diff --git "a/28007/metadata.json" "b/28007/metadata.json" new file mode 100644--- /dev/null +++ "b/28007/metadata.json" @@ -0,0 +1,20057 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "28007", + "quality_score": 0.902, + "per_segment_quality_scores": [ + { + "start": 7.16, + "end": 8.42, + "probability": 0.482 + }, + { + "start": 9.82, + "end": 11.34, + "probability": 0.5011 + }, + { + "start": 12.2, + "end": 13.34, + "probability": 0.8589 + }, + { + "start": 13.76, + "end": 15.58, + "probability": 0.5005 + }, + { + "start": 16.5, + "end": 21.28, + "probability": 0.4515 + }, + { + "start": 23.98, + "end": 25.26, + "probability": 0.8022 + }, + { + "start": 25.38, + "end": 27.04, + "probability": 0.8196 + }, + { + "start": 27.18, + "end": 28.76, + "probability": 0.9698 + }, + { + "start": 28.92, + "end": 29.78, + "probability": 0.6612 + }, + { + "start": 29.78, + "end": 34.9, + "probability": 0.7187 + }, + { + "start": 35.42, + "end": 39.66, + "probability": 0.5845 + }, + { + "start": 40.54, + "end": 41.38, + "probability": 0.7493 + }, + { + "start": 44.53, + "end": 46.58, + "probability": 0.5772 + }, + { + "start": 46.66, + "end": 47.83, + "probability": 0.3427 + }, + { + "start": 48.48, + "end": 51.34, + "probability": 0.941 + }, + { + "start": 51.86, + "end": 53.72, + "probability": 0.3715 + }, + { + "start": 54.3, + "end": 56.82, + "probability": 0.5587 + }, + { + "start": 57.34, + "end": 59.36, + "probability": 0.3483 + }, + { + "start": 60.88, + "end": 61.4, + "probability": 0.037 + }, + { + "start": 61.48, + "end": 62.08, + "probability": 0.0784 + }, + { + "start": 62.4, + "end": 62.52, + "probability": 0.1955 + }, + { + "start": 62.52, + "end": 62.52, + "probability": 0.065 + }, + { + "start": 62.52, + "end": 62.52, + "probability": 0.0627 + }, + { + "start": 62.52, + "end": 62.52, + "probability": 0.0279 + }, + { + "start": 62.56, + "end": 64.22, + "probability": 0.062 + }, + { + "start": 64.22, + "end": 65.02, + "probability": 0.0421 + }, + { + "start": 69.78, + "end": 72.16, + "probability": 0.4862 + }, + { + "start": 72.7, + "end": 73.53, + "probability": 0.9924 + }, + { + "start": 76.7, + "end": 80.76, + "probability": 0.0311 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.0, + "end": 146.0, + "probability": 0.0 + }, + { + "start": 146.18, + "end": 146.28, + "probability": 0.4908 + }, + { + "start": 146.58, + "end": 146.86, + "probability": 0.2929 + }, + { + "start": 146.92, + "end": 147.98, + "probability": 0.8726 + }, + { + "start": 148.56, + "end": 153.06, + "probability": 0.9834 + }, + { + "start": 153.54, + "end": 156.48, + "probability": 0.9527 + }, + { + "start": 157.34, + "end": 158.7, + "probability": 0.35 + }, + { + "start": 158.76, + "end": 159.6, + "probability": 0.8066 + }, + { + "start": 159.7, + "end": 161.66, + "probability": 0.9781 + }, + { + "start": 161.84, + "end": 162.56, + "probability": 0.6903 + }, + { + "start": 163.02, + "end": 164.5, + "probability": 0.0154 + }, + { + "start": 164.5, + "end": 164.52, + "probability": 0.29 + }, + { + "start": 164.52, + "end": 164.66, + "probability": 0.3028 + }, + { + "start": 164.84, + "end": 165.94, + "probability": 0.8834 + }, + { + "start": 166.1, + "end": 169.47, + "probability": 0.979 + }, + { + "start": 170.88, + "end": 171.46, + "probability": 0.8374 + }, + { + "start": 174.02, + "end": 175.14, + "probability": 0.7043 + }, + { + "start": 175.52, + "end": 177.42, + "probability": 0.8585 + }, + { + "start": 177.52, + "end": 178.36, + "probability": 0.5719 + }, + { + "start": 178.44, + "end": 179.87, + "probability": 0.9507 + }, + { + "start": 181.38, + "end": 186.46, + "probability": 0.9014 + }, + { + "start": 187.0, + "end": 191.24, + "probability": 0.7598 + }, + { + "start": 192.16, + "end": 197.64, + "probability": 0.9803 + }, + { + "start": 198.42, + "end": 200.34, + "probability": 0.9393 + }, + { + "start": 201.22, + "end": 205.68, + "probability": 0.9878 + }, + { + "start": 205.68, + "end": 212.4, + "probability": 0.9832 + }, + { + "start": 212.64, + "end": 214.42, + "probability": 0.6634 + }, + { + "start": 215.2, + "end": 219.94, + "probability": 0.9904 + }, + { + "start": 220.16, + "end": 223.58, + "probability": 0.99 + }, + { + "start": 223.58, + "end": 227.0, + "probability": 0.9969 + }, + { + "start": 227.16, + "end": 228.4, + "probability": 0.7277 + }, + { + "start": 228.46, + "end": 229.04, + "probability": 0.9558 + }, + { + "start": 229.58, + "end": 230.88, + "probability": 0.9224 + }, + { + "start": 231.48, + "end": 232.52, + "probability": 0.5025 + }, + { + "start": 233.1, + "end": 238.06, + "probability": 0.8765 + }, + { + "start": 238.46, + "end": 242.46, + "probability": 0.9287 + }, + { + "start": 243.08, + "end": 246.88, + "probability": 0.9878 + }, + { + "start": 247.38, + "end": 250.14, + "probability": 0.9557 + }, + { + "start": 250.64, + "end": 252.14, + "probability": 0.983 + }, + { + "start": 252.78, + "end": 253.68, + "probability": 0.6591 + }, + { + "start": 254.66, + "end": 255.64, + "probability": 0.9111 + }, + { + "start": 256.3, + "end": 257.08, + "probability": 0.503 + }, + { + "start": 257.62, + "end": 260.54, + "probability": 0.9516 + }, + { + "start": 261.14, + "end": 263.1, + "probability": 0.751 + }, + { + "start": 263.42, + "end": 264.14, + "probability": 0.8768 + }, + { + "start": 264.78, + "end": 265.46, + "probability": 0.8305 + }, + { + "start": 265.64, + "end": 269.62, + "probability": 0.994 + }, + { + "start": 270.68, + "end": 273.76, + "probability": 0.9954 + }, + { + "start": 274.44, + "end": 275.18, + "probability": 0.8044 + }, + { + "start": 275.92, + "end": 278.3, + "probability": 0.9913 + }, + { + "start": 278.84, + "end": 281.54, + "probability": 0.7658 + }, + { + "start": 282.12, + "end": 283.04, + "probability": 0.7668 + }, + { + "start": 283.04, + "end": 286.12, + "probability": 0.9705 + }, + { + "start": 286.12, + "end": 289.54, + "probability": 0.9494 + }, + { + "start": 289.98, + "end": 292.68, + "probability": 0.9709 + }, + { + "start": 293.24, + "end": 296.62, + "probability": 0.9967 + }, + { + "start": 297.2, + "end": 299.28, + "probability": 0.9927 + }, + { + "start": 299.42, + "end": 304.6, + "probability": 0.995 + }, + { + "start": 304.88, + "end": 306.16, + "probability": 0.9907 + }, + { + "start": 307.0, + "end": 308.82, + "probability": 0.7732 + }, + { + "start": 309.8, + "end": 312.38, + "probability": 0.9977 + }, + { + "start": 312.38, + "end": 315.78, + "probability": 0.9982 + }, + { + "start": 316.1, + "end": 318.78, + "probability": 0.9976 + }, + { + "start": 319.54, + "end": 323.6, + "probability": 0.802 + }, + { + "start": 323.72, + "end": 324.34, + "probability": 0.5196 + }, + { + "start": 324.5, + "end": 327.24, + "probability": 0.9604 + }, + { + "start": 328.76, + "end": 330.56, + "probability": 0.978 + }, + { + "start": 330.96, + "end": 336.9, + "probability": 0.9952 + }, + { + "start": 337.52, + "end": 338.8, + "probability": 0.8467 + }, + { + "start": 340.04, + "end": 341.84, + "probability": 0.9656 + }, + { + "start": 342.04, + "end": 343.12, + "probability": 0.8109 + }, + { + "start": 343.52, + "end": 347.72, + "probability": 0.981 + }, + { + "start": 348.26, + "end": 350.12, + "probability": 0.9424 + }, + { + "start": 350.46, + "end": 352.64, + "probability": 0.9751 + }, + { + "start": 352.64, + "end": 354.82, + "probability": 0.9978 + }, + { + "start": 355.26, + "end": 358.23, + "probability": 0.9922 + }, + { + "start": 358.9, + "end": 359.58, + "probability": 0.9611 + }, + { + "start": 359.64, + "end": 361.12, + "probability": 0.7951 + }, + { + "start": 361.58, + "end": 362.18, + "probability": 0.6309 + }, + { + "start": 362.38, + "end": 363.36, + "probability": 0.966 + }, + { + "start": 363.52, + "end": 364.24, + "probability": 0.9606 + }, + { + "start": 364.7, + "end": 366.3, + "probability": 0.7973 + }, + { + "start": 367.24, + "end": 370.94, + "probability": 0.9883 + }, + { + "start": 370.94, + "end": 374.96, + "probability": 0.8323 + }, + { + "start": 375.02, + "end": 377.77, + "probability": 0.9979 + }, + { + "start": 378.74, + "end": 381.56, + "probability": 0.9779 + }, + { + "start": 382.16, + "end": 385.2, + "probability": 0.9878 + }, + { + "start": 385.54, + "end": 386.9, + "probability": 0.978 + }, + { + "start": 387.3, + "end": 387.76, + "probability": 0.787 + }, + { + "start": 388.5, + "end": 394.28, + "probability": 0.9306 + }, + { + "start": 395.66, + "end": 401.02, + "probability": 0.99 + }, + { + "start": 401.78, + "end": 402.28, + "probability": 0.4263 + }, + { + "start": 402.32, + "end": 403.28, + "probability": 0.8677 + }, + { + "start": 403.76, + "end": 409.52, + "probability": 0.9451 + }, + { + "start": 409.94, + "end": 410.36, + "probability": 0.4676 + }, + { + "start": 410.98, + "end": 416.76, + "probability": 0.9933 + }, + { + "start": 418.0, + "end": 419.76, + "probability": 0.5845 + }, + { + "start": 419.8, + "end": 421.34, + "probability": 0.9806 + }, + { + "start": 421.9, + "end": 423.4, + "probability": 0.9422 + }, + { + "start": 423.96, + "end": 425.54, + "probability": 0.9503 + }, + { + "start": 425.92, + "end": 426.86, + "probability": 0.9607 + }, + { + "start": 426.9, + "end": 429.78, + "probability": 0.9415 + }, + { + "start": 430.04, + "end": 433.86, + "probability": 0.8557 + }, + { + "start": 434.54, + "end": 436.02, + "probability": 0.8806 + }, + { + "start": 436.04, + "end": 438.3, + "probability": 0.9514 + }, + { + "start": 438.34, + "end": 438.94, + "probability": 0.4682 + }, + { + "start": 439.08, + "end": 439.4, + "probability": 0.2994 + }, + { + "start": 439.72, + "end": 440.88, + "probability": 0.7921 + }, + { + "start": 441.78, + "end": 444.8, + "probability": 0.9967 + }, + { + "start": 445.1, + "end": 449.14, + "probability": 0.9922 + }, + { + "start": 449.38, + "end": 452.31, + "probability": 0.9731 + }, + { + "start": 454.52, + "end": 457.12, + "probability": 0.9917 + }, + { + "start": 458.48, + "end": 463.08, + "probability": 0.828 + }, + { + "start": 463.84, + "end": 464.22, + "probability": 0.7756 + }, + { + "start": 464.34, + "end": 465.23, + "probability": 0.8113 + }, + { + "start": 465.88, + "end": 467.34, + "probability": 0.977 + }, + { + "start": 468.9, + "end": 469.64, + "probability": 0.7351 + }, + { + "start": 469.82, + "end": 470.78, + "probability": 0.6977 + }, + { + "start": 471.18, + "end": 475.4, + "probability": 0.86 + }, + { + "start": 475.4, + "end": 480.02, + "probability": 0.9755 + }, + { + "start": 480.68, + "end": 481.52, + "probability": 0.949 + }, + { + "start": 481.64, + "end": 482.84, + "probability": 0.9526 + }, + { + "start": 482.94, + "end": 486.22, + "probability": 0.9559 + }, + { + "start": 486.24, + "end": 487.44, + "probability": 0.8902 + }, + { + "start": 487.92, + "end": 492.0, + "probability": 0.8971 + }, + { + "start": 492.12, + "end": 493.02, + "probability": 0.742 + }, + { + "start": 493.48, + "end": 496.18, + "probability": 0.9535 + }, + { + "start": 496.68, + "end": 498.32, + "probability": 0.9878 + }, + { + "start": 498.56, + "end": 500.38, + "probability": 0.7138 + }, + { + "start": 500.46, + "end": 501.58, + "probability": 0.8691 + }, + { + "start": 501.96, + "end": 505.14, + "probability": 0.853 + }, + { + "start": 505.14, + "end": 507.56, + "probability": 0.9984 + }, + { + "start": 507.62, + "end": 510.12, + "probability": 0.9094 + }, + { + "start": 510.64, + "end": 513.36, + "probability": 0.86 + }, + { + "start": 513.9, + "end": 516.94, + "probability": 0.9707 + }, + { + "start": 517.26, + "end": 520.56, + "probability": 0.9906 + }, + { + "start": 520.76, + "end": 523.26, + "probability": 0.9976 + }, + { + "start": 524.08, + "end": 524.9, + "probability": 0.6176 + }, + { + "start": 524.92, + "end": 528.44, + "probability": 0.8565 + }, + { + "start": 528.8, + "end": 530.82, + "probability": 0.8771 + }, + { + "start": 531.26, + "end": 536.58, + "probability": 0.8882 + }, + { + "start": 536.58, + "end": 539.24, + "probability": 0.9869 + }, + { + "start": 539.48, + "end": 540.06, + "probability": 0.9106 + }, + { + "start": 540.52, + "end": 543.26, + "probability": 0.9116 + }, + { + "start": 544.7, + "end": 548.18, + "probability": 0.9041 + }, + { + "start": 549.06, + "end": 556.36, + "probability": 0.9941 + }, + { + "start": 556.98, + "end": 559.16, + "probability": 0.773 + }, + { + "start": 559.34, + "end": 562.45, + "probability": 0.6085 + }, + { + "start": 564.18, + "end": 566.0, + "probability": 0.8605 + }, + { + "start": 566.1, + "end": 570.22, + "probability": 0.9892 + }, + { + "start": 570.7, + "end": 571.6, + "probability": 0.9313 + }, + { + "start": 571.72, + "end": 572.8, + "probability": 0.9897 + }, + { + "start": 573.12, + "end": 574.74, + "probability": 0.8598 + }, + { + "start": 575.06, + "end": 579.14, + "probability": 0.8837 + }, + { + "start": 579.68, + "end": 584.05, + "probability": 0.9194 + }, + { + "start": 584.66, + "end": 586.01, + "probability": 0.9863 + }, + { + "start": 587.18, + "end": 589.24, + "probability": 0.9722 + }, + { + "start": 589.78, + "end": 593.66, + "probability": 0.9287 + }, + { + "start": 593.98, + "end": 597.22, + "probability": 0.9224 + }, + { + "start": 597.36, + "end": 601.74, + "probability": 0.9875 + }, + { + "start": 601.84, + "end": 605.1, + "probability": 0.9727 + }, + { + "start": 605.22, + "end": 606.68, + "probability": 0.97 + }, + { + "start": 607.16, + "end": 609.26, + "probability": 0.5692 + }, + { + "start": 609.94, + "end": 612.82, + "probability": 0.9921 + }, + { + "start": 613.16, + "end": 614.22, + "probability": 0.9836 + }, + { + "start": 614.48, + "end": 618.34, + "probability": 0.9942 + }, + { + "start": 618.56, + "end": 621.54, + "probability": 0.9707 + }, + { + "start": 622.24, + "end": 624.54, + "probability": 0.5854 + }, + { + "start": 624.8, + "end": 626.43, + "probability": 0.8114 + }, + { + "start": 626.94, + "end": 628.24, + "probability": 0.8579 + }, + { + "start": 628.34, + "end": 629.9, + "probability": 0.9582 + }, + { + "start": 630.14, + "end": 631.34, + "probability": 0.9925 + }, + { + "start": 632.18, + "end": 635.3, + "probability": 0.8914 + }, + { + "start": 635.76, + "end": 636.94, + "probability": 0.5776 + }, + { + "start": 637.16, + "end": 639.72, + "probability": 0.9635 + }, + { + "start": 640.08, + "end": 642.48, + "probability": 0.9957 + }, + { + "start": 642.48, + "end": 644.68, + "probability": 0.9348 + }, + { + "start": 644.86, + "end": 646.48, + "probability": 0.9583 + }, + { + "start": 646.48, + "end": 647.2, + "probability": 0.5995 + }, + { + "start": 648.24, + "end": 651.02, + "probability": 0.8998 + }, + { + "start": 652.04, + "end": 654.26, + "probability": 0.9571 + }, + { + "start": 655.24, + "end": 656.38, + "probability": 0.8111 + }, + { + "start": 656.94, + "end": 657.46, + "probability": 0.4944 + }, + { + "start": 658.66, + "end": 659.06, + "probability": 0.3664 + }, + { + "start": 659.06, + "end": 661.9, + "probability": 0.5978 + }, + { + "start": 662.02, + "end": 662.52, + "probability": 0.0343 + }, + { + "start": 662.96, + "end": 664.5, + "probability": 0.6842 + }, + { + "start": 664.74, + "end": 665.68, + "probability": 0.8776 + }, + { + "start": 665.98, + "end": 668.34, + "probability": 0.9255 + }, + { + "start": 668.76, + "end": 669.6, + "probability": 0.6884 + }, + { + "start": 669.66, + "end": 670.38, + "probability": 0.7085 + }, + { + "start": 671.54, + "end": 674.78, + "probability": 0.9931 + }, + { + "start": 674.78, + "end": 679.42, + "probability": 0.9987 + }, + { + "start": 679.8, + "end": 680.86, + "probability": 0.7391 + }, + { + "start": 680.88, + "end": 681.5, + "probability": 0.9144 + }, + { + "start": 681.6, + "end": 682.78, + "probability": 0.99 + }, + { + "start": 682.94, + "end": 684.54, + "probability": 0.8206 + }, + { + "start": 684.82, + "end": 685.7, + "probability": 0.9395 + }, + { + "start": 685.8, + "end": 686.18, + "probability": 0.8126 + }, + { + "start": 687.02, + "end": 689.5, + "probability": 0.9795 + }, + { + "start": 689.66, + "end": 690.0, + "probability": 0.8333 + }, + { + "start": 690.04, + "end": 691.88, + "probability": 0.8967 + }, + { + "start": 692.94, + "end": 694.2, + "probability": 0.9812 + }, + { + "start": 695.14, + "end": 696.28, + "probability": 0.7353 + }, + { + "start": 697.58, + "end": 700.38, + "probability": 0.9705 + }, + { + "start": 701.0, + "end": 701.54, + "probability": 0.8712 + }, + { + "start": 702.9, + "end": 706.4, + "probability": 0.4793 + }, + { + "start": 707.06, + "end": 708.36, + "probability": 0.8889 + }, + { + "start": 708.46, + "end": 710.28, + "probability": 0.7291 + }, + { + "start": 711.06, + "end": 713.56, + "probability": 0.7905 + }, + { + "start": 718.42, + "end": 720.02, + "probability": 0.7896 + }, + { + "start": 725.72, + "end": 728.12, + "probability": 0.7484 + }, + { + "start": 728.2, + "end": 730.34, + "probability": 0.9286 + }, + { + "start": 730.72, + "end": 732.84, + "probability": 0.9342 + }, + { + "start": 739.82, + "end": 742.1, + "probability": 0.7135 + }, + { + "start": 743.24, + "end": 746.28, + "probability": 0.9413 + }, + { + "start": 746.4, + "end": 747.24, + "probability": 0.83 + }, + { + "start": 747.32, + "end": 748.74, + "probability": 0.9497 + }, + { + "start": 749.1, + "end": 752.48, + "probability": 0.9969 + }, + { + "start": 752.48, + "end": 756.04, + "probability": 0.9983 + }, + { + "start": 756.24, + "end": 756.46, + "probability": 0.304 + }, + { + "start": 756.52, + "end": 758.4, + "probability": 0.9461 + }, + { + "start": 758.52, + "end": 759.02, + "probability": 0.4692 + }, + { + "start": 759.08, + "end": 759.54, + "probability": 0.8187 + }, + { + "start": 759.64, + "end": 760.42, + "probability": 0.9631 + }, + { + "start": 760.96, + "end": 765.68, + "probability": 0.9929 + }, + { + "start": 766.66, + "end": 769.48, + "probability": 0.9982 + }, + { + "start": 769.48, + "end": 772.24, + "probability": 0.9988 + }, + { + "start": 773.08, + "end": 773.52, + "probability": 0.7888 + }, + { + "start": 773.64, + "end": 774.26, + "probability": 0.7662 + }, + { + "start": 774.42, + "end": 778.16, + "probability": 0.9847 + }, + { + "start": 778.16, + "end": 782.16, + "probability": 0.8987 + }, + { + "start": 782.2, + "end": 786.78, + "probability": 0.7839 + }, + { + "start": 787.5, + "end": 788.84, + "probability": 0.9147 + }, + { + "start": 789.74, + "end": 790.18, + "probability": 0.7097 + }, + { + "start": 790.28, + "end": 791.1, + "probability": 0.7763 + }, + { + "start": 791.18, + "end": 792.46, + "probability": 0.9771 + }, + { + "start": 792.68, + "end": 794.16, + "probability": 0.7284 + }, + { + "start": 795.32, + "end": 799.16, + "probability": 0.8474 + }, + { + "start": 799.26, + "end": 802.58, + "probability": 0.981 + }, + { + "start": 802.66, + "end": 804.16, + "probability": 0.818 + }, + { + "start": 804.52, + "end": 805.48, + "probability": 0.934 + }, + { + "start": 805.62, + "end": 806.54, + "probability": 0.9704 + }, + { + "start": 806.58, + "end": 807.43, + "probability": 0.9576 + }, + { + "start": 808.34, + "end": 810.14, + "probability": 0.8883 + }, + { + "start": 810.98, + "end": 815.16, + "probability": 0.9826 + }, + { + "start": 816.06, + "end": 821.9, + "probability": 0.999 + }, + { + "start": 821.9, + "end": 824.74, + "probability": 0.9967 + }, + { + "start": 825.42, + "end": 827.42, + "probability": 0.9971 + }, + { + "start": 827.66, + "end": 831.14, + "probability": 0.9939 + }, + { + "start": 831.94, + "end": 835.28, + "probability": 0.9904 + }, + { + "start": 835.86, + "end": 839.32, + "probability": 0.8182 + }, + { + "start": 840.02, + "end": 843.98, + "probability": 0.9968 + }, + { + "start": 844.74, + "end": 846.7, + "probability": 0.9315 + }, + { + "start": 846.86, + "end": 848.5, + "probability": 0.9587 + }, + { + "start": 848.54, + "end": 848.98, + "probability": 0.565 + }, + { + "start": 849.98, + "end": 854.44, + "probability": 0.9929 + }, + { + "start": 854.6, + "end": 855.7, + "probability": 0.9208 + }, + { + "start": 856.54, + "end": 862.5, + "probability": 0.9981 + }, + { + "start": 863.16, + "end": 863.74, + "probability": 0.8004 + }, + { + "start": 863.82, + "end": 865.06, + "probability": 0.6727 + }, + { + "start": 865.08, + "end": 866.52, + "probability": 0.9321 + }, + { + "start": 867.1, + "end": 871.02, + "probability": 0.9566 + }, + { + "start": 871.22, + "end": 875.04, + "probability": 0.9824 + }, + { + "start": 876.0, + "end": 878.48, + "probability": 0.9867 + }, + { + "start": 878.56, + "end": 880.42, + "probability": 0.9985 + }, + { + "start": 881.12, + "end": 883.57, + "probability": 0.9785 + }, + { + "start": 884.64, + "end": 889.14, + "probability": 0.8212 + }, + { + "start": 889.98, + "end": 894.26, + "probability": 0.924 + }, + { + "start": 894.42, + "end": 896.3, + "probability": 0.9604 + }, + { + "start": 896.86, + "end": 902.16, + "probability": 0.9957 + }, + { + "start": 902.56, + "end": 905.48, + "probability": 0.9836 + }, + { + "start": 906.14, + "end": 909.66, + "probability": 0.9956 + }, + { + "start": 909.66, + "end": 913.05, + "probability": 0.9985 + }, + { + "start": 915.08, + "end": 915.74, + "probability": 0.8634 + }, + { + "start": 915.86, + "end": 917.88, + "probability": 0.9437 + }, + { + "start": 917.98, + "end": 920.66, + "probability": 0.8781 + }, + { + "start": 921.38, + "end": 924.76, + "probability": 0.9552 + }, + { + "start": 925.52, + "end": 927.38, + "probability": 0.8072 + }, + { + "start": 927.56, + "end": 929.39, + "probability": 0.9954 + }, + { + "start": 930.28, + "end": 932.37, + "probability": 0.9398 + }, + { + "start": 932.52, + "end": 933.58, + "probability": 0.693 + }, + { + "start": 933.6, + "end": 933.84, + "probability": 0.6502 + }, + { + "start": 933.9, + "end": 934.58, + "probability": 0.661 + }, + { + "start": 934.7, + "end": 937.62, + "probability": 0.8262 + }, + { + "start": 937.88, + "end": 941.68, + "probability": 0.9983 + }, + { + "start": 943.56, + "end": 946.28, + "probability": 0.8818 + }, + { + "start": 947.14, + "end": 950.6, + "probability": 0.9817 + }, + { + "start": 950.66, + "end": 951.54, + "probability": 0.7609 + }, + { + "start": 952.04, + "end": 952.74, + "probability": 0.9698 + }, + { + "start": 952.84, + "end": 953.54, + "probability": 0.9446 + }, + { + "start": 953.9, + "end": 955.76, + "probability": 0.9565 + }, + { + "start": 955.86, + "end": 957.32, + "probability": 0.9839 + }, + { + "start": 958.18, + "end": 961.8, + "probability": 0.6841 + }, + { + "start": 962.16, + "end": 963.42, + "probability": 0.743 + }, + { + "start": 964.02, + "end": 966.38, + "probability": 0.9943 + }, + { + "start": 966.9, + "end": 969.96, + "probability": 0.9966 + }, + { + "start": 970.52, + "end": 973.0, + "probability": 0.9491 + }, + { + "start": 973.17, + "end": 977.32, + "probability": 0.9224 + }, + { + "start": 977.42, + "end": 982.5, + "probability": 0.9888 + }, + { + "start": 982.8, + "end": 985.56, + "probability": 0.9869 + }, + { + "start": 986.08, + "end": 987.14, + "probability": 0.9885 + }, + { + "start": 987.24, + "end": 990.02, + "probability": 0.9834 + }, + { + "start": 991.36, + "end": 996.16, + "probability": 0.9897 + }, + { + "start": 996.28, + "end": 998.03, + "probability": 0.9368 + }, + { + "start": 999.14, + "end": 999.3, + "probability": 0.8875 + }, + { + "start": 999.8, + "end": 1000.88, + "probability": 0.9543 + }, + { + "start": 1001.28, + "end": 1006.82, + "probability": 0.969 + }, + { + "start": 1007.46, + "end": 1009.1, + "probability": 0.9466 + }, + { + "start": 1009.2, + "end": 1011.96, + "probability": 0.9707 + }, + { + "start": 1012.1, + "end": 1015.64, + "probability": 0.9797 + }, + { + "start": 1016.5, + "end": 1019.7, + "probability": 0.9949 + }, + { + "start": 1020.16, + "end": 1024.4, + "probability": 0.9826 + }, + { + "start": 1024.84, + "end": 1027.8, + "probability": 0.961 + }, + { + "start": 1027.8, + "end": 1030.76, + "probability": 0.9904 + }, + { + "start": 1031.2, + "end": 1034.54, + "probability": 0.9587 + }, + { + "start": 1035.44, + "end": 1036.52, + "probability": 0.8829 + }, + { + "start": 1036.88, + "end": 1040.2, + "probability": 0.9868 + }, + { + "start": 1040.8, + "end": 1044.19, + "probability": 0.9865 + }, + { + "start": 1044.36, + "end": 1044.9, + "probability": 0.7069 + }, + { + "start": 1044.98, + "end": 1046.04, + "probability": 0.8298 + }, + { + "start": 1046.52, + "end": 1052.04, + "probability": 0.9937 + }, + { + "start": 1052.12, + "end": 1052.44, + "probability": 0.4615 + }, + { + "start": 1052.44, + "end": 1054.44, + "probability": 0.8569 + }, + { + "start": 1054.48, + "end": 1058.18, + "probability": 0.9827 + }, + { + "start": 1058.3, + "end": 1058.68, + "probability": 0.6397 + }, + { + "start": 1059.08, + "end": 1062.14, + "probability": 0.9353 + }, + { + "start": 1062.78, + "end": 1068.08, + "probability": 0.5654 + }, + { + "start": 1068.08, + "end": 1070.2, + "probability": 0.8792 + }, + { + "start": 1077.36, + "end": 1080.75, + "probability": 0.9186 + }, + { + "start": 1086.78, + "end": 1087.9, + "probability": 0.5706 + }, + { + "start": 1088.3, + "end": 1088.34, + "probability": 0.3873 + }, + { + "start": 1088.34, + "end": 1094.74, + "probability": 0.8784 + }, + { + "start": 1095.88, + "end": 1099.86, + "probability": 0.9933 + }, + { + "start": 1102.36, + "end": 1106.48, + "probability": 0.8309 + }, + { + "start": 1106.9, + "end": 1108.92, + "probability": 0.9235 + }, + { + "start": 1109.78, + "end": 1111.68, + "probability": 0.9901 + }, + { + "start": 1112.82, + "end": 1114.54, + "probability": 0.7877 + }, + { + "start": 1114.86, + "end": 1115.7, + "probability": 0.941 + }, + { + "start": 1115.8, + "end": 1115.92, + "probability": 0.3364 + }, + { + "start": 1116.06, + "end": 1117.41, + "probability": 0.9883 + }, + { + "start": 1118.6, + "end": 1120.2, + "probability": 0.9869 + }, + { + "start": 1121.84, + "end": 1128.24, + "probability": 0.9744 + }, + { + "start": 1128.94, + "end": 1130.26, + "probability": 0.5709 + }, + { + "start": 1131.5, + "end": 1133.98, + "probability": 0.8276 + }, + { + "start": 1135.08, + "end": 1138.7, + "probability": 0.976 + }, + { + "start": 1139.52, + "end": 1141.7, + "probability": 0.994 + }, + { + "start": 1143.86, + "end": 1148.62, + "probability": 0.988 + }, + { + "start": 1149.56, + "end": 1152.1, + "probability": 0.9482 + }, + { + "start": 1152.22, + "end": 1153.58, + "probability": 0.9941 + }, + { + "start": 1153.9, + "end": 1154.54, + "probability": 0.4146 + }, + { + "start": 1155.54, + "end": 1159.86, + "probability": 0.9874 + }, + { + "start": 1161.32, + "end": 1163.2, + "probability": 0.9207 + }, + { + "start": 1163.38, + "end": 1164.5, + "probability": 0.9111 + }, + { + "start": 1165.68, + "end": 1169.28, + "probability": 0.9983 + }, + { + "start": 1169.28, + "end": 1173.2, + "probability": 0.9976 + }, + { + "start": 1174.94, + "end": 1178.49, + "probability": 0.7078 + }, + { + "start": 1180.0, + "end": 1181.54, + "probability": 0.0662 + }, + { + "start": 1185.24, + "end": 1187.48, + "probability": 0.7147 + }, + { + "start": 1188.94, + "end": 1192.76, + "probability": 0.9968 + }, + { + "start": 1192.92, + "end": 1194.94, + "probability": 0.9995 + }, + { + "start": 1196.02, + "end": 1196.46, + "probability": 0.9377 + }, + { + "start": 1197.04, + "end": 1200.1, + "probability": 0.9976 + }, + { + "start": 1201.4, + "end": 1205.88, + "probability": 0.99 + }, + { + "start": 1205.88, + "end": 1211.08, + "probability": 0.9993 + }, + { + "start": 1211.34, + "end": 1212.32, + "probability": 0.7751 + }, + { + "start": 1212.74, + "end": 1215.22, + "probability": 0.8739 + }, + { + "start": 1215.34, + "end": 1217.02, + "probability": 0.4821 + }, + { + "start": 1217.12, + "end": 1220.55, + "probability": 0.311 + }, + { + "start": 1222.88, + "end": 1223.86, + "probability": 0.795 + }, + { + "start": 1224.06, + "end": 1226.14, + "probability": 0.9944 + }, + { + "start": 1226.3, + "end": 1227.7, + "probability": 0.6346 + }, + { + "start": 1228.66, + "end": 1230.02, + "probability": 0.4907 + }, + { + "start": 1231.62, + "end": 1234.54, + "probability": 0.7134 + }, + { + "start": 1235.22, + "end": 1237.54, + "probability": 0.2577 + }, + { + "start": 1238.88, + "end": 1245.76, + "probability": 0.9471 + }, + { + "start": 1246.54, + "end": 1247.86, + "probability": 0.9777 + }, + { + "start": 1247.94, + "end": 1248.48, + "probability": 0.7693 + }, + { + "start": 1248.56, + "end": 1250.12, + "probability": 0.6372 + }, + { + "start": 1250.26, + "end": 1251.3, + "probability": 0.9331 + }, + { + "start": 1251.9, + "end": 1253.06, + "probability": 0.9898 + }, + { + "start": 1254.96, + "end": 1258.02, + "probability": 0.9613 + }, + { + "start": 1258.06, + "end": 1259.5, + "probability": 0.9839 + }, + { + "start": 1259.98, + "end": 1259.98, + "probability": 0.5829 + }, + { + "start": 1259.98, + "end": 1260.56, + "probability": 0.3118 + }, + { + "start": 1260.66, + "end": 1260.98, + "probability": 0.6471 + }, + { + "start": 1261.62, + "end": 1262.56, + "probability": 0.2535 + }, + { + "start": 1266.56, + "end": 1267.0, + "probability": 0.548 + }, + { + "start": 1270.78, + "end": 1275.24, + "probability": 0.9149 + }, + { + "start": 1275.36, + "end": 1276.24, + "probability": 0.9397 + }, + { + "start": 1276.72, + "end": 1279.12, + "probability": 0.8818 + }, + { + "start": 1279.74, + "end": 1281.48, + "probability": 0.9822 + }, + { + "start": 1282.9, + "end": 1286.32, + "probability": 0.9877 + }, + { + "start": 1286.96, + "end": 1288.98, + "probability": 0.7993 + }, + { + "start": 1290.44, + "end": 1291.34, + "probability": 0.5544 + }, + { + "start": 1292.27, + "end": 1299.12, + "probability": 0.9883 + }, + { + "start": 1299.76, + "end": 1303.26, + "probability": 0.9775 + }, + { + "start": 1303.88, + "end": 1308.98, + "probability": 0.9563 + }, + { + "start": 1309.58, + "end": 1312.44, + "probability": 0.9825 + }, + { + "start": 1313.0, + "end": 1314.56, + "probability": 0.9143 + }, + { + "start": 1316.02, + "end": 1319.06, + "probability": 0.9839 + }, + { + "start": 1319.58, + "end": 1320.73, + "probability": 0.9585 + }, + { + "start": 1322.62, + "end": 1328.2, + "probability": 0.9992 + }, + { + "start": 1329.94, + "end": 1332.04, + "probability": 0.8343 + }, + { + "start": 1333.04, + "end": 1333.7, + "probability": 0.669 + }, + { + "start": 1335.24, + "end": 1337.38, + "probability": 0.3307 + }, + { + "start": 1338.3, + "end": 1342.36, + "probability": 0.9809 + }, + { + "start": 1343.84, + "end": 1348.64, + "probability": 0.9791 + }, + { + "start": 1348.8, + "end": 1350.86, + "probability": 0.9208 + }, + { + "start": 1351.56, + "end": 1354.64, + "probability": 0.9907 + }, + { + "start": 1356.46, + "end": 1357.62, + "probability": 0.7394 + }, + { + "start": 1358.32, + "end": 1359.26, + "probability": 0.849 + }, + { + "start": 1360.1, + "end": 1363.36, + "probability": 0.8391 + }, + { + "start": 1364.04, + "end": 1367.08, + "probability": 0.9904 + }, + { + "start": 1369.28, + "end": 1372.44, + "probability": 0.9832 + }, + { + "start": 1374.72, + "end": 1375.8, + "probability": 0.8683 + }, + { + "start": 1377.74, + "end": 1381.98, + "probability": 0.9807 + }, + { + "start": 1383.26, + "end": 1386.18, + "probability": 0.9961 + }, + { + "start": 1387.0, + "end": 1393.34, + "probability": 0.9954 + }, + { + "start": 1394.44, + "end": 1396.2, + "probability": 0.8404 + }, + { + "start": 1396.94, + "end": 1397.98, + "probability": 0.7787 + }, + { + "start": 1399.0, + "end": 1400.62, + "probability": 0.9781 + }, + { + "start": 1401.14, + "end": 1402.34, + "probability": 0.9463 + }, + { + "start": 1403.26, + "end": 1405.44, + "probability": 0.8844 + }, + { + "start": 1406.04, + "end": 1410.16, + "probability": 0.9931 + }, + { + "start": 1410.86, + "end": 1412.86, + "probability": 0.9826 + }, + { + "start": 1413.48, + "end": 1418.08, + "probability": 0.9527 + }, + { + "start": 1418.92, + "end": 1421.42, + "probability": 0.6143 + }, + { + "start": 1422.76, + "end": 1426.52, + "probability": 0.8467 + }, + { + "start": 1427.16, + "end": 1429.0, + "probability": 0.5278 + }, + { + "start": 1429.96, + "end": 1432.68, + "probability": 0.9927 + }, + { + "start": 1433.16, + "end": 1434.44, + "probability": 0.8681 + }, + { + "start": 1435.24, + "end": 1440.24, + "probability": 0.9973 + }, + { + "start": 1440.3, + "end": 1443.18, + "probability": 0.9941 + }, + { + "start": 1444.36, + "end": 1445.14, + "probability": 0.925 + }, + { + "start": 1445.94, + "end": 1449.68, + "probability": 0.9289 + }, + { + "start": 1450.74, + "end": 1453.18, + "probability": 0.7497 + }, + { + "start": 1454.16, + "end": 1459.12, + "probability": 0.9946 + }, + { + "start": 1459.58, + "end": 1461.44, + "probability": 0.9514 + }, + { + "start": 1462.66, + "end": 1469.12, + "probability": 0.9451 + }, + { + "start": 1472.98, + "end": 1474.2, + "probability": 0.756 + }, + { + "start": 1475.52, + "end": 1480.96, + "probability": 0.7331 + }, + { + "start": 1481.64, + "end": 1482.38, + "probability": 0.6818 + }, + { + "start": 1483.08, + "end": 1486.28, + "probability": 0.9761 + }, + { + "start": 1486.98, + "end": 1491.36, + "probability": 0.7868 + }, + { + "start": 1492.56, + "end": 1494.46, + "probability": 0.7927 + }, + { + "start": 1495.28, + "end": 1497.52, + "probability": 0.7855 + }, + { + "start": 1498.42, + "end": 1499.6, + "probability": 0.6954 + }, + { + "start": 1499.7, + "end": 1500.96, + "probability": 0.5534 + }, + { + "start": 1501.04, + "end": 1502.72, + "probability": 0.8859 + }, + { + "start": 1502.9, + "end": 1503.84, + "probability": 0.8992 + }, + { + "start": 1504.58, + "end": 1506.54, + "probability": 0.8655 + }, + { + "start": 1507.74, + "end": 1510.28, + "probability": 0.9556 + }, + { + "start": 1510.36, + "end": 1511.54, + "probability": 0.9437 + }, + { + "start": 1512.78, + "end": 1513.86, + "probability": 0.773 + }, + { + "start": 1514.22, + "end": 1515.14, + "probability": 0.9512 + }, + { + "start": 1516.58, + "end": 1517.21, + "probability": 0.92 + }, + { + "start": 1517.9, + "end": 1518.48, + "probability": 0.9267 + }, + { + "start": 1518.84, + "end": 1523.04, + "probability": 0.994 + }, + { + "start": 1524.42, + "end": 1528.88, + "probability": 0.2327 + }, + { + "start": 1529.08, + "end": 1529.81, + "probability": 0.5548 + }, + { + "start": 1530.88, + "end": 1533.56, + "probability": 0.7946 + }, + { + "start": 1534.18, + "end": 1536.88, + "probability": 0.7585 + }, + { + "start": 1537.16, + "end": 1540.24, + "probability": 0.7131 + }, + { + "start": 1540.24, + "end": 1540.56, + "probability": 0.5839 + }, + { + "start": 1540.8, + "end": 1545.04, + "probability": 0.9948 + }, + { + "start": 1545.84, + "end": 1550.12, + "probability": 0.9647 + }, + { + "start": 1550.12, + "end": 1556.18, + "probability": 0.9856 + }, + { + "start": 1556.74, + "end": 1557.1, + "probability": 0.7764 + }, + { + "start": 1558.46, + "end": 1560.42, + "probability": 0.978 + }, + { + "start": 1561.24, + "end": 1564.18, + "probability": 0.9781 + }, + { + "start": 1564.88, + "end": 1567.6, + "probability": 0.9867 + }, + { + "start": 1568.48, + "end": 1570.0, + "probability": 0.9883 + }, + { + "start": 1570.96, + "end": 1572.34, + "probability": 0.7754 + }, + { + "start": 1573.18, + "end": 1575.76, + "probability": 0.9891 + }, + { + "start": 1575.92, + "end": 1577.74, + "probability": 0.9866 + }, + { + "start": 1578.32, + "end": 1579.96, + "probability": 0.8316 + }, + { + "start": 1581.02, + "end": 1583.58, + "probability": 0.952 + }, + { + "start": 1585.76, + "end": 1586.78, + "probability": 0.9313 + }, + { + "start": 1587.74, + "end": 1590.02, + "probability": 0.8507 + }, + { + "start": 1591.56, + "end": 1596.34, + "probability": 0.9695 + }, + { + "start": 1596.44, + "end": 1597.32, + "probability": 0.7584 + }, + { + "start": 1597.7, + "end": 1599.29, + "probability": 0.988 + }, + { + "start": 1601.16, + "end": 1607.62, + "probability": 0.9967 + }, + { + "start": 1608.02, + "end": 1609.42, + "probability": 0.988 + }, + { + "start": 1610.2, + "end": 1615.94, + "probability": 0.9864 + }, + { + "start": 1616.42, + "end": 1619.72, + "probability": 0.9658 + }, + { + "start": 1620.52, + "end": 1622.73, + "probability": 0.9014 + }, + { + "start": 1622.82, + "end": 1623.94, + "probability": 0.9094 + }, + { + "start": 1625.74, + "end": 1626.26, + "probability": 0.7453 + }, + { + "start": 1627.32, + "end": 1628.78, + "probability": 0.9175 + }, + { + "start": 1629.56, + "end": 1632.4, + "probability": 0.776 + }, + { + "start": 1633.06, + "end": 1634.16, + "probability": 0.647 + }, + { + "start": 1635.88, + "end": 1640.56, + "probability": 0.8071 + }, + { + "start": 1641.26, + "end": 1644.96, + "probability": 0.9859 + }, + { + "start": 1645.72, + "end": 1650.4, + "probability": 0.9861 + }, + { + "start": 1653.4, + "end": 1656.54, + "probability": 0.9927 + }, + { + "start": 1656.68, + "end": 1658.48, + "probability": 0.9451 + }, + { + "start": 1659.86, + "end": 1663.46, + "probability": 0.9434 + }, + { + "start": 1664.46, + "end": 1669.3, + "probability": 0.9849 + }, + { + "start": 1670.44, + "end": 1671.5, + "probability": 0.6167 + }, + { + "start": 1671.84, + "end": 1673.82, + "probability": 0.6732 + }, + { + "start": 1674.53, + "end": 1675.84, + "probability": 0.983 + }, + { + "start": 1676.56, + "end": 1678.88, + "probability": 0.9644 + }, + { + "start": 1679.32, + "end": 1680.68, + "probability": 0.7689 + }, + { + "start": 1680.94, + "end": 1683.06, + "probability": 0.9692 + }, + { + "start": 1683.18, + "end": 1687.14, + "probability": 0.9452 + }, + { + "start": 1687.7, + "end": 1690.2, + "probability": 0.8337 + }, + { + "start": 1690.4, + "end": 1692.0, + "probability": 0.9846 + }, + { + "start": 1693.82, + "end": 1697.56, + "probability": 0.8086 + }, + { + "start": 1697.8, + "end": 1702.16, + "probability": 0.8035 + }, + { + "start": 1703.04, + "end": 1705.3, + "probability": 0.5474 + }, + { + "start": 1706.02, + "end": 1708.64, + "probability": 0.9298 + }, + { + "start": 1713.04, + "end": 1715.18, + "probability": 0.8855 + }, + { + "start": 1715.38, + "end": 1718.0, + "probability": 0.9932 + }, + { + "start": 1718.8, + "end": 1721.8, + "probability": 0.827 + }, + { + "start": 1722.74, + "end": 1723.38, + "probability": 0.8431 + }, + { + "start": 1725.04, + "end": 1728.06, + "probability": 0.7488 + }, + { + "start": 1729.5, + "end": 1734.66, + "probability": 0.9824 + }, + { + "start": 1735.86, + "end": 1741.18, + "probability": 0.9965 + }, + { + "start": 1741.18, + "end": 1748.16, + "probability": 0.998 + }, + { + "start": 1748.2, + "end": 1749.76, + "probability": 0.9854 + }, + { + "start": 1752.22, + "end": 1759.52, + "probability": 0.9943 + }, + { + "start": 1760.6, + "end": 1765.84, + "probability": 0.9993 + }, + { + "start": 1767.48, + "end": 1768.26, + "probability": 0.3779 + }, + { + "start": 1768.94, + "end": 1772.3, + "probability": 0.8615 + }, + { + "start": 1773.2, + "end": 1781.82, + "probability": 0.8536 + }, + { + "start": 1783.58, + "end": 1787.68, + "probability": 0.9712 + }, + { + "start": 1788.84, + "end": 1792.76, + "probability": 0.8015 + }, + { + "start": 1793.48, + "end": 1802.14, + "probability": 0.985 + }, + { + "start": 1803.66, + "end": 1806.46, + "probability": 0.9951 + }, + { + "start": 1807.94, + "end": 1810.5, + "probability": 0.9967 + }, + { + "start": 1810.5, + "end": 1813.16, + "probability": 0.9976 + }, + { + "start": 1813.84, + "end": 1815.0, + "probability": 0.9963 + }, + { + "start": 1816.2, + "end": 1821.24, + "probability": 0.8289 + }, + { + "start": 1821.54, + "end": 1822.22, + "probability": 0.9385 + }, + { + "start": 1823.24, + "end": 1833.04, + "probability": 0.9906 + }, + { + "start": 1834.2, + "end": 1837.12, + "probability": 0.9832 + }, + { + "start": 1838.72, + "end": 1842.96, + "probability": 0.9794 + }, + { + "start": 1844.52, + "end": 1848.86, + "probability": 0.9895 + }, + { + "start": 1849.04, + "end": 1850.52, + "probability": 0.9949 + }, + { + "start": 1851.4, + "end": 1852.14, + "probability": 0.866 + }, + { + "start": 1853.94, + "end": 1855.98, + "probability": 0.75 + }, + { + "start": 1857.88, + "end": 1863.42, + "probability": 0.9515 + }, + { + "start": 1863.98, + "end": 1868.16, + "probability": 0.9932 + }, + { + "start": 1869.42, + "end": 1871.16, + "probability": 0.744 + }, + { + "start": 1872.04, + "end": 1877.08, + "probability": 0.8222 + }, + { + "start": 1879.6, + "end": 1881.84, + "probability": 0.9662 + }, + { + "start": 1882.74, + "end": 1886.46, + "probability": 0.9116 + }, + { + "start": 1888.24, + "end": 1890.08, + "probability": 0.9989 + }, + { + "start": 1891.2, + "end": 1893.26, + "probability": 0.9857 + }, + { + "start": 1894.54, + "end": 1898.12, + "probability": 0.9922 + }, + { + "start": 1899.02, + "end": 1900.18, + "probability": 0.9463 + }, + { + "start": 1900.54, + "end": 1905.6, + "probability": 0.9676 + }, + { + "start": 1908.8, + "end": 1910.58, + "probability": 0.6098 + }, + { + "start": 1912.04, + "end": 1914.4, + "probability": 0.8534 + }, + { + "start": 1915.64, + "end": 1917.32, + "probability": 0.9929 + }, + { + "start": 1918.22, + "end": 1922.32, + "probability": 0.9613 + }, + { + "start": 1923.58, + "end": 1925.03, + "probability": 0.708 + }, + { + "start": 1927.2, + "end": 1929.78, + "probability": 0.9015 + }, + { + "start": 1930.28, + "end": 1932.83, + "probability": 0.4915 + }, + { + "start": 1933.54, + "end": 1934.74, + "probability": 0.9614 + }, + { + "start": 1935.74, + "end": 1940.16, + "probability": 0.963 + }, + { + "start": 1941.06, + "end": 1944.88, + "probability": 0.9786 + }, + { + "start": 1945.36, + "end": 1946.82, + "probability": 0.8942 + }, + { + "start": 1947.66, + "end": 1949.52, + "probability": 0.9912 + }, + { + "start": 1950.14, + "end": 1952.9, + "probability": 0.9479 + }, + { + "start": 1953.54, + "end": 1957.26, + "probability": 0.9718 + }, + { + "start": 1958.12, + "end": 1959.6, + "probability": 0.9983 + }, + { + "start": 1960.86, + "end": 1964.63, + "probability": 0.9902 + }, + { + "start": 1964.94, + "end": 1969.7, + "probability": 0.9599 + }, + { + "start": 1970.06, + "end": 1970.5, + "probability": 0.9397 + }, + { + "start": 1970.9, + "end": 1972.06, + "probability": 0.9873 + }, + { + "start": 1972.76, + "end": 1973.24, + "probability": 0.9043 + }, + { + "start": 1973.38, + "end": 1974.92, + "probability": 0.9627 + }, + { + "start": 1975.54, + "end": 1977.1, + "probability": 0.9897 + }, + { + "start": 1977.22, + "end": 1980.66, + "probability": 0.9924 + }, + { + "start": 1981.34, + "end": 1983.12, + "probability": 0.893 + }, + { + "start": 1984.12, + "end": 1988.94, + "probability": 0.8728 + }, + { + "start": 1989.66, + "end": 1990.6, + "probability": 0.9309 + }, + { + "start": 1990.98, + "end": 1993.86, + "probability": 0.992 + }, + { + "start": 1994.0, + "end": 1996.18, + "probability": 0.9833 + }, + { + "start": 1999.55, + "end": 2002.92, + "probability": 0.5888 + }, + { + "start": 2003.38, + "end": 2008.02, + "probability": 0.671 + }, + { + "start": 2009.0, + "end": 2010.3, + "probability": 0.9019 + }, + { + "start": 2010.7, + "end": 2013.72, + "probability": 0.9857 + }, + { + "start": 2013.72, + "end": 2014.08, + "probability": 0.4641 + }, + { + "start": 2014.16, + "end": 2015.06, + "probability": 0.8277 + }, + { + "start": 2015.06, + "end": 2015.74, + "probability": 0.8788 + }, + { + "start": 2016.22, + "end": 2020.28, + "probability": 0.8293 + }, + { + "start": 2020.9, + "end": 2024.46, + "probability": 0.6659 + }, + { + "start": 2024.62, + "end": 2026.28, + "probability": 0.9807 + }, + { + "start": 2026.32, + "end": 2026.71, + "probability": 0.5618 + }, + { + "start": 2028.26, + "end": 2028.6, + "probability": 0.3212 + }, + { + "start": 2028.7, + "end": 2029.6, + "probability": 0.8114 + }, + { + "start": 2029.84, + "end": 2030.94, + "probability": 0.9426 + }, + { + "start": 2031.06, + "end": 2035.63, + "probability": 0.994 + }, + { + "start": 2036.24, + "end": 2037.98, + "probability": 0.9136 + }, + { + "start": 2038.36, + "end": 2039.46, + "probability": 0.6567 + }, + { + "start": 2040.36, + "end": 2043.08, + "probability": 0.981 + }, + { + "start": 2044.88, + "end": 2045.43, + "probability": 0.9185 + }, + { + "start": 2045.86, + "end": 2051.04, + "probability": 0.9739 + }, + { + "start": 2051.18, + "end": 2052.48, + "probability": 0.9828 + }, + { + "start": 2053.66, + "end": 2054.46, + "probability": 0.9044 + }, + { + "start": 2055.12, + "end": 2059.3, + "probability": 0.963 + }, + { + "start": 2060.3, + "end": 2064.88, + "probability": 0.9951 + }, + { + "start": 2064.96, + "end": 2065.38, + "probability": 0.8992 + }, + { + "start": 2066.08, + "end": 2070.1, + "probability": 0.9932 + }, + { + "start": 2070.44, + "end": 2072.5, + "probability": 0.9911 + }, + { + "start": 2072.92, + "end": 2075.32, + "probability": 0.9153 + }, + { + "start": 2075.56, + "end": 2077.08, + "probability": 0.8174 + }, + { + "start": 2077.92, + "end": 2079.16, + "probability": 0.9165 + }, + { + "start": 2079.54, + "end": 2085.2, + "probability": 0.9604 + }, + { + "start": 2085.76, + "end": 2090.44, + "probability": 0.9915 + }, + { + "start": 2092.0, + "end": 2094.62, + "probability": 0.998 + }, + { + "start": 2094.62, + "end": 2098.88, + "probability": 0.999 + }, + { + "start": 2099.96, + "end": 2103.28, + "probability": 0.665 + }, + { + "start": 2103.98, + "end": 2106.36, + "probability": 0.7839 + }, + { + "start": 2107.3, + "end": 2110.3, + "probability": 0.9477 + }, + { + "start": 2110.82, + "end": 2112.6, + "probability": 0.5939 + }, + { + "start": 2112.66, + "end": 2119.94, + "probability": 0.937 + }, + { + "start": 2121.38, + "end": 2122.94, + "probability": 0.0049 + }, + { + "start": 2123.96, + "end": 2125.26, + "probability": 0.7455 + }, + { + "start": 2129.68, + "end": 2138.4, + "probability": 0.0442 + }, + { + "start": 2138.78, + "end": 2145.5, + "probability": 0.0744 + }, + { + "start": 2145.5, + "end": 2145.5, + "probability": 0.0551 + }, + { + "start": 2145.5, + "end": 2145.5, + "probability": 0.0175 + }, + { + "start": 2145.5, + "end": 2145.5, + "probability": 0.1074 + }, + { + "start": 2145.5, + "end": 2145.5, + "probability": 0.0166 + }, + { + "start": 2145.5, + "end": 2147.18, + "probability": 0.7816 + }, + { + "start": 2147.32, + "end": 2148.98, + "probability": 0.5818 + }, + { + "start": 2149.9, + "end": 2150.44, + "probability": 0.6227 + }, + { + "start": 2151.26, + "end": 2155.16, + "probability": 0.9058 + }, + { + "start": 2155.92, + "end": 2158.58, + "probability": 0.6926 + }, + { + "start": 2158.92, + "end": 2160.68, + "probability": 0.8034 + }, + { + "start": 2160.96, + "end": 2164.76, + "probability": 0.9897 + }, + { + "start": 2165.48, + "end": 2168.22, + "probability": 0.9746 + }, + { + "start": 2169.94, + "end": 2173.9, + "probability": 0.9525 + }, + { + "start": 2174.42, + "end": 2181.56, + "probability": 0.9409 + }, + { + "start": 2182.32, + "end": 2185.72, + "probability": 0.9951 + }, + { + "start": 2186.44, + "end": 2187.51, + "probability": 0.9478 + }, + { + "start": 2188.32, + "end": 2192.4, + "probability": 0.9766 + }, + { + "start": 2193.42, + "end": 2194.6, + "probability": 0.9751 + }, + { + "start": 2194.7, + "end": 2197.78, + "probability": 0.9909 + }, + { + "start": 2198.28, + "end": 2202.3, + "probability": 0.9897 + }, + { + "start": 2202.36, + "end": 2203.34, + "probability": 0.9951 + }, + { + "start": 2203.42, + "end": 2205.26, + "probability": 0.9672 + }, + { + "start": 2205.66, + "end": 2207.76, + "probability": 0.7383 + }, + { + "start": 2207.84, + "end": 2212.16, + "probability": 0.7785 + }, + { + "start": 2212.76, + "end": 2214.36, + "probability": 0.9461 + }, + { + "start": 2214.88, + "end": 2216.48, + "probability": 0.8364 + }, + { + "start": 2217.74, + "end": 2220.42, + "probability": 0.5723 + }, + { + "start": 2220.44, + "end": 2221.2, + "probability": 0.8584 + }, + { + "start": 2221.56, + "end": 2222.76, + "probability": 0.6892 + }, + { + "start": 2222.94, + "end": 2227.16, + "probability": 0.9526 + }, + { + "start": 2227.92, + "end": 2231.86, + "probability": 0.9858 + }, + { + "start": 2232.78, + "end": 2233.68, + "probability": 0.9492 + }, + { + "start": 2233.84, + "end": 2236.94, + "probability": 0.9931 + }, + { + "start": 2237.36, + "end": 2239.06, + "probability": 0.8011 + }, + { + "start": 2239.56, + "end": 2243.78, + "probability": 0.8865 + }, + { + "start": 2244.16, + "end": 2245.48, + "probability": 0.9153 + }, + { + "start": 2245.6, + "end": 2249.58, + "probability": 0.8696 + }, + { + "start": 2250.26, + "end": 2252.14, + "probability": 0.2853 + }, + { + "start": 2252.3, + "end": 2257.48, + "probability": 0.9567 + }, + { + "start": 2257.92, + "end": 2260.98, + "probability": 0.9847 + }, + { + "start": 2261.26, + "end": 2264.06, + "probability": 0.9961 + }, + { + "start": 2264.14, + "end": 2265.3, + "probability": 0.9326 + }, + { + "start": 2266.56, + "end": 2275.74, + "probability": 0.9785 + }, + { + "start": 2276.98, + "end": 2277.82, + "probability": 0.7258 + }, + { + "start": 2279.43, + "end": 2284.04, + "probability": 0.9282 + }, + { + "start": 2285.12, + "end": 2291.64, + "probability": 0.9946 + }, + { + "start": 2292.04, + "end": 2292.64, + "probability": 0.7629 + }, + { + "start": 2292.96, + "end": 2293.64, + "probability": 0.6625 + }, + { + "start": 2293.82, + "end": 2294.1, + "probability": 0.7535 + }, + { + "start": 2294.2, + "end": 2294.7, + "probability": 0.7814 + }, + { + "start": 2295.1, + "end": 2295.78, + "probability": 0.873 + }, + { + "start": 2295.82, + "end": 2296.38, + "probability": 0.5035 + }, + { + "start": 2297.22, + "end": 2300.62, + "probability": 0.9567 + }, + { + "start": 2301.58, + "end": 2305.62, + "probability": 0.9972 + }, + { + "start": 2306.28, + "end": 2313.26, + "probability": 0.9564 + }, + { + "start": 2313.26, + "end": 2319.72, + "probability": 0.9976 + }, + { + "start": 2319.76, + "end": 2321.7, + "probability": 0.9775 + }, + { + "start": 2322.28, + "end": 2326.32, + "probability": 0.9932 + }, + { + "start": 2327.24, + "end": 2331.0, + "probability": 0.985 + }, + { + "start": 2332.38, + "end": 2334.88, + "probability": 0.9001 + }, + { + "start": 2335.12, + "end": 2336.88, + "probability": 0.5941 + }, + { + "start": 2337.46, + "end": 2338.6, + "probability": 0.437 + }, + { + "start": 2339.16, + "end": 2339.76, + "probability": 0.349 + }, + { + "start": 2340.36, + "end": 2340.72, + "probability": 0.327 + }, + { + "start": 2341.38, + "end": 2344.46, + "probability": 0.874 + }, + { + "start": 2348.46, + "end": 2349.32, + "probability": 0.9274 + }, + { + "start": 2349.94, + "end": 2351.18, + "probability": 0.6678 + }, + { + "start": 2352.34, + "end": 2354.22, + "probability": 0.9281 + }, + { + "start": 2355.26, + "end": 2357.1, + "probability": 0.9792 + }, + { + "start": 2357.4, + "end": 2362.34, + "probability": 0.8873 + }, + { + "start": 2363.24, + "end": 2365.5, + "probability": 0.3309 + }, + { + "start": 2365.5, + "end": 2367.96, + "probability": 0.7185 + }, + { + "start": 2369.12, + "end": 2370.2, + "probability": 0.8787 + }, + { + "start": 2373.12, + "end": 2377.64, + "probability": 0.8516 + }, + { + "start": 2378.66, + "end": 2379.26, + "probability": 0.9364 + }, + { + "start": 2380.2, + "end": 2382.76, + "probability": 0.8957 + }, + { + "start": 2383.94, + "end": 2384.74, + "probability": 0.8934 + }, + { + "start": 2385.66, + "end": 2387.03, + "probability": 0.9759 + }, + { + "start": 2388.86, + "end": 2390.64, + "probability": 0.6873 + }, + { + "start": 2391.92, + "end": 2393.24, + "probability": 0.5721 + }, + { + "start": 2395.72, + "end": 2395.74, + "probability": 0.7201 + }, + { + "start": 2395.74, + "end": 2405.32, + "probability": 0.8918 + }, + { + "start": 2407.44, + "end": 2413.32, + "probability": 0.9724 + }, + { + "start": 2415.82, + "end": 2418.5, + "probability": 0.5985 + }, + { + "start": 2419.12, + "end": 2422.72, + "probability": 0.586 + }, + { + "start": 2423.5, + "end": 2425.69, + "probability": 0.2739 + }, + { + "start": 2427.5, + "end": 2427.78, + "probability": 0.0314 + }, + { + "start": 2427.78, + "end": 2430.24, + "probability": 0.9228 + }, + { + "start": 2431.2, + "end": 2434.1, + "probability": 0.9915 + }, + { + "start": 2434.18, + "end": 2439.86, + "probability": 0.989 + }, + { + "start": 2440.38, + "end": 2442.56, + "probability": 0.8027 + }, + { + "start": 2443.96, + "end": 2447.16, + "probability": 0.9876 + }, + { + "start": 2447.16, + "end": 2447.16, + "probability": 0.3901 + }, + { + "start": 2447.16, + "end": 2449.96, + "probability": 0.8596 + }, + { + "start": 2450.54, + "end": 2451.26, + "probability": 0.652 + }, + { + "start": 2452.92, + "end": 2456.02, + "probability": 0.7794 + }, + { + "start": 2457.06, + "end": 2460.05, + "probability": 0.9836 + }, + { + "start": 2461.64, + "end": 2463.52, + "probability": 0.7723 + }, + { + "start": 2464.28, + "end": 2466.32, + "probability": 0.5076 + }, + { + "start": 2466.54, + "end": 2468.8, + "probability": 0.7441 + }, + { + "start": 2469.46, + "end": 2471.84, + "probability": 0.5821 + }, + { + "start": 2472.64, + "end": 2474.06, + "probability": 0.9868 + }, + { + "start": 2474.26, + "end": 2476.16, + "probability": 0.8611 + }, + { + "start": 2477.0, + "end": 2479.7, + "probability": 0.984 + }, + { + "start": 2480.32, + "end": 2481.5, + "probability": 0.9834 + }, + { + "start": 2482.1, + "end": 2484.46, + "probability": 0.8956 + }, + { + "start": 2484.76, + "end": 2489.58, + "probability": 0.83 + }, + { + "start": 2490.0, + "end": 2491.15, + "probability": 0.9849 + }, + { + "start": 2492.04, + "end": 2493.56, + "probability": 0.813 + }, + { + "start": 2495.3, + "end": 2496.17, + "probability": 0.7078 + }, + { + "start": 2497.08, + "end": 2499.72, + "probability": 0.9869 + }, + { + "start": 2501.34, + "end": 2504.44, + "probability": 0.6724 + }, + { + "start": 2504.72, + "end": 2508.06, + "probability": 0.9814 + }, + { + "start": 2508.32, + "end": 2509.92, + "probability": 0.7356 + }, + { + "start": 2511.6, + "end": 2512.8, + "probability": 0.9709 + }, + { + "start": 2513.06, + "end": 2515.42, + "probability": 0.9761 + }, + { + "start": 2515.54, + "end": 2516.08, + "probability": 0.7211 + }, + { + "start": 2516.18, + "end": 2516.94, + "probability": 0.6929 + }, + { + "start": 2517.02, + "end": 2517.76, + "probability": 0.6628 + }, + { + "start": 2519.24, + "end": 2523.82, + "probability": 0.9409 + }, + { + "start": 2523.82, + "end": 2527.92, + "probability": 0.9992 + }, + { + "start": 2529.1, + "end": 2533.83, + "probability": 0.9321 + }, + { + "start": 2534.56, + "end": 2540.34, + "probability": 0.9421 + }, + { + "start": 2541.32, + "end": 2544.42, + "probability": 0.9216 + }, + { + "start": 2544.42, + "end": 2547.72, + "probability": 0.8928 + }, + { + "start": 2548.62, + "end": 2552.6, + "probability": 0.9824 + }, + { + "start": 2554.2, + "end": 2555.78, + "probability": 0.8373 + }, + { + "start": 2556.04, + "end": 2557.92, + "probability": 0.7132 + }, + { + "start": 2557.96, + "end": 2559.72, + "probability": 0.9202 + }, + { + "start": 2559.78, + "end": 2560.94, + "probability": 0.9492 + }, + { + "start": 2561.48, + "end": 2562.58, + "probability": 0.9624 + }, + { + "start": 2563.14, + "end": 2566.84, + "probability": 0.936 + }, + { + "start": 2567.98, + "end": 2570.46, + "probability": 0.8718 + }, + { + "start": 2571.16, + "end": 2575.22, + "probability": 0.8979 + }, + { + "start": 2579.56, + "end": 2580.23, + "probability": 0.4045 + }, + { + "start": 2580.58, + "end": 2584.84, + "probability": 0.7258 + }, + { + "start": 2584.84, + "end": 2589.24, + "probability": 0.9974 + }, + { + "start": 2590.92, + "end": 2591.58, + "probability": 0.3404 + }, + { + "start": 2592.98, + "end": 2594.04, + "probability": 0.7327 + }, + { + "start": 2594.2, + "end": 2598.54, + "probability": 0.9906 + }, + { + "start": 2599.64, + "end": 2606.78, + "probability": 0.8883 + }, + { + "start": 2607.04, + "end": 2608.86, + "probability": 0.929 + }, + { + "start": 2609.6, + "end": 2612.66, + "probability": 0.9454 + }, + { + "start": 2613.1, + "end": 2615.82, + "probability": 0.9098 + }, + { + "start": 2616.48, + "end": 2620.0, + "probability": 0.9897 + }, + { + "start": 2621.18, + "end": 2622.89, + "probability": 0.9721 + }, + { + "start": 2624.54, + "end": 2630.84, + "probability": 0.9761 + }, + { + "start": 2631.7, + "end": 2632.46, + "probability": 0.8163 + }, + { + "start": 2634.5, + "end": 2637.22, + "probability": 0.9848 + }, + { + "start": 2637.86, + "end": 2641.1, + "probability": 0.9843 + }, + { + "start": 2641.98, + "end": 2642.7, + "probability": 0.9138 + }, + { + "start": 2642.96, + "end": 2643.12, + "probability": 0.3067 + }, + { + "start": 2643.16, + "end": 2648.96, + "probability": 0.9771 + }, + { + "start": 2649.16, + "end": 2650.02, + "probability": 0.6511 + }, + { + "start": 2650.74, + "end": 2651.22, + "probability": 0.9895 + }, + { + "start": 2653.0, + "end": 2654.46, + "probability": 0.7913 + }, + { + "start": 2657.18, + "end": 2661.4, + "probability": 0.9832 + }, + { + "start": 2663.6, + "end": 2669.02, + "probability": 0.7088 + }, + { + "start": 2669.66, + "end": 2670.28, + "probability": 0.8695 + }, + { + "start": 2671.7, + "end": 2673.02, + "probability": 0.9702 + }, + { + "start": 2673.18, + "end": 2678.56, + "probability": 0.8548 + }, + { + "start": 2682.02, + "end": 2683.28, + "probability": 0.9923 + }, + { + "start": 2683.44, + "end": 2685.2, + "probability": 0.9695 + }, + { + "start": 2685.5, + "end": 2690.64, + "probability": 0.739 + }, + { + "start": 2691.16, + "end": 2696.66, + "probability": 0.9555 + }, + { + "start": 2698.96, + "end": 2701.82, + "probability": 0.4159 + }, + { + "start": 2704.82, + "end": 2706.46, + "probability": 0.9973 + }, + { + "start": 2706.64, + "end": 2708.96, + "probability": 0.9888 + }, + { + "start": 2710.6, + "end": 2714.88, + "probability": 0.9944 + }, + { + "start": 2715.4, + "end": 2716.76, + "probability": 0.9938 + }, + { + "start": 2717.86, + "end": 2719.06, + "probability": 0.6725 + }, + { + "start": 2720.02, + "end": 2722.94, + "probability": 0.9441 + }, + { + "start": 2725.7, + "end": 2727.48, + "probability": 0.919 + }, + { + "start": 2727.54, + "end": 2731.68, + "probability": 0.5947 + }, + { + "start": 2731.86, + "end": 2732.08, + "probability": 0.3979 + }, + { + "start": 2732.18, + "end": 2732.98, + "probability": 0.8252 + }, + { + "start": 2733.14, + "end": 2733.7, + "probability": 0.7665 + }, + { + "start": 2733.88, + "end": 2734.68, + "probability": 0.51 + }, + { + "start": 2736.12, + "end": 2740.56, + "probability": 0.9937 + }, + { + "start": 2742.44, + "end": 2745.64, + "probability": 0.7987 + }, + { + "start": 2746.7, + "end": 2750.08, + "probability": 0.999 + }, + { + "start": 2751.08, + "end": 2752.14, + "probability": 0.3857 + }, + { + "start": 2752.16, + "end": 2753.46, + "probability": 0.4675 + }, + { + "start": 2753.9, + "end": 2758.56, + "probability": 0.6203 + }, + { + "start": 2759.34, + "end": 2759.34, + "probability": 0.0387 + }, + { + "start": 2759.34, + "end": 2759.76, + "probability": 0.765 + }, + { + "start": 2759.88, + "end": 2762.06, + "probability": 0.9835 + }, + { + "start": 2762.14, + "end": 2763.14, + "probability": 0.9976 + }, + { + "start": 2763.92, + "end": 2770.06, + "probability": 0.9834 + }, + { + "start": 2770.06, + "end": 2773.96, + "probability": 0.9939 + }, + { + "start": 2774.56, + "end": 2776.96, + "probability": 0.9988 + }, + { + "start": 2777.78, + "end": 2781.6, + "probability": 0.9436 + }, + { + "start": 2782.14, + "end": 2783.16, + "probability": 0.6448 + }, + { + "start": 2783.32, + "end": 2786.32, + "probability": 0.9824 + }, + { + "start": 2787.6, + "end": 2791.44, + "probability": 0.9827 + }, + { + "start": 2792.3, + "end": 2793.68, + "probability": 0.964 + }, + { + "start": 2793.78, + "end": 2796.32, + "probability": 0.9644 + }, + { + "start": 2797.02, + "end": 2798.25, + "probability": 0.9875 + }, + { + "start": 2799.7, + "end": 2802.16, + "probability": 0.8224 + }, + { + "start": 2804.12, + "end": 2804.72, + "probability": 0.68 + }, + { + "start": 2804.8, + "end": 2805.92, + "probability": 0.8326 + }, + { + "start": 2806.52, + "end": 2813.1, + "probability": 0.9827 + }, + { + "start": 2817.56, + "end": 2819.28, + "probability": 0.9448 + }, + { + "start": 2819.52, + "end": 2824.48, + "probability": 0.8671 + }, + { + "start": 2824.64, + "end": 2825.28, + "probability": 0.9285 + }, + { + "start": 2825.48, + "end": 2826.12, + "probability": 0.9764 + }, + { + "start": 2827.02, + "end": 2827.98, + "probability": 0.959 + }, + { + "start": 2829.2, + "end": 2830.24, + "probability": 0.624 + }, + { + "start": 2831.7, + "end": 2832.92, + "probability": 0.9861 + }, + { + "start": 2833.58, + "end": 2835.34, + "probability": 0.9961 + }, + { + "start": 2836.38, + "end": 2840.92, + "probability": 0.9391 + }, + { + "start": 2841.7, + "end": 2842.8, + "probability": 0.8672 + }, + { + "start": 2843.82, + "end": 2845.52, + "probability": 0.9415 + }, + { + "start": 2846.52, + "end": 2850.14, + "probability": 0.9936 + }, + { + "start": 2850.74, + "end": 2851.38, + "probability": 0.9182 + }, + { + "start": 2852.74, + "end": 2855.56, + "probability": 0.9686 + }, + { + "start": 2856.88, + "end": 2857.74, + "probability": 0.6299 + }, + { + "start": 2858.34, + "end": 2863.7, + "probability": 0.9791 + }, + { + "start": 2865.48, + "end": 2866.72, + "probability": 0.7603 + }, + { + "start": 2870.12, + "end": 2870.7, + "probability": 0.5651 + }, + { + "start": 2871.04, + "end": 2875.02, + "probability": 0.8928 + }, + { + "start": 2876.24, + "end": 2880.08, + "probability": 0.8781 + }, + { + "start": 2881.16, + "end": 2882.42, + "probability": 0.9746 + }, + { + "start": 2883.32, + "end": 2885.07, + "probability": 0.967 + }, + { + "start": 2885.94, + "end": 2886.12, + "probability": 0.4807 + }, + { + "start": 2886.3, + "end": 2887.1, + "probability": 0.8484 + }, + { + "start": 2887.18, + "end": 2888.32, + "probability": 0.9131 + }, + { + "start": 2888.78, + "end": 2890.86, + "probability": 0.9878 + }, + { + "start": 2892.18, + "end": 2895.62, + "probability": 0.9922 + }, + { + "start": 2896.64, + "end": 2900.42, + "probability": 0.6456 + }, + { + "start": 2901.08, + "end": 2904.06, + "probability": 0.9897 + }, + { + "start": 2904.68, + "end": 2909.54, + "probability": 0.9065 + }, + { + "start": 2910.32, + "end": 2912.48, + "probability": 0.9757 + }, + { + "start": 2913.52, + "end": 2916.2, + "probability": 0.816 + }, + { + "start": 2917.1, + "end": 2921.34, + "probability": 0.959 + }, + { + "start": 2921.4, + "end": 2921.62, + "probability": 0.8513 + }, + { + "start": 2922.72, + "end": 2925.5, + "probability": 0.9542 + }, + { + "start": 2926.38, + "end": 2929.44, + "probability": 0.9733 + }, + { + "start": 2930.24, + "end": 2933.01, + "probability": 0.7529 + }, + { + "start": 2933.6, + "end": 2934.32, + "probability": 0.909 + }, + { + "start": 2934.54, + "end": 2935.48, + "probability": 0.4738 + }, + { + "start": 2935.5, + "end": 2936.74, + "probability": 0.944 + }, + { + "start": 2937.3, + "end": 2939.48, + "probability": 0.719 + }, + { + "start": 2939.6, + "end": 2941.66, + "probability": 0.9893 + }, + { + "start": 2941.82, + "end": 2943.34, + "probability": 0.9816 + }, + { + "start": 2944.74, + "end": 2947.88, + "probability": 0.9684 + }, + { + "start": 2949.64, + "end": 2951.84, + "probability": 0.6162 + }, + { + "start": 2951.94, + "end": 2953.98, + "probability": 0.9919 + }, + { + "start": 2955.72, + "end": 2955.82, + "probability": 0.0989 + }, + { + "start": 2958.68, + "end": 2960.62, + "probability": 0.9064 + }, + { + "start": 2962.14, + "end": 2964.54, + "probability": 0.5653 + }, + { + "start": 2964.74, + "end": 2965.26, + "probability": 0.5078 + }, + { + "start": 2965.42, + "end": 2966.32, + "probability": 0.6716 + }, + { + "start": 2966.34, + "end": 2970.1, + "probability": 0.8184 + }, + { + "start": 2970.1, + "end": 2972.46, + "probability": 0.9723 + }, + { + "start": 2974.17, + "end": 2979.7, + "probability": 0.9235 + }, + { + "start": 2980.4, + "end": 2984.62, + "probability": 0.8731 + }, + { + "start": 2985.52, + "end": 2988.46, + "probability": 0.9712 + }, + { + "start": 2989.06, + "end": 2990.64, + "probability": 0.9552 + }, + { + "start": 2991.38, + "end": 2991.82, + "probability": 0.8005 + }, + { + "start": 2992.78, + "end": 2993.5, + "probability": 0.8503 + }, + { + "start": 2993.6, + "end": 2993.86, + "probability": 0.6807 + }, + { + "start": 2993.88, + "end": 2994.58, + "probability": 0.8336 + }, + { + "start": 2994.6, + "end": 2995.26, + "probability": 0.9188 + }, + { + "start": 2995.28, + "end": 2996.28, + "probability": 0.9365 + }, + { + "start": 2996.88, + "end": 3001.62, + "probability": 0.9901 + }, + { + "start": 3002.38, + "end": 3005.46, + "probability": 0.8311 + }, + { + "start": 3005.46, + "end": 3006.07, + "probability": 0.8594 + }, + { + "start": 3006.76, + "end": 3008.42, + "probability": 0.8926 + }, + { + "start": 3008.98, + "end": 3010.46, + "probability": 0.929 + }, + { + "start": 3011.28, + "end": 3012.78, + "probability": 0.9433 + }, + { + "start": 3013.34, + "end": 3017.98, + "probability": 0.9697 + }, + { + "start": 3018.86, + "end": 3022.1, + "probability": 0.9844 + }, + { + "start": 3022.2, + "end": 3024.34, + "probability": 0.9391 + }, + { + "start": 3024.4, + "end": 3028.24, + "probability": 0.9721 + }, + { + "start": 3028.76, + "end": 3029.48, + "probability": 0.8268 + }, + { + "start": 3030.2, + "end": 3031.32, + "probability": 0.6279 + }, + { + "start": 3031.94, + "end": 3034.06, + "probability": 0.9075 + }, + { + "start": 3034.74, + "end": 3036.94, + "probability": 0.7227 + }, + { + "start": 3037.52, + "end": 3041.26, + "probability": 0.894 + }, + { + "start": 3041.72, + "end": 3044.72, + "probability": 0.8882 + }, + { + "start": 3045.34, + "end": 3048.72, + "probability": 