diff --git "a/35082/metadata.json" "b/35082/metadata.json" new file mode 100644--- /dev/null +++ "b/35082/metadata.json" @@ -0,0 +1,66027 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "35082", + "quality_score": 0.8157, + "per_segment_quality_scores": [ + { + "start": 73.12, + "end": 73.12, + "probability": 0.2057 + }, + { + "start": 73.12, + "end": 74.38, + "probability": 0.4863 + }, + { + "start": 74.94, + "end": 75.96, + "probability": 0.7215 + }, + { + "start": 76.76, + "end": 80.54, + "probability": 0.9724 + }, + { + "start": 80.62, + "end": 82.23, + "probability": 0.7925 + }, + { + "start": 82.58, + "end": 88.4, + "probability": 0.8088 + }, + { + "start": 90.32, + "end": 92.98, + "probability": 0.8134 + }, + { + "start": 94.16, + "end": 95.88, + "probability": 0.9256 + }, + { + "start": 101.38, + "end": 102.48, + "probability": 0.6252 + }, + { + "start": 102.58, + "end": 105.25, + "probability": 0.8584 + }, + { + "start": 105.72, + "end": 109.0, + "probability": 0.9411 + }, + { + "start": 109.7, + "end": 110.78, + "probability": 0.8524 + }, + { + "start": 111.34, + "end": 114.48, + "probability": 0.9608 + }, + { + "start": 115.48, + "end": 116.16, + "probability": 0.7508 + }, + { + "start": 118.0, + "end": 121.62, + "probability": 0.7906 + }, + { + "start": 121.76, + "end": 126.16, + "probability": 0.9074 + }, + { + "start": 127.58, + "end": 129.08, + "probability": 0.9753 + }, + { + "start": 129.22, + "end": 129.76, + "probability": 0.9595 + }, + { + "start": 129.9, + "end": 131.22, + "probability": 0.9003 + }, + { + "start": 131.38, + "end": 132.34, + "probability": 0.9578 + }, + { + "start": 133.16, + "end": 136.18, + "probability": 0.3266 + }, + { + "start": 136.18, + "end": 137.22, + "probability": 0.0753 + }, + { + "start": 137.66, + "end": 139.98, + "probability": 0.7993 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 143.18, + "end": 145.08, + "probability": 0.773 + }, + { + "start": 145.3, + "end": 145.48, + "probability": 0.7111 + }, + { + "start": 146.32, + "end": 146.68, + "probability": 0.5661 + }, + { + "start": 146.82, + "end": 147.62, + "probability": 0.8826 + }, + { + "start": 148.3, + "end": 149.34, + "probability": 0.6257 + }, + { + "start": 149.9, + "end": 153.54, + "probability": 0.8791 + }, + { + "start": 154.44, + "end": 156.01, + "probability": 0.825 + }, + { + "start": 157.3, + "end": 159.78, + "probability": 0.9672 + }, + { + "start": 160.02, + "end": 166.82, + "probability": 0.8022 + }, + { + "start": 166.82, + "end": 174.8, + "probability": 0.7997 + }, + { + "start": 176.5, + "end": 178.72, + "probability": 0.9932 + }, + { + "start": 179.26, + "end": 179.58, + "probability": 0.1872 + }, + { + "start": 179.58, + "end": 180.34, + "probability": 0.0469 + }, + { + "start": 180.94, + "end": 181.65, + "probability": 0.9888 + }, + { + "start": 183.14, + "end": 186.34, + "probability": 0.9933 + }, + { + "start": 186.34, + "end": 191.78, + "probability": 0.9913 + }, + { + "start": 193.22, + "end": 197.02, + "probability": 0.9754 + }, + { + "start": 197.48, + "end": 199.32, + "probability": 0.8047 + }, + { + "start": 200.52, + "end": 203.96, + "probability": 0.9545 + }, + { + "start": 204.6, + "end": 209.04, + "probability": 0.9375 + }, + { + "start": 210.5, + "end": 212.62, + "probability": 0.9392 + }, + { + "start": 212.7, + "end": 214.56, + "probability": 0.5443 + }, + { + "start": 214.66, + "end": 216.48, + "probability": 0.9777 + }, + { + "start": 217.56, + "end": 224.08, + "probability": 0.905 + }, + { + "start": 225.06, + "end": 227.76, + "probability": 0.9779 + }, + { + "start": 228.4, + "end": 228.54, + "probability": 0.488 + }, + { + "start": 228.54, + "end": 240.66, + "probability": 0.6158 + }, + { + "start": 241.76, + "end": 243.96, + "probability": 0.9618 + }, + { + "start": 244.1, + "end": 245.28, + "probability": 0.9922 + }, + { + "start": 245.38, + "end": 246.56, + "probability": 0.9967 + }, + { + "start": 247.2, + "end": 249.3, + "probability": 0.9773 + }, + { + "start": 250.18, + "end": 255.14, + "probability": 0.7981 + }, + { + "start": 255.34, + "end": 261.48, + "probability": 0.4309 + }, + { + "start": 262.02, + "end": 262.56, + "probability": 0.9016 + }, + { + "start": 263.98, + "end": 267.6, + "probability": 0.9625 + }, + { + "start": 268.94, + "end": 272.2, + "probability": 0.9875 + }, + { + "start": 273.16, + "end": 273.56, + "probability": 0.6047 + }, + { + "start": 273.68, + "end": 275.92, + "probability": 0.671 + }, + { + "start": 275.92, + "end": 279.45, + "probability": 0.9014 + }, + { + "start": 279.96, + "end": 288.08, + "probability": 0.8526 + }, + { + "start": 288.62, + "end": 290.71, + "probability": 0.8401 + }, + { + "start": 292.14, + "end": 294.38, + "probability": 0.9964 + }, + { + "start": 295.62, + "end": 298.2, + "probability": 0.7483 + }, + { + "start": 298.56, + "end": 301.7, + "probability": 0.9781 + }, + { + "start": 302.36, + "end": 303.56, + "probability": 0.8567 + }, + { + "start": 304.06, + "end": 307.04, + "probability": 0.8244 + }, + { + "start": 307.4, + "end": 308.76, + "probability": 0.9325 + }, + { + "start": 309.22, + "end": 311.72, + "probability": 0.9789 + }, + { + "start": 311.98, + "end": 313.62, + "probability": 0.8829 + }, + { + "start": 314.34, + "end": 316.31, + "probability": 0.7214 + }, + { + "start": 316.56, + "end": 317.66, + "probability": 0.7744 + }, + { + "start": 318.56, + "end": 320.58, + "probability": 0.9652 + }, + { + "start": 320.66, + "end": 324.44, + "probability": 0.9654 + }, + { + "start": 330.94, + "end": 332.34, + "probability": 0.8089 + }, + { + "start": 332.42, + "end": 336.68, + "probability": 0.9315 + }, + { + "start": 337.24, + "end": 337.88, + "probability": 0.7768 + }, + { + "start": 338.8, + "end": 339.66, + "probability": 0.8971 + }, + { + "start": 340.15, + "end": 342.66, + "probability": 0.5417 + }, + { + "start": 342.7, + "end": 344.7, + "probability": 0.9164 + }, + { + "start": 345.66, + "end": 349.48, + "probability": 0.9408 + }, + { + "start": 350.82, + "end": 352.36, + "probability": 0.8902 + }, + { + "start": 352.58, + "end": 356.96, + "probability": 0.9551 + }, + { + "start": 358.8, + "end": 367.04, + "probability": 0.9015 + }, + { + "start": 367.2, + "end": 368.13, + "probability": 0.6648 + }, + { + "start": 368.8, + "end": 371.08, + "probability": 0.7742 + }, + { + "start": 372.46, + "end": 380.44, + "probability": 0.7883 + }, + { + "start": 381.06, + "end": 385.12, + "probability": 0.901 + }, + { + "start": 385.42, + "end": 393.38, + "probability": 0.9425 + }, + { + "start": 395.34, + "end": 398.08, + "probability": 0.8901 + }, + { + "start": 398.86, + "end": 400.24, + "probability": 0.4276 + }, + { + "start": 400.76, + "end": 404.88, + "probability": 0.8239 + }, + { + "start": 405.66, + "end": 407.58, + "probability": 0.9054 + }, + { + "start": 408.62, + "end": 417.34, + "probability": 0.6942 + }, + { + "start": 417.34, + "end": 424.22, + "probability": 0.9941 + }, + { + "start": 424.8, + "end": 426.48, + "probability": 0.9544 + }, + { + "start": 426.98, + "end": 432.62, + "probability": 0.929 + }, + { + "start": 432.94, + "end": 434.96, + "probability": 0.9675 + }, + { + "start": 435.64, + "end": 442.66, + "probability": 0.9754 + }, + { + "start": 443.32, + "end": 445.5, + "probability": 0.9928 + }, + { + "start": 445.5, + "end": 448.0, + "probability": 0.9762 + }, + { + "start": 448.1, + "end": 448.58, + "probability": 0.8202 + }, + { + "start": 448.86, + "end": 449.08, + "probability": 0.4093 + }, + { + "start": 449.22, + "end": 451.0, + "probability": 0.8325 + }, + { + "start": 457.7, + "end": 458.98, + "probability": 0.5564 + }, + { + "start": 459.18, + "end": 460.1, + "probability": 0.8337 + }, + { + "start": 460.24, + "end": 464.24, + "probability": 0.9963 + }, + { + "start": 464.34, + "end": 467.62, + "probability": 0.9883 + }, + { + "start": 467.68, + "end": 468.32, + "probability": 0.8806 + }, + { + "start": 468.9, + "end": 472.94, + "probability": 0.9847 + }, + { + "start": 473.1, + "end": 475.16, + "probability": 0.9156 + }, + { + "start": 476.12, + "end": 480.76, + "probability": 0.9526 + }, + { + "start": 480.98, + "end": 482.82, + "probability": 0.7139 + }, + { + "start": 483.66, + "end": 486.88, + "probability": 0.8725 + }, + { + "start": 487.62, + "end": 490.98, + "probability": 0.9748 + }, + { + "start": 490.98, + "end": 494.8, + "probability": 0.9964 + }, + { + "start": 495.02, + "end": 499.0, + "probability": 0.9834 + }, + { + "start": 500.0, + "end": 502.58, + "probability": 0.9741 + }, + { + "start": 503.56, + "end": 504.68, + "probability": 0.9103 + }, + { + "start": 504.84, + "end": 506.48, + "probability": 0.6961 + }, + { + "start": 506.9, + "end": 509.56, + "probability": 0.8609 + }, + { + "start": 510.66, + "end": 512.42, + "probability": 0.9919 + }, + { + "start": 513.48, + "end": 516.52, + "probability": 0.9961 + }, + { + "start": 517.94, + "end": 521.98, + "probability": 0.993 + }, + { + "start": 523.0, + "end": 528.24, + "probability": 0.992 + }, + { + "start": 528.92, + "end": 532.46, + "probability": 0.9487 + }, + { + "start": 532.86, + "end": 534.46, + "probability": 0.9243 + }, + { + "start": 535.58, + "end": 538.72, + "probability": 0.9715 + }, + { + "start": 539.34, + "end": 542.12, + "probability": 0.9937 + }, + { + "start": 542.24, + "end": 543.54, + "probability": 0.995 + }, + { + "start": 543.68, + "end": 547.14, + "probability": 0.9738 + }, + { + "start": 547.68, + "end": 553.48, + "probability": 0.9693 + }, + { + "start": 553.48, + "end": 558.06, + "probability": 0.9984 + }, + { + "start": 558.26, + "end": 558.52, + "probability": 0.6352 + }, + { + "start": 558.58, + "end": 560.0, + "probability": 0.7364 + }, + { + "start": 560.24, + "end": 561.68, + "probability": 0.626 + }, + { + "start": 561.76, + "end": 565.02, + "probability": 0.9692 + }, + { + "start": 570.16, + "end": 572.56, + "probability": 0.7874 + }, + { + "start": 573.08, + "end": 576.12, + "probability": 0.9889 + }, + { + "start": 576.32, + "end": 577.3, + "probability": 0.8006 + }, + { + "start": 577.38, + "end": 578.52, + "probability": 0.813 + }, + { + "start": 578.88, + "end": 580.08, + "probability": 0.7552 + }, + { + "start": 580.16, + "end": 581.58, + "probability": 0.9354 + }, + { + "start": 581.98, + "end": 585.38, + "probability": 0.9468 + }, + { + "start": 585.52, + "end": 589.72, + "probability": 0.8067 + }, + { + "start": 589.72, + "end": 597.0, + "probability": 0.9906 + }, + { + "start": 597.62, + "end": 599.24, + "probability": 0.5881 + }, + { + "start": 599.38, + "end": 599.8, + "probability": 0.7662 + }, + { + "start": 599.86, + "end": 600.72, + "probability": 0.9081 + }, + { + "start": 600.94, + "end": 602.32, + "probability": 0.8633 + }, + { + "start": 602.4, + "end": 604.9, + "probability": 0.9796 + }, + { + "start": 604.98, + "end": 606.26, + "probability": 0.6168 + }, + { + "start": 606.34, + "end": 611.32, + "probability": 0.9749 + }, + { + "start": 611.74, + "end": 614.12, + "probability": 0.9084 + }, + { + "start": 614.74, + "end": 619.48, + "probability": 0.9297 + }, + { + "start": 619.58, + "end": 620.08, + "probability": 0.6244 + }, + { + "start": 620.44, + "end": 624.18, + "probability": 0.9222 + }, + { + "start": 624.32, + "end": 625.54, + "probability": 0.9006 + }, + { + "start": 625.62, + "end": 626.22, + "probability": 0.6029 + }, + { + "start": 626.62, + "end": 626.9, + "probability": 0.8921 + }, + { + "start": 627.34, + "end": 627.78, + "probability": 0.6625 + }, + { + "start": 627.94, + "end": 628.86, + "probability": 0.9358 + }, + { + "start": 632.16, + "end": 633.5, + "probability": 0.8911 + }, + { + "start": 634.02, + "end": 636.43, + "probability": 0.7946 + }, + { + "start": 638.42, + "end": 641.18, + "probability": 0.6744 + }, + { + "start": 641.56, + "end": 642.36, + "probability": 0.7635 + }, + { + "start": 642.54, + "end": 644.32, + "probability": 0.8418 + }, + { + "start": 644.42, + "end": 646.72, + "probability": 0.8405 + }, + { + "start": 647.4, + "end": 647.82, + "probability": 0.6479 + }, + { + "start": 648.06, + "end": 653.02, + "probability": 0.929 + }, + { + "start": 653.14, + "end": 655.96, + "probability": 0.8234 + }, + { + "start": 655.96, + "end": 657.86, + "probability": 0.9703 + }, + { + "start": 658.02, + "end": 658.28, + "probability": 0.4347 + }, + { + "start": 658.4, + "end": 659.64, + "probability": 0.6365 + }, + { + "start": 660.16, + "end": 661.64, + "probability": 0.9012 + }, + { + "start": 662.22, + "end": 664.16, + "probability": 0.9858 + }, + { + "start": 664.2, + "end": 665.08, + "probability": 0.9541 + }, + { + "start": 665.58, + "end": 666.92, + "probability": 0.8257 + }, + { + "start": 667.04, + "end": 668.16, + "probability": 0.9956 + }, + { + "start": 668.32, + "end": 669.82, + "probability": 0.825 + }, + { + "start": 670.69, + "end": 674.92, + "probability": 0.9874 + }, + { + "start": 675.14, + "end": 677.46, + "probability": 0.518 + }, + { + "start": 677.56, + "end": 678.92, + "probability": 0.7755 + }, + { + "start": 679.54, + "end": 681.16, + "probability": 0.9849 + }, + { + "start": 681.28, + "end": 685.04, + "probability": 0.8528 + }, + { + "start": 685.08, + "end": 685.96, + "probability": 0.7559 + }, + { + "start": 686.36, + "end": 690.28, + "probability": 0.9295 + }, + { + "start": 691.16, + "end": 691.78, + "probability": 0.5433 + }, + { + "start": 692.02, + "end": 692.52, + "probability": 0.6462 + }, + { + "start": 692.62, + "end": 696.18, + "probability": 0.8784 + }, + { + "start": 696.32, + "end": 698.14, + "probability": 0.8594 + }, + { + "start": 698.36, + "end": 702.62, + "probability": 0.9787 + }, + { + "start": 702.74, + "end": 703.68, + "probability": 0.6589 + }, + { + "start": 703.8, + "end": 705.16, + "probability": 0.9749 + }, + { + "start": 705.32, + "end": 706.48, + "probability": 0.9203 + }, + { + "start": 706.8, + "end": 708.66, + "probability": 0.9546 + }, + { + "start": 709.14, + "end": 709.74, + "probability": 0.8367 + }, + { + "start": 709.74, + "end": 709.96, + "probability": 0.6524 + }, + { + "start": 710.14, + "end": 710.78, + "probability": 0.9546 + }, + { + "start": 711.56, + "end": 714.64, + "probability": 0.4848 + }, + { + "start": 714.64, + "end": 715.4, + "probability": 0.8283 + }, + { + "start": 715.88, + "end": 719.27, + "probability": 0.9506 + }, + { + "start": 721.75, + "end": 723.4, + "probability": 0.7216 + }, + { + "start": 723.58, + "end": 727.94, + "probability": 0.9941 + }, + { + "start": 728.68, + "end": 732.64, + "probability": 0.8092 + }, + { + "start": 733.44, + "end": 736.2, + "probability": 0.8634 + }, + { + "start": 736.24, + "end": 736.66, + "probability": 0.5297 + }, + { + "start": 736.72, + "end": 743.52, + "probability": 0.8648 + }, + { + "start": 743.64, + "end": 744.58, + "probability": 0.2942 + }, + { + "start": 746.0, + "end": 749.86, + "probability": 0.6973 + }, + { + "start": 751.66, + "end": 752.48, + "probability": 0.5465 + }, + { + "start": 752.8, + "end": 755.28, + "probability": 0.8345 + }, + { + "start": 755.44, + "end": 758.52, + "probability": 0.9813 + }, + { + "start": 758.56, + "end": 760.57, + "probability": 0.9641 + }, + { + "start": 760.94, + "end": 762.22, + "probability": 0.9985 + }, + { + "start": 762.72, + "end": 764.0, + "probability": 0.998 + }, + { + "start": 764.18, + "end": 766.18, + "probability": 0.9827 + }, + { + "start": 767.08, + "end": 767.44, + "probability": 0.708 + }, + { + "start": 767.52, + "end": 771.04, + "probability": 0.9943 + }, + { + "start": 772.04, + "end": 774.9, + "probability": 0.9468 + }, + { + "start": 775.52, + "end": 776.72, + "probability": 0.5166 + }, + { + "start": 777.08, + "end": 778.04, + "probability": 0.9363 + }, + { + "start": 778.16, + "end": 780.52, + "probability": 0.9817 + }, + { + "start": 780.94, + "end": 781.98, + "probability": 0.9701 + }, + { + "start": 782.5, + "end": 786.02, + "probability": 0.892 + }, + { + "start": 786.02, + "end": 788.42, + "probability": 0.9533 + }, + { + "start": 790.54, + "end": 791.7, + "probability": 0.5099 + }, + { + "start": 791.84, + "end": 793.5, + "probability": 0.9014 + }, + { + "start": 793.62, + "end": 794.56, + "probability": 0.6675 + }, + { + "start": 794.74, + "end": 797.26, + "probability": 0.9102 + }, + { + "start": 798.02, + "end": 800.04, + "probability": 0.8071 + }, + { + "start": 800.24, + "end": 804.04, + "probability": 0.9448 + }, + { + "start": 804.36, + "end": 805.78, + "probability": 0.7141 + }, + { + "start": 805.92, + "end": 806.24, + "probability": 0.7298 + }, + { + "start": 807.24, + "end": 810.41, + "probability": 0.958 + }, + { + "start": 810.62, + "end": 812.66, + "probability": 0.9416 + }, + { + "start": 813.24, + "end": 816.24, + "probability": 0.8914 + }, + { + "start": 816.7, + "end": 817.38, + "probability": 0.8798 + }, + { + "start": 817.68, + "end": 819.7, + "probability": 0.9927 + }, + { + "start": 819.84, + "end": 821.2, + "probability": 0.8916 + }, + { + "start": 821.54, + "end": 823.8, + "probability": 0.9895 + }, + { + "start": 824.36, + "end": 825.64, + "probability": 0.5582 + }, + { + "start": 826.28, + "end": 827.66, + "probability": 0.9708 + }, + { + "start": 827.78, + "end": 829.7, + "probability": 0.8825 + }, + { + "start": 830.38, + "end": 832.14, + "probability": 0.8257 + }, + { + "start": 832.58, + "end": 834.96, + "probability": 0.836 + }, + { + "start": 835.5, + "end": 837.44, + "probability": 0.9535 + }, + { + "start": 837.58, + "end": 838.54, + "probability": 0.7144 + }, + { + "start": 838.88, + "end": 840.69, + "probability": 0.9902 + }, + { + "start": 841.22, + "end": 843.57, + "probability": 0.5 + }, + { + "start": 844.38, + "end": 844.92, + "probability": 0.6949 + }, + { + "start": 844.94, + "end": 848.8, + "probability": 0.9224 + }, + { + "start": 849.52, + "end": 851.96, + "probability": 0.9824 + }, + { + "start": 852.16, + "end": 853.2, + "probability": 0.9537 + }, + { + "start": 853.5, + "end": 854.8, + "probability": 0.9081 + }, + { + "start": 855.24, + "end": 856.76, + "probability": 0.9597 + }, + { + "start": 858.22, + "end": 860.7, + "probability": 0.8234 + }, + { + "start": 861.36, + "end": 862.58, + "probability": 0.8931 + }, + { + "start": 863.2, + "end": 863.69, + "probability": 0.9186 + }, + { + "start": 864.32, + "end": 864.48, + "probability": 0.3435 + }, + { + "start": 864.74, + "end": 872.16, + "probability": 0.9149 + }, + { + "start": 872.16, + "end": 877.14, + "probability": 0.9718 + }, + { + "start": 877.22, + "end": 877.82, + "probability": 0.9349 + }, + { + "start": 877.96, + "end": 879.04, + "probability": 0.9634 + }, + { + "start": 879.5, + "end": 880.72, + "probability": 0.8696 + }, + { + "start": 881.73, + "end": 884.04, + "probability": 0.8276 + }, + { + "start": 884.04, + "end": 884.68, + "probability": 0.0964 + }, + { + "start": 884.76, + "end": 885.56, + "probability": 0.4714 + }, + { + "start": 885.74, + "end": 890.04, + "probability": 0.9584 + }, + { + "start": 890.56, + "end": 892.18, + "probability": 0.7959 + }, + { + "start": 892.3, + "end": 893.94, + "probability": 0.9977 + }, + { + "start": 894.52, + "end": 896.58, + "probability": 0.5496 + }, + { + "start": 897.2, + "end": 897.83, + "probability": 0.6074 + }, + { + "start": 898.04, + "end": 899.62, + "probability": 0.9736 + }, + { + "start": 899.98, + "end": 901.96, + "probability": 0.7373 + }, + { + "start": 902.04, + "end": 903.8, + "probability": 0.7778 + }, + { + "start": 904.5, + "end": 905.62, + "probability": 0.7027 + }, + { + "start": 905.92, + "end": 911.02, + "probability": 0.9197 + }, + { + "start": 911.02, + "end": 912.92, + "probability": 0.975 + }, + { + "start": 913.48, + "end": 914.22, + "probability": 0.7075 + }, + { + "start": 914.66, + "end": 916.06, + "probability": 0.999 + }, + { + "start": 916.34, + "end": 918.14, + "probability": 0.9894 + }, + { + "start": 918.9, + "end": 924.02, + "probability": 0.7353 + }, + { + "start": 924.04, + "end": 925.34, + "probability": 0.9961 + }, + { + "start": 925.96, + "end": 926.46, + "probability": 0.8066 + }, + { + "start": 927.14, + "end": 927.4, + "probability": 0.8285 + }, + { + "start": 927.44, + "end": 928.26, + "probability": 0.9982 + }, + { + "start": 928.34, + "end": 929.74, + "probability": 0.9345 + }, + { + "start": 930.28, + "end": 931.82, + "probability": 0.7761 + }, + { + "start": 932.3, + "end": 932.96, + "probability": 0.9597 + }, + { + "start": 933.18, + "end": 933.52, + "probability": 0.8619 + }, + { + "start": 933.56, + "end": 934.34, + "probability": 0.6594 + }, + { + "start": 934.4, + "end": 935.76, + "probability": 0.9279 + }, + { + "start": 936.14, + "end": 940.38, + "probability": 0.8344 + }, + { + "start": 941.24, + "end": 946.44, + "probability": 0.9929 + }, + { + "start": 946.52, + "end": 947.44, + "probability": 0.6646 + }, + { + "start": 947.68, + "end": 948.36, + "probability": 0.6555 + }, + { + "start": 948.72, + "end": 949.42, + "probability": 0.8347 + }, + { + "start": 949.5, + "end": 953.06, + "probability": 0.7602 + }, + { + "start": 953.66, + "end": 955.86, + "probability": 0.9296 + }, + { + "start": 956.1, + "end": 956.9, + "probability": 0.4849 + }, + { + "start": 957.12, + "end": 957.78, + "probability": 0.7374 + }, + { + "start": 958.56, + "end": 959.32, + "probability": 0.6062 + }, + { + "start": 959.56, + "end": 960.1, + "probability": 0.9619 + }, + { + "start": 960.2, + "end": 963.02, + "probability": 0.9474 + }, + { + "start": 963.02, + "end": 966.54, + "probability": 0.9869 + }, + { + "start": 966.64, + "end": 967.66, + "probability": 0.9854 + }, + { + "start": 967.76, + "end": 968.18, + "probability": 0.9023 + }, + { + "start": 968.98, + "end": 971.51, + "probability": 0.7088 + }, + { + "start": 972.34, + "end": 976.52, + "probability": 0.8518 + }, + { + "start": 977.02, + "end": 980.62, + "probability": 0.9565 + }, + { + "start": 980.84, + "end": 982.34, + "probability": 0.9985 + }, + { + "start": 983.32, + "end": 986.94, + "probability": 0.7024 + }, + { + "start": 987.28, + "end": 990.78, + "probability": 0.9907 + }, + { + "start": 991.64, + "end": 993.08, + "probability": 0.9761 + }, + { + "start": 993.52, + "end": 996.8, + "probability": 0.9938 + }, + { + "start": 997.18, + "end": 998.24, + "probability": 0.9486 + }, + { + "start": 999.84, + "end": 1002.52, + "probability": 0.6613 + }, + { + "start": 1003.1, + "end": 1005.22, + "probability": 0.8909 + }, + { + "start": 1005.44, + "end": 1005.92, + "probability": 0.8064 + }, + { + "start": 1005.94, + "end": 1008.08, + "probability": 0.8302 + }, + { + "start": 1008.12, + "end": 1011.42, + "probability": 0.9933 + }, + { + "start": 1011.44, + "end": 1012.3, + "probability": 0.7117 + }, + { + "start": 1012.68, + "end": 1014.88, + "probability": 0.1938 + }, + { + "start": 1014.88, + "end": 1014.88, + "probability": 0.0081 + }, + { + "start": 1014.88, + "end": 1014.88, + "probability": 0.2335 + }, + { + "start": 1014.88, + "end": 1016.55, + "probability": 0.5158 + }, + { + "start": 1018.22, + "end": 1019.08, + "probability": 0.0694 + }, + { + "start": 1019.08, + "end": 1019.08, + "probability": 0.0108 + }, + { + "start": 1019.08, + "end": 1024.26, + "probability": 0.4985 + }, + { + "start": 1024.26, + "end": 1024.26, + "probability": 0.3628 + }, + { + "start": 1024.84, + "end": 1027.94, + "probability": 0.3092 + }, + { + "start": 1028.18, + "end": 1030.54, + "probability": 0.3046 + }, + { + "start": 1030.54, + "end": 1032.14, + "probability": 0.5015 + }, + { + "start": 1032.98, + "end": 1034.36, + "probability": 0.6897 + }, + { + "start": 1034.42, + "end": 1036.24, + "probability": 0.7761 + }, + { + "start": 1036.26, + "end": 1037.6, + "probability": 0.6593 + }, + { + "start": 1038.06, + "end": 1039.32, + "probability": 0.6952 + }, + { + "start": 1039.9, + "end": 1040.75, + "probability": 0.5063 + }, + { + "start": 1041.38, + "end": 1043.08, + "probability": 0.6644 + }, + { + "start": 1043.16, + "end": 1045.06, + "probability": 0.8315 + }, + { + "start": 1045.12, + "end": 1045.6, + "probability": 0.7863 + }, + { + "start": 1046.04, + "end": 1048.48, + "probability": 0.9678 + }, + { + "start": 1050.87, + "end": 1052.69, + "probability": 0.7944 + }, + { + "start": 1053.34, + "end": 1055.6, + "probability": 0.8188 + }, + { + "start": 1055.68, + "end": 1056.38, + "probability": 0.8795 + }, + { + "start": 1056.9, + "end": 1059.52, + "probability": 0.9701 + }, + { + "start": 1060.3, + "end": 1063.24, + "probability": 0.9595 + }, + { + "start": 1063.58, + "end": 1064.07, + "probability": 0.8901 + }, + { + "start": 1064.44, + "end": 1067.62, + "probability": 0.9796 + }, + { + "start": 1067.98, + "end": 1071.0, + "probability": 0.9222 + }, + { + "start": 1071.28, + "end": 1078.3, + "probability": 0.9639 + }, + { + "start": 1079.08, + "end": 1080.32, + "probability": 0.9727 + }, + { + "start": 1080.68, + "end": 1082.94, + "probability": 0.8413 + }, + { + "start": 1084.19, + "end": 1086.68, + "probability": 0.9192 + }, + { + "start": 1087.26, + "end": 1090.36, + "probability": 0.9878 + }, + { + "start": 1090.78, + "end": 1094.8, + "probability": 0.9235 + }, + { + "start": 1095.16, + "end": 1096.72, + "probability": 0.9878 + }, + { + "start": 1096.8, + "end": 1097.46, + "probability": 0.8279 + }, + { + "start": 1097.76, + "end": 1102.88, + "probability": 0.817 + }, + { + "start": 1103.24, + "end": 1105.66, + "probability": 0.7768 + }, + { + "start": 1105.84, + "end": 1106.98, + "probability": 0.9101 + }, + { + "start": 1107.04, + "end": 1107.62, + "probability": 0.7538 + }, + { + "start": 1107.74, + "end": 1109.54, + "probability": 0.0329 + }, + { + "start": 1109.54, + "end": 1109.78, + "probability": 0.7261 + }, + { + "start": 1109.92, + "end": 1110.06, + "probability": 0.6249 + }, + { + "start": 1110.16, + "end": 1110.84, + "probability": 0.8408 + }, + { + "start": 1110.88, + "end": 1111.38, + "probability": 0.7149 + }, + { + "start": 1111.5, + "end": 1112.36, + "probability": 0.7827 + }, + { + "start": 1112.46, + "end": 1113.83, + "probability": 0.9302 + }, + { + "start": 1114.46, + "end": 1115.2, + "probability": 0.9738 + }, + { + "start": 1115.32, + "end": 1116.1, + "probability": 0.9058 + }, + { + "start": 1116.22, + "end": 1118.46, + "probability": 0.8997 + }, + { + "start": 1118.88, + "end": 1122.36, + "probability": 0.8612 + }, + { + "start": 1123.06, + "end": 1125.9, + "probability": 0.9929 + }, + { + "start": 1126.36, + "end": 1127.7, + "probability": 0.9066 + }, + { + "start": 1128.4, + "end": 1132.06, + "probability": 0.4871 + }, + { + "start": 1133.98, + "end": 1136.7, + "probability": 0.7299 + }, + { + "start": 1136.88, + "end": 1138.46, + "probability": 0.7342 + }, + { + "start": 1142.6, + "end": 1143.22, + "probability": 0.8124 + }, + { + "start": 1144.08, + "end": 1145.78, + "probability": 0.7699 + }, + { + "start": 1146.68, + "end": 1149.18, + "probability": 0.929 + }, + { + "start": 1149.5, + "end": 1156.76, + "probability": 0.8993 + }, + { + "start": 1157.82, + "end": 1158.7, + "probability": 0.3825 + }, + { + "start": 1159.26, + "end": 1159.94, + "probability": 0.5284 + }, + { + "start": 1161.06, + "end": 1163.98, + "probability": 0.902 + }, + { + "start": 1164.32, + "end": 1168.12, + "probability": 0.9721 + }, + { + "start": 1168.7, + "end": 1173.42, + "probability": 0.9774 + }, + { + "start": 1173.96, + "end": 1174.36, + "probability": 0.7579 + }, + { + "start": 1176.0, + "end": 1176.98, + "probability": 0.5482 + }, + { + "start": 1177.76, + "end": 1178.08, + "probability": 0.5052 + }, + { + "start": 1178.26, + "end": 1182.1, + "probability": 0.8164 + }, + { + "start": 1182.1, + "end": 1185.1, + "probability": 0.9899 + }, + { + "start": 1185.94, + "end": 1189.86, + "probability": 0.51 + }, + { + "start": 1189.98, + "end": 1191.28, + "probability": 0.6892 + }, + { + "start": 1192.18, + "end": 1195.16, + "probability": 0.7205 + }, + { + "start": 1196.08, + "end": 1199.42, + "probability": 0.9015 + }, + { + "start": 1200.74, + "end": 1201.28, + "probability": 0.9084 + }, + { + "start": 1201.5, + "end": 1204.18, + "probability": 0.9928 + }, + { + "start": 1204.34, + "end": 1206.7, + "probability": 0.9977 + }, + { + "start": 1207.84, + "end": 1212.96, + "probability": 0.9993 + }, + { + "start": 1213.9, + "end": 1219.54, + "probability": 0.995 + }, + { + "start": 1220.73, + "end": 1223.38, + "probability": 0.6436 + }, + { + "start": 1224.58, + "end": 1229.24, + "probability": 0.8994 + }, + { + "start": 1231.3, + "end": 1232.86, + "probability": 0.7396 + }, + { + "start": 1233.74, + "end": 1236.98, + "probability": 0.9944 + }, + { + "start": 1238.12, + "end": 1241.44, + "probability": 0.8574 + }, + { + "start": 1242.22, + "end": 1244.3, + "probability": 0.8688 + }, + { + "start": 1244.46, + "end": 1246.6, + "probability": 0.8687 + }, + { + "start": 1246.72, + "end": 1250.42, + "probability": 0.9946 + }, + { + "start": 1251.12, + "end": 1254.26, + "probability": 0.8767 + }, + { + "start": 1254.26, + "end": 1258.06, + "probability": 0.7903 + }, + { + "start": 1258.72, + "end": 1262.58, + "probability": 0.7722 + }, + { + "start": 1263.64, + "end": 1264.3, + "probability": 0.8541 + }, + { + "start": 1264.48, + "end": 1270.18, + "probability": 0.9717 + }, + { + "start": 1270.18, + "end": 1276.6, + "probability": 0.9754 + }, + { + "start": 1277.16, + "end": 1280.52, + "probability": 0.6002 + }, + { + "start": 1280.52, + "end": 1284.52, + "probability": 0.8821 + }, + { + "start": 1285.36, + "end": 1288.76, + "probability": 0.966 + }, + { + "start": 1289.52, + "end": 1294.84, + "probability": 0.8255 + }, + { + "start": 1296.54, + "end": 1299.4, + "probability": 0.9729 + }, + { + "start": 1299.4, + "end": 1302.36, + "probability": 0.995 + }, + { + "start": 1302.38, + "end": 1308.92, + "probability": 0.9751 + }, + { + "start": 1309.66, + "end": 1312.02, + "probability": 0.9796 + }, + { + "start": 1312.78, + "end": 1316.16, + "probability": 0.9043 + }, + { + "start": 1316.74, + "end": 1319.96, + "probability": 0.978 + }, + { + "start": 1320.41, + "end": 1322.67, + "probability": 0.8039 + }, + { + "start": 1323.06, + "end": 1324.12, + "probability": 0.9609 + }, + { + "start": 1324.56, + "end": 1327.56, + "probability": 0.9871 + }, + { + "start": 1328.24, + "end": 1332.0, + "probability": 0.8257 + }, + { + "start": 1332.8, + "end": 1336.04, + "probability": 0.9546 + }, + { + "start": 1336.7, + "end": 1339.98, + "probability": 0.9956 + }, + { + "start": 1340.04, + "end": 1343.18, + "probability": 0.846 + }, + { + "start": 1343.18, + "end": 1346.38, + "probability": 0.9373 + }, + { + "start": 1347.38, + "end": 1348.78, + "probability": 0.6984 + }, + { + "start": 1349.38, + "end": 1349.92, + "probability": 0.5844 + }, + { + "start": 1350.54, + "end": 1354.14, + "probability": 0.7133 + }, + { + "start": 1354.84, + "end": 1355.68, + "probability": 0.5706 + }, + { + "start": 1356.74, + "end": 1359.34, + "probability": 0.9791 + }, + { + "start": 1360.18, + "end": 1363.47, + "probability": 0.9631 + }, + { + "start": 1364.02, + "end": 1367.22, + "probability": 0.9536 + }, + { + "start": 1367.52, + "end": 1368.42, + "probability": 0.9845 + }, + { + "start": 1368.56, + "end": 1372.02, + "probability": 0.9723 + }, + { + "start": 1372.8, + "end": 1377.2, + "probability": 0.969 + }, + { + "start": 1377.28, + "end": 1377.89, + "probability": 0.9704 + }, + { + "start": 1378.38, + "end": 1379.92, + "probability": 0.9452 + }, + { + "start": 1380.76, + "end": 1384.32, + "probability": 0.9932 + }, + { + "start": 1385.06, + "end": 1388.34, + "probability": 0.9801 + }, + { + "start": 1388.34, + "end": 1388.62, + "probability": 0.0157 + }, + { + "start": 1389.1, + "end": 1392.6, + "probability": 0.9308 + }, + { + "start": 1393.3, + "end": 1396.04, + "probability": 0.9711 + }, + { + "start": 1396.04, + "end": 1398.84, + "probability": 0.9918 + }, + { + "start": 1399.78, + "end": 1402.1, + "probability": 0.9596 + }, + { + "start": 1402.8, + "end": 1404.1, + "probability": 0.999 + }, + { + "start": 1405.08, + "end": 1408.44, + "probability": 0.9757 + }, + { + "start": 1409.55, + "end": 1416.54, + "probability": 0.981 + }, + { + "start": 1417.66, + "end": 1424.5, + "probability": 0.979 + }, + { + "start": 1425.62, + "end": 1427.25, + "probability": 0.9287 + }, + { + "start": 1427.46, + "end": 1431.64, + "probability": 0.9897 + }, + { + "start": 1432.2, + "end": 1435.6, + "probability": 0.821 + }, + { + "start": 1436.2, + "end": 1439.62, + "probability": 0.9952 + }, + { + "start": 1440.08, + "end": 1440.84, + "probability": 0.9911 + }, + { + "start": 1442.38, + "end": 1443.36, + "probability": 0.9209 + }, + { + "start": 1443.46, + "end": 1448.5, + "probability": 0.8598 + }, + { + "start": 1449.42, + "end": 1451.8, + "probability": 0.9314 + }, + { + "start": 1451.8, + "end": 1455.66, + "probability": 0.9582 + }, + { + "start": 1456.2, + "end": 1461.76, + "probability": 0.9292 + }, + { + "start": 1461.76, + "end": 1468.78, + "probability": 0.877 + }, + { + "start": 1469.56, + "end": 1470.96, + "probability": 0.8714 + }, + { + "start": 1471.08, + "end": 1473.66, + "probability": 0.9371 + }, + { + "start": 1474.18, + "end": 1477.52, + "probability": 0.7999 + }, + { + "start": 1478.36, + "end": 1482.6, + "probability": 0.8501 + }, + { + "start": 1483.32, + "end": 1485.82, + "probability": 0.9671 + }, + { + "start": 1485.88, + "end": 1487.64, + "probability": 0.9575 + }, + { + "start": 1488.1, + "end": 1493.2, + "probability": 0.9161 + }, + { + "start": 1494.12, + "end": 1496.96, + "probability": 0.7497 + }, + { + "start": 1496.96, + "end": 1500.38, + "probability": 0.8337 + }, + { + "start": 1500.8, + "end": 1503.58, + "probability": 0.8653 + }, + { + "start": 1503.84, + "end": 1507.16, + "probability": 0.8063 + }, + { + "start": 1507.32, + "end": 1512.42, + "probability": 0.9845 + }, + { + "start": 1513.0, + "end": 1515.04, + "probability": 0.9799 + }, + { + "start": 1515.14, + "end": 1518.54, + "probability": 0.9886 + }, + { + "start": 1519.22, + "end": 1521.82, + "probability": 0.9924 + }, + { + "start": 1523.1, + "end": 1526.7, + "probability": 0.997 + }, + { + "start": 1527.6, + "end": 1532.96, + "probability": 0.9891 + }, + { + "start": 1532.96, + "end": 1540.1, + "probability": 0.9712 + }, + { + "start": 1540.38, + "end": 1545.4, + "probability": 0.9863 + }, + { + "start": 1545.52, + "end": 1549.08, + "probability": 0.9872 + }, + { + "start": 1549.78, + "end": 1553.38, + "probability": 0.7061 + }, + { + "start": 1553.42, + "end": 1554.77, + "probability": 0.8294 + }, + { + "start": 1556.18, + "end": 1559.5, + "probability": 0.7532 + }, + { + "start": 1559.76, + "end": 1561.36, + "probability": 0.6033 + }, + { + "start": 1561.46, + "end": 1562.98, + "probability": 0.8971 + }, + { + "start": 1563.1, + "end": 1564.2, + "probability": 0.9753 + }, + { + "start": 1564.4, + "end": 1564.66, + "probability": 0.7565 + }, + { + "start": 1564.7, + "end": 1566.74, + "probability": 0.7103 + }, + { + "start": 1567.12, + "end": 1570.32, + "probability": 0.9784 + }, + { + "start": 1570.82, + "end": 1574.74, + "probability": 0.952 + }, + { + "start": 1574.74, + "end": 1578.48, + "probability": 0.9525 + }, + { + "start": 1580.82, + "end": 1583.2, + "probability": 0.85 + }, + { + "start": 1583.34, + "end": 1588.32, + "probability": 0.9792 + }, + { + "start": 1588.82, + "end": 1589.04, + "probability": 0.4362 + }, + { + "start": 1589.12, + "end": 1589.46, + "probability": 0.5453 + }, + { + "start": 1589.66, + "end": 1592.14, + "probability": 0.8236 + }, + { + "start": 1592.64, + "end": 1597.64, + "probability": 0.8212 + }, + { + "start": 1597.64, + "end": 1602.9, + "probability": 0.8664 + }, + { + "start": 1603.06, + "end": 1608.66, + "probability": 0.7512 + }, + { + "start": 1608.82, + "end": 1609.22, + "probability": 0.6469 + }, + { + "start": 1609.3, + "end": 1610.96, + "probability": 0.4969 + }, + { + "start": 1610.96, + "end": 1613.32, + "probability": 0.806 + }, + { + "start": 1615.44, + "end": 1616.6, + "probability": 0.6439 + }, + { + "start": 1616.92, + "end": 1617.74, + "probability": 0.8268 + }, + { + "start": 1617.9, + "end": 1618.12, + "probability": 0.4991 + }, + { + "start": 1618.24, + "end": 1621.51, + "probability": 0.8923 + }, + { + "start": 1621.96, + "end": 1624.58, + "probability": 0.9441 + }, + { + "start": 1624.64, + "end": 1627.62, + "probability": 0.6822 + }, + { + "start": 1627.62, + "end": 1630.98, + "probability": 0.9678 + }, + { + "start": 1631.73, + "end": 1634.16, + "probability": 0.66 + }, + { + "start": 1634.16, + "end": 1635.44, + "probability": 0.9491 + }, + { + "start": 1636.02, + "end": 1638.52, + "probability": 0.8934 + }, + { + "start": 1638.99, + "end": 1643.32, + "probability": 0.9932 + }, + { + "start": 1643.8, + "end": 1646.78, + "probability": 0.9893 + }, + { + "start": 1648.08, + "end": 1650.82, + "probability": 0.9579 + }, + { + "start": 1650.9, + "end": 1651.86, + "probability": 0.8907 + }, + { + "start": 1652.36, + "end": 1653.2, + "probability": 0.677 + }, + { + "start": 1653.48, + "end": 1654.18, + "probability": 0.7438 + }, + { + "start": 1654.24, + "end": 1656.6, + "probability": 0.7832 + }, + { + "start": 1656.98, + "end": 1660.4, + "probability": 0.827 + }, + { + "start": 1660.4, + "end": 1661.02, + "probability": 0.489 + }, + { + "start": 1661.44, + "end": 1662.44, + "probability": 0.8202 + }, + { + "start": 1662.9, + "end": 1665.06, + "probability": 0.9388 + }, + { + "start": 1665.24, + "end": 1668.84, + "probability": 0.784 + }, + { + "start": 1669.18, + "end": 1670.58, + "probability": 0.0451 + }, + { + "start": 1671.0, + "end": 1672.58, + "probability": 0.9228 + }, + { + "start": 1672.66, + "end": 1677.26, + "probability": 0.885 + }, + { + "start": 1677.32, + "end": 1677.7, + "probability": 0.6563 + }, + { + "start": 1677.76, + "end": 1678.86, + "probability": 0.5069 + }, + { + "start": 1678.98, + "end": 1680.26, + "probability": 0.4158 + }, + { + "start": 1680.36, + "end": 1681.08, + "probability": 0.1051 + }, + { + "start": 1681.08, + "end": 1681.34, + "probability": 0.0709 + }, + { + "start": 1681.7, + "end": 1684.86, + "probability": 0.7815 + }, + { + "start": 1684.92, + "end": 1687.92, + "probability": 0.7269 + }, + { + "start": 1688.54, + "end": 1689.5, + "probability": 0.5739 + }, + { + "start": 1689.56, + "end": 1690.26, + "probability": 0.8406 + }, + { + "start": 1690.3, + "end": 1692.46, + "probability": 0.44 + }, + { + "start": 1692.6, + "end": 1694.88, + "probability": 0.2086 + }, + { + "start": 1695.07, + "end": 1697.3, + "probability": 0.9749 + }, + { + "start": 1697.46, + "end": 1698.78, + "probability": 0.0508 + }, + { + "start": 1698.82, + "end": 1700.23, + "probability": 0.7875 + }, + { + "start": 1700.92, + "end": 1702.2, + "probability": 0.9468 + }, + { + "start": 1702.28, + "end": 1703.2, + "probability": 0.8982 + }, + { + "start": 1703.38, + "end": 1707.0, + "probability": 0.7742 + }, + { + "start": 1707.3, + "end": 1710.36, + "probability": 0.7496 + }, + { + "start": 1710.5, + "end": 1711.64, + "probability": 0.6758 + }, + { + "start": 1711.64, + "end": 1715.76, + "probability": 0.8214 + }, + { + "start": 1715.82, + "end": 1716.02, + "probability": 0.543 + }, + { + "start": 1716.06, + "end": 1716.56, + "probability": 0.3702 + }, + { + "start": 1716.72, + "end": 1718.74, + "probability": 0.6477 + }, + { + "start": 1725.06, + "end": 1727.44, + "probability": 0.6754 + }, + { + "start": 1728.08, + "end": 1737.0, + "probability": 0.9928 + }, + { + "start": 1737.2, + "end": 1740.96, + "probability": 0.5472 + }, + { + "start": 1745.38, + "end": 1745.84, + "probability": 0.1499 + }, + { + "start": 1747.2, + "end": 1750.6, + "probability": 0.7286 + }, + { + "start": 1751.88, + "end": 1754.62, + "probability": 0.45 + }, + { + "start": 1755.9, + "end": 1761.28, + "probability": 0.4864 + }, + { + "start": 1761.82, + "end": 1763.1, + "probability": 0.185 + }, + { + "start": 1763.66, + "end": 1767.32, + "probability": 0.9883 + }, + { + "start": 1767.98, + "end": 1769.33, + "probability": 0.9873 + }, + { + "start": 1769.6, + "end": 1772.52, + "probability": 0.9467 + }, + { + "start": 1773.38, + "end": 1775.6, + "probability": 0.6634 + }, + { + "start": 1776.3, + "end": 1781.06, + "probability": 0.8444 + }, + { + "start": 1781.56, + "end": 1783.06, + "probability": 0.7679 + }, + { + "start": 1783.06, + "end": 1785.45, + "probability": 0.6813 + }, + { + "start": 1786.1, + "end": 1787.22, + "probability": 0.751 + }, + { + "start": 1787.42, + "end": 1791.3, + "probability": 0.9548 + }, + { + "start": 1792.14, + "end": 1792.92, + "probability": 0.5871 + }, + { + "start": 1793.04, + "end": 1794.64, + "probability": 0.9529 + }, + { + "start": 1794.74, + "end": 1798.45, + "probability": 0.9809 + }, + { + "start": 1799.14, + "end": 1799.86, + "probability": 0.586 + }, + { + "start": 1801.38, + "end": 1803.56, + "probability": 0.7898 + }, + { + "start": 1803.64, + "end": 1804.66, + "probability": 0.9425 + }, + { + "start": 1805.32, + "end": 1806.26, + "probability": 0.9483 + }, + { + "start": 1806.44, + "end": 1810.0, + "probability": 0.776 + }, + { + "start": 1810.0, + "end": 1815.92, + "probability": 0.9385 + }, + { + "start": 1817.18, + "end": 1820.2, + "probability": 0.9819 + }, + { + "start": 1820.72, + "end": 1821.26, + "probability": 0.3664 + }, + { + "start": 1821.86, + "end": 1822.9, + "probability": 0.6689 + }, + { + "start": 1824.26, + "end": 1825.74, + "probability": 0.4082 + }, + { + "start": 1825.74, + "end": 1827.83, + "probability": 0.6317 + }, + { + "start": 1828.38, + "end": 1829.58, + "probability": 0.4309 + }, + { + "start": 1830.04, + "end": 1830.96, + "probability": 0.4923 + }, + { + "start": 1831.02, + "end": 1831.48, + "probability": 0.5021 + }, + { + "start": 1831.48, + "end": 1833.94, + "probability": 0.5502 + }, + { + "start": 1833.94, + "end": 1834.02, + "probability": 0.5824 + }, + { + "start": 1834.18, + "end": 1834.6, + "probability": 0.4313 + }, + { + "start": 1834.6, + "end": 1838.06, + "probability": 0.9363 + }, + { + "start": 1839.08, + "end": 1841.7, + "probability": 0.7693 + }, + { + "start": 1841.84, + "end": 1846.44, + "probability": 0.9688 + }, + { + "start": 1847.34, + "end": 1852.42, + "probability": 0.9588 + }, + { + "start": 1852.42, + "end": 1856.82, + "probability": 0.91 + }, + { + "start": 1857.62, + "end": 1859.89, + "probability": 0.9803 + }, + { + "start": 1862.16, + "end": 1862.18, + "probability": 0.5359 + }, + { + "start": 1862.38, + "end": 1862.74, + "probability": 0.5453 + }, + { + "start": 1862.86, + "end": 1865.66, + "probability": 0.9968 + }, + { + "start": 1866.26, + "end": 1868.52, + "probability": 0.9843 + }, + { + "start": 1869.32, + "end": 1874.4, + "probability": 0.9663 + }, + { + "start": 1874.7, + "end": 1879.82, + "probability": 0.9748 + }, + { + "start": 1879.82, + "end": 1884.1, + "probability": 0.9932 + }, + { + "start": 1884.8, + "end": 1886.94, + "probability": 0.9311 + }, + { + "start": 1887.64, + "end": 1892.1, + "probability": 0.9236 + }, + { + "start": 1892.1, + "end": 1894.44, + "probability": 0.6607 + }, + { + "start": 1894.56, + "end": 1898.34, + "probability": 0.9852 + }, + { + "start": 1899.32, + "end": 1901.66, + "probability": 0.9787 + }, + { + "start": 1901.66, + "end": 1906.26, + "probability": 0.9868 + }, + { + "start": 1906.26, + "end": 1908.46, + "probability": 0.7676 + }, + { + "start": 1909.4, + "end": 1911.04, + "probability": 0.8085 + }, + { + "start": 1911.7, + "end": 1913.63, + "probability": 0.9897 + }, + { + "start": 1914.32, + "end": 1917.82, + "probability": 0.9229 + }, + { + "start": 1918.54, + "end": 1923.04, + "probability": 0.9873 + }, + { + "start": 1923.04, + "end": 1925.36, + "probability": 0.9954 + }, + { + "start": 1927.3, + "end": 1927.4, + "probability": 0.131 + }, + { + "start": 1930.32, + "end": 1933.02, + "probability": 0.6219 + }, + { + "start": 1933.22, + "end": 1935.92, + "probability": 0.8813 + }, + { + "start": 1936.02, + "end": 1943.08, + "probability": 0.925 + }, + { + "start": 1943.18, + "end": 1944.79, + "probability": 0.8888 + }, + { + "start": 1945.52, + "end": 1947.1, + "probability": 0.8813 + }, + { + "start": 1947.84, + "end": 1951.2, + "probability": 0.658 + }, + { + "start": 1951.26, + "end": 1956.04, + "probability": 0.9746 + }, + { + "start": 1956.46, + "end": 1959.0, + "probability": 0.9685 + }, + { + "start": 1959.72, + "end": 1960.42, + "probability": 0.8433 + }, + { + "start": 1960.76, + "end": 1962.2, + "probability": 0.9321 + }, + { + "start": 1962.7, + "end": 1963.76, + "probability": 0.9927 + }, + { + "start": 1963.88, + "end": 1964.28, + "probability": 0.7924 + }, + { + "start": 1964.42, + "end": 1968.56, + "probability": 0.6672 + }, + { + "start": 1968.62, + "end": 1971.86, + "probability": 0.942 + }, + { + "start": 1972.46, + "end": 1972.9, + "probability": 0.7766 + }, + { + "start": 1972.9, + "end": 1980.72, + "probability": 0.9442 + }, + { + "start": 1981.46, + "end": 1985.5, + "probability": 0.978 + }, + { + "start": 1985.72, + "end": 1991.56, + "probability": 0.9863 + }, + { + "start": 1991.56, + "end": 1998.7, + "probability": 0.998 + }, + { + "start": 1999.54, + "end": 2000.8, + "probability": 0.5206 + }, + { + "start": 2000.8, + "end": 2004.78, + "probability": 0.9987 + }, + { + "start": 2004.96, + "end": 2007.2, + "probability": 0.9957 + }, + { + "start": 2007.58, + "end": 2009.43, + "probability": 0.994 + }, + { + "start": 2010.1, + "end": 2011.06, + "probability": 0.7493 + }, + { + "start": 2011.78, + "end": 2012.58, + "probability": 0.4621 + }, + { + "start": 2012.78, + "end": 2013.2, + "probability": 0.9189 + }, + { + "start": 2014.1, + "end": 2015.82, + "probability": 0.6895 + }, + { + "start": 2016.24, + "end": 2019.04, + "probability": 0.8053 + }, + { + "start": 2019.6, + "end": 2022.58, + "probability": 0.9974 + }, + { + "start": 2023.42, + "end": 2026.22, + "probability": 0.675 + }, + { + "start": 2026.22, + "end": 2027.22, + "probability": 0.4339 + }, + { + "start": 2027.22, + "end": 2028.02, + "probability": 0.9281 + }, + { + "start": 2028.18, + "end": 2030.28, + "probability": 0.8314 + }, + { + "start": 2030.3, + "end": 2031.58, + "probability": 0.9569 + }, + { + "start": 2031.68, + "end": 2031.89, + "probability": 0.5431 + }, + { + "start": 2033.2, + "end": 2034.3, + "probability": 0.7241 + }, + { + "start": 2034.52, + "end": 2036.24, + "probability": 0.9182 + }, + { + "start": 2036.3, + "end": 2036.66, + "probability": 0.8129 + }, + { + "start": 2037.26, + "end": 2040.9, + "probability": 0.9933 + }, + { + "start": 2041.26, + "end": 2043.74, + "probability": 0.8477 + }, + { + "start": 2044.4, + "end": 2046.64, + "probability": 0.0064 + }, + { + "start": 2046.64, + "end": 2046.64, + "probability": 0.074 + }, + { + "start": 2046.64, + "end": 2046.76, + "probability": 0.0064 + }, + { + "start": 2046.76, + "end": 2047.62, + "probability": 0.7819 + }, + { + "start": 2048.24, + "end": 2050.26, + "probability": 0.3644 + }, + { + "start": 2052.32, + "end": 2052.48, + "probability": 0.0662 + }, + { + "start": 2052.48, + "end": 2052.72, + "probability": 0.4571 + }, + { + "start": 2053.54, + "end": 2058.38, + "probability": 0.3151 + }, + { + "start": 2058.48, + "end": 2060.11, + "probability": 0.9248 + }, + { + "start": 2060.48, + "end": 2061.54, + "probability": 0.1394 + }, + { + "start": 2061.54, + "end": 2063.08, + "probability": 0.2582 + }, + { + "start": 2063.18, + "end": 2063.18, + "probability": 0.017 + }, + { + "start": 2064.02, + "end": 2064.46, + "probability": 0.0345 + }, + { + "start": 2064.46, + "end": 2065.54, + "probability": 0.3499 + }, + { + "start": 2065.66, + "end": 2069.12, + "probability": 0.5725 + }, + { + "start": 2069.8, + "end": 2072.54, + "probability": 0.9477 + }, + { + "start": 2073.42, + "end": 2075.32, + "probability": 0.9716 + }, + { + "start": 2075.56, + "end": 2078.7, + "probability": 0.9766 + }, + { + "start": 2078.9, + "end": 2082.44, + "probability": 0.9981 + }, + { + "start": 2082.44, + "end": 2084.84, + "probability": 0.7647 + }, + { + "start": 2084.92, + "end": 2086.74, + "probability": 0.9211 + }, + { + "start": 2087.1, + "end": 2088.88, + "probability": 0.4412 + }, + { + "start": 2088.96, + "end": 2089.5, + "probability": 0.6241 + }, + { + "start": 2089.64, + "end": 2091.66, + "probability": 0.9817 + }, + { + "start": 2091.66, + "end": 2094.58, + "probability": 0.9863 + }, + { + "start": 2094.88, + "end": 2095.78, + "probability": 0.887 + }, + { + "start": 2096.0, + "end": 2098.5, + "probability": 0.6649 + }, + { + "start": 2098.54, + "end": 2100.82, + "probability": 0.9888 + }, + { + "start": 2101.0, + "end": 2101.16, + "probability": 0.1259 + }, + { + "start": 2101.58, + "end": 2102.46, + "probability": 0.8198 + }, + { + "start": 2102.66, + "end": 2102.88, + "probability": 0.0124 + }, + { + "start": 2103.74, + "end": 2104.0, + "probability": 0.4463 + }, + { + "start": 2104.56, + "end": 2105.88, + "probability": 0.141 + }, + { + "start": 2106.02, + "end": 2106.36, + "probability": 0.4417 + }, + { + "start": 2106.52, + "end": 2107.01, + "probability": 0.6628 + }, + { + "start": 2107.14, + "end": 2109.94, + "probability": 0.6328 + }, + { + "start": 2109.98, + "end": 2112.8, + "probability": 0.8472 + }, + { + "start": 2112.98, + "end": 2115.16, + "probability": 0.7207 + }, + { + "start": 2115.62, + "end": 2119.04, + "probability": 0.9941 + }, + { + "start": 2119.74, + "end": 2120.04, + "probability": 0.6773 + }, + { + "start": 2120.26, + "end": 2123.54, + "probability": 0.8343 + }, + { + "start": 2124.5, + "end": 2126.82, + "probability": 0.7535 + }, + { + "start": 2126.9, + "end": 2133.22, + "probability": 0.9565 + }, + { + "start": 2134.02, + "end": 2137.8, + "probability": 0.8266 + }, + { + "start": 2137.8, + "end": 2141.64, + "probability": 0.8198 + }, + { + "start": 2142.7, + "end": 2142.7, + "probability": 0.3171 + }, + { + "start": 2142.72, + "end": 2144.08, + "probability": 0.9301 + }, + { + "start": 2144.22, + "end": 2146.86, + "probability": 0.7148 + }, + { + "start": 2147.36, + "end": 2155.4, + "probability": 0.9106 + }, + { + "start": 2156.26, + "end": 2159.76, + "probability": 0.8649 + }, + { + "start": 2160.44, + "end": 2164.92, + "probability": 0.9482 + }, + { + "start": 2165.5, + "end": 2170.9, + "probability": 0.9678 + }, + { + "start": 2172.26, + "end": 2173.7, + "probability": 0.742 + }, + { + "start": 2174.62, + "end": 2177.0, + "probability": 0.7293 + }, + { + "start": 2177.44, + "end": 2177.8, + "probability": 0.0759 + }, + { + "start": 2177.8, + "end": 2177.8, + "probability": 0.5211 + }, + { + "start": 2177.8, + "end": 2179.65, + "probability": 0.9093 + }, + { + "start": 2180.44, + "end": 2188.66, + "probability": 0.9392 + }, + { + "start": 2189.64, + "end": 2190.92, + "probability": 0.7112 + }, + { + "start": 2191.0, + "end": 2191.78, + "probability": 0.6721 + }, + { + "start": 2192.4, + "end": 2193.1, + "probability": 0.2623 + }, + { + "start": 2193.92, + "end": 2195.38, + "probability": 0.9704 + }, + { + "start": 2195.5, + "end": 2197.08, + "probability": 0.8675 + }, + { + "start": 2197.66, + "end": 2200.66, + "probability": 0.8204 + }, + { + "start": 2201.12, + "end": 2205.36, + "probability": 0.8812 + }, + { + "start": 2205.48, + "end": 2206.54, + "probability": 0.8291 + }, + { + "start": 2207.38, + "end": 2209.06, + "probability": 0.978 + }, + { + "start": 2209.84, + "end": 2214.32, + "probability": 0.9738 + }, + { + "start": 2214.62, + "end": 2215.9, + "probability": 0.8127 + }, + { + "start": 2216.1, + "end": 2216.86, + "probability": 0.8294 + }, + { + "start": 2217.54, + "end": 2218.78, + "probability": 0.9848 + }, + { + "start": 2218.82, + "end": 2224.68, + "probability": 0.9788 + }, + { + "start": 2224.86, + "end": 2227.32, + "probability": 0.9611 + }, + { + "start": 2227.9, + "end": 2229.28, + "probability": 0.8848 + }, + { + "start": 2229.42, + "end": 2230.26, + "probability": 0.6523 + }, + { + "start": 2230.58, + "end": 2235.36, + "probability": 0.918 + }, + { + "start": 2235.36, + "end": 2235.68, + "probability": 0.704 + }, + { + "start": 2235.8, + "end": 2236.6, + "probability": 0.8578 + }, + { + "start": 2236.72, + "end": 2241.38, + "probability": 0.9962 + }, + { + "start": 2241.8, + "end": 2244.96, + "probability": 0.9404 + }, + { + "start": 2245.18, + "end": 2247.46, + "probability": 0.9587 + }, + { + "start": 2248.18, + "end": 2250.3, + "probability": 0.9398 + }, + { + "start": 2251.0, + "end": 2252.18, + "probability": 0.9528 + }, + { + "start": 2252.82, + "end": 2258.82, + "probability": 0.9541 + }, + { + "start": 2259.14, + "end": 2260.48, + "probability": 0.9904 + }, + { + "start": 2261.22, + "end": 2265.2, + "probability": 0.99 + }, + { + "start": 2265.48, + "end": 2267.28, + "probability": 0.7521 + }, + { + "start": 2267.88, + "end": 2272.4, + "probability": 0.9158 + }, + { + "start": 2273.3, + "end": 2276.06, + "probability": 0.991 + }, + { + "start": 2276.1, + "end": 2279.47, + "probability": 0.9601 + }, + { + "start": 2280.02, + "end": 2281.88, + "probability": 0.9897 + }, + { + "start": 2282.04, + "end": 2287.64, + "probability": 0.9948 + }, + { + "start": 2287.78, + "end": 2292.46, + "probability": 0.9944 + }, + { + "start": 2293.36, + "end": 2296.66, + "probability": 0.764 + }, + { + "start": 2296.84, + "end": 2301.16, + "probability": 0.9938 + }, + { + "start": 2301.16, + "end": 2307.16, + "probability": 0.9957 + }, + { + "start": 2307.74, + "end": 2308.42, + "probability": 0.7692 + }, + { + "start": 2309.08, + "end": 2310.8, + "probability": 0.9771 + }, + { + "start": 2311.0, + "end": 2311.44, + "probability": 0.8384 + }, + { + "start": 2312.08, + "end": 2315.06, + "probability": 0.9952 + }, + { + "start": 2315.68, + "end": 2318.88, + "probability": 0.9795 + }, + { + "start": 2319.46, + "end": 2322.16, + "probability": 0.9936 + }, + { + "start": 2323.82, + "end": 2326.12, + "probability": 0.9396 + }, + { + "start": 2327.78, + "end": 2332.68, + "probability": 0.6977 + }, + { + "start": 2333.34, + "end": 2333.94, + "probability": 0.8108 + }, + { + "start": 2334.44, + "end": 2340.8, + "probability": 0.9974 + }, + { + "start": 2341.34, + "end": 2345.1, + "probability": 0.988 + }, + { + "start": 2345.82, + "end": 2348.34, + "probability": 0.9767 + }, + { + "start": 2348.74, + "end": 2356.32, + "probability": 0.9757 + }, + { + "start": 2357.02, + "end": 2363.82, + "probability": 0.999 + }, + { + "start": 2364.5, + "end": 2365.86, + "probability": 0.8835 + }, + { + "start": 2366.2, + "end": 2369.6, + "probability": 0.9979 + }, + { + "start": 2370.02, + "end": 2371.46, + "probability": 0.7661 + }, + { + "start": 2371.54, + "end": 2372.16, + "probability": 0.8843 + }, + { + "start": 2372.74, + "end": 2373.3, + "probability": 0.9158 + }, + { + "start": 2374.06, + "end": 2374.62, + "probability": 0.9077 + }, + { + "start": 2375.3, + "end": 2378.62, + "probability": 0.9839 + }, + { + "start": 2382.24, + "end": 2384.58, + "probability": 0.9907 + }, + { + "start": 2384.64, + "end": 2385.5, + "probability": 0.6906 + }, + { + "start": 2385.56, + "end": 2389.74, + "probability": 0.934 + }, + { + "start": 2390.88, + "end": 2392.08, + "probability": 0.7576 + }, + { + "start": 2392.78, + "end": 2394.42, + "probability": 0.7998 + }, + { + "start": 2395.82, + "end": 2400.92, + "probability": 0.8044 + }, + { + "start": 2401.44, + "end": 2403.9, + "probability": 0.977 + }, + { + "start": 2404.86, + "end": 2406.66, + "probability": 0.7313 + }, + { + "start": 2407.48, + "end": 2409.1, + "probability": 0.6787 + }, + { + "start": 2409.94, + "end": 2417.06, + "probability": 0.9873 + }, + { + "start": 2417.44, + "end": 2422.8, + "probability": 0.9929 + }, + { + "start": 2422.9, + "end": 2423.92, + "probability": 0.6788 + }, + { + "start": 2424.94, + "end": 2427.0, + "probability": 0.5419 + }, + { + "start": 2428.12, + "end": 2432.2, + "probability": 0.8193 + }, + { + "start": 2433.04, + "end": 2434.1, + "probability": 0.9158 + }, + { + "start": 2434.12, + "end": 2437.24, + "probability": 0.9585 + }, + { + "start": 2437.72, + "end": 2439.84, + "probability": 0.892 + }, + { + "start": 2439.9, + "end": 2442.18, + "probability": 0.5965 + }, + { + "start": 2442.38, + "end": 2443.4, + "probability": 0.5892 + }, + { + "start": 2444.12, + "end": 2446.46, + "probability": 0.995 + }, + { + "start": 2447.44, + "end": 2448.94, + "probability": 0.6735 + }, + { + "start": 2449.04, + "end": 2450.24, + "probability": 0.9075 + }, + { + "start": 2450.4, + "end": 2453.34, + "probability": 0.9753 + }, + { + "start": 2453.56, + "end": 2456.66, + "probability": 0.9299 + }, + { + "start": 2457.32, + "end": 2459.72, + "probability": 0.9705 + }, + { + "start": 2459.96, + "end": 2466.62, + "probability": 0.9833 + }, + { + "start": 2466.84, + "end": 2467.62, + "probability": 0.7357 + }, + { + "start": 2467.74, + "end": 2470.46, + "probability": 0.9556 + }, + { + "start": 2470.74, + "end": 2473.94, + "probability": 0.9818 + }, + { + "start": 2474.36, + "end": 2477.9, + "probability": 0.9966 + }, + { + "start": 2478.2, + "end": 2478.9, + "probability": 0.6774 + }, + { + "start": 2479.04, + "end": 2480.02, + "probability": 0.9577 + }, + { + "start": 2480.24, + "end": 2482.08, + "probability": 0.8638 + }, + { + "start": 2482.44, + "end": 2483.46, + "probability": 0.9551 + }, + { + "start": 2483.62, + "end": 2487.3, + "probability": 0.9472 + }, + { + "start": 2487.64, + "end": 2490.12, + "probability": 0.5341 + }, + { + "start": 2490.18, + "end": 2492.76, + "probability": 0.8177 + }, + { + "start": 2493.28, + "end": 2498.28, + "probability": 0.998 + }, + { + "start": 2498.28, + "end": 2505.1, + "probability": 0.9857 + }, + { + "start": 2505.68, + "end": 2506.02, + "probability": 0.3402 + }, + { + "start": 2506.04, + "end": 2510.34, + "probability": 0.5928 + }, + { + "start": 2510.48, + "end": 2512.38, + "probability": 0.6365 + }, + { + "start": 2512.98, + "end": 2514.06, + "probability": 0.9016 + }, + { + "start": 2516.96, + "end": 2517.74, + "probability": 0.4269 + }, + { + "start": 2518.18, + "end": 2519.2, + "probability": 0.7433 + }, + { + "start": 2519.38, + "end": 2519.92, + "probability": 0.8416 + }, + { + "start": 2520.26, + "end": 2522.58, + "probability": 0.9435 + }, + { + "start": 2522.7, + "end": 2523.67, + "probability": 0.9768 + }, + { + "start": 2523.88, + "end": 2527.82, + "probability": 0.8999 + }, + { + "start": 2527.82, + "end": 2531.18, + "probability": 0.753 + }, + { + "start": 2531.88, + "end": 2532.48, + "probability": 0.6818 + }, + { + "start": 2532.52, + "end": 2532.96, + "probability": 0.6936 + }, + { + "start": 2533.22, + "end": 2534.76, + "probability": 0.7864 + }, + { + "start": 2534.76, + "end": 2537.14, + "probability": 0.6709 + }, + { + "start": 2537.22, + "end": 2539.66, + "probability": 0.8297 + }, + { + "start": 2539.76, + "end": 2541.38, + "probability": 0.9703 + }, + { + "start": 2541.44, + "end": 2541.84, + "probability": 0.9107 + }, + { + "start": 2545.96, + "end": 2546.26, + "probability": 0.5213 + }, + { + "start": 2546.32, + "end": 2547.12, + "probability": 0.602 + }, + { + "start": 2547.16, + "end": 2547.86, + "probability": 0.6548 + }, + { + "start": 2548.0, + "end": 2554.19, + "probability": 0.9737 + }, + { + "start": 2554.68, + "end": 2558.86, + "probability": 0.9932 + }, + { + "start": 2559.64, + "end": 2561.38, + "probability": 0.8518 + }, + { + "start": 2561.38, + "end": 2562.8, + "probability": 0.771 + }, + { + "start": 2562.9, + "end": 2564.06, + "probability": 0.7157 + }, + { + "start": 2564.3, + "end": 2568.88, + "probability": 0.9852 + }, + { + "start": 2569.16, + "end": 2570.5, + "probability": 0.8734 + }, + { + "start": 2571.42, + "end": 2572.92, + "probability": 0.9233 + }, + { + "start": 2573.44, + "end": 2577.86, + "probability": 0.9849 + }, + { + "start": 2577.86, + "end": 2583.88, + "probability": 0.9759 + }, + { + "start": 2583.88, + "end": 2587.66, + "probability": 0.9981 + }, + { + "start": 2588.1, + "end": 2590.68, + "probability": 0.992 + }, + { + "start": 2591.28, + "end": 2595.32, + "probability": 0.9824 + }, + { + "start": 2595.86, + "end": 2597.39, + "probability": 0.8579 + }, + { + "start": 2597.96, + "end": 2600.66, + "probability": 0.9955 + }, + { + "start": 2600.66, + "end": 2603.42, + "probability": 0.9995 + }, + { + "start": 2604.18, + "end": 2610.26, + "probability": 0.9892 + }, + { + "start": 2610.48, + "end": 2611.24, + "probability": 0.8614 + }, + { + "start": 2611.62, + "end": 2613.6, + "probability": 0.841 + }, + { + "start": 2613.82, + "end": 2614.02, + "probability": 0.5197 + }, + { + "start": 2614.1, + "end": 2615.7, + "probability": 0.7022 + }, + { + "start": 2616.06, + "end": 2617.7, + "probability": 0.6411 + }, + { + "start": 2621.62, + "end": 2622.26, + "probability": 0.7208 + }, + { + "start": 2622.34, + "end": 2623.32, + "probability": 0.7366 + }, + { + "start": 2623.52, + "end": 2624.48, + "probability": 0.619 + }, + { + "start": 2624.88, + "end": 2629.31, + "probability": 0.9905 + }, + { + "start": 2630.52, + "end": 2632.45, + "probability": 0.9772 + }, + { + "start": 2633.0, + "end": 2636.0, + "probability": 0.8455 + }, + { + "start": 2636.26, + "end": 2636.76, + "probability": 0.3055 + }, + { + "start": 2636.96, + "end": 2637.76, + "probability": 0.6687 + }, + { + "start": 2638.48, + "end": 2640.44, + "probability": 0.8496 + }, + { + "start": 2641.12, + "end": 2642.6, + "probability": 0.6767 + }, + { + "start": 2643.18, + "end": 2644.34, + "probability": 0.9663 + }, + { + "start": 2644.44, + "end": 2647.52, + "probability": 0.9767 + }, + { + "start": 2648.58, + "end": 2651.46, + "probability": 0.8064 + }, + { + "start": 2652.16, + "end": 2653.12, + "probability": 0.4077 + }, + { + "start": 2653.18, + "end": 2656.1, + "probability": 0.9668 + }, + { + "start": 2656.9, + "end": 2658.66, + "probability": 0.9922 + }, + { + "start": 2659.18, + "end": 2661.36, + "probability": 0.9756 + }, + { + "start": 2661.42, + "end": 2663.2, + "probability": 0.9631 + }, + { + "start": 2663.68, + "end": 2665.0, + "probability": 0.8907 + }, + { + "start": 2665.12, + "end": 2668.92, + "probability": 0.9517 + }, + { + "start": 2669.52, + "end": 2671.2, + "probability": 0.5567 + }, + { + "start": 2672.12, + "end": 2676.24, + "probability": 0.9885 + }, + { + "start": 2676.86, + "end": 2679.18, + "probability": 0.9977 + }, + { + "start": 2679.54, + "end": 2681.76, + "probability": 0.9717 + }, + { + "start": 2682.1, + "end": 2684.85, + "probability": 0.9891 + }, + { + "start": 2685.76, + "end": 2690.28, + "probability": 0.9967 + }, + { + "start": 2690.88, + "end": 2693.46, + "probability": 0.8101 + }, + { + "start": 2693.88, + "end": 2694.76, + "probability": 0.9357 + }, + { + "start": 2695.5, + "end": 2701.44, + "probability": 0.9726 + }, + { + "start": 2701.48, + "end": 2702.74, + "probability": 0.9517 + }, + { + "start": 2703.16, + "end": 2706.32, + "probability": 0.9929 + }, + { + "start": 2706.74, + "end": 2708.8, + "probability": 0.8805 + }, + { + "start": 2709.14, + "end": 2710.12, + "probability": 0.5866 + }, + { + "start": 2710.4, + "end": 2712.06, + "probability": 0.8212 + }, + { + "start": 2712.14, + "end": 2714.44, + "probability": 0.6422 + }, + { + "start": 2714.8, + "end": 2715.98, + "probability": 0.9233 + }, + { + "start": 2716.3, + "end": 2717.27, + "probability": 0.7959 + }, + { + "start": 2717.42, + "end": 2718.5, + "probability": 0.898 + }, + { + "start": 2718.64, + "end": 2718.96, + "probability": 0.7081 + }, + { + "start": 2719.0, + "end": 2722.52, + "probability": 0.665 + }, + { + "start": 2723.7, + "end": 2730.98, + "probability": 0.8338 + }, + { + "start": 2731.8, + "end": 2734.24, + "probability": 0.9894 + }, + { + "start": 2734.32, + "end": 2735.46, + "probability": 0.9249 + }, + { + "start": 2736.74, + "end": 2739.54, + "probability": 0.9423 + }, + { + "start": 2740.1, + "end": 2742.33, + "probability": 0.666 + }, + { + "start": 2743.08, + "end": 2743.77, + "probability": 0.7999 + }, + { + "start": 2744.06, + "end": 2744.74, + "probability": 0.9727 + }, + { + "start": 2744.84, + "end": 2746.26, + "probability": 0.8366 + }, + { + "start": 2746.34, + "end": 2746.82, + "probability": 0.3624 + }, + { + "start": 2747.0, + "end": 2747.86, + "probability": 0.8453 + }, + { + "start": 2747.88, + "end": 2748.62, + "probability": 0.6315 + }, + { + "start": 2749.44, + "end": 2750.8, + "probability": 0.9878 + }, + { + "start": 2750.9, + "end": 2752.42, + "probability": 0.6206 + }, + { + "start": 2752.42, + "end": 2755.16, + "probability": 0.9736 + }, + { + "start": 2755.64, + "end": 2757.98, + "probability": 0.6814 + }, + { + "start": 2757.98, + "end": 2761.12, + "probability": 0.9702 + }, + { + "start": 2761.26, + "end": 2761.96, + "probability": 0.4549 + }, + { + "start": 2761.96, + "end": 2762.36, + "probability": 0.6833 + }, + { + "start": 2762.9, + "end": 2764.9, + "probability": 0.6428 + }, + { + "start": 2764.98, + "end": 2765.9, + "probability": 0.6407 + }, + { + "start": 2766.08, + "end": 2767.03, + "probability": 0.8198 + }, + { + "start": 2767.46, + "end": 2771.44, + "probability": 0.9551 + }, + { + "start": 2771.58, + "end": 2773.62, + "probability": 0.9904 + }, + { + "start": 2774.26, + "end": 2778.5, + "probability": 0.9534 + }, + { + "start": 2779.08, + "end": 2782.52, + "probability": 0.9906 + }, + { + "start": 2783.1, + "end": 2786.04, + "probability": 0.879 + }, + { + "start": 2786.8, + "end": 2792.6, + "probability": 0.9487 + }, + { + "start": 2792.82, + "end": 2801.28, + "probability": 0.9973 + }, + { + "start": 2801.76, + "end": 2802.56, + "probability": 0.5395 + }, + { + "start": 2803.2, + "end": 2805.46, + "probability": 0.8937 + }, + { + "start": 2806.36, + "end": 2811.14, + "probability": 0.9958 + }, + { + "start": 2812.08, + "end": 2816.32, + "probability": 0.9675 + }, + { + "start": 2816.8, + "end": 2818.52, + "probability": 0.7027 + }, + { + "start": 2819.06, + "end": 2820.92, + "probability": 0.9552 + }, + { + "start": 2821.58, + "end": 2825.42, + "probability": 0.9922 + }, + { + "start": 2826.4, + "end": 2830.74, + "probability": 0.9125 + }, + { + "start": 2831.12, + "end": 2832.31, + "probability": 0.9036 + }, + { + "start": 2832.84, + "end": 2835.06, + "probability": 0.9231 + }, + { + "start": 2835.4, + "end": 2839.63, + "probability": 0.9615 + }, + { + "start": 2840.64, + "end": 2842.88, + "probability": 0.9487 + }, + { + "start": 2843.74, + "end": 2844.38, + "probability": 0.5022 + }, + { + "start": 2844.74, + "end": 2847.54, + "probability": 0.9885 + }, + { + "start": 2847.8, + "end": 2849.7, + "probability": 0.9585 + }, + { + "start": 2850.02, + "end": 2851.42, + "probability": 0.6469 + }, + { + "start": 2852.12, + "end": 2858.1, + "probability": 0.9849 + }, + { + "start": 2858.92, + "end": 2861.28, + "probability": 0.9668 + }, + { + "start": 2863.26, + "end": 2864.78, + "probability": 0.9395 + }, + { + "start": 2865.82, + "end": 2868.24, + "probability": 0.9956 + }, + { + "start": 2868.24, + "end": 2870.67, + "probability": 0.998 + }, + { + "start": 2871.3, + "end": 2872.9, + "probability": 0.8281 + }, + { + "start": 2873.1, + "end": 2874.36, + "probability": 0.7656 + }, + { + "start": 2874.64, + "end": 2876.54, + "probability": 0.9714 + }, + { + "start": 2877.0, + "end": 2877.8, + "probability": 0.6776 + }, + { + "start": 2878.82, + "end": 2879.56, + "probability": 0.0985 + }, + { + "start": 2879.56, + "end": 2881.4, + "probability": 0.6232 + }, + { + "start": 2881.48, + "end": 2881.7, + "probability": 0.4062 + }, + { + "start": 2881.7, + "end": 2884.26, + "probability": 0.4599 + }, + { + "start": 2884.26, + "end": 2885.16, + "probability": 0.201 + }, + { + "start": 2885.48, + "end": 2890.34, + "probability": 0.8614 + }, + { + "start": 2890.92, + "end": 2892.62, + "probability": 0.9304 + }, + { + "start": 2893.0, + "end": 2895.78, + "probability": 0.8262 + }, + { + "start": 2896.34, + "end": 2897.46, + "probability": 0.9102 + }, + { + "start": 2898.02, + "end": 2899.24, + "probability": 0.9772 + }, + { + "start": 2900.04, + "end": 2904.7, + "probability": 0.991 + }, + { + "start": 2905.38, + "end": 2908.62, + "probability": 0.9788 + }, + { + "start": 2909.36, + "end": 2912.3, + "probability": 0.9864 + }, + { + "start": 2912.82, + "end": 2914.13, + "probability": 0.5105 + }, + { + "start": 2915.22, + "end": 2919.06, + "probability": 0.9958 + }, + { + "start": 2919.88, + "end": 2921.52, + "probability": 0.9368 + }, + { + "start": 2921.66, + "end": 2923.18, + "probability": 0.8643 + }, + { + "start": 2923.22, + "end": 2925.76, + "probability": 0.8989 + }, + { + "start": 2925.96, + "end": 2928.38, + "probability": 0.9457 + }, + { + "start": 2928.88, + "end": 2931.46, + "probability": 0.904 + }, + { + "start": 2931.88, + "end": 2933.34, + "probability": 0.8815 + }, + { + "start": 2933.9, + "end": 2935.38, + "probability": 0.9352 + }, + { + "start": 2936.04, + "end": 2938.0, + "probability": 0.926 + }, + { + "start": 2938.6, + "end": 2942.0, + "probability": 0.9724 + }, + { + "start": 2942.64, + "end": 2944.12, + "probability": 0.7642 + }, + { + "start": 2944.54, + "end": 2948.5, + "probability": 0.839 + }, + { + "start": 2948.9, + "end": 2950.4, + "probability": 0.9837 + }, + { + "start": 2950.92, + "end": 2951.68, + "probability": 0.6878 + }, + { + "start": 2952.28, + "end": 2955.0, + "probability": 0.9849 + }, + { + "start": 2955.52, + "end": 2958.78, + "probability": 0.7211 + }, + { + "start": 2959.28, + "end": 2961.2, + "probability": 0.9829 + }, + { + "start": 2961.7, + "end": 2963.74, + "probability": 0.7433 + }, + { + "start": 2964.24, + "end": 2964.88, + "probability": 0.8794 + }, + { + "start": 2965.8, + "end": 2967.3, + "probability": 0.8159 + }, + { + "start": 2967.7, + "end": 2970.54, + "probability": 0.9424 + }, + { + "start": 2971.02, + "end": 2972.96, + "probability": 0.9518 + }, + { + "start": 2973.02, + "end": 2975.0, + "probability": 0.9878 + }, + { + "start": 2975.08, + "end": 2975.8, + "probability": 0.8044 + }, + { + "start": 2976.46, + "end": 2977.16, + "probability": 0.8479 + }, + { + "start": 2977.64, + "end": 2979.61, + "probability": 0.993 + }, + { + "start": 2979.68, + "end": 2983.68, + "probability": 0.9409 + }, + { + "start": 2983.82, + "end": 2984.88, + "probability": 0.8353 + }, + { + "start": 2985.56, + "end": 2985.8, + "probability": 0.3886 + }, + { + "start": 2985.92, + "end": 2986.58, + "probability": 0.8383 + }, + { + "start": 2986.8, + "end": 2989.82, + "probability": 0.9403 + }, + { + "start": 2989.82, + "end": 2993.8, + "probability": 0.9863 + }, + { + "start": 2994.66, + "end": 2998.68, + "probability": 0.9957 + }, + { + "start": 2999.32, + "end": 3003.18, + "probability": 0.9789 + }, + { + "start": 3003.66, + "end": 3008.4, + "probability": 0.9888 + }, + { + "start": 3008.78, + "end": 3014.0, + "probability": 0.9178 + }, + { + "start": 3014.34, + "end": 3017.24, + "probability": 0.9932 + }, + { + "start": 3017.32, + "end": 3018.68, + "probability": 0.9441 + }, + { + "start": 3018.88, + "end": 3022.32, + "probability": 0.9814 + }, + { + "start": 3022.42, + "end": 3022.7, + "probability": 0.8319 + }, + { + "start": 3022.76, + "end": 3023.1, + "probability": 0.8769 + }, + { + "start": 3023.16, + "end": 3023.92, + "probability": 0.695 + }, + { + "start": 3024.36, + "end": 3027.76, + "probability": 0.9761 + }, + { + "start": 3028.14, + "end": 3029.6, + "probability": 0.8858 + }, + { + "start": 3029.74, + "end": 3033.76, + "probability": 0.9832 + }, + { + "start": 3034.16, + "end": 3034.22, + "probability": 0.3022 + }, + { + "start": 3035.38, + "end": 3038.62, + "probability": 0.3814 + }, + { + "start": 3038.9, + "end": 3043.54, + "probability": 0.6145 + }, + { + "start": 3044.1, + "end": 3047.38, + "probability": 0.5482 + }, + { + "start": 3047.38, + "end": 3047.38, + "probability": 0.6119 + }, + { + "start": 3047.48, + "end": 3048.89, + "probability": 0.7803 + }, + { + "start": 3049.16, + "end": 3051.26, + "probability": 0.9883 + }, + { + "start": 3051.52, + "end": 3054.6, + "probability": 0.9899 + }, + { + "start": 3054.74, + "end": 3056.02, + "probability": 0.8375 + }, + { + "start": 3056.42, + "end": 3057.4, + "probability": 0.9291 + }, + { + "start": 3057.52, + "end": 3058.76, + "probability": 0.9158 + }, + { + "start": 3059.16, + "end": 3060.48, + "probability": 0.9054 + }, + { + "start": 3060.58, + "end": 3061.76, + "probability": 0.8761 + }, + { + "start": 3062.18, + "end": 3065.5, + "probability": 0.9829 + }, + { + "start": 3065.88, + "end": 3068.28, + "probability": 0.9599 + }, + { + "start": 3068.74, + "end": 3071.8, + "probability": 0.9095 + }, + { + "start": 3073.32, + "end": 3076.02, + "probability": 0.9779 + }, + { + "start": 3076.7, + "end": 3080.02, + "probability": 0.8043 + }, + { + "start": 3081.3, + "end": 3084.76, + "probability": 0.719 + }, + { + "start": 3085.54, + "end": 3086.31, + "probability": 0.583 + }, + { + "start": 3086.92, + "end": 3089.18, + "probability": 0.9157 + }, + { + "start": 3089.44, + "end": 3089.44, + "probability": 0.0901 + }, + { + "start": 3089.44, + "end": 3091.37, + "probability": 0.4269 + }, + { + "start": 3092.24, + "end": 3094.58, + "probability": 0.205 + }, + { + "start": 3094.74, + "end": 3097.2, + "probability": 0.7592 + }, + { + "start": 3097.28, + "end": 3100.34, + "probability": 0.7065 + }, + { + "start": 3100.46, + "end": 3100.82, + "probability": 0.8639 + }, + { + "start": 3100.88, + "end": 3102.7, + "probability": 0.5134 + }, + { + "start": 3102.7, + "end": 3103.84, + "probability": 0.9568 + }, + { + "start": 3104.0, + "end": 3105.92, + "probability": 0.9233 + }, + { + "start": 3105.92, + "end": 3105.94, + "probability": 0.0381 + }, + { + "start": 3106.16, + "end": 3107.44, + "probability": 0.3802 + }, + { + "start": 3107.64, + "end": 3110.7, + "probability": 0.9319 + }, + { + "start": 3110.72, + "end": 3112.63, + "probability": 0.9978 + }, + { + "start": 3113.22, + "end": 3114.16, + "probability": 0.4547 + }, + { + "start": 3114.7, + "end": 3116.2, + "probability": 0.9604 + }, + { + "start": 3116.3, + "end": 3117.06, + "probability": 0.6213 + }, + { + "start": 3117.12, + "end": 3117.88, + "probability": 0.2933 + }, + { + "start": 3117.96, + "end": 3118.56, + "probability": 0.0906 + }, + { + "start": 3118.56, + "end": 3121.42, + "probability": 0.9347 + }, + { + "start": 3121.64, + "end": 3123.16, + "probability": 0.9742 + }, + { + "start": 3123.18, + "end": 3126.52, + "probability": 0.5837 + }, + { + "start": 3126.64, + "end": 3127.7, + "probability": 0.4045 + }, + { + "start": 3127.94, + "end": 3128.62, + "probability": 0.5045 + }, + { + "start": 3128.66, + "end": 3130.28, + "probability": 0.5118 + }, + { + "start": 3130.4, + "end": 3134.28, + "probability": 0.718 + }, + { + "start": 3134.8, + "end": 3139.7, + "probability": 0.8053 + }, + { + "start": 3140.08, + "end": 3142.36, + "probability": 0.7447 + }, + { + "start": 3142.52, + "end": 3143.11, + "probability": 0.813 + }, + { + "start": 3143.34, + "end": 3144.12, + "probability": 0.926 + }, + { + "start": 3144.46, + "end": 3145.52, + "probability": 0.9474 + }, + { + "start": 3146.1, + "end": 3148.9, + "probability": 0.6857 + }, + { + "start": 3149.04, + "end": 3151.9, + "probability": 0.9976 + }, + { + "start": 3152.42, + "end": 3154.85, + "probability": 0.8881 + }, + { + "start": 3155.42, + "end": 3157.1, + "probability": 0.9934 + }, + { + "start": 3157.76, + "end": 3162.04, + "probability": 0.7852 + }, + { + "start": 3162.54, + "end": 3165.02, + "probability": 0.9526 + }, + { + "start": 3165.16, + "end": 3169.84, + "probability": 0.9919 + }, + { + "start": 3169.94, + "end": 3170.72, + "probability": 0.6945 + }, + { + "start": 3170.76, + "end": 3173.84, + "probability": 0.7946 + }, + { + "start": 3173.9, + "end": 3175.76, + "probability": 0.9202 + }, + { + "start": 3176.46, + "end": 3178.14, + "probability": 0.2829 + }, + { + "start": 3179.08, + "end": 3181.22, + "probability": 0.0013 + }, + { + "start": 3181.42, + "end": 3181.42, + "probability": 0.3834 + }, + { + "start": 3181.42, + "end": 3182.5, + "probability": 0.0624 + }, + { + "start": 3183.6, + "end": 3184.72, + "probability": 0.1189 + }, + { + "start": 3187.24, + "end": 3187.24, + "probability": 0.0075 + }, + { + "start": 3187.24, + "end": 3187.24, + "probability": 0.0176 + }, + { + "start": 3187.24, + "end": 3187.24, + "probability": 0.2507 + }, + { + "start": 3187.24, + "end": 3187.24, + "probability": 0.1439 + }, + { + "start": 3187.24, + "end": 3187.24, + "probability": 0.0646 + }, + { + "start": 3187.24, + "end": 3188.0, + "probability": 0.5361 + }, + { + "start": 3188.0, + "end": 3188.92, + "probability": 0.3652 + }, + { + "start": 3189.24, + "end": 3192.3, + "probability": 0.7524 + }, + { + "start": 3192.44, + "end": 3193.88, + "probability": 0.9463 + }, + { + "start": 3194.3, + "end": 3198.4, + "probability": 0.5797 + }, + { + "start": 3198.7, + "end": 3199.96, + "probability": 0.9429 + }, + { + "start": 3200.02, + "end": 3201.92, + "probability": 0.7795 + }, + { + "start": 3202.88, + "end": 3205.04, + "probability": 0.8971 + }, + { + "start": 3205.36, + "end": 3208.58, + "probability": 0.9861 + }, + { + "start": 3209.68, + "end": 3210.24, + "probability": 0.7778 + }, + { + "start": 3210.72, + "end": 3211.8, + "probability": 0.9902 + }, + { + "start": 3212.52, + "end": 3218.78, + "probability": 0.9886 + }, + { + "start": 3219.6, + "end": 3220.17, + "probability": 0.9238 + }, + { + "start": 3221.02, + "end": 3221.92, + "probability": 0.9632 + }, + { + "start": 3222.24, + "end": 3222.94, + "probability": 0.8839 + }, + { + "start": 3223.14, + "end": 3228.5, + "probability": 0.999 + }, + { + "start": 3228.8, + "end": 3229.28, + "probability": 0.6631 + }, + { + "start": 3229.9, + "end": 3231.5, + "probability": 0.7933 + }, + { + "start": 3231.72, + "end": 3234.67, + "probability": 0.9819 + }, + { + "start": 3235.38, + "end": 3239.56, + "probability": 0.9881 + }, + { + "start": 3240.96, + "end": 3246.8, + "probability": 0.7658 + }, + { + "start": 3246.88, + "end": 3248.9, + "probability": 0.876 + }, + { + "start": 3250.76, + "end": 3251.4, + "probability": 0.6793 + }, + { + "start": 3251.62, + "end": 3254.76, + "probability": 0.8936 + }, + { + "start": 3254.94, + "end": 3257.96, + "probability": 0.851 + }, + { + "start": 3258.74, + "end": 3259.88, + "probability": 0.5179 + }, + { + "start": 3259.88, + "end": 3262.02, + "probability": 0.9443 + }, + { + "start": 3262.24, + "end": 3263.83, + "probability": 0.9149 + }, + { + "start": 3264.5, + "end": 3266.18, + "probability": 0.7519 + }, + { + "start": 3266.64, + "end": 3270.84, + "probability": 0.9729 + }, + { + "start": 3270.84, + "end": 3274.24, + "probability": 0.9564 + }, + { + "start": 3274.7, + "end": 3279.5, + "probability": 0.9529 + }, + { + "start": 3279.78, + "end": 3280.82, + "probability": 0.636 + }, + { + "start": 3281.08, + "end": 3286.74, + "probability": 0.9067 + }, + { + "start": 3288.52, + "end": 3290.92, + "probability": 0.5792 + }, + { + "start": 3290.97, + "end": 3291.96, + "probability": 0.9811 + }, + { + "start": 3292.54, + "end": 3292.66, + "probability": 0.3122 + }, + { + "start": 3292.76, + "end": 3298.1, + "probability": 0.813 + }, + { + "start": 3299.65, + "end": 3302.18, + "probability": 0.4833 + }, + { + "start": 3305.52, + "end": 3305.76, + "probability": 0.1413 + }, + { + "start": 3305.76, + "end": 3305.76, + "probability": 0.0915 + }, + { + "start": 3305.76, + "end": 3305.76, + "probability": 0.2271 + }, + { + "start": 3305.76, + "end": 3306.94, + "probability": 0.8611 + }, + { + "start": 3307.06, + "end": 3308.6, + "probability": 0.967 + }, + { + "start": 3309.14, + "end": 3310.82, + "probability": 0.561 + }, + { + "start": 3310.88, + "end": 3313.48, + "probability": 0.9102 + }, + { + "start": 3313.54, + "end": 3315.12, + "probability": 0.9077 + }, + { + "start": 3315.26, + "end": 3315.56, + "probability": 0.715 + }, + { + "start": 3316.68, + "end": 3318.12, + "probability": 0.6927 + }, + { + "start": 3318.22, + "end": 3319.8, + "probability": 0.5412 + }, + { + "start": 3320.06, + "end": 3320.38, + "probability": 0.8438 + }, + { + "start": 3322.26, + "end": 3324.1, + "probability": 0.7681 + }, + { + "start": 3324.16, + "end": 3327.26, + "probability": 0.7874 + }, + { + "start": 3327.42, + "end": 3329.22, + "probability": 0.2679 + }, + { + "start": 3330.06, + "end": 3332.08, + "probability": 0.9674 + }, + { + "start": 3332.36, + "end": 3333.2, + "probability": 0.7745 + }, + { + "start": 3334.04, + "end": 3335.96, + "probability": 0.9446 + }, + { + "start": 3336.02, + "end": 3336.2, + "probability": 0.5933 + }, + { + "start": 3336.84, + "end": 3340.1, + "probability": 0.9221 + }, + { + "start": 3341.16, + "end": 3341.82, + "probability": 0.5788 + }, + { + "start": 3341.88, + "end": 3344.73, + "probability": 0.6834 + }, + { + "start": 3345.46, + "end": 3356.0, + "probability": 0.8792 + }, + { + "start": 3357.32, + "end": 3364.1, + "probability": 0.9891 + }, + { + "start": 3364.98, + "end": 3370.14, + "probability": 0.9919 + }, + { + "start": 3370.28, + "end": 3374.32, + "probability": 0.9886 + }, + { + "start": 3374.32, + "end": 3379.4, + "probability": 0.9632 + }, + { + "start": 3379.64, + "end": 3381.66, + "probability": 0.9766 + }, + { + "start": 3381.78, + "end": 3383.04, + "probability": 0.9215 + }, + { + "start": 3384.14, + "end": 3386.78, + "probability": 0.9993 + }, + { + "start": 3387.2, + "end": 3391.02, + "probability": 0.9852 + }, + { + "start": 3391.56, + "end": 3393.04, + "probability": 0.9449 + }, + { + "start": 3393.22, + "end": 3398.44, + "probability": 0.9392 + }, + { + "start": 3398.84, + "end": 3401.66, + "probability": 0.897 + }, + { + "start": 3401.9, + "end": 3404.78, + "probability": 0.9614 + }, + { + "start": 3404.82, + "end": 3408.98, + "probability": 0.9919 + }, + { + "start": 3408.98, + "end": 3414.0, + "probability": 0.99 + }, + { + "start": 3414.04, + "end": 3418.0, + "probability": 0.9985 + }, + { + "start": 3418.14, + "end": 3425.12, + "probability": 0.9978 + }, + { + "start": 3425.12, + "end": 3430.56, + "probability": 0.9116 + }, + { + "start": 3430.68, + "end": 3431.1, + "probability": 0.3613 + }, + { + "start": 3431.22, + "end": 3431.5, + "probability": 0.8813 + }, + { + "start": 3431.6, + "end": 3434.92, + "probability": 0.9846 + }, + { + "start": 3435.34, + "end": 3441.0, + "probability": 0.9954 + }, + { + "start": 3441.36, + "end": 3441.62, + "probability": 0.7622 + }, + { + "start": 3442.68, + "end": 3444.1, + "probability": 0.7898 + }, + { + "start": 3444.2, + "end": 3448.94, + "probability": 0.9861 + }, + { + "start": 3454.18, + "end": 3455.16, + "probability": 0.5298 + }, + { + "start": 3455.32, + "end": 3456.16, + "probability": 0.669 + }, + { + "start": 3456.56, + "end": 3459.34, + "probability": 0.7755 + }, + { + "start": 3459.34, + "end": 3459.34, + "probability": 0.0254 + }, + { + "start": 3459.34, + "end": 3460.78, + "probability": 0.3561 + }, + { + "start": 3460.92, + "end": 3461.26, + "probability": 0.0035 + }, + { + "start": 3462.16, + "end": 3464.22, + "probability": 0.3236 + }, + { + "start": 3464.34, + "end": 3465.76, + "probability": 0.9722 + }, + { + "start": 3466.12, + "end": 3469.3, + "probability": 0.8848 + }, + { + "start": 3469.42, + "end": 3470.72, + "probability": 0.5759 + }, + { + "start": 3471.6, + "end": 3477.26, + "probability": 0.9771 + }, + { + "start": 3477.4, + "end": 3481.86, + "probability": 0.9942 + }, + { + "start": 3482.02, + "end": 3483.34, + "probability": 0.76 + }, + { + "start": 3483.72, + "end": 3485.64, + "probability": 0.9753 + }, + { + "start": 3486.06, + "end": 3489.94, + "probability": 0.8218 + }, + { + "start": 3489.94, + "end": 3494.02, + "probability": 0.9043 + }, + { + "start": 3494.46, + "end": 3494.92, + "probability": 0.554 + }, + { + "start": 3494.96, + "end": 3498.9, + "probability": 0.9722 + }, + { + "start": 3498.9, + "end": 3501.8, + "probability": 0.9618 + }, + { + "start": 3501.92, + "end": 3506.14, + "probability": 0.9157 + }, + { + "start": 3506.24, + "end": 3509.44, + "probability": 0.955 + }, + { + "start": 3510.52, + "end": 3512.51, + "probability": 0.9437 + }, + { + "start": 3512.92, + "end": 3516.94, + "probability": 0.99 + }, + { + "start": 3516.94, + "end": 3519.96, + "probability": 0.9766 + }, + { + "start": 3520.74, + "end": 3523.4, + "probability": 0.9879 + }, + { + "start": 3523.56, + "end": 3524.26, + "probability": 0.9342 + }, + { + "start": 3524.86, + "end": 3527.88, + "probability": 0.9642 + }, + { + "start": 3527.88, + "end": 3531.6, + "probability": 0.9785 + }, + { + "start": 3532.22, + "end": 3533.54, + "probability": 0.5641 + }, + { + "start": 3533.8, + "end": 3534.56, + "probability": 0.6191 + }, + { + "start": 3534.84, + "end": 3537.58, + "probability": 0.9753 + }, + { + "start": 3538.1, + "end": 3538.26, + "probability": 0.7841 + }, + { + "start": 3541.56, + "end": 3542.3, + "probability": 0.633 + }, + { + "start": 3542.52, + "end": 3543.26, + "probability": 0.8926 + }, + { + "start": 3544.46, + "end": 3546.38, + "probability": 0.1977 + }, + { + "start": 3547.06, + "end": 3548.5, + "probability": 0.5016 + }, + { + "start": 3548.64, + "end": 3548.66, + "probability": 0.1287 + }, + { + "start": 3548.66, + "end": 3549.29, + "probability": 0.8608 + }, + { + "start": 3550.32, + "end": 3551.96, + "probability": 0.5573 + }, + { + "start": 3553.82, + "end": 3559.44, + "probability": 0.227 + }, + { + "start": 3561.8, + "end": 3565.04, + "probability": 0.0302 + }, + { + "start": 3565.72, + "end": 3567.48, + "probability": 0.0226 + }, + { + "start": 3570.92, + "end": 3571.24, + "probability": 0.0284 + }, + { + "start": 3571.24, + "end": 3571.24, + "probability": 0.1018 + }, + { + "start": 3571.24, + "end": 3572.56, + "probability": 0.396 + }, + { + "start": 3573.52, + "end": 3575.17, + "probability": 0.9211 + }, + { + "start": 3578.98, + "end": 3580.9, + "probability": 0.7345 + }, + { + "start": 3580.9, + "end": 3581.54, + "probability": 0.616 + }, + { + "start": 3581.62, + "end": 3582.04, + "probability": 0.8772 + }, + { + "start": 3582.24, + "end": 3583.56, + "probability": 0.67 + }, + { + "start": 3583.92, + "end": 3585.5, + "probability": 0.8672 + }, + { + "start": 3585.94, + "end": 3587.0, + "probability": 0.1042 + }, + { + "start": 3587.18, + "end": 3591.0, + "probability": 0.9807 + }, + { + "start": 3591.7, + "end": 3595.08, + "probability": 0.6693 + }, + { + "start": 3595.24, + "end": 3596.18, + "probability": 0.4383 + }, + { + "start": 3596.78, + "end": 3597.38, + "probability": 0.2552 + }, + { + "start": 3598.26, + "end": 3600.34, + "probability": 0.8017 + }, + { + "start": 3600.6, + "end": 3602.66, + "probability": 0.9545 + }, + { + "start": 3605.72, + "end": 3605.72, + "probability": 0.1886 + }, + { + "start": 3605.72, + "end": 3606.7, + "probability": 0.3972 + }, + { + "start": 3621.2, + "end": 3623.66, + "probability": 0.582 + }, + { + "start": 3624.64, + "end": 3631.08, + "probability": 0.9109 + }, + { + "start": 3632.58, + "end": 3638.34, + "probability": 0.9885 + }, + { + "start": 3638.64, + "end": 3639.38, + "probability": 0.5386 + }, + { + "start": 3640.26, + "end": 3641.6, + "probability": 0.6046 + }, + { + "start": 3645.38, + "end": 3646.6, + "probability": 0.6906 + }, + { + "start": 3646.98, + "end": 3647.54, + "probability": 0.7797 + }, + { + "start": 3649.24, + "end": 3652.03, + "probability": 0.8539 + }, + { + "start": 3653.18, + "end": 3655.24, + "probability": 0.9925 + }, + { + "start": 3655.5, + "end": 3659.06, + "probability": 0.9941 + }, + { + "start": 3659.08, + "end": 3661.36, + "probability": 0.9939 + }, + { + "start": 3661.96, + "end": 3667.28, + "probability": 0.9976 + }, + { + "start": 3668.54, + "end": 3671.9, + "probability": 0.9958 + }, + { + "start": 3671.9, + "end": 3675.84, + "probability": 0.9961 + }, + { + "start": 3676.58, + "end": 3680.0, + "probability": 0.9866 + }, + { + "start": 3680.56, + "end": 3684.12, + "probability": 0.9933 + }, + { + "start": 3685.08, + "end": 3689.16, + "probability": 0.9424 + }, + { + "start": 3690.26, + "end": 3692.64, + "probability": 0.994 + }, + { + "start": 3692.8, + "end": 3694.34, + "probability": 0.9889 + }, + { + "start": 3694.38, + "end": 3695.88, + "probability": 0.9737 + }, + { + "start": 3696.06, + "end": 3698.8, + "probability": 0.9935 + }, + { + "start": 3698.8, + "end": 3702.96, + "probability": 0.9976 + }, + { + "start": 3703.78, + "end": 3714.94, + "probability": 0.9795 + }, + { + "start": 3715.04, + "end": 3718.78, + "probability": 0.9865 + }, + { + "start": 3718.86, + "end": 3720.38, + "probability": 0.9642 + }, + { + "start": 3720.72, + "end": 3728.84, + "probability": 0.9853 + }, + { + "start": 3728.9, + "end": 3729.16, + "probability": 0.748 + }, + { + "start": 3729.34, + "end": 3730.13, + "probability": 0.6172 + }, + { + "start": 3730.92, + "end": 3733.24, + "probability": 0.8348 + }, + { + "start": 3734.32, + "end": 3735.39, + "probability": 0.7844 + }, + { + "start": 3741.06, + "end": 3741.86, + "probability": 0.5965 + }, + { + "start": 3741.94, + "end": 3742.86, + "probability": 0.797 + }, + { + "start": 3743.36, + "end": 3745.28, + "probability": 0.9873 + }, + { + "start": 3745.44, + "end": 3748.62, + "probability": 0.9271 + }, + { + "start": 3748.96, + "end": 3748.96, + "probability": 0.004 + }, + { + "start": 3748.96, + "end": 3749.76, + "probability": 0.1638 + }, + { + "start": 3750.7, + "end": 3751.47, + "probability": 0.5204 + }, + { + "start": 3751.8, + "end": 3755.3, + "probability": 0.9662 + }, + { + "start": 3755.94, + "end": 3759.5, + "probability": 0.9423 + }, + { + "start": 3759.58, + "end": 3760.06, + "probability": 0.2849 + }, + { + "start": 3763.06, + "end": 3763.3, + "probability": 0.0041 + }, + { + "start": 3763.3, + "end": 3763.3, + "probability": 0.0416 + }, + { + "start": 3763.3, + "end": 3763.3, + "probability": 0.5834 + }, + { + "start": 3763.3, + "end": 3763.3, + "probability": 0.0231 + }, + { + "start": 3763.3, + "end": 3763.3, + "probability": 0.1429 + }, + { + "start": 3763.3, + "end": 3767.0, + "probability": 0.9704 + }, + { + "start": 3767.0, + "end": 3770.7, + "probability": 0.9478 + }, + { + "start": 3771.0, + "end": 3773.38, + "probability": 0.9629 + }, + { + "start": 3774.14, + "end": 3774.36, + "probability": 0.3269 + }, + { + "start": 3774.46, + "end": 3777.38, + "probability": 0.8385 + }, + { + "start": 3777.8, + "end": 3779.94, + "probability": 0.9485 + }, + { + "start": 3780.02, + "end": 3783.72, + "probability": 0.9793 + }, + { + "start": 3783.72, + "end": 3788.52, + "probability": 0.9797 + }, + { + "start": 3789.48, + "end": 3792.78, + "probability": 0.995 + }, + { + "start": 3792.78, + "end": 3796.98, + "probability": 0.9972 + }, + { + "start": 3797.06, + "end": 3798.56, + "probability": 0.9551 + }, + { + "start": 3799.54, + "end": 3800.75, + "probability": 0.7565 + }, + { + "start": 3800.8, + "end": 3802.57, + "probability": 0.6757 + }, + { + "start": 3805.82, + "end": 3806.24, + "probability": 0.8411 + }, + { + "start": 3806.84, + "end": 3807.46, + "probability": 0.6694 + }, + { + "start": 3809.52, + "end": 3810.02, + "probability": 0.8298 + }, + { + "start": 3818.04, + "end": 3818.76, + "probability": 0.7843 + }, + { + "start": 3819.4, + "end": 3820.9, + "probability": 0.8551 + }, + { + "start": 3821.46, + "end": 3822.24, + "probability": 0.8691 + }, + { + "start": 3822.28, + "end": 3823.58, + "probability": 0.6779 + }, + { + "start": 3823.8, + "end": 3826.04, + "probability": 0.9863 + }, + { + "start": 3826.92, + "end": 3829.6, + "probability": 0.9744 + }, + { + "start": 3829.72, + "end": 3829.82, + "probability": 0.2505 + }, + { + "start": 3830.0, + "end": 3830.34, + "probability": 0.8906 + }, + { + "start": 3830.44, + "end": 3831.06, + "probability": 0.4858 + }, + { + "start": 3831.18, + "end": 3833.86, + "probability": 0.974 + }, + { + "start": 3834.02, + "end": 3834.54, + "probability": 0.714 + }, + { + "start": 3834.98, + "end": 3839.74, + "probability": 0.9974 + }, + { + "start": 3839.74, + "end": 3845.52, + "probability": 0.9992 + }, + { + "start": 3846.08, + "end": 3847.28, + "probability": 0.785 + }, + { + "start": 3847.3, + "end": 3850.46, + "probability": 0.9663 + }, + { + "start": 3850.52, + "end": 3851.7, + "probability": 0.8087 + }, + { + "start": 3852.06, + "end": 3854.22, + "probability": 0.9905 + }, + { + "start": 3854.32, + "end": 3856.66, + "probability": 0.9741 + }, + { + "start": 3856.84, + "end": 3858.5, + "probability": 0.9812 + }, + { + "start": 3859.5, + "end": 3866.18, + "probability": 0.9794 + }, + { + "start": 3866.64, + "end": 3867.97, + "probability": 0.5869 + }, + { + "start": 3868.22, + "end": 3872.5, + "probability": 0.9802 + }, + { + "start": 3872.98, + "end": 3872.98, + "probability": 0.4331 + }, + { + "start": 3873.18, + "end": 3874.66, + "probability": 0.6486 + }, + { + "start": 3874.84, + "end": 3875.74, + "probability": 0.9175 + }, + { + "start": 3875.86, + "end": 3877.52, + "probability": 0.9624 + }, + { + "start": 3878.24, + "end": 3880.94, + "probability": 0.7893 + }, + { + "start": 3881.14, + "end": 3881.26, + "probability": 0.3082 + }, + { + "start": 3881.32, + "end": 3881.86, + "probability": 0.6203 + }, + { + "start": 3881.98, + "end": 3882.34, + "probability": 0.6011 + }, + { + "start": 3882.44, + "end": 3883.2, + "probability": 0.7972 + }, + { + "start": 3883.3, + "end": 3884.38, + "probability": 0.5933 + }, + { + "start": 3884.4, + "end": 3884.92, + "probability": 0.5083 + }, + { + "start": 3884.94, + "end": 3885.98, + "probability": 0.7232 + }, + { + "start": 3886.4, + "end": 3888.62, + "probability": 0.991 + }, + { + "start": 3889.04, + "end": 3889.04, + "probability": 0.3146 + }, + { + "start": 3889.08, + "end": 3890.44, + "probability": 0.8243 + }, + { + "start": 3890.76, + "end": 3896.2, + "probability": 0.9921 + }, + { + "start": 3896.26, + "end": 3901.88, + "probability": 0.9819 + }, + { + "start": 3902.28, + "end": 3905.62, + "probability": 0.9963 + }, + { + "start": 3906.14, + "end": 3909.04, + "probability": 0.9907 + }, + { + "start": 3909.46, + "end": 3910.44, + "probability": 0.576 + }, + { + "start": 3910.48, + "end": 3917.22, + "probability": 0.9954 + }, + { + "start": 3917.58, + "end": 3920.56, + "probability": 0.9897 + }, + { + "start": 3921.0, + "end": 3923.8, + "probability": 0.9226 + }, + { + "start": 3924.46, + "end": 3926.64, + "probability": 0.8887 + }, + { + "start": 3927.0, + "end": 3929.64, + "probability": 0.9917 + }, + { + "start": 3929.76, + "end": 3931.92, + "probability": 0.9817 + }, + { + "start": 3933.0, + "end": 3937.6, + "probability": 0.9857 + }, + { + "start": 3937.82, + "end": 3940.64, + "probability": 0.9958 + }, + { + "start": 3940.66, + "end": 3941.98, + "probability": 0.8537 + }, + { + "start": 3941.98, + "end": 3943.9, + "probability": 0.8807 + }, + { + "start": 3944.18, + "end": 3945.84, + "probability": 0.8476 + }, + { + "start": 3946.2, + "end": 3948.66, + "probability": 0.998 + }, + { + "start": 3949.22, + "end": 3950.84, + "probability": 0.6553 + }, + { + "start": 3950.94, + "end": 3951.7, + "probability": 0.7289 + }, + { + "start": 3951.86, + "end": 3953.03, + "probability": 0.9246 + }, + { + "start": 3953.24, + "end": 3956.36, + "probability": 0.9664 + }, + { + "start": 3956.94, + "end": 3958.64, + "probability": 0.8081 + }, + { + "start": 3959.32, + "end": 3962.42, + "probability": 0.9879 + }, + { + "start": 3962.64, + "end": 3964.68, + "probability": 0.9913 + }, + { + "start": 3964.76, + "end": 3966.56, + "probability": 0.9912 + }, + { + "start": 3966.96, + "end": 3969.41, + "probability": 0.9892 + }, + { + "start": 3969.86, + "end": 3972.08, + "probability": 0.9993 + }, + { + "start": 3972.66, + "end": 3975.44, + "probability": 0.911 + }, + { + "start": 3976.32, + "end": 3977.8, + "probability": 0.9476 + }, + { + "start": 3978.3, + "end": 3983.14, + "probability": 0.453 + }, + { + "start": 3983.14, + "end": 3984.66, + "probability": 0.5971 + }, + { + "start": 3985.2, + "end": 3990.92, + "probability": 0.9822 + }, + { + "start": 3991.64, + "end": 3993.9, + "probability": 0.944 + }, + { + "start": 3994.48, + "end": 3996.78, + "probability": 0.7073 + }, + { + "start": 3996.84, + "end": 3999.74, + "probability": 0.9678 + }, + { + "start": 3999.96, + "end": 4002.79, + "probability": 0.7453 + }, + { + "start": 4003.74, + "end": 4008.12, + "probability": 0.7786 + }, + { + "start": 4008.12, + "end": 4011.08, + "probability": 0.9735 + }, + { + "start": 4011.14, + "end": 4012.12, + "probability": 0.6321 + }, + { + "start": 4012.22, + "end": 4012.76, + "probability": 0.9548 + }, + { + "start": 4012.98, + "end": 4013.44, + "probability": 0.9504 + }, + { + "start": 4015.4, + "end": 4017.43, + "probability": 0.8461 + }, + { + "start": 4019.36, + "end": 4021.26, + "probability": 0.2696 + }, + { + "start": 4022.62, + "end": 4023.56, + "probability": 0.8813 + }, + { + "start": 4035.91, + "end": 4041.7, + "probability": 0.0236 + }, + { + "start": 4041.7, + "end": 4041.7, + "probability": 0.0321 + }, + { + "start": 4042.52, + "end": 4042.52, + "probability": 0.006 + }, + { + "start": 4043.22, + "end": 4044.74, + "probability": 0.012 + }, + { + "start": 4049.02, + "end": 4049.78, + "probability": 0.0228 + }, + { + "start": 4050.04, + "end": 4050.84, + "probability": 0.1523 + }, + { + "start": 4051.64, + "end": 4052.48, + "probability": 0.1838 + }, + { + "start": 4053.44, + "end": 4055.56, + "probability": 0.6448 + }, + { + "start": 4055.68, + "end": 4059.24, + "probability": 0.8828 + }, + { + "start": 4059.48, + "end": 4060.42, + "probability": 0.4755 + }, + { + "start": 4061.02, + "end": 4063.3, + "probability": 0.8173 + }, + { + "start": 4064.32, + "end": 4067.92, + "probability": 0.8956 + }, + { + "start": 4069.2, + "end": 4069.98, + "probability": 0.7062 + }, + { + "start": 4070.56, + "end": 4070.58, + "probability": 0.5494 + }, + { + "start": 4070.58, + "end": 4072.84, + "probability": 0.7707 + }, + { + "start": 4074.88, + "end": 4076.5, + "probability": 0.5141 + }, + { + "start": 4079.42, + "end": 4080.1, + "probability": 0.0231 + }, + { + "start": 4080.1, + "end": 4080.1, + "probability": 0.3256 + }, + { + "start": 4080.1, + "end": 4080.1, + "probability": 0.1324 + }, + { + "start": 4080.1, + "end": 4081.48, + "probability": 0.3932 + }, + { + "start": 4081.48, + "end": 4082.68, + "probability": 0.6814 + }, + { + "start": 4083.48, + "end": 4085.06, + "probability": 0.8205 + }, + { + "start": 4086.59, + "end": 4090.24, + "probability": 0.9063 + }, + { + "start": 4090.48, + "end": 4094.86, + "probability": 0.7971 + }, + { + "start": 4095.86, + "end": 4098.0, + "probability": 0.6672 + }, + { + "start": 4099.1, + "end": 4100.38, + "probability": 0.7769 + }, + { + "start": 4100.88, + "end": 4104.4, + "probability": 0.8354 + }, + { + "start": 4105.5, + "end": 4107.22, + "probability": 0.4449 + }, + { + "start": 4111.44, + "end": 4114.78, + "probability": 0.083 + }, + { + "start": 4117.0, + "end": 4117.48, + "probability": 0.0527 + }, + { + "start": 4120.02, + "end": 4121.04, + "probability": 0.7749 + }, + { + "start": 4122.2, + "end": 4123.38, + "probability": 0.7619 + }, + { + "start": 4124.12, + "end": 4125.84, + "probability": 0.6228 + }, + { + "start": 4127.8, + "end": 4128.97, + "probability": 0.8008 + }, + { + "start": 4129.1, + "end": 4133.58, + "probability": 0.916 + }, + { + "start": 4135.0, + "end": 4140.24, + "probability": 0.8989 + }, + { + "start": 4141.62, + "end": 4143.54, + "probability": 0.9937 + }, + { + "start": 4144.78, + "end": 4145.86, + "probability": 0.9005 + }, + { + "start": 4145.94, + "end": 4146.9, + "probability": 0.949 + }, + { + "start": 4147.02, + "end": 4151.35, + "probability": 0.9961 + }, + { + "start": 4153.0, + "end": 4155.2, + "probability": 0.9761 + }, + { + "start": 4159.1, + "end": 4163.2, + "probability": 0.98 + }, + { + "start": 4165.14, + "end": 4167.5, + "probability": 0.8693 + }, + { + "start": 4167.5, + "end": 4170.1, + "probability": 0.9805 + }, + { + "start": 4171.26, + "end": 4178.52, + "probability": 0.988 + }, + { + "start": 4180.92, + "end": 4182.98, + "probability": 0.9578 + }, + { + "start": 4184.02, + "end": 4191.22, + "probability": 0.9942 + }, + { + "start": 4192.66, + "end": 4197.84, + "probability": 0.9972 + }, + { + "start": 4197.84, + "end": 4203.74, + "probability": 0.9961 + }, + { + "start": 4205.94, + "end": 4207.72, + "probability": 0.9034 + }, + { + "start": 4208.06, + "end": 4210.66, + "probability": 0.9876 + }, + { + "start": 4212.04, + "end": 4214.86, + "probability": 0.9868 + }, + { + "start": 4215.06, + "end": 4216.36, + "probability": 0.8233 + }, + { + "start": 4216.8, + "end": 4217.92, + "probability": 0.9382 + }, + { + "start": 4219.29, + "end": 4226.18, + "probability": 0.7899 + }, + { + "start": 4226.18, + "end": 4226.52, + "probability": 0.5632 + }, + { + "start": 4229.44, + "end": 4231.48, + "probability": 0.732 + }, + { + "start": 4231.54, + "end": 4232.56, + "probability": 0.9225 + }, + { + "start": 4232.92, + "end": 4237.74, + "probability": 0.9941 + }, + { + "start": 4239.1, + "end": 4242.94, + "probability": 0.9941 + }, + { + "start": 4244.64, + "end": 4244.86, + "probability": 0.8477 + }, + { + "start": 4246.3, + "end": 4247.0, + "probability": 0.2237 + }, + { + "start": 4247.1, + "end": 4247.94, + "probability": 0.3199 + }, + { + "start": 4247.94, + "end": 4247.96, + "probability": 0.0303 + }, + { + "start": 4247.96, + "end": 4248.87, + "probability": 0.5548 + }, + { + "start": 4249.54, + "end": 4250.06, + "probability": 0.1374 + }, + { + "start": 4250.16, + "end": 4251.64, + "probability": 0.0646 + }, + { + "start": 4253.8, + "end": 4255.44, + "probability": 0.5952 + }, + { + "start": 4256.74, + "end": 4259.18, + "probability": 0.1706 + }, + { + "start": 4259.56, + "end": 4259.56, + "probability": 0.1801 + }, + { + "start": 4259.56, + "end": 4259.64, + "probability": 0.0426 + }, + { + "start": 4259.64, + "end": 4261.38, + "probability": 0.8375 + }, + { + "start": 4262.14, + "end": 4264.44, + "probability": 0.9749 + }, + { + "start": 4264.68, + "end": 4267.38, + "probability": 0.9906 + }, + { + "start": 4268.0, + "end": 4269.4, + "probability": 0.0577 + }, + { + "start": 4269.4, + "end": 4269.96, + "probability": 0.6039 + }, + { + "start": 4270.84, + "end": 4272.66, + "probability": 0.9656 + }, + { + "start": 4274.1, + "end": 4275.4, + "probability": 0.2724 + }, + { + "start": 4275.4, + "end": 4276.24, + "probability": 0.7314 + }, + { + "start": 4278.38, + "end": 4278.84, + "probability": 0.6707 + }, + { + "start": 4279.16, + "end": 4279.92, + "probability": 0.7991 + }, + { + "start": 4280.04, + "end": 4280.04, + "probability": 0.2338 + }, + { + "start": 4280.04, + "end": 4281.1, + "probability": 0.5565 + }, + { + "start": 4283.48, + "end": 4284.64, + "probability": 0.6666 + }, + { + "start": 4285.34, + "end": 4287.12, + "probability": 0.9585 + }, + { + "start": 4288.4, + "end": 4290.62, + "probability": 0.894 + }, + { + "start": 4292.96, + "end": 4296.36, + "probability": 0.9881 + }, + { + "start": 4296.36, + "end": 4300.46, + "probability": 0.9551 + }, + { + "start": 4302.26, + "end": 4304.04, + "probability": 0.9658 + }, + { + "start": 4304.62, + "end": 4309.37, + "probability": 0.9945 + }, + { + "start": 4310.38, + "end": 4310.6, + "probability": 0.0223 + }, + { + "start": 4310.6, + "end": 4312.66, + "probability": 0.5633 + }, + { + "start": 4312.76, + "end": 4313.32, + "probability": 0.652 + }, + { + "start": 4315.82, + "end": 4318.28, + "probability": 0.1616 + }, + { + "start": 4325.56, + "end": 4330.62, + "probability": 0.5894 + }, + { + "start": 4330.99, + "end": 4334.08, + "probability": 0.988 + }, + { + "start": 4334.24, + "end": 4335.98, + "probability": 0.8826 + }, + { + "start": 4336.22, + "end": 4337.62, + "probability": 0.9021 + }, + { + "start": 4338.1, + "end": 4338.38, + "probability": 0.0575 + }, + { + "start": 4338.38, + "end": 4338.45, + "probability": 0.0497 + }, + { + "start": 4339.2, + "end": 4340.5, + "probability": 0.1856 + }, + { + "start": 4340.64, + "end": 4341.84, + "probability": 0.5099 + }, + { + "start": 4342.5, + "end": 4344.58, + "probability": 0.9138 + }, + { + "start": 4344.62, + "end": 4346.52, + "probability": 0.9865 + }, + { + "start": 4346.6, + "end": 4347.53, + "probability": 0.7477 + }, + { + "start": 4348.62, + "end": 4348.68, + "probability": 0.1426 + }, + { + "start": 4348.68, + "end": 4350.88, + "probability": 0.9749 + }, + { + "start": 4351.08, + "end": 