diff --git "a/54162/metadata.json" "b/54162/metadata.json" new file mode 100644--- /dev/null +++ "b/54162/metadata.json" @@ -0,0 +1,46757 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "54162", + "quality_score": 0.8723, + "per_segment_quality_scores": [ + { + "start": 41.14, + "end": 43.54, + "probability": 0.1661 + }, + { + "start": 44.22, + "end": 44.8, + "probability": 0.4602 + }, + { + "start": 47.3, + "end": 52.42, + "probability": 0.0662 + }, + { + "start": 53.04, + "end": 55.64, + "probability": 0.0352 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.98, + "end": 127.3, + "probability": 0.0755 + }, + { + "start": 127.3, + "end": 130.92, + "probability": 0.0288 + }, + { + "start": 132.7, + "end": 138.22, + "probability": 0.1628 + }, + { + "start": 138.88, + "end": 142.82, + "probability": 0.2655 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.0, + "end": 678.0, + "probability": 0.0 + }, + { + "start": 678.18, + "end": 678.39, + "probability": 0.2035 + }, + { + "start": 679.32, + "end": 684.88, + "probability": 0.9527 + }, + { + "start": 685.42, + "end": 688.78, + "probability": 0.8894 + }, + { + "start": 688.92, + "end": 689.26, + "probability": 0.4799 + }, + { + "start": 689.4, + "end": 689.8, + "probability": 0.7638 + }, + { + "start": 689.86, + "end": 691.1, + "probability": 0.9072 + }, + { + "start": 691.8, + "end": 692.86, + "probability": 0.6621 + }, + { + "start": 695.68, + "end": 696.82, + "probability": 0.9343 + }, + { + "start": 728.7, + "end": 729.58, + "probability": 0.6941 + }, + { + "start": 730.12, + "end": 730.82, + "probability": 0.865 + }, + { + "start": 732.18, + "end": 733.72, + "probability": 0.5509 + }, + { + "start": 736.2, + "end": 736.74, + "probability": 0.7524 + }, + { + "start": 738.5, + "end": 739.5, + "probability": 0.9771 + }, + { + "start": 740.76, + "end": 743.52, + "probability": 0.9908 + }, + { + "start": 744.8, + "end": 747.94, + "probability": 0.9506 + }, + { + "start": 749.1, + "end": 750.86, + "probability": 0.9841 + }, + { + "start": 751.62, + "end": 752.76, + "probability": 0.9707 + }, + { + "start": 754.62, + "end": 756.38, + "probability": 0.7993 + }, + { + "start": 757.0, + "end": 757.46, + "probability": 0.6039 + }, + { + "start": 758.44, + "end": 761.06, + "probability": 0.8448 + }, + { + "start": 762.16, + "end": 764.58, + "probability": 0.9813 + }, + { + "start": 765.7, + "end": 769.76, + "probability": 0.9891 + }, + { + "start": 771.14, + "end": 771.38, + "probability": 0.4864 + }, + { + "start": 771.38, + "end": 771.38, + "probability": 0.0132 + }, + { + "start": 771.38, + "end": 774.96, + "probability": 0.9111 + }, + { + "start": 775.0, + "end": 775.82, + "probability": 0.9727 + }, + { + "start": 776.06, + "end": 780.5, + "probability": 0.5183 + }, + { + "start": 780.54, + "end": 782.16, + "probability": 0.1406 + }, + { + "start": 782.16, + "end": 784.4, + "probability": 0.677 + }, + { + "start": 785.36, + "end": 788.1, + "probability": 0.9242 + }, + { + "start": 788.76, + "end": 790.42, + "probability": 0.9405 + }, + { + "start": 790.8, + "end": 792.58, + "probability": 0.9644 + }, + { + "start": 793.06, + "end": 794.66, + "probability": 0.9607 + }, + { + "start": 795.48, + "end": 797.44, + "probability": 0.8126 + }, + { + "start": 797.98, + "end": 799.66, + "probability": 0.9812 + }, + { + "start": 800.26, + "end": 805.76, + "probability": 0.9987 + }, + { + "start": 806.66, + "end": 809.72, + "probability": 0.9752 + }, + { + "start": 811.92, + "end": 813.22, + "probability": 0.9742 + }, + { + "start": 814.16, + "end": 816.16, + "probability": 0.9585 + }, + { + "start": 817.18, + "end": 820.28, + "probability": 0.8465 + }, + { + "start": 821.42, + "end": 824.38, + "probability": 0.956 + }, + { + "start": 824.9, + "end": 825.4, + "probability": 0.7067 + }, + { + "start": 826.2, + "end": 826.92, + "probability": 0.4741 + }, + { + "start": 827.72, + "end": 828.88, + "probability": 0.8638 + }, + { + "start": 830.12, + "end": 831.74, + "probability": 0.8911 + }, + { + "start": 832.72, + "end": 837.86, + "probability": 0.7981 + }, + { + "start": 838.86, + "end": 842.96, + "probability": 0.9958 + }, + { + "start": 844.0, + "end": 849.44, + "probability": 0.9874 + }, + { + "start": 849.44, + "end": 855.0, + "probability": 0.9835 + }, + { + "start": 856.1, + "end": 859.12, + "probability": 0.9958 + }, + { + "start": 859.72, + "end": 862.08, + "probability": 0.9788 + }, + { + "start": 863.62, + "end": 864.58, + "probability": 0.9124 + }, + { + "start": 865.18, + "end": 867.46, + "probability": 0.8528 + }, + { + "start": 868.48, + "end": 873.48, + "probability": 0.7133 + }, + { + "start": 874.36, + "end": 878.12, + "probability": 0.7095 + }, + { + "start": 879.54, + "end": 883.3, + "probability": 0.8442 + }, + { + "start": 884.56, + "end": 888.34, + "probability": 0.9623 + }, + { + "start": 888.94, + "end": 890.8, + "probability": 0.9055 + }, + { + "start": 892.26, + "end": 894.5, + "probability": 0.7673 + }, + { + "start": 895.38, + "end": 895.8, + "probability": 0.8654 + }, + { + "start": 897.12, + "end": 905.5, + "probability": 0.9883 + }, + { + "start": 907.2, + "end": 908.14, + "probability": 0.6826 + }, + { + "start": 909.22, + "end": 915.96, + "probability": 0.9489 + }, + { + "start": 917.56, + "end": 920.82, + "probability": 0.9908 + }, + { + "start": 921.52, + "end": 923.34, + "probability": 0.894 + }, + { + "start": 923.92, + "end": 929.08, + "probability": 0.9792 + }, + { + "start": 930.58, + "end": 934.5, + "probability": 0.9468 + }, + { + "start": 935.76, + "end": 943.35, + "probability": 0.9959 + }, + { + "start": 945.32, + "end": 946.86, + "probability": 0.9966 + }, + { + "start": 947.58, + "end": 951.04, + "probability": 0.9987 + }, + { + "start": 951.04, + "end": 956.66, + "probability": 0.9739 + }, + { + "start": 957.0, + "end": 958.8, + "probability": 0.6802 + }, + { + "start": 959.88, + "end": 962.2, + "probability": 0.5261 + }, + { + "start": 963.32, + "end": 968.02, + "probability": 0.9907 + }, + { + "start": 968.78, + "end": 970.52, + "probability": 0.7914 + }, + { + "start": 971.32, + "end": 973.02, + "probability": 0.9122 + }, + { + "start": 974.02, + "end": 983.32, + "probability": 0.9668 + }, + { + "start": 984.56, + "end": 989.92, + "probability": 0.9941 + }, + { + "start": 990.4, + "end": 992.02, + "probability": 0.5645 + }, + { + "start": 992.64, + "end": 993.5, + "probability": 0.9228 + }, + { + "start": 994.02, + "end": 1000.36, + "probability": 0.9102 + }, + { + "start": 1001.48, + "end": 1002.86, + "probability": 0.8206 + }, + { + "start": 1003.84, + "end": 1008.28, + "probability": 0.9883 + }, + { + "start": 1009.44, + "end": 1011.16, + "probability": 0.8199 + }, + { + "start": 1012.08, + "end": 1013.52, + "probability": 0.829 + }, + { + "start": 1014.5, + "end": 1015.88, + "probability": 0.9704 + }, + { + "start": 1016.92, + "end": 1017.72, + "probability": 0.7609 + }, + { + "start": 1018.8, + "end": 1019.5, + "probability": 0.8035 + }, + { + "start": 1020.52, + "end": 1023.28, + "probability": 0.8458 + }, + { + "start": 1024.12, + "end": 1025.41, + "probability": 0.9897 + }, + { + "start": 1026.52, + "end": 1027.22, + "probability": 0.7107 + }, + { + "start": 1027.64, + "end": 1028.36, + "probability": 0.9528 + }, + { + "start": 1028.78, + "end": 1029.98, + "probability": 0.8842 + }, + { + "start": 1030.1, + "end": 1032.14, + "probability": 0.9818 + }, + { + "start": 1032.8, + "end": 1032.96, + "probability": 0.7441 + }, + { + "start": 1033.56, + "end": 1036.52, + "probability": 0.8423 + }, + { + "start": 1037.52, + "end": 1039.3, + "probability": 0.9856 + }, + { + "start": 1040.14, + "end": 1048.02, + "probability": 0.99 + }, + { + "start": 1048.78, + "end": 1051.12, + "probability": 0.8936 + }, + { + "start": 1051.68, + "end": 1052.38, + "probability": 0.9008 + }, + { + "start": 1052.94, + "end": 1055.22, + "probability": 0.9972 + }, + { + "start": 1055.78, + "end": 1060.26, + "probability": 0.9912 + }, + { + "start": 1061.3, + "end": 1064.68, + "probability": 0.9964 + }, + { + "start": 1065.28, + "end": 1069.16, + "probability": 0.9943 + }, + { + "start": 1069.58, + "end": 1074.84, + "probability": 0.9967 + }, + { + "start": 1075.96, + "end": 1078.72, + "probability": 0.9973 + }, + { + "start": 1079.38, + "end": 1080.12, + "probability": 0.3755 + }, + { + "start": 1080.72, + "end": 1082.34, + "probability": 0.7797 + }, + { + "start": 1083.42, + "end": 1083.88, + "probability": 0.8608 + }, + { + "start": 1084.78, + "end": 1089.96, + "probability": 0.9957 + }, + { + "start": 1091.12, + "end": 1095.14, + "probability": 0.9946 + }, + { + "start": 1095.14, + "end": 1099.56, + "probability": 0.9985 + }, + { + "start": 1100.12, + "end": 1100.72, + "probability": 0.9095 + }, + { + "start": 1101.26, + "end": 1101.96, + "probability": 0.9229 + }, + { + "start": 1102.68, + "end": 1103.78, + "probability": 0.9372 + }, + { + "start": 1104.24, + "end": 1108.76, + "probability": 0.9973 + }, + { + "start": 1110.1, + "end": 1114.36, + "probability": 0.9769 + }, + { + "start": 1114.78, + "end": 1116.04, + "probability": 0.5977 + }, + { + "start": 1116.12, + "end": 1117.12, + "probability": 0.4244 + }, + { + "start": 1117.72, + "end": 1122.64, + "probability": 0.8339 + }, + { + "start": 1123.38, + "end": 1124.94, + "probability": 0.8521 + }, + { + "start": 1125.44, + "end": 1126.3, + "probability": 0.8735 + }, + { + "start": 1127.12, + "end": 1132.58, + "probability": 0.8961 + }, + { + "start": 1133.2, + "end": 1137.8, + "probability": 0.9966 + }, + { + "start": 1138.3, + "end": 1141.56, + "probability": 0.9803 + }, + { + "start": 1142.92, + "end": 1143.52, + "probability": 0.7762 + }, + { + "start": 1144.12, + "end": 1144.88, + "probability": 0.8857 + }, + { + "start": 1145.86, + "end": 1148.8, + "probability": 0.9866 + }, + { + "start": 1149.6, + "end": 1150.66, + "probability": 0.8904 + }, + { + "start": 1151.2, + "end": 1151.8, + "probability": 0.8926 + }, + { + "start": 1152.88, + "end": 1154.88, + "probability": 0.9214 + }, + { + "start": 1155.42, + "end": 1162.12, + "probability": 0.9919 + }, + { + "start": 1163.26, + "end": 1165.4, + "probability": 0.9025 + }, + { + "start": 1166.32, + "end": 1167.02, + "probability": 0.7675 + }, + { + "start": 1167.66, + "end": 1174.48, + "probability": 0.9729 + }, + { + "start": 1176.2, + "end": 1177.54, + "probability": 0.8386 + }, + { + "start": 1178.36, + "end": 1180.02, + "probability": 0.9229 + }, + { + "start": 1181.02, + "end": 1184.04, + "probability": 0.9258 + }, + { + "start": 1184.78, + "end": 1192.48, + "probability": 0.9712 + }, + { + "start": 1193.5, + "end": 1194.34, + "probability": 0.8359 + }, + { + "start": 1195.12, + "end": 1197.82, + "probability": 0.913 + }, + { + "start": 1198.66, + "end": 1200.94, + "probability": 0.9958 + }, + { + "start": 1201.96, + "end": 1204.42, + "probability": 0.994 + }, + { + "start": 1205.12, + "end": 1207.44, + "probability": 0.9749 + }, + { + "start": 1208.68, + "end": 1209.9, + "probability": 0.9854 + }, + { + "start": 1210.52, + "end": 1217.02, + "probability": 0.9413 + }, + { + "start": 1219.14, + "end": 1223.44, + "probability": 0.8569 + }, + { + "start": 1224.56, + "end": 1229.4, + "probability": 0.91 + }, + { + "start": 1230.32, + "end": 1233.48, + "probability": 0.8901 + }, + { + "start": 1234.46, + "end": 1236.58, + "probability": 0.9534 + }, + { + "start": 1237.36, + "end": 1238.02, + "probability": 0.9458 + }, + { + "start": 1238.54, + "end": 1240.76, + "probability": 0.957 + }, + { + "start": 1241.32, + "end": 1245.94, + "probability": 0.965 + }, + { + "start": 1246.02, + "end": 1248.36, + "probability": 0.8408 + }, + { + "start": 1248.42, + "end": 1250.34, + "probability": 0.8758 + }, + { + "start": 1250.96, + "end": 1253.78, + "probability": 0.9832 + }, + { + "start": 1255.68, + "end": 1256.22, + "probability": 0.8228 + }, + { + "start": 1257.06, + "end": 1259.48, + "probability": 0.8301 + }, + { + "start": 1260.2, + "end": 1262.8, + "probability": 0.8861 + }, + { + "start": 1263.28, + "end": 1266.64, + "probability": 0.9484 + }, + { + "start": 1267.02, + "end": 1268.02, + "probability": 0.6761 + }, + { + "start": 1268.72, + "end": 1272.6, + "probability": 0.9867 + }, + { + "start": 1272.94, + "end": 1275.12, + "probability": 0.9969 + }, + { + "start": 1275.76, + "end": 1277.08, + "probability": 0.9648 + }, + { + "start": 1277.96, + "end": 1278.32, + "probability": 0.9241 + }, + { + "start": 1279.16, + "end": 1281.4, + "probability": 0.9899 + }, + { + "start": 1282.42, + "end": 1284.42, + "probability": 0.7294 + }, + { + "start": 1285.86, + "end": 1291.14, + "probability": 0.9675 + }, + { + "start": 1291.96, + "end": 1293.6, + "probability": 0.9632 + }, + { + "start": 1293.66, + "end": 1294.78, + "probability": 0.9412 + }, + { + "start": 1294.84, + "end": 1296.14, + "probability": 0.9109 + }, + { + "start": 1296.6, + "end": 1301.82, + "probability": 0.9955 + }, + { + "start": 1302.52, + "end": 1303.16, + "probability": 0.9718 + }, + { + "start": 1303.94, + "end": 1305.3, + "probability": 0.8748 + }, + { + "start": 1306.18, + "end": 1308.36, + "probability": 0.8226 + }, + { + "start": 1309.94, + "end": 1310.78, + "probability": 0.9487 + }, + { + "start": 1311.32, + "end": 1312.18, + "probability": 0.8932 + }, + { + "start": 1312.72, + "end": 1315.12, + "probability": 0.8955 + }, + { + "start": 1315.82, + "end": 1318.04, + "probability": 0.9036 + }, + { + "start": 1318.22, + "end": 1319.26, + "probability": 0.9803 + }, + { + "start": 1320.14, + "end": 1322.92, + "probability": 0.9948 + }, + { + "start": 1323.68, + "end": 1327.84, + "probability": 0.9741 + }, + { + "start": 1328.6, + "end": 1329.2, + "probability": 0.2976 + }, + { + "start": 1329.2, + "end": 1330.8, + "probability": 0.9136 + }, + { + "start": 1331.52, + "end": 1331.94, + "probability": 0.9677 + }, + { + "start": 1332.78, + "end": 1333.26, + "probability": 0.9525 + }, + { + "start": 1334.06, + "end": 1336.12, + "probability": 0.9054 + }, + { + "start": 1336.38, + "end": 1341.6, + "probability": 0.9798 + }, + { + "start": 1341.6, + "end": 1345.2, + "probability": 0.9938 + }, + { + "start": 1345.36, + "end": 1346.6, + "probability": 0.7144 + }, + { + "start": 1347.96, + "end": 1350.6, + "probability": 0.8085 + }, + { + "start": 1350.88, + "end": 1353.94, + "probability": 0.9168 + }, + { + "start": 1354.16, + "end": 1358.52, + "probability": 0.938 + }, + { + "start": 1358.62, + "end": 1363.1, + "probability": 0.9043 + }, + { + "start": 1364.78, + "end": 1366.92, + "probability": 0.7176 + }, + { + "start": 1368.08, + "end": 1372.9, + "probability": 0.997 + }, + { + "start": 1373.84, + "end": 1375.32, + "probability": 0.9363 + }, + { + "start": 1376.62, + "end": 1379.48, + "probability": 0.8553 + }, + { + "start": 1380.94, + "end": 1389.46, + "probability": 0.9627 + }, + { + "start": 1390.48, + "end": 1393.76, + "probability": 0.7596 + }, + { + "start": 1394.42, + "end": 1395.5, + "probability": 0.9951 + }, + { + "start": 1396.86, + "end": 1400.39, + "probability": 0.9374 + }, + { + "start": 1401.62, + "end": 1404.54, + "probability": 0.9853 + }, + { + "start": 1404.54, + "end": 1408.62, + "probability": 0.998 + }, + { + "start": 1409.2, + "end": 1411.66, + "probability": 0.998 + }, + { + "start": 1412.54, + "end": 1413.24, + "probability": 0.9812 + }, + { + "start": 1414.8, + "end": 1416.86, + "probability": 0.9192 + }, + { + "start": 1417.52, + "end": 1420.64, + "probability": 0.9106 + }, + { + "start": 1424.66, + "end": 1429.34, + "probability": 0.968 + }, + { + "start": 1431.1, + "end": 1432.34, + "probability": 0.9128 + }, + { + "start": 1433.56, + "end": 1434.38, + "probability": 0.9636 + }, + { + "start": 1434.98, + "end": 1435.96, + "probability": 0.7384 + }, + { + "start": 1436.66, + "end": 1437.38, + "probability": 0.8192 + }, + { + "start": 1438.48, + "end": 1439.52, + "probability": 0.963 + }, + { + "start": 1440.54, + "end": 1440.76, + "probability": 0.9221 + }, + { + "start": 1444.12, + "end": 1445.16, + "probability": 0.8185 + }, + { + "start": 1446.42, + "end": 1448.16, + "probability": 0.9772 + }, + { + "start": 1449.4, + "end": 1450.46, + "probability": 0.9891 + }, + { + "start": 1451.2, + "end": 1452.52, + "probability": 0.9878 + }, + { + "start": 1454.06, + "end": 1456.42, + "probability": 0.9304 + }, + { + "start": 1457.4, + "end": 1461.86, + "probability": 0.9913 + }, + { + "start": 1463.4, + "end": 1465.68, + "probability": 0.9932 + }, + { + "start": 1466.52, + "end": 1470.72, + "probability": 0.9971 + }, + { + "start": 1471.98, + "end": 1475.26, + "probability": 0.9572 + }, + { + "start": 1475.86, + "end": 1479.16, + "probability": 0.9376 + }, + { + "start": 1480.68, + "end": 1481.94, + "probability": 0.7474 + }, + { + "start": 1482.9, + "end": 1486.1, + "probability": 0.9243 + }, + { + "start": 1487.08, + "end": 1489.86, + "probability": 0.9814 + }, + { + "start": 1490.46, + "end": 1490.95, + "probability": 0.9126 + }, + { + "start": 1491.78, + "end": 1494.3, + "probability": 0.9877 + }, + { + "start": 1495.62, + "end": 1498.7, + "probability": 0.6138 + }, + { + "start": 1499.78, + "end": 1503.58, + "probability": 0.9574 + }, + { + "start": 1504.52, + "end": 1507.9, + "probability": 0.989 + }, + { + "start": 1508.64, + "end": 1511.78, + "probability": 0.9692 + }, + { + "start": 1512.6, + "end": 1514.78, + "probability": 0.9541 + }, + { + "start": 1515.66, + "end": 1518.5, + "probability": 0.9299 + }, + { + "start": 1519.12, + "end": 1523.1, + "probability": 0.9282 + }, + { + "start": 1523.72, + "end": 1525.84, + "probability": 0.8081 + }, + { + "start": 1526.5, + "end": 1528.76, + "probability": 0.9399 + }, + { + "start": 1529.1, + "end": 1531.26, + "probability": 0.9913 + }, + { + "start": 1531.38, + "end": 1532.24, + "probability": 0.9241 + }, + { + "start": 1533.4, + "end": 1534.42, + "probability": 0.6809 + }, + { + "start": 1534.56, + "end": 1537.76, + "probability": 0.8849 + }, + { + "start": 1538.32, + "end": 1541.88, + "probability": 0.9905 + }, + { + "start": 1542.96, + "end": 1546.74, + "probability": 0.9943 + }, + { + "start": 1547.82, + "end": 1548.36, + "probability": 0.5956 + }, + { + "start": 1548.74, + "end": 1553.56, + "probability": 0.9115 + }, + { + "start": 1553.64, + "end": 1554.88, + "probability": 0.8781 + }, + { + "start": 1554.92, + "end": 1558.6, + "probability": 0.9751 + }, + { + "start": 1559.06, + "end": 1561.38, + "probability": 0.9988 + }, + { + "start": 1565.18, + "end": 1566.46, + "probability": 0.958 + }, + { + "start": 1567.28, + "end": 1568.3, + "probability": 0.9538 + }, + { + "start": 1569.52, + "end": 1570.86, + "probability": 0.8506 + }, + { + "start": 1570.96, + "end": 1575.1, + "probability": 0.9854 + }, + { + "start": 1575.1, + "end": 1579.0, + "probability": 0.9553 + }, + { + "start": 1579.6, + "end": 1582.7, + "probability": 0.8903 + }, + { + "start": 1583.66, + "end": 1587.86, + "probability": 0.9915 + }, + { + "start": 1587.86, + "end": 1591.64, + "probability": 0.9609 + }, + { + "start": 1592.54, + "end": 1593.68, + "probability": 0.6455 + }, + { + "start": 1594.32, + "end": 1596.76, + "probability": 0.9886 + }, + { + "start": 1597.68, + "end": 1603.97, + "probability": 0.7828 + }, + { + "start": 1604.6, + "end": 1608.6, + "probability": 0.5256 + }, + { + "start": 1609.18, + "end": 1611.38, + "probability": 0.9774 + }, + { + "start": 1611.88, + "end": 1614.62, + "probability": 0.9927 + }, + { + "start": 1615.2, + "end": 1616.12, + "probability": 0.8995 + }, + { + "start": 1617.46, + "end": 1620.42, + "probability": 0.5855 + }, + { + "start": 1621.34, + "end": 1624.03, + "probability": 0.9929 + }, + { + "start": 1624.76, + "end": 1625.18, + "probability": 0.4176 + }, + { + "start": 1625.18, + "end": 1625.54, + "probability": 0.6075 + }, + { + "start": 1625.68, + "end": 1626.84, + "probability": 0.9336 + }, + { + "start": 1628.16, + "end": 1632.14, + "probability": 0.9491 + }, + { + "start": 1632.82, + "end": 1636.98, + "probability": 0.9617 + }, + { + "start": 1637.74, + "end": 1640.96, + "probability": 0.9799 + }, + { + "start": 1641.24, + "end": 1642.84, + "probability": 0.8161 + }, + { + "start": 1643.8, + "end": 1647.74, + "probability": 0.8625 + }, + { + "start": 1647.9, + "end": 1648.58, + "probability": 0.6944 + }, + { + "start": 1648.62, + "end": 1649.7, + "probability": 0.6006 + }, + { + "start": 1650.46, + "end": 1652.24, + "probability": 0.7307 + }, + { + "start": 1652.86, + "end": 1655.04, + "probability": 0.8128 + }, + { + "start": 1655.66, + "end": 1656.16, + "probability": 0.8208 + }, + { + "start": 1656.24, + "end": 1657.0, + "probability": 0.8059 + }, + { + "start": 1657.12, + "end": 1659.86, + "probability": 0.9967 + }, + { + "start": 1659.86, + "end": 1665.16, + "probability": 0.9851 + }, + { + "start": 1665.96, + "end": 1667.54, + "probability": 0.7811 + }, + { + "start": 1667.9, + "end": 1671.34, + "probability": 0.9861 + }, + { + "start": 1671.8, + "end": 1674.4, + "probability": 0.9858 + }, + { + "start": 1674.9, + "end": 1678.04, + "probability": 0.9912 + }, + { + "start": 1678.44, + "end": 1680.06, + "probability": 0.9959 + }, + { + "start": 1681.0, + "end": 1682.18, + "probability": 0.6263 + }, + { + "start": 1682.28, + "end": 1684.08, + "probability": 0.9712 + }, + { + "start": 1684.22, + "end": 1687.52, + "probability": 0.9236 + }, + { + "start": 1687.7, + "end": 1691.2, + "probability": 0.8017 + }, + { + "start": 1691.76, + "end": 1693.6, + "probability": 0.9872 + }, + { + "start": 1694.12, + "end": 1696.0, + "probability": 0.9939 + }, + { + "start": 1696.48, + "end": 1698.04, + "probability": 0.9428 + }, + { + "start": 1698.1, + "end": 1699.92, + "probability": 0.9795 + }, + { + "start": 1700.3, + "end": 1703.22, + "probability": 0.9821 + }, + { + "start": 1704.02, + "end": 1706.02, + "probability": 0.9885 + }, + { + "start": 1706.02, + "end": 1709.36, + "probability": 0.9952 + }, + { + "start": 1709.78, + "end": 1713.62, + "probability": 0.979 + }, + { + "start": 1714.18, + "end": 1715.31, + "probability": 0.9854 + }, + { + "start": 1715.46, + "end": 1716.5, + "probability": 0.8683 + }, + { + "start": 1716.64, + "end": 1722.44, + "probability": 0.9932 + }, + { + "start": 1723.74, + "end": 1727.42, + "probability": 0.9916 + }, + { + "start": 1728.14, + "end": 1731.36, + "probability": 0.9791 + }, + { + "start": 1731.92, + "end": 1733.14, + "probability": 0.9252 + }, + { + "start": 1733.34, + "end": 1733.7, + "probability": 0.8761 + }, + { + "start": 1733.76, + "end": 1735.58, + "probability": 0.9932 + }, + { + "start": 1736.34, + "end": 1738.86, + "probability": 0.9931 + }, + { + "start": 1739.38, + "end": 1740.5, + "probability": 0.6839 + }, + { + "start": 1741.12, + "end": 1742.98, + "probability": 0.9105 + }, + { + "start": 1743.5, + "end": 1746.64, + "probability": 0.9676 + }, + { + "start": 1748.12, + "end": 1750.06, + "probability": 0.965 + }, + { + "start": 1751.28, + "end": 1756.84, + "probability": 0.958 + }, + { + "start": 1757.86, + "end": 1760.28, + "probability": 0.8021 + }, + { + "start": 1762.56, + "end": 1764.9, + "probability": 0.9883 + }, + { + "start": 1765.4, + "end": 1767.83, + "probability": 0.9912 + }, + { + "start": 1768.44, + "end": 1772.26, + "probability": 0.9595 + }, + { + "start": 1772.8, + "end": 1776.9, + "probability": 0.9564 + }, + { + "start": 1777.0, + "end": 1778.2, + "probability": 0.8048 + }, + { + "start": 1778.36, + "end": 1779.5, + "probability": 0.9004 + }, + { + "start": 1779.6, + "end": 1780.72, + "probability": 0.9315 + }, + { + "start": 1781.3, + "end": 1785.0, + "probability": 0.9765 + }, + { + "start": 1785.46, + "end": 1789.26, + "probability": 0.9916 + }, + { + "start": 1790.44, + "end": 1792.12, + "probability": 0.9438 + }, + { + "start": 1792.8, + "end": 1793.84, + "probability": 0.9948 + }, + { + "start": 1794.12, + "end": 1797.16, + "probability": 0.9937 + }, + { + "start": 1797.24, + "end": 1798.66, + "probability": 0.9368 + }, + { + "start": 1799.34, + "end": 1803.9, + "probability": 0.8493 + }, + { + "start": 1805.0, + "end": 1806.36, + "probability": 0.9533 + }, + { + "start": 1806.44, + "end": 1809.94, + "probability": 0.9891 + }, + { + "start": 1809.99, + "end": 1813.58, + "probability": 0.9995 + }, + { + "start": 1814.4, + "end": 1815.16, + "probability": 0.8654 + }, + { + "start": 1815.92, + "end": 1818.34, + "probability": 0.9932 + }, + { + "start": 1818.46, + "end": 1818.86, + "probability": 0.5377 + }, + { + "start": 1819.22, + "end": 1822.16, + "probability": 0.976 + }, + { + "start": 1823.58, + "end": 1826.0, + "probability": 0.9818 + }, + { + "start": 1826.9, + "end": 1831.46, + "probability": 0.9171 + }, + { + "start": 1831.58, + "end": 1832.44, + "probability": 0.8826 + }, + { + "start": 1834.2, + "end": 1836.38, + "probability": 0.821 + }, + { + "start": 1837.08, + "end": 1841.0, + "probability": 0.9913 + }, + { + "start": 1841.7, + "end": 1848.34, + "probability": 0.9749 + }, + { + "start": 1848.46, + "end": 1850.96, + "probability": 0.5825 + }, + { + "start": 1851.82, + "end": 1854.32, + "probability": 0.9949 + }, + { + "start": 1855.46, + "end": 1859.52, + "probability": 0.9954 + }, + { + "start": 1859.94, + "end": 1862.58, + "probability": 0.998 + }, + { + "start": 1862.58, + "end": 1865.64, + "probability": 0.9106 + }, + { + "start": 1866.2, + "end": 1867.64, + "probability": 0.9242 + }, + { + "start": 1868.04, + "end": 1874.1, + "probability": 0.9895 + }, + { + "start": 1874.46, + "end": 1875.34, + "probability": 0.8997 + }, + { + "start": 1876.38, + "end": 1877.6, + "probability": 0.7573 + }, + { + "start": 1879.04, + "end": 1883.62, + "probability": 0.9089 + }, + { + "start": 1883.62, + "end": 1887.46, + "probability": 0.9966 + }, + { + "start": 1888.24, + "end": 1892.56, + "probability": 0.9961 + }, + { + "start": 1892.8, + "end": 1897.22, + "probability": 0.9621 + }, + { + "start": 1898.46, + "end": 1900.5, + "probability": 0.9572 + }, + { + "start": 1900.98, + "end": 1903.16, + "probability": 0.9697 + }, + { + "start": 1903.44, + "end": 1904.62, + "probability": 0.781 + }, + { + "start": 1904.84, + "end": 1905.06, + "probability": 0.5341 + }, + { + "start": 1905.22, + "end": 1910.58, + "probability": 0.976 + }, + { + "start": 1910.58, + "end": 1916.82, + "probability": 0.7835 + }, + { + "start": 1916.96, + "end": 1918.46, + "probability": 0.9385 + }, + { + "start": 1919.46, + "end": 1922.38, + "probability": 0.8459 + }, + { + "start": 1922.5, + "end": 1924.6, + "probability": 0.9446 + }, + { + "start": 1925.42, + "end": 1929.9, + "probability": 0.9743 + }, + { + "start": 1930.0, + "end": 1930.56, + "probability": 0.9543 + }, + { + "start": 1930.6, + "end": 1931.1, + "probability": 0.9177 + }, + { + "start": 1931.22, + "end": 1931.74, + "probability": 0.8134 + }, + { + "start": 1932.6, + "end": 1934.78, + "probability": 0.998 + }, + { + "start": 1935.28, + "end": 1939.92, + "probability": 0.9121 + }, + { + "start": 1940.38, + "end": 1946.12, + "probability": 0.9616 + }, + { + "start": 1946.74, + "end": 1950.04, + "probability": 0.9763 + }, + { + "start": 1950.46, + "end": 1951.22, + "probability": 0.9917 + }, + { + "start": 1951.28, + "end": 1952.2, + "probability": 0.9496 + }, + { + "start": 1953.3, + "end": 1954.28, + "probability": 0.9048 + }, + { + "start": 1955.2, + "end": 1957.8, + "probability": 0.9608 + }, + { + "start": 1957.92, + "end": 1964.72, + "probability": 0.9821 + }, + { + "start": 1965.38, + "end": 1970.18, + "probability": 0.9709 + }, + { + "start": 1970.8, + "end": 1974.4, + "probability": 0.99 + }, + { + "start": 1975.02, + "end": 1977.52, + "probability": 0.99 + }, + { + "start": 1977.52, + "end": 1981.86, + "probability": 0.9884 + }, + { + "start": 1982.42, + "end": 1984.22, + "probability": 0.9393 + }, + { + "start": 1985.2, + "end": 1986.98, + "probability": 0.7632 + }, + { + "start": 1987.72, + "end": 1988.41, + "probability": 0.8033 + }, + { + "start": 1989.48, + "end": 1990.28, + "probability": 0.7677 + }, + { + "start": 1990.44, + "end": 1993.48, + "probability": 0.9927 + }, + { + "start": 1993.5, + "end": 1994.34, + "probability": 0.5732 + }, + { + "start": 1995.86, + "end": 1997.94, + "probability": 0.9986 + }, + { + "start": 1998.04, + "end": 1998.64, + "probability": 0.9483 + }, + { + "start": 1998.72, + "end": 2000.06, + "probability": 0.619 + }, + { + "start": 2001.92, + "end": 2004.24, + "probability": 0.8591 + }, + { + "start": 2011.0, + "end": 2012.22, + "probability": 0.6538 + }, + { + "start": 2012.5, + "end": 2013.38, + "probability": 0.6065 + }, + { + "start": 2014.08, + "end": 2014.64, + "probability": 0.6951 + }, + { + "start": 2016.34, + "end": 2017.54, + "probability": 0.6839 + }, + { + "start": 2019.02, + "end": 2022.96, + "probability": 0.6862 + }, + { + "start": 2024.72, + "end": 2026.26, + "probability": 0.6805 + }, + { + "start": 2026.5, + "end": 2027.67, + "probability": 0.9673 + }, + { + "start": 2027.86, + "end": 2029.74, + "probability": 0.6565 + }, + { + "start": 2032.54, + "end": 2034.82, + "probability": 0.5145 + }, + { + "start": 2036.12, + "end": 2041.84, + "probability": 0.9871 + }, + { + "start": 2041.96, + "end": 2043.66, + "probability": 0.8533 + }, + { + "start": 2043.72, + "end": 2043.79, + "probability": 0.3184 + }, + { + "start": 2044.86, + "end": 2045.8, + "probability": 0.5004 + }, + { + "start": 2047.0, + "end": 2053.48, + "probability": 0.9567 + }, + { + "start": 2053.56, + "end": 2054.42, + "probability": 0.757 + }, + { + "start": 2055.36, + "end": 2059.3, + "probability": 0.9109 + }, + { + "start": 2059.94, + "end": 2060.66, + "probability": 0.7805 + }, + { + "start": 2061.04, + "end": 2062.68, + "probability": 0.8801 + }, + { + "start": 2063.84, + "end": 2069.58, + "probability": 0.9449 + }, + { + "start": 2069.64, + "end": 2072.38, + "probability": 0.9269 + }, + { + "start": 2072.42, + "end": 2072.68, + "probability": 0.5689 + }, + { + "start": 2074.3, + "end": 2077.32, + "probability": 0.9524 + }, + { + "start": 2079.15, + "end": 2081.78, + "probability": 0.5305 + }, + { + "start": 2083.66, + "end": 2085.67, + "probability": 0.9721 + }, + { + "start": 2087.32, + "end": 2090.37, + "probability": 0.9666 + }, + { + "start": 2090.46, + "end": 2090.98, + "probability": 0.8905 + }, + { + "start": 2091.16, + "end": 2093.8, + "probability": 0.7662 + }, + { + "start": 2094.1, + "end": 2094.58, + "probability": 0.8986 + }, + { + "start": 2094.98, + "end": 2096.36, + "probability": 0.7313 + }, + { + "start": 2097.86, + "end": 2100.22, + "probability": 0.9883 + }, + { + "start": 2101.32, + "end": 2105.16, + "probability": 0.9351 + }, + { + "start": 2106.68, + "end": 2108.96, + "probability": 0.8066 + }, + { + "start": 2110.58, + "end": 2112.36, + "probability": 0.7574 + }, + { + "start": 2113.24, + "end": 2117.28, + "probability": 0.9979 + }, + { + "start": 2119.1, + "end": 2122.3, + "probability": 0.9226 + }, + { + "start": 2123.98, + "end": 2125.8, + "probability": 0.9722 + }, + { + "start": 2125.84, + "end": 2127.14, + "probability": 0.8847 + }, + { + "start": 2127.26, + "end": 2127.88, + "probability": 0.9305 + }, + { + "start": 2128.68, + "end": 2134.3, + "probability": 0.9987 + }, + { + "start": 2135.24, + "end": 2138.54, + "probability": 0.6425 + }, + { + "start": 2139.72, + "end": 2143.04, + "probability": 0.9057 + }, + { + "start": 2143.8, + "end": 2144.48, + "probability": 0.9749 + }, + { + "start": 2144.68, + "end": 2148.62, + "probability": 0.9971 + }, + { + "start": 2149.12, + "end": 2150.34, + "probability": 0.7109 + }, + { + "start": 2150.5, + "end": 2155.46, + "probability": 0.7487 + }, + { + "start": 2156.48, + "end": 2161.46, + "probability": 0.9135 + }, + { + "start": 2161.88, + "end": 2162.58, + "probability": 0.6599 + }, + { + "start": 2162.7, + "end": 2162.96, + "probability": 0.744 + }, + { + "start": 2163.16, + "end": 2163.84, + "probability": 0.9441 + }, + { + "start": 2164.38, + "end": 2165.44, + "probability": 0.9871 + }, + { + "start": 2166.6, + "end": 2166.99, + "probability": 0.7749 + }, + { + "start": 2168.28, + "end": 2170.44, + "probability": 0.9279 + }, + { + "start": 2172.26, + "end": 2173.22, + "probability": 0.9961 + }, + { + "start": 2173.32, + "end": 2174.34, + "probability": 0.8754 + }, + { + "start": 2174.46, + "end": 2178.5, + "probability": 0.7368 + }, + { + "start": 2178.58, + "end": 2178.96, + "probability": 0.4932 + }, + { + "start": 2179.04, + "end": 2182.26, + "probability": 0.9387 + }, + { + "start": 2182.52, + "end": 2187.4, + "probability": 0.8418 + }, + { + "start": 2187.46, + "end": 2188.22, + "probability": 0.9309 + }, + { + "start": 2188.28, + "end": 2195.48, + "probability": 0.8919 + }, + { + "start": 2196.2, + "end": 2198.02, + "probability": 0.9205 + }, + { + "start": 2201.0, + "end": 2203.36, + "probability": 0.8643 + }, + { + "start": 2205.06, + "end": 2206.7, + "probability": 0.9922 + }, + { + "start": 2207.52, + "end": 2210.72, + "probability": 0.9041 + }, + { + "start": 2212.04, + "end": 2214.6, + "probability": 0.9491 + }, + { + "start": 2215.54, + "end": 2216.46, + "probability": 0.9559 + }, + { + "start": 2217.56, + "end": 2218.6, + "probability": 0.9761 + }, + { + "start": 2218.66, + "end": 2221.9, + "probability": 0.9393 + }, + { + "start": 2224.5, + "end": 2225.32, + "probability": 0.8513 + }, + { + "start": 2226.72, + "end": 2229.68, + "probability": 0.9633 + }, + { + "start": 2230.32, + "end": 2233.04, + "probability": 0.9976 + }, + { + "start": 2234.26, + "end": 2236.68, + "probability": 0.6841 + }, + { + "start": 2238.42, + "end": 2240.48, + "probability": 0.9315 + }, + { + "start": 2241.82, + "end": 2243.96, + "probability": 0.8251 + }, + { + "start": 2247.26, + "end": 2248.58, + "probability": 0.7659 + }, + { + "start": 2249.34, + "end": 2252.12, + "probability": 0.9822 + }, + { + "start": 2252.52, + "end": 2254.56, + "probability": 0.766 + }, + { + "start": 2254.66, + "end": 2255.02, + "probability": 0.6417 + }, + { + "start": 2257.16, + "end": 2259.74, + "probability": 0.9968 + }, + { + "start": 2259.82, + "end": 2260.84, + "probability": 0.6758 + }, + { + "start": 2261.22, + "end": 2262.16, + "probability": 0.5953 + }, + { + "start": 2263.06, + "end": 2264.1, + "probability": 0.6018 + }, + { + "start": 2265.9, + "end": 2268.9, + "probability": 0.9882 + }, + { + "start": 2270.3, + "end": 2272.56, + "probability": 0.9934 + }, + { + "start": 2273.12, + "end": 2273.49, + "probability": 0.6825 + }, + { + "start": 2274.16, + "end": 2276.2, + "probability": 0.9666 + }, + { + "start": 2276.36, + "end": 2276.64, + "probability": 0.5718 + }, + { + "start": 2278.54, + "end": 2279.34, + "probability": 0.9443 + }, + { + "start": 2280.4, + "end": 2284.14, + "probability": 0.9832 + }, + { + "start": 2285.14, + "end": 2287.74, + "probability": 0.8446 + }, + { + "start": 2288.84, + "end": 2291.52, + "probability": 0.9648 + }, + { + "start": 2292.66, + "end": 2295.58, + "probability": 0.9992 + }, + { + "start": 2296.96, + "end": 2300.2, + "probability": 0.6351 + }, + { + "start": 2302.87, + "end": 2304.54, + "probability": 0.4036 + }, + { + "start": 2305.28, + "end": 2307.8, + "probability": 0.6716 + }, + { + "start": 2309.72, + "end": 2310.64, + "probability": 0.9205 + }, + { + "start": 2312.8, + "end": 2313.46, + "probability": 0.9652 + }, + { + "start": 2315.2, + "end": 2319.02, + "probability": 0.9731 + }, + { + "start": 2320.28, + "end": 2322.6, + "probability": 0.9751 + }, + { + "start": 2323.62, + "end": 2324.73, + "probability": 0.9812 + }, + { + "start": 2326.8, + "end": 2329.96, + "probability": 0.9042 + }, + { + "start": 2331.66, + "end": 2332.8, + "probability": 0.6492 + }, + { + "start": 2332.86, + "end": 2334.26, + "probability": 0.8989 + }, + { + "start": 2336.0, + "end": 2337.0, + "probability": 0.918 + }, + { + "start": 2339.76, + "end": 2340.84, + "probability": 0.7028 + }, + { + "start": 2343.86, + "end": 2344.96, + "probability": 0.9472 + }, + { + "start": 2347.56, + "end": 2347.88, + "probability": 0.6881 + }, + { + "start": 2348.46, + "end": 2351.06, + "probability": 0.7295 + }, + { + "start": 2351.94, + "end": 2354.28, + "probability": 0.8937 + }, + { + "start": 2355.0, + "end": 2356.8, + "probability": 0.9396 + }, + { + "start": 2358.02, + "end": 2360.4, + "probability": 0.8865 + }, + { + "start": 2360.78, + "end": 2363.02, + "probability": 0.9888 + }, + { + "start": 2364.7, + "end": 2365.24, + "probability": 0.0931 + }, + { + "start": 2365.26, + "end": 2365.34, + "probability": 0.7026 + }, + { + "start": 2365.34, + "end": 2367.54, + "probability": 0.8847 + }, + { + "start": 2367.68, + "end": 2368.04, + "probability": 0.5564 + }, + { + "start": 2368.1, + "end": 2370.02, + "probability": 0.9958 + }, + { + "start": 2371.14, + "end": 2376.28, + "probability": 0.9724 + }, + { + "start": 2376.34, + "end": 2377.42, + "probability": 0.5581 + }, + { + "start": 2379.68, + "end": 2381.27, + "probability": 0.9619 + }, + { + "start": 2383.12, + "end": 2385.22, + "probability": 0.7665 + }, + { + "start": 2385.22, + "end": 2387.08, + "probability": 0.9946 + }, + { + "start": 2387.96, + "end": 2389.58, + "probability": 0.97 + }, + { + "start": 2390.12, + "end": 2392.04, + "probability": 0.9987 + }, + { + "start": 2393.36, + "end": 2395.62, + "probability": 0.8089 + }, + { + "start": 2396.8, + "end": 2399.13, + "probability": 0.7096 + }, + { + "start": 2399.96, + "end": 2401.98, + "probability": 0.9361 + }, + { + "start": 2402.06, + "end": 2405.14, + "probability": 0.979 + }, + { + "start": 2405.3, + "end": 2406.66, + "probability": 0.9576 + }, + { + "start": 2407.14, + "end": 2409.5, + "probability": 0.968 + }, + { + "start": 2409.96, + "end": 2411.18, + "probability": 0.4969 + }, + { + "start": 2411.34, + "end": 2412.24, + "probability": 0.8257 + }, + { + "start": 2413.42, + "end": 2414.54, + "probability": 0.9707 + }, + { + "start": 2416.24, + "end": 2418.18, + "probability": 0.8764 + }, + { + "start": 2418.5, + "end": 2422.62, + "probability": 0.777 + }, + { + "start": 2423.14, + "end": 2423.96, + "probability": 0.8651 + }, + { + "start": 2425.04, + "end": 2426.5, + "probability": 0.6726 + }, + { + "start": 2426.62, + "end": 2428.36, + "probability": 0.7233 + }, + { + "start": 2428.8, + "end": 2430.2, + "probability": 0.8456 + }, + { + "start": 2431.88, + "end": 2433.06, + "probability": 0.9813 + }, + { + "start": 2434.98, + "end": 2436.76, + "probability": 0.6683 + }, + { + "start": 2436.8, + "end": 2441.22, + "probability": 0.9678 + }, + { + "start": 2441.26, + "end": 2443.68, + "probability": 0.9928 + }, + { + "start": 2444.4, + "end": 2445.58, + "probability": 0.8423 + }, + { + "start": 2445.66, + "end": 2446.76, + "probability": 0.7696 + }, + { + "start": 2447.08, + "end": 2449.92, + "probability": 0.9836 + }, + { + "start": 2449.92, + "end": 2452.34, + "probability": 0.9976 + }, + { + "start": 2452.82, + "end": 2453.88, + "probability": 0.5652 + }, + { + "start": 2457.18, + "end": 2460.67, + "probability": 0.9943 + }, + { + "start": 2460.8, + "end": 2460.98, + "probability": 0.2681 + }, + { + "start": 2461.04, + "end": 2461.32, + "probability": 0.6698 + }, + { + "start": 2461.38, + "end": 2462.06, + "probability": 0.7902 + }, + { + "start": 2463.16, + "end": 2464.8, + "probability": 0.8216 + }, + { + "start": 2465.04, + "end": 2466.92, + "probability": 0.9727 + }, + { + "start": 2468.26, + "end": 2471.63, + "probability": 0.8381 + }, + { + "start": 2471.99, + "end": 2474.28, + "probability": 0.9259 + }, + { + "start": 2476.15, + "end": 2477.88, + "probability": 0.9106 + }, + { + "start": 2479.28, + "end": 2481.06, + "probability": 0.971 + }, + { + "start": 2481.14, + "end": 2483.9, + "probability": 0.8851 + }, + { + "start": 2485.04, + "end": 2488.32, + "probability": 0.9445 + }, + { + "start": 2488.52, + "end": 2489.92, + "probability": 0.9756 + }, + { + "start": 2490.92, + "end": 2494.14, + "probability": 0.9893 + }, + { + "start": 2494.82, + "end": 2496.0, + "probability": 0.9399 + }, + { + "start": 2496.12, + "end": 2499.18, + "probability": 0.9229 + }, + { + "start": 2500.64, + "end": 2501.86, + "probability": 0.9385 + }, + { + "start": 2501.98, + "end": 2503.02, + "probability": 0.8968 + }, + { + "start": 2503.42, + "end": 2505.02, + "probability": 0.9912 + }, + { + "start": 2507.22, + "end": 2509.6, + "probability": 0.9873 + }, + { + "start": 2509.6, + "end": 2511.82, + "probability": 0.7303 + }, + { + "start": 2511.88, + "end": 2512.24, + "probability": 0.6113 + }, + { + "start": 2512.32, + "end": 2513.06, + "probability": 0.913 + }, + { + "start": 2513.16, + "end": 2513.44, + "probability": 0.8157 + }, + { + "start": 2513.76, + "end": 2515.6, + "probability": 0.9778 + }, + { + "start": 2516.72, + "end": 2518.46, + "probability": 0.9327 + }, + { + "start": 2520.5, + "end": 2522.52, + "probability": 0.9651 + }, + { + "start": 2523.96, + "end": 2526.82, + "probability": 0.75 + }, + { + "start": 2527.46, + "end": 2529.24, + "probability": 0.862 + }, + { + "start": 2530.38, + "end": 2532.84, + "probability": 0.9102 + }, + { + "start": 2534.34, + "end": 2535.32, + "probability": 0.9224 + }, + { + "start": 2536.56, + "end": 2537.62, + "probability": 0.9863 + }, + { + "start": 2537.76, + "end": 2540.16, + "probability": 0.946 + }, + { + "start": 2540.56, + "end": 2542.26, + "probability": 0.9924 + }, + { + "start": 2542.86, + "end": 2544.55, + "probability": 0.98 + }, + { + "start": 2544.72, + "end": 2545.84, + "probability": 0.8337 + }, + { + "start": 2546.34, + "end": 2549.56, + "probability": 0.9893 + }, + { + "start": 2551.06, + "end": 2553.14, + "probability": 0.9963 + }, + { + "start": 2555.3, + "end": 2557.72, + "probability": 0.9808 + }, + { + "start": 2559.02, + "end": 2561.56, + "probability": 0.9204 + }, + { + "start": 2562.16, + "end": 2563.64, + "probability": 0.8334 + }, + { + "start": 2564.2, + "end": 2568.7, + "probability": 0.9554 + }, + { + "start": 2570.56, + "end": 2572.86, + "probability": 0.9723 + }, + { + "start": 2575.52, + "end": 2578.44, + "probability": 0.9266 + }, + { + "start": 2578.98, + "end": 2579.66, + "probability": 0.7514 + }, + { + "start": 2580.96, + "end": 2583.4, + "probability": 0.9914 + }, + { + "start": 2585.68, + "end": 2586.9, + "probability": 0.7576 + }, + { + "start": 2586.98, + "end": 2587.2, + "probability": 0.8331 + }, + { + "start": 2587.24, + "end": 2588.94, + "probability": 0.9874 + }, + { + "start": 2591.16, + "end": 2594.18, + "probability": 0.9767 + }, + { + "start": 2594.94, + "end": 2599.32, + "probability": 0.8331 + }, + { + "start": 2599.46, + "end": 2600.4, + "probability": 0.7986 + }, + { + "start": 2600.88, + "end": 2602.56, + "probability": 0.9733 + }, + { + "start": 2603.4, + "end": 2606.32, + "probability": 0.9952 + }, + { + "start": 2607.26, + "end": 2608.68, + "probability": 0.6462 + }, + { + "start": 2611.16, + "end": 2611.56, + "probability": 0.7097 + }, + { + "start": 2612.32, + "end": 2614.16, + "probability": 0.9544 + }, + { + "start": 2616.1, + "end": 2617.26, + "probability": 0.9792 + }, + { + "start": 2618.6, + "end": 2621.46, + "probability": 0.9983 + }, + { + "start": 2622.76, + "end": 2626.76, + "probability": 0.9982 + }, + { + "start": 2627.68, + "end": 2629.74, + "probability": 0.953 + }, + { + "start": 2630.24, + "end": 2633.56, + "probability": 0.9329 + }, + { + "start": 2634.02, + "end": 2635.2, + "probability": 0.9794 + }, + { + "start": 2635.94, + "end": 2636.84, + "probability": 0.9132 + }, + { + "start": 2638.06, + "end": 2641.64, + "probability": 0.9956 + }, + { + "start": 2642.24, + "end": 2644.38, + "probability": 0.9783 + }, + { + "start": 2646.32, + "end": 2648.66, + "probability": 0.839 + }, + { + "start": 2650.4, + "end": 2653.74, + "probability": 0.9893 + }, + { + "start": 2653.76, + "end": 2656.4, + "probability": 0.7585 + }, + { + "start": 2656.54, + "end": 2658.16, + "probability": 0.8558 + }, + { + "start": 2659.18, + "end": 2663.74, + "probability": 0.9595 + }, + { + "start": 2663.86, + "end": 2664.26, + "probability": 0.2338 + }, + { + "start": 2664.9, + "end": 2667.76, + "probability": 0.9542 + }, + { + "start": 2681.1, + "end": 2682.12, + "probability": 0.5934 + }, + { + "start": 2684.82, + "end": 2686.02, + "probability": 0.7102 + }, + { + "start": 2688.58, + "end": 2692.98, + "probability": 0.9969 + }, + { + "start": 2693.34, + "end": 2693.62, + "probability": 0.8065 + }, + { + "start": 2693.74, + "end": 2693.98, + "probability": 0.9294 + }, + { + "start": 2695.7, + "end": 2696.52, + "probability": 0.9941 + }, + { + "start": 2697.66, + "end": 2698.58, + "probability": 0.8917 + }, + { + "start": 2700.02, + "end": 2700.98, + "probability": 0.948 + }, + { + "start": 2702.48, + "end": 2707.64, + "probability": 0.9928 + }, + { + "start": 2708.18, + "end": 2708.9, + "probability": 0.7731 + }, + { + "start": 2709.9, + "end": 2711.0, + "probability": 0.8917 + }, + { + "start": 2711.94, + "end": 2712.94, + "probability": 0.9929 + }, + { + "start": 2713.86, + "end": 2714.52, + "probability": 0.83 + }, + { + "start": 2717.04, + "end": 2720.07, + "probability": 0.9737 + }, + { + "start": 2720.62, + "end": 2723.66, + "probability": 0.8984 + }, + { + "start": 2725.08, + "end": 2726.02, + "probability": 0.9608 + }, + { + "start": 2727.64, + "end": 2728.16, + "probability": 0.6499 + }, + { + "start": 2728.78, + "end": 2729.44, + "probability": 0.7576 + }, + { + "start": 2731.6, + "end": 2732.66, + "probability": 0.7758 + }, + { + "start": 2734.34, + "end": 2734.38, + "probability": 0.7886 + }, + { + "start": 2735.3, + "end": 2735.76, + "probability": 0.5025 + }, + { + "start": 2738.28, + "end": 2746.04, + "probability": 0.9795 + }, + { + "start": 2748.2, + "end": 2750.18, + "probability": 0.7959 + }, + { + "start": 2750.24, + "end": 2755.02, + "probability": 0.9701 + }, + { + "start": 2755.16, + "end": 2757.1, + "probability": 0.7375 + }, + { + "start": 2758.12, + "end": 2760.06, + "probability": 0.989 + }, + { + "start": 2762.7, + "end": 2766.76, + "probability": 0.6792 + }, + { + "start": 2769.08, + "end": 2769.78, + "probability": 0.8274 + }, + { + "start": 2770.38, + "end": 2773.0, + "probability": 0.7255 + }, + { + "start": 2774.1, + "end": 2775.24, + "probability": 0.4932 + }, + { + "start": 2775.36, + "end": 2776.4, + "probability": 0.9048 + }, + { + "start": 2776.4, + "end": 2778.7, + "probability": 0.8302 + }, + { + "start": 2779.52, + "end": 2781.32, + "probability": 0.6425 + }, + { + "start": 2781.32, + "end": 2782.98, + "probability": 0.7713 + }, + { + "start": 2783.04, + "end": 2784.04, + "probability": 0.7566 + }, + { + "start": 2784.22, + "end": 2786.14, + "probability": 0.8474 + }, + { + "start": 2786.26, + "end": 2787.08, + "probability": 0.8328 + }, + { + "start": 2788.52, + "end": 2789.67, + "probability": 0.496 + }, + { + "start": 2790.38, + "end": 2796.78, + "probability": 0.9858 + }, + { + "start": 2797.62, + "end": 2798.22, + "probability": 0.7817 + }, + { + "start": 2798.7, + "end": 2801.74, + "probability": 0.9976 + }, + { + "start": 2802.36, + "end": 2802.88, + "probability": 0.7354 + }, + { + "start": 2803.42, + "end": 2808.0, + "probability": 0.8976 + }, + { + "start": 2808.82, + "end": 2811.1, + "probability": 0.973 + }, + { + "start": 2813.14, + "end": 2818.32, + "probability": 0.98 + }, + { + "start": 2818.32, + "end": 2821.42, + "probability": 0.8973 + }, + { + "start": 2822.84, + "end": 2826.3, + "probability": 0.9672 + }, + { + "start": 2828.24, + "end": 2830.2, + "probability": 0.9831 + }, + { + "start": 2830.32, + "end": 2832.3, + "probability": 0.7714 + }, + { + "start": 2835.58, + "end": 2839.06, + "probability": 0.994 + }, + { + "start": 2840.8, + "end": 2842.56, + "probability": 0.7152 + }, + { + "start": 2842.74, + "end": 2843.38, + "probability": 0.6102 + }, + { + "start": 2843.38, + "end": 2844.78, + "probability": 0.4808 + }, + { + "start": 2845.14, + "end": 2847.98, + "probability": 0.3422 + }, + { + "start": 2847.98, + "end": 2852.14, + "probability": 0.9535 + }, + { + "start": 2853.16, + "end": 2855.1, + "probability": 0.7434 + }, + { + "start": 2855.98, + "end": 2857.5, + "probability": 0.993 + }, + { + "start": 2857.86, + "end": 2858.95, + "probability": 0.957 + }, + { + "start": 2859.86, + "end": 2861.88, + "probability": 0.783 + }, + { + "start": 2862.54, + "end": 2866.72, + "probability": 0.9515 + }, + { + "start": 2866.8, + "end": 2867.28, + "probability": 0.7334 + }, + { + "start": 2869.42, + "end": 2870.52, + "probability": 0.9799 + }, + { + "start": 2871.66, + "end": 2873.1, + "probability": 0.9325 + }, + { + "start": 2873.62, + "end": 2874.39, + "probability": 0.9517 + }, + { + "start": 2875.24, + "end": 2876.0, + "probability": 0.9045 + }, + { + "start": 2877.32, + "end": 2877.78, + "probability": 0.8452 + }, + { + "start": 2880.5, + "end": 2882.14, + "probability": 0.9919 + }, + { + "start": 2883.08, + "end": 2890.72, + "probability": 0.858 + }, + { + "start": 2890.96, + "end": 2893.04, + "probability": 0.9714 + }, + { + "start": 2896.54, + "end": 2900.44, + "probability": 0.997 + }, + { + "start": 2900.5, + "end": 2901.5, + "probability": 0.7971 + }, + { + "start": 2901.54, + "end": 2905.18, + "probability": 0.7409 + }, + { + "start": 2906.4, + "end": 2909.16, + "probability": 0.7908 + }, + { + "start": 2909.68, + "end": 2911.94, + "probability": 0.9821 + }, + { + "start": 2912.98, + "end": 2914.76, + "probability": 0.8486 + }, + { + "start": 2914.84, + "end": 2915.42, + "probability": 0.796 + }, + { + "start": 2915.82, + "end": 2917.9, + "probability": 0.9285 + }, + { + "start": 2919.38, + "end": 2921.86, + "probability": 0.9966 + }, + { + "start": 2921.92, + "end": 2923.2, + "probability": 0.8265 + }, + { + "start": 2923.32, + "end": 2924.94, + "probability": 0.6239 + }, + { + "start": 2925.04, + "end": 2926.08, + "probability": 0.6707 + }, + { + "start": 2926.2, + "end": 2926.96, + "probability": 0.6674 + }, + { + "start": 2927.0, + "end": 2928.66, + "probability": 0.6223 + }, + { + "start": 2928.68, + "end": 2930.12, + "probability": 0.762 + }, + { + "start": 2931.7, + "end": 2934.24, + "probability": 0.8419 + }, + { + "start": 2935.32, + "end": 2937.12, + "probability": 0.9092 + }, + { + "start": 2937.96, + "end": 2940.34, + "probability": 0.7681 + }, + { + "start": 2940.92, + "end": 2942.54, + "probability": 0.8315 + }, + { + "start": 2943.52, + "end": 2944.56, + "probability": 0.8118 + }, + { + "start": 2945.64, + "end": 2949.08, + "probability": 0.9623 + }, + { + "start": 2949.64, + "end": 2951.26, + "probability": 0.6016 + }, + { + "start": 2951.38, + "end": 2952.12, + "probability": 0.9588 + }, + { + "start": 2952.28, + "end": 2957.5, + "probability": 0.9922 + }, + { + "start": 2957.64, + "end": 2959.26, + "probability": 0.8438 + }, + { + "start": 2960.18, + "end": 2964.98, + "probability": 0.8979 + }, + { + "start": 2966.0, + "end": 2967.26, + "probability": 0.7563 + }, + { + "start": 2968.52, + "end": 2970.16, + "probability": 0.6079 + }, + { + "start": 2971.16, + "end": 2972.22, + "probability": 0.8555 + }, + { + "start": 2972.24, + "end": 2972.62, + "probability": 0.9042 + }, + { + "start": 2972.78, + "end": 2979.96, + "probability": 0.8875 + }, + { + "start": 2980.14, + "end": 2980.84, + "probability": 0.9307 + }, + { + "start": 2981.32, + "end": 2984.2, + "probability": 0.9906 + }, + { + "start": 2985.18, + "end": 2989.26, + "probability": 0.9834 + }, + { + "start": 2990.92, + "end": 2995.64, + "probability": 0.9971 + }, + { + "start": 2995.78, + "end": 2998.08, + "probability": 0.8921 + }, + { + "start": 3000.5, + "end": 3004.1, + "probability": 0.8459 + }, + { + "start": 3004.62, + "end": 3009.6, + "probability": 0.9767 + }, + { + "start": 3010.28, + "end": 3013.06, + "probability": 0.9685 + }, + { + "start": 3013.78, + "end": 3015.52, + "probability": 0.8043 + }, + { + "start": 3016.86, + "end": 3020.48, + "probability": 0.7491 + }, + { + "start": 3020.96, + "end": 3022.0, + "probability": 0.8721 + }, + { + "start": 3022.44, + "end": 3025.86, + "probability": 0.8047 + }, + { + "start": 3026.98, + "end": 3028.0, + "probability": 0.9247 + }, + { + "start": 3028.62, + "end": 3030.5, + "probability": 0.9352 + }, + { + "start": 3031.8, + "end": 3033.22, + "probability": 0.9939 + }, + { + "start": 3033.94, + "end": 3039.24, + "probability": 0.9331 + }, + { + "start": 3040.5, + "end": 3040.98, + "probability": 0.4521 + }, + { + "start": 3041.3, + "end": 3041.88, + "probability": 0.7548 + }, + { + "start": 3041.94, + "end": 3042.76, + "probability": 0.6569 + }, + { + "start": 3042.9, + "end": 3044.84, + "probability": 0.6941 + }, + { + "start": 3046.56, + "end": 3047.78, + "probability": 0.6835 + }, + { + "start": 3048.86, + "end": 3052.44, + "probability": 0.9634 + }, + { + "start": 3054.27, + "end": 3058.64, + "probability": 0.7228 + }, + { + "start": 3059.66, + "end": 3060.86, + "probability": 0.9966 + }, + { + "start": 3061.36, + "end": 3066.48, + "probability": 0.996 + }, + { + "start": 3066.48, + "end": 3070.9, + "probability": 0.9585 + }, + { + "start": 3071.04, + "end": 3074.5, + "probability": 0.9761 + }, + { + "start": 3075.36, + "end": 3077.18, + "probability": 0.9813 + }, + { + "start": 3078.42, + "end": 3080.72, + "probability": 0.9713 + }, + { + "start": 3081.46, + "end": 3082.4, + "probability": 0.9246 + }, + { + "start": 3083.32, + "end": 3085.78, + "probability": 0.998 + }, + { + "start": 3086.76, + "end": 3088.02, + "probability": 0.9312 + }, + { + "start": 3089.26, + "end": 3090.22, + "probability": 0.9748 + }, + { + "start": 3090.44, + "end": 3092.62, + "probability": 0.9861 + }, + { + "start": 3092.62, + "end": 3095.5, + "probability": 0.9878 + }, + { + "start": 3095.64, + "end": 3098.62, + "probability": 0.9131 + }, + { + "start": 3100.02, + "end": 3100.26, + "probability": 0.5881 + }, + { + "start": 3101.52, + "end": 3102.94, + "probability": 0.9697 + }, + { + "start": 3103.1, + "end": 3105.46, + "probability": 0.9868 + }, + { + "start": 3106.68, + "end": 3109.54, + "probability": 0.9365 + }, + { + "start": 3109.7, + "end": 3111.78, + "probability": 0.8636 + }, + { + "start": 3112.2, + "end": 3116.5, + "probability": 0.8611 + }, + { + "start": 3117.56, + "end": 3117.86, + "probability": 0.8169 + }, + { + "start": 3119.64, + "end": 3120.26, + "probability": 0.5691 + }, + { + "start": 3120.72, + "end": 3125.26, + "probability": 0.967 + }, + { + "start": 3126.66, + "end": 3127.52, + "probability": 0.7392 + }, + { + "start": 3128.22, + "end": 3129.88, + "probability": 0.9604 + }, + { + "start": 3132.16, + "end": 3133.88, + "probability": 0.8593 + }, + { + "start": 3134.94, + "end": 3138.74, + "probability": 0.9849 + }, + { + "start": 3140.92, + "end": 3142.9, + "probability": 0.9064 + }, + { + "start": 3143.52, + "end": 3146.67, + "probability": 0.9658 + }, + { + "start": 3148.48, + "end": 3149.78, + "probability": 0.7025 + }, + { + "start": 3150.9, + "end": 3153.0, + "probability": 0.7911 + }, + { + "start": 3153.6, + "end": 3154.52, + "probability": 0.9649 + }, + { + "start": 3155.92, + "end": 3156.22, + "probability": 0.5197 + }, + { + "start": 3156.38, + "end": 3159.16, + "probability": 0.9806 + }, + { + "start": 3159.52, + "end": 3161.22, + "probability": 0.9653 + }, + { + "start": 3162.02, + "end": 3163.84, + "probability": 0.9233 + }, + { + "start": 3164.92, + "end": 3166.82, + "probability": 0.8975 + }, + { + "start": 3167.5, + "end": 3170.86, + "probability": 0.9837 + }, + { + "start": 3171.54, + "end": 3173.12, + "probability": 0.7574 + }, + { + "start": 3173.14, + "end": 3173.66, + "probability": 0.7723 + }, + { + "start": 3173.78, + "end": 3174.62, + "probability": 0.4049 + }, + { + "start": 3174.76, + "end": 3175.26, + "probability": 0.902 + }, + { + "start": 3175.32, + "end": 3176.38, + "probability": 0.9426 + }, + { + "start": 3176.84, + "end": 3177.66, + "probability": 0.6448 + }, + { + "start": 3177.7, + "end": 3179.8, + "probability": 0.9491 + }, + { + "start": 3179.8, + "end": 3182.56, + "probability": 0.803 + }, + { + "start": 3184.28, + "end": 3187.4, + "probability": 0.1414 + }, + { + "start": 3187.44, + "end": 3190.52, + "probability": 0.5948 + }, + { + "start": 3191.3, + "end": 3195.66, + "probability": 0.2776 + }, + { + "start": 3195.68, + "end": 3195.84, + "probability": 0.4415 + }, + { + "start": 3195.84, + "end": 3197.68, + "probability": 0.7802 + }, + { + "start": 3197.78, + "end": 3199.3, + "probability": 0.9249 + }, + { + "start": 3200.52, + "end": 3202.22, + "probability": 0.8229 + }, + { + "start": 3202.64, + "end": 3205.22, + "probability": 0.9654 + }, + { + "start": 3206.04, + "end": 3206.48, + "probability": 0.5306 + }, + { + "start": 3206.58, + "end": 3207.1, + "probability": 0.954 + }, + { + "start": 3207.14, + "end": 3207.66, + "probability": 0.8514 + }, + { + "start": 3207.76, + "end": 3208.66, + "probability": 0.9956 + }, + { + "start": 3208.74, + "end": 3209.88, + "probability": 0.9569 + }, + { + "start": 3210.46, + "end": 3214.72, + "probability": 0.9426 + }, + { + "start": 3215.1, + "end": 3215.26, + "probability": 0.609 + }, + { + "start": 3217.26, + "end": 3217.84, + "probability": 0.2462 + }, + { + "start": 3218.88, + "end": 3221.62, + "probability": 0.8711 + }, + { + "start": 3222.86, + "end": 3223.02, + "probability": 0.2774 + }, + { + "start": 3223.02, + "end": 3223.24, + "probability": 0.5726 + }, + { + "start": 3223.32, + "end": 3223.94, + "probability": 0.8567 + }, + { + "start": 3224.34, + "end": 3228.7, + "probability": 0.9679 + }, + { + "start": 3229.1, + "end": 3232.92, + "probability": 0.8789 + }, + { + "start": 3233.48, + "end": 3237.34, + "probability": 0.989 + }, + { + "start": 3237.44, + "end": 3241.22, + "probability": 0.8913 + }, + { + "start": 3242.56, + "end": 3245.12, + "probability": 0.9689 + }, + { + "start": 3246.6, + "end": 3251.3, + "probability": 0.9879 + }, + { + "start": 3252.24, + "end": 3255.64, + "probability": 0.953 + }, + { + "start": 3256.32, + "end": 3258.58, + "probability": 0.9883 + }, + { + "start": 3259.5, + "end": 3261.34, + "probability": 0.8784 + }, + { + "start": 3261.48, + "end": 3262.9, + "probability": 0.9429 + }, + { + "start": 3263.14, + "end": 3264.12, + "probability": 0.8946 + }, + { + "start": 3264.24, + "end": 3264.92, + "probability": 0.6002 + }, + { + "start": 3267.12, + "end": 3271.62, + "probability": 0.7634 + }, + { + "start": 3272.0, + "end": 3274.58, + "probability": 0.8397 + }, + { + "start": 3275.24, + "end": 3276.82, + "probability": 0.9757 + }, + { + "start": 3278.66, + "end": 3283.44, + "probability": 0.9914 + }, + { + "start": 3284.32, + "end": 3288.08, + "probability": 0.9771 + }, + { + "start": 3288.76, + "end": 3290.76, + "probability": 0.9288 + }, + { + "start": 3291.42, + "end": 3296.04, + "probability": 0.9922 + }, + { + "start": 3296.66, + "end": 3299.0, + "probability": 0.9941 + }, + { + "start": 3299.54, + "end": 3301.76, + "probability": 0.9963 + }, + { + "start": 3301.9, + "end": 3302.46, + "probability": 0.4773 + }, + { + "start": 3302.52, + "end": 3303.88, + "probability": 0.7622 + }, + { + "start": 3304.34, + "end": 3306.12, + "probability": 0.9686 + }, + { + "start": 3306.26, + "end": 3310.76, + "probability": 0.9486 + }, + { + "start": 3311.16, + "end": 3315.22, + "probability": 0.9366 + }, + { + "start": 3315.7, + "end": 3318.86, + "probability": 0.7607 + }, + { + "start": 3318.96, + "end": 3320.9, + "probability": 0.9624 + }, + { + "start": 3321.14, + "end": 3323.74, + "probability": 0.9719 + }, + { + "start": 3324.12, + "end": 3324.54, + "probability": 0.984 + }, + { + "start": 3325.26, + "end": 3327.76, + "probability": 0.6795 + }, + { + "start": 3328.56, + "end": 3330.26, + "probability": 0.5307 + }, + { + "start": 3330.4, + "end": 3332.88, + "probability": 0.9207 + }, + { + "start": 3333.7, + "end": 3335.56, + "probability": 0.983 + }, + { + "start": 3335.72, + "end": 3338.54, + "probability": 0.9123 + }, + { + "start": 3338.54, + "end": 3340.56, + "probability": 0.9388 + }, + { + "start": 3341.26, + "end": 3343.56, + "probability": 0.7513 + }, + { + "start": 3344.18, + "end": 3344.96, + "probability": 0.9758 + }, + { + "start": 3345.8, + "end": 3348.54, + "probability": 0.9795 + }, + { + "start": 3348.98, + "end": 3356.02, + "probability": 0.9744 + }, + { + "start": 3357.4, + "end": 3360.12, + "probability": 0.8543 + }, + { + "start": 3360.28, + "end": 3361.41, + "probability": 0.9922 + }, + { + "start": 3362.14, + "end": 3362.72, + "probability": 0.5537 + }, + { + "start": 3363.64, + "end": 3366.68, + "probability": 0.9824 + }, + { + "start": 3367.36, + "end": 3367.99, + "probability": 0.9546 + }, + { + "start": 3368.46, + "end": 3368.98, + "probability": 0.9001 + }, + { + "start": 3369.02, + "end": 3372.94, + "probability": 0.9858 + }, + { + "start": 3372.94, + "end": 3377.7, + "probability": 0.9983 + }, + { + "start": 3377.76, + "end": 3380.0, + "probability": 0.9956 + }, + { + "start": 3381.62, + "end": 3384.82, + "probability": 0.9375 + }, + { + "start": 3387.27, + "end": 3388.58, + "probability": 0.5346 + }, + { + "start": 3388.6, + "end": 3389.2, + "probability": 0.6152 + }, + { + "start": 3389.28, + "end": 3389.4, + "probability": 0.4183 + }, + { + "start": 3389.56, + "end": 3392.24, + "probability": 0.9183 + }, + { + "start": 3392.6, + "end": 3392.8, + "probability": 0.4295 + }, + { + "start": 3392.84, + "end": 3393.36, + "probability": 0.9707 + }, + { + "start": 3394.52, + "end": 3395.94, + "probability": 0.937 + }, + { + "start": 3396.52, + "end": 3398.84, + "probability": 0.8042 + }, + { + "start": 3398.92, + "end": 3404.05, + "probability": 0.9854 + }, + { + "start": 3404.78, + "end": 3406.38, + "probability": 0.9564 + }, + { + "start": 3407.96, + "end": 3413.94, + "probability": 0.7211 + }, + { + "start": 3414.22, + "end": 3418.62, + "probability": 0.8532 + }, + { + "start": 3419.26, + "end": 3422.48, + "probability": 0.9889 + }, + { + "start": 3423.1, + "end": 3424.46, + "probability": 0.6892 + }, + { + "start": 3425.1, + "end": 3427.92, + "probability": 0.9644 + }, + { + "start": 3428.54, + "end": 3430.97, + "probability": 0.9968 + }, + { + "start": 3432.7, + "end": 3435.34, + "probability": 0.8257 + }, + { + "start": 3435.48, + "end": 3439.62, + "probability": 0.978 + }, + { + "start": 3440.2, + "end": 3441.28, + "probability": 0.9834 + }, + { + "start": 3441.42, + "end": 3444.74, + "probability": 0.6811 + }, + { + "start": 3445.14, + "end": 3449.22, + "probability": 0.934 + }, + { + "start": 3449.3, + "end": 3450.22, + "probability": 0.9884 + }, + { + "start": 3450.74, + "end": 3451.32, + "probability": 0.6535 + }, + { + "start": 3451.9, + "end": 3453.52, + "probability": 0.9211 + }, + { + "start": 3459.62, + "end": 3460.32, + "probability": 0.6178 + }, + { + "start": 3460.82, + "end": 3462.22, + "probability": 0.5865 + }, + { + "start": 3466.7, + "end": 3468.18, + "probability": 0.7723 + }, + { + "start": 3483.5, + "end": 3483.62, + "probability": 0.4146 + }, + { + "start": 3485.08, + "end": 3485.68, + "probability": 0.6846 + }, + { + "start": 3490.42, + "end": 3491.52, + "probability": 0.7491 + }, + { + "start": 3492.12, + "end": 3494.16, + "probability": 0.7113 + }, + { + "start": 3496.0, + "end": 3500.24, + "probability": 0.9431 + }, + { + "start": 3500.24, + "end": 3503.56, + "probability": 0.9897 + }, + { + "start": 3505.14, + "end": 3505.72, + "probability": 0.9961 + }, + { + "start": 3507.26, + "end": 3508.38, + "probability": 0.9114 + }, + { + "start": 3508.78, + "end": 3510.84, + "probability": 0.9934 + }, + { + "start": 3512.06, + "end": 3514.64, + "probability": 0.9891 + }, + { + "start": 3515.88, + "end": 3518.86, + "probability": 0.9921 + }, + { + "start": 3519.8, + "end": 3521.44, + "probability": 0.9299 + }, + { + "start": 3522.26, + "end": 3525.6, + "probability": 0.9956 + }, + { + "start": 3526.52, + "end": 3529.62, + "probability": 0.9814 + }, + { + "start": 3529.98, + "end": 3530.24, + "probability": 0.5684 + }, + { + "start": 3532.16, + "end": 3534.6, + "probability": 0.0496 + }, + { + "start": 3534.6, + "end": 3534.6, + "probability": 0.006 + }, + { + "start": 3534.6, + "end": 3535.7, + "probability": 0.0561 + }, + { + "start": 3535.98, + "end": 3537.29, + "probability": 0.8497 + }, + { + "start": 3538.18, + "end": 3540.6, + "probability": 0.9951 + }, + { + "start": 3540.98, + "end": 3544.1, + "probability": 0.9907 + }, + { + "start": 3544.34, + "end": 3545.06, + "probability": 0.9463 + }, + { + "start": 3546.42, + "end": 3548.6, + "probability": 0.7198 + }, + { + "start": 3549.58, + "end": 3552.4, + "probability": 0.9249 + }, + { + "start": 3553.24, + "end": 3555.5, + "probability": 0.6425 + }, + { + "start": 3556.68, + "end": 3561.98, + "probability": 0.9985 + }, + { + "start": 3563.44, + "end": 3567.44, + "probability": 0.999 + }, + { + "start": 3568.32, + "end": 3572.62, + "probability": 0.9092 + }, + { + "start": 3572.78, + "end": 3572.8, + "probability": 0.0533 + }, + { + "start": 3572.8, + "end": 3575.56, + "probability": 0.9922 + }, + { + "start": 3576.84, + "end": 3581.32, + "probability": 0.9946 + }, + { + "start": 3581.68, + "end": 3583.8, + "probability": 0.9817 + }, + { + "start": 3584.92, + "end": 3590.82, + "probability": 0.9966 + }, + { + "start": 3591.98, + "end": 3592.48, + "probability": 0.9264 + }, + { + "start": 3594.38, + "end": 3597.26, + "probability": 0.9901 + }, + { + "start": 3597.58, + "end": 3601.8, + "probability": 0.958 + }, + { + "start": 3602.96, + "end": 3605.8, + "probability": 0.9947 + }, + { + "start": 3607.38, + "end": 3611.6, + "probability": 0.9913 + }, + { + "start": 3614.1, + "end": 3615.82, + "probability": 0.8324 + }, + { + "start": 3616.74, + "end": 3620.9, + "probability": 0.9771 + }, + { + "start": 3620.9, + "end": 3625.4, + "probability": 0.9981 + }, + { + "start": 3627.3, + "end": 3629.7, + "probability": 0.9991 + }, + { + "start": 3630.26, + "end": 3631.28, + "probability": 0.514 + }, + { + "start": 3632.66, + "end": 3634.68, + "probability": 0.93 + }, + { + "start": 3636.12, + "end": 3637.24, + "probability": 0.9446 + }, + { + "start": 3638.58, + "end": 3639.64, + "probability": 0.8347 + }, + { + "start": 3641.0, + "end": 3643.3, + "probability": 0.7795 + }, + { + "start": 3644.88, + "end": 3646.39, + "probability": 0.9302 + }, + { + "start": 3649.14, + "end": 3650.68, + "probability": 0.8089 + }, + { + "start": 3651.66, + "end": 3652.86, + "probability": 0.9654 + }, + { + "start": 3653.98, + "end": 3657.84, + "probability": 0.9849 + }, + { + "start": 3657.84, + "end": 3661.4, + "probability": 0.9989 + }, + { + "start": 3662.82, + "end": 3664.2, + "probability": 0.8329 + }, + { + "start": 3665.02, + "end": 3666.67, + "probability": 0.9772 + }, + { + "start": 3669.88, + "end": 3671.82, + "probability": 0.9686 + }, + { + "start": 3673.22, + "end": 3674.36, + "probability": 0.96 + }, + { + "start": 3675.56, + "end": 3677.58, + "probability": 0.9049 + }, + { + "start": 3678.46, + "end": 3679.48, + "probability": 0.7468 + }, + { + "start": 3680.16, + "end": 3682.4, + "probability": 0.9663 + }, + { + "start": 3683.14, + "end": 3684.6, + "probability": 0.8816 + }, + { + "start": 3685.44, + "end": 3686.3, + "probability": 0.9779 + }, + { + "start": 3689.34, + "end": 3690.56, + "probability": 0.9375 + }, + { + "start": 3693.06, + "end": 3694.28, + "probability": 0.9043 + }, + { + "start": 3695.9, + "end": 3699.48, + "probability": 0.9241 + }, + { + "start": 3700.36, + "end": 3702.44, + "probability": 0.9919 + }, + { + "start": 3703.26, + "end": 3706.54, + "probability": 0.9982 + }, + { + "start": 3707.44, + "end": 3708.6, + "probability": 0.8472 + }, + { + "start": 3709.62, + "end": 3711.94, + "probability": 0.9826 + }, + { + "start": 3712.26, + "end": 3717.82, + "probability": 0.9624 + }, + { + "start": 3717.94, + "end": 3719.88, + "probability": 0.9858 + }, + { + "start": 3720.9, + "end": 3723.64, + "probability": 0.7943 + }, + { + "start": 3725.7, + "end": 3728.24, + "probability": 0.9349 + }, + { + "start": 3729.86, + "end": 3730.24, + "probability": 0.9707 + }, + { + "start": 3730.88, + "end": 3733.8, + "probability": 0.9752 + }, + { + "start": 3735.64, + "end": 3737.82, + "probability": 0.6415 + }, + { + "start": 3738.84, + "end": 3743.34, + "probability": 0.9922 + }, + { + "start": 3745.18, + "end": 3751.78, + "probability": 0.9903 + }, + { + "start": 3751.9, + "end": 3752.42, + "probability": 0.4953 + }, + { + "start": 3752.52, + "end": 3753.48, + "probability": 0.8827 + }, + { + "start": 3754.28, + "end": 3756.94, + "probability": 0.9882 + }, + { + "start": 3757.7, + "end": 3758.32, + "probability": 0.7742 + }, + { + "start": 3758.88, + "end": 3759.64, + "probability": 0.8475 + }, + { + "start": 3761.44, + "end": 3763.98, + "probability": 0.9987 + }, + { + "start": 3764.08, + "end": 3765.44, + "probability": 0.9735 + }, + { + "start": 3767.06, + "end": 3772.24, + "probability": 0.9849 + }, + { + "start": 3773.02, + "end": 3774.48, + "probability": 0.9932 + }, + { + "start": 3775.86, + "end": 3779.9, + "probability": 0.8349 + }, + { + "start": 3779.9, + "end": 3783.82, + "probability": 0.9971 + }, + { + "start": 3784.78, + "end": 3785.15, + "probability": 0.8904 + }, + { + "start": 3786.42, + "end": 3788.96, + "probability": 0.9655 + }, + { + "start": 3789.74, + "end": 3791.88, + "probability": 0.9177 + }, + { + "start": 3793.5, + "end": 3795.68, + "probability": 0.9922 + }, + { + "start": 3796.52, + "end": 3801.64, + "probability": 0.9882 + }, + { + "start": 3803.24, + "end": 3805.02, + "probability": 0.9967 + }, + { + "start": 3805.1, + "end": 3806.46, + "probability": 0.9793 + }, + { + "start": 3806.58, + "end": 3808.28, + "probability": 0.9989 + }, + { + "start": 3808.56, + "end": 3809.88, + "probability": 0.9355 + }, + { + "start": 3812.34, + "end": 3814.3, + "probability": 0.8575 + }, + { + "start": 3816.3, + "end": 3821.84, + "probability": 0.9239 + }, + { + "start": 3824.04, + "end": 3826.6, + "probability": 0.6889 + }, + { + "start": 3827.6, + "end": 3831.08, + "probability": 0.9318 + }, + { + "start": 3831.34, + "end": 3832.8, + "probability": 0.9395 + }, + { + "start": 3833.28, + "end": 3835.14, + "probability": 0.9861 + }, + { + "start": 3836.66, + "end": 3837.69, + "probability": 0.98 + }, + { + "start": 3840.46, + "end": 3844.14, + "probability": 0.9629 + }, + { + "start": 3846.16, + "end": 3847.42, + "probability": 0.9867 + }, + { + "start": 3848.7, + "end": 3850.92, + "probability": 0.8267 + }, + { + "start": 3852.12, + "end": 3852.62, + "probability": 0.5683 + }, + { + "start": 3852.8, + "end": 3853.26, + "probability": 0.7754 + }, + { + "start": 3853.38, + "end": 3854.44, + "probability": 0.5441 + }, + { + "start": 3854.56, + "end": 3856.32, + "probability": 0.9426 + }, + { + "start": 3856.5, + "end": 3857.48, + "probability": 0.6438 + }, + { + "start": 3859.4, + "end": 3861.96, + "probability": 0.9463 + }, + { + "start": 3862.74, + "end": 3864.38, + "probability": 0.8454 + }, + { + "start": 3865.24, + "end": 3867.94, + "probability": 0.9863 + }, + { + "start": 3868.72, + "end": 3872.66, + "probability": 0.9958 + }, + { + "start": 3872.66, + "end": 3876.04, + "probability": 0.9957 + }, + { + "start": 3877.42, + "end": 3878.5, + "probability": 0.9743 + }, + { + "start": 3879.78, + "end": 3885.34, + "probability": 0.9876 + }, + { + "start": 3886.48, + "end": 3887.42, + "probability": 0.5541 + }, + { + "start": 3888.36, + "end": 3892.08, + "probability": 0.8958 + }, + { + "start": 3893.6, + "end": 3895.5, + "probability": 0.9244 + }, + { + "start": 3896.5, + "end": 3897.96, + "probability": 0.8575 + }, + { + "start": 3898.82, + "end": 3901.42, + "probability": 0.9941 + }, + { + "start": 3902.3, + "end": 3904.22, + "probability": 0.9678 + }, + { + "start": 3904.28, + "end": 3905.24, + "probability": 0.9264 + }, + { + "start": 3905.36, + "end": 3905.98, + "probability": 0.8754 + }, + { + "start": 3906.08, + "end": 3907.28, + "probability": 0.9612 + }, + { + "start": 3908.8, + "end": 3912.16, + "probability": 0.968 + }, + { + "start": 3912.92, + "end": 3916.5, + "probability": 0.8428 + }, + { + "start": 3917.14, + "end": 3920.12, + "probability": 0.998 + }, + { + "start": 3920.58, + "end": 3922.96, + "probability": 0.9849 + }, + { + "start": 3923.94, + "end": 3925.86, + "probability": 0.9941 + }, + { + "start": 3927.54, + "end": 3928.72, + "probability": 0.5194 + }, + { + "start": 3929.36, + "end": 3932.86, + "probability": 0.9593 + }, + { + "start": 3934.46, + "end": 3940.52, + "probability": 0.9977 + }, + { + "start": 3942.36, + "end": 3943.26, + "probability": 0.8719 + }, + { + "start": 3946.42, + "end": 3947.76, + "probability": 0.9974 + }, + { + "start": 3950.32, + "end": 3952.36, + "probability": 0.9851 + }, + { + "start": 3952.44, + "end": 3955.0, + "probability": 0.9962 + }, + { + "start": 3955.44, + "end": 3956.1, + "probability": 0.9867 + }, + { + "start": 3957.06, + "end": 3959.66, + "probability": 0.9944 + }, + { + "start": 3960.2, + "end": 3963.18, + "probability": 0.9961 + }, + { + "start": 3964.88, + "end": 3965.44, + "probability": 0.2918 + }, + { + "start": 3965.6, + "end": 3967.89, + "probability": 0.965 + }, + { + "start": 3968.46, + "end": 3969.0, + "probability": 0.9749 + }, + { + "start": 3969.1, + "end": 3969.88, + "probability": 0.9222 + }, + { + "start": 3970.7, + "end": 3971.74, + "probability": 0.9699 + }, + { + "start": 3973.46, + "end": 3974.68, + "probability": 0.9371 + }, + { + "start": 3975.12, + "end": 3977.98, + "probability": 0.983 + }, + { + "start": 3979.22, + "end": 3983.0, + "probability": 0.8397 + }, + { + "start": 3983.8, + "end": 3985.2, + "probability": 0.3364 + }, + { + "start": 3986.44, + "end": 3988.98, + "probability": 0.878 + }, + { + "start": 3989.12, + "end": 3990.2, + "probability": 0.9015 + }, + { + "start": 3991.66, + "end": 3993.96, + "probability": 0.9979 + }, + { + "start": 3994.88, + "end": 3996.58, + "probability": 0.9691 + }, + { + "start": 3996.82, + "end": 3997.94, + "probability": 0.7842 + }, + { + "start": 3998.1, + "end": 4000.56, + "probability": 0.806 + }, + { + "start": 4000.74, + "end": 4001.72, + "probability": 0.8923 + }, + { + "start": 4002.62, + "end": 4004.82, + "probability": 0.2955 + }, + { + "start": 4005.72, + "end": 4007.79, + "probability": 0.9808 + }, + { + "start": 4009.16, + "end": 4009.84, + "probability": 0.8414 + }, + { + "start": 4010.76, + "end": 4015.86, + "probability": 0.9966 + }, + { + "start": 4017.06, + "end": 4020.8, + "probability": 0.998 + }, + { + "start": 4020.84, + "end": 4022.14, + "probability": 0.9779 + }, + { + "start": 4023.52, + "end": 4024.71, + "probability": 0.9204 + }, + { + "start": 4026.24, + "end": 4029.62, + "probability": 0.99 + }, + { + "start": 4031.14, + "end": 4033.74, + "probability": 0.8641 + }, + { + "start": 4034.66, + "end": 4037.24, + "probability": 0.9957 + }, + { + "start": 4038.68, + "end": 4042.32, + "probability": 0.989 + }, + { + "start": 4046.8, + "end": 4047.6, + "probability": 0.9854 + }, + { + "start": 4049.46, + "end": 4052.92, + "probability": 0.9932 + }, + { + "start": 4053.42, + "end": 4054.62, + "probability": 0.4375 + }, + { + "start": 4055.88, + "end": 4058.48, + "probability": 0.9648 + }, + { + "start": 4060.1, + "end": 4061.28, + "probability": 0.7187 + }, + { + "start": 4062.66, + "end": 4066.82, + "probability": 0.8408 + }, + { + "start": 4067.0, + "end": 4071.0, + "probability": 0.9849 + }, + { + "start": 4073.9, + "end": 4075.2, + "probability": 0.7137 + }, + { + "start": 4075.32, + "end": 4077.22, + "probability": 0.986 + }, + { + "start": 4077.22, + "end": 4079.68, + "probability": 0.9636 + }, + { + "start": 4080.9, + "end": 4082.52, + "probability": 0.7315 + }, + { + "start": 4084.28, + "end": 4088.06, + "probability": 0.8832 + }, + { + "start": 4088.78, + "end": 4089.68, + "probability": 0.5694 + }, + { + "start": 4091.52, + "end": 4093.88, + "probability": 0.6458 + }, + { + "start": 4095.5, + "end": 4098.22, + "probability": 0.9597 + }, + { + "start": 4098.38, + "end": 4098.52, + "probability": 0.3081 + }, + { + "start": 4098.7, + "end": 4099.62, + "probability": 0.9606 + }, + { + "start": 4099.78, + "end": 4100.38, + "probability": 0.7173 + }, + { + "start": 4100.38, + "end": 4102.68, + "probability": 0.9785 + }, + { + "start": 4102.82, + "end": 4105.77, + "probability": 0.9805 + }, + { + "start": 4106.86, + "end": 4109.46, + "probability": 0.9268 + }, + { + "start": 4110.58, + "end": 4110.58, + "probability": 0.0122 + }, + { + "start": 4110.58, + "end": 4112.53, + "probability": 0.9604 + }, + { + "start": 4113.58, + "end": 