diff --git "a/128497/metadata.json" "b/128497/metadata.json" new file mode 100644--- /dev/null +++ "b/128497/metadata.json" @@ -0,0 +1,14082 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "128497", + "quality_score": 0.9668, + "per_segment_quality_scores": [ + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.24, + "end": 125.92, + "probability": 0.0172 + }, + { + "start": 125.92, + "end": 127.36, + "probability": 0.1564 + }, + { + "start": 140.62, + "end": 143.84, + "probability": 0.8792 + }, + { + "start": 143.84, + "end": 147.7, + "probability": 0.9757 + }, + { + "start": 148.44, + "end": 149.68, + "probability": 0.9907 + }, + { + "start": 150.44, + "end": 152.82, + "probability": 0.7954 + }, + { + "start": 154.6, + "end": 157.78, + "probability": 0.5215 + }, + { + "start": 158.56, + "end": 159.8, + "probability": 0.9107 + }, + { + "start": 161.28, + "end": 163.22, + "probability": 0.9092 + }, + { + "start": 163.76, + "end": 164.14, + "probability": 0.7234 + }, + { + "start": 164.22, + "end": 168.52, + "probability": 0.864 + }, + { + "start": 168.78, + "end": 169.34, + "probability": 0.95 + }, + { + "start": 176.52, + "end": 177.82, + "probability": 0.6522 + }, + { + "start": 177.94, + "end": 180.87, + "probability": 0.5925 + }, + { + "start": 181.3, + "end": 183.2, + "probability": 0.9839 + }, + { + "start": 184.48, + "end": 192.48, + "probability": 0.9204 + }, + { + "start": 192.74, + "end": 192.74, + "probability": 0.1352 + }, + { + "start": 192.74, + "end": 192.74, + "probability": 0.3778 + }, + { + "start": 192.74, + "end": 195.94, + "probability": 0.7886 + }, + { + "start": 196.07, + "end": 201.44, + "probability": 0.9756 + }, + { + "start": 201.62, + "end": 204.22, + "probability": 0.8884 + }, + { + "start": 204.76, + "end": 205.58, + "probability": 0.8445 + }, + { + "start": 205.86, + "end": 206.94, + "probability": 0.7786 + }, + { + "start": 207.1, + "end": 210.0, + "probability": 0.9836 + }, + { + "start": 210.86, + "end": 216.2, + "probability": 0.9832 + }, + { + "start": 216.54, + "end": 217.98, + "probability": 0.9805 + }, + { + "start": 218.28, + "end": 221.7, + "probability": 0.9986 + }, + { + "start": 221.7, + "end": 225.88, + "probability": 0.9904 + }, + { + "start": 226.76, + "end": 229.56, + "probability": 0.9238 + }, + { + "start": 229.64, + "end": 230.26, + "probability": 0.6776 + }, + { + "start": 230.32, + "end": 232.0, + "probability": 0.8552 + }, + { + "start": 232.4, + "end": 237.36, + "probability": 0.979 + }, + { + "start": 237.88, + "end": 240.32, + "probability": 0.9973 + }, + { + "start": 240.84, + "end": 242.86, + "probability": 0.9971 + }, + { + "start": 243.5, + "end": 244.84, + "probability": 0.7665 + }, + { + "start": 245.0, + "end": 246.86, + "probability": 0.9912 + }, + { + "start": 247.2, + "end": 250.74, + "probability": 0.9985 + }, + { + "start": 251.24, + "end": 253.44, + "probability": 0.968 + }, + { + "start": 253.52, + "end": 254.46, + "probability": 0.9736 + }, + { + "start": 254.6, + "end": 255.5, + "probability": 0.498 + }, + { + "start": 255.82, + "end": 259.01, + "probability": 0.9249 + }, + { + "start": 259.19, + "end": 263.14, + "probability": 0.8732 + }, + { + "start": 263.42, + "end": 265.9, + "probability": 0.9937 + }, + { + "start": 265.98, + "end": 268.9, + "probability": 0.9976 + }, + { + "start": 269.8, + "end": 271.7, + "probability": 0.9674 + }, + { + "start": 271.98, + "end": 272.88, + "probability": 0.9443 + }, + { + "start": 273.08, + "end": 277.56, + "probability": 0.9824 + }, + { + "start": 277.72, + "end": 279.36, + "probability": 0.876 + }, + { + "start": 279.72, + "end": 280.78, + "probability": 0.9952 + }, + { + "start": 280.9, + "end": 282.82, + "probability": 0.9694 + }, + { + "start": 283.18, + "end": 284.82, + "probability": 0.897 + }, + { + "start": 285.34, + "end": 288.88, + "probability": 0.8591 + }, + { + "start": 289.22, + "end": 292.16, + "probability": 0.9854 + }, + { + "start": 292.5, + "end": 293.06, + "probability": 0.7331 + }, + { + "start": 293.68, + "end": 295.42, + "probability": 0.9951 + }, + { + "start": 295.64, + "end": 299.89, + "probability": 0.9798 + }, + { + "start": 300.54, + "end": 305.08, + "probability": 0.9874 + }, + { + "start": 305.64, + "end": 312.13, + "probability": 0.986 + }, + { + "start": 320.56, + "end": 323.48, + "probability": 0.9777 + }, + { + "start": 324.18, + "end": 328.0, + "probability": 0.9984 + }, + { + "start": 328.1, + "end": 329.28, + "probability": 0.7143 + }, + { + "start": 329.96, + "end": 334.38, + "probability": 0.9396 + }, + { + "start": 335.16, + "end": 339.24, + "probability": 0.9701 + }, + { + "start": 339.88, + "end": 341.92, + "probability": 0.7059 + }, + { + "start": 342.02, + "end": 343.3, + "probability": 0.8608 + }, + { + "start": 345.2, + "end": 346.86, + "probability": 0.7759 + }, + { + "start": 347.1, + "end": 347.96, + "probability": 0.442 + }, + { + "start": 348.84, + "end": 350.68, + "probability": 0.8072 + }, + { + "start": 351.08, + "end": 351.44, + "probability": 0.8825 + }, + { + "start": 351.58, + "end": 352.82, + "probability": 0.9287 + }, + { + "start": 352.92, + "end": 360.14, + "probability": 0.9801 + }, + { + "start": 361.66, + "end": 365.02, + "probability": 0.9301 + }, + { + "start": 365.48, + "end": 368.92, + "probability": 0.9731 + }, + { + "start": 369.46, + "end": 371.3, + "probability": 0.9873 + }, + { + "start": 372.72, + "end": 378.9, + "probability": 0.8146 + }, + { + "start": 378.9, + "end": 385.64, + "probability": 0.9146 + }, + { + "start": 385.7, + "end": 392.68, + "probability": 0.8458 + }, + { + "start": 392.68, + "end": 398.02, + "probability": 0.9744 + }, + { + "start": 398.86, + "end": 401.56, + "probability": 0.8371 + }, + { + "start": 401.56, + "end": 406.96, + "probability": 0.9704 + }, + { + "start": 407.54, + "end": 411.36, + "probability": 0.9869 + }, + { + "start": 411.36, + "end": 416.12, + "probability": 0.9598 + }, + { + "start": 416.86, + "end": 421.21, + "probability": 0.9424 + }, + { + "start": 421.88, + "end": 426.7, + "probability": 0.9841 + }, + { + "start": 427.84, + "end": 428.86, + "probability": 0.7269 + }, + { + "start": 429.14, + "end": 431.34, + "probability": 0.9207 + }, + { + "start": 431.84, + "end": 435.5, + "probability": 0.9834 + }, + { + "start": 436.0, + "end": 436.92, + "probability": 0.9187 + }, + { + "start": 438.34, + "end": 441.62, + "probability": 0.9771 + }, + { + "start": 441.62, + "end": 446.0, + "probability": 0.9473 + }, + { + "start": 446.0, + "end": 452.32, + "probability": 0.9431 + }, + { + "start": 453.02, + "end": 455.92, + "probability": 0.9993 + }, + { + "start": 456.32, + "end": 458.9, + "probability": 0.9707 + }, + { + "start": 459.38, + "end": 461.2, + "probability": 0.3514 + }, + { + "start": 461.58, + "end": 462.86, + "probability": 0.7428 + }, + { + "start": 463.4, + "end": 466.1, + "probability": 0.5139 + }, + { + "start": 467.0, + "end": 467.24, + "probability": 0.7118 + }, + { + "start": 468.44, + "end": 469.38, + "probability": 0.6652 + }, + { + "start": 469.42, + "end": 471.08, + "probability": 0.8921 + }, + { + "start": 471.16, + "end": 471.74, + "probability": 0.5638 + }, + { + "start": 471.78, + "end": 473.72, + "probability": 0.9556 + }, + { + "start": 476.1, + "end": 477.2, + "probability": 0.5585 + }, + { + "start": 477.28, + "end": 478.8, + "probability": 0.7461 + }, + { + "start": 478.82, + "end": 479.46, + "probability": 0.8174 + }, + { + "start": 479.56, + "end": 480.78, + "probability": 0.7063 + }, + { + "start": 480.78, + "end": 481.06, + "probability": 0.7391 + }, + { + "start": 481.2, + "end": 483.72, + "probability": 0.9963 + }, + { + "start": 483.76, + "end": 484.66, + "probability": 0.9475 + }, + { + "start": 485.72, + "end": 487.38, + "probability": 0.9867 + }, + { + "start": 487.42, + "end": 490.78, + "probability": 0.8794 + }, + { + "start": 491.52, + "end": 494.4, + "probability": 0.9207 + }, + { + "start": 494.54, + "end": 494.8, + "probability": 0.8762 + }, + { + "start": 495.42, + "end": 497.64, + "probability": 0.9634 + }, + { + "start": 498.36, + "end": 499.02, + "probability": 0.7417 + }, + { + "start": 500.04, + "end": 500.72, + "probability": 0.7758 + }, + { + "start": 501.04, + "end": 503.3, + "probability": 0.9105 + }, + { + "start": 503.46, + "end": 506.62, + "probability": 0.9672 + }, + { + "start": 507.36, + "end": 510.06, + "probability": 0.9987 + }, + { + "start": 510.06, + "end": 513.14, + "probability": 0.9976 + }, + { + "start": 513.52, + "end": 516.26, + "probability": 0.951 + }, + { + "start": 516.46, + "end": 518.06, + "probability": 0.4982 + }, + { + "start": 518.14, + "end": 520.06, + "probability": 0.8348 + }, + { + "start": 520.1, + "end": 522.7, + "probability": 0.8396 + }, + { + "start": 522.92, + "end": 524.36, + "probability": 0.9839 + }, + { + "start": 525.14, + "end": 530.02, + "probability": 0.9971 + }, + { + "start": 530.14, + "end": 531.66, + "probability": 0.7322 + }, + { + "start": 531.66, + "end": 534.84, + "probability": 0.8748 + }, + { + "start": 535.42, + "end": 538.9, + "probability": 0.9738 + }, + { + "start": 539.08, + "end": 541.64, + "probability": 0.9945 + }, + { + "start": 542.32, + "end": 544.98, + "probability": 0.9214 + }, + { + "start": 545.44, + "end": 547.88, + "probability": 0.9932 + }, + { + "start": 548.02, + "end": 551.92, + "probability": 0.9961 + }, + { + "start": 552.02, + "end": 555.62, + "probability": 0.9855 + }, + { + "start": 555.76, + "end": 556.88, + "probability": 0.9977 + }, + { + "start": 557.58, + "end": 561.16, + "probability": 0.996 + }, + { + "start": 561.18, + "end": 565.02, + "probability": 0.9783 + }, + { + "start": 565.38, + "end": 566.8, + "probability": 0.9712 + }, + { + "start": 567.06, + "end": 568.3, + "probability": 0.8798 + }, + { + "start": 568.82, + "end": 569.38, + "probability": 0.4945 + }, + { + "start": 569.4, + "end": 573.28, + "probability": 0.9941 + }, + { + "start": 573.28, + "end": 575.72, + "probability": 0.9842 + }, + { + "start": 576.04, + "end": 576.34, + "probability": 0.7262 + }, + { + "start": 576.48, + "end": 577.58, + "probability": 0.957 + }, + { + "start": 578.3, + "end": 583.02, + "probability": 0.995 + }, + { + "start": 583.42, + "end": 586.0, + "probability": 0.8849 + }, + { + "start": 586.22, + "end": 587.98, + "probability": 0.9834 + }, + { + "start": 588.34, + "end": 589.86, + "probability": 0.9568 + }, + { + "start": 590.28, + "end": 595.94, + "probability": 0.9957 + }, + { + "start": 596.06, + "end": 598.7, + "probability": 0.9961 + }, + { + "start": 598.7, + "end": 601.66, + "probability": 0.998 + }, + { + "start": 602.14, + "end": 604.54, + "probability": 0.999 + }, + { + "start": 604.54, + "end": 607.26, + "probability": 0.9982 + }, + { + "start": 607.68, + "end": 609.78, + "probability": 0.9688 + }, + { + "start": 609.84, + "end": 610.4, + "probability": 0.7524 + }, + { + "start": 610.72, + "end": 611.16, + "probability": 0.5903 + }, + { + "start": 611.26, + "end": 612.86, + "probability": 0.9293 + }, + { + "start": 612.94, + "end": 613.52, + "probability": 0.6218 + }, + { + "start": 613.54, + "end": 615.02, + "probability": 0.951 + }, + { + "start": 619.7, + "end": 620.44, + "probability": 0.7313 + }, + { + "start": 620.5, + "end": 621.44, + "probability": 0.9277 + }, + { + "start": 621.54, + "end": 628.75, + "probability": 0.931 + }, + { + "start": 628.84, + "end": 634.34, + "probability": 0.9498 + }, + { + "start": 634.92, + "end": 637.24, + "probability": 0.9806 + }, + { + "start": 637.9, + "end": 638.47, + "probability": 0.4832 + }, + { + "start": 639.8, + "end": 640.12, + "probability": 0.4283 + }, + { + "start": 640.78, + "end": 642.96, + "probability": 0.9736 + }, + { + "start": 644.44, + "end": 649.58, + "probability": 0.9721 + }, + { + "start": 650.18, + "end": 654.46, + "probability": 0.9883 + }, + { + "start": 654.48, + "end": 658.32, + "probability": 0.9818 + }, + { + "start": 658.32, + "end": 662.9, + "probability": 0.9884 + }, + { + "start": 663.78, + "end": 668.72, + "probability": 0.9976 + }, + { + "start": 670.14, + "end": 673.14, + "probability": 0.268 + }, + { + "start": 673.14, + "end": 677.0, + "probability": 0.752 + }, + { + "start": 678.16, + "end": 682.28, + "probability": 0.9556 + }, + { + "start": 682.36, + "end": 683.2, + "probability": 0.7864 + }, + { + "start": 683.72, + "end": 684.36, + "probability": 0.9556 + }, + { + "start": 684.48, + "end": 685.74, + "probability": 0.571 + }, + { + "start": 686.82, + "end": 687.73, + "probability": 0.7179 + }, + { + "start": 688.36, + "end": 689.2, + "probability": 0.856 + }, + { + "start": 689.26, + "end": 692.22, + "probability": 0.7082 + }, + { + "start": 692.22, + "end": 692.56, + "probability": 0.515 + }, + { + "start": 693.6, + "end": 694.06, + "probability": 0.6787 + }, + { + "start": 694.16, + "end": 695.54, + "probability": 0.8676 + }, + { + "start": 695.6, + "end": 696.06, + "probability": 0.538 + }, + { + "start": 696.1, + "end": 698.02, + "probability": 0.9575 + }, + { + "start": 698.88, + "end": 699.44, + "probability": 0.8271 + }, + { + "start": 701.68, + "end": 705.1, + "probability": 0.7167 + }, + { + "start": 705.2, + "end": 711.36, + "probability": 0.8695 + }, + { + "start": 711.36, + "end": 715.36, + "probability": 0.8608 + }, + { + "start": 715.44, + "end": 716.56, + "probability": 0.801 + }, + { + "start": 716.62, + "end": 721.28, + "probability": 0.9894 + }, + { + "start": 722.92, + "end": 723.86, + "probability": 0.57 + }, + { + "start": 724.06, + "end": 724.76, + "probability": 0.409 + }, + { + "start": 725.08, + "end": 725.46, + "probability": 0.3516 + }, + { + "start": 725.52, + "end": 727.12, + "probability": 0.7569 + }, + { + "start": 727.66, + "end": 731.56, + "probability": 0.9259 + }, + { + "start": 731.82, + "end": 734.26, + "probability": 0.7867 + }, + { + "start": 734.72, + "end": 735.56, + "probability": 0.8415 + }, + { + "start": 736.06, + "end": 741.44, + "probability": 0.978 + }, + { + "start": 741.92, + "end": 743.28, + "probability": 0.8733 + }, + { + "start": 743.88, + "end": 744.54, + "probability": 0.7232 + }, + { + "start": 744.56, + "end": 746.0, + "probability": 0.9771 + }, + { + "start": 746.08, + "end": 746.72, + "probability": 0.9654 + }, + { + "start": 746.8, + "end": 747.4, + "probability": 0.9197 + }, + { + "start": 748.06, + "end": 749.72, + "probability": 0.5398 + }, + { + "start": 750.84, + "end": 751.38, + "probability": 0.7408 + }, + { + "start": 751.54, + "end": 752.14, + "probability": 0.8234 + }, + { + "start": 752.24, + "end": 753.32, + "probability": 0.9148 + }, + { + "start": 753.4, + "end": 754.16, + "probability": 0.9141 + }, + { + "start": 754.2, + "end": 757.11, + "probability": 0.7976 + }, + { + "start": 757.16, + "end": 761.28, + "probability": 0.8494 + }, + { + "start": 762.62, + "end": 765.0, + "probability": 0.9678 + }, + { + "start": 765.22, + "end": 766.28, + "probability": 0.613 + }, + { + "start": 766.56, + "end": 767.96, + "probability": 0.8417 + }, + { + "start": 768.48, + "end": 770.36, + "probability": 0.9009 + }, + { + "start": 771.52, + "end": 774.88, + "probability": 0.9717 + }, + { + "start": 775.54, + "end": 776.84, + "probability": 0.4573 + }, + { + "start": 776.88, + "end": 778.34, + "probability": 0.8398 + }, + { + "start": 778.74, + "end": 780.16, + "probability": 0.9385 + }, + { + "start": 780.58, + "end": 784.44, + "probability": 0.7998 + }, + { + "start": 784.94, + "end": 788.22, + "probability": 0.795 + }, + { + "start": 788.22, + "end": 792.19, + "probability": 0.9348 + }, + { + "start": 792.42, + "end": 795.46, + "probability": 0.9878 + }, + { + "start": 796.0, + "end": 799.13, + "probability": 0.9644 + }, + { + "start": 799.88, + "end": 805.1, + "probability": 0.9101 + }, + { + "start": 805.18, + "end": 805.98, + "probability": 0.9634 + }, + { + "start": 806.76, + "end": 809.4, + "probability": 0.9871 + }, + { + "start": 809.8, + "end": 810.98, + "probability": 0.9889 + }, + { + "start": 811.82, + "end": 813.2, + "probability": 0.741 + }, + { + "start": 813.26, + "end": 816.52, + "probability": 0.9065 + }, + { + "start": 817.2, + "end": 817.42, + "probability": 0.9031 + }, + { + "start": 818.02, + "end": 821.12, + "probability": 0.9143 + }, + { + "start": 821.72, + "end": 824.06, + "probability": 0.8017 + }, + { + "start": 826.22, + "end": 827.6, + "probability": 0.8771 + }, + { + "start": 828.38, + "end": 834.14, + "probability": 0.9551 + }, + { + "start": 835.0, + "end": 837.26, + "probability": 0.7281 + }, + { + "start": 837.48, + "end": 838.42, + "probability": 0.9776 + }, + { + "start": 838.88, + "end": 840.82, + "probability": 0.9922 + }, + { + "start": 841.54, + "end": 845.06, + "probability": 0.9413 + }, + { + "start": 845.7, + "end": 847.22, + "probability": 0.876 + }, + { + "start": 847.9, + "end": 850.6, + "probability": 0.9872 + }, + { + "start": 851.48, + "end": 853.32, + "probability": 0.9938 + }, + { + "start": 853.62, + "end": 854.74, + "probability": 0.9049 + }, + { + "start": 854.96, + "end": 855.78, + "probability": 0.6023 + }, + { + "start": 856.76, + "end": 859.54, + "probability": 0.999 + }, + { + "start": 859.54, + "end": 862.6, + "probability": 0.998 + }, + { + "start": 863.14, + "end": 866.32, + "probability": 0.9698 + }, + { + "start": 866.82, + "end": 869.61, + "probability": 0.9961 + }, + { + "start": 870.62, + "end": 871.74, + "probability": 0.7586 + }, + { + "start": 871.78, + "end": 874.5, + "probability": 0.9844 + }, + { + "start": 875.34, + "end": 878.96, + "probability": 0.8934 + }, + { + "start": 879.22, + "end": 880.06, + "probability": 0.842 + }, + { + "start": 880.5, + "end": 881.5, + "probability": 0.946 + }, + { + "start": 881.94, + "end": 883.85, + "probability": 0.998 + }, + { + "start": 884.56, + "end": 885.14, + "probability": 0.7813 + }, + { + "start": 885.66, + "end": 890.74, + "probability": 0.9985 + }, + { + "start": 891.18, + "end": 896.68, + "probability": 0.9926 + }, + { + "start": 897.92, + "end": 900.44, + "probability": 0.9962 + }, + { + "start": 900.8, + "end": 901.8, + "probability": 0.5622 + }, + { + "start": 902.16, + "end": 904.26, + "probability": 0.991 + }, + { + "start": 906.02, + "end": 906.74, + "probability": 0.7141 + }, + { + "start": 906.76, + "end": 908.94, + "probability": 0.919 + }, + { + "start": 918.64, + "end": 919.36, + "probability": 0.6898 + }, + { + "start": 919.88, + "end": 925.78, + "probability": 0.9905 + }, + { + "start": 925.78, + "end": 929.4, + "probability": 0.9976 + }, + { + "start": 930.18, + "end": 932.3, + "probability": 0.9719 + }, + { + "start": 932.4, + "end": 933.72, + "probability": 0.8888 + }, + { + "start": 934.34, + "end": 938.12, + "probability": 0.99 + }, + { + "start": 938.12, + "end": 942.06, + "probability": 0.999 + }, + { + "start": 942.14, + "end": 944.97, + "probability": 0.9944 + }, + { + "start": 945.72, + "end": 946.94, + "probability": 0.9819 + }, + { + "start": 947.62, + "end": 949.54, + "probability": 0.9951 + }, + { + "start": 949.94, + "end": 952.2, + "probability": 0.9976 + }, + { + "start": 952.78, + "end": 953.26, + "probability": 0.7824 + }, + { + "start": 953.7, + "end": 957.0, + "probability": 0.9976 + }, + { + "start": 957.64, + "end": 960.11, + "probability": 0.979 + }, + { + "start": 960.36, + "end": 964.08, + "probability": 0.999 + }, + { + "start": 964.9, + "end": 965.98, + "probability": 0.8452 + }, + { + "start": 966.42, + "end": 969.34, + "probability": 0.944 + }, + { + "start": 969.78, + "end": 973.3, + "probability": 0.7999 + }, + { + "start": 973.8, + "end": 977.44, + "probability": 0.9827 + }, + { + "start": 977.82, + "end": 979.14, + "probability": 0.9653 + }, + { + "start": 979.54, + "end": 981.88, + "probability": 0.9904 + }, + { + "start": 981.88, + "end": 984.78, + "probability": 0.9998 + }, + { + "start": 985.22, + "end": 986.54, + "probability": 0.8031 + }, + { + "start": 987.58, + "end": 988.92, + "probability": 0.9014 + }, + { + "start": 989.02, + "end": 993.94, + "probability": 0.9719 + }, + { + "start": 993.94, + "end": 995.72, + "probability": 0.7996 + }, + { + "start": 996.14, + "end": 996.72, + "probability": 0.8259 + }, + { + "start": 996.78, + "end": 997.66, + "probability": 0.6856 + }, + { + "start": 998.16, + "end": 1000.46, + "probability": 0.9793 + }, + { + "start": 1001.2, + "end": 1003.5, + "probability": 0.9541 + }, + { + "start": 1004.48, + "end": 1007.46, + "probability": 0.9758 + }, + { + "start": 1007.66, + "end": 1010.62, + "probability": 0.9109 + }, + { + "start": 1011.36, + "end": 1013.52, + "probability": 0.9888 + }, + { + "start": 1013.52, + "end": 1016.46, + "probability": 0.9946 + }, + { + "start": 1016.98, + "end": 1018.22, + "probability": 0.9387 + }, + { + "start": 1018.26, + "end": 1018.7, + "probability": 0.6725 + }, + { + "start": 1027.4, + "end": 1028.98, + "probability": 0.7571 + }, + { + "start": 1031.53, + "end": 1033.88, + "probability": 0.7844 + }, + { + "start": 1033.98, + "end": 1036.54, + "probability": 0.7781 + }, + { + "start": 1037.3, + "end": 1038.68, + "probability": 0.5224 + }, + { + "start": 1038.8, + "end": 1045.3, + "probability": 0.8837 + }, + { + "start": 1047.32, + "end": 1050.94, + "probability": 0.9956 + }, + { + "start": 1051.49, + "end": 1056.38, + "probability": 0.8677 + }, + { + "start": 1056.98, + "end": 1058.22, + "probability": 0.6254 + }, + { + "start": 1058.74, + "end": 1060.86, + "probability": 0.9461 + }, + { + "start": 1061.42, + "end": 1063.46, + "probability": 0.8331 + }, + { + "start": 1064.36, + "end": 1069.76, + "probability": 0.8535 + }, + { + "start": 1070.9, + "end": 1073.56, + "probability": 0.8847 + }, + { + "start": 1075.06, + "end": 1079.12, + "probability": 0.9758 + }, + { + "start": 1079.68, + "end": 1084.02, + "probability": 0.9915 + }, + { + "start": 1084.02, + "end": 1089.4, + "probability": 0.9764 + }, + { + "start": 1090.7, + "end": 1093.59, + "probability": 0.9845 + }, + { + "start": 1094.4, + "end": 1097.14, + "probability": 0.9727 + }, + { + "start": 1097.98, + "end": 1100.82, + "probability": 0.9487 + }, + { + "start": 1101.5, + "end": 1102.56, + "probability": 0.6422 + }, + { + "start": 1103.08, + "end": 1105.2, + "probability": 0.7929 + }, + { + "start": 1105.78, + "end": 1111.22, + "probability": 0.9937 + }, + { + "start": 1111.22, + "end": 1118.3, + "probability": 0.9761 + }, + { + "start": 1119.02, + "end": 1119.8, + "probability": 0.8486 + }, + { + "start": 1119.98, + "end": 1124.06, + "probability": 0.9907 + }, + { + "start": 1124.16, + "end": 1128.72, + "probability": 0.9947 + }, + { + "start": 1129.14, + "end": 1132.86, + "probability": 0.8866 + }, + { + "start": 1133.3, + "end": 1134.54, + "probability": 0.5761 + }, + { + "start": 1134.76, + "end": 1137.28, + "probability": 0.9984 + }, + { + "start": 1137.42, + "end": 1138.18, + "probability": 0.7874 + }, + { + "start": 1138.72, + "end": 1140.16, + "probability": 0.9083 + }, + { + "start": 1140.84, + "end": 1142.1, + "probability": 0.5962 + }, + { + "start": 1142.92, + "end": 1145.42, + "probability": 0.987 + }, + { + "start": 1147.02, + "end": 1150.09, + "probability": 0.9396 + }, + { + "start": 1150.94, + "end": 1152.62, + "probability": 0.6776 + }, + { + "start": 1152.7, + "end": 1157.22, + "probability": 0.9935 + }, + { + "start": 1157.22, + "end": 1162.4, + "probability": 0.9894 + }, + { + "start": 1162.54, + "end": 1163.91, + "probability": 0.9988 + }, + { + "start": 1164.4, + "end": 1165.84, + "probability": 0.9396 + }, + { + "start": 1165.96, + "end": 1167.49, + "probability": 0.7732 + }, + { + "start": 1167.68, + "end": 1173.26, + "probability": 0.9923 + }, + { + "start": 1173.76, + "end": 1176.12, + "probability": 0.9094 + }, + { + "start": 1177.72, + "end": 1180.32, + "probability": 0.995 + }, + { + "start": 1181.32, + "end": 1182.6, + "probability": 0.775 + }, + { + "start": 1183.34, + "end": 1186.24, + "probability": 0.9204 + }, + { + "start": 1186.98, + "end": 1192.7, + "probability": 0.9981 + }, + { + "start": 1192.92, + "end": 1193.74, + "probability": 0.4312 + }, + { + "start": 1193.8, + "end": 1194.43, + "probability": 0.9512 + }, + { + "start": 1194.56, + "end": 1196.6, + "probability": 0.9948 + }, + { + "start": 1197.12, + "end": 1198.3, + "probability": 0.6917 + }, + { + "start": 1200.32, + "end": 1202.95, + "probability": 0.9123 + }, + { + "start": 1204.16, + "end": 1204.34, + "probability": 0.3559 + }, + { + "start": 1204.46, + "end": 1208.6, + "probability": 0.9927 + }, + { + "start": 1208.96, + "end": 1213.04, + "probability": 0.9802 + }, + { + "start": 1213.12, + "end": 1218.8, + "probability": 0.9965 + }, + { + "start": 1219.6, + "end": 1222.5, + "probability": 0.8225 + }, + { + "start": 1223.32, + "end": 1223.89, + "probability": 0.9167 + }, + { + "start": 1224.7, + "end": 1228.9, + "probability": 