diff --git "a/26569/metadata.json" "b/26569/metadata.json" new file mode 100644--- /dev/null +++ "b/26569/metadata.json" @@ -0,0 +1,15122 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "26569", + "quality_score": 0.9554, + "per_segment_quality_scores": [ + { + "start": 99.1, + "end": 99.88, + "probability": 0.0979 + }, + { + "start": 99.88, + "end": 100.51, + "probability": 0.4308 + }, + { + "start": 101.0, + "end": 106.1, + "probability": 0.0732 + }, + { + "start": 106.1, + "end": 109.26, + "probability": 0.0442 + }, + { + "start": 109.7, + "end": 112.64, + "probability": 0.576 + }, + { + "start": 112.64, + "end": 112.9, + "probability": 0.8303 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.14, + "end": 127.32, + "probability": 0.0146 + }, + { + "start": 127.32, + "end": 127.32, + "probability": 0.0353 + }, + { + "start": 127.32, + "end": 128.28, + "probability": 0.0565 + }, + { + "start": 134.18, + "end": 135.46, + "probability": 0.6536 + }, + { + "start": 140.28, + "end": 142.2, + "probability": 0.7857 + }, + { + "start": 143.6, + "end": 145.76, + "probability": 0.9943 + }, + { + "start": 146.32, + "end": 147.82, + "probability": 0.9633 + }, + { + "start": 148.36, + "end": 150.54, + "probability": 0.9645 + }, + { + "start": 151.28, + "end": 153.42, + "probability": 0.81 + }, + { + "start": 154.0, + "end": 157.82, + "probability": 0.9832 + }, + { + "start": 158.7, + "end": 161.02, + "probability": 0.9714 + }, + { + "start": 161.34, + "end": 161.96, + "probability": 0.6525 + }, + { + "start": 162.6, + "end": 165.48, + "probability": 0.9951 + }, + { + "start": 167.53, + "end": 169.7, + "probability": 0.8085 + }, + { + "start": 169.86, + "end": 171.6, + "probability": 0.8732 + }, + { + "start": 172.44, + "end": 173.1, + "probability": 0.9886 + }, + { + "start": 174.11, + "end": 178.1, + "probability": 0.8628 + }, + { + "start": 179.42, + "end": 181.94, + "probability": 0.9531 + }, + { + "start": 182.48, + "end": 186.88, + "probability": 0.9985 + }, + { + "start": 187.74, + "end": 188.14, + "probability": 0.9312 + }, + { + "start": 189.5, + "end": 190.38, + "probability": 0.9932 + }, + { + "start": 190.5, + "end": 191.92, + "probability": 0.6386 + }, + { + "start": 191.98, + "end": 194.24, + "probability": 0.7668 + }, + { + "start": 195.2, + "end": 197.18, + "probability": 0.9298 + }, + { + "start": 197.34, + "end": 202.82, + "probability": 0.9776 + }, + { + "start": 203.08, + "end": 203.8, + "probability": 0.8268 + }, + { + "start": 205.32, + "end": 205.64, + "probability": 0.0637 + }, + { + "start": 205.64, + "end": 208.22, + "probability": 0.6992 + }, + { + "start": 208.54, + "end": 211.1, + "probability": 0.8654 + }, + { + "start": 211.1, + "end": 214.4, + "probability": 0.9808 + }, + { + "start": 214.78, + "end": 215.22, + "probability": 0.7206 + }, + { + "start": 215.66, + "end": 218.48, + "probability": 0.9952 + }, + { + "start": 218.48, + "end": 221.14, + "probability": 0.9994 + }, + { + "start": 221.28, + "end": 223.24, + "probability": 0.9802 + }, + { + "start": 223.36, + "end": 224.22, + "probability": 0.6973 + }, + { + "start": 224.32, + "end": 228.94, + "probability": 0.9541 + }, + { + "start": 229.86, + "end": 232.96, + "probability": 0.4697 + }, + { + "start": 232.96, + "end": 232.96, + "probability": 0.1524 + }, + { + "start": 232.96, + "end": 233.48, + "probability": 0.0652 + }, + { + "start": 233.6, + "end": 234.98, + "probability": 0.786 + }, + { + "start": 235.2, + "end": 236.56, + "probability": 0.8235 + }, + { + "start": 236.72, + "end": 240.4, + "probability": 0.9074 + }, + { + "start": 240.82, + "end": 243.5, + "probability": 0.9773 + }, + { + "start": 244.02, + "end": 248.26, + "probability": 0.9923 + }, + { + "start": 248.64, + "end": 252.8, + "probability": 0.9938 + }, + { + "start": 252.88, + "end": 254.1, + "probability": 0.6082 + }, + { + "start": 254.2, + "end": 254.54, + "probability": 0.5616 + }, + { + "start": 254.9, + "end": 257.68, + "probability": 0.9869 + }, + { + "start": 258.38, + "end": 263.74, + "probability": 0.8977 + }, + { + "start": 264.34, + "end": 267.76, + "probability": 0.98 + }, + { + "start": 268.62, + "end": 271.64, + "probability": 0.7872 + }, + { + "start": 272.06, + "end": 273.82, + "probability": 0.6881 + }, + { + "start": 273.9, + "end": 275.02, + "probability": 0.7167 + }, + { + "start": 275.84, + "end": 278.46, + "probability": 0.8419 + }, + { + "start": 279.24, + "end": 280.38, + "probability": 0.7293 + }, + { + "start": 281.46, + "end": 282.82, + "probability": 0.5882 + }, + { + "start": 283.02, + "end": 284.52, + "probability": 0.7959 + }, + { + "start": 285.42, + "end": 288.28, + "probability": 0.7659 + }, + { + "start": 288.28, + "end": 289.46, + "probability": 0.9785 + }, + { + "start": 289.98, + "end": 291.66, + "probability": 0.7428 + }, + { + "start": 292.34, + "end": 294.52, + "probability": 0.9433 + }, + { + "start": 297.86, + "end": 298.5, + "probability": 0.1583 + }, + { + "start": 298.84, + "end": 300.08, + "probability": 0.9276 + }, + { + "start": 300.18, + "end": 301.0, + "probability": 0.8534 + }, + { + "start": 301.1, + "end": 301.9, + "probability": 0.8782 + }, + { + "start": 301.92, + "end": 304.66, + "probability": 0.7506 + }, + { + "start": 304.94, + "end": 308.06, + "probability": 0.8781 + }, + { + "start": 309.26, + "end": 310.98, + "probability": 0.9231 + }, + { + "start": 311.58, + "end": 315.5, + "probability": 0.6519 + }, + { + "start": 316.14, + "end": 317.68, + "probability": 0.578 + }, + { + "start": 317.82, + "end": 320.02, + "probability": 0.9934 + }, + { + "start": 320.96, + "end": 322.46, + "probability": 0.7974 + }, + { + "start": 323.18, + "end": 325.28, + "probability": 0.8183 + }, + { + "start": 325.88, + "end": 328.79, + "probability": 0.906 + }, + { + "start": 328.86, + "end": 330.39, + "probability": 0.7183 + }, + { + "start": 331.04, + "end": 333.28, + "probability": 0.8438 + }, + { + "start": 333.42, + "end": 335.0, + "probability": 0.2321 + }, + { + "start": 335.42, + "end": 336.68, + "probability": 0.8464 + }, + { + "start": 336.7, + "end": 337.65, + "probability": 0.544 + }, + { + "start": 339.2, + "end": 343.06, + "probability": 0.5633 + }, + { + "start": 344.0, + "end": 344.89, + "probability": 0.8275 + }, + { + "start": 345.66, + "end": 347.02, + "probability": 0.7224 + }, + { + "start": 347.08, + "end": 347.82, + "probability": 0.9613 + }, + { + "start": 347.82, + "end": 349.28, + "probability": 0.7389 + }, + { + "start": 349.7, + "end": 350.8, + "probability": 0.9652 + }, + { + "start": 350.9, + "end": 354.36, + "probability": 0.9412 + }, + { + "start": 354.42, + "end": 354.66, + "probability": 0.7501 + }, + { + "start": 355.44, + "end": 355.78, + "probability": 0.6371 + }, + { + "start": 356.02, + "end": 357.34, + "probability": 0.8603 + }, + { + "start": 357.96, + "end": 359.14, + "probability": 0.9811 + }, + { + "start": 360.08, + "end": 361.88, + "probability": 0.9545 + }, + { + "start": 362.08, + "end": 362.34, + "probability": 0.0264 + }, + { + "start": 362.34, + "end": 362.44, + "probability": 0.018 + }, + { + "start": 363.16, + "end": 364.92, + "probability": 0.661 + }, + { + "start": 365.08, + "end": 367.6, + "probability": 0.6831 + }, + { + "start": 367.64, + "end": 368.92, + "probability": 0.2334 + }, + { + "start": 369.68, + "end": 371.3, + "probability": 0.8064 + }, + { + "start": 371.34, + "end": 373.82, + "probability": 0.9233 + }, + { + "start": 374.36, + "end": 375.5, + "probability": 0.8184 + }, + { + "start": 376.02, + "end": 377.02, + "probability": 0.492 + }, + { + "start": 377.04, + "end": 377.24, + "probability": 0.0152 + }, + { + "start": 377.78, + "end": 380.14, + "probability": 0.7752 + }, + { + "start": 380.96, + "end": 382.04, + "probability": 0.9399 + }, + { + "start": 382.14, + "end": 386.58, + "probability": 0.986 + }, + { + "start": 387.24, + "end": 390.24, + "probability": 0.9171 + }, + { + "start": 390.86, + "end": 394.1, + "probability": 0.9965 + }, + { + "start": 394.78, + "end": 399.28, + "probability": 0.9819 + }, + { + "start": 399.42, + "end": 401.92, + "probability": 0.9872 + }, + { + "start": 403.62, + "end": 404.4, + "probability": 0.6021 + }, + { + "start": 406.2, + "end": 406.66, + "probability": 0.8989 + }, + { + "start": 407.16, + "end": 409.72, + "probability": 0.4673 + }, + { + "start": 410.22, + "end": 412.12, + "probability": 0.389 + }, + { + "start": 412.12, + "end": 413.46, + "probability": 0.4398 + }, + { + "start": 414.62, + "end": 416.86, + "probability": 0.5767 + }, + { + "start": 416.94, + "end": 417.4, + "probability": 0.592 + }, + { + "start": 418.14, + "end": 418.94, + "probability": 0.9263 + }, + { + "start": 418.98, + "end": 419.36, + "probability": 0.8151 + }, + { + "start": 419.55, + "end": 420.9, + "probability": 0.4691 + }, + { + "start": 421.3, + "end": 423.82, + "probability": 0.7019 + }, + { + "start": 425.5, + "end": 426.94, + "probability": 0.9041 + }, + { + "start": 427.02, + "end": 432.68, + "probability": 0.9792 + }, + { + "start": 432.68, + "end": 438.2, + "probability": 0.9971 + }, + { + "start": 438.9, + "end": 440.98, + "probability": 0.8242 + }, + { + "start": 441.08, + "end": 442.56, + "probability": 0.8703 + }, + { + "start": 442.9, + "end": 445.8, + "probability": 0.9883 + }, + { + "start": 446.32, + "end": 451.22, + "probability": 0.9907 + }, + { + "start": 451.22, + "end": 456.2, + "probability": 0.9383 + }, + { + "start": 456.64, + "end": 457.06, + "probability": 0.8109 + }, + { + "start": 457.26, + "end": 460.22, + "probability": 0.9971 + }, + { + "start": 460.74, + "end": 463.92, + "probability": 0.9979 + }, + { + "start": 463.92, + "end": 468.18, + "probability": 0.9781 + }, + { + "start": 468.72, + "end": 472.1, + "probability": 0.8737 + }, + { + "start": 472.68, + "end": 473.56, + "probability": 0.5408 + }, + { + "start": 474.32, + "end": 478.12, + "probability": 0.981 + }, + { + "start": 478.86, + "end": 479.06, + "probability": 0.8782 + }, + { + "start": 480.82, + "end": 482.94, + "probability": 0.9584 + }, + { + "start": 483.0, + "end": 485.88, + "probability": 0.9404 + }, + { + "start": 487.68, + "end": 490.75, + "probability": 0.7466 + }, + { + "start": 491.34, + "end": 492.22, + "probability": 0.9985 + }, + { + "start": 493.5, + "end": 497.7, + "probability": 0.931 + }, + { + "start": 497.76, + "end": 498.88, + "probability": 0.9227 + }, + { + "start": 499.36, + "end": 500.46, + "probability": 0.9131 + }, + { + "start": 501.26, + "end": 504.84, + "probability": 0.9893 + }, + { + "start": 505.56, + "end": 509.06, + "probability": 0.8505 + }, + { + "start": 509.12, + "end": 514.14, + "probability": 0.959 + }, + { + "start": 515.64, + "end": 516.52, + "probability": 0.7854 + }, + { + "start": 516.92, + "end": 523.76, + "probability": 0.9963 + }, + { + "start": 524.76, + "end": 525.92, + "probability": 0.8203 + }, + { + "start": 526.46, + "end": 526.64, + "probability": 0.6724 + }, + { + "start": 527.1, + "end": 527.9, + "probability": 0.9602 + }, + { + "start": 528.24, + "end": 529.34, + "probability": 0.5675 + }, + { + "start": 529.38, + "end": 532.66, + "probability": 0.9163 + }, + { + "start": 532.94, + "end": 533.84, + "probability": 0.7954 + }, + { + "start": 534.28, + "end": 537.34, + "probability": 0.9128 + }, + { + "start": 537.36, + "end": 539.08, + "probability": 0.9484 + }, + { + "start": 539.8, + "end": 541.34, + "probability": 0.7975 + }, + { + "start": 543.2, + "end": 546.28, + "probability": 0.6561 + }, + { + "start": 546.96, + "end": 550.64, + "probability": 0.9169 + }, + { + "start": 551.42, + "end": 553.18, + "probability": 0.8731 + }, + { + "start": 553.3, + "end": 555.2, + "probability": 0.9809 + }, + { + "start": 556.32, + "end": 558.34, + "probability": 0.9561 + }, + { + "start": 559.08, + "end": 560.98, + "probability": 0.8384 + }, + { + "start": 561.16, + "end": 563.12, + "probability": 0.7509 + }, + { + "start": 563.82, + "end": 564.52, + "probability": 0.5449 + }, + { + "start": 564.58, + "end": 565.2, + "probability": 0.6823 + }, + { + "start": 565.24, + "end": 566.4, + "probability": 0.787 + }, + { + "start": 566.54, + "end": 566.96, + "probability": 0.8409 + }, + { + "start": 567.02, + "end": 567.58, + "probability": 0.936 + }, + { + "start": 567.64, + "end": 569.02, + "probability": 0.6518 + }, + { + "start": 569.88, + "end": 570.86, + "probability": 0.8722 + }, + { + "start": 570.92, + "end": 572.0, + "probability": 0.9547 + }, + { + "start": 572.14, + "end": 573.42, + "probability": 0.5162 + }, + { + "start": 574.0, + "end": 574.9, + "probability": 0.6774 + }, + { + "start": 574.98, + "end": 575.88, + "probability": 0.7979 + }, + { + "start": 576.0, + "end": 577.38, + "probability": 0.7862 + }, + { + "start": 578.0, + "end": 579.32, + "probability": 0.9717 + }, + { + "start": 580.12, + "end": 582.14, + "probability": 0.9188 + }, + { + "start": 582.74, + "end": 585.34, + "probability": 0.925 + }, + { + "start": 585.92, + "end": 586.78, + "probability": 0.3569 + }, + { + "start": 586.9, + "end": 588.2, + "probability": 0.9726 + }, + { + "start": 588.4, + "end": 589.12, + "probability": 0.9227 + }, + { + "start": 589.22, + "end": 590.22, + "probability": 0.9827 + }, + { + "start": 590.44, + "end": 591.04, + "probability": 0.9521 + }, + { + "start": 591.62, + "end": 592.6, + "probability": 0.9561 + }, + { + "start": 593.72, + "end": 596.14, + "probability": 0.5503 + }, + { + "start": 596.26, + "end": 597.04, + "probability": 0.5899 + }, + { + "start": 597.2, + "end": 598.8, + "probability": 0.9801 + }, + { + "start": 598.88, + "end": 599.78, + "probability": 0.8172 + }, + { + "start": 599.92, + "end": 600.66, + "probability": 0.7459 + }, + { + "start": 600.72, + "end": 601.84, + "probability": 0.6334 + }, + { + "start": 602.84, + "end": 603.58, + "probability": 0.2666 + }, + { + "start": 603.64, + "end": 604.88, + "probability": 0.9568 + }, + { + "start": 604.94, + "end": 606.14, + "probability": 0.6953 + }, + { + "start": 607.0, + "end": 607.46, + "probability": 0.9011 + }, + { + "start": 608.14, + "end": 610.28, + "probability": 0.7892 + }, + { + "start": 611.02, + "end": 612.18, + "probability": 0.9702 + }, + { + "start": 612.36, + "end": 614.18, + "probability": 0.9524 + }, + { + "start": 614.98, + "end": 617.62, + "probability": 0.813 + }, + { + "start": 618.28, + "end": 619.18, + "probability": 0.8381 + }, + { + "start": 619.46, + "end": 620.88, + "probability": 0.8585 + }, + { + "start": 620.88, + "end": 621.82, + "probability": 0.9396 + }, + { + "start": 622.18, + "end": 623.36, + "probability": 0.8274 + }, + { + "start": 623.4, + "end": 624.18, + "probability": 0.7911 + }, + { + "start": 624.4, + "end": 625.64, + "probability": 0.6744 + }, + { + "start": 626.62, + "end": 627.47, + "probability": 0.7275 + }, + { + "start": 627.68, + "end": 629.9, + "probability": 0.9514 + }, + { + "start": 629.9, + "end": 632.66, + "probability": 0.9907 + }, + { + "start": 633.26, + "end": 636.62, + "probability": 0.8957 + }, + { + "start": 637.12, + "end": 640.9, + "probability": 0.9696 + }, + { + "start": 641.18, + "end": 641.48, + "probability": 0.7616 + }, + { + "start": 641.86, + "end": 642.68, + "probability": 0.9672 + }, + { + "start": 643.28, + "end": 648.1, + "probability": 0.9883 + }, + { + "start": 648.98, + "end": 649.94, + "probability": 0.8599 + }, + { + "start": 649.98, + "end": 650.46, + "probability": 0.9879 + }, + { + "start": 650.88, + "end": 651.96, + "probability": 0.8216 + }, + { + "start": 652.32, + "end": 657.12, + "probability": 0.9891 + }, + { + "start": 658.26, + "end": 659.24, + "probability": 0.8835 + }, + { + "start": 659.36, + "end": 663.3, + "probability": 0.9964 + }, + { + "start": 663.96, + "end": 665.92, + "probability": 0.7365 + }, + { + "start": 666.54, + "end": 668.36, + "probability": 0.9294 + }, + { + "start": 669.06, + "end": 670.2, + "probability": 0.7323 + }, + { + "start": 672.28, + "end": 672.28, + "probability": 0.1904 + }, + { + "start": 672.28, + "end": 677.36, + "probability": 0.8085 + }, + { + "start": 678.18, + "end": 681.64, + "probability": 0.8315 + }, + { + "start": 681.64, + "end": 684.72, + "probability": 0.6789 + }, + { + "start": 684.86, + "end": 685.58, + "probability": 0.0395 + }, + { + "start": 687.86, + "end": 689.2, + "probability": 0.6452 + }, + { + "start": 689.42, + "end": 689.42, + "probability": 0.3768 + }, + { + "start": 689.56, + "end": 690.58, + "probability": 0.5966 + }, + { + "start": 690.86, + "end": 692.48, + "probability": 0.6818 + }, + { + "start": 694.26, + "end": 696.6, + "probability": 0.9812 + }, + { + "start": 696.74, + "end": 697.24, + "probability": 0.9648 + }, + { + "start": 698.16, + "end": 701.15, + "probability": 0.9303 + }, + { + "start": 701.4, + "end": 704.24, + "probability": 0.6967 + }, + { + "start": 704.4, + "end": 704.66, + "probability": 0.337 + }, + { + "start": 705.28, + "end": 707.18, + "probability": 0.9806 + }, + { + "start": 708.42, + "end": 709.88, + "probability": 0.9429 + }, + { + "start": 710.92, + "end": 712.46, + "probability": 0.9457 + }, + { + "start": 713.02, + "end": 716.4, + "probability": 0.8025 + }, + { + "start": 716.96, + "end": 718.3, + "probability": 0.9958 + }, + { + "start": 719.74, + "end": 722.16, + "probability": 0.9964 + }, + { + "start": 722.16, + "end": 725.24, + "probability": 0.9496 + }, + { + "start": 727.12, + "end": 729.4, + "probability": 0.9068 + }, + { + "start": 731.04, + "end": 733.94, + "probability": 0.9888 + }, + { + "start": 735.28, + "end": 741.75, + "probability": 0.9922 + }, + { + "start": 741.98, + "end": 744.58, + "probability": 0.9841 + }, + { + "start": 744.82, + "end": 747.82, + "probability": 0.7469 + }, + { + "start": 747.82, + "end": 750.1, + "probability": 0.7635 + }, + { + "start": 750.5, + "end": 751.96, + "probability": 0.4808 + }, + { + "start": 751.98, + "end": 752.64, + "probability": 0.7059 + }, + { + "start": 752.7, + "end": 752.8, + "probability": 0.9666 + }, + { + "start": 753.88, + "end": 754.16, + "probability": 0.7483 + }, + { + "start": 755.46, + "end": 757.62, + "probability": 0.8279 + }, + { + "start": 757.66, + "end": 760.4, + "probability": 0.6397 + }, + { + "start": 760.94, + "end": 766.72, + "probability": 0.9558 + }, + { + "start": 767.24, + "end": 768.1, + "probability": 0.6545 + }, + { + "start": 769.02, + "end": 775.64, + "probability": 0.9816 + }, + { + "start": 776.58, + "end": 776.66, + "probability": 0.382 + }, + { + "start": 776.66, + "end": 777.04, + "probability": 0.745 + }, + { + "start": 777.24, + "end": 784.34, + "probability": 0.9661 + }, + { + "start": 784.94, + "end": 787.28, + "probability": 0.9958 + }, + { + "start": 788.08, + "end": 788.64, + "probability": 0.7357 + }, + { + "start": 788.78, + "end": 789.22, + "probability": 0.8234 + }, + { + "start": 789.28, + "end": 793.2, + "probability": 0.9341 + }, + { + "start": 793.2, + "end": 797.8, + "probability": 0.9282 + }, + { + "start": 797.96, + "end": 800.12, + "probability": 0.037 + }, + { + "start": 800.32, + "end": 801.09, + "probability": 0.6985 + }, + { + "start": 801.46, + "end": 802.4, + "probability": 0.8119 + }, + { + "start": 803.2, + "end": 804.38, + "probability": 0.9528 + }, + { + "start": 805.18, + "end": 807.76, + "probability": 0.8984 + }, + { + "start": 808.84, + "end": 809.24, + "probability": 0.9375 + }, + { + "start": 810.0, + "end": 812.54, + "probability": 0.7523 + }, + { + "start": 812.6, + "end": 812.8, + "probability": 0.8781 + }, + { + "start": 812.88, + "end": 813.33, + "probability": 0.6314 + }, + { + "start": 813.58, + "end": 816.96, + "probability": 0.9968 + }, + { + "start": 817.04, + "end": 818.34, + "probability": 0.9418 + }, + { + "start": 818.88, + "end": 819.08, + "probability": 0.8787 + }, + { + "start": 819.12, + "end": 820.48, + "probability": 0.9843 + }, + { + "start": 820.92, + "end": 824.16, + "probability": 0.9928 + }, + { + "start": 825.44, + "end": 826.2, + "probability": 0.9624 + }, + { + "start": 828.06, + "end": 830.22, + "probability": 0.9981 + }, + { + "start": 830.28, + "end": 831.3, + "probability": 0.9766 + }, + { + "start": 831.88, + "end": 837.5, + "probability": 0.9938 + }, + { + "start": 837.68, + "end": 840.35, + "probability": 0.7841 + }, + { + "start": 841.02, + "end": 845.18, + "probability": 0.9981 + }, + { + "start": 845.46, + "end": 846.98, + "probability": 0.7603 + }, + { + "start": 847.62, + "end": 851.0, + "probability": 0.8855 + }, + { + "start": 851.76, + "end": 853.12, + "probability": 0.8992 + }, + { + "start": 854.42, + "end": 858.62, + "probability": 0.981 + }, + { + "start": 858.94, + "end": 859.18, + "probability": 0.425 + }, + { + "start": 859.18, + "end": 859.66, + "probability": 0.4799 + }, + { + "start": 860.06, + "end": 860.06, + "probability": 0.4407 + }, + { + "start": 860.3, + "end": 863.28, + "probability": 0.9827 + }, + { + "start": 863.92, + "end": 867.78, + "probability": 0.5356 + }, + { + "start": 867.98, + "end": 868.88, + "probability": 0.5203 + }, + { + "start": 869.02, + "end": 870.2, + "probability": 0.8272 + }, + { + "start": 870.76, + "end": 872.28, + "probability": 0.928 + }, + { + "start": 873.02, + "end": 874.0, + "probability": 0.7966 + }, + { + "start": 874.16, + "end": 878.46, + "probability": 0.9742 + }, + { + "start": 879.42, + "end": 882.8, + "probability": 0.9712 + }, + { + "start": 882.9, + "end": 885.92, + "probability": 0.8551 + }, + { + "start": 886.4, + "end": 887.62, + "probability": 0.9099 + }, + { + "start": 887.8, + "end": 890.08, + "probability": 0.801 + }, + { + "start": 890.76, + "end": 894.02, + "probability": 0.9337 + }, + { + "start": 894.02, + "end": 899.2, + "probability": 0.9329 + }, + { + "start": 899.5, + "end": 899.88, + "probability": 0.2526 + }, + { + "start": 899.9, + "end": 902.3, + "probability": 0.7383 + }, + { + "start": 902.46, + "end": 904.54, + "probability": 0.9826 + }, + { + "start": 904.66, + "end": 907.19, + "probability": 0.9556 + }, + { + "start": 907.94, + "end": 909.5, + "probability": 0.9656 + }, + { + "start": 910.18, + "end": 913.92, + "probability": 0.9578 + }, + { + "start": 914.4, + "end": 915.64, + "probability": 0.6926 + }, + { + "start": 915.74, + "end": 916.06, + "probability": 0.9179 + }, + { + "start": 916.64, + "end": 917.82, + "probability": 0.95 + }, + { + "start": 917.96, + "end": 918.48, + "probability": 0.6569 + }, + { + "start": 918.54, + "end": 920.34, + "probability": 0.7329 + }, + { + "start": 920.38, + "end": 921.68, + "probability": 0.7651 + }, + { + "start": 922.36, + "end": 923.44, + "probability": 0.8783 + }, + { + "start": 924.18, + "end": 925.16, + "probability": 0.2418 + }, + { + "start": 925.54, + "end": 926.45, + "probability": 0.7554 + }, + { + "start": 926.6, + "end": 926.9, + "probability": 0.1371 + }, + { + "start": 926.9, + "end": 928.26, + "probability": 0.3722 + }, + { + "start": 928.3, + "end": 928.64, + "probability": 0.3343 + }, + { + "start": 928.7, + "end": 929.68, + "probability": 0.6965 + }, + { + "start": 929.68, + "end": 930.3, + "probability": 0.4936 + }, + { + "start": 930.34, + "end": 930.34, + "probability": 0.7096 + }, + { + "start": 930.42, + "end": 932.68, + "probability": 0.9917 + }, + { + "start": 933.92, + "end": 934.7, + "probability": 0.941 + }, + { + "start": 934.76, + "end": 938.31, + "probability": 0.9912 + }, + { + "start": 939.42, + "end": 942.79, + "probability": 0.7822 + }, + { + "start": 944.42, + "end": 944.48, + "probability": 0.1853 + }, + { + "start": 944.48, + "end": 944.94, + "probability": 0.569 + }, + { + "start": 945.3, + "end": 946.72, + "probability": 