4116.12, + "probability": 0.9906 + }, + { + "start": 4116.92, + "end": 4118.96, + "probability": 0.9863 + }, + { + "start": 4119.04, + "end": 4120.92, + "probability": 0.7082 + }, + { + "start": 4122.42, + "end": 4122.74, + "probability": 0.7349 + }, + { + "start": 4122.76, + "end": 4123.26, + "probability": 0.9653 + }, + { + "start": 4123.8, + "end": 4124.62, + "probability": 0.7852 + }, + { + "start": 4125.32, + "end": 4126.44, + "probability": 0.9035 + }, + { + "start": 4127.66, + "end": 4129.24, + "probability": 0.7557 + }, + { + "start": 4129.98, + "end": 4132.2, + "probability": 0.9283 + }, + { + "start": 4133.58, + "end": 4134.38, + "probability": 0.8795 + }, + { + "start": 4136.6, + "end": 4140.22, + "probability": 0.9663 + }, + { + "start": 4140.38, + "end": 4142.5, + "probability": 0.738 + }, + { + "start": 4142.64, + "end": 4144.44, + "probability": 0.9678 + }, + { + "start": 4145.66, + "end": 4146.28, + "probability": 0.5618 + }, + { + "start": 4146.84, + "end": 4148.54, + "probability": 0.9788 + }, + { + "start": 4149.52, + "end": 4151.24, + "probability": 0.5572 + }, + { + "start": 4152.04, + "end": 4155.2, + "probability": 0.9924 + }, + { + "start": 4156.06, + "end": 4156.36, + "probability": 0.205 + }, + { + "start": 4156.44, + "end": 4157.44, + "probability": 0.9811 + }, + { + "start": 4157.5, + "end": 4160.54, + "probability": 0.9886 + }, + { + "start": 4160.6, + "end": 4160.94, + "probability": 0.3343 + }, + { + "start": 4161.0, + "end": 4161.2, + "probability": 0.6488 + }, + { + "start": 4161.84, + "end": 4162.14, + "probability": 0.9409 + }, + { + "start": 4163.32, + "end": 4165.02, + "probability": 0.643 + }, + { + "start": 4165.95, + "end": 4168.28, + "probability": 0.0481 + }, + { + "start": 4168.36, + "end": 4169.04, + "probability": 0.4979 + }, + { + "start": 4169.62, + "end": 4170.12, + "probability": 0.5269 + }, + { + "start": 4170.46, + "end": 4171.2, + "probability": 0.5221 + }, + { + "start": 4174.9, + "end": 4178.82, + "probability": 0.9272 + }, + { + "start": 4179.56, + "end": 4182.4, + "probability": 0.8715 + }, + { + "start": 4182.48, + "end": 4184.55, + "probability": 0.489 + }, + { + "start": 4188.26, + "end": 4189.92, + "probability": 0.7168 + }, + { + "start": 4190.2, + "end": 4190.7, + "probability": 0.202 + }, + { + "start": 4191.54, + "end": 4192.86, + "probability": 0.8843 + }, + { + "start": 4193.28, + "end": 4195.34, + "probability": 0.894 + }, + { + "start": 4196.16, + "end": 4201.56, + "probability": 0.9934 + }, + { + "start": 4201.74, + "end": 4202.2, + "probability": 0.9781 + }, + { + "start": 4202.94, + "end": 4207.2, + "probability": 0.9926 + }, + { + "start": 4207.86, + "end": 4211.28, + "probability": 0.999 + }, + { + "start": 4213.46, + "end": 4214.36, + "probability": 0.0198 + }, + { + "start": 4214.38, + "end": 4214.38, + "probability": 0.0651 + }, + { + "start": 4215.69, + "end": 4222.8, + "probability": 0.7521 + }, + { + "start": 4224.28, + "end": 4227.18, + "probability": 0.8029 + }, + { + "start": 4227.84, + "end": 4231.5, + "probability": 0.8306 + }, + { + "start": 4232.18, + "end": 4235.62, + "probability": 0.7874 + }, + { + "start": 4236.16, + "end": 4237.28, + "probability": 0.4403 + }, + { + "start": 4237.52, + "end": 4241.64, + "probability": 0.6646 + }, + { + "start": 4242.26, + "end": 4247.62, + "probability": 0.915 + }, + { + "start": 4248.64, + "end": 4250.94, + "probability": 0.9806 + }, + { + "start": 4251.02, + "end": 4251.88, + "probability": 0.7587 + }, + { + "start": 4252.16, + "end": 4253.02, + "probability": 0.7072 + }, + { + "start": 4253.07, + "end": 4255.42, + "probability": 0.5276 + }, + { + "start": 4256.0, + "end": 4257.72, + "probability": 0.7964 + }, + { + "start": 4258.47, + "end": 4261.0, + "probability": 0.9497 + }, + { + "start": 4262.06, + "end": 4262.46, + "probability": 0.8701 + }, + { + "start": 4263.2, + "end": 4265.68, + "probability": 0.8295 + }, + { + "start": 4265.78, + "end": 4267.6, + "probability": 0.9766 + }, + { + "start": 4267.94, + "end": 4272.12, + "probability": 0.9984 + }, + { + "start": 4272.12, + "end": 4275.48, + "probability": 0.9971 + }, + { + "start": 4275.66, + "end": 4278.79, + "probability": 0.9941 + }, + { + "start": 4279.24, + "end": 4279.79, + "probability": 0.9864 + }, + { + "start": 4281.1, + "end": 4281.38, + "probability": 0.7996 + }, + { + "start": 4281.52, + "end": 4284.54, + "probability": 0.9685 + }, + { + "start": 4284.94, + "end": 4285.88, + "probability": 0.8612 + }, + { + "start": 4286.28, + "end": 4289.87, + "probability": 0.9673 + }, + { + "start": 4290.48, + "end": 4295.12, + "probability": 0.956 + }, + { + "start": 4296.16, + "end": 4297.04, + "probability": 0.675 + }, + { + "start": 4298.06, + "end": 4298.3, + "probability": 0.8965 + }, + { + "start": 4298.74, + "end": 4299.2, + "probability": 0.9663 + }, + { + "start": 4300.08, + "end": 4301.16, + "probability": 0.9217 + }, + { + "start": 4301.94, + "end": 4306.46, + "probability": 0.9791 + }, + { + "start": 4306.56, + "end": 4307.4, + "probability": 0.8027 + }, + { + "start": 4307.98, + "end": 4311.76, + "probability": 0.9174 + }, + { + "start": 4311.82, + "end": 4313.02, + "probability": 0.986 + }, + { + "start": 4313.06, + "end": 4313.8, + "probability": 0.79 + }, + { + "start": 4314.1, + "end": 4315.56, + "probability": 0.9761 + }, + { + "start": 4316.24, + "end": 4320.42, + "probability": 0.967 + }, + { + "start": 4321.56, + "end": 4323.62, + "probability": 0.5089 + }, + { + "start": 4324.84, + "end": 4326.62, + "probability": 0.8896 + }, + { + "start": 4326.94, + "end": 4328.35, + "probability": 0.9976 + }, + { + "start": 4328.62, + "end": 4332.12, + "probability": 0.9956 + }, + { + "start": 4332.2, + "end": 4333.72, + "probability": 0.9287 + }, + { + "start": 4334.26, + "end": 4335.94, + "probability": 0.998 + }, + { + "start": 4337.44, + "end": 4341.36, + "probability": 0.9872 + }, + { + "start": 4341.46, + "end": 4342.58, + "probability": 0.9073 + }, + { + "start": 4343.64, + "end": 4346.88, + "probability": 0.9512 + }, + { + "start": 4346.96, + "end": 4348.86, + "probability": 0.9604 + }, + { + "start": 4349.36, + "end": 4350.12, + "probability": 0.7721 + }, + { + "start": 4350.18, + "end": 4350.42, + "probability": 0.0091 + }, + { + "start": 4350.42, + "end": 4351.71, + "probability": 0.7637 + }, + { + "start": 4352.0, + "end": 4353.67, + "probability": 0.967 + }, + { + "start": 4354.32, + "end": 4356.56, + "probability": 0.3595 + }, + { + "start": 4357.22, + "end": 4362.66, + "probability": 0.9553 + }, + { + "start": 4363.3, + "end": 4367.36, + "probability": 0.9931 + }, + { + "start": 4367.98, + "end": 4371.84, + "probability": 0.903 + }, + { + "start": 4371.92, + "end": 4375.72, + "probability": 0.994 + }, + { + "start": 4376.42, + "end": 4376.8, + "probability": 0.1785 + }, + { + "start": 4377.62, + "end": 4378.92, + "probability": 0.7228 + }, + { + "start": 4379.1, + "end": 4382.76, + "probability": 0.9412 + }, + { + "start": 4382.84, + "end": 4384.52, + "probability": 0.9844 + }, + { + "start": 4384.72, + "end": 4386.66, + "probability": 0.989 + }, + { + "start": 4387.2, + "end": 4388.3, + "probability": 0.8732 + }, + { + "start": 4388.66, + "end": 4391.52, + "probability": 0.994 + }, + { + "start": 4392.28, + "end": 4394.16, + "probability": 0.9849 + }, + { + "start": 4395.2, + "end": 4398.78, + "probability": 0.8805 + }, + { + "start": 4398.92, + "end": 4400.28, + "probability": 0.6845 + }, + { + "start": 4400.3, + "end": 4402.9, + "probability": 0.087 + }, + { + "start": 4402.9, + "end": 4408.8, + "probability": 0.993 + }, + { + "start": 4408.94, + "end": 4415.3, + "probability": 0.9482 + }, + { + "start": 4415.6, + "end": 4418.08, + "probability": 0.9952 + }, + { + "start": 4418.66, + "end": 4419.36, + "probability": 0.5014 + }, + { + "start": 4419.64, + "end": 4421.28, + "probability": 0.8719 + }, + { + "start": 4422.39, + "end": 4426.52, + "probability": 0.7903 + }, + { + "start": 4427.18, + "end": 4427.98, + "probability": 0.6744 + }, + { + "start": 4428.5, + "end": 4430.38, + "probability": 0.9832 + }, + { + "start": 4430.96, + "end": 4432.01, + "probability": 0.9009 + }, + { + "start": 4432.52, + "end": 4434.12, + "probability": 0.9366 + }, + { + "start": 4434.2, + "end": 4439.04, + "probability": 0.9805 + }, + { + "start": 4439.54, + "end": 4440.12, + "probability": 0.3322 + }, + { + "start": 4440.6, + "end": 4441.54, + "probability": 0.7363 + }, + { + "start": 4441.66, + "end": 4442.9, + "probability": 0.9743 + }, + { + "start": 4442.98, + "end": 4443.86, + "probability": 0.8982 + }, + { + "start": 4444.02, + "end": 4445.18, + "probability": 0.9893 + }, + { + "start": 4445.62, + "end": 4447.02, + "probability": 0.946 + }, + { + "start": 4447.36, + "end": 4448.99, + "probability": 0.9963 + }, + { + "start": 4449.18, + "end": 4451.08, + "probability": 0.9523 + }, + { + "start": 4451.28, + "end": 4453.38, + "probability": 0.7522 + }, + { + "start": 4454.4, + "end": 4455.34, + "probability": 0.7488 + }, + { + "start": 4455.72, + "end": 4462.38, + "probability": 0.9937 + }, + { + "start": 4462.54, + "end": 4464.38, + "probability": 0.9949 + }, + { + "start": 4464.78, + "end": 4465.98, + "probability": 0.8746 + }, + { + "start": 4466.36, + "end": 4467.43, + "probability": 0.9829 + }, + { + "start": 4468.34, + "end": 4470.72, + "probability": 0.9646 + }, + { + "start": 4470.74, + "end": 4472.29, + "probability": 0.9956 + }, + { + "start": 4472.72, + "end": 4473.37, + "probability": 0.9907 + }, + { + "start": 4474.28, + "end": 4476.36, + "probability": 0.8779 + }, + { + "start": 4476.82, + "end": 4480.04, + "probability": 0.9956 + }, + { + "start": 4480.32, + "end": 4480.94, + "probability": 0.8378 + }, + { + "start": 4481.3, + "end": 4482.7, + "probability": 0.7938 + }, + { + "start": 4483.14, + "end": 4483.48, + "probability": 0.1101 + }, + { + "start": 4483.48, + "end": 4484.11, + "probability": 0.5237 + }, + { + "start": 4486.56, + "end": 4489.2, + "probability": 0.853 + }, + { + "start": 4492.42, + "end": 4493.64, + "probability": 0.1482 + }, + { + "start": 4494.18, + "end": 4495.46, + "probability": 0.5477 + }, + { + "start": 4503.42, + "end": 4504.94, + "probability": 0.3367 + }, + { + "start": 4505.58, + "end": 4507.34, + "probability": 0.9047 + }, + { + "start": 4508.39, + "end": 4510.92, + "probability": 0.861 + }, + { + "start": 4513.1, + "end": 4515.51, + "probability": 0.9565 + }, + { + "start": 4519.78, + "end": 4520.84, + "probability": 0.7096 + }, + { + "start": 4522.24, + "end": 4523.14, + "probability": 0.6811 + }, + { + "start": 4524.78, + "end": 4527.74, + "probability": 0.9902 + }, + { + "start": 4531.1, + "end": 4534.3, + "probability": 0.9137 + }, + { + "start": 4535.28, + "end": 4536.28, + "probability": 0.9741 + }, + { + "start": 4537.56, + "end": 4540.1, + "probability": 0.8372 + }, + { + "start": 4541.54, + "end": 4546.48, + "probability": 0.7141 + }, + { + "start": 4546.52, + "end": 4549.08, + "probability": 0.9714 + }, + { + "start": 4549.24, + "end": 4551.28, + "probability": 0.5462 + }, + { + "start": 4551.7, + "end": 4553.06, + "probability": 0.7632 + }, + { + "start": 4554.3, + "end": 4556.08, + "probability": 0.9957 + }, + { + "start": 4556.18, + "end": 4558.08, + "probability": 0.8669 + }, + { + "start": 4558.3, + "end": 4559.83, + "probability": 0.7263 + }, + { + "start": 4560.98, + "end": 4561.68, + "probability": 0.1599 + }, + { + "start": 4561.96, + "end": 4563.08, + "probability": 0.3025 + }, + { + "start": 4563.82, + "end": 4567.28, + "probability": 0.9984 + }, + { + "start": 4567.28, + "end": 4570.22, + "probability": 0.9838 + }, + { + "start": 4570.26, + "end": 4570.6, + "probability": 0.9294 + }, + { + "start": 4571.24, + "end": 4575.0, + "probability": 0.8838 + }, + { + "start": 4575.8, + "end": 4576.22, + "probability": 0.911 + }, + { + "start": 4576.48, + "end": 4577.2, + "probability": 0.7595 + }, + { + "start": 4577.38, + "end": 4579.28, + "probability": 0.9808 + }, + { + "start": 4579.58, + "end": 4583.94, + "probability": 0.9906 + }, + { + "start": 4584.94, + "end": 4587.64, + "probability": 0.9678 + }, + { + "start": 4587.7, + "end": 4591.34, + "probability": 0.9948 + }, + { + "start": 4593.02, + "end": 4599.56, + "probability": 0.9992 + }, + { + "start": 4601.62, + "end": 4606.26, + "probability": 0.9686 + }, + { + "start": 4607.66, + "end": 4610.52, + "probability": 0.986 + }, + { + "start": 4610.64, + "end": 4611.4, + "probability": 0.8375 + }, + { + "start": 4611.5, + "end": 4612.48, + "probability": 0.8244 + }, + { + "start": 4613.2, + "end": 4615.8, + "probability": 0.9481 + }, + { + "start": 4616.86, + "end": 4618.68, + "probability": 0.8773 + }, + { + "start": 4619.46, + "end": 4621.08, + "probability": 0.9468 + }, + { + "start": 4621.68, + "end": 4624.0, + "probability": 0.8818 + }, + { + "start": 4625.76, + "end": 4627.08, + "probability": 0.981 + }, + { + "start": 4627.72, + "end": 4629.5, + "probability": 0.8179 + }, + { + "start": 4631.52, + "end": 4634.9, + "probability": 0.9966 + }, + { + "start": 4635.82, + "end": 4638.03, + "probability": 0.9757 + }, + { + "start": 4639.52, + "end": 4643.4, + "probability": 0.9152 + }, + { + "start": 4644.48, + "end": 4647.18, + "probability": 0.9713 + }, + { + "start": 4647.9, + "end": 4652.16, + "probability": 0.9451 + }, + { + "start": 4652.72, + "end": 4654.53, + "probability": 0.9856 + }, + { + "start": 4655.02, + "end": 4655.68, + "probability": 0.5258 + }, + { + "start": 4655.88, + "end": 4656.48, + "probability": 0.7968 + }, + { + "start": 4656.84, + "end": 4660.94, + "probability": 0.8675 + }, + { + "start": 4661.42, + "end": 4668.72, + "probability": 0.9163 + }, + { + "start": 4669.92, + "end": 4672.16, + "probability": 0.995 + }, + { + "start": 4673.54, + "end": 4677.08, + "probability": 0.9928 + }, + { + "start": 4677.94, + "end": 4681.04, + "probability": 0.9976 + }, + { + "start": 4681.96, + "end": 4683.28, + "probability": 0.8566 + }, + { + "start": 4684.0, + "end": 4691.42, + "probability": 0.9779 + }, + { + "start": 4692.28, + "end": 4694.66, + "probability": 0.9794 + }, + { + "start": 4697.34, + "end": 4701.72, + "probability": 0.9897 + }, + { + "start": 4702.6, + "end": 4709.42, + "probability": 0.9881 + }, + { + "start": 4710.24, + "end": 4711.18, + "probability": 0.9956 + }, + { + "start": 4711.22, + "end": 4712.48, + "probability": 0.3859 + }, + { + "start": 4712.54, + "end": 4713.08, + "probability": 0.7208 + }, + { + "start": 4713.52, + "end": 4715.6, + "probability": 0.9634 + }, + { + "start": 4716.89, + "end": 4720.88, + "probability": 0.9938 + }, + { + "start": 4721.4, + "end": 4723.84, + "probability": 0.9117 + }, + { + "start": 4723.96, + "end": 4724.32, + "probability": 0.7079 + }, + { + "start": 4724.38, + "end": 4725.16, + "probability": 0.6944 + }, + { + "start": 4725.34, + "end": 4726.62, + "probability": 0.9351 + }, + { + "start": 4726.96, + "end": 4730.82, + "probability": 0.8334 + }, + { + "start": 4730.94, + "end": 4731.48, + "probability": 0.8104 + }, + { + "start": 4731.9, + "end": 4733.18, + "probability": 0.546 + }, + { + "start": 4733.28, + "end": 4733.82, + "probability": 0.6674 + }, + { + "start": 4734.5, + "end": 4737.36, + "probability": 0.8628 + }, + { + "start": 4738.38, + "end": 4740.4, + "probability": 0.9357 + }, + { + "start": 4740.92, + "end": 4742.9, + "probability": 0.7468 + }, + { + "start": 4743.42, + "end": 4746.4, + "probability": 0.9785 + }, + { + "start": 4746.82, + "end": 4747.0, + "probability": 0.6452 + }, + { + "start": 4749.0, + "end": 4750.16, + "probability": 0.7104 + }, + { + "start": 4751.48, + "end": 4753.14, + "probability": 0.638 + }, + { + "start": 4771.0, + "end": 4771.54, + "probability": 0.5745 + }, + { + "start": 4771.78, + "end": 4773.66, + "probability": 0.7727 + }, + { + "start": 4787.32, + "end": 4788.2, + "probability": 0.2419 + }, + { + "start": 4788.4, + "end": 4791.08, + "probability": 0.7165 + }, + { + "start": 4793.16, + "end": 4800.6, + "probability": 0.7314 + }, + { + "start": 4802.06, + "end": 4803.22, + "probability": 0.6956 + }, + { + "start": 4804.36, + "end": 4806.6, + "probability": 0.907 + }, + { + "start": 4807.24, + "end": 4810.58, + "probability": 0.906 + }, + { + "start": 4811.64, + "end": 4814.62, + "probability": 0.915 + }, + { + "start": 4815.5, + "end": 4818.9, + "probability": 0.8999 + }, + { + "start": 4820.22, + "end": 4821.68, + "probability": 0.7364 + }, + { + "start": 4822.22, + "end": 4822.88, + "probability": 0.9459 + }, + { + "start": 4824.0, + "end": 4825.82, + "probability": 0.9639 + }, + { + "start": 4826.86, + "end": 4830.06, + "probability": 0.8166 + }, + { + "start": 4830.98, + "end": 4833.6, + "probability": 0.8846 + }, + { + "start": 4834.22, + "end": 4835.66, + "probability": 0.9807 + }, + { + "start": 4835.9, + "end": 4836.9, + "probability": 0.5996 + }, + { + "start": 4837.88, + "end": 4841.56, + "probability": 0.9648 + }, + { + "start": 4841.8, + "end": 4842.82, + "probability": 0.9941 + }, + { + "start": 4844.94, + "end": 4846.6, + "probability": 0.9643 + }, + { + "start": 4846.82, + "end": 4847.78, + "probability": 0.976 + }, + { + "start": 4847.9, + "end": 4849.0, + "probability": 0.9029 + }, + { + "start": 4849.18, + "end": 4850.08, + "probability": 0.7785 + }, + { + "start": 4850.9, + "end": 4851.74, + "probability": 0.9844 + }, + { + "start": 4852.5, + "end": 4857.34, + "probability": 0.949 + }, + { + "start": 4858.18, + "end": 4863.86, + "probability": 0.9944 + }, + { + "start": 4864.46, + "end": 4868.02, + "probability": 0.7632 + }, + { + "start": 4868.8, + "end": 4870.23, + "probability": 0.9158 + }, + { + "start": 4871.18, + "end": 4871.86, + "probability": 0.2931 + }, + { + "start": 4874.38, + "end": 4876.22, + "probability": 0.9937 + }, + { + "start": 4876.94, + "end": 4877.48, + "probability": 0.3353 + }, + { + "start": 4878.1, + "end": 4882.9, + "probability": 0.9963 + }, + { + "start": 4883.58, + "end": 4885.84, + "probability": 0.5712 + }, + { + "start": 4886.38, + "end": 4888.44, + "probability": 0.8608 + }, + { + "start": 4889.0, + "end": 4892.14, + "probability": 0.6839 + }, + { + "start": 4892.24, + "end": 4892.6, + "probability": 0.7789 + }, + { + "start": 4892.8, + "end": 4893.72, + "probability": 0.811 + }, + { + "start": 4894.18, + "end": 4901.78, + "probability": 0.9069 + }, + { + "start": 4902.94, + "end": 4904.5, + "probability": 0.9919 + }, + { + "start": 4904.92, + "end": 4906.2, + "probability": 0.9332 + }, + { + "start": 4906.4, + "end": 4906.7, + "probability": 0.5923 + }, + { + "start": 4908.18, + "end": 4909.9, + "probability": 0.9864 + }, + { + "start": 4910.48, + "end": 4911.98, + "probability": 0.7206 + }, + { + "start": 4912.58, + "end": 4915.56, + "probability": 0.8687 + }, + { + "start": 4915.7, + "end": 4916.79, + "probability": 0.9886 + }, + { + "start": 4918.36, + "end": 4920.34, + "probability": 0.9225 + }, + { + "start": 4921.26, + "end": 4923.28, + "probability": 0.9538 + }, + { + "start": 4923.9, + "end": 4927.16, + "probability": 0.7496 + }, + { + "start": 4928.44, + "end": 4930.56, + "probability": 0.9839 + }, + { + "start": 4931.08, + "end": 4931.88, + "probability": 0.7451 + }, + { + "start": 4933.28, + "end": 4933.68, + "probability": 0.8184 + }, + { + "start": 4934.2, + "end": 4936.12, + "probability": 0.9739 + }, + { + "start": 4936.32, + "end": 4940.42, + "probability": 0.957 + }, + { + "start": 4940.98, + "end": 4945.88, + "probability": 0.9937 + }, + { + "start": 4946.8, + "end": 4949.94, + "probability": 0.9199 + }, + { + "start": 4950.5, + "end": 4954.74, + "probability": 0.7365 + }, + { + "start": 4955.14, + "end": 4956.54, + "probability": 0.6063 + }, + { + "start": 4956.94, + "end": 4957.78, + "probability": 0.731 + }, + { + "start": 4958.66, + "end": 4959.22, + "probability": 0.737 + }, + { + "start": 4959.64, + "end": 4962.22, + "probability": 0.7287 + }, + { + "start": 4963.16, + "end": 4966.84, + "probability": 0.9377 + }, + { + "start": 4968.13, + "end": 4971.7, + "probability": 0.9279 + }, + { + "start": 4972.6, + "end": 4974.78, + "probability": 0.8984 + }, + { + "start": 4975.34, + "end": 4976.58, + "probability": 0.9354 + }, + { + "start": 4976.9, + "end": 4977.36, + "probability": 0.7632 + }, + { + "start": 4978.38, + "end": 4979.68, + "probability": 0.5977 + }, + { + "start": 4979.9, + "end": 4981.72, + "probability": 0.6638 + }, + { + "start": 4992.14, + "end": 4992.68, + "probability": 0.5615 + }, + { + "start": 4992.86, + "end": 4993.24, + "probability": 0.7801 + }, + { + "start": 4996.54, + "end": 4997.42, + "probability": 0.5879 + }, + { + "start": 4997.5, + "end": 4998.38, + "probability": 0.764 + }, + { + "start": 4998.8, + "end": 4999.7, + "probability": 0.6856 + }, + { + "start": 4999.76, + "end": 5000.7, + "probability": 0.6846 + }, + { + "start": 5000.78, + "end": 5002.38, + "probability": 0.9941 + }, + { + "start": 5003.2, + "end": 5008.16, + "probability": 0.9888 + }, + { + "start": 5009.46, + "end": 5013.34, + "probability": 0.9966 + }, + { + "start": 5013.86, + "end": 5017.16, + "probability": 0.9772 + }, + { + "start": 5018.5, + "end": 5019.38, + "probability": 0.9309 + }, + { + "start": 5019.42, + "end": 5020.68, + "probability": 0.9729 + }, + { + "start": 5020.8, + "end": 5022.76, + "probability": 0.9663 + }, + { + "start": 5023.56, + "end": 5023.66, + "probability": 0.8118 + }, + { + "start": 5024.36, + "end": 5024.92, + "probability": 0.7782 + }, + { + "start": 5025.02, + "end": 5027.6, + "probability": 0.974 + }, + { + "start": 5027.88, + "end": 5029.18, + "probability": 0.6382 + }, + { + "start": 5029.56, + "end": 5031.18, + "probability": 0.9927 + }, + { + "start": 5032.78, + "end": 5037.94, + "probability": 0.9942 + }, + { + "start": 5038.6, + "end": 5042.32, + "probability": 0.9733 + }, + { + "start": 5042.82, + "end": 5044.86, + "probability": 0.9817 + }, + { + "start": 5045.72, + "end": 5047.32, + "probability": 0.9521 + }, + { + "start": 5048.02, + "end": 5049.04, + "probability": 0.962 + }, + { + "start": 5049.46, + "end": 5050.36, + "probability": 0.9652 + }, + { + "start": 5050.82, + "end": 5051.8, + "probability": 0.9682 + }, + { + "start": 5052.26, + "end": 5054.52, + "probability": 0.9865 + }, + { + "start": 5055.66, + "end": 5058.64, + "probability": 0.9967 + }, + { + "start": 5059.02, + "end": 5059.94, + "probability": 0.93 + }, + { + "start": 5060.44, + "end": 5065.1, + "probability": 0.9953 + }, + { + "start": 5065.64, + "end": 5067.76, + "probability": 0.9371 + }, + { + "start": 5068.36, + "end": 5072.98, + "probability": 0.9813 + }, + { + "start": 5074.3, + "end": 5077.25, + "probability": 0.9277 + }, + { + "start": 5077.9, + "end": 5080.04, + "probability": 0.9018 + }, + { + "start": 5080.46, + "end": 5081.12, + "probability": 0.6978 + }, + { + "start": 5081.16, + "end": 5081.7, + "probability": 0.8073 + }, + { + "start": 5081.78, + "end": 5083.06, + "probability": 0.9208 + }, + { + "start": 5083.1, + "end": 5083.6, + "probability": 0.9594 + }, + { + "start": 5083.84, + "end": 5084.7, + "probability": 0.8098 + }, + { + "start": 5085.18, + "end": 5088.78, + "probability": 0.97 + }, + { + "start": 5089.48, + "end": 5091.46, + "probability": 0.9983 + }, + { + "start": 5092.12, + "end": 5093.2, + "probability": 0.7502 + }, + { + "start": 5094.02, + "end": 5097.22, + "probability": 0.8597 + }, + { + "start": 5098.16, + "end": 5100.92, + "probability": 0.9977 + }, + { + "start": 5100.92, + "end": 5105.06, + "probability": 0.7915 + }, + { + "start": 5105.74, + "end": 5107.06, + "probability": 0.5653 + }, + { + "start": 5107.12, + "end": 5109.18, + "probability": 0.8731 + }, + { + "start": 5109.2, + "end": 5110.76, + "probability": 0.5554 + }, + { + "start": 5111.34, + "end": 5112.12, + "probability": 0.8427 + }, + { + "start": 5112.34, + "end": 5112.68, + "probability": 0.782 + }, + { + "start": 5113.14, + "end": 5116.18, + "probability": 0.962 + }, + { + "start": 5117.06, + "end": 5117.6, + "probability": 0.6727 + }, + { + "start": 5117.64, + "end": 5119.66, + "probability": 0.9836 + }, + { + "start": 5120.08, + "end": 5123.26, + "probability": 0.9841 + }, + { + "start": 5124.54, + "end": 5126.74, + "probability": 0.8521 + }, + { + "start": 5127.54, + "end": 5130.7, + "probability": 0.9957 + }, + { + "start": 5131.8, + "end": 5133.11, + "probability": 0.7506 + }, + { + "start": 5133.94, + "end": 5137.75, + "probability": 0.9108 + }, + { + "start": 5137.9, + "end": 5141.74, + "probability": 0.9984 + }, + { + "start": 5142.22, + "end": 5145.46, + "probability": 0.9708 + }, + { + "start": 5145.8, + "end": 5147.36, + "probability": 0.9511 + }, + { + "start": 5148.06, + "end": 5149.16, + "probability": 0.7753 + }, + { + "start": 5149.9, + "end": 5151.24, + "probability": 0.8728 + }, + { + "start": 5151.8, + "end": 5157.46, + "probability": 0.9953 + }, + { + "start": 5157.52, + "end": 5158.74, + "probability": 0.981 + }, + { + "start": 5159.34, + "end": 5159.78, + "probability": 0.7343 + }, + { + "start": 5160.68, + "end": 5161.3, + "probability": 0.7671 + }, + { + "start": 5161.3, + "end": 5165.9, + "probability": 0.7287 + }, + { + "start": 5165.98, + "end": 5168.36, + "probability": 0.8339 + }, + { + "start": 5169.04, + "end": 5170.04, + "probability": 0.9917 + }, + { + "start": 5170.98, + "end": 5174.2, + "probability": 0.9851 + }, + { + "start": 5174.2, + "end": 5177.86, + "probability": 0.9957 + }, + { + "start": 5178.56, + "end": 5180.4, + "probability": 0.79 + }, + { + "start": 5181.18, + "end": 5184.38, + "probability": 0.9637 + }, + { + "start": 5185.1, + "end": 5190.22, + "probability": 0.9775 + }, + { + "start": 5191.08, + "end": 5193.52, + "probability": 0.702 + }, + { + "start": 5194.12, + "end": 5198.46, + "probability": 0.9697 + }, + { + "start": 5198.62, + "end": 5200.44, + "probability": 0.9717 + }, + { + "start": 5200.88, + "end": 5201.72, + "probability": 0.9402 + }, + { + "start": 5202.16, + "end": 5204.42, + "probability": 0.994 + }, + { + "start": 5204.86, + "end": 5205.2, + "probability": 0.2526 + }, + { + "start": 5205.2, + "end": 5205.44, + "probability": 0.7093 + }, + { + "start": 5209.4, + "end": 5211.08, + "probability": 0.8831 + }, + { + "start": 5224.42, + "end": 5224.94, + "probability": 0.5368 + }, + { + "start": 5225.04, + "end": 5225.44, + "probability": 0.8331 + }, + { + "start": 5228.56, + "end": 5229.2, + "probability": 0.3882 + }, + { + "start": 5229.92, + "end": 5231.8, + "probability": 0.6918 + }, + { + "start": 5233.14, + "end": 5237.62, + "probability": 0.9733 + }, + { + "start": 5238.02, + "end": 5238.51, + "probability": 0.8295 + }, + { + "start": 5239.22, + "end": 5239.62, + "probability": 0.8774 + }, + { + "start": 5240.86, + "end": 5242.46, + "probability": 0.9839 + }, + { + "start": 5243.16, + "end": 5245.32, + "probability": 0.998 + }, + { + "start": 5246.24, + "end": 5247.82, + "probability": 0.9951 + }, + { + "start": 5248.22, + "end": 5250.9, + "probability": 0.9924 + }, + { + "start": 5251.3, + "end": 5254.5, + "probability": 0.9954 + }, + { + "start": 5255.06, + "end": 5257.14, + "probability": 0.9849 + }, + { + "start": 5257.24, + "end": 5258.92, + "probability": 0.9479 + }, + { + "start": 5259.86, + "end": 5263.62, + "probability": 0.9918 + }, + { + "start": 5264.54, + "end": 5265.94, + "probability": 0.8984 + }, + { + "start": 5266.58, + "end": 5269.22, + "probability": 0.9915 + }, + { + "start": 5270.28, + "end": 5272.24, + "probability": 0.99 + }, + { + "start": 5272.74, + "end": 5275.7, + "probability": 0.9598 + }, + { + "start": 5276.78, + "end": 5277.22, + "probability": 0.4635 + }, + { + "start": 5277.24, + "end": 5278.08, + "probability": 0.9034 + }, + { + "start": 5278.36, + "end": 5279.88, + "probability": 0.9917 + }, + { + "start": 5280.26, + "end": 5281.56, + "probability": 0.9875 + }, + { + "start": 5282.14, + "end": 5285.24, + "probability": 0.9974 + }, + { + "start": 5285.7, + "end": 5286.74, + "probability": 0.8852 + }, + { + "start": 5287.26, + "end": 5289.56, + "probability": 0.9662 + }, + { + "start": 5290.44, + "end": 5291.98, + "probability": 0.9873 + }, + { + "start": 5292.72, + "end": 5295.0, + "probability": 0.9641 + }, + { + "start": 5295.4, + "end": 5296.0, + "probability": 0.4978 + }, + { + "start": 5296.04, + "end": 5296.38, + "probability": 0.8297 + }, + { + "start": 5296.54, + "end": 5297.78, + "probability": 0.9461 + }, + { + "start": 5298.18, + "end": 5301.24, + "probability": 0.9968 + }, + { + "start": 5302.08, + "end": 5303.86, + "probability": 0.9845 + }, + { + "start": 5303.94, + "end": 5305.08, + "probability": 0.916 + }, + { + "start": 5305.46, + "end": 5306.82, + "probability": 0.9678 + }, + { + "start": 5307.76, + "end": 5311.6, + "probability": 0.9956 + }, + { + "start": 5312.2, + "end": 5313.22, + "probability": 0.9028 + }, + { + "start": 5313.88, + "end": 5314.26, + "probability": 0.4565 + }, + { + "start": 5314.3, + "end": 5314.92, + "probability": 0.8125 + }, + { + "start": 5315.22, + "end": 5316.0, + "probability": 0.9915 + }, + { + "start": 5316.48, + "end": 5317.78, + "probability": 0.9656 + }, + { + "start": 5318.24, + "end": 5321.0, + "probability": 0.9893 + }, + { + "start": 5321.8, + "end": 5322.42, + "probability": 0.9655 + }, + { + "start": 5322.52, + "end": 5323.16, + "probability": 0.983 + }, + { + "start": 5323.28, + "end": 5323.88, + "probability": 0.9905 + }, + { + "start": 5324.0, + "end": 5325.66, + "probability": 0.7498 + }, + { + "start": 5326.26, + "end": 5327.9, + "probability": 0.909 + }, + { + "start": 5328.06, + "end": 5329.84, + "probability": 0.9754 + }, + { + "start": 5330.46, + "end": 5330.72, + "probability": 0.4967 + }, + { + "start": 5330.84, + "end": 5332.62, + "probability": 0.9734 + }, + { + "start": 5333.02, + "end": 5334.12, + "probability": 0.9382 + }, + { + "start": 5334.26, + "end": 5334.8, + "probability": 0.9229 + }, + { + "start": 5335.0, + "end": 5335.6, + "probability": 0.804 + }, + { + "start": 5336.02, + "end": 5337.46, + "probability": 0.9344 + }, + { + "start": 5338.38, + "end": 5341.24, + "probability": 0.9983 + }, + { + "start": 5341.24, + "end": 5344.52, + "probability": 0.9958 + }, + { + "start": 5345.08, + "end": 5348.06, + "probability": 0.825 + }, + { + "start": 5348.6, + "end": 5351.42, + "probability": 0.9434 + }, + { + "start": 5351.42, + "end": 5354.6, + "probability": 0.9975 + }, + { + "start": 5355.18, + "end": 5359.1, + "probability": 0.9749 + }, + { + "start": 5360.36, + "end": 5361.48, + "probability": 0.5168 + }, + { + "start": 5362.08, + "end": 5364.62, + "probability": 0.9845 + }, + { + "start": 5365.16, + "end": 5366.54, + "probability": 0.9826 + }, + { + "start": 5366.9, + "end": 5367.86, + "probability": 0.8295 + }, + { + "start": 5368.28, + "end": 5370.26, + "probability": 0.9948 + }, + { + "start": 5370.42, + "end": 5371.36, + "probability": 0.8116 + }, + { + "start": 5371.82, + "end": 5372.84, + "probability": 0.9628 + }, + { + "start": 5373.62, + "end": 5374.68, + "probability": 0.9392 + }, + { + "start": 5375.18, + "end": 5378.78, + "probability": 0.9972 + }, + { + "start": 5378.86, + "end": 5380.84, + "probability": 0.9774 + }, + { + "start": 5381.64, + "end": 5383.82, + "probability": 0.9951 + }, + { + "start": 5384.26, + "end": 5388.98, + "probability": 0.9939 + }, + { + "start": 5390.0, + "end": 5393.38, + "probability": 0.8198 + }, + { + "start": 5393.8, + "end": 5397.34, + "probability": 0.9976 + }, + { + "start": 5397.88, + "end": 5399.16, + "probability": 0.5076 + }, + { + "start": 5399.8, + "end": 5402.64, + "probability": 0.9888 + }, + { + "start": 5404.42, + "end": 5405.59, + "probability": 0.958 + }, + { + "start": 5406.02, + "end": 5407.52, + "probability": 0.9948 + }, + { + "start": 5407.76, + "end": 5407.78, + "probability": 0.2075 + }, + { + "start": 5408.18, + "end": 5410.61, + "probability": 0.9624 + }, + { + "start": 5411.12, + "end": 5411.32, + "probability": 0.8063 + }, + { + "start": 5411.4, + "end": 5412.38, + "probability": 0.9302 + }, + { + "start": 5412.78, + "end": 5414.32, + "probability": 0.8618 + }, + { + "start": 5414.92, + "end": 5417.64, + "probability": 0.9822 + }, + { + "start": 5418.08, + "end": 5420.86, + "probability": 0.9646 + }, + { + "start": 5421.94, + "end": 5424.16, + "probability": 0.9664 + }, + { + "start": 5424.26, + "end": 5425.46, + "probability": 0.884 + }, + { + "start": 5425.8, + "end": 5427.1, + "probability": 0.4924 + }, + { + "start": 5427.52, + "end": 5430.16, + "probability": 0.8279 + }, + { + "start": 5430.74, + "end": 5432.76, + "probability": 0.928 + }, + { + "start": 5433.04, + "end": 5433.6, + "probability": 0.3628 + }, + { + "start": 5433.68, + "end": 5434.12, + "probability": 0.4733 + }, + { + "start": 5434.16, + "end": 5434.6, + "probability": 0.8028 + }, + { + "start": 5435.74, + "end": 5438.2, + "probability": 0.8172 + }, + { + "start": 5438.68, + "end": 5441.0, + "probability": 0.9549 + }, + { + "start": 5441.5, + "end": 5444.94, + "probability": 0.9839 + }, + { + "start": 5445.4, + "end": 5449.46, + "probability": 0.9901 + }, + { + "start": 5449.8, + "end": 5451.94, + "probability": 0.9973 + }, + { + "start": 5452.52, + "end": 5453.98, + "probability": 0.828 + }, + { + "start": 5454.42, + "end": 5455.94, + "probability": 0.9992 + }, + { + "start": 5456.26, + "end": 5457.98, + "probability": 0.9958 + }, + { + "start": 5458.4, + "end": 5459.86, + "probability": 0.7426 + }, + { + "start": 5459.9, + "end": 5461.54, + "probability": 0.9414 + }, + { + "start": 5462.02, + "end": 5463.72, + "probability": 0.9525 + }, + { + "start": 5464.2, + "end": 5465.58, + "probability": 0.9954 + }, + { + "start": 5466.18, + "end": 5468.38, + "probability": 0.5748 + }, + { + "start": 5468.42, + "end": 5469.04, + "probability": 0.8423 + }, + { + "start": 5469.3, + "end": 5471.58, + "probability": 0.8578 + }, + { + "start": 5473.04, + "end": 5473.36, + "probability": 0.6286 + }, + { + "start": 5477.94, + "end": 5480.44, + "probability": 0.7995 + }, + { + "start": 5482.72, + "end": 5494.88, + "probability": 0.8458 + }, + { + "start": 5495.34, + "end": 5496.46, + "probability": 0.0558 + }, + { + "start": 5498.58, + "end": 5500.32, + "probability": 0.9776 + }, + { + "start": 5501.12, + "end": 5501.58, + "probability": 0.3152 + }, + { + "start": 5501.98, + "end": 5502.66, + "probability": 0.8634 + }, + { + "start": 5502.74, + "end": 5503.24, + "probability": 0.8815 + }, + { + "start": 5503.4, + "end": 5505.28, + "probability": 0.6552 + }, + { + "start": 5505.74, + "end": 5508.16, + "probability": 0.9954 + }, + { + "start": 5509.22, + "end": 5512.86, + "probability": 0.6411 + }, + { + "start": 5513.66, + "end": 5515.1, + "probability": 0.9693 + }, + { + "start": 5518.68, + "end": 5520.62, + "probability": 0.7069 + }, + { + "start": 5521.7, + "end": 5526.28, + "probability": 0.9302 + }, + { + "start": 5527.08, + "end": 5530.36, + "probability": 0.8062 + }, + { + "start": 5530.74, + "end": 5532.48, + "probability": 0.042 + }, + { + "start": 5533.0, + "end": 5536.24, + "probability": 0.8474 + }, + { + "start": 5536.68, + "end": 5538.4, + "probability": 0.8714 + }, + { + "start": 5538.48, + "end": 5540.54, + "probability": 0.1138 + }, + { + "start": 5540.72, + "end": 5542.24, + "probability": 0.8726 + }, + { + "start": 5542.53, + "end": 5544.0, + "probability": 0.7375 + }, + { + "start": 5544.0, + "end": 5544.46, + "probability": 0.5967 + }, + { + "start": 5544.6, + "end": 5548.22, + "probability": 0.795 + }, + { + "start": 5548.64, + "end": 5550.9, + "probability": 0.9961 + }, + { + "start": 5552.2, + "end": 5552.72, + "probability": 0.7302 + }, + { + "start": 5552.88, + "end": 5559.12, + "probability": 0.9495 + }, + { + "start": 5559.78, + "end": 5561.88, + "probability": 0.9131 + }, + { + "start": 5562.7, + "end": 5565.3, + "probability": 0.9156 + }, + { + "start": 5565.8, + "end": 5569.26, + "probability": 0.9917 + }, + { + "start": 5569.7, + "end": 5574.76, + "probability": 0.7595 + }, + { + "start": 5575.1, + "end": 5578.1, + "probability": 0.4949 + }, + { + "start": 5578.4, + "end": 5580.34, + "probability": 0.9247 + }, + { + "start": 5580.38, + "end": 5581.52, + "probability": 0.0512 + }, + { + "start": 5581.52, + "end": 5583.06, + "probability": 0.1777 + }, + { + "start": 5583.92, + "end": 5584.9, + "probability": 0.2885 + }, + { + "start": 5586.88, + "end": 5590.68, + "probability": 0.0315 + }, + { + "start": 5590.94, + "end": 5594.52, + "probability": 0.2335 + }, + { + "start": 5594.6, + "end": 5596.7, + "probability": 0.1746 + }, + { + "start": 5596.78, + "end": 5601.32, + "probability": 0.0688 + }, + { + "start": 5603.0, + "end": 5603.42, + "probability": 0.0552 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.0, + "end": 5704.0, + "probability": 0.0 + }, + { + "start": 5704.18, + "end": 5704.96, + "probability": 0.9064 + }, + { + "start": 5705.96, + "end": 5711.52, + "probability": 0.9878 + }, + { + "start": 5712.08, + "end": 5714.88, + "probability": 0.9773 + }, + { + "start": 5715.22, + "end": 5720.64, + "probability": 0.6897 + }, + { + "start": 5720.7, + "end": 5722.04, + "probability": 0.9366 + }, + { + "start": 5722.52, + "end": 5723.72, + "probability": 0.7176 + }, + { + "start": 5723.76, + "end": 5725.74, + "probability": 0.637 + }, + { + "start": 5725.82, + "end": 5725.96, + "probability": 0.6454 + }, + { + "start": 5725.96, + "end": 5726.04, + "probability": 0.5438 + }, + { + "start": 5726.06, + "end": 5729.2, + "probability": 0.996 + }, + { + "start": 5729.2, + "end": 5732.26, + "probability": 0.9719 + }, + { + "start": 5732.32, + "end": 5733.04, + "probability": 0.9647 + }, + { + "start": 5733.56, + "end": 5733.56, + "probability": 0.7247 + }, + { + "start": 5734.38, + "end": 5735.68, + "probability": 0.7357 + }, + { + "start": 5736.96, + "end": 5739.66, + "probability": 0.5755 + }, + { + "start": 5739.94, + "end": 5740.22, + "probability": 0.3277 + }, + { + "start": 5741.53, + "end": 5744.72, + "probability": 0.6452 + }, + { + "start": 5757.86, + "end": 5758.7, + "probability": 0.6137 + }, + { + "start": 5758.76, + "end": 5759.16, + "probability": 0.8521 + }, + { + "start": 5766.48, + "end": 5767.66, + "probability": 0.6023 + }, + { + "start": 5768.48, + "end": 5771.14, + "probability": 0.8947 + }, + { + "start": 5772.54, + "end": 5775.3, + "probability": 0.9877 + }, + { + "start": 5777.12, + "end": 5778.88, + "probability": 0.8966 + }, + { + "start": 5780.0, + "end": 5782.26, + "probability": 0.8541 + }, + { + "start": 5783.04, + "end": 5784.3, + "probability": 0.9917 + }, + { + "start": 5784.3, + "end": 5786.14, + "probability": 0.9875 + }, + { + "start": 5786.18, + "end": 5787.4, + "probability": 0.7917 + }, + { + "start": 5787.9, + "end": 5788.06, + "probability": 0.0614 + }, + { + "start": 5788.06, + "end": 5788.94, + "probability": 0.1467 + }, + { + "start": 5789.0, + "end": 5790.34, + "probability": 0.9963 + }, + { + "start": 5790.42, + "end": 5790.88, + "probability": 0.6466 + }, + { + "start": 5791.86, + "end": 5795.4, + "probability": 0.8015 + }, + { + "start": 5796.08, + "end": 5800.36, + "probability": 0.996 + }, + { + "start": 5800.84, + "end": 5803.22, + "probability": 0.9816 + }, + { + "start": 5804.28, + "end": 5807.18, + "probability": 0.1454 + }, + { + "start": 5807.44, + "end": 5808.3, + "probability": 0.152 + }, + { + "start": 5808.3, + "end": 5809.28, + "probability": 0.5654 + }, + { + "start": 5809.94, + "end": 5812.3, + "probability": 0.4804 + }, + { + "start": 5812.34, + "end": 5814.24, + "probability": 0.6968 + }, + { + "start": 5814.36, + "end": 5815.4, + "probability": 0.6911 + }, + { + "start": 5815.64, + "end": 5816.52, + "probability": 0.9705 + }, + { + "start": 5817.82, + "end": 5820.56, + "probability": 0.744 + }, + { + "start": 5821.88, + "end": 5822.0, + "probability": 0.8302 + }, + { + "start": 5823.16, + "end": 5823.62, + "probability": 0.0009 + }, + { + "start": 5823.7, + "end": 5826.1, + "probability": 0.6223 + }, + { + "start": 5826.18, + "end": 5826.68, + "probability": 0.8244 + }, + { + "start": 5826.84, + "end": 5828.76, + "probability": 0.2489 + }, + { + "start": 5828.76, + "end": 5831.3, + "probability": 0.2255 + }, + { + "start": 5831.3, + "end": 5832.3, + "probability": 0.3446 + }, + { + "start": 5832.44, + "end": 5833.62, + "probability": 0.318 + }, + { + "start": 5833.78, + "end": 5834.44, + "probability": 0.4892 + }, + { + "start": 5834.46, + "end": 5836.1, + "probability": 0.3726 + }, + { + "start": 5836.28, + "end": 5836.88, + "probability": 0.6318 + }, + { + "start": 5836.98, + "end": 5838.84, + "probability": 0.332 + }, + { + "start": 5839.58, + "end": 5839.92, + "probability": 0.7714 + }, + { + "start": 5839.98, + "end": 5841.16, + "probability": 0.7666 + }, + { + "start": 5841.22, + "end": 5843.44, + "probability": 0.7254 + }, + { + "start": 5843.9, + "end": 5846.38, + "probability": 0.9722 + }, + { + "start": 5846.76, + "end": 5846.76, + "probability": 0.0237 + }, + { + "start": 5846.76, + "end": 5847.26, + "probability": 0.6561 + }, + { + "start": 5847.52, + "end": 5849.8, + "probability": 0.7593 + }, + { + "start": 5849.94, + "end": 5851.36, + "probability": 0.6731 + }, + { + "start": 5852.22, + "end": 5853.16, + "probability": 0.0774 + }, + { + "start": 5853.84, + "end": 5856.68, + "probability": 0.661 + }, + { + "start": 5857.12, + "end": 5858.51, + "probability": 0.8209 + }, + { + "start": 5859.04, + "end": 5862.14, + "probability": 0.7278 + }, + { + "start": 5863.56, + "end": 5865.72, + "probability": 0.9966 + }, + { + "start": 5867.19, + "end": 5870.08, + "probability": 0.8931 + }, + { + "start": 5870.2, + "end": 5872.06, + "probability": 0.9437 + }, + { + "start": 5873.74, + "end": 5874.46, + "probability": 0.7568 + }, + { + "start": 5875.78, + "end": 5877.34, + "probability": 0.3972 + }, + { + "start": 5878.04, + "end": 5880.14, + "probability": 0.9682 + }, + { + "start": 5880.3, + "end": 5880.3, + "probability": 0.2752 + }, + { + "start": 5880.3, + "end": 5880.3, + "probability": 0.1552 + }, + { + "start": 5880.3, + "end": 5884.2, + "probability": 0.7856 + }, + { + "start": 5885.06, + "end": 5885.16, + "probability": 0.2904 + }, + { + "start": 5885.16, + "end": 5887.84, + "probability": 0.7694 + }, + { + "start": 5888.64, + "end": 5890.32, + "probability": 0.8543 + }, + { + "start": 5890.48, + "end": 5891.12, + "probability": 0.8626 + }, + { + "start": 5891.5, + "end": 5894.9, + "probability": 0.9987 + }, + { + "start": 5895.26, + "end": 5896.58, + "probability": 0.9849 + }, + { + "start": 5897.44, + "end": 5900.08, + "probability": 0.9574 + }, + { + "start": 5901.96, + "end": 5903.6, + "probability": 0.9951 + }, + { + "start": 5903.74, + "end": 5906.6, + "probability": 0.9351 + }, + { + "start": 5906.6, + "end": 5912.24, + "probability": 0.9688 + }, + { + "start": 5912.7, + "end": 5915.22, + "probability": 0.9985 + }, + { + "start": 5916.08, + "end": 5917.1, + "probability": 0.9623 + }, + { + "start": 5917.22, + "end": 5918.44, + "probability": 0.012 + }, + { + "start": 5920.92, + "end": 5921.08, + "probability": 0.3075 + }, + { + "start": 5921.08, + "end": 5922.88, + "probability": 0.9462 + }, + { + "start": 5923.7, + "end": 5924.56, + "probability": 0.9015 + }, + { + "start": 5925.04, + "end": 5925.92, + "probability": 0.3988 + }, + { + "start": 5926.18, + "end": 5929.16, + "probability": 0.9839 + }, + { + "start": 5929.24, + "end": 5933.46, + "probability": 0.9982 + }, + { + "start": 5936.26, + "end": 5937.18, + "probability": 0.9641 + }, + { + "start": 5937.34, + "end": 5937.98, + "probability": 0.6764 + }, + { + "start": 5938.06, + "end": 5941.56, + "probability": 0.9899 + }, + { + "start": 5942.12, + "end": 5945.28, + "probability": 0.5626 + }, + { + "start": 5946.02, + "end": 5946.94, + "probability": 0.6206 + }, + { + "start": 5947.24, + "end": 5947.78, + "probability": 0.5559 + }, + { + "start": 5948.18, + "end": 5948.46, + "probability": 0.1603 + }, + { + "start": 5948.64, + "end": 5950.9, + "probability": 0.0118 + }, + { + "start": 5950.9, + "end": 5950.9, + "probability": 0.0464 + }, + { + "start": 5950.9, + "end": 5950.9, + "probability": 0.243 + }, + { + "start": 5950.9, + "end": 5950.9, + "probability": 0.038 + }, + { + "start": 5950.9, + "end": 5952.46, + "probability": 0.4254 + }, + { + "start": 5953.5, + "end": 5954.68, + "probability": 0.5291 + }, + { + "start": 5954.72, + "end": 5956.12, + "probability": 0.6938 + }, + { + "start": 5956.18, + "end": 5958.06, + "probability": 0.9386 + }, + { + "start": 5958.96, + "end": 5960.54, + "probability": 0.9308 + }, + { + "start": 5960.78, + "end": 5962.08, + "probability": 0.5347 + }, + { + "start": 5962.98, + "end": 5963.88, + "probability": 0.8428 + }, + { + "start": 5964.5, + "end": 5967.98, + "probability": 0.796 + }, + { + "start": 5968.42, + "end": 5969.84, + "probability": 0.8852 + }, + { + "start": 5970.7, + "end": 5973.22, + "probability": 0.8368 + }, + { + "start": 5973.66, + "end": 5975.32, + "probability": 0.8943 + }, + { + "start": 5975.38, + "end": 5976.16, + "probability": 0.7643 + }, + { + "start": 5976.6, + "end": 5977.1, + "probability": 0.9278 + }, + { + "start": 5977.2, + "end": 5978.22, + "probability": 0.9811 + }, + { + "start": 5979.06, + "end": 5979.78, + "probability": 0.7871 + }, + { + "start": 5979.82, + "end": 5980.91, + "probability": 0.9823 + }, + { + "start": 5981.48, + "end": 5982.42, + "probability": 0.8984 + }, + { + "start": 5982.5, + "end": 5983.58, + "probability": 0.8604 + }, + { + "start": 5983.66, + "end": 5984.1, + "probability": 0.8369 + }, + { + "start": 5984.18, + "end": 5985.34, + "probability": 0.8706 + }, + { + "start": 5985.88, + "end": 5986.28, + "probability": 0.2939 + }, + { + "start": 5986.5, + "end": 5987.63, + "probability": 0.8826 + }, + { + "start": 5989.04, + "end": 5989.14, + "probability": 0.4883 + }, + { + "start": 5989.18, + "end": 5989.54, + "probability": 0.7755 + }, + { + "start": 5989.58, + "end": 5991.06, + "probability": 0.978 + }, + { + "start": 5991.22, + "end": 5992.06, + "probability": 0.6148 + }, + { + "start": 5992.44, + "end": 5993.74, + "probability": 0.9521 + }, + { + "start": 5994.16, + "end": 5994.7, + "probability": 0.1536 + }, + { + "start": 5994.7, + "end": 5998.12, + "probability": 0.8975 + }, + { + "start": 5998.6, + "end": 5999.34, + "probability": 0.7074 + }, + { + "start": 5999.78, + "end": 6000.94, + "probability": 0.8113 + }, + { + "start": 6001.18, + "end": 6003.04, + "probability": 0.6992 + }, + { + "start": 6003.06, + "end": 6003.78, + "probability": 0.845 + }, + { + "start": 6003.9, + "end": 6004.36, + "probability": 0.8892 + }, + { + "start": 6004.42, + "end": 6005.8, + "probability": 0.8645 + }, + { + "start": 6006.12, + "end": 6008.36, + "probability": 0.875 + }, + { + "start": 6008.54, + "end": 6008.92, + "probability": 0.9362 + }, + { + "start": 6009.14, + "end": 6009.48, + "probability": 0.6827 + }, + { + "start": 6009.66, + "end": 6010.08, + "probability": 0.6829 + }, + { + "start": 6010.28, + "end": 6010.66, + "probability": 0.0007 + }, + { + "start": 6010.66, + "end": 6010.66, + "probability": 0.0155 + }, + { + "start": 6010.66, + "end": 6010.76, + "probability": 0.5706 + }, + { + "start": 6010.94, + "end": 6011.0, + "probability": 0.0331 + }, + { + "start": 6011.08, + "end": 6013.93, + "probability": 0.9317 + }, + { + "start": 6014.36, + "end": 6015.04, + "probability": 0.991 + }, + { + "start": 6015.34, + "end": 6016.24, + "probability": 0.8911 + }, + { + "start": 6016.4, + "end": 6016.9, + "probability": 0.5283 + }, + { + "start": 6016.98, + "end": 6017.64, + "probability": 0.9333 + }, + { + "start": 6017.64, + "end": 6018.14, + "probability": 0.7759 + }, + { + "start": 6018.38, + "end": 6019.24, + "probability": 0.8287 + }, + { + "start": 6020.22, + "end": 6020.22, + "probability": 0.5197 + }, + { + "start": 6020.22, + "end": 6020.96, + "probability": 0.7112 + }, + { + "start": 6021.26, + "end": 6022.44, + "probability": 0.8797 + }, + { + "start": 6022.56, + "end": 6024.14, + "probability": 0.8804 + }, + { + "start": 6024.25, + "end": 6024.84, + "probability": 0.961 + }, + { + "start": 6024.88, + "end": 6025.69, + "probability": 0.9927 + }, + { + "start": 6025.92, + "end": 6026.34, + "probability": 0.7576 + }, + { + "start": 6026.4, + "end": 6027.74, + "probability": 0.9246 + }, + { + "start": 6027.9, + "end": 6029.82, + "probability": 0.9827 + }, + { + "start": 6029.82, + "end": 6031.28, + "probability": 0.9912 + }, + { + "start": 6031.64, + "end": 6032.5, + "probability": 0.8958 + }, + { + "start": 6032.68, + "end": 6033.32, + "probability": 0.7627 + }, + { + "start": 6033.32, + "end": 6033.84, + "probability": 0.8248 + }, + { + "start": 6034.3, + "end": 6034.74, + "probability": 0.8281 + }, + { + "start": 6034.8, + "end": 6036.3, + "probability": 0.5575 + }, + { + "start": 6036.3, + "end": 6037.02, + "probability": 0.92 + }, + { + "start": 6037.14, + "end": 6037.4, + "probability": 0.6707 + }, + { + "start": 6037.94, + "end": 6039.88, + "probability": 0.7113 + }, + { + "start": 6065.16, + "end": 6067.7, + "probability": 0.5496 + }, + { + "start": 6067.92, + "end": 6068.34, + "probability": 0.5608 + }, + { + "start": 6068.7, + "end": 6070.96, + "probability": 0.8289 + }, + { + "start": 6072.54, + "end": 6073.32, + "probability": 0.9235 + }, + { + "start": 6073.38, + "end": 6078.98, + "probability": 0.8892 + }, + { + "start": 6078.98, + "end": 6084.22, + "probability": 0.9955 + }, + { + "start": 6085.3, + "end": 6087.12, + "probability": 0.792 + }, + { + "start": 6088.3, + "end": 6090.46, + "probability": 0.8727 + }, + { + "start": 6091.66, + "end": 6094.24, + "probability": 0.9637 + }, + { + "start": 6095.36, + "end": 6099.32, + "probability": 0.5801 + }, + { + "start": 6100.58, + "end": 6101.8, + "probability": 0.6462 + }, + { + "start": 6101.88, + "end": 6103.06, + "probability": 0.9705 + }, + { + "start": 6103.66, + "end": 6104.56, + "probability": 0.7603 + }, + { + "start": 6104.64, + "end": 6105.62, + "probability": 0.8101 + }, + { + "start": 6105.92, + "end": 6113.16, + "probability": 0.6852 + }, + { + "start": 6113.4, + "end": 6119.0, + "probability": 0.953 + }, + { + "start": 6119.74, + "end": 6121.32, + "probability": 0.9924 + }, + { + "start": 6121.98, + "end": 6125.7, + "probability": 0.9756 + }, + { + "start": 6125.72, + "end": 6128.92, + "probability": 0.9039 + }, + { + "start": 6129.26, + "end": 6131.32, + "probability": 0.8928 + }, + { + "start": 6132.0, + "end": 6133.66, + "probability": 0.1111 + }, + { + "start": 6134.0, + "end": 6135.33, + "probability": 0.1261 + }, + { + "start": 6137.66, + "end": 6138.34, + "probability": 0.1482 + }, + { + "start": 6138.68, + "end": 6138.86, + "probability": 0.0578 + }, + { + "start": 6138.86, + "end": 6138.86, + "probability": 0.0994 + }, + { + "start": 6138.86, + "end": 6140.56, + "probability": 0.2395 + }, + { + "start": 6141.02, + "end": 6143.5, + "probability": 0.9399 + }, + { + "start": 6144.76, + "end": 6145.96, + "probability": 0.7694 + }, + { + "start": 6147.3, + "end": 6148.26, + "probability": 0.4129 + }, + { + "start": 6148.26, + "end": 6149.93, + "probability": 0.558 + }, + { + "start": 6150.9, + "end": 6152.18, + "probability": 0.3709 + }, + { + "start": 6152.9, + "end": 6154.5, + "probability": 0.8116 + }, + { + "start": 6154.68, + "end": 6157.2, + "probability": 0.8263 + }, + { + "start": 6157.86, + "end": 6160.72, + "probability": 0.9684 + }, + { + "start": 6161.28, + "end": 6162.44, + "probability": 0.8748 + }, + { + "start": 6162.48, + "end": 6163.48, + "probability": 0.9368 + }, + { + "start": 6163.58, + "end": 6165.98, + "probability": 0.8385 + }, + { + "start": 6166.08, + "end": 6169.3, + "probability": 0.2912 + }, + { + "start": 6170.04, + "end": 6171.02, + "probability": 0.8135 + }, + { + "start": 6172.04, + "end": 6175.16, + "probability": 0.4764 + }, + { + "start": 6175.74, + "end": 6177.96, + "probability": 0.941 + }, + { + "start": 6178.84, + "end": 6181.1, + "probability": 0.8187 + }, + { + "start": 6182.38, + "end": 6183.62, + "probability": 0.7737 + }, + { + "start": 6184.28, + "end": 6185.28, + "probability": 0.6535 + }, + { + "start": 6187.2, + "end": 6188.14, + "probability": 0.8129 + }, + { + "start": 6188.28, + "end": 6192.58, + "probability": 0.8929 + }, + { + "start": 6193.26, + "end": 6196.08, + "probability": 0.8524 + }, + { + "start": 6196.64, + "end": 6198.88, + "probability": 0.8698 + }, + { + "start": 6199.72, + "end": 6202.7, + "probability": 0.7726 + }, + { + "start": 6204.96, + "end": 6208.48, + "probability": 0.8003 + }, + { + "start": 6209.54, + "end": 6212.0, + "probability": 0.9868 + }, + { + "start": 6212.84, + "end": 6213.9, + "probability": 0.8344 + }, + { + "start": 6216.32, + "end": 6218.14, + "probability": 0.2401 + }, + { + "start": 6218.66, + "end": 6221.12, + "probability": 0.8737 + }, + { + "start": 6221.16, + "end": 6222.36, + "probability": 0.4165 + }, + { + "start": 6222.46, + "end": 6223.38, + "probability": 0.9281 + }, + { + "start": 6224.14, + "end": 6227.8, + "probability": 0.8021 + }, + { + "start": 6227.88, + "end": 6230.98, + "probability": 0.9731 + }, + { + "start": 6233.84, + "end": 6236.82, + "probability": 0.9341 + }, + { + "start": 6237.02, + "end": 6238.2, + "probability": 0.9846 + }, + { + "start": 6238.8, + "end": 6242.86, + "probability": 0.7743 + }, + { + "start": 6243.52, + "end": 6246.26, + "probability": 0.9812 + }, + { + "start": 6246.76, + "end": 6247.72, + "probability": 0.6802 + }, + { + "start": 6248.3, + "end": 6249.67, + "probability": 0.9099 + }, + { + "start": 6250.28, + "end": 6251.5, + "probability": 0.5559 + }, + { + "start": 6252.48, + "end": 6253.16, + "probability": 0.6766 + }, + { + "start": 6253.18, + "end": 6253.54, + "probability": 0.7994 + }, + { + "start": 6254.02, + "end": 6255.04, + "probability": 0.9297 + }, + { + "start": 6255.7, + "end": 6257.42, + "probability": 0.978 + }, + { + "start": 6258.18, + "end": 6259.74, + "probability": 0.7498 + }, + { + "start": 6261.02, + "end": 6263.0, + "probability": 0.7452 + }, + { + "start": 6263.9, + "end": 6265.88, + "probability": 0.8918 + }, + { + "start": 6266.78, + "end": 6271.93, + "probability": 0.5474 + }, + { + "start": 6273.54, + "end": 6275.48, + "probability": 0.8162 + }, + { + "start": 6276.0, + "end": 6280.08, + "probability": 0.9935 + }, + { + "start": 6280.88, + "end": 6281.52, + "probability": 0.3589 + }, + { + "start": 6281.82, + "end": 6282.46, + "probability": 0.3508 + }, + { + "start": 6282.58, + "end": 6284.06, + "probability": 0.4771 + }, + { + "start": 6284.26, + "end": 6287.22, + "probability": 0.7178 + }, + { + "start": 6287.44, + "end": 6288.28, + "probability": 0.9006 + }, + { + "start": 6288.32, + "end": 6289.7, + "probability": 0.7869 + }, + { + "start": 6289.84, + "end": 6290.7, + "probability": 0.8716 + }, + { + "start": 6303.7, + "end": 6305.08, + "probability": 0.7195 + }, + { + "start": 6306.42, + "end": 6309.56, + "probability": 0.8179 + }, + { + "start": 6310.24, + "end": 6310.86, + "probability": 0.7205 + }, + { + "start": 6311.0, + "end": 6314.86, + "probability": 0.9504 + }, + { + "start": 6315.38, + "end": 6323.0, + "probability": 0.97 + }, + { + "start": 6323.0, + "end": 6327.32, + "probability": 0.8667 + }, + { + "start": 6327.9, + "end": 6332.0, + "probability": 0.8021 + }, + { + "start": 6332.76, + "end": 6334.32, + "probability": 0.9742 + }, + { + "start": 6334.4, + "end": 6336.57, + "probability": 0.7506 + }, + { + "start": 6337.46, + "end": 6342.32, + "probability": 0.9791 + }, + { + "start": 6342.36, + "end": 6349.44, + "probability": 0.805 + }, + { + "start": 6349.92, + "end": 6351.52, + "probability": 0.9789 + }, + { + "start": 6351.74, + "end": 6352.36, + "probability": 0.6561 + }, + { + "start": 6352.42, + "end": 6355.76, + "probability": 0.9962 + }, + { + "start": 6355.76, + "end": 6359.38, + "probability": 0.9263 + }, + { + "start": 6359.54, + "end": 6361.35, + "probability": 0.9918 + }, + { + "start": 6362.32, + "end": 6365.8, + "probability": 0.9041 + }, + { + "start": 6366.4, + "end": 6367.52, + "probability": 0.8857 + }, + { + "start": 6367.68, + "end": 6369.14, + "probability": 0.9315 + }, + { + "start": 6369.3, + "end": 6372.68, + "probability": 0.9885 + }, + { + "start": 6373.56, + "end": 6379.82, + "probability": 0.7693 + }, + { + "start": 6379.84, + "end": 6381.58, + "probability": 0.9883 + }, + { + "start": 6381.9, + "end": 6383.4, + "probability": 0.9863 + }, + { + "start": 6384.0, + "end": 6385.28, + "probability": 0.9941 + }, + { + "start": 6385.72, + "end": 6388.5, + "probability": 0.9966 + }, + { + "start": 6389.02, + "end": 6389.86, + "probability": 0.8975 + }, + { + "start": 6389.9, + "end": 6391.16, + "probability": 0.6645 + }, + { + "start": 6391.56, + "end": 6398.72, + "probability": 0.9868 + }, + { + "start": 6398.82, + "end": 6401.2, + "probability": 0.63 + }, + { + "start": 6401.56, + "end": 6407.94, + "probability": 0.833 + }, + { + "start": 6408.38, + "end": 6409.18, + "probability": 0.7512 + }, + { + "start": 6409.72, + "end": 6410.8, + "probability": 0.7834 + }, + { + "start": 6411.22, + "end": 6416.5, + "probability": 0.9919 + }, + { + "start": 6416.5, + "end": 6422.78, + "probability": 0.9873 + }, + { + "start": 6423.12, + "end": 6424.16, + "probability": 0.7394 + }, + { + "start": 6424.22, + "end": 6425.89, + "probability": 0.6605 + }, + { + "start": 6426.12, + "end": 6428.46, + "probability": 0.783 + }, + { + "start": 6428.88, + "end": 6433.92, + "probability": 0.9847 + }, + { + "start": 6434.26, + "end": 6435.78, + "probability": 0.9264 + }, + { + "start": 6436.2, + "end": 6436.82, + "probability": 0.8846 + }, + { + "start": 6437.0, + "end": 6439.32, + "probability": 0.8864 + }, + { + "start": 6439.72, + "end": 6441.58, + "probability": 0.9558 + }, + { + "start": 6441.92, + "end": 6446.04, + "probability": 0.9802 + }, + { + "start": 6447.02, + "end": 6449.02, + "probability": 0.9365 + }, + { + "start": 6449.06, + "end": 6450.44, + "probability": 0.6317 + }, + { + "start": 6450.9, + "end": 6453.66, + "probability": 0.9883 + }, + { + "start": 6454.1, + "end": 6456.7, + "probability": 0.9744 + }, + { + "start": 6457.14, + "end": 6464.42, + "probability": 0.9424 + }, + { + "start": 6464.76, + "end": 6467.74, + "probability": 0.9961 + }, + { + "start": 6467.8, + "end": 6470.1, + "probability": 0.9858 + }, + { + "start": 6470.24, + "end": 6473.44, + "probability": 0.9962 + }, + { + "start": 6473.92, + "end": 6475.86, + "probability": 0.8859 + }, + { + "start": 6475.98, + "end": 6477.06, + "probability": 0.9824 + }, + { + "start": 6477.26, + "end": 6480.28, + "probability": 0.8787 + }, + { + "start": 6480.5, + "end": 6482.34, + "probability": 0.7232 + }, + { + "start": 6482.88, + "end": 6483.51, + "probability": 0.7953 + }, + { + "start": 6484.24, + "end": 6485.7, + "probability": 0.8795 + }, + { + "start": 6485.74, + "end": 6486.16, + "probability": 0.8458 + }, + { + "start": 6486.46, + "end": 6489.42, + "probability": 0.9885 + }, + { + "start": 6489.62, + "end": 6491.35, + "probability": 0.9953 + }, + { + "start": 6491.88, + "end": 6494.58, + "probability": 0.7739 + }, + { + "start": 6494.58, + "end": 6494.7, + "probability": 0.6633 + }, + { + "start": 6494.92, + "end": 6496.7, + "probability": 0.7849 + }, + { + "start": 6496.84, + "end": 6499.14, + "probability": 0.9482 + }, + { + "start": 6499.56, + "end": 6503.64, + "probability": 0.989 + }, + { + "start": 6504.34, + "end": 6506.44, + "probability": 0.96 + }, + { + "start": 6506.5, + "end": 6507.57, + "probability": 0.9911 + }, + { + "start": 6507.7, + "end": 6508.06, + "probability": 0.8016 + }, + { + "start": 6508.7, + "end": 6513.96, + "probability": 0.9949 + }, + { + "start": 6514.42, + "end": 6518.46, + "probability": 0.9764 + }, + { + "start": 6518.94, + "end": 6524.9, + "probability": 0.9553 + }, + { + "start": 6525.3, + "end": 6527.57, + "probability": 0.9832 + }, + { + "start": 6527.76, + "end": 6527.98, + "probability": 0.3949 + }, + { + "start": 6528.2, + "end": 6530.92, + "probability": 0.9899 + }, + { + "start": 6531.3, + "end": 6532.48, + "probability": 0.914 + }, + { + "start": 6532.6, + "end": 6533.26, + "probability": 0.7837 + }, + { + "start": 6534.0, + "end": 6534.56, + "probability": 0.81 + }, + { + "start": 6534.64, + "end": 6536.9, + "probability": 0.8068 + }, + { + "start": 6552.98, + "end": 6556.3, + "probability": 0.6734 + }, + { + "start": 6558.74, + "end": 6562.48, + "probability": 0.9657 + }, + { + "start": 6564.02, + "end": 6564.88, + "probability": 0.5008 + }, + { + "start": 6565.86, + "end": 6568.56, + "probability": 0.9873 + }, + { + "start": 6569.54, + "end": 6571.46, + "probability": 0.9691 + }, + { + "start": 6572.62, + "end": 6574.14, + "probability": 0.8903 + }, + { + "start": 6574.86, + "end": 6575.88, + "probability": 0.949 + }, + { + "start": 6576.54, + "end": 6578.94, + "probability": 0.6061 + }, + { + "start": 6579.46, + "end": 6580.64, + "probability": 0.9171 + }, + { + "start": 6581.82, + "end": 6584.16, + "probability": 0.9661 + }, + { + "start": 6584.74, + "end": 6585.6, + "probability": 0.8493 + }, + { + "start": 6587.56, + "end": 6588.94, + "probability": 0.9261 + }, + { + "start": 6590.1, + "end": 6591.86, + "probability": 0.9824 + }, + { + "start": 6592.02, + "end": 6594.78, + "probability": 0.9858 + }, + { + "start": 6595.8, + "end": 6596.76, + "probability": 0.8853 + }, + { + "start": 6600.4, + "end": 6601.12, + "probability": 0.3523 + }, + { + "start": 6602.5, + "end": 6607.28, + "probability": 0.9968 + }, + { + "start": 6607.66, + "end": 6609.14, + "probability": 0.0205 + }, + { + "start": 6609.6, + "end": 6613.58, + "probability": 0.6877 + }, + { + "start": 6614.8, + "end": 6614.8, + "probability": 0.0355 + }, + { + "start": 6614.8, + "end": 6614.8, + "probability": 0.1751 + }, + { + "start": 6614.8, + "end": 6614.8, + "probability": 0.0285 + }, + { + "start": 6614.8, + "end": 6617.42, + "probability": 0.9978 + }, + { + "start": 6617.58, + "end": 6621.06, + "probability": 0.9984 + }, + { + "start": 6621.16, + "end": 6623.66, + "probability": 0.9774 + }, + { + "start": 6624.24, + "end": 6625.72, + "probability": 0.6931 + }, + { + "start": 6626.42, + "end": 6631.3, + "probability": 0.7969 + }, + { + "start": 6632.04, + "end": 6638.48, + "probability": 0.9473 + }, + { + "start": 6640.4, + "end": 6641.32, + "probability": 0.5985 + }, + { + "start": 6642.32, + "end": 6643.84, + "probability": 0.9518 + }, + { + "start": 6644.78, + "end": 6650.57, + "probability": 0.9529 + }, + { + "start": 6652.1, + "end": 6652.18, + "probability": 0.021 + }, + { + "start": 6652.18, + "end": 6652.18, + "probability": 0.0545 + }, + { + "start": 6652.18, + "end": 6658.9, + "probability": 0.9727 + }, + { + "start": 6658.94, + "end": 6660.3, + "probability": 0.3746 + }, + { + "start": 6660.44, + "end": 6660.56, + "probability": 0.1523 + }, + { + "start": 6660.56, + "end": 6661.94, + "probability": 0.8454 + }, + { + "start": 6662.4, + "end": 6664.07, + "probability": 0.0446 + }, + { + "start": 6664.84, + "end": 6666.69, + "probability": 0.0227 + }, + { + "start": 6667.04, + "end": 6667.74, + "probability": 0.3758 + }, + { + "start": 6668.12, + "end": 6668.9, + "probability": 0.0933 + }, + { + "start": 6668.9, + "end": 6672.48, + "probability": 0.6894 + }, + { + "start": 6672.88, + "end": 6672.9, + "probability": 0.1993 + }, + { + "start": 6672.9, + "end": 6673.94, + "probability": 0.9214 + }, + { + "start": 6674.02, + "end": 6674.98, + "probability": 0.9504 + }, + { + "start": 6675.06, + "end": 6676.46, + "probability": 0.8337 + }, + { + "start": 6677.18, + "end": 6678.22, + "probability": 0.8652 + }, + { + "start": 6678.38, + "end": 6682.68, + "probability": 0.9744 + }, + { + "start": 6683.42, + "end": 6686.32, + "probability": 0.9917 + }, + { + "start": 6686.9, + "end": 6689.26, + "probability": 0.9951 + }, + { + "start": 6690.12, + "end": 6690.92, + "probability": 0.7176 + }, + { + "start": 6691.4, + "end": 6693.24, + "probability": 0.6712 + }, + { + "start": 6693.42, + "end": 6697.48, + "probability": 0.7968 + }, + { + "start": 6698.16, + "end": 6698.5, + "probability": 0.374 + }, + { + "start": 6698.5, + "end": 6698.5, + "probability": 0.1991 + }, + { + "start": 6698.5, + "end": 6702.58, + "probability": 0.8096 + }, + { + "start": 6702.94, + "end": 6706.94, + "probability": 0.4573 + }, + { + "start": 6707.12, + "end": 6708.88, + "probability": 0.6825 + }, + { + "start": 6709.12, + "end": 6713.7, + "probability": 0.4978 + }, + { + "start": 6713.94, + "end": 6714.98, + "probability": 0.6901 + }, + { + "start": 6714.98, + "end": 6717.42, + "probability": 0.011 + }, + { + "start": 6717.84, + "end": 6718.66, + "probability": 0.0732 + }, + { + "start": 6721.14, + "end": 6722.88, + "probability": 0.0417 + }, + { + "start": 6723.42, + "end": 6723.42, + "probability": 0.0846 + }, + { + "start": 6723.42, + "end": 6728.18, + "probability": 0.8606 + }, + { + "start": 6728.48, + "end": 6732.94, + "probability": 0.9865 + }, + { + "start": 6733.06, + "end": 6734.88, + "probability": 0.8443 + }, + { + "start": 6735.54, + "end": 6739.54, + "probability": 0.5562 + }, + { + "start": 6739.54, + "end": 6742.36, + "probability": 0.4013 + }, + { + "start": 6742.68, + "end": 6743.08, + "probability": 0.0285 + }, + { + "start": 6743.08, + "end": 6745.2, + "probability": 0.1183 + }, + { + "start": 6745.56, + "end": 6746.12, + "probability": 0.4992 + }, + { + "start": 6746.2, + "end": 6748.38, + "probability": 0.5767 + }, + { + "start": 6748.98, + "end": 6751.08, + "probability": 0.5041 + }, + { + "start": 6751.76, + "end": 6754.0, + "probability": 0.0939 + }, + { + "start": 6754.14, + "end": 6758.6, + "probability": 0.8406 + }, + { + "start": 6758.68, + "end": 6764.46, + "probability": 0.8442 + }, + { + "start": 6765.0, + "end": 6765.38, + "probability": 0.2828 + }, + { + "start": 6765.72, + "end": 6766.4, + "probability": 0.3729 + }, + { + "start": 6766.54, + "end": 6768.5, + "probability": 0.9227 + }, + { + "start": 6768.72, + "end": 6773.36, + "probability": 0.8173 + }, + { + "start": 6773.82, + "end": 6777.02, + "probability": 0.4968 + }, + { + "start": 6777.2, + "end": 6778.26, + "probability": 0.2094 + }, + { + "start": 6778.28, + "end": 6780.62, + "probability": 0.9531 + }, + { + "start": 6780.62, + "end": 6781.56, + "probability": 0.1654 + }, + { + "start": 6781.9, + "end": 6782.58, + "probability": 0.8295 + }, + { + "start": 6782.88, + "end": 6784.72, + "probability": 0.7331 + }, + { + "start": 6784.72, + "end": 6788.46, + "probability": 0.9878 + }, + { + "start": 6788.78, + "end": 6789.3, + "probability": 0.9331 + }, + { + "start": 6789.46, + "end": 6793.9, + "probability": 0.9152 + }, + { + "start": 6795.4, + "end": 6796.24, + "probability": 0.953 + }, + { + "start": 6796.84, + "end": 6797.84, + "probability": 0.6806 + }, + { + "start": 6798.44, + "end": 6803.52, + "probability": 0.9183 + }, + { + "start": 6804.86, + "end": 6807.38, + "probability": 0.9745 + }, + { + "start": 6808.22, + "end": 6810.84, + "probability": 0.9893 + }, + { + "start": 6811.64, + "end": 6816.24, + "probability": 0.967 + }, + { + "start": 6816.96, + "end": 6818.14, + "probability": 0.8894 + }, + { + "start": 6818.52, + "end": 6820.03, + "probability": 0.9847 + }, + { + "start": 6820.56, + "end": 6822.26, + "probability": 0.8731 + }, + { + "start": 6822.58, + "end": 6827.06, + "probability": 0.9588 + }, + { + "start": 6827.62, + "end": 6832.46, + "probability": 0.9736 + }, + { + "start": 6833.16, + "end": 6834.92, + "probability": 0.9791 + }, + { + "start": 6835.14, + "end": 6836.56, + "probability": 0.8513 + }, + { + "start": 6837.02, + "end": 6838.44, + "probability": 0.9834 + }, + { + "start": 6838.8, + "end": 6839.92, + "probability": 0.9679 + }, + { + "start": 6840.12, + "end": 6841.06, + "probability": 0.8717 + }, + { + "start": 6841.58, + "end": 6843.94, + "probability": 0.9709 + }, + { + "start": 6844.44, + "end": 6847.2, + "probability": 0.9454 + }, + { + "start": 6848.08, + "end": 6849.66, + "probability": 0.8302 + }, + { + "start": 6849.9, + "end": 6851.02, + "probability": 0.7294 + }, + { + "start": 6851.04, + "end": 6853.88, + "probability": 0.9756 + }, + { + "start": 6854.46, + "end": 6857.36, + "probability": 0.8818 + }, + { + "start": 6857.96, + "end": 6859.92, + "probability": 0.5897 + }, + { + "start": 6860.98, + "end": 6862.36, + "probability": 0.9832 + }, + { + "start": 6862.44, + "end": 6868.04, + "probability": 0.986 + }, + { + "start": 6868.68, + "end": 6873.48, + "probability": 0.9808 + }, + { + "start": 6874.42, + "end": 6875.05, + "probability": 0.9375 + }, + { + "start": 6876.04, + "end": 6880.42, + "probability": 0.9801 + }, + { + "start": 6880.84, + "end": 6881.8, + "probability": 0.9298 + }, + { + "start": 6882.4, + "end": 6884.58, + "probability": 0.934 + }, + { + "start": 6885.32, + "end": 6886.86, + "probability": 0.9816 + }, + { + "start": 6887.32, + "end": 6889.02, + "probability": 0.9858 + }, + { + "start": 6889.1, + "end": 6891.16, + "probability": 0.9468 + }, + { + "start": 6892.24, + "end": 6897.44, + "probability": 0.8525 + }, + { + "start": 6898.34, + "end": 6900.3, + "probability": 0.9873 + }, + { + "start": 6901.14, + "end": 6904.36, + "probability": 0.9881 + }, + { + "start": 6904.84, + "end": 6906.58, + "probability": 0.6295 + }, + { + "start": 6906.68, + "end": 6907.44, + "probability": 0.937 + }, + { + "start": 6908.44, + "end": 6912.52, + "probability": 0.9872 + }, + { + "start": 6912.92, + "end": 6913.52, + "probability": 0.5222 + }, + { + "start": 6913.54, + "end": 6914.58, + "probability": 0.937 + }, + { + "start": 6914.64, + "end": 6916.12, + "probability": 0.7853 + }, + { + "start": 6916.72, + "end": 6921.16, + "probability": 0.9805 + }, + { + "start": 6921.28, + "end": 6926.78, + "probability": 0.993 + }, + { + "start": 6927.42, + "end": 6929.14, + "probability": 0.998 + }, + { + "start": 6929.94, + "end": 6932.5, + "probability": 0.9858 + }, + { + "start": 6935.32, + "end": 6938.18, + "probability": 0.7664 + }, + { + "start": 6939.46, + "end": 6941.7, + "probability": 0.809 + }, + { + "start": 6943.68, + "end": 6944.94, + "probability": 0.7444 + }, + { + "start": 6945.1, + "end": 6948.54, + "probability": 0.9892 + }, + { + "start": 6948.82, + "end": 6954.36, + "probability": 0.9447 + }, + { + "start": 6954.52, + "end": 6955.9, + "probability": 0.6575 + }, + { + "start": 6956.24, + "end": 6957.54, + "probability": 0.9085 + }, + { + "start": 6958.5, + "end": 6960.22, + "probability": 0.957 + }, + { + "start": 6961.36, + "end": 6964.5, + "probability": 0.0624 + }, + { + "start": 6964.9, + "end": 6965.02, + "probability": 0.791 + }, + { + "start": 6965.18, + "end": 6965.34, + "probability": 0.454 + }, + { + "start": 6965.34, + "end": 6965.74, + "probability": 0.9186 + }, + { + "start": 6965.8, + "end": 6966.5, + "probability": 0.6537 + }, + { + "start": 6966.98, + "end": 6969.5, + "probability": 0.8949 + }, + { + "start": 6969.64, + "end": 6970.06, + "probability": 0.478 + }, + { + "start": 6970.76, + "end": 6974.06, + "probability": 0.8117 + }, + { + "start": 6974.12, + "end": 6977.0, + "probability": 0.9866 + }, + { + "start": 6977.46, + "end": 6978.9, + "probability": 0.9684 + }, + { + "start": 6980.58, + "end": 6981.14, + "probability": 0.9596 + }, + { + "start": 6983.44, + "end": 6986.36, + "probability": 0.9383 + }, + { + "start": 6989.22, + "end": 6990.24, + "probability": 0.782 + }, + { + "start": 6992.04, + "end": 6996.12, + "probability": 0.8101 + }, + { + "start": 6997.98, + "end": 6998.7, + "probability": 0.8757 + }, + { + "start": 6998.86, + "end": 7000.66, + "probability": 0.9175 + }, + { + "start": 7000.82, + "end": 7006.98, + "probability": 0.6847 + }, + { + "start": 7007.68, + "end": 7010.9, + "probability": 0.9828 + }, + { + "start": 7010.9, + "end": 7013.22, + "probability": 0.7207 + }, + { + "start": 7014.36, + "end": 7014.38, + "probability": 0.2075 + }, + { + "start": 7014.38, + "end": 7016.26, + "probability": 0.7734 + }, + { + "start": 7016.86, + "end": 7018.16, + "probability": 0.791 + }, + { + "start": 7018.74, + "end": 7021.12, + "probability": 0.9458 + }, + { + "start": 7021.74, + "end": 7024.06, + "probability": 0.9806 + }, + { + "start": 7024.7, + "end": 7025.8, + "probability": 0.6538 + }, + { + "start": 7025.92, + "end": 7027.96, + "probability": 0.9465 + }, + { + "start": 7028.1, + "end": 7028.9, + "probability": 0.8194 + }, + { + "start": 7029.22, + "end": 7031.3, + "probability": 0.9974 + }, + { + "start": 7032.02, + "end": 7033.98, + "probability": 0.9954 + }, + { + "start": 7034.26, + "end": 7035.09, + "probability": 0.5628 + }, + { + "start": 7035.28, + "end": 7036.28, + "probability": 0.6118 + }, + { + "start": 7037.44, + "end": 7039.4, + "probability": 0.9873 + }, + { + "start": 7040.16, + "end": 7041.82, + "probability": 0.9958 + }, + { + "start": 7042.08, + "end": 7043.08, + "probability": 0.7755 + }, + { + "start": 7043.36, + "end": 7048.24, + "probability": 0.6168 + }, + { + "start": 7048.58, + "end": 7049.6, + "probability": 0.1866 + }, + { + "start": 7050.34, + "end": 7057.8, + "probability": 0.9967 + }, + { + "start": 7058.82, + "end": 7062.84, + "probability": 0.9763 + }, + { + "start": 7064.16, + "end": 7069.4, + "probability": 0.8395 + }, + { + "start": 7069.92, + "end": 7074.46, + "probability": 0.9668 + }, + { + "start": 7075.46, + "end": 7078.26, + "probability": 0.9796 + }, + { + "start": 7078.34, + "end": 7083.78, + "probability": 0.9844 + }, + { + "start": 7084.54, + "end": 7087.56, + "probability": 0.9766 + }, + { + "start": 7088.7, + "end": 7088.92, + "probability": 0.0327 + }, + { + "start": 7088.92, + "end": 7088.92, + "probability": 0.0661 + }, + { + "start": 7088.92, + "end": 7090.84, + "probability": 0.8267 + }, + { + "start": 7091.78, + "end": 7096.86, + "probability": 0.9906 + }, + { + "start": 7097.0, + "end": 7098.92, + "probability": 0.9252 + }, + { + "start": 7099.64, + "end": 7103.86, + "probability": 0.9961 + }, + { + "start": 7103.98, + "end": 7104.96, + "probability": 0.873 + }, + { + "start": 7105.08, + "end": 7106.2, + "probability": 0.9254 + }, + { + "start": 7106.98, + "end": 7111.72, + "probability": 0.9923 + }, + { + "start": 7111.84, + "end": 7116.88, + "probability": 0.991 + }, + { + "start": 7117.06, + "end": 7117.28, + "probability": 0.1284 + }, + { + "start": 7117.28, + "end": 7122.26, + "probability": 0.8419 + }, + { + "start": 7126.12, + "end": 7128.98, + "probability": 0.2192 + }, + { + "start": 7131.2, + "end": 7131.56, + "probability": 0.3422 + }, + { + "start": 7131.66, + "end": 7132.32, + "probability": 0.7267 + }, + { + "start": 7132.78, + "end": 7136.76, + "probability": 0.936 + }, + { + "start": 7136.9, + "end": 7138.08, + "probability": 0.9605 + }, + { + "start": 7138.26, + "end": 7139.1, + "probability": 0.9227 + }, + { + "start": 7139.9, + "end": 7141.74, + "probability": 0.9974 + }, + { + "start": 7142.28, + "end": 7145.32, + "probability": 0.8622 + }, + { + "start": 7146.02, + "end": 7147.8, + "probability": 0.9425 + }, + { + "start": 7148.74, + "end": 7148.82, + "probability": 0.7178 + }, + { + "start": 7148.9, + "end": 7149.3, + "probability": 0.8109 + }, + { + "start": 7149.38, + "end": 7149.7, + "probability": 0.3625 + }, + { + "start": 7149.72, + "end": 7154.0, + "probability": 0.83 + }, + { + "start": 7155.12, + "end": 7158.2, + "probability": 0.9838 + }, + { + "start": 7158.88, + "end": 7160.56, + "probability": 0.9953 + }, + { + "start": 7161.04, + "end": 7163.8, + "probability": 0.9939 + }, + { + "start": 7164.48, + "end": 7166.9, + "probability": 0.9836 + }, + { + "start": 7167.9, + "end": 7172.14, + "probability": 0.9395 + }, + { + "start": 7172.96, + "end": 7176.62, + "probability": 0.9113 + }, + { + "start": 7177.32, + "end": 7180.1, + "probability": 0.9015 + }, + { + "start": 7181.48, + "end": 7184.34, + "probability": 0.9877 + }, + { + "start": 7184.46, + "end": 7185.42, + "probability": 0.5439 + }, + { + "start": 7186.16, + "end": 7188.03, + "probability": 0.5781 + }, + { + "start": 7188.14, + "end": 7189.62, + "probability": 0.7032 + }, + { + "start": 7190.48, + "end": 7191.12, + "probability": 0.8094 + }, + { + "start": 7192.0, + "end": 7194.16, + "probability": 0.8466 + }, + { + "start": 7194.9, + "end": 7197.36, + "probability": 0.9609 + }, + { + "start": 7198.08, + "end": 7202.44, + "probability": 0.9848 + }, + { + "start": 7205.24, + "end": 7208.15, + "probability": 0.9961 + }, + { + "start": 7209.56, + "end": 7211.8, + "probability": 0.9911 + }, + { + "start": 7212.36, + "end": 7213.62, + "probability": 0.7862 + }, + { + "start": 7215.52, + "end": 7218.76, + "probability": 0.9935 + }, + { + "start": 7220.24, + "end": 7223.14, + "probability": 0.2844 + }, + { + "start": 7223.26, + "end": 7224.28, + "probability": 0.9001 + }, + { + "start": 7225.45, + "end": 7229.98, + "probability": 0.9524 + }, + { + "start": 7231.12, + "end": 7234.18, + "probability": 0.9978 + }, + { + "start": 7235.2, + "end": 7238.3, + "probability": 0.9185 + }, + { + "start": 7238.3, + "end": 7242.38, + "probability": 0.9966 + }, + { + "start": 7243.84, + "end": 7246.6, + "probability": 0.998 + }, + { + "start": 7247.88, + "end": 7248.48, + "probability": 0.5223 + }, + { + "start": 7249.5, + "end": 7251.24, + "probability": 0.9707 + }, + { + "start": 7251.9, + "end": 7252.9, + "probability": 0.9652 + }, + { + "start": 7254.62, + "end": 7258.52, + "probability": 0.8967 + }, + { + "start": 7260.84, + "end": 7263.7, + "probability": 0.9778 + }, + { + "start": 7264.44, + "end": 7266.28, + "probability": 0.9592 + }, + { + "start": 7266.62, + "end": 7271.0, + "probability": 0.9296 + }, + { + "start": 7271.54, + "end": 7275.12, + "probability": 0.9976 + }, + { + "start": 7275.96, + "end": 7279.62, + "probability": 0.9881 + }, + { + "start": 7280.38, + "end": 7283.14, + "probability": 0.9143 + }, + { + "start": 7283.54, + "end": 7285.42, + "probability": 0.9983 + }, + { + "start": 7286.94, + "end": 7288.72, + "probability": 0.9762 + }, + { + "start": 7289.8, + "end": 7290.84, + "probability": 0.5371 + }, + { + "start": 7291.64, + "end": 7292.86, + "probability": 0.7929 + }, + { + "start": 7295.16, + "end": 7296.6, + "probability": 0.8095 + }, + { + "start": 7296.76, + "end": 7297.6, + "probability": 0.9237 + }, + { + "start": 7297.98, + "end": 7300.72, + "probability": 0.9813 + }, + { + "start": 7302.5, + "end": 7303.92, + "probability": 0.9946 + }, + { + "start": 7304.5, + "end": 7307.04, + "probability": 0.9924 + }, + { + "start": 7307.18, + "end": 7308.6, + "probability": 0.9306 + }, + { + "start": 7309.74, + "end": 7310.8, + "probability": 0.059 + }, + { + "start": 7311.06, + "end": 7317.32, + "probability": 0.9933 + }, + { + "start": 7318.52, + "end": 7322.9, + "probability": 0.9419 + }, + { + "start": 7323.0, + "end": 7325.0, + "probability": 0.9951 + }, + { + "start": 7325.76, + "end": 7329.64, + "probability": 0.8613 + }, + { + "start": 7330.88, + "end": 7331.14, + "probability": 0.0088 + }, + { + "start": 7332.92, + "end": 7335.46, + "probability": 0.8365 + }, + { + "start": 7336.72, + "end": 7340.02, + "probability": 0.9658 + }, + { + "start": 7341.22, + "end": 7344.68, + "probability": 0.8004 + }, + { + "start": 7345.42, + "end": 7349.58, + "probability": 0.9594 + }, + { + "start": 7351.54, + "end": 7355.42, + "probability": 0.9774 + }, + { + "start": 7355.5, + "end": 7357.5, + "probability": 0.8512 + }, + { + "start": 7358.04, + "end": 7360.54, + "probability": 0.9423 + }, + { + "start": 7361.52, + "end": 7363.08, + "probability": 0.994 + }, + { + "start": 7363.86, + "end": 7364.7, + "probability": 0.7603 + }, + { + "start": 7365.66, + "end": 7371.42, + "probability": 0.984 + }, + { + "start": 7372.24, + "end": 7376.14, + "probability": 0.9672 + }, + { + "start": 7376.14, + "end": 7380.5, + "probability": 0.9471 + }, + { + "start": 7381.16, + "end": 7385.58, + "probability": 0.9863 + }, + { + "start": 7386.26, + "end": 7388.62, + "probability": 0.736 + }, + { + "start": 7389.68, + "end": 7393.78, + "probability": 0.9144 + }, + { + "start": 7393.88, + "end": 7395.94, + "probability": 0.7805 + }, + { + "start": 7396.8, + "end": 7401.72, + "probability": 0.9096 + }, + { + "start": 7401.94, + "end": 7404.16, + "probability": 0.9927 + }, + { + "start": 7404.96, + "end": 7408.82, + "probability": 0.9436 + }, + { + "start": 7410.5, + "end": 7413.24, + "probability": 0.9698 + }, + { + "start": 7414.08, + "end": 7415.56, + "probability": 0.7433 + }, + { + "start": 7416.24, + "end": 7418.48, + "probability": 0.9983 + }, + { + "start": 7419.08, + "end": 7422.28, + "probability": 0.8974 + }, + { + "start": 7423.0, + "end": 7424.84, + "probability": 0.7202 + }, + { + "start": 7426.1, + "end": 7427.5, + "probability": 0.7889 + }, + { + "start": 7427.58, + "end": 7428.94, + "probability": 0.964 + }, + { + "start": 7429.34, + "end": 7434.34, + "probability": 0.9662 + }, + { + "start": 7435.08, + "end": 7436.26, + "probability": 0.7643 + }, + { + "start": 7436.72, + "end": 7439.86, + "probability": 0.9789 + }, + { + "start": 7440.0, + "end": 7440.61, + "probability": 0.9536 + }, + { + "start": 7441.1, + "end": 7442.06, + "probability": 0.9394 + }, + { + "start": 7442.8, + "end": 7446.46, + "probability": 0.8425 + }, + { + "start": 7447.4, + "end": 7448.44, + "probability": 0.8612 + }, + { + "start": 7449.58, + "end": 7451.56, + "probability": 0.9741 + }, + { + "start": 7451.56, + "end": 7454.06, + "probability": 0.8251 + }, + { + "start": 7454.5, + "end": 7457.96, + "probability": 0.974 + }, + { + "start": 7457.96, + "end": 7463.06, + "probability": 0.9463 + }, + { + "start": 7463.3, + "end": 7463.92, + "probability": 0.5848 + }, + { + "start": 7466.24, + "end": 7471.4, + "probability": 0.7573 + }, + { + "start": 7471.7, + "end": 7475.82, + "probability": 0.8038 + }, + { + "start": 7476.02, + "end": 7477.42, + "probability": 0.7063 + }, + { + "start": 7481.32, + "end": 7484.98, + "probability": 0.948 + }, + { + "start": 7485.24, + "end": 7486.55, + "probability": 0.8784 + }, + { + "start": 7487.48, + "end": 7488.88, + "probability": 0.0047 + }, + { + "start": 7494.86, + "end": 7500.6, + "probability": 0.9367 + }, + { + "start": 7500.64, + "end": 7501.12, + "probability": 0.8514 + }, + { + "start": 7501.22, + "end": 7501.7, + "probability": 0.8182 + }, + { + "start": 7501.78, + "end": 7503.22, + "probability": 0.7619 + }, + { + "start": 7504.74, + "end": 7506.48, + "probability": 0.6871 + }, + { + "start": 7506.5, + "end": 7507.4, + "probability": 0.5291 + }, + { + "start": 7507.48, + "end": 7508.24, + "probability": 0.6949 + }, + { + "start": 7516.2, + "end": 7517.08, + "probability": 0.3528 + }, + { + "start": 7519.66, + "end": 7523.74, + "probability": 0.2314 + }, + { + "start": 7524.44, + "end": 7529.36, + "probability": 0.6463 + }, + { + "start": 7530.0, + "end": 7532.82, + "probability": 0.9526 + }, + { + "start": 7533.6, + "end": 7536.32, + "probability": 0.8035 + }, + { + "start": 7536.44, + "end": 7538.46, + "probability": 0.5474 + }, + { + "start": 7539.0, + "end": 7540.2, + "probability": 0.5777 + }, + { + "start": 7540.26, + "end": 7541.02, + "probability": 0.3194 + }, + { + "start": 7541.02, + "end": 7541.82, + "probability": 0.3851 + }, + { + "start": 7542.96, + "end": 7548.26, + "probability": 0.1887 + }, + { + "start": 7556.98, + "end": 7558.08, + "probability": 0.0729 + }, + { + "start": 7558.08, + "end": 7560.66, + "probability": 0.4665 + }, + { + "start": 7560.78, + "end": 7563.82, + "probability": 0.9766 + }, + { + "start": 7566.04, + "end": 7566.68, + "probability": 0.6681 + }, + { + "start": 7566.8, + "end": 7570.16, + "probability": 0.9595 + }, + { + "start": 7570.16, + "end": 7571.14, + "probability": 0.5884 + }, + { + "start": 7571.2, + "end": 7572.78, + "probability": 0.2886 + }, + { + "start": 7575.3, + "end": 7575.32, + "probability": 0.6522 + }, + { + "start": 7579.24, + "end": 7582.1, + "probability": 0.1105 + }, + { + "start": 7582.7, + "end": 7583.98, + "probability": 0.6173 + }, + { + "start": 7584.78, + "end": 7585.32, + "probability": 0.5201 + }, + { + "start": 7586.3, + "end": 7589.56, + "probability": 0.5741 + }, + { + "start": 7589.68, + "end": 7592.36, + "probability": 0.6727 + }, + { + "start": 7592.48, + "end": 7597.08, + "probability": 0.8557 + }, + { + "start": 7598.1, + "end": 7600.04, + "probability": 0.9746 + }, + { + "start": 7600.1, + "end": 7600.68, + "probability": 0.4927 + }, + { + "start": 7601.64, + "end": 7605.86, + "probability": 0.6527 + }, + { + "start": 7611.4, + "end": 7612.0, + "probability": 0.0082 + }, + { + "start": 7613.3, + "end": 7616.54, + "probability": 0.1052 + }, + { + "start": 7616.86, + "end": 7618.7, + "probability": 0.6158 + }, + { + "start": 7619.26, + "end": 7621.3, + "probability": 0.7241 + }, + { + "start": 7621.82, + "end": 7623.68, + "probability": 0.8564 + }, + { + "start": 7623.74, + "end": 7626.92, + "probability": 0.9891 + }, + { + "start": 7630.88, + "end": 7632.76, + "probability": 0.837 + }, + { + "start": 7641.98, + "end": 7642.68, + "probability": 0.0314 + }, + { + "start": 7660.14, + "end": 7665.94, + "probability": 0.8626 + }, + { + "start": 7666.76, + "end": 7671.18, + "probability": 0.8151 + }, + { + "start": 7677.56, + "end": 7678.28, + "probability": 0.7913 + }, + { + "start": 7678.36, + "end": 7678.66, + "probability": 0.7739 + }, + { + "start": 7678.98, + "end": 7679.4, + "probability": 0.559 + }, + { + "start": 7679.44, + "end": 7682.08, + "probability": 0.9724 + }, + { + "start": 7682.66, + "end": 7684.92, + "probability": 0.8708 + }, + { + "start": 7686.72, + "end": 7688.68, + "probability": 0.9476 + }, + { + "start": 7690.06, + "end": 7690.84, + "probability": 0.9374 + }, + { + "start": 7692.1, + "end": 7696.04, + "probability": 0.9302 + }, + { + "start": 7696.98, + "end": 7699.04, + "probability": 0.804 + }, + { + "start": 7699.62, + "end": 7701.72, + "probability": 0.7684 + }, + { + "start": 7701.86, + "end": 7702.3, + "probability": 0.7625 + }, + { + "start": 7702.38, + "end": 7705.82, + "probability": 0.8114 + }, + { + "start": 7705.92, + "end": 7709.55, + "probability": 0.9551 + }, + { + "start": 7710.18, + "end": 7711.5, + "probability": 0.9232 + }, + { + "start": 7711.68, + "end": 7712.26, + "probability": 0.9427 + }, + { + "start": 7712.42, + "end": 7712.92, + "probability": 0.8998 + }, + { + "start": 7713.12, + "end": 7713.78, + "probability": 0.8834 + }, + { + "start": 7713.9, + "end": 7715.18, + "probability": 0.8995 + }, + { + "start": 7715.22, + "end": 7718.12, + "probability": 0.9303 + }, + { + "start": 7718.58, + "end": 7721.1, + "probability": 0.8635 + }, + { + "start": 7721.92, + "end": 7724.04, + "probability": 0.922 + }, + { + "start": 7724.18, + "end": 7725.32, + "probability": 0.9951 + }, + { + "start": 7726.94, + "end": 7730.06, + "probability": 0.9727 + }, + { + "start": 7730.64, + "end": 7733.8, + "probability": 0.9973 + }, + { + "start": 7735.4, + "end": 7738.96, + "probability": 0.931 + }, + { + "start": 7739.08, + "end": 7739.3, + "probability": 0.6161 + }, + { + "start": 7739.5, + "end": 7741.16, + "probability": 0.8766 + }, + { + "start": 7741.74, + "end": 7743.28, + "probability": 0.8002 + }, + { + "start": 7743.5, + "end": 7746.64, + "probability": 0.9907 + }, + { + "start": 7746.74, + "end": 7750.88, + "probability": 0.9202 + }, + { + "start": 7751.82, + "end": 7753.0, + "probability": 0.9352 + }, + { + "start": 7753.7, + "end": 7755.99, + "probability": 0.9971 + }, + { + "start": 7756.36, + "end": 7757.46, + "probability": 0.936 + }, + { + "start": 7757.72, + "end": 7760.86, + "probability": 0.9963 + }, + { + "start": 7761.96, + "end": 7763.94, + "probability": 0.9514 + }, + { + "start": 7765.16, + "end": 7766.52, + "probability": 0.9881 + }, + { + "start": 7767.52, + "end": 7770.54, + "probability": 0.9882 + }, + { + "start": 7771.28, + "end": 7775.4, + "probability": 0.7511 + }, + { + "start": 7776.9, + "end": 7777.8, + "probability": 0.2016 + }, + { + "start": 7777.8, + "end": 7778.7, + "probability": 0.5424 + }, + { + "start": 7790.7, + "end": 7791.14, + "probability": 0.5554 + }, + { + "start": 7791.94, + "end": 7795.54, + "probability": 0.948 + }, + { + "start": 7795.78, + "end": 7799.76, + "probability": 0.7844 + }, + { + "start": 7799.84, + "end": 7801.74, + "probability": 0.9268 + }, + { + "start": 7802.78, + "end": 7805.98, + "probability": 0.9811 + }, + { + "start": 7807.16, + "end": 7809.66, + "probability": 0.9785 + }, + { + "start": 7810.56, + "end": 7811.92, + "probability": 0.4408 + }, + { + "start": 7811.94, + "end": 7815.26, + "probability": 0.7227 + }, + { + "start": 7818.34, + "end": 7821.48, + "probability": 0.6675 + }, + { + "start": 7821.52, + "end": 7822.54, + "probability": 0.8904 + }, + { + "start": 7822.64, + "end": 7824.06, + "probability": 0.894 + }, + { + "start": 7824.42, + "end": 7825.41, + "probability": 0.8378 + }, + { + "start": 7825.78, + "end": 7827.84, + "probability": 0.76 + }, + { + "start": 7827.96, + "end": 7829.62, + "probability": 0.8234 + }, + { + "start": 7830.74, + "end": 7834.2, + "probability": 0.979 + }, + { + "start": 7834.92, + "end": 7838.68, + "probability": 0.9906 + }, + { + "start": 7839.28, + "end": 7841.36, + "probability": 0.6984 + }, + { + "start": 7842.44, + "end": 7846.16, + "probability": 0.9982 + }, + { + "start": 7846.66, + "end": 7849.88, + "probability": 0.9985 + }, + { + "start": 7849.88, + "end": 7853.56, + "probability": 0.9979 + }, + { + "start": 7854.14, + "end": 7855.7, + "probability": 0.996 + }, + { + "start": 7856.6, + "end": 7859.84, + "probability": 0.9996 + }, + { + "start": 7860.46, + "end": 7862.44, + "probability": 0.4758 + }, + { + "start": 7863.22, + "end": 7865.58, + "probability": 0.8369 + }, + { + "start": 7866.1, + "end": 7868.98, + "probability": 0.9556 + }, + { + "start": 7869.72, + "end": 7873.28, + "probability": 0.8784 + }, + { + "start": 7873.4, + "end": 7875.88, + "probability": 0.8083 + }, + { + "start": 7876.58, + "end": 7882.64, + "probability": 0.9921 + }, + { + "start": 7883.18, + "end": 7883.88, + "probability": 0.8893 + }, + { + "start": 7884.4, + "end": 7887.06, + "probability": 0.9749 + }, + { + "start": 7887.26, + "end": 7889.16, + "probability": 0.9873 + }, + { + "start": 7889.94, + "end": 7894.54, + "probability": 0.9358 + }, + { + "start": 7894.64, + "end": 7895.18, + "probability": 0.5352 + }, + { + "start": 7896.32, + "end": 7897.58, + "probability": 0.8227 + }, + { + "start": 7897.62, + "end": 7898.68, + "probability": 0.9816 + }, + { + "start": 7899.2, + "end": 7904.12, + "probability": 0.8765 + }, + { + "start": 7905.02, + "end": 7907.5, + "probability": 0.6843 + }, + { + "start": 7908.4, + "end": 7911.62, + "probability": 0.9631 + }, + { + "start": 7912.38, + "end": 7913.82, + "probability": 0.7881 + }, + { + "start": 7914.14, + "end": 7919.28, + "probability": 0.9572 + }, + { + "start": 7919.42, + "end": 7921.5, + "probability": 0.8979 + }, + { + "start": 7922.18, + "end": 7925.4, + "probability": 0.9823 + }, + { + "start": 7926.54, + "end": 7927.7, + "probability": 0.5923 + }, + { + "start": 7927.82, + "end": 7929.62, + "probability": 0.8418 + }, + { + "start": 7929.66, + "end": 7930.52, + "probability": 0.9905 + }, + { + "start": 7931.34, + "end": 7933.2, + "probability": 0.905 + }, + { + "start": 7933.26, + "end": 7933.74, + "probability": 0.9883 + }, + { + "start": 7934.02, + "end": 7934.38, + "probability": 0.9686 + }, + { + "start": 7934.48, + "end": 7935.48, + "probability": 0.9327 + }, + { + "start": 7936.54, + "end": 7942.9, + "probability": 0.994 + }, + { + "start": 7943.42, + "end": 7944.12, + "probability": 0.9768 + }, + { + "start": 7944.22, + "end": 7945.96, + "probability": 0.998 + }, + { + "start": 7946.9, + "end": 7950.62, + "probability": 0.933 + }, + { + "start": 7951.16, + "end": 7953.24, + "probability": 0.4976 + }, + { + "start": 7953.84, + "end": 7956.62, + "probability": 0.9893 + }, + { + "start": 7956.78, + "end": 7957.94, + "probability": 0.9308 + }, + { + "start": 7958.26, + "end": 7960.54, + "probability": 0.9353 + }, + { + "start": 7961.16, + "end": 7961.64, + "probability": 0.9373 + }, + { + "start": 7961.84, + "end": 7966.42, + "probability": 0.9341 + }, + { + "start": 7967.26, + "end": 7970.54, + "probability": 0.9908 + }, + { + "start": 7971.7, + "end": 7972.96, + "probability": 0.7317 + }, + { + "start": 7973.42, + "end": 7974.82, + "probability": 0.9705 + }, + { + "start": 7974.88, + "end": 7975.94, + "probability": 0.738 + }, + { + "start": 7976.0, + "end": 7976.58, + "probability": 0.9263 + }, + { + "start": 7977.22, + "end": 7978.3, + "probability": 0.8549 + }, + { + "start": 7978.84, + "end": 7981.4, + "probability": 0.9456 + }, + { + "start": 7981.8, + "end": 7982.84, + "probability": 0.9763 + }, + { + "start": 7983.66, + "end": 7984.6, + "probability": 0.971 + }, + { + "start": 7986.24, + "end": 7987.38, + "probability": 0.5702 + }, + { + "start": 7987.6, + "end": 7990.26, + "probability": 0.9098 + }, + { + "start": 7990.34, + "end": 7991.08, + "probability": 0.7169 + }, + { + "start": 7992.46, + "end": 7996.02, + "probability": 0.6437 + }, + { + "start": 7999.02, + "end": 7999.64, + "probability": 0.7108 + }, + { + "start": 7999.72, + "end": 8000.69, + "probability": 0.74 + }, + { + "start": 8001.2, + "end": 8002.9, + "probability": 0.9722 + }, + { + "start": 8003.02, + "end": 8003.74, + "probability": 0.8325 + }, + { + "start": 8003.88, + "end": 8006.58, + "probability": 0.9402 + }, + { + "start": 8006.72, + "end": 8008.52, + "probability": 0.973 + }, + { + "start": 8009.54, + "end": 8010.38, + "probability": 0.9769 + }, + { + "start": 8011.72, + "end": 8014.56, + "probability": 0.949 + }, + { + "start": 8015.5, + "end": 8020.82, + "probability": 0.6752 + }, + { + "start": 8022.06, + "end": 8023.36, + "probability": 0.509 + }, + { + "start": 8024.62, + "end": 8027.52, + "probability": 0.9603 + }, + { + "start": 8029.04, + "end": 8030.38, + "probability": 0.7425 + }, + { + "start": 8031.16, + "end": 8035.72, + "probability": 0.8704 + }, + { + "start": 8036.44, + "end": 8038.3, + "probability": 0.9034 + }, + { + "start": 8039.1, + "end": 8042.12, + "probability": 0.9447 + }, + { + "start": 8042.78, + "end": 8044.18, + "probability": 0.9608 + }, + { + "start": 8045.06, + "end": 8051.52, + "probability": 0.9949 + }, + { + "start": 8052.76, + "end": 8055.47, + "probability": 0.5321 + }, + { + "start": 8056.06, + "end": 8058.12, + "probability": 0.8203 + }, + { + "start": 8058.74, + "end": 8060.34, + "probability": 0.8369 + }, + { + "start": 8060.8, + "end": 8063.7, + "probability": 0.9731 + }, + { + "start": 8064.16, + "end": 8065.9, + "probability": 0.8818 + }, + { + "start": 8066.4, + "end": 8068.02, + "probability": 0.8863 + }, + { + "start": 8068.4, + "end": 8069.62, + "probability": 0.9907 + }, + { + "start": 8070.18, + "end": 8072.28, + "probability": 0.8416 + }, + { + "start": 8072.88, + "end": 8074.84, + "probability": 0.9772 + }, + { + "start": 8075.26, + "end": 8077.46, + "probability": 0.8269 + }, + { + "start": 8078.02, + "end": 8082.12, + "probability": 0.9748 + }, + { + "start": 8082.66, + "end": 8087.22, + "probability": 0.9795 + }, + { + "start": 8087.82, + "end": 8089.94, + "probability": 0.9302 + }, + { + "start": 8090.08, + "end": 8090.6, + "probability": 0.8737 + }, + { + "start": 8090.86, + "end": 8097.5, + "probability": 0.9919 + }, + { + "start": 8098.64, + "end": 8100.04, + "probability": 0.7111 + }, + { + "start": 8100.98, + "end": 8106.9, + "probability": 0.979 + }, + { + "start": 8107.18, + "end": 8108.28, + "probability": 0.967 + }, + { + "start": 8108.5, + "end": 8108.74, + "probability": 0.6883 + }, + { + "start": 8109.54, + "end": 8111.14, + "probability": 0.6744 + }, + { + "start": 8111.22, + "end": 8112.7, + "probability": 0.8496 + }, + { + "start": 8114.48, + "end": 8115.48, + "probability": 0.9204 + }, + { + "start": 8115.54, + "end": 8116.42, + "probability": 0.55 + }, + { + "start": 8116.46, + "end": 8117.94, + "probability": 0.9966 + }, + { + "start": 8119.0, + "end": 8119.46, + "probability": 0.7915 + }, + { + "start": 8119.54, + "end": 8124.18, + "probability": 0.9183 + }, + { + "start": 8125.4, + "end": 8126.5, + "probability": 0.9338 + }, + { + "start": 8127.12, + "end": 8128.96, + "probability": 0.9315 + }, + { + "start": 8129.98, + "end": 8131.14, + "probability": 0.991 + }, + { + "start": 8132.14, + "end": 8132.6, + "probability": 0.8015 + }, + { + "start": 8133.64, + "end": 8139.82, + "probability": 0.9725 + }, + { + "start": 8139.96, + "end": 8140.36, + "probability": 0.9189 + }, + { + "start": 8140.42, + "end": 8141.02, + "probability": 0.9949 + }, + { + "start": 8141.12, + "end": 8141.74, + "probability": 0.8565 + }, + { + "start": 8141.86, + "end": 8142.2, + "probability": 0.8493 + }, + { + "start": 8142.52, + "end": 8142.98, + "probability": 0.9249 + }, + { + "start": 8144.94, + "end": 8147.76, + "probability": 0.999 + }, + { + "start": 8148.82, + "end": 8152.62, + "probability": 0.7953 + }, + { + "start": 8152.68, + "end": 8153.28, + "probability": 0.5653 + }, + { + "start": 8155.44, + "end": 8156.5, + "probability": 0.9442 + }, + { + "start": 8157.58, + "end": 8160.96, + "probability": 0.9816 + }, + { + "start": 8162.98, + "end": 8164.22, + "probability": 0.8879 + }, + { + "start": 8165.5, + "end": 8167.18, + "probability": 0.9971 + }, + { + "start": 8168.5, + "end": 8170.3, + "probability": 0.7691 + }, + { + "start": 8171.92, + "end": 8174.18, + "probability": 0.9011 + }, + { + "start": 8176.88, + "end": 8179.38, + "probability": 0.8279 + }, + { + "start": 8180.2, + "end": 8181.76, + "probability": 0.9829 + }, + { + "start": 8182.7, + "end": 8184.5, + "probability": 0.9082 + }, + { + "start": 8185.02, + "end": 8187.82, + "probability": 0.9312 + }, + { + "start": 8187.88, + "end": 8192.5, + "probability": 0.9863 + }, + { + "start": 8193.52, + "end": 8194.72, + "probability": 0.915 + }, + { + "start": 8195.6, + "end": 8198.52, + "probability": 0.9877 + }, + { + "start": 8198.86, + "end": 8199.78, + "probability": 0.9617 + }, + { + "start": 8200.58, + "end": 8201.36, + "probability": 0.9276 + }, + { + "start": 8202.18, + "end": 8204.34, + "probability": 0.8773 + }, + { + "start": 8205.04, + "end": 8206.44, + "probability": 0.8962 + }, + { + "start": 8206.96, + "end": 8210.64, + "probability": 0.8991 + }, + { + "start": 8212.22, + "end": 8214.34, + "probability": 0.9907 + }, + { + "start": 8214.48, + "end": 8216.92, + "probability": 0.9766 + }, + { + "start": 8217.38, + "end": 8219.38, + "probability": 0.9725 + }, + { + "start": 8222.9, + "end": 8223.1, + "probability": 0.1417 + }, + { + "start": 8223.1, + "end": 8223.1, + "probability": 0.0712 + }, + { + "start": 8223.1, + "end": 8224.92, + "probability": 0.651 + }, + { + "start": 8224.96, + "end": 8226.92, + "probability": 0.9796 + }, + { + "start": 8228.02, + "end": 8228.7, + "probability": 0.8719 + }, + { + "start": 8232.92, + "end": 8233.82, + "probability": 0.9055 + }, + { + "start": 8233.92, + "end": 8236.06, + "probability": 0.8715 + }, + { + "start": 8236.12, + "end": 8238.8, + "probability": 0.9961 + }, + { + "start": 8239.82, + "end": 8240.68, + "probability": 0.9176 + }, + { + "start": 8242.1, + "end": 8243.84, + "probability": 0.9734 + }, + { + "start": 8245.14, + "end": 8245.68, + "probability": 0.8083 + }, + { + "start": 8247.16, + "end": 8250.46, + "probability": 0.8408 + }, + { + "start": 8251.26, + "end": 8254.54, + "probability": 0.9946 + }, + { + "start": 8256.02, + "end": 8256.62, + "probability": 0.6641 + }, + { + "start": 8257.82, + "end": 8258.36, + "probability": 0.8132 + }, + { + "start": 8258.48, + "end": 8259.46, + "probability": 0.8723 + }, + { + "start": 8259.5, + "end": 8261.12, + "probability": 0.7589 + }, + { + "start": 8261.76, + "end": 8265.28, + "probability": 0.9842 + }, + { + "start": 8265.68, + "end": 8269.22, + "probability": 0.9834 + }, + { + "start": 8270.1, + "end": 8271.9, + "probability": 0.9072 + }, + { + "start": 8271.96, + "end": 8273.31, + "probability": 0.9135 + }, + { + "start": 8273.62, + "end": 8274.66, + "probability": 0.9819 + }, + { + "start": 8274.96, + "end": 8275.8, + "probability": 0.8162 + }, + { + "start": 8275.98, + "end": 8277.42, + "probability": 0.9961 + }, + { + "start": 8279.24, + "end": 8280.52, + "probability": 0.153 + }, + { + "start": 8280.52, + "end": 8280.86, + "probability": 0.0399 + }, + { + "start": 8281.04, + "end": 8281.92, + "probability": 0.8606 + }, + { + "start": 8283.0, + "end": 8288.18, + "probability": 0.9941 + }, + { + "start": 8288.28, + "end": 8290.28, + "probability": 0.9763 + }, + { + "start": 8290.74, + "end": 8291.84, + "probability": 0.7611 + }, + { + "start": 8292.76, + "end": 8293.4, + "probability": 0.5908 + }, + { + "start": 8294.32, + "end": 8296.78, + "probability": 0.8699 + }, + { + "start": 8297.86, + "end": 8298.94, + "probability": 0.9629 + }, + { + "start": 8300.0, + "end": 8301.14, + "probability": 0.8522 + }, + { + "start": 8301.2, + "end": 8302.44, + "probability": 0.9546 + }, + { + "start": 8303.14, + "end": 8303.56, + "probability": 0.9257 + }, + { + "start": 8304.12, + "end": 8305.96, + "probability": 0.9764 + }, + { + "start": 8307.02, + "end": 8307.44, + "probability": 0.5369 + }, + { + "start": 8308.5, + "end": 8310.36, + "probability": 0.9972 + }, + { + "start": 8311.72, + "end": 8313.1, + "probability": 0.9026 + }, + { + "start": 8313.44, + "end": 8315.94, + "probability": 0.9922 + }, + { + "start": 8317.2, + "end": 8320.66, + "probability": 0.8837 + }, + { + "start": 8321.26, + "end": 8322.46, + "probability": 0.9125 + }, + { + "start": 8322.46, + "end": 8324.34, + "probability": 0.5263 + }, + { + "start": 8324.78, + "end": 8325.02, + "probability": 0.4138 + }, + { + "start": 8325.14, + "end": 8325.98, + "probability": 0.9103 + }, + { + "start": 8326.3, + "end": 8330.82, + "probability": 0.9041 + }, + { + "start": 8331.64, + "end": 8333.46, + "probability": 0.9966 + }, + { + "start": 8333.64, + "end": 8334.22, + "probability": 0.7829 + }, + { + "start": 8335.02, + "end": 8340.62, + "probability": 0.9688 + }, + { + "start": 8341.58, + "end": 8343.42, + "probability": 0.9905 + }, + { + "start": 8344.36, + "end": 8345.7, + "probability": 0.7073 + }, + { + "start": 8345.84, + "end": 8347.18, + "probability": 0.7477 + }, + { + "start": 8347.22, + "end": 8349.18, + "probability": 0.9229 + }, + { + "start": 8349.72, + "end": 8350.54, + "probability": 0.9592 + }, + { + "start": 8351.18, + "end": 8354.62, + "probability": 0.9132 + }, + { + "start": 8354.96, + "end": 8355.86, + "probability": 0.9006 + }, + { + "start": 8355.98, + "end": 8356.76, + "probability": 0.6888 + }, + { + "start": 8357.0, + "end": 8357.72, + "probability": 0.7438 + }, + { + "start": 8357.86, + "end": 8359.0, + "probability": 0.7927 + }, + { + "start": 8359.1, + "end": 8359.58, + "probability": 0.6182 + }, + { + "start": 8359.6, + "end": 8362.32, + "probability": 0.96 + }, + { + "start": 8363.06, + "end": 8365.52, + "probability": 0.9889 + }, + { + "start": 8365.52, + "end": 8369.66, + "probability": 0.8949 + }, + { + "start": 8369.84, + "end": 8370.84, + "probability": 0.9435 + }, + { + "start": 8371.88, + "end": 8375.64, + "probability": 0.9971 + }, + { + "start": 8375.64, + "end": 8379.28, + "probability": 0.9442 + }, + { + "start": 8379.36, + "end": 8380.26, + "probability": 0.7723 + }, + { + "start": 8380.58, + "end": 8382.6, + "probability": 0.9595 + }, + { + "start": 8383.08, + "end": 8384.74, + "probability": 0.6537 + }, + { + "start": 8385.14, + "end": 8392.08, + "probability": 0.8781 + }, + { + "start": 8392.8, + "end": 8395.64, + "probability": 0.7531 + }, + { + "start": 8397.41, + "end": 8398.73, + "probability": 0.2568 + }, + { + "start": 8399.14, + "end": 8403.02, + "probability": 0.7155 + }, + { + "start": 8403.32, + "end": 8403.68, + "probability": 0.1646 + }, + { + "start": 8403.68, + "end": 8403.68, + "probability": 0.1123 + }, + { + "start": 8403.68, + "end": 8405.39, + "probability": 0.5637 + }, + { + "start": 8407.48, + "end": 8410.54, + "probability": 0.95 + }, + { + "start": 8411.56, + "end": 8413.34, + "probability": 0.9117 + }, + { + "start": 8414.04, + "end": 8415.18, + "probability": 0.0589 + }, + { + "start": 8415.44, + "end": 8418.2, + "probability": 0.1756 + }, + { + "start": 8418.64, + "end": 8419.26, + "probability": 0.3215 + }, + { + "start": 8419.6, + "end": 8421.1, + "probability": 0.828 + }, + { + "start": 8421.5, + "end": 8421.62, + "probability": 0.7663 + }, + { + "start": 8421.62, + "end": 8421.92, + "probability": 0.7502 + }, + { + "start": 8422.5, + "end": 8423.48, + "probability": 0.8608 + }, + { + "start": 8424.04, + "end": 8425.94, + "probability": 0.7089 + }, + { + "start": 8426.46, + "end": 8427.86, + "probability": 0.8342 + }, + { + "start": 8427.86, + "end": 8429.64, + "probability": 0.9759 + }, + { + "start": 8430.0, + "end": 8431.84, + "probability": 0.7615 + }, + { + "start": 8432.18, + "end": 8433.9, + "probability": 0.9762 + }, + { + "start": 8433.98, + "end": 8435.44, + "probability": 0.9723 + }, + { + "start": 8435.72, + "end": 8439.32, + "probability": 0.8939 + }, + { + "start": 8439.5, + "end": 8440.8, + "probability": 0.7476 + }, + { + "start": 8441.0, + "end": 8441.06, + "probability": 0.018 + }, + { + "start": 8441.08, + "end": 8441.1, + "probability": 0.6413 + }, + { + "start": 8441.16, + "end": 8441.98, + "probability": 0.8451 + }, + { + "start": 8442.12, + "end": 8442.44, + "probability": 0.6793 + }, + { + "start": 8442.54, + "end": 8442.9, + "probability": 0.8652 + }, + { + "start": 8443.26, + "end": 8445.41, + "probability": 0.8789 + }, + { + "start": 8445.68, + "end": 8445.68, + "probability": 0.7448 + }, + { + "start": 8445.68, + "end": 8446.78, + "probability": 0.9045 + }, + { + "start": 8448.42, + "end": 8450.94, + "probability": 0.0293 + }, + { + "start": 8453.04, + "end": 8453.34, + "probability": 0.0418 + }, + { + "start": 8453.34, + "end": 8453.34, + "probability": 0.0149 + }, + { + "start": 8453.34, + "end": 8454.62, + "probability": 0.1961 + }, + { + "start": 8454.72, + "end": 8455.74, + "probability": 0.5531 + }, + { + "start": 8459.51, + "end": 8463.08, + "probability": 0.5615 + }, + { + "start": 8463.44, + "end": 8463.44, + "probability": 0.0535 + }, + { + "start": 8463.44, + "end": 8463.7, + "probability": 0.3165 + }, + { + "start": 8463.98, + "end": 8465.3, + "probability": 0.4953 + }, + { + "start": 8465.94, + "end": 8468.28, + "probability": 0.3643 + }, + { + "start": 8468.44, + "end": 8468.58, + "probability": 0.2599 + }, + { + "start": 8468.58, + "end": 8468.58, + "probability": 0.0134 + }, + { + "start": 8468.58, + "end": 8469.51, + "probability": 0.2722 + }, + { + "start": 8469.9, + "end": 8471.46, + "probability": 0.2681 + }, + { + "start": 8472.84, + "end": 8474.8, + "probability": 0.0401 + }, + { + "start": 8475.9, + "end": 8476.2, + "probability": 0.0891 + }, + { + "start": 8476.2, + "end": 8476.24, + "probability": 0.0364 + }, + { + "start": 8476.24, + "end": 8476.34, + "probability": 0.1233 + }, + { + "start": 8476.5, + "end": 8477.96, + "probability": 0.5773 + }, + { + "start": 8478.16, + "end": 8478.38, + "probability": 0.6663 + }, + { + "start": 8478.48, + "end": 8479.06, + "probability": 0.4752 + }, + { + "start": 8479.2, + "end": 8480.36, + "probability": 0.8379 + }, + { + "start": 8480.74, + "end": 8481.68, + "probability": 0.5893 + }, + { + "start": 8481.86, + "end": 8481.93, + "probability": 0.3781 + }, + { + "start": 8482.2, + "end": 8483.67, + "probability": 0.7268 + }, + { + "start": 8484.34, + "end": 8484.5, + "probability": 0.4616 + }, + { + "start": 8484.52, + "end": 8485.46, + "probability": 0.7642 + }, + { + "start": 8485.54, + "end": 8486.2, + "probability": 0.7674 + }, + { + "start": 8486.34, + "end": 8486.72, + "probability": 0.0013 + }, + { + "start": 8486.72, + "end": 8486.72, + "probability": 0.3565 + }, + { + "start": 8486.72, + "end": 8486.78, + "probability": 0.0013 + }, + { + "start": 8486.78, + "end": 8486.78, + "probability": 0.0967 + }, + { + "start": 8486.78, + "end": 8489.78, + "probability": 0.7595 + }, + { + "start": 8489.94, + "end": 8489.94, + "probability": 0.2753 + }, + { + "start": 8489.94, + "end": 8490.74, + "probability": 0.2785 + }, + { + "start": 8490.98, + "end": 8492.7, + "probability": 0.7625 + }, + { + "start": 8492.9, + "end": 8493.6, + "probability": 0.933 + }, + { + "start": 8493.74, + "end": 8495.12, + "probability": 0.8962 + }, + { + "start": 8495.46, + "end": 8496.36, + "probability": 0.7679 + }, + { + "start": 8497.3, + "end": 8497.52, + "probability": 0.9475 + }, + { + "start": 8498.82, + "end": 8501.44, + "probability": 0.886 + }, + { + "start": 8502.54, + "end": 8507.3, + "probability": 0.8514 + }, + { + "start": 8508.02, + "end": 8508.74, + "probability": 0.7739 + }, + { + "start": 8510.08, + "end": 8511.96, + "probability": 0.9879 + }, + { + "start": 8512.08, + "end": 8512.86, + "probability": 0.8218 + }, + { + "start": 8512.96, + "end": 8513.54, + "probability": 0.7356 + }, + { + "start": 8514.74, + "end": 8515.26, + "probability": 0.8979 + }, + { + "start": 8515.88, + "end": 8516.4, + "probability": 0.9329 + }, + { + "start": 8517.56, + "end": 8518.78, + "probability": 0.9656 + }, + { + "start": 8519.5, + "end": 8520.32, + "probability": 0.8831 + }, + { + "start": 8521.3, + "end": 8522.18, + "probability": 0.9872 + }, + { + "start": 8522.92, + "end": 8523.64, + "probability": 0.9697 + }, + { + "start": 8524.6, + "end": 8525.76, + "probability": 0.9268 + }, + { + "start": 8527.54, + "end": 8528.84, + "probability": 0.9012 + }, + { + "start": 8529.76, + "end": 8531.7, + "probability": 0.8008 + }, + { + "start": 8533.14, + "end": 8536.34, + "probability": 0.8857 + }, + { + "start": 8538.68, + "end": 8539.4, + "probability": 0.8672 + }, + { + "start": 8540.92, + "end": 8542.46, + "probability": 0.8538 + }, + { + "start": 8542.88, + "end": 8543.28, + "probability": 0.9148 + }, + { + "start": 8544.2, + "end": 8545.44, + "probability": 0.6406 + }, + { + "start": 8546.78, + "end": 8547.74, + "probability": 0.6434 + }, + { + "start": 8548.26, + "end": 8549.78, + "probability": 0.3269 + }, + { + "start": 8549.86, + "end": 8550.52, + "probability": 0.2009 + }, + { + "start": 8551.4, + "end": 8553.42, + "probability": 0.6638 + }, + { + "start": 8553.6, + "end": 8554.34, + "probability": 0.0717 + }, + { + "start": 8554.48, + "end": 8556.82, + "probability": 0.2043 + }, + { + "start": 8556.82, + "end": 8561.98, + "probability": 0.9416 + }, + { + "start": 8563.19, + "end": 8565.88, + "probability": 0.5742 + }, + { + "start": 8567.12, + "end": 8568.16, + "probability": 0.9049 + }, + { + "start": 8570.94, + "end": 8571.34, + "probability": 0.8032 + }, + { + "start": 8573.24, + "end": 8573.94, + "probability": 0.9028 + }, + { + "start": 8575.54, + "end": 8576.0, + "probability": 0.9146 + }, + { + "start": 8576.82, + "end": 8577.72, + "probability": 0.9214 + }, + { + "start": 8579.66, + "end": 8580.7, + "probability": 0.4635 + }, + { + "start": 8580.86, + "end": 8586.52, + "probability": 0.894 + }, + { + "start": 8587.4, + "end": 8587.4, + "probability": 0.2388 + }, + { + "start": 8587.4, + "end": 8592.2, + "probability": 0.9543 + }, + { + "start": 8593.7, + "end": 8594.62, + "probability": 0.7539 + }, + { + "start": 8596.28, + "end": 8598.32, + "probability": 0.9956 + }, + { + "start": 8600.22, + "end": 8603.32, + "probability": 0.9455 + }, + { + "start": 8604.58, + "end": 8608.9, + "probability": 0.9935 + }, + { + "start": 8609.78, + "end": 8610.5, + "probability": 0.418 + }, + { + "start": 8610.5, + "end": 8611.52, + "probability": 0.8678 + }, + { + "start": 8612.04, + "end": 8612.16, + "probability": 0.4826 + }, + { + "start": 8612.3, + "end": 8615.48, + "probability": 0.9868 + }, + { + "start": 8616.9, + "end": 8618.12, + "probability": 0.557 + }, + { + "start": 8618.8, + "end": 8619.54, + "probability": 0.847 + }, + { + "start": 8620.88, + "end": 8621.4, + "probability": 0.9708 + }, + { + "start": 8623.98, + "end": 8624.4, + "probability": 0.4778 + }, + { + "start": 8624.4, + "end": 8624.68, + "probability": 0.209 + }, + { + "start": 8624.72, + "end": 8625.32, + "probability": 0.5933 + }, + { + "start": 8625.5, + "end": 8626.06, + "probability": 0.8111 + }, + { + "start": 8626.06, + "end": 8627.6, + "probability": 0.9106 + }, + { + "start": 8627.84, + "end": 8628.94, + "probability": 0.8662 + }, + { + "start": 8628.98, + "end": 8629.76, + "probability": 0.9331 + }, + { + "start": 8629.88, + "end": 8631.84, + "probability": 0.9941 + }, + { + "start": 8631.86, + "end": 8632.98, + "probability": 0.8406 + }, + { + "start": 8633.96, + "end": 8635.14, + "probability": 0.8012 + }, + { + "start": 8635.26, + "end": 8639.72, + "probability": 0.9893 + }, + { + "start": 8640.04, + "end": 8641.92, + "probability": 0.8398 + }, + { + "start": 8642.54, + "end": 8643.0, + "probability": 0.5237 + }, + { + "start": 8643.02, + "end": 8643.98, + "probability": 0.7703 + }, + { + "start": 8644.48, + "end": 8646.06, + "probability": 0.8978 + }, + { + "start": 8646.18, + "end": 8648.96, + "probability": 0.1013 + }, + { + "start": 8648.96, + "end": 8648.96, + "probability": 0.1255 + }, + { + "start": 8648.96, + "end": 8649.45, + "probability": 0.5384 + }, + { + "start": 8650.3, + "end": 8657.0, + "probability": 0.9739 + }, + { + "start": 8657.68, + "end": 8662.02, + "probability": 0.8504 + }, + { + "start": 8662.18, + "end": 8663.96, + "probability": 0.6853 + }, + { + "start": 8663.96, + "end": 8666.58, + "probability": 0.9652 + }, + { + "start": 8666.64, + "end": 8667.3, + "probability": 0.3777 + }, + { + "start": 8667.38, + "end": 8668.52, + "probability": 0.9463 + }, + { + "start": 8669.16, + "end": 8672.28, + "probability": 0.8839 + }, + { + "start": 8672.68, + "end": 8674.92, + "probability": 0.9642 + }, + { + "start": 8675.68, + "end": 8676.54, + "probability": 0.9459 + }, + { + "start": 8676.78, + "end": 8679.68, + "probability": 0.9673 + }, + { + "start": 8679.9, + "end": 8682.82, + "probability": 0.8924 + }, + { + "start": 8683.18, + "end": 8685.1, + "probability": 0.7607 + }, + { + "start": 8685.54, + "end": 8687.7, + "probability": 0.9509 + }, + { + "start": 8688.28, + "end": 8690.98, + "probability": 0.9631 + }, + { + "start": 8691.86, + "end": 8693.4, + "probability": 0.7688 + }, + { + "start": 8694.0, + "end": 8700.6, + "probability": 0.9727 + }, + { + "start": 8701.18, + "end": 8702.74, + "probability": 0.9206 + }, + { + "start": 8702.86, + "end": 8705.5, + "probability": 0.9934 + }, + { + "start": 8705.5, + "end": 8708.26, + "probability": 0.9888 + }, + { + "start": 8708.46, + "end": 8710.54, + "probability": 0.6716 + }, + { + "start": 8711.14, + "end": 8711.42, + "probability": 0.6079 + }, + { + "start": 8711.42, + "end": 8715.06, + "probability": 0.94 + }, + { + "start": 8715.1, + "end": 8718.84, + "probability": 0.9032 + }, + { + "start": 8719.8, + "end": 8725.0, + "probability": 0.8824 + }, + { + "start": 8725.48, + "end": 8727.13, + "probability": 0.9302 + }, + { + "start": 8727.68, + "end": 8732.16, + "probability": 0.9443 + }, + { + "start": 8732.52, + "end": 8734.96, + "probability": 0.9928 + }, + { + "start": 8734.96, + "end": 8737.68, + "probability": 0.9827 + }, + { + "start": 8737.72, + "end": 8738.46, + "probability": 0.8116 + }, + { + "start": 8738.82, + "end": 8739.64, + "probability": 0.4393 + }, + { + "start": 8739.72, + "end": 8740.3, + "probability": 0.9198 + }, + { + "start": 8740.74, + "end": 8744.08, + "probability": 0.8027 + }, + { + "start": 8744.9, + "end": 8746.04, + "probability": 0.9817 + }, + { + "start": 8747.16, + "end": 8749.46, + "probability": 0.6639 + }, + { + "start": 8749.66, + "end": 8750.46, + "probability": 0.8857 + }, + { + "start": 8751.3, + "end": 8752.84, + "probability": 0.9631 + }, + { + "start": 8753.98, + "end": 8755.52, + "probability": 0.9324 + }, + { + "start": 8756.36, + "end": 8757.24, + "probability": 0.8955 + }, + { + "start": 8757.76, + "end": 8759.68, + "probability": 0.9898 + }, + { + "start": 8760.14, + "end": 8763.66, + "probability": 0.9951 + }, + { + "start": 8763.78, + "end": 8765.94, + "probability": 0.9152 + }, + { + "start": 8766.42, + "end": 8767.32, + "probability": 0.9751 + }, + { + "start": 8767.48, + "end": 8768.76, + "probability": 0.9785 + }, + { + "start": 8769.4, + "end": 8770.12, + "probability": 0.6716 + }, + { + "start": 8771.02, + "end": 8772.14, + "probability": 0.9847 + }, + { + "start": 8772.76, + "end": 8775.22, + "probability": 0.9946 + }, + { + "start": 8777.0, + "end": 8777.48, + "probability": 0.9364 + }, + { + "start": 8778.88, + "end": 8782.38, + "probability": 0.9602 + }, + { + "start": 8782.96, + "end": 8785.52, + "probability": 0.9929 + }, + { + "start": 8786.48, + "end": 8787.58, + "probability": 0.9076 + }, + { + "start": 8788.16, + "end": 8790.13, + "probability": 0.9604 + }, + { + "start": 8790.7, + "end": 8792.62, + "probability": 0.8784 + }, + { + "start": 8793.88, + "end": 8794.3, + "probability": 0.5903 + }, + { + "start": 8795.0, + "end": 8797.82, + "probability": 0.9854 + }, + { + "start": 8797.9, + "end": 8800.44, + "probability": 0.9242 + }, + { + "start": 8800.56, + "end": 8802.64, + "probability": 0.9707 + }, + { + "start": 8802.92, + "end": 8803.3, + "probability": 0.909 + }, + { + "start": 8803.68, + "end": 8805.68, + "probability": 0.893 + }, + { + "start": 8806.06, + "end": 8806.74, + "probability": 0.9489 + }, + { + "start": 8806.88, + "end": 8807.7, + "probability": 0.9751 + }, + { + "start": 8809.06, + "end": 8812.36, + "probability": 0.9044 + }, + { + "start": 8812.52, + "end": 8813.12, + "probability": 0.9469 + }, + { + "start": 8814.56, + "end": 8817.72, + "probability": 0.9114 + }, + { + "start": 8818.84, + "end": 8821.32, + "probability": 0.9779 + }, + { + "start": 8822.36, + "end": 8823.3, + "probability": 0.836 + }, + { + "start": 8823.44, + "end": 8825.18, + "probability": 0.9021 + }, + { + "start": 8826.68, + "end": 8828.46, + "probability": 0.0583 + }, + { + "start": 8829.88, + "end": 8830.16, + "probability": 0.9956 + }, + { + "start": 8831.0, + "end": 8833.26, + "probability": 0.8713 + }, + { + "start": 8834.42, + "end": 8836.96, + "probability": 0.8609 + }, + { + "start": 8837.8, + "end": 8840.18, + "probability": 0.8124 + }, + { + "start": 8840.48, + "end": 8842.72, + "probability": 0.9926 + }, + { + "start": 8845.5, + "end": 8848.02, + "probability": 0.9968 + }, + { + "start": 8848.58, + "end": 8850.02, + "probability": 0.9985 + }, + { + "start": 8851.04, + "end": 8851.96, + "probability": 0.8947 + }, + { + "start": 8852.94, + "end": 8854.82, + "probability": 0.9651 + }, + { + "start": 8855.44, + "end": 8856.76, + "probability": 0.9795 + }, + { + "start": 8857.56, + "end": 8858.84, + "probability": 0.9888 + }, + { + "start": 8858.88, + "end": 8859.68, + "probability": 0.75 + }, + { + "start": 8860.12, + "end": 8868.08, + "probability": 0.8355 + }, + { + "start": 8868.62, + "end": 8871.38, + "probability": 0.9833 + }, + { + "start": 8871.56, + "end": 8872.24, + "probability": 0.8481 + }, + { + "start": 8873.34, + "end": 8875.16, + "probability": 0.999 + }, + { + "start": 8875.94, + "end": 8878.64, + "probability": 0.9507 + }, + { + "start": 8879.88, + "end": 8882.66, + "probability": 0.9873 + }, + { + "start": 8883.86, + "end": 8884.48, + "probability": 0.8187 + }, + { + "start": 8885.06, + "end": 8886.66, + "probability": 0.9977 + }, + { + "start": 8886.7, + "end": 8886.96, + "probability": 0.4363 + }, + { + "start": 8887.02, + "end": 8890.7, + "probability": 0.8739 + }, + { + "start": 8891.56, + "end": 8892.76, + "probability": 0.9639 + }, + { + "start": 8893.06, + "end": 8894.89, + "probability": 0.8018 + }, + { + "start": 8895.34, + "end": 8897.42, + "probability": 0.9868 + }, + { + "start": 8898.02, + "end": 8900.0, + "probability": 0.5075 + }, + { + "start": 8900.26, + "end": 8903.34, + "probability": 0.8901 + }, + { + "start": 8903.5, + "end": 8907.86, + "probability": 0.9769 + }, + { + "start": 8909.54, + "end": 8912.68, + "probability": 0.8437 + }, + { + "start": 8913.58, + "end": 8914.44, + "probability": 0.6109 + }, + { + "start": 8914.46, + "end": 8918.08, + "probability": 0.9418 + }, + { + "start": 8918.98, + "end": 8923.76, + "probability": 0.8964 + }, + { + "start": 8924.52, + "end": 8926.92, + "probability": 0.894 + }, + { + "start": 8928.86, + "end": 8930.62, + "probability": 0.9055 + }, + { + "start": 8931.14, + "end": 8936.14, + "probability": 0.9604 + }, + { + "start": 8936.72, + "end": 8940.82, + "probability": 0.8843 + }, + { + "start": 8940.9, + "end": 8942.22, + "probability": 0.9062 + }, + { + "start": 8943.2, + "end": 8945.14, + "probability": 0.9547 + }, + { + "start": 8945.92, + "end": 8949.1, + "probability": 0.9973 + }, + { + "start": 8950.0, + "end": 8953.2, + "probability": 0.9976 + }, + { + "start": 8953.98, + "end": 8955.64, + "probability": 0.8464 + }, + { + "start": 8956.34, + "end": 8961.44, + "probability": 0.9438 + }, + { + "start": 8962.4, + "end": 8970.62, + "probability": 0.9865 + }, + { + "start": 8971.4, + "end": 8972.0, + "probability": 0.6541 + }, + { + "start": 8973.34, + "end": 8973.8, + "probability": 0.4528 + }, + { + "start": 8973.86, + "end": 8974.42, + "probability": 0.6284 + }, + { + "start": 8974.42, + "end": 8977.04, + "probability": 0.6954 + }, + { + "start": 8978.14, + "end": 8979.64, + "probability": 0.5284 + }, + { + "start": 8980.94, + "end": 8983.1, + "probability": 0.9632 + }, + { + "start": 8983.16, + "end": 8985.16, + "probability": 0.9689 + }, + { + "start": 8985.52, + "end": 8986.19, + "probability": 0.8657 + }, + { + "start": 8991.5, + "end": 8991.5, + "probability": 0.1464 + }, + { + "start": 8991.5, + "end": 8991.5, + "probability": 0.2062 + }, + { + "start": 8991.5, + "end": 8991.78, + "probability": 0.6307 + }, + { + "start": 8991.94, + "end": 8993.76, + "probability": 0.5013 + }, + { + "start": 8993.84, + "end": 8995.02, + "probability": 0.4133 + }, + { + "start": 8995.08, + "end": 9000.74, + "probability": 0.9802 + }, + { + "start": 9001.58, + "end": 9004.16, + "probability": 0.9678 + }, + { + "start": 9004.24, + "end": 9005.94, + "probability": 0.9287 + }, + { + "start": 9007.0, + "end": 9007.04, + "probability": 0.0211 + }, + { + "start": 9007.04, + "end": 9007.76, + "probability": 0.8104 + }, + { + "start": 9007.9, + "end": 9010.07, + "probability": 0.9401 + }, + { + "start": 9010.46, + "end": 9012.68, + "probability": 0.8092 + }, + { + "start": 9013.18, + "end": 9016.9, + "probability": 0.9384 + }, + { + "start": 9017.44, + "end": 9018.58, + "probability": 0.8572 + }, + { + "start": 9018.6, + "end": 9019.48, + "probability": 0.6522 + }, + { + "start": 9020.12, + "end": 9023.42, + "probability": 0.9964 + }, + { + "start": 9023.98, + "end": 9026.0, + "probability": 0.9313 + }, + { + "start": 9026.7, + "end": 9027.46, + "probability": 0.983 + }, + { + "start": 9028.24, + "end": 9029.44, + "probability": 0.8118 + }, + { + "start": 9030.32, + "end": 9033.46, + "probability": 0.9774 + }, + { + "start": 9034.26, + "end": 9035.74, + "probability": 0.9866 + }, + { + "start": 9035.74, + "end": 9038.26, + "probability": 0.9924 + }, + { + "start": 9039.06, + "end": 9041.14, + "probability": 0.9954 + }, + { + "start": 9043.13, + "end": 9045.56, + "probability": 0.9932 + }, + { + "start": 9047.2, + "end": 9049.84, + "probability": 0.9388 + }, + { + "start": 9051.14, + "end": 9051.76, + "probability": 0.652 + }, + { + "start": 9052.42, + "end": 9053.78, + "probability": 0.909 + }, + { + "start": 9055.74, + "end": 9056.82, + "probability": 0.778 + }, + { + "start": 9057.6, + "end": 9060.8, + "probability": 0.9126 + }, + { + "start": 9061.08, + "end": 9061.64, + "probability": 0.8547 + }, + { + "start": 9061.72, + "end": 9063.06, + "probability": 0.9805 + }, + { + "start": 9063.5, + "end": 9064.26, + "probability": 0.9303 + }, + { + "start": 9064.42, + "end": 9066.3, + "probability": 0.8103 + }, + { + "start": 9067.18, + "end": 9070.08, + "probability": 0.9994 + }, + { + "start": 9070.92, + "end": 9072.2, + "probability": 0.979 + }, + { + "start": 9073.08, + "end": 9074.2, + "probability": 0.9977 + }, + { + "start": 9075.14, + "end": 9081.02, + "probability": 0.9964 + }, + { + "start": 9081.22, + "end": 9081.96, + "probability": 0.5804 + }, + { + "start": 9082.98, + "end": 9086.76, + "probability": 0.9729 + }, + { + "start": 9088.08, + "end": 9089.8, + "probability": 0.9838 + }, + { + "start": 9090.06, + "end": 9090.58, + "probability": 0.0283 + }, + { + "start": 9090.64, + "end": 9091.92, + "probability": 0.8415 + }, + { + "start": 9092.62, + "end": 9094.06, + "probability": 0.956 + }, + { + "start": 9094.18, + "end": 9099.1, + "probability": 0.9696 + }, + { + "start": 9099.84, + "end": 9102.22, + "probability": 0.998 + }, + { + "start": 9102.96, + "end": 9104.87, + "probability": 0.9956 + }, + { + "start": 9105.52, + "end": 9108.56, + "probability": 0.9076 + }, + { + "start": 9109.54, + "end": 9113.5, + "probability": 0.7041 + }, + { + "start": 9115.1, + "end": 9116.64, + "probability": 0.7598 + }, + { + "start": 9117.9, + "end": 9119.42, + "probability": 0.9976 + }, + { + "start": 9119.58, + "end": 9119.98, + "probability": 0.9258 + }, + { + "start": 9120.06, + "end": 9121.76, + "probability": 0.9619 + }, + { + "start": 9122.22, + "end": 9123.79, + "probability": 0.9967 + }, + { + "start": 9125.42, + "end": 9126.98, + "probability": 0.6911 + }, + { + "start": 9127.06, + "end": 9128.02, + "probability": 0.8787 + }, + { + "start": 9128.66, + "end": 9132.06, + "probability": 0.7347 + }, + { + "start": 9132.4, + "end": 9133.12, + "probability": 0.9112 + }, + { + "start": 9134.51, + "end": 9139.58, + "probability": 0.9657 + }, + { + "start": 9140.74, + "end": 9144.62, + "probability": 0.9717 + }, + { + "start": 9146.0, + "end": 9147.7, + "probability": 0.9378 + }, + { + "start": 9148.34, + "end": 9151.3, + "probability": 0.9858 + }, + { + "start": 9151.84, + "end": 9154.16, + "probability": 0.6222 + }, + { + "start": 9155.22, + "end": 9161.18, + "probability": 0.9668 + }, + { + "start": 9161.22, + "end": 9161.98, + "probability": 0.869 + }, + { + "start": 9162.2, + "end": 9162.28, + "probability": 0.1473 + }, + { + "start": 9162.28, + "end": 9162.28, + "probability": 0.0131 + }, + { + "start": 9162.28, + "end": 9164.12, + "probability": 0.9945 + }, + { + "start": 9164.64, + "end": 9168.82, + "probability": 0.7904 + }, + { + "start": 9169.48, + "end": 9171.04, + "probability": 0.8191 + }, + { + "start": 9171.16, + "end": 9171.26, + "probability": 0.5418 + }, + { + "start": 9171.36, + "end": 9172.64, + "probability": 0.9961 + }, + { + "start": 9172.76, + "end": 9176.78, + "probability": 0.9425 + }, + { + "start": 9176.8, + "end": 9176.8, + "probability": 0.0032 + }, + { + "start": 9177.48, + "end": 9178.26, + "probability": 0.1277 + }, + { + "start": 9178.42, + "end": 9178.56, + "probability": 0.2878 + }, + { + "start": 9178.74, + "end": 9180.24, + "probability": 0.4962 + }, + { + "start": 9180.64, + "end": 9181.98, + "probability": 0.7097 + }, + { + "start": 9181.98, + "end": 9182.35, + "probability": 0.1765 + }, + { + "start": 9183.26, + "end": 9184.62, + "probability": 0.5801 + }, + { + "start": 9184.88, + "end": 9184.88, + "probability": 0.1797 + }, + { + "start": 9185.26, + "end": 9186.84, + "probability": 0.4868 + }, + { + "start": 9187.06, + "end": 9188.34, + "probability": 0.9122 + }, + { + "start": 9188.48, + "end": 9190.66, + "probability": 0.9697 + }, + { + "start": 9191.12, + "end": 9196.38, + "probability": 0.9731 + }, + { + "start": 9196.76, + "end": 9197.7, + "probability": 0.9231 + }, + { + "start": 9197.7, + "end": 9198.3, + "probability": 0.8257 + }, + { + "start": 9198.92, + "end": 9202.78, + "probability": 0.4741 + }, + { + "start": 9202.78, + "end": 9203.24, + "probability": 0.0326 + }, + { + "start": 9204.26, + "end": 9206.34, + "probability": 0.9964 + }, + { + "start": 9206.98, + "end": 9207.88, + "probability": 0.8778 + }, + { + "start": 9208.72, + "end": 9209.42, + "probability": 0.8167 + }, + { + "start": 9210.18, + "end": 9211.92, + "probability": 0.9598 + }, + { + "start": 9212.68, + "end": 9213.44, + "probability": 0.9606 + }, + { + "start": 9214.36, + "end": 9215.16, + "probability": 0.4842 + }, + { + "start": 9215.4, + "end": 9217.68, + "probability": 0.9792 + }, + { + "start": 9218.42, + "end": 9222.32, + "probability": 0.9182 + }, + { + "start": 9223.0, + "end": 9225.62, + "probability": 0.846 + }, + { + "start": 9226.3, + "end": 9226.78, + "probability": 0.4912 + }, + { + "start": 9226.88, + "end": 9229.78, + "probability": 0.7806 + }, + { + "start": 9230.96, + "end": 9235.06, + "probability": 0.8428 + }, + { + "start": 9235.14, + "end": 9235.87, + "probability": 0.7593 + }, + { + "start": 9236.52, + "end": 9239.98, + "probability": 0.8855 + }, + { + "start": 9240.76, + "end": 9244.18, + "probability": 0.9736 + }, + { + "start": 9244.26, + "end": 9244.82, + "probability": 0.7032 + }, + { + "start": 9244.9, + "end": 9246.84, + "probability": 0.8477 + }, + { + "start": 9247.22, + "end": 9249.0, + "probability": 0.9896 + }, + { + "start": 9249.88, + "end": 9252.34, + "probability": 0.9097 + }, + { + "start": 9252.4, + "end": 9253.78, + "probability": 0.8116 + }, + { + "start": 9256.42, + "end": 9259.96, + "probability": 0.965 + }, + { + "start": 9261.02, + "end": 9267.58, + "probability": 0.9871 + }, + { + "start": 9267.94, + "end": 9270.42, + "probability": 0.8767 + }, + { + "start": 9271.62, + "end": 9274.08, + "probability": 0.9976 + }, + { + "start": 9274.9, + "end": 9275.34, + "probability": 0.6145 + }, + { + "start": 9275.36, + "end": 9276.34, + "probability": 0.3268 + }, + { + "start": 9276.42, + "end": 9278.44, + "probability": 0.8765 + }, + { + "start": 9278.82, + "end": 9282.66, + "probability": 0.8701 + }, + { + "start": 9283.08, + "end": 9284.7, + "probability": 0.9296 + }, + { + "start": 9285.02, + "end": 9285.92, + "probability": 0.3094 + }, + { + "start": 9286.04, + "end": 9286.98, + "probability": 0.7011 + }, + { + "start": 9287.36, + "end": 9289.06, + "probability": 0.7877 + }, + { + "start": 9289.54, + "end": 9290.24, + "probability": 0.8589 + }, + { + "start": 9291.28, + "end": 9292.46, + "probability": 0.5391 + }, + { + "start": 9292.48, + "end": 9293.0, + "probability": 0.878 + }, + { + "start": 9293.28, + "end": 9295.9, + "probability": 0.8743 + }, + { + "start": 9295.98, + "end": 9299.18, + "probability": 0.8801 + }, + { + "start": 9299.8, + "end": 9301.42, + "probability": 0.8759 + }, + { + "start": 9303.26, + "end": 9305.01, + "probability": 0.9338 + }, + { + "start": 9305.52, + "end": 9306.56, + "probability": 0.8932 + }, + { + "start": 9307.02, + "end": 9307.92, + "probability": 0.6858 + }, + { + "start": 9308.0, + "end": 9309.84, + "probability": 0.9844 + }, + { + "start": 9309.88, + "end": 9310.04, + "probability": 0.9252 + }, + { + "start": 9310.12, + "end": 9310.61, + "probability": 0.9609 + }, + { + "start": 9311.06, + "end": 9313.28, + "probability": 0.7593 + }, + { + "start": 9314.14, + "end": 9315.39, + "probability": 0.9466 + }, + { + "start": 9316.06, + "end": 9318.86, + "probability": 0.9677 + }, + { + "start": 9318.94, + "end": 9319.96, + "probability": 0.8132 + }, + { + "start": 9325.24, + "end": 9326.46, + "probability": 0.9084 + }, + { + "start": 9326.78, + "end": 9327.0, + "probability": 0.9678 + }, + { + "start": 9327.12, + "end": 9329.14, + "probability": 0.979 + }, + { + "start": 9329.22, + "end": 9331.74, + "probability": 0.9943 + }, + { + "start": 9331.82, + "end": 9332.31, + "probability": 0.9927 + }, + { + "start": 9333.16, + "end": 9337.06, + "probability": 0.9978 + }, + { + "start": 9337.84, + "end": 9340.36, + "probability": 0.9795 + }, + { + "start": 9341.24, + "end": 9342.58, + "probability": 0.9902 + }, + { + "start": 9342.7, + "end": 9344.92, + "probability": 0.8691 + }, + { + "start": 9345.36, + "end": 9347.52, + "probability": 0.9539 + }, + { + "start": 9347.92, + "end": 9349.6, + "probability": 0.9922 + }, + { + "start": 9350.5, + "end": 9354.66, + "probability": 0.9957 + }, + { + "start": 9355.3, + "end": 9356.38, + "probability": 0.9942 + }, + { + "start": 9357.08, + "end": 9358.92, + "probability": 0.9798 + }, + { + "start": 9359.74, + "end": 9360.48, + "probability": 0.8254 + }, + { + "start": 9361.2, + "end": 9363.54, + "probability": 0.8718 + }, + { + "start": 9364.58, + "end": 9365.06, + "probability": 0.7328 + }, + { + "start": 9366.32, + "end": 9367.72, + "probability": 0.8876 + }, + { + "start": 9368.68, + "end": 9369.82, + "probability": 0.7378 + }, + { + "start": 9370.24, + "end": 9376.36, + "probability": 0.9877 + }, + { + "start": 9376.58, + "end": 9378.6, + "probability": 0.5166 + }, + { + "start": 9378.72, + "end": 9382.14, + "probability": 0.9839 + }, + { + "start": 9382.3, + "end": 9385.66, + "probability": 0.8835 + }, + { + "start": 9386.92, + "end": 9387.87, + "probability": 0.9554 + }, + { + "start": 9389.62, + "end": 9391.23, + "probability": 0.9941 + }, + { + "start": 9392.08, + "end": 9397.46, + "probability": 0.9786 + }, + { + "start": 9398.34, + "end": 9398.86, + "probability": 0.8683 + }, + { + "start": 9399.32, + "end": 9401.16, + "probability": 0.8442 + }, + { + "start": 9401.82, + "end": 9402.54, + "probability": 0.9544 + }, + { + "start": 9403.74, + "end": 9405.76, + "probability": 0.988 + }, + { + "start": 9406.94, + "end": 9408.7, + "probability": 0.9933 + }, + { + "start": 9410.94, + "end": 9412.76, + "probability": 0.9846 + }, + { + "start": 9413.9, + "end": 9417.06, + "probability": 0.9875 + }, + { + "start": 9417.2, + "end": 9418.22, + "probability": 0.7904 + }, + { + "start": 9419.74, + "end": 9423.24, + "probability": 0.9306 + }, + { + "start": 9424.06, + "end": 9427.46, + "probability": 0.9944 + }, + { + "start": 9428.7, + "end": 9430.72, + "probability": 0.9817 + }, + { + "start": 9430.86, + "end": 9432.52, + "probability": 0.9937 + }, + { + "start": 9432.58, + "end": 9433.02, + "probability": 0.3694 + }, + { + "start": 9433.16, + "end": 9433.4, + "probability": 0.4805 + }, + { + "start": 9433.5, + "end": 9434.64, + "probability": 0.6398 + }, + { + "start": 9434.7, + "end": 9435.32, + "probability": 0.8875 + }, + { + "start": 9436.06, + "end": 9437.14, + "probability": 0.9771 + }, + { + "start": 9439.66, + "end": 9441.1, + "probability": 0.9543 + }, + { + "start": 9441.94, + "end": 9443.02, + "probability": 0.9823 + }, + { + "start": 9443.98, + "end": 9446.9, + "probability": 0.9929 + }, + { + "start": 9447.92, + "end": 9449.86, + "probability": 0.9988 + }, + { + "start": 9451.36, + "end": 9454.24, + "probability": 0.9949 + }, + { + "start": 9455.6, + "end": 9456.46, + "probability": 0.4351 + }, + { + "start": 9457.08, + "end": 9459.44, + "probability": 0.9701 + }, + { + "start": 9459.5, + "end": 9461.54, + "probability": 0.8563 + }, + { + "start": 9463.2, + "end": 9464.04, + "probability": 0.8735 + }, + { + "start": 9465.72, + "end": 9467.06, + "probability": 0.9938 + }, + { + "start": 9469.18, + "end": 9470.1, + "probability": 0.9938 + }, + { + "start": 9471.52, + "end": 9473.6, + "probability": 0.8282 + }, + { + "start": 9474.9, + "end": 9476.04, + "probability": 0.8227 + }, + { + "start": 9476.86, + "end": 9477.78, + "probability": 0.79 + }, + { + "start": 9478.76, + "end": 9482.96, + "probability": 0.9698 + }, + { + "start": 9483.12, + "end": 9484.42, + "probability": 0.9888 + }, + { + "start": 9486.48, + "end": 9488.16, + "probability": 0.931 + }, + { + "start": 9488.5, + "end": 9490.52, + "probability": 0.9722 + }, + { + "start": 9491.9, + "end": 9494.1, + "probability": 0.9736 + }, + { + "start": 9494.96, + "end": 9498.62, + "probability": 0.9175 + }, + { + "start": 9498.7, + "end": 9499.54, + "probability": 0.9316 + }, + { + "start": 9501.36, + "end": 9503.12, + "probability": 0.9727 + }, + { + "start": 9503.86, + "end": 9504.86, + "probability": 0.9629 + }, + { + "start": 9505.56, + "end": 9507.94, + "probability": 0.4995 + }, + { + "start": 9508.04, + "end": 9509.88, + "probability": 0.9624 + }, + { + "start": 9509.96, + "end": 9512.0, + "probability": 0.9359 + }, + { + "start": 9512.16, + "end": 9515.14, + "probability": 0.8704 + }, + { + "start": 9515.68, + "end": 9518.04, + "probability": 0.9427 + }, + { + "start": 9519.0, + "end": 9523.52, + "probability": 0.7442 + }, + { + "start": 9524.36, + "end": 9526.2, + "probability": 0.9644 + }, + { + "start": 9526.22, + "end": 9530.84, + "probability": 0.9902 + }, + { + "start": 9530.94, + "end": 9531.54, + "probability": 0.7265 + }, + { + "start": 9531.68, + "end": 9532.1, + "probability": 0.5101 + }, + { + "start": 9532.2, + "end": 9533.86, + "probability": 0.8751 + }, + { + "start": 9535.16, + "end": 9536.7, + "probability": 0.967 + }, + { + "start": 9537.22, + "end": 9537.62, + "probability": 0.2425 + }, + { + "start": 9538.18, + "end": 9544.38, + "probability": 0.9746 + }, + { + "start": 9544.38, + "end": 9547.16, + "probability": 0.1415 + }, + { + "start": 9547.28, + "end": 9547.88, + "probability": 0.6725 + }, + { + "start": 9549.87, + "end": 9552.16, + "probability": 0.9402 + }, + { + "start": 9552.88, + "end": 9554.02, + "probability": 0.8551 + }, + { + "start": 9555.66, + "end": 9559.7, + "probability": 0.9822 + }, + { + "start": 9560.52, + "end": 9561.02, + "probability": 0.9226 + }, + { + "start": 9561.86, + "end": 9562.99, + "probability": 0.7593 + }, + { + "start": 9563.88, + "end": 9565.58, + "probability": 0.9941 + }, + { + "start": 9566.44, + "end": 9569.48, + "probability": 0.9282 + }, + { + "start": 9570.28, + "end": 9572.92, + "probability": 0.9713 + }, + { + "start": 9573.86, + "end": 9575.68, + "probability": 0.9089 + }, + { + "start": 9575.98, + "end": 9576.74, + "probability": 0.8926 + }, + { + "start": 9577.86, + "end": 9578.32, + "probability": 0.979 + }, + { + "start": 9579.1, + "end": 9579.84, + "probability": 0.5462 + }, + { + "start": 9580.68, + "end": 9582.5, + "probability": 0.8615 + }, + { + "start": 9582.64, + "end": 9583.64, + "probability": 0.9858 + }, + { + "start": 9583.74, + "end": 9585.74, + "probability": 0.9909 + }, + { + "start": 9586.6, + "end": 9588.66, + "probability": 0.9895 + }, + { + "start": 9588.82, + "end": 9589.56, + "probability": 0.873 + }, + { + "start": 9589.68, + "end": 9590.8, + "probability": 0.8396 + }, + { + "start": 9591.7, + "end": 9593.0, + "probability": 0.9243 + }, + { + "start": 9593.7, + "end": 9597.02, + "probability": 0.9972 + }, + { + "start": 9597.32, + "end": 9597.9, + "probability": 0.7524 + }, + { + "start": 9599.08, + "end": 9599.6, + "probability": 0.886 + }, + { + "start": 9600.02, + "end": 9600.64, + "probability": 0.9207 + }, + { + "start": 9600.68, + "end": 9603.28, + "probability": 0.9949 + }, + { + "start": 9604.36, + "end": 9605.13, + "probability": 0.6655 + }, + { + "start": 9606.02, + "end": 9607.18, + "probability": 0.7428 + }, + { + "start": 9607.24, + "end": 9609.32, + "probability": 0.7354 + }, + { + "start": 9609.38, + "end": 9610.76, + "probability": 0.7113 + }, + { + "start": 9611.18, + "end": 9611.54, + "probability": 0.5958 + }, + { + "start": 9612.42, + "end": 9615.28, + "probability": 0.9719 + }, + { + "start": 9615.82, + "end": 9619.78, + "probability": 0.9933 + }, + { + "start": 9620.7, + "end": 9622.18, + "probability": 0.9694 + }, + { + "start": 9622.5, + "end": 9623.44, + "probability": 0.9368 + }, + { + "start": 9624.28, + "end": 9626.88, + "probability": 0.9822 + }, + { + "start": 9626.94, + "end": 9627.14, + "probability": 0.4525 + }, + { + "start": 9627.28, + "end": 9627.52, + "probability": 0.6758 + }, + { + "start": 9627.64, + "end": 9628.24, + "probability": 0.9968 + }, + { + "start": 9628.9, + "end": 9632.62, + "probability": 0.9516 + }, + { + "start": 9632.74, + "end": 9632.74, + "probability": 0.6378 + }, + { + "start": 9632.74, + "end": 9633.68, + "probability": 0.672 + }, + { + "start": 9635.2, + "end": 9637.82, + "probability": 0.9907 + }, + { + "start": 9638.02, + "end": 9638.84, + "probability": 0.9905 + }, + { + "start": 9638.98, + "end": 9641.82, + "probability": 0.6766 + }, + { + "start": 9642.96, + "end": 9646.1, + "probability": 0.9434 + }, + { + "start": 9646.8, + "end": 9646.8, + "probability": 0.2376 + }, + { + "start": 9646.8, + "end": 9648.34, + "probability": 0.9519 + }, + { + "start": 9648.52, + "end": 9651.26, + "probability": 0.9679 + }, + { + "start": 9651.96, + "end": 9652.28, + "probability": 0.1036 + }, + { + "start": 9652.28, + "end": 9653.22, + "probability": 0.9004 + }, + { + "start": 9653.36, + "end": 9654.36, + "probability": 0.9893 + }, + { + "start": 9654.5, + "end": 9655.08, + "probability": 0.7672 + }, + { + "start": 9655.1, + "end": 9655.5, + "probability": 0.0277 + }, + { + "start": 9655.9, + "end": 9656.34, + "probability": 0.9375 + }, + { + "start": 9657.82, + "end": 9658.02, + "probability": 0.1335 + }, + { + "start": 9658.02, + "end": 9659.98, + "probability": 0.884 + }, + { + "start": 9661.54, + "end": 9663.15, + "probability": 0.9868 + }, + { + "start": 9664.4, + "end": 9665.66, + "probability": 0.9945 + }, + { + "start": 9666.92, + "end": 9669.76, + "probability": 0.8234 + }, + { + "start": 9671.14, + "end": 9673.02, + "probability": 0.4475 + }, + { + "start": 9673.56, + "end": 9674.1, + "probability": 0.1023 + }, + { + "start": 9675.03, + "end": 9675.12, + "probability": 0.2225 + }, + { + "start": 9675.5, + "end": 9675.66, + "probability": 0.4688 + }, + { + "start": 9675.66, + "end": 9676.68, + "probability": 0.5022 + }, + { + "start": 9677.4, + "end": 9677.4, + "probability": 0.4086 + }, + { + "start": 9678.04, + "end": 9678.04, + "probability": 0.0708 + }, + { + "start": 9678.04, + "end": 9678.04, + "probability": 0.4882 + }, + { + "start": 9678.04, + "end": 9679.76, + "probability": 0.8994 + }, + { + "start": 9680.7, + "end": 9682.1, + "probability": 0.934 + }, + { + "start": 9683.3, + "end": 9685.14, + "probability": 0.5854 + }, + { + "start": 9685.34, + "end": 9685.52, + "probability": 0.2724 + }, + { + "start": 9686.14, + "end": 9689.46, + "probability": 0.9336 + }, + { + "start": 9690.48, + "end": 9692.96, + "probability": 0.686 + }, + { + "start": 9693.0, + "end": 9693.6, + "probability": 0.2219 + }, + { + "start": 9694.3, + "end": 9695.34, + "probability": 0.7994 + }, + { + "start": 9696.78, + "end": 9699.88, + "probability": 0.9775 + }, + { + "start": 9701.32, + "end": 9704.12, + "probability": 0.9487 + }, + { + "start": 9705.42, + "end": 9706.92, + "probability": 0.5661 + }, + { + "start": 9708.34, + "end": 9711.06, + "probability": 0.8704 + }, + { + "start": 9711.46, + "end": 9714.7, + "probability": 0.7559 + }, + { + "start": 9714.88, + "end": 9715.42, + "probability": 0.4837 + }, + { + "start": 9715.42, + "end": 9716.46, + "probability": 0.8984 + }, + { + "start": 9716.46, + "end": 9716.84, + "probability": 0.6684 + }, + { + "start": 9716.84, + "end": 9721.26, + "probability": 0.8999 + }, + { + "start": 9721.42, + "end": 9722.64, + "probability": 0.3145 + }, + { + "start": 9723.18, + "end": 9728.37, + "probability": 0.1984 + }, + { + "start": 9728.96, + "end": 9730.3, + "probability": 0.6152 + }, + { + "start": 9730.3, + "end": 9734.54, + "probability": 0.7488 + }, + { + "start": 9735.14, + "end": 9735.94, + "probability": 0.7796 + }, + { + "start": 9736.08, + "end": 9738.98, + "probability": 0.8824 + }, + { + "start": 9739.52, + "end": 9741.08, + "probability": 0.752 + }, + { + "start": 9741.76, + "end": 9742.52, + "probability": 0.8884 + }, + { + "start": 9743.2, + "end": 9745.48, + "probability": 0.9266 + }, + { + "start": 9746.0, + "end": 9747.72, + "probability": 0.8226 + }, + { + "start": 9748.48, + "end": 9749.84, + "probability": 0.8507 + }, + { + "start": 9750.32, + "end": 9752.2, + "probability": 0.8962 + }, + { + "start": 9752.64, + "end": 9755.16, + "probability": 0.9297 + }, + { + "start": 9755.24, + "end": 9756.88, + "probability": 0.7794 + }, + { + "start": 9757.48, + "end": 9759.28, + "probability": 0.6395 + }, + { + "start": 9759.48, + "end": 9760.9, + "probability": 0.7676 + }, + { + "start": 9760.98, + "end": 9762.68, + "probability": 0.8591 + }, + { + "start": 9763.18, + "end": 9763.72, + "probability": 0.7978 + }, + { + "start": 9763.9, + "end": 9764.38, + "probability": 0.7638 + }, + { + "start": 9764.44, + "end": 9767.06, + "probability": 0.9642 + }, + { + "start": 9767.54, + "end": 9768.3, + "probability": 0.6031 + }, + { + "start": 9768.3, + "end": 9768.58, + "probability": 0.7212 + }, + { + "start": 9768.68, + "end": 9772.5, + "probability": 0.9771 + }, + { + "start": 9772.52, + "end": 9773.12, + "probability": 0.2656 + }, + { + "start": 9773.86, + "end": 9773.96, + "probability": 0.4425 + }, + { + "start": 9774.0, + "end": 9774.52, + "probability": 0.9722 + }, + { + "start": 9774.72, + "end": 9776.14, + "probability": 0.7809 + }, + { + "start": 9776.47, + "end": 9780.04, + "probability": 0.9885 + }, + { + "start": 9780.2, + "end": 9781.9, + "probability": 0.9626 + }, + { + "start": 9782.52, + "end": 9784.16, + "probability": 0.7992 + }, + { + "start": 9785.16, + "end": 9790.64, + "probability": 0.9849 + }, + { + "start": 9790.64, + "end": 9794.62, + "probability": 0.9742 + }, + { + "start": 9795.22, + "end": 9798.44, + "probability": 0.9951 + }, + { + "start": 9799.1, + "end": 9801.26, + "probability": 0.9563 + }, + { + "start": 9802.26, + "end": 9804.14, + "probability": 0.9639 + }, + { + "start": 9804.56, + "end": 9805.54, + "probability": 0.1987 + }, + { + "start": 9806.0, + "end": 9809.08, + "probability": 0.993 + }, + { + "start": 9809.08, + "end": 9811.1, + "probability": 0.9124 + }, + { + "start": 9811.32, + "end": 9813.5, + "probability": 0.9523 + }, + { + "start": 9814.28, + "end": 9815.42, + "probability": 0.4655 + }, + { + "start": 9815.52, + "end": 9816.08, + "probability": 0.8053 + }, + { + "start": 9818.43, + "end": 9821.53, + "probability": 0.9701 + }, + { + "start": 9822.68, + "end": 9823.54, + "probability": 0.9912 + }, + { + "start": 9824.42, + "end": 9827.08, + "probability": 0.812 + }, + { + "start": 9827.6, + "end": 9828.4, + "probability": 0.9626 + }, + { + "start": 9828.56, + "end": 9830.2, + "probability": 0.9855 + }, + { + "start": 9830.48, + "end": 9830.58, + "probability": 0.6244 + }, + { + "start": 9830.62, + "end": 9835.6, + "probability": 0.9525 + }, + { + "start": 9836.08, + "end": 9839.94, + "probability": 0.8384 + }, + { + "start": 9840.48, + "end": 9840.68, + "probability": 0.9727 + }, + { + "start": 9840.98, + "end": 9844.94, + "probability": 0.992 + }, + { + "start": 9845.76, + "end": 9846.02, + "probability": 0.9141 + }, + { + "start": 9846.98, + "end": 9850.14, + "probability": 0.867 + }, + { + "start": 9850.94, + "end": 9852.6, + "probability": 0.6396 + }, + { + "start": 9853.22, + "end": 9854.88, + "probability": 0.9628 + }, + { + "start": 9855.38, + "end": 9858.24, + "probability": 0.9924 + }, + { + "start": 9858.76, + "end": 9859.32, + "probability": 0.826 + }, + { + "start": 9859.9, + "end": 9862.26, + "probability": 0.9949 + }, + { + "start": 9862.96, + "end": 9867.92, + "probability": 0.9946 + }, + { + "start": 9867.96, + "end": 9873.6, + "probability": 0.7627 + }, + { + "start": 9874.66, + "end": 9876.02, + "probability": 0.9155 + }, + { + "start": 9877.43, + "end": 9878.02, + "probability": 0.876 + }, + { + "start": 9879.28, + "end": 9880.08, + "probability": 0.9883 + }, + { + "start": 9880.9, + "end": 9883.23, + "probability": 0.9221 + }, + { + "start": 9885.06, + "end": 9887.3, + "probability": 0.9169 + }, + { + "start": 9887.68, + "end": 9888.52, + "probability": 0.3569 + }, + { + "start": 9888.64, + "end": 9890.86, + "probability": 0.1887 + }, + { + "start": 9891.26, + "end": 9893.38, + "probability": 0.9839 + }, + { + "start": 9893.54, + "end": 9894.4, + "probability": 0.1514 + }, + { + "start": 9894.72, + "end": 9899.36, + "probability": 0.9964 + }, + { + "start": 9899.7, + "end": 9899.96, + "probability": 0.0358 + }, + { + "start": 9899.96, + "end": 9899.96, + "probability": 0.8448 + }, + { + "start": 9900.22, + "end": 9903.58, + "probability": 0.9816 + }, + { + "start": 9904.04, + "end": 9905.06, + "probability": 0.8072 + }, + { + "start": 9905.68, + "end": 9906.48, + "probability": 0.4408 + }, + { + "start": 9907.66, + "end": 9908.42, + "probability": 0.6563 + }, + { + "start": 9908.94, + "end": 9911.96, + "probability": 0.8021 + }, + { + "start": 9912.84, + "end": 9913.78, + "probability": 0.9558 + }, + { + "start": 9914.46, + "end": 9915.44, + "probability": 0.8898 + }, + { + "start": 9915.86, + "end": 9917.76, + "probability": 0.9873 + }, + { + "start": 9918.16, + "end": 9918.8, + "probability": 0.6306 + }, + { + "start": 9918.92, + "end": 9919.78, + "probability": 0.944 + }, + { + "start": 9919.78, + "end": 9920.5, + "probability": 0.7315 + }, + { + "start": 9921.16, + "end": 9924.98, + "probability": 0.9338 + }, + { + "start": 9925.72, + "end": 9927.4, + "probability": 0.9829 + }, + { + "start": 9927.54, + "end": 9928.7, + "probability": 0.9886 + }, + { + "start": 9928.98, + "end": 9930.92, + "probability": 0.9936 + }, + { + "start": 9931.54, + "end": 9931.98, + "probability": 0.9292 + }, + { + "start": 9932.18, + "end": 9934.88, + "probability": 0.8173 + }, + { + "start": 9935.12, + "end": 9936.56, + "probability": 0.8221 + }, + { + "start": 9936.94, + "end": 9938.68, + "probability": 0.4949 + }, + { + "start": 9939.24, + "end": 9941.08, + "probability": 0.9603 + }, + { + "start": 9941.58, + "end": 9943.72, + "probability": 0.9585 + }, + { + "start": 9944.22, + "end": 9945.08, + "probability": 0.6213 + }, + { + "start": 9945.26, + "end": 9945.98, + "probability": 0.8327 + }, + { + "start": 9946.46, + "end": 9947.54, + "probability": 0.8492 + }, + { + "start": 9947.86, + "end": 9949.59, + "probability": 0.9941 + }, + { + "start": 9949.8, + "end": 9950.56, + "probability": 0.4807 + }, + { + "start": 9951.3, + "end": 9954.5, + "probability": 0.7576 + }, + { + "start": 9954.62, + "end": 9956.44, + "probability": 0.8304 + }, + { + "start": 9956.86, + "end": 9957.64, + "probability": 0.8164 + }, + { + "start": 9957.84, + "end": 9958.12, + "probability": 0.6666 + }, + { + "start": 9958.76, + "end": 9959.98, + "probability": 0.9381 + }, + { + "start": 9960.1, + "end": 9960.54, + "probability": 0.7225 + }, + { + "start": 9960.86, + "end": 9964.6, + "probability": 0.9727 + }, + { + "start": 9964.64, + "end": 9965.78, + "probability": 0.7928 + }, + { + "start": 9966.2, + "end": 9966.68, + "probability": 0.7226 + }, + { + "start": 9967.48, + "end": 9969.28, + "probability": 0.9663 + }, + { + "start": 9969.82, + "end": 9971.34, + "probability": 0.8669 + }, + { + "start": 9972.34, + "end": 9973.88, + "probability": 0.9168 + }, + { + "start": 9974.4, + "end": 9975.56, + "probability": 0.6284 + }, + { + "start": 9976.16, + "end": 9977.6, + "probability": 0.9113 + }, + { + "start": 9978.24, + "end": 9979.56, + "probability": 0.8932 + }, + { + "start": 9980.68, + "end": 9982.42, + "probability": 0.9518 + }, + { + "start": 9983.06, + "end": 9986.04, + "probability": 0.9926 + }, + { + "start": 9986.2, + "end": 9986.58, + "probability": 0.6854 + }, + { + "start": 9986.96, + "end": 9988.5, + "probability": 0.8066 + }, + { + "start": 9989.32, + "end": 9991.4, + "probability": 0.7929 + }, + { + "start": 9992.12, + "end": 9992.87, + "probability": 0.4853 + }, + { + "start": 9993.1, + "end": 9993.74, + "probability": 0.8083 + }, + { + "start": 9994.78, + "end": 9995.12, + "probability": 0.3758 + }, + { + "start": 9996.08, + "end": 9997.54, + "probability": 0.8218 + }, + { + "start": 9998.36, + "end": 10005.5, + "probability": 0.9792 + }, + { + "start": 10006.58, + "end": 10009.42, + "probability": 0.98 + }, + { + "start": 10009.42, + "end": 10009.88, + "probability": 0.8173 + }, + { + "start": 10010.34, + "end": 10014.0, + "probability": 0.9969 + }, + { + "start": 10014.08, + "end": 10015.1, + "probability": 0.8793 + }, + { + "start": 10015.56, + "end": 10016.06, + "probability": 0.5684 + }, + { + "start": 10016.82, + "end": 10017.94, + "probability": 0.8871 + }, + { + "start": 10018.62, + "end": 10019.3, + "probability": 0.8494 + }, + { + "start": 10019.38, + "end": 10019.74, + "probability": 0.4615 + }, + { + "start": 10020.24, + "end": 10024.22, + "probability": 0.9863 + }, + { + "start": 10024.32, + "end": 10027.6, + "probability": 0.7084 + }, + { + "start": 10028.06, + "end": 10030.1, + "probability": 0.3415 + }, + { + "start": 10030.2, + "end": 10032.88, + "probability": 0.7791 + }, + { + "start": 10033.38, + "end": 10036.5, + "probability": 0.9409 + }, + { + "start": 10037.24, + "end": 10037.38, + "probability": 0.8795 + }, + { + "start": 10038.08, + "end": 10040.68, + "probability": 0.5172 + }, + { + "start": 10041.46, + "end": 10045.38, + "probability": 0.5001 + }, + { + "start": 10045.56, + "end": 10046.38, + "probability": 0.7247 + }, + { + "start": 10047.02, + "end": 10047.42, + "probability": 0.347 + }, + { + "start": 10048.34, + "end": 