0.99 + }, + { + "start": 1229.5, + "end": 1235.0, + "probability": 0.9832 + }, + { + "start": 1235.34, + "end": 1239.58, + "probability": 0.9783 + }, + { + "start": 1239.74, + "end": 1241.31, + "probability": 0.6704 + }, + { + "start": 1241.56, + "end": 1244.5, + "probability": 0.9982 + }, + { + "start": 1244.96, + "end": 1245.86, + "probability": 0.9253 + }, + { + "start": 1246.04, + "end": 1246.78, + "probability": 0.6617 + }, + { + "start": 1246.92, + "end": 1250.46, + "probability": 0.9817 + }, + { + "start": 1250.76, + "end": 1255.54, + "probability": 0.9679 + }, + { + "start": 1256.32, + "end": 1256.72, + "probability": 0.8193 + }, + { + "start": 1256.74, + "end": 1261.06, + "probability": 0.9932 + }, + { + "start": 1261.5, + "end": 1263.86, + "probability": 0.8357 + }, + { + "start": 1263.94, + "end": 1265.46, + "probability": 0.9093 + }, + { + "start": 1266.06, + "end": 1268.69, + "probability": 0.991 + }, + { + "start": 1270.44, + "end": 1273.06, + "probability": 0.9774 + }, + { + "start": 1273.06, + "end": 1277.62, + "probability": 0.9512 + }, + { + "start": 1277.82, + "end": 1279.0, + "probability": 0.9639 + }, + { + "start": 1280.8, + "end": 1283.84, + "probability": 0.9992 + }, + { + "start": 1285.02, + "end": 1285.7, + "probability": 0.9072 + }, + { + "start": 1285.8, + "end": 1289.58, + "probability": 0.9169 + }, + { + "start": 1289.64, + "end": 1291.96, + "probability": 0.8557 + }, + { + "start": 1292.44, + "end": 1294.94, + "probability": 0.8819 + }, + { + "start": 1294.98, + "end": 1296.08, + "probability": 0.9607 + }, + { + "start": 1296.16, + "end": 1297.12, + "probability": 0.8984 + }, + { + "start": 1297.22, + "end": 1298.02, + "probability": 0.8406 + }, + { + "start": 1298.06, + "end": 1300.42, + "probability": 0.7392 + }, + { + "start": 1300.78, + "end": 1301.9, + "probability": 0.9466 + }, + { + "start": 1302.44, + "end": 1305.14, + "probability": 0.998 + }, + { + "start": 1305.16, + "end": 1307.86, + "probability": 0.6927 + }, + { + "start": 1307.92, + "end": 1309.08, + "probability": 0.8258 + }, + { + "start": 1309.24, + "end": 1310.54, + "probability": 0.9956 + }, + { + "start": 1310.68, + "end": 1314.17, + "probability": 0.988 + }, + { + "start": 1314.54, + "end": 1315.24, + "probability": 0.9444 + }, + { + "start": 1315.4, + "end": 1316.36, + "probability": 0.9797 + }, + { + "start": 1316.52, + "end": 1318.22, + "probability": 0.9345 + }, + { + "start": 1318.32, + "end": 1322.82, + "probability": 0.992 + }, + { + "start": 1323.2, + "end": 1326.34, + "probability": 0.9913 + }, + { + "start": 1327.0, + "end": 1331.1, + "probability": 0.9984 + }, + { + "start": 1332.38, + "end": 1333.64, + "probability": 0.9673 + }, + { + "start": 1334.12, + "end": 1336.76, + "probability": 0.9962 + }, + { + "start": 1337.04, + "end": 1337.72, + "probability": 0.8624 + }, + { + "start": 1337.94, + "end": 1338.86, + "probability": 0.8888 + }, + { + "start": 1339.14, + "end": 1341.0, + "probability": 0.9423 + }, + { + "start": 1341.06, + "end": 1341.62, + "probability": 0.722 + }, + { + "start": 1342.14, + "end": 1342.58, + "probability": 0.593 + }, + { + "start": 1343.16, + "end": 1344.38, + "probability": 0.9706 + }, + { + "start": 1344.92, + "end": 1347.26, + "probability": 0.9852 + }, + { + "start": 1347.34, + "end": 1347.91, + "probability": 0.9686 + }, + { + "start": 1348.7, + "end": 1349.54, + "probability": 0.6695 + }, + { + "start": 1349.94, + "end": 1353.06, + "probability": 0.9519 + }, + { + "start": 1353.56, + "end": 1357.2, + "probability": 0.9494 + }, + { + "start": 1357.26, + "end": 1360.78, + "probability": 0.9908 + }, + { + "start": 1360.9, + "end": 1365.82, + "probability": 0.9854 + }, + { + "start": 1365.9, + "end": 1368.74, + "probability": 0.9914 + }, + { + "start": 1369.24, + "end": 1372.74, + "probability": 0.994 + }, + { + "start": 1372.74, + "end": 1376.4, + "probability": 0.9973 + }, + { + "start": 1377.12, + "end": 1380.72, + "probability": 0.9264 + }, + { + "start": 1381.6, + "end": 1383.06, + "probability": 0.9746 + }, + { + "start": 1383.62, + "end": 1386.38, + "probability": 0.8108 + }, + { + "start": 1387.02, + "end": 1387.75, + "probability": 0.9644 + }, + { + "start": 1388.48, + "end": 1389.09, + "probability": 0.989 + }, + { + "start": 1389.78, + "end": 1390.37, + "probability": 0.991 + }, + { + "start": 1390.7, + "end": 1391.13, + "probability": 0.9949 + }, + { + "start": 1391.58, + "end": 1394.92, + "probability": 0.9983 + }, + { + "start": 1395.18, + "end": 1396.68, + "probability": 0.9697 + }, + { + "start": 1396.7, + "end": 1398.16, + "probability": 0.9913 + }, + { + "start": 1398.62, + "end": 1400.28, + "probability": 0.8001 + }, + { + "start": 1400.76, + "end": 1401.5, + "probability": 0.5645 + }, + { + "start": 1402.32, + "end": 1404.08, + "probability": 0.9926 + }, + { + "start": 1404.52, + "end": 1407.22, + "probability": 0.9632 + }, + { + "start": 1407.44, + "end": 1410.02, + "probability": 0.9891 + }, + { + "start": 1410.14, + "end": 1412.36, + "probability": 0.939 + }, + { + "start": 1412.78, + "end": 1415.34, + "probability": 0.9317 + }, + { + "start": 1415.74, + "end": 1416.16, + "probability": 0.8251 + }, + { + "start": 1416.72, + "end": 1418.74, + "probability": 0.6405 + }, + { + "start": 1418.74, + "end": 1421.96, + "probability": 0.8545 + }, + { + "start": 1430.04, + "end": 1430.84, + "probability": 0.2668 + }, + { + "start": 1431.17, + "end": 1431.53, + "probability": 0.2144 + }, + { + "start": 1432.36, + "end": 1432.66, + "probability": 0.0497 + }, + { + "start": 1432.66, + "end": 1432.66, + "probability": 0.0018 + }, + { + "start": 1455.34, + "end": 1456.7, + "probability": 0.2933 + }, + { + "start": 1456.72, + "end": 1462.52, + "probability": 0.9561 + }, + { + "start": 1463.42, + "end": 1467.04, + "probability": 0.9705 + }, + { + "start": 1467.32, + "end": 1471.76, + "probability": 0.8281 + }, + { + "start": 1472.7, + "end": 1475.64, + "probability": 0.8745 + }, + { + "start": 1475.7, + "end": 1476.22, + "probability": 0.9792 + }, + { + "start": 1476.56, + "end": 1477.7, + "probability": 0.553 + }, + { + "start": 1477.96, + "end": 1479.2, + "probability": 0.6262 + }, + { + "start": 1479.2, + "end": 1482.16, + "probability": 0.516 + }, + { + "start": 1482.26, + "end": 1484.14, + "probability": 0.9152 + }, + { + "start": 1484.48, + "end": 1486.13, + "probability": 0.8114 + }, + { + "start": 1487.38, + "end": 1490.6, + "probability": 0.7622 + }, + { + "start": 1490.76, + "end": 1495.83, + "probability": 0.9907 + }, + { + "start": 1498.04, + "end": 1498.78, + "probability": 0.8105 + }, + { + "start": 1498.94, + "end": 1504.68, + "probability": 0.9334 + }, + { + "start": 1505.68, + "end": 1508.5, + "probability": 0.9856 + }, + { + "start": 1509.0, + "end": 1510.04, + "probability": 0.554 + }, + { + "start": 1510.12, + "end": 1511.62, + "probability": 0.972 + }, + { + "start": 1512.02, + "end": 1515.16, + "probability": 0.9987 + }, + { + "start": 1515.34, + "end": 1516.36, + "probability": 0.9691 + }, + { + "start": 1518.0, + "end": 1520.68, + "probability": 0.9961 + }, + { + "start": 1521.26, + "end": 1524.98, + "probability": 0.999 + }, + { + "start": 1526.2, + "end": 1528.76, + "probability": 0.979 + }, + { + "start": 1529.44, + "end": 1531.9, + "probability": 0.997 + }, + { + "start": 1533.72, + "end": 1539.88, + "probability": 0.9494 + }, + { + "start": 1540.56, + "end": 1545.34, + "probability": 0.9925 + }, + { + "start": 1545.6, + "end": 1547.76, + "probability": 0.8454 + }, + { + "start": 1548.26, + "end": 1549.05, + "probability": 0.5898 + }, + { + "start": 1549.24, + "end": 1551.82, + "probability": 0.994 + }, + { + "start": 1552.38, + "end": 1555.54, + "probability": 0.832 + }, + { + "start": 1556.7, + "end": 1559.04, + "probability": 0.995 + }, + { + "start": 1559.94, + "end": 1564.0, + "probability": 0.9949 + }, + { + "start": 1564.88, + "end": 1565.6, + "probability": 0.877 + }, + { + "start": 1565.78, + "end": 1567.3, + "probability": 0.9894 + }, + { + "start": 1567.44, + "end": 1567.98, + "probability": 0.9073 + }, + { + "start": 1568.1, + "end": 1569.36, + "probability": 0.7881 + }, + { + "start": 1569.96, + "end": 1570.91, + "probability": 0.8403 + }, + { + "start": 1571.94, + "end": 1574.12, + "probability": 0.9328 + }, + { + "start": 1577.34, + "end": 1578.56, + "probability": 0.9561 + }, + { + "start": 1578.8, + "end": 1580.2, + "probability": 0.995 + }, + { + "start": 1580.42, + "end": 1581.12, + "probability": 0.9663 + }, + { + "start": 1581.56, + "end": 1582.06, + "probability": 0.9913 + }, + { + "start": 1583.6, + "end": 1584.6, + "probability": 0.787 + }, + { + "start": 1584.76, + "end": 1585.74, + "probability": 0.7211 + }, + { + "start": 1585.92, + "end": 1591.18, + "probability": 0.9988 + }, + { + "start": 1591.88, + "end": 1594.28, + "probability": 0.913 + }, + { + "start": 1594.72, + "end": 1595.98, + "probability": 0.9551 + }, + { + "start": 1596.66, + "end": 1601.46, + "probability": 0.9817 + }, + { + "start": 1612.82, + "end": 1613.82, + "probability": 0.6094 + }, + { + "start": 1613.82, + "end": 1613.82, + "probability": 0.0162 + }, + { + "start": 1613.82, + "end": 1613.82, + "probability": 0.0477 + }, + { + "start": 1613.82, + "end": 1613.82, + "probability": 0.0582 + }, + { + "start": 1613.82, + "end": 1617.54, + "probability": 0.6989 + }, + { + "start": 1618.72, + "end": 1622.52, + "probability": 0.9845 + }, + { + "start": 1623.62, + "end": 1626.4, + "probability": 0.8169 + }, + { + "start": 1627.32, + "end": 1628.18, + "probability": 0.896 + }, + { + "start": 1628.26, + "end": 1631.86, + "probability": 0.9782 + }, + { + "start": 1632.44, + "end": 1634.15, + "probability": 0.9958 + }, + { + "start": 1635.08, + "end": 1636.18, + "probability": 0.9941 + }, + { + "start": 1636.3, + "end": 1637.3, + "probability": 0.9327 + }, + { + "start": 1637.32, + "end": 1639.54, + "probability": 0.9966 + }, + { + "start": 1640.24, + "end": 1641.42, + "probability": 0.9235 + }, + { + "start": 1643.14, + "end": 1645.88, + "probability": 0.801 + }, + { + "start": 1646.94, + "end": 1651.96, + "probability": 0.9883 + }, + { + "start": 1652.64, + "end": 1653.96, + "probability": 0.9548 + }, + { + "start": 1655.38, + "end": 1659.84, + "probability": 0.9946 + }, + { + "start": 1660.32, + "end": 1661.8, + "probability": 0.9091 + }, + { + "start": 1662.4, + "end": 1666.76, + "probability": 0.8649 + }, + { + "start": 1667.74, + "end": 1668.7, + "probability": 0.942 + }, + { + "start": 1669.12, + "end": 1670.36, + "probability": 0.9653 + }, + { + "start": 1670.58, + "end": 1674.44, + "probability": 0.9907 + }, + { + "start": 1675.66, + "end": 1678.1, + "probability": 0.9856 + }, + { + "start": 1679.06, + "end": 1681.28, + "probability": 0.9898 + }, + { + "start": 1682.0, + "end": 1682.7, + "probability": 0.6368 + }, + { + "start": 1682.72, + "end": 1688.32, + "probability": 0.9838 + }, + { + "start": 1688.58, + "end": 1689.46, + "probability": 0.9637 + }, + { + "start": 1689.78, + "end": 1691.12, + "probability": 0.9873 + }, + { + "start": 1692.34, + "end": 1697.32, + "probability": 0.9931 + }, + { + "start": 1697.42, + "end": 1698.57, + "probability": 0.9971 + }, + { + "start": 1699.02, + "end": 1700.72, + "probability": 0.9748 + }, + { + "start": 1701.2, + "end": 1702.6, + "probability": 0.9664 + }, + { + "start": 1703.18, + "end": 1704.3, + "probability": 0.9739 + }, + { + "start": 1704.52, + "end": 1711.78, + "probability": 0.9613 + }, + { + "start": 1712.6, + "end": 1713.58, + "probability": 0.5937 + }, + { + "start": 1714.76, + "end": 1716.32, + "probability": 0.9685 + }, + { + "start": 1717.06, + "end": 1721.96, + "probability": 0.9902 + }, + { + "start": 1722.66, + "end": 1724.48, + "probability": 0.9927 + }, + { + "start": 1725.1, + "end": 1726.8, + "probability": 0.8805 + }, + { + "start": 1726.94, + "end": 1728.11, + "probability": 0.993 + }, + { + "start": 1729.34, + "end": 1732.42, + "probability": 0.9992 + }, + { + "start": 1732.48, + "end": 1736.36, + "probability": 0.9935 + }, + { + "start": 1736.46, + "end": 1737.72, + "probability": 0.6091 + }, + { + "start": 1739.08, + "end": 1741.5, + "probability": 0.3784 + }, + { + "start": 1742.6, + "end": 1744.04, + "probability": 0.2811 + }, + { + "start": 1744.16, + "end": 1747.02, + "probability": 0.9738 + }, + { + "start": 1747.12, + "end": 1748.04, + "probability": 0.502 + }, + { + "start": 1748.62, + "end": 1748.86, + "probability": 0.245 + }, + { + "start": 1749.9, + "end": 1749.98, + "probability": 0.3111 + }, + { + "start": 1750.08, + "end": 1751.37, + "probability": 0.95 + }, + { + "start": 1752.22, + "end": 1757.84, + "probability": 0.9366 + }, + { + "start": 1757.84, + "end": 1760.94, + "probability": 0.9656 + }, + { + "start": 1761.22, + "end": 1762.14, + "probability": 0.9302 + }, + { + "start": 1762.66, + "end": 1763.92, + "probability": 0.992 + }, + { + "start": 1764.0, + "end": 1766.9, + "probability": 0.9125 + }, + { + "start": 1767.34, + "end": 1770.46, + "probability": 0.8889 + }, + { + "start": 1770.96, + "end": 1772.66, + "probability": 0.995 + }, + { + "start": 1773.78, + "end": 1774.66, + "probability": 0.7663 + }, + { + "start": 1775.14, + "end": 1775.9, + "probability": 0.3333 + }, + { + "start": 1776.44, + "end": 1778.86, + "probability": 0.9912 + }, + { + "start": 1779.08, + "end": 1779.51, + "probability": 0.9692 + }, + { + "start": 1779.82, + "end": 1781.12, + "probability": 0.9689 + }, + { + "start": 1782.06, + "end": 1783.98, + "probability": 0.9829 + }, + { + "start": 1783.98, + "end": 1784.9, + "probability": 0.939 + }, + { + "start": 1785.66, + "end": 1787.02, + "probability": 0.9752 + }, + { + "start": 1787.18, + "end": 1788.42, + "probability": 0.989 + }, + { + "start": 1788.76, + "end": 1789.5, + "probability": 0.7714 + }, + { + "start": 1789.76, + "end": 1791.62, + "probability": 0.972 + }, + { + "start": 1791.84, + "end": 1792.62, + "probability": 0.8342 + }, + { + "start": 1793.02, + "end": 1794.0, + "probability": 0.6823 + }, + { + "start": 1794.18, + "end": 1795.78, + "probability": 0.9789 + }, + { + "start": 1796.72, + "end": 1802.76, + "probability": 0.9819 + }, + { + "start": 1803.76, + "end": 1806.34, + "probability": 0.8335 + }, + { + "start": 1806.46, + "end": 1807.94, + "probability": 0.9873 + }, + { + "start": 1809.64, + "end": 1815.44, + "probability": 0.8161 + }, + { + "start": 1816.18, + "end": 1820.16, + "probability": 0.9987 + }, + { + "start": 1821.24, + "end": 1822.58, + "probability": 0.9312 + }, + { + "start": 1822.86, + "end": 1824.56, + "probability": 0.9989 + }, + { + "start": 1824.7, + "end": 1826.68, + "probability": 0.8278 + }, + { + "start": 1828.0, + "end": 1831.36, + "probability": 0.8074 + }, + { + "start": 1832.18, + "end": 1832.76, + "probability": 0.4113 + }, + { + "start": 1841.2, + "end": 1842.86, + "probability": 0.8284 + }, + { + "start": 1844.38, + "end": 1847.48, + "probability": 0.7501 + }, + { + "start": 1852.02, + "end": 1852.84, + "probability": 0.6068 + }, + { + "start": 1852.94, + "end": 1853.9, + "probability": 0.7397 + }, + { + "start": 1854.02, + "end": 1859.24, + "probability": 0.9922 + }, + { + "start": 1860.36, + "end": 1860.82, + "probability": 0.7772 + }, + { + "start": 1860.98, + "end": 1865.94, + "probability": 0.8957 + }, + { + "start": 1866.1, + "end": 1868.84, + "probability": 0.8439 + }, + { + "start": 1868.92, + "end": 1874.8, + "probability": 0.9702 + }, + { + "start": 1874.92, + "end": 1879.68, + "probability": 0.9746 + }, + { + "start": 1880.4, + "end": 1883.28, + "probability": 0.9937 + }, + { + "start": 1883.32, + "end": 1885.46, + "probability": 0.9973 + }, + { + "start": 1886.86, + "end": 1888.66, + "probability": 0.8844 + }, + { + "start": 1888.82, + "end": 1895.18, + "probability": 0.9941 + }, + { + "start": 1895.3, + "end": 1896.32, + "probability": 0.8596 + }, + { + "start": 1896.68, + "end": 1896.94, + "probability": 0.2656 + }, + { + "start": 1897.0, + "end": 1897.2, + "probability": 0.8438 + }, + { + "start": 1897.26, + "end": 1902.12, + "probability": 0.998 + }, + { + "start": 1902.2, + "end": 1903.2, + "probability": 0.9126 + }, + { + "start": 1903.54, + "end": 1905.26, + "probability": 0.9811 + }, + { + "start": 1905.4, + "end": 1907.18, + "probability": 0.9475 + }, + { + "start": 1907.86, + "end": 1910.9, + "probability": 0.8421 + }, + { + "start": 1911.08, + "end": 1911.54, + "probability": 0.7988 + }, + { + "start": 1912.94, + "end": 1915.54, + "probability": 0.9972 + }, + { + "start": 1916.48, + "end": 1921.7, + "probability": 0.9977 + }, + { + "start": 1921.7, + "end": 1926.1, + "probability": 0.9299 + }, + { + "start": 1926.2, + "end": 1926.91, + "probability": 0.7776 + }, + { + "start": 1928.0, + "end": 1930.62, + "probability": 0.8561 + }, + { + "start": 1931.02, + "end": 1931.72, + "probability": 0.8278 + }, + { + "start": 1933.26, + "end": 1935.14, + "probability": 0.6256 + }, + { + "start": 1935.22, + "end": 1938.93, + "probability": 0.7784 + }, + { + "start": 1939.2, + "end": 1941.68, + "probability": 0.9323 + }, + { + "start": 1942.1, + "end": 1944.78, + "probability": 0.9824 + }, + { + "start": 1945.44, + "end": 1949.4, + "probability": 0.9914 + }, + { + "start": 1949.96, + "end": 1954.08, + "probability": 0.9365 + }, + { + "start": 1955.08, + "end": 1960.6, + "probability": 0.9941 + }, + { + "start": 1960.6, + "end": 1964.42, + "probability": 0.9971 + }, + { + "start": 1964.78, + "end": 1970.07, + "probability": 0.9979 + }, + { + "start": 1970.98, + "end": 1972.08, + "probability": 0.9854 + }, + { + "start": 1972.9, + "end": 1975.44, + "probability": 0.9807 + }, + { + "start": 1976.18, + "end": 1977.7, + "probability": 0.9988 + }, + { + "start": 1977.76, + "end": 1980.36, + "probability": 0.981 + }, + { + "start": 1981.22, + "end": 1987.0, + "probability": 0.9896 + }, + { + "start": 1987.76, + "end": 1990.14, + "probability": 0.9526 + }, + { + "start": 1990.68, + "end": 1993.58, + "probability": 0.9824 + }, + { + "start": 1993.76, + "end": 1997.12, + "probability": 0.9476 + }, + { + "start": 1998.24, + "end": 2001.7, + "probability": 0.9957 + }, + { + "start": 2001.96, + "end": 2005.22, + "probability": 0.9972 + }, + { + "start": 2005.28, + "end": 2005.86, + "probability": 0.8556 + }, + { + "start": 2006.64, + "end": 2008.6, + "probability": 0.9868 + }, + { + "start": 2008.92, + "end": 2011.3, + "probability": 0.939 + }, + { + "start": 2011.58, + "end": 2014.96, + "probability": 0.9914 + }, + { + "start": 2014.96, + "end": 2018.01, + "probability": 0.9998 + }, + { + "start": 2019.16, + "end": 2022.36, + "probability": 0.958 + }, + { + "start": 2022.36, + "end": 2022.74, + "probability": 0.6536 + }, + { + "start": 2022.84, + "end": 2025.5, + "probability": 0.9299 + }, + { + "start": 2025.76, + "end": 2027.18, + "probability": 0.8114 + }, + { + "start": 2027.92, + "end": 2029.92, + "probability": 0.9581 + }, + { + "start": 2031.1, + "end": 2033.88, + "probability": 0.8505 + }, + { + "start": 2033.96, + "end": 2036.96, + "probability": 0.9912 + }, + { + "start": 2037.0, + "end": 2038.86, + "probability": 0.7357 + }, + { + "start": 2039.36, + "end": 2043.78, + "probability": 0.9865 + }, + { + "start": 2043.9, + "end": 2045.67, + "probability": 0.8879 + }, + { + "start": 2045.92, + "end": 2047.4, + "probability": 0.9515 + }, + { + "start": 2048.0, + "end": 2054.72, + "probability": 0.9962 + }, + { + "start": 2055.36, + "end": 2061.68, + "probability": 0.9561 + }, + { + "start": 2062.14, + "end": 2063.52, + "probability": 0.732 + }, + { + "start": 2064.0, + "end": 2069.78, + "probability": 0.9976 + }, + { + "start": 2069.94, + "end": 2073.06, + "probability": 0.9747 + }, + { + "start": 2073.12, + "end": 2075.78, + "probability": 0.9927 + }, + { + "start": 2075.92, + "end": 2077.94, + "probability": 0.742 + }, + { + "start": 2078.36, + "end": 2079.6, + "probability": 0.992 + }, + { + "start": 2079.78, + "end": 2081.84, + "probability": 0.9957 + }, + { + "start": 2081.98, + "end": 2082.28, + "probability": 0.8359 + }, + { + "start": 2082.68, + "end": 2083.06, + "probability": 0.9398 + }, + { + "start": 2083.22, + "end": 2084.36, + "probability": 0.9423 + }, + { + "start": 2084.98, + "end": 2088.8, + "probability": 0.9965 + }, + { + "start": 2088.96, + "end": 2089.98, + "probability": 0.9781 + }, + { + "start": 2090.84, + "end": 2091.32, + "probability": 0.4704 + }, + { + "start": 2091.34, + "end": 2091.78, + "probability": 0.5186 + }, + { + "start": 2091.9, + "end": 2098.02, + "probability": 0.9925 + }, + { + "start": 2098.2, + "end": 2101.16, + "probability": 0.9482 + }, + { + "start": 2101.8, + "end": 2104.62, + "probability": 0.9894 + }, + { + "start": 2104.62, + "end": 2108.74, + "probability": 0.995 + }, + { + "start": 2109.18, + "end": 2112.74, + "probability": 0.9996 + }, + { + "start": 2112.88, + "end": 2114.72, + "probability": 0.8192 + }, + { + "start": 2114.98, + "end": 2116.2, + "probability": 0.8456 + }, + { + "start": 2116.82, + "end": 2118.86, + "probability": 0.9434 + }, + { + "start": 2119.56, + "end": 2120.84, + "probability": 0.9591 + }, + { + "start": 2120.84, + "end": 2123.08, + "probability": 0.981 + }, + { + "start": 2123.26, + "end": 2124.46, + "probability": 0.9798 + }, + { + "start": 2124.82, + "end": 2127.8, + "probability": 0.9772 + }, + { + "start": 2128.46, + "end": 2129.7, + "probability": 0.9932 + }, + { + "start": 2129.78, + "end": 2130.27, + "probability": 0.9939 + }, + { + "start": 2130.42, + "end": 2131.12, + "probability": 0.8698 + }, + { + "start": 2131.28, + "end": 2131.84, + "probability": 0.8976 + }, + { + "start": 2132.34, + "end": 2138.7, + "probability": 0.985 + }, + { + "start": 2138.86, + "end": 2139.32, + "probability": 0.8997 + }, + { + "start": 2139.48, + "end": 2140.44, + "probability": 0.9759 + }, + { + "start": 2140.58, + "end": 2141.6, + "probability": 0.9937 + }, + { + "start": 2142.12, + "end": 2144.74, + "probability": 0.9907 + }, + { + "start": 2145.28, + "end": 2147.08, + "probability": 0.987 + }, + { + "start": 2147.84, + "end": 2149.16, + "probability": 0.9877 + }, + { + "start": 2149.3, + "end": 2149.74, + "probability": 0.8619 + }, + { + "start": 2149.82, + "end": 2153.08, + "probability": 0.9932 + }, + { + "start": 2153.84, + "end": 2155.64, + "probability": 0.8391 + }, + { + "start": 2155.72, + "end": 2156.52, + "probability": 0.7821 + }, + { + "start": 2156.68, + "end": 2158.4, + "probability": 0.8456 + }, + { + "start": 2158.46, + "end": 2158.96, + "probability": 0.771 + }, + { + "start": 2159.22, + "end": 2160.0, + "probability": 0.873 + }, + { + "start": 2160.44, + "end": 2162.08, + "probability": 0.9902 + }, + { + "start": 2163.54, + "end": 2167.56, + "probability": 0.9983 + }, + { + "start": 2167.56, + "end": 2169.84, + "probability": 0.9961 + }, + { + "start": 2170.28, + "end": 2172.14, + "probability": 0.9734 + }, + { + "start": 2172.4, + "end": 2174.68, + "probability": 0.9873 + }, + { + "start": 2174.92, + "end": 2176.84, + "probability": 0.9487 + }, + { + "start": 2176.98, + "end": 2177.54, + "probability": 0.5233 + }, + { + "start": 2177.72, + "end": 2178.36, + "probability": 0.9202 + }, + { + "start": 2178.96, + "end": 2184.1, + "probability": 0.9973 + }, + { + "start": 2184.68, + "end": 2187.88, + "probability": 0.9927 + }, + { + "start": 2187.88, + "end": 2193.24, + "probability": 0.9885 + }, + { + "start": 2193.9, + "end": 2198.42, + "probability": 0.9933 + }, + { + "start": 2198.46, + "end": 2201.84, + "probability": 0.9985 + }, + { + "start": 2202.3, + "end": 2207.33, + "probability": 0.9914 + }, + { + "start": 2207.94, + "end": 2209.58, + "probability": 0.985 + }, + { + "start": 2209.6, + "end": 2209.96, + "probability": 0.8084 + }, + { + "start": 2210.48, + "end": 2211.04, + "probability": 0.9069 + }, + { + "start": 2211.1, + "end": 2211.86, + "probability": 0.4662 + }, + { + "start": 2211.92, + "end": 2214.14, + "probability": 0.7398 + }, + { + "start": 2214.98, + "end": 2215.58, + "probability": 0.8505 + }, + { + "start": 2226.96, + "end": 2229.24, + "probability": 0.6658 + }, + { + "start": 2229.62, + "end": 2232.56, + "probability": 0.9611 + }, + { + "start": 2234.8, + "end": 2238.62, + "probability": 0.0301 + }, + { + "start": 2239.54, + "end": 2241.16, + "probability": 0.9697 + }, + { + "start": 2241.54, + "end": 2242.04, + "probability": 0.5499 + }, + { + "start": 2243.52, + "end": 2244.3, + "probability": 0.5997 + }, + { + "start": 2244.42, + "end": 2245.36, + "probability": 0.5817 + }, + { + "start": 2245.66, + "end": 2246.86, + "probability": 0.8486 + }, + { + "start": 2247.66, + "end": 2248.76, + "probability": 0.8568 + }, + { + "start": 2250.22, + "end": 2251.24, + "probability": 0.8486 + }, + { + "start": 2253.28, + "end": 2253.98, + "probability": 0.5607 + }, + { + "start": 2256.34, + "end": 