4351.98, + "probability": 0.9781 + }, + { + "start": 4352.04, + "end": 4353.1, + "probability": 0.8323 + }, + { + "start": 4353.42, + "end": 4358.22, + "probability": 0.9697 + }, + { + "start": 4358.8, + "end": 4364.7, + "probability": 0.9917 + }, + { + "start": 4365.14, + "end": 4366.48, + "probability": 0.891 + }, + { + "start": 4366.92, + "end": 4369.04, + "probability": 0.9985 + }, + { + "start": 4369.04, + "end": 4369.58, + "probability": 0.5854 + }, + { + "start": 4369.74, + "end": 4373.1, + "probability": 0.7448 + }, + { + "start": 4373.1, + "end": 4376.66, + "probability": 0.9742 + }, + { + "start": 4376.66, + "end": 4378.24, + "probability": 0.9883 + }, + { + "start": 4378.24, + "end": 4380.16, + "probability": 0.3896 + }, + { + "start": 4380.38, + "end": 4384.16, + "probability": 0.8859 + }, + { + "start": 4384.78, + "end": 4391.2, + "probability": 0.9976 + }, + { + "start": 4391.82, + "end": 4393.62, + "probability": 0.9977 + }, + { + "start": 4393.8, + "end": 4399.46, + "probability": 0.9897 + }, + { + "start": 4400.46, + "end": 4400.46, + "probability": 0.1096 + }, + { + "start": 4400.8, + "end": 4402.94, + "probability": 0.3222 + }, + { + "start": 4403.1, + "end": 4406.7, + "probability": 0.7945 + }, + { + "start": 4406.7, + "end": 4410.44, + "probability": 0.9939 + }, + { + "start": 4410.92, + "end": 4415.88, + "probability": 0.99 + }, + { + "start": 4416.64, + "end": 4417.86, + "probability": 0.8981 + }, + { + "start": 4418.2, + "end": 4420.2, + "probability": 0.9856 + }, + { + "start": 4420.2, + "end": 4422.54, + "probability": 0.9331 + }, + { + "start": 4423.36, + "end": 4425.86, + "probability": 0.9927 + }, + { + "start": 4426.34, + "end": 4430.34, + "probability": 0.9818 + }, + { + "start": 4432.4, + "end": 4433.9, + "probability": 0.9202 + }, + { + "start": 4434.24, + "end": 4435.02, + "probability": 0.9844 + }, + { + "start": 4435.08, + "end": 4436.62, + "probability": 0.9614 + }, + { + "start": 4437.16, + "end": 4441.26, + "probability": 0.9896 + }, + { + "start": 4441.52, + "end": 4442.04, + "probability": 0.7056 + }, + { + "start": 4442.22, + "end": 4445.3, + "probability": 0.9428 + }, + { + "start": 4445.9, + "end": 4447.02, + "probability": 0.9391 + }, + { + "start": 4447.04, + "end": 4449.88, + "probability": 0.9906 + }, + { + "start": 4451.21, + "end": 4455.04, + "probability": 0.818 + }, + { + "start": 4455.66, + "end": 4460.58, + "probability": 0.8645 + }, + { + "start": 4460.58, + "end": 4465.24, + "probability": 0.9944 + }, + { + "start": 4466.04, + "end": 4467.64, + "probability": 0.6823 + }, + { + "start": 4468.3, + "end": 4474.6, + "probability": 0.9849 + }, + { + "start": 4474.98, + "end": 4478.06, + "probability": 0.7748 + }, + { + "start": 4478.12, + "end": 4480.32, + "probability": 0.9535 + }, + { + "start": 4480.46, + "end": 4481.46, + "probability": 0.7882 + }, + { + "start": 4482.3, + "end": 4485.46, + "probability": 0.2123 + }, + { + "start": 4485.46, + "end": 4485.58, + "probability": 0.4559 + }, + { + "start": 4485.76, + "end": 4487.81, + "probability": 0.9668 + }, + { + "start": 4489.0, + "end": 4489.64, + "probability": 0.5174 + }, + { + "start": 4489.84, + "end": 4490.32, + "probability": 0.5169 + }, + { + "start": 4490.46, + "end": 4490.6, + "probability": 0.4388 + }, + { + "start": 4490.6, + "end": 4490.6, + "probability": 0.0545 + }, + { + "start": 4490.6, + "end": 4492.98, + "probability": 0.9908 + }, + { + "start": 4494.44, + "end": 4500.4, + "probability": 0.9879 + }, + { + "start": 4501.14, + "end": 4504.64, + "probability": 0.9954 + }, + { + "start": 4505.3, + "end": 4508.72, + "probability": 0.9939 + }, + { + "start": 4508.72, + "end": 4511.95, + "probability": 0.989 + }, + { + "start": 4512.56, + "end": 4514.4, + "probability": 0.9872 + }, + { + "start": 4514.88, + "end": 4518.82, + "probability": 0.9858 + }, + { + "start": 4523.2, + "end": 4526.88, + "probability": 0.6067 + }, + { + "start": 4526.98, + "end": 4527.1, + "probability": 0.2373 + }, + { + "start": 4527.34, + "end": 4530.76, + "probability": 0.6651 + }, + { + "start": 4530.84, + "end": 4532.8, + "probability": 0.7675 + }, + { + "start": 4532.86, + "end": 4534.72, + "probability": 0.1501 + }, + { + "start": 4536.24, + "end": 4538.36, + "probability": 0.7601 + }, + { + "start": 4538.94, + "end": 4539.1, + "probability": 0.3198 + }, + { + "start": 4541.16, + "end": 4541.92, + "probability": 0.1126 + }, + { + "start": 4542.42, + "end": 4542.44, + "probability": 0.4577 + }, + { + "start": 4542.44, + "end": 4542.96, + "probability": 0.5776 + }, + { + "start": 4543.38, + "end": 4545.92, + "probability": 0.9094 + }, + { + "start": 4557.64, + "end": 4560.76, + "probability": 0.6412 + }, + { + "start": 4562.84, + "end": 4569.48, + "probability": 0.901 + }, + { + "start": 4569.48, + "end": 4574.92, + "probability": 0.9895 + }, + { + "start": 4575.44, + "end": 4581.2, + "probability": 0.9777 + }, + { + "start": 4581.76, + "end": 4584.98, + "probability": 0.9977 + }, + { + "start": 4585.96, + "end": 4589.62, + "probability": 0.5598 + }, + { + "start": 4589.76, + "end": 4590.0, + "probability": 0.6387 + }, + { + "start": 4590.12, + "end": 4596.2, + "probability": 0.9229 + }, + { + "start": 4596.2, + "end": 4599.3, + "probability": 0.9902 + }, + { + "start": 4599.92, + "end": 4602.54, + "probability": 0.9677 + }, + { + "start": 4603.4, + "end": 4609.22, + "probability": 0.6109 + }, + { + "start": 4610.04, + "end": 4613.9, + "probability": 0.9771 + }, + { + "start": 4614.26, + "end": 4614.98, + "probability": 0.7207 + }, + { + "start": 4615.86, + "end": 4620.7, + "probability": 0.9724 + }, + { + "start": 4620.7, + "end": 4623.46, + "probability": 0.9634 + }, + { + "start": 4624.08, + "end": 4625.66, + "probability": 0.9651 + }, + { + "start": 4625.76, + "end": 4626.62, + "probability": 0.7688 + }, + { + "start": 4627.06, + "end": 4631.44, + "probability": 0.9818 + }, + { + "start": 4631.96, + "end": 4638.0, + "probability": 0.863 + }, + { + "start": 4638.18, + "end": 4639.96, + "probability": 0.8681 + }, + { + "start": 4640.87, + "end": 4646.7, + "probability": 0.9039 + }, + { + "start": 4647.18, + "end": 4648.82, + "probability": 0.8317 + }, + { + "start": 4649.46, + "end": 4654.24, + "probability": 0.9307 + }, + { + "start": 4654.24, + "end": 4658.68, + "probability": 0.8822 + }, + { + "start": 4659.22, + "end": 4661.9, + "probability": 0.9406 + }, + { + "start": 4662.26, + "end": 4662.32, + "probability": 0.5094 + }, + { + "start": 4662.32, + "end": 4663.92, + "probability": 0.751 + }, + { + "start": 4664.0, + "end": 4667.6, + "probability": 0.9217 + }, + { + "start": 4668.24, + "end": 4669.02, + "probability": 0.8416 + }, + { + "start": 4670.0, + "end": 4672.54, + "probability": 0.9275 + }, + { + "start": 4674.44, + "end": 4676.02, + "probability": 0.9366 + }, + { + "start": 4683.16, + "end": 4683.36, + "probability": 0.3427 + }, + { + "start": 4683.36, + "end": 4684.94, + "probability": 0.7173 + }, + { + "start": 4693.4, + "end": 4695.02, + "probability": 0.7194 + }, + { + "start": 4695.74, + "end": 4699.54, + "probability": 0.9775 + }, + { + "start": 4700.36, + "end": 4701.94, + "probability": 0.9668 + }, + { + "start": 4702.02, + "end": 4702.9, + "probability": 0.7738 + }, + { + "start": 4702.94, + "end": 4703.76, + "probability": 0.8561 + }, + { + "start": 4703.88, + "end": 4705.78, + "probability": 0.9939 + }, + { + "start": 4706.28, + "end": 4708.86, + "probability": 0.6643 + }, + { + "start": 4708.86, + "end": 4713.02, + "probability": 0.8043 + }, + { + "start": 4713.2, + "end": 4714.29, + "probability": 0.9766 + }, + { + "start": 4715.04, + "end": 4715.94, + "probability": 0.9427 + }, + { + "start": 4716.1, + "end": 4716.55, + "probability": 0.9523 + }, + { + "start": 4716.8, + "end": 4717.58, + "probability": 0.7219 + }, + { + "start": 4721.68, + "end": 4722.48, + "probability": 0.3051 + }, + { + "start": 4722.48, + "end": 4723.84, + "probability": 0.5306 + }, + { + "start": 4724.0, + "end": 4725.74, + "probability": 0.9283 + }, + { + "start": 4726.92, + "end": 4729.32, + "probability": 0.6365 + }, + { + "start": 4733.8, + "end": 4736.56, + "probability": 0.1499 + }, + { + "start": 4737.9, + "end": 4738.2, + "probability": 0.0887 + }, + { + "start": 4738.2, + "end": 4738.2, + "probability": 0.2166 + }, + { + "start": 4738.2, + "end": 4738.2, + "probability": 0.0181 + }, + { + "start": 4738.2, + "end": 4738.2, + "probability": 0.3132 + }, + { + "start": 4738.2, + "end": 4740.28, + "probability": 0.1101 + }, + { + "start": 4740.54, + "end": 4741.66, + "probability": 0.7378 + }, + { + "start": 4742.0, + "end": 4745.94, + "probability": 0.9749 + }, + { + "start": 4745.98, + "end": 4746.78, + "probability": 0.9442 + }, + { + "start": 4747.38, + "end": 4747.46, + "probability": 0.0003 + }, + { + "start": 4747.54, + "end": 4749.9, + "probability": 0.2804 + }, + { + "start": 4750.02, + "end": 4751.68, + "probability": 0.9823 + }, + { + "start": 4751.98, + "end": 4752.1, + "probability": 0.0648 + }, + { + "start": 4752.1, + "end": 4754.5, + "probability": 0.7277 + }, + { + "start": 4754.54, + "end": 4755.98, + "probability": 0.6836 + }, + { + "start": 4756.08, + "end": 4757.72, + "probability": 0.762 + }, + { + "start": 4758.0, + "end": 4759.66, + "probability": 0.9429 + }, + { + "start": 4760.46, + "end": 4764.0, + "probability": 0.7049 + }, + { + "start": 4764.24, + "end": 4765.1, + "probability": 0.2113 + }, + { + "start": 4765.22, + "end": 4765.64, + "probability": 0.11 + }, + { + "start": 4765.64, + "end": 4767.9, + "probability": 0.9258 + }, + { + "start": 4768.02, + "end": 4768.44, + "probability": 0.4691 + }, + { + "start": 4768.44, + "end": 4768.78, + "probability": 0.6438 + }, + { + "start": 4768.86, + "end": 4770.26, + "probability": 0.9824 + }, + { + "start": 4771.36, + "end": 4776.56, + "probability": 0.8857 + }, + { + "start": 4777.32, + "end": 4779.56, + "probability": 0.9824 + }, + { + "start": 4780.84, + "end": 4783.64, + "probability": 0.7196 + }, + { + "start": 4783.94, + "end": 4786.28, + "probability": 0.8955 + }, + { + "start": 4786.32, + "end": 4787.6, + "probability": 0.865 + }, + { + "start": 4787.96, + "end": 4789.34, + "probability": 0.9535 + }, + { + "start": 4790.28, + "end": 4790.74, + "probability": 0.4373 + }, + { + "start": 4791.12, + "end": 4793.9, + "probability": 0.9978 + }, + { + "start": 4794.32, + "end": 4796.58, + "probability": 0.7112 + }, + { + "start": 4797.26, + "end": 4799.24, + "probability": 0.9017 + }, + { + "start": 4799.32, + "end": 4800.56, + "probability": 0.8589 + }, + { + "start": 4800.88, + "end": 4804.26, + "probability": 0.9943 + }, + { + "start": 4804.54, + "end": 4805.88, + "probability": 0.9955 + }, + { + "start": 4805.96, + "end": 4806.5, + "probability": 0.5133 + }, + { + "start": 4806.62, + "end": 4806.94, + "probability": 0.8143 + }, + { + "start": 4807.0, + "end": 4809.04, + "probability": 0.9948 + }, + { + "start": 4810.0, + "end": 4813.35, + "probability": 0.8173 + }, + { + "start": 4814.84, + "end": 4815.24, + "probability": 0.7715 + }, + { + "start": 4816.08, + "end": 4817.96, + "probability": 0.9805 + }, + { + "start": 4818.64, + "end": 4821.48, + "probability": 0.9348 + }, + { + "start": 4822.96, + "end": 4824.52, + "probability": 0.7513 + }, + { + "start": 4825.6, + "end": 4826.3, + "probability": 0.4597 + }, + { + "start": 4826.84, + "end": 4829.9, + "probability": 0.7525 + }, + { + "start": 4830.06, + "end": 4830.72, + "probability": 0.7037 + }, + { + "start": 4831.12, + "end": 4832.2, + "probability": 0.9043 + }, + { + "start": 4833.1, + "end": 4833.42, + "probability": 0.785 + }, + { + "start": 4833.42, + "end": 4833.68, + "probability": 0.6917 + }, + { + "start": 4833.76, + "end": 4834.14, + "probability": 0.5645 + }, + { + "start": 4834.24, + "end": 4835.2, + "probability": 0.8875 + }, + { + "start": 4835.32, + "end": 4836.22, + "probability": 0.9218 + }, + { + "start": 4836.4, + "end": 4838.14, + "probability": 0.9512 + }, + { + "start": 4838.88, + "end": 4839.69, + "probability": 0.9092 + }, + { + "start": 4840.52, + "end": 4841.84, + "probability": 0.9419 + }, + { + "start": 4842.34, + "end": 4843.24, + "probability": 0.9338 + }, + { + "start": 4843.24, + "end": 4845.53, + "probability": 0.8946 + }, + { + "start": 4845.8, + "end": 4846.62, + "probability": 0.7692 + }, + { + "start": 4846.8, + "end": 4849.26, + "probability": 0.9492 + }, + { + "start": 4849.4, + "end": 4851.24, + "probability": 0.9391 + }, + { + "start": 4851.32, + "end": 4852.08, + "probability": 0.8441 + }, + { + "start": 4852.48, + "end": 4854.77, + "probability": 0.9396 + }, + { + "start": 4855.36, + "end": 4858.4, + "probability": 0.9775 + }, + { + "start": 4858.9, + "end": 4860.88, + "probability": 0.9572 + }, + { + "start": 4861.0, + "end": 4862.46, + "probability": 0.8955 + }, + { + "start": 4862.96, + "end": 4863.76, + "probability": 0.9421 + }, + { + "start": 4864.16, + "end": 4864.82, + "probability": 0.8926 + }, + { + "start": 4865.2, + "end": 4865.98, + "probability": 0.9164 + }, + { + "start": 4866.72, + "end": 4868.72, + "probability": 0.9603 + }, + { + "start": 4869.4, + "end": 4873.84, + "probability": 0.9224 + }, + { + "start": 4873.94, + "end": 4876.24, + "probability": 0.9185 + }, + { + "start": 4876.86, + "end": 4877.9, + "probability": 0.7871 + }, + { + "start": 4879.04, + "end": 4885.32, + "probability": 0.9679 + }, + { + "start": 4885.6, + "end": 4889.58, + "probability": 0.9811 + }, + { + "start": 4889.62, + "end": 4891.36, + "probability": 0.9636 + }, + { + "start": 4891.46, + "end": 4892.74, + "probability": 0.7033 + }, + { + "start": 4893.7, + "end": 4898.24, + "probability": 0.9971 + }, + { + "start": 4899.04, + "end": 4900.98, + "probability": 0.9893 + }, + { + "start": 4901.34, + "end": 4904.42, + "probability": 0.3135 + }, + { + "start": 4904.96, + "end": 4904.96, + "probability": 0.1006 + }, + { + "start": 4904.96, + "end": 4904.96, + "probability": 0.1899 + }, + { + "start": 4904.96, + "end": 4904.96, + "probability": 0.4577 + }, + { + "start": 4904.96, + "end": 4905.66, + "probability": 0.4561 + }, + { + "start": 4907.12, + "end": 4907.64, + "probability": 0.4172 + }, + { + "start": 4907.72, + "end": 4909.08, + "probability": 0.8599 + }, + { + "start": 4909.18, + "end": 4909.86, + "probability": 0.5789 + }, + { + "start": 4909.92, + "end": 4912.78, + "probability": 0.8146 + }, + { + "start": 4913.16, + "end": 4918.14, + "probability": 0.9911 + }, + { + "start": 4918.52, + "end": 4919.72, + "probability": 0.882 + }, + { + "start": 4920.04, + "end": 4921.04, + "probability": 0.8776 + }, + { + "start": 4921.14, + "end": 4926.58, + "probability": 0.9888 + }, + { + "start": 4926.88, + "end": 4929.92, + "probability": 0.9966 + }, + { + "start": 4930.44, + "end": 4932.08, + "probability": 0.7801 + }, + { + "start": 4934.44, + "end": 4935.18, + "probability": 0.6996 + }, + { + "start": 4935.58, + "end": 4936.82, + "probability": 0.9443 + }, + { + "start": 4941.2, + "end": 4941.38, + "probability": 0.9229 + }, + { + "start": 4942.7, + "end": 4945.32, + "probability": 0.5783 + }, + { + "start": 4951.56, + "end": 4953.68, + "probability": 0.0147 + }, + { + "start": 4959.14, + "end": 4964.9, + "probability": 0.0472 + }, + { + "start": 4966.8, + "end": 4968.36, + "probability": 0.0115 + }, + { + "start": 4969.34, + "end": 4970.2, + "probability": 0.0271 + }, + { + "start": 4972.12, + "end": 4972.38, + "probability": 0.0593 + }, + { + "start": 4972.38, + "end": 4972.46, + "probability": 0.1055 + }, + { + "start": 4972.46, + "end": 4973.6, + "probability": 0.0279 + }, + { + "start": 4973.64, + "end": 4974.08, + "probability": 0.6973 + }, + { + "start": 4974.72, + "end": 4979.26, + "probability": 0.8749 + }, + { + "start": 4980.84, + "end": 4981.88, + "probability": 0.5838 + }, + { + "start": 4983.48, + "end": 4984.25, + "probability": 0.4052 + }, + { + "start": 4985.1, + "end": 4986.13, + "probability": 0.3394 + }, + { + "start": 4986.48, + "end": 4989.12, + "probability": 0.7833 + }, + { + "start": 4990.06, + "end": 4992.42, + "probability": 0.9041 + }, + { + "start": 4993.62, + "end": 4994.3, + "probability": 0.6085 + }, + { + "start": 4994.3, + "end": 4995.35, + "probability": 0.8223 + }, + { + "start": 4998.89, + "end": 5002.26, + "probability": 0.9349 + }, + { + "start": 5002.62, + "end": 5004.24, + "probability": 0.3438 + }, + { + "start": 5004.24, + "end": 5006.64, + "probability": 0.7915 + }, + { + "start": 5007.16, + "end": 5007.98, + "probability": 0.681 + }, + { + "start": 5009.22, + "end": 5012.15, + "probability": 0.9464 + }, + { + "start": 5012.24, + "end": 5015.48, + "probability": 0.9946 + }, + { + "start": 5015.9, + "end": 5018.82, + "probability": 0.8011 + }, + { + "start": 5026.76, + "end": 5028.0, + "probability": 0.6489 + }, + { + "start": 5028.1, + "end": 5029.26, + "probability": 0.7227 + }, + { + "start": 5029.5, + "end": 5035.94, + "probability": 0.9858 + }, + { + "start": 5037.24, + "end": 5041.48, + "probability": 0.9808 + }, + { + "start": 5042.0, + "end": 5045.84, + "probability": 0.9939 + }, + { + "start": 5046.14, + "end": 5049.3, + "probability": 0.6575 + }, + { + "start": 5049.38, + "end": 5050.46, + "probability": 0.8703 + }, + { + "start": 5051.0, + "end": 5056.44, + "probability": 0.9873 + }, + { + "start": 5056.52, + "end": 5056.96, + "probability": 0.8611 + }, + { + "start": 5057.44, + "end": 5058.32, + "probability": 0.8096 + }, + { + "start": 5058.86, + "end": 5059.68, + "probability": 0.9402 + }, + { + "start": 5061.4, + "end": 5065.38, + "probability": 0.8974 + }, + { + "start": 5066.3, + "end": 5066.52, + "probability": 0.7249 + }, + { + "start": 5067.14, + "end": 5067.42, + "probability": 0.7363 + }, + { + "start": 5069.46, + "end": 5073.6, + "probability": 0.8172 + }, + { + "start": 5075.28, + "end": 5077.98, + "probability": 0.6611 + }, + { + "start": 5083.27, + "end": 5084.42, + "probability": 0.0887 + }, + { + "start": 5085.48, + "end": 5088.18, + "probability": 0.0486 + }, + { + "start": 5088.94, + "end": 5090.58, + "probability": 0.5679 + }, + { + "start": 5097.1, + "end": 5097.84, + "probability": 0.0174 + }, + { + "start": 5098.81, + "end": 5100.56, + "probability": 0.0753 + }, + { + "start": 5101.18, + "end": 5103.56, + "probability": 0.3149 + }, + { + "start": 5104.94, + "end": 5105.64, + "probability": 0.4554 + }, + { + "start": 5113.14, + "end": 5114.45, + "probability": 0.7076 + }, + { + "start": 5114.52, + "end": 5115.36, + "probability": 0.3723 + }, + { + "start": 5115.36, + "end": 5116.2, + "probability": 0.931 + }, + { + "start": 5116.32, + "end": 5117.28, + "probability": 0.6777 + }, + { + "start": 5117.9, + "end": 5118.82, + "probability": 0.7615 + }, + { + "start": 5119.7, + "end": 5120.62, + "probability": 0.5998 + }, + { + "start": 5120.62, + "end": 5122.66, + "probability": 0.9902 + }, + { + "start": 5122.84, + "end": 5124.0, + "probability": 0.9474 + }, + { + "start": 5124.6, + "end": 5128.66, + "probability": 0.4052 + }, + { + "start": 5129.52, + "end": 5133.48, + "probability": 0.8833 + }, + { + "start": 5133.48, + "end": 5134.02, + "probability": 0.6196 + }, + { + "start": 5134.58, + "end": 5137.38, + "probability": 0.9241 + }, + { + "start": 5138.52, + "end": 5140.82, + "probability": 0.3041 + }, + { + "start": 5141.7, + "end": 5145.4, + "probability": 0.6157 + }, + { + "start": 5145.86, + "end": 5146.24, + "probability": 0.9565 + }, + { + "start": 5149.42, + "end": 5152.76, + "probability": 0.981 + }, + { + "start": 5152.94, + "end": 5153.84, + "probability": 0.897 + }, + { + "start": 5154.28, + "end": 5156.92, + "probability": 0.916 + }, + { + "start": 5158.36, + "end": 5159.8, + "probability": 0.7638 + }, + { + "start": 5160.36, + "end": 5161.2, + "probability": 0.6604 + }, + { + "start": 5161.24, + "end": 5161.96, + "probability": 0.7289 + }, + { + "start": 5162.12, + "end": 5162.98, + "probability": 0.8402 + }, + { + "start": 5163.08, + "end": 5164.09, + "probability": 0.7948 + }, + { + "start": 5164.24, + "end": 5166.06, + "probability": 0.84 + }, + { + "start": 5166.62, + "end": 5168.84, + "probability": 0.4008 + }, + { + "start": 5168.84, + "end": 5169.76, + "probability": 0.8179 + }, + { + "start": 5169.8, + "end": 5170.4, + "probability": 0.8576 + }, + { + "start": 5171.26, + "end": 5174.68, + "probability": 0.9927 + }, + { + "start": 5175.16, + "end": 5182.08, + "probability": 0.9836 + }, + { + "start": 5183.0, + "end": 5187.14, + "probability": 0.9838 + }, + { + "start": 5187.96, + "end": 5192.65, + "probability": 0.7983 + }, + { + "start": 5193.38, + "end": 5199.78, + "probability": 0.9819 + }, + { + "start": 5199.78, + "end": 5209.06, + "probability": 0.9688 + }, + { + "start": 5209.06, + "end": 5219.1, + "probability": 0.9793 + }, + { + "start": 5220.24, + "end": 5227.3, + "probability": 0.9497 + }, + { + "start": 5227.42, + "end": 5230.48, + "probability": 0.9662 + }, + { + "start": 5230.52, + "end": 5231.85, + "probability": 0.8909 + }, + { + "start": 5233.18, + "end": 5234.83, + "probability": 0.9819 + }, + { + "start": 5237.52, + "end": 5238.42, + "probability": 0.8043 + }, + { + "start": 5239.52, + "end": 5247.6, + "probability": 0.9789 + }, + { + "start": 5247.76, + "end": 5249.26, + "probability": 0.9523 + }, + { + "start": 5250.02, + "end": 5258.84, + "probability": 0.9933 + }, + { + "start": 5259.92, + "end": 5264.9, + "probability": 0.9691 + }, + { + "start": 5265.58, + "end": 5272.08, + "probability": 0.9867 + }, + { + "start": 5272.84, + "end": 5276.8, + "probability": 0.9463 + }, + { + "start": 5278.34, + "end": 5279.44, + "probability": 0.7845 + }, + { + "start": 5279.8, + "end": 5280.54, + "probability": 0.7278 + }, + { + "start": 5280.62, + "end": 5282.27, + "probability": 0.9146 + }, + { + "start": 5282.44, + "end": 5287.6, + "probability": 0.8727 + }, + { + "start": 5288.2, + "end": 5290.42, + "probability": 0.8889 + }, + { + "start": 5290.54, + "end": 5292.44, + "probability": 0.5608 + }, + { + "start": 5292.66, + "end": 5297.38, + "probability": 0.825 + }, + { + "start": 5297.38, + "end": 5301.58, + "probability": 0.9919 + }, + { + "start": 5302.78, + "end": 5306.42, + "probability": 0.9574 + }, + { + "start": 5306.78, + "end": 5308.59, + "probability": 0.9914 + }, + { + "start": 5309.94, + "end": 5313.0, + "probability": 0.8013 + }, + { + "start": 5313.16, + "end": 5313.58, + "probability": 0.7413 + }, + { + "start": 5313.74, + "end": 5317.9, + "probability": 0.9707 + }, + { + "start": 5318.62, + "end": 5327.82, + "probability": 0.9862 + }, + { + "start": 5328.22, + "end": 5328.62, + "probability": 0.8441 + }, + { + "start": 5329.12, + "end": 5330.23, + "probability": 0.5941 + }, + { + "start": 5330.89, + "end": 5331.6, + "probability": 0.9559 + }, + { + "start": 5333.16, + "end": 5334.72, + "probability": 0.2197 + }, + { + "start": 5335.16, + "end": 5336.8, + "probability": 0.78 + }, + { + "start": 5338.21, + "end": 5343.22, + "probability": 0.7013 + }, + { + "start": 5343.74, + "end": 5347.8, + "probability": 0.9734 + }, + { + "start": 5350.08, + "end": 5353.36, + "probability": 0.9445 + }, + { + "start": 5353.36, + "end": 5355.33, + "probability": 0.6011 + }, + { + "start": 5356.3, + "end": 5359.9, + "probability": 0.8282 + }, + { + "start": 5361.86, + "end": 5362.94, + "probability": 0.9642 + }, + { + "start": 5363.54, + "end": 5364.95, + "probability": 0.952 + }, + { + "start": 5379.18, + "end": 5381.8, + "probability": 0.6119 + }, + { + "start": 5381.88, + "end": 5382.4, + "probability": 0.7557 + }, + { + "start": 5383.82, + "end": 5384.7, + "probability": 0.726 + }, + { + "start": 5384.9, + "end": 5385.38, + "probability": 0.8707 + }, + { + "start": 5385.52, + "end": 5386.48, + "probability": 0.7125 + }, + { + "start": 5386.56, + "end": 5387.1, + "probability": 0.6044 + }, + { + "start": 5387.52, + "end": 5387.72, + "probability": 0.5517 + }, + { + "start": 5388.84, + "end": 5394.64, + "probability": 0.9785 + }, + { + "start": 5394.64, + "end": 5398.46, + "probability": 0.999 + }, + { + "start": 5398.56, + "end": 5399.85, + "probability": 0.9967 + }, + { + "start": 5400.4, + "end": 5402.1, + "probability": 0.9889 + }, + { + "start": 5402.1, + "end": 5405.56, + "probability": 0.9986 + }, + { + "start": 5406.14, + "end": 5410.6, + "probability": 0.9722 + }, + { + "start": 5410.71, + "end": 5412.12, + "probability": 0.5259 + }, + { + "start": 5412.3, + "end": 5413.59, + "probability": 0.9779 + }, + { + "start": 5414.12, + "end": 5419.66, + "probability": 0.9951 + }, + { + "start": 5419.96, + "end": 5423.14, + "probability": 0.9946 + }, + { + "start": 5424.32, + "end": 5425.26, + "probability": 0.9956 + }, + { + "start": 5426.08, + "end": 5429.31, + "probability": 0.9873 + }, + { + "start": 5430.08, + "end": 5432.38, + "probability": 0.7314 + }, + { + "start": 5432.5, + "end": 5433.28, + "probability": 0.7362 + }, + { + "start": 5433.38, + "end": 5434.9, + "probability": 0.967 + }, + { + "start": 5434.94, + "end": 5439.04, + "probability": 0.7966 + }, + { + "start": 5439.7, + "end": 5441.3, + "probability": 0.7484 + }, + { + "start": 5441.44, + "end": 5442.14, + "probability": 0.79 + }, + { + "start": 5442.18, + "end": 5445.78, + "probability": 0.9892 + }, + { + "start": 5446.74, + "end": 5448.82, + "probability": 0.7632 + }, + { + "start": 5448.82, + "end": 5451.9, + "probability": 0.9339 + }, + { + "start": 5452.66, + "end": 5454.48, + "probability": 0.9185 + }, + { + "start": 5455.48, + "end": 5458.86, + "probability": 0.9911 + }, + { + "start": 5459.2, + "end": 5460.4, + "probability": 0.9159 + }, + { + "start": 5460.9, + "end": 5464.34, + "probability": 0.9915 + }, + { + "start": 5464.42, + "end": 5465.86, + "probability": 0.9381 + }, + { + "start": 5466.68, + "end": 5471.52, + "probability": 0.9909 + }, + { + "start": 5471.62, + "end": 5476.42, + "probability": 0.8368 + }, + { + "start": 5476.42, + "end": 5481.0, + "probability": 0.9986 + }, + { + "start": 5481.68, + "end": 5484.76, + "probability": 0.9391 + }, + { + "start": 5485.16, + "end": 5487.26, + "probability": 0.9146 + }, + { + "start": 5487.46, + "end": 5491.72, + "probability": 0.998 + }, + { + "start": 5492.26, + "end": 5497.9, + "probability": 0.9878 + }, + { + "start": 5498.0, + "end": 5502.64, + "probability": 0.9513 + }, + { + "start": 5502.98, + "end": 5504.12, + "probability": 0.8837 + }, + { + "start": 5504.3, + "end": 5505.0, + "probability": 0.4836 + }, + { + "start": 5505.58, + "end": 5506.42, + "probability": 0.9705 + }, + { + "start": 5506.68, + "end": 5508.5, + "probability": 0.9935 + }, + { + "start": 5508.72, + "end": 5512.44, + "probability": 0.9915 + }, + { + "start": 5512.84, + "end": 5515.86, + "probability": 0.7154 + }, + { + "start": 5516.44, + "end": 5518.08, + "probability": 0.9766 + }, + { + "start": 5518.6, + "end": 5521.9, + "probability": 0.9087 + }, + { + "start": 5521.98, + "end": 5522.28, + "probability": 0.704 + }, + { + "start": 5522.8, + "end": 5523.4, + "probability": 0.7626 + }, + { + "start": 5523.58, + "end": 5529.08, + "probability": 0.9521 + }, + { + "start": 5537.62, + "end": 5539.02, + "probability": 0.2488 + }, + { + "start": 5539.26, + "end": 5539.48, + "probability": 0.6138 + }, + { + "start": 5550.76, + "end": 5551.9, + "probability": 0.5198 + }, + { + "start": 5551.94, + "end": 5553.24, + "probability": 0.8097 + }, + { + "start": 5553.42, + "end": 5557.54, + "probability": 0.9638 + }, + { + "start": 5557.62, + "end": 5562.02, + "probability": 0.8537 + }, + { + "start": 5562.94, + "end": 5566.6, + "probability": 0.8774 + }, + { + "start": 5566.66, + "end": 5569.68, + "probability": 0.4053 + }, + { + "start": 5569.72, + "end": 5571.42, + "probability": 0.3754 + }, + { + "start": 5572.08, + "end": 5576.71, + "probability": 0.9478 + }, + { + "start": 5577.0, + "end": 5580.76, + "probability": 0.9258 + }, + { + "start": 5581.46, + "end": 5584.72, + "probability": 0.9532 + }, + { + "start": 5584.72, + "end": 5590.8, + "probability": 0.9968 + }, + { + "start": 5591.36, + "end": 5594.62, + "probability": 0.9668 + }, + { + "start": 5594.74, + "end": 5598.4, + "probability": 0.9812 + }, + { + "start": 5598.44, + "end": 5602.9, + "probability": 0.8541 + }, + { + "start": 5604.44, + "end": 5604.92, + "probability": 0.4578 + }, + { + "start": 5604.96, + "end": 5610.54, + "probability": 0.8678 + }, + { + "start": 5611.02, + "end": 5614.2, + "probability": 0.768 + }, + { + "start": 5614.22, + "end": 5620.6, + "probability": 0.9551 + }, + { + "start": 5620.6, + "end": 5625.9, + "probability": 0.8758 + }, + { + "start": 5630.12, + "end": 5631.74, + "probability": 0.8738 + }, + { + "start": 5632.0, + "end": 5634.04, + "probability": 0.9631 + }, + { + "start": 5634.32, + "end": 5639.66, + "probability": 0.9742 + }, + { + "start": 5639.66, + "end": 5644.32, + "probability": 0.964 + }, + { + "start": 5645.14, + "end": 5649.28, + "probability": 0.9847 + }, + { + "start": 5650.28, + "end": 5653.68, + "probability": 0.9153 + }, + { + "start": 5653.68, + "end": 5658.12, + "probability": 0.8824 + }, + { + "start": 5658.9, + "end": 5660.02, + "probability": 0.6988 + }, + { + "start": 5660.06, + "end": 5662.74, + "probability": 0.8695 + }, + { + "start": 5663.2, + "end": 5666.28, + "probability": 0.9589 + }, + { + "start": 5666.66, + "end": 5669.18, + "probability": 0.969 + }, + { + "start": 5670.22, + "end": 5673.58, + "probability": 0.9081 + }, + { + "start": 5673.76, + "end": 5678.32, + "probability": 0.908 + }, + { + "start": 5678.32, + "end": 5682.58, + "probability": 0.951 + }, + { + "start": 5683.26, + "end": 5685.16, + "probability": 0.9635 + }, + { + "start": 5685.18, + "end": 5686.88, + "probability": 0.7378 + }, + { + "start": 5687.02, + "end": 5690.04, + "probability": 0.754 + }, + { + "start": 5690.98, + "end": 5694.88, + "probability": 0.7758 + }, + { + "start": 5698.08, + "end": 5698.92, + "probability": 0.9519 + }, + { + "start": 5710.46, + "end": 5713.42, + "probability": 0.6569 + }, + { + "start": 5714.22, + "end": 5717.9, + "probability": 0.9779 + }, + { + "start": 5720.0, + "end": 5722.06, + "probability": 0.7966 + }, + { + "start": 5722.3, + "end": 5724.46, + "probability": 0.9026 + }, + { + "start": 5724.86, + "end": 5729.26, + "probability": 0.9868 + }, + { + "start": 5730.12, + "end": 5731.54, + "probability": 0.9189 + }, + { + "start": 5731.64, + "end": 5732.98, + "probability": 0.9658 + }, + { + "start": 5733.12, + "end": 5734.88, + "probability": 0.8325 + }, + { + "start": 5736.94, + "end": 5743.0, + "probability": 0.9838 + }, + { + "start": 5743.0, + "end": 5748.98, + "probability": 0.9982 + }, + { + "start": 5748.98, + "end": 5754.42, + "probability": 0.8861 + }, + { + "start": 5755.14, + "end": 5759.96, + "probability": 0.9435 + }, + { + "start": 5760.56, + "end": 5767.72, + "probability": 0.7913 + }, + { + "start": 5768.46, + "end": 5770.74, + "probability": 0.6119 + }, + { + "start": 5771.74, + "end": 5776.7, + "probability": 0.8728 + }, + { + "start": 5778.26, + "end": 5782.2, + "probability": 0.9757 + }, + { + "start": 5782.2, + "end": 5786.68, + "probability": 0.7379 + }, + { + "start": 5787.22, + "end": 5788.54, + "probability": 0.9482 + }, + { + "start": 5789.7, + "end": 5793.56, + "probability": 0.9705 + }, + { + "start": 5793.82, + "end": 5794.42, + "probability": 0.8554 + }, + { + "start": 5794.42, + "end": 5795.44, + "probability": 0.7132 + }, + { + "start": 5795.62, + "end": 5797.02, + "probability": 0.9587 + }, + { + "start": 5797.3, + "end": 5801.26, + "probability": 0.7965 + }, + { + "start": 5801.68, + "end": 5805.34, + "probability": 0.9579 + }, + { + "start": 5805.66, + "end": 5805.8, + "probability": 0.7524 + }, + { + "start": 5805.92, + "end": 5808.62, + "probability": 0.6614 + }, + { + "start": 5808.82, + "end": 5812.5, + "probability": 0.9717 + }, + { + "start": 5812.7, + "end": 5814.0, + "probability": 0.9395 + }, + { + "start": 5814.44, + "end": 5816.18, + "probability": 0.8822 + }, + { + "start": 5816.52, + "end": 5818.46, + "probability": 0.9297 + }, + { + "start": 5819.18, + "end": 5821.08, + "probability": 0.9324 + }, + { + "start": 5821.38, + "end": 5829.74, + "probability": 0.9806 + }, + { + "start": 5830.18, + "end": 5833.0, + "probability": 0.9636 + }, + { + "start": 5833.32, + "end": 5834.08, + "probability": 0.4504 + }, + { + "start": 5834.4, + "end": 5838.82, + "probability": 0.5177 + }, + { + "start": 5839.54, + "end": 5840.42, + "probability": 0.8103 + }, + { + "start": 5840.92, + "end": 5846.2, + "probability": 0.9921 + }, + { + "start": 5846.28, + "end": 5848.2, + "probability": 0.8789 + }, + { + "start": 5848.46, + "end": 5851.2, + "probability": 0.6051 + }, + { + "start": 5852.36, + "end": 5856.54, + "probability": 0.9028 + }, + { + "start": 5857.14, + "end": 5861.46, + "probability": 0.8638 + }, + { + "start": 5862.08, + "end": 5865.44, + "probability": 0.9957 + }, + { + "start": 5866.68, + "end": 5868.36, + "probability": 0.4879 + }, + { + "start": 5868.96, + "end": 5870.86, + "probability": 0.7433 + }, + { + "start": 5870.94, + "end": 5874.88, + "probability": 0.7761 + }, + { + "start": 5874.92, + "end": 5877.66, + "probability": 0.761 + }, + { + "start": 5878.4, + "end": 5881.02, + "probability": 0.9761 + }, + { + "start": 5881.54, + "end": 5883.0, + "probability": 0.7602 + }, + { + "start": 5883.54, + "end": 5887.98, + "probability": 0.9713 + }, + { + "start": 5888.34, + "end": 5891.02, + "probability": 0.8358 + }, + { + "start": 5891.3, + "end": 5891.88, + "probability": 0.4263 + }, + { + "start": 5891.94, + "end": 5896.48, + "probability": 0.9065 + }, + { + "start": 5897.14, + "end": 5899.66, + "probability": 0.9848 + }, + { + "start": 5899.82, + "end": 5901.42, + "probability": 0.9348 + }, + { + "start": 5901.44, + "end": 5904.16, + "probability": 0.603 + }, + { + "start": 5904.68, + "end": 5906.51, + "probability": 0.2671 + }, + { + "start": 5907.08, + "end": 5907.08, + "probability": 0.6899 + }, + { + "start": 5907.8, + "end": 5909.32, + "probability": 0.0606 + }, + { + "start": 5909.82, + "end": 5910.4, + "probability": 0.0059 + }, + { + "start": 5911.42, + "end": 5913.88, + "probability": 0.5504 + }, + { + "start": 5913.9, + "end": 5919.78, + "probability": 0.934 + }, + { + "start": 5919.86, + "end": 5920.76, + "probability": 0.8113 + }, + { + "start": 5921.44, + "end": 5921.68, + "probability": 0.6789 + }, + { + "start": 5921.68, + "end": 5922.88, + "probability": 0.9438 + }, + { + "start": 5937.5, + "end": 5938.52, + "probability": 0.6186 + }, + { + "start": 5948.22, + "end": 5949.46, + "probability": 0.13 + }, + { + "start": 5950.86, + "end": 5957.98, + "probability": 0.1771 + }, + { + "start": 5957.98, + "end": 5961.2, + "probability": 0.025 + }, + { + "start": 5961.76, + "end": 5962.82, + "probability": 0.0392 + }, + { + "start": 5962.82, + "end": 5966.82, + "probability": 0.1603 + }, + { + "start": 5979.12, + "end": 5980.03, + "probability": 0.0678 + }, + { + "start": 5980.52, + "end": 5981.92, + "probability": 0.3876 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6018.0, + "end": 6018.0, + "probability": 0.0 + }, + { + "start": 6029.7, + "end": 6032.54, + "probability": 0.3625 + }, + { + "start": 6032.64, + "end": 6036.75, + "probability": 0.9408 + }, + { + "start": 6037.7, + "end": 6039.44, + "probability": 0.9797 + }, + { + "start": 6040.25, + "end": 6043.12, + "probability": 0.4456 + }, + { + "start": 6043.46, + "end": 6044.9, + "probability": 0.7313 + }, + { + "start": 6045.02, + "end": 6046.38, + "probability": 0.8139 + }, + { + "start": 6046.84, + "end": 6053.04, + "probability": 0.871 + }, + { + "start": 6054.02, + "end": 6055.45, + "probability": 0.6664 + }, + { + "start": 6055.76, + "end": 6060.98, + "probability": 0.975 + }, + { + "start": 6061.42, + "end": 6066.72, + "probability": 0.8774 + }, + { + "start": 6066.92, + "end": 6067.62, + "probability": 0.5011 + }, + { + "start": 6068.22, + "end": 6071.4, + "probability": 0.9635 + }, + { + "start": 6071.4, + "end": 6075.7, + "probability": 0.9968 + }, + { + "start": 6076.34, + "end": 6077.56, + "probability": 0.7912 + }, + { + "start": 6078.14, + "end": 6084.54, + "probability": 0.9976 + }, + { + "start": 6085.02, + "end": 6090.84, + "probability": 0.9971 + }, + { + "start": 6091.62, + "end": 6093.5, + "probability": 0.6828 + }, + { + "start": 6094.06, + "end": 6096.7, + "probability": 0.8932 + }, + { + "start": 6097.14, + "end": 6101.12, + "probability": 0.9947 + }, + { + "start": 6101.12, + "end": 6106.3, + "probability": 0.8405 + }, + { + "start": 6106.88, + "end": 6111.88, + "probability": 0.9832 + }, + { + "start": 6111.88, + "end": 6115.66, + "probability": 0.9979 + }, + { + "start": 6116.52, + "end": 6119.82, + "probability": 0.7039 + }, + { + "start": 6120.64, + "end": 6129.1, + "probability": 0.9889 + }, + { + "start": 6129.88, + "end": 6132.8, + "probability": 0.0913 + }, + { + "start": 6133.56, + "end": 6134.58, + "probability": 0.0479 + }, + { + "start": 6134.58, + "end": 6137.26, + "probability": 0.4565 + }, + { + "start": 6137.58, + "end": 6140.34, + "probability": 0.6994 + }, + { + "start": 6140.5, + "end": 6140.82, + "probability": 0.9355 + }, + { + "start": 6140.92, + "end": 6143.28, + "probability": 0.9702 + }, + { + "start": 6143.72, + "end": 6147.0, + "probability": 0.9569 + }, + { + "start": 6147.4, + "end": 6149.46, + "probability": 0.9406 + }, + { + "start": 6149.54, + "end": 6150.12, + "probability": 0.4126 + }, + { + "start": 6150.28, + "end": 6151.42, + "probability": 0.8113 + }, + { + "start": 6151.9, + "end": 6157.04, + "probability": 0.9928 + }, + { + "start": 6157.5, + "end": 6160.0, + "probability": 0.8892 + }, + { + "start": 6160.56, + "end": 6161.38, + "probability": 0.9584 + }, + { + "start": 6162.36, + "end": 6166.84, + "probability": 0.9306 + }, + { + "start": 6167.54, + "end": 6168.18, + "probability": 0.7274 + }, + { + "start": 6168.44, + "end": 6168.58, + "probability": 0.2626 + }, + { + "start": 6168.72, + "end": 6173.94, + "probability": 0.8889 + }, + { + "start": 6174.2, + "end": 6176.52, + "probability": 0.8627 + }, + { + "start": 6176.96, + "end": 6181.42, + "probability": 0.9867 + }, + { + "start": 6181.96, + "end": 6182.42, + "probability": 0.8259 + }, + { + "start": 6182.64, + "end": 6190.18, + "probability": 0.9513 + }, + { + "start": 6190.94, + "end": 6193.92, + "probability": 0.9939 + }, + { + "start": 6194.42, + "end": 6201.16, + "probability": 0.985 + }, + { + "start": 6201.54, + "end": 6203.08, + "probability": 0.6318 + }, + { + "start": 6203.84, + "end": 6207.08, + "probability": 0.8391 + }, + { + "start": 6207.82, + "end": 6210.8, + "probability": 0.9287 + }, + { + "start": 6211.1, + "end": 6213.76, + "probability": 0.9622 + }, + { + "start": 6214.16, + "end": 6218.52, + "probability": 0.9665 + }, + { + "start": 6219.6, + "end": 6225.02, + "probability": 0.9771 + }, + { + "start": 6225.98, + "end": 6231.02, + "probability": 0.9928 + }, + { + "start": 6231.6, + "end": 6235.26, + "probability": 0.9681 + }, + { + "start": 6235.52, + "end": 6238.46, + "probability": 0.9296 + }, + { + "start": 6238.7, + "end": 6245.4, + "probability": 0.9762 + }, + { + "start": 6246.06, + "end": 6246.06, + "probability": 0.0755 + }, + { + "start": 6246.06, + "end": 6246.44, + "probability": 0.1974 + }, + { + "start": 6246.46, + "end": 6254.52, + "probability": 0.876 + }, + { + "start": 6255.32, + "end": 6256.82, + "probability": 0.2556 + }, + { + "start": 6256.84, + "end": 6259.64, + "probability": 0.9576 + }, + { + "start": 6260.1, + "end": 6261.4, + "probability": 0.8453 + }, + { + "start": 6262.0, + "end": 6263.3, + "probability": 0.6595 + }, + { + "start": 6263.4, + "end": 6269.08, + "probability": 0.9599 + }, + { + "start": 6269.62, + "end": 6270.84, + "probability": 0.8032 + }, + { + "start": 6272.34, + "end": 6278.74, + "probability": 0.9567 + }, + { + "start": 6279.26, + "end": 6280.1, + "probability": 0.772 + }, + { + "start": 6280.24, + "end": 6282.1, + "probability": 0.9102 + }, + { + "start": 6282.64, + "end": 6285.44, + "probability": 0.8714 + }, + { + "start": 6285.82, + "end": 6294.8, + "probability": 0.9621 + }, + { + "start": 6294.9, + "end": 6295.8, + "probability": 0.7156 + }, + { + "start": 6296.1, + "end": 6298.02, + "probability": 0.599 + }, + { + "start": 6298.1, + "end": 6298.66, + "probability": 0.477 + }, + { + "start": 6298.82, + "end": 6298.82, + "probability": 0.4991 + }, + { + "start": 6298.82, + "end": 6300.34, + "probability": 0.8239 + }, + { + "start": 6300.96, + "end": 6305.22, + "probability": 0.9651 + }, + { + "start": 6305.24, + "end": 6308.26, + "probability": 0.9997 + }, + { + "start": 6309.1, + "end": 6314.18, + "probability": 0.9832 + }, + { + "start": 6314.48, + "end": 6316.4, + "probability": 0.8835 + }, + { + "start": 6316.7, + "end": 6323.84, + "probability": 0.9875 + }, + { + "start": 6324.48, + "end": 6329.42, + "probability": 0.9847 + }, + { + "start": 6329.76, + "end": 6332.94, + "probability": 0.9145 + }, + { + "start": 6333.1, + "end": 6333.44, + "probability": 0.5404 + }, + { + "start": 6333.44, + "end": 6333.44, + "probability": 0.3944 + }, + { + "start": 6333.52, + "end": 6334.28, + "probability": 0.7416 + }, + { + "start": 6334.62, + "end": 6334.98, + "probability": 0.3344 + }, + { + "start": 6339.02, + "end": 6341.18, + "probability": 0.5478 + }, + { + "start": 6365.48, + "end": 6366.38, + "probability": 0.7385 + }, + { + "start": 6366.52, + "end": 6369.24, + "probability": 0.7772 + }, + { + "start": 6369.34, + "end": 6370.02, + "probability": 0.569 + }, + { + "start": 6370.86, + "end": 6375.8, + "probability": 0.8466 + }, + { + "start": 6376.52, + "end": 6377.88, + "probability": 0.1197 + }, + { + "start": 6377.96, + "end": 6381.74, + "probability": 0.976 + }, + { + "start": 6381.86, + "end": 6385.52, + "probability": 0.9914 + }, + { + "start": 6386.24, + "end": 6388.74, + "probability": 0.8462 + }, + { + "start": 6389.7, + "end": 6395.44, + "probability": 0.994 + }, + { + "start": 6395.98, + "end": 6400.46, + "probability": 0.9031 + }, + { + "start": 6401.24, + "end": 6404.18, + "probability": 0.895 + }, + { + "start": 6404.72, + "end": 6406.96, + "probability": 0.9661 + }, + { + "start": 6408.2, + "end": 6413.48, + "probability": 0.9866 + }, + { + "start": 6413.58, + "end": 6416.33, + "probability": 0.9581 + }, + { + "start": 6416.76, + "end": 6418.14, + "probability": 0.852 + }, + { + "start": 6419.22, + "end": 6422.36, + "probability": 0.8366 + }, + { + "start": 6422.36, + "end": 6426.26, + "probability": 0.9656 + }, + { + "start": 6427.06, + "end": 6428.75, + "probability": 0.0144 + }, + { + "start": 6430.46, + "end": 6430.56, + "probability": 0.1504 + }, + { + "start": 6431.42, + "end": 6432.38, + "probability": 0.2749 + }, + { + "start": 6432.44, + "end": 6432.46, + "probability": 0.1349 + }, + { + "start": 6432.46, + "end": 6432.46, + "probability": 0.0091 + }, + { + "start": 6432.46, + "end": 6434.16, + "probability": 0.9806 + }, + { + "start": 6434.22, + "end": 6434.62, + "probability": 0.9124 + }, + { + "start": 6434.7, + "end": 6434.98, + "probability": 0.8236 + }, + { + "start": 6435.0, + "end": 6435.58, + "probability": 0.8708 + }, + { + "start": 6435.66, + "end": 6436.12, + "probability": 0.4836 + }, + { + "start": 6436.4, + "end": 6439.28, + "probability": 0.0781 + }, + { + "start": 6439.28, + "end": 6443.24, + "probability": 0.5444 + }, + { + "start": 6444.14, + "end": 6444.22, + "probability": 0.2236 + }, + { + "start": 6444.22, + "end": 6447.16, + "probability": 0.3252 + }, + { + "start": 6447.7, + "end": 6451.45, + "probability": 0.1693 + }, + { + "start": 6452.66, + "end": 6454.06, + "probability": 0.4013 + }, + { + "start": 6455.74, + "end": 6457.52, + "probability": 0.036 + }, + { + "start": 6458.06, + "end": 6458.06, + "probability": 0.0338 + }, + { + "start": 6458.06, + "end": 6458.76, + "probability": 0.0632 + }, + { + "start": 6458.76, + "end": 6458.76, + "probability": 0.0132 + }, + { + "start": 6458.76, + "end": 6459.5, + "probability": 0.1729 + }, + { + "start": 6459.72, + "end": 6461.38, + "probability": 0.4535 + }, + { + "start": 6462.3, + "end": 6466.7, + "probability": 0.8098 + }, + { + "start": 6466.7, + "end": 6472.08, + "probability": 0.9948 + }, + { + "start": 6472.14, + "end": 6473.96, + "probability": 0.7911 + }, + { + "start": 6474.16, + "end": 6474.92, + "probability": 0.06 + }, + { + "start": 6474.92, + "end": 6474.92, + "probability": 0.0206 + }, + { + "start": 6474.92, + "end": 6479.54, + "probability": 0.4886 + }, + { + "start": 6482.68, + "end": 6482.92, + "probability": 0.0049 + }, + { + "start": 6484.46, + "end": 6484.62, + "probability": 0.1679 + }, + { + "start": 6484.62, + "end": 6485.04, + "probability": 0.0813 + }, + { + "start": 6485.04, + "end": 6485.74, + "probability": 0.3354 + }, + { + "start": 6485.74, + "end": 6485.74, + "probability": 0.2189 + }, + { + "start": 6485.74, + "end": 6485.74, + "probability": 0.1731 + }, + { + "start": 6485.74, + "end": 6486.24, + "probability": 0.206 + }, + { + "start": 6486.46, + "end": 6489.06, + "probability": 0.9659 + }, + { + "start": 6489.22, + "end": 6489.95, + "probability": 0.8242 + }, + { + "start": 6490.32, + "end": 6490.54, + "probability": 0.5301 + }, + { + "start": 6490.56, + "end": 6490.6, + "probability": 0.3643 + }, + { + "start": 6490.6, + "end": 6491.84, + "probability": 0.7274 + }, + { + "start": 6491.84, + "end": 6492.96, + "probability": 0.705 + }, + { + "start": 6492.96, + "end": 6494.08, + "probability": 0.7384 + }, + { + "start": 6494.08, + "end": 6494.22, + "probability": 0.012 + }, + { + "start": 6494.22, + "end": 6495.02, + "probability": 0.8014 + }, + { + "start": 6496.3, + "end": 6499.34, + "probability": 0.7878 + }, + { + "start": 6499.54, + "end": 6502.81, + "probability": 0.9575 + }, + { + "start": 6503.42, + "end": 6505.02, + "probability": 0.9954 + }, + { + "start": 6505.06, + "end": 6506.18, + "probability": 0.9069 + }, + { + "start": 6506.36, + "end": 6507.74, + "probability": 0.0596 + }, + { + "start": 6508.46, + "end": 6511.12, + "probability": 0.3997 + }, + { + "start": 6511.48, + "end": 6513.2, + "probability": 0.9501 + }, + { + "start": 6513.36, + "end": 6515.16, + "probability": 0.7046 + }, + { + "start": 6516.28, + "end": 6518.9, + "probability": 0.1213 + }, + { + "start": 6518.9, + "end": 6520.54, + "probability": 0.1471 + }, + { + "start": 6522.5, + "end": 6526.94, + "probability": 0.7586 + }, + { + "start": 6526.94, + "end": 6530.06, + "probability": 0.9698 + }, + { + "start": 6530.14, + "end": 6531.2, + "probability": 0.8997 + }, + { + "start": 6532.24, + "end": 6532.82, + "probability": 0.4553 + }, + { + "start": 6532.82, + "end": 6535.58, + "probability": 0.8245 + }, + { + "start": 6536.32, + "end": 6539.71, + "probability": 0.6679 + }, + { + "start": 6541.3, + "end": 6543.56, + "probability": 0.9275 + }, + { + "start": 6544.16, + "end": 6545.08, + "probability": 0.97 + }, + { + "start": 6546.2, + "end": 6552.48, + "probability": 0.9385 + }, + { + "start": 6552.74, + "end": 6556.58, + "probability": 0.7284 + }, + { + "start": 6557.46, + "end": 6559.62, + "probability": 0.6769 + }, + { + "start": 6560.06, + "end": 6563.5, + "probability": 0.9642 + }, + { + "start": 6565.18, + "end": 6565.76, + "probability": 0.4177 + }, + { + "start": 6568.54, + "end": 6569.16, + "probability": 0.1229 + }, + { + "start": 6569.16, + "end": 6569.16, + "probability": 0.4012 + }, + { + "start": 6569.16, + "end": 6569.86, + "probability": 0.6326 + }, + { + "start": 6569.86, + "end": 6570.62, + "probability": 0.4714 + }, + { + "start": 6572.78, + "end": 6576.46, + "probability": 0.8528 + }, + { + "start": 6576.64, + "end": 6579.04, + "probability": 0.4906 + }, + { + "start": 6579.44, + "end": 6579.86, + "probability": 0.5443 + }, + { + "start": 6579.86, + "end": 6581.09, + "probability": 0.4817 + }, + { + "start": 6581.72, + "end": 6584.11, + "probability": 0.9964 + }, + { + "start": 6584.58, + "end": 6586.48, + "probability": 0.9859 + }, + { + "start": 6587.18, + "end": 6588.56, + "probability": 0.8746 + }, + { + "start": 6589.12, + "end": 6592.24, + "probability": 0.8313 + }, + { + "start": 6592.52, + "end": 6594.26, + "probability": 0.9901 + }, + { + "start": 6594.36, + "end": 6598.18, + "probability": 0.976 + }, + { + "start": 6598.98, + "end": 6603.66, + "probability": 0.6833 + }, + { + "start": 6604.14, + "end": 6607.06, + "probability": 0.7295 + }, + { + "start": 6607.8, + "end": 6610.9, + "probability": 0.8932 + }, + { + "start": 6610.9, + "end": 6615.26, + "probability": 0.8914 + }, + { + "start": 6615.34, + "end": 6615.38, + "probability": 0.2062 + }, + { + "start": 6616.24, + "end": 6616.36, + "probability": 0.0498 + }, + { + "start": 6616.36, + "end": 6616.76, + "probability": 0.1834 + }, + { + "start": 6616.92, + "end": 6616.96, + "probability": 0.3627 + }, + { + "start": 6617.18, + "end": 6617.98, + "probability": 0.67 + }, + { + "start": 6618.2, + "end": 6622.46, + "probability": 0.9316 + }, + { + "start": 6622.72, + "end": 6624.7, + "probability": 0.9967 + }, + { + "start": 6625.06, + "end": 6626.36, + "probability": 0.8201 + }, + { + "start": 6626.38, + "end": 6628.06, + "probability": 0.98 + }, + { + "start": 6628.18, + "end": 6629.78, + "probability": 0.9653 + }, + { + "start": 6630.32, + "end": 6630.54, + "probability": 0.9023 + }, + { + "start": 6631.94, + "end": 6633.04, + "probability": 0.611 + }, + { + "start": 6633.16, + "end": 6636.02, + "probability": 0.8924 + }, + { + "start": 6636.56, + "end": 6638.9, + "probability": 0.8192 + }, + { + "start": 6639.08, + "end": 6643.76, + "probability": 0.9209 + }, + { + "start": 6644.1, + "end": 6645.8, + "probability": 0.9817 + }, + { + "start": 6645.8, + "end": 6647.36, + "probability": 0.9892 + }, + { + "start": 6648.04, + "end": 6648.64, + "probability": 0.3244 + }, + { + "start": 6648.72, + "end": 6650.16, + "probability": 0.8767 + }, + { + "start": 6650.56, + "end": 6651.26, + "probability": 0.8256 + }, + { + "start": 6652.08, + "end": 6652.86, + "probability": 0.8639 + }, + { + "start": 6653.0, + "end": 6653.6, + "probability": 0.8727 + }, + { + "start": 6653.6, + "end": 6653.97, + "probability": 0.7864 + }, + { + "start": 6654.48, + "end": 6656.2, + "probability": 0.8774 + }, + { + "start": 6656.82, + "end": 6661.69, + "probability": 0.993 + }, + { + "start": 6662.24, + "end": 6665.8, + "probability": 0.9106 + }, + { + "start": 6666.36, + "end": 6669.74, + "probability": 0.8472 + }, + { + "start": 6670.04, + "end": 6673.48, + "probability": 0.9923 + }, + { + "start": 6673.9, + "end": 6675.0, + "probability": 0.6687 + }, + { + "start": 6675.2, + "end": 6677.56, + "probability": 0.9958 + }, + { + "start": 6678.1, + "end": 6681.74, + "probability": 0.9724 + }, + { + "start": 6682.0, + "end": 6684.72, + "probability": 0.9602 + }, + { + "start": 6685.28, + "end": 6691.66, + "probability": 0.7564 + }, + { + "start": 6691.66, + "end": 6691.66, + "probability": 0.0183 + }, + { + "start": 6691.66, + "end": 6692.71, + "probability": 0.382 + }, + { + "start": 6693.56, + "end": 6699.1, + "probability": 0.9459 + }, + { + "start": 6699.46, + "end": 6702.68, + "probability": 0.9626 + }, + { + "start": 6703.24, + "end": 6704.98, + "probability": 0.939 + }, + { + "start": 6707.74, + "end": 6709.1, + "probability": 0.6369 + }, + { + "start": 6709.1, + "end": 6709.1, + "probability": 0.2177 + }, + { + "start": 6709.1, + "end": 6711.14, + "probability": 0.3866 + }, + { + "start": 6711.36, + "end": 6713.16, + "probability": 0.7426 + }, + { + "start": 6713.54, + "end": 6720.57, + "probability": 0.9852 + }, + { + "start": 6721.16, + "end": 6724.5, + "probability": 0.8258 + }, + { + "start": 6724.92, + "end": 6726.73, + "probability": 0.8711 + }, + { + "start": 6727.04, + "end": 6728.06, + "probability": 0.7644 + }, + { + "start": 6728.22, + "end": 6728.46, + "probability": 0.8838 + }, + { + "start": 6728.68, + "end": 6733.58, + "probability": 0.9626 + }, + { + "start": 6734.02, + "end": 6736.22, + "probability": 0.6662 + }, + { + "start": 6736.62, + "end": 6741.06, + "probability": 0.9871 + }, + { + "start": 6741.42, + "end": 6743.66, + "probability": 0.9863 + }, + { + "start": 6743.9, + "end": 6744.12, + "probability": 0.4857 + }, + { + "start": 6744.14, + "end": 6747.7, + "probability": 0.8931 + }, + { + "start": 6747.78, + "end": 6748.88, + "probability": 0.7059 + }, + { + "start": 6749.44, + "end": 6750.24, + "probability": 0.9277 + }, + { + "start": 6750.36, + "end": 6751.52, + "probability": 0.7979 + }, + { + "start": 6751.64, + "end": 6752.88, + "probability": 0.8027 + }, + { + "start": 6753.5, + "end": 6754.94, + "probability": 0.9774 + }, + { + "start": 6755.08, + "end": 6755.5, + "probability": 0.748 + }, + { + "start": 6755.56, + "end": 6755.7, + "probability": 0.1325 + }, + { + "start": 6755.78, + "end": 6756.4, + "probability": 0.8745 + }, + { + "start": 6757.32, + "end": 6757.32, + "probability": 0.3185 + }, + { + "start": 6757.32, + "end": 6761.26, + "probability": 0.7651 + }, + { + "start": 6761.4, + "end": 6762.92, + "probability": 0.5809 + }, + { + "start": 6762.98, + "end": 6763.68, + "probability": 0.5563 + }, + { + "start": 6763.76, + "end": 6764.3, + "probability": 0.8596 + }, + { + "start": 6764.36, + "end": 6765.2, + "probability": 0.7857 + }, + { + "start": 6765.56, + "end": 6766.74, + "probability": 0.8565 + }, + { + "start": 6766.86, + "end": 6769.1, + "probability": 0.9714 + }, + { + "start": 6769.1, + "end": 6773.6, + "probability": 0.9971 + }, + { + "start": 6774.4, + "end": 6775.98, + "probability": 0.7694 + }, + { + "start": 6776.18, + "end": 6776.92, + "probability": 0.8031 + }, + { + "start": 6777.02, + "end": 6778.44, + "probability": 0.7441 + }, + { + "start": 6778.66, + "end": 6782.4, + "probability": 0.9976 + }, + { + "start": 6782.98, + "end": 6785.26, + "probability": 0.9982 + }, + { + "start": 6785.56, + "end": 6787.62, + "probability": 0.6407 + }, + { + "start": 6788.04, + "end": 6791.52, + "probability": 0.6498 + }, + { + "start": 6791.56, + "end": 6794.52, + "probability": 0.9939 + }, + { + "start": 6794.52, + "end": 6798.38, + "probability": 0.9973 + }, + { + "start": 6798.62, + "end": 6800.0, + "probability": 0.8512 + }, + { + "start": 6800.46, + "end": 6801.48, + "probability": 0.8526 + }, + { + "start": 6801.66, + "end": 6803.28, + "probability": 0.9203 + }, + { + "start": 6803.38, + "end": 6804.4, + "probability": 0.7994 + }, + { + "start": 6808.36, + "end": 6812.66, + "probability": 0.651 + }, + { + "start": 6813.08, + "end": 6814.44, + "probability": 0.7246 + }, + { + "start": 6814.88, + "end": 6816.54, + "probability": 0.6641 + }, + { + "start": 6817.2, + "end": 6819.88, + "probability": 0.9529 + }, + { + "start": 6820.62, + "end": 6826.22, + "probability": 0.9536 + }, + { + "start": 6826.86, + "end": 6828.4, + "probability": 0.866 + }, + { + "start": 6828.9, + "end": 6829.88, + "probability": 0.817 + }, + { + "start": 6829.96, + "end": 6831.26, + "probability": 0.8975 + }, + { + "start": 6831.56, + "end": 6835.3, + "probability": 0.989 + }, + { + "start": 6835.76, + "end": 6838.66, + "probability": 0.9914 + }, + { + "start": 6838.66, + "end": 6841.52, + "probability": 0.998 + }, + { + "start": 6841.52, + "end": 6841.8, + "probability": 0.6022 + }, + { + "start": 6841.82, + "end": 6842.6, + "probability": 0.7872 + }, + { + "start": 6842.78, + "end": 6843.28, + "probability": 0.7396 + }, + { + "start": 6843.36, + "end": 6846.14, + "probability": 0.7669 + }, + { + "start": 6846.38, + "end": 6847.92, + "probability": 0.8378 + }, + { + "start": 6847.92, + "end": 6848.18, + "probability": 0.0706 + }, + { + "start": 6848.32, + "end": 6849.66, + "probability": 0.4002 + }, + { + "start": 6849.96, + "end": 6852.56, + "probability": 0.6781 + }, + { + "start": 6852.56, + "end": 6854.94, + "probability": 0.5917 + }, + { + "start": 6854.94, + "end": 6857.84, + "probability": 0.9977 + }, + { + "start": 6857.94, + "end": 6858.96, + "probability": 0.4898 + }, + { + "start": 6859.02, + "end": 6859.84, + "probability": 0.7208 + }, + { + "start": 6859.9, + "end": 6864.2, + "probability": 0.9654 + }, + { + "start": 6864.42, + "end": 6865.86, + "probability": 0.6874 + }, + { + "start": 6865.86, + "end": 6866.32, + "probability": 0.593 + }, + { + "start": 6866.32, + "end": 6868.36, + "probability": 0.6987 + }, + { + "start": 6868.54, + "end": 6868.84, + "probability": 0.5688 + }, + { + "start": 6868.84, + "end": 6870.46, + "probability": 0.7692 + }, + { + "start": 6870.66, + "end": 6871.0, + "probability": 0.8135 + }, + { + "start": 6871.02, + "end": 6872.94, + "probability": 0.8273 + }, + { + "start": 6873.1, + "end": 6874.46, + "probability": 0.8958 + }, + { + "start": 6874.58, + "end": 6875.94, + "probability": 0.5284 + }, + { + "start": 6876.16, + "end": 6877.08, + "probability": 0.8166 + }, + { + "start": 6877.48, + "end": 6879.8, + "probability": 0.9385 + }, + { + "start": 6879.8, + "end": 6882.96, + "probability": 0.8595 + }, + { + "start": 6883.0, + "end": 6885.36, + "probability": 0.979 + }, + { + "start": 6885.5, + "end": 6885.68, + "probability": 0.3361 + }, + { + "start": 6885.68, + "end": 6885.9, + "probability": 0.2012 + }, + { + "start": 6885.9, + "end": 6890.12, + "probability": 0.9346 + }, + { + "start": 6890.28, + "end": 6892.42, + "probability": 0.8148 + }, + { + "start": 6892.88, + "end": 6898.68, + "probability": 0.9389 + }, + { + "start": 6898.78, + "end": 6899.56, + "probability": 0.7826 + }, + { + "start": 6900.42, + "end": 6903.52, + "probability": 0.5577 + }, + { + "start": 6903.98, + "end": 6905.52, + "probability": 0.9155 + }, + { + "start": 6906.14, + "end": 6906.14, + "probability": 0.179 + }, + { + "start": 6906.16, + "end": 6907.3, + "probability": 0.8713 + }, + { + "start": 6912.4, + "end": 6912.92, + "probability": 0.1521 + }, + { + "start": 6912.92, + "end": 6915.94, + "probability": 0.7742 + }, + { + "start": 6921.93, + "end": 6924.18, + "probability": 0.3357 + }, + { + "start": 6926.48, + "end": 6928.12, + "probability": 0.0805 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.0324 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.3487 + }, + { + "start": 6930.08, + "end": 6930.08, + "probability": 0.0541 + }, + { + "start": 6930.08, + "end": 6933.8, + "probability": 0.484 + }, + { + "start": 6934.18, + "end": 6939.18, + "probability": 0.9486 + }, + { + "start": 6940.64, + "end": 6944.52, + "probability": 0.0257 + }, + { + "start": 6945.32, + "end": 6947.9, + "probability": 0.3296 + }, + { + "start": 6949.68, + "end": 6950.96, + "probability": 0.803 + }, + { + "start": 6951.04, + "end": 6952.24, + "probability": 0.5426 + }, + { + "start": 6952.34, + "end": 6954.48, + "probability": 0.6593 + }, + { + "start": 6955.48, + "end": 6959.4, + "probability": 0.923 + }, + { + "start": 6959.4, + "end": 6964.1, + "probability": 0.7918 + }, + { + "start": 6964.28, + "end": 6966.66, + "probability": 0.128 + }, + { + "start": 6966.88, + "end": 6969.28, + "probability": 0.9812 + }, + { + "start": 6970.15, + "end": 6973.92, + "probability": 0.7326 + }, + { + "start": 6974.08, + "end": 6978.62, + "probability": 0.9091 + }, + { + "start": 6978.88, + "end": 6980.42, + "probability": 0.6379 + }, + { + "start": 6980.68, + "end": 6985.62, + "probability": 0.6542 + }, + { + "start": 6985.82, + "end": 6989.16, + "probability": 0.9132 + }, + { + "start": 6989.16, + "end": 6989.26, + "probability": 0.2899 + }, + { + "start": 6989.38, + "end": 6990.36, + "probability": 0.7679 + }, + { + "start": 6991.22, + "end": 6995.6, + "probability": 0.1525 + }, + { + "start": 7008.74, + "end": 7009.66, + "probability": 0.0405 + }, + { + "start": 7011.78, + "end": 7012.02, + "probability": 0.0872 + }, + { + "start": 7012.96, + "end": 7013.5, + "probability": 0.1271 + }, + { + "start": 7013.8, + "end": 7016.4, + "probability": 0.0544 + }, + { + "start": 7019.72, + "end": 7022.47, + "probability": 0.0622 + }, + { + "start": 7022.68, + "end": 7022.96, + "probability": 0.1399 + }, + { + "start": 7023.86, + "end": 7024.12, + "probability": 0.3506 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7935.0, + "end": 7935.0, + "probability": 0.0 + }, + { + "start": 7942.31, + "end": 7946.64, + "probability": 0.0971 + }, + { + "start": 7957.51, + "end": 7957.58, + "probability": 0.2255 + }, + { + "start": 7957.58, + "end": 7957.58, + "probability": 0.0296 + }, + { + "start": 7957.58, + "end": 7957.72, + "probability": 0.3841 + }, + { + "start": 7972.82, + "end": 7972.82, + "probability": 0.0795 + }, + { + "start": 7972.82, + "end": 7972.82, + "probability": 0.2482 + }, + { + "start": 7972.82, + "end": 7972.82, + "probability": 0.0703 + }, + { + "start": 7972.82, + "end": 7972.82, + "probability": 0.0252 + }, + { + "start": 7972.82, + "end": 7972.82, + "probability": 0.1376 + }, + { + "start": 8001.98, + "end": 8003.18, + "probability": 0.9555 + }, + { + "start": 8004.3, + "end": 8005.76, + "probability": 0.9885 + }, + { + "start": 8005.9, + "end": 8006.77, + "probability": 0.9974 + }, + { + "start": 8007.16, + "end": 8008.52, + "probability": 0.9961 + }, + { + "start": 8008.94, + "end": 8010.94, + "probability": 0.9639 + }, + { + "start": 8012.9, + "end": 8016.42, + "probability": 0.9857 + }, + { + "start": 8017.46, + "end": 8020.38, + "probability": 0.9929 + }, + { + "start": 8020.98, + "end": 8023.62, + "probability": 0.9801 + }, + { + "start": 8024.12, + "end": 8029.76, + "probability": 0.9789 + }, + { + "start": 8030.86, + "end": 8031.54, + "probability": 0.9198 + }, + { + "start": 8031.8, + "end": 8033.39, + "probability": 0.9919 + }, + { + "start": 8033.52, + "end": 8034.58, + "probability": 0.9827 + }, + { + "start": 8034.7, + "end": 8038.68, + "probability": 0.879 + }, + { + "start": 8038.88, + "end": 8039.46, + "probability": 0.7795 + }, + { + "start": 8041.5, + "end": 8042.15, + "probability": 0.8757 + }, + { + "start": 8042.44, + "end": 8043.16, + "probability": 0.8953 + }, + { + "start": 8043.2, + "end": 8046.04, + "probability": 0.9575 + }, + { + "start": 8047.28, + "end": 8048.4, + "probability": 0.8129 + }, + { + "start": 8048.8, + "end": 8052.24, + "probability": 0.9475 + }, + { + "start": 8052.28, + "end": 8053.88, + "probability": 0.954 + }, + { + "start": 8055.12, + "end": 8057.88, + "probability": 0.9252 + }, + { + "start": 8057.88, + "end": 8061.42, + "probability": 0.9992 + }, + { + "start": 8061.72, + "end": 8062.44, + "probability": 0.8563 + }, + { + "start": 8062.72, + "end": 8065.96, + "probability": 0.9883 + }, + { + "start": 8065.96, + "end": 8070.12, + "probability": 0.9979 + }, + { + "start": 8071.66, + "end": 8075.16, + "probability": 0.9974 + }, + { + "start": 8075.16, + "end": 8078.38, + "probability": 0.9985 + }, + { + "start": 8079.18, + "end": 8082.96, + "probability": 0.9947 + }, + { + "start": 8082.96, + "end": 8085.08, + "probability": 0.9987 + }, + { + "start": 8087.54, + "end": 8088.7, + "probability": 0.895 + }, + { + "start": 8089.46, + "end": 8095.28, + "probability": 0.9838 + }, + { + "start": 8096.66, + "end": 8100.5, + "probability": 0.9978 + }, + { + "start": 8101.0, + "end": 8101.98, + "probability": 0.6696 + }, + { + "start": 8103.08, + "end": 8107.94, + "probability": 0.9963 + }, + { + "start": 8107.94, + "end": 8114.1, + "probability": 0.995 + }, + { + "start": 8114.54, + "end": 8119.24, + "probability": 0.8333 + }, + { + "start": 8120.06, + "end": 8124.16, + "probability": 0.9976 + }, + { + "start": 8124.42, + "end": 8128.12, + "probability": 0.97 + }, + { + "start": 8128.76, + "end": 8132.7, + "probability": 0.9916 + }, + { + "start": 8132.96, + "end": 8134.08, + "probability": 0.915 + }, + { + "start": 8134.64, + "end": 8138.66, + "probability": 0.9917 + }, + { + "start": 8139.24, + "end": 8142.98, + "probability": 0.8916 + }, + { + "start": 8144.48, + "end": 8148.34, + "probability": 0.9892 + }, + { + "start": 8148.78, + "end": 8149.94, + "probability": 0.9953 + }, + { + "start": 8150.48, + "end": 8151.62, + "probability": 0.9959 + }, + { + "start": 8152.26, + "end": 8155.16, + "probability": 0.9867 + }, + { + "start": 8155.84, + "end": 8158.84, + "probability": 0.9887 + }, + { + "start": 8159.48, + "end": 8161.98, + "probability": 0.9857 + }, + { + "start": 8163.12, + "end": 8164.46, + "probability": 0.9888 + }, + { + "start": 8165.2, + "end": 8167.68, + "probability": 0.9687 + }, + { + "start": 8168.38, + "end": 8172.4, + "probability": 0.9962 + }, + { + "start": 8174.24, + "end": 8174.64, + "probability": 0.7968 + }, + { + "start": 8175.86, + "end": 8179.12, + "probability": 0.9563 + }, + { + "start": 8179.12, + "end": 8182.46, + "probability": 0.9774 + }, + { + "start": 8183.8, + "end": 8188.42, + "probability": 0.9937 + }, + { + "start": 8188.42, + "end": 8192.36, + "probability": 0.9977 + }, + { + "start": 8193.24, + "end": 8196.18, + "probability": 0.9561 + }, + { + "start": 8196.22, + "end": 8199.62, + "probability": 0.9994 + }, + { + "start": 8201.16, + "end": 8202.44, + "probability": 0.8696 + }, + { + "start": 8203.02, + "end": 8208.92, + "probability": 0.9838 + }, + { + "start": 8210.28, + "end": 8215.94, + "probability": 0.9983 + }, + { + "start": 8217.16, + "end": 8221.32, + "probability": 0.9928 + }, + { + "start": 8222.68, + "end": 8228.72, + "probability": 0.9934 + }, + { + "start": 8231.14, + "end": 8231.78, + "probability": 0.9403 + }, + { + "start": 8232.42, + "end": 8238.76, + "probability": 0.9306 + }, + { + "start": 8238.76, + "end": 8245.0, + "probability": 0.9934 + }, + { + "start": 8246.68, + "end": 8253.38, + "probability": 0.9957 + }, + { + "start": 8254.72, + "end": 8257.26, + "probability": 0.9068 + }, + { + "start": 8257.84, + "end": 8261.44, + "probability": 0.9314 + }, + { + "start": 8262.72, + "end": 8267.18, + "probability": 0.8109 + }, + { + "start": 8267.96, + "end": 8272.1, + "probability": 0.9805 + }, + { + "start": 8272.94, + "end": 8276.08, + "probability": 0.7411 + }, + { + "start": 8276.94, + "end": 8282.88, + "probability": 0.9832 + }, + { + "start": 8283.88, + "end": 8286.28, + "probability": 0.9592 + }, + { + "start": 8287.64, + "end": 8289.28, + "probability": 0.9743 + }, + { + "start": 8290.44, + "end": 8294.7, + "probability": 0.9742 + }, + { + "start": 8295.54, + "end": 8297.3, + "probability": 0.8611 + }, + { + "start": 8297.86, + "end": 8303.84, + "probability": 0.9727 + }, + { + "start": 8304.98, + "end": 8305.18, + "probability": 0.7709 + }, + { + "start": 8307.4, + "end": 8308.16, + "probability": 0.9204 + }, + { + "start": 8308.92, + "end": 8311.4, + "probability": 0.9437 + }, + { + "start": 8312.5, + "end": 8319.1, + "probability": 0.9972 + }, + { + "start": 8319.58, + "end": 8320.88, + "probability": 0.8145 + }, + { + "start": 8321.26, + "end": 8324.44, + "probability": 0.9969 + }, + { + "start": 8324.48, + "end": 8328.58, + "probability": 0.9985 + }, + { + "start": 8330.72, + "end": 8334.4, + "probability": 0.9093 + }, + { + "start": 8334.4, + "end": 8338.36, + "probability": 0.9998 + }, + { + "start": 8338.88, + "end": 8341.9, + "probability": 0.998 + }, + { + "start": 8342.36, + "end": 8348.66, + "probability": 0.9968 + }, + { + "start": 8350.14, + "end": 8356.04, + "probability": 0.9814 + }, + { + "start": 8356.04, + "end": 8360.88, + "probability": 0.9906 + }, + { + "start": 8362.5, + "end": 8362.74, + "probability": 0.6568 + }, + { + "start": 8362.82, + "end": 8368.08, + "probability": 0.9944 + }, + { + "start": 8368.08, + "end": 8372.44, + "probability": 0.9983 + }, + { + "start": 8373.56, + "end": 8373.98, + "probability": 0.7165 + }, + { + "start": 8374.58, + "end": 8377.8, + "probability": 0.9766 + }, + { + "start": 8378.5, + "end": 8380.44, + "probability": 0.9729 + }, + { + "start": 8382.56, + "end": 8383.8, + "probability": 0.7662 + }, + { + "start": 8384.52, + "end": 8388.08, + "probability": 0.983 + }, + { + "start": 8388.6, + "end": 8389.58, + "probability": 0.979 + }, + { + "start": 8390.72, + "end": 8393.18, + "probability": 0.9924 + }, + { + "start": 8393.58, + "end": 8395.76, + "probability": 0.9951 + }, + { + "start": 8397.64, + "end": 8401.24, + "probability": 0.9951 + }, + { + "start": 8401.32, + "end": 8404.34, + "probability": 0.8488 + }, + { + "start": 8404.34, + "end": 8407.28, + "probability": 0.9741 + }, + { + "start": 8408.3, + "end": 8413.4, + "probability": 0.9812 + }, + { + "start": 8414.1, + "end": 8414.9, + "probability": 0.8763 + }, + { + "start": 8415.44, + "end": 8418.34, + "probability": 0.9875 + }, + { + "start": 8418.84, + "end": 8422.16, + "probability": 0.976 + }, + { + "start": 8422.74, + "end": 8423.44, + "probability": 0.7941 + }, + { + "start": 8424.6, + "end": 8427.74, + "probability": 0.9878 + }, + { + "start": 8427.74, + "end": 8430.9, + "probability": 0.9875 + }, + { + "start": 8431.86, + "end": 8437.0, + "probability": 0.9737 + }, + { + "start": 8437.32, + "end": 8439.14, + "probability": 0.9856 + }, + { + "start": 8439.8, + "end": 8441.94, + "probability": 0.9642 + }, + { + "start": 8443.34, + "end": 8444.38, + "probability": 0.9563 + }, + { + "start": 8445.06, + "end": 8446.1, + "probability": 0.8153 + }, + { + "start": 8446.14, + "end": 8447.96, + "probability": 0.9976 + }, + { + "start": 8448.4, + "end": 8449.32, + "probability": 0.975 + }, + { + "start": 8449.74, + "end": 8450.64, + "probability": 0.9669 + }, + { + "start": 8451.12, + "end": 8456.86, + "probability": 0.9956 + }, + { + "start": 8457.02, + "end": 8462.76, + "probability": 0.9897 + }, + { + "start": 8465.78, + "end": 8468.94, + "probability": 0.997 + }, + { + "start": 8469.62, + "end": 8470.92, + "probability": 0.9712 + }, + { + "start": 8471.44, + "end": 8473.9, + "probability": 0.988 + }, + { + "start": 8475.12, + "end": 8476.16, + "probability": 0.8734 + }, + { + "start": 8476.54, + "end": 8478.72, + "probability": 0.571 + }, + { + "start": 8479.1, + "end": 8480.22, + "probability": 0.1709 + }, + { + "start": 8481.16, + "end": 8485.86, + "probability": 0.9968 + }, + { + "start": 8487.08, + "end": 8490.76, + "probability": 0.9626 + }, + { + "start": 8491.46, + "end": 8493.88, + "probability": 0.9823 + }, + { + "start": 8494.46, + "end": 8495.6, + "probability": 0.9973 + }, + { + "start": 8496.64, + "end": 8500.38, + "probability": 0.9974 + }, + { + "start": 8501.66, + "end": 8505.76, + "probability": 0.9974 + }, + { + "start": 8506.94, + "end": 8510.7, + "probability": 0.9302 + }, + { + "start": 8511.26, + "end": 8514.46, + "probability": 0.9855 + }, + { + "start": 8515.14, + "end": 8518.16, + "probability": 0.9749 + }, + { + "start": 8519.2, + "end": 8522.02, + "probability": 0.998 + }, + { + "start": 8522.42, + "end": 8525.54, + "probability": 0.9946 + }, + { + "start": 8526.76, + "end": 8528.22, + "probability": 0.8662 + }, + { + "start": 8528.76, + "end": 8529.92, + "probability": 0.7892 + }, + { + "start": 8531.16, + "end": 8532.2, + "probability": 0.8907 + }, + { + "start": 8532.74, + "end": 8536.88, + "probability": 0.8988 + }, + { + "start": 8537.18, + "end": 8537.62, + "probability": 0.4836 + }, + { + "start": 8538.76, + "end": 8542.46, + "probability": 0.9587 + }, + { + "start": 8543.2, + "end": 8546.24, + "probability": 0.9956 + }, + { + "start": 8546.24, + "end": 8549.16, + "probability": 0.9861 + }, + { + "start": 8550.32, + "end": 8550.88, + "probability": 0.8268 + }, + { + "start": 8551.7, + "end": 8555.66, + "probability": 0.9117 + }, + { + "start": 8556.04, + "end": 8556.52, + "probability": 0.9638 + }, + { + "start": 8556.82, + "end": 8557.42, + "probability": 0.9779 + }, + { + "start": 8557.54, + "end": 8557.86, + "probability": 0.8894 + }, + { + "start": 8558.54, + "end": 8562.66, + "probability": 0.9936 + }, + { + "start": 8563.88, + "end": 8566.14, + "probability": 0.9976 + }, + { + "start": 8566.68, + "end": 8572.02, + "probability": 0.9963 + }, + { + "start": 8573.82, + "end": 8575.0, + "probability": 0.8744 + }, + { + "start": 8575.6, + "end": 8580.04, + "probability": 0.9959 + }, + { + "start": 8580.44, + "end": 8584.6, + "probability": 0.8411 + }, + { + "start": 8586.32, + "end": 8589.24, + "probability": 0.8414 + }, + { + "start": 8590.0, + "end": 8596.5, + "probability": 0.9937 + }, + { + "start": 8597.98, + "end": 8601.82, + "probability": 0.7974 + }, + { + "start": 8602.26, + "end": 8607.1, + "probability": 0.9494 + }, + { + "start": 8607.9, + "end": 8608.52, + "probability": 0.757 + }, + { + "start": 8609.12, + "end": 8613.24, + "probability": 0.8024 + }, + { + "start": 8613.8, + "end": 8619.78, + "probability": 0.9965 + }, + { + "start": 8644.82, + "end": 8646.42, + "probability": 0.0959 + }, + { + "start": 8647.32, + "end": 8648.26, + "probability": 0.0023 + }, + { + "start": 8652.06, + "end": 8652.24, + "probability": 0.0019 + }, + { + "start": 8657.02, + "end": 8658.8, + "probability": 0.2048 + }, + { + "start": 8660.58, + "end": 8663.0, + "probability": 0.0393 + }, + { + "start": 8669.02, + "end": 8669.94, + "probability": 0.1267 + }, + { + "start": 8669.94, + "end": 8670.18, + "probability": 0.0252 + }, + { + "start": 8670.5, + "end": 8673.46, + "probability": 0.1845 + }, + { + "start": 8677.48, + "end": 8678.54, + "probability": 0.0897 + }, + { + "start": 8681.24, + "end": 8687.56, + "probability": 0.0899 + }, + { + "start": 8689.28, + "end": 8690.92, + "probability": 0.0161 + }, + { + "start": 8692.08, + "end": 8694.31, + "probability": 0.0405 + }, + { + "start": 8695.26, + "end": 8695.36, + "probability": 0.027 + }, + { + "start": 8695.36, + "end": 8696.68, + "probability": 0.0481 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.54, + "end": 8735.06, + "probability": 0.0625 + }, + { + "start": 8735.06, + "end": 8735.74, + "probability": 0.1075 + }, + { + "start": 8737.18, + "end": 8743.4, + "probability": 0.0559 + }, + { + "start": 8744.3, + "end": 8746.16, + "probability": 0.1157 + }, + { + "start": 8747.08, + "end": 8748.56, + "probability": 0.3947 + }, + { + "start": 8749.26, + "end": 8750.1, + "probability": 0.1049 + }, + { + "start": 8750.98, + "end": 8751.62, + "probability": 0.2422 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.0 + }, + { + "start": 8901.58, + "end": 8902.88, + "probability": 0.1094 + }, + { + "start": 8903.96, + "end": 8906.32, + "probability": 0.0868 + }, + { + "start": 8907.96, + "end": 8910.84, + "probability": 0.0774 + }, + { + "start": 8913.82, + "end": 8915.04, + "probability": 0.0244 + }, + { + "start": 8916.06, + "end": 8923.1, + "probability": 0.1307 + }, + { + "start": 8925.94, + "end": 8926.92, + "probability": 0.1116 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9019.0, + "end": 9019.0, + "probability": 0.0 + }, + { + "start": 9020.94, + "end": 9024.58, + "probability": 0.0507 + }, + { + "start": 9026.38, + "end": 9028.42, + "probability": 0.1553 + }, + { + "start": 9029.22, + "end": 9031.15, + "probability": 0.0451 + }, + { + "start": 9033.74, + "end": 9038.34, + "probability": 0.1222 + }, + { + "start": 9038.34, + "end": 9038.9, + "probability": 0.2047 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9145.0, + "end": 9145.0, + "probability": 0.0 + }, + { + "start": 9147.02, + "end": 9147.02, + "probability": 0.0354 + }, + { + "start": 9147.02, + "end": 9147.02, + "probability": 0.0381 + }, + { + "start": 9147.02, + "end": 9149.08, + "probability": 0.3079 + }, + { + "start": 9151.12, + "end": 9152.48, + "probability": 0.0516 + }, + { + "start": 9152.52, + "end": 9153.0, + "probability": 0.0256 + }, + { + "start": 9153.0, + "end": 9154.28, + "probability": 0.1263 + }, + { + "start": 9155.98, + "end": 9156.82, + "probability": 0.0102 + }, + { + "start": 9159.68, + "end": 9159.76, + "probability": 0.347 + }, + { + "start": 9162.06, + "end": 9162.41, + "probability": 0.3283 + }, + { + "start": 9164.16, + "end": 9166.06, + "probability": 0.0278 + }, + { + "start": 9166.06, + "end": 9166.72, + "probability": 0.18 + }, + { + "start": 9167.64, + "end": 9168.59, + "probability": 0.3332 + }, + { + "start": 9170.2, + "end": 9170.58, + "probability": 0.0142 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.0, + "end": 9269.0, + "probability": 0.0 + }, + { + "start": 9269.85, + "end": 9271.4, + "probability": 0.0229 + }, + { + "start": 9272.7, + "end": 9273.12, + "probability": 0.0903 + }, + { + "start": 9273.67, + "end": 9274.97, + "probability": 0.0055 + }, + { + "start": 9275.32, + "end": 9276.36, + "probability": 0.0229 + }, + { + "start": 9276.5, + "end": 9276.5, + "probability": 0.2903 + }, + { + "start": 9276.5, + "end": 9276.82, + "probability": 0.138 + }, + { + "start": 9277.56, + "end": 9280.5, + "probability": 0.0312 + }, + { + "start": 9281.68, + "end": 9286.54, + "probability": 0.121 + }, + { + "start": 9289.42, + "end": 9290.85, + "probability": 0.0353 + }, + { + "start": 9295.52, + "end": 9298.58, + "probability": 0.0426 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.0, + "end": 9389.0, + "probability": 0.0 + }, + { + "start": 9389.4, + "end": 9394.04, + "probability": 0.173 + }, + { + "start": 9395.1, + "end": 9400.11, + "probability": 0.1056 + }, + { + "start": 9401.04, + "end": 9404.4, + "probability": 0.0987 + }, + { + "start": 9405.84, + "end": 9406.17, + "probability": 0.0109 + }, + { + "start": 9408.58, + "end": 9409.74, + "probability": 0.0158 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9514.0, + "end": 9514.0, + "probability": 0.0 + }, + { + "start": 9515.25, + "end": 9517.08, + "probability": 0.0465 + }, + { + "start": 9517.08, + "end": 9518.06, + "probability": 0.1038 + }, + { + "start": 9518.98, + "end": 9520.26, + "probability": 0.0236 + }, + { + "start": 9521.64, + "end": 9522.16, + "probability": 0.023 + }, + { + "start": 9524.18, + "end": 9524.78, + "probability": 0.0545 + }, + { + "start": 9524.98, + "end": 9528.56, + "probability": 0.0164 + }, + { + "start": 9528.56, + "end": 9530.66, + "probability": 0.0211 + }, + { + "start": 9533.36, + "end": 9533.8, + "probability": 0.0092 + }, + { + "start": 9535.28, + "end": 9537.64, + "probability": 0.1464 + }, + { + "start": 9539.02, + "end": 9543.44, + "probability": 0.1525 + }, + { + "start": 9545.62, + "end": 9546.54, + "probability": 0.1344 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.0, + "end": 9639.0, + "probability": 0.0 + }, + { + "start": 9639.36, + "end": 9641.42, + "probability": 0.0577 + }, + { + "start": 9641.42, + "end": 9644.62, + "probability": 0.0385 + }, + { + "start": 9646.16, + "end": 9647.78, + "probability": 0.0988 + }, + { + "start": 9648.62, + "end": 9649.82, + "probability": 0.0274 + }, + { + "start": 9650.1, + "end": 9657.74, + "probability": 0.0714 + }, + { + "start": 9664.28, + "end": 9668.9, + "probability": 0.134 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9759.0, + "end": 9759.0, + "probability": 0.0 + }, + { + "start": 9762.18, + "end": 9764.32, + "probability": 0.5428 + }, + { + "start": 9765.36, + "end": 9769.4, + "probability": 0.1254 + }, + { + "start": 9771.12, + "end": 9771.62, + "probability": 0.2339 + }, + { + "start": 9772.18, + "end": 9774.87, + "probability": 0.1709 + }, + { + "start": 9776.22, + "end": 9782.24, + "probability": 0.2108 + }, + { + "start": 9782.82, + "end": 9782.92, + "probability": 0.5601 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.0, + "end": 9889.0, + "probability": 0.0 + }, + { + "start": 9889.18, + "end": 9891.32, + "probability": 0.0555 + }, + { + "start": 9891.82, + "end": 9894.46, + "probability": 0.0696 + }, + { + "start": 9895.08, + "end": 9898.36, + "probability": 0.0885 + }, + { + "start": 9899.42, + "end": 9901.32, + "probability": 0.0816 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.0, + "end": 10025.0, + "probability": 0.0 + }, + { + "start": 10025.22, + "end": 10029.38, + "probability": 0.129 + }, + { + "start": 10030.6, + "end": 10033.38, + "probability": 0.3444 + }, + { + "start": 10034.61, + "end": 10040.29, + "probability": 0.1007 + }, + { + "start": 10042.26, + "end": 10043.34, + "probability": 0.078 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.0, + "end": 10163.0, + "probability": 0.0 + }, + { + "start": 10163.26, + "end": 10165.92, + "probability": 0.0725 + }, + { + "start": 10165.92, + "end": 10168.52, + "probability": 0.1115 + }, + { + "start": 10168.98, + "end": 10172.98, + "probability": 0.0541 + }, + { + "start": 10174.42, + "end": 10175.1, + "probability": 0.0246 + }, + { + "start": 10176.28, + "end": 10187.89, + "probability": 0.0431 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.0, + "end": 10288.0, + "probability": 0.0 + }, + { + "start": 10288.3, + "end": 10293.6, + "probability": 0.1132 + }, + { + "start": 10296.22, + "end": 10298.84, + "probability": 0.0107 + }, + { + "start": 10302.7, + "end": 10308.79, + "probability": 0.0477 + }, + { + "start": 10309.28, + "end": 10310.36, + "probability": 0.04 + }, + { + "start": 10314.36, + "end": 10317.26, + "probability": 0.0381 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.0, + "end": 10424.0, + "probability": 0.0 + }, + { + "start": 10424.08, + "end": 10425.36, + "probability": 0.1911 + }, + { + "start": 10426.94, + "end": 10429.04, + "probability": 0.0529 + }, + { + "start": 10431.59, + "end": 10432.78, + "probability": 0.2032 + }, + { + "start": 10432.78, + "end": 10432.94, + "probability": 0.0943 + }, + { + "start": 10432.94, + "end": 10435.94, + "probability": 0.0712 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.0, + "end": 10569.0, + "probability": 0.0 + }, + { + "start": 10569.54, + "end": 10570.6, + "probability": 0.2777 + }, + { + "start": 10570.62, + "end": 10571.64, + "probability": 0.4582 + }, + { + "start": 10575.34, + "end": 10576.22, + "probability": 0.2744 + }, + { + "start": 10577.86, + "end": 10579.86, + "probability": 0.8132 + }, + { + "start": 10580.0, + "end": 10580.68, + "probability": 0.936 + }, + { + "start": 10580.82, + "end": 10581.58, + "probability": 0.9275 + }, + { + "start": 10581.96, + "end": 10583.72, + "probability": 0.8404 + }, + { + "start": 10596.9, + "end": 10599.44, + "probability": 0.4994 + }, + { + "start": 10603.84, + "end": 10606.38, + "probability": 0.7632 + }, + { + "start": 10606.54, + "end": 10608.16, + "probability": 0.9196 + }, + { + "start": 10608.84, + "end": 10611.26, + "probability": 0.9816 + }, + { + "start": 10611.26, + "end": 10612.12, + "probability": 0.2206 + }, + { + "start": 10612.14, + "end": 10613.44, + "probability": 0.4104 + }, + { + "start": 10613.44, + "end": 10613.44, + "probability": 0.1547 + }, + { + "start": 10613.44, + "end": 10613.44, + "probability": 0.2437 + }, + { + "start": 10613.44, + "end": 10613.62, + "probability": 0.1547 + }, + { + "start": 10628.22, + "end": 10628.26, + "probability": 0.0909 + }, + { + "start": 10628.26, + "end": 10629.14, + "probability": 0.6574 + }, + { + "start": 10634.58, + "end": 10635.9, + "probability": 0.5375 + }, + { + "start": 10636.48, + "end": 10636.6, + "probability": 0.6276 + }, + { + "start": 10636.64, + "end": 10638.22, + "probability": 0.4179 + }, + { + "start": 10638.58, + "end": 10640.32, + "probability": 0.7891 + }, + { + "start": 10640.88, + "end": 10643.62, + "probability": 0.1391 + }, + { + "start": 10645.92, + "end": 10645.92, + "probability": 0.4838 + }, + { + "start": 10646.04, + "end": 10646.1, + "probability": 0.7688 + }, + { + "start": 10646.5, + "end": 10647.88, + "probability": 0.7635 + }, + { + "start": 10648.36, + "end": 10650.7, + "probability": 0.2176 + }, + { + "start": 10652.66, + "end": 10654.62, + "probability": 0.0554 + }, + { + "start": 10673.22, + "end": 10678.1, + "probability": 0.8872 + }, + { + "start": 10681.38, + "end": 10681.62, + "probability": 0.8254 + }, + { + "start": 10681.92, + "end": 10685.72, + "probability": 0.11 + }, + { + "start": 10686.04, + "end": 10686.66, + "probability": 0.7692 + }, + { + "start": 10686.76, + "end": 10687.14, + "probability": 0.8459 + }, + { + "start": 10687.26, + "end": 10688.57, + "probability": 0.9927 + }, + { + "start": 10689.72, + "end": 10692.68, + "probability": 0.8477 + }, + { + "start": 10695.28, + "end": 10704.26, + "probability": 0.1712 + }, + { + "start": 10704.26, + "end": 10707.78, + "probability": 0.7739 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.0, + "end": 10806.0, + "probability": 0.0 + }, + { + "start": 10806.18, + "end": 10806.2, + "probability": 0.1882 + }, + { + "start": 10806.2, + "end": 10806.2, + "probability": 0.0446 + }, + { + "start": 10806.2, + "end": 10807.78, + "probability": 0.7502 + }, + { + "start": 10808.7, + "end": 10812.36, + "probability": 0.9897 + }, + { + "start": 10813.0, + "end": 10817.88, + "probability": 0.9731 + }, + { + "start": 10818.66, + "end": 10820.66, + "probability": 0.7955 + }, + { + "start": 10820.78, + "end": 10821.4, + "probability": 0.837 + }, + { + "start": 10821.4, + "end": 10822.24, + "probability": 0.8895 + }, + { + "start": 10822.28, + "end": 10823.82, + "probability": 0.6286 + }, + { + "start": 10823.88, + "end": 10824.5, + "probability": 0.7521 + }, + { + "start": 10824.5, + "end": 10828.4, + "probability": 0.884 + }, + { + "start": 10829.52, + "end": 10830.3, + "probability": 0.6794 + }, + { + "start": 10830.4, + "end": 10832.54, + "probability": 0.9756 + }, + { + "start": 10832.9, + "end": 10834.82, + "probability": 0.9595 + }, + { + "start": 10835.0, + "end": 10835.94, + "probability": 0.8282 + }, + { + "start": 10836.52, + "end": 10840.92, + "probability": 0.8906 + }, + { + "start": 10841.04, + "end": 10841.26, + "probability": 0.7432 + }, + { + "start": 10841.28, + "end": 10843.2, + "probability": 0.9958 + }, + { + "start": 10843.34, + "end": 10843.58, + "probability": 0.3647 + }, + { + "start": 10844.22, + "end": 10847.26, + "probability": 0.9941 + }, + { + "start": 10848.3, + "end": 10852.16, + "probability": 0.9386 + }, + { + "start": 10852.2, + "end": 10853.54, + "probability": 0.3736 + }, + { + "start": 10853.56, + "end": 10854.84, + "probability": 0.9281 + }, + { + "start": 10854.98, + "end": 10856.8, + "probability": 0.6092 + }, + { + "start": 10857.0, + "end": 10857.2, + "probability": 0.0524 + }, + { + "start": 10857.54, + "end": 10860.44, + "probability": 0.8042 + }, + { + "start": 10861.04, + "end": 10866.58, + "probability": 0.9727 + }, + { + "start": 10866.86, + "end": 10869.12, + "probability": 0.7375 + }, + { + "start": 10871.32, + "end": 10874.22, + "probability": 0.8489 + }, + { + "start": 10874.34, + "end": 10875.54, + "probability": 0.7246 + }, + { + "start": 10876.04, + "end": 10877.48, + "probability": 0.9021 + }, + { + "start": 10877.54, + "end": 10878.64, + "probability": 0.8471 + }, + { + "start": 10879.42, + "end": 10880.46, + "probability": 0.9341 + }, + { + "start": 10880.92, + "end": 10887.5, + "probability": 0.9877 + }, + { + "start": 10888.12, + "end": 10889.58, + "probability": 0.0972 + }, + { + "start": 10889.58, + "end": 10891.39, + "probability": 0.34 + }, + { + "start": 10891.6, + "end": 10891.76, + "probability": 0.5661 + }, + { + "start": 10892.02, + "end": 10894.0, + "probability": 0.7568 + }, + { + "start": 10894.18, + "end": 10894.78, + "probability": 0.196 + }, + { + "start": 10894.78, + "end": 10895.96, + "probability": 0.7827 + }, + { + "start": 10896.08, + "end": 10896.08, + "probability": 0.3295 + }, + { + "start": 10896.08, + "end": 10897.64, + "probability": 0.9774 + }, + { + "start": 10897.7, + "end": 10898.76, + "probability": 0.3923 + }, + { + "start": 10898.76, + "end": 10903.52, + "probability": 0.5435 + }, + { + "start": 10903.52, + "end": 10905.52, + "probability": 0.883 + }, + { + "start": 10905.94, + "end": 10906.78, + "probability": 0.6992 + }, + { + "start": 10906.94, + "end": 10908.9, + "probability": 0.9771 + }, + { + "start": 10909.38, + "end": 10911.98, + "probability": 0.9593 + }, + { + "start": 10913.68, + "end": 10914.34, + "probability": 0.4979 + }, + { + "start": 10914.36, + "end": 10917.24, + "probability": 0.9946 + }, + { + "start": 10917.48, + "end": 10919.82, + "probability": 0.7896 + }, + { + "start": 10920.54, + "end": 10922.46, + "probability": 0.4521 + }, + { + "start": 10922.5, + "end": 10924.82, + "probability": 0.9984 + }, + { + "start": 10924.98, + "end": 10925.88, + "probability": 0.9877 + }, + { + "start": 10926.04, + "end": 10930.3, + "probability": 0.5297 + }, + { + "start": 10930.36, + "end": 10931.32, + "probability": 0.1325 + }, + { + "start": 10931.38, + "end": 10933.12, + "probability": 0.6895 + }, + { + "start": 10933.26, + "end": 10934.36, + "probability": 0.8184 + }, + { + "start": 10934.5, + "end": 10935.2, + "probability": 0.6372 + }, + { + "start": 10935.2, + "end": 10937.64, + "probability": 0.9753 + }, + { + "start": 10937.84, + "end": 10940.72, + "probability": 0.9034 + }, + { + "start": 10940.74, + "end": 10941.0, + "probability": 0.8349 + }, + { + "start": 10941.06, + "end": 10942.62, + "probability": 0.7628 + }, + { + "start": 10943.12, + "end": 10943.7, + "probability": 0.8748 + }, + { + "start": 10944.66, + "end": 10945.48, + "probability": 0.9575 + }, + { + "start": 10945.62, + "end": 10945.96, + "probability": 0.6539 + }, + { + "start": 10946.02, + "end": 10946.84, + "probability": 0.5976 + }, + { + "start": 10946.98, + "end": 10947.34, + "probability": 0.6286 + }, + { + "start": 10947.64, + "end": 10951.44, + "probability": 0.9917 + }, + { + "start": 10952.18, + "end": 10953.6, + "probability": 0.4105 + }, + { + "start": 10953.78, + "end": 10954.3, + "probability": 0.0244 + }, + { + "start": 10954.34, + "end": 10955.26, + "probability": 0.774 + }, + { + "start": 10955.3, + "end": 10956.08, + "probability": 0.5229 + }, + { + "start": 10956.26, + "end": 10958.14, + "probability": 0.5418 + }, + { + "start": 10958.28, + "end": 10961.96, + "probability": 0.7975 + }, + { + "start": 10962.44, + "end": 10964.48, + "probability": 0.8585 + }, + { + "start": 10964.82, + "end": 10970.06, + "probability": 0.9954 + }, + { + "start": 10970.06, + "end": 10973.46, + "probability": 0.9966 + }, + { + "start": 10974.0, + "end": 10974.98, + "probability": 0.6785 + }, + { + "start": 10975.02, + "end": 10975.98, + "probability": 0.7084 + }, + { + "start": 10976.44, + "end": 10978.56, + "probability": 0.7627 + }, + { + "start": 10979.4, + "end": 10983.52, + "probability": 0.2013 + }, + { + "start": 10984.56, + "end": 10985.42, + "probability": 0.1571 + }, + { + "start": 10988.56, + "end": 10994.1, + "probability": 0.8866 + }, + { + "start": 10996.12, + "end": 10999.78, + "probability": 0.6987 + }, + { + "start": 11000.46, + "end": 11005.6, + "probability": 0.5969 + }, + { + "start": 11005.74, + "end": 11007.75, + "probability": 0.7183 + }, + { + "start": 11008.26, + "end": 11008.34, + "probability": 0.5048 + }, + { + "start": 11008.34, + "end": 11011.56, + "probability": 0.9557 + }, + { + "start": 11011.76, + "end": 11011.98, + "probability": 0.3834 + }, + { + "start": 11012.04, + "end": 11012.96, + "probability": 0.7673 + }, + { + "start": 11012.96, + "end": 11014.28, + "probability": 0.925 + }, + { + "start": 11014.76, + "end": 11015.24, + "probability": 0.7081 + }, + { + "start": 11015.36, + "end": 11018.92, + "probability": 0.6628 + }, + { + "start": 11019.2, + "end": 11020.16, + "probability": 0.9767 + }, + { + "start": 11020.28, + "end": 11023.44, + "probability": 0.9884 + }, + { + "start": 11023.5, + "end": 11025.14, + "probability": 0.9941 + }, + { + "start": 11025.38, + "end": 11026.0, + "probability": 0.1513 + }, + { + "start": 11026.0, + "end": 11026.0, + "probability": 0.0159 + }, + { + "start": 11026.0, + "end": 11027.28, + "probability": 0.6354 + }, + { + "start": 11027.38, + "end": 11028.34, + "probability": 0.7844 + }, + { + "start": 11029.16, + "end": 11029.18, + "probability": 0.5295 + }, + { + "start": 11029.18, + "end": 11030.7, + "probability": 0.2661 + }, + { + "start": 11030.91, + "end": 11032.1, + "probability": 0.0255 + }, + { + "start": 11032.1, + "end": 11032.31, + "probability": 0.0948 + }, + { + "start": 11032.98, + "end": 11034.88, + "probability": 0.6622 + }, + { + "start": 11035.18, + "end": 11039.74, + "probability": 0.8321 + }, + { + "start": 11039.98, + "end": 11040.2, + "probability": 0.054 + }, + { + "start": 11040.46, + "end": 11041.62, + "probability": 0.4334 + }, + { + "start": 11042.36, + "end": 11044.12, + "probability": 0.9071 + }, + { + "start": 11047.0, + "end": 11050.32, + "probability": 0.0476 + }, + { + "start": 11050.32, + "end": 11051.44, + "probability": 0.0847 + }, + { + "start": 11051.56, + "end": 11051.98, + "probability": 0.0206 + }, + { + "start": 11051.98, + "end": 11051.98, + "probability": 0.0422 + }, + { + "start": 11051.98, + "end": 11051.98, + "probability": 0.0816 + }, + { + "start": 11051.98, + "end": 11053.5, + "probability": 0.786 + }, + { + "start": 11053.5, + "end": 11056.5, + "probability": 0.993 + }, + { + "start": 11056.52, + "end": 11060.1, + "probability": 0.9365 + }, + { + "start": 11061.0, + "end": 11062.66, + "probability": 0.9595 + }, + { + "start": 11063.48, + "end": 11065.95, + "probability": 0.9893 + }, + { + "start": 11066.76, + "end": 11069.6, + "probability": 0.9958 + }, + { + "start": 11069.68, + "end": 11070.68, + "probability": 0.9617 + }, + { + "start": 11070.88, + "end": 11071.32, + "probability": 0.7364 + }, + { + "start": 11071.38, + "end": 11072.4, + "probability": 0.9822 + }, + { + "start": 11072.78, + "end": 11079.7, + "probability": 0.9911 + }, + { + "start": 11080.18, + "end": 11081.32, + "probability": 0.7161 + }, + { + "start": 11082.06, + "end": 11082.06, + "probability": 0.3368 + }, + { + "start": 11082.06, + "end": 11082.68, + "probability": 0.3131 + }, + { + "start": 11082.8, + "end": 11084.28, + "probability": 0.4659 + }, + { + "start": 11084.28, + "end": 11086.3, + "probability": 0.5586 + }, + { + "start": 11086.62, + "end": 11087.3, + "probability": 0.8079 + }, + { + "start": 11087.34, + "end": 11088.72, + "probability": 0.1691 + }, + { + "start": 11088.72, + "end": 11091.66, + "probability": 0.5238 + }, + { + "start": 11091.66, + "end": 11093.96, + "probability": 0.9135 + }, + { + "start": 11094.74, + "end": 11097.14, + "probability": 0.9841 + }, + { + "start": 11097.14, + "end": 11099.74, + "probability": 0.5988 + }, + { + "start": 11099.96, + "end": 11101.92, + "probability": 0.5806 + }, + { + "start": 11101.96, + "end": 11102.76, + "probability": 0.8598 + }, + { + "start": 11103.36, + "end": 11103.48, + "probability": 0.1368 + }, + { + "start": 11103.48, + "end": 11103.48, + "probability": 0.0858 + }, + { + "start": 11103.48, + "end": 11103.48, + "probability": 0.3893 + }, + { + "start": 11103.48, + "end": 11105.49, + "probability": 0.302 + }, + { + "start": 11106.28, + "end": 11107.18, + "probability": 0.3499 + }, + { + "start": 11107.38, + "end": 11109.48, + "probability": 0.2092 + }, + { + "start": 11110.2, + "end": 11111.02, + "probability": 0.0791 + }, + { + "start": 11111.46, + "end": 11112.96, + "probability": 0.6211 + }, + { + "start": 11113.06, + "end": 11113.78, + "probability": 0.5728 + }, + { + "start": 11113.9, + "end": 11115.0, + "probability": 0.7479 + }, + { + "start": 11115.16, + "end": 11115.42, + "probability": 0.9277 + }, + { + "start": 11115.52, + "end": 11115.76, + "probability": 0.8991 + }, + { + "start": 11115.84, + "end": 11117.16, + "probability": 0.5791 + }, + { + "start": 11117.28, + "end": 11118.54, + "probability": 0.8536 + }, + { + "start": 11118.74, + "end": 11120.78, + "probability": 0.1172 + }, + { + "start": 11120.82, + "end": 11124.68, + "probability": 0.0836 + }, + { + "start": 11124.9, + "end": 11126.11, + "probability": 0.9307 + }, + { + "start": 11126.5, + "end": 11127.18, + "probability": 0.4037 + }, + { + "start": 11131.6, + "end": 11131.68, + "probability": 0.1392 + }, + { + "start": 11132.94, + "end": 11133.78, + "probability": 0.5733 + }, + { + "start": 11134.16, + "end": 11135.62, + "probability": 0.6015 + }, + { + "start": 11135.7, + "end": 11138.36, + "probability": 0.7918 + }, + { + "start": 11138.42, + "end": 11139.86, + "probability": 0.2979 + }, + { + "start": 11140.1, + "end": 11141.62, + "probability": 0.7656 + }, + { + "start": 11141.64, + "end": 11143.86, + "probability": 0.8762 + }, + { + "start": 11144.52, + "end": 11145.88, + "probability": 0.9604 + }, + { + "start": 11146.06, + "end": 11146.48, + "probability": 0.303 + }, + { + "start": 11148.58, + "end": 11149.82, + "probability": 0.0493 + }, + { + "start": 11150.78, + "end": 11152.3, + "probability": 0.0271 + }, + { + "start": 11152.58, + "end": 11152.64, + "probability": 0.1764 + }, + { + "start": 11152.64, + "end": 11154.36, + "probability": 0.6024 + }, + { + "start": 11154.62, + "end": 11156.28, + "probability": 0.612 + }, + { + "start": 11156.44, + "end": 11157.18, + "probability": 0.4241 + }, + { + "start": 11157.2, + "end": 11159.68, + "probability": 0.7181 + }, + { + "start": 11160.16, + "end": 11160.88, + "probability": 0.5076 + }, + { + "start": 11161.56, + "end": 11164.43, + "probability": 0.8694 + }, + { + "start": 11164.78, + "end": 11166.02, + "probability": 0.9036 + }, + { + "start": 11167.08, + "end": 11167.88, + "probability": 0.8916 + }, + { + "start": 11168.24, + "end": 11168.74, + "probability": 0.5617 + }, + { + "start": 11168.96, + "end": 11169.94, + "probability": 0.1235 + }, + { + "start": 11170.46, + "end": 11171.84, + "probability": 0.7209 + }, + { + "start": 11172.58, + "end": 11173.14, + "probability": 0.475 + }, + { + "start": 11173.32, + "end": 11175.02, + "probability": 0.5608 + }, + { + "start": 11175.02, + "end": 11177.5, + "probability": 0.9917 + }, + { + "start": 11178.86, + "end": 11180.48, + "probability": 0.7331 + }, + { + "start": 11180.64, + "end": 11182.78, + "probability": 0.9865 + }, + { + "start": 11183.98, + "end": 11187.3, + "probability": 0.8298 + }, + { + "start": 11187.66, + "end": 11188.2, + "probability": 0.4012 + }, + { + "start": 11188.22, + "end": 11189.84, + "probability": 0.9951 + }, + { + "start": 11190.68, + "end": 11191.32, + "probability": 0.1026 + }, + { + "start": 11194.9, + "end": 11194.94, + "probability": 0.2515 + }, + { + "start": 11195.4, + "end": 11196.86, + "probability": 0.3032 + }, + { + "start": 11196.86, + "end": 11196.86, + "probability": 0.3533 + }, + { + "start": 11196.86, + "end": 11196.86, + "probability": 0.1996 + }, + { + "start": 11196.86, + "end": 11200.38, + "probability": 0.616 + }, + { + "start": 11200.38, + "end": 11201.66, + "probability": 0.5328 + }, + { + "start": 11202.7, + "end": 11203.58, + "probability": 0.623 + }, + { + "start": 11207.84, + "end": 11209.44, + "probability": 0.0601 + }, + { + "start": 11209.5, + "end": 11210.6, + "probability": 0.6548 + }, + { + "start": 11210.72, + "end": 11211.76, + "probability": 0.7216 + }, + { + "start": 11211.78, + "end": 11213.92, + "probability": 0.6208 + }, + { + "start": 11213.92, + "end": 11217.12, + "probability": 0.5382 + }, + { + "start": 11217.14, + "end": 11219.09, + "probability": 0.4671 + }, + { + "start": 11219.86, + "end": 11220.04, + "probability": 0.0126 + }, + { + "start": 11220.04, + "end": 11220.58, + "probability": 0.0512 + }, + { + "start": 11220.88, + "end": 11221.9, + "probability": 0.6881 + }, + { + "start": 11222.36, + "end": 11224.0, + "probability": 0.5388 + }, + { + "start": 11225.6, + "end": 11226.36, + "probability": 0.7134 + }, + { + "start": 11226.54, + "end": 11227.88, + "probability": 0.8233 + }, + { + "start": 11228.26, + "end": 11232.16, + "probability": 0.6737 + }, + { + "start": 11232.18, + "end": 11234.04, + "probability": 0.6006 + }, + { + "start": 11234.42, + "end": 11235.22, + "probability": 0.9592 + }, + { + "start": 11235.54, + "end": 11238.14, + "probability": 0.3376 + }, + { + "start": 11238.24, + "end": 11240.68, + "probability": 0.6256 + }, + { + "start": 11241.92, + "end": 11242.92, + "probability": 0.8466 + }, + { + "start": 11242.92, + "end": 11243.52, + "probability": 0.6583 + }, + { + "start": 11243.6, + "end": 11245.7, + "probability": 0.4657 + }, + { + "start": 11245.72, + "end": 11246.06, + "probability": 0.4665 + }, + { + "start": 11246.32, + "end": 11248.44, + "probability": 0.6075 + }, + { + "start": 11248.48, + "end": 11249.44, + "probability": 0.7082 + }, + { + "start": 11250.14, + "end": 11251.54, + "probability": 0.6785 + }, + { + "start": 11252.12, + "end": 11252.56, + "probability": 0.8612 + }, + { + "start": 11252.56, + "end": 11253.96, + "probability": 0.5058 + }, + { + "start": 11254.06, + "end": 11254.86, + "probability": 0.6492 + }, + { + "start": 11255.54, + "end": 11258.16, + "probability": 0.937 + }, + { + "start": 11258.96, + "end": 11260.46, + "probability": 0.975 + }, + { + "start": 11261.1, + "end": 11262.94, + "probability": 0.9901 + }, + { + "start": 11263.0, + "end": 11263.82, + "probability": 0.9446 + }, + { + "start": 11265.12, + "end": 11266.06, + "probability": 0.9932 + }, + { + "start": 11266.1, + "end": 11268.04, + "probability": 0.7338 + }, + { + "start": 11268.14, + "end": 11269.02, + "probability": 0.71 + }, + { + "start": 11269.08, + "end": 11270.94, + "probability": 0.7317 + }, + { + "start": 11270.96, + "end": 11271.1, + "probability": 0.1822 + }, + { + "start": 11271.24, + "end": 11272.1, + "probability": 0.3198 + }, + { + "start": 11272.1, + "end": 11272.14, + "probability": 0.3837 + }, + { + "start": 11272.14, + "end": 11273.65, + "probability": 0.2274 + }, + { + "start": 11274.64, + "end": 11276.98, + "probability": 0.3496 + }, + { + "start": 11277.12, + "end": 11277.78, + "probability": 0.7411 + }, + { + "start": 11278.06, + "end": 11279.1, + "probability": 0.6587 + }, + { + "start": 11279.18, + "end": 11280.4, + "probability": 0.5635 + }, + { + "start": 11280.4, + "end": 11282.7, + "probability": 0.7361 + }, + { + "start": 11282.9, + "end": 11284.16, + "probability": 0.8595 + }, + { + "start": 11284.22, + "end": 11285.44, + "probability": 0.6616 + }, + { + "start": 11286.14, + "end": 11291.76, + "probability": 0.9967 + }, + { + "start": 11292.98, + "end": 11295.21, + "probability": 0.5466 + }, + { + "start": 11296.62, + "end": 11302.5, + "probability": 0.9705 + }, + { + "start": 11302.5, + "end": 11306.42, + "probability": 0.9816 + }, + { + "start": 11308.5, + "end": 11313.6, + "probability": 0.9897 + }, + { + "start": 11315.8, + "end": 11316.7, + "probability": 0.3142 + }, + { + "start": 11317.64, + "end": 11322.68, + "probability": 0.9484 + }, + { + "start": 11323.56, + "end": 11324.32, + "probability": 0.6316 + }, + { + "start": 11324.38, + "end": 11327.66, + "probability": 0.9868 + }, + { + "start": 11327.78, + "end": 11330.96, + "probability": 0.8785 + }, + { + "start": 11332.34, + "end": 11334.26, + "probability": 0.8078 + }, + { + "start": 11334.8, + "end": 11337.68, + "probability": 0.8958 + }, + { + "start": 11338.56, + "end": 11340.28, + "probability": 0.4935 + }, + { + "start": 11342.44, + "end": 11345.16, + "probability": 0.6866 + }, + { + "start": 11345.94, + "end": 11349.76, + "probability": 0.8353 + }, + { + "start": 11351.24, + "end": 11356.98, + "probability": 0.9907 + }, + { + "start": 11357.62, + "end": 11359.3, + "probability": 0.7341 + }, + { + "start": 11360.26, + "end": 11365.7, + "probability": 0.8805 + }, + { + "start": 11366.82, + "end": 11372.98, + "probability": 0.9951 + }, + { + "start": 11373.74, + "end": 11380.13, + "probability": 0.6645 + }, + { + "start": 11380.72, + "end": 11381.54, + "probability": 0.0287 + }, + { + "start": 11382.02, + "end": 11382.72, + "probability": 0.9471 + }, + { + "start": 11385.42, + "end": 11385.64, + "probability": 0.0443 + }, + { + "start": 11389.9, + "end": 11391.13, + "probability": 0.0761 + }, + { + "start": 11391.9, + "end": 11396.36, + "probability": 0.8939 + }, + { + "start": 11397.2, + "end": 11399.22, + "probability": 0.4223 + }, + { + "start": 11399.22, + "end": 11399.8, + "probability": 0.1548 + }, + { + "start": 11399.8, + "end": 11400.08, + "probability": 0.0729 + }, + { + "start": 11400.14, + "end": 11400.34, + "probability": 0.0413 + }, + { + "start": 11400.36, + "end": 11401.06, + "probability": 0.1577 + }, + { + "start": 11401.28, + "end": 11405.62, + "probability": 0.5211 + }, + { + "start": 11405.9, + "end": 11407.47, + "probability": 0.8318 + }, + { + "start": 11407.92, + "end": 11412.22, + "probability": 0.2627 + }, + { + "start": 11412.22, + "end": 11413.44, + "probability": 0.0572 + }, + { + "start": 11413.44, + "end": 11414.72, + "probability": 0.5743 + }, + { + "start": 11414.8, + "end": 11416.6, + "probability": 0.4535 + }, + { + "start": 11416.6, + "end": 11417.14, + "probability": 0.0466 + }, + { + "start": 