10052.48, + "probability": 0.8248 + }, + { + "start": 10053.14, + "end": 10060.44, + "probability": 0.5244 + }, + { + "start": 10060.62, + "end": 10062.58, + "probability": 0.1779 + }, + { + "start": 10063.2, + "end": 10063.38, + "probability": 0.028 + }, + { + "start": 10063.66, + "end": 10066.85, + "probability": 0.8723 + }, + { + "start": 10067.5, + "end": 10070.48, + "probability": 0.6784 + }, + { + "start": 10070.96, + "end": 10071.52, + "probability": 0.7977 + }, + { + "start": 10072.52, + "end": 10072.9, + "probability": 0.8174 + }, + { + "start": 10073.44, + "end": 10077.5, + "probability": 0.7802 + }, + { + "start": 10078.38, + "end": 10081.86, + "probability": 0.7017 + }, + { + "start": 10082.42, + "end": 10083.68, + "probability": 0.7993 + }, + { + "start": 10084.24, + "end": 10086.54, + "probability": 0.6473 + }, + { + "start": 10087.06, + "end": 10088.32, + "probability": 0.9471 + }, + { + "start": 10088.54, + "end": 10090.44, + "probability": 0.5439 + }, + { + "start": 10090.48, + "end": 10090.72, + "probability": 0.907 + }, + { + "start": 10091.44, + "end": 10092.52, + "probability": 0.6267 + }, + { + "start": 10093.28, + "end": 10094.1, + "probability": 0.7122 + }, + { + "start": 10095.06, + "end": 10098.28, + "probability": 0.7715 + }, + { + "start": 10098.38, + "end": 10101.26, + "probability": 0.6714 + }, + { + "start": 10101.68, + "end": 10102.12, + "probability": 0.759 + }, + { + "start": 10102.76, + "end": 10105.56, + "probability": 0.9912 + }, + { + "start": 10105.96, + "end": 10108.84, + "probability": 0.8998 + }, + { + "start": 10108.96, + "end": 10112.94, + "probability": 0.948 + }, + { + "start": 10114.38, + "end": 10121.78, + "probability": 0.8627 + }, + { + "start": 10121.78, + "end": 10125.92, + "probability": 0.9155 + }, + { + "start": 10126.14, + "end": 10126.88, + "probability": 0.2332 + }, + { + "start": 10127.58, + "end": 10128.17, + "probability": 0.6791 + }, + { + "start": 10129.0, + "end": 10130.7, + "probability": 0.7746 + }, + { + "start": 10131.16, + "end": 10136.36, + "probability": 0.8257 + }, + { + "start": 10137.56, + "end": 10139.08, + "probability": 0.7549 + }, + { + "start": 10139.78, + "end": 10139.94, + "probability": 0.7356 + }, + { + "start": 10140.34, + "end": 10140.74, + "probability": 0.2799 + }, + { + "start": 10140.74, + "end": 10141.28, + "probability": 0.8785 + }, + { + "start": 10141.84, + "end": 10144.3, + "probability": 0.9919 + }, + { + "start": 10147.27, + "end": 10147.58, + "probability": 0.0717 + }, + { + "start": 10147.58, + "end": 10147.58, + "probability": 0.1378 + }, + { + "start": 10147.58, + "end": 10148.84, + "probability": 0.5974 + }, + { + "start": 10148.84, + "end": 10149.78, + "probability": 0.7312 + }, + { + "start": 10149.9, + "end": 10151.14, + "probability": 0.6697 + }, + { + "start": 10152.06, + "end": 10153.62, + "probability": 0.6027 + }, + { + "start": 10154.12, + "end": 10154.65, + "probability": 0.1867 + }, + { + "start": 10155.38, + "end": 10157.44, + "probability": 0.4012 + }, + { + "start": 10157.93, + "end": 10158.96, + "probability": 0.3249 + }, + { + "start": 10158.96, + "end": 10162.9, + "probability": 0.4761 + }, + { + "start": 10162.92, + "end": 10164.8, + "probability": 0.7449 + }, + { + "start": 10164.98, + "end": 10169.1, + "probability": 0.082 + }, + { + "start": 10170.0, + "end": 10172.18, + "probability": 0.9476 + }, + { + "start": 10172.86, + "end": 10173.68, + "probability": 0.7178 + }, + { + "start": 10174.08, + "end": 10176.19, + "probability": 0.6311 + }, + { + "start": 10177.16, + "end": 10179.46, + "probability": 0.4698 + }, + { + "start": 10179.6, + "end": 10183.38, + "probability": 0.8537 + }, + { + "start": 10183.38, + "end": 10183.86, + "probability": 0.8127 + }, + { + "start": 10183.96, + "end": 10184.66, + "probability": 0.8484 + }, + { + "start": 10184.86, + "end": 10185.8, + "probability": 0.5569 + }, + { + "start": 10186.1, + "end": 10190.44, + "probability": 0.9333 + }, + { + "start": 10190.58, + "end": 10191.32, + "probability": 0.8809 + }, + { + "start": 10192.02, + "end": 10193.0, + "probability": 0.8545 + }, + { + "start": 10194.06, + "end": 10196.66, + "probability": 0.8789 + }, + { + "start": 10197.3, + "end": 10199.04, + "probability": 0.9141 + }, + { + "start": 10199.78, + "end": 10200.36, + "probability": 0.8483 + }, + { + "start": 10200.36, + "end": 10202.74, + "probability": 0.4772 + }, + { + "start": 10203.1, + "end": 10204.26, + "probability": 0.6262 + }, + { + "start": 10204.4, + "end": 10206.42, + "probability": 0.8716 + }, + { + "start": 10206.52, + "end": 10208.75, + "probability": 0.9914 + }, + { + "start": 10209.1, + "end": 10210.16, + "probability": 0.8137 + }, + { + "start": 10210.96, + "end": 10213.22, + "probability": 0.958 + }, + { + "start": 10213.32, + "end": 10215.7, + "probability": 0.9821 + }, + { + "start": 10216.44, + "end": 10220.84, + "probability": 0.8113 + }, + { + "start": 10220.94, + "end": 10222.02, + "probability": 0.9688 + }, + { + "start": 10223.44, + "end": 10224.6, + "probability": 0.6164 + }, + { + "start": 10224.72, + "end": 10227.94, + "probability": 0.9695 + }, + { + "start": 10228.38, + "end": 10229.36, + "probability": 0.9771 + }, + { + "start": 10229.48, + "end": 10230.16, + "probability": 0.6768 + }, + { + "start": 10230.2, + "end": 10230.5, + "probability": 0.464 + }, + { + "start": 10230.54, + "end": 10231.94, + "probability": 0.6886 + }, + { + "start": 10233.14, + "end": 10234.44, + "probability": 0.759 + }, + { + "start": 10234.82, + "end": 10235.7, + "probability": 0.9556 + }, + { + "start": 10236.08, + "end": 10240.6, + "probability": 0.9418 + }, + { + "start": 10240.6, + "end": 10244.64, + "probability": 0.6696 + }, + { + "start": 10244.88, + "end": 10248.86, + "probability": 0.8046 + }, + { + "start": 10249.0, + "end": 10250.7, + "probability": 0.9966 + }, + { + "start": 10251.58, + "end": 10256.56, + "probability": 0.9898 + }, + { + "start": 10257.14, + "end": 10259.12, + "probability": 0.8711 + }, + { + "start": 10259.2, + "end": 10260.48, + "probability": 0.7862 + }, + { + "start": 10260.54, + "end": 10262.72, + "probability": 0.9974 + }, + { + "start": 10263.24, + "end": 10264.58, + "probability": 0.9326 + }, + { + "start": 10264.76, + "end": 10265.84, + "probability": 0.6517 + }, + { + "start": 10266.02, + "end": 10266.54, + "probability": 0.9736 + }, + { + "start": 10266.68, + "end": 10270.66, + "probability": 0.9751 + }, + { + "start": 10270.8, + "end": 10272.82, + "probability": 0.9644 + }, + { + "start": 10273.42, + "end": 10275.62, + "probability": 0.888 + }, + { + "start": 10275.82, + "end": 10277.92, + "probability": 0.9882 + }, + { + "start": 10277.92, + "end": 10280.3, + "probability": 0.9041 + }, + { + "start": 10280.72, + "end": 10280.86, + "probability": 0.5377 + }, + { + "start": 10281.22, + "end": 10282.54, + "probability": 0.4641 + }, + { + "start": 10282.64, + "end": 10283.14, + "probability": 0.8962 + }, + { + "start": 10283.5, + "end": 10283.78, + "probability": 0.87 + }, + { + "start": 10283.84, + "end": 10288.16, + "probability": 0.9961 + }, + { + "start": 10288.34, + "end": 10292.06, + "probability": 0.9222 + }, + { + "start": 10292.24, + "end": 10292.74, + "probability": 0.7153 + }, + { + "start": 10292.88, + "end": 10294.48, + "probability": 0.7608 + }, + { + "start": 10295.08, + "end": 10299.86, + "probability": 0.9351 + }, + { + "start": 10300.78, + "end": 10303.5, + "probability": 0.9927 + }, + { + "start": 10303.7, + "end": 10304.02, + "probability": 0.8564 + }, + { + "start": 10306.48, + "end": 10308.1, + "probability": 0.7172 + }, + { + "start": 10308.36, + "end": 10309.96, + "probability": 0.9478 + }, + { + "start": 10311.1, + "end": 10311.73, + "probability": 0.8667 + }, + { + "start": 10312.56, + "end": 10314.16, + "probability": 0.9174 + }, + { + "start": 10314.64, + "end": 10315.45, + "probability": 0.9294 + }, + { + "start": 10315.46, + "end": 10316.04, + "probability": 0.9909 + }, + { + "start": 10316.2, + "end": 10318.38, + "probability": 0.9661 + }, + { + "start": 10319.36, + "end": 10320.52, + "probability": 0.7686 + }, + { + "start": 10321.12, + "end": 10323.68, + "probability": 0.9606 + }, + { + "start": 10324.86, + "end": 10326.12, + "probability": 0.8838 + }, + { + "start": 10326.26, + "end": 10327.56, + "probability": 0.995 + }, + { + "start": 10329.4, + "end": 10331.96, + "probability": 0.9714 + }, + { + "start": 10332.82, + "end": 10334.06, + "probability": 0.4437 + }, + { + "start": 10334.88, + "end": 10335.47, + "probability": 0.5446 + }, + { + "start": 10336.54, + "end": 10337.04, + "probability": 0.9151 + }, + { + "start": 10337.84, + "end": 10339.1, + "probability": 0.8862 + }, + { + "start": 10339.62, + "end": 10340.66, + "probability": 0.985 + }, + { + "start": 10340.76, + "end": 10341.6, + "probability": 0.8252 + }, + { + "start": 10341.62, + "end": 10343.94, + "probability": 0.9873 + }, + { + "start": 10345.14, + "end": 10345.68, + "probability": 0.3353 + }, + { + "start": 10347.58, + "end": 10351.0, + "probability": 0.7554 + }, + { + "start": 10351.84, + "end": 10353.24, + "probability": 0.924 + }, + { + "start": 10354.1, + "end": 10356.4, + "probability": 0.9327 + }, + { + "start": 10357.14, + "end": 10358.0, + "probability": 0.9814 + }, + { + "start": 10358.7, + "end": 10359.32, + "probability": 0.7248 + }, + { + "start": 10360.5, + "end": 10362.52, + "probability": 0.985 + }, + { + "start": 10362.78, + "end": 10365.34, + "probability": 0.9961 + }, + { + "start": 10366.1, + "end": 10367.84, + "probability": 0.7986 + }, + { + "start": 10367.98, + "end": 10368.83, + "probability": 0.9929 + }, + { + "start": 10369.57, + "end": 10371.76, + "probability": 0.9951 + }, + { + "start": 10372.52, + "end": 10373.44, + "probability": 0.7306 + }, + { + "start": 10374.1, + "end": 10375.22, + "probability": 0.9585 + }, + { + "start": 10376.74, + "end": 10378.0, + "probability": 0.9839 + }, + { + "start": 10379.26, + "end": 10380.26, + "probability": 0.5896 + }, + { + "start": 10381.52, + "end": 10381.88, + "probability": 0.5972 + }, + { + "start": 10381.96, + "end": 10384.08, + "probability": 0.9955 + }, + { + "start": 10384.2, + "end": 10385.96, + "probability": 0.9792 + }, + { + "start": 10386.88, + "end": 10387.66, + "probability": 0.9535 + }, + { + "start": 10387.82, + "end": 10388.62, + "probability": 0.9308 + }, + { + "start": 10388.74, + "end": 10389.67, + "probability": 0.8131 + }, + { + "start": 10390.8, + "end": 10392.66, + "probability": 0.9902 + }, + { + "start": 10393.42, + "end": 10395.2, + "probability": 0.4759 + }, + { + "start": 10395.34, + "end": 10400.26, + "probability": 0.9343 + }, + { + "start": 10400.38, + "end": 10400.82, + "probability": 0.2942 + }, + { + "start": 10400.84, + "end": 10401.32, + "probability": 0.5062 + }, + { + "start": 10401.82, + "end": 10401.92, + "probability": 0.5874 + }, + { + "start": 10402.9, + "end": 10405.96, + "probability": 0.963 + }, + { + "start": 10407.54, + "end": 10410.34, + "probability": 0.8591 + }, + { + "start": 10411.02, + "end": 10413.82, + "probability": 0.9208 + }, + { + "start": 10414.5, + "end": 10420.94, + "probability": 0.9969 + }, + { + "start": 10422.58, + "end": 10426.14, + "probability": 0.9992 + }, + { + "start": 10426.14, + "end": 10429.94, + "probability": 0.997 + }, + { + "start": 10430.52, + "end": 10431.26, + "probability": 0.7744 + }, + { + "start": 10431.86, + "end": 10433.76, + "probability": 0.9909 + }, + { + "start": 10434.6, + "end": 10436.68, + "probability": 0.958 + }, + { + "start": 10437.5, + "end": 10444.54, + "probability": 0.9327 + }, + { + "start": 10444.66, + "end": 10447.02, + "probability": 0.9318 + }, + { + "start": 10447.08, + "end": 10447.85, + "probability": 0.8416 + }, + { + "start": 10448.0, + "end": 10450.48, + "probability": 0.8435 + }, + { + "start": 10451.4, + "end": 10458.1, + "probability": 0.9932 + }, + { + "start": 10458.46, + "end": 10461.48, + "probability": 0.9135 + }, + { + "start": 10461.68, + "end": 10462.5, + "probability": 0.2802 + }, + { + "start": 10463.16, + "end": 10465.06, + "probability": 0.9912 + }, + { + "start": 10465.66, + "end": 10466.98, + "probability": 0.9458 + }, + { + "start": 10467.64, + "end": 10470.66, + "probability": 0.994 + }, + { + "start": 10471.42, + "end": 10474.18, + "probability": 0.9143 + }, + { + "start": 10475.26, + "end": 10475.5, + "probability": 0.7467 + }, + { + "start": 10475.82, + "end": 10476.54, + "probability": 0.4371 + }, + { + "start": 10476.54, + "end": 10476.68, + "probability": 0.9751 + }, + { + "start": 10477.4, + "end": 10478.18, + "probability": 0.8707 + }, + { + "start": 10478.18, + "end": 10484.04, + "probability": 0.9049 + }, + { + "start": 10484.12, + "end": 10484.62, + "probability": 0.7384 + }, + { + "start": 10484.74, + "end": 10485.48, + "probability": 0.6928 + }, + { + "start": 10485.62, + "end": 10486.34, + "probability": 0.9658 + }, + { + "start": 10486.44, + "end": 10487.89, + "probability": 0.9937 + }, + { + "start": 10488.24, + "end": 10489.64, + "probability": 0.9723 + }, + { + "start": 10490.78, + "end": 10492.0, + "probability": 0.6183 + }, + { + "start": 10492.82, + "end": 10495.18, + "probability": 0.8747 + }, + { + "start": 10496.22, + "end": 10501.82, + "probability": 0.8808 + }, + { + "start": 10503.08, + "end": 10504.1, + "probability": 0.3469 + }, + { + "start": 10505.12, + "end": 10505.3, + "probability": 0.5891 + }, + { + "start": 10505.4, + "end": 10507.14, + "probability": 0.9068 + }, + { + "start": 10507.52, + "end": 10507.74, + "probability": 0.7738 + }, + { + "start": 10507.8, + "end": 10509.6, + "probability": 0.9909 + }, + { + "start": 10510.8, + "end": 10511.64, + "probability": 0.9957 + }, + { + "start": 10512.52, + "end": 10513.94, + "probability": 0.9649 + }, + { + "start": 10514.26, + "end": 10517.06, + "probability": 0.9899 + }, + { + "start": 10517.24, + "end": 10518.4, + "probability": 0.9899 + }, + { + "start": 10519.58, + "end": 10520.34, + "probability": 0.8732 + }, + { + "start": 10521.28, + "end": 10524.64, + "probability": 0.9707 + }, + { + "start": 10525.62, + "end": 10526.0, + "probability": 0.7571 + }, + { + "start": 10527.06, + "end": 10530.08, + "probability": 0.9106 + }, + { + "start": 10530.62, + "end": 10538.4, + "probability": 0.9317 + }, + { + "start": 10539.3, + "end": 10543.6, + "probability": 0.7698 + }, + { + "start": 10544.44, + "end": 10550.06, + "probability": 0.9873 + }, + { + "start": 10550.18, + "end": 10550.84, + "probability": 0.9781 + }, + { + "start": 10551.81, + "end": 10553.6, + "probability": 0.9906 + }, + { + "start": 10554.5, + "end": 10555.0, + "probability": 0.7782 + }, + { + "start": 10555.34, + "end": 10556.22, + "probability": 0.8215 + }, + { + "start": 10556.32, + "end": 10557.8, + "probability": 0.9147 + }, + { + "start": 10558.24, + "end": 10558.86, + "probability": 0.7078 + }, + { + "start": 10559.34, + "end": 10561.32, + "probability": 0.9462 + }, + { + "start": 10561.9, + "end": 10564.4, + "probability": 0.9683 + }, + { + "start": 10564.62, + "end": 10565.12, + "probability": 0.879 + }, + { + "start": 10565.5, + "end": 10568.18, + "probability": 0.9954 + }, + { + "start": 10568.6, + "end": 10569.33, + "probability": 0.8623 + }, + { + "start": 10569.7, + "end": 10570.65, + "probability": 0.9777 + }, + { + "start": 10571.04, + "end": 10571.94, + "probability": 0.9536 + }, + { + "start": 10572.06, + "end": 10574.58, + "probability": 0.982 + }, + { + "start": 10574.68, + "end": 10578.02, + "probability": 0.9709 + }, + { + "start": 10578.26, + "end": 10578.94, + "probability": 0.7419 + }, + { + "start": 10580.7, + "end": 10583.1, + "probability": 0.9497 + }, + { + "start": 10584.14, + "end": 10584.76, + "probability": 0.8129 + }, + { + "start": 10585.92, + "end": 10587.15, + "probability": 0.8936 + }, + { + "start": 10588.02, + "end": 10588.54, + "probability": 0.6876 + }, + { + "start": 10589.76, + "end": 10590.6, + "probability": 0.7972 + }, + { + "start": 10591.98, + "end": 10595.9, + "probability": 0.792 + }, + { + "start": 10597.04, + "end": 10601.47, + "probability": 0.8882 + }, + { + "start": 10602.8, + "end": 10603.5, + "probability": 0.3623 + }, + { + "start": 10604.06, + "end": 10606.78, + "probability": 0.9098 + }, + { + "start": 10607.8, + "end": 10610.22, + "probability": 0.9933 + }, + { + "start": 10610.9, + "end": 10613.0, + "probability": 0.9572 + }, + { + "start": 10614.74, + "end": 10615.9, + "probability": 0.4836 + }, + { + "start": 10616.16, + "end": 10616.66, + "probability": 0.9668 + }, + { + "start": 10617.56, + "end": 10619.8, + "probability": 0.8967 + }, + { + "start": 10620.72, + "end": 10623.04, + "probability": 0.9678 + }, + { + "start": 10625.34, + "end": 10627.02, + "probability": 0.2792 + }, + { + "start": 10627.58, + "end": 10628.2, + "probability": 0.2914 + }, + { + "start": 10630.4, + "end": 10632.04, + "probability": 0.2899 + }, + { + "start": 10632.2, + "end": 10636.5, + "probability": 0.2537 + }, + { + "start": 10637.48, + "end": 10639.42, + "probability": 0.2994 + }, + { + "start": 10639.42, + "end": 10642.26, + "probability": 0.3765 + }, + { + "start": 10642.38, + "end": 10644.04, + "probability": 0.8884 + }, + { + "start": 10644.14, + "end": 10646.18, + "probability": 0.6912 + }, + { + "start": 10646.38, + "end": 10647.11, + "probability": 0.5874 + }, + { + "start": 10648.54, + "end": 10653.36, + "probability": 0.9946 + }, + { + "start": 10653.36, + "end": 10659.06, + "probability": 0.9634 + }, + { + "start": 10659.44, + "end": 10664.86, + "probability": 0.9087 + }, + { + "start": 10664.86, + "end": 10668.74, + "probability": 0.8463 + }, + { + "start": 10669.14, + "end": 10671.39, + "probability": 0.9756 + }, + { + "start": 10671.55, + "end": 10672.39, + "probability": 0.6382 + }, + { + "start": 10672.55, + "end": 10673.25, + "probability": 0.6364 + }, + { + "start": 10673.29, + "end": 10675.69, + "probability": 0.9854 + }, + { + "start": 10675.69, + "end": 10678.71, + "probability": 0.9926 + }, + { + "start": 10678.87, + "end": 10683.63, + "probability": 0.8255 + }, + { + "start": 10683.65, + "end": 10687.39, + "probability": 0.9788 + }, + { + "start": 10687.57, + "end": 10689.23, + "probability": 0.6634 + }, + { + "start": 10689.65, + "end": 10692.53, + "probability": 0.7568 + }, + { + "start": 10692.67, + "end": 10693.37, + "probability": 0.8096 + }, + { + "start": 10693.45, + "end": 10694.67, + "probability": 0.9008 + }, + { + "start": 10694.87, + "end": 10696.78, + "probability": 0.981 + }, + { + "start": 10697.41, + "end": 10700.73, + "probability": 0.8993 + }, + { + "start": 10701.11, + "end": 10702.39, + "probability": 0.1331 + }, + { + "start": 10702.39, + "end": 10702.39, + "probability": 0.2576 + }, + { + "start": 10702.39, + "end": 10702.39, + "probability": 0.1036 + }, + { + "start": 10702.39, + "end": 10703.81, + "probability": 0.9512 + }, + { + "start": 10703.81, + "end": 10705.71, + "probability": 0.5222 + }, + { + "start": 10705.71, + "end": 10706.03, + "probability": 0.2422 + }, + { + "start": 10706.25, + "end": 10706.51, + "probability": 0.6252 + }, + { + "start": 10706.61, + "end": 10708.77, + "probability": 0.8157 + }, + { + "start": 10709.53, + "end": 10714.39, + "probability": 0.9381 + }, + { + "start": 10714.49, + "end": 10716.63, + "probability": 0.8818 + }, + { + "start": 10716.81, + "end": 10717.87, + "probability": 0.8275 + }, + { + "start": 10718.05, + "end": 10722.67, + "probability": 0.8028 + }, + { + "start": 10722.71, + "end": 10723.91, + "probability": 0.7063 + }, + { + "start": 10724.03, + "end": 10726.39, + "probability": 0.6637 + }, + { + "start": 10727.91, + "end": 10733.51, + "probability": 0.9409 + }, + { + "start": 10733.69, + "end": 10735.49, + "probability": 0.9894 + }, + { + "start": 10736.19, + "end": 10737.84, + "probability": 0.9937 + }, + { + "start": 10738.17, + "end": 10743.31, + "probability": 0.986 + }, + { + "start": 10743.59, + "end": 10745.9, + "probability": 0.9869 + }, + { + "start": 10746.23, + "end": 10749.51, + "probability": 0.9902 + }, + { + "start": 10749.51, + "end": 10755.05, + "probability": 0.9816 + }, + { + "start": 10755.41, + "end": 10758.37, + "probability": 0.8492 + }, + { + "start": 10758.45, + "end": 10759.6, + "probability": 0.6162 + }, + { + "start": 10760.05, + "end": 10761.51, + "probability": 0.7025 + }, + { + "start": 10762.09, + "end": 10764.69, + "probability": 0.9438 + }, + { + "start": 10765.07, + "end": 10769.03, + "probability": 0.9724 + }, + { + "start": 10769.03, + "end": 10769.43, + "probability": 0.3304 + }, + { + "start": 10769.95, + "end": 10770.38, + "probability": 0.594 + }, + { + "start": 10770.71, + "end": 10771.59, + "probability": 0.9184 + }, + { + "start": 10771.73, + "end": 10775.03, + "probability": 0.9908 + }, + { + "start": 10775.13, + "end": 10775.39, + "probability": 0.8276 + }, + { + "start": 10775.65, + "end": 10777.05, + "probability": 0.5846 + }, + { + "start": 10777.11, + "end": 10778.57, + "probability": 0.9589 + }, + { + "start": 10778.61, + "end": 10778.73, + "probability": 0.0818 + }, + { + "start": 10778.73, + "end": 10781.93, + "probability": 0.529 + }, + { + "start": 10782.47, + "end": 10784.39, + "probability": 0.0912 + }, + { + "start": 10785.39, + "end": 10785.77, + "probability": 0.0028 + }, + { + "start": 10788.13, + "end": 10791.63, + "probability": 0.4907 + }, + { + "start": 10792.85, + "end": 10794.07, + "probability": 0.9362 + }, + { + "start": 10794.27, + "end": 10794.27, + "probability": 0.048 + }, + { + "start": 10794.27, + "end": 10794.27, + "probability": 0.0915 + }, + { + "start": 10794.27, + "end": 10794.85, + "probability": 0.3158 + }, + { + "start": 10795.49, + "end": 10797.61, + "probability": 0.6842 + }, + { + "start": 10798.11, + "end": 10799.65, + "probability": 0.9316 + }, + { + "start": 10805.77, + "end": 10806.31, + "probability": 0.388 + }, + { + "start": 10806.41, + "end": 10807.87, + "probability": 0.3775 + }, + { + "start": 10807.97, + "end": 10808.69, + "probability": 0.9052 + }, + { + "start": 10808.83, + "end": 10812.51, + "probability": 0.965 + }, + { + "start": 10815.07, + "end": 10817.13, + "probability": 0.9839 + }, + { + "start": 10817.33, + "end": 10817.67, + "probability": 0.7947 + }, + { + "start": 10818.69, + "end": 10820.45, + "probability": 0.5779 + }, + { + "start": 10821.59, + "end": 10821.61, + "probability": 0.2327 + }, + { + "start": 10821.61, + "end": 10821.61, + "probability": 0.1786 + }, + { + "start": 10821.61, + "end": 10821.99, + "probability": 0.3607 + }, + { + "start": 10822.41, + "end": 10826.53, + "probability": 0.9351 + }, + { + "start": 10827.77, + "end": 10827.87, + "probability": 0.4549 + }, + { + "start": 10830.13, + "end": 10831.09, + "probability": 0.7026 + }, + { + "start": 10831.27, + "end": 10833.99, + "probability": 0.7594 + }, + { + "start": 10834.07, + "end": 10838.02, + "probability": 0.9482 + }, + { + "start": 10842.17, + "end": 10847.83, + "probability": 0.8067 + }, + { + "start": 10849.59, + "end": 10850.85, + "probability": 0.9889 + }, + { + "start": 10851.21, + "end": 10852.67, + "probability": 0.9922 + }, + { + "start": 10852.71, + "end": 10854.77, + "probability": 0.5494 + }, + { + "start": 10855.59, + "end": 10856.63, + "probability": 0.7877 + }, + { + "start": 10861.07, + "end": 10862.81, + "probability": 0.0832 + }, + { + "start": 10863.61, + "end": 10863.77, + "probability": 0.3224 + }, + { + "start": 10864.19, + "end": 10865.91, + "probability": 0.5591 + }, + { + "start": 10866.15, + "end": 10868.72, + "probability": 0.9375 + }, + { + "start": 10868.97, + "end": 10873.69, + "probability": 0.9231 + }, + { + "start": 10877.59, + "end": 10879.22, + "probability": 0.2473 + }, + { + "start": 10879.83, + "end": 10881.45, + "probability": 0.1817 + }, + { + "start": 10881.93, + "end": 10882.71, + "probability": 0.0823 + }, + { + "start": 10885.71, + "end": 10887.89, + "probability": 0.0666 + }, + { + "start": 10890.79, + "end": 10899.07, + "probability": 0.6823 + }, + { + "start": 10899.33, + "end": 10901.41, + "probability": 0.7061 + }, + { + "start": 10901.61, + "end": 10906.55, + "probability": 0.9413 + }, + { + "start": 10906.79, + "end": 10907.91, + "probability": 0.9805 + }, + { + "start": 10907.97, + "end": 10910.39, + "probability": 0.7186 + }, + { + "start": 10910.85, + "end": 10911.89, + "probability": 0.5878 + }, + { + "start": 10912.23, + "end": 10915.47, + "probability": 0.0988 + }, + { + "start": 10915.47, + "end": 10917.93, + "probability": 0.5996 + }, + { + "start": 10918.13, + "end": 10919.25, + "probability": 0.4709 + }, + { + "start": 10919.41, + "end": 10923.27, + "probability": 0.8069 + }, + { + "start": 10923.95, + "end": 10925.13, + "probability": 0.6241 + }, + { + "start": 10925.19, + "end": 10925.39, + "probability": 0.3466 + }, + { + "start": 10925.39, + "end": 10925.59, + "probability": 0.36 + }, + { + "start": 10925.59, + "end": 10927.23, + "probability": 0.8335 + }, + { + "start": 10927.31, + "end": 10928.67, + "probability": 0.688 + }, + { + "start": 10928.75, + "end": 10929.95, + "probability": 0.5872 + }, + { + "start": 10930.17, + "end": 10933.59, + "probability": 0.952 + }, + { + "start": 10933.93, + "end": 10936.49, + "probability": 0.5913 + }, + { + "start": 10938.79, + "end": 10944.27, + "probability": 0.9243 + }, + { + "start": 10944.27, + "end": 10949.57, + "probability": 0.9893 + }, + { + "start": 10951.41, + "end": 10957.81, + "probability": 0.6795 + }, + { + "start": 10958.47, + "end": 10959.55, + "probability": 0.7 + }, + { + "start": 10959.67, + "end": 10962.03, + "probability": 0.9927 + }, + { + "start": 10962.45, + "end": 10965.31, + "probability": 0.9893 + }, + { + "start": 10965.31, + "end": 10968.41, + "probability": 0.9989 + }, + { + "start": 10969.11, + "end": 10974.27, + "probability": 0.9787 + }, + { + "start": 10974.27, + "end": 10980.91, + "probability": 0.9694 + }, + { + "start": 10980.91, + "end": 10985.19, + "probability": 0.9992 + }, + { + "start": 10985.73, + "end": 10989.55, + "probability": 0.9902 + }, + { + "start": 10989.55, + "end": 10993.91, + "probability": 0.9885 + }, + { + "start": 10994.57, + "end": 11000.85, + "probability": 0.9839 + }, + { + "start": 11000.85, + "end": 11006.51, + "probability": 0.9906 + }, + { + "start": 11006.51, + "end": 11012.89, + "probability": 0.999 + }, + { + "start": 11012.89, + "end": 11020.33, + "probability": 0.9995 + }, + { + "start": 11020.79, + "end": 11022.27, + "probability": 0.8833 + }, + { + "start": 11022.51, + "end": 11026.91, + "probability": 0.9167 + }, + { + "start": 11027.31, + "end": 11034.13, + "probability": 0.8644 + }, + { + "start": 11034.13, + "end": 11038.73, + "probability": 0.999 + }, + { + "start": 11039.29, + "end": 11040.35, + "probability": 0.8735 + }, + { + "start": 11041.21, + "end": 11044.91, + "probability": 0.3287 + }, + { + "start": 11044.95, + "end": 11044.95, + "probability": 0.2049 + }, + { + "start": 11044.95, + "end": 11044.95, + "probability": 0.1112 + }, + { + "start": 11044.95, + "end": 11047.33, + "probability": 0.982 + }, + { + "start": 11047.33, + "end": 11051.11, + "probability": 0.9834 + }, + { + "start": 11051.83, + "end": 11053.75, + "probability": 0.8634 + }, + { + "start": 11054.31, + "end": 11054.85, + "probability": 0.7801 + }, + { + "start": 11056.37, + "end": 11058.67, + "probability": 0.915 + }, + { + "start": 11059.49, + "end": 11064.43, + "probability": 0.9816 + }, + { + "start": 11065.85, + "end": 11066.41, + "probability": 0.8403 + }, + { + "start": 11067.15, + "end": 11067.15, + "probability": 0.0004 + }, + { + "start": 11067.87, + "end": 11068.43, + "probability": 0.3303 + }, + { + "start": 11068.55, + "end": 11069.79, + "probability": 0.6309 + }, + { + "start": 11069.79, + "end": 11070.21, + "probability": 0.5435 + }, + { + "start": 11070.49, + "end": 11074.21, + "probability": 0.9197 + }, + { + "start": 11074.99, + "end": 11076.31, + "probability": 0.9157 + }, + { + "start": 11077.65, + "end": 11079.05, + "probability": 0.998 + }, + { + "start": 11079.15, + "end": 11080.27, + "probability": 0.9585 + }, + { + "start": 11080.83, + "end": 11084.89, + "probability": 0.9739 + }, + { + "start": 11085.49, + "end": 11089.03, + "probability": 0.9644 + }, + { + "start": 11090.77, + "end": 11090.89, + "probability": 0.3096 + }, + { + "start": 11090.89, + "end": 11093.07, + "probability": 0.9888 + }, + { + "start": 11093.21, + "end": 11094.45, + "probability": 0.8205 + }, + { + "start": 11094.59, + "end": 11094.71, + "probability": 0.2728 + }, + { + "start": 11095.45, + "end": 11096.31, + "probability": 0.9502 + }, + { + "start": 11096.37, + "end": 11098.61, + "probability": 0.9927 + }, + { + "start": 11099.79, + "end": 11101.35, + "probability": 0.9982 + }, + { + "start": 11102.07, + "end": 11103.81, + "probability": 0.8977 + }, + { + "start": 11105.23, + "end": 11106.47, + "probability": 0.4716 + }, + { + "start": 11107.23, + "end": 11108.57, + "probability": 0.9387 + }, + { + "start": 11110.13, + "end": 11110.69, + "probability": 0.7617 + }, + { + "start": 11111.23, + "end": 11114.89, + "probability": 0.9219 + }, + { + "start": 11114.95, + "end": 11116.21, + "probability": 0.9966 + }, + { + "start": 11116.81, + "end": 11119.71, + "probability": 0.9792 + }, + { + "start": 11120.67, + "end": 11122.63, + "probability": 0.9205 + }, + { + "start": 11122.83, + "end": 11123.19, + "probability": 0.9424 + }, + { + "start": 11123.25, + "end": 11123.93, + "probability": 0.7208 + }, + { + "start": 11124.71, + "end": 11125.33, + "probability": 0.7455 + }, + { + "start": 11125.85, + "end": 11127.79, + "probability": 0.9388 + }, + { + "start": 11127.91, + "end": 11129.43, + "probability": 0.9966 + }, + { + "start": 11130.25, + "end": 11130.95, + "probability": 0.9637 + }, + { + "start": 11131.25, + "end": 11132.87, + "probability": 0.9639 + }, + { + "start": 11133.29, + "end": 11134.03, + "probability": 0.992 + }, + { + "start": 11134.37, + "end": 11134.97, + "probability": 0.3815 + }, + { + "start": 11135.03, + "end": 11136.01, + "probability": 0.9102 + }, + { + "start": 11136.77, + "end": 11137.35, + "probability": 0.9652 + }, + { + "start": 11137.93, + "end": 11139.23, + "probability": 0.9901 + }, + { + "start": 11139.39, + "end": 11139.95, + "probability": 0.8454 + }, + { + "start": 11140.37, + "end": 11142.95, + "probability": 0.9846 + }, + { + "start": 11143.91, + "end": 11144.73, + "probability": 0.9812 + }, + { + "start": 11145.49, + "end": 11146.13, + "probability": 0.8696 + }, + { + "start": 11147.09, + "end": 11148.71, + "probability": 0.9326 + }, + { + "start": 11150.37, + "end": 11152.77, + "probability": 0.8979 + }, + { + "start": 11153.47, + "end": 11154.22, + "probability": 0.9503 + }, + { + "start": 11154.83, + "end": 11155.81, + "probability": 0.8625 + }, + { + "start": 11156.57, + "end": 11158.65, + "probability": 0.9797 + }, + { + "start": 11159.03, + "end": 11160.05, + "probability": 0.7658 + }, + { + "start": 11160.31, + "end": 11161.25, + "probability": 0.8735 + }, + { + "start": 11161.75, + "end": 11162.47, + "probability": 0.9227 + }, + { + "start": 11162.55, + "end": 11162.65, + "probability": 0.0744 + }, + { + "start": 11163.41, + "end": 11166.25, + "probability": 0.9276 + }, + { + "start": 11166.33, + "end": 11166.9, + "probability": 0.57 + }, + { + "start": 11167.97, + "end": 11170.67, + "probability": 0.8322 + }, + { + "start": 11172.07, + "end": 11175.79, + "probability": 0.9683 + }, + { + "start": 11176.49, + "end": 11179.45, + "probability": 0.9977 + }, + { + "start": 11180.61, + "end": 11182.51, + "probability": 0.9283 + }, + { + "start": 11183.59, + "end": 11184.81, + "probability": 0.9859 + }, + { + "start": 11185.75, + "end": 11188.71, + "probability": 0.8359 + }, + { + "start": 11189.65, + "end": 11193.17, + "probability": 0.9908 + }, + { + "start": 11193.27, + "end": 11194.39, + "probability": 0.7685 + }, + { + "start": 11194.73, + "end": 11196.81, + "probability": 0.9968 + }, + { + "start": 11197.27, + "end": 11197.81, + "probability": 0.9717 + }, + { + "start": 11198.45, + "end": 11200.21, + "probability": 0.9937 + }, + { + "start": 11200.55, + "end": 11203.43, + "probability": 0.9402 + }, + { + "start": 11203.67, + "end": 11204.27, + "probability": 0.6784 + }, + { + "start": 11205.07, + "end": 11208.15, + "probability": 0.9619 + }, + { + "start": 11208.81, + "end": 11209.69, + "probability": 0.9302 + }, + { + "start": 11210.69, + "end": 11211.99, + "probability": 0.9407 + }, + { + "start": 11212.03, + "end": 11213.25, + "probability": 0.8433 + }, + { + "start": 11213.53, + "end": 11215.93, + "probability": 0.9926 + }, + { + "start": 11216.71, + "end": 11217.91, + "probability": 0.5969 + }, + { + "start": 11218.85, + "end": 11219.31, + "probability": 0.8591 + }, + { + "start": 11220.25, + "end": 11221.75, + "probability": 0.8703 + }, + { + "start": 11222.47, + "end": 11223.49, + "probability": 0.1966 + }, + { + "start": 11223.49, + "end": 11227.75, + "probability": 0.7226 + }, + { + "start": 11228.29, + "end": 11229.37, + "probability": 0.9429 + }, + { + "start": 11229.41, + "end": 11229.67, + "probability": 0.7955 + }, + { + "start": 11229.75, + "end": 11231.53, + "probability": 0.9939 + }, + { + "start": 11231.93, + "end": 11235.49, + "probability": 0.8374 + }, + { + "start": 11237.49, + "end": 11239.25, + "probability": 0.9813 + }, + { + "start": 11240.21, + "end": 11241.79, + "probability": 0.9896 + }, + { + "start": 11242.23, + "end": 11243.29, + "probability": 0.9684 + }, + { + "start": 11243.51, + "end": 11243.79, + "probability": 0.3744 + }, + { + "start": 11243.79, + "end": 11244.35, + "probability": 0.9239 + }, + { + "start": 11244.43, + "end": 11245.05, + "probability": 0.818 + }, + { + "start": 11245.23, + "end": 11247.27, + "probability": 0.8369 + }, + { + "start": 11247.55, + "end": 11248.67, + "probability": 0.9688 + }, + { + "start": 11248.73, + "end": 11249.31, + "probability": 0.9497 + }, + { + "start": 11250.01, + "end": 11250.51, + "probability": 0.8543 + }, + { + "start": 11251.45, + "end": 11254.63, + "probability": 0.9233 + }, + { + "start": 11267.63, + "end": 11268.95, + "probability": 0.5198 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.1328 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.0879 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.3179 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.0349 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.0349 + }, + { + "start": 11268.95, + "end": 11268.95, + "probability": 0.1098 + }, + { + "start": 11268.95, + "end": 11270.03, + "probability": 0.697 + }, + { + "start": 11270.51, + "end": 11274.17, + "probability": 0.8481 + }, + { + "start": 11274.55, + "end": 11276.07, + "probability": 0.7472 + }, + { + "start": 11276.85, + "end": 11279.76, + "probability": 0.6184 + }, + { + "start": 11280.77, + "end": 11283.17, + "probability": 0.9502 + }, + { + "start": 11283.97, + "end": 11287.31, + "probability": 0.9795 + }, + { + "start": 11288.11, + "end": 11291.03, + "probability": 0.7428 + }, + { + "start": 11292.19, + "end": 11293.37, + "probability": 0.9828 + }, + { + "start": 11294.47, + "end": 11295.47, + "probability": 0.7863 + }, + { + "start": 11295.93, + "end": 11296.03, + "probability": 0.1806 + }, + { + "start": 11296.03, + "end": 11296.99, + "probability": 0.9287 + }, + { + "start": 11297.41, + "end": 11298.09, + "probability": 0.7262 + }, + { + "start": 11298.49, + "end": 11301.47, + "probability": 0.7617 + }, + { + "start": 11301.47, + "end": 11302.15, + "probability": 0.4712 + }, + { + "start": 11302.15, + "end": 11303.43, + "probability": 0.0088 + }, + { + "start": 11303.67, + "end": 11304.13, + "probability": 0.5096 + }, + { + "start": 11304.73, + "end": 11306.07, + "probability": 0.2288 + }, + { + "start": 11306.63, + "end": 11307.65, + "probability": 0.1286 + }, + { + "start": 11307.67, + "end": 11307.67, + "probability": 0.3552 + }, + { + "start": 11307.73, + "end": 11308.57, + "probability": 0.8762 + }, + { + "start": 11308.87, + "end": 11310.75, + "probability": 0.9708 + }, + { + "start": 11311.27, + "end": 11314.87, + "probability": 0.9971 + }, + { + "start": 11314.87, + "end": 11318.59, + "probability": 0.9982 + }, + { + "start": 11319.05, + "end": 11320.67, + "probability": 0.9219 + }, + { + "start": 11320.93, + "end": 11322.19, + "probability": 0.9934 + }, + { + "start": 11322.23, + "end": 11328.25, + "probability": 0.9255 + }, + { + "start": 11328.45, + "end": 11329.43, + "probability": 0.4822 + }, + { + "start": 11329.79, + "end": 11330.93, + "probability": 0.6963 + }, + { + "start": 11331.23, + "end": 11331.63, + "probability": 0.0402 + }, + { + "start": 11331.63, + "end": 11331.63, + "probability": 0.384 + }, + { + "start": 11331.81, + "end": 11334.63, + "probability": 0.9834 + }, + { + "start": 11335.93, + "end": 11336.87, + "probability": 0.4462 + }, + { + "start": 11337.07, + "end": 11338.83, + "probability": 0.8082 + }, + { + "start": 11340.95, + "end": 11342.73, + "probability": 0.8032 + }, + { + "start": 11345.17, + "end": 11347.33, + "probability": 0.9158 + }, + { + "start": 11347.43, + "end": 11349.23, + "probability": 0.649 + }, + { + "start": 11349.29, + "end": 11352.19, + "probability": 0.733 + }, + { + "start": 11353.75, + "end": 11359.55, + "probability": 0.7153 + }, + { + "start": 11359.73, + "end": 11366.29, + "probability": 0.9771 + }, + { + "start": 11367.33, + "end": 11368.75, + "probability": 0.646 + }, + { + "start": 11368.97, + "end": 11370.21, + "probability": 0.8122 + }, + { + "start": 11370.69, + "end": 11372.73, + "probability": 0.8081 + }, + { + "start": 11373.07, + "end": 11379.97, + "probability": 0.9775 + }, + { + "start": 11380.77, + "end": 11385.17, + "probability": 0.9971 + }, + { + "start": 11385.17, + "end": 11390.55, + "probability": 0.999 + }, + { + "start": 11391.39, + "end": 11399.45, + "probability": 0.9855 + }, + { + "start": 11399.57, + "end": 11404.41, + "probability": 0.7703 + }, + { + "start": 11404.81, + "end": 11404.81, + "probability": 0.0647 + }, + { + "start": 11404.81, + "end": 11407.38, + "probability": 0.9639 + }, + { + "start": 11408.43, + "end": 11411.55, + "probability": 0.9773 + }, + { + "start": 11411.77, + "end": 11412.57, + "probability": 0.7935 + }, + { + "start": 11412.67, + "end": 11413.43, + "probability": 0.8652 + }, + { + "start": 11413.89, + "end": 11415.23, + "probability": 0.925 + }, + { + "start": 11416.03, + "end": 11416.95, + "probability": 0.9408 + }, + { + "start": 11417.09, + "end": 11418.03, + "probability": 0.7492 + }, + { + "start": 11418.05, + "end": 11421.43, + "probability": 0.5833 + }, + { + "start": 11421.45, + "end": 11424.27, + "probability": 0.821 + }, + { + "start": 11424.35, + "end": 11427.95, + "probability": 0.5704 + }, + { + "start": 11428.43, + "end": 11430.73, + "probability": 0.7967 + }, + { + "start": 11431.15, + "end": 11435.61, + "probability": 0.9608 + }, + { + "start": 11436.33, + "end": 11440.51, + "probability": 0.9347 + }, + { + "start": 11440.95, + "end": 11443.09, + "probability": 0.7584 + }, + { + "start": 11443.61, + "end": 11447.31, + "probability": 0.978 + }, + { + "start": 11447.71, + "end": 11448.73, + "probability": 0.4694 + }, + { + "start": 11448.87, + "end": 11451.53, + "probability": 0.8225 + }, + { + "start": 11452.05, + "end": 11455.27, + "probability": 0.3069 + }, + { + "start": 11455.49, + "end": 11456.97, + "probability": 0.771 + }, + { + "start": 11457.07, + "end": 11458.15, + "probability": 0.6659 + }, + { + "start": 11458.63, + "end": 11462.33, + "probability": 0.9423 + }, + { + "start": 11463.11, + "end": 11464.51, + "probability": 0.814 + }, + { + "start": 11465.85, + "end": 11467.21, + "probability": 0.9897 + }, + { + "start": 11468.49, + "end": 11469.07, + "probability": 0.668 + }, + { + "start": 11470.03, + "end": 11474.49, + "probability": 0.9186 + }, + { + "start": 11475.13, + "end": 11479.51, + "probability": 0.9928 + }, + { + "start": 11479.83, + "end": 11482.55, + "probability": 0.8777 + }, + { + "start": 11482.99, + "end": 11483.78, + "probability": 0.9961 + }, + { + "start": 11484.43, + "end": 11485.83, + "probability": 0.9968 + }, + { + "start": 11486.63, + "end": 11487.25, + "probability": 0.7798 + }, + { + "start": 11487.99, + "end": 11488.25, + "probability": 0.9797 + }, + { + "start": 11489.61, + "end": 11490.59, + "probability": 0.7743 + }, + { + "start": 11491.47, + "end": 11492.67, + "probability": 0.7017 + }, + { + "start": 11492.89, + "end": 11494.17, + "probability": 0.7896 + }, + { + "start": 11494.57, + "end": 11497.39, + "probability": 0.9331 + }, + { + "start": 11498.25, + "end": 11500.63, + "probability": 0.9856 + }, + { + "start": 11501.37, + "end": 11502.89, + "probability": 0.95 + }, + { + "start": 11503.59, + "end": 11504.43, + "probability": 0.9482 + }, + { + "start": 11505.23, + "end": 11505.79, + "probability": 0.9369 + }, + { + "start": 11506.01, + "end": 11506.99, + "probability": 0.9985 + }, + { + "start": 11507.75, + "end": 11508.87, + "probability": 0.9961 + }, + { + "start": 11509.09, + "end": 11510.53, + "probability": 0.9893 + }, + { + "start": 11510.67, + "end": 11511.98, + "probability": 0.8297 + }, + { + "start": 11512.41, + "end": 11512.63, + "probability": 0.8848 + }, + { + "start": 11513.11, + "end": 11513.71, + "probability": 0.8599 + }, + { + "start": 11514.03, + "end": 11516.71, + "probability": 0.9449 + }, + { + "start": 11516.73, + "end": 11517.43, + "probability": 0.9717 + }, + { + "start": 11518.91, + "end": 11522.23, + "probability": 0.8442 + }, + { + "start": 11523.05, + "end": 11525.83, + "probability": 0.8477 + }, + { + "start": 11527.21, + "end": 11533.07, + "probability": 0.938 + }, + { + "start": 11533.87, + "end": 11534.07, + "probability": 0.6063 + }, + { + "start": 11534.19, + "end": 11534.81, + "probability": 0.8957 + }, + { + "start": 11534.93, + "end": 11535.45, + "probability": 0.6791 + }, + { + "start": 11536.17, + "end": 11537.63, + "probability": 0.7437 + }, + { + "start": 11537.63, + "end": 11537.75, + "probability": 0.8745 + }, + { + "start": 11537.85, + "end": 11538.83, + "probability": 0.8245 + }, + { + "start": 11539.85, + "end": 11540.93, + "probability": 0.6059 + }, + { + "start": 11541.45, + "end": 11542.21, + "probability": 0.3008 + }, + { + "start": 11543.09, + "end": 11544.69, + "probability": 0.6931 + }, + { + "start": 11545.43, + "end": 11550.21, + "probability": 0.6486 + }, + { + "start": 11553.83, + "end": 11554.39, + "probability": 0.5345 + }, + { + "start": 11555.79, + "end": 11557.35, + "probability": 0.9963 + }, + { + "start": 11557.51, + "end": 11559.77, + "probability": 0.9285 + }, + { + "start": 11559.91, + "end": 11561.39, + "probability": 0.8286 + }, + { + "start": 11562.25, + "end": 11564.53, + "probability": 0.9717 + }, + { + "start": 11565.23, + "end": 11565.73, + "probability": 0.2992 + }, + { + "start": 11565.73, + "end": 11566.72, + "probability": 0.7047 + }, + { + "start": 11568.11, + "end": 11568.99, + "probability": 0.5138 + }, + { + "start": 11569.15, + "end": 11570.15, + "probability": 0.9341 + }, + { + "start": 11570.29, + "end": 11572.27, + "probability": 0.7725 + }, + { + "start": 11573.41, + "end": 11574.81, + "probability": 0.8883 + }, + { + "start": 11576.41, + "end": 11576.91, + "probability": 0.8617 + }, + { + "start": 11577.97, + "end": 11579.89, + "probability": 0.8599 + }, + { + "start": 11581.51, + "end": 11582.17, + "probability": 0.6465 + }, + { + "start": 11583.35, + "end": 11588.17, + "probability": 0.9775 + }, + { + "start": 11588.89, + "end": 11593.67, + "probability": 0.9727 + }, + { + "start": 11594.47, + "end": 11595.39, + "probability": 0.4175 + }, + { + "start": 11598.33, + "end": 11599.01, + "probability": 0.6979 + }, + { + "start": 11602.69, + "end": 11603.61, + "probability": 0.9036 + }, + { + "start": 11603.77, + "end": 11605.21, + "probability": 0.6334 + }, + { + "start": 11606.31, + "end": 11608.11, + "probability": 0.979 + }, + { + "start": 11608.25, + "end": 11608.75, + "probability": 0.7035 + }, + { + "start": 11610.45, + "end": 11612.95, + "probability": 0.9811 + }, + { + "start": 11613.95, + "end": 11615.13, + "probability": 0.9968 + }, + { + "start": 11619.77, + "end": 11620.15, + "probability": 0.5619 + }, + { + "start": 11620.35, + "end": 11621.21, + "probability": 0.9575 + }, + { + "start": 11621.29, + "end": 11622.21, + "probability": 0.991 + }, + { + "start": 11622.47, + "end": 11623.13, + "probability": 0.9821 + }, + { + "start": 11625.65, + "end": 11627.59, + "probability": 0.6404 + }, + { + "start": 11628.27, + "end": 11630.33, + "probability": 0.5065 + }, + { + "start": 11633.43, + "end": 11636.09, + "probability": 0.8757 + }, + { + "start": 11637.17, + "end": 11640.33, + "probability": 0.9043 + }, + { + "start": 11640.43, + "end": 11642.73, + "probability": 0.9888 + }, + { + "start": 11643.57, + "end": 11644.59, + "probability": 0.9255 + }, + { + "start": 11645.25, + "end": 11647.79, + "probability": 0.9834 + }, + { + "start": 11648.79, + "end": 11649.73, + "probability": 0.9641 + }, + { + "start": 11650.03, + "end": 11653.31, + "probability": 0.9016 + }, + { + "start": 11654.21, + "end": 11655.29, + "probability": 0.5593 + }, + { + "start": 11655.55, + "end": 11656.29, + "probability": 0.3894 + }, + { + "start": 11656.31, + "end": 11662.61, + "probability": 0.8421 + }, + { + "start": 11663.09, + "end": 11664.21, + "probability": 0.939 + }, + { + "start": 11664.79, + "end": 11664.99, + "probability": 0.549 + }, + { + "start": 11665.11, + "end": 11667.83, + "probability": 0.9746 + }, + { + "start": 11667.87, + "end": 11668.61, + "probability": 0.9707 + }, + { + "start": 11670.95, + "end": 11671.27, + "probability": 0.2607 + }, + { + "start": 11671.27, + "end": 11672.21, + "probability": 0.7292 + }, + { + "start": 11672.75, + "end": 11674.35, + "probability": 0.812 + }, + { + "start": 11674.57, + "end": 11675.33, + "probability": 0.757 + }, + { + "start": 11675.45, + "end": 11675.87, + "probability": 0.9324 + }, + { + "start": 11676.27, + "end": 11680.03, + "probability": 0.819 + }, + { + "start": 11680.67, + "end": 11681.93, + "probability": 0.9526 + }, + { + "start": 11682.07, + "end": 11682.61, + "probability": 0.7198 + }, + { + "start": 11682.61, + "end": 11683.41, + "probability": 0.5949 + }, + { + "start": 11683.79, + "end": 11684.67, + "probability": 0.5896 + }, + { + "start": 11685.03, + "end": 11686.73, + "probability": 0.9705 + }, + { + "start": 11687.39, + "end": 11687.91, + "probability": 0.8982 + }, + { + "start": 11687.95, + "end": 11689.45, + "probability": 0.4052 + }, + { + "start": 11689.99, + "end": 11690.6, + "probability": 0.6956 + }, + { + "start": 11690.67, + "end": 11694.39, + "probability": 0.9803 + }, + { + "start": 11695.41, + "end": 11696.37, + "probability": 0.868 + }, + { + "start": 11696.47, + "end": 11702.71, + "probability": 0.8893 + }, + { + "start": 11703.09, + "end": 11704.91, + "probability": 0.6709 + }, + { + "start": 11705.35, + "end": 11710.41, + "probability": 0.9834 + }, + { + "start": 11711.13, + "end": 11712.71, + "probability": 0.8284 + }, + { + "start": 11713.79, + "end": 11714.71, + "probability": 0.9447 + }, + { + "start": 11714.71, + "end": 11716.09, + "probability": 0.6965 + }, + { + "start": 11716.33, + "end": 11717.75, + "probability": 0.9929 + }, + { + "start": 11717.93, + "end": 11719.47, + "probability": 0.9462 + }, + { + "start": 11719.71, + "end": 11721.05, + "probability": 0.9331 + }, + { + "start": 11721.15, + "end": 11721.97, + "probability": 0.7745 + }, + { + "start": 11723.97, + "end": 11725.89, + "probability": 0.1948 + }, + { + "start": 11726.35, + "end": 11728.79, + "probability": 0.727 + }, + { + "start": 11729.85, + "end": 11733.89, + "probability": 0.9716 + }, + { + "start": 11733.99, + "end": 11734.33, + "probability": 0.5557 + }, + { + "start": 11734.33, + "end": 11734.85, + "probability": 0.4774 + }, + { + "start": 11736.67, + "end": 11738.29, + "probability": 0.952 + }, + { + "start": 11738.35, + "end": 11740.71, + "probability": 0.9898 + }, + { + "start": 11742.95, + "end": 11744.01, + "probability": 0.8974 + }, + { + "start": 11744.21, + "end": 11747.95, + "probability": 0.9482 + }, + { + "start": 11748.09, + "end": 11749.41, + "probability": 0.7932 + }, + { + "start": 11750.53, + "end": 11756.37, + "probability": 0.9985 + }, + { + "start": 11758.03, + "end": 11761.57, + "probability": 0.8008 + }, + { + "start": 11761.65, + "end": 11762.53, + "probability": 0.3944 + }, + { + "start": 11762.65, + "end": 11767.97, + "probability": 0.9943 + }, + { + "start": 11768.95, + "end": 11771.45, + "probability": 0.9829 + }, + { + "start": 11771.97, + "end": 11772.57, + "probability": 0.5608 + }, + { + "start": 11772.73, + "end": 11773.25, + "probability": 0.6166 + }, + { + "start": 11773.27, + "end": 11773.99, + "probability": 0.8448 + }, + { + "start": 11774.07, + "end": 11778.69, + "probability": 0.9451 + }, + { + "start": 11779.09, + "end": 11781.01, + "probability": 0.6901 + }, + { + "start": 11781.51, + "end": 11785.81, + "probability": 0.954 + }, + { + "start": 11786.07, + "end": 11787.71, + "probability": 0.8511 + }, + { + "start": 11788.07, + "end": 11792.15, + "probability": 0.9915 + }, + { + "start": 11792.69, + "end": 11794.01, + "probability": 0.9928 + }, + { + "start": 11794.13, + "end": 11795.05, + "probability": 0.9057 + }, + { + "start": 11795.41, + "end": 11796.97, + "probability": 0.9897 + }, + { + "start": 11797.13, + "end": 11800.37, + "probability": 0.8948 + }, + { + "start": 11800.37, + "end": 11803.51, + "probability": 0.9967 + }, + { + "start": 11803.91, + "end": 11804.51, + "probability": 0.446 + }, + { + "start": 11804.89, + "end": 11805.82, + "probability": 0.9739 + }, + { + "start": 11806.43, + "end": 11809.13, + "probability": 0.9604 + }, + { + "start": 11809.23, + "end": 11811.85, + "probability": 0.9584 + }, + { + "start": 11812.17, + "end": 11817.03, + "probability": 0.9792 + }, + { + "start": 11817.71, + "end": 11820.09, + "probability": 0.7578 + }, + { + "start": 11820.15, + "end": 11820.75, + "probability": 0.6748 + }, + { + "start": 11821.17, + "end": 11824.09, + "probability": 0.995 + }, + { + "start": 11824.49, + "end": 11826.85, + "probability": 0.8098 + }, + { + "start": 11826.87, + "end": 11829.47, + "probability": 0.9952 + }, + { + "start": 11829.67, + "end": 11830.35, + "probability": 0.8462 + }, + { + "start": 11830.51, + "end": 11833.24, + "probability": 0.9536 + }, + { + "start": 11833.67, + "end": 11835.59, + "probability": 0.9817 + }, + { + "start": 11835.69, + "end": 11837.43, + "probability": 0.8554 + }, + { + "start": 11837.59, + "end": 11840.01, + "probability": 0.6438 + }, + { + "start": 11840.39, + "end": 11842.05, + "probability": 0.6409 + }, + { + "start": 11854.49, + "end": 11862.11, + "probability": 0.8508 + }, + { + "start": 11862.95, + "end": 11864.91, + "probability": 0.9975 + }, + { + "start": 11864.97, + "end": 11867.21, + "probability": 0.0483 + }, + { + "start": 11867.21, + "end": 11867.57, + "probability": 0.0466 + }, + { + "start": 11871.05, + "end": 11875.19, + "probability": 0.3567 + }, + { + "start": 11877.29, + "end": 11880.55, + "probability": 0.8662 + }, + { + "start": 11881.53, + "end": 11884.95, + "probability": 0.9744 + }, + { + "start": 11885.03, + "end": 11885.77, + "probability": 0.7327 + }, + { + "start": 11886.13, + "end": 11887.19, + "probability": 0.9743 + }, + { + "start": 11887.89, + "end": 11889.73, + "probability": 0.9974 + }, + { + "start": 11890.79, + "end": 11893.23, + "probability": 0.4611 + }, + { + "start": 11894.27, + "end": 11895.63, + "probability": 0.8714 + }, + { + "start": 11895.63, + "end": 11896.65, + "probability": 0.9571 + }, + { + "start": 11896.67, + "end": 11896.87, + "probability": 0.613 + }, + { + "start": 11897.33, + "end": 11899.31, + "probability": 0.9154 + }, + { + "start": 11900.35, + "end": 11902.11, + "probability": 0.4017 + }, + { + "start": 11902.43, + "end": 11902.77, + "probability": 0.4318 + }, + { + "start": 11903.23, + "end": 11904.89, + "probability": 0.9877 + }, + { + "start": 11904.89, + "end": 11905.86, + "probability": 0.3469 + }, + { + "start": 11905.93, + "end": 11908.27, + "probability": 0.5673 + }, + { + "start": 11908.49, + "end": 11909.85, + "probability": 0.7735 + }, + { + "start": 11910.21, + "end": 11910.75, + "probability": 0.8583 + }, + { + "start": 11910.95, + "end": 11915.31, + "probability": 0.6176 + }, + { + "start": 11915.43, + "end": 11916.61, + "probability": 0.8443 + }, + { + "start": 11917.35, + "end": 11919.26, + "probability": 0.978 + }, + { + "start": 11919.79, + "end": 11920.99, + "probability": 0.7701 + }, + { + "start": 11922.01, + "end": 11925.43, + "probability": 0.9337 + }, + { + "start": 11926.85, + "end": 11930.87, + "probability": 0.9896 + }, + { + "start": 11930.91, + "end": 11932.06, + "probability": 0.6987 + }, + { + "start": 11933.21, + "end": 11939.95, + "probability": 0.6991 + }, + { + "start": 11940.05, + "end": 11940.29, + "probability": 0.3371 + }, + { + "start": 11941.13, + "end": 11945.14, + "probability": 0.9566 + }, + { + "start": 11945.45, + "end": 11946.87, + "probability": 0.5079 + }, + { + "start": 11947.31, + "end": 11950.22, + "probability": 0.9712 + }, + { + "start": 11950.47, + "end": 11951.83, + "probability": 0.7754 + }, + { + "start": 11952.65, + "end": 11956.81, + "probability": 0.9829 + }, + { + "start": 11957.51, + "end": 11960.75, + "probability": 0.8948 + }, + { + "start": 11961.11, + "end": 11961.47, + "probability": 0.8705 + }, + { + "start": 11961.69, + "end": 11962.51, + "probability": 0.96 + }, + { + "start": 11962.75, + "end": 11963.39, + "probability": 0.7227 + }, + { + "start": 11963.45, + "end": 11963.75, + "probability": 0.9706 + }, + { + "start": 11964.53, + "end": 11966.73, + "probability": 0.969 + }, + { + "start": 11967.57, + "end": 11968.09, + "probability": 0.6078 + }, + { + "start": 11968.13, + "end": 11970.53, + "probability": 0.9517 + }, + { + "start": 11971.73, + "end": 11975.33, + "probability": 0.7222 + }, + { + "start": 11975.33, + "end": 11976.37, + "probability": 0.9784 + }, + { + "start": 11976.55, + "end": 11978.05, + "probability": 0.9794 + }, + { + "start": 11978.17, + "end": 11978.33, + "probability": 0.54 + }, + { + "start": 11979.35, + "end": 11981.55, + "probability": 0.9644 + }, + { + "start": 11982.07, + "end": 11983.05, + "probability": 0.5327 + }, + { + "start": 11983.89, + "end": 11987.07, + "probability": 0.9395 + }, + { + "start": 11987.65, + "end": 11988.95, + "probability": 0.8889 + }, + { + "start": 11989.63, + "end": 11990.65, + "probability": 0.802 + }, + { + "start": 11990.67, + "end": 11993.43, + "probability": 0.7066 + }, + { + "start": 11994.87, + "end": 11997.93, + "probability": 0.9568 + }, + { + "start": 12000.71, + "end": 12003.59, + "probability": 0.8234 + }, + { + "start": 12004.79, + "end": 12009.77, + "probability": 0.9832 + }, + { + "start": 12010.95, + "end": 12011.65, + "probability": 0.956 + }, + { + "start": 12012.35, + "end": 12013.85, + "probability": 0.8179 + }, + { + "start": 12015.71, + "end": 12018.95, + "probability": 0.9633 + }, + { + "start": 12019.03, + "end": 12019.45, + "probability": 0.9416 + }, + { + "start": 12019.47, + "end": 12022.47, + "probability": 0.9947 + }, + { + "start": 12022.57, + "end": 12022.89, + "probability": 0.8394 + }, + { + "start": 12023.51, + "end": 12026.85, + "probability": 0.9965 + }, + { + "start": 12027.75, + "end": 12030.85, + "probability": 0.9622 + }, + { + "start": 12031.53, + "end": 12032.91, + "probability": 0.8571 + }, + { + "start": 12033.51, + "end": 12035.07, + "probability": 0.8962 + }, + { + "start": 12036.27, + "end": 12037.17, + "probability": 0.628 + }, + { + "start": 12039.95, + "end": 12040.95, + "probability": 0.7676 + }, + { + "start": 12043.19, + "end": 12044.27, + "probability": 0.9519 + }, + { + "start": 12045.31, + "end": 12045.85, + "probability": 0.9773 + }, + { + "start": 12047.05, + "end": 12048.75, + "probability": 0.9648 + }, + { + "start": 12050.41, + "end": 12051.39, + "probability": 0.9995 + }, + { + "start": 12053.25, + "end": 12055.01, + "probability": 0.9118 + }, + { + "start": 12056.13, + "end": 12060.27, + "probability": 0.9612 + }, + { + "start": 12060.33, + "end": 12062.67, + "probability": 0.9905 + }, + { + "start": 12063.65, + "end": 12064.47, + "probability": 0.5104 + }, + { + "start": 12064.75, + "end": 12067.17, + "probability": 0.9294 + }, + { + "start": 12067.25, + "end": 12067.77, + "probability": 0.8786 + }, + { + "start": 12067.83, + "end": 12068.19, + "probability": 0.5333 + }, + { + "start": 12069.06, + "end": 12071.61, + "probability": 0.5894 + }, + { + "start": 12073.17, + "end": 12074.75, + "probability": 0.736 + }, + { + "start": 12076.41, + "end": 12078.89, + "probability": 0.9203 + }, + { + "start": 12079.57, + "end": 12085.15, + "probability": 0.9723 + }, + { + "start": 12085.97, + "end": 12088.19, + "probability": 0.965 + }, + { + "start": 12089.93, + "end": 12090.77, + "probability": 0.6806 + }, + { + "start": 12091.99, + "end": 12093.87, + "probability": 0.8587 + }, + { + "start": 12094.01, + "end": 12095.85, + "probability": 0.7749 + }, + { + "start": 12096.33, + "end": 12097.89, + "probability": 0.9028 + }, + { + "start": 12098.47, + "end": 12100.87, + "probability": 0.8436 + }, + { + "start": 12100.87, + "end": 12106.85, + "probability": 0.9911 + }, + { + "start": 12107.39, + "end": 12108.05, + "probability": 0.4549 + }, + { + "start": 12108.79, + "end": 12110.73, + "probability": 0.9738 + }, + { + "start": 12111.23, + "end": 12112.61, + "probability": 0.6672 + }, + { + "start": 12113.23, + "end": 12114.75, + "probability": 0.9083 + }, + { + "start": 12114.83, + "end": 12117.95, + "probability": 0.9901 + }, + { + "start": 12118.67, + "end": 12118.67, + "probability": 0.1985 + }, + { + "start": 12118.83, + "end": 12118.83, + "probability": 0.3826 + }, + { + "start": 12118.83, + "end": 12121.37, + "probability": 0.6857 + }, + { + "start": 12121.69, + "end": 12124.03, + "probability": 0.0637 + }, + { + "start": 12124.03, + "end": 12124.13, + "probability": 0.0025 + }, + { + "start": 12124.13, + "end": 12124.89, + "probability": 0.4798 + }, + { + "start": 12124.91, + "end": 12125.29, + "probability": 0.5369 + }, + { + "start": 12125.29, + "end": 12128.23, + "probability": 0.9878 + }, + { + "start": 12128.26, + "end": 12131.41, + "probability": 0.9157 + }, + { + "start": 12133.71, + "end": 12140.01, + "probability": 0.9747 + }, + { + "start": 12140.29, + "end": 12142.77, + "probability": 0.8492 + }, + { + "start": 12142.85, + "end": 12144.09, + "probability": 0.9932 + }, + { + "start": 12144.17, + "end": 12147.79, + "probability": 0.9459 + }, + { + "start": 12147.95, + "end": 12149.31, + "probability": 0.846 + }, + { + "start": 12150.45, + "end": 12151.93, + "probability": 0.5115 + }, + { + "start": 12151.93, + "end": 12152.81, + "probability": 0.1191 + }, + { + "start": 12152.81, + "end": 12153.54, + "probability": 0.8642 + }, + { + "start": 12154.09, + "end": 12155.79, + "probability": 0.7319 + }, + { + "start": 12161.68, + "end": 12163.81, + "probability": 0.8389 + }, + { + "start": 12165.82, + "end": 12167.29, + "probability": 0.7291 + }, + { + "start": 12168.61, + "end": 12171.01, + "probability": 0.9974 + }, + { + "start": 12171.65, + "end": 12173.23, + "probability": 0.9015 + }, + { + "start": 12174.03, + "end": 12176.27, + "probability": 0.9944 + }, + { + "start": 12176.95, + "end": 12178.49, + "probability": 0.988 + }, + { + "start": 12178.63, + "end": 12179.77, + "probability": 0.8624 + }, + { + "start": 12180.45, + "end": 12182.55, + "probability": 0.7173 + }, + { + "start": 12183.09, + "end": 12185.99, + "probability": 0.8029 + }, + { + "start": 12194.03, + "end": 12194.45, + "probability": 0.3989 + }, + { + "start": 12194.45, + "end": 12194.87, + "probability": 0.9543 + }, + { + "start": 12195.17, + "end": 12195.27, + "probability": 0.2603 + }, + { + "start": 12195.41, + "end": 12195.77, + "probability": 0.8876 + }, + { + "start": 12195.85, + "end": 12196.59, + "probability": 0.9186 + }, + { + "start": 12196.77, + "end": 12197.75, + "probability": 0.628 + }, + { + "start": 12197.85, + "end": 12198.57, + "probability": 0.5743 + }, + { + "start": 12198.69, + "end": 12199.18, + "probability": 0.4197 + }, + { + "start": 12199.25, + "end": 12199.69, + "probability": 0.7963 + }, + { + "start": 12199.81, + "end": 12199.99, + "probability": 0.4656 + }, + { + "start": 12200.19, + "end": 12202.33, + "probability": 0.9718 + }, + { + "start": 12204.75, + "end": 12206.37, + "probability": 0.9354 + }, + { + "start": 12206.49, + "end": 12209.87, + "probability": 0.8542 + }, + { + "start": 12209.91, + "end": 12210.59, + "probability": 0.9286 + }, + { + "start": 12210.63, + "end": 12211.35, + "probability": 0.8894 + }, + { + "start": 12211.45, + "end": 12212.35, + "probability": 0.8382 + }, + { + "start": 12212.71, + "end": 12217.07, + "probability": 0.9873 + }, + { + "start": 12217.87, + "end": 12221.91, + "probability": 0.9895 + }, + { + "start": 12222.63, + "end": 12223.17, + "probability": 0.5674 + }, + { + "start": 12223.91, + "end": 12229.15, + "probability": 0.988 + }, + { + "start": 12229.91, + "end": 12233.65, + "probability": 0.8766 + }, + { + "start": 12233.8, + "end": 12234.23, + "probability": 0.974 + }, + { + "start": 12234.85, + "end": 12235.67, + "probability": 0.8166 + }, + { + "start": 12236.51, + "end": 12237.63, + "probability": 0.7668 + }, + { + "start": 12238.39, + "end": 12241.85, + "probability": 0.9922 + }, + { + "start": 12242.73, + "end": 12243.83, + "probability": 0.9827 + }, + { + "start": 12244.71, + "end": 12244.83, + "probability": 0.2611 + }, + { + "start": 12244.95, + "end": 12248.25, + "probability": 0.9671 + }, + { + "start": 12248.33, + "end": 12248.85, + "probability": 0.9292 + }, + { + "start": 12249.93, + "end": 12252.39, + "probability": 0.9846 + }, + { + "start": 12253.03, + "end": 12255.49, + "probability": 0.9727 + }, + { + "start": 12255.55, + "end": 12256.15, + "probability": 0.8901 + }, + { + "start": 12256.21, + "end": 12258.55, + "probability": 0.9806 + }, + { + "start": 12259.17, + "end": 12262.33, + "probability": 0.9862 + }, + { + "start": 12262.45, + "end": 12263.11, + "probability": 0.8463 + }, + { + "start": 12263.23, + "end": 12265.49, + "probability": 0.9651 + }, + { + "start": 12265.57, + "end": 12266.12, + "probability": 0.8563 + }, + { + "start": 12266.33, + "end": 12268.91, + "probability": 0.9326 + }, + { + "start": 12269.29, + "end": 12270.63, + "probability": 0.9753 + }, + { + "start": 12270.83, + "end": 12275.07, + "probability": 0.9842 + }, + { + "start": 12275.19, + "end": 12275.55, + "probability": 0.6112 + }, + { + "start": 12276.01, + "end": 12276.51, + "probability": 0.7494 + }, + { + "start": 12276.61, + "end": 12278.94, + "probability": 0.9958 + }, + { + "start": 12279.05, + "end": 12280.41, + "probability": 0.8927 + }, + { + "start": 12280.77, + "end": 12282.99, + "probability": 0.9616 + }, + { + "start": 12282.99, + "end": 12287.09, + "probability": 0.9087 + }, + { + "start": 12287.13, + "end": 12287.49, + "probability": 0.5051 + }, + { + "start": 12288.15, + "end": 12289.87, + "probability": 0.9469 + }, + { + "start": 12290.01, + "end": 12291.59, + "probability": 0.6968 + }, + { + "start": 12291.73, + "end": 12292.45, + "probability": 0.8652 + }, + { + "start": 12292.59, + "end": 12292.75, + "probability": 0.8486 + }, + { + "start": 12292.79, + "end": 12295.16, + "probability": 0.9589 + }, + { + "start": 12295.35, + "end": 12296.39, + "probability": 0.9576 + }, + { + "start": 12296.65, + "end": 12298.83, + "probability": 0.9952 + }, + { + "start": 12298.91, + "end": 12299.67, + "probability": 0.7376 + }, + { + "start": 12299.81, + "end": 12300.37, + "probability": 0.6822 + }, + { + "start": 12300.93, + "end": 12303.23, + "probability": 0.9988 + }, + { + "start": 12303.87, + "end": 12305.31, + "probability": 0.9913 + }, + { + "start": 12305.41, + "end": 12307.97, + "probability": 0.9959 + }, + { + "start": 12308.49, + "end": 12310.73, + "probability": 0.9272 + }, + { + "start": 12311.19, + "end": 12313.43, + "probability": 0.97 + }, + { + "start": 12314.19, + "end": 12315.29, + "probability": 0.6138 + }, + { + "start": 12316.35, + "end": 12316.77, + "probability": 0.7273 + }, + { + "start": 12316.83, + "end": 12319.19, + "probability": 0.9664 + }, + { + "start": 12319.69, + "end": 12326.95, + "probability": 0.9778 + }, + { + "start": 12327.83, + "end": 12331.59, + "probability": 0.8892 + }, + { + "start": 12331.91, + "end": 12333.58, + "probability": 0.9961 + }, + { + "start": 12333.93, + "end": 12335.31, + "probability": 0.8942 + }, + { + "start": 12335.31, + "end": 12335.97, + "probability": 0.7567 + }, + { + "start": 12336.31, + "end": 12339.29, + "probability": 0.9965 + }, + { + "start": 12339.29, + "end": 12341.81, + "probability": 0.9784 + }, + { + "start": 12342.19, + "end": 12342.19, + "probability": 0.1038 + }, + { + "start": 12342.19, + "end": 12344.87, + "probability": 0.8958 + }, + { + "start": 12345.61, + "end": 12347.43, + "probability": 0.9821 + }, + { + "start": 12347.79, + "end": 12349.95, + "probability": 0.9912 + }, + { + "start": 12350.85, + "end": 12351.99, + "probability": 0.8635 + }, + { + "start": 12352.51, + "end": 12354.69, + "probability": 0.9736 + }, + { + "start": 12354.79, + "end": 12356.59, + "probability": 0.6031 + }, + { + "start": 12356.71, + "end": 12357.49, + "probability": 0.5856 + }, + { + "start": 12358.43, + "end": 12361.81, + "probability": 0.8719 + }, + { + "start": 12362.4, + "end": 12363.27, + "probability": 0.282 + }, + { + "start": 12363.41, + "end": 12365.17, + "probability": 0.8867 + }, + { + "start": 12365.63, + "end": 12368.47, + "probability": 0.9945 + }, + { + "start": 12369.23, + "end": 12371.01, + "probability": 0.7429 + }, + { + "start": 12371.17, + "end": 12374.51, + "probability": 0.9803 + }, + { + "start": 12374.65, + "end": 12377.83, + "probability": 0.6803 + }, + { + "start": 12377.83, + "end": 12377.85, + "probability": 0.0599 + }, + { + "start": 12377.85, + "end": 12378.33, + "probability": 0.2287 + }, + { + "start": 12378.39, + "end": 12380.87, + "probability": 0.7878 + }, + { + "start": 12382.01, + "end": 12382.91, + "probability": 0.5965 + }, + { + "start": 12383.69, + "end": 12385.85, + "probability": 0.8128 + }, + { + "start": 12385.93, + "end": 12388.12, + "probability": 0.9978 + }, + { + "start": 12388.51, + "end": 12391.39, + "probability": 0.8826 + }, + { + "start": 12391.75, + "end": 12394.47, + "probability": 0.7285 + }, + { + "start": 12394.61, + "end": 12396.89, + "probability": 0.8639 + }, + { + "start": 12397.21, + "end": 12398.19, + "probability": 0.5953 + }, + { + "start": 12399.39, + "end": 12401.05, + "probability": 0.9862 + }, + { + "start": 12401.13, + "end": 12402.17, + "probability": 0.5513 + }, + { + "start": 12402.73, + "end": 12404.65, + "probability": 0.8481 + }, + { + "start": 12405.13, + "end": 12405.61, + "probability": 0.8363 + }, + { + "start": 12405.67, + "end": 12406.45, + "probability": 0.9811 + }, + { + "start": 12407.13, + "end": 12407.79, + "probability": 0.9265 + }, + { + "start": 12408.13, + "end": 12410.24, + "probability": 0.7225 + }, + { + "start": 12411.07, + "end": 12413.29, + "probability": 0.9873 + }, + { + "start": 12413.89, + "end": 12416.51, + "probability": 0.9933 + }, + { + "start": 12416.59, + "end": 12416.99, + "probability": 0.5448 + }, + { + "start": 12417.47, + "end": 12420.73, + "probability": 0.9907 + }, + { + "start": 12422.61, + "end": 12425.53, + "probability": 0.9752 + }, + { + "start": 12426.17, + "end": 12427.16, + "probability": 0.797 + }, + { + "start": 12427.67, + "end": 12429.75, + "probability": 0.9814 + }, + { + "start": 12430.63, + "end": 12432.67, + "probability": 0.5633 + }, + { + "start": 12432.71, + "end": 12434.28, + "probability": 0.7156 + }, + { + "start": 12434.57, + "end": 12435.97, + "probability": 0.801 + }, + { + "start": 12436.47, + "end": 12437.61, + "probability": 0.772 + }, + { + "start": 12437.71, + "end": 12443.37, + "probability": 0.905 + }, + { + "start": 12444.05, + "end": 12444.85, + "probability": 0.8431 + }, + { + "start": 12445.59, + "end": 12448.13, + "probability": 0.9525 + }, + { + "start": 12448.81, + "end": 12450.93, + "probability": 0.9453 + }, + { + "start": 12451.61, + "end": 12453.07, + "probability": 0.9762 + }, + { + "start": 12453.27, + "end": 12456.73, + "probability": 0.8864 + }, + { + "start": 12457.73, + "end": 12458.66, + "probability": 0.9961 + }, + { + "start": 12458.83, + "end": 12460.3, + "probability": 0.9724 + }, + { + "start": 12460.93, + "end": 12461.29, + "probability": 0.8878 + }, + { + "start": 12462.11, + "end": 12463.81, + "probability": 0.808 + }, + { + "start": 12464.61, + "end": 12468.77, + "probability": 0.9655 + }, + { + "start": 12469.57, + "end": 12471.13, + "probability": 0.9557 + }, + { + "start": 12471.51, + "end": 12473.2, + "probability": 0.9971 + }, + { + "start": 12473.55, + "end": 12475.85, + "probability": 0.9691 + }, + { + "start": 12476.37, + "end": 12476.83, + "probability": 0.5975 + }, + { + "start": 12476.97, + "end": 12477.05, + "probability": 0.6201 + }, + { + "start": 12477.13, + "end": 12477.61, + "probability": 0.5604 + }, + { + "start": 12477.67, + "end": 12480.87, + "probability": 0.5372 + }, + { + "start": 12480.87, + "end": 12483.47, + "probability": 0.9862 + }, + { + "start": 12483.53, + "end": 12484.89, + "probability": 0.6518 + }, + { + "start": 12485.03, + "end": 12485.23, + "probability": 0.5416 + }, + { + "start": 12485.55, + "end": 12486.11, + "probability": 0.5642 + }, + { + "start": 12486.19, + "end": 12486.55, + "probability": 0.0034 + }, + { + "start": 12486.67, + "end": 12486.91, + "probability": 0.2945 + }, + { + "start": 12486.91, + "end": 12487.7, + "probability": 0.8875 + }, + { + "start": 12487.75, + "end": 12488.53, + "probability": 0.8947 + }, + { + "start": 12488.53, + "end": 12488.87, + "probability": 0.9622 + }, + { + "start": 12488.95, + "end": 12490.37, + "probability": 0.9761 + }, + { + "start": 12490.61, + "end": 12490.85, + "probability": 0.4468 + }, + { + "start": 12491.17, + "end": 12491.55, + "probability": 0.6956 + }, + { + "start": 12491.93, + "end": 12494.6, + "probability": 0.9935 + }, + { + "start": 12495.17, + "end": 12496.99, + "probability": 0.6552 + }, + { + "start": 12497.91, + "end": 12499.65, + "probability": 0.9768 + }, + { + "start": 12499.87, + "end": 12500.9, + "probability": 0.9927 + }, + { + "start": 12502.07, + "end": 12505.2, + "probability": 0.9403 + }, + { + "start": 12505.23, + "end": 12509.33, + "probability": 0.9979 + }, + { + "start": 12509.73, + "end": 12513.13, + "probability": 0.9976 + }, + { + "start": 12513.77, + "end": 12514.73, + "probability": 0.9919 + }, + { + "start": 12515.57, + "end": 12516.11, + "probability": 0.7638 + }, + { + "start": 12516.27, + "end": 12517.51, + "probability": 0.9786 + }, + { + "start": 12517.61, + "end": 12517.97, + "probability": 0.8692 + }, + { + "start": 12518.01, + "end": 12518.87, + "probability": 0.8542 + }, + { + "start": 12519.57, + "end": 12520.41, + "probability": 0.993 + }, + { + "start": 12521.25, + "end": 12523.85, + "probability": 0.9756 + }, + { + "start": 12524.25, + "end": 12525.97, + "probability": 0.9971 + }, + { + "start": 12526.21, + "end": 12527.55, + "probability": 0.9742 + }, + { + "start": 12527.69, + "end": 12533.01, + "probability": 0.9251 + }, + { + "start": 12533.17, + "end": 12533.47, + "probability": 0.1848 + }, + { + "start": 12533.57, + "end": 12534.03, + "probability": 0.7988 + }, + { + "start": 12534.43, + "end": 12536.43, + "probability": 0.9141 + }, + { + "start": 12536.51, + "end": 12537.09, + "probability": 0.7105 + }, + { + "start": 12537.17, + "end": 12538.08, + "probability": 0.7782 + }, + { + "start": 12538.23, + "end": 12538.41, + "probability": 0.704 + }, + { + "start": 12538.47, + "end": 12539.65, + "probability": 0.9214 + }, + { + "start": 12540.09, + "end": 12540.85, + "probability": 0.7461 + }, + { + "start": 12541.43, + "end": 12542.33, + "probability": 0.9261 + }, + { + "start": 12542.37, + "end": 12543.33, + "probability": 0.9468 + }, + { + "start": 12543.37, + "end": 12544.39, + "probability": 0.8062 + }, + { + "start": 12544.97, + "end": 12546.39, + "probability": 0.9664 + }, + { + "start": 12547.09, + "end": 12549.67, + "probability": 0.988 + }, + { + "start": 12550.63, + "end": 12551.73, + "probability": 0.9218 + }, + { + "start": 12552.05, + "end": 12553.45, + "probability": 0.9698 + }, + { + "start": 12553.55, + "end": 12554.75, + "probability": 0.9651 + }, + { + "start": 12555.53, + "end": 12556.43, + "probability": 0.9531 + }, + { + "start": 12556.77, + "end": 12557.69, + "probability": 0.9306 + }, + { + "start": 12557.83, + "end": 12559.55, + "probability": 0.7546 + }, + { + "start": 12560.53, + "end": 12562.25, + "probability": 0.9121 + }, + { + "start": 12563.13, + "end": 12564.03, + "probability": 0.9002 + }, + { + "start": 12564.83, + "end": 12565.85, + "probability": 0.9937 + }, + { + "start": 12566.05, + "end": 12566.37, + "probability": 0.6827 + }, + { + "start": 12566.47, + "end": 12567.73, + "probability": 0.9917 + }, + { + "start": 12568.25, + "end": 12568.81, + "probability": 0.7842 + }, + { + "start": 12569.21, + "end": 12570.81, + "probability": 0.6351 + }, + { + "start": 12570.89, + "end": 12571.53, + "probability": 0.2452 + }, + { + "start": 12571.53, + "end": 12571.77, + "probability": 0.5375 + }, + { + "start": 12572.71, + "end": 12573.05, + "probability": 0.5883 + }, + { + "start": 12573.09, + "end": 12574.47, + "probability": 0.8984 + }, + { + "start": 12574.55, + "end": 12575.85, + "probability": 0.2124 + }, + { + "start": 12575.87, + "end": 12578.05, + "probability": 0.4664 + }, + { + "start": 12578.65, + "end": 12579.11, + "probability": 0.1287 + }, + { + "start": 12579.11, + "end": 12582.04, + "probability": 0.7456 + }, + { + "start": 12584.63, + "end": 12585.03, + "probability": 0.6572 + }, + { + "start": 12586.01, + "end": 12587.17, + "probability": 0.8677 + }, + { + "start": 12588.33, + "end": 12589.87, + "probability": 0.6438 + }, + { + "start": 12590.43, + "end": 12590.43, + "probability": 0.1674 + }, + { + "start": 12590.43, + "end": 12591.59, + "probability": 0.3801 + }, + { + "start": 12592.03, + "end": 12592.37, + "probability": 0.2329 + }, + { + "start": 12592.55, + "end": 12594.65, + "probability": 0.3518 + }, + { + "start": 12595.7, + "end": 12597.77, + "probability": 0.4111 + }, + { + "start": 12597.77, + "end": 12598.69, + "probability": 0.6112 + }, + { + "start": 12598.69, + "end": 12602.47, + "probability": 0.8971 + }, + { + "start": 12602.99, + "end": 12603.43, + "probability": 0.9204 + }, + { + "start": 12603.59, + "end": 12608.07, + "probability": 0.5031 + }, + { + "start": 12608.33, + "end": 12609.22, + "probability": 0.4547 + }, + { + "start": 12623.73, + "end": 12625.33, + "probability": 0.3799 + }, + { + "start": 12626.37, + "end": 12626.72, + "probability": 0.3635 + }, + { + "start": 12627.31, + "end": 12627.63, + "probability": 0.0582 + }, + { + "start": 12627.63, + "end": 12627.69, + "probability": 0.1082 + }, + { + "start": 12627.69, + "end": 12628.05, + "probability": 0.0181 + }, + { + "start": 12628.61, + "end": 12631.23, + "probability": 0.0216 + }, + { + "start": 12631.37, + "end": 12632.55, + "probability": 0.037 + }, + { + "start": 12635.11, + "end": 12636.75, + "probability": 0.0465 + }, + { + "start": 12641.41, + "end": 12643.97, + "probability": 0.0193 + }, + { + "start": 12646.25, + "end": 12650.05, + "probability": 0.0161 + }, + { + "start": 12650.09, + "end": 12650.09, + "probability": 0.0395 + }, + { + "start": 12650.09, + "end": 12650.49, + "probability": 0.1241 + }, + { + "start": 12650.49, + "end": 12650.95, + "probability": 0.0094 + }, + { + "start": 12651.97, + "end": 12652.83, + "probability": 0.0517 + }, + { + "start": 12655.32, + "end": 12656.17, + "probability": 0.1931 + }, + { + "start": 12656.17, + "end": 12656.81, + "probability": 0.3175 + }, + { + "start": 12657.19, + "end": 12660.07, + "probability": 0.394 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12666.0, + "end": 12666.0, + "probability": 0.0 + }, + { + "start": 12671.38, + "end": 12673.54, + "probability": 0.1795 + }, + { + "start": 12673.54, + "end": 12673.74, + "probability": 0.3051 + }, + { + "start": 