0.785 + }, + { + "start": 947.08, + "end": 947.36, + "probability": 0.64 + }, + { + "start": 947.52, + "end": 948.28, + "probability": 0.8613 + }, + { + "start": 948.38, + "end": 948.92, + "probability": 0.4645 + }, + { + "start": 949.64, + "end": 952.68, + "probability": 0.6996 + }, + { + "start": 952.8, + "end": 953.7, + "probability": 0.843 + }, + { + "start": 953.78, + "end": 955.08, + "probability": 0.9798 + }, + { + "start": 955.12, + "end": 955.84, + "probability": 0.6779 + }, + { + "start": 955.92, + "end": 957.94, + "probability": 0.5424 + }, + { + "start": 958.86, + "end": 958.98, + "probability": 0.2453 + }, + { + "start": 958.98, + "end": 960.62, + "probability": 0.5129 + }, + { + "start": 961.28, + "end": 961.62, + "probability": 0.7743 + }, + { + "start": 962.28, + "end": 964.2, + "probability": 0.8784 + }, + { + "start": 964.2, + "end": 964.22, + "probability": 0.2778 + }, + { + "start": 964.22, + "end": 966.42, + "probability": 0.9651 + }, + { + "start": 967.0, + "end": 967.14, + "probability": 0.6921 + }, + { + "start": 967.14, + "end": 967.76, + "probability": 0.489 + }, + { + "start": 967.92, + "end": 971.78, + "probability": 0.9556 + }, + { + "start": 971.92, + "end": 972.54, + "probability": 0.7473 + }, + { + "start": 973.12, + "end": 973.64, + "probability": 0.9917 + }, + { + "start": 973.72, + "end": 976.42, + "probability": 0.9373 + }, + { + "start": 977.12, + "end": 978.06, + "probability": 0.9761 + }, + { + "start": 978.22, + "end": 979.44, + "probability": 0.9712 + }, + { + "start": 980.72, + "end": 982.46, + "probability": 0.8704 + }, + { + "start": 983.12, + "end": 985.18, + "probability": 0.9761 + }, + { + "start": 986.0, + "end": 987.34, + "probability": 0.4926 + }, + { + "start": 988.1, + "end": 993.12, + "probability": 0.936 + }, + { + "start": 993.12, + "end": 999.4, + "probability": 0.9867 + }, + { + "start": 999.42, + "end": 1000.12, + "probability": 0.6027 + }, + { + "start": 1000.58, + "end": 1002.44, + "probability": 0.9937 + }, + { + "start": 1002.76, + "end": 1003.28, + "probability": 0.8411 + }, + { + "start": 1003.98, + "end": 1004.3, + "probability": 0.5075 + }, + { + "start": 1005.14, + "end": 1008.1, + "probability": 0.9624 + }, + { + "start": 1008.92, + "end": 1009.56, + "probability": 0.8221 + }, + { + "start": 1010.2, + "end": 1012.66, + "probability": 0.9448 + }, + { + "start": 1012.76, + "end": 1015.08, + "probability": 0.976 + }, + { + "start": 1015.32, + "end": 1015.76, + "probability": 0.8232 + }, + { + "start": 1016.4, + "end": 1016.84, + "probability": 0.6713 + }, + { + "start": 1016.9, + "end": 1017.64, + "probability": 0.6227 + }, + { + "start": 1017.7, + "end": 1018.52, + "probability": 0.9639 + }, + { + "start": 1018.62, + "end": 1019.6, + "probability": 0.6147 + }, + { + "start": 1019.98, + "end": 1022.82, + "probability": 0.9497 + }, + { + "start": 1023.32, + "end": 1028.76, + "probability": 0.9146 + }, + { + "start": 1028.84, + "end": 1030.22, + "probability": 0.9927 + }, + { + "start": 1030.3, + "end": 1032.38, + "probability": 0.9827 + }, + { + "start": 1032.94, + "end": 1034.9, + "probability": 0.8158 + }, + { + "start": 1035.8, + "end": 1037.04, + "probability": 0.8237 + }, + { + "start": 1037.68, + "end": 1039.06, + "probability": 0.9675 + }, + { + "start": 1040.73, + "end": 1044.94, + "probability": 0.9018 + }, + { + "start": 1046.08, + "end": 1048.04, + "probability": 0.985 + }, + { + "start": 1049.04, + "end": 1050.44, + "probability": 0.9009 + }, + { + "start": 1051.08, + "end": 1051.42, + "probability": 0.9822 + }, + { + "start": 1055.14, + "end": 1056.3, + "probability": 0.7117 + }, + { + "start": 1056.94, + "end": 1057.74, + "probability": 0.6298 + }, + { + "start": 1058.88, + "end": 1059.18, + "probability": 0.3559 + }, + { + "start": 1059.18, + "end": 1062.58, + "probability": 0.881 + }, + { + "start": 1064.5, + "end": 1065.6, + "probability": 0.9843 + }, + { + "start": 1065.66, + "end": 1067.39, + "probability": 0.8623 + }, + { + "start": 1068.96, + "end": 1073.98, + "probability": 0.9456 + }, + { + "start": 1074.52, + "end": 1076.7, + "probability": 0.779 + }, + { + "start": 1077.12, + "end": 1077.84, + "probability": 0.8074 + }, + { + "start": 1079.26, + "end": 1079.66, + "probability": 0.8223 + }, + { + "start": 1080.46, + "end": 1081.72, + "probability": 0.8869 + }, + { + "start": 1082.4, + "end": 1083.04, + "probability": 0.9305 + }, + { + "start": 1084.48, + "end": 1086.78, + "probability": 0.9143 + }, + { + "start": 1087.52, + "end": 1089.0, + "probability": 0.8415 + }, + { + "start": 1090.1, + "end": 1092.2, + "probability": 0.8782 + }, + { + "start": 1093.16, + "end": 1094.2, + "probability": 0.9577 + }, + { + "start": 1095.18, + "end": 1096.26, + "probability": 0.7473 + }, + { + "start": 1097.3, + "end": 1101.54, + "probability": 0.962 + }, + { + "start": 1102.54, + "end": 1104.94, + "probability": 0.9829 + }, + { + "start": 1106.2, + "end": 1107.18, + "probability": 0.9897 + }, + { + "start": 1107.86, + "end": 1108.6, + "probability": 0.9589 + }, + { + "start": 1109.32, + "end": 1110.1, + "probability": 0.9941 + }, + { + "start": 1110.8, + "end": 1111.7, + "probability": 0.9961 + }, + { + "start": 1111.82, + "end": 1117.08, + "probability": 0.8866 + }, + { + "start": 1117.98, + "end": 1120.24, + "probability": 0.83 + }, + { + "start": 1120.98, + "end": 1122.72, + "probability": 0.9994 + }, + { + "start": 1123.3, + "end": 1124.8, + "probability": 0.7706 + }, + { + "start": 1125.4, + "end": 1128.68, + "probability": 0.9951 + }, + { + "start": 1129.92, + "end": 1130.64, + "probability": 0.552 + }, + { + "start": 1131.74, + "end": 1137.34, + "probability": 0.9969 + }, + { + "start": 1137.62, + "end": 1138.02, + "probability": 0.3377 + }, + { + "start": 1138.5, + "end": 1138.64, + "probability": 0.9621 + }, + { + "start": 1140.16, + "end": 1141.3, + "probability": 0.6121 + }, + { + "start": 1142.3, + "end": 1143.62, + "probability": 0.863 + }, + { + "start": 1144.82, + "end": 1148.9, + "probability": 0.9827 + }, + { + "start": 1150.12, + "end": 1151.8, + "probability": 0.6918 + }, + { + "start": 1152.36, + "end": 1153.6, + "probability": 0.9982 + }, + { + "start": 1154.3, + "end": 1156.26, + "probability": 0.9937 + }, + { + "start": 1157.04, + "end": 1157.96, + "probability": 0.991 + }, + { + "start": 1159.58, + "end": 1161.22, + "probability": 0.8047 + }, + { + "start": 1161.34, + "end": 1164.8, + "probability": 0.9606 + }, + { + "start": 1165.78, + "end": 1168.82, + "probability": 0.9561 + }, + { + "start": 1169.92, + "end": 1173.84, + "probability": 0.9973 + }, + { + "start": 1175.64, + "end": 1178.66, + "probability": 0.9902 + }, + { + "start": 1179.86, + "end": 1182.06, + "probability": 0.9608 + }, + { + "start": 1182.76, + "end": 1183.5, + "probability": 0.9834 + }, + { + "start": 1183.82, + "end": 1185.34, + "probability": 0.96 + }, + { + "start": 1186.16, + "end": 1186.58, + "probability": 0.4632 + }, + { + "start": 1186.58, + "end": 1188.36, + "probability": 0.2728 + }, + { + "start": 1191.74, + "end": 1195.96, + "probability": 0.9937 + }, + { + "start": 1196.98, + "end": 1198.92, + "probability": 0.9473 + }, + { + "start": 1199.2, + "end": 1199.76, + "probability": 0.9328 + }, + { + "start": 1200.68, + "end": 1203.38, + "probability": 0.9973 + }, + { + "start": 1203.96, + "end": 1206.12, + "probability": 0.9912 + }, + { + "start": 1208.08, + "end": 1208.48, + "probability": 0.7216 + }, + { + "start": 1209.76, + "end": 1214.28, + "probability": 0.9769 + }, + { + "start": 1214.94, + "end": 1216.56, + "probability": 0.9904 + }, + { + "start": 1217.12, + "end": 1219.92, + "probability": 0.8263 + }, + { + "start": 1220.68, + "end": 1221.2, + "probability": 0.5673 + }, + { + "start": 1221.9, + "end": 1224.28, + "probability": 0.9936 + }, + { + "start": 1225.24, + "end": 1226.18, + "probability": 0.9285 + }, + { + "start": 1226.8, + "end": 1231.14, + "probability": 0.995 + }, + { + "start": 1231.64, + "end": 1232.26, + "probability": 0.577 + }, + { + "start": 1232.98, + "end": 1233.5, + "probability": 0.9797 + }, + { + "start": 1235.2, + "end": 1238.56, + "probability": 0.9777 + }, + { + "start": 1239.9, + "end": 1240.2, + "probability": 0.3721 + }, + { + "start": 1240.2, + "end": 1241.04, + "probability": 0.7733 + }, + { + "start": 1241.16, + "end": 1242.14, + "probability": 0.8885 + }, + { + "start": 1242.22, + "end": 1245.44, + "probability": 0.8793 + }, + { + "start": 1246.48, + "end": 1249.92, + "probability": 0.971 + }, + { + "start": 1249.92, + "end": 1252.7, + "probability": 0.9865 + }, + { + "start": 1253.6, + "end": 1256.52, + "probability": 0.8487 + }, + { + "start": 1257.32, + "end": 1258.82, + "probability": 0.9722 + }, + { + "start": 1259.44, + "end": 1262.1, + "probability": 0.8321 + }, + { + "start": 1264.1, + "end": 1266.0, + "probability": 0.8728 + }, + { + "start": 1267.3, + "end": 1269.7, + "probability": 0.9966 + }, + { + "start": 1271.16, + "end": 1274.96, + "probability": 0.9831 + }, + { + "start": 1275.84, + "end": 1278.74, + "probability": 0.9375 + }, + { + "start": 1279.34, + "end": 1283.86, + "probability": 0.9964 + }, + { + "start": 1285.12, + "end": 1286.4, + "probability": 0.984 + }, + { + "start": 1287.52, + "end": 1289.0, + "probability": 0.9049 + }, + { + "start": 1289.12, + "end": 1289.38, + "probability": 0.714 + }, + { + "start": 1289.64, + "end": 1290.32, + "probability": 0.9569 + }, + { + "start": 1290.82, + "end": 1296.66, + "probability": 0.9913 + }, + { + "start": 1296.66, + "end": 1301.78, + "probability": 0.9877 + }, + { + "start": 1304.68, + "end": 1308.6, + "probability": 0.9961 + }, + { + "start": 1308.76, + "end": 1310.2, + "probability": 0.889 + }, + { + "start": 1311.3, + "end": 1315.8, + "probability": 0.9971 + }, + { + "start": 1316.76, + "end": 1317.04, + "probability": 0.4526 + }, + { + "start": 1317.16, + "end": 1318.22, + "probability": 0.3446 + }, + { + "start": 1318.28, + "end": 1319.14, + "probability": 0.7366 + }, + { + "start": 1319.52, + "end": 1321.62, + "probability": 0.9485 + }, + { + "start": 1322.26, + "end": 1326.54, + "probability": 0.9629 + }, + { + "start": 1327.74, + "end": 1331.5, + "probability": 0.9344 + }, + { + "start": 1332.02, + "end": 1334.7, + "probability": 0.9767 + }, + { + "start": 1335.56, + "end": 1335.86, + "probability": 0.7281 + }, + { + "start": 1336.88, + "end": 1339.24, + "probability": 0.9849 + }, + { + "start": 1340.22, + "end": 1342.56, + "probability": 0.9666 + }, + { + "start": 1342.7, + "end": 1343.52, + "probability": 0.8481 + }, + { + "start": 1343.6, + "end": 1347.04, + "probability": 0.9241 + }, + { + "start": 1348.48, + "end": 1352.78, + "probability": 0.8651 + }, + { + "start": 1353.3, + "end": 1359.72, + "probability": 0.9951 + }, + { + "start": 1360.48, + "end": 1363.46, + "probability": 0.8457 + }, + { + "start": 1365.16, + "end": 1368.32, + "probability": 0.9013 + }, + { + "start": 1368.42, + "end": 1369.12, + "probability": 0.6412 + }, + { + "start": 1370.06, + "end": 1371.74, + "probability": 0.9076 + }, + { + "start": 1371.88, + "end": 1377.4, + "probability": 0.9791 + }, + { + "start": 1378.58, + "end": 1381.16, + "probability": 0.8999 + }, + { + "start": 1381.16, + "end": 1384.84, + "probability": 0.9989 + }, + { + "start": 1385.9, + "end": 1388.42, + "probability": 0.765 + }, + { + "start": 1388.68, + "end": 1394.3, + "probability": 0.957 + }, + { + "start": 1394.3, + "end": 1400.78, + "probability": 0.9988 + }, + { + "start": 1402.28, + "end": 1404.58, + "probability": 0.9924 + }, + { + "start": 1405.1, + "end": 1409.66, + "probability": 0.9738 + }, + { + "start": 1409.96, + "end": 1414.76, + "probability": 0.9892 + }, + { + "start": 1417.12, + "end": 1424.76, + "probability": 0.9195 + }, + { + "start": 1424.76, + "end": 1428.54, + "probability": 0.9973 + }, + { + "start": 1429.08, + "end": 1433.22, + "probability": 0.8706 + }, + { + "start": 1433.88, + "end": 1435.5, + "probability": 0.7799 + }, + { + "start": 1436.9, + "end": 1439.46, + "probability": 0.9935 + }, + { + "start": 1439.46, + "end": 1441.84, + "probability": 0.8641 + }, + { + "start": 1442.38, + "end": 1447.68, + "probability": 0.9706 + }, + { + "start": 1447.86, + "end": 1448.5, + "probability": 0.8773 + }, + { + "start": 1448.62, + "end": 1449.34, + "probability": 0.9743 + }, + { + "start": 1449.44, + "end": 1451.32, + "probability": 0.8723 + }, + { + "start": 1451.86, + "end": 1453.76, + "probability": 0.7622 + }, + { + "start": 1454.48, + "end": 1457.28, + "probability": 0.799 + }, + { + "start": 1457.28, + "end": 1460.94, + "probability": 0.9878 + }, + { + "start": 1461.88, + "end": 1465.04, + "probability": 0.9958 + }, + { + "start": 1465.98, + "end": 1466.96, + "probability": 0.7183 + }, + { + "start": 1467.94, + "end": 1470.64, + "probability": 0.9976 + }, + { + "start": 1470.72, + "end": 1474.08, + "probability": 0.8282 + }, + { + "start": 1475.22, + "end": 1476.76, + "probability": 0.6689 + }, + { + "start": 1477.9, + "end": 1478.8, + "probability": 0.7833 + }, + { + "start": 1479.98, + "end": 1480.32, + "probability": 0.4611 + }, + { + "start": 1480.38, + "end": 1483.04, + "probability": 0.9938 + }, + { + "start": 1483.08, + "end": 1487.1, + "probability": 0.9774 + }, + { + "start": 1487.44, + "end": 1489.1, + "probability": 0.9079 + }, + { + "start": 1489.6, + "end": 1492.32, + "probability": 0.7354 + }, + { + "start": 1493.92, + "end": 1496.46, + "probability": 0.951 + }, + { + "start": 1496.58, + "end": 1497.26, + "probability": 0.5219 + }, + { + "start": 1497.38, + "end": 1503.9, + "probability": 0.9091 + }, + { + "start": 1505.18, + "end": 1507.48, + "probability": 0.9761 + }, + { + "start": 1508.12, + "end": 1510.08, + "probability": 0.9962 + }, + { + "start": 1511.34, + "end": 1515.54, + "probability": 0.9961 + }, + { + "start": 1517.38, + "end": 1520.42, + "probability": 0.9807 + }, + { + "start": 1520.42, + "end": 1524.14, + "probability": 0.9989 + }, + { + "start": 1525.16, + "end": 1528.24, + "probability": 0.9939 + }, + { + "start": 1529.28, + "end": 1530.72, + "probability": 0.7971 + }, + { + "start": 1531.68, + "end": 1532.18, + "probability": 0.8294 + }, + { + "start": 1532.88, + "end": 1536.24, + "probability": 0.9937 + }, + { + "start": 1537.14, + "end": 1539.42, + "probability": 0.9966 + }, + { + "start": 1539.42, + "end": 1542.7, + "probability": 0.9908 + }, + { + "start": 1545.12, + "end": 1549.68, + "probability": 0.9932 + }, + { + "start": 1550.46, + "end": 1553.48, + "probability": 0.999 + }, + { + "start": 1553.48, + "end": 1558.92, + "probability": 0.9929 + }, + { + "start": 1561.46, + "end": 1564.46, + "probability": 0.8835 + }, + { + "start": 1564.7, + "end": 1568.06, + "probability": 0.9972 + }, + { + "start": 1568.06, + "end": 1571.02, + "probability": 0.858 + }, + { + "start": 1571.92, + "end": 1574.72, + "probability": 0.9712 + }, + { + "start": 1575.64, + "end": 1577.36, + "probability": 0.9958 + }, + { + "start": 1577.54, + "end": 1578.9, + "probability": 0.9822 + }, + { + "start": 1581.8, + "end": 1582.68, + "probability": 0.7623 + }, + { + "start": 1584.08, + "end": 1585.34, + "probability": 0.987 + }, + { + "start": 1586.04, + "end": 1589.06, + "probability": 0.8845 + }, + { + "start": 1590.48, + "end": 1591.2, + "probability": 0.4165 + }, + { + "start": 1592.02, + "end": 1595.6, + "probability": 0.5858 + }, + { + "start": 1597.14, + "end": 1600.28, + "probability": 0.94 + }, + { + "start": 1600.94, + "end": 1603.86, + "probability": 0.9375 + }, + { + "start": 1603.86, + "end": 1607.2, + "probability": 0.9852 + }, + { + "start": 1608.54, + "end": 1612.32, + "probability": 0.8889 + }, + { + "start": 1613.38, + "end": 1615.5, + "probability": 0.9973 + }, + { + "start": 1616.1, + "end": 1621.5, + "probability": 0.9953 + }, + { + "start": 1622.88, + "end": 1623.9, + "probability": 0.7776 + }, + { + "start": 1625.44, + "end": 1627.52, + "probability": 0.9928 + }, + { + "start": 1627.68, + "end": 1632.0, + "probability": 0.9972 + }, + { + "start": 1632.44, + "end": 1632.78, + "probability": 0.8982 + }, + { + "start": 1633.1, + "end": 1633.44, + "probability": 0.987 + }, + { + "start": 1633.74, + "end": 1634.38, + "probability": 0.9842 + }, + { + "start": 1634.62, + "end": 1635.18, + "probability": 0.983 + }, + { + "start": 1635.5, + "end": 1636.2, + "probability": 0.994 + }, + { + "start": 1636.38, + "end": 1637.56, + "probability": 0.6798 + }, + { + "start": 1638.7, + "end": 1641.26, + "probability": 0.9977 + }, + { + "start": 1641.26, + "end": 1644.4, + "probability": 0.984 + }, + { + "start": 1645.44, + "end": 1648.48, + "probability": 0.959 + }, + { + "start": 1649.54, + "end": 1654.62, + "probability": 0.9913 + }, + { + "start": 1654.62, + "end": 1659.4, + "probability": 0.9941 + }, + { + "start": 1660.8, + "end": 1662.2, + "probability": 0.6612 + }, + { + "start": 1662.86, + "end": 1666.46, + "probability": 0.9606 + }, + { + "start": 1667.38, + "end": 1670.94, + "probability": 0.9805 + }, + { + "start": 1671.86, + "end": 1675.56, + "probability": 0.9973 + }, + { + "start": 1676.34, + "end": 1681.64, + "probability": 0.8137 + }, + { + "start": 1682.58, + "end": 1688.0, + "probability": 0.9494 + }, + { + "start": 1688.6, + "end": 1692.62, + "probability": 0.9977 + }, + { + "start": 1692.62, + "end": 1696.16, + "probability": 0.9904 + }, + { + "start": 1698.2, + "end": 1699.24, + "probability": 0.867 + }, + { + "start": 1700.18, + "end": 1702.12, + "probability": 0.9868 + }, + { + "start": 1702.86, + "end": 1702.96, + "probability": 0.7532 + }, + { + "start": 1704.96, + "end": 1708.72, + "probability": 0.986 + }, + { + "start": 1709.44, + "end": 1710.68, + "probability": 0.837 + }, + { + "start": 1711.4, + "end": 1713.28, + "probability": 0.7313 + }, + { + "start": 1714.82, + "end": 1717.1, + "probability": 0.9967 + }, + { + "start": 1718.12, + "end": 1721.24, + "probability": 0.9834 + }, + { + "start": 1721.96, + "end": 1725.54, + "probability": 0.9885 + }, + { + "start": 1726.04, + "end": 1728.92, + "probability": 0.9877 + }, + { + "start": 1730.22, + "end": 1735.36, + "probability": 0.9982 + }, + { + "start": 1735.6, + "end": 1737.44, + "probability": 0.9532 + }, + { + "start": 1739.14, + "end": 1739.6, + "probability": 0.4803 + }, + { + "start": 1739.72, + "end": 1743.52, + "probability": 0.9646 + }, + { + "start": 1744.24, + "end": 1745.56, + "probability": 0.6893 + }, + { + "start": 1746.8, + "end": 1747.46, + "probability": 0.8484 + }, + { + "start": 1748.22, + "end": 1748.76, + "probability": 0.968 + }, + { + "start": 1750.44, + "end": 1752.62, + "probability": 0.9252 + }, + { + "start": 1753.34, + "end": 1755.52, + "probability": 0.8678 + }, + { + "start": 1756.74, + "end": 1757.18, + "probability": 0.5514 + }, + { + "start": 1758.1, + "end": 1758.68, + "probability": 0.7421 + }, + { + "start": 1760.5, + "end": 1763.74, + "probability": 0.6636 + }, + { + "start": 1764.8, + "end": 1766.02, + "probability": 0.8555 + }, + { + "start": 1766.72, + "end": 1769.52, + "probability": 0.9815 + }, + { + "start": 1770.18, + "end": 1773.18, + "probability": 0.7919 + }, + { + "start": 1774.84, + "end": 1774.96, + "probability": 0.1837 + }, + { + "start": 1774.96, + "end": 1776.38, + "probability": 0.7667 + }, + { + "start": 1776.52, + "end": 1778.48, + "probability": 0.9183 + }, + { + "start": 1779.02, + "end": 1779.9, + "probability": 0.8949 + }, + { + "start": 1781.34, + "end": 1783.72, + "probability": 0.8803 + }, + { + "start": 1784.58, + "end": 1786.28, + "probability": 0.8544 + }, + { + "start": 1787.18, + "end": 1791.14, + "probability": 0.9899 + }, + { + "start": 1791.98, + "end": 1794.68, + "probability": 0.85 + }, + { + "start": 1795.24, + "end": 1796.16, + "probability": 0.8259 + }, + { + "start": 1797.8, + "end": 1800.76, + "probability": 0.999 + }, + { + "start": 1801.24, + "end": 1804.86, + "probability": 0.9781 + }, + { + "start": 1804.9, + "end": 1808.66, + "probability": 0.9605 + }, + { + "start": 1809.52, + "end": 1810.02, + "probability": 0.5008 + }, + { + "start": 1810.84, + "end": 1815.3, + "probability": 0.9905 + }, + { + "start": 1816.36, + "end": 1819.98, + "probability": 0.9389 + }, + { + "start": 1820.34, + "end": 1820.72, + "probability": 0.8077 + }, + { + "start": 1821.42, + "end": 1822.22, + "probability": 0.7457 + }, + { + "start": 1823.0, + "end": 1824.06, + "probability": 0.8262 + }, + { + "start": 1824.16, + "end": 1825.78, + "probability": 0.9008 + }, + { + "start": 1826.88, + "end": 1829.92, + "probability": 0.9243 + }, + { + "start": 1831.5, + "end": 1832.56, + "probability": 0.9611 + }, + { + "start": 1836.16, + "end": 1836.38, + "probability": 0.0043 + }, + { + "start": 1902.14, + "end": 1902.42, + "probability": 0.2732 + }, + { + "start": 1902.42, + "end": 1906.68, + "probability": 0.9324 + }, + { + "start": 1907.14, + "end": 1909.68, + "probability": 0.2495 + }, + { + "start": 1910.42, + "end": 1912.98, + "probability": 0.6918 + }, + { + "start": 1926.04, + "end": 1926.64, + "probability": 0.2678 + }, + { + "start": 1926.68, + "end": 1927.82, + "probability": 0.7968 + }, + { + "start": 1928.0, + "end": 1928.7, + "probability": 0.7451 + }, + { + "start": 1928.84, + "end": 1930.06, + "probability": 0.8827 + }, + { + "start": 1931.72, + "end": 1934.78, + "probability": 0.8994 + }, + { + "start": 1935.48, + "end": 1939.0, + "probability": 0.5428 + }, + { + "start": 1941.68, + "end": 1943.8, + "probability": 0.7676 + }, + { + "start": 1945.99, + "end": 1949.36, + "probability": 0.9969 + }, + { + "start": 1949.8, + "end": 1950.12, + "probability": 0.743 + }, + { + "start": 1950.28, + "end": 1952.02, + "probability": 0.9402 + }, + { + "start": 1954.36, + "end": 1956.04, + "probability": 0.9984 + }, + { + "start": 1958.3, + "end": 1960.8, + "probability": 0.9743 + }, + { + "start": 1962.58, + "end": 1965.9, + "probability": 0.999 + }, + { + "start": 1966.68, + "end": 1967.64, + "probability": 0.7084 + }, + { + "start": 1968.16, + "end": 1969.76, + "probability": 0.8984 + }, + { + "start": 1971.5, + "end": 1973.74, + "probability": 0.9706 + }, + { + "start": 1974.08, + "end": 1975.16, + "probability": 0.8765 + }, + { + "start": 1975.6, + "end": 1978.85, + "probability": 0.9927 + }, + { + "start": 1978.98, + "end": 1979.68, + "probability": 0.4904 + }, + { + "start": 1981.4, + "end": 1982.86, + "probability": 0.9738 + }, + { + "start": 1984.14, + "end": 1987.62, + "probability": 0.7568 + }, + { + "start": 1989.08, + "end": 1994.08, + "probability": 0.9727 + }, + { + "start": 1995.4, + "end": 1998.9, + "probability": 0.9984 + }, + { + "start": 1999.7, + "end": 2002.98, + "probability": 0.9968 + }, + { + "start": 2004.88, + "end": 2007.92, + "probability": 0.9883 + }, + { + "start": 2008.88, + "end": 2009.76, + "probability": 0.9108 + }, + { + "start": 2012.84, + "end": 2016.82, + "probability": 0.9979 + }, + { + "start": 2016.94, + "end": 2018.74, + "probability": 0.9949 + }, + { + "start": 2020.32, + "end": 2025.94, + "probability": 0.9675 + }, + { + "start": 2026.58, + "end": 2029.38, + "probability": 0.9951 + }, + { + "start": 2030.22, + "end": 2032.94, + "probability": 0.9935 + }, + { + "start": 2034.16, + "end": 2037.2, + "probability": 0.9016 + }, + { + "start": 2038.82, + "end": 2043.86, + "probability": 0.9919 + }, + { + "start": 2044.66, + "end": 2050.22, + "probability": 0.998 + }, + { + "start": 2053.02, + "end": 2054.78, + "probability": 0.9916 + }, + { + "start": 2055.16, + "end": 2056.1, + "probability": 0.7207 + }, + { + "start": 2056.14, + "end": 2057.48, + "probability": 0.7824 + }, + { + "start": 