11417.28, + "end": 11418.36, + "probability": 0.5956 + }, + { + "start": 11418.36, + "end": 11419.92, + "probability": 0.5223 + }, + { + "start": 11420.34, + "end": 11425.26, + "probability": 0.7527 + }, + { + "start": 11425.26, + "end": 11429.12, + "probability": 0.9114 + }, + { + "start": 11430.02, + "end": 11433.32, + "probability": 0.769 + }, + { + "start": 11433.92, + "end": 11437.44, + "probability": 0.7958 + }, + { + "start": 11438.26, + "end": 11441.86, + "probability": 0.9674 + }, + { + "start": 11442.46, + "end": 11448.58, + "probability": 0.9445 + }, + { + "start": 11449.64, + "end": 11452.66, + "probability": 0.9709 + }, + { + "start": 11452.8, + "end": 11457.48, + "probability": 0.9944 + }, + { + "start": 11459.84, + "end": 11462.34, + "probability": 0.7127 + }, + { + "start": 11463.1, + "end": 11466.84, + "probability": 0.9654 + }, + { + "start": 11467.64, + "end": 11470.98, + "probability": 0.951 + }, + { + "start": 11471.68, + "end": 11479.12, + "probability": 0.9668 + }, + { + "start": 11479.66, + "end": 11482.6, + "probability": 0.7459 + }, + { + "start": 11483.14, + "end": 11488.92, + "probability": 0.9955 + }, + { + "start": 11490.0, + "end": 11492.72, + "probability": 0.7408 + }, + { + "start": 11493.28, + "end": 11493.98, + "probability": 0.0301 + }, + { + "start": 11494.76, + "end": 11496.26, + "probability": 0.7018 + }, + { + "start": 11496.86, + "end": 11497.42, + "probability": 0.8123 + }, + { + "start": 11498.32, + "end": 11498.94, + "probability": 0.9604 + }, + { + "start": 11499.74, + "end": 11500.25, + "probability": 0.9131 + }, + { + "start": 11501.34, + "end": 11504.18, + "probability": 0.7599 + }, + { + "start": 11504.8, + "end": 11506.72, + "probability": 0.3531 + }, + { + "start": 11506.78, + "end": 11507.06, + "probability": 0.346 + }, + { + "start": 11507.06, + "end": 11507.22, + "probability": 0.201 + }, + { + "start": 11507.26, + "end": 11510.76, + "probability": 0.6687 + }, + { + "start": 11511.2, + "end": 11512.8, + "probability": 0.8255 + }, + { + "start": 11512.94, + "end": 11514.29, + "probability": 0.8846 + }, + { + "start": 11516.2, + "end": 11517.86, + "probability": 0.0654 + }, + { + "start": 11518.14, + "end": 11518.72, + "probability": 0.0863 + }, + { + "start": 11518.72, + "end": 11518.93, + "probability": 0.3203 + }, + { + "start": 11519.62, + "end": 11520.4, + "probability": 0.4795 + }, + { + "start": 11520.94, + "end": 11521.42, + "probability": 0.2159 + }, + { + "start": 11522.04, + "end": 11524.18, + "probability": 0.1105 + }, + { + "start": 11524.18, + "end": 11524.18, + "probability": 0.2416 + }, + { + "start": 11524.18, + "end": 11525.18, + "probability": 0.3396 + }, + { + "start": 11526.61, + "end": 11527.82, + "probability": 0.5863 + }, + { + "start": 11527.9, + "end": 11532.32, + "probability": 0.4954 + }, + { + "start": 11532.56, + "end": 11533.05, + "probability": 0.7917 + }, + { + "start": 11534.98, + "end": 11535.38, + "probability": 0.0915 + }, + { + "start": 11535.38, + "end": 11542.12, + "probability": 0.1229 + }, + { + "start": 11543.04, + "end": 11543.44, + "probability": 0.0771 + }, + { + "start": 11543.44, + "end": 11547.32, + "probability": 0.0929 + }, + { + "start": 11564.5, + "end": 11565.08, + "probability": 0.1455 + }, + { + "start": 11565.28, + "end": 11565.52, + "probability": 0.0518 + }, + { + "start": 11565.54, + "end": 11566.4, + "probability": 0.055 + }, + { + "start": 11569.0, + "end": 11571.74, + "probability": 0.3615 + }, + { + "start": 11574.08, + "end": 11575.82, + "probability": 0.2536 + }, + { + "start": 11576.52, + "end": 11578.66, + "probability": 0.043 + }, + { + "start": 11579.82, + "end": 11579.94, + "probability": 0.1206 + }, + { + "start": 11579.94, + "end": 11579.94, + "probability": 0.0772 + }, + { + "start": 11579.94, + "end": 11579.94, + "probability": 0.0819 + }, + { + "start": 11579.94, + "end": 11579.94, + "probability": 0.1732 + }, + { + "start": 11579.94, + "end": 11579.94, + "probability": 0.0473 + }, + { + "start": 11579.94, + "end": 11579.96, + "probability": 0.0687 + }, + { + "start": 11579.96, + "end": 11579.98, + "probability": 0.2014 + }, + { + "start": 11580.0, + "end": 11580.0, + "probability": 0.0 + }, + { + "start": 11580.0, + "end": 11580.0, + "probability": 0.0 + }, + { + "start": 11580.0, + "end": 11580.0, + "probability": 0.0 + }, + { + "start": 11580.0, + "end": 11580.0, + "probability": 0.0 + }, + { + "start": 11580.18, + "end": 11580.18, + "probability": 0.0348 + }, + { + "start": 11580.18, + "end": 11580.18, + "probability": 0.1211 + }, + { + "start": 11580.18, + "end": 11585.1, + "probability": 0.9432 + }, + { + "start": 11585.86, + "end": 11591.48, + "probability": 0.9276 + }, + { + "start": 11592.42, + "end": 11597.48, + "probability": 0.9832 + }, + { + "start": 11597.48, + "end": 11604.3, + "probability": 0.9476 + }, + { + "start": 11605.3, + "end": 11607.46, + "probability": 0.764 + }, + { + "start": 11608.08, + "end": 11609.56, + "probability": 0.7944 + }, + { + "start": 11609.62, + "end": 11615.9, + "probability": 0.968 + }, + { + "start": 11616.7, + "end": 11620.78, + "probability": 0.8428 + }, + { + "start": 11621.38, + "end": 11627.52, + "probability": 0.9896 + }, + { + "start": 11627.94, + "end": 11629.6, + "probability": 0.9707 + }, + { + "start": 11630.02, + "end": 11633.08, + "probability": 0.9342 + }, + { + "start": 11633.08, + "end": 11637.9, + "probability": 0.9878 + }, + { + "start": 11638.48, + "end": 11643.88, + "probability": 0.9798 + }, + { + "start": 11644.32, + "end": 11646.98, + "probability": 0.92 + }, + { + "start": 11647.54, + "end": 11652.5, + "probability": 0.8799 + }, + { + "start": 11653.04, + "end": 11653.24, + "probability": 0.1661 + }, + { + "start": 11653.24, + "end": 11653.5, + "probability": 0.5982 + }, + { + "start": 11653.7, + "end": 11656.4, + "probability": 0.877 + }, + { + "start": 11656.4, + "end": 11661.52, + "probability": 0.9767 + }, + { + "start": 11662.06, + "end": 11668.06, + "probability": 0.9796 + }, + { + "start": 11668.46, + "end": 11669.7, + "probability": 0.924 + }, + { + "start": 11669.8, + "end": 11669.86, + "probability": 0.2234 + }, + { + "start": 11669.92, + "end": 11671.68, + "probability": 0.9683 + }, + { + "start": 11672.26, + "end": 11673.86, + "probability": 0.8633 + }, + { + "start": 11674.06, + "end": 11677.78, + "probability": 0.8989 + }, + { + "start": 11678.64, + "end": 11682.16, + "probability": 0.7851 + }, + { + "start": 11682.82, + "end": 11684.78, + "probability": 0.9299 + }, + { + "start": 11685.58, + "end": 11689.0, + "probability": 0.8317 + }, + { + "start": 11689.44, + "end": 11692.96, + "probability": 0.7792 + }, + { + "start": 11693.44, + "end": 11694.28, + "probability": 0.6715 + }, + { + "start": 11694.86, + "end": 11698.68, + "probability": 0.6972 + }, + { + "start": 11698.68, + "end": 11702.6, + "probability": 0.9832 + }, + { + "start": 11702.6, + "end": 11708.88, + "probability": 0.9893 + }, + { + "start": 11708.88, + "end": 11714.58, + "probability": 0.998 + }, + { + "start": 11715.2, + "end": 11722.22, + "probability": 0.8828 + }, + { + "start": 11722.56, + "end": 11726.26, + "probability": 0.986 + }, + { + "start": 11726.94, + "end": 11728.12, + "probability": 0.7698 + }, + { + "start": 11728.76, + "end": 11734.18, + "probability": 0.9948 + }, + { + "start": 11734.18, + "end": 11738.78, + "probability": 0.9645 + }, + { + "start": 11739.38, + "end": 11745.76, + "probability": 0.9211 + }, + { + "start": 11746.18, + "end": 11747.14, + "probability": 0.7991 + }, + { + "start": 11747.38, + "end": 11748.14, + "probability": 0.9109 + }, + { + "start": 11748.54, + "end": 11752.36, + "probability": 0.9499 + }, + { + "start": 11754.4, + "end": 11758.66, + "probability": 0.7341 + }, + { + "start": 11759.36, + "end": 11760.72, + "probability": 0.7629 + }, + { + "start": 11761.28, + "end": 11766.58, + "probability": 0.7708 + }, + { + "start": 11766.66, + "end": 11767.89, + "probability": 0.6859 + }, + { + "start": 11768.82, + "end": 11770.14, + "probability": 0.9339 + }, + { + "start": 11770.96, + "end": 11776.18, + "probability": 0.9802 + }, + { + "start": 11776.78, + "end": 11780.6, + "probability": 0.8227 + }, + { + "start": 11781.24, + "end": 11782.36, + "probability": 0.2962 + }, + { + "start": 11783.54, + "end": 11783.54, + "probability": 0.2969 + }, + { + "start": 11786.96, + "end": 11790.34, + "probability": 0.846 + }, + { + "start": 11791.02, + "end": 11792.88, + "probability": 0.9171 + }, + { + "start": 11793.46, + "end": 11794.94, + "probability": 0.9356 + }, + { + "start": 11795.4, + "end": 11799.22, + "probability": 0.9974 + }, + { + "start": 11799.3, + "end": 11802.62, + "probability": 0.9827 + }, + { + "start": 11803.42, + "end": 11804.2, + "probability": 0.4462 + }, + { + "start": 11804.22, + "end": 11808.96, + "probability": 0.9894 + }, + { + "start": 11809.26, + "end": 11811.36, + "probability": 0.9472 + }, + { + "start": 11811.94, + "end": 11812.96, + "probability": 0.7994 + }, + { + "start": 11813.56, + "end": 11816.64, + "probability": 0.9085 + }, + { + "start": 11817.32, + "end": 11821.02, + "probability": 0.8693 + }, + { + "start": 11821.8, + "end": 11828.72, + "probability": 0.7453 + }, + { + "start": 11829.28, + "end": 11830.44, + "probability": 0.835 + }, + { + "start": 11831.53, + "end": 11835.0, + "probability": 0.9097 + }, + { + "start": 11835.7, + "end": 11836.94, + "probability": 0.9665 + }, + { + "start": 11836.98, + "end": 11837.66, + "probability": 0.6394 + }, + { + "start": 11837.74, + "end": 11838.98, + "probability": 0.5557 + }, + { + "start": 11839.14, + "end": 11839.58, + "probability": 0.5272 + }, + { + "start": 11840.36, + "end": 11842.1, + "probability": 0.6696 + }, + { + "start": 11842.44, + "end": 11846.74, + "probability": 0.9534 + }, + { + "start": 11846.74, + "end": 11851.06, + "probability": 0.9926 + }, + { + "start": 11851.3, + "end": 11852.88, + "probability": 0.9409 + }, + { + "start": 11853.28, + "end": 11853.86, + "probability": 0.9019 + }, + { + "start": 11853.96, + "end": 11854.86, + "probability": 0.6664 + }, + { + "start": 11855.18, + "end": 11856.26, + "probability": 0.8667 + }, + { + "start": 11856.86, + "end": 11859.52, + "probability": 0.9893 + }, + { + "start": 11859.56, + "end": 11866.56, + "probability": 0.6807 + }, + { + "start": 11866.94, + "end": 11868.84, + "probability": 0.8384 + }, + { + "start": 11869.44, + "end": 11873.26, + "probability": 0.7358 + }, + { + "start": 11873.44, + "end": 11878.0, + "probability": 0.9893 + }, + { + "start": 11878.48, + "end": 11880.48, + "probability": 0.9878 + }, + { + "start": 11880.68, + "end": 11881.03, + "probability": 0.8047 + }, + { + "start": 11881.84, + "end": 11882.84, + "probability": 0.8898 + }, + { + "start": 11883.0, + "end": 11884.42, + "probability": 0.9829 + }, + { + "start": 11885.32, + "end": 11885.9, + "probability": 0.8905 + }, + { + "start": 11886.06, + "end": 11886.99, + "probability": 0.9001 + }, + { + "start": 11887.24, + "end": 11888.36, + "probability": 0.7599 + }, + { + "start": 11888.64, + "end": 11889.67, + "probability": 0.9609 + }, + { + "start": 11890.04, + "end": 11896.28, + "probability": 0.973 + }, + { + "start": 11896.8, + "end": 11899.38, + "probability": 0.6242 + }, + { + "start": 11899.98, + "end": 11901.6, + "probability": 0.814 + }, + { + "start": 11902.06, + "end": 11907.28, + "probability": 0.875 + }, + { + "start": 11907.44, + "end": 11909.32, + "probability": 0.8882 + }, + { + "start": 11909.34, + "end": 11909.86, + "probability": 0.8514 + }, + { + "start": 11909.92, + "end": 11912.04, + "probability": 0.986 + }, + { + "start": 11912.2, + "end": 11912.44, + "probability": 0.4414 + }, + { + "start": 11912.58, + "end": 11913.94, + "probability": 0.7347 + }, + { + "start": 11914.04, + "end": 11914.76, + "probability": 0.3506 + }, + { + "start": 11914.88, + "end": 11918.84, + "probability": 0.964 + }, + { + "start": 11919.14, + "end": 11920.02, + "probability": 0.6003 + }, + { + "start": 11920.66, + "end": 11921.74, + "probability": 0.9204 + }, + { + "start": 11922.6, + "end": 11923.24, + "probability": 0.0425 + }, + { + "start": 11923.32, + "end": 11924.38, + "probability": 0.658 + }, + { + "start": 11924.48, + "end": 11925.38, + "probability": 0.9829 + }, + { + "start": 11925.82, + "end": 11925.88, + "probability": 0.1193 + }, + { + "start": 11925.88, + "end": 11926.82, + "probability": 0.7834 + }, + { + "start": 11926.82, + "end": 11933.96, + "probability": 0.894 + }, + { + "start": 11934.5, + "end": 11938.36, + "probability": 0.991 + }, + { + "start": 11938.6, + "end": 11939.46, + "probability": 0.6714 + }, + { + "start": 11939.52, + "end": 11944.68, + "probability": 0.9733 + }, + { + "start": 11944.94, + "end": 11946.76, + "probability": 0.819 + }, + { + "start": 11946.9, + "end": 11948.3, + "probability": 0.9305 + }, + { + "start": 11948.38, + "end": 11952.26, + "probability": 0.9342 + }, + { + "start": 11952.4, + "end": 11953.26, + "probability": 0.8521 + }, + { + "start": 11953.4, + "end": 11957.58, + "probability": 0.938 + }, + { + "start": 11957.7, + "end": 11965.6, + "probability": 0.9634 + }, + { + "start": 11965.68, + "end": 11966.9, + "probability": 0.9993 + }, + { + "start": 11967.66, + "end": 11968.16, + "probability": 0.0089 + }, + { + "start": 11968.16, + "end": 11968.16, + "probability": 0.0709 + }, + { + "start": 11968.16, + "end": 11970.6, + "probability": 0.5656 + }, + { + "start": 11970.62, + "end": 11971.18, + "probability": 0.7896 + }, + { + "start": 11972.68, + "end": 11977.84, + "probability": 0.1585 + }, + { + "start": 11978.68, + "end": 11979.22, + "probability": 0.0775 + }, + { + "start": 11979.22, + "end": 11979.26, + "probability": 0.0213 + }, + { + "start": 11979.88, + "end": 11980.66, + "probability": 0.1404 + }, + { + "start": 11980.66, + "end": 11980.66, + "probability": 0.0753 + }, + { + "start": 11980.66, + "end": 11981.04, + "probability": 0.2358 + }, + { + "start": 11981.06, + "end": 11981.54, + "probability": 0.5744 + }, + { + "start": 11981.54, + "end": 11982.36, + "probability": 0.6809 + }, + { + "start": 11983.38, + "end": 11983.9, + "probability": 0.3952 + }, + { + "start": 11986.28, + "end": 11988.5, + "probability": 0.4907 + }, + { + "start": 11988.5, + "end": 11991.1, + "probability": 0.0732 + }, + { + "start": 11991.32, + "end": 11995.22, + "probability": 0.5946 + }, + { + "start": 11995.38, + "end": 11998.08, + "probability": 0.7275 + }, + { + "start": 11998.1, + "end": 11998.82, + "probability": 0.8644 + }, + { + "start": 12000.6, + "end": 12005.08, + "probability": 0.983 + }, + { + "start": 12005.66, + "end": 12007.48, + "probability": 0.9601 + }, + { + "start": 12008.12, + "end": 12010.56, + "probability": 0.9902 + }, + { + "start": 12010.56, + "end": 12014.26, + "probability": 0.9763 + }, + { + "start": 12014.8, + "end": 12017.1, + "probability": 0.9414 + }, + { + "start": 12017.34, + "end": 12019.98, + "probability": 0.033 + }, + { + "start": 12020.44, + "end": 12022.58, + "probability": 0.9885 + }, + { + "start": 12022.58, + "end": 12025.34, + "probability": 0.9536 + }, + { + "start": 12026.16, + "end": 12027.12, + "probability": 0.7394 + }, + { + "start": 12027.36, + "end": 12030.06, + "probability": 0.9988 + }, + { + "start": 12030.3, + "end": 12032.24, + "probability": 0.9221 + }, + { + "start": 12032.78, + "end": 12034.88, + "probability": 0.8332 + }, + { + "start": 12035.44, + "end": 12038.02, + "probability": 0.957 + }, + { + "start": 12038.02, + "end": 12041.62, + "probability": 0.9963 + }, + { + "start": 12041.78, + "end": 12045.44, + "probability": 0.9449 + }, + { + "start": 12045.94, + "end": 12049.0, + "probability": 0.8264 + }, + { + "start": 12049.0, + "end": 12050.98, + "probability": 0.9937 + }, + { + "start": 12051.18, + "end": 12052.7, + "probability": 0.985 + }, + { + "start": 12052.76, + "end": 12053.66, + "probability": 0.8462 + }, + { + "start": 12053.78, + "end": 12054.1, + "probability": 0.615 + }, + { + "start": 12054.12, + "end": 12056.74, + "probability": 0.9618 + }, + { + "start": 12057.1, + "end": 12059.1, + "probability": 0.9683 + }, + { + "start": 12059.1, + "end": 12063.68, + "probability": 0.8799 + }, + { + "start": 12064.04, + "end": 12067.42, + "probability": 0.9951 + }, + { + "start": 12067.42, + "end": 12070.98, + "probability": 0.9983 + }, + { + "start": 12071.48, + "end": 12073.96, + "probability": 0.9275 + }, + { + "start": 12074.04, + "end": 12075.67, + "probability": 0.9976 + }, + { + "start": 12076.4, + "end": 12076.46, + "probability": 0.0545 + }, + { + "start": 12076.46, + "end": 12078.02, + "probability": 0.7088 + }, + { + "start": 12078.86, + "end": 12080.72, + "probability": 0.9154 + }, + { + "start": 12081.22, + "end": 12081.28, + "probability": 0.3583 + }, + { + "start": 12081.28, + "end": 12084.24, + "probability": 0.8898 + }, + { + "start": 12084.86, + "end": 12088.52, + "probability": 0.967 + }, + { + "start": 12088.7, + "end": 12093.36, + "probability": 0.9136 + }, + { + "start": 12093.58, + "end": 12101.36, + "probability": 0.9943 + }, + { + "start": 12101.48, + "end": 12105.08, + "probability": 0.9282 + }, + { + "start": 12105.66, + "end": 12108.62, + "probability": 0.8979 + }, + { + "start": 12109.28, + "end": 12109.66, + "probability": 0.5729 + }, + { + "start": 12109.82, + "end": 12110.04, + "probability": 0.8138 + }, + { + "start": 12110.28, + "end": 12113.58, + "probability": 0.9875 + }, + { + "start": 12114.08, + "end": 12115.68, + "probability": 0.9815 + }, + { + "start": 12116.02, + "end": 12116.12, + "probability": 0.0143 + }, + { + "start": 12116.12, + "end": 12116.8, + "probability": 0.4681 + }, + { + "start": 12116.98, + "end": 12117.82, + "probability": 0.4275 + }, + { + "start": 12117.88, + "end": 12118.6, + "probability": 0.7576 + }, + { + "start": 12118.84, + "end": 12121.87, + "probability": 0.9797 + }, + { + "start": 12122.74, + "end": 12124.16, + "probability": 0.079 + }, + { + "start": 12124.16, + "end": 12124.76, + "probability": 0.6436 + }, + { + "start": 12125.04, + "end": 12125.58, + "probability": 0.5213 + }, + { + "start": 12125.88, + "end": 12131.44, + "probability": 0.9791 + }, + { + "start": 12131.82, + "end": 12136.12, + "probability": 0.9905 + }, + { + "start": 12136.74, + "end": 12139.76, + "probability": 0.9968 + }, + { + "start": 12140.02, + "end": 12142.78, + "probability": 0.8196 + }, + { + "start": 12142.88, + "end": 12143.71, + "probability": 0.9669 + }, + { + "start": 12144.22, + "end": 12146.76, + "probability": 0.9456 + }, + { + "start": 12146.88, + "end": 12151.6, + "probability": 0.9913 + }, + { + "start": 12151.74, + "end": 12153.9, + "probability": 0.7846 + }, + { + "start": 12154.12, + "end": 12154.12, + "probability": 0.2169 + }, + { + "start": 12154.12, + "end": 12155.7, + "probability": 0.6902 + }, + { + "start": 12156.06, + "end": 12157.16, + "probability": 0.4985 + }, + { + "start": 12157.34, + "end": 12162.3, + "probability": 0.9985 + }, + { + "start": 12163.66, + "end": 12167.52, + "probability": 0.9939 + }, + { + "start": 12167.7, + "end": 12168.46, + "probability": 0.7224 + }, + { + "start": 12168.54, + "end": 12169.64, + "probability": 0.8749 + }, + { + "start": 12169.82, + "end": 12170.66, + "probability": 0.7477 + }, + { + "start": 12170.74, + "end": 12173.54, + "probability": 0.9277 + }, + { + "start": 12173.6, + "end": 12174.1, + "probability": 0.0453 + }, + { + "start": 12174.1, + "end": 12174.1, + "probability": 0.0436 + }, + { + "start": 12174.1, + "end": 12178.64, + "probability": 0.8605 + }, + { + "start": 12178.92, + "end": 12180.52, + "probability": 0.3457 + }, + { + "start": 12180.72, + "end": 12181.58, + "probability": 0.5336 + }, + { + "start": 12181.74, + "end": 12185.9, + "probability": 0.9272 + }, + { + "start": 12186.02, + "end": 12186.72, + "probability": 0.746 + }, + { + "start": 12186.82, + "end": 12187.96, + "probability": 0.9115 + }, + { + "start": 12188.34, + "end": 12189.6, + "probability": 0.9103 + }, + { + "start": 12190.12, + "end": 12193.38, + "probability": 0.9474 + }, + { + "start": 12193.9, + "end": 12194.98, + "probability": 0.0013 + }, + { + "start": 12195.58, + "end": 12195.82, + "probability": 0.1597 + }, + { + "start": 12195.82, + "end": 12195.82, + "probability": 0.0116 + }, + { + "start": 12195.82, + "end": 12196.26, + "probability": 0.0859 + }, + { + "start": 12196.72, + "end": 12199.5, + "probability": 0.8961 + }, + { + "start": 12200.02, + "end": 12202.32, + "probability": 0.9629 + }, + { + "start": 12202.9, + "end": 12207.42, + "probability": 0.9598 + }, + { + "start": 12207.6, + "end": 12208.52, + "probability": 0.9672 + }, + { + "start": 12208.74, + "end": 12210.66, + "probability": 0.9768 + }, + { + "start": 12211.18, + "end": 12213.86, + "probability": 0.7729 + }, + { + "start": 12213.86, + "end": 12218.0, + "probability": 0.9967 + }, + { + "start": 12218.34, + "end": 12220.68, + "probability": 0.9524 + }, + { + "start": 12221.16, + "end": 12225.72, + "probability": 0.6996 + }, + { + "start": 12226.0, + "end": 12228.06, + "probability": 0.9841 + }, + { + "start": 12228.16, + "end": 12232.17, + "probability": 0.9424 + }, + { + "start": 12232.44, + "end": 12235.96, + "probability": 0.9674 + }, + { + "start": 12236.18, + "end": 12238.32, + "probability": 0.9565 + }, + { + "start": 12238.46, + "end": 12241.06, + "probability": 0.9919 + }, + { + "start": 12241.62, + "end": 12242.28, + "probability": 0.6722 + }, + { + "start": 12242.44, + "end": 12243.2, + "probability": 0.8055 + }, + { + "start": 12243.42, + "end": 12246.74, + "probability": 0.7892 + }, + { + "start": 12247.34, + "end": 12248.68, + "probability": 0.8809 + }, + { + "start": 12249.06, + "end": 12254.0, + "probability": 0.9814 + }, + { + "start": 12254.08, + "end": 12255.06, + "probability": 0.6245 + }, + { + "start": 12255.08, + "end": 12256.08, + "probability": 0.9517 + }, + { + "start": 12256.36, + "end": 12257.64, + "probability": 0.9651 + }, + { + "start": 12257.84, + "end": 12260.58, + "probability": 0.8739 + }, + { + "start": 12260.94, + "end": 12261.72, + "probability": 0.9027 + }, + { + "start": 12261.78, + "end": 12262.58, + "probability": 0.9122 + }, + { + "start": 12262.88, + "end": 12266.14, + "probability": 0.9002 + }, + { + "start": 12266.24, + "end": 12267.48, + "probability": 0.6796 + }, + { + "start": 12267.8, + "end": 12269.2, + "probability": 0.7858 + }, + { + "start": 12269.48, + "end": 12270.3, + "probability": 0.8781 + }, + { + "start": 12270.66, + "end": 12273.4, + "probability": 0.9486 + }, + { + "start": 12273.54, + "end": 12276.6, + "probability": 0.9497 + }, + { + "start": 12276.82, + "end": 12278.5, + "probability": 0.6579 + }, + { + "start": 12278.82, + "end": 12280.82, + "probability": 0.9016 + }, + { + "start": 12281.0, + "end": 12283.08, + "probability": 0.7939 + }, + { + "start": 12283.96, + "end": 12285.14, + "probability": 0.813 + }, + { + "start": 12285.36, + "end": 12286.42, + "probability": 0.7126 + }, + { + "start": 12286.52, + "end": 12289.52, + "probability": 0.8874 + }, + { + "start": 12289.58, + "end": 12290.86, + "probability": 0.9383 + }, + { + "start": 12291.1, + "end": 12293.0, + "probability": 0.9906 + }, + { + "start": 12293.08, + "end": 12294.6, + "probability": 0.7304 + }, + { + "start": 12294.76, + "end": 12295.7, + "probability": 0.8965 + }, + { + "start": 12295.82, + "end": 12298.22, + "probability": 0.7054 + }, + { + "start": 12298.4, + "end": 12301.88, + "probability": 0.9985 + }, + { + "start": 12301.88, + "end": 12306.94, + "probability": 0.9961 + }, + { + "start": 12307.6, + "end": 12311.86, + "probability": 0.835 + }, + { + "start": 12312.02, + "end": 12313.06, + "probability": 0.9264 + }, + { + "start": 12313.26, + "end": 12317.52, + "probability": 0.9613 + }, + { + "start": 12318.08, + "end": 12319.98, + "probability": 0.8965 + }, + { + "start": 12320.14, + "end": 12320.9, + "probability": 0.8013 + }, + { + "start": 12323.14, + "end": 12326.18, + "probability": 0.9917 + }, + { + "start": 12326.9, + "end": 12326.92, + "probability": 0.0247 + }, + { + "start": 12326.92, + "end": 12331.4, + "probability": 0.9551 + }, + { + "start": 12331.84, + "end": 12339.2, + "probability": 0.9586 + }, + { + "start": 12340.18, + "end": 12342.72, + "probability": 0.6716 + }, + { + "start": 12342.92, + "end": 12343.78, + "probability": 0.6963 + }, + { + "start": 12344.06, + "end": 12346.04, + "probability": 0.952 + }, + { + "start": 12346.06, + "end": 12347.1, + "probability": 0.9255 + }, + { + "start": 12347.22, + "end": 12348.14, + "probability": 0.3956 + }, + { + "start": 12348.2, + "end": 12348.56, + "probability": 0.8643 + }, + { + "start": 12350.28, + "end": 12353.08, + "probability": 0.5816 + }, + { + "start": 12353.08, + "end": 12355.74, + "probability": 0.5174 + }, + { + "start": 12356.58, + "end": 12357.24, + "probability": 0.6066 + }, + { + "start": 12357.28, + "end": 12358.24, + "probability": 0.7342 + }, + { + "start": 12358.36, + "end": 12359.68, + "probability": 0.9905 + }, + { + "start": 12361.68, + "end": 12366.6, + "probability": 0.7495 + }, + { + "start": 12366.92, + "end": 12367.32, + "probability": 0.3543 + }, + { + "start": 12367.72, + "end": 12369.78, + "probability": 0.6715 + }, + { + "start": 12369.82, + "end": 12370.86, + "probability": 0.7743 + }, + { + "start": 12371.14, + "end": 12371.64, + "probability": 0.8549 + }, + { + "start": 12372.1, + "end": 12374.01, + "probability": 0.9556 + }, + { + "start": 12374.4, + "end": 12378.18, + "probability": 0.8674 + }, + { + "start": 12378.44, + "end": 12379.42, + "probability": 0.8742 + }, + { + "start": 12379.5, + "end": 12381.32, + "probability": 0.7539 + }, + { + "start": 12381.5, + "end": 12383.1, + "probability": 0.9018 + }, + { + "start": 12383.4, + "end": 12389.4, + "probability": 0.8193 + }, + { + "start": 12389.58, + "end": 12389.88, + "probability": 0.5721 + }, + { + "start": 12390.46, + "end": 12391.74, + "probability": 0.9526 + }, + { + "start": 12392.02, + "end": 12394.3, + "probability": 0.9978 + }, + { + "start": 12394.38, + "end": 12395.14, + "probability": 0.9555 + }, + { + "start": 12395.2, + "end": 12395.88, + "probability": 0.7304 + }, + { + "start": 12396.3, + "end": 12399.34, + "probability": 0.9599 + }, + { + "start": 12399.58, + "end": 12400.46, + "probability": 0.9213 + }, + { + "start": 12400.76, + "end": 12404.06, + "probability": 0.9554 + }, + { + "start": 12404.3, + "end": 12406.57, + "probability": 0.8829 + }, + { + "start": 12407.12, + "end": 12408.76, + "probability": 0.9771 + }, + { + "start": 12409.14, + "end": 12412.44, + "probability": 0.7964 + }, + { + "start": 12412.62, + "end": 12412.9, + "probability": 0.8743 + }, + { + "start": 12413.2, + "end": 12415.1, + "probability": 0.6442 + }, + { + "start": 12415.46, + "end": 12417.28, + "probability": 0.8589 + }, + { + "start": 12417.58, + "end": 12422.18, + "probability": 0.8658 + }, + { + "start": 12422.38, + "end": 12423.74, + "probability": 0.924 + }, + { + "start": 12424.12, + "end": 12425.12, + "probability": 0.8573 + }, + { + "start": 12425.2, + "end": 12425.66, + "probability": 0.6657 + }, + { + "start": 12425.86, + "end": 12429.04, + "probability": 0.7998 + }, + { + "start": 12429.3, + "end": 12430.64, + "probability": 0.7494 + }, + { + "start": 12431.22, + "end": 12432.34, + "probability": 0.9229 + }, + { + "start": 12432.62, + "end": 12435.12, + "probability": 0.5552 + }, + { + "start": 12435.38, + "end": 12436.3, + "probability": 0.7766 + }, + { + "start": 12436.72, + "end": 12438.16, + "probability": 0.699 + }, + { + "start": 12438.48, + "end": 12442.46, + "probability": 0.5141 + }, + { + "start": 12442.82, + "end": 12446.6, + "probability": 0.8387 + }, + { + "start": 12446.6, + "end": 12450.62, + "probability": 0.8954 + }, + { + "start": 12450.62, + "end": 12451.6, + "probability": 0.6921 + }, + { + "start": 12451.98, + "end": 12453.28, + "probability": 0.8159 + }, + { + "start": 12453.5, + "end": 12455.8, + "probability": 0.939 + }, + { + "start": 12455.96, + "end": 12457.5, + "probability": 0.9621 + }, + { + "start": 12457.6, + "end": 12458.84, + "probability": 0.8936 + }, + { + "start": 12458.96, + "end": 12462.18, + "probability": 0.9589 + }, + { + "start": 12462.76, + "end": 12465.2, + "probability": 0.8851 + }, + { + "start": 12465.52, + "end": 12467.42, + "probability": 0.9801 + }, + { + "start": 12467.92, + "end": 12471.5, + "probability": 0.9918 + }, + { + "start": 12471.5, + "end": 12475.32, + "probability": 0.9852 + }, + { + "start": 12475.38, + "end": 12476.16, + "probability": 0.4602 + }, + { + "start": 12476.18, + "end": 12477.38, + "probability": 0.9844 + }, + { + "start": 12477.82, + "end": 12478.68, + "probability": 0.915 + }, + { + "start": 12478.88, + "end": 12480.12, + "probability": 0.6383 + }, + { + "start": 12480.46, + "end": 12484.86, + "probability": 0.8172 + }, + { + "start": 12485.54, + "end": 12486.44, + "probability": 0.7073 + }, + { + "start": 12486.5, + "end": 12487.56, + "probability": 0.8692 + }, + { + "start": 12487.88, + "end": 12489.58, + "probability": 0.9285 + }, + { + "start": 12489.84, + "end": 12491.56, + "probability": 0.9613 + }, + { + "start": 12491.62, + "end": 12493.2, + "probability": 0.9961 + }, + { + "start": 12493.66, + "end": 12498.1, + "probability": 0.8964 + }, + { + "start": 12498.54, + "end": 12498.8, + "probability": 0.8416 + }, + { + "start": 12500.2, + "end": 12502.04, + "probability": 0.7688 + }, + { + "start": 12502.04, + "end": 12502.88, + "probability": 0.5946 + }, + { + "start": 12502.92, + "end": 12503.54, + "probability": 0.3458 + }, + { + "start": 12503.92, + "end": 12505.56, + "probability": 0.1577 + }, + { + "start": 12505.56, + "end": 12506.7, + "probability": 0.0778 + }, + { + "start": 12507.52, + "end": 12508.42, + "probability": 0.6104 + }, + { + "start": 12510.36, + "end": 12512.9, + "probability": 0.06 + }, + { + "start": 12513.58, + "end": 12516.22, + "probability": 0.364 + }, + { + "start": 12516.4, + "end": 12520.34, + "probability": 0.8171 + }, + { + "start": 12521.1, + "end": 12523.37, + "probability": 0.9906 + }, + { + "start": 12524.14, + "end": 12528.1, + "probability": 0.9416 + }, + { + "start": 12529.42, + "end": 12530.6, + "probability": 0.8447 + }, + { + "start": 12530.98, + "end": 12534.0, + "probability": 0.5935 + }, + { + "start": 12534.84, + "end": 12534.84, + "probability": 0.0499 + }, + { + "start": 12534.84, + "end": 12538.7, + "probability": 0.9366 + }, + { + "start": 12538.86, + "end": 12539.2, + "probability": 0.2148 + }, + { + "start": 12539.3, + "end": 12540.34, + "probability": 0.7666 + }, + { + "start": 12540.96, + "end": 12541.92, + "probability": 0.9424 + }, + { + "start": 12542.16, + "end": 12543.68, + "probability": 0.8466 + }, + { + "start": 12543.9, + "end": 12545.6, + "probability": 0.6287 + }, + { + "start": 12545.84, + "end": 12547.14, + "probability": 0.6531 + }, + { + "start": 12547.34, + "end": 12548.66, + "probability": 0.8818 + }, + { + "start": 12548.94, + "end": 12550.26, + "probability": 0.7634 + }, + { + "start": 12551.2, + "end": 12551.56, + "probability": 0.5133 + }, + { + "start": 12551.64, + "end": 12552.48, + "probability": 0.54 + }, + { + "start": 12552.86, + "end": 12553.51, + "probability": 0.8657 + }, + { + "start": 12554.39, + "end": 12556.94, + "probability": 0.8889 + }, + { + "start": 12557.08, + "end": 12557.56, + "probability": 0.4365 + }, + { + "start": 12557.56, + "end": 12559.47, + "probability": 0.6686 + }, + { + "start": 12559.78, + "end": 12561.48, + "probability": 0.6226 + }, + { + "start": 12561.56, + "end": 12562.4, + "probability": 0.5837 + }, + { + "start": 12562.42, + "end": 12565.8, + "probability": 0.9014 + }, + { + "start": 12565.8, + "end": 12568.14, + "probability": 0.945 + }, + { + "start": 12568.58, + "end": 12570.48, + "probability": 0.3447 + }, + { + "start": 12570.56, + "end": 12572.08, + "probability": 0.9 + }, + { + "start": 12572.6, + "end": 12573.42, + "probability": 0.5614 + }, + { + "start": 12573.56, + "end": 12573.9, + "probability": 0.3285 + }, + { + "start": 12573.92, + "end": 12574.36, + "probability": 0.6078 + }, + { + "start": 12586.6, + "end": 12587.86, + "probability": 0.0758 + }, + { + "start": 12587.86, + "end": 12593.02, + "probability": 0.0876 + }, + { + "start": 12594.66, + "end": 12595.06, + "probability": 0.0287 + }, + { + "start": 12595.06, + "end": 12595.78, + "probability": 0.1148 + }, + { + "start": 12595.78, + "end": 12595.78, + "probability": 0.1991 + }, + { + "start": 12595.78, + "end": 12595.78, + "probability": 0.0295 + }, + { + "start": 12595.78, + "end": 12596.95, + "probability": 0.5829 + }, + { + "start": 12597.26, + "end": 12599.32, + "probability": 0.9448 + }, + { + "start": 12600.5, + "end": 12601.96, + "probability": 0.7407 + }, + { + "start": 12603.06, + "end": 12605.8, + "probability": 0.6844 + }, + { + "start": 12605.96, + "end": 12612.12, + "probability": 0.949 + }, + { + "start": 12612.68, + "end": 12613.32, + "probability": 0.6819 + }, + { + "start": 12613.32, + "end": 12615.62, + "probability": 0.7464 + }, + { + "start": 12616.08, + "end": 12617.68, + "probability": 0.7487 + }, + { + "start": 12617.8, + "end": 12619.84, + "probability": 0.7518 + }, + { + "start": 12620.36, + "end": 12624.9, + "probability": 0.3493 + }, + { + "start": 12624.98, + "end": 12625.34, + "probability": 0.6908 + }, + { + "start": 12638.86, + "end": 12641.2, + "probability": 0.7469 + }, + { + "start": 12642.28, + "end": 12644.99, + "probability": 0.9993 + }, + { + "start": 12645.1, + "end": 12650.42, + "probability": 0.9972 + }, + { + "start": 12651.1, + "end": 12655.08, + "probability": 0.5066 + }, + { + "start": 12655.82, + "end": 12658.5, + "probability": 0.8179 + }, + { + "start": 12661.3, + "end": 12663.62, + "probability": 0.8892 + }, + { + "start": 12665.94, + "end": 12667.32, + "probability": 0.7386 + }, + { + "start": 12667.38, + "end": 12668.9, + "probability": 0.9705 + }, + { + "start": 12669.1, + "end": 12670.24, + "probability": 0.6022 + }, + { + "start": 12670.94, + "end": 12674.04, + "probability": 0.9682 + }, + { + "start": 12674.36, + "end": 12677.52, + "probability": 0.9452 + }, + { + "start": 12678.1, + "end": 12683.54, + "probability": 0.938 + }, + { + "start": 12684.04, + "end": 12690.46, + "probability": 0.9653 + }, + { + "start": 12690.72, + "end": 12694.86, + "probability": 0.98 + }, + { + "start": 12694.86, + "end": 12699.84, + "probability": 0.998 + }, + { + "start": 12700.32, + "end": 12701.18, + "probability": 0.8514 + }, + { + "start": 12702.3, + "end": 12704.14, + "probability": 0.0354 + }, + { + "start": 12704.14, + "end": 12707.22, + "probability": 0.9912 + }, + { + "start": 12707.72, + "end": 12712.84, + "probability": 0.9907 + }, + { + "start": 12713.3, + "end": 12714.57, + "probability": 0.874 + }, + { + "start": 12714.88, + "end": 12715.76, + "probability": 0.9635 + }, + { + "start": 12716.7, + "end": 12720.12, + "probability": 0.8564 + }, + { + "start": 12720.12, + "end": 12720.12, + "probability": 0.1371 + }, + { + "start": 12720.12, + "end": 12720.12, + "probability": 0.5615 + }, + { + "start": 12720.12, + "end": 12722.14, + "probability": 0.5282 + }, + { + "start": 12722.14, + "end": 12722.14, + "probability": 0.2572 + }, + { + "start": 12722.14, + "end": 12722.78, + "probability": 0.2102 + }, + { + "start": 12722.98, + "end": 12724.34, + "probability": 0.8533 + }, + { + "start": 12724.6, + "end": 12728.68, + "probability": 0.9497 + }, + { + "start": 12729.22, + "end": 12729.76, + "probability": 0.3365 + }, + { + "start": 12731.6, + "end": 12734.02, + "probability": 0.379 + }, + { + "start": 12734.52, + "end": 12735.08, + "probability": 0.4861 + }, + { + "start": 12735.18, + "end": 12736.44, + "probability": 0.6776 + }, + { + "start": 12736.58, + "end": 12737.4, + "probability": 0.7961 + }, + { + "start": 12737.78, + "end": 12743.3, + "probability": 0.9724 + }, + { + "start": 12743.82, + "end": 12746.1, + "probability": 0.5197 + }, + { + "start": 12746.4, + "end": 12747.34, + "probability": 0.1627 + }, + { + "start": 12747.34, + "end": 12747.34, + "probability": 0.0262 + }, + { + "start": 12747.34, + "end": 12747.56, + "probability": 0.5457 + }, + { + "start": 12747.84, + "end": 12749.0, + "probability": 0.7419 + }, + { + "start": 12749.24, + "end": 12752.0, + "probability": 0.9655 + }, + { + "start": 12752.26, + "end": 12755.22, + "probability": 0.9404 + }, + { + "start": 12755.22, + "end": 12756.08, + "probability": 0.0972 + }, + { + "start": 12756.46, + "end": 12758.4, + "probability": 0.3877 + }, + { + "start": 12758.6, + "end": 12758.6, + "probability": 0.3488 + }, + { + "start": 12758.6, + "end": 12759.7, + "probability": 0.8442 + }, + { + "start": 12759.9, + "end": 12762.04, + "probability": 0.6509 + }, + { + "start": 12762.16, + "end": 12763.0, + "probability": 0.4367 + }, + { + "start": 12763.04, + "end": 12763.04, + "probability": 0.1166 + }, + { + "start": 12763.06, + "end": 12769.08, + "probability": 0.9787 + }, + { + "start": 12769.3, + "end": 12772.76, + "probability": 0.8721 + }, + { + "start": 12772.86, + "end": 12773.44, + "probability": 0.0022 + }, + { + "start": 12773.44, + "end": 12775.85, + "probability": 0.8685 + }, + { + "start": 12776.48, + "end": 12778.76, + "probability": 0.6443 + }, + { + "start": 12779.09, + "end": 12780.9, + "probability": 0.867 + }, + { + "start": 12781.14, + "end": 12781.98, + "probability": 0.8474 + }, + { + "start": 12782.24, + "end": 12786.28, + "probability": 0.848 + }, + { + "start": 12786.34, + "end": 12788.38, + "probability": 0.9971 + }, + { + "start": 12788.54, + "end": 12789.2, + "probability": 0.3655 + }, + { + "start": 12789.64, + "end": 12790.41, + "probability": 0.9513 + }, + { + "start": 12790.8, + "end": 12793.84, + "probability": 0.9766 + }, + { + "start": 12794.34, + "end": 12795.28, + "probability": 0.9607 + }, + { + "start": 12795.48, + "end": 12796.36, + "probability": 0.9188 + }, + { + "start": 12796.42, + "end": 12798.06, + "probability": 0.981 + }, + { + "start": 12798.26, + "end": 12800.36, + "probability": 0.9521 + }, + { + "start": 12800.86, + "end": 12802.7, + "probability": 0.8804 + }, + { + "start": 12805.14, + "end": 12806.06, + "probability": 0.9111 + }, + { + "start": 12806.53, + "end": 12808.72, + "probability": 0.9976 + }, + { + "start": 12808.8, + "end": 12811.71, + "probability": 0.9824 + }, + { + "start": 12812.36, + "end": 12814.36, + "probability": 0.9844 + }, + { + "start": 12815.26, + "end": 12818.71, + "probability": 0.9512 + }, + { + "start": 12820.64, + "end": 12821.76, + "probability": 0.9929 + }, + { + "start": 12822.7, + "end": 12826.32, + "probability": 0.9836 + }, + { + "start": 12833.34, + "end": 12835.38, + "probability": 0.1498 + }, + { + "start": 12835.38, + "end": 12837.2, + "probability": 0.7681 + }, + { + "start": 12837.22, + "end": 12842.42, + "probability": 0.9932 + }, + { + "start": 12843.54, + "end": 12847.54, + "probability": 0.9722 + }, + { + "start": 12847.62, + "end": 12848.54, + "probability": 0.3645 + }, + { + "start": 12848.76, + "end": 12849.52, + "probability": 0.9163 + }, + { + "start": 12849.52, + "end": 12851.58, + "probability": 0.9353 + }, + { + "start": 12851.6, + "end": 12854.56, + "probability": 0.9824 + }, + { + "start": 12854.98, + "end": 12857.78, + "probability": 0.9969 + }, + { + "start": 12858.82, + "end": 12860.84, + "probability": 0.913 + }, + { + "start": 12860.94, + "end": 12862.22, + "probability": 0.8632 + }, + { + "start": 12862.28, + "end": 12863.26, + "probability": 0.8281 + }, + { + "start": 12864.1, + "end": 12865.82, + "probability": 0.9543 + }, + { + "start": 12866.64, + "end": 12867.64, + "probability": 0.8877 + }, + { + "start": 12870.0, + "end": 12870.56, + "probability": 0.9868 + }, + { + "start": 12870.94, + "end": 12871.48, + "probability": 0.7629 + }, + { + "start": 12871.9, + "end": 12873.16, + "probability": 0.6673 + }, + { + "start": 12873.58, + "end": 12876.0, + "probability": 0.9529 + }, + { + "start": 12876.3, + "end": 12877.02, + "probability": 0.9244 + }, + { + "start": 12877.34, + "end": 12877.58, + "probability": 0.6978 + }, + { + "start": 12877.64, + "end": 12878.1, + "probability": 0.484 + }, + { + "start": 12878.84, + "end": 12880.2, + "probability": 0.9556 + }, + { + "start": 12880.26, + "end": 12883.68, + "probability": 0.9591 + }, + { + "start": 12884.5, + "end": 12886.0, + "probability": 0.9559 + }, + { + "start": 12887.58, + "end": 12890.48, + "probability": 0.9949 + }, + { + "start": 12890.72, + "end": 12891.61, + "probability": 0.8807 + }, + { + "start": 12892.02, + "end": 12892.9, + "probability": 0.9175 + }, + { + "start": 12893.52, + "end": 12894.94, + "probability": 0.7607 + }, + { + "start": 12895.22, + "end": 12897.1, + "probability": 0.9908 + }, + { + "start": 12897.36, + "end": 12898.64, + "probability": 0.7681 + }, + { + "start": 12898.76, + "end": 12899.64, + "probability": 0.3337 + }, + { + "start": 12899.94, + "end": 12901.26, + "probability": 0.6712 + }, + { + "start": 12901.28, + "end": 12902.28, + "probability": 0.3413 + }, + { + "start": 12902.66, + "end": 12905.12, + "probability": 0.4707 + }, + { + "start": 12905.12, + "end": 12906.18, + "probability": 0.9526 + }, + { + "start": 12906.3, + "end": 12910.32, + "probability": 0.9844 + }, + { + "start": 12910.32, + "end": 12913.54, + "probability": 0.9881 + }, + { + "start": 12913.7, + "end": 12915.14, + "probability": 0.9262 + }, + { + "start": 12915.24, + "end": 12916.88, + "probability": 0.8893 + }, + { + "start": 12916.9, + "end": 12917.39, + "probability": 0.5055 + }, + { + "start": 12917.44, + "end": 12920.78, + "probability": 0.9122 + }, + { + "start": 12920.9, + "end": 12922.7, + "probability": 0.8805 + }, + { + "start": 12922.84, + "end": 12923.98, + "probability": 0.942 + }, + { + "start": 12925.36, + "end": 12926.96, + "probability": 0.592 + }, + { + "start": 12927.16, + "end": 12927.64, + "probability": 0.8926 + }, + { + "start": 12928.26, + "end": 12930.13, + "probability": 0.8859 + }, + { + "start": 12930.98, + "end": 12932.9, + "probability": 0.9507 + }, + { + "start": 12937.49, + "end": 12941.04, + "probability": 0.8136 + }, + { + "start": 12941.62, + "end": 12944.34, + "probability": 0.5815 + }, + { + "start": 12945.94, + "end": 12947.62, + "probability": 0.9003 + }, + { + "start": 12948.1, + "end": 12951.34, + "probability": 0.9901 + }, + { + "start": 12951.74, + "end": 12952.28, + "probability": 0.6941 + }, + { + "start": 12952.34, + "end": 12952.94, + "probability": 0.9052 + }, + { + "start": 12953.16, + "end": 12954.02, + "probability": 0.7501 + }, + { + "start": 12954.24, + "end": 12955.04, + "probability": 0.5125 + }, + { + "start": 12956.76, + "end": 12959.66, + "probability": 0.7508 + }, + { + "start": 12959.7, + "end": 12960.96, + "probability": 0.9812 + }, + { + "start": 12961.78, + "end": 12964.84, + "probability": 0.9065 + }, + { + "start": 12965.1, + "end": 12966.88, + "probability": 0.7606 + }, + { + "start": 12967.42, + "end": 12968.44, + "probability": 0.6259 + }, + { + "start": 12969.66, + "end": 12971.73, + "probability": 0.9829 + }, + { + "start": 12971.84, + "end": 12975.0, + "probability": 0.9394 + }, + { + "start": 12975.22, + "end": 12977.58, + "probability": 0.9678 + }, + { + "start": 12978.62, + "end": 12983.78, + "probability": 0.7865 + }, + { + "start": 12983.94, + "end": 12985.4, + "probability": 0.9465 + }, + { + "start": 12986.8, + "end": 12989.76, + "probability": 0.7521 + }, + { + "start": 12990.38, + "end": 12992.06, + "probability": 0.9202 + }, + { + "start": 12992.42, + "end": 12993.52, + "probability": 0.9032 + }, + { + "start": 12993.52, + "end": 12994.34, + "probability": 0.869 + }, + { + "start": 12994.58, + "end": 12999.3, + "probability": 0.9536 + }, + { + "start": 12999.52, + "end": 13003.06, + "probability": 0.772 + }, + { + "start": 13003.96, + "end": 13004.92, + "probability": 0.7211 + }, + { + "start": 13005.52, + "end": 13008.32, + "probability": 0.8444 + }, + { + "start": 13008.7, + "end": 13014.54, + "probability": 0.915 + }, + { + "start": 13015.66, + "end": 13016.6, + "probability": 0.7133 + }, + { + "start": 13016.64, + "end": 13018.75, + "probability": 0.9704 + }, + { + "start": 13019.78, + "end": 13021.32, + "probability": 0.8488 + }, + { + "start": 13021.44, + "end": 13022.7, + "probability": 0.9839 + }, + { + "start": 13022.88, + "end": 13026.76, + "probability": 0.8114 + }, + { + "start": 13027.18, + "end": 13034.08, + "probability": 0.9933 + }, + { + "start": 13034.32, + "end": 13035.74, + "probability": 0.578 + }, + { + "start": 13036.62, + "end": 13043.28, + "probability": 0.8868 + }, + { + "start": 13043.58, + "end": 13043.96, + "probability": 0.6412 + }, + { + "start": 13044.7, + "end": 13045.56, + "probability": 0.9546 + }, + { + "start": 13046.64, + "end": 13048.34, + "probability": 0.9747 + }, + { + "start": 13049.0, + "end": 13050.14, + "probability": 0.6734 + }, + { + "start": 13050.3, + "end": 13053.76, + "probability": 0.9969 + }, + { + "start": 13054.08, + "end": 13057.12, + "probability": 0.9783 + }, + { + "start": 13057.3, + "end": 13058.62, + "probability": 0.9846 + }, + { + "start": 13058.84, + "end": 13062.16, + "probability": 0.9438 + }, + { + "start": 13062.62, + "end": 13065.5, + "probability": 0.9846 + }, + { + "start": 13072.08, + "end": 13075.84, + "probability": 0.9276 + }, + { + "start": 13075.92, + "end": 13077.16, + "probability": 0.9548 + }, + { + "start": 13077.28, + "end": 13078.02, + "probability": 0.8169 + }, + { + "start": 13079.24, + "end": 13079.94, + "probability": 0.2222 + }, + { + "start": 13080.04, + "end": 13080.04, + "probability": 0.0078 + }, + { + "start": 13080.72, + "end": 13081.74, + "probability": 0.0596 + }, + { + "start": 13081.84, + "end": 13083.14, + "probability": 0.5558 + }, + { + "start": 13083.24, + "end": 13084.82, + "probability": 0.4568 + }, + { + "start": 13084.82, + "end": 13086.98, + "probability": 0.5199 + }, + { + "start": 13086.98, + "end": 13088.02, + "probability": 0.5203 + }, + { + "start": 13089.1, + "end": 13089.42, + "probability": 0.8533 + }, + { + "start": 13089.7, + "end": 13091.76, + "probability": 0.841 + }, + { + "start": 13091.98, + "end": 13092.2, + "probability": 0.5659 + }, + { + "start": 13093.7, + "end": 13094.44, + "probability": 0.9409 + }, + { + "start": 13094.66, + "end": 13096.06, + "probability": 0.6547 + }, + { + "start": 13096.1, + "end": 13096.46, + "probability": 0.6161 + }, + { + "start": 13096.74, + "end": 13104.76, + "probability": 0.9399 + }, + { + "start": 13104.98, + "end": 13111.68, + "probability": 0.5774 + }, + { + "start": 13112.52, + "end": 13114.64, + "probability": 0.9869 + }, + { + "start": 13114.9, + "end": 13118.48, + "probability": 0.9964 + }, + { + "start": 13118.98, + "end": 13120.44, + "probability": 0.9836 + }, + { + "start": 13120.62, + "end": 13122.22, + "probability": 0.9536 + }, + { + "start": 13122.44, + "end": 13123.2, + "probability": 0.7434 + }, + { + "start": 13123.36, + "end": 13125.14, + "probability": 0.9663 + }, + { + "start": 13125.5, + "end": 13128.68, + "probability": 0.9956 + }, + { + "start": 13129.52, + "end": 13130.0, + "probability": 0.8512 + }, + { + "start": 13130.94, + "end": 13132.76, + "probability": 0.7701 + }, + { + "start": 13132.86, + "end": 13135.44, + "probability": 0.9169 + }, + { + "start": 13136.62, + "end": 13138.24, + "probability": 0.9371 + }, + { + "start": 13139.32, + "end": 13139.88, + "probability": 0.7819 + }, + { + "start": 13141.3, + "end": 13144.36, + "probability": 0.1011 + }, + { + "start": 13144.86, + "end": 13144.9, + "probability": 0.5774 + }, + { + "start": 13144.9, + "end": 13145.62, + "probability": 0.5918 + }, + { + "start": 13146.08, + "end": 13147.68, + "probability": 0.3136 + }, + { + "start": 13148.08, + "end": 13148.22, + "probability": 0.9109 + }, + { + "start": 13148.32, + "end": 13149.4, + "probability": 0.8656 + }, + { + "start": 13149.48, + "end": 13153.78, + "probability": 0.9432 + }, + { + "start": 13153.88, + "end": 13155.06, + "probability": 0.2863 + }, + { + "start": 13155.2, + "end": 13156.02, + "probability": 0.7389 + }, + { + "start": 13156.14, + "end": 13157.52, + "probability": 0.98 + }, + { + "start": 13158.02, + "end": 13158.44, + "probability": 0.8425 + }, + { + "start": 13160.12, + "end": 13162.06, + "probability": 0.8829 + }, + { + "start": 13162.26, + "end": 13164.58, + "probability": 0.2694 + }, + { + "start": 13164.92, + "end": 13165.08, + "probability": 0.6979 + }, + { + "start": 13184.0, + "end": 13184.0, + "probability": 0.1575 + }, + { + "start": 13184.0, + "end": 13184.0, + "probability": 0.1442 + }, + { + "start": 13184.0, + "end": 13184.0, + "probability": 0.0536 + }, + { + "start": 13184.0, + "end": 13184.02, + "probability": 0.5622 + }, + { + "start": 13184.02, + "end": 13184.08, + "probability": 0.3147 + }, + { + "start": 13195.92, + "end": 13199.68, + "probability": 0.9451 + }, + { + "start": 13199.68, + "end": 13202.54, + "probability": 0.9924 + }, + { + "start": 13206.12, + "end": 13208.52, + "probability": 0.809 + }, + { + "start": 13209.34, + "end": 13210.1, + "probability": 0.5809 + }, + { + "start": 13210.44, + "end": 13212.62, + "probability": 0.8394 + }, + { + "start": 13212.7, + "end": 13212.98, + "probability": 0.8436 + }, + { + "start": 13215.62, + "end": 13220.44, + "probability": 0.9912 + }, + { + "start": 13221.4, + "end": 13223.9, + "probability": 0.7031 + }, + { + "start": 13224.1, + "end": 13230.5, + "probability": 0.9188 + }, + { + "start": 13231.4, + "end": 13235.44, + "probability": 0.9751 + }, + { + "start": 13235.44, + "end": 13239.06, + "probability": 0.9959 + }, + { + "start": 13240.08, + "end": 13243.94, + "probability": 0.72 + }, + { + "start": 13244.7, + "end": 13247.0, + "probability": 0.7844 + }, + { + "start": 13247.62, + "end": 13252.38, + "probability": 0.927 + }, + { + "start": 13253.08, + "end": 13255.27, + "probability": 0.9882 + }, + { + "start": 13255.48, + "end": 13257.92, + "probability": 0.9948 + }, + { + "start": 13258.54, + "end": 13261.32, + "probability": 0.9915 + }, + { + "start": 13261.44, + "end": 13265.7, + "probability": 0.22 + }, + { + "start": 13266.38, + "end": 13267.12, + "probability": 0.4351 + }, + { + "start": 13267.14, + "end": 13270.18, + "probability": 0.9185 + }, + { + "start": 13271.09, + "end": 13275.5, + "probability": 0.7966 + }, + { + "start": 13276.06, + "end": 13278.56, + "probability": 0.9619 + }, + { + "start": 13279.16, + "end": 13280.7, + "probability": 0.4617 + }, + { + "start": 13281.26, + "end": 13285.02, + "probability": 0.5968 + }, + { + "start": 13285.48, + "end": 13286.76, + "probability": 0.5847 + }, + { + "start": 13287.54, + "end": 13290.14, + "probability": 0.9388 + }, + { + "start": 13290.46, + "end": 13293.7, + "probability": 0.9374 + }, + { + "start": 13293.84, + "end": 13294.5, + "probability": 0.6128 + }, + { + "start": 13294.5, + "end": 13297.08, + "probability": 0.9355 + }, + { + "start": 13298.0, + "end": 13299.0, + "probability": 0.9085 + }, + { + "start": 13301.36, + "end": 13308.48, + "probability": 0.9954 + }, + { + "start": 13308.76, + "end": 13315.14, + "probability": 0.9917 + }, + { + "start": 13316.64, + "end": 13316.64, + "probability": 0.0712 + }, + { + "start": 13316.64, + "end": 13320.18, + "probability": 0.9838 + }, + { + "start": 13320.82, + "end": 13324.44, + "probability": 0.6676 + }, + { + "start": 13325.34, + "end": 13329.44, + "probability": 0.9947 + }, + { + "start": 13329.44, + "end": 13334.3, + "probability": 0.9298 + }, + { + "start": 13334.94, + "end": 13339.08, + "probability": 0.8341 + }, + { + "start": 13339.3, + "end": 13340.14, + "probability": 0.9893 + }, + { + "start": 13340.56, + "end": 13342.94, + "probability": 0.9976 + }, + { + "start": 13344.3, + "end": 13350.62, + "probability": 0.9858 + }, + { + "start": 13351.22, + "end": 13356.96, + "probability": 0.3902 + }, + { + "start": 13357.76, + "end": 13361.94, + "probability": 0.8563 + }, + { + "start": 13363.04, + "end": 13364.44, + "probability": 0.3203 + }, + { + "start": 13364.44, + "end": 13365.92, + "probability": 0.8237 + }, + { + "start": 13366.1, + "end": 13367.68, + "probability": 0.7735 + }, + { + "start": 13369.08, + "end": 13371.16, + "probability": 0.5983 + }, + { + "start": 13371.16, + "end": 13371.58, + "probability": 0.6716 + }, + { + "start": 13372.02, + "end": 13376.86, + "probability": 0.9878 + }, + { + "start": 13377.82, + "end": 13378.44, + "probability": 0.7523 + }, + { + "start": 13379.02, + "end": 13380.94, + "probability": 0.8982 + }, + { + "start": 13381.48, + "end": 13383.82, + "probability": 0.976 + }, + { + "start": 13384.0, + "end": 13391.32, + "probability": 0.9658 + }, + { + "start": 13392.1, + "end": 13398.4, + "probability": 0.843 + }, + { + "start": 13399.32, + "end": 13404.42, + "probability": 0.9519 + }, + { + "start": 13406.1, + "end": 13408.0, + "probability": 0.2767 + }, + { + "start": 13408.16, + "end": 13410.12, + "probability": 0.9557 + }, + { + "start": 13410.58, + "end": 13415.08, + "probability": 0.9462 + }, + { + "start": 13415.76, + "end": 13422.56, + "probability": 0.977 + }, + { + "start": 13423.74, + "end": 13428.9, + "probability": 0.9946 + }, + { + "start": 13431.74, + "end": 13435.06, + "probability": 0.7993 + }, + { + "start": 13436.3, + "end": 13440.66, + "probability": 0.7295 + }, + { + "start": 13441.92, + "end": 13444.84, + "probability": 0.9724 + }, + { + "start": 13445.04, + "end": 13445.62, + "probability": 0.5999 + }, + { + "start": 13445.72, + "end": 13446.8, + "probability": 0.9595 + }, + { + "start": 13448.46, + "end": 13449.82, + "probability": 0.9775 + }, + { + "start": 13450.72, + "end": 13454.3, + "probability": 0.8646 + }, + { + "start": 13455.74, + "end": 13457.3, + "probability": 0.4992 + }, + { + "start": 13458.0, + "end": 13459.0, + "probability": 0.9583 + }, + { + "start": 13459.14, + "end": 13461.3, + "probability": 0.9958 + }, + { + "start": 13462.64, + "end": 13466.7, + "probability": 0.9127 + }, + { + "start": 13467.28, + "end": 13469.86, + "probability": 0.7539 + }, + { + "start": 13470.14, + "end": 13473.62, + "probability": 0.8934 + }, + { + "start": 13473.78, + "end": 13479.44, + "probability": 0.9521 + }, + { + "start": 13480.86, + "end": 13482.56, + "probability": 0.9893 + }, + { + "start": 13482.62, + "end": 13485.44, + "probability": 0.7605 + }, + { + "start": 13486.72, + "end": 13489.9, + "probability": 0.9327 + }, + { + "start": 13492.12, + "end": 13497.82, + "probability": 0.9658 + }, + { + "start": 13497.88, + "end": 13498.64, + "probability": 0.7961 + }, + { + "start": 13499.18, + "end": 13500.16, + "probability": 0.9492 + }, + { + "start": 13500.9, + "end": 13502.76, + "probability": 0.9038 + }, + { + "start": 13502.96, + "end": 13505.08, + "probability": 0.746 + }, + { + "start": 13505.54, + "end": 13508.24, + "probability": 0.9806 + }, + { + "start": 13509.32, + "end": 13512.02, + "probability": 0.881 + }, + { + "start": 13513.12, + "end": 13517.12, + "probability": 0.9403 + }, + { + "start": 13518.76, + "end": 13519.54, + "probability": 0.5866 + }, + { + "start": 13520.46, + "end": 13528.92, + "probability": 0.8228 + }, + { + "start": 13529.74, + "end": 13530.46, + "probability": 0.7996 + }, + { + "start": 13531.2, + "end": 13532.2, + "probability": 0.9396 + }, + { + "start": 13532.76, + "end": 13537.28, + "probability": 0.6816 + }, + { + "start": 13538.18, + "end": 13542.6, + "probability": 0.8438 + }, + { + "start": 13543.92, + "end": 13546.6, + "probability": 0.9937 + }, + { + "start": 13547.56, + "end": 13551.94, + "probability": 0.798 + }, + { + "start": 13552.92, + "end": 13554.06, + "probability": 0.9251 + }, + { + "start": 13555.32, + "end": 13560.62, + "probability": 0.8687 + }, + { + "start": 13561.74, + "end": 13563.58, + "probability": 0.8713 + }, + { + "start": 13564.28, + "end": 13568.0, + "probability": 0.7519 + }, + { + "start": 13568.74, + "end": 13571.12, + "probability": 0.9927 + }, + { + "start": 13571.18, + "end": 13573.53, + "probability": 0.9743 + }, + { + "start": 13575.54, + "end": 13577.4, + "probability": 0.8684 + }, + { + "start": 13578.14, + "end": 13581.36, + "probability": 0.9912 + }, + { + "start": 13582.64, + "end": 13587.36, + "probability": 0.8774 + }, + { + "start": 13587.58, + "end": 13588.04, + "probability": 0.2582 + }, + { + "start": 13588.9, + "end": 13591.23, + "probability": 0.7565 + }, + { + "start": 13592.12, + "end": 13597.52, + "probability": 0.7349 + }, + { + "start": 13598.28, + "end": 13604.9, + "probability": 0.9679 + }, + { + "start": 13606.64, + "end": 13607.8, + "probability": 0.9647 + }, + { + "start": 13608.68, + "end": 13611.17, + "probability": 0.786 + }, + { + "start": 13613.01, + "end": 13616.3, + "probability": 0.9785 + }, + { + "start": 13617.54, + "end": 13621.1, + "probability": 0.9408 + }, + { + "start": 13621.8, + "end": 13626.02, + "probability": 0.978 + }, + { + "start": 13626.74, + "end": 13629.52, + "probability": 0.5364 + }, + { + "start": 13630.24, + "end": 13633.42, + "probability": 0.9915 + }, + { + "start": 13634.34, + "end": 13636.48, + "probability": 0.8816 + }, + { + "start": 13636.52, + "end": 13637.52, + "probability": 0.8713 + }, + { + "start": 13637.98, + "end": 13639.44, + "probability": 0.9827 + }, + { + "start": 13640.82, + "end": 13646.42, + "probability": 0.953 + }, + { + "start": 13648.4, + "end": 13649.48, + "probability": 0.5452 + }, + { + "start": 13649.6, + "end": 13651.86, + "probability": 0.9921 + }, + { + "start": 13652.52, + "end": 13653.8, + "probability": 0.9897 + }, + { + "start": 13654.2, + "end": 13655.68, + "probability": 0.7633 + }, + { + "start": 13655.82, + "end": 13657.28, + "probability": 0.8577 + }, + { + "start": 13658.02, + "end": 13659.62, + "probability": 0.7846 + }, + { + "start": 13660.22, + "end": 13661.24, + "probability": 0.6436 + }, + { + "start": 13661.36, + "end": 13666.04, + "probability": 0.9707 + }, + { + "start": 13666.26, + "end": 13668.99, + "probability": 0.8594 + }, + { + "start": 13669.94, + "end": 13671.46, + "probability": 0.1043 + }, + { + "start": 13671.54, + "end": 13672.58, + "probability": 0.8167 + }, + { + "start": 13672.98, + "end": 13673.5, + "probability": 0.6426 + }, + { + "start": 13673.52, + "end": 13673.88, + "probability": 0.4655 + }, + { + "start": 13673.94, + "end": 13674.68, + "probability": 0.9361 + }, + { + "start": 13685.22, + "end": 13685.28, + "probability": 0.0145 + }, + { + "start": 13685.28, + "end": 13686.75, + "probability": 0.151 + }, + { + "start": 13692.46, + "end": 13692.64, + "probability": 0.0293 + }, + { + "start": 13699.96, + "end": 13700.74, + "probability": 0.0886 + }, + { + "start": 13700.74, + "end": 13704.14, + "probability": 0.5306 + }, + { + "start": 13704.7, + "end": 13706.01, + "probability": 0.8506 + }, + { + "start": 13706.64, + "end": 13707.34, + "probability": 0.6448 + }, + { + "start": 13707.46, + "end": 13709.5, + "probability": 0.8835 + }, + { + "start": 13709.6, + "end": 13710.7, + "probability": 0.7971 + }, + { + "start": 13710.78, + "end": 13713.94, + "probability": 0.7637 + }, + { + "start": 13714.02, + "end": 13717.17, + "probability": 0.9557 + }, + { + "start": 13717.64, + "end": 13719.18, + "probability": 0.938 + }, + { + "start": 13727.84, + "end": 13728.18, + "probability": 0.8693 + }, + { + "start": 13730.28, + "end": 13732.92, + "probability": 0.2308 + }, + { + "start": 13733.28, + "end": 13736.6, + "probability": 0.8653 + }, + { + "start": 13736.6, + "end": 13740.2, + "probability": 0.7897 + }, + { + "start": 13743.0, + "end": 13745.46, + "probability": 0.8765 + }, + { + "start": 13745.56, + "end": 13746.06, + "probability": 0.5363 + }, + { + "start": 13746.1, + "end": 13746.8, + "probability": 0.8003 + }, + { + "start": 13746.88, + "end": 13748.26, + "probability": 0.8354 + }, + { + "start": 13749.02, + "end": 13749.02, + "probability": 0.0384 + }, + { + "start": 13749.02, + "end": 13751.68, + "probability": 0.5554 + }, + { + "start": 13751.72, + "end": 13756.84, + "probability": 0.8338 + }, + { + "start": 13758.82, + "end": 13759.4, + "probability": 0.4681 + }, + { + "start": 13759.6, + "end": 13760.38, + "probability": 0.6938 + }, + { + "start": 13760.48, + "end": 13764.56, + "probability": 0.9753 + }, + { + "start": 13764.6, + "end": 13767.52, + "probability": 0.593 + }, + { + "start": 13767.92, + "end": 13772.9, + "probability": 0.9098 + }, + { + "start": 13773.22, + "end": 13773.46, + "probability": 0.7919 + }, + { + "start": 13774.76, + "end": 13776.34, + "probability": 0.707 + }, + { + "start": 13776.42, + "end": 13779.0, + "probability": 0.8053 + }, + { + "start": 13779.38, + "end": 13782.7, + "probability": 0.6928 + }, + { + "start": 13782.7, + "end": 13784.02, + "probability": 0.7968 + }, + { + "start": 13784.1, + "end": 13785.74, + "probability": 0.1775 + }, + { + "start": 13785.88, + "end": 13788.82, + "probability": 0.9666 + }, + { + "start": 13789.84, + "end": 13790.8, + "probability": 0.5192 + }, + { + "start": 13803.26, + "end": 13803.26, + "probability": 0.6924 + }, + { + "start": 13803.26, + "end": 13803.76, + "probability": 0.2659 + }, + { + "start": 13803.76, + "end": 13804.1, + "probability": 0.8133 + }, + { + "start": 13809.68, + "end": 13814.04, + "probability": 0.7009 + }, + { + "start": 13815.66, + "end": 13816.8, + "probability": 0.9213 + }, + { + "start": 13816.94, + "end": 13818.5, + "probability": 0.9977 + }, + { + "start": 13818.58, + "end": 13822.52, + "probability": 0.9588 + }, + { + "start": 13823.22, + "end": 13824.84, + "probability": 0.7411 + }, + { + "start": 13825.52, + "end": 13828.36, + "probability": 0.3212 + }, + { + "start": 13829.1, + "end": 13829.58, + "probability": 0.192 + }, + { + "start": 13829.68, + "end": 13830.94, + "probability": 0.3546 + }, + { + "start": 13831.5, + "end": 13837.26, + "probability": 0.9606 + }, + { + "start": 13837.88, + "end": 13839.28, + "probability": 0.9359 + }, + { + "start": 13839.36, + "end": 13839.7, + "probability": 0.04 + }, + { + "start": 13839.78, + "end": 13839.94, + "probability": 0.2768 + }, + { + "start": 13840.02, + "end": 13840.2, + "probability": 0.3301 + }, + { + "start": 13840.2, + "end": 13842.67, + "probability": 0.2957 + }, + { + "start": 13842.84, + "end": 13842.84, + "probability": 0.6225 + }, + { + "start": 13842.94, + "end": 13843.49, + "probability": 0.957 + }, + { + "start": 13844.02, + "end": 13846.44, + "probability": 0.9764 + }, + { + "start": 13846.62, + "end": 13848.16, + "probability": 0.976 + }, + { + "start": 13848.48, + "end": 13849.18, + "probability": 0.5159 + }, + { + "start": 13849.62, + "end": 13851.24, + "probability": 0.9156 + }, + { + "start": 13851.56, + "end": 13852.64, + "probability": 0.8752 + }, + { + "start": 13852.82, + "end": 13854.28, + "probability": 0.9265 + }, + { + "start": 13854.6, + "end": 13854.72, + "probability": 0.1443 + }, + { + "start": 13854.72, + "end": 13857.76, + "probability": 0.8291 + }, + { + "start": 13858.4, + "end": 13859.46, + "probability": 0.5624 + }, + { + "start": 13860.02, + "end": 13861.08, + "probability": 0.9469 + }, + { + "start": 13861.12, + "end": 13863.72, + "probability": 0.9517 + }, + { + "start": 13863.82, + "end": 13864.35, + "probability": 0.6509 + }, + { + "start": 13864.38, + "end": 13865.02, + "probability": 0.9297 + }, + { + "start": 13865.1, + "end": 13866.25, + "probability": 0.4466 + }, + { + "start": 13866.56, + "end": 13868.24, + "probability": 0.7957 + }, + { + "start": 13868.24, + "end": 13869.4, + "probability": 0.6907 + }, + { + "start": 13869.4, + "end": 13869.4, + "probability": 0.0147 + }, + { + "start": 13869.42, + "end": 13870.23, + "probability": 0.4 + }, + { + "start": 13870.48, + "end": 13871.42, + "probability": 0.6348 + }, + { + "start": 13871.46, + "end": 13873.2, + "probability": 0.8848 + }, + { + "start": 13873.8, + "end": 13875.52, + "probability": 0.9577 + }, + { + "start": 13875.78, + "end": 13878.48, + "probability": 0.9863 + }, + { + "start": 13878.48, + "end": 13880.56, + "probability": 0.9972 + }, + { + "start": 13881.06, + "end": 13886.34, + "probability": 0.9977 + }, + { + "start": 13886.84, + "end": 13889.53, + "probability": 0.9951 + }, + { + "start": 13889.98, + "end": 13890.84, + "probability": 0.9629 + }, + { + "start": 13891.16, + "end": 13894.3, + "probability": 0.8794 + }, + { + "start": 13894.64, + "end": 13895.18, + "probability": 0.6637 + }, + { + "start": 13895.52, + "end": 13895.92, + "probability": 0.0083 + }, + { + "start": 13895.92, + "end": 13898.32, + "probability": 0.3435 + }, + { + "start": 13898.32, + "end": 13898.32, + "probability": 0.0064 + }, + { + "start": 13898.32, + "end": 13901.5, + "probability": 0.9736 + }, + { + "start": 13902.08, + "end": 13904.82, + "probability": 0.936 + }, + { + "start": 13905.3, + "end": 13905.48, + "probability": 0.0009 + }, + { + "start": 13905.48, + "end": 13907.12, + "probability": 0.7493 + }, + { + "start": 13907.22, + "end": 13908.34, + "probability": 0.5507 + }, + { + "start": 13908.44, + "end": 13909.76, + "probability": 0.7881 + }, + { + "start": 13909.88, + "end": 13912.36, + "probability": 0.2881 + }, + { + "start": 13912.46, + "end": 13913.1, + "probability": 0.8233 + }, + { + "start": 13913.42, + "end": 13913.86, + "probability": 0.0174 + }, + { + "start": 13913.86, + "end": 13914.56, + "probability": 0.1596 + }, + { + "start": 13914.72, + "end": 13915.12, + "probability": 0.2792 + }, + { + "start": 13915.12, + "end": 13917.69, + "probability": 0.3593 + }, + { + "start": 13918.06, + "end": 13922.14, + "probability": 0.87 + }, + { + "start": 13922.6, + "end": 13925.04, + "probability": 0.7876 + }, + { + "start": 13925.38, + "end": 13931.12, + "probability": 0.725 + }, + { + "start": 13931.26, + "end": 13932.6, + "probability": 0.6397 + }, + { + "start": 13933.06, + "end": 13934.56, + "probability": 0.2645 + }, + { + "start": 13934.56, + "end": 13936.34, + "probability": 0.5429 + }, + { + "start": 13936.7, + "end": 13936.72, + "probability": 0.0361 + }, + { + "start": 13936.72, + "end": 13938.78, + "probability": 0.8765 + }, + { + "start": 13938.88, + "end": 13940.34, + "probability": 0.6631 + }, + { + "start": 13940.9, + "end": 13942.42, + "probability": 0.9909 + }, + { + "start": 13942.58, + "end": 13944.4, + "probability": 0.5279 + }, + { + "start": 13944.56, + "end": 13945.96, + "probability": 0.2321 + }, + { + "start": 13946.78, + "end": 13948.38, + "probability": 0.1467 + }, + { + "start": 13948.6, + "end": 13951.02, + "probability": 0.9919 + }, + { + "start": 13951.12, + "end": 13952.42, + "probability": 0.9516 + }, + { + "start": 13952.6, + "end": 13954.04, + "probability": 0.9963 + }, + { + "start": 13954.88, + "end": 13957.32, + "probability": 0.5245 + }, + { + "start": 13957.9, + "end": 13962.84, + "probability": 0.8298 + }, + { + "start": 13963.18, + "end": 13964.15, + "probability": 0.9292 + }, + { + "start": 13964.44, + "end": 13967.66, + "probability": 0.6014 + }, + { + "start": 13967.7, + "end": 13969.44, + "probability": 0.7759 + }, + { + "start": 13969.92, + "end": 13969.92, + "probability": 0.1016 + }, + { + "start": 13969.92, + "end": 13970.88, + "probability": 0.8364 + }, + { + "start": 13971.32, + "end": 13974.32, + "probability": 0.9517 + }, + { + "start": 13974.78, + "end": 13976.6, + "probability": 0.7588 + }, + { + "start": 13977.0, + "end": 13979.98, + "probability": 0.9615 + }, + { + "start": 13980.1, + "end": 13980.4, + "probability": 0.0283 + }, + { + "start": 13980.62, + "end": 13983.9, + "probability": 0.7932 + }, + { + "start": 13984.18, + "end": 13985.86, + "probability": 0.7606 + }, + { + "start": 13986.24, + "end": 13988.54, + "probability": 0.9891 + }, + { + "start": 13989.06, + "end": 13995.28, + "probability": 0.9963 + }, + { + "start": 13995.28, + "end": 14002.14, + "probability": 0.9874 + }, + { + "start": 14003.02, + "end": 14009.78, + "probability": 0.9985 + }, + { + "start": 14011.86, + "end": 14015.28, + "probability": 0.9921 + }, + { + "start": 14016.6, + "end": 14018.76, + "probability": 0.9431 + }, + { + "start": 14019.3, + "end": 14021.03, + "probability": 0.8844 + }, + { + "start": 14021.82, + "end": 14025.52, + "probability": 0.9526 + }, + { + "start": 14025.94, + "end": 14029.98, + "probability": 0.9974 + }, + { + "start": 14030.62, + "end": 14033.76, + "probability": 0.9943 + }, + { + "start": 14034.58, + "end": 14036.8, + "probability": 0.9685 + }, + { + "start": 14037.22, + "end": 14039.84, + "probability": 0.9832 + }, + { + "start": 14040.36, + "end": 14043.1, + "probability": 0.9572 + }, + { + "start": 14043.26, + "end": 14045.22, + "probability": 0.9968 + }, + { + "start": 14045.64, + "end": 14048.84, + "probability": 0.9982 + }, + { + "start": 14049.34, + "end": 14049.52, + "probability": 0.4474 + }, + { + "start": 14049.6, + "end": 14050.14, + "probability": 0.9106 + }, + { + "start": 14050.26, + "end": 14050.82, + "probability": 0.8723 + }, + { + "start": 14050.9, + "end": 14052.96, + "probability": 0.9453 + }, + { + "start": 14053.42, + "end": 14056.44, + "probability": 0.8575 + }, + { + "start": 14057.0, + "end": 14058.72, + "probability": 0.9534 + }, + { + "start": 14058.9, + "end": 14059.62, + "probability": 0.4905 + }, + { + "start": 14060.58, + "end": 14064.1, + "probability": 0.9565 + }, + { + "start": 14064.18, + "end": 14065.86, + "probability": 0.7968 + }, + { + "start": 14066.06, + "end": 14068.44, + "probability": 0.9756 + }, + { + "start": 14069.02, + "end": 14072.86, + "probability": 0.9988 + }, + { + "start": 14073.22, + "end": 14075.08, + "probability": 0.9429 + }, + { + "start": 14075.46, + "end": 14076.46, + "probability": 0.6813 + }, + { + "start": 14076.82, + "end": 14082.5, + "probability": 0.8502 + }, + { + "start": 14082.64, + "end": 14084.14, + "probability": 0.8793 + }, + { + "start": 14085.9, + "end": 14087.72, + "probability": 0.9103 + }, + { + "start": 14088.66, + "end": 14089.44, + "probability": 0.7438 + }, + { + "start": 14089.6, + "end": 14090.76, + "probability": 0.9277 + }, + { + "start": 14090.84, + "end": 14093.3, + "probability": 0.9954 + }, + { + "start": 14093.36, + "end": 14094.44, + "probability": 0.6106 + }, + { + "start": 14094.74, + "end": 14096.43, + "probability": 0.9961 + }, + { + "start": 14097.12, + "end": 14099.18, + "probability": 0.7886 + }, + { + "start": 14099.54, + "end": 14100.76, + "probability": 0.8149 + }, + { + "start": 14101.88, + "end": 14105.14, + "probability": 0.7714 + }, + { + "start": 14105.14, + "end": 14110.9, + "probability": 0.9316 + }, + { + "start": 14111.36, + "end": 14114.46, + "probability": 0.8625 + }, + { + "start": 14115.02, + "end": 14116.42, + "probability": 0.9951 + }, + { + "start": 14116.74, + "end": 14117.34, + "probability": 0.735 + }, + { + "start": 14117.38, + "end": 14117.88, + "probability": 0.8482 + }, + { + "start": 14118.36, + "end": 14120.66, + "probability": 0.9775 + }, + { + "start": 14121.02, + "end": 14124.6, + "probability": 0.9374 + }, + { + "start": 14124.8, + "end": 14126.76, + "probability": 0.9827 + }, + { + "start": 14126.84, + "end": 14129.44, + "probability": 0.9956 + }, + { + "start": 14129.7, + "end": 14131.92, + "probability": 0.7671 + }, + { + "start": 14132.36, + "end": 14133.42, + "probability": 0.931 + }, + { + "start": 14133.68, + "end": 14134.8, + "probability": 0.9811 + }, + { + "start": 14134.9, + "end": 14135.98, + "probability": 0.7575 + }, + { + "start": 14136.86, + "end": 14136.98, + "probability": 0.4162 + }, + { + "start": 14137.04, + "end": 14137.18, + "probability": 0.2929 + }, + { + "start": 14137.32, + "end": 14140.1, + "probability": 0.9541 + }, + { + "start": 14140.58, + "end": 14145.0, + "probability": 0.9536 + }, + { + "start": 14147.22, + "end": 14151.0, + "probability": 0.9856 + }, + { + "start": 14151.4, + "end": 14155.84, + "probability": 0.8596 + }, + { + "start": 14156.08, + "end": 14157.56, + "probability": 0.9692 + }, + { + "start": 14157.82, + "end": 14159.78, + "probability": 0.9682 + }, + { + "start": 14159.86, + "end": 14161.28, + "probability": 0.9666 + }, + { + "start": 14161.36, + "end": 14162.4, + "probability": 0.6792 + }, + { + "start": 14162.54, + "end": 14162.86, + "probability": 0.5297 + }, + { + "start": 14162.98, + "end": 14164.24, + "probability": 0.5716 + }, + { + "start": 14164.24, + "end": 14167.7, + "probability": 0.9659 + }, + { + "start": 14167.7, + "end": 14170.92, + "probability": 0.9909 + }, + { + "start": 14171.24, + "end": 14174.0, + "probability": 0.8971 + }, + { + "start": 14174.3, + "end": 14176.6, + "probability": 0.9861 + }, + { + "start": 14177.24, + "end": 14181.9, + "probability": 0.9882 + }, + { + "start": 14182.28, + "end": 14185.33, + "probability": 0.971 + }, + { + "start": 14185.34, + "end": 14189.26, + "probability": 0.9925 + }, + { + "start": 14189.54, + "end": 14191.28, + "probability": 0.9801 + }, + { + "start": 14191.64, + "end": 14195.76, + "probability": 0.9777 + }, + { + "start": 14196.32, + "end": 14199.04, + "probability": 0.8971 + }, + { + "start": 14199.8, + "end": 14204.12, + "probability": 0.9958 + }, + { + "start": 14204.77, + "end": 14207.68, + "probability": 0.9961 + }, + { + "start": 14208.24, + "end": 14210.28, + "probability": 0.9338 + }, + { + "start": 14210.88, + "end": 14211.04, + "probability": 0.0738 + }, + { + "start": 14211.56, + "end": 14212.58, + "probability": 0.0803 + }, + { + "start": 14212.9, + "end": 14219.98, + "probability": 0.6968 + }, + { + "start": 14220.76, + "end": 14223.32, + "probability": 0.5246 + }, + { + "start": 14223.38, + "end": 14227.52, + "probability": 0.6354 + }, + { + "start": 14228.08, + "end": 14228.16, + "probability": 0.1623 + }, + { + "start": 14228.16, + "end": 14230.76, + "probability": 0.8774 + }, + { + "start": 14231.52, + "end": 14232.52, + "probability": 0.8651 + }, + { + "start": 14232.76, + "end": 14234.66, + "probability": 0.728 + }, + { + "start": 14234.8, + "end": 14235.56, + "probability": 0.515 + }, + { + "start": 14235.72, + "end": 14237.12, + "probability": 0.2667 + }, + { + "start": 14237.28, + "end": 14238.45, + "probability": 0.7825 + }, + { + "start": 14238.7, + "end": 14239.08, + "probability": 0.8887 + }, + { + "start": 14239.2, + "end": 14243.12, + "probability": 0.5783 + }, + { + "start": 14243.8, + "end": 14245.54, + "probability": 0.9852 + }, + { + "start": 14246.02, + "end": 14250.46, + "probability": 0.866 + }, + { + "start": 14251.54, + "end": 14252.1, + "probability": 0.3618 + }, + { + "start": 14252.9, + "end": 14253.02, + "probability": 0.3127 + }, + { + "start": 14253.02, + "end": 14253.02, + "probability": 0.1172 + }, + { + "start": 14253.1, + "end": 14255.56, + "probability": 0.8489 + }, + { + "start": 14255.66, + "end": 14257.02, + "probability": 0.8375 + }, + { + "start": 14257.14, + "end": 14257.32, + "probability": 0.8876 + }, + { + "start": 14257.42, + "end": 14259.73, + "probability": 0.9785 + }, + { + "start": 14260.46, + "end": 14261.68, + "probability": 0.8383 + }, + { + "start": 14262.12, + "end": 14263.32, + "probability": 0.9654 + }, + { + "start": 14263.44, + "end": 14265.12, + "probability": 0.917 + }, + { + "start": 14265.7, + "end": 14269.68, + "probability": 0.9639 + }, + { + "start": 14269.9, + "end": 14271.98, + "probability": 0.7321 + }, + { + "start": 14272.04, + "end": 14273.05, + "probability": 0.8608 + }, + { + "start": 14273.48, + "end": 14274.46, + "probability": 0.364 + }, + { + "start": 14274.46, + "end": 14275.78, + "probability": 0.3923 + }, + { + "start": 14275.78, + "end": 14278.72, + "probability": 0.9863 + }, + { + "start": 14279.1, + "end": 14282.32, + "probability": 0.1801 + }, + { + "start": 14282.42, + "end": 14289.38, + "probability": 0.9656 + }, + { + "start": 14289.84, + "end": 14295.78, + "probability": 0.9987 + }, + { + "start": 14296.54, + "end": 14299.62, + "probability": 0.7486 + }, + { + "start": 14299.8, + "end": 14300.22, + "probability": 0.6674 + }, + { + "start": 14300.32, + "end": 14301.88, + "probability": 0.5402 + }, + { + "start": 14302.65, + "end": 14305.21, + "probability": 0.977 + }, + { + "start": 14305.36, + "end": 14308.52, + "probability": 0.9941 + }, + { + "start": 14309.36, + "end": 14311.21, + "probability": 0.9602 + }, + { + "start": 14312.14, + "end": 14315.98, + "probability": 0.7562 + }, + { + "start": 14316.76, + "end": 14319.34, + "probability": 0.9963 + }, + { + "start": 14319.38, + "end": 14320.2, + "probability": 0.7542 + }, + { + "start": 14320.46, + "end": 14321.84, + "probability": 0.8692 + }, + { + "start": 14322.44, + "end": 14324.98, + "probability": 0.9624 + }, + { + "start": 14325.4, + "end": 14329.72, + "probability": 0.9099 + }, + { + "start": 14330.46, + "end": 14333.42, + "probability": 0.9465 + }, + { + "start": 14333.88, + "end": 14335.58, + "probability": 0.8058 + }, + { + "start": 14336.02, + "end": 14336.28, + "probability": 0.393 + }, + { + "start": 14336.62, + "end": 14337.92, + "probability": 0.8696 + }, + { + "start": 14337.96, + "end": 14338.24, + "probability": 0.8168 + }, + { + "start": 14338.36, + "end": 14339.96, + "probability": 0.9978 + }, + { + "start": 14340.36, + "end": 14345.54, + "probability": 0.9698 + }, + { + "start": 14345.78, + "end": 14346.12, + "probability": 0.613 + }, + { + "start": 14346.26, + "end": 14346.76, + "probability": 0.7615 + }, + { + "start": 14346.78, + "end": 14348.57, + "probability": 0.9932 + }, + { + "start": 14349.1, + "end": 14350.48, + "probability": 0.9983 + }, + { + "start": 14350.76, + "end": 14351.26, + "probability": 0.5501 + }, + { + "start": 14351.3, + "end": 14351.92, + "probability": 0.9197 + }, + { + "start": 14352.28, + "end": 14352.71, + "probability": 0.9736 + }, + { + "start": 14353.32, + "end": 14355.04, + "probability": 0.9854 + }, + { + "start": 14355.58, + "end": 14360.26, + "probability": 0.8151 + }, + { + "start": 14360.54, + "end": 14363.34, + "probability": 0.7683 + }, + { + "start": 14363.96, + "end": 14368.12, + "probability": 0.9712 + }, + { + "start": 14368.12, + "end": 14371.56, + "probability": 0.9954 + }, + { + "start": 14371.56, + "end": 14373.42, + "probability": 0.7796 + }, + { + "start": 14373.72, + "end": 14375.22, + "probability": 0.9329 + }, + { + "start": 14375.26, + "end": 14375.72, + "probability": 0.9541 + }, + { + "start": 14375.76, + "end": 14376.08, + "probability": 0.8014 + }, + { + "start": 14376.82, + "end": 14379.56, + "probability": 0.9475 + }, + { + "start": 14379.7, + "end": 14379.94, + "probability": 0.7589 + }, + { + "start": 14380.0, + "end": 14381.2, + "probability": 0.7849 + }, + { + "start": 14381.46, + "end": 14385.0, + "probability": 0.8422 + }, + { + "start": 14386.48, + "end": 14388.34, + "probability": 0.7319 + }, + { + "start": 14388.38, + "end": 14392.56, + "probability": 0.966 + }, + { + "start": 14392.58, + "end": 14396.24, + "probability": 0.9835 + }, + { + "start": 14396.4, + "end": 14396.7, + "probability": 0.8666 + }, + { + "start": 14397.94, + "end": 14400.58, + "probability": 0.8523 + }, + { + "start": 14401.66, + "end": 14404.8, + "probability": 0.7415 + }, + { + "start": 14405.22, + "end": 14405.68, + "probability": 0.3395 + }, + { + "start": 14406.46, + "end": 14408.08, + "probability": 0.4321 + }, + { + "start": 14408.14, + "end": 14408.16, + "probability": 0.6557 + }, + { + "start": 14408.2, + "end": 14408.58, + "probability": 0.787 + }, + { + "start": 14408.64, + "end": 14411.2, + "probability": 0.9916 + }, + { + "start": 14411.2, + "end": 14414.06, + "probability": 0.9088 + }, + { + "start": 14414.14, + "end": 14416.86, + "probability": 0.9966 + }, + { + "start": 14417.36, + "end": 14418.24, + "probability": 0.9461 + }, + { + "start": 14418.4, + "end": 14420.64, + "probability": 0.9639 + }, + { + "start": 14421.04, + "end": 14424.62, + "probability": 0.9911 + }, + { + "start": 14425.12, + "end": 14426.66, + "probability": 0.9194 + }, + { + "start": 14427.34, + "end": 14430.34, + "probability": 0.9972 + }, + { + "start": 14430.76, + "end": 14434.88, + "probability": 0.9457 + }, + { + "start": 14435.32, + "end": 14438.04, + "probability": 0.9884 + }, + { + "start": 14438.72, + "end": 14439.74, + "probability": 0.6225 + }, + { + "start": 14439.86, + "end": 14440.0, + "probability": 0.2537 + }, + { + "start": 14440.02, + "end": 14440.4, + "probability": 0.8149 + }, + { + "start": 14440.4, + "end": 14440.68, + "probability": 0.4746 + }, + { + "start": 14440.78, + "end": 14441.54, + "probability": 0.7406 + }, + { + "start": 14441.54, + "end": 14441.56, + "probability": 0.1705 + }, + { + "start": 14441.56, + "end": 14441.74, + "probability": 0.7977 + }, + { + "start": 14441.78, + "end": 14445.36, + "probability": 0.9191 + }, + { + "start": 14445.64, + "end": 14447.06, + "probability": 0.7489 + }, + { + "start": 14447.66, + "end": 14449.48, + "probability": 0.9941 + }, + { + "start": 14449.84, + "end": 14451.64, + "probability": 0.9972 + }, + { + "start": 14452.14, + "end": 14454.04, + "probability": 0.8868 + }, + { + "start": 14454.5, + "end": 14456.52, + "probability": 0.9915 + }, + { + "start": 14456.52, + "end": 14459.26, + "probability": 0.9818 + }, + { + "start": 14460.14, + "end": 14461.94, + "probability": 0.9466 + }, + { + "start": 14462.0, + "end": 14463.3, + "probability": 0.9842 + }, + { + "start": 14463.64, + "end": 14468.5, + "probability": 0.69 + }, + { + "start": 14468.88, + "end": 14470.38, + "probability": 0.837 + }, + { + "start": 14470.44, + "end": 14472.2, + "probability": 0.9159 + }, + { + "start": 14472.5, + "end": 14475.56, + "probability": 0.992 + }, + { + "start": 14476.02, + "end": 14478.46, + "probability": 0.5283 + }, + { + "start": 14478.54, + "end": 14483.4, + "probability": 0.7251 + }, + { + "start": 14483.48, + "end": 14486.62, + "probability": 0.8221 + }, + { + "start": 14486.94, + "end": 14487.58, + "probability": 0.6293 + }, + { + "start": 14487.64, + "end": 14488.21, + "probability": 0.9509 + }, + { + "start": 14488.46, + "end": 14489.0, + "probability": 0.711 + }, + { + "start": 14489.14, + "end": 14491.66, + "probability": 0.6651 + }, + { + "start": 14491.66, + "end": 14491.94, + "probability": 0.6879 + }, + { + "start": 14492.04, + "end": 14493.58, + "probability": 0.9984 + }, + { + "start": 14493.62, + "end": 14497.22, + "probability": 0.9891 + }, + { + "start": 14497.44, + "end": 14499.52, + "probability": 0.0886 + }, + { + "start": 14500.76, + "end": 14501.06, + "probability": 0.0235 + }, + { + "start": 14501.06, + "end": 14501.06, + "probability": 0.2267 + }, + { + "start": 14501.06, + "end": 14501.44, + "probability": 0.0707 + }, + { + "start": 14502.42, + "end": 14503.71, + "probability": 0.5279 + }, + { + "start": 14503.9, + "end": 14504.92, + "probability": 0.7314 + }, + { + "start": 14504.92, + "end": 14512.32, + "probability": 0.8059 + }, + { + "start": 14512.42, + "end": 14512.96, + "probability": 0.715 + }, + { + "start": 14512.98, + "end": 14513.58, + "probability": 0.4938 + }, + { + "start": 14513.6, + "end": 14514.08, + "probability": 0.8633 + }, + { + "start": 14514.34, + "end": 14516.4, + "probability": 0.8994 + }, + { + "start": 14516.64, + "end": 14517.4, + "probability": 0.9478 + }, + { + "start": 14519.18, + "end": 14520.52, + "probability": 0.9594 + }, + { + "start": 14521.34, + "end": 14521.72, + "probability": 0.7552 + }, + { + "start": 14522.92, + "end": 14524.76, + "probability": 0.6775 + }, + { + "start": 14524.94, + "end": 14524.94, + "probability": 0.2076 + }, + { + "start": 14524.94, + "end": 14525.52, + "probability": 0.5669 + }, + { + "start": 14525.62, + "end": 14526.88, + "probability": 0.8491 + }, + { + "start": 14528.06, + "end": 14530.7, + "probability": 0.6036 + }, + { + "start": 14530.8, + "end": 14534.3, + "probability": 0.9761 + }, + { + "start": 14535.04, + "end": 14537.28, + "probability": 0.9488 + }, + { + "start": 14539.12, + "end": 14542.96, + "probability": 0.985 + }, + { + "start": 14544.08, + "end": 14549.42, + "probability": 0.8926 + }, + { + "start": 14550.56, + "end": 14556.28, + "probability": 0.9942 + }, + { + "start": 14558.0, + "end": 14559.34, + "probability": 0.8772 + }, + { + "start": 14559.96, + "end": 14561.46, + "probability": 0.1557 + }, + { + "start": 14561.46, + "end": 14563.22, + "probability": 0.9556 + }, + { + "start": 14563.48, + "end": 14563.48, + "probability": 0.6919 + }, + { + "start": 14563.48, + "end": 14565.7, + "probability": 0.7057 + }, + { + "start": 14566.4, + "end": 14568.32, + "probability": 0.916 + }, + { + "start": 14568.82, + "end": 14569.31, + "probability": 0.6248 + }, + { + "start": 14571.42, + "end": 14573.08, + "probability": 0.9634 + }, + { + "start": 14573.2, + "end": 14574.44, + "probability": 0.7891 + }, + { + "start": 14574.52, + "end": 14575.48, + "probability": 0.5321 + }, + { + "start": 14575.9, + "end": 14578.36, + "probability": 0.9622 + }, + { + "start": 14578.4, + "end": 14583.18, + "probability": 0.8081 + }, + { + "start": 14583.74, + "end": 14586.7, + "probability": 0.9703 + }, + { + "start": 14587.08, + "end": 14592.4, + "probability": 0.9876 + }, + { + "start": 14592.94, + "end": 14597.22, + "probability": 0.9604 + }, + { + "start": 14598.42, + "end": 14600.08, + "probability": 0.8886 + }, + { + "start": 14600.54, + "end": 14603.52, + "probability": 0.9775 + }, + { + "start": 14603.68, + "end": 14604.42, + "probability": 0.6763 + }, + { + "start": 14604.58, + "end": 14608.32, + "probability": 0.9769 + }, + { + "start": 14609.14, + "end": 14613.4, + "probability": 0.9377 + }, + { + "start": 14613.96, + "end": 14617.54, + "probability": 0.7665 + }, + { + "start": 14619.4, + "end": 14620.7, + "probability": 0.7682 + }, + { + "start": 14620.78, + "end": 14621.68, + "probability": 0.9152 + }, + { + "start": 14621.78, + "end": 14624.94, + "probability": 0.9382 + }, + { + "start": 14624.94, + "end": 14628.62, + "probability": 0.9944 + }, + { + "start": 14629.16, + "end": 14632.42, + "probability": 0.9932 + }, + { + "start": 14632.42, + "end": 14637.16, + "probability": 0.9956 + }, + { + "start": 14637.8, + "end": 14645.52, + "probability": 0.9882 + }, + { + "start": 14647.56, + "end": 14649.24, + "probability": 0.6153 + }, + { + "start": 14649.96, + "end": 14651.54, + "probability": 0.906 + }, + { + "start": 14651.96, + "end": 14653.2, + "probability": 0.8961 + }, + { + "start": 14653.3, + "end": 14658.26, + "probability": 0.8835 + }, + { + "start": 14658.68, + "end": 14659.86, + "probability": 0.9809 + }, + { + "start": 14661.22, + "end": 14662.3, + "probability": 0.9006 + }, + { + "start": 14662.5, + "end": 14666.84, + "probability": 0.9958 + }, + { + "start": 14667.84, + "end": 14669.78, + "probability": 0.9477 + }, + { + "start": 14671.38, + "end": 14675.04, + "probability": 0.9846 + }, + { + "start": 14675.2, + "end": 14676.46, + "probability": 0.9928 + }, + { + "start": 14676.66, + "end": 14682.06, + "probability": 0.9285 + }, + { + "start": 14682.66, + "end": 14683.9, + "probability": 0.9659 + }, + { + "start": 14684.1, + "end": 14687.34, + "probability": 0.9243 + }, + { + "start": 14688.02, + "end": 14692.98, + "probability": 0.7964 + }, + { + "start": 14692.98, + "end": 14695.66, + "probability": 0.9716 + }, + { + "start": 14696.32, + "end": 14701.64, + "probability": 0.9935 + }, + { + "start": 14701.9, + "end": 14706.32, + "probability": 0.9985 + }, + { + "start": 14706.82, + "end": 14706.92, + "probability": 0.216 + }, + { + "start": 14706.94, + "end": 14708.44, + "probability": 0.8124 + }, + { + "start": 14708.5, + "end": 14711.79, + "probability": 0.9922 + }, + { + "start": 14711.92, + "end": 14712.36, + "probability": 0.263 + }, + { + "start": 14712.36, + "end": 14712.58, + "probability": 0.6679 + }, + { + "start": 14712.64, + "end": 14718.44, + "probability": 0.9974 + }, + { + "start": 14719.34, + "end": 14721.16, + "probability": 0.9983 + }, + { + "start": 14721.26, + "end": 14722.94, + "probability": 0.681 + }, + { + "start": 14723.04, + "end": 14723.26, + "probability": 0.592 + }, + { + "start": 14723.26, + "end": 14723.76, + "probability": 0.9348 + }, + { + "start": 14723.92, + "end": 14726.06, + "probability": 0.9969 + }, + { + "start": 14726.06, + "end": 14729.98, + "probability": 0.6683 + }, + { + "start": 14730.2, + "end": 14733.56, + "probability": 0.9917 + }, + { + "start": 14734.02, + "end": 14735.86, + "probability": 0.9303 + }, + { + "start": 14735.94, + "end": 14737.24, + "probability": 0.4856 + }, + { + "start": 14738.86, + "end": 14742.88, + "probability": 0.7916 + }, + { + "start": 14744.46, + "end": 14744.68, + "probability": 0.6785 + }, + { + "start": 14762.02, + "end": 14764.5, + "probability": 0.0426 + }, + { + "start": 14765.02, + "end": 14765.02, + "probability": 0.6909 + }, + { + "start": 14766.08, + "end": 14767.7, + "probability": 0.7827 + }, + { + "start": 14769.2, + "end": 14773.04, + "probability": 0.9803 + }, + { + "start": 14773.04, + "end": 14777.44, + "probability": 0.9178 + }, + { + "start": 14778.58, + "end": 14785.98, + "probability": 0.9827 + }, + { + "start": 14787.6, + "end": 14789.9, + "probability": 0.9572 + }, + { + "start": 14791.2, + "end": 14794.32, + "probability": 0.9714 + }, + { + "start": 14796.8, + "end": 14801.84, + "probability": 0.9836 + }, + { + "start": 14802.62, + "end": 14806.42, + "probability": 0.9646 + }, + { + "start": 14807.22, + "end": 14809.94, + "probability": 0.9452 + }, + { + "start": 14811.42, + "end": 14816.62, + "probability": 0.9678 + }, + { + "start": 14817.38, + "end": 14818.02, + "probability": 0.4188 + }, + { + "start": 14818.6, + "end": 14823.68, + "probability": 0.8277 + }, + { + "start": 14823.74, + "end": 14824.18, + "probability": 0.7554 + }, + { + "start": 14825.18, + "end": 14829.78, + "probability": 0.5678 + }, + { + "start": 14829.86, + "end": 14831.8, + "probability": 0.9945 + }, + { + "start": 14832.1, + "end": 14835.2, + "probability": 0.9214 + }, + { + "start": 14835.9, + "end": 14837.42, + "probability": 0.7507 + }, + { + "start": 14838.04, + "end": 14839.6, + "probability": 0.8613 + }, + { + "start": 14839.88, + "end": 14843.66, + "probability": 0.9949 + }, + { + "start": 14844.02, + "end": 14844.3, + "probability": 0.5086 + }, + { + "start": 14844.46, + "end": 14848.24, + "probability": 0.9899 + }, + { + "start": 14848.38, + "end": 14851.38, + "probability": 0.826 + }, + { + "start": 14851.84, + "end": 14855.68, + "probability": 0.9916 + }, + { + "start": 14855.84, + "end": 14862.38, + "probability": 0.9978 + }, + { + "start": 14862.76, + "end": 14865.76, + "probability": 0.8092 + }, + { + "start": 14866.36, + "end": 14868.0, + "probability": 0.9932 + }, + { + "start": 14868.54, + "end": 14869.16, + "probability": 0.9792 + }, + { + "start": 14871.48, + "end": 14872.44, + "probability": 0.365 + }, + { + "start": 14872.7, + "end": 14874.94, + "probability": 0.9691 + }, + { + "start": 14875.32, + "end": 14879.14, + "probability": 0.9253 + }, + { + "start": 14880.0, + "end": 14881.96, + "probability": 0.7725 + }, + { + "start": 14882.36, + "end": 14882.7, + "probability": 0.8264 + }, + { + "start": 14882.76, + "end": 14883.54, + "probability": 0.9655 + }, + { + "start": 14883.64, + "end": 14884.56, + "probability": 0.7111 + }, + { + "start": 14884.84, + "end": 14887.76, + "probability": 0.7096 + }, + { + "start": 14888.36, + "end": 14890.14, + "probability": 0.8161 + }, + { + "start": 14891.48, + "end": 14892.72, + "probability": 0.9877 + }, + { + "start": 14893.76, + "end": 14895.52, + "probability": 0.7225 + }, + { + "start": 14896.76, + "end": 14897.48, + "probability": 0.9341 + }, + { + "start": 14897.54, + "end": 14902.14, + "probability": 0.7293 + }, + { + "start": 14903.6, + "end": 14904.16, + "probability": 0.1354 + }, + { + "start": 14905.38, + "end": 14906.5, + "probability": 0.4349 + }, + { + "start": 14906.6, + "end": 14908.24, + "probability": 0.7646 + }, + { + "start": 14908.64, + "end": 14909.36, + "probability": 0.8205 + }, + { + "start": 14909.48, + "end": 14910.8, + "probability": 0.8446 + }, + { + "start": 14911.12, + "end": 14913.92, + "probability": 0.0637 + }, + { + "start": 14915.44, + "end": 14915.56, + "probability": 0.1349 + }, + { + "start": 14915.56, + "end": 14915.56, + "probability": 0.214 + }, + { + "start": 14915.56, + "end": 14915.56, + "probability": 0.0633 + }, + { + "start": 14915.56, + "end": 14917.62, + "probability": 0.2471 + }, + { + "start": 14918.36, + "end": 14919.24, + "probability": 0.6504 + }, + { + "start": 14919.38, + "end": 14919.38, + "probability": 0.4821 + }, + { + "start": 14919.38, + "end": 14919.8, + "probability": 0.4006 + }, + { + "start": 14920.16, + "end": 14922.16, + "probability": 0.7552 + }, + { + "start": 14922.5, + "end": 14924.12, + "probability": 0.9878 + }, + { + "start": 14924.16, + "end": 14924.8, + "probability": 0.9399 + }, + { + "start": 14926.3, + "end": 14926.48, + "probability": 0.6573 + }, + { + "start": 14926.48, + "end": 14927.6, + "probability": 0.5163 + }, + { + "start": 14927.87, + "end": 14928.47, + "probability": 0.2735 + }, + { + "start": 14929.1, + "end": 14929.51, + "probability": 0.8242 + }, + { + "start": 14929.68, + "end": 14931.8, + "probability": 0.6807 + }, + { + "start": 14931.84, + "end": 14932.64, + "probability": 0.8879 + }, + { + "start": 14932.92, + "end": 14935.56, + "probability": 0.9951 + }, + { + "start": 14936.52, + "end": 14938.1, + "probability": 0.7841 + }, + { + "start": 14938.2, + "end": 14939.48, + "probability": 0.3576 + }, + { + "start": 14939.66, + "end": 14939.66, + "probability": 0.173 + }, + { + "start": 14939.66, + "end": 14940.86, + "probability": 0.3254 + }, + { + "start": 14941.0, + "end": 14941.38, + "probability": 0.3454 + }, + { + "start": 14941.44, + "end": 14942.77, + "probability": 0.3439 + }, + { + "start": 14943.24, + "end": 14943.28, + "probability": 0.1875 + }, + { + "start": 14943.28, + "end": 14946.2, + "probability": 0.096 + }, + { + "start": 14946.36, + "end": 14946.38, + "probability": 0.2905 + }, + { + "start": 14946.46, + "end": 14947.58, + "probability": 0.3203 + }, + { + "start": 14947.58, + "end": 14949.42, + "probability": 0.3096 + }, + { + "start": 14951.48, + "end": 14952.25, + "probability": 0.8097 + }, + { + "start": 14953.44, + "end": 14954.2, + "probability": 0.2801 + }, + { + "start": 14955.32, + "end": 14955.54, + "probability": 0.0278 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.0875 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.0051 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.0513 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.4763 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.5402 + }, + { + "start": 14955.54, + "end": 14955.54, + "probability": 0.5956 + }, + { + "start": 14955.54, + "end": 14957.24, + "probability": 0.3685 + }, + { + "start": 14959.1, + "end": 14960.78, + "probability": 0.6242 + }, + { + "start": 14961.14, + "end": 14962.44, + "probability": 0.8488 + }, + { + "start": 14962.56, + "end": 14963.6, + "probability": 0.786 + }, + { + "start": 14963.68, + "end": 14965.1, + "probability": 0.9102 + }, + { + "start": 14965.16, + "end": 14966.31, + "probability": 0.9177 + }, + { + "start": 14970.12, + "end": 14973.82, + "probability": 0.8213 + }, + { + "start": 14974.82, + "end": 14977.18, + "probability": 0.7505 + }, + { + "start": 14977.34, + "end": 14978.06, + "probability": 0.5818 + }, + { + "start": 14978.14, + "end": 14978.77, + "probability": 0.8437 + }, + { + "start": 14979.04, + "end": 14980.9, + "probability": 0.936 + }, + { + "start": 14981.34, + "end": 14983.0, + "probability": 0.6824 + }, + { + "start": 14983.52, + "end": 14984.06, + "probability": 0.8699 + }, + { + "start": 14984.58, + "end": 14985.84, + "probability": 0.974 + }, + { + "start": 14985.9, + "end": 14987.28, + "probability": 0.9421 + }, + { + "start": 14989.16, + "end": 14990.16, + "probability": 0.8643 + }, + { + "start": 14990.78, + "end": 14994.52, + "probability": 0.9989 + }, + { + "start": 14994.56, + "end": 14995.54, + "probability": 0.9609 + }, + { + "start": 14997.08, + "end": 14998.98, + "probability": 0.8547 + }, + { + "start": 14999.14, + "end": 15000.14, + "probability": 0.9048 + }, + { + "start": 15000.64, + "end": 15001.46, + "probability": 0.4516 + }, + { + "start": 15001.54, + "end": 15004.22, + "probability": 0.9957 + }, + { + "start": 15004.28, + "end": 15009.02, + "probability": 0.9612 + }, + { + "start": 15009.34, + "end": 15010.0, + "probability": 0.5469 + }, + { + "start": 15011.78, + "end": 15014.16, + "probability": 0.9891 + }, + { + "start": 15014.24, + "end": 15015.66, + "probability": 0.9939 + }, + { + "start": 15017.22, + "end": 15017.96, + "probability": 0.4984 + }, + { + "start": 15021.78, + "end": 15025.96, + "probability": 0.7462 + }, + { + "start": 15026.54, + "end": 15028.21, + "probability": 0.915 + }, + { + "start": 15029.1, + "end": 15030.34, + "probability": 0.968 + }, + { + "start": 15032.08, + "end": 15034.89, + "probability": 0.7885 + }, + { + "start": 15035.86, + "end": 15039.62, + "probability": 0.6889 + }, + { + "start": 15040.98, + "end": 15044.54, + "probability": 0.3875 + }, + { + "start": 15044.66, + "end": 15045.53, + "probability": 0.1264 + }, + { + "start": 15045.58, + "end": 15046.52, + "probability": 0.5227 + }, + { + "start": 15046.6, + "end": 15047.42, + "probability": 0.8395 + }, + { + "start": 15047.54, + "end": 15047.92, + "probability": 0.6676 + }, + { + "start": 15047.98, + "end": 15048.38, + "probability": 0.9007 + }, + { + "start": 15048.42, + "end": 15050.08, + "probability": 0.9212 + }, + { + "start": 15050.26, + "end": 15051.0, + "probability": 0.8072 + }, + { + "start": 15051.1, + "end": 15054.16, + "probability": 0.7717 + }, + { + "start": 15054.52, + "end": 15054.88, + "probability": 0.7748 + }, + { + "start": 15054.88, + "end": 15054.94, + "probability": 0.3983 + }, + { + "start": 15055.0, + "end": 15055.62, + "probability": 0.853 + }, + { + "start": 15055.68, + "end": 15058.62, + "probability": 0.9053 + }, + { + "start": 15058.8, + "end": 15059.18, + "probability": 0.6482 + }, + { + "start": 15060.29, + "end": 15061.52, + "probability": 0.4987 + }, + { + "start": 15061.64, + "end": 15061.66, + "probability": 0.7872 + }, + { + "start": 15061.66, + "end": 15062.76, + "probability": 0.8822 + }, + { + "start": 15062.94, + "end": 15064.44, + "probability": 0.8809 + }, + { + "start": 15064.8, + "end": 15067.24, + "probability": 0.5278 + }, + { + "start": 15067.24, + "end": 15068.04, + "probability": 0.6694 + }, + { + "start": 15068.74, + "end": 15069.84, + "probability": 0.9773 + }, + { + "start": 15070.56, + "end": 15070.92, + "probability": 0.5386 + }, + { + "start": 15071.12, + "end": 15071.9, + "probability": 0.8078 + }, + { + "start": 15071.98, + "end": 15072.55, + "probability": 0.736 + }, + { + "start": 15072.96, + "end": 15073.98, + "probability": 0.7643 + }, + { + "start": 15074.04, + "end": 15075.94, + "probability": 0.4832 + }, + { + "start": 15076.1, + "end": 15078.13, + "probability": 0.6649 + }, + { + "start": 15078.38, + "end": 15080.36, + "probability": 0.3219 + }, + { + "start": 15080.6, + "end": 15081.38, + "probability": 0.6356 + }, + { + "start": 15081.4, + "end": 15083.32, + "probability": 0.9561 + }, + { + "start": 15083.86, + "end": 15084.94, + "probability": 0.4428 + }, + { + "start": 15085.0, + "end": 15089.72, + "probability": 0.9767 + }, + { + "start": 15089.94, + "end": 15090.66, + "probability": 0.741 + }, + { + "start": 15090.72, + "end": 15092.74, + "probability": 0.8672 + }, + { + "start": 15092.92, + "end": 15093.48, + "probability": 0.7797 + }, + { + "start": 15094.02, + "end": 15096.04, + "probability": 0.8999 + }, + { + "start": 15096.5, + "end": 15098.68, + "probability": 0.277 + }, + { + "start": 15098.68, + "end": 15098.68, + "probability": 0.3425 + }, + { + "start": 15098.68, + "end": 15098.68, + "probability": 0.1029 + }, + { + "start": 15098.68, + "end": 15098.68, + "probability": 0.0569 + }, + { + "start": 15098.68, + "end": 15098.68, + "probability": 0.2117 + }, + { + "start": 15098.68, + "end": 15100.08, + "probability": 0.8009 + }, + { + "start": 15100.22, + "end": 15102.85, + "probability": 0.7565 + }, + { + "start": 15103.0, + "end": 15103.8, + "probability": 0.3181 + }, + { + "start": 15104.66, + "end": 15104.8, + "probability": 0.3739 + }, + { + "start": 15105.1, + "end": 15105.66, + "probability": 0.2728 + }, + { + "start": 15105.76, + "end": 15107.08, + "probability": 0.2494 + }, + { + "start": 15107.08, + "end": 15108.01, + "probability": 0.8253 + }, + { + "start": 15108.36, + "end": 15110.26, + "probability": 0.928 + }, + { + "start": 15110.54, + "end": 15111.02, + "probability": 0.8407 + }, + { + "start": 15111.14, + "end": 15112.8, + "probability": 0.7119 + }, + { + "start": 15112.94, + "end": 15114.26, + "probability": 0.9391 + }, + { + "start": 15114.36, + "end": 15115.72, + "probability": 0.9766 + }, + { + "start": 15115.98, + "end": 15119.06, + "probability": 0.3784 + }, + { + "start": 15119.06, + "end": 15119.06, + "probability": 0.1686 + }, + { + "start": 15119.06, + "end": 15119.22, + "probability": 0.7351 + }, + { + "start": 15120.08, + "end": 15120.16, + "probability": 0.0572 + }, + { + "start": 15120.16, + "end": 15121.38, + "probability": 0.7277 + }, + { + "start": 15121.46, + "end": 15122.22, + "probability": 0.4628 + }, + { + "start": 15122.3, + "end": 15123.98, + "probability": 0.2072 + }, + { + "start": 15124.1, + "end": 15124.14, + "probability": 0.1368 + }, + { + "start": 15124.14, + "end": 15125.18, + "probability": 0.7682 + }, + { + "start": 15125.2, + "end": 15127.9, + "probability": 0.9526 + }, + { + "start": 15127.98, + "end": 15128.32, + "probability": 0.0401 + }, + { + "start": 15128.46, + "end": 15128.95, + "probability": 0.1096 + }, + { + "start": 15129.96, + "end": 15130.88, + "probability": 0.9448 + }, + { + "start": 15132.14, + "end": 15132.16, + "probability": 0.1956 + }, + { + "start": 15132.16, + "end": 15132.65, + "probability": 0.9682 + }, + { + "start": 15132.72, + "end": 15133.58, + "probability": 0.7852 + }, + { + "start": 15134.12, + "end": 15136.56, + "probability": 0.4148 + }, + { + "start": 15136.6, + "end": 15139.76, + "probability": 0.3147 + }, + { + "start": 15139.88, + "end": 15140.5, + "probability": 0.2018 + }, + { + "start": 15143.3, + "end": 15143.98, + "probability": 0.5562 + }, + { + "start": 15143.98, + "end": 15143.98, + "probability": 0.7821 + }, + { + "start": 15143.98, + "end": 15143.98, + "probability": 0.0287 + }, + { + "start": 15143.98, + "end": 15145.11, + "probability": 0.4668 + }, + { + "start": 15145.72, + "end": 15146.08, + "probability": 0.1676 + }, + { + "start": 15146.16, + "end": 15146.16, + "probability": 0.195 + }, + { + "start": 15146.16, + "end": 15148.62, + "probability": 0.9845 + }, + { + "start": 15148.86, + "end": 15150.06, + "probability": 0.8435 + }, + { + "start": 15150.58, + "end": 15152.78, + "probability": 0.8013 + }, + { + "start": 15152.88, + "end": 15153.46, + "probability": 0.6025 + }, + { + "start": 15153.48, + "end": 15154.42, + "probability": 0.9221 + }, + { + "start": 15154.74, + "end": 15155.0, + "probability": 0.1267 + }, + { + "start": 15155.0, + "end": 15155.0, + "probability": 0.084 + }, + { + "start": 15155.0, + "end": 15155.18, + "probability": 0.0146 + }, + { + "start": 15155.3, + "end": 15156.5, + "probability": 0.8717 + }, + { + "start": 15156.56, + "end": 15159.46, + "probability": 0.6618 + }, + { + "start": 15159.58, + "end": 15165.48, + "probability": 0.959 + }, + { + "start": 15165.7, + "end": 15167.0, + "probability": 0.7977 + }, + { + "start": 15167.18, + "end": 15169.2, + "probability": 0.8262 + }, + { + "start": 15169.26, + "end": 15171.78, + "probability": 0.9379 + }, + { + "start": 15172.26, + "end": 15173.92, + "probability": 0.7352 + }, + { + "start": 15174.52, + "end": 15175.86, + "probability": 0.9632 + }, + { + "start": 15178.66, + "end": 15179.64, + "probability": 0.8633 + }, + { + "start": 15179.7, + "end": 15180.74, + "probability": 0.8358 + }, + { + "start": 15181.04, + "end": 15181.49, + "probability": 0.4476 + }, + { + "start": 15183.48, + "end": 15184.0, + "probability": 0.2966 + }, + { + "start": 15184.24, + "end": 15185.46, + "probability": 0.9886 + }, + { + "start": 15186.42, + "end": 15189.02, + "probability": 0.9082 + }, + { + "start": 15189.38, + "end": 15194.46, + "probability": 0.0494 + }, + { + "start": 15195.04, + "end": 