12673.74, + "end": 12673.74, + "probability": 0.272 + }, + { + "start": 12674.0, + "end": 12676.01, + "probability": 0.2386 + }, + { + "start": 12681.46, + "end": 12682.74, + "probability": 0.0543 + }, + { + "start": 12682.74, + "end": 12682.82, + "probability": 0.0275 + }, + { + "start": 12682.82, + "end": 12683.42, + "probability": 0.1455 + }, + { + "start": 12685.45, + "end": 12686.9, + "probability": 0.0413 + }, + { + "start": 12686.9, + "end": 12690.47, + "probability": 0.0334 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12794.0, + "end": 12794.0, + "probability": 0.0 + }, + { + "start": 12796.36, + "end": 12800.52, + "probability": 0.0207 + }, + { + "start": 12801.26, + "end": 12802.3, + "probability": 0.0536 + }, + { + "start": 12802.34, + "end": 12803.06, + "probability": 0.0659 + }, + { + "start": 12803.26, + "end": 12809.8, + "probability": 0.0043 + }, + { + "start": 12810.06, + "end": 12810.82, + "probability": 0.1383 + }, + { + "start": 12810.94, + "end": 12811.08, + "probability": 0.0993 + }, + { + "start": 12811.08, + "end": 12811.38, + "probability": 0.113 + }, + { + "start": 12811.46, + "end": 12817.42, + "probability": 0.0461 + }, + { + "start": 12820.96, + "end": 12821.06, + "probability": 0.0117 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.0, + "end": 12918.0, + "probability": 0.0 + }, + { + "start": 12918.42, + "end": 12920.28, + "probability": 0.8182 + }, + { + "start": 12920.44, + "end": 12921.04, + "probability": 0.7876 + }, + { + "start": 12921.24, + "end": 12922.28, + "probability": 0.8298 + }, + { + "start": 12922.46, + "end": 12922.84, + "probability": 0.9663 + }, + { + "start": 12923.28, + "end": 12924.42, + "probability": 0.5517 + }, + { + "start": 12924.64, + "end": 12927.6, + "probability": 0.7874 + }, + { + "start": 12928.24, + "end": 12931.34, + "probability": 0.9683 + }, + { + "start": 12932.8, + "end": 12933.54, + "probability": 0.175 + }, + { + "start": 12933.64, + "end": 12934.7, + "probability": 0.4207 + }, + { + "start": 12935.74, + "end": 12936.94, + "probability": 0.841 + }, + { + "start": 12938.38, + "end": 12942.82, + "probability": 0.8774 + }, + { + "start": 12942.94, + "end": 12944.18, + "probability": 0.9435 + }, + { + "start": 12944.52, + "end": 12947.02, + "probability": 0.8495 + }, + { + "start": 12947.8, + "end": 12950.08, + "probability": 0.9297 + }, + { + "start": 12951.02, + "end": 12953.78, + "probability": 0.7961 + }, + { + "start": 12954.26, + "end": 12954.76, + "probability": 0.4293 + }, + { + "start": 12954.92, + "end": 12958.6, + "probability": 0.8732 + }, + { + "start": 12959.62, + "end": 12959.8, + "probability": 0.0123 + }, + { + "start": 12960.4, + "end": 12964.92, + "probability": 0.7805 + }, + { + "start": 12965.4, + "end": 12966.8, + "probability": 0.7371 + }, + { + "start": 12967.16, + "end": 12968.44, + "probability": 0.9738 + }, + { + "start": 12968.66, + "end": 12972.54, + "probability": 0.9142 + }, + { + "start": 12973.52, + "end": 12975.0, + "probability": 0.8438 + }, + { + "start": 12975.28, + "end": 12976.0, + "probability": 0.9219 + }, + { + "start": 12976.3, + "end": 12979.64, + "probability": 0.9622 + }, + { + "start": 12980.5, + "end": 12983.42, + "probability": 0.918 + }, + { + "start": 12986.42, + "end": 12987.08, + "probability": 0.5823 + }, + { + "start": 12987.54, + "end": 12990.56, + "probability": 0.9644 + }, + { + "start": 12990.68, + "end": 12993.74, + "probability": 0.7995 + }, + { + "start": 12994.6, + "end": 12997.2, + "probability": 0.7759 + }, + { + "start": 12997.64, + "end": 12998.99, + "probability": 0.9248 + }, + { + "start": 12999.7, + "end": 13003.12, + "probability": 0.8321 + }, + { + "start": 13003.68, + "end": 13005.26, + "probability": 0.9979 + }, + { + "start": 13005.9, + "end": 13007.42, + "probability": 0.191 + }, + { + "start": 13007.52, + "end": 13010.36, + "probability": 0.9159 + }, + { + "start": 13010.48, + "end": 13012.88, + "probability": 0.9268 + }, + { + "start": 13013.36, + "end": 13016.06, + "probability": 0.9845 + }, + { + "start": 13016.58, + "end": 13018.4, + "probability": 0.9238 + }, + { + "start": 13019.0, + "end": 13019.0, + "probability": 0.9312 + }, + { + "start": 13019.54, + "end": 13024.82, + "probability": 0.995 + }, + { + "start": 13025.48, + "end": 13027.58, + "probability": 0.8592 + }, + { + "start": 13028.14, + "end": 13030.34, + "probability": 0.9381 + }, + { + "start": 13030.88, + "end": 13032.12, + "probability": 0.9902 + }, + { + "start": 13033.52, + "end": 13035.9, + "probability": 0.7598 + }, + { + "start": 13036.08, + "end": 13039.9, + "probability": 0.9755 + }, + { + "start": 13040.44, + "end": 13041.08, + "probability": 0.4428 + }, + { + "start": 13041.22, + "end": 13042.0, + "probability": 0.9535 + }, + { + "start": 13042.56, + "end": 13044.78, + "probability": 0.8712 + }, + { + "start": 13045.64, + "end": 13046.4, + "probability": 0.9722 + }, + { + "start": 13046.48, + "end": 13048.18, + "probability": 0.9734 + }, + { + "start": 13048.28, + "end": 13050.36, + "probability": 0.9618 + }, + { + "start": 13050.46, + "end": 13051.26, + "probability": 0.6313 + }, + { + "start": 13051.36, + "end": 13051.76, + "probability": 0.5991 + }, + { + "start": 13051.9, + "end": 13052.6, + "probability": 0.481 + }, + { + "start": 13053.18, + "end": 13056.16, + "probability": 0.6763 + }, + { + "start": 13056.82, + "end": 13057.9, + "probability": 0.8261 + }, + { + "start": 13057.94, + "end": 13060.56, + "probability": 0.7945 + }, + { + "start": 13060.92, + "end": 13060.92, + "probability": 0.4533 + }, + { + "start": 13062.34, + "end": 13063.3, + "probability": 0.4346 + }, + { + "start": 13063.48, + "end": 13065.42, + "probability": 0.965 + }, + { + "start": 13066.0, + "end": 13068.88, + "probability": 0.9722 + }, + { + "start": 13069.16, + "end": 13073.48, + "probability": 0.9945 + }, + { + "start": 13073.48, + "end": 13075.5, + "probability": 0.9856 + }, + { + "start": 13075.9, + "end": 13076.46, + "probability": 0.5964 + }, + { + "start": 13076.7, + "end": 13077.8, + "probability": 0.8136 + }, + { + "start": 13077.86, + "end": 13081.1, + "probability": 0.9961 + }, + { + "start": 13081.1, + "end": 13086.44, + "probability": 0.6981 + }, + { + "start": 13086.5, + "end": 13087.26, + "probability": 0.9828 + }, + { + "start": 13088.1, + "end": 13089.03, + "probability": 0.887 + }, + { + "start": 13089.78, + "end": 13091.64, + "probability": 0.897 + }, + { + "start": 13092.18, + "end": 13094.04, + "probability": 0.2053 + }, + { + "start": 13094.04, + "end": 13096.9, + "probability": 0.6588 + }, + { + "start": 13097.48, + "end": 13098.68, + "probability": 0.3348 + }, + { + "start": 13098.68, + "end": 13099.6, + "probability": 0.8245 + }, + { + "start": 13099.68, + "end": 13101.32, + "probability": 0.7477 + }, + { + "start": 13101.92, + "end": 13104.1, + "probability": 0.944 + }, + { + "start": 13104.28, + "end": 13104.9, + "probability": 0.9651 + }, + { + "start": 13105.16, + "end": 13105.54, + "probability": 0.9204 + }, + { + "start": 13105.58, + "end": 13108.59, + "probability": 0.9862 + }, + { + "start": 13108.66, + "end": 13109.54, + "probability": 0.8698 + }, + { + "start": 13110.5, + "end": 13112.4, + "probability": 0.51 + }, + { + "start": 13112.56, + "end": 13113.48, + "probability": 0.1968 + }, + { + "start": 13113.86, + "end": 13117.56, + "probability": 0.9788 + }, + { + "start": 13117.74, + "end": 13120.76, + "probability": 0.9969 + }, + { + "start": 13121.16, + "end": 13123.44, + "probability": 0.9019 + }, + { + "start": 13123.74, + "end": 13124.44, + "probability": 0.6707 + }, + { + "start": 13125.24, + "end": 13126.9, + "probability": 0.9964 + }, + { + "start": 13127.06, + "end": 13128.2, + "probability": 0.5253 + }, + { + "start": 13128.3, + "end": 13128.86, + "probability": 0.9501 + }, + { + "start": 13129.28, + "end": 13131.28, + "probability": 0.9762 + }, + { + "start": 13131.98, + "end": 13133.04, + "probability": 0.9825 + }, + { + "start": 13133.08, + "end": 13134.18, + "probability": 0.9832 + }, + { + "start": 13136.3, + "end": 13139.26, + "probability": 0.9948 + }, + { + "start": 13139.26, + "end": 13139.26, + "probability": 0.1667 + }, + { + "start": 13139.26, + "end": 13141.08, + "probability": 0.0605 + }, + { + "start": 13141.18, + "end": 13141.93, + "probability": 0.5718 + }, + { + "start": 13144.72, + "end": 13145.3, + "probability": 0.3551 + }, + { + "start": 13146.12, + "end": 13147.04, + "probability": 0.4741 + }, + { + "start": 13147.28, + "end": 13150.1, + "probability": 0.7749 + }, + { + "start": 13150.14, + "end": 13151.92, + "probability": 0.7916 + }, + { + "start": 13152.06, + "end": 13153.28, + "probability": 0.0109 + }, + { + "start": 13153.6, + "end": 13154.8, + "probability": 0.6589 + }, + { + "start": 13155.48, + "end": 13157.42, + "probability": 0.9979 + }, + { + "start": 13157.72, + "end": 13158.88, + "probability": 0.4967 + }, + { + "start": 13159.02, + "end": 13159.48, + "probability": 0.6475 + }, + { + "start": 13160.24, + "end": 13160.78, + "probability": 0.6246 + }, + { + "start": 13160.94, + "end": 13162.34, + "probability": 0.8364 + }, + { + "start": 13162.38, + "end": 13163.9, + "probability": 0.5331 + }, + { + "start": 13164.68, + "end": 13165.45, + "probability": 0.9205 + }, + { + "start": 13165.92, + "end": 13168.12, + "probability": 0.9548 + }, + { + "start": 13169.24, + "end": 13171.36, + "probability": 0.7633 + }, + { + "start": 13171.74, + "end": 13174.48, + "probability": 0.9766 + }, + { + "start": 13175.56, + "end": 13176.54, + "probability": 0.7625 + }, + { + "start": 13176.78, + "end": 13179.24, + "probability": 0.9824 + }, + { + "start": 13180.02, + "end": 13182.74, + "probability": 0.7579 + }, + { + "start": 13183.68, + "end": 13187.84, + "probability": 0.992 + }, + { + "start": 13188.58, + "end": 13190.74, + "probability": 0.9974 + }, + { + "start": 13190.86, + "end": 13192.92, + "probability": 0.9056 + }, + { + "start": 13193.96, + "end": 13196.22, + "probability": 0.9827 + }, + { + "start": 13196.36, + "end": 13198.38, + "probability": 0.9399 + }, + { + "start": 13199.04, + "end": 13203.4, + "probability": 0.9592 + }, + { + "start": 13204.0, + "end": 13207.28, + "probability": 0.985 + }, + { + "start": 13208.12, + "end": 13210.52, + "probability": 0.9976 + }, + { + "start": 13210.52, + "end": 13212.82, + "probability": 0.9924 + }, + { + "start": 13213.62, + "end": 13214.16, + "probability": 0.8424 + }, + { + "start": 13214.78, + "end": 13216.32, + "probability": 0.5079 + }, + { + "start": 13216.52, + "end": 13217.84, + "probability": 0.8924 + }, + { + "start": 13218.06, + "end": 13219.32, + "probability": 0.8053 + }, + { + "start": 13219.72, + "end": 13220.66, + "probability": 0.8341 + }, + { + "start": 13220.78, + "end": 13224.8, + "probability": 0.9725 + }, + { + "start": 13225.72, + "end": 13226.82, + "probability": 0.7556 + }, + { + "start": 13226.92, + "end": 13228.86, + "probability": 0.6568 + }, + { + "start": 13228.94, + "end": 13232.66, + "probability": 0.9919 + }, + { + "start": 13233.22, + "end": 13234.02, + "probability": 0.6008 + }, + { + "start": 13234.12, + "end": 13237.94, + "probability": 0.9565 + }, + { + "start": 13238.0, + "end": 13242.06, + "probability": 0.9923 + }, + { + "start": 13242.52, + "end": 13243.08, + "probability": 0.6524 + }, + { + "start": 13243.2, + "end": 13244.0, + "probability": 0.8524 + }, + { + "start": 13244.12, + "end": 13248.7, + "probability": 0.9194 + }, + { + "start": 13249.68, + "end": 13252.04, + "probability": 0.9871 + }, + { + "start": 13252.14, + "end": 13252.44, + "probability": 0.8107 + }, + { + "start": 13253.5, + "end": 13256.18, + "probability": 0.8682 + }, + { + "start": 13257.18, + "end": 13259.96, + "probability": 0.9604 + }, + { + "start": 13262.14, + "end": 13262.52, + "probability": 0.2583 + }, + { + "start": 13263.46, + "end": 13263.82, + "probability": 0.3267 + }, + { + "start": 13265.38, + "end": 13266.18, + "probability": 0.8806 + }, + { + "start": 13267.0, + "end": 13274.68, + "probability": 0.9639 + }, + { + "start": 13275.88, + "end": 13280.36, + "probability": 0.9861 + }, + { + "start": 13280.36, + "end": 13283.98, + "probability": 0.9954 + }, + { + "start": 13285.14, + "end": 13286.64, + "probability": 0.8979 + }, + { + "start": 13289.16, + "end": 13290.86, + "probability": 0.9979 + }, + { + "start": 13290.9, + "end": 13291.39, + "probability": 0.8064 + }, + { + "start": 13292.36, + "end": 13293.7, + "probability": 0.9894 + }, + { + "start": 13296.06, + "end": 13296.64, + "probability": 0.8727 + }, + { + "start": 13297.38, + "end": 13297.62, + "probability": 0.4866 + }, + { + "start": 13298.8, + "end": 13301.58, + "probability": 0.8535 + }, + { + "start": 13302.76, + "end": 13304.6, + "probability": 0.7884 + }, + { + "start": 13304.6, + "end": 13307.22, + "probability": 0.6796 + }, + { + "start": 13307.82, + "end": 13308.72, + "probability": 0.8339 + }, + { + "start": 13308.76, + "end": 13310.06, + "probability": 0.8698 + }, + { + "start": 13310.62, + "end": 13311.12, + "probability": 0.5648 + }, + { + "start": 13311.66, + "end": 13313.18, + "probability": 0.9992 + }, + { + "start": 13313.36, + "end": 13315.2, + "probability": 0.9795 + }, + { + "start": 13316.02, + "end": 13317.2, + "probability": 0.9497 + }, + { + "start": 13317.22, + "end": 13319.58, + "probability": 0.981 + }, + { + "start": 13319.74, + "end": 13320.62, + "probability": 0.926 + }, + { + "start": 13320.74, + "end": 13321.86, + "probability": 0.9935 + }, + { + "start": 13323.12, + "end": 13324.26, + "probability": 0.3245 + }, + { + "start": 13324.26, + "end": 13326.56, + "probability": 0.9958 + }, + { + "start": 13326.78, + "end": 13329.96, + "probability": 0.9404 + }, + { + "start": 13330.7, + "end": 13331.72, + "probability": 0.8442 + }, + { + "start": 13331.86, + "end": 13331.96, + "probability": 0.1722 + }, + { + "start": 13331.96, + "end": 13334.87, + "probability": 0.8054 + }, + { + "start": 13335.46, + "end": 13337.9, + "probability": 0.8346 + }, + { + "start": 13337.98, + "end": 13339.0, + "probability": 0.7966 + }, + { + "start": 13339.22, + "end": 13340.68, + "probability": 0.748 + }, + { + "start": 13341.0, + "end": 13341.06, + "probability": 0.0117 + }, + { + "start": 13341.06, + "end": 13343.82, + "probability": 0.9279 + }, + { + "start": 13344.42, + "end": 13345.02, + "probability": 0.7525 + }, + { + "start": 13345.2, + "end": 13347.41, + "probability": 0.9702 + }, + { + "start": 13347.5, + "end": 13348.28, + "probability": 0.6691 + }, + { + "start": 13348.38, + "end": 13348.88, + "probability": 0.8305 + }, + { + "start": 13349.0, + "end": 13350.49, + "probability": 0.9951 + }, + { + "start": 13350.96, + "end": 13352.3, + "probability": 0.9801 + }, + { + "start": 13352.58, + "end": 13353.51, + "probability": 0.9698 + }, + { + "start": 13354.02, + "end": 13357.38, + "probability": 0.9568 + }, + { + "start": 13357.66, + "end": 13358.46, + "probability": 0.1223 + }, + { + "start": 13359.16, + "end": 13360.02, + "probability": 0.5202 + }, + { + "start": 13360.1, + "end": 13361.28, + "probability": 0.9684 + }, + { + "start": 13361.7, + "end": 13362.62, + "probability": 0.9721 + }, + { + "start": 13362.82, + "end": 13363.45, + "probability": 0.5762 + }, + { + "start": 13364.06, + "end": 13367.72, + "probability": 0.7922 + }, + { + "start": 13367.74, + "end": 13369.14, + "probability": 0.0159 + }, + { + "start": 13369.6, + "end": 13370.88, + "probability": 0.1052 + }, + { + "start": 13371.2, + "end": 13375.26, + "probability": 0.0886 + }, + { + "start": 13375.58, + "end": 13376.76, + "probability": 0.0284 + }, + { + "start": 13376.92, + "end": 13376.92, + "probability": 0.1863 + }, + { + "start": 13376.92, + "end": 13376.92, + "probability": 0.4198 + }, + { + "start": 13378.08, + "end": 13378.27, + "probability": 0.3905 + }, + { + "start": 13381.14, + "end": 13385.96, + "probability": 0.9658 + }, + { + "start": 13387.42, + "end": 13388.68, + "probability": 0.9328 + }, + { + "start": 13389.4, + "end": 13390.36, + "probability": 0.9277 + }, + { + "start": 13391.08, + "end": 13391.9, + "probability": 0.764 + }, + { + "start": 13393.66, + "end": 13394.78, + "probability": 0.748 + }, + { + "start": 13395.98, + "end": 13396.24, + "probability": 0.6736 + }, + { + "start": 13396.3, + "end": 13396.76, + "probability": 0.6665 + }, + { + "start": 13396.8, + "end": 13398.4, + "probability": 0.9825 + }, + { + "start": 13398.52, + "end": 13398.78, + "probability": 0.9269 + }, + { + "start": 13399.38, + "end": 13402.14, + "probability": 0.9532 + }, + { + "start": 13402.8, + "end": 13405.34, + "probability": 0.6475 + }, + { + "start": 13405.56, + "end": 13407.34, + "probability": 0.6343 + }, + { + "start": 13408.5, + "end": 13409.6, + "probability": 0.9347 + }, + { + "start": 13410.68, + "end": 13413.74, + "probability": 0.9691 + }, + { + "start": 13414.14, + "end": 13416.66, + "probability": 0.9092 + }, + { + "start": 13416.74, + "end": 13417.56, + "probability": 0.961 + }, + { + "start": 13417.76, + "end": 13418.34, + "probability": 0.6462 + }, + { + "start": 13418.76, + "end": 13420.42, + "probability": 0.9943 + }, + { + "start": 13420.6, + "end": 13421.04, + "probability": 0.675 + }, + { + "start": 13421.34, + "end": 13422.5, + "probability": 0.9786 + }, + { + "start": 13423.48, + "end": 13425.42, + "probability": 0.9755 + }, + { + "start": 13426.1, + "end": 13428.1, + "probability": 0.9843 + }, + { + "start": 13429.12, + "end": 13430.66, + "probability": 0.6787 + }, + { + "start": 13430.86, + "end": 13433.12, + "probability": 0.9912 + }, + { + "start": 13433.84, + "end": 13434.66, + "probability": 0.5606 + }, + { + "start": 13434.98, + "end": 13438.48, + "probability": 0.9007 + }, + { + "start": 13438.54, + "end": 13438.88, + "probability": 0.4283 + }, + { + "start": 13438.88, + "end": 13439.36, + "probability": 0.3789 + }, + { + "start": 13440.34, + "end": 13442.3, + "probability": 0.6852 + }, + { + "start": 13444.89, + "end": 13447.16, + "probability": 0.8885 + }, + { + "start": 13463.24, + "end": 13464.5, + "probability": 0.4529 + }, + { + "start": 13473.34, + "end": 13474.14, + "probability": 0.6553 + }, + { + "start": 13480.98, + "end": 13481.66, + "probability": 0.8042 + }, + { + "start": 13481.8, + "end": 13482.22, + "probability": 0.6826 + }, + { + "start": 13482.36, + "end": 13486.56, + "probability": 0.9715 + }, + { + "start": 13486.56, + "end": 13489.74, + "probability": 0.8923 + }, + { + "start": 13490.72, + "end": 13496.46, + "probability": 0.9971 + }, + { + "start": 13497.06, + "end": 13501.66, + "probability": 0.9588 + }, + { + "start": 13501.66, + "end": 13504.04, + "probability": 0.9833 + }, + { + "start": 13504.2, + "end": 13505.56, + "probability": 0.9888 + }, + { + "start": 13506.06, + "end": 13507.68, + "probability": 0.9609 + }, + { + "start": 13509.08, + "end": 13511.9, + "probability": 0.5324 + }, + { + "start": 13511.9, + "end": 13512.88, + "probability": 0.6654 + }, + { + "start": 13512.96, + "end": 13515.26, + "probability": 0.724 + }, + { + "start": 13515.7, + "end": 13518.86, + "probability": 0.9067 + }, + { + "start": 13522.58, + "end": 13522.64, + "probability": 0.0016 + }, + { + "start": 13527.12, + "end": 13528.0, + "probability": 0.1595 + }, + { + "start": 13528.18, + "end": 13530.72, + "probability": 0.6584 + }, + { + "start": 13530.9, + "end": 13531.26, + "probability": 0.1177 + }, + { + "start": 13531.84, + "end": 13532.32, + "probability": 0.1712 + }, + { + "start": 13532.56, + "end": 13533.2, + "probability": 0.2243 + }, + { + "start": 13533.24, + "end": 13534.5, + "probability": 0.665 + }, + { + "start": 13534.56, + "end": 13535.06, + "probability": 0.058 + }, + { + "start": 13535.62, + "end": 13537.64, + "probability": 0.1987 + }, + { + "start": 13537.72, + "end": 13538.08, + "probability": 0.3697 + }, + { + "start": 13538.12, + "end": 13541.02, + "probability": 0.9632 + }, + { + "start": 13541.06, + "end": 13542.16, + "probability": 0.5538 + }, + { + "start": 13542.66, + "end": 13546.88, + "probability": 0.8179 + }, + { + "start": 13546.98, + "end": 13548.56, + "probability": 0.9993 + }, + { + "start": 13550.98, + "end": 13551.34, + "probability": 0.2841 + }, + { + "start": 13551.34, + "end": 13551.34, + "probability": 0.0801 + }, + { + "start": 13551.34, + "end": 13552.12, + "probability": 0.5945 + }, + { + "start": 13552.2, + "end": 13554.6, + "probability": 0.9559 + }, + { + "start": 13554.66, + "end": 13554.76, + "probability": 0.7006 + }, + { + "start": 13556.82, + "end": 13560.54, + "probability": 0.9191 + }, + { + "start": 13560.94, + "end": 13562.34, + "probability": 0.7522 + }, + { + "start": 13562.4, + "end": 13565.66, + "probability": 0.8424 + }, + { + "start": 13567.22, + "end": 13567.9, + "probability": 0.5928 + }, + { + "start": 13567.98, + "end": 13568.08, + "probability": 0.7662 + }, + { + "start": 13568.38, + "end": 13570.04, + "probability": 0.9839 + }, + { + "start": 13570.18, + "end": 13570.6, + "probability": 0.967 + }, + { + "start": 13571.08, + "end": 13572.2, + "probability": 0.9272 + }, + { + "start": 13572.52, + "end": 13575.64, + "probability": 0.9841 + }, + { + "start": 13576.24, + "end": 13578.92, + "probability": 0.9479 + }, + { + "start": 13579.04, + "end": 13580.64, + "probability": 0.9184 + }, + { + "start": 13581.28, + "end": 13583.44, + "probability": 0.9281 + }, + { + "start": 13583.54, + "end": 13585.5, + "probability": 0.817 + }, + { + "start": 13585.58, + "end": 13586.46, + "probability": 0.9888 + }, + { + "start": 13586.94, + "end": 13590.56, + "probability": 0.995 + }, + { + "start": 13590.9, + "end": 13592.58, + "probability": 0.983 + }, + { + "start": 13593.92, + "end": 13594.32, + "probability": 0.8529 + }, + { + "start": 13594.42, + "end": 13594.74, + "probability": 0.8654 + }, + { + "start": 13594.86, + "end": 13596.28, + "probability": 0.9026 + }, + { + "start": 13596.36, + "end": 13597.34, + "probability": 0.9475 + }, + { + "start": 13597.46, + "end": 13600.16, + "probability": 0.9826 + }, + { + "start": 13600.32, + "end": 13601.36, + "probability": 0.7955 + }, + { + "start": 13601.38, + "end": 13603.1, + "probability": 0.8843 + }, + { + "start": 13604.1, + "end": 13605.6, + "probability": 0.989 + }, + { + "start": 13605.68, + "end": 13607.36, + "probability": 0.8768 + }, + { + "start": 13607.38, + "end": 13608.02, + "probability": 0.8812 + }, + { + "start": 13608.32, + "end": 13609.28, + "probability": 0.7228 + }, + { + "start": 13610.5, + "end": 13611.96, + "probability": 0.9677 + }, + { + "start": 13612.58, + "end": 13613.72, + "probability": 0.9265 + }, + { + "start": 13614.28, + "end": 13615.64, + "probability": 0.9445 + }, + { + "start": 13615.72, + "end": 13616.14, + "probability": 0.7026 + }, + { + "start": 13616.18, + "end": 13616.6, + "probability": 0.5143 + }, + { + "start": 13616.6, + "end": 13618.55, + "probability": 0.8606 + }, + { + "start": 13619.54, + "end": 13621.06, + "probability": 0.8922 + }, + { + "start": 13622.7, + "end": 13625.88, + "probability": 0.9858 + }, + { + "start": 13625.88, + "end": 13630.02, + "probability": 0.9875 + }, + { + "start": 13630.7, + "end": 13632.84, + "probability": 0.9948 + }, + { + "start": 13633.44, + "end": 13634.84, + "probability": 0.11 + }, + { + "start": 13634.94, + "end": 13635.84, + "probability": 0.5705 + }, + { + "start": 13636.0, + "end": 13636.02, + "probability": 0.058 + }, + { + "start": 13637.0, + "end": 13640.5, + "probability": 0.853 + }, + { + "start": 13641.86, + "end": 13643.78, + "probability": 0.9637 + }, + { + "start": 13644.0, + "end": 13645.58, + "probability": 0.9792 + }, + { + "start": 13646.12, + "end": 13647.74, + "probability": 0.9336 + }, + { + "start": 13647.92, + "end": 13649.88, + "probability": 0.9535 + }, + { + "start": 13650.31, + "end": 13654.74, + "probability": 0.7399 + }, + { + "start": 13655.26, + "end": 13656.08, + "probability": 0.6358 + }, + { + "start": 13656.22, + "end": 13656.54, + "probability": 0.8089 + }, + { + "start": 13656.62, + "end": 13657.84, + "probability": 0.8362 + }, + { + "start": 13657.98, + "end": 13658.44, + "probability": 0.8208 + }, + { + "start": 13658.78, + "end": 13660.24, + "probability": 0.8942 + }, + { + "start": 13660.4, + "end": 13660.92, + "probability": 0.5992 + }, + { + "start": 13660.94, + "end": 13661.5, + "probability": 0.6219 + }, + { + "start": 13661.5, + "end": 13662.5, + "probability": 0.0734 + }, + { + "start": 13662.62, + "end": 13663.56, + "probability": 0.6751 + }, + { + "start": 13663.76, + "end": 13665.86, + "probability": 0.3841 + }, + { + "start": 13665.96, + "end": 13666.06, + "probability": 0.0737 + }, + { + "start": 13666.06, + "end": 13667.12, + "probability": 0.7593 + }, + { + "start": 13667.14, + "end": 13668.7, + "probability": 0.6197 + }, + { + "start": 13668.94, + "end": 13671.94, + "probability": 0.7416 + }, + { + "start": 13672.42, + "end": 13675.72, + "probability": 0.8007 + }, + { + "start": 13675.76, + "end": 13677.42, + "probability": 0.9465 + }, + { + "start": 13677.66, + "end": 13679.72, + "probability": 0.9704 + }, + { + "start": 13680.08, + "end": 13682.4, + "probability": 0.879 + }, + { + "start": 13682.52, + "end": 13685.08, + "probability": 0.1534 + }, + { + "start": 13685.66, + "end": 13685.96, + "probability": 0.0564 + }, + { + "start": 13685.96, + "end": 13685.96, + "probability": 0.0579 + }, + { + "start": 13685.96, + "end": 13686.06, + "probability": 0.0107 + }, + { + "start": 13686.88, + "end": 13687.8, + "probability": 0.7818 + }, + { + "start": 13688.02, + "end": 13690.9, + "probability": 0.9067 + }, + { + "start": 13691.02, + "end": 13691.98, + "probability": 0.7085 + }, + { + "start": 13692.64, + "end": 13693.84, + "probability": 0.8805 + }, + { + "start": 13694.76, + "end": 13695.02, + "probability": 0.9669 + }, + { + "start": 13695.72, + "end": 13697.5, + "probability": 0.8451 + }, + { + "start": 13697.86, + "end": 13701.48, + "probability": 0.8792 + }, + { + "start": 13701.62, + "end": 13702.96, + "probability": 0.9619 + }, + { + "start": 13703.12, + "end": 13704.3, + "probability": 0.5542 + }, + { + "start": 13704.72, + "end": 13705.36, + "probability": 0.9891 + }, + { + "start": 13705.8, + "end": 13708.36, + "probability": 0.8936 + }, + { + "start": 13709.08, + "end": 13709.88, + "probability": 0.5341 + }, + { + "start": 13710.04, + "end": 13711.29, + "probability": 0.8867 + }, + { + "start": 13712.48, + "end": 13712.9, + "probability": 0.2866 + }, + { + "start": 13712.96, + "end": 13715.3, + "probability": 0.6278 + }, + { + "start": 13715.96, + "end": 13717.78, + "probability": 0.9819 + }, + { + "start": 13718.44, + "end": 13719.34, + "probability": 0.9866 + }, + { + "start": 13719.6, + "end": 13719.72, + "probability": 0.0165 + }, + { + "start": 13719.74, + "end": 13719.74, + "probability": 0.2537 + }, + { + "start": 13719.74, + "end": 13721.7, + "probability": 0.8372 + }, + { + "start": 13723.08, + "end": 13725.48, + "probability": 0.7063 + }, + { + "start": 13726.04, + "end": 13729.34, + "probability": 0.9748 + }, + { + "start": 13729.6, + "end": 13731.14, + "probability": 0.9918 + }, + { + "start": 13731.94, + "end": 13733.8, + "probability": 0.9671 + }, + { + "start": 13733.88, + "end": 13736.14, + "probability": 0.9937 + }, + { + "start": 13737.3, + "end": 13739.04, + "probability": 0.8851 + }, + { + "start": 13739.7, + "end": 13742.38, + "probability": 0.9952 + }, + { + "start": 13743.38, + "end": 13745.58, + "probability": 0.8676 + }, + { + "start": 13745.82, + "end": 13747.04, + "probability": 0.9547 + }, + { + "start": 13748.34, + "end": 13749.72, + "probability": 0.4111 + }, + { + "start": 13750.26, + "end": 13751.49, + "probability": 0.8607 + }, + { + "start": 13751.76, + "end": 13751.76, + "probability": 0.9034 + }, + { + "start": 13751.9, + "end": 13752.5, + "probability": 0.9423 + }, + { + "start": 13753.3, + "end": 13754.44, + "probability": 0.9946 + }, + { + "start": 13755.1, + "end": 13758.76, + "probability": 0.9857 + }, + { + "start": 13760.6, + "end": 13761.26, + "probability": 0.6247 + }, + { + "start": 13761.36, + "end": 13762.32, + "probability": 0.701 + }, + { + "start": 13763.02, + "end": 13764.34, + "probability": 0.7951 + }, + { + "start": 13764.5, + "end": 13766.32, + "probability": 0.8682 + }, + { + "start": 13766.94, + "end": 13768.92, + "probability": 0.9678 + }, + { + "start": 13769.82, + "end": 13773.96, + "probability": 0.9278 + }, + { + "start": 13774.1, + "end": 13775.84, + "probability": 0.492 + }, + { + "start": 13776.08, + "end": 13778.88, + "probability": 0.5028 + }, + { + "start": 13778.98, + "end": 13782.44, + "probability": 0.5644 + }, + { + "start": 13782.88, + "end": 13785.9, + "probability": 0.8589 + }, + { + "start": 13785.94, + "end": 13789.42, + "probability": 0.5281 + }, + { + "start": 13790.1, + "end": 13790.74, + "probability": 0.414 + }, + { + "start": 13791.02, + "end": 13791.92, + "probability": 0.5754 + }, + { + "start": 13791.92, + "end": 13793.68, + "probability": 0.6784 + }, + { + "start": 13793.74, + "end": 13794.24, + "probability": 0.7431 + }, + { + "start": 13794.42, + "end": 13794.64, + "probability": 0.2445 + }, + { + "start": 13794.72, + "end": 13795.86, + "probability": 0.1837 + }, + { + "start": 13796.0, + "end": 13796.42, + "probability": 0.2293 + }, + { + "start": 13796.54, + "end": 13797.4, + "probability": 0.1394 + }, + { + "start": 13797.46, + "end": 13798.34, + "probability": 0.2234 + }, + { + "start": 13799.08, + "end": 13799.92, + "probability": 0.0752 + }, + { + "start": 13800.06, + "end": 13801.76, + "probability": 0.582 + }, + { + "start": 13801.76, + "end": 13803.92, + "probability": 0.5881 + }, + { + "start": 13804.16, + "end": 13808.12, + "probability": 0.9103 + }, + { + "start": 13808.82, + "end": 13808.82, + "probability": 0.0748 + }, + { + "start": 13808.82, + "end": 13812.0, + "probability": 0.9956 + }, + { + "start": 13814.06, + "end": 13815.56, + "probability": 0.8327 + }, + { + "start": 13815.88, + "end": 13817.0, + "probability": 0.7497 + }, + { + "start": 13817.14, + "end": 13818.33, + "probability": 0.7491 + }, + { + "start": 13818.68, + "end": 13819.74, + "probability": 0.3204 + }, + { + "start": 13820.81, + "end": 13822.87, + "probability": 0.6456 + }, + { + "start": 13823.3, + "end": 13823.74, + "probability": 0.6757 + }, + { + "start": 13823.86, + "end": 13826.64, + "probability": 0.981 + }, + { + "start": 13826.64, + "end": 13829.96, + "probability": 0.9313 + }, + { + "start": 13830.18, + "end": 13831.06, + "probability": 0.5285 + }, + { + "start": 13831.2, + "end": 13833.16, + "probability": 0.8491 + }, + { + "start": 13833.38, + "end": 13835.92, + "probability": 0.9209 + }, + { + "start": 13836.2, + "end": 13836.9, + "probability": 0.8856 + }, + { + "start": 13837.52, + "end": 13840.0, + "probability": 0.994 + }, + { + "start": 13840.38, + "end": 13840.76, + "probability": 0.6763 + }, + { + "start": 13841.34, + "end": 13841.34, + "probability": 0.1867 + }, + { + "start": 13841.34, + "end": 13842.56, + "probability": 0.4666 + }, + { + "start": 13842.88, + "end": 13844.72, + "probability": 0.642 + }, + { + "start": 13844.72, + "end": 13847.16, + "probability": 0.9617 + }, + { + "start": 13847.24, + "end": 13847.96, + "probability": 0.9556 + }, + { + "start": 13849.42, + "end": 13853.14, + "probability": 0.7877 + }, + { + "start": 13856.11, + "end": 13859.9, + "probability": 0.6948 + }, + { + "start": 13861.62, + "end": 13864.02, + "probability": 0.5304 + }, + { + "start": 13864.16, + "end": 13866.14, + "probability": 0.0802 + }, + { + "start": 13866.24, + "end": 13866.8, + "probability": 0.2642 + }, + { + "start": 13870.73, + "end": 13876.49, + "probability": 0.3637 + }, + { + "start": 13877.13, + "end": 13879.2, + "probability": 0.9891 + }, + { + "start": 13879.68, + "end": 13880.17, + "probability": 0.6969 + }, + { + "start": 13880.62, + "end": 13884.24, + "probability": 0.8885 + }, + { + "start": 13884.32, + "end": 13888.68, + "probability": 0.9932 + }, + { + "start": 13889.16, + "end": 13895.02, + "probability": 0.6783 + }, + { + "start": 13895.1, + "end": 13899.8, + "probability": 0.9213 + }, + { + "start": 13900.18, + "end": 13903.4, + "probability": 0.9968 + }, + { + "start": 13903.72, + "end": 13906.36, + "probability": 0.7041 + }, + { + "start": 13906.76, + "end": 13910.48, + "probability": 0.9813 + }, + { + "start": 13910.6, + "end": 13912.12, + "probability": 0.9858 + }, + { + "start": 13912.52, + "end": 13913.61, + "probability": 0.6666 + }, + { + "start": 13914.06, + "end": 13917.82, + "probability": 0.986 + }, + { + "start": 13918.14, + "end": 13925.88, + "probability": 0.9844 + }, + { + "start": 13925.88, + "end": 13928.92, + "probability": 0.9863 + }, + { + "start": 13929.0, + "end": 13930.9, + "probability": 0.8617 + }, + { + "start": 13931.08, + "end": 13932.02, + "probability": 0.9823 + }, + { + "start": 13932.2, + "end": 13933.28, + "probability": 0.3874 + }, + { + "start": 13933.4, + "end": 13934.94, + "probability": 0.9649 + }, + { + "start": 13935.04, + "end": 13940.86, + "probability": 0.9769 + }, + { + "start": 13941.4, + "end": 13943.56, + "probability": 0.722 + }, + { + "start": 13944.56, + "end": 13951.12, + "probability": 0.4084 + }, + { + "start": 13951.86, + "end": 13953.8, + "probability": 0.1319 + }, + { + "start": 13954.94, + "end": 13957.49, + "probability": 0.8926 + }, + { + "start": 13957.66, + "end": 13957.94, + "probability": 0.3436 + }, + { + "start": 13959.18, + "end": 13961.72, + "probability": 0.7526 + }, + { + "start": 13961.84, + "end": 13963.98, + "probability": 0.5223 + }, + { + "start": 13965.1, + "end": 13967.28, + "probability": 0.2265 + }, + { + "start": 13969.06, + "end": 13971.6, + "probability": 0.1902 + }, + { + "start": 13972.56, + "end": 13976.04, + "probability": 0.5068 + }, + { + "start": 13976.68, + "end": 13977.66, + "probability": 0.1012 + }, + { + "start": 13987.54, + "end": 13990.04, + "probability": 0.2754 + }, + { + "start": 13991.3, + "end": 13992.96, + "probability": 0.359 + }, + { + "start": 13995.02, + "end": 13997.06, + "probability": 0.2473 + }, + { + "start": 13997.06, + "end": 13997.92, + "probability": 0.5262 + }, + { + "start": 13998.0, + "end": 13999.96, + "probability": 0.8724 + }, + { + "start": 14000.12, + "end": 14000.38, + "probability": 0.5414 + }, + { + "start": 14000.52, + "end": 14001.54, + "probability": 0.0222 + }, + { + "start": 14001.62, + "end": 14002.3, + "probability": 0.7283 + }, + { + "start": 14002.36, + "end": 14002.94, + "probability": 0.9553 + }, + { + "start": 14003.12, + "end": 14003.42, + "probability": 0.4025 + }, + { + "start": 14003.84, + "end": 14004.96, + "probability": 0.7387 + }, + { + "start": 14005.04, + "end": 14005.64, + "probability": 0.0526 + }, + { + "start": 14005.98, + "end": 14008.34, + "probability": 0.5036 + }, + { + "start": 14008.68, + "end": 14009.74, + "probability": 0.1112 + }, + { + "start": 14009.74, + "end": 14010.98, + "probability": 0.4439 + }, + { + "start": 14011.0, + "end": 14011.56, + "probability": 0.1041 + }, + { + "start": 14011.56, + "end": 14013.4, + "probability": 0.3437 + }, + { + "start": 14013.52, + "end": 14014.24, + "probability": 0.4998 + }, + { + "start": 14014.66, + "end": 14017.82, + "probability": 0.776 + }, + { + "start": 14017.88, + "end": 14019.0, + "probability": 0.5548 + }, + { + "start": 14019.12, + "end": 14019.8, + "probability": 0.14 + }, + { + "start": 14020.12, + "end": 14021.56, + "probability": 0.5809 + }, + { + "start": 14022.02, + "end": 14022.76, + "probability": 0.2362 + }, + { + "start": 14022.94, + "end": 14023.18, + "probability": 0.0766 + }, + { + "start": 14023.22, + "end": 14023.22, + "probability": 0.4529 + }, + { + "start": 14023.34, + "end": 14025.37, + "probability": 0.5938 + }, + { + "start": 14025.58, + "end": 14030.22, + "probability": 0.7796 + }, + { + "start": 14030.46, + "end": 14033.02, + "probability": 0.8809 + }, + { + "start": 14034.18, + "end": 14039.74, + "probability": 0.9611 + }, + { + "start": 14040.44, + "end": 14042.08, + "probability": 0.9262 + }, + { + "start": 14042.62, + "end": 14044.52, + "probability": 0.9816 + }, + { + "start": 14045.42, + "end": 14046.42, + "probability": 0.8909 + }, + { + "start": 14046.5, + "end": 14048.58, + "probability": 0.9537 + }, + { + "start": 14048.74, + "end": 14049.56, + "probability": 0.9778 + }, + { + "start": 14049.7, + "end": 14054.46, + "probability": 0.9976 + }, + { + "start": 14054.52, + "end": 14055.42, + "probability": 0.9585 + }, + { + "start": 14055.82, + "end": 14058.52, + "probability": 0.7694 + }, + { + "start": 14058.92, + "end": 14062.22, + "probability": 0.9175 + }, + { + "start": 14062.7, + "end": 14063.84, + "probability": 0.8892 + }, + { + "start": 14064.06, + "end": 14065.18, + "probability": 0.9595 + }, + { + "start": 14065.46, + "end": 14070.86, + "probability": 0.9949 + }, + { + "start": 14071.24, + "end": 14073.42, + "probability": 0.8222 + }, + { + "start": 14073.74, + "end": 14076.34, + "probability": 0.9096 + }, + { + "start": 14076.66, + "end": 14078.86, + "probability": 0.9799 + }, + { + "start": 14079.64, + "end": 14082.0, + "probability": 0.8275 + }, + { + "start": 14082.26, + "end": 14082.68, + "probability": 0.6763 + }, + { + "start": 14082.74, + "end": 14083.8, + "probability": 0.8057 + }, + { + "start": 14083.86, + "end": 14088.2, + "probability": 0.9341 + }, + { + "start": 14088.4, + "end": 14088.96, + "probability": 0.6281 + }, + { + "start": 14088.96, + "end": 14089.98, + "probability": 0.3914 + }, + { + "start": 14089.98, + "end": 14091.8, + "probability": 0.8978 + }, + { + "start": 14093.2, + "end": 14095.62, + "probability": 0.9778 + }, + { + "start": 14095.8, + "end": 14097.38, + "probability": 0.9532 + }, + { + "start": 14097.64, + "end": 14098.44, + "probability": 0.9674 + }, + { + "start": 14099.4, + "end": 14101.84, + "probability": 0.8768 + }, + { + "start": 14102.68, + "end": 14105.4, + "probability": 0.8375 + }, + { + "start": 14106.0, + "end": 14106.62, + "probability": 0.9757 + }, + { + "start": 14107.12, + "end": 14109.92, + "probability": 0.8153 + }, + { + "start": 14110.18, + "end": 14112.37, + "probability": 0.7861 + }, + { + "start": 14114.81, + "end": 14116.04, + "probability": 0.0488 + }, + { + "start": 14116.04, + "end": 14116.04, + "probability": 0.0233 + }, + { + "start": 14116.04, + "end": 14117.26, + "probability": 0.6154 + }, + { + "start": 14119.02, + "end": 14120.52, + "probability": 0.6836 + }, + { + "start": 14121.3, + "end": 14124.12, + "probability": 0.8701 + }, + { + "start": 14124.34, + "end": 14124.48, + "probability": 0.3067 + }, + { + "start": 14124.94, + "end": 14125.96, + "probability": 0.5195 + }, + { + "start": 14126.06, + "end": 14128.84, + "probability": 0.9709 + }, + { + "start": 14128.94, + "end": 14130.8, + "probability": 0.9871 + }, + { + "start": 14130.92, + "end": 14135.06, + "probability": 0.7975 + }, + { + "start": 14135.92, + "end": 14137.4, + "probability": 0.8455 + }, + { + "start": 14137.46, + "end": 14140.74, + "probability": 0.3951 + }, + { + "start": 14141.02, + "end": 14142.14, + "probability": 0.5557 + }, + { + "start": 14142.48, + "end": 14142.88, + "probability": 0.2675 + }, + { + "start": 14143.25, + "end": 14144.04, + "probability": 0.0711 + }, + { + "start": 14144.24, + "end": 14146.29, + "probability": 0.4485 + }, + { + "start": 14147.04, + "end": 14149.5, + "probability": 0.9557 + }, + { + "start": 14149.66, + "end": 14152.95, + "probability": 0.7471 + }, + { + "start": 14153.62, + "end": 14154.38, + "probability": 0.5966 + }, + { + "start": 14155.4, + "end": 14157.94, + "probability": 0.8833 + }, + { + "start": 14158.18, + "end": 14161.12, + "probability": 0.9846 + }, + { + "start": 14161.42, + "end": 14162.84, + "probability": 0.3944 + }, + { + "start": 14165.56, + "end": 14167.46, + "probability": 0.6902 + }, + { + "start": 14167.98, + "end": 14169.46, + "probability": 0.7503 + }, + { + "start": 14169.46, + "end": 14171.88, + "probability": 0.8809 + }, + { + "start": 14171.92, + "end": 14173.28, + "probability": 0.9434 + }, + { + "start": 14173.48, + "end": 14175.7, + "probability": 0.3742 + }, + { + "start": 14175.7, + "end": 14177.08, + "probability": 0.2415 + }, + { + "start": 14179.65, + "end": 14182.56, + "probability": 0.5522 + }, + { + "start": 14182.56, + "end": 14185.22, + "probability": 0.9855 + }, + { + "start": 14185.38, + "end": 14188.36, + "probability": 0.991 + }, + { + "start": 14188.8, + "end": 14190.36, + "probability": 0.9378 + }, + { + "start": 14190.38, + "end": 14190.68, + "probability": 0.2967 + }, + { + "start": 14191.16, + "end": 14193.9, + "probability": 0.7915 + }, + { + "start": 14195.04, + "end": 14196.04, + "probability": 0.9912 + }, + { + "start": 14196.08, + "end": 14196.94, + "probability": 0.9781 + }, + { + "start": 14197.02, + "end": 14198.1, + "probability": 0.9346 + }, + { + "start": 14198.84, + "end": 14200.1, + "probability": 0.9995 + }, + { + "start": 14200.62, + "end": 14201.3, + "probability": 0.9948 + }, + { + "start": 14201.9, + "end": 14204.22, + "probability": 0.8959 + }, + { + "start": 14205.6, + "end": 14208.02, + "probability": 0.8926 + }, + { + "start": 14208.46, + "end": 14209.14, + "probability": 0.2662 + }, + { + "start": 14209.62, + "end": 14210.02, + "probability": 0.6434 + }, + { + "start": 14210.38, + "end": 14210.7, + "probability": 0.6976 + }, + { + "start": 14210.96, + "end": 14212.2, + "probability": 0.7152 + }, + { + "start": 14212.28, + "end": 14215.12, + "probability": 0.2004 + }, + { + "start": 14215.18, + "end": 14215.18, + "probability": 0.0647 + }, + { + "start": 14215.18, + "end": 14215.5, + "probability": 0.1491 + }, + { + "start": 14215.84, + "end": 14218.4, + "probability": 0.4445 + }, + { + "start": 14218.4, + "end": 14218.4, + "probability": 0.2064 + }, + { + "start": 14218.42, + "end": 14218.88, + "probability": 0.4844 + }, + { + "start": 14219.18, + "end": 14221.4, + "probability": 0.8544 + }, + { + "start": 14221.42, + "end": 14222.8, + "probability": 0.9539 + }, + { + "start": 14223.02, + "end": 14225.0, + "probability": 0.8907 + }, + { + "start": 14225.26, + "end": 14227.62, + "probability": 0.7287 + }, + { + "start": 14227.94, + "end": 14228.92, + "probability": 0.9371 + }, + { + "start": 14229.0, + "end": 14229.86, + "probability": 0.9491 + }, + { + "start": 14229.94, + "end": 14231.67, + "probability": 0.9893 + }, + { + "start": 14231.9, + "end": 14235.02, + "probability": 0.8242 + }, + { + "start": 14235.6, + "end": 14236.3, + "probability": 0.821 + }, + { + "start": 14236.5, + "end": 14237.78, + "probability": 0.8854 + }, + { + "start": 14238.1, + "end": 14239.53, + "probability": 0.9575 + }, + { + "start": 14239.7, + "end": 14240.3, + "probability": 0.6594 + }, + { + "start": 14240.38, + "end": 14240.88, + "probability": 0.801 + }, + { + "start": 14240.94, + "end": 14242.02, + "probability": 0.9296 + }, + { + "start": 14242.02, + "end": 14242.76, + "probability": 0.8226 + }, + { + "start": 14242.8, + "end": 14242.86, + "probability": 0.3542 + }, + { + "start": 14243.24, + "end": 14244.04, + "probability": 0.7328 + }, + { + "start": 14244.14, + "end": 14245.34, + "probability": 0.9076 + }, + { + "start": 14246.06, + "end": 14249.46, + "probability": 0.8402 + }, + { + "start": 14250.44, + "end": 14252.62, + "probability": 0.8607 + }, + { + "start": 14252.62, + "end": 14258.14, + "probability": 0.9937 + }, + { + "start": 14259.66, + "end": 14259.88, + "probability": 0.123 + }, + { + "start": 14260.5, + "end": 14262.28, + "probability": 0.9769 + }, + { + "start": 14262.42, + "end": 14265.52, + "probability": 0.9645 + }, + { + "start": 14266.16, + "end": 14268.96, + "probability": 0.7412 + }, + { + "start": 14269.58, + "end": 14270.9, + "probability": 0.7121 + }, + { + "start": 14271.02, + "end": 14273.88, + "probability": 0.835 + }, + { + "start": 14274.36, + "end": 14276.28, + "probability": 0.8866 + }, + { + "start": 14276.4, + "end": 14276.64, + "probability": 0.3961 + }, + { + "start": 14276.7, + "end": 14277.05, + "probability": 0.9243 + }, + { + "start": 14277.2, + "end": 14277.62, + "probability": 0.7012 + }, + { + "start": 14277.72, + "end": 14280.14, + "probability": 0.0932 + }, + { + "start": 14280.36, + "end": 14281.22, + "probability": 0.7979 + }, + { + "start": 14281.56, + "end": 14282.04, + "probability": 0.5627 + }, + { + "start": 14282.42, + "end": 14282.66, + "probability": 0.4028 + }, + { + "start": 14282.7, + "end": 14283.78, + "probability": 0.6755 + }, + { + "start": 14283.84, + "end": 14287.27, + "probability": 0.4528 + }, + { + "start": 14288.28, + "end": 14289.96, + "probability": 0.4214 + }, + { + "start": 14290.2, + "end": 14293.4, + "probability": 0.7044 + }, + { + "start": 14294.04, + "end": 14296.96, + "probability": 0.9032 + }, + { + "start": 14297.92, + "end": 14301.26, + "probability": 0.9778 + }, + { + "start": 14301.56, + "end": 14302.38, + "probability": 0.761 + }, + { + "start": 14302.82, + "end": 14306.24, + "probability": 0.9175 + }, + { + "start": 14307.0, + "end": 14309.62, + "probability": 0.9243 + }, + { + "start": 14309.64, + "end": 14314.06, + "probability": 0.8993 + }, + { + "start": 14314.16, + "end": 14316.14, + "probability": 0.8242 + }, + { + "start": 14316.14, + "end": 14316.32, + "probability": 0.1991 + }, + { + "start": 14316.32, + "end": 14317.61, + "probability": 0.4202 + }, + { + "start": 14318.24, + "end": 14318.66, + "probability": 0.8721 + }, + { + "start": 14319.06, + "end": 14320.98, + "probability": 0.4412 + }, + { + "start": 14321.42, + "end": 14323.02, + "probability": 0.7327 + }, + { + "start": 14323.08, + "end": 14324.62, + "probability": 0.3584 + }, + { + "start": 14328.72, + "end": 14329.6, + "probability": 0.0364 + }, + { + "start": 14329.6, + "end": 14334.78, + "probability": 0.041 + }, + { + "start": 14341.26, + "end": 14341.88, + "probability": 0.1274 + }, + { + "start": 14341.88, + "end": 14343.64, + "probability": 0.1225 + }, + { + "start": 14343.8, + "end": 14348.76, + "probability": 0.5398 + }, + { + "start": 14349.22, + "end": 14353.06, + "probability": 0.9549 + }, + { + "start": 14353.4, + "end": 14353.72, + "probability": 0.6998 + }, + { + "start": 14353.8, + "end": 14354.71, + "probability": 0.867 + }, + { + "start": 14355.46, + "end": 14357.2, + "probability": 0.9052 + }, + { + "start": 14357.56, + "end": 14358.22, + "probability": 0.8265 + }, + { + "start": 14358.32, + "end": 14359.7, + "probability": 0.7196 + }, + { + "start": 14359.72, + "end": 14360.48, + "probability": 0.787 + }, + { + "start": 14360.66, + "end": 14361.96, + "probability": 0.6274 + }, + { + "start": 14362.06, + "end": 14362.06, + "probability": 0.5158 + }, + { + "start": 14362.06, + "end": 14364.58, + "probability": 0.8034 + }, + { + "start": 14364.7, + "end": 14365.8, + "probability": 0.6254 + }, + { + "start": 14365.92, + "end": 14366.68, + "probability": 0.7562 + }, + { + "start": 14366.84, + "end": 14369.58, + "probability": 0.9881 + }, + { + "start": 14369.7, + "end": 14369.8, + "probability": 0.8167 + }, + { + "start": 14370.22, + "end": 14372.42, + "probability": 0.9242 + }, + { + "start": 14372.82, + "end": 14373.7, + "probability": 0.9797 + }, + { + "start": 14373.88, + "end": 14375.0, + "probability": 0.8716 + }, + { + "start": 14375.08, + "end": 14376.06, + "probability": 0.5583 + }, + { + "start": 14376.88, + "end": 14378.06, + "probability": 0.9318 + }, + { + "start": 14378.22, + "end": 14379.12, + "probability": 0.8492 + }, + { + "start": 14379.81, + "end": 14381.4, + "probability": 0.9259 + }, + { + "start": 14381.5, + "end": 14382.96, + "probability": 0.9855 + }, + { + "start": 14383.04, + "end": 14385.16, + "probability": 0.9934 + }, + { + "start": 14385.26, + "end": 14386.68, + "probability": 0.9945 + }, + { + "start": 14386.82, + "end": 14389.38, + "probability": 0.9928 + }, + { + "start": 14389.72, + "end": 14390.82, + "probability": 0.9922 + }, + { + "start": 14390.94, + "end": 14392.12, + "probability": 0.89 + }, + { + "start": 14392.44, + "end": 14393.52, + "probability": 0.8927 + }, + { + "start": 14393.66, + "end": 14394.54, + "probability": 0.9771 + }, + { + "start": 14394.66, + "end": 14396.38, + "probability": 0.9237 + }, + { + "start": 14396.6, + "end": 14398.14, + "probability": 0.985 + }, + { + "start": 14398.42, + "end": 14399.52, + "probability": 0.9694 + }, + { + "start": 14399.8, + "end": 14401.28, + "probability": 0.9841 + }, + { + "start": 14401.74, + "end": 14402.32, + "probability": 0.7289 + }, + { + "start": 14402.42, + "end": 14403.26, + "probability": 0.8916 + }, + { + "start": 14403.66, + "end": 14404.98, + "probability": 0.9846 + }, + { + "start": 14405.4, + "end": 14406.85, + "probability": 0.9966 + }, + { + "start": 14407.3, + "end": 14410.3, + "probability": 0.976 + }, + { + "start": 14410.52, + "end": 14414.18, + "probability": 0.867 + }, + { + "start": 14414.48, + "end": 14416.22, + "probability": 0.8035 + }, + { + "start": 14416.62, + "end": 14417.56, + "probability": 0.8906 + }, + { + "start": 14417.92, + "end": 14419.44, + "probability": 0.9731 + }, + { + "start": 14419.86, + "end": 14422.1, + "probability": 0.8268 + }, + { + "start": 14422.18, + "end": 14422.5, + "probability": 0.8949 + }, + { + "start": 14422.52, + "end": 14422.78, + "probability": 0.8628 + }, + { + "start": 14423.56, + "end": 14424.8, + "probability": 0.9955 + }, + { + "start": 14424.82, + "end": 14426.06, + "probability": 0.8658 + }, + { + "start": 14426.3, + "end": 14427.38, + "probability": 0.7617 + }, + { + "start": 14427.92, + "end": 14429.03, + "probability": 0.9963 + }, + { + "start": 14429.46, + "end": 14433.34, + "probability": 0.8962 + }, + { + "start": 14433.8, + "end": 14437.6, + "probability": 0.8781 + }, + { + "start": 14438.0, + "end": 14442.84, + "probability": 0.5004 + }, + { + "start": 14443.28, + "end": 14443.64, + "probability": 0.1459 + }, + { + "start": 14443.64, + "end": 14443.99, + "probability": 0.0686 + }, + { + "start": 14444.38, + "end": 14444.8, + "probability": 0.6504 + }, + { + "start": 14445.06, + "end": 14445.32, + "probability": 0.6106 + }, + { + "start": 14445.59, + "end": 14447.71, + "probability": 0.4159 + }, + { + "start": 14447.96, + "end": 14448.24, + "probability": 0.0366 + }, + { + "start": 14448.24, + "end": 14449.58, + "probability": 0.6268 + }, + { + "start": 14450.62, + "end": 14451.18, + "probability": 0.341 + }, + { + "start": 14451.18, + "end": 14451.18, + "probability": 0.1195 + }, + { + "start": 14451.18, + "end": 14451.54, + "probability": 0.3194 + }, + { + "start": 14451.8, + "end": 14453.86, + "probability": 0.7302 + }, + { + "start": 14454.12, + "end": 14456.65, + "probability": 0.7533 + }, + { + "start": 14457.68, + "end": 14460.68, + "probability": 0.2968 + }, + { + "start": 14462.34, + "end": 14463.42, + "probability": 0.2216 + }, + { + "start": 14463.44, + "end": 14463.67, + "probability": 0.1267 + }, + { + "start": 14463.98, + "end": 14465.66, + "probability": 0.4073 + }, + { + "start": 14465.66, + "end": 14466.84, + "probability": 0.0515 + }, + { + "start": 14467.08, + "end": 14470.28, + "probability": 0.1271 + }, + { + "start": 14470.28, + "end": 14470.6, + "probability": 0.1936 + }, + { + "start": 14470.8, + "end": 14471.38, + "probability": 0.1588 + }, + { + "start": 14471.38, + "end": 14472.5, + "probability": 0.3093 + }, + { + "start": 14472.5, + "end": 14473.84, + "probability": 0.0092 + }, + { + "start": 14474.02, + "end": 14474.98, + "probability": 0.5278 + }, + { + "start": 14475.32, + "end": 14477.86, + "probability": 0.8091 + }, + { + "start": 14480.48, + "end": 14481.78, + "probability": 0.9949 + }, + { + "start": 14482.18, + "end": 14489.58, + "probability": 0.9782 + }, + { + "start": 14489.68, + "end": 14491.54, + "probability": 0.9983 + }, + { + "start": 14491.92, + "end": 14492.14, + "probability": 0.0765 + }, + { + "start": 14492.14, + "end": 14492.58, + "probability": 0.2823 + }, + { + "start": 14492.64, + "end": 14493.96, + "probability": 0.9781 + }, + { + "start": 14495.12, + "end": 14498.98, + "probability": 0.8514 + }, + { + "start": 14500.34, + "end": 14503.12, + "probability": 0.9692 + }, + { + "start": 14503.24, + "end": 14504.94, + "probability": 0.944 + }, + { + "start": 14505.24, + "end": 14508.62, + "probability": 0.7312 + }, + { + "start": 14509.06, + "end": 14511.62, + "probability": 0.9976 + }, + { + "start": 14512.46, + "end": 14513.38, + "probability": 0.9238 + }, + { + "start": 14513.44, + "end": 14514.36, + "probability": 0.94 + }, + { + "start": 14514.66, + "end": 14516.62, + "probability": 0.2441 + }, + { + "start": 14516.68, + "end": 14517.74, + "probability": 0.0265 + }, + { + "start": 14517.74, + "end": 14519.79, + "probability": 0.4175 + }, + { + "start": 14520.54, + "end": 14521.32, + "probability": 0.6703 + }, + { + "start": 14521.74, + "end": 14523.26, + "probability": 0.9202 + }, + { + "start": 14523.4, + "end": 14524.34, + "probability": 0.9426 + }, + { + "start": 14524.66, + "end": 14525.7, + "probability": 0.7497 + }, + { + "start": 14525.94, + "end": 14527.18, + "probability": 0.9161 + }, + { + "start": 14527.3, + "end": 14528.16, + "probability": 0.7946 + }, + { + "start": 14528.32, + "end": 14528.54, + "probability": 0.4597 + }, + { + "start": 14528.94, + "end": 14531.12, + "probability": 0.211 + }, + { + "start": 14531.12, + "end": 14531.22, + "probability": 0.0422 + }, + { + "start": 14531.22, + "end": 14531.34, + "probability": 0.0881 + }, + { + "start": 14531.34, + "end": 14533.24, + "probability": 0.1067 + }, + { + "start": 14533.52, + "end": 14535.86, + "probability": 0.8862 + }, + { + "start": 14536.3, + "end": 14537.77, + "probability": 0.3208 + }, + { + "start": 14538.32, + "end": 14538.9, + "probability": 0.4486 + }, + { + "start": 14540.26, + "end": 14540.86, + "probability": 0.169 + }, + { + "start": 14540.86, + "end": 14542.17, + "probability": 0.3542 + }, + { + "start": 14542.34, + "end": 14542.34, + "probability": 0.6299 + }, + { + "start": 14542.5, + "end": 14544.22, + "probability": 0.0217 + }, + { + "start": 14544.22, + "end": 14545.8, + "probability": 0.8768 + }, + { + "start": 14546.32, + "end": 14546.96, + "probability": 0.9529 + }, + { + "start": 14547.42, + "end": 14548.44, + "probability": 0.9593 + }, + { + "start": 14548.8, + "end": 14550.36, + "probability": 0.9729 + }, + { + "start": 14550.56, + "end": 14551.82, + "probability": 0.6749 + }, + { + "start": 14552.26, + "end": 14552.26, + "probability": 0.2907 + }, + { + "start": 14552.26, + "end": 14553.1, + "probability": 0.8322 + }, + { + "start": 14553.82, + "end": 14555.98, + "probability": 0.4151 + }, + { + "start": 14555.98, + "end": 14555.98, + "probability": 0.0564 + }, + { + "start": 14555.98, + "end": 14556.66, + "probability": 0.8118 + }, + { + "start": 14557.08, + "end": 14558.14, + "probability": 0.8399 + }, + { + "start": 14558.32, + "end": 14559.28, + "probability": 0.6897 + }, + { + "start": 14559.36, + "end": 14560.46, + "probability": 0.295 + }, + { + "start": 14560.46, + "end": 14561.67, + "probability": 0.9762 + }, + { + "start": 14562.14, + "end": 14562.22, + "probability": 0.0475 + }, + { + "start": 14562.22, + "end": 14564.4, + "probability": 0.9817 + }, + { + "start": 14564.48, + "end": 14565.68, + "probability": 0.9839 + }, + { + "start": 14566.6, + "end": 14567.08, + "probability": 0.8 + }, + { + "start": 14567.14, + "end": 14568.14, + "probability": 0.8748 + }, + { + "start": 14568.52, + "end": 14569.52, + "probability": 0.7598 + }, + { + "start": 14569.68, + "end": 14572.14, + "probability": 0.9616 + }, + { + "start": 14572.48, + "end": 14573.1, + "probability": 0.9469 + }, + { + "start": 14573.4, + "end": 14576.78, + "probability": 0.8809 + }, + { + "start": 14576.84, + "end": 14579.8, + "probability": 0.6228 + }, + { + "start": 14583.34, + "end": 14588.04, + "probability": 0.742 + }, + { + "start": 14588.12, + "end": 14589.48, + "probability": 0.7614 + }, + { + "start": 14590.16, + "end": 14591.19, + "probability": 0.393 + }, + { + "start": 14591.42, + "end": 14593.22, + "probability": 0.996 + }, + { + "start": 14593.22, + "end": 14598.36, + "probability": 0.9359 + }, + { + "start": 14598.46, + "end": 14599.46, + "probability": 0.7264 + }, + { + "start": 14600.08, + "end": 14600.52, + "probability": 0.8207 + }, + { + "start": 14600.58, + "end": 14601.34, + "probability": 0.7571 + }, + { + "start": 14601.48, + "end": 14606.96, + "probability": 0.8606 + }, + { + "start": 14607.98, + "end": 14608.2, + "probability": 0.9676 + }, + { + "start": 14608.26, + "end": 14608.9, + "probability": 0.9118 + }, + { + "start": 14609.02, + "end": 14611.9, + "probability": 0.9818 + }, + { + "start": 14613.02, + "end": 14615.66, + "probability": 0.9673 + }, + { + "start": 14615.74, + "end": 14618.8, + "probability": 0.6234 + }, + { + "start": 14619.84, + "end": 14622.25, + "probability": 0.6065 + }, + { + "start": 14622.98, + "end": 14624.84, + "probability": 0.8285 + }, + { + "start": 14625.74, + "end": 14627.5, + "probability": 0.8033 + }, + { + "start": 14627.6, + "end": 14628.44, + "probability": 0.7878 + }, + { + "start": 14628.78, + "end": 14634.28, + "probability": 0.9966 + }, + { + "start": 14634.38, + "end": 14636.5, + "probability": 0.8932 + }, + { + "start": 14637.1, + "end": 14643.16, + "probability": 0.9639 + }, + { + "start": 14643.84, + "end": 14646.7, + "probability": 0.9656 + }, + { + "start": 14646.94, + "end": 14648.05, + "probability": 0.9531 + }, + { + "start": 14648.54, + "end": 14653.3, + "probability": 0.9463 + }, + { + "start": 14653.44, + "end": 14654.52, + "probability": 0.8945 + }, + { + "start": 14654.7, + "end": 14655.6, + "probability": 0.5742 + }, + { + "start": 14656.16, + "end": 14659.2, + "probability": 0.9833 + }, + { + "start": 14659.64, + "end": 14660.52, + "probability": 0.9391 + }, + { + "start": 14660.72, + "end": 14661.56, + "probability": 0.9166 + }, + { + "start": 14662.04, + "end": 14663.58, + "probability": 0.9248 + }, + { + "start": 14664.26, + "end": 14666.26, + "probability": 0.7059 + }, + { + "start": 14666.96, + "end": 14668.7, + "probability": 0.9416 + }, + { + "start": 14668.8, + "end": 14671.86, + "probability": 0.9838 + }, + { + "start": 14671.86, + "end": 14676.98, + "probability": 0.9894 + }, + { + "start": 14677.76, + "end": 14679.01, + "probability": 0.9873 + }, + { + "start": 14679.7, + "end": 14681.03, + "probability": 0.9567 + }, + { + "start": 14681.44, + "end": 14683.0, + "probability": 0.9878 + }, + { + "start": 14683.24, + "end": 14686.64, + "probability": 0.9982 + }, + { + "start": 14686.7, + "end": 14687.66, + "probability": 0.7548 + }, + { + "start": 14688.52, + "end": 14689.18, + "probability": 0.7375 + }, + { + "start": 14689.24, + "end": 14690.48, + "probability": 0.9139 + }, + { + "start": 14691.04, + "end": 14696.08, + "probability": 0.9956 + }, + { + "start": 14696.6, + "end": 14698.82, + "probability": 0.9245 + }, + { + "start": 14698.88, + "end": 14702.36, + "probability": 0.8529 + }, + { + "start": 14703.0, + "end": 14706.36, + "probability": 0.7755 + }, + { + "start": 14706.92, + "end": 14710.18, + "probability": 0.0411 + }, + { + "start": 14710.84, + "end": 14712.3, + "probability": 0.4041 + }, + { + "start": 14712.7, + "end": 14713.92, + "probability": 0.1327 + }, + { + "start": 14714.14, + "end": 14717.16, + "probability": 0.5076 + }, + { + "start": 14717.16, + "end": 14719.94, + "probability": 0.1318 + }, + { + "start": 14720.52, + "end": 14721.54, + "probability": 0.024 + }, + { + "start": 14721.84, + "end": 14721.88, + "probability": 0.1388 + }, + { + "start": 14721.88, + "end": 14723.54, + "probability": 0.3277 + }, + { + "start": 14724.14, + "end": 14724.26, + "probability": 0.089 + }, + { + "start": 14724.26, + "end": 14724.26, + "probability": 0.2863 + }, + { + "start": 14724.26, + "end": 14729.96, + "probability": 0.7074 + }, + { + "start": 14730.52, + "end": 14733.46, + "probability": 0.8777 + }, + { + "start": 14733.5, + "end": 14734.3, + "probability": 0.8952 + }, + { + "start": 14734.42, + "end": 14735.78, + "probability": 0.7939 + }, + { + "start": 14736.4, + "end": 14738.64, + "probability": 0.9451 + }, + { + "start": 14739.18, + "end": 14740.66, + "probability": 0.9683 + }, + { + "start": 14741.5, + "end": 14743.74, + "probability": 0.9609 + }, + { + "start": 14744.5, + "end": 14746.72, + "probability": 0.8093 + }, + { + "start": 14747.02, + "end": 14748.02, + "probability": 0.9937 + }, + { + "start": 14748.64, + "end": 14752.22, + "probability": 0.9946 + }, + { + "start": 14752.66, + "end": 14753.68, + "probability": 0.8792 + }, + { + "start": 14754.8, + "end": 14755.16, + "probability": 0.2723 + }, + { + "start": 14755.28, + "end": 14757.36, + "probability": 0.8496 + }, + { + "start": 14757.86, + "end": 14760.04, + "probability": 0.9844 + }, + { + "start": 14760.78, + "end": 14762.76, + "probability": 0.3993 + }, + { + "start": 14763.36, + "end": 14764.96, + "probability": 0.813 + }, + { + "start": 14765.4, + "end": 14766.42, + "probability": 0.9263 + }, + { + "start": 14766.54, + "end": 14768.02, + "probability": 0.9818 + }, + { + "start": 14768.58, + "end": 14769.74, + "probability": 0.6742 + }, + { + "start": 14769.74, + "end": 14771.08, + "probability": 0.9575 + }, + { + "start": 14771.8, + "end": 14775.14, + "probability": 0.837 + }, + { + "start": 14775.56, + "end": 14776.6, + "probability": 0.823 + }, + { + "start": 14776.68, + "end": 14777.3, + "probability": 0.7309 + }, + { + "start": 14777.7, + "end": 14777.84, + "probability": 0.0537 + }, + { + "start": 14777.84, + "end": 14777.84, + "probability": 0.3584 + }, + { + "start": 14777.84, + "end": 14779.54, + "probability": 0.6238 + }, + { + "start": 14779.7, + "end": 14781.58, + "probability": 0.7858 + }, + { + "start": 14782.4, + "end": 14784.36, + "probability": 0.1927 + }, + { + "start": 14784.92, + "end": 14787.85, + "probability": 0.5263 + }, + { + "start": 14788.3, + "end": 14789.84, + "probability": 0.0631 + }, + { + "start": 14790.94, + "end": 14790.94, + "probability": 0.1162 + }, + { + "start": 14790.94, + "end": 14791.06, + "probability": 0.0286 + }, + { + "start": 14791.06, + "end": 14791.66, + "probability": 0.2079 + }, + { + "start": 14791.88, + "end": 14794.22, + "probability": 0.3607 + }, + { + "start": 14794.3, + "end": 14799.62, + "probability": 0.6125 + }, + { + "start": 14800.14, + "end": 14804.58, + "probability": 0.7594 + }, + { + "start": 14805.38, + "end": 14805.38, + "probability": 0.0706 + }, + { + "start": 14805.38, + "end": 14805.38, + "probability": 0.0077 + }, + { + "start": 14805.38, + "end": 14808.72, + "probability": 0.5405 + }, + { + "start": 14810.54, + "end": 14813.36, + "probability": 0.0242 + }, + { + "start": 14813.36, + "end": 14813.36, + "probability": 0.4658 + }, + { + "start": 14813.36, + "end": 14813.36, + "probability": 0.0136 + }, + { + "start": 14813.36, + "end": 14813.54, + "probability": 0.0151 + }, + { + "start": 14813.84, + "end": 14816.0, + "probability": 0.3429 + }, + { + "start": 14817.14, + "end": 14818.48, + "probability": 0.4179 + }, + { + "start": 14819.26, + "end": 14820.26, + "probability": 0.157 + }, + { + "start": 14822.52, + "end": 14825.42, + "probability": 0.3406 + }, + { + "start": 14826.26, + "end": 14829.46, + "probability": 0.0708 + }, + { + "start": 14829.78, + "end": 14831.34, + "probability": 0.3915 + }, + { + "start": 14831.58, + "end": 14832.62, + "probability": 0.8157 + }, + { + "start": 14832.74, + "end": 14833.46, + "probability": 0.7223 + }, + { + "start": 14834.78, + "end": 14837.98, + "probability": 0.9326 + }, + { + "start": 14838.14, + "end": 14839.12, + "probability": 0.1235 + }, + { + "start": 14839.38, + "end": 14840.12, + "probability": 0.596 + }, + { + "start": 14840.88, + "end": 14841.42, + "probability": 0.8746 + }, + { + "start": 14841.84, + "end": 14842.96, + "probability": 0.6699 + }, + { + "start": 14844.25, + "end": 14847.72, + "probability": 0.985 + }, + { + "start": 14847.82, + "end": 14853.52, + "probability": 0.6346 + }, + { + "start": 14854.18, + "end": 14857.1, + "probability": 0.9874 + }, + { + "start": 14857.1, + "end": 14861.46, + "probability": 0.5925 + }, + { + "start": 14861.66, + "end": 14863.54, + "probability": 0.4404 + }, + { + "start": 14864.04, + "end": 14865.68, + "probability": 0.6432 + }, + { + "start": 14865.74, + "end": 14868.3, + "probability": 0.6109 + }, + { + "start": 14868.9, + "end": 14871.72, + "probability": 0.9915 + }, + { + "start": 14871.98, + "end": 14873.8, + "probability": 0.69 + }, + { + "start": 14874.46, + "end": 14878.12, + "probability": 0.9832 + }, + { + "start": 14878.74, + "end": 14882.1, + "probability": 0.6972 + }, + { + "start": 14883.36, + "end": 14885.1, + "probability": 0.9888 + }, + { + "start": 14885.26, + "end": 14886.64, + "probability": 0.6543 + }, + { + "start": 14887.0, + "end": 14889.08, + "probability": 0.8675 + }, + { + "start": 14889.12, + "end": 14890.0, + "probability": 0.8989 + }, + { + "start": 14890.22, + "end": 14891.72, + "probability": 0.5778 + }, + { + "start": 14892.02, + "end": 14893.18, + "probability": 0.7996 + }, + { + "start": 14893.36, + "end": 14895.14, + "probability": 0.8803 + }, + { + "start": 14895.34, + "end": 14896.74, + "probability": 0.7338 + }, + { + "start": 14897.18, + "end": 14899.26, + "probability": 0.9964 + }, + { + "start": 14900.1, + "end": 14903.82, + "probability": 0.9075 + }, + { + "start": 14904.42, + "end": 14908.39, + "probability": 0.9744 + }, + { + "start": 14909.4, + "end": 14912.14, + "probability": 0.9821 + }, + { + "start": 14913.06, + "end": 14915.16, + "probability": 0.9055 + }, + { + "start": 14915.28, + "end": 14918.76, + "probability": 0.6749 + }, + { + "start": 14918.8, + "end": 14921.92, + "probability": 0.862 + }, + { + "start": 14921.92, + "end": 14924.82, + "probability": 0.9986 + }, + { + "start": 14925.68, + "end": 14930.08, + "probability": 0.7681 + }, + { + "start": 14930.08, + "end": 14933.38, + "probability": 0.8439 + }, + { + "start": 14933.52, + "end": 14934.3, + "probability": 0.5075 + }, + { + "start": 14934.42, + "end": 14935.14, + "probability": 0.839 + }, + { + "start": 14935.7, + "end": 14939.42, + "probability": 0.8264 + }, + { + "start": 14940.06, + "end": 14941.84, + "probability": 0.7257 + }, + { + "start": 14942.54, + "end": 14944.94, + "probability": 0.7136 + }, + { + "start": 14945.52, + "end": 14948.86, + "probability": 0.9651 + }, + { + "start": 14948.86, + "end": 14952.26, + "probability": 0.741 + }, + { + "start": 14952.4, + "end": 14954.18, + "probability": 0.8395 + }, + { + "start": 14954.68, + "end": 14960.28, + "probability": 0.4345 + }, + { + "start": 14960.4, + "end": 14962.4, + "probability": 0.8839 + }, + { + "start": 14963.04, + "end": 14963.94, + "probability": 0.7336 + }, + { + "start": 14965.76, + "end": 14968.08, + "probability": 0.756 + }, + { + "start": 14968.62, + "end": 14969.54, + "probability": 0.4843 + }, + { + "start": 14970.52, + "end": 14973.94, + "probability": 0.9142 + }, + { + "start": 14974.84, + "end": 14978.98, + "probability": 0.8688 + }, + { + "start": 14979.4, + "end": 14982.02, + "probability": 0.9862 + }, + { + "start": 14982.76, + "end": 14983.92, + "probability": 0.8156 + }, + { + "start": 14984.78, + "end": 14988.56, + "probability": 0.7334 + }, + { + "start": 14990.86, + "end": 14994.2, + "probability": 0.6723 + }, + { + "start": 14996.2, + "end": 14997.72, + "probability": 0.5837 + }, + { + "start": 14998.8, + "end": 15001.04, + "probability": 0.9724 + }, + { + "start": 15001.18, + "end": 15002.86, + "probability": 0.8494 + }, + { + "start": 15003.08, + "end": 15005.36, + "probability": 0.9731 + }, + { + "start": 15011.26, + "end": 15012.08, + "probability": 0.8418 + }, + { + "start": 15012.26, + "end": 15013.86, + "probability": 0.7038 + }, + { + "start": 15014.04, + "end": 15016.12, + "probability": 0.9968 + }, + { + "start": 15016.9, + "end": 15019.24, + "probability": 0.9135 + }, + { + "start": 15019.82, + "end": 15020.34, + "probability": 0.7323 + }, + { + "start": 15021.45, + "end": 15027.4, + "probability": 0.9634 + }, + { + "start": 15027.54, + "end": 15031.54, + "probability": 0.9503 + }, + { + "start": 15031.7, + "end": 15032.56, + "probability": 0.7397 + }, + { + "start": 15032.72, + "end": 15035.84, + "probability": 0.7917 + }, + { + "start": 15036.3, + "end": 15038.08, + "probability": 0.8959 + }, + { + "start": 15038.3, + "end": 15042.68, + "probability": 0.98 + }, + { + "start": 15042.88, + "end": 15044.12, + "probability": 0.903 + }, + { + "start": 15044.68, + "end": 15046.52, + "probability": 0.8428 + }, + { + "start": 15047.62, + "end": 15048.53, + "probability": 0.9273 + }, + { + "start": 15048.86, + "end": 15051.1, + "probability": 0.8785 + }, + { + "start": 15051.18, + "end": 15051.96, + "probability": 0.9227 + }, + { + "start": 15052.3, + "end": 15054.06, + "probability": 0.991 + }, + { + "start": 15055.22, + "end": 15056.64, + "probability": 0.9971 + }, + { + "start": 15057.06, + "end": 15059.3, + "probability": 0.9977 + }, + { + "start": 15059.76, + "end": 15062.18, + "probability": 0.9269 + }, + { + "start": 15062.64, + "end": 15063.7, + "probability": 0.9753 + }, + { + "start": 15063.82, + "end": 15064.28, + "probability": 0.7829 + }, + { + "start": 15064.36, + "end": 15065.92, + "probability": 0.9413 + }, + { + "start": 15066.22, + "end": 15067.8, + "probability": 0.8649 + }, + { + "start": 15068.2, + "end": 15075.1, + "probability": 0.9501 + }, + { + "start": 15075.78, + "end": 15077.94, + "probability": 0.9875 + }, + { + "start": 15078.0, + "end": 15079.26, + "probability": 0.9053 + }, + { + "start": 15080.18, + "end": 15081.64, + "probability": 0.9823 + }, + { + "start": 15081.68, + "end": 15082.52, + "probability": 0.981 + }, + { + "start": 15083.28, + "end": 15086.82, + "probability": 0.9256 + }, + { + "start": 15086.88, + "end": 15088.88, + "probability": 0.8902 + }, + { + "start": 15089.56, + "end": 15091.54, + "probability": 0.9053 + }, + { + "start": 15091.82, + "end": 15092.92, + "probability": 0.8551 + }, + { + "start": 15092.98, + "end": 15093.44, + "probability": 0.6081 + }, + { + "start": 15093.58, + "end": 15094.44, + "probability": 0.745 + }, + { + "start": 15096.0, + "end": 15097.64, + "probability": 0.8848 + }, + { + "start": 15098.52, + "end": 15101.06, + "probability": 0.9705 + }, + { + "start": 15103.66, + "end": 15104.2, + "probability": 0.8245 + }, + { + "start": 15104.38, + "end": 15105.44, + "probability": 0.7393 + }, + { + "start": 15105.54, + "end": 15106.96, + "probability": 0.5883 + }, + { + "start": 15107.12, + "end": 15107.92, + "probability": 0.8857 + }, + { + "start": 15108.06, + "end": 15110.28, + "probability": 0.8119 + }, + { + "start": 15110.34, + "end": 15114.06, + "probability": 0.9831 + }, + { + "start": 15114.3, + "end": 15115.18, + "probability": 0.7039 + }, + { + "start": 15115.26, + "end": 15116.99, + "probability": 0.941 + }, + { + "start": 15117.56, + "end": 15118.8, + "probability": 0.8731 + }, + { + "start": 15119.34, + "end": 15122.4, + "probability": 0.9404 + }, + { + "start": 15122.84, + "end": 15127.14, + "probability": 0.9756 + }, + { + "start": 15127.46, + "end": 15129.0, + "probability": 0.9933 + }, + { + "start": 15130.56, + "end": 15133.42, + "probability": 0.9956 + }, + { + "start": 15133.72, + "end": 15136.4, + "probability": 0.9755 + }, + { + "start": 15137.46, + "end": 15139.38, + "probability": 0.7959 + }, + { + "start": 15140.79, + "end": 15146.2, + "probability": 0.8577 + }, + { + "start": 15146.32, + "end": 15148.38, + "probability": 0.9946 + }, + { + "start": 15148.86, + "end": 15150.28, + "probability": 0.6682 + }, + { + "start": 15151.06, + "end": 15151.74, + "probability": 0.7955 + }, + { + "start": 15152.54, + "end": 15157.94, + "probability": 0.9535 + }, + { + "start": 15158.28, + "end": 15158.82, + "probability": 0.4704 + }, + { + "start": 15158.92, + "end": 15160.16, + "probability": 0.9085 + }, + { + "start": 15160.96, + "end": 15162.88, + "probability": 0.9823 + }, + { + "start": 15163.62, + "end": 15164.94, + "probability": 0.9708 + }, + { + "start": 15165.62, + "end": 15167.14, + "probability": 0.9692 + }, + { + "start": 15167.14, + "end": 15170.26, + "probability": 0.8506 + }, + { + "start": 15170.66, + "end": 15175.96, + "probability": 0.8623 + }, + { + "start": 15176.04, + "end": 15177.71, + "probability": 0.9926 + }, + { + "start": 15179.14, + "end": 15183.4, + "probability": 0.9524 + }, + { + "start": 15183.84, + "end": 15187.18, + "probability": 0.9841 + }, + { + "start": 15187.56, + "end": 15189.74, + "probability": 0.9915 + }, + { + "start": 15189.74, + "end": 15193.5, + "probability": 0.9958 + }, + { + "start": 15194.16, + "end": 15195.46, + "probability": 0.9111 + }, + { + "start": 15195.54, + "end": 15197.14, + "probability": 0.9873 + }, + { + "start": 15197.48, + "end": 15199.24, + "probability": 0.8615 + }, + { + "start": 15200.34, + "end": 15203.4, + "probability": 0.9989 + }, + { + "start": 15204.12, + "end": 15205.24, + "probability": 0.9579 + }, + { + "start": 15205.88, + "end": 15206.26, + "probability": 0.6686 + }, + { + "start": 15207.02, + "end": 15209.94, + "probability": 0.7227 + }, + { + "start": 15211.18, + "end": 15215.5, + "probability": 0.9817 + }, + { + "start": 15215.54, + "end": 15218.7, + "probability": 0.9935 + }, + { + "start": 15218.84, + "end": 15219.4, + "probability": 0.7705 + }, + { + "start": 15219.84, + "end": 15222.74, + "probability": 0.6996 + }, + { + "start": 15223.2, + "end": 15224.9, + "probability": 0.8591 + }, + { + "start": 15225.1, + "end": 15228.58, + "probability": 0.9709 + }, + { + "start": 15229.74, + "end": 15230.62, + "probability": 0.988 + }, + { + "start": 15231.7, + "end": 15232.58, + "probability": 0.835 + }, + { + "start": 15233.78, + "end": 15236.66, + "probability": 0.8737 + }, + { + "start": 15236.86, + "end": 15238.1, + "probability": 0.7095 + }, + { + "start": 15239.66, + "end": 15241.12, + "probability": 0.8064 + }, + { + "start": 15241.28, + "end": 15242.46, + "probability": 0.8795 + }, + { + "start": 15242.6, + "end": 15245.92, + "probability": 0.9333 + }, + { + "start": 15246.74, + "end": 15249.94, + "probability": 0.9979 + }, + { + "start": 15250.1, + "end": 15250.94, + "probability": 0.7212 + }, + { + "start": 15251.02, + "end": 15254.4, + "probability": 0.9834 + }, + { + "start": 15254.94, + "end": 15255.88, + "probability": 0.8163 + }, + { + "start": 15256.3, + "end": 15257.52, + "probability": 0.9552 + }, + { + "start": 15257.92, + "end": 15259.46, + "probability": 0.9722 + }, + { + "start": 15259.8, + "end": 15262.0, + "probability": 0.9942 + }, + { + "start": 15262.42, + "end": 15262.8, + "probability": 0.95 + }, + { + "start": 15263.02, + "end": 15264.08, + "probability": 0.7731 + }, + { + "start": 15264.2, + "end": 15264.36, + "probability": 0.3292 + }, + { + "start": 15264.78, + "end": 15266.7, + "probability": 0.9575 + }, + { + "start": 15267.1, + "end": 15267.52, + "probability": 0.5745 + }, + { + "start": 15267.94, + "end": 15268.74, + "probability": 0.9564 + }, + { + "start": 15269.14, + "end": 15272.0, + "probability": 0.9895 + }, + { + "start": 15272.1, + "end": 15275.66, + "probability": 0.9689 + }, + { + "start": 15275.66, + "end": 15280.4, + "probability": 0.9532 + }, + { + "start": 15280.74, + "end": 15281.96, + "probability": 0.8339 + }, + { + "start": 15282.84, + "end": 15284.88, + "probability": 0.5262 + }, + { + "start": 15285.54, + "end": 15288.96, + "probability": 0.9172 + }, + { + "start": 15289.72, + "end": 15296.1, + "probability": 0.8936 + }, + { + "start": 15296.16, + "end": 15296.72, + "probability": 0.7061 + }, + { + "start": 15296.82, + "end": 15297.42, + "probability": 0.5393 + }, + { + "start": 15297.48, + "end": 15299.52, + "probability": 0.8247 + }, + { + "start": 15299.94, + "end": 15301.26, + "probability": 0.8927 + }, + { + "start": 15301.56, + "end": 15303.06, + "probability": 0.9544 + }, + { + "start": 15303.52, + "end": 15305.34, + "probability": 0.6709 + }, + { + "start": 15306.08, + "end": 15306.62, + "probability": 0.7378 + }, + { + "start": 15306.68, + "end": 15310.68, + "probability": 0.9958 + }, + { + "start": 15310.8, + "end": 15311.98, + "probability": 0.9901 + }, + { + "start": 15312.3, + "end": 15313.84, + "probability": 0.8052 + }, + { + "start": 15313.92, + "end": 15315.88, + "probability": 0.7077 + }, + { + "start": 15315.92, + "end": 15317.22, + "probability": 0.9458 + }, + { + "start": 15317.82, + "end": 15319.9, + "probability": 