0.8307 + }, + { + "start": 3049.26, + "end": 3051.24, + "probability": 0.8605 + }, + { + "start": 3051.94, + "end": 3054.34, + "probability": 0.9258 + }, + { + "start": 3054.84, + "end": 3057.82, + "probability": 0.9887 + }, + { + "start": 3059.3, + "end": 3063.46, + "probability": 0.8643 + }, + { + "start": 3064.82, + "end": 3066.22, + "probability": 0.8932 + }, + { + "start": 3067.26, + "end": 3068.24, + "probability": 0.8143 + }, + { + "start": 3068.38, + "end": 3068.96, + "probability": 0.7052 + }, + { + "start": 3069.06, + "end": 3070.78, + "probability": 0.2005 + }, + { + "start": 3071.46, + "end": 3075.0, + "probability": 0.8203 + }, + { + "start": 3075.8, + "end": 3077.26, + "probability": 0.9702 + }, + { + "start": 3078.52, + "end": 3079.88, + "probability": 0.9269 + }, + { + "start": 3081.06, + "end": 3082.92, + "probability": 0.9109 + }, + { + "start": 3084.54, + "end": 3086.24, + "probability": 0.9595 + }, + { + "start": 3087.2, + "end": 3087.9, + "probability": 0.6431 + }, + { + "start": 3089.2, + "end": 3090.16, + "probability": 0.1082 + }, + { + "start": 3091.35, + "end": 3093.54, + "probability": 0.3213 + }, + { + "start": 3095.3, + "end": 3097.58, + "probability": 0.9931 + }, + { + "start": 3098.14, + "end": 3102.72, + "probability": 0.9877 + }, + { + "start": 3103.72, + "end": 3104.42, + "probability": 0.4607 + }, + { + "start": 3104.98, + "end": 3107.42, + "probability": 0.8575 + }, + { + "start": 3108.32, + "end": 3112.1, + "probability": 0.8846 + }, + { + "start": 3112.7, + "end": 3115.0, + "probability": 0.5854 + }, + { + "start": 3116.22, + "end": 3117.82, + "probability": 0.8176 + }, + { + "start": 3119.16, + "end": 3120.48, + "probability": 0.9545 + }, + { + "start": 3121.14, + "end": 3121.46, + "probability": 0.6139 + }, + { + "start": 3122.78, + "end": 3125.48, + "probability": 0.835 + }, + { + "start": 3126.32, + "end": 3129.36, + "probability": 0.9626 + }, + { + "start": 3130.44, + "end": 3133.84, + "probability": 0.8872 + }, + { + "start": 3134.36, + "end": 3134.82, + "probability": 0.9237 + }, + { + "start": 3135.8, + "end": 3138.44, + "probability": 0.9966 + }, + { + "start": 3138.72, + "end": 3140.18, + "probability": 0.665 + }, + { + "start": 3140.68, + "end": 3141.78, + "probability": 0.9329 + }, + { + "start": 3142.12, + "end": 3143.06, + "probability": 0.8743 + }, + { + "start": 3143.54, + "end": 3151.75, + "probability": 0.8338 + }, + { + "start": 3152.3, + "end": 3153.57, + "probability": 0.7399 + }, + { + "start": 3153.9, + "end": 3155.1, + "probability": 0.9424 + }, + { + "start": 3155.94, + "end": 3157.08, + "probability": 0.0721 + }, + { + "start": 3158.78, + "end": 3159.36, + "probability": 0.784 + }, + { + "start": 3160.88, + "end": 3163.58, + "probability": 0.8942 + }, + { + "start": 3164.64, + "end": 3169.16, + "probability": 0.8258 + }, + { + "start": 3170.12, + "end": 3170.58, + "probability": 0.9829 + }, + { + "start": 3171.78, + "end": 3173.3, + "probability": 0.787 + }, + { + "start": 3174.9, + "end": 3176.58, + "probability": 0.8884 + }, + { + "start": 3177.9, + "end": 3179.2, + "probability": 0.5523 + }, + { + "start": 3181.47, + "end": 3183.44, + "probability": 0.9009 + }, + { + "start": 3184.4, + "end": 3186.2, + "probability": 0.9513 + }, + { + "start": 3186.8, + "end": 3188.84, + "probability": 0.3085 + }, + { + "start": 3189.44, + "end": 3192.46, + "probability": 0.9498 + }, + { + "start": 3193.16, + "end": 3194.1, + "probability": 0.9241 + }, + { + "start": 3195.28, + "end": 3195.66, + "probability": 0.4719 + }, + { + "start": 3196.92, + "end": 3200.98, + "probability": 0.9923 + }, + { + "start": 3201.0, + "end": 3204.86, + "probability": 0.998 + }, + { + "start": 3205.44, + "end": 3207.78, + "probability": 0.8576 + }, + { + "start": 3208.5, + "end": 3211.5, + "probability": 0.937 + }, + { + "start": 3211.58, + "end": 3212.54, + "probability": 0.7451 + }, + { + "start": 3213.1, + "end": 3214.64, + "probability": 0.9658 + }, + { + "start": 3215.2, + "end": 3216.78, + "probability": 0.8685 + }, + { + "start": 3217.72, + "end": 3218.8, + "probability": 0.9909 + }, + { + "start": 3219.38, + "end": 3223.76, + "probability": 0.7313 + }, + { + "start": 3224.6, + "end": 3226.84, + "probability": 0.8952 + }, + { + "start": 3227.66, + "end": 3231.5, + "probability": 0.8931 + }, + { + "start": 3232.46, + "end": 3236.08, + "probability": 0.9465 + }, + { + "start": 3236.66, + "end": 3239.52, + "probability": 0.8848 + }, + { + "start": 3240.16, + "end": 3242.28, + "probability": 0.8212 + }, + { + "start": 3242.46, + "end": 3242.76, + "probability": 0.8862 + }, + { + "start": 3243.12, + "end": 3245.62, + "probability": 0.9818 + }, + { + "start": 3246.54, + "end": 3247.86, + "probability": 0.6099 + }, + { + "start": 3248.84, + "end": 3253.34, + "probability": 0.9571 + }, + { + "start": 3253.96, + "end": 3259.14, + "probability": 0.7742 + }, + { + "start": 3259.8, + "end": 3260.62, + "probability": 0.9039 + }, + { + "start": 3261.66, + "end": 3262.64, + "probability": 0.8719 + }, + { + "start": 3263.68, + "end": 3265.04, + "probability": 0.9861 + }, + { + "start": 3265.68, + "end": 3266.84, + "probability": 0.9368 + }, + { + "start": 3267.4, + "end": 3269.36, + "probability": 0.9971 + }, + { + "start": 3270.0, + "end": 3271.18, + "probability": 0.9785 + }, + { + "start": 3271.54, + "end": 3276.3, + "probability": 0.9583 + }, + { + "start": 3276.92, + "end": 3278.96, + "probability": 0.7251 + }, + { + "start": 3279.54, + "end": 3280.86, + "probability": 0.8066 + }, + { + "start": 3282.06, + "end": 3283.26, + "probability": 0.9132 + }, + { + "start": 3283.42, + "end": 3285.4, + "probability": 0.9507 + }, + { + "start": 3285.8, + "end": 3286.56, + "probability": 0.7968 + }, + { + "start": 3287.24, + "end": 3292.4, + "probability": 0.9636 + }, + { + "start": 3293.0, + "end": 3295.6, + "probability": 0.9472 + }, + { + "start": 3296.42, + "end": 3297.6, + "probability": 0.9857 + }, + { + "start": 3297.96, + "end": 3298.64, + "probability": 0.9873 + }, + { + "start": 3299.14, + "end": 3299.56, + "probability": 0.986 + }, + { + "start": 3300.14, + "end": 3300.3, + "probability": 0.4498 + }, + { + "start": 3301.0, + "end": 3302.0, + "probability": 0.9264 + }, + { + "start": 3302.64, + "end": 3303.58, + "probability": 0.5672 + }, + { + "start": 3304.16, + "end": 3305.92, + "probability": 0.6652 + }, + { + "start": 3306.68, + "end": 3308.88, + "probability": 0.7426 + }, + { + "start": 3309.68, + "end": 3312.12, + "probability": 0.9935 + }, + { + "start": 3312.68, + "end": 3313.8, + "probability": 0.6217 + }, + { + "start": 3314.32, + "end": 3315.58, + "probability": 0.8251 + }, + { + "start": 3316.8, + "end": 3317.96, + "probability": 0.666 + }, + { + "start": 3319.14, + "end": 3319.88, + "probability": 0.4921 + }, + { + "start": 3319.96, + "end": 3320.68, + "probability": 0.8906 + }, + { + "start": 3321.52, + "end": 3325.76, + "probability": 0.9255 + }, + { + "start": 3327.18, + "end": 3329.62, + "probability": 0.8706 + }, + { + "start": 3329.74, + "end": 3334.06, + "probability": 0.8924 + }, + { + "start": 3334.78, + "end": 3338.44, + "probability": 0.8417 + }, + { + "start": 3339.22, + "end": 3341.38, + "probability": 0.7879 + }, + { + "start": 3342.12, + "end": 3344.14, + "probability": 0.9864 + }, + { + "start": 3345.12, + "end": 3347.24, + "probability": 0.8316 + }, + { + "start": 3349.02, + "end": 3352.14, + "probability": 0.7438 + }, + { + "start": 3353.18, + "end": 3355.16, + "probability": 0.604 + }, + { + "start": 3355.92, + "end": 3359.48, + "probability": 0.5821 + }, + { + "start": 3360.56, + "end": 3361.12, + "probability": 0.7234 + }, + { + "start": 3361.24, + "end": 3363.72, + "probability": 0.9567 + }, + { + "start": 3364.2, + "end": 3365.2, + "probability": 0.6323 + }, + { + "start": 3366.02, + "end": 3369.62, + "probability": 0.9347 + }, + { + "start": 3370.08, + "end": 3370.96, + "probability": 0.6381 + }, + { + "start": 3371.38, + "end": 3372.18, + "probability": 0.8086 + }, + { + "start": 3372.24, + "end": 3372.74, + "probability": 0.7903 + }, + { + "start": 3373.12, + "end": 3373.8, + "probability": 0.9462 + }, + { + "start": 3373.9, + "end": 3374.42, + "probability": 0.524 + }, + { + "start": 3374.68, + "end": 3375.37, + "probability": 0.9614 + }, + { + "start": 3376.54, + "end": 3377.2, + "probability": 0.9436 + }, + { + "start": 3377.98, + "end": 3378.62, + "probability": 0.9758 + }, + { + "start": 3380.0, + "end": 3385.4, + "probability": 0.9625 + }, + { + "start": 3385.58, + "end": 3386.37, + "probability": 0.6477 + }, + { + "start": 3386.46, + "end": 3388.96, + "probability": 0.8728 + }, + { + "start": 3389.74, + "end": 3390.66, + "probability": 0.2361 + }, + { + "start": 3390.74, + "end": 3394.19, + "probability": 0.8341 + }, + { + "start": 3394.64, + "end": 3396.24, + "probability": 0.7038 + }, + { + "start": 3398.1, + "end": 3401.72, + "probability": 0.9006 + }, + { + "start": 3415.72, + "end": 3418.5, + "probability": 0.6558 + }, + { + "start": 3422.06, + "end": 3428.0, + "probability": 0.9946 + }, + { + "start": 3428.96, + "end": 3429.4, + "probability": 0.8075 + }, + { + "start": 3429.94, + "end": 3431.22, + "probability": 0.8481 + }, + { + "start": 3431.58, + "end": 3434.14, + "probability": 0.625 + }, + { + "start": 3435.26, + "end": 3436.78, + "probability": 0.9795 + }, + { + "start": 3438.42, + "end": 3443.42, + "probability": 0.988 + }, + { + "start": 3445.56, + "end": 3447.3, + "probability": 0.9597 + }, + { + "start": 3451.34, + "end": 3453.46, + "probability": 0.986 + }, + { + "start": 3454.22, + "end": 3456.16, + "probability": 0.9966 + }, + { + "start": 3459.36, + "end": 3460.04, + "probability": 0.8594 + }, + { + "start": 3462.88, + "end": 3465.06, + "probability": 0.9598 + }, + { + "start": 3466.68, + "end": 3468.12, + "probability": 0.9357 + }, + { + "start": 3470.28, + "end": 3474.52, + "probability": 0.9189 + }, + { + "start": 3476.48, + "end": 3478.96, + "probability": 0.9837 + }, + { + "start": 3481.98, + "end": 3483.9, + "probability": 0.9684 + }, + { + "start": 3483.94, + "end": 3484.48, + "probability": 0.8962 + }, + { + "start": 3484.7, + "end": 3485.86, + "probability": 0.8787 + }, + { + "start": 3487.22, + "end": 3489.16, + "probability": 0.9907 + }, + { + "start": 3491.1, + "end": 3494.1, + "probability": 0.8254 + }, + { + "start": 3497.74, + "end": 3501.08, + "probability": 0.906 + }, + { + "start": 3504.56, + "end": 3507.44, + "probability": 0.9636 + }, + { + "start": 3509.14, + "end": 3509.58, + "probability": 0.9834 + }, + { + "start": 3510.3, + "end": 3512.46, + "probability": 0.9755 + }, + { + "start": 3513.3, + "end": 3514.94, + "probability": 0.7199 + }, + { + "start": 3516.04, + "end": 3517.66, + "probability": 0.537 + }, + { + "start": 3518.24, + "end": 3519.22, + "probability": 0.8153 + }, + { + "start": 3519.62, + "end": 3520.32, + "probability": 0.9689 + }, + { + "start": 3520.64, + "end": 3522.32, + "probability": 0.7205 + }, + { + "start": 3523.1, + "end": 3523.72, + "probability": 0.5943 + }, + { + "start": 3524.08, + "end": 3525.13, + "probability": 0.7224 + }, + { + "start": 3525.9, + "end": 3525.9, + "probability": 0.0285 + }, + { + "start": 3525.9, + "end": 3526.2, + "probability": 0.3358 + }, + { + "start": 3526.26, + "end": 3527.14, + "probability": 0.2777 + }, + { + "start": 3527.14, + "end": 3527.14, + "probability": 0.3984 + }, + { + "start": 3527.14, + "end": 3529.24, + "probability": 0.354 + }, + { + "start": 3529.4, + "end": 3533.2, + "probability": 0.9558 + }, + { + "start": 3535.48, + "end": 3537.68, + "probability": 0.9755 + }, + { + "start": 3537.96, + "end": 3538.46, + "probability": 0.9031 + }, + { + "start": 3538.76, + "end": 3539.4, + "probability": 0.5635 + }, + { + "start": 3539.52, + "end": 3542.12, + "probability": 0.834 + }, + { + "start": 3543.16, + "end": 3545.14, + "probability": 0.9886 + }, + { + "start": 3547.02, + "end": 3551.88, + "probability": 0.9587 + }, + { + "start": 3552.24, + "end": 3553.58, + "probability": 0.7255 + }, + { + "start": 3554.82, + "end": 3555.4, + "probability": 0.7822 + }, + { + "start": 3555.52, + "end": 3556.32, + "probability": 0.5419 + }, + { + "start": 3557.18, + "end": 3559.48, + "probability": 0.9883 + }, + { + "start": 3559.96, + "end": 3561.2, + "probability": 0.7378 + }, + { + "start": 3562.86, + "end": 3566.94, + "probability": 0.7592 + }, + { + "start": 3567.36, + "end": 3568.18, + "probability": 0.8023 + }, + { + "start": 3568.3, + "end": 3569.26, + "probability": 0.8619 + }, + { + "start": 3569.32, + "end": 3570.52, + "probability": 0.9543 + }, + { + "start": 3570.78, + "end": 3574.92, + "probability": 0.9048 + }, + { + "start": 3575.06, + "end": 3575.78, + "probability": 0.7448 + }, + { + "start": 3577.36, + "end": 3578.44, + "probability": 0.7456 + }, + { + "start": 3581.46, + "end": 3582.22, + "probability": 0.5579 + }, + { + "start": 3583.46, + "end": 3584.9, + "probability": 0.999 + }, + { + "start": 3585.66, + "end": 3587.2, + "probability": 0.8301 + }, + { + "start": 3589.84, + "end": 3591.22, + "probability": 0.9789 + }, + { + "start": 3591.5, + "end": 3593.32, + "probability": 0.9935 + }, + { + "start": 3593.5, + "end": 3596.2, + "probability": 0.844 + }, + { + "start": 3596.28, + "end": 3596.74, + "probability": 0.726 + }, + { + "start": 3596.78, + "end": 3597.8, + "probability": 0.8772 + }, + { + "start": 3599.08, + "end": 3599.65, + "probability": 0.8356 + }, + { + "start": 3600.06, + "end": 3600.88, + "probability": 0.7118 + }, + { + "start": 3604.2, + "end": 3606.8, + "probability": 0.7352 + }, + { + "start": 3608.36, + "end": 3611.68, + "probability": 0.9477 + }, + { + "start": 3611.96, + "end": 3614.38, + "probability": 0.7593 + }, + { + "start": 3614.96, + "end": 3616.04, + "probability": 0.9912 + }, + { + "start": 3617.1, + "end": 3618.27, + "probability": 0.7146 + }, + { + "start": 3619.16, + "end": 3621.48, + "probability": 0.9907 + }, + { + "start": 3622.78, + "end": 3624.56, + "probability": 0.9368 + }, + { + "start": 3625.8, + "end": 3627.42, + "probability": 0.8896 + }, + { + "start": 3627.9, + "end": 3628.84, + "probability": 0.9414 + }, + { + "start": 3629.36, + "end": 3636.69, + "probability": 0.9523 + }, + { + "start": 3637.7, + "end": 3639.22, + "probability": 0.7094 + }, + { + "start": 3639.9, + "end": 3640.52, + "probability": 0.3781 + }, + { + "start": 3640.72, + "end": 3640.88, + "probability": 0.216 + }, + { + "start": 3640.88, + "end": 3641.92, + "probability": 0.7531 + }, + { + "start": 3641.96, + "end": 3642.52, + "probability": 0.7467 + }, + { + "start": 3642.96, + "end": 3643.5, + "probability": 0.5337 + }, + { + "start": 3643.62, + "end": 3643.62, + "probability": 0.2097 + }, + { + "start": 3643.66, + "end": 3644.03, + "probability": 0.8213 + }, + { + "start": 3644.52, + "end": 3645.56, + "probability": 0.9327 + }, + { + "start": 3645.9, + "end": 3647.02, + "probability": 0.1774 + }, + { + "start": 3647.16, + "end": 3647.62, + "probability": 0.9082 + }, + { + "start": 3649.08, + "end": 3649.2, + "probability": 0.0795 + }, + { + "start": 3652.42, + "end": 3653.34, + "probability": 0.0309 + }, + { + "start": 3656.46, + "end": 3659.44, + "probability": 0.0179 + }, + { + "start": 3667.24, + "end": 3670.3, + "probability": 0.0846 + }, + { + "start": 3674.6, + "end": 3680.52, + "probability": 0.1545 + }, + { + "start": 3680.76, + "end": 3681.52, + "probability": 0.0399 + }, + { + "start": 3681.72, + "end": 3684.7, + "probability": 0.0117 + }, + { + "start": 3685.88, + "end": 3686.76, + "probability": 0.2115 + }, + { + "start": 3687.38, + "end": 3688.14, + "probability": 0.0847 + }, + { + "start": 3688.14, + "end": 3688.3, + "probability": 0.0154 + }, + { + "start": 3688.3, + "end": 3689.82, + "probability": 0.116 + }, + { + "start": 3690.06, + "end": 3691.14, + "probability": 0.0612 + }, + { + "start": 3691.14, + "end": 3692.2, + "probability": 0.109 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.1, + "end": 3738.6, + "probability": 0.103 + }, + { + "start": 3738.76, + "end": 3742.7, + "probability": 0.9271 + }, + { + "start": 3743.14, + "end": 3743.42, + "probability": 0.0141 + }, + { + "start": 3744.24, + "end": 3746.98, + "probability": 0.9619 + }, + { + "start": 3747.2, + "end": 3747.6, + "probability": 0.9688 + }, + { + "start": 3747.8, + "end": 3748.38, + "probability": 0.8209 + }, + { + "start": 3748.5, + "end": 3749.46, + "probability": 0.797 + }, + { + "start": 3749.6, + "end": 3751.86, + "probability": 0.9141 + }, + { + "start": 3752.14, + "end": 3753.1, + "probability": 0.6704 + }, + { + "start": 3753.5, + "end": 3755.8, + "probability": 0.0258 + }, + { + "start": 3755.8, + "end": 3755.8, + "probability": 0.1028 + }, + { + "start": 3755.8, + "end": 3758.82, + "probability": 0.5851 + }, + { + "start": 3759.22, + "end": 3761.46, + "probability": 0.7619 + }, + { + "start": 3762.74, + "end": 3764.88, + "probability": 0.6458 + }, + { + "start": 3765.1, + "end": 3767.56, + "probability": 0.8426 + }, + { + "start": 3769.08, + "end": 3770.6, + "probability": 0.9902 + }, + { + "start": 3771.14, + "end": 3773.1, + "probability": 0.9578 + }, + { + "start": 3774.0, + "end": 3775.62, + "probability": 0.7201 + }, + { + "start": 3776.54, + "end": 3777.42, + "probability": 0.7031 + }, + { + "start": 3778.18, + "end": 3779.58, + "probability": 0.9194 + }, + { + "start": 3779.74, + "end": 3780.82, + "probability": 0.7475 + }, + { + "start": 3780.94, + "end": 3783.62, + "probability": 0.9839 + }, + { + "start": 3784.4, + "end": 3786.04, + "probability": 0.8841 + }, + { + "start": 3786.98, + "end": 3791.86, + "probability": 0.7587 + }, + { + "start": 3792.4, + "end": 3793.4, + "probability": 0.702 + }, + { + "start": 3794.04, + "end": 3795.32, + "probability": 0.9731 + }, + { + "start": 3795.44, + "end": 3796.86, + "probability": 0.9011 + }, + { + "start": 3798.0, + "end": 3801.46, + "probability": 0.974 + }, + { + "start": 3801.46, + "end": 3802.74, + "probability": 0.9893 + }, + { + "start": 3803.02, + "end": 3805.04, + "probability": 0.9401 + }, + { + "start": 3805.2, + "end": 3806.98, + "probability": 0.677 + }, + { + "start": 3808.38, + "end": 3810.24, + "probability": 0.8929 + }, + { + "start": 3814.14, + "end": 3814.88, + "probability": 0.9536 + }, + { + "start": 3815.06, + "end": 3815.8, + "probability": 0.9727 + }, + { + "start": 3815.9, + "end": 3816.38, + "probability": 0.869 + }, + { + "start": 3816.58, + "end": 3817.8, + "probability": 0.8401 + }, + { + "start": 3818.76, + "end": 3820.1, + "probability": 0.9111 + }, + { + "start": 3822.64, + "end": 3824.7, + "probability": 0.9954 + }, + { + "start": 3825.04, + "end": 3828.42, + "probability": 0.5968 + }, + { + "start": 3829.48, + "end": 3832.62, + "probability": 0.7435 + }, + { + "start": 3833.44, + "end": 3834.86, + "probability": 0.9032 + }, + { + "start": 3836.08, + "end": 3836.88, + "probability": 0.9124 + }, + { + "start": 3837.96, + "end": 3838.94, + "probability": 0.7821 + }, + { + "start": 3839.46, + "end": 3840.72, + "probability": 0.7029 + }, + { + "start": 3842.1, + "end": 3845.72, + "probability": 0.9823 + }, + { + "start": 3847.86, + "end": 3849.96, + "probability": 0.8525 + }, + { + "start": 3850.72, + "end": 3852.14, + "probability": 0.9812 + }, + { + "start": 3852.92, + "end": 3854.92, + "probability": 0.9954 + }, + { + "start": 3855.4, + "end": 3858.64, + "probability": 0.9128 + }, + { + "start": 3859.54, + "end": 3861.18, + "probability": 0.6212 + }, + { + "start": 3862.52, + "end": 3868.94, + "probability": 0.9559 + }, + { + "start": 3869.52, + "end": 3871.58, + "probability": 0.9741 + }, + { + "start": 3872.94, + "end": 3873.66, + "probability": 0.7051 + }, + { + "start": 3873.76, + "end": 3875.0, + "probability": 0.914 + }, + { + "start": 3875.08, + "end": 3875.72, + "probability": 0.4372 + }, + { + "start": 3875.98, + "end": 3877.58, + "probability": 0.8359 + }, + { + "start": 3878.0, + "end": 3880.3, + "probability": 0.7744 + }, + { + "start": 3883.34, + "end": 3885.24, + "probability": 0.7878 + }, + { + "start": 3887.6, + "end": 3890.99, + "probability": 0.9403 + }, + { + "start": 3896.94, + "end": 3898.96, + "probability": 0.6678 + }, + { + "start": 3899.98, + "end": 3902.62, + "probability": 0.8054 + }, + { + "start": 3904.36, + "end": 3905.68, + "probability": 0.858 + }, + { + "start": 3910.0, + "end": 3911.7, + "probability": 0.7077 + }, + { + "start": 3912.56, + "end": 3913.68, + "probability": 0.2664 + }, + { + "start": 3913.68, + "end": 3914.1, + "probability": 0.8653 + }, + { + "start": 3914.92, + "end": 3915.28, + "probability": 0.2995 + }, + { + "start": 3915.48, + "end": 3916.3, + "probability": 0.479 + }, + { + "start": 3916.62, + "end": 3918.04, + "probability": 0.3228 + }, + { + "start": 3919.24, + "end": 3920.4, + "probability": 0.6832 + }, + { + "start": 3920.98, + "end": 3923.04, + "probability": 0.2075 + }, + { + "start": 3929.96, + "end": 3930.32, + "probability": 0.1002 + }, + { + "start": 3930.58, + "end": 3931.96, + "probability": 0.1506 + }, + { + "start": 3932.34, + "end": 3932.48, + "probability": 0.1853 + }, + { + "start": 3932.48, + "end": 3933.7, + "probability": 0.4678 + }, + { + "start": 3933.98, + "end": 3935.66, + "probability": 0.6044 + }, + { + "start": 3940.22, + "end": 3941.28, + "probability": 0.2805 + }, + { + "start": 3941.48, + "end": 3941.78, + "probability": 0.3775 + }, + { + "start": 3941.78, + "end": 3942.8, + "probability": 0.0949 + }, + { + "start": 3945.52, + "end": 3946.1, + "probability": 0.466 + }, + { + "start": 3946.1, + "end": 3946.22, + "probability": 0.3988 + }, + { + "start": 3946.58, + "end": 3946.64, + "probability": 0.0229 + }, + { + "start": 3947.74, + "end": 3949.22, + "probability": 0.1278 + }, + { + "start": 3951.26, + "end": 3953.0, + "probability": 0.0954 + }, + { + "start": 3953.41, + "end": 3954.08, + "probability": 0.0236 + }, + { + "start": 3955.7, + "end": 3956.32, + "probability": 0.2819 + }, + { + "start": 3956.78, + "end": 3956.78, + "probability": 0.264 + }, + { + "start": 3956.78, + "end": 3956.78, + "probability": 0.0576 + }, + { + "start": 3956.78, + "end": 3957.13, + "probability": 0.1392 + }, + { + "start": 3958.44, + "end": 3959.94, + "probability": 0.6109 + }, + { + "start": 3961.14, + "end": 3962.28, + "probability": 0.7092 + }, + { + "start": 3963.38, + "end": 3963.96, + "probability": 0.5638 + }, + { + "start": 3965.18, + "end": 3967.12, + "probability": 0.9531 + }, + { + "start": 3968.66, + "end": 3969.2, + "probability": 0.5974 + }, + { + "start": 3969.46, + "end": 3971.88, + "probability": 0.9969 + }, + { + "start": 3971.94, + "end": 3972.48, + "probability": 0.8204 + }, + { + "start": 3973.9, + "end": 3974.98, + "probability": 0.9772 + }, + { + "start": 3975.24, + "end": 3976.04, + "probability": 0.9551 + }, + { + "start": 3976.08, + "end": 3976.68, + "probability": 0.9037 + }, + { + "start": 3976.82, + "end": 3979.02, + "probability": 0.9731 + }, + { + "start": 3979.1, + "end": 3979.54, + "probability": 0.8006 + }, + { + "start": 3980.94, + "end": 3982.48, + "probability": 0.5029 + }, + { + "start": 3982.86, + "end": 3982.92, + "probability": 0.0116 + }, + { + "start": 3982.92, + "end": 3983.74, + "probability": 0.8687 + }, + { + "start": 3984.22, + "end": 3985.44, + "probability": 0.8645 + }, + { + "start": 3985.44, + "end": 3986.94, + "probability": 0.9894 + }, + { + "start": 3987.22, + "end": 3989.6, + "probability": 0.9854 + }, + { + "start": 3989.8, + "end": 3990.86, + "probability": 0.8642 + }, + { + "start": 3991.66, + "end": 3992.24, + "probability": 0.7462 + }, + { + "start": 3997.76, + "end": 3997.76, + "probability": 0.8047 + }, + { + "start": 4005.6, + "end": 4009.64, + "probability": 0.8816 + }, + { + "start": 4010.84, + "end": 4011.98, + "probability": 0.7046 + }, + { + "start": 4012.7, + "end": 4013.78, + "probability": 0.976 + }, + { + "start": 4013.86, + "end": 4015.12, + "probability": 0.9355 + }, + { + "start": 4015.52, + "end": 4017.38, + "probability": 0.9488 + }, + { + "start": 4017.62, + "end": 4018.88, + "probability": 0.7512 + }, + { + "start": 4019.58, + "end": 4019.58, + "probability": 0.4176 + }, + { + "start": 4019.58, + "end": 4020.82, + "probability": 0.842 + }, + { + "start": 4021.48, + "end": 4023.56, + "probability": 0.8838 + }, + { + "start": 4024.38, + "end": 4027.78, + "probability": 0.947 + }, + { + "start": 4027.9, + "end": 4028.36, + "probability": 0.3679 + }, + { + "start": 4028.52, + "end": 4030.78, + "probability": 0.9762 + }, + { + "start": 4030.84, + "end": 4031.36, + "probability": 0.9547 + }, + { + "start": 4031.64, + "end": 4033.6, + "probability": 0.9448 + }, + { + "start": 4033.82, + "end": 4036.22, + "probability": 0.732 + }, + { + "start": 4037.14, + "end": 4039.04, + "probability": 0.7651 + }, + { + "start": 4051.94, + "end": 4052.14, + "probability": 0.3998 + }, + { + "start": 4052.48, + "end": 4053.32, + "probability": 0.7406 + }, + { + "start": 4054.08, + "end": 4055.14, + "probability": 0.8071 + }, + { + "start": 4055.22, + "end": 4056.06, + "probability": 0.8016 + }, + { + "start": 4056.56, + "end": 4057.18, + "probability": 0.9135 + }, + { + "start": 4057.3, + "end": 4061.14, + "probability": 0.9929 + }, + { + "start": 4061.54, + "end": 4062.98, + "probability": 0.9753 + }, + { + "start": 4063.64, + "end": 4064.7, + "probability": 0.6612 + }, + { + "start": 4065.26, + "end": 4070.2, + "probability": 0.9886 + }, + { + "start": 4070.62, + "end": 4071.62, + "probability": 0.968 + }, + { + "start": 4071.9, + "end": 4072.3, + "probability": 0.8644 + }, + { + "start": 4072.38, + "end": 4073.36, + "probability": 0.8731 + }, + { + "start": 4073.46, + "end": 4075.06, + "probability": 0.6627 + }, + { + "start": 4075.12, + "end": 4075.78, + "probability": 0.7581 + }, + { + "start": 4075.96, + "end": 4078.14, + "probability": 0.9978 + }, + { + "start": 4078.26, + "end": 4078.88, + "probability": 0.7889 + }, + { + "start": 4079.32, + "end": 4081.22, + "probability": 0.6898 + }, + { + "start": 4081.66, + "end": 4083.92, + "probability": 0.9844 + }, + { + "start": 4084.8, + "end": 4087.72, + "probability": 0.995 + }, + { + "start": 4087.72, + "end": 4091.2, + "probability": 0.9975 + }, + { + "start": 4091.46, + "end": 4093.76, + "probability": 0.759 + }, + { + "start": 4094.64, + "end": 4095.94, + "probability": 0.5652 + }, + { + "start": 4096.8, + "end": 4097.54, + "probability": 0.0535 + }, + { + "start": 4098.02, + "end": 4098.36, + "probability": 0.103 + }, + { + "start": 4098.82, + "end": 4099.44, + "probability": 0.7969 + }, + { + "start": 4100.36, + "end": 4102.14, + "probability": 0.9873 + }, + { + "start": 4102.26, + "end": 4102.26, + "probability": 0.0559 + }, + { + "start": 4102.26, + "end": 4102.26, + "probability": 0.0594 + }, + { + "start": 4102.26, + "end": 4103.06, + "probability": 0.6818 + }, + { + "start": 4103.22, + "end": 4103.7, + "probability": 0.7739 + }, + { + "start": 4104.04, + "end": 4105.4, + "probability": 0.8788 + }, + { + "start": 4105.48, + "end": 4106.0, + "probability": 0.4427 + }, + { + "start": 4106.08, + "end": 4107.02, + "probability": 0.8627 + }, + { + "start": 4107.24, + "end": 4108.12, + "probability": 0.4697 + }, + { + "start": 4108.28, + "end": 4109.66, + "probability": 0.0564 + }, + { + "start": 4110.64, + "end": 4110.64, + "probability": 0.1442 + }, + { + "start": 4110.64, + "end": 4111.86, + "probability": 0.959 + }, + { + "start": 4111.9, + "end": 4114.94, + "probability": 0.8673 + }, + { + "start": 4116.38, + "end": 4117.04, + "probability": 0.9783 + }, + { + "start": 4117.6, + "end": 4121.14, + "probability": 0.9985 + }, + { + "start": 4121.16, + "end": 4124.32, + "probability": 0.975 + }, + { + "start": 4124.54, + "end": 4126.38, + "probability": 0.9102 + }, + { + "start": 4127.16, + "end": 4130.56, + "probability": 0.9824 + }, + { + "start": 4130.96, + "end": 4131.52, + "probability": 0.7242 + }, + { + "start": 4131.64, + "end": 4134.3, + "probability": 0.9963 + }, + { + "start": 4134.6, + "end": 4136.92, + "probability": 0.9916 + }, + { + "start": 4137.28, + "end": 4139.54, + "probability": 0.899 + }, + { + "start": 4139.84, + "end": 4140.32, + "probability": 0.6201 + }, + { + "start": 4140.46, + "end": 4143.86, + "probability": 0.9881 + }, + { + "start": 4144.28, + "end": 4146.24, + "probability": 0.7129 + }, + { + "start": 4146.34, + "end": 4147.32, + "probability": 0.7818 + }, + { + "start": 4147.32, + "end": 4148.1, + "probability": 0.8027 + }, + { + "start": 4148.36, + "end": 4148.98, + "probability": 0.8056 + }, + { + "start": 4149.2, + "end": 4151.52, + "probability": 0.9934 + }, + { + "start": 4151.9, + "end": 4152.42, + "probability": 0.4598 + }, + { + "start": 4152.52, + "end": 4155.34, + "probability": 0.9634 + }, + { + "start": 4156.02, + "end": 4157.18, + "probability": 0.816 + }, + { + "start": 4157.24, + "end": 4158.96, + "probability": 0.9147 + }, + { + "start": 4159.08, + "end": 4160.64, + "probability": 0.7151 + }, + { + "start": 4161.28, + "end": 4163.76, + "probability": 0.9453 + }, + { + "start": 4164.16, + "end": 4168.26, + "probability": 0.9678 + }, + { + "start": 4168.44, + "end": 4168.72, + "probability": 0.4802 + }, + { + "start": 4170.48, + "end": 4171.3, + "probability": 0.0195 + }, + { + "start": 4171.94, + "end": 4174.74, + "probability": 0.0124 + }, + { + "start": 4174.94, + "end": 4177.1, + "probability": 0.7568 + }, + { + "start": 4177.54, + "end": 4178.2, + "probability": 0.8658 + }, + { + "start": 4178.3, + "end": 4178.56, + "probability": 0.645 + }, + { + "start": 4178.62, + "end": 4179.78, + "probability": 0.8403 + }, + { + "start": 4179.9, + "end": 4182.56, + "probability": 0.9624 + }, + { + "start": 4182.96, + "end": 4183.64, + "probability": 0.8452 + }, + { + "start": 4183.74, + "end": 4184.46, + "probability": 0.7767 + }, + { + "start": 4185.14, + "end": 4186.22, + "probability": 0.0317 + }, + { + "start": 4186.22, + "end": 4186.28, + "probability": 0.155 + }, + { + "start": 4186.28, + "end": 4186.92, + "probability": 0.3407 + }, + { + "start": 4187.28, + "end": 4189.34, + "probability": 0.7847 + }, + { + "start": 4189.84, + "end": 4190.7, + "probability": 0.2745 + }, + { + "start": 4190.84, + "end": 4195.26, + "probability": 0.9795 + }, + { + "start": 4195.3, + "end": 4198.04, + "probability": 0.6408 + }, + { + "start": 4198.32, + "end": 4202.18, + "probability": 0.9954 + }, + { + "start": 4202.5, + "end": 4202.98, + "probability": 0.504 + }, + { + "start": 4203.04, + "end": 4204.0, + "probability": 0.7318 + }, + { + "start": 4204.62, + "end": 4207.3, + "probability": 0.851 + }, + { + "start": 4207.74, + "end": 4209.0, + "probability": 0.7448 + }, + { + "start": 4209.1, + "end": 4209.82, + "probability": 0.5304 + }, + { + "start": 4209.86, + "end": 4210.32, + "probability": 0.8727 + }, + { + "start": 4210.56, + "end": 4211.44, + "probability": 0.8972 + }, + { + "start": 4211.72, + "end": 4212.91, + "probability": 0.9478 + }, + { + "start": 4213.2, + "end": 4216.02, + "probability": 0.9944 + }, + { + "start": 4216.7, + "end": 4219.49, + "probability": 0.9362 + }, + { + "start": 4219.84, + "end": 4221.36, + "probability": 0.9558 + }, + { + "start": 4221.68, + "end": 4222.7, + "probability": 0.9679 + }, + { + "start": 4223.12, + "end": 4224.26, + "probability": 0.7529 + }, + { + "start": 4224.36, + "end": 4224.82, + "probability": 0.838 + }, + { + "start": 4224.84, + "end": 4226.14, + "probability": 0.9739 + }, + { + "start": 4226.54, + "end": 4228.54, + "probability": 0.6758 + }, + { + "start": 4228.68, + "end": 4229.37, + "probability": 0.8598 + }, + { + "start": 4229.66, + "end": 4232.42, + "probability": 0.9917 + }, + { + "start": 4232.78, + "end": 4235.82, + "probability": 0.9979 + }, + { + "start": 4236.71, + "end": 4238.54, + "probability": 0.9868 + }, + { + "start": 4239.26, + "end": 4240.36, + "probability": 0.9547 + }, + { + "start": 4241.7, + "end": 4242.7, + "probability": 0.1399 + }, + { + "start": 4242.7, + "end": 4242.7, + "probability": 0.2127 + }, + { + "start": 4242.7, + "end": 4244.12, + "probability": 0.3502 + }, + { + "start": 4245.14, + "end": 4247.2, + "probability": 0.7138 + }, + { + "start": 4247.5, + "end": 4249.3, + "probability": 0.1278 + }, + { + "start": 4249.3, + "end": 4251.46, + "probability": 0.4915 + }, + { + "start": 4251.6, + "end": 4254.44, + "probability": 0.4999 + }, + { + "start": 4254.78, + "end": 4255.32, + "probability": 0.2464 + }, + { + "start": 4256.18, + "end": 4260.34, + "probability": 0.565 + }, + { + "start": 4260.5, + "end": 4260.64, + "probability": 0.8098 + }, + { + "start": 4260.66, + "end": 4261.74, + "probability": 0.6946 + }, + { + "start": 4261.74, + "end": 4263.38, + "probability": 0.7471 + }, + { + "start": 4263.84, + "end": 4266.5, + "probability": 0.9836 + }, + { + "start": 4266.78, + "end": 4270.36, + "probability": 0.9973 + }, + { + "start": 4270.76, + "end": 