2257.94, + "probability": 0.9958 + }, + { + "start": 2258.4, + "end": 2258.64, + "probability": 0.467 + }, + { + "start": 2258.64, + "end": 2259.88, + "probability": 0.8491 + }, + { + "start": 2260.02, + "end": 2260.3, + "probability": 0.495 + }, + { + "start": 2260.42, + "end": 2260.66, + "probability": 0.7186 + }, + { + "start": 2262.91, + "end": 2265.54, + "probability": 0.8929 + }, + { + "start": 2267.74, + "end": 2271.3, + "probability": 0.8889 + }, + { + "start": 2272.42, + "end": 2273.12, + "probability": 0.9346 + }, + { + "start": 2274.14, + "end": 2275.64, + "probability": 0.9872 + }, + { + "start": 2275.72, + "end": 2276.5, + "probability": 0.9831 + }, + { + "start": 2276.5, + "end": 2279.34, + "probability": 0.9802 + }, + { + "start": 2280.06, + "end": 2280.7, + "probability": 0.8501 + }, + { + "start": 2281.84, + "end": 2282.46, + "probability": 0.8546 + }, + { + "start": 2285.86, + "end": 2287.41, + "probability": 0.7143 + }, + { + "start": 2288.18, + "end": 2291.39, + "probability": 0.8768 + }, + { + "start": 2292.59, + "end": 2295.59, + "probability": 0.9538 + }, + { + "start": 2296.03, + "end": 2298.88, + "probability": 0.9231 + }, + { + "start": 2299.27, + "end": 2301.08, + "probability": 0.8269 + }, + { + "start": 2303.0, + "end": 2304.99, + "probability": 0.9883 + }, + { + "start": 2305.61, + "end": 2306.61, + "probability": 0.5759 + }, + { + "start": 2307.47, + "end": 2312.63, + "probability": 0.9009 + }, + { + "start": 2313.57, + "end": 2314.63, + "probability": 0.8779 + }, + { + "start": 2314.77, + "end": 2316.79, + "probability": 0.9777 + }, + { + "start": 2317.01, + "end": 2318.49, + "probability": 0.947 + }, + { + "start": 2318.61, + "end": 2319.23, + "probability": 0.8149 + }, + { + "start": 2319.57, + "end": 2320.51, + "probability": 0.4745 + }, + { + "start": 2320.81, + "end": 2322.87, + "probability": 0.7321 + }, + { + "start": 2322.97, + "end": 2325.27, + "probability": 0.9942 + }, + { + "start": 2326.81, + "end": 2328.87, + "probability": 0.7691 + }, + { + "start": 2329.13, + "end": 2333.98, + "probability": 0.96 + }, + { + "start": 2334.77, + "end": 2335.37, + "probability": 0.4222 + }, + { + "start": 2336.25, + "end": 2338.31, + "probability": 0.9922 + }, + { + "start": 2339.29, + "end": 2339.73, + "probability": 0.7382 + }, + { + "start": 2340.53, + "end": 2342.07, + "probability": 0.9873 + }, + { + "start": 2344.43, + "end": 2348.07, + "probability": 0.9982 + }, + { + "start": 2348.41, + "end": 2350.05, + "probability": 0.7845 + }, + { + "start": 2350.61, + "end": 2354.19, + "probability": 0.9941 + }, + { + "start": 2354.77, + "end": 2357.61, + "probability": 0.9482 + }, + { + "start": 2358.49, + "end": 2361.89, + "probability": 0.9869 + }, + { + "start": 2362.91, + "end": 2365.75, + "probability": 0.9235 + }, + { + "start": 2367.03, + "end": 2370.89, + "probability": 0.9783 + }, + { + "start": 2370.95, + "end": 2374.1, + "probability": 0.9808 + }, + { + "start": 2374.87, + "end": 2379.77, + "probability": 0.9957 + }, + { + "start": 2380.65, + "end": 2383.49, + "probability": 0.8831 + }, + { + "start": 2383.49, + "end": 2387.85, + "probability": 0.8418 + }, + { + "start": 2388.81, + "end": 2389.55, + "probability": 0.6677 + }, + { + "start": 2390.09, + "end": 2390.09, + "probability": 0.3788 + }, + { + "start": 2390.09, + "end": 2390.41, + "probability": 0.7711 + }, + { + "start": 2390.57, + "end": 2391.51, + "probability": 0.7134 + }, + { + "start": 2391.57, + "end": 2391.85, + "probability": 0.7664 + }, + { + "start": 2392.81, + "end": 2395.01, + "probability": 0.9508 + }, + { + "start": 2395.05, + "end": 2395.79, + "probability": 0.9656 + }, + { + "start": 2395.85, + "end": 2398.15, + "probability": 0.988 + }, + { + "start": 2398.89, + "end": 2402.07, + "probability": 0.9602 + }, + { + "start": 2402.21, + "end": 2403.83, + "probability": 0.9399 + }, + { + "start": 2406.11, + "end": 2406.39, + "probability": 0.8969 + }, + { + "start": 2406.43, + "end": 2407.49, + "probability": 0.6327 + }, + { + "start": 2408.79, + "end": 2410.53, + "probability": 0.8542 + }, + { + "start": 2410.67, + "end": 2413.73, + "probability": 0.885 + }, + { + "start": 2414.47, + "end": 2417.67, + "probability": 0.9782 + }, + { + "start": 2417.67, + "end": 2420.95, + "probability": 0.9786 + }, + { + "start": 2422.03, + "end": 2424.29, + "probability": 0.9854 + }, + { + "start": 2424.29, + "end": 2427.25, + "probability": 0.9969 + }, + { + "start": 2428.69, + "end": 2429.87, + "probability": 0.7186 + }, + { + "start": 2430.13, + "end": 2433.27, + "probability": 0.9986 + }, + { + "start": 2434.05, + "end": 2437.19, + "probability": 0.9665 + }, + { + "start": 2438.03, + "end": 2441.65, + "probability": 0.9759 + }, + { + "start": 2442.39, + "end": 2443.71, + "probability": 0.7892 + }, + { + "start": 2443.75, + "end": 2446.75, + "probability": 0.9754 + }, + { + "start": 2447.49, + "end": 2448.49, + "probability": 0.9636 + }, + { + "start": 2449.29, + "end": 2450.69, + "probability": 0.6689 + }, + { + "start": 2450.81, + "end": 2451.95, + "probability": 0.955 + }, + { + "start": 2452.07, + "end": 2452.89, + "probability": 0.779 + }, + { + "start": 2453.13, + "end": 2454.73, + "probability": 0.984 + }, + { + "start": 2455.67, + "end": 2460.65, + "probability": 0.9812 + }, + { + "start": 2461.53, + "end": 2464.91, + "probability": 0.993 + }, + { + "start": 2466.47, + "end": 2469.87, + "probability": 0.8365 + }, + { + "start": 2472.53, + "end": 2476.19, + "probability": 0.9801 + }, + { + "start": 2477.73, + "end": 2479.79, + "probability": 0.8488 + }, + { + "start": 2482.07, + "end": 2485.59, + "probability": 0.7825 + }, + { + "start": 2485.59, + "end": 2489.23, + "probability": 0.9372 + }, + { + "start": 2489.67, + "end": 2490.61, + "probability": 0.7442 + }, + { + "start": 2491.57, + "end": 2495.09, + "probability": 0.979 + }, + { + "start": 2496.97, + "end": 2501.57, + "probability": 0.9653 + }, + { + "start": 2502.41, + "end": 2503.49, + "probability": 0.7429 + }, + { + "start": 2503.65, + "end": 2508.38, + "probability": 0.9193 + }, + { + "start": 2508.61, + "end": 2510.19, + "probability": 0.7166 + }, + { + "start": 2511.39, + "end": 2516.11, + "probability": 0.9373 + }, + { + "start": 2517.29, + "end": 2517.99, + "probability": 0.6514 + }, + { + "start": 2518.79, + "end": 2519.19, + "probability": 0.8876 + }, + { + "start": 2520.23, + "end": 2520.89, + "probability": 0.7235 + }, + { + "start": 2520.97, + "end": 2521.29, + "probability": 0.8312 + }, + { + "start": 2522.11, + "end": 2523.25, + "probability": 0.8522 + }, + { + "start": 2523.43, + "end": 2526.43, + "probability": 0.734 + }, + { + "start": 2526.43, + "end": 2529.15, + "probability": 0.9829 + }, + { + "start": 2529.38, + "end": 2533.19, + "probability": 0.6374 + }, + { + "start": 2533.19, + "end": 2533.19, + "probability": 0.7384 + }, + { + "start": 2533.19, + "end": 2533.75, + "probability": 0.1782 + }, + { + "start": 2533.97, + "end": 2540.71, + "probability": 0.9814 + }, + { + "start": 2540.71, + "end": 2541.77, + "probability": 0.0689 + }, + { + "start": 2541.81, + "end": 2542.43, + "probability": 0.4752 + }, + { + "start": 2543.49, + "end": 2544.31, + "probability": 0.4934 + }, + { + "start": 2544.59, + "end": 2548.15, + "probability": 0.8859 + }, + { + "start": 2548.29, + "end": 2553.81, + "probability": 0.9456 + }, + { + "start": 2553.81, + "end": 2556.87, + "probability": 0.6575 + }, + { + "start": 2557.05, + "end": 2557.25, + "probability": 0.6577 + }, + { + "start": 2557.25, + "end": 2559.61, + "probability": 0.5837 + }, + { + "start": 2560.53, + "end": 2567.75, + "probability": 0.9556 + }, + { + "start": 2567.79, + "end": 2568.93, + "probability": 0.864 + }, + { + "start": 2568.99, + "end": 2571.65, + "probability": 0.9779 + }, + { + "start": 2572.17, + "end": 2573.21, + "probability": 0.4001 + }, + { + "start": 2574.09, + "end": 2575.17, + "probability": 0.6135 + }, + { + "start": 2575.88, + "end": 2580.07, + "probability": 0.8507 + }, + { + "start": 2596.81, + "end": 2598.53, + "probability": 0.8307 + }, + { + "start": 2599.99, + "end": 2602.97, + "probability": 0.8158 + }, + { + "start": 2604.05, + "end": 2604.29, + "probability": 0.4762 + }, + { + "start": 2604.39, + "end": 2607.57, + "probability": 0.9694 + }, + { + "start": 2607.57, + "end": 2611.19, + "probability": 0.9649 + }, + { + "start": 2611.45, + "end": 2612.53, + "probability": 0.9448 + }, + { + "start": 2613.03, + "end": 2614.83, + "probability": 0.9078 + }, + { + "start": 2615.91, + "end": 2616.19, + "probability": 0.5781 + }, + { + "start": 2616.29, + "end": 2619.09, + "probability": 0.7389 + }, + { + "start": 2619.25, + "end": 2619.27, + "probability": 0.527 + }, + { + "start": 2619.27, + "end": 2620.19, + "probability": 0.4995 + }, + { + "start": 2620.91, + "end": 2622.23, + "probability": 0.9604 + }, + { + "start": 2622.93, + "end": 2627.27, + "probability": 0.916 + }, + { + "start": 2627.79, + "end": 2629.21, + "probability": 0.889 + }, + { + "start": 2629.57, + "end": 2632.11, + "probability": 0.8659 + }, + { + "start": 2632.37, + "end": 2633.47, + "probability": 0.9966 + }, + { + "start": 2634.57, + "end": 2636.27, + "probability": 0.9943 + }, + { + "start": 2637.61, + "end": 2639.99, + "probability": 0.9382 + }, + { + "start": 2640.65, + "end": 2641.91, + "probability": 0.9691 + }, + { + "start": 2642.65, + "end": 2645.87, + "probability": 0.9123 + }, + { + "start": 2645.91, + "end": 2646.67, + "probability": 0.9531 + }, + { + "start": 2646.79, + "end": 2649.31, + "probability": 0.9912 + }, + { + "start": 2649.37, + "end": 2654.95, + "probability": 0.8926 + }, + { + "start": 2655.59, + "end": 2656.15, + "probability": 0.8167 + }, + { + "start": 2656.95, + "end": 2658.53, + "probability": 0.9656 + }, + { + "start": 2659.09, + "end": 2662.25, + "probability": 0.9991 + }, + { + "start": 2662.91, + "end": 2664.25, + "probability": 0.8303 + }, + { + "start": 2664.99, + "end": 2665.17, + "probability": 0.7467 + }, + { + "start": 2665.35, + "end": 2670.23, + "probability": 0.9841 + }, + { + "start": 2670.83, + "end": 2671.81, + "probability": 0.9948 + }, + { + "start": 2672.17, + "end": 2672.77, + "probability": 0.9932 + }, + { + "start": 2673.21, + "end": 2673.83, + "probability": 0.8704 + }, + { + "start": 2674.27, + "end": 2678.23, + "probability": 0.9424 + }, + { + "start": 2678.81, + "end": 2681.65, + "probability": 0.9941 + }, + { + "start": 2682.75, + "end": 2684.81, + "probability": 0.9584 + }, + { + "start": 2685.49, + "end": 2686.97, + "probability": 0.9893 + }, + { + "start": 2687.77, + "end": 2688.83, + "probability": 0.9624 + }, + { + "start": 2689.31, + "end": 2692.43, + "probability": 0.9718 + }, + { + "start": 2693.45, + "end": 2696.55, + "probability": 0.9989 + }, + { + "start": 2697.29, + "end": 2699.19, + "probability": 0.9927 + }, + { + "start": 2699.97, + "end": 2702.75, + "probability": 0.9143 + }, + { + "start": 2703.15, + "end": 2705.85, + "probability": 0.9985 + }, + { + "start": 2706.49, + "end": 2707.59, + "probability": 0.9153 + }, + { + "start": 2708.29, + "end": 2709.33, + "probability": 0.9688 + }, + { + "start": 2710.49, + "end": 2715.17, + "probability": 0.9912 + }, + { + "start": 2715.81, + "end": 2718.21, + "probability": 0.9096 + }, + { + "start": 2718.75, + "end": 2719.99, + "probability": 0.988 + }, + { + "start": 2720.49, + "end": 2722.05, + "probability": 0.9937 + }, + { + "start": 2722.45, + "end": 2723.09, + "probability": 0.9064 + }, + { + "start": 2723.55, + "end": 2723.99, + "probability": 0.9332 + }, + { + "start": 2724.21, + "end": 2726.13, + "probability": 0.9909 + }, + { + "start": 2727.54, + "end": 2731.85, + "probability": 0.7536 + }, + { + "start": 2731.85, + "end": 2736.11, + "probability": 0.9604 + }, + { + "start": 2736.77, + "end": 2738.81, + "probability": 0.9711 + }, + { + "start": 2739.49, + "end": 2743.07, + "probability": 0.9644 + }, + { + "start": 2744.13, + "end": 2746.65, + "probability": 0.9963 + }, + { + "start": 2748.15, + "end": 2748.53, + "probability": 0.8783 + }, + { + "start": 2749.45, + "end": 2753.53, + "probability": 0.9858 + }, + { + "start": 2754.11, + "end": 2758.51, + "probability": 0.9969 + }, + { + "start": 2759.57, + "end": 2763.27, + "probability": 0.9191 + }, + { + "start": 2764.03, + "end": 2767.37, + "probability": 0.7223 + }, + { + "start": 2768.09, + "end": 2768.97, + "probability": 0.8834 + }, + { + "start": 2769.43, + "end": 2770.43, + "probability": 0.9768 + }, + { + "start": 2770.89, + "end": 2773.11, + "probability": 0.9804 + }, + { + "start": 2774.19, + "end": 2777.93, + "probability": 0.9902 + }, + { + "start": 2778.85, + "end": 2780.83, + "probability": 0.9769 + }, + { + "start": 2781.61, + "end": 2782.37, + "probability": 0.9554 + }, + { + "start": 2783.33, + "end": 2786.93, + "probability": 0.9907 + }, + { + "start": 2787.43, + "end": 2789.67, + "probability": 0.9749 + }, + { + "start": 2790.35, + "end": 2791.97, + "probability": 0.9885 + }, + { + "start": 2792.41, + "end": 2794.39, + "probability": 0.9018 + }, + { + "start": 2795.15, + "end": 2795.69, + "probability": 0.9762 + }, + { + "start": 2796.25, + "end": 2799.27, + "probability": 0.9757 + }, + { + "start": 2799.89, + "end": 2803.43, + "probability": 0.9891 + }, + { + "start": 2804.15, + "end": 2810.27, + "probability": 0.995 + }, + { + "start": 2811.19, + "end": 2814.93, + "probability": 0.9985 + }, + { + "start": 2815.55, + "end": 2818.07, + "probability": 0.9976 + }, + { + "start": 2818.07, + "end": 2821.51, + "probability": 0.9883 + }, + { + "start": 2822.51, + "end": 2825.08, + "probability": 0.9962 + }, + { + "start": 2825.17, + "end": 2828.29, + "probability": 0.9827 + }, + { + "start": 2828.67, + "end": 2831.91, + "probability": 0.9681 + }, + { + "start": 2831.91, + "end": 2835.27, + "probability": 0.9982 + }, + { + "start": 2836.33, + "end": 2840.09, + "probability": 0.9839 + }, + { + "start": 2840.45, + "end": 2844.51, + "probability": 0.9295 + }, + { + "start": 2844.51, + "end": 2850.67, + "probability": 0.9292 + }, + { + "start": 2851.67, + "end": 2853.29, + "probability": 0.9787 + }, + { + "start": 2853.91, + "end": 2857.37, + "probability": 0.8832 + }, + { + "start": 2857.75, + "end": 2859.91, + "probability": 0.9592 + }, + { + "start": 2860.27, + "end": 2862.27, + "probability": 0.9873 + }, + { + "start": 2863.65, + "end": 2866.83, + "probability": 0.9723 + }, + { + "start": 2867.85, + "end": 2868.49, + "probability": 0.7495 + }, + { + "start": 2869.11, + "end": 2870.51, + "probability": 0.9971 + }, + { + "start": 2871.05, + "end": 2871.59, + "probability": 0.831 + }, + { + "start": 2871.93, + "end": 2875.25, + "probability": 0.9906 + }, + { + "start": 2876.77, + "end": 2877.41, + "probability": 0.7432 + }, + { + "start": 2878.43, + "end": 2883.47, + "probability": 0.9915 + }, + { + "start": 2884.35, + "end": 2885.99, + "probability": 0.9388 + }, + { + "start": 2886.31, + "end": 2887.17, + "probability": 0.9378 + }, + { + "start": 2887.35, + "end": 2887.85, + "probability": 0.4925 + }, + { + "start": 2887.97, + "end": 2888.79, + "probability": 0.6957 + }, + { + "start": 2889.21, + "end": 2891.47, + "probability": 0.9876 + }, + { + "start": 2891.73, + "end": 2892.25, + "probability": 0.5625 + }, + { + "start": 2892.93, + "end": 2895.61, + "probability": 0.9902 + }, + { + "start": 2895.61, + "end": 2898.53, + "probability": 0.998 + }, + { + "start": 2899.23, + "end": 2900.51, + "probability": 0.9854 + }, + { + "start": 2901.03, + "end": 2902.79, + "probability": 0.9967 + }, + { + "start": 2903.27, + "end": 2904.63, + "probability": 0.7563 + }, + { + "start": 2905.25, + "end": 2907.81, + "probability": 0.9468 + }, + { + "start": 2908.37, + "end": 2909.03, + "probability": 0.8065 + }, + { + "start": 2909.55, + "end": 2910.57, + "probability": 0.9211 + }, + { + "start": 2911.85, + "end": 2913.01, + "probability": 0.4622 + }, + { + "start": 2913.59, + "end": 2916.65, + "probability": 0.8332 + }, + { + "start": 2917.79, + "end": 2920.93, + "probability": 0.8086 + }, + { + "start": 2930.27, + "end": 2933.37, + "probability": 0.2642 + }, + { + "start": 2944.35, + "end": 2945.05, + "probability": 0.853 + }, + { + "start": 2945.65, + "end": 2946.17, + "probability": 0.7724 + }, + { + "start": 2946.53, + "end": 2947.43, + "probability": 0.8278 + }, + { + "start": 2947.57, + "end": 2948.57, + "probability": 0.9116 + }, + { + "start": 2948.63, + "end": 2951.77, + "probability": 0.7932 + }, + { + "start": 2951.77, + "end": 2954.07, + "probability": 0.9824 + }, + { + "start": 2954.81, + "end": 2957.61, + "probability": 0.9966 + }, + { + "start": 2958.19, + "end": 2963.49, + "probability": 0.7552 + }, + { + "start": 2964.55, + "end": 2970.59, + "probability": 0.9218 + }, + { + "start": 2971.35, + "end": 2974.83, + "probability": 0.8077 + }, + { + "start": 2974.83, + "end": 2978.23, + "probability": 0.9817 + }, + { + "start": 2978.27, + "end": 2978.61, + "probability": 0.6765 + }, + { + "start": 2979.41, + "end": 2984.97, + "probability": 0.9609 + }, + { + "start": 2985.17, + "end": 2986.89, + "probability": 0.8481 + }, + { + "start": 2987.01, + "end": 2989.51, + "probability": 0.9767 + }, + { + "start": 2989.67, + "end": 2990.65, + "probability": 0.8682 + }, + { + "start": 2991.23, + "end": 2993.15, + "probability": 0.8818 + }, + { + "start": 2993.27, + "end": 2999.31, + "probability": 0.8863 + }, + { + "start": 2999.95, + "end": 3004.77, + "probability": 0.9857 + }, + { + "start": 3005.31, + "end": 3009.69, + "probability": 0.9983 + }, + { + "start": 3009.91, + "end": 3013.73, + "probability": 0.9207 + }, + { + "start": 3013.99, + "end": 3019.41, + "probability": 0.9961 + }, + { + "start": 3019.41, + "end": 3021.63, + "probability": 0.9944 + }, + { + "start": 3022.39, + "end": 3023.51, + "probability": 0.9131 + }, + { + "start": 3023.69, + "end": 3026.11, + "probability": 0.998 + }, + { + "start": 3026.11, + "end": 3028.71, + "probability": 0.9905 + }, + { + "start": 3029.81, + "end": 3032.51, + "probability": 0.9996 + }, + { + "start": 3033.01, + "end": 3036.17, + "probability": 0.998 + }, + { + "start": 3036.31, + "end": 3038.59, + "probability": 0.796 + }, + { + "start": 3038.89, + "end": 3041.29, + "probability": 0.9207 + }, + { + "start": 3041.83, + "end": 3046.69, + "probability": 0.9904 + }, + { + "start": 3046.89, + "end": 3048.81, + "probability": 0.9603 + }, + { + "start": 3049.27, + "end": 3050.57, + "probability": 0.8768 + }, + { + "start": 3050.65, + "end": 3053.47, + "probability": 0.93 + }, + { + "start": 3053.85, + "end": 3054.33, + "probability": 0.7572 + }, + { + "start": 3054.41, + "end": 3058.45, + "probability": 0.9639 + }, + { + "start": 3058.51, + "end": 3063.35, + "probability": 0.9961 + }, + { + "start": 3063.93, + "end": 3067.89, + "probability": 0.9935 + }, + { + "start": 3068.05, + "end": 3071.25, + "probability": 0.9971 + }, + { + "start": 3071.33, + "end": 3072.95, + "probability": 0.7106 + }, + { + "start": 3073.13, + "end": 3075.87, + "probability": 0.9746 + }, + { + "start": 3076.63, + "end": 3079.17, + "probability": 0.9986 + }, + { + "start": 3079.17, + "end": 3082.29, + "probability": 0.9998 + }, + { + "start": 3082.93, + "end": 3086.53, + "probability": 0.9463 + }, + { + "start": 3087.33, + "end": 3088.95, + "probability": 0.8337 + }, + { + "start": 3090.39, + "end": 3093.41, + "probability": 0.5961 + }, + { + "start": 3093.63, + "end": 3097.19, + "probability": 0.7932 + }, + { + "start": 3097.55, + "end": 3100.57, + "probability": 0.9812 + }, + { + "start": 3100.65, + "end": 3105.09, + "probability": 0.9693 + }, + { + "start": 3105.57, + "end": 3110.05, + "probability": 0.979 + }, + { + "start": 3110.69, + "end": 3111.88, + "probability": 0.9596 + }, + { + "start": 3112.25, + "end": 3114.67, + "probability": 0.9958 + }, + { + "start": 3115.17, + "end": 3118.19, + "probability": 0.9946 + }, + { + "start": 3118.67, + "end": 3120.03, + "probability": 0.9926 + }, + { + "start": 3120.15, + "end": 3121.03, + "probability": 0.9481 + }, + { + "start": 3122.23, + "end": 3125.17, + "probability": 0.6674 + }, + { + "start": 3125.17, + "end": 3127.63, + "probability": 0.9907 + }, + { + "start": 3128.21, + "end": 3131.21, + "probability": 0.829 + }, + { + "start": 3132.23, + "end": 3134.61, + "probability": 0.998 + }, + { + "start": 3134.61, + "end": 3138.01, + "probability": 0.9993 + }, + { + "start": 3138.19, + "end": 3140.93, + "probability": 0.9935 + }, + { + "start": 3141.39, + "end": 3142.93, + "probability": 0.9585 + }, + { + "start": 3142.99, + "end": 3146.67, + "probability": 0.9906 + }, + { + "start": 3147.25, + "end": 3150.81, + "probability": 0.9967 + }, + { + "start": 3150.81, + "end": 3155.21, + "probability": 0.9989 + }, + { + "start": 3156.41, + "end": 3157.25, + "probability": 0.8251 + }, + { + "start": 3157.37, + "end": 3161.05, + "probability": 0.9926 + }, + { + "start": 3161.05, + "end": 3165.47, + "probability": 0.9523 + }, + { + "start": 3165.47, + "end": 3169.11, + "probability": 0.999 + }, + { + "start": 3169.63, + "end": 3174.33, + "probability": 0.9972 + }, + { + "start": 3174.83, + "end": 3175.93, + "probability": 0.9713 + }, + { + "start": 3176.11, + "end": 3179.15, + "probability": 0.9832 + }, + { + "start": 3179.31, + "end": 3180.29, + "probability": 0.6587 + }, + { + "start": 3180.39, + "end": 3180.95, + "probability": 0.6344 + }, + { + "start": 3181.15, + "end": 3183.37, + "probability": 0.9538 + }, + { + "start": 3183.55, + "end": 3189.29, + "probability": 0.9763 + }, + { + "start": 3189.71, + "end": 3190.63, + "probability": 0.9811 + }, + { + "start": 3191.33, + "end": 3196.29, + "probability": 0.9702 + }, + { + "start": 3196.39, + "end": 3201.53, + "probability": 0.9291 + }, + { + "start": 3201.77, + "end": 3204.59, + "probability": 0.9833 + }, + { + "start": 3204.93, + "end": 3209.35, + "probability": 0.9972 + }, + { + "start": 3209.85, + "end": 3212.33, + "probability": 0.7936 + }, + { + "start": 3212.33, + "end": 3215.37, + "probability": 0.999 + }, + { + "start": 3215.71, + "end": 3216.09, + "probability": 0.5346 + }, + { + "start": 3216.19, + "end": 3219.79, + "probability": 0.9797 + }, + { + "start": 3219.79, + "end": 3222.87, + "probability": 0.9799 + }, + { + "start": 3223.09, + "end": 3226.79, + "probability": 0.9987 + }, + { + "start": 3227.33, + "end": 3229.69, + "probability": 0.9665 + }, + { + "start": 3229.69, + "end": 3232.97, + "probability": 0.9987 + }, + { + "start": 3233.45, + "end": 3235.29, + "probability": 0.9504 + }, + { + "start": 3235.77, + "end": 3239.87, + "probability": 0.9793 + }, + { + "start": 3240.35, + "end": 3242.75, + "probability": 0.9468 + }, + { + "start": 3242.89, + "end": 3244.09, + "probability": 0.917 + }, + { + "start": 3244.55, + "end": 3248.53, + "probability": 0.9593 + }, + { + "start": 3249.15, + "end": 3252.01, + "probability": 0.9973 + }, + { + "start": 3252.01, + "end": 3255.81, + "probability": 0.9975 + }, + { + "start": 3255.97, + "end": 3257.35, + "probability": 0.7725 + }, + { + "start": 3257.63, + "end": 3258.09, + "probability": 0.9473 + }, + { + "start": 3258.27, + "end": 3258.65, + "probability": 0.9779 + }, + { + "start": 3258.69, + "end": 3260.35, + "probability": 0.8926 + }, + { + "start": 3260.71, + "end": 3264.63, + "probability": 0.9909 + }, + { + "start": 3264.63, + "end": 3269.45, + "probability": 0.998 + }, + { + "start": 3269.91, + "end": 3271.01, + "probability": 0.8734 + }, + { + "start": 3274.51, + "end": 3276.51, + "probability": 0.9945 + }, + { + "start": 3276.97, + "end": 3278.59, + "probability": 0.9922 + }, + { + "start": 3278.67, + "end": 3280.59, + "probability": 0.9409 + }, + { + "start": 3280.95, + "end": 3282.01, + "probability": 0.9936 + }, + { + "start": 3282.09, + "end": 3284.83, + "probability": 0.9927 + }, + { + "start": 3285.67, + "end": 3289.45, + "probability": 0.9956 + }, + { + "start": 3289.85, + "end": 3290.64, + "probability": 0.9866 + }, + { + "start": 3291.23, + "end": 3295.23, + "probability": 0.8931 + }, + { + "start": 3295.61, + "end": 3299.81, + "probability": 0.9852 + }, + { + "start": 3300.21, + "end": 3305.65, + "probability": 0.9935 + }, + { + "start": 3306.11, + "end": 3308.35, + "probability": 0.9977 + }, + { + "start": 3308.85, + "end": 3311.09, + "probability": 0.9914 + }, + { + "start": 3311.63, + "end": 3312.13, + "probability": 0.7989 + }, + { + "start": 3312.43, + "end": 3314.27, + "probability": 0.9827 + }, + { + "start": 3314.37, + "end": 3315.97, + "probability": 0.9825 + }, + { + "start": 3316.03, + "end": 3318.33, + "probability": 0.8111 + }, + { + "start": 3318.61, + "end": 3319.67, + "probability": 0.8037 + }, + { + "start": 3320.33, + "end": 3321.79, + "probability": 0.99 + }, + { + "start": 3321.89, + "end": 3323.39, + "probability": 0.9495 + }, + { + "start": 