2057.54, + "end": 2058.12, + "probability": 0.7842 + }, + { + "start": 2058.52, + "end": 2059.74, + "probability": 0.9247 + }, + { + "start": 2059.82, + "end": 2060.3, + "probability": 0.8274 + }, + { + "start": 2060.76, + "end": 2061.2, + "probability": 0.9391 + }, + { + "start": 2062.14, + "end": 2063.06, + "probability": 0.6542 + }, + { + "start": 2063.98, + "end": 2065.72, + "probability": 0.9226 + }, + { + "start": 2065.98, + "end": 2067.4, + "probability": 0.9553 + }, + { + "start": 2067.5, + "end": 2071.68, + "probability": 0.8057 + }, + { + "start": 2072.16, + "end": 2073.48, + "probability": 0.7061 + }, + { + "start": 2073.53, + "end": 2075.52, + "probability": 0.7836 + }, + { + "start": 2076.22, + "end": 2077.64, + "probability": 0.9522 + }, + { + "start": 2077.78, + "end": 2079.34, + "probability": 0.9092 + }, + { + "start": 2079.88, + "end": 2080.32, + "probability": 0.7357 + }, + { + "start": 2080.34, + "end": 2082.24, + "probability": 0.9074 + }, + { + "start": 2082.64, + "end": 2083.46, + "probability": 0.519 + }, + { + "start": 2083.52, + "end": 2086.96, + "probability": 0.7529 + }, + { + "start": 2087.12, + "end": 2089.56, + "probability": 0.9119 + }, + { + "start": 2090.24, + "end": 2092.08, + "probability": 0.778 + }, + { + "start": 2097.52, + "end": 2101.76, + "probability": 0.0273 + }, + { + "start": 2116.26, + "end": 2118.64, + "probability": 0.3701 + }, + { + "start": 2118.72, + "end": 2118.82, + "probability": 0.8734 + }, + { + "start": 2120.0, + "end": 2120.5, + "probability": 0.7371 + }, + { + "start": 2121.1, + "end": 2123.34, + "probability": 0.5811 + }, + { + "start": 2125.0, + "end": 2126.23, + "probability": 0.8729 + }, + { + "start": 2128.4, + "end": 2129.62, + "probability": 0.8677 + }, + { + "start": 2130.38, + "end": 2134.18, + "probability": 0.9771 + }, + { + "start": 2134.48, + "end": 2136.2, + "probability": 0.8556 + }, + { + "start": 2137.26, + "end": 2141.75, + "probability": 0.6624 + }, + { + "start": 2143.1, + "end": 2145.76, + "probability": 0.9463 + }, + { + "start": 2146.94, + "end": 2148.88, + "probability": 0.9852 + }, + { + "start": 2149.42, + "end": 2150.18, + "probability": 0.8034 + }, + { + "start": 2150.64, + "end": 2152.06, + "probability": 0.9657 + }, + { + "start": 2152.64, + "end": 2155.56, + "probability": 0.8656 + }, + { + "start": 2156.1, + "end": 2157.82, + "probability": 0.8757 + }, + { + "start": 2158.86, + "end": 2161.6, + "probability": 0.9789 + }, + { + "start": 2163.24, + "end": 2165.02, + "probability": 0.9982 + }, + { + "start": 2165.18, + "end": 2168.48, + "probability": 0.9989 + }, + { + "start": 2169.22, + "end": 2170.84, + "probability": 0.999 + }, + { + "start": 2172.02, + "end": 2177.1, + "probability": 0.925 + }, + { + "start": 2177.2, + "end": 2180.34, + "probability": 0.9949 + }, + { + "start": 2180.42, + "end": 2180.79, + "probability": 0.552 + }, + { + "start": 2182.16, + "end": 2187.86, + "probability": 0.9956 + }, + { + "start": 2189.02, + "end": 2191.7, + "probability": 0.9691 + }, + { + "start": 2192.32, + "end": 2194.1, + "probability": 0.9936 + }, + { + "start": 2194.6, + "end": 2197.66, + "probability": 0.983 + }, + { + "start": 2198.9, + "end": 2201.88, + "probability": 0.9947 + }, + { + "start": 2202.5, + "end": 2204.34, + "probability": 0.8823 + }, + { + "start": 2204.98, + "end": 2206.22, + "probability": 0.9949 + }, + { + "start": 2207.26, + "end": 2209.18, + "probability": 0.721 + }, + { + "start": 2209.78, + "end": 2214.86, + "probability": 0.8928 + }, + { + "start": 2215.78, + "end": 2218.53, + "probability": 0.8944 + }, + { + "start": 2220.54, + "end": 2223.8, + "probability": 0.9955 + }, + { + "start": 2224.72, + "end": 2228.06, + "probability": 0.9852 + }, + { + "start": 2228.06, + "end": 2233.05, + "probability": 0.9902 + }, + { + "start": 2234.44, + "end": 2238.04, + "probability": 0.8264 + }, + { + "start": 2238.92, + "end": 2243.06, + "probability": 0.9627 + }, + { + "start": 2243.82, + "end": 2244.54, + "probability": 0.9252 + }, + { + "start": 2244.74, + "end": 2248.74, + "probability": 0.9202 + }, + { + "start": 2249.32, + "end": 2252.46, + "probability": 0.9539 + }, + { + "start": 2253.72, + "end": 2259.7, + "probability": 0.8342 + }, + { + "start": 2259.76, + "end": 2263.43, + "probability": 0.9792 + }, + { + "start": 2264.48, + "end": 2265.54, + "probability": 0.7206 + }, + { + "start": 2266.62, + "end": 2269.98, + "probability": 0.9879 + }, + { + "start": 2271.38, + "end": 2273.48, + "probability": 0.8914 + }, + { + "start": 2274.8, + "end": 2275.32, + "probability": 0.2939 + }, + { + "start": 2276.28, + "end": 2280.38, + "probability": 0.8728 + }, + { + "start": 2282.34, + "end": 2284.04, + "probability": 0.6111 + }, + { + "start": 2284.9, + "end": 2285.34, + "probability": 0.5406 + }, + { + "start": 2289.0, + "end": 2292.8, + "probability": 0.8604 + }, + { + "start": 2294.0, + "end": 2296.18, + "probability": 0.8114 + }, + { + "start": 2297.4, + "end": 2301.1, + "probability": 0.7316 + }, + { + "start": 2302.04, + "end": 2302.46, + "probability": 0.1374 + }, + { + "start": 2303.22, + "end": 2304.16, + "probability": 0.4954 + }, + { + "start": 2305.14, + "end": 2307.26, + "probability": 0.9862 + }, + { + "start": 2308.28, + "end": 2310.6, + "probability": 0.9939 + }, + { + "start": 2311.06, + "end": 2312.6, + "probability": 0.996 + }, + { + "start": 2313.84, + "end": 2316.78, + "probability": 0.9974 + }, + { + "start": 2317.6, + "end": 2318.48, + "probability": 0.8505 + }, + { + "start": 2319.0, + "end": 2321.52, + "probability": 0.9895 + }, + { + "start": 2322.4, + "end": 2328.76, + "probability": 0.9673 + }, + { + "start": 2331.5, + "end": 2332.44, + "probability": 0.7069 + }, + { + "start": 2332.56, + "end": 2339.44, + "probability": 0.9611 + }, + { + "start": 2339.9, + "end": 2343.62, + "probability": 0.9984 + }, + { + "start": 2344.74, + "end": 2350.38, + "probability": 0.9982 + }, + { + "start": 2352.44, + "end": 2357.14, + "probability": 0.9829 + }, + { + "start": 2357.65, + "end": 2361.98, + "probability": 0.9998 + }, + { + "start": 2363.32, + "end": 2367.42, + "probability": 0.9838 + }, + { + "start": 2367.46, + "end": 2368.04, + "probability": 0.7948 + }, + { + "start": 2368.12, + "end": 2369.24, + "probability": 0.8504 + }, + { + "start": 2369.24, + "end": 2369.84, + "probability": 0.8325 + }, + { + "start": 2370.42, + "end": 2379.22, + "probability": 0.9458 + }, + { + "start": 2379.4, + "end": 2381.96, + "probability": 0.7691 + }, + { + "start": 2382.48, + "end": 2386.62, + "probability": 0.9927 + }, + { + "start": 2387.78, + "end": 2391.58, + "probability": 0.9865 + }, + { + "start": 2392.1, + "end": 2394.4, + "probability": 0.9987 + }, + { + "start": 2394.46, + "end": 2396.52, + "probability": 0.9409 + }, + { + "start": 2397.48, + "end": 2399.52, + "probability": 0.9659 + }, + { + "start": 2400.86, + "end": 2404.46, + "probability": 0.9906 + }, + { + "start": 2405.48, + "end": 2406.56, + "probability": 0.9995 + }, + { + "start": 2407.36, + "end": 2408.4, + "probability": 0.8288 + }, + { + "start": 2409.34, + "end": 2414.4, + "probability": 0.9973 + }, + { + "start": 2416.66, + "end": 2424.8, + "probability": 0.9943 + }, + { + "start": 2425.18, + "end": 2432.0, + "probability": 0.966 + }, + { + "start": 2432.82, + "end": 2435.46, + "probability": 0.978 + }, + { + "start": 2436.2, + "end": 2438.46, + "probability": 0.826 + }, + { + "start": 2439.02, + "end": 2442.5, + "probability": 0.9941 + }, + { + "start": 2442.5, + "end": 2445.14, + "probability": 0.991 + }, + { + "start": 2448.04, + "end": 2450.99, + "probability": 0.9985 + }, + { + "start": 2452.9, + "end": 2455.3, + "probability": 0.9633 + }, + { + "start": 2456.8, + "end": 2458.8, + "probability": 0.9868 + }, + { + "start": 2460.08, + "end": 2461.38, + "probability": 0.7498 + }, + { + "start": 2462.24, + "end": 2462.7, + "probability": 0.9565 + }, + { + "start": 2462.86, + "end": 2465.42, + "probability": 0.6947 + }, + { + "start": 2465.64, + "end": 2466.34, + "probability": 0.9754 + }, + { + "start": 2466.44, + "end": 2466.96, + "probability": 0.9022 + }, + { + "start": 2467.06, + "end": 2467.74, + "probability": 0.6654 + }, + { + "start": 2468.7, + "end": 2469.92, + "probability": 0.9673 + }, + { + "start": 2471.41, + "end": 2474.94, + "probability": 0.9917 + }, + { + "start": 2475.76, + "end": 2478.32, + "probability": 0.998 + }, + { + "start": 2478.52, + "end": 2480.06, + "probability": 0.8487 + }, + { + "start": 2480.36, + "end": 2483.22, + "probability": 0.9942 + }, + { + "start": 2484.04, + "end": 2487.24, + "probability": 0.9937 + }, + { + "start": 2487.24, + "end": 2491.96, + "probability": 0.8929 + }, + { + "start": 2492.76, + "end": 2495.12, + "probability": 0.8521 + }, + { + "start": 2495.68, + "end": 2496.82, + "probability": 0.9331 + }, + { + "start": 2496.88, + "end": 2500.3, + "probability": 0.9938 + }, + { + "start": 2501.36, + "end": 2504.36, + "probability": 0.994 + }, + { + "start": 2504.36, + "end": 2508.42, + "probability": 0.994 + }, + { + "start": 2509.04, + "end": 2512.96, + "probability": 0.9925 + }, + { + "start": 2514.6, + "end": 2516.06, + "probability": 0.9957 + }, + { + "start": 2517.98, + "end": 2523.56, + "probability": 0.9751 + }, + { + "start": 2524.38, + "end": 2527.84, + "probability": 0.9984 + }, + { + "start": 2528.6, + "end": 2530.08, + "probability": 0.9819 + }, + { + "start": 2531.68, + "end": 2533.22, + "probability": 0.9885 + }, + { + "start": 2534.36, + "end": 2535.58, + "probability": 0.8838 + }, + { + "start": 2535.66, + "end": 2538.88, + "probability": 0.9359 + }, + { + "start": 2539.5, + "end": 2543.1, + "probability": 0.9827 + }, + { + "start": 2544.28, + "end": 2546.48, + "probability": 0.9873 + }, + { + "start": 2546.72, + "end": 2549.9, + "probability": 0.9988 + }, + { + "start": 2550.78, + "end": 2553.4, + "probability": 0.9532 + }, + { + "start": 2554.32, + "end": 2556.22, + "probability": 0.6477 + }, + { + "start": 2557.28, + "end": 2561.32, + "probability": 0.8035 + }, + { + "start": 2561.54, + "end": 2566.8, + "probability": 0.9961 + }, + { + "start": 2568.44, + "end": 2571.84, + "probability": 0.9736 + }, + { + "start": 2572.8, + "end": 2576.14, + "probability": 0.8868 + }, + { + "start": 2576.8, + "end": 2579.0, + "probability": 0.7974 + }, + { + "start": 2582.06, + "end": 2582.98, + "probability": 0.9346 + }, + { + "start": 2584.0, + "end": 2585.3, + "probability": 0.9966 + }, + { + "start": 2586.22, + "end": 2588.98, + "probability": 0.9924 + }, + { + "start": 2589.14, + "end": 2592.6, + "probability": 0.936 + }, + { + "start": 2593.16, + "end": 2597.24, + "probability": 0.8584 + }, + { + "start": 2597.84, + "end": 2605.52, + "probability": 0.9862 + }, + { + "start": 2605.9, + "end": 2607.2, + "probability": 0.9868 + }, + { + "start": 2607.32, + "end": 2607.86, + "probability": 0.3755 + }, + { + "start": 2608.24, + "end": 2609.3, + "probability": 0.6261 + }, + { + "start": 2609.38, + "end": 2615.72, + "probability": 0.9801 + }, + { + "start": 2615.72, + "end": 2619.5, + "probability": 0.9917 + }, + { + "start": 2620.94, + "end": 2622.28, + "probability": 0.8104 + }, + { + "start": 2623.0, + "end": 2626.36, + "probability": 0.9913 + }, + { + "start": 2626.76, + "end": 2630.3, + "probability": 0.9927 + }, + { + "start": 2631.0, + "end": 2634.22, + "probability": 0.9965 + }, + { + "start": 2636.06, + "end": 2637.5, + "probability": 0.9468 + }, + { + "start": 2639.3, + "end": 2643.82, + "probability": 0.9879 + }, + { + "start": 2644.86, + "end": 2645.58, + "probability": 0.7195 + }, + { + "start": 2646.2, + "end": 2647.34, + "probability": 0.9949 + }, + { + "start": 2647.6, + "end": 2647.8, + "probability": 0.511 + }, + { + "start": 2647.9, + "end": 2648.36, + "probability": 0.5182 + }, + { + "start": 2648.4, + "end": 2649.16, + "probability": 0.6564 + }, + { + "start": 2649.26, + "end": 2650.08, + "probability": 0.8017 + }, + { + "start": 2651.4, + "end": 2655.8, + "probability": 0.9581 + }, + { + "start": 2657.14, + "end": 2662.2, + "probability": 0.9119 + }, + { + "start": 2662.2, + "end": 2666.04, + "probability": 0.9417 + }, + { + "start": 2667.32, + "end": 2668.52, + "probability": 0.8635 + }, + { + "start": 2669.82, + "end": 2672.54, + "probability": 0.9907 + }, + { + "start": 2672.68, + "end": 2676.24, + "probability": 0.7796 + }, + { + "start": 2677.08, + "end": 2678.48, + "probability": 0.7961 + }, + { + "start": 2679.12, + "end": 2680.5, + "probability": 0.8541 + }, + { + "start": 2681.02, + "end": 2683.1, + "probability": 0.8187 + }, + { + "start": 2683.48, + "end": 2689.16, + "probability": 0.8954 + }, + { + "start": 2690.4, + "end": 2691.54, + "probability": 0.9126 + }, + { + "start": 2691.82, + "end": 2693.16, + "probability": 0.9924 + }, + { + "start": 2693.72, + "end": 2695.24, + "probability": 0.9947 + }, + { + "start": 2696.3, + "end": 2698.42, + "probability": 0.9973 + }, + { + "start": 2699.1, + "end": 2703.12, + "probability": 0.9526 + }, + { + "start": 2703.16, + "end": 2703.74, + "probability": 0.8631 + }, + { + "start": 2703.84, + "end": 2708.2, + "probability": 0.9546 + }, + { + "start": 2708.92, + "end": 2710.54, + "probability": 0.9993 + }, + { + "start": 2710.62, + "end": 2712.38, + "probability": 0.9978 + }, + { + "start": 2712.82, + "end": 2713.59, + "probability": 0.501 + }, + { + "start": 2714.38, + "end": 2715.56, + "probability": 0.9365 + }, + { + "start": 2717.5, + "end": 2720.04, + "probability": 0.9668 + }, + { + "start": 2720.86, + "end": 2727.22, + "probability": 0.991 + }, + { + "start": 2727.9, + "end": 2728.8, + "probability": 0.779 + }, + { + "start": 2729.72, + "end": 2731.0, + "probability": 0.9972 + }, + { + "start": 2731.16, + "end": 2735.98, + "probability": 0.9714 + }, + { + "start": 2737.82, + "end": 2738.58, + "probability": 0.9257 + }, + { + "start": 2739.76, + "end": 2743.82, + "probability": 0.9851 + }, + { + "start": 2745.14, + "end": 2750.8, + "probability": 0.9873 + }, + { + "start": 2751.14, + "end": 2752.02, + "probability": 0.9873 + }, + { + "start": 2752.62, + "end": 2753.61, + "probability": 0.9897 + }, + { + "start": 2754.04, + "end": 2758.0, + "probability": 0.978 + }, + { + "start": 2759.12, + "end": 2764.4, + "probability": 0.9544 + }, + { + "start": 2764.6, + "end": 2764.74, + "probability": 0.7668 + }, + { + "start": 2764.82, + "end": 2765.46, + "probability": 0.654 + }, + { + "start": 2766.48, + "end": 2769.52, + "probability": 0.9971 + }, + { + "start": 2769.6, + "end": 2770.54, + "probability": 0.8094 + }, + { + "start": 2770.9, + "end": 2771.5, + "probability": 0.8789 + }, + { + "start": 2771.9, + "end": 2772.56, + "probability": 0.8864 + }, + { + "start": 2774.76, + "end": 2775.3, + "probability": 0.7245 + }, + { + "start": 2776.42, + "end": 2780.9, + "probability": 0.9963 + }, + { + "start": 2781.52, + "end": 2787.24, + "probability": 0.9849 + }, + { + "start": 2788.14, + "end": 2789.72, + "probability": 0.9961 + }, + { + "start": 2789.84, + "end": 2791.62, + "probability": 0.9948 + }, + { + "start": 2792.08, + "end": 2797.5, + "probability": 0.9911 + }, + { + "start": 2797.84, + "end": 2802.44, + "probability": 0.9956 + }, + { + "start": 2802.44, + "end": 2807.4, + "probability": 0.9746 + }, + { + "start": 2808.12, + "end": 2811.72, + "probability": 0.9979 + }, + { + "start": 2812.28, + "end": 2815.38, + "probability": 0.9979 + }, + { + "start": 2816.54, + "end": 2818.26, + "probability": 0.947 + }, + { + "start": 2819.78, + "end": 2823.04, + "probability": 0.9946 + }, + { + "start": 2824.06, + "end": 2828.16, + "probability": 0.9938 + }, + { + "start": 2829.7, + "end": 2830.19, + "probability": 0.9248 + }, + { + "start": 2831.2, + "end": 2831.94, + "probability": 0.9615 + }, + { + "start": 2833.14, + "end": 2835.68, + "probability": 0.9941 + }, + { + "start": 2836.4, + "end": 2837.34, + "probability": 0.9948 + }, + { + "start": 2838.58, + "end": 2844.36, + "probability": 0.9822 + }, + { + "start": 2845.38, + "end": 2849.82, + "probability": 0.793 + }, + { + "start": 2850.2, + "end": 2854.43, + "probability": 0.8823 + }, + { + "start": 2855.14, + "end": 2859.04, + "probability": 0.9292 + }, + { + "start": 2860.04, + "end": 2861.4, + "probability": 0.9932 + }, + { + "start": 2862.44, + "end": 2862.96, + "probability": 0.3437 + }, + { + "start": 2863.76, + "end": 2865.36, + "probability": 0.8577 + }, + { + "start": 2866.66, + "end": 2872.92, + "probability": 0.9957 + }, + { + "start": 2874.06, + "end": 2875.06, + "probability": 0.948 + }, + { + "start": 2876.2, + "end": 2880.28, + "probability": 0.9985 + }, + { + "start": 2881.3, + "end": 2885.84, + "probability": 0.9992 + }, + { + "start": 2886.0, + "end": 2887.12, + "probability": 0.8788 + }, + { + "start": 2887.88, + "end": 2888.72, + "probability": 0.9417 + }, + { + "start": 2889.54, + "end": 2892.88, + "probability": 0.985 + }, + { + "start": 2892.88, + "end": 2898.82, + "probability": 0.5812 + }, + { + "start": 2899.66, + "end": 2903.16, + "probability": 0.9948 + }, + { + "start": 2903.2, + "end": 2905.72, + "probability": 0.9827 + }, + { + "start": 2907.1, + "end": 2910.82, + "probability": 0.998 + }, + { + "start": 2911.82, + "end": 2916.38, + "probability": 0.9956 + }, + { + "start": 2916.48, + "end": 2917.66, + "probability": 0.9795 + }, + { + "start": 2918.2, + "end": 2920.82, + "probability": 0.991 + }, + { + "start": 2921.48, + "end": 2922.18, + "probability": 0.8376 + }, + { + "start": 2922.24, + "end": 2922.87, + "probability": 0.9306 + }, + { + "start": 2923.4, + "end": 2924.0, + "probability": 0.3852 + }, + { + "start": 2924.2, + "end": 2925.72, + "probability": 0.9579 + }, + { + "start": 2926.94, + "end": 2928.34, + "probability": 0.9579 + }, + { + "start": 2928.8, + "end": 2930.8, + "probability": 0.9936 + }, + { + "start": 2931.16, + "end": 2932.84, + "probability": 0.9298 + }, + { + "start": 2933.5, + "end": 2936.68, + "probability": 0.9847 + }, + { + "start": 2938.04, + "end": 2939.84, + "probability": 0.793 + }, + { + "start": 2941.04, + "end": 2941.78, + "probability": 0.9222 + }, + { + "start": 2943.38, + "end": 2949.4, + "probability": 0.9526 + }, + { + "start": 2949.6, + "end": 2951.38, + "probability": 0.9814 + }, + { + "start": 2952.82, + "end": 2956.12, + "probability": 0.9862 + }, + { + "start": 2956.2, + "end": 2957.1, + "probability": 0.8043 + }, + { + "start": 2958.74, + "end": 2962.74, + "probability": 0.9954 + }, + { + "start": 2962.74, + "end": 2967.42, + "probability": 0.9849 + }, + { + "start": 2967.52, + "end": 2973.16, + "probability": 0.9894 + }, + { + "start": 2973.5, + "end": 2976.2, + "probability": 0.9502 + }, + { + "start": 2977.6, + "end": 2978.14, + "probability": 0.8931 + }, + { + "start": 2979.36, + "end": 2981.52, + "probability": 0.7021 + }, + { + "start": 2982.58, + "end": 2985.0, + "probability": 0.9862 + }, + { + "start": 2986.12, + "end": 2991.0, + "probability": 0.9974 + }, + { + "start": 2991.88, + "end": 2994.1, + "probability": 0.9797 + }, + { + "start": 2994.58, + "end": 2997.44, + "probability": 0.9224 + }, + { + "start": 2998.02, + "end": 3000.5, + "probability": 0.9974 + }, + { + "start": 3001.04, + "end": 3002.82, + "probability": 0.9578 + }, + { + "start": 3004.52, + "end": 3006.84, + "probability": 0.9103 + }, + { + "start": 3007.72, + "end": 3013.94, + "probability": 0.9926 + }, + { + "start": 3015.3, + "end": 3016.2, + "probability": 0.9 + }, + { + "start": 3016.9, + "end": 3018.46, + "probability": 0.9196 + }, + { + "start": 3019.16, + "end": 3023.0, + "probability": 0.9502 + }, + { + "start": 3024.22, + "end": 3026.36, + "probability": 0.9685 + }, + { + "start": 3027.8, + "end": 3029.58, + "probability": 0.9966 + }, + { + "start": 3030.3, + "end": 3032.74, + "probability": 0.973 + }, + { + "start": 3033.38, + "end": 3036.37, + "probability": 0.9929 + }, + { + "start": 3037.08, + "end": 3037.75, + "probability": 0.9775 + }, + { + "start": 3039.28, + "end": 3040.96, + "probability": 0.9025 + }, + { + "start": 3041.5, + "end": 3044.38, + "probability": 0.9888 + }, + { + "start": 3044.82, + "end": 3046.5, + "probability": 0.9636 + }, + { + "start": 3046.66, + "end": 3047.62, + "probability": 0.7735 + }, + { + "start": 3047.68, + "end": 3050.48, + "probability": 0.873 + }, + { + "start": 3051.46, + "end": 3060.76, + "probability": 0.9694 + }, + { + "start": 3061.04, + "end": 3062.44, + "probability": 0.9865 + }, + { + "start": 3064.28, + "end": 3066.86, + "probability": 0.8346 + }, + { + "start": 3068.28, + "end": 3069.42, + "probability": 0.9277 + }, + { + "start": 3071.42, + "end": 3072.82, + "probability": 0.9634 + }, + { + "start": 3073.2, + "end": 3077.4, + "probability": 0.9595 + }, + { + "start": 3077.58, + "end": 3081.4, + "probability": 0.9907 + }, + { + "start": 3081.52, + "end": 3082.98, + "probability": 0.9927 + }, + { + "start": 3084.14, + "end": 3087.84, + "probability": 0.9941 + }, + { + "start": 3089.6, + "end": 3091.94, + "probability": 0.9993 + }, + { + "start": 3092.8, + "end": 3097.06, + "probability": 0.9886 + }, + { + "start": 3097.5, + "end": 3099.34, + "probability": 0.9763 + }, + { + "start": 3100.42, + "end": 3101.86, + "probability": 0.9987 + }, + { + "start": 3103.68, + "end": 3105.6, + "probability": 0.9435 + }, + { + "start": 3106.62, + "end": 3108.04, + "probability": 0.7845 + }, + { + "start": 3108.56, + "end": 3109.4, + "probability": 0.7968 + }, + { + "start": 3110.1, + "end": 3110.73, + "probability": 0.9397 + }, + { + "start": 3112.28, + "end": 3113.86, + "probability": 0.9104 + }, + { + "start": 3115.2, + "end": 3119.71, + "probability": 0.9956 + }, + { + "start": 3120.86, + "end": 3123.96, + "probability": 0.9623 + }, + { + "start": 3124.94, + "end": 3129.5, + "probability": 0.8611 + }, + { + "start": 3129.72, + "end": 3129.96, + "probability": 0.8025 + }, + { + "start": 3131.76, + "end": 3133.04, + "probability": 0.6934 + }, + { + "start": 3133.22, + "end": 3136.82, + "probability": 0.9406 + }, + { + "start": 3137.74, + "end": 3137.84, + "probability": 0.0243 + }, + { + "start": 3238.5, + "end": 3239.8, + "probability": 0.4049 + }, + { + "start": 3239.8, + "end": 3240.6, + "probability": 0.6247 + }, + { + "start": 3242.21, + "end": 3246.53, + "probability": 0.9966 + }, + { + "start": 3249.0, + "end": 3252.47, + "probability": 0.9954 + }, + { + "start": 3253.74, + "end": 3255.24, + "probability": 0.8467 + }, + { + "start": 3256.7, + "end": 3258.66, + "probability": 0.9918 + }, + { + "start": 3260.06, + "end": 3263.24, + "probability": 0.9855 + }, + { + "start": 3264.24, + "end": 3269.64, + "probability": 0.8585 + }, + { + "start": 3270.9, + "end": 3275.18, + "probability": 0.9844 + }, + { + "start": 3275.26, + "end": 3277.6, + "probability": 0.9452 + }, + { + "start": 3278.18, + "end": 3280.22, + "probability": 0.9881 + }, + { + "start": 3281.08, + "end": 3282.76, + "probability": 0.9678 + }, + { + "start": 3283.34, + "end": 3287.38, + "probability": 0.8442 + }, + { + "start": 3288.3, + "end": 3289.96, + "probability": 0.8581 + }, + { + "start": 3290.6, + "end": 3291.96, + "probability": 0.982 + }, + { + "start": 3292.94, + "end": 3296.9, + "probability": 0.9273 + }, + { + "start": 3297.86, + "end": 3300.64, + "probability": 0.9915 + }, + { + "start": 3302.58, + "end": 3306.9, + "probability": 0.843 + }, + { + "start": 3308.3, + "end": 3312.3, + "probability": 0.999 + }, + { + "start": 3313.02, + "end": 3317.4, + "probability": 0.7295 + }, + { + "start": 3317.4, + "end": 3318.04, + "probability": 0.8062 + }, + { + "start": 3319.14, + "end": 3323.94, + "probability": 