4272.5, + "probability": 0.9985 + }, + { + "start": 4272.6, + "end": 4273.73, + "probability": 0.7227 + }, + { + "start": 4273.98, + "end": 4278.02, + "probability": 0.9945 + }, + { + "start": 4278.22, + "end": 4279.16, + "probability": 0.5476 + }, + { + "start": 4279.22, + "end": 4282.02, + "probability": 0.9766 + }, + { + "start": 4282.2, + "end": 4288.44, + "probability": 0.9724 + }, + { + "start": 4288.46, + "end": 4290.08, + "probability": 0.4227 + }, + { + "start": 4290.38, + "end": 4292.56, + "probability": 0.69 + }, + { + "start": 4292.68, + "end": 4296.4, + "probability": 0.5232 + }, + { + "start": 4296.4, + "end": 4296.4, + "probability": 0.0033 + }, + { + "start": 4296.4, + "end": 4297.02, + "probability": 0.0239 + }, + { + "start": 4297.38, + "end": 4298.4, + "probability": 0.6222 + }, + { + "start": 4298.74, + "end": 4299.36, + "probability": 0.9864 + }, + { + "start": 4299.48, + "end": 4300.64, + "probability": 0.8765 + }, + { + "start": 4301.06, + "end": 4302.04, + "probability": 0.6843 + }, + { + "start": 4302.06, + "end": 4302.96, + "probability": 0.4191 + }, + { + "start": 4303.04, + "end": 4304.32, + "probability": 0.8585 + }, + { + "start": 4304.66, + "end": 4305.98, + "probability": 0.9315 + }, + { + "start": 4306.32, + "end": 4307.6, + "probability": 0.8247 + }, + { + "start": 4307.66, + "end": 4309.48, + "probability": 0.9496 + }, + { + "start": 4309.6, + "end": 4312.22, + "probability": 0.9328 + }, + { + "start": 4312.64, + "end": 4315.8, + "probability": 0.9929 + }, + { + "start": 4316.4, + "end": 4319.96, + "probability": 0.9949 + }, + { + "start": 4320.14, + "end": 4321.0, + "probability": 0.9784 + }, + { + "start": 4321.58, + "end": 4322.18, + "probability": 0.3162 + }, + { + "start": 4322.98, + "end": 4323.04, + "probability": 0.1757 + }, + { + "start": 4323.04, + "end": 4324.48, + "probability": 0.7203 + }, + { + "start": 4325.22, + "end": 4325.72, + "probability": 0.4979 + }, + { + "start": 4325.74, + "end": 4328.15, + "probability": 0.5528 + }, + { + "start": 4328.58, + "end": 4328.86, + "probability": 0.0274 + }, + { + "start": 4328.86, + "end": 4329.36, + "probability": 0.4136 + }, + { + "start": 4330.14, + "end": 4331.34, + "probability": 0.6857 + }, + { + "start": 4334.7, + "end": 4335.22, + "probability": 0.4217 + }, + { + "start": 4335.22, + "end": 4338.28, + "probability": 0.7347 + }, + { + "start": 4339.94, + "end": 4340.52, + "probability": 0.903 + }, + { + "start": 4340.64, + "end": 4343.46, + "probability": 0.9675 + }, + { + "start": 4343.57, + "end": 4346.98, + "probability": 0.958 + }, + { + "start": 4347.32, + "end": 4351.08, + "probability": 0.996 + }, + { + "start": 4351.3, + "end": 4353.98, + "probability": 0.996 + }, + { + "start": 4354.44, + "end": 4358.0, + "probability": 0.9508 + }, + { + "start": 4358.08, + "end": 4359.18, + "probability": 0.893 + }, + { + "start": 4359.84, + "end": 4361.42, + "probability": 0.984 + }, + { + "start": 4361.5, + "end": 4362.42, + "probability": 0.9329 + }, + { + "start": 4362.8, + "end": 4363.64, + "probability": 0.7197 + }, + { + "start": 4363.72, + "end": 4366.16, + "probability": 0.9682 + }, + { + "start": 4366.84, + "end": 4367.36, + "probability": 0.2867 + }, + { + "start": 4367.62, + "end": 4368.84, + "probability": 0.6553 + }, + { + "start": 4370.06, + "end": 4374.26, + "probability": 0.9942 + }, + { + "start": 4374.32, + "end": 4375.12, + "probability": 0.9937 + }, + { + "start": 4375.52, + "end": 4376.73, + "probability": 0.9941 + }, + { + "start": 4376.76, + "end": 4380.48, + "probability": 0.9819 + }, + { + "start": 4380.84, + "end": 4382.78, + "probability": 0.8127 + }, + { + "start": 4383.59, + "end": 4386.18, + "probability": 0.1208 + }, + { + "start": 4386.18, + "end": 4388.76, + "probability": 0.9316 + }, + { + "start": 4389.32, + "end": 4394.08, + "probability": 0.8744 + }, + { + "start": 4394.66, + "end": 4396.4, + "probability": 0.8031 + }, + { + "start": 4396.7, + "end": 4398.48, + "probability": 0.9971 + }, + { + "start": 4399.72, + "end": 4403.12, + "probability": 0.2759 + }, + { + "start": 4403.22, + "end": 4406.57, + "probability": 0.9324 + }, + { + "start": 4407.6, + "end": 4409.86, + "probability": 0.4467 + }, + { + "start": 4410.09, + "end": 4413.04, + "probability": 0.7754 + }, + { + "start": 4413.72, + "end": 4414.14, + "probability": 0.4883 + }, + { + "start": 4414.18, + "end": 4414.72, + "probability": 0.89 + }, + { + "start": 4414.76, + "end": 4418.98, + "probability": 0.8958 + }, + { + "start": 4419.08, + "end": 4421.66, + "probability": 0.6456 + }, + { + "start": 4423.34, + "end": 4425.26, + "probability": 0.9937 + }, + { + "start": 4425.36, + "end": 4429.85, + "probability": 0.9678 + }, + { + "start": 4430.48, + "end": 4432.78, + "probability": 0.9976 + }, + { + "start": 4434.52, + "end": 4438.7, + "probability": 0.9154 + }, + { + "start": 4440.0, + "end": 4444.56, + "probability": 0.9558 + }, + { + "start": 4445.8, + "end": 4448.88, + "probability": 0.803 + }, + { + "start": 4450.46, + "end": 4453.24, + "probability": 0.9333 + }, + { + "start": 4454.58, + "end": 4454.96, + "probability": 0.9283 + }, + { + "start": 4455.08, + "end": 4455.74, + "probability": 0.7427 + }, + { + "start": 4455.88, + "end": 4459.52, + "probability": 0.9912 + }, + { + "start": 4459.52, + "end": 4463.68, + "probability": 0.9785 + }, + { + "start": 4464.34, + "end": 4466.16, + "probability": 0.9401 + }, + { + "start": 4468.66, + "end": 4469.3, + "probability": 0.4729 + }, + { + "start": 4469.36, + "end": 4469.56, + "probability": 0.8418 + }, + { + "start": 4469.62, + "end": 4475.2, + "probability": 0.9799 + }, + { + "start": 4475.2, + "end": 4480.04, + "probability": 0.9957 + }, + { + "start": 4481.48, + "end": 4483.98, + "probability": 0.9817 + }, + { + "start": 4485.76, + "end": 4487.66, + "probability": 0.9927 + }, + { + "start": 4488.74, + "end": 4491.26, + "probability": 0.973 + }, + { + "start": 4492.32, + "end": 4493.28, + "probability": 0.9954 + }, + { + "start": 4494.16, + "end": 4495.92, + "probability": 0.829 + }, + { + "start": 4496.1, + "end": 4497.04, + "probability": 0.9856 + }, + { + "start": 4497.32, + "end": 4498.2, + "probability": 0.9634 + }, + { + "start": 4499.72, + "end": 4503.12, + "probability": 0.9826 + }, + { + "start": 4504.28, + "end": 4505.24, + "probability": 0.9976 + }, + { + "start": 4507.46, + "end": 4508.32, + "probability": 0.6972 + }, + { + "start": 4510.08, + "end": 4511.58, + "probability": 0.9939 + }, + { + "start": 4513.28, + "end": 4514.3, + "probability": 0.9841 + }, + { + "start": 4515.52, + "end": 4517.76, + "probability": 0.9873 + }, + { + "start": 4517.84, + "end": 4518.94, + "probability": 0.9293 + }, + { + "start": 4519.3, + "end": 4520.98, + "probability": 0.8825 + }, + { + "start": 4521.08, + "end": 4525.56, + "probability": 0.9754 + }, + { + "start": 4526.28, + "end": 4527.0, + "probability": 0.6993 + }, + { + "start": 4528.74, + "end": 4531.02, + "probability": 0.8931 + }, + { + "start": 4532.14, + "end": 4534.13, + "probability": 0.9961 + }, + { + "start": 4534.84, + "end": 4536.76, + "probability": 0.9977 + }, + { + "start": 4537.22, + "end": 4538.16, + "probability": 0.8798 + }, + { + "start": 4539.84, + "end": 4543.0, + "probability": 0.8869 + }, + { + "start": 4543.58, + "end": 4545.24, + "probability": 0.1768 + }, + { + "start": 4545.5, + "end": 4547.06, + "probability": 0.0975 + }, + { + "start": 4547.06, + "end": 4549.28, + "probability": 0.3247 + }, + { + "start": 4549.56, + "end": 4550.9, + "probability": 0.699 + }, + { + "start": 4553.06, + "end": 4554.26, + "probability": 0.7863 + }, + { + "start": 4554.44, + "end": 4556.3, + "probability": 0.944 + }, + { + "start": 4556.8, + "end": 4556.98, + "probability": 0.0232 + }, + { + "start": 4556.98, + "end": 4556.98, + "probability": 0.1132 + }, + { + "start": 4556.98, + "end": 4557.12, + "probability": 0.2013 + }, + { + "start": 4557.12, + "end": 4558.0, + "probability": 0.9426 + }, + { + "start": 4558.08, + "end": 4560.38, + "probability": 0.9455 + }, + { + "start": 4561.48, + "end": 4561.48, + "probability": 0.164 + }, + { + "start": 4561.48, + "end": 4565.44, + "probability": 0.9511 + }, + { + "start": 4566.58, + "end": 4567.38, + "probability": 0.6982 + }, + { + "start": 4568.86, + "end": 4571.93, + "probability": 0.9552 + }, + { + "start": 4572.62, + "end": 4574.68, + "probability": 0.9758 + }, + { + "start": 4575.72, + "end": 4580.22, + "probability": 0.9694 + }, + { + "start": 4580.92, + "end": 4581.66, + "probability": 0.9387 + }, + { + "start": 4585.0, + "end": 4586.28, + "probability": 0.7858 + }, + { + "start": 4586.48, + "end": 4592.24, + "probability": 0.8931 + }, + { + "start": 4592.96, + "end": 4594.78, + "probability": 0.9798 + }, + { + "start": 4594.9, + "end": 4599.5, + "probability": 0.9901 + }, + { + "start": 4599.74, + "end": 4600.22, + "probability": 0.6741 + }, + { + "start": 4600.64, + "end": 4603.1, + "probability": 0.951 + }, + { + "start": 4603.3, + "end": 4605.16, + "probability": 0.6315 + }, + { + "start": 4606.12, + "end": 4608.16, + "probability": 0.995 + }, + { + "start": 4608.18, + "end": 4610.66, + "probability": 0.9974 + }, + { + "start": 4611.32, + "end": 4615.76, + "probability": 0.9895 + }, + { + "start": 4615.8, + "end": 4617.7, + "probability": 0.9827 + }, + { + "start": 4617.82, + "end": 4619.56, + "probability": 0.5571 + }, + { + "start": 4619.88, + "end": 4621.0, + "probability": 0.9252 + }, + { + "start": 4621.32, + "end": 4622.34, + "probability": 0.7322 + }, + { + "start": 4622.7, + "end": 4623.4, + "probability": 0.7515 + }, + { + "start": 4623.46, + "end": 4624.78, + "probability": 0.8184 + }, + { + "start": 4624.88, + "end": 4630.42, + "probability": 0.9369 + }, + { + "start": 4631.04, + "end": 4632.24, + "probability": 0.6368 + }, + { + "start": 4632.64, + "end": 4634.98, + "probability": 0.9762 + }, + { + "start": 4635.06, + "end": 4636.32, + "probability": 0.9668 + }, + { + "start": 4636.64, + "end": 4637.68, + "probability": 0.8214 + }, + { + "start": 4637.7, + "end": 4638.48, + "probability": 0.8532 + }, + { + "start": 4638.54, + "end": 4638.96, + "probability": 0.6732 + }, + { + "start": 4639.48, + "end": 4641.7, + "probability": 0.986 + }, + { + "start": 4641.91, + "end": 4644.48, + "probability": 0.9702 + }, + { + "start": 4644.98, + "end": 4645.2, + "probability": 0.1818 + }, + { + "start": 4646.24, + "end": 4648.82, + "probability": 0.8184 + }, + { + "start": 4649.24, + "end": 4651.74, + "probability": 0.981 + }, + { + "start": 4652.24, + "end": 4653.96, + "probability": 0.9269 + }, + { + "start": 4654.8, + "end": 4655.76, + "probability": 0.0432 + }, + { + "start": 4657.02, + "end": 4657.02, + "probability": 0.5013 + }, + { + "start": 4657.02, + "end": 4658.44, + "probability": 0.884 + }, + { + "start": 4658.6, + "end": 4659.62, + "probability": 0.9863 + }, + { + "start": 4661.1, + "end": 4662.17, + "probability": 0.4899 + }, + { + "start": 4662.3, + "end": 4662.52, + "probability": 0.0335 + }, + { + "start": 4662.52, + "end": 4663.96, + "probability": 0.6372 + }, + { + "start": 4664.43, + "end": 4665.94, + "probability": 0.3066 + }, + { + "start": 4666.34, + "end": 4669.08, + "probability": 0.8314 + }, + { + "start": 4669.18, + "end": 4672.22, + "probability": 0.8971 + }, + { + "start": 4672.54, + "end": 4675.18, + "probability": 0.9629 + }, + { + "start": 4676.1, + "end": 4677.62, + "probability": 0.9237 + }, + { + "start": 4677.62, + "end": 4677.64, + "probability": 0.1688 + }, + { + "start": 4677.76, + "end": 4678.24, + "probability": 0.7497 + }, + { + "start": 4678.74, + "end": 4682.04, + "probability": 0.9249 + }, + { + "start": 4682.32, + "end": 4683.42, + "probability": 0.7953 + }, + { + "start": 4683.48, + "end": 4687.28, + "probability": 0.9951 + }, + { + "start": 4687.8, + "end": 4690.52, + "probability": 0.937 + }, + { + "start": 4690.62, + "end": 4691.74, + "probability": 0.9861 + }, + { + "start": 4692.04, + "end": 4693.46, + "probability": 0.9912 + }, + { + "start": 4693.94, + "end": 4695.72, + "probability": 0.8621 + }, + { + "start": 4695.76, + "end": 4700.52, + "probability": 0.9124 + }, + { + "start": 4700.52, + "end": 4704.14, + "probability": 0.9983 + }, + { + "start": 4706.08, + "end": 4707.02, + "probability": 0.0643 + }, + { + "start": 4707.02, + "end": 4707.02, + "probability": 0.2167 + }, + { + "start": 4707.02, + "end": 4707.9, + "probability": 0.1127 + }, + { + "start": 4707.96, + "end": 4708.48, + "probability": 0.4444 + }, + { + "start": 4708.64, + "end": 4711.19, + "probability": 0.6529 + }, + { + "start": 4711.68, + "end": 4712.72, + "probability": 0.1751 + }, + { + "start": 4713.02, + "end": 4713.6, + "probability": 0.6761 + }, + { + "start": 4713.66, + "end": 4717.22, + "probability": 0.6998 + }, + { + "start": 4717.48, + "end": 4719.74, + "probability": 0.7734 + }, + { + "start": 4719.74, + "end": 4720.36, + "probability": 0.7286 + }, + { + "start": 4720.44, + "end": 4722.46, + "probability": 0.949 + }, + { + "start": 4722.46, + "end": 4722.68, + "probability": 0.1368 + }, + { + "start": 4722.68, + "end": 4723.92, + "probability": 0.8966 + }, + { + "start": 4725.06, + "end": 4725.28, + "probability": 0.4066 + }, + { + "start": 4725.28, + "end": 4726.26, + "probability": 0.6393 + }, + { + "start": 4726.56, + "end": 4728.06, + "probability": 0.9891 + }, + { + "start": 4728.22, + "end": 4731.6, + "probability": 0.7901 + }, + { + "start": 4732.19, + "end": 4737.06, + "probability": 0.8801 + }, + { + "start": 4737.7, + "end": 4741.84, + "probability": 0.9032 + }, + { + "start": 4742.08, + "end": 4742.32, + "probability": 0.6946 + }, + { + "start": 4742.46, + "end": 4746.82, + "probability": 0.7496 + }, + { + "start": 4747.42, + "end": 4751.0, + "probability": 0.9583 + }, + { + "start": 4751.62, + "end": 4754.26, + "probability": 0.9942 + }, + { + "start": 4754.38, + "end": 4757.42, + "probability": 0.8025 + }, + { + "start": 4757.44, + "end": 4760.34, + "probability": 0.781 + }, + { + "start": 4760.9, + "end": 4763.62, + "probability": 0.962 + }, + { + "start": 4764.06, + "end": 4765.46, + "probability": 0.9225 + }, + { + "start": 4766.06, + "end": 4766.98, + "probability": 0.311 + }, + { + "start": 4767.84, + "end": 4770.66, + "probability": 0.5093 + }, + { + "start": 4770.84, + "end": 4771.26, + "probability": 0.0279 + }, + { + "start": 4771.56, + "end": 4772.4, + "probability": 0.2903 + }, + { + "start": 4772.4, + "end": 4772.4, + "probability": 0.4755 + }, + { + "start": 4772.48, + "end": 4774.35, + "probability": 0.9967 + }, + { + "start": 4775.34, + "end": 4776.94, + "probability": 0.9951 + }, + { + "start": 4776.98, + "end": 4777.66, + "probability": 0.7114 + }, + { + "start": 4777.96, + "end": 4779.06, + "probability": 0.9927 + }, + { + "start": 4779.2, + "end": 4780.38, + "probability": 0.9162 + }, + { + "start": 4780.72, + "end": 4781.92, + "probability": 0.995 + }, + { + "start": 4783.04, + "end": 4783.78, + "probability": 0.0335 + }, + { + "start": 4784.32, + "end": 4785.9, + "probability": 0.8088 + }, + { + "start": 4785.94, + "end": 4786.78, + "probability": 0.9021 + }, + { + "start": 4786.9, + "end": 4790.78, + "probability": 0.9163 + }, + { + "start": 4790.82, + "end": 4792.46, + "probability": 0.9172 + }, + { + "start": 4792.8, + "end": 4793.38, + "probability": 0.6656 + }, + { + "start": 4793.48, + "end": 4795.3, + "probability": 0.9297 + }, + { + "start": 4795.56, + "end": 4797.66, + "probability": 0.9753 + }, + { + "start": 4797.8, + "end": 4799.26, + "probability": 0.927 + }, + { + "start": 4799.5, + "end": 4803.48, + "probability": 0.9319 + }, + { + "start": 4803.9, + "end": 4808.22, + "probability": 0.9862 + }, + { + "start": 4808.56, + "end": 4810.92, + "probability": 0.7916 + }, + { + "start": 4811.1, + "end": 4812.5, + "probability": 0.9225 + }, + { + "start": 4812.78, + "end": 4813.78, + "probability": 0.7999 + }, + { + "start": 4814.08, + "end": 4815.23, + "probability": 0.9917 + }, + { + "start": 4815.72, + "end": 4816.56, + "probability": 0.7386 + }, + { + "start": 4816.92, + "end": 4817.68, + "probability": 0.8945 + }, + { + "start": 4817.94, + "end": 4819.74, + "probability": 0.9801 + }, + { + "start": 4820.0, + "end": 4822.98, + "probability": 0.9881 + }, + { + "start": 4823.26, + "end": 4826.24, + "probability": 0.9966 + }, + { + "start": 4826.38, + "end": 4826.86, + "probability": 0.8596 + }, + { + "start": 4826.86, + "end": 4826.86, + "probability": 0.5881 + }, + { + "start": 4826.86, + "end": 4827.14, + "probability": 0.9279 + }, + { + "start": 4827.24, + "end": 4827.58, + "probability": 0.554 + }, + { + "start": 4827.94, + "end": 4830.62, + "probability": 0.9158 + }, + { + "start": 4831.0, + "end": 4833.54, + "probability": 0.965 + }, + { + "start": 4834.0, + "end": 4834.52, + "probability": 0.9554 + }, + { + "start": 4835.2, + "end": 4836.44, + "probability": 0.5878 + }, + { + "start": 4836.76, + "end": 4841.2, + "probability": 0.9927 + }, + { + "start": 4842.16, + "end": 4842.78, + "probability": 0.1159 + }, + { + "start": 4842.78, + "end": 4844.8, + "probability": 0.1084 + }, + { + "start": 4844.94, + "end": 4845.08, + "probability": 0.0668 + }, + { + "start": 4845.94, + "end": 4848.96, + "probability": 0.9867 + }, + { + "start": 4849.9, + "end": 4850.96, + "probability": 0.9096 + }, + { + "start": 4851.0, + "end": 4852.06, + "probability": 0.916 + }, + { + "start": 4852.52, + "end": 4852.86, + "probability": 0.1786 + }, + { + "start": 4852.86, + "end": 4856.02, + "probability": 0.9277 + }, + { + "start": 4856.1, + "end": 4858.76, + "probability": 0.8387 + }, + { + "start": 4859.52, + "end": 4862.14, + "probability": 0.9463 + }, + { + "start": 4862.94, + "end": 4863.74, + "probability": 0.5018 + }, + { + "start": 4863.86, + "end": 4864.52, + "probability": 0.3673 + }, + { + "start": 4865.2, + "end": 4865.56, + "probability": 0.5498 + }, + { + "start": 4865.56, + "end": 4865.98, + "probability": 0.5347 + }, + { + "start": 4866.68, + "end": 4867.28, + "probability": 0.5413 + }, + { + "start": 4867.28, + "end": 4868.42, + "probability": 0.9545 + }, + { + "start": 4868.5, + "end": 4869.08, + "probability": 0.8734 + }, + { + "start": 4869.55, + "end": 4871.76, + "probability": 0.725 + }, + { + "start": 4871.82, + "end": 4873.68, + "probability": 0.8197 + }, + { + "start": 4874.18, + "end": 4874.7, + "probability": 0.7637 + }, + { + "start": 4874.88, + "end": 4878.26, + "probability": 0.8659 + }, + { + "start": 4878.34, + "end": 4879.2, + "probability": 0.1921 + }, + { + "start": 4879.98, + "end": 4880.82, + "probability": 0.8599 + }, + { + "start": 4883.72, + "end": 4886.16, + "probability": 0.0964 + }, + { + "start": 4887.86, + "end": 4889.54, + "probability": 0.4971 + }, + { + "start": 4890.46, + "end": 4893.48, + "probability": 0.5661 + }, + { + "start": 4893.98, + "end": 4895.42, + "probability": 0.7863 + }, + { + "start": 4895.48, + "end": 4896.35, + "probability": 0.9593 + }, + { + "start": 4898.9, + "end": 4906.04, + "probability": 0.8899 + }, + { + "start": 4906.46, + "end": 4906.5, + "probability": 0.0019 + }, + { + "start": 4906.5, + "end": 4908.16, + "probability": 0.9315 + }, + { + "start": 4910.12, + "end": 4915.94, + "probability": 0.7549 + }, + { + "start": 4916.82, + "end": 4917.34, + "probability": 0.8706 + }, + { + "start": 4918.66, + "end": 4922.64, + "probability": 0.9966 + }, + { + "start": 4923.98, + "end": 4926.56, + "probability": 0.9399 + }, + { + "start": 4927.14, + "end": 4929.82, + "probability": 0.9746 + }, + { + "start": 4930.46, + "end": 4930.96, + "probability": 0.8261 + }, + { + "start": 4931.16, + "end": 4935.18, + "probability": 0.9801 + }, + { + "start": 4935.82, + "end": 4938.6, + "probability": 0.6083 + }, + { + "start": 4938.88, + "end": 4940.92, + "probability": 0.6736 + }, + { + "start": 4941.21, + "end": 4946.42, + "probability": 0.272 + }, + { + "start": 4946.7, + "end": 4950.94, + "probability": 0.6645 + }, + { + "start": 4952.34, + "end": 4957.94, + "probability": 0.9106 + }, + { + "start": 4958.5, + "end": 4958.58, + "probability": 0.3958 + }, + { + "start": 4958.6, + "end": 4959.2, + "probability": 0.7303 + }, + { + "start": 4959.64, + "end": 4963.74, + "probability": 0.9964 + }, + { + "start": 4963.74, + "end": 4966.38, + "probability": 0.857 + }, + { + "start": 4966.5, + "end": 4970.28, + "probability": 0.9336 + }, + { + "start": 4970.66, + "end": 4971.72, + "probability": 0.8456 + }, + { + "start": 4972.2, + "end": 4975.34, + "probability": 0.8721 + }, + { + "start": 4975.9, + "end": 4980.78, + "probability": 0.958 + }, + { + "start": 4980.78, + "end": 4985.58, + "probability": 0.8762 + }, + { + "start": 4986.54, + "end": 4989.6, + "probability": 0.9026 + }, + { + "start": 4989.7, + "end": 4992.74, + "probability": 0.9711 + }, + { + "start": 4993.24, + "end": 4995.58, + "probability": 0.6974 + }, + { + "start": 4996.58, + "end": 4999.74, + "probability": 0.8801 + }, + { + "start": 5000.26, + "end": 5001.0, + "probability": 0.7403 + }, + { + "start": 5006.42, + "end": 5008.5, + "probability": 0.652 + }, + { + "start": 5010.64, + "end": 5012.86, + "probability": 0.9494 + }, + { + "start": 5014.18, + "end": 5020.0, + "probability": 0.9893 + }, + { + "start": 5020.74, + "end": 5025.68, + "probability": 0.9471 + }, + { + "start": 5026.7, + "end": 5028.86, + "probability": 0.9777 + }, + { + "start": 5029.26, + "end": 5031.08, + "probability": 0.8835 + }, + { + "start": 5031.28, + "end": 5031.78, + "probability": 0.3701 + }, + { + "start": 5031.78, + "end": 5032.54, + "probability": 0.7835 + }, + { + "start": 5032.64, + "end": 5034.78, + "probability": 0.8295 + }, + { + "start": 5035.9, + "end": 5042.72, + "probability": 0.991 + }, + { + "start": 5043.66, + "end": 5046.8, + "probability": 0.9709 + }, + { + "start": 5047.5, + "end": 5050.8, + "probability": 0.9977 + }, + { + "start": 5051.74, + "end": 5052.8, + "probability": 0.7693 + }, + { + "start": 5052.92, + "end": 5053.98, + "probability": 0.8757 + }, + { + "start": 5054.0, + "end": 5054.58, + "probability": 0.6834 + }, + { + "start": 5054.7, + "end": 5055.68, + "probability": 0.9343 + }, + { + "start": 5055.98, + "end": 5060.88, + "probability": 0.7879 + }, + { + "start": 5061.72, + "end": 5062.96, + "probability": 0.6917 + }, + { + "start": 5063.18, + "end": 5063.82, + "probability": 0.8044 + }, + { + "start": 5063.98, + "end": 5066.74, + "probability": 0.9308 + }, + { + "start": 5067.94, + "end": 5068.98, + "probability": 0.8493 + }, + { + "start": 5069.96, + "end": 5074.32, + "probability": 0.9628 + }, + { + "start": 5074.94, + "end": 5076.76, + "probability": 0.9865 + }, + { + "start": 5077.44, + "end": 5081.94, + "probability": 0.8988 + }, + { + "start": 5082.3, + "end": 5083.78, + "probability": 0.947 + }, + { + "start": 5084.6, + "end": 5086.94, + "probability": 0.9375 + }, + { + "start": 5087.48, + "end": 5088.22, + "probability": 0.6589 + }, + { + "start": 5088.3, + "end": 5089.82, + "probability": 0.659 + }, + { + "start": 5090.02, + "end": 5092.42, + "probability": 0.7892 + }, + { + "start": 5092.96, + "end": 5093.74, + "probability": 0.9097 + }, + { + "start": 5093.98, + "end": 5095.06, + "probability": 0.95 + }, + { + "start": 5095.56, + "end": 5098.5, + "probability": 0.6941 + }, + { + "start": 5098.58, + "end": 5098.58, + "probability": 0.3872 + }, + { + "start": 5098.66, + "end": 5101.66, + "probability": 0.8568 + }, + { + "start": 5101.8, + "end": 5104.82, + "probability": 0.6745 + }, + { + "start": 5105.28, + "end": 5106.78, + "probability": 0.7217 + }, + { + "start": 5107.58, + "end": 5109.86, + "probability": 0.9662 + }, + { + "start": 5109.92, + "end": 5110.32, + "probability": 0.7151 + }, + { + "start": 5110.38, + "end": 5111.22, + "probability": 0.9321 + }, + { + "start": 5111.36, + "end": 5114.08, + "probability": 0.9639 + }, + { + "start": 5114.62, + "end": 5114.8, + "probability": 0.4544 + }, + { + "start": 5114.96, + "end": 5116.28, + "probability": 0.6914 + }, + { + "start": 5116.52, + "end": 5117.34, + "probability": 0.8446 + }, + { + "start": 5117.52, + "end": 5119.64, + "probability": 0.7876 + }, + { + "start": 5119.66, + "end": 5120.92, + "probability": 0.8418 + }, + { + "start": 5121.42, + "end": 5125.42, + "probability": 0.8674 + }, + { + "start": 5127.44, + "end": 5131.06, + "probability": 0.9482 + }, + { + "start": 5131.2, + "end": 5131.2, + "probability": 0.4109 + }, + { + "start": 5131.3, + "end": 5132.9, + "probability": 0.9224 + }, + { + "start": 5133.48, + "end": 5136.28, + "probability": 0.8647 + }, + { + "start": 5136.34, + "end": 5138.16, + "probability": 0.653 + }, + { + "start": 5138.18, + "end": 5138.54, + "probability": 0.2905 + }, + { + "start": 5138.82, + "end": 5141.63, + "probability": 0.8939 + }, + { + "start": 5142.5, + "end": 5144.48, + "probability": 0.866 + }, + { + "start": 5146.63, + "end": 5146.98, + "probability": 0.224 + }, + { + "start": 5147.48, + "end": 5149.32, + "probability": 0.5947 + }, + { + "start": 5149.32, + "end": 5150.04, + "probability": 0.0135 + }, + { + "start": 5150.36, + "end": 5152.74, + "probability": 0.2993 + }, + { + "start": 5153.3, + "end": 5155.34, + "probability": 0.6834 + }, + { + "start": 5155.34, + "end": 5157.14, + "probability": 0.8191 + }, + { + "start": 5159.04, + "end": 5159.97, + "probability": 0.2346 + }, + { + "start": 5160.66, + "end": 5160.66, + "probability": 0.2151 + }, + { + "start": 5160.66, + "end": 5163.1, + "probability": 0.2902 + }, + { + "start": 5163.2, + "end": 5163.42, + "probability": 0.0514 + }, + { + "start": 5166.0, + "end": 5167.44, + "probability": 0.2963 + }, + { + "start": 5167.68, + "end": 5169.48, + "probability": 0.0877 + }, + { + "start": 5169.48, + "end": 5170.18, + "probability": 0.1337 + }, + { + "start": 5170.26, + "end": 5170.7, + "probability": 0.0755 + }, + { + "start": 5170.78, + "end": 5171.4, + "probability": 0.4343 + }, + { + "start": 5171.4, + "end": 5174.0, + "probability": 0.6956 + }, + { + "start": 5175.36, + "end": 5178.4, + "probability": 0.3855 + }, + { + "start": 5179.04, + "end": 5180.18, + "probability": 0.7602 + }, + { + "start": 5180.32, + "end": 5181.38, + "probability": 0.5323 + }, + { + "start": 5181.46, + "end": 5184.16, + "probability": 0.9082 + }, + { + "start": 5184.52, + "end": 5186.24, + "probability": 0.3664 + }, + { + "start": 5187.46, + "end": 5188.56, + "probability": 0.9089 + }, + { + "start": 5188.56, + "end": 5189.74, + "probability": 0.5417 + }, + { + "start": 5189.92, + "end": 5191.18, + "probability": 0.7394 + }, + { + "start": 5192.42, + "end": 5195.84, + "probability": 0.6833 + }, + { + "start": 5195.94, + "end": 5196.78, + "probability": 0.3133 + }, + { + "start": 5197.1, + "end": 5197.1, + "probability": 0.1766 + }, + { + "start": 5197.16, + "end": 5202.54, + "probability": 0.1965 + }, + { + "start": 5203.36, + "end": 5204.04, + "probability": 0.3068 + }, + { + "start": 5204.16, + "end": 5207.82, + "probability": 0.0685 + }, + { + "start": 5207.82, + "end": 5211.06, + "probability": 0.5381 + }, + { + "start": 5211.82, + "end": 5213.96, + "probability": 0.3198 + }, + { + "start": 5214.2, + "end": 5218.68, + "probability": 0.7499 + }, + { + "start": 5218.76, + "end": 5219.82, + "probability": 0.8953 + }, + { + "start": 5220.14, + "end": 5224.68, + "probability": 0.9313 + }, + { + "start": 5224.82, + "end": 5226.36, + "probability": 0.6379 + }, + { + "start": 5227.08, + "end": 5228.34, + "probability": 0.4335 + }, + { + "start": 5228.42, + "end": 5228.54, + "probability": 0.2074 + }, + { + "start": 5228.54, + "end": 5229.04, + "probability": 0.1691 + }, + { + "start": 5229.1, + "end": 5233.25, + "probability": 0.5265 + }, + { + "start": 5233.66, + "end": 5234.92, + "probability": 0.1651 + }, + { + "start": 5238.78, + "end": 5240.64, + "probability": 0.1575 + }, + { + "start": 5240.82, + "end": 5241.2, + "probability": 0.0809 + }, + { + "start": 5241.72, + "end": 5244.6, + "probability": 0.5752 + }, + { + "start": 5244.82, + "end": 5245.88, + "probability": 0.5931 + }, + { + "start": 5246.04, + "end": 5249.9, + "probability": 0.7346 + }, + { + "start": 5250.14, + "end": 5250.82, + "probability": 0.5786 + }, + { + "start": 5251.28, + "end": 5252.04, + "probability": 0.7659 + }, + { + "start": 5254.62, + "end": 5262.02, + "probability": 0.6942 + }, + { + "start": 5263.8, + "end": 5266.59, + "probability": 0.7385 + }, + { + "start": 5266.96, + "end": 5273.1, + "probability": 0.2263 + }, + { + "start": 5273.1, + "end": 5275.04, + "probability": 0.2721 + }, + { + "start": 5275.08, + "end": 5275.6, + "probability": 0.4096 + }, + { + "start": 5275.68, + "end": 5275.94, + "probability": 0.4735 + }, + { + "start": 5276.0, + "end": 5279.98, + "probability": 0.8667 + }, + { + "start": 5280.4, + "end": 5280.7, + "probability": 0.7308 + }, + { + "start": 5281.86, + "end": 5283.48, + "probability": 0.7647 + }, + { + "start": 5283.74, + "end": 5284.1, + "probability": 0.8175 + }, + { + "start": 5284.4, + "end": 5285.56, + "probability": 0.7811 + }, + { + "start": 5285.7, + "end": 5286.88, + "probability": 0.8316 + }, + { + "start": 5287.0, + "end": 5288.54, + "probability": 0.9626 + }, + { + "start": 5289.12, + "end": 5290.64, + "probability": 0.8488 + }, + { + "start": 5291.18, + "end": 5296.48, + "probability": 0.7434 + }, + { + "start": 5297.24, + "end": 5297.84, + "probability": 0.5783 + }, + { + "start": 5298.86, + "end": 5300.54, + "probability": 0.9975 + }, + { + "start": 5301.12, + "end": 5305.13, + "probability": 0.9069 + }, + { + "start": 5306.1, + "end": 5308.39, + "probability": 0.7029 + }, + { + "start": 5309.38, + "end": 5314.84, + "probability": 0.9541 + }, + { + "start": 5315.1, + "end": 5319.0, + "probability": 0.635 + }, + { + "start": 5319.54, + "end": 5320.96, + "probability": 0.9899 + }, + { + "start": 5322.04, + "end": 5326.34, + "probability": 0.9385 + }, + { + "start": 5328.14, + "end": 5331.44, + "probability": 0.6213 + }, + { + "start": 5332.12, + "end": 5332.12, + "probability": 0.063 + }, + { + "start": 5332.12, + "end": 5332.44, + "probability": 0.1849 + }, + { + "start": 5332.44, + "end": 5333.5, + "probability": 0.686 + }, + { + "start": 5333.58, + "end": 5335.34, + "probability": 0.6726 + }, + { + "start": 5335.92, + "end": 5339.64, + "probability": 0.9502 + }, + { + "start": 5339.96, + "end": 5341.58, + "probability": 0.5854 + }, + { + "start": 5342.78, + "end": 5343.64, + "probability": 0.7245 + }, + { + "start": 5344.2, + "end": 5348.5, + "probability": 0.9722 + }, + { + "start": 5350.25, + "end": 5350.91, + "probability": 0.1152 + }, + { + "start": 5377.3, + "end": 5382.04, + "probability": 0.9611 + }, + { + "start": 5382.14, + "end": 5382.88, + "probability": 0.5648 + }, + { + "start": 5383.74, + "end": 5390.08, + "probability": 0.7225 + }, + { + "start": 5390.86, + "end": 5393.14, + "probability": 0.9752 + }, + { + "start": 5393.82, + "end": 5397.52, + "probability": 0.6768 + }, + { + "start": 5397.96, + "end": 5400.94, + "probability": 0.9924 + }, + { + "start": 5401.42, + "end": 5403.54, + "probability": 0.5537 + }, + { + "start": 5404.54, + "end": 5404.54, + "probability": 0.4266 + }, + { + "start": 5404.54, + "end": 5405.97, + "probability": 0.5723 + }, + { + "start": 5407.1, + "end": 5408.64, + "probability": 0.8054 + }, + { + "start": 5409.04, + "end": 5409.78, + "probability": 0.4919 + }, + { + "start": 5410.02, + "end": 5410.77, + "probability": 0.5658 + }, + { + "start": 5410.98, + "end": 5412.1, + "probability": 0.6974 + }, + { + "start": 5412.34, + "end": 5413.22, + "probability": 0.3609 + }, + { + "start": 5413.48, + "end": 5413.98, + "probability": 0.0256 + }, + { + "start": 5413.98, + "end": 5416.08, + "probability": 0.6664 + }, + { + "start": 5416.32, + "end": 5417.26, + "probability": 0.6088 + }, + { + "start": 5417.42, + "end": 5419.39, + "probability": 0.254 + }, + { + "start": 5419.5, + "end": 5419.88, + "probability": 0.3849 + }, + { + "start": 5421.12, + "end": 5424.64, + "probability": 0.7417 + }, + { + "start": 5425.9, + "end": 5429.64, + "probability": 0.9987 + }, + { + "start": 5430.62, + "end": 5432.08, + "probability": 0.4385 + }, + { + "start": 5432.7, + "end": 5437.72, + "probability": 0.9986 + }, + { + "start": 5438.66, + "end": 5441.44, + "probability": 0.9951 + }, + { + "start": 5441.44, + "end": 5445.64, + "probability": 0.9987 + }, + { + "start": 5446.18, + "end": 5450.52, + "probability": 0.9858 + }, + { + "start": 5452.0, + "end": 5455.4, + "probability": 0.7619 + }, + { + "start": 5456.26, + "end": 5461.84, + "probability": 0.9855 + }, + { + "start": 5461.84, + "end": 5469.04, + "probability": 0.99 + }, + { + "start": 5469.68, + "end": 5473.78, + "probability": 0.9902 + }, + { + "start": 5474.54, + "end": 5480.38, + "probability": 0.9033 + }, + { + "start": 5481.54, + "end": 5485.9, + "probability": 0.9989 + }, + { + "start": 5485.9, + "end": 5492.24, + "probability": 0.9417 + }, + { + "start": 5492.41, + "end": 5499.08, + "probability": 0.998 + }, + { + "start": 5499.38, + "end": 5499.94, + "probability": 0.8792 + }, + { + "start": 5500.46, + "end": 5501.6, + "probability": 0.9554 + }, + { + "start": 5502.68, + "end": 5503.76, + "probability": 0.8567 + }, + { + "start": 5504.5, + "end": 5505.58, + "probability": 0.9427 + }, + { + "start": 5506.74, + "end": 5514.14, + "probability": 0.9883 + }, + { + "start": 5514.94, + "end": 5515.76, + "probability": 0.6181 + }, + { + "start": 5515.78, + "end": 5521.56, + "probability": 0.9918 + }, + { + "start": 5522.52, + "end": 5525.0, + "probability": 0.9943 + }, + { + "start": 5525.58, + "end": 5529.24, + "probability": 0.9985 + }, + { + "start": 5530.6, + "end": 5530.84, + "probability": 0.6712 + }, + { + "start": 5530.98, + "end": 5531.94, + "probability": 0.672 + }, + { + "start": 5532.04, + "end": 5540.0, + "probability": 0.9815 + }, + { + "start": 5540.1, + "end": 5540.4, + "probability": 0.4631 + }, + { + "start": 5541.74, + "end": 5541.84, + "probability": 0.1724 + }, + { + "start": 5541.84, + "end": 5542.46, + "probability": 0.3171 + }, + { + "start": 5542.54, + "end": 5543.7, + "probability": 0.1386 + }, + { + "start": 5544.12, + "end": 5545.56, + "probability": 0.589 + }, + { + "start": 5545.66, + "end": 5546.66, + "probability": 0.8071 + }, + { + "start": 5547.52, + "end": 5551.86, + "probability": 0.9652 + }, + { + "start": 5551.86, + "end": 5557.56, + "probability": 0.9382 + }, + { + "start": 5557.56, + "end": 5558.0, + "probability": 0.5181 + }, + { + "start": 5559.0, + "end": 5565.26, + "probability": 0.9396 + }, + { + "start": 5565.78, + "end": 5570.56, + "probability": 0.9985 + }, + { + "start": 5570.76, + "end": 5572.26, + "probability": 0.9971 + }, + { + "start": 5572.88, + "end": 5576.76, + "probability": 0.9917 + }, + { + "start": 5578.52, + "end": 5582.56, + "probability": 0.9929 + }, + { + "start": 5582.56, + "end": 5587.96, + "probability": 0.9988 + }, + { + "start": 5588.56, + "end": 5592.31, + "probability": 0.9989 + }, + { + "start": 5593.0, + "end": 5597.16, + "probability": 0.9906 + }, + { + "start": 5597.66, + "end": 5601.18, + "probability": 0.9973 + }, + { + "start": 5602.26, + "end": 5603.46, + "probability": 0.6602 + }, + { + "start": 5604.16, + "end": 5607.94, + "probability": 0.8492 + }, + { + "start": 5608.92, + "end": 5614.72, + "probability": 0.9117 + }, + { + "start": 5614.72, + "end": 5621.64, + "probability": 0.983 + }, + { + "start": 5622.82, + "end": 5627.92, + "probability": 0.8766 + }, + { + "start": 5629.42, + "end": 5629.92, + "probability": 0.9567 + }, + { + "start": 5630.5, + "end": 5636.98, + "probability": 0.9926 + }, + { + "start": 5637.74, + "end": 5642.38, + "probability": 0.9765 + }, + { + "start": 5642.38, + "end": 5648.38, + "probability": 0.9798 + }, + { + "start": 5650.18, + "end": 5658.94, + "probability": 0.9976 + }, + { + "start": 5659.74, + "end": 5666.34, + "probability": 0.9972 + }, + { + "start": 5667.2, + "end": 5672.16, + "probability": 0.9381 + }, + { + "start": 5673.08, + "end": 5674.36, + "probability": 0.9141 + }, + { + "start": 5675.24, + "end": 5678.28, + "probability": 0.9851 + }, + { + "start": 5679.36, + "end": 5686.32, + "probability": 0.9538 + }, + { + "start": 5687.14, + "end": 5693.0, + "probability": 0.9956 + }, + { + "start": 5693.0, + "end": 5699.38, + "probability": 0.9237 + }, + { + "start": 5700.72, + "end": 5703.22, + "probability": 0.9725 + }, + { + "start": 5704.82, + "end": 5706.78, + "probability": 0.8846 + }, + { + "start": 5707.58, + "end": 5710.48, + "probability": 0.9182 + }, + { + "start": 5711.54, + "end": 5715.4, + "probability": 0.9662 + }, + { + "start": 5715.92, + "end": 5718.7, + "probability": 0.9995 + }, + { + "start": 5719.36, + "end": 5721.32, + "probability": 0.8385 + }, + { + "start": 5722.24, + "end": 5723.52, + "probability": 0.9701 + }, + { + "start": 5724.38, + "end": 5730.2, + "probability": 0.9074 + }, + { + "start": 5730.36, + "end": 5735.84, + "probability": 0.9492 + }, + { + "start": 5736.0, + "end": 5742.12, + "probability": 0.9966 + }, + { + "start": 5743.74, + "end": 5750.76, + "probability": 0.814 + }, + { + "start": 5753.96, + "end": 5759.28, + "probability": 0.8678 + }, + { + "start": 5760.04, + "end": 5764.2, + "probability": 0.9344 + }, + { + "start": 5764.96, + "end": 5768.6, + "probability": 0.9962 + }, + { + "start": 5769.46, + "end": 5771.48, + "probability": 0.8993 + }, + { + "start": 5771.76, + "end": 5776.22, + "probability": 0.8298 + }, + { + "start": 5776.84, + "end": 5779.22, + "probability": 0.9072 + }, + { + "start": 5780.18, + "end": 5780.72, + "probability": 0.5747 + }, + { + "start": 5781.24, + "end": 5782.18, + "probability": 0.9406 + }, + { + "start": 5782.92, + "end": 5785.72, + "probability": 0.9973 + }, + { + "start": 5785.72, + "end": 5791.32, + "probability": 0.9871 + }, + { + "start": 5799.18, + "end": 5800.6, + "probability": 0.6127 + }, + { + "start": 5802.08, + "end": 5805.8, + "probability": 0.9404 + }, + { + "start": 5806.52, + "end": 5807.78, + "probability": 0.8586 + }, + { + "start": 5808.42, + "end": 5811.32, + "probability": 0.7936 + }, + { + "start": 5812.1, + "end": 5818.84, + "probability": 0.9889 + }, + { + "start": 5819.58, + "end": 5822.88, + "probability": 0.9987 + }, + { + "start": 5823.7, + "end": 5826.66, + "probability": 0.9857 + }, + { + "start": 5827.38, + "end": 5830.4, + "probability": 0.9922 + }, + { + "start": 5831.04, + "end": 5833.84, + "probability": 0.9792 + }, + { + "start": 5835.2, + "end": 5838.02, + "probability": 0.9991 + }, + { + "start": 5838.02, + "end": 5842.58, + "probability": 0.9448 + }, + { + "start": 5843.16, + "end": 5849.88, + "probability": 0.9775 + }, + { + "start": 5850.98, + "end": 5854.18, + "probability": 0.9921 + }, + { + "start": 5854.26, + "end": 5854.98, + "probability": 0.8054 + }, + { + "start": 5855.05, + "end": 5861.9, + "probability": 0.9955 + }, + { + "start": 5862.76, + "end": 5866.23, + "probability": 0.9789 + }, + { + "start": 5866.24, + "end": 5871.52, + "probability": 0.9966 + }, + { + "start": 5872.84, + "end": 5875.44, + "probability": 0.7653 + }, + { + "start": 5876.38, + "end": 5879.58, + "probability": 0.9688 + }, + { + "start": 5880.12, + "end": 5880.72, + "probability": 0.8674 + }, + { + "start": 5881.52, + "end": 5882.26, + "probability": 0.4003 + }, + { + "start": 5883.06, + "end": 5885.36, + "probability": 0.9829 + }, + { + "start": 5886.04, + "end": 5887.28, + "probability": 0.8763 + }, + { + "start": 5888.02, + "end": 5892.2, + "probability": 0.9978 + }, + { + "start": 5892.46, + "end": 5892.98, + "probability": 0.8107 + }, + { + "start": 5893.44, + "end": 5896.44, + "probability": 0.9622 + }, + { + "start": 5896.76, + "end": 5899.02, + "probability": 0.9959 + }, + { + "start": 5899.18, + "end": 5902.06, + "probability": 0.667 + }, + { + "start": 5902.76, + "end": 5905.22, + "probability": 0.9307 + }, + { + "start": 5905.68, + "end": 5906.34, + "probability": 0.7793 + }, + { + "start": 5906.7, + "end": 5913.44, + "probability": 0.8701 + }, + { + "start": 5914.3, + "end": 5917.32, + "probability": 0.9901 + }, + { + "start": 5917.74, + "end": 5918.04, + "probability": 0.6485 + }, + { + "start": 5920.26, + "end": 5922.12, + "probability": 0.7878 + }, + { + "start": 5922.44, + "end": 5924.48, + "probability": 0.9534 + }, + { + "start": 5924.9, + "end": 5926.68, + "probability": 0.6113 + }, + { + "start": 5926.92, + "end": 5927.26, + "probability": 0.6791 + }, + { + "start": 5927.26, + "end": 5930.06, + "probability": 0.8687 + }, + { + "start": 5930.76, + "end": 5933.08, + "probability": 0.988 + }, + { + "start": 5933.94, + "end": 5940.26, + "probability": 0.9885 + }, + { + "start": 5940.26, + "end": 5947.94, + "probability": 0.9976 + }, + { + "start": 5948.76, + "end": 5949.58, + "probability": 0.8048 + }, + { + "start": 5949.98, + "end": 5951.06, + "probability": 0.7722 + }, + { + "start": 5951.16, + "end": 5954.94, + "probability": 0.8604 + }, + { + "start": 5956.52, + "end": 5959.3, + "probability": 0.821 + }, + { + "start": 5959.48, + "end": 5960.92, + "probability": 0.8527 + }, + { + "start": 5961.46, + "end": 5962.48, + "probability": 0.7453 + }, + { + "start": 5963.3, + "end": 5965.34, + "probability": 0.7137 + }, + { + "start": 5965.44, + "end": 5967.0, + "probability": 0.9143 + }, + { + "start": 5968.62, + "end": 5970.52, + "probability": 0.9583 + }, + { + "start": 5970.88, + "end": 5973.64, + "probability": 0.9933 + }, + { + "start": 5973.7, + "end": 5975.02, + "probability": 0.7579 + }, + { + "start": 5975.14, + "end": 5977.96, + "probability": 0.9738 + }, + { + "start": 5978.82, + "end": 5980.48, + "probability": 0.98 + }, + { + "start": 5980.64, + "end": 5985.5, + "probability": 0.9967 + }, + { + "start": 5986.64, + "end": 5988.62, + "probability": 0.994 + }, + { + "start": 5989.28, + "end": 5990.88, + "probability": 0.9223 + }, + { + "start": 5990.96, + "end": 5992.66, + "probability": 0.8648 + }, + { + "start": 5993.34, + "end": 5998.28, + "probability": 0.9978 + }, + { + "start": 5998.28, + "end": 6003.54, + "probability": 0.9944 + }, + { + "start": 6003.72, + "end": 6007.28, + "probability": 0.9978 + }, + { + "start": 6008.5, + "end": 6011.56, + "probability": 0.8625 + }, + { + "start": 6012.08, + "end": 6014.42, + "probability": 0.929 + }, + { + "start": 6014.48, + "end": 6017.28, + "probability": 0.9937 + }, + { + "start": 6018.88, + "end": 6021.08, + "probability": 0.996 + }, + { + "start": 6021.22, + "end": 6024.04, + "probability": 0.9764 + }, + { + "start": 6025.02, + "end": 6030.26, + "probability": 0.9551 + }, + { + "start": 6031.12, + "end": 6035.06, + "probability": 0.981 + }, + { + "start": 6035.52, + "end": 6039.58, + "probability": 0.8797 + }, + { + "start": 6040.4, + "end": 6043.5, + "probability": 0.8773 + }, + { + "start": 6043.76, + "end": 6044.68, + "probability": 0.8886 + }, + { + "start": 6045.14, + "end": 6045.96, + "probability": 0.6842 + }, + { + "start": 6047.08, + "end": 6052.62, + "probability": 0.8369 + }, + { + "start": 6052.94, + "end": 6055.34, + "probability": 0.9934 + }, + { + "start": 6056.34, + "end": 6060.56, + "probability": 0.9541 + }, + { + "start": 6061.4, + "end": 6062.48, + "probability": 0.6287 + }, + { + "start": 6062.96, + "end": 6066.74, + "probability": 0.895 + }, + { + "start": 6067.6, + "end": 6070.36, + "probability": 0.9585 + }, + { + "start": 6070.86, + "end": 6074.96, + "probability": 0.99 + }, + { + "start": 6074.96, + "end": 6079.12, + "probability": 0.9992 + }, + { + "start": 6079.56, + "end": 6085.02, + "probability": 0.9978 + }, + { + "start": 6085.06, + "end": 6087.12, + "probability": 0.992 + }, + { + "start": 6087.94, + "end": 6090.32, + "probability": 0.5704 + }, + { + "start": 6090.52, + "end": 6091.88, + "probability": 0.7921 + }, + { + "start": 6092.32, + "end": 6094.08, + "probability": 0.9412 + }, + { + "start": 6094.46, + "end": 6096.22, + "probability": 0.9644 + }, + { + "start": 6096.22, + "end": 6098.58, + "probability": 0.9873 + }, + { + "start": 6099.26, + "end": 6101.36, + "probability": 0.9623 + }, + { + "start": 6102.02, + "end": 6103.57, + "probability": 0.9528 + }, + { + "start": 6104.06, + "end": 6106.58, + "probability": 0.9915 + }, + { + "start": 6107.14, + "end": 6108.04, + "probability": 0.9122 + }, + { + "start": 6108.12, + "end": 6109.9, + "probability": 0.9985 + }, + { + "start": 6110.1, + "end": 6111.46, + "probability": 0.9736 + }, + { + "start": 6111.96, + "end": 6114.0, + "probability": 0.9954 + }, + { + "start": 6114.06, + "end": 6119.42, + "probability": 0.9973 + }, + { + "start": 6119.6, + "end": 6119.6, + "probability": 0.0338 + }, + { + "start": 6119.6, + "end": 6121.72, + "probability": 0.7433 + }, + { + "start": 6122.26, + "end": 6123.64, + "probability": 0.9954 + }, + { + "start": 6124.12, + "end": 6125.34, + "probability": 0.8699 + }, + { + "start": 6125.5, + "end": 6130.92, + "probability": 0.9833 + }, + { + "start": 6131.0, + "end": 6132.6, + "probability": 0.7943 + }, + { + "start": 6132.64, + "end": 6133.92, + "probability": 0.8647 + }, + { + "start": 6134.26, + "end": 6135.12, + "probability": 0.8872 + }, + { + "start": 6135.7, + "end": 6139.88, + "probability": 0.9629 + }, + { + "start": 6140.02, + "end": 6144.6, + "probability": 0.9937 + }, + { + "start": 6144.96, + "end": 6146.08, + "probability": 0.6882 + }, + { + "start": 6146.16, + "end": 6149.28, + "probability": 0.9723 + }, + { + "start": 6149.62, + "end": 6150.8, + "probability": 0.6521 + }, + { + "start": 6151.2, + "end": 6152.68, + "probability": 0.9141 + }, + { + "start": 6153.34, + "end": 6156.68, + "probability": 0.9972 + }, + { + "start": 6156.98, + "end": 6158.92, + "probability": 0.8534 + }, + { + "start": 6158.92, + "end": 6163.11, + "probability": 0.9925 + }, + { + "start": 6163.7, + "end": 6166.94, + "probability": 0.9962 + }, + { + "start": 6167.04, + "end": 6167.7, + "probability": 0.442 + }, + { + "start": 6167.7, + "end": 6170.44, + "probability": 0.4155 + }, + { + "start": 6170.78, + "end": 6173.38, + "probability": 0.8944 + }, + { + "start": 6173.98, + "end": 6175.0, + "probability": 0.7473 + }, + { + "start": 6175.62, + "end": 6178.0, + "probability": 0.9486 + }, + { + "start": 6178.8, + "end": 6180.66, + "probability": 0.9855 + }, + { + "start": 6181.98, + "end": 6182.72, + "probability": 0.9649 + }, + { + "start": 6183.8, + "end": 6186.08, + "probability": 0.8647 + }, + { + "start": 6188.14, + "end": 6189.18, + "probability": 0.8866 + }, + { + "start": 6189.36, + "end": 6191.04, + "probability": 0.9904 + }, + { + "start": 6191.18, + "end": 6191.88, + "probability": 0.9556 + }, + { + "start": 6192.24, + "end": 6194.53, + "probability": 0.992 + }, + { + "start": 6194.62, + "end": 6194.96, + "probability": 0.9615 + }, + { + "start": 6195.26, + "end": 6196.48, + "probability": 0.9956 + }, + { + "start": 6196.58, + "end": 6197.5, + "probability": 0.5045 + }, + { + "start": 6199.5, + "end": 6200.48, + "probability": 0.4009 + }, + { + "start": 6202.0, + "end": 6204.7, + "probability": 0.9125 + }, + { + "start": 6206.5, + "end": 6207.94, + "probability": 0.9351 + }, + { + "start": 6208.58, + "end": 6211.18, + "probability": 0.9971 + }, + { + "start": 6212.12, + "end": 6212.6, + "probability": 0.9467 + }, + { + "start": 6214.78, + "end": 6215.34, + "probability": 0.6133 + }, + { + "start": 6215.34, + "end": 6217.12, + "probability": 0.9186 + }, + { + "start": 6217.16, + "end": 6218.5, + "probability": 0.3555 + }, + { + "start": 6219.18, + "end": 6222.3, + "probability": 0.9442 + }, + { + "start": 6222.6, + "end": 6224.72, + "probability": 0.7033 + }, + { + "start": 6225.2, + "end": 6226.9, + "probability": 0.848 + }, + { + "start": 6227.36, + "end": 6228.46, + "probability": 0.9753 + }, + { + "start": 6228.6, + "end": 6229.0, + "probability": 0.9371 + }, + { + "start": 6229.62, + "end": 6233.04, + "probability": 0.7915 + }, + { + "start": 6233.34, + "end": 6234.02, + "probability": 0.6073 + }, + { + "start": 6235.36, + "end": 6242.9, + "probability": 0.9716 + }, + { + "start": 6243.84, + "end": 6246.48, + "probability": 0.993 + }, + { + "start": 6247.04, + "end": 6253.55, + "probability": 0.7168 + }, + { + "start": 6255.88, + "end": 6257.82, + "probability": 0.9676 + }, + { + "start": 6259.04, + "end": 6261.74, + "probability": 0.9459 + }, + { + "start": 6262.9, + "end": 6265.48, + "probability": 0.995 + }, + { + "start": 6266.02, + "end": 6270.62, + "probability": 0.991 + }, + { + "start": 6271.04, + "end": 6272.56, + "probability": 0.7052 + }, + { + "start": 6273.04, + "end": 6274.12, + "probability": 0.7155 + }, + { + "start": 6274.18, + "end": 6278.74, + "probability": 0.9744 + }, + { + "start": 6278.74, + "end": 6286.64, + "probability": 0.9797 + }, + { + "start": 6287.76, + "end": 6290.54, + "probability": 0.9788 + }, + { + "start": 6291.22, + "end": 6295.26, + "probability": 0.9822 + }, + { + "start": 6296.02, + "end": 6298.72, + "probability": 0.9873 + }, + { + "start": 6298.78, + "end": 6302.06, + "probability": 0.9762 + }, + { + "start": 6302.06, + "end": 6305.8, + "probability": 0.9951 + }, + { + "start": 6306.44, + "end": 6312.06, + "probability": 0.9951 + }, + { + "start": 6312.58, + "end": 6313.18, + "probability": 0.9948 + }, + { + "start": 6313.84, + "end": 6316.94, + "probability": 0.9982 + }, + { + "start": 6317.66, + "end": 6318.4, + "probability": 0.7529 + }, + { + "start": 6318.88, + "end": 6323.64, + "probability": 0.9925 + }, + { + "start": 6324.38, + "end": 6326.06, + "probability": 0.8664 + }, + { + "start": 6326.16, + "end": 6329.02, + "probability": 0.993 + }, + { + "start": 6331.28, + "end": 6332.44, + "probability": 0.7523 + }, + { + "start": 6332.72, + "end": 6333.56, + "probability": 0.2622 + }, + { + "start": 6333.8, + "end": 6339.0, + "probability": 0.97 + }, + { + "start": 6339.96, + "end": 6346.62, + "probability": 0.9966 + }, + { + "start": 6347.46, + "end": 6348.72, + "probability": 0.7104 + }, + { + "start": 6349.3, + "end": 6351.74, + "probability": 0.8507 + }, + { + "start": 6352.42, + "end": 6359.0, + "probability": 0.99 + }, + { + "start": 6359.9, + "end": 6361.5, + "probability": 0.9416 + }, + { + "start": 6362.3, + "end": 6365.94, + "probability": 0.998 + }, + { + "start": 6365.98, + "end": 6366.66, + "probability": 0.8286 + }, + { + "start": 6367.22, + "end": 6372.9, + "probability": 0.9237 + }, + { + "start": 6373.18, + "end": 6375.88, + "probability": 0.9924 + }, + { + "start": 6376.28, + "end": 6379.76, + "probability": 0.9869 + }, + { + "start": 6380.66, + "end": 6383.54, + "probability": 0.9932 + }, + { + "start": 6384.24, + "end": 6386.08, + "probability": 0.9714 + }, + { + "start": 6386.24, + "end": 6387.4, + "probability": 0.6817 + }, + { + "start": 6387.82, + "end": 6391.82, + "probability": 0.9987 + }, + { + "start": 6392.14, + "end": 6396.0, + "probability": 0.9906 + }, + { + "start": 6396.14, + "end": 6399.76, + "probability": 0.9974 + }, + { + "start": 6400.5, + "end": 6404.62, + "probability": 0.9976 + }, + { + "start": 6405.1, + "end": 6407.28, + "probability": 0.9257 + }, + { + "start": 6408.4, + "end": 6408.78, + "probability": 0.4834 + }, + { + "start": 6409.45, + "end": 6413.86, + "probability": 0.9639 + }, + { + "start": 6413.94, + "end": 6416.5, + "probability": 0.9932 + }, + { + "start": 6416.56, + "end": 6419.54, + "probability": 0.9426 + }, + { + "start": 6420.0, + "end": 6423.38, + "probability": 0.9346 + }, + { + "start": 6424.21, + "end": 6430.68, + "probability": 0.9835 + }, + { + "start": 6431.26, + "end": 6437.56, + "probability": 0.979 + }, + { + "start": 6437.56, + "end": 6443.04, + "probability": 0.999 + }, + { + "start": 6443.58, + "end": 6443.88, + "probability": 0.4997 + }, + { + "start": 6444.04, + "end": 6446.88, + "probability": 0.9983 + }, + { + "start": 6447.66, + "end": 6448.45, + "probability": 0.8816 + }, + { + "start": 6448.9, + "end": 6451.62, + "probability": 0.9647 + }, + { + "start": 6452.3, + "end": 6454.24, + "probability": 0.9031 + }, + { + "start": 6454.5, + "end": 6458.38, + "probability": 0.7858 + }, + { + "start": 6458.48, + "end": 6459.62, + "probability": 0.9471 + }, + { + "start": 6460.1, + "end": 6460.44, + "probability": 0.8463 + }, + { + "start": 6460.64, + "end": 6461.58, + "probability": 0.8024 + }, + { + "start": 6462.38, + "end": 6463.14, + "probability": 0.9507 + }, + { + "start": 6464.36, + "end": 6467.98, + "probability": 0.9204 + }, + { + "start": 6468.54, + "end": 6469.08, + "probability": 0.9951 + }, + { + "start": 6470.1, + "end": 6475.82, + "probability": 0.9764 + }, + { + "start": 6475.92, + "end": 6482.52, + "probability": 0.9969 + }, + { + "start": 6483.42, + "end": 6484.88, + "probability": 0.9961 + }, + { + "start": 6485.9, + "end": 6489.62, + "probability": 0.9985 + }, + { + "start": 6489.76, + "end": 6493.5, + "probability": 0.9946 + }, + { + "start": 6493.68, + "end": 6496.28, + "probability": 0.9953 + }, + { + "start": 6496.88, + "end": 6498.38, + "probability": 0.9946 + }, + { + "start": 6498.94, + "end": 6499.16, + "probability": 0.7673 + }, + { + "start": 6499.62, + "end": 6501.1, + "probability": 0.9587 + }, + { + "start": 6503.44, + "end": 6503.44, + "probability": 0.0233 + }, + { + "start": 6503.44, + "end": 6504.08, + "probability": 0.5175 + }, + { + "start": 6505.02, + "end": 6505.54, + "probability": 0.3857 + }, + { + "start": 6505.74, + "end": 6507.04, + "probability": 0.6425 + }, + { + "start": 6508.0, + "end": 6509.28, + "probability": 0.4451 + }, + { + "start": 6509.68, + "end": 6512.24, + "probability": 0.8679 + }, + { + "start": 6515.6, + "end": 6517.24, + "probability": 0.9282 + }, + { + "start": 6517.84, + "end": 6519.25, + "probability": 0.9924 + }, + { + "start": 6521.16, + "end": 6523.38, + "probability": 0.9956 + }, + { + "start": 6523.44, + "end": 6523.88, + "probability": 0.9717 + }, + { + "start": 6525.4, + "end": 6526.68, + "probability": 0.9316 + }, + { + "start": 6527.18, + "end": 6529.54, + "probability": 0.5688 + }, + { + "start": 6529.96, + "end": 6534.58, + "probability": 0.7907 + }, + { + "start": 6535.54, + "end": 6536.5, + "probability": 0.829 + }, + { + "start": 6536.86, + "end": 6538.58, + "probability": 0.9864 + }, + { + "start": 6538.74, + "end": 6539.74, + "probability": 0.8988 + }, + { + "start": 6539.94, + "end": 6543.48, + "probability": 0.8348 + }, + { + "start": 6544.96, + "end": 6546.66, + "probability": 0.624 + }, + { + "start": 6547.86, + "end": 6548.7, + "probability": 0.7823 + }, + { + "start": 6549.4, + "end": 6551.3, + "probability": 0.9062 + }, + { + "start": 6551.96, + "end": 6558.0, + "probability": 0.9935 + }, + { + "start": 6558.62, + "end": 6561.56, + "probability": 0.603 + }, + { + "start": 6562.14, + "end": 6564.92, + "probability": 0.8446 + }, + { + "start": 6565.82, + "end": 6572.5, + "probability": 0.8452 + }, + { + "start": 6574.26, + "end": 6577.2, + "probability": 0.9392 + }, + { + "start": 6577.74, + "end": 6583.5, + "probability": 0.9973 + }, + { + "start": 6583.86, + "end": 6585.82, + "probability": 0.9609 + }, + { + "start": 6585.94, + "end": 6588.56, + "probability": 0.8417 + }, + { + "start": 6589.9, + "end": 6592.48, + "probability": 0.8386 + }, + { + "start": 6593.66, + "end": 6594.76, + "probability": 0.7012 + }, + { + "start": 6595.84, + "end": 6598.72, + "probability": 0.9445 + }, + { + "start": 6599.82, + "end": 6604.26, + "probability": 0.9266 + }, + { + "start": 6605.7, + "end": 6607.5, + "probability": 0.9012 + }, + { + "start": 6609.24, + "end": 6612.52, + "probability": 0.9856 + }, + { + "start": 6612.68, + "end": 6616.68, + "probability": 0.8216 + }, + { + "start": 6617.8, + "end": 6621.0, + "probability": 0.9797 + }, + { + "start": 6621.62, + "end": 6622.94, + "probability": 0.9961 + }, + { + "start": 6624.44, + "end": 6624.86, + "probability": 0.1373 + }, + { + "start": 6625.16, + "end": 6627.26, + "probability": 0.9937 + }, + { + "start": 6628.62, + "end": 6631.68, + "probability": 0.887 + }, + { + "start": 6634.34, + "end": 6636.72, + "probability": 0.934 + }, + { + "start": 6637.16, + "end": 6637.62, + "probability": 0.6768 + }, + { + "start": 6638.46, + "end": 6638.78, + "probability": 0.7628 + }, + { + "start": 6639.04, + "end": 6645.44, + "probability": 0.9805 + }, + { + "start": 6645.76, + "end": 6646.96, + "probability": 0.9305 + }, + { + "start": 6648.44, + "end": 6651.04, + "probability": 0.8419 + }, + { + "start": 6651.74, + "end": 6652.62, + "probability": 0.9728 + }, + { + "start": 6653.64, + "end": 6656.62, + "probability": 0.7391 + }, + { + "start": 6659.27, + "end": 6661.38, + "probability": 0.9854 + }, + { + "start": 6661.46, + "end": 6661.56, + "probability": 0.5788 + }, + { + "start": 6661.7, + "end": 6662.31, + "probability": 0.9814 + }, + { + "start": 6662.38, + "end": 6663.08, + "probability": 0.8997 + }, + { + "start": 6663.78, + "end": 6667.78, + "probability": 0.9939 + }, + { + "start": 6667.78, + "end": 6671.88, + "probability": 0.9968 + }, + { + "start": 6672.64, + "end": 6676.96, + "probability": 0.9987 + }, + { + "start": 6679.26, + "end": 6682.12, + "probability": 1.0 + }, + { + "start": 6683.34, + "end": 6685.06, + "probability": 0.6031 + }, + { + "start": 6686.58, + "end": 6688.08, + "probability": 0.9607 + }, + { + "start": 6688.43, + "end": 6693.24, + "probability": 0.9202 + }, + { + "start": 6693.32, + "end": 6694.18, + "probability": 0.7913 + }, + { + "start": 6694.8, + "end": 6697.38, + "probability": 0.9968 + }, + { + "start": 6698.9, + "end": 6700.46, + "probability": 0.979 + }, + { + "start": 6700.54, + "end": 6702.92, + "probability": 0.9882 + }, + { + "start": 6703.3, + "end": 6707.36, + "probability": 0.9795 + }, + { + "start": 6709.84, + "end": 6712.46, + "probability": 0.4342 + }, + { + "start": 6713.42, + "end": 6714.18, + "probability": 0.7827 + }, + { + "start": 6714.76, + "end": 6714.86, + "probability": 0.9927 + }, + { + "start": 6715.62, + "end": 6717.22, + "probability": 0.8807 + }, + { + "start": 6717.36, + "end": 6720.3, + "probability": 0.7162 + }, + { + "start": 6720.46, + "end": 6721.2, + "probability": 0.4104 + }, + { + "start": 6721.28, + "end": 6722.12, + "probability": 0.5298 + }, + { + "start": 6723.1, + "end": 6724.46, + "probability": 0.5015 + }, + { + "start": 6725.8, + "end": 6729.2, + "probability": 0.9941 + }, + { + "start": 6729.78, + "end": 6730.78, + "probability": 0.1948 + }, + { + "start": 6732.58, + "end": 6732.86, + "probability": 0.6525 + }, + { + "start": 6733.6, + "end": 6734.5, + "probability": 0.6391 + }, + { + "start": 6735.26, + "end": 6738.98, + "probability": 0.9214 + }, + { + "start": 6739.3, + "end": 6741.44, + "probability": 0.9973 + }, + { + "start": 6741.56, + "end": 6741.98, + "probability": 0.3956 + }, + { + "start": 6741.98, + "end": 6743.4, + "probability": 0.4229 + }, + { + "start": 6743.78, + "end": 6745.7, + "probability": 0.6472 + }, + { + "start": 6746.72, + "end": 6749.62, + "probability": 0.7802 + }, + { + "start": 6750.92, + "end": 6754.72, + "probability": 0.9543 + }, + { + "start": 6755.28, + "end": 6756.58, + "probability": 0.7524 + }, + { + "start": 6756.58, + "end": 6759.06, + "probability": 0.98 + }, + { + "start": 6760.74, + "end": 6761.78, + "probability": 0.6421 + }, + { + "start": 6762.08, + "end": 6763.02, + "probability": 0.9554 + }, + { + "start": 6775.46, + "end": 6775.98, + "probability": 0.6743 + }, + { + "start": 6776.16, + "end": 6780.06, + "probability": 0.7419 + }, + { + "start": 6780.14, + "end": 6782.88, + "probability": 0.9099 + }, + { + "start": 6783.38, + "end": 6783.38, + "probability": 0.4388 + }, + { + "start": 6783.38, + "end": 6786.96, + "probability": 0.9754 + }, + { + "start": 6787.28, + "end": 6789.0, + "probability": 0.823 + }, + { + "start": 6789.44, + "end": 6792.82, + "probability": 0.9879 + }, + { + "start": 6792.88, + "end": 6794.24, + "probability": 0.8145 + }, + { + "start": 6794.24, + "end": 6795.4, + "probability": 0.9547 + }, + { + "start": 6795.46, + "end": 6796.24, + "probability": 0.9689 + }, + { + "start": 6796.48, + "end": 6796.6, + "probability": 0.8357 + }, + { + "start": 6797.34, + "end": 6799.16, + "probability": 0.813 + }, + { + "start": 6800.02, + "end": 6801.82, + "probability": 0.9922 + }, + { + "start": 6801.92, + "end": 6803.19, + "probability": 0.7285 + }, + { + "start": 6803.98, + "end": 6807.8, + "probability": 0.7996 + }, + { + "start": 6807.98, + "end": 6808.36, + "probability": 0.7343 + }, + { + "start": 6808.6, + "end": 6809.34, + "probability": 0.6853 + }, + { + "start": 6809.34, + "end": 6811.17, + "probability": 0.9153 + }, + { + "start": 6811.74, + "end": 6814.16, + "probability": 0.9993 + }, + { + "start": 6814.28, + "end": 6819.68, + "probability": 0.881 + }, + { + "start": 6819.68, + "end": 6823.66, + "probability": 0.9124 + }, + { + "start": 6823.7, + "end": 6824.82, + "probability": 0.8778 + }, + { + "start": 6825.78, + "end": 6830.26, + "probability": 0.9617 + }, + { + "start": 6830.88, + "end": 6832.93, + "probability": 0.9475 + }, + { + "start": 6834.14, + "end": 6835.14, + "probability": 0.6735 + }, + { + "start": 6835.32, + "end": 6838.46, + "probability": 0.9895 + }, + { + "start": 6838.46, + "end": 6841.3, + "probability": 0.8949 + }, + { + "start": 6841.82, + "end": 6846.86, + "probability": 0.9847 + }, + { + "start": 6847.68, + "end": 6849.46, + "probability": 0.9751 + }, + { + "start": 6849.54, + "end": 6850.86, + "probability": 0.9913 + }, + { + "start": 6851.46, + "end": 6854.16, + "probability": 0.9839 + }, + { + "start": 6854.92, + "end": 6858.32, + "probability": 0.8485 + }, + { + "start": 6859.54, + "end": 6862.02, + "probability": 0.8309 + }, + { + "start": 6862.82, + "end": 6866.12, + "probability": 0.846 + }, + { + "start": 6866.64, + "end": 6866.98, + "probability": 0.3973 + }, + { + "start": 6867.02, + "end": 6867.72, + "probability": 0.9651 + }, + { + "start": 6868.06, + "end": 6872.68, + "probability": 0.9171 + }, + { + "start": 6872.86, + "end": 6874.06, + "probability": 0.9648 + }, + { + "start": 6874.9, + "end": 6876.02, + "probability": 0.7899 + }, + { + "start": 6876.18, + "end": 6878.11, + "probability": 0.9299 + }, + { + "start": 6878.22, + "end": 6880.5, + "probability": 0.9724 + }, + { + "start": 6880.66, + "end": 6881.42, + "probability": 0.9673 + }, + { + "start": 6881.46, + "end": 6884.44, + "probability": 0.9584 + }, + { + "start": 6884.6, + "end": 6886.86, + "probability": 0.998 + }, + { + "start": 6886.86, + "end": 6890.9, + "probability": 0.9207 + }, + { + "start": 6891.58, + "end": 6894.14, + "probability": 0.8546 + }, + { + "start": 6894.64, + "end": 6896.42, + "probability": 0.8775 + }, + { + "start": 6897.14, + "end": 6897.78, + "probability": 0.6995 + }, + { + "start": 6898.64, + "end": 6902.88, + "probability": 0.9639 + }, + { + "start": 6903.28, + "end": 6904.5, + "probability": 0.6684 + }, + { + "start": 6904.94, + "end": 6907.68, + "probability": 0.9976 + }, + { + "start": 6908.44, + "end": 6910.66, + "probability": 0.9911 + }, + { + "start": 6911.12, + "end": 6916.48, + "probability": 0.9945 + }, + { + "start": 6916.84, + "end": 6918.34, + "probability": 0.9137 + }, + { + "start": 6918.42, + "end": 6918.9, + "probability": 0.8806 + }, + { + "start": 6919.78, + "end": 6921.84, + "probability": 0.8616 + }, + { + "start": 6922.14, + "end": 6923.26, + "probability": 0.4307 + }, + { + "start": 6923.62, + "end": 6925.22, + "probability": 0.8342 + }, + { + "start": 6925.86, + "end": 6929.02, + "probability": 0.947 + }, + { + "start": 6929.14, + "end": 6932.58, + "probability": 0.9883 + }, + { + "start": 6933.02, + "end": 6934.28, + "probability": 0.966 + }, + { + "start": 6934.92, + "end": 6939.88, + "probability": 0.9957 + }, + { + "start": 6940.42, + "end": 6946.36, + "probability": 0.7839 + }, + { + "start": 6947.02, + "end": 6950.42, + "probability": 0.9766 + }, + { + "start": 6950.42, + "end": 6954.46, + "probability": 0.9862 + }, + { + "start": 6956.02, + "end": 6960.1, + "probability": 0.9956 + }, + { + "start": 6960.26, + "end": 6964.3, + "probability": 0.9898 + }, + { + "start": 6964.9, + "end": 6969.02, + "probability": 0.9866 + }, + { + "start": 6969.36, + "end": 6971.12, + "probability": 0.9982 + }, + { + "start": 6971.54, + "end": 6975.26, + "probability": 0.9814 + }, + { + "start": 6975.66, + "end": 6977.12, + "probability": 0.8224 + }, + { + "start": 6977.22, + "end": 6980.64, + "probability": 0.9907 + }, + { + "start": 6980.76, + "end": 6982.0, + "probability": 0.9807 + }, + { + "start": 6982.4, + "end": 6985.66, + "probability": 0.9646 + }, + { + "start": 6985.78, + "end": 6987.24, + "probability": 0.9723 + }, + { + "start": 6987.74, + "end": 6991.3, + "probability": 0.9937 + }, + { + "start": 6991.36, + "end": 6992.3, + "probability": 0.8622 + }, + { + "start": 6995.0, + "end": 7000.3, + "probability": 0.8184 + }, + { + "start": 7000.82, + "end": 7003.38, + "probability": 0.9897 + }, + { + "start": 7004.14, + "end": 7006.08, + "probability": 0.6878 + }, + { + "start": 7006.52, + "end": 7008.6, + "probability": 0.9844 + }, + { + "start": 7008.94, + "end": 7010.97, + "probability": 0.9943 + }, + { + "start": 7011.54, + "end": 7015.0, + "probability": 0.9983 + }, + { + "start": 7015.04, + "end": 7015.54, + "probability": 0.7967 + }, + { + "start": 7015.58, + "end": 7017.36, + "probability": 0.4447 + }, + { + "start": 7017.44, + "end": 7018.06, + "probability": 0.7008 + }, + { + "start": 7018.54, + "end": 7019.45, + "probability": 0.5918 + }, + { + "start": 7020.32, + "end": 7020.92, + "probability": 0.1754 + }, + { + "start": 7020.92, + "end": 7021.88, + "probability": 0.6339 + }, + { + "start": 7022.02, + "end": 7023.92, + "probability": 0.7973 + }, + { + "start": 7024.4, + "end": 7026.01, + "probability": 0.8569 + }, + { + "start": 7026.84, + "end": 7030.46, + "probability": 0.8353 + }, + { + "start": 7030.58, + "end": 