3323.39, + "end": 3323.81, + "probability": 0.8957 + }, + { + "start": 3323.99, + "end": 3325.03, + "probability": 0.6833 + }, + { + "start": 3325.43, + "end": 3327.45, + "probability": 0.9697 + }, + { + "start": 3327.65, + "end": 3328.21, + "probability": 0.5066 + }, + { + "start": 3328.21, + "end": 3330.09, + "probability": 0.7421 + }, + { + "start": 3330.55, + "end": 3330.91, + "probability": 0.8557 + }, + { + "start": 3348.43, + "end": 3350.4, + "probability": 0.7372 + }, + { + "start": 3351.29, + "end": 3351.59, + "probability": 0.3322 + }, + { + "start": 3352.73, + "end": 3353.33, + "probability": 0.6153 + }, + { + "start": 3353.39, + "end": 3355.07, + "probability": 0.8025 + }, + { + "start": 3355.27, + "end": 3356.47, + "probability": 0.8468 + }, + { + "start": 3356.51, + "end": 3357.57, + "probability": 0.8094 + }, + { + "start": 3358.03, + "end": 3358.81, + "probability": 0.4952 + }, + { + "start": 3358.81, + "end": 3361.17, + "probability": 0.8456 + }, + { + "start": 3361.17, + "end": 3363.91, + "probability": 0.9797 + }, + { + "start": 3364.55, + "end": 3366.93, + "probability": 0.7213 + }, + { + "start": 3367.37, + "end": 3368.63, + "probability": 0.61 + }, + { + "start": 3368.93, + "end": 3370.87, + "probability": 0.772 + }, + { + "start": 3370.93, + "end": 3373.23, + "probability": 0.6214 + }, + { + "start": 3373.79, + "end": 3377.69, + "probability": 0.9948 + }, + { + "start": 3377.91, + "end": 3378.89, + "probability": 0.6892 + }, + { + "start": 3379.41, + "end": 3381.43, + "probability": 0.8907 + }, + { + "start": 3381.93, + "end": 3386.61, + "probability": 0.9976 + }, + { + "start": 3387.67, + "end": 3390.31, + "probability": 0.8959 + }, + { + "start": 3390.95, + "end": 3393.57, + "probability": 0.8765 + }, + { + "start": 3393.63, + "end": 3395.57, + "probability": 0.6977 + }, + { + "start": 3395.93, + "end": 3398.83, + "probability": 0.9924 + }, + { + "start": 3399.85, + "end": 3402.49, + "probability": 0.982 + }, + { + "start": 3403.23, + "end": 3408.45, + "probability": 0.9971 + }, + { + "start": 3409.99, + "end": 3411.47, + "probability": 0.954 + }, + { + "start": 3412.15, + "end": 3415.53, + "probability": 0.8947 + }, + { + "start": 3416.15, + "end": 3417.37, + "probability": 0.858 + }, + { + "start": 3417.75, + "end": 3419.35, + "probability": 0.9283 + }, + { + "start": 3419.67, + "end": 3421.15, + "probability": 0.9938 + }, + { + "start": 3422.81, + "end": 3423.07, + "probability": 0.7789 + }, + { + "start": 3423.09, + "end": 3427.37, + "probability": 0.9141 + }, + { + "start": 3427.37, + "end": 3431.39, + "probability": 0.9434 + }, + { + "start": 3431.85, + "end": 3433.57, + "probability": 0.989 + }, + { + "start": 3435.11, + "end": 3440.05, + "probability": 0.9887 + }, + { + "start": 3441.57, + "end": 3446.69, + "probability": 0.9854 + }, + { + "start": 3447.13, + "end": 3449.23, + "probability": 0.9837 + }, + { + "start": 3451.37, + "end": 3458.71, + "probability": 0.8333 + }, + { + "start": 3460.27, + "end": 3464.01, + "probability": 0.9978 + }, + { + "start": 3464.09, + "end": 3465.65, + "probability": 0.9185 + }, + { + "start": 3466.25, + "end": 3473.01, + "probability": 0.9882 + }, + { + "start": 3473.11, + "end": 3474.39, + "probability": 0.8369 + }, + { + "start": 3474.75, + "end": 3476.53, + "probability": 0.9835 + }, + { + "start": 3477.57, + "end": 3478.89, + "probability": 0.9048 + }, + { + "start": 3478.95, + "end": 3483.39, + "probability": 0.987 + }, + { + "start": 3484.63, + "end": 3487.23, + "probability": 0.9474 + }, + { + "start": 3487.35, + "end": 3490.61, + "probability": 0.8549 + }, + { + "start": 3491.63, + "end": 3499.09, + "probability": 0.9681 + }, + { + "start": 3500.55, + "end": 3501.75, + "probability": 0.9479 + }, + { + "start": 3502.53, + "end": 3505.29, + "probability": 0.9862 + }, + { + "start": 3505.49, + "end": 3506.77, + "probability": 0.9779 + }, + { + "start": 3507.17, + "end": 3510.19, + "probability": 0.7313 + }, + { + "start": 3510.77, + "end": 3516.17, + "probability": 0.9899 + }, + { + "start": 3516.17, + "end": 3520.61, + "probability": 0.9891 + }, + { + "start": 3521.17, + "end": 3524.15, + "probability": 0.9888 + }, + { + "start": 3524.15, + "end": 3527.01, + "probability": 0.9922 + }, + { + "start": 3527.37, + "end": 3531.29, + "probability": 0.974 + }, + { + "start": 3531.67, + "end": 3532.91, + "probability": 0.7889 + }, + { + "start": 3533.49, + "end": 3534.11, + "probability": 0.8871 + }, + { + "start": 3534.19, + "end": 3536.61, + "probability": 0.7299 + }, + { + "start": 3536.67, + "end": 3537.75, + "probability": 0.9388 + }, + { + "start": 3538.61, + "end": 3540.63, + "probability": 0.9969 + }, + { + "start": 3541.55, + "end": 3544.61, + "probability": 0.9668 + }, + { + "start": 3545.15, + "end": 3547.83, + "probability": 0.9417 + }, + { + "start": 3548.37, + "end": 3551.03, + "probability": 0.9137 + }, + { + "start": 3551.61, + "end": 3558.04, + "probability": 0.9993 + }, + { + "start": 3558.13, + "end": 3563.05, + "probability": 0.9078 + }, + { + "start": 3563.39, + "end": 3564.89, + "probability": 0.9885 + }, + { + "start": 3565.49, + "end": 3566.31, + "probability": 0.8722 + }, + { + "start": 3566.43, + "end": 3567.35, + "probability": 0.9926 + }, + { + "start": 3567.51, + "end": 3569.71, + "probability": 0.5757 + }, + { + "start": 3569.75, + "end": 3572.57, + "probability": 0.9915 + }, + { + "start": 3573.17, + "end": 3577.39, + "probability": 0.9775 + }, + { + "start": 3577.79, + "end": 3579.09, + "probability": 0.983 + }, + { + "start": 3579.45, + "end": 3584.43, + "probability": 0.9951 + }, + { + "start": 3585.25, + "end": 3587.13, + "probability": 0.9245 + }, + { + "start": 3587.63, + "end": 3589.55, + "probability": 0.9991 + }, + { + "start": 3589.97, + "end": 3591.13, + "probability": 0.7733 + }, + { + "start": 3591.21, + "end": 3595.27, + "probability": 0.9945 + }, + { + "start": 3595.27, + "end": 3598.59, + "probability": 0.9592 + }, + { + "start": 3598.59, + "end": 3602.99, + "probability": 0.9954 + }, + { + "start": 3604.41, + "end": 3608.43, + "probability": 0.9787 + }, + { + "start": 3609.01, + "end": 3614.81, + "probability": 0.8638 + }, + { + "start": 3615.37, + "end": 3618.99, + "probability": 0.9961 + }, + { + "start": 3619.37, + "end": 3622.49, + "probability": 0.9472 + }, + { + "start": 3622.81, + "end": 3623.83, + "probability": 0.7904 + }, + { + "start": 3624.07, + "end": 3624.95, + "probability": 0.7944 + }, + { + "start": 3625.45, + "end": 3627.81, + "probability": 0.9332 + }, + { + "start": 3628.51, + "end": 3630.75, + "probability": 0.754 + }, + { + "start": 3631.19, + "end": 3632.93, + "probability": 0.9922 + }, + { + "start": 3633.07, + "end": 3634.31, + "probability": 0.9917 + }, + { + "start": 3634.39, + "end": 3637.05, + "probability": 0.9619 + }, + { + "start": 3638.51, + "end": 3639.19, + "probability": 0.7957 + }, + { + "start": 3639.25, + "end": 3640.15, + "probability": 0.5594 + }, + { + "start": 3641.15, + "end": 3642.59, + "probability": 0.979 + }, + { + "start": 3642.73, + "end": 3644.51, + "probability": 0.9794 + }, + { + "start": 3644.63, + "end": 3645.09, + "probability": 0.9577 + }, + { + "start": 3645.17, + "end": 3645.83, + "probability": 0.9772 + }, + { + "start": 3646.13, + "end": 3646.75, + "probability": 0.983 + }, + { + "start": 3646.79, + "end": 3648.93, + "probability": 0.9929 + }, + { + "start": 3649.87, + "end": 3654.39, + "probability": 0.9798 + }, + { + "start": 3654.67, + "end": 3657.95, + "probability": 0.9767 + }, + { + "start": 3659.31, + "end": 3664.37, + "probability": 0.9789 + }, + { + "start": 3664.69, + "end": 3669.41, + "probability": 0.983 + }, + { + "start": 3670.31, + "end": 3671.71, + "probability": 0.9983 + }, + { + "start": 3672.45, + "end": 3675.31, + "probability": 0.983 + }, + { + "start": 3676.87, + "end": 3679.41, + "probability": 0.9025 + }, + { + "start": 3679.79, + "end": 3680.25, + "probability": 0.4184 + }, + { + "start": 3680.35, + "end": 3680.95, + "probability": 0.93 + }, + { + "start": 3681.05, + "end": 3682.67, + "probability": 0.9923 + }, + { + "start": 3682.75, + "end": 3683.67, + "probability": 0.8977 + }, + { + "start": 3683.71, + "end": 3688.35, + "probability": 0.9788 + }, + { + "start": 3689.05, + "end": 3691.89, + "probability": 0.9355 + }, + { + "start": 3692.23, + "end": 3695.35, + "probability": 0.9946 + }, + { + "start": 3695.83, + "end": 3700.83, + "probability": 0.9933 + }, + { + "start": 3700.83, + "end": 3704.95, + "probability": 0.9919 + }, + { + "start": 3705.23, + "end": 3707.13, + "probability": 0.9985 + }, + { + "start": 3707.33, + "end": 3707.79, + "probability": 0.7942 + }, + { + "start": 3708.37, + "end": 3708.77, + "probability": 0.5817 + }, + { + "start": 3708.83, + "end": 3712.19, + "probability": 0.9626 + }, + { + "start": 3712.47, + "end": 3713.91, + "probability": 0.9132 + }, + { + "start": 3714.61, + "end": 3716.51, + "probability": 0.9589 + }, + { + "start": 3717.25, + "end": 3720.33, + "probability": 0.9878 + }, + { + "start": 3732.71, + "end": 3734.47, + "probability": 0.8164 + }, + { + "start": 3735.83, + "end": 3737.17, + "probability": 0.8204 + }, + { + "start": 3737.85, + "end": 3741.77, + "probability": 0.9854 + }, + { + "start": 3741.77, + "end": 3745.37, + "probability": 0.9858 + }, + { + "start": 3746.71, + "end": 3748.51, + "probability": 0.4361 + }, + { + "start": 3748.85, + "end": 3754.57, + "probability": 0.9643 + }, + { + "start": 3755.25, + "end": 3760.91, + "probability": 0.9871 + }, + { + "start": 3761.53, + "end": 3765.39, + "probability": 0.8113 + }, + { + "start": 3766.07, + "end": 3768.57, + "probability": 0.9761 + }, + { + "start": 3768.67, + "end": 3769.49, + "probability": 0.9928 + }, + { + "start": 3769.57, + "end": 3770.05, + "probability": 0.99 + }, + { + "start": 3770.59, + "end": 3771.37, + "probability": 0.8281 + }, + { + "start": 3772.09, + "end": 3773.35, + "probability": 0.9933 + }, + { + "start": 3774.37, + "end": 3776.73, + "probability": 0.9277 + }, + { + "start": 3777.71, + "end": 3779.47, + "probability": 0.5926 + }, + { + "start": 3779.79, + "end": 3780.99, + "probability": 0.7006 + }, + { + "start": 3781.11, + "end": 3782.31, + "probability": 0.8288 + }, + { + "start": 3782.93, + "end": 3784.55, + "probability": 0.9977 + }, + { + "start": 3785.55, + "end": 3786.69, + "probability": 0.9048 + }, + { + "start": 3786.89, + "end": 3787.15, + "probability": 0.9036 + }, + { + "start": 3787.33, + "end": 3795.61, + "probability": 0.9562 + }, + { + "start": 3796.35, + "end": 3797.57, + "probability": 0.8322 + }, + { + "start": 3797.75, + "end": 3800.19, + "probability": 0.8569 + }, + { + "start": 3800.37, + "end": 3802.13, + "probability": 0.6264 + }, + { + "start": 3802.59, + "end": 3805.69, + "probability": 0.8999 + }, + { + "start": 3805.89, + "end": 3808.57, + "probability": 0.8805 + }, + { + "start": 3808.65, + "end": 3810.45, + "probability": 0.8865 + }, + { + "start": 3811.03, + "end": 3812.49, + "probability": 0.9951 + }, + { + "start": 3812.65, + "end": 3813.43, + "probability": 0.8736 + }, + { + "start": 3813.49, + "end": 3820.77, + "probability": 0.9942 + }, + { + "start": 3821.65, + "end": 3825.07, + "probability": 0.6437 + }, + { + "start": 3826.23, + "end": 3828.45, + "probability": 0.8364 + }, + { + "start": 3829.21, + "end": 3830.97, + "probability": 0.9934 + }, + { + "start": 3831.49, + "end": 3833.39, + "probability": 0.984 + }, + { + "start": 3833.55, + "end": 3835.21, + "probability": 0.7271 + }, + { + "start": 3836.13, + "end": 3837.23, + "probability": 0.8442 + }, + { + "start": 3839.09, + "end": 3845.73, + "probability": 0.83 + }, + { + "start": 3846.37, + "end": 3849.05, + "probability": 0.981 + }, + { + "start": 3849.95, + "end": 3853.53, + "probability": 0.8448 + }, + { + "start": 3854.71, + "end": 3855.73, + "probability": 0.8738 + }, + { + "start": 3856.77, + "end": 3858.75, + "probability": 0.9741 + }, + { + "start": 3859.67, + "end": 3861.27, + "probability": 0.9569 + }, + { + "start": 3862.29, + "end": 3864.29, + "probability": 0.9868 + }, + { + "start": 3864.39, + "end": 3868.79, + "probability": 0.8302 + }, + { + "start": 3869.59, + "end": 3873.41, + "probability": 0.9654 + }, + { + "start": 3873.93, + "end": 3877.25, + "probability": 0.8181 + }, + { + "start": 3877.27, + "end": 3878.69, + "probability": 0.3226 + }, + { + "start": 3878.69, + "end": 3878.69, + "probability": 0.2208 + }, + { + "start": 3878.75, + "end": 3881.79, + "probability": 0.9453 + }, + { + "start": 3882.27, + "end": 3885.29, + "probability": 0.9269 + }, + { + "start": 3886.03, + "end": 3886.75, + "probability": 0.8889 + }, + { + "start": 3886.79, + "end": 3887.81, + "probability": 0.9886 + }, + { + "start": 3887.87, + "end": 3891.29, + "probability": 0.9451 + }, + { + "start": 3891.45, + "end": 3893.11, + "probability": 0.9063 + }, + { + "start": 3893.39, + "end": 3895.57, + "probability": 0.9653 + }, + { + "start": 3895.61, + "end": 3896.19, + "probability": 0.8157 + }, + { + "start": 3896.31, + "end": 3896.87, + "probability": 0.4412 + }, + { + "start": 3896.87, + "end": 3900.89, + "probability": 0.5886 + }, + { + "start": 3900.89, + "end": 3901.29, + "probability": 0.6974 + }, + { + "start": 3901.71, + "end": 3902.17, + "probability": 0.792 + }, + { + "start": 3902.29, + "end": 3904.01, + "probability": 0.9855 + }, + { + "start": 3904.15, + "end": 3905.51, + "probability": 0.8152 + }, + { + "start": 3906.23, + "end": 3908.81, + "probability": 0.9738 + }, + { + "start": 3909.61, + "end": 3910.53, + "probability": 0.8131 + }, + { + "start": 3910.75, + "end": 3913.07, + "probability": 0.8018 + }, + { + "start": 3913.59, + "end": 3913.89, + "probability": 0.8032 + }, + { + "start": 3913.89, + "end": 3916.15, + "probability": 0.9922 + }, + { + "start": 3916.19, + "end": 3917.43, + "probability": 0.8216 + }, + { + "start": 3918.01, + "end": 3918.92, + "probability": 0.9765 + }, + { + "start": 3919.59, + "end": 3920.07, + "probability": 0.8164 + }, + { + "start": 3921.87, + "end": 3923.19, + "probability": 0.8031 + }, + { + "start": 3923.83, + "end": 3927.12, + "probability": 0.8591 + }, + { + "start": 3927.13, + "end": 3932.71, + "probability": 0.9601 + }, + { + "start": 3932.81, + "end": 3934.07, + "probability": 0.9074 + }, + { + "start": 3935.15, + "end": 3937.51, + "probability": 0.6374 + }, + { + "start": 3937.99, + "end": 3939.39, + "probability": 0.8333 + }, + { + "start": 3939.55, + "end": 3940.11, + "probability": 0.5544 + }, + { + "start": 3940.21, + "end": 3941.64, + "probability": 0.7554 + }, + { + "start": 3941.75, + "end": 3944.24, + "probability": 0.9067 + }, + { + "start": 3944.33, + "end": 3945.51, + "probability": 0.8625 + }, + { + "start": 3945.85, + "end": 3950.45, + "probability": 0.9829 + }, + { + "start": 3951.27, + "end": 3952.37, + "probability": 0.8804 + }, + { + "start": 3952.43, + "end": 3953.13, + "probability": 0.7941 + }, + { + "start": 3953.57, + "end": 3955.27, + "probability": 0.9471 + }, + { + "start": 3956.29, + "end": 3958.29, + "probability": 0.6843 + }, + { + "start": 3958.93, + "end": 3959.87, + "probability": 0.6928 + }, + { + "start": 3961.03, + "end": 3962.55, + "probability": 0.9526 + }, + { + "start": 3962.85, + "end": 3966.55, + "probability": 0.8637 + }, + { + "start": 3967.15, + "end": 3969.38, + "probability": 0.962 + }, + { + "start": 3970.89, + "end": 3972.87, + "probability": 0.8915 + }, + { + "start": 3974.39, + "end": 3975.51, + "probability": 0.8687 + }, + { + "start": 3976.09, + "end": 3976.53, + "probability": 0.8042 + }, + { + "start": 3976.67, + "end": 3976.89, + "probability": 0.7355 + }, + { + "start": 3976.91, + "end": 3977.81, + "probability": 0.9644 + }, + { + "start": 3977.95, + "end": 3979.25, + "probability": 0.9883 + }, + { + "start": 3981.47, + "end": 3984.91, + "probability": 0.987 + }, + { + "start": 3985.27, + "end": 3987.71, + "probability": 0.9764 + }, + { + "start": 3988.37, + "end": 3989.26, + "probability": 0.5466 + }, + { + "start": 3990.39, + "end": 3993.41, + "probability": 0.9935 + }, + { + "start": 3994.23, + "end": 3997.49, + "probability": 0.9894 + }, + { + "start": 3997.49, + "end": 4000.39, + "probability": 0.9526 + }, + { + "start": 4001.81, + "end": 4002.35, + "probability": 0.7594 + }, + { + "start": 4002.55, + "end": 4003.61, + "probability": 0.9877 + }, + { + "start": 4003.69, + "end": 4004.33, + "probability": 0.8076 + }, + { + "start": 4004.45, + "end": 4006.71, + "probability": 0.8845 + }, + { + "start": 4006.79, + "end": 4010.81, + "probability": 0.9767 + }, + { + "start": 4011.55, + "end": 4011.97, + "probability": 0.7448 + }, + { + "start": 4012.05, + "end": 4014.25, + "probability": 0.9122 + }, + { + "start": 4014.47, + "end": 4016.29, + "probability": 0.8797 + }, + { + "start": 4016.71, + "end": 4017.25, + "probability": 0.5755 + }, + { + "start": 4017.73, + "end": 4018.84, + "probability": 0.9853 + }, + { + "start": 4019.55, + "end": 4024.73, + "probability": 0.9779 + }, + { + "start": 4025.47, + "end": 4028.63, + "probability": 0.9176 + }, + { + "start": 4029.27, + "end": 4031.59, + "probability": 0.9106 + }, + { + "start": 4033.53, + "end": 4036.05, + "probability": 0.7437 + }, + { + "start": 4036.91, + "end": 4041.91, + "probability": 0.9246 + }, + { + "start": 4043.31, + "end": 4045.33, + "probability": 0.9911 + }, + { + "start": 4045.49, + "end": 4050.67, + "probability": 0.9744 + }, + { + "start": 4050.69, + "end": 4051.83, + "probability": 0.5081 + }, + { + "start": 4052.53, + "end": 4054.71, + "probability": 0.9166 + }, + { + "start": 4055.63, + "end": 4061.31, + "probability": 0.7525 + }, + { + "start": 4062.81, + "end": 4064.21, + "probability": 0.9248 + }, + { + "start": 4065.01, + "end": 4065.87, + "probability": 0.9714 + }, + { + "start": 4065.97, + "end": 4066.57, + "probability": 0.8271 + }, + { + "start": 4066.69, + "end": 4067.53, + "probability": 0.8783 + }, + { + "start": 4067.91, + "end": 4069.41, + "probability": 0.9902 + }, + { + "start": 4069.49, + "end": 4070.23, + "probability": 0.7113 + }, + { + "start": 4071.35, + "end": 4073.03, + "probability": 0.9353 + }, + { + "start": 4074.97, + "end": 4078.97, + "probability": 0.7641 + }, + { + "start": 4079.63, + "end": 4081.91, + "probability": 0.9062 + }, + { + "start": 4082.67, + "end": 4085.37, + "probability": 0.7391 + }, + { + "start": 4086.15, + "end": 4087.95, + "probability": 0.7144 + }, + { + "start": 4088.21, + "end": 4089.61, + "probability": 0.9258 + }, + { + "start": 4090.19, + "end": 4095.07, + "probability": 0.9893 + }, + { + "start": 4095.65, + "end": 4100.73, + "probability": 0.9929 + }, + { + "start": 4101.43, + "end": 4106.57, + "probability": 0.9932 + }, + { + "start": 4107.43, + "end": 4112.01, + "probability": 0.9797 + }, + { + "start": 4112.59, + "end": 4114.79, + "probability": 0.9983 + }, + { + "start": 4115.47, + "end": 4120.09, + "probability": 0.8835 + }, + { + "start": 4120.61, + "end": 4123.91, + "probability": 0.8784 + }, + { + "start": 4124.47, + "end": 4127.09, + "probability": 0.9586 + }, + { + "start": 4127.75, + "end": 4130.71, + "probability": 0.98 + }, + { + "start": 4131.23, + "end": 4133.25, + "probability": 0.9849 + }, + { + "start": 4133.65, + "end": 4140.39, + "probability": 0.8866 + }, + { + "start": 4140.39, + "end": 4144.93, + "probability": 0.887 + }, + { + "start": 4146.01, + "end": 4149.52, + "probability": 0.9971 + }, + { + "start": 4149.65, + "end": 4152.32, + "probability": 0.8276 + }, + { + "start": 4153.09, + "end": 4154.89, + "probability": 0.8311 + }, + { + "start": 4155.01, + "end": 4155.81, + "probability": 0.8756 + }, + { + "start": 4155.89, + "end": 4157.03, + "probability": 0.9198 + }, + { + "start": 4157.53, + "end": 4159.13, + "probability": 0.9946 + }, + { + "start": 4159.21, + "end": 4160.59, + "probability": 0.9539 + }, + { + "start": 4161.11, + "end": 4162.53, + "probability": 0.85 + }, + { + "start": 4162.89, + "end": 4165.15, + "probability": 0.8606 + }, + { + "start": 4165.97, + "end": 4168.87, + "probability": 0.9593 + }, + { + "start": 4169.47, + "end": 4172.81, + "probability": 0.9497 + }, + { + "start": 4173.57, + "end": 4176.13, + "probability": 0.9893 + }, + { + "start": 4177.75, + "end": 4181.53, + "probability": 0.7505 + }, + { + "start": 4182.95, + "end": 4184.41, + "probability": 0.9762 + }, + { + "start": 4184.47, + "end": 4185.81, + "probability": 0.9571 + }, + { + "start": 4186.27, + "end": 4188.19, + "probability": 0.954 + }, + { + "start": 4188.23, + "end": 4190.33, + "probability": 0.8931 + }, + { + "start": 4190.93, + "end": 4195.17, + "probability": 0.9984 + }, + { + "start": 4195.83, + "end": 4199.29, + "probability": 0.7206 + }, + { + "start": 4199.47, + "end": 4201.81, + "probability": 0.6517 + }, + { + "start": 4203.13, + "end": 4205.33, + "probability": 0.9538 + }, + { + "start": 4206.15, + "end": 4207.11, + "probability": 0.6863 + }, + { + "start": 4207.29, + "end": 4208.05, + "probability": 0.8314 + }, + { + "start": 4208.19, + "end": 4210.31, + "probability": 0.9984 + }, + { + "start": 4210.89, + "end": 4212.53, + "probability": 0.865 + }, + { + "start": 4213.37, + "end": 4217.13, + "probability": 0.8484 + }, + { + "start": 4217.21, + "end": 4219.81, + "probability": 0.9966 + }, + { + "start": 4220.75, + "end": 4223.11, + "probability": 0.8651 + }, + { + "start": 4224.55, + "end": 4227.3, + "probability": 0.7351 + }, + { + "start": 4228.59, + "end": 4231.75, + "probability": 0.9133 + }, + { + "start": 4233.09, + "end": 4235.03, + "probability": 0.6768 + }, + { + "start": 4236.04, + "end": 4238.45, + "probability": 0.9187 + }, + { + "start": 4238.57, + "end": 4239.99, + "probability": 0.7131 + }, + { + "start": 4240.73, + "end": 4241.33, + "probability": 0.6772 + }, + { + "start": 4241.43, + "end": 4241.97, + "probability": 0.9727 + }, + { + "start": 4242.11, + "end": 4242.73, + "probability": 0.4856 + }, + { + "start": 4242.85, + "end": 4244.49, + "probability": 0.8376 + }, + { + "start": 4244.67, + "end": 4245.36, + "probability": 0.9014 + }, + { + "start": 4246.49, + "end": 4247.49, + "probability": 0.9482 + }, + { + "start": 4248.53, + "end": 4251.39, + "probability": 0.9599 + }, + { + "start": 4251.43, + "end": 4253.11, + "probability": 0.9227 + }, + { + "start": 4253.83, + "end": 4256.29, + "probability": 0.9592 + }, + { + "start": 4257.13, + "end": 4260.19, + "probability": 0.8594 + }, + { + "start": 4260.85, + "end": 4263.37, + "probability": 0.9403 + }, + { + "start": 4263.97, + "end": 4265.45, + "probability": 0.9771 + }, + { + "start": 4266.49, + "end": 4268.57, + "probability": 0.8543 + }, + { + "start": 4269.51, + "end": 4273.99, + "probability": 0.9626 + }, + { + "start": 4274.13, + "end": 4276.35, + "probability": 0.9958 + }, + { + "start": 4276.43, + "end": 4277.77, + "probability": 0.9979 + }, + { + "start": 4278.25, + "end": 4280.73, + "probability": 0.9962 + }, + { + "start": 4281.61, + "end": 4286.23, + "probability": 0.9978 + }, + { + "start": 4287.03, + "end": 4288.95, + "probability": 0.9967 + }, + { + "start": 4288.95, + "end": 4293.39, + "probability": 0.9879 + }, + { + "start": 4293.55, + "end": 4294.39, + "probability": 0.8932 + }, + { + "start": 4294.97, + "end": 4295.73, + "probability": 0.9668 + }, + { + "start": 4295.85, + "end": 4296.89, + "probability": 0.9435 + }, + { + "start": 4296.99, + "end": 4298.09, + "probability": 0.9409 + }, + { + "start": 4298.59, + "end": 4300.27, + "probability": 0.9952 + }, + { + "start": 4300.85, + "end": 4304.51, + "probability": 0.9949 + }, + { + "start": 4304.69, + "end": 4305.31, + "probability": 0.7501 + }, + { + "start": 4306.07, + "end": 4307.95, + "probability": 0.9893 + }, + { + "start": 4308.07, + "end": 4313.07, + "probability": 0.9714 + }, + { + "start": 4313.23, + "end": 4317.13, + "probability": 0.9151 + }, + { + "start": 4317.65, + "end": 4319.14, + "probability": 0.8097 + }, + { + "start": 4319.91, + "end": 4323.25, + "probability": 0.9799 + }, + { + "start": 4323.35, + "end": 4329.07, + "probability": 0.7036 + }, + { + "start": 4329.79, + "end": 4334.99, + "probability": 0.9557 + }, + { + "start": 4335.69, + "end": 4337.29, + "probability": 0.961 + }, + { + "start": 4337.37, + "end": 4340.33, + "probability": 0.8245 + }, + { + "start": 4340.55, + "end": 4343.45, + "probability": 0.9984 + }, + { + "start": 4344.19, + "end": 4347.41, + "probability": 0.9776 + }, + { + "start": 4347.95, + "end": 4348.79, + "probability": 0.6401 + }, + { + "start": 4349.95, + "end": 4355.75, + "probability": 0.9372 + }, + { + "start": 4356.53, + "end": 4358.67, + "probability": 0.9741 + }, + { + "start": 4359.69, + "end": 4366.53, + "probability": 0.9832 + }, + { + "start": 4366.61, + "end": 4366.85, + "probability": 0.1435 + }, + { + "start": 4390.51, + "end": 4394.65, + "probability": 0.8109 + }, + { + "start": 4395.81, + "end": 4400.35, + "probability": 0.9138 + }, + { + "start": 4400.41, + "end": 4405.43, + "probability": 0.9771 + }, + { + "start": 4405.47, + "end": 4408.67, + "probability": 0.9008 + }, + { + "start": 4409.53, + "end": 4411.43, + "probability": 0.4553 + }, + { + "start": 4411.43, + "end": 4413.89, + "probability": 0.9939 + }, + { + "start": 4414.35, + "end": 4415.89, + "probability": 0.9891 + }, + { + "start": 4416.57, + "end": 4418.29, + "probability": 0.9509 + }, + { + "start": 4418.95, + "end": 4420.39, + "probability": 0.9536 + }, + { + "start": 4420.69, + "end": 4422.37, + "probability": 0.8413 + }, + { + "start": 4422.71, + "end": 4427.94, + "probability": 0.7951 + }, + { + "start": 4429.53, + "end": 4431.71, + "probability": 0.2681 + }, + { + "start": 4433.35, + "end": 4437.23, + "probability": 0.7632 + }, + { + "start": 4437.77, + "end": 4439.49, + "probability": 0.9749 + }, + { + "start": 4440.25, + "end": 4443.47, + "probability": 0.946 + }, + { + "start": 4445.47, + "end": 4448.77, + "probability": 0.9863 + }, + { + "start": 4448.77, + "end": 4452.99, + "probability": 0.9895 + }, + { + "start": 4453.53, + "end": 4457.33, + "probability": 0.9886 + }, + { + "start": 4457.89, + "end": 4461.05, + "probability": 0.8079 + }, + { + "start": 4461.25, + "end": 4463.93, + "probability": 0.9798 + }, + { + "start": 4464.33, + "end": 4465.53, + "probability": 0.8199 + }, + { + "start": 4466.01, + "end": 4471.03, + "probability": 0.9966 + }, + { + "start": 4471.89, + "end": 4479.03, + "probability": 0.9987 + }, + { + "start": 4479.57, + "end": 4484.27, + "probability": 0.9989 + }, + { + "start": 4484.67, + "end": 4491.33, + "probability": 0.9926 + }, + { + "start": 4492.35, + "end": 4495.63, + "probability": 0.9049 + }, + { + "start": 4495.83, + "end": 4504.15, + "probability": 0.9817 + }, + { + "start": 4504.41, + "end": 4505.37, + "probability": 0.9901 + }, + { + "start": 4505.43, + "end": 4507.93, + "probability": 0.9927 + }, + { + "start": 4508.69, + "end": 4512.29, + "probability": 0.9855 + }, + { + "start": 4512.97, + "end": 4514.03, + "probability": 0.8861 + }, + { + "start": 4514.29, + "end": 4515.41, + "probability": 0.9695 + }, + { + "start": 4515.53, + "end": 4517.29, + "probability": 0.9594 + }, + { + "start": 4517.37, + "end": 4523.27, + "probability": 0.9932 + }, + { + "start": 4524.23, + "end": 4526.45, + "probability": 0.7289 + }, + { + "start": 4526.55, + "end": 4527.33, + "probability": 0.7445 + }, + { + "start": 4527.75, + "end": 4529.28, + "probability": 0.9902 + }, + { + "start": 4530.09, + "end": 4533.69, + "probability": 0.9974 + }, + { + "start": 4534.15, + "end": 4538.61, + "probability": 0.9945 + }, + { + "start": 4539.39, + "end": 4539.85, + "probability": 0.9507 + }, + { + "start": 4539.91, + "end": 4542.49, + "probability": 0.9954 + }, + { + "start": 4542.63, + "end": 4549.23, + "probability": 0.9964 + }, + { + "start": 4549.73, + "end": 4555.39, + "probability": 0.9441 + }, + { + "start": 4556.67, + "end": 4562.03, + "probability": 0.9654 + }, + { + "start": 4562.71, + "end": 4567.03, + "probability": 0.9487 + }, + { + "start": 4567.41, + "end": 4569.65, + "probability": 0.9634 + }, + { + "start": 4569.91, + "end": 4571.41, + "probability": 0.8988 + }, + { + "start": 4572.35, + "end": 4573.21, + "probability": 0.9801 + }, + { + "start": 4573.99, + "end": 4575.85, + "probability": 0.738 + }, + { + "start": 4576.05, + "end": 4580.79, + "probability": 0.9482 + }, + { + "start": 4580.87, + "end": 4585.91, + "probability": 0.981 + }, + { + "start": 4586.43, + "end": 4588.97, + "probability": 0.8741 + }, + { + "start": 4589.13, + "end": 4590.03, + "probability": 0.8422 + }, + { + "start": 4590.07, + "end": 4593.07, + "probability": 0.9879 + }, + { + "start": 4593.51, + "end": 4594.77, + "probability": 0.97 + }, + { + "start": 4594.81, + "end": 4595.61, + "probability": 0.3889 + }, + { + "start": 4596.19, + "end": 4596.61, + "probability": 0.5698 + }, + { + "start": 4596.79, + "end": 4600.15, + "probability": 0.7369 + }, + { + "start": 4600.27, + "end": 4600.97, + "probability": 0.959 + }, + { + "start": 4601.79, + "end": 4604.61, + "probability": 0.7992 + }, + { + "start": 4604.61, + "end": 4611.89, + "probability": 0.9268 + }, + { + "start": 4614.93, + "end": 4617.57, + "probability": 0.9834 + }, + { + "start": 4618.19, + "end": 4620.43, + "probability": 0.9972 + }, + { + "start": 4621.51, + "end": 4627.47, + "probability": 0.9977 + }, + { + "start": 4628.51, + "end": 4628.67, + "probability": 0.5619 + }, + { + "start": 4628.77, + "end": 4629.93, + "probability": 0.8952 + }, + { + "start": 4630.09, + "end": 4633.39, + "probability": 0.933 + }, + { + "start": 4633.49, + "end": 4636.01, + "probability": 0.7689 + }, + { + "start": 4636.95, + "end": 4639.87, + "probability": 0.9976 + }, + { + "start": 4642.98, + "end": 4648.25, + "probability": 0.9585 + }, + { + "start": 4648.31, + "end": 4652.01, + "probability": 0.9744 + }, + { + "start": 4652.01, + "end": 4655.57, + "probability": 0.9822 + }, + { + "start": 4655.75, + "end": 4656.71, + "probability": 0.7266 + }, + { + "start": 4661.59, + "end": 4666.17, + "probability": 0.9769 + }, + { + "start": 4668.17, + "end": 4671.11, + "probability": 0.9916 + }, + { + "start": 4671.11, + "end": 4674.89, + "probability": 0.9994 + }, + { + "start": 4674.95, + "end": 4679.05, + "probability": 0.9581 + }, + { + "start": 4679.05, + "end": 4682.91, + "probability": 0.9893 + }, + { + "start": 4683.75, + "end": 4687.95, + "probability": 0.9979 + }, + { + "start": 4688.55, + "end": 4693.08, + "probability": 0.9457 + }, + { + "start": 4693.23, + "end": 4694.38, + "probability": 0.8249 + }, + { + "start": 4695.53, + "end": 4698.17, + "probability": 0.9985 + }, + { + "start": 4698.17, + "end": 4702.13, + "probability": 0.9938 + }, + { + "start": 4702.57, + "end": 4707.31, + "probability": 0.9688 + }, + { + "start": 4707.77, + "end": 4712.29, + "probability": 0.9989 + }, + { + "start": 4713.75, + "end": 4717.27, + "probability": 0.9888 + }, + { + "start": 4717.27, + "end": 4721.43, + "probability": 0.9993 + }, + { + "start": 4722.05, + "end": 4724.29, + "probability": 0.9902 + }, + { + "start": 4725.45, + "end": 4729.83, + "probability": 0.9041 + }, + { + "start": 4731.27, + "end": 4737.43, + "probability": 0.9946 + }, + { + "start": 4737.43, + "end": 4742.33, + "probability": 0.9645 + }, + { + "start": 4742.81, + "end": 4746.29, + "probability": 0.9324 + }, + { + "start": 4748.01, + "end": 4752.17, + "probability": 0.971 + }, + { + "start": 4752.75, + "end": 4756.69, + "probability": 0.9701 + }, + { + "start": 4757.23, + "end": 4761.85, + "probability": 0.9854 + }, + { + "start": 4762.93, + "end": 4763.37, + "probability": 0.4373 + }, + { + "start": 4763.49, + "end": 4766.53, + "probability": 0.9829 + }, + { + "start": 4766.97, + "end": 4770.21, + "probability": 0.9627 + }, + { + "start": 4771.43, + "end": 4776.03, + "probability": 0.9869 + }, + { + "start": 4776.67, + "end": 4781.03, + "probability": 0.9285 + }, + { + "start": 4781.43, + "end": 4786.91, + "probability": 0.984 + }, + { + "start": 4788.23, + "end": 4792.27, + "probability": 0.9981 + }, + { + "start": 4793.09, + "end": 4799.51, + "probability": 0.9974 + }, + { + "start": 4799.51, + "end": 4806.41, + "probability": 0.996 + }, + { + "start": 4807.23, + "end": 4809.63, + "probability": 0.998 + }, + { + "start": 4811.55, + "end": 4814.09, + "probability": 0.9345 + }, + { + "start": 4814.45, + "end": 4820.09, + "probability": 0.9901 + }, + { + "start": 4820.09, + "end": 4825.97, + "probability": 0.9974 + }, + { + "start": 4827.23, + "end": 4829.35, + "probability": 0.9697 + }, + { + "start": 4829.73, + "end": 4832.71, + "probability": 0.9948 + }, + { + "start": 4833.19, + "end": 4834.25, + "probability": 0.989 + }, + { + "start": 4834.65, + "end": 4837.11, + "probability": 0.9978 + }, + { + "start": 4838.35, + "end": 4838.73, + "probability": 0.6196 + }, + { + "start": 4838.85, + "end": 4841.75, + "probability": 0.9962 + }, + { + "start": 4841.75, + "end": 4845.75, + "probability": 0.8948 + }, + { + "start": 4846.41, + "end": 4853.15, + "probability": 0.9498 + }, + { + "start": 4853.63, + "end": 4858.23, + "probability": 0.9958 + }, + { + "start": 4858.59, + "end": 4863.37, + "probability": 0.9866 + }, + { + "start": 4864.69, + "end": 4868.25, + "probability": 0.9955 + }, + { + "start": 4868.25, + "end": 4871.69, + "probability": 0.9865 + }, + { + "start": 4872.39, + "end": 4878.15, + "probability": 0.9771 + }, + { + "start": 4879.43, + "end": 4883.77, + "probability": 0.999 + }, + { + "start": 4883.77, + "end": 4888.09, + "probability": 0.9964 + }, + { + "start": 4889.65, + "end": 4893.05, + "probability": 0.7192 + }, + { + "start": 4894.57, + "end": 4895.85, + "probability": 0.2473 + }, + { + "start": 4895.85, + "end": 4899.49, + "probability": 0.996 + }, + { + "start": 4900.23, + "end": 4905.15, + "probability": 0.9957 + }, + { + "start": 4905.85, + "end": 4908.35, + "probability": 0.9935 + }, + { + "start": 4908.51, + "end": 4910.29, + "probability": 0.9568 + }, + { + "start": 4910.91, + "end": 4913.03, + "probability": 0.8384 + }, + { + "start": 4913.17, + "end": 4916.17, + "probability": 0.9139 + }, + { + "start": 4916.75, + "end": 4921.09, + "probability": 0.9951 + }, + { + "start": 4921.57, + "end": 4923.81, + "probability": 0.9358 + }, + { + "start": 4925.47, + "end": 4928.37, + "probability": 0.9881 + }, + { + "start": 4928.37, + "end": 4935.21, + "probability": 0.9701 + }, + { + "start": 4935.21, + "end": 4939.43, + "probability": 0.9987 + }, + { + "start": 4940.03, + "end": 4947.07, + "probability": 0.7698 + }, + { + "start": 4947.59, + "end": 4948.83, + "probability": 0.7489 + }, + { + "start": 4949.27, + "end": 4949.55, + "probability": 0.6357 + }, + { + "start": 4949.77, + "end": 4955.13, + "probability": 0.9759 + }, + { + "start": 4955.43, + "end": 4960.75, + "probability": 0.988 + }, + { + "start": 4961.17, + "end": 4963.13, + "probability": 0.9891 + }, + { + "start": 4964.09, + "end": 4966.37, + "probability": 0.7466 + }, + { + "start": 4967.31, + "end": 4970.53, + "probability": 0.9736 + }, + { + "start": 4970.59, + "end": 4971.65, + "probability": 0.9264 + }, + { + "start": 4972.21, + "end": 4973.91, + "probability": 0.9937 + }, + { + "start": 4974.39, + "end": 4977.85, + "probability": 0.9048 + }, + { + "start": 4978.37, + "end": 4981.31, + "probability": 0.923 + }, + { + "start": 4981.75, + "end": 4985.39, + "probability": 0.998 + }, + { + "start": 4986.69, + "end": 4988.81, + "probability": 0.9949 + }, + { + "start": 4988.81, + "end": 4991.91, + "probability": 0.9946 + }, + { + "start": 4992.41, + "end": 4996.39, + "probability": 0.9602 + }, + { + "start": 4996.39, + "end": 4999.99, + "probability": 0.9996 + }, + { + "start": 5000.81, + "end": 5005.15, + "probability": 0.9945 + }, + { + "start": 5005.15, + "end": 5009.99, + "probability": 0.9801 + }, + { + "start": 5010.33, + "end": 5013.55, + "probability": 0.9986 + }, + { + "start": 5014.69, + "end": 5015.53, + "probability": 0.8949 + }, + { + "start": 5015.67, + "end": 5016.47, + "probability": 0.7235 + }, + { + "start": 5016.69, + "end": 5019.33, + "probability": 0.9852 + }, + { + "start": 5020.05, + "end": 5020.77, + "probability": 0.8228 + }, + { + "start": 5020.95, + "end": 5022.69, + "probability": 0.8964 + }, + { + "start": 5023.05, + "end": 5028.31, + "probability": 0.9798 + }, + { + "start": 5028.81, + "end": 5031.61, + "probability": 0.9916 + }, + { + "start": 5032.35, + "end": 5036.15, + "probability": 0.9922 + }, + { + "start": 5036.15, + "end": 5040.69, + "probability": 0.9982 + }, + { + "start": 5041.13, + "end": 5042.79, + "probability": 0.9955 + }, + { + "start": 5043.41, + "end": 5048.27, + "probability": 0.9918 + }, + { + "start": 5048.93, + "end": 5051.69, + "probability": 0.9929 + }, + { + "start": 5052.17, + "end": 5056.81, + "probability": 0.928 + }, + { + "start": 5056.81, + "end": 5061.67, + "probability": 0.9972 + }, + { + "start": 5062.21, + "end": 5066.61, + "probability": 0.9879 + }, + { + "start": 5066.61, + "end": 5071.49, + "probability": 0.9979 + }, + { + "start": 5072.05, + "end": 5077.13, + "probability": 0.9961 + }, + { + "start": 5077.47, + "end": 5080.05, + "probability": 0.977 + }, + { + "start": 5080.55, + "end": 5083.87, + "probability": 0.8006 + }, + { + "start": 5086.49, + "end": 5090.03, + "probability": 0.9888 + }, + { + "start": 5090.59, + "end": 5094.73, + "probability": 0.9638 + }, + { + "start": 5095.11, + "end": 5098.49, + "probability": 0.9841 + }, + { + "start": 5099.55, + "end": 5101.81, + "probability": 0.9135 + }, + { + "start": 5102.23, + "end": 5107.09, + "probability": 0.7341 + }, + { + "start": 5107.49, + "end": 5110.35, + "probability": 0.6449 + }, + { + "start": 5110.51, + "end": 5110.51, + "probability": 0.4635 + }, + { + "start": 5110.69, + "end": 5111.23, + "probability": 0.8582 + }, + { + "start": 5127.59, + "end": 5129.75, + "probability": 0.6207 + }, + { + "start": 5130.61, + "end": 5131.83, + "probability": 0.564 + }, + { + "start": 5131.89, + "end": 5133.05, + "probability": 0.6777 + }, + { + "start": 5133.13, + "end": 5134.81, + "probability": 0.9171 + }, + { + "start": 5134.97, + "end": 5136.59, + "probability": 0.9346 + }, + { + "start": 5137.11, + "end": 5140.01, + "probability": 0.9912 + }, + { + "start": 5140.01, + "end": 5143.35, + "probability": 0.9842 + }, + { + "start": 5143.45, + "end": 5144.59, + "probability": 0.5588 + }, + { + "start": 5144.75, + "end": 5146.37, + "probability": 0.5826 + }, + { + "start": 5146.85, + "end": 5148.37, + "probability": 0.7054 + }, + { + "start": 5148.85, + "end": 5152.09, + "probability": 0.9205 + }, + { + "start": 5152.61, + "end": 5153.93, + "probability": 0.7312 + }, + { + "start": 5154.67, + "end": 5155.73, + "probability": 0.8559 + }, + { + "start": 5155.79, + "end": 5156.73, + "probability": 0.8603 + }, + { + "start": 5157.03, + "end": 5160.47, + "probability": 0.7566 + }, + { + "start": 5160.63, + "end": 5162.39, + "probability": 0.9438 + }, + { + "start": 5162.59, + "end": 5164.21, + "probability": 0.9963 + }, + { + "start": 5164.29, + "end": 5165.03, + "probability": 0.9008 + }, + { + "start": 5167.13, + "end": 5168.15, + "probability": 0.0166 + }, + { + "start": 5169.41, + "end": 5169.93, + "probability": 0.0179 + }, + { + "start": 5170.55, + "end": 5171.19, + "probability": 0.0904 + }, + { + "start": 5172.63, + "end": 5174.09, + "probability": 0.0313 + }, + { + "start": 5176.98, + "end": 5181.55, + "probability": 0.046 + }, + { + "start": 5181.55, + "end": 5182.85, + "probability": 0.2194 + }, + { + "start": 5183.67, + "end": 5185.43, + "probability": 0.1447 + }, + { + "start": 5190.79, + "end": 5191.67, + "probability": 0.0553 + }, + { + "start": 5201.03, + "end": 5204.05, + "probability": 0.2867 + }, + { + "start": 5205.05, + "end": 5206.19, + "probability": 0.0957 + }, + { + "start": 5207.07, + "end": 5208.83, + "probability": 0.211 + }, + { + "start": 5208.93, + "end": 5209.79, + "probability": 0.0866 + }, + { + "start": 5211.63, + "end": 5212.29, + "probability": 0.069 + }, + { + "start": 5213.49, + "end": 5216.31, + "probability": 0.0167 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.0, + "end": 5217.0, + "probability": 0.0 + }, + { + "start": 5217.32, + "end": 5217.48, + "probability": 0.1104 + }, + { + "start": 5217.48, + "end": 5218.34, + "probability": 0.088 + }, + { + "start": 5218.96, + "end": 5223.88, + "probability": 0.9761 + }, + { + "start": 5224.08, + "end": 5226.64, + "probability": 0.993 + }, + { + "start": 5226.64, + "end": 5231.34, + "probability": 0.8858 + }, + { + "start": 5231.74, + "end": 5235.66, + "probability": 0.9944 + }, + { + "start": 5235.86, + "end": 5238.9, + "probability": 0.9561 + }, + { + "start": 5239.76, + "end": 5243.42, + "probability": 0.9929 + }, + { + "start": 5243.6, + "end": 5245.54, + "probability": 0.9848 + }, + { + "start": 5245.54, + "end": 5248.42, + "probability": 0.999 + }, + { + "start": 5248.58, + "end": 5251.3, + "probability": 0.9759 + }, + { + "start": 5251.34, + "end": 5252.22, + "probability": 0.9854 + }, + { + "start": 5252.7, + "end": 5255.26, + "probability": 0.9149 + }, + { + "start": 5255.82, + "end": 5257.04, + "probability": 0.8898 + }, + { + "start": 5257.72, + "end": 5261.62, + "probability": 0.9979 + }, + { + "start": 5261.62, + "end": 5265.14, + "probability": 0.999 + }, + { + "start": 5265.84, + "end": 5268.8, + "probability": 0.9941 + }, + { + "start": 5269.58, + "end": 5273.34, + "probability": 0.9843 + }, + { + "start": 5273.96, + "end": 5277.52, + "probability": 0.996 + }, + { + "start": 5277.7, + "end": 5278.64, + "probability": 0.9661 + }, + { + "start": 5278.82, + "end": 5280.44, + "probability": 0.9735 + }, + { + "start": 5281.4, + "end": 5283.66, + "probability": 0.8192 + }, + { + "start": 5284.4, + "end": 5287.68, + "probability": 0.986 + }, + { + "start": 5288.56, + "end": 5291.28, + "probability": 0.9211 + }, + { + "start": 5292.68, + "end": 5296.78, + "probability": 0.8988 + }, + { + "start": 5297.26, + "end": 5299.16, + "probability": 0.9285 + }, + { + "start": 5299.66, + "end": 5303.48, + "probability": 0.933 + }, + { + "start": 5304.34, + "end": 5308.3, + "probability": 0.8716 + }, + { + "start": 5308.82, + "end": 5312.94, + "probability": 0.998 + }, + { + "start": 5313.46, + "end": 5318.68, + "probability": 0.9942 + }, + { + "start": 5322.58, + "end": 5330.7, + "probability": 0.7859 + }, + { + "start": 5331.44, + "end": 5333.34, + "probability": 0.978 + }, + { + "start": 5333.88, + "end": 5337.26, + "probability": 0.9723 + }, + { + "start": 5337.46, + "end": 5339.04, + "probability": 0.5669 + }, + { + "start": 5339.96, + "end": 5342.82, + "probability": 0.9748 + }, + { + "start": 5342.84, + "end": 5345.88, + "probability": 0.9865 + }, + { + "start": 5346.12, + "end": 5349.73, + "probability": 0.9971 + }, + { + "start": 5351.54, + "end": 5352.28, + "probability": 0.7704 + }, + { + "start": 5352.76, + "end": 5357.88, + "probability": 0.8691 + }, + { + "start": 5358.84, + "end": 5359.78, + "probability": 0.6859 + }, + { + "start": 5360.78, + "end": 5364.36, + "probability": 0.8907 + }, + { + "start": 5364.36, + "end": 5366.8, + "probability": 0.9371 + }, + { + "start": 5368.8, + "end": 5373.94, + "probability": 0.9526 + }, + { + "start": 5374.24, + "end": 5376.74, + "probability": 0.9677 + }, + { + "start": 5376.74, + "end": 5380.94, + "probability": 0.999 + }, + { + "start": 5381.52, + "end": 5383.92, + "probability": 0.5436 + }, + { + "start": 5384.82, + "end": 5386.04, + "probability": 0.2621 + }, + { + "start": 5386.46, + "end": 5390.24, + "probability": 0.9961 + }, + { + "start": 5390.5, + "end": 5392.54, + "probability": 0.989 + }, + { + "start": 5392.54, + "end": 5395.44, + "probability": 0.8738 + }, + { + "start": 5395.56, + "end": 5398.92, + "probability": 0.7198 + }, + { + "start": 5399.42, + "end": 5401.58, + "probability": 0.9412 + }, + { + "start": 5401.66, + "end": 5404.18, + "probability": 0.9985 + }, + { + "start": 5404.34, + "end": 5405.74, + "probability": 0.9539 + }, + { + "start": 5406.3, + "end": 5408.7, + "probability": 0.8082 + }, + { + "start": 5409.16, + "end": 5412.7, + "probability": 0.9889 + }, + { + "start": 5413.84, + "end": 5416.56, + "probability": 0.9912 + }, + { + "start": 5416.56, + "end": 5420.86, + "probability": 0.9363 + }, + { + "start": 5422.52, + "end": 5424.46, + "probability": 0.9323 + }, + { + "start": 5425.46, + "end": 5432.26, + "probability": 0.9619 + }, + { + "start": 5432.26, + "end": 5433.5, + "probability": 0.576 + }, + { + "start": 5434.98, + "end": 5438.38, + "probability": 0.9767 + }, + { + "start": 5438.7, + "end": 5441.04, + "probability": 0.9949 + }, + { + "start": 5441.62, + "end": 5443.44, + "probability": 0.9927 + }, + { + "start": 5443.86, + "end": 5444.98, + "probability": 0.8994 + }, + { + "start": 5445.46, + "end": 5446.94, + "probability": 0.98 + }, + { + "start": 5449.24, + "end": 5450.86, + "probability": 0.979 + }, + { + "start": 5451.82, + "end": 5452.98, + "probability": 0.749 + }, + { + "start": 5453.68, + "end": 5453.8, + "probability": 0.3359 + }, + { + "start": 5454.04, + "end": 5459.78, + "probability": 0.932 + }, + { + "start": 5460.14, + "end": 5462.46, + "probability": 0.9529 + }, + { + "start": 5463.04, + "end": 5463.96, + "probability": 0.8383 + }, + { + "start": 5464.9, + "end": 5468.13, + "probability": 0.9135 + }, + { + "start": 5469.06, + "end": 5474.1, + "probability": 0.9298 + }, + { + "start": 5474.88, + "end": 5480.18, + "probability": 0.9731 + }, + { + "start": 5480.18, + "end": 5487.64, + "probability": 0.9834 + }, + { + "start": 5488.12, + "end": 5488.12, + "probability": 0.7065 + }, + { + "start": 5488.12, + "end": 5492.74, + "probability": 0.9605 + }, + { + "start": 5493.46, + "end": 5494.88, + "probability": 0.957 + }, + { + "start": 5495.4, + "end": 5496.92, + "probability": 0.9854 + }, + { + "start": 5497.38, + "end": 5499.04, + "probability": 0.9532 + }, + { + "start": 5499.52, + "end": 5499.98, + "probability": 0.7432 + }, + { + "start": 5500.06, + "end": 5500.76, + "probability": 0.8398 + }, + { + "start": 5501.02, + "end": 5501.68, + "probability": 0.7472 + }, + { + "start": 5501.76, + "end": 5502.82, + "probability": 0.9214 + }, + { + "start": 5502.9, + "end": 5505.34, + "probability": 0.6124 + }, + { + "start": 5505.64, + "end": 5507.78, + "probability": 0.9541 + }, + { + "start": 5508.28, + "end": 5512.72, + "probability": 0.8927 + }, + { + "start": 5514.14, + "end": 5517.1, + "probability": 0.9757 + }, + { + "start": 5517.42, + "end": 5518.8, + "probability": 0.9725 + }, + { + "start": 5519.24, + "end": 5521.2, + "probability": 0.9111 + }, + { + "start": 5521.42, + "end": 5522.16, + "probability": 0.9175 + }, + { + "start": 5522.56, + "end": 5523.24, + "probability": 0.8363 + }, + { + "start": 5523.5, + "end": 5526.62, + "probability": 0.9367 + }, + { + "start": 5527.42, + "end": 5528.68, + "probability": 0.0175 + }, + { + "start": 5529.92, + "end": 5533.0, + "probability": 0.9927 + }, + { + "start": 5533.7, + "end": 5539.94, + "probability": 0.972 + }, + { + "start": 5543.5, + "end": 5546.26, + "probability": 0.8599 + }, + { + "start": 5550.22, + "end": 5551.42, + "probability": 0.8557 + }, + { + "start": 5556.06, + "end": 5557.5, + "probability": 0.6448 + }, + { + "start": 5558.6, + "end": 5563.66, + "probability": 0.8597 + }, + { + "start": 5564.38, + "end": 5565.7, + "probability": 0.5853 + }, + { + "start": 5568.34, + "end": 5573.2, + "probability": 0.9549 + }, + { + "start": 5573.26, + "end": 5573.9, + "probability": 0.8658 + }, + { + "start": 5574.68, + "end": 5578.86, + "probability": 0.9899 + }, + { + "start": 5579.66, + "end": 5580.62, + "probability": 0.8105 + }, + { + "start": 5581.78, + "end": 5584.92, + "probability": 0.968 + }, + { + "start": 5586.16, + "end": 5592.4, + "probability": 0.9261 + }, + { + "start": 5593.08, + "end": 5595.46, + "probability": 0.8868 + }, + { + "start": 5595.92, + "end": 5597.24, + "probability": 0.9763 + }, + { + "start": 5597.38, + "end": 5599.74, + "probability": 0.4995 + }, + { + "start": 5599.94, + "end": 5605.12, + "probability": 0.9978 + }, + { + "start": 5606.14, + "end": 5609.08, + "probability": 0.9966 + }, + { + "start": 5610.3, + "end": 5613.26, + "probability": 0.925 + }, + { + "start": 5613.32, + "end": 5615.36, + "probability": 0.9036 + }, + { + "start": 5616.14, + "end": 5618.56, + "probability": 0.998 + }, + { + "start": 5620.02, + "end": 5627.48, + "probability": 0.8763 + }, + { + "start": 5629.56, + "end": 5632.5, + "probability": 0.9462 + }, + { + "start": 5633.12, + "end": 5638.62, + "probability": 0.9556 + }, + { + "start": 5640.24, + "end": 5643.12, + "probability": 0.9963 + }, + { + "start": 5643.12, + "end": 5648.36, + "probability": 0.9935 + }, + { + "start": 5649.58, + "end": 5651.55, + "probability": 0.9961 + }, + { + "start": 5651.96, + "end": 5653.34, + "probability": 0.9209 + }, + { + "start": 5653.78, + "end": 5657.36, + "probability": 0.9902 + }, + { + "start": 5658.54, + "end": 5662.6, + "probability": 0.9519 + }, + { + "start": 5662.76, + "end": 5664.74, + "probability": 0.943 + }, + { + "start": 5665.4, + "end": 5666.18, + "probability": 0.9547 + }, + { + "start": 5666.74, + "end": 5672.18, + "probability": 0.9127 + }, + { + "start": 5673.04, + "end": 5677.46, + "probability": 0.9852 + }, + { + "start": 5677.46, + "end": 5681.94, + "probability": 0.9982 + }, + { + "start": 5682.58, + "end": 5683.28, + "probability": 0.76 + }, + { + "start": 5683.44, + "end": 5687.26, + "probability": 0.9983 + }, + { + "start": 5687.7, + "end": 5688.36, + "probability": 0.9545 + }, + { + "start": 5689.78, + "end": 5690.5, + "probability": 0.7467 + }, + { + "start": 