": 10039.82, + "end": 10044.0, + "probability": 0.8752 + }, + { + "start": 10046.6, + "end": 10048.68, + "probability": 0.9879 + }, + { + "start": 10049.22, + "end": 10052.71, + "probability": 0.9937 + }, + { + "start": 10052.78, + "end": 10057.34, + "probability": 0.7439 + }, + { + "start": 10057.8, + "end": 10059.56, + "probability": 0.8523 + }, + { + "start": 10060.82, + "end": 10064.18, + "probability": 0.9969 + }, + { + "start": 10064.24, + "end": 10065.4, + "probability": 0.802 + }, + { + "start": 10066.08, + "end": 10068.06, + "probability": 0.8044 + }, + { + "start": 10068.62, + "end": 10073.49, + "probability": 0.9843 + }, + { + "start": 10074.74, + "end": 10076.6, + "probability": 0.925 + }, + { + "start": 10077.3, + "end": 10079.86, + "probability": 0.9244 + }, + { + "start": 10079.94, + "end": 10083.62, + "probability": 0.9619 + }, + { + "start": 10084.24, + "end": 10086.38, + "probability": 0.775 + }, + { + "start": 10087.1, + "end": 10092.16, + "probability": 0.9822 + }, + { + "start": 10092.58, + "end": 10096.9, + "probability": 0.8528 + }, + { + "start": 10097.52, + "end": 10099.44, + "probability": 0.9811 + }, + { + "start": 10100.64, + "end": 10102.96, + "probability": 0.7752 + }, + { + "start": 10103.7, + "end": 10106.64, + "probability": 0.875 + }, + { + "start": 10107.9, + "end": 10113.84, + "probability": 0.9411 + }, + { + "start": 10114.7, + "end": 10118.36, + "probability": 0.986 + }, + { + "start": 10118.94, + "end": 10123.3, + "probability": 0.9844 + }, + { + "start": 10123.96, + "end": 10130.34, + "probability": 0.9819 + }, + { + "start": 10130.6, + "end": 10136.46, + "probability": 0.993 + }, + { + "start": 10137.26, + "end": 10138.06, + "probability": 0.7956 + }, + { + "start": 10138.14, + "end": 10138.76, + "probability": 0.8037 + }, + { + "start": 10138.94, + "end": 10140.22, + "probability": 0.6161 + }, + { + "start": 10140.7, + "end": 10140.7, + "probability": 0.0731 + }, + { + "start": 10140.7, + "end": 10147.62, + "probability": 0.9903 + }, + { + "start": 10147.74, + "end": 10150.84, + "probability": 0.9746 + }, + { + "start": 10151.54, + "end": 10151.54, + "probability": 0.7164 + }, + { + "start": 10151.54, + "end": 10152.56, + "probability": 0.7403 + }, + { + "start": 10153.02, + "end": 10153.02, + "probability": 0.3588 + }, + { + "start": 10153.02, + "end": 10153.42, + "probability": 0.8566 + }, + { + "start": 10155.27, + "end": 10159.36, + "probability": 0.9882 + }, + { + "start": 10163.54, + "end": 10164.3, + "probability": 0.4054 + }, + { + "start": 10164.4, + "end": 10164.88, + "probability": 0.7952 + }, + { + "start": 10164.96, + "end": 10165.84, + "probability": 0.7214 + }, + { + "start": 10165.94, + "end": 10167.3, + "probability": 0.7685 + }, + { + "start": 10167.54, + "end": 10169.22, + "probability": 0.9683 + }, + { + "start": 10169.48, + "end": 10171.22, + "probability": 0.9028 + }, + { + "start": 10171.74, + "end": 10172.7, + "probability": 0.9597 + }, + { + "start": 10172.78, + "end": 10174.29, + "probability": 0.9734 + }, + { + "start": 10174.8, + "end": 10175.77, + "probability": 0.9919 + }, + { + "start": 10175.96, + "end": 10177.27, + "probability": 0.9697 + }, + { + "start": 10177.78, + "end": 10179.0, + "probability": 0.8689 + }, + { + "start": 