7031.52, + "probability": 0.7458 + }, + { + "start": 7031.98, + "end": 7033.33, + "probability": 0.9824 + }, + { + "start": 7034.24, + "end": 7036.38, + "probability": 0.8392 + }, + { + "start": 7037.3, + "end": 7040.34, + "probability": 0.8617 + }, + { + "start": 7041.54, + "end": 7042.02, + "probability": 0.9569 + }, + { + "start": 7042.38, + "end": 7043.72, + "probability": 0.9308 + }, + { + "start": 7043.74, + "end": 7048.34, + "probability": 0.8923 + }, + { + "start": 7048.9, + "end": 7049.7, + "probability": 0.9092 + }, + { + "start": 7049.96, + "end": 7053.38, + "probability": 0.9204 + }, + { + "start": 7054.04, + "end": 7054.72, + "probability": 0.7155 + }, + { + "start": 7055.08, + "end": 7056.46, + "probability": 0.9565 + }, + { + "start": 7056.9, + "end": 7057.28, + "probability": 0.932 + }, + { + "start": 7057.62, + "end": 7058.3, + "probability": 0.8556 + }, + { + "start": 7058.38, + "end": 7063.14, + "probability": 0.9033 + }, + { + "start": 7064.28, + "end": 7066.79, + "probability": 0.7163 + }, + { + "start": 7067.28, + "end": 7067.8, + "probability": 0.4084 + }, + { + "start": 7067.8, + "end": 7068.76, + "probability": 0.4381 + }, + { + "start": 7068.97, + "end": 7069.18, + "probability": 0.1338 + }, + { + "start": 7069.18, + "end": 7073.3, + "probability": 0.9861 + }, + { + "start": 7073.94, + "end": 7075.0, + "probability": 0.9417 + }, + { + "start": 7075.68, + "end": 7076.16, + "probability": 0.8123 + }, + { + "start": 7076.44, + "end": 7078.32, + "probability": 0.8681 + }, + { + "start": 7078.8, + "end": 7081.18, + "probability": 0.9955 + }, + { + "start": 7081.36, + "end": 7081.64, + "probability": 0.7841 + }, + { + "start": 7082.12, + "end": 7082.56, + "probability": 0.566 + }, + { + "start": 7082.82, + "end": 7085.9, + "probability": 0.9869 + }, + { + "start": 7112.32, + "end": 7113.14, + "probability": 0.3963 + }, + { + "start": 7113.68, + "end": 7114.42, + "probability": 0.6656 + }, + { + "start": 7115.52, + "end": 7120.02, + "probability": 0.9879 + }, + { + "start": 7120.08, + "end": 7121.18, + "probability": 0.8644 + }, + { + "start": 7121.96, + "end": 7125.58, + "probability": 0.9966 + }, + { + "start": 7126.24, + "end": 7128.7, + "probability": 0.9152 + }, + { + "start": 7129.5, + "end": 7131.28, + "probability": 0.8815 + }, + { + "start": 7131.94, + "end": 7135.16, + "probability": 0.926 + }, + { + "start": 7135.72, + "end": 7137.48, + "probability": 0.8831 + }, + { + "start": 7137.54, + "end": 7139.3, + "probability": 0.8242 + }, + { + "start": 7139.86, + "end": 7141.46, + "probability": 0.9406 + }, + { + "start": 7141.92, + "end": 7146.27, + "probability": 0.9767 + }, + { + "start": 7148.32, + "end": 7152.86, + "probability": 0.8438 + }, + { + "start": 7153.46, + "end": 7157.9, + "probability": 0.9941 + }, + { + "start": 7159.0, + "end": 7161.64, + "probability": 0.9985 + }, + { + "start": 7161.64, + "end": 7165.8, + "probability": 0.9814 + }, + { + "start": 7166.36, + "end": 7168.22, + "probability": 0.8853 + }, + { + "start": 7172.42, + "end": 7174.2, + "probability": 0.7514 + }, + { + "start": 7176.14, + "end": 7177.1, + "probability": 0.6498 + }, + { + "start": 7178.28, + "end": 7182.56, + "probability": 0.9491 + }, + { + "start": 7183.12, + "end": 7187.28, + "probability": 0.9784 + }, + { + "start": 7187.3, + "end": 7189.34, + "probability": 0.8101 + }, + { + "start": 7189.9, + "end": 7192.72, + "probability": 0.8838 + }, + { + "start": 7193.9, + "end": 7202.58, + "probability": 0.9409 + }, + { + "start": 7203.46, + "end": 7208.42, + "probability": 0.9692 + }, + { + "start": 7208.94, + "end": 7210.64, + "probability": 0.7978 + }, + { + "start": 7211.54, + "end": 7214.78, + "probability": 0.7943 + }, + { + "start": 7214.84, + "end": 7215.54, + "probability": 0.8064 + }, + { + "start": 7215.64, + "end": 7217.34, + "probability": 0.7949 + }, + { + "start": 7218.14, + "end": 7218.64, + "probability": 0.7475 + }, + { + "start": 7218.74, + "end": 7224.82, + "probability": 0.9809 + }, + { + "start": 7225.34, + "end": 7227.14, + "probability": 0.5029 + }, + { + "start": 7227.24, + "end": 7228.12, + "probability": 0.2503 + }, + { + "start": 7228.42, + "end": 7230.58, + "probability": 0.9712 + }, + { + "start": 7231.56, + "end": 7237.34, + "probability": 0.9844 + }, + { + "start": 7238.12, + "end": 7242.38, + "probability": 0.9543 + }, + { + "start": 7242.46, + "end": 7245.66, + "probability": 0.9776 + }, + { + "start": 7246.06, + "end": 7248.28, + "probability": 0.9952 + }, + { + "start": 7249.54, + "end": 7253.02, + "probability": 0.8647 + }, + { + "start": 7253.12, + "end": 7256.44, + "probability": 0.9054 + }, + { + "start": 7257.04, + "end": 7260.14, + "probability": 0.9564 + }, + { + "start": 7261.04, + "end": 7264.92, + "probability": 0.9983 + }, + { + "start": 7266.3, + "end": 7268.6, + "probability": 0.9113 + }, + { + "start": 7269.02, + "end": 7271.22, + "probability": 0.6675 + }, + { + "start": 7271.6, + "end": 7273.44, + "probability": 0.9061 + }, + { + "start": 7274.36, + "end": 7278.2, + "probability": 0.806 + }, + { + "start": 7278.86, + "end": 7281.44, + "probability": 0.8373 + }, + { + "start": 7281.94, + "end": 7283.36, + "probability": 0.9202 + }, + { + "start": 7283.4, + "end": 7289.16, + "probability": 0.9331 + }, + { + "start": 7289.8, + "end": 7293.06, + "probability": 0.7767 + }, + { + "start": 7293.7, + "end": 7296.74, + "probability": 0.929 + }, + { + "start": 7297.86, + "end": 7301.48, + "probability": 0.544 + }, + { + "start": 7301.58, + "end": 7304.32, + "probability": 0.9727 + }, + { + "start": 7304.74, + "end": 7309.26, + "probability": 0.964 + }, + { + "start": 7310.28, + "end": 7310.42, + "probability": 0.1536 + }, + { + "start": 7310.44, + "end": 7313.64, + "probability": 0.6305 + }, + { + "start": 7313.68, + "end": 7315.14, + "probability": 0.5704 + }, + { + "start": 7315.16, + "end": 7321.84, + "probability": 0.9076 + }, + { + "start": 7322.16, + "end": 7322.4, + "probability": 0.3936 + }, + { + "start": 7322.46, + "end": 7322.92, + "probability": 0.7178 + }, + { + "start": 7322.96, + "end": 7325.04, + "probability": 0.6127 + }, + { + "start": 7325.62, + "end": 7327.92, + "probability": 0.9434 + }, + { + "start": 7328.04, + "end": 7332.64, + "probability": 0.9648 + }, + { + "start": 7333.16, + "end": 7335.46, + "probability": 0.9316 + }, + { + "start": 7335.56, + "end": 7337.41, + "probability": 0.9938 + }, + { + "start": 7337.86, + "end": 7339.38, + "probability": 0.953 + }, + { + "start": 7339.72, + "end": 7343.34, + "probability": 0.9952 + }, + { + "start": 7343.38, + "end": 7346.22, + "probability": 0.9626 + }, + { + "start": 7346.3, + "end": 7346.6, + "probability": 0.4619 + }, + { + "start": 7346.64, + "end": 7349.48, + "probability": 0.9879 + }, + { + "start": 7349.76, + "end": 7354.2, + "probability": 0.9906 + }, + { + "start": 7355.12, + "end": 7355.98, + "probability": 0.7349 + }, + { + "start": 7356.24, + "end": 7359.5, + "probability": 0.6877 + }, + { + "start": 7371.68, + "end": 7375.46, + "probability": 0.5558 + }, + { + "start": 7376.26, + "end": 7377.6, + "probability": 0.9097 + }, + { + "start": 7378.94, + "end": 7379.7, + "probability": 0.7937 + }, + { + "start": 7379.94, + "end": 7380.44, + "probability": 0.6851 + }, + { + "start": 7380.66, + "end": 7383.84, + "probability": 0.7566 + }, + { + "start": 7385.06, + "end": 7389.04, + "probability": 0.818 + }, + { + "start": 7389.98, + "end": 7394.96, + "probability": 0.4183 + }, + { + "start": 7395.68, + "end": 7400.56, + "probability": 0.9968 + }, + { + "start": 7401.42, + "end": 7402.76, + "probability": 0.9482 + }, + { + "start": 7403.42, + "end": 7405.86, + "probability": 0.9648 + }, + { + "start": 7406.58, + "end": 7407.64, + "probability": 0.8086 + }, + { + "start": 7408.52, + "end": 7412.3, + "probability": 0.9818 + }, + { + "start": 7413.7, + "end": 7419.14, + "probability": 0.9084 + }, + { + "start": 7419.3, + "end": 7425.6, + "probability": 0.9927 + }, + { + "start": 7425.6, + "end": 7428.88, + "probability": 0.9179 + }, + { + "start": 7430.62, + "end": 7436.46, + "probability": 0.9917 + }, + { + "start": 7436.54, + "end": 7439.02, + "probability": 0.9884 + }, + { + "start": 7439.56, + "end": 7442.9, + "probability": 0.9969 + }, + { + "start": 7443.66, + "end": 7448.48, + "probability": 0.7713 + }, + { + "start": 7449.18, + "end": 7454.44, + "probability": 0.9962 + }, + { + "start": 7455.04, + "end": 7456.52, + "probability": 0.9717 + }, + { + "start": 7457.56, + "end": 7462.08, + "probability": 0.8588 + }, + { + "start": 7462.74, + "end": 7466.66, + "probability": 0.9408 + }, + { + "start": 7467.52, + "end": 7467.98, + "probability": 0.9369 + }, + { + "start": 7469.5, + "end": 7471.34, + "probability": 0.6938 + }, + { + "start": 7471.92, + "end": 7473.54, + "probability": 0.706 + }, + { + "start": 7473.98, + "end": 7474.9, + "probability": 0.7627 + }, + { + "start": 7475.02, + "end": 7476.14, + "probability": 0.9214 + }, + { + "start": 7476.16, + "end": 7476.88, + "probability": 0.9496 + }, + { + "start": 7476.94, + "end": 7478.06, + "probability": 0.941 + }, + { + "start": 7478.12, + "end": 7479.14, + "probability": 0.875 + }, + { + "start": 7479.74, + "end": 7481.37, + "probability": 0.9856 + }, + { + "start": 7481.84, + "end": 7487.4, + "probability": 0.9861 + }, + { + "start": 7488.3, + "end": 7489.36, + "probability": 0.9722 + }, + { + "start": 7489.62, + "end": 7491.6, + "probability": 0.9298 + }, + { + "start": 7491.68, + "end": 7498.34, + "probability": 0.9906 + }, + { + "start": 7498.66, + "end": 7500.82, + "probability": 0.8892 + }, + { + "start": 7501.1, + "end": 7506.44, + "probability": 0.988 + }, + { + "start": 7506.54, + "end": 7511.1, + "probability": 0.9558 + }, + { + "start": 7511.3, + "end": 7512.9, + "probability": 0.8315 + }, + { + "start": 7513.46, + "end": 7517.46, + "probability": 0.7483 + }, + { + "start": 7518.16, + "end": 7524.8, + "probability": 0.8586 + }, + { + "start": 7525.28, + "end": 7526.18, + "probability": 0.9771 + }, + { + "start": 7526.92, + "end": 7529.06, + "probability": 0.884 + }, + { + "start": 7529.74, + "end": 7531.0, + "probability": 0.6698 + }, + { + "start": 7531.12, + "end": 7531.95, + "probability": 0.9937 + }, + { + "start": 7532.14, + "end": 7533.42, + "probability": 0.6874 + }, + { + "start": 7533.56, + "end": 7537.88, + "probability": 0.9197 + }, + { + "start": 7538.02, + "end": 7541.44, + "probability": 0.9871 + }, + { + "start": 7541.52, + "end": 7544.8, + "probability": 0.968 + }, + { + "start": 7545.3, + "end": 7546.16, + "probability": 0.4416 + }, + { + "start": 7546.8, + "end": 7548.34, + "probability": 0.8429 + }, + { + "start": 7548.74, + "end": 7550.1, + "probability": 0.8698 + }, + { + "start": 7550.56, + "end": 7552.88, + "probability": 0.9761 + }, + { + "start": 7553.32, + "end": 7554.62, + "probability": 0.8485 + }, + { + "start": 7555.1, + "end": 7555.82, + "probability": 0.7292 + }, + { + "start": 7555.92, + "end": 7559.88, + "probability": 0.9863 + }, + { + "start": 7560.32, + "end": 7561.18, + "probability": 0.5552 + }, + { + "start": 7561.62, + "end": 7563.16, + "probability": 0.4306 + }, + { + "start": 7563.4, + "end": 7566.82, + "probability": 0.8903 + }, + { + "start": 7567.14, + "end": 7571.8, + "probability": 0.9103 + }, + { + "start": 7571.8, + "end": 7577.2, + "probability": 0.855 + }, + { + "start": 7577.26, + "end": 7578.96, + "probability": 0.8724 + }, + { + "start": 7579.42, + "end": 7583.46, + "probability": 0.9355 + }, + { + "start": 7583.56, + "end": 7584.16, + "probability": 0.95 + }, + { + "start": 7584.24, + "end": 7585.3, + "probability": 0.9671 + }, + { + "start": 7585.66, + "end": 7588.48, + "probability": 0.8589 + }, + { + "start": 7589.14, + "end": 7589.36, + "probability": 0.8569 + }, + { + "start": 7590.3, + "end": 7590.88, + "probability": 0.7459 + }, + { + "start": 7591.26, + "end": 7592.18, + "probability": 0.7387 + }, + { + "start": 7592.88, + "end": 7594.24, + "probability": 0.7278 + }, + { + "start": 7596.02, + "end": 7596.94, + "probability": 0.4076 + }, + { + "start": 7598.54, + "end": 7600.84, + "probability": 0.7974 + }, + { + "start": 7603.0, + "end": 7603.16, + "probability": 0.4126 + }, + { + "start": 7603.16, + "end": 7605.28, + "probability": 0.9328 + }, + { + "start": 7607.3, + "end": 7608.76, + "probability": 0.1955 + }, + { + "start": 7626.34, + "end": 7627.24, + "probability": 0.494 + }, + { + "start": 7627.42, + "end": 7633.33, + "probability": 0.5318 + }, + { + "start": 7635.74, + "end": 7636.98, + "probability": 0.8929 + }, + { + "start": 7637.42, + "end": 7642.94, + "probability": 0.8962 + }, + { + "start": 7644.66, + "end": 7648.48, + "probability": 0.9911 + }, + { + "start": 7650.92, + "end": 7655.16, + "probability": 0.8914 + }, + { + "start": 7657.88, + "end": 7660.46, + "probability": 0.6834 + }, + { + "start": 7661.32, + "end": 7663.92, + "probability": 0.9937 + }, + { + "start": 7667.24, + "end": 7671.4, + "probability": 0.5459 + }, + { + "start": 7672.08, + "end": 7674.7, + "probability": 0.9172 + }, + { + "start": 7675.28, + "end": 7679.3, + "probability": 0.989 + }, + { + "start": 7680.28, + "end": 7680.88, + "probability": 0.5733 + }, + { + "start": 7681.16, + "end": 7685.84, + "probability": 0.9868 + }, + { + "start": 7687.22, + "end": 7688.36, + "probability": 0.9152 + }, + { + "start": 7690.18, + "end": 7694.24, + "probability": 0.8133 + }, + { + "start": 7695.4, + "end": 7697.96, + "probability": 0.5854 + }, + { + "start": 7699.66, + "end": 7702.34, + "probability": 0.9891 + }, + { + "start": 7702.4, + "end": 7709.26, + "probability": 0.8178 + }, + { + "start": 7709.4, + "end": 7713.16, + "probability": 0.9189 + }, + { + "start": 7713.16, + "end": 7717.36, + "probability": 0.8785 + }, + { + "start": 7717.58, + "end": 7720.37, + "probability": 0.9828 + }, + { + "start": 7721.62, + "end": 7722.82, + "probability": 0.6368 + }, + { + "start": 7722.92, + "end": 7724.96, + "probability": 0.7514 + }, + { + "start": 7725.16, + "end": 7726.28, + "probability": 0.9035 + }, + { + "start": 7726.8, + "end": 7728.66, + "probability": 0.8694 + }, + { + "start": 7729.1, + "end": 7732.14, + "probability": 0.97 + }, + { + "start": 7733.2, + "end": 7734.74, + "probability": 0.5802 + }, + { + "start": 7736.11, + "end": 7738.52, + "probability": 0.6187 + }, + { + "start": 7739.7, + "end": 7744.06, + "probability": 0.9052 + }, + { + "start": 7744.36, + "end": 7746.16, + "probability": 0.8218 + }, + { + "start": 7746.22, + "end": 7748.34, + "probability": 0.8674 + }, + { + "start": 7748.64, + "end": 7749.82, + "probability": 0.7326 + }, + { + "start": 7750.06, + "end": 7752.0, + "probability": 0.9653 + }, + { + "start": 7753.28, + "end": 7755.66, + "probability": 0.9946 + }, + { + "start": 7755.8, + "end": 7756.54, + "probability": 0.4564 + }, + { + "start": 7756.64, + "end": 7762.68, + "probability": 0.8543 + }, + { + "start": 7763.54, + "end": 7768.38, + "probability": 0.6787 + }, + { + "start": 7768.94, + "end": 7770.98, + "probability": 0.8649 + }, + { + "start": 7771.08, + "end": 7772.14, + "probability": 0.5463 + }, + { + "start": 7773.42, + "end": 7777.82, + "probability": 0.9978 + }, + { + "start": 7777.92, + "end": 7779.34, + "probability": 0.8166 + }, + { + "start": 7780.08, + "end": 7781.54, + "probability": 0.9168 + }, + { + "start": 7781.76, + "end": 7785.54, + "probability": 0.7872 + }, + { + "start": 7787.24, + "end": 7790.62, + "probability": 0.8982 + }, + { + "start": 7791.96, + "end": 7796.34, + "probability": 0.9836 + }, + { + "start": 7797.52, + "end": 7802.76, + "probability": 0.7986 + }, + { + "start": 7803.88, + "end": 7806.93, + "probability": 0.8576 + }, + { + "start": 7807.44, + "end": 7809.48, + "probability": 0.8642 + }, + { + "start": 7810.0, + "end": 7815.62, + "probability": 0.9594 + }, + { + "start": 7817.3, + "end": 7820.22, + "probability": 0.6657 + }, + { + "start": 7821.54, + "end": 7822.9, + "probability": 0.9109 + }, + { + "start": 7823.18, + "end": 7824.06, + "probability": 0.8729 + }, + { + "start": 7824.36, + "end": 7827.28, + "probability": 0.9874 + }, + { + "start": 7827.94, + "end": 7830.2, + "probability": 0.8093 + }, + { + "start": 7832.0, + "end": 7832.46, + "probability": 0.8667 + }, + { + "start": 7832.58, + "end": 7835.34, + "probability": 0.9861 + }, + { + "start": 7835.5, + "end": 7838.46, + "probability": 0.9463 + }, + { + "start": 7839.36, + "end": 7840.8, + "probability": 0.9886 + }, + { + "start": 7840.86, + "end": 7841.24, + "probability": 0.8879 + }, + { + "start": 7841.82, + "end": 7842.44, + "probability": 0.872 + }, + { + "start": 7847.78, + "end": 7851.12, + "probability": 0.869 + }, + { + "start": 7851.96, + "end": 7852.52, + "probability": 0.538 + }, + { + "start": 7853.04, + "end": 7854.96, + "probability": 0.9941 + }, + { + "start": 7856.14, + "end": 7856.38, + "probability": 0.7608 + }, + { + "start": 7857.26, + "end": 7858.38, + "probability": 0.6907 + }, + { + "start": 7860.2, + "end": 7861.54, + "probability": 0.8419 + }, + { + "start": 7862.12, + "end": 7863.28, + "probability": 0.9366 + }, + { + "start": 7864.54, + "end": 7865.56, + "probability": 0.0082 + }, + { + "start": 7874.45, + "end": 7878.62, + "probability": 0.6915 + }, + { + "start": 7880.4, + "end": 7881.45, + "probability": 0.8593 + }, + { + "start": 7882.52, + "end": 7883.74, + "probability": 0.6534 + }, + { + "start": 7883.74, + "end": 7885.1, + "probability": 0.8726 + }, + { + "start": 7885.54, + "end": 7888.3, + "probability": 0.8636 + }, + { + "start": 7888.4, + "end": 7889.22, + "probability": 0.7921 + }, + { + "start": 7889.34, + "end": 7890.24, + "probability": 0.8362 + }, + { + "start": 7891.78, + "end": 7892.56, + "probability": 0.5971 + }, + { + "start": 7892.58, + "end": 7898.0, + "probability": 0.8662 + }, + { + "start": 7899.42, + "end": 7903.38, + "probability": 0.9115 + }, + { + "start": 7903.52, + "end": 7905.4, + "probability": 0.9646 + }, + { + "start": 7906.56, + "end": 7914.04, + "probability": 0.9799 + }, + { + "start": 7914.94, + "end": 7919.85, + "probability": 0.9336 + }, + { + "start": 7920.48, + "end": 7922.66, + "probability": 0.9646 + }, + { + "start": 7922.76, + "end": 7925.0, + "probability": 0.793 + }, + { + "start": 7925.76, + "end": 7926.76, + "probability": 0.7202 + }, + { + "start": 7927.26, + "end": 7931.32, + "probability": 0.99 + }, + { + "start": 7933.37, + "end": 7936.68, + "probability": 0.9984 + }, + { + "start": 7937.84, + "end": 7938.36, + "probability": 0.9255 + }, + { + "start": 7940.64, + "end": 7943.74, + "probability": 0.999 + }, + { + "start": 7944.52, + "end": 7945.96, + "probability": 0.7006 + }, + { + "start": 7947.48, + "end": 7949.96, + "probability": 0.6773 + }, + { + "start": 7950.18, + "end": 7950.18, + "probability": 0.6381 + }, + { + "start": 7950.18, + "end": 7951.62, + "probability": 0.9707 + }, + { + "start": 7951.66, + "end": 7953.7, + "probability": 0.9885 + }, + { + "start": 7955.34, + "end": 7958.64, + "probability": 0.8836 + }, + { + "start": 7958.64, + "end": 7961.98, + "probability": 0.9502 + }, + { + "start": 7963.2, + "end": 7966.64, + "probability": 0.713 + }, + { + "start": 7968.22, + "end": 7971.7, + "probability": 0.9514 + }, + { + "start": 7972.08, + "end": 7978.16, + "probability": 0.9895 + }, + { + "start": 7978.28, + "end": 7979.06, + "probability": 0.914 + }, + { + "start": 7979.98, + "end": 7981.86, + "probability": 0.7647 + }, + { + "start": 7983.14, + "end": 7984.36, + "probability": 0.7787 + }, + { + "start": 7986.6, + "end": 7991.12, + "probability": 0.8974 + }, + { + "start": 7991.64, + "end": 7992.66, + "probability": 0.7505 + }, + { + "start": 7993.62, + "end": 7997.72, + "probability": 0.9838 + }, + { + "start": 7999.82, + "end": 8003.16, + "probability": 0.9943 + }, + { + "start": 8004.4, + "end": 8009.86, + "probability": 0.9954 + }, + { + "start": 8009.86, + "end": 8013.84, + "probability": 0.984 + }, + { + "start": 8016.22, + "end": 8021.66, + "probability": 0.9689 + }, + { + "start": 8021.76, + "end": 8023.56, + "probability": 0.6471 + }, + { + "start": 8025.72, + "end": 8030.86, + "probability": 0.887 + }, + { + "start": 8031.66, + "end": 8035.34, + "probability": 0.9087 + }, + { + "start": 8037.62, + "end": 8040.58, + "probability": 0.9883 + }, + { + "start": 8042.54, + "end": 8050.8, + "probability": 0.9918 + }, + { + "start": 8051.54, + "end": 8060.04, + "probability": 0.9786 + }, + { + "start": 8060.04, + "end": 8064.58, + "probability": 0.9965 + }, + { + "start": 8066.42, + "end": 8067.16, + "probability": 0.6337 + }, + { + "start": 8067.24, + "end": 8068.16, + "probability": 0.8285 + }, + { + "start": 8068.28, + "end": 8074.56, + "probability": 0.8511 + }, + { + "start": 8076.57, + "end": 8082.72, + "probability": 0.7992 + }, + { + "start": 8083.24, + "end": 8086.78, + "probability": 0.7549 + }, + { + "start": 8093.06, + "end": 8098.51, + "probability": 0.9906 + }, + { + "start": 8098.52, + "end": 8101.98, + "probability": 0.997 + }, + { + "start": 8104.85, + "end": 8106.48, + "probability": 0.5592 + }, + { + "start": 8106.62, + "end": 8112.84, + "probability": 0.7869 + }, + { + "start": 8113.62, + "end": 8116.42, + "probability": 0.9958 + }, + { + "start": 8116.76, + "end": 8120.68, + "probability": 0.9652 + }, + { + "start": 8120.68, + "end": 8124.64, + "probability": 0.8694 + }, + { + "start": 8124.74, + "end": 8126.12, + "probability": 0.7621 + }, + { + "start": 8126.26, + "end": 8128.64, + "probability": 0.9315 + }, + { + "start": 8128.64, + "end": 8133.08, + "probability": 0.9846 + }, + { + "start": 8133.08, + "end": 8135.06, + "probability": 0.9956 + }, + { + "start": 8135.14, + "end": 8135.44, + "probability": 0.755 + }, + { + "start": 8135.64, + "end": 8135.78, + "probability": 0.7471 + }, + { + "start": 8136.64, + "end": 8138.68, + "probability": 0.8879 + }, + { + "start": 8156.16, + "end": 8157.4, + "probability": 0.7698 + }, + { + "start": 8157.48, + "end": 8159.2, + "probability": 0.85 + }, + { + "start": 8159.66, + "end": 8160.78, + "probability": 0.6194 + }, + { + "start": 8163.52, + "end": 8165.38, + "probability": 0.8446 + }, + { + "start": 8166.14, + "end": 8167.62, + "probability": 0.8003 + }, + { + "start": 8168.2, + "end": 8169.87, + "probability": 0.9658 + }, + { + "start": 8171.16, + "end": 8172.54, + "probability": 0.9946 + }, + { + "start": 8173.56, + "end": 8177.4, + "probability": 0.9137 + }, + { + "start": 8177.56, + "end": 8180.5, + "probability": 0.8701 + }, + { + "start": 8181.04, + "end": 8181.7, + "probability": 0.9709 + }, + { + "start": 8182.58, + "end": 8187.98, + "probability": 0.9875 + }, + { + "start": 8188.54, + "end": 8195.39, + "probability": 0.9978 + }, + { + "start": 8196.2, + "end": 8198.76, + "probability": 0.9959 + }, + { + "start": 8198.94, + "end": 8199.64, + "probability": 0.7198 + }, + { + "start": 8199.82, + "end": 8200.94, + "probability": 0.9094 + }, + { + "start": 8201.06, + "end": 8201.56, + "probability": 0.4574 + }, + { + "start": 8201.68, + "end": 8202.67, + "probability": 0.9762 + }, + { + "start": 8202.78, + "end": 8206.92, + "probability": 0.9944 + }, + { + "start": 8207.42, + "end": 8210.32, + "probability": 0.9363 + }, + { + "start": 8210.32, + "end": 8213.14, + "probability": 0.9816 + }, + { + "start": 8213.3, + "end": 8216.38, + "probability": 0.9976 + }, + { + "start": 8217.0, + "end": 8220.96, + "probability": 0.9928 + }, + { + "start": 8221.96, + "end": 8224.64, + "probability": 0.9832 + }, + { + "start": 8224.64, + "end": 8228.08, + "probability": 0.9858 + }, + { + "start": 8228.16, + "end": 8229.68, + "probability": 0.8942 + }, + { + "start": 8230.32, + "end": 8233.46, + "probability": 0.9871 + }, + { + "start": 8233.86, + "end": 8236.5, + "probability": 0.9316 + }, + { + "start": 8238.82, + "end": 8245.32, + "probability": 0.9644 + }, + { + "start": 8245.8, + "end": 8250.74, + "probability": 0.9785 + }, + { + "start": 8250.82, + "end": 8251.52, + "probability": 0.5006 + }, + { + "start": 8251.62, + "end": 8256.73, + "probability": 0.9761 + }, + { + "start": 8257.98, + "end": 8260.3, + "probability": 0.9746 + }, + { + "start": 8260.82, + "end": 8266.28, + "probability": 0.9807 + }, + { + "start": 8266.44, + "end": 8269.0, + "probability": 0.906 + }, + { + "start": 8270.1, + "end": 8272.9, + "probability": 0.9652 + }, + { + "start": 8273.78, + "end": 8274.4, + "probability": 0.9398 + }, + { + "start": 8274.88, + "end": 8280.88, + "probability": 0.9839 + }, + { + "start": 8282.5, + "end": 8291.54, + "probability": 0.7471 + }, + { + "start": 8291.66, + "end": 8295.82, + "probability": 0.7575 + }, + { + "start": 8296.72, + "end": 8299.86, + "probability": 0.7993 + }, + { + "start": 8300.54, + "end": 8303.88, + "probability": 0.8519 + }, + { + "start": 8304.54, + "end": 8307.62, + "probability": 0.9966 + }, + { + "start": 8307.62, + "end": 8312.72, + "probability": 0.667 + }, + { + "start": 8313.28, + "end": 8318.86, + "probability": 0.9638 + }, + { + "start": 8319.08, + "end": 8320.5, + "probability": 0.9599 + }, + { + "start": 8320.58, + "end": 8322.7, + "probability": 0.6871 + }, + { + "start": 8323.36, + "end": 8323.82, + "probability": 0.3586 + }, + { + "start": 8324.34, + "end": 8326.53, + "probability": 0.9836 + }, + { + "start": 8327.82, + "end": 8330.66, + "probability": 0.8951 + }, + { + "start": 8330.66, + "end": 8333.36, + "probability": 0.8788 + }, + { + "start": 8333.46, + "end": 8336.04, + "probability": 0.7568 + }, + { + "start": 8336.56, + "end": 8343.16, + "probability": 0.8862 + }, + { + "start": 8343.72, + "end": 8344.1, + "probability": 0.7011 + }, + { + "start": 8344.58, + "end": 8344.88, + "probability": 0.6567 + }, + { + "start": 8345.04, + "end": 8347.3, + "probability": 0.8371 + }, + { + "start": 8365.14, + "end": 8365.24, + "probability": 0.0703 + }, + { + "start": 8365.24, + "end": 8369.28, + "probability": 0.7786 + }, + { + "start": 8369.5, + "end": 8371.84, + "probability": 0.6563 + }, + { + "start": 8372.02, + "end": 8372.12, + "probability": 0.9333 + }, + { + "start": 8372.72, + "end": 8373.12, + "probability": 0.3099 + }, + { + "start": 8374.54, + "end": 8376.26, + "probability": 0.9899 + }, + { + "start": 8377.54, + "end": 8381.68, + "probability": 0.9877 + }, + { + "start": 8381.68, + "end": 8384.82, + "probability": 0.9925 + }, + { + "start": 8386.2, + "end": 8393.5, + "probability": 0.9916 + }, + { + "start": 8393.56, + "end": 8397.86, + "probability": 0.9834 + }, + { + "start": 8399.24, + "end": 8402.34, + "probability": 0.98 + }, + { + "start": 8403.1, + "end": 8406.34, + "probability": 0.9986 + }, + { + "start": 8406.42, + "end": 8408.78, + "probability": 0.9956 + }, + { + "start": 8410.12, + "end": 8415.9, + "probability": 0.9821 + }, + { + "start": 8416.6, + "end": 8420.48, + "probability": 0.9872 + }, + { + "start": 8421.24, + "end": 8422.02, + "probability": 0.0985 + }, + { + "start": 8422.7, + "end": 8423.76, + "probability": 0.7002 + }, + { + "start": 8426.58, + "end": 8427.86, + "probability": 0.9163 + }, + { + "start": 8429.16, + "end": 8432.88, + "probability": 0.8235 + }, + { + "start": 8434.62, + "end": 8435.96, + "probability": 0.7847 + }, + { + "start": 8440.74, + "end": 8443.26, + "probability": 0.9546 + }, + { + "start": 8443.82, + "end": 8445.52, + "probability": 0.7693 + }, + { + "start": 8445.68, + "end": 8446.26, + "probability": 0.8674 + }, + { + "start": 8446.56, + "end": 8449.7, + "probability": 0.9949 + }, + { + "start": 8449.98, + "end": 8450.48, + "probability": 0.7383 + }, + { + "start": 8450.64, + "end": 8457.44, + "probability": 0.9677 + }, + { + "start": 8457.76, + "end": 8459.04, + "probability": 0.8233 + }, + { + "start": 8459.6, + "end": 8464.02, + "probability": 0.9877 + }, + { + "start": 8464.16, + "end": 8465.68, + "probability": 0.9929 + }, + { + "start": 8466.06, + "end": 8471.9, + "probability": 0.9644 + }, + { + "start": 8471.96, + "end": 8472.46, + "probability": 0.5877 + }, + { + "start": 8472.88, + "end": 8477.44, + "probability": 0.9781 + }, + { + "start": 8477.44, + "end": 8481.34, + "probability": 0.9957 + }, + { + "start": 8482.34, + "end": 8483.12, + "probability": 0.6958 + }, + { + "start": 8483.66, + "end": 8485.9, + "probability": 0.9588 + }, + { + "start": 8486.48, + "end": 8488.58, + "probability": 0.963 + }, + { + "start": 8490.58, + "end": 8491.96, + "probability": 0.9431 + }, + { + "start": 8492.24, + "end": 8495.56, + "probability": 0.9964 + }, + { + "start": 8496.22, + "end": 8497.96, + "probability": 0.9626 + }, + { + "start": 8498.68, + "end": 8502.42, + "probability": 0.9971 + }, + { + "start": 8502.44, + "end": 8505.84, + "probability": 0.9924 + }, + { + "start": 8507.18, + "end": 8508.52, + "probability": 0.9995 + }, + { + "start": 8509.28, + "end": 8511.52, + "probability": 0.8304 + }, + { + "start": 8513.23, + "end": 8515.42, + "probability": 0.9581 + }, + { + "start": 8516.98, + "end": 8518.68, + "probability": 0.957 + }, + { + "start": 8519.5, + "end": 8521.04, + "probability": 0.9833 + }, + { + "start": 8521.78, + "end": 8526.22, + "probability": 0.9874 + }, + { + "start": 8528.36, + "end": 8528.96, + "probability": 0.858 + }, + { + "start": 8529.4, + "end": 8535.4, + "probability": 0.9937 + }, + { + "start": 8535.5, + "end": 8535.98, + "probability": 0.7267 + }, + { + "start": 8536.56, + "end": 8543.42, + "probability": 0.9599 + }, + { + "start": 8544.28, + "end": 8546.86, + "probability": 0.8008 + }, + { + "start": 8547.26, + "end": 8551.46, + "probability": 0.9663 + }, + { + "start": 8551.68, + "end": 8554.84, + "probability": 0.7981 + }, + { + "start": 8555.2, + "end": 8556.64, + "probability": 0.9829 + }, + { + "start": 8557.32, + "end": 8562.3, + "probability": 0.9929 + }, + { + "start": 8562.76, + "end": 8567.2, + "probability": 0.9716 + }, + { + "start": 8567.94, + "end": 8569.54, + "probability": 0.964 + }, + { + "start": 8569.6, + "end": 8572.54, + "probability": 0.6522 + }, + { + "start": 8573.1, + "end": 8573.74, + "probability": 0.7038 + }, + { + "start": 8574.46, + "end": 8576.74, + "probability": 0.9978 + }, + { + "start": 8577.08, + "end": 8579.06, + "probability": 0.96 + }, + { + "start": 8579.46, + "end": 8583.32, + "probability": 0.9797 + }, + { + "start": 8583.32, + "end": 8589.32, + "probability": 0.9917 + }, + { + "start": 8589.72, + "end": 8590.42, + "probability": 0.4763 + }, + { + "start": 8590.52, + "end": 8591.68, + "probability": 0.5871 + }, + { + "start": 8591.68, + "end": 8593.08, + "probability": 0.4867 + }, + { + "start": 8593.42, + "end": 8594.4, + "probability": 0.9229 + }, + { + "start": 8596.32, + "end": 8599.06, + "probability": 0.9932 + }, + { + "start": 8599.42, + "end": 8602.6, + "probability": 0.9951 + }, + { + "start": 8602.6, + "end": 8606.22, + "probability": 0.9427 + }, + { + "start": 8607.14, + "end": 8610.2, + "probability": 0.9948 + }, + { + "start": 8611.02, + "end": 8614.12, + "probability": 0.999 + }, + { + "start": 8614.58, + "end": 8619.18, + "probability": 0.9892 + }, + { + "start": 8619.56, + "end": 8622.54, + "probability": 0.9811 + }, + { + "start": 8622.54, + "end": 8625.6, + "probability": 0.9955 + }, + { + "start": 8626.08, + "end": 8627.58, + "probability": 0.8426 + }, + { + "start": 8627.66, + "end": 8629.14, + "probability": 0.9819 + }, + { + "start": 8629.74, + "end": 8631.76, + "probability": 0.9836 + }, + { + "start": 8632.88, + "end": 8633.16, + "probability": 0.0003 + }, + { + "start": 8634.22, + "end": 8635.32, + "probability": 0.2623 + }, + { + "start": 8635.66, + "end": 8637.29, + "probability": 0.686 + }, + { + "start": 8638.08, + "end": 8642.9, + "probability": 0.9116 + }, + { + "start": 8643.04, + "end": 8643.84, + "probability": 0.734 + }, + { + "start": 8644.42, + "end": 8646.88, + "probability": 0.8822 + }, + { + "start": 8647.92, + "end": 8651.06, + "probability": 0.9974 + }, + { + "start": 8652.24, + "end": 8655.58, + "probability": 0.9881 + }, + { + "start": 8656.26, + "end": 8657.82, + "probability": 0.9897 + }, + { + "start": 8658.6, + "end": 8661.14, + "probability": 0.9698 + }, + { + "start": 8662.06, + "end": 8662.74, + "probability": 0.9893 + }, + { + "start": 8663.52, + "end": 8667.36, + "probability": 0.9546 + }, + { + "start": 8667.88, + "end": 8668.96, + "probability": 0.9323 + }, + { + "start": 8669.38, + "end": 8670.89, + "probability": 0.9651 + }, + { + "start": 8671.08, + "end": 8672.74, + "probability": 0.8574 + }, + { + "start": 8673.22, + "end": 8674.22, + "probability": 0.9006 + }, + { + "start": 8674.7, + "end": 8675.84, + "probability": 0.8047 + }, + { + "start": 8675.9, + "end": 8676.1, + "probability": 0.638 + }, + { + "start": 8676.98, + "end": 8678.3, + "probability": 0.4932 + }, + { + "start": 8678.82, + "end": 8684.26, + "probability": 0.8987 + }, + { + "start": 8684.26, + "end": 8690.06, + "probability": 0.981 + }, + { + "start": 8690.64, + "end": 8695.82, + "probability": 