5690.58, + "end": 5693.5, + "probability": 0.848 + }, + { + "start": 5693.92, + "end": 5699.74, + "probability": 0.969 + }, + { + "start": 5700.24, + "end": 5702.34, + "probability": 0.7802 + }, + { + "start": 5703.02, + "end": 5707.5, + "probability": 0.939 + }, + { + "start": 5707.54, + "end": 5708.84, + "probability": 0.7294 + }, + { + "start": 5711.28, + "end": 5714.12, + "probability": 0.9821 + }, + { + "start": 5715.62, + "end": 5718.38, + "probability": 0.9448 + }, + { + "start": 5719.02, + "end": 5721.36, + "probability": 0.9881 + }, + { + "start": 5721.84, + "end": 5722.86, + "probability": 0.9115 + }, + { + "start": 5723.26, + "end": 5726.28, + "probability": 0.9559 + }, + { + "start": 5726.96, + "end": 5731.16, + "probability": 0.9432 + }, + { + "start": 5731.78, + "end": 5734.96, + "probability": 0.9801 + }, + { + "start": 5735.82, + "end": 5740.16, + "probability": 0.7379 + }, + { + "start": 5740.9, + "end": 5745.38, + "probability": 0.8851 + }, + { + "start": 5746.3, + "end": 5750.44, + "probability": 0.958 + }, + { + "start": 5750.44, + "end": 5755.46, + "probability": 0.9922 + }, + { + "start": 5756.72, + "end": 5761.26, + "probability": 0.9976 + }, + { + "start": 5761.86, + "end": 5765.5, + "probability": 0.9729 + }, + { + "start": 5766.18, + "end": 5767.88, + "probability": 0.7459 + }, + { + "start": 5767.96, + "end": 5769.68, + "probability": 0.9766 + }, + { + "start": 5769.9, + "end": 5775.34, + "probability": 0.9764 + }, + { + "start": 5776.08, + "end": 5776.9, + "probability": 0.9881 + }, + { + "start": 5777.46, + "end": 5781.54, + "probability": 0.995 + }, + { + "start": 5781.88, + "end": 5787.5, + "probability": 0.9695 + }, + { + "start": 5788.12, + "end": 5791.06, + "probability": 0.9995 + }, + { + "start": 5791.06, + "end": 5794.5, + "probability": 0.997 + }, + { + "start": 5795.52, + "end": 5797.0, + "probability": 0.8071 + }, + { + "start": 5797.38, + "end": 5798.76, + "probability": 0.9904 + }, + { + "start": 5799.18, + "end": 5803.8, + "probability": 0.993 + }, + { + "start": 5804.84, + "end": 5809.44, + "probability": 0.9958 + }, + { + "start": 5810.46, + "end": 5814.88, + "probability": 0.9835 + }, + { + "start": 5815.38, + "end": 5818.72, + "probability": 0.8732 + }, + { + "start": 5819.64, + "end": 5822.12, + "probability": 0.9983 + }, + { + "start": 5822.12, + "end": 5825.68, + "probability": 0.9591 + }, + { + "start": 5826.6, + "end": 5833.08, + "probability": 0.9792 + }, + { + "start": 5834.18, + "end": 5839.22, + "probability": 0.9422 + }, + { + "start": 5839.74, + "end": 5842.12, + "probability": 0.8243 + }, + { + "start": 5844.32, + "end": 5845.52, + "probability": 0.8829 + }, + { + "start": 5845.7, + "end": 5846.18, + "probability": 0.8471 + }, + { + "start": 5846.3, + "end": 5847.02, + "probability": 0.985 + }, + { + "start": 5847.06, + "end": 5848.3, + "probability": 0.986 + }, + { + "start": 5848.4, + "end": 5855.0, + "probability": 0.9717 + }, + { + "start": 5856.1, + "end": 5859.58, + "probability": 0.9791 + }, + { + "start": 5859.58, + "end": 5864.28, + "probability": 0.9373 + }, + { + "start": 5865.1, + "end": 5870.36, + "probability": 0.9957 + }, + { + "start": 5870.36, + "end": 5875.76, + "probability": 0.9648 + }, + { + "start": 5876.12, + "end": 5880.52, + "probability": 0.9995 + }, + { + "start": 5880.98, + "end": 5883.76, + "probability": 0.9935 + }, + { + "start": 5888.32, + "end": 5889.52, + "probability": 0.8568 + }, + { + "start": 5890.2, + "end": 5891.02, + "probability": 0.6969 + }, + { + "start": 5892.2, + "end": 5897.2, + "probability": 0.9956 + }, + { + "start": 5897.9, + "end": 5899.8, + "probability": 0.885 + }, + { + "start": 5900.24, + "end": 5905.78, + "probability": 0.9862 + }, + { + "start": 5907.04, + "end": 5911.84, + "probability": 0.6655 + }, + { + "start": 5911.84, + "end": 5915.16, + "probability": 0.9912 + }, + { + "start": 5915.86, + "end": 5921.54, + "probability": 0.9938 + }, + { + "start": 5921.96, + "end": 5923.2, + "probability": 0.9359 + }, + { + "start": 5923.64, + "end": 5925.66, + "probability": 0.8055 + }, + { + "start": 5926.06, + "end": 5929.38, + "probability": 0.9175 + }, + { + "start": 5931.26, + "end": 5932.34, + "probability": 0.8078 + }, + { + "start": 5932.76, + "end": 5938.7, + "probability": 0.9865 + }, + { + "start": 5939.1, + "end": 5941.42, + "probability": 0.9393 + }, + { + "start": 5942.02, + "end": 5946.46, + "probability": 0.926 + }, + { + "start": 5946.78, + "end": 5950.1, + "probability": 0.9945 + }, + { + "start": 5951.7, + "end": 5954.02, + "probability": 0.955 + }, + { + "start": 5954.56, + "end": 5958.58, + "probability": 0.9991 + }, + { + "start": 5959.14, + "end": 5959.74, + "probability": 0.7048 + }, + { + "start": 5960.38, + "end": 5961.42, + "probability": 0.8732 + }, + { + "start": 5961.6, + "end": 5963.06, + "probability": 0.99 + }, + { + "start": 5963.5, + "end": 5966.02, + "probability": 0.9463 + }, + { + "start": 5966.48, + "end": 5967.56, + "probability": 0.9098 + }, + { + "start": 5968.58, + "end": 5974.72, + "probability": 0.9944 + }, + { + "start": 5975.14, + "end": 5982.1, + "probability": 0.9924 + }, + { + "start": 5983.5, + "end": 5987.56, + "probability": 0.9981 + }, + { + "start": 5987.56, + "end": 5990.38, + "probability": 0.9836 + }, + { + "start": 5992.74, + "end": 5994.52, + "probability": 0.9344 + }, + { + "start": 5995.16, + "end": 5997.94, + "probability": 0.9661 + }, + { + "start": 5998.86, + "end": 6002.36, + "probability": 0.9849 + }, + { + "start": 6002.36, + "end": 6007.32, + "probability": 0.9963 + }, + { + "start": 6008.0, + "end": 6010.52, + "probability": 0.8484 + }, + { + "start": 6011.06, + "end": 6014.08, + "probability": 0.9948 + }, + { + "start": 6015.54, + "end": 6020.82, + "probability": 0.9749 + }, + { + "start": 6020.9, + "end": 6021.84, + "probability": 0.769 + }, + { + "start": 6022.4, + "end": 6026.68, + "probability": 0.834 + }, + { + "start": 6027.88, + "end": 6029.12, + "probability": 0.6887 + }, + { + "start": 6029.64, + "end": 6036.56, + "probability": 0.936 + }, + { + "start": 6037.16, + "end": 6041.38, + "probability": 0.9635 + }, + { + "start": 6042.84, + "end": 6043.56, + "probability": 0.0002 + }, + { + "start": 6044.76, + "end": 6044.86, + "probability": 0.3375 + }, + { + "start": 6045.12, + "end": 6050.07, + "probability": 0.9685 + }, + { + "start": 6050.66, + "end": 6058.88, + "probability": 0.9484 + }, + { + "start": 6059.36, + "end": 6060.0, + "probability": 0.7581 + }, + { + "start": 6060.62, + "end": 6066.48, + "probability": 0.8807 + }, + { + "start": 6067.04, + "end": 6067.95, + "probability": 0.5959 + }, + { + "start": 6068.26, + "end": 6068.96, + "probability": 0.552 + }, + { + "start": 6069.14, + "end": 6071.16, + "probability": 0.7824 + }, + { + "start": 6071.76, + "end": 6076.14, + "probability": 0.9986 + }, + { + "start": 6076.6, + "end": 6081.18, + "probability": 0.9691 + }, + { + "start": 6081.62, + "end": 6082.8, + "probability": 0.7459 + }, + { + "start": 6082.98, + "end": 6084.82, + "probability": 0.9579 + }, + { + "start": 6085.22, + "end": 6088.24, + "probability": 0.9902 + }, + { + "start": 6090.18, + "end": 6093.96, + "probability": 0.8738 + }, + { + "start": 6094.4, + "end": 6095.64, + "probability": 0.9727 + }, + { + "start": 6096.24, + "end": 6101.28, + "probability": 0.9916 + }, + { + "start": 6101.78, + "end": 6103.02, + "probability": 0.6135 + }, + { + "start": 6103.48, + "end": 6107.54, + "probability": 0.9699 + }, + { + "start": 6108.26, + "end": 6114.34, + "probability": 0.9915 + }, + { + "start": 6115.3, + "end": 6119.46, + "probability": 0.9971 + }, + { + "start": 6119.78, + "end": 6122.56, + "probability": 0.9886 + }, + { + "start": 6123.82, + "end": 6128.38, + "probability": 0.9978 + }, + { + "start": 6129.22, + "end": 6132.02, + "probability": 0.9258 + }, + { + "start": 6132.84, + "end": 6135.26, + "probability": 0.978 + }, + { + "start": 6135.6, + "end": 6137.92, + "probability": 0.9538 + }, + { + "start": 6139.02, + "end": 6141.42, + "probability": 0.9985 + }, + { + "start": 6141.98, + "end": 6146.08, + "probability": 0.9961 + }, + { + "start": 6146.7, + "end": 6151.64, + "probability": 0.9874 + }, + { + "start": 6152.48, + "end": 6158.54, + "probability": 0.9705 + }, + { + "start": 6159.1, + "end": 6159.93, + "probability": 0.9829 + }, + { + "start": 6159.98, + "end": 6163.64, + "probability": 0.9973 + }, + { + "start": 6164.08, + "end": 6167.68, + "probability": 0.9967 + }, + { + "start": 6168.22, + "end": 6169.62, + "probability": 0.9527 + }, + { + "start": 6170.18, + "end": 6173.94, + "probability": 0.9856 + }, + { + "start": 6174.36, + "end": 6177.24, + "probability": 0.9975 + }, + { + "start": 6177.24, + "end": 6180.36, + "probability": 0.837 + }, + { + "start": 6180.88, + "end": 6185.42, + "probability": 0.9987 + }, + { + "start": 6185.52, + "end": 6185.98, + "probability": 0.7513 + }, + { + "start": 6186.98, + "end": 6187.44, + "probability": 0.686 + }, + { + "start": 6187.5, + "end": 6189.32, + "probability": 0.8391 + }, + { + "start": 6223.74, + "end": 6224.82, + "probability": 0.6652 + }, + { + "start": 6225.96, + "end": 6227.02, + "probability": 0.8152 + }, + { + "start": 6228.28, + "end": 6231.14, + "probability": 0.7413 + }, + { + "start": 6233.76, + "end": 6237.46, + "probability": 0.9163 + }, + { + "start": 6238.28, + "end": 6240.82, + "probability": 0.5561 + }, + { + "start": 6243.14, + "end": 6245.44, + "probability": 0.9841 + }, + { + "start": 6246.24, + "end": 6252.38, + "probability": 0.9569 + }, + { + "start": 6254.24, + "end": 6256.8, + "probability": 0.9695 + }, + { + "start": 6257.24, + "end": 6259.34, + "probability": 0.9377 + }, + { + "start": 6260.06, + "end": 6262.26, + "probability": 0.6405 + }, + { + "start": 6263.08, + "end": 6265.04, + "probability": 0.9267 + }, + { + "start": 6266.42, + "end": 6270.66, + "probability": 0.9852 + }, + { + "start": 6271.54, + "end": 6272.72, + "probability": 0.7431 + }, + { + "start": 6273.1, + "end": 6274.44, + "probability": 0.5406 + }, + { + "start": 6274.7, + "end": 6276.26, + "probability": 0.8548 + }, + { + "start": 6277.16, + "end": 6277.74, + "probability": 0.5717 + }, + { + "start": 6277.78, + "end": 6279.23, + "probability": 0.8525 + }, + { + "start": 6279.76, + "end": 6280.86, + "probability": 0.8473 + }, + { + "start": 6280.98, + "end": 6281.92, + "probability": 0.9258 + }, + { + "start": 6282.7, + "end": 6284.2, + "probability": 0.676 + }, + { + "start": 6286.38, + "end": 6287.98, + "probability": 0.9809 + }, + { + "start": 6289.32, + "end": 6290.17, + "probability": 0.3413 + }, + { + "start": 6291.5, + "end": 6294.24, + "probability": 0.9285 + }, + { + "start": 6295.34, + "end": 6295.96, + "probability": 0.7059 + }, + { + "start": 6296.1, + "end": 6297.82, + "probability": 0.876 + }, + { + "start": 6297.94, + "end": 6298.32, + "probability": 0.5208 + }, + { + "start": 6298.78, + "end": 6299.76, + "probability": 0.5104 + }, + { + "start": 6300.72, + "end": 6301.98, + "probability": 0.9644 + }, + { + "start": 6302.5, + "end": 6305.44, + "probability": 0.859 + }, + { + "start": 6306.36, + "end": 6308.5, + "probability": 0.8757 + }, + { + "start": 6309.34, + "end": 6314.0, + "probability": 0.8501 + }, + { + "start": 6315.6, + "end": 6317.98, + "probability": 0.938 + }, + { + "start": 6318.98, + "end": 6322.86, + "probability": 0.9307 + }, + { + "start": 6323.44, + "end": 6325.78, + "probability": 0.8916 + }, + { + "start": 6326.7, + "end": 6329.98, + "probability": 0.9868 + }, + { + "start": 6330.2, + "end": 6331.34, + "probability": 0.9502 + }, + { + "start": 6331.52, + "end": 6332.82, + "probability": 0.6338 + }, + { + "start": 6333.66, + "end": 6334.84, + "probability": 0.8008 + }, + { + "start": 6336.2, + "end": 6337.58, + "probability": 0.9445 + }, + { + "start": 6339.44, + "end": 6343.4, + "probability": 0.9746 + }, + { + "start": 6343.4, + "end": 6348.54, + "probability": 0.9348 + }, + { + "start": 6349.74, + "end": 6355.32, + "probability": 0.9395 + }, + { + "start": 6356.02, + "end": 6357.1, + "probability": 0.7258 + }, + { + "start": 6358.16, + "end": 6360.12, + "probability": 0.9829 + }, + { + "start": 6361.1, + "end": 6361.68, + "probability": 0.6103 + }, + { + "start": 6361.88, + "end": 6368.1, + "probability": 0.5971 + }, + { + "start": 6368.72, + "end": 6374.56, + "probability": 0.9852 + }, + { + "start": 6375.6, + "end": 6376.66, + "probability": 0.5694 + }, + { + "start": 6377.96, + "end": 6379.66, + "probability": 0.8817 + }, + { + "start": 6380.42, + "end": 6383.56, + "probability": 0.908 + }, + { + "start": 6383.98, + "end": 6386.9, + "probability": 0.9715 + }, + { + "start": 6387.36, + "end": 6387.84, + "probability": 0.7448 + }, + { + "start": 6388.78, + "end": 6391.32, + "probability": 0.7665 + }, + { + "start": 6392.58, + "end": 6395.78, + "probability": 0.8389 + }, + { + "start": 6400.46, + "end": 6402.32, + "probability": 0.0448 + }, + { + "start": 6402.48, + "end": 6403.96, + "probability": 0.2165 + }, + { + "start": 6403.96, + "end": 6406.6, + "probability": 0.0304 + }, + { + "start": 6429.86, + "end": 6436.04, + "probability": 0.9957 + }, + { + "start": 6436.48, + "end": 6440.94, + "probability": 0.7744 + }, + { + "start": 6441.64, + "end": 6445.34, + "probability": 0.9272 + }, + { + "start": 6445.76, + "end": 6448.0, + "probability": 0.9753 + }, + { + "start": 6448.86, + "end": 6452.96, + "probability": 0.9619 + }, + { + "start": 6454.98, + "end": 6458.22, + "probability": 0.8414 + }, + { + "start": 6459.76, + "end": 6463.76, + "probability": 0.5998 + }, + { + "start": 6465.06, + "end": 6468.46, + "probability": 0.9953 + }, + { + "start": 6468.56, + "end": 6470.4, + "probability": 0.7495 + }, + { + "start": 6470.58, + "end": 6472.08, + "probability": 0.8053 + }, + { + "start": 6472.2, + "end": 6476.4, + "probability": 0.9696 + }, + { + "start": 6477.22, + "end": 6480.56, + "probability": 0.9963 + }, + { + "start": 6481.3, + "end": 6482.94, + "probability": 0.9697 + }, + { + "start": 6483.7, + "end": 6486.7, + "probability": 0.9958 + }, + { + "start": 6487.3, + "end": 6492.12, + "probability": 0.9629 + }, + { + "start": 6492.64, + "end": 6497.24, + "probability": 0.9856 + }, + { + "start": 6497.98, + "end": 6500.18, + "probability": 0.9852 + }, + { + "start": 6500.32, + "end": 6505.36, + "probability": 0.9899 + }, + { + "start": 6506.26, + "end": 6510.06, + "probability": 0.8783 + }, + { + "start": 6510.16, + "end": 6511.22, + "probability": 0.9641 + }, + { + "start": 6511.82, + "end": 6516.6, + "probability": 0.9915 + }, + { + "start": 6517.72, + "end": 6523.44, + "probability": 0.9933 + }, + { + "start": 6524.02, + "end": 6526.56, + "probability": 0.9921 + }, + { + "start": 6526.56, + "end": 6530.34, + "probability": 0.9509 + }, + { + "start": 6531.96, + "end": 6532.94, + "probability": 0.1325 + }, + { + "start": 6532.94, + "end": 6535.26, + "probability": 0.5252 + }, + { + "start": 6536.14, + "end": 6537.84, + "probability": 0.9919 + }, + { + "start": 6538.38, + "end": 6542.34, + "probability": 0.9516 + }, + { + "start": 6542.72, + "end": 6545.24, + "probability": 0.9835 + }, + { + "start": 6545.74, + "end": 6547.34, + "probability": 0.9667 + }, + { + "start": 6547.68, + "end": 6550.62, + "probability": 0.9603 + }, + { + "start": 6551.08, + "end": 6554.46, + "probability": 0.998 + }, + { + "start": 6554.46, + "end": 6557.74, + "probability": 0.9948 + }, + { + "start": 6559.0, + "end": 6561.56, + "probability": 0.9814 + }, + { + "start": 6562.0, + "end": 6565.14, + "probability": 0.9965 + }, + { + "start": 6565.7, + "end": 6568.36, + "probability": 0.9894 + }, + { + "start": 6568.36, + "end": 6572.66, + "probability": 0.9966 + }, + { + "start": 6573.96, + "end": 6577.18, + "probability": 0.9937 + }, + { + "start": 6577.18, + "end": 6581.0, + "probability": 0.9991 + }, + { + "start": 6581.88, + "end": 6585.16, + "probability": 0.995 + }, + { + "start": 6585.22, + "end": 6592.5, + "probability": 0.9917 + }, + { + "start": 6593.06, + "end": 6596.82, + "probability": 0.9953 + }, + { + "start": 6597.6, + "end": 6603.3, + "probability": 0.9934 + }, + { + "start": 6603.5, + "end": 6606.32, + "probability": 0.9582 + }, + { + "start": 6606.84, + "end": 6610.38, + "probability": 0.967 + }, + { + "start": 6610.9, + "end": 6614.02, + "probability": 0.9913 + }, + { + "start": 6614.48, + "end": 6619.02, + "probability": 0.9949 + }, + { + "start": 6619.72, + "end": 6624.66, + "probability": 0.987 + }, + { + "start": 6625.68, + "end": 6628.38, + "probability": 0.9867 + }, + { + "start": 6628.48, + "end": 6634.88, + "probability": 0.9867 + }, + { + "start": 6635.84, + "end": 6639.64, + "probability": 0.9854 + }, + { + "start": 6639.64, + "end": 6644.58, + "probability": 0.991 + }, + { + "start": 6645.16, + "end": 6646.34, + "probability": 0.7561 + }, + { + "start": 6646.44, + "end": 6647.84, + "probability": 0.6988 + }, + { + "start": 6647.86, + "end": 6650.9, + "probability": 0.9503 + }, + { + "start": 6651.86, + "end": 6656.58, + "probability": 0.668 + }, + { + "start": 6657.08, + "end": 6658.6, + "probability": 0.9545 + }, + { + "start": 6658.64, + "end": 6659.14, + "probability": 0.9787 + }, + { + "start": 6660.1, + "end": 6662.5, + "probability": 0.9858 + }, + { + "start": 6662.6, + "end": 6665.14, + "probability": 0.9873 + }, + { + "start": 6666.3, + "end": 6670.6, + "probability": 0.991 + }, + { + "start": 6671.08, + "end": 6675.46, + "probability": 0.9858 + }, + { + "start": 6675.66, + "end": 6676.84, + "probability": 0.8394 + }, + { + "start": 6677.4, + "end": 6679.3, + "probability": 0.9976 + }, + { + "start": 6679.68, + "end": 6681.12, + "probability": 0.8069 + }, + { + "start": 6681.42, + "end": 6684.28, + "probability": 0.9899 + }, + { + "start": 6684.98, + "end": 6691.82, + "probability": 0.998 + }, + { + "start": 6692.94, + "end": 6695.42, + "probability": 0.9683 + }, + { + "start": 6695.94, + "end": 6701.2, + "probability": 0.9882 + }, + { + "start": 6701.26, + "end": 6702.32, + "probability": 0.8322 + }, + { + "start": 6702.42, + "end": 6702.82, + "probability": 0.6891 + }, + { + "start": 6703.3, + "end": 6709.72, + "probability": 0.9995 + }, + { + "start": 6709.88, + "end": 6711.34, + "probability": 0.9574 + }, + { + "start": 6711.96, + "end": 6712.5, + "probability": 0.7771 + }, + { + "start": 6713.88, + "end": 6716.46, + "probability": 0.811 + }, + { + "start": 6716.78, + "end": 6718.8, + "probability": 0.8396 + }, + { + "start": 6719.4, + "end": 6719.74, + "probability": 0.2886 + }, + { + "start": 6719.86, + "end": 6724.12, + "probability": 0.9434 + }, + { + "start": 6734.8, + "end": 6736.68, + "probability": 0.159 + }, + { + "start": 6737.02, + "end": 6739.1, + "probability": 0.5264 + }, + { + "start": 6741.04, + "end": 6743.01, + "probability": 0.5489 + }, + { + "start": 6757.8, + "end": 6757.8, + "probability": 0.3657 + }, + { + "start": 6757.8, + "end": 6757.8, + "probability": 0.2124 + }, + { + "start": 6757.8, + "end": 6758.12, + "probability": 0.2736 + }, + { + "start": 6758.66, + "end": 6759.24, + "probability": 0.7732 + }, + { + "start": 6759.62, + "end": 6760.88, + "probability": 0.7747 + }, + { + "start": 6761.24, + "end": 6764.2, + "probability": 0.7967 + }, + { + "start": 6764.26, + "end": 6768.4, + "probability": 0.7061 + }, + { + "start": 6768.76, + "end": 6770.08, + "probability": 0.4856 + }, + { + "start": 6771.02, + "end": 6771.54, + "probability": 0.6602 + }, + { + "start": 6772.42, + "end": 6774.13, + "probability": 0.6489 + }, + { + "start": 6774.32, + "end": 6774.82, + "probability": 0.7991 + }, + { + "start": 6776.22, + "end": 6777.18, + "probability": 0.8947 + }, + { + "start": 6777.66, + "end": 6777.66, + "probability": 0.3608 + }, + { + "start": 6777.66, + "end": 6778.9, + "probability": 0.6312 + }, + { + "start": 6779.44, + "end": 6780.04, + "probability": 0.894 + }, + { + "start": 6781.28, + "end": 6782.32, + "probability": 0.7271 + }, + { + "start": 6783.28, + "end": 6785.5, + "probability": 0.9361 + }, + { + "start": 6786.6, + "end": 6787.6, + "probability": 0.942 + }, + { + "start": 6788.7, + "end": 6790.41, + "probability": 0.7246 + }, + { + "start": 6790.54, + "end": 6792.3, + "probability": 0.9259 + }, + { + "start": 6792.42, + "end": 6793.52, + "probability": 0.6426 + }, + { + "start": 6794.14, + "end": 6794.74, + "probability": 0.652 + }, + { + "start": 6795.6, + "end": 6796.17, + "probability": 0.5875 + }, + { + "start": 6796.88, + "end": 6800.84, + "probability": 0.9739 + }, + { + "start": 6802.04, + "end": 6808.0, + "probability": 0.9852 + }, + { + "start": 6809.6, + "end": 6811.42, + "probability": 0.998 + }, + { + "start": 6811.42, + "end": 6816.72, + "probability": 0.9952 + }, + { + "start": 6817.78, + "end": 6819.4, + "probability": 0.9946 + }, + { + "start": 6820.9, + "end": 6824.6, + "probability": 0.9966 + }, + { + "start": 6825.54, + "end": 6828.64, + "probability": 0.9802 + }, + { + "start": 6829.56, + "end": 6830.96, + "probability": 0.8033 + }, + { + "start": 6833.4, + "end": 6838.48, + "probability": 0.9659 + }, + { + "start": 6840.1, + "end": 6842.3, + "probability": 0.9992 + }, + { + "start": 6842.3, + "end": 6847.08, + "probability": 0.947 + }, + { + "start": 6848.1, + "end": 6851.48, + "probability": 0.8683 + }, + { + "start": 6851.6, + "end": 6852.64, + "probability": 0.9884 + }, + { + "start": 6853.66, + "end": 6854.14, + "probability": 0.9865 + }, + { + "start": 6855.12, + "end": 6857.04, + "probability": 0.9921 + }, + { + "start": 6858.64, + "end": 6862.58, + "probability": 0.9919 + }, + { + "start": 6863.92, + "end": 6866.66, + "probability": 0.9915 + }, + { + "start": 6868.54, + "end": 6870.12, + "probability": 0.9915 + }, + { + "start": 6871.36, + "end": 6874.12, + "probability": 0.9864 + }, + { + "start": 6876.46, + "end": 6878.88, + "probability": 0.8401 + }, + { + "start": 6880.94, + "end": 6886.74, + "probability": 0.9312 + }, + { + "start": 6887.94, + "end": 6892.84, + "probability": 0.999 + }, + { + "start": 6894.9, + "end": 6896.56, + "probability": 0.7566 + }, + { + "start": 6897.64, + "end": 6900.9, + "probability": 0.9117 + }, + { + "start": 6902.84, + "end": 6907.9, + "probability": 0.9912 + }, + { + "start": 6908.6, + "end": 6911.23, + "probability": 0.8074 + }, + { + "start": 6911.78, + "end": 6912.44, + "probability": 0.7854 + }, + { + "start": 6912.78, + "end": 6913.7, + "probability": 0.6536 + }, + { + "start": 6914.56, + "end": 6916.22, + "probability": 0.96 + }, + { + "start": 6916.36, + "end": 6918.54, + "probability": 0.9951 + }, + { + "start": 6918.9, + "end": 6920.24, + "probability": 0.8477 + }, + { + "start": 6920.78, + "end": 6921.66, + "probability": 0.999 + }, + { + "start": 6922.7, + "end": 6923.76, + "probability": 0.4339 + }, + { + "start": 6923.78, + "end": 6928.66, + "probability": 0.9814 + }, + { + "start": 6930.3, + "end": 6931.2, + "probability": 0.7218 + }, + { + "start": 6932.86, + "end": 6937.0, + "probability": 0.9723 + }, + { + "start": 6937.56, + "end": 6939.62, + "probability": 0.9798 + }, + { + "start": 6941.18, + "end": 6942.22, + "probability": 0.8986 + }, + { + "start": 6943.68, + "end": 6946.38, + "probability": 0.9537 + }, + { + "start": 6949.08, + "end": 6950.98, + "probability": 0.9797 + }, + { + "start": 6951.92, + "end": 6954.64, + "probability": 0.9834 + }, + { + "start": 6955.1, + "end": 6955.96, + "probability": 0.8969 + }, + { + "start": 6956.16, + "end": 6957.0, + "probability": 0.999 + }, + { + "start": 6960.16, + "end": 6961.12, + "probability": 0.4976 + }, + { + "start": 6961.74, + "end": 6963.34, + "probability": 0.9725 + }, + { + "start": 6963.58, + "end": 6965.82, + "probability": 0.9612 + }, + { + "start": 6968.06, + "end": 6969.08, + "probability": 0.9275 + }, + { + "start": 6969.94, + "end": 6975.26, + "probability": 0.9941 + }, + { + "start": 6975.3, + "end": 6975.84, + "probability": 0.8368 + }, + { + "start": 6977.0, + "end": 6979.78, + "probability": 0.9918 + }, + { + "start": 6979.86, + "end": 6980.48, + "probability": 0.7752 + }, + { + "start": 6980.52, + "end": 6981.32, + "probability": 0.7908 + }, + { + "start": 6982.9, + "end": 6984.14, + "probability": 0.97 + }, + { + "start": 6985.66, + "end": 6991.66, + "probability": 0.9465 + }, + { + "start": 6993.24, + "end": 6995.84, + "probability": 0.9576 + }, + { + "start": 6996.56, + "end": 6998.18, + "probability": 0.9806 + }, + { + "start": 6999.16, + "end": 7000.84, + "probability": 0.9786 + }, + { + "start": 7001.84, + "end": 7002.38, + "probability": 0.805 + }, + { + "start": 7002.9, + "end": 7004.28, + "probability": 0.7224 + }, + { + "start": 7004.36, + "end": 7005.28, + "probability": 0.6265 + }, + { + "start": 7006.22, + "end": 7009.88, + "probability": 0.8639 + }, + { + "start": 7009.9, + "end": 7012.74, + "probability": 0.8069 + }, + { + "start": 