15195.92, + "probability": 0.0477 + }, + { + "start": 15195.92, + "end": 15196.32, + "probability": 0.1167 + }, + { + "start": 15196.32, + "end": 15196.32, + "probability": 0.1619 + }, + { + "start": 15196.32, + "end": 15197.6, + "probability": 0.4916 + }, + { + "start": 15197.6, + "end": 15198.86, + "probability": 0.2809 + }, + { + "start": 15198.86, + "end": 15199.42, + "probability": 0.5902 + }, + { + "start": 15199.48, + "end": 15201.34, + "probability": 0.7583 + }, + { + "start": 15201.48, + "end": 15202.0, + "probability": 0.492 + }, + { + "start": 15202.08, + "end": 15203.7, + "probability": 0.7908 + }, + { + "start": 15204.08, + "end": 15204.24, + "probability": 0.5602 + }, + { + "start": 15204.84, + "end": 15206.06, + "probability": 0.1991 + }, + { + "start": 15206.12, + "end": 15206.44, + "probability": 0.375 + }, + { + "start": 15206.44, + "end": 15206.52, + "probability": 0.4366 + }, + { + "start": 15206.88, + "end": 15207.28, + "probability": 0.6693 + }, + { + "start": 15207.28, + "end": 15210.0, + "probability": 0.6255 + }, + { + "start": 15210.28, + "end": 15210.74, + "probability": 0.7122 + }, + { + "start": 15210.74, + "end": 15211.02, + "probability": 0.1682 + }, + { + "start": 15211.12, + "end": 15211.32, + "probability": 0.2522 + }, + { + "start": 15211.32, + "end": 15211.32, + "probability": 0.0187 + }, + { + "start": 15211.32, + "end": 15212.0, + "probability": 0.2575 + }, + { + "start": 15212.02, + "end": 15213.27, + "probability": 0.7397 + }, + { + "start": 15213.78, + "end": 15213.78, + "probability": 0.1617 + }, + { + "start": 15213.78, + "end": 15214.58, + "probability": 0.584 + }, + { + "start": 15214.9, + "end": 15215.8, + "probability": 0.4141 + }, + { + "start": 15215.84, + "end": 15217.31, + "probability": 0.8304 + }, + { + "start": 15217.8, + "end": 15219.98, + "probability": 0.2749 + }, + { + "start": 15220.1, + "end": 15221.63, + "probability": 0.1028 + }, + { + "start": 15223.52, + "end": 15223.6, + "probability": 0.0539 + }, + { + "start": 15223.6, + "end": 15223.84, + "probability": 0.1013 + }, + { + "start": 15223.88, + "end": 15229.2, + "probability": 0.0698 + }, + { + "start": 15230.88, + "end": 15235.3, + "probability": 0.178 + }, + { + "start": 15237.15, + "end": 15239.2, + "probability": 0.4129 + }, + { + "start": 15239.9, + "end": 15240.84, + "probability": 0.1914 + }, + { + "start": 15241.22, + "end": 15242.56, + "probability": 0.2664 + }, + { + "start": 15242.6, + "end": 15244.3, + "probability": 0.0068 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.0, + "end": 15275.0, + "probability": 0.0 + }, + { + "start": 15275.33, + "end": 15275.42, + "probability": 0.16 + }, + { + "start": 15275.42, + "end": 15275.42, + "probability": 0.0321 + }, + { + "start": 15275.42, + "end": 15276.32, + "probability": 0.0435 + }, + { + "start": 15276.38, + "end": 15276.72, + "probability": 0.6807 + }, + { + "start": 15277.2, + "end": 15277.2, + "probability": 0.071 + }, + { + "start": 15278.58, + "end": 15280.28, + "probability": 0.0619 + }, + { + "start": 15280.38, + "end": 15280.7, + "probability": 0.0731 + }, + { + "start": 15280.7, + "end": 15280.82, + "probability": 0.0231 + }, + { + "start": 15280.82, + "end": 15284.0, + "probability": 0.379 + }, + { + "start": 15284.0, + "end": 15284.88, + "probability": 0.0915 + }, + { + "start": 15285.44, + "end": 15286.04, + "probability": 0.5849 + }, + { + "start": 15286.32, + "end": 15289.12, + "probability": 0.6974 + }, + { + "start": 15289.56, + "end": 15290.08, + "probability": 0.9547 + }, + { + "start": 15290.2, + "end": 15291.84, + "probability": 0.9565 + }, + { + "start": 15292.32, + "end": 15293.04, + "probability": 0.1826 + }, + { + "start": 15298.26, + "end": 15298.46, + "probability": 0.4544 + }, + { + "start": 15298.54, + "end": 15299.46, + "probability": 0.2058 + }, + { + "start": 15299.52, + "end": 15301.63, + "probability": 0.915 + }, + { + "start": 15302.44, + "end": 15305.72, + "probability": 0.72 + }, + { + "start": 15307.37, + "end": 15309.76, + "probability": 0.8151 + }, + { + "start": 15310.06, + "end": 15312.12, + "probability": 0.5812 + }, + { + "start": 15312.12, + "end": 15312.92, + "probability": 0.5187 + }, + { + "start": 15312.92, + "end": 15315.58, + "probability": 0.771 + }, + { + "start": 15320.44, + "end": 15320.56, + "probability": 0.5099 + }, + { + "start": 15320.56, + "end": 15322.64, + "probability": 0.7134 + }, + { + "start": 15322.7, + "end": 15324.5, + "probability": 0.4724 + }, + { + "start": 15324.5, + "end": 15326.24, + "probability": 0.9048 + }, + { + "start": 15326.34, + "end": 15328.58, + "probability": 0.8224 + }, + { + "start": 15329.08, + "end": 15329.74, + "probability": 0.9922 + }, + { + "start": 15329.96, + "end": 15331.02, + "probability": 0.957 + }, + { + "start": 15331.1, + "end": 15331.98, + "probability": 0.9837 + }, + { + "start": 15332.5, + "end": 15335.78, + "probability": 0.9678 + }, + { + "start": 15335.88, + "end": 15336.76, + "probability": 0.9199 + }, + { + "start": 15336.86, + "end": 15337.74, + "probability": 0.9724 + }, + { + "start": 15337.86, + "end": 15338.66, + "probability": 0.8766 + }, + { + "start": 15339.52, + "end": 15342.54, + "probability": 0.98 + }, + { + "start": 15342.6, + "end": 15343.94, + "probability": 0.8753 + }, + { + "start": 15344.06, + "end": 15344.68, + "probability": 0.8183 + }, + { + "start": 15344.98, + "end": 15346.58, + "probability": 0.9225 + }, + { + "start": 15346.72, + "end": 15348.12, + "probability": 0.88 + }, + { + "start": 15348.32, + "end": 15348.98, + "probability": 0.8257 + }, + { + "start": 15349.1, + "end": 15349.36, + "probability": 0.8058 + }, + { + "start": 15349.44, + "end": 15350.62, + "probability": 0.7268 + }, + { + "start": 15351.02, + "end": 15352.94, + "probability": 0.9929 + }, + { + "start": 15353.22, + "end": 15354.02, + "probability": 0.9241 + }, + { + "start": 15354.18, + "end": 15355.62, + "probability": 0.8235 + }, + { + "start": 15356.1, + "end": 15358.88, + "probability": 0.9888 + }, + { + "start": 15359.32, + "end": 15362.51, + "probability": 0.7654 + }, + { + "start": 15362.68, + "end": 15363.34, + "probability": 0.8422 + }, + { + "start": 15363.38, + "end": 15364.32, + "probability": 0.8799 + }, + { + "start": 15364.84, + "end": 15364.88, + "probability": 0.5762 + }, + { + "start": 15365.12, + "end": 15366.28, + "probability": 0.9807 + }, + { + "start": 15366.38, + "end": 15367.78, + "probability": 0.9587 + }, + { + "start": 15367.8, + "end": 15369.46, + "probability": 0.9898 + }, + { + "start": 15369.92, + "end": 15371.76, + "probability": 0.9893 + }, + { + "start": 15371.9, + "end": 15373.38, + "probability": 0.9501 + }, + { + "start": 15373.42, + "end": 15374.6, + "probability": 0.7693 + }, + { + "start": 15374.66, + "end": 15376.06, + "probability": 0.8335 + }, + { + "start": 15376.4, + "end": 15379.38, + "probability": 0.9367 + }, + { + "start": 15379.38, + "end": 15386.1, + "probability": 0.9534 + }, + { + "start": 15387.12, + "end": 15389.44, + "probability": 0.9624 + }, + { + "start": 15389.62, + "end": 15391.88, + "probability": 0.9878 + }, + { + "start": 15392.2, + "end": 15393.72, + "probability": 0.9836 + }, + { + "start": 15394.26, + "end": 15397.1, + "probability": 0.9973 + }, + { + "start": 15397.58, + "end": 15400.3, + "probability": 0.6396 + }, + { + "start": 15400.32, + "end": 15402.04, + "probability": 0.9258 + }, + { + "start": 15402.16, + "end": 15404.19, + "probability": 0.9961 + }, + { + "start": 15404.78, + "end": 15409.36, + "probability": 0.9911 + }, + { + "start": 15409.82, + "end": 15411.7, + "probability": 0.7331 + }, + { + "start": 15412.78, + "end": 15414.9, + "probability": 0.3389 + }, + { + "start": 15416.04, + "end": 15416.1, + "probability": 0.0532 + }, + { + "start": 15416.1, + "end": 15417.14, + "probability": 0.1107 + }, + { + "start": 15417.34, + "end": 15419.2, + "probability": 0.1521 + }, + { + "start": 15419.2, + "end": 15419.46, + "probability": 0.0201 + }, + { + "start": 15419.5, + "end": 15421.02, + "probability": 0.473 + }, + { + "start": 15421.34, + "end": 15422.22, + "probability": 0.2873 + }, + { + "start": 15422.4, + "end": 15425.28, + "probability": 0.0288 + }, + { + "start": 15425.28, + "end": 15425.28, + "probability": 0.1932 + }, + { + "start": 15425.28, + "end": 15425.98, + "probability": 0.1583 + }, + { + "start": 15426.4, + "end": 15428.84, + "probability": 0.7788 + }, + { + "start": 15430.72, + "end": 15431.48, + "probability": 0.1624 + }, + { + "start": 15431.78, + "end": 15433.92, + "probability": 0.2132 + }, + { + "start": 15433.92, + "end": 15433.92, + "probability": 0.2793 + }, + { + "start": 15433.92, + "end": 15433.98, + "probability": 0.2338 + }, + { + "start": 15434.1, + "end": 15434.1, + "probability": 0.159 + }, + { + "start": 15434.1, + "end": 15436.3, + "probability": 0.5254 + }, + { + "start": 15437.36, + "end": 15438.18, + "probability": 0.4235 + }, + { + "start": 15439.02, + "end": 15439.22, + "probability": 0.0341 + }, + { + "start": 15439.22, + "end": 15440.71, + "probability": 0.5296 + }, + { + "start": 15441.54, + "end": 15441.62, + "probability": 0.2515 + }, + { + "start": 15442.74, + "end": 15444.74, + "probability": 0.0282 + }, + { + "start": 15445.62, + "end": 15446.44, + "probability": 0.4133 + }, + { + "start": 15446.66, + "end": 15447.16, + "probability": 0.3893 + }, + { + "start": 15447.24, + "end": 15447.78, + "probability": 0.1891 + }, + { + "start": 15447.86, + "end": 15448.88, + "probability": 0.3335 + }, + { + "start": 15448.98, + "end": 15449.86, + "probability": 0.4722 + }, + { + "start": 15449.94, + "end": 15451.08, + "probability": 0.1417 + }, + { + "start": 15451.08, + "end": 15451.48, + "probability": 0.3492 + }, + { + "start": 15451.66, + "end": 15452.34, + "probability": 0.0658 + }, + { + "start": 15453.2, + "end": 15453.48, + "probability": 0.0804 + }, + { + "start": 15453.48, + "end": 15454.16, + "probability": 0.4468 + }, + { + "start": 15454.66, + "end": 15455.6, + "probability": 0.5422 + }, + { + "start": 15455.78, + "end": 15456.6, + "probability": 0.3075 + }, + { + "start": 15456.76, + "end": 15457.7, + "probability": 0.3289 + }, + { + "start": 15457.7, + "end": 15458.76, + "probability": 0.6555 + }, + { + "start": 15458.82, + "end": 15459.6, + "probability": 0.6904 + }, + { + "start": 15459.74, + "end": 15460.1, + "probability": 0.0395 + }, + { + "start": 15460.1, + "end": 15460.26, + "probability": 0.0828 + }, + { + "start": 15460.4, + "end": 15460.62, + "probability": 0.1606 + }, + { + "start": 15460.64, + "end": 15461.52, + "probability": 0.8931 + }, + { + "start": 15461.66, + "end": 15462.6, + "probability": 0.979 + }, + { + "start": 15462.68, + "end": 15465.02, + "probability": 0.9888 + }, + { + "start": 15468.41, + "end": 15470.04, + "probability": 0.6073 + }, + { + "start": 15470.08, + "end": 15471.6, + "probability": 0.4589 + }, + { + "start": 15472.08, + "end": 15473.0, + "probability": 0.9189 + }, + { + "start": 15473.06, + "end": 15473.72, + "probability": 0.9844 + }, + { + "start": 15473.86, + "end": 15475.18, + "probability": 0.8456 + }, + { + "start": 15475.54, + "end": 15476.7, + "probability": 0.9174 + }, + { + "start": 15476.8, + "end": 15477.41, + "probability": 0.6469 + }, + { + "start": 15477.72, + "end": 15478.36, + "probability": 0.4107 + }, + { + "start": 15478.46, + "end": 15478.74, + "probability": 0.8565 + }, + { + "start": 15478.88, + "end": 15479.1, + "probability": 0.808 + }, + { + "start": 15479.26, + "end": 15481.98, + "probability": 0.9884 + }, + { + "start": 15482.24, + "end": 15483.51, + "probability": 0.9978 + }, + { + "start": 15484.26, + "end": 15484.74, + "probability": 0.6598 + }, + { + "start": 15484.84, + "end": 15485.4, + "probability": 0.7476 + }, + { + "start": 15485.48, + "end": 15486.3, + "probability": 0.501 + }, + { + "start": 15486.47, + "end": 15487.48, + "probability": 0.9434 + }, + { + "start": 15487.56, + "end": 15487.6, + "probability": 0.0731 + }, + { + "start": 15487.6, + "end": 15489.29, + "probability": 0.7991 + }, + { + "start": 15489.62, + "end": 15491.22, + "probability": 0.9365 + }, + { + "start": 15491.32, + "end": 15493.8, + "probability": 0.6541 + }, + { + "start": 15494.0, + "end": 15494.52, + "probability": 0.4932 + }, + { + "start": 15494.52, + "end": 15495.92, + "probability": 0.6644 + }, + { + "start": 15495.96, + "end": 15498.24, + "probability": 0.9963 + }, + { + "start": 15498.6, + "end": 15500.58, + "probability": 0.9435 + }, + { + "start": 15500.76, + "end": 15502.8, + "probability": 0.8299 + }, + { + "start": 15502.98, + "end": 15503.7, + "probability": 0.8159 + }, + { + "start": 15503.72, + "end": 15504.44, + "probability": 0.9478 + }, + { + "start": 15504.66, + "end": 15505.08, + "probability": 0.716 + }, + { + "start": 15505.12, + "end": 15506.52, + "probability": 0.995 + }, + { + "start": 15506.86, + "end": 15508.18, + "probability": 0.5303 + }, + { + "start": 15508.18, + "end": 15508.68, + "probability": 0.4841 + }, + { + "start": 15508.72, + "end": 15509.78, + "probability": 0.6191 + }, + { + "start": 15509.86, + "end": 15510.6, + "probability": 0.9377 + }, + { + "start": 15510.66, + "end": 15511.38, + "probability": 0.497 + }, + { + "start": 15511.9, + "end": 15512.18, + "probability": 0.6804 + }, + { + "start": 15512.52, + "end": 15512.96, + "probability": 0.7787 + }, + { + "start": 15513.1, + "end": 15514.38, + "probability": 0.1519 + }, + { + "start": 15514.38, + "end": 15514.72, + "probability": 0.7686 + }, + { + "start": 15514.98, + "end": 15517.58, + "probability": 0.5756 + }, + { + "start": 15518.18, + "end": 15518.18, + "probability": 0.0587 + }, + { + "start": 15518.18, + "end": 15518.66, + "probability": 0.4519 + }, + { + "start": 15518.88, + "end": 15521.02, + "probability": 0.6028 + }, + { + "start": 15521.34, + "end": 15524.38, + "probability": 0.235 + }, + { + "start": 15524.96, + "end": 15526.94, + "probability": 0.0427 + }, + { + "start": 15528.35, + "end": 15529.64, + "probability": 0.0784 + }, + { + "start": 15533.88, + "end": 15535.6, + "probability": 0.0269 + }, + { + "start": 15536.96, + "end": 15537.64, + "probability": 0.2585 + }, + { + "start": 15537.64, + "end": 15538.44, + "probability": 0.5355 + }, + { + "start": 15541.98, + "end": 15544.44, + "probability": 0.0573 + }, + { + "start": 15544.44, + "end": 15544.72, + "probability": 0.5094 + }, + { + "start": 15544.72, + "end": 15547.1, + "probability": 0.0163 + }, + { + "start": 15547.96, + "end": 15548.16, + "probability": 0.0192 + }, + { + "start": 15548.16, + "end": 15548.16, + "probability": 0.0632 + }, + { + "start": 15548.16, + "end": 15548.94, + "probability": 0.1048 + }, + { + "start": 15549.26, + "end": 15550.16, + "probability": 0.1052 + }, + { + "start": 15550.44, + "end": 15552.92, + "probability": 0.0466 + }, + { + "start": 15552.92, + "end": 15554.88, + "probability": 0.0579 + }, + { + "start": 15555.18, + "end": 15557.98, + "probability": 0.0316 + }, + { + "start": 15558.78, + "end": 15560.86, + "probability": 0.0693 + }, + { + "start": 15560.86, + "end": 15561.9, + "probability": 0.05 + }, + { + "start": 15561.9, + "end": 15564.4, + "probability": 0.0589 + }, + { + "start": 15564.81, + "end": 15565.18, + "probability": 0.0138 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.0, + "end": 15596.0, + "probability": 0.0 + }, + { + "start": 15596.1, + "end": 15597.75, + "probability": 0.3628 + }, + { + "start": 15599.52, + "end": 15601.34, + "probability": 0.991 + }, + { + "start": 15603.54, + "end": 15607.48, + "probability": 0.9935 + }, + { + "start": 15607.56, + "end": 15609.18, + "probability": 0.9843 + }, + { + "start": 15609.46, + "end": 15612.28, + "probability": 0.9757 + }, + { + "start": 15613.62, + "end": 15616.56, + "probability": 0.8076 + }, + { + "start": 15617.16, + "end": 15618.08, + "probability": 0.9297 + }, + { + "start": 15618.14, + "end": 15618.68, + "probability": 0.9897 + }, + { + "start": 15618.96, + "end": 15620.8, + "probability": 0.9662 + }, + { + "start": 15620.88, + "end": 15622.36, + "probability": 0.8442 + }, + { + "start": 15623.0, + "end": 15625.76, + "probability": 0.9966 + }, + { + "start": 15626.34, + "end": 15628.08, + "probability": 0.957 + }, + { + "start": 15628.52, + "end": 15632.82, + "probability": 0.9958 + }, + { + "start": 15633.22, + "end": 15637.7, + "probability": 0.9635 + }, + { + "start": 15638.12, + "end": 15644.12, + "probability": 0.9976 + }, + { + "start": 15644.94, + "end": 15646.1, + "probability": 0.6677 + }, + { + "start": 15646.22, + "end": 15646.82, + "probability": 0.8729 + }, + { + "start": 15646.94, + "end": 15649.1, + "probability": 0.8926 + }, + { + "start": 15649.6, + "end": 15653.86, + "probability": 0.827 + }, + { + "start": 15654.04, + "end": 15655.18, + "probability": 0.9292 + }, + { + "start": 15655.52, + "end": 15659.08, + "probability": 0.9852 + }, + { + "start": 15659.54, + "end": 15661.3, + "probability": 0.8808 + }, + { + "start": 15661.62, + "end": 15663.72, + "probability": 0.9779 + }, + { + "start": 15663.92, + "end": 15666.54, + "probability": 0.9261 + }, + { + "start": 15666.86, + "end": 15667.48, + "probability": 0.804 + }, + { + "start": 15668.1, + "end": 15669.26, + "probability": 0.9833 + }, + { + "start": 15669.44, + "end": 15669.88, + "probability": 0.6546 + }, + { + "start": 15669.96, + "end": 15671.1, + "probability": 0.7399 + }, + { + "start": 15671.6, + "end": 15673.2, + "probability": 0.5442 + }, + { + "start": 15673.5, + "end": 15675.18, + "probability": 0.8743 + }, + { + "start": 15675.8, + "end": 15677.68, + "probability": 0.9657 + }, + { + "start": 15678.36, + "end": 15680.66, + "probability": 0.9506 + }, + { + "start": 15681.22, + "end": 15683.38, + "probability": 0.9893 + }, + { + "start": 15683.44, + "end": 15687.86, + "probability": 0.9772 + }, + { + "start": 15688.22, + "end": 15689.28, + "probability": 0.7614 + }, + { + "start": 15689.62, + "end": 15690.66, + "probability": 0.2777 + }, + { + "start": 15690.76, + "end": 15693.2, + "probability": 0.988 + }, + { + "start": 15693.32, + "end": 15697.24, + "probability": 0.8435 + }, + { + "start": 15697.62, + "end": 15700.7, + "probability": 0.9945 + }, + { + "start": 15700.76, + "end": 15702.04, + "probability": 0.8974 + }, + { + "start": 15702.24, + "end": 15706.08, + "probability": 0.9932 + }, + { + "start": 15706.38, + "end": 15707.68, + "probability": 0.9912 + }, + { + "start": 15707.78, + "end": 15708.18, + "probability": 0.7168 + }, + { + "start": 15708.28, + "end": 15709.06, + "probability": 0.8711 + }, + { + "start": 15709.14, + "end": 15710.36, + "probability": 0.8169 + }, + { + "start": 15710.8, + "end": 15711.4, + "probability": 0.8409 + }, + { + "start": 15711.52, + "end": 15711.88, + "probability": 0.9711 + }, + { + "start": 15712.42, + "end": 15715.86, + "probability": 0.931 + }, + { + "start": 15716.6, + "end": 15722.4, + "probability": 0.9938 + }, + { + "start": 15722.82, + "end": 15725.42, + "probability": 0.7721 + }, + { + "start": 15726.52, + "end": 15726.54, + "probability": 0.059 + }, + { + "start": 15726.54, + "end": 15728.76, + "probability": 0.2773 + }, + { + "start": 15729.44, + "end": 15730.7, + "probability": 0.9016 + }, + { + "start": 15731.16, + "end": 15733.14, + "probability": 0.8584 + }, + { + "start": 15733.22, + "end": 15734.62, + "probability": 0.974 + }, + { + "start": 15734.7, + "end": 15735.4, + "probability": 0.6882 + }, + { + "start": 15735.78, + "end": 15737.22, + "probability": 0.9501 + }, + { + "start": 15737.32, + "end": 15739.82, + "probability": 0.9289 + }, + { + "start": 15740.38, + "end": 15742.48, + "probability": 0.9899 + }, + { + "start": 15742.9, + "end": 15745.86, + "probability": 0.9917 + }, + { + "start": 15746.6, + "end": 15749.36, + "probability": 0.9772 + }, + { + "start": 15749.36, + "end": 15752.18, + "probability": 0.9979 + }, + { + "start": 15752.26, + "end": 15755.52, + "probability": 0.9965 + }, + { + "start": 15755.52, + "end": 15759.02, + "probability": 0.4851 + }, + { + "start": 15759.02, + "end": 15759.02, + "probability": 0.1085 + }, + { + "start": 15759.02, + "end": 15760.38, + "probability": 0.5679 + }, + { + "start": 15760.38, + "end": 15761.3, + "probability": 0.7641 + }, + { + "start": 15761.34, + "end": 15761.34, + "probability": 0.3638 + }, + { + "start": 15761.34, + "end": 15763.28, + "probability": 0.7023 + }, + { + "start": 15763.48, + "end": 15764.14, + "probability": 0.4541 + }, + { + "start": 15765.0, + "end": 15765.34, + "probability": 0.0164 + }, + { + "start": 15765.6, + "end": 15765.6, + "probability": 0.4588 + }, + { + "start": 15765.64, + "end": 15768.23, + "probability": 0.9453 + }, + { + "start": 15768.72, + "end": 15768.96, + "probability": 0.4788 + }, + { + "start": 15768.96, + "end": 15769.84, + "probability": 0.6664 + }, + { + "start": 15770.12, + "end": 15770.52, + "probability": 0.8432 + }, + { + "start": 15771.66, + "end": 15772.36, + "probability": 0.7445 + }, + { + "start": 15772.46, + "end": 15773.84, + "probability": 0.4662 + }, + { + "start": 15774.02, + "end": 15776.0, + "probability": 0.9432 + }, + { + "start": 15776.72, + "end": 15778.7, + "probability": 0.9563 + }, + { + "start": 15778.82, + "end": 15780.48, + "probability": 0.8551 + }, + { + "start": 15781.12, + "end": 15783.3, + "probability": 0.9769 + }, + { + "start": 15783.74, + "end": 15787.32, + "probability": 0.9866 + }, + { + "start": 15787.42, + "end": 15789.52, + "probability": 0.9887 + }, + { + "start": 15789.98, + "end": 15792.3, + "probability": 0.9956 + }, + { + "start": 15792.74, + "end": 15796.36, + "probability": 0.9921 + }, + { + "start": 15796.42, + "end": 15797.1, + "probability": 0.5593 + }, + { + "start": 15797.44, + "end": 15800.58, + "probability": 0.9621 + }, + { + "start": 15800.84, + "end": 15802.42, + "probability": 0.8918 + }, + { + "start": 15802.56, + "end": 15803.36, + "probability": 0.7688 + }, + { + "start": 15803.54, + "end": 15806.16, + "probability": 0.9932 + }, + { + "start": 15806.26, + "end": 15808.88, + "probability": 0.8005 + }, + { + "start": 15809.02, + "end": 15810.98, + "probability": 0.7361 + }, + { + "start": 15811.1, + "end": 15812.38, + "probability": 0.8004 + }, + { + "start": 15812.98, + "end": 15814.52, + "probability": 0.1064 + }, + { + "start": 15814.62, + "end": 15817.26, + "probability": 0.9142 + }, + { + "start": 15817.74, + "end": 15818.58, + "probability": 0.717 + }, + { + "start": 15818.7, + "end": 15819.14, + "probability": 0.6569 + }, + { + "start": 15819.22, + "end": 15819.6, + "probability": 0.4694 + }, + { + "start": 15819.6, + "end": 15820.58, + "probability": 0.7225 + }, + { + "start": 15822.28, + "end": 15828.96, + "probability": 0.018 + }, + { + "start": 15828.96, + "end": 15829.78, + "probability": 0.1143 + }, + { + "start": 15835.58, + "end": 15836.66, + "probability": 0.4699 + }, + { + "start": 15840.02, + "end": 15842.64, + "probability": 0.0541 + }, + { + "start": 15842.64, + "end": 15845.52, + "probability": 0.3466 + }, + { + "start": 15846.1, + "end": 15847.16, + "probability": 0.923 + }, + { + "start": 15847.26, + "end": 15850.14, + "probability": 0.9111 + }, + { + "start": 15850.16, + "end": 15851.54, + "probability": 0.8036 + }, + { + "start": 15853.5, + "end": 15856.74, + "probability": 0.5795 + }, + { + "start": 15857.36, + "end": 15858.16, + "probability": 0.469 + }, + { + "start": 15858.22, + "end": 15858.64, + "probability": 0.6172 + }, + { + "start": 15858.68, + "end": 15859.04, + "probability": 0.6906 + }, + { + "start": 15859.08, + "end": 15859.52, + "probability": 0.8757 + }, + { + "start": 15860.49, + "end": 15867.06, + "probability": 0.0906 + }, + { + "start": 15869.24, + "end": 15871.62, + "probability": 0.0443 + }, + { + "start": 15873.22, + "end": 15873.32, + "probability": 0.022 + }, + { + "start": 15882.82, + "end": 15883.26, + "probability": 0.1934 + }, + { + "start": 15883.26, + "end": 15886.12, + "probability": 0.4123 + }, + { + "start": 15886.26, + "end": 15887.29, + "probability": 0.9568 + }, + { + "start": 15887.92, + "end": 15889.28, + "probability": 0.8501 + }, + { + "start": 15889.38, + "end": 15892.02, + "probability": 0.9727 + }, + { + "start": 15892.1, + "end": 15893.52, + "probability": 0.6163 + }, + { + "start": 15894.06, + "end": 15894.88, + "probability": 0.961 + }, + { + "start": 15895.12, + "end": 15896.78, + "probability": 0.9311 + }, + { + "start": 15896.9, + "end": 15898.46, + "probability": 0.9314 + }, + { + "start": 15898.56, + "end": 15900.42, + "probability": 0.8002 + }, + { + "start": 15900.54, + "end": 15903.7, + "probability": 0.9575 + }, + { + "start": 15903.78, + "end": 15905.22, + "probability": 0.8358 + }, + { + "start": 15905.78, + "end": 15906.38, + "probability": 0.4536 + }, + { + "start": 15906.4, + "end": 15907.44, + "probability": 0.9721 + }, + { + "start": 15909.56, + "end": 15910.24, + "probability": 0.7525 + }, + { + "start": 15911.76, + "end": 15912.66, + "probability": 0.6123 + }, + { + "start": 15912.74, + "end": 15915.02, + "probability": 0.585 + }, + { + "start": 15915.08, + "end": 15917.08, + "probability": 0.794 + }, + { + "start": 15917.94, + "end": 15919.29, + "probability": 0.8145 + }, + { + "start": 15919.86, + "end": 15921.04, + "probability": 0.7494 + }, + { + "start": 15922.76, + "end": 15927.26, + "probability": 0.9911 + }, + { + "start": 15927.56, + "end": 15930.96, + "probability": 0.9961 + }, + { + "start": 15932.54, + "end": 15935.04, + "probability": 0.9961 + }, + { + "start": 15937.5, + "end": 15942.4, + "probability": 0.9793 + }, + { + "start": 15943.72, + "end": 15944.76, + "probability": 0.916 + }, + { + "start": 15945.72, + "end": 15949.0, + "probability": 0.8436 + }, + { + "start": 15949.7, + "end": 15952.6, + "probability": 0.9891 + }, + { + "start": 15953.42, + "end": 15953.8, + "probability": 0.0003 + }, + { + "start": 15956.04, + "end": 15956.28, + "probability": 0.0293 + }, + { + "start": 15956.28, + "end": 15956.44, + "probability": 0.0321 + }, + { + "start": 15956.44, + "end": 15960.45, + "probability": 0.3724 + }, + { + "start": 15962.38, + "end": 15965.5, + "probability": 0.998 + }, + { + "start": 15965.5, + "end": 15972.04, + "probability": 0.9978 + }, + { + "start": 15972.44, + "end": 15975.12, + "probability": 0.904 + }, + { + "start": 15976.06, + "end": 15977.68, + "probability": 0.7695 + }, + { + "start": 15978.28, + "end": 15978.42, + "probability": 0.0344 + }, + { + "start": 15978.42, + "end": 15978.42, + "probability": 0.1092 + }, + { + "start": 15978.42, + "end": 15978.94, + "probability": 0.334 + }, + { + "start": 15979.1, + "end": 15980.74, + "probability": 0.8366 + }, + { + "start": 15981.18, + "end": 15983.04, + "probability": 0.8859 + }, + { + "start": 15983.48, + "end": 15984.98, + "probability": 0.8719 + }, + { + "start": 15985.22, + "end": 15989.0, + "probability": 0.9897 + }, + { + "start": 15990.46, + "end": 15990.52, + "probability": 0.043 + }, + { + "start": 15991.38, + "end": 15992.04, + "probability": 0.0468 + }, + { + "start": 15992.04, + "end": 15992.1, + "probability": 0.0049 + }, + { + "start": 15992.1, + "end": 15997.14, + "probability": 0.9801 + }, + { + "start": 15998.22, + "end": 16001.68, + "probability": 0.9706 + }, + { + "start": 16002.82, + "end": 16004.94, + "probability": 0.9946 + }, + { + "start": 16005.4, + "end": 16008.38, + "probability": 0.963 + }, + { + "start": 16009.0, + "end": 16012.42, + "probability": 0.6641 + }, + { + "start": 16012.5, + "end": 16013.74, + "probability": 0.7522 + }, + { + "start": 16013.9, + "end": 16015.13, + "probability": 0.9709 + }, + { + "start": 16015.36, + "end": 16017.2, + "probability": 0.9849 + }, + { + "start": 16017.34, + "end": 16018.36, + "probability": 0.485 + }, + { + "start": 16018.38, + "end": 16019.44, + "probability": 0.7815 + }, + { + "start": 16019.54, + "end": 16020.06, + "probability": 0.5792 + }, + { + "start": 16020.62, + "end": 16022.16, + "probability": 0.4582 + }, + { + "start": 16023.38, + "end": 16023.66, + "probability": 0.0004 + }, + { + "start": 16024.42, + "end": 16024.66, + "probability": 0.0091 + }, + { + "start": 16024.66, + "end": 16024.66, + "probability": 0.1554 + }, + { + "start": 16024.66, + "end": 16024.66, + "probability": 0.0235 + }, + { + "start": 16024.66, + "end": 16025.92, + "probability": 0.29 + }, + { + "start": 16026.42, + "end": 16028.52, + "probability": 0.9469 + }, + { + "start": 16029.42, + "end": 16030.76, + "probability": 0.75 + }, + { + "start": 16030.9, + "end": 16037.4, + "probability": 0.9797 + }, + { + "start": 16037.46, + "end": 16039.8, + "probability": 0.8342 + }, + { + "start": 16040.3, + "end": 16043.57, + "probability": 0.9814 + }, + { + "start": 16044.34, + "end": 16046.58, + "probability": 0.9678 + }, + { + "start": 16046.68, + "end": 16047.04, + "probability": 0.8656 + }, + { + "start": 16047.2, + "end": 16047.8, + "probability": 0.8035 + }, + { + "start": 16048.12, + "end": 16049.32, + "probability": 0.8723 + }, + { + "start": 16049.54, + "end": 16050.76, + "probability": 0.9296 + }, + { + "start": 16050.92, + "end": 16053.24, + "probability": 0.9956 + }, + { + "start": 16053.36, + "end": 16055.3, + "probability": 0.9272 + }, + { + "start": 16055.82, + "end": 16057.1, + "probability": 0.8257 + }, + { + "start": 16057.2, + "end": 16058.76, + "probability": 0.9336 + }, + { + "start": 16058.86, + "end": 16060.18, + "probability": 0.9845 + }, + { + "start": 16060.4, + "end": 16064.24, + "probability": 0.9626 + }, + { + "start": 16064.6, + "end": 16068.24, + "probability": 0.9409 + }, + { + "start": 16068.34, + "end": 16069.64, + "probability": 0.9037 + }, + { + "start": 16071.04, + "end": 16073.62, + "probability": 0.4331 + }, + { + "start": 16073.62, + "end": 16076.88, + "probability": 0.9902 + }, + { + "start": 16077.06, + "end": 16079.32, + "probability": 0.5336 + }, + { + "start": 16079.42, + "end": 16082.46, + "probability": 0.9033 + }, + { + "start": 16082.72, + "end": 16088.14, + "probability": 0.9908 + }, + { + "start": 16088.7, + "end": 16090.1, + "probability": 0.8116 + }, + { + "start": 16090.28, + "end": 16090.78, + "probability": 0.6059 + }, + { + "start": 16090.88, + "end": 16091.98, + "probability": 0.9207 + }, + { + "start": 16092.16, + "end": 16092.98, + "probability": 0.7222 + }, + { + "start": 16093.16, + "end": 16093.84, + "probability": 0.8459 + }, + { + "start": 16093.96, + "end": 16095.58, + "probability": 0.989 + }, + { + "start": 16096.04, + "end": 16101.74, + "probability": 0.9685 + }, + { + "start": 16101.88, + "end": 16107.2, + "probability": 0.9731 + }, + { + "start": 16107.76, + "end": 16108.42, + "probability": 0.7619 + }, + { + "start": 16109.36, + "end": 16111.08, + "probability": 0.9618 + }, + { + "start": 16111.2, + "end": 16114.78, + "probability": 0.6374 + }, + { + "start": 16114.84, + "end": 16117.15, + "probability": 0.9133 + }, + { + "start": 16117.34, + "end": 16118.7, + "probability": 0.6268 + }, + { + "start": 16118.84, + "end": 16120.42, + "probability": 0.1234 + }, + { + "start": 16120.52, + "end": 16121.94, + "probability": 0.9064 + }, + { + "start": 16123.2, + "end": 16124.86, + "probability": 0.7919 + }, + { + "start": 16125.28, + "end": 16129.36, + "probability": 0.9559 + }, + { + "start": 16129.78, + "end": 16131.86, + "probability": 0.9163 + }, + { + "start": 16132.44, + "end": 16133.2, + "probability": 0.7947 + }, + { + "start": 16133.98, + "end": 16134.68, + "probability": 0.9058 + }, + { + "start": 16134.68, + "end": 16135.47, + "probability": 0.4733 + }, + { + "start": 16135.76, + "end": 16136.28, + "probability": 0.4216 + }, + { + "start": 16136.92, + "end": 16139.46, + "probability": 0.9233 + }, + { + "start": 16140.3, + "end": 16142.04, + "probability": 0.6992 + }, + { + "start": 16142.9, + "end": 16144.3, + "probability": 0.7078 + }, + { + "start": 16146.14, + "end": 16147.54, + "probability": 0.9924 + }, + { + "start": 16148.34, + "end": 16152.2, + "probability": 0.7698 + }, + { + "start": 16153.28, + "end": 16154.78, + "probability": 0.5924 + }, + { + "start": 16155.74, + "end": 16158.86, + "probability": 0.7937 + }, + { + "start": 16160.26, + "end": 16163.76, + "probability": 0.9686 + }, + { + "start": 16165.28, + "end": 16170.52, + "probability": 0.9833 + }, + { + "start": 16171.86, + "end": 16176.54, + "probability": 0.9681 + }, + { + "start": 16177.92, + "end": 16184.52, + "probability": 0.9788 + }, + { + "start": 16185.88, + "end": 16191.14, + "probability": 0.9448 + }, + { + "start": 16191.84, + "end": 16192.68, + "probability": 0.9883 + }, + { + "start": 16194.14, + "end": 16194.72, + "probability": 0.8188 + }, + { + "start": 16196.6, + "end": 16200.28, + "probability": 0.6553 + }, + { + "start": 16201.18, + "end": 16202.08, + "probability": 0.6758 + }, + { + "start": 16203.02, + "end": 16203.8, + "probability": 0.6627 + }, + { + "start": 16204.62, + "end": 16206.04, + "probability": 0.9546 + }, + { + "start": 16207.22, + "end": 16208.38, + "probability": 0.8975 + }, + { + "start": 16209.44, + "end": 16214.26, + "probability": 0.8781 + }, + { + "start": 16214.4, + "end": 16216.48, + "probability": 0.774 + }, + { + "start": 16216.68, + "end": 16217.34, + "probability": 0.7528 + }, + { + "start": 16218.38, + "end": 16221.26, + "probability": 0.879 + }, + { + "start": 16221.4, + "end": 16222.18, + "probability": 0.8389 + }, + { + "start": 16222.92, + "end": 16223.92, + "probability": 0.8671 + }, + { + "start": 16224.42, + "end": 16230.12, + "probability": 0.9571 + }, + { + "start": 16230.7, + "end": 16234.24, + "probability": 0.682 + }, + { + "start": 16234.92, + "end": 16234.92, + "probability": 0.5498 + }, + { + "start": 16234.92, + "end": 16235.37, + "probability": 0.8237 + }, + { + "start": 16235.5, + "end": 16239.26, + "probability": 0.8506 + }, + { + "start": 16239.72, + "end": 16243.4, + "probability": 0.8266 + }, + { + "start": 16243.94, + "end": 16245.14, + "probability": 0.7929 + }, + { + "start": 16245.38, + "end": 16246.0, + "probability": 0.1852 + }, + { + "start": 16246.16, + "end": 16246.68, + "probability": 0.6296 + }, + { + "start": 16247.84, + "end": 16248.2, + "probability": 0.395 + }, + { + "start": 16248.26, + "end": 16251.78, + "probability": 0.9051 + }, + { + "start": 16252.18, + "end": 16253.13, + "probability": 0.9561 + }, + { + "start": 16253.58, + "end": 16257.3, + "probability": 0.8646 + }, + { + "start": 16257.78, + "end": 16260.02, + "probability": 0.9845 + }, + { + "start": 16260.5, + "end": 16262.22, + "probability": 0.8438 + }, + { + "start": 16262.7, + "end": 16266.2, + "probability": 0.9656 + }, + { + "start": 16268.26, + "end": 16269.2, + "probability": 0.852 + }, + { + "start": 16270.24, + "end": 16271.44, + "probability": 0.7674 + }, + { + "start": 16272.3, + "end": 16274.83, + "probability": 0.7871 + }, + { + "start": 16275.04, + "end": 16277.24, + "probability": 0.7497 + }, + { + "start": 16277.6, + "end": 16277.7, + "probability": 0.1789 + }, + { + "start": 16277.7, + "end": 16280.4, + "probability": 0.8115 + }, + { + "start": 16280.44, + "end": 16280.82, + "probability": 0.9058 + }, + { + "start": 16280.9, + "end": 16281.36, + "probability": 0.9431 + }, + { + "start": 16281.5, + "end": 16282.34, + "probability": 0.5376 + }, + { + "start": 16282.34, + "end": 16286.32, + "probability": 0.937 + }, + { + "start": 16286.48, + "end": 16287.24, + "probability": 0.9319 + }, + { + "start": 16287.4, + "end": 16287.64, + "probability": 0.5082 + }, + { + "start": 16288.12, + "end": 16290.9, + "probability": 0.8671 + }, + { + "start": 16291.28, + "end": 16292.9, + "probability": 0.6875 + }, + { + "start": 16293.9, + "end": 16295.16, + "probability": 0.7025 + }, + { + "start": 16295.8, + "end": 16296.96, + "probability": 0.8955 + }, + { + "start": 16297.6, + "end": 16299.56, + "probability": 0.8821 + }, + { + "start": 16300.36, + "end": 16303.74, + "probability": 0.8081 + }, + { + "start": 16304.62, + "end": 16305.78, + "probability": 0.8499 + }, + { + "start": 16306.38, + "end": 16312.24, + "probability": 0.8326 + }, + { + "start": 16313.52, + "end": 16315.98, + "probability": 0.9023 + }, + { + "start": 16316.62, + "end": 16317.64, + "probability": 0.8327 + }, + { + "start": 16317.94, + "end": 16322.14, + "probability": 0.9849 + }, + { + "start": 16323.34, + "end": 16328.84, + "probability": 0.9568 + }, + { + "start": 16328.84, + "end": 16334.52, + "probability": 0.9952 + }, + { + "start": 16334.7, + "end": 16337.5, + "probability": 0.911 + }, + { + "start": 16337.88, + "end": 16339.96, + "probability": 0.746 + }, + { + "start": 16340.38, + "end": 16343.38, + "probability": 0.911 + }, + { + "start": 16343.68, + "end": 16345.0, + "probability": 0.4536 + }, + { + "start": 16345.28, + "end": 16346.46, + "probability": 0.9626 + }, + { + "start": 16346.88, + "end": 16348.0, + "probability": 0.8291 + }, + { + "start": 16348.12, + "end": 16349.48, + "probability": 0.6993 + }, + { + "start": 16349.52, + "end": 16351.2, + "probability": 0.923 + }, + { + "start": 16351.34, + "end": 16351.84, + "probability": 0.9414 + }, + { + "start": 16352.74, + "end": 16356.44, + "probability": 0.6661 + }, + { + "start": 16357.02, + "end": 16357.94, + "probability": 0.7446 + }, + { + "start": 16358.26, + "end": 16360.86, + "probability": 0.9552 + }, + { + "start": 16361.68, + "end": 16364.56, + "probability": 0.5923 + }, + { + "start": 16364.64, + "end": 16365.1, + "probability": 0.7722 + }, + { + "start": 16365.1, + "end": 16368.76, + "probability": 0.6692 + }, + { + "start": 16369.0, + "end": 16369.84, + "probability": 0.6441 + }, + { + "start": 16370.26, + "end": 16372.3, + "probability": 0.9612 + }, + { + "start": 16373.57, + "end": 16374.46, + "probability": 0.6222 + }, + { + "start": 16374.52, + "end": 16375.24, + "probability": 0.7488 + }, + { + "start": 16375.5, + "end": 16376.54, + "probability": 0.8782 + }, + { + "start": 16376.82, + "end": 16379.2, + "probability": 0.9675 + }, + { + "start": 16380.6, + "end": 16380.82, + "probability": 0.2604 + }, + { + "start": 16380.94, + "end": 16384.94, + "probability": 0.8981 + }, + { + "start": 16384.96, + "end": 16389.34, + "probability": 0.988 + }, + { + "start": 16389.74, + "end": 16392.06, + "probability": 0.8738 + }, + { + "start": 16392.12, + "end": 16392.78, + "probability": 0.8811 + }, + { + "start": 16393.1, + "end": 16396.48, + "probability": 0.9414 + }, + { + "start": 16396.48, + "end": 16399.92, + "probability": 0.9941 + }, + { + "start": 16400.72, + "end": 16405.12, + "probability": 0.8934 + }, + { + "start": 16405.56, + "end": 16406.66, + "probability": 0.8506 + }, + { + "start": 16406.94, + "end": 16411.7, + "probability": 0.9767 + }, + { + "start": 16411.7, + "end": 16416.9, + "probability": 0.9794 + }, + { + "start": 16417.7, + "end": 16419.5, + "probability": 0.7548 + }, + { + "start": 16419.6, + "end": 16421.28, + "probability": 0.7677 + }, + { + "start": 16421.96, + "end": 16425.7, + "probability": 0.7255 + }, + { + "start": 16425.92, + "end": 16426.68, + "probability": 0.7443 + }, + { + "start": 16427.32, + "end": 16432.48, + "probability": 0.8575 + }, + { + "start": 16433.22, + "end": 16438.12, + "probability": 0.6199 + }, + { + "start": 16438.16, + "end": 16444.08, + "probability": 0.9229 + }, + { + "start": 16444.08, + "end": 16449.02, + "probability": 0.8871 + }, + { + "start": 16449.52, + "end": 16456.08, + "probability": 0.9415 + }, + { + "start": 16456.56, + "end": 16456.58, + "probability": 0.1884 + }, + { + "start": 16456.7, + "end": 16457.14, + "probability": 0.9288 + }, + { + "start": 16457.26, + "end": 16459.38, + "probability": 0.9902 + }, + { + "start": 16459.82, + "end": 16460.9, + "probability": 0.6384 + }, + { + "start": 16461.5, + "end": 16465.14, + "probability": 0.972 + }, + { + "start": 16465.6, + "end": 16467.44, + "probability": 0.7092 + }, + { + "start": 16467.68, + "end": 16468.12, + "probability": 0.7089 + }, + { + "start": 16469.08, + "end": 16471.72, + "probability": 0.9928 + }, + { + "start": 16472.0, + "end": 16476.28, + "probability": 0.9111 + }, + { + "start": 16476.54, + "end": 16478.43, + "probability": 0.9541 + }, + { + "start": 16478.96, + "end": 16481.04, + "probability": 0.6667 + }, + { + "start": 16481.42, + "end": 16484.42, + "probability": 0.9271 + }, + { + "start": 16484.6, + "end": 16489.8, + "probability": 0.9541 + }, + { + "start": 16490.2, + "end": 16492.82, + "probability": 0.9689 + }, + { + "start": 16492.96, + "end": 16493.68, + "probability": 0.6847 + }, + { + "start": 16494.62, + "end": 16497.82, + "probability": 0.9581 + }, + { + "start": 16497.9, + "end": 16501.72, + "probability": 0.9876 + }, + { + "start": 16501.98, + "end": 16504.74, + "probability": 0.9561 + }, + { + "start": 16505.1, + "end": 16506.55, + "probability": 0.7328 + }, + { + "start": 16507.42, + "end": 16511.04, + "probability": 0.5546 + }, + { + "start": 16511.1, + "end": 16511.66, + "probability": 0.7253 + }, + { + "start": 16511.76, + "end": 16514.98, + "probability": 0.8763 + }, + { + "start": 16515.48, + "end": 16517.5, + "probability": 0.9116 + }, + { + "start": 16518.08, + "end": 16521.16, + "probability": 0.9846 + }, + { + "start": 16521.44, + "end": 16523.1, + "probability": 0.376 + }, + { + "start": 16523.36, + "end": 16524.38, + "probability": 0.8245 + }, + { + "start": 16524.52, + "end": 16525.58, + "probability": 0.6672 + }, + { + "start": 16525.7, + "end": 16529.96, + "probability": 0.9388 + }, + { + "start": 16530.14, + "end": 16530.8, + "probability": 0.8956 + }, + { + "start": 16531.1, + "end": 16532.38, + "probability": 0.9274 + }, + { + "start": 16532.64, + "end": 16536.22, + "probability": 0.9933 + }, + { + "start": 16536.64, + "end": 16538.48, + "probability": 0.7695 + }, + { + "start": 16538.8, + "end": 16540.04, + "probability": 0.5591 + }, + { + "start": 16540.36, + "end": 16541.98, + "probability": 0.8168 + }, + { + "start": 16542.42, + "end": 16546.02, + "probability": 0.9541 + }, + { + "start": 16546.06, + "end": 16551.2, + "probability": 0.9672 + }, + { + "start": 16551.5, + "end": 16552.1, + "probability": 0.2509 + }, + { + "start": 16552.56, + "end": 16554.96, + "probability": 0.9745 + }, + { + "start": 16555.4, + "end": 16557.82, + "probability": 0.8848 + }, + { + "start": 16558.0, + "end": 16558.72, + "probability": 0.795 + }, + { + "start": 16559.02, + "end": 16561.44, + "probability": 0.8445 + }, + { + "start": 16561.5, + "end": 16561.84, + "probability": 0.4967 + }, + { + "start": 16562.4, + "end": 16562.5, + "probability": 0.0129 + }, + { + "start": 16562.6, + "end": 16563.08, + "probability": 0.4662 + }, + { + "start": 16563.7, + "end": 16565.16, + "probability": 0.8849 + }, + { + "start": 16565.44, + "end": 16566.34, + "probability": 0.8727 + }, + { + "start": 16566.4, + "end": 16569.64, + "probability": 0.9907 + }, + { + "start": 16570.1, + "end": 16571.6, + "probability": 0.9594 + }, + { + "start": 16571.82, + "end": 16574.34, + "probability": 0.9469 + }, + { + "start": 16574.42, + "end": 16577.42, + "probability": 0.7418 + }, + { + "start": 16577.86, + "end": 16581.84, + "probability": 0.9974 + }, + { + "start": 16582.06, + "end": 16583.48, + "probability": 0.9783 + }, + { + "start": 16584.02, + "end": 16585.75, + "probability": 0.1862 + }, + { + "start": 16586.4, + "end": 16587.86, + "probability": 0.6571 + }, + { + "start": 16588.02, + "end": 16588.66, + "probability": 0.7659 + }, + { + "start": 16588.9, + "end": 16593.56, + "probability": 0.8743 + }, + { + "start": 16593.6, + "end": 16594.04, + "probability": 0.7903 + }, + { + "start": 16594.64, + "end": 16596.08, + "probability": 0.9211 + }, + { + "start": 16596.18, + "end": 16599.34, + "probability": 0.9035 + }, + { + "start": 16599.78, + "end": 16603.22, + "probability": 0.8787 + }, + { + "start": 16603.34, + "end": 16609.2, + "probability": 0.8959 + }, + { + "start": 16609.4, + "end": 16610.02, + "probability": 0.8211 + }, + { + "start": 16610.5, + "end": 16611.8, + "probability": 0.8875 + }, + { + "start": 16617.3, + "end": 16618.06, + "probability": 0.4862 + }, + { + "start": 16618.12, + "end": 16621.16, + "probability": 0.795 + }, + { + "start": 16622.46, + "end": 16626.98, + "probability": 0.9321 + }, + { + "start": 16628.06, + "end": 16632.52, + "probability": 0.9718 + }, + { + "start": 16633.36, + "end": 16637.56, + "probability": 0.6383 + }, + { + "start": 16638.04, + "end": 16640.8, + "probability": 0.9245 + }, + { + "start": 16642.22, + "end": 16644.94, + "probability": 0.9531 + }, + { + "start": 16646.22, + "end": 16647.22, + "probability": 0.9207 + }, + { + "start": 16647.4, + "end": 16649.12, + "probability": 0.9797 + }, + { + "start": 16649.62, + "end": 16655.6, + "probability": 0.9944 + }, + { + "start": 16656.6, + "end": 16658.54, + "probability": 0.5222 + }, + { + "start": 16659.52, + "end": 16661.14, + "probability": 0.9919 + }, + { + "start": 16662.3, + "end": 16663.42, + "probability": 0.5592 + }, + { + "start": 16663.82, + "end": 16670.54, + "probability": 0.981 + }, + { + "start": 16671.8, + "end": 16673.77, + "probability": 0.9917 + }, + { + "start": 16674.92, + "end": 16676.3, + "probability": 0.7967 + }, + { + "start": 16676.38, + "end": 16681.0, + "probability": 0.984 + }, + { + "start": 16681.16, + "end": 16682.28, + "probability": 0.9753 + }, + { + "start": 16682.74, + "end": 16685.84, + "probability": 0.9935 + }, + { + "start": 16686.72, + "end": 16690.53, + "probability": 0.9902 + }, + { + "start": 16690.98, + "end": 16693.58, + "probability": 0.8824 + }, + { + "start": 16693.66, + "end": 16694.82, + "probability": 0.9512 + }, + { + "start": 16696.16, + "end": 16699.16, + "probability": 0.8143 + }, + { + "start": 16700.12, + "end": 16701.24, + "probability": 0.9559 + }, + { + "start": 16701.3, + "end": 16702.22, + "probability": 0.9357 + }, + { + "start": 16702.28, + "end": 16707.23, + "probability": 0.985 + }, + { + "start": 16708.32, + "end": 16712.21, + "probability": 0.816 + }, + { + "start": 16713.52, + "end": 16721.02, + "probability": 0.9939 + }, + { + "start": 16721.02, + "end": 16726.78, + "probability": 0.9976 + }, + { + "start": 16727.36, + "end": 16730.14, + "probability": 0.9947 + }, + { + "start": 16730.86, + "end": 16735.56, + "probability": 0.9951 + }, + { + "start": 16736.52, + "end": 16737.32, + "probability": 0.6842 + }, + { + "start": 16737.78, + "end": 16743.52, + "probability": 0.9771 + }, + { + "start": 16743.66, + "end": 16745.96, + "probability": 0.9909 + }, + { + "start": 16746.7, + "end": 16749.16, + "probability": 0.9975 + }, + { + "start": 16749.88, + "end": 16750.56, + "probability": 0.7239 + }, + { + "start": 16751.56, + "end": 16752.28, + "probability": 0.793 + }, + { + "start": 16752.4, + "end": 16755.3, + "probability": 0.855 + }, + { + "start": 16755.38, + "end": 16756.74, + "probability": 0.9562 + }, + { + "start": 16756.94, + "end": 16762.44, + "probability": 0.9927 + }, + { + "start": 16762.62, + "end": 16763.8, + "probability": 0.8992 + }, + { + "start": 16764.1, + "end": 16766.08, + "probability": 0.9236 + }, + { + "start": 16766.46, + "end": 16767.62, + "probability": 0.9415 + }, + { + "start": 16767.86, + "end": 16770.3, + "probability": 0.9849 + }, + { + "start": 16770.84, + "end": 16774.36, + "probability": 0.9744 + }, + { + "start": 16775.02, + "end": 16777.72, + "probability": 0.9835 + }, + { + "start": 16777.84, + "end": 16778.76, + "probability": 0.9421 + }, + { + "start": 16778.92, + "end": 16780.02, + "probability": 0.9549 + }, + { + "start": 16781.86, + "end": 16782.14, + "probability": 0.4574 + }, + { + "start": 16782.24, + "end": 16783.7, + "probability": 0.7819 + }, + { + "start": 16784.04, + "end": 16786.88, + "probability": 0.965 + }, + { + "start": 16787.06, + "end": 16790.9, + "probability": 0.912 + }, + { + "start": 16791.86, + "end": 16798.7, + "probability": 0.9755 + }, + { + "start": 16799.52, + "end": 16802.16, + "probability": 0.8958 + }, + { + "start": 16802.28, + "end": 16804.56, + "probability": 0.9866 + }, + { + "start": 16805.68, + "end": 16809.52, + "probability": 0.9756 + }, + { + "start": 16810.22, + "end": 16810.48, + "probability": 0.6492 + }, + { + "start": 16810.48, + "end": 16811.84, + "probability": 0.9675 + }, + { + "start": 16811.98, + "end": 16812.72, + "probability": 0.9724 + }, + { + "start": 16812.86, + "end": 16813.32, + "probability": 0.2067 + }, + { + "start": 16813.32, + "end": 16813.7, + "probability": 0.0326 + }, + { + "start": 16813.7, + "end": 16814.12, + "probability": 0.7633 + }, + { + "start": 16814.36, + "end": 16814.8, + "probability": 0.6234 + }, + { + "start": 16814.94, + "end": 16817.3, + "probability": 0.7928 + }, + { + "start": 16817.86, + "end": 16820.32, + "probability": 0.8401 + }, + { + "start": 16820.78, + "end": 16822.08, + "probability": 0.9322 + }, + { + "start": 16822.16, + "end": 16824.68, + "probability": 0.9808 + }, + { + "start": 16824.9, + "end": 16827.28, + "probability": 0.701 + }, + { + "start": 16827.74, + "end": 16829.26, + "probability": 0.7596 + }, + { + "start": 16829.5, + "end": 16830.64, + "probability": 0.924 + }, + { + "start": 16830.7, + "end": 16833.63, + "probability": 0.9827 + }, + { + "start": 16834.72, + "end": 16835.33, + "probability": 0.6606 + }, + { + "start": 16836.5, + "end": 16837.0, + "probability": 0.7383 + }, + { + "start": 16840.92, + "end": 16841.12, + "probability": 0.8072 + }, + { + "start": 16841.12, + "end": 16841.76, + "probability": 0.5065 + }, + { + "start": 16841.78, + "end": 16841.9, + "probability": 0.7443 + }, + { + "start": 16845.26, + "end": 16845.92, + "probability": 0.9269 + }, + { + "start": 16846.64, + "end": 16848.74, + "probability": 0.7311 + }, + { + "start": 16849.64, + "end": 16851.66, + "probability": 0.7634 + }, + { + "start": 16852.8, + "end": 16853.94, + "probability": 0.9819 + }, + { + "start": 16854.76, + "end": 16856.64, + "probability": 0.564 + }, + { + "start": 16856.96, + "end": 16858.0, + "probability": 0.8441 + }, + { + "start": 16858.14, + "end": 16859.4, + "probability": 0.0074 + }, + { + "start": 16859.52, + "end": 16860.34, + "probability": 0.509 + }, + { + "start": 16860.44, + "end": 16861.62, + "probability": 0.6912 + }, + { + "start": 16862.02, + "end": 16863.62, + "probability": 0.8975 + }, + { + "start": 16863.72, + "end": 16864.88, + "probability": 0.4581 + }, + { + "start": 16864.98, + "end": 16866.24, + "probability": 0.9865 + }, + { + "start": 16866.34, + "end": 16867.46, + "probability": 0.9453 + }, + { + "start": 16867.5, + "end": 16871.34, + "probability": 0.7843 + }, + { + "start": 16872.32, + "end": 16872.9, + "probability": 0.0272 + }, + { + "start": 16872.9, + "end": 16874.26, + "probability": 0.7225 + }, + { + "start": 16874.62, + "end": 16878.66, + "probability": 0.5508 + }, + { + "start": 16879.12, + "end": 16879.87, + "probability": 0.6166 + }, + { + "start": 16880.06, + "end": 16880.94, + "probability": 0.5573 + }, + { + "start": 16882.2, + "end": 16885.3, + "probability": 0.4973 + }, + { + "start": 16885.46, + "end": 16888.56, + "probability": 0.6467 + }, + { + "start": 16888.9, + "end": 16893.78, + "probability": 0.9634 + }, + { + "start": 16894.34, + "end": 16896.56, + "probability": 0.8875 + }, + { + "start": 16897.78, + "end": 16898.38, + "probability": 0.0857 + }, + { + "start": 16898.44, + "end": 16901.96, + "probability": 0.8688 + }, + { + "start": 16902.46, + "end": 16904.06, + "probability": 0.6488 + }, + { + "start": 16904.24, + "end": 16908.5, + "probability": 0.7086 + }, + { + "start": 16908.68, + "end": 16909.06, + "probability": 0.6509 + }, + { + "start": 16909.24, + "end": 16911.25, + "probability": 0.6672 + }, + { + "start": 16911.42, + "end": 16912.92, + "probability": 0.9564 + }, + { + "start": 16912.92, + "end": 16914.76, + "probability": 0.7162 + }, + { + "start": 16915.6, + "end": 16918.74, + "probability": 0.8192 + }, + { + "start": 16919.32, + "end": 16920.16, + "probability": 0.6947 + }, + { + "start": 16920.2, + "end": 16921.28, + "probability": 0.9646 + }, + { + "start": 16921.34, + "end": 16923.3, + "probability": 0.9751 + }, + { + "start": 16924.16, + "end": 16927.37, + "probability": 0.9868 + }, + { + "start": 16928.14, + "end": 16928.86, + "probability": 0.7787 + }, + { + "start": 16928.98, + "end": 16929.4, + "probability": 0.8174 + }, + { + "start": 16929.48, + "end": 16929.97, + "probability": 0.8213 + }, + { + "start": 16930.06, + "end": 16934.98, + "probability": 0.9771 + }, + { + "start": 16935.18, + "end": 16938.54, + "probability": 0.998 + }, + { + "start": 16939.04, + "end": 16943.14, + "probability": 0.9048 + }, + { + "start": 16943.94, + "end": 16944.52, + "probability": 0.7552 + }, + { + "start": 16946.14, + "end": 16948.92, + "probability": 0.6302 + }, + { + "start": 16949.26, + "end": 16949.5, + "probability": 0.6519 + }, + { + "start": 16949.64, + "end": 16950.7, + "probability": 0.9507 + }, + { + "start": 16951.08, + "end": 16954.82, + "probability": 0.979 + }, + { + "start": 16954.86, + "end": 16955.88, + "probability": 0.7248 + }, + { + "start": 16956.62, + "end": 16957.58, + "probability": 0.8741 + }, + { + "start": 16957.72, + "end": 16962.08, + "probability": 0.5895 + }, + { + "start": 16962.16, + "end": 16962.98, + "probability": 0.7668 + }, + { + "start": 16963.12, + "end": 16963.78, + "probability": 0.6805 + }, + { + "start": 16964.07, + "end": 16965.58, + "probability": 0.7582 + }, + { + "start": 16965.92, + "end": 16967.08, + "probability": 0.8965 + }, + { + "start": 16967.16, + "end": 16968.2, + "probability": 0.9019 + }, + { + "start": 16968.3, + "end": 16969.48, + "probability": 0.9819 + }, + { + "start": 16969.82, + "end": 16970.54, + "probability": 0.7573 + }, + { + "start": 16970.72, + "end": 16971.07, + "probability": 0.0859 + }, + { + "start": 16972.46, + "end": 16973.58, + "probability": 0.7832 + }, + { + "start": 16973.7, + "end": 16974.46, + "probability": 0.8843 + }, + { + "start": 16974.5, + "end": 16978.78, + "probability": 0.769 + }, + { + "start": 16978.88, + "end": 16980.0, + "probability": 0.622 + }, + { + "start": 16980.52, + "end": 16985.18, + "probability": 0.9578 + }, + { + "start": 16985.58, + "end": 16988.28, + "probability": 0.841 + }, + { + "start": 16988.36, + "end": 16991.03, + "probability": 0.9892 + }, + { + "start": 16991.32, + "end": 16992.24, + "probability": 0.6511 + }, + { + "start": 16992.42, + "end": 16997.54, + "probability": 0.8865 + }, + { + "start": 16997.58, + "end": 16997.72, + "probability": 0.8521 + }, + { + "start": 16997.72, + "end": 17001.94, + "probability": 0.9027 + }, + { + "start": 17002.56, + "end": 17004.86, + "probability": 0.7995 + }, + { + "start": 17005.46, + "end": 17008.38, + "probability": 0.811 + }, + { + "start": 17008.86, + "end": 17009.44, + "probability": 0.6589 + }, + { + "start": 17010.26, + "end": 17010.48, + "probability": 0.4521 + }, + { + "start": 17010.54, + "end": 17011.36, + "probability": 0.7166 + }, + { + "start": 17011.48, + "end": 17013.1, + "probability": 0.8787 + }, + { + "start": 17013.22, + "end": 17014.4, + "probability": 0.8071 + }, + { + "start": 17014.48, + "end": 17015.2, + "probability": 0.7336 + }, + { + "start": 17015.88, + "end": 17016.84, + "probability": 0.8701 + }, + { + "start": 17016.92, + "end": 17020.42, + "probability": 0.7438 + }, + { + "start": 17020.74, + "end": 17023.5, + "probability": 0.8701 + }, + { + "start": 17023.88, + "end": 17026.66, + "probability": 0.7294 + }, + { + "start": 17026.66, + "end": 17027.1, + "probability": 0.1173 + }, + { + "start": 17027.36, + "end": 17028.18, + "probability": 0.5345 + }, + { + "start": 17028.58, + "end": 17030.78, + "probability": 0.954 + }, + { + "start": 17030.84, + "end": 17031.9, + "probability": 0.9087 + }, + { + "start": 17031.96, + "end": 17033.94, + "probability": 0.859 + }, + { + "start": 17034.08, + "end": 17036.54, + "probability": 0.6666 + }, + { + "start": 17036.76, + "end": 17038.74, + "probability": 0.8792 + }, + { + "start": 17041.94, + "end": 17043.56, + "probability": 0.915 + }, + { + "start": 17043.6, + "end": 17046.1, + "probability": 0.9771 + }, + { + "start": 17046.58, + "end": 17048.02, + "probability": 0.6515 + }, + { + "start": 17048.06, + "end": 17049.4, + "probability": 0.8224 + }, + { + "start": 17049.48, + "end": 17049.86, + "probability": 0.8073 + }, + { + "start": 17049.9, + "end": 17051.5, + "probability": 0.3813 + }, + { + "start": 17052.08, + "end": 17052.4, + "probability": 0.6701 + }, + { + "start": 17052.48, + "end": 17054.06, + "probability": 0.8778 + }, + { + "start": 17054.16, + "end": 17055.62, + "probability": 0.6867 + }, + { + "start": 17056.38, + "end": 17059.22, + "probability": 0.7144 + }, + { + "start": 17059.38, + "end": 17063.12, + "probability": 0.8859 + }, + { + "start": 17063.24, + "end": 17066.52, + "probability": 0.7975 + }, + { + "start": 17066.66, + "end": 17068.56, + "probability": 0.1564 + }, + { + "start": 17069.18, + "end": 17070.8, + "probability": 0.8336 + }, + { + "start": 17071.04, + "end": 17072.2, + "probability": 0.8477 + }, + { + "start": 17072.24, + "end": 17073.06, + "probability": 0.7469 + }, + { + "start": 17090.0, + "end": 17092.16, + "probability": 0.813 + }, + { + "start": 17092.36, + "end": 17092.68, + "probability": 0.0808 + }, + { + "start": 17104.04, + "end": 17106.44, + "probability": 0.9038 + }, + { + "start": 17107.5, + "end": 17108.92, + "probability": 0.9307 + }, + { + "start": 17108.92, + "end": 17111.14, + "probability": 0.7455 + }, + { + "start": 17111.24, + "end": 17114.87, + "probability": 0.4241 + }, + { + "start": 17116.08, + "end": 17117.28, + "probability": 0.9964 + }, + { + "start": 17118.1, + "end": 17120.06, + "probability": 0.8102 + }, + { + "start": 17121.32, + "end": 17124.38, + "probability": 0.5151 + }, + { + "start": 17126.0, + "end": 17128.26, + "probability": 0.9951 + }, + { + "start": 17129.48, + "end": 17136.12, + "probability": 0.9754 + }, + { + "start": 17137.48, + "end": 17139.33, + "probability": 0.6894 + }, + { + "start": 17140.52, + "end": 17150.54, + "probability": 0.7556 + }, + { + "start": 17151.76, + "end": 17156.26, + "probability": 0.7447 + }, + { + "start": 17157.18, + "end": 17158.92, + "probability": 0.7477 + }, + { + "start": 17160.44, + "end": 17162.38, + "probability": 0.8947 + }, + { + "start": 17163.82, + "end": 17167.36, + "probability": 0.9533 + }, + { + "start": 17168.44, + "end": 17172.32, + "probability": 0.9868 + }, + { + "start": 17172.32, + "end": 17175.12, + "probability": 0.9931 + }, + { + "start": 17176.26, + "end": 17177.52, + "probability": 0.8316 + }, + { + "start": 17178.22, + "end": 17179.42, + "probability": 0.9853 + }, + { + "start": 17182.4, + "end": 17183.08, + "probability": 0.8625 + }, + { + "start": 17184.22, + "end": 17187.32, + "probability": 0.9465 + }, + { + "start": 17188.68, + "end": 17191.12, + "probability": 0.9985 + }, + { + "start": 17191.58, + "end": 17192.72, + "probability": 0.9543 + }, + { + "start": 17193.66, + "end": 17194.6, + "probability": 0.8526 + }, + { + "start": 17195.12, + "end": 17195.4, + "probability": 0.7393 + }, + { + "start": 17196.38, + "end": 17197.32, + "probability": 0.9634 + }, + { + "start": 17197.86, + "end": 17198.5, + "probability": 0.8344 + }, + { + "start": 17198.52, + "end": 17199.69, + "probability": 0.9449 + }, + { + "start": 17200.06, + "end": 17200.98, + "probability": 0.7546 + }, + { + "start": 17201.06, + "end": 17201.78, + "probability": 0.983 + }, + { + "start": 17201.82, + "end": 17202.48, + "probability": 0.9346 + }, + { + "start": 17203.82, + "end": 17205.04, + "probability": 0.7505 + }, + { + "start": 17207.62, + "end": 17209.64, + "probability": 0.9717 + }, + { + "start": 17210.3, + "end": 17217.54, + "probability": 0.875 + }, + { + "start": 17218.76, + "end": 17223.52, + "probability": 0.8728 + }, + { + "start": 17224.3, + "end": 17225.48, + "probability": 0.9789 + }, + { + "start": 17226.42, + "end": 17229.56, + "probability": 0.9385 + }, + { + "start": 17231.94, + "end": 17235.64, + "probability": 0.9885 + }, + { + "start": 17237.14, + "end": 17240.46, + "probability": 0.9573 + }, + { + "start": 17241.42, + "end": 17242.74, + "probability": 0.6874 + }, + { + "start": 17243.94, + "end": 17248.52, + "probability": 0.8427 + }, + { + "start": 17249.76, + "end": 17251.22, + "probability": 0.9946 + }, + { + "start": 17252.6, + "end": 17256.12, + "probability": 0.987 + }, + { + "start": 17257.14, + "end": 17259.76, + "probability": 0.9935 + }, + { + "start": 17260.64, + "end": 17262.54, + "probability": 0.9985 + }, + { + "start": 17263.44, + "end": 17265.32, + "probability": 0.998 + }, + { + "start": 17265.42, + "end": 17265.92, + "probability": 0.5849 + }, + { + "start": 17266.04, + "end": 17266.36, + "probability": 0.5818 + }, + { + "start": 17266.44, + "end": 17267.1, + "probability": 0.8568 + }, + { + "start": 17268.68, + "end": 17271.64, + "probability": 0.955 + }, + { + "start": 17271.68, + "end": 17275.28, + "probability": 0.9844 + }, + { + "start": 17275.62, + "end": 17278.64, + "probability": 0.7271 + }, + { + "start": 17279.74, + "end": 17282.38, + "probability": 0.9858 + }, + { + "start": 17282.88, + "end": 17284.62, + "probability": 0.9381 + }, + { + "start": 17286.12, + "end": 17286.88, + "probability": 0.3028 + }, + { + "start": 17287.86, + "end": 17293.54, + "probability": 0.9734 + }, + { + "start": 17293.54, + "end": 17298.14, + "probability": 0.9625 + }, + { + "start": 17298.26, + "end": 17301.94, + "probability": 0.9856 + }, + { + "start": 17302.74, + "end": 17304.36, + "probability": 0.9918 + }, + { + "start": 17304.92, + "end": 17308.48, + "probability": 0.973 + }, + { + "start": 17309.46, + "end": 17310.4, + "probability": 0.9156 + }, + { + "start": 17311.5, + "end": 17312.12, + "probability": 0.9229 + }, + { + "start": 17312.22, + "end": 17313.64, + "probability": 0.8828 + }, + { + "start": 17313.72, + "end": 17314.62, + "probability": 0.6527 + }, + { + "start": 17315.36, + "end": 17317.5, + "probability": 0.7947 + }, + { + "start": 17319.22, + "end": 17321.42, + "probability": 0.9409 + }, + { + "start": 17322.4, + "end": 17325.94, + "probability": 0.9487 + }, + { + "start": 17327.0, + "end": 17328.2, + "probability": 0.7498 + }, + { + "start": 17328.48, + "end": 17329.9, + "probability": 0.6374 + }, + { + "start": 17329.98, + "end": 17331.72, + "probability": 0.9142 + }, + { + "start": 17332.96, + "end": 17334.36, + "probability": 0.8973 + }, + { + "start": 17335.08, + "end": 17338.82, + "probability": 0.9884 + }, + { + "start": 17339.16, + "end": 17340.06, + "probability": 0.5942 + }, + { + "start": 17341.02, + "end": 17342.92, + "probability": 0.7723 + }, + { + "start": 17344.12, + "end": 17346.88, + "probability": 0.9846 + }, + { + "start": 17347.58, + "end": 17348.52, + "probability": 0.8408 + }, + { + "start": 17348.64, + "end": 17350.58, + "probability": 0.9927 + }, + { + "start": 17350.74, + "end": 17351.9, + "probability": 0.9799 + }, + { + "start": 17352.28, + "end": 17353.74, + "probability": 0.9673 + }, + { + "start": 17354.16, + "end": 17355.82, + "probability": 0.8735 + }, + { + "start": 17356.82, + "end": 17359.18, + "probability": 0.7564 + }, + { + "start": 17359.78, + "end": 17363.44, + "probability": 0.8944 + }, + { + "start": 17364.6, + "end": 17369.74, + "probability": 0.9474 + }, + { + "start": 17370.2, + "end": 17370.86, + "probability": 0.9623 + }, + { + "start": 17371.42, + "end": 17372.4, + "probability": 0.9915 + }, + { + "start": 17373.9, + "end": 17376.3, + "probability": 0.9852 + }, + { + "start": 17377.12, + "end": 17378.2, + "probability": 0.8123 + }, + { + "start": 17378.42, + "end": 17380.82, + "probability": 0.9963 + }, + { + "start": 17380.94, + "end": 17386.08, + "probability": 0.9924 + }, + { + "start": 17386.98, + "end": 17391.7, + "probability": 0.9875 + }, + { + "start": 17392.48, + "end": 17394.19, + "probability": 0.807 + }, + { + "start": 17395.26, + "end": 17395.88, + "probability": 0.7954 + }, + { + "start": 17396.5, + "end": 17400.02, + "probability": 0.9453 + }, + { + "start": 17400.84, + "end": 17402.6, + "probability": 0.9902 + }, + { + "start": 17403.52, + "end": 17404.72, + "probability": 0.8419 + }, + { + "start": 17406.68, + "end": 17406.76, + "probability": 0.3612 + }, + { + "start": 17406.76, + "end": 17406.96, + "probability": 0.4714 + }, + { + "start": 17407.02, + "end": 17407.54, + "probability": 0.5388 + }, + { + "start": 17407.76, + "end": 17408.42, + "probability": 0.8206 + }, + { + "start": 17409.36, + "end": 17411.2, + "probability": 0.9107 + }, + { + "start": 17412.04, + "end": 17412.78, + "probability": 0.959 + }, + { + "start": 17413.9, + "end": 17415.14, + "probability": 0.9548 + }, + { + "start": 17416.02, + "end": 17418.06, + "probability": 0.9885 + }, + { + "start": 17418.1, + "end": 17419.88, + "probability": 0.979 + }, + { + "start": 17421.06, + "end": 17423.68, + "probability": 0.9896 + }, + { + "start": 17424.24, + "end": 17425.9, + "probability": 0.9365 + }, + { + "start": 17426.12, + "end": 17427.16, + "probability": 0.9943 + }, + { + "start": 17427.98, + "end": 17429.07, + "probability": 0.9503 + }, + { + "start": 17429.16, + "end": 17431.84, + "probability": 0.9976 + }, + { + "start": 17432.82, + "end": 17434.2, + "probability": 0.8134 + }, + { + "start": 17434.48, + "end": 17435.14, + "probability": 0.8533 + }, + { + "start": 17435.22, + "end": 17437.68, + "probability": 0.7019 + }, + { + "start": 17438.22, + "end": 17439.82, + "probability": 0.3818 + }, + { + "start": 17440.88, + "end": 17442.6, + "probability": 0.3315 + }, + { + "start": 17442.6, + "end": 17442.6, + "probability": 0.0781 + }, + { + "start": 17442.6, + "end": 17442.6, + "probability": 0.1055 + }, + { + "start": 17442.6, + "end": 17443.34, + "probability": 0.2223 + }, + { + "start": 17443.42, + "end": 17444.08, + "probability": 0.3777 + }, + { + "start": 17444.48, + "end": 17445.78, + "probability": 0.675 + }, + { + "start": 17445.84, + "end": 17445.96, + "probability": 0.325 + }, + { + "start": 17446.06, + "end": 17448.44, + "probability": 0.716 + }, + { + "start": 17448.54, + "end": 17449.5, + "probability": 0.9023 + }, + { + "start": 17450.8, + "end": 17451.88, + "probability": 0.5912 + }, + { + "start": 17451.98, + "end": 17452.33, + "probability": 0.9381 + }, + { + "start": 17453.14, + "end": 17454.9, + "probability": 0.9299 + }, + { + "start": 17454.98, + "end": 17455.84, + "probability": 0.9583 + }, + { + "start": 17456.36, + "end": 17457.92, + "probability": 0.9946 + }, + { + "start": 17458.4, + "end": 17462.86, + "probability": 0.9648 + }, + { + "start": 17463.36, + "end": 17464.88, + "probability": 0.7829 + }, + { + "start": 17464.94, + "end": 17468.45, + "probability": 0.9474 + }, + { + "start": 17469.14, + "end": 17470.24, + "probability": 0.9587 + }, + { + "start": 17470.42, + "end": 17471.66, + "probability": 0.987 + }, + { + "start": 17472.02, + "end": 17476.72, + "probability": 0.978 + }, + { + "start": 17477.34, + "end": 17481.64, + "probability": 0.9825 + }, + { + "start": 17482.48, + "end": 17486.48, + "probability": 0.9824 + }, + { + "start": 17486.58, + "end": 17487.06, + "probability": 0.7726 + }, + { + "start": 17487.26, + "end": 17489.76, + "probability": 0.8647 + }, + { + "start": 17489.88, + "end": 17493.7, + "probability": 0.8176 + }, + { + "start": 17508.94, + "end": 17510.98, + "probability": 0.6582 + }, + { + "start": 17515.04, + "end": 17521.0, + "probability": 0.9767 + }, + { + "start": 17521.32, + "end": 17522.72, + "probability": 0.7714 + }, + { + "start": 17528.84, + "end": 17530.48, + "probability": 0.9014 + }, + { + "start": 17530.56, + "end": 17532.62, + "probability": 0.9827 + }, + { + "start": 17532.68, + "end": 17535.36, + "probability": 0.861 + }, + { + "start": 17536.56, + "end": 17538.9, + "probability": 0.5928 + }, + { + "start": 17540.34, + "end": 17544.42, + "probability": 0.9154 + }, + { + "start": 17544.42, + "end": 17547.38, + "probability": 0.8083 + }, + { + "start": 17547.74, + "end": 17549.18, + "probability": 0.9883 + }, + { + "start": 17550.24, + "end": 17552.84, + "probability": 0.9916 + }, + { + "start": 17553.54, + "end": 17557.38, + "probability": 0.9772 + }, + { + "start": 17557.84, + "end": 17559.76, + "probability": 0.9795 + }, + { + "start": 17559.82, + "end": 17562.04, + "probability": 0.9838 + }, + { + "start": 17563.14, + "end": 17563.92, + "probability": 0.8684 + }, + { + "start": 17564.34, + "end": 17565.44, + "probability": 0.7694 + }, + { + "start": 17565.6, + "end": 17566.9, + "probability": 0.9476 + }, + { + "start": 17567.5, + "end": 17570.68, + "probability": 0.9876 + }, + { + "start": 17570.74, + "end": 17571.36, + "probability": 0.9402 + }, + { + "start": 17572.28, + "end": 17575.7, + "probability": 0.9837 + }, + { + "start": 17576.24, + "end": 17578.92, + "probability": 0.9998 + }, + { + "start": 17579.06, + "end": 17583.46, + "probability": 0.9383 + }, + { + "start": 17583.98, + "end": 17588.1, + "probability": 0.9678 + }, + { + "start": 17588.26, + "end": 17589.42, + "probability": 0.7681 + }, + { + "start": 17590.76, + "end": 17594.8, + "probability": 0.9596 + }, + { + "start": 17596.16, + "end": 17598.12, + "probability": 0.7211 + }, + { + "start": 17598.38, + "end": 17599.34, + "probability": 0.6372 + }, + { + "start": 17600.4, + "end": 17601.14, + "probability": 0.8971 + }, + { + "start": 17601.26, + "end": 17602.76, + "probability": 0.7915 + }, + { + "start": 17602.86, + "end": 17606.76, + "probability": 0.9971 + }, + { + "start": 17606.76, + "end": 17609.26, + "probability": 0.9697 + }, + { + "start": 17610.4, + "end": 17613.18, + "probability": 0.9934 + }, + { + "start": 17613.18, + "end": 17617.4, + "probability": 0.9863 + }, + { + "start": 17617.8, + "end": 17621.68, + "probability": 0.9967 + }, + { + "start": 17621.68, + "end": 17624.48, + "probability": 0.9548 + }, + { + "start": 17625.64, + "end": 17630.32, + "probability": 0.993 + }, + { + "start": 17630.32, + "end": 17636.42, + "probability": 0.994 + }, + { + "start": 17637.5, + "end": 17640.92, + "probability": 0.9694 + }, + { + "start": 17641.56, + "end": 17644.22, + "probability": 0.9727 + }, + { + "start": 17645.36, + "end": 17647.94, + "probability": 0.9792 + }, + { + "start": 17647.94, + "end": 17651.4, + "probability": 0.9841 + }, + { + "start": 17651.58, + "end": 17653.86, + "probability": 0.8754 + }, + { + "start": 17654.02, + "end": 17654.62, + "probability": 0.4255 + }, + { + "start": 17655.3, + "end": 17659.68, + "probability": 0.9124 + }, + { + "start": 17660.02, + "end": 17662.3, + "probability": 0.7702 + }, + { + "start": 17662.36, + "end": 17663.3, + "probability": 0.8465 + }, + { + "start": 17665.2, + "end": 17665.84, + "probability": 0.9564 + }, + { + "start": 17666.2, + "end": 17670.34, + "probability": 0.8414 + }, + { + "start": 17670.34, + "end": 17674.62, + "probability": 0.9546 + }, + { + "start": 17674.68, + "end": 17675.38, + "probability": 0.8135 + }, + { + "start": 17675.88, + "end": 17679.48, + "probability": 0.9928 + }, + { + "start": 17680.64, + "end": 17683.46, + "probability": 0.8986 + }, + { + "start": 17683.96, + "end": 17687.46, + "probability": 0.9915 + }, + { + "start": 17687.86, + "end": 17690.66, + "probability": 0.955 + }, + { + "start": 17691.19, + "end": 17696.14, + "probability": 0.9414 + }, + { + "start": 17696.14, + "end": 17699.28, + "probability": 0.9754 + }, + { + "start": 17699.86, + "end": 17703.52, + "probability": 0.9795 + }, + { + "start": 17704.06, + "end": 17704.76, + "probability": 0.4036 + }, + { + "start": 17705.52, + "end": 17709.42, + "probability": 0.8133 + }, + { + "start": 17709.42, + "end": 17713.8, + "probability": 0.978 + }, + { + "start": 17714.44, + "end": 17718.5, + "probability": 0.9042 + }, + { + "start": 17718.5, + "end": 17722.9, + "probability": 0.9731 + }, + { + "start": 17723.68, + "end": 17724.3, + "probability": 0.8908 + }, + { + "start": 17724.94, + "end": 17729.96, + "probability": 0.9848 + }, + { + "start": 17730.5, + "end": 17731.18, + "probability": 0.9602 + }, + { + "start": 17731.64, + "end": 17732.12, + "probability": 0.6886 + }, + { + "start": 17732.74, + "end": 17738.38, + "probability": 0.9829 + }, + { + "start": 17738.74, + "end": 17741.84, + "probability": 0.9771 + }, + { + "start": 17743.24, + "end": 17749.0, + "probability": 0.9089 + }, + { + "start": 17749.94, + "end": 17754.38, + "probability": 0.9956 + }, + { + "start": 17754.38, + "end": 17760.24, + "probability": 0.9894 + }, + { + "start": 17760.54, + "end": 17765.38, + "probability": 0.9891 + }, + { + "start": 17766.4, + "end": 17769.24, + "probability": 0.8965 + }, + { + "start": 17769.76, + "end": 17772.2, + "probability": 0.8975 + }, + { + "start": 17773.9, + "end": 17777.72, + "probability": 0.9581 + }, + { + "start": 17778.74, + "end": 17782.42, + "probability": 0.722 + }, + { + "start": 17782.58, + "end": 17784.67, + "probability": 0.6464 + }, + { + "start": 17785.37, + "end": 17787.96, + "probability": 0.2468 + }, + { + "start": 17788.24, + "end": 17788.68, + "probability": 0.4841 + }, + { + "start": 17788.7, + "end": 17791.12, + "probability": 0.8626 + }, + { + "start": 17791.82, + "end": 17794.72, + "probability": 0.9886 + }, + { + "start": 17801.46, + "end": 17802.76, + "probability": 0.7392 + }, + { + "start": 17811.58, + "end": 17812.8, + "probability": 0.8569 + }, + { + "start": 17814.92, + "end": 17816.5, + "probability": 0.9915 + }, + { + "start": 17818.22, + "end": 17819.98, + "probability": 0.7396 + }, + { + "start": 17821.0, + "end": 17823.5, + "probability": 0.9905 + }, + { + "start": 17824.4, + "end": 17825.52, + "probability": 0.7546 + }, + { + "start": 17826.52, + "end": 17827.29, + "probability": 0.8438 + }, + { + "start": 17828.16, + "end": 17829.1, + "probability": 0.9944 + }, + { + "start": 17830.0, + "end": 17831.0, + "probability": 0.9678 + }, + { + "start": 17831.26, + "end": 17831.74, + "probability": 0.4076 + }, + { + "start": 17831.82, + "end": 17833.48, + "probability": 0.6803 + }, + { + "start": 17834.28, + "end": 17835.74, + "probability": 0.8997 + }, + { + "start": 17836.0, + "end": 17836.74, + "probability": 0.7533 + }, + { + "start": 17837.7, + "end": 17838.06, + "probability": 0.6979 + }, + { + "start": 17838.06, + "end": 17838.68, + "probability": 0.9298 + }, + { + "start": 17840.46, + "end": 17840.94, + "probability": 0.9407 + }, + { + "start": 17841.46, + "end": 17847.7, + "probability": 0.9665 + }, + { + "start": 17848.38, + "end": 17849.7, + "probability": 0.7928 + }, + { + "start": 17850.86, + "end": 17851.42, + "probability": 0.6153 + }, + { + "start": 17851.6, + "end": 17853.15, + "probability": 0.9834 + }, + { + "start": 17854.05, + "end": 17855.99, + "probability": 0.7711 + }, + { + "start": 17856.07, + "end": 17858.25, + "probability": 0.8941 + }, + { + "start": 17858.41, + "end": 17862.43, + "probability": 0.9635 + }, + { + "start": 17862.53, + "end": 17866.25, + "probability": 0.9702 + }, + { + "start": 17866.39, + "end": 17869.29, + "probability": 0.7307 + }, + { + "start": 17870.33, + "end": 17873.13, + "probability": 0.9829 + }, + { + "start": 17873.95, + "end": 17874.69, + "probability": 0.9004 + }, + { + "start": 17874.85, + "end": 17875.99, + "probability": 0.7832 + }, + { + "start": 17876.17, + "end": 17877.08, + "probability": 0.8057 + }, + { + "start": 17877.63, + "end": 17878.65, + "probability": 0.98 + }, + { + "start": 17879.73, + "end": 17882.91, + "probability": 0.5755 + }, + { + "start": 17883.65, + "end": 17889.61, + "probability": 0.8067 + }, + { + "start": 17895.57, + "end": 17896.53, + "probability": 0.572 + }, + { + "start": 17896.61, + "end": 17897.99, + "probability": 0.964 + }, + { + "start": 17898.07, + "end": 17899.87, + "probability": 0.796 + }, + { + "start": 17900.23, + "end": 17902.15, + "probability": 0.7153 + }, + { + "start": 17902.27, + "end": 17902.69, + "probability": 0.4428 + }, + { + "start": 17902.79, + "end": 17904.53, + "probability": 0.9351 + }, + { + "start": 17905.39, + "end": 17910.23, + "probability": 0.9231 + }, + { + "start": 17910.33, + "end": 17911.73, + "probability": 0.5208 + }, + { + "start": 17914.58, + "end": 17917.19, + "probability": 0.5971 + }, + { + "start": 17918.39, + "end": 17919.09, + "probability": 0.4302 + }, + { + "start": 17919.19, + "end": 17920.35, + "probability": 0.8394 + }, + { + "start": 17920.55, + "end": 17922.55, + "probability": 0.3076 + }, + { + "start": 17922.55, + "end": 17924.27, + "probability": 0.7769 + }, + { + "start": 17924.51, + "end": 17926.65, + "probability": 0.9043 + }, + { + "start": 17926.83, + "end": 17931.3, + "probability": 0.6499 + }, + { + "start": 17934.03, + "end": 17934.23, + "probability": 0.0707 + }, + { + "start": 17934.35, + "end": 17934.35, + "probability": 0.0549 + }, + { + "start": 17934.35, + "end": 17934.35, + "probability": 0.0094 + }, + { + "start": 17934.35, + "end": 17934.35, + "probability": 0.1721 + }, + { + "start": 17934.35, + "end": 17934.35, + "probability": 0.0235 + }, + { + "start": 17934.35, + "end": 17934.91, + "probability": 0.5506 + }, + { + "start": 17936.03, + "end": 17939.69, + "probability": 0.9805 + }, + { + "start": 17940.35, + "end": 17941.47, + "probability": 0.9918 + }, + { + "start": 17942.05, + "end": 17947.31, + "probability": 0.9931 + }, + { + "start": 17948.11, + "end": 17949.85, + "probability": 0.9039 + }, + { + "start": 17949.89, + "end": 17954.99, + "probability": 0.792 + }, + { + "start": 17959.91, + "end": 17964.09, + "probability": 0.9875 + }, + { + "start": 17964.51, + "end": 17969.0, + "probability": 0.832 + }, + { + "start": 17969.91, + "end": 17971.13, + "probability": 0.6922 + }, + { + "start": 17972.75, + "end": 17973.79, + "probability": 0.4875 + }, + { + "start": 17973.79, + "end": 17974.51, + "probability": 0.674 + }, + { + "start": 17974.53, + "end": 17974.53, + "probability": 0.4743 + }, + { + "start": 17974.73, + "end": 17975.53, + "probability": 0.801 + }, + { + "start": 17975.71, + "end": 17976.63, + "probability": 0.8251 + }, + { + "start": 17976.71, + "end": 17977.21, + "probability": 0.5097 + }, + { + "start": 17977.49, + "end": 17979.27, + "probability": 0.6703 + }, + { + "start": 17979.31, + "end": 17979.8, + "probability": 0.5261 + }, + { + "start": 17981.35, + "end": 17981.85, + "probability": 0.0093 + }, + { + "start": 17981.85, + "end": 17983.02, + "probability": 0.3451 + }, + { + "start": 17984.63, + "end": 17986.51, + "probability": 0.9227 + }, + { + "start": 17986.57, + "end": 17987.33, + "probability": 0.8302 + }, + { + "start": 17987.41, + "end": 17989.22, + "probability": 0.9695 + }, + { + "start": 17989.77, + "end": 17990.79, + "probability": 0.9924 + }, + { + "start": 17991.91, + "end": 17993.89, + "probability": 0.9766 + }, + { + "start": 17994.27, + "end": 17994.55, + "probability": 0.9146 + }, + { + "start": 17994.69, + "end": 17995.27, + "probability": 0.9668 + }, + { + "start": 17995.29, + "end": 17996.81, + "probability": 0.9603 + }, + { + "start": 17998.03, + "end": 17999.43, + "probability": 0.9812 + }, + { + "start": 17999.51, + "end": 18003.67, + "probability": 0.8282 + }, + { + "start": 18003.73, + "end": 18004.15, + "probability": 0.7111 + }, + { + "start": 18004.29, + "end": 18005.19, + "probability": 0.7562 + }, + { + "start": 18005.31, + "end": 18007.55, + "probability": 0.8091 + }, + { + "start": 18008.23, + "end": 18008.73, + "probability": 0.7473 + }, + { + "start": 18008.79, + "end": 18009.43, + "probability": 0.497 + }, + { + "start": 18010.23, + "end": 18011.23, + "probability": 0.8113 + }, + { + "start": 18011.53, + "end": 18015.61, + "probability": 0.0133 + }, + { + "start": 18020.51, + "end": 18021.53, + "probability": 0.1292 + }, + { + "start": 18021.53, + "end": 18023.04, + "probability": 0.0389 + }, + { + "start": 18029.45, + "end": 18030.45, + "probability": 0.0382 + }, + { + "start": 18031.45, + "end": 18031.89, + "probability": 0.0824 + }, + { + "start": 18032.5, + "end": 18041.57, + "probability": 0.324 + }, + { + "start": 18041.57, + "end": 18043.83, + "probability": 0.0885 + }, + { + "start": 18043.93, + "end": 18044.65, + "probability": 0.0475 + }, + { + "start": 18045.51, + "end": 18047.31, + "probability": 0.4172 + }, + { + "start": 18047.45, + "end": 18050.71, + "probability": 0.6972 + }, + { + "start": 18051.89, + "end": 18053.57, + "probability": 0.0821 + }, + { + "start": 18055.65, + "end": 18059.27, + "probability": 0.0443 + }, + { + "start": 18059.27, + "end": 18059.27, + "probability": 0.2012 + }, + { + "start": 18059.83, + "end": 18060.31, + "probability": 0.0313 + }, + { + "start": 18061.27, + "end": 18061.87, + "probability": 0.0361 + }, + { + "start": 18061.87, + "end": 18062.29, + "probability": 0.252 + }, + { + "start": 18062.37, + "end": 18062.39, + "probability": 0.0847 + }, + { + "start": 18063.39, + "end": 18064.75, + "probability": 0.735 + }, + { + "start": 18065.59, + "end": 18070.37, + "probability": 0.0159 + }, + { + "start": 18075.85, + "end": 18075.85, + "probability": 0.0308 + }, + { + "start": 18075.85, + "end": 18075.85, + "probability": 0.0556 + }, + { + "start": 18075.85, + "end": 18075.85, + "probability": 0.1883 + }, + { + "start": 18075.85, + "end": 18075.85, + "probability": 0.4727 + }, + { + "start": 18092.27, + "end": 18092.37, + "probability": 0.0075 + }, + { + "start": 18095.51, + "end": 18096.65, + "probability": 0.7001 + }, + { + "start": 18098.01, + "end": 18099.39, + "probability": 0.6656 + }, + { + "start": 18100.79, + "end": 18103.41, + "probability": 0.9556 + }, + { + "start": 18103.41, + "end": 18106.21, + "probability": 0.9984 + }, + { + "start": 18106.31, + "end": 18107.27, + "probability": 0.9873 + }, + { + "start": 18107.33, + "end": 18108.27, + "probability": 0.8843 + }, + { + "start": 18108.33, + "end": 18109.15, + "probability": 0.6923 + }, + { + "start": 18109.87, + "end": 18110.71, + "probability": 0.8067 + }, + { + "start": 18110.83, + "end": 18115.53, + "probability": 0.9885 + }, + { + "start": 18116.31, + "end": 18117.75, + "probability": 0.7163 + }, + { + "start": 18118.85, + "end": 18121.21, + "probability": 0.9619 + }, + { + "start": 18122.07, + "end": 18123.19, + "probability": 0.9554 + }, + { + "start": 18123.91, + "end": 18125.57, + "probability": 0.9735 + }, + { + "start": 18125.67, + "end": 18126.21, + "probability": 0.6921 + }, + { + "start": 18126.29, + "end": 18127.49, + "probability": 0.9713 + }, + { + "start": 18127.57, + "end": 18130.75, + "probability": 0.9987 + }, + { + "start": 18130.83, + "end": 18131.85, + "probability": 0.9023 + }, + { + "start": 18132.39, + "end": 18134.27, + "probability": 0.9209 + }, + { + "start": 18134.91, + "end": 18136.37, + "probability": 0.9362 + }, + { + "start": 18136.85, + "end": 18137.89, + "probability": 0.9708 + }, + { + "start": 18138.01, + "end": 18138.49, + "probability": 0.7983 + }, + { + "start": 18139.79, + "end": 18144.89, + "probability": 0.9398 + }, + { + "start": 18146.01, + "end": 18148.53, + "probability": 0.922 + }, + { + "start": 18148.71, + "end": 18150.59, + "probability": 0.9424 + }, + { + "start": 18151.39, + "end": 18152.49, + "probability": 0.9505 + }, + { + "start": 18153.61, + "end": 18157.29, + "probability": 0.9961 + }, + { + "start": 18157.29, + "end": 18160.37, + "probability": 0.9927 + }, + { + "start": 18161.45, + "end": 18162.33, + "probability": 0.8305 + }, + { + "start": 18163.49, + "end": 18165.21, + "probability": 0.6961 + }, + { + "start": 18166.91, + "end": 18167.05, + "probability": 0.705 + }, + { + "start": 18167.15, + "end": 18168.81, + "probability": 0.9739 + }, + { + "start": 18169.03, + "end": 18169.87, + "probability": 0.8965 + }, + { + "start": 18170.25, + "end": 18171.51, + "probability": 0.8684 + }, + { + "start": 18172.73, + "end": 18175.05, + "probability": 0.8641 + }, + { + "start": 18175.71, + "end": 18176.81, + "probability": 0.9703 + }, + { + "start": 18177.15, + "end": 18181.41, + "probability": 0.8956 + }, + { + "start": 18182.63, + "end": 18188.31, + "probability": 0.9859 + }, + { + "start": 18189.21, + "end": 18191.91, + "probability": 0.5565 + }, + { + "start": 18192.09, + "end": 18192.41, + "probability": 0.7599 + }, + { + "start": 18192.41, + "end": 18195.27, + "probability": 0.9453 + }, + { + "start": 18195.31, + "end": 18195.69, + "probability": 0.8385 + }, + { + "start": 18196.73, + "end": 18200.35, + "probability": 0.9014 + }, + { + "start": 18200.99, + "end": 18202.87, + "probability": 0.9037 + }, + { + "start": 18203.45, + "end": 18204.57, + "probability": 0.9921 + }, + { + "start": 18205.35, + "end": 18205.59, + "probability": 0.9545 + }, + { + "start": 18206.87, + "end": 18207.51, + "probability": 0.9143 + }, + { + "start": 18208.35, + "end": 18209.31, + "probability": 0.8617 + }, + { + "start": 18209.37, + "end": 18210.81, + "probability": 0.9834 + }, + { + "start": 18211.39, + "end": 18213.54, + "probability": 0.993 + }, + { + "start": 18213.63, + "end": 18216.55, + "probability": 0.966 + }, + { + "start": 18217.05, + "end": 18218.49, + "probability": 0.7439 + }, + { + "start": 18218.57, + "end": 18219.19, + "probability": 0.7487 + }, + { + "start": 18219.35, + "end": 18220.82, + "probability": 0.9944 + }, + { + "start": 18221.85, + "end": 18226.27, + "probability": 0.992 + }, + { + "start": 18226.67, + "end": 18229.61, + "probability": 0.7446 + }, + { + "start": 18229.71, + "end": 18229.95, + "probability": 0.6472 + }, + { + "start": 18230.21, + "end": 18235.61, + "probability": 0.9502 + }, + { + "start": 18236.49, + "end": 18238.49, + "probability": 0.9792 + }, + { + "start": 18239.03, + "end": 18242.45, + "probability": 0.9875 + }, + { + "start": 18243.09, + "end": 18246.09, + "probability": 0.6826 + }, + { + "start": 18247.37, + "end": 18250.86, + "probability": 0.7988 + }, + { + "start": 18251.41, + "end": 18254.15, + "probability": 0.9874 + }, + { + "start": 18254.15, + "end": 18258.59, + "probability": 0.9967 + }, + { + "start": 18259.17, + "end": 18260.03, + "probability": 0.3774 + }, + { + "start": 18260.63, + "end": 18265.83, + "probability": 0.9712 + }, + { + "start": 18265.91, + "end": 18268.01, + "probability": 0.9731 + }, + { + "start": 18268.93, + "end": 18271.03, + "probability": 0.8961 + }, + { + "start": 18271.75, + "end": 18276.91, + "probability": 0.8915 + }, + { + "start": 18277.33, + "end": 18278.25, + "probability": 0.7446 + }, + { + "start": 18278.33, + "end": 18279.85, + "probability": 0.7593 + }, + { + "start": 18280.65, + "end": 18281.89, + "probability": 0.9673 + }, + { + "start": 18282.53, + "end": 18284.47, + "probability": 0.9924 + }, + { + "start": 18284.71, + "end": 18285.79, + "probability": 0.9653 + }, + { + "start": 18286.45, + "end": 18289.77, + "probability": 0.9753 + }, + { + "start": 18290.95, + "end": 18291.39, + "probability": 0.6095 + }, + { + "start": 18291.57, + "end": 18292.09, + "probability": 0.7779 + }, + { + "start": 18292.21, + "end": 18294.33, + "probability": 0.9368 + }, + { + "start": 18294.33, + "end": 18297.01, + "probability": 0.9398 + }, + { + "start": 18298.45, + "end": 18300.65, + "probability": 0.9653 + }, + { + "start": 18300.65, + "end": 18303.85, + "probability": 0.9054 + }, + { + "start": 18303.99, + "end": 18305.99, + "probability": 0.9901 + }, + { + "start": 18306.11, + "end": 18308.53, + "probability": 0.9421 + }, + { + "start": 18309.11, + "end": 18312.01, + "probability": 0.9894 + }, + { + "start": 18312.07, + "end": 18315.11, + "probability": 0.8604 + }, + { + "start": 18315.89, + "end": 18317.97, + "probability": 0.9546 + }, + { + "start": 18317.97, + "end": 18318.99, + "probability": 0.8757 + }, + { + "start": 18320.15, + "end": 18322.29, + "probability": 0.7289 + }, + { + "start": 18322.81, + "end": 18324.59, + "probability": 0.6927 + }, + { + "start": 18324.65, + "end": 18328.23, + "probability": 0.956 + }, + { + "start": 18329.59, + "end": 18332.71, + "probability": 0.7646 + }, + { + "start": 18333.41, + "end": 18340.12, + "probability": 0.8102 + }, + { + "start": 18341.07, + "end": 18343.81, + "probability": 0.9732 + }, + { + "start": 18345.31, + "end": 18346.01, + "probability": 0.9486 + }, + { + "start": 18346.79, + "end": 18349.47, + "probability": 0.9802 + }, + { + "start": 18350.65, + "end": 18354.51, + "probability": 0.9812 + }, + { + "start": 18354.93, + "end": 18356.49, + "probability": 0.998 + }, + { + "start": 18356.55, + "end": 18359.49, + "probability": 0.9878 + }, + { + "start": 18361.33, + "end": 18364.97, + "probability": 0.9692 + }, + { + "start": 18365.83, + "end": 18369.83, + "probability": 0.9106 + }, + { + "start": 18369.83, + "end": 18372.67, + "probability": 0.7487 + }, + { + "start": 18372.81, + "end": 18373.71, + "probability": 0.803 + }, + { + "start": 18373.83, + "end": 18374.55, + "probability": 0.7064 + }, + { + "start": 18375.15, + "end": 18376.33, + "probability": 0.9937 + }, + { + "start": 18376.43, + "end": 18377.59, + "probability": 0.9834 + }, + { + "start": 18377.63, + "end": 18379.73, + "probability": 0.6911 + }, + { + "start": 18381.77, + "end": 18387.31, + "probability": 0.9807 + }, + { + "start": 18387.91, + "end": 18390.71, + "probability": 0.7928 + }, + { + "start": 18391.35, + "end": 18393.15, + "probability": 0.9349 + }, + { + "start": 18394.27, + "end": 18396.83, + "probability": 0.5937 + }, + { + "start": 18397.25, + "end": 18400.83, + "probability": 0.8091 + }, + { + "start": 18400.89, + "end": 18401.88, + "probability": 0.8217 + }, + { + "start": 18402.01, + "end": 18405.53, + "probability": 0.9668 + }, + { + "start": 18405.57, + "end": 18406.37, + "probability": 0.7906 + }, + { + "start": 18406.47, + "end": 18406.89, + "probability": 0.6699 + }, + { + "start": 18406.97, + "end": 18409.61, + "probability": 0.9817 + }, + { + "start": 18410.03, + "end": 18410.31, + "probability": 0.7427 + }, + { + "start": 18411.77, + "end": 18413.51, + "probability": 0.6891 + }, + { + "start": 18414.17, + "end": 18416.09, + "probability": 0.9828 + }, + { + "start": 18416.91, + "end": 18417.83, + "probability": 0.8932 + }, + { + "start": 18418.73, + "end": 18423.39, + "probability": 0.9354 + }, + { + "start": 18423.53, + "end": 18424.02, + "probability": 0.694 + }, + { + "start": 18425.8, + "end": 18427.71, + "probability": 0.5564 + }, + { + "start": 18428.77, + "end": 18430.43, + "probability": 0.6368 + }, + { + "start": 18430.69, + "end": 18431.47, + "probability": 0.6873 + }, + { + "start": 18432.61, + "end": 18434.25, + "probability": 0.3513 + }, + { + "start": 18435.65, + "end": 18435.67, + "probability": 0.2847 + }, + { + "start": 18435.67, + "end": 18438.06, + "probability": 0.8299 + }, + { + "start": 18438.55, + "end": 18439.13, + "probability": 0.8031 + }, + { + "start": 18439.27, + "end": 18440.77, + "probability": 0.9582 + }, + { + "start": 18440.81, + "end": 18441.67, + "probability": 0.9644 + }, + { + "start": 18442.87, + "end": 18443.83, + "probability": 0.7026 + }, + { + "start": 18444.37, + "end": 18444.73, + "probability": 0.8934 + }, + { + "start": 18445.81, + "end": 18451.07, + "probability": 0.8516 + }, + { + "start": 18455.39, + "end": 18456.13, + "probability": 0.8003 + }, + { + "start": 18456.37, + "end": 18457.37, + "probability": 0.9598 + }, + { + "start": 18457.59, + "end": 18459.33, + "probability": 0.7998 + }, + { + "start": 18461.03, + "end": 18464.91, + "probability": 0.9963 + }, + { + "start": 18464.91, + "end": 18468.73, + "probability": 0.9668 + }, + { + "start": 18469.63, + "end": 18474.35, + "probability": 0.803 + }, + { + "start": 18474.87, + "end": 18480.07, + "probability": 0.9935 + }, + { + "start": 18481.19, + "end": 18484.69, + "probability": 0.9907 + }, + { + "start": 18485.43, + "end": 18489.49, + "probability": 0.9998 + }, + { + "start": 18489.49, + "end": 18493.25, + "probability": 0.9995 + }, + { + "start": 18493.69, + "end": 18499.69, + "probability": 0.8643 + }, + { + "start": 18500.55, + "end": 18503.47, + "probability": 0.9482 + }, + { + "start": 18503.77, + "end": 18505.89, + "probability": 0.9606 + }, + { + "start": 18506.37, + "end": 18507.59, + "probability": 0.8899 + }, + { + "start": 18508.61, + "end": 18513.45, + "probability": 0.9591 + }, + { + "start": 18513.99, + "end": 18515.43, + "probability": 0.9539 + }, + { + "start": 18516.47, + "end": 18519.65, + "probability": 0.8829 + }, + { + "start": 18520.37, + "end": 18524.73, + "probability": 0.96 + }, + { + "start": 18524.85, + "end": 18531.21, + "probability": 0.9561 + }, + { + "start": 18531.22, + "end": 18536.83, + "probability": 0.9937 + }, + { + "start": 18537.69, + "end": 18540.35, + "probability": 0.9778 + }, + { + "start": 18540.87, + "end": 18543.45, + "probability": 0.9538 + }, + { + "start": 18543.45, + "end": 18547.57, + "probability": 0.9806 + }, + { + "start": 18548.11, + "end": 18552.71, + "probability": 0.9857 + }, + { + "start": 18552.81, + "end": 18554.59, + "probability": 0.9805 + }, + { + "start": 18556.19, + "end": 18557.13, + "probability": 0.6364 + }, + { + "start": 18557.57, + "end": 18560.73, + "probability": 0.9527 + }, + { + "start": 18560.89, + "end": 18564.81, + "probability": 0.9899 + }, + { + "start": 18565.17, + "end": 18569.29, + "probability": 0.9981 + }, + { + "start": 18570.03, + "end": 18570.41, + "probability": 0.7827 + }, + { + "start": 18570.53, + "end": 18570.95, + "probability": 0.8795 + }, + { + "start": 18571.03, + "end": 18574.41, + "probability": 0.9811 + }, + { + "start": 18574.41, + "end": 18577.21, + "probability": 0.9975 + }, + { + "start": 18578.37, + "end": 18582.65, + "probability": 0.9869 + }, + { + "start": 18583.15, + "end": 18585.83, + "probability": 0.7902 + }, + { + "start": 18586.31, + "end": 18590.93, + "probability": 0.9801 + }, + { + "start": 18591.03, + "end": 18591.67, + "probability": 0.9648 + }, + { + "start": 18592.13, + "end": 18593.91, + "probability": 0.9658 + }, + { + "start": 18594.47, + "end": 18596.81, + "probability": 0.9908 + }, + { + "start": 18596.81, + "end": 18598.83, + "probability": 0.9567 + }, + { + "start": 18599.67, + "end": 18602.63, + "probability": 0.8757 + }, + { + "start": 18603.17, + "end": 18603.99, + "probability": 0.77 + }, + { + "start": 18604.35, + "end": 18608.41, + "probability": 0.9836 + }, + { + "start": 18609.07, + "end": 18612.97, + "probability": 0.948 + }, + { + "start": 18613.25, + "end": 18614.13, + "probability": 0.9283 + }, + { + "start": 18614.65, + "end": 18618.01, + "probability": 0.9767 + }, + { + "start": 18618.01, + "end": 18621.15, + "probability": 0.9875 + }, + { + "start": 18621.81, + "end": 18622.41, + "probability": 0.849 + }, + { + "start": 18623.19, + "end": 18627.13, + "probability": 0.935 + }, + { + "start": 18627.55, + "end": 18631.53, + "probability": 0.9272 + }, + { + "start": 18631.81, + "end": 18636.71, + "probability": 0.9703 + }, + { + "start": 18636.71, + "end": 18641.15, + "probability": 0.9969 + }, + { + "start": 18641.15, + "end": 18645.51, + "probability": 0.9958 + }, + { + "start": 18646.99, + "end": 18647.97, + "probability": 0.5532 + }, + { + "start": 18648.03, + "end": 18648.59, + "probability": 0.8515 + }, + { + "start": 18648.73, + "end": 18649.05, + "probability": 0.839 + }, + { + "start": 18649.11, + "end": 18649.97, + "probability": 0.909 + }, + { + "start": 18650.99, + "end": 18652.83, + "probability": 0.9926 + }, + { + "start": 18654.13, + "end": 18657.37, + "probability": 0.9932 + }, + { + "start": 18657.37, + "end": 18662.31, + "probability": 0.9996 + }, + { + "start": 18662.79, + "end": 18665.37, + "probability": 0.998 + }, + { + "start": 18666.05, + "end": 18670.73, + "probability": 0.9575 + }, + { + "start": 18672.21, + "end": 18672.77, + "probability": 0.7169 + }, + { + "start": 18673.41, + "end": 18674.67, + "probability": 0.6506 + }, + { + "start": 18691.51, + "end": 18692.85, + "probability": 0.631 + }, + { + "start": 18693.53, + "end": 18696.17, + "probability": 0.8995 + }, + { + "start": 18696.99, + "end": 18700.21, + "probability": 0.9795 + }, + { + "start": 18701.13, + "end": 18704.41, + "probability": 0.9484 + }, + { + "start": 18704.55, + "end": 18706.63, + "probability": 0.9926 + }, + { + "start": 18707.67, + "end": 18710.33, + "probability": 0.9739 + }, + { + "start": 18710.91, + "end": 18716.13, + "probability": 0.8966 + }, + { + "start": 18716.53, + "end": 18719.67, + "probability": 0.8887 + }, + { + "start": 18720.01, + "end": 18721.38, + "probability": 0.9449 + }, + { + "start": 18721.69, + "end": 18722.64, + "probability": 0.9625 + }, + { + "start": 18724.37, + "end": 18725.05, + "probability": 0.1279 + }, + { + "start": 18725.87, + "end": 18728.77, + "probability": 0.6094 + }, + { + "start": 18729.63, + "end": 18732.39, + "probability": 0.9932 + }, + { + "start": 18732.51, + "end": 18733.45, + "probability": 0.9717 + }, + { + "start": 18733.59, + "end": 18734.73, + "probability": 0.7381 + }, + { + "start": 18735.05, + "end": 18737.32, + "probability": 0.8139 + }, + { + "start": 18738.33, + "end": 18743.15, + "probability": 0.4933 + }, + { + "start": 18743.15, + "end": 18743.37, + "probability": 0.6812 + }, + { + "start": 18743.81, + "end": 18746.55, + "probability": 0.6381 + }, + { + "start": 18747.27, + "end": 18749.43, + "probability": 0.8402 + }, + { + "start": 18749.51, + "end": 18750.19, + "probability": 0.9473 + }, + { + "start": 18751.69, + "end": 18753.87, + "probability": 0.9387 + }, + { + "start": 18754.71, + "end": 18756.01, + "probability": 0.9817 + }, + { + "start": 18756.83, + "end": 18757.49, + "probability": 0.7691 + }, + { + "start": 18758.01, + "end": 18760.65, + "probability": 0.7389 + }, + { + "start": 18761.48, + "end": 18763.01, + "probability": 0.8404 + }, + { + "start": 18763.03, + "end": 18764.99, + "probability": 0.6637 + }, + { + "start": 18765.11, + "end": 18765.97, + "probability": 0.6519 + }, + { + "start": 18766.05, + "end": 18766.85, + "probability": 0.8303 + }, + { + "start": 18766.89, + "end": 18770.01, + "probability": 0.9641 + }, + { + "start": 18770.17, + "end": 18771.59, + "probability": 0.7165 + }, + { + "start": 18771.99, + "end": 18773.49, + "probability": 0.5676 + }, + { + "start": 18774.31, + "end": 18777.47, + "probability": 0.9766 + }, + { + "start": 18777.73, + "end": 18782.77, + "probability": 0.973 + }, + { + "start": 18783.13, + "end": 18787.41, + "probability": 0.7968 + }, + { + "start": 18788.17, + "end": 18789.29, + "probability": 0.8148 + }, + { + "start": 18789.45, + "end": 18793.63, + "probability": 0.9397 + }, + { + "start": 18793.65, + "end": 18795.73, + "probability": 0.674 + }, + { + "start": 18796.53, + "end": 18798.58, + "probability": 0.8418 + }, + { + "start": 18799.27, + "end": 18804.17, + "probability": 0.972 + }, + { + "start": 18804.35, + "end": 18805.55, + "probability": 0.5632 + }, + { + "start": 18805.65, + "end": 18807.07, + "probability": 0.9905 + }, + { + "start": 18807.91, + "end": 18809.13, + "probability": 0.8479 + }, + { + "start": 18809.27, + "end": 18811.59, + "probability": 0.9668 + }, + { + "start": 18811.67, + "end": 18813.65, + "probability": 0.7671 + }, + { + "start": 18813.81, + "end": 18815.01, + "probability": 0.9373 + }, + { + "start": 18815.31, + "end": 18816.13, + "probability": 0.9836 + }, + { + "start": 18816.21, + "end": 18816.65, + "probability": 0.7988 + }, + { + "start": 18817.31, + "end": 18819.83, + "probability": 0.5948 + }, + { + "start": 18820.21, + "end": 18824.87, + "probability": 0.886 + }, + { + "start": 18825.09, + "end": 18827.57, + "probability": 0.9941 + }, + { + "start": 18827.61, + "end": 18830.65, + "probability": 0.9073 + }, + { + "start": 18830.83, + "end": 18833.63, + "probability": 0.9963 + }, + { + "start": 18833.99, + "end": 18835.98, + "probability": 0.9956 + }, + { + "start": 18836.21, + "end": 18837.11, + "probability": 0.8014 + }, + { + "start": 18837.41, + "end": 18838.03, + "probability": 0.8265 + }, + { + "start": 18838.07, + "end": 18839.75, + "probability": 0.8496 + }, + { + "start": 18840.05, + "end": 18841.67, + "probability": 0.9091 + }, + { + "start": 18843.09, + "end": 18843.93, + "probability": 0.1348 + }, + { + "start": 18844.59, + "end": 18848.11, + "probability": 0.6934 + }, + { + "start": 18848.11, + "end": 18848.49, + "probability": 0.2892 + }, + { + "start": 18848.79, + "end": 18849.45, + "probability": 0.4923 + }, + { + "start": 18849.47, + "end": 18851.01, + "probability": 0.1214 + }, + { + "start": 18851.11, + "end": 18853.65, + "probability": 0.7731 + }, + { + "start": 18853.67, + "end": 18855.83, + "probability": 0.2475 + }, + { + "start": 18856.03, + "end": 18857.46, + "probability": 0.2221 + }, + { + "start": 18857.71, + "end": 18858.51, + "probability": 0.2173 + }, + { + "start": 18858.63, + "end": 18862.63, + "probability": 0.8809 + }, + { + "start": 18862.79, + "end": 18864.75, + "probability": 0.8182 + }, + { + "start": 18864.91, + "end": 18865.95, + "probability": 0.9463 + }, + { + "start": 18866.11, + "end": 18868.43, + "probability": 0.7047 + }, + { + "start": 18868.49, + "end": 18868.95, + "probability": 0.4282 + }, + { + "start": 18870.19, + "end": 18870.87, + "probability": 0.2628 + }, + { + "start": 18870.87, + "end": 18872.88, + "probability": 0.1969 + }, + { + "start": 18873.15, + "end": 18875.36, + "probability": 0.953 + }, + { + "start": 18875.72, + "end": 18880.62, + "probability": 0.9795 + }, + { + "start": 18880.72, + "end": 18880.78, + "probability": 0.5583 + }, + { + "start": 18880.78, + "end": 18881.52, + "probability": 0.871 + }, + { + "start": 18881.68, + "end": 18883.1, + "probability": 0.9132 + }, + { + "start": 18883.2, + "end": 18886.86, + "probability": 0.9332 + }, + { + "start": 18887.5, + "end": 18891.32, + "probability": 0.9932 + }, + { + "start": 18891.84, + "end": 18895.56, + "probability": 0.7169 + }, + { + "start": 18895.58, + "end": 18897.34, + "probability": 0.5418 + }, + { + "start": 18897.44, + "end": 18898.34, + "probability": 0.5596 + }, + { + "start": 18898.46, + "end": 18900.34, + "probability": 0.6753 + }, + { + "start": 18900.46, + "end": 18900.7, + "probability": 0.3109 + }, + { + "start": 18900.74, + "end": 18904.06, + "probability": 0.9843 + }, + { + "start": 18904.2, + "end": 18906.78, + "probability": 0.9954 + }, + { + "start": 18906.86, + "end": 18907.86, + "probability": 0.9888 + }, + { + "start": 18908.76, + "end": 18910.6, + "probability": 0.6988 + }, + { + "start": 18910.62, + "end": 18914.04, + "probability": 0.9814 + }, + { + "start": 18914.54, + "end": 18916.04, + "probability": 0.9826 + }, + { + "start": 18916.1, + "end": 18918.86, + "probability": 0.9919 + }, + { + "start": 18918.94, + "end": 18920.0, + "probability": 0.9099 + }, + { + "start": 18920.26, + "end": 18920.74, + "probability": 0.7122 + }, + { + "start": 18920.82, + "end": 18922.98, + "probability": 0.8738 + }, + { + "start": 18923.04, + "end": 18923.5, + "probability": 0.8248 + }, + { + "start": 18924.18, + "end": 18924.98, + "probability": 0.8256 + }, + { + "start": 18925.54, + "end": 18927.98, + "probability": 0.6481 + }, + { + "start": 18928.36, + "end": 18929.27, + "probability": 0.8213 + }, + { + "start": 18929.54, + "end": 18938.34, + "probability": 0.0129 + }, + { + "start": 18938.42, + "end": 18943.24, + "probability": 0.0399 + }, + { + "start": 18948.02, + "end": 18949.82, + "probability": 0.0855 + }, + { + "start": 18955.36, + "end": 18958.12, + "probability": 0.2026 + }, + { + "start": 18960.08, + "end": 18962.14, + "probability": 0.4576 + }, + { + "start": 18963.26, + "end": 18964.04, + "probability": 0.3578 + }, + { + "start": 18966.04, + "end": 18966.76, + "probability": 0.0267 + }, + { + "start": 18967.42, + "end": 18967.54, + "probability": 0.0166 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.073 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.118 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.121 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.1581 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.0611 + }, + { + "start": 18967.58, + "end": 18967.58, + "probability": 0.0448 + }, + { + "start": 18967.58, + "end": 18968.22, + "probability": 0.6461 + }, + { + "start": 18970.28, + "end": 18970.68, + "probability": 0.0534 + }, + { + "start": 18970.68, + "end": 18970.68, + "probability": 0.1931 + }, + { + "start": 18970.68, + "end": 18970.68, + "probability": 0.1359 + }, + { + "start": 18970.68, + "end": 18974.28, + "probability": 0.2858 + }, + { + "start": 18974.28, + "end": 18974.56, + "probability": 0.2247 + }, + { + "start": 18975.3, + "end": 