0.9981 + }, + { + "start": 3325.26, + "end": 3327.7, + "probability": 0.859 + }, + { + "start": 3328.36, + "end": 3331.48, + "probability": 0.9845 + }, + { + "start": 3331.98, + "end": 3338.62, + "probability": 0.9619 + }, + { + "start": 3340.82, + "end": 3343.82, + "probability": 0.8757 + }, + { + "start": 3343.88, + "end": 3345.54, + "probability": 0.9618 + }, + { + "start": 3346.06, + "end": 3347.2, + "probability": 0.9382 + }, + { + "start": 3348.2, + "end": 3352.48, + "probability": 0.9827 + }, + { + "start": 3353.38, + "end": 3358.44, + "probability": 0.9919 + }, + { + "start": 3359.32, + "end": 3363.64, + "probability": 0.8908 + }, + { + "start": 3364.08, + "end": 3368.5, + "probability": 0.9981 + }, + { + "start": 3368.5, + "end": 3373.16, + "probability": 0.9904 + }, + { + "start": 3375.48, + "end": 3377.44, + "probability": 0.6815 + }, + { + "start": 3378.66, + "end": 3383.84, + "probability": 0.9866 + }, + { + "start": 3384.82, + "end": 3388.1, + "probability": 0.9781 + }, + { + "start": 3389.82, + "end": 3390.82, + "probability": 0.9736 + }, + { + "start": 3401.54, + "end": 3405.8, + "probability": 0.9394 + }, + { + "start": 3412.1, + "end": 3414.76, + "probability": 0.3409 + }, + { + "start": 3417.72, + "end": 3422.54, + "probability": 0.9425 + }, + { + "start": 3422.72, + "end": 3423.68, + "probability": 0.8072 + }, + { + "start": 3423.74, + "end": 3425.42, + "probability": 0.9883 + }, + { + "start": 3426.22, + "end": 3430.06, + "probability": 0.0358 + }, + { + "start": 3430.44, + "end": 3431.28, + "probability": 0.194 + }, + { + "start": 3431.28, + "end": 3432.98, + "probability": 0.4661 + }, + { + "start": 3433.58, + "end": 3435.14, + "probability": 0.0452 + }, + { + "start": 3435.14, + "end": 3436.48, + "probability": 0.4294 + }, + { + "start": 3437.0, + "end": 3437.5, + "probability": 0.6266 + }, + { + "start": 3437.6, + "end": 3441.58, + "probability": 0.8997 + }, + { + "start": 3441.58, + "end": 3444.7, + "probability": 0.5983 + }, + { + "start": 3453.5, + "end": 3454.28, + "probability": 0.1311 + }, + { + "start": 3454.28, + "end": 3457.48, + "probability": 0.1652 + }, + { + "start": 3460.38, + "end": 3460.38, + "probability": 0.1018 + }, + { + "start": 3460.62, + "end": 3461.6, + "probability": 0.4623 + }, + { + "start": 3461.86, + "end": 3464.8, + "probability": 0.6024 + }, + { + "start": 3464.96, + "end": 3466.44, + "probability": 0.0965 + }, + { + "start": 3466.9, + "end": 3468.64, + "probability": 0.5893 + }, + { + "start": 3468.74, + "end": 3470.73, + "probability": 0.9858 + }, + { + "start": 3475.74, + "end": 3478.86, + "probability": 0.7411 + }, + { + "start": 3480.04, + "end": 3482.26, + "probability": 0.9365 + }, + { + "start": 3483.48, + "end": 3487.3, + "probability": 0.9963 + }, + { + "start": 3487.3, + "end": 3493.58, + "probability": 0.9825 + }, + { + "start": 3493.58, + "end": 3498.02, + "probability": 0.9658 + }, + { + "start": 3499.04, + "end": 3502.62, + "probability": 0.9778 + }, + { + "start": 3503.64, + "end": 3509.78, + "probability": 0.9837 + }, + { + "start": 3510.6, + "end": 3511.5, + "probability": 0.9683 + }, + { + "start": 3512.26, + "end": 3516.3, + "probability": 0.981 + }, + { + "start": 3516.3, + "end": 3521.32, + "probability": 0.996 + }, + { + "start": 3522.14, + "end": 3525.06, + "probability": 0.9888 + }, + { + "start": 3526.08, + "end": 3526.84, + "probability": 0.8744 + }, + { + "start": 3528.28, + "end": 3529.64, + "probability": 0.9966 + }, + { + "start": 3529.88, + "end": 3535.12, + "probability": 0.9829 + }, + { + "start": 3535.2, + "end": 3541.14, + "probability": 0.8836 + }, + { + "start": 3542.06, + "end": 3545.26, + "probability": 0.9329 + }, + { + "start": 3546.06, + "end": 3550.28, + "probability": 0.993 + }, + { + "start": 3550.7, + "end": 3554.64, + "probability": 0.9965 + }, + { + "start": 3555.08, + "end": 3560.84, + "probability": 0.9213 + }, + { + "start": 3561.54, + "end": 3564.5, + "probability": 0.997 + }, + { + "start": 3565.38, + "end": 3568.92, + "probability": 0.9767 + }, + { + "start": 3570.12, + "end": 3575.9, + "probability": 0.9902 + }, + { + "start": 3576.18, + "end": 3577.86, + "probability": 0.8983 + }, + { + "start": 3578.56, + "end": 3583.04, + "probability": 0.9941 + }, + { + "start": 3583.86, + "end": 3588.22, + "probability": 0.9678 + }, + { + "start": 3588.34, + "end": 3590.34, + "probability": 0.9954 + }, + { + "start": 3591.02, + "end": 3593.56, + "probability": 0.9643 + }, + { + "start": 3594.64, + "end": 3599.66, + "probability": 0.7189 + }, + { + "start": 3600.24, + "end": 3601.4, + "probability": 0.4917 + }, + { + "start": 3602.04, + "end": 3606.02, + "probability": 0.9858 + }, + { + "start": 3606.46, + "end": 3611.96, + "probability": 0.9702 + }, + { + "start": 3611.96, + "end": 3619.04, + "probability": 0.9771 + }, + { + "start": 3619.12, + "end": 3623.2, + "probability": 0.9696 + }, + { + "start": 3624.08, + "end": 3625.32, + "probability": 0.9994 + }, + { + "start": 3625.94, + "end": 3627.08, + "probability": 0.9806 + }, + { + "start": 3627.62, + "end": 3630.54, + "probability": 0.9954 + }, + { + "start": 3631.28, + "end": 3634.94, + "probability": 0.8931 + }, + { + "start": 3635.56, + "end": 3639.52, + "probability": 0.9849 + }, + { + "start": 3640.44, + "end": 3646.62, + "probability": 0.8694 + }, + { + "start": 3647.4, + "end": 3651.36, + "probability": 0.9936 + }, + { + "start": 3651.36, + "end": 3656.44, + "probability": 0.9982 + }, + { + "start": 3657.38, + "end": 3662.98, + "probability": 0.7871 + }, + { + "start": 3663.62, + "end": 3666.62, + "probability": 0.9624 + }, + { + "start": 3667.18, + "end": 3670.26, + "probability": 0.9133 + }, + { + "start": 3670.64, + "end": 3674.54, + "probability": 0.794 + }, + { + "start": 3674.54, + "end": 3679.46, + "probability": 0.98 + }, + { + "start": 3680.06, + "end": 3683.14, + "probability": 0.7856 + }, + { + "start": 3683.14, + "end": 3686.36, + "probability": 0.9982 + }, + { + "start": 3686.46, + "end": 3687.04, + "probability": 0.7586 + }, + { + "start": 3687.8, + "end": 3692.2, + "probability": 0.7207 + }, + { + "start": 3692.2, + "end": 3695.45, + "probability": 0.9354 + }, + { + "start": 3695.78, + "end": 3696.88, + "probability": 0.8526 + }, + { + "start": 3697.46, + "end": 3702.6, + "probability": 0.994 + }, + { + "start": 3703.34, + "end": 3708.94, + "probability": 0.9866 + }, + { + "start": 3709.74, + "end": 3711.86, + "probability": 0.9131 + }, + { + "start": 3712.42, + "end": 3716.2, + "probability": 0.9919 + }, + { + "start": 3716.92, + "end": 3717.92, + "probability": 0.8317 + }, + { + "start": 3718.52, + "end": 3719.92, + "probability": 0.7463 + }, + { + "start": 3720.78, + "end": 3724.78, + "probability": 0.9533 + }, + { + "start": 3724.78, + "end": 3729.56, + "probability": 0.9966 + }, + { + "start": 3730.32, + "end": 3737.42, + "probability": 0.993 + }, + { + "start": 3738.12, + "end": 3745.66, + "probability": 0.9921 + }, + { + "start": 3746.16, + "end": 3750.64, + "probability": 0.9738 + }, + { + "start": 3751.34, + "end": 3753.68, + "probability": 0.9888 + }, + { + "start": 3754.2, + "end": 3756.0, + "probability": 0.9305 + }, + { + "start": 3756.58, + "end": 3759.38, + "probability": 0.854 + }, + { + "start": 3759.86, + "end": 3761.94, + "probability": 0.9977 + }, + { + "start": 3762.7, + "end": 3763.8, + "probability": 0.8141 + }, + { + "start": 3764.0, + "end": 3765.68, + "probability": 0.9605 + }, + { + "start": 3766.18, + "end": 3773.04, + "probability": 0.9677 + }, + { + "start": 3773.78, + "end": 3781.94, + "probability": 0.961 + }, + { + "start": 3782.54, + "end": 3783.48, + "probability": 0.9581 + }, + { + "start": 3784.2, + "end": 3785.11, + "probability": 0.0524 + }, + { + "start": 3785.68, + "end": 3787.44, + "probability": 0.9359 + }, + { + "start": 3788.88, + "end": 3790.6, + "probability": 0.8587 + }, + { + "start": 3790.76, + "end": 3792.94, + "probability": 0.658 + }, + { + "start": 3794.1, + "end": 3797.8, + "probability": 0.8799 + }, + { + "start": 3798.48, + "end": 3801.82, + "probability": 0.9787 + }, + { + "start": 3802.74, + "end": 3808.0, + "probability": 0.8863 + }, + { + "start": 3808.7, + "end": 3810.3, + "probability": 0.9717 + }, + { + "start": 3811.46, + "end": 3813.94, + "probability": 0.8959 + }, + { + "start": 3814.68, + "end": 3816.7, + "probability": 0.9391 + }, + { + "start": 3817.24, + "end": 3819.3, + "probability": 0.9814 + }, + { + "start": 3819.78, + "end": 3822.84, + "probability": 0.9893 + }, + { + "start": 3823.96, + "end": 3827.36, + "probability": 0.691 + }, + { + "start": 3827.94, + "end": 3831.96, + "probability": 0.6208 + }, + { + "start": 3832.5, + "end": 3838.56, + "probability": 0.9341 + }, + { + "start": 3839.42, + "end": 3841.62, + "probability": 0.9958 + }, + { + "start": 3842.44, + "end": 3843.66, + "probability": 0.9863 + }, + { + "start": 3844.5, + "end": 3849.72, + "probability": 0.9967 + }, + { + "start": 3850.44, + "end": 3851.5, + "probability": 0.9462 + }, + { + "start": 3852.2, + "end": 3856.16, + "probability": 0.9968 + }, + { + "start": 3856.72, + "end": 3861.1, + "probability": 0.9762 + }, + { + "start": 3861.64, + "end": 3864.03, + "probability": 0.9211 + }, + { + "start": 3865.3, + "end": 3866.9, + "probability": 0.9799 + }, + { + "start": 3867.62, + "end": 3869.94, + "probability": 0.829 + }, + { + "start": 3870.56, + "end": 3875.24, + "probability": 0.9846 + }, + { + "start": 3876.0, + "end": 3878.9, + "probability": 0.9937 + }, + { + "start": 3878.9, + "end": 3883.3, + "probability": 0.975 + }, + { + "start": 3899.44, + "end": 3900.56, + "probability": 0.7599 + }, + { + "start": 3901.3, + "end": 3902.58, + "probability": 0.8778 + }, + { + "start": 3903.24, + "end": 3904.2, + "probability": 0.7208 + }, + { + "start": 3906.1, + "end": 3909.06, + "probability": 0.9038 + }, + { + "start": 3910.58, + "end": 3914.64, + "probability": 0.9794 + }, + { + "start": 3915.2, + "end": 3917.54, + "probability": 0.9961 + }, + { + "start": 3918.06, + "end": 3919.32, + "probability": 0.8481 + }, + { + "start": 3920.08, + "end": 3920.9, + "probability": 0.5957 + }, + { + "start": 3921.44, + "end": 3922.28, + "probability": 0.7133 + }, + { + "start": 3923.72, + "end": 3925.72, + "probability": 0.8993 + }, + { + "start": 3926.5, + "end": 3927.18, + "probability": 0.9737 + }, + { + "start": 3928.38, + "end": 3933.58, + "probability": 0.9961 + }, + { + "start": 3934.6, + "end": 3935.36, + "probability": 0.9413 + }, + { + "start": 3936.56, + "end": 3939.62, + "probability": 0.9595 + }, + { + "start": 3940.88, + "end": 3942.34, + "probability": 0.9564 + }, + { + "start": 3943.08, + "end": 3947.08, + "probability": 0.9983 + }, + { + "start": 3947.86, + "end": 3948.64, + "probability": 0.9781 + }, + { + "start": 3950.14, + "end": 3951.5, + "probability": 0.9065 + }, + { + "start": 3952.06, + "end": 3957.84, + "probability": 0.9008 + }, + { + "start": 3958.78, + "end": 3959.48, + "probability": 0.7062 + }, + { + "start": 3960.2, + "end": 3961.58, + "probability": 0.9256 + }, + { + "start": 3962.52, + "end": 3963.22, + "probability": 0.8762 + }, + { + "start": 3964.24, + "end": 3964.98, + "probability": 0.9906 + }, + { + "start": 3966.02, + "end": 3967.14, + "probability": 0.7161 + }, + { + "start": 3969.16, + "end": 3969.58, + "probability": 0.4119 + }, + { + "start": 3969.58, + "end": 3972.5, + "probability": 0.9935 + }, + { + "start": 3972.96, + "end": 3975.24, + "probability": 0.9561 + }, + { + "start": 3976.38, + "end": 3980.44, + "probability": 0.9922 + }, + { + "start": 3981.54, + "end": 3982.6, + "probability": 0.9834 + }, + { + "start": 3983.82, + "end": 3990.04, + "probability": 0.9886 + }, + { + "start": 3990.92, + "end": 3994.5, + "probability": 0.9888 + }, + { + "start": 3994.5, + "end": 3998.52, + "probability": 0.9998 + }, + { + "start": 4001.4, + "end": 4003.1, + "probability": 0.6323 + }, + { + "start": 4003.84, + "end": 4004.76, + "probability": 0.8064 + }, + { + "start": 4005.48, + "end": 4010.96, + "probability": 0.9897 + }, + { + "start": 4011.82, + "end": 4015.68, + "probability": 0.8855 + }, + { + "start": 4016.74, + "end": 4018.04, + "probability": 0.9232 + }, + { + "start": 4019.48, + "end": 4020.6, + "probability": 0.7432 + }, + { + "start": 4021.4, + "end": 4022.26, + "probability": 0.7566 + }, + { + "start": 4023.5, + "end": 4024.52, + "probability": 0.9531 + }, + { + "start": 4025.06, + "end": 4029.38, + "probability": 0.9594 + }, + { + "start": 4031.28, + "end": 4034.6, + "probability": 0.9782 + }, + { + "start": 4035.5, + "end": 4037.36, + "probability": 0.9595 + }, + { + "start": 4037.98, + "end": 4039.36, + "probability": 0.925 + }, + { + "start": 4040.36, + "end": 4041.62, + "probability": 0.7763 + }, + { + "start": 4042.42, + "end": 4044.42, + "probability": 0.934 + }, + { + "start": 4045.68, + "end": 4047.72, + "probability": 0.9962 + }, + { + "start": 4048.26, + "end": 4051.28, + "probability": 0.9873 + }, + { + "start": 4051.28, + "end": 4055.68, + "probability": 0.8553 + }, + { + "start": 4056.66, + "end": 4059.5, + "probability": 0.9869 + }, + { + "start": 4060.78, + "end": 4061.32, + "probability": 0.9255 + }, + { + "start": 4062.9, + "end": 4064.34, + "probability": 0.876 + }, + { + "start": 4066.04, + "end": 4066.82, + "probability": 0.6002 + }, + { + "start": 4066.92, + "end": 4067.48, + "probability": 0.7916 + }, + { + "start": 4067.56, + "end": 4068.26, + "probability": 0.9579 + }, + { + "start": 4068.34, + "end": 4069.1, + "probability": 0.873 + }, + { + "start": 4069.5, + "end": 4071.66, + "probability": 0.9712 + }, + { + "start": 4072.5, + "end": 4074.6, + "probability": 0.9954 + }, + { + "start": 4075.28, + "end": 4076.68, + "probability": 0.8389 + }, + { + "start": 4077.18, + "end": 4080.54, + "probability": 0.9471 + }, + { + "start": 4081.76, + "end": 4084.68, + "probability": 0.9877 + }, + { + "start": 4085.38, + "end": 4090.18, + "probability": 0.9976 + }, + { + "start": 4090.18, + "end": 4094.96, + "probability": 0.9996 + }, + { + "start": 4096.08, + "end": 4099.54, + "probability": 0.9873 + }, + { + "start": 4100.24, + "end": 4101.26, + "probability": 0.8649 + }, + { + "start": 4102.06, + "end": 4102.92, + "probability": 0.7089 + }, + { + "start": 4104.4, + "end": 4105.66, + "probability": 0.6556 + }, + { + "start": 4106.12, + "end": 4109.96, + "probability": 0.9583 + }, + { + "start": 4111.88, + "end": 4111.88, + "probability": 0.3677 + }, + { + "start": 4112.02, + "end": 4112.64, + "probability": 0.7389 + }, + { + "start": 4112.74, + "end": 4116.46, + "probability": 0.9905 + }, + { + "start": 4116.46, + "end": 4120.02, + "probability": 0.9985 + }, + { + "start": 4120.94, + "end": 4127.32, + "probability": 0.9923 + }, + { + "start": 4129.8, + "end": 4130.3, + "probability": 0.8855 + }, + { + "start": 4132.02, + "end": 4132.58, + "probability": 0.7874 + }, + { + "start": 4133.48, + "end": 4134.62, + "probability": 0.9688 + }, + { + "start": 4136.0, + "end": 4136.3, + "probability": 0.8702 + }, + { + "start": 4136.48, + "end": 4136.88, + "probability": 0.3914 + }, + { + "start": 4136.94, + "end": 4139.56, + "probability": 0.9575 + }, + { + "start": 4140.14, + "end": 4145.12, + "probability": 0.9211 + }, + { + "start": 4145.48, + "end": 4150.42, + "probability": 0.8588 + }, + { + "start": 4150.42, + "end": 4154.66, + "probability": 0.9325 + }, + { + "start": 4156.2, + "end": 4156.8, + "probability": 0.8734 + }, + { + "start": 4157.7, + "end": 4161.44, + "probability": 0.9189 + }, + { + "start": 4162.52, + "end": 4164.96, + "probability": 0.9774 + }, + { + "start": 4165.94, + "end": 4167.08, + "probability": 0.9658 + }, + { + "start": 4167.9, + "end": 4170.8, + "probability": 0.8646 + }, + { + "start": 4172.7, + "end": 4173.68, + "probability": 0.8865 + }, + { + "start": 4174.2, + "end": 4175.76, + "probability": 0.9619 + }, + { + "start": 4176.8, + "end": 4178.12, + "probability": 0.9925 + }, + { + "start": 4178.18, + "end": 4179.06, + "probability": 0.7388 + }, + { + "start": 4179.56, + "end": 4181.66, + "probability": 0.9896 + }, + { + "start": 4182.72, + "end": 4184.96, + "probability": 0.9458 + }, + { + "start": 4185.56, + "end": 4188.64, + "probability": 0.9554 + }, + { + "start": 4190.0, + "end": 4193.46, + "probability": 0.8965 + }, + { + "start": 4194.38, + "end": 4197.34, + "probability": 0.9675 + }, + { + "start": 4198.16, + "end": 4202.86, + "probability": 0.9941 + }, + { + "start": 4204.92, + "end": 4209.18, + "probability": 0.9685 + }, + { + "start": 4210.52, + "end": 4213.18, + "probability": 0.9974 + }, + { + "start": 4214.44, + "end": 4215.98, + "probability": 0.9398 + }, + { + "start": 4217.26, + "end": 4218.82, + "probability": 0.9985 + }, + { + "start": 4219.48, + "end": 4222.24, + "probability": 0.9932 + }, + { + "start": 4223.54, + "end": 4224.22, + "probability": 0.9354 + }, + { + "start": 4225.2, + "end": 4225.98, + "probability": 0.9751 + }, + { + "start": 4226.82, + "end": 4228.7, + "probability": 0.564 + }, + { + "start": 4229.94, + "end": 4230.64, + "probability": 0.8022 + }, + { + "start": 4232.26, + "end": 4235.48, + "probability": 0.9523 + }, + { + "start": 4236.76, + "end": 4240.66, + "probability": 0.9841 + }, + { + "start": 4241.7, + "end": 4242.24, + "probability": 0.8861 + }, + { + "start": 4242.36, + "end": 4245.88, + "probability": 0.998 + }, + { + "start": 4246.92, + "end": 4248.52, + "probability": 0.9957 + }, + { + "start": 4249.3, + "end": 4249.82, + "probability": 0.9579 + }, + { + "start": 4251.2, + "end": 4251.84, + "probability": 0.4738 + }, + { + "start": 4251.92, + "end": 4253.9, + "probability": 0.9299 + }, + { + "start": 4254.56, + "end": 4255.84, + "probability": 0.9945 + }, + { + "start": 4256.46, + "end": 4260.2, + "probability": 0.9798 + }, + { + "start": 4261.42, + "end": 4264.04, + "probability": 0.8371 + }, + { + "start": 4265.02, + "end": 4265.5, + "probability": 0.8624 + }, + { + "start": 4266.32, + "end": 4268.58, + "probability": 0.9562 + }, + { + "start": 4269.26, + "end": 4269.96, + "probability": 0.6913 + }, + { + "start": 4271.56, + "end": 4277.2, + "probability": 0.988 + }, + { + "start": 4278.84, + "end": 4283.44, + "probability": 0.9958 + }, + { + "start": 4285.46, + "end": 4287.32, + "probability": 0.7384 + }, + { + "start": 4287.94, + "end": 4290.96, + "probability": 0.9956 + }, + { + "start": 4291.78, + "end": 4294.96, + "probability": 0.9807 + }, + { + "start": 4295.5, + "end": 4296.2, + "probability": 0.8207 + }, + { + "start": 4297.0, + "end": 4297.92, + "probability": 0.9061 + }, + { + "start": 4299.28, + "end": 4301.38, + "probability": 0.9667 + }, + { + "start": 4301.46, + "end": 4302.2, + "probability": 0.9488 + }, + { + "start": 4303.24, + "end": 4307.08, + "probability": 0.9932 + }, + { + "start": 4307.38, + "end": 4311.62, + "probability": 0.9921 + }, + { + "start": 4313.22, + "end": 4313.96, + "probability": 0.8143 + }, + { + "start": 4315.32, + "end": 4317.12, + "probability": 0.8954 + }, + { + "start": 4318.04, + "end": 4320.32, + "probability": 0.9612 + }, + { + "start": 4320.84, + "end": 4321.3, + "probability": 0.7928 + }, + { + "start": 4322.0, + "end": 4322.79, + "probability": 0.915 + }, + { + "start": 4324.24, + "end": 4325.03, + "probability": 0.6942 + }, + { + "start": 4327.4, + "end": 4328.28, + "probability": 0.6797 + }, + { + "start": 4329.78, + "end": 4336.04, + "probability": 0.8788 + }, + { + "start": 4337.04, + "end": 4337.86, + "probability": 0.826 + }, + { + "start": 4339.2, + "end": 4342.7, + "probability": 0.9891 + }, + { + "start": 4344.46, + "end": 4345.02, + "probability": 0.5783 + }, + { + "start": 4345.12, + "end": 4347.12, + "probability": 0.9951 + }, + { + "start": 4347.26, + "end": 4348.24, + "probability": 0.9879 + }, + { + "start": 4348.74, + "end": 4351.28, + "probability": 0.9951 + }, + { + "start": 4352.0, + "end": 4357.0, + "probability": 0.9873 + }, + { + "start": 4359.08, + "end": 4359.8, + "probability": 0.8675 + }, + { + "start": 4360.32, + "end": 4362.28, + "probability": 0.8009 + }, + { + "start": 4363.04, + "end": 4364.32, + "probability": 0.9876 + }, + { + "start": 4364.92, + "end": 4367.06, + "probability": 0.8975 + }, + { + "start": 4367.84, + "end": 4368.74, + "probability": 0.6852 + }, + { + "start": 4370.26, + "end": 4371.08, + "probability": 0.9077 + }, + { + "start": 4371.8, + "end": 4373.46, + "probability": 0.9431 + }, + { + "start": 4374.58, + "end": 4375.56, + "probability": 0.7095 + }, + { + "start": 4376.86, + "end": 4378.68, + "probability": 0.8684 + }, + { + "start": 4380.08, + "end": 4380.74, + "probability": 0.9456 + }, + { + "start": 4384.62, + "end": 4386.98, + "probability": 0.9811 + }, + { + "start": 4406.22, + "end": 4406.72, + "probability": 0.4424 + }, + { + "start": 4406.84, + "end": 4407.78, + "probability": 0.9007 + }, + { + "start": 4407.88, + "end": 4408.06, + "probability": 0.4957 + }, + { + "start": 4408.14, + "end": 4409.56, + "probability": 0.9651 + }, + { + "start": 4409.78, + "end": 4412.82, + "probability": 0.7672 + }, + { + "start": 4412.98, + "end": 4416.48, + "probability": 0.9687 + }, + { + "start": 4416.76, + "end": 4418.32, + "probability": 0.9595 + }, + { + "start": 4418.86, + "end": 4419.44, + "probability": 0.6843 + }, + { + "start": 4420.2, + "end": 4423.18, + "probability": 0.9947 + }, + { + "start": 4423.18, + "end": 4426.18, + "probability": 0.9976 + }, + { + "start": 4426.46, + "end": 4427.14, + "probability": 0.978 + }, + { + "start": 4428.16, + "end": 4430.24, + "probability": 0.9985 + }, + { + "start": 4431.44, + "end": 4431.74, + "probability": 0.4987 + }, + { + "start": 4431.82, + "end": 4435.76, + "probability": 0.9452 + }, + { + "start": 4435.76, + "end": 4438.66, + "probability": 0.9946 + }, + { + "start": 4440.16, + "end": 4443.96, + "probability": 0.998 + }, + { + "start": 4444.02, + "end": 4445.76, + "probability": 0.7046 + }, + { + "start": 4446.44, + "end": 4448.86, + "probability": 0.9431 + }, + { + "start": 4449.86, + "end": 4451.74, + "probability": 0.5546 + }, + { + "start": 4451.8, + "end": 4453.32, + "probability": 0.7376 + }, + { + "start": 4453.92, + "end": 4455.78, + "probability": 0.6877 + }, + { + "start": 4456.8, + "end": 4458.78, + "probability": 0.6614 + }, + { + "start": 4460.38, + "end": 4462.98, + "probability": 0.6028 + }, + { + "start": 4463.06, + "end": 4464.88, + "probability": 0.4451 + }, + { + "start": 4465.08, + "end": 4465.82, + "probability": 0.9056 + }, + { + "start": 4466.0, + "end": 4469.06, + "probability": 0.9622 + }, + { + "start": 4469.06, + "end": 4473.54, + "probability": 0.9824 + }, + { + "start": 4473.92, + "end": 4474.64, + "probability": 0.499 + }, + { + "start": 4474.82, + "end": 4476.69, + "probability": 0.9542 + }, + { + "start": 4477.9, + "end": 4480.04, + "probability": 0.9784 + }, + { + "start": 4480.66, + "end": 4481.38, + "probability": 0.4804 + }, + { + "start": 4482.2, + "end": 4484.94, + "probability": 0.6954 + }, + { + "start": 4485.04, + "end": 4485.8, + "probability": 0.6646 + }, + { + "start": 4486.48, + "end": 4487.7, + "probability": 0.966 + }, + { + "start": 4489.18, + "end": 4492.86, + "probability": 0.8113 + }, + { + "start": 4494.16, + "end": 4495.22, + "probability": 0.9408 + }, + { + "start": 4496.34, + "end": 4498.92, + "probability": 0.9432 + }, + { + "start": 4500.14, + "end": 4501.48, + "probability": 0.9224 + }, + { + "start": 4502.18, + "end": 4504.52, + "probability": 0.9349 + }, + { + "start": 4504.6, + "end": 4504.88, + "probability": 0.6251 + }, + { + "start": 4505.62, + "end": 4506.9, + "probability": 0.9917 + }, + { + "start": 4507.56, + "end": 4509.52, + "probability": 0.8415 + }, + { + "start": 4510.32, + "end": 4511.8, + "probability": 0.6001 + }, + { + "start": 4512.52, + "end": 4515.04, + "probability": 0.9955 + }, + { + "start": 4515.34, + "end": 4519.2, + "probability": 0.9894 + }, + { + "start": 4520.0, + "end": 4520.46, + "probability": 0.9749 + }, + { + "start": 4520.56, + "end": 4525.0, + "probability": 0.848 + }, + { + "start": 4525.28, + "end": 4528.6, + "probability": 0.9348 + }, + { + "start": 4528.74, + "end": 4529.93, + "probability": 0.7773 + }, + { + "start": 4530.48, + "end": 4532.26, + "probability": 0.6804 + }, + { + "start": 4533.14, + "end": 4533.34, + "probability": 0.7454 + }, + { + "start": 4533.38, + "end": 4533.6, + "probability": 0.8563 + }, + { + "start": 4533.72, + "end": 4538.02, + "probability": 0.981 + }, + { + "start": 4538.44, + "end": 4539.84, + "probability": 0.8946 + }, + { + "start": 4539.92, + "end": 4540.98, + "probability": 0.7993 + }, + { + "start": 4541.02, + "end": 4542.3, + "probability": 0.9596 + }, + { + "start": 4542.62, + "end": 4545.38, + "probability": 0.344 + }, + { + "start": 4546.7, + "end": 4548.32, + "probability": 0.9812 + }, + { + "start": 4549.72, + "end": 4554.08, + "probability": 0.8875 + }, + { + "start": 4554.92, + "end": 4556.55, + "probability": 0.9714 + }, + { + "start": 4556.68, + "end": 4559.64, + "probability": 0.898 + }, + { + "start": 4559.94, + "end": 4561.64, + "probability": 0.9014 + }, + { + "start": 4561.68, + "end": 4564.28, + "probability": 0.8116 + }, + { + "start": 4564.96, + "end": 4569.1, + "probability": 0.9964 + }, + { + "start": 4570.36, + "end": 4573.64, + "probability": 0.899 + }, + { + "start": 4575.4, + "end": 4578.94, + "probability": 0.8487 + }, + { + "start": 4580.08, + "end": 4583.34, + "probability": 0.9669 + }, + { + "start": 4585.16, + "end": 4586.48, + "probability": 0.7029 + }, + { + "start": 4587.52, + "end": 4590.26, + "probability": 0.4968 + }, + { + "start": 4590.44, + "end": 4591.2, + "probability": 0.8978 + }, + { + "start": 4591.22, + "end": 4592.28, + "probability": 0.8734 + }, + { + "start": 4592.4, + "end": 4594.96, + "probability": 0.9319 + }, + { + "start": 4595.52, + "end": 4596.46, + "probability": 0.9551 + }, + { + "start": 4597.5, + "end": 4598.04, + "probability": 0.6869 + }, + { + "start": 4598.22, + "end": 4598.86, + "probability": 0.5452 + }, + { + "start": 4599.0, + "end": 4599.92, + "probability": 0.7979 + }, + { + "start": 4600.24, + "end": 4601.22, + "probability": 0.646 + }, + { + "start": 4601.36, + "end": 4602.2, + "probability": 0.8506 + }, + { + "start": 4602.88, + "end": 4605.14, + "probability": 0.9451 + }, + { + "start": 4606.34, + "end": 4607.41, + "probability": 0.9068 + }, + { + "start": 4608.58, + "end": 4613.14, + "probability": 0.988 + }, + { + "start": 4613.22, + "end": 4614.36, + "probability": 0.9769 + }, + { + "start": 4614.44, + "end": 4614.66, + "probability": 0.9124 + }, + { + "start": 4614.76, + "end": 4615.78, + "probability": 0.9232 + }, + { + "start": 4617.16, + "end": 4619.0, + "probability": 0.9447 + }, + { + "start": 4621.9, + "end": 4622.16, + "probability": 0.3246 + }, + { + "start": 4622.16, + "end": 4623.04, + "probability": 0.4777 + }, + { + "start": 4624.22, + "end": 4624.54, + "probability": 0.2886 + }, + { + "start": 4624.66, + "end": 4625.48, + "probability": 0.7422 + }, + { + "start": 4625.56, + "end": 4629.62, + "probability": 0.3717 + }, + { + "start": 4629.7, + "end": 4631.42, + "probability": 0.7683 + }, + { + "start": 4632.98, + "end": 4636.42, + "probability": 0.9224 + }, + { + "start": 4637.0, + "end": 4642.18, + "probability": 0.9867 + }, + { + "start": 4642.9, + "end": 4646.0, + "probability": 0.9976 + }, + { + "start": 4646.62, + "end": 4648.43, + "probability": 0.6548 + }, + { + "start": 4648.78, + "end": 4650.3, + "probability": 0.981 + }, + { + "start": 4650.36, + "end": 4651.28, + "probability": 0.9112 + }, + { + "start": 4652.1, + "end": 4654.94, + "probability": 0.9736 + }, + { + "start": 4655.8, + "end": 4660.16, + "probability": 0.7574 + }, + { + "start": 4660.68, + "end": 4663.96, + "probability": 0.8724 + }, + { + "start": 4664.5, + "end": 4665.56, + "probability": 0.8115 + }, + { + "start": 4665.66, + "end": 4668.4, + "probability": 0.8136 + }, + { + "start": 4668.9, + "end": 4669.58, + "probability": 0.7427 + }, + { + "start": 4670.26, + "end": 4672.34, + "probability": 0.7488 + }, + { + "start": 4672.76, + "end": 4673.78, + "probability": 0.8255 + }, + { + "start": 4674.9, + "end": 4676.72, + "probability": 0.9663 + }, + { + "start": 4678.32, + "end": 4679.64, + "probability": 0.9514 + }, + { + "start": 4680.26, + "end": 4682.92, + "probability": 0.9932 + }, + { + "start": 4683.46, + "end": 4685.7, + "probability": 0.9914 + }, + { + "start": 4686.82, + "end": 4690.04, + "probability": 0.987 + }, + { + "start": 4691.24, + "end": 4692.54, + "probability": 0.9977 + }, + { + "start": 4693.42, + "end": 4693.8, + "probability": 0.8593 + }, + { + "start": 4695.08, + "end": 4696.62, + "probability": 0.9648 + }, + { + "start": 4696.82, + "end": 4700.54, + "probability": 0.9925 + }, + { + "start": 4700.64, + "end": 4703.08, + "probability": 0.8952 + }, + { + "start": 4704.1, + "end": 4704.76, + "probability": 0.3632 + }, + { + "start": 4705.66, + "end": 4708.72, + "probability": 0.8708 + }, + { + "start": 4709.12, + "end": 4711.29, + "probability": 0.6415 + }, + { + "start": 4712.3, + "end": 4712.3, + "probability": 0.6423 + }, + { + "start": 4712.5, + "end": 4713.84, + "probability": 0.6237 + }, + { + "start": 4714.02, + "end": 4716.32, + "probability": 0.9023 + }, + { + "start": 4717.3, + "end": 4719.08, + "probability": 0.7915 + }, + { + "start": 4721.36, + "end": 4722.0, + "probability": 0.7245 + }, + { + "start": 4722.7, + "end": 4726.08, + "probability": 0.9937 + }, + { + "start": 4726.14, + "end": 4726.86, + "probability": 0.7826 + }, + { + "start": 4726.9, + "end": 4727.52, + "probability": 0.5338 + }, + { + "start": 4727.82, + "end": 4729.34, + "probability": 0.5057 + }, + { + "start": 4729.92, + "end": 4732.54, + "probability": 0.9712 + }, + { + "start": 4733.34, + "end": 4733.72, + "probability": 0.9097 + }, + { + "start": 4733.84, + "end": 4735.5, + "probability": 0.7945 + }, + { + "start": 4735.62, + "end": 4736.94, + "probability": 0.9463 + }, + { + "start": 4738.4, + "end": 4740.28, + "probability": 0.8658 + }, + { + "start": 4740.42, + "end": 4742.02, + "probability": 0.425 + }, + { + "start": 4742.48, + "end": 4744.94, + "probability": 0.842 + }, + { + "start": 4745.46, + "end": 4745.92, + "probability": 0.7043 + }, + { + "start": 4745.94, + "end": 4746.98, + "probability": 0.61 + }, + { + "start": 4746.98, + "end": 4747.44, + "probability": 0.7943 + }, + { + "start": 4747.52, + "end": 4749.44, + "probability": 0.852 + }, + { + "start": 4751.34, + "end": 4754.18, + "probability": 0.7691 + }, + { + "start": 4755.38, + "end": 4757.94, + "probability": 0.9562 + }, + { + "start": 4760.58, + "end": 4761.44, + "probability": 0.6808 + }, + { + "start": 4761.64, + "end": 4763.58, + "probability": 0.8402 + }, + { + "start": 4765.56, + "end": 4766.38, + "probability": 0.8914 + }, + { + "start": 4767.32, + "end": 4768.72, + "probability": 0.9769 + }, + { + "start": 4769.3, + "end": 4770.56, + "probability": 0.7855 + }, + { + "start": 4771.32, + "end": 4773.28, + "probability": 0.7682 + }, + { + "start": 4774.46, + "end": 4777.32, + "probability": 0.7331 + }, + { + "start": 4777.92, + "end": 4783.68, + "probability": 0.8804 + }, + { + "start": 4783.78, + "end": 4784.82, + "probability": 0.9431 + }, + { + "start": 4785.34, + "end": 4789.68, + "probability": 0.9124 + }, + { + "start": 4790.16, + "end": 4790.7, + "probability": 0.7663 + }, + { + "start": 4790.82, + "end": 4791.86, + "probability": 0.5209 + }, + { + "start": 4792.24, + "end": 4793.98, + "probability": 0.849 + }, + { + "start": 4794.12, + "end": 4797.36, + "probability": 0.9946 + }, + { + "start": 4798.35, + "end": 4799.74, + "probability": 0.9416 + }, + { + "start": 4801.78, + "end": 4802.78, + "probability": 0.8096 + }, + { + "start": 4802.88, + "end": 4803.12, + "probability": 0.6653 + }, + { + "start": 4803.2, + "end": 4805.36, + "probability": 0.8221 + }, + { + "start": 4805.9, + "end": 4807.34, + "probability": 0.6782 + }, + { + "start": 4808.16, + "end": 4809.74, + "probability": 0.9297 + }, + { + "start": 4810.74, + "end": 4812.4, + "probability": 0.8411 + }, + { + "start": 4812.98, + "end": 4814.22, + "probability": 0.7612 + }, + { + "start": 4815.28, + "end": 4816.95, + "probability": 0.9805 + }, + { + "start": 4818.26, + "end": 4820.28, + "probability": 0.9653 + }, + { + "start": 4820.44, + "end": 4826.14, + "probability": 0.7893 + }, + { + "start": 4826.42, + "end": 4826.6, + "probability": 0.0056 + }, + { + "start": 4826.6, + "end": 4827.38, + "probability": 0.1504 + }, + { + "start": 4827.48, + "end": 4828.28, + "probability": 0.8989 + }, + { + "start": 4829.4, + "end": 4830.82, + "probability": 0.9803 + }, + { + "start": 4830.9, + "end": 4834.58, + "probability": 0.0126 + }, + { + "start": 4835.24, + "end": 4836.66, + "probability": 0.0316 + }, + { + "start": 4836.66, + "end": 4836.66, + "probability": 0.0395 + }, + { + "start": 4836.66, + "end": 4840.16, + "probability": 0.386 + }, + { + "start": 4840.94, + "end": 4841.88, + "probability": 0.6642 + }, + { + "start": 4842.42, + "end": 4844.12, + "probability": 0.3743 + }, + { + "start": 4844.2, + "end": 4847.74, + "probability": 0.6985 + }, + { + "start": 4847.82, + "end": 4848.68, + "probability": 0.2548 + }, + { + "start": 4848.68, + "end": 4849.16, + "probability": 0.1198 + }, + { + "start": 4849.18, + "end": 4852.54, + "probability": 0.6655 + }, + { + "start": 4852.62, + "end": 4853.68, + "probability": 0.5314 + }, + { + "start": 4854.2, + "end": 4855.42, + "probability": 0.9474 + }, + { + "start": 4855.76, + "end": 4856.0, + "probability": 0.3859 + }, + { + "start": 4856.0, + "end": 4856.56, + "probability": 0.7354 + }, + { + "start": 4857.86, + "end": 4860.5, + "probability": 0.9635 + }, + { + "start": 4860.5, + "end": 4865.1, + "probability": 0.3449 + }, + { + "start": 4865.28, + "end": 4867.0, + "probability": 0.0204 + }, + { + "start": 4867.56, + "end": 4869.74, + "probability": 0.0098 + }, + { + "start": 4870.88, + "end": 4872.68, + "probability": 0.0687 + }, + { + "start": 4877.28, + "end": 4877.56, + "probability": 0.0534 + }, + { + "start": 4877.56, + "end": 4878.08, + "probability": 0.2147 + }, + { + "start": 4879.4, + "end": 4879.4, + "probability": 0.4047 + }, + { + "start": 4879.4, + "end": 4881.58, + "probability": 0.0137 + }, + { + "start": 4881.58, + "end": 4881.58, + "probability": 0.03 + }, + { + "start": 4881.58, + "end": 4881.58, + "probability": 0.1415 + }, + { + "start": 4881.58, + "end": 4881.58, + "probability": 0.1728 + }, + { + "start": 4881.58, + "end": 4884.26, + "probability": 0.6731 + }, + { + "start": 4884.82, + "end": 4886.8, + "probability": 0.9919 + }, + { + "start": 4887.58, + "end": 4891.06, + "probability": 0.759 + }, + { + "start": 4891.74, + "end": 4892.44, + "probability": 0.3471 + }, + { + "start": 4893.1, + "end": 4895.84, + "probability": 0.9028 + }, + { + "start": 4896.58, + "end": 4898.04, + "probability": 0.9974 + }, + { + "start": 4898.9, + "end": 4899.76, + "probability": 0.6677 + }, + { + "start": 4900.5, + "end": 4901.88, + "probability": 0.9547 + }, + { + "start": 4901.96, + "end": 4903.54, + "probability": 0.706 + }, + { + "start": 4904.02, + "end": 4904.96, + "probability": 0.8899 + }, + { + "start": 4905.14, + "end": 4906.0, + "probability": 0.9316 + }, + { + "start": 4906.76, + "end": 4907.66, + "probability": 0.8947 + }, + { + "start": 4908.0, + "end": 4913.12, + "probability": 0.7463 + }, + { + "start": 4913.36, + "end": 4914.58, + "probability": 0.9103 + }, + { + "start": 4914.78, + "end": 4915.32, + "probability": 0.8725 + }, + { + "start": 4915.88, + "end": 4918.1, + "probability": 0.9915 + }, + { + "start": 4918.76, + "end": 4920.82, + "probability": 0.9383 + }, + { + "start": 4921.56, + "end": 4922.19, + "probability": 0.2712 + }, + { + "start": 4923.58, + "end": 4925.76, + "probability": 0.8848 + }, + { + "start": 4926.76, + "end": 4928.12, + "probability": 0.8706 + }, + { + "start": 4928.66, + "end": 4930.24, + "probability": 0.9528 + }, + { + "start": 4930.86, + "end": 4932.14, + "probability": 0.7333 + }, + { + "start": 4932.82, + "end": 4934.96, + "probability": 0.8979 + }, + { + "start": 4937.12, + "end": 4938.48, + "probability": 0.9929 + }, + { + "start": 4938.62, + "end": 4939.08, + "probability": 0.806 + }, + { + "start": 4941.04, + "end": 4941.76, + "probability": 0.5203 + }, + { + "start": 4941.84, + "end": 4944.66, + "probability": 0.6231 + }, + { + "start": 4946.44, + "end": 4946.98, + "probability": 0.6813 + }, + { + "start": 4947.04, + "end": 4948.64, + "probability": 0.9878 + }, + { + "start": 4950.36, + "end": 4953.4, + "probability": 0.8665 + }, + { + "start": 4953.46, + "end": 4959.7, + "probability": 0.9879 + }, + { + "start": 4971.2, + "end": 4973.4, + "probability": 0.9774 + }, + { + "start": 4974.7, + "end": 4976.0, + "probability": 0.7932 + }, + { + "start": 4976.82, + "end": 4978.4, + "probability": 0.8096 + }, + { + "start": 4979.02, + "end": 4982.94, + "probability": 0.7312 + }, + { + "start": 4983.06, + "end": 4984.2, + "probability": 0.8147 + }, + { + "start": 4984.92, + "end": 4991.16, + "probability": 0.9912 + }, + { + "start": 4991.16, + "end": 4996.22, + "probability": 0.9973 + }, + { + "start": 4997.34, + "end": 4999.82, + "probability": 0.9976 + }, + { + "start": 4999.82, + "end": 5003.58, + "probability": 0.9131 + }, + { + "start": 5004.52, + "end": 5005.78, + "probability": 0.9766 + }, + { + "start": 5006.5, + "end": 5010.16, + "probability": 0.9802 + }, + { + "start": 5010.32, + "end": 5013.44, + "probability": 0.9399 + }, + { + "start": 5014.04, + "end": 5016.28, + "probability": 0.7638 + }, + { + "start": 5017.28, + "end": 5017.84, + "probability": 0.6622 + }, + { + "start": 5017.9, + "end": 5023.7, + "probability": 0.9372 + }, + { + "start": 5024.36, + "end": 5025.46, + "probability": 0.9424 + }, + { + "start": 5026.04, + "end": 5026.46, + "probability": 0.8829 + }, + { + "start": 5027.28, + "end": 5029.6, + "probability": 0.9685 + }, + { + "start": 5029.64, + "end": 5034.62, + "probability": 0.7873 + }, + { + "start": 5034.78, + "end": 5036.04, + "probability": 0.9536 + }, + { + "start": 5036.6, + "end": 5040.7, + "probability": 0.9972 + }, + { + "start": 5040.7, + "end": 5044.58, + "probability": 0.9769 + }, + { + "start": 5045.42, + "end": 5049.66, + "probability": 0.9937 + }, + { + "start": 5050.66, + "end": 5052.42, + "probability": 0.998 + }, + { + "start": 5053.22, + "end": 5055.74, + "probability": 0.9966 + }, + { + "start": 5056.72, + "end": 5061.38, + "probability": 0.9117 + }, + { + "start": 5062.1, + "end": 5064.48, + "probability": 0.9065 + }, + { + "start": 5065.22, + "end": 5067.6, + "probability": 0.8101 + }, + { + "start": 5068.1, + "end": 5069.66, + "probability": 0.9534 + }, + { + "start": 5070.32, + "end": 5071.22, + "probability": 0.7159 + }, + { + "start": 5071.74, + "end": 5074.64, + "probability": 0.929 + }, + { + "start": 5075.5, + "end": 5080.44, + "probability": 0.8976 + }, + { + "start": 5081.6, + "end": 5086.12, + "probability": 0.9824 + }, + { + "start": 5086.12, + "end": 5091.44, + "probability": 0.9709 + }, + { + "start": 5092.78, + "end": 5095.0, + "probability": 0.9923 + }, + { + "start": 5095.88, + "end": 5096.46, + "probability": 0.5998 + }, + { + "start": 5096.62, + "end": 5097.74, + "probability": 0.8844 + }, + { + "start": 5098.06, + "end": 5098.56, + "probability": 0.951 + }, + { + "start": 5098.68, + "end": 5099.74, + "probability": 0.9824 + }, + { + "start": 5100.12, + "end": 5101.16, + "probability": 0.9322 + }, + { + "start": 5101.78, + "end": 5105.26, + "probability": 0.922 + }, + { + "start": 5105.8, + "end": 5110.24, + "probability": 0.9912 + }, + { + "start": 5110.36, + "end": 5112.18, + "probability": 0.5394 + }, + { + "start": 5113.32, + "end": 5117.16, + "probability": 0.9871 + }, + { + "start": 5117.92, + "end": 5120.04, + "probability": 0.9375 + }, + { + "start": 5120.9, + "end": 5123.1, + "probability": 0.9814 + }, + { + "start": 5123.58, + "end": 5124.86, + "probability": 0.9092 + }, + { + "start": 5125.9, + "end": 5130.72, + "probability": 0.9854 + }, + { + "start": 5131.48, + "end": 5136.54, + "probability": 0.9825 + }, + { + "start": 5137.16, + "end": 5138.36, + "probability": 0.9398 + }, + { + "start": 5139.26, + "end": 5145.28, + "probability": 0.9697 + }, + { + "start": 5145.6, + "end": 5146.34, + "probability": 0.8651 + }, + { + "start": 5146.5, + "end": 5149.6, + "probability": 0.7026 + }, + { + "start": 5150.54, + "end": 5156.74, + "probability": 0.9816 + }, + { + "start": 5157.28, + "end": 5161.02, + "probability": 0.9668 + }, + { + "start": 5161.78, + "end": 5161.86, + "probability": 0.0077 + }, + { + "start": 5162.04, + "end": 5163.3, + "probability": 0.7839 + }, + { + "start": 5163.78, + "end": 5165.06, + "probability": 0.9308 + }, + { + "start": 5165.38, + "end": 5168.04, + "probability": 0.9321 + }, + { + "start": 5168.64, + "end": 5171.1, + "probability": 0.6276 + }, + { + "start": 5171.98, + "end": 5175.82, + "probability": 0.9463 + }, + { + "start": 5176.36, + "end": 5176.38, + "probability": 0.9277 + }, + { + "start": 5177.42, + "end": 5179.88, + "probability": 0.8193 + }, + { + "start": 5180.88, + "end": 5183.54, + "probability": 0.8832 + }, + { + "start": 5183.66, + "end": 5186.62, + "probability": 0.7727 + }, + { + "start": 5187.16, + "end": 5190.24, + "probability": 0.77 + }, + { + "start": 5191.06, + "end": 5193.04, + "probability": 0.6127 + }, + { + "start": 5193.74, + "end": 5196.88, + "probability": 0.8987 + }, + { + "start": 5197.48, + "end": 5199.26, + "probability": 0.8242 + }, + { + "start": 5200.24, + "end": 5203.88, + "probability": 0.9675 + }, + { + "start": 5204.5, + "end": 5209.62, + "probability": 0.9799 + }, + { + "start": 5210.2, + "end": 5211.66, + "probability": 0.7066 + }, + { + "start": 5212.24, + "end": 5214.38, + "probability": 0.9624 + }, + { + "start": 5215.5, + "end": 5218.4, + "probability": 0.9811 + }, + { + "start": 5218.96, + "end": 5220.74, + "probability": 0.984 + }, + { + "start": 5221.68, + "end": 5226.48, + "probability": 0.9468 + }, + { + "start": 5227.42, + "end": 5228.7, + "probability": 0.9629 + }, + { + "start": 5229.16, + "end": 5233.06, + "probability": 0.9857 + }, + { + "start": 5233.46, + "end": 5234.32, + "probability": 0.7128 + }, + { + "start": 5234.8, + "end": 5239.94, + "probability": 0.9767 + }, + { + "start": 5239.94, + "end": 5240.42, + "probability": 0.6911 + }, + { + "start": 5240.6, + "end": 5241.64, + "probability": 0.7359 + }, + { + "start": 5242.98, + "end": 5249.36, + "probability": 0.911 + }, + { + "start": 5249.76, + "end": 5250.52, + "probability": 0.8754 + }, + { + "start": 5250.88, + "end": 5252.12, + "probability": 0.8022 + }, + { + "start": 5252.38, + "end": 5253.68, + "probability": 0.937 + }, + { + "start": 5254.42, + "end": 5261.6, + "probability": 0.9434 + }, + { + "start": 5262.22, + "end": 5266.58, + "probability": 0.9956 + }, + { + "start": 5267.5, + "end": 5272.24, + "probability": 0.9902 + }, + { + "start": 5272.92, + "end": 5274.12, + "probability": 0.8914 + }, + { + "start": 5274.78, + "end": 5277.14, + "probability": 0.7635 + }, + { + "start": 5277.94, + "end": 5279.5, + "probability": 0.9596 + }, + { + "start": 5280.06, + "end": 5282.42, + "probability": 0.9831 + }, + { + "start": 5283.4, + "end": 5286.54, + "probability": 0.8972 + }, + { + "start": 5286.68, + "end": 5288.24, + "probability": 0.9157 + }, + { + "start": 5288.66, + "end": 5290.28, + "probability": 0.9719 + }, + { + "start": 5290.82, + "end": 5294.1, + "probability": 0.9965 + }, + { + "start": 5294.42, + "end": 5295.48, + "probability": 0.808 + }, + { + "start": 5296.08, + "end": 5297.23, + "probability": 0.8691 + }, + { + "start": 5297.98, + "end": 5304.54, + "probability": 0.9885 + }, + { + "start": 5305.94, + "end": 5308.74, + "probability": 0.9183 + }, + { + "start": 5308.74, + "end": 5312.7, + "probability": 0.9717 + }, + { + "start": 5313.66, + "end": 5318.12, + "probability": 0.9748 + }, + { + "start": 5318.78, + "end": 5321.92, + "probability": 0.9609 + }, + { + "start": 5322.6, + "end": 5326.0, + "probability": 0.9141 + }, + { + "start": 5326.56, + "end": 5327.46, + "probability": 0.7843 + }, + { + "start": 5328.12, + "end": 5332.3, + "probability": 0.9323 + }, + { + "start": 5333.1, + "end": 5337.96, + "probability": 0.8608 + }, + { + "start": 5337.96, + "end": 5342.9, + "probability": 0.9948 + }, + { + "start": 5342.96, + "end": 5346.84, + "probability": 0.9924 + }, + { + "start": 5347.7, + "end": 5350.22, + "probability": 0.7639 + }, + { + "start": 5350.74, + "end": 5356.3, + "probability": 0.9899 + }, + { + "start": 5357.26, + "end": 5361.72, + "probability": 0.9966 + }, + { + "start": 5362.38, + "end": 5362.62, + "probability": 0.1326 + }, + { + "start": 5363.42, + "end": 5365.28, + "probability": 0.9771 + }, + { + "start": 5365.9, + "end": 5367.68, + "probability": 0.846 + }, + { + "start": 5368.38, + "end": 5371.14, + "probability": 0.9091 + }, + { + "start": 5372.1, + "end": 5376.02, + "probability": 0.9955 + }, + { + "start": 5376.02, + "end": 5381.86, + "probability": 0.9943 + }, + { + "start": 5382.9, + "end": 5383.62, + "probability": 0.6852 + }, + { + "start": 5383.88, + "end": 5387.74, + "probability": 0.8831 + }, + { + "start": 5388.2, + "end": 5392.1, + "probability": 0.9963 + }, + { + "start": 5392.1, + "end": 5396.92, + "probability": 0.9748 + }, + { + "start": 5397.32, + "end": 5400.6, + "probability": 0.9874 + }, + { + "start": 5401.18, + "end": 5402.62, + "probability": 0.8809 + }, + { + "start": 5403.48, + "end": 5406.64, + "probability": 0.9329 + }, + { + "start": 5406.7, + "end": 5409.34, + "probability": 0.9721 + }, + { + "start": 5411.22, + "end": 5414.08, + "probability": 0.7366 + }, + { + "start": 5425.02, + "end": 5425.94, + "probability": 0.0747 + }, + { + "start": 5441.14, + "end": 5441.78, + "probability": 0.1211 + }, + { + "start": 5453.01, + "end": 5453.98, + "probability": 0.0391 + }, + { + "start": 5455.66, + "end": 5458.56, + "probability": 0.1513 + }, + { + "start": 5459.8, + "end": 5460.78, + "probability": 0.2864 + }, + { + "start": 5460.78, + "end": 5461.04, + "probability": 0.0105 + }, + { + "start": 5597.1, + "end": 5597.26, + "probability": 0.0604 + }, + { + "start": 5597.26, + "end": 5597.38, + "probability": 0.3559 + }, + { + "start": 5597.46, + "end": 5598.6, + "probability": 0.6906 + }, + { + "start": 5599.08, + "end": 5601.68, + "probability": 0.4819 + }, + { + "start": 5602.2, + "end": 5603.38, + "probability": 0.5707 + }, + { + "start": 5604.02, + "end": 5607.02, + "probability": 0.9397 + }, + { + "start": 5607.9, + "end": 5609.6, + "probability": 0.954 + }, + { + "start": 5610.34, + "end": 5610.34, + "probability": 0.2399 + }, + { + "start": 5610.34, + "end": 5612.03, + "probability": 0.9976 + }, + { + "start": 5613.16, + "end": 5614.66, + "probability": 0.9529 + }, + { + "start": 5614.74, + "end": 5617.0, + "probability": 0.9983 + }, + { + "start": 5617.0, + "end": 5621.12, + "probability": 0.8102 + }, + { + "start": 5621.94, + "end": 5625.9, + "probability": 0.9798 + }, + { + "start": 5626.26, + "end": 5626.96, + "probability": 0.5418 + }, + { + "start": 