0.9784 + }, + { + "start": 15320.28, + "end": 15322.14, + "probability": 0.9182 + }, + { + "start": 15322.28, + "end": 15325.24, + "probability": 0.9924 + }, + { + "start": 15326.12, + "end": 15328.3, + "probability": 0.9971 + }, + { + "start": 15328.64, + "end": 15329.42, + "probability": 0.7781 + }, + { + "start": 15329.46, + "end": 15331.64, + "probability": 0.9185 + }, + { + "start": 15331.74, + "end": 15332.8, + "probability": 0.7257 + }, + { + "start": 15333.04, + "end": 15335.7, + "probability": 0.6799 + }, + { + "start": 15336.02, + "end": 15336.34, + "probability": 0.0127 + }, + { + "start": 15336.34, + "end": 15336.34, + "probability": 0.0838 + }, + { + "start": 15336.34, + "end": 15338.54, + "probability": 0.9585 + }, + { + "start": 15338.66, + "end": 15340.5, + "probability": 0.9463 + }, + { + "start": 15340.8, + "end": 15344.7, + "probability": 0.9889 + }, + { + "start": 15344.94, + "end": 15345.87, + "probability": 0.8411 + }, + { + "start": 15346.24, + "end": 15350.04, + "probability": 0.8213 + }, + { + "start": 15350.42, + "end": 15352.6, + "probability": 0.8503 + }, + { + "start": 15352.9, + "end": 15355.16, + "probability": 0.9535 + }, + { + "start": 15355.52, + "end": 15356.5, + "probability": 0.7449 + }, + { + "start": 15356.64, + "end": 15357.24, + "probability": 0.4535 + }, + { + "start": 15357.32, + "end": 15358.84, + "probability": 0.739 + }, + { + "start": 15359.1, + "end": 15359.6, + "probability": 0.6207 + }, + { + "start": 15359.78, + "end": 15359.94, + "probability": 0.8802 + }, + { + "start": 15360.0, + "end": 15360.84, + "probability": 0.9162 + }, + { + "start": 15361.12, + "end": 15361.7, + "probability": 0.5869 + }, + { + "start": 15361.92, + "end": 15361.92, + "probability": 0.2826 + }, + { + "start": 15361.98, + "end": 15363.74, + "probability": 0.8486 + }, + { + "start": 15363.94, + "end": 15365.6, + "probability": 0.5454 + }, + { + "start": 15365.6, + "end": 15365.6, + "probability": 0.1648 + }, + { + "start": 15365.6, + "end": 15366.76, + "probability": 0.3868 + }, + { + "start": 15366.76, + "end": 15367.18, + "probability": 0.9152 + }, + { + "start": 15367.42, + "end": 15369.04, + "probability": 0.5171 + }, + { + "start": 15369.04, + "end": 15369.42, + "probability": 0.6309 + }, + { + "start": 15369.48, + "end": 15369.82, + "probability": 0.0173 + }, + { + "start": 15369.82, + "end": 15371.34, + "probability": 0.3287 + }, + { + "start": 15374.96, + "end": 15376.94, + "probability": 0.7808 + }, + { + "start": 15377.76, + "end": 15378.06, + "probability": 0.0826 + }, + { + "start": 15378.06, + "end": 15378.06, + "probability": 0.0956 + }, + { + "start": 15378.06, + "end": 15379.04, + "probability": 0.3547 + }, + { + "start": 15379.14, + "end": 15379.14, + "probability": 0.0101 + }, + { + "start": 15379.14, + "end": 15379.14, + "probability": 0.134 + }, + { + "start": 15379.14, + "end": 15380.58, + "probability": 0.4688 + }, + { + "start": 15381.0, + "end": 15382.82, + "probability": 0.9353 + }, + { + "start": 15383.1, + "end": 15383.16, + "probability": 0.4057 + }, + { + "start": 15383.28, + "end": 15387.77, + "probability": 0.9931 + }, + { + "start": 15388.28, + "end": 15393.36, + "probability": 0.9678 + }, + { + "start": 15393.64, + "end": 15394.32, + "probability": 0.9099 + }, + { + "start": 15395.4, + "end": 15400.0, + "probability": 0.8176 + }, + { + "start": 15400.54, + "end": 15402.36, + "probability": 0.8981 + }, + { + "start": 15402.7, + "end": 15409.12, + "probability": 0.9269 + }, + { + "start": 15409.48, + "end": 15411.06, + "probability": 0.9026 + }, + { + "start": 15411.24, + "end": 15413.92, + "probability": 0.9604 + }, + { + "start": 15414.12, + "end": 15415.8, + "probability": 0.9934 + }, + { + "start": 15416.52, + "end": 15418.5, + "probability": 0.9985 + }, + { + "start": 15419.02, + "end": 15419.96, + "probability": 0.8082 + }, + { + "start": 15419.96, + "end": 15421.48, + "probability": 0.4908 + }, + { + "start": 15421.8, + "end": 15422.44, + "probability": 0.8987 + }, + { + "start": 15422.8, + "end": 15423.78, + "probability": 0.9287 + }, + { + "start": 15424.32, + "end": 15427.38, + "probability": 0.9706 + }, + { + "start": 15427.42, + "end": 15431.64, + "probability": 0.9272 + }, + { + "start": 15432.04, + "end": 15432.48, + "probability": 0.7411 + }, + { + "start": 15432.56, + "end": 15434.64, + "probability": 0.9583 + }, + { + "start": 15434.74, + "end": 15436.14, + "probability": 0.9243 + }, + { + "start": 15436.68, + "end": 15438.38, + "probability": 0.8471 + }, + { + "start": 15439.6, + "end": 15441.18, + "probability": 0.9427 + }, + { + "start": 15441.88, + "end": 15444.82, + "probability": 0.7186 + }, + { + "start": 15445.18, + "end": 15445.92, + "probability": 0.9494 + }, + { + "start": 15446.04, + "end": 15448.78, + "probability": 0.7747 + }, + { + "start": 15448.78, + "end": 15452.2, + "probability": 0.9932 + }, + { + "start": 15457.34, + "end": 15459.62, + "probability": 0.7161 + }, + { + "start": 15462.24, + "end": 15464.08, + "probability": 0.7659 + }, + { + "start": 15465.42, + "end": 15470.76, + "probability": 0.9875 + }, + { + "start": 15471.8, + "end": 15472.0, + "probability": 0.0507 + }, + { + "start": 15472.0, + "end": 15474.04, + "probability": 0.7196 + }, + { + "start": 15474.5, + "end": 15480.44, + "probability": 0.8143 + }, + { + "start": 15481.24, + "end": 15483.34, + "probability": 0.9875 + }, + { + "start": 15484.58, + "end": 15484.82, + "probability": 0.0306 + }, + { + "start": 15485.28, + "end": 15494.82, + "probability": 0.9827 + }, + { + "start": 15496.0, + "end": 15497.24, + "probability": 0.7195 + }, + { + "start": 15498.48, + "end": 15501.22, + "probability": 0.9862 + }, + { + "start": 15501.68, + "end": 15505.1, + "probability": 0.8426 + }, + { + "start": 15505.54, + "end": 15506.38, + "probability": 0.9855 + }, + { + "start": 15506.98, + "end": 15511.32, + "probability": 0.9965 + }, + { + "start": 15512.54, + "end": 15513.7, + "probability": 0.7588 + }, + { + "start": 15515.1, + "end": 15518.2, + "probability": 0.7405 + }, + { + "start": 15518.84, + "end": 15521.22, + "probability": 0.9926 + }, + { + "start": 15521.76, + "end": 15523.14, + "probability": 0.0737 + }, + { + "start": 15524.08, + "end": 15524.08, + "probability": 0.0677 + }, + { + "start": 15524.08, + "end": 15526.19, + "probability": 0.5843 + }, + { + "start": 15526.84, + "end": 15528.54, + "probability": 0.9028 + }, + { + "start": 15529.16, + "end": 15530.68, + "probability": 0.9879 + }, + { + "start": 15531.86, + "end": 15534.54, + "probability": 0.9658 + }, + { + "start": 15535.22, + "end": 15538.04, + "probability": 0.9248 + }, + { + "start": 15538.82, + "end": 15539.78, + "probability": 0.8894 + }, + { + "start": 15540.78, + "end": 15541.36, + "probability": 0.4402 + }, + { + "start": 15541.52, + "end": 15543.36, + "probability": 0.6553 + }, + { + "start": 15544.06, + "end": 15547.08, + "probability": 0.7377 + }, + { + "start": 15548.31, + "end": 15550.18, + "probability": 0.7339 + }, + { + "start": 15551.4, + "end": 15553.26, + "probability": 0.9648 + }, + { + "start": 15554.36, + "end": 15559.76, + "probability": 0.989 + }, + { + "start": 15561.5, + "end": 15562.68, + "probability": 0.9587 + }, + { + "start": 15563.4, + "end": 15564.7, + "probability": 0.9761 + }, + { + "start": 15565.34, + "end": 15569.68, + "probability": 0.664 + }, + { + "start": 15570.06, + "end": 15573.7, + "probability": 0.6878 + }, + { + "start": 15575.4, + "end": 15577.02, + "probability": 0.9928 + }, + { + "start": 15577.9, + "end": 15578.54, + "probability": 0.6756 + }, + { + "start": 15579.08, + "end": 15581.16, + "probability": 0.9967 + }, + { + "start": 15582.12, + "end": 15584.1, + "probability": 0.9849 + }, + { + "start": 15586.52, + "end": 15595.36, + "probability": 0.6602 + }, + { + "start": 15596.32, + "end": 15600.16, + "probability": 0.9372 + }, + { + "start": 15600.16, + "end": 15603.5, + "probability": 0.8754 + }, + { + "start": 15604.22, + "end": 15605.66, + "probability": 0.6769 + }, + { + "start": 15606.26, + "end": 15607.44, + "probability": 0.8508 + }, + { + "start": 15608.44, + "end": 15611.56, + "probability": 0.8791 + }, + { + "start": 15611.72, + "end": 15613.6, + "probability": 0.7943 + }, + { + "start": 15614.6, + "end": 15619.0, + "probability": 0.685 + }, + { + "start": 15619.08, + "end": 15622.6, + "probability": 0.7393 + }, + { + "start": 15623.44, + "end": 15625.3, + "probability": 0.8862 + }, + { + "start": 15625.76, + "end": 15626.66, + "probability": 0.7766 + }, + { + "start": 15627.04, + "end": 15627.76, + "probability": 0.6553 + }, + { + "start": 15628.1, + "end": 15630.1, + "probability": 0.7007 + }, + { + "start": 15630.66, + "end": 15632.22, + "probability": 0.9558 + }, + { + "start": 15632.82, + "end": 15634.3, + "probability": 0.939 + }, + { + "start": 15635.04, + "end": 15641.0, + "probability": 0.98 + }, + { + "start": 15641.36, + "end": 15641.9, + "probability": 0.643 + }, + { + "start": 15642.4, + "end": 15645.4, + "probability": 0.7571 + }, + { + "start": 15645.64, + "end": 15648.58, + "probability": 0.8636 + }, + { + "start": 15648.6, + "end": 15649.7, + "probability": 0.8396 + }, + { + "start": 15650.6, + "end": 15651.9, + "probability": 0.6377 + }, + { + "start": 15659.5, + "end": 15661.6, + "probability": 0.8762 + }, + { + "start": 15672.04, + "end": 15672.82, + "probability": 0.5412 + }, + { + "start": 15674.08, + "end": 15679.58, + "probability": 0.9759 + }, + { + "start": 15679.58, + "end": 15684.6, + "probability": 0.9953 + }, + { + "start": 15684.64, + "end": 15685.52, + "probability": 0.8701 + }, + { + "start": 15685.68, + "end": 15687.56, + "probability": 0.9607 + }, + { + "start": 15688.7, + "end": 15689.72, + "probability": 0.7908 + }, + { + "start": 15689.74, + "end": 15691.1, + "probability": 0.7731 + }, + { + "start": 15691.18, + "end": 15691.96, + "probability": 0.8847 + }, + { + "start": 15692.08, + "end": 15695.12, + "probability": 0.9517 + }, + { + "start": 15695.96, + "end": 15702.56, + "probability": 0.9932 + }, + { + "start": 15702.56, + "end": 15708.58, + "probability": 0.9961 + }, + { + "start": 15709.78, + "end": 15709.86, + "probability": 0.0108 + }, + { + "start": 15709.86, + "end": 15714.1, + "probability": 0.9531 + }, + { + "start": 15714.92, + "end": 15719.42, + "probability": 0.9971 + }, + { + "start": 15719.5, + "end": 15720.96, + "probability": 0.6108 + }, + { + "start": 15721.58, + "end": 15724.58, + "probability": 0.6895 + }, + { + "start": 15725.36, + "end": 15728.94, + "probability": 0.9954 + }, + { + "start": 15729.36, + "end": 15730.86, + "probability": 0.9766 + }, + { + "start": 15731.32, + "end": 15732.84, + "probability": 0.9897 + }, + { + "start": 15733.5, + "end": 15736.24, + "probability": 0.9987 + }, + { + "start": 15736.34, + "end": 15740.84, + "probability": 0.9934 + }, + { + "start": 15742.04, + "end": 15742.34, + "probability": 0.1885 + }, + { + "start": 15742.46, + "end": 15744.02, + "probability": 0.7218 + }, + { + "start": 15744.12, + "end": 15749.04, + "probability": 0.9926 + }, + { + "start": 15749.76, + "end": 15751.66, + "probability": 0.9548 + }, + { + "start": 15752.7, + "end": 15754.92, + "probability": 0.9556 + }, + { + "start": 15755.62, + "end": 15758.52, + "probability": 0.9796 + }, + { + "start": 15759.28, + "end": 15762.1, + "probability": 0.9354 + }, + { + "start": 15762.2, + "end": 15763.5, + "probability": 0.8934 + }, + { + "start": 15763.5, + "end": 15765.74, + "probability": 0.9263 + }, + { + "start": 15765.98, + "end": 15766.94, + "probability": 0.4685 + }, + { + "start": 15767.32, + "end": 15769.96, + "probability": 0.9514 + }, + { + "start": 15770.36, + "end": 15772.5, + "probability": 0.9851 + }, + { + "start": 15773.38, + "end": 15775.46, + "probability": 0.9909 + }, + { + "start": 15775.62, + "end": 15775.78, + "probability": 0.4892 + }, + { + "start": 15775.92, + "end": 15780.51, + "probability": 0.8869 + }, + { + "start": 15780.74, + "end": 15782.62, + "probability": 0.865 + }, + { + "start": 15782.66, + "end": 15783.98, + "probability": 0.9659 + }, + { + "start": 15784.08, + "end": 15786.26, + "probability": 0.995 + }, + { + "start": 15786.46, + "end": 15787.96, + "probability": 0.9877 + }, + { + "start": 15788.22, + "end": 15789.82, + "probability": 0.9206 + }, + { + "start": 15789.98, + "end": 15791.96, + "probability": 0.9823 + }, + { + "start": 15792.7, + "end": 15793.88, + "probability": 0.8512 + }, + { + "start": 15794.54, + "end": 15795.7, + "probability": 0.8667 + }, + { + "start": 15796.16, + "end": 15800.9, + "probability": 0.9894 + }, + { + "start": 15801.58, + "end": 15803.5, + "probability": 0.6934 + }, + { + "start": 15804.22, + "end": 15806.62, + "probability": 0.9878 + }, + { + "start": 15806.9, + "end": 15813.44, + "probability": 0.9976 + }, + { + "start": 15814.74, + "end": 15822.54, + "probability": 0.9604 + }, + { + "start": 15823.68, + "end": 15827.12, + "probability": 0.9965 + }, + { + "start": 15828.22, + "end": 15833.58, + "probability": 0.9731 + }, + { + "start": 15835.06, + "end": 15839.18, + "probability": 0.9216 + }, + { + "start": 15839.9, + "end": 15841.08, + "probability": 0.9086 + }, + { + "start": 15841.88, + "end": 15846.16, + "probability": 0.9986 + }, + { + "start": 15847.02, + "end": 15847.52, + "probability": 0.4982 + }, + { + "start": 15847.52, + "end": 15848.7, + "probability": 0.9074 + }, + { + "start": 15849.14, + "end": 15852.82, + "probability": 0.988 + }, + { + "start": 15853.48, + "end": 15855.4, + "probability": 0.7047 + }, + { + "start": 15855.5, + "end": 15860.38, + "probability": 0.9675 + }, + { + "start": 15861.24, + "end": 15863.2, + "probability": 0.8108 + }, + { + "start": 15864.06, + "end": 15866.54, + "probability": 0.7522 + }, + { + "start": 15866.54, + "end": 15868.78, + "probability": 0.9465 + }, + { + "start": 15877.9, + "end": 15878.88, + "probability": 0.2913 + }, + { + "start": 15879.66, + "end": 15881.46, + "probability": 0.7069 + }, + { + "start": 15888.62, + "end": 15888.86, + "probability": 0.7478 + }, + { + "start": 15889.44, + "end": 15890.16, + "probability": 0.6758 + }, + { + "start": 15890.22, + "end": 15891.12, + "probability": 0.8491 + }, + { + "start": 15891.16, + "end": 15891.72, + "probability": 0.8602 + }, + { + "start": 15891.82, + "end": 15893.46, + "probability": 0.9949 + }, + { + "start": 15894.7, + "end": 15897.44, + "probability": 0.8979 + }, + { + "start": 15898.16, + "end": 15898.76, + "probability": 0.9827 + }, + { + "start": 15899.38, + "end": 15900.74, + "probability": 0.716 + }, + { + "start": 15901.58, + "end": 15903.48, + "probability": 0.9836 + }, + { + "start": 15903.64, + "end": 15905.56, + "probability": 0.939 + }, + { + "start": 15906.24, + "end": 15907.52, + "probability": 0.9136 + }, + { + "start": 15908.04, + "end": 15908.7, + "probability": 0.9246 + }, + { + "start": 15908.8, + "end": 15909.28, + "probability": 0.9187 + }, + { + "start": 15909.32, + "end": 15909.96, + "probability": 0.9805 + }, + { + "start": 15910.22, + "end": 15911.28, + "probability": 0.454 + }, + { + "start": 15912.04, + "end": 15914.94, + "probability": 0.9977 + }, + { + "start": 15915.76, + "end": 15919.96, + "probability": 0.8347 + }, + { + "start": 15920.04, + "end": 15921.16, + "probability": 0.8971 + }, + { + "start": 15921.2, + "end": 15922.4, + "probability": 0.7838 + }, + { + "start": 15922.82, + "end": 15926.12, + "probability": 0.9906 + }, + { + "start": 15926.94, + "end": 15930.3, + "probability": 0.9912 + }, + { + "start": 15930.54, + "end": 15931.1, + "probability": 0.6901 + }, + { + "start": 15931.5, + "end": 15932.0, + "probability": 0.6623 + }, + { + "start": 15932.16, + "end": 15934.34, + "probability": 0.9906 + }, + { + "start": 15934.52, + "end": 15935.88, + "probability": 0.6631 + }, + { + "start": 15936.06, + "end": 15936.38, + "probability": 0.4295 + }, + { + "start": 15936.54, + "end": 15942.72, + "probability": 0.9382 + }, + { + "start": 15942.72, + "end": 15946.28, + "probability": 0.9428 + }, + { + "start": 15946.46, + "end": 15948.64, + "probability": 0.9098 + }, + { + "start": 15949.18, + "end": 15951.68, + "probability": 0.9789 + }, + { + "start": 15952.1, + "end": 15953.2, + "probability": 0.9266 + }, + { + "start": 15953.28, + "end": 15956.39, + "probability": 0.5805 + }, + { + "start": 15956.9, + "end": 15958.18, + "probability": 0.973 + }, + { + "start": 15958.32, + "end": 15958.84, + "probability": 0.7593 + }, + { + "start": 15958.88, + "end": 15960.84, + "probability": 0.8902 + }, + { + "start": 15961.76, + "end": 15964.68, + "probability": 0.9976 + }, + { + "start": 15964.68, + "end": 15967.26, + "probability": 0.9965 + }, + { + "start": 15967.74, + "end": 15969.32, + "probability": 0.998 + }, + { + "start": 15970.0, + "end": 15973.24, + "probability": 0.8198 + }, + { + "start": 15973.32, + "end": 15976.56, + "probability": 0.9935 + }, + { + "start": 15977.0, + "end": 15977.28, + "probability": 0.5988 + }, + { + "start": 15977.44, + "end": 15978.3, + "probability": 0.6835 + }, + { + "start": 15978.68, + "end": 15979.12, + "probability": 0.6366 + }, + { + "start": 15979.24, + "end": 15980.22, + "probability": 0.9819 + }, + { + "start": 15980.26, + "end": 15982.04, + "probability": 0.9728 + }, + { + "start": 15982.12, + "end": 15982.82, + "probability": 0.7809 + }, + { + "start": 15983.18, + "end": 15984.02, + "probability": 0.899 + }, + { + "start": 15984.72, + "end": 15986.78, + "probability": 0.9581 + }, + { + "start": 15987.6, + "end": 15989.96, + "probability": 0.942 + }, + { + "start": 15989.96, + "end": 15992.76, + "probability": 0.823 + }, + { + "start": 15992.8, + "end": 15994.69, + "probability": 0.9428 + }, + { + "start": 15995.84, + "end": 15996.02, + "probability": 0.9147 + }, + { + "start": 15996.1, + "end": 15999.49, + "probability": 0.9976 + }, + { + "start": 16000.18, + "end": 16005.36, + "probability": 0.9885 + }, + { + "start": 16005.36, + "end": 16009.44, + "probability": 0.9879 + }, + { + "start": 16009.68, + "end": 16011.28, + "probability": 0.7145 + }, + { + "start": 16011.38, + "end": 16012.0, + "probability": 0.889 + }, + { + "start": 16012.54, + "end": 16013.16, + "probability": 0.9115 + }, + { + "start": 16013.2, + "end": 16015.19, + "probability": 0.9607 + }, + { + "start": 16015.32, + "end": 16015.8, + "probability": 0.8105 + }, + { + "start": 16016.22, + "end": 16017.4, + "probability": 0.9889 + }, + { + "start": 16018.1, + "end": 16021.46, + "probability": 0.9831 + }, + { + "start": 16022.04, + "end": 16022.22, + "probability": 0.352 + }, + { + "start": 16022.58, + "end": 16022.76, + "probability": 0.7849 + }, + { + "start": 16022.82, + "end": 16023.92, + "probability": 0.841 + }, + { + "start": 16024.04, + "end": 16025.36, + "probability": 0.9289 + }, + { + "start": 16025.66, + "end": 16026.34, + "probability": 0.6385 + }, + { + "start": 16026.46, + "end": 16027.7, + "probability": 0.8399 + }, + { + "start": 16028.1, + "end": 16028.98, + "probability": 0.6668 + }, + { + "start": 16029.28, + "end": 16033.24, + "probability": 0.9908 + }, + { + "start": 16033.36, + "end": 16034.76, + "probability": 0.9818 + }, + { + "start": 16035.06, + "end": 16035.94, + "probability": 0.7137 + }, + { + "start": 16036.54, + "end": 16037.26, + "probability": 0.9358 + }, + { + "start": 16037.34, + "end": 16037.94, + "probability": 0.9583 + }, + { + "start": 16038.02, + "end": 16039.96, + "probability": 0.9933 + }, + { + "start": 16040.26, + "end": 16040.92, + "probability": 0.7229 + }, + { + "start": 16040.94, + "end": 16043.04, + "probability": 0.9533 + }, + { + "start": 16043.18, + "end": 16046.68, + "probability": 0.981 + }, + { + "start": 16046.8, + "end": 16047.14, + "probability": 0.719 + }, + { + "start": 16047.66, + "end": 16050.66, + "probability": 0.6898 + }, + { + "start": 16051.28, + "end": 16054.24, + "probability": 0.7817 + }, + { + "start": 16054.3, + "end": 16054.9, + "probability": 0.2904 + }, + { + "start": 16054.96, + "end": 16056.52, + "probability": 0.8144 + }, + { + "start": 16066.26, + "end": 16069.22, + "probability": 0.6686 + }, + { + "start": 16070.2, + "end": 16071.54, + "probability": 0.5824 + }, + { + "start": 16071.64, + "end": 16071.64, + "probability": 0.3178 + }, + { + "start": 16071.64, + "end": 16072.24, + "probability": 0.7757 + }, + { + "start": 16072.5, + "end": 16074.08, + "probability": 0.6831 + }, + { + "start": 16075.14, + "end": 16078.4, + "probability": 0.9924 + }, + { + "start": 16079.82, + "end": 16082.74, + "probability": 0.9826 + }, + { + "start": 16083.84, + "end": 16086.24, + "probability": 0.9216 + }, + { + "start": 16087.24, + "end": 16088.32, + "probability": 0.6279 + }, + { + "start": 16088.92, + "end": 16091.6, + "probability": 0.9503 + }, + { + "start": 16092.64, + "end": 16094.52, + "probability": 0.9719 + }, + { + "start": 16095.34, + "end": 16097.96, + "probability": 0.994 + }, + { + "start": 16098.56, + "end": 16101.8, + "probability": 0.9868 + }, + { + "start": 16101.8, + "end": 16104.8, + "probability": 0.989 + }, + { + "start": 16105.76, + "end": 16108.66, + "probability": 0.9897 + }, + { + "start": 16109.44, + "end": 16111.47, + "probability": 0.9646 + }, + { + "start": 16113.76, + "end": 16116.46, + "probability": 0.9896 + }, + { + "start": 16117.18, + "end": 16120.26, + "probability": 0.9918 + }, + { + "start": 16121.34, + "end": 16122.02, + "probability": 0.8723 + }, + { + "start": 16122.74, + "end": 16124.28, + "probability": 0.6434 + }, + { + "start": 16124.34, + "end": 16127.8, + "probability": 0.9861 + }, + { + "start": 16128.48, + "end": 16129.33, + "probability": 0.5095 + }, + { + "start": 16130.38, + "end": 16133.34, + "probability": 0.9766 + }, + { + "start": 16133.9, + "end": 16135.28, + "probability": 0.8828 + }, + { + "start": 16136.76, + "end": 16141.09, + "probability": 0.8027 + }, + { + "start": 16141.62, + "end": 16142.32, + "probability": 0.5036 + }, + { + "start": 16143.24, + "end": 16144.94, + "probability": 0.9884 + }, + { + "start": 16145.66, + "end": 16149.2, + "probability": 0.9858 + }, + { + "start": 16149.2, + "end": 16152.88, + "probability": 0.925 + }, + { + "start": 16153.44, + "end": 16154.86, + "probability": 0.9958 + }, + { + "start": 16155.66, + "end": 16157.1, + "probability": 0.6786 + }, + { + "start": 16157.82, + "end": 16159.18, + "probability": 0.9098 + }, + { + "start": 16159.78, + "end": 16163.18, + "probability": 0.9148 + }, + { + "start": 16163.86, + "end": 16166.9, + "probability": 0.9875 + }, + { + "start": 16167.7, + "end": 16168.6, + "probability": 0.699 + }, + { + "start": 16169.5, + "end": 16171.74, + "probability": 0.9902 + }, + { + "start": 16172.26, + "end": 16173.08, + "probability": 0.7598 + }, + { + "start": 16174.08, + "end": 16175.58, + "probability": 0.9749 + }, + { + "start": 16176.84, + "end": 16182.1, + "probability": 0.9979 + }, + { + "start": 16182.8, + "end": 16185.78, + "probability": 0.957 + }, + { + "start": 16186.64, + "end": 16189.24, + "probability": 0.9951 + }, + { + "start": 16189.92, + "end": 16191.62, + "probability": 0.811 + }, + { + "start": 16192.84, + "end": 16194.16, + "probability": 0.7623 + }, + { + "start": 16194.86, + "end": 16199.72, + "probability": 0.9855 + }, + { + "start": 16201.24, + "end": 16205.4, + "probability": 0.9843 + }, + { + "start": 16207.16, + "end": 16209.04, + "probability": 0.9495 + }, + { + "start": 16209.76, + "end": 16210.08, + "probability": 0.7021 + }, + { + "start": 16210.9, + "end": 16214.9, + "probability": 0.8583 + }, + { + "start": 16215.62, + "end": 16217.91, + "probability": 0.7886 + }, + { + "start": 16218.78, + "end": 16220.9, + "probability": 0.9542 + }, + { + "start": 16221.04, + "end": 16221.8, + "probability": 0.8225 + }, + { + "start": 16222.62, + "end": 16224.94, + "probability": 0.9746 + }, + { + "start": 16225.64, + "end": 16227.26, + "probability": 0.8555 + }, + { + "start": 16228.14, + "end": 16230.28, + "probability": 0.9807 + }, + { + "start": 16230.86, + "end": 16232.72, + "probability": 0.9491 + }, + { + "start": 16233.44, + "end": 16235.74, + "probability": 0.9631 + }, + { + "start": 16236.76, + "end": 16238.32, + "probability": 0.9438 + }, + { + "start": 16239.36, + "end": 16240.08, + "probability": 0.9912 + }, + { + "start": 16241.36, + "end": 16243.18, + "probability": 0.9482 + }, + { + "start": 16243.82, + "end": 16246.72, + "probability": 0.9929 + }, + { + "start": 16247.26, + "end": 16249.3, + "probability": 0.77 + }, + { + "start": 16250.08, + "end": 16252.23, + "probability": 0.9753 + }, + { + "start": 16252.96, + "end": 16254.68, + "probability": 0.8582 + }, + { + "start": 16255.2, + "end": 16257.82, + "probability": 0.7956 + }, + { + "start": 16258.58, + "end": 16259.46, + "probability": 0.9784 + }, + { + "start": 16259.68, + "end": 16260.78, + "probability": 0.7559 + }, + { + "start": 16261.28, + "end": 16263.34, + "probability": 0.8617 + }, + { + "start": 16264.0, + "end": 16265.88, + "probability": 0.5582 + }, + { + "start": 16266.14, + "end": 16266.28, + "probability": 0.3571 + }, + { + "start": 16266.42, + "end": 16267.66, + "probability": 0.9441 + }, + { + "start": 16268.4, + "end": 16271.5, + "probability": 0.8552 + }, + { + "start": 16271.64, + "end": 16274.2, + "probability": 0.9722 + }, + { + "start": 16275.02, + "end": 16277.08, + "probability": 0.8563 + }, + { + "start": 16294.45, + "end": 16296.16, + "probability": 0.7396 + }, + { + "start": 16297.22, + "end": 16298.14, + "probability": 0.6612 + }, + { + "start": 16299.22, + "end": 16299.64, + "probability": 0.6484 + }, + { + "start": 16299.66, + "end": 16302.08, + "probability": 0.9292 + }, + { + "start": 16302.26, + "end": 16305.46, + "probability": 0.9886 + }, + { + "start": 16306.58, + "end": 16308.1, + "probability": 0.9709 + }, + { + "start": 16308.2, + "end": 16309.06, + "probability": 0.9883 + }, + { + "start": 16309.56, + "end": 16310.62, + "probability": 0.5142 + }, + { + "start": 16310.66, + "end": 16311.56, + "probability": 0.8496 + }, + { + "start": 16312.14, + "end": 16314.34, + "probability": 0.9766 + }, + { + "start": 16315.3, + "end": 16316.46, + "probability": 0.988 + }, + { + "start": 16316.56, + "end": 16317.26, + "probability": 0.9692 + }, + { + "start": 16317.32, + "end": 16319.06, + "probability": 0.9863 + }, + { + "start": 16320.06, + "end": 16322.08, + "probability": 0.9975 + }, + { + "start": 16323.8, + "end": 16328.68, + "probability": 0.9186 + }, + { + "start": 16329.64, + "end": 16331.56, + "probability": 0.8301 + }, + { + "start": 16332.22, + "end": 16334.04, + "probability": 0.9707 + }, + { + "start": 16334.64, + "end": 16338.07, + "probability": 0.9985 + }, + { + "start": 16338.18, + "end": 16342.92, + "probability": 0.9933 + }, + { + "start": 16343.6, + "end": 16345.32, + "probability": 0.9964 + }, + { + "start": 16345.46, + "end": 16346.55, + "probability": 0.9861 + }, + { + "start": 16347.88, + "end": 16352.94, + "probability": 0.9894 + }, + { + "start": 16353.9, + "end": 16355.92, + "probability": 0.9907 + }, + { + "start": 16356.52, + "end": 16358.74, + "probability": 0.9903 + }, + { + "start": 16359.82, + "end": 16360.08, + "probability": 0.7997 + }, + { + "start": 16361.1, + "end": 16363.7, + "probability": 0.9904 + }, + { + "start": 16364.84, + "end": 16368.62, + "probability": 0.998 + }, + { + "start": 16369.7, + "end": 16372.74, + "probability": 0.9585 + }, + { + "start": 16373.46, + "end": 16376.24, + "probability": 0.9872 + }, + { + "start": 16377.4, + "end": 16379.08, + "probability": 0.8537 + }, + { + "start": 16379.58, + "end": 16382.12, + "probability": 0.8441 + }, + { + "start": 16383.08, + "end": 16386.98, + "probability": 0.9897 + }, + { + "start": 16388.1, + "end": 16390.02, + "probability": 0.9113 + }, + { + "start": 16390.76, + "end": 16393.44, + "probability": 0.9548 + }, + { + "start": 16394.2, + "end": 16400.14, + "probability": 0.9893 + }, + { + "start": 16401.34, + "end": 16403.92, + "probability": 0.9384 + }, + { + "start": 16404.9, + "end": 16405.49, + "probability": 0.9746 + }, + { + "start": 16406.5, + "end": 16407.08, + "probability": 0.9696 + }, + { + "start": 16407.64, + "end": 16410.77, + "probability": 0.9834 + }, + { + "start": 16411.04, + "end": 16411.18, + "probability": 0.5791 + }, + { + "start": 16412.34, + "end": 16415.06, + "probability": 0.7076 + }, + { + "start": 16415.8, + "end": 16421.9, + "probability": 0.9912 + }, + { + "start": 16422.62, + "end": 16423.04, + "probability": 0.4046 + }, + { + "start": 16423.56, + "end": 16424.86, + "probability": 0.748 + }, + { + "start": 16425.78, + "end": 16427.64, + "probability": 0.9517 + }, + { + "start": 16428.28, + "end": 16430.92, + "probability": 0.9915 + }, + { + "start": 16431.04, + "end": 16433.96, + "probability": 0.7886 + }, + { + "start": 16435.04, + "end": 16436.86, + "probability": 0.7704 + }, + { + "start": 16437.88, + "end": 16438.86, + "probability": 0.3515 + }, + { + "start": 16439.24, + "end": 16441.24, + "probability": 0.9665 + }, + { + "start": 16441.62, + "end": 16443.56, + "probability": 0.9711 + }, + { + "start": 16445.06, + "end": 16448.58, + "probability": 0.9894 + }, + { + "start": 16449.24, + "end": 16450.7, + "probability": 0.947 + }, + { + "start": 16451.56, + "end": 16453.88, + "probability": 0.9939 + }, + { + "start": 16454.34, + "end": 16455.31, + "probability": 0.9956 + }, + { + "start": 16455.92, + "end": 16457.23, + "probability": 0.967 + }, + { + "start": 16457.78, + "end": 16460.36, + "probability": 0.9871 + }, + { + "start": 16460.92, + "end": 16463.02, + "probability": 0.8264 + }, + { + "start": 16463.16, + "end": 16464.74, + "probability": 0.9837 + }, + { + "start": 16465.26, + "end": 16466.36, + "probability": 0.976 + }, + { + "start": 16467.14, + "end": 16471.52, + "probability": 0.8535 + }, + { + "start": 16471.58, + "end": 16476.0, + "probability": 0.9609 + }, + { + "start": 16476.48, + "end": 16479.66, + "probability": 0.9814 + }, + { + "start": 16481.22, + "end": 16482.94, + "probability": 0.9021 + }, + { + "start": 16484.62, + "end": 16487.23, + "probability": 0.8394 + }, + { + "start": 16488.38, + "end": 16490.0, + "probability": 0.9982 + }, + { + "start": 16490.7, + "end": 16492.1, + "probability": 0.9736 + }, + { + "start": 16492.94, + "end": 16495.16, + "probability": 0.9961 + }, + { + "start": 16495.86, + "end": 16498.1, + "probability": 0.8987 + }, + { + "start": 16498.82, + "end": 16501.84, + "probability": 0.9675 + }, + { + "start": 16502.42, + "end": 16512.52, + "probability": 0.9779 + }, + { + "start": 16513.26, + "end": 16513.98, + "probability": 0.9564 + }, + { + "start": 16514.62, + "end": 16515.64, + "probability": 0.9622 + }, + { + "start": 16516.06, + "end": 16517.46, + "probability": 0.9478 + }, + { + "start": 16517.56, + "end": 16519.6, + "probability": 0.9751 + }, + { + "start": 16521.54, + "end": 16523.74, + "probability": 0.6065 + }, + { + "start": 16523.9, + "end": 16525.63, + "probability": 0.6396 + }, + { + "start": 16526.18, + "end": 16528.74, + "probability": 0.5015 + }, + { + "start": 16528.74, + "end": 16531.24, + "probability": 0.9822 + }, + { + "start": 16532.98, + "end": 16536.4, + "probability": 0.895 + }, + { + "start": 16538.3, + "end": 16539.86, + "probability": 0.7958 + }, + { + "start": 16541.26, + "end": 16543.56, + "probability": 0.908 + }, + { + "start": 16546.3, + "end": 16548.29, + "probability": 0.999 + }, + { + "start": 16549.08, + "end": 16550.76, + "probability": 0.544 + }, + { + "start": 16551.94, + "end": 16552.9, + "probability": 0.9727 + }, + { + "start": 16553.54, + "end": 16555.03, + "probability": 0.9713 + }, + { + "start": 16555.32, + "end": 16558.56, + "probability": 0.7693 + }, + { + "start": 16559.08, + "end": 16561.3, + "probability": 0.9702 + }, + { + "start": 16561.9, + "end": 16564.9, + "probability": 0.9087 + }, + { + "start": 16565.86, + "end": 16568.2, + "probability": 0.9995 + }, + { + "start": 16569.18, + "end": 16570.96, + "probability": 0.8686 + }, + { + "start": 16571.12, + "end": 16576.12, + "probability": 0.9959 + }, + { + "start": 16576.86, + "end": 16579.82, + "probability": 0.9919 + }, + { + "start": 16580.26, + "end": 16581.5, + "probability": 0.8796 + }, + { + "start": 16581.56, + "end": 16582.64, + "probability": 0.9748 + }, + { + "start": 16582.92, + "end": 16583.92, + "probability": 0.7983 + }, + { + "start": 16583.96, + "end": 16584.92, + "probability": 0.7419 + }, + { + "start": 16585.0, + "end": 16589.02, + "probability": 0.9849 + }, + { + "start": 16589.84, + "end": 16595.74, + "probability": 0.9077 + }, + { + "start": 16595.82, + "end": 16597.58, + "probability": 0.9717 + }, + { + "start": 16599.84, + "end": 16601.4, + "probability": 0.9829 + }, + { + "start": 16601.98, + "end": 16606.62, + "probability": 0.9666 + }, + { + "start": 16607.9, + "end": 16611.32, + "probability": 0.8151 + }, + { + "start": 16611.44, + "end": 16611.98, + "probability": 0.6701 + }, + { + "start": 16612.84, + "end": 16617.64, + "probability": 0.9545 + }, + { + "start": 16618.38, + "end": 16621.96, + "probability": 0.9921 + }, + { + "start": 16621.96, + "end": 16629.02, + "probability": 0.9873 + }, + { + "start": 16629.68, + "end": 16630.74, + "probability": 0.9319 + }, + { + "start": 16632.76, + "end": 16638.22, + "probability": 0.9961 + }, + { + "start": 16639.58, + "end": 16639.96, + "probability": 0.7437 + }, + { + "start": 16640.12, + "end": 16642.3, + "probability": 0.6183 + }, + { + "start": 16642.38, + "end": 16646.1, + "probability": 0.9573 + }, + { + "start": 16647.3, + "end": 16649.68, + "probability": 0.9941 + }, + { + "start": 16649.76, + "end": 16651.86, + "probability": 0.9777 + }, + { + "start": 16651.94, + "end": 16655.26, + "probability": 0.9801 + }, + { + "start": 16656.96, + "end": 16661.2, + "probability": 0.97 + }, + { + "start": 16661.98, + "end": 16664.46, + "probability": 0.859 + }, + { + "start": 16664.46, + "end": 16668.94, + "probability": 0.9973 + }, + { + "start": 16669.08, + "end": 16669.43, + "probability": 0.9789 + }, + { + "start": 16669.78, + "end": 16670.38, + "probability": 0.7515 + }, + { + "start": 16671.24, + "end": 16677.26, + "probability": 0.998 + }, + { + "start": 16678.1, + "end": 16680.96, + "probability": 0.9863 + }, + { + "start": 16680.96, + "end": 16684.12, + "probability": 0.8609 + }, + { + "start": 16684.44, + "end": 16685.0, + "probability": 0.8139 + }, + { + "start": 16686.48, + "end": 16689.0, + "probability": 0.7275 + }, + { + "start": 16689.84, + "end": 16691.9, + "probability": 0.8599 + }, + { + "start": 16692.02, + "end": 16692.56, + "probability": 0.4178 + }, + { + "start": 16692.98, + "end": 16694.82, + "probability": 0.9526 + }, + { + "start": 16703.26, + "end": 16705.02, + "probability": 0.923 + }, + { + "start": 16710.84, + "end": 16711.98, + "probability": 0.7018 + }, + { + "start": 16712.8, + "end": 16714.1, + "probability": 0.8038 + }, + { + "start": 16714.78, + "end": 16715.26, + "probability": 0.3381 + }, + { + "start": 16716.54, + "end": 16717.42, + "probability": 0.0825 + }, + { + "start": 16717.98, + "end": 16718.32, + "probability": 0.6122 + }, + { + "start": 16718.4, + "end": 16719.16, + "probability": 0.8162 + }, + { + "start": 16719.3, + "end": 16721.54, + "probability": 0.9807 + }, + { + "start": 16721.68, + "end": 16723.12, + "probability": 0.8193 + }, + { + "start": 16723.92, + "end": 16728.1, + "probability": 0.96 + }, + { + "start": 16729.06, + "end": 16729.48, + "probability": 0.2377 + }, + { + "start": 16730.32, + "end": 16731.3, + "probability": 0.9442 + }, + { + "start": 16731.6, + "end": 16733.24, + "probability": 0.9832 + }, + { + "start": 16733.38, + "end": 16734.01, + "probability": 0.8514 + }, + { + "start": 16735.44, + "end": 16740.1, + "probability": 0.844 + }, + { + "start": 16740.66, + "end": 16742.52, + "probability": 0.6021 + }, + { + "start": 16743.12, + "end": 16743.62, + "probability": 0.8082 + }, + { + "start": 16744.18, + "end": 16745.3, + "probability": 0.9175 + }, + { + "start": 16745.58, + "end": 16749.9, + "probability": 0.8452 + }, + { + "start": 16751.68, + "end": 16753.18, + "probability": 0.8425 + }, + { + "start": 16753.48, + "end": 16753.85, + "probability": 0.6118 + }, + { + "start": 16754.34, + "end": 16755.09, + "probability": 0.9762 + }, + { + "start": 16756.16, + "end": 16758.38, + "probability": 0.4595 + }, + { + "start": 16759.26, + "end": 16760.38, + "probability": 0.8632 + }, + { + "start": 16761.62, + "end": 16763.88, + "probability": 0.9465 + }, + { + "start": 16764.08, + "end": 16767.96, + "probability": 0.9512 + }, + { + "start": 16768.44, + "end": 16769.6, + "probability": 0.6447 + }, + { + "start": 16770.44, + "end": 16772.08, + "probability": 0.7044 + }, + { + "start": 16772.68, + "end": 16773.18, + "probability": 0.7149 + }, + { + "start": 16775.22, + "end": 16778.28, + "probability": 0.946 + }, + { + "start": 16778.94, + "end": 16779.7, + "probability": 0.6924 + }, + { + "start": 16780.32, + "end": 16781.0, + "probability": 0.8472 + }, + { + "start": 16782.68, + "end": 16784.8, + "probability": 0.8339 + }, + { + "start": 16785.3, + "end": 16786.28, + "probability": 0.4482 + }, + { + "start": 16786.38, + "end": 16787.08, + "probability": 0.6367 + }, + { + "start": 16787.72, + "end": 16788.7, + "probability": 0.3733 + }, + { + "start": 16790.24, + "end": 16790.62, + "probability": 0.652 + }, + { + "start": 16791.24, + "end": 16792.74, + "probability": 0.8104 + }, + { + "start": 16793.3, + "end": 16795.28, + "probability": 0.8732 + }, + { + "start": 16795.86, + "end": 16797.52, + "probability": 0.9854 + }, + { + "start": 16798.28, + "end": 16800.78, + "probability": 0.962 + }, + { + "start": 16801.14, + "end": 16804.22, + "probability": 0.9404 + }, + { + "start": 16805.3, + "end": 16810.2, + "probability": 0.7985 + }, + { + "start": 16810.48, + "end": 16811.04, + "probability": 0.4352 + }, + { + "start": 16811.7, + "end": 16812.38, + "probability": 0.9177 + }, + { + "start": 16813.24, + "end": 16816.36, + "probability": 0.9831 + }, + { + "start": 16816.7, + "end": 16818.48, + "probability": 0.8169 + }, + { + "start": 16819.6, + "end": 16819.96, + "probability": 0.53 + }, + { + "start": 16821.46, + "end": 16823.94, + "probability": 0.897 + }, + { + "start": 16824.0, + "end": 16826.42, + "probability": 0.9766 + }, + { + "start": 16827.04, + "end": 16828.54, + "probability": 0.9255 + }, + { + "start": 16829.14, + "end": 16830.9, + "probability": 0.8958 + }, + { + "start": 16839.26, + "end": 16841.44, + "probability": 0.9595 + }, + { + "start": 16841.9, + "end": 16844.36, + "probability": 0.6186 + }, + { + "start": 16845.32, + "end": 16852.16, + "probability": 0.8777 + }, + { + "start": 16852.36, + "end": 16856.88, + "probability": 0.9691 + }, + { + "start": 16857.06, + "end": 16859.9, + "probability": 0.6893 + }, + { + "start": 16860.4, + "end": 16863.92, + "probability": 0.9954 + }, + { + "start": 16863.92, + "end": 16867.8, + "probability": 0.9989 + }, + { + "start": 16868.34, + "end": 16868.44, + "probability": 0.0844 + }, + { + "start": 16868.44, + "end": 16870.26, + "probability": 0.9289 + }, + { + "start": 16870.82, + "end": 16871.24, + "probability": 0.5241 + }, + { + "start": 16871.36, + "end": 16872.28, + "probability": 0.912 + }, + { + "start": 16872.36, + "end": 16873.57, + "probability": 0.9712 + }, + { + "start": 16874.02, + "end": 16874.92, + "probability": 0.9935 + }, + { + "start": 16875.04, + "end": 16877.2, + "probability": 0.9917 + }, + { + "start": 16877.3, + "end": 16878.28, + "probability": 0.787 + }, + { + "start": 16878.28, + "end": 16878.54, + "probability": 0.0953 + }, + { + "start": 16878.82, + "end": 16879.3, + "probability": 0.4534 + }, + { + "start": 16879.3, + "end": 16883.24, + "probability": 0.1693 + }, + { + "start": 16883.76, + "end": 16883.76, + "probability": 0.0478 + }, + { + "start": 16883.76, + "end": 16883.76, + "probability": 0.0804 + }, + { + "start": 16883.76, + "end": 16884.9, + "probability": 0.5247 + }, + { + "start": 16884.96, + "end": 16889.18, + "probability": 0.9985 + }, + { + "start": 16889.68, + "end": 16890.5, + "probability": 0.8928 + }, + { + "start": 16891.34, + "end": 16892.28, + "probability": 0.8002 + }, + { + "start": 16892.32, + "end": 16892.68, + "probability": 0.8289 + }, + { + "start": 16892.7, + "end": 16893.6, + "probability": 0.9684 + }, + { + "start": 16893.7, + "end": 16893.98, + "probability": 0.8403 + }, + { + "start": 16894.22, + "end": 16895.1, + "probability": 0.801 + }, + { + "start": 16895.5, + "end": 16896.4, + "probability": 0.9131 + }, + { + "start": 16896.96, + "end": 16899.33, + "probability": 0.9929 + }, + { + "start": 16900.28, + "end": 16903.68, + "probability": 0.9156 + }, + { + "start": 16903.72, + "end": 16904.22, + "probability": 0.9799 + }, + { + "start": 16905.08, + "end": 16905.86, + "probability": 0.952 + }, + { + "start": 16905.98, + "end": 16909.04, + "probability": 0.9851 + }, + { + "start": 16909.46, + "end": 16911.4, + "probability": 0.9436 + }, + { + "start": 16911.92, + "end": 16913.2, + "probability": 0.9389 + }, + { + "start": 16913.28, + "end": 16917.94, + "probability": 0.9704 + }, + { + "start": 16918.04, + "end": 16918.54, + "probability": 0.5974 + }, + { + "start": 16918.62, + "end": 16919.1, + "probability": 0.6843 + }, + { + "start": 16919.18, + "end": 16920.58, + "probability": 0.4436 + }, + { + "start": 16920.9, + "end": 16922.0, + "probability": 0.9811 + }, + { + "start": 16922.4, + "end": 16928.32, + "probability": 0.9803 + }, + { + "start": 16928.34, + "end": 16928.46, + "probability": 0.3435 + }, + { + "start": 16928.78, + "end": 16929.22, + "probability": 0.9545 + }, + { + "start": 16929.3, + "end": 16930.54, + "probability": 0.9633 + }, + { + "start": 16930.68, + "end": 16932.86, + "probability": 0.9847 + }, + { + "start": 16933.42, + "end": 16935.54, + "probability": 0.3269 + }, + { + "start": 16935.96, + "end": 16936.22, + "probability": 0.9223 + }, + { + "start": 16936.3, + "end": 16936.94, + "probability": 0.7973 + }, + { + "start": 16937.3, + "end": 16940.06, + "probability": 0.9711 + }, + { + "start": 16940.36, + "end": 16940.98, + "probability": 0.8377 + }, + { + "start": 16941.38, + "end": 16941.68, + "probability": 0.9524 + }, + { + "start": 16941.72, + "end": 16942.26, + "probability": 0.9711 + }, + { + "start": 16942.54, + "end": 16943.0, + "probability": 0.845 + }, + { + "start": 16943.48, + "end": 16944.92, + "probability": 0.9825 + }, + { + "start": 16945.2, + "end": 16945.88, + "probability": 0.8584 + }, + { + "start": 16946.26, + "end": 16948.24, + "probability": 0.9946 + }, + { + "start": 16948.78, + "end": 16951.4, + "probability": 0.9937 + }, + { + "start": 16951.54, + "end": 16951.72, + "probability": 0.929 + }, + { + "start": 16951.96, + "end": 16953.44, + "probability": 0.9878 + }, + { + "start": 16953.8, + "end": 16954.68, + "probability": 0.979 + }, + { + "start": 16954.94, + "end": 16956.9, + "probability": 0.9925 + }, + { + "start": 16957.38, + "end": 16958.26, + "probability": 0.5826 + }, + { + "start": 16958.38, + "end": 16960.76, + "probability": 0.9932 + }, + { + "start": 16961.31, + "end": 16963.54, + "probability": 0.8635 + }, + { + "start": 16963.6, + "end": 16965.74, + "probability": 0.9774 + }, + { + "start": 16965.84, + "end": 16970.84, + "probability": 0.9985 + }, + { + "start": 16970.96, + "end": 16973.47, + "probability": 0.9276 + }, + { + "start": 16973.76, + "end": 16974.42, + "probability": 0.4925 + }, + { + "start": 16974.94, + "end": 16979.62, + "probability": 0.9619 + }, + { + "start": 16979.74, + "end": 16981.18, + "probability": 0.8451 + }, + { + "start": 16981.62, + "end": 16982.2, + "probability": 0.5457 + }, + { + "start": 16982.62, + "end": 16985.26, + "probability": 0.5965 + }, + { + "start": 16985.62, + "end": 16985.86, + "probability": 0.5604 + }, + { + "start": 16985.98, + "end": 16986.72, + "probability": 0.8607 + }, + { + "start": 16986.78, + "end": 16987.76, + "probability": 0.9778 + }, + { + "start": 16987.84, + "end": 16988.89, + "probability": 0.9834 + }, + { + "start": 16989.5, + "end": 16991.94, + "probability": 0.7949 + }, + { + "start": 16991.98, + "end": 16993.16, + "probability": 0.9402 + }, + { + "start": 16993.3, + "end": 16994.12, + "probability": 0.5425 + }, + { + "start": 16994.44, + "end": 16995.92, + "probability": 0.9974 + }, + { + "start": 16995.98, + "end": 16996.46, + "probability": 0.4414 + }, + { + "start": 16996.52, + "end": 16998.18, + "probability": 0.9507 + }, + { + "start": 16998.8, + "end": 17001.64, + "probability": 0.908 + }, + { + "start": 17002.2, + "end": 17004.34, + "probability": 0.9936 + }, + { + "start": 17004.76, + "end": 17005.32, + "probability": 0.6384 + }, + { + "start": 17005.4, + "end": 17009.16, + "probability": 0.9902 + }, + { + "start": 17009.5, + "end": 17012.22, + "probability": 0.9902 + }, + { + "start": 17012.8, + "end": 17014.28, + "probability": 0.9938 + }, + { + "start": 17014.34, + "end": 17016.54, + "probability": 0.9497 + }, + { + "start": 17016.88, + "end": 17018.7, + "probability": 0.9478 + }, + { + "start": 17019.1, + "end": 17019.88, + "probability": 0.9388 + }, + { + "start": 17020.42, + "end": 17021.34, + "probability": 0.9792 + }, + { + "start": 17021.54, + "end": 17023.92, + "probability": 0.9961 + }, + { + "start": 17024.26, + "end": 17026.28, + "probability": 0.877 + }, + { + "start": 17026.32, + "end": 17028.06, + "probability": 0.9764 + }, + { + "start": 17028.5, + "end": 17030.33, + "probability": 0.9825 + }, + { + "start": 17030.78, + "end": 17033.48, + "probability": 0.7495 + }, + { + "start": 17033.62, + "end": 17036.24, + "probability": 0.9358 + }, + { + "start": 17036.96, + "end": 17038.66, + "probability": 0.8809 + }, + { + "start": 17039.1, + "end": 17039.58, + "probability": 0.9123 + }, + { + "start": 17040.06, + "end": 17043.48, + "probability": 0.9914 + }, + { + "start": 17043.84, + "end": 17045.52, + "probability": 0.7916 + }, + { + "start": 17045.56, + "end": 17047.56, + "probability": 0.9238 + }, + { + "start": 17048.0, + "end": 17051.28, + "probability": 0.9719 + }, + { + "start": 17051.7, + "end": 17052.36, + "probability": 0.6078 + }, + { + "start": 17052.88, + "end": 17054.68, + "probability": 0.5342 + }, + { + "start": 17054.72, + "end": 17057.28, + "probability": 0.9131 + }, + { + "start": 17058.04, + "end": 17059.98, + "probability": 0.9036 + }, + { + "start": 17060.66, + "end": 17062.7, + "probability": 0.8025 + }, + { + "start": 17064.02, + "end": 17064.56, + "probability": 0.5695 + }, + { + "start": 17064.88, + "end": 17066.32, + "probability": 0.0131 + }, + { + "start": 17066.6, + "end": 17068.04, + "probability": 0.951 + }, + { + "start": 17068.58, + "end": 17070.52, + "probability": 0.1611 + }, + { + "start": 17071.48, + "end": 17075.52, + "probability": 0.8826 + }, + { + "start": 17076.3, + "end": 17077.28, + "probability": 0.5813 + }, + { + "start": 17090.9, + "end": 17093.82, + "probability": 0.8761 + }, + { + "start": 17095.28, + "end": 17097.53, + "probability": 0.9978 + }, + { + "start": 17098.82, + "end": 17102.04, + "probability": 0.9165 + }, + { + "start": 17103.0, + "end": 17103.24, + "probability": 0.9341 + }, + { + "start": 17104.92, + "end": 17106.28, + "probability": 0.9976 + }, + { + "start": 17108.34, + "end": 17112.9, + "probability": 0.7732 + }, + { + "start": 17112.9, + "end": 17115.94, + "probability": 0.9972 + }, + { + "start": 17117.38, + "end": 17120.44, + "probability": 0.9651 + }, + { + "start": 17120.64, + "end": 17122.36, + "probability": 0.988 + }, + { + "start": 17124.8, + "end": 17130.08, + "probability": 0.8777 + }, + { + "start": 17130.08, + "end": 17135.02, + "probability": 0.981 + }, + { + "start": 17136.1, + "end": 17141.32, + "probability": 0.9928 + }, + { + "start": 17141.32, + "end": 17146.64, + "probability": 0.8265 + }, + { + "start": 17146.7, + "end": 17148.48, + "probability": 0.6343 + }, + { + "start": 17149.32, + "end": 17151.2, + "probability": 0.8043 + }, + { + "start": 17151.26, + "end": 17153.56, + "probability": 0.9272 + }, + { + "start": 17154.12, + "end": 17157.8, + "probability": 0.9459 + }, + { + "start": 17157.82, + "end": 17158.94, + "probability": 0.4759 + }, + { + "start": 17159.76, + "end": 17163.0, + "probability": 0.7832 + }, + { + "start": 17164.56, + "end": 17165.08, + "probability": 0.8214 + }, + { + "start": 17165.2, + "end": 17166.3, + "probability": 0.7481 + }, + { + "start": 17168.12, + "end": 17170.3, + "probability": 0.2887 + }, + { + "start": 17170.78, + "end": 17172.3, + "probability": 0.6663 + }, + { + "start": 17172.46, + "end": 17174.08, + "probability": 0.9447 + }, + { + "start": 17175.52, + "end": 17180.1, + "probability": 0.9801 + }, + { + "start": 17180.2, + "end": 17181.06, + "probability": 0.8528 + }, + { + "start": 17181.16, + "end": 17182.65, + "probability": 0.9201 + }, + { + "start": 17183.26, + "end": 17184.8, + "probability": 0.7211 + }, + { + "start": 17185.12, + "end": 17185.55, + "probability": 0.9668 + }, + { + "start": 17185.86, + "end": 17188.6, + "probability": 0.9513 + }, + { + "start": 17189.24, + "end": 17193.48, + "probability": 0.9979 + }, + { + "start": 17193.52, + "end": 17197.26, + "probability": 0.9878 + }, + { + "start": 17197.76, + "end": 17198.86, + "probability": 0.5714 + }, + { + "start": 17200.72, + "end": 17203.68, + "probability": 0.9528 + }, + { + "start": 17204.54, + "end": 17206.92, + "probability": 0.6472 + }, + { + "start": 17207.44, + "end": 17209.2, + "probability": 0.8199 + }, + { + "start": 17209.72, + "end": 17211.14, + "probability": 0.9215 + }, + { + "start": 17211.68, + "end": 17214.98, + "probability": 0.9803 + }, + { + "start": 17214.98, + "end": 17218.92, + "probability": 0.8764 + }, + { + "start": 17219.76, + "end": 17220.82, + "probability": 0.7275 + }, + { + "start": 17221.44, + "end": 17225.3, + "probability": 0.984 + }, + { + "start": 17225.62, + "end": 17229.08, + "probability": 0.9991 + }, + { + "start": 17229.52, + "end": 17232.38, + "probability": 0.6783 + }, + { + "start": 17232.88, + "end": 17233.64, + "probability": 0.9484 + }, + { + "start": 17233.98, + "end": 17236.48, + "probability": 0.959 + }, + { + "start": 17237.46, + "end": 17238.38, + "probability": 0.076 + }, + { + "start": 17238.5, + "end": 17239.01, + "probability": 0.4579 + }, + { + "start": 17239.5, + "end": 17244.42, + "probability": 0.9531 + }, + { + "start": 17244.52, + "end": 17247.46, + "probability": 0.9429 + }, + { + "start": 17247.82, + "end": 17249.9, + "probability": 0.9251 + }, + { + "start": 17249.92, + "end": 17250.16, + "probability": 0.5405 + }, + { + "start": 17250.18, + "end": 17253.08, + "probability": 0.6717 + }, + { + "start": 17253.14, + "end": 17256.44, + "probability": 0.9644 + }, + { + "start": 17256.5, + "end": 17256.62, + "probability": 0.4969 + }, + { + "start": 17256.74, + "end": 17257.22, + "probability": 0.9551 + }, + { + "start": 17257.28, + "end": 17259.28, + "probability": 0.9414 + }, + { + "start": 17259.34, + "end": 17260.52, + "probability": 0.9895 + }, + { + "start": 17261.52, + "end": 17266.7, + "probability": 0.8892 + }, + { + "start": 17266.7, + "end": 17268.74, + "probability": 0.9744 + }, + { + "start": 17269.9, + "end": 17271.04, + "probability": 0.7637 + }, + { + "start": 17271.16, + "end": 17273.34, + "probability": 0.8127 + }, + { + "start": 17273.4, + "end": 17274.47, + "probability": 0.8078 + }, + { + "start": 17275.08, + "end": 17275.78, + "probability": 0.5702 + }, + { + "start": 17276.4, + "end": 17278.98, + "probability": 0.9951 + }, + { + "start": 17279.7, + "end": 17281.32, + "probability": 0.972 + }, + { + "start": 17281.66, + "end": 17285.52, + "probability": 0.8422 + }, + { + "start": 17285.8, + "end": 17287.16, + "probability": 0.9618 + }, + { + "start": 17287.48, + "end": 17291.16, + "probability": 0.6672 + }, + { + "start": 17291.9, + "end": 17291.9, + "probability": 0.3954 + }, + { + "start": 17291.9, + "end": 17293.14, + "probability": 0.3897 + }, + { + "start": 17294.4, + "end": 17299.0, + "probability": 0.6805 + }, + { + "start": 17299.8, + "end": 17301.58, + "probability": 0.7677 + }, + { + "start": 17301.88, + "end": 17303.36, + "probability": 0.9837 + }, + { + "start": 17303.64, + "end": 17304.4, + "probability": 0.4404 + }, + { + "start": 17304.4, + "end": 17306.3, + "probability": 0.6735 + }, + { + "start": 17306.64, + "end": 17307.58, + "probability": 0.6761 + }, + { + "start": 17307.66, + "end": 17308.22, + "probability": 0.4534 + }, + { + "start": 17308.62, + "end": 17310.77, + "probability": 0.2734 + }, + { + "start": 17311.06, + "end": 17311.14, + "probability": 0.1401 + }, + { + "start": 17311.48, + "end": 17313.68, + "probability": 0.981 + }, + { + "start": 17314.44, + "end": 17318.62, + "probability": 0.9799 + }, + { + "start": 17318.62, + "end": 17319.0, + "probability": 0.5875 + }, + { + "start": 17319.1, + "end": 17322.26, + "probability": 0.8548 + }, + { + "start": 17322.36, + "end": 17323.8, + "probability": 0.838 + }, + { + "start": 17323.84, + "end": 17325.78, + "probability": 0.9159 + }, + { + "start": 17325.9, + "end": 17326.62, + "probability": 0.8919 + }, + { + "start": 17326.88, + "end": 17328.46, + "probability": 0.9119 + }, + { + "start": 17328.48, + "end": 17329.83, + "probability": 0.9946 + }, + { + "start": 17330.28, + "end": 17333.8, + "probability": 0.9299 + }, + { + "start": 17333.8, + "end": 17336.4, + "probability": 0.9941 + }, + { + "start": 17336.7, + "end": 17338.52, + "probability": 0.7483 + }, + { + "start": 17338.82, + "end": 17338.92, + "probability": 0.6666 + }, + { + "start": 17340.78, + "end": 17342.2, + "probability": 0.2733 + }, + { + "start": 17342.36, + "end": 17344.94, + "probability": 0.694 + }, + { + "start": 17344.94, + "end": 17346.03, + "probability": 0.9563 + }, + { + "start": 17347.16, + "end": 17351.72, + "probability": 0.7708 + }, + { + "start": 17358.64, + "end": 17359.06, + "probability": 0.0057 + }, + { + "start": 17374.7, + "end": 17376.1, + "probability": 0.1537 + }, + { + "start": 17376.7, + "end": 17379.02, + "probability": 0.9351 + }, + { + "start": 17384.64, + "end": 17385.66, + "probability": 0.7102 + }, + { + "start": 17385.84, + "end": 17387.16, + "probability": 0.8416 + }, + { + "start": 17387.32, + "end": 17388.88, + "probability": 0.8753 + }, + { + "start": 17389.56, + "end": 17391.08, + "probability": 0.8303 + }, + { + "start": 17392.2, + "end": 17393.28, + "probability": 0.49 + }, + { + "start": 17393.9, + "end": 17394.48, + "probability": 0.7208 + }, + { + "start": 17394.6, + "end": 17396.2, + "probability": 0.801 + }, + { + "start": 17396.54, + "end": 17398.9, + "probability": 0.7214 + }, + { + "start": 17398.98, + "end": 17400.36, + "probability": 0.8359 + }, + { + "start": 17400.78, + "end": 17401.7, + "probability": 0.5751 + }, + { + "start": 17402.08, + "end": 17402.96, + "probability": 0.9436 + }, + { + "start": 17403.1, + "end": 17404.18, + "probability": 0.9557 + }, + { + "start": 17404.98, + "end": 17405.54, + "probability": 0.6958 + }, + { + "start": 17406.78, + "end": 17411.28, + "probability": 0.9717 + }, + { + "start": 17412.16, + "end": 17414.4, + "probability": 0.9429 + }, + { + "start": 17415.58, + "end": 17417.64, + "probability": 0.8263 + }, + { + "start": 17417.84, + "end": 17418.72, + "probability": 0.8718 + }, + { + "start": 17419.7, + "end": 17421.17, + "probability": 0.9072 + }, + { + "start": 17422.58, + "end": 17424.12, + "probability": 0.9219 + }, + { + "start": 17425.72, + "end": 17426.7, + "probability": 0.7447 + }, + { + "start": 17427.44, + "end": 17430.84, + "probability": 0.8025 + }, + { + "start": 17431.54, + "end": 17433.12, + "probability": 0.189 + }, + { + "start": 17433.82, + "end": 17435.24, + "probability": 0.9482 + }, + { + "start": 17436.02, + "end": 17439.8, + "probability": 0.9788 + }, + { + "start": 17440.8, + "end": 17441.5, + "probability": 0.2726 + }, + { + "start": 17442.8, + "end": 17446.22, + "probability": 0.7289 + }, + { + "start": 17447.14, + "end": 17451.36, + "probability": 0.786 + }, + { + "start": 17451.46, + "end": 17453.8, + "probability": 0.9195 + }, + { + "start": 17454.28, + "end": 17456.52, + "probability": 0.9602 + }, + { + "start": 17457.0, + "end": 17460.68, + "probability": 0.7575 + }, + { + "start": 17461.4, + "end": 17465.36, + "probability": 0.648 + }, + { + "start": 17466.14, + "end": 17468.02, + "probability": 0.7859 + }, + { + "start": 17468.06, + "end": 17471.02, + "probability": 0.9443 + }, + { + "start": 17471.62, + "end": 17475.37, + "probability": 0.9924 + }, + { + "start": 17475.84, + "end": 17478.66, + "probability": 0.9521 + }, + { + "start": 17478.66, + "end": 17482.7, + "probability": 0.9784 + }, + { + "start": 17482.82, + "end": 17484.62, + "probability": 0.989 + }, + { + "start": 17485.14, + "end": 17488.2, + "probability": 0.9127 + }, + { + "start": 17488.78, + "end": 17493.1, + "probability": 0.9885 + }, + { + "start": 17493.72, + "end": 17495.04, + "probability": 0.6534 + }, + { + "start": 17495.58, + "end": 17501.94, + "probability": 0.9148 + }, + { + "start": 17502.4, + "end": 17504.2, + "probability": 0.9614 + }, + { + "start": 17505.2, + "end": 17509.78, + "probability": 0.9432 + }, + { + "start": 17510.32, + "end": 17511.52, + "probability": 0.983 + }, + { + "start": 17512.26, + "end": 17514.36, + "probability": 0.9797 + }, + { + "start": 17514.46, + "end": 17514.96, + "probability": 0.8226 + }, + { + "start": 17515.44, + "end": 17516.86, + "probability": 0.9773 + }, + { + "start": 17517.34, + "end": 17520.14, + "probability": 0.9224 + }, + { + "start": 17522.26, + "end": 17525.42, + "probability": 0.9726 + }, + { + "start": 17526.1, + "end": 17527.79, + "probability": 0.1123 + }, + { + "start": 17528.4, + "end": 17531.52, + "probability": 0.245 + }, + { + "start": 17532.5, + "end": 17533.24, + "probability": 0.8016 + }, + { + "start": 17533.54, + "end": 17534.92, + "probability": 0.9587 + }, + { + "start": 17535.28, + "end": 17536.7, + "probability": 0.9585 + }, + { + "start": 17536.74, + "end": 17539.3, + "probability": 0.6458 + }, + { + "start": 17539.84, + "end": 17541.42, + "probability": 0.7615 + }, + { + "start": 17543.92, + "end": 17546.34, + "probability": 0.4861 + }, + { + "start": 17546.44, + "end": 17547.38, + "probability": 0.7561 + }, + { + "start": 17547.58, + "end": 17548.88, + "probability": 0.4668 + }, + { + "start": 17549.14, + "end": 17552.0, + "probability": 0.6309 + }, + { + "start": 17552.16, + "end": 17557.02, + "probability": 0.8748 + }, + { + "start": 17557.24, + "end": 17558.08, + "probability": 0.5885 + }, + { + "start": 17558.1, + "end": 17561.14, + "probability": 0.6752 + }, + { + "start": 17561.98, + "end": 17563.72, + "probability": 0.3384 + }, + { + "start": 17563.84, + "end": 17564.16, + "probability": 0.1177 + }, + { + "start": 17564.6, + "end": 17568.9, + "probability": 0.984 + }, + { + "start": 17569.1, + "end": 17569.64, + "probability": 0.6774 + }, + { + "start": 17569.76, + "end": 17571.16, + "probability": 0.837 + }, + { + "start": 17571.26, + "end": 17572.4, + "probability": 0.5086 + }, + { + "start": 17572.46, + "end": 17573.14, + "probability": 0.8213 + }, + { + "start": 17573.78, + "end": 17574.88, + "probability": 0.9886 + }, + { + "start": 17575.54, + "end": 17576.76, + "probability": 0.2398 + }, + { + "start": 17577.24, + "end": 17578.1, + "probability": 0.7789 + }, + { + "start": 17578.82, + "end": 17580.14, + "probability": 0.861 + }, + { + "start": 17580.26, + "end": 17584.87, + "probability": 0.8604 + }, + { + "start": 17585.38, + "end": 17589.3, + "probability": 0.9756 + }, + { + "start": 17589.44, + "end": 17589.9, + "probability": 0.9617 + }, + { + "start": 17590.58, + "end": 17593.44, + "probability": 0.8683 + }, + { + "start": 17593.98, + "end": 17596.48, + "probability": 0.71 + }, + { + "start": 17597.42, + "end": 17598.15, + "probability": 0.8516 + }, + { + "start": 17599.84, + "end": 17600.56, + "probability": 0.7896 + }, + { + "start": 17600.92, + "end": 17603.32, + "probability": 0.7746 + }, + { + "start": 17604.5, + "end": 17608.24, + "probability": 0.619 + }, + { + "start": 17610.86, + "end": 17611.62, + "probability": 0.0496 + }, + { + "start": 17611.62, + "end": 17613.92, + "probability": 0.4226 + }, + { + "start": 17614.38, + "end": 17616.36, + "probability": 0.6305 + }, + { + "start": 17620.84, + "end": 17623.8, + "probability": 0.7883 + }, + { + "start": 17626.96, + "end": 17627.22, + "probability": 0.6099 + }, + { + "start": 17627.22, + "end": 17627.36, + "probability": 0.7916 + }, + { + "start": 17629.66, + "end": 17632.9, + "probability": 0.5964 + }, + { + "start": 17633.3, + "end": 17633.64, + "probability": 0.7629 + }, + { + "start": 17637.52, + "end": 17641.76, + "probability": 0.7528 + }, + { + "start": 17643.64, + "end": 17644.5, + "probability": 0.8393 + }, + { + "start": 17646.04, + "end": 17647.1, + "probability": 0.9488 + }, + { + "start": 17648.76, + "end": 17652.92, + "probability": 0.9573 + }, + { + "start": 17653.56, + "end": 17659.22, + "probability": 0.9453 + }, + { + "start": 17659.8, + "end": 17661.04, + "probability": 0.9971 + }, + { + "start": 17661.6, + "end": 17666.74, + "probability": 0.998 + }, + { + "start": 17668.54, + "end": 17670.52, + "probability": 0.999 + }, + { + "start": 17672.22, + "end": 17672.9, + "probability": 0.5195 + }, + { + "start": 17675.18, + "end": 17679.12, + "probability": 0.9866 + }, + { + "start": 17680.26, + "end": 17684.5, + "probability": 0.9694 + }, + { + "start": 17685.64, + "end": 17687.58, + "probability": 0.5463 + }, + { + "start": 17688.36, + "end": 17689.4, + "probability": 0.9102 + }, + { + "start": 17690.54, + "end": 17693.4, + "probability": 0.8423 + }, + { + "start": 17693.58, + "end": 17694.44, + "probability": 0.8672 + }, + { + "start": 17694.76, + "end": 17696.52, + "probability": 0.899 + }, + { + "start": 17696.86, + "end": 17698.68, + "probability": 0.9886 + }, + { + "start": 17698.96, + "end": 17700.18, + "probability": 0.9904 + }, + { + "start": 17700.68, + "end": 17701.14, + "probability": 0.9302 + }, + { + "start": 17701.18, + "end": 17702.25, + "probability": 0.7324 + }, + { + "start": 17703.34, + "end": 17704.72, + "probability": 0.0698 + }, + { + "start": 17706.02, + "end": 17712.3, + "probability": 0.984 + }, + { + "start": 17712.88, + "end": 17715.26, + "probability": 0.9931 + }, + { + "start": 17716.22, + "end": 17719.6, + "probability": 0.9873 + }, + { + "start": 17721.02, + "end": 17722.06, + "probability": 0.9772 + }, + { + "start": 17722.46, + "end": 17723.42, + "probability": 0.8643 + }, + { + "start": 17724.48, + "end": 17725.68, + "probability": 0.9425 + }, + { + "start": 17726.96, + "end": 17728.74, + "probability": 0.8045 + }, + { + "start": 17729.76, + "end": 17735.74, + "probability": 0.9963 + }, + { + "start": 17736.74, + "end": 17737.78, + "probability": 0.8995 + }, + { + "start": 17739.88, + "end": 17746.76, + "probability": 0.9946 + }, + { + "start": 17748.48, + "end": 17749.76, + "probability": 0.9653 + }, + { + "start": 17750.9, + "end": 17752.48, + "probability": 0.9976 + }, + { + "start": 17753.06, + "end": 17755.88, + "probability": 0.9364 + }, + { + "start": 17756.78, + "end": 17758.88, + "probability": 0.9757 + }, + { + "start": 17759.46, + "end": 17761.26, + "probability": 0.9935 + }, + { + "start": 17761.86, + "end": 17763.0, + "probability": 0.9253 + }, + { + "start": 17764.28, + "end": 17766.26, + "probability": 0.9728 + }, + { + "start": 17767.18, + "end": 17769.2, + "probability": 0.9681 + }, + { + "start": 17770.0, + "end": 17772.18, + "probability": 0.9879 + }, + { + "start": 17773.38, + "end": 17776.0, + "probability": 0.9922 + }, + { + "start": 17776.7, + "end": 17780.96, + "probability": 0.9956 + }, + { + "start": 17781.8, + "end": 17785.82, + "probability": 0.9963 + }, + { + "start": 17786.68, + "end": 17790.92, + "probability": 0.9801 + }, + { + "start": 17791.86, + "end": 17792.76, + "probability": 0.9883 + }, + { + "start": 17793.32, + "end": 17798.84, + "probability": 0.9785 + }, + { + "start": 17799.48, + "end": 17800.5, + "probability": 0.8447 + }, + { + "start": 17801.76, + "end": 17806.77, + "probability": 0.9578 + }, + { + "start": 17807.2, + "end": 17809.09, + "probability": 0.99 + }, + { + "start": 17810.5, + "end": 17813.9, + "probability": 0.9367 + }, + { + "start": 17814.42, + "end": 17817.4, + "probability": 0.9592 + }, + { + "start": 17818.92, + "end": 17820.66, + "probability": 0.7956 + }, + { + "start": 17821.1, + "end": 17822.24, + "probability": 0.7563 + }, + { + "start": 17823.08, + "end": 17823.9, + "probability": 0.9934 + }, + { + "start": 17824.8, + "end": 17826.4, + "probability": 0.7498 + }, + { + "start": 17827.28, + "end": 17827.92, + "probability": 0.6188 + }, + { + "start": 17828.64, + "end": 17832.58, + "probability": 0.9209 + }, + { + "start": 17832.96, + "end": 17832.96, + "probability": 0.6406 + }, + { + "start": 17833.06, + "end": 17834.02, + "probability": 0.876 + }, + { + "start": 17834.42, + "end": 17836.64, + "probability": 0.9969 + }, + { + "start": 17837.04, + "end": 17838.48, + "probability": 0.8954 + }, + { + "start": 17839.0, + "end": 17843.82, + "probability": 0.9629 + }, + { + "start": 17844.22, + "end": 17844.48, + "probability": 0.719 + }, + { + "start": 17844.6, + "end": 17847.0, + "probability": 0.5713 + }, + { + "start": 17848.46, + "end": 17850.46, + "probability": 0.7097 + }, + { + "start": 17851.42, + "end": 17854.67, + "probability": 0.3019 + }, + { + "start": 17855.62, + "end": 17857.58, + "probability": 0.9698 + }, + { + "start": 17857.7, + "end": 17860.24, + "probability": 0.8234 + }, + { + "start": 17861.8, + "end": 17863.0, + "probability": 0.7855 + }, + { + "start": 17863.4, + "end": 17864.14, + "probability": 0.7782 + }, + { + "start": 17864.22, + "end": 17864.4, + "probability": 0.4426 + }, + { + "start": 17864.76, + "end": 17865.96, + "probability": 0.7145 + }, + { + "start": 17866.1, + "end": 17868.32, + "probability": 0.8858 + }, + { + "start": 17868.88, + "end": 17874.09, + "probability": 0.9917 + }, + { + "start": 17875.62, + "end": 17882.78, + "probability": 0.9956 + }, + { + "start": 17883.46, + "end": 17885.02, + "probability": 0.9515 + }, + { + "start": 17885.16, + "end": 17886.3, + "probability": 0.6535 + }, + { + "start": 17886.74, + "end": 17887.76, + "probability": 0.9858 + }, + { + "start": 17887.92, + "end": 17889.04, + "probability": 0.6225 + }, + { + "start": 17889.22, + "end": 17891.78, + "probability": 0.6058 + }, + { + "start": 17892.68, + "end": 17895.68, + "probability": 0.9538 + }, + { + "start": 17896.64, + "end": 17897.92, + "probability": 0.5618 + }, + { + "start": 17898.74, + "end": 17900.06, + "probability": 0.8687 + }, + { + "start": 17900.9, + "end": 17903.3, + "probability": 0.9921 + }, + { + "start": 17903.94, + "end": 17908.28, + "probability": 0.894 + }, + { + "start": 17909.06, + "end": 17911.58, + "probability": 0.7692 + }, + { + "start": 17911.78, + "end": 17913.18, + "probability": 0.9386 + }, + { + "start": 17913.92, + "end": 17915.9, + "probability": 0.8004 + }, + { + "start": 17915.92, + "end": 17916.34, + "probability": 0.8284 + }, + { + "start": 17916.36, + "end": 17917.44, + "probability": 0.7338 + }, + { + "start": 17917.94, + "end": 17918.42, + "probability": 0.8241 + }, + { + "start": 17918.44, + "end": 17922.22, + "probability": 0.8605 + }, + { + "start": 17922.26, + "end": 17923.62, + "probability": 0.8718 + }, + { + "start": 17924.7, + "end": 17928.02, + "probability": 0.9575 + }, + { + "start": 17928.76, + "end": 17930.34, + "probability": 0.9517 + }, + { + "start": 17930.98, + "end": 17933.74, + "probability": 0.8721 + }, + { + "start": 17934.34, + "end": 17938.02, + "probability": 0.9417 + }, + { + "start": 17939.96, + "end": 17941.32, + "probability": 0.9785 + }, + { + "start": 17941.42, + "end": 17942.2, + "probability": 0.5372 + }, + { + "start": 17942.3, + "end": 17943.15, + "probability": 0.752 + }, + { + "start": 17943.88, + "end": 17945.32, + "probability": 0.9806 + }, + { + "start": 17945.76, + "end": 17947.04, + "probability": 0.9925 + }, + { + "start": 17947.48, + "end": 17948.82, + "probability": 0.9972 + }, + { + "start": 17949.26, + "end": 17950.78, + "probability": 0.9976 + }, + { + "start": 17951.04, + "end": 17954.02, + "probability": 0.9901 + }, + { + "start": 17955.16, + "end": 17958.78, + "probability": 0.9576 + }, + { + "start": 17958.78, + "end": 17963.9, + "probability": 0.7836 + }, + { + "start": 17964.92, + "end": 17967.3, + "probability": 0.8882 + }, + { + "start": 17967.88, + "end": 17969.76, + "probability": 0.8643 + }, + { + "start": 17970.42, + "end": 17972.84, + "probability": 0.814 + }, + { + "start": 17973.66, + "end": 17976.28, + "probability": 0.4008 + }, + { + "start": 17976.36, + "end": 17979.96, + "probability": 0.8242 + }, + { + "start": 17981.34, + "end": 17982.38, + "probability": 0.5292 + }, + { + "start": 17982.8, + "end": 17987.3, + "probability": 0.9966 + }, + { + "start": 17987.3, + "end": 17991.62, + "probability": 0.9768 + }, + { + "start": 17992.02, + "end": 17995.02, + "probability": 0.9948 + }, + { + "start": 17995.02, + "end": 17997.52, + "probability": 0.9961 + }, + { + "start": 17998.06, + "end": 18002.82, + "probability": 0.9952 + }, + { + "start": 18004.1, + "end": 18004.42, + "probability": 0.7539 + }, + { + "start": 18004.52, + "end": 18005.04, + "probability": 0.7431 + }, + { + "start": 18005.4, + "end": 18005.62, + "probability": 0.6868 + }, + { + "start": 18005.62, + "end": 18006.9, + "probability": 0.9466 + }, + { + "start": 18007.22, + "end": 18008.22, + "probability": 0.711 + }, + { + "start": 18008.58, + "end": 18010.14, + "probability": 0.9858 + }, + { + "start": 18010.52, + "end": 18011.68, + "probability": 0.7825 + }, + { + "start": 18012.16, + "end": 18015.6, + "probability": 0.9404 + }, + { + "start": 18015.88, + "end": 18017.92, + "probability": 0.8729 + }, + { + "start": 18017.96, + "end": 18018.46, + "probability": 0.998 + }, + { + "start": 18019.2, + "end": 18019.58, + "probability": 0.6699 + }, + { + "start": 18020.3, + "end": 18022.98, + "probability": 0.9888 + }, + { + "start": 18023.08, + "end": 18023.4, + "probability": 0.4864 + }, + { + "start": 18023.44, + "end": 18024.18, + "probability": 0.6101 + }, + { + "start": 18024.2, + "end": 18024.84, + "probability": 0.5005 + }, + { + "start": 18026.0, + "end": 18029.34, + "probability": 0.976 + }, + { + "start": 18029.82, + "end": 18032.22, + "probability": 0.9619 + }, + { + "start": 18032.56, + "end": 18033.88, + "probability": 0.7468 + }, + { + "start": 18034.3, + "end": 18039.06, + "probability": 0.8311 + }, + { + "start": 18039.18, + "end": 18040.5, + "probability": 0.4675 + }, + { + "start": 18040.84, + "end": 18042.22, + "probability": 0.9769 + }, + { + "start": 18042.76, + "end": 18044.46, + "probability": 0.9367 + }, + { + "start": 18044.98, + "end": 18049.32, + "probability": 0.6829 + }, + { + "start": 18049.84, + "end": 18052.3, + "probability": 0.894 + }, + { + "start": 18052.74, + "end": 18055.04, + "probability": 0.9908 + }, + { + "start": 18055.14, + "end": 18055.49, + "probability": 0.9738 + }, + { + "start": 18055.7, + "end": 18056.14, + "probability": 0.8674 + }, + { + "start": 18056.44, + "end": 18057.0, + "probability": 0.7161 + }, + { + "start": 18057.7, + "end": 18058.3, + "probability": 0.892 + }, + { + "start": 18058.3, + "end": 18058.56, + "probability": 0.9375 + }, + { + "start": 18058.6, + "end": 18063.38, + "probability": 0.7497 + }, + { + "start": 18063.4, + "end": 18067.0, + "probability": 0.4518 + }, + { + "start": 18067.38, + "end": 18067.38, + "probability": 0.3645 + }, + { + "start": 18067.38, + "end": 18071.96, + "probability": 0.9714 + }, + { + "start": 18072.52, + "end": 18077.02, + "probability": 0.9569 + }, + { + "start": 18077.18, + "end": 18077.98, + "probability": 0.7062 + }, + { + "start": 18078.6, + "end": 18083.16, + "probability": 0.9729 + }, + { + "start": 18083.28, + "end": 18084.6, + "probability": 0.8075 + }, + { + "start": 18084.68, + "end": 18085.58, + "probability": 0.5613 + }, + { + "start": 18085.98, + "end": 18087.8, + "probability": 0.6705 + }, + { + "start": 18087.8, + "end": 18092.94, + "probability": 0.7201 + }, + { + "start": 18094.74, + "end": 18098.82, + "probability": 0.9518 + }, + { + "start": 18099.7, + "end": 18102.92, + "probability": 0.8484 + }, + { + "start": 18103.02, + "end": 18105.03, + "probability": 0.8449 + }, + { + "start": 18109.2, + "end": 18113.3, + "probability": 0.1775 + }, + { + "start": 18116.42, + "end": 18116.84, + "probability": 0.1763 + }, + { + "start": 18144.42, + "end": 18144.68, + "probability": 0.4252 + }, + { + "start": 18144.86, + "end": 18151.94, + "probability": 0.5873 + }, + { + "start": 18152.0, + "end": 18152.98, + "probability": 0.7479 + }, + { + "start": 18155.22, + "end": 18158.02, + "probability": 0.9854 + }, + { + "start": 18159.24, + "end": 18163.24, + "probability": 0.9714 + }, + { + "start": 18165.68, + "end": 18166.86, + "probability": 0.4725 + }, + { + "start": 18167.56, + "end": 18168.6, + "probability": 0.6646 + }, + { + "start": 18169.08, + "end": 18170.2, + "probability": 0.9391 + }, + { + "start": 18170.58, + "end": 18177.56, + "probability": 0.8978 + }, + { + "start": 18177.91, + "end": 18184.44, + "probability": 0.832 + }, + { + "start": 18185.54, + "end": 18186.24, + "probability": 0.8914 + }, + { + "start": 18187.14, + "end": 18191.2, + "probability": 0.9707 + }, + { + "start": 18191.24, + "end": 18192.62, + "probability": 0.8494 + }, + { + "start": 18194.82, + "end": 18196.96, + "probability": 0.9755 + }, + { + "start": 18198.44, + "end": 18202.08, + "probability": 0.9919 + }, + { + "start": 18202.6, + "end": 18204.6, + "probability": 0.9993 + }, + { + "start": 18206.64, + "end": 18207.52, + "probability": 0.7132 + }, + { + "start": 18208.72, + "end": 18211.98, + "probability": 0.9698 + }, + { + "start": 18212.72, + "end": 18216.2, + "probability": 0.8862 + }, + { + "start": 18218.58, + "end": 18221.56, + "probability": 0.9838 + }, + { + "start": 18224.08, + "end": 18224.8, + "probability": 0.5431 + }, + { + "start": 18225.74, + "end": 18227.98, + "probability": 0.9491 + }, + { + "start": 18228.46, + "end": 18232.04, + "probability": 0.8532 + }, + { + "start": 18233.14, + "end": 18238.84, + "probability": 0.994 + }, + { + "start": 18240.28, + "end": 18241.4, + "probability": 0.8231 + }, + { + "start": 18243.76, + "end": 18246.18, + "probability": 0.9787 + }, + { + "start": 18246.44, + "end": 18248.24, + "probability": 0.7167 + }, + { + "start": 18248.34, + "end": 18255.26, + "probability": 0.9707 + }, + { + "start": 18255.26, + "end": 18260.86, + "probability": 0.9963 + }, + { + "start": 18263.12, + "end": 18267.6, + "probability": 0.9949 + }, + { + "start": 18267.74, + "end": 18268.82, + "probability": 0.9825 + }, + { + "start": 18269.5, + "end": 18272.32, + "probability": 0.8416 + }, + { + "start": 18274.18, + "end": 18277.62, + "probability": 0.873 + }, + { + "start": 18277.66, + "end": 18281.68, + "probability": 0.9661 + }, + { + "start": 18282.26, + "end": 18285.28, + "probability": 0.9775 + }, + { + "start": 18286.26, + "end": 18287.12, + "probability": 0.9341 + }, + { + "start": 18287.88, + "end": 18293.02, + "probability": 0.9917 + }, + { + "start": 18293.92, + "end": 18296.0, + "probability": 0.999 + }, + { + "start": 18297.28, + "end": 18302.58, + "probability": 0.9838 + }, + { + "start": 18304.42, + "end": 18305.98, + "probability": 0.8349 + }, + { + "start": 18306.12, + "end": 18311.18, + "probability": 0.9969 + }, + { + "start": 18312.54, + "end": 18314.6, + "probability": 0.6795 + }, + { + "start": 18315.76, + "end": 18317.9, + "probability": 0.9503 + }, + { + "start": 18318.68, + "end": 18319.82, + "probability": 0.818 + }, + { + "start": 18322.7, + "end": 18327.9, + "probability": 0.9749 + }, + { + "start": 18328.04, + "end": 18328.74, + "probability": 0.7522 + }, + { + "start": 18329.94, + "end": 18331.34, + "probability": 0.6334 + }, + { + "start": 18331.5, + "end": 18333.6, + "probability": 0.9365 + }, + { + "start": 18334.46, + "end": 18337.44, + "probability": 0.8656 + }, + { + "start": 18338.16, + "end": 18341.7, + "probability": 0.9717 + }, + { + "start": 18342.32, + "end": 18349.9, + "probability": 0.987 + }, + { + "start": 18350.04, + "end": 18351.88, + "probability": 0.9752 + }, + { + "start": 18352.74, + "end": 18355.04, + "probability": 0.9924 + }, + { + "start": 18355.32, + "end": 18358.52, + "probability": 