0.9879 + }, + { + "start": 8696.16, + "end": 8701.36, + "probability": 0.9958 + }, + { + "start": 8701.68, + "end": 8702.18, + "probability": 0.8317 + }, + { + "start": 8703.14, + "end": 8704.64, + "probability": 0.9011 + }, + { + "start": 8704.82, + "end": 8705.62, + "probability": 0.4315 + }, + { + "start": 8705.86, + "end": 8711.38, + "probability": 0.8883 + }, + { + "start": 8711.64, + "end": 8712.83, + "probability": 0.9983 + }, + { + "start": 8717.38, + "end": 8718.33, + "probability": 0.6169 + }, + { + "start": 8718.54, + "end": 8721.42, + "probability": 0.9913 + }, + { + "start": 8721.7, + "end": 8729.3, + "probability": 0.7 + }, + { + "start": 8734.36, + "end": 8735.46, + "probability": 0.1006 + }, + { + "start": 8735.46, + "end": 8736.16, + "probability": 0.0507 + }, + { + "start": 8748.4, + "end": 8749.06, + "probability": 0.0991 + }, + { + "start": 8749.06, + "end": 8749.2, + "probability": 0.4614 + }, + { + "start": 8750.46, + "end": 8752.38, + "probability": 0.9359 + }, + { + "start": 8753.4, + "end": 8755.86, + "probability": 0.4809 + }, + { + "start": 8756.66, + "end": 8760.28, + "probability": 0.9935 + }, + { + "start": 8760.58, + "end": 8761.08, + "probability": 0.7523 + }, + { + "start": 8762.22, + "end": 8763.5, + "probability": 0.2318 + }, + { + "start": 8764.92, + "end": 8769.68, + "probability": 0.993 + }, + { + "start": 8770.72, + "end": 8775.66, + "probability": 0.9403 + }, + { + "start": 8788.22, + "end": 8792.58, + "probability": 0.7208 + }, + { + "start": 8794.84, + "end": 8796.62, + "probability": 0.8069 + }, + { + "start": 8796.7, + "end": 8800.52, + "probability": 0.7804 + }, + { + "start": 8801.9, + "end": 8803.78, + "probability": 0.9131 + }, + { + "start": 8803.88, + "end": 8806.36, + "probability": 0.8632 + }, + { + "start": 8806.9, + "end": 8808.7, + "probability": 0.5197 + }, + { + "start": 8809.48, + "end": 8811.26, + "probability": 0.656 + }, + { + "start": 8812.06, + "end": 8814.64, + "probability": 0.9805 + }, + { + "start": 8814.76, + "end": 8817.94, + "probability": 0.847 + }, + { + "start": 8818.38, + "end": 8819.8, + "probability": 0.9799 + }, + { + "start": 8820.06, + "end": 8822.84, + "probability": 0.7032 + }, + { + "start": 8823.18, + "end": 8823.44, + "probability": 0.9921 + }, + { + "start": 8824.42, + "end": 8826.24, + "probability": 0.7821 + }, + { + "start": 8826.54, + "end": 8830.7, + "probability": 0.9867 + }, + { + "start": 8832.12, + "end": 8837.28, + "probability": 0.9186 + }, + { + "start": 8837.44, + "end": 8839.61, + "probability": 0.6227 + }, + { + "start": 8840.68, + "end": 8841.0, + "probability": 0.8455 + }, + { + "start": 8842.72, + "end": 8845.12, + "probability": 0.5424 + }, + { + "start": 8845.24, + "end": 8846.4, + "probability": 0.7839 + }, + { + "start": 8846.54, + "end": 8847.22, + "probability": 0.8677 + }, + { + "start": 8847.36, + "end": 8848.64, + "probability": 0.9445 + }, + { + "start": 8848.66, + "end": 8849.56, + "probability": 0.8197 + }, + { + "start": 8849.64, + "end": 8850.9, + "probability": 0.9597 + }, + { + "start": 8851.98, + "end": 8852.96, + "probability": 0.5336 + }, + { + "start": 8853.02, + "end": 8854.14, + "probability": 0.9465 + }, + { + "start": 8854.26, + "end": 8855.12, + "probability": 0.8564 + }, + { + "start": 8855.2, + "end": 8856.42, + "probability": 0.9816 + }, + { + "start": 8856.46, + "end": 8856.98, + "probability": 0.8634 + }, + { + "start": 8857.06, + "end": 8857.64, + "probability": 0.9305 + }, + { + "start": 8857.7, + "end": 8858.94, + "probability": 0.8868 + }, + { + "start": 8859.92, + "end": 8860.72, + "probability": 0.9707 + }, + { + "start": 8860.78, + "end": 8862.06, + "probability": 0.967 + }, + { + "start": 8862.14, + "end": 8863.52, + "probability": 0.9136 + }, + { + "start": 8863.64, + "end": 8864.96, + "probability": 0.9165 + }, + { + "start": 8865.68, + "end": 8866.32, + "probability": 0.9119 + }, + { + "start": 8866.44, + "end": 8867.24, + "probability": 0.8824 + }, + { + "start": 8867.32, + "end": 8868.52, + "probability": 0.9748 + }, + { + "start": 8868.58, + "end": 8869.26, + "probability": 0.7888 + }, + { + "start": 8869.32, + "end": 8870.06, + "probability": 0.9326 + }, + { + "start": 8870.5, + "end": 8871.44, + "probability": 0.9266 + }, + { + "start": 8872.08, + "end": 8873.36, + "probability": 0.7784 + }, + { + "start": 8873.5, + "end": 8874.8, + "probability": 0.9875 + }, + { + "start": 8874.82, + "end": 8875.98, + "probability": 0.9954 + }, + { + "start": 8876.22, + "end": 8877.56, + "probability": 0.92 + }, + { + "start": 8878.28, + "end": 8881.44, + "probability": 0.8799 + }, + { + "start": 8882.28, + "end": 8884.38, + "probability": 0.9463 + }, + { + "start": 8885.06, + "end": 8888.94, + "probability": 0.7194 + }, + { + "start": 8889.22, + "end": 8890.06, + "probability": 0.6655 + }, + { + "start": 8890.1, + "end": 8890.48, + "probability": 0.7252 + }, + { + "start": 8890.7, + "end": 8893.34, + "probability": 0.9746 + }, + { + "start": 8893.52, + "end": 8894.4, + "probability": 0.4194 + }, + { + "start": 8895.02, + "end": 8895.7, + "probability": 0.3637 + }, + { + "start": 8913.56, + "end": 8914.2, + "probability": 0.3284 + }, + { + "start": 8914.2, + "end": 8914.3, + "probability": 0.2777 + }, + { + "start": 8915.58, + "end": 8917.3, + "probability": 0.6797 + }, + { + "start": 8917.86, + "end": 8921.68, + "probability": 0.5115 + }, + { + "start": 8922.46, + "end": 8924.44, + "probability": 0.3886 + }, + { + "start": 8925.28, + "end": 8929.86, + "probability": 0.6499 + }, + { + "start": 8929.94, + "end": 8931.68, + "probability": 0.4398 + }, + { + "start": 8932.06, + "end": 8932.94, + "probability": 0.7652 + }, + { + "start": 8933.0, + "end": 8935.52, + "probability": 0.9753 + }, + { + "start": 8938.58, + "end": 8942.14, + "probability": 0.8868 + }, + { + "start": 8942.24, + "end": 8943.4, + "probability": 0.6753 + }, + { + "start": 8943.5, + "end": 8946.58, + "probability": 0.5128 + }, + { + "start": 8946.8, + "end": 8950.98, + "probability": 0.9844 + }, + { + "start": 8951.12, + "end": 8952.24, + "probability": 0.7469 + }, + { + "start": 8952.82, + "end": 8955.54, + "probability": 0.9941 + }, + { + "start": 8955.68, + "end": 8957.14, + "probability": 0.7991 + }, + { + "start": 8957.9, + "end": 8959.3, + "probability": 0.933 + }, + { + "start": 8959.94, + "end": 8965.34, + "probability": 0.9159 + }, + { + "start": 8965.98, + "end": 8967.94, + "probability": 0.8188 + }, + { + "start": 8968.78, + "end": 8973.58, + "probability": 0.8577 + }, + { + "start": 8974.48, + "end": 8977.76, + "probability": 0.9985 + }, + { + "start": 8978.7, + "end": 8981.94, + "probability": 0.9796 + }, + { + "start": 8983.56, + "end": 8986.52, + "probability": 0.9851 + }, + { + "start": 8986.76, + "end": 8988.3, + "probability": 0.8777 + }, + { + "start": 8988.56, + "end": 8990.16, + "probability": 0.4972 + }, + { + "start": 8990.22, + "end": 8990.76, + "probability": 0.8163 + }, + { + "start": 8992.48, + "end": 8994.38, + "probability": 0.5739 + }, + { + "start": 8994.8, + "end": 8995.92, + "probability": 0.9148 + }, + { + "start": 9000.18, + "end": 9002.78, + "probability": 0.6202 + }, + { + "start": 9002.88, + "end": 9005.76, + "probability": 0.859 + }, + { + "start": 9006.1, + "end": 9010.21, + "probability": 0.8363 + }, + { + "start": 9011.88, + "end": 9014.42, + "probability": 0.8014 + }, + { + "start": 9014.76, + "end": 9017.66, + "probability": 0.9821 + }, + { + "start": 9017.68, + "end": 9019.99, + "probability": 0.7008 + }, + { + "start": 9020.3, + "end": 9021.4, + "probability": 0.7539 + }, + { + "start": 9021.5, + "end": 9022.9, + "probability": 0.6009 + }, + { + "start": 9023.0, + "end": 9023.42, + "probability": 0.8135 + }, + { + "start": 9024.26, + "end": 9026.0, + "probability": 0.8114 + }, + { + "start": 9026.16, + "end": 9028.82, + "probability": 0.9921 + }, + { + "start": 9028.9, + "end": 9029.22, + "probability": 0.7724 + }, + { + "start": 9029.44, + "end": 9029.82, + "probability": 0.3904 + }, + { + "start": 9029.92, + "end": 9030.65, + "probability": 0.7426 + }, + { + "start": 9031.98, + "end": 9034.7, + "probability": 0.9897 + }, + { + "start": 9034.76, + "end": 9035.7, + "probability": 0.8751 + }, + { + "start": 9035.76, + "end": 9039.14, + "probability": 0.9242 + }, + { + "start": 9039.34, + "end": 9041.68, + "probability": 0.9471 + }, + { + "start": 9042.16, + "end": 9046.4, + "probability": 0.8759 + }, + { + "start": 9046.52, + "end": 9049.49, + "probability": 0.9963 + }, + { + "start": 9050.26, + "end": 9051.76, + "probability": 0.8787 + }, + { + "start": 9052.54, + "end": 9053.16, + "probability": 0.3828 + }, + { + "start": 9053.44, + "end": 9056.84, + "probability": 0.9468 + }, + { + "start": 9057.74, + "end": 9062.28, + "probability": 0.9836 + }, + { + "start": 9062.28, + "end": 9066.32, + "probability": 0.9878 + }, + { + "start": 9067.2, + "end": 9072.32, + "probability": 0.7171 + }, + { + "start": 9072.38, + "end": 9074.0, + "probability": 0.9905 + }, + { + "start": 9074.42, + "end": 9078.88, + "probability": 0.9934 + }, + { + "start": 9080.36, + "end": 9082.22, + "probability": 0.8905 + }, + { + "start": 9082.44, + "end": 9084.76, + "probability": 0.5932 + }, + { + "start": 9084.78, + "end": 9088.4, + "probability": 0.9629 + }, + { + "start": 9089.14, + "end": 9091.8, + "probability": 0.8611 + }, + { + "start": 9093.18, + "end": 9094.44, + "probability": 0.5972 + }, + { + "start": 9094.94, + "end": 9094.94, + "probability": 0.6323 + }, + { + "start": 9095.58, + "end": 9098.24, + "probability": 0.7562 + }, + { + "start": 9098.24, + "end": 9099.38, + "probability": 0.0981 + }, + { + "start": 9099.88, + "end": 9100.18, + "probability": 0.2346 + }, + { + "start": 9101.36, + "end": 9102.62, + "probability": 0.897 + }, + { + "start": 9102.62, + "end": 9103.3, + "probability": 0.8543 + }, + { + "start": 9103.3, + "end": 9105.1, + "probability": 0.8706 + }, + { + "start": 9105.12, + "end": 9106.16, + "probability": 0.0584 + }, + { + "start": 9106.24, + "end": 9106.92, + "probability": 0.7073 + }, + { + "start": 9107.94, + "end": 9109.28, + "probability": 0.095 + }, + { + "start": 9109.28, + "end": 9110.5, + "probability": 0.8125 + }, + { + "start": 9114.42, + "end": 9118.82, + "probability": 0.9668 + }, + { + "start": 9120.72, + "end": 9123.76, + "probability": 0.9917 + }, + { + "start": 9126.22, + "end": 9131.96, + "probability": 0.9576 + }, + { + "start": 9134.24, + "end": 9137.08, + "probability": 0.9702 + }, + { + "start": 9137.08, + "end": 9141.48, + "probability": 0.9459 + }, + { + "start": 9141.58, + "end": 9145.18, + "probability": 0.9728 + }, + { + "start": 9145.34, + "end": 9146.48, + "probability": 0.6559 + }, + { + "start": 9147.7, + "end": 9148.44, + "probability": 0.9274 + }, + { + "start": 9149.4, + "end": 9151.54, + "probability": 0.738 + }, + { + "start": 9151.62, + "end": 9152.36, + "probability": 0.8339 + }, + { + "start": 9152.58, + "end": 9155.86, + "probability": 0.9207 + }, + { + "start": 9156.4, + "end": 9158.28, + "probability": 0.9045 + }, + { + "start": 9161.1, + "end": 9163.2, + "probability": 0.8456 + }, + { + "start": 9164.48, + "end": 9165.88, + "probability": 0.7856 + }, + { + "start": 9165.92, + "end": 9169.52, + "probability": 0.9884 + }, + { + "start": 9170.82, + "end": 9173.02, + "probability": 0.9504 + }, + { + "start": 9173.02, + "end": 9175.6, + "probability": 0.988 + }, + { + "start": 9177.24, + "end": 9179.4, + "probability": 0.9846 + }, + { + "start": 9180.64, + "end": 9185.44, + "probability": 0.9937 + }, + { + "start": 9186.98, + "end": 9190.62, + "probability": 0.944 + }, + { + "start": 9192.44, + "end": 9193.2, + "probability": 0.735 + }, + { + "start": 9193.26, + "end": 9194.6, + "probability": 0.9329 + }, + { + "start": 9194.64, + "end": 9196.68, + "probability": 0.9679 + }, + { + "start": 9196.86, + "end": 9197.78, + "probability": 0.9023 + }, + { + "start": 9198.1, + "end": 9199.74, + "probability": 0.9652 + }, + { + "start": 9199.78, + "end": 9200.7, + "probability": 0.8561 + }, + { + "start": 9200.8, + "end": 9206.22, + "probability": 0.9704 + }, + { + "start": 9208.34, + "end": 9210.94, + "probability": 0.9453 + }, + { + "start": 9211.1, + "end": 9212.63, + "probability": 0.8887 + }, + { + "start": 9213.6, + "end": 9217.24, + "probability": 0.9928 + }, + { + "start": 9217.36, + "end": 9219.32, + "probability": 0.9634 + }, + { + "start": 9219.46, + "end": 9220.44, + "probability": 0.788 + }, + { + "start": 9220.86, + "end": 9221.52, + "probability": 0.4403 + }, + { + "start": 9221.6, + "end": 9222.44, + "probability": 0.8109 + }, + { + "start": 9223.46, + "end": 9224.34, + "probability": 0.7544 + }, + { + "start": 9224.42, + "end": 9225.42, + "probability": 0.9844 + }, + { + "start": 9225.56, + "end": 9226.51, + "probability": 0.766 + }, + { + "start": 9226.6, + "end": 9229.3, + "probability": 0.9945 + }, + { + "start": 9229.3, + "end": 9232.72, + "probability": 0.8801 + }, + { + "start": 9233.9, + "end": 9237.94, + "probability": 0.9766 + }, + { + "start": 9237.94, + "end": 9241.9, + "probability": 0.9985 + }, + { + "start": 9242.82, + "end": 9244.1, + "probability": 0.9938 + }, + { + "start": 9245.76, + "end": 9249.48, + "probability": 0.9937 + }, + { + "start": 9250.42, + "end": 9253.26, + "probability": 0.9873 + }, + { + "start": 9254.04, + "end": 9257.34, + "probability": 0.8281 + }, + { + "start": 9257.34, + "end": 9261.28, + "probability": 0.9536 + }, + { + "start": 9261.5, + "end": 9262.98, + "probability": 0.9672 + }, + { + "start": 9263.6, + "end": 9265.24, + "probability": 0.9045 + }, + { + "start": 9265.74, + "end": 9266.12, + "probability": 0.3323 + }, + { + "start": 9266.12, + "end": 9267.95, + "probability": 0.5115 + }, + { + "start": 9268.0, + "end": 9271.78, + "probability": 0.624 + }, + { + "start": 9272.56, + "end": 9275.12, + "probability": 0.9446 + }, + { + "start": 9275.74, + "end": 9276.84, + "probability": 0.4973 + }, + { + "start": 9278.64, + "end": 9279.28, + "probability": 0.1908 + }, + { + "start": 9279.34, + "end": 9280.8, + "probability": 0.9387 + }, + { + "start": 9282.02, + "end": 9283.04, + "probability": 0.9792 + }, + { + "start": 9283.18, + "end": 9284.88, + "probability": 0.5636 + }, + { + "start": 9285.2, + "end": 9286.99, + "probability": 0.9479 + }, + { + "start": 9287.22, + "end": 9288.3, + "probability": 0.8314 + }, + { + "start": 9293.08, + "end": 9293.38, + "probability": 0.6581 + }, + { + "start": 9293.48, + "end": 9295.92, + "probability": 0.9159 + }, + { + "start": 9296.06, + "end": 9297.32, + "probability": 0.8875 + }, + { + "start": 9299.56, + "end": 9301.32, + "probability": 0.6517 + }, + { + "start": 9303.86, + "end": 9305.72, + "probability": 0.5151 + }, + { + "start": 9308.6, + "end": 9312.38, + "probability": 0.9668 + }, + { + "start": 9313.66, + "end": 9315.6, + "probability": 0.8135 + }, + { + "start": 9316.98, + "end": 9321.66, + "probability": 0.9828 + }, + { + "start": 9321.88, + "end": 9324.7, + "probability": 0.9454 + }, + { + "start": 9325.44, + "end": 9327.02, + "probability": 0.8591 + }, + { + "start": 9327.24, + "end": 9328.42, + "probability": 0.9679 + }, + { + "start": 9328.52, + "end": 9330.83, + "probability": 0.9543 + }, + { + "start": 9331.06, + "end": 9332.78, + "probability": 0.8469 + }, + { + "start": 9333.14, + "end": 9333.82, + "probability": 0.8692 + }, + { + "start": 9334.0, + "end": 9335.71, + "probability": 0.9995 + }, + { + "start": 9336.26, + "end": 9341.7, + "probability": 0.9832 + }, + { + "start": 9341.82, + "end": 9343.16, + "probability": 0.7541 + }, + { + "start": 9343.56, + "end": 9349.7, + "probability": 0.8154 + }, + { + "start": 9350.04, + "end": 9351.0, + "probability": 0.9773 + }, + { + "start": 9351.74, + "end": 9352.62, + "probability": 0.9985 + }, + { + "start": 9352.88, + "end": 9355.86, + "probability": 0.9598 + }, + { + "start": 9356.48, + "end": 9357.04, + "probability": 0.9964 + }, + { + "start": 9357.64, + "end": 9360.5, + "probability": 0.9969 + }, + { + "start": 9361.32, + "end": 9363.28, + "probability": 0.6023 + }, + { + "start": 9363.42, + "end": 9364.22, + "probability": 0.7234 + }, + { + "start": 9364.22, + "end": 9365.2, + "probability": 0.9938 + }, + { + "start": 9366.3, + "end": 9367.06, + "probability": 0.8183 + }, + { + "start": 9367.06, + "end": 9367.18, + "probability": 0.8462 + }, + { + "start": 9367.76, + "end": 9368.66, + "probability": 0.9961 + }, + { + "start": 9369.16, + "end": 9370.1, + "probability": 0.9324 + }, + { + "start": 9370.24, + "end": 9371.04, + "probability": 0.9787 + }, + { + "start": 9372.46, + "end": 9373.84, + "probability": 0.5242 + }, + { + "start": 9374.08, + "end": 9376.2, + "probability": 0.9586 + }, + { + "start": 9377.72, + "end": 9381.48, + "probability": 0.5115 + }, + { + "start": 9381.54, + "end": 9383.4, + "probability": 0.8807 + }, + { + "start": 9383.5, + "end": 9385.02, + "probability": 0.8593 + }, + { + "start": 9385.78, + "end": 9387.68, + "probability": 0.8809 + }, + { + "start": 9389.04, + "end": 9392.36, + "probability": 0.9772 + }, + { + "start": 9392.56, + "end": 9394.02, + "probability": 0.872 + }, + { + "start": 9394.1, + "end": 9394.9, + "probability": 0.6008 + }, + { + "start": 9395.46, + "end": 9397.22, + "probability": 0.8963 + }, + { + "start": 9397.38, + "end": 9398.68, + "probability": 0.9224 + }, + { + "start": 9399.2, + "end": 9399.9, + "probability": 0.303 + }, + { + "start": 9399.9, + "end": 9399.97, + "probability": 0.8928 + }, + { + "start": 9400.48, + "end": 9401.54, + "probability": 0.925 + }, + { + "start": 9402.5, + "end": 9406.04, + "probability": 0.9819 + }, + { + "start": 9406.04, + "end": 9408.18, + "probability": 0.8687 + }, + { + "start": 9408.24, + "end": 9409.24, + "probability": 0.6384 + }, + { + "start": 9410.14, + "end": 9413.32, + "probability": 0.9962 + }, + { + "start": 9413.8, + "end": 9414.68, + "probability": 0.54 + }, + { + "start": 9415.62, + "end": 9418.04, + "probability": 0.9714 + }, + { + "start": 9419.18, + "end": 9423.48, + "probability": 0.9951 + }, + { + "start": 9423.86, + "end": 9426.26, + "probability": 0.8292 + }, + { + "start": 9426.36, + "end": 9427.02, + "probability": 0.8593 + }, + { + "start": 9427.12, + "end": 9427.76, + "probability": 0.8392 + }, + { + "start": 9427.82, + "end": 9428.38, + "probability": 0.7703 + }, + { + "start": 9428.4, + "end": 9429.34, + "probability": 0.9038 + }, + { + "start": 9429.42, + "end": 9433.4, + "probability": 0.9444 + }, + { + "start": 9433.98, + "end": 9434.86, + "probability": 0.8272 + }, + { + "start": 9435.44, + "end": 9436.62, + "probability": 0.772 + }, + { + "start": 9438.18, + "end": 9441.84, + "probability": 0.2194 + }, + { + "start": 9442.92, + "end": 9443.61, + "probability": 0.4321 + }, + { + "start": 9444.02, + "end": 9444.02, + "probability": 0.0293 + }, + { + "start": 9444.02, + "end": 9444.02, + "probability": 0.148 + }, + { + "start": 9444.02, + "end": 9444.02, + "probability": 0.3414 + }, + { + "start": 9444.02, + "end": 9446.5, + "probability": 0.9051 + }, + { + "start": 9446.68, + "end": 9449.84, + "probability": 0.9183 + }, + { + "start": 9450.5, + "end": 9453.3, + "probability": 0.7954 + }, + { + "start": 9454.1, + "end": 9454.47, + "probability": 0.5094 + }, + { + "start": 9456.02, + "end": 9457.68, + "probability": 0.952 + }, + { + "start": 9458.3, + "end": 9459.0, + "probability": 0.6574 + }, + { + "start": 9459.94, + "end": 9460.92, + "probability": 0.7513 + }, + { + "start": 9461.54, + "end": 9463.04, + "probability": 0.9567 + }, + { + "start": 9463.18, + "end": 9463.82, + "probability": 0.4848 + }, + { + "start": 9464.26, + "end": 9466.46, + "probability": 0.9802 + }, + { + "start": 9466.54, + "end": 9467.5, + "probability": 0.9899 + }, + { + "start": 9468.12, + "end": 9469.28, + "probability": 0.8468 + }, + { + "start": 9469.28, + "end": 9470.44, + "probability": 0.0188 + }, + { + "start": 9471.0, + "end": 9471.18, + "probability": 0.2863 + }, + { + "start": 9471.38, + "end": 9475.53, + "probability": 0.9922 + }, + { + "start": 9475.98, + "end": 9476.98, + "probability": 0.8119 + }, + { + "start": 9477.3, + "end": 9480.28, + "probability": 0.9851 + }, + { + "start": 9480.84, + "end": 9481.98, + "probability": 0.8398 + }, + { + "start": 9482.68, + "end": 9484.3, + "probability": 0.8879 + }, + { + "start": 9484.68, + "end": 9488.68, + "probability": 0.0762 + }, + { + "start": 9489.18, + "end": 9489.34, + "probability": 0.5277 + }, + { + "start": 9490.18, + "end": 9491.7, + "probability": 0.8462 + }, + { + "start": 9491.88, + "end": 9494.3, + "probability": 0.6326 + }, + { + "start": 9495.34, + "end": 9498.64, + "probability": 0.9783 + }, + { + "start": 9499.32, + "end": 9501.14, + "probability": 0.9989 + }, + { + "start": 9502.34, + "end": 9504.2, + "probability": 0.7849 + }, + { + "start": 9504.26, + "end": 9507.12, + "probability": 0.8369 + }, + { + "start": 9507.92, + "end": 9510.04, + "probability": 0.9453 + }, + { + "start": 9510.72, + "end": 9514.98, + "probability": 0.9304 + }, + { + "start": 9515.76, + "end": 9517.2, + "probability": 0.8057 + }, + { + "start": 9518.7, + "end": 9520.0, + "probability": 0.9338 + }, + { + "start": 9520.12, + "end": 9521.42, + "probability": 0.9713 + }, + { + "start": 9521.74, + "end": 9523.0, + "probability": 0.8532 + }, + { + "start": 9523.08, + "end": 9523.42, + "probability": 0.572 + }, + { + "start": 9524.34, + "end": 9524.78, + "probability": 0.3457 + }, + { + "start": 9525.2, + "end": 9525.78, + "probability": 0.9362 + }, + { + "start": 9526.64, + "end": 9529.53, + "probability": 0.9728 + }, + { + "start": 9530.26, + "end": 9532.6, + "probability": 0.9134 + }, + { + "start": 9533.46, + "end": 9535.37, + "probability": 0.8403 + }, + { + "start": 9535.92, + "end": 9537.6, + "probability": 0.9927 + }, + { + "start": 9538.24, + "end": 9539.38, + "probability": 0.6724 + }, + { + "start": 9539.44, + "end": 9541.05, + "probability": 0.6637 + }, + { + "start": 9541.56, + "end": 9542.52, + "probability": 0.9067 + }, + { + "start": 9542.68, + "end": 9543.84, + "probability": 0.9701 + }, + { + "start": 9544.96, + "end": 9545.86, + "probability": 0.8545 + }, + { + "start": 9545.98, + "end": 9547.2, + "probability": 0.7757 + }, + { + "start": 9547.62, + "end": 9547.84, + "probability": 0.7149 + }, + { + "start": 9547.84, + "end": 9548.34, + "probability": 0.5704 + }, + { + "start": 9548.64, + "end": 9551.74, + "probability": 0.9863 + }, + { + "start": 9552.16, + "end": 9555.1, + "probability": 0.9654 + }, + { + "start": 9555.32, + "end": 9556.74, + "probability": 0.7787 + }, + { + "start": 9557.02, + "end": 9558.74, + "probability": 0.9783 + }, + { + "start": 9559.02, + "end": 9560.36, + "probability": 0.9163 + }, + { + "start": 9560.8, + "end": 9562.62, + "probability": 0.9777 + }, + { + "start": 9562.74, + "end": 9563.34, + "probability": 0.5851 + }, + { + "start": 9563.52, + "end": 9565.14, + "probability": 0.6971 + }, + { + "start": 9565.54, + "end": 9571.16, + "probability": 0.9756 + }, + { + "start": 9571.66, + "end": 9572.44, + "probability": 0.769 + }, + { + "start": 9572.64, + "end": 9573.48, + "probability": 0.815 + }, + { + "start": 9573.72, + "end": 9574.92, + "probability": 0.6118 + }, + { + "start": 9575.92, + "end": 9576.86, + "probability": 0.9143 + }, + { + "start": 9577.44, + "end": 9579.96, + "probability": 0.9855 + }, + { + "start": 9581.12, + "end": 9583.1, + "probability": 0.8393 + }, + { + "start": 9583.56, + "end": 9585.5, + "probability": 0.9919 + }, + { + "start": 9585.96, + "end": 9586.4, + "probability": 0.5943 + }, + { + "start": 9586.4, + "end": 9589.0, + "probability": 0.9849 + }, + { + "start": 9589.0, + "end": 9591.78, + "probability": 0.9702 + }, + { + "start": 9592.56, + "end": 9596.6, + "probability": 0.9736 + }, + { + "start": 9597.1, + "end": 9601.06, + "probability": 0.9004 + }, + { + "start": 9601.26, + "end": 9601.96, + "probability": 0.8568 + }, + { + "start": 9602.74, + "end": 9603.04, + "probability": 0.4366 + }, + { + "start": 9603.16, + "end": 9603.58, + "probability": 0.8996 + }, + { + "start": 9603.66, + "end": 9606.76, + "probability": 0.9513 + }, + { + "start": 9606.84, + "end": 9607.06, + "probability": 0.6395 + }, + { + "start": 9607.1, + "end": 9608.8, + "probability": 0.995 + }, + { + "start": 9608.86, + "end": 9610.39, + "probability": 0.9001 + }, + { + "start": 9610.76, + "end": 9614.96, + "probability": 0.9751 + }, + { + "start": 9615.46, + "end": 9616.48, + "probability": 0.7055 + }, + { + "start": 9617.66, + "end": 9619.52, + "probability": 0.7732 + }, + { + "start": 9619.88, + "end": 9621.06, + "probability": 0.9167 + }, + { + "start": 9621.14, + "end": 9622.7, + "probability": 0.8922 + }, + { + "start": 9623.02, + "end": 9624.38, + "probability": 0.8334 + }, + { + "start": 9624.52, + "end": 9624.76, + "probability": 0.773 + }, + { + "start": 9624.96, + "end": 9627.14, + "probability": 0.967 + }, + { + "start": 9627.14, + "end": 9630.7, + "probability": 0.8343 + }, + { + "start": 9641.8, + "end": 9643.74, + "probability": 0.9666 + }, + { + "start": 9649.04, + "end": 9650.84, + "probability": 0.6618 + }, + { + "start": 9651.84, + "end": 9656.38, + "probability": 0.9585 + }, + { + "start": 9658.14, + "end": 9659.14, + "probability": 0.9941 + }, + { + "start": 9659.16, + "end": 9660.04, + "probability": 0.9232 + }, + { + "start": 9660.24, + "end": 9660.78, + "probability": 0.8575 + }, + { + "start": 9661.96, + "end": 9665.46, + "probability": 0.9696 + }, + { + "start": 9668.26, + "end": 9669.15, + "probability": 0.9078 + }, + { + "start": 9669.72, + "end": 9672.42, + "probability": 0.7264 + }, + { + "start": 9673.4, + "end": 9676.72, + "probability": 0.9896 + }, + { + "start": 9678.34, + "end": 9679.78, + "probability": 0.8414 + }, + { + "start": 9679.86, + "end": 9685.32, + "probability": 0.9487 + }, + { + "start": 9686.38, + "end": 9687.54, + "probability": 0.5951 + }, + { + "start": 9690.34, + "end": 9694.0, + "probability": 0.8137 + }, + { + "start": 9694.78, + "end": 9695.56, + "probability": 0.6035 + }, + { + "start": 9696.3, + "end": 9697.11, + "probability": 0.5079 + }, + { + "start": 9699.56, + "end": 9700.68, + "probability": 0.9714 + }, + { + "start": 9701.74, + "end": 9702.55, + "probability": 0.8229 + }, + { + "start": 9703.64, + "end": 9705.86, + "probability": 0.9824 + }, + { + "start": 9706.56, + "end": 9710.42, + "probability": 0.7344 + }, + { + "start": 9710.94, + "end": 9711.66, + "probability": 0.5441 + }, + { + "start": 9712.62, + "end": 9715.16, + "probability": 0.7976 + }, + { + "start": 9715.56, + "end": 9717.88, + "probability": 0.736 + }, + { + "start": 9717.98, + "end": 9718.2, + "probability": 0.4024 + }, + { + "start": 9718.82, + "end": 9723.19, + "probability": 0.8325 + }, + { + "start": 9725.42, + "end": 9729.76, + "probability": 0.957 + }, + { + "start": 9731.94, + "end": 9733.8, + "probability": 0.969 + }, + { + "start": 9735.14, + "end": 9737.34, + "probability": 0.9976 + }, + { + "start": 9737.38, + "end": 9740.18, + "probability": 0.9937 + }, + { + "start": 9740.52, + "end": 9743.6, + "probability": 0.8702 + }, + { + "start": 9743.7, + "end": 9747.06, + "probability": 0.9892 + }, + { + "start": 9748.0, + "end": 9749.36, + "probability": 0.9158 + }, + { + "start": 9750.44, + "end": 9752.68, + "probability": 0.9132 + }, + { + "start": 9753.68, + "end": 9755.96, + "probability": 0.9442 + }, + { + "start": 9756.3, + "end": 9757.87, + "probability": 0.8943 + }, + { + "start": 9758.78, + "end": 9759.62, + "probability": 0.8829 + }, + { + "start": 9760.78, + "end": 9762.94, + "probability": 0.9564 + }, + { + "start": 9762.96, + "end": 9764.02, + "probability": 0.9335 + }, + { + "start": 9764.24, + "end": 9765.5, + "probability": 0.6876 + }, + { + "start": 9766.08, + "end": 9768.32, + "probability": 0.9036 + }, + { + "start": 9768.8, + "end": 9769.56, + "probability": 0.4945 + }, + { + "start": 9770.12, + "end": 9771.74, + "probability": 0.8804 + }, + { + "start": 9771.94, + "end": 9772.38, + "probability": 0.7442 + }, + { + "start": 9773.3, + "end": 9774.76, + "probability": 0.9863 + }, + { + "start": 9775.6, + "end": 9778.5, + "probability": 0.9676 + }, + { + "start": 9779.44, + "end": 9780.78, + "probability": 0.9647 + }, + { + "start": 9781.52, + "end": 9787.34, + "probability": 0.9749 + }, + { + "start": 9788.44, + "end": 9789.48, + "probability": 0.9675 + }, + { + "start": 9790.02, + "end": 9790.9, + "probability": 0.9915 + }, + { + "start": 9791.52, + "end": 9795.4, + "probability": 0.9612 + }, + { + "start": 9796.22, + "end": 9800.5, + "probability": 0.9862 + }, + { + "start": 9800.5, + "end": 9804.38, + "probability": 0.9601 + }, + { + "start": 9805.02, + "end": 9805.02, + "probability": 0.3001 + }, + { + "start": 9807.38, + "end": 9808.1, + "probability": 0.2933 + }, + { + "start": 9808.72, + "end": 9808.82, + "probability": 0.0354 + }, + { + "start": 9809.68, + "end": 9811.04, + "probability": 0.7292 + }, + { + "start": 9811.68, + "end": 9813.88, + "probability": 0.1774 + }, + { + "start": 9813.88, + "end": 9815.92, + "probability": 0.8931 + }, + { + "start": 9816.48, + "end": 9818.12, + "probability": 0.7129 + }, + { + "start": 9818.3, + "end": 9819.11, + "probability": 0.6664 + }, + { + "start": 9819.82, + "end": 9821.04, + "probability": 0.9912 + }, + { + "start": 9822.72, + "end": 9827.08, + "probability": 0.9384 + }, + { + "start": 9827.64, + "end": 9829.1, + "probability": 0.687 + }, + { + "start": 9829.6, + "end": 9831.62, + "probability": 0.9927 + }, + { + "start": 9832.16, + "end": 9834.22, + "probability": 0.9814 + }, + { + "start": 9835.16, + "end": 9837.1, + "probability": 0.0284 + }, + { + "start": 9837.1, + "end": 9837.1, + "probability": 0.1077 + }, + { + "start": 9837.1, + "end": 9837.58, + "probability": 0.2002 + }, + { + "start": 9837.8, + "end": 9841.22, + "probability": 0.9553 + }, + { + "start": 9841.98, + "end": 9843.52, + "probability": 0.6924 + }, + { + "start": 9843.68, + "end": 9846.04, + "probability": 0.9019 + }, + { + "start": 9846.34, + "end": 9849.1, + "probability": 0.0045 + }, + { + "start": 9849.62, + "end": 9850.12, + "probability": 0.2884 + }, + { + "start": 9851.57, + "end": 9851.69, + "probability": 0.0227 + }, + { + "start": 9852.72, + "end": 9853.74, + "probability": 0.4108 + }, + { + "start": 9854.24, + "end": 9857.06, + "probability": 0.2318 + }, + { + "start": 9857.34, + "end": 9857.46, + "probability": 0.0592 + }, + { + "start": 9857.46, + "end": 9859.08, + "probability": 0.6791 + }, + { + "start": 9859.52, + "end": 9863.48, + "probability": 0.9937 + }, + { + "start": 9863.56, + "end": 9864.12, + "probability": 0.584 + }, + { + "start": 9864.66, + "end": 9866.48, + "probability": 0.5106 + }, + { + "start": 9866.48, + "end": 9866.74, + "probability": 0.4798 + }, + { + "start": 9867.4, + "end": 9871.0, + "probability": 0.9684 + }, + { + "start": 9871.56, + "end": 9875.42, + "probability": 0.9722 + }, + { + "start": 9879.24, + "end": 9879.72, + "probability": 0.202 + }, + { + "start": 9880.36, + "end": 9880.38, + "probability": 0.2824 + }, + { + "start": 9880.38, + "end": 9880.38, + "probability": 0.0804 + }, + { + "start": 9880.38, + "end": 9880.38, + "probability": 0.2896 + }, + { + "start": 9880.38, + "end": 9880.38, + "probability": 0.2055 + }, + { + "start": 9880.38, + "end": 9880.92, + "probability": 0.6834 + }, + { + "start": 9881.48, + "end": 9882.18, + "probability": 0.8763 + }, + { + "start": 9882.98, + "end": 9885.12, + "probability": 0.8081 + }, + { + "start": 9885.26, + "end": 9885.74, + "probability": 0.864 + }, + { + "start": 9885.94, + "end": 9886.98, + "probability": 0.748 + }, + { + "start": 9887.18, + "end": 9888.48, + "probability": 0.6895 + }, + { + "start": 9888.88, + "end": 9890.48, + "probability": 0.6104 + }, + { + "start": 9890.64, + "end": 9892.78, + "probability": 0.9857 + }, + { + "start": 9893.84, + "end": 9897.94, + "probability": 0.9056 + }, + { + "start": 9898.06, + "end": 9900.42, + "probability": 0.9866 + }, + { + "start": 9900.8, + "end": 9901.85, + "probability": 0.9556 + }, + { + "start": 9902.76, + "end": 9904.15, + "probability": 0.9419 + }, + { + "start": 9904.46, + "end": 9905.22, + "probability": 0.4754 + }, + { + "start": 9905.62, + "end": 9906.12, + "probability": 0.99 + }, + { + "start": 9907.08, + "end": 9908.52, + "probability": 0.7408 + }, + { + "start": 9909.08, + "end": 9914.84, + "probability": 0.9914 + }, + { + "start": 9914.84, + "end": 9919.04, + "probability": 0.99 + }, + { + "start": 9919.6, + "end": 9921.22, + "probability": 0.6495 + }, + { + "start": 9921.3, + "end": 9922.84, + "probability": 0.563 + }, + { + "start": 9923.46, + "end": 9925.28, + "probability": 0.6899 + }, + { + "start": 9931.68, + "end": 9933.54, + "probability": 0.8539 + }, + { + "start": 9943.36, + "end": 9944.36, + "probability": 0.6794 + }, + { + "start": 9945.46, + "end": 