10179.46, + "end": 10182.9, + "probability": 0.9714 + }, + { + "start": 10183.32, + "end": 10185.28, + "probability": 0.8303 + }, + { + "start": 10185.4, + "end": 10189.74, + "probability": 0.9735 + }, + { + "start": 10189.84, + "end": 10191.96, + "probability": 0.8812 + }, + { + "start": 10192.36, + "end": 10194.18, + "probability": 0.776 + }, + { + "start": 10194.3, + "end": 10196.7, + "probability": 0.8085 + }, + { + "start": 10197.4, + "end": 10198.68, + "probability": 0.9731 + }, + { + "start": 10200.0, + "end": 10202.38, + "probability": 0.9731 + }, + { + "start": 10203.1, + "end": 10203.96, + "probability": 0.9937 + }, + { + "start": 10204.72, + "end": 10206.52, + "probability": 0.9449 + }, + { + "start": 10207.02, + "end": 10208.14, + "probability": 0.904 + }, + { + "start": 10208.16, + "end": 10208.96, + "probability": 0.6007 + }, + { + "start": 10208.98, + "end": 10209.52, + "probability": 0.7813 + }, + { + "start": 10210.18, + "end": 10211.06, + "probability": 0.9686 + }, + { + "start": 10211.44, + "end": 10211.62, + "probability": 0.3262 + }, + { + "start": 10211.68, + "end": 10212.8, + "probability": 0.9471 + }, + { + "start": 10213.14, + "end": 10215.16, + "probability": 0.9765 + }, + { + "start": 10215.16, + "end": 10217.38, + "probability": 0.7321 + }, + { + "start": 10218.1, + "end": 10219.2, + "probability": 0.8823 + }, + { + "start": 10219.34, + "end": 10219.93, + "probability": 0.9502 + }, + { + "start": 10220.32, + "end": 10221.05, + "probability": 0.8591 + }, + { + "start": 10221.12, + "end": 10221.4, + "probability": 0.8326 + }, + { + "start": 10221.84, + "end": 10223.95, + "probability": 0.8467 + }, + { + "start": 10223.96, + "end": 10226.12, + "probability": 0.7736 + }, + { + "start": 10227.02, + "end": 10227.34, + "probability": 0.5562 + }, + { + "start": 10227.64, + "end": 10231.68, + "probability": 0.7477 + }, + { + "start": 10231.68, + "end": 10234.0, + "probability": 0.9661 + }, + { + "start": 10234.34, + "end": 10235.62, + "probability": 0.8934 + }, + { + "start": 10236.04, + "end": 10236.7, + "probability": 0.8261 + }, + { + "start": 10238.22, + "end": 10242.0, + "probability": 0.0874 + }, + { + "start": 10252.42, + "end": 10252.56, + "probability": 0.3328 + }, + { + "start": 10252.56, + "end": 10252.58, + "probability": 0.2619 + }, + { + "start": 10252.7, + "end": 10253.56, + "probability": 0.5061 + }, + { + "start": 10253.68, + "end": 10254.1, + "probability": 0.5616 + }, + { + "start": 10254.36, + "end": 10254.85, + "probability": 0.5182 + }, + { + "start": 10255.08, + "end": 10255.48, + "probability": 0.3521 + }, + { + "start": 10255.62, + "end": 10258.26, + "probability": 0.8857 + }, + { + "start": 10258.72, + "end": 10260.98, + "probability": 0.9368 + }, + { + "start": 10261.56, + "end": 10265.46, + "probability": 0.8701 + }, + { + "start": 10266.14, + "end": 10270.3, + "probability": 0.8849 + }, + { + "start": 10270.52, + "end": 10270.62, + "probability": 0.0068 + } + ], + "segments_count": 3607, + "words_count": 17910, + "avg_words_per_segment": 4.9653, + "avg_segment_duration": 2.0274, + "avg_words_per_minute": 104.3876, + "plenum_id": "13873", + "duration": 10294.33, + "title": null, + "plenum_date": "2011-06-13" +} \ No newline at end of file