0.8442 + }, + { + "start": 18358.72, + "end": 18359.32, + "probability": 0.808 + }, + { + "start": 18361.22, + "end": 18363.9, + "probability": 0.8917 + }, + { + "start": 18365.27, + "end": 18367.78, + "probability": 0.9014 + }, + { + "start": 18367.8, + "end": 18368.22, + "probability": 0.732 + }, + { + "start": 18368.36, + "end": 18376.02, + "probability": 0.8533 + }, + { + "start": 18376.02, + "end": 18377.96, + "probability": 0.8245 + }, + { + "start": 18379.52, + "end": 18379.64, + "probability": 0.1231 + }, + { + "start": 18379.64, + "end": 18380.2, + "probability": 0.4007 + }, + { + "start": 18381.32, + "end": 18384.91, + "probability": 0.9563 + }, + { + "start": 18386.42, + "end": 18388.7, + "probability": 0.9399 + }, + { + "start": 18389.12, + "end": 18393.26, + "probability": 0.9629 + }, + { + "start": 18394.34, + "end": 18395.68, + "probability": 0.6782 + }, + { + "start": 18396.34, + "end": 18398.96, + "probability": 0.9232 + }, + { + "start": 18400.46, + "end": 18402.94, + "probability": 0.7827 + }, + { + "start": 18403.86, + "end": 18409.64, + "probability": 0.9282 + }, + { + "start": 18410.34, + "end": 18411.4, + "probability": 0.4714 + }, + { + "start": 18412.84, + "end": 18413.78, + "probability": 0.9388 + }, + { + "start": 18414.42, + "end": 18416.28, + "probability": 0.8297 + }, + { + "start": 18417.18, + "end": 18418.42, + "probability": 0.5981 + }, + { + "start": 18419.1, + "end": 18419.88, + "probability": 0.5831 + }, + { + "start": 18421.02, + "end": 18422.18, + "probability": 0.9581 + }, + { + "start": 18424.64, + "end": 18428.02, + "probability": 0.9558 + }, + { + "start": 18430.44, + "end": 18432.36, + "probability": 0.9509 + }, + { + "start": 18433.28, + "end": 18433.68, + "probability": 0.0271 + }, + { + "start": 18434.24, + "end": 18435.56, + "probability": 0.0195 + }, + { + "start": 18435.56, + "end": 18437.3, + "probability": 0.1945 + }, + { + "start": 18437.7, + "end": 18437.7, + "probability": 0.7622 + }, + { + "start": 18437.7, + "end": 18438.13, + "probability": 0.6245 + }, + { + "start": 18439.58, + "end": 18440.38, + "probability": 0.2905 + }, + { + "start": 18440.74, + "end": 18441.06, + "probability": 0.0856 + }, + { + "start": 18442.86, + "end": 18443.3, + "probability": 0.1674 + }, + { + "start": 18443.3, + "end": 18443.3, + "probability": 0.2976 + }, + { + "start": 18443.3, + "end": 18443.3, + "probability": 0.0468 + }, + { + "start": 18443.3, + "end": 18443.3, + "probability": 0.3378 + }, + { + "start": 18443.3, + "end": 18446.08, + "probability": 0.8647 + }, + { + "start": 18448.04, + "end": 18448.38, + "probability": 0.8496 + }, + { + "start": 18448.68, + "end": 18450.74, + "probability": 0.9595 + }, + { + "start": 18450.98, + "end": 18457.46, + "probability": 0.9927 + }, + { + "start": 18457.84, + "end": 18458.66, + "probability": 0.8139 + }, + { + "start": 18458.72, + "end": 18461.1, + "probability": 0.7513 + }, + { + "start": 18462.22, + "end": 18463.74, + "probability": 0.9016 + }, + { + "start": 18464.92, + "end": 18466.46, + "probability": 0.8777 + }, + { + "start": 18466.78, + "end": 18468.24, + "probability": 0.4632 + }, + { + "start": 18468.28, + "end": 18468.8, + "probability": 0.7059 + }, + { + "start": 18468.84, + "end": 18470.76, + "probability": 0.9585 + }, + { + "start": 18472.56, + "end": 18480.46, + "probability": 0.8672 + }, + { + "start": 18481.1, + "end": 18484.14, + "probability": 0.8296 + }, + { + "start": 18485.38, + "end": 18491.86, + "probability": 0.9257 + }, + { + "start": 18492.48, + "end": 18493.52, + "probability": 0.9575 + }, + { + "start": 18494.22, + "end": 18495.54, + "probability": 0.9513 + }, + { + "start": 18495.9, + "end": 18496.64, + "probability": 0.7384 + }, + { + "start": 18496.68, + "end": 18497.64, + "probability": 0.8579 + }, + { + "start": 18497.68, + "end": 18499.2, + "probability": 0.9844 + }, + { + "start": 18501.08, + "end": 18501.64, + "probability": 0.0076 + }, + { + "start": 18502.46, + "end": 18504.84, + "probability": 0.1592 + }, + { + "start": 18505.36, + "end": 18506.34, + "probability": 0.8214 + }, + { + "start": 18507.34, + "end": 18509.72, + "probability": 0.7413 + }, + { + "start": 18510.82, + "end": 18514.56, + "probability": 0.9575 + }, + { + "start": 18515.1, + "end": 18521.32, + "probability": 0.9968 + }, + { + "start": 18521.32, + "end": 18524.74, + "probability": 0.9929 + }, + { + "start": 18525.32, + "end": 18525.7, + "probability": 0.7022 + }, + { + "start": 18525.78, + "end": 18528.74, + "probability": 0.9961 + }, + { + "start": 18529.12, + "end": 18530.76, + "probability": 0.9937 + }, + { + "start": 18531.18, + "end": 18532.2, + "probability": 0.5294 + }, + { + "start": 18532.38, + "end": 18533.42, + "probability": 0.8635 + }, + { + "start": 18534.44, + "end": 18536.48, + "probability": 0.9785 + }, + { + "start": 18536.92, + "end": 18538.82, + "probability": 0.9468 + }, + { + "start": 18539.52, + "end": 18541.2, + "probability": 0.4115 + }, + { + "start": 18541.26, + "end": 18542.76, + "probability": 0.9443 + }, + { + "start": 18542.88, + "end": 18544.68, + "probability": 0.9822 + }, + { + "start": 18545.28, + "end": 18549.12, + "probability": 0.9835 + }, + { + "start": 18549.22, + "end": 18549.76, + "probability": 0.6868 + }, + { + "start": 18550.2, + "end": 18553.48, + "probability": 0.9434 + }, + { + "start": 18554.66, + "end": 18555.22, + "probability": 0.1601 + }, + { + "start": 18555.22, + "end": 18556.48, + "probability": 0.3222 + }, + { + "start": 18556.72, + "end": 18556.74, + "probability": 0.6335 + }, + { + "start": 18556.74, + "end": 18557.3, + "probability": 0.4887 + }, + { + "start": 18557.5, + "end": 18558.04, + "probability": 0.5999 + }, + { + "start": 18558.22, + "end": 18558.76, + "probability": 0.7455 + }, + { + "start": 18559.2, + "end": 18560.9, + "probability": 0.0452 + }, + { + "start": 18561.48, + "end": 18563.11, + "probability": 0.0185 + }, + { + "start": 18564.56, + "end": 18564.98, + "probability": 0.1228 + }, + { + "start": 18566.0, + "end": 18566.7, + "probability": 0.1699 + }, + { + "start": 18569.06, + "end": 18570.34, + "probability": 0.1266 + }, + { + "start": 18570.56, + "end": 18570.96, + "probability": 0.025 + }, + { + "start": 18571.14, + "end": 18572.82, + "probability": 0.7057 + }, + { + "start": 18572.98, + "end": 18574.7, + "probability": 0.8367 + }, + { + "start": 18575.02, + "end": 18579.58, + "probability": 0.8971 + }, + { + "start": 18580.02, + "end": 18582.2, + "probability": 0.9654 + }, + { + "start": 18583.5, + "end": 18586.32, + "probability": 0.9928 + }, + { + "start": 18587.42, + "end": 18588.96, + "probability": 0.9899 + }, + { + "start": 18589.04, + "end": 18590.04, + "probability": 0.9363 + }, + { + "start": 18590.16, + "end": 18591.16, + "probability": 0.9327 + }, + { + "start": 18591.4, + "end": 18592.46, + "probability": 0.929 + }, + { + "start": 18592.56, + "end": 18596.64, + "probability": 0.9928 + }, + { + "start": 18597.82, + "end": 18601.17, + "probability": 0.9941 + }, + { + "start": 18601.94, + "end": 18601.94, + "probability": 0.0221 + }, + { + "start": 18601.94, + "end": 18601.94, + "probability": 0.085 + }, + { + "start": 18601.94, + "end": 18602.36, + "probability": 0.4639 + }, + { + "start": 18602.42, + "end": 18605.16, + "probability": 0.6875 + }, + { + "start": 18605.54, + "end": 18607.22, + "probability": 0.8903 + }, + { + "start": 18607.52, + "end": 18609.0, + "probability": 0.9427 + }, + { + "start": 18609.64, + "end": 18615.96, + "probability": 0.9749 + }, + { + "start": 18616.44, + "end": 18617.58, + "probability": 0.7946 + }, + { + "start": 18618.22, + "end": 18620.68, + "probability": 0.6988 + }, + { + "start": 18622.38, + "end": 18624.94, + "probability": 0.9655 + }, + { + "start": 18625.32, + "end": 18626.38, + "probability": 0.7249 + }, + { + "start": 18626.72, + "end": 18627.26, + "probability": 0.6938 + }, + { + "start": 18627.86, + "end": 18630.16, + "probability": 0.9123 + }, + { + "start": 18631.24, + "end": 18633.62, + "probability": 0.9097 + }, + { + "start": 18634.38, + "end": 18636.82, + "probability": 0.8479 + }, + { + "start": 18638.04, + "end": 18640.72, + "probability": 0.9974 + }, + { + "start": 18641.86, + "end": 18643.48, + "probability": 0.9689 + }, + { + "start": 18644.08, + "end": 18645.84, + "probability": 0.6388 + }, + { + "start": 18646.78, + "end": 18650.8, + "probability": 0.9448 + }, + { + "start": 18651.12, + "end": 18653.4, + "probability": 0.849 + }, + { + "start": 18654.16, + "end": 18655.46, + "probability": 0.9002 + }, + { + "start": 18655.6, + "end": 18656.02, + "probability": 0.9179 + }, + { + "start": 18656.96, + "end": 18659.68, + "probability": 0.9827 + }, + { + "start": 18660.32, + "end": 18661.72, + "probability": 0.7853 + }, + { + "start": 18662.32, + "end": 18664.04, + "probability": 0.9789 + }, + { + "start": 18664.68, + "end": 18667.04, + "probability": 0.9751 + }, + { + "start": 18667.62, + "end": 18670.38, + "probability": 0.9487 + }, + { + "start": 18670.98, + "end": 18671.38, + "probability": 0.3061 + }, + { + "start": 18672.16, + "end": 18677.8, + "probability": 0.907 + }, + { + "start": 18678.46, + "end": 18681.56, + "probability": 0.8853 + }, + { + "start": 18683.18, + "end": 18686.86, + "probability": 0.8239 + }, + { + "start": 18687.04, + "end": 18688.08, + "probability": 0.9821 + }, + { + "start": 18688.56, + "end": 18690.9, + "probability": 0.9819 + }, + { + "start": 18692.96, + "end": 18694.18, + "probability": 0.8588 + }, + { + "start": 18695.28, + "end": 18697.58, + "probability": 0.9585 + }, + { + "start": 18700.04, + "end": 18702.92, + "probability": 0.9344 + }, + { + "start": 18704.05, + "end": 18708.96, + "probability": 0.9627 + }, + { + "start": 18709.54, + "end": 18710.2, + "probability": 0.9734 + }, + { + "start": 18710.58, + "end": 18710.76, + "probability": 0.8485 + }, + { + "start": 18710.84, + "end": 18711.42, + "probability": 0.8992 + }, + { + "start": 18711.48, + "end": 18713.21, + "probability": 0.9863 + }, + { + "start": 18713.54, + "end": 18713.66, + "probability": 0.6581 + }, + { + "start": 18713.66, + "end": 18714.1, + "probability": 0.4878 + }, + { + "start": 18714.24, + "end": 18714.56, + "probability": 0.3488 + }, + { + "start": 18714.7, + "end": 18715.74, + "probability": 0.9875 + }, + { + "start": 18717.54, + "end": 18718.28, + "probability": 0.7279 + }, + { + "start": 18718.34, + "end": 18719.6, + "probability": 0.9152 + }, + { + "start": 18719.7, + "end": 18723.9, + "probability": 0.9331 + }, + { + "start": 18723.98, + "end": 18727.72, + "probability": 0.9772 + }, + { + "start": 18727.72, + "end": 18730.32, + "probability": 0.937 + }, + { + "start": 18731.18, + "end": 18736.32, + "probability": 0.9627 + }, + { + "start": 18736.6, + "end": 18740.02, + "probability": 0.8117 + }, + { + "start": 18740.18, + "end": 18741.14, + "probability": 0.756 + }, + { + "start": 18741.44, + "end": 18742.24, + "probability": 0.8898 + }, + { + "start": 18742.34, + "end": 18743.06, + "probability": 0.9305 + }, + { + "start": 18743.4, + "end": 18745.56, + "probability": 0.9846 + }, + { + "start": 18749.12, + "end": 18754.18, + "probability": 0.0202 + }, + { + "start": 18754.18, + "end": 18754.18, + "probability": 0.4883 + }, + { + "start": 18754.18, + "end": 18755.5, + "probability": 0.4493 + }, + { + "start": 18756.89, + "end": 18759.22, + "probability": 0.1004 + }, + { + "start": 18759.78, + "end": 18762.82, + "probability": 0.4469 + }, + { + "start": 18775.4, + "end": 18777.66, + "probability": 0.9888 + }, + { + "start": 18779.74, + "end": 18781.28, + "probability": 0.2667 + }, + { + "start": 18781.54, + "end": 18782.56, + "probability": 0.0355 + }, + { + "start": 18782.56, + "end": 18784.52, + "probability": 0.088 + }, + { + "start": 18785.38, + "end": 18786.2, + "probability": 0.0898 + }, + { + "start": 18788.18, + "end": 18788.18, + "probability": 0.2322 + }, + { + "start": 18788.18, + "end": 18788.18, + "probability": 0.2727 + }, + { + "start": 18788.18, + "end": 18788.18, + "probability": 0.7507 + }, + { + "start": 18788.18, + "end": 18788.92, + "probability": 0.8029 + }, + { + "start": 18789.12, + "end": 18792.22, + "probability": 0.9883 + }, + { + "start": 18792.22, + "end": 18794.92, + "probability": 0.8502 + }, + { + "start": 18795.38, + "end": 18796.38, + "probability": 0.4151 + }, + { + "start": 18796.62, + "end": 18798.98, + "probability": 0.8825 + }, + { + "start": 18800.36, + "end": 18803.18, + "probability": 0.9691 + }, + { + "start": 18803.2, + "end": 18804.9, + "probability": 0.8091 + }, + { + "start": 18823.8, + "end": 18826.54, + "probability": 0.78 + }, + { + "start": 18827.1, + "end": 18832.5, + "probability": 0.9684 + }, + { + "start": 18833.7, + "end": 18836.44, + "probability": 0.6156 + }, + { + "start": 18837.22, + "end": 18841.94, + "probability": 0.9792 + }, + { + "start": 18842.14, + "end": 18844.96, + "probability": 0.8207 + }, + { + "start": 18845.04, + "end": 18846.72, + "probability": 0.8007 + }, + { + "start": 18847.18, + "end": 18847.42, + "probability": 0.0158 + }, + { + "start": 18847.54, + "end": 18849.42, + "probability": 0.8492 + }, + { + "start": 18849.94, + "end": 18851.04, + "probability": 0.5291 + }, + { + "start": 18851.5, + "end": 18855.11, + "probability": 0.9871 + }, + { + "start": 18855.68, + "end": 18858.94, + "probability": 0.5893 + }, + { + "start": 18859.68, + "end": 18860.5, + "probability": 0.4274 + }, + { + "start": 18861.1, + "end": 18866.9, + "probability": 0.864 + }, + { + "start": 18867.44, + "end": 18868.52, + "probability": 0.8221 + }, + { + "start": 18869.16, + "end": 18871.26, + "probability": 0.9781 + }, + { + "start": 18871.94, + "end": 18879.36, + "probability": 0.9871 + }, + { + "start": 18879.9, + "end": 18885.62, + "probability": 0.9718 + }, + { + "start": 18886.08, + "end": 18888.48, + "probability": 0.8883 + }, + { + "start": 18888.92, + "end": 18891.88, + "probability": 0.9238 + }, + { + "start": 18892.44, + "end": 18893.08, + "probability": 0.6015 + }, + { + "start": 18893.86, + "end": 18899.5, + "probability": 0.8741 + }, + { + "start": 18900.44, + "end": 18904.78, + "probability": 0.6961 + }, + { + "start": 18905.4, + "end": 18906.7, + "probability": 0.9512 + }, + { + "start": 18906.88, + "end": 18907.3, + "probability": 0.9539 + }, + { + "start": 18908.02, + "end": 18909.72, + "probability": 0.9917 + }, + { + "start": 18910.36, + "end": 18916.22, + "probability": 0.9834 + }, + { + "start": 18916.68, + "end": 18922.52, + "probability": 0.996 + }, + { + "start": 18923.14, + "end": 18925.16, + "probability": 0.9865 + }, + { + "start": 18925.66, + "end": 18930.48, + "probability": 0.9951 + }, + { + "start": 18931.38, + "end": 18935.22, + "probability": 0.9912 + }, + { + "start": 18935.68, + "end": 18939.02, + "probability": 0.8043 + }, + { + "start": 18939.84, + "end": 18949.58, + "probability": 0.9681 + }, + { + "start": 18950.34, + "end": 18955.26, + "probability": 0.996 + }, + { + "start": 18955.66, + "end": 18960.68, + "probability": 0.9892 + }, + { + "start": 18961.66, + "end": 18965.04, + "probability": 0.7957 + }, + { + "start": 18965.54, + "end": 18969.96, + "probability": 0.8999 + }, + { + "start": 18969.96, + "end": 18973.74, + "probability": 0.9901 + }, + { + "start": 18974.24, + "end": 18978.28, + "probability": 0.9592 + }, + { + "start": 18978.44, + "end": 18981.22, + "probability": 0.9854 + }, + { + "start": 18981.92, + "end": 18985.72, + "probability": 0.9961 + }, + { + "start": 18985.72, + "end": 18989.24, + "probability": 0.9956 + }, + { + "start": 18989.72, + "end": 18990.53, + "probability": 0.9881 + }, + { + "start": 18992.4, + "end": 18998.66, + "probability": 0.9729 + }, + { + "start": 18998.66, + "end": 19004.16, + "probability": 0.8908 + }, + { + "start": 19004.82, + "end": 19005.52, + "probability": 0.5315 + }, + { + "start": 19005.92, + "end": 19008.06, + "probability": 0.4094 + }, + { + "start": 19010.1, + "end": 19013.0, + "probability": 0.7962 + }, + { + "start": 19013.9, + "end": 19018.18, + "probability": 0.7023 + }, + { + "start": 19018.8, + "end": 19021.46, + "probability": 0.9765 + }, + { + "start": 19021.46, + "end": 19024.04, + "probability": 0.8204 + }, + { + "start": 19024.28, + "end": 19027.56, + "probability": 0.5363 + }, + { + "start": 19027.7, + "end": 19028.32, + "probability": 0.708 + }, + { + "start": 19028.4, + "end": 19029.6, + "probability": 0.8932 + }, + { + "start": 19030.34, + "end": 19034.4, + "probability": 0.0019 + }, + { + "start": 19044.82, + "end": 19047.4, + "probability": 0.6951 + }, + { + "start": 19047.52, + "end": 19050.4, + "probability": 0.993 + }, + { + "start": 19050.96, + "end": 19054.62, + "probability": 0.9593 + }, + { + "start": 19055.48, + "end": 19056.74, + "probability": 0.72 + }, + { + "start": 19056.74, + "end": 19057.44, + "probability": 0.7568 + }, + { + "start": 19057.44, + "end": 19058.58, + "probability": 0.8676 + }, + { + "start": 19058.74, + "end": 19061.22, + "probability": 0.0035 + }, + { + "start": 19063.86, + "end": 19064.06, + "probability": 0.0004 + }, + { + "start": 19065.62, + "end": 19068.54, + "probability": 0.8214 + }, + { + "start": 19068.74, + "end": 19070.26, + "probability": 0.0208 + }, + { + "start": 19071.8, + "end": 19072.56, + "probability": 0.0949 + }, + { + "start": 19073.32, + "end": 19076.78, + "probability": 0.6905 + }, + { + "start": 19076.92, + "end": 19080.46, + "probability": 0.9902 + }, + { + "start": 19080.46, + "end": 19084.82, + "probability": 0.9609 + }, + { + "start": 19085.28, + "end": 19088.28, + "probability": 0.7167 + }, + { + "start": 19094.8, + "end": 19096.26, + "probability": 0.9384 + }, + { + "start": 19097.02, + "end": 19099.14, + "probability": 0.7845 + }, + { + "start": 19099.98, + "end": 19103.16, + "probability": 0.9868 + }, + { + "start": 19103.16, + "end": 19106.06, + "probability": 0.9989 + }, + { + "start": 19106.9, + "end": 19107.06, + "probability": 0.0051 + }, + { + "start": 19107.06, + "end": 19110.88, + "probability": 0.9055 + }, + { + "start": 19111.62, + "end": 19112.88, + "probability": 0.3449 + }, + { + "start": 19113.04, + "end": 19114.53, + "probability": 0.9056 + }, + { + "start": 19114.8, + "end": 19116.02, + "probability": 0.9454 + }, + { + "start": 19116.18, + "end": 19116.38, + "probability": 0.7614 + }, + { + "start": 19117.16, + "end": 19117.48, + "probability": 0.62 + }, + { + "start": 19117.48, + "end": 19119.72, + "probability": 0.9136 + }, + { + "start": 19121.06, + "end": 19122.72, + "probability": 0.8786 + }, + { + "start": 19122.94, + "end": 19124.26, + "probability": 0.8269 + }, + { + "start": 19124.4, + "end": 19126.24, + "probability": 0.5361 + }, + { + "start": 19126.34, + "end": 19129.06, + "probability": 0.8762 + }, + { + "start": 19129.2, + "end": 19130.96, + "probability": 0.8287 + }, + { + "start": 19132.06, + "end": 19134.26, + "probability": 0.6228 + }, + { + "start": 19134.52, + "end": 19136.18, + "probability": 0.2527 + }, + { + "start": 19136.38, + "end": 19140.08, + "probability": 0.653 + }, + { + "start": 19140.2, + "end": 19141.38, + "probability": 0.973 + }, + { + "start": 19141.5, + "end": 19142.08, + "probability": 0.7315 + }, + { + "start": 19142.08, + "end": 19142.26, + "probability": 0.9519 + }, + { + "start": 19143.48, + "end": 19144.04, + "probability": 0.7201 + }, + { + "start": 19144.16, + "end": 19147.84, + "probability": 0.9605 + }, + { + "start": 19148.52, + "end": 19151.14, + "probability": 0.7445 + }, + { + "start": 19151.7, + "end": 19153.32, + "probability": 0.7898 + }, + { + "start": 19153.32, + "end": 19154.76, + "probability": 0.6113 + }, + { + "start": 19155.74, + "end": 19156.3, + "probability": 0.9407 + }, + { + "start": 19166.88, + "end": 19169.16, + "probability": 0.7604 + }, + { + "start": 19170.0, + "end": 19170.88, + "probability": 0.4465 + }, + { + "start": 19173.56, + "end": 19176.8, + "probability": 0.9873 + }, + { + "start": 19176.82, + "end": 19180.32, + "probability": 0.7162 + }, + { + "start": 19180.86, + "end": 19184.08, + "probability": 0.1322 + }, + { + "start": 19184.38, + "end": 19185.34, + "probability": 0.7392 + }, + { + "start": 19185.7, + "end": 19188.44, + "probability": 0.948 + }, + { + "start": 19194.5, + "end": 19198.64, + "probability": 0.7368 + }, + { + "start": 19198.68, + "end": 19199.14, + "probability": 0.9083 + }, + { + "start": 19199.64, + "end": 19202.64, + "probability": 0.6777 + }, + { + "start": 19203.36, + "end": 19211.1, + "probability": 0.8987 + }, + { + "start": 19211.1, + "end": 19215.2, + "probability": 0.6317 + }, + { + "start": 19215.84, + "end": 19221.68, + "probability": 0.887 + }, + { + "start": 19222.24, + "end": 19227.16, + "probability": 0.9846 + }, + { + "start": 19228.0, + "end": 19229.86, + "probability": 0.577 + }, + { + "start": 19231.7, + "end": 19234.24, + "probability": 0.8039 + }, + { + "start": 19236.22, + "end": 19241.49, + "probability": 0.9858 + }, + { + "start": 19242.76, + "end": 19243.5, + "probability": 0.8282 + }, + { + "start": 19244.02, + "end": 19245.62, + "probability": 0.7511 + }, + { + "start": 19246.6, + "end": 19248.81, + "probability": 0.6578 + }, + { + "start": 19250.04, + "end": 19252.26, + "probability": 0.7526 + }, + { + "start": 19252.86, + "end": 19257.13, + "probability": 0.8794 + }, + { + "start": 19258.66, + "end": 19262.08, + "probability": 0.9463 + }, + { + "start": 19262.62, + "end": 19265.92, + "probability": 0.644 + }, + { + "start": 19266.96, + "end": 19271.7, + "probability": 0.5217 + }, + { + "start": 19271.7, + "end": 19276.32, + "probability": 0.9725 + }, + { + "start": 19280.46, + "end": 19282.34, + "probability": 0.7895 + }, + { + "start": 19283.12, + "end": 19287.46, + "probability": 0.4964 + }, + { + "start": 19287.46, + "end": 19292.06, + "probability": 0.7884 + }, + { + "start": 19294.08, + "end": 19294.66, + "probability": 0.7189 + }, + { + "start": 19297.32, + "end": 19305.68, + "probability": 0.8407 + }, + { + "start": 19305.68, + "end": 19311.66, + "probability": 0.9892 + }, + { + "start": 19312.22, + "end": 19313.86, + "probability": 0.9691 + }, + { + "start": 19316.08, + "end": 19319.1, + "probability": 0.6015 + }, + { + "start": 19320.22, + "end": 19324.1, + "probability": 0.9126 + }, + { + "start": 19324.1, + "end": 19328.98, + "probability": 0.9893 + }, + { + "start": 19329.72, + "end": 19332.2, + "probability": 0.9744 + }, + { + "start": 19333.28, + "end": 19338.04, + "probability": 0.8058 + }, + { + "start": 19338.16, + "end": 19344.46, + "probability": 0.9896 + }, + { + "start": 19344.46, + "end": 19348.78, + "probability": 0.9818 + }, + { + "start": 19348.88, + "end": 19351.34, + "probability": 0.9694 + }, + { + "start": 19354.72, + "end": 19357.84, + "probability": 0.7948 + }, + { + "start": 19357.9, + "end": 19362.14, + "probability": 0.8187 + }, + { + "start": 19362.66, + "end": 19371.8, + "probability": 0.9036 + }, + { + "start": 19372.32, + "end": 19382.9, + "probability": 0.8824 + }, + { + "start": 19383.52, + "end": 19390.24, + "probability": 0.9938 + }, + { + "start": 19390.74, + "end": 19397.48, + "probability": 0.9973 + }, + { + "start": 19397.92, + "end": 19398.82, + "probability": 0.6597 + }, + { + "start": 19399.06, + "end": 19399.68, + "probability": 0.6305 + }, + { + "start": 19399.9, + "end": 19402.28, + "probability": 0.6014 + }, + { + "start": 19402.82, + "end": 19406.3, + "probability": 0.9946 + }, + { + "start": 19406.3, + "end": 19409.84, + "probability": 0.9996 + }, + { + "start": 19410.5, + "end": 19411.1, + "probability": 0.546 + }, + { + "start": 19411.66, + "end": 19413.3, + "probability": 0.8599 + }, + { + "start": 19413.86, + "end": 19415.48, + "probability": 0.9841 + }, + { + "start": 19416.02, + "end": 19417.4, + "probability": 0.9896 + }, + { + "start": 19417.78, + "end": 19422.58, + "probability": 0.9756 + }, + { + "start": 19423.28, + "end": 19425.69, + "probability": 0.6666 + }, + { + "start": 19426.28, + "end": 19427.7, + "probability": 0.8982 + }, + { + "start": 19427.84, + "end": 19432.54, + "probability": 0.876 + }, + { + "start": 19432.62, + "end": 19432.92, + "probability": 0.7842 + }, + { + "start": 19434.16, + "end": 19435.66, + "probability": 0.627 + }, + { + "start": 19436.0, + "end": 19439.02, + "probability": 0.8427 + }, + { + "start": 19439.6, + "end": 19442.25, + "probability": 0.8735 + }, + { + "start": 19443.02, + "end": 19443.66, + "probability": 0.752 + }, + { + "start": 19444.78, + "end": 19448.32, + "probability": 0.8896 + }, + { + "start": 19449.4, + "end": 19450.8, + "probability": 0.9767 + }, + { + "start": 19452.5, + "end": 19453.26, + "probability": 0.5566 + }, + { + "start": 19453.36, + "end": 19454.06, + "probability": 0.8743 + }, + { + "start": 19454.6, + "end": 19454.78, + "probability": 0.0846 + }, + { + "start": 19458.02, + "end": 19459.0, + "probability": 0.0 + }, + { + "start": 19467.8, + "end": 19468.38, + "probability": 0.0632 + }, + { + "start": 19470.18, + "end": 19471.48, + "probability": 0.4311 + }, + { + "start": 19471.76, + "end": 19473.96, + "probability": 0.8867 + }, + { + "start": 19474.08, + "end": 19474.65, + "probability": 0.014 + }, + { + "start": 19475.32, + "end": 19476.22, + "probability": 0.7424 + }, + { + "start": 19477.46, + "end": 19480.06, + "probability": 0.9677 + }, + { + "start": 19480.3, + "end": 19483.16, + "probability": 0.9955 + }, + { + "start": 19484.64, + "end": 19485.52, + "probability": 0.7569 + }, + { + "start": 19503.34, + "end": 19503.74, + "probability": 0.2924 + }, + { + "start": 19503.78, + "end": 19503.92, + "probability": 0.0171 + }, + { + "start": 19503.92, + "end": 19503.92, + "probability": 0.1054 + }, + { + "start": 19503.92, + "end": 19505.98, + "probability": 0.7828 + }, + { + "start": 19506.16, + "end": 19509.76, + "probability": 0.9093 + }, + { + "start": 19510.46, + "end": 19512.52, + "probability": 0.278 + }, + { + "start": 19513.32, + "end": 19514.66, + "probability": 0.4046 + }, + { + "start": 19515.38, + "end": 19516.2, + "probability": 0.9937 + }, + { + "start": 19516.38, + "end": 19520.06, + "probability": 0.9835 + }, + { + "start": 19521.16, + "end": 19521.6, + "probability": 0.7004 + }, + { + "start": 19522.7, + "end": 19525.23, + "probability": 0.9305 + }, + { + "start": 19532.36, + "end": 19533.1, + "probability": 0.0129 + }, + { + "start": 19533.8, + "end": 19535.38, + "probability": 0.1938 + }, + { + "start": 19536.2, + "end": 19537.6, + "probability": 0.8545 + }, + { + "start": 19538.32, + "end": 19538.94, + "probability": 0.7177 + }, + { + "start": 19539.14, + "end": 19539.48, + "probability": 0.9213 + }, + { + "start": 19539.58, + "end": 19540.46, + "probability": 0.5032 + }, + { + "start": 19540.54, + "end": 19542.32, + "probability": 0.6553 + }, + { + "start": 19542.68, + "end": 19543.16, + "probability": 0.0409 + }, + { + "start": 19543.16, + "end": 19543.16, + "probability": 0.0034 + }, + { + "start": 19543.5, + "end": 19544.36, + "probability": 0.722 + }, + { + "start": 19544.48, + "end": 19545.9, + "probability": 0.5897 + }, + { + "start": 19546.44, + "end": 19548.24, + "probability": 0.7866 + }, + { + "start": 19548.28, + "end": 19548.86, + "probability": 0.7866 + }, + { + "start": 19563.42, + "end": 19565.62, + "probability": 0.7333 + }, + { + "start": 19566.56, + "end": 19570.46, + "probability": 0.993 + }, + { + "start": 19570.46, + "end": 19575.18, + "probability": 0.9839 + }, + { + "start": 19575.7, + "end": 19581.12, + "probability": 0.9656 + }, + { + "start": 19581.64, + "end": 19587.12, + "probability": 0.9396 + }, + { + "start": 19588.36, + "end": 19592.7, + "probability": 0.9919 + }, + { + "start": 19593.14, + "end": 19599.32, + "probability": 0.9933 + }, + { + "start": 19600.06, + "end": 19604.22, + "probability": 0.6535 + }, + { + "start": 19604.72, + "end": 19608.08, + "probability": 0.9818 + }, + { + "start": 19609.06, + "end": 19615.88, + "probability": 0.9893 + }, + { + "start": 19616.8, + "end": 19623.52, + "probability": 0.7079 + }, + { + "start": 19623.52, + "end": 19630.72, + "probability": 0.9985 + }, + { + "start": 19631.08, + "end": 19633.88, + "probability": 0.8391 + }, + { + "start": 19634.82, + "end": 19637.84, + "probability": 0.7772 + }, + { + "start": 19638.34, + "end": 19642.14, + "probability": 0.9746 + }, + { + "start": 19644.32, + "end": 19648.62, + "probability": 0.9659 + }, + { + "start": 19648.62, + "end": 19652.72, + "probability": 0.9851 + }, + { + "start": 19653.04, + "end": 19658.1, + "probability": 0.9682 + }, + { + "start": 19658.6, + "end": 19664.0, + "probability": 0.8527 + }, + { + "start": 19664.74, + "end": 19671.08, + "probability": 0.7552 + }, + { + "start": 19671.08, + "end": 19675.98, + "probability": 0.9867 + }, + { + "start": 19675.98, + "end": 19681.3, + "probability": 0.9923 + }, + { + "start": 19681.64, + "end": 19682.64, + "probability": 0.8671 + }, + { + "start": 19683.64, + "end": 19684.06, + "probability": 0.6118 + }, + { + "start": 19684.58, + "end": 19689.56, + "probability": 0.6821 + }, + { + "start": 19690.04, + "end": 19692.72, + "probability": 0.9083 + }, + { + "start": 19693.12, + "end": 19695.9, + "probability": 0.9419 + }, + { + "start": 19695.9, + "end": 19699.98, + "probability": 0.9703 + }, + { + "start": 19701.28, + "end": 19706.04, + "probability": 0.9782 + }, + { + "start": 19706.04, + "end": 19711.26, + "probability": 0.9975 + }, + { + "start": 19712.64, + "end": 19713.54, + "probability": 0.0614 + }, + { + "start": 19713.54, + "end": 19715.5, + "probability": 0.8134 + }, + { + "start": 19715.94, + "end": 19721.0, + "probability": 0.9939 + }, + { + "start": 19721.58, + "end": 19724.76, + "probability": 0.9817 + }, + { + "start": 19725.0, + "end": 19728.46, + "probability": 0.9268 + }, + { + "start": 19728.86, + "end": 19729.86, + "probability": 0.3575 + }, + { + "start": 19730.04, + "end": 19732.78, + "probability": 0.8883 + }, + { + "start": 19733.44, + "end": 19737.24, + "probability": 0.9689 + }, + { + "start": 19738.06, + "end": 19738.46, + "probability": 0.8429 + }, + { + "start": 19739.32, + "end": 19740.04, + "probability": 0.2563 + }, + { + "start": 19740.78, + "end": 19742.78, + "probability": 0.8597 + }, + { + "start": 19743.04, + "end": 19746.06, + "probability": 0.9843 + }, + { + "start": 19746.06, + "end": 19750.6, + "probability": 0.8639 + }, + { + "start": 19751.34, + "end": 19754.08, + "probability": 0.7792 + }, + { + "start": 19754.34, + "end": 19758.26, + "probability": 0.7581 + }, + { + "start": 19758.26, + "end": 19762.24, + "probability": 0.9791 + }, + { + "start": 19763.46, + "end": 19765.86, + "probability": 0.5777 + }, + { + "start": 19765.94, + "end": 19767.27, + "probability": 0.8303 + }, + { + "start": 19767.44, + "end": 19768.68, + "probability": 0.6117 + }, + { + "start": 19768.7, + "end": 19770.0, + "probability": 0.8271 + }, + { + "start": 19770.7, + "end": 19771.42, + "probability": 0.5526 + }, + { + "start": 19776.76, + "end": 19778.24, + "probability": 0.9009 + }, + { + "start": 19779.34, + "end": 19780.12, + "probability": 0.5806 + }, + { + "start": 19794.7, + "end": 19796.14, + "probability": 0.6706 + }, + { + "start": 19796.57, + "end": 19798.77, + "probability": 0.6816 + }, + { + "start": 19798.88, + "end": 19800.26, + "probability": 0.7461 + }, + { + "start": 19800.98, + "end": 19802.44, + "probability": 0.9313 + }, + { + "start": 19803.16, + "end": 19808.98, + "probability": 0.987 + }, + { + "start": 19809.82, + "end": 19811.68, + "probability": 0.9524 + }, + { + "start": 19812.06, + "end": 19813.4, + "probability": 0.9863 + }, + { + "start": 19815.3, + "end": 19816.96, + "probability": 0.6946 + }, + { + "start": 19816.96, + "end": 19817.8, + "probability": 0.4578 + }, + { + "start": 19818.64, + "end": 19822.26, + "probability": 0.9118 + }, + { + "start": 19823.3, + "end": 19823.54, + "probability": 0.4222 + }, + { + "start": 19823.66, + "end": 19824.76, + "probability": 0.7257 + }, + { + "start": 19824.88, + "end": 19827.94, + "probability": 0.9664 + }, + { + "start": 19828.12, + "end": 19835.04, + "probability": 0.9525 + }, + { + "start": 19835.74, + "end": 19836.8, + "probability": 0.878 + }, + { + "start": 19836.8, + "end": 19838.22, + "probability": 0.8012 + }, + { + "start": 19838.36, + "end": 19842.54, + "probability": 0.8339 + }, + { + "start": 19842.78, + "end": 19845.24, + "probability": 0.99 + }, + { + "start": 19845.86, + "end": 19847.42, + "probability": 0.7988 + }, + { + "start": 19847.64, + "end": 19849.28, + "probability": 0.7223 + }, + { + "start": 19849.74, + "end": 19851.16, + "probability": 0.6492 + }, + { + "start": 19852.02, + "end": 19852.61, + "probability": 0.5077 + }, + { + "start": 19853.34, + "end": 19854.96, + "probability": 0.917 + }, + { + "start": 19855.06, + "end": 19856.44, + "probability": 0.8203 + }, + { + "start": 19856.54, + "end": 19857.12, + "probability": 0.7629 + }, + { + "start": 19857.4, + "end": 19857.84, + "probability": 0.9517 + }, + { + "start": 19858.52, + "end": 19859.3, + "probability": 0.819 + }, + { + "start": 19859.52, + "end": 19864.34, + "probability": 0.9136 + }, + { + "start": 19864.54, + "end": 19868.39, + "probability": 0.9966 + }, + { + "start": 19869.0, + "end": 19869.98, + "probability": 0.8118 + }, + { + "start": 19870.16, + "end": 19870.7, + "probability": 0.5995 + }, + { + "start": 19871.14, + "end": 19871.92, + "probability": 0.7833 + }, + { + "start": 19872.34, + "end": 19874.82, + "probability": 0.9435 + }, + { + "start": 19875.66, + "end": 19879.62, + "probability": 0.9973 + }, + { + "start": 19880.4, + "end": 19881.88, + "probability": 0.831 + }, + { + "start": 19882.96, + "end": 19886.87, + "probability": 0.9554 + }, + { + "start": 19887.34, + "end": 19890.12, + "probability": 0.998 + }, + { + "start": 19890.9, + "end": 19894.52, + "probability": 0.9957 + }, + { + "start": 19894.98, + "end": 19901.7, + "probability": 0.8149 + }, + { + "start": 19901.98, + "end": 19902.84, + "probability": 0.8439 + }, + { + "start": 19903.06, + "end": 19905.24, + "probability": 0.9211 + }, + { + "start": 19905.3, + "end": 19906.12, + "probability": 0.7092 + }, + { + "start": 19906.66, + "end": 19909.12, + "probability": 0.9943 + }, + { + "start": 19909.44, + "end": 19912.2, + "probability": 0.9954 + }, + { + "start": 19912.6, + "end": 19917.32, + "probability": 0.9948 + }, + { + "start": 19918.34, + "end": 19919.14, + "probability": 0.6727 + }, + { + "start": 19919.82, + "end": 19919.9, + "probability": 0.1557 + }, + { + "start": 19919.9, + "end": 19920.32, + "probability": 0.6943 + }, + { + "start": 19920.36, + "end": 19924.4, + "probability": 0.9829 + }, + { + "start": 19924.42, + "end": 19928.22, + "probability": 0.9611 + }, + { + "start": 19928.8, + "end": 19930.36, + "probability": 0.0523 + }, + { + "start": 19931.26, + "end": 19932.32, + "probability": 0.6028 + }, + { + "start": 19932.36, + "end": 19933.02, + "probability": 0.7659 + }, + { + "start": 19933.18, + "end": 19933.68, + "probability": 0.9459 + }, + { + "start": 19946.32, + "end": 19947.3, + "probability": 0.0027 + }, + { + "start": 19949.88, + "end": 19951.52, + "probability": 0.5715 + }, + { + "start": 19951.6, + "end": 19954.22, + "probability": 0.9932 + }, + { + "start": 19954.64, + "end": 19958.46, + "probability": 0.8553 + }, + { + "start": 19960.66, + "end": 19963.28, + "probability": 0.5924 + }, + { + "start": 19963.3, + "end": 19963.72, + "probability": 0.6301 + }, + { + "start": 19967.26, + "end": 19971.46, + "probability": 0.1058 + }, + { + "start": 19975.3, + "end": 19975.92, + "probability": 0.1136 + }, + { + "start": 19979.06, + "end": 19981.68, + "probability": 0.7192 + }, + { + "start": 19981.82, + "end": 19985.42, + "probability": 0.9337 + }, + { + "start": 19985.58, + "end": 19985.62, + "probability": 0.0241 + }, + { + "start": 19985.62, + "end": 19989.08, + "probability": 0.9357 + }, + { + "start": 19989.52, + "end": 19992.3, + "probability": 0.8817 + }, + { + "start": 19992.92, + "end": 19993.58, + "probability": 0.5964 + }, + { + "start": 19993.66, + "end": 19994.26, + "probability": 0.9089 + }, + { + "start": 20008.22, + "end": 20008.72, + "probability": 0.3623 + }, + { + "start": 20008.78, + "end": 20010.72, + "probability": 0.6657 + }, + { + "start": 20010.88, + "end": 20012.02, + "probability": 0.6963 + }, + { + "start": 20012.48, + "end": 20012.98, + "probability": 0.6932 + }, + { + "start": 20013.58, + "end": 20015.02, + "probability": 0.9851 + }, + { + "start": 20015.44, + "end": 20016.32, + "probability": 0.5306 + }, + { + "start": 20016.44, + "end": 20017.1, + "probability": 0.8536 + }, + { + "start": 20017.48, + "end": 20020.08, + "probability": 0.9599 + }, + { + "start": 20020.56, + "end": 20021.56, + "probability": 0.7178 + }, + { + "start": 20021.66, + "end": 20023.96, + "probability": 0.9346 + }, + { + "start": 20023.96, + "end": 20026.82, + "probability": 0.9417 + }, + { + "start": 20026.88, + "end": 20031.56, + "probability": 0.6306 + }, + { + "start": 20031.68, + "end": 20032.56, + "probability": 0.9819 + }, + { + "start": 20032.76, + "end": 20034.26, + "probability": 0.8201 + }, + { + "start": 20034.8, + "end": 20037.54, + "probability": 0.9975 + }, + { + "start": 20037.7, + "end": 20039.28, + "probability": 0.9113 + }, + { + "start": 20039.5, + "end": 20040.66, + "probability": 0.9411 + }, + { + "start": 20040.76, + "end": 20045.53, + "probability": 0.9868 + }, + { + "start": 20046.76, + "end": 20050.76, + "probability": 0.9593 + }, + { + "start": 20051.38, + "end": 20051.82, + "probability": 0.4951 + }, + { + "start": 20051.88, + "end": 20053.92, + "probability": 0.9727 + }, + { + "start": 20054.3, + "end": 20055.82, + "probability": 0.8146 + }, + { + "start": 20055.86, + "end": 20056.32, + "probability": 0.5889 + }, + { + "start": 20056.42, + "end": 20057.8, + "probability": 0.9819 + }, + { + "start": 20058.38, + "end": 20062.54, + "probability": 0.9052 + }, + { + "start": 20062.76, + "end": 20064.1, + "probability": 0.7746 + }, + { + "start": 20064.24, + "end": 20065.38, + "probability": 0.4902 + }, + { + "start": 20065.82, + "end": 20068.22, + "probability": 0.7504 + }, + { + "start": 20068.3, + "end": 20073.64, + "probability": 0.8342 + }, + { + "start": 20073.86, + "end": 20077.3, + "probability": 0.9499 + }, + { + "start": 20077.92, + "end": 20078.66, + "probability": 0.6741 + }, + { + "start": 20080.29, + "end": 20083.28, + "probability": 0.9598 + }, + { + "start": 20083.38, + "end": 20084.7, + "probability": 0.9103 + }, + { + "start": 20084.8, + "end": 20085.14, + "probability": 0.4824 + }, + { + "start": 20085.26, + "end": 20086.46, + "probability": 0.9738 + }, + { + "start": 20087.66, + "end": 20092.88, + "probability": 0.94 + }, + { + "start": 20093.0, + "end": 20094.26, + "probability": 0.6635 + }, + { + "start": 20094.4, + "end": 20095.96, + "probability": 0.8749 + }, + { + "start": 20096.18, + "end": 20098.6, + "probability": 0.9221 + }, + { + "start": 20098.7, + "end": 20099.47, + "probability": 0.9557 + }, + { + "start": 20099.96, + "end": 20101.76, + "probability": 0.9036 + }, + { + "start": 20102.24, + "end": 20104.68, + "probability": 0.994 + }, + { + "start": 20104.68, + "end": 20108.44, + "probability": 0.9661 + }, + { + "start": 20108.78, + "end": 20112.02, + "probability": 0.9825 + }, + { + "start": 20112.02, + "end": 20114.88, + "probability": 0.9941 + }, + { + "start": 20115.28, + "end": 20116.16, + "probability": 0.765 + }, + { + "start": 20116.24, + "end": 20118.06, + "probability": 0.8809 + }, + { + "start": 20118.18, + "end": 20119.62, + "probability": 0.3189 + }, + { + "start": 20119.86, + "end": 20123.16, + "probability": 0.957 + }, + { + "start": 20123.5, + "end": 20126.1, + "probability": 0.9917 + }, + { + "start": 20126.44, + "end": 20128.54, + "probability": 0.5785 + }, + { + "start": 20128.56, + "end": 20130.22, + "probability": 0.5865 + }, + { + "start": 20130.38, + "end": 20131.36, + "probability": 0.4434 + }, + { + "start": 20131.46, + "end": 20132.38, + "probability": 0.8582 + }, + { + "start": 20133.08, + "end": 20135.94, + "probability": 0.9289 + }, + { + "start": 20136.14, + "end": 20140.58, + "probability": 0.9761 + }, + { + "start": 20140.76, + "end": 20141.66, + "probability": 0.4792 + }, + { + "start": 20141.76, + "end": 20142.18, + "probability": 0.5257 + }, + { + "start": 20142.26, + "end": 20142.72, + "probability": 0.6329 + }, + { + "start": 20142.86, + "end": 20144.7, + "probability": 0.9824 + }, + { + "start": 20144.9, + "end": 20145.46, + "probability": 0.827 + }, + { + "start": 20145.54, + "end": 20147.3, + "probability": 0.7948 + }, + { + "start": 20148.0, + "end": 20149.66, + "probability": 0.679 + }, + { + "start": 20150.0, + "end": 20152.8, + "probability": 0.8965 + }, + { + "start": 20152.88, + "end": 20153.72, + "probability": 0.7439 + }, + { + "start": 20153.9, + "end": 20155.58, + "probability": 0.9909 + }, + { + "start": 20155.84, + "end": 20158.03, + "probability": 0.9764 + }, + { + "start": 20158.32, + "end": 20161.22, + "probability": 0.99 + }, + { + "start": 20161.24, + "end": 20162.4, + "probability": 0.8503 + }, + { + "start": 20162.48, + "end": 20164.04, + "probability": 0.7186 + }, + { + "start": 20164.08, + "end": 20166.52, + "probability": 0.8814 + }, + { + "start": 20166.68, + "end": 20168.92, + "probability": 0.9827 + }, + { + "start": 20169.04, + "end": 20169.94, + "probability": 0.8056 + }, + { + "start": 20170.04, + "end": 20171.8, + "probability": 0.9779 + }, + { + "start": 20171.98, + "end": 20173.24, + "probability": 0.7922 + }, + { + "start": 20173.6, + "end": 20177.62, + "probability": 0.9227 + }, + { + "start": 20177.74, + "end": 20178.92, + "probability": 0.7706 + }, + { + "start": 20179.32, + "end": 20182.74, + "probability": 0.9771 + }, + { + "start": 20183.1, + "end": 20185.38, + "probability": 0.9128 + }, + { + "start": 20186.32, + "end": 20187.26, + "probability": 0.6957 + }, + { + "start": 20187.32, + "end": 20188.56, + "probability": 0.6329 + }, + { + "start": 20188.66, + "end": 20191.92, + "probability": 0.9469 + }, + { + "start": 20192.08, + "end": 20195.84, + "probability": 0.7673 + }, + { + "start": 20195.84, + "end": 20195.9, + "probability": 0.3759 + }, + { + "start": 20195.92, + "end": 20199.62, + "probability": 0.7752 + }, + { + "start": 20201.12, + "end": 20204.42, + "probability": 0.3274 + }, + { + "start": 20205.86, + "end": 20206.08, + "probability": 0.2456 + }, + { + "start": 20206.18, + "end": 20211.68, + "probability": 0.9568 + }, + { + "start": 20211.9, + "end": 20213.04, + "probability": 0.73 + }, + { + "start": 20213.1, + "end": 20213.8, + "probability": 0.6776 + }, + { + "start": 20214.02, + "end": 20215.64, + "probability": 0.9904 + }, + { + "start": 20216.16, + "end": 20217.14, + "probability": 0.4238 + }, + { + "start": 20217.2, + "end": 20218.09, + "probability": 0.9473 + }, + { + "start": 20231.7, + "end": 20234.12, + "probability": 0.4948 + }, + { + "start": 20237.08, + "end": 20239.14, + "probability": 0.4049 + }, + { + "start": 20242.5, + "end": 20246.6, + "probability": 0.695 + }, + { + "start": 20246.96, + "end": 20251.3, + "probability": 0.6697 + }, + { + "start": 20251.5, + "end": 20257.18, + "probability": 0.8262 + }, + { + "start": 20257.18, + "end": 20261.12, + "probability": 0.9669 + }, + { + "start": 20261.68, + "end": 20261.78, + "probability": 0.4581 + }, + { + "start": 20261.92, + "end": 20263.86, + "probability": 0.4847 + }, + { + "start": 20264.0, + "end": 20270.2, + "probability": 0.9384 + }, + { + "start": 20270.82, + "end": 20276.84, + "probability": 0.857 + }, + { + "start": 20277.32, + "end": 20279.68, + "probability": 0.8515 + }, + { + "start": 20280.08, + "end": 20282.44, + "probability": 0.9708 + }, + { + "start": 20282.8, + "end": 20287.56, + "probability": 0.9356 + }, + { + "start": 20287.84, + "end": 20289.66, + "probability": 0.8556 + }, + { + "start": 20290.16, + "end": 20293.46, + "probability": 0.9946 + }, + { + "start": 20294.08, + "end": 20296.94, + "probability": 0.9924 + }, + { + "start": 20297.44, + "end": 20301.5, + "probability": 0.9491 + }, + { + "start": 20302.0, + "end": 20305.28, + "probability": 0.9364 + }, + { + "start": 20305.46, + "end": 20307.68, + "probability": 0.9856 + }, + { + "start": 20307.7, + "end": 20310.5, + "probability": 0.3042 + }, + { + "start": 20310.5, + "end": 20310.5, + "probability": 0.4777 + }, + { + "start": 20310.5, + "end": 20312.36, + "probability": 0.6723 + }, + { + "start": 20313.48, + "end": 20315.64, + "probability": 0.8618 + }, + { + "start": 20315.72, + "end": 20318.68, + "probability": 0.7172 + }, + { + "start": 20318.68, + "end": 20321.56, + "probability": 0.9589 + }, + { + "start": 20322.08, + "end": 20326.26, + "probability": 0.578 + }, + { + "start": 20326.32, + "end": 20330.14, + "probability": 0.9846 + }, + { + "start": 20330.36, + "end": 20332.32, + "probability": 0.9946 + }, + { + "start": 20332.52, + "end": 20335.55, + "probability": 0.7178 + }, + { + "start": 20336.92, + "end": 20343.56, + "probability": 0.9971 + }, + { + "start": 20344.06, + "end": 20345.46, + "probability": 0.9365 + }, + { + "start": 20346.02, + "end": 20349.68, + "probability": 0.9794 + }, + { + "start": 20350.2, + "end": 20351.48, + "probability": 0.9899 + }, + { + "start": 20351.58, + "end": 20352.06, + "probability": 0.9502 + }, + { + "start": 20352.16, + "end": 20353.06, + "probability": 0.9446 + }, + { + "start": 20353.34, + "end": 20355.66, + "probability": 0.988 + }, + { + "start": 20356.28, + "end": 20359.92, + "probability": 0.8011 + }, + { + "start": 20360.34, + "end": 20362.78, + "probability": 0.7314 + }, + { + "start": 20363.02, + "end": 20363.32, + "probability": 0.428 + }, + { + "start": 20364.2, + "end": 20367.8, + "probability": 0.9056 + }, + { + "start": 20380.66, + "end": 20383.46, + "probability": 0.5632 + }, + { + "start": 20383.98, + "end": 20386.18, + "probability": 0.9775 + }, + { + "start": 20387.06, + "end": 20388.72, + "probability": 0.9025 + }, + { + "start": 20388.82, + "end": 20389.9, + "probability": 0.5332 + }, + { + "start": 20390.28, + "end": 20391.22, + "probability": 0.9453 + }, + { + "start": 20391.86, + "end": 20395.32, + "probability": 0.0009 + }, + { + "start": 20404.14, + "end": 20404.38, + "probability": 0.0348 + }, + { + "start": 20405.68, + "end": 20408.38, + "probability": 0.3168 + }, + { + "start": 20408.6, + "end": 20411.5, + "probability": 0.9209 + }, + { + "start": 20411.82, + "end": 20413.52, + "probability": 0.9678 + }, + { + "start": 20414.42, + "end": 20416.98, + "probability": 0.5819 + }, + { + "start": 20417.04, + "end": 20418.92, + "probability": 0.9171 + }, + { + "start": 20419.88, + "end": 20423.06, + "probability": 0.9989 + }, + { + "start": 20423.32, + "end": 20426.04, + "probability": 0.6154 + }, + { + "start": 20426.1, + "end": 20426.74, + "probability": 0.7399 + }, + { + "start": 20432.7, + "end": 20436.0, + "probability": 0.207 + }, + { + "start": 20436.84, + "end": 20438.88, + "probability": 0.0136 + }, + { + "start": 20439.44, + "end": 20439.6, + "probability": 0.1073 + }, + { + "start": 20442.7, + "end": 20446.22, + "probability": 0.8979 + }, + { + "start": 20446.36, + "end": 20448.63, + "probability": 0.6713 + }, + { + "start": 20448.9, + "end": 20448.9, + "probability": 0.0149 + }, + { + "start": 20448.9, + "end": 20452.38, + "probability": 0.9291 + }, + { + "start": 20452.76, + "end": 20454.7, + "probability": 0.9944 + }, + { + "start": 20455.28, + "end": 20456.34, + "probability": 0.9412 + }, + { + "start": 20463.38, + "end": 20463.78, + "probability": 0.1539 + }, + { + "start": 20463.82, + "end": 20464.52, + "probability": 0.622 + }, + { + "start": 20464.58, + "end": 20469.2, + "probability": 0.98 + }, + { + "start": 20469.32, + "end": 20472.52, + "probability": 0.6323 + }, + { + "start": 20473.14, + "end": 20478.38, + "probability": 0.9347 + }, + { + "start": 20478.96, + "end": 20481.14, + "probability": 0.859 + }, + { + "start": 20481.18, + "end": 20482.06, + "probability": 0.6946 + }, + { + "start": 20482.1, + "end": 20483.46, + "probability": 0.9707 + }, + { + "start": 20483.92, + "end": 20485.96, + "probability": 0.8306 + }, + { + "start": 20486.12, + "end": 20487.2, + "probability": 0.6209 + }, + { + "start": 20487.34, + "end": 20489.72, + "probability": 0.9093 + }, + { + "start": 20490.28, + "end": 20491.84, + "probability": 0.9366 + }, + { + "start": 20491.98, + "end": 20495.28, + "probability": 0.9565 + }, + { + "start": 20495.66, + "end": 20496.44, + "probability": 0.604 + }, + { + "start": 20496.48, + "end": 20498.64, + "probability": 0.5698 + }, + { + "start": 20499.12, + "end": 20499.56, + "probability": 0.8284 + }, + { + "start": 20499.78, + "end": 20506.28, + "probability": 0.986 + }, + { + "start": 20506.28, + "end": 20511.76, + "probability": 0.9356 + }, + { + "start": 20512.14, + "end": 20513.88, + "probability": 0.1756 + }, + { + "start": 20514.16, + "end": 20517.06, + "probability": 0.6494 + }, + { + "start": 20517.52, + "end": 20519.88, + "probability": 0.954 + }, + { + "start": 20520.52, + "end": 20525.38, + "probability": 0.8618 + }, + { + "start": 20525.38, + "end": 20528.7, + "probability": 0.9297 + }, + { + "start": 20529.08, + "end": 20530.63, + "probability": 0.9985 + }, + { + "start": 20530.86, + "end": 20532.84, + "probability": 0.9943 + }, + { + "start": 20533.26, + "end": 20535.8, + "probability": 0.984 + }, + { + "start": 20535.9, + "end": 20536.36, + "probability": 0.8663 + }, + { + "start": 20537.2, + "end": 20539.72, + "probability": 0.962 + }, + { + "start": 20540.58, + "end": 20542.38, + "probability": 0.9929 + }, + { + "start": 20542.62, + "end": 20546.28, + "probability": 0.7987 + }, + { + "start": 20546.28, + "end": 20550.48, + "probability": 0.8869 + }, + { + "start": 20550.58, + "end": 20551.1, + "probability": 0.7841 + }, + { + "start": 20551.2, + "end": 20552.84, + "probability": 0.3821 + }, + { + "start": 20553.38, + "end": 20554.85, + "probability": 0.5744 + }, + { + "start": 20556.46, + "end": 20557.72, + "probability": 0.6204 + }, + { + "start": 20564.0, + "end": 20567.6, + "probability": 0.7088 + }, + { + "start": 20568.32, + "end": 20571.24, + "probability": 0.9691 + }, + { + "start": 20572.02, + "end": 20572.44, + "probability": 0.8924 + }, + { + "start": 20572.98, + "end": 20574.72, + "probability": 0.6258 + }, + { + "start": 20574.76, + "end": 20577.2, + "probability": 0.0326 + }, + { + "start": 20577.56, + "end": 20579.02, + "probability": 0.9302 + }, + { + "start": 20579.72, + "end": 20584.38, + "probability": 0.8545 + }, + { + "start": 20585.36, + "end": 20586.46, + "probability": 0.8444 + }, + { + "start": 20586.96, + "end": 20587.54, + "probability": 0.7451 + }, + { + "start": 20587.64, + "end": 20588.56, + "probability": 0.9065 + }, + { + "start": 20589.02, + "end": 20589.84, + "probability": 0.9747 + }, + { + "start": 20589.92, + "end": 20590.96, + "probability": 0.7343 + }, + { + "start": 20591.18, + "end": 20592.4, + "probability": 0.9792 + }, + { + "start": 20593.2, + "end": 20594.38, + "probability": 0.7492 + }, + { + "start": 20594.56, + "end": 20597.22, + "probability": 0.8474 + }, + { + "start": 20597.4, + "end": 20599.8, + "probability": 0.456 + }, + { + "start": 20600.12, + "end": 20606.18, + "probability": 0.988 + }, + { + "start": 20606.38, + "end": 20608.36, + "probability": 0.9607 + }, + { + "start": 20608.72, + "end": 20611.03, + "probability": 0.6904 + }, + { + "start": 20612.38, + "end": 20614.08, + "probability": 0.8916 + }, + { + "start": 20615.0, + "end": 20618.92, + "probability": 0.9949 + }, + { + "start": 20619.08, + "end": 20626.28, + "probability": 0.8682 + }, + { + "start": 20626.78, + "end": 20630.74, + "probability": 0.9196 + }, + { + "start": 20630.74, + "end": 20635.24, + "probability": 0.9664 + }, + { + "start": 20637.54, + "end": 20640.18, + "probability": 0.7378 + }, + { + "start": 20640.18, + "end": 20643.68, + "probability": 0.9832 + }, + { + "start": 20645.14, + "end": 20645.84, + "probability": 0.5493 + }, + { + "start": 20645.86, + "end": 20652.42, + "probability": 0.8544 + }, + { + "start": 20652.54, + "end": 20655.66, + "probability": 0.9066 + }, + { + "start": 20655.68, + "end": 20659.96, + "probability": 0.9147 + }, + { + "start": 20659.96, + "end": 20663.68, + "probability": 0.8826 + }, + { + "start": 20664.0, + "end": 20665.72, + "probability": 0.7362 + }, + { + "start": 20666.78, + "end": 20674.92, + "probability": 0.7503 + }, + { + "start": 20675.98, + "end": 20677.56, + "probability": 0.8182 + }, + { + "start": 20677.7, + "end": 20677.72, + "probability": 0.0757 + }, + { + "start": 20677.72, + "end": 20679.1, + "probability": 0.8529 + }, + { + "start": 20679.2, + "end": 20679.58, + "probability": 0.8348 + }, + { + "start": 20679.78, + "end": 20680.14, + "probability": 0.7787 + }, + { + "start": 20681.28, + "end": 20684.52, + "probability": 0.6707 + }, + { + "start": 20684.52, + "end": 20685.83, + "probability": 0.8243 + }, + { + "start": 20686.48, + "end": 20687.68, + "probability": 0.5756 + }, + { + "start": 20687.76, + "end": 20688.34, + "probability": 0.7539 + }, + { + "start": 20688.44, + "end": 20694.44, + "probability": 0.7563 + }, + { + "start": 20694.44, + "end": 20698.58, + "probability": 0.9922 + }, + { + "start": 20698.66, + "end": 20699.48, + "probability": 0.8857 + }, + { + "start": 20699.96, + "end": 20702.42, + "probability": 0.9717 + }, + { + "start": 20702.96, + "end": 20704.2, + "probability": 0.815 + }, + { + "start": 20704.48, + "end": 20707.1, + "probability": 0.1482 + }, + { + "start": 20708.22, + "end": 20708.82, + "probability": 0.6461 + }, + { + "start": 20709.0, + "end": 20710.68, + "probability": 0.4375 + }, + { + "start": 20710.68, + "end": 20713.3, + "probability": 0.9471 + }, + { + "start": 20713.68, + "end": 20714.52, + "probability": 0.8105 + }, + { + "start": 20714.68, + "end": 20716.64, + "probability": 0.9802 + }, + { + "start": 20716.74, + "end": 20717.14, + "probability": 0.459 + }, + { + "start": 20717.2, + "end": 20719.88, + "probability": 0.5342 + }, + { + "start": 20720.16, + "end": 20722.74, + "probability": 0.8962 + }, + { + "start": 20722.84, + "end": 20725.68, + "probability": 0.6602 + }, + { + "start": 20725.72, + "end": 20726.16, + "probability": 0.6807 + }, + { + "start": 20726.4, + "end": 20729.24, + "probability": 0.3005 + }, + { + "start": 20729.36, + "end": 20731.23, + "probability": 0.6921 + }, + { + "start": 20732.14, + "end": 20734.6, + "probability": 0.7006 + }, + { + "start": 20735.2, + "end": 20736.14, + "probability": 0.1315 + }, + { + "start": 20736.14, + "end": 20737.72, + "probability": 0.652 + }, + { + "start": 20737.88, + "end": 20743.3, + "probability": 0.737 + }, + { + "start": 20743.36, + "end": 20744.1, + "probability": 0.3695 + }, + { + "start": 20744.5, + "end": 20746.1, + "probability": 0.0883 + }, + { + "start": 20746.32, + "end": 20746.32, + "probability": 0.0909 + }, + { + "start": 20749.14, + "end": 20750.68, + "probability": 0.1151 + }, + { + "start": 20750.84, + "end": 20751.86, + "probability": 0.3445 + }, + { + "start": 20752.02, + "end": 20752.12, + "probability": 0.026 + }, + { + "start": 20752.12, + "end": 20755.2, + "probability": 0.9551 + }, + { + "start": 20755.62, + "end": 20757.32, + "probability": 0.9189 + }, + { + "start": 20757.56, + "end": 20758.44, + "probability": 0.5566 + }, + { + "start": 20759.04, + "end": 20760.38, + "probability": 0.9666 + }, + { + "start": 20760.46, + "end": 20761.1, + "probability": 0.8205 + }, + { + "start": 20761.18, + "end": 20763.52, + "probability": 0.7422 + }, + { + "start": 20763.88, + "end": 20765.09, + "probability": 0.8506 + }, + { + "start": 20765.36, + "end": 20766.22, + "probability": 0.7093 + }, + { + "start": 20766.28, + "end": 20766.72, + "probability": 0.9788 + }, + { + "start": 20766.8, + "end": 20767.48, + "probability": 0.7471 + }, + { + "start": 20767.74, + "end": 20770.02, + "probability": 0.9487 + }, + { + "start": 20770.42, + "end": 20772.69, + "probability": 0.8867 + }, + { + "start": 20772.8, + "end": 20774.08, + "probability": 0.852 + }, + { + "start": 20774.36, + "end": 20775.86, + "probability": 0.2659 + }, + { + "start": 20775.94, + "end": 20778.03, + "probability": 0.7674 + }, + { + "start": 20778.34, + "end": 20778.44, + "probability": 0.8406 + }, + { + "start": 20778.44, + "end": 20779.91, + "probability": 0.4105 + }, + { + "start": 20780.38, + "end": 20782.14, + "probability": 0.8844 + }, + { + "start": 20782.62, + "end": 20783.06, + "probability": 0.105 + }, + { + "start": 20783.06, + "end": 20784.28, + "probability": 0.542 + }, + { + "start": 20784.46, + "end": 20786.9, + "probability": 0.7037 + }, + { + "start": 20787.06, + "end": 20788.18, + "probability": 0.9646 + }, + { + "start": 20788.22, + "end": 20788.74, + "probability": 0.9151 + }, + { + "start": 20788.84, + "end": 20789.86, + "probability": 0.8046 + }, + { + "start": 20790.32, + "end": 20791.6, + "probability": 0.4155 + }, + { + "start": 20791.64, + "end": 20792.16, + "probability": 0.1519 + }, + { + "start": 20792.8, + "end": 20797.14, + "probability": 0.7636 + }, + { + "start": 20797.4, + "end": 20800.16, + "probability": 0.6616 + }, + { + "start": 20800.24, + "end": 20803.22, + "probability": 0.334 + }, + { + "start": 20803.64, + "end": 20806.2, + "probability": 0.7046 + }, + { + "start": 20806.6, + "end": 20809.02, + "probability": 0.71 + }, + { + "start": 20809.56, + "end": 20811.73, + "probability": 0.3533 + }, + { + "start": 20812.22, + "end": 20813.02, + "probability": 0.7909 + }, + { + "start": 20813.14, + "end": 20815.72, + "probability": 0.9368 + }, + { + "start": 20815.72, + "end": 20816.02, + "probability": 0.5491 + }, + { + "start": 20816.06, + "end": 20816.96, + "probability": 0.9386 + }, + { + "start": 20817.04, + "end": 20820.17, + "probability": 0.6307 + }, + { + "start": 20821.1, + "end": 20825.9, + "probability": 0.9819 + }, + { + "start": 20826.02, + "end": 20826.61, + "probability": 0.8389 + }, + { + "start": 20826.86, + "end": 20830.75, + "probability": 0.9531 + }, + { + "start": 20831.6, + "end": 20832.57, + "probability": 0.7867 + }, + { + "start": 20832.76, + "end": 20833.76, + "probability": 0.3095 + }, + { + "start": 20834.0, + "end": 20836.6, + "probability": 0.7875 + }, + { + "start": 20837.4, + "end": 20839.82, + "probability": 0.853 + }, + { + "start": 20841.38, + "end": 20842.02, + "probability": 0.4166 + }, + { + "start": 20842.02, + "end": 20842.62, + "probability": 0.619 + }, + { + "start": 20842.68, + "end": 20843.62, + "probability": 0.6341 + }, + { + "start": 20843.72, + "end": 20846.09, + "probability": 0.906 + }, + { + "start": 20846.28, + "end": 20847.88, + "probability": 0.803 + }, + { + "start": 20849.66, + "end": 20854.1, + "probability": 0.958 + }, + { + "start": 20856.78, + "end": 20858.34, + "probability": 0.8575 + }, + { + "start": 20858.5, + "end": 20860.26, + "probability": 0.2378 + }, + { + "start": 20860.68, + "end": 20862.62, + "probability": 0.048 + }, + { + "start": 20865.38, + "end": 20867.76, + "probability": 0.6231 + }, + { + "start": 20867.76, + "end": 20868.62, + "probability": 0.5212 + }, + { + "start": 20868.66, + "end": 20869.3, + "probability": 0.8189 + }, + { + "start": 20869.42, + "end": 20870.14, + "probability": 0.8844 + }, + { + "start": 20870.52, + "end": 20871.18, + "probability": 0.9658 + }, + { + "start": 20871.48, + "end": 20872.4, + "probability": 0.0171 + }, + { + "start": 20884.88, + "end": 20885.54, + "probability": 0.1018 + }, + { + "start": 20887.02, + "end": 20891.86, + "probability": 0.7874 + }, + { + "start": 20892.0, + "end": 20894.88, + "probability": 0.9857 + }, + { + "start": 20895.82, + "end": 20901.44, + "probability": 0.772 + }, + { + "start": 20903.02, + "end": 20903.96, + "probability": 0.2396 + }, + { + "start": 20904.12, + "end": 20907.46, + "probability": 0.5385 + }, + { + "start": 20907.46, + "end": 20907.96, + "probability": 0.6778 + }, + { + "start": 20907.96, + "end": 20908.84, + "probability": 0.7468 + }, + { + "start": 20919.4, + "end": 20921.24, + "probability": 0.1788 + }, + { + "start": 20923.82, + "end": 20924.46, + "probability": 0.0605 + }, + { + "start": 20924.46, + "end": 20927.86, + "probability": 0.6984 + }, + { + "start": 20927.92, + "end": 20929.74, + "probability": 0.936 + }, + { + "start": 20930.16, + "end": 20931.74, + "probability": 0.2975 + }, + { + "start": 20931.88, + "end": 20931.92, + "probability": 0.0328 + }, + { + "start": 20931.92, + "end": 20936.76, + "probability": 0.991 + }, + { + "start": 20939.36, + "end": 20943.86, + "probability": 0.7809 + }, + { + "start": 20944.48, + "end": 20945.6, + "probability": 0.8747 + }, + { + "start": 20951.48, + "end": 20952.24, + "probability": 0.526 + }, + { + "start": 20952.3, + "end": 20954.98, + "probability": 0.7154 + }, + { + "start": 20956.0, + "end": 20957.81, + "probability": 0.0066 + }, + { + "start": 20958.54, + "end": 20960.6, + "probability": 0.9714 + }, + { + "start": 20961.12, + "end": 20962.18, + "probability": 0.8739 + }, + { + "start": 20962.22, + "end": 20962.62, + "probability": 0.0381 + }, + { + "start": 20963.78, + "end": 20966.54, + "probability": 0.416 + }, + { + "start": 20967.22, + "end": 20969.16, + "probability": 0.1026 + }, + { + "start": 20969.92, + "end": 20972.4, + "probability": 0.082 + }, + { + "start": 20972.4, + "end": 20972.68, + "probability": 0.3279 + }, + { + "start": 20973.3, + "end": 20974.96, + "probability": 0.456 + }, + { + "start": 20975.62, + "end": 20977.04, + "probability": 0.0256 + }, + { + "start": 20979.96, + "end": 20980.88, + "probability": 0.0366 + }, + { + "start": 20981.24, + "end": 20981.44, + "probability": 0.0606 + }, + { + "start": 20981.44, + "end": 20981.44, + "probability": 0.021 + }, + { + "start": 20981.44, + "end": 20981.94, + "probability": 0.6259 + }, + { + "start": 20983.18, + "end": 20984.32, + "probability": 0.5134 + }, + { + "start": 20984.46, + "end": 20985.96, + "probability": 0.823 + }, + { + "start": 20986.48, + "end": 20988.46, + "probability": 0.3477 + }, + { + "start": 20988.46, + "end": 20992.56, + "probability": 0.4799 + }, + { + "start": 20993.3, + "end": 20994.4, + "probability": 0.7542 + }, + { + "start": 20994.76, + "end": 20997.22, + "probability": 0.8057 + }, + { + "start": 20997.9, + "end": 21001.8, + "probability": 0.9825 + }, + { + "start": 21003.55, + "end": 21009.66, + "probability": 0.8481 + }, + { + "start": 21010.18, + "end": 21015.16, + "probability": 0.9806 + }, + { + "start": 21015.16, + "end": 21021.18, + "probability": 0.9922 + }, + { + "start": 21021.92, + "end": 21022.92, + "probability": 0.7101 + }, + { + "start": 21023.32, + "end": 21026.44, + "probability": 0.6857 + }, + { + "start": 21026.58, + "end": 21032.66, + "probability": 0.9303 + }, + { + "start": 21033.22, + "end": 21035.08, + "probability": 0.791 + }, + { + "start": 21035.24, + "end": 21036.26, + "probability": 0.7319 + }, + { + "start": 21036.34, + "end": 21036.9, + "probability": 0.6475 + }, + { + "start": 21037.62, + "end": 21039.04, + "probability": 0.7594 + }, + { + "start": 21039.96, + "end": 21039.96, + "probability": 0.4192 + }, + { + "start": 21039.96, + "end": 21040.64, + "probability": 0.6928 + }, + { + "start": 21040.86, + "end": 21045.9, + "probability": 0.8818 + }, + { + "start": 21046.44, + "end": 21048.28, + "probability": 0.8102 + }, + { + "start": 21048.34, + "end": 21051.03, + "probability": 0.9955 + }, + { + "start": 21051.68, + "end": 21052.2, + "probability": 0.286 + }, + { + "start": 21052.8, + "end": 21053.78, + "probability": 0.2964 + }, + { + "start": 21053.94, + "end": 21057.68, + "probability": 0.9589 + }, + { + "start": 21058.5, + "end": 21061.84, + "probability": 0.9944 + }, + { + "start": 21061.84, + "end": 21065.88, + "probability": 0.9872 + }, + { + "start": 21065.96, + "end": 21066.72, + "probability": 0.7184 + }, + { + "start": 21066.84, + "end": 21069.63, + "probability": 0.9806 + }, + { + "start": 21070.44, + "end": 21072.76, + "probability": 0.8046 + }, + { + "start": 21072.76, + "end": 21075.74, + "probability": 0.9908 + }, + { + "start": 21077.12, + "end": 21079.98, + "probability": 0.6226 + }, + { + "start": 21081.02, + "end": 21081.54, + "probability": 0.4798 + }, + { + "start": 21081.62, + "end": 21086.54, + "probability": 0.7537 + }, + { + "start": 21086.62, + "end": 21087.5, + "probability": 0.6758 + }, + { + "start": 21087.88, + "end": 21091.76, + "probability": 0.9959 + }, + { + "start": 21091.76, + "end": 21095.72, + "probability": 0.9915 + }, + { + "start": 21095.86, + "end": 21096.52, + "probability": 0.6376 + }, + { + "start": 21096.62, + "end": 21099.46, + "probability": 0.887 + }, + { + "start": 21100.58, + "end": 21103.34, + "probability": 0.6922 + }, + { + "start": 21103.42, + "end": 21104.06, + "probability": 0.595 + }, + { + "start": 21106.72, + "end": 21107.79, + "probability": 0.7126 + }, + { + "start": 21108.98, + "end": 21109.92, + "probability": 0.2111 + }, + { + "start": 21109.98, + "end": 21115.44, + "probability": 0.7382 + }, + { + "start": 21116.18, + "end": 21119.24, + "probability": 0.6059 + }, + { + "start": 21119.52, + "end": 21120.08, + "probability": 0.7515 + }, + { + "start": 21120.12, + "end": 21120.8, + "probability": 0.8564 + }, + { + "start": 21121.74, + "end": 21126.32, + "probability": 0.1771 + }, + { + "start": 21129.76, + "end": 21134.06, + "probability": 0.033 + }, + { + "start": 21135.26, + "end": 21135.34, + "probability": 0.0142 + }, + { + "start": 21135.36, + "end": 21135.98, + "probability": 0.1568 + }, + { + "start": 21135.98, + "end": 21136.28, + "probability": 0.0684 + }, + { + "start": 21136.28, + "end": 21138.62, + "probability": 0.6235 + }, + { + "start": 21139.1, + "end": 21140.7, + "probability": 0.9964 + }, + { + "start": 21140.74, + "end": 21143.9, + "probability": 0.8239 + }, + { + "start": 21146.1, + "end": 21148.12, + "probability": 0.5975 + }, + { + "start": 21148.2, + "end": 21148.88, + "probability": 0.6149 + }, + { + "start": 21149.14, + "end": 21152.26, + "probability": 0.7838 + }, + { + "start": 21152.42, + "end": 21154.06, + "probability": 0.5005 + }, + { + "start": 21155.26, + "end": 21159.58, + "probability": 0.8992 + }, + { + "start": 21159.62, + "end": 21160.87, + "probability": 0.8117 + }, + { + "start": 21161.6, + "end": 21164.54, + "probability": 0.9842 + }, + { + "start": 21164.54, + "end": 21168.5, + "probability": 0.9188 + }, + { + "start": 21169.06, + "end": 21171.74, + "probability": 0.8792 + }, + { + "start": 21172.04, + "end": 21175.56, + "probability": 0.9987 + }, + { + "start": 21175.56, + "end": 21179.36, + "probability": 0.986 + }, + { + "start": 21179.8, + "end": 21182.22, + "probability": 0.8469 + }, + { + "start": 21182.5, + "end": 21183.32, + "probability": 0.543 + }, + { + "start": 21183.52, + "end": 21183.64, + "probability": 0.2678 + }, + { + "start": 21183.64, + "end": 21183.82, + "probability": 0.3904 + }, + { + "start": 21183.86, + "end": 21187.74, + "probability": 0.8132 + }, + { + "start": 21189.36, + "end": 21191.44, + "probability": 0.5638 + }, + { + "start": 21191.48, + "end": 21192.04, + "probability": 0.7809 + }, + { + "start": 21192.08, + "end": 21192.74, + "probability": 0.8796 + }, + { + "start": 21192.96, + "end": 21194.06, + "probability": 0.9725 + }, + { + "start": 21196.5, + "end": 21199.78, + "probability": 0.253 + }, + { + "start": 21200.82, + "end": 21202.86, + "probability": 0.0989 + }, + { + "start": 21203.42, + "end": 21207.58, + "probability": 0.1383 + }, + { + "start": 21208.36, + "end": 21210.28, + "probability": 0.4636 + }, + { + "start": 21210.4, + "end": 21214.37, + "probability": 0.7006 + }, + { + "start": 21214.6, + "end": 21217.26, + "probability": 0.9846 + }, + { + "start": 21217.26, + "end": 21220.42, + "probability": 0.5829 + }, + { + "start": 21220.56, + "end": 21222.08, + "probability": 0.6618 + }, + { + "start": 21222.6, + "end": 21223.94, + "probability": 0.3659 + }, + { + "start": 21224.26, + "end": 21224.9, + "probability": 0.6846 + }, + { + "start": 21237.52, + "end": 21238.48, + "probability": 0.7143 + }, + { + "start": 21239.78, + "end": 21240.5, + "probability": 0.7908 + }, + { + "start": 21240.76, + "end": 21241.94, + "probability": 0.8216 + }, + { + "start": 21241.94, + "end": 21247.22, + "probability": 0.8148 + }, + { + "start": 21247.4, + "end": 21249.64, + "probability": 0.7069 + }, + { + "start": 21250.5, + "end": 21253.56, + "probability": 0.7734 + }, + { + "start": 21255.12, + "end": 21258.72, + "probability": 0.6563 + }, + { + "start": 21259.38, + "end": 21260.24, + "probability": 0.583 + }, + { + "start": 21261.16, + "end": 21263.8, + "probability": 0.938 + }, + { + "start": 21264.8, + "end": 21269.36, + "probability": 0.873 + }, + { + "start": 21270.24, + "end": 21277.62, + "probability": 0.9463 + }, + { + "start": 21277.72, + "end": 21279.92, + "probability": 0.9823 + }, + { + "start": 21280.78, + "end": 21283.0, + "probability": 0.6135 + }, + { + "start": 21283.38, + "end": 21285.1, + "probability": 0.7779 + }, + { + "start": 21285.3, + "end": 21288.3, + "probability": 0.7428 + }, + { + "start": 21289.04, + "end": 21294.28, + "probability": 0.7385 + }, + { + "start": 21294.28, + "end": 21298.2, + "probability": 0.9919 + }, + { + "start": 21298.64, + "end": 21303.37, + "probability": 0.9508 + }, + { + "start": 21303.68, + "end": 21304.34, + "probability": 0.7363 + }, + { + "start": 21304.6, + "end": 21305.09, + "probability": 0.5266 + }, + { + "start": 21305.76, + "end": 21310.87, + "probability": 0.9477 + }, + { + "start": 21311.22, + "end": 21312.26, + "probability": 0.9824 + }, + { + "start": 21313.1, + "end": 21314.94, + "probability": 0.9754 + }, + { + "start": 21315.38, + "end": 21318.18, + "probability": 0.9279 + }, + { + "start": 21318.36, + "end": 21321.06, + "probability": 0.8755 + }, + { + "start": 21322.46, + "end": 21324.68, + "probability": 0.8809 + }, + { + "start": 21324.94, + "end": 21325.92, + "probability": 0.9443 + }, + { + "start": 21326.48, + "end": 21330.32, + "probability": 0.7643 + }, + { + "start": 21330.64, + "end": 21336.38, + "probability": 0.9735 + }, + { + "start": 21336.94, + "end": 21339.7, + "probability": 0.9802 + }, + { + "start": 21340.04, + "end": 21341.8, + "probability": 0.8826 + }, + { + "start": 21342.38, + "end": 21343.88, + "probability": 0.0453 + }, + { + "start": 21344.02, + "end": 21346.84, + "probability": 0.944 + }, + { + "start": 21346.88, + "end": 21347.97, + "probability": 0.6745 + }, + { + "start": 21348.9, + "end": 21349.8, + "probability": 0.7151 + }, + { + "start": 21351.46, + "end": 21354.78, + "probability": 0.7381 + }, + { + "start": 21355.38, + "end": 21358.4, + "probability": 0.9534 + }, + { + "start": 21359.04, + "end": 21360.9, + "probability": 0.9938 + }, + { + "start": 21361.08, + "end": 21362.13, + "probability": 0.5913 + }, + { + "start": 21362.66, + "end": 21364.92, + "probability": 0.914 + }, + { + "start": 21365.04, + "end": 21366.8, + "probability": 0.9261 + }, + { + "start": 21367.42, + "end": 21368.0, + "probability": 0.5073 + }, + { + "start": 21371.26, + "end": 21375.26, + "probability": 0.8836 + }, + { + "start": 21375.26, + "end": 21379.82, + "probability": 0.9783 + }, + { + "start": 21380.26, + "end": 21383.96, + "probability": 0.7048 + }, + { + "start": 21384.74, + "end": 21387.74, + "probability": 0.9895 + }, + { + "start": 21388.84, + "end": 21391.0, + "probability": 0.7805 + }, + { + "start": 21391.14, + "end": 21392.03, + "probability": 0.848 + }, + { + "start": 21393.52, + "end": 21394.98, + "probability": 0.9958 + }, + { + "start": 21395.12, + "end": 21396.8, + "probability": 0.96 + }, + { + "start": 21397.82, + "end": 21400.38, + "probability": 0.9912 + }, + { + "start": 21401.12, + "end": 21406.6, + "probability": 0.8223 + }, + { + "start": 21407.36, + "end": 21409.66, + "probability": 0.9519 + }, + { + "start": 21410.34, + "end": 21415.02, + "probability": 0.6682 + }, + { + "start": 21415.5, + "end": 21416.48, + "probability": 0.9197 + }, + { + "start": 21416.68, + "end": 21418.16, + "probability": 0.9664 + }, + { + "start": 21418.5, + "end": 21420.36, + "probability": 0.9873 + }, + { + "start": 21420.9, + "end": 21421.78, + "probability": 0.8054 + }, + { + "start": 21422.28, + "end": 21427.76, + "probability": 0.8025 + }, + { + "start": 21428.52, + "end": 21433.9, + "probability": 0.9575 + }, + { + "start": 21434.52, + "end": 21437.68, + "probability": 0.6569 + }, + { + "start": 21437.74, + "end": 21441.7, + "probability": 0.8916 + }, + { + "start": 21441.7, + "end": 21442.12, + "probability": 0.3946 + }, + { + "start": 21442.86, + "end": 21444.02, + "probability": 0.8547 + }, + { + "start": 21444.12, + "end": 21444.88, + "probability": 0.5983 + }, + { + "start": 21445.14, + "end": 21452.26, + "probability": 0.7875 + }, + { + "start": 21452.38, + "end": 21456.54, + "probability": 0.782 + }, + { + "start": 21457.18, + "end": 21462.84, + "probability": 0.9935 + }, + { + "start": 21463.44, + "end": 21466.02, + "probability": 0.7887 + }, + { + "start": 21467.34, + "end": 21469.14, + "probability": 0.9795 + }, + { + "start": 21469.94, + "end": 21471.28, + "probability": 0.2923 + }, + { + "start": 21471.56, + "end": 21472.78, + "probability": 0.6064 + }, + { + "start": 21473.54, + "end": 21476.84, + "probability": 0.7768 + }, + { + "start": 21476.96, + "end": 21478.15, + "probability": 0.9334 + }, + { + "start": 21478.66, + "end": 21482.48, + "probability": 0.9194 + }, + { + "start": 21483.04, + "end": 21488.22, + "probability": 0.5351 + }, + { + "start": 21488.28, + "end": 21488.76, + "probability": 0.486 + }, + { + "start": 21489.06, + "end": 21490.02, + "probability": 0.8898 + }, + { + "start": 21490.1, + "end": 21494.04, + "probability": 0.9256 + }, + { + "start": 21494.88, + "end": 21495.52, + "probability": 0.3551 + }, + { + "start": 21495.7, + "end": 21498.42, + "probability": 0.7258 + }, + { + "start": 21500.04, + "end": 21502.3, + "probability": 0.7535 + }, + { + "start": 21502.3, + "end": 21502.86, + "probability": 0.727 + }, + { + "start": 21503.08, + "end": 21503.72, + "probability": 0.899 + }, + { + "start": 21506.34, + "end": 21509.44, + "probability": 0.0047 + }, + { + "start": 21514.92, + "end": 21517.84, + "probability": 0.0629 + }, + { + "start": 21519.28, + "end": 21521.64, + "probability": 0.4655 + }, + { + "start": 21521.74, + "end": 21524.32, + "probability": 0.9413 + }, + { + "start": 21524.96, + "end": 21528.82, + "probability": 0.9693 + }, + { + "start": 21532.1, + "end": 21533.02, + "probability": 0.7179 + }, + { + "start": 21533.3, + "end": 21533.86, + "probability": 0.7466 + }, + { + "start": 21534.36, + "end": 21535.14, + "probability": 0.6215 + }, + { + "start": 21535.4, + "end": 21535.92, + "probability": 0.7508 + }, + { + "start": 21536.52, + "end": 21540.8, + "probability": 0.0953 + }, + { + "start": 21541.06, + "end": 21541.74, + "probability": 0.0548 + }, + { + "start": 21545.62, + "end": 21546.2, + "probability": 0.1224 + }, + { + "start": 21549.9, + "end": 21551.74, + "probability": 0.4526 + }, + { + "start": 21551.88, + "end": 21554.66, + "probability": 0.876 + }, + { + "start": 21555.26, + "end": 21555.26, + "probability": 0.0091 + }, + { + "start": 21555.26, + "end": 21557.86, + "probability": 0.8989 + }, + { + "start": 21558.34, + "end": 21559.76, + "probability": 0.7361 + }, + { + "start": 21560.2, + "end": 21561.3, + "probability": 0.9397 + }, + { + "start": 21561.36, + "end": 21561.88, + "probability": 0.5762 + }, + { + "start": 21562.04, + "end": 21562.6, + "probability": 0.8552 + }, + { + "start": 21576.68, + "end": 21578.8, + "probability": 0.4423 + }, + { + "start": 21579.94, + "end": 21580.86, + "probability": 0.5666 + }, + { + "start": 21582.3, + "end": 21583.12, + "probability": 0.7467 + }, + { + "start": 21583.74, + "end": 21584.06, + "probability": 0.3918 + }, + { + "start": 21585.16, + "end": 21590.1, + "probability": 0.589 + }, + { + "start": 21590.28, + "end": 21593.12, + "probability": 0.8232 + }, + { + "start": 21593.96, + "end": 21596.24, + "probability": 0.5707 + }, + { + "start": 21596.72, + "end": 21597.92, + "probability": 0.8215 + }, + { + "start": 21598.0, + "end": 21598.98, + "probability": 0.6582 + }, + { + "start": 21599.06, + "end": 21602.52, + "probability": 0.7496 + }, + { + "start": 21603.2, + "end": 21604.08, + "probability": 0.7113 + }, + { + "start": 21604.5, + "end": 21605.92, + "probability": 0.7553 + }, + { + "start": 21606.92, + "end": 21609.6, + "probability": 