9947.04, + "probability": 0.762 + }, + { + "start": 9948.12, + "end": 9949.8, + "probability": 0.9548 + }, + { + "start": 9950.56, + "end": 9952.8, + "probability": 0.9974 + }, + { + "start": 9953.36, + "end": 9954.72, + "probability": 0.8267 + }, + { + "start": 9955.6, + "end": 9959.08, + "probability": 0.9597 + }, + { + "start": 9959.86, + "end": 9961.72, + "probability": 0.8757 + }, + { + "start": 9961.98, + "end": 9969.28, + "probability": 0.9601 + }, + { + "start": 9969.28, + "end": 9973.86, + "probability": 0.9859 + }, + { + "start": 9974.18, + "end": 9975.34, + "probability": 0.6374 + }, + { + "start": 9975.74, + "end": 9976.96, + "probability": 0.9557 + }, + { + "start": 9977.38, + "end": 9978.58, + "probability": 0.8005 + }, + { + "start": 9979.66, + "end": 9983.42, + "probability": 0.9922 + }, + { + "start": 9983.54, + "end": 9985.52, + "probability": 0.8142 + }, + { + "start": 9986.2, + "end": 9987.58, + "probability": 0.9842 + }, + { + "start": 9987.74, + "end": 9988.9, + "probability": 0.8035 + }, + { + "start": 9988.94, + "end": 9990.5, + "probability": 0.9365 + }, + { + "start": 9990.94, + "end": 9992.46, + "probability": 0.9541 + }, + { + "start": 9992.6, + "end": 9995.14, + "probability": 0.9531 + }, + { + "start": 9995.16, + "end": 9996.48, + "probability": 0.8818 + }, + { + "start": 9996.78, + "end": 10000.48, + "probability": 0.939 + }, + { + "start": 10000.48, + "end": 10007.56, + "probability": 0.9139 + }, + { + "start": 10008.52, + "end": 10008.84, + "probability": 0.8414 + }, + { + "start": 10008.94, + "end": 10009.82, + "probability": 0.765 + }, + { + "start": 10009.88, + "end": 10014.08, + "probability": 0.9696 + }, + { + "start": 10014.84, + "end": 10016.32, + "probability": 0.9809 + }, + { + "start": 10016.44, + "end": 10020.2, + "probability": 0.9959 + }, + { + "start": 10021.02, + "end": 10021.02, + "probability": 0.0859 + }, + { + "start": 10021.02, + "end": 10022.2, + "probability": 0.9448 + }, + { + "start": 10022.36, + "end": 10023.38, + "probability": 0.9633 + }, + { + "start": 10023.4, + "end": 10024.56, + "probability": 0.7492 + }, + { + "start": 10024.62, + "end": 10025.1, + "probability": 0.237 + }, + { + "start": 10025.1, + "end": 10029.18, + "probability": 0.9934 + }, + { + "start": 10029.56, + "end": 10030.58, + "probability": 0.0674 + }, + { + "start": 10030.64, + "end": 10036.04, + "probability": 0.9759 + }, + { + "start": 10036.04, + "end": 10036.44, + "probability": 0.4742 + }, + { + "start": 10036.6, + "end": 10038.02, + "probability": 0.9966 + }, + { + "start": 10041.64, + "end": 10044.96, + "probability": 0.9438 + }, + { + "start": 10045.08, + "end": 10048.48, + "probability": 0.9962 + }, + { + "start": 10048.84, + "end": 10053.52, + "probability": 0.8026 + }, + { + "start": 10053.64, + "end": 10054.13, + "probability": 0.0314 + }, + { + "start": 10054.66, + "end": 10054.78, + "probability": 0.3298 + }, + { + "start": 10054.78, + "end": 10058.14, + "probability": 0.9677 + }, + { + "start": 10058.52, + "end": 10060.83, + "probability": 0.9204 + }, + { + "start": 10062.32, + "end": 10063.46, + "probability": 0.1887 + }, + { + "start": 10063.62, + "end": 10064.32, + "probability": 0.4079 + }, + { + "start": 10064.38, + "end": 10065.06, + "probability": 0.4502 + }, + { + "start": 10065.5, + "end": 10068.4, + "probability": 0.9485 + }, + { + "start": 10068.52, + "end": 10070.4, + "probability": 0.9985 + }, + { + "start": 10070.44, + "end": 10073.04, + "probability": 0.9854 + }, + { + "start": 10073.8, + "end": 10077.08, + "probability": 0.7499 + }, + { + "start": 10077.68, + "end": 10079.96, + "probability": 0.9945 + }, + { + "start": 10080.08, + "end": 10081.78, + "probability": 0.9055 + }, + { + "start": 10081.86, + "end": 10082.06, + "probability": 0.6118 + }, + { + "start": 10082.94, + "end": 10085.48, + "probability": 0.0428 + }, + { + "start": 10086.14, + "end": 10088.92, + "probability": 0.1349 + }, + { + "start": 10088.92, + "end": 10089.64, + "probability": 0.0245 + }, + { + "start": 10090.74, + "end": 10091.48, + "probability": 0.6221 + }, + { + "start": 10091.9, + "end": 10094.96, + "probability": 0.8997 + }, + { + "start": 10095.16, + "end": 10099.84, + "probability": 0.9956 + }, + { + "start": 10100.62, + "end": 10101.92, + "probability": 0.9805 + }, + { + "start": 10102.78, + "end": 10106.2, + "probability": 0.9941 + }, + { + "start": 10107.56, + "end": 10109.5, + "probability": 0.8033 + }, + { + "start": 10110.02, + "end": 10111.2, + "probability": 0.9053 + }, + { + "start": 10111.5, + "end": 10112.48, + "probability": 0.9629 + }, + { + "start": 10112.48, + "end": 10113.08, + "probability": 0.4642 + }, + { + "start": 10113.14, + "end": 10116.08, + "probability": 0.9102 + }, + { + "start": 10116.6, + "end": 10117.52, + "probability": 0.7633 + }, + { + "start": 10117.92, + "end": 10118.3, + "probability": 0.8678 + }, + { + "start": 10118.68, + "end": 10118.9, + "probability": 0.3054 + }, + { + "start": 10118.9, + "end": 10120.2, + "probability": 0.4989 + }, + { + "start": 10120.22, + "end": 10122.1, + "probability": 0.7815 + }, + { + "start": 10122.54, + "end": 10123.08, + "probability": 0.3917 + }, + { + "start": 10123.12, + "end": 10124.08, + "probability": 0.6815 + }, + { + "start": 10124.28, + "end": 10126.38, + "probability": 0.8838 + }, + { + "start": 10128.28, + "end": 10129.18, + "probability": 0.8336 + }, + { + "start": 10132.36, + "end": 10133.24, + "probability": 0.7504 + }, + { + "start": 10133.34, + "end": 10134.42, + "probability": 0.9715 + }, + { + "start": 10134.66, + "end": 10138.96, + "probability": 0.8557 + }, + { + "start": 10139.5, + "end": 10143.24, + "probability": 0.8633 + }, + { + "start": 10143.8, + "end": 10145.09, + "probability": 0.998 + }, + { + "start": 10145.7, + "end": 10146.6, + "probability": 0.6683 + }, + { + "start": 10146.72, + "end": 10148.14, + "probability": 0.3004 + }, + { + "start": 10149.0, + "end": 10149.06, + "probability": 0.0764 + }, + { + "start": 10149.06, + "end": 10150.58, + "probability": 0.7624 + }, + { + "start": 10150.68, + "end": 10153.21, + "probability": 0.9694 + }, + { + "start": 10153.86, + "end": 10155.1, + "probability": 0.7891 + }, + { + "start": 10155.44, + "end": 10156.42, + "probability": 0.8284 + }, + { + "start": 10157.04, + "end": 10157.4, + "probability": 0.4183 + }, + { + "start": 10157.52, + "end": 10157.56, + "probability": 0.2644 + }, + { + "start": 10157.56, + "end": 10158.16, + "probability": 0.8736 + }, + { + "start": 10158.44, + "end": 10160.64, + "probability": 0.908 + }, + { + "start": 10160.72, + "end": 10161.36, + "probability": 0.9208 + }, + { + "start": 10162.14, + "end": 10164.96, + "probability": 0.9167 + }, + { + "start": 10165.5, + "end": 10166.8, + "probability": 0.7751 + }, + { + "start": 10167.4, + "end": 10169.9, + "probability": 0.9714 + }, + { + "start": 10170.8, + "end": 10174.22, + "probability": 0.9011 + }, + { + "start": 10174.9, + "end": 10181.02, + "probability": 0.974 + }, + { + "start": 10181.02, + "end": 10186.6, + "probability": 0.7132 + }, + { + "start": 10186.76, + "end": 10189.3, + "probability": 0.9637 + }, + { + "start": 10190.74, + "end": 10192.74, + "probability": 0.958 + }, + { + "start": 10192.84, + "end": 10194.86, + "probability": 0.8647 + }, + { + "start": 10195.2, + "end": 10199.92, + "probability": 0.8032 + }, + { + "start": 10200.42, + "end": 10202.02, + "probability": 0.7385 + }, + { + "start": 10202.12, + "end": 10203.0, + "probability": 0.7095 + }, + { + "start": 10203.62, + "end": 10207.72, + "probability": 0.9456 + }, + { + "start": 10208.16, + "end": 10208.98, + "probability": 0.9547 + }, + { + "start": 10209.12, + "end": 10213.46, + "probability": 0.9665 + }, + { + "start": 10213.54, + "end": 10214.42, + "probability": 0.8212 + }, + { + "start": 10214.72, + "end": 10215.4, + "probability": 0.6706 + }, + { + "start": 10215.4, + "end": 10218.52, + "probability": 0.96 + }, + { + "start": 10218.52, + "end": 10223.2, + "probability": 0.9869 + }, + { + "start": 10223.86, + "end": 10226.6, + "probability": 0.9253 + }, + { + "start": 10226.96, + "end": 10228.52, + "probability": 0.9552 + }, + { + "start": 10228.58, + "end": 10229.68, + "probability": 0.7944 + }, + { + "start": 10229.94, + "end": 10231.76, + "probability": 0.9207 + }, + { + "start": 10232.68, + "end": 10233.78, + "probability": 0.8404 + }, + { + "start": 10234.14, + "end": 10238.64, + "probability": 0.9235 + }, + { + "start": 10239.15, + "end": 10242.0, + "probability": 0.9644 + }, + { + "start": 10242.04, + "end": 10245.44, + "probability": 0.6763 + }, + { + "start": 10245.54, + "end": 10245.76, + "probability": 0.6973 + }, + { + "start": 10245.88, + "end": 10251.32, + "probability": 0.9756 + }, + { + "start": 10252.44, + "end": 10253.84, + "probability": 0.9985 + }, + { + "start": 10254.46, + "end": 10255.9, + "probability": 0.9218 + }, + { + "start": 10256.18, + "end": 10261.36, + "probability": 0.8639 + }, + { + "start": 10261.36, + "end": 10265.82, + "probability": 0.9987 + }, + { + "start": 10266.46, + "end": 10269.12, + "probability": 0.7766 + }, + { + "start": 10269.44, + "end": 10273.22, + "probability": 0.8563 + }, + { + "start": 10273.62, + "end": 10278.04, + "probability": 0.973 + }, + { + "start": 10278.2, + "end": 10278.88, + "probability": 0.6304 + }, + { + "start": 10279.62, + "end": 10280.34, + "probability": 0.9251 + }, + { + "start": 10280.36, + "end": 10281.3, + "probability": 0.9745 + }, + { + "start": 10281.34, + "end": 10282.34, + "probability": 0.9553 + }, + { + "start": 10282.88, + "end": 10283.46, + "probability": 0.6639 + }, + { + "start": 10284.2, + "end": 10288.12, + "probability": 0.9102 + }, + { + "start": 10288.18, + "end": 10291.12, + "probability": 0.9233 + }, + { + "start": 10291.2, + "end": 10292.5, + "probability": 0.9594 + }, + { + "start": 10292.76, + "end": 10293.29, + "probability": 0.8438 + }, + { + "start": 10293.48, + "end": 10296.52, + "probability": 0.9713 + }, + { + "start": 10296.68, + "end": 10299.2, + "probability": 0.9969 + }, + { + "start": 10300.22, + "end": 10305.62, + "probability": 0.9927 + }, + { + "start": 10309.4, + "end": 10317.12, + "probability": 0.819 + }, + { + "start": 10317.68, + "end": 10319.44, + "probability": 0.9814 + }, + { + "start": 10319.72, + "end": 10320.46, + "probability": 0.8491 + }, + { + "start": 10320.78, + "end": 10322.74, + "probability": 0.9992 + }, + { + "start": 10323.06, + "end": 10324.84, + "probability": 0.9713 + }, + { + "start": 10325.2, + "end": 10326.26, + "probability": 0.8647 + }, + { + "start": 10326.68, + "end": 10331.76, + "probability": 0.9678 + }, + { + "start": 10331.86, + "end": 10333.0, + "probability": 0.6923 + }, + { + "start": 10333.22, + "end": 10338.42, + "probability": 0.8696 + }, + { + "start": 10338.74, + "end": 10346.38, + "probability": 0.9694 + }, + { + "start": 10347.18, + "end": 10348.82, + "probability": 0.9899 + }, + { + "start": 10348.88, + "end": 10349.16, + "probability": 0.7694 + }, + { + "start": 10349.92, + "end": 10351.56, + "probability": 0.6822 + }, + { + "start": 10351.66, + "end": 10352.64, + "probability": 0.7884 + }, + { + "start": 10352.7, + "end": 10355.46, + "probability": 0.8972 + }, + { + "start": 10355.54, + "end": 10357.38, + "probability": 0.7111 + }, + { + "start": 10357.42, + "end": 10357.74, + "probability": 0.7073 + }, + { + "start": 10360.6, + "end": 10363.6, + "probability": 0.9789 + }, + { + "start": 10368.16, + "end": 10369.5, + "probability": 0.5876 + }, + { + "start": 10369.6, + "end": 10369.6, + "probability": 0.6574 + }, + { + "start": 10369.6, + "end": 10370.38, + "probability": 0.6487 + }, + { + "start": 10370.56, + "end": 10372.56, + "probability": 0.9583 + }, + { + "start": 10374.5, + "end": 10376.54, + "probability": 0.9146 + }, + { + "start": 10376.78, + "end": 10382.62, + "probability": 0.9067 + }, + { + "start": 10384.76, + "end": 10391.82, + "probability": 0.9807 + }, + { + "start": 10392.5, + "end": 10393.9, + "probability": 0.9938 + }, + { + "start": 10393.94, + "end": 10394.2, + "probability": 0.723 + }, + { + "start": 10394.6, + "end": 10395.16, + "probability": 0.8519 + }, + { + "start": 10395.22, + "end": 10396.77, + "probability": 0.9217 + }, + { + "start": 10397.54, + "end": 10397.99, + "probability": 0.5978 + }, + { + "start": 10398.24, + "end": 10400.22, + "probability": 0.9963 + }, + { + "start": 10400.9, + "end": 10402.84, + "probability": 0.7193 + }, + { + "start": 10403.62, + "end": 10406.34, + "probability": 0.9776 + }, + { + "start": 10406.72, + "end": 10408.64, + "probability": 0.9846 + }, + { + "start": 10409.26, + "end": 10410.0, + "probability": 0.7703 + }, + { + "start": 10410.92, + "end": 10411.96, + "probability": 0.6756 + }, + { + "start": 10412.04, + "end": 10416.5, + "probability": 0.9907 + }, + { + "start": 10416.88, + "end": 10419.36, + "probability": 0.9508 + }, + { + "start": 10421.16, + "end": 10421.5, + "probability": 0.5438 + }, + { + "start": 10422.08, + "end": 10423.6, + "probability": 0.9282 + }, + { + "start": 10423.94, + "end": 10424.82, + "probability": 0.9083 + }, + { + "start": 10425.32, + "end": 10426.04, + "probability": 0.8608 + }, + { + "start": 10426.08, + "end": 10430.94, + "probability": 0.9134 + }, + { + "start": 10431.04, + "end": 10431.86, + "probability": 0.6801 + }, + { + "start": 10431.92, + "end": 10437.6, + "probability": 0.9617 + }, + { + "start": 10438.3, + "end": 10440.52, + "probability": 0.4242 + }, + { + "start": 10441.12, + "end": 10442.44, + "probability": 0.9787 + }, + { + "start": 10443.2, + "end": 10447.82, + "probability": 0.9519 + }, + { + "start": 10448.42, + "end": 10449.8, + "probability": 0.83 + }, + { + "start": 10449.86, + "end": 10454.0, + "probability": 0.9813 + }, + { + "start": 10454.0, + "end": 10457.58, + "probability": 0.9774 + }, + { + "start": 10458.22, + "end": 10461.14, + "probability": 0.6924 + }, + { + "start": 10461.54, + "end": 10465.1, + "probability": 0.9826 + }, + { + "start": 10465.62, + "end": 10466.78, + "probability": 0.9546 + }, + { + "start": 10467.44, + "end": 10468.66, + "probability": 0.9693 + }, + { + "start": 10469.2, + "end": 10470.76, + "probability": 0.9987 + }, + { + "start": 10471.42, + "end": 10471.9, + "probability": 0.9916 + }, + { + "start": 10472.44, + "end": 10473.1, + "probability": 0.6663 + }, + { + "start": 10473.44, + "end": 10476.34, + "probability": 0.9689 + }, + { + "start": 10476.8, + "end": 10480.34, + "probability": 0.996 + }, + { + "start": 10480.76, + "end": 10482.22, + "probability": 0.8828 + }, + { + "start": 10482.4, + "end": 10485.84, + "probability": 0.9314 + }, + { + "start": 10486.04, + "end": 10489.28, + "probability": 0.9952 + }, + { + "start": 10489.7, + "end": 10493.38, + "probability": 0.9379 + }, + { + "start": 10493.92, + "end": 10496.96, + "probability": 0.8469 + }, + { + "start": 10497.26, + "end": 10499.5, + "probability": 0.8818 + }, + { + "start": 10499.58, + "end": 10501.16, + "probability": 0.8137 + }, + { + "start": 10501.36, + "end": 10503.72, + "probability": 0.996 + }, + { + "start": 10504.9, + "end": 10506.36, + "probability": 0.6058 + }, + { + "start": 10506.58, + "end": 10509.44, + "probability": 0.9415 + }, + { + "start": 10509.44, + "end": 10512.54, + "probability": 0.9533 + }, + { + "start": 10512.74, + "end": 10517.56, + "probability": 0.9646 + }, + { + "start": 10518.1, + "end": 10519.18, + "probability": 0.958 + }, + { + "start": 10520.52, + "end": 10522.56, + "probability": 0.2266 + }, + { + "start": 10522.56, + "end": 10524.04, + "probability": 0.5715 + }, + { + "start": 10524.22, + "end": 10528.88, + "probability": 0.8665 + }, + { + "start": 10529.44, + "end": 10530.76, + "probability": 0.845 + }, + { + "start": 10531.2, + "end": 10532.0, + "probability": 0.7366 + }, + { + "start": 10532.1, + "end": 10534.14, + "probability": 0.8317 + }, + { + "start": 10534.5, + "end": 10536.14, + "probability": 0.974 + }, + { + "start": 10536.28, + "end": 10537.0, + "probability": 0.9775 + }, + { + "start": 10537.36, + "end": 10538.08, + "probability": 0.8636 + }, + { + "start": 10538.22, + "end": 10539.24, + "probability": 0.9059 + }, + { + "start": 10539.48, + "end": 10540.1, + "probability": 0.4946 + }, + { + "start": 10540.38, + "end": 10541.62, + "probability": 0.9885 + }, + { + "start": 10541.96, + "end": 10542.22, + "probability": 0.6816 + }, + { + "start": 10542.38, + "end": 10544.4, + "probability": 0.9314 + }, + { + "start": 10544.4, + "end": 10545.08, + "probability": 0.6222 + }, + { + "start": 10546.08, + "end": 10547.62, + "probability": 0.4994 + }, + { + "start": 10547.64, + "end": 10549.86, + "probability": 0.6021 + }, + { + "start": 10550.6, + "end": 10554.96, + "probability": 0.5252 + }, + { + "start": 10556.44, + "end": 10558.88, + "probability": 0.6965 + }, + { + "start": 10559.06, + "end": 10560.26, + "probability": 0.5866 + }, + { + "start": 10560.32, + "end": 10560.88, + "probability": 0.3508 + }, + { + "start": 10561.98, + "end": 10562.24, + "probability": 0.4702 + }, + { + "start": 10564.68, + "end": 10565.8, + "probability": 0.6302 + }, + { + "start": 10583.92, + "end": 10585.4, + "probability": 0.0986 + }, + { + "start": 10587.34, + "end": 10587.88, + "probability": 0.2462 + }, + { + "start": 10588.7, + "end": 10588.8, + "probability": 0.0003 + }, + { + "start": 10590.66, + "end": 10591.5, + "probability": 0.0171 + }, + { + "start": 10593.26, + "end": 10593.68, + "probability": 0.4181 + }, + { + "start": 10593.68, + "end": 10593.68, + "probability": 0.2648 + }, + { + "start": 10593.68, + "end": 10594.5, + "probability": 0.2534 + }, + { + "start": 10594.78, + "end": 10597.12, + "probability": 0.658 + }, + { + "start": 10597.12, + "end": 10600.5, + "probability": 0.8809 + }, + { + "start": 10600.7, + "end": 10601.42, + "probability": 0.8913 + }, + { + "start": 10601.52, + "end": 10602.3, + "probability": 0.5491 + }, + { + "start": 10602.72, + "end": 10605.94, + "probability": 0.7338 + }, + { + "start": 10606.08, + "end": 10610.1, + "probability": 0.9727 + }, + { + "start": 10610.68, + "end": 10615.64, + "probability": 0.9213 + }, + { + "start": 10616.84, + "end": 10617.2, + "probability": 0.3356 + }, + { + "start": 10617.2, + "end": 10619.82, + "probability": 0.7724 + }, + { + "start": 10619.98, + "end": 10621.26, + "probability": 0.3327 + }, + { + "start": 10621.56, + "end": 10624.82, + "probability": 0.9667 + }, + { + "start": 10625.6, + "end": 10627.4, + "probability": 0.9865 + }, + { + "start": 10628.02, + "end": 10630.88, + "probability": 0.5988 + }, + { + "start": 10631.36, + "end": 10632.14, + "probability": 0.8159 + }, + { + "start": 10632.56, + "end": 10633.56, + "probability": 0.8793 + }, + { + "start": 10637.6, + "end": 10640.82, + "probability": 0.2358 + }, + { + "start": 10641.8, + "end": 10641.96, + "probability": 0.3237 + }, + { + "start": 10642.7, + "end": 10647.9, + "probability": 0.064 + }, + { + "start": 10664.2, + "end": 10664.82, + "probability": 0.0096 + }, + { + "start": 10664.82, + "end": 10665.9, + "probability": 0.0267 + }, + { + "start": 10666.12, + "end": 10667.56, + "probability": 0.2174 + }, + { + "start": 10667.68, + "end": 10668.77, + "probability": 0.2412 + }, + { + "start": 10669.36, + "end": 10671.93, + "probability": 0.39 + }, + { + "start": 10678.96, + "end": 10679.66, + "probability": 0.0 + }, + { + "start": 10684.2, + "end": 10686.52, + "probability": 0.2477 + }, + { + "start": 10687.68, + "end": 10690.16, + "probability": 0.0974 + }, + { + "start": 10691.4, + "end": 10693.92, + "probability": 0.0986 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.0, + "end": 10725.0, + "probability": 0.0 + }, + { + "start": 10725.26, + "end": 10726.22, + "probability": 0.7775 + }, + { + "start": 10726.8, + "end": 10729.24, + "probability": 0.9664 + }, + { + "start": 10729.36, + "end": 10730.76, + "probability": 0.9277 + }, + { + "start": 10732.82, + "end": 10735.7, + "probability": 0.8677 + }, + { + "start": 10736.42, + "end": 10741.48, + "probability": 0.8383 + }, + { + "start": 10742.04, + "end": 10746.0, + "probability": 0.9526 + }, + { + "start": 10746.12, + "end": 10754.26, + "probability": 0.9786 + }, + { + "start": 10754.26, + "end": 10761.52, + "probability": 0.9343 + }, + { + "start": 10762.0, + "end": 10762.84, + "probability": 0.8329 + }, + { + "start": 10762.86, + "end": 10763.98, + "probability": 0.9032 + }, + { + "start": 10766.22, + "end": 10770.06, + "probability": 0.8724 + }, + { + "start": 10770.76, + "end": 10773.78, + "probability": 0.7736 + }, + { + "start": 10774.52, + "end": 10779.68, + "probability": 0.6565 + }, + { + "start": 10780.44, + "end": 10782.0, + "probability": 0.8716 + }, + { + "start": 10782.96, + "end": 10783.18, + "probability": 0.7284 + }, + { + "start": 10783.26, + "end": 10784.26, + "probability": 0.9066 + }, + { + "start": 10784.54, + "end": 10789.12, + "probability": 0.8189 + }, + { + "start": 10789.18, + "end": 10790.4, + "probability": 0.951 + }, + { + "start": 10790.88, + "end": 10791.42, + "probability": 0.337 + }, + { + "start": 10792.1, + "end": 10794.4, + "probability": 0.9871 + }, + { + "start": 10794.94, + "end": 10797.82, + "probability": 0.97 + }, + { + "start": 10798.5, + "end": 10801.28, + "probability": 0.899 + }, + { + "start": 10801.28, + "end": 10805.3, + "probability": 0.9966 + }, + { + "start": 10805.86, + "end": 10806.48, + "probability": 0.9391 + }, + { + "start": 10806.74, + "end": 10808.5, + "probability": 0.959 + }, + { + "start": 10808.94, + "end": 10809.38, + "probability": 0.8085 + }, + { + "start": 10809.46, + "end": 10810.54, + "probability": 0.8814 + }, + { + "start": 10810.68, + "end": 10811.28, + "probability": 0.7134 + }, + { + "start": 10811.78, + "end": 10813.04, + "probability": 0.9597 + }, + { + "start": 10813.74, + "end": 10817.6, + "probability": 0.962 + }, + { + "start": 10817.82, + "end": 10820.32, + "probability": 0.8903 + }, + { + "start": 10820.36, + "end": 10821.16, + "probability": 0.8121 + }, + { + "start": 10821.2, + "end": 10821.66, + "probability": 0.4312 + }, + { + "start": 10821.72, + "end": 10822.42, + "probability": 0.7345 + }, + { + "start": 10822.94, + "end": 10824.24, + "probability": 0.9778 + }, + { + "start": 10824.52, + "end": 10825.9, + "probability": 0.9949 + }, + { + "start": 10826.36, + "end": 10828.84, + "probability": 0.9932 + }, + { + "start": 10829.66, + "end": 10830.14, + "probability": 0.9526 + }, + { + "start": 10830.88, + "end": 10831.45, + "probability": 0.979 + }, + { + "start": 10832.2, + "end": 10834.0, + "probability": 0.9971 + }, + { + "start": 10834.0, + "end": 10837.58, + "probability": 0.9924 + }, + { + "start": 10838.06, + "end": 10842.26, + "probability": 0.9754 + }, + { + "start": 10842.98, + "end": 10847.52, + "probability": 0.9644 + }, + { + "start": 10848.82, + "end": 10849.84, + "probability": 0.8341 + }, + { + "start": 10851.24, + "end": 10854.12, + "probability": 0.9813 + }, + { + "start": 10855.34, + "end": 10860.79, + "probability": 0.8523 + }, + { + "start": 10861.48, + "end": 10865.08, + "probability": 0.9214 + }, + { + "start": 10865.8, + "end": 10866.9, + "probability": 0.6382 + }, + { + "start": 10866.96, + "end": 10867.68, + "probability": 0.8826 + }, + { + "start": 10868.14, + "end": 10868.86, + "probability": 0.4909 + }, + { + "start": 10868.86, + "end": 10869.56, + "probability": 0.5208 + }, + { + "start": 10870.06, + "end": 10877.3, + "probability": 0.9921 + }, + { + "start": 10877.82, + "end": 10879.64, + "probability": 0.7831 + }, + { + "start": 10879.68, + "end": 10881.4, + "probability": 0.9546 + }, + { + "start": 10881.52, + "end": 10882.22, + "probability": 0.884 + }, + { + "start": 10882.64, + "end": 10885.84, + "probability": 0.5845 + }, + { + "start": 10885.96, + "end": 10886.52, + "probability": 0.816 + }, + { + "start": 10886.62, + "end": 10887.22, + "probability": 0.8928 + }, + { + "start": 10887.28, + "end": 10888.28, + "probability": 0.9337 + }, + { + "start": 10888.66, + "end": 10892.62, + "probability": 0.9907 + }, + { + "start": 10892.62, + "end": 10897.16, + "probability": 0.9782 + }, + { + "start": 10897.84, + "end": 10901.72, + "probability": 0.9635 + }, + { + "start": 10902.22, + "end": 10903.02, + "probability": 0.9106 + }, + { + "start": 10903.68, + "end": 10905.02, + "probability": 0.8303 + }, + { + "start": 10905.08, + "end": 10906.56, + "probability": 0.9053 + }, + { + "start": 10907.16, + "end": 10911.33, + "probability": 0.8743 + }, + { + "start": 10911.68, + "end": 10911.96, + "probability": 0.5313 + }, + { + "start": 10911.96, + "end": 10912.26, + "probability": 0.7268 + }, + { + "start": 10912.34, + "end": 10916.36, + "probability": 0.8356 + }, + { + "start": 10916.82, + "end": 10920.96, + "probability": 0.9072 + }, + { + "start": 10921.14, + "end": 10923.82, + "probability": 0.633 + }, + { + "start": 10924.76, + "end": 10927.8, + "probability": 0.0263 + }, + { + "start": 10927.8, + "end": 10928.24, + "probability": 0.3702 + }, + { + "start": 10928.38, + "end": 10929.04, + "probability": 0.7487 + }, + { + "start": 10929.08, + "end": 10930.6, + "probability": 0.7258 + }, + { + "start": 10930.62, + "end": 10931.2, + "probability": 0.6551 + }, + { + "start": 10935.98, + "end": 10938.22, + "probability": 0.0429 + }, + { + "start": 10940.58, + "end": 10943.42, + "probability": 0.0 + }, + { + "start": 10952.22, + "end": 10952.74, + "probability": 0.3765 + }, + { + "start": 10953.3, + "end": 10955.2, + "probability": 0.52 + }, + { + "start": 10956.02, + "end": 10957.76, + "probability": 0.7737 + }, + { + "start": 10957.76, + "end": 10959.84, + "probability": 0.3081 + }, + { + "start": 10960.84, + "end": 10962.58, + "probability": 0.9563 + }, + { + "start": 10962.88, + "end": 10964.55, + "probability": 0.9243 + }, + { + "start": 10965.28, + "end": 10966.18, + "probability": 0.732 + }, + { + "start": 10966.32, + "end": 10967.0, + "probability": 0.8282 + }, + { + "start": 10967.06, + "end": 10968.28, + "probability": 0.9805 + }, + { + "start": 10968.4, + "end": 10970.1, + "probability": 0.8825 + }, + { + "start": 10970.82, + "end": 10972.4, + "probability": 0.9277 + }, + { + "start": 10972.92, + "end": 10974.68, + "probability": 0.0541 + }, + { + "start": 10974.68, + "end": 10977.26, + "probability": 0.793 + }, + { + "start": 10978.24, + "end": 10978.3, + "probability": 0.0199 + }, + { + "start": 10978.3, + "end": 10979.42, + "probability": 0.3041 + }, + { + "start": 10980.2, + "end": 10980.92, + "probability": 0.6815 + }, + { + "start": 10981.04, + "end": 10983.62, + "probability": 0.7444 + }, + { + "start": 10983.66, + "end": 10985.02, + "probability": 0.7625 + }, + { + "start": 10985.36, + "end": 10985.6, + "probability": 0.0625 + }, + { + "start": 10985.6, + "end": 10994.26, + "probability": 0.6459 + }, + { + "start": 10995.62, + "end": 10996.46, + "probability": 0.5879 + }, + { + "start": 10996.58, + "end": 10997.58, + "probability": 0.6099 + }, + { + "start": 10997.58, + "end": 10998.08, + "probability": 0.7124 + }, + { + "start": 10998.14, + "end": 11000.04, + "probability": 0.7242 + }, + { + "start": 11007.86, + "end": 11008.08, + "probability": 0.5648 + }, + { + "start": 11008.16, + "end": 11009.32, + "probability": 0.8429 + }, + { + "start": 11009.6, + "end": 11011.78, + "probability": 0.6832 + }, + { + "start": 11012.08, + "end": 11013.68, + "probability": 0.5122 + }, + { + "start": 11014.05, + "end": 11018.12, + "probability": 0.6953 + }, + { + "start": 11019.96, + "end": 11021.78, + "probability": 0.2007 + }, + { + "start": 11022.34, + "end": 11024.49, + "probability": 0.5537 + }, + { + "start": 11025.1, + "end": 11028.66, + "probability": 0.7181 + }, + { + "start": 11029.6, + "end": 11030.78, + "probability": 0.349 + }, + { + "start": 11030.82, + "end": 11031.52, + "probability": 0.7113 + }, + { + "start": 11035.22, + "end": 11036.64, + "probability": 0.8746 + }, + { + "start": 11036.64, + "end": 11037.46, + "probability": 0.6437 + }, + { + "start": 11039.54, + "end": 11042.47, + "probability": 0.0801 + }, + { + "start": 11043.86, + "end": 11044.6, + "probability": 0.0356 + }, + { + "start": 11047.26, + "end": 11048.85, + "probability": 0.023 + }, + { + "start": 11050.6, + "end": 11051.0, + "probability": 0.0913 + }, + { + "start": 11051.0, + "end": 11054.5, + "probability": 0.2351 + }, + { + "start": 11054.5, + "end": 11054.86, + "probability": 0.7103 + }, + { + "start": 11055.0, + "end": 11059.38, + "probability": 0.9674 + }, + { + "start": 11059.6, + "end": 11063.38, + "probability": 0.8625 + }, + { + "start": 11063.98, + "end": 11070.92, + "probability": 0.9938 + }, + { + "start": 11071.88, + "end": 11074.34, + "probability": 0.6591 + }, + { + "start": 11075.08, + "end": 11080.12, + "probability": 0.991 + }, + { + "start": 11080.3, + "end": 11080.62, + "probability": 0.388 + }, + { + "start": 11080.64, + "end": 11081.14, + "probability": 0.9247 + }, + { + "start": 11081.72, + "end": 11083.14, + "probability": 0.9922 + }, + { + "start": 11083.7, + "end": 11085.32, + "probability": 0.6824 + }, + { + "start": 11085.4, + "end": 11091.02, + "probability": 0.9617 + }, + { + "start": 11091.68, + "end": 11096.35, + "probability": 0.9569 + }, + { + "start": 11097.73, + "end": 11101.04, + "probability": 0.9873 + }, + { + "start": 11101.82, + "end": 11103.56, + "probability": 0.8786 + }, + { + "start": 11103.66, + "end": 11105.18, + "probability": 0.8517 + }, + { + "start": 11105.18, + "end": 11105.18, + "probability": 0.8276 + }, + { + "start": 11105.2, + "end": 11106.52, + "probability": 0.4483 + }, + { + "start": 11107.14, + "end": 11108.08, + "probability": 0.4792 + }, + { + "start": 11108.68, + "end": 11110.08, + "probability": 0.8804 + }, + { + "start": 11110.68, + "end": 11112.84, + "probability": 0.7585 + }, + { + "start": 11113.6, + "end": 11114.62, + "probability": 0.3242 + }, + { + "start": 11115.48, + "end": 11122.9, + "probability": 0.9313 + }, + { + "start": 11123.78, + "end": 11124.72, + "probability": 0.4901 + }, + { + "start": 11124.72, + "end": 11128.34, + "probability": 0.5786 + }, + { + "start": 11128.4, + "end": 11128.72, + "probability": 0.6038 + }, + { + "start": 11128.76, + "end": 11129.6, + "probability": 0.7248 + }, + { + "start": 11129.62, + "end": 11132.84, + "probability": 0.98 + }, + { + "start": 11133.64, + "end": 11136.56, + "probability": 0.7881 + }, + { + "start": 11140.8, + "end": 11142.18, + "probability": 0.5811 + }, + { + "start": 11142.86, + "end": 11144.72, + "probability": 0.473 + }, + { + "start": 11144.72, + "end": 11148.47, + "probability": 0.9775 + }, + { + "start": 11149.2, + "end": 11151.44, + "probability": 0.9152 + }, + { + "start": 11152.24, + "end": 11154.32, + "probability": 0.9344 + }, + { + "start": 11154.66, + "end": 11155.96, + "probability": 0.8954 + }, + { + "start": 11156.22, + "end": 11157.76, + "probability": 0.6619 + }, + { + "start": 11157.82, + "end": 11159.04, + "probability": 0.8231 + }, + { + "start": 11159.68, + "end": 11162.26, + "probability": 0.9968 + }, + { + "start": 11162.78, + "end": 11164.24, + "probability": 0.6911 + }, + { + "start": 11164.34, + "end": 11168.06, + "probability": 0.9495 + }, + { + "start": 11168.58, + "end": 11169.74, + "probability": 0.6891 + }, + { + "start": 11169.9, + "end": 11172.78, + "probability": 0.8046 + }, + { + "start": 11173.42, + "end": 11180.38, + "probability": 0.9869 + }, + { + "start": 11180.38, + "end": 11188.16, + "probability": 0.9797 + }, + { + "start": 11188.82, + "end": 11190.5, + "probability": 0.9482 + }, + { + "start": 11190.66, + "end": 11192.43, + "probability": 0.8335 + }, + { + "start": 11193.08, + "end": 11199.46, + "probability": 0.9678 + }, + { + "start": 11199.76, + "end": 11204.52, + "probability": 0.9717 + }, + { + "start": 11204.82, + "end": 11205.88, + "probability": 0.7999 + }, + { + "start": 11206.04, + "end": 11206.52, + "probability": 0.569 + }, + { + "start": 11206.6, + "end": 11208.62, + "probability": 0.7897 + }, + { + "start": 11208.72, + "end": 11209.63, + "probability": 0.8587 + }, + { + "start": 11210.3, + "end": 11212.04, + "probability": 0.7742 + }, + { + "start": 11212.5, + "end": 11214.02, + "probability": 0.6791 + }, + { + "start": 11214.6, + "end": 11216.1, + "probability": 0.971 + }, + { + "start": 11216.2, + "end": 11216.76, + "probability": 0.574 + }, + { + "start": 11216.84, + "end": 11218.26, + "probability": 0.5816 + }, + { + "start": 11218.36, + "end": 11221.29, + "probability": 0.1448 + }, + { + "start": 11221.48, + "end": 11226.14, + "probability": 0.9022 + }, + { + "start": 11227.08, + "end": 11228.08, + "probability": 0.1942 + } + ], + "segments_count": 4008, + "words_count": 19683, + "avg_words_per_segment": 4.9109, + "avg_segment_duration": 2.0879, + "avg_words_per_minute": 104.4755, + "plenum_id": "28007", + "duration": 11303.89, + "title": null, + "plenum_date": "2013-05-06" +} \ No newline at end of file