7013.64, + "end": 7015.6, + "probability": 0.9672 + }, + { + "start": 7017.04, + "end": 7017.12, + "probability": 0.0012 + }, + { + "start": 7020.64, + "end": 7024.38, + "probability": 0.9541 + }, + { + "start": 7025.28, + "end": 7028.4, + "probability": 0.9065 + }, + { + "start": 7028.4, + "end": 7033.64, + "probability": 0.9697 + }, + { + "start": 7034.2, + "end": 7035.52, + "probability": 0.7766 + }, + { + "start": 7036.52, + "end": 7037.36, + "probability": 0.9961 + }, + { + "start": 7044.28, + "end": 7048.12, + "probability": 0.7583 + }, + { + "start": 7048.24, + "end": 7050.06, + "probability": 0.9915 + }, + { + "start": 7051.2, + "end": 7055.32, + "probability": 0.989 + }, + { + "start": 7055.7, + "end": 7057.76, + "probability": 0.9266 + }, + { + "start": 7058.32, + "end": 7060.28, + "probability": 0.717 + }, + { + "start": 7060.92, + "end": 7065.56, + "probability": 0.8481 + }, + { + "start": 7065.94, + "end": 7068.52, + "probability": 0.9824 + }, + { + "start": 7069.52, + "end": 7071.94, + "probability": 0.8027 + }, + { + "start": 7072.32, + "end": 7074.98, + "probability": 0.9513 + }, + { + "start": 7075.74, + "end": 7076.48, + "probability": 0.6689 + }, + { + "start": 7077.54, + "end": 7079.46, + "probability": 0.9105 + }, + { + "start": 7080.96, + "end": 7081.5, + "probability": 0.4599 + }, + { + "start": 7082.14, + "end": 7083.68, + "probability": 0.9229 + }, + { + "start": 7085.22, + "end": 7088.34, + "probability": 0.9966 + }, + { + "start": 7088.54, + "end": 7090.88, + "probability": 0.8005 + }, + { + "start": 7091.03, + "end": 7094.04, + "probability": 0.6421 + }, + { + "start": 7095.22, + "end": 7096.46, + "probability": 0.9997 + }, + { + "start": 7097.38, + "end": 7101.3, + "probability": 0.9976 + }, + { + "start": 7102.84, + "end": 7105.16, + "probability": 0.9958 + }, + { + "start": 7106.45, + "end": 7108.74, + "probability": 0.9646 + }, + { + "start": 7108.82, + "end": 7110.22, + "probability": 0.9001 + }, + { + "start": 7110.32, + "end": 7111.19, + "probability": 0.96 + }, + { + "start": 7112.54, + "end": 7116.6, + "probability": 0.9955 + }, + { + "start": 7116.96, + "end": 7118.96, + "probability": 0.7422 + }, + { + "start": 7119.04, + "end": 7121.76, + "probability": 0.9882 + }, + { + "start": 7122.88, + "end": 7123.88, + "probability": 0.9816 + }, + { + "start": 7124.5, + "end": 7127.12, + "probability": 0.9985 + }, + { + "start": 7127.94, + "end": 7130.34, + "probability": 0.9927 + }, + { + "start": 7130.96, + "end": 7131.78, + "probability": 0.9373 + }, + { + "start": 7132.78, + "end": 7134.42, + "probability": 0.8279 + }, + { + "start": 7134.56, + "end": 7135.32, + "probability": 0.938 + }, + { + "start": 7135.64, + "end": 7137.04, + "probability": 0.9193 + }, + { + "start": 7138.44, + "end": 7139.01, + "probability": 0.9199 + }, + { + "start": 7140.02, + "end": 7142.7, + "probability": 0.9405 + }, + { + "start": 7143.56, + "end": 7146.36, + "probability": 0.9985 + }, + { + "start": 7147.02, + "end": 7153.28, + "probability": 0.9966 + }, + { + "start": 7154.14, + "end": 7156.74, + "probability": 0.9966 + }, + { + "start": 7156.74, + "end": 7160.08, + "probability": 0.9992 + }, + { + "start": 7161.18, + "end": 7163.92, + "probability": 0.9523 + }, + { + "start": 7164.58, + "end": 7166.27, + "probability": 0.8844 + }, + { + "start": 7166.52, + "end": 7168.28, + "probability": 0.9865 + }, + { + "start": 7168.7, + "end": 7169.76, + "probability": 0.4964 + }, + { + "start": 7170.52, + "end": 7172.22, + "probability": 0.5807 + }, + { + "start": 7174.12, + "end": 7176.28, + "probability": 0.9907 + }, + { + "start": 7176.32, + "end": 7178.68, + "probability": 0.9971 + }, + { + "start": 7179.58, + "end": 7181.9, + "probability": 0.9996 + }, + { + "start": 7183.16, + "end": 7186.3, + "probability": 0.8685 + }, + { + "start": 7187.44, + "end": 7190.46, + "probability": 0.9873 + }, + { + "start": 7191.68, + "end": 7195.5, + "probability": 0.9964 + }, + { + "start": 7195.5, + "end": 7200.26, + "probability": 0.9913 + }, + { + "start": 7201.3, + "end": 7205.4, + "probability": 0.7008 + }, + { + "start": 7205.64, + "end": 7208.62, + "probability": 0.9101 + }, + { + "start": 7209.06, + "end": 7209.74, + "probability": 0.6967 + }, + { + "start": 7209.92, + "end": 7213.06, + "probability": 0.9427 + }, + { + "start": 7213.74, + "end": 7217.1, + "probability": 0.8296 + }, + { + "start": 7217.76, + "end": 7221.14, + "probability": 0.9976 + }, + { + "start": 7221.72, + "end": 7225.56, + "probability": 0.9467 + }, + { + "start": 7227.14, + "end": 7228.29, + "probability": 0.7043 + }, + { + "start": 7230.08, + "end": 7233.2, + "probability": 0.9683 + }, + { + "start": 7234.24, + "end": 7235.28, + "probability": 0.8799 + }, + { + "start": 7235.38, + "end": 7236.22, + "probability": 0.8877 + }, + { + "start": 7236.34, + "end": 7238.46, + "probability": 0.7713 + }, + { + "start": 7239.22, + "end": 7243.36, + "probability": 0.9228 + }, + { + "start": 7244.7, + "end": 7249.35, + "probability": 0.9781 + }, + { + "start": 7250.36, + "end": 7251.82, + "probability": 0.9943 + }, + { + "start": 7258.2, + "end": 7259.52, + "probability": 0.8142 + }, + { + "start": 7259.88, + "end": 7261.12, + "probability": 0.8289 + }, + { + "start": 7261.28, + "end": 7262.49, + "probability": 0.9783 + }, + { + "start": 7263.06, + "end": 7264.1, + "probability": 0.9462 + }, + { + "start": 7264.2, + "end": 7265.5, + "probability": 0.8024 + }, + { + "start": 7266.06, + "end": 7267.5, + "probability": 0.9912 + }, + { + "start": 7268.04, + "end": 7269.5, + "probability": 0.7451 + }, + { + "start": 7270.36, + "end": 7273.94, + "probability": 0.9963 + }, + { + "start": 7273.98, + "end": 7277.84, + "probability": 0.9619 + }, + { + "start": 7278.52, + "end": 7284.24, + "probability": 0.9932 + }, + { + "start": 7285.12, + "end": 7285.96, + "probability": 0.7041 + }, + { + "start": 7286.52, + "end": 7289.24, + "probability": 0.973 + }, + { + "start": 7289.9, + "end": 7292.74, + "probability": 0.9586 + }, + { + "start": 7293.96, + "end": 7298.76, + "probability": 0.9609 + }, + { + "start": 7299.6, + "end": 7301.22, + "probability": 0.9801 + }, + { + "start": 7301.74, + "end": 7304.06, + "probability": 0.9643 + }, + { + "start": 7304.38, + "end": 7307.12, + "probability": 0.9918 + }, + { + "start": 7307.66, + "end": 7310.88, + "probability": 0.9965 + }, + { + "start": 7311.5, + "end": 7314.98, + "probability": 0.874 + }, + { + "start": 7315.56, + "end": 7317.24, + "probability": 0.9805 + }, + { + "start": 7318.48, + "end": 7323.44, + "probability": 0.9824 + }, + { + "start": 7323.96, + "end": 7328.2, + "probability": 0.9893 + }, + { + "start": 7328.52, + "end": 7329.76, + "probability": 0.7418 + }, + { + "start": 7330.36, + "end": 7333.74, + "probability": 0.9789 + }, + { + "start": 7334.32, + "end": 7337.62, + "probability": 0.9814 + }, + { + "start": 7338.08, + "end": 7342.62, + "probability": 0.9946 + }, + { + "start": 7342.68, + "end": 7344.18, + "probability": 0.8384 + }, + { + "start": 7345.06, + "end": 7351.04, + "probability": 0.9946 + }, + { + "start": 7351.62, + "end": 7355.48, + "probability": 0.8023 + }, + { + "start": 7355.68, + "end": 7358.42, + "probability": 0.9763 + }, + { + "start": 7359.12, + "end": 7360.12, + "probability": 0.8981 + }, + { + "start": 7360.3, + "end": 7364.42, + "probability": 0.9817 + }, + { + "start": 7364.42, + "end": 7368.62, + "probability": 0.9936 + }, + { + "start": 7369.38, + "end": 7373.32, + "probability": 0.9968 + }, + { + "start": 7373.32, + "end": 7378.0, + "probability": 0.9978 + }, + { + "start": 7378.0, + "end": 7382.34, + "probability": 0.9861 + }, + { + "start": 7382.94, + "end": 7388.7, + "probability": 0.9962 + }, + { + "start": 7389.64, + "end": 7392.62, + "probability": 0.9949 + }, + { + "start": 7393.26, + "end": 7395.02, + "probability": 0.9688 + }, + { + "start": 7395.56, + "end": 7397.52, + "probability": 0.9885 + }, + { + "start": 7398.18, + "end": 7404.76, + "probability": 0.9917 + }, + { + "start": 7404.82, + "end": 7409.3, + "probability": 0.9972 + }, + { + "start": 7410.12, + "end": 7411.54, + "probability": 0.9915 + }, + { + "start": 7412.46, + "end": 7417.64, + "probability": 0.9922 + }, + { + "start": 7418.14, + "end": 7422.26, + "probability": 0.7481 + }, + { + "start": 7422.26, + "end": 7423.52, + "probability": 0.932 + }, + { + "start": 7423.64, + "end": 7424.02, + "probability": 0.866 + }, + { + "start": 7424.24, + "end": 7425.1, + "probability": 0.9467 + }, + { + "start": 7425.18, + "end": 7426.38, + "probability": 0.846 + }, + { + "start": 7427.14, + "end": 7429.74, + "probability": 0.9946 + }, + { + "start": 7430.6, + "end": 7434.14, + "probability": 0.9961 + }, + { + "start": 7434.74, + "end": 7435.62, + "probability": 0.7779 + }, + { + "start": 7435.66, + "end": 7438.54, + "probability": 0.9969 + }, + { + "start": 7439.06, + "end": 7441.88, + "probability": 0.9889 + }, + { + "start": 7442.48, + "end": 7447.14, + "probability": 0.9411 + }, + { + "start": 7447.94, + "end": 7449.32, + "probability": 0.934 + }, + { + "start": 7450.02, + "end": 7456.56, + "probability": 0.9845 + }, + { + "start": 7456.56, + "end": 7460.58, + "probability": 0.9858 + }, + { + "start": 7461.34, + "end": 7462.73, + "probability": 0.9941 + }, + { + "start": 7463.48, + "end": 7465.06, + "probability": 0.998 + }, + { + "start": 7465.9, + "end": 7467.62, + "probability": 0.9971 + }, + { + "start": 7467.66, + "end": 7471.72, + "probability": 0.921 + }, + { + "start": 7471.92, + "end": 7472.62, + "probability": 0.9082 + }, + { + "start": 7472.72, + "end": 7473.52, + "probability": 0.7919 + }, + { + "start": 7474.12, + "end": 7474.94, + "probability": 0.9838 + }, + { + "start": 7475.02, + "end": 7476.48, + "probability": 0.9179 + }, + { + "start": 7476.56, + "end": 7478.26, + "probability": 0.827 + }, + { + "start": 7478.42, + "end": 7479.76, + "probability": 0.9316 + }, + { + "start": 7480.26, + "end": 7482.08, + "probability": 0.9996 + }, + { + "start": 7482.34, + "end": 7483.28, + "probability": 0.9705 + }, + { + "start": 7483.74, + "end": 7485.36, + "probability": 0.9809 + }, + { + "start": 7485.52, + "end": 7486.86, + "probability": 0.99 + }, + { + "start": 7487.28, + "end": 7488.3, + "probability": 0.9138 + }, + { + "start": 7488.58, + "end": 7491.46, + "probability": 0.9975 + }, + { + "start": 7493.74, + "end": 7499.9, + "probability": 0.9922 + }, + { + "start": 7499.96, + "end": 7504.22, + "probability": 0.8787 + }, + { + "start": 7504.78, + "end": 7506.9, + "probability": 0.9187 + }, + { + "start": 7507.62, + "end": 7509.72, + "probability": 0.9919 + }, + { + "start": 7510.88, + "end": 7512.74, + "probability": 0.9673 + }, + { + "start": 7513.56, + "end": 7514.49, + "probability": 0.9846 + }, + { + "start": 7515.38, + "end": 7521.06, + "probability": 0.8692 + }, + { + "start": 7521.62, + "end": 7522.88, + "probability": 0.9561 + }, + { + "start": 7523.06, + "end": 7526.72, + "probability": 0.9909 + }, + { + "start": 7538.54, + "end": 7539.64, + "probability": 0.2495 + }, + { + "start": 7539.64, + "end": 7539.68, + "probability": 0.2475 + }, + { + "start": 7539.68, + "end": 7539.68, + "probability": 0.0965 + }, + { + "start": 7539.68, + "end": 7540.37, + "probability": 0.2851 + }, + { + "start": 7541.1, + "end": 7542.28, + "probability": 0.7202 + }, + { + "start": 7542.54, + "end": 7543.38, + "probability": 0.998 + }, + { + "start": 7543.92, + "end": 7546.7, + "probability": 0.8462 + }, + { + "start": 7547.22, + "end": 7549.74, + "probability": 0.9631 + }, + { + "start": 7550.1, + "end": 7552.42, + "probability": 0.773 + }, + { + "start": 7552.58, + "end": 7553.3, + "probability": 0.6332 + }, + { + "start": 7553.36, + "end": 7554.26, + "probability": 0.705 + }, + { + "start": 7554.3, + "end": 7555.18, + "probability": 0.7701 + }, + { + "start": 7555.44, + "end": 7556.48, + "probability": 0.6511 + }, + { + "start": 7557.18, + "end": 7561.96, + "probability": 0.9215 + }, + { + "start": 7562.42, + "end": 7566.48, + "probability": 0.9829 + }, + { + "start": 7566.58, + "end": 7569.28, + "probability": 0.9898 + }, + { + "start": 7569.76, + "end": 7571.21, + "probability": 0.9739 + }, + { + "start": 7571.72, + "end": 7572.76, + "probability": 0.8101 + }, + { + "start": 7573.12, + "end": 7577.52, + "probability": 0.9829 + }, + { + "start": 7577.52, + "end": 7581.44, + "probability": 0.9944 + }, + { + "start": 7581.96, + "end": 7583.76, + "probability": 0.9912 + }, + { + "start": 7584.32, + "end": 7586.68, + "probability": 0.989 + }, + { + "start": 7586.8, + "end": 7590.46, + "probability": 0.8663 + }, + { + "start": 7591.28, + "end": 7594.16, + "probability": 0.982 + }, + { + "start": 7594.76, + "end": 7597.28, + "probability": 0.9979 + }, + { + "start": 7597.78, + "end": 7600.02, + "probability": 0.9961 + }, + { + "start": 7600.38, + "end": 7604.58, + "probability": 0.9949 + }, + { + "start": 7605.04, + "end": 7605.82, + "probability": 0.6616 + }, + { + "start": 7605.98, + "end": 7607.0, + "probability": 0.9912 + }, + { + "start": 7607.38, + "end": 7609.94, + "probability": 0.9901 + }, + { + "start": 7610.06, + "end": 7612.36, + "probability": 0.7653 + }, + { + "start": 7613.26, + "end": 7617.12, + "probability": 0.8999 + }, + { + "start": 7617.16, + "end": 7621.16, + "probability": 0.991 + }, + { + "start": 7621.72, + "end": 7622.84, + "probability": 0.8569 + }, + { + "start": 7623.0, + "end": 7628.3, + "probability": 0.9911 + }, + { + "start": 7628.32, + "end": 7630.48, + "probability": 0.918 + }, + { + "start": 7631.68, + "end": 7632.38, + "probability": 0.7351 + }, + { + "start": 7632.64, + "end": 7634.88, + "probability": 0.9018 + }, + { + "start": 7646.36, + "end": 7647.93, + "probability": 0.6138 + }, + { + "start": 7648.16, + "end": 7649.14, + "probability": 0.7957 + }, + { + "start": 7650.02, + "end": 7652.76, + "probability": 0.9937 + }, + { + "start": 7653.92, + "end": 7657.4, + "probability": 0.9546 + }, + { + "start": 7657.5, + "end": 7661.56, + "probability": 0.9091 + }, + { + "start": 7661.6, + "end": 7662.62, + "probability": 0.6535 + }, + { + "start": 7663.18, + "end": 7663.82, + "probability": 0.7055 + }, + { + "start": 7665.4, + "end": 7668.24, + "probability": 0.9907 + }, + { + "start": 7668.82, + "end": 7669.02, + "probability": 0.8707 + }, + { + "start": 7669.08, + "end": 7676.91, + "probability": 0.9908 + }, + { + "start": 7677.34, + "end": 7678.02, + "probability": 0.9795 + }, + { + "start": 7679.44, + "end": 7680.12, + "probability": 0.9908 + }, + { + "start": 7681.46, + "end": 7682.26, + "probability": 0.7562 + }, + { + "start": 7684.18, + "end": 7686.6, + "probability": 0.9921 + }, + { + "start": 7687.88, + "end": 7693.1, + "probability": 0.996 + }, + { + "start": 7694.1, + "end": 7698.06, + "probability": 0.9968 + }, + { + "start": 7699.62, + "end": 7702.42, + "probability": 0.9924 + }, + { + "start": 7702.74, + "end": 7706.26, + "probability": 0.9836 + }, + { + "start": 7707.56, + "end": 7709.22, + "probability": 0.8834 + }, + { + "start": 7710.0, + "end": 7712.7, + "probability": 0.9988 + }, + { + "start": 7713.58, + "end": 7714.36, + "probability": 0.9103 + }, + { + "start": 7714.88, + "end": 7715.36, + "probability": 0.7049 + }, + { + "start": 7716.44, + "end": 7720.14, + "probability": 0.9868 + }, + { + "start": 7721.6, + "end": 7722.82, + "probability": 0.8511 + }, + { + "start": 7723.24, + "end": 7723.72, + "probability": 0.9202 + }, + { + "start": 7724.18, + "end": 7727.74, + "probability": 0.9099 + }, + { + "start": 7729.46, + "end": 7730.62, + "probability": 0.9963 + }, + { + "start": 7731.38, + "end": 7737.02, + "probability": 0.9908 + }, + { + "start": 7737.86, + "end": 7740.08, + "probability": 0.9935 + }, + { + "start": 7742.35, + "end": 7745.12, + "probability": 0.965 + }, + { + "start": 7745.22, + "end": 7747.54, + "probability": 0.9388 + }, + { + "start": 7748.22, + "end": 7750.08, + "probability": 0.9958 + }, + { + "start": 7752.08, + "end": 7753.44, + "probability": 0.8626 + }, + { + "start": 7753.46, + "end": 7754.64, + "probability": 0.9563 + }, + { + "start": 7754.8, + "end": 7755.12, + "probability": 0.7078 + }, + { + "start": 7755.84, + "end": 7756.7, + "probability": 0.8101 + }, + { + "start": 7756.98, + "end": 7759.16, + "probability": 0.7595 + }, + { + "start": 7759.84, + "end": 7762.94, + "probability": 0.9878 + }, + { + "start": 7763.88, + "end": 7765.96, + "probability": 0.9989 + }, + { + "start": 7766.9, + "end": 7771.42, + "probability": 0.9971 + }, + { + "start": 7772.64, + "end": 7773.78, + "probability": 0.7258 + }, + { + "start": 7774.4, + "end": 7778.28, + "probability": 0.9215 + }, + { + "start": 7779.4, + "end": 7784.17, + "probability": 0.9969 + }, + { + "start": 7785.32, + "end": 7785.68, + "probability": 0.7634 + }, + { + "start": 7786.74, + "end": 7790.26, + "probability": 0.9988 + }, + { + "start": 7790.98, + "end": 7794.4, + "probability": 0.9965 + }, + { + "start": 7795.42, + "end": 7799.14, + "probability": 0.9977 + }, + { + "start": 7800.24, + "end": 7801.64, + "probability": 0.9195 + }, + { + "start": 7801.76, + "end": 7806.3, + "probability": 0.9057 + }, + { + "start": 7807.66, + "end": 7809.14, + "probability": 0.9212 + }, + { + "start": 7809.28, + "end": 7811.32, + "probability": 0.9184 + }, + { + "start": 7811.42, + "end": 7812.12, + "probability": 0.9882 + }, + { + "start": 7812.78, + "end": 7815.9, + "probability": 0.9786 + }, + { + "start": 7816.84, + "end": 7819.62, + "probability": 0.9906 + }, + { + "start": 7819.76, + "end": 7820.56, + "probability": 0.7878 + }, + { + "start": 7821.16, + "end": 7824.66, + "probability": 0.9843 + }, + { + "start": 7825.32, + "end": 7829.52, + "probability": 0.9912 + }, + { + "start": 7830.04, + "end": 7832.5, + "probability": 0.9321 + }, + { + "start": 7833.68, + "end": 7836.18, + "probability": 0.9901 + }, + { + "start": 7836.26, + "end": 7839.72, + "probability": 0.9775 + }, + { + "start": 7840.54, + "end": 7842.66, + "probability": 0.6693 + }, + { + "start": 7844.28, + "end": 7848.74, + "probability": 0.9976 + }, + { + "start": 7849.4, + "end": 7851.92, + "probability": 0.9772 + }, + { + "start": 7852.74, + "end": 7856.24, + "probability": 0.9982 + }, + { + "start": 7856.24, + "end": 7858.34, + "probability": 0.998 + }, + { + "start": 7858.98, + "end": 7859.52, + "probability": 0.6067 + }, + { + "start": 7860.14, + "end": 7860.76, + "probability": 0.6766 + }, + { + "start": 7860.78, + "end": 7861.44, + "probability": 0.9438 + }, + { + "start": 7862.0, + "end": 7866.42, + "probability": 0.9971 + }, + { + "start": 7867.78, + "end": 7871.48, + "probability": 0.5171 + }, + { + "start": 7872.3, + "end": 7875.22, + "probability": 0.7658 + }, + { + "start": 7876.16, + "end": 7878.9, + "probability": 0.9557 + }, + { + "start": 7879.76, + "end": 7881.42, + "probability": 0.9955 + }, + { + "start": 7881.86, + "end": 7883.5, + "probability": 0.9902 + }, + { + "start": 7884.4, + "end": 7886.76, + "probability": 0.8511 + }, + { + "start": 7886.86, + "end": 7888.96, + "probability": 0.972 + }, + { + "start": 7889.96, + "end": 7891.56, + "probability": 0.9878 + }, + { + "start": 7891.66, + "end": 7894.9, + "probability": 0.8392 + }, + { + "start": 7895.98, + "end": 7898.88, + "probability": 0.9985 + }, + { + "start": 7899.62, + "end": 7901.26, + "probability": 0.8406 + }, + { + "start": 7901.92, + "end": 7903.28, + "probability": 0.999 + }, + { + "start": 7903.46, + "end": 7904.8, + "probability": 0.9713 + }, + { + "start": 7905.56, + "end": 7907.18, + "probability": 0.9941 + }, + { + "start": 7907.56, + "end": 7908.72, + "probability": 0.9747 + }, + { + "start": 7908.96, + "end": 7912.98, + "probability": 0.9983 + }, + { + "start": 7914.08, + "end": 7915.2, + "probability": 0.8193 + }, + { + "start": 7916.06, + "end": 7920.0, + "probability": 0.9688 + }, + { + "start": 7920.22, + "end": 7925.8, + "probability": 0.9479 + }, + { + "start": 7926.6, + "end": 7927.9, + "probability": 0.876 + }, + { + "start": 7927.98, + "end": 7929.04, + "probability": 0.9645 + }, + { + "start": 7929.74, + "end": 7931.97, + "probability": 0.9651 + }, + { + "start": 7933.7, + "end": 7938.18, + "probability": 0.9722 + }, + { + "start": 7939.42, + "end": 7943.26, + "probability": 0.9957 + }, + { + "start": 7943.8, + "end": 7945.76, + "probability": 0.8743 + }, + { + "start": 7946.38, + "end": 7949.84, + "probability": 0.9925 + }, + { + "start": 7950.44, + "end": 7951.95, + "probability": 0.9897 + }, + { + "start": 7953.04, + "end": 7956.88, + "probability": 0.9946 + }, + { + "start": 7956.88, + "end": 7960.2, + "probability": 0.9827 + }, + { + "start": 7961.26, + "end": 7964.66, + "probability": 0.9444 + }, + { + "start": 7965.28, + "end": 7966.06, + "probability": 0.8914 + }, + { + "start": 7966.72, + "end": 7967.64, + "probability": 0.8541 + }, + { + "start": 7968.76, + "end": 7970.86, + "probability": 0.991 + }, + { + "start": 7971.72, + "end": 7975.92, + "probability": 0.9631 + }, + { + "start": 7976.56, + "end": 7979.92, + "probability": 0.7522 + }, + { + "start": 7979.94, + "end": 7980.69, + "probability": 0.7717 + }, + { + "start": 7981.82, + "end": 7984.2, + "probability": 0.9084 + }, + { + "start": 7984.26, + "end": 7984.92, + "probability": 0.7135 + }, + { + "start": 7984.92, + "end": 7988.46, + "probability": 0.9933 + }, + { + "start": 7989.38, + "end": 7992.38, + "probability": 0.9698 + }, + { + "start": 7993.24, + "end": 7995.82, + "probability": 0.9035 + }, + { + "start": 7996.38, + "end": 7998.86, + "probability": 0.9956 + }, + { + "start": 8000.0, + "end": 8002.32, + "probability": 0.9298 + }, + { + "start": 8002.36, + "end": 8005.12, + "probability": 0.9912 + }, + { + "start": 8005.82, + "end": 8007.72, + "probability": 0.7411 + }, + { + "start": 8008.44, + "end": 8009.66, + "probability": 0.9929 + }, + { + "start": 8009.72, + "end": 8010.16, + "probability": 0.7049 + }, + { + "start": 8010.62, + "end": 8014.42, + "probability": 0.987 + }, + { + "start": 8014.94, + "end": 8016.66, + "probability": 0.9981 + }, + { + "start": 8017.04, + "end": 8017.96, + "probability": 0.9411 + }, + { + "start": 8018.22, + "end": 8018.59, + "probability": 0.9833 + }, + { + "start": 8019.46, + "end": 8020.56, + "probability": 0.988 + }, + { + "start": 8021.5, + "end": 8023.08, + "probability": 0.9107 + }, + { + "start": 8023.48, + "end": 8024.5, + "probability": 0.9357 + }, + { + "start": 8024.9, + "end": 8025.62, + "probability": 0.9648 + }, + { + "start": 8026.18, + "end": 8026.86, + "probability": 0.8678 + }, + { + "start": 8027.46, + "end": 8029.26, + "probability": 0.9949 + }, + { + "start": 8029.6, + "end": 8033.42, + "probability": 0.9342 + }, + { + "start": 8034.0, + "end": 8034.8, + "probability": 0.9075 + }, + { + "start": 8035.22, + "end": 8036.06, + "probability": 0.9933 + }, + { + "start": 8036.48, + "end": 8037.51, + "probability": 0.995 + }, + { + "start": 8038.18, + "end": 8039.06, + "probability": 0.9878 + }, + { + "start": 8039.08, + "end": 8039.88, + "probability": 0.9569 + }, + { + "start": 8040.2, + "end": 8044.08, + "probability": 0.8465 + }, + { + "start": 8044.32, + "end": 8045.02, + "probability": 0.9595 + }, + { + "start": 8045.26, + "end": 8045.48, + "probability": 0.785 + }, + { + "start": 8046.58, + "end": 8047.16, + "probability": 0.8394 + }, + { + "start": 8047.48, + "end": 8049.58, + "probability": 0.7605 + }, + { + "start": 8050.38, + "end": 8051.02, + "probability": 0.3541 + }, + { + "start": 8052.34, + "end": 8054.3, + "probability": 0.6607 + }, + { + "start": 8058.16, + "end": 8062.2, + "probability": 0.9734 + }, + { + "start": 8062.76, + "end": 8064.16, + "probability": 0.7566 + }, + { + "start": 8064.3, + "end": 8065.53, + "probability": 0.4848 + }, + { + "start": 8066.02, + "end": 8068.42, + "probability": 0.8586 + }, + { + "start": 8068.5, + "end": 8072.6, + "probability": 0.9136 + }, + { + "start": 8073.32, + "end": 8074.02, + "probability": 0.6484 + }, + { + "start": 8074.24, + "end": 8075.56, + "probability": 0.9535 + }, + { + "start": 8075.66, + "end": 8077.1, + "probability": 0.7884 + }, + { + "start": 8077.46, + "end": 8079.14, + "probability": 0.6615 + }, + { + "start": 8079.74, + "end": 8080.68, + "probability": 0.9243 + }, + { + "start": 8080.74, + "end": 8081.2, + "probability": 0.8268 + }, + { + "start": 8081.24, + "end": 8081.62, + "probability": 0.8844 + }, + { + "start": 8081.74, + "end": 8084.37, + "probability": 0.9081 + }, + { + "start": 8084.72, + "end": 8084.84, + "probability": 0.6521 + }, + { + "start": 8084.84, + "end": 8085.18, + "probability": 0.3739 + }, + { + "start": 8085.22, + "end": 8085.88, + "probability": 0.8242 + }, + { + "start": 8086.45, + "end": 8087.88, + "probability": 0.6704 + }, + { + "start": 8087.96, + "end": 8089.28, + "probability": 0.9351 + }, + { + "start": 