5627.1, + "end": 5630.3, + "probability": 0.997 + }, + { + "start": 5630.3, + "end": 5632.76, + "probability": 0.9984 + }, + { + "start": 5633.8, + "end": 5635.58, + "probability": 0.9984 + }, + { + "start": 5636.44, + "end": 5640.14, + "probability": 0.9874 + }, + { + "start": 5640.18, + "end": 5643.28, + "probability": 0.9937 + }, + { + "start": 5644.06, + "end": 5650.38, + "probability": 0.971 + }, + { + "start": 5651.12, + "end": 5652.88, + "probability": 0.9669 + }, + { + "start": 5653.4, + "end": 5655.49, + "probability": 0.9881 + }, + { + "start": 5655.96, + "end": 5658.1, + "probability": 0.998 + }, + { + "start": 5658.74, + "end": 5662.79, + "probability": 0.9814 + }, + { + "start": 5663.68, + "end": 5667.12, + "probability": 0.9865 + }, + { + "start": 5667.3, + "end": 5667.92, + "probability": 0.8755 + }, + { + "start": 5668.0, + "end": 5670.04, + "probability": 0.8757 + }, + { + "start": 5670.72, + "end": 5674.44, + "probability": 0.9908 + }, + { + "start": 5674.92, + "end": 5676.72, + "probability": 0.9899 + }, + { + "start": 5676.8, + "end": 5677.52, + "probability": 0.7305 + }, + { + "start": 5677.64, + "end": 5678.6, + "probability": 0.9915 + }, + { + "start": 5679.78, + "end": 5682.4, + "probability": 0.9919 + }, + { + "start": 5682.4, + "end": 5686.06, + "probability": 0.9959 + }, + { + "start": 5686.82, + "end": 5689.06, + "probability": 0.9902 + }, + { + "start": 5689.38, + "end": 5694.16, + "probability": 0.998 + }, + { + "start": 5694.9, + "end": 5697.62, + "probability": 0.9988 + }, + { + "start": 5697.62, + "end": 5700.72, + "probability": 0.9991 + }, + { + "start": 5701.48, + "end": 5702.36, + "probability": 0.8787 + }, + { + "start": 5702.96, + "end": 5706.24, + "probability": 0.8039 + }, + { + "start": 5706.36, + "end": 5708.62, + "probability": 0.7501 + }, + { + "start": 5709.06, + "end": 5710.86, + "probability": 0.8454 + }, + { + "start": 5711.46, + "end": 5713.68, + "probability": 0.9928 + }, + { + "start": 5714.08, + "end": 5718.02, + "probability": 0.98 + }, + { + "start": 5718.74, + "end": 5723.26, + "probability": 0.9954 + }, + { + "start": 5723.88, + "end": 5725.0, + "probability": 0.8237 + }, + { + "start": 5725.18, + "end": 5728.46, + "probability": 0.9932 + }, + { + "start": 5728.86, + "end": 5730.12, + "probability": 0.8636 + }, + { + "start": 5730.42, + "end": 5731.58, + "probability": 0.8733 + }, + { + "start": 5731.98, + "end": 5734.6, + "probability": 0.7847 + }, + { + "start": 5735.08, + "end": 5738.38, + "probability": 0.8821 + }, + { + "start": 5738.72, + "end": 5740.23, + "probability": 0.6299 + }, + { + "start": 5740.94, + "end": 5742.84, + "probability": 0.9493 + }, + { + "start": 5743.42, + "end": 5745.82, + "probability": 0.9821 + }, + { + "start": 5746.28, + "end": 5747.02, + "probability": 0.7355 + }, + { + "start": 5747.46, + "end": 5749.66, + "probability": 0.9922 + }, + { + "start": 5750.06, + "end": 5750.86, + "probability": 0.9907 + }, + { + "start": 5751.44, + "end": 5751.86, + "probability": 0.9331 + }, + { + "start": 5752.36, + "end": 5753.84, + "probability": 0.7811 + }, + { + "start": 5754.18, + "end": 5757.68, + "probability": 0.9473 + }, + { + "start": 5758.14, + "end": 5762.82, + "probability": 0.9961 + }, + { + "start": 5763.62, + "end": 5766.2, + "probability": 0.9884 + }, + { + "start": 5766.88, + "end": 5767.86, + "probability": 0.9155 + }, + { + "start": 5768.54, + "end": 5772.88, + "probability": 0.9869 + }, + { + "start": 5773.02, + "end": 5773.56, + "probability": 0.4869 + }, + { + "start": 5774.32, + "end": 5778.7, + "probability": 0.9964 + }, + { + "start": 5779.3, + "end": 5782.98, + "probability": 0.9964 + }, + { + "start": 5783.98, + "end": 5787.3, + "probability": 0.9834 + }, + { + "start": 5787.68, + "end": 5789.23, + "probability": 0.941 + }, + { + "start": 5789.86, + "end": 5794.4, + "probability": 0.9822 + }, + { + "start": 5794.84, + "end": 5796.02, + "probability": 0.484 + }, + { + "start": 5796.24, + "end": 5799.3, + "probability": 0.9961 + }, + { + "start": 5800.1, + "end": 5801.76, + "probability": 0.8023 + }, + { + "start": 5802.46, + "end": 5803.5, + "probability": 0.8848 + }, + { + "start": 5803.6, + "end": 5807.6, + "probability": 0.8616 + }, + { + "start": 5808.14, + "end": 5810.74, + "probability": 0.9966 + }, + { + "start": 5811.14, + "end": 5814.38, + "probability": 0.9922 + }, + { + "start": 5814.78, + "end": 5817.32, + "probability": 0.8843 + }, + { + "start": 5817.8, + "end": 5820.0, + "probability": 0.8621 + }, + { + "start": 5821.38, + "end": 5823.34, + "probability": 0.9702 + }, + { + "start": 5824.4, + "end": 5826.76, + "probability": 0.9106 + }, + { + "start": 5827.0, + "end": 5827.88, + "probability": 0.7541 + }, + { + "start": 5828.36, + "end": 5829.16, + "probability": 0.7686 + }, + { + "start": 5829.3, + "end": 5830.26, + "probability": 0.689 + }, + { + "start": 5830.58, + "end": 5831.68, + "probability": 0.9857 + }, + { + "start": 5832.1, + "end": 5834.32, + "probability": 0.9477 + }, + { + "start": 5835.28, + "end": 5835.62, + "probability": 0.9976 + }, + { + "start": 5836.46, + "end": 5836.88, + "probability": 0.3976 + }, + { + "start": 5836.88, + "end": 5837.26, + "probability": 0.8045 + }, + { + "start": 5837.7, + "end": 5840.06, + "probability": 0.9867 + }, + { + "start": 5840.44, + "end": 5844.18, + "probability": 0.9616 + }, + { + "start": 5844.6, + "end": 5847.2, + "probability": 0.9925 + }, + { + "start": 5847.82, + "end": 5851.42, + "probability": 0.9975 + }, + { + "start": 5851.42, + "end": 5854.72, + "probability": 0.9963 + }, + { + "start": 5855.6, + "end": 5857.86, + "probability": 0.9958 + }, + { + "start": 5858.72, + "end": 5861.49, + "probability": 0.8756 + }, + { + "start": 5863.98, + "end": 5867.68, + "probability": 0.9417 + }, + { + "start": 5867.96, + "end": 5870.0, + "probability": 0.7985 + }, + { + "start": 5870.66, + "end": 5875.66, + "probability": 0.967 + }, + { + "start": 5876.22, + "end": 5878.36, + "probability": 0.8656 + }, + { + "start": 5881.92, + "end": 5885.44, + "probability": 0.6779 + }, + { + "start": 5887.84, + "end": 5891.3, + "probability": 0.9979 + }, + { + "start": 5891.94, + "end": 5893.22, + "probability": 0.7067 + }, + { + "start": 5894.0, + "end": 5899.04, + "probability": 0.9818 + }, + { + "start": 5899.5, + "end": 5903.94, + "probability": 0.9804 + }, + { + "start": 5904.82, + "end": 5906.14, + "probability": 0.9771 + }, + { + "start": 5906.48, + "end": 5908.6, + "probability": 0.989 + }, + { + "start": 5909.1, + "end": 5911.28, + "probability": 0.8936 + }, + { + "start": 5911.46, + "end": 5914.88, + "probability": 0.9619 + }, + { + "start": 5915.3, + "end": 5916.74, + "probability": 0.99 + }, + { + "start": 5917.08, + "end": 5919.0, + "probability": 0.9792 + }, + { + "start": 5919.06, + "end": 5921.06, + "probability": 0.9979 + }, + { + "start": 5921.52, + "end": 5922.04, + "probability": 0.5893 + }, + { + "start": 5922.88, + "end": 5923.58, + "probability": 0.9465 + }, + { + "start": 5926.12, + "end": 5933.38, + "probability": 0.9421 + }, + { + "start": 5933.58, + "end": 5935.26, + "probability": 0.834 + }, + { + "start": 5935.54, + "end": 5935.64, + "probability": 0.8792 + }, + { + "start": 5945.6, + "end": 5946.12, + "probability": 0.4793 + }, + { + "start": 5946.12, + "end": 5947.6, + "probability": 0.9237 + }, + { + "start": 5947.66, + "end": 5948.72, + "probability": 0.9973 + }, + { + "start": 5949.2, + "end": 5950.9, + "probability": 0.7762 + }, + { + "start": 5951.7, + "end": 5955.32, + "probability": 0.9325 + }, + { + "start": 5955.94, + "end": 5958.26, + "probability": 0.9871 + }, + { + "start": 5959.1, + "end": 5959.86, + "probability": 0.9079 + }, + { + "start": 5960.48, + "end": 5961.66, + "probability": 0.9945 + }, + { + "start": 5962.8, + "end": 5965.5, + "probability": 0.9132 + }, + { + "start": 5966.24, + "end": 5969.16, + "probability": 0.9661 + }, + { + "start": 5973.06, + "end": 5974.52, + "probability": 0.6942 + }, + { + "start": 5975.64, + "end": 5975.64, + "probability": 0.0744 + }, + { + "start": 5975.64, + "end": 5978.44, + "probability": 0.8952 + }, + { + "start": 5979.54, + "end": 5981.76, + "probability": 0.9956 + }, + { + "start": 5982.12, + "end": 5984.8, + "probability": 0.9286 + }, + { + "start": 5986.3, + "end": 5991.26, + "probability": 0.9868 + }, + { + "start": 5991.26, + "end": 5994.44, + "probability": 0.9984 + }, + { + "start": 5995.48, + "end": 6003.84, + "probability": 0.9971 + }, + { + "start": 6004.04, + "end": 6005.32, + "probability": 0.8125 + }, + { + "start": 6005.78, + "end": 6008.42, + "probability": 0.978 + }, + { + "start": 6008.64, + "end": 6009.26, + "probability": 0.7404 + }, + { + "start": 6009.28, + "end": 6010.76, + "probability": 0.9697 + }, + { + "start": 6011.34, + "end": 6014.08, + "probability": 0.8997 + }, + { + "start": 6014.7, + "end": 6017.6, + "probability": 0.9926 + }, + { + "start": 6018.08, + "end": 6019.4, + "probability": 0.9777 + }, + { + "start": 6019.76, + "end": 6020.84, + "probability": 0.9951 + }, + { + "start": 6021.42, + "end": 6021.98, + "probability": 0.9497 + }, + { + "start": 6022.02, + "end": 6027.3, + "probability": 0.9976 + }, + { + "start": 6028.12, + "end": 6028.66, + "probability": 0.6364 + }, + { + "start": 6028.74, + "end": 6031.8, + "probability": 0.9885 + }, + { + "start": 6032.38, + "end": 6033.8, + "probability": 0.9844 + }, + { + "start": 6034.24, + "end": 6035.42, + "probability": 0.856 + }, + { + "start": 6035.46, + "end": 6037.14, + "probability": 0.99 + }, + { + "start": 6037.26, + "end": 6037.86, + "probability": 0.4481 + }, + { + "start": 6038.52, + "end": 6039.98, + "probability": 0.9854 + }, + { + "start": 6041.59, + "end": 6045.3, + "probability": 0.9414 + }, + { + "start": 6046.1, + "end": 6050.64, + "probability": 0.9591 + }, + { + "start": 6051.62, + "end": 6053.54, + "probability": 0.9959 + }, + { + "start": 6055.28, + "end": 6058.94, + "probability": 0.9087 + }, + { + "start": 6059.62, + "end": 6060.36, + "probability": 0.8016 + }, + { + "start": 6060.46, + "end": 6062.44, + "probability": 0.9629 + }, + { + "start": 6062.98, + "end": 6064.0, + "probability": 0.9084 + }, + { + "start": 6064.82, + "end": 6066.64, + "probability": 0.4468 + }, + { + "start": 6067.24, + "end": 6068.9, + "probability": 0.9941 + }, + { + "start": 6069.18, + "end": 6070.86, + "probability": 0.9516 + }, + { + "start": 6071.7, + "end": 6074.3, + "probability": 0.9318 + }, + { + "start": 6074.56, + "end": 6075.44, + "probability": 0.6565 + }, + { + "start": 6075.46, + "end": 6078.22, + "probability": 0.9967 + }, + { + "start": 6079.08, + "end": 6083.88, + "probability": 0.999 + }, + { + "start": 6084.32, + "end": 6086.18, + "probability": 0.9917 + }, + { + "start": 6086.6, + "end": 6088.42, + "probability": 0.9291 + }, + { + "start": 6088.88, + "end": 6093.08, + "probability": 0.9832 + }, + { + "start": 6094.04, + "end": 6096.74, + "probability": 0.9966 + }, + { + "start": 6097.2, + "end": 6099.94, + "probability": 0.7734 + }, + { + "start": 6100.24, + "end": 6103.2, + "probability": 0.9902 + }, + { + "start": 6103.3, + "end": 6103.98, + "probability": 0.8365 + }, + { + "start": 6104.44, + "end": 6106.92, + "probability": 0.9579 + }, + { + "start": 6107.34, + "end": 6108.32, + "probability": 0.5057 + }, + { + "start": 6108.4, + "end": 6111.16, + "probability": 0.8938 + }, + { + "start": 6111.64, + "end": 6113.28, + "probability": 0.9586 + }, + { + "start": 6115.02, + "end": 6116.04, + "probability": 0.8037 + }, + { + "start": 6117.38, + "end": 6120.64, + "probability": 0.946 + }, + { + "start": 6120.84, + "end": 6121.44, + "probability": 0.9712 + }, + { + "start": 6132.48, + "end": 6134.74, + "probability": 0.6771 + }, + { + "start": 6135.6, + "end": 6136.15, + "probability": 0.5142 + }, + { + "start": 6137.1, + "end": 6138.24, + "probability": 0.9904 + }, + { + "start": 6139.62, + "end": 6144.98, + "probability": 0.976 + }, + { + "start": 6145.68, + "end": 6150.68, + "probability": 0.9907 + }, + { + "start": 6150.86, + "end": 6155.02, + "probability": 0.9597 + }, + { + "start": 6156.24, + "end": 6161.56, + "probability": 0.9321 + }, + { + "start": 6162.86, + "end": 6165.5, + "probability": 0.7191 + }, + { + "start": 6165.82, + "end": 6167.7, + "probability": 0.8186 + }, + { + "start": 6168.48, + "end": 6170.46, + "probability": 0.9238 + }, + { + "start": 6172.1, + "end": 6174.0, + "probability": 0.9879 + }, + { + "start": 6174.9, + "end": 6177.74, + "probability": 0.92 + }, + { + "start": 6177.92, + "end": 6179.34, + "probability": 0.7924 + }, + { + "start": 6179.66, + "end": 6180.5, + "probability": 0.9767 + }, + { + "start": 6181.58, + "end": 6186.02, + "probability": 0.9866 + }, + { + "start": 6186.9, + "end": 6189.9, + "probability": 0.9903 + }, + { + "start": 6190.92, + "end": 6193.2, + "probability": 0.9761 + }, + { + "start": 6193.78, + "end": 6194.46, + "probability": 0.8327 + }, + { + "start": 6195.78, + "end": 6198.38, + "probability": 0.8516 + }, + { + "start": 6199.24, + "end": 6203.32, + "probability": 0.9826 + }, + { + "start": 6204.5, + "end": 6209.24, + "probability": 0.8119 + }, + { + "start": 6209.84, + "end": 6212.0, + "probability": 0.8083 + }, + { + "start": 6212.9, + "end": 6215.74, + "probability": 0.9929 + }, + { + "start": 6215.8, + "end": 6217.36, + "probability": 0.6093 + }, + { + "start": 6217.58, + "end": 6218.12, + "probability": 0.7396 + }, + { + "start": 6218.28, + "end": 6219.52, + "probability": 0.6428 + }, + { + "start": 6220.58, + "end": 6221.88, + "probability": 0.9631 + }, + { + "start": 6222.64, + "end": 6227.2, + "probability": 0.9796 + }, + { + "start": 6228.22, + "end": 6232.48, + "probability": 0.9422 + }, + { + "start": 6232.96, + "end": 6234.86, + "probability": 0.9644 + }, + { + "start": 6235.22, + "end": 6236.1, + "probability": 0.8703 + }, + { + "start": 6236.6, + "end": 6238.24, + "probability": 0.9187 + }, + { + "start": 6239.16, + "end": 6242.58, + "probability": 0.9142 + }, + { + "start": 6243.02, + "end": 6247.42, + "probability": 0.9894 + }, + { + "start": 6248.64, + "end": 6253.7, + "probability": 0.991 + }, + { + "start": 6254.6, + "end": 6255.12, + "probability": 0.878 + }, + { + "start": 6255.82, + "end": 6259.3, + "probability": 0.9009 + }, + { + "start": 6259.82, + "end": 6260.86, + "probability": 0.988 + }, + { + "start": 6261.42, + "end": 6265.42, + "probability": 0.9927 + }, + { + "start": 6266.4, + "end": 6271.68, + "probability": 0.9769 + }, + { + "start": 6272.28, + "end": 6273.46, + "probability": 0.9171 + }, + { + "start": 6273.96, + "end": 6278.16, + "probability": 0.9845 + }, + { + "start": 6279.14, + "end": 6280.52, + "probability": 0.9609 + }, + { + "start": 6281.28, + "end": 6285.86, + "probability": 0.9854 + }, + { + "start": 6287.0, + "end": 6290.2, + "probability": 0.9938 + }, + { + "start": 6290.72, + "end": 6292.52, + "probability": 0.8487 + }, + { + "start": 6292.88, + "end": 6296.34, + "probability": 0.8191 + }, + { + "start": 6297.02, + "end": 6301.36, + "probability": 0.9792 + }, + { + "start": 6301.36, + "end": 6306.76, + "probability": 0.994 + }, + { + "start": 6307.32, + "end": 6311.32, + "probability": 0.9961 + }, + { + "start": 6312.66, + "end": 6318.42, + "probability": 0.9753 + }, + { + "start": 6319.36, + "end": 6323.04, + "probability": 0.9912 + }, + { + "start": 6323.04, + "end": 6325.38, + "probability": 0.9164 + }, + { + "start": 6326.14, + "end": 6330.36, + "probability": 0.9945 + }, + { + "start": 6331.28, + "end": 6333.68, + "probability": 0.966 + }, + { + "start": 6334.08, + "end": 6337.42, + "probability": 0.9583 + }, + { + "start": 6338.6, + "end": 6341.98, + "probability": 0.9806 + }, + { + "start": 6341.98, + "end": 6344.9, + "probability": 0.9913 + }, + { + "start": 6345.48, + "end": 6347.76, + "probability": 0.8672 + }, + { + "start": 6348.26, + "end": 6349.16, + "probability": 0.6203 + }, + { + "start": 6349.32, + "end": 6349.6, + "probability": 0.4174 + }, + { + "start": 6349.66, + "end": 6349.98, + "probability": 0.7074 + }, + { + "start": 6350.08, + "end": 6350.68, + "probability": 0.3013 + }, + { + "start": 6351.8, + "end": 6352.24, + "probability": 0.6862 + }, + { + "start": 6352.34, + "end": 6353.88, + "probability": 0.9888 + }, + { + "start": 6354.34, + "end": 6354.48, + "probability": 0.0034 + }, + { + "start": 6354.98, + "end": 6356.82, + "probability": 0.927 + }, + { + "start": 6357.48, + "end": 6358.78, + "probability": 0.8612 + }, + { + "start": 6359.28, + "end": 6362.54, + "probability": 0.9869 + }, + { + "start": 6364.0, + "end": 6366.5, + "probability": 0.998 + }, + { + "start": 6366.92, + "end": 6368.06, + "probability": 0.8405 + }, + { + "start": 6368.14, + "end": 6368.92, + "probability": 0.7369 + }, + { + "start": 6369.54, + "end": 6370.98, + "probability": 0.8293 + }, + { + "start": 6371.7, + "end": 6372.68, + "probability": 0.9717 + }, + { + "start": 6373.3, + "end": 6375.58, + "probability": 0.9941 + }, + { + "start": 6376.54, + "end": 6379.72, + "probability": 0.9721 + }, + { + "start": 6379.76, + "end": 6382.46, + "probability": 0.923 + }, + { + "start": 6383.46, + "end": 6386.44, + "probability": 0.8815 + }, + { + "start": 6387.2, + "end": 6391.14, + "probability": 0.9941 + }, + { + "start": 6391.96, + "end": 6395.42, + "probability": 0.8863 + }, + { + "start": 6395.88, + "end": 6397.48, + "probability": 0.7024 + }, + { + "start": 6398.52, + "end": 6403.2, + "probability": 0.9019 + }, + { + "start": 6403.88, + "end": 6404.7, + "probability": 0.5923 + }, + { + "start": 6405.58, + "end": 6410.26, + "probability": 0.9907 + }, + { + "start": 6411.18, + "end": 6414.58, + "probability": 0.9196 + }, + { + "start": 6415.12, + "end": 6419.06, + "probability": 0.6155 + }, + { + "start": 6419.46, + "end": 6421.36, + "probability": 0.8574 + }, + { + "start": 6422.36, + "end": 6425.92, + "probability": 0.7433 + }, + { + "start": 6426.46, + "end": 6428.7, + "probability": 0.7241 + }, + { + "start": 6429.36, + "end": 6433.18, + "probability": 0.8184 + }, + { + "start": 6434.34, + "end": 6439.58, + "probability": 0.9949 + }, + { + "start": 6439.58, + "end": 6445.08, + "probability": 0.9845 + }, + { + "start": 6445.8, + "end": 6449.6, + "probability": 0.9327 + }, + { + "start": 6450.12, + "end": 6454.04, + "probability": 0.9068 + }, + { + "start": 6454.8, + "end": 6458.32, + "probability": 0.8197 + }, + { + "start": 6458.88, + "end": 6460.7, + "probability": 0.8748 + }, + { + "start": 6461.34, + "end": 6462.96, + "probability": 0.9805 + }, + { + "start": 6463.58, + "end": 6464.88, + "probability": 0.9685 + }, + { + "start": 6465.2, + "end": 6467.46, + "probability": 0.9988 + }, + { + "start": 6467.82, + "end": 6471.48, + "probability": 0.9785 + }, + { + "start": 6472.14, + "end": 6473.18, + "probability": 0.6039 + }, + { + "start": 6473.54, + "end": 6478.38, + "probability": 0.9818 + }, + { + "start": 6479.4, + "end": 6481.08, + "probability": 0.9094 + }, + { + "start": 6481.66, + "end": 6486.5, + "probability": 0.9775 + }, + { + "start": 6486.5, + "end": 6491.5, + "probability": 0.9829 + }, + { + "start": 6492.08, + "end": 6498.06, + "probability": 0.6993 + }, + { + "start": 6498.88, + "end": 6502.78, + "probability": 0.793 + }, + { + "start": 6503.68, + "end": 6506.68, + "probability": 0.9424 + }, + { + "start": 6507.24, + "end": 6510.02, + "probability": 0.9955 + }, + { + "start": 6510.32, + "end": 6510.96, + "probability": 0.9358 + }, + { + "start": 6511.02, + "end": 6513.26, + "probability": 0.7374 + }, + { + "start": 6513.74, + "end": 6519.14, + "probability": 0.9818 + }, + { + "start": 6519.86, + "end": 6520.42, + "probability": 0.5269 + }, + { + "start": 6520.62, + "end": 6521.88, + "probability": 0.8732 + }, + { + "start": 6522.0, + "end": 6525.52, + "probability": 0.9453 + }, + { + "start": 6526.46, + "end": 6530.66, + "probability": 0.9338 + }, + { + "start": 6531.26, + "end": 6534.96, + "probability": 0.998 + }, + { + "start": 6535.56, + "end": 6538.76, + "probability": 0.998 + }, + { + "start": 6539.9, + "end": 6544.54, + "probability": 0.9888 + }, + { + "start": 6544.54, + "end": 6550.32, + "probability": 0.9904 + }, + { + "start": 6551.2, + "end": 6552.68, + "probability": 0.8889 + }, + { + "start": 6553.36, + "end": 6554.48, + "probability": 0.9556 + }, + { + "start": 6555.42, + "end": 6556.06, + "probability": 0.426 + }, + { + "start": 6556.72, + "end": 6561.08, + "probability": 0.9304 + }, + { + "start": 6561.6, + "end": 6564.68, + "probability": 0.9792 + }, + { + "start": 6565.6, + "end": 6568.22, + "probability": 0.8559 + }, + { + "start": 6569.18, + "end": 6571.88, + "probability": 0.82 + }, + { + "start": 6572.68, + "end": 6573.4, + "probability": 0.9928 + }, + { + "start": 6574.1, + "end": 6582.62, + "probability": 0.9995 + }, + { + "start": 6583.44, + "end": 6585.9, + "probability": 0.9979 + }, + { + "start": 6586.38, + "end": 6589.74, + "probability": 0.9896 + }, + { + "start": 6590.46, + "end": 6592.24, + "probability": 0.8623 + }, + { + "start": 6592.82, + "end": 6595.18, + "probability": 0.9922 + }, + { + "start": 6595.7, + "end": 6596.04, + "probability": 0.4964 + }, + { + "start": 6596.68, + "end": 6598.0, + "probability": 0.9912 + }, + { + "start": 6598.76, + "end": 6601.66, + "probability": 0.9741 + }, + { + "start": 6602.28, + "end": 6603.36, + "probability": 0.9723 + }, + { + "start": 6603.94, + "end": 6605.32, + "probability": 0.9629 + }, + { + "start": 6605.86, + "end": 6610.72, + "probability": 0.9858 + }, + { + "start": 6611.64, + "end": 6615.96, + "probability": 0.9738 + }, + { + "start": 6615.96, + "end": 6621.5, + "probability": 0.998 + }, + { + "start": 6622.58, + "end": 6623.9, + "probability": 0.7642 + }, + { + "start": 6624.54, + "end": 6627.96, + "probability": 0.9957 + }, + { + "start": 6628.84, + "end": 6631.92, + "probability": 0.84 + }, + { + "start": 6632.54, + "end": 6636.94, + "probability": 0.9933 + }, + { + "start": 6637.86, + "end": 6642.68, + "probability": 0.9846 + }, + { + "start": 6642.7, + "end": 6645.74, + "probability": 0.9982 + }, + { + "start": 6646.26, + "end": 6647.84, + "probability": 0.5853 + }, + { + "start": 6648.6, + "end": 6652.06, + "probability": 0.9984 + }, + { + "start": 6652.8, + "end": 6656.52, + "probability": 0.9825 + }, + { + "start": 6657.72, + "end": 6659.1, + "probability": 0.8382 + }, + { + "start": 6659.16, + "end": 6660.56, + "probability": 0.9509 + }, + { + "start": 6661.06, + "end": 6664.58, + "probability": 0.9674 + }, + { + "start": 6665.22, + "end": 6667.28, + "probability": 0.9629 + }, + { + "start": 6668.04, + "end": 6669.7, + "probability": 0.9752 + }, + { + "start": 6670.7, + "end": 6671.12, + "probability": 0.2902 + }, + { + "start": 6671.64, + "end": 6674.74, + "probability": 0.9797 + }, + { + "start": 6675.56, + "end": 6680.52, + "probability": 0.8733 + }, + { + "start": 6680.56, + "end": 6681.14, + "probability": 0.7199 + }, + { + "start": 6681.68, + "end": 6685.64, + "probability": 0.9941 + }, + { + "start": 6685.64, + "end": 6689.42, + "probability": 0.9844 + }, + { + "start": 6690.56, + "end": 6692.64, + "probability": 0.9779 + }, + { + "start": 6693.2, + "end": 6697.9, + "probability": 0.9802 + }, + { + "start": 6698.76, + "end": 6703.54, + "probability": 0.551 + }, + { + "start": 6704.1, + "end": 6711.38, + "probability": 0.9827 + }, + { + "start": 6712.14, + "end": 6716.2, + "probability": 0.9963 + }, + { + "start": 6717.26, + "end": 6720.04, + "probability": 0.9919 + }, + { + "start": 6720.48, + "end": 6722.84, + "probability": 0.9815 + }, + { + "start": 6723.32, + "end": 6725.74, + "probability": 