0.5195 + }, + { + "start": 21610.0, + "end": 21612.3, + "probability": 0.9774 + }, + { + "start": 21612.72, + "end": 21615.46, + "probability": 0.9793 + }, + { + "start": 21616.04, + "end": 21617.56, + "probability": 0.7582 + }, + { + "start": 21617.72, + "end": 21619.56, + "probability": 0.8969 + }, + { + "start": 21619.94, + "end": 21620.76, + "probability": 0.8694 + }, + { + "start": 21620.92, + "end": 21621.88, + "probability": 0.7479 + }, + { + "start": 21622.32, + "end": 21624.08, + "probability": 0.9016 + }, + { + "start": 21624.76, + "end": 21625.26, + "probability": 0.3048 + }, + { + "start": 21625.88, + "end": 21630.02, + "probability": 0.953 + }, + { + "start": 21630.52, + "end": 21633.38, + "probability": 0.9872 + }, + { + "start": 21633.94, + "end": 21635.64, + "probability": 0.9293 + }, + { + "start": 21636.12, + "end": 21638.48, + "probability": 0.99 + }, + { + "start": 21638.58, + "end": 21640.64, + "probability": 0.9806 + }, + { + "start": 21641.16, + "end": 21645.26, + "probability": 0.8263 + }, + { + "start": 21646.0, + "end": 21649.76, + "probability": 0.9591 + }, + { + "start": 21650.3, + "end": 21652.36, + "probability": 0.972 + }, + { + "start": 21652.84, + "end": 21654.06, + "probability": 0.9977 + }, + { + "start": 21654.48, + "end": 21656.66, + "probability": 0.853 + }, + { + "start": 21657.56, + "end": 21660.2, + "probability": 0.7642 + }, + { + "start": 21660.7, + "end": 21663.32, + "probability": 0.9823 + }, + { + "start": 21664.2, + "end": 21665.44, + "probability": 0.8594 + }, + { + "start": 21665.72, + "end": 21667.17, + "probability": 0.7628 + }, + { + "start": 21667.64, + "end": 21669.28, + "probability": 0.9695 + }, + { + "start": 21669.8, + "end": 21675.26, + "probability": 0.9165 + }, + { + "start": 21675.26, + "end": 21679.92, + "probability": 0.9888 + }, + { + "start": 21680.96, + "end": 21682.1, + "probability": 0.7399 + }, + { + "start": 21682.82, + "end": 21683.36, + "probability": 0.6378 + }, + { + "start": 21683.8, + "end": 21684.82, + "probability": 0.8206 + }, + { + "start": 21685.0, + "end": 21687.34, + "probability": 0.9868 + }, + { + "start": 21687.44, + "end": 21689.7, + "probability": 0.9188 + }, + { + "start": 21689.78, + "end": 21690.28, + "probability": 0.755 + }, + { + "start": 21690.54, + "end": 21691.46, + "probability": 0.4668 + }, + { + "start": 21691.78, + "end": 21692.02, + "probability": 0.5099 + }, + { + "start": 21692.02, + "end": 21692.02, + "probability": 0.4085 + }, + { + "start": 21692.02, + "end": 21693.42, + "probability": 0.8719 + }, + { + "start": 21693.88, + "end": 21696.46, + "probability": 0.9971 + }, + { + "start": 21696.62, + "end": 21697.62, + "probability": 0.8497 + }, + { + "start": 21698.22, + "end": 21698.88, + "probability": 0.8035 + }, + { + "start": 21699.44, + "end": 21701.24, + "probability": 0.6902 + }, + { + "start": 21704.1, + "end": 21704.6, + "probability": 0.7811 + }, + { + "start": 21704.68, + "end": 21704.9, + "probability": 0.8072 + }, + { + "start": 21705.04, + "end": 21709.42, + "probability": 0.9187 + }, + { + "start": 21709.52, + "end": 21714.46, + "probability": 0.9932 + }, + { + "start": 21714.86, + "end": 21715.5, + "probability": 0.6212 + }, + { + "start": 21715.84, + "end": 21721.7, + "probability": 0.9614 + }, + { + "start": 21722.58, + "end": 21722.92, + "probability": 0.41 + }, + { + "start": 21723.04, + "end": 21725.57, + "probability": 0.799 + }, + { + "start": 21726.24, + "end": 21727.52, + "probability": 0.9258 + }, + { + "start": 21727.62, + "end": 21730.36, + "probability": 0.9146 + }, + { + "start": 21730.5, + "end": 21731.6, + "probability": 0.6458 + }, + { + "start": 21732.12, + "end": 21732.26, + "probability": 0.2262 + }, + { + "start": 21736.86, + "end": 21737.2, + "probability": 0.0168 + }, + { + "start": 21738.16, + "end": 21739.68, + "probability": 0.119 + }, + { + "start": 21739.68, + "end": 21739.68, + "probability": 0.2441 + }, + { + "start": 21739.76, + "end": 21741.22, + "probability": 0.8099 + }, + { + "start": 21741.32, + "end": 21741.6, + "probability": 0.0432 + }, + { + "start": 21741.7, + "end": 21744.52, + "probability": 0.8542 + }, + { + "start": 21744.58, + "end": 21747.0, + "probability": 0.0391 + }, + { + "start": 21747.8, + "end": 21748.1, + "probability": 0.0677 + }, + { + "start": 21748.1, + "end": 21748.1, + "probability": 0.2434 + }, + { + "start": 21748.1, + "end": 21748.6, + "probability": 0.3884 + }, + { + "start": 21748.6, + "end": 21748.92, + "probability": 0.5628 + }, + { + "start": 21749.5, + "end": 21752.4, + "probability": 0.4055 + }, + { + "start": 21752.4, + "end": 21754.88, + "probability": 0.8074 + }, + { + "start": 21754.92, + "end": 21755.32, + "probability": 0.7402 + }, + { + "start": 21755.36, + "end": 21758.5, + "probability": 0.7114 + }, + { + "start": 21758.88, + "end": 21761.06, + "probability": 0.6996 + }, + { + "start": 21761.1, + "end": 21761.58, + "probability": 0.8573 + }, + { + "start": 21761.66, + "end": 21764.36, + "probability": 0.971 + }, + { + "start": 21765.06, + "end": 21767.78, + "probability": 0.9795 + }, + { + "start": 21767.9, + "end": 21772.12, + "probability": 0.8879 + }, + { + "start": 21772.54, + "end": 21774.36, + "probability": 0.9756 + }, + { + "start": 21774.72, + "end": 21775.12, + "probability": 0.7848 + }, + { + "start": 21776.04, + "end": 21778.13, + "probability": 0.7209 + }, + { + "start": 21779.52, + "end": 21780.71, + "probability": 0.953 + }, + { + "start": 21781.94, + "end": 21784.42, + "probability": 0.938 + }, + { + "start": 21785.16, + "end": 21788.6, + "probability": 0.5708 + }, + { + "start": 21789.2, + "end": 21791.36, + "probability": 0.3274 + }, + { + "start": 21791.42, + "end": 21791.84, + "probability": 0.799 + }, + { + "start": 21800.56, + "end": 21802.32, + "probability": 0.4036 + }, + { + "start": 21803.48, + "end": 21808.14, + "probability": 0.7007 + }, + { + "start": 21808.96, + "end": 21810.06, + "probability": 0.6203 + }, + { + "start": 21811.08, + "end": 21811.76, + "probability": 0.8325 + }, + { + "start": 21812.3, + "end": 21814.57, + "probability": 0.9861 + }, + { + "start": 21815.4, + "end": 21817.96, + "probability": 0.9511 + }, + { + "start": 21818.36, + "end": 21819.3, + "probability": 0.8303 + }, + { + "start": 21819.48, + "end": 21820.1, + "probability": 0.7529 + }, + { + "start": 21821.0, + "end": 21821.56, + "probability": 0.5413 + }, + { + "start": 21821.62, + "end": 21825.78, + "probability": 0.8346 + }, + { + "start": 21826.4, + "end": 21830.46, + "probability": 0.9697 + }, + { + "start": 21830.82, + "end": 21832.42, + "probability": 0.9609 + }, + { + "start": 21832.82, + "end": 21833.74, + "probability": 0.4098 + }, + { + "start": 21834.4, + "end": 21840.96, + "probability": 0.9427 + }, + { + "start": 21841.36, + "end": 21842.58, + "probability": 0.8678 + }, + { + "start": 21843.66, + "end": 21846.92, + "probability": 0.3398 + }, + { + "start": 21847.54, + "end": 21849.52, + "probability": 0.9907 + }, + { + "start": 21849.62, + "end": 21852.12, + "probability": 0.9744 + }, + { + "start": 21852.52, + "end": 21853.26, + "probability": 0.7475 + }, + { + "start": 21854.24, + "end": 21855.18, + "probability": 0.5768 + }, + { + "start": 21855.28, + "end": 21856.42, + "probability": 0.843 + }, + { + "start": 21856.72, + "end": 21858.64, + "probability": 0.8424 + }, + { + "start": 21859.04, + "end": 21861.82, + "probability": 0.762 + }, + { + "start": 21861.96, + "end": 21862.36, + "probability": 0.5354 + }, + { + "start": 21862.96, + "end": 21867.52, + "probability": 0.9583 + }, + { + "start": 21867.52, + "end": 21868.84, + "probability": 0.842 + }, + { + "start": 21870.04, + "end": 21871.42, + "probability": 0.7311 + }, + { + "start": 21872.28, + "end": 21874.7, + "probability": 0.9183 + }, + { + "start": 21877.34, + "end": 21879.42, + "probability": 0.9826 + }, + { + "start": 21880.76, + "end": 21880.8, + "probability": 0.5369 + }, + { + "start": 21899.18, + "end": 21900.14, + "probability": 0.6807 + }, + { + "start": 21903.0, + "end": 21905.1, + "probability": 0.9976 + }, + { + "start": 21905.64, + "end": 21907.7, + "probability": 0.8924 + }, + { + "start": 21908.42, + "end": 21909.94, + "probability": 0.8522 + }, + { + "start": 21910.82, + "end": 21912.24, + "probability": 0.9463 + }, + { + "start": 21912.76, + "end": 21914.06, + "probability": 0.9951 + }, + { + "start": 21915.54, + "end": 21920.68, + "probability": 0.9767 + }, + { + "start": 21922.52, + "end": 21923.7, + "probability": 0.9722 + }, + { + "start": 21925.16, + "end": 21928.36, + "probability": 0.8958 + }, + { + "start": 21932.28, + "end": 21933.28, + "probability": 0.9338 + }, + { + "start": 21934.58, + "end": 21936.5, + "probability": 0.9359 + }, + { + "start": 21938.3, + "end": 21940.84, + "probability": 0.9929 + }, + { + "start": 21941.6, + "end": 21942.72, + "probability": 0.9185 + }, + { + "start": 21943.96, + "end": 21947.06, + "probability": 0.7632 + }, + { + "start": 21947.78, + "end": 21949.76, + "probability": 0.8101 + }, + { + "start": 21951.14, + "end": 21952.98, + "probability": 0.8236 + }, + { + "start": 21953.94, + "end": 21957.52, + "probability": 0.5971 + }, + { + "start": 21959.02, + "end": 21964.38, + "probability": 0.9919 + }, + { + "start": 21964.54, + "end": 21965.14, + "probability": 0.8367 + }, + { + "start": 21966.1, + "end": 21968.62, + "probability": 0.9907 + }, + { + "start": 21969.42, + "end": 21971.94, + "probability": 0.9747 + }, + { + "start": 21973.22, + "end": 21979.57, + "probability": 0.9344 + }, + { + "start": 21979.98, + "end": 21980.36, + "probability": 0.7144 + }, + { + "start": 21980.72, + "end": 21981.5, + "probability": 0.8455 + }, + { + "start": 21982.78, + "end": 21985.46, + "probability": 0.9504 + }, + { + "start": 21986.48, + "end": 21987.5, + "probability": 0.9963 + }, + { + "start": 21989.28, + "end": 21990.0, + "probability": 0.789 + }, + { + "start": 21991.06, + "end": 21996.5, + "probability": 0.9581 + }, + { + "start": 21997.24, + "end": 21998.7, + "probability": 0.9971 + }, + { + "start": 21999.56, + "end": 22001.32, + "probability": 0.7435 + }, + { + "start": 22002.76, + "end": 22006.04, + "probability": 0.8228 + }, + { + "start": 22007.26, + "end": 22011.84, + "probability": 0.9569 + }, + { + "start": 22012.76, + "end": 22015.82, + "probability": 0.9778 + }, + { + "start": 22017.08, + "end": 22019.16, + "probability": 0.683 + }, + { + "start": 22019.16, + "end": 22019.86, + "probability": 0.9096 + }, + { + "start": 22020.58, + "end": 22027.1, + "probability": 0.9434 + }, + { + "start": 22027.2, + "end": 22027.68, + "probability": 0.8123 + }, + { + "start": 22028.92, + "end": 22029.74, + "probability": 0.5493 + }, + { + "start": 22029.86, + "end": 22032.9, + "probability": 0.8674 + }, + { + "start": 22033.9, + "end": 22034.9, + "probability": 0.6146 + }, + { + "start": 22056.76, + "end": 22057.06, + "probability": 0.3175 + }, + { + "start": 22057.1, + "end": 22057.6, + "probability": 0.5676 + }, + { + "start": 22057.72, + "end": 22059.32, + "probability": 0.833 + }, + { + "start": 22059.32, + "end": 22059.92, + "probability": 0.7281 + }, + { + "start": 22059.96, + "end": 22061.48, + "probability": 0.9811 + }, + { + "start": 22061.54, + "end": 22063.36, + "probability": 0.985 + }, + { + "start": 22063.94, + "end": 22064.24, + "probability": 0.9224 + }, + { + "start": 22064.84, + "end": 22066.66, + "probability": 0.9263 + }, + { + "start": 22066.7, + "end": 22070.88, + "probability": 0.2308 + }, + { + "start": 22070.98, + "end": 22073.44, + "probability": 0.2531 + }, + { + "start": 22073.86, + "end": 22074.02, + "probability": 0.6716 + }, + { + "start": 22074.1, + "end": 22078.2, + "probability": 0.9927 + }, + { + "start": 22078.3, + "end": 22080.84, + "probability": 0.9419 + }, + { + "start": 22081.9, + "end": 22082.32, + "probability": 0.6859 + }, + { + "start": 22082.42, + "end": 22083.5, + "probability": 0.7559 + }, + { + "start": 22083.66, + "end": 22085.44, + "probability": 0.979 + }, + { + "start": 22085.88, + "end": 22091.34, + "probability": 0.8869 + }, + { + "start": 22094.0, + "end": 22097.18, + "probability": 0.6618 + }, + { + "start": 22098.12, + "end": 22101.3, + "probability": 0.8786 + }, + { + "start": 22103.42, + "end": 22108.84, + "probability": 0.9854 + }, + { + "start": 22110.22, + "end": 22114.18, + "probability": 0.9977 + }, + { + "start": 22114.88, + "end": 22116.64, + "probability": 0.8011 + }, + { + "start": 22116.8, + "end": 22122.12, + "probability": 0.9612 + }, + { + "start": 22122.56, + "end": 22124.34, + "probability": 0.9772 + }, + { + "start": 22125.14, + "end": 22128.98, + "probability": 0.9938 + }, + { + "start": 22129.78, + "end": 22132.91, + "probability": 0.8787 + }, + { + "start": 22133.82, + "end": 22135.48, + "probability": 0.999 + }, + { + "start": 22135.58, + "end": 22138.1, + "probability": 0.9751 + }, + { + "start": 22138.34, + "end": 22140.0, + "probability": 0.9946 + }, + { + "start": 22140.4, + "end": 22141.42, + "probability": 0.5912 + }, + { + "start": 22141.42, + "end": 22142.22, + "probability": 0.5914 + }, + { + "start": 22142.62, + "end": 22143.36, + "probability": 0.7255 + }, + { + "start": 22144.64, + "end": 22147.64, + "probability": 0.9637 + }, + { + "start": 22148.24, + "end": 22153.68, + "probability": 0.9922 + }, + { + "start": 22153.96, + "end": 22157.36, + "probability": 0.9879 + }, + { + "start": 22158.2, + "end": 22161.88, + "probability": 0.9551 + }, + { + "start": 22162.0, + "end": 22163.26, + "probability": 0.9858 + }, + { + "start": 22163.66, + "end": 22165.6, + "probability": 0.942 + }, + { + "start": 22166.14, + "end": 22166.62, + "probability": 0.5634 + }, + { + "start": 22167.14, + "end": 22168.02, + "probability": 0.8245 + }, + { + "start": 22168.38, + "end": 22170.86, + "probability": 0.7326 + }, + { + "start": 22171.24, + "end": 22171.88, + "probability": 0.9577 + }, + { + "start": 22171.98, + "end": 22173.34, + "probability": 0.8311 + }, + { + "start": 22173.68, + "end": 22174.72, + "probability": 0.9775 + }, + { + "start": 22174.88, + "end": 22175.88, + "probability": 0.9939 + }, + { + "start": 22176.36, + "end": 22180.0, + "probability": 0.991 + }, + { + "start": 22180.08, + "end": 22181.4, + "probability": 0.6574 + }, + { + "start": 22181.76, + "end": 22182.32, + "probability": 0.8896 + }, + { + "start": 22183.0, + "end": 22186.36, + "probability": 0.9636 + }, + { + "start": 22186.78, + "end": 22190.06, + "probability": 0.8777 + }, + { + "start": 22190.76, + "end": 22192.1, + "probability": 0.9717 + }, + { + "start": 22192.72, + "end": 22195.06, + "probability": 0.9342 + }, + { + "start": 22195.6, + "end": 22197.94, + "probability": 0.9518 + }, + { + "start": 22198.02, + "end": 22205.64, + "probability": 0.9505 + }, + { + "start": 22206.0, + "end": 22207.44, + "probability": 0.8608 + }, + { + "start": 22208.08, + "end": 22210.98, + "probability": 0.781 + }, + { + "start": 22211.54, + "end": 22217.32, + "probability": 0.9971 + }, + { + "start": 22217.92, + "end": 22220.66, + "probability": 0.9918 + }, + { + "start": 22221.02, + "end": 22221.84, + "probability": 0.9416 + }, + { + "start": 22222.26, + "end": 22223.58, + "probability": 0.8359 + }, + { + "start": 22223.92, + "end": 22225.8, + "probability": 0.7411 + }, + { + "start": 22226.1, + "end": 22227.94, + "probability": 0.946 + }, + { + "start": 22228.34, + "end": 22232.1, + "probability": 0.9857 + }, + { + "start": 22232.38, + "end": 22235.4, + "probability": 0.8541 + }, + { + "start": 22235.66, + "end": 22236.28, + "probability": 0.4854 + }, + { + "start": 22243.22, + "end": 22243.6, + "probability": 0.6086 + }, + { + "start": 22243.78, + "end": 22248.18, + "probability": 0.9919 + }, + { + "start": 22248.22, + "end": 22250.08, + "probability": 0.9216 + }, + { + "start": 22250.84, + "end": 22253.38, + "probability": 0.4586 + }, + { + "start": 22254.3, + "end": 22256.52, + "probability": 0.5439 + }, + { + "start": 22256.56, + "end": 22257.26, + "probability": 0.7265 + }, + { + "start": 22257.84, + "end": 22258.56, + "probability": 0.6109 + }, + { + "start": 22258.74, + "end": 22261.68, + "probability": 0.058 + }, + { + "start": 22262.32, + "end": 22262.44, + "probability": 0.0499 + }, + { + "start": 22277.46, + "end": 22277.46, + "probability": 0.0349 + }, + { + "start": 22277.46, + "end": 22279.4, + "probability": 0.3678 + }, + { + "start": 22279.48, + "end": 22281.86, + "probability": 0.971 + }, + { + "start": 22284.16, + "end": 22286.96, + "probability": 0.9952 + }, + { + "start": 22287.58, + "end": 22288.38, + "probability": 0.6451 + }, + { + "start": 22288.8, + "end": 22291.68, + "probability": 0.6525 + }, + { + "start": 22292.02, + "end": 22295.46, + "probability": 0.9201 + }, + { + "start": 22295.48, + "end": 22296.76, + "probability": 0.8371 + }, + { + "start": 22297.22, + "end": 22299.02, + "probability": 0.8666 + }, + { + "start": 22316.28, + "end": 22316.74, + "probability": 0.4949 + }, + { + "start": 22316.74, + "end": 22317.62, + "probability": 0.6891 + }, + { + "start": 22319.27, + "end": 22321.64, + "probability": 0.7532 + }, + { + "start": 22321.76, + "end": 22323.56, + "probability": 0.8701 + }, + { + "start": 22324.5, + "end": 22325.38, + "probability": 0.5468 + }, + { + "start": 22325.44, + "end": 22328.84, + "probability": 0.2818 + }, + { + "start": 22329.28, + "end": 22332.7, + "probability": 0.8951 + }, + { + "start": 22332.7, + "end": 22335.4, + "probability": 0.912 + }, + { + "start": 22335.9, + "end": 22337.56, + "probability": 0.7477 + }, + { + "start": 22337.62, + "end": 22339.2, + "probability": 0.9054 + }, + { + "start": 22339.7, + "end": 22343.6, + "probability": 0.8326 + }, + { + "start": 22343.96, + "end": 22345.0, + "probability": 0.7773 + }, + { + "start": 22345.18, + "end": 22347.06, + "probability": 0.9406 + }, + { + "start": 22347.06, + "end": 22349.4, + "probability": 0.9728 + }, + { + "start": 22349.88, + "end": 22352.16, + "probability": 0.7795 + }, + { + "start": 22352.16, + "end": 22355.14, + "probability": 0.9315 + }, + { + "start": 22355.14, + "end": 22358.02, + "probability": 0.9368 + }, + { + "start": 22358.04, + "end": 22360.49, + "probability": 0.8535 + }, + { + "start": 22361.04, + "end": 22364.5, + "probability": 0.8417 + }, + { + "start": 22364.96, + "end": 22367.16, + "probability": 0.8381 + }, + { + "start": 22367.16, + "end": 22370.16, + "probability": 0.9769 + }, + { + "start": 22370.58, + "end": 22371.34, + "probability": 0.2865 + }, + { + "start": 22371.48, + "end": 22372.6, + "probability": 0.845 + }, + { + "start": 22373.12, + "end": 22375.42, + "probability": 0.6293 + }, + { + "start": 22378.01, + "end": 22381.18, + "probability": 0.6614 + }, + { + "start": 22381.32, + "end": 22382.4, + "probability": 0.6122 + }, + { + "start": 22382.86, + "end": 22384.12, + "probability": 0.4362 + }, + { + "start": 22387.72, + "end": 22388.22, + "probability": 0.6211 + }, + { + "start": 22388.3, + "end": 22393.48, + "probability": 0.9046 + }, + { + "start": 22393.54, + "end": 22399.58, + "probability": 0.88 + }, + { + "start": 22399.84, + "end": 22402.38, + "probability": 0.6552 + }, + { + "start": 22402.82, + "end": 22405.84, + "probability": 0.7791 + }, + { + "start": 22405.98, + "end": 22408.68, + "probability": 0.9521 + }, + { + "start": 22409.16, + "end": 22413.42, + "probability": 0.9272 + }, + { + "start": 22413.62, + "end": 22417.16, + "probability": 0.8743 + }, + { + "start": 22417.2, + "end": 22420.12, + "probability": 0.9604 + }, + { + "start": 22420.56, + "end": 22423.52, + "probability": 0.9966 + }, + { + "start": 22423.52, + "end": 22426.32, + "probability": 0.9297 + }, + { + "start": 22426.8, + "end": 22429.05, + "probability": 0.7606 + }, + { + "start": 22432.28, + "end": 22434.46, + "probability": 0.8392 + }, + { + "start": 22435.0, + "end": 22436.74, + "probability": 0.9876 + }, + { + "start": 22437.36, + "end": 22438.56, + "probability": 0.6732 + }, + { + "start": 22439.44, + "end": 22440.35, + "probability": 0.7406 + }, + { + "start": 22440.7, + "end": 22441.2, + "probability": 0.7219 + }, + { + "start": 22441.24, + "end": 22441.24, + "probability": 0.667 + }, + { + "start": 22441.36, + "end": 22442.92, + "probability": 0.9631 + }, + { + "start": 22443.5, + "end": 22444.46, + "probability": 0.7829 + }, + { + "start": 22446.2, + "end": 22447.35, + "probability": 0.5026 + }, + { + "start": 22448.16, + "end": 22451.0, + "probability": 0.0931 + }, + { + "start": 22451.2, + "end": 22451.32, + "probability": 0.4233 + }, + { + "start": 22451.46, + "end": 22453.4, + "probability": 0.9543 + }, + { + "start": 22454.02, + "end": 22454.42, + "probability": 0.8039 + }, + { + "start": 22455.52, + "end": 22455.86, + "probability": 0.0921 + }, + { + "start": 22455.96, + "end": 22456.58, + "probability": 0.583 + }, + { + "start": 22457.52, + "end": 22459.94, + "probability": 0.9863 + }, + { + "start": 22460.9, + "end": 22462.84, + "probability": 0.6827 + }, + { + "start": 22462.94, + "end": 22466.08, + "probability": 0.8656 + }, + { + "start": 22466.38, + "end": 22470.26, + "probability": 0.9849 + }, + { + "start": 22470.26, + "end": 22476.1, + "probability": 0.9971 + }, + { + "start": 22476.46, + "end": 22476.66, + "probability": 0.6632 + }, + { + "start": 22477.4, + "end": 22478.1, + "probability": 0.0191 + }, + { + "start": 22478.16, + "end": 22478.16, + "probability": 0.027 + }, + { + "start": 22478.16, + "end": 22479.06, + "probability": 0.5933 + }, + { + "start": 22479.36, + "end": 22482.86, + "probability": 0.9845 + }, + { + "start": 22483.98, + "end": 22485.42, + "probability": 0.7915 + }, + { + "start": 22485.96, + "end": 22490.32, + "probability": 0.7627 + }, + { + "start": 22491.4, + "end": 22492.24, + "probability": 0.9462 + }, + { + "start": 22492.82, + "end": 22494.54, + "probability": 0.9035 + }, + { + "start": 22495.9, + "end": 22496.52, + "probability": 0.6909 + }, + { + "start": 22496.62, + "end": 22497.2, + "probability": 0.7757 + }, + { + "start": 22506.64, + "end": 22506.99, + "probability": 0.5053 + }, + { + "start": 22511.5, + "end": 22512.08, + "probability": 0.8304 + }, + { + "start": 22512.16, + "end": 22512.8, + "probability": 0.4477 + }, + { + "start": 22512.82, + "end": 22513.72, + "probability": 0.6198 + }, + { + "start": 22513.82, + "end": 22519.15, + "probability": 0.9482 + }, + { + "start": 22519.82, + "end": 22520.3, + "probability": 0.7999 + }, + { + "start": 22520.38, + "end": 22521.76, + "probability": 0.9104 + }, + { + "start": 22521.84, + "end": 22525.62, + "probability": 0.9893 + }, + { + "start": 22526.8, + "end": 22528.54, + "probability": 0.9731 + }, + { + "start": 22528.76, + "end": 22529.92, + "probability": 0.952 + }, + { + "start": 22530.08, + "end": 22533.54, + "probability": 0.9891 + }, + { + "start": 22534.06, + "end": 22536.92, + "probability": 0.9741 + }, + { + "start": 22537.34, + "end": 22538.94, + "probability": 0.6032 + }, + { + "start": 22539.4, + "end": 22541.42, + "probability": 0.9814 + }, + { + "start": 22543.24, + "end": 22547.0, + "probability": 0.9888 + }, + { + "start": 22548.31, + "end": 22548.52, + "probability": 0.0711 + }, + { + "start": 22548.52, + "end": 22549.54, + "probability": 0.9612 + }, + { + "start": 22549.82, + "end": 22550.76, + "probability": 0.4979 + }, + { + "start": 22550.8, + "end": 22552.7, + "probability": 0.8789 + }, + { + "start": 22553.54, + "end": 22554.82, + "probability": 0.9989 + }, + { + "start": 22555.68, + "end": 22559.16, + "probability": 0.9758 + }, + { + "start": 22559.92, + "end": 22561.46, + "probability": 0.9061 + }, + { + "start": 22563.06, + "end": 22564.5, + "probability": 0.8967 + }, + { + "start": 22565.14, + "end": 22565.5, + "probability": 0.9384 + }, + { + "start": 22565.56, + "end": 22566.2, + "probability": 0.5591 + }, + { + "start": 22566.52, + "end": 22567.34, + "probability": 0.3838 + }, + { + "start": 22567.4, + "end": 22569.4, + "probability": 0.9492 + }, + { + "start": 22569.4, + "end": 22569.86, + "probability": 0.5808 + }, + { + "start": 22570.96, + "end": 22571.96, + "probability": 0.9823 + }, + { + "start": 22572.08, + "end": 22573.92, + "probability": 0.9917 + }, + { + "start": 22574.7, + "end": 22578.26, + "probability": 0.9748 + }, + { + "start": 22578.44, + "end": 22580.58, + "probability": 0.8077 + }, + { + "start": 22581.18, + "end": 22583.26, + "probability": 0.5727 + }, + { + "start": 22583.34, + "end": 22586.86, + "probability": 0.8205 + }, + { + "start": 22586.92, + "end": 22587.02, + "probability": 0.4775 + }, + { + "start": 22587.94, + "end": 22589.82, + "probability": 0.9691 + }, + { + "start": 22590.22, + "end": 22593.34, + "probability": 0.9912 + }, + { + "start": 22593.46, + "end": 22594.3, + "probability": 0.9512 + }, + { + "start": 22595.08, + "end": 22600.12, + "probability": 0.8507 + }, + { + "start": 22600.38, + "end": 22600.86, + "probability": 0.5811 + }, + { + "start": 22601.14, + "end": 22603.62, + "probability": 0.7492 + }, + { + "start": 22604.5, + "end": 22607.52, + "probability": 0.9889 + }, + { + "start": 22607.74, + "end": 22611.5, + "probability": 0.9819 + }, + { + "start": 22611.52, + "end": 22613.08, + "probability": 0.8794 + }, + { + "start": 22613.58, + "end": 22619.76, + "probability": 0.882 + }, + { + "start": 22620.26, + "end": 22620.72, + "probability": 0.5056 + }, + { + "start": 22621.2, + "end": 22621.68, + "probability": 0.6434 + }, + { + "start": 22622.06, + "end": 22622.68, + "probability": 0.9446 + }, + { + "start": 22622.86, + "end": 22623.04, + "probability": 0.7946 + }, + { + "start": 22623.98, + "end": 22625.54, + "probability": 0.7153 + }, + { + "start": 22627.76, + "end": 22628.72, + "probability": 0.8411 + }, + { + "start": 22629.52, + "end": 22630.02, + "probability": 0.9314 + }, + { + "start": 22630.94, + "end": 22631.46, + "probability": 0.8799 + }, + { + "start": 22633.36, + "end": 22634.18, + "probability": 0.6953 + }, + { + "start": 22635.42, + "end": 22635.94, + "probability": 0.8512 + }, + { + "start": 22636.96, + "end": 22637.82, + "probability": 0.504 + }, + { + "start": 22641.16, + "end": 22641.16, + "probability": 0.7835 + }, + { + "start": 22642.02, + "end": 22643.32, + "probability": 0.738 + }, + { + "start": 22648.12, + "end": 22649.12, + "probability": 0.7083 + }, + { + "start": 22649.18, + "end": 22649.56, + "probability": 0.4671 + }, + { + "start": 22650.16, + "end": 22652.96, + "probability": 0.7871 + }, + { + "start": 22653.68, + "end": 22656.28, + "probability": 0.9863 + }, + { + "start": 22656.9, + "end": 22661.6, + "probability": 0.9887 + }, + { + "start": 22662.6, + "end": 22664.46, + "probability": 0.9926 + }, + { + "start": 22665.38, + "end": 22667.22, + "probability": 0.9654 + }, + { + "start": 22668.22, + "end": 22674.0, + "probability": 0.984 + }, + { + "start": 22674.6, + "end": 22678.56, + "probability": 0.9966 + }, + { + "start": 22678.72, + "end": 22682.02, + "probability": 0.5417 + }, + { + "start": 22682.02, + "end": 22682.46, + "probability": 0.0067 + }, + { + "start": 22683.66, + "end": 22684.34, + "probability": 0.5362 + }, + { + "start": 22685.02, + "end": 22686.8, + "probability": 0.8713 + }, + { + "start": 22687.5, + "end": 22688.96, + "probability": 0.727 + }, + { + "start": 22689.2, + "end": 22692.06, + "probability": 0.945 + }, + { + "start": 22692.52, + "end": 22693.58, + "probability": 0.433 + }, + { + "start": 22694.04, + "end": 22698.17, + "probability": 0.9648 + }, + { + "start": 22698.52, + "end": 22699.08, + "probability": 0.7426 + }, + { + "start": 22699.16, + "end": 22700.04, + "probability": 0.8771 + }, + { + "start": 22700.82, + "end": 22705.34, + "probability": 0.9371 + }, + { + "start": 22705.46, + "end": 22706.14, + "probability": 0.7761 + }, + { + "start": 22706.24, + "end": 22707.56, + "probability": 0.9463 + }, + { + "start": 22707.96, + "end": 22709.74, + "probability": 0.8496 + }, + { + "start": 22709.92, + "end": 22710.88, + "probability": 0.98 + }, + { + "start": 22711.38, + "end": 22712.28, + "probability": 0.9017 + }, + { + "start": 22712.36, + "end": 22713.4, + "probability": 0.958 + }, + { + "start": 22713.9, + "end": 22717.5, + "probability": 0.85 + }, + { + "start": 22717.86, + "end": 22720.0, + "probability": 0.884 + }, + { + "start": 22720.04, + "end": 22720.64, + "probability": 0.6694 + }, + { + "start": 22720.98, + "end": 22723.06, + "probability": 0.9989 + }, + { + "start": 22723.54, + "end": 22724.6, + "probability": 0.9219 + }, + { + "start": 22724.74, + "end": 22725.7, + "probability": 0.8278 + }, + { + "start": 22725.76, + "end": 22726.36, + "probability": 0.9631 + }, + { + "start": 22726.46, + "end": 22727.28, + "probability": 0.8244 + }, + { + "start": 22727.44, + "end": 22728.58, + "probability": 0.9814 + }, + { + "start": 22729.26, + "end": 22729.86, + "probability": 0.8813 + }, + { + "start": 22730.2, + "end": 22732.32, + "probability": 0.9692 + }, + { + "start": 22732.72, + "end": 22733.38, + "probability": 0.8982 + }, + { + "start": 22733.58, + "end": 22734.82, + "probability": 0.9209 + }, + { + "start": 22735.0, + "end": 22736.06, + "probability": 0.8818 + }, + { + "start": 22736.34, + "end": 22736.9, + "probability": 0.6999 + }, + { + "start": 22737.26, + "end": 22738.6, + "probability": 0.8655 + }, + { + "start": 22738.7, + "end": 22741.1, + "probability": 0.8823 + }, + { + "start": 22741.34, + "end": 22742.34, + "probability": 0.8097 + }, + { + "start": 22742.68, + "end": 22743.53, + "probability": 0.9587 + }, + { + "start": 22743.74, + "end": 22745.78, + "probability": 0.9723 + }, + { + "start": 22745.94, + "end": 22748.84, + "probability": 0.8459 + }, + { + "start": 22749.1, + "end": 22750.62, + "probability": 0.299 + }, + { + "start": 22751.26, + "end": 22751.26, + "probability": 0.4387 + }, + { + "start": 22751.42, + "end": 22754.6, + "probability": 0.9177 + }, + { + "start": 22755.1, + "end": 22758.66, + "probability": 0.9844 + }, + { + "start": 22759.08, + "end": 22759.82, + "probability": 0.611 + }, + { + "start": 22760.72, + "end": 22761.5, + "probability": 0.6664 + }, + { + "start": 22761.76, + "end": 22762.84, + "probability": 0.3057 + }, + { + "start": 22762.98, + "end": 22763.58, + "probability": 0.3091 + }, + { + "start": 22763.64, + "end": 22765.11, + "probability": 0.6781 + }, + { + "start": 22765.68, + "end": 22767.4, + "probability": 0.9453 + }, + { + "start": 22767.84, + "end": 22774.64, + "probability": 0.9897 + }, + { + "start": 22774.94, + "end": 22775.88, + "probability": 0.8303 + }, + { + "start": 22776.16, + "end": 22776.62, + "probability": 0.3261 + }, + { + "start": 22777.08, + "end": 22778.7, + "probability": 0.9663 + }, + { + "start": 22778.98, + "end": 22779.98, + "probability": 0.9834 + }, + { + "start": 22780.12, + "end": 22781.7, + "probability": 0.9866 + }, + { + "start": 22782.28, + "end": 22783.64, + "probability": 0.985 + }, + { + "start": 22784.12, + "end": 22787.84, + "probability": 0.9962 + }, + { + "start": 22788.22, + "end": 22789.74, + "probability": 0.9963 + }, + { + "start": 22789.88, + "end": 22791.32, + "probability": 0.529 + }, + { + "start": 22791.5, + "end": 22792.34, + "probability": 0.9061 + }, + { + "start": 22792.42, + "end": 22793.68, + "probability": 0.8659 + }, + { + "start": 22794.08, + "end": 22794.92, + "probability": 0.8161 + }, + { + "start": 22795.04, + "end": 22795.78, + "probability": 0.7324 + }, + { + "start": 22796.32, + "end": 22798.1, + "probability": 0.916 + }, + { + "start": 22799.08, + "end": 22802.52, + "probability": 0.953 + }, + { + "start": 22803.62, + "end": 22804.52, + "probability": 0.9805 + }, + { + "start": 22804.66, + "end": 22806.6, + "probability": 0.8475 + }, + { + "start": 22806.7, + "end": 22807.86, + "probability": 0.8098 + }, + { + "start": 22808.04, + "end": 22808.97, + "probability": 0.7285 + }, + { + "start": 22810.3, + "end": 22812.58, + "probability": 0.9751 + }, + { + "start": 22812.72, + "end": 22814.44, + "probability": 0.7202 + }, + { + "start": 22814.78, + "end": 22818.04, + "probability": 0.9906 + }, + { + "start": 22818.3, + "end": 22820.03, + "probability": 0.9584 + }, + { + "start": 22820.4, + "end": 22821.74, + "probability": 0.9296 + }, + { + "start": 22822.1, + "end": 22822.82, + "probability": 0.9261 + }, + { + "start": 22822.88, + "end": 22823.2, + "probability": 0.918 + }, + { + "start": 22823.88, + "end": 22824.82, + "probability": 0.9307 + }, + { + "start": 22825.4, + "end": 22828.52, + "probability": 0.9841 + }, + { + "start": 22828.66, + "end": 22832.54, + "probability": 0.8905 + }, + { + "start": 22832.9, + "end": 22834.28, + "probability": 0.889 + }, + { + "start": 22834.34, + "end": 22835.02, + "probability": 0.6807 + }, + { + "start": 22835.06, + "end": 22839.62, + "probability": 0.9406 + }, + { + "start": 22839.98, + "end": 22840.94, + "probability": 0.6364 + }, + { + "start": 22841.74, + "end": 22843.06, + "probability": 0.7668 + }, + { + "start": 22843.48, + "end": 22846.26, + "probability": 0.9717 + }, + { + "start": 22846.88, + "end": 22848.44, + "probability": 0.9847 + }, + { + "start": 22848.74, + "end": 22850.22, + "probability": 0.0222 + }, + { + "start": 22850.22, + "end": 22851.98, + "probability": 0.8445 + }, + { + "start": 22852.3, + "end": 22854.12, + "probability": 0.929 + }, + { + "start": 22854.54, + "end": 22861.7, + "probability": 0.98 + }, + { + "start": 22862.2, + "end": 22863.54, + "probability": 0.7397 + }, + { + "start": 22863.86, + "end": 22864.26, + "probability": 0.7742 + }, + { + "start": 22864.32, + "end": 22865.88, + "probability": 0.1772 + }, + { + "start": 22865.88, + "end": 22867.76, + "probability": 0.9141 + }, + { + "start": 22871.08, + "end": 22871.79, + "probability": 0.5354 + }, + { + "start": 22872.32, + "end": 22873.75, + "probability": 0.3166 + }, + { + "start": 22874.54, + "end": 22875.02, + "probability": 0.7329 + }, + { + "start": 22875.46, + "end": 22881.67, + "probability": 0.6125 + }, + { + "start": 22882.6, + "end": 22883.4, + "probability": 0.9317 + }, + { + "start": 22884.28, + "end": 22885.96, + "probability": 0.9586 + }, + { + "start": 22888.04, + "end": 22890.24, + "probability": 0.8381 + }, + { + "start": 22891.04, + "end": 22893.22, + "probability": 0.6245 + }, + { + "start": 22894.5, + "end": 22895.3, + "probability": 0.4268 + }, + { + "start": 22897.54, + "end": 22898.28, + "probability": 0.4761 + }, + { + "start": 22899.46, + "end": 22899.92, + "probability": 0.8585 + }, + { + "start": 22900.08, + "end": 22901.2, + "probability": 0.9509 + }, + { + "start": 22901.38, + "end": 22903.84, + "probability": 0.3415 + }, + { + "start": 22904.44, + "end": 22905.98, + "probability": 0.555 + }, + { + "start": 22909.42, + "end": 22910.04, + "probability": 0.0599 + }, + { + "start": 22912.57, + "end": 22915.58, + "probability": 0.8582 + }, + { + "start": 22915.9, + "end": 22916.94, + "probability": 0.9431 + }, + { + "start": 22917.1, + "end": 22919.74, + "probability": 0.4688 + }, + { + "start": 22920.48, + "end": 22921.9, + "probability": 0.1293 + }, + { + "start": 22922.26, + "end": 22923.0, + "probability": 0.034 + }, + { + "start": 22923.58, + "end": 22927.72, + "probability": 0.9971 + }, + { + "start": 22928.4, + "end": 22928.96, + "probability": 0.1006 + }, + { + "start": 22930.2, + "end": 22933.76, + "probability": 0.73 + }, + { + "start": 22935.0, + "end": 22935.5, + "probability": 0.1987 + }, + { + "start": 22936.54, + "end": 22937.16, + "probability": 0.6514 + }, + { + "start": 22937.2, + "end": 22937.88, + "probability": 0.8314 + }, + { + "start": 22937.94, + "end": 22938.38, + "probability": 0.6329 + }, + { + "start": 22939.5, + "end": 22940.88, + "probability": 0.6678 + }, + { + "start": 22944.56, + "end": 22945.44, + "probability": 0.2131 + }, + { + "start": 22954.46, + "end": 22960.88, + "probability": 0.4458 + }, + { + "start": 22961.62, + "end": 22964.06, + "probability": 0.062 + }, + { + "start": 22964.6, + "end": 22967.16, + "probability": 0.8161 + }, + { + "start": 22968.48, + "end": 22968.48, + "probability": 0.0911 + }, + { + "start": 22968.48, + "end": 22968.82, + "probability": 0.0336 + }, + { + "start": 22968.82, + "end": 22971.0, + "probability": 0.0255 + }, + { + "start": 22971.56, + "end": 22971.62, + "probability": 0.0069 + }, + { + "start": 22974.6, + "end": 22975.82, + "probability": 0.0522 + }, + { + "start": 22980.16, + "end": 22980.2, + "probability": 0.0277 + }, + { + "start": 22983.56, + "end": 22986.96, + "probability": 0.1293 + }, + { + "start": 22987.8, + "end": 22991.14, + "probability": 0.0761 + }, + { + "start": 22992.0, + "end": 22993.86, + "probability": 0.06 + }, + { + "start": 22998.4, + "end": 23001.74, + "probability": 0.0123 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.0, + "end": 23002.0, + "probability": 0.0 + }, + { + "start": 23002.4, + "end": 23003.3, + "probability": 0.4191 + }, + { + "start": 23004.38, + "end": 23009.9, + "probability": 0.8066 + }, + { + "start": 23010.54, + "end": 23014.92, + "probability": 0.9611 + }, + { + "start": 23015.82, + "end": 23017.7, + "probability": 0.9831 + }, + { + "start": 23018.52, + "end": 23021.94, + "probability": 0.8066 + }, + { + "start": 23022.48, + "end": 23026.76, + "probability": 0.9889 + }, + { + "start": 23027.26, + "end": 23029.11, + "probability": 0.6287 + }, + { + "start": 23030.28, + "end": 23031.8, + "probability": 0.9834 + }, + { + "start": 23032.26, + "end": 23039.28, + "probability": 0.9259 + }, + { + "start": 23039.92, + "end": 23045.66, + "probability": 0.98 + }, + { + "start": 23046.26, + "end": 23051.86, + "probability": 0.8356 + }, + { + "start": 23052.7, + "end": 23056.18, + "probability": 0.9968 + }, + { + "start": 23057.4, + "end": 23061.4, + "probability": 0.9717 + }, + { + "start": 23061.98, + "end": 23066.4, + "probability": 0.9898 + }, + { + "start": 23067.04, + "end": 23071.26, + "probability": 0.8769 + }, + { + "start": 23072.06, + "end": 23076.9, + "probability": 0.9607 + }, + { + "start": 23077.94, + "end": 23079.48, + "probability": 0.7735 + }, + { + "start": 23080.5, + "end": 23082.72, + "probability": 0.4732 + }, + { + "start": 23083.86, + "end": 23093.04, + "probability": 0.9797 + }, + { + "start": 23094.32, + "end": 23098.08, + "probability": 0.8475 + }, + { + "start": 23098.96, + "end": 23102.36, + "probability": 0.9237 + }, + { + "start": 23103.04, + "end": 23104.82, + "probability": 0.9876 + }, + { + "start": 23105.56, + "end": 23107.42, + "probability": 0.8701 + }, + { + "start": 23107.5, + "end": 23108.52, + "probability": 0.911 + }, + { + "start": 23108.9, + "end": 23109.62, + "probability": 0.9872 + }, + { + "start": 23109.78, + "end": 23110.46, + "probability": 0.892 + }, + { + "start": 23110.58, + "end": 23111.26, + "probability": 0.8482 + }, + { + "start": 23112.62, + "end": 23115.2, + "probability": 0.5869 + }, + { + "start": 23115.32, + "end": 23117.0, + "probability": 0.9124 + }, + { + "start": 23118.06, + "end": 23119.24, + "probability": 0.8036 + }, + { + "start": 23119.6, + "end": 23120.62, + "probability": 0.8036 + }, + { + "start": 23120.74, + "end": 23123.7, + "probability": 0.795 + }, + { + "start": 23123.96, + "end": 23128.72, + "probability": 0.9128 + }, + { + "start": 23129.26, + "end": 23130.48, + "probability": 0.9419 + }, + { + "start": 23132.06, + "end": 23136.18, + "probability": 0.9939 + }, + { + "start": 23137.04, + "end": 23146.76, + "probability": 0.9944 + }, + { + "start": 23148.12, + "end": 23150.4, + "probability": 0.6074 + }, + { + "start": 23151.04, + "end": 23152.58, + "probability": 0.9066 + }, + { + "start": 23153.4, + "end": 23162.6, + "probability": 0.957 + }, + { + "start": 23163.1, + "end": 23163.6, + "probability": 0.8475 + }, + { + "start": 23163.72, + "end": 23164.58, + "probability": 0.5993 + }, + { + "start": 23164.64, + "end": 23165.48, + "probability": 0.7456 + }, + { + "start": 23166.02, + "end": 23169.24, + "probability": 0.8304 + }, + { + "start": 23169.88, + "end": 23171.54, + "probability": 0.8415 + }, + { + "start": 23171.9, + "end": 23173.72, + "probability": 0.9347 + }, + { + "start": 23174.22, + "end": 23176.24, + "probability": 0.9922 + }, + { + "start": 23176.96, + "end": 23179.36, + "probability": 0.9805 + }, + { + "start": 23180.42, + "end": 23185.77, + "probability": 0.9839 + }, + { + "start": 23185.94, + "end": 23190.52, + "probability": 0.9959 + }, + { + "start": 23191.12, + "end": 23196.4, + "probability": 0.9919 + }, + { + "start": 23196.94, + "end": 23199.3, + "probability": 0.9604 + }, + { + "start": 23200.12, + "end": 23201.16, + "probability": 0.6481 + }, + { + "start": 23201.38, + "end": 23201.78, + "probability": 0.5793 + }, + { + "start": 23201.92, + "end": 23203.82, + "probability": 0.8134 + }, + { + "start": 23204.66, + "end": 23205.94, + "probability": 0.9721 + }, + { + "start": 23206.48, + "end": 23209.48, + "probability": 0.6366 + }, + { + "start": 23209.54, + "end": 23210.96, + "probability": 0.9613 + }, + { + "start": 23211.36, + "end": 23212.98, + "probability": 0.9661 + }, + { + "start": 23213.08, + "end": 23218.44, + "probability": 0.9653 + }, + { + "start": 23219.06, + "end": 23219.8, + "probability": 0.8762 + }, + { + "start": 23220.34, + "end": 23225.28, + "probability": 0.9395 + }, + { + "start": 23226.0, + "end": 23227.12, + "probability": 0.9708 + }, + { + "start": 23227.56, + "end": 23228.58, + "probability": 0.367 + }, + { + "start": 23228.8, + "end": 23230.5, + "probability": 0.9519 + }, + { + "start": 23231.16, + "end": 23233.72, + "probability": 0.551 + }, + { + "start": 23237.48, + "end": 23239.74, + "probability": 0.0249 + }, + { + "start": 23239.74, + "end": 23239.74, + "probability": 0.2061 + }, + { + "start": 23239.98, + "end": 23241.58, + "probability": 0.6636 + }, + { + "start": 23242.04, + "end": 23242.84, + "probability": 0.1352 + }, + { + "start": 23243.06, + "end": 23244.04, + "probability": 0.8306 + }, + { + "start": 23244.4, + "end": 23245.74, + "probability": 0.2207 + }, + { + "start": 23246.6, + "end": 23247.52, + "probability": 0.9181 + }, + { + "start": 23249.72, + "end": 23250.2, + "probability": 0.6564 + }, + { + "start": 23250.22, + "end": 23251.58, + "probability": 0.6358 + }, + { + "start": 23252.52, + "end": 23255.26, + "probability": 0.757 + }, + { + "start": 23256.26, + "end": 23259.18, + "probability": 0.9073 + }, + { + "start": 23259.84, + "end": 23262.08, + "probability": 0.9982 + }, + { + "start": 23262.58, + "end": 23263.0, + "probability": 0.6696 + }, + { + "start": 23263.94, + "end": 23270.52, + "probability": 0.7067 + }, + { + "start": 23271.36, + "end": 23275.8, + "probability": 0.9892 + }, + { + "start": 23276.7, + "end": 23279.0, + "probability": 0.9919 + }, + { + "start": 23280.58, + "end": 23283.44, + "probability": 0.9047 + }, + { + "start": 23284.04, + "end": 23285.96, + "probability": 0.9978 + }, + { + "start": 23286.48, + "end": 23288.84, + "probability": 0.9985 + }, + { + "start": 23289.68, + "end": 23291.86, + "probability": 0.9819 + }, + { + "start": 23292.64, + "end": 23294.08, + "probability": 0.9937 + }, + { + "start": 23295.16, + "end": 23296.42, + "probability": 0.9589 + }, + { + "start": 23297.08, + "end": 23299.18, + "probability": 0.8278 + }, + { + "start": 23300.28, + "end": 23300.64, + "probability": 0.8396 + }, + { + "start": 23301.28, + "end": 23303.82, + "probability": 0.8798 + }, + { + "start": 23303.82, + "end": 23306.04, + "probability": 0.9988 + }, + { + "start": 23306.22, + "end": 23306.74, + "probability": 0.9697 + }, + { + "start": 23306.88, + "end": 23308.04, + "probability": 0.9345 + }, + { + "start": 23308.88, + "end": 23312.1, + "probability": 0.968 + }, + { + "start": 23313.1, + "end": 23316.42, + "probability": 0.7426 + }, + { + "start": 23317.24, + "end": 23321.64, + "probability": 0.9741 + }, + { + "start": 23321.66, + "end": 23323.1, + "probability": 0.5798 + }, + { + "start": 23323.78, + "end": 23326.84, + "probability": 0.9573 + }, + { + "start": 23327.04, + "end": 23327.86, + "probability": 0.9364 + }, + { + "start": 23327.92, + "end": 23330.06, + "probability": 0.9573 + }, + { + "start": 23330.1, + "end": 23330.2, + "probability": 0.2669 + }, + { + "start": 23331.68, + "end": 23332.72, + "probability": 0.7375 + }, + { + "start": 23333.42, + "end": 23334.64, + "probability": 0.9752 + }, + { + "start": 23335.24, + "end": 23337.54, + "probability": 0.9665 + }, + { + "start": 23338.46, + "end": 23340.22, + "probability": 0.8658 + }, + { + "start": 23340.26, + "end": 23344.51, + "probability": 0.9148 + }, + { + "start": 23345.48, + "end": 23347.06, + "probability": 0.9873 + }, + { + "start": 23348.92, + "end": 23351.56, + "probability": 0.8634 + }, + { + "start": 23351.66, + "end": 23353.76, + "probability": 0.988 + }, + { + "start": 23354.88, + "end": 23358.14, + "probability": 0.9536 + }, + { + "start": 23358.84, + "end": 23361.62, + "probability": 0.9886 + }, + { + "start": 23361.76, + "end": 23362.52, + "probability": 0.7201 + }, + { + "start": 23362.56, + "end": 23363.14, + "probability": 0.4729 + }, + { + "start": 23364.04, + "end": 23366.76, + "probability": 0.8716 + }, + { + "start": 23367.58, + "end": 23370.56, + "probability": 0.9869 + }, + { + "start": 23371.46, + "end": 23378.28, + "probability": 0.9855 + }, + { + "start": 23379.58, + "end": 23382.5, + "probability": 0.7516 + }, + { + "start": 23383.3, + "end": 23385.36, + "probability": 0.9943 + }, + { + "start": 23386.28, + "end": 23390.26, + "probability": 0.9584 + }, + { + "start": 23392.41, + "end": 23396.1, + "probability": 0.9785 + }, + { + "start": 23396.9, + "end": 23402.04, + "probability": 0.9697 + }, + { + "start": 23402.2, + "end": 23403.38, + "probability": 0.874 + }, + { + "start": 23404.0, + "end": 23406.1, + "probability": 0.9775 + }, + { + "start": 23406.62, + "end": 23408.74, + "probability": 0.7256 + }, + { + "start": 23410.54, + "end": 23414.1, + "probability": 0.9478 + }, + { + "start": 23414.9, + "end": 23416.84, + "probability": 0.8723 + }, + { + "start": 23417.98, + "end": 23420.86, + "probability": 0.8598 + }, + { + "start": 23421.5, + "end": 23423.8, + "probability": 0.6731 + }, + { + "start": 23424.52, + "end": 23426.46, + "probability": 0.8059 + }, + { + "start": 23426.56, + "end": 23426.98, + "probability": 0.821 + }, + { + "start": 23428.52, + "end": 23429.22, + "probability": 0.4717 + }, + { + "start": 23430.06, + "end": 23430.7, + "probability": 0.1049 + }, + { + "start": 23430.7, + "end": 23431.04, + "probability": 0.5366 + }, + { + "start": 23431.08, + "end": 23431.28, + "probability": 0.2112 + }, + { + "start": 23431.34, + "end": 23437.86, + "probability": 0.8768 + }, + { + "start": 23438.7, + "end": 23441.1, + "probability": 0.8978 + }, + { + "start": 23441.76, + "end": 23443.1, + "probability": 0.9961 + }, + { + "start": 23444.16, + "end": 23448.12, + "probability": 0.7362 + }, + { + "start": 23448.38, + "end": 23449.28, + "probability": 0.648 + }, + { + "start": 23449.98, + "end": 23452.0, + "probability": 0.936 + }, + { + "start": 23454.21, + "end": 23456.18, + "probability": 0.6333 + }, + { + "start": 23456.46, + "end": 23456.56, + "probability": 0.0216 + }, + { + "start": 23456.9, + "end": 23457.53, + "probability": 0.4376 + }, + { + "start": 23460.06, + "end": 23462.38, + "probability": 0.9668 + }, + { + "start": 23462.44, + "end": 23463.72, + "probability": 0.6753 + }, + { + "start": 23465.16, + "end": 23467.08, + "probability": 0.9056 + }, + { + "start": 23467.2, + "end": 23467.62, + "probability": 0.752 + }, + { + "start": 23467.72, + "end": 23469.38, + "probability": 0.9297 + }, + { + "start": 23471.02, + "end": 23471.56, + "probability": 0.2408 + }, + { + "start": 23471.56, + "end": 23471.78, + "probability": 0.7277 + }, + { + "start": 23472.0, + "end": 23474.6, + "probability": 0.7906 + }, + { + "start": 23474.8, + "end": 23476.48, + "probability": 0.9341 + }, + { + "start": 23476.5, + "end": 23477.36, + "probability": 0.6209 + }, + { + "start": 23478.18, + "end": 23478.66, + "probability": 0.6165 + }, + { + "start": 23479.7, + "end": 23480.26, + "probability": 0.0611 + }, + { + "start": 23480.26, + "end": 23481.28, + "probability": 0.0814 + }, + { + "start": 23482.0, + "end": 23484.84, + "probability": 0.7325 + }, + { + "start": 23484.96, + "end": 23486.32, + "probability": 0.7374 + }, + { + "start": 23486.4, + "end": 23487.22, + "probability": 0.9817 + }, + { + "start": 23487.32, + "end": 23487.58, + "probability": 0.316 + }, + { + "start": 23488.88, + "end": 23489.46, + "probability": 0.6671 + }, + { + "start": 23489.98, + "end": 23491.58, + "probability": 0.7163 + }, + { + "start": 23492.78, + "end": 23496.94, + "probability": 0.7572 + }, + { + "start": 23497.9, + "end": 23499.6, + "probability": 0.9471 + }, + { + "start": 23499.64, + "end": 23502.86, + "probability": 0.979 + }, + { + "start": 23503.36, + "end": 23505.38, + "probability": 0.9966 + }, + { + "start": 23505.58, + "end": 23506.88, + "probability": 0.7562 + }, + { + "start": 23507.48, + "end": 23513.08, + "probability": 0.9901 + }, + { + "start": 23513.12, + "end": 23517.18, + "probability": 0.985 + }, + { + "start": 23517.3, + "end": 23517.84, + "probability": 0.5061 + }, + { + "start": 23518.38, + "end": 23519.06, + "probability": 0.9058 + }, + { + "start": 23519.66, + "end": 23523.42, + "probability": 0.9845 + }, + { + "start": 23523.52, + "end": 23524.86, + "probability": 0.9963 + }, + { + "start": 23525.34, + "end": 23528.68, + "probability": 0.9854 + }, + { + "start": 23528.9, + "end": 23530.58, + "probability": 0.7164 + }, + { + "start": 23530.66, + "end": 23531.98, + "probability": 0.9554 + }, + { + "start": 23532.16, + "end": 23534.16, + "probability": 0.8126 + }, + { + "start": 23534.38, + "end": 23534.88, + "probability": 0.859 + }, + { + "start": 23534.94, + "end": 23535.82, + "probability": 0.915 + }, + { + "start": 23535.88, + "end": 23538.3, + "probability": 0.9385 + }, + { + "start": 23538.38, + "end": 23539.02, + "probability": 0.4746 + }, + { + "start": 23539.14, + "end": 23539.42, + "probability": 0.6481 + }, + { + "start": 23539.84, + "end": 23541.44, + "probability": 0.6672 + }, + { + "start": 23541.58, + "end": 23542.3, + "probability": 0.7343 + }, + { + "start": 23542.34, + "end": 23546.46, + "probability": 0.9894 + }, + { + "start": 23546.92, + "end": 23551.44, + "probability": 0.786 + }, + { + "start": 23551.58, + "end": 23555.6, + "probability": 0.9777 + }, + { + "start": 23555.94, + "end": 23558.58, + "probability": 0.9963 + }, + { + "start": 23559.0, + "end": 23562.16, + "probability": 0.9873 + }, + { + "start": 23562.16, + "end": 23564.64, + "probability": 0.998 + }, + { + "start": 23564.96, + "end": 23565.16, + "probability": 0.5076 + }, + { + "start": 23565.24, + "end": 23565.56, + "probability": 0.8668 + }, + { + "start": 23565.64, + "end": 23568.7, + "probability": 0.9513 + }, + { + "start": 23568.76, + "end": 23569.06, + "probability": 0.8338 + }, + { + "start": 23569.58, + "end": 23572.46, + "probability": 0.9637 + }, + { + "start": 23573.08, + "end": 23574.4, + "probability": 0.6208 + }, + { + "start": 23575.16, + "end": 23575.48, + "probability": 0.2645 + }, + { + "start": 23575.48, + "end": 23575.88, + "probability": 0.2161 + }, + { + "start": 23576.9, + "end": 23577.78, + "probability": 0.5921 + }, + { + "start": 23577.84, + "end": 23579.12, + "probability": 0.349 + }, + { + "start": 23579.22, + "end": 23579.5, + "probability": 0.8203 + }, + { + "start": 23579.54, + "end": 23584.42, + "probability": 0.8809 + }, + { + "start": 23584.96, + "end": 23586.76, + "probability": 0.23 + }, + { + "start": 23587.22, + "end": 23587.22, + "probability": 0.0706 + }, + { + "start": 23587.22, + "end": 23587.22, + "probability": 0.2086 + }, + { + "start": 23587.22, + "end": 23587.22, + "probability": 0.2262 + }, + { + "start": 23587.22, + "end": 23588.88, + "probability": 0.4109 + }, + { + "start": 23588.96, + "end": 23590.2, + "probability": 0.7731 + }, + { + "start": 23590.26, + "end": 23590.9, + "probability": 0.1851 + }, + { + "start": 23591.9, + "end": 23593.06, + "probability": 0.253 + }, + { + "start": 23599.08, + "end": 23600.2, + "probability": 0.3433 + }, + { + "start": 23602.5, + "end": 23604.1, + "probability": 0.3496 + }, + { + "start": 23604.94, + "end": 23605.7, + "probability": 0.5067 + }, + { + "start": 23605.78, + "end": 23606.54, + "probability": 0.556 + }, + { + "start": 23606.66, + "end": 23607.12, + "probability": 0.2866 + }, + { + "start": 23607.2, + "end": 23608.04, + "probability": 0.6091 + }, + { + "start": 23608.14, + "end": 23609.82, + "probability": 0.7361 + }, + { + "start": 23609.92, + "end": 23614.58, + "probability": 0.9968 + }, + { + "start": 23614.62, + "end": 23617.52, + "probability": 0.5949 + }, + { + "start": 23617.68, + "end": 23618.86, + "probability": 0.8426 + }, + { + "start": 23618.94, + "end": 23620.44, + "probability": 0.9082 + }, + { + "start": 23620.74, + "end": 23624.52, + "probability": 0.9985 + }, + { + "start": 23624.9, + "end": 23627.02, + "probability": 0.7874 + }, + { + "start": 23627.14, + "end": 23627.96, + "probability": 0.9512 + }, + { + "start": 23628.14, + "end": 23631.2, + "probability": 0.9508 + }, + { + "start": 23631.72, + "end": 23633.42, + "probability": 0.985 + }, + { + "start": 23633.54, + "end": 23635.9, + "probability": 0.9872 + }, + { + "start": 23635.94, + "end": 23637.7, + "probability": 0.9486 + }, + { + "start": 23638.08, + "end": 23640.04, + "probability": 0.9331 + }, + { + "start": 23640.26, + "end": 23641.6, + "probability": 0.8002 + }, + { + "start": 23642.0, + "end": 23643.9, + "probability": 0.746 + }, + { + "start": 23644.04, + "end": 23644.28, + "probability": 0.0166 + }, + { + "start": 23644.28, + "end": 23645.12, + "probability": 0.3846 + }, + { + "start": 23646.0, + "end": 23648.48, + "probability": 0.2037 + }, + { + "start": 23650.89, + "end": 23654.54, + "probability": 0.9718 + }, + { + "start": 23655.58, + "end": 23657.92, + "probability": 0.9229 + }, + { + "start": 23658.46, + "end": 23659.3, + "probability": 0.7085 + }, + { + "start": 23659.4, + "end": 23662.12, + "probability": 0.8044 + }, + { + "start": 23662.28, + "end": 23663.14, + "probability": 0.7354 + }, + { + "start": 23663.66, + "end": 23666.64, + "probability": 0.7598 + }, + { + "start": 23666.68, + "end": 23667.88, + "probability": 0.9805 + }, + { + "start": 23668.08, + "end": 23670.14, + "probability": 0.7152 + }, + { + "start": 23671.16, + "end": 23672.96, + "probability": 0.7522 + }, + { + "start": 23675.16, + "end": 23677.32, + "probability": 0.6853 + }, + { + "start": 23678.78, + "end": 23680.66, + "probability": 0.7459 + }, + { + "start": 23684.09, + "end": 23686.9, + "probability": 0.9422 + }, + { + "start": 23687.64, + "end": 23688.22, + "probability": 0.399 + }, + { + "start": 23688.24, + "end": 23688.96, + "probability": 0.2298 + }, + { + "start": 23689.94, + "end": 23690.96, + "probability": 0.8699 + }, + { + "start": 23691.1, + "end": 23693.34, + "probability": 0.9202 + }, + { + "start": 23693.7, + "end": 23694.98, + "probability": 0.778 + }, + { + "start": 23694.98, + "end": 23695.22, + "probability": 0.5079 + }, + { + "start": 23696.2, + "end": 23697.97, + "probability": 0.7159 + }, + { + "start": 23698.66, + "end": 23699.56, + "probability": 0.5455 + }, + { + "start": 23699.58, + "end": 23700.42, + "probability": 0.6208 + }, + { + "start": 23701.64, + "end": 23703.76, + "probability": 0.4773 + }, + { + "start": 23703.86, + "end": 23706.08, + "probability": 0.6104 + }, + { + "start": 23706.64, + "end": 23706.78, + "probability": 0.2597 + }, + { + "start": 23706.78, + "end": 23707.34, + "probability": 0.4943 + }, + { + "start": 23707.5, + "end": 23708.5, + "probability": 0.7773 + }, + { + "start": 23708.58, + "end": 23711.32, + "probability": 0.7 + }, + { + "start": 23712.2, + "end": 23715.72, + "probability": 0.8823 + }, + { + "start": 23716.48, + "end": 23718.9, + "probability": 0.7549 + }, + { + "start": 23719.28, + "end": 23722.98, + "probability": 0.9634 + }, + { + "start": 23723.33, + "end": 23726.1, + "probability": 0.9813 + }, + { + "start": 23726.5, + "end": 23731.96, + "probability": 0.7927 + }, + { + "start": 23732.14, + "end": 23732.88, + "probability": 0.8611 + }, + { + "start": 23733.66, + "end": 23735.94, + "probability": 0.8821 + }, + { + "start": 23736.44, + "end": 23737.92, + "probability": 0.958 + }, + { + "start": 23738.0, + "end": 23739.21, + "probability": 0.6644 + }, + { + "start": 23739.44, + "end": 23740.46, + "probability": 0.7896 + }, + { + "start": 23740.66, + "end": 23740.98, + "probability": 0.4555 + }, + { + "start": 23741.76, + "end": 23744.74, + "probability": 0.6718 + }, + { + "start": 23744.74, + "end": 23745.28, + "probability": 0.6269 + }, + { + "start": 23746.04, + "end": 23748.44, + "probability": 0.6823 + }, + { + "start": 23749.9, + "end": 23751.82, + "probability": 0.4453 + }, + { + "start": 23752.06, + "end": 23754.98, + "probability": 0.9427 + }, + { + "start": 23755.18, + "end": 23757.7, + "probability": 0.5574 + }, + { + "start": 23758.52, + "end": 23758.8, + "probability": 0.2763 + }, + { + "start": 23758.96, + "end": 23760.04, + "probability": 0.9024 + }, + { + "start": 23760.16, + "end": 23761.88, + "probability": 0.4889 + }, + { + "start": 23762.16, + "end": 23762.42, + "probability": 0.9556 + }, + { + "start": 23763.7, + "end": 23764.54, + "probability": 0.5303 + }, + { + "start": 23764.68, + "end": 23766.34, + "probability": 0.8876 + }, + { + "start": 23766.36, + "end": 23767.33, + "probability": 0.1724 + }, + { + "start": 23767.8, + "end": 23769.44, + "probability": 0.3073 + }, + { + "start": 23771.12, + "end": 23772.28, + "probability": 0.5154 + }, + { + "start": 23772.34, + "end": 23773.82, + "probability": 0.1654 + }, + { + "start": 23773.96, + "end": 23775.24, + "probability": 0.2338 + }, + { + "start": 23777.28, + "end": 23778.7, + "probability": 0.9479 + }, + { + "start": 23778.82, + "end": 23780.62, + "probability": 0.135 + }, + { + "start": 23780.92, + "end": 23781.04, + "probability": 0.1193 + }, + { + "start": 23781.14, + "end": 23782.22, + "probability": 0.7083 + }, + { + "start": 23782.22, + "end": 23782.56, + "probability": 0.2861 + }, + { + "start": 23782.8, + "end": 23783.9, + "probability": 0.5191 + }, + { + "start": 23783.92, + "end": 23785.68, + "probability": 0.7177 + }, + { + "start": 23786.28, + "end": 23788.18, + "probability": 0.813 + }, + { + "start": 23788.8, + "end": 23789.54, + "probability": 0.5425 + }, + { + "start": 23790.68, + "end": 23792.8, + "probability": 0.9038 + }, + { + "start": 23794.59, + "end": 23799.54, + "probability": 0.7244 + }, + { + "start": 23799.72, + "end": 23801.92, + "probability": 0.6736 + }, + { + "start": 23802.04, + "end": 23804.48, + "probability": 0.857 + }, + { + "start": 23804.6, + "end": 23806.14, + "probability": 0.975 + }, + { + "start": 23806.22, + "end": 23809.4, + "probability": 0.9564 + }, + { + "start": 23810.6, + "end": 23812.32, + "probability": 0.9744 + }, + { + "start": 23812.68, + "end": 23819.78, + "probability": 0.8285 + }, + { + "start": 23819.88, + "end": 23821.04, + "probability": 0.7028 + }, + { + "start": 23822.04, + "end": 23827.92, + "probability": 0.9837 + }, + { + "start": 23829.24, + "end": 23831.58, + "probability": 0.9583 + }, + { + "start": 23831.8, + "end": 23832.4, + "probability": 0.9176 + }, + { + "start": 23833.32, + "end": 23834.34, + "probability": 0.5984 + }, + { + "start": 23834.5, + "end": 23838.62, + "probability": 0.8272 + }, + { + "start": 23839.64, + "end": 23842.98, + "probability": 0.9901 + }, + { + "start": 23843.86, + "end": 23845.76, + "probability": 0.939 + }, + { + "start": 23846.38, + "end": 23848.32, + "probability": 0.7008 + }, + { + "start": 23848.68, + "end": 23849.84, + "probability": 0.9958 + }, + { + "start": 23849.94, + "end": 23850.72, + "probability": 0.9935 + }, + { + "start": 23850.74, + "end": 23852.02, + "probability": 0.9225 + }, + { + "start": 23852.16, + "end": 23854.52, + "probability": 0.5159 + }, + { + "start": 23854.66, + "end": 23857.82, + "probability": 0.7575 + }, + { + "start": 23858.38, + "end": 23859.46, + "probability": 0.8696 + }, + { + "start": 23859.58, + "end": 23861.18, + "probability": 0.9858 + }, + { + "start": 23862.08, + "end": 23863.46, + "probability": 0.9666 + }, + { + "start": 23863.46, + "end": 23863.68, + "probability": 0.7651 + }, + { + "start": 23863.72, + "end": 23864.66, + "probability": 0.9932 + }, + { + "start": 23864.74, + "end": 23866.18, + "probability": 0.9863 + }, + { + "start": 23867.42, + "end": 23871.26, + "probability": 0.5967 + }, + { + "start": 23872.46, + "end": 23874.84, + "probability": 0.8819 + }, + { + "start": 23874.96, + "end": 23875.34, + "probability": 0.48 + }, + { + "start": 23875.42, + "end": 23878.94, + "probability": 0.9224 + }, + { + "start": 23879.2, + "end": 23880.44, + "probability": 0.9727 + }, + { + "start": 23881.28, + "end": 23881.96, + "probability": 0.8073 + }, + { + "start": 23882.24, + "end": 23883.2, + "probability": 0.9385 + }, + { + "start": 23883.28, + "end": 23884.48, + "probability": 0.9884 + }, + { + "start": 23884.88, + "end": 23885.76, + "probability": 0.7189 + }, + { + "start": 23885.9, + "end": 23886.58, + "probability": 0.7178 + }, + { + "start": 23886.96, + "end": 23887.58, + "probability": 0.3782 + }, + { + "start": 23888.44, + "end": 23888.98, + "probability": 0.9464 + }, + { + "start": 23889.28, + "end": 23889.81, + "probability": 0.9694 + }, + { + "start": 23890.28, + "end": 23891.16, + "probability": 0.8569 + }, + { + "start": 23891.18, + "end": 23893.9, + "probability": 0.9926 + }, + { + "start": 23894.4, + "end": 23894.9, + "probability": 0.3969 + }, + { + "start": 23895.02, + "end": 23897.92, + "probability": 0.9844 + }, + { + "start": 23898.14, + "end": 23902.02, + "probability": 0.9868 + }, + { + "start": 23902.18, + "end": 23906.48, + "probability": 0.5057 + }, + { + "start": 23906.48, + "end": 23906.84, + "probability": 0.7997 + }, + { + "start": 23906.96, + "end": 23907.5, + "probability": 0.7755 + }, + { + "start": 23908.0, + "end": 23909.36, + "probability": 0.943 + }, + { + "start": 23910.22, + "end": 23911.68, + "probability": 0.7158 + }, + { + "start": 23911.98, + "end": 23914.06, + "probability": 0.9185 + }, + { + "start": 23915.04, + "end": 23916.9, + "probability": 0.8639 + }, + { + "start": 23917.44, + "end": 23920.28, + "probability": 0.9946 + }, + { + "start": 23920.64, + "end": 23923.32, + "probability": 0.6398 + }, + { + "start": 23923.46, + "end": 23924.14, + "probability": 0.7987 + }, + { + "start": 23924.52, + "end": 23926.46, + "probability": 0.9845 + }, + { + "start": 23927.08, + "end": 23934.12, + "probability": 0.8599 + }, + { + "start": 23934.76, + "end": 23935.8, + "probability": 0.8643 + }, + { + "start": 23935.94, + "end": 23936.42, + "probability": 0.5336 + }, + { + "start": 23936.76, + "end": 23937.36, + "probability": 0.7871 + }, + { + "start": 23937.84, + "end": 23940.6, + "probability": 0.4156 + }, + { + "start": 23940.66, + "end": 23941.38, + "probability": 0.9351 + }, + { + "start": 23941.7, + "end": 23944.96, + "probability": 0.703 + }, + { + "start": 23945.7, + "end": 23953.68, + "probability": 0.9902 + }, + { + "start": 23953.98, + "end": 23956.12, + "probability": 0.4554 + }, + { + "start": 23956.24, + "end": 23957.7, + "probability": 0.5504 + }, + { + "start": 23957.7, + "end": 23959.88, + "probability": 0.9312 + }, + { + "start": 23959.94, + "end": 23962.28, + "probability": 0.4331 + }, + { + "start": 23962.38, + "end": 23963.2, + "probability": 0.3892 + }, + { + "start": 23964.24, + "end": 23965.72, + "probability": 0.695 + }, + { + "start": 23965.98, + "end": 23968.16, + "probability": 0.8938 + }, + { + "start": 23968.42, + "end": 23969.52, + "probability": 0.98 + }, + { + "start": 23969.68, + "end": 23970.2, + "probability": 0.8965 + }, + { + "start": 23970.28, + "end": 23971.64, + "probability": 0.8895 + }, + { + "start": 23971.9, + "end": 23974.98, + "probability": 0.9799 + }, + { + "start": 23975.58, + "end": 23978.28, + "probability": 0.7644 + }, + { + "start": 23978.3, + "end": 23979.3, + "probability": 0.7998 + }, + { + "start": 23979.46, + "end": 23981.92, + "probability": 0.6987 + }, + { + "start": 23982.14, + "end": 23983.5, + "probability": 0.7101 + }, + { + "start": 23983.5, + "end": 23983.91, + "probability": 0.7421 + }, + { + "start": 23984.42, + "end": 23987.06, + "probability": 0.8433 + }, + { + "start": 23987.14, + "end": 23988.2, + "probability": 0.8655 + }, + { + "start": 23990.15, + "end": 23990.75, + "probability": 0.1307 + }, + { + "start": 23992.1, + "end": 23994.64, + "probability": 0.7345 + }, + { + "start": 23995.16, + "end": 23996.04, + "probability": 0.712 + }, + { + "start": 23997.36, + "end": 24000.94, + "probability": 0.5061 + }, + { + "start": 24003.66, + "end": 24006.28, + "probability": 0.3901 + }, + { + "start": 24006.32, + "end": 24008.3, + "probability": 0.6779 + }, + { + "start": 24008.92, + "end": 24009.82, + "probability": 0.5417 + }, + { + "start": 24010.44, + "end": 24010.86, + "probability": 0.0044 + }, + { + "start": 24012.67, + "end": 24016.22, + "probability": 0.9367 + }, + { + "start": 24016.28, + "end": 24017.58, + "probability": 0.9924 + }, + { + "start": 24017.68, + "end": 24019.04, + "probability": 0.8356 + }, + { + "start": 24020.51, + "end": 24023.12, + "probability": 0.1081 + }, + { + "start": 24023.68, + "end": 24024.82, + "probability": 0.1391 + }, + { + "start": 24025.02, + "end": 24026.6, + "probability": 0.9442 + }, + { + "start": 24027.2, + "end": 24027.78, + "probability": 0.674 + }, + { + "start": 24030.82, + "end": 24031.28, + "probability": 0.3845 + }, + { + "start": 24032.62, + "end": 24032.82, + "probability": 0.3266 + }, + { + "start": 24034.06, + "end": 24036.02, + "probability": 0.8041 + }, + { + "start": 24037.04, + "end": 24037.74, + "probability": 0.8712 + }, + { + "start": 24038.14, + "end": 24038.66, + "probability": 0.8474 + }, + { + "start": 24039.34, + "end": 24039.92, + "probability": 0.948 + }, + { + "start": 24040.62, + "end": 24043.68, + "probability": 0.978 + }, + { + "start": 24044.7, + "end": 24048.54, + "probability": 0.9341 + }, + { + "start": 24048.54, + "end": 24053.5, + "probability": 0.8721 + }, + { + "start": 24054.18, + "end": 24054.26, + "probability": 0.0471 + }, + { + "start": 24054.26, + "end": 24056.16, + "probability": 0.7865 + }, + { + "start": 24056.5, + "end": 24058.98, + "probability": 0.9837 + }, + { + "start": 24059.68, + "end": 24061.74, + "probability": 0.957 + }, + { + "start": 24061.74, + "end": 24062.6, + "probability": 0.4553 + }, + { + "start": 24063.91, + "end": 24065.4, + "probability": 0.0945 + }, + { + "start": 24066.72, + "end": 24074.54, + "probability": 0.0226 + }, + { + "start": 24074.54, + "end": 24075.16, + "probability": 0.0183 + }, + { + "start": 24075.72, + "end": 24077.6, + "probability": 0.2824 + }, + { + "start": 24079.52, + "end": 24081.7, + "probability": 0.3099 + }, + { + "start": 24081.72, + "end": 24084.6, + "probability": 0.876 + }, + { + "start": 24084.88, + "end": 24087.64, + "probability": 0.9776 + }, + { + "start": 24087.78, + "end": 24092.24, + "probability": 0.6663 + }, + { + "start": 24092.56, + "end": 24095.1, + "probability": 0.9597 + }, + { + "start": 24095.3, + "end": 24099.62, + "probability": 0.4398 + }, + { + "start": 24100.2, + "end": 24102.6, + "probability": 0.8455 + }, + { + "start": 24102.68, + "end": 24103.02, + "probability": 0.5021 + }, + { + "start": 24103.06, + "end": 24103.48, + "probability": 0.2802 + }, + { + "start": 24103.48, + "end": 24104.32, + "probability": 0.6284 + }, + { + "start": 24105.35, + "end": 24106.78, + "probability": 0.134 + }, + { + "start": 24108.4, + "end": 24112.02, + "probability": 0.0527 + }, + { + "start": 24112.02, + "end": 24116.72, + "probability": 0.0446 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.0, + "end": 24212.0, + "probability": 0.0 + }, + { + "start": 24212.08, + "end": 24212.5, + "probability": 0.0165 + }, + { + "start": 24212.5, + "end": 24212.7, + "probability": 0.1091 + }, + { + "start": 24212.7, + "end": 24213.76, + "probability": 0.5254 + }, + { + "start": 24215.0, + "end": 24215.74, + "probability": 0.1543 + }, + { + "start": 24217.12, + "end": 24220.9, + "probability": 0.0411 + }, + { + "start": 24221.26, + "end": 24221.68, + "probability": 0.1818 + }, + { + "start": 24222.62, + "end": 24222.62, + "probability": 0.0201 + }, + { + "start": 24222.62, + "end": 24225.48, + "probability": 0.3021 + }, + { + "start": 24225.62, + "end": 24226.26, + "probability": 0.6525 + }, + { + "start": 24226.34, + "end": 24227.48, + "probability": 0.4352 + }, + { + "start": 24227.74, + "end": 24230.3, + "probability": 0.7902 + }, + { + "start": 24230.34, + "end": 24232.58, + "probability": 0.958 + }, + { + "start": 24235.64, + "end": 24237.42, + "probability": 0.8281 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.0, + "probability": 0.0 + }, + { + "start": 24334.0, + "end": 24334.8, + "probability": 0.3997 + }, + { + "start": 24335.74, + "end": 24338.46, + "probability": 0.4425 + }, + { + "start": 24340.64, + "end": 24341.08, + "probability": 0.1686 + }, + { + "start": 24342.24, + "end": 24345.08, + "probability": 0.2196 + }, + { + "start": 24348.75, + "end": 24349.8, + "probability": 0.1082 + }, + { + "start": 24350.4, + "end": 24351.86, + "probability": 0.3914 + }, + { + "start": 24356.37, + "end": 24357.58, + "probability": 0.9723 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.0, + "end": 24454.0, + "probability": 0.0 + }, + { + "start": 24454.2, + "end": 24455.12, + "probability": 0.3314 + }, + { + "start": 24455.3, + "end": 24458.6, + "probability": 0.6823 + }, + { + "start": 24459.08, + "end": 24461.64, + "probability": 0.9634 + }, + { + "start": 24461.98, + "end": 24470.72, + "probability": 0.7821 + }, + { + "start": 24471.02, + "end": 24471.2, + "probability": 0.5782 + }, + { + "start": 24471.26, + "end": 24473.84, + "probability": 0.7857 + }, + { + "start": 24474.51, + "end": 24478.54, + "probability": 0.9448 + }, + { + "start": 24478.66, + "end": 24479.72, + "probability": 0.6558 + }, + { + "start": 24479.98, + "end": 24480.96, + "probability": 0.5023 + }, + { + "start": 24481.32, + "end": 24482.9, + "probability": 0.9747 + }, + { + "start": 24483.34, + "end": 24484.68, + "probability": 0.9693 + }, + { + "start": 24484.92, + "end": 24488.4, + "probability": 0.9782 + }, + { + "start": 24488.58, + "end": 24489.56, + "probability": 0.93 + }, + { + "start": 24489.6, + "end": 24490.48, + "probability": 0.8748 + }, + { + "start": 24490.64, + "end": 24492.07, + "probability": 0.7263 + }, + { + "start": 24492.42, + "end": 24494.76, + "probability": 0.8702 + }, + { + "start": 24494.82, + "end": 24496.98, + "probability": 0.8755 + }, + { + "start": 24497.36, + "end": 24499.26, + "probability": 0.99 + }, + { + "start": 24499.3, + "end": 24504.96, + "probability": 0.9763 + }, + { + "start": 24505.04, + "end": 24505.16, + "probability": 0.4955 + }, + { + "start": 24505.32, + "end": 24505.46, + "probability": 0.4778 + }, + { + "start": 24505.52, + "end": 24507.22, + "probability": 0.9941 + }, + { + "start": 24507.76, + "end": 24510.24, + "probability": 0.9822 + }, + { + "start": 24510.56, + "end": 24512.87, + "probability": 0.8773 + }, + { + "start": 24513.4, + "end": 24516.22, + "probability": 0.8187 + }, + { + "start": 24516.6, + "end": 24521.16, + "probability": 0.8035 + }, + { + "start": 24521.78, + "end": 24524.98, + "probability": 0.5979 + }, + { + "start": 24526.06, + "end": 24526.06, + "probability": 0.0121 + }, + { + "start": 24526.06, + "end": 24527.62, + "probability": 0.728 + }, + { + "start": 24528.18, + "end": 24529.12, + "probability": 0.9167 + }, + { + "start": 24529.24, + "end": 24529.68, + "probability": 0.644 + }, + { + "start": 24529.98, + "end": 24531.5, + "probability": 0.8751 + }, + { + "start": 24534.36, + "end": 24536.64, + "probability": 0.9376 + }, + { + "start": 24537.28, + "end": 24538.9, + "probability": 0.7306 + }, + { + "start": 24539.08, + "end": 24541.1, + "probability": 0.9591 + }, + { + "start": 24541.12, + "end": 24544.26, + "probability": 0.985 + }, + { + "start": 24545.44, + "end": 24547.6, + "probability": 0.9405 + }, + { + "start": 24548.02, + "end": 24551.84, + "probability": 0.9419 + }, + { + "start": 24552.34, + "end": 24553.84, + "probability": 0.7706 + }, + { + "start": 24554.08, + "end": 24556.18, + "probability": 0.9833 + }, + { + "start": 24556.64, + "end": 24557.8, + "probability": 0.9636 + }, + { + "start": 24558.42, + "end": 24559.1, + "probability": 0.8629 + }, + { + "start": 24559.44, + "end": 24561.78, + "probability": 0.9937 + }, + { + "start": 24562.28, + "end": 24563.64, + "probability": 0.9503 + }, + { + "start": 24563.92, + "end": 24565.11, + "probability": 0.9565 + }, + { + "start": 24565.4, + "end": 24567.7, + "probability": 0.9951 + }, + { + "start": 24568.06, + "end": 24568.62, + "probability": 0.9142 + }, + { + "start": 24568.68, + "end": 24570.74, + "probability": 0.9758 + }, + { + "start": 24570.74, + "end": 24574.48, + "probability": 0.9966 + }, + { + "start": 24575.26, + "end": 24578.46, + "probability": 0.9624 + }, + { + "start": 24578.46, + "end": 24581.62, + "probability": 0.9978 + }, + { + "start": 24582.0, + "end": 24583.84, + "probability": 0.9506 + }, + { + "start": 24584.0, + "end": 24584.4, + "probability": 0.8191 + }, + { + "start": 24584.74, + "end": 24586.04, + "probability": 0.7241 + }, + { + "start": 24586.2, + "end": 24589.16, + "probability": 0.7672 + }, + { + "start": 24590.22, + "end": 24590.74, + "probability": 0.9084 + }, + { + "start": 24592.04, + "end": 24592.56, + "probability": 0.964 + }, + { + "start": 24593.32, + "end": 24593.88, + "probability": 0.9832 + }, + { + "start": 24594.54, + "end": 24596.18, + "probability": 0.8092 + }, + { + "start": 24597.52, + "end": 24598.24, + "probability": 0.9355 + }, + { + "start": 24599.62, + "end": 24600.26, + "probability": 0.9387 + }, + { + "start": 24601.96, + "end": 24602.6, + "probability": 0.8809 + }, + { + "start": 24603.32, + "end": 24604.74, + "probability": 0.9749 + }, + { + "start": 24608.11, + "end": 24608.76, + "probability": 0.8302 + }, + { + "start": 24610.62, + "end": 24611.72, + "probability": 0.6991 + }, + { + "start": 24612.58, + "end": 24613.02, + "probability": 0.4954 + }, + { + "start": 24614.46, + "end": 24614.98, + "probability": 0.8832 + }, + { + "start": 24615.64, + "end": 24615.9, + "probability": 0.8672 + }, + { + "start": 24616.86, + "end": 24620.2, + "probability": 0.4517 + }, + { + "start": 24620.32, + "end": 24625.04, + "probability": 0.9816 + }, + { + "start": 24625.04, + "end": 24628.08, + "probability": 0.9863 + }, + { + "start": 24628.2, + "end": 24629.44, + "probability": 0.5591 + }, + { + "start": 24629.94, + "end": 24630.96, + "probability": 0.7309 + }, + { + "start": 24631.04, + "end": 24632.1, + "probability": 0.7944 + }, + { + "start": 24633.72, + "end": 24636.4, + "probability": 0.8858 + }, + { + "start": 24636.58, + "end": 24637.24, + "probability": 0.5602 + }, + { + "start": 24637.28, + "end": 24638.04, + "probability": 0.743 + }, + { + "start": 24638.88, + "end": 24639.86, + "probability": 0.8135 + }, + { + "start": 24640.1, + "end": 24641.28, + "probability": 0.2595 + }, + { + "start": 24655.02, + "end": 24660.78, + "probability": 0.8489 + }, + { + "start": 24660.86, + "end": 24662.08, + "probability": 0.1913 + }, + { + "start": 24663.04, + "end": 24664.82, + "probability": 0.7715 + }, + { + "start": 24667.46, + "end": 24668.62, + "probability": 0.0233 + }, + { + "start": 24675.3, + "end": 24676.12, + "probability": 0.0676 + }, + { + "start": 24679.16, + "end": 24680.82, + "probability": 0.0407 + }, + { + "start": 24681.08, + "end": 24685.44, + "probability": 0.0156 + }, + { + "start": 24687.02, + "end": 24688.02, + "probability": 0.0693 + }, + { + "start": 24688.02, + "end": 24692.32, + "probability": 0.0754 + }, + { + "start": 24692.72, + "end": 24697.66, + "probability": 0.0823 + }, + { + "start": 24697.66, + "end": 24697.86, + "probability": 0.0415 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + }, + { + "start": 24784.79, + "end": 24784.79, + "probability": 0.0 + } + ], + "segments_count": 9348, + "words_count": 43875, + "avg_words_per_segment": 4.6935, + "avg_segment_duration": 1.8608, + "avg_words_per_minute": 106.2143, + "plenum_id": "54162", + "duration": 24784.79, + "title": null, + "plenum_date": "2016-07-18" +} \ No newline at end of file