8089.44, + "end": 8090.82, + "probability": 0.9462 + }, + { + "start": 8091.52, + "end": 8092.64, + "probability": 0.4837 + }, + { + "start": 8092.92, + "end": 8093.56, + "probability": 0.6105 + }, + { + "start": 8093.64, + "end": 8095.26, + "probability": 0.3535 + }, + { + "start": 8095.36, + "end": 8095.38, + "probability": 0.341 + }, + { + "start": 8095.38, + "end": 8095.94, + "probability": 0.7517 + }, + { + "start": 8095.96, + "end": 8097.24, + "probability": 0.649 + }, + { + "start": 8097.48, + "end": 8098.74, + "probability": 0.7784 + }, + { + "start": 8098.78, + "end": 8101.16, + "probability": 0.9908 + }, + { + "start": 8101.16, + "end": 8103.2, + "probability": 0.9971 + }, + { + "start": 8104.02, + "end": 8104.4, + "probability": 0.7393 + }, + { + "start": 8104.72, + "end": 8104.84, + "probability": 0.4461 + }, + { + "start": 8104.84, + "end": 8105.8, + "probability": 0.7968 + }, + { + "start": 8106.8, + "end": 8108.54, + "probability": 0.974 + }, + { + "start": 8108.7, + "end": 8110.38, + "probability": 0.9287 + }, + { + "start": 8110.44, + "end": 8113.0, + "probability": 0.999 + }, + { + "start": 8113.12, + "end": 8116.36, + "probability": 0.9768 + }, + { + "start": 8117.3, + "end": 8119.38, + "probability": 0.951 + }, + { + "start": 8120.16, + "end": 8123.48, + "probability": 0.9977 + }, + { + "start": 8124.16, + "end": 8129.3, + "probability": 0.9874 + }, + { + "start": 8130.28, + "end": 8132.48, + "probability": 0.9602 + }, + { + "start": 8132.92, + "end": 8134.96, + "probability": 0.979 + }, + { + "start": 8135.52, + "end": 8139.08, + "probability": 0.9953 + }, + { + "start": 8139.86, + "end": 8144.1, + "probability": 0.9699 + }, + { + "start": 8144.9, + "end": 8146.49, + "probability": 0.998 + }, + { + "start": 8147.1, + "end": 8149.5, + "probability": 0.9816 + }, + { + "start": 8150.2, + "end": 8153.4, + "probability": 0.9879 + }, + { + "start": 8154.24, + "end": 8156.12, + "probability": 0.9742 + }, + { + "start": 8156.34, + "end": 8157.92, + "probability": 0.9872 + }, + { + "start": 8158.28, + "end": 8162.1, + "probability": 0.9968 + }, + { + "start": 8163.1, + "end": 8166.34, + "probability": 0.9917 + }, + { + "start": 8167.86, + "end": 8171.24, + "probability": 0.9824 + }, + { + "start": 8171.76, + "end": 8174.64, + "probability": 0.9565 + }, + { + "start": 8174.96, + "end": 8176.62, + "probability": 0.9745 + }, + { + "start": 8176.66, + "end": 8177.98, + "probability": 0.9798 + }, + { + "start": 8178.7, + "end": 8179.78, + "probability": 0.9858 + }, + { + "start": 8180.52, + "end": 8181.5, + "probability": 0.994 + }, + { + "start": 8181.72, + "end": 8187.02, + "probability": 0.9969 + }, + { + "start": 8188.08, + "end": 8190.86, + "probability": 0.9963 + }, + { + "start": 8191.28, + "end": 8192.8, + "probability": 0.9164 + }, + { + "start": 8193.38, + "end": 8197.38, + "probability": 0.9893 + }, + { + "start": 8198.16, + "end": 8200.92, + "probability": 0.9995 + }, + { + "start": 8201.4, + "end": 8205.6, + "probability": 0.999 + }, + { + "start": 8206.18, + "end": 8210.04, + "probability": 0.9876 + }, + { + "start": 8210.6, + "end": 8214.02, + "probability": 0.9983 + }, + { + "start": 8215.96, + "end": 8220.7, + "probability": 0.999 + }, + { + "start": 8221.76, + "end": 8226.9, + "probability": 0.9828 + }, + { + "start": 8227.74, + "end": 8229.78, + "probability": 0.9936 + }, + { + "start": 8233.14, + "end": 8236.98, + "probability": 0.9941 + }, + { + "start": 8236.98, + "end": 8241.98, + "probability": 0.9983 + }, + { + "start": 8243.64, + "end": 8244.48, + "probability": 0.7076 + }, + { + "start": 8245.4, + "end": 8246.74, + "probability": 0.9683 + }, + { + "start": 8247.16, + "end": 8249.14, + "probability": 0.922 + }, + { + "start": 8249.56, + "end": 8252.48, + "probability": 0.9924 + }, + { + "start": 8253.06, + "end": 8254.72, + "probability": 0.9966 + }, + { + "start": 8254.88, + "end": 8257.56, + "probability": 0.9943 + }, + { + "start": 8258.76, + "end": 8263.02, + "probability": 0.9972 + }, + { + "start": 8263.7, + "end": 8267.24, + "probability": 0.9985 + }, + { + "start": 8267.9, + "end": 8272.44, + "probability": 0.9932 + }, + { + "start": 8272.44, + "end": 8277.16, + "probability": 0.9996 + }, + { + "start": 8277.8, + "end": 8279.56, + "probability": 0.9937 + }, + { + "start": 8279.9, + "end": 8283.1, + "probability": 0.9958 + }, + { + "start": 8284.36, + "end": 8287.86, + "probability": 0.9935 + }, + { + "start": 8288.44, + "end": 8290.92, + "probability": 0.9676 + }, + { + "start": 8290.98, + "end": 8293.3, + "probability": 0.9635 + }, + { + "start": 8293.4, + "end": 8295.3, + "probability": 0.9731 + }, + { + "start": 8296.0, + "end": 8298.22, + "probability": 0.7718 + }, + { + "start": 8299.0, + "end": 8302.24, + "probability": 0.9949 + }, + { + "start": 8302.6, + "end": 8305.58, + "probability": 0.933 + }, + { + "start": 8306.46, + "end": 8310.54, + "probability": 0.9973 + }, + { + "start": 8310.92, + "end": 8311.66, + "probability": 0.8735 + }, + { + "start": 8312.0, + "end": 8312.62, + "probability": 0.9305 + }, + { + "start": 8313.04, + "end": 8314.92, + "probability": 0.9796 + }, + { + "start": 8315.34, + "end": 8319.68, + "probability": 0.9977 + }, + { + "start": 8319.68, + "end": 8325.42, + "probability": 0.9889 + }, + { + "start": 8326.12, + "end": 8327.68, + "probability": 0.641 + }, + { + "start": 8327.72, + "end": 8329.76, + "probability": 0.9941 + }, + { + "start": 8329.8, + "end": 8333.18, + "probability": 0.9791 + }, + { + "start": 8333.48, + "end": 8335.64, + "probability": 0.9927 + }, + { + "start": 8337.08, + "end": 8337.72, + "probability": 0.7681 + }, + { + "start": 8337.82, + "end": 8342.28, + "probability": 0.8651 + }, + { + "start": 8342.58, + "end": 8344.9, + "probability": 0.9514 + }, + { + "start": 8345.78, + "end": 8346.66, + "probability": 0.8024 + }, + { + "start": 8374.1, + "end": 8375.04, + "probability": 0.6598 + }, + { + "start": 8375.44, + "end": 8378.88, + "probability": 0.9598 + }, + { + "start": 8379.36, + "end": 8380.6, + "probability": 0.9679 + }, + { + "start": 8381.74, + "end": 8382.73, + "probability": 0.975 + }, + { + "start": 8383.96, + "end": 8384.9, + "probability": 0.9668 + }, + { + "start": 8384.96, + "end": 8386.36, + "probability": 0.8759 + }, + { + "start": 8386.74, + "end": 8387.87, + "probability": 0.9028 + }, + { + "start": 8389.7, + "end": 8391.2, + "probability": 0.7629 + }, + { + "start": 8392.8, + "end": 8396.76, + "probability": 0.9185 + }, + { + "start": 8398.04, + "end": 8400.02, + "probability": 0.9033 + }, + { + "start": 8402.18, + "end": 8411.28, + "probability": 0.7355 + }, + { + "start": 8412.02, + "end": 8413.1, + "probability": 0.9566 + }, + { + "start": 8414.2, + "end": 8415.3, + "probability": 0.64 + }, + { + "start": 8415.86, + "end": 8418.72, + "probability": 0.9814 + }, + { + "start": 8418.96, + "end": 8419.76, + "probability": 0.766 + }, + { + "start": 8420.38, + "end": 8425.34, + "probability": 0.9736 + }, + { + "start": 8425.42, + "end": 8425.98, + "probability": 0.5597 + }, + { + "start": 8427.38, + "end": 8430.44, + "probability": 0.7395 + }, + { + "start": 8431.56, + "end": 8434.72, + "probability": 0.6979 + }, + { + "start": 8434.72, + "end": 8438.5, + "probability": 0.952 + }, + { + "start": 8438.7, + "end": 8440.76, + "probability": 0.9626 + }, + { + "start": 8442.16, + "end": 8444.28, + "probability": 0.7365 + }, + { + "start": 8444.28, + "end": 8446.82, + "probability": 0.8956 + }, + { + "start": 8447.08, + "end": 8447.98, + "probability": 0.6768 + }, + { + "start": 8448.96, + "end": 8450.52, + "probability": 0.4215 + }, + { + "start": 8450.52, + "end": 8451.08, + "probability": 0.9624 + }, + { + "start": 8451.2, + "end": 8452.38, + "probability": 0.6768 + }, + { + "start": 8453.14, + "end": 8456.16, + "probability": 0.7819 + }, + { + "start": 8459.54, + "end": 8462.22, + "probability": 0.5162 + }, + { + "start": 8462.22, + "end": 8463.82, + "probability": 0.8833 + }, + { + "start": 8464.7, + "end": 8465.71, + "probability": 0.3501 + }, + { + "start": 8466.54, + "end": 8467.8, + "probability": 0.7838 + }, + { + "start": 8467.96, + "end": 8469.7, + "probability": 0.8076 + }, + { + "start": 8470.34, + "end": 8471.5, + "probability": 0.8909 + }, + { + "start": 8471.6, + "end": 8475.02, + "probability": 0.9629 + }, + { + "start": 8475.22, + "end": 8475.85, + "probability": 0.8184 + }, + { + "start": 8476.36, + "end": 8478.76, + "probability": 0.9775 + }, + { + "start": 8479.68, + "end": 8481.94, + "probability": 0.9828 + }, + { + "start": 8482.74, + "end": 8487.48, + "probability": 0.9493 + }, + { + "start": 8488.86, + "end": 8490.72, + "probability": 0.8924 + }, + { + "start": 8490.96, + "end": 8494.94, + "probability": 0.9674 + }, + { + "start": 8495.98, + "end": 8496.06, + "probability": 0.3705 + }, + { + "start": 8496.14, + "end": 8498.36, + "probability": 0.9829 + }, + { + "start": 8498.44, + "end": 8500.0, + "probability": 0.8051 + }, + { + "start": 8500.08, + "end": 8500.7, + "probability": 0.8974 + }, + { + "start": 8500.88, + "end": 8501.52, + "probability": 0.774 + }, + { + "start": 8503.04, + "end": 8503.48, + "probability": 0.7408 + }, + { + "start": 8503.6, + "end": 8504.22, + "probability": 0.9519 + }, + { + "start": 8504.28, + "end": 8506.36, + "probability": 0.9873 + }, + { + "start": 8506.38, + "end": 8511.9, + "probability": 0.9823 + }, + { + "start": 8513.1, + "end": 8514.0, + "probability": 0.6988 + }, + { + "start": 8515.58, + "end": 8520.48, + "probability": 0.7805 + }, + { + "start": 8520.58, + "end": 8522.18, + "probability": 0.8542 + }, + { + "start": 8522.84, + "end": 8523.21, + "probability": 0.592 + }, + { + "start": 8523.44, + "end": 8524.78, + "probability": 0.9924 + }, + { + "start": 8524.88, + "end": 8525.34, + "probability": 0.8367 + }, + { + "start": 8525.42, + "end": 8525.72, + "probability": 0.4738 + }, + { + "start": 8526.48, + "end": 8529.46, + "probability": 0.9217 + }, + { + "start": 8530.04, + "end": 8530.64, + "probability": 0.7441 + }, + { + "start": 8533.59, + "end": 8536.06, + "probability": 0.4448 + }, + { + "start": 8537.16, + "end": 8542.76, + "probability": 0.9505 + }, + { + "start": 8545.18, + "end": 8548.02, + "probability": 0.9926 + }, + { + "start": 8548.86, + "end": 8550.41, + "probability": 0.7241 + }, + { + "start": 8552.12, + "end": 8552.36, + "probability": 0.6543 + }, + { + "start": 8552.48, + "end": 8554.86, + "probability": 0.8947 + }, + { + "start": 8555.12, + "end": 8556.15, + "probability": 0.977 + }, + { + "start": 8556.58, + "end": 8557.74, + "probability": 0.7847 + }, + { + "start": 8557.86, + "end": 8559.0, + "probability": 0.7653 + }, + { + "start": 8559.68, + "end": 8560.88, + "probability": 0.8857 + }, + { + "start": 8561.0, + "end": 8562.0, + "probability": 0.2291 + }, + { + "start": 8562.0, + "end": 8562.48, + "probability": 0.4916 + }, + { + "start": 8563.4, + "end": 8564.14, + "probability": 0.8561 + }, + { + "start": 8565.88, + "end": 8571.2, + "probability": 0.958 + }, + { + "start": 8572.14, + "end": 8575.44, + "probability": 0.3523 + }, + { + "start": 8575.62, + "end": 8575.7, + "probability": 0.036 + }, + { + "start": 8575.7, + "end": 8575.7, + "probability": 0.132 + }, + { + "start": 8575.7, + "end": 8578.02, + "probability": 0.7264 + }, + { + "start": 8579.68, + "end": 8586.32, + "probability": 0.9858 + }, + { + "start": 8586.72, + "end": 8587.74, + "probability": 0.9825 + }, + { + "start": 8587.88, + "end": 8590.72, + "probability": 0.6163 + }, + { + "start": 8590.82, + "end": 8594.6, + "probability": 0.9915 + }, + { + "start": 8595.32, + "end": 8597.48, + "probability": 0.9374 + }, + { + "start": 8598.0, + "end": 8598.36, + "probability": 0.5562 + }, + { + "start": 8599.84, + "end": 8604.68, + "probability": 0.9872 + }, + { + "start": 8605.34, + "end": 8606.82, + "probability": 0.8787 + }, + { + "start": 8609.1, + "end": 8613.54, + "probability": 0.9812 + }, + { + "start": 8614.2, + "end": 8614.84, + "probability": 0.7575 + }, + { + "start": 8615.4, + "end": 8615.94, + "probability": 0.5712 + }, + { + "start": 8616.46, + "end": 8618.3, + "probability": 0.9028 + }, + { + "start": 8618.84, + "end": 8621.02, + "probability": 0.983 + }, + { + "start": 8621.52, + "end": 8622.3, + "probability": 0.9681 + }, + { + "start": 8622.42, + "end": 8623.22, + "probability": 0.9819 + }, + { + "start": 8623.36, + "end": 8624.38, + "probability": 0.9399 + }, + { + "start": 8625.28, + "end": 8628.14, + "probability": 0.995 + }, + { + "start": 8628.38, + "end": 8633.76, + "probability": 0.9919 + }, + { + "start": 8634.08, + "end": 8634.6, + "probability": 0.9192 + }, + { + "start": 8635.36, + "end": 8636.42, + "probability": 0.8569 + }, + { + "start": 8636.82, + "end": 8640.34, + "probability": 0.9817 + }, + { + "start": 8641.42, + "end": 8645.78, + "probability": 0.9736 + }, + { + "start": 8646.1, + "end": 8650.48, + "probability": 0.9248 + }, + { + "start": 8650.48, + "end": 8654.34, + "probability": 0.9722 + }, + { + "start": 8655.2, + "end": 8659.56, + "probability": 0.9884 + }, + { + "start": 8660.16, + "end": 8662.24, + "probability": 0.9697 + }, + { + "start": 8663.36, + "end": 8666.88, + "probability": 0.9132 + }, + { + "start": 8667.24, + "end": 8669.28, + "probability": 0.9762 + }, + { + "start": 8669.28, + "end": 8674.06, + "probability": 0.9682 + }, + { + "start": 8674.98, + "end": 8679.74, + "probability": 0.9239 + }, + { + "start": 8680.04, + "end": 8681.5, + "probability": 0.9722 + }, + { + "start": 8681.64, + "end": 8684.48, + "probability": 0.6628 + }, + { + "start": 8685.56, + "end": 8687.46, + "probability": 0.9927 + }, + { + "start": 8689.36, + "end": 8692.18, + "probability": 0.5994 + }, + { + "start": 8693.1, + "end": 8697.92, + "probability": 0.9527 + }, + { + "start": 8698.42, + "end": 8703.12, + "probability": 0.9678 + }, + { + "start": 8703.12, + "end": 8708.38, + "probability": 0.9375 + }, + { + "start": 8709.7, + "end": 8712.22, + "probability": 0.8802 + }, + { + "start": 8712.22, + "end": 8716.2, + "probability": 0.8868 + }, + { + "start": 8716.42, + "end": 8719.24, + "probability": 0.9972 + }, + { + "start": 8719.24, + "end": 8721.76, + "probability": 0.9664 + }, + { + "start": 8722.16, + "end": 8729.34, + "probability": 0.994 + }, + { + "start": 8729.86, + "end": 8732.04, + "probability": 0.9142 + }, + { + "start": 8732.8, + "end": 8734.64, + "probability": 0.7011 + }, + { + "start": 8735.0, + "end": 8738.68, + "probability": 0.9796 + }, + { + "start": 8739.54, + "end": 8740.48, + "probability": 0.9689 + }, + { + "start": 8741.24, + "end": 8744.46, + "probability": 0.9843 + }, + { + "start": 8744.46, + "end": 8748.12, + "probability": 0.8296 + }, + { + "start": 8748.22, + "end": 8750.92, + "probability": 0.8596 + }, + { + "start": 8751.84, + "end": 8757.62, + "probability": 0.9971 + }, + { + "start": 8758.24, + "end": 8762.88, + "probability": 0.9321 + }, + { + "start": 8763.48, + "end": 8764.48, + "probability": 0.9794 + }, + { + "start": 8764.6, + "end": 8766.52, + "probability": 0.9447 + }, + { + "start": 8767.36, + "end": 8770.96, + "probability": 0.9821 + }, + { + "start": 8772.04, + "end": 8774.34, + "probability": 0.9292 + }, + { + "start": 8774.66, + "end": 8777.9, + "probability": 0.9779 + }, + { + "start": 8777.98, + "end": 8778.6, + "probability": 0.8239 + }, + { + "start": 8778.68, + "end": 8783.34, + "probability": 0.9801 + }, + { + "start": 8784.24, + "end": 8786.48, + "probability": 0.9796 + }, + { + "start": 8787.0, + "end": 8789.34, + "probability": 0.9631 + }, + { + "start": 8789.34, + "end": 8792.74, + "probability": 0.9979 + }, + { + "start": 8793.3, + "end": 8794.08, + "probability": 0.8827 + }, + { + "start": 8794.62, + "end": 8794.98, + "probability": 0.8774 + }, + { + "start": 8795.08, + "end": 8795.94, + "probability": 0.9788 + }, + { + "start": 8796.16, + "end": 8796.92, + "probability": 0.9499 + }, + { + "start": 8797.06, + "end": 8797.86, + "probability": 0.9869 + }, + { + "start": 8798.1, + "end": 8799.0, + "probability": 0.9878 + }, + { + "start": 8799.36, + "end": 8801.04, + "probability": 0.9964 + }, + { + "start": 8801.98, + "end": 8805.18, + "probability": 0.9 + }, + { + "start": 8805.32, + "end": 8807.84, + "probability": 0.9786 + }, + { + "start": 8808.38, + "end": 8812.06, + "probability": 0.9767 + }, + { + "start": 8812.6, + "end": 8817.42, + "probability": 0.9919 + }, + { + "start": 8818.22, + "end": 8818.94, + "probability": 0.7119 + }, + { + "start": 8819.04, + "end": 8819.88, + "probability": 0.9411 + }, + { + "start": 8819.96, + "end": 8821.46, + "probability": 0.9429 + }, + { + "start": 8821.6, + "end": 8822.88, + "probability": 0.9457 + }, + { + "start": 8823.2, + "end": 8825.72, + "probability": 0.7896 + }, + { + "start": 8825.78, + "end": 8828.16, + "probability": 0.8002 + }, + { + "start": 8828.76, + "end": 8833.46, + "probability": 0.9876 + }, + { + "start": 8833.46, + "end": 8839.14, + "probability": 0.9943 + }, + { + "start": 8839.66, + "end": 8843.2, + "probability": 0.7741 + }, + { + "start": 8843.44, + "end": 8845.52, + "probability": 0.8914 + }, + { + "start": 8845.72, + "end": 8849.34, + "probability": 0.9197 + }, + { + "start": 8849.84, + "end": 8852.8, + "probability": 0.991 + }, + { + "start": 8853.26, + "end": 8855.7, + "probability": 0.7491 + }, + { + "start": 8855.9, + "end": 8857.98, + "probability": 0.985 + }, + { + "start": 8858.9, + "end": 8862.04, + "probability": 0.9596 + }, + { + "start": 8862.14, + "end": 8866.12, + "probability": 0.9867 + }, + { + "start": 8866.12, + "end": 8872.04, + "probability": 0.9978 + }, + { + "start": 8872.04, + "end": 8876.42, + "probability": 0.9732 + }, + { + "start": 8876.68, + "end": 8878.32, + "probability": 0.7511 + }, + { + "start": 8878.98, + "end": 8879.46, + "probability": 0.6634 + }, + { + "start": 8880.0, + "end": 8882.2, + "probability": 0.9813 + }, + { + "start": 8882.2, + "end": 8885.08, + "probability": 0.9421 + }, + { + "start": 8885.24, + "end": 8886.12, + "probability": 0.9764 + }, + { + "start": 8887.78, + "end": 8890.32, + "probability": 0.9854 + }, + { + "start": 8890.32, + "end": 8893.56, + "probability": 0.9977 + }, + { + "start": 8894.5, + "end": 8895.94, + "probability": 0.736 + }, + { + "start": 8896.46, + "end": 8896.9, + "probability": 0.6424 + }, + { + "start": 8896.92, + "end": 8897.62, + "probability": 0.7057 + }, + { + "start": 8897.74, + "end": 8901.1, + "probability": 0.9557 + }, + { + "start": 8901.1, + "end": 8904.6, + "probability": 0.9947 + }, + { + "start": 8905.36, + "end": 8906.04, + "probability": 0.9636 + }, + { + "start": 8906.46, + "end": 8910.0, + "probability": 0.9971 + }, + { + "start": 8910.02, + "end": 8911.82, + "probability": 0.9375 + }, + { + "start": 8912.1, + "end": 8915.82, + "probability": 0.9814 + }, + { + "start": 8916.36, + "end": 8918.52, + "probability": 0.9084 + }, + { + "start": 8918.96, + "end": 8921.08, + "probability": 0.8358 + }, + { + "start": 8921.5, + "end": 8922.36, + "probability": 0.7629 + }, + { + "start": 8922.42, + "end": 8923.78, + "probability": 0.9662 + }, + { + "start": 8924.82, + "end": 8927.76, + "probability": 0.9927 + }, + { + "start": 8928.14, + "end": 8930.92, + "probability": 0.969 + }, + { + "start": 8931.5, + "end": 8934.42, + "probability": 0.9944 + }, + { + "start": 8934.42, + "end": 8937.5, + "probability": 0.8745 + }, + { + "start": 8937.62, + "end": 8941.02, + "probability": 0.9928 + }, + { + "start": 8941.02, + "end": 8941.96, + "probability": 0.8141 + }, + { + "start": 8942.14, + "end": 8943.98, + "probability": 0.9662 + }, + { + "start": 8944.5, + "end": 8947.06, + "probability": 0.9778 + }, + { + "start": 8947.48, + "end": 8952.68, + "probability": 0.9766 + }, + { + "start": 8954.9, + "end": 8956.46, + "probability": 0.6068 + }, + { + "start": 8958.06, + "end": 8961.5, + "probability": 0.7819 + }, + { + "start": 8963.12, + "end": 8964.54, + "probability": 0.7453 + }, + { + "start": 8964.6, + "end": 8967.66, + "probability": 0.9878 + }, + { + "start": 8967.76, + "end": 8971.3, + "probability": 0.9254 + }, + { + "start": 8971.64, + "end": 8978.32, + "probability": 0.9604 + }, + { + "start": 8978.62, + "end": 8980.52, + "probability": 0.9564 + }, + { + "start": 8980.88, + "end": 8982.74, + "probability": 0.7245 + }, + { + "start": 8984.44, + "end": 8984.44, + "probability": 0.7841 + }, + { + "start": 8984.44, + "end": 8988.5, + "probability": 0.8478 + }, + { + "start": 8989.28, + "end": 8990.12, + "probability": 0.8502 + }, + { + "start": 8990.96, + "end": 8992.34, + "probability": 0.9504 + }, + { + "start": 8992.42, + "end": 8993.0, + "probability": 0.7361 + }, + { + "start": 8993.08, + "end": 8997.4, + "probability": 0.977 + }, + { + "start": 8997.52, + "end": 8999.74, + "probability": 0.6875 + }, + { + "start": 8999.84, + "end": 9003.12, + "probability": 0.9524 + }, + { + "start": 9003.98, + "end": 9005.64, + "probability": 0.978 + }, + { + "start": 9005.9, + "end": 9007.56, + "probability": 0.9276 + }, + { + "start": 9007.92, + "end": 9013.44, + "probability": 0.9896 + }, + { + "start": 9013.54, + "end": 9014.93, + "probability": 0.8835 + }, + { + "start": 9015.64, + "end": 9016.88, + "probability": 0.5041 + }, + { + "start": 9017.84, + "end": 9019.1, + "probability": 0.6539 + }, + { + "start": 9019.16, + "end": 9022.34, + "probability": 0.9536 + }, + { + "start": 9022.54, + "end": 9023.22, + "probability": 0.7177 + }, + { + "start": 9023.6, + "end": 9026.04, + "probability": 0.9509 + }, + { + "start": 9026.16, + "end": 9026.76, + "probability": 0.8165 + }, + { + "start": 9027.14, + "end": 9029.7, + "probability": 0.8802 + }, + { + "start": 9030.06, + "end": 9034.08, + "probability": 0.8241 + }, + { + "start": 9034.26, + "end": 9035.92, + "probability": 0.9008 + }, + { + "start": 9036.08, + "end": 9038.06, + "probability": 0.9894 + }, + { + "start": 9038.18, + "end": 9039.62, + "probability": 0.4549 + }, + { + "start": 9039.84, + "end": 9042.72, + "probability": 0.9805 + }, + { + "start": 9042.74, + "end": 9045.78, + "probability": 0.8831 + }, + { + "start": 9045.84, + "end": 9046.78, + "probability": 0.5273 + }, + { + "start": 9046.92, + "end": 9047.89, + "probability": 0.9705 + }, + { + "start": 9048.28, + "end": 9050.74, + "probability": 0.9945 + }, + { + "start": 9051.08, + "end": 9052.08, + "probability": 0.6401 + }, + { + "start": 9052.5, + "end": 9054.1, + "probability": 0.9836 + }, + { + "start": 9055.04, + "end": 9060.22, + "probability": 0.9865 + }, + { + "start": 9060.28, + "end": 9062.47, + "probability": 0.647 + }, + { + "start": 9063.25, + "end": 9067.2, + "probability": 0.932 + }, + { + "start": 9067.88, + "end": 9069.78, + "probability": 0.9829 + }, + { + "start": 9070.06, + "end": 9075.72, + "probability": 0.5641 + }, + { + "start": 9076.2, + "end": 9076.34, + "probability": 0.198 + }, + { + "start": 9076.34, + "end": 9076.34, + "probability": 0.1149 + }, + { + "start": 9076.34, + "end": 9077.72, + "probability": 0.7443 + }, + { + "start": 9077.8, + "end": 9078.44, + "probability": 0.7747 + }, + { + "start": 9078.72, + "end": 9079.42, + "probability": 0.7122 + }, + { + "start": 9079.6, + "end": 9081.28, + "probability": 0.8102 + }, + { + "start": 9081.64, + "end": 9087.52, + "probability": 0.8964 + }, + { + "start": 9087.68, + "end": 9089.2, + "probability": 0.9606 + }, + { + "start": 9089.38, + "end": 9090.71, + "probability": 0.9907 + }, + { + "start": 9091.16, + "end": 9091.56, + "probability": 0.97 + }, + { + "start": 9092.58, + "end": 9095.36, + "probability": 0.9136 + }, + { + "start": 9095.94, + "end": 9096.69, + "probability": 0.9844 + }, + { + "start": 9097.4, + "end": 9099.92, + "probability": 0.998 + }, + { + "start": 9100.06, + "end": 9102.23, + "probability": 0.9824 + }, + { + "start": 9103.46, + "end": 9106.12, + "probability": 0.9969 + }, + { + "start": 9106.84, + "end": 9107.7, + "probability": 0.5507 + }, + { + "start": 9107.76, + "end": 9111.54, + "probability": 0.9336 + }, + { + "start": 9112.08, + "end": 9114.24, + "probability": 0.4663 + }, + { + "start": 9114.56, + "end": 9115.32, + "probability": 0.976 + }, + { + "start": 9115.32, + "end": 9117.18, + "probability": 0.8386 + }, + { + "start": 9117.26, + "end": 9118.62, + "probability": 0.9824 + }, + { + "start": 9119.12, + "end": 9123.38, + "probability": 0.9246 + }, + { + "start": 9124.08, + "end": 9127.16, + "probability": 0.9672 + }, + { + "start": 9127.46, + "end": 9132.12, + "probability": 0.9742 + }, + { + "start": 9132.7, + "end": 9133.2, + "probability": 0.0073 + } + ], + "segments_count": 2813, + "words_count": 15716, + "avg_words_per_segment": 5.5869, + "avg_segment_duration": 2.4971, + "avg_words_per_minute": 98.8419, + "plenum_id": "128497", + "duration": 9540.08, + "title": null, + "plenum_date": "2024-07-09" +} \ No newline at end of file