18975.9, + "probability": 0.4861 + }, + { + "start": 18976.84, + "end": 18979.2, + "probability": 0.9797 + }, + { + "start": 18982.58, + "end": 18985.08, + "probability": 0.3815 + }, + { + "start": 18985.64, + "end": 18989.24, + "probability": 0.9712 + }, + { + "start": 18994.0, + "end": 18997.8, + "probability": 0.9135 + }, + { + "start": 19001.9, + "end": 19003.4, + "probability": 0.913 + }, + { + "start": 19022.16, + "end": 19022.16, + "probability": 0.0991 + }, + { + "start": 19022.16, + "end": 19022.16, + "probability": 0.1136 + }, + { + "start": 19022.16, + "end": 19022.16, + "probability": 0.0115 + }, + { + "start": 19022.16, + "end": 19022.16, + "probability": 0.164 + }, + { + "start": 19022.16, + "end": 19022.16, + "probability": 0.101 + }, + { + "start": 19022.18, + "end": 19022.2, + "probability": 0.0391 + }, + { + "start": 19044.62, + "end": 19046.12, + "probability": 0.5917 + }, + { + "start": 19046.62, + "end": 19047.24, + "probability": 0.4583 + }, + { + "start": 19047.42, + "end": 19048.54, + "probability": 0.8821 + }, + { + "start": 19049.34, + "end": 19050.86, + "probability": 0.9812 + }, + { + "start": 19051.0, + "end": 19052.84, + "probability": 0.947 + }, + { + "start": 19052.98, + "end": 19054.66, + "probability": 0.7946 + }, + { + "start": 19055.1, + "end": 19056.78, + "probability": 0.9874 + }, + { + "start": 19056.86, + "end": 19058.6, + "probability": 0.7998 + }, + { + "start": 19059.14, + "end": 19061.1, + "probability": 0.9062 + }, + { + "start": 19061.86, + "end": 19065.46, + "probability": 0.9884 + }, + { + "start": 19066.0, + "end": 19067.82, + "probability": 0.99 + }, + { + "start": 19068.28, + "end": 19072.61, + "probability": 0.9402 + }, + { + "start": 19073.62, + "end": 19074.88, + "probability": 0.9404 + }, + { + "start": 19074.98, + "end": 19075.88, + "probability": 0.8422 + }, + { + "start": 19076.22, + "end": 19077.04, + "probability": 0.8979 + }, + { + "start": 19077.1, + "end": 19078.24, + "probability": 0.9013 + }, + { + "start": 19078.64, + "end": 19085.04, + "probability": 0.9879 + }, + { + "start": 19085.9, + "end": 19086.6, + "probability": 0.8229 + }, + { + "start": 19086.9, + "end": 19093.42, + "probability": 0.9729 + }, + { + "start": 19093.42, + "end": 19097.38, + "probability": 0.8966 + }, + { + "start": 19098.24, + "end": 19099.8, + "probability": 0.9391 + }, + { + "start": 19100.18, + "end": 19104.5, + "probability": 0.9096 + }, + { + "start": 19105.52, + "end": 19109.48, + "probability": 0.9714 + }, + { + "start": 19109.48, + "end": 19112.9, + "probability": 0.9958 + }, + { + "start": 19113.02, + "end": 19117.72, + "probability": 0.9697 + }, + { + "start": 19118.42, + "end": 19120.42, + "probability": 0.9852 + }, + { + "start": 19121.3, + "end": 19129.12, + "probability": 0.9917 + }, + { + "start": 19129.54, + "end": 19131.56, + "probability": 0.7913 + }, + { + "start": 19132.1, + "end": 19137.5, + "probability": 0.9905 + }, + { + "start": 19138.66, + "end": 19139.18, + "probability": 0.7207 + }, + { + "start": 19139.28, + "end": 19141.5, + "probability": 0.9956 + }, + { + "start": 19141.6, + "end": 19143.0, + "probability": 0.9092 + }, + { + "start": 19143.58, + "end": 19147.16, + "probability": 0.9838 + }, + { + "start": 19148.62, + "end": 19150.06, + "probability": 0.7863 + }, + { + "start": 19150.12, + "end": 19150.98, + "probability": 0.5487 + }, + { + "start": 19151.1, + "end": 19157.36, + "probability": 0.9946 + }, + { + "start": 19158.06, + "end": 19163.02, + "probability": 0.9745 + }, + { + "start": 19163.74, + "end": 19167.46, + "probability": 0.9984 + }, + { + "start": 19168.1, + "end": 19173.02, + "probability": 0.9873 + }, + { + "start": 19173.02, + "end": 19176.12, + "probability": 0.9917 + }, + { + "start": 19178.1, + "end": 19178.32, + "probability": 0.5214 + }, + { + "start": 19178.38, + "end": 19179.12, + "probability": 0.9233 + }, + { + "start": 19179.38, + "end": 19184.82, + "probability": 0.9604 + }, + { + "start": 19184.82, + "end": 19190.82, + "probability": 0.9115 + }, + { + "start": 19191.28, + "end": 19194.7, + "probability": 0.9532 + }, + { + "start": 19195.32, + "end": 19196.3, + "probability": 0.5859 + }, + { + "start": 19196.34, + "end": 19199.06, + "probability": 0.787 + }, + { + "start": 19199.12, + "end": 19201.5, + "probability": 0.7383 + }, + { + "start": 19202.12, + "end": 19207.9, + "probability": 0.995 + }, + { + "start": 19208.62, + "end": 19212.34, + "probability": 0.9907 + }, + { + "start": 19212.34, + "end": 19217.48, + "probability": 0.9969 + }, + { + "start": 19218.52, + "end": 19221.26, + "probability": 0.8096 + }, + { + "start": 19222.04, + "end": 19224.05, + "probability": 0.9651 + }, + { + "start": 19224.56, + "end": 19225.52, + "probability": 0.6907 + }, + { + "start": 19225.9, + "end": 19229.04, + "probability": 0.8982 + }, + { + "start": 19229.56, + "end": 19233.58, + "probability": 0.9888 + }, + { + "start": 19233.9, + "end": 19237.8, + "probability": 0.9951 + }, + { + "start": 19237.8, + "end": 19241.3, + "probability": 0.9937 + }, + { + "start": 19243.88, + "end": 19246.32, + "probability": 0.8761 + }, + { + "start": 19246.44, + "end": 19247.4, + "probability": 0.7632 + }, + { + "start": 19247.58, + "end": 19251.44, + "probability": 0.9924 + }, + { + "start": 19251.88, + "end": 19253.34, + "probability": 0.9338 + }, + { + "start": 19253.92, + "end": 19257.5, + "probability": 0.9683 + }, + { + "start": 19258.22, + "end": 19262.82, + "probability": 0.9917 + }, + { + "start": 19264.88, + "end": 19269.34, + "probability": 0.9941 + }, + { + "start": 19271.32, + "end": 19277.42, + "probability": 0.9751 + }, + { + "start": 19278.14, + "end": 19279.04, + "probability": 0.6876 + }, + { + "start": 19279.84, + "end": 19280.0, + "probability": 0.3094 + }, + { + "start": 19280.0, + "end": 19284.49, + "probability": 0.9943 + }, + { + "start": 19284.74, + "end": 19287.34, + "probability": 0.9193 + }, + { + "start": 19287.86, + "end": 19290.34, + "probability": 0.9685 + }, + { + "start": 19290.74, + "end": 19295.26, + "probability": 0.9739 + }, + { + "start": 19295.34, + "end": 19300.84, + "probability": 0.8467 + }, + { + "start": 19301.88, + "end": 19302.1, + "probability": 0.6315 + }, + { + "start": 19302.18, + "end": 19306.78, + "probability": 0.895 + }, + { + "start": 19306.98, + "end": 19311.58, + "probability": 0.9946 + }, + { + "start": 19312.66, + "end": 19315.14, + "probability": 0.984 + }, + { + "start": 19315.32, + "end": 19320.44, + "probability": 0.9754 + }, + { + "start": 19320.9, + "end": 19322.7, + "probability": 0.6741 + }, + { + "start": 19322.9, + "end": 19323.84, + "probability": 0.946 + }, + { + "start": 19324.02, + "end": 19324.9, + "probability": 0.947 + }, + { + "start": 19325.26, + "end": 19326.58, + "probability": 0.788 + }, + { + "start": 19326.86, + "end": 19329.92, + "probability": 0.8869 + }, + { + "start": 19333.02, + "end": 19334.98, + "probability": 0.8049 + }, + { + "start": 19335.18, + "end": 19340.26, + "probability": 0.9608 + }, + { + "start": 19341.34, + "end": 19341.38, + "probability": 0.4264 + }, + { + "start": 19341.58, + "end": 19342.0, + "probability": 0.9316 + }, + { + "start": 19342.14, + "end": 19347.04, + "probability": 0.9851 + }, + { + "start": 19347.78, + "end": 19352.34, + "probability": 0.99 + }, + { + "start": 19353.44, + "end": 19355.4, + "probability": 0.9943 + }, + { + "start": 19355.66, + "end": 19359.6, + "probability": 0.9924 + }, + { + "start": 19359.98, + "end": 19361.62, + "probability": 0.9355 + }, + { + "start": 19362.58, + "end": 19363.62, + "probability": 0.7667 + }, + { + "start": 19363.8, + "end": 19364.92, + "probability": 0.9849 + }, + { + "start": 19364.96, + "end": 19365.7, + "probability": 0.772 + }, + { + "start": 19366.14, + "end": 19368.24, + "probability": 0.7223 + }, + { + "start": 19368.6, + "end": 19370.16, + "probability": 0.9663 + }, + { + "start": 19370.32, + "end": 19371.78, + "probability": 0.7167 + }, + { + "start": 19372.36, + "end": 19375.08, + "probability": 0.9963 + }, + { + "start": 19375.54, + "end": 19377.3, + "probability": 0.7542 + }, + { + "start": 19377.5, + "end": 19378.36, + "probability": 0.7072 + }, + { + "start": 19379.02, + "end": 19381.28, + "probability": 0.9791 + }, + { + "start": 19381.46, + "end": 19382.32, + "probability": 0.8979 + }, + { + "start": 19382.6, + "end": 19386.18, + "probability": 0.9792 + }, + { + "start": 19386.4, + "end": 19388.42, + "probability": 0.9973 + }, + { + "start": 19388.72, + "end": 19390.88, + "probability": 0.9493 + }, + { + "start": 19391.34, + "end": 19395.12, + "probability": 0.7643 + }, + { + "start": 19395.96, + "end": 19398.02, + "probability": 0.9617 + }, + { + "start": 19398.64, + "end": 19399.68, + "probability": 0.9858 + }, + { + "start": 19399.78, + "end": 19400.16, + "probability": 0.7606 + }, + { + "start": 19400.3, + "end": 19403.94, + "probability": 0.957 + }, + { + "start": 19404.4, + "end": 19411.2, + "probability": 0.9736 + }, + { + "start": 19411.2, + "end": 19416.84, + "probability": 0.9956 + }, + { + "start": 19417.9, + "end": 19421.36, + "probability": 0.9926 + }, + { + "start": 19421.52, + "end": 19422.42, + "probability": 0.8901 + }, + { + "start": 19422.5, + "end": 19423.78, + "probability": 0.7117 + }, + { + "start": 19424.02, + "end": 19425.28, + "probability": 0.9308 + }, + { + "start": 19425.46, + "end": 19428.62, + "probability": 0.9888 + }, + { + "start": 19429.04, + "end": 19429.92, + "probability": 0.8924 + }, + { + "start": 19430.18, + "end": 19431.12, + "probability": 0.7935 + }, + { + "start": 19431.22, + "end": 19431.96, + "probability": 0.9515 + }, + { + "start": 19432.0, + "end": 19432.68, + "probability": 0.968 + }, + { + "start": 19432.86, + "end": 19433.84, + "probability": 0.953 + }, + { + "start": 19434.04, + "end": 19435.04, + "probability": 0.977 + }, + { + "start": 19435.12, + "end": 19436.1, + "probability": 0.9784 + }, + { + "start": 19436.36, + "end": 19438.36, + "probability": 0.9922 + }, + { + "start": 19438.92, + "end": 19442.78, + "probability": 0.9894 + }, + { + "start": 19443.54, + "end": 19446.86, + "probability": 0.94 + }, + { + "start": 19448.38, + "end": 19450.82, + "probability": 0.9899 + }, + { + "start": 19450.9, + "end": 19451.74, + "probability": 0.9563 + }, + { + "start": 19451.86, + "end": 19454.38, + "probability": 0.9368 + }, + { + "start": 19454.94, + "end": 19460.7, + "probability": 0.927 + }, + { + "start": 19461.0, + "end": 19463.19, + "probability": 0.9838 + }, + { + "start": 19463.32, + "end": 19466.24, + "probability": 0.998 + }, + { + "start": 19466.24, + "end": 19468.9, + "probability": 0.9906 + }, + { + "start": 19469.48, + "end": 19472.42, + "probability": 0.9969 + }, + { + "start": 19472.56, + "end": 19475.08, + "probability": 0.9852 + }, + { + "start": 19475.48, + "end": 19476.18, + "probability": 0.6735 + }, + { + "start": 19476.6, + "end": 19479.54, + "probability": 0.9805 + }, + { + "start": 19479.54, + "end": 19482.47, + "probability": 0.984 + }, + { + "start": 19483.16, + "end": 19485.32, + "probability": 0.868 + }, + { + "start": 19485.64, + "end": 19486.92, + "probability": 0.9048 + }, + { + "start": 19487.06, + "end": 19489.21, + "probability": 0.9675 + }, + { + "start": 19489.36, + "end": 19490.5, + "probability": 0.8674 + }, + { + "start": 19490.64, + "end": 19494.24, + "probability": 0.9681 + }, + { + "start": 19494.4, + "end": 19496.42, + "probability": 0.8922 + }, + { + "start": 19496.76, + "end": 19497.62, + "probability": 0.9393 + }, + { + "start": 19497.68, + "end": 19499.2, + "probability": 0.7427 + }, + { + "start": 19500.2, + "end": 19501.28, + "probability": 0.0553 + }, + { + "start": 19501.4, + "end": 19505.94, + "probability": 0.9529 + }, + { + "start": 19506.0, + "end": 19510.76, + "probability": 0.8152 + }, + { + "start": 19510.94, + "end": 19511.82, + "probability": 0.9541 + }, + { + "start": 19512.28, + "end": 19516.64, + "probability": 0.983 + }, + { + "start": 19516.94, + "end": 19520.78, + "probability": 0.9886 + }, + { + "start": 19520.98, + "end": 19526.62, + "probability": 0.9465 + }, + { + "start": 19526.92, + "end": 19530.66, + "probability": 0.9534 + }, + { + "start": 19530.66, + "end": 19534.96, + "probability": 0.9951 + }, + { + "start": 19535.06, + "end": 19536.94, + "probability": 0.9294 + }, + { + "start": 19537.04, + "end": 19538.78, + "probability": 0.9753 + }, + { + "start": 19539.2, + "end": 19543.04, + "probability": 0.9804 + }, + { + "start": 19543.32, + "end": 19545.34, + "probability": 0.7416 + }, + { + "start": 19545.74, + "end": 19547.61, + "probability": 0.9932 + }, + { + "start": 19548.04, + "end": 19551.32, + "probability": 0.9048 + }, + { + "start": 19551.64, + "end": 19554.38, + "probability": 0.8049 + }, + { + "start": 19554.7, + "end": 19558.0, + "probability": 0.8973 + }, + { + "start": 19558.22, + "end": 19560.5, + "probability": 0.9723 + }, + { + "start": 19560.76, + "end": 19566.64, + "probability": 0.981 + }, + { + "start": 19566.64, + "end": 19570.76, + "probability": 0.998 + }, + { + "start": 19570.88, + "end": 19571.3, + "probability": 0.3582 + }, + { + "start": 19571.74, + "end": 19572.72, + "probability": 0.9411 + }, + { + "start": 19572.76, + "end": 19577.8, + "probability": 0.9901 + }, + { + "start": 19578.12, + "end": 19580.22, + "probability": 0.8809 + }, + { + "start": 19581.06, + "end": 19584.3, + "probability": 0.925 + }, + { + "start": 19584.34, + "end": 19587.12, + "probability": 0.9956 + }, + { + "start": 19587.42, + "end": 19589.8, + "probability": 0.9967 + }, + { + "start": 19589.94, + "end": 19590.8, + "probability": 0.7792 + }, + { + "start": 19591.1, + "end": 19594.92, + "probability": 0.9919 + }, + { + "start": 19595.36, + "end": 19597.78, + "probability": 0.985 + }, + { + "start": 19597.96, + "end": 19600.16, + "probability": 0.9341 + }, + { + "start": 19600.88, + "end": 19602.2, + "probability": 0.8887 + }, + { + "start": 19602.44, + "end": 19604.52, + "probability": 0.7486 + }, + { + "start": 19604.6, + "end": 19606.72, + "probability": 0.9772 + }, + { + "start": 19606.8, + "end": 19610.14, + "probability": 0.9722 + }, + { + "start": 19610.54, + "end": 19612.98, + "probability": 0.9896 + }, + { + "start": 19613.3, + "end": 19615.4, + "probability": 0.9931 + }, + { + "start": 19615.6, + "end": 19619.2, + "probability": 0.9954 + }, + { + "start": 19619.54, + "end": 19622.02, + "probability": 0.9897 + }, + { + "start": 19622.54, + "end": 19622.74, + "probability": 0.7544 + }, + { + "start": 19623.4, + "end": 19623.82, + "probability": 0.687 + }, + { + "start": 19623.96, + "end": 19625.38, + "probability": 0.9165 + }, + { + "start": 19625.58, + "end": 19627.86, + "probability": 0.8534 + }, + { + "start": 19628.44, + "end": 19631.58, + "probability": 0.6498 + }, + { + "start": 19632.84, + "end": 19635.2, + "probability": 0.9915 + }, + { + "start": 19635.28, + "end": 19637.4, + "probability": 0.9648 + }, + { + "start": 19637.96, + "end": 19639.16, + "probability": 0.9313 + }, + { + "start": 19641.04, + "end": 19643.8, + "probability": 0.0464 + }, + { + "start": 19644.06, + "end": 19644.28, + "probability": 0.1078 + }, + { + "start": 19645.72, + "end": 19645.72, + "probability": 0.1056 + }, + { + "start": 19674.16, + "end": 19677.22, + "probability": 0.127 + }, + { + "start": 19682.36, + "end": 19683.06, + "probability": 0.0157 + }, + { + "start": 19686.1, + "end": 19687.0, + "probability": 0.0165 + }, + { + "start": 19687.04, + "end": 19687.32, + "probability": 0.0378 + }, + { + "start": 19721.32, + "end": 19726.78, + "probability": 0.556 + }, + { + "start": 19727.46, + "end": 19728.08, + "probability": 0.8811 + }, + { + "start": 19729.2, + "end": 19734.14, + "probability": 0.6683 + }, + { + "start": 19734.92, + "end": 19739.52, + "probability": 0.9688 + }, + { + "start": 19745.62, + "end": 19748.7, + "probability": 0.9585 + }, + { + "start": 19748.7, + "end": 19751.8, + "probability": 0.7541 + }, + { + "start": 19753.68, + "end": 19756.5, + "probability": 0.9977 + }, + { + "start": 19757.16, + "end": 19757.72, + "probability": 0.895 + }, + { + "start": 19759.56, + "end": 19764.66, + "probability": 0.9927 + }, + { + "start": 19764.7, + "end": 19765.36, + "probability": 0.9844 + }, + { + "start": 19765.58, + "end": 19766.14, + "probability": 0.6673 + }, + { + "start": 19768.0, + "end": 19771.8, + "probability": 0.9144 + }, + { + "start": 19772.18, + "end": 19772.78, + "probability": 0.824 + }, + { + "start": 19772.92, + "end": 19773.56, + "probability": 0.7874 + }, + { + "start": 19774.8, + "end": 19781.12, + "probability": 0.8776 + }, + { + "start": 19781.26, + "end": 19785.24, + "probability": 0.9768 + }, + { + "start": 19785.92, + "end": 19791.22, + "probability": 0.9948 + }, + { + "start": 19791.88, + "end": 19795.9, + "probability": 0.9767 + }, + { + "start": 19796.1, + "end": 19797.58, + "probability": 0.9439 + }, + { + "start": 19798.18, + "end": 19799.26, + "probability": 0.8427 + }, + { + "start": 19799.46, + "end": 19800.34, + "probability": 0.7799 + }, + { + "start": 19800.7, + "end": 19806.58, + "probability": 0.9861 + }, + { + "start": 19807.2, + "end": 19811.94, + "probability": 0.8905 + }, + { + "start": 19812.64, + "end": 19816.52, + "probability": 0.9894 + }, + { + "start": 19818.24, + "end": 19822.44, + "probability": 0.9624 + }, + { + "start": 19822.58, + "end": 19826.66, + "probability": 0.9883 + }, + { + "start": 19827.14, + "end": 19827.8, + "probability": 0.756 + }, + { + "start": 19827.92, + "end": 19829.22, + "probability": 0.9338 + }, + { + "start": 19829.96, + "end": 19838.18, + "probability": 0.9766 + }, + { + "start": 19838.26, + "end": 19839.28, + "probability": 0.9412 + }, + { + "start": 19839.84, + "end": 19842.12, + "probability": 0.7587 + }, + { + "start": 19843.37, + "end": 19849.54, + "probability": 0.9577 + }, + { + "start": 19849.72, + "end": 19857.09, + "probability": 0.6629 + }, + { + "start": 19858.46, + "end": 19861.96, + "probability": 0.9569 + }, + { + "start": 19863.24, + "end": 19869.04, + "probability": 0.9587 + }, + { + "start": 19869.04, + "end": 19873.02, + "probability": 0.8679 + }, + { + "start": 19873.8, + "end": 19876.8, + "probability": 0.8004 + }, + { + "start": 19876.88, + "end": 19879.94, + "probability": 0.9974 + }, + { + "start": 19879.94, + "end": 19882.86, + "probability": 0.9967 + }, + { + "start": 19882.86, + "end": 19886.8, + "probability": 0.9169 + }, + { + "start": 19887.22, + "end": 19890.32, + "probability": 0.9647 + }, + { + "start": 19890.32, + "end": 19895.56, + "probability": 0.8487 + }, + { + "start": 19898.42, + "end": 19898.66, + "probability": 0.3561 + }, + { + "start": 19898.66, + "end": 19899.48, + "probability": 0.3246 + }, + { + "start": 19899.58, + "end": 19900.96, + "probability": 0.7991 + }, + { + "start": 19901.34, + "end": 19902.96, + "probability": 0.5544 + }, + { + "start": 19903.98, + "end": 19905.14, + "probability": 0.6599 + }, + { + "start": 19905.72, + "end": 19910.44, + "probability": 0.9785 + }, + { + "start": 19910.44, + "end": 19914.58, + "probability": 0.9547 + }, + { + "start": 19914.66, + "end": 19916.38, + "probability": 0.7642 + }, + { + "start": 19916.44, + "end": 19916.84, + "probability": 0.5123 + }, + { + "start": 19916.9, + "end": 19923.16, + "probability": 0.9817 + }, + { + "start": 19923.64, + "end": 19926.9, + "probability": 0.8858 + }, + { + "start": 19927.44, + "end": 19928.5, + "probability": 0.7654 + }, + { + "start": 19928.86, + "end": 19932.84, + "probability": 0.9243 + }, + { + "start": 19932.94, + "end": 19935.72, + "probability": 0.8436 + }, + { + "start": 19936.3, + "end": 19941.86, + "probability": 0.9536 + }, + { + "start": 19943.26, + "end": 19947.7, + "probability": 0.9832 + }, + { + "start": 19947.9, + "end": 19952.9, + "probability": 0.8918 + }, + { + "start": 19953.32, + "end": 19956.12, + "probability": 0.8187 + }, + { + "start": 19956.54, + "end": 19960.0, + "probability": 0.9966 + }, + { + "start": 19960.0, + "end": 19962.92, + "probability": 0.9896 + }, + { + "start": 19963.08, + "end": 19963.7, + "probability": 0.8243 + }, + { + "start": 19964.92, + "end": 19967.52, + "probability": 0.7928 + }, + { + "start": 19968.28, + "end": 19971.88, + "probability": 0.7599 + }, + { + "start": 19972.8, + "end": 19972.8, + "probability": 0.2756 + }, + { + "start": 20004.36, + "end": 20007.5, + "probability": 0.8177 + }, + { + "start": 20008.18, + "end": 20013.48, + "probability": 0.9927 + }, + { + "start": 20013.94, + "end": 20017.84, + "probability": 0.9221 + }, + { + "start": 20018.46, + "end": 20022.38, + "probability": 0.9942 + }, + { + "start": 20022.52, + "end": 20023.0, + "probability": 0.75 + }, + { + "start": 20031.0, + "end": 20032.06, + "probability": 0.784 + }, + { + "start": 20032.56, + "end": 20036.38, + "probability": 0.9971 + }, + { + "start": 20037.26, + "end": 20038.68, + "probability": 0.4344 + }, + { + "start": 20039.4, + "end": 20042.88, + "probability": 0.9814 + }, + { + "start": 20043.66, + "end": 20044.2, + "probability": 0.8171 + }, + { + "start": 20044.3, + "end": 20046.7, + "probability": 0.9067 + }, + { + "start": 20049.74, + "end": 20049.74, + "probability": 0.0044 + }, + { + "start": 20051.54, + "end": 20052.3, + "probability": 0.8302 + }, + { + "start": 20052.4, + "end": 20052.72, + "probability": 0.7081 + }, + { + "start": 20052.88, + "end": 20053.86, + "probability": 0.6294 + }, + { + "start": 20054.12, + "end": 20057.0, + "probability": 0.8228 + }, + { + "start": 20057.02, + "end": 20059.22, + "probability": 0.386 + }, + { + "start": 20060.08, + "end": 20063.58, + "probability": 0.9627 + }, + { + "start": 20063.68, + "end": 20064.36, + "probability": 0.6709 + }, + { + "start": 20064.44, + "end": 20065.1, + "probability": 0.7537 + }, + { + "start": 20065.66, + "end": 20066.94, + "probability": 0.8483 + }, + { + "start": 20079.54, + "end": 20082.46, + "probability": 0.079 + }, + { + "start": 20082.46, + "end": 20084.48, + "probability": 0.076 + }, + { + "start": 20084.92, + "end": 20085.96, + "probability": 0.2933 + }, + { + "start": 20085.96, + "end": 20086.68, + "probability": 0.0968 + }, + { + "start": 20087.04, + "end": 20090.19, + "probability": 0.8235 + }, + { + "start": 20090.7, + "end": 20095.54, + "probability": 0.9907 + }, + { + "start": 20096.4, + "end": 20102.72, + "probability": 0.9854 + }, + { + "start": 20103.7, + "end": 20107.94, + "probability": 0.9974 + }, + { + "start": 20107.94, + "end": 20112.38, + "probability": 0.9844 + }, + { + "start": 20113.18, + "end": 20117.44, + "probability": 0.9977 + }, + { + "start": 20117.48, + "end": 20121.82, + "probability": 0.9759 + }, + { + "start": 20123.86, + "end": 20125.9, + "probability": 0.7726 + }, + { + "start": 20125.92, + "end": 20129.44, + "probability": 0.9341 + }, + { + "start": 20130.36, + "end": 20130.36, + "probability": 0.4802 + }, + { + "start": 20130.5, + "end": 20131.88, + "probability": 0.7696 + }, + { + "start": 20132.08, + "end": 20133.48, + "probability": 0.7858 + }, + { + "start": 20133.74, + "end": 20134.32, + "probability": 0.5093 + }, + { + "start": 20134.48, + "end": 20136.36, + "probability": 0.9133 + }, + { + "start": 20136.94, + "end": 20139.58, + "probability": 0.8234 + }, + { + "start": 20140.1, + "end": 20142.0, + "probability": 0.6867 + }, + { + "start": 20142.76, + "end": 20145.66, + "probability": 0.9329 + }, + { + "start": 20145.74, + "end": 20145.96, + "probability": 0.7928 + }, + { + "start": 20147.46, + "end": 20149.0, + "probability": 0.661 + }, + { + "start": 20149.12, + "end": 20150.08, + "probability": 0.8193 + }, + { + "start": 20150.16, + "end": 20152.2, + "probability": 0.8054 + }, + { + "start": 20152.7, + "end": 20155.3, + "probability": 0.9849 + }, + { + "start": 20156.4, + "end": 20158.8, + "probability": 0.8129 + }, + { + "start": 20158.86, + "end": 20159.82, + "probability": 0.8177 + }, + { + "start": 20159.88, + "end": 20161.4, + "probability": 0.8599 + }, + { + "start": 20162.0, + "end": 20164.04, + "probability": 0.9265 + }, + { + "start": 20164.74, + "end": 20166.74, + "probability": 0.0978 + }, + { + "start": 20168.23, + "end": 20170.26, + "probability": 0.9723 + }, + { + "start": 20170.32, + "end": 20177.94, + "probability": 0.9883 + }, + { + "start": 20178.68, + "end": 20179.1, + "probability": 0.9219 + }, + { + "start": 20179.18, + "end": 20180.5, + "probability": 0.8558 + }, + { + "start": 20180.58, + "end": 20181.58, + "probability": 0.8193 + }, + { + "start": 20183.11, + "end": 20183.46, + "probability": 0.006 + }, + { + "start": 20183.46, + "end": 20185.34, + "probability": 0.9677 + }, + { + "start": 20185.52, + "end": 20188.18, + "probability": 0.8901 + }, + { + "start": 20188.78, + "end": 20189.28, + "probability": 0.8382 + }, + { + "start": 20190.4, + "end": 20196.62, + "probability": 0.9597 + }, + { + "start": 20197.52, + "end": 20201.3, + "probability": 0.8901 + }, + { + "start": 20202.64, + "end": 20205.36, + "probability": 0.9378 + }, + { + "start": 20206.1, + "end": 20209.56, + "probability": 0.9827 + }, + { + "start": 20209.64, + "end": 20210.4, + "probability": 0.9002 + }, + { + "start": 20210.48, + "end": 20211.02, + "probability": 0.6556 + }, + { + "start": 20211.02, + "end": 20213.52, + "probability": 0.7279 + }, + { + "start": 20213.84, + "end": 20215.18, + "probability": 0.7217 + }, + { + "start": 20215.7, + "end": 20218.14, + "probability": 0.9867 + }, + { + "start": 20218.48, + "end": 20223.78, + "probability": 0.9229 + }, + { + "start": 20223.78, + "end": 20228.02, + "probability": 0.9966 + }, + { + "start": 20228.62, + "end": 20229.4, + "probability": 0.3753 + }, + { + "start": 20230.2, + "end": 20231.44, + "probability": 0.8973 + }, + { + "start": 20231.8, + "end": 20233.0, + "probability": 0.9043 + }, + { + "start": 20233.3, + "end": 20235.32, + "probability": 0.9871 + }, + { + "start": 20235.32, + "end": 20238.78, + "probability": 0.9836 + }, + { + "start": 20239.42, + "end": 20241.18, + "probability": 0.8502 + }, + { + "start": 20241.4, + "end": 20242.44, + "probability": 0.7715 + }, + { + "start": 20242.92, + "end": 20248.92, + "probability": 0.9648 + }, + { + "start": 20249.58, + "end": 20250.19, + "probability": 0.7215 + }, + { + "start": 20251.8, + "end": 20252.5, + "probability": 0.9377 + }, + { + "start": 20252.58, + "end": 20255.34, + "probability": 0.9636 + }, + { + "start": 20255.46, + "end": 20257.68, + "probability": 0.9922 + }, + { + "start": 20259.6, + "end": 20263.4, + "probability": 0.9146 + }, + { + "start": 20263.5, + "end": 20264.22, + "probability": 0.7307 + }, + { + "start": 20264.54, + "end": 20265.98, + "probability": 0.8519 + }, + { + "start": 20267.22, + "end": 20269.16, + "probability": 0.9957 + }, + { + "start": 20270.18, + "end": 20271.56, + "probability": 0.8276 + }, + { + "start": 20271.9, + "end": 20273.54, + "probability": 0.9927 + }, + { + "start": 20274.02, + "end": 20276.32, + "probability": 0.9983 + }, + { + "start": 20276.38, + "end": 20278.9, + "probability": 0.9783 + }, + { + "start": 20279.88, + "end": 20281.96, + "probability": 0.9238 + }, + { + "start": 20282.08, + "end": 20285.94, + "probability": 0.9067 + }, + { + "start": 20286.66, + "end": 20287.16, + "probability": 0.6966 + }, + { + "start": 20287.28, + "end": 20288.4, + "probability": 0.9633 + }, + { + "start": 20288.56, + "end": 20290.54, + "probability": 0.7588 + }, + { + "start": 20291.36, + "end": 20295.76, + "probability": 0.9771 + }, + { + "start": 20296.3, + "end": 20298.36, + "probability": 0.8874 + }, + { + "start": 20299.18, + "end": 20302.06, + "probability": 0.9873 + }, + { + "start": 20302.06, + "end": 20305.34, + "probability": 0.9952 + }, + { + "start": 20305.4, + "end": 20306.85, + "probability": 0.5135 + }, + { + "start": 20307.42, + "end": 20308.52, + "probability": 0.5104 + }, + { + "start": 20309.1, + "end": 20309.98, + "probability": 0.7529 + }, + { + "start": 20310.58, + "end": 20311.48, + "probability": 0.9729 + }, + { + "start": 20312.14, + "end": 20313.25, + "probability": 0.9683 + }, + { + "start": 20314.1, + "end": 20315.3, + "probability": 0.884 + }, + { + "start": 20315.74, + "end": 20318.16, + "probability": 0.9573 + }, + { + "start": 20318.24, + "end": 20321.28, + "probability": 0.9127 + }, + { + "start": 20321.82, + "end": 20325.24, + "probability": 0.7945 + }, + { + "start": 20325.84, + "end": 20327.76, + "probability": 0.9409 + }, + { + "start": 20328.04, + "end": 20331.96, + "probability": 0.9409 + }, + { + "start": 20332.0, + "end": 20332.94, + "probability": 0.8791 + }, + { + "start": 20333.9, + "end": 20335.1, + "probability": 0.5795 + }, + { + "start": 20335.9, + "end": 20339.9, + "probability": 0.9697 + }, + { + "start": 20340.38, + "end": 20344.16, + "probability": 0.8766 + }, + { + "start": 20344.4, + "end": 20344.96, + "probability": 0.1893 + }, + { + "start": 20345.72, + "end": 20348.06, + "probability": 0.333 + }, + { + "start": 20348.06, + "end": 20351.18, + "probability": 0.9362 + }, + { + "start": 20351.34, + "end": 20351.6, + "probability": 0.7367 + }, + { + "start": 20351.68, + "end": 20354.62, + "probability": 0.9899 + }, + { + "start": 20354.76, + "end": 20355.32, + "probability": 0.6045 + }, + { + "start": 20355.62, + "end": 20358.42, + "probability": 0.5107 + }, + { + "start": 20358.5, + "end": 20360.32, + "probability": 0.6556 + }, + { + "start": 20360.68, + "end": 20361.8, + "probability": 0.6283 + }, + { + "start": 20361.92, + "end": 20362.32, + "probability": 0.8568 + }, + { + "start": 20362.36, + "end": 20366.56, + "probability": 0.8827 + }, + { + "start": 20366.56, + "end": 20370.16, + "probability": 0.9982 + }, + { + "start": 20370.22, + "end": 20372.72, + "probability": 0.9822 + }, + { + "start": 20372.8, + "end": 20373.24, + "probability": 0.2015 + }, + { + "start": 20373.48, + "end": 20376.9, + "probability": 0.9946 + }, + { + "start": 20377.16, + "end": 20378.08, + "probability": 0.135 + }, + { + "start": 20378.1, + "end": 20378.74, + "probability": 0.0434 + }, + { + "start": 20378.84, + "end": 20378.84, + "probability": 0.1473 + }, + { + "start": 20378.84, + "end": 20379.08, + "probability": 0.3803 + }, + { + "start": 20379.9, + "end": 20382.62, + "probability": 0.6667 + }, + { + "start": 20382.62, + "end": 20382.62, + "probability": 0.0521 + }, + { + "start": 20382.98, + "end": 20384.06, + "probability": 0.3321 + }, + { + "start": 20384.28, + "end": 20386.52, + "probability": 0.1498 + }, + { + "start": 20386.54, + "end": 20387.5, + "probability": 0.6676 + }, + { + "start": 20387.64, + "end": 20388.5, + "probability": 0.7578 + }, + { + "start": 20388.56, + "end": 20390.4, + "probability": 0.8458 + }, + { + "start": 20390.5, + "end": 20391.58, + "probability": 0.9686 + }, + { + "start": 20391.66, + "end": 20393.02, + "probability": 0.9665 + }, + { + "start": 20393.18, + "end": 20397.44, + "probability": 0.951 + }, + { + "start": 20397.5, + "end": 20398.24, + "probability": 0.8369 + }, + { + "start": 20398.36, + "end": 20399.88, + "probability": 0.5334 + }, + { + "start": 20399.92, + "end": 20401.28, + "probability": 0.866 + }, + { + "start": 20401.38, + "end": 20403.5, + "probability": 0.9632 + }, + { + "start": 20403.72, + "end": 20405.58, + "probability": 0.8132 + }, + { + "start": 20405.88, + "end": 20407.02, + "probability": 0.6058 + }, + { + "start": 20407.04, + "end": 20410.65, + "probability": 0.6099 + }, + { + "start": 20411.12, + "end": 20411.48, + "probability": 0.0834 + }, + { + "start": 20411.48, + "end": 20411.48, + "probability": 0.2775 + }, + { + "start": 20411.48, + "end": 20411.9, + "probability": 0.5219 + }, + { + "start": 20412.26, + "end": 20413.9, + "probability": 0.6648 + }, + { + "start": 20413.96, + "end": 20414.92, + "probability": 0.6353 + }, + { + "start": 20415.02, + "end": 20416.8, + "probability": 0.8014 + }, + { + "start": 20417.08, + "end": 20419.26, + "probability": 0.9341 + }, + { + "start": 20419.34, + "end": 20420.62, + "probability": 0.9363 + }, + { + "start": 20420.94, + "end": 20424.36, + "probability": 0.9922 + }, + { + "start": 20424.9, + "end": 20425.68, + "probability": 0.6753 + }, + { + "start": 20425.76, + "end": 20426.14, + "probability": 0.5726 + }, + { + "start": 20426.22, + "end": 20429.02, + "probability": 0.9266 + }, + { + "start": 20430.32, + "end": 20432.16, + "probability": 0.9551 + }, + { + "start": 20432.18, + "end": 20434.33, + "probability": 0.8361 + }, + { + "start": 20434.68, + "end": 20436.56, + "probability": 0.0962 + }, + { + "start": 20436.74, + "end": 20440.22, + "probability": 0.0406 + }, + { + "start": 20440.22, + "end": 20440.22, + "probability": 0.1911 + }, + { + "start": 20440.22, + "end": 20440.22, + "probability": 0.1506 + }, + { + "start": 20440.22, + "end": 20440.22, + "probability": 0.1508 + }, + { + "start": 20440.22, + "end": 20441.2, + "probability": 0.3694 + }, + { + "start": 20441.62, + "end": 20447.6, + "probability": 0.7931 + }, + { + "start": 20447.88, + "end": 20448.78, + "probability": 0.6298 + }, + { + "start": 20448.82, + "end": 20449.66, + "probability": 0.6371 + }, + { + "start": 20449.84, + "end": 20450.32, + "probability": 0.6782 + }, + { + "start": 20450.32, + "end": 20453.14, + "probability": 0.7778 + }, + { + "start": 20453.28, + "end": 20454.68, + "probability": 0.772 + }, + { + "start": 20454.76, + "end": 20456.9, + "probability": 0.5194 + }, + { + "start": 20456.9, + "end": 20458.11, + "probability": 0.4369 + }, + { + "start": 20458.32, + "end": 20460.72, + "probability": 0.7288 + }, + { + "start": 20460.92, + "end": 20461.83, + "probability": 0.9512 + }, + { + "start": 20462.26, + "end": 20462.42, + "probability": 0.7881 + }, + { + "start": 20462.48, + "end": 20464.76, + "probability": 0.8546 + }, + { + "start": 20464.82, + "end": 20465.94, + "probability": 0.6875 + }, + { + "start": 20466.28, + "end": 20470.02, + "probability": 0.4857 + }, + { + "start": 20470.22, + "end": 20472.32, + "probability": 0.77 + }, + { + "start": 20472.32, + "end": 20475.16, + "probability": 0.997 + }, + { + "start": 20475.3, + "end": 20477.3, + "probability": 0.9727 + }, + { + "start": 20477.44, + "end": 20478.88, + "probability": 0.884 + }, + { + "start": 20479.42, + "end": 20481.76, + "probability": 0.9983 + }, + { + "start": 20482.0, + "end": 20484.07, + "probability": 0.9941 + }, + { + "start": 20484.38, + "end": 20487.34, + "probability": 0.9347 + }, + { + "start": 20487.56, + "end": 20490.48, + "probability": 0.8581 + }, + { + "start": 20490.68, + "end": 20491.62, + "probability": 0.0294 + }, + { + "start": 20491.84, + "end": 20493.32, + "probability": 0.1309 + }, + { + "start": 20493.42, + "end": 20493.9, + "probability": 0.1196 + }, + { + "start": 20494.26, + "end": 20494.58, + "probability": 0.1706 + }, + { + "start": 20494.78, + "end": 20495.06, + "probability": 0.604 + }, + { + "start": 20495.32, + "end": 20498.62, + "probability": 0.4628 + }, + { + "start": 20498.92, + "end": 20501.64, + "probability": 0.9732 + }, + { + "start": 20501.74, + "end": 20501.96, + "probability": 0.9637 + }, + { + "start": 20502.14, + "end": 20502.4, + "probability": 0.7152 + }, + { + "start": 20502.54, + "end": 20502.86, + "probability": 0.8664 + }, + { + "start": 20502.98, + "end": 20503.26, + "probability": 0.8342 + }, + { + "start": 20503.32, + "end": 20503.96, + "probability": 0.9068 + }, + { + "start": 20504.18, + "end": 20505.52, + "probability": 0.9332 + }, + { + "start": 20505.74, + "end": 20506.23, + "probability": 0.4972 + }, + { + "start": 20506.36, + "end": 20507.26, + "probability": 0.7795 + }, + { + "start": 20507.3, + "end": 20508.12, + "probability": 0.6102 + }, + { + "start": 20508.26, + "end": 20510.62, + "probability": 0.6519 + }, + { + "start": 20512.28, + "end": 20514.82, + "probability": 0.7046 + }, + { + "start": 20515.22, + "end": 20517.44, + "probability": 0.9229 + }, + { + "start": 20517.8, + "end": 20523.64, + "probability": 0.9796 + }, + { + "start": 20523.72, + "end": 20524.44, + "probability": 0.816 + }, + { + "start": 20544.98, + "end": 20548.88, + "probability": 0.7944 + }, + { + "start": 20550.12, + "end": 20551.04, + "probability": 0.9447 + }, + { + "start": 20551.22, + "end": 20552.12, + "probability": 0.9795 + }, + { + "start": 20552.18, + "end": 20553.12, + "probability": 0.8796 + }, + { + "start": 20555.12, + "end": 20560.84, + "probability": 0.7949 + }, + { + "start": 20562.56, + "end": 20566.88, + "probability": 0.9874 + }, + { + "start": 20566.96, + "end": 20567.64, + "probability": 0.8709 + }, + { + "start": 20570.98, + "end": 20573.76, + "probability": 0.9736 + }, + { + "start": 20574.24, + "end": 20575.44, + "probability": 0.5818 + }, + { + "start": 20575.7, + "end": 20576.52, + "probability": 0.773 + }, + { + "start": 20576.64, + "end": 20580.64, + "probability": 0.9972 + }, + { + "start": 20582.56, + "end": 20586.52, + "probability": 0.96 + }, + { + "start": 20586.64, + "end": 20592.12, + "probability": 0.9873 + }, + { + "start": 20593.1, + "end": 20595.76, + "probability": 0.8926 + }, + { + "start": 20596.7, + "end": 20597.54, + "probability": 0.9046 + }, + { + "start": 20598.1, + "end": 20600.64, + "probability": 0.9863 + }, + { + "start": 20600.88, + "end": 20602.43, + "probability": 0.9961 + }, + { + "start": 20603.58, + "end": 20606.64, + "probability": 0.9946 + }, + { + "start": 20608.64, + "end": 20610.72, + "probability": 0.9916 + }, + { + "start": 20611.12, + "end": 20614.72, + "probability": 0.8643 + }, + { + "start": 20615.04, + "end": 20618.38, + "probability": 0.9935 + }, + { + "start": 20619.26, + "end": 20620.52, + "probability": 0.9566 + }, + { + "start": 20621.0, + "end": 20624.19, + "probability": 0.9719 + }, + { + "start": 20624.96, + "end": 20633.1, + "probability": 0.9773 + }, + { + "start": 20634.48, + "end": 20638.54, + "probability": 0.9153 + }, + { + "start": 20639.02, + "end": 20641.18, + "probability": 0.9071 + }, + { + "start": 20642.0, + "end": 20647.66, + "probability": 0.9954 + }, + { + "start": 20648.08, + "end": 20652.68, + "probability": 0.984 + }, + { + "start": 20654.04, + "end": 20659.48, + "probability": 0.9728 + }, + { + "start": 20660.6, + "end": 20664.48, + "probability": 0.9201 + }, + { + "start": 20665.18, + "end": 20672.18, + "probability": 0.9933 + }, + { + "start": 20672.7, + "end": 20676.68, + "probability": 0.9395 + }, + { + "start": 20677.54, + "end": 20678.62, + "probability": 0.6391 + }, + { + "start": 20679.48, + "end": 20680.36, + "probability": 0.9189 + }, + { + "start": 20681.72, + "end": 20682.5, + "probability": 0.7625 + }, + { + "start": 20683.1, + "end": 20687.4, + "probability": 0.9417 + }, + { + "start": 20688.04, + "end": 20696.62, + "probability": 0.9573 + }, + { + "start": 20698.06, + "end": 20701.84, + "probability": 0.9881 + }, + { + "start": 20702.36, + "end": 20706.9, + "probability": 0.9694 + }, + { + "start": 20708.38, + "end": 20708.46, + "probability": 0.7991 + }, + { + "start": 20708.56, + "end": 20709.58, + "probability": 0.9362 + }, + { + "start": 20710.02, + "end": 20715.0, + "probability": 0.8566 + }, + { + "start": 20716.78, + "end": 20719.7, + "probability": 0.9076 + }, + { + "start": 20720.18, + "end": 20721.42, + "probability": 0.8028 + }, + { + "start": 20721.92, + "end": 20723.22, + "probability": 0.9348 + }, + { + "start": 20723.58, + "end": 20725.98, + "probability": 0.8427 + }, + { + "start": 20727.1, + "end": 20730.74, + "probability": 0.8963 + }, + { + "start": 20731.18, + "end": 20733.16, + "probability": 0.8945 + }, + { + "start": 20733.62, + "end": 20737.24, + "probability": 0.9422 + }, + { + "start": 20738.04, + "end": 20740.24, + "probability": 0.997 + }, + { + "start": 20740.76, + "end": 20742.44, + "probability": 0.9211 + }, + { + "start": 20743.44, + "end": 20747.8, + "probability": 0.9338 + }, + { + "start": 20748.98, + "end": 20752.52, + "probability": 0.7997 + }, + { + "start": 20753.32, + "end": 20759.84, + "probability": 0.8401 + }, + { + "start": 20761.16, + "end": 20764.48, + "probability": 0.9214 + }, + { + "start": 20765.36, + "end": 20770.68, + "probability": 0.9491 + }, + { + "start": 20771.38, + "end": 20774.78, + "probability": 0.9867 + }, + { + "start": 20775.62, + "end": 20778.02, + "probability": 0.9641 + }, + { + "start": 20778.54, + "end": 20780.62, + "probability": 0.9469 + }, + { + "start": 20781.26, + "end": 20790.5, + "probability": 0.9405 + }, + { + "start": 20791.14, + "end": 20795.88, + "probability": 0.8781 + }, + { + "start": 20796.42, + "end": 20800.72, + "probability": 0.9636 + }, + { + "start": 20801.46, + "end": 20802.92, + "probability": 0.5947 + }, + { + "start": 20805.8, + "end": 20809.04, + "probability": 0.9224 + }, + { + "start": 20809.58, + "end": 20814.06, + "probability": 0.9897 + }, + { + "start": 20815.06, + "end": 20817.54, + "probability": 0.9957 + }, + { + "start": 20818.52, + "end": 20822.88, + "probability": 0.9439 + }, + { + "start": 20823.4, + "end": 20827.76, + "probability": 0.9799 + }, + { + "start": 20828.2, + "end": 20832.66, + "probability": 0.9403 + }, + { + "start": 20833.02, + "end": 20839.42, + "probability": 0.9968 + }, + { + "start": 20840.3, + "end": 20842.74, + "probability": 0.8754 + }, + { + "start": 20843.24, + "end": 20849.72, + "probability": 0.9495 + }, + { + "start": 20850.48, + "end": 20854.3, + "probability": 0.9981 + }, + { + "start": 20854.8, + "end": 20859.33, + "probability": 0.9868 + }, + { + "start": 20859.86, + "end": 20865.44, + "probability": 0.9969 + }, + { + "start": 20866.62, + "end": 20868.62, + "probability": 0.998 + }, + { + "start": 20868.62, + "end": 20871.48, + "probability": 0.9908 + }, + { + "start": 20872.04, + "end": 20879.24, + "probability": 0.9484 + }, + { + "start": 20879.84, + "end": 20885.84, + "probability": 0.976 + }, + { + "start": 20886.58, + "end": 20891.56, + "probability": 0.9659 + }, + { + "start": 20894.16, + "end": 20895.44, + "probability": 0.8995 + }, + { + "start": 20895.96, + "end": 20897.18, + "probability": 0.895 + }, + { + "start": 20897.22, + "end": 20898.42, + "probability": 0.676 + }, + { + "start": 20898.78, + "end": 20900.48, + "probability": 0.9897 + }, + { + "start": 20901.1, + "end": 20902.72, + "probability": 0.886 + }, + { + "start": 20903.7, + "end": 20904.43, + "probability": 0.9714 + }, + { + "start": 20905.14, + "end": 20907.76, + "probability": 0.9927 + }, + { + "start": 20908.32, + "end": 20911.98, + "probability": 0.9929 + }, + { + "start": 20912.74, + "end": 20914.34, + "probability": 0.9877 + }, + { + "start": 20915.5, + "end": 20920.62, + "probability": 0.9976 + }, + { + "start": 20920.62, + "end": 20927.46, + "probability": 0.9813 + }, + { + "start": 20928.54, + "end": 20930.36, + "probability": 0.9801 + }, + { + "start": 20930.64, + "end": 20931.98, + "probability": 0.7572 + }, + { + "start": 20932.3, + "end": 20934.92, + "probability": 0.9746 + }, + { + "start": 20935.84, + "end": 20938.6, + "probability": 0.9462 + }, + { + "start": 20938.94, + "end": 20940.14, + "probability": 0.9656 + }, + { + "start": 20940.4, + "end": 20941.64, + "probability": 0.9937 + }, + { + "start": 20941.78, + "end": 20945.28, + "probability": 0.9587 + }, + { + "start": 20947.62, + "end": 20953.46, + "probability": 0.7358 + }, + { + "start": 20954.1, + "end": 20956.14, + "probability": 0.5027 + }, + { + "start": 20956.92, + "end": 20959.06, + "probability": 0.7863 + }, + { + "start": 20960.2, + "end": 20968.74, + "probability": 0.9938 + }, + { + "start": 20969.62, + "end": 20971.0, + "probability": 0.5091 + }, + { + "start": 20971.84, + "end": 20973.02, + "probability": 0.8105 + }, + { + "start": 20973.82, + "end": 20974.06, + "probability": 0.4819 + }, + { + "start": 20974.16, + "end": 20974.88, + "probability": 0.9036 + }, + { + "start": 20975.1, + "end": 20977.16, + "probability": 0.8026 + }, + { + "start": 20977.6, + "end": 20978.44, + "probability": 0.9137 + }, + { + "start": 20978.78, + "end": 20982.52, + "probability": 0.9788 + }, + { + "start": 20983.4, + "end": 20983.62, + "probability": 0.8593 + }, + { + "start": 20983.72, + "end": 20985.76, + "probability": 0.9875 + }, + { + "start": 20986.2, + "end": 20988.68, + "probability": 0.9804 + }, + { + "start": 20989.14, + "end": 20993.82, + "probability": 0.7696 + }, + { + "start": 20994.28, + "end": 20995.3, + "probability": 0.8431 + }, + { + "start": 20995.72, + "end": 20999.22, + "probability": 0.9521 + }, + { + "start": 20999.22, + "end": 21004.48, + "probability": 0.8348 + }, + { + "start": 21004.68, + "end": 21008.32, + "probability": 0.9937 + }, + { + "start": 21009.94, + "end": 21015.5, + "probability": 0.9555 + }, + { + "start": 21016.0, + "end": 21020.62, + "probability": 0.9361 + }, + { + "start": 21021.64, + "end": 21023.86, + "probability": 0.9912 + }, + { + "start": 21024.5, + "end": 21026.98, + "probability": 0.949 + }, + { + "start": 21029.02, + "end": 21034.04, + "probability": 0.897 + }, + { + "start": 21034.26, + "end": 21035.28, + "probability": 0.9575 + }, + { + "start": 21037.1, + "end": 21039.34, + "probability": 0.9834 + }, + { + "start": 21039.4, + "end": 21040.88, + "probability": 0.971 + }, + { + "start": 21041.34, + "end": 21049.66, + "probability": 0.8659 + }, + { + "start": 21052.3, + "end": 21053.68, + "probability": 0.1864 + }, + { + "start": 21054.92, + "end": 21056.52, + "probability": 0.5801 + }, + { + "start": 21057.12, + "end": 21059.22, + "probability": 0.9392 + }, + { + "start": 21059.86, + "end": 21061.28, + "probability": 0.7418 + }, + { + "start": 21062.3, + "end": 21066.94, + "probability": 0.9854 + }, + { + "start": 21067.94, + "end": 21074.56, + "probability": 0.9556 + }, + { + "start": 21075.0, + "end": 21076.26, + "probability": 0.7453 + }, + { + "start": 21076.62, + "end": 21077.82, + "probability": 0.8962 + }, + { + "start": 21078.22, + "end": 21080.32, + "probability": 0.7376 + }, + { + "start": 21082.02, + "end": 21085.62, + "probability": 0.983 + }, + { + "start": 21085.62, + "end": 21089.64, + "probability": 0.8702 + }, + { + "start": 21090.3, + "end": 21101.4, + "probability": 0.9765 + }, + { + "start": 21102.64, + "end": 21106.18, + "probability": 0.7084 + }, + { + "start": 21106.86, + "end": 21111.92, + "probability": 0.9515 + }, + { + "start": 21112.42, + "end": 21116.94, + "probability": 0.983 + }, + { + "start": 21117.62, + "end": 21120.34, + "probability": 0.995 + }, + { + "start": 21120.68, + "end": 21124.44, + "probability": 0.9566 + }, + { + "start": 21125.58, + "end": 21131.28, + "probability": 0.9735 + }, + { + "start": 21131.38, + "end": 21131.74, + "probability": 0.8652 + }, + { + "start": 21132.9, + "end": 21137.18, + "probability": 0.9307 + }, + { + "start": 21137.78, + "end": 21139.38, + "probability": 0.6513 + }, + { + "start": 21139.72, + "end": 21140.8, + "probability": 0.7836 + }, + { + "start": 21141.16, + "end": 21142.64, + "probability": 0.9681 + }, + { + "start": 21144.34, + "end": 21145.82, + "probability": 0.9862 + }, + { + "start": 21146.42, + "end": 21149.24, + "probability": 0.957 + }, + { + "start": 21149.74, + "end": 21151.14, + "probability": 0.9921 + }, + { + "start": 21152.02, + "end": 21154.29, + "probability": 0.9556 + }, + { + "start": 21155.96, + "end": 21157.52, + "probability": 0.9701 + }, + { + "start": 21157.62, + "end": 21161.12, + "probability": 0.8228 + }, + { + "start": 21161.72, + "end": 21165.96, + "probability": 0.9711 + }, + { + "start": 21166.12, + "end": 21169.62, + "probability": 0.9797 + }, + { + "start": 21170.34, + "end": 21171.96, + "probability": 0.9592 + }, + { + "start": 21172.36, + "end": 21174.27, + "probability": 0.9883 + }, + { + "start": 21174.66, + "end": 21176.02, + "probability": 0.9798 + }, + { + "start": 21176.34, + "end": 21177.82, + "probability": 0.9692 + }, + { + "start": 21178.14, + "end": 21182.66, + "probability": 0.9781 + }, + { + "start": 21183.18, + "end": 21185.42, + "probability": 0.9395 + }, + { + "start": 21186.52, + "end": 21188.52, + "probability": 0.8318 + }, + { + "start": 21188.56, + "end": 21191.8, + "probability": 0.9909 + }, + { + "start": 21192.16, + "end": 21194.54, + "probability": 0.9977 + }, + { + "start": 21194.96, + "end": 21197.52, + "probability": 0.9932 + }, + { + "start": 21198.0, + "end": 21198.7, + "probability": 0.9585 + }, + { + "start": 21199.5, + "end": 21202.38, + "probability": 0.9849 + }, + { + "start": 21202.44, + "end": 21203.36, + "probability": 0.5824 + }, + { + "start": 21203.5, + "end": 21205.54, + "probability": 0.9321 + }, + { + "start": 21205.88, + "end": 21206.58, + "probability": 0.6785 + }, + { + "start": 21207.2, + "end": 21209.38, + "probability": 0.8732 + }, + { + "start": 21209.38, + "end": 21211.38, + "probability": 0.9978 + }, + { + "start": 21211.46, + "end": 21212.42, + "probability": 0.9673 + }, + { + "start": 21213.14, + "end": 21216.76, + "probability": 0.6413 + }, + { + "start": 21216.76, + "end": 21218.9, + "probability": 0.6329 + }, + { + "start": 21220.0, + "end": 21221.88, + "probability": 0.7656 + }, + { + "start": 21222.4, + "end": 21223.96, + "probability": 0.9749 + }, + { + "start": 21224.42, + "end": 21227.96, + "probability": 0.9422 + }, + { + "start": 21228.5, + "end": 21232.62, + "probability": 0.9341 + }, + { + "start": 21233.94, + "end": 21234.58, + "probability": 0.5602 + }, + { + "start": 21234.68, + "end": 21236.74, + "probability": 0.9105 + }, + { + "start": 21236.94, + "end": 21237.96, + "probability": 0.2574 + }, + { + "start": 21238.3, + "end": 21239.12, + "probability": 0.4407 + }, + { + "start": 21239.6, + "end": 21242.02, + "probability": 0.938 + }, + { + "start": 21244.14, + "end": 21246.72, + "probability": 0.9473 + }, + { + "start": 21247.52, + "end": 21251.24, + "probability": 0.9877 + }, + { + "start": 21251.86, + "end": 21256.38, + "probability": 0.8528 + }, + { + "start": 21256.7, + "end": 21257.42, + "probability": 0.8698 + }, + { + "start": 21257.42, + "end": 21262.46, + "probability": 0.9665 + }, + { + "start": 21263.14, + "end": 21265.5, + "probability": 0.9932 + }, + { + "start": 21266.38, + "end": 21270.86, + "probability": 0.968 + }, + { + "start": 21271.16, + "end": 21272.48, + "probability": 0.9846 + }, + { + "start": 21272.74, + "end": 21274.26, + "probability": 0.5513 + }, + { + "start": 21274.5, + "end": 21276.5, + "probability": 0.9559 + }, + { + "start": 21276.82, + "end": 21279.2, + "probability": 0.9778 + }, + { + "start": 21279.44, + "end": 21279.66, + "probability": 0.3566 + }, + { + "start": 21279.66, + "end": 21281.88, + "probability": 0.9866 + }, + { + "start": 21282.04, + "end": 21283.45, + "probability": 0.7526 + }, + { + "start": 21283.98, + "end": 21284.46, + "probability": 0.6736 + }, + { + "start": 21284.5, + "end": 21285.22, + "probability": 0.9533 + }, + { + "start": 21285.3, + "end": 21287.56, + "probability": 0.7554 + }, + { + "start": 21287.62, + "end": 21290.12, + "probability": 0.9919 + }, + { + "start": 21290.28, + "end": 21292.62, + "probability": 0.9506 + }, + { + "start": 21293.08, + "end": 21297.0, + "probability": 0.9675 + }, + { + "start": 21297.42, + "end": 21299.34, + "probability": 0.8785 + }, + { + "start": 21299.88, + "end": 21303.32, + "probability": 0.9186 + }, + { + "start": 21303.62, + "end": 21304.82, + "probability": 0.9766 + }, + { + "start": 21305.0, + "end": 21305.9, + "probability": 0.8362 + }, + { + "start": 21305.98, + "end": 21308.02, + "probability": 0.9363 + }, + { + "start": 21308.22, + "end": 21311.04, + "probability": 0.4162 + }, + { + "start": 21311.14, + "end": 21311.92, + "probability": 0.8599 + }, + { + "start": 21312.38, + "end": 21314.4, + "probability": 0.9536 + }, + { + "start": 21314.46, + "end": 21314.94, + "probability": 0.6898 + }, + { + "start": 21315.52, + "end": 21315.77, + "probability": 0.0374 + }, + { + "start": 21315.94, + "end": 21319.22, + "probability": 0.9683 + }, + { + "start": 21319.38, + "end": 21320.84, + "probability": 0.9255 + }, + { + "start": 21320.96, + "end": 21323.18, + "probability": 0.9911 + }, + { + "start": 21324.16, + "end": 21324.98, + "probability": 0.7648 + }, + { + "start": 21325.3, + "end": 21328.08, + "probability": 0.1442 + }, + { + "start": 21328.24, + "end": 21331.36, + "probability": 0.423 + }, + { + "start": 21331.6, + "end": 21334.0, + "probability": 0.1878 + }, + { + "start": 21334.86, + "end": 21336.73, + "probability": 0.2769 + }, + { + "start": 21339.72, + "end": 21340.16, + "probability": 0.0495 + }, + { + "start": 21340.16, + "end": 21340.97, + "probability": 0.1215 + }, + { + "start": 21341.56, + "end": 21343.9, + "probability": 0.6791 + }, + { + "start": 21344.0, + "end": 21345.02, + "probability": 0.8271 + }, + { + "start": 21345.22, + "end": 21345.56, + "probability": 0.4337 + }, + { + "start": 21346.98, + "end": 21347.72, + "probability": 0.1557 + }, + { + "start": 21347.76, + "end": 21347.76, + "probability": 0.0394 + }, + { + "start": 21347.76, + "end": 21348.62, + "probability": 0.3315 + }, + { + "start": 21348.68, + "end": 21352.03, + "probability": 0.3992 + }, + { + "start": 21352.82, + "end": 21353.62, + "probability": 0.1915 + }, + { + "start": 21353.62, + "end": 21356.42, + "probability": 0.5631 + }, + { + "start": 21356.52, + "end": 21358.94, + "probability": 0.1847 + }, + { + "start": 21358.94, + "end": 21360.24, + "probability": 0.4372 + }, + { + "start": 21360.36, + "end": 21360.88, + "probability": 0.5205 + }, + { + "start": 21361.0, + "end": 21364.59, + "probability": 0.9888 + }, + { + "start": 21364.96, + "end": 21365.94, + "probability": 0.9623 + }, + { + "start": 21365.96, + "end": 21366.04, + "probability": 0.0445 + }, + { + "start": 21366.04, + "end": 21367.62, + "probability": 0.0409 + }, + { + "start": 21368.06, + "end": 21368.7, + "probability": 0.2238 + }, + { + "start": 21368.74, + "end": 21369.06, + "probability": 0.3229 + }, + { + "start": 21369.08, + "end": 21369.86, + "probability": 0.9866 + }, + { + "start": 21370.64, + "end": 21370.82, + "probability": 0.1532 + }, + { + "start": 21370.82, + "end": 21371.38, + "probability": 0.5182 + }, + { + "start": 21373.14, + "end": 21373.32, + "probability": 0.3385 + }, + { + "start": 21373.52, + "end": 21376.04, + "probability": 0.6641 + }, + { + "start": 21376.34, + "end": 21376.56, + "probability": 0.2338 + }, + { + "start": 21376.6, + "end": 21376.92, + "probability": 0.7603 + }, + { + "start": 21377.08, + "end": 21379.52, + "probability": 0.9919 + }, + { + "start": 21379.58, + "end": 21383.72, + "probability": 0.8922 + }, + { + "start": 21384.04, + "end": 21384.1, + "probability": 0.1377 + }, + { + "start": 21386.5, + "end": 21388.56, + "probability": 0.2511 + }, + { + "start": 21388.56, + "end": 21388.56, + "probability": 0.0785 + }, + { + "start": 21388.56, + "end": 21391.34, + "probability": 0.2237 + }, + { + "start": 21391.4, + "end": 21394.58, + "probability": 0.4306 + }, + { + "start": 21394.62, + "end": 21397.58, + "probability": 0.0849 + }, + { + "start": 21397.58, + "end": 21397.58, + "probability": 0.2846 + }, + { + "start": 21397.58, + "end": 21397.58, + "probability": 0.0368 + }, + { + "start": 21397.58, + "end": 21397.58, + "probability": 0.1768 + }, + { + "start": 21397.58, + "end": 21398.72, + "probability": 0.542 + }, + { + "start": 21398.82, + "end": 21400.73, + "probability": 0.8768 + }, + { + "start": 21401.56, + "end": 21402.34, + "probability": 0.4374 + }, + { + "start": 21402.46, + "end": 21404.52, + "probability": 0.2257 + }, + { + "start": 21404.68, + "end": 21404.68, + "probability": 0.1341 + }, + { + "start": 21404.68, + "end": 21404.68, + "probability": 0.0217 + }, + { + "start": 21404.68, + "end": 21406.88, + "probability": 0.0131 + }, + { + "start": 21406.96, + "end": 21407.16, + "probability": 0.4119 + }, + { + "start": 21407.16, + "end": 21408.82, + "probability": 0.3368 + }, + { + "start": 21408.84, + "end": 21410.02, + "probability": 0.2766 + }, + { + "start": 21410.3, + "end": 21412.7, + "probability": 0.5909 + }, + { + "start": 21413.18, + "end": 21413.7, + "probability": 0.6273 + }, + { + "start": 21413.8, + "end": 21414.7, + "probability": 0.6147 + }, + { + "start": 21414.76, + "end": 21415.12, + "probability": 0.864 + }, + { + "start": 21415.18, + "end": 21415.8, + "probability": 0.7278 + }, + { + "start": 21416.08, + "end": 21417.5, + "probability": 0.0069 + }, + { + "start": 21417.78, + "end": 21420.04, + "probability": 0.705 + }, + { + "start": 21420.04, + "end": 21422.56, + "probability": 0.8246 + }, + { + "start": 21422.56, + "end": 21423.0, + "probability": 0.3643 + }, + { + "start": 21423.02, + "end": 21423.02, + "probability": 0.1142 + }, + { + "start": 21423.02, + "end": 21424.16, + "probability": 0.7125 + }, + { + "start": 21424.16, + "end": 21424.5, + "probability": 0.5875 + }, + { + "start": 21424.96, + "end": 21425.14, + "probability": 0.3705 + }, + { + "start": 21425.16, + "end": 21428.08, + "probability": 0.7654 + }, + { + "start": 21428.24, + "end": 21429.9, + "probability": 0.0091 + }, + { + "start": 21430.92, + "end": 21430.92, + "probability": 0.0408 + }, + { + "start": 21433.1, + "end": 21433.8, + "probability": 0.2462 + }, + { + "start": 21433.8, + "end": 21434.04, + "probability": 0.0402 + }, + { + "start": 21434.04, + "end": 21434.04, + "probability": 0.1647 + }, + { + "start": 21434.04, + "end": 21434.04, + "probability": 0.0686 + }, + { + "start": 21434.04, + "end": 21434.38, + "probability": 0.3584 + }, + { + "start": 21434.38, + "end": 21439.26, + "probability": 0.9401 + }, + { + "start": 21439.9, + "end": 21440.24, + "probability": 0.6958 + }, + { + "start": 21440.4, + "end": 21441.24, + "probability": 0.5323 + }, + { + "start": 21441.38, + "end": 21442.38, + "probability": 0.7332 + }, + { + "start": 21442.5, + "end": 21443.6, + "probability": 0.9221 + }, + { + "start": 21443.72, + "end": 21445.28, + "probability": 0.7288 + }, + { + "start": 21445.42, + "end": 21447.79, + "probability": 0.7556 + }, + { + "start": 21448.38, + "end": 21449.94, + "probability": 0.8673 + }, + { + "start": 21450.14, + "end": 21453.24, + "probability": 0.7315 + }, + { + "start": 21454.57, + "end": 21455.2, + "probability": 0.4976 + }, + { + "start": 21455.2, + "end": 21455.98, + "probability": 0.6442 + }, + { + "start": 21456.1, + "end": 21460.38, + "probability": 0.9833 + }, + { + "start": 21460.46, + "end": 21461.94, + "probability": 0.6554 + }, + { + "start": 21462.38, + "end": 21464.0, + "probability": 0.9707 + }, + { + "start": 21464.38, + "end": 21465.7, + "probability": 0.0313 + }, + { + "start": 21467.22, + "end": 21467.3, + "probability": 0.0243 + }, + { + "start": 21467.3, + "end": 21468.78, + "probability": 0.5526 + }, + { + "start": 21468.82, + "end": 21472.54, + "probability": 0.6601 + }, + { + "start": 21472.6, + "end": 21474.18, + "probability": 0.482 + }, + { + "start": 21474.4, + "end": 21477.42, + "probability": 0.9794 + }, + { + "start": 21477.54, + "end": 21478.52, + "probability": 0.0576 + }, + { + "start": 21479.1, + "end": 21479.72, + "probability": 0.0791 + }, + { + "start": 21480.04, + "end": 21483.9, + "probability": 0.5611 + }, + { + "start": 21483.96, + "end": 21487.68, + "probability": 0.8104 + }, + { + "start": 21488.06, + "end": 21489.22, + "probability": 0.9136 + }, + { + "start": 21489.62, + "end": 21491.76, + "probability": 0.9653 + }, + { + "start": 21491.78, + "end": 21492.26, + "probability": 0.8007 + }, + { + "start": 21492.28, + "end": 21493.1, + "probability": 0.8393 + }, + { + "start": 21493.38, + "end": 21498.14, + "probability": 0.9895 + }, + { + "start": 21498.32, + "end": 21499.74, + "probability": 0.6651 + }, + { + "start": 21499.96, + "end": 21500.46, + "probability": 0.6094 + }, + { + "start": 21500.56, + "end": 21500.96, + "probability": 0.6417 + }, + { + "start": 21501.02, + "end": 21501.76, + "probability": 0.64 + }, + { + "start": 21502.96, + "end": 21506.14, + "probability": 0.8751 + }, + { + "start": 21506.24, + "end": 21506.54, + "probability": 0.8251 + }, + { + "start": 21506.74, + "end": 21507.36, + "probability": 0.7633 + }, + { + "start": 21507.54, + "end": 21510.21, + "probability": 0.9019 + }, + { + "start": 21512.49, + "end": 21515.8, + "probability": 0.6596 + }, + { + "start": 21517.22, + "end": 21519.84, + "probability": 0.8926 + }, + { + "start": 21520.32, + "end": 21522.1, + "probability": 0.8041 + }, + { + "start": 21522.5, + "end": 21524.34, + "probability": 0.6905 + }, + { + "start": 21524.36, + "end": 21524.82, + "probability": 0.6174 + }, + { + "start": 21524.82, + "end": 21525.46, + "probability": 0.8271 + }, + { + "start": 21526.3, + "end": 21527.28, + "probability": 0.9021 + }, + { + "start": 21528.22, + "end": 21531.04, + "probability": 0.9943 + }, + { + "start": 21531.08, + "end": 21531.12, + "probability": 0.6917 + }, + { + "start": 21531.2, + "end": 21533.67, + "probability": 0.829 + }, + { + "start": 21533.78, + "end": 21534.98, + "probability": 0.6226 + }, + { + "start": 21536.14, + "end": 21536.69, + "probability": 0.1209 + }, + { + "start": 21539.12, + "end": 21541.74, + "probability": 0.9616 + }, + { + "start": 21541.84, + "end": 21543.76, + "probability": 0.4226 + }, + { + "start": 21544.06, + "end": 21547.11, + "probability": 0.1546 + }, + { + "start": 21547.4, + "end": 21548.02, + "probability": 0.1275 + }, + { + "start": 21548.72, + "end": 21553.5, + "probability": 0.1465 + }, + { + "start": 21554.82, + "end": 21555.56, + "probability": 0.3078 + }, + { + "start": 21556.26, + "end": 21558.32, + "probability": 0.1329 + }, + { + "start": 21558.56, + "end": 21560.48, + "probability": 0.8407 + }, + { + "start": 21560.56, + "end": 21561.44, + "probability": 0.8951 + }, + { + "start": 21577.28, + "end": 21578.7, + "probability": 0.4766 + }, + { + "start": 21578.76, + "end": 21579.48, + "probability": 0.4534 + }, + { + "start": 21579.54, + "end": 21583.14, + "probability": 0.8813 + }, + { + "start": 21583.62, + "end": 21584.06, + "probability": 0.568 + }, + { + "start": 21584.16, + "end": 21585.2, + "probability": 0.734 + }, + { + "start": 21585.28, + "end": 21585.76, + "probability": 0.7575 + }, + { + "start": 21586.08, + "end": 21587.64, + "probability": 0.9116 + }, + { + "start": 21589.18, + "end": 21589.18, + "probability": 0.1066 + }, + { + "start": 21589.18, + "end": 21589.7, + "probability": 0.6186 + }, + { + "start": 21590.22, + "end": 21591.82, + "probability": 0.8484 + }, + { + "start": 21592.3, + "end": 21592.94, + "probability": 0.8558 + }, + { + "start": 21593.06, + "end": 21594.24, + "probability": 0.7275 + }, + { + "start": 21594.54, + "end": 21595.58, + "probability": 0.9277 + }, + { + "start": 21595.72, + "end": 21597.18, + "probability": 0.9638 + }, + { + "start": 21597.2, + "end": 21597.84, + "probability": 0.6457 + }, + { + "start": 21597.98, + "end": 21598.7, + "probability": 0.9558 + }, + { + "start": 21600.5, + "end": 21602.04, + "probability": 0.5237 + }, + { + "start": 21604.38, + "end": 21606.14, + "probability": 0.8024 + }, + { + "start": 21607.6, + "end": 21614.46, + "probability": 0.9889 + }, + { + "start": 21617.22, + "end": 21618.66, + "probability": 0.9836 + }, + { + "start": 21621.02, + "end": 21621.74, + "probability": 0.8976 + }, + { + "start": 21624.54, + "end": 21627.28, + "probability": 0.989 + }, + { + "start": 21627.36, + "end": 21629.72, + "probability": 0.988 + }, + { + "start": 21630.7, + "end": 21631.7, + "probability": 0.99 + }, + { + "start": 21632.8, + "end": 21636.52, + "probability": 0.9958 + }, + { + "start": 21637.72, + "end": 21638.88, + "probability": 0.9587 + }, + { + "start": 21640.8, + "end": 21641.9, + "probability": 0.9944 + }, + { + "start": 21642.98, + "end": 21646.8, + "probability": 0.9951 + }, + { + "start": 21648.58, + "end": 21650.84, + "probability": 0.994 + }, + { + "start": 21653.34, + "end": 21659.96, + "probability": 0.8896 + }, + { + "start": 21661.92, + "end": 21665.94, + "probability": 0.8564 + }, + { + "start": 21667.38, + "end": 21670.96, + "probability": 0.9753 + }, + { + "start": 21674.44, + "end": 21675.3, + "probability": 0.9483 + }, + { + "start": 21676.52, + "end": 21676.94, + "probability": 0.7427 + }, + { + "start": 21678.0, + "end": 21678.76, + "probability": 0.7009 + }, + { + "start": 21678.88, + "end": 21683.46, + "probability": 0.9334 + }, + { + "start": 21683.96, + "end": 21684.54, + "probability": 0.7882 + }, + { + "start": 21685.52, + "end": 21686.28, + "probability": 0.8798 + }, + { + "start": 21688.66, + "end": 21689.66, + "probability": 0.9761 + }, + { + "start": 21691.08, + "end": 21693.78, + "probability": 0.9819 + }, + { + "start": 21695.06, + "end": 21695.98, + "probability": 0.9358 + }, + { + "start": 21700.84, + "end": 21701.46, + "probability": 0.4382 + }, + { + "start": 21701.46, + "end": 21701.48, + "probability": 0.0833 + }, + { + "start": 21701.48, + "end": 21702.9, + "probability": 0.2077 + }, + { + "start": 21702.96, + "end": 21703.56, + "probability": 0.1312 + }, + { + "start": 21703.56, + "end": 21704.08, + "probability": 0.083 + }, + { + "start": 21704.12, + "end": 21704.64, + "probability": 0.2446 + }, + { + "start": 21704.76, + "end": 21706.08, + "probability": 0.3382 + }, + { + "start": 21706.92, + "end": 21710.32, + "probability": 0.946 + }, + { + "start": 21710.66, + "end": 21713.9, + "probability": 0.9916 + }, + { + "start": 21714.38, + "end": 21715.22, + "probability": 0.9422 + }, + { + "start": 21716.34, + "end": 21716.34, + "probability": 0.131 + }, + { + "start": 21716.36, + "end": 21719.56, + "probability": 0.8613 + }, + { + "start": 21720.96, + "end": 21723.44, + "probability": 0.9785 + }, + { + "start": 21723.7, + "end": 21726.1, + "probability": 0.9961 + }, + { + "start": 21727.68, + "end": 21727.68, + "probability": 0.0574 + }, + { + "start": 21727.68, + "end": 21729.08, + "probability": 0.7778 + }, + { + "start": 21730.26, + "end": 21730.82, + "probability": 0.1145 + }, + { + "start": 21731.1, + "end": 21731.22, + "probability": 0.3532 + }, + { + "start": 21731.22, + "end": 21732.24, + "probability": 0.5178 + }, + { + "start": 21732.86, + "end": 21733.74, + "probability": 0.8103 + }, + { + "start": 21733.9, + "end": 21734.54, + "probability": 0.5622 + }, + { + "start": 21734.74, + "end": 21736.06, + "probability": 0.7589 + }, + { + "start": 21736.72, + "end": 21737.0, + "probability": 0.0354 + }, + { + "start": 21737.0, + "end": 21740.22, + "probability": 0.9746 + }, + { + "start": 21742.02, + "end": 21742.8, + "probability": 0.7302 + }, + { + "start": 21743.02, + "end": 21744.4, + "probability": 0.0059 + }, + { + "start": 21748.64, + "end": 21749.14, + "probability": 0.2649 + }, + { + "start": 21749.58, + "end": 21751.2, + "probability": 0.4335 + }, + { + "start": 21751.42, + "end": 21752.28, + "probability": 0.6783 + }, + { + "start": 21752.28, + "end": 21752.66, + "probability": 0.6809 + }, + { + "start": 21753.16, + "end": 21754.16, + "probability": 0.3946 + }, + { + "start": 21754.16, + "end": 21754.16, + "probability": 0.0314 + }, + { + "start": 21754.16, + "end": 21754.16, + "probability": 0.5002 + }, + { + "start": 21754.16, + "end": 21754.16, + "probability": 0.6157 + }, + { + "start": 21754.16, + "end": 21754.74, + "probability": 0.5277 + }, + { + "start": 21754.82, + "end": 21757.42, + "probability": 0.6296 + }, + { + "start": 21758.1, + "end": 21759.34, + "probability": 0.448 + }, + { + "start": 21759.82, + "end": 21761.14, + "probability": 0.2369 + }, + { + "start": 21761.46, + "end": 21761.74, + "probability": 0.0691 + }, + { + "start": 21761.74, + "end": 21763.48, + "probability": 0.901 + }, + { + "start": 21763.9, + "end": 21765.6, + "probability": 0.2406 + }, + { + "start": 21765.84, + "end": 21766.54, + "probability": 0.5864 + }, + { + "start": 21766.54, + "end": 21766.72, + "probability": 0.0774 + }, + { + "start": 21766.98, + "end": 21769.92, + "probability": 0.5893 + }, + { + "start": 21770.36, + "end": 21770.42, + "probability": 0.0132 + }, + { + "start": 21770.42, + "end": 21770.44, + "probability": 0.1373 + }, + { + "start": 21770.44, + "end": 21774.92, + "probability": 0.9423 + }, + { + "start": 21775.32, + "end": 21779.0, + "probability": 0.9497 + }, + { + "start": 21779.88, + "end": 21784.24, + "probability": 0.9531 + }, + { + "start": 21785.04, + "end": 21788.32, + "probability": 0.862 + }, + { + "start": 21789.72, + "end": 21793.04, + "probability": 0.9585 + }, + { + "start": 21793.32, + "end": 21793.62, + "probability": 0.9047 + }, + { + "start": 21794.22, + "end": 21800.02, + "probability": 0.452 + }, + { + "start": 21800.04, + "end": 21802.23, + "probability": 0.4855 + }, + { + "start": 21803.1, + "end": 21803.22, + "probability": 0.3439 + }, + { + "start": 21803.22, + "end": 21803.22, + "probability": 0.0581 + }, + { + "start": 21803.22, + "end": 21803.22, + "probability": 0.0654 + }, + { + "start": 21803.22, + "end": 21807.8, + "probability": 0.7572 + }, + { + "start": 21809.06, + "end": 21810.0, + "probability": 0.6349 + }, + { + "start": 21810.27, + "end": 21812.92, + "probability": 0.7673 + }, + { + "start": 21814.06, + "end": 21821.1, + "probability": 0.8773 + }, + { + "start": 21822.14, + "end": 21824.2, + "probability": 0.8812 + }, + { + "start": 21824.9, + "end": 21826.78, + "probability": 0.7711 + }, + { + "start": 21827.4, + "end": 21830.14, + "probability": 0.1861 + }, + { + "start": 21830.16, + "end": 21834.04, + "probability": 0.047 + }, + { + "start": 21834.2, + "end": 21836.16, + "probability": 0.1259 + }, + { + "start": 21840.64, + "end": 21841.3, + "probability": 0.0132 + }, + { + "start": 21842.84, + "end": 21843.14, + "probability": 0.0562 + }, + { + "start": 21843.16, + "end": 21843.98, + "probability": 0.1792 + }, + { + "start": 21843.98, + "end": 21844.84, + "probability": 0.2924 + }, + { + "start": 21844.84, + "end": 21844.84, + "probability": 0.0772 + }, + { + "start": 21844.84, + "end": 21844.84, + "probability": 0.0221 + }, + { + "start": 21844.84, + "end": 21845.56, + "probability": 0.0264 + }, + { + "start": 21846.44, + "end": 21850.26, + "probability": 0.2337 + }, + { + "start": 21854.08, + "end": 21854.86, + "probability": 0.0003 + }, + { + "start": 21854.86, + "end": 21857.42, + "probability": 0.0822 + }, + { + "start": 21857.86, + "end": 21858.0, + "probability": 0.0885 + }, + { + "start": 21858.36, + "end": 21862.48, + "probability": 0.1458 + }, + { + "start": 21863.8, + "end": 21863.98, + "probability": 0.0096 + }, + { + "start": 21867.16, + "end": 21870.2, + "probability": 0.0027 + }, + { + "start": 21876.4, + "end": 21877.3, + "probability": 0.1268 + }, + { + "start": 21877.3, + "end": 21878.14, + "probability": 0.1945 + }, + { + "start": 21878.14, + "end": 21878.6, + "probability": 0.0283 + }, + { + "start": 21878.6, + "end": 21879.4, + "probability": 0.0746 + }, + { + "start": 21880.26, + "end": 21880.36, + "probability": 0.3029 + }, + { + "start": 21881.0, + "end": 21882.7, + "probability": 0.1496 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.0, + "end": 21923.0, + "probability": 0.0 + }, + { + "start": 21923.3, + "end": 21925.92, + "probability": 0.3516 + }, + { + "start": 21926.36, + "end": 21927.2, + "probability": 0.084 + }, + { + "start": 21927.64, + "end": 21927.64, + "probability": 0.0181 + }, + { + "start": 21927.64, + "end": 21929.22, + "probability": 0.5885 + }, + { + "start": 21929.92, + "end": 21931.22, + "probability": 0.683 + }, + { + "start": 21931.38, + "end": 21933.9, + "probability": 0.6433 + }, + { + "start": 21933.9, + "end": 21937.02, + "probability": 0.6286 + }, + { + "start": 21938.1, + "end": 21939.38, + "probability": 0.4994 + }, + { + "start": 21945.16, + "end": 21946.18, + "probability": 0.463 + }, + { + "start": 21948.34, + "end": 21948.7, + "probability": 0.2161 + }, + { + "start": 21955.4, + "end": 21956.54, + "probability": 0.2037 + }, + { + "start": 21956.96, + "end": 21957.58, + "probability": 0.1426 + }, + { + "start": 21958.38, + "end": 21959.46, + "probability": 0.5497 + }, + { + "start": 21959.68, + "end": 21963.0, + "probability": 0.0426 + }, + { + "start": 21963.16, + "end": 21963.32, + "probability": 0.1826 + }, + { + "start": 21963.38, + "end": 21963.54, + "probability": 0.3914 + }, + { + "start": 21964.6, + "end": 21965.52, + "probability": 0.4432 + }, + { + "start": 21967.08, + "end": 21971.8, + "probability": 0.7166 + }, + { + "start": 21971.8, + "end": 21972.78, + "probability": 0.0321 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.0, + "end": 22049.0, + "probability": 0.0 + }, + { + "start": 22049.19, + "end": 22049.26, + "probability": 0.3365 + }, + { + "start": 22049.26, + "end": 22050.08, + "probability": 0.1848 + }, + { + "start": 22050.68, + "end": 22051.36, + "probability": 0.4511 + }, + { + "start": 22052.06, + "end": 22055.58, + "probability": 0.9169 + }, + { + "start": 22056.48, + "end": 22058.84, + "probability": 0.1541 + }, + { + "start": 22058.94, + "end": 22062.47, + "probability": 0.8993 + }, + { + "start": 22062.9, + "end": 22063.2, + "probability": 0.4566 + }, + { + "start": 22063.32, + "end": 22063.54, + "probability": 0.4413 + }, + { + "start": 22063.68, + "end": 22064.9, + "probability": 0.4196 + }, + { + "start": 22064.98, + "end": 22066.21, + "probability": 0.4152 + }, + { + "start": 22066.36, + "end": 22067.8, + "probability": 0.1053 + }, + { + "start": 22067.92, + "end": 22068.46, + "probability": 0.7333 + }, + { + "start": 22069.1, + "end": 22070.06, + "probability": 0.5701 + }, + { + "start": 22070.26, + "end": 22072.6, + "probability": 0.9932 + }, + { + "start": 22072.62, + "end": 22073.54, + "probability": 0.0328 + }, + { + "start": 22074.88, + "end": 22075.12, + "probability": 0.0671 + }, + { + "start": 22075.12, + "end": 22075.12, + "probability": 0.0232 + }, + { + "start": 22075.12, + "end": 22076.43, + "probability": 0.5392 + }, + { + "start": 22076.62, + "end": 22077.78, + "probability": 0.5011 + }, + { + "start": 22078.02, + "end": 22078.02, + "probability": 0.5358 + }, + { + "start": 22078.02, + "end": 22079.26, + "probability": 0.8511 + }, + { + "start": 22079.32, + "end": 22080.06, + "probability": 0.9001 + }, + { + "start": 22080.84, + "end": 22081.62, + "probability": 0.6732 + }, + { + "start": 22081.72, + "end": 22085.46, + "probability": 0.9663 + }, + { + "start": 22087.08, + "end": 22088.34, + "probability": 0.9949 + }, + { + "start": 22088.52, + "end": 22091.24, + "probability": 0.9171 + }, + { + "start": 22091.28, + "end": 22091.82, + "probability": 0.242 + }, + { + "start": 22091.86, + "end": 22095.34, + "probability": 0.9419 + }, + { + "start": 22095.98, + "end": 22096.72, + "probability": 0.9465 + }, + { + "start": 22097.58, + "end": 22099.15, + "probability": 0.9983 + }, + { + "start": 22099.9, + "end": 22102.43, + "probability": 0.8655 + }, + { + "start": 22104.42, + "end": 22106.22, + "probability": 0.0298 + }, + { + "start": 22106.22, + "end": 22106.22, + "probability": 0.112 + }, + { + "start": 22106.22, + "end": 22106.22, + "probability": 0.0432 + }, + { + "start": 22106.22, + "end": 22106.56, + "probability": 0.1609 + }, + { + "start": 22106.6, + "end": 22108.08, + "probability": 0.2789 + }, + { + "start": 22108.8, + "end": 22110.0, + "probability": 0.7281 + }, + { + "start": 22110.6, + "end": 22113.94, + "probability": 0.8855 + }, + { + "start": 22114.32, + "end": 22116.66, + "probability": 0.9634 + }, + { + "start": 22117.18, + "end": 22120.06, + "probability": 0.9205 + }, + { + "start": 22120.92, + "end": 22122.76, + "probability": 0.998 + }, + { + "start": 22122.84, + "end": 22125.04, + "probability": 0.9675 + }, + { + "start": 22125.66, + "end": 22129.74, + "probability": 0.9268 + }, + { + "start": 22129.98, + "end": 22130.04, + "probability": 0.0846 + }, + { + "start": 22130.04, + "end": 22130.54, + "probability": 0.8057 + }, + { + "start": 22130.92, + "end": 22135.14, + "probability": 0.9541 + }, + { + "start": 22135.98, + "end": 22138.08, + "probability": 0.9741 + }, + { + "start": 22138.22, + "end": 22141.1, + "probability": 0.4636 + }, + { + "start": 22141.1, + "end": 22141.42, + "probability": 0.7412 + }, + { + "start": 22142.26, + "end": 22142.54, + "probability": 0.6806 + }, + { + "start": 22142.54, + "end": 22143.16, + "probability": 0.341 + }, + { + "start": 22143.26, + "end": 22143.52, + "probability": 0.9668 + }, + { + "start": 22143.7, + "end": 22144.33, + "probability": 0.9559 + }, + { + "start": 22144.46, + "end": 22145.16, + "probability": 0.8386 + }, + { + "start": 22145.28, + "end": 22149.94, + "probability": 0.9969 + }, + { + "start": 22150.54, + "end": 22152.34, + "probability": 0.3159 + }, + { + "start": 22152.64, + "end": 22152.76, + "probability": 0.2389 + }, + { + "start": 22152.76, + "end": 22152.76, + "probability": 0.1579 + }, + { + "start": 22152.76, + "end": 22154.08, + "probability": 0.8747 + }, + { + "start": 22154.6, + "end": 22158.14, + "probability": 0.938 + }, + { + "start": 22158.22, + "end": 22162.9, + "probability": 0.8269 + }, + { + "start": 22165.72, + "end": 22166.1, + "probability": 0.001 + }, + { + "start": 22166.1, + "end": 22166.1, + "probability": 0.071 + }, + { + "start": 22166.1, + "end": 22166.1, + "probability": 0.0677 + }, + { + "start": 22166.1, + "end": 22166.1, + "probability": 0.0356 + }, + { + "start": 22166.1, + "end": 22166.1, + "probability": 0.3039 + }, + { + "start": 22166.1, + "end": 22167.84, + "probability": 0.791 + }, + { + "start": 22167.98, + "end": 22169.56, + "probability": 0.8334 + }, + { + "start": 22169.66, + "end": 22170.34, + "probability": 0.8494 + }, + { + "start": 22170.59, + "end": 22172.58, + "probability": 0.7981 + }, + { + "start": 22172.58, + "end": 22176.38, + "probability": 0.892 + }, + { + "start": 22176.48, + "end": 22178.02, + "probability": 0.9341 + }, + { + "start": 22178.1, + "end": 22180.46, + "probability": 0.9907 + }, + { + "start": 22180.46, + "end": 22183.26, + "probability": 0.9967 + }, + { + "start": 22183.54, + "end": 22185.84, + "probability": 0.9751 + }, + { + "start": 22186.52, + "end": 22187.46, + "probability": 0.9995 + }, + { + "start": 22187.46, + "end": 22192.44, + "probability": 0.9968 + }, + { + "start": 22192.74, + "end": 22195.98, + "probability": 0.9371 + }, + { + "start": 22196.4, + "end": 22199.94, + "probability": 0.9863 + }, + { + "start": 22200.1, + "end": 22200.38, + "probability": 0.6296 + }, + { + "start": 22200.4, + "end": 22201.0, + "probability": 0.6004 + }, + { + "start": 22201.04, + "end": 22201.52, + "probability": 0.6586 + }, + { + "start": 22201.86, + "end": 22202.76, + "probability": 0.5519 + }, + { + "start": 22202.86, + "end": 22203.3, + "probability": 0.5303 + }, + { + "start": 22203.32, + "end": 22203.66, + "probability": 0.8585 + }, + { + "start": 22203.74, + "end": 22206.98, + "probability": 0.9785 + }, + { + "start": 22207.36, + "end": 22208.56, + "probability": 0.8054 + }, + { + "start": 22209.18, + "end": 22210.74, + "probability": 0.964 + }, + { + "start": 22210.88, + "end": 22211.84, + "probability": 0.9598 + }, + { + "start": 22211.86, + "end": 22213.2, + "probability": 0.8423 + }, + { + "start": 22213.78, + "end": 22214.72, + "probability": 0.8807 + }, + { + "start": 22214.84, + "end": 22218.04, + "probability": 0.9969 + }, + { + "start": 22218.38, + "end": 22219.4, + "probability": 0.855 + }, + { + "start": 22219.62, + "end": 22219.7, + "probability": 0.121 + }, + { + "start": 22219.7, + "end": 22221.64, + "probability": 0.6835 + }, + { + "start": 22222.06, + "end": 22224.18, + "probability": 0.7122 + }, + { + "start": 22224.22, + "end": 22227.9, + "probability": 0.8667 + }, + { + "start": 22228.08, + "end": 22230.12, + "probability": 0.5044 + }, + { + "start": 22230.66, + "end": 22232.66, + "probability": 0.0236 + }, + { + "start": 22233.24, + "end": 22235.82, + "probability": 0.4181 + }, + { + "start": 22235.82, + "end": 22241.08, + "probability": 0.6319 + }, + { + "start": 22242.84, + "end": 22243.6, + "probability": 0.153 + }, + { + "start": 22243.6, + "end": 22244.52, + "probability": 0.1786 + }, + { + "start": 22244.84, + "end": 22245.26, + "probability": 0.5084 + }, + { + "start": 22245.26, + "end": 22246.38, + "probability": 0.8582 + }, + { + "start": 22247.68, + "end": 22253.06, + "probability": 0.9275 + }, + { + "start": 22253.56, + "end": 22257.66, + "probability": 0.9929 + }, + { + "start": 22258.08, + "end": 22259.4, + "probability": 0.4903 + }, + { + "start": 22260.14, + "end": 22260.16, + "probability": 0.0213 + }, + { + "start": 22260.16, + "end": 22264.26, + "probability": 0.7946 + }, + { + "start": 22264.34, + "end": 22267.74, + "probability": 0.9407 + }, + { + "start": 22268.78, + "end": 22270.42, + "probability": 0.1451 + }, + { + "start": 22270.42, + "end": 22270.42, + "probability": 0.2082 + }, + { + "start": 22270.42, + "end": 22271.24, + "probability": 0.2991 + }, + { + "start": 22271.24, + "end": 22272.82, + "probability": 0.7044 + }, + { + "start": 22273.22, + "end": 22277.1, + "probability": 0.7787 + }, + { + "start": 22279.52, + "end": 22282.02, + "probability": 0.0568 + }, + { + "start": 22282.02, + "end": 22282.08, + "probability": 0.1298 + }, + { + "start": 22282.08, + "end": 22282.12, + "probability": 0.0719 + }, + { + "start": 22282.48, + "end": 22284.94, + "probability": 0.3897 + }, + { + "start": 22284.94, + "end": 22286.76, + "probability": 0.4963 + }, + { + "start": 22287.26, + "end": 22289.24, + "probability": 0.5992 + }, + { + "start": 22293.28, + "end": 22295.22, + "probability": 0.1807 + }, + { + "start": 22295.22, + "end": 22297.54, + "probability": 0.4073 + }, + { + "start": 22298.76, + "end": 22301.74, + "probability": 0.8289 + }, + { + "start": 22301.94, + "end": 22305.6, + "probability": 0.7593 + }, + { + "start": 22306.52, + "end": 22308.47, + "probability": 0.5977 + }, + { + "start": 22309.82, + "end": 22312.77, + "probability": 0.1265 + }, + { + "start": 22313.0, + "end": 22314.2, + "probability": 0.669 + }, + { + "start": 22315.1, + "end": 22317.92, + "probability": 0.753 + }, + { + "start": 22318.9, + "end": 22319.04, + "probability": 0.1161 + }, + { + "start": 22319.04, + "end": 22319.74, + "probability": 0.8861 + }, + { + "start": 22320.06, + "end": 22320.66, + "probability": 0.9561 + }, + { + "start": 22320.74, + "end": 22321.46, + "probability": 0.9847 + }, + { + "start": 22321.52, + "end": 22322.2, + "probability": 0.7581 + }, + { + "start": 22322.8, + "end": 22325.52, + "probability": 0.9773 + }, + { + "start": 22325.82, + "end": 22326.24, + "probability": 0.1027 + }, + { + "start": 22326.24, + "end": 22326.31, + "probability": 0.7405 + }, + { + "start": 22327.76, + "end": 22329.58, + "probability": 0.8041 + }, + { + "start": 22329.96, + "end": 22331.1, + "probability": 0.8973 + }, + { + "start": 22331.14, + "end": 22332.16, + "probability": 0.9762 + }, + { + "start": 22332.28, + "end": 22333.56, + "probability": 0.9404 + }, + { + "start": 22335.2, + "end": 22335.2, + "probability": 0.0185 + }, + { + "start": 22335.2, + "end": 22336.6, + "probability": 0.6659 + }, + { + "start": 22337.4, + "end": 22341.3, + "probability": 0.9905 + }, + { + "start": 22341.6, + "end": 22342.54, + "probability": 0.985 + }, + { + "start": 22343.04, + "end": 22343.61, + "probability": 0.9963 + }, + { + "start": 22344.22, + "end": 22344.91, + "probability": 0.988 + }, + { + "start": 22345.24, + "end": 22345.79, + "probability": 0.8404 + }, + { + "start": 22346.92, + "end": 22347.88, + "probability": 0.7779 + }, + { + "start": 22347.96, + "end": 22348.94, + "probability": 0.1509 + }, + { + "start": 22349.0, + "end": 22351.32, + "probability": 0.529 + }, + { + "start": 22351.4, + "end": 22351.88, + "probability": 0.5794 + }, + { + "start": 22352.0, + "end": 22352.44, + "probability": 0.424 + }, + { + "start": 22352.72, + "end": 22353.44, + "probability": 0.3155 + }, + { + "start": 22353.44, + "end": 22354.46, + "probability": 0.5732 + }, + { + "start": 22354.58, + "end": 22357.16, + "probability": 0.9102 + }, + { + "start": 22358.94, + "end": 22359.22, + "probability": 0.0208 + }, + { + "start": 22359.22, + "end": 22360.58, + "probability": 0.5436 + }, + { + "start": 22361.12, + "end": 22362.0, + "probability": 0.2727 + }, + { + "start": 22362.0, + "end": 22362.48, + "probability": 0.5641 + }, + { + "start": 22362.64, + "end": 22362.86, + "probability": 0.4482 + }, + { + "start": 22363.0, + "end": 22363.78, + "probability": 0.8115 + }, + { + "start": 22363.88, + "end": 22364.98, + "probability": 0.1754 + }, + { + "start": 22365.12, + "end": 22365.92, + "probability": 0.1458 + }, + { + "start": 22365.92, + "end": 22365.92, + "probability": 0.2971 + }, + { + "start": 22365.92, + "end": 22368.9, + "probability": 0.9102 + }, + { + "start": 22368.94, + "end": 22369.48, + "probability": 0.5272 + }, + { + "start": 22369.54, + "end": 22369.86, + "probability": 0.4198 + }, + { + "start": 22369.96, + "end": 22370.5, + "probability": 0.9019 + }, + { + "start": 22371.18, + "end": 22371.74, + "probability": 0.1077 + }, + { + "start": 22371.74, + "end": 22371.74, + "probability": 0.0438 + }, + { + "start": 22371.74, + "end": 22371.74, + "probability": 0.1964 + }, + { + "start": 22371.74, + "end": 22372.82, + "probability": 0.6118 + }, + { + "start": 22373.18, + "end": 22374.28, + "probability": 0.9023 + }, + { + "start": 22374.54, + "end": 22376.28, + "probability": 0.9156 + }, + { + "start": 22376.7, + "end": 22377.78, + "probability": 0.8596 + }, + { + "start": 22377.8, + "end": 22380.14, + "probability": 0.0521 + }, + { + "start": 22380.42, + "end": 22380.82, + "probability": 0.3171 + }, + { + "start": 22380.94, + "end": 22383.28, + "probability": 0.573 + }, + { + "start": 22383.36, + "end": 22385.24, + "probability": 0.9736 + }, + { + "start": 22385.34, + "end": 22386.92, + "probability": 0.9612 + }, + { + "start": 22387.1, + "end": 22387.8, + "probability": 0.8553 + }, + { + "start": 22388.28, + "end": 22390.48, + "probability": 0.8267 + }, + { + "start": 22390.48, + "end": 22392.32, + "probability": 0.7109 + }, + { + "start": 22392.32, + "end": 22392.88, + "probability": 0.0669 + }, + { + "start": 22393.16, + "end": 22394.46, + "probability": 0.5879 + }, + { + "start": 22394.66, + "end": 22397.52, + "probability": 0.9219 + }, + { + "start": 22397.92, + "end": 22398.54, + "probability": 0.8701 + }, + { + "start": 22398.74, + "end": 22399.78, + "probability": 0.8949 + }, + { + "start": 22400.06, + "end": 22401.68, + "probability": 0.998 + }, + { + "start": 22402.24, + "end": 22403.39, + "probability": 0.7208 + }, + { + "start": 22404.6, + "end": 22407.62, + "probability": 0.9534 + }, + { + "start": 22409.22, + "end": 22413.9, + "probability": 0.8273 + }, + { + "start": 22414.56, + "end": 22415.82, + "probability": 0.9737 + }, + { + "start": 22416.64, + "end": 22423.62, + "probability": 0.9785 + }, + { + "start": 22423.94, + "end": 22425.1, + "probability": 0.7542 + }, + { + "start": 22426.72, + "end": 22429.72, + "probability": 0.832 + }, + { + "start": 22430.52, + "end": 22432.12, + "probability": 0.7338 + }, + { + "start": 22433.14, + "end": 22435.98, + "probability": 0.9344 + }, + { + "start": 22436.76, + "end": 22443.68, + "probability": 0.9525 + }, + { + "start": 22444.42, + "end": 22446.16, + "probability": 0.9729 + }, + { + "start": 22446.24, + "end": 22447.12, + "probability": 0.712 + }, + { + "start": 22447.22, + "end": 22450.04, + "probability": 0.8983 + }, + { + "start": 22450.12, + "end": 22453.12, + "probability": 0.8384 + }, + { + "start": 22453.22, + "end": 22454.14, + "probability": 0.8762 + }, + { + "start": 22455.06, + "end": 22455.62, + "probability": 0.8358 + }, + { + "start": 22455.74, + "end": 22457.78, + "probability": 0.9701 + }, + { + "start": 22459.01, + "end": 22459.92, + "probability": 0.3589 + }, + { + "start": 22459.92, + "end": 22460.13, + "probability": 0.3334 + }, + { + "start": 22461.28, + "end": 22462.68, + "probability": 0.572 + }, + { + "start": 22463.26, + "end": 22466.96, + "probability": 0.8679 + }, + { + "start": 22467.92, + "end": 22470.96, + "probability": 0.8491 + }, + { + "start": 22471.74, + "end": 22472.9, + "probability": 0.9061 + }, + { + "start": 22473.18, + "end": 22473.62, + "probability": 0.8894 + }, + { + "start": 22474.54, + "end": 22476.74, + "probability": 0.8407 + }, + { + "start": 22477.6, + "end": 22478.14, + "probability": 0.558 + }, + { + "start": 22478.84, + "end": 22479.32, + "probability": 0.7083 + }, + { + "start": 22479.36, + "end": 22482.18, + "probability": 0.9767 + }, + { + "start": 22482.5, + "end": 22484.08, + "probability": 0.9909 + }, + { + "start": 22484.52, + "end": 22484.98, + "probability": 0.8637 + }, + { + "start": 22485.02, + "end": 22486.64, + "probability": 0.9904 + }, + { + "start": 22487.52, + "end": 22488.56, + "probability": 0.9873 + }, + { + "start": 22488.7, + "end": 22490.56, + "probability": 0.9716 + }, + { + "start": 22490.72, + "end": 22490.72, + "probability": 0.039 + }, + { + "start": 22490.72, + "end": 22493.56, + "probability": 0.957 + }, + { + "start": 22494.18, + "end": 22494.48, + "probability": 0.3913 + }, + { + "start": 22494.54, + "end": 22496.61, + "probability": 0.692 + }, + { + "start": 22497.1, + "end": 22503.62, + "probability": 0.0567 + }, + { + "start": 22503.84, + "end": 22504.1, + "probability": 0.0257 + }, + { + "start": 22504.1, + "end": 22504.1, + "probability": 0.062 + }, + { + "start": 22504.1, + "end": 22505.96, + "probability": 0.6946 + }, + { + "start": 22506.5, + "end": 22507.6, + "probability": 0.9014 + }, + { + "start": 22508.2, + "end": 22513.12, + "probability": 0.9189 + }, + { + "start": 22513.6, + "end": 22517.22, + "probability": 0.8401 + }, + { + "start": 22517.3, + "end": 22520.74, + "probability": 0.9356 + }, + { + "start": 22520.88, + "end": 22526.2, + "probability": 0.962 + }, + { + "start": 22526.36, + "end": 22527.66, + "probability": 0.8978 + }, + { + "start": 22528.28, + "end": 22529.06, + "probability": 0.6138 + }, + { + "start": 22529.94, + "end": 22531.04, + "probability": 0.8926 + }, + { + "start": 22531.9, + "end": 22537.1, + "probability": 0.9896 + }, + { + "start": 22537.22, + "end": 22538.06, + "probability": 0.8774 + }, + { + "start": 22538.68, + "end": 22540.24, + "probability": 0.96 + }, + { + "start": 22540.26, + "end": 22542.9, + "probability": 0.9238 + }, + { + "start": 22542.98, + "end": 22543.82, + "probability": 0.5792 + }, + { + "start": 22544.6, + "end": 22545.86, + "probability": 0.5464 + }, + { + "start": 22546.7, + "end": 22548.42, + "probability": 0.9072 + }, + { + "start": 22548.98, + "end": 22551.36, + "probability": 0.226 + }, + { + "start": 22551.46, + "end": 22553.48, + "probability": 0.1555 + }, + { + "start": 22553.48, + "end": 22556.4, + "probability": 0.9634 + }, + { + "start": 22557.7, + "end": 22560.4, + "probability": 0.9651 + }, + { + "start": 22561.22, + "end": 22562.28, + "probability": 0.9257 + }, + { + "start": 22562.94, + "end": 22565.44, + "probability": 0.7689 + }, + { + "start": 22566.0, + "end": 22567.62, + "probability": 0.9865 + }, + { + "start": 22568.76, + "end": 22569.04, + "probability": 0.822 + }, + { + "start": 22569.7, + "end": 22570.18, + "probability": 0.1534 + }, + { + "start": 22570.96, + "end": 22571.38, + "probability": 0.2073 + }, + { + "start": 22571.38, + "end": 22571.94, + "probability": 0.5505 + }, + { + "start": 22573.12, + "end": 22574.82, + "probability": 0.4746 + }, + { + "start": 22574.82, + "end": 22575.44, + "probability": 0.8157 + }, + { + "start": 22575.52, + "end": 22577.52, + "probability": 0.9165 + }, + { + "start": 22578.04, + "end": 22579.08, + "probability": 0.6682 + }, + { + "start": 22579.58, + "end": 22580.97, + "probability": 0.9731 + }, + { + "start": 22581.2, + "end": 22581.7, + "probability": 0.9878 + }, + { + "start": 22581.8, + "end": 22582.2, + "probability": 0.603 + }, + { + "start": 22582.74, + "end": 22582.74, + "probability": 0.0058 + }, + { + "start": 22582.74, + "end": 22584.16, + "probability": 0.8201 + }, + { + "start": 22584.48, + "end": 22586.18, + "probability": 0.9218 + }, + { + "start": 22586.36, + "end": 22587.48, + "probability": 0.9357 + }, + { + "start": 22587.94, + "end": 22590.06, + "probability": 0.9551 + }, + { + "start": 22590.18, + "end": 22590.55, + "probability": 0.9824 + }, + { + "start": 22590.64, + "end": 22591.5, + "probability": 0.9842 + }, + { + "start": 22592.26, + "end": 22593.36, + "probability": 0.9287 + }, + { + "start": 22593.58, + "end": 22596.82, + "probability": 0.8453 + }, + { + "start": 22598.26, + "end": 22599.18, + "probability": 0.9264 + }, + { + "start": 22599.38, + "end": 22600.8, + "probability": 0.9751 + }, + { + "start": 22601.11, + "end": 22603.28, + "probability": 0.9414 + }, + { + "start": 22603.4, + "end": 22604.64, + "probability": 0.9143 + }, + { + "start": 22604.78, + "end": 22605.56, + "probability": 0.9188 + }, + { + "start": 22606.14, + "end": 22607.37, + "probability": 0.8743 + }, + { + "start": 22607.58, + "end": 22614.2, + "probability": 0.9768 + }, + { + "start": 22614.38, + "end": 22615.3, + "probability": 0.7965 + }, + { + "start": 22615.82, + "end": 22618.3, + "probability": 0.9801 + }, + { + "start": 22618.72, + "end": 22620.46, + "probability": 0.9548 + }, + { + "start": 22620.86, + "end": 22623.4, + "probability": 0.9731 + }, + { + "start": 22623.82, + "end": 22624.7, + "probability": 0.7683 + }, + { + "start": 22624.78, + "end": 22625.34, + "probability": 0.9623 + }, + { + "start": 22625.6, + "end": 22628.4, + "probability": 0.8411 + }, + { + "start": 22628.9, + "end": 22628.98, + "probability": 0.019 + }, + { + "start": 22628.98, + "end": 22631.14, + "probability": 0.7702 + }, + { + "start": 22631.62, + "end": 22631.62, + "probability": 0.3726 + }, + { + "start": 22631.62, + "end": 22632.78, + "probability": 0.8818 + }, + { + "start": 22633.28, + "end": 22633.4, + "probability": 0.0217 + }, + { + "start": 22633.4, + "end": 22634.92, + "probability": 0.7533 + }, + { + "start": 22635.08, + "end": 22636.9, + "probability": 0.8564 + }, + { + "start": 22637.06, + "end": 22638.04, + "probability": 0.9193 + }, + { + "start": 22638.6, + "end": 22640.7, + "probability": 0.7308 + }, + { + "start": 22641.12, + "end": 22643.08, + "probability": 0.8907 + }, + { + "start": 22643.3, + "end": 22644.7, + "probability": 0.9573 + }, + { + "start": 22645.3, + "end": 22646.48, + "probability": 0.8788 + }, + { + "start": 22646.92, + "end": 22649.82, + "probability": 0.9587 + }, + { + "start": 22649.96, + "end": 22651.16, + "probability": 0.924 + }, + { + "start": 22651.38, + "end": 22652.88, + "probability": 0.941 + }, + { + "start": 22652.92, + "end": 22653.58, + "probability": 0.812 + }, + { + "start": 22654.06, + "end": 22655.58, + "probability": 0.9824 + }, + { + "start": 22655.72, + "end": 22656.63, + "probability": 0.7847 + }, + { + "start": 22657.2, + "end": 22657.3, + "probability": 0.0179 + }, + { + "start": 22657.3, + "end": 22658.78, + "probability": 0.7231 + }, + { + "start": 22659.56, + "end": 22660.72, + "probability": 0.8032 + }, + { + "start": 22660.86, + "end": 22662.62, + "probability": 0.9272 + }, + { + "start": 22662.68, + "end": 22663.06, + "probability": 0.6743 + }, + { + "start": 22664.52, + "end": 22664.52, + "probability": 0.0253 + }, + { + "start": 22664.52, + "end": 22666.08, + "probability": 0.9 + }, + { + "start": 22666.18, + "end": 22666.86, + "probability": 0.4623 + }, + { + "start": 22667.78, + "end": 22668.56, + "probability": 0.5548 + }, + { + "start": 22668.76, + "end": 22669.02, + "probability": 0.0043 + }, + { + "start": 22669.16, + "end": 22670.16, + "probability": 0.8271 + }, + { + "start": 22670.4, + "end": 22671.08, + "probability": 0.9321 + }, + { + "start": 22671.16, + "end": 22671.94, + "probability": 0.9541 + }, + { + "start": 22672.52, + "end": 22677.3, + "probability": 0.9846 + }, + { + "start": 22677.52, + "end": 22679.02, + "probability": 0.9983 + }, + { + "start": 22679.92, + "end": 22679.92, + "probability": 0.0218 + }, + { + "start": 22679.92, + "end": 22681.28, + "probability": 0.8379 + }, + { + "start": 22681.8, + "end": 22681.8, + "probability": 0.037 + }, + { + "start": 22681.8, + "end": 22683.5, + "probability": 0.847 + }, + { + "start": 22684.21, + "end": 22685.24, + "probability": 0.2289 + }, + { + "start": 22686.0, + "end": 22686.0, + "probability": 0.0338 + }, + { + "start": 22686.0, + "end": 22689.36, + "probability": 0.9316 + }, + { + "start": 22689.68, + "end": 22690.82, + "probability": 0.853 + }, + { + "start": 22691.28, + "end": 22693.32, + "probability": 0.9049 + }, + { + "start": 22693.34, + "end": 22694.92, + "probability": 0.4116 + }, + { + "start": 22695.24, + "end": 22697.6, + "probability": 0.9324 + }, + { + "start": 22698.08, + "end": 22701.1, + "probability": 0.9655 + }, + { + "start": 22701.36, + "end": 22702.02, + "probability": 0.023 + }, + { + "start": 22702.02, + "end": 22703.1, + "probability": 0.8911 + }, + { + "start": 22703.44, + "end": 22703.98, + "probability": 0.6976 + }, + { + "start": 22704.22, + "end": 22704.74, + "probability": 0.2054 + }, + { + "start": 22704.74, + "end": 22706.08, + "probability": 0.1836 + }, + { + "start": 22706.16, + "end": 22707.9, + "probability": 0.1569 + }, + { + "start": 22707.9, + "end": 22709.0, + "probability": 0.6237 + }, + { + "start": 22709.52, + "end": 22710.3, + "probability": 0.8929 + }, + { + "start": 22711.04, + "end": 22712.18, + "probability": 0.6143 + }, + { + "start": 22712.48, + "end": 22712.52, + "probability": 0.0587 + }, + { + "start": 22712.52, + "end": 22715.5, + "probability": 0.9955 + }, + { + "start": 22715.68, + "end": 22717.54, + "probability": 0.9976 + }, + { + "start": 22718.2, + "end": 22719.95, + "probability": 0.9917 + }, + { + "start": 22720.74, + "end": 22723.06, + "probability": 0.5869 + }, + { + "start": 22724.04, + "end": 22725.46, + "probability": 0.9181 + }, + { + "start": 22726.02, + "end": 22727.24, + "probability": 0.9029 + }, + { + "start": 22728.06, + "end": 22731.06, + "probability": 0.9969 + }, + { + "start": 22731.38, + "end": 22733.5, + "probability": 0.9977 + }, + { + "start": 22734.44, + "end": 22735.36, + "probability": 0.5428 + }, + { + "start": 22736.56, + "end": 22738.46, + "probability": 0.9336 + }, + { + "start": 22739.58, + "end": 22741.6, + "probability": 0.9873 + }, + { + "start": 22742.74, + "end": 22745.2, + "probability": 0.9875 + }, + { + "start": 22745.42, + "end": 22746.32, + "probability": 0.9487 + }, + { + "start": 22747.3, + "end": 22750.74, + "probability": 0.9604 + }, + { + "start": 22751.54, + "end": 22752.5, + "probability": 0.7845 + }, + { + "start": 22753.3, + "end": 22756.46, + "probability": 0.9142 + }, + { + "start": 22756.72, + "end": 22758.66, + "probability": 0.8086 + }, + { + "start": 22758.98, + "end": 22763.34, + "probability": 0.9711 + }, + { + "start": 22763.7, + "end": 22765.44, + "probability": 0.9456 + }, + { + "start": 22765.86, + "end": 22766.58, + "probability": 0.8738 + }, + { + "start": 22766.9, + "end": 22773.94, + "probability": 0.8483 + }, + { + "start": 22773.98, + "end": 22774.54, + "probability": 0.7202 + }, + { + "start": 22774.66, + "end": 22776.1, + "probability": 0.6917 + }, + { + "start": 22776.36, + "end": 22778.46, + "probability": 0.5144 + }, + { + "start": 22778.48, + "end": 22780.88, + "probability": 0.6505 + }, + { + "start": 22781.44, + "end": 22781.7, + "probability": 0.3969 + }, + { + "start": 22781.7, + "end": 22781.74, + "probability": 0.4368 + }, + { + "start": 22781.86, + "end": 22781.86, + "probability": 0.3948 + }, + { + "start": 22781.86, + "end": 22785.42, + "probability": 0.9761 + }, + { + "start": 22785.58, + "end": 22787.46, + "probability": 0.6727 + }, + { + "start": 22787.46, + "end": 22790.03, + "probability": 0.5791 + }, + { + "start": 22790.54, + "end": 22791.45, + "probability": 0.7852 + }, + { + "start": 22791.7, + "end": 22794.66, + "probability": 0.9883 + }, + { + "start": 22794.86, + "end": 22799.24, + "probability": 0.9972 + }, + { + "start": 22799.38, + "end": 22802.22, + "probability": 0.9664 + }, + { + "start": 22802.84, + "end": 22802.88, + "probability": 0.0334 + }, + { + "start": 22802.88, + "end": 22804.24, + "probability": 0.7486 + }, + { + "start": 22804.86, + "end": 22807.36, + "probability": 0.7603 + }, + { + "start": 22807.58, + "end": 22807.76, + "probability": 0.1822 + }, + { + "start": 22807.76, + "end": 22808.58, + "probability": 0.7419 + }, + { + "start": 22809.14, + "end": 22809.62, + "probability": 0.5087 + }, + { + "start": 22810.24, + "end": 22811.16, + "probability": 0.6445 + }, + { + "start": 22811.44, + "end": 22813.06, + "probability": 0.3049 + }, + { + "start": 22813.06, + "end": 22815.64, + "probability": 0.1956 + }, + { + "start": 22815.66, + "end": 22815.94, + "probability": 0.0232 + }, + { + "start": 22815.94, + "end": 22817.05, + "probability": 0.3816 + }, + { + "start": 22817.6, + "end": 22818.34, + "probability": 0.1459 + }, + { + "start": 22818.34, + "end": 22819.3, + "probability": 0.1602 + }, + { + "start": 22819.5, + "end": 22820.34, + "probability": 0.1893 + }, + { + "start": 22820.34, + "end": 22821.62, + "probability": 0.5702 + }, + { + "start": 22821.62, + "end": 22822.06, + "probability": 0.1602 + }, + { + "start": 22822.34, + "end": 22823.18, + "probability": 0.4887 + }, + { + "start": 22823.36, + "end": 22824.0, + "probability": 0.4533 + }, + { + "start": 22824.38, + "end": 22825.22, + "probability": 0.6733 + }, + { + "start": 22825.3, + "end": 22826.26, + "probability": 0.8282 + }, + { + "start": 22826.36, + "end": 22828.08, + "probability": 0.0975 + }, + { + "start": 22828.18, + "end": 22831.24, + "probability": 0.6082 + }, + { + "start": 22840.54, + "end": 22841.4, + "probability": 0.2024 + }, + { + "start": 22841.56, + "end": 22842.74, + "probability": 0.0297 + }, + { + "start": 22842.98, + "end": 22845.28, + "probability": 0.0934 + }, + { + "start": 22845.38, + "end": 22849.08, + "probability": 0.0633 + }, + { + "start": 22849.08, + "end": 22850.36, + "probability": 0.287 + }, + { + "start": 22851.48, + "end": 22852.96, + "probability": 0.4162 + }, + { + "start": 22854.64, + "end": 22855.9, + "probability": 0.6773 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.0, + "end": 22965.0, + "probability": 0.0 + }, + { + "start": 22965.14, + "end": 22965.86, + "probability": 0.127 + }, + { + "start": 22966.58, + "end": 22968.34, + "probability": 0.0264 + }, + { + "start": 22968.34, + "end": 22968.34, + "probability": 0.2247 + }, + { + "start": 22968.34, + "end": 22968.86, + "probability": 0.1558 + }, + { + "start": 22968.96, + "end": 22970.14, + "probability": 0.0031 + }, + { + "start": 22974.62, + "end": 22982.12, + "probability": 0.2563 + }, + { + "start": 22984.0, + "end": 22984.1, + "probability": 0.0559 + }, + { + "start": 22986.1, + "end": 22986.76, + "probability": 0.1226 + }, + { + "start": 22986.94, + "end": 22987.08, + "probability": 0.085 + }, + { + "start": 22987.08, + "end": 22987.42, + "probability": 0.236 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.0, + "end": 23093.0, + "probability": 0.0 + }, + { + "start": 23093.1, + "end": 23093.46, + "probability": 0.0304 + }, + { + "start": 23093.46, + "end": 23097.2, + "probability": 0.4872 + }, + { + "start": 23097.92, + "end": 23102.44, + "probability": 0.0749 + }, + { + "start": 23103.78, + "end": 23104.24, + "probability": 0.099 + }, + { + "start": 23104.24, + "end": 23105.87, + "probability": 0.1975 + }, + { + "start": 23107.04, + "end": 23107.04, + "probability": 0.1037 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23215.0, + "end": 23215.0, + "probability": 0.0 + }, + { + "start": 23218.44, + "end": 23222.76, + "probability": 0.0348 + }, + { + "start": 23222.76, + "end": 23227.38, + "probability": 0.1096 + }, + { + "start": 23228.66, + "end": 23228.88, + "probability": 0.5171 + }, + { + "start": 23231.06, + "end": 23232.28, + "probability": 0.1068 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23348.0, + "end": 23348.0, + "probability": 0.0 + }, + { + "start": 23358.24, + "end": 23359.32, + "probability": 0.1134 + }, + { + "start": 23359.4, + "end": 23365.0, + "probability": 0.1525 + }, + { + "start": 23365.46, + "end": 23366.14, + "probability": 0.2395 + }, + { + "start": 23366.7, + "end": 23369.36, + "probability": 0.1632 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.0, + "end": 23475.0, + "probability": 0.0 + }, + { + "start": 23475.24, + "end": 23476.74, + "probability": 0.0022 + }, + { + "start": 23477.74, + "end": 23487.74, + "probability": 0.7403 + }, + { + "start": 23487.82, + "end": 23491.82, + "probability": 0.9966 + }, + { + "start": 23492.04, + "end": 23492.54, + "probability": 0.3555 + }, + { + "start": 23492.64, + "end": 23493.8, + "probability": 0.5266 + }, + { + "start": 23494.02, + "end": 23494.52, + "probability": 0.5232 + }, + { + "start": 23494.96, + "end": 23495.28, + "probability": 0.071 + }, + { + "start": 23495.4, + "end": 23495.6, + "probability": 0.0047 + }, + { + "start": 23495.6, + "end": 23495.6, + "probability": 0.131 + }, + { + "start": 23495.6, + "end": 23495.6, + "probability": 0.0994 + }, + { + "start": 23495.6, + "end": 23497.14, + "probability": 0.4061 + }, + { + "start": 23497.48, + "end": 23498.7, + "probability": 0.8653 + }, + { + "start": 23499.62, + "end": 23501.92, + "probability": 0.6029 + }, + { + "start": 23502.0, + "end": 23502.58, + "probability": 0.9101 + }, + { + "start": 23502.68, + "end": 23506.16, + "probability": 0.9946 + }, + { + "start": 23507.02, + "end": 23509.48, + "probability": 0.8718 + }, + { + "start": 23510.44, + "end": 23517.06, + "probability": 0.9957 + }, + { + "start": 23517.82, + "end": 23519.9, + "probability": 0.9902 + }, + { + "start": 23520.46, + "end": 23522.0, + "probability": 0.9963 + }, + { + "start": 23522.68, + "end": 23525.04, + "probability": 0.9109 + }, + { + "start": 23525.8, + "end": 23529.34, + "probability": 0.9923 + }, + { + "start": 23529.35, + "end": 23533.96, + "probability": 0.998 + }, + { + "start": 23534.52, + "end": 23535.66, + "probability": 0.6458 + }, + { + "start": 23535.7, + "end": 23539.34, + "probability": 0.9948 + }, + { + "start": 23540.24, + "end": 23544.18, + "probability": 0.9992 + }, + { + "start": 23544.34, + "end": 23544.7, + "probability": 0.3946 + }, + { + "start": 23544.82, + "end": 23545.08, + "probability": 0.5373 + }, + { + "start": 23545.45, + "end": 23547.96, + "probability": 0.8891 + }, + { + "start": 23548.58, + "end": 23549.66, + "probability": 0.9321 + }, + { + "start": 23549.78, + "end": 23553.34, + "probability": 0.9607 + }, + { + "start": 23554.26, + "end": 23558.72, + "probability": 0.9842 + }, + { + "start": 23558.78, + "end": 23560.06, + "probability": 0.7311 + }, + { + "start": 23560.58, + "end": 23562.06, + "probability": 0.9663 + }, + { + "start": 23562.62, + "end": 23563.96, + "probability": 0.6016 + }, + { + "start": 23564.14, + "end": 23564.22, + "probability": 0.0208 + }, + { + "start": 23564.22, + "end": 23567.24, + "probability": 0.9696 + }, + { + "start": 23567.28, + "end": 23568.0, + "probability": 0.2308 + }, + { + "start": 23568.08, + "end": 23569.88, + "probability": 0.5631 + }, + { + "start": 23569.9, + "end": 23571.7, + "probability": 0.6735 + }, + { + "start": 23571.98, + "end": 23575.18, + "probability": 0.9822 + }, + { + "start": 23575.18, + "end": 23579.14, + "probability": 0.9202 + }, + { + "start": 23579.58, + "end": 23581.16, + "probability": 0.8913 + }, + { + "start": 23581.76, + "end": 23583.86, + "probability": 0.9177 + }, + { + "start": 23583.9, + "end": 23585.88, + "probability": 0.9698 + }, + { + "start": 23586.06, + "end": 23587.96, + "probability": 0.8841 + }, + { + "start": 23588.76, + "end": 23594.16, + "probability": 0.7483 + }, + { + "start": 23594.34, + "end": 23595.35, + "probability": 0.8539 + }, + { + "start": 23596.28, + "end": 23597.12, + "probability": 0.9547 + }, + { + "start": 23597.66, + "end": 23599.76, + "probability": 0.9563 + }, + { + "start": 23600.14, + "end": 23601.18, + "probability": 0.7631 + }, + { + "start": 23601.88, + "end": 23606.1, + "probability": 0.9713 + }, + { + "start": 23607.0, + "end": 23607.16, + "probability": 0.0373 + }, + { + "start": 23607.16, + "end": 23609.88, + "probability": 0.9919 + }, + { + "start": 23610.22, + "end": 23615.46, + "probability": 0.9912 + }, + { + "start": 23615.78, + "end": 23617.64, + "probability": 0.9928 + }, + { + "start": 23617.76, + "end": 23618.6, + "probability": 0.6531 + }, + { + "start": 23619.28, + "end": 23620.14, + "probability": 0.4429 + }, + { + "start": 23620.18, + "end": 23622.74, + "probability": 0.9915 + }, + { + "start": 23623.14, + "end": 23626.04, + "probability": 0.9961 + }, + { + "start": 23627.06, + "end": 23627.06, + "probability": 0.0756 + }, + { + "start": 23627.06, + "end": 23630.3, + "probability": 0.9729 + }, + { + "start": 23631.02, + "end": 23633.19, + "probability": 0.9862 + }, + { + "start": 23634.34, + "end": 23635.36, + "probability": 0.7388 + }, + { + "start": 23635.5, + "end": 23636.44, + "probability": 0.8949 + }, + { + "start": 23636.58, + "end": 23637.24, + "probability": 0.8834 + }, + { + "start": 23637.32, + "end": 23639.24, + "probability": 0.9287 + }, + { + "start": 23640.0, + "end": 23644.72, + "probability": 0.9937 + }, + { + "start": 23644.76, + "end": 23645.66, + "probability": 0.8853 + }, + { + "start": 23645.94, + "end": 23647.88, + "probability": 0.985 + }, + { + "start": 23648.3, + "end": 23649.78, + "probability": 0.8181 + }, + { + "start": 23650.04, + "end": 23650.52, + "probability": 0.8618 + }, + { + "start": 23650.94, + "end": 23652.14, + "probability": 0.9669 + }, + { + "start": 23652.34, + "end": 23654.64, + "probability": 0.9325 + }, + { + "start": 23655.06, + "end": 23656.98, + "probability": 0.9599 + }, + { + "start": 23657.44, + "end": 23662.7, + "probability": 0.9491 + }, + { + "start": 23663.68, + "end": 23669.24, + "probability": 0.9951 + }, + { + "start": 23669.72, + "end": 23672.44, + "probability": 0.6924 + }, + { + "start": 23673.36, + "end": 23676.06, + "probability": 0.9668 + }, + { + "start": 23676.68, + "end": 23677.42, + "probability": 0.6167 + }, + { + "start": 23678.04, + "end": 23679.54, + "probability": 0.9283 + }, + { + "start": 23680.24, + "end": 23681.18, + "probability": 0.8948 + }, + { + "start": 23681.76, + "end": 23686.26, + "probability": 0.7903 + }, + { + "start": 23686.62, + "end": 23687.46, + "probability": 0.9535 + }, + { + "start": 23687.92, + "end": 23688.92, + "probability": 0.9497 + }, + { + "start": 23689.5, + "end": 23691.02, + "probability": 0.9829 + }, + { + "start": 23691.08, + "end": 23692.1, + "probability": 0.8946 + }, + { + "start": 23692.8, + "end": 23696.28, + "probability": 0.9724 + }, + { + "start": 23696.92, + "end": 23699.18, + "probability": 0.9214 + }, + { + "start": 23699.86, + "end": 23701.36, + "probability": 0.9004 + }, + { + "start": 23701.86, + "end": 23703.96, + "probability": 0.9929 + }, + { + "start": 23704.76, + "end": 23708.64, + "probability": 0.948 + }, + { + "start": 23708.68, + "end": 23712.42, + "probability": 0.8579 + }, + { + "start": 23714.06, + "end": 23716.02, + "probability": 0.7654 + }, + { + "start": 23716.82, + "end": 23720.15, + "probability": 0.9119 + }, + { + "start": 23721.54, + "end": 23725.7, + "probability": 0.8855 + }, + { + "start": 23726.28, + "end": 23728.66, + "probability": 0.9943 + }, + { + "start": 23729.58, + "end": 23734.3, + "probability": 0.9971 + }, + { + "start": 23735.28, + "end": 23739.12, + "probability": 0.7759 + }, + { + "start": 23739.84, + "end": 23741.0, + "probability": 0.6155 + }, + { + "start": 23741.46, + "end": 23745.22, + "probability": 0.9968 + }, + { + "start": 23746.2, + "end": 23750.92, + "probability": 0.9281 + }, + { + "start": 23751.72, + "end": 23754.68, + "probability": 0.7924 + }, + { + "start": 23755.2, + "end": 23756.54, + "probability": 0.8334 + }, + { + "start": 23757.04, + "end": 23760.5, + "probability": 0.9898 + }, + { + "start": 23762.76, + "end": 23764.3, + "probability": 0.2895 + }, + { + "start": 23766.52, + "end": 23767.14, + "probability": 0.0813 + }, + { + "start": 23767.14, + "end": 23767.14, + "probability": 0.0011 + }, + { + "start": 23767.14, + "end": 23767.14, + "probability": 0.0642 + }, + { + "start": 23767.14, + "end": 23768.22, + "probability": 0.1889 + }, + { + "start": 23768.38, + "end": 23769.78, + "probability": 0.4083 + }, + { + "start": 23769.94, + "end": 23773.8, + "probability": 0.3321 + }, + { + "start": 23774.46, + "end": 23775.2, + "probability": 0.4216 + }, + { + "start": 23776.46, + "end": 23776.46, + "probability": 0.2296 + }, + { + "start": 23776.62, + "end": 23777.26, + "probability": 0.5273 + }, + { + "start": 23777.42, + "end": 23783.12, + "probability": 0.666 + }, + { + "start": 23783.52, + "end": 23785.62, + "probability": 0.1776 + }, + { + "start": 23787.5, + "end": 23789.76, + "probability": 0.5069 + }, + { + "start": 23789.86, + "end": 23790.94, + "probability": 0.9541 + }, + { + "start": 23791.06, + "end": 23793.14, + "probability": 0.9799 + }, + { + "start": 23793.52, + "end": 23794.85, + "probability": 0.9941 + }, + { + "start": 23795.62, + "end": 23799.98, + "probability": 0.9985 + }, + { + "start": 23801.0, + "end": 23801.54, + "probability": 0.4842 + }, + { + "start": 23802.56, + "end": 23803.04, + "probability": 0.9595 + }, + { + "start": 23803.64, + "end": 23806.66, + "probability": 0.9866 + }, + { + "start": 23806.76, + "end": 23807.86, + "probability": 0.9044 + }, + { + "start": 23808.14, + "end": 23810.36, + "probability": 0.943 + }, + { + "start": 23811.44, + "end": 23815.06, + "probability": 0.846 + }, + { + "start": 23815.18, + "end": 23817.3, + "probability": 0.8098 + }, + { + "start": 23817.3, + "end": 23817.88, + "probability": 0.7675 + }, + { + "start": 23818.0, + "end": 23818.84, + "probability": 0.8961 + }, + { + "start": 23819.92, + "end": 23822.42, + "probability": 0.7815 + }, + { + "start": 23823.14, + "end": 23827.88, + "probability": 0.973 + }, + { + "start": 23827.98, + "end": 23829.44, + "probability": 0.9883 + }, + { + "start": 23830.4, + "end": 23831.78, + "probability": 0.9817 + }, + { + "start": 23832.04, + "end": 23832.67, + "probability": 0.8871 + }, + { + "start": 23833.74, + "end": 23837.04, + "probability": 0.8018 + }, + { + "start": 23837.94, + "end": 23840.82, + "probability": 0.9966 + }, + { + "start": 23841.5, + "end": 23844.24, + "probability": 0.7915 + }, + { + "start": 23844.94, + "end": 23849.61, + "probability": 0.132 + }, + { + "start": 23857.82, + "end": 23858.8, + "probability": 0.3674 + }, + { + "start": 23858.8, + "end": 23858.8, + "probability": 0.066 + }, + { + "start": 23858.8, + "end": 23858.8, + "probability": 0.1129 + }, + { + "start": 23858.8, + "end": 23858.8, + "probability": 0.1487 + }, + { + "start": 23858.8, + "end": 23860.28, + "probability": 0.6029 + }, + { + "start": 23860.46, + "end": 23862.08, + "probability": 0.3572 + }, + { + "start": 23862.62, + "end": 23863.34, + "probability": 0.6458 + }, + { + "start": 23863.42, + "end": 23866.94, + "probability": 0.953 + }, + { + "start": 23867.4, + "end": 23869.06, + "probability": 0.9744 + }, + { + "start": 23869.7, + "end": 23871.32, + "probability": 0.9911 + }, + { + "start": 23871.9, + "end": 23872.78, + "probability": 0.8624 + }, + { + "start": 23873.5, + "end": 23877.28, + "probability": 0.9961 + }, + { + "start": 23877.66, + "end": 23882.3, + "probability": 0.9615 + }, + { + "start": 23882.44, + "end": 23882.8, + "probability": 0.4763 + }, + { + "start": 23882.8, + "end": 23886.22, + "probability": 0.6155 + }, + { + "start": 23886.88, + "end": 23888.29, + "probability": 0.8502 + }, + { + "start": 23889.26, + "end": 23890.9, + "probability": 0.9021 + }, + { + "start": 23891.68, + "end": 23893.94, + "probability": 0.9829 + }, + { + "start": 23894.32, + "end": 23898.82, + "probability": 0.9718 + }, + { + "start": 23899.2, + "end": 23903.5, + "probability": 0.9546 + }, + { + "start": 23904.3, + "end": 23905.72, + "probability": 0.8053 + }, + { + "start": 23906.36, + "end": 23908.06, + "probability": 0.9378 + }, + { + "start": 23908.9, + "end": 23913.54, + "probability": 0.9318 + }, + { + "start": 23914.0, + "end": 23915.2, + "probability": 0.494 + }, + { + "start": 23915.28, + "end": 23916.1, + "probability": 0.8216 + }, + { + "start": 23916.4, + "end": 23918.08, + "probability": 0.9832 + }, + { + "start": 23918.3, + "end": 23923.26, + "probability": 0.969 + }, + { + "start": 23923.74, + "end": 23926.22, + "probability": 0.9767 + }, + { + "start": 23927.52, + "end": 23929.4, + "probability": 0.9896 + }, + { + "start": 23929.44, + "end": 23930.14, + "probability": 0.7284 + }, + { + "start": 23930.28, + "end": 23930.8, + "probability": 0.7399 + }, + { + "start": 23930.86, + "end": 23931.8, + "probability": 0.9696 + }, + { + "start": 23932.62, + "end": 23935.08, + "probability": 0.8945 + }, + { + "start": 23936.22, + "end": 23938.0, + "probability": 0.7564 + }, + { + "start": 23938.0, + "end": 23939.08, + "probability": 0.6433 + }, + { + "start": 23939.14, + "end": 23941.02, + "probability": 0.9409 + }, + { + "start": 23941.62, + "end": 23942.38, + "probability": 0.8492 + }, + { + "start": 23942.72, + "end": 23943.98, + "probability": 0.6104 + }, + { + "start": 23944.36, + "end": 23947.52, + "probability": 0.7244 + }, + { + "start": 23949.04, + "end": 23950.38, + "probability": 0.8785 + }, + { + "start": 23951.12, + "end": 23954.81, + "probability": 0.9648 + }, + { + "start": 23957.68, + "end": 23958.86, + "probability": 0.6973 + }, + { + "start": 23959.06, + "end": 23962.18, + "probability": 0.8005 + }, + { + "start": 23962.96, + "end": 23964.34, + "probability": 0.9911 + }, + { + "start": 23964.44, + "end": 23965.82, + "probability": 0.8745 + }, + { + "start": 23965.98, + "end": 23969.54, + "probability": 0.9976 + }, + { + "start": 23970.38, + "end": 23973.08, + "probability": 0.9883 + }, + { + "start": 23973.32, + "end": 23977.32, + "probability": 0.8229 + }, + { + "start": 23977.78, + "end": 23979.38, + "probability": 0.9253 + }, + { + "start": 23980.12, + "end": 23982.98, + "probability": 0.9946 + }, + { + "start": 23983.5, + "end": 23985.88, + "probability": 0.877 + }, + { + "start": 23986.56, + "end": 23988.38, + "probability": 0.9779 + }, + { + "start": 23988.5, + "end": 23989.96, + "probability": 0.9985 + }, + { + "start": 23990.24, + "end": 23991.29, + "probability": 0.8496 + }, + { + "start": 23991.34, + "end": 23993.96, + "probability": 0.9786 + }, + { + "start": 23994.34, + "end": 23995.36, + "probability": 0.9039 + }, + { + "start": 23996.24, + "end": 23996.72, + "probability": 0.5365 + }, + { + "start": 23997.3, + "end": 23999.06, + "probability": 0.9685 + }, + { + "start": 24000.14, + "end": 24003.58, + "probability": 0.986 + }, + { + "start": 24004.72, + "end": 24005.76, + "probability": 0.7563 + }, + { + "start": 24006.06, + "end": 24007.08, + "probability": 0.8569 + }, + { + "start": 24007.18, + "end": 24008.32, + "probability": 0.9737 + }, + { + "start": 24009.32, + "end": 24011.08, + "probability": 0.9663 + }, + { + "start": 24011.44, + "end": 24016.04, + "probability": 0.8984 + }, + { + "start": 24016.14, + "end": 24017.8, + "probability": 0.6583 + }, + { + "start": 24018.24, + "end": 24020.94, + "probability": 0.9143 + }, + { + "start": 24021.82, + "end": 24025.68, + "probability": 0.8647 + }, + { + "start": 24026.84, + "end": 24028.25, + "probability": 0.9204 + }, + { + "start": 24029.32, + "end": 24032.82, + "probability": 0.9754 + }, + { + "start": 24033.4, + "end": 24037.46, + "probability": 0.9704 + }, + { + "start": 24038.54, + "end": 24039.78, + "probability": 0.8104 + }, + { + "start": 24040.76, + "end": 24042.98, + "probability": 0.8642 + }, + { + "start": 24043.8, + "end": 24046.04, + "probability": 0.959 + }, + { + "start": 24046.9, + "end": 24049.5, + "probability": 0.9447 + }, + { + "start": 24050.46, + "end": 24052.68, + "probability": 0.98 + }, + { + "start": 24053.18, + "end": 24054.4, + "probability": 0.9533 + }, + { + "start": 24055.02, + "end": 24057.86, + "probability": 0.981 + }, + { + "start": 24058.52, + "end": 24061.02, + "probability": 0.9883 + }, + { + "start": 24062.2, + "end": 24062.46, + "probability": 0.1627 + }, + { + "start": 24062.46, + "end": 24066.08, + "probability": 0.9498 + }, + { + "start": 24066.44, + "end": 24067.37, + "probability": 0.981 + }, + { + "start": 24067.86, + "end": 24070.42, + "probability": 0.9964 + }, + { + "start": 24071.36, + "end": 24071.92, + "probability": 0.5033 + }, + { + "start": 24073.08, + "end": 24075.1, + "probability": 0.9736 + }, + { + "start": 24075.62, + "end": 24078.4, + "probability": 0.8756 + }, + { + "start": 24078.6, + "end": 24079.9, + "probability": 0.6715 + }, + { + "start": 24080.82, + "end": 24081.76, + "probability": 0.5075 + }, + { + "start": 24082.52, + "end": 24083.84, + "probability": 0.9524 + }, + { + "start": 24085.12, + "end": 24087.5, + "probability": 0.9878 + }, + { + "start": 24087.76, + "end": 24088.74, + "probability": 0.9091 + }, + { + "start": 24088.9, + "end": 24089.76, + "probability": 0.7033 + }, + { + "start": 24090.56, + "end": 24091.94, + "probability": 0.8103 + }, + { + "start": 24092.6, + "end": 24096.96, + "probability": 0.9925 + }, + { + "start": 24097.72, + "end": 24101.66, + "probability": 0.9816 + }, + { + "start": 24101.88, + "end": 24102.52, + "probability": 0.9319 + }, + { + "start": 24102.6, + "end": 24103.52, + "probability": 0.8004 + }, + { + "start": 24103.92, + "end": 24104.9, + "probability": 0.6446 + }, + { + "start": 24105.78, + "end": 24109.88, + "probability": 0.998 + }, + { + "start": 24110.52, + "end": 24114.82, + "probability": 0.9683 + }, + { + "start": 24114.82, + "end": 24118.34, + "probability": 0.9991 + }, + { + "start": 24118.76, + "end": 24119.9, + "probability": 0.9756 + }, + { + "start": 24120.64, + "end": 24121.18, + "probability": 0.9866 + }, + { + "start": 24122.18, + "end": 24125.66, + "probability": 0.9951 + }, + { + "start": 24126.4, + "end": 24127.58, + "probability": 0.6035 + }, + { + "start": 24127.58, + "end": 24130.54, + "probability": 0.9763 + }, + { + "start": 24131.6, + "end": 24133.66, + "probability": 0.6024 + }, + { + "start": 24134.34, + "end": 24135.82, + "probability": 0.66 + }, + { + "start": 24136.2, + "end": 24137.22, + "probability": 0.9703 + }, + { + "start": 24137.64, + "end": 24142.04, + "probability": 0.9888 + }, + { + "start": 24142.52, + "end": 24142.6, + "probability": 0.2212 + }, + { + "start": 24142.6, + "end": 24142.6, + "probability": 0.0829 + }, + { + "start": 24142.6, + "end": 24145.84, + "probability": 0.9872 + }, + { + "start": 24146.22, + "end": 24148.2, + "probability": 0.9875 + }, + { + "start": 24148.58, + "end": 24149.4, + "probability": 0.8855 + }, + { + "start": 24151.16, + "end": 24154.9, + "probability": 0.7479 + }, + { + "start": 24155.82, + "end": 24161.34, + "probability": 0.8348 + }, + { + "start": 24161.72, + "end": 24164.5, + "probability": 0.9926 + }, + { + "start": 24165.46, + "end": 24167.66, + "probability": 0.9296 + }, + { + "start": 24168.58, + "end": 24170.32, + "probability": 0.9478 + }, + { + "start": 24171.12, + "end": 24173.46, + "probability": 0.9966 + }, + { + "start": 24174.02, + "end": 24176.74, + "probability": 0.9384 + }, + { + "start": 24177.52, + "end": 24180.6, + "probability": 0.9981 + }, + { + "start": 24181.12, + "end": 24184.06, + "probability": 0.9955 + }, + { + "start": 24184.88, + "end": 24188.84, + "probability": 0.9414 + }, + { + "start": 24189.86, + "end": 24192.68, + "probability": 0.9572 + }, + { + "start": 24192.9, + "end": 24196.2, + "probability": 0.9969 + }, + { + "start": 24197.74, + "end": 24198.1, + "probability": 0.5283 + }, + { + "start": 24198.92, + "end": 24200.5, + "probability": 0.9678 + }, + { + "start": 24201.62, + "end": 24203.52, + "probability": 0.9607 + }, + { + "start": 24204.3, + "end": 24208.6, + "probability": 0.9842 + }, + { + "start": 24209.56, + "end": 24213.36, + "probability": 0.999 + }, + { + "start": 24213.42, + "end": 24215.26, + "probability": 0.6695 + }, + { + "start": 24215.66, + "end": 24216.76, + "probability": 0.3587 + }, + { + "start": 24216.82, + "end": 24218.5, + "probability": 0.9648 + }, + { + "start": 24219.5, + "end": 24221.66, + "probability": 0.6137 + }, + { + "start": 24222.5, + "end": 24228.02, + "probability": 0.9307 + }, + { + "start": 24228.04, + "end": 24231.41, + "probability": 0.9609 + }, + { + "start": 24232.48, + "end": 24234.28, + "probability": 0.9965 + }, + { + "start": 24234.42, + "end": 24235.52, + "probability": 0.9814 + }, + { + "start": 24235.82, + "end": 24236.8, + "probability": 0.8069 + }, + { + "start": 24236.9, + "end": 24238.16, + "probability": 0.9318 + }, + { + "start": 24238.58, + "end": 24239.88, + "probability": 0.9871 + }, + { + "start": 24240.46, + "end": 24242.24, + "probability": 0.9371 + }, + { + "start": 24243.1, + "end": 24245.16, + "probability": 0.981 + }, + { + "start": 24245.6, + "end": 24246.46, + "probability": 0.8511 + }, + { + "start": 24246.5, + "end": 24247.08, + "probability": 0.836 + }, + { + "start": 24247.52, + "end": 24249.56, + "probability": 0.9985 + }, + { + "start": 24249.92, + "end": 24250.3, + "probability": 0.7733 + }, + { + "start": 24250.34, + "end": 24253.72, + "probability": 0.965 + }, + { + "start": 24253.82, + "end": 24255.42, + "probability": 0.9858 + }, + { + "start": 24256.08, + "end": 24257.12, + "probability": 0.918 + }, + { + "start": 24257.8, + "end": 24258.84, + "probability": 0.9856 + }, + { + "start": 24259.44, + "end": 24263.0, + "probability": 0.8527 + }, + { + "start": 24263.14, + "end": 24267.68, + "probability": 0.9838 + }, + { + "start": 24268.96, + "end": 24270.74, + "probability": 0.8415 + }, + { + "start": 24271.66, + "end": 24274.66, + "probability": 0.9629 + }, + { + "start": 24275.26, + "end": 24279.82, + "probability": 0.932 + }, + { + "start": 24280.26, + "end": 24282.94, + "probability": 0.7873 + }, + { + "start": 24283.58, + "end": 24287.12, + "probability": 0.936 + }, + { + "start": 24287.52, + "end": 24290.84, + "probability": 0.9939 + }, + { + "start": 24291.76, + "end": 24298.64, + "probability": 0.8377 + }, + { + "start": 24299.5, + "end": 24302.18, + "probability": 0.9917 + }, + { + "start": 24302.98, + "end": 24304.13, + "probability": 0.8972 + }, + { + "start": 24304.88, + "end": 24306.16, + "probability": 0.9059 + }, + { + "start": 24306.7, + "end": 24311.1, + "probability": 0.9208 + }, + { + "start": 24311.98, + "end": 24313.77, + "probability": 0.5561 + }, + { + "start": 24314.66, + "end": 24318.22, + "probability": 0.9961 + }, + { + "start": 24318.64, + "end": 24322.76, + "probability": 0.9937 + }, + { + "start": 24323.38, + "end": 24324.68, + "probability": 0.8906 + }, + { + "start": 24325.22, + "end": 24327.22, + "probability": 0.9857 + }, + { + "start": 24327.74, + "end": 24330.12, + "probability": 0.9961 + }, + { + "start": 24331.0, + "end": 24334.96, + "probability": 0.8999 + }, + { + "start": 24335.64, + "end": 24340.08, + "probability": 0.9939 + }, + { + "start": 24340.6, + "end": 24343.06, + "probability": 0.9665 + }, + { + "start": 24344.68, + "end": 24346.66, + "probability": 0.7539 + }, + { + "start": 24347.18, + "end": 24349.68, + "probability": 0.9239 + }, + { + "start": 24350.98, + "end": 24354.22, + "probability": 0.9836 + }, + { + "start": 24355.2, + "end": 24356.82, + "probability": 0.659 + }, + { + "start": 24357.5, + "end": 24359.3, + "probability": 0.9236 + }, + { + "start": 24360.0, + "end": 24362.12, + "probability": 0.8702 + }, + { + "start": 24363.48, + "end": 24367.28, + "probability": 0.9259 + }, + { + "start": 24367.9, + "end": 24371.0, + "probability": 0.9975 + }, + { + "start": 24371.0, + "end": 24373.4, + "probability": 0.9997 + }, + { + "start": 24373.98, + "end": 24376.14, + "probability": 0.9974 + }, + { + "start": 24376.74, + "end": 24377.8, + "probability": 0.9048 + }, + { + "start": 24378.82, + "end": 24381.92, + "probability": 0.8564 + }, + { + "start": 24383.56, + "end": 24387.78, + "probability": 0.9607 + }, + { + "start": 24388.66, + "end": 24389.76, + "probability": 0.9868 + }, + { + "start": 24390.14, + "end": 24392.1, + "probability": 0.9955 + }, + { + "start": 24392.66, + "end": 24393.72, + "probability": 0.9391 + }, + { + "start": 24394.82, + "end": 24397.64, + "probability": 0.8716 + }, + { + "start": 24398.08, + "end": 24400.16, + "probability": 0.9966 + }, + { + "start": 24400.28, + "end": 24401.66, + "probability": 0.9883 + }, + { + "start": 24401.72, + "end": 24402.2, + "probability": 0.4205 + }, + { + "start": 24402.84, + "end": 24403.47, + "probability": 0.7559 + }, + { + "start": 24403.98, + "end": 24405.31, + "probability": 0.9834 + }, + { + "start": 24405.86, + "end": 24408.86, + "probability": 0.9445 + }, + { + "start": 24409.86, + "end": 24411.32, + "probability": 0.8881 + }, + { + "start": 24412.4, + "end": 24414.02, + "probability": 0.957 + }, + { + "start": 24414.68, + "end": 24417.34, + "probability": 0.8437 + }, + { + "start": 24418.52, + "end": 24418.76, + "probability": 0.1321 + }, + { + "start": 24418.76, + "end": 24420.78, + "probability": 0.8147 + }, + { + "start": 24421.92, + "end": 24423.82, + "probability": 0.9242 + }, + { + "start": 24424.36, + "end": 24424.36, + "probability": 0.023 + }, + { + "start": 24424.36, + "end": 24425.12, + "probability": 0.9122 + }, + { + "start": 24425.24, + "end": 24426.24, + "probability": 0.8447 + }, + { + "start": 24426.86, + "end": 24428.44, + "probability": 0.944 + }, + { + "start": 24428.94, + "end": 24429.98, + "probability": 0.1848 + }, + { + "start": 24430.44, + "end": 24434.2, + "probability": 0.9525 + }, + { + "start": 24434.44, + "end": 24436.8, + "probability": 0.9034 + }, + { + "start": 24436.98, + "end": 24437.48, + "probability": 0.7925 + }, + { + "start": 24438.64, + "end": 24442.4, + "probability": 0.7495 + }, + { + "start": 24443.08, + "end": 24445.88, + "probability": 0.9399 + }, + { + "start": 24446.18, + "end": 24446.68, + "probability": 0.6991 + }, + { + "start": 24446.74, + "end": 24447.04, + "probability": 0.7311 + }, + { + "start": 24447.2, + "end": 24448.58, + "probability": 0.7745 + }, + { + "start": 24448.94, + "end": 24453.64, + "probability": 0.9856 + }, + { + "start": 24467.84, + "end": 24469.26, + "probability": 0.9299 + }, + { + "start": 24470.54, + "end": 24471.46, + "probability": 0.6269 + }, + { + "start": 24471.86, + "end": 24475.44, + "probability": 0.8802 + }, + { + "start": 24476.42, + "end": 24480.36, + "probability": 0.7902 + }, + { + "start": 24481.4, + "end": 24484.88, + "probability": 0.9818 + }, + { + "start": 24485.86, + "end": 24491.16, + "probability": 0.9031 + }, + { + "start": 24491.16, + "end": 24497.06, + "probability": 0.9931 + }, + { + "start": 24498.14, + "end": 24500.64, + "probability": 0.6823 + }, + { + "start": 24501.92, + "end": 24507.0, + "probability": 0.7993 + }, + { + "start": 24507.14, + "end": 24510.14, + "probability": 0.8625 + }, + { + "start": 24510.14, + "end": 24513.16, + "probability": 0.9933 + }, + { + "start": 24513.96, + "end": 24517.36, + "probability": 0.8771 + }, + { + "start": 24517.98, + "end": 24520.5, + "probability": 0.8771 + }, + { + "start": 24521.38, + "end": 24522.95, + "probability": 0.9465 + }, + { + "start": 24523.28, + "end": 24529.58, + "probability": 0.9214 + }, + { + "start": 24530.46, + "end": 24536.3, + "probability": 0.8336 + }, + { + "start": 24536.92, + "end": 24537.6, + "probability": 0.7087 + }, + { + "start": 24538.32, + "end": 24538.94, + "probability": 0.8711 + }, + { + "start": 24539.0, + "end": 24540.42, + "probability": 0.8827 + }, + { + "start": 24540.74, + "end": 24543.14, + "probability": 0.9623 + }, + { + "start": 24543.84, + "end": 24545.25, + "probability": 0.902 + }, + { + "start": 24545.64, + "end": 24547.18, + "probability": 0.9876 + }, + { + "start": 24547.28, + "end": 24547.98, + "probability": 0.4759 + }, + { + "start": 24548.6, + "end": 24550.9, + "probability": 0.7021 + }, + { + "start": 24551.28, + "end": 24552.92, + "probability": 0.9304 + }, + { + "start": 24553.54, + "end": 24555.14, + "probability": 0.8115 + }, + { + "start": 24555.7, + "end": 24557.86, + "probability": 0.8973 + }, + { + "start": 24558.34, + "end": 24559.36, + "probability": 0.7773 + }, + { + "start": 24559.72, + "end": 24564.86, + "probability": 0.9537 + }, + { + "start": 24565.16, + "end": 24568.32, + "probability": 0.9929 + }, + { + "start": 24568.84, + "end": 24571.86, + "probability": 0.9205 + }, + { + "start": 24572.64, + "end": 24575.09, + "probability": 0.9404 + }, + { + "start": 24576.08, + "end": 24583.04, + "probability": 0.9797 + }, + { + "start": 24583.7, + "end": 24586.96, + "probability": 0.8547 + }, + { + "start": 24586.96, + "end": 24590.26, + "probability": 0.6691 + }, + { + "start": 24590.86, + "end": 24595.8, + "probability": 0.9512 + }, + { + "start": 24595.9, + "end": 24598.22, + "probability": 0.8535 + }, + { + "start": 24598.84, + "end": 24600.98, + "probability": 0.769 + }, + { + "start": 24601.78, + "end": 24605.6, + "probability": 0.9165 + }, + { + "start": 24606.22, + "end": 24608.1, + "probability": 0.9831 + }, + { + "start": 24609.12, + "end": 24611.76, + "probability": 0.9364 + }, + { + "start": 24612.3, + "end": 24614.2, + "probability": 0.8798 + }, + { + "start": 24615.26, + "end": 24619.44, + "probability": 0.9254 + }, + { + "start": 24620.06, + "end": 24622.12, + "probability": 0.9899 + }, + { + "start": 24622.54, + "end": 24628.7, + "probability": 0.8861 + }, + { + "start": 24629.32, + "end": 24634.94, + "probability": 0.9658 + }, + { + "start": 24635.58, + "end": 24638.76, + "probability": 0.832 + }, + { + "start": 24639.22, + "end": 24640.39, + "probability": 0.7646 + }, + { + "start": 24641.08, + "end": 24646.58, + "probability": 0.9649 + }, + { + "start": 24647.04, + "end": 24652.42, + "probability": 0.9737 + }, + { + "start": 24652.9, + "end": 24657.54, + "probability": 0.9963 + }, + { + "start": 24657.96, + "end": 24662.3, + "probability": 0.9845 + }, + { + "start": 24662.84, + "end": 24667.64, + "probability": 0.9917 + }, + { + "start": 24667.68, + "end": 24670.96, + "probability": 0.8457 + }, + { + "start": 24671.06, + "end": 24673.0, + "probability": 0.8615 + }, + { + "start": 24673.28, + "end": 24674.08, + "probability": 0.8422 + }, + { + "start": 24674.38, + "end": 24675.78, + "probability": 0.9075 + }, + { + "start": 24676.16, + "end": 24678.06, + "probability": 0.9645 + }, + { + "start": 24678.42, + "end": 24678.92, + "probability": 0.8221 + }, + { + "start": 24680.04, + "end": 24681.74, + "probability": 0.5957 + }, + { + "start": 24683.44, + "end": 24684.82, + "probability": 0.976 + }, + { + "start": 24691.52, + "end": 24692.51, + "probability": 0.9574 + }, + { + "start": 24693.5, + "end": 24695.26, + "probability": 0.7775 + }, + { + "start": 24695.98, + "end": 24696.93, + "probability": 0.9902 + }, + { + "start": 24698.1, + "end": 24699.06, + "probability": 0.973 + }, + { + "start": 24699.42, + "end": 24702.82, + "probability": 0.9857 + }, + { + "start": 24703.7, + "end": 24706.18, + "probability": 0.9917 + }, + { + "start": 24706.76, + "end": 24707.56, + "probability": 0.7574 + }, + { + "start": 24708.12, + "end": 24711.2, + "probability": 0.8561 + }, + { + "start": 24711.72, + "end": 24715.18, + "probability": 0.7032 + }, + { + "start": 24715.86, + "end": 24717.56, + "probability": 0.9706 + }, + { + "start": 24718.2, + "end": 24720.32, + "probability": 0.9767 + }, + { + "start": 24721.54, + "end": 24723.02, + "probability": 0.9875 + }, + { + "start": 24723.86, + "end": 24725.4, + "probability": 0.9819 + }, + { + "start": 24726.2, + "end": 24729.84, + "probability": 0.8227 + }, + { + "start": 24730.5, + "end": 24735.14, + "probability": 0.9585 + }, + { + "start": 24735.78, + "end": 24736.44, + "probability": 0.9215 + }, + { + "start": 24737.04, + "end": 24738.62, + "probability": 0.9858 + }, + { + "start": 24739.34, + "end": 24742.84, + "probability": 0.991 + }, + { + "start": 24743.7, + "end": 24745.76, + "probability": 0.6793 + }, + { + "start": 24746.84, + "end": 24749.08, + "probability": 0.9941 + }, + { + "start": 24749.58, + "end": 24753.36, + "probability": 0.943 + }, + { + "start": 24753.68, + "end": 24754.22, + "probability": 0.6323 + }, + { + "start": 24754.56, + "end": 24755.26, + "probability": 0.8528 + }, + { + "start": 24755.7, + "end": 24756.95, + "probability": 0.9941 + }, + { + "start": 24758.38, + "end": 24761.92, + "probability": 0.9031 + }, + { + "start": 24762.6, + "end": 24763.54, + "probability": 0.6067 + }, + { + "start": 24764.06, + "end": 24765.14, + "probability": 0.719 + }, + { + "start": 24765.24, + "end": 24766.86, + "probability": 0.7877 + }, + { + "start": 24767.64, + "end": 24768.38, + "probability": 0.5465 + }, + { + "start": 24768.44, + "end": 24771.84, + "probability": 0.7148 + }, + { + "start": 24772.24, + "end": 24775.78, + "probability": 0.9624 + }, + { + "start": 24776.44, + "end": 24779.44, + "probability": 0.9347 + }, + { + "start": 24779.98, + "end": 24781.66, + "probability": 0.676 + }, + { + "start": 24782.24, + "end": 24783.06, + "probability": 0.9487 + }, + { + "start": 24783.68, + "end": 24787.3, + "probability": 0.8179 + }, + { + "start": 24788.04, + "end": 24789.7, + "probability": 0.9644 + }, + { + "start": 24790.3, + "end": 24791.28, + "probability": 0.9643 + }, + { + "start": 24791.58, + "end": 24792.88, + "probability": 0.8351 + }, + { + "start": 24793.22, + "end": 24795.44, + "probability": 0.8896 + }, + { + "start": 24795.88, + "end": 24797.66, + "probability": 0.9548 + }, + { + "start": 24797.78, + "end": 24799.16, + "probability": 0.7872 + }, + { + "start": 24799.72, + "end": 24800.9, + "probability": 0.9688 + }, + { + "start": 24801.74, + "end": 24803.7, + "probability": 0.96 + }, + { + "start": 24804.58, + "end": 24807.57, + "probability": 0.9937 + }, + { + "start": 24808.68, + "end": 24811.26, + "probability": 0.9932 + }, + { + "start": 24811.9, + "end": 24815.68, + "probability": 0.9946 + }, + { + "start": 24815.68, + "end": 24821.1, + "probability": 0.9907 + }, + { + "start": 24821.62, + "end": 24823.2, + "probability": 0.8296 + }, + { + "start": 24823.96, + "end": 24825.24, + "probability": 0.8197 + }, + { + "start": 24825.8, + "end": 24831.3, + "probability": 0.9741 + }, + { + "start": 24831.92, + "end": 24833.8, + "probability": 0.7341 + }, + { + "start": 24834.22, + "end": 24835.64, + "probability": 0.6872 + }, + { + "start": 24835.84, + "end": 24838.02, + "probability": 0.983 + }, + { + "start": 24838.58, + "end": 24839.92, + "probability": 0.9131 + }, + { + "start": 24840.64, + "end": 24841.46, + "probability": 0.9868 + }, + { + "start": 24841.8, + "end": 24842.08, + "probability": 0.6804 + }, + { + "start": 24842.6, + "end": 24844.0, + "probability": 0.9225 + }, + { + "start": 24844.56, + "end": 24845.64, + "probability": 0.6574 + }, + { + "start": 24846.38, + "end": 24848.61, + "probability": 0.8751 + }, + { + "start": 24849.2, + "end": 24850.12, + "probability": 0.7652 + }, + { + "start": 24850.52, + "end": 24851.58, + "probability": 0.9966 + }, + { + "start": 24852.12, + "end": 24852.56, + "probability": 0.7506 + }, + { + "start": 24853.2, + "end": 24854.66, + "probability": 0.9214 + }, + { + "start": 24855.44, + "end": 24857.86, + "probability": 0.6906 + }, + { + "start": 24858.46, + "end": 24861.12, + "probability": 0.9752 + }, + { + "start": 24861.9, + "end": 24862.2, + "probability": 0.573 + }, + { + "start": 24862.22, + "end": 24863.56, + "probability": 0.9058 + }, + { + "start": 24863.92, + "end": 24866.7, + "probability": 0.8853 + }, + { + "start": 24866.82, + "end": 24867.49, + "probability": 0.751 + }, + { + "start": 24868.1, + "end": 24868.6, + "probability": 0.8398 + }, + { + "start": 24869.12, + "end": 24870.66, + "probability": 0.9972 + }, + { + "start": 24871.26, + "end": 24874.62, + "probability": 0.8876 + }, + { + "start": 24875.62, + "end": 24876.9, + "probability": 0.57 + }, + { + "start": 24877.1, + "end": 24878.34, + "probability": 0.8094 + }, + { + "start": 24878.42, + "end": 24878.84, + "probability": 0.7253 + }, + { + "start": 24879.68, + "end": 24881.15, + "probability": 0.9896 + }, + { + "start": 24881.78, + "end": 24885.98, + "probability": 0.951 + }, + { + "start": 24885.98, + "end": 24890.34, + "probability": 0.9396 + }, + { + "start": 24890.44, + "end": 24893.06, + "probability": 0.7167 + }, + { + "start": 24893.34, + "end": 24894.2, + "probability": 0.7686 + }, + { + "start": 24894.74, + "end": 24894.76, + "probability": 0.1887 + }, + { + "start": 24894.76, + "end": 24895.5, + "probability": 0.7623 + }, + { + "start": 24896.06, + "end": 24900.4, + "probability": 0.8631 + }, + { + "start": 24900.58, + "end": 24901.97, + "probability": 0.6712 + }, + { + "start": 24902.38, + "end": 24903.44, + "probability": 0.6888 + }, + { + "start": 24904.14, + "end": 24904.88, + "probability": 0.8764 + }, + { + "start": 24905.52, + "end": 24906.52, + "probability": 0.9141 + }, + { + "start": 24907.32, + "end": 24907.94, + "probability": 0.8708 + }, + { + "start": 24908.34, + "end": 24909.94, + "probability": 0.8954 + }, + { + "start": 24910.22, + "end": 24911.64, + "probability": 0.8738 + }, + { + "start": 24912.08, + "end": 24915.48, + "probability": 0.7743 + }, + { + "start": 24916.86, + "end": 24917.9, + "probability": 0.8606 + }, + { + "start": 24918.64, + "end": 24919.12, + "probability": 0.376 + }, + { + "start": 24919.28, + "end": 24921.48, + "probability": 0.8861 + }, + { + "start": 24921.94, + "end": 24924.52, + "probability": 0.9775 + }, + { + "start": 24925.08, + "end": 24927.06, + "probability": 0.9871 + }, + { + "start": 24927.52, + "end": 24928.68, + "probability": 0.99 + }, + { + "start": 24929.84, + "end": 24930.75, + "probability": 0.385 + }, + { + "start": 24931.74, + "end": 24936.28, + "probability": 0.9653 + }, + { + "start": 24936.68, + "end": 24937.72, + "probability": 0.823 + }, + { + "start": 24938.28, + "end": 24940.48, + "probability": 0.9644 + }, + { + "start": 24941.48, + "end": 24944.74, + "probability": 0.8428 + }, + { + "start": 24945.4, + "end": 24947.74, + "probability": 0.7943 + }, + { + "start": 24948.58, + "end": 24949.68, + "probability": 0.4338 + }, + { + "start": 24950.38, + "end": 24950.38, + "probability": 0.0125 + }, + { + "start": 24950.38, + "end": 24950.9, + "probability": 0.6107 + }, + { + "start": 24951.06, + "end": 24951.2, + "probability": 0.3414 + }, + { + "start": 24951.28, + "end": 24951.94, + "probability": 0.819 + }, + { + "start": 24952.2, + "end": 24952.86, + "probability": 0.8059 + }, + { + "start": 24953.64, + "end": 24954.38, + "probability": 0.5153 + }, + { + "start": 24954.38, + "end": 24954.88, + "probability": 0.3182 + }, + { + "start": 24954.88, + "end": 24955.2, + "probability": 0.2973 + }, + { + "start": 24955.28, + "end": 24957.26, + "probability": 0.9881 + }, + { + "start": 24957.68, + "end": 24959.8, + "probability": 0.9717 + }, + { + "start": 24960.4, + "end": 24962.7, + "probability": 0.9623 + }, + { + "start": 24962.76, + "end": 24963.63, + "probability": 0.8403 + }, + { + "start": 24964.2, + "end": 24965.01, + "probability": 0.885 + }, + { + "start": 24965.16, + "end": 24967.36, + "probability": 0.6776 + }, + { + "start": 24967.84, + "end": 24969.74, + "probability": 0.8035 + }, + { + "start": 24970.5, + "end": 24971.78, + "probability": 0.6186 + }, + { + "start": 24972.28, + "end": 24975.5, + "probability": 0.2322 + }, + { + "start": 24975.54, + "end": 24976.6, + "probability": 0.7224 + }, + { + "start": 24977.4, + "end": 24980.62, + "probability": 0.6171 + }, + { + "start": 24981.58, + "end": 24983.53, + "probability": 0.7108 + }, + { + "start": 24984.12, + "end": 24984.98, + "probability": 0.4041 + }, + { + "start": 24984.98, + "end": 24985.06, + "probability": 0.292 + }, + { + "start": 24985.12, + "end": 24985.74, + "probability": 0.6486 + }, + { + "start": 24986.2, + "end": 24987.34, + "probability": 0.722 + }, + { + "start": 24987.94, + "end": 24989.54, + "probability": 0.9917 + }, + { + "start": 24990.16, + "end": 24991.14, + "probability": 0.9813 + }, + { + "start": 24991.42, + "end": 24992.28, + "probability": 0.9724 + }, + { + "start": 24992.72, + "end": 24993.7, + "probability": 0.5364 + }, + { + "start": 24993.84, + "end": 24994.62, + "probability": 0.7698 + }, + { + "start": 24995.1, + "end": 24995.94, + "probability": 0.8192 + }, + { + "start": 24996.52, + "end": 25000.22, + "probability": 0.9575 + }, + { + "start": 25000.92, + "end": 25001.64, + "probability": 0.6743 + }, + { + "start": 25005.1, + "end": 25005.5, + "probability": 0.5064 + }, + { + "start": 25006.85, + "end": 25008.6, + "probability": 0.5065 + }, + { + "start": 25008.8, + "end": 25009.9, + "probability": 0.9406 + }, + { + "start": 25010.42, + "end": 25011.59, + "probability": 0.8939 + }, + { + "start": 25012.16, + "end": 25012.7, + "probability": 0.6255 + }, + { + "start": 25012.74, + "end": 25013.06, + "probability": 0.658 + }, + { + "start": 25013.18, + "end": 25014.52, + "probability": 0.9839 + }, + { + "start": 25015.18, + "end": 25016.46, + "probability": 0.9906 + }, + { + "start": 25016.76, + "end": 25017.3, + "probability": 0.7495 + }, + { + "start": 25017.74, + "end": 25020.44, + "probability": 0.9915 + }, + { + "start": 25020.8, + "end": 25023.08, + "probability": 0.8699 + }, + { + "start": 25023.56, + "end": 25025.52, + "probability": 0.9308 + }, + { + "start": 25025.88, + "end": 25027.28, + "probability": 0.8975 + }, + { + "start": 25027.56, + "end": 25028.26, + "probability": 0.9131 + }, + { + "start": 25028.82, + "end": 25030.2, + "probability": 0.9685 + }, + { + "start": 25030.54, + "end": 25033.58, + "probability": 0.872 + }, + { + "start": 25033.94, + "end": 25034.4, + "probability": 0.7112 + }, + { + "start": 25034.42, + "end": 25034.84, + "probability": 0.6997 + }, + { + "start": 25035.04, + "end": 25035.68, + "probability": 0.8015 + }, + { + "start": 25036.08, + "end": 25036.14, + "probability": 0.4893 + }, + { + "start": 25036.58, + "end": 25037.46, + "probability": 0.8982 + }, + { + "start": 25039.6, + "end": 25041.06, + "probability": 0.9235 + }, + { + "start": 25055.88, + "end": 25056.92, + "probability": 0.9626 + }, + { + "start": 25058.42, + "end": 25059.88, + "probability": 0.153 + }, + { + "start": 25065.66, + "end": 25067.66, + "probability": 0.6105 + }, + { + "start": 25070.06, + "end": 25075.06, + "probability": 0.9924 + }, + { + "start": 25075.92, + "end": 25078.54, + "probability": 0.9491 + }, + { + "start": 25079.8, + "end": 25079.8, + "probability": 0.1275 + }, + { + "start": 25079.8, + "end": 25084.46, + "probability": 0.9093 + }, + { + "start": 25085.64, + "end": 25087.93, + "probability": 0.9872 + }, + { + "start": 25088.8, + "end": 25090.26, + "probability": 0.7841 + }, + { + "start": 25091.1, + "end": 25092.5, + "probability": 0.9288 + }, + { + "start": 25093.26, + "end": 25096.48, + "probability": 0.9919 + }, + { + "start": 25097.02, + "end": 25099.14, + "probability": 0.0108 + }, + { + "start": 25100.16, + "end": 25100.98, + "probability": 0.0132 + }, + { + "start": 25100.98, + "end": 25100.98, + "probability": 0.1334 + }, + { + "start": 25100.98, + "end": 25100.98, + "probability": 0.1141 + }, + { + "start": 25100.98, + "end": 25102.16, + "probability": 0.5483 + }, + { + "start": 25102.38, + "end": 25104.94, + "probability": 0.8527 + }, + { + "start": 25105.16, + "end": 25106.76, + "probability": 0.5419 + }, + { + "start": 25107.02, + "end": 25108.62, + "probability": 0.2237 + }, + { + "start": 25108.62, + "end": 25108.62, + "probability": 0.1851 + }, + { + "start": 25108.62, + "end": 25109.64, + "probability": 0.0593 + }, + { + "start": 25110.52, + "end": 25113.02, + "probability": 0.9579 + }, + { + "start": 25114.72, + "end": 25115.04, + "probability": 0.8952 + }, + { + "start": 25115.72, + "end": 25118.08, + "probability": 0.7617 + }, + { + "start": 25118.64, + "end": 25119.8, + "probability": 0.8714 + }, + { + "start": 25120.56, + "end": 25121.24, + "probability": 0.9755 + }, + { + "start": 25121.92, + "end": 25122.62, + "probability": 0.6142 + }, + { + "start": 25123.4, + "end": 25126.78, + "probability": 0.7383 + }, + { + "start": 25128.08, + "end": 25130.64, + "probability": 0.4202 + }, + { + "start": 25130.96, + "end": 25130.96, + "probability": 0.0378 + }, + { + "start": 25130.96, + "end": 25130.96, + "probability": 0.4343 + }, + { + "start": 25131.14, + "end": 25131.9, + "probability": 0.6547 + }, + { + "start": 25131.94, + "end": 25134.16, + "probability": 0.9876 + }, + { + "start": 25134.64, + "end": 25138.72, + "probability": 0.6743 + }, + { + "start": 25139.26, + "end": 25140.46, + "probability": 0.6716 + }, + { + "start": 25141.02, + "end": 25141.02, + "probability": 0.0562 + }, + { + "start": 25141.02, + "end": 25142.18, + "probability": 0.8721 + }, + { + "start": 25142.42, + "end": 25143.1, + "probability": 0.9057 + }, + { + "start": 25143.6, + "end": 25146.92, + "probability": 0.7993 + }, + { + "start": 25146.92, + "end": 25151.26, + "probability": 0.0238 + }, + { + "start": 25152.46, + "end": 25153.78, + "probability": 0.0334 + }, + { + "start": 25154.04, + "end": 25154.92, + "probability": 0.5286 + }, + { + "start": 25155.72, + "end": 25156.48, + "probability": 0.0377 + }, + { + "start": 25156.48, + "end": 25156.48, + "probability": 0.23 + }, + { + "start": 25156.48, + "end": 25156.48, + "probability": 0.1793 + }, + { + "start": 25156.48, + "end": 25156.48, + "probability": 0.5213 + }, + { + "start": 25156.6, + "end": 25157.84, + "probability": 0.455 + }, + { + "start": 25157.96, + "end": 25158.82, + "probability": 0.4438 + }, + { + "start": 25158.82, + "end": 25161.2, + "probability": 0.7938 + }, + { + "start": 25161.42, + "end": 25162.48, + "probability": 0.2097 + }, + { + "start": 25162.5, + "end": 25167.32, + "probability": 0.9976 + }, + { + "start": 25167.4, + "end": 25168.08, + "probability": 0.0532 + }, + { + "start": 25168.24, + "end": 25171.46, + "probability": 0.8662 + }, + { + "start": 25172.04, + "end": 25173.88, + "probability": 0.855 + }, + { + "start": 25174.14, + "end": 25176.97, + "probability": 0.8191 + }, + { + "start": 25177.42, + "end": 25178.88, + "probability": 0.1427 + }, + { + "start": 25178.94, + "end": 25183.2, + "probability": 0.7764 + }, + { + "start": 25183.3, + "end": 25184.94, + "probability": 0.4513 + }, + { + "start": 25185.26, + "end": 25187.12, + "probability": 0.8608 + }, + { + "start": 25187.2, + "end": 25187.62, + "probability": 0.6562 + }, + { + "start": 25188.45, + "end": 25189.58, + "probability": 0.9171 + }, + { + "start": 25189.58, + "end": 25189.86, + "probability": 0.2706 + }, + { + "start": 25190.38, + "end": 25190.56, + "probability": 0.5082 + }, + { + "start": 25190.68, + "end": 25192.12, + "probability": 0.8261 + }, + { + "start": 25192.12, + "end": 25194.2, + "probability": 0.6463 + }, + { + "start": 25194.4, + "end": 25194.44, + "probability": 0.7851 + }, + { + "start": 25194.44, + "end": 25195.12, + "probability": 0.8844 + }, + { + "start": 25195.2, + "end": 25195.2, + "probability": 0.2398 + }, + { + "start": 25195.2, + "end": 25196.36, + "probability": 0.8017 + }, + { + "start": 25196.42, + "end": 25196.54, + "probability": 0.0895 + }, + { + "start": 25196.78, + "end": 25198.72, + "probability": 0.7192 + }, + { + "start": 25198.76, + "end": 25199.64, + "probability": 0.574 + }, + { + "start": 25199.68, + "end": 25200.38, + "probability": 0.1921 + }, + { + "start": 25200.38, + "end": 25201.04, + "probability": 0.447 + }, + { + "start": 25201.06, + "end": 25202.62, + "probability": 0.8941 + }, + { + "start": 25202.91, + "end": 25207.5, + "probability": 0.6658 + }, + { + "start": 25207.6, + "end": 25216.6, + "probability": 0.9138 + }, + { + "start": 25216.94, + "end": 25222.36, + "probability": 0.9749 + }, + { + "start": 25222.88, + "end": 25222.88, + "probability": 0.0219 + }, + { + "start": 25222.88, + "end": 25229.54, + "probability": 0.9171 + }, + { + "start": 25229.86, + "end": 25231.35, + "probability": 0.8652 + }, + { + "start": 25231.84, + "end": 25234.6, + "probability": 0.916 + }, + { + "start": 25234.98, + "end": 25236.32, + "probability": 0.9534 + }, + { + "start": 25236.5, + "end": 25237.76, + "probability": 0.8925 + }, + { + "start": 25237.96, + "end": 25246.26, + "probability": 0.9896 + }, + { + "start": 25246.81, + "end": 25246.88, + "probability": 0.0847 + }, + { + "start": 25246.88, + "end": 25250.22, + "probability": 0.8714 + }, + { + "start": 25250.22, + "end": 25250.88, + "probability": 0.6195 + }, + { + "start": 25251.04, + "end": 25252.18, + "probability": 0.5281 + }, + { + "start": 25252.22, + "end": 25252.82, + "probability": 0.6718 + }, + { + "start": 25252.98, + "end": 25254.28, + "probability": 0.8803 + }, + { + "start": 25255.0, + "end": 25256.12, + "probability": 0.9016 + }, + { + "start": 25256.96, + "end": 25257.02, + "probability": 0.1672 + }, + { + "start": 25257.02, + "end": 25259.3, + "probability": 0.7331 + }, + { + "start": 25259.6, + "end": 25263.68, + "probability": 0.9744 + }, + { + "start": 25264.06, + "end": 25264.97, + "probability": 0.9885 + }, + { + "start": 25266.14, + "end": 25266.82, + "probability": 0.1935 + }, + { + "start": 25268.56, + "end": 25268.8, + "probability": 0.1625 + }, + { + "start": 25268.8, + "end": 25270.18, + "probability": 0.7287 + }, + { + "start": 25270.32, + "end": 25271.52, + "probability": 0.8969 + }, + { + "start": 25272.06, + "end": 25274.76, + "probability": 0.9637 + }, + { + "start": 25274.9, + "end": 25276.0, + "probability": 0.9804 + }, + { + "start": 25276.26, + "end": 25276.94, + "probability": 0.9277 + }, + { + "start": 25277.78, + "end": 25279.42, + "probability": 0.6752 + }, + { + "start": 25279.7, + "end": 25283.06, + "probability": 0.8826 + }, + { + "start": 25283.12, + "end": 25285.7, + "probability": 0.9785 + }, + { + "start": 25286.12, + "end": 25286.12, + "probability": 0.006 + }, + { + "start": 25286.12, + "end": 25291.62, + "probability": 0.8641 + }, + { + "start": 25292.3, + "end": 25292.94, + "probability": 0.5542 + }, + { + "start": 25293.24, + "end": 25293.9, + "probability": 0.3567 + }, + { + "start": 25294.14, + "end": 25295.46, + "probability": 0.71 + }, + { + "start": 25296.56, + "end": 25302.04, + "probability": 0.9844 + }, + { + "start": 25302.9, + "end": 25304.5, + "probability": 0.8112 + }, + { + "start": 25305.04, + "end": 25309.36, + "probability": 0.8239 + }, + { + "start": 25309.74, + "end": 25317.02, + "probability": 0.968 + }, + { + "start": 25317.1, + "end": 25317.66, + "probability": 0.9323 + }, + { + "start": 25317.88, + "end": 25320.36, + "probability": 0.419 + }, + { + "start": 25320.76, + "end": 25322.96, + "probability": 0.7738 + }, + { + "start": 25323.74, + "end": 25325.36, + "probability": 0.0964 + }, + { + "start": 25325.52, + "end": 25326.88, + "probability": 0.5501 + }, + { + "start": 25327.42, + "end": 25329.0, + "probability": 0.3489 + }, + { + "start": 25329.28, + "end": 25330.2, + "probability": 0.2064 + }, + { + "start": 25330.38, + "end": 25331.6, + "probability": 0.2317 + }, + { + "start": 25332.28, + "end": 25332.46, + "probability": 0.0579 + }, + { + "start": 25333.0, + "end": 25334.72, + "probability": 0.1385 + }, + { + "start": 25335.24, + "end": 25337.96, + "probability": 0.8257 + }, + { + "start": 25338.34, + "end": 25341.08, + "probability": 0.4752 + }, + { + "start": 25343.16, + "end": 25344.9, + "probability": 0.7316 + }, + { + "start": 25345.08, + "end": 25345.84, + "probability": 0.9138 + }, + { + "start": 25347.86, + "end": 25348.98, + "probability": 0.8333 + }, + { + "start": 25349.82, + "end": 25350.88, + "probability": 0.9274 + }, + { + "start": 25353.42, + "end": 25356.3, + "probability": 0.922 + }, + { + "start": 25356.38, + "end": 25357.1, + "probability": 0.8753 + }, + { + "start": 25357.22, + "end": 25360.2, + "probability": 0.9915 + }, + { + "start": 25361.14, + "end": 25364.34, + "probability": 0.8938 + }, + { + "start": 25365.48, + "end": 25366.82, + "probability": 0.9088 + }, + { + "start": 25367.78, + "end": 25368.72, + "probability": 0.9511 + }, + { + "start": 25369.04, + "end": 25375.8, + "probability": 0.9942 + }, + { + "start": 25376.82, + "end": 25377.62, + "probability": 0.8319 + }, + { + "start": 25378.66, + "end": 25381.02, + "probability": 0.9979 + }, + { + "start": 25382.1, + "end": 25384.62, + "probability": 0.9604 + }, + { + "start": 25385.52, + "end": 25390.26, + "probability": 0.9809 + }, + { + "start": 25390.74, + "end": 25392.3, + "probability": 0.6625 + }, + { + "start": 25392.46, + "end": 25393.46, + "probability": 0.7263 + }, + { + "start": 25394.72, + "end": 25398.08, + "probability": 0.9653 + }, + { + "start": 25398.08, + "end": 25403.18, + "probability": 0.9398 + }, + { + "start": 25403.56, + "end": 25405.56, + "probability": 0.9313 + }, + { + "start": 25406.1, + "end": 25407.07, + "probability": 0.8878 + }, + { + "start": 25407.86, + "end": 25410.82, + "probability": 0.9546 + }, + { + "start": 25412.04, + "end": 25417.64, + "probability": 0.919 + }, + { + "start": 25417.64, + "end": 25422.6, + "probability": 0.995 + }, + { + "start": 25423.4, + "end": 25424.7, + "probability": 0.975 + }, + { + "start": 25425.28, + "end": 25430.8, + "probability": 0.9966 + }, + { + "start": 25431.38, + "end": 25432.42, + "probability": 0.9585 + }, + { + "start": 25433.46, + "end": 25439.56, + "probability": 0.9586 + }, + { + "start": 25440.1, + "end": 25446.78, + "probability": 0.9827 + }, + { + "start": 25447.8, + "end": 25450.0, + "probability": 0.737 + }, + { + "start": 25450.44, + "end": 25452.88, + "probability": 0.8577 + }, + { + "start": 25453.0, + "end": 25454.2, + "probability": 0.9766 + }, + { + "start": 25455.34, + "end": 25457.5, + "probability": 0.909 + }, + { + "start": 25458.42, + "end": 25458.92, + "probability": 0.8405 + }, + { + "start": 25459.36, + "end": 25464.16, + "probability": 0.9211 + }, + { + "start": 25464.68, + "end": 25466.45, + "probability": 0.9648 + }, + { + "start": 25466.56, + "end": 25467.52, + "probability": 0.9312 + }, + { + "start": 25467.98, + "end": 25470.76, + "probability": 0.9932 + }, + { + "start": 25471.82, + "end": 25472.46, + "probability": 0.1304 + }, + { + "start": 25473.04, + "end": 25477.22, + "probability": 0.9129 + }, + { + "start": 25478.02, + "end": 25479.52, + "probability": 0.962 + }, + { + "start": 25480.14, + "end": 25482.18, + "probability": 0.964 + }, + { + "start": 25485.82, + "end": 25487.74, + "probability": 0.6344 + }, + { + "start": 25487.78, + "end": 25491.54, + "probability": 0.9917 + }, + { + "start": 25492.24, + "end": 25493.26, + "probability": 0.6876 + }, + { + "start": 25494.2, + "end": 25495.35, + "probability": 0.9834 + }, + { + "start": 25496.84, + "end": 25498.1, + "probability": 0.9196 + }, + { + "start": 25498.84, + "end": 25503.12, + "probability": 0.8664 + }, + { + "start": 25503.46, + "end": 25504.68, + "probability": 0.8744 + }, + { + "start": 25504.86, + "end": 25506.1, + "probability": 0.8047 + }, + { + "start": 25506.84, + "end": 25507.7, + "probability": 0.5436 + }, + { + "start": 25508.58, + "end": 25513.26, + "probability": 0.9786 + }, + { + "start": 25514.22, + "end": 25514.28, + "probability": 0.6738 + }, + { + "start": 25515.28, + "end": 25516.28, + "probability": 0.9131 + }, + { + "start": 25516.92, + "end": 25518.18, + "probability": 0.8633 + }, + { + "start": 25519.98, + "end": 25523.12, + "probability": 0.9717 + }, + { + "start": 25523.88, + "end": 25527.22, + "probability": 0.7893 + }, + { + "start": 25528.28, + "end": 25531.72, + "probability": 0.9941 + }, + { + "start": 25532.18, + "end": 25535.8, + "probability": 0.9983 + }, + { + "start": 25536.74, + "end": 25537.9, + "probability": 0.8189 + }, + { + "start": 25538.54, + "end": 25539.2, + "probability": 0.4821 + }, + { + "start": 25539.94, + "end": 25543.54, + "probability": 0.9457 + }, + { + "start": 25544.12, + "end": 25545.14, + "probability": 0.8915 + }, + { + "start": 25545.84, + "end": 25546.78, + "probability": 0.8906 + }, + { + "start": 25547.36, + "end": 25551.68, + "probability": 0.9407 + }, + { + "start": 25552.02, + "end": 25552.26, + "probability": 0.7266 + }, + { + "start": 25552.48, + "end": 25552.8, + "probability": 0.1843 + }, + { + "start": 25552.88, + "end": 25553.88, + "probability": 0.7209 + }, + { + "start": 25554.36, + "end": 25561.16, + "probability": 0.9283 + }, + { + "start": 25561.52, + "end": 25563.2, + "probability": 0.8583 + }, + { + "start": 25563.7, + "end": 25566.18, + "probability": 0.8265 + }, + { + "start": 25566.88, + "end": 25567.44, + "probability": 0.4774 + }, + { + "start": 25567.52, + "end": 25570.7, + "probability": 0.9366 + }, + { + "start": 25571.06, + "end": 25574.58, + "probability": 0.9771 + }, + { + "start": 25575.08, + "end": 25579.2, + "probability": 0.5675 + }, + { + "start": 25579.32, + "end": 25579.6, + "probability": 0.556 + }, + { + "start": 25579.68, + "end": 25580.4, + "probability": 0.7808 + }, + { + "start": 25580.4, + "end": 25581.16, + "probability": 0.5544 + }, + { + "start": 25581.24, + "end": 25581.8, + "probability": 0.8636 + }, + { + "start": 25581.86, + "end": 25582.68, + "probability": 0.6875 + }, + { + "start": 25582.98, + "end": 25590.8, + "probability": 0.9871 + }, + { + "start": 25591.04, + "end": 25591.24, + "probability": 0.8976 + }, + { + "start": 25591.56, + "end": 25593.26, + "probability": 0.9604 + }, + { + "start": 25593.36, + "end": 25594.98, + "probability": 0.8039 + }, + { + "start": 25595.12, + "end": 25596.0, + "probability": 0.6657 + }, + { + "start": 25608.24, + "end": 25610.32, + "probability": 0.7147 + }, + { + "start": 25611.72, + "end": 25612.48, + "probability": 0.4067 + }, + { + "start": 25613.92, + "end": 25615.12, + "probability": 0.9775 + }, + { + "start": 25615.3, + "end": 25617.02, + "probability": 0.9932 + }, + { + "start": 25617.4, + "end": 25617.5, + "probability": 0.2548 + }, + { + "start": 25617.74, + "end": 25621.56, + "probability": 0.756 + }, + { + "start": 25621.68, + "end": 25622.79, + "probability": 0.8833 + }, + { + "start": 25625.34, + "end": 25629.98, + "probability": 0.7118 + }, + { + "start": 25631.96, + "end": 25633.78, + "probability": 0.9634 + }, + { + "start": 25634.12, + "end": 25636.08, + "probability": 0.7231 + }, + { + "start": 25636.22, + "end": 25637.64, + "probability": 0.9718 + }, + { + "start": 25640.16, + "end": 25643.98, + "probability": 0.6911 + }, + { + "start": 25644.7, + "end": 25646.8, + "probability": 0.996 + }, + { + "start": 25647.9, + "end": 25651.36, + "probability": 0.9792 + }, + { + "start": 25651.36, + "end": 25655.14, + "probability": 0.9347 + }, + { + "start": 25656.38, + "end": 25657.59, + "probability": 0.7412 + }, + { + "start": 25658.44, + "end": 25660.02, + "probability": 0.8662 + }, + { + "start": 25661.72, + "end": 25663.12, + "probability": 0.5919 + }, + { + "start": 25665.0, + "end": 25667.62, + "probability": 0.6754 + }, + { + "start": 25668.78, + "end": 25671.46, + "probability": 0.8358 + }, + { + "start": 25672.08, + "end": 25674.0, + "probability": 0.8701 + }, + { + "start": 25675.78, + "end": 25678.6, + "probability": 0.8916 + }, + { + "start": 25678.68, + "end": 25680.15, + "probability": 0.99 + }, + { + "start": 25681.84, + "end": 25683.06, + "probability": 0.8711 + }, + { + "start": 25685.62, + "end": 25688.94, + "probability": 0.6511 + }, + { + "start": 25689.5, + "end": 25690.4, + "probability": 0.9239 + }, + { + "start": 25692.78, + "end": 25694.39, + "probability": 0.6922 + }, + { + "start": 25695.3, + "end": 25696.04, + "probability": 0.7046 + }, + { + "start": 25696.42, + "end": 25699.18, + "probability": 0.5063 + }, + { + "start": 25701.5, + "end": 25703.87, + "probability": 0.8271 + }, + { + "start": 25706.0, + "end": 25706.88, + "probability": 0.4732 + }, + { + "start": 25707.62, + "end": 25711.12, + "probability": 0.8586 + }, + { + "start": 25711.26, + "end": 25712.98, + "probability": 0.9235 + }, + { + "start": 25713.7, + "end": 25715.47, + "probability": 0.9917 + }, + { + "start": 25716.6, + "end": 25718.26, + "probability": 0.4793 + }, + { + "start": 25718.34, + "end": 25720.94, + "probability": 0.8259 + }, + { + "start": 25721.06, + "end": 25722.54, + "probability": 0.9077 + }, + { + "start": 25723.1, + "end": 25723.73, + "probability": 0.9719 + }, + { + "start": 25723.88, + "end": 25724.34, + "probability": 0.4347 + }, + { + "start": 25724.42, + "end": 25724.86, + "probability": 0.1748 + }, + { + "start": 25725.0, + "end": 25726.26, + "probability": 0.9578 + }, + { + "start": 25726.64, + "end": 25727.63, + "probability": 0.8669 + }, + { + "start": 25729.76, + "end": 25730.36, + "probability": 0.8921 + }, + { + "start": 25730.58, + "end": 25732.79, + "probability": 0.7464 + }, + { + "start": 25734.14, + "end": 25734.7, + "probability": 0.9331 + }, + { + "start": 25734.76, + "end": 25735.48, + "probability": 0.7079 + }, + { + "start": 25735.48, + "end": 25740.8, + "probability": 0.704 + }, + { + "start": 25742.22, + "end": 25742.86, + "probability": 0.3038 + }, + { + "start": 25744.28, + "end": 25746.08, + "probability": 0.7844 + }, + { + "start": 25747.96, + "end": 25748.9, + "probability": 0.6785 + }, + { + "start": 25749.16, + "end": 25749.6, + "probability": 0.8267 + }, + { + "start": 25750.6, + "end": 25752.5, + "probability": 0.65 + }, + { + "start": 25753.12, + "end": 25755.92, + "probability": 0.5112 + }, + { + "start": 25756.54, + "end": 25759.06, + "probability": 0.6214 + }, + { + "start": 25759.9, + "end": 25761.54, + "probability": 0.6323 + }, + { + "start": 25767.56, + "end": 25769.88, + "probability": 0.8809 + }, + { + "start": 25770.8, + "end": 25773.46, + "probability": 0.535 + }, + { + "start": 25774.4, + "end": 25775.27, + "probability": 0.981 + }, + { + "start": 25775.54, + "end": 25777.16, + "probability": 0.9723 + }, + { + "start": 25777.18, + "end": 25778.14, + "probability": 0.6651 + }, + { + "start": 25779.4, + "end": 25782.0, + "probability": 0.948 + }, + { + "start": 25783.6, + "end": 25784.78, + "probability": 0.7255 + }, + { + "start": 25786.4, + "end": 25790.18, + "probability": 0.8215 + }, + { + "start": 25794.32, + "end": 25795.06, + "probability": 0.4831 + }, + { + "start": 25796.46, + "end": 25797.28, + "probability": 0.9024 + }, + { + "start": 25797.5, + "end": 25798.3, + "probability": 0.9891 + }, + { + "start": 25799.32, + "end": 25800.26, + "probability": 0.9497 + }, + { + "start": 25800.94, + "end": 25801.94, + "probability": 0.9847 + }, + { + "start": 25803.4, + "end": 25805.28, + "probability": 0.5392 + }, + { + "start": 25805.3, + "end": 25806.56, + "probability": 0.9214 + }, + { + "start": 25806.66, + "end": 25807.7, + "probability": 0.5128 + }, + { + "start": 25808.36, + "end": 25808.92, + "probability": 0.5293 + }, + { + "start": 25808.98, + "end": 25809.98, + "probability": 0.9209 + }, + { + "start": 25811.9, + "end": 25812.4, + "probability": 0.7287 + }, + { + "start": 25812.46, + "end": 25814.2, + "probability": 0.8734 + }, + { + "start": 25814.3, + "end": 25819.92, + "probability": 0.8914 + }, + { + "start": 25823.46, + "end": 25824.6, + "probability": 0.6842 + }, + { + "start": 25826.44, + "end": 25829.72, + "probability": 0.8127 + }, + { + "start": 25833.94, + "end": 25835.98, + "probability": 0.543 + }, + { + "start": 25836.06, + "end": 25837.6, + "probability": 0.4907 + }, + { + "start": 25837.78, + "end": 25840.76, + "probability": 0.6192 + }, + { + "start": 25843.98, + "end": 25846.34, + "probability": 0.8848 + }, + { + "start": 25847.0, + "end": 25848.24, + "probability": 0.9702 + }, + { + "start": 25849.38, + "end": 25851.42, + "probability": 0.926 + }, + { + "start": 25851.56, + "end": 25854.27, + "probability": 0.4655 + }, + { + "start": 25856.74, + "end": 25857.6, + "probability": 0.9695 + }, + { + "start": 25858.42, + "end": 25860.76, + "probability": 0.9232 + }, + { + "start": 25860.96, + "end": 25861.95, + "probability": 0.5148 + }, + { + "start": 25862.76, + "end": 25863.56, + "probability": 0.3119 + }, + { + "start": 25864.26, + "end": 25868.84, + "probability": 0.9073 + }, + { + "start": 25869.1, + "end": 25873.02, + "probability": 0.8995 + }, + { + "start": 25873.14, + "end": 25875.84, + "probability": 0.9566 + }, + { + "start": 25875.86, + "end": 25876.48, + "probability": 0.7024 + }, + { + "start": 25878.14, + "end": 25878.16, + "probability": 0.1119 + }, + { + "start": 25878.16, + "end": 25881.66, + "probability": 0.9807 + }, + { + "start": 25881.82, + "end": 25885.5, + "probability": 0.9297 + }, + { + "start": 25886.0, + "end": 25888.74, + "probability": 0.9661 + }, + { + "start": 25888.96, + "end": 25895.14, + "probability": 0.9315 + }, + { + "start": 25895.72, + "end": 25896.72, + "probability": 0.6507 + }, + { + "start": 25897.18, + "end": 25897.8, + "probability": 0.0126 + }, + { + "start": 25897.8, + "end": 25898.22, + "probability": 0.3465 + }, + { + "start": 25900.28, + "end": 25901.6, + "probability": 0.4236 + }, + { + "start": 25902.88, + "end": 25904.6, + "probability": 0.4373 + }, + { + "start": 25904.84, + "end": 25905.5, + "probability": 0.1481 + }, + { + "start": 25907.36, + "end": 25909.32, + "probability": 0.0999 + }, + { + "start": 25909.32, + "end": 25909.32, + "probability": 0.5051 + }, + { + "start": 25909.32, + "end": 25909.32, + "probability": 0.265 + }, + { + "start": 25909.32, + "end": 25909.52, + "probability": 0.2819 + }, + { + "start": 25910.04, + "end": 25911.86, + "probability": 0.2347 + }, + { + "start": 25912.16, + "end": 25914.32, + "probability": 0.6211 + }, + { + "start": 25914.48, + "end": 25915.58, + "probability": 0.3337 + }, + { + "start": 25916.52, + "end": 25919.42, + "probability": 0.0991 + }, + { + "start": 25919.42, + "end": 25920.74, + "probability": 0.6142 + }, + { + "start": 25920.82, + "end": 25920.82, + "probability": 0.1836 + }, + { + "start": 25920.9, + "end": 25922.92, + "probability": 0.3842 + }, + { + "start": 25922.92, + "end": 25923.18, + "probability": 0.4211 + }, + { + "start": 25923.4, + "end": 25923.86, + "probability": 0.8563 + }, + { + "start": 25923.94, + "end": 25925.62, + "probability": 0.9526 + }, + { + "start": 25925.64, + "end": 25926.2, + "probability": 0.4016 + }, + { + "start": 25928.18, + "end": 25930.52, + "probability": 0.8367 + }, + { + "start": 25931.96, + "end": 25936.4, + "probability": 0.9779 + }, + { + "start": 25937.38, + "end": 25937.58, + "probability": 0.6255 + }, + { + "start": 25941.3, + "end": 25944.9, + "probability": 0.9778 + }, + { + "start": 25946.1, + "end": 25952.06, + "probability": 0.9722 + }, + { + "start": 25952.26, + "end": 25952.42, + "probability": 0.6479 + }, + { + "start": 25952.54, + "end": 25954.96, + "probability": 0.9766 + }, + { + "start": 25955.48, + "end": 25958.44, + "probability": 0.874 + }, + { + "start": 25958.6, + "end": 25959.22, + "probability": 0.6172 + }, + { + "start": 25959.82, + "end": 25961.26, + "probability": 0.7519 + }, + { + "start": 25970.86, + "end": 25973.16, + "probability": 0.9159 + }, + { + "start": 25976.04, + "end": 25977.84, + "probability": 0.9008 + }, + { + "start": 25978.1, + "end": 25979.38, + "probability": 0.7483 + }, + { + "start": 25979.54, + "end": 25980.82, + "probability": 0.817 + }, + { + "start": 25982.28, + "end": 25985.98, + "probability": 0.9712 + }, + { + "start": 25988.9, + "end": 25988.9, + "probability": 0.894 + }, + { + "start": 25991.94, + "end": 25996.14, + "probability": 0.7979 + }, + { + "start": 25996.68, + "end": 25997.72, + "probability": 0.7614 + }, + { + "start": 25999.2, + "end": 25999.22, + "probability": 0.9385 + }, + { + "start": 25999.78, + "end": 26003.44, + "probability": 0.9945 + }, + { + "start": 26004.0, + "end": 26005.32, + "probability": 0.9605 + }, + { + "start": 26006.26, + "end": 26012.66, + "probability": 0.984 + }, + { + "start": 26013.94, + "end": 26016.48, + "probability": 0.9722 + }, + { + "start": 26017.42, + "end": 26019.04, + "probability": 0.9539 + }, + { + "start": 26020.26, + "end": 26024.46, + "probability": 0.9783 + }, + { + "start": 26025.26, + "end": 26030.66, + "probability": 0.9971 + }, + { + "start": 26030.66, + "end": 26033.48, + "probability": 0.9946 + }, + { + "start": 26035.22, + "end": 26036.68, + "probability": 0.9771 + }, + { + "start": 26037.89, + "end": 26042.16, + "probability": 0.9512 + }, + { + "start": 26042.82, + "end": 26045.36, + "probability": 0.9774 + }, + { + "start": 26045.98, + "end": 26048.6, + "probability": 0.9901 + }, + { + "start": 26049.46, + "end": 26051.54, + "probability": 0.9886 + }, + { + "start": 26052.08, + "end": 26053.38, + "probability": 0.6773 + }, + { + "start": 26053.94, + "end": 26055.72, + "probability": 0.9883 + }, + { + "start": 26056.02, + "end": 26059.36, + "probability": 0.8644 + }, + { + "start": 26060.72, + "end": 26068.38, + "probability": 0.9919 + }, + { + "start": 26069.52, + "end": 26075.12, + "probability": 0.9449 + }, + { + "start": 26075.12, + "end": 26078.44, + "probability": 0.9951 + }, + { + "start": 26079.58, + "end": 26085.0, + "probability": 0.9836 + }, + { + "start": 26085.14, + "end": 26087.0, + "probability": 0.8586 + }, + { + "start": 26087.84, + "end": 26092.56, + "probability": 0.9935 + }, + { + "start": 26092.56, + "end": 26096.36, + "probability": 0.9991 + }, + { + "start": 26097.26, + "end": 26103.64, + "probability": 0.9988 + }, + { + "start": 26104.38, + "end": 26109.98, + "probability": 0.9922 + }, + { + "start": 26110.78, + "end": 26112.92, + "probability": 0.996 + }, + { + "start": 26113.32, + "end": 26114.06, + "probability": 0.513 + }, + { + "start": 26114.08, + "end": 26114.74, + "probability": 0.8222 + }, + { + "start": 26115.6, + "end": 26118.6, + "probability": 0.9626 + }, + { + "start": 26119.16, + "end": 26127.26, + "probability": 0.9919 + }, + { + "start": 26127.82, + "end": 26134.6, + "probability": 0.9938 + }, + { + "start": 26135.4, + "end": 26136.72, + "probability": 0.6727 + }, + { + "start": 26137.24, + "end": 26138.78, + "probability": 0.9764 + }, + { + "start": 26139.5, + "end": 26144.18, + "probability": 0.8558 + }, + { + "start": 26144.72, + "end": 26145.98, + "probability": 0.872 + }, + { + "start": 26146.56, + "end": 26148.03, + "probability": 0.9013 + }, + { + "start": 26148.84, + "end": 26153.0, + "probability": 0.995 + }, + { + "start": 26153.4, + "end": 26156.48, + "probability": 0.9749 + }, + { + "start": 26157.52, + "end": 26158.94, + "probability": 0.6817 + }, + { + "start": 26159.62, + "end": 26161.58, + "probability": 0.9664 + }, + { + "start": 26162.1, + "end": 26167.68, + "probability": 0.9951 + }, + { + "start": 26168.16, + "end": 26170.08, + "probability": 0.9121 + }, + { + "start": 26170.8, + "end": 26174.6, + "probability": 0.9863 + }, + { + "start": 26175.14, + "end": 26176.74, + "probability": 0.504 + }, + { + "start": 26177.34, + "end": 26179.34, + "probability": 0.7015 + }, + { + "start": 26179.64, + "end": 26179.9, + "probability": 0.7244 + }, + { + "start": 26180.94, + "end": 26183.02, + "probability": 0.6103 + }, + { + "start": 26183.74, + "end": 26188.92, + "probability": 0.7792 + }, + { + "start": 26189.12, + "end": 26192.1, + "probability": 0.979 + }, + { + "start": 26201.02, + "end": 26201.82, + "probability": 0.6444 + }, + { + "start": 26202.38, + "end": 26205.46, + "probability": 0.7551 + }, + { + "start": 26206.06, + "end": 26208.52, + "probability": 0.8952 + }, + { + "start": 26209.18, + "end": 26209.68, + "probability": 0.9713 + }, + { + "start": 26211.02, + "end": 26212.04, + "probability": 0.7157 + }, + { + "start": 26212.74, + "end": 26213.62, + "probability": 0.9379 + }, + { + "start": 26214.34, + "end": 26215.24, + "probability": 0.6272 + }, + { + "start": 26215.36, + "end": 26220.8, + "probability": 0.9954 + }, + { + "start": 26221.18, + "end": 26221.8, + "probability": 0.8489 + }, + { + "start": 26221.84, + "end": 26223.33, + "probability": 0.7765 + }, + { + "start": 26223.88, + "end": 26225.62, + "probability": 0.848 + }, + { + "start": 26225.74, + "end": 26229.74, + "probability": 0.9663 + }, + { + "start": 26229.96, + "end": 26232.08, + "probability": 0.9169 + }, + { + "start": 26232.08, + "end": 26236.18, + "probability": 0.9932 + }, + { + "start": 26236.52, + "end": 26238.66, + "probability": 0.8745 + }, + { + "start": 26239.22, + "end": 26243.84, + "probability": 0.9562 + }, + { + "start": 26244.12, + "end": 26245.82, + "probability": 0.8948 + }, + { + "start": 26246.22, + "end": 26246.74, + "probability": 0.7698 + }, + { + "start": 26246.8, + "end": 26248.9, + "probability": 0.9693 + }, + { + "start": 26249.1, + "end": 26249.86, + "probability": 0.988 + }, + { + "start": 26249.9, + "end": 26251.06, + "probability": 0.825 + }, + { + "start": 26251.14, + "end": 26252.52, + "probability": 0.9519 + }, + { + "start": 26252.98, + "end": 26254.12, + "probability": 0.9013 + }, + { + "start": 26254.3, + "end": 26255.47, + "probability": 0.916 + }, + { + "start": 26256.02, + "end": 26256.84, + "probability": 0.6998 + }, + { + "start": 26256.98, + "end": 26260.76, + "probability": 0.8809 + }, + { + "start": 26261.3, + "end": 26263.96, + "probability": 0.7874 + }, + { + "start": 26264.3, + "end": 26265.46, + "probability": 0.7818 + }, + { + "start": 26265.82, + "end": 26268.38, + "probability": 0.9849 + }, + { + "start": 26269.38, + "end": 26270.22, + "probability": 0.9553 + }, + { + "start": 26270.34, + "end": 26274.52, + "probability": 0.9907 + }, + { + "start": 26274.88, + "end": 26276.64, + "probability": 0.9976 + }, + { + "start": 26277.06, + "end": 26280.38, + "probability": 0.9822 + }, + { + "start": 26280.64, + "end": 26282.08, + "probability": 0.9558 + }, + { + "start": 26283.22, + "end": 26284.02, + "probability": 0.9835 + }, + { + "start": 26284.12, + "end": 26286.91, + "probability": 0.9971 + }, + { + "start": 26287.2, + "end": 26291.18, + "probability": 0.9868 + }, + { + "start": 26291.54, + "end": 26292.38, + "probability": 0.8347 + }, + { + "start": 26292.7, + "end": 26294.26, + "probability": 0.9733 + }, + { + "start": 26294.52, + "end": 26296.31, + "probability": 0.9814 + }, + { + "start": 26296.6, + "end": 26297.58, + "probability": 0.8435 + }, + { + "start": 26297.98, + "end": 26299.54, + "probability": 0.796 + }, + { + "start": 26299.66, + "end": 26300.7, + "probability": 0.8893 + }, + { + "start": 26300.98, + "end": 26303.28, + "probability": 0.9755 + }, + { + "start": 26303.6, + "end": 26304.78, + "probability": 0.9301 + }, + { + "start": 26305.04, + "end": 26306.0, + "probability": 0.6797 + }, + { + "start": 26306.36, + "end": 26311.16, + "probability": 0.9131 + }, + { + "start": 26311.52, + "end": 26312.02, + "probability": 0.584 + }, + { + "start": 26312.38, + "end": 26313.28, + "probability": 0.9902 + }, + { + "start": 26313.42, + "end": 26313.82, + "probability": 0.9738 + }, + { + "start": 26313.9, + "end": 26314.86, + "probability": 0.872 + }, + { + "start": 26315.0, + "end": 26315.9, + "probability": 0.9937 + }, + { + "start": 26315.94, + "end": 26316.98, + "probability": 0.9027 + }, + { + "start": 26317.3, + "end": 26321.0, + "probability": 0.9938 + }, + { + "start": 26321.48, + "end": 26323.32, + "probability": 0.9509 + }, + { + "start": 26323.44, + "end": 26325.7, + "probability": 0.5709 + }, + { + "start": 26326.02, + "end": 26326.16, + "probability": 0.3852 + }, + { + "start": 26326.32, + "end": 26328.14, + "probability": 0.9763 + }, + { + "start": 26328.4, + "end": 26330.22, + "probability": 0.9924 + }, + { + "start": 26330.36, + "end": 26330.94, + "probability": 0.4907 + }, + { + "start": 26331.04, + "end": 26333.46, + "probability": 0.9897 + }, + { + "start": 26333.6, + "end": 26334.8, + "probability": 0.9954 + }, + { + "start": 26334.98, + "end": 26337.38, + "probability": 0.9762 + }, + { + "start": 26337.6, + "end": 26340.0, + "probability": 0.9724 + }, + { + "start": 26340.14, + "end": 26341.64, + "probability": 0.9609 + }, + { + "start": 26341.92, + "end": 26343.14, + "probability": 0.9692 + }, + { + "start": 26343.26, + "end": 26343.98, + "probability": 0.7295 + }, + { + "start": 26345.0, + "end": 26345.96, + "probability": 0.1568 + }, + { + "start": 26346.74, + "end": 26347.23, + "probability": 0.8473 + }, + { + "start": 26347.36, + "end": 26349.62, + "probability": 0.8965 + }, + { + "start": 26349.7, + "end": 26351.0, + "probability": 0.8842 + }, + { + "start": 26351.0, + "end": 26352.26, + "probability": 0.0003 + }, + { + "start": 26352.98, + "end": 26353.4, + "probability": 0.2929 + }, + { + "start": 26353.4, + "end": 26353.4, + "probability": 0.3059 + }, + { + "start": 26353.4, + "end": 26357.98, + "probability": 0.856 + }, + { + "start": 26358.42, + "end": 26359.72, + "probability": 0.8707 + }, + { + "start": 26360.2, + "end": 26360.88, + "probability": 0.6842 + }, + { + "start": 26360.88, + "end": 26362.48, + "probability": 0.9729 + }, + { + "start": 26362.62, + "end": 26363.06, + "probability": 0.9537 + }, + { + "start": 26363.12, + "end": 26365.86, + "probability": 0.946 + }, + { + "start": 26366.1, + "end": 26367.72, + "probability": 0.9966 + }, + { + "start": 26367.84, + "end": 26368.69, + "probability": 0.7847 + }, + { + "start": 26369.12, + "end": 26370.0, + "probability": 0.9773 + }, + { + "start": 26370.28, + "end": 26372.28, + "probability": 0.9614 + }, + { + "start": 26372.94, + "end": 26373.48, + "probability": 0.9434 + }, + { + "start": 26373.52, + "end": 26375.66, + "probability": 0.9769 + }, + { + "start": 26375.76, + "end": 26376.54, + "probability": 0.9424 + }, + { + "start": 26376.64, + "end": 26378.76, + "probability": 0.9993 + }, + { + "start": 26379.14, + "end": 26380.67, + "probability": 0.9883 + }, + { + "start": 26380.92, + "end": 26382.9, + "probability": 0.9821 + }, + { + "start": 26383.26, + "end": 26384.52, + "probability": 0.9769 + }, + { + "start": 26384.62, + "end": 26387.66, + "probability": 0.9718 + }, + { + "start": 26387.78, + "end": 26389.34, + "probability": 0.9825 + }, + { + "start": 26391.68, + "end": 26393.24, + "probability": 0.9784 + }, + { + "start": 26393.3, + "end": 26394.06, + "probability": 0.9328 + }, + { + "start": 26394.12, + "end": 26397.28, + "probability": 0.9961 + }, + { + "start": 26397.36, + "end": 26400.08, + "probability": 0.9885 + }, + { + "start": 26400.36, + "end": 26401.8, + "probability": 0.9971 + }, + { + "start": 26401.88, + "end": 26402.45, + "probability": 0.5009 + }, + { + "start": 26402.92, + "end": 26403.55, + "probability": 0.5606 + }, + { + "start": 26403.78, + "end": 26407.05, + "probability": 0.9922 + }, + { + "start": 26407.14, + "end": 26407.64, + "probability": 0.8743 + }, + { + "start": 26407.92, + "end": 26410.02, + "probability": 0.8102 + }, + { + "start": 26410.1, + "end": 26410.74, + "probability": 0.9194 + }, + { + "start": 26410.84, + "end": 26411.88, + "probability": 0.8945 + }, + { + "start": 26412.12, + "end": 26414.54, + "probability": 0.9956 + }, + { + "start": 26414.56, + "end": 26414.56, + "probability": 0.3707 + }, + { + "start": 26414.64, + "end": 26415.93, + "probability": 0.9385 + }, + { + "start": 26416.36, + "end": 26418.12, + "probability": 0.8522 + }, + { + "start": 26418.4, + "end": 26421.14, + "probability": 0.9501 + }, + { + "start": 26421.14, + "end": 26424.2, + "probability": 0.9763 + }, + { + "start": 26424.3, + "end": 26424.52, + "probability": 0.7341 + }, + { + "start": 26424.72, + "end": 26426.84, + "probability": 0.6763 + }, + { + "start": 26427.06, + "end": 26429.18, + "probability": 0.9946 + }, + { + "start": 26429.32, + "end": 26430.22, + "probability": 0.3562 + }, + { + "start": 26430.66, + "end": 26431.12, + "probability": 0.6064 + }, + { + "start": 26431.18, + "end": 26432.34, + "probability": 0.8292 + }, + { + "start": 26432.42, + "end": 26432.74, + "probability": 0.7194 + }, + { + "start": 26435.06, + "end": 26437.02, + "probability": 0.8851 + }, + { + "start": 26440.9, + "end": 26442.32, + "probability": 0.9655 + }, + { + "start": 26445.46, + "end": 26446.34, + "probability": 0.6542 + }, + { + "start": 26446.82, + "end": 26447.64, + "probability": 0.7889 + }, + { + "start": 26448.52, + "end": 26449.78, + "probability": 0.7537 + }, + { + "start": 26453.64, + "end": 26454.38, + "probability": 0.3617 + }, + { + "start": 26455.94, + "end": 26458.56, + "probability": 0.8582 + }, + { + "start": 26458.7, + "end": 26459.96, + "probability": 0.975 + }, + { + "start": 26460.08, + "end": 26461.52, + "probability": 0.7543 + }, + { + "start": 26461.52, + "end": 26469.82, + "probability": 0.7891 + }, + { + "start": 26469.82, + "end": 26473.38, + "probability": 0.9536 + }, + { + "start": 26475.74, + "end": 26476.3, + "probability": 0.0535 + }, + { + "start": 26476.3, + "end": 26476.9, + "probability": 0.7313 + }, + { + "start": 26478.46, + "end": 26478.94, + "probability": 0.8492 + }, + { + "start": 26481.0, + "end": 26483.26, + "probability": 0.8345 + }, + { + "start": 26483.52, + "end": 26485.66, + "probability": 0.7789 + }, + { + "start": 26485.98, + "end": 26487.19, + "probability": 0.3406 + }, + { + "start": 26488.08, + "end": 26489.37, + "probability": 0.8706 + }, + { + "start": 26490.18, + "end": 26491.08, + "probability": 0.9618 + }, + { + "start": 26491.12, + "end": 26494.68, + "probability": 0.9316 + }, + { + "start": 26497.26, + "end": 26501.86, + "probability": 0.7203 + }, + { + "start": 26501.86, + "end": 26502.28, + "probability": 0.5295 + }, + { + "start": 26503.7, + "end": 26506.28, + "probability": 0.7676 + }, + { + "start": 26507.86, + "end": 26510.42, + "probability": 0.6874 + }, + { + "start": 26510.94, + "end": 26514.22, + "probability": 0.6385 + }, + { + "start": 26514.28, + "end": 26514.72, + "probability": 0.8061 + }, + { + "start": 26515.66, + "end": 26518.73, + "probability": 0.632 + }, + { + "start": 26520.3, + "end": 26520.3, + "probability": 0.0744 + }, + { + "start": 26520.3, + "end": 26525.98, + "probability": 0.9575 + }, + { + "start": 26526.7, + "end": 26528.46, + "probability": 0.4283 + }, + { + "start": 26529.74, + "end": 26530.21, + "probability": 0.4493 + }, + { + "start": 26530.7, + "end": 26534.94, + "probability": 0.9888 + }, + { + "start": 26534.94, + "end": 26537.08, + "probability": 0.58 + }, + { + "start": 26537.32, + "end": 26538.4, + "probability": 0.531 + }, + { + "start": 26539.24, + "end": 26540.12, + "probability": 0.8587 + }, + { + "start": 26540.76, + "end": 26542.84, + "probability": 0.8326 + }, + { + "start": 26544.18, + "end": 26545.14, + "probability": 0.8167 + }, + { + "start": 26545.7, + "end": 26548.48, + "probability": 0.6838 + }, + { + "start": 26552.26, + "end": 26553.3, + "probability": 0.5695 + }, + { + "start": 26554.08, + "end": 26556.18, + "probability": 0.0839 + }, + { + "start": 26557.48, + "end": 26557.48, + "probability": 0.1747 + }, + { + "start": 26557.48, + "end": 26557.64, + "probability": 0.0312 + }, + { + "start": 26560.22, + "end": 26560.66, + "probability": 0.7437 + }, + { + "start": 26560.68, + "end": 26561.58, + "probability": 0.9097 + }, + { + "start": 26561.7, + "end": 26563.06, + "probability": 0.9777 + }, + { + "start": 26564.86, + "end": 26566.18, + "probability": 0.9583 + }, + { + "start": 26566.2, + "end": 26573.44, + "probability": 0.949 + }, + { + "start": 26574.14, + "end": 26576.78, + "probability": 0.9641 + }, + { + "start": 26576.86, + "end": 26578.98, + "probability": 0.8142 + }, + { + "start": 26580.96, + "end": 26582.92, + "probability": 0.5778 + }, + { + "start": 26584.16, + "end": 26585.2, + "probability": 0.7001 + }, + { + "start": 26585.88, + "end": 26588.21, + "probability": 0.9838 + }, + { + "start": 26589.34, + "end": 26590.28, + "probability": 0.9805 + }, + { + "start": 26591.38, + "end": 26593.48, + "probability": 0.7518 + }, + { + "start": 26594.2, + "end": 26595.46, + "probability": 0.7113 + }, + { + "start": 26596.22, + "end": 26596.7, + "probability": 0.6138 + }, + { + "start": 26597.98, + "end": 26599.78, + "probability": 0.9353 + }, + { + "start": 26600.64, + "end": 26601.52, + "probability": 0.8544 + }, + { + "start": 26601.58, + "end": 26602.32, + "probability": 0.9788 + }, + { + "start": 26602.54, + "end": 26603.7, + "probability": 0.8921 + }, + { + "start": 26604.38, + "end": 26607.98, + "probability": 0.9697 + }, + { + "start": 26608.52, + "end": 26609.4, + "probability": 0.8906 + }, + { + "start": 26609.64, + "end": 26614.88, + "probability": 0.8787 + }, + { + "start": 26614.88, + "end": 26619.4, + "probability": 0.9684 + }, + { + "start": 26621.18, + "end": 26623.12, + "probability": 0.9541 + }, + { + "start": 26624.06, + "end": 26625.0, + "probability": 0.8847 + }, + { + "start": 26625.74, + "end": 26627.62, + "probability": 0.8588 + }, + { + "start": 26628.78, + "end": 26629.56, + "probability": 0.7252 + }, + { + "start": 26630.74, + "end": 26631.04, + "probability": 0.6963 + }, + { + "start": 26631.28, + "end": 26631.5, + "probability": 0.6343 + }, + { + "start": 26631.82, + "end": 26632.34, + "probability": 0.9376 + }, + { + "start": 26632.48, + "end": 26632.86, + "probability": 0.562 + }, + { + "start": 26632.86, + "end": 26633.3, + "probability": 0.8442 + }, + { + "start": 26633.34, + "end": 26635.12, + "probability": 0.8569 + }, + { + "start": 26635.34, + "end": 26637.16, + "probability": 0.7366 + }, + { + "start": 26638.12, + "end": 26640.36, + "probability": 0.9563 + }, + { + "start": 26640.72, + "end": 26642.18, + "probability": 0.6902 + }, + { + "start": 26642.48, + "end": 26646.06, + "probability": 0.9556 + }, + { + "start": 26646.64, + "end": 26648.48, + "probability": 0.9163 + }, + { + "start": 26648.6, + "end": 26652.74, + "probability": 0.9399 + }, + { + "start": 26652.88, + "end": 26657.96, + "probability": 0.9917 + }, + { + "start": 26658.1, + "end": 26659.7, + "probability": 0.6766 + }, + { + "start": 26660.02, + "end": 26661.16, + "probability": 0.9718 + }, + { + "start": 26661.32, + "end": 26663.32, + "probability": 0.9655 + }, + { + "start": 26663.76, + "end": 26666.84, + "probability": 0.8608 + }, + { + "start": 26667.0, + "end": 26668.52, + "probability": 0.9186 + }, + { + "start": 26668.98, + "end": 26673.02, + "probability": 0.9856 + }, + { + "start": 26673.42, + "end": 26673.72, + "probability": 0.0204 + }, + { + "start": 26673.72, + "end": 26675.2, + "probability": 0.3479 + }, + { + "start": 26675.38, + "end": 26676.86, + "probability": 0.4531 + }, + { + "start": 26677.1, + "end": 26681.42, + "probability": 0.1888 + }, + { + "start": 26681.46, + "end": 26682.84, + "probability": 0.2094 + }, + { + "start": 26683.4, + "end": 26685.52, + "probability": 0.5537 + }, + { + "start": 26685.68, + "end": 26685.68, + "probability": 0.2231 + }, + { + "start": 26685.68, + "end": 26685.78, + "probability": 0.515 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.0, + "end": 26794.0, + "probability": 0.0 + }, + { + "start": 26794.4, + "end": 26795.58, + "probability": 0.1259 + }, + { + "start": 26796.04, + "end": 26796.04, + "probability": 0.1403 + }, + { + "start": 26796.04, + "end": 26796.04, + "probability": 0.0105 + }, + { + "start": 26796.04, + "end": 26796.06, + "probability": 0.2524 + }, + { + "start": 26796.06, + "end": 26797.02, + "probability": 0.4534 + }, + { + "start": 26797.36, + "end": 26800.96, + "probability": 0.0987 + }, + { + "start": 26801.1, + "end": 26801.24, + "probability": 0.095 + }, + { + "start": 26801.84, + "end": 26801.84, + "probability": 0.088 + }, + { + "start": 26801.84, + "end": 26803.15, + "probability": 0.2783 + }, + { + "start": 26808.63, + "end": 26811.86, + "probability": 0.0179 + }, + { + "start": 26811.86, + "end": 26812.14, + "probability": 0.0532 + }, + { + "start": 26812.36, + "end": 26813.84, + "probability": 0.2185 + }, + { + "start": 26813.94, + "end": 26816.2, + "probability": 0.0076 + }, + { + "start": 26816.2, + "end": 26816.42, + "probability": 0.0709 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.0, + "end": 26916.0, + "probability": 0.0 + }, + { + "start": 26916.34, + "end": 26917.62, + "probability": 0.0592 + }, + { + "start": 26918.7, + "end": 26919.88, + "probability": 0.047 + }, + { + "start": 26920.94, + "end": 26921.54, + "probability": 0.0324 + }, + { + "start": 26922.42, + "end": 26924.82, + "probability": 0.0362 + }, + { + "start": 26924.82, + "end": 26924.82, + "probability": 0.1872 + }, + { + "start": 26924.82, + "end": 26927.7, + "probability": 0.1228 + }, + { + "start": 26927.72, + "end": 26928.4, + "probability": 0.2129 + }, + { + "start": 26928.6, + "end": 26930.94, + "probability": 0.3599 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27039.0, + "end": 27039.0, + "probability": 0.0 + }, + { + "start": 27040.08, + "end": 27044.6, + "probability": 0.0847 + }, + { + "start": 27044.92, + "end": 27045.06, + "probability": 0.1478 + }, + { + "start": 27045.06, + "end": 27045.58, + "probability": 0.0714 + }, + { + "start": 27046.26, + "end": 27047.66, + "probability": 0.051 + }, + { + "start": 27047.84, + "end": 27047.84, + "probability": 0.1281 + }, + { + "start": 27047.84, + "end": 27047.84, + "probability": 0.0084 + }, + { + "start": 27048.8, + "end": 27050.9, + "probability": 0.1326 + }, + { + "start": 27050.9, + "end": 27053.2, + "probability": 0.2803 + }, + { + "start": 27054.72, + "end": 27054.8, + "probability": 0.33 + }, + { + "start": 27056.3, + "end": 27057.38, + "probability": 0.037 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27178.0, + "end": 27178.0, + "probability": 0.0 + }, + { + "start": 27179.36, + "end": 27179.64, + "probability": 0.0111 + }, + { + "start": 27179.64, + "end": 27179.64, + "probability": 0.3046 + }, + { + "start": 27179.64, + "end": 27179.64, + "probability": 0.1575 + }, + { + "start": 27179.64, + "end": 27180.16, + "probability": 0.2777 + }, + { + "start": 27180.38, + "end": 27181.5, + "probability": 0.4895 + }, + { + "start": 27181.98, + "end": 27183.32, + "probability": 0.1189 + }, + { + "start": 27183.32, + "end": 27184.0, + "probability": 0.1582 + }, + { + "start": 27184.34, + "end": 27184.82, + "probability": 0.1259 + }, + { + "start": 27185.06, + "end": 27185.46, + "probability": 0.4074 + }, + { + "start": 27186.54, + "end": 27186.74, + "probability": 0.0178 + }, + { + "start": 27186.74, + "end": 27189.14, + "probability": 0.0754 + }, + { + "start": 27190.86, + "end": 27191.4, + "probability": 0.0786 + }, + { + "start": 27191.4, + "end": 27193.2, + "probability": 0.0452 + }, + { + "start": 27193.96, + "end": 27195.46, + "probability": 0.0986 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.0, + "end": 27313.0, + "probability": 0.0 + }, + { + "start": 27313.22, + "end": 27316.0, + "probability": 0.0833 + }, + { + "start": 27316.72, + "end": 27318.5, + "probability": 0.1179 + }, + { + "start": 27325.24, + "end": 27328.04, + "probability": 0.0398 + }, + { + "start": 27328.36, + "end": 27328.36, + "probability": 0.0554 + }, + { + "start": 27328.36, + "end": 27333.26, + "probability": 0.2072 + }, + { + "start": 27333.26, + "end": 27334.38, + "probability": 0.0217 + }, + { + "start": 27334.38, + "end": 27336.24, + "probability": 0.1815 + }, + { + "start": 27336.72, + "end": 27339.1, + "probability": 0.2443 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.0, + "end": 27433.0, + "probability": 0.0 + }, + { + "start": 27433.26, + "end": 27433.36, + "probability": 0.073 + }, + { + "start": 27433.36, + "end": 27434.42, + "probability": 0.2132 + }, + { + "start": 27435.76, + "end": 27436.3, + "probability": 0.9324 + }, + { + "start": 27439.88, + "end": 27442.84, + "probability": 0.9899 + }, + { + "start": 27443.52, + "end": 27445.4, + "probability": 0.9564 + }, + { + "start": 27445.5, + "end": 27446.36, + "probability": 0.9126 + }, + { + "start": 27446.94, + "end": 27449.72, + "probability": 0.9567 + }, + { + "start": 27450.32, + "end": 27452.46, + "probability": 0.9951 + }, + { + "start": 27452.64, + "end": 27456.12, + "probability": 0.9904 + }, + { + "start": 27456.28, + "end": 27458.56, + "probability": 0.9563 + }, + { + "start": 27459.14, + "end": 27463.08, + "probability": 0.9901 + }, + { + "start": 27463.64, + "end": 27465.24, + "probability": 0.9734 + }, + { + "start": 27465.34, + "end": 27466.62, + "probability": 0.9277 + }, + { + "start": 27466.82, + "end": 27469.11, + "probability": 0.9888 + }, + { + "start": 27469.26, + "end": 27470.9, + "probability": 0.916 + }, + { + "start": 27471.1, + "end": 27471.52, + "probability": 0.3452 + }, + { + "start": 27471.92, + "end": 27473.25, + "probability": 0.6111 + }, + { + "start": 27473.88, + "end": 27476.1, + "probability": 0.9863 + }, + { + "start": 27476.18, + "end": 27476.8, + "probability": 0.5444 + }, + { + "start": 27476.82, + "end": 27477.96, + "probability": 0.9799 + }, + { + "start": 27488.18, + "end": 27490.08, + "probability": 0.5587 + }, + { + "start": 27490.24, + "end": 27490.52, + "probability": 0.2872 + }, + { + "start": 27490.52, + "end": 27490.94, + "probability": 0.9636 + }, + { + "start": 27491.64, + "end": 27492.1, + "probability": 0.8088 + }, + { + "start": 27492.2, + "end": 27493.06, + "probability": 0.9084 + }, + { + "start": 27493.78, + "end": 27498.88, + "probability": 0.9832 + }, + { + "start": 27499.76, + "end": 27500.94, + "probability": 0.9236 + }, + { + "start": 27501.54, + "end": 27505.34, + "probability": 0.9433 + }, + { + "start": 27506.1, + "end": 27510.9, + "probability": 0.9969 + }, + { + "start": 27512.34, + "end": 27515.06, + "probability": 0.9649 + }, + { + "start": 27515.12, + "end": 27520.66, + "probability": 0.9302 + }, + { + "start": 27520.86, + "end": 27523.03, + "probability": 0.9609 + }, + { + "start": 27523.96, + "end": 27526.5, + "probability": 0.9835 + }, + { + "start": 27526.76, + "end": 27530.32, + "probability": 0.955 + }, + { + "start": 27530.82, + "end": 27532.26, + "probability": 0.9465 + }, + { + "start": 27532.96, + "end": 27535.68, + "probability": 0.9215 + }, + { + "start": 27536.24, + "end": 27538.66, + "probability": 0.9672 + }, + { + "start": 27538.68, + "end": 27546.28, + "probability": 0.8638 + }, + { + "start": 27547.9, + "end": 27552.68, + "probability": 0.9089 + }, + { + "start": 27552.88, + "end": 27555.46, + "probability": 0.8425 + }, + { + "start": 27555.94, + "end": 27557.34, + "probability": 0.9819 + }, + { + "start": 27557.46, + "end": 27558.1, + "probability": 0.6624 + }, + { + "start": 27558.18, + "end": 27559.82, + "probability": 0.7876 + }, + { + "start": 27560.42, + "end": 27566.72, + "probability": 0.9761 + }, + { + "start": 27567.32, + "end": 27568.72, + "probability": 0.9357 + }, + { + "start": 27568.84, + "end": 27571.64, + "probability": 0.9474 + }, + { + "start": 27571.84, + "end": 27574.44, + "probability": 0.861 + }, + { + "start": 27574.68, + "end": 27578.4, + "probability": 0.9804 + }, + { + "start": 27579.3, + "end": 27580.5, + "probability": 0.8416 + }, + { + "start": 27580.86, + "end": 27582.54, + "probability": 0.8007 + }, + { + "start": 27582.62, + "end": 27583.89, + "probability": 0.7388 + }, + { + "start": 27584.74, + "end": 27585.24, + "probability": 0.8743 + }, + { + "start": 27586.2, + "end": 27589.86, + "probability": 0.9576 + }, + { + "start": 27590.58, + "end": 27592.56, + "probability": 0.677 + }, + { + "start": 27592.66, + "end": 27599.16, + "probability": 0.9797 + }, + { + "start": 27599.16, + "end": 27603.52, + "probability": 0.9973 + }, + { + "start": 27603.86, + "end": 27609.9, + "probability": 0.9827 + }, + { + "start": 27610.26, + "end": 27611.98, + "probability": 0.7806 + }, + { + "start": 27612.26, + "end": 27613.08, + "probability": 0.9554 + }, + { + "start": 27613.76, + "end": 27618.08, + "probability": 0.8527 + }, + { + "start": 27618.88, + "end": 27619.6, + "probability": 0.6667 + }, + { + "start": 27620.18, + "end": 27627.68, + "probability": 0.7978 + }, + { + "start": 27627.9, + "end": 27629.28, + "probability": 0.9891 + }, + { + "start": 27629.4, + "end": 27632.68, + "probability": 0.8062 + }, + { + "start": 27633.42, + "end": 27634.08, + "probability": 0.4188 + }, + { + "start": 27634.14, + "end": 27635.22, + "probability": 0.9109 + }, + { + "start": 27635.6, + "end": 27640.96, + "probability": 0.9802 + }, + { + "start": 27641.12, + "end": 27642.05, + "probability": 0.9071 + }, + { + "start": 27642.48, + "end": 27647.44, + "probability": 0.9718 + }, + { + "start": 27647.56, + "end": 27648.54, + "probability": 0.6502 + }, + { + "start": 27648.66, + "end": 27653.32, + "probability": 0.993 + }, + { + "start": 27653.54, + "end": 27655.54, + "probability": 0.896 + }, + { + "start": 27658.02, + "end": 27661.38, + "probability": 0.9808 + }, + { + "start": 27661.46, + "end": 27662.48, + "probability": 0.7166 + }, + { + "start": 27663.68, + "end": 27664.86, + "probability": 0.9556 + }, + { + "start": 27664.92, + "end": 27668.64, + "probability": 0.7433 + }, + { + "start": 27668.72, + "end": 27674.74, + "probability": 0.962 + }, + { + "start": 27674.74, + "end": 27678.3, + "probability": 0.9884 + }, + { + "start": 27678.6, + "end": 27680.26, + "probability": 0.8602 + }, + { + "start": 27680.48, + "end": 27681.92, + "probability": 0.6554 + }, + { + "start": 27682.0, + "end": 27682.94, + "probability": 0.8188 + }, + { + "start": 27682.98, + "end": 27684.62, + "probability": 0.9819 + }, + { + "start": 27684.96, + "end": 27691.9, + "probability": 0.998 + }, + { + "start": 27691.9, + "end": 27694.87, + "probability": 0.9958 + }, + { + "start": 27695.14, + "end": 27695.58, + "probability": 0.5868 + }, + { + "start": 27695.84, + "end": 27697.76, + "probability": 0.897 + }, + { + "start": 27697.82, + "end": 27703.72, + "probability": 0.957 + }, + { + "start": 27704.14, + "end": 27706.36, + "probability": 0.8295 + }, + { + "start": 27706.46, + "end": 27707.42, + "probability": 0.8228 + }, + { + "start": 27707.72, + "end": 27709.36, + "probability": 0.9777 + }, + { + "start": 27709.7, + "end": 27711.95, + "probability": 0.7778 + }, + { + "start": 27712.32, + "end": 27713.22, + "probability": 0.9478 + }, + { + "start": 27715.25, + "end": 27719.42, + "probability": 0.8016 + }, + { + "start": 27720.7, + "end": 27722.78, + "probability": 0.9413 + }, + { + "start": 27722.86, + "end": 27723.52, + "probability": 0.7127 + }, + { + "start": 27723.56, + "end": 27724.48, + "probability": 0.7673 + }, + { + "start": 27724.76, + "end": 27725.84, + "probability": 0.7552 + }, + { + "start": 27726.86, + "end": 27728.94, + "probability": 0.9905 + }, + { + "start": 27728.94, + "end": 27732.0, + "probability": 0.7834 + }, + { + "start": 27732.28, + "end": 27735.7, + "probability": 0.9977 + }, + { + "start": 27736.18, + "end": 27736.6, + "probability": 0.5919 + }, + { + "start": 27736.96, + "end": 27738.46, + "probability": 0.5581 + }, + { + "start": 27738.6, + "end": 27740.62, + "probability": 0.8644 + }, + { + "start": 27740.68, + "end": 27741.12, + "probability": 0.4845 + }, + { + "start": 27741.16, + "end": 27741.38, + "probability": 0.7548 + }, + { + "start": 27741.56, + "end": 27742.56, + "probability": 0.6675 + }, + { + "start": 27744.12, + "end": 27746.61, + "probability": 0.8234 + }, + { + "start": 27758.94, + "end": 27759.76, + "probability": 0.9625 + }, + { + "start": 27759.84, + "end": 27762.28, + "probability": 0.966 + }, + { + "start": 27762.74, + "end": 27765.32, + "probability": 0.9536 + }, + { + "start": 27766.4, + "end": 27767.7, + "probability": 0.7965 + }, + { + "start": 27767.74, + "end": 27768.22, + "probability": 0.7925 + }, + { + "start": 27768.42, + "end": 27772.52, + "probability": 0.9559 + }, + { + "start": 27773.0, + "end": 27774.06, + "probability": 0.8075 + }, + { + "start": 27774.1, + "end": 27775.78, + "probability": 0.9858 + }, + { + "start": 27776.1, + "end": 27781.04, + "probability": 0.9679 + }, + { + "start": 27781.04, + "end": 27786.46, + "probability": 0.9415 + }, + { + "start": 27787.74, + "end": 27791.31, + "probability": 0.9978 + }, + { + "start": 27792.82, + "end": 27796.3, + "probability": 0.9857 + }, + { + "start": 27796.62, + "end": 27799.44, + "probability": 0.6938 + }, + { + "start": 27800.22, + "end": 27802.2, + "probability": 0.7194 + }, + { + "start": 27802.3, + "end": 27805.05, + "probability": 0.7752 + }, + { + "start": 27807.86, + "end": 27808.68, + "probability": 0.5677 + }, + { + "start": 27809.46, + "end": 27809.78, + "probability": 0.0901 + }, + { + "start": 27809.78, + "end": 27815.5, + "probability": 0.9676 + }, + { + "start": 27815.62, + "end": 27816.4, + "probability": 0.8906 + }, + { + "start": 27816.48, + "end": 27817.6, + "probability": 0.7108 + }, + { + "start": 27818.08, + "end": 27819.72, + "probability": 0.9619 + }, + { + "start": 27820.32, + "end": 27821.46, + "probability": 0.6985 + }, + { + "start": 27821.88, + "end": 27827.48, + "probability": 0.9669 + }, + { + "start": 27827.66, + "end": 27829.02, + "probability": 0.8482 + }, + { + "start": 27829.12, + "end": 27830.08, + "probability": 0.9324 + }, + { + "start": 27830.16, + "end": 27831.38, + "probability": 0.8097 + }, + { + "start": 27832.38, + "end": 27833.36, + "probability": 0.8368 + }, + { + "start": 27834.14, + "end": 27836.5, + "probability": 0.9929 + }, + { + "start": 27836.5, + "end": 27841.0, + "probability": 0.9708 + }, + { + "start": 27841.12, + "end": 27842.26, + "probability": 0.6863 + }, + { + "start": 27842.34, + "end": 27846.74, + "probability": 0.8605 + }, + { + "start": 27847.72, + "end": 27851.08, + "probability": 0.8463 + }, + { + "start": 27852.26, + "end": 27854.32, + "probability": 0.8591 + }, + { + "start": 27854.7, + "end": 27858.48, + "probability": 0.8474 + }, + { + "start": 27858.92, + "end": 27860.76, + "probability": 0.6411 + }, + { + "start": 27861.0, + "end": 27864.98, + "probability": 0.8958 + }, + { + "start": 27864.98, + "end": 27870.3, + "probability": 0.9533 + }, + { + "start": 27870.58, + "end": 27872.28, + "probability": 0.7515 + }, + { + "start": 27872.44, + "end": 27873.12, + "probability": 0.7429 + }, + { + "start": 27873.24, + "end": 27876.8, + "probability": 0.8439 + }, + { + "start": 27877.3, + "end": 27880.24, + "probability": 0.7655 + }, + { + "start": 27880.38, + "end": 27881.22, + "probability": 0.8221 + }, + { + "start": 27881.86, + "end": 27883.84, + "probability": 0.9966 + }, + { + "start": 27884.1, + "end": 27885.32, + "probability": 0.947 + }, + { + "start": 27885.5, + "end": 27886.86, + "probability": 0.9861 + }, + { + "start": 27886.98, + "end": 27890.75, + "probability": 0.9736 + }, + { + "start": 27891.94, + "end": 27894.88, + "probability": 0.9885 + }, + { + "start": 27895.12, + "end": 27899.88, + "probability": 0.843 + }, + { + "start": 27900.16, + "end": 27905.18, + "probability": 0.981 + }, + { + "start": 27905.18, + "end": 27907.62, + "probability": 0.3073 + }, + { + "start": 27907.84, + "end": 27911.86, + "probability": 0.9265 + }, + { + "start": 27913.04, + "end": 27917.6, + "probability": 0.9785 + }, + { + "start": 27917.82, + "end": 27919.14, + "probability": 0.8353 + }, + { + "start": 27919.36, + "end": 27920.3, + "probability": 0.9573 + }, + { + "start": 27921.86, + "end": 27923.65, + "probability": 0.8247 + }, + { + "start": 27924.56, + "end": 27925.73, + "probability": 0.9236 + }, + { + "start": 27925.84, + "end": 27930.2, + "probability": 0.9912 + }, + { + "start": 27931.14, + "end": 27937.52, + "probability": 0.9925 + }, + { + "start": 27937.58, + "end": 27941.4, + "probability": 0.6448 + }, + { + "start": 27941.62, + "end": 27944.86, + "probability": 0.9558 + }, + { + "start": 27945.0, + "end": 27947.88, + "probability": 0.9319 + }, + { + "start": 27951.76, + "end": 27951.76, + "probability": 0.0686 + }, + { + "start": 27951.76, + "end": 27956.7, + "probability": 0.6084 + }, + { + "start": 27956.7, + "end": 27962.55, + "probability": 0.3776 + }, + { + "start": 27963.8, + "end": 27967.68, + "probability": 0.7018 + }, + { + "start": 27967.94, + "end": 27973.88, + "probability": 0.6104 + }, + { + "start": 27974.02, + "end": 27975.68, + "probability": 0.5516 + }, + { + "start": 27976.26, + "end": 27979.7, + "probability": 0.6139 + }, + { + "start": 27980.34, + "end": 27981.1, + "probability": 0.4246 + }, + { + "start": 27981.22, + "end": 27981.76, + "probability": 0.5203 + }, + { + "start": 27981.84, + "end": 27981.84, + "probability": 0.572 + }, + { + "start": 27981.9, + "end": 27985.44, + "probability": 0.2921 + }, + { + "start": 27986.54, + "end": 27988.34, + "probability": 0.3644 + }, + { + "start": 27988.5, + "end": 27989.74, + "probability": 0.0631 + }, + { + "start": 27991.24, + "end": 27992.45, + "probability": 0.2126 + }, + { + "start": 28000.84, + "end": 28004.8, + "probability": 0.5006 + }, + { + "start": 28005.0, + "end": 28006.12, + "probability": 0.5343 + }, + { + "start": 28006.24, + "end": 28008.88, + "probability": 0.7275 + }, + { + "start": 28009.02, + "end": 28011.96, + "probability": 0.9854 + }, + { + "start": 28011.96, + "end": 28015.68, + "probability": 0.8795 + }, + { + "start": 28015.88, + "end": 28018.24, + "probability": 0.5746 + }, + { + "start": 28018.52, + "end": 28020.62, + "probability": 0.8744 + }, + { + "start": 28020.88, + "end": 28021.98, + "probability": 0.9075 + }, + { + "start": 28022.04, + "end": 28023.36, + "probability": 0.8918 + }, + { + "start": 28023.5, + "end": 28026.86, + "probability": 0.9304 + }, + { + "start": 28027.34, + "end": 28028.5, + "probability": 0.9632 + }, + { + "start": 28028.6, + "end": 28030.2, + "probability": 0.8792 + }, + { + "start": 28030.24, + "end": 28033.74, + "probability": 0.9917 + }, + { + "start": 28033.82, + "end": 28034.02, + "probability": 0.6449 + }, + { + "start": 28034.14, + "end": 28035.7, + "probability": 0.6553 + }, + { + "start": 28035.92, + "end": 28038.16, + "probability": 0.6443 + }, + { + "start": 28050.78, + "end": 28052.86, + "probability": 0.6074 + }, + { + "start": 28053.7, + "end": 28056.42, + "probability": 0.9333 + }, + { + "start": 28056.98, + "end": 28059.46, + "probability": 0.9916 + }, + { + "start": 28059.46, + "end": 28062.92, + "probability": 0.6817 + }, + { + "start": 28063.0, + "end": 28067.58, + "probability": 0.9871 + }, + { + "start": 28068.44, + "end": 28068.94, + "probability": 0.3051 + }, + { + "start": 28069.34, + "end": 28069.36, + "probability": 0.3165 + }, + { + "start": 28069.36, + "end": 28069.66, + "probability": 0.4366 + }, + { + "start": 28069.66, + "end": 28071.73, + "probability": 0.481 + }, + { + "start": 28072.92, + "end": 28074.96, + "probability": 0.9868 + }, + { + "start": 28075.96, + "end": 28079.18, + "probability": 0.993 + }, + { + "start": 28081.79, + "end": 28088.92, + "probability": 0.995 + }, + { + "start": 28089.58, + "end": 28091.4, + "probability": 0.9761 + }, + { + "start": 28091.74, + "end": 28094.28, + "probability": 0.9956 + }, + { + "start": 28094.84, + "end": 28099.38, + "probability": 0.9744 + }, + { + "start": 28099.64, + "end": 28100.45, + "probability": 0.9556 + }, + { + "start": 28101.48, + "end": 28104.12, + "probability": 0.7495 + }, + { + "start": 28104.52, + "end": 28106.66, + "probability": 0.5947 + }, + { + "start": 28106.78, + "end": 28106.78, + "probability": 0.0843 + }, + { + "start": 28106.86, + "end": 28106.86, + "probability": 0.5427 + }, + { + "start": 28107.5, + "end": 28110.22, + "probability": 0.9419 + }, + { + "start": 28110.32, + "end": 28112.76, + "probability": 0.9128 + }, + { + "start": 28113.08, + "end": 28115.84, + "probability": 0.0746 + }, + { + "start": 28116.42, + "end": 28119.68, + "probability": 0.162 + }, + { + "start": 28120.58, + "end": 28120.58, + "probability": 0.0244 + }, + { + "start": 28120.58, + "end": 28124.04, + "probability": 0.7281 + }, + { + "start": 28124.6, + "end": 28127.18, + "probability": 0.665 + }, + { + "start": 28127.5, + "end": 28128.5, + "probability": 0.9165 + }, + { + "start": 28128.92, + "end": 28131.72, + "probability": 0.9661 + }, + { + "start": 28132.5, + "end": 28133.83, + "probability": 0.9655 + }, + { + "start": 28134.94, + "end": 28137.22, + "probability": 0.95 + }, + { + "start": 28137.8, + "end": 28139.16, + "probability": 0.2573 + }, + { + "start": 28139.2, + "end": 28139.8, + "probability": 0.6554 + }, + { + "start": 28140.86, + "end": 28146.1, + "probability": 0.9946 + }, + { + "start": 28146.24, + "end": 28150.36, + "probability": 0.9763 + }, + { + "start": 28150.82, + "end": 28152.7, + "probability": 0.7911 + }, + { + "start": 28152.84, + "end": 28155.78, + "probability": 0.7961 + }, + { + "start": 28156.04, + "end": 28156.46, + "probability": 0.76 + }, + { + "start": 28156.64, + "end": 28157.14, + "probability": 0.5935 + }, + { + "start": 28157.62, + "end": 28159.66, + "probability": 0.9364 + }, + { + "start": 28160.06, + "end": 28163.36, + "probability": 0.9613 + }, + { + "start": 28163.88, + "end": 28166.44, + "probability": 0.9164 + }, + { + "start": 28167.54, + "end": 28167.66, + "probability": 0.0454 + }, + { + "start": 28167.66, + "end": 28167.74, + "probability": 0.2544 + }, + { + "start": 28167.82, + "end": 28168.82, + "probability": 0.8705 + }, + { + "start": 28169.22, + "end": 28171.88, + "probability": 0.9663 + }, + { + "start": 28172.3, + "end": 28175.2, + "probability": 0.9338 + }, + { + "start": 28175.62, + "end": 28178.1, + "probability": 0.9922 + }, + { + "start": 28179.5, + "end": 28184.72, + "probability": 0.9691 + }, + { + "start": 28185.54, + "end": 28192.12, + "probability": 0.9866 + }, + { + "start": 28192.12, + "end": 28198.0, + "probability": 0.9961 + }, + { + "start": 28198.5, + "end": 28199.3, + "probability": 0.5894 + }, + { + "start": 28199.7, + "end": 28201.9, + "probability": 0.9547 + }, + { + "start": 28203.36, + "end": 28207.18, + "probability": 0.853 + }, + { + "start": 28207.74, + "end": 28210.18, + "probability": 0.9693 + }, + { + "start": 28211.14, + "end": 28213.52, + "probability": 0.9915 + }, + { + "start": 28214.0, + "end": 28216.91, + "probability": 0.8757 + }, + { + "start": 28217.1, + "end": 28221.38, + "probability": 0.9684 + }, + { + "start": 28222.34, + "end": 28226.5, + "probability": 0.9812 + }, + { + "start": 28227.92, + "end": 28230.02, + "probability": 0.9811 + }, + { + "start": 28230.58, + "end": 28231.76, + "probability": 0.9739 + }, + { + "start": 28232.38, + "end": 28234.98, + "probability": 0.8314 + }, + { + "start": 28235.52, + "end": 28236.92, + "probability": 0.9719 + }, + { + "start": 28237.28, + "end": 28240.7, + "probability": 0.9847 + }, + { + "start": 28240.7, + "end": 28244.68, + "probability": 0.9969 + }, + { + "start": 28246.0, + "end": 28251.9, + "probability": 0.9059 + }, + { + "start": 28252.4, + "end": 28254.44, + "probability": 0.923 + }, + { + "start": 28255.74, + "end": 28258.34, + "probability": 0.995 + }, + { + "start": 28258.86, + "end": 28261.78, + "probability": 0.994 + }, + { + "start": 28262.56, + "end": 28264.28, + "probability": 0.9933 + }, + { + "start": 28264.82, + "end": 28268.66, + "probability": 0.9912 + }, + { + "start": 28270.1, + "end": 28277.18, + "probability": 0.8538 + }, + { + "start": 28277.18, + "end": 28282.66, + "probability": 0.9907 + }, + { + "start": 28284.24, + "end": 28287.78, + "probability": 0.9364 + }, + { + "start": 28288.32, + "end": 28290.78, + "probability": 0.7533 + }, + { + "start": 28291.14, + "end": 28292.34, + "probability": 0.7858 + }, + { + "start": 28292.86, + "end": 28295.06, + "probability": 0.7471 + }, + { + "start": 28295.5, + "end": 28299.48, + "probability": 0.9557 + }, + { + "start": 28300.9, + "end": 28301.4, + "probability": 0.476 + }, + { + "start": 28301.7, + "end": 28303.24, + "probability": 0.9924 + }, + { + "start": 28303.72, + "end": 28306.02, + "probability": 0.9954 + }, + { + "start": 28307.02, + "end": 28310.82, + "probability": 0.9912 + }, + { + "start": 28310.82, + "end": 28313.5, + "probability": 0.9771 + }, + { + "start": 28314.34, + "end": 28316.98, + "probability": 0.8674 + }, + { + "start": 28317.5, + "end": 28322.16, + "probability": 0.9924 + }, + { + "start": 28322.28, + "end": 28323.38, + "probability": 0.8143 + }, + { + "start": 28323.86, + "end": 28328.88, + "probability": 0.9917 + }, + { + "start": 28329.38, + "end": 28333.6, + "probability": 0.9464 + }, + { + "start": 28334.7, + "end": 28339.38, + "probability": 0.9699 + }, + { + "start": 28340.08, + "end": 28342.48, + "probability": 0.998 + }, + { + "start": 28342.82, + "end": 28348.74, + "probability": 0.9563 + }, + { + "start": 28349.2, + "end": 28351.6, + "probability": 0.9141 + }, + { + "start": 28351.7, + "end": 28352.84, + "probability": 0.8231 + }, + { + "start": 28353.18, + "end": 28358.06, + "probability": 0.9946 + }, + { + "start": 28359.52, + "end": 28361.86, + "probability": 0.9969 + }, + { + "start": 28362.26, + "end": 28365.06, + "probability": 0.9651 + }, + { + "start": 28365.56, + "end": 28365.86, + "probability": 0.7802 + }, + { + "start": 28367.96, + "end": 28370.3, + "probability": 0.6224 + }, + { + "start": 28371.58, + "end": 28373.66, + "probability": 0.9126 + }, + { + "start": 28373.82, + "end": 28374.8, + "probability": 0.8288 + }, + { + "start": 28374.84, + "end": 28375.86, + "probability": 0.7938 + }, + { + "start": 28376.8, + "end": 28378.38, + "probability": 0.9871 + }, + { + "start": 28378.5, + "end": 28380.34, + "probability": 0.5929 + }, + { + "start": 28385.46, + "end": 28385.46, + "probability": 0.0716 + }, + { + "start": 28385.46, + "end": 28386.04, + "probability": 0.4959 + }, + { + "start": 28386.08, + "end": 28386.78, + "probability": 0.7378 + }, + { + "start": 28386.98, + "end": 28387.84, + "probability": 0.9789 + }, + { + "start": 28388.02, + "end": 28388.88, + "probability": 0.9185 + }, + { + "start": 28388.96, + "end": 28389.54, + "probability": 0.925 + }, + { + "start": 28389.62, + "end": 28393.2, + "probability": 0.9358 + }, + { + "start": 28393.84, + "end": 28396.84, + "probability": 0.9043 + }, + { + "start": 28397.0, + "end": 28399.96, + "probability": 0.879 + }, + { + "start": 28400.74, + "end": 28405.64, + "probability": 0.988 + }, + { + "start": 28407.18, + "end": 28413.0, + "probability": 0.9646 + }, + { + "start": 28413.0, + "end": 28414.0, + "probability": 0.1979 + }, + { + "start": 28414.08, + "end": 28414.08, + "probability": 0.598 + }, + { + "start": 28414.08, + "end": 28415.52, + "probability": 0.7809 + }, + { + "start": 28415.7, + "end": 28415.92, + "probability": 0.387 + }, + { + "start": 28415.92, + "end": 28416.32, + "probability": 0.1673 + }, + { + "start": 28416.32, + "end": 28417.64, + "probability": 0.4819 + }, + { + "start": 28417.7, + "end": 28418.68, + "probability": 0.9187 + }, + { + "start": 28418.7, + "end": 28419.83, + "probability": 0.9744 + }, + { + "start": 28420.16, + "end": 28428.44, + "probability": 0.9904 + }, + { + "start": 28428.44, + "end": 28434.1, + "probability": 0.9989 + }, + { + "start": 28434.2, + "end": 28435.7, + "probability": 0.0213 + }, + { + "start": 28435.74, + "end": 28435.98, + "probability": 0.3228 + }, + { + "start": 28436.08, + "end": 28439.18, + "probability": 0.3513 + }, + { + "start": 28439.18, + "end": 28441.94, + "probability": 0.0364 + }, + { + "start": 28442.1, + "end": 28443.24, + "probability": 0.5567 + }, + { + "start": 28443.28, + "end": 28443.92, + "probability": 0.3101 + }, + { + "start": 28444.0, + "end": 28445.18, + "probability": 0.874 + }, + { + "start": 28445.3, + "end": 28445.92, + "probability": 0.6569 + }, + { + "start": 28445.92, + "end": 28449.5, + "probability": 0.4834 + }, + { + "start": 28449.54, + "end": 28451.06, + "probability": 0.8957 + }, + { + "start": 28451.1, + "end": 28451.48, + "probability": 0.8125 + }, + { + "start": 28451.6, + "end": 28452.26, + "probability": 0.8948 + }, + { + "start": 28452.36, + "end": 28454.12, + "probability": 0.6871 + }, + { + "start": 28454.72, + "end": 28458.88, + "probability": 0.7721 + }, + { + "start": 28459.62, + "end": 28463.08, + "probability": 0.9438 + }, + { + "start": 28464.46, + "end": 28466.32, + "probability": 0.7429 + }, + { + "start": 28467.8, + "end": 28468.48, + "probability": 0.9351 + }, + { + "start": 28469.7, + "end": 28470.74, + "probability": 0.6067 + }, + { + "start": 28470.84, + "end": 28471.18, + "probability": 0.4871 + }, + { + "start": 28471.2, + "end": 28472.24, + "probability": 0.573 + }, + { + "start": 28472.32, + "end": 28473.42, + "probability": 0.5159 + }, + { + "start": 28473.42, + "end": 28473.84, + "probability": 0.5859 + }, + { + "start": 28474.64, + "end": 28477.31, + "probability": 0.7381 + }, + { + "start": 28478.06, + "end": 28480.98, + "probability": 0.9718 + }, + { + "start": 28481.06, + "end": 28484.32, + "probability": 0.9391 + }, + { + "start": 28485.24, + "end": 28487.48, + "probability": 0.9629 + }, + { + "start": 28488.38, + "end": 28490.28, + "probability": 0.8149 + }, + { + "start": 28492.52, + "end": 28493.4, + "probability": 0.9003 + }, + { + "start": 28493.62, + "end": 28495.96, + "probability": 0.8441 + }, + { + "start": 28496.74, + "end": 28499.52, + "probability": 0.9908 + }, + { + "start": 28500.42, + "end": 28501.28, + "probability": 0.8796 + }, + { + "start": 28502.74, + "end": 28504.95, + "probability": 0.9386 + }, + { + "start": 28505.02, + "end": 28507.0, + "probability": 0.9839 + }, + { + "start": 28507.74, + "end": 28511.28, + "probability": 0.9529 + }, + { + "start": 28511.76, + "end": 28513.07, + "probability": 0.9299 + }, + { + "start": 28513.4, + "end": 28519.12, + "probability": 0.8886 + }, + { + "start": 28519.62, + "end": 28521.14, + "probability": 0.9974 + }, + { + "start": 28521.2, + "end": 28521.56, + "probability": 0.7632 + }, + { + "start": 28521.62, + "end": 28522.56, + "probability": 0.9944 + }, + { + "start": 28523.02, + "end": 28523.63, + "probability": 0.8808 + }, + { + "start": 28523.74, + "end": 28525.62, + "probability": 0.9481 + }, + { + "start": 28525.78, + "end": 28526.06, + "probability": 0.8063 + }, + { + "start": 28526.08, + "end": 28527.28, + "probability": 0.8969 + }, + { + "start": 28528.26, + "end": 28533.64, + "probability": 0.8462 + }, + { + "start": 28534.2, + "end": 28536.12, + "probability": 0.7046 + }, + { + "start": 28536.92, + "end": 28537.98, + "probability": 0.9855 + }, + { + "start": 28538.46, + "end": 28542.71, + "probability": 0.7526 + }, + { + "start": 28543.62, + "end": 28544.58, + "probability": 0.65 + }, + { + "start": 28545.18, + "end": 28546.49, + "probability": 0.9954 + }, + { + "start": 28547.24, + "end": 28550.18, + "probability": 0.959 + }, + { + "start": 28550.76, + "end": 28552.12, + "probability": 0.7844 + }, + { + "start": 28552.36, + "end": 28554.7, + "probability": 0.9966 + }, + { + "start": 28556.08, + "end": 28560.12, + "probability": 0.9946 + }, + { + "start": 28560.58, + "end": 28562.6, + "probability": 0.9609 + }, + { + "start": 28563.44, + "end": 28564.56, + "probability": 0.8598 + }, + { + "start": 28565.12, + "end": 28567.72, + "probability": 0.7991 + }, + { + "start": 28568.38, + "end": 28572.42, + "probability": 0.9717 + }, + { + "start": 28572.86, + "end": 28573.96, + "probability": 0.7859 + }, + { + "start": 28574.38, + "end": 28575.97, + "probability": 0.9907 + }, + { + "start": 28576.7, + "end": 28579.64, + "probability": 0.9954 + }, + { + "start": 28579.9, + "end": 28581.46, + "probability": 0.7798 + }, + { + "start": 28582.46, + "end": 28585.12, + "probability": 0.8617 + }, + { + "start": 28586.3, + "end": 28587.38, + "probability": 0.2855 + }, + { + "start": 28587.96, + "end": 28589.82, + "probability": 0.8485 + }, + { + "start": 28589.92, + "end": 28591.46, + "probability": 0.9966 + }, + { + "start": 28591.5, + "end": 28593.16, + "probability": 0.9785 + }, + { + "start": 28593.26, + "end": 28593.82, + "probability": 0.3849 + }, + { + "start": 28593.98, + "end": 28594.06, + "probability": 0.0126 + }, + { + "start": 28594.14, + "end": 28595.52, + "probability": 0.9758 + }, + { + "start": 28596.16, + "end": 28597.26, + "probability": 0.9023 + }, + { + "start": 28598.26, + "end": 28602.08, + "probability": 0.9907 + }, + { + "start": 28603.3, + "end": 28605.7, + "probability": 0.9969 + }, + { + "start": 28605.76, + "end": 28607.58, + "probability": 0.7454 + }, + { + "start": 28607.62, + "end": 28608.62, + "probability": 0.9564 + }, + { + "start": 28609.02, + "end": 28611.86, + "probability": 0.8105 + }, + { + "start": 28612.4, + "end": 28614.14, + "probability": 0.9846 + }, + { + "start": 28614.5, + "end": 28617.0, + "probability": 0.8975 + }, + { + "start": 28617.16, + "end": 28618.36, + "probability": 0.6687 + }, + { + "start": 28619.48, + "end": 28622.76, + "probability": 0.9673 + }, + { + "start": 28623.38, + "end": 28625.02, + "probability": 0.8997 + }, + { + "start": 28625.32, + "end": 28628.12, + "probability": 0.9802 + }, + { + "start": 28628.28, + "end": 28629.9, + "probability": 0.8228 + }, + { + "start": 28630.62, + "end": 28631.56, + "probability": 0.9106 + }, + { + "start": 28632.42, + "end": 28633.86, + "probability": 0.9823 + }, + { + "start": 28634.26, + "end": 28634.42, + "probability": 0.1784 + }, + { + "start": 28634.6, + "end": 28636.62, + "probability": 0.5892 + }, + { + "start": 28637.14, + "end": 28638.3, + "probability": 0.8639 + }, + { + "start": 28638.36, + "end": 28641.5, + "probability": 0.9422 + }, + { + "start": 28641.78, + "end": 28644.28, + "probability": 0.9429 + }, + { + "start": 28645.22, + "end": 28647.66, + "probability": 0.8864 + }, + { + "start": 28647.82, + "end": 28652.06, + "probability": 0.9343 + }, + { + "start": 28653.62, + "end": 28655.04, + "probability": 0.6884 + }, + { + "start": 28655.2, + "end": 28657.62, + "probability": 0.8931 + }, + { + "start": 28658.28, + "end": 28660.4, + "probability": 0.9963 + }, + { + "start": 28660.96, + "end": 28661.24, + "probability": 0.1518 + }, + { + "start": 28661.28, + "end": 28662.42, + "probability": 0.9581 + }, + { + "start": 28662.74, + "end": 28664.51, + "probability": 0.9375 + }, + { + "start": 28664.74, + "end": 28666.94, + "probability": 0.9869 + }, + { + "start": 28667.28, + "end": 28667.84, + "probability": 0.4272 + }, + { + "start": 28668.06, + "end": 28669.24, + "probability": 0.9689 + }, + { + "start": 28669.32, + "end": 28672.22, + "probability": 0.9919 + }, + { + "start": 28672.82, + "end": 28675.22, + "probability": 0.9956 + }, + { + "start": 28675.88, + "end": 28677.14, + "probability": 0.9973 + }, + { + "start": 28678.08, + "end": 28679.04, + "probability": 0.9487 + }, + { + "start": 28680.84, + "end": 28681.08, + "probability": 0.7408 + }, + { + "start": 28681.3, + "end": 28683.14, + "probability": 0.9663 + }, + { + "start": 28683.32, + "end": 28685.32, + "probability": 0.8174 + }, + { + "start": 28685.76, + "end": 28687.76, + "probability": 0.9497 + }, + { + "start": 28698.02, + "end": 28699.84, + "probability": 0.9463 + }, + { + "start": 28703.72, + "end": 28706.04, + "probability": 0.5345 + }, + { + "start": 28707.94, + "end": 28709.97, + "probability": 0.9756 + }, + { + "start": 28711.08, + "end": 28712.68, + "probability": 0.9961 + }, + { + "start": 28714.48, + "end": 28717.62, + "probability": 0.9717 + }, + { + "start": 28718.38, + "end": 28720.36, + "probability": 0.9793 + }, + { + "start": 28721.16, + "end": 28721.92, + "probability": 0.8342 + }, + { + "start": 28722.68, + "end": 28725.6, + "probability": 0.9339 + }, + { + "start": 28726.38, + "end": 28730.72, + "probability": 0.9078 + }, + { + "start": 28731.86, + "end": 28734.48, + "probability": 0.842 + }, + { + "start": 28735.24, + "end": 28739.38, + "probability": 0.9827 + }, + { + "start": 28739.48, + "end": 28743.8, + "probability": 0.998 + }, + { + "start": 28744.58, + "end": 28744.86, + "probability": 0.2842 + }, + { + "start": 28746.2, + "end": 28747.34, + "probability": 0.7772 + }, + { + "start": 28747.76, + "end": 28748.62, + "probability": 0.9175 + }, + { + "start": 28749.5, + "end": 28751.04, + "probability": 0.8868 + }, + { + "start": 28751.94, + "end": 28752.92, + "probability": 0.8704 + }, + { + "start": 28753.66, + "end": 28755.27, + "probability": 0.9595 + }, + { + "start": 28755.9, + "end": 28757.36, + "probability": 0.9922 + }, + { + "start": 28758.04, + "end": 28759.66, + "probability": 0.9221 + }, + { + "start": 28759.78, + "end": 28760.74, + "probability": 0.5468 + }, + { + "start": 28761.1, + "end": 28762.96, + "probability": 0.8964 + }, + { + "start": 28763.62, + "end": 28764.4, + "probability": 0.949 + }, + { + "start": 28764.5, + "end": 28765.36, + "probability": 0.9054 + }, + { + "start": 28766.04, + "end": 28767.82, + "probability": 0.9954 + }, + { + "start": 28768.48, + "end": 28769.5, + "probability": 0.9828 + }, + { + "start": 28770.16, + "end": 28772.04, + "probability": 0.9839 + }, + { + "start": 28772.22, + "end": 28773.62, + "probability": 0.6647 + }, + { + "start": 28774.44, + "end": 28775.94, + "probability": 0.9614 + }, + { + "start": 28776.88, + "end": 28777.92, + "probability": 0.1551 + }, + { + "start": 28778.4, + "end": 28784.02, + "probability": 0.8141 + }, + { + "start": 28784.02, + "end": 28784.5, + "probability": 0.1094 + }, + { + "start": 28784.64, + "end": 28784.66, + "probability": 0.0573 + }, + { + "start": 28784.66, + "end": 28787.2, + "probability": 0.7927 + }, + { + "start": 28788.64, + "end": 28793.16, + "probability": 0.41 + }, + { + "start": 28793.54, + "end": 28793.54, + "probability": 0.0361 + }, + { + "start": 28793.54, + "end": 28794.42, + "probability": 0.292 + }, + { + "start": 28794.66, + "end": 28800.5, + "probability": 0.6657 + }, + { + "start": 28800.6, + "end": 28804.7, + "probability": 0.9647 + }, + { + "start": 28805.69, + "end": 28805.9, + "probability": 0.5228 + }, + { + "start": 28805.9, + "end": 28810.52, + "probability": 0.472 + }, + { + "start": 28810.52, + "end": 28811.56, + "probability": 0.6725 + }, + { + "start": 28811.72, + "end": 28812.92, + "probability": 0.6988 + }, + { + "start": 28813.14, + "end": 28815.4, + "probability": 0.9641 + }, + { + "start": 28816.16, + "end": 28818.96, + "probability": 0.9922 + }, + { + "start": 28819.36, + "end": 28822.42, + "probability": 0.9666 + }, + { + "start": 28822.82, + "end": 28825.04, + "probability": 0.7017 + }, + { + "start": 28825.46, + "end": 28826.69, + "probability": 0.8364 + }, + { + "start": 28827.22, + "end": 28829.02, + "probability": 0.4606 + }, + { + "start": 28830.06, + "end": 28830.3, + "probability": 0.0369 + }, + { + "start": 28830.46, + "end": 28830.46, + "probability": 0.0294 + }, + { + "start": 28830.5, + "end": 28832.69, + "probability": 0.9039 + }, + { + "start": 28834.16, + "end": 28837.72, + "probability": 0.1566 + }, + { + "start": 28839.86, + "end": 28842.04, + "probability": 0.4969 + }, + { + "start": 28843.22, + "end": 28844.04, + "probability": 0.5186 + }, + { + "start": 28844.42, + "end": 28845.82, + "probability": 0.2343 + }, + { + "start": 28847.32, + "end": 28847.34, + "probability": 0.1487 + }, + { + "start": 28847.34, + "end": 28849.32, + "probability": 0.092 + }, + { + "start": 28849.54, + "end": 28850.24, + "probability": 0.1342 + }, + { + "start": 28850.24, + "end": 28851.0, + "probability": 0.5153 + }, + { + "start": 28851.0, + "end": 28858.9, + "probability": 0.8799 + }, + { + "start": 28858.9, + "end": 28859.62, + "probability": 0.7636 + }, + { + "start": 28860.04, + "end": 28861.06, + "probability": 0.6317 + }, + { + "start": 28861.74, + "end": 28863.13, + "probability": 0.6304 + }, + { + "start": 28864.04, + "end": 28867.84, + "probability": 0.9216 + }, + { + "start": 28868.24, + "end": 28870.04, + "probability": 0.9973 + }, + { + "start": 28870.2, + "end": 28871.1, + "probability": 0.2833 + }, + { + "start": 28871.16, + "end": 28873.87, + "probability": 0.9099 + }, + { + "start": 28874.26, + "end": 28876.24, + "probability": 0.991 + }, + { + "start": 28876.32, + "end": 28876.96, + "probability": 0.7873 + }, + { + "start": 28877.14, + "end": 28879.86, + "probability": 0.7407 + }, + { + "start": 28880.44, + "end": 28880.98, + "probability": 0.103 + }, + { + "start": 28881.22, + "end": 28886.71, + "probability": 0.9588 + }, + { + "start": 28888.6, + "end": 28888.6, + "probability": 0.2175 + }, + { + "start": 28888.6, + "end": 28891.16, + "probability": 0.8037 + }, + { + "start": 28891.16, + "end": 28891.92, + "probability": 0.2944 + }, + { + "start": 28891.92, + "end": 28892.18, + "probability": 0.3832 + }, + { + "start": 28892.34, + "end": 28892.85, + "probability": 0.2566 + }, + { + "start": 28893.64, + "end": 28894.5, + "probability": 0.5894 + }, + { + "start": 28894.66, + "end": 28895.48, + "probability": 0.9199 + }, + { + "start": 28895.58, + "end": 28896.68, + "probability": 0.908 + }, + { + "start": 28896.7, + "end": 28899.04, + "probability": 0.9976 + }, + { + "start": 28899.2, + "end": 28901.44, + "probability": 0.0684 + }, + { + "start": 28901.44, + "end": 28901.44, + "probability": 0.3119 + }, + { + "start": 28901.44, + "end": 28901.44, + "probability": 0.0573 + }, + { + "start": 28901.44, + "end": 28907.1, + "probability": 0.7408 + }, + { + "start": 28907.18, + "end": 28909.0, + "probability": 0.9779 + }, + { + "start": 28909.08, + "end": 28910.46, + "probability": 0.7991 + }, + { + "start": 28910.58, + "end": 28911.38, + "probability": 0.915 + }, + { + "start": 28911.4, + "end": 28912.44, + "probability": 0.946 + }, + { + "start": 28913.42, + "end": 28914.36, + "probability": 0.7551 + }, + { + "start": 28915.86, + "end": 28922.18, + "probability": 0.9253 + }, + { + "start": 28922.5, + "end": 28924.26, + "probability": 0.9977 + }, + { + "start": 28925.06, + "end": 28925.88, + "probability": 0.9839 + }, + { + "start": 28926.02, + "end": 28926.9, + "probability": 0.9498 + }, + { + "start": 28927.9, + "end": 28932.26, + "probability": 0.9946 + }, + { + "start": 28932.54, + "end": 28933.94, + "probability": 0.8226 + }, + { + "start": 28934.3, + "end": 28938.02, + "probability": 0.9678 + }, + { + "start": 28939.1, + "end": 28940.8, + "probability": 0.9308 + }, + { + "start": 28941.58, + "end": 28945.0, + "probability": 0.9832 + }, + { + "start": 28945.64, + "end": 28951.84, + "probability": 0.9731 + }, + { + "start": 28953.18, + "end": 28953.82, + "probability": 0.0118 + }, + { + "start": 28953.82, + "end": 28954.66, + "probability": 0.4487 + }, + { + "start": 28954.93, + "end": 28957.72, + "probability": 0.5259 + }, + { + "start": 28957.72, + "end": 28958.74, + "probability": 0.2897 + }, + { + "start": 28959.08, + "end": 28960.8, + "probability": 0.3258 + }, + { + "start": 28960.88, + "end": 28961.4, + "probability": 0.2739 + }, + { + "start": 28961.78, + "end": 28963.44, + "probability": 0.0646 + }, + { + "start": 28965.38, + "end": 28967.34, + "probability": 0.2073 + }, + { + "start": 28967.34, + "end": 28968.42, + "probability": 0.8604 + }, + { + "start": 28968.52, + "end": 28968.66, + "probability": 0.7402 + }, + { + "start": 28968.66, + "end": 28969.2, + "probability": 0.5123 + }, + { + "start": 28969.74, + "end": 28971.0, + "probability": 0.3736 + }, + { + "start": 28972.0, + "end": 28974.82, + "probability": 0.0215 + }, + { + "start": 28980.52, + "end": 28985.28, + "probability": 0.016 + }, + { + "start": 28986.3, + "end": 28989.04, + "probability": 0.3001 + }, + { + "start": 28989.38, + "end": 28991.92, + "probability": 0.0097 + }, + { + "start": 28992.74, + "end": 28993.18, + "probability": 0.0286 + }, + { + "start": 28993.18, + "end": 28993.83, + "probability": 0.0809 + }, + { + "start": 28994.28, + "end": 28994.56, + "probability": 0.0565 + }, + { + "start": 28995.2, + "end": 28997.0, + "probability": 0.0407 + }, + { + "start": 28997.16, + "end": 28997.48, + "probability": 0.3423 + }, + { + "start": 28997.48, + "end": 28997.64, + "probability": 0.0184 + }, + { + "start": 28997.64, + "end": 28998.84, + "probability": 0.1027 + }, + { + "start": 28998.84, + "end": 29001.18, + "probability": 0.1852 + }, + { + "start": 29002.08, + "end": 29002.36, + "probability": 0.0756 + }, + { + "start": 29006.4, + "end": 29007.7, + "probability": 0.0783 + }, + { + "start": 29009.78, + "end": 29011.56, + "probability": 0.116 + }, + { + "start": 29017.3, + "end": 29021.7, + "probability": 0.0694 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.0, + "end": 29370.0, + "probability": 0.0 + }, + { + "start": 29370.12, + "end": 29373.82, + "probability": 0.588 + }, + { + "start": 29374.04, + "end": 29378.4, + "probability": 0.624 + }, + { + "start": 29378.5, + "end": 29379.48, + "probability": 0.0257 + }, + { + "start": 29379.56, + "end": 29380.26, + "probability": 0.0864 + }, + { + "start": 29380.28, + "end": 29381.44, + "probability": 0.1712 + }, + { + "start": 29381.54, + "end": 29387.75, + "probability": 0.8376 + }, + { + "start": 29388.92, + "end": 29392.92, + "probability": 0.9933 + }, + { + "start": 29393.38, + "end": 29396.46, + "probability": 0.9748 + }, + { + "start": 29396.6, + "end": 29397.34, + "probability": 0.0258 + }, + { + "start": 29398.31, + "end": 29399.6, + "probability": 0.2803 + }, + { + "start": 29399.62, + "end": 29402.32, + "probability": 0.8382 + }, + { + "start": 29402.68, + "end": 29409.16, + "probability": 0.6744 + }, + { + "start": 29409.22, + "end": 29412.09, + "probability": 0.7026 + }, + { + "start": 29412.7, + "end": 29413.27, + "probability": 0.1415 + }, + { + "start": 29413.32, + "end": 29415.52, + "probability": 0.5522 + }, + { + "start": 29417.42, + "end": 29421.78, + "probability": 0.1298 + }, + { + "start": 29423.38, + "end": 29428.78, + "probability": 0.0706 + }, + { + "start": 29428.8, + "end": 29429.3, + "probability": 0.277 + }, + { + "start": 29429.32, + "end": 29429.97, + "probability": 0.1324 + }, + { + "start": 29430.04, + "end": 29430.28, + "probability": 0.3015 + }, + { + "start": 29431.22, + "end": 29434.8, + "probability": 0.1509 + }, + { + "start": 29435.1, + "end": 29439.3, + "probability": 0.5697 + }, + { + "start": 29440.04, + "end": 29442.88, + "probability": 0.1518 + }, + { + "start": 29444.22, + "end": 29448.0, + "probability": 0.8047 + }, + { + "start": 29448.0, + "end": 29448.41, + "probability": 0.0711 + }, + { + "start": 29449.0, + "end": 29452.56, + "probability": 0.1227 + }, + { + "start": 29454.31, + "end": 29456.2, + "probability": 0.0272 + }, + { + "start": 29456.3, + "end": 29457.06, + "probability": 0.0489 + }, + { + "start": 29457.48, + "end": 29458.8, + "probability": 0.0269 + }, + { + "start": 29460.4, + "end": 29463.82, + "probability": 0.0136 + }, + { + "start": 29464.6, + "end": 29468.78, + "probability": 0.1481 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.0, + "end": 29494.0, + "probability": 0.0 + }, + { + "start": 29494.96, + "end": 29497.94, + "probability": 0.3817 + }, + { + "start": 29497.94, + "end": 29497.94, + "probability": 0.0438 + }, + { + "start": 29497.94, + "end": 29497.94, + "probability": 0.0034 + }, + { + "start": 29497.94, + "end": 29497.94, + "probability": 0.1349 + }, + { + "start": 29497.94, + "end": 29499.96, + "probability": 0.0576 + }, + { + "start": 29500.76, + "end": 29502.06, + "probability": 0.1919 + }, + { + "start": 29502.6, + "end": 29505.02, + "probability": 0.7008 + }, + { + "start": 29505.18, + "end": 29507.42, + "probability": 0.6556 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29629.0, + "end": 29629.0, + "probability": 0.0 + }, + { + "start": 29630.24, + "end": 29630.62, + "probability": 0.063 + }, + { + "start": 29630.62, + "end": 29630.62, + "probability": 0.0503 + }, + { + "start": 29630.62, + "end": 29630.62, + "probability": 0.0186 + }, + { + "start": 29630.68, + "end": 29633.25, + "probability": 0.5807 + }, + { + "start": 29633.94, + "end": 29633.94, + "probability": 0.0776 + }, + { + "start": 29633.94, + "end": 29635.06, + "probability": 0.4631 + }, + { + "start": 29636.08, + "end": 29637.4, + "probability": 0.158 + }, + { + "start": 29637.46, + "end": 29638.98, + "probability": 0.9688 + }, + { + "start": 29639.04, + "end": 29639.84, + "probability": 0.8506 + }, + { + "start": 29640.1, + "end": 29641.42, + "probability": 0.9841 + }, + { + "start": 29641.6, + "end": 29643.76, + "probability": 0.497 + }, + { + "start": 29643.76, + "end": 29645.06, + "probability": 0.874 + }, + { + "start": 29645.14, + "end": 29645.84, + "probability": 0.7047 + }, + { + "start": 29646.08, + "end": 29649.76, + "probability": 0.4301 + }, + { + "start": 29649.76, + "end": 29650.64, + "probability": 0.5056 + }, + { + "start": 29650.7, + "end": 29652.34, + "probability": 0.7358 + }, + { + "start": 29652.9, + "end": 29659.36, + "probability": 0.9849 + }, + { + "start": 29661.64, + "end": 29664.53, + "probability": 0.8907 + }, + { + "start": 29665.16, + "end": 29666.84, + "probability": 0.9966 + }, + { + "start": 29667.24, + "end": 29668.3, + "probability": 0.9601 + }, + { + "start": 29668.38, + "end": 29669.76, + "probability": 0.6696 + }, + { + "start": 29669.94, + "end": 29671.34, + "probability": 0.9777 + }, + { + "start": 29671.46, + "end": 29672.9, + "probability": 0.9316 + }, + { + "start": 29672.98, + "end": 29673.7, + "probability": 0.97 + }, + { + "start": 29673.76, + "end": 29675.52, + "probability": 0.9957 + }, + { + "start": 29675.7, + "end": 29676.26, + "probability": 0.0243 + }, + { + "start": 29676.5, + "end": 29678.66, + "probability": 0.9719 + }, + { + "start": 29678.7, + "end": 29679.76, + "probability": 0.8776 + }, + { + "start": 29679.76, + "end": 29680.6, + "probability": 0.1967 + }, + { + "start": 29681.6, + "end": 29683.32, + "probability": 0.8492 + }, + { + "start": 29683.34, + "end": 29683.46, + "probability": 0.0415 + }, + { + "start": 29683.88, + "end": 29692.58, + "probability": 0.9703 + }, + { + "start": 29692.84, + "end": 29693.26, + "probability": 0.1712 + }, + { + "start": 29693.26, + "end": 29695.08, + "probability": 0.715 + }, + { + "start": 29695.24, + "end": 29696.98, + "probability": 0.1558 + }, + { + "start": 29696.98, + "end": 29697.72, + "probability": 0.0722 + }, + { + "start": 29697.92, + "end": 29698.32, + "probability": 0.3796 + }, + { + "start": 29698.32, + "end": 29699.18, + "probability": 0.4906 + }, + { + "start": 29699.3, + "end": 29699.8, + "probability": 0.3981 + }, + { + "start": 29699.92, + "end": 29702.52, + "probability": 0.0942 + }, + { + "start": 29702.94, + "end": 29705.08, + "probability": 0.057 + }, + { + "start": 29705.08, + "end": 29705.08, + "probability": 0.1092 + }, + { + "start": 29705.08, + "end": 29706.54, + "probability": 0.1368 + }, + { + "start": 29706.64, + "end": 29708.2, + "probability": 0.2599 + }, + { + "start": 29708.56, + "end": 29712.21, + "probability": 0.8504 + }, + { + "start": 29712.76, + "end": 29714.5, + "probability": 0.9091 + }, + { + "start": 29715.24, + "end": 29717.12, + "probability": 0.8828 + }, + { + "start": 29717.22, + "end": 29718.32, + "probability": 0.8826 + }, + { + "start": 29718.48, + "end": 29719.79, + "probability": 0.3198 + }, + { + "start": 29719.94, + "end": 29720.84, + "probability": 0.4917 + }, + { + "start": 29721.46, + "end": 29721.76, + "probability": 0.9057 + }, + { + "start": 29721.76, + "end": 29723.06, + "probability": 0.9775 + }, + { + "start": 29723.74, + "end": 29724.46, + "probability": 0.0111 + }, + { + "start": 29724.46, + "end": 29724.74, + "probability": 0.3356 + }, + { + "start": 29725.42, + "end": 29727.8, + "probability": 0.9229 + }, + { + "start": 29728.12, + "end": 29729.73, + "probability": 0.9875 + }, + { + "start": 29729.9, + "end": 29730.74, + "probability": 0.7312 + }, + { + "start": 29731.78, + "end": 29732.36, + "probability": 0.9374 + }, + { + "start": 29733.22, + "end": 29734.5, + "probability": 0.9863 + }, + { + "start": 29735.2, + "end": 29737.18, + "probability": 0.9574 + }, + { + "start": 29737.78, + "end": 29744.72, + "probability": 0.9832 + }, + { + "start": 29745.64, + "end": 29748.42, + "probability": 0.8491 + }, + { + "start": 29749.94, + "end": 29753.88, + "probability": 0.988 + }, + { + "start": 29753.88, + "end": 29758.06, + "probability": 0.9943 + }, + { + "start": 29759.3, + "end": 29763.34, + "probability": 0.9931 + }, + { + "start": 29763.38, + "end": 29764.08, + "probability": 0.1565 + }, + { + "start": 29764.08, + "end": 29764.24, + "probability": 0.0544 + }, + { + "start": 29764.24, + "end": 29764.24, + "probability": 0.19 + }, + { + "start": 29764.24, + "end": 29767.92, + "probability": 0.9923 + }, + { + "start": 29767.94, + "end": 29768.34, + "probability": 0.4453 + }, + { + "start": 29768.4, + "end": 29769.88, + "probability": 0.9803 + }, + { + "start": 29770.28, + "end": 29771.02, + "probability": 0.3628 + }, + { + "start": 29771.18, + "end": 29773.3, + "probability": 0.5786 + }, + { + "start": 29773.64, + "end": 29775.04, + "probability": 0.8852 + }, + { + "start": 29775.14, + "end": 29777.86, + "probability": 0.7824 + }, + { + "start": 29777.94, + "end": 29778.86, + "probability": 0.8997 + }, + { + "start": 29779.02, + "end": 29782.62, + "probability": 0.8994 + }, + { + "start": 29782.62, + "end": 29785.04, + "probability": 0.0442 + }, + { + "start": 29785.04, + "end": 29785.6, + "probability": 0.0714 + }, + { + "start": 29785.86, + "end": 29787.42, + "probability": 0.9221 + }, + { + "start": 29787.48, + "end": 29788.24, + "probability": 0.1124 + }, + { + "start": 29788.4, + "end": 29789.8, + "probability": 0.8219 + }, + { + "start": 29789.98, + "end": 29793.42, + "probability": 0.7095 + }, + { + "start": 29793.66, + "end": 29795.02, + "probability": 0.936 + }, + { + "start": 29797.06, + "end": 29797.7, + "probability": 0.7871 + }, + { + "start": 29798.61, + "end": 29802.4, + "probability": 0.93 + }, + { + "start": 29802.54, + "end": 29806.14, + "probability": 0.9933 + }, + { + "start": 29807.28, + "end": 29809.22, + "probability": 0.9678 + }, + { + "start": 29809.3, + "end": 29810.56, + "probability": 0.9431 + }, + { + "start": 29810.88, + "end": 29812.02, + "probability": 0.932 + }, + { + "start": 29812.12, + "end": 29813.08, + "probability": 0.9754 + }, + { + "start": 29813.32, + "end": 29815.15, + "probability": 0.9912 + }, + { + "start": 29815.58, + "end": 29821.62, + "probability": 0.9982 + }, + { + "start": 29822.22, + "end": 29825.84, + "probability": 0.1056 + }, + { + "start": 29826.64, + "end": 29828.22, + "probability": 0.999 + }, + { + "start": 29830.04, + "end": 29830.6, + "probability": 0.1687 + }, + { + "start": 29830.6, + "end": 29830.6, + "probability": 0.0323 + }, + { + "start": 29830.6, + "end": 29832.48, + "probability": 0.6078 + }, + { + "start": 29832.76, + "end": 29832.94, + "probability": 0.0557 + }, + { + "start": 29833.06, + "end": 29833.96, + "probability": 0.6167 + }, + { + "start": 29834.18, + "end": 29836.34, + "probability": 0.7949 + }, + { + "start": 29837.07, + "end": 29837.84, + "probability": 0.0518 + }, + { + "start": 29839.42, + "end": 29843.14, + "probability": 0.6066 + }, + { + "start": 29843.14, + "end": 29843.14, + "probability": 0.0116 + }, + { + "start": 29843.14, + "end": 29843.36, + "probability": 0.0887 + }, + { + "start": 29843.36, + "end": 29843.36, + "probability": 0.2722 + }, + { + "start": 29843.36, + "end": 29844.12, + "probability": 0.2349 + }, + { + "start": 29844.22, + "end": 29845.66, + "probability": 0.6228 + }, + { + "start": 29845.82, + "end": 29847.48, + "probability": 0.9693 + }, + { + "start": 29847.72, + "end": 29847.98, + "probability": 0.087 + }, + { + "start": 29848.3, + "end": 29848.66, + "probability": 0.2838 + }, + { + "start": 29848.96, + "end": 29849.5, + "probability": 0.0246 + }, + { + "start": 29849.5, + "end": 29851.54, + "probability": 0.6913 + }, + { + "start": 29851.66, + "end": 29851.8, + "probability": 0.506 + }, + { + "start": 29851.86, + "end": 29853.1, + "probability": 0.8868 + }, + { + "start": 29853.26, + "end": 29854.88, + "probability": 0.7288 + }, + { + "start": 29855.3, + "end": 29858.1, + "probability": 0.9935 + }, + { + "start": 29858.54, + "end": 29862.88, + "probability": 0.989 + }, + { + "start": 29862.92, + "end": 29864.46, + "probability": 0.8319 + }, + { + "start": 29864.52, + "end": 29865.46, + "probability": 0.7045 + }, + { + "start": 29866.5, + "end": 29867.94, + "probability": 0.8628 + }, + { + "start": 29868.86, + "end": 29868.88, + "probability": 0.0436 + }, + { + "start": 29868.88, + "end": 29870.52, + "probability": 0.7159 + }, + { + "start": 29871.18, + "end": 29874.98, + "probability": 0.9888 + }, + { + "start": 29875.66, + "end": 29877.0, + "probability": 0.8677 + }, + { + "start": 29877.92, + "end": 29880.82, + "probability": 0.7338 + }, + { + "start": 29880.94, + "end": 29881.86, + "probability": 0.027 + }, + { + "start": 29881.86, + "end": 29882.5, + "probability": 0.2736 + }, + { + "start": 29882.56, + "end": 29885.36, + "probability": 0.9949 + }, + { + "start": 29885.36, + "end": 29887.74, + "probability": 0.8902 + }, + { + "start": 29887.98, + "end": 29888.42, + "probability": 0.0058 + }, + { + "start": 29888.42, + "end": 29891.98, + "probability": 0.9559 + }, + { + "start": 29891.98, + "end": 29896.74, + "probability": 0.9955 + }, + { + "start": 29896.76, + "end": 29902.38, + "probability": 0.8246 + }, + { + "start": 29902.72, + "end": 29907.36, + "probability": 0.8278 + }, + { + "start": 29908.44, + "end": 29909.16, + "probability": 0.9431 + }, + { + "start": 29910.06, + "end": 29912.1, + "probability": 0.9864 + }, + { + "start": 29912.22, + "end": 29913.3, + "probability": 0.3758 + }, + { + "start": 29913.3, + "end": 29914.9, + "probability": 0.7932 + }, + { + "start": 29915.38, + "end": 29920.6, + "probability": 0.9886 + }, + { + "start": 29920.64, + "end": 29920.98, + "probability": 0.0138 + }, + { + "start": 29921.1, + "end": 29923.2, + "probability": 0.7821 + }, + { + "start": 29923.46, + "end": 29926.08, + "probability": 0.5907 + }, + { + "start": 29926.46, + "end": 29928.96, + "probability": 0.1418 + }, + { + "start": 29928.96, + "end": 29928.96, + "probability": 0.1262 + }, + { + "start": 29928.96, + "end": 29934.53, + "probability": 0.741 + }, + { + "start": 29935.08, + "end": 29939.2, + "probability": 0.9979 + }, + { + "start": 29939.72, + "end": 29939.72, + "probability": 0.033 + }, + { + "start": 29939.72, + "end": 29939.72, + "probability": 0.3702 + }, + { + "start": 29939.72, + "end": 29943.82, + "probability": 0.7398 + }, + { + "start": 29943.82, + "end": 29947.66, + "probability": 0.9957 + }, + { + "start": 29947.74, + "end": 29948.5, + "probability": 0.6494 + }, + { + "start": 29948.86, + "end": 29950.82, + "probability": 0.9951 + }, + { + "start": 29950.96, + "end": 29952.2, + "probability": 0.7599 + }, + { + "start": 29952.2, + "end": 29953.22, + "probability": 0.7104 + }, + { + "start": 29953.3, + "end": 29954.12, + "probability": 0.8737 + }, + { + "start": 29955.26, + "end": 29955.7, + "probability": 0.6953 + }, + { + "start": 29955.74, + "end": 29956.4, + "probability": 0.7708 + }, + { + "start": 29956.46, + "end": 29960.38, + "probability": 0.9919 + }, + { + "start": 29961.3, + "end": 29963.84, + "probability": 0.9891 + }, + { + "start": 29965.54, + "end": 29968.4, + "probability": 0.947 + }, + { + "start": 29969.58, + "end": 29973.72, + "probability": 0.3202 + }, + { + "start": 29974.8, + "end": 29976.82, + "probability": 0.998 + }, + { + "start": 29977.58, + "end": 29985.02, + "probability": 0.9832 + }, + { + "start": 29985.86, + "end": 29985.86, + "probability": 0.045 + }, + { + "start": 29985.9, + "end": 29985.9, + "probability": 0.011 + }, + { + "start": 29985.9, + "end": 29987.3, + "probability": 0.7809 + }, + { + "start": 29988.22, + "end": 29989.64, + "probability": 0.2256 + }, + { + "start": 29997.18, + "end": 29997.28, + "probability": 0.1311 + }, + { + "start": 29997.28, + "end": 29997.28, + "probability": 0.8561 + }, + { + "start": 29997.28, + "end": 29997.77, + "probability": 0.0096 + }, + { + "start": 29998.02, + "end": 30005.66, + "probability": 0.9038 + }, + { + "start": 30005.66, + "end": 30006.02, + "probability": 0.5622 + }, + { + "start": 30007.36, + "end": 30008.96, + "probability": 0.8656 + }, + { + "start": 30009.36, + "end": 30013.38, + "probability": 0.2017 + }, + { + "start": 30013.38, + "end": 30015.68, + "probability": 0.9966 + }, + { + "start": 30016.04, + "end": 30016.25, + "probability": 0.0639 + }, + { + "start": 30016.38, + "end": 30016.72, + "probability": 0.0534 + }, + { + "start": 30016.94, + "end": 30019.2, + "probability": 0.7497 + }, + { + "start": 30019.2, + "end": 30021.04, + "probability": 0.1656 + }, + { + "start": 30021.92, + "end": 30023.54, + "probability": 0.6342 + }, + { + "start": 30023.54, + "end": 30024.22, + "probability": 0.6305 + }, + { + "start": 30024.32, + "end": 30026.0, + "probability": 0.3564 + }, + { + "start": 30026.3, + "end": 30031.02, + "probability": 0.8987 + }, + { + "start": 30032.24, + "end": 30033.42, + "probability": 0.2646 + }, + { + "start": 30033.54, + "end": 30036.7, + "probability": 0.9586 + }, + { + "start": 30037.18, + "end": 30037.83, + "probability": 0.9292 + }, + { + "start": 30038.3, + "end": 30038.8, + "probability": 0.4019 + }, + { + "start": 30038.86, + "end": 30042.42, + "probability": 0.9149 + }, + { + "start": 30043.46, + "end": 30047.06, + "probability": 0.9766 + }, + { + "start": 30047.54, + "end": 30048.52, + "probability": 0.0967 + }, + { + "start": 30048.52, + "end": 30051.24, + "probability": 0.7925 + }, + { + "start": 30051.72, + "end": 30053.12, + "probability": 0.7759 + }, + { + "start": 30054.24, + "end": 30055.92, + "probability": 0.6788 + }, + { + "start": 30056.1, + "end": 30059.76, + "probability": 0.744 + }, + { + "start": 30059.8, + "end": 30062.2, + "probability": 0.6713 + }, + { + "start": 30062.26, + "end": 30063.15, + "probability": 0.9724 + }, + { + "start": 30064.45, + "end": 30067.28, + "probability": 0.936 + }, + { + "start": 30067.28, + "end": 30070.14, + "probability": 0.9411 + }, + { + "start": 30070.98, + "end": 30075.22, + "probability": 0.8226 + }, + { + "start": 30075.28, + "end": 30076.32, + "probability": 0.8084 + }, + { + "start": 30076.94, + "end": 30081.28, + "probability": 0.8908 + }, + { + "start": 30082.82, + "end": 30089.8, + "probability": 0.0341 + }, + { + "start": 30089.8, + "end": 30089.8, + "probability": 0.0246 + }, + { + "start": 30089.8, + "end": 30089.8, + "probability": 0.2598 + }, + { + "start": 30089.8, + "end": 30092.62, + "probability": 0.5893 + }, + { + "start": 30093.52, + "end": 30093.58, + "probability": 0.049 + }, + { + "start": 30093.58, + "end": 30094.24, + "probability": 0.4981 + }, + { + "start": 30094.24, + "end": 30100.96, + "probability": 0.9658 + }, + { + "start": 30102.16, + "end": 30107.34, + "probability": 0.9181 + }, + { + "start": 30107.48, + "end": 30107.58, + "probability": 0.0424 + }, + { + "start": 30107.58, + "end": 30108.2, + "probability": 0.3387 + }, + { + "start": 30108.26, + "end": 30109.54, + "probability": 0.6297 + }, + { + "start": 30110.78, + "end": 30112.58, + "probability": 0.9051 + }, + { + "start": 30112.68, + "end": 30115.07, + "probability": 0.9954 + }, + { + "start": 30116.42, + "end": 30118.88, + "probability": 0.5384 + }, + { + "start": 30118.9, + "end": 30119.16, + "probability": 0.6658 + }, + { + "start": 30119.24, + "end": 30120.56, + "probability": 0.2393 + }, + { + "start": 30120.8, + "end": 30125.06, + "probability": 0.95 + }, + { + "start": 30125.18, + "end": 30125.62, + "probability": 0.0215 + }, + { + "start": 30125.62, + "end": 30128.49, + "probability": 0.9056 + }, + { + "start": 30128.72, + "end": 30130.54, + "probability": 0.1388 + }, + { + "start": 30130.7, + "end": 30135.32, + "probability": 0.949 + }, + { + "start": 30135.44, + "end": 30136.72, + "probability": 0.6305 + }, + { + "start": 30137.9, + "end": 30140.08, + "probability": 0.9854 + }, + { + "start": 30140.18, + "end": 30143.2, + "probability": 0.9871 + }, + { + "start": 30143.9, + "end": 30144.28, + "probability": 0.0741 + }, + { + "start": 30144.28, + "end": 30144.86, + "probability": 0.4481 + }, + { + "start": 30145.06, + "end": 30146.82, + "probability": 0.2959 + }, + { + "start": 30147.4, + "end": 30147.4, + "probability": 0.009 + }, + { + "start": 30147.62, + "end": 30147.62, + "probability": 0.1439 + }, + { + "start": 30147.62, + "end": 30153.72, + "probability": 0.876 + }, + { + "start": 30155.22, + "end": 30156.26, + "probability": 0.0916 + }, + { + "start": 30156.26, + "end": 30159.97, + "probability": 0.3446 + }, + { + "start": 30160.36, + "end": 30164.8, + "probability": 0.8141 + }, + { + "start": 30165.52, + "end": 30169.06, + "probability": 0.972 + }, + { + "start": 30169.82, + "end": 30171.2, + "probability": 0.8865 + }, + { + "start": 30171.84, + "end": 30172.2, + "probability": 0.0568 + }, + { + "start": 30172.2, + "end": 30172.64, + "probability": 0.6691 + }, + { + "start": 30173.22, + "end": 30178.24, + "probability": 0.7157 + }, + { + "start": 30179.06, + "end": 30181.06, + "probability": 0.9081 + }, + { + "start": 30181.2, + "end": 30181.84, + "probability": 0.9945 + }, + { + "start": 30182.6, + "end": 30185.44, + "probability": 0.9948 + }, + { + "start": 30186.16, + "end": 30188.4, + "probability": 0.9789 + }, + { + "start": 30188.76, + "end": 30192.24, + "probability": 0.992 + }, + { + "start": 30193.22, + "end": 30197.82, + "probability": 0.9989 + }, + { + "start": 30198.54, + "end": 30200.16, + "probability": 0.9633 + }, + { + "start": 30201.04, + "end": 30203.66, + "probability": 0.1325 + }, + { + "start": 30204.18, + "end": 30204.54, + "probability": 0.1976 + }, + { + "start": 30204.54, + "end": 30205.2, + "probability": 0.0424 + }, + { + "start": 30206.42, + "end": 30206.42, + "probability": 0.0283 + }, + { + "start": 30206.42, + "end": 30209.78, + "probability": 0.6002 + }, + { + "start": 30211.44, + "end": 30216.06, + "probability": 0.9515 + }, + { + "start": 30216.24, + "end": 30216.5, + "probability": 0.1401 + }, + { + "start": 30216.58, + "end": 30221.34, + "probability": 0.9792 + }, + { + "start": 30221.64, + "end": 30222.26, + "probability": 0.2066 + }, + { + "start": 30222.38, + "end": 30223.2, + "probability": 0.1158 + }, + { + "start": 30223.2, + "end": 30223.84, + "probability": 0.9784 + }, + { + "start": 30224.9, + "end": 30227.0, + "probability": 0.5376 + }, + { + "start": 30227.42, + "end": 30230.84, + "probability": 0.8319 + }, + { + "start": 30231.66, + "end": 30234.62, + "probability": 0.9778 + }, + { + "start": 30235.78, + "end": 30238.88, + "probability": 0.27 + }, + { + "start": 30239.66, + "end": 30244.8, + "probability": 0.9981 + }, + { + "start": 30244.8, + "end": 30249.74, + "probability": 0.9867 + }, + { + "start": 30250.22, + "end": 30250.28, + "probability": 0.0365 + }, + { + "start": 30250.28, + "end": 30250.28, + "probability": 0.04 + }, + { + "start": 30250.28, + "end": 30251.32, + "probability": 0.5746 + }, + { + "start": 30252.18, + "end": 30255.0, + "probability": 0.8657 + }, + { + "start": 30255.0, + "end": 30257.26, + "probability": 0.7408 + }, + { + "start": 30257.32, + "end": 30258.54, + "probability": 0.9557 + }, + { + "start": 30258.94, + "end": 30261.14, + "probability": 0.8413 + }, + { + "start": 30261.2, + "end": 30263.8, + "probability": 0.8233 + }, + { + "start": 30263.96, + "end": 30264.62, + "probability": 0.912 + }, + { + "start": 30264.62, + "end": 30267.42, + "probability": 0.9766 + }, + { + "start": 30267.5, + "end": 30267.84, + "probability": 0.8138 + }, + { + "start": 30268.08, + "end": 30271.68, + "probability": 0.9593 + }, + { + "start": 30272.06, + "end": 30275.16, + "probability": 0.5302 + }, + { + "start": 30276.26, + "end": 30282.36, + "probability": 0.9625 + }, + { + "start": 30282.98, + "end": 30286.42, + "probability": 0.9859 + }, + { + "start": 30286.52, + "end": 30290.86, + "probability": 0.9897 + }, + { + "start": 30290.86, + "end": 30296.1, + "probability": 0.9978 + }, + { + "start": 30297.48, + "end": 30298.3, + "probability": 0.7096 + }, + { + "start": 30298.46, + "end": 30299.96, + "probability": 0.9253 + }, + { + "start": 30300.2, + "end": 30304.38, + "probability": 0.9669 + }, + { + "start": 30304.9, + "end": 30305.98, + "probability": 0.6049 + }, + { + "start": 30306.46, + "end": 30310.16, + "probability": 0.9919 + }, + { + "start": 30310.24, + "end": 30312.28, + "probability": 0.7583 + }, + { + "start": 30312.92, + "end": 30313.52, + "probability": 0.6031 + }, + { + "start": 30313.82, + "end": 30314.52, + "probability": 0.7265 + }, + { + "start": 30314.84, + "end": 30315.88, + "probability": 0.7779 + }, + { + "start": 30318.3, + "end": 30319.68, + "probability": 0.6921 + }, + { + "start": 30319.92, + "end": 30321.36, + "probability": 0.9296 + }, + { + "start": 30321.52, + "end": 30322.02, + "probability": 0.4471 + }, + { + "start": 30322.26, + "end": 30324.0, + "probability": 0.9689 + }, + { + "start": 30327.78, + "end": 30328.16, + "probability": 0.17 + }, + { + "start": 30329.3, + "end": 30330.68, + "probability": 0.5684 + }, + { + "start": 30330.94, + "end": 30331.24, + "probability": 0.4224 + }, + { + "start": 30331.76, + "end": 30335.9, + "probability": 0.5432 + }, + { + "start": 30336.72, + "end": 30338.68, + "probability": 0.7608 + }, + { + "start": 30338.82, + "end": 30345.74, + "probability": 0.957 + }, + { + "start": 30346.62, + "end": 30350.42, + "probability": 0.8385 + }, + { + "start": 30350.62, + "end": 30351.42, + "probability": 0.0301 + }, + { + "start": 30351.42, + "end": 30352.66, + "probability": 0.7372 + }, + { + "start": 30352.84, + "end": 30354.28, + "probability": 0.5002 + }, + { + "start": 30354.88, + "end": 30356.32, + "probability": 0.6391 + }, + { + "start": 30356.46, + "end": 30360.96, + "probability": 0.9118 + }, + { + "start": 30361.48, + "end": 30362.4, + "probability": 0.2162 + }, + { + "start": 30362.66, + "end": 30364.22, + "probability": 0.7069 + }, + { + "start": 30364.38, + "end": 30365.74, + "probability": 0.9512 + }, + { + "start": 30365.76, + "end": 30367.14, + "probability": 0.7722 + }, + { + "start": 30367.14, + "end": 30370.04, + "probability": 0.9834 + }, + { + "start": 30370.26, + "end": 30371.26, + "probability": 0.5599 + }, + { + "start": 30371.76, + "end": 30373.02, + "probability": 0.87 + }, + { + "start": 30373.1, + "end": 30373.84, + "probability": 0.8268 + }, + { + "start": 30373.9, + "end": 30374.44, + "probability": 0.7202 + }, + { + "start": 30374.9, + "end": 30375.24, + "probability": 0.3405 + }, + { + "start": 30375.34, + "end": 30379.02, + "probability": 0.9594 + }, + { + "start": 30379.26, + "end": 30380.04, + "probability": 0.718 + }, + { + "start": 30386.34, + "end": 30392.62, + "probability": 0.9829 + }, + { + "start": 30392.84, + "end": 30393.68, + "probability": 0.4954 + }, + { + "start": 30393.76, + "end": 30394.87, + "probability": 0.8982 + }, + { + "start": 30395.36, + "end": 30397.64, + "probability": 0.9346 + }, + { + "start": 30397.72, + "end": 30399.1, + "probability": 0.8853 + }, + { + "start": 30399.22, + "end": 30401.98, + "probability": 0.9927 + }, + { + "start": 30402.86, + "end": 30406.32, + "probability": 0.9507 + }, + { + "start": 30406.86, + "end": 30410.48, + "probability": 0.9552 + }, + { + "start": 30410.64, + "end": 30413.22, + "probability": 0.8174 + }, + { + "start": 30413.64, + "end": 30416.96, + "probability": 0.9979 + }, + { + "start": 30417.16, + "end": 30423.34, + "probability": 0.8849 + }, + { + "start": 30423.64, + "end": 30425.07, + "probability": 0.8483 + }, + { + "start": 30425.66, + "end": 30428.87, + "probability": 0.8897 + }, + { + "start": 30429.4, + "end": 30430.44, + "probability": 0.6786 + }, + { + "start": 30430.58, + "end": 30431.62, + "probability": 0.9961 + }, + { + "start": 30431.78, + "end": 30433.1, + "probability": 0.5228 + }, + { + "start": 30433.44, + "end": 30434.02, + "probability": 0.8359 + }, + { + "start": 30434.08, + "end": 30434.68, + "probability": 0.6002 + }, + { + "start": 30434.8, + "end": 30434.98, + "probability": 0.6508 + }, + { + "start": 30435.02, + "end": 30436.36, + "probability": 0.9573 + }, + { + "start": 30437.26, + "end": 30439.52, + "probability": 0.7293 + }, + { + "start": 30439.6, + "end": 30441.8, + "probability": 0.8656 + }, + { + "start": 30441.94, + "end": 30443.08, + "probability": 0.9795 + }, + { + "start": 30444.6, + "end": 30445.26, + "probability": 0.485 + }, + { + "start": 30447.32, + "end": 30448.86, + "probability": 0.4297 + }, + { + "start": 30449.76, + "end": 30452.57, + "probability": 0.7085 + }, + { + "start": 30453.02, + "end": 30454.56, + "probability": 0.9316 + }, + { + "start": 30454.7, + "end": 30455.84, + "probability": 0.9819 + }, + { + "start": 30456.12, + "end": 30457.7, + "probability": 0.9583 + }, + { + "start": 30458.12, + "end": 30467.04, + "probability": 0.8414 + }, + { + "start": 30467.18, + "end": 30468.38, + "probability": 0.6832 + }, + { + "start": 30468.5, + "end": 30469.18, + "probability": 0.7506 + }, + { + "start": 30469.32, + "end": 30470.32, + "probability": 0.7631 + }, + { + "start": 30470.8, + "end": 30472.4, + "probability": 0.9632 + }, + { + "start": 30473.22, + "end": 30480.46, + "probability": 0.9434 + }, + { + "start": 30480.66, + "end": 30484.88, + "probability": 0.9729 + }, + { + "start": 30484.98, + "end": 30490.41, + "probability": 0.9873 + }, + { + "start": 30490.84, + "end": 30491.5, + "probability": 0.3069 + }, + { + "start": 30491.88, + "end": 30492.5, + "probability": 0.5435 + }, + { + "start": 30492.58, + "end": 30494.0, + "probability": 0.7482 + }, + { + "start": 30494.08, + "end": 30497.96, + "probability": 0.9774 + }, + { + "start": 30497.98, + "end": 30500.92, + "probability": 0.9907 + }, + { + "start": 30501.2, + "end": 30503.36, + "probability": 0.9891 + }, + { + "start": 30503.92, + "end": 30507.86, + "probability": 0.9793 + }, + { + "start": 30508.08, + "end": 30508.73, + "probability": 0.8792 + }, + { + "start": 30509.68, + "end": 30511.35, + "probability": 0.4926 + }, + { + "start": 30511.39, + "end": 30511.89, + "probability": 0.7149 + }, + { + "start": 30512.07, + "end": 30514.19, + "probability": 0.8523 + }, + { + "start": 30514.23, + "end": 30516.07, + "probability": 0.7932 + }, + { + "start": 30516.09, + "end": 30516.7, + "probability": 0.6339 + }, + { + "start": 30517.27, + "end": 30519.01, + "probability": 0.6586 + }, + { + "start": 30519.11, + "end": 30519.51, + "probability": 0.2129 + }, + { + "start": 30520.39, + "end": 30522.47, + "probability": 0.7336 + }, + { + "start": 30522.75, + "end": 30524.93, + "probability": 0.5252 + }, + { + "start": 30525.03, + "end": 30525.55, + "probability": 0.7025 + }, + { + "start": 30526.56, + "end": 30529.01, + "probability": 0.8637 + }, + { + "start": 30529.07, + "end": 30532.43, + "probability": 0.984 + }, + { + "start": 30532.49, + "end": 30534.01, + "probability": 0.9126 + }, + { + "start": 30534.95, + "end": 30540.83, + "probability": 0.994 + }, + { + "start": 30540.91, + "end": 30542.33, + "probability": 0.6671 + }, + { + "start": 30542.73, + "end": 30544.73, + "probability": 0.7771 + }, + { + "start": 30545.25, + "end": 30547.03, + "probability": 0.6725 + }, + { + "start": 30547.55, + "end": 30547.55, + "probability": 0.1034 + }, + { + "start": 30547.55, + "end": 30547.67, + "probability": 0.067 + }, + { + "start": 30547.67, + "end": 30550.73, + "probability": 0.9587 + }, + { + "start": 30551.43, + "end": 30553.85, + "probability": 0.3974 + }, + { + "start": 30554.37, + "end": 30558.39, + "probability": 0.6828 + }, + { + "start": 30558.39, + "end": 30563.75, + "probability": 0.9858 + }, + { + "start": 30564.09, + "end": 30565.38, + "probability": 0.8032 + }, + { + "start": 30565.81, + "end": 30566.95, + "probability": 0.5027 + }, + { + "start": 30567.15, + "end": 30568.29, + "probability": 0.7213 + }, + { + "start": 30568.51, + "end": 30568.51, + "probability": 0.2644 + }, + { + "start": 30568.67, + "end": 30571.69, + "probability": 0.3592 + }, + { + "start": 30572.13, + "end": 30573.09, + "probability": 0.1156 + }, + { + "start": 30573.09, + "end": 30573.09, + "probability": 0.1973 + }, + { + "start": 30573.09, + "end": 30574.75, + "probability": 0.3581 + }, + { + "start": 30574.89, + "end": 30576.73, + "probability": 0.3676 + }, + { + "start": 30579.09, + "end": 30580.21, + "probability": 0.3169 + }, + { + "start": 30582.41, + "end": 30585.15, + "probability": 0.1632 + }, + { + "start": 30586.17, + "end": 30588.51, + "probability": 0.0538 + }, + { + "start": 30591.77, + "end": 30597.27, + "probability": 0.3422 + }, + { + "start": 30599.69, + "end": 30601.07, + "probability": 0.049 + }, + { + "start": 30609.83, + "end": 30610.67, + "probability": 0.1157 + }, + { + "start": 30610.71, + "end": 30617.35, + "probability": 0.0422 + }, + { + "start": 30617.55, + "end": 30621.89, + "probability": 0.0663 + }, + { + "start": 30623.39, + "end": 30624.37, + "probability": 0.0065 + }, + { + "start": 30624.37, + "end": 30625.31, + "probability": 0.0755 + }, + { + "start": 30626.03, + "end": 30628.47, + "probability": 0.0064 + }, + { + "start": 30628.53, + "end": 30628.53, + "probability": 0.1905 + }, + { + "start": 30628.53, + "end": 30628.91, + "probability": 0.3619 + }, + { + "start": 30629.17, + "end": 30630.19, + "probability": 0.1641 + }, + { + "start": 30634.77, + "end": 30636.61, + "probability": 0.0041 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.0, + "end": 30664.0, + "probability": 0.0 + }, + { + "start": 30664.82, + "end": 30669.38, + "probability": 0.2831 + }, + { + "start": 30674.86, + "end": 30677.32, + "probability": 0.0481 + }, + { + "start": 30677.38, + "end": 30678.84, + "probability": 0.0941 + }, + { + "start": 30679.18, + "end": 30680.44, + "probability": 0.1369 + }, + { + "start": 30681.34, + "end": 30681.62, + "probability": 0.0248 + }, + { + "start": 30681.98, + "end": 30684.16, + "probability": 0.1312 + }, + { + "start": 30684.38, + "end": 30690.74, + "probability": 0.1722 + }, + { + "start": 30692.64, + "end": 30692.72, + "probability": 0.0406 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.0, + "end": 31186.0, + "probability": 0.0 + }, + { + "start": 31186.18, + "end": 31186.18, + "probability": 0.0156 + }, + { + "start": 31186.18, + "end": 31186.18, + "probability": 0.0605 + }, + { + "start": 31186.18, + "end": 31186.18, + "probability": 0.017 + }, + { + "start": 31186.18, + "end": 31186.5, + "probability": 0.2305 + }, + { + "start": 31186.6, + "end": 31187.54, + "probability": 0.6125 + }, + { + "start": 31188.28, + "end": 31189.54, + "probability": 0.8207 + }, + { + "start": 31189.56, + "end": 31190.16, + "probability": 0.8002 + }, + { + "start": 31190.22, + "end": 31191.04, + "probability": 0.7111 + }, + { + "start": 31192.26, + "end": 31195.4, + "probability": 0.8857 + }, + { + "start": 31196.52, + "end": 31199.4, + "probability": 0.8616 + }, + { + "start": 31200.88, + "end": 31203.85, + "probability": 0.9614 + }, + { + "start": 31205.22, + "end": 31211.26, + "probability": 0.8743 + }, + { + "start": 31211.72, + "end": 31213.18, + "probability": 0.9874 + }, + { + "start": 31213.26, + "end": 31214.69, + "probability": 0.9617 + }, + { + "start": 31216.16, + "end": 31219.5, + "probability": 0.9764 + }, + { + "start": 31220.06, + "end": 31222.74, + "probability": 0.9127 + }, + { + "start": 31223.64, + "end": 31224.32, + "probability": 0.7505 + }, + { + "start": 31224.32, + "end": 31225.42, + "probability": 0.9438 + }, + { + "start": 31225.5, + "end": 31227.34, + "probability": 0.8832 + }, + { + "start": 31227.5, + "end": 31228.12, + "probability": 0.8325 + }, + { + "start": 31228.46, + "end": 31229.02, + "probability": 0.9084 + }, + { + "start": 31229.06, + "end": 31230.12, + "probability": 0.9886 + }, + { + "start": 31230.98, + "end": 31231.5, + "probability": 0.8721 + }, + { + "start": 31231.6, + "end": 31232.44, + "probability": 0.7869 + }, + { + "start": 31235.28, + "end": 31236.36, + "probability": 0.9741 + }, + { + "start": 31236.76, + "end": 31239.7, + "probability": 0.9952 + }, + { + "start": 31241.1, + "end": 31242.66, + "probability": 0.9858 + }, + { + "start": 31242.7, + "end": 31243.62, + "probability": 0.9172 + }, + { + "start": 31243.68, + "end": 31244.67, + "probability": 0.8906 + }, + { + "start": 31245.48, + "end": 31246.78, + "probability": 0.9548 + }, + { + "start": 31247.12, + "end": 31248.96, + "probability": 0.9629 + }, + { + "start": 31248.96, + "end": 31249.32, + "probability": 0.3543 + }, + { + "start": 31249.34, + "end": 31254.76, + "probability": 0.9843 + }, + { + "start": 31255.08, + "end": 31255.7, + "probability": 0.9556 + }, + { + "start": 31255.8, + "end": 31256.66, + "probability": 0.7486 + }, + { + "start": 31257.0, + "end": 31258.14, + "probability": 0.9238 + }, + { + "start": 31258.2, + "end": 31260.16, + "probability": 0.9687 + }, + { + "start": 31260.22, + "end": 31262.12, + "probability": 0.9178 + }, + { + "start": 31262.6, + "end": 31263.86, + "probability": 0.9677 + }, + { + "start": 31263.9, + "end": 31264.48, + "probability": 0.934 + }, + { + "start": 31264.6, + "end": 31265.2, + "probability": 0.9215 + }, + { + "start": 31265.38, + "end": 31268.22, + "probability": 0.9718 + }, + { + "start": 31268.78, + "end": 31274.22, + "probability": 0.9655 + }, + { + "start": 31274.7, + "end": 31275.76, + "probability": 0.8786 + }, + { + "start": 31275.84, + "end": 31276.58, + "probability": 0.8888 + }, + { + "start": 31276.66, + "end": 31282.02, + "probability": 0.9775 + }, + { + "start": 31282.02, + "end": 31284.64, + "probability": 0.9862 + }, + { + "start": 31284.98, + "end": 31285.76, + "probability": 0.8166 + }, + { + "start": 31285.88, + "end": 31287.76, + "probability": 0.8538 + }, + { + "start": 31287.78, + "end": 31290.26, + "probability": 0.9835 + }, + { + "start": 31290.26, + "end": 31293.94, + "probability": 0.9948 + }, + { + "start": 31294.1, + "end": 31295.95, + "probability": 0.9739 + }, + { + "start": 31296.44, + "end": 31297.9, + "probability": 0.9688 + }, + { + "start": 31298.56, + "end": 31300.66, + "probability": 0.7541 + }, + { + "start": 31301.22, + "end": 31302.02, + "probability": 0.9311 + }, + { + "start": 31302.1, + "end": 31305.32, + "probability": 0.9487 + }, + { + "start": 31305.34, + "end": 31305.92, + "probability": 0.1808 + }, + { + "start": 31306.3, + "end": 31306.84, + "probability": 0.9073 + }, + { + "start": 31306.94, + "end": 31309.4, + "probability": 0.9045 + }, + { + "start": 31309.94, + "end": 31313.12, + "probability": 0.985 + }, + { + "start": 31313.2, + "end": 31314.9, + "probability": 0.9883 + }, + { + "start": 31315.14, + "end": 31315.4, + "probability": 0.833 + }, + { + "start": 31316.4, + "end": 31317.68, + "probability": 0.7003 + }, + { + "start": 31317.74, + "end": 31319.72, + "probability": 0.9397 + }, + { + "start": 31343.08, + "end": 31345.26, + "probability": 0.698 + }, + { + "start": 31346.6, + "end": 31347.92, + "probability": 0.9157 + }, + { + "start": 31348.7, + "end": 31349.54, + "probability": 0.8076 + }, + { + "start": 31351.7, + "end": 31355.66, + "probability": 0.7528 + }, + { + "start": 31357.44, + "end": 31358.86, + "probability": 0.9767 + }, + { + "start": 31360.32, + "end": 31362.6, + "probability": 0.9468 + }, + { + "start": 31364.14, + "end": 31367.06, + "probability": 0.5631 + }, + { + "start": 31368.24, + "end": 31369.16, + "probability": 0.6987 + }, + { + "start": 31370.88, + "end": 31371.9, + "probability": 0.7819 + }, + { + "start": 31373.44, + "end": 31377.54, + "probability": 0.6345 + }, + { + "start": 31379.72, + "end": 31381.36, + "probability": 0.9044 + }, + { + "start": 31383.32, + "end": 31386.4, + "probability": 0.5453 + }, + { + "start": 31388.4, + "end": 31388.82, + "probability": 0.8774 + }, + { + "start": 31391.66, + "end": 31393.58, + "probability": 0.9932 + }, + { + "start": 31394.5, + "end": 31396.04, + "probability": 0.9301 + }, + { + "start": 31398.38, + "end": 31402.6, + "probability": 0.9039 + }, + { + "start": 31404.9, + "end": 31405.9, + "probability": 0.8872 + }, + { + "start": 31406.9, + "end": 31409.66, + "probability": 0.9352 + }, + { + "start": 31411.38, + "end": 31416.02, + "probability": 0.7846 + }, + { + "start": 31417.76, + "end": 31418.46, + "probability": 0.0167 + }, + { + "start": 31418.48, + "end": 31419.91, + "probability": 0.9922 + }, + { + "start": 31420.38, + "end": 31424.82, + "probability": 0.9753 + }, + { + "start": 31425.78, + "end": 31427.26, + "probability": 0.9292 + }, + { + "start": 31427.34, + "end": 31428.76, + "probability": 0.8741 + }, + { + "start": 31432.38, + "end": 31439.2, + "probability": 0.9806 + }, + { + "start": 31440.06, + "end": 31441.22, + "probability": 0.9307 + }, + { + "start": 31442.24, + "end": 31442.83, + "probability": 0.8477 + }, + { + "start": 31443.68, + "end": 31445.36, + "probability": 0.9724 + }, + { + "start": 31445.6, + "end": 31451.08, + "probability": 0.9185 + }, + { + "start": 31451.56, + "end": 31452.4, + "probability": 0.7837 + }, + { + "start": 31453.06, + "end": 31454.82, + "probability": 0.9971 + }, + { + "start": 31454.98, + "end": 31459.22, + "probability": 0.7831 + }, + { + "start": 31459.22, + "end": 31462.1, + "probability": 0.9076 + }, + { + "start": 31462.98, + "end": 31467.6, + "probability": 0.9946 + }, + { + "start": 31469.58, + "end": 31472.88, + "probability": 0.995 + }, + { + "start": 31474.48, + "end": 31476.0, + "probability": 0.4165 + }, + { + "start": 31477.78, + "end": 31479.4, + "probability": 0.995 + }, + { + "start": 31482.38, + "end": 31485.2, + "probability": 0.9194 + }, + { + "start": 31486.96, + "end": 31489.66, + "probability": 0.9588 + }, + { + "start": 31491.1, + "end": 31492.76, + "probability": 0.9282 + }, + { + "start": 31493.64, + "end": 31496.74, + "probability": 0.9857 + }, + { + "start": 31497.8, + "end": 31499.08, + "probability": 0.9353 + }, + { + "start": 31503.84, + "end": 31504.78, + "probability": 0.7562 + }, + { + "start": 31505.32, + "end": 31506.45, + "probability": 0.9359 + }, + { + "start": 31507.48, + "end": 31507.9, + "probability": 0.7273 + }, + { + "start": 31509.04, + "end": 31512.96, + "probability": 0.8993 + }, + { + "start": 31514.42, + "end": 31515.92, + "probability": 0.8902 + }, + { + "start": 31516.88, + "end": 31519.18, + "probability": 0.9698 + }, + { + "start": 31519.74, + "end": 31521.96, + "probability": 0.8564 + }, + { + "start": 31523.3, + "end": 31525.74, + "probability": 0.8523 + }, + { + "start": 31526.3, + "end": 31528.28, + "probability": 0.9935 + }, + { + "start": 31529.1, + "end": 31530.22, + "probability": 0.9333 + }, + { + "start": 31531.24, + "end": 31532.59, + "probability": 0.9932 + }, + { + "start": 31533.92, + "end": 31535.38, + "probability": 0.8583 + }, + { + "start": 31536.1, + "end": 31537.28, + "probability": 0.8335 + }, + { + "start": 31539.94, + "end": 31542.12, + "probability": 0.993 + }, + { + "start": 31543.9, + "end": 31545.62, + "probability": 0.8979 + }, + { + "start": 31546.28, + "end": 31550.8, + "probability": 0.8647 + }, + { + "start": 31551.92, + "end": 31554.08, + "probability": 0.9636 + }, + { + "start": 31554.8, + "end": 31555.6, + "probability": 0.7647 + }, + { + "start": 31556.88, + "end": 31558.24, + "probability": 0.9879 + }, + { + "start": 31559.28, + "end": 31561.38, + "probability": 0.9956 + }, + { + "start": 31561.84, + "end": 31562.78, + "probability": 0.9807 + }, + { + "start": 31564.64, + "end": 31565.7, + "probability": 0.8389 + }, + { + "start": 31566.3, + "end": 31571.52, + "probability": 0.9659 + }, + { + "start": 31572.42, + "end": 31573.06, + "probability": 0.5834 + }, + { + "start": 31573.94, + "end": 31575.72, + "probability": 0.9205 + }, + { + "start": 31576.62, + "end": 31578.09, + "probability": 0.7454 + }, + { + "start": 31579.84, + "end": 31581.08, + "probability": 0.9834 + }, + { + "start": 31582.68, + "end": 31584.42, + "probability": 0.991 + }, + { + "start": 31585.48, + "end": 31587.54, + "probability": 0.8465 + }, + { + "start": 31588.88, + "end": 31591.88, + "probability": 0.8748 + }, + { + "start": 31593.26, + "end": 31594.54, + "probability": 0.9268 + }, + { + "start": 31594.6, + "end": 31594.82, + "probability": 0.7534 + }, + { + "start": 31595.26, + "end": 31597.36, + "probability": 0.9689 + }, + { + "start": 31598.06, + "end": 31599.64, + "probability": 0.9702 + }, + { + "start": 31599.7, + "end": 31600.46, + "probability": 0.7008 + }, + { + "start": 31606.9, + "end": 31608.28, + "probability": 0.8082 + }, + { + "start": 31612.14, + "end": 31613.48, + "probability": 0.5901 + }, + { + "start": 31613.82, + "end": 31613.96, + "probability": 0.4601 + }, + { + "start": 31613.96, + "end": 31615.38, + "probability": 0.604 + }, + { + "start": 31615.84, + "end": 31616.56, + "probability": 0.8862 + }, + { + "start": 31616.66, + "end": 31617.83, + "probability": 0.7721 + }, + { + "start": 31618.5, + "end": 31619.54, + "probability": 0.8178 + }, + { + "start": 31619.62, + "end": 31621.06, + "probability": 0.814 + }, + { + "start": 31621.6, + "end": 31624.68, + "probability": 0.9621 + }, + { + "start": 31624.92, + "end": 31625.56, + "probability": 0.7487 + }, + { + "start": 31626.04, + "end": 31630.42, + "probability": 0.807 + }, + { + "start": 31631.0, + "end": 31635.02, + "probability": 0.7874 + }, + { + "start": 31635.14, + "end": 31638.36, + "probability": 0.6473 + }, + { + "start": 31638.96, + "end": 31639.7, + "probability": 0.2913 + }, + { + "start": 31640.4, + "end": 31643.98, + "probability": 0.9453 + }, + { + "start": 31644.08, + "end": 31645.04, + "probability": 0.8413 + }, + { + "start": 31645.24, + "end": 31649.58, + "probability": 0.9272 + }, + { + "start": 31649.68, + "end": 31651.4, + "probability": 0.767 + }, + { + "start": 31651.92, + "end": 31656.7, + "probability": 0.9568 + }, + { + "start": 31656.74, + "end": 31657.78, + "probability": 0.665 + }, + { + "start": 31657.78, + "end": 31658.36, + "probability": 0.5596 + }, + { + "start": 31658.82, + "end": 31660.08, + "probability": 0.9422 + }, + { + "start": 31660.16, + "end": 31663.88, + "probability": 0.7814 + }, + { + "start": 31664.18, + "end": 31665.38, + "probability": 0.5961 + }, + { + "start": 31665.78, + "end": 31668.74, + "probability": 0.9892 + }, + { + "start": 31668.92, + "end": 31670.3, + "probability": 0.9819 + }, + { + "start": 31670.78, + "end": 31673.0, + "probability": 0.4318 + }, + { + "start": 31673.72, + "end": 31678.86, + "probability": 0.8862 + }, + { + "start": 31679.22, + "end": 31680.95, + "probability": 0.8902 + }, + { + "start": 31681.86, + "end": 31686.26, + "probability": 0.6293 + }, + { + "start": 31686.38, + "end": 31687.34, + "probability": 0.7561 + }, + { + "start": 31687.62, + "end": 31689.94, + "probability": 0.6354 + }, + { + "start": 31689.98, + "end": 31690.66, + "probability": 0.7244 + }, + { + "start": 31690.86, + "end": 31691.9, + "probability": 0.7486 + }, + { + "start": 31692.04, + "end": 31695.82, + "probability": 0.6287 + }, + { + "start": 31696.06, + "end": 31696.74, + "probability": 0.7257 + }, + { + "start": 31696.84, + "end": 31697.66, + "probability": 0.908 + }, + { + "start": 31697.74, + "end": 31700.64, + "probability": 0.6967 + }, + { + "start": 31700.68, + "end": 31704.26, + "probability": 0.6208 + }, + { + "start": 31704.42, + "end": 31705.32, + "probability": 0.9706 + }, + { + "start": 31705.38, + "end": 31707.75, + "probability": 0.8278 + }, + { + "start": 31708.06, + "end": 31711.36, + "probability": 0.9871 + }, + { + "start": 31711.6, + "end": 31714.88, + "probability": 0.761 + }, + { + "start": 31714.88, + "end": 31718.04, + "probability": 0.9526 + }, + { + "start": 31718.7, + "end": 31719.72, + "probability": 0.8627 + }, + { + "start": 31720.32, + "end": 31721.86, + "probability": 0.9072 + }, + { + "start": 31721.96, + "end": 31722.6, + "probability": 0.7279 + }, + { + "start": 31722.72, + "end": 31723.42, + "probability": 0.6532 + }, + { + "start": 31723.56, + "end": 31724.14, + "probability": 0.2307 + }, + { + "start": 31724.2, + "end": 31725.12, + "probability": 0.756 + }, + { + "start": 31725.16, + "end": 31728.3, + "probability": 0.854 + }, + { + "start": 31728.84, + "end": 31730.86, + "probability": 0.9888 + }, + { + "start": 31731.12, + "end": 31733.41, + "probability": 0.8648 + }, + { + "start": 31733.58, + "end": 31736.0, + "probability": 0.8149 + }, + { + "start": 31736.24, + "end": 31736.82, + "probability": 0.72 + }, + { + "start": 31737.08, + "end": 31737.48, + "probability": 0.9242 + }, + { + "start": 31737.56, + "end": 31738.04, + "probability": 0.7551 + }, + { + "start": 31738.22, + "end": 31738.4, + "probability": 0.7923 + }, + { + "start": 31738.54, + "end": 31739.14, + "probability": 0.9484 + }, + { + "start": 31739.24, + "end": 31740.5, + "probability": 0.557 + }, + { + "start": 31741.88, + "end": 31742.74, + "probability": 0.4541 + }, + { + "start": 31742.84, + "end": 31744.28, + "probability": 0.8181 + }, + { + "start": 31745.12, + "end": 31747.08, + "probability": 0.5957 + }, + { + "start": 31747.52, + "end": 31752.78, + "probability": 0.7009 + }, + { + "start": 31752.94, + "end": 31753.96, + "probability": 0.9346 + }, + { + "start": 31754.1, + "end": 31755.74, + "probability": 0.9521 + }, + { + "start": 31756.02, + "end": 31757.26, + "probability": 0.9778 + }, + { + "start": 31757.32, + "end": 31758.27, + "probability": 0.7639 + }, + { + "start": 31758.64, + "end": 31759.9, + "probability": 0.9937 + }, + { + "start": 31759.96, + "end": 31761.52, + "probability": 0.9092 + }, + { + "start": 31762.1, + "end": 31763.42, + "probability": 0.5319 + }, + { + "start": 31763.68, + "end": 31767.14, + "probability": 0.68 + }, + { + "start": 31767.32, + "end": 31767.88, + "probability": 0.9246 + }, + { + "start": 31767.98, + "end": 31768.93, + "probability": 0.6096 + }, + { + "start": 31769.4, + "end": 31772.48, + "probability": 0.9158 + }, + { + "start": 31772.8, + "end": 31775.34, + "probability": 0.9089 + }, + { + "start": 31775.48, + "end": 31778.1, + "probability": 0.7736 + }, + { + "start": 31778.34, + "end": 31778.9, + "probability": 0.4802 + }, + { + "start": 31778.98, + "end": 31783.98, + "probability": 0.8405 + }, + { + "start": 31784.4, + "end": 31785.96, + "probability": 0.9707 + }, + { + "start": 31788.5, + "end": 31789.66, + "probability": 0.4262 + }, + { + "start": 31790.36, + "end": 31791.88, + "probability": 0.9587 + }, + { + "start": 31791.96, + "end": 31794.26, + "probability": 0.7328 + }, + { + "start": 31794.48, + "end": 31795.94, + "probability": 0.959 + }, + { + "start": 31796.52, + "end": 31797.08, + "probability": 0.9434 + }, + { + "start": 31797.8, + "end": 31798.76, + "probability": 0.8272 + }, + { + "start": 31798.82, + "end": 31800.18, + "probability": 0.8254 + }, + { + "start": 31800.52, + "end": 31801.44, + "probability": 0.9961 + }, + { + "start": 31802.14, + "end": 31802.82, + "probability": 0.3918 + }, + { + "start": 31802.88, + "end": 31806.36, + "probability": 0.9684 + }, + { + "start": 31806.68, + "end": 31807.56, + "probability": 0.6436 + }, + { + "start": 31807.58, + "end": 31811.26, + "probability": 0.967 + }, + { + "start": 31811.34, + "end": 31811.85, + "probability": 0.9336 + }, + { + "start": 31812.22, + "end": 31814.1, + "probability": 0.8643 + }, + { + "start": 31814.6, + "end": 31816.22, + "probability": 0.5773 + }, + { + "start": 31816.56, + "end": 31821.7, + "probability": 0.7227 + }, + { + "start": 31821.88, + "end": 31823.66, + "probability": 0.5309 + }, + { + "start": 31824.0, + "end": 31826.86, + "probability": 0.73 + }, + { + "start": 31828.16, + "end": 31829.93, + "probability": 0.9603 + }, + { + "start": 31830.16, + "end": 31831.41, + "probability": 0.9771 + }, + { + "start": 31831.78, + "end": 31833.08, + "probability": 0.8339 + }, + { + "start": 31833.32, + "end": 31838.26, + "probability": 0.984 + }, + { + "start": 31838.32, + "end": 31841.83, + "probability": 0.9243 + }, + { + "start": 31842.18, + "end": 31843.26, + "probability": 0.595 + }, + { + "start": 31843.58, + "end": 31846.49, + "probability": 0.9421 + }, + { + "start": 31847.14, + "end": 31848.98, + "probability": 0.7647 + }, + { + "start": 31849.1, + "end": 31851.34, + "probability": 0.946 + }, + { + "start": 31851.34, + "end": 31854.24, + "probability": 0.9507 + }, + { + "start": 31854.4, + "end": 31855.3, + "probability": 0.5102 + }, + { + "start": 31855.66, + "end": 31857.06, + "probability": 0.8708 + }, + { + "start": 31857.12, + "end": 31857.54, + "probability": 0.7719 + }, + { + "start": 31858.06, + "end": 31858.68, + "probability": 0.6786 + }, + { + "start": 31859.46, + "end": 31861.72, + "probability": 0.9427 + }, + { + "start": 31862.16, + "end": 31867.04, + "probability": 0.9197 + }, + { + "start": 31867.06, + "end": 31867.6, + "probability": 0.9111 + }, + { + "start": 31868.42, + "end": 31869.1, + "probability": 0.062 + }, + { + "start": 31869.2, + "end": 31871.72, + "probability": 0.8761 + }, + { + "start": 31871.74, + "end": 31872.04, + "probability": 0.8039 + }, + { + "start": 31872.16, + "end": 31874.16, + "probability": 0.7328 + }, + { + "start": 31875.28, + "end": 31878.24, + "probability": 0.0529 + }, + { + "start": 31887.04, + "end": 31888.72, + "probability": 0.4547 + }, + { + "start": 31889.3, + "end": 31890.8, + "probability": 0.7812 + }, + { + "start": 31892.02, + "end": 31898.09, + "probability": 0.9555 + }, + { + "start": 31898.48, + "end": 31900.74, + "probability": 0.9984 + }, + { + "start": 31901.76, + "end": 31907.02, + "probability": 0.9963 + }, + { + "start": 31907.84, + "end": 31909.62, + "probability": 0.8928 + }, + { + "start": 31910.46, + "end": 31917.4, + "probability": 0.9935 + }, + { + "start": 31918.4, + "end": 31919.24, + "probability": 0.5717 + }, + { + "start": 31919.36, + "end": 31920.64, + "probability": 0.0244 + }, + { + "start": 31920.98, + "end": 31920.98, + "probability": 0.3121 + }, + { + "start": 31921.02, + "end": 31921.32, + "probability": 0.5663 + }, + { + "start": 31921.74, + "end": 31922.76, + "probability": 0.1628 + }, + { + "start": 31923.22, + "end": 31925.44, + "probability": 0.0982 + }, + { + "start": 31925.5, + "end": 31926.08, + "probability": 0.0343 + }, + { + "start": 31926.42, + "end": 31928.76, + "probability": 0.293 + }, + { + "start": 31929.18, + "end": 31930.6, + "probability": 0.6473 + }, + { + "start": 31931.28, + "end": 31932.76, + "probability": 0.7896 + }, + { + "start": 31934.42, + "end": 31937.18, + "probability": 0.0471 + }, + { + "start": 31937.18, + "end": 31940.56, + "probability": 0.9062 + }, + { + "start": 31941.46, + "end": 31945.38, + "probability": 0.726 + }, + { + "start": 31946.04, + "end": 31946.43, + "probability": 0.4096 + }, + { + "start": 31946.78, + "end": 31950.06, + "probability": 0.5966 + }, + { + "start": 31950.06, + "end": 31950.58, + "probability": 0.2986 + }, + { + "start": 31950.7, + "end": 31952.92, + "probability": 0.7908 + }, + { + "start": 31952.98, + "end": 31955.48, + "probability": 0.9673 + }, + { + "start": 31955.72, + "end": 31956.58, + "probability": 0.8626 + }, + { + "start": 31956.62, + "end": 31957.94, + "probability": 0.4621 + }, + { + "start": 31958.28, + "end": 31961.3, + "probability": 0.7538 + }, + { + "start": 31963.46, + "end": 31963.46, + "probability": 0.0218 + }, + { + "start": 31963.46, + "end": 31964.2, + "probability": 0.0793 + }, + { + "start": 31964.5, + "end": 31966.98, + "probability": 0.994 + }, + { + "start": 31967.04, + "end": 31970.14, + "probability": 0.9965 + }, + { + "start": 31970.42, + "end": 31970.9, + "probability": 0.6298 + }, + { + "start": 31970.96, + "end": 31972.68, + "probability": 0.1754 + }, + { + "start": 31972.78, + "end": 31976.94, + "probability": 0.7976 + }, + { + "start": 31977.1, + "end": 31980.92, + "probability": 0.9937 + }, + { + "start": 31981.12, + "end": 31981.9, + "probability": 0.9595 + }, + { + "start": 31982.54, + "end": 31986.6, + "probability": 0.8109 + }, + { + "start": 31986.74, + "end": 31987.84, + "probability": 0.7773 + }, + { + "start": 31987.84, + "end": 31989.0, + "probability": 0.2204 + }, + { + "start": 31989.18, + "end": 31990.04, + "probability": 0.4297 + }, + { + "start": 31990.28, + "end": 31995.84, + "probability": 0.9952 + }, + { + "start": 31996.42, + "end": 32003.02, + "probability": 0.9982 + }, + { + "start": 32003.2, + "end": 32005.26, + "probability": 0.9596 + }, + { + "start": 32005.38, + "end": 32005.96, + "probability": 0.705 + }, + { + "start": 32007.06, + "end": 32010.34, + "probability": 0.7173 + }, + { + "start": 32011.04, + "end": 32012.4, + "probability": 0.8645 + }, + { + "start": 32013.2, + "end": 32016.44, + "probability": 0.9625 + }, + { + "start": 32016.44, + "end": 32020.04, + "probability": 0.9939 + }, + { + "start": 32020.7, + "end": 32022.06, + "probability": 0.8754 + }, + { + "start": 32023.2, + "end": 32028.06, + "probability": 0.8831 + }, + { + "start": 32028.8, + "end": 32030.7, + "probability": 0.8057 + }, + { + "start": 32031.42, + "end": 32034.16, + "probability": 0.8421 + }, + { + "start": 32034.68, + "end": 32035.68, + "probability": 0.6112 + }, + { + "start": 32036.46, + "end": 32041.22, + "probability": 0.9941 + }, + { + "start": 32041.94, + "end": 32047.9, + "probability": 0.9324 + }, + { + "start": 32049.4, + "end": 32052.39, + "probability": 0.6862 + }, + { + "start": 32053.04, + "end": 32058.78, + "probability": 0.998 + }, + { + "start": 32060.2, + "end": 32063.26, + "probability": 0.92 + }, + { + "start": 32063.88, + "end": 32065.23, + "probability": 0.9912 + }, + { + "start": 32065.92, + "end": 32066.06, + "probability": 0.1611 + }, + { + "start": 32066.28, + "end": 32066.46, + "probability": 0.5113 + }, + { + "start": 32066.48, + "end": 32071.36, + "probability": 0.8419 + }, + { + "start": 32071.74, + "end": 32072.92, + "probability": 0.491 + }, + { + "start": 32073.82, + "end": 32077.44, + "probability": 0.8494 + }, + { + "start": 32077.76, + "end": 32080.54, + "probability": 0.9922 + }, + { + "start": 32081.54, + "end": 32084.56, + "probability": 0.7993 + }, + { + "start": 32085.22, + "end": 32087.14, + "probability": 0.9094 + }, + { + "start": 32088.26, + "end": 32089.94, + "probability": 0.5625 + }, + { + "start": 32090.16, + "end": 32091.58, + "probability": 0.9491 + }, + { + "start": 32092.56, + "end": 32096.7, + "probability": 0.9886 + }, + { + "start": 32097.34, + "end": 32100.28, + "probability": 0.9405 + }, + { + "start": 32101.0, + "end": 32103.0, + "probability": 0.9516 + }, + { + "start": 32103.6, + "end": 32106.76, + "probability": 0.8027 + }, + { + "start": 32107.56, + "end": 32110.1, + "probability": 0.3285 + }, + { + "start": 32110.1, + "end": 32111.62, + "probability": 0.6302 + }, + { + "start": 32112.45, + "end": 32113.22, + "probability": 0.1325 + }, + { + "start": 32113.38, + "end": 32113.5, + "probability": 0.1539 + }, + { + "start": 32113.5, + "end": 32116.46, + "probability": 0.4832 + }, + { + "start": 32116.46, + "end": 32118.0, + "probability": 0.1037 + }, + { + "start": 32118.36, + "end": 32122.8, + "probability": 0.0154 + }, + { + "start": 32123.72, + "end": 32125.02, + "probability": 0.5859 + }, + { + "start": 32125.8, + "end": 32130.06, + "probability": 0.9133 + }, + { + "start": 32130.06, + "end": 32135.94, + "probability": 0.8828 + }, + { + "start": 32137.06, + "end": 32139.1, + "probability": 0.9982 + }, + { + "start": 32139.32, + "end": 32140.52, + "probability": 0.8602 + }, + { + "start": 32141.46, + "end": 32144.44, + "probability": 0.9727 + }, + { + "start": 32145.02, + "end": 32148.82, + "probability": 0.9985 + }, + { + "start": 32149.74, + "end": 32156.08, + "probability": 0.9937 + }, + { + "start": 32156.08, + "end": 32163.6, + "probability": 0.9909 + }, + { + "start": 32164.66, + "end": 32166.32, + "probability": 0.9349 + }, + { + "start": 32167.32, + "end": 32168.52, + "probability": 0.9382 + }, + { + "start": 32168.56, + "end": 32172.84, + "probability": 0.5476 + }, + { + "start": 32173.44, + "end": 32177.08, + "probability": 0.9202 + }, + { + "start": 32178.0, + "end": 32185.14, + "probability": 0.971 + }, + { + "start": 32185.68, + "end": 32189.64, + "probability": 0.9701 + }, + { + "start": 32190.3, + "end": 32195.8, + "probability": 0.9547 + }, + { + "start": 32196.18, + "end": 32198.8, + "probability": 0.9561 + }, + { + "start": 32199.28, + "end": 32202.36, + "probability": 0.9839 + }, + { + "start": 32202.46, + "end": 32203.34, + "probability": 0.6039 + }, + { + "start": 32203.64, + "end": 32206.66, + "probability": 0.9883 + }, + { + "start": 32206.84, + "end": 32207.3, + "probability": 0.6512 + }, + { + "start": 32208.08, + "end": 32211.76, + "probability": 0.9708 + }, + { + "start": 32212.24, + "end": 32214.14, + "probability": 0.7957 + }, + { + "start": 32214.68, + "end": 32220.4, + "probability": 0.9956 + }, + { + "start": 32220.58, + "end": 32221.36, + "probability": 0.9613 + }, + { + "start": 32222.08, + "end": 32223.91, + "probability": 0.6756 + }, + { + "start": 32224.54, + "end": 32226.4, + "probability": 0.9707 + }, + { + "start": 32226.92, + "end": 32230.98, + "probability": 0.9893 + }, + { + "start": 32231.3, + "end": 32231.78, + "probability": 0.0478 + }, + { + "start": 32232.08, + "end": 32237.62, + "probability": 0.7275 + }, + { + "start": 32238.16, + "end": 32242.96, + "probability": 0.9915 + }, + { + "start": 32242.96, + "end": 32247.84, + "probability": 0.998 + }, + { + "start": 32248.6, + "end": 32253.94, + "probability": 0.994 + }, + { + "start": 32254.74, + "end": 32261.42, + "probability": 0.967 + }, + { + "start": 32261.42, + "end": 32272.76, + "probability": 0.8962 + }, + { + "start": 32273.8, + "end": 32277.56, + "probability": 0.876 + }, + { + "start": 32278.54, + "end": 32281.46, + "probability": 0.7479 + }, + { + "start": 32282.6, + "end": 32283.68, + "probability": 0.6846 + }, + { + "start": 32284.28, + "end": 32285.78, + "probability": 0.9249 + }, + { + "start": 32286.44, + "end": 32292.04, + "probability": 0.9933 + }, + { + "start": 32292.58, + "end": 32296.74, + "probability": 0.9946 + }, + { + "start": 32297.56, + "end": 32301.76, + "probability": 0.9625 + }, + { + "start": 32301.76, + "end": 32305.38, + "probability": 0.9987 + }, + { + "start": 32305.92, + "end": 32308.32, + "probability": 0.9541 + }, + { + "start": 32308.44, + "end": 32309.2, + "probability": 0.6273 + }, + { + "start": 32309.78, + "end": 32314.56, + "probability": 0.9126 + }, + { + "start": 32315.06, + "end": 32318.22, + "probability": 0.755 + }, + { + "start": 32318.52, + "end": 32320.42, + "probability": 0.9291 + }, + { + "start": 32320.88, + "end": 32321.22, + "probability": 0.4161 + }, + { + "start": 32321.26, + "end": 32322.68, + "probability": 0.9199 + }, + { + "start": 32322.74, + "end": 32323.4, + "probability": 0.782 + }, + { + "start": 32323.4, + "end": 32324.78, + "probability": 0.9421 + }, + { + "start": 32330.58, + "end": 32332.14, + "probability": 0.6993 + }, + { + "start": 32333.42, + "end": 32335.18, + "probability": 0.698 + }, + { + "start": 32337.44, + "end": 32338.34, + "probability": 0.9609 + }, + { + "start": 32338.54, + "end": 32339.42, + "probability": 0.9922 + }, + { + "start": 32339.56, + "end": 32340.8, + "probability": 0.647 + }, + { + "start": 32341.81, + "end": 32343.44, + "probability": 0.9985 + }, + { + "start": 32344.42, + "end": 32345.52, + "probability": 0.9915 + }, + { + "start": 32346.4, + "end": 32349.46, + "probability": 0.9414 + }, + { + "start": 32349.76, + "end": 32353.12, + "probability": 0.8128 + }, + { + "start": 32354.16, + "end": 32359.32, + "probability": 0.9134 + }, + { + "start": 32359.88, + "end": 32364.2, + "probability": 0.978 + }, + { + "start": 32364.38, + "end": 32367.56, + "probability": 0.6795 + }, + { + "start": 32367.9, + "end": 32368.52, + "probability": 0.5462 + }, + { + "start": 32368.58, + "end": 32368.86, + "probability": 0.4593 + }, + { + "start": 32368.9, + "end": 32369.56, + "probability": 0.7128 + }, + { + "start": 32369.7, + "end": 32370.4, + "probability": 0.6955 + }, + { + "start": 32370.46, + "end": 32371.68, + "probability": 0.873 + }, + { + "start": 32371.92, + "end": 32373.94, + "probability": 0.9709 + }, + { + "start": 32374.08, + "end": 32375.23, + "probability": 0.8922 + }, + { + "start": 32376.04, + "end": 32379.26, + "probability": 0.8975 + }, + { + "start": 32380.3, + "end": 32384.08, + "probability": 0.9312 + }, + { + "start": 32384.08, + "end": 32387.76, + "probability": 0.999 + }, + { + "start": 32388.06, + "end": 32389.6, + "probability": 0.9653 + }, + { + "start": 32390.52, + "end": 32391.8, + "probability": 0.9045 + }, + { + "start": 32391.9, + "end": 32392.78, + "probability": 0.9397 + }, + { + "start": 32393.28, + "end": 32395.24, + "probability": 0.8392 + }, + { + "start": 32395.8, + "end": 32401.4, + "probability": 0.8938 + }, + { + "start": 32401.88, + "end": 32402.12, + "probability": 0.5015 + }, + { + "start": 32402.5, + "end": 32403.12, + "probability": 0.7951 + }, + { + "start": 32403.18, + "end": 32404.93, + "probability": 0.9604 + }, + { + "start": 32405.42, + "end": 32406.02, + "probability": 0.539 + }, + { + "start": 32406.16, + "end": 32407.26, + "probability": 0.8607 + }, + { + "start": 32407.3, + "end": 32408.62, + "probability": 0.9761 + }, + { + "start": 32409.44, + "end": 32409.93, + "probability": 0.5922 + }, + { + "start": 32410.76, + "end": 32412.84, + "probability": 0.9642 + }, + { + "start": 32413.36, + "end": 32414.16, + "probability": 0.9277 + }, + { + "start": 32414.44, + "end": 32414.58, + "probability": 0.1353 + }, + { + "start": 32414.58, + "end": 32416.08, + "probability": 0.9146 + }, + { + "start": 32416.76, + "end": 32418.42, + "probability": 0.9111 + }, + { + "start": 32418.48, + "end": 32420.16, + "probability": 0.9019 + }, + { + "start": 32421.3, + "end": 32423.26, + "probability": 0.3996 + }, + { + "start": 32424.28, + "end": 32425.3, + "probability": 0.8099 + }, + { + "start": 32427.16, + "end": 32427.58, + "probability": 0.3037 + }, + { + "start": 32427.82, + "end": 32427.92, + "probability": 0.6407 + }, + { + "start": 32427.92, + "end": 32429.96, + "probability": 0.9073 + }, + { + "start": 32432.34, + "end": 32433.3, + "probability": 0.7999 + }, + { + "start": 32433.3, + "end": 32433.84, + "probability": 0.6602 + }, + { + "start": 32434.06, + "end": 32434.8, + "probability": 0.6023 + }, + { + "start": 32434.86, + "end": 32438.64, + "probability": 0.2604 + }, + { + "start": 32445.46, + "end": 32446.12, + "probability": 0.6455 + }, + { + "start": 32446.4, + "end": 32448.12, + "probability": 0.903 + }, + { + "start": 32448.24, + "end": 32448.44, + "probability": 0.3714 + }, + { + "start": 32448.46, + "end": 32449.49, + "probability": 0.9967 + }, + { + "start": 32449.86, + "end": 32451.34, + "probability": 0.7879 + }, + { + "start": 32451.58, + "end": 32453.34, + "probability": 0.9385 + }, + { + "start": 32454.14, + "end": 32456.42, + "probability": 0.5932 + }, + { + "start": 32457.18, + "end": 32460.28, + "probability": 0.8034 + }, + { + "start": 32464.37, + "end": 32465.34, + "probability": 0.181 + }, + { + "start": 32465.34, + "end": 32465.34, + "probability": 0.28 + }, + { + "start": 32465.34, + "end": 32465.34, + "probability": 0.1013 + }, + { + "start": 32465.34, + "end": 32465.34, + "probability": 0.1222 + }, + { + "start": 32465.34, + "end": 32466.98, + "probability": 0.7321 + }, + { + "start": 32467.3, + "end": 32468.44, + "probability": 0.9827 + }, + { + "start": 32469.38, + "end": 32471.38, + "probability": 0.9819 + }, + { + "start": 32471.42, + "end": 32472.98, + "probability": 0.6752 + }, + { + "start": 32473.62, + "end": 32473.72, + "probability": 0.871 + }, + { + "start": 32474.38, + "end": 32480.56, + "probability": 0.9798 + }, + { + "start": 32480.68, + "end": 32480.96, + "probability": 0.256 + }, + { + "start": 32481.04, + "end": 32482.04, + "probability": 0.816 + }, + { + "start": 32482.12, + "end": 32482.92, + "probability": 0.9917 + }, + { + "start": 32483.48, + "end": 32483.98, + "probability": 0.9383 + }, + { + "start": 32484.1, + "end": 32484.52, + "probability": 0.9885 + }, + { + "start": 32484.64, + "end": 32485.12, + "probability": 0.8664 + }, + { + "start": 32485.12, + "end": 32485.74, + "probability": 0.7104 + }, + { + "start": 32486.36, + "end": 32486.94, + "probability": 0.8071 + }, + { + "start": 32487.02, + "end": 32487.76, + "probability": 0.9922 + }, + { + "start": 32488.98, + "end": 32493.58, + "probability": 0.9806 + }, + { + "start": 32493.9, + "end": 32494.9, + "probability": 0.998 + }, + { + "start": 32495.32, + "end": 32496.56, + "probability": 0.8143 + }, + { + "start": 32496.66, + "end": 32498.32, + "probability": 0.8783 + }, + { + "start": 32498.88, + "end": 32500.68, + "probability": 0.897 + }, + { + "start": 32500.96, + "end": 32501.76, + "probability": 0.8851 + }, + { + "start": 32501.78, + "end": 32503.6, + "probability": 0.8873 + }, + { + "start": 32503.78, + "end": 32505.74, + "probability": 0.9887 + }, + { + "start": 32505.92, + "end": 32508.96, + "probability": 0.9622 + }, + { + "start": 32509.2, + "end": 32512.59, + "probability": 0.7377 + }, + { + "start": 32513.4, + "end": 32513.94, + "probability": 0.8686 + }, + { + "start": 32515.24, + "end": 32516.2, + "probability": 0.8437 + }, + { + "start": 32516.26, + "end": 32517.04, + "probability": 0.6633 + }, + { + "start": 32517.1, + "end": 32520.94, + "probability": 0.9006 + }, + { + "start": 32521.46, + "end": 32522.16, + "probability": 0.823 + }, + { + "start": 32522.26, + "end": 32522.83, + "probability": 0.9523 + }, + { + "start": 32523.78, + "end": 32525.52, + "probability": 0.8219 + }, + { + "start": 32525.68, + "end": 32528.34, + "probability": 0.9845 + }, + { + "start": 32529.06, + "end": 32530.88, + "probability": 0.6653 + }, + { + "start": 32530.9, + "end": 32533.52, + "probability": 0.9173 + }, + { + "start": 32533.78, + "end": 32534.39, + "probability": 0.6938 + }, + { + "start": 32535.6, + "end": 32536.52, + "probability": 0.9657 + }, + { + "start": 32536.62, + "end": 32537.88, + "probability": 0.8324 + }, + { + "start": 32537.94, + "end": 32539.25, + "probability": 0.7805 + }, + { + "start": 32539.98, + "end": 32540.46, + "probability": 0.7712 + }, + { + "start": 32540.84, + "end": 32545.5, + "probability": 0.793 + }, + { + "start": 32546.08, + "end": 32548.16, + "probability": 0.8623 + }, + { + "start": 32548.46, + "end": 32550.53, + "probability": 0.8528 + }, + { + "start": 32550.8, + "end": 32552.42, + "probability": 0.9591 + }, + { + "start": 32552.92, + "end": 32553.58, + "probability": 0.503 + }, + { + "start": 32553.66, + "end": 32556.12, + "probability": 0.6912 + }, + { + "start": 32556.74, + "end": 32558.73, + "probability": 0.9934 + }, + { + "start": 32559.26, + "end": 32561.35, + "probability": 0.8418 + }, + { + "start": 32561.7, + "end": 32564.94, + "probability": 0.9012 + }, + { + "start": 32565.32, + "end": 32566.7, + "probability": 0.8406 + }, + { + "start": 32566.8, + "end": 32567.85, + "probability": 0.9976 + }, + { + "start": 32568.28, + "end": 32569.52, + "probability": 0.9423 + }, + { + "start": 32569.64, + "end": 32570.94, + "probability": 0.7715 + }, + { + "start": 32571.02, + "end": 32572.74, + "probability": 0.9414 + }, + { + "start": 32573.2, + "end": 32574.0, + "probability": 0.6239 + }, + { + "start": 32574.66, + "end": 32576.18, + "probability": 0.9118 + }, + { + "start": 32576.7, + "end": 32579.26, + "probability": 0.5732 + }, + { + "start": 32579.78, + "end": 32581.96, + "probability": 0.8696 + }, + { + "start": 32582.04, + "end": 32583.18, + "probability": 0.8201 + }, + { + "start": 32583.28, + "end": 32584.64, + "probability": 0.7077 + }, + { + "start": 32584.94, + "end": 32585.36, + "probability": 0.0035 + }, + { + "start": 32585.54, + "end": 32586.24, + "probability": 0.4642 + }, + { + "start": 32586.28, + "end": 32586.88, + "probability": 0.7327 + }, + { + "start": 32587.04, + "end": 32587.36, + "probability": 0.9114 + }, + { + "start": 32587.42, + "end": 32588.87, + "probability": 0.9192 + }, + { + "start": 32589.56, + "end": 32590.58, + "probability": 0.7826 + }, + { + "start": 32590.6, + "end": 32591.92, + "probability": 0.8723 + }, + { + "start": 32592.22, + "end": 32594.44, + "probability": 0.9911 + }, + { + "start": 32594.8, + "end": 32596.73, + "probability": 0.9287 + }, + { + "start": 32597.92, + "end": 32600.14, + "probability": 0.9895 + }, + { + "start": 32600.58, + "end": 32603.18, + "probability": 0.7691 + }, + { + "start": 32603.82, + "end": 32606.44, + "probability": 0.0882 + }, + { + "start": 32612.28, + "end": 32618.0, + "probability": 0.118 + }, + { + "start": 32620.74, + "end": 32626.8, + "probability": 0.2866 + }, + { + "start": 32627.0, + "end": 32629.35, + "probability": 0.7958 + }, + { + "start": 32630.48, + "end": 32632.72, + "probability": 0.7658 + }, + { + "start": 32633.74, + "end": 32636.82, + "probability": 0.9211 + }, + { + "start": 32637.74, + "end": 32638.3, + "probability": 0.7804 + }, + { + "start": 32639.36, + "end": 32641.1, + "probability": 0.9963 + }, + { + "start": 32641.2, + "end": 32643.12, + "probability": 0.9658 + }, + { + "start": 32643.68, + "end": 32644.72, + "probability": 0.6809 + }, + { + "start": 32645.26, + "end": 32648.68, + "probability": 0.9607 + }, + { + "start": 32649.42, + "end": 32651.92, + "probability": 0.9648 + }, + { + "start": 32652.06, + "end": 32653.94, + "probability": 0.6482 + }, + { + "start": 32653.96, + "end": 32659.86, + "probability": 0.9614 + }, + { + "start": 32660.58, + "end": 32662.03, + "probability": 0.9561 + }, + { + "start": 32662.84, + "end": 32665.42, + "probability": 0.6997 + }, + { + "start": 32665.88, + "end": 32670.18, + "probability": 0.9719 + }, + { + "start": 32670.6, + "end": 32675.78, + "probability": 0.9519 + }, + { + "start": 32676.26, + "end": 32678.48, + "probability": 0.7537 + }, + { + "start": 32679.46, + "end": 32681.44, + "probability": 0.6094 + }, + { + "start": 32682.14, + "end": 32685.52, + "probability": 0.9963 + }, + { + "start": 32685.88, + "end": 32687.6, + "probability": 0.8868 + }, + { + "start": 32687.68, + "end": 32689.5, + "probability": 0.9917 + }, + { + "start": 32690.26, + "end": 32690.36, + "probability": 0.4786 + }, + { + "start": 32693.37, + "end": 32697.3, + "probability": 0.9382 + }, + { + "start": 32699.46, + "end": 32702.56, + "probability": 0.9598 + }, + { + "start": 32708.48, + "end": 32708.48, + "probability": 0.1936 + }, + { + "start": 32708.48, + "end": 32709.82, + "probability": 0.4067 + }, + { + "start": 32709.94, + "end": 32714.2, + "probability": 0.6993 + }, + { + "start": 32714.92, + "end": 32718.14, + "probability": 0.791 + }, + { + "start": 32721.9, + "end": 32724.5, + "probability": 0.9471 + }, + { + "start": 32724.72, + "end": 32725.54, + "probability": 0.7001 + }, + { + "start": 32725.7, + "end": 32728.56, + "probability": 0.3965 + }, + { + "start": 32728.64, + "end": 32732.24, + "probability": 0.7611 + }, + { + "start": 32732.64, + "end": 32733.24, + "probability": 0.6516 + }, + { + "start": 32733.3, + "end": 32737.58, + "probability": 0.7565 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.0734 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.3168 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.4141 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.274 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.3359 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.345 + }, + { + "start": 32738.26, + "end": 32738.26, + "probability": 0.0777 + }, + { + "start": 32738.26, + "end": 32741.0, + "probability": 0.5277 + }, + { + "start": 32741.14, + "end": 32741.78, + "probability": 0.687 + }, + { + "start": 32742.4, + "end": 32744.12, + "probability": 0.823 + }, + { + "start": 32754.42, + "end": 32754.76, + "probability": 0.8 + }, + { + "start": 32755.94, + "end": 32757.5, + "probability": 0.8762 + }, + { + "start": 32760.12, + "end": 32761.86, + "probability": 0.3869 + }, + { + "start": 32762.54, + "end": 32764.56, + "probability": 0.693 + }, + { + "start": 32766.96, + "end": 32770.06, + "probability": 0.9471 + }, + { + "start": 32770.06, + "end": 32772.8, + "probability": 0.9816 + }, + { + "start": 32773.08, + "end": 32776.62, + "probability": 0.89 + }, + { + "start": 32777.48, + "end": 32780.9, + "probability": 0.994 + }, + { + "start": 32781.0, + "end": 32783.56, + "probability": 0.991 + }, + { + "start": 32784.5, + "end": 32788.56, + "probability": 0.9349 + }, + { + "start": 32789.64, + "end": 32790.88, + "probability": 0.7135 + }, + { + "start": 32791.52, + "end": 32793.34, + "probability": 0.963 + }, + { + "start": 32795.0, + "end": 32798.18, + "probability": 0.9341 + }, + { + "start": 32798.18, + "end": 32800.84, + "probability": 0.9952 + }, + { + "start": 32801.86, + "end": 32802.47, + "probability": 0.9689 + }, + { + "start": 32803.46, + "end": 32804.4, + "probability": 0.9282 + }, + { + "start": 32805.36, + "end": 32806.34, + "probability": 0.897 + }, + { + "start": 32807.12, + "end": 32809.56, + "probability": 0.9849 + }, + { + "start": 32811.46, + "end": 32815.08, + "probability": 0.9734 + }, + { + "start": 32816.1, + "end": 32820.3, + "probability": 0.9907 + }, + { + "start": 32821.16, + "end": 32825.78, + "probability": 0.8555 + }, + { + "start": 32827.64, + "end": 32830.74, + "probability": 0.8987 + }, + { + "start": 32832.52, + "end": 32833.38, + "probability": 0.8501 + }, + { + "start": 32833.98, + "end": 32836.92, + "probability": 0.9761 + }, + { + "start": 32837.68, + "end": 32839.32, + "probability": 0.9967 + }, + { + "start": 32840.26, + "end": 32842.96, + "probability": 0.9135 + }, + { + "start": 32843.76, + "end": 32847.56, + "probability": 0.9941 + }, + { + "start": 32848.3, + "end": 32851.12, + "probability": 0.9066 + }, + { + "start": 32851.72, + "end": 32854.76, + "probability": 0.9916 + }, + { + "start": 32855.52, + "end": 32857.68, + "probability": 0.9668 + }, + { + "start": 32858.56, + "end": 32859.96, + "probability": 0.9971 + }, + { + "start": 32861.42, + "end": 32864.42, + "probability": 0.893 + }, + { + "start": 32865.18, + "end": 32866.94, + "probability": 0.9793 + }, + { + "start": 32867.66, + "end": 32869.46, + "probability": 0.9861 + }, + { + "start": 32870.12, + "end": 32875.04, + "probability": 0.9611 + }, + { + "start": 32875.34, + "end": 32875.88, + "probability": 0.4656 + }, + { + "start": 32878.32, + "end": 32881.34, + "probability": 0.8423 + }, + { + "start": 32881.78, + "end": 32882.62, + "probability": 0.8776 + }, + { + "start": 32882.76, + "end": 32883.36, + "probability": 0.7825 + }, + { + "start": 32883.66, + "end": 32887.2, + "probability": 0.7576 + }, + { + "start": 32887.26, + "end": 32887.46, + "probability": 0.516 + }, + { + "start": 32887.7, + "end": 32887.84, + "probability": 0.9557 + }, + { + "start": 32888.92, + "end": 32891.1, + "probability": 0.9097 + }, + { + "start": 32891.76, + "end": 32893.6, + "probability": 0.5376 + }, + { + "start": 32894.62, + "end": 32896.78, + "probability": 0.7045 + }, + { + "start": 32896.96, + "end": 32898.92, + "probability": 0.9859 + }, + { + "start": 32900.46, + "end": 32905.5, + "probability": 0.9865 + }, + { + "start": 32905.64, + "end": 32909.14, + "probability": 0.9136 + }, + { + "start": 32909.14, + "end": 32911.68, + "probability": 0.9785 + }, + { + "start": 32911.92, + "end": 32913.38, + "probability": 0.7136 + }, + { + "start": 32914.94, + "end": 32918.94, + "probability": 0.965 + }, + { + "start": 32919.52, + "end": 32921.94, + "probability": 0.9946 + }, + { + "start": 32923.34, + "end": 32924.84, + "probability": 0.9907 + }, + { + "start": 32925.48, + "end": 32927.18, + "probability": 0.9922 + }, + { + "start": 32928.22, + "end": 32932.1, + "probability": 0.985 + }, + { + "start": 32932.3, + "end": 32936.16, + "probability": 0.9699 + }, + { + "start": 32936.96, + "end": 32938.24, + "probability": 0.8734 + }, + { + "start": 32939.08, + "end": 32940.54, + "probability": 0.9957 + }, + { + "start": 32940.7, + "end": 32945.7, + "probability": 0.981 + }, + { + "start": 32945.76, + "end": 32948.6, + "probability": 0.9941 + }, + { + "start": 32949.58, + "end": 32952.26, + "probability": 0.9838 + }, + { + "start": 32953.02, + "end": 32956.1, + "probability": 0.9945 + }, + { + "start": 32956.8, + "end": 32960.28, + "probability": 0.966 + }, + { + "start": 32961.16, + "end": 32967.12, + "probability": 0.9983 + }, + { + "start": 32967.38, + "end": 32969.32, + "probability": 0.9957 + }, + { + "start": 32969.5, + "end": 32972.52, + "probability": 0.9098 + }, + { + "start": 32972.82, + "end": 32975.4, + "probability": 0.149 + }, + { + "start": 32975.6, + "end": 32977.24, + "probability": 0.4444 + }, + { + "start": 32977.76, + "end": 32978.7, + "probability": 0.8875 + }, + { + "start": 32978.9, + "end": 32979.6, + "probability": 0.897 + }, + { + "start": 32979.66, + "end": 32982.7, + "probability": 0.8612 + }, + { + "start": 32982.7, + "end": 32985.64, + "probability": 0.9983 + }, + { + "start": 32985.82, + "end": 32986.26, + "probability": 0.8442 + }, + { + "start": 32986.34, + "end": 32987.68, + "probability": 0.8378 + }, + { + "start": 32987.82, + "end": 32990.24, + "probability": 0.8469 + }, + { + "start": 32991.42, + "end": 32993.08, + "probability": 0.8704 + }, + { + "start": 33005.62, + "end": 33007.18, + "probability": 0.5142 + }, + { + "start": 33011.56, + "end": 33012.36, + "probability": 0.8723 + }, + { + "start": 33014.36, + "end": 33015.38, + "probability": 0.738 + }, + { + "start": 33016.5, + "end": 33019.12, + "probability": 0.9338 + }, + { + "start": 33019.2, + "end": 33020.12, + "probability": 0.8406 + }, + { + "start": 33020.52, + "end": 33021.54, + "probability": 0.7949 + }, + { + "start": 33021.66, + "end": 33022.16, + "probability": 0.7043 + }, + { + "start": 33023.14, + "end": 33025.18, + "probability": 0.9246 + }, + { + "start": 33026.2, + "end": 33028.82, + "probability": 0.9729 + }, + { + "start": 33030.64, + "end": 33031.66, + "probability": 0.7084 + }, + { + "start": 33031.82, + "end": 33032.36, + "probability": 0.499 + }, + { + "start": 33032.7, + "end": 33033.2, + "probability": 0.515 + }, + { + "start": 33033.38, + "end": 33036.3, + "probability": 0.8161 + }, + { + "start": 33036.66, + "end": 33037.26, + "probability": 0.292 + }, + { + "start": 33037.7, + "end": 33039.46, + "probability": 0.9246 + }, + { + "start": 33040.48, + "end": 33042.54, + "probability": 0.9207 + }, + { + "start": 33044.8, + "end": 33050.38, + "probability": 0.9587 + }, + { + "start": 33051.08, + "end": 33052.54, + "probability": 0.9721 + }, + { + "start": 33053.12, + "end": 33056.54, + "probability": 0.8629 + }, + { + "start": 33057.02, + "end": 33061.84, + "probability": 0.9946 + }, + { + "start": 33062.26, + "end": 33064.3, + "probability": 0.7737 + }, + { + "start": 33064.82, + "end": 33065.84, + "probability": 0.9286 + }, + { + "start": 33066.82, + "end": 33070.54, + "probability": 0.9538 + }, + { + "start": 33070.68, + "end": 33073.08, + "probability": 0.9728 + }, + { + "start": 33073.2, + "end": 33073.65, + "probability": 0.9304 + }, + { + "start": 33074.06, + "end": 33074.61, + "probability": 0.8828 + }, + { + "start": 33075.12, + "end": 33075.4, + "probability": 0.1465 + }, + { + "start": 33079.0, + "end": 33079.44, + "probability": 0.997 + }, + { + "start": 33080.0, + "end": 33080.56, + "probability": 0.061 + }, + { + "start": 33080.56, + "end": 33081.7, + "probability": 0.5597 + }, + { + "start": 33081.86, + "end": 33082.66, + "probability": 0.883 + }, + { + "start": 33083.62, + "end": 33086.7, + "probability": 0.8905 + }, + { + "start": 33086.74, + "end": 33087.48, + "probability": 0.6454 + }, + { + "start": 33087.54, + "end": 33088.36, + "probability": 0.9894 + }, + { + "start": 33091.78, + "end": 33092.8, + "probability": 0.2442 + }, + { + "start": 33092.8, + "end": 33092.94, + "probability": 0.5106 + }, + { + "start": 33092.96, + "end": 33094.84, + "probability": 0.5891 + }, + { + "start": 33094.92, + "end": 33095.96, + "probability": 0.7414 + }, + { + "start": 33096.16, + "end": 33097.12, + "probability": 0.5143 + }, + { + "start": 33097.12, + "end": 33101.28, + "probability": 0.857 + }, + { + "start": 33101.66, + "end": 33102.26, + "probability": 0.6254 + }, + { + "start": 33102.96, + "end": 33107.26, + "probability": 0.9949 + }, + { + "start": 33107.62, + "end": 33109.72, + "probability": 0.9058 + }, + { + "start": 33109.94, + "end": 33110.72, + "probability": 0.7147 + }, + { + "start": 33110.84, + "end": 33113.88, + "probability": 0.9631 + }, + { + "start": 33113.94, + "end": 33115.44, + "probability": 0.9066 + }, + { + "start": 33115.64, + "end": 33118.84, + "probability": 0.9773 + }, + { + "start": 33119.1, + "end": 33120.86, + "probability": 0.7051 + }, + { + "start": 33121.08, + "end": 33122.86, + "probability": 0.7949 + }, + { + "start": 33122.9, + "end": 33124.24, + "probability": 0.6556 + }, + { + "start": 33124.44, + "end": 33125.18, + "probability": 0.605 + }, + { + "start": 33125.26, + "end": 33126.22, + "probability": 0.7625 + }, + { + "start": 33126.68, + "end": 33127.84, + "probability": 0.2452 + }, + { + "start": 33128.16, + "end": 33132.18, + "probability": 0.6729 + }, + { + "start": 33132.36, + "end": 33134.96, + "probability": 0.959 + }, + { + "start": 33135.3, + "end": 33138.14, + "probability": 0.8694 + }, + { + "start": 33138.78, + "end": 33142.76, + "probability": 0.9533 + }, + { + "start": 33143.08, + "end": 33146.82, + "probability": 0.9954 + }, + { + "start": 33147.0, + "end": 33149.2, + "probability": 0.6668 + }, + { + "start": 33149.28, + "end": 33149.92, + "probability": 0.9895 + }, + { + "start": 33150.34, + "end": 33150.46, + "probability": 0.0012 + }, + { + "start": 33150.58, + "end": 33154.44, + "probability": 0.8953 + }, + { + "start": 33154.64, + "end": 33155.8, + "probability": 0.9342 + }, + { + "start": 33155.88, + "end": 33156.84, + "probability": 0.6938 + }, + { + "start": 33156.98, + "end": 33157.77, + "probability": 0.9844 + }, + { + "start": 33158.12, + "end": 33160.02, + "probability": 0.8976 + }, + { + "start": 33160.26, + "end": 33162.78, + "probability": 0.8398 + }, + { + "start": 33163.0, + "end": 33164.02, + "probability": 0.8894 + }, + { + "start": 33164.1, + "end": 33166.5, + "probability": 0.8625 + }, + { + "start": 33166.58, + "end": 33169.78, + "probability": 0.7474 + }, + { + "start": 33169.9, + "end": 33170.8, + "probability": 0.8804 + }, + { + "start": 33170.92, + "end": 33172.06, + "probability": 0.9764 + }, + { + "start": 33172.14, + "end": 33174.04, + "probability": 0.9904 + }, + { + "start": 33174.26, + "end": 33175.34, + "probability": 0.9663 + }, + { + "start": 33175.4, + "end": 33176.06, + "probability": 0.9421 + }, + { + "start": 33176.16, + "end": 33177.46, + "probability": 0.7883 + }, + { + "start": 33177.56, + "end": 33177.56, + "probability": 0.7189 + }, + { + "start": 33177.56, + "end": 33179.62, + "probability": 0.5966 + }, + { + "start": 33179.62, + "end": 33183.34, + "probability": 0.888 + }, + { + "start": 33183.98, + "end": 33185.82, + "probability": 0.7993 + }, + { + "start": 33186.74, + "end": 33188.5, + "probability": 0.8353 + }, + { + "start": 33188.6, + "end": 33189.22, + "probability": 0.9623 + }, + { + "start": 33189.94, + "end": 33192.16, + "probability": 0.9006 + }, + { + "start": 33192.34, + "end": 33194.18, + "probability": 0.9028 + }, + { + "start": 33194.76, + "end": 33197.26, + "probability": 0.9172 + }, + { + "start": 33197.8, + "end": 33199.38, + "probability": 0.9297 + }, + { + "start": 33199.86, + "end": 33200.88, + "probability": 0.9861 + }, + { + "start": 33201.02, + "end": 33201.28, + "probability": 0.5806 + }, + { + "start": 33201.56, + "end": 33203.76, + "probability": 0.9256 + }, + { + "start": 33204.18, + "end": 33205.58, + "probability": 0.9308 + }, + { + "start": 33206.12, + "end": 33207.52, + "probability": 0.8986 + }, + { + "start": 33207.62, + "end": 33208.44, + "probability": 0.9488 + }, + { + "start": 33208.48, + "end": 33209.0, + "probability": 0.8396 + }, + { + "start": 33209.02, + "end": 33209.84, + "probability": 0.8028 + }, + { + "start": 33209.92, + "end": 33211.32, + "probability": 0.858 + }, + { + "start": 33211.78, + "end": 33213.04, + "probability": 0.9241 + }, + { + "start": 33213.1, + "end": 33214.0, + "probability": 0.8642 + }, + { + "start": 33214.14, + "end": 33215.24, + "probability": 0.9455 + }, + { + "start": 33215.44, + "end": 33217.28, + "probability": 0.5735 + }, + { + "start": 33217.78, + "end": 33219.18, + "probability": 0.6569 + }, + { + "start": 33219.4, + "end": 33220.64, + "probability": 0.7864 + }, + { + "start": 33220.7, + "end": 33221.36, + "probability": 0.9274 + }, + { + "start": 33221.48, + "end": 33223.28, + "probability": 0.9386 + }, + { + "start": 33223.52, + "end": 33225.62, + "probability": 0.5816 + }, + { + "start": 33225.78, + "end": 33227.16, + "probability": 0.5667 + }, + { + "start": 33227.38, + "end": 33231.63, + "probability": 0.958 + }, + { + "start": 33231.68, + "end": 33232.42, + "probability": 0.5363 + }, + { + "start": 33232.5, + "end": 33233.38, + "probability": 0.9336 + }, + { + "start": 33233.58, + "end": 33234.54, + "probability": 0.7271 + }, + { + "start": 33234.66, + "end": 33235.94, + "probability": 0.8933 + }, + { + "start": 33236.8, + "end": 33236.8, + "probability": 0.0787 + }, + { + "start": 33236.8, + "end": 33238.25, + "probability": 0.3624 + }, + { + "start": 33238.78, + "end": 33240.08, + "probability": 0.7626 + }, + { + "start": 33240.2, + "end": 33243.9, + "probability": 0.9478 + }, + { + "start": 33244.06, + "end": 33244.6, + "probability": 0.5677 + }, + { + "start": 33244.7, + "end": 33246.56, + "probability": 0.9104 + }, + { + "start": 33246.78, + "end": 33246.94, + "probability": 0.8078 + }, + { + "start": 33247.4, + "end": 33249.36, + "probability": 0.573 + }, + { + "start": 33249.76, + "end": 33250.14, + "probability": 0.6703 + }, + { + "start": 33250.22, + "end": 33251.56, + "probability": 0.9036 + }, + { + "start": 33251.62, + "end": 33252.2, + "probability": 0.6448 + }, + { + "start": 33252.26, + "end": 33254.62, + "probability": 0.9008 + }, + { + "start": 33256.16, + "end": 33257.42, + "probability": 0.9775 + }, + { + "start": 33259.14, + "end": 33260.22, + "probability": 0.7772 + }, + { + "start": 33260.74, + "end": 33262.38, + "probability": 0.9751 + }, + { + "start": 33262.9, + "end": 33264.06, + "probability": 0.7812 + }, + { + "start": 33264.56, + "end": 33268.0, + "probability": 0.5306 + }, + { + "start": 33269.7, + "end": 33270.72, + "probability": 0.4409 + }, + { + "start": 33271.73, + "end": 33275.85, + "probability": 0.8256 + }, + { + "start": 33285.38, + "end": 33288.74, + "probability": 0.9718 + }, + { + "start": 33290.58, + "end": 33293.58, + "probability": 0.8428 + }, + { + "start": 33293.92, + "end": 33295.94, + "probability": 0.9535 + }, + { + "start": 33298.02, + "end": 33301.34, + "probability": 0.4764 + }, + { + "start": 33301.78, + "end": 33303.18, + "probability": 0.6728 + }, + { + "start": 33303.28, + "end": 33305.58, + "probability": 0.9823 + }, + { + "start": 33305.74, + "end": 33309.52, + "probability": 0.8652 + }, + { + "start": 33309.58, + "end": 33311.94, + "probability": 0.7755 + }, + { + "start": 33312.38, + "end": 33314.12, + "probability": 0.7968 + }, + { + "start": 33315.08, + "end": 33316.67, + "probability": 0.9827 + }, + { + "start": 33317.66, + "end": 33323.62, + "probability": 0.9959 + }, + { + "start": 33323.62, + "end": 33328.09, + "probability": 0.9998 + }, + { + "start": 33328.62, + "end": 33329.64, + "probability": 0.5157 + }, + { + "start": 33329.8, + "end": 33331.58, + "probability": 0.3483 + }, + { + "start": 33332.0, + "end": 33333.36, + "probability": 0.9582 + }, + { + "start": 33333.9, + "end": 33337.28, + "probability": 0.9549 + }, + { + "start": 33337.82, + "end": 33340.68, + "probability": 0.8879 + }, + { + "start": 33340.78, + "end": 33343.04, + "probability": 0.9869 + }, + { + "start": 33343.48, + "end": 33344.64, + "probability": 0.9142 + }, + { + "start": 33345.58, + "end": 33350.08, + "probability": 0.7844 + }, + { + "start": 33351.42, + "end": 33353.48, + "probability": 0.9785 + }, + { + "start": 33354.24, + "end": 33357.7, + "probability": 0.9855 + }, + { + "start": 33358.28, + "end": 33361.16, + "probability": 0.9985 + }, + { + "start": 33361.84, + "end": 33364.58, + "probability": 0.9973 + }, + { + "start": 33365.18, + "end": 33369.22, + "probability": 0.9883 + }, + { + "start": 33370.48, + "end": 33377.28, + "probability": 0.9971 + }, + { + "start": 33377.9, + "end": 33381.9, + "probability": 0.9478 + }, + { + "start": 33383.26, + "end": 33385.26, + "probability": 0.9964 + }, + { + "start": 33385.38, + "end": 33390.08, + "probability": 0.913 + }, + { + "start": 33390.12, + "end": 33391.16, + "probability": 0.885 + }, + { + "start": 33392.42, + "end": 33393.76, + "probability": 0.7599 + }, + { + "start": 33393.86, + "end": 33396.12, + "probability": 0.959 + }, + { + "start": 33396.38, + "end": 33397.88, + "probability": 0.8672 + }, + { + "start": 33398.62, + "end": 33401.72, + "probability": 0.9502 + }, + { + "start": 33402.1, + "end": 33403.25, + "probability": 0.9807 + }, + { + "start": 33404.76, + "end": 33406.6, + "probability": 0.9282 + }, + { + "start": 33406.78, + "end": 33407.5, + "probability": 0.5008 + }, + { + "start": 33407.56, + "end": 33409.72, + "probability": 0.9941 + }, + { + "start": 33410.14, + "end": 33411.84, + "probability": 0.9018 + }, + { + "start": 33412.22, + "end": 33414.67, + "probability": 0.9822 + }, + { + "start": 33415.42, + "end": 33417.28, + "probability": 0.939 + }, + { + "start": 33417.36, + "end": 33417.84, + "probability": 0.8423 + }, + { + "start": 33417.94, + "end": 33419.54, + "probability": 0.861 + }, + { + "start": 33420.22, + "end": 33422.48, + "probability": 0.715 + }, + { + "start": 33422.72, + "end": 33423.52, + "probability": 0.7454 + }, + { + "start": 33423.68, + "end": 33423.96, + "probability": 0.7326 + }, + { + "start": 33425.62, + "end": 33426.3, + "probability": 0.961 + }, + { + "start": 33427.02, + "end": 33431.36, + "probability": 0.8647 + }, + { + "start": 33431.54, + "end": 33434.06, + "probability": 0.8408 + }, + { + "start": 33434.2, + "end": 33436.66, + "probability": 0.9829 + }, + { + "start": 33436.7, + "end": 33440.04, + "probability": 0.9874 + }, + { + "start": 33440.1, + "end": 33440.88, + "probability": 0.703 + }, + { + "start": 33441.88, + "end": 33445.02, + "probability": 0.9782 + }, + { + "start": 33445.92, + "end": 33448.86, + "probability": 0.9653 + }, + { + "start": 33448.94, + "end": 33449.44, + "probability": 0.7107 + }, + { + "start": 33449.76, + "end": 33450.84, + "probability": 0.9561 + }, + { + "start": 33451.7, + "end": 33453.22, + "probability": 0.743 + }, + { + "start": 33453.98, + "end": 33460.54, + "probability": 0.8071 + }, + { + "start": 33460.76, + "end": 33461.96, + "probability": 0.8433 + }, + { + "start": 33462.46, + "end": 33462.68, + "probability": 0.8025 + }, + { + "start": 33463.46, + "end": 33466.34, + "probability": 0.9233 + }, + { + "start": 33467.4, + "end": 33467.7, + "probability": 0.9575 + }, + { + "start": 33467.86, + "end": 33472.88, + "probability": 0.9955 + }, + { + "start": 33472.92, + "end": 33475.3, + "probability": 0.8744 + }, + { + "start": 33476.12, + "end": 33477.15, + "probability": 0.8866 + }, + { + "start": 33477.74, + "end": 33479.16, + "probability": 0.9951 + }, + { + "start": 33480.2, + "end": 33483.38, + "probability": 0.9765 + }, + { + "start": 33483.98, + "end": 33486.84, + "probability": 0.9902 + }, + { + "start": 33487.66, + "end": 33492.94, + "probability": 0.9963 + }, + { + "start": 33493.64, + "end": 33496.4, + "probability": 0.9982 + }, + { + "start": 33496.4, + "end": 33500.82, + "probability": 0.996 + }, + { + "start": 33501.84, + "end": 33503.74, + "probability": 0.8704 + }, + { + "start": 33504.48, + "end": 33508.84, + "probability": 0.9258 + }, + { + "start": 33509.3, + "end": 33509.64, + "probability": 0.2384 + }, + { + "start": 33509.74, + "end": 33513.3, + "probability": 0.9509 + }, + { + "start": 33513.36, + "end": 33514.76, + "probability": 0.8486 + }, + { + "start": 33514.84, + "end": 33515.78, + "probability": 0.8346 + }, + { + "start": 33516.32, + "end": 33518.06, + "probability": 0.747 + }, + { + "start": 33518.56, + "end": 33520.04, + "probability": 0.9928 + }, + { + "start": 33520.48, + "end": 33522.24, + "probability": 0.6905 + }, + { + "start": 33522.52, + "end": 33523.9, + "probability": 0.6161 + }, + { + "start": 33523.98, + "end": 33525.96, + "probability": 0.8142 + }, + { + "start": 33526.1, + "end": 33528.53, + "probability": 0.887 + }, + { + "start": 33529.5, + "end": 33531.72, + "probability": 0.8893 + }, + { + "start": 33532.32, + "end": 33532.86, + "probability": 0.6373 + }, + { + "start": 33533.36, + "end": 33534.6, + "probability": 0.9274 + }, + { + "start": 33534.82, + "end": 33537.26, + "probability": 0.9757 + }, + { + "start": 33537.34, + "end": 33539.92, + "probability": 0.9868 + }, + { + "start": 33540.76, + "end": 33541.76, + "probability": 0.7469 + }, + { + "start": 33542.8, + "end": 33547.02, + "probability": 0.8675 + }, + { + "start": 33547.38, + "end": 33550.86, + "probability": 0.9318 + }, + { + "start": 33551.5, + "end": 33552.42, + "probability": 0.8979 + }, + { + "start": 33553.06, + "end": 33554.14, + "probability": 0.9453 + }, + { + "start": 33554.92, + "end": 33557.08, + "probability": 0.7929 + }, + { + "start": 33557.86, + "end": 33561.24, + "probability": 0.994 + }, + { + "start": 33562.16, + "end": 33565.12, + "probability": 0.9957 + }, + { + "start": 33565.38, + "end": 33566.96, + "probability": 0.8984 + }, + { + "start": 33567.02, + "end": 33570.38, + "probability": 0.9309 + }, + { + "start": 33570.9, + "end": 33573.2, + "probability": 0.7889 + }, + { + "start": 33573.5, + "end": 33573.88, + "probability": 0.6636 + }, + { + "start": 33573.96, + "end": 33578.22, + "probability": 0.9155 + }, + { + "start": 33579.48, + "end": 33581.96, + "probability": 0.7357 + }, + { + "start": 33582.5, + "end": 33584.44, + "probability": 0.8273 + }, + { + "start": 33585.44, + "end": 33586.8, + "probability": 0.9288 + }, + { + "start": 33586.9, + "end": 33588.6, + "probability": 0.8792 + }, + { + "start": 33589.1, + "end": 33592.3, + "probability": 0.969 + }, + { + "start": 33592.3, + "end": 33595.14, + "probability": 0.9965 + }, + { + "start": 33596.16, + "end": 33597.7, + "probability": 0.9609 + }, + { + "start": 33598.36, + "end": 33599.16, + "probability": 0.698 + }, + { + "start": 33599.47, + "end": 33602.2, + "probability": 0.9871 + }, + { + "start": 33602.5, + "end": 33607.3, + "probability": 0.8702 + }, + { + "start": 33607.32, + "end": 33610.48, + "probability": 0.9375 + }, + { + "start": 33610.78, + "end": 33613.14, + "probability": 0.8068 + }, + { + "start": 33613.64, + "end": 33615.28, + "probability": 0.7795 + }, + { + "start": 33615.5, + "end": 33617.22, + "probability": 0.5617 + }, + { + "start": 33617.46, + "end": 33619.98, + "probability": 0.8015 + }, + { + "start": 33620.06, + "end": 33620.56, + "probability": 0.4179 + }, + { + "start": 33621.12, + "end": 33624.6, + "probability": 0.8465 + }, + { + "start": 33627.44, + "end": 33628.58, + "probability": 0.6226 + }, + { + "start": 33629.14, + "end": 33634.58, + "probability": 0.7394 + }, + { + "start": 33634.68, + "end": 33635.7, + "probability": 0.5307 + }, + { + "start": 33636.12, + "end": 33638.6, + "probability": 0.615 + }, + { + "start": 33640.06, + "end": 33640.2, + "probability": 0.427 + }, + { + "start": 33640.34, + "end": 33641.0, + "probability": 0.9138 + }, + { + "start": 33641.46, + "end": 33642.9, + "probability": 0.8237 + }, + { + "start": 33643.3, + "end": 33644.48, + "probability": 0.2719 + }, + { + "start": 33645.34, + "end": 33647.82, + "probability": 0.3921 + }, + { + "start": 33648.12, + "end": 33648.4, + "probability": 0.015 + }, + { + "start": 33649.1, + "end": 33651.34, + "probability": 0.0584 + }, + { + "start": 33651.34, + "end": 33651.34, + "probability": 0.1524 + }, + { + "start": 33651.34, + "end": 33651.34, + "probability": 0.3343 + }, + { + "start": 33651.34, + "end": 33652.34, + "probability": 0.4807 + }, + { + "start": 33652.62, + "end": 33654.38, + "probability": 0.3667 + }, + { + "start": 33654.44, + "end": 33657.54, + "probability": 0.8645 + }, + { + "start": 33657.58, + "end": 33658.3, + "probability": 0.8053 + }, + { + "start": 33658.74, + "end": 33660.68, + "probability": 0.7895 + }, + { + "start": 33660.7, + "end": 33661.74, + "probability": 0.7837 + }, + { + "start": 33661.86, + "end": 33663.32, + "probability": 0.515 + }, + { + "start": 33663.44, + "end": 33664.16, + "probability": 0.8564 + }, + { + "start": 33664.52, + "end": 33666.16, + "probability": 0.6967 + }, + { + "start": 33666.48, + "end": 33668.06, + "probability": 0.869 + }, + { + "start": 33668.48, + "end": 33670.44, + "probability": 0.5535 + }, + { + "start": 33670.52, + "end": 33674.56, + "probability": 0.8748 + }, + { + "start": 33675.26, + "end": 33676.68, + "probability": 0.9556 + }, + { + "start": 33676.94, + "end": 33677.68, + "probability": 0.5504 + }, + { + "start": 33677.84, + "end": 33680.83, + "probability": 0.9297 + }, + { + "start": 33681.0, + "end": 33685.04, + "probability": 0.9445 + }, + { + "start": 33685.34, + "end": 33685.82, + "probability": 0.7065 + }, + { + "start": 33685.9, + "end": 33689.58, + "probability": 0.9261 + }, + { + "start": 33690.34, + "end": 33695.64, + "probability": 0.9677 + }, + { + "start": 33695.86, + "end": 33696.96, + "probability": 0.8274 + }, + { + "start": 33697.4, + "end": 33698.92, + "probability": 0.9807 + }, + { + "start": 33699.06, + "end": 33699.44, + "probability": 0.8174 + }, + { + "start": 33699.52, + "end": 33699.9, + "probability": 0.5196 + }, + { + "start": 33699.96, + "end": 33701.04, + "probability": 0.4341 + }, + { + "start": 33701.48, + "end": 33703.92, + "probability": 0.8945 + }, + { + "start": 33704.04, + "end": 33705.58, + "probability": 0.7418 + }, + { + "start": 33706.28, + "end": 33708.9, + "probability": 0.919 + }, + { + "start": 33709.42, + "end": 33710.12, + "probability": 0.7154 + }, + { + "start": 33710.84, + "end": 33711.36, + "probability": 0.7147 + }, + { + "start": 33711.52, + "end": 33712.76, + "probability": 0.9543 + }, + { + "start": 33713.06, + "end": 33713.76, + "probability": 0.9026 + }, + { + "start": 33713.84, + "end": 33715.5, + "probability": 0.9609 + }, + { + "start": 33715.5, + "end": 33716.6, + "probability": 0.9579 + }, + { + "start": 33728.94, + "end": 33729.88, + "probability": 0.4898 + }, + { + "start": 33729.92, + "end": 33729.92, + "probability": 0.0456 + }, + { + "start": 33729.92, + "end": 33729.92, + "probability": 0.2207 + }, + { + "start": 33729.92, + "end": 33729.92, + "probability": 0.2266 + }, + { + "start": 33729.92, + "end": 33736.06, + "probability": 0.6797 + }, + { + "start": 33736.76, + "end": 33738.42, + "probability": 0.8826 + }, + { + "start": 33739.0, + "end": 33739.64, + "probability": 0.5915 + }, + { + "start": 33739.94, + "end": 33742.46, + "probability": 0.95 + }, + { + "start": 33742.6, + "end": 33746.48, + "probability": 0.8629 + }, + { + "start": 33747.62, + "end": 33748.39, + "probability": 0.9867 + }, + { + "start": 33749.78, + "end": 33750.44, + "probability": 0.6171 + }, + { + "start": 33751.1, + "end": 33754.56, + "probability": 0.6479 + }, + { + "start": 33754.74, + "end": 33755.76, + "probability": 0.9932 + }, + { + "start": 33755.88, + "end": 33761.48, + "probability": 0.8321 + }, + { + "start": 33761.52, + "end": 33763.08, + "probability": 0.9553 + }, + { + "start": 33763.22, + "end": 33763.82, + "probability": 0.8325 + }, + { + "start": 33763.98, + "end": 33766.6, + "probability": 0.9013 + }, + { + "start": 33766.88, + "end": 33767.74, + "probability": 0.9895 + }, + { + "start": 33768.6, + "end": 33769.44, + "probability": 0.5674 + }, + { + "start": 33770.94, + "end": 33773.36, + "probability": 0.8755 + }, + { + "start": 33774.84, + "end": 33780.04, + "probability": 0.9379 + }, + { + "start": 33780.64, + "end": 33782.66, + "probability": 0.9003 + }, + { + "start": 33783.2, + "end": 33785.24, + "probability": 0.7363 + }, + { + "start": 33786.84, + "end": 33789.64, + "probability": 0.9852 + }, + { + "start": 33790.64, + "end": 33793.7, + "probability": 0.9657 + }, + { + "start": 33794.82, + "end": 33797.02, + "probability": 0.9736 + }, + { + "start": 33797.92, + "end": 33800.44, + "probability": 0.9502 + }, + { + "start": 33800.82, + "end": 33805.64, + "probability": 0.9825 + }, + { + "start": 33806.48, + "end": 33812.5, + "probability": 0.9558 + }, + { + "start": 33812.86, + "end": 33813.6, + "probability": 0.4215 + }, + { + "start": 33814.36, + "end": 33818.08, + "probability": 0.3081 + }, + { + "start": 33818.22, + "end": 33819.51, + "probability": 0.2794 + }, + { + "start": 33819.94, + "end": 33822.02, + "probability": 0.4992 + }, + { + "start": 33822.22, + "end": 33825.62, + "probability": 0.6845 + }, + { + "start": 33826.28, + "end": 33829.96, + "probability": 0.5735 + }, + { + "start": 33830.12, + "end": 33834.32, + "probability": 0.9754 + }, + { + "start": 33834.7, + "end": 33836.2, + "probability": 0.6888 + }, + { + "start": 33836.26, + "end": 33838.04, + "probability": 0.7245 + }, + { + "start": 33838.4, + "end": 33842.86, + "probability": 0.6653 + }, + { + "start": 33843.06, + "end": 33844.38, + "probability": 0.8431 + }, + { + "start": 33844.84, + "end": 33848.86, + "probability": 0.9872 + }, + { + "start": 33848.86, + "end": 33852.6, + "probability": 0.9973 + }, + { + "start": 33853.52, + "end": 33855.34, + "probability": 0.9906 + }, + { + "start": 33855.48, + "end": 33857.86, + "probability": 0.9303 + }, + { + "start": 33858.54, + "end": 33861.42, + "probability": 0.6381 + }, + { + "start": 33862.3, + "end": 33865.44, + "probability": 0.8192 + }, + { + "start": 33866.1, + "end": 33870.16, + "probability": 0.9724 + }, + { + "start": 33870.34, + "end": 33873.72, + "probability": 0.9914 + }, + { + "start": 33873.72, + "end": 33876.1, + "probability": 0.9922 + }, + { + "start": 33876.68, + "end": 33878.64, + "probability": 0.9708 + }, + { + "start": 33879.08, + "end": 33880.58, + "probability": 0.5953 + }, + { + "start": 33880.66, + "end": 33880.82, + "probability": 0.3229 + }, + { + "start": 33880.96, + "end": 33881.38, + "probability": 0.8688 + }, + { + "start": 33881.48, + "end": 33882.32, + "probability": 0.7798 + }, + { + "start": 33882.54, + "end": 33886.62, + "probability": 0.7856 + }, + { + "start": 33886.78, + "end": 33890.58, + "probability": 0.8852 + }, + { + "start": 33890.76, + "end": 33892.68, + "probability": 0.9658 + }, + { + "start": 33892.8, + "end": 33894.02, + "probability": 0.7817 + }, + { + "start": 33894.08, + "end": 33896.26, + "probability": 0.6873 + }, + { + "start": 33897.56, + "end": 33902.18, + "probability": 0.6853 + }, + { + "start": 33902.84, + "end": 33905.58, + "probability": 0.8016 + }, + { + "start": 33906.6, + "end": 33908.06, + "probability": 0.9954 + }, + { + "start": 33908.9, + "end": 33910.08, + "probability": 0.9032 + }, + { + "start": 33910.66, + "end": 33910.92, + "probability": 0.7883 + }, + { + "start": 33911.96, + "end": 33914.76, + "probability": 0.5891 + }, + { + "start": 33915.16, + "end": 33915.9, + "probability": 0.5388 + }, + { + "start": 33915.96, + "end": 33916.96, + "probability": 0.8163 + }, + { + "start": 33916.98, + "end": 33918.98, + "probability": 0.8358 + }, + { + "start": 33919.0, + "end": 33919.42, + "probability": 0.5985 + }, + { + "start": 33919.7, + "end": 33925.14, + "probability": 0.8777 + }, + { + "start": 33925.82, + "end": 33930.78, + "probability": 0.9945 + }, + { + "start": 33931.3, + "end": 33932.21, + "probability": 0.9613 + }, + { + "start": 33933.2, + "end": 33938.42, + "probability": 0.9929 + }, + { + "start": 33938.56, + "end": 33939.72, + "probability": 0.8492 + }, + { + "start": 33939.8, + "end": 33943.54, + "probability": 0.9968 + }, + { + "start": 33943.6, + "end": 33946.56, + "probability": 0.8823 + }, + { + "start": 33946.66, + "end": 33947.02, + "probability": 0.7827 + }, + { + "start": 33947.14, + "end": 33947.34, + "probability": 0.7886 + }, + { + "start": 33947.36, + "end": 33949.32, + "probability": 0.9644 + }, + { + "start": 33950.0, + "end": 33950.94, + "probability": 0.8594 + }, + { + "start": 33951.54, + "end": 33952.66, + "probability": 0.9705 + }, + { + "start": 33953.96, + "end": 33956.96, + "probability": 0.9648 + }, + { + "start": 33957.52, + "end": 33960.36, + "probability": 0.9716 + }, + { + "start": 33961.26, + "end": 33964.0, + "probability": 0.9505 + }, + { + "start": 33964.9, + "end": 33966.42, + "probability": 0.7573 + }, + { + "start": 33967.18, + "end": 33971.54, + "probability": 0.8877 + }, + { + "start": 33972.24, + "end": 33974.54, + "probability": 0.8857 + }, + { + "start": 33975.14, + "end": 33978.54, + "probability": 0.9717 + }, + { + "start": 33979.36, + "end": 33984.4, + "probability": 0.9941 + }, + { + "start": 33985.4, + "end": 33987.6, + "probability": 0.8698 + }, + { + "start": 33987.68, + "end": 33988.94, + "probability": 0.6937 + }, + { + "start": 33989.3, + "end": 33989.82, + "probability": 0.8374 + }, + { + "start": 33989.88, + "end": 33991.36, + "probability": 0.9042 + }, + { + "start": 33991.6, + "end": 33993.16, + "probability": 0.4153 + }, + { + "start": 33993.16, + "end": 33995.66, + "probability": 0.8182 + }, + { + "start": 33995.76, + "end": 33996.82, + "probability": 0.7756 + }, + { + "start": 33997.28, + "end": 33998.92, + "probability": 0.5542 + }, + { + "start": 33999.48, + "end": 34002.18, + "probability": 0.9836 + }, + { + "start": 34002.56, + "end": 34003.9, + "probability": 0.8386 + }, + { + "start": 34004.26, + "end": 34005.26, + "probability": 0.8875 + }, + { + "start": 34005.3, + "end": 34006.46, + "probability": 0.601 + }, + { + "start": 34006.94, + "end": 34007.42, + "probability": 0.6676 + }, + { + "start": 34007.54, + "end": 34008.1, + "probability": 0.5401 + }, + { + "start": 34008.18, + "end": 34008.78, + "probability": 0.7833 + }, + { + "start": 34008.92, + "end": 34013.56, + "probability": 0.9814 + }, + { + "start": 34013.68, + "end": 34014.83, + "probability": 0.9971 + }, + { + "start": 34015.84, + "end": 34018.52, + "probability": 0.9893 + }, + { + "start": 34018.86, + "end": 34020.0, + "probability": 0.7988 + }, + { + "start": 34020.48, + "end": 34021.64, + "probability": 0.9514 + }, + { + "start": 34022.76, + "end": 34024.34, + "probability": 0.9745 + }, + { + "start": 34024.98, + "end": 34025.44, + "probability": 0.7559 + }, + { + "start": 34026.38, + "end": 34028.68, + "probability": 0.7319 + }, + { + "start": 34029.38, + "end": 34032.9, + "probability": 0.8116 + }, + { + "start": 34032.9, + "end": 34033.52, + "probability": 0.8421 + }, + { + "start": 34033.56, + "end": 34034.04, + "probability": 0.5968 + }, + { + "start": 34034.1, + "end": 34036.02, + "probability": 0.385 + }, + { + "start": 34036.18, + "end": 34036.18, + "probability": 0.303 + }, + { + "start": 34036.18, + "end": 34036.97, + "probability": 0.5109 + }, + { + "start": 34038.58, + "end": 34039.26, + "probability": 0.4208 + }, + { + "start": 34039.26, + "end": 34042.14, + "probability": 0.6454 + }, + { + "start": 34042.34, + "end": 34043.02, + "probability": 0.8992 + }, + { + "start": 34043.56, + "end": 34044.69, + "probability": 0.9667 + }, + { + "start": 34045.32, + "end": 34045.58, + "probability": 0.1662 + }, + { + "start": 34047.64, + "end": 34047.78, + "probability": 0.4713 + }, + { + "start": 34047.78, + "end": 34050.26, + "probability": 0.9847 + }, + { + "start": 34050.26, + "end": 34055.26, + "probability": 0.7487 + }, + { + "start": 34055.8, + "end": 34057.06, + "probability": 0.7771 + }, + { + "start": 34062.06, + "end": 34063.9, + "probability": 0.2496 + }, + { + "start": 34073.7, + "end": 34074.56, + "probability": 0.3531 + }, + { + "start": 34074.56, + "end": 34077.86, + "probability": 0.4882 + }, + { + "start": 34078.04, + "end": 34080.76, + "probability": 0.8197 + }, + { + "start": 34080.94, + "end": 34085.5, + "probability": 0.6304 + }, + { + "start": 34085.5, + "end": 34086.52, + "probability": 0.0297 + }, + { + "start": 34087.16, + "end": 34087.24, + "probability": 0.0883 + }, + { + "start": 34087.24, + "end": 34087.24, + "probability": 0.1348 + }, + { + "start": 34087.24, + "end": 34091.68, + "probability": 0.7458 + }, + { + "start": 34092.08, + "end": 34095.14, + "probability": 0.5564 + }, + { + "start": 34095.16, + "end": 34097.48, + "probability": 0.7012 + }, + { + "start": 34110.84, + "end": 34112.64, + "probability": 0.5461 + }, + { + "start": 34113.72, + "end": 34114.7, + "probability": 0.6247 + }, + { + "start": 34114.72, + "end": 34115.38, + "probability": 0.8062 + }, + { + "start": 34115.52, + "end": 34119.16, + "probability": 0.9823 + }, + { + "start": 34119.34, + "end": 34120.3, + "probability": 0.7274 + }, + { + "start": 34121.02, + "end": 34121.84, + "probability": 0.6759 + }, + { + "start": 34121.94, + "end": 34123.23, + "probability": 0.973 + }, + { + "start": 34123.84, + "end": 34126.62, + "probability": 0.9549 + }, + { + "start": 34127.46, + "end": 34129.0, + "probability": 0.9523 + }, + { + "start": 34129.24, + "end": 34130.32, + "probability": 0.8682 + }, + { + "start": 34130.32, + "end": 34131.74, + "probability": 0.5013 + }, + { + "start": 34132.42, + "end": 34133.8, + "probability": 0.7396 + }, + { + "start": 34134.3, + "end": 34138.02, + "probability": 0.7974 + }, + { + "start": 34138.16, + "end": 34141.25, + "probability": 0.6327 + }, + { + "start": 34142.68, + "end": 34144.54, + "probability": 0.6278 + }, + { + "start": 34148.16, + "end": 34152.0, + "probability": 0.9478 + }, + { + "start": 34152.3, + "end": 34152.42, + "probability": 0.5856 + }, + { + "start": 34153.18, + "end": 34154.4, + "probability": 0.6143 + }, + { + "start": 34154.56, + "end": 34158.98, + "probability": 0.7469 + }, + { + "start": 34159.32, + "end": 34161.93, + "probability": 0.5693 + }, + { + "start": 34166.88, + "end": 34167.12, + "probability": 0.0202 + }, + { + "start": 34167.12, + "end": 34168.64, + "probability": 0.5017 + }, + { + "start": 34168.7, + "end": 34169.16, + "probability": 0.6194 + }, + { + "start": 34169.2, + "end": 34173.42, + "probability": 0.9719 + }, + { + "start": 34174.1, + "end": 34175.9, + "probability": 0.9698 + }, + { + "start": 34176.6, + "end": 34179.82, + "probability": 0.9011 + }, + { + "start": 34180.66, + "end": 34183.72, + "probability": 0.8148 + }, + { + "start": 34184.28, + "end": 34187.04, + "probability": 0.9072 + }, + { + "start": 34187.88, + "end": 34190.24, + "probability": 0.8766 + }, + { + "start": 34191.34, + "end": 34193.97, + "probability": 0.8621 + }, + { + "start": 34194.94, + "end": 34196.88, + "probability": 0.9215 + }, + { + "start": 34197.28, + "end": 34198.14, + "probability": 0.9463 + }, + { + "start": 34198.22, + "end": 34199.77, + "probability": 0.5283 + }, + { + "start": 34200.34, + "end": 34201.02, + "probability": 0.7317 + }, + { + "start": 34201.12, + "end": 34203.32, + "probability": 0.5052 + }, + { + "start": 34204.34, + "end": 34205.64, + "probability": 0.8315 + }, + { + "start": 34206.38, + "end": 34207.76, + "probability": 0.9779 + }, + { + "start": 34208.74, + "end": 34211.92, + "probability": 0.7953 + }, + { + "start": 34212.68, + "end": 34214.72, + "probability": 0.976 + }, + { + "start": 34214.84, + "end": 34215.64, + "probability": 0.5954 + }, + { + "start": 34215.7, + "end": 34216.34, + "probability": 0.6686 + }, + { + "start": 34216.48, + "end": 34218.98, + "probability": 0.4908 + }, + { + "start": 34219.64, + "end": 34222.12, + "probability": 0.5125 + }, + { + "start": 34222.84, + "end": 34222.84, + "probability": 0.037 + }, + { + "start": 34222.84, + "end": 34222.84, + "probability": 0.5352 + }, + { + "start": 34222.84, + "end": 34226.16, + "probability": 0.4764 + }, + { + "start": 34226.36, + "end": 34227.14, + "probability": 0.5598 + }, + { + "start": 34227.88, + "end": 34230.14, + "probability": 0.5136 + }, + { + "start": 34230.14, + "end": 34230.4, + "probability": 0.0133 + }, + { + "start": 34230.4, + "end": 34230.8, + "probability": 0.6233 + }, + { + "start": 34230.8, + "end": 34231.9, + "probability": 0.564 + }, + { + "start": 34231.98, + "end": 34232.24, + "probability": 0.3072 + }, + { + "start": 34233.6, + "end": 34235.98, + "probability": 0.7693 + }, + { + "start": 34236.12, + "end": 34237.18, + "probability": 0.7744 + }, + { + "start": 34237.26, + "end": 34237.82, + "probability": 0.4253 + }, + { + "start": 34237.96, + "end": 34240.86, + "probability": 0.8082 + }, + { + "start": 34241.44, + "end": 34244.8, + "probability": 0.8266 + }, + { + "start": 34244.94, + "end": 34247.74, + "probability": 0.9678 + }, + { + "start": 34248.84, + "end": 34250.44, + "probability": 0.6672 + }, + { + "start": 34250.58, + "end": 34251.52, + "probability": 0.7992 + }, + { + "start": 34251.62, + "end": 34254.88, + "probability": 0.8996 + }, + { + "start": 34255.3, + "end": 34257.98, + "probability": 0.9248 + }, + { + "start": 34257.98, + "end": 34262.14, + "probability": 0.9745 + }, + { + "start": 34262.62, + "end": 34264.72, + "probability": 0.8674 + }, + { + "start": 34265.76, + "end": 34269.78, + "probability": 0.8928 + }, + { + "start": 34270.64, + "end": 34276.42, + "probability": 0.9867 + }, + { + "start": 34277.4, + "end": 34280.7, + "probability": 0.9506 + }, + { + "start": 34280.82, + "end": 34282.2, + "probability": 0.8615 + }, + { + "start": 34283.0, + "end": 34284.02, + "probability": 0.7804 + }, + { + "start": 34284.88, + "end": 34287.34, + "probability": 0.8514 + }, + { + "start": 34288.24, + "end": 34291.4, + "probability": 0.9624 + }, + { + "start": 34294.54, + "end": 34297.18, + "probability": 0.9565 + }, + { + "start": 34298.18, + "end": 34299.5, + "probability": 0.9643 + }, + { + "start": 34300.76, + "end": 34302.58, + "probability": 0.7571 + }, + { + "start": 34302.8, + "end": 34303.68, + "probability": 0.4758 + }, + { + "start": 34304.48, + "end": 34306.82, + "probability": 0.9739 + }, + { + "start": 34307.78, + "end": 34311.1, + "probability": 0.7465 + }, + { + "start": 34312.52, + "end": 34313.34, + "probability": 0.8823 + }, + { + "start": 34313.38, + "end": 34319.02, + "probability": 0.981 + }, + { + "start": 34319.56, + "end": 34324.86, + "probability": 0.8121 + }, + { + "start": 34325.58, + "end": 34329.16, + "probability": 0.8727 + }, + { + "start": 34330.0, + "end": 34333.4, + "probability": 0.9338 + }, + { + "start": 34333.4, + "end": 34338.0, + "probability": 0.9981 + }, + { + "start": 34338.7, + "end": 34339.08, + "probability": 0.3054 + }, + { + "start": 34339.14, + "end": 34342.92, + "probability": 0.8954 + }, + { + "start": 34343.26, + "end": 34345.77, + "probability": 0.987 + }, + { + "start": 34346.9, + "end": 34347.7, + "probability": 0.3163 + }, + { + "start": 34347.78, + "end": 34347.78, + "probability": 0.3702 + }, + { + "start": 34347.82, + "end": 34348.62, + "probability": 0.4243 + }, + { + "start": 34348.66, + "end": 34349.62, + "probability": 0.9596 + }, + { + "start": 34350.44, + "end": 34350.9, + "probability": 0.4054 + }, + { + "start": 34351.1, + "end": 34354.46, + "probability": 0.9043 + }, + { + "start": 34354.78, + "end": 34357.74, + "probability": 0.9373 + }, + { + "start": 34359.32, + "end": 34361.14, + "probability": 0.9664 + }, + { + "start": 34361.28, + "end": 34363.6, + "probability": 0.9813 + }, + { + "start": 34363.88, + "end": 34366.98, + "probability": 0.8328 + }, + { + "start": 34367.5, + "end": 34372.52, + "probability": 0.9274 + }, + { + "start": 34372.96, + "end": 34374.72, + "probability": 0.6952 + }, + { + "start": 34374.86, + "end": 34375.18, + "probability": 0.6475 + }, + { + "start": 34375.18, + "end": 34375.76, + "probability": 0.9709 + }, + { + "start": 34376.3, + "end": 34380.6, + "probability": 0.8162 + }, + { + "start": 34380.72, + "end": 34382.76, + "probability": 0.6069 + }, + { + "start": 34383.66, + "end": 34386.76, + "probability": 0.8462 + }, + { + "start": 34386.84, + "end": 34390.62, + "probability": 0.8157 + }, + { + "start": 34391.4, + "end": 34396.8, + "probability": 0.9658 + }, + { + "start": 34398.18, + "end": 34402.08, + "probability": 0.792 + }, + { + "start": 34402.66, + "end": 34403.82, + "probability": 0.6074 + }, + { + "start": 34403.94, + "end": 34407.18, + "probability": 0.9968 + }, + { + "start": 34408.06, + "end": 34412.86, + "probability": 0.4763 + }, + { + "start": 34412.96, + "end": 34413.34, + "probability": 0.9034 + }, + { + "start": 34414.1, + "end": 34416.34, + "probability": 0.654 + }, + { + "start": 34417.5, + "end": 34419.0, + "probability": 0.5355 + }, + { + "start": 34419.12, + "end": 34419.68, + "probability": 0.8952 + }, + { + "start": 34419.7, + "end": 34421.06, + "probability": 0.8379 + }, + { + "start": 34421.12, + "end": 34423.76, + "probability": 0.792 + }, + { + "start": 34434.94, + "end": 34436.58, + "probability": 0.5209 + }, + { + "start": 34436.72, + "end": 34437.74, + "probability": 0.6432 + }, + { + "start": 34437.74, + "end": 34441.16, + "probability": 0.7032 + }, + { + "start": 34442.46, + "end": 34445.8, + "probability": 0.9318 + }, + { + "start": 34446.3, + "end": 34447.8, + "probability": 0.987 + }, + { + "start": 34448.78, + "end": 34455.08, + "probability": 0.814 + }, + { + "start": 34455.3, + "end": 34456.29, + "probability": 0.871 + }, + { + "start": 34457.04, + "end": 34457.75, + "probability": 0.8168 + }, + { + "start": 34458.34, + "end": 34459.0, + "probability": 0.5496 + }, + { + "start": 34459.3, + "end": 34461.04, + "probability": 0.8879 + }, + { + "start": 34461.66, + "end": 34463.62, + "probability": 0.9913 + }, + { + "start": 34464.84, + "end": 34469.24, + "probability": 0.9745 + }, + { + "start": 34469.24, + "end": 34473.57, + "probability": 0.9866 + }, + { + "start": 34474.5, + "end": 34476.29, + "probability": 0.6995 + }, + { + "start": 34478.14, + "end": 34478.82, + "probability": 0.6044 + }, + { + "start": 34478.88, + "end": 34480.68, + "probability": 0.2068 + }, + { + "start": 34480.92, + "end": 34482.35, + "probability": 0.8118 + }, + { + "start": 34482.72, + "end": 34484.25, + "probability": 0.9835 + }, + { + "start": 34485.14, + "end": 34487.48, + "probability": 0.7809 + }, + { + "start": 34487.88, + "end": 34489.21, + "probability": 0.8941 + }, + { + "start": 34489.78, + "end": 34490.28, + "probability": 0.7113 + }, + { + "start": 34490.42, + "end": 34491.23, + "probability": 0.836 + }, + { + "start": 34491.68, + "end": 34495.68, + "probability": 0.9111 + }, + { + "start": 34495.68, + "end": 34499.62, + "probability": 0.8565 + }, + { + "start": 34500.12, + "end": 34501.21, + "probability": 0.4884 + }, + { + "start": 34501.76, + "end": 34503.0, + "probability": 0.4324 + }, + { + "start": 34503.4, + "end": 34504.42, + "probability": 0.6394 + }, + { + "start": 34505.32, + "end": 34510.74, + "probability": 0.9923 + }, + { + "start": 34510.74, + "end": 34515.3, + "probability": 0.7502 + }, + { + "start": 34516.06, + "end": 34520.38, + "probability": 0.8346 + }, + { + "start": 34520.48, + "end": 34521.18, + "probability": 0.6055 + }, + { + "start": 34522.94, + "end": 34524.38, + "probability": 0.8889 + }, + { + "start": 34524.46, + "end": 34525.14, + "probability": 0.9556 + }, + { + "start": 34525.52, + "end": 34526.98, + "probability": 0.9874 + }, + { + "start": 34528.14, + "end": 34529.48, + "probability": 0.6962 + }, + { + "start": 34530.6, + "end": 34531.08, + "probability": 0.9656 + }, + { + "start": 34531.2, + "end": 34533.26, + "probability": 0.7599 + }, + { + "start": 34533.62, + "end": 34537.14, + "probability": 0.9298 + }, + { + "start": 34537.64, + "end": 34540.27, + "probability": 0.821 + }, + { + "start": 34540.6, + "end": 34545.98, + "probability": 0.5821 + }, + { + "start": 34546.36, + "end": 34550.76, + "probability": 0.5967 + }, + { + "start": 34551.58, + "end": 34554.0, + "probability": 0.7786 + }, + { + "start": 34554.28, + "end": 34555.84, + "probability": 0.8394 + }, + { + "start": 34556.4, + "end": 34557.02, + "probability": 0.1648 + }, + { + "start": 34557.04, + "end": 34559.2, + "probability": 0.7446 + }, + { + "start": 34560.06, + "end": 34560.6, + "probability": 0.2707 + }, + { + "start": 34560.6, + "end": 34564.84, + "probability": 0.8434 + }, + { + "start": 34564.84, + "end": 34569.5, + "probability": 0.9552 + }, + { + "start": 34569.82, + "end": 34571.52, + "probability": 0.8922 + }, + { + "start": 34572.18, + "end": 34573.14, + "probability": 0.7928 + }, + { + "start": 34573.96, + "end": 34580.74, + "probability": 0.9385 + }, + { + "start": 34581.24, + "end": 34581.86, + "probability": 0.8588 + }, + { + "start": 34581.94, + "end": 34584.44, + "probability": 0.9302 + }, + { + "start": 34585.44, + "end": 34587.94, + "probability": 0.9023 + }, + { + "start": 34588.56, + "end": 34594.42, + "probability": 0.8284 + }, + { + "start": 34594.88, + "end": 34597.88, + "probability": 0.9426 + }, + { + "start": 34598.58, + "end": 34599.84, + "probability": 0.9735 + }, + { + "start": 34600.88, + "end": 34602.9, + "probability": 0.9858 + }, + { + "start": 34602.96, + "end": 34607.25, + "probability": 0.987 + }, + { + "start": 34608.08, + "end": 34608.9, + "probability": 0.7763 + }, + { + "start": 34609.02, + "end": 34609.62, + "probability": 0.8436 + }, + { + "start": 34609.72, + "end": 34610.36, + "probability": 0.8713 + }, + { + "start": 34611.42, + "end": 34612.96, + "probability": 0.982 + }, + { + "start": 34613.92, + "end": 34616.53, + "probability": 0.8436 + }, + { + "start": 34616.92, + "end": 34618.68, + "probability": 0.9302 + }, + { + "start": 34619.06, + "end": 34621.48, + "probability": 0.8487 + }, + { + "start": 34621.6, + "end": 34622.58, + "probability": 0.6529 + }, + { + "start": 34622.58, + "end": 34623.1, + "probability": 0.2554 + }, + { + "start": 34623.14, + "end": 34623.84, + "probability": 0.7784 + }, + { + "start": 34623.86, + "end": 34624.18, + "probability": 0.8377 + }, + { + "start": 34624.48, + "end": 34625.14, + "probability": 0.9624 + }, + { + "start": 34625.18, + "end": 34626.04, + "probability": 0.9349 + }, + { + "start": 34626.18, + "end": 34627.64, + "probability": 0.5831 + }, + { + "start": 34627.74, + "end": 34631.62, + "probability": 0.9698 + }, + { + "start": 34631.62, + "end": 34632.48, + "probability": 0.9208 + }, + { + "start": 34632.56, + "end": 34634.32, + "probability": 0.7041 + }, + { + "start": 34635.04, + "end": 34637.76, + "probability": 0.4027 + }, + { + "start": 34637.86, + "end": 34638.4, + "probability": 0.9241 + }, + { + "start": 34640.24, + "end": 34640.82, + "probability": 0.839 + }, + { + "start": 34642.06, + "end": 34645.04, + "probability": 0.9817 + }, + { + "start": 34645.08, + "end": 34647.44, + "probability": 0.9906 + }, + { + "start": 34647.74, + "end": 34648.45, + "probability": 0.9954 + }, + { + "start": 34648.9, + "end": 34650.86, + "probability": 0.7437 + }, + { + "start": 34650.86, + "end": 34656.8, + "probability": 0.937 + }, + { + "start": 34657.18, + "end": 34660.3, + "probability": 0.9904 + }, + { + "start": 34661.0, + "end": 34662.38, + "probability": 0.6799 + }, + { + "start": 34662.42, + "end": 34663.94, + "probability": 0.8352 + }, + { + "start": 34663.96, + "end": 34666.2, + "probability": 0.8136 + }, + { + "start": 34666.44, + "end": 34669.36, + "probability": 0.7665 + }, + { + "start": 34676.08, + "end": 34678.5, + "probability": 0.6414 + }, + { + "start": 34679.46, + "end": 34681.58, + "probability": 0.7425 + }, + { + "start": 34682.84, + "end": 34683.52, + "probability": 0.8376 + }, + { + "start": 34684.62, + "end": 34688.68, + "probability": 0.8843 + }, + { + "start": 34688.74, + "end": 34690.4, + "probability": 0.9148 + }, + { + "start": 34690.46, + "end": 34692.18, + "probability": 0.8099 + }, + { + "start": 34692.52, + "end": 34693.36, + "probability": 0.9034 + }, + { + "start": 34694.62, + "end": 34695.2, + "probability": 0.9137 + }, + { + "start": 34695.9, + "end": 34700.94, + "probability": 0.9738 + }, + { + "start": 34702.3, + "end": 34705.96, + "probability": 0.9047 + }, + { + "start": 34705.96, + "end": 34712.5, + "probability": 0.9975 + }, + { + "start": 34713.76, + "end": 34717.28, + "probability": 0.8249 + }, + { + "start": 34717.94, + "end": 34725.38, + "probability": 0.9208 + }, + { + "start": 34727.04, + "end": 34729.09, + "probability": 0.9966 + }, + { + "start": 34730.08, + "end": 34734.38, + "probability": 0.7086 + }, + { + "start": 34734.5, + "end": 34736.64, + "probability": 0.8612 + }, + { + "start": 34737.44, + "end": 34743.68, + "probability": 0.9973 + }, + { + "start": 34743.78, + "end": 34745.78, + "probability": 0.9731 + }, + { + "start": 34746.1, + "end": 34746.8, + "probability": 0.8304 + }, + { + "start": 34747.04, + "end": 34747.66, + "probability": 0.7548 + }, + { + "start": 34747.98, + "end": 34749.76, + "probability": 0.9972 + }, + { + "start": 34750.28, + "end": 34751.74, + "probability": 0.8216 + }, + { + "start": 34752.24, + "end": 34752.8, + "probability": 0.6399 + }, + { + "start": 34752.94, + "end": 34757.34, + "probability": 0.9847 + }, + { + "start": 34758.08, + "end": 34761.24, + "probability": 0.9966 + }, + { + "start": 34761.24, + "end": 34764.3, + "probability": 0.9214 + }, + { + "start": 34764.52, + "end": 34766.1, + "probability": 0.9849 + }, + { + "start": 34767.4, + "end": 34771.44, + "probability": 0.9622 + }, + { + "start": 34771.44, + "end": 34777.46, + "probability": 0.8944 + }, + { + "start": 34778.28, + "end": 34781.32, + "probability": 0.8169 + }, + { + "start": 34781.32, + "end": 34786.0, + "probability": 0.914 + }, + { + "start": 34786.14, + "end": 34789.18, + "probability": 0.9808 + }, + { + "start": 34789.56, + "end": 34790.4, + "probability": 0.5341 + }, + { + "start": 34790.42, + "end": 34791.21, + "probability": 0.9525 + }, + { + "start": 34791.88, + "end": 34795.48, + "probability": 0.9977 + }, + { + "start": 34795.87, + "end": 34798.74, + "probability": 0.7571 + }, + { + "start": 34799.44, + "end": 34803.76, + "probability": 0.994 + }, + { + "start": 34804.26, + "end": 34809.34, + "probability": 0.9977 + }, + { + "start": 34809.86, + "end": 34810.8, + "probability": 0.8142 + }, + { + "start": 34810.86, + "end": 34816.88, + "probability": 0.7565 + }, + { + "start": 34818.58, + "end": 34819.78, + "probability": 0.9738 + }, + { + "start": 34820.54, + "end": 34822.98, + "probability": 0.7592 + }, + { + "start": 34823.74, + "end": 34827.14, + "probability": 0.9594 + }, + { + "start": 34827.2, + "end": 34827.76, + "probability": 0.8547 + }, + { + "start": 34827.86, + "end": 34829.22, + "probability": 0.869 + }, + { + "start": 34829.52, + "end": 34831.12, + "probability": 0.8428 + }, + { + "start": 34831.38, + "end": 34832.22, + "probability": 0.3809 + }, + { + "start": 34832.24, + "end": 34832.78, + "probability": 0.8295 + }, + { + "start": 34833.16, + "end": 34837.4, + "probability": 0.9831 + }, + { + "start": 34837.78, + "end": 34841.5, + "probability": 0.9498 + }, + { + "start": 34842.56, + "end": 34846.82, + "probability": 0.9814 + }, + { + "start": 34846.94, + "end": 34851.46, + "probability": 0.9934 + }, + { + "start": 34852.08, + "end": 34855.52, + "probability": 0.992 + }, + { + "start": 34855.52, + "end": 34859.0, + "probability": 0.998 + }, + { + "start": 34859.52, + "end": 34860.14, + "probability": 0.615 + }, + { + "start": 34860.58, + "end": 34863.84, + "probability": 0.9426 + }, + { + "start": 34863.84, + "end": 34868.46, + "probability": 0.9987 + }, + { + "start": 34869.38, + "end": 34872.08, + "probability": 0.9911 + }, + { + "start": 34872.12, + "end": 34875.32, + "probability": 0.9825 + }, + { + "start": 34875.84, + "end": 34879.92, + "probability": 0.9962 + }, + { + "start": 34879.92, + "end": 34883.92, + "probability": 0.9981 + }, + { + "start": 34883.94, + "end": 34887.2, + "probability": 0.7627 + }, + { + "start": 34887.48, + "end": 34888.36, + "probability": 0.6544 + }, + { + "start": 34888.42, + "end": 34892.02, + "probability": 0.9858 + }, + { + "start": 34892.34, + "end": 34892.98, + "probability": 0.5804 + }, + { + "start": 34893.04, + "end": 34894.94, + "probability": 0.753 + }, + { + "start": 34895.56, + "end": 34896.16, + "probability": 0.6965 + }, + { + "start": 34896.34, + "end": 34899.07, + "probability": 0.9904 + }, + { + "start": 34900.12, + "end": 34903.04, + "probability": 0.9487 + }, + { + "start": 34903.62, + "end": 34907.16, + "probability": 0.993 + }, + { + "start": 34907.16, + "end": 34911.44, + "probability": 0.9749 + }, + { + "start": 34912.26, + "end": 34914.58, + "probability": 0.9971 + }, + { + "start": 34914.58, + "end": 34917.76, + "probability": 0.8058 + }, + { + "start": 34918.12, + "end": 34919.44, + "probability": 0.6842 + }, + { + "start": 34919.64, + "end": 34923.56, + "probability": 0.9883 + }, + { + "start": 34923.56, + "end": 34929.02, + "probability": 0.8172 + }, + { + "start": 34929.36, + "end": 34934.28, + "probability": 0.9855 + }, + { + "start": 34934.7, + "end": 34936.84, + "probability": 0.9799 + }, + { + "start": 34937.56, + "end": 34938.88, + "probability": 0.8943 + }, + { + "start": 34939.62, + "end": 34940.44, + "probability": 0.9724 + }, + { + "start": 34941.02, + "end": 34944.0, + "probability": 0.9896 + }, + { + "start": 34944.0, + "end": 34948.96, + "probability": 0.9785 + }, + { + "start": 34949.92, + "end": 34952.6, + "probability": 0.9632 + }, + { + "start": 34952.6, + "end": 34955.24, + "probability": 0.993 + }, + { + "start": 34955.6, + "end": 34959.58, + "probability": 0.9846 + }, + { + "start": 34959.88, + "end": 34960.58, + "probability": 0.6042 + }, + { + "start": 34960.66, + "end": 34962.72, + "probability": 0.7292 + }, + { + "start": 34963.56, + "end": 34965.02, + "probability": 0.7968 + }, + { + "start": 34965.64, + "end": 34967.6, + "probability": 0.9421 + }, + { + "start": 34967.96, + "end": 34970.66, + "probability": 0.9894 + }, + { + "start": 34971.08, + "end": 34972.48, + "probability": 0.973 + }, + { + "start": 34973.1, + "end": 34975.92, + "probability": 0.9937 + }, + { + "start": 34975.98, + "end": 34978.9, + "probability": 0.9854 + }, + { + "start": 34979.54, + "end": 34979.98, + "probability": 0.6841 + }, + { + "start": 34980.02, + "end": 34980.24, + "probability": 0.9395 + }, + { + "start": 34980.58, + "end": 34983.9, + "probability": 0.9625 + }, + { + "start": 34983.96, + "end": 34984.76, + "probability": 0.5261 + }, + { + "start": 34985.08, + "end": 34986.54, + "probability": 0.9218 + }, + { + "start": 34987.12, + "end": 34987.76, + "probability": 0.6256 + }, + { + "start": 34988.32, + "end": 34991.84, + "probability": 0.9492 + }, + { + "start": 34992.54, + "end": 34998.88, + "probability": 0.975 + }, + { + "start": 34999.16, + "end": 35005.5, + "probability": 0.9833 + }, + { + "start": 35006.68, + "end": 35009.78, + "probability": 0.9648 + }, + { + "start": 35009.94, + "end": 35010.92, + "probability": 0.8519 + }, + { + "start": 35011.78, + "end": 35014.26, + "probability": 0.9959 + }, + { + "start": 35015.04, + "end": 35020.26, + "probability": 0.9869 + }, + { + "start": 35020.88, + "end": 35023.6, + "probability": 0.9985 + }, + { + "start": 35024.04, + "end": 35024.92, + "probability": 0.5399 + }, + { + "start": 35025.02, + "end": 35026.1, + "probability": 0.8968 + }, + { + "start": 35026.58, + "end": 35030.34, + "probability": 0.9452 + }, + { + "start": 35030.96, + "end": 35036.36, + "probability": 0.9353 + }, + { + "start": 35036.96, + "end": 35037.2, + "probability": 0.7575 + }, + { + "start": 35038.16, + "end": 35040.78, + "probability": 0.7045 + }, + { + "start": 35041.3, + "end": 35044.12, + "probability": 0.7654 + }, + { + "start": 35044.22, + "end": 35044.96, + "probability": 0.4304 + }, + { + "start": 35045.66, + "end": 35047.62, + "probability": 0.9069 + }, + { + "start": 35051.4, + "end": 35053.4, + "probability": 0.7959 + }, + { + "start": 35068.14, + "end": 35069.8, + "probability": 0.2743 + }, + { + "start": 35069.8, + "end": 35070.32, + "probability": 0.074 + }, + { + "start": 35070.6, + "end": 35072.42, + "probability": 0.7831 + }, + { + "start": 35072.5, + "end": 35074.34, + "probability": 0.9652 + }, + { + "start": 35074.34, + "end": 35079.06, + "probability": 0.8823 + }, + { + "start": 35079.56, + "end": 35081.34, + "probability": 0.814 + }, + { + "start": 35081.54, + "end": 35086.42, + "probability": 0.3308 + }, + { + "start": 35086.42, + "end": 35088.93, + "probability": 0.7276 + }, + { + "start": 35089.18, + "end": 35090.94, + "probability": 0.8259 + }, + { + "start": 35091.4, + "end": 35091.46, + "probability": 0.1142 + }, + { + "start": 35091.46, + "end": 35093.44, + "probability": 0.6048 + }, + { + "start": 35093.64, + "end": 35096.34, + "probability": 0.7798 + }, + { + "start": 35100.52, + "end": 35101.1, + "probability": 0.257 + }, + { + "start": 35109.88, + "end": 35112.4, + "probability": 0.6564 + }, + { + "start": 35114.4, + "end": 35118.06, + "probability": 0.7196 + }, + { + "start": 35119.16, + "end": 35122.34, + "probability": 0.8009 + }, + { + "start": 35123.0, + "end": 35125.28, + "probability": 0.8868 + }, + { + "start": 35126.44, + "end": 35129.06, + "probability": 0.886 + }, + { + "start": 35129.92, + "end": 35131.04, + "probability": 0.8542 + }, + { + "start": 35131.76, + "end": 35133.51, + "probability": 0.8628 + }, + { + "start": 35134.58, + "end": 35135.86, + "probability": 0.4509 + }, + { + "start": 35136.02, + "end": 35142.12, + "probability": 0.8209 + }, + { + "start": 35142.94, + "end": 35145.22, + "probability": 0.8846 + }, + { + "start": 35147.26, + "end": 35154.36, + "probability": 0.6633 + }, + { + "start": 35154.44, + "end": 35155.42, + "probability": 0.5674 + }, + { + "start": 35156.6, + "end": 35160.02, + "probability": 0.9844 + }, + { + "start": 35161.84, + "end": 35162.94, + "probability": 0.215 + }, + { + "start": 35162.98, + "end": 35168.02, + "probability": 0.7946 + }, + { + "start": 35169.04, + "end": 35173.94, + "probability": 0.8528 + }, + { + "start": 35174.9, + "end": 35178.62, + "probability": 0.9365 + }, + { + "start": 35179.92, + "end": 35181.32, + "probability": 0.6975 + }, + { + "start": 35182.34, + "end": 35185.98, + "probability": 0.9505 + }, + { + "start": 35186.46, + "end": 35188.24, + "probability": 0.9158 + }, + { + "start": 35188.96, + "end": 35191.64, + "probability": 0.6489 + }, + { + "start": 35192.28, + "end": 35193.02, + "probability": 0.6254 + }, + { + "start": 35194.6, + "end": 35197.16, + "probability": 0.9764 + }, + { + "start": 35197.78, + "end": 35200.92, + "probability": 0.9686 + }, + { + "start": 35201.04, + "end": 35207.48, + "probability": 0.693 + }, + { + "start": 35208.12, + "end": 35208.34, + "probability": 0.256 + }, + { + "start": 35208.62, + "end": 35213.1, + "probability": 0.9592 + }, + { + "start": 35214.34, + "end": 35217.5, + "probability": 0.8901 + }, + { + "start": 35218.12, + "end": 35220.32, + "probability": 0.8285 + }, + { + "start": 35221.48, + "end": 35224.46, + "probability": 0.8871 + }, + { + "start": 35225.42, + "end": 35228.02, + "probability": 0.9316 + }, + { + "start": 35228.86, + "end": 35230.42, + "probability": 0.8976 + }, + { + "start": 35231.46, + "end": 35234.54, + "probability": 0.9037 + }, + { + "start": 35235.28, + "end": 35240.2, + "probability": 0.9286 + }, + { + "start": 35241.4, + "end": 35246.58, + "probability": 0.9754 + }, + { + "start": 35247.98, + "end": 35250.12, + "probability": 0.7672 + }, + { + "start": 35250.74, + "end": 35252.8, + "probability": 0.9967 + }, + { + "start": 35253.5, + "end": 35255.2, + "probability": 0.9021 + }, + { + "start": 35256.24, + "end": 35257.8, + "probability": 0.9569 + }, + { + "start": 35257.96, + "end": 35261.36, + "probability": 0.8027 + }, + { + "start": 35261.92, + "end": 35264.5, + "probability": 0.9733 + }, + { + "start": 35265.12, + "end": 35271.16, + "probability": 0.986 + }, + { + "start": 35271.72, + "end": 35272.58, + "probability": 0.8065 + }, + { + "start": 35272.76, + "end": 35275.48, + "probability": 0.8268 + }, + { + "start": 35275.74, + "end": 35281.26, + "probability": 0.8849 + }, + { + "start": 35282.26, + "end": 35287.1, + "probability": 0.9814 + }, + { + "start": 35287.74, + "end": 35288.84, + "probability": 0.6462 + }, + { + "start": 35288.98, + "end": 35292.3, + "probability": 0.9966 + }, + { + "start": 35292.9, + "end": 35295.86, + "probability": 0.9844 + }, + { + "start": 35295.86, + "end": 35298.38, + "probability": 0.9833 + }, + { + "start": 35299.06, + "end": 35300.63, + "probability": 0.8159 + }, + { + "start": 35301.4, + "end": 35304.72, + "probability": 0.8602 + }, + { + "start": 35304.86, + "end": 35306.94, + "probability": 0.5192 + }, + { + "start": 35307.8, + "end": 35309.4, + "probability": 0.7135 + }, + { + "start": 35309.98, + "end": 35311.38, + "probability": 0.8057 + }, + { + "start": 35311.48, + "end": 35312.34, + "probability": 0.4708 + }, + { + "start": 35312.42, + "end": 35313.42, + "probability": 0.8133 + }, + { + "start": 35313.52, + "end": 35314.0, + "probability": 0.5201 + }, + { + "start": 35314.5, + "end": 35317.62, + "probability": 0.9542 + }, + { + "start": 35319.02, + "end": 35323.72, + "probability": 0.993 + }, + { + "start": 35323.76, + "end": 35326.56, + "probability": 0.9344 + }, + { + "start": 35326.96, + "end": 35327.46, + "probability": 0.876 + }, + { + "start": 35327.58, + "end": 35330.86, + "probability": 0.8938 + }, + { + "start": 35331.06, + "end": 35332.38, + "probability": 0.8718 + }, + { + "start": 35332.58, + "end": 35334.94, + "probability": 0.8995 + }, + { + "start": 35335.12, + "end": 35336.76, + "probability": 0.9194 + }, + { + "start": 35337.38, + "end": 35339.94, + "probability": 0.9924 + }, + { + "start": 35340.6, + "end": 35341.39, + "probability": 0.8568 + }, + { + "start": 35341.84, + "end": 35343.76, + "probability": 0.9688 + }, + { + "start": 35343.88, + "end": 35344.66, + "probability": 0.801 + }, + { + "start": 35345.14, + "end": 35346.04, + "probability": 0.9017 + }, + { + "start": 35348.48, + "end": 35349.32, + "probability": 0.1294 + }, + { + "start": 35349.86, + "end": 35356.16, + "probability": 0.6142 + }, + { + "start": 35356.38, + "end": 35357.8, + "probability": 0.1748 + }, + { + "start": 35357.8, + "end": 35359.72, + "probability": 0.4633 + }, + { + "start": 35359.72, + "end": 35364.52, + "probability": 0.2808 + }, + { + "start": 35366.05, + "end": 35370.78, + "probability": 0.5947 + }, + { + "start": 35370.9, + "end": 35371.24, + "probability": 0.4503 + }, + { + "start": 35371.34, + "end": 35372.88, + "probability": 0.1623 + }, + { + "start": 35373.04, + "end": 35373.26, + "probability": 0.1045 + }, + { + "start": 35373.26, + "end": 35373.52, + "probability": 0.297 + }, + { + "start": 35373.58, + "end": 35374.98, + "probability": 0.625 + }, + { + "start": 35375.12, + "end": 35376.9, + "probability": 0.8127 + }, + { + "start": 35377.48, + "end": 35377.5, + "probability": 0.0006 + }, + { + "start": 35379.79, + "end": 35384.16, + "probability": 0.2585 + }, + { + "start": 35384.72, + "end": 35385.58, + "probability": 0.0148 + }, + { + "start": 35385.85, + "end": 35391.98, + "probability": 0.0998 + }, + { + "start": 35392.12, + "end": 35393.97, + "probability": 0.1203 + }, + { + "start": 35394.84, + "end": 35397.16, + "probability": 0.1137 + }, + { + "start": 35397.16, + "end": 35397.16, + "probability": 0.0817 + }, + { + "start": 35397.16, + "end": 35398.22, + "probability": 0.2385 + }, + { + "start": 35398.4, + "end": 35398.98, + "probability": 0.0711 + }, + { + "start": 35398.98, + "end": 35399.18, + "probability": 0.0074 + }, + { + "start": 35399.36, + "end": 35402.52, + "probability": 0.2803 + }, + { + "start": 35403.48, + "end": 35407.66, + "probability": 0.0785 + }, + { + "start": 35410.76, + "end": 35412.04, + "probability": 0.167 + }, + { + "start": 35413.62, + "end": 35414.7, + "probability": 0.1145 + }, + { + "start": 35414.7, + "end": 35415.44, + "probability": 0.0382 + }, + { + "start": 35415.44, + "end": 35415.74, + "probability": 0.0112 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35442.0, + "end": 35442.0, + "probability": 0.0 + }, + { + "start": 35443.34, + "end": 35444.16, + "probability": 0.025 + }, + { + "start": 35444.4, + "end": 35444.68, + "probability": 0.0307 + }, + { + "start": 35444.68, + "end": 35445.32, + "probability": 0.0381 + }, + { + "start": 35446.88, + "end": 35447.7, + "probability": 0.1322 + }, + { + "start": 35447.7, + "end": 35447.7, + "probability": 0.0472 + }, + { + "start": 35447.7, + "end": 35447.7, + "probability": 0.0917 + }, + { + "start": 35447.7, + "end": 35447.74, + "probability": 0.1978 + }, + { + "start": 35447.94, + "end": 35452.12, + "probability": 0.3149 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35572.0, + "end": 35572.0, + "probability": 0.0 + }, + { + "start": 35573.0, + "end": 35573.34, + "probability": 0.0645 + }, + { + "start": 35573.34, + "end": 35573.34, + "probability": 0.0618 + }, + { + "start": 35573.34, + "end": 35573.34, + "probability": 0.0999 + }, + { + "start": 35573.34, + "end": 35576.84, + "probability": 0.7788 + }, + { + "start": 35577.6, + "end": 35583.02, + "probability": 0.7857 + }, + { + "start": 35583.02, + "end": 35587.12, + "probability": 0.8782 + }, + { + "start": 35587.34, + "end": 35592.22, + "probability": 0.9102 + }, + { + "start": 35593.08, + "end": 35594.0, + "probability": 0.9961 + }, + { + "start": 35594.6, + "end": 35597.64, + "probability": 0.9048 + }, + { + "start": 35598.52, + "end": 35604.34, + "probability": 0.9897 + }, + { + "start": 35606.18, + "end": 35610.84, + "probability": 0.7718 + }, + { + "start": 35611.42, + "end": 35618.4, + "probability": 0.9936 + }, + { + "start": 35619.08, + "end": 35622.9, + "probability": 0.8909 + }, + { + "start": 35624.09, + "end": 35626.22, + "probability": 0.6997 + }, + { + "start": 35626.76, + "end": 35629.38, + "probability": 0.9856 + }, + { + "start": 35630.22, + "end": 35635.06, + "probability": 0.9936 + }, + { + "start": 35635.5, + "end": 35636.75, + "probability": 0.9916 + }, + { + "start": 35637.58, + "end": 35638.88, + "probability": 0.8074 + }, + { + "start": 35639.18, + "end": 35640.1, + "probability": 0.7547 + }, + { + "start": 35641.1, + "end": 35642.82, + "probability": 0.8931 + }, + { + "start": 35642.88, + "end": 35646.22, + "probability": 0.9729 + }, + { + "start": 35646.72, + "end": 35649.8, + "probability": 0.9255 + }, + { + "start": 35650.48, + "end": 35652.56, + "probability": 0.9979 + }, + { + "start": 35653.24, + "end": 35657.74, + "probability": 0.9949 + }, + { + "start": 35657.8, + "end": 35660.22, + "probability": 0.9758 + }, + { + "start": 35661.48, + "end": 35663.7, + "probability": 0.1102 + }, + { + "start": 35663.7, + "end": 35667.43, + "probability": 0.8599 + }, + { + "start": 35669.18, + "end": 35669.98, + "probability": 0.8507 + }, + { + "start": 35670.38, + "end": 35673.46, + "probability": 0.9883 + }, + { + "start": 35673.92, + "end": 35674.96, + "probability": 0.0046 + }, + { + "start": 35675.22, + "end": 35676.48, + "probability": 0.9646 + }, + { + "start": 35677.08, + "end": 35680.42, + "probability": 0.8222 + }, + { + "start": 35680.9, + "end": 35684.71, + "probability": 0.8568 + }, + { + "start": 35685.14, + "end": 35687.78, + "probability": 0.7146 + }, + { + "start": 35687.88, + "end": 35688.76, + "probability": 0.2739 + }, + { + "start": 35689.54, + "end": 35689.62, + "probability": 0.3078 + }, + { + "start": 35689.82, + "end": 35691.7, + "probability": 0.6882 + }, + { + "start": 35691.74, + "end": 35692.92, + "probability": 0.6328 + }, + { + "start": 35695.18, + "end": 35695.32, + "probability": 0.7773 + }, + { + "start": 35696.34, + "end": 35699.16, + "probability": 0.2924 + }, + { + "start": 35700.14, + "end": 35701.92, + "probability": 0.7024 + }, + { + "start": 35702.42, + "end": 35704.18, + "probability": 0.6264 + }, + { + "start": 35704.3, + "end": 35713.3, + "probability": 0.9006 + }, + { + "start": 35713.42, + "end": 35713.86, + "probability": 0.8464 + }, + { + "start": 35714.62, + "end": 35719.2, + "probability": 0.7917 + }, + { + "start": 35722.04, + "end": 35725.02, + "probability": 0.9896 + }, + { + "start": 35726.68, + "end": 35727.49, + "probability": 0.5231 + }, + { + "start": 35727.78, + "end": 35730.92, + "probability": 0.9577 + }, + { + "start": 35730.92, + "end": 35733.9, + "probability": 0.9966 + }, + { + "start": 35734.0, + "end": 35734.32, + "probability": 0.6167 + }, + { + "start": 35734.4, + "end": 35738.24, + "probability": 0.9521 + }, + { + "start": 35738.86, + "end": 35741.7, + "probability": 0.9347 + }, + { + "start": 35741.7, + "end": 35744.58, + "probability": 0.993 + }, + { + "start": 35745.3, + "end": 35748.62, + "probability": 0.8681 + }, + { + "start": 35748.62, + "end": 35751.0, + "probability": 0.994 + }, + { + "start": 35751.06, + "end": 35755.52, + "probability": 0.9504 + }, + { + "start": 35756.42, + "end": 35758.34, + "probability": 0.7751 + }, + { + "start": 35758.34, + "end": 35760.3, + "probability": 0.9905 + }, + { + "start": 35760.4, + "end": 35762.81, + "probability": 0.7492 + }, + { + "start": 35764.22, + "end": 35765.22, + "probability": 0.8405 + }, + { + "start": 35765.28, + "end": 35766.72, + "probability": 0.7241 + }, + { + "start": 35766.78, + "end": 35769.16, + "probability": 0.8144 + }, + { + "start": 35769.92, + "end": 35770.32, + "probability": 0.5036 + }, + { + "start": 35770.42, + "end": 35772.44, + "probability": 0.8962 + }, + { + "start": 35772.54, + "end": 35774.04, + "probability": 0.3035 + }, + { + "start": 35774.04, + "end": 35777.39, + "probability": 0.7266 + }, + { + "start": 35777.98, + "end": 35779.18, + "probability": 0.0393 + }, + { + "start": 35779.76, + "end": 35783.26, + "probability": 0.8396 + }, + { + "start": 35783.26, + "end": 35787.26, + "probability": 0.8254 + }, + { + "start": 35787.88, + "end": 35791.24, + "probability": 0.9192 + }, + { + "start": 35792.22, + "end": 35794.5, + "probability": 0.959 + }, + { + "start": 35794.5, + "end": 35797.36, + "probability": 0.968 + }, + { + "start": 35798.44, + "end": 35801.52, + "probability": 0.9817 + }, + { + "start": 35801.54, + "end": 35804.36, + "probability": 0.9803 + }, + { + "start": 35805.18, + "end": 35805.92, + "probability": 0.4812 + }, + { + "start": 35805.92, + "end": 35806.76, + "probability": 0.1911 + }, + { + "start": 35806.9, + "end": 35807.14, + "probability": 0.4073 + }, + { + "start": 35808.93, + "end": 35809.16, + "probability": 0.1274 + }, + { + "start": 35812.24, + "end": 35814.04, + "probability": 0.0327 + }, + { + "start": 35816.14, + "end": 35816.8, + "probability": 0.0953 + }, + { + "start": 35816.8, + "end": 35820.26, + "probability": 0.9156 + }, + { + "start": 35820.34, + "end": 35822.44, + "probability": 0.8789 + }, + { + "start": 35823.66, + "end": 35825.58, + "probability": 0.4974 + }, + { + "start": 35826.98, + "end": 35827.14, + "probability": 0.2088 + }, + { + "start": 35827.14, + "end": 35828.7, + "probability": 0.4837 + }, + { + "start": 35828.72, + "end": 35830.74, + "probability": 0.562 + }, + { + "start": 35830.8, + "end": 35830.8, + "probability": 0.3807 + }, + { + "start": 35830.8, + "end": 35831.4, + "probability": 0.7964 + }, + { + "start": 35831.46, + "end": 35832.72, + "probability": 0.7342 + }, + { + "start": 35832.84, + "end": 35833.86, + "probability": 0.9365 + }, + { + "start": 35833.92, + "end": 35841.12, + "probability": 0.9263 + }, + { + "start": 35841.14, + "end": 35847.12, + "probability": 0.9128 + }, + { + "start": 35847.82, + "end": 35850.6, + "probability": 0.995 + }, + { + "start": 35850.68, + "end": 35854.26, + "probability": 0.9861 + }, + { + "start": 35854.7, + "end": 35857.42, + "probability": 0.6712 + }, + { + "start": 35857.52, + "end": 35857.96, + "probability": 0.4712 + }, + { + "start": 35858.02, + "end": 35858.67, + "probability": 0.9185 + }, + { + "start": 35859.5, + "end": 35862.1, + "probability": 0.9946 + }, + { + "start": 35862.1, + "end": 35866.58, + "probability": 0.9106 + }, + { + "start": 35866.82, + "end": 35869.06, + "probability": 0.9848 + }, + { + "start": 35870.18, + "end": 35872.52, + "probability": 0.9331 + }, + { + "start": 35872.6, + "end": 35873.68, + "probability": 0.9734 + }, + { + "start": 35874.28, + "end": 35877.86, + "probability": 0.8541 + }, + { + "start": 35877.86, + "end": 35881.14, + "probability": 0.9937 + }, + { + "start": 35881.72, + "end": 35884.84, + "probability": 0.9912 + }, + { + "start": 35885.0, + "end": 35886.12, + "probability": 0.6139 + }, + { + "start": 35886.24, + "end": 35891.26, + "probability": 0.9953 + }, + { + "start": 35891.46, + "end": 35893.46, + "probability": 0.9985 + }, + { + "start": 35893.56, + "end": 35897.74, + "probability": 0.9542 + }, + { + "start": 35897.74, + "end": 35900.6, + "probability": 0.9926 + }, + { + "start": 35901.02, + "end": 35904.78, + "probability": 0.9867 + }, + { + "start": 35904.78, + "end": 35908.82, + "probability": 0.9852 + }, + { + "start": 35909.4, + "end": 35910.78, + "probability": 0.9849 + }, + { + "start": 35911.28, + "end": 35917.06, + "probability": 0.9778 + }, + { + "start": 35917.06, + "end": 35920.84, + "probability": 0.9891 + }, + { + "start": 35921.44, + "end": 35922.5, + "probability": 0.7599 + }, + { + "start": 35922.58, + "end": 35925.68, + "probability": 0.9839 + }, + { + "start": 35925.68, + "end": 35928.76, + "probability": 0.9965 + }, + { + "start": 35929.12, + "end": 35929.36, + "probability": 0.7296 + }, + { + "start": 35929.78, + "end": 35931.28, + "probability": 0.5747 + }, + { + "start": 35931.88, + "end": 35935.95, + "probability": 0.9907 + }, + { + "start": 35937.07, + "end": 35937.24, + "probability": 0.1502 + }, + { + "start": 35937.24, + "end": 35939.1, + "probability": 0.7892 + }, + { + "start": 35939.34, + "end": 35941.22, + "probability": 0.6287 + }, + { + "start": 35944.56, + "end": 35946.92, + "probability": 0.6718 + }, + { + "start": 35952.12, + "end": 35954.06, + "probability": 0.3705 + }, + { + "start": 35955.88, + "end": 35957.36, + "probability": 0.1652 + }, + { + "start": 35962.26, + "end": 35964.52, + "probability": 0.056 + }, + { + "start": 35964.52, + "end": 35964.66, + "probability": 0.0423 + }, + { + "start": 35964.66, + "end": 35965.1, + "probability": 0.2102 + }, + { + "start": 35965.1, + "end": 35966.58, + "probability": 0.3015 + }, + { + "start": 35966.68, + "end": 35971.76, + "probability": 0.6165 + }, + { + "start": 35972.42, + "end": 35972.98, + "probability": 0.3819 + }, + { + "start": 35972.98, + "end": 35974.08, + "probability": 0.8031 + }, + { + "start": 35974.2, + "end": 35977.52, + "probability": 0.9845 + }, + { + "start": 35977.56, + "end": 35981.18, + "probability": 0.8682 + }, + { + "start": 35981.5, + "end": 35983.54, + "probability": 0.8481 + }, + { + "start": 35983.72, + "end": 35985.92, + "probability": 0.4888 + }, + { + "start": 35986.46, + "end": 35990.68, + "probability": 0.609 + }, + { + "start": 35991.04, + "end": 35993.16, + "probability": 0.8016 + }, + { + "start": 35993.28, + "end": 35996.5, + "probability": 0.9152 + }, + { + "start": 35996.54, + "end": 35996.64, + "probability": 0.8559 + }, + { + "start": 36021.34, + "end": 36021.34, + "probability": 0.0093 + }, + { + "start": 36021.34, + "end": 36021.34, + "probability": 0.0563 + }, + { + "start": 36021.34, + "end": 36023.09, + "probability": 0.1411 + }, + { + "start": 36024.62, + "end": 36025.72, + "probability": 0.2107 + }, + { + "start": 36025.84, + "end": 36026.56, + "probability": 0.2999 + }, + { + "start": 36026.7, + "end": 36027.5, + "probability": 0.266 + }, + { + "start": 36027.5, + "end": 36032.48, + "probability": 0.9733 + }, + { + "start": 36032.48, + "end": 36037.44, + "probability": 0.9884 + }, + { + "start": 36037.94, + "end": 36039.68, + "probability": 0.7839 + }, + { + "start": 36039.98, + "end": 36043.44, + "probability": 0.8632 + }, + { + "start": 36044.6, + "end": 36047.78, + "probability": 0.9393 + }, + { + "start": 36047.88, + "end": 36051.3, + "probability": 0.702 + }, + { + "start": 36051.66, + "end": 36054.48, + "probability": 0.9654 + }, + { + "start": 36055.08, + "end": 36056.88, + "probability": 0.8359 + }, + { + "start": 36057.6, + "end": 36058.88, + "probability": 0.6438 + }, + { + "start": 36059.46, + "end": 36060.26, + "probability": 0.2391 + }, + { + "start": 36060.9, + "end": 36061.42, + "probability": 0.5745 + }, + { + "start": 36062.22, + "end": 36070.66, + "probability": 0.8752 + }, + { + "start": 36070.82, + "end": 36075.66, + "probability": 0.7729 + }, + { + "start": 36076.4, + "end": 36080.98, + "probability": 0.9844 + }, + { + "start": 36080.98, + "end": 36085.7, + "probability": 0.9863 + }, + { + "start": 36086.56, + "end": 36089.48, + "probability": 0.3527 + }, + { + "start": 36089.54, + "end": 36093.56, + "probability": 0.7722 + }, + { + "start": 36094.84, + "end": 36104.88, + "probability": 0.9438 + }, + { + "start": 36104.94, + "end": 36108.56, + "probability": 0.6292 + }, + { + "start": 36109.04, + "end": 36110.12, + "probability": 0.8133 + }, + { + "start": 36110.36, + "end": 36114.96, + "probability": 0.8595 + }, + { + "start": 36116.1, + "end": 36119.64, + "probability": 0.8948 + }, + { + "start": 36120.62, + "end": 36125.1, + "probability": 0.934 + }, + { + "start": 36125.48, + "end": 36127.76, + "probability": 0.9824 + }, + { + "start": 36127.92, + "end": 36131.82, + "probability": 0.9792 + }, + { + "start": 36132.0, + "end": 36137.64, + "probability": 0.9119 + }, + { + "start": 36138.12, + "end": 36139.0, + "probability": 0.1948 + }, + { + "start": 36140.08, + "end": 36141.19, + "probability": 0.1338 + }, + { + "start": 36142.24, + "end": 36142.6, + "probability": 0.1635 + }, + { + "start": 36142.74, + "end": 36147.64, + "probability": 0.9702 + }, + { + "start": 36148.06, + "end": 36151.64, + "probability": 0.9521 + }, + { + "start": 36151.64, + "end": 36153.86, + "probability": 0.7609 + }, + { + "start": 36154.08, + "end": 36160.58, + "probability": 0.9722 + }, + { + "start": 36161.02, + "end": 36164.36, + "probability": 0.8759 + }, + { + "start": 36164.86, + "end": 36170.22, + "probability": 0.9677 + }, + { + "start": 36170.98, + "end": 36173.16, + "probability": 0.6655 + }, + { + "start": 36173.26, + "end": 36176.76, + "probability": 0.917 + }, + { + "start": 36176.8, + "end": 36178.0, + "probability": 0.7124 + }, + { + "start": 36178.08, + "end": 36179.04, + "probability": 0.8271 + }, + { + "start": 36179.48, + "end": 36181.02, + "probability": 0.4775 + }, + { + "start": 36181.12, + "end": 36182.62, + "probability": 0.6188 + }, + { + "start": 36182.8, + "end": 36185.24, + "probability": 0.7774 + }, + { + "start": 36185.92, + "end": 36189.24, + "probability": 0.7803 + }, + { + "start": 36189.24, + "end": 36192.92, + "probability": 0.5822 + }, + { + "start": 36193.42, + "end": 36202.44, + "probability": 0.8587 + }, + { + "start": 36202.78, + "end": 36204.16, + "probability": 0.9512 + }, + { + "start": 36204.66, + "end": 36205.06, + "probability": 0.7531 + }, + { + "start": 36205.2, + "end": 36212.46, + "probability": 0.8615 + }, + { + "start": 36214.42, + "end": 36214.56, + "probability": 0.0111 + }, + { + "start": 36214.56, + "end": 36215.87, + "probability": 0.9261 + }, + { + "start": 36216.02, + "end": 36216.58, + "probability": 0.2484 + }, + { + "start": 36216.72, + "end": 36217.6, + "probability": 0.29 + }, + { + "start": 36218.0, + "end": 36219.0, + "probability": 0.5543 + }, + { + "start": 36219.86, + "end": 36223.3, + "probability": 0.9883 + }, + { + "start": 36223.42, + "end": 36227.7, + "probability": 0.7534 + }, + { + "start": 36228.34, + "end": 36233.82, + "probability": 0.888 + }, + { + "start": 36237.66, + "end": 36240.1, + "probability": 0.9548 + }, + { + "start": 36240.1, + "end": 36243.78, + "probability": 0.8784 + }, + { + "start": 36244.68, + "end": 36249.1, + "probability": 0.9334 + }, + { + "start": 36249.5, + "end": 36250.1, + "probability": 0.8383 + }, + { + "start": 36250.26, + "end": 36251.84, + "probability": 0.8749 + }, + { + "start": 36252.24, + "end": 36253.26, + "probability": 0.802 + }, + { + "start": 36253.28, + "end": 36261.16, + "probability": 0.9385 + }, + { + "start": 36262.46, + "end": 36263.18, + "probability": 0.3148 + }, + { + "start": 36263.54, + "end": 36266.66, + "probability": 0.9773 + }, + { + "start": 36267.36, + "end": 36268.6, + "probability": 0.8318 + }, + { + "start": 36269.14, + "end": 36270.98, + "probability": 0.0447 + }, + { + "start": 36271.12, + "end": 36273.68, + "probability": 0.5591 + }, + { + "start": 36274.9, + "end": 36278.08, + "probability": 0.8715 + }, + { + "start": 36278.2, + "end": 36280.3, + "probability": 0.9452 + }, + { + "start": 36280.44, + "end": 36284.28, + "probability": 0.9159 + }, + { + "start": 36285.74, + "end": 36288.74, + "probability": 0.807 + }, + { + "start": 36289.18, + "end": 36291.52, + "probability": 0.818 + }, + { + "start": 36291.74, + "end": 36293.74, + "probability": 0.7022 + }, + { + "start": 36294.02, + "end": 36296.42, + "probability": 0.3329 + }, + { + "start": 36296.58, + "end": 36298.46, + "probability": 0.5415 + }, + { + "start": 36300.06, + "end": 36304.86, + "probability": 0.8975 + }, + { + "start": 36305.98, + "end": 36314.3, + "probability": 0.9837 + }, + { + "start": 36314.44, + "end": 36315.68, + "probability": 0.6637 + }, + { + "start": 36317.26, + "end": 36319.14, + "probability": 0.798 + }, + { + "start": 36319.54, + "end": 36322.58, + "probability": 0.9646 + }, + { + "start": 36322.8, + "end": 36327.44, + "probability": 0.9888 + }, + { + "start": 36327.5, + "end": 36329.44, + "probability": 0.9712 + }, + { + "start": 36329.94, + "end": 36329.94, + "probability": 0.1568 + }, + { + "start": 36330.12, + "end": 36330.12, + "probability": 0.6963 + }, + { + "start": 36330.12, + "end": 36332.28, + "probability": 0.6193 + }, + { + "start": 36332.42, + "end": 36335.06, + "probability": 0.6609 + }, + { + "start": 36335.14, + "end": 36338.92, + "probability": 0.9688 + }, + { + "start": 36339.0, + "end": 36343.8, + "probability": 0.9959 + }, + { + "start": 36343.8, + "end": 36349.16, + "probability": 0.9976 + }, + { + "start": 36349.58, + "end": 36355.04, + "probability": 0.8728 + }, + { + "start": 36355.78, + "end": 36359.54, + "probability": 0.9854 + }, + { + "start": 36360.14, + "end": 36362.72, + "probability": 0.8539 + }, + { + "start": 36363.42, + "end": 36366.42, + "probability": 0.6414 + }, + { + "start": 36367.0, + "end": 36370.82, + "probability": 0.9259 + }, + { + "start": 36370.88, + "end": 36374.92, + "probability": 0.9798 + }, + { + "start": 36374.96, + "end": 36376.3, + "probability": 0.3982 + }, + { + "start": 36376.56, + "end": 36379.14, + "probability": 0.6641 + }, + { + "start": 36379.28, + "end": 36381.16, + "probability": 0.4806 + }, + { + "start": 36381.82, + "end": 36383.6, + "probability": 0.6641 + }, + { + "start": 36384.72, + "end": 36385.44, + "probability": 0.0346 + }, + { + "start": 36385.44, + "end": 36386.62, + "probability": 0.0518 + }, + { + "start": 36388.06, + "end": 36392.62, + "probability": 0.8914 + }, + { + "start": 36393.64, + "end": 36401.48, + "probability": 0.8005 + }, + { + "start": 36401.48, + "end": 36407.88, + "probability": 0.9882 + }, + { + "start": 36408.18, + "end": 36409.84, + "probability": 0.761 + }, + { + "start": 36410.52, + "end": 36411.36, + "probability": 0.9871 + }, + { + "start": 36412.2, + "end": 36412.94, + "probability": 0.6138 + }, + { + "start": 36414.36, + "end": 36416.9, + "probability": 0.8049 + }, + { + "start": 36417.96, + "end": 36419.8, + "probability": 0.8406 + }, + { + "start": 36420.0, + "end": 36422.8, + "probability": 0.988 + }, + { + "start": 36423.7, + "end": 36427.02, + "probability": 0.9954 + }, + { + "start": 36427.2, + "end": 36429.32, + "probability": 0.8575 + }, + { + "start": 36429.48, + "end": 36430.74, + "probability": 0.7613 + }, + { + "start": 36431.5, + "end": 36432.38, + "probability": 0.7044 + }, + { + "start": 36432.42, + "end": 36435.4, + "probability": 0.8005 + }, + { + "start": 36436.34, + "end": 36441.2, + "probability": 0.8991 + }, + { + "start": 36441.3, + "end": 36443.08, + "probability": 0.6585 + }, + { + "start": 36443.46, + "end": 36446.76, + "probability": 0.9472 + }, + { + "start": 36447.94, + "end": 36451.08, + "probability": 0.9662 + }, + { + "start": 36451.2, + "end": 36452.26, + "probability": 0.8783 + }, + { + "start": 36452.42, + "end": 36455.12, + "probability": 0.9215 + }, + { + "start": 36455.16, + "end": 36457.64, + "probability": 0.968 + }, + { + "start": 36458.06, + "end": 36458.3, + "probability": 0.4142 + }, + { + "start": 36459.0, + "end": 36461.8, + "probability": 0.9724 + }, + { + "start": 36462.06, + "end": 36463.06, + "probability": 0.9394 + }, + { + "start": 36464.3, + "end": 36469.92, + "probability": 0.9164 + }, + { + "start": 36470.7, + "end": 36471.09, + "probability": 0.3558 + }, + { + "start": 36472.46, + "end": 36475.6, + "probability": 0.7826 + }, + { + "start": 36475.68, + "end": 36477.98, + "probability": 0.7236 + }, + { + "start": 36478.32, + "end": 36480.22, + "probability": 0.3027 + }, + { + "start": 36480.22, + "end": 36482.56, + "probability": 0.2066 + }, + { + "start": 36484.04, + "end": 36484.84, + "probability": 0.0214 + }, + { + "start": 36485.42, + "end": 36489.14, + "probability": 0.9326 + }, + { + "start": 36489.22, + "end": 36493.6, + "probability": 0.8807 + }, + { + "start": 36493.6, + "end": 36493.6, + "probability": 0.1529 + }, + { + "start": 36493.6, + "end": 36494.33, + "probability": 0.7384 + }, + { + "start": 36494.72, + "end": 36497.54, + "probability": 0.9819 + }, + { + "start": 36497.6, + "end": 36500.86, + "probability": 0.8187 + }, + { + "start": 36501.18, + "end": 36502.22, + "probability": 0.9247 + }, + { + "start": 36503.56, + "end": 36504.82, + "probability": 0.2546 + }, + { + "start": 36505.1, + "end": 36507.16, + "probability": 0.6836 + }, + { + "start": 36507.26, + "end": 36509.16, + "probability": 0.8305 + }, + { + "start": 36509.24, + "end": 36510.14, + "probability": 0.9893 + }, + { + "start": 36510.84, + "end": 36511.62, + "probability": 0.8855 + }, + { + "start": 36511.9, + "end": 36514.62, + "probability": 0.991 + }, + { + "start": 36515.58, + "end": 36521.72, + "probability": 0.8409 + }, + { + "start": 36522.44, + "end": 36524.9, + "probability": 0.8094 + }, + { + "start": 36526.12, + "end": 36530.46, + "probability": 0.9688 + }, + { + "start": 36531.82, + "end": 36538.66, + "probability": 0.9531 + }, + { + "start": 36538.78, + "end": 36539.92, + "probability": 0.8709 + }, + { + "start": 36540.9, + "end": 36542.76, + "probability": 0.9979 + }, + { + "start": 36543.4, + "end": 36544.52, + "probability": 0.9404 + }, + { + "start": 36545.8, + "end": 36548.94, + "probability": 0.9519 + }, + { + "start": 36548.94, + "end": 36551.06, + "probability": 0.9901 + }, + { + "start": 36551.72, + "end": 36552.26, + "probability": 0.9637 + }, + { + "start": 36552.26, + "end": 36553.6, + "probability": 0.9292 + }, + { + "start": 36554.89, + "end": 36556.54, + "probability": 0.487 + }, + { + "start": 36556.54, + "end": 36560.04, + "probability": 0.9423 + }, + { + "start": 36560.12, + "end": 36561.08, + "probability": 0.9924 + }, + { + "start": 36561.44, + "end": 36564.68, + "probability": 0.9716 + }, + { + "start": 36565.18, + "end": 36566.34, + "probability": 0.5231 + }, + { + "start": 36567.4, + "end": 36567.54, + "probability": 0.2371 + }, + { + "start": 36567.54, + "end": 36568.06, + "probability": 0.0495 + }, + { + "start": 36568.75, + "end": 36571.84, + "probability": 0.4899 + }, + { + "start": 36572.48, + "end": 36575.2, + "probability": 0.8355 + }, + { + "start": 36576.04, + "end": 36579.52, + "probability": 0.9966 + }, + { + "start": 36580.32, + "end": 36580.76, + "probability": 0.061 + }, + { + "start": 36580.76, + "end": 36582.08, + "probability": 0.6385 + }, + { + "start": 36582.16, + "end": 36584.24, + "probability": 0.8341 + }, + { + "start": 36584.52, + "end": 36589.62, + "probability": 0.9788 + }, + { + "start": 36589.62, + "end": 36594.52, + "probability": 0.8944 + }, + { + "start": 36595.04, + "end": 36599.1, + "probability": 0.653 + }, + { + "start": 36599.72, + "end": 36600.54, + "probability": 0.6824 + }, + { + "start": 36600.68, + "end": 36602.74, + "probability": 0.8322 + }, + { + "start": 36603.16, + "end": 36603.68, + "probability": 0.5005 + }, + { + "start": 36603.76, + "end": 36603.86, + "probability": 0.4039 + }, + { + "start": 36603.88, + "end": 36605.28, + "probability": 0.5636 + }, + { + "start": 36605.46, + "end": 36609.48, + "probability": 0.957 + }, + { + "start": 36610.52, + "end": 36611.94, + "probability": 0.0109 + }, + { + "start": 36612.14, + "end": 36615.06, + "probability": 0.7377 + }, + { + "start": 36615.14, + "end": 36617.15, + "probability": 0.7735 + }, + { + "start": 36617.72, + "end": 36623.9, + "probability": 0.851 + }, + { + "start": 36624.66, + "end": 36624.76, + "probability": 0.1614 + }, + { + "start": 36625.02, + "end": 36627.3, + "probability": 0.9119 + }, + { + "start": 36627.42, + "end": 36629.68, + "probability": 0.9771 + }, + { + "start": 36629.68, + "end": 36633.28, + "probability": 0.9712 + }, + { + "start": 36634.04, + "end": 36635.58, + "probability": 0.9712 + }, + { + "start": 36635.7, + "end": 36636.58, + "probability": 0.9193 + }, + { + "start": 36636.8, + "end": 36640.42, + "probability": 0.8397 + }, + { + "start": 36640.42, + "end": 36644.82, + "probability": 0.9133 + }, + { + "start": 36644.96, + "end": 36646.04, + "probability": 0.8356 + }, + { + "start": 36646.34, + "end": 36652.54, + "probability": 0.9741 + }, + { + "start": 36652.6, + "end": 36654.16, + "probability": 0.6239 + }, + { + "start": 36654.22, + "end": 36657.74, + "probability": 0.4122 + }, + { + "start": 36657.74, + "end": 36657.74, + "probability": 0.1842 + }, + { + "start": 36657.74, + "end": 36658.06, + "probability": 0.104 + }, + { + "start": 36658.82, + "end": 36660.66, + "probability": 0.9458 + }, + { + "start": 36661.28, + "end": 36662.38, + "probability": 0.9797 + }, + { + "start": 36662.52, + "end": 36668.04, + "probability": 0.8573 + }, + { + "start": 36676.86, + "end": 36679.72, + "probability": 0.0905 + }, + { + "start": 36679.72, + "end": 36679.72, + "probability": 0.0041 + }, + { + "start": 36679.72, + "end": 36679.72, + "probability": 0.0808 + }, + { + "start": 36679.72, + "end": 36682.36, + "probability": 0.5083 + }, + { + "start": 36682.98, + "end": 36683.84, + "probability": 0.3652 + }, + { + "start": 36685.66, + "end": 36687.78, + "probability": 0.9728 + }, + { + "start": 36688.58, + "end": 36689.37, + "probability": 0.6878 + }, + { + "start": 36689.5, + "end": 36696.8, + "probability": 0.9624 + }, + { + "start": 36697.5, + "end": 36697.7, + "probability": 0.2573 + }, + { + "start": 36697.7, + "end": 36698.78, + "probability": 0.6341 + }, + { + "start": 36698.86, + "end": 36701.06, + "probability": 0.9265 + }, + { + "start": 36701.1, + "end": 36705.04, + "probability": 0.9696 + }, + { + "start": 36706.1, + "end": 36707.74, + "probability": 0.1065 + }, + { + "start": 36708.82, + "end": 36710.3, + "probability": 0.1466 + }, + { + "start": 36710.36, + "end": 36711.5, + "probability": 0.4405 + }, + { + "start": 36711.6, + "end": 36713.12, + "probability": 0.8645 + }, + { + "start": 36713.38, + "end": 36715.36, + "probability": 0.8882 + }, + { + "start": 36715.86, + "end": 36719.74, + "probability": 0.9889 + }, + { + "start": 36720.56, + "end": 36721.22, + "probability": 0.4591 + }, + { + "start": 36721.44, + "end": 36725.62, + "probability": 0.9917 + }, + { + "start": 36726.44, + "end": 36732.0, + "probability": 0.9937 + }, + { + "start": 36733.54, + "end": 36738.16, + "probability": 0.8279 + }, + { + "start": 36738.72, + "end": 36742.32, + "probability": 0.8842 + }, + { + "start": 36742.96, + "end": 36743.68, + "probability": 0.9722 + }, + { + "start": 36743.86, + "end": 36749.94, + "probability": 0.9736 + }, + { + "start": 36750.02, + "end": 36753.6, + "probability": 0.9965 + }, + { + "start": 36754.16, + "end": 36756.22, + "probability": 0.8187 + }, + { + "start": 36756.28, + "end": 36758.46, + "probability": 0.9563 + }, + { + "start": 36759.42, + "end": 36761.44, + "probability": 0.8976 + }, + { + "start": 36761.5, + "end": 36764.3, + "probability": 0.9813 + }, + { + "start": 36765.12, + "end": 36766.58, + "probability": 0.9552 + }, + { + "start": 36766.66, + "end": 36767.92, + "probability": 0.7445 + }, + { + "start": 36768.06, + "end": 36768.93, + "probability": 0.9937 + }, + { + "start": 36769.78, + "end": 36772.82, + "probability": 0.9011 + }, + { + "start": 36772.92, + "end": 36777.0, + "probability": 0.9933 + }, + { + "start": 36777.1, + "end": 36777.94, + "probability": 0.9448 + }, + { + "start": 36778.18, + "end": 36778.74, + "probability": 0.47 + }, + { + "start": 36778.74, + "end": 36781.92, + "probability": 0.6411 + }, + { + "start": 36782.08, + "end": 36785.42, + "probability": 0.9952 + }, + { + "start": 36785.42, + "end": 36787.9, + "probability": 0.9968 + }, + { + "start": 36788.72, + "end": 36790.16, + "probability": 0.9217 + }, + { + "start": 36791.12, + "end": 36795.04, + "probability": 0.9486 + }, + { + "start": 36795.7, + "end": 36796.34, + "probability": 0.8147 + }, + { + "start": 36796.54, + "end": 36799.44, + "probability": 0.8646 + }, + { + "start": 36799.5, + "end": 36802.0, + "probability": 0.7805 + }, + { + "start": 36802.1, + "end": 36803.88, + "probability": 0.8535 + }, + { + "start": 36804.96, + "end": 36808.2, + "probability": 0.9973 + }, + { + "start": 36808.78, + "end": 36810.94, + "probability": 0.9446 + }, + { + "start": 36812.83, + "end": 36814.37, + "probability": 0.0318 + }, + { + "start": 36814.56, + "end": 36815.24, + "probability": 0.4868 + }, + { + "start": 36815.62, + "end": 36816.36, + "probability": 0.0711 + }, + { + "start": 36816.58, + "end": 36817.94, + "probability": 0.3799 + }, + { + "start": 36818.22, + "end": 36818.44, + "probability": 0.2205 + }, + { + "start": 36818.74, + "end": 36819.12, + "probability": 0.3035 + }, + { + "start": 36819.3, + "end": 36820.54, + "probability": 0.4609 + }, + { + "start": 36820.6, + "end": 36822.22, + "probability": 0.6803 + }, + { + "start": 36822.28, + "end": 36825.4, + "probability": 0.8652 + }, + { + "start": 36825.58, + "end": 36828.78, + "probability": 0.9849 + }, + { + "start": 36828.86, + "end": 36830.7, + "probability": 0.8641 + }, + { + "start": 36831.08, + "end": 36832.3, + "probability": 0.8088 + }, + { + "start": 36834.4, + "end": 36835.84, + "probability": 0.3564 + }, + { + "start": 36836.92, + "end": 36837.44, + "probability": 0.9683 + }, + { + "start": 36837.66, + "end": 36841.56, + "probability": 0.8714 + }, + { + "start": 36841.56, + "end": 36844.96, + "probability": 0.9772 + }, + { + "start": 36845.06, + "end": 36848.06, + "probability": 0.9358 + }, + { + "start": 36848.06, + "end": 36850.43, + "probability": 0.9488 + }, + { + "start": 36850.8, + "end": 36850.8, + "probability": 0.032 + }, + { + "start": 36850.8, + "end": 36852.96, + "probability": 0.9454 + }, + { + "start": 36853.08, + "end": 36855.9, + "probability": 0.9891 + }, + { + "start": 36856.42, + "end": 36858.0, + "probability": 0.3909 + }, + { + "start": 36859.68, + "end": 36859.92, + "probability": 0.1392 + }, + { + "start": 36859.92, + "end": 36859.94, + "probability": 0.1214 + }, + { + "start": 36859.94, + "end": 36859.94, + "probability": 0.0528 + }, + { + "start": 36859.94, + "end": 36859.94, + "probability": 0.1477 + }, + { + "start": 36859.94, + "end": 36860.34, + "probability": 0.3383 + }, + { + "start": 36860.34, + "end": 36861.44, + "probability": 0.7073 + }, + { + "start": 36861.52, + "end": 36865.26, + "probability": 0.9447 + }, + { + "start": 36866.92, + "end": 36867.1, + "probability": 0.0862 + }, + { + "start": 36867.1, + "end": 36867.1, + "probability": 0.083 + }, + { + "start": 36867.1, + "end": 36867.1, + "probability": 0.1441 + }, + { + "start": 36867.1, + "end": 36869.46, + "probability": 0.9025 + }, + { + "start": 36869.46, + "end": 36871.84, + "probability": 0.9522 + }, + { + "start": 36871.96, + "end": 36874.72, + "probability": 0.9701 + }, + { + "start": 36874.9, + "end": 36877.93, + "probability": 0.9961 + }, + { + "start": 36879.9, + "end": 36883.14, + "probability": 0.997 + }, + { + "start": 36883.66, + "end": 36885.88, + "probability": 0.9931 + }, + { + "start": 36885.9, + "end": 36887.96, + "probability": 0.9945 + }, + { + "start": 36888.88, + "end": 36894.68, + "probability": 0.997 + }, + { + "start": 36894.9, + "end": 36897.2, + "probability": 0.9982 + }, + { + "start": 36897.28, + "end": 36899.86, + "probability": 0.8657 + }, + { + "start": 36899.96, + "end": 36901.84, + "probability": 0.9819 + }, + { + "start": 36902.64, + "end": 36903.18, + "probability": 0.3184 + }, + { + "start": 36903.22, + "end": 36903.34, + "probability": 0.8153 + }, + { + "start": 36903.42, + "end": 36904.44, + "probability": 0.9817 + }, + { + "start": 36904.5, + "end": 36906.54, + "probability": 0.8831 + }, + { + "start": 36907.0, + "end": 36910.04, + "probability": 0.9799 + }, + { + "start": 36910.2, + "end": 36910.4, + "probability": 0.8718 + }, + { + "start": 36910.56, + "end": 36915.5, + "probability": 0.9859 + }, + { + "start": 36915.9, + "end": 36920.08, + "probability": 0.9764 + }, + { + "start": 36920.26, + "end": 36924.76, + "probability": 0.9827 + }, + { + "start": 36924.76, + "end": 36927.74, + "probability": 0.9964 + }, + { + "start": 36928.08, + "end": 36930.1, + "probability": 0.6841 + }, + { + "start": 36930.1, + "end": 36930.7, + "probability": 0.6708 + }, + { + "start": 36931.04, + "end": 36933.28, + "probability": 0.9834 + }, + { + "start": 36933.38, + "end": 36939.54, + "probability": 0.9626 + }, + { + "start": 36939.76, + "end": 36943.34, + "probability": 0.9949 + }, + { + "start": 36943.46, + "end": 36946.64, + "probability": 0.9862 + }, + { + "start": 36946.92, + "end": 36950.04, + "probability": 0.9885 + }, + { + "start": 36950.04, + "end": 36952.52, + "probability": 0.9988 + }, + { + "start": 36952.52, + "end": 36953.98, + "probability": 0.9773 + }, + { + "start": 36954.06, + "end": 36956.18, + "probability": 0.9819 + }, + { + "start": 36957.44, + "end": 36959.92, + "probability": 0.9941 + }, + { + "start": 36960.26, + "end": 36961.94, + "probability": 0.9211 + }, + { + "start": 36962.16, + "end": 36964.08, + "probability": 0.8869 + }, + { + "start": 36964.16, + "end": 36964.7, + "probability": 0.8091 + }, + { + "start": 36964.8, + "end": 36967.6, + "probability": 0.9897 + }, + { + "start": 36968.16, + "end": 36973.92, + "probability": 0.9929 + }, + { + "start": 36974.46, + "end": 36976.84, + "probability": 0.9901 + }, + { + "start": 36976.84, + "end": 36981.62, + "probability": 0.9995 + }, + { + "start": 36981.7, + "end": 36982.08, + "probability": 0.7237 + }, + { + "start": 36982.14, + "end": 36982.7, + "probability": 0.379 + }, + { + "start": 36983.6, + "end": 36984.88, + "probability": 0.5394 + }, + { + "start": 36984.94, + "end": 36988.3, + "probability": 0.9954 + }, + { + "start": 36990.44, + "end": 36992.52, + "probability": 0.9279 + }, + { + "start": 36992.62, + "end": 36994.5, + "probability": 0.8503 + }, + { + "start": 36994.92, + "end": 36996.61, + "probability": 0.9349 + }, + { + "start": 36997.34, + "end": 37004.42, + "probability": 0.9253 + }, + { + "start": 37004.6, + "end": 37005.3, + "probability": 0.9424 + }, + { + "start": 37007.24, + "end": 37009.48, + "probability": 0.9735 + }, + { + "start": 37010.38, + "end": 37013.9, + "probability": 0.98 + }, + { + "start": 37013.9, + "end": 37018.3, + "probability": 0.9977 + }, + { + "start": 37019.24, + "end": 37023.86, + "probability": 0.9874 + }, + { + "start": 37024.28, + "end": 37026.44, + "probability": 0.8403 + }, + { + "start": 37026.76, + "end": 37034.1, + "probability": 0.9316 + }, + { + "start": 37034.22, + "end": 37036.58, + "probability": 0.8157 + }, + { + "start": 37036.94, + "end": 37038.82, + "probability": 0.9438 + }, + { + "start": 37038.82, + "end": 37041.74, + "probability": 0.9669 + }, + { + "start": 37041.82, + "end": 37042.22, + "probability": 0.139 + }, + { + "start": 37042.22, + "end": 37042.6, + "probability": 0.6227 + }, + { + "start": 37042.74, + "end": 37043.9, + "probability": 0.8435 + }, + { + "start": 37043.94, + "end": 37044.32, + "probability": 0.0004 + }, + { + "start": 37045.38, + "end": 37046.42, + "probability": 0.9243 + }, + { + "start": 37047.52, + "end": 37049.4, + "probability": 0.7021 + }, + { + "start": 37049.64, + "end": 37054.49, + "probability": 0.7709 + }, + { + "start": 37055.4, + "end": 37057.76, + "probability": 0.8031 + }, + { + "start": 37057.76, + "end": 37057.84, + "probability": 0.8193 + }, + { + "start": 37057.86, + "end": 37058.74, + "probability": 0.8042 + }, + { + "start": 37060.2, + "end": 37061.28, + "probability": 0.7295 + }, + { + "start": 37061.36, + "end": 37062.26, + "probability": 0.8069 + }, + { + "start": 37062.38, + "end": 37068.22, + "probability": 0.7417 + }, + { + "start": 37070.6, + "end": 37073.44, + "probability": 0.3262 + }, + { + "start": 37075.12, + "end": 37078.12, + "probability": 0.995 + }, + { + "start": 37082.08, + "end": 37088.3, + "probability": 0.4023 + }, + { + "start": 37089.4, + "end": 37093.6, + "probability": 0.587 + }, + { + "start": 37093.83, + "end": 37098.24, + "probability": 0.2116 + }, + { + "start": 37098.86, + "end": 37098.86, + "probability": 0.0013 + }, + { + "start": 37102.94, + "end": 37104.0, + "probability": 0.0688 + }, + { + "start": 37104.0, + "end": 37106.0, + "probability": 0.0 + }, + { + "start": 37106.0, + "end": 37106.0, + "probability": 0.0 + }, + { + "start": 37106.0, + "end": 37106.0, + "probability": 0.0 + }, + { + "start": 37106.0, + "end": 37106.0, + "probability": 0.0 + } + ], + "segments_count": 13202, + "words_count": 64228, + "avg_words_per_segment": 4.865, + "avg_segment_duration": 1.8681, + "avg_words_per_minute": 103.856, + "plenum_id": "35082", + "duration": 37106.0, + "title": null, + "plenum_date": "2014-02-12" +} \ No newline at end of file