0.9817 + }, + { + "start": 6726.34, + "end": 6729.94, + "probability": 0.9626 + }, + { + "start": 6730.38, + "end": 6731.74, + "probability": 0.8902 + }, + { + "start": 6732.12, + "end": 6733.78, + "probability": 0.9605 + }, + { + "start": 6734.08, + "end": 6735.92, + "probability": 0.7458 + }, + { + "start": 6736.54, + "end": 6739.38, + "probability": 0.9397 + }, + { + "start": 6740.22, + "end": 6745.02, + "probability": 0.9146 + }, + { + "start": 6745.54, + "end": 6748.2, + "probability": 0.9642 + }, + { + "start": 6748.96, + "end": 6749.56, + "probability": 0.7614 + }, + { + "start": 6750.24, + "end": 6755.06, + "probability": 0.8981 + }, + { + "start": 6755.8, + "end": 6758.0, + "probability": 0.9656 + }, + { + "start": 6759.14, + "end": 6762.4, + "probability": 0.91 + }, + { + "start": 6763.2, + "end": 6766.7, + "probability": 0.9861 + }, + { + "start": 6766.86, + "end": 6769.98, + "probability": 0.9932 + }, + { + "start": 6770.96, + "end": 6773.18, + "probability": 0.9668 + }, + { + "start": 6773.56, + "end": 6775.54, + "probability": 0.9453 + }, + { + "start": 6776.4, + "end": 6780.06, + "probability": 0.9801 + }, + { + "start": 6780.94, + "end": 6785.2, + "probability": 0.9835 + }, + { + "start": 6785.2, + "end": 6788.24, + "probability": 0.9323 + }, + { + "start": 6789.08, + "end": 6789.66, + "probability": 0.8895 + }, + { + "start": 6790.66, + "end": 6793.08, + "probability": 0.7491 + }, + { + "start": 6793.7, + "end": 6795.96, + "probability": 0.9397 + }, + { + "start": 6797.12, + "end": 6797.8, + "probability": 0.938 + }, + { + "start": 6798.48, + "end": 6799.76, + "probability": 0.7076 + }, + { + "start": 6800.34, + "end": 6802.28, + "probability": 0.9043 + }, + { + "start": 6802.9, + "end": 6804.0, + "probability": 0.8143 + }, + { + "start": 6804.68, + "end": 6807.79, + "probability": 0.9946 + }, + { + "start": 6808.56, + "end": 6812.0, + "probability": 0.9845 + }, + { + "start": 6813.06, + "end": 6815.78, + "probability": 0.8818 + }, + { + "start": 6816.06, + "end": 6817.54, + "probability": 0.7733 + }, + { + "start": 6818.04, + "end": 6821.14, + "probability": 0.7474 + }, + { + "start": 6821.86, + "end": 6822.72, + "probability": 0.5679 + }, + { + "start": 6822.94, + "end": 6824.7, + "probability": 0.6107 + }, + { + "start": 6825.14, + "end": 6826.22, + "probability": 0.6824 + }, + { + "start": 6827.02, + "end": 6828.5, + "probability": 0.781 + }, + { + "start": 6829.1, + "end": 6832.16, + "probability": 0.9873 + }, + { + "start": 6832.88, + "end": 6838.64, + "probability": 0.972 + }, + { + "start": 6839.62, + "end": 6846.26, + "probability": 0.9464 + }, + { + "start": 6846.66, + "end": 6849.92, + "probability": 0.9817 + }, + { + "start": 6850.46, + "end": 6856.38, + "probability": 0.9803 + }, + { + "start": 6857.14, + "end": 6857.66, + "probability": 0.7673 + }, + { + "start": 6858.36, + "end": 6859.4, + "probability": 0.7646 + }, + { + "start": 6860.16, + "end": 6862.36, + "probability": 0.9893 + }, + { + "start": 6862.98, + "end": 6864.96, + "probability": 0.9175 + }, + { + "start": 6865.56, + "end": 6870.4, + "probability": 0.9885 + }, + { + "start": 6870.41, + "end": 6873.38, + "probability": 0.996 + }, + { + "start": 6874.26, + "end": 6876.14, + "probability": 0.969 + }, + { + "start": 6876.56, + "end": 6879.98, + "probability": 0.9654 + }, + { + "start": 6880.5, + "end": 6883.48, + "probability": 0.9831 + }, + { + "start": 6884.08, + "end": 6884.86, + "probability": 0.523 + }, + { + "start": 6885.44, + "end": 6889.06, + "probability": 0.9919 + }, + { + "start": 6889.56, + "end": 6889.78, + "probability": 0.8702 + }, + { + "start": 6890.32, + "end": 6891.36, + "probability": 0.9506 + }, + { + "start": 6905.98, + "end": 6908.04, + "probability": 0.8467 + }, + { + "start": 6908.2, + "end": 6908.68, + "probability": 0.6091 + }, + { + "start": 6909.34, + "end": 6910.84, + "probability": 0.8903 + }, + { + "start": 6911.22, + "end": 6912.0, + "probability": 0.8276 + }, + { + "start": 6912.02, + "end": 6912.66, + "probability": 0.6338 + }, + { + "start": 6912.88, + "end": 6916.56, + "probability": 0.8301 + }, + { + "start": 6957.68, + "end": 6959.92, + "probability": 0.4826 + }, + { + "start": 6960.82, + "end": 6961.66, + "probability": 0.6123 + }, + { + "start": 6961.72, + "end": 6962.94, + "probability": 0.9934 + }, + { + "start": 6963.2, + "end": 6963.6, + "probability": 0.2959 + }, + { + "start": 6964.94, + "end": 6965.14, + "probability": 0.3685 + }, + { + "start": 6965.34, + "end": 6966.3, + "probability": 0.8812 + }, + { + "start": 6968.44, + "end": 6969.98, + "probability": 0.5527 + }, + { + "start": 6970.08, + "end": 6971.91, + "probability": 0.9531 + }, + { + "start": 6973.16, + "end": 6975.8, + "probability": 0.1803 + }, + { + "start": 6977.0, + "end": 6978.23, + "probability": 0.0358 + }, + { + "start": 6997.28, + "end": 6999.58, + "probability": 0.9939 + }, + { + "start": 7000.78, + "end": 7005.16, + "probability": 0.9888 + }, + { + "start": 7007.34, + "end": 7009.6, + "probability": 0.6683 + }, + { + "start": 7010.56, + "end": 7012.34, + "probability": 0.9143 + }, + { + "start": 7015.82, + "end": 7018.4, + "probability": 0.6667 + }, + { + "start": 7019.1, + "end": 7019.1, + "probability": 0.5224 + }, + { + "start": 7019.16, + "end": 7022.68, + "probability": 0.996 + }, + { + "start": 7023.44, + "end": 7027.38, + "probability": 0.829 + }, + { + "start": 7027.48, + "end": 7029.22, + "probability": 0.734 + }, + { + "start": 7030.58, + "end": 7031.8, + "probability": 0.6475 + }, + { + "start": 7032.24, + "end": 7033.24, + "probability": 0.7593 + }, + { + "start": 7033.92, + "end": 7038.04, + "probability": 0.9543 + }, + { + "start": 7038.74, + "end": 7039.5, + "probability": 0.9905 + }, + { + "start": 7039.64, + "end": 7041.66, + "probability": 0.9956 + }, + { + "start": 7042.26, + "end": 7043.76, + "probability": 0.9932 + }, + { + "start": 7044.74, + "end": 7047.8, + "probability": 0.8752 + }, + { + "start": 7047.84, + "end": 7051.14, + "probability": 0.9517 + }, + { + "start": 7052.84, + "end": 7055.58, + "probability": 0.9436 + }, + { + "start": 7057.08, + "end": 7060.42, + "probability": 0.9904 + }, + { + "start": 7061.5, + "end": 7064.5, + "probability": 0.974 + }, + { + "start": 7065.7, + "end": 7069.28, + "probability": 0.9966 + }, + { + "start": 7069.98, + "end": 7072.94, + "probability": 0.9506 + }, + { + "start": 7073.06, + "end": 7074.16, + "probability": 0.9208 + }, + { + "start": 7075.46, + "end": 7079.42, + "probability": 0.9125 + }, + { + "start": 7080.36, + "end": 7083.2, + "probability": 0.9969 + }, + { + "start": 7083.5, + "end": 7084.13, + "probability": 0.666 + }, + { + "start": 7084.76, + "end": 7085.12, + "probability": 0.9072 + }, + { + "start": 7085.92, + "end": 7089.66, + "probability": 0.9647 + }, + { + "start": 7089.98, + "end": 7090.88, + "probability": 0.915 + }, + { + "start": 7091.5, + "end": 7092.58, + "probability": 0.9082 + }, + { + "start": 7093.54, + "end": 7098.24, + "probability": 0.976 + }, + { + "start": 7098.86, + "end": 7100.68, + "probability": 0.9043 + }, + { + "start": 7100.82, + "end": 7103.38, + "probability": 0.9904 + }, + { + "start": 7104.38, + "end": 7107.72, + "probability": 0.8185 + }, + { + "start": 7107.72, + "end": 7111.1, + "probability": 0.9998 + }, + { + "start": 7112.22, + "end": 7112.72, + "probability": 0.6516 + }, + { + "start": 7112.92, + "end": 7120.58, + "probability": 0.9331 + }, + { + "start": 7120.64, + "end": 7123.56, + "probability": 0.9783 + }, + { + "start": 7123.7, + "end": 7125.28, + "probability": 0.9073 + }, + { + "start": 7125.32, + "end": 7125.98, + "probability": 0.8475 + }, + { + "start": 7126.12, + "end": 7126.66, + "probability": 0.7293 + }, + { + "start": 7127.36, + "end": 7129.18, + "probability": 0.7277 + }, + { + "start": 7129.28, + "end": 7133.8, + "probability": 0.9731 + }, + { + "start": 7133.88, + "end": 7134.12, + "probability": 0.3974 + }, + { + "start": 7134.18, + "end": 7135.14, + "probability": 0.9368 + }, + { + "start": 7135.2, + "end": 7135.66, + "probability": 0.6599 + }, + { + "start": 7136.18, + "end": 7139.26, + "probability": 0.7243 + }, + { + "start": 7139.82, + "end": 7144.74, + "probability": 0.9736 + }, + { + "start": 7145.32, + "end": 7148.32, + "probability": 0.8833 + }, + { + "start": 7149.54, + "end": 7152.66, + "probability": 0.9924 + }, + { + "start": 7152.94, + "end": 7154.36, + "probability": 0.9197 + }, + { + "start": 7155.36, + "end": 7156.82, + "probability": 0.8955 + }, + { + "start": 7157.54, + "end": 7162.18, + "probability": 0.9797 + }, + { + "start": 7162.64, + "end": 7165.62, + "probability": 0.9848 + }, + { + "start": 7166.32, + "end": 7167.76, + "probability": 0.9629 + }, + { + "start": 7167.98, + "end": 7168.56, + "probability": 0.6764 + }, + { + "start": 7168.98, + "end": 7170.84, + "probability": 0.9865 + }, + { + "start": 7170.96, + "end": 7171.92, + "probability": 0.9456 + }, + { + "start": 7173.46, + "end": 7175.12, + "probability": 0.9924 + }, + { + "start": 7175.16, + "end": 7176.06, + "probability": 0.8569 + }, + { + "start": 7176.18, + "end": 7177.88, + "probability": 0.8804 + }, + { + "start": 7178.72, + "end": 7182.66, + "probability": 0.9197 + }, + { + "start": 7183.3, + "end": 7183.94, + "probability": 0.9451 + }, + { + "start": 7184.58, + "end": 7185.12, + "probability": 0.4984 + }, + { + "start": 7185.7, + "end": 7189.08, + "probability": 0.9922 + }, + { + "start": 7189.66, + "end": 7193.04, + "probability": 0.978 + }, + { + "start": 7193.56, + "end": 7195.88, + "probability": 0.8926 + }, + { + "start": 7197.24, + "end": 7200.7, + "probability": 0.9631 + }, + { + "start": 7201.02, + "end": 7204.6, + "probability": 0.9728 + }, + { + "start": 7205.46, + "end": 7207.48, + "probability": 0.4998 + }, + { + "start": 7208.32, + "end": 7210.68, + "probability": 0.9048 + }, + { + "start": 7212.24, + "end": 7212.82, + "probability": 0.5603 + }, + { + "start": 7212.94, + "end": 7213.98, + "probability": 0.8652 + }, + { + "start": 7214.04, + "end": 7217.06, + "probability": 0.9757 + }, + { + "start": 7217.06, + "end": 7220.42, + "probability": 0.9523 + }, + { + "start": 7220.58, + "end": 7221.16, + "probability": 0.2629 + }, + { + "start": 7221.28, + "end": 7226.76, + "probability": 0.9886 + }, + { + "start": 7226.98, + "end": 7230.84, + "probability": 0.9972 + }, + { + "start": 7231.32, + "end": 7235.23, + "probability": 0.9501 + }, + { + "start": 7236.4, + "end": 7240.46, + "probability": 0.9583 + }, + { + "start": 7241.58, + "end": 7244.58, + "probability": 0.9929 + }, + { + "start": 7245.2, + "end": 7247.96, + "probability": 0.8351 + }, + { + "start": 7248.2, + "end": 7248.92, + "probability": 0.8098 + }, + { + "start": 7249.44, + "end": 7250.22, + "probability": 0.97 + }, + { + "start": 7252.78, + "end": 7258.82, + "probability": 0.9417 + }, + { + "start": 7258.82, + "end": 7259.0, + "probability": 0.8493 + }, + { + "start": 7273.0, + "end": 7273.78, + "probability": 0.5516 + }, + { + "start": 7274.72, + "end": 7276.88, + "probability": 0.6427 + }, + { + "start": 7278.12, + "end": 7282.4, + "probability": 0.902 + }, + { + "start": 7283.12, + "end": 7288.12, + "probability": 0.9218 + }, + { + "start": 7289.34, + "end": 7295.1, + "probability": 0.9924 + }, + { + "start": 7295.36, + "end": 7296.74, + "probability": 0.964 + }, + { + "start": 7296.92, + "end": 7298.38, + "probability": 0.7476 + }, + { + "start": 7299.1, + "end": 7300.44, + "probability": 0.7625 + }, + { + "start": 7301.18, + "end": 7305.68, + "probability": 0.9882 + }, + { + "start": 7306.86, + "end": 7310.24, + "probability": 0.9785 + }, + { + "start": 7310.96, + "end": 7315.36, + "probability": 0.995 + }, + { + "start": 7315.94, + "end": 7319.88, + "probability": 0.9366 + }, + { + "start": 7320.4, + "end": 7321.32, + "probability": 0.9731 + }, + { + "start": 7321.88, + "end": 7325.96, + "probability": 0.9842 + }, + { + "start": 7326.62, + "end": 7328.48, + "probability": 0.9231 + }, + { + "start": 7328.6, + "end": 7329.3, + "probability": 0.7982 + }, + { + "start": 7329.4, + "end": 7332.72, + "probability": 0.979 + }, + { + "start": 7333.22, + "end": 7336.18, + "probability": 0.9951 + }, + { + "start": 7336.8, + "end": 7339.22, + "probability": 0.9635 + }, + { + "start": 7339.76, + "end": 7344.94, + "probability": 0.9813 + }, + { + "start": 7345.86, + "end": 7346.74, + "probability": 0.6312 + }, + { + "start": 7347.1, + "end": 7349.2, + "probability": 0.9969 + }, + { + "start": 7349.74, + "end": 7353.92, + "probability": 0.9891 + }, + { + "start": 7354.8, + "end": 7358.88, + "probability": 0.9836 + }, + { + "start": 7359.5, + "end": 7363.92, + "probability": 0.9708 + }, + { + "start": 7364.68, + "end": 7365.92, + "probability": 0.7246 + }, + { + "start": 7366.46, + "end": 7367.0, + "probability": 0.5865 + }, + { + "start": 7367.18, + "end": 7368.56, + "probability": 0.798 + }, + { + "start": 7368.82, + "end": 7371.38, + "probability": 0.9408 + }, + { + "start": 7372.0, + "end": 7372.78, + "probability": 0.6583 + }, + { + "start": 7373.88, + "end": 7378.3, + "probability": 0.9775 + }, + { + "start": 7378.96, + "end": 7381.68, + "probability": 0.6782 + }, + { + "start": 7382.28, + "end": 7388.54, + "probability": 0.9919 + }, + { + "start": 7389.22, + "end": 7392.9, + "probability": 0.9976 + }, + { + "start": 7393.56, + "end": 7395.32, + "probability": 0.8318 + }, + { + "start": 7395.84, + "end": 7396.4, + "probability": 0.9182 + }, + { + "start": 7397.22, + "end": 7397.4, + "probability": 0.7644 + }, + { + "start": 7398.02, + "end": 7400.66, + "probability": 0.8845 + }, + { + "start": 7401.58, + "end": 7401.96, + "probability": 0.7654 + }, + { + "start": 7402.08, + "end": 7402.54, + "probability": 0.8748 + }, + { + "start": 7402.62, + "end": 7403.48, + "probability": 0.8023 + }, + { + "start": 7403.62, + "end": 7403.98, + "probability": 0.4006 + }, + { + "start": 7404.14, + "end": 7404.5, + "probability": 0.7331 + }, + { + "start": 7404.68, + "end": 7405.74, + "probability": 0.9137 + }, + { + "start": 7405.86, + "end": 7407.28, + "probability": 0.931 + }, + { + "start": 7407.84, + "end": 7411.1, + "probability": 0.798 + }, + { + "start": 7411.74, + "end": 7414.84, + "probability": 0.9942 + }, + { + "start": 7415.34, + "end": 7418.5, + "probability": 0.9932 + }, + { + "start": 7418.5, + "end": 7421.52, + "probability": 0.9977 + }, + { + "start": 7422.02, + "end": 7427.32, + "probability": 0.8817 + }, + { + "start": 7427.96, + "end": 7429.02, + "probability": 0.7938 + }, + { + "start": 7429.08, + "end": 7429.96, + "probability": 0.9503 + }, + { + "start": 7430.04, + "end": 7431.48, + "probability": 0.9905 + }, + { + "start": 7431.78, + "end": 7433.34, + "probability": 0.9901 + }, + { + "start": 7433.7, + "end": 7435.16, + "probability": 0.9434 + }, + { + "start": 7435.64, + "end": 7438.86, + "probability": 0.9915 + }, + { + "start": 7438.86, + "end": 7443.02, + "probability": 0.9972 + }, + { + "start": 7443.1, + "end": 7444.44, + "probability": 0.9961 + }, + { + "start": 7444.94, + "end": 7447.74, + "probability": 0.8441 + }, + { + "start": 7448.26, + "end": 7449.4, + "probability": 0.9573 + }, + { + "start": 7449.48, + "end": 7450.22, + "probability": 0.9644 + }, + { + "start": 7450.54, + "end": 7452.92, + "probability": 0.9976 + }, + { + "start": 7452.92, + "end": 7455.78, + "probability": 0.9969 + }, + { + "start": 7456.74, + "end": 7458.76, + "probability": 0.9705 + }, + { + "start": 7458.86, + "end": 7459.96, + "probability": 0.9888 + }, + { + "start": 7460.34, + "end": 7462.4, + "probability": 0.9746 + }, + { + "start": 7463.12, + "end": 7465.26, + "probability": 0.9726 + }, + { + "start": 7465.32, + "end": 7466.22, + "probability": 0.9515 + }, + { + "start": 7466.3, + "end": 7468.2, + "probability": 0.9799 + }, + { + "start": 7468.72, + "end": 7471.14, + "probability": 0.9796 + }, + { + "start": 7472.08, + "end": 7473.86, + "probability": 0.9277 + }, + { + "start": 7474.0, + "end": 7475.89, + "probability": 0.938 + }, + { + "start": 7476.66, + "end": 7477.44, + "probability": 0.9612 + }, + { + "start": 7477.58, + "end": 7480.66, + "probability": 0.9945 + }, + { + "start": 7481.08, + "end": 7483.74, + "probability": 0.8707 + }, + { + "start": 7483.84, + "end": 7484.7, + "probability": 0.6749 + }, + { + "start": 7484.82, + "end": 7487.52, + "probability": 0.9729 + }, + { + "start": 7487.9, + "end": 7489.94, + "probability": 0.9591 + }, + { + "start": 7490.7, + "end": 7495.4, + "probability": 0.97 + }, + { + "start": 7495.4, + "end": 7499.98, + "probability": 0.9938 + }, + { + "start": 7500.64, + "end": 7502.62, + "probability": 0.9283 + }, + { + "start": 7502.62, + "end": 7506.64, + "probability": 0.9565 + }, + { + "start": 7507.42, + "end": 7511.22, + "probability": 0.9944 + }, + { + "start": 7511.22, + "end": 7517.46, + "probability": 0.9808 + }, + { + "start": 7518.18, + "end": 7520.36, + "probability": 0.9924 + }, + { + "start": 7521.32, + "end": 7528.04, + "probability": 0.9254 + }, + { + "start": 7528.28, + "end": 7529.44, + "probability": 0.9435 + }, + { + "start": 7530.0, + "end": 7531.8, + "probability": 0.8986 + }, + { + "start": 7532.74, + "end": 7536.18, + "probability": 0.8095 + }, + { + "start": 7537.32, + "end": 7538.48, + "probability": 0.8407 + }, + { + "start": 7538.84, + "end": 7541.42, + "probability": 0.6903 + }, + { + "start": 7542.0, + "end": 7543.98, + "probability": 0.9609 + }, + { + "start": 7544.42, + "end": 7547.64, + "probability": 0.9443 + }, + { + "start": 7547.92, + "end": 7552.32, + "probability": 0.9164 + }, + { + "start": 7552.84, + "end": 7554.18, + "probability": 0.9304 + }, + { + "start": 7554.32, + "end": 7559.9, + "probability": 0.9766 + }, + { + "start": 7561.22, + "end": 7563.6, + "probability": 0.984 + }, + { + "start": 7563.6, + "end": 7567.92, + "probability": 0.989 + }, + { + "start": 7568.42, + "end": 7571.66, + "probability": 0.9884 + }, + { + "start": 7572.24, + "end": 7575.86, + "probability": 0.9982 + }, + { + "start": 7576.42, + "end": 7577.32, + "probability": 0.9619 + }, + { + "start": 7577.44, + "end": 7580.28, + "probability": 0.9955 + }, + { + "start": 7580.28, + "end": 7584.94, + "probability": 0.965 + }, + { + "start": 7585.58, + "end": 7588.58, + "probability": 0.9753 + }, + { + "start": 7589.16, + "end": 7590.72, + "probability": 0.9683 + }, + { + "start": 7591.5, + "end": 7595.08, + "probability": 0.8436 + }, + { + "start": 7595.22, + "end": 7598.24, + "probability": 0.95 + }, + { + "start": 7599.14, + "end": 7601.16, + "probability": 0.8362 + }, + { + "start": 7601.62, + "end": 7604.66, + "probability": 0.9799 + }, + { + "start": 7604.66, + "end": 7608.2, + "probability": 0.9931 + }, + { + "start": 7608.64, + "end": 7610.26, + "probability": 0.9902 + }, + { + "start": 7610.78, + "end": 7612.44, + "probability": 0.476 + }, + { + "start": 7613.06, + "end": 7617.58, + "probability": 0.8572 + }, + { + "start": 7618.78, + "end": 7624.2, + "probability": 0.9964 + }, + { + "start": 7625.1, + "end": 7629.68, + "probability": 0.9966 + }, + { + "start": 7631.54, + "end": 7631.9, + "probability": 0.2996 + }, + { + "start": 7631.9, + "end": 7632.9, + "probability": 0.6884 + }, + { + "start": 7633.4, + "end": 7634.82, + "probability": 0.8111 + }, + { + "start": 7635.28, + "end": 7636.0, + "probability": 0.6926 + }, + { + "start": 7636.06, + "end": 7637.16, + "probability": 0.9773 + }, + { + "start": 7637.26, + "end": 7641.4, + "probability": 0.9527 + }, + { + "start": 7642.16, + "end": 7645.32, + "probability": 0.9885 + }, + { + "start": 7646.1, + "end": 7649.35, + "probability": 0.9505 + }, + { + "start": 7649.96, + "end": 7650.76, + "probability": 0.6142 + }, + { + "start": 7650.82, + "end": 7654.32, + "probability": 0.9701 + }, + { + "start": 7654.6, + "end": 7656.48, + "probability": 0.9858 + }, + { + "start": 7656.56, + "end": 7660.26, + "probability": 0.8967 + }, + { + "start": 7660.76, + "end": 7663.38, + "probability": 0.7036 + }, + { + "start": 7664.02, + "end": 7665.46, + "probability": 0.904 + }, + { + "start": 7665.58, + "end": 7666.42, + "probability": 0.9533 + }, + { + "start": 7666.88, + "end": 7668.51, + "probability": 0.9392 + }, + { + "start": 7669.16, + "end": 7670.7, + "probability": 0.9155 + }, + { + "start": 7671.16, + "end": 7676.02, + "probability": 0.989 + }, + { + "start": 7676.62, + "end": 7682.52, + "probability": 0.9486 + }, + { + "start": 7683.1, + "end": 7683.46, + "probability": 0.6646 + }, + { + "start": 7683.74, + "end": 7687.94, + "probability": 0.8475 + }, + { + "start": 7688.32, + "end": 7690.84, + "probability": 0.9703 + }, + { + "start": 7691.32, + "end": 7692.56, + "probability": 0.8434 + }, + { + "start": 7692.7, + "end": 7695.06, + "probability": 0.9834 + }, + { + "start": 7695.44, + "end": 7700.36, + "probability": 0.999 + }, + { + "start": 7700.44, + "end": 7701.1, + "probability": 0.8257 + }, + { + "start": 7701.42, + "end": 7704.82, + "probability": 0.9107 + }, + { + "start": 7705.52, + "end": 7705.96, + "probability": 0.953 + }, + { + "start": 7706.0, + "end": 7707.52, + "probability": 0.8543 + }, + { + "start": 7707.92, + "end": 7711.6, + "probability": 0.9762 + }, + { + "start": 7711.6, + "end": 7715.98, + "probability": 0.9865 + }, + { + "start": 7716.44, + "end": 7719.5, + "probability": 0.9842 + }, + { + "start": 7720.12, + "end": 7721.18, + "probability": 0.7947 + }, + { + "start": 7721.58, + "end": 7725.02, + "probability": 0.9973 + }, + { + "start": 7725.02, + "end": 7728.7, + "probability": 0.9969 + }, + { + "start": 7729.16, + "end": 7731.98, + "probability": 0.9667 + }, + { + "start": 7732.46, + "end": 7734.44, + "probability": 0.8762 + }, + { + "start": 7734.88, + "end": 7736.72, + "probability": 0.8968 + }, + { + "start": 7737.04, + "end": 7739.72, + "probability": 0.9412 + }, + { + "start": 7740.24, + "end": 7744.46, + "probability": 0.964 + }, + { + "start": 7755.42, + "end": 7756.9, + "probability": 0.0979 + }, + { + "start": 7756.9, + "end": 7756.9, + "probability": 0.0282 + }, + { + "start": 7756.9, + "end": 7756.9, + "probability": 0.0186 + }, + { + "start": 7756.9, + "end": 7758.5, + "probability": 0.3091 + }, + { + "start": 7758.94, + "end": 7761.18, + "probability": 0.9604 + }, + { + "start": 7761.78, + "end": 7765.56, + "probability": 0.9622 + }, + { + "start": 7765.56, + "end": 7770.64, + "probability": 0.9978 + }, + { + "start": 7771.02, + "end": 7773.8, + "probability": 0.8822 + }, + { + "start": 7774.22, + "end": 7777.5, + "probability": 0.9938 + }, + { + "start": 7777.5, + "end": 7782.32, + "probability": 0.9791 + }, + { + "start": 7783.28, + "end": 7784.1, + "probability": 0.5746 + }, + { + "start": 7784.16, + "end": 7787.56, + "probability": 0.9939 + }, + { + "start": 7788.08, + "end": 7790.24, + "probability": 0.9325 + }, + { + "start": 7790.78, + "end": 7795.02, + "probability": 0.9926 + }, + { + "start": 7795.76, + "end": 7801.84, + "probability": 0.9663 + }, + { + "start": 7803.36, + "end": 7805.52, + "probability": 0.9775 + }, + { + "start": 7805.86, + "end": 7809.82, + "probability": 0.9728 + }, + { + "start": 7810.2, + "end": 7810.94, + "probability": 0.5413 + }, + { + "start": 7811.7, + "end": 7813.34, + "probability": 0.8164 + }, + { + "start": 7813.72, + "end": 7815.14, + "probability": 0.9664 + }, + { + "start": 7815.38, + "end": 7817.54, + "probability": 0.9029 + }, + { + "start": 7817.86, + "end": 7818.86, + "probability": 0.8737 + }, + { + "start": 7819.26, + "end": 7820.4, + "probability": 0.8564 + }, + { + "start": 7820.48, + "end": 7821.36, + "probability": 0.918 + }, + { + "start": 7821.62, + "end": 7823.96, + "probability": 0.9534 + }, + { + "start": 7824.6, + "end": 7826.14, + "probability": 0.8599 + }, + { + "start": 7826.84, + "end": 7829.64, + "probability": 0.8827 + }, + { + "start": 7829.88, + "end": 7834.6, + "probability": 0.9849 + }, + { + "start": 7834.96, + "end": 7836.92, + "probability": 0.9262 + }, + { + "start": 7837.44, + "end": 7840.3, + "probability": 0.9899 + }, + { + "start": 7840.4, + "end": 7841.9, + "probability": 0.7421 + }, + { + "start": 7842.36, + "end": 7843.56, + "probability": 0.9795 + }, + { + "start": 7843.64, + "end": 7844.5, + "probability": 0.5331 + }, + { + "start": 7844.64, + "end": 7845.44, + "probability": 0.824 + }, + { + "start": 7845.8, + "end": 7848.48, + "probability": 0.954 + }, + { + "start": 7848.48, + "end": 7853.32, + "probability": 0.9893 + }, + { + "start": 7854.34, + "end": 7856.3, + "probability": 0.9993 + }, + { + "start": 7856.62, + "end": 7858.46, + "probability": 0.9017 + }, + { + "start": 7858.58, + "end": 7859.54, + "probability": 0.7866 + }, + { + "start": 7859.88, + "end": 7861.96, + "probability": 0.9732 + }, + { + "start": 7862.38, + "end": 7865.46, + "probability": 0.9924 + }, + { + "start": 7865.46, + "end": 7869.9, + "probability": 0.8809 + }, + { + "start": 7869.9, + "end": 7870.7, + "probability": 0.6818 + }, + { + "start": 7870.84, + "end": 7873.74, + "probability": 0.9873 + }, + { + "start": 7874.5, + "end": 7878.22, + "probability": 0.8292 + }, + { + "start": 7878.82, + "end": 7882.82, + "probability": 0.8498 + }, + { + "start": 7882.92, + "end": 7885.04, + "probability": 0.8967 + }, + { + "start": 7885.16, + "end": 7885.96, + "probability": 0.9773 + }, + { + "start": 7886.44, + "end": 7890.84, + "probability": 0.9592 + }, + { + "start": 7891.14, + "end": 7891.76, + "probability": 0.9181 + }, + { + "start": 7892.42, + "end": 7894.28, + "probability": 0.9211 + }, + { + "start": 7895.44, + "end": 7899.88, + "probability": 0.9536 + }, + { + "start": 7900.22, + "end": 7904.68, + "probability": 0.994 + }, + { + "start": 7905.24, + "end": 7908.68, + "probability": 0.9596 + }, + { + "start": 7909.72, + "end": 7909.78, + "probability": 0.0085 + }, + { + "start": 7910.24, + "end": 7914.54, + "probability": 0.9831 + }, + { + "start": 7915.06, + "end": 7917.18, + "probability": 0.9466 + }, + { + "start": 7917.92, + "end": 7918.12, + "probability": 0.2316 + }, + { + "start": 7918.14, + "end": 7918.88, + "probability": 0.6149 + }, + { + "start": 7919.1, + "end": 7919.86, + "probability": 0.9219 + }, + { + "start": 7920.1, + "end": 7923.18, + "probability": 0.879 + }, + { + "start": 7923.4, + "end": 7924.46, + "probability": 0.5794 + }, + { + "start": 7924.76, + "end": 7929.72, + "probability": 0.9777 + }, + { + "start": 7930.14, + "end": 7932.06, + "probability": 0.8637 + }, + { + "start": 7932.16, + "end": 7933.12, + "probability": 0.8831 + }, + { + "start": 7934.08, + "end": 7936.46, + "probability": 0.9947 + }, + { + "start": 7936.98, + "end": 7939.92, + "probability": 0.9855 + }, + { + "start": 7940.22, + "end": 7943.72, + "probability": 0.9569 + }, + { + "start": 7944.24, + "end": 7947.8, + "probability": 0.7799 + }, + { + "start": 7947.8, + "end": 7951.84, + "probability": 0.9868 + }, + { + "start": 7952.76, + "end": 7957.46, + "probability": 0.8582 + }, + { + "start": 7958.04, + "end": 7961.96, + "probability": 0.9933 + }, + { + "start": 7962.6, + "end": 7966.88, + "probability": 0.9844 + }, + { + "start": 7966.88, + "end": 7972.52, + "probability": 0.9581 + }, + { + "start": 7973.4, + "end": 7975.68, + "probability": 0.7294 + }, + { + "start": 7976.52, + "end": 7979.34, + "probability": 0.8319 + }, + { + "start": 7980.18, + "end": 7984.38, + "probability": 0.8548 + }, + { + "start": 7985.28, + "end": 7986.32, + "probability": 0.6702 + }, + { + "start": 7986.5, + "end": 7986.96, + "probability": 0.8956 + }, + { + "start": 7987.12, + "end": 7991.1, + "probability": 0.8847 + }, + { + "start": 7991.96, + "end": 7994.06, + "probability": 0.7176 + }, + { + "start": 7994.98, + "end": 7996.74, + "probability": 0.8135 + }, + { + "start": 7997.28, + "end": 7997.66, + "probability": 0.9271 + }, + { + "start": 7998.3, + "end": 8000.56, + "probability": 0.9797 + }, + { + "start": 8001.14, + "end": 8003.1, + "probability": 0.8435 + }, + { + "start": 8003.86, + "end": 8005.04, + "probability": 0.9547 + }, + { + "start": 8005.56, + "end": 8006.74, + "probability": 0.9663 + }, + { + "start": 8007.54, + "end": 8009.4, + "probability": 0.8268 + }, + { + "start": 8010.02, + "end": 8010.98, + "probability": 0.9325 + }, + { + "start": 8012.44, + "end": 8013.56, + "probability": 0.9497 + }, + { + "start": 8014.28, + "end": 8015.8, + "probability": 0.9781 + }, + { + "start": 8016.62, + "end": 8018.44, + "probability": 0.9922 + }, + { + "start": 8019.26, + "end": 8020.24, + "probability": 0.8754 + }, + { + "start": 8021.12, + "end": 8022.82, + "probability": 0.9718 + }, + { + "start": 8023.42, + "end": 8026.56, + "probability": 0.9463 + }, + { + "start": 8028.38, + "end": 8028.9, + "probability": 0.7999 + }, + { + "start": 8049.86, + "end": 8054.66, + "probability": 0.1562 + }, + { + "start": 8057.74, + "end": 8062.32, + "probability": 0.347 + }, + { + "start": 8063.36, + "end": 8063.94, + "probability": 0.6385 + }, + { + "start": 8071.22, + "end": 8072.04, + "probability": 0.38 + }, + { + "start": 8072.62, + "end": 8073.36, + "probability": 0.7194 + }, + { + "start": 8073.86, + "end": 8074.5, + "probability": 0.8605 + }, + { + "start": 8075.4, + "end": 8075.44, + "probability": 0.0152 + }, + { + "start": 8144.62, + "end": 8148.58, + "probability": 0.7848 + }, + { + "start": 8149.52, + "end": 8152.8, + "probability": 0.8732 + }, + { + "start": 8153.62, + "end": 8159.72, + "probability": 0.8794 + }, + { + "start": 8160.32, + "end": 8161.34, + "probability": 0.9398 + }, + { + "start": 8162.3, + "end": 8165.96, + "probability": 0.8382 + }, + { + "start": 8166.58, + "end": 8168.12, + "probability": 0.8191 + }, + { + "start": 8168.88, + "end": 8169.38, + "probability": 0.8385 + }, + { + "start": 8170.02, + "end": 8170.9, + "probability": 0.8506 + }, + { + "start": 8171.04, + "end": 8173.06, + "probability": 0.9501 + }, + { + "start": 8173.16, + "end": 8174.2, + "probability": 0.8423 + }, + { + "start": 8174.24, + "end": 8176.16, + "probability": 0.9198 + }, + { + "start": 8176.42, + "end": 8179.27, + "probability": 0.7954 + }, + { + "start": 8179.7, + "end": 8182.16, + "probability": 0.7999 + }, + { + "start": 8183.12, + "end": 8184.0, + "probability": 0.7898 + }, + { + "start": 8184.72, + "end": 8188.24, + "probability": 0.9085 + }, + { + "start": 8189.92, + "end": 8192.7, + "probability": 0.8921 + }, + { + "start": 8192.74, + "end": 8193.12, + "probability": 0.8992 + }, + { + "start": 8193.2, + "end": 8195.12, + "probability": 0.9725 + }, + { + "start": 8195.2, + "end": 8198.3, + "probability": 0.9968 + }, + { + "start": 8198.36, + "end": 8203.1, + "probability": 0.7179 + }, + { + "start": 8203.58, + "end": 8206.4, + "probability": 0.9946 + }, + { + "start": 8206.56, + "end": 8207.6, + "probability": 0.8435 + }, + { + "start": 8207.8, + "end": 8208.31, + "probability": 0.9993 + }, + { + "start": 8209.12, + "end": 8214.02, + "probability": 0.8882 + }, + { + "start": 8214.68, + "end": 8215.64, + "probability": 0.8067 + }, + { + "start": 8216.6, + "end": 8219.5, + "probability": 0.6993 + }, + { + "start": 8220.06, + "end": 8224.54, + "probability": 0.9672 + }, + { + "start": 8224.82, + "end": 8225.9, + "probability": 0.9885 + }, + { + "start": 8226.04, + "end": 8227.12, + "probability": 0.9019 + }, + { + "start": 8227.64, + "end": 8232.44, + "probability": 0.9784 + }, + { + "start": 8232.54, + "end": 8235.14, + "probability": 0.9677 + }, + { + "start": 8235.14, + "end": 8240.26, + "probability": 0.9972 + }, + { + "start": 8240.94, + "end": 8241.82, + "probability": 0.8645 + }, + { + "start": 8242.28, + "end": 8243.68, + "probability": 0.7089 + }, + { + "start": 8243.86, + "end": 8244.62, + "probability": 0.9074 + }, + { + "start": 8245.06, + "end": 8245.22, + "probability": 0.4796 + }, + { + "start": 8245.32, + "end": 8245.99, + "probability": 0.9263 + }, + { + "start": 8246.22, + "end": 8247.5, + "probability": 0.8284 + }, + { + "start": 8247.78, + "end": 8253.02, + "probability": 0.9283 + }, + { + "start": 8253.08, + "end": 8253.92, + "probability": 0.9674 + }, + { + "start": 8257.13, + "end": 8260.08, + "probability": 0.8932 + }, + { + "start": 8260.64, + "end": 8261.88, + "probability": 0.88 + }, + { + "start": 8261.98, + "end": 8263.17, + "probability": 0.9917 + }, + { + "start": 8263.36, + "end": 8266.69, + "probability": 0.9524 + }, + { + "start": 8267.6, + "end": 8268.88, + "probability": 0.9915 + }, + { + "start": 8269.0, + "end": 8272.14, + "probability": 0.9944 + }, + { + "start": 8272.23, + "end": 8275.46, + "probability": 0.9307 + }, + { + "start": 8275.6, + "end": 8277.66, + "probability": 0.9148 + }, + { + "start": 8278.64, + "end": 8280.58, + "probability": 0.5744 + }, + { + "start": 8280.88, + "end": 8281.26, + "probability": 0.9724 + }, + { + "start": 8281.42, + "end": 8283.5, + "probability": 0.5603 + }, + { + "start": 8283.56, + "end": 8285.54, + "probability": 0.8565 + }, + { + "start": 8285.86, + "end": 8287.9, + "probability": 0.5948 + }, + { + "start": 8288.78, + "end": 8288.98, + "probability": 0.6949 + }, + { + "start": 8289.04, + "end": 8289.3, + "probability": 0.7158 + }, + { + "start": 8289.3, + "end": 8290.4, + "probability": 0.8917 + }, + { + "start": 8290.58, + "end": 8294.62, + "probability": 0.9171 + }, + { + "start": 8294.62, + "end": 8298.24, + "probability": 0.9953 + }, + { + "start": 8298.32, + "end": 8299.72, + "probability": 0.8316 + }, + { + "start": 8300.32, + "end": 8300.8, + "probability": 0.8661 + }, + { + "start": 8300.88, + "end": 8303.82, + "probability": 0.827 + }, + { + "start": 8303.9, + "end": 8305.04, + "probability": 0.7939 + }, + { + "start": 8305.3, + "end": 8312.36, + "probability": 0.9907 + }, + { + "start": 8312.62, + "end": 8313.54, + "probability": 0.7101 + }, + { + "start": 8314.08, + "end": 8319.96, + "probability": 0.9753 + }, + { + "start": 8320.86, + "end": 8324.54, + "probability": 0.9313 + }, + { + "start": 8325.48, + "end": 8329.12, + "probability": 0.4873 + }, + { + "start": 8329.24, + "end": 8331.46, + "probability": 0.9064 + }, + { + "start": 8331.54, + "end": 8333.24, + "probability": 0.8667 + }, + { + "start": 8333.3, + "end": 8335.3, + "probability": 0.9394 + }, + { + "start": 8335.44, + "end": 8338.48, + "probability": 0.9963 + }, + { + "start": 8339.42, + "end": 8343.64, + "probability": 0.9928 + }, + { + "start": 8343.98, + "end": 8346.22, + "probability": 0.9613 + }, + { + "start": 8346.28, + "end": 8346.68, + "probability": 0.8698 + }, + { + "start": 8346.7, + "end": 8349.82, + "probability": 0.983 + }, + { + "start": 8350.26, + "end": 8353.14, + "probability": 0.7002 + }, + { + "start": 8354.0, + "end": 8355.28, + "probability": 0.8486 + }, + { + "start": 8356.02, + "end": 8356.68, + "probability": 0.6885 + }, + { + "start": 8356.94, + "end": 8357.62, + "probability": 0.787 + }, + { + "start": 8358.08, + "end": 8360.54, + "probability": 0.9676 + }, + { + "start": 8360.7, + "end": 8361.46, + "probability": 0.5768 + }, + { + "start": 8361.86, + "end": 8362.9, + "probability": 0.814 + }, + { + "start": 8363.22, + "end": 8368.64, + "probability": 0.9275 + }, + { + "start": 8388.3, + "end": 8389.32, + "probability": 0.7143 + }, + { + "start": 8390.5, + "end": 8391.88, + "probability": 0.6648 + }, + { + "start": 8394.74, + "end": 8401.66, + "probability": 0.9646 + }, + { + "start": 8403.12, + "end": 8405.69, + "probability": 0.9885 + }, + { + "start": 8406.34, + "end": 8407.0, + "probability": 0.9445 + }, + { + "start": 8407.26, + "end": 8407.86, + "probability": 0.9651 + }, + { + "start": 8408.0, + "end": 8408.6, + "probability": 0.961 + }, + { + "start": 8408.66, + "end": 8410.86, + "probability": 0.8177 + }, + { + "start": 8412.14, + "end": 8415.04, + "probability": 0.9792 + }, + { + "start": 8417.2, + "end": 8418.68, + "probability": 0.986 + }, + { + "start": 8420.72, + "end": 8422.08, + "probability": 0.9199 + }, + { + "start": 8424.32, + "end": 8427.1, + "probability": 0.9898 + }, + { + "start": 8429.11, + "end": 8435.0, + "probability": 0.9862 + }, + { + "start": 8435.32, + "end": 8436.36, + "probability": 0.672 + }, + { + "start": 8438.2, + "end": 8440.36, + "probability": 0.9539 + }, + { + "start": 8440.74, + "end": 8444.34, + "probability": 0.9111 + }, + { + "start": 8446.43, + "end": 8449.86, + "probability": 0.9238 + }, + { + "start": 8452.38, + "end": 8453.84, + "probability": 0.8881 + }, + { + "start": 8457.84, + "end": 8458.22, + "probability": 0.6834 + }, + { + "start": 8459.32, + "end": 8462.1, + "probability": 0.7565 + }, + { + "start": 8465.92, + "end": 8466.88, + "probability": 0.909 + }, + { + "start": 8468.82, + "end": 8471.8, + "probability": 0.9803 + }, + { + "start": 8471.82, + "end": 8473.38, + "probability": 0.9366 + }, + { + "start": 8474.02, + "end": 8477.36, + "probability": 0.7655 + }, + { + "start": 8478.5, + "end": 8479.94, + "probability": 0.998 + }, + { + "start": 8481.8, + "end": 8483.82, + "probability": 0.9268 + }, + { + "start": 8486.78, + "end": 8492.88, + "probability": 0.9515 + }, + { + "start": 8494.14, + "end": 8497.38, + "probability": 0.9218 + }, + { + "start": 8501.48, + "end": 8507.06, + "probability": 0.8917 + }, + { + "start": 8514.04, + "end": 8516.4, + "probability": 0.7255 + }, + { + "start": 8518.08, + "end": 8520.88, + "probability": 0.9107 + }, + { + "start": 8521.6, + "end": 8526.88, + "probability": 0.9071 + }, + { + "start": 8527.04, + "end": 8527.92, + "probability": 0.927 + }, + { + "start": 8528.04, + "end": 8530.3, + "probability": 0.9827 + }, + { + "start": 8531.56, + "end": 8533.64, + "probability": 0.9975 + }, + { + "start": 8533.66, + "end": 8535.54, + "probability": 0.9809 + }, + { + "start": 8535.86, + "end": 8537.56, + "probability": 0.9869 + }, + { + "start": 8537.78, + "end": 8540.06, + "probability": 0.8928 + }, + { + "start": 8544.64, + "end": 8546.58, + "probability": 0.9982 + }, + { + "start": 8547.86, + "end": 8548.7, + "probability": 0.7305 + }, + { + "start": 8549.52, + "end": 8551.02, + "probability": 0.7999 + }, + { + "start": 8554.56, + "end": 8555.64, + "probability": 0.8337 + }, + { + "start": 8557.26, + "end": 8557.81, + "probability": 0.859 + }, + { + "start": 8560.48, + "end": 8561.18, + "probability": 0.9529 + }, + { + "start": 8561.86, + "end": 8562.81, + "probability": 0.9984 + }, + { + "start": 8564.2, + "end": 8566.02, + "probability": 0.9949 + }, + { + "start": 8567.74, + "end": 8568.58, + "probability": 0.973 + }, + { + "start": 8568.66, + "end": 8571.06, + "probability": 0.9794 + }, + { + "start": 8572.0, + "end": 8573.0, + "probability": 0.7256 + }, + { + "start": 8573.46, + "end": 8576.28, + "probability": 0.8717 + }, + { + "start": 8576.88, + "end": 8579.7, + "probability": 0.8296 + }, + { + "start": 8585.26, + "end": 8590.8, + "probability": 0.9857 + }, + { + "start": 8592.04, + "end": 8592.88, + "probability": 0.6116 + }, + { + "start": 8594.54, + "end": 8595.5, + "probability": 0.8428 + }, + { + "start": 8597.02, + "end": 8597.46, + "probability": 0.9168 + }, + { + "start": 8602.16, + "end": 8604.74, + "probability": 0.9402 + }, + { + "start": 8606.22, + "end": 8607.68, + "probability": 0.998 + }, + { + "start": 8608.66, + "end": 8611.04, + "probability": 0.8341 + }, + { + "start": 8611.04, + "end": 8613.74, + "probability": 0.9837 + }, + { + "start": 8613.92, + "end": 8614.58, + "probability": 0.431 + }, + { + "start": 8616.72, + "end": 8619.1, + "probability": 0.9632 + }, + { + "start": 8619.26, + "end": 8620.96, + "probability": 0.9854 + }, + { + "start": 8626.54, + "end": 8627.5, + "probability": 0.7152 + }, + { + "start": 8628.06, + "end": 8629.72, + "probability": 0.9601 + }, + { + "start": 8630.38, + "end": 8630.88, + "probability": 0.3382 + }, + { + "start": 8632.66, + "end": 8633.59, + "probability": 0.9702 + }, + { + "start": 8636.28, + "end": 8639.21, + "probability": 0.9648 + }, + { + "start": 8640.66, + "end": 8641.16, + "probability": 0.8618 + }, + { + "start": 8642.04, + "end": 8643.5, + "probability": 0.8783 + }, + { + "start": 8643.58, + "end": 8644.68, + "probability": 0.9554 + }, + { + "start": 8645.04, + "end": 8646.72, + "probability": 0.9199 + }, + { + "start": 8647.08, + "end": 8647.58, + "probability": 0.964 + }, + { + "start": 8653.88, + "end": 8659.88, + "probability": 0.9844 + }, + { + "start": 8659.96, + "end": 8661.04, + "probability": 0.8489 + }, + { + "start": 8666.08, + "end": 8668.86, + "probability": 0.8762 + }, + { + "start": 8670.16, + "end": 8673.04, + "probability": 0.9856 + }, + { + "start": 8673.84, + "end": 8676.24, + "probability": 0.8835 + }, + { + "start": 8678.06, + "end": 8680.54, + "probability": 0.9183 + }, + { + "start": 8688.04, + "end": 8691.14, + "probability": 0.993 + }, + { + "start": 8693.46, + "end": 8694.5, + "probability": 0.884 + }, + { + "start": 8696.0, + "end": 8698.96, + "probability": 0.9521 + }, + { + "start": 8699.46, + "end": 8700.84, + "probability": 0.9854 + }, + { + "start": 8701.46, + "end": 8701.9, + "probability": 0.5453 + }, + { + "start": 8702.02, + "end": 8706.26, + "probability": 0.4642 + }, + { + "start": 8706.26, + "end": 8708.42, + "probability": 0.7078 + }, + { + "start": 8709.66, + "end": 8711.08, + "probability": 0.9884 + }, + { + "start": 8711.82, + "end": 8713.62, + "probability": 0.9157 + }, + { + "start": 8713.74, + "end": 8715.16, + "probability": 0.9215 + }, + { + "start": 8715.22, + "end": 8719.22, + "probability": 0.9341 + }, + { + "start": 8720.62, + "end": 8723.44, + "probability": 0.9082 + }, + { + "start": 8723.52, + "end": 8726.04, + "probability": 0.9737 + }, + { + "start": 8728.94, + "end": 8731.34, + "probability": 0.9598 + }, + { + "start": 8732.1, + "end": 8736.7, + "probability": 0.9158 + }, + { + "start": 8738.04, + "end": 8738.8, + "probability": 0.7522 + }, + { + "start": 8739.7, + "end": 8739.96, + "probability": 0.9627 + }, + { + "start": 8744.36, + "end": 8749.98, + "probability": 0.9121 + }, + { + "start": 8750.88, + "end": 8752.42, + "probability": 0.9137 + }, + { + "start": 8752.98, + "end": 8753.76, + "probability": 0.7815 + }, + { + "start": 8754.52, + "end": 8756.72, + "probability": 0.9637 + }, + { + "start": 8757.38, + "end": 8759.18, + "probability": 0.8206 + }, + { + "start": 8759.42, + "end": 8759.72, + "probability": 0.9742 + }, + { + "start": 8760.82, + "end": 8761.48, + "probability": 0.998 + }, + { + "start": 8763.36, + "end": 8767.4, + "probability": 0.9112 + }, + { + "start": 8768.16, + "end": 8772.27, + "probability": 0.6051 + }, + { + "start": 8773.4, + "end": 8773.64, + "probability": 0.6021 + }, + { + "start": 8773.74, + "end": 8773.96, + "probability": 0.9386 + }, + { + "start": 8774.02, + "end": 8778.72, + "probability": 0.9675 + }, + { + "start": 8778.72, + "end": 8782.76, + "probability": 0.9343 + }, + { + "start": 8786.68, + "end": 8788.32, + "probability": 0.6378 + }, + { + "start": 8788.4, + "end": 8789.59, + "probability": 0.9702 + }, + { + "start": 8790.76, + "end": 8791.52, + "probability": 0.6977 + }, + { + "start": 8792.26, + "end": 8796.85, + "probability": 0.9504 + }, + { + "start": 8798.58, + "end": 8802.32, + "probability": 0.9648 + }, + { + "start": 8802.58, + "end": 8803.67, + "probability": 0.8468 + }, + { + "start": 8804.14, + "end": 8809.7, + "probability": 0.9855 + }, + { + "start": 8809.96, + "end": 8814.44, + "probability": 0.8472 + }, + { + "start": 8815.72, + "end": 8820.34, + "probability": 0.999 + }, + { + "start": 8820.98, + "end": 8824.1, + "probability": 0.9551 + }, + { + "start": 8827.48, + "end": 8828.82, + "probability": 0.8389 + }, + { + "start": 8830.76, + "end": 8834.34, + "probability": 0.9961 + }, + { + "start": 8834.72, + "end": 8837.38, + "probability": 0.9928 + }, + { + "start": 8839.08, + "end": 8840.44, + "probability": 0.9839 + }, + { + "start": 8841.48, + "end": 8842.18, + "probability": 0.9414 + }, + { + "start": 8843.26, + "end": 8846.98, + "probability": 0.8397 + }, + { + "start": 8848.06, + "end": 8853.64, + "probability": 0.9913 + }, + { + "start": 8855.64, + "end": 8859.9, + "probability": 0.9404 + }, + { + "start": 8860.8, + "end": 8862.88, + "probability": 0.9382 + }, + { + "start": 8863.88, + "end": 8865.3, + "probability": 0.7974 + }, + { + "start": 8866.42, + "end": 8868.34, + "probability": 0.7291 + }, + { + "start": 8868.48, + "end": 8869.26, + "probability": 0.6837 + }, + { + "start": 8869.28, + "end": 8870.8, + "probability": 0.7288 + }, + { + "start": 8871.26, + "end": 8872.62, + "probability": 0.7516 + }, + { + "start": 8873.38, + "end": 8875.22, + "probability": 0.871 + }, + { + "start": 8876.48, + "end": 8878.36, + "probability": 0.9977 + }, + { + "start": 8880.0, + "end": 8881.4, + "probability": 0.9901 + }, + { + "start": 8881.98, + "end": 8887.04, + "probability": 0.995 + }, + { + "start": 8890.66, + "end": 8891.26, + "probability": 0.6941 + }, + { + "start": 8892.34, + "end": 8893.5, + "probability": 0.957 + }, + { + "start": 8894.7, + "end": 8896.9, + "probability": 0.9149 + }, + { + "start": 8898.04, + "end": 8903.24, + "probability": 0.9917 + }, + { + "start": 8903.68, + "end": 8905.84, + "probability": 0.9916 + }, + { + "start": 8906.38, + "end": 8911.24, + "probability": 0.943 + }, + { + "start": 8911.52, + "end": 8913.08, + "probability": 0.9474 + }, + { + "start": 8913.74, + "end": 8917.56, + "probability": 0.8285 + }, + { + "start": 8919.78, + "end": 8923.52, + "probability": 0.9609 + }, + { + "start": 8923.52, + "end": 8927.6, + "probability": 0.9814 + }, + { + "start": 8929.22, + "end": 8931.42, + "probability": 0.9231 + }, + { + "start": 8932.46, + "end": 8936.76, + "probability": 0.9335 + }, + { + "start": 8938.22, + "end": 8942.52, + "probability": 0.9921 + }, + { + "start": 8944.66, + "end": 8946.32, + "probability": 0.999 + }, + { + "start": 8948.52, + "end": 8949.54, + "probability": 0.9836 + }, + { + "start": 8950.36, + "end": 8952.36, + "probability": 0.8301 + }, + { + "start": 8953.12, + "end": 8954.72, + "probability": 0.9801 + }, + { + "start": 8954.76, + "end": 8955.82, + "probability": 0.8443 + }, + { + "start": 8956.18, + "end": 8960.44, + "probability": 0.9583 + }, + { + "start": 8961.98, + "end": 8964.62, + "probability": 0.9398 + }, + { + "start": 8965.48, + "end": 8967.62, + "probability": 0.8643 + }, + { + "start": 8968.16, + "end": 8972.94, + "probability": 0.9912 + }, + { + "start": 8974.06, + "end": 8974.28, + "probability": 0.4523 + }, + { + "start": 8974.3, + "end": 8975.18, + "probability": 0.8789 + }, + { + "start": 8975.58, + "end": 8978.12, + "probability": 0.9792 + }, + { + "start": 8978.96, + "end": 8979.56, + "probability": 0.582 + }, + { + "start": 8980.04, + "end": 8983.44, + "probability": 0.9076 + }, + { + "start": 8983.72, + "end": 8984.44, + "probability": 0.5091 + }, + { + "start": 8984.58, + "end": 8984.78, + "probability": 0.5264 + }, + { + "start": 8984.86, + "end": 8985.92, + "probability": 0.8403 + }, + { + "start": 8985.98, + "end": 8987.04, + "probability": 0.909 + }, + { + "start": 8988.18, + "end": 8990.99, + "probability": 0.9125 + }, + { + "start": 8993.4, + "end": 8994.66, + "probability": 0.993 + }, + { + "start": 8994.78, + "end": 8997.68, + "probability": 0.7346 + }, + { + "start": 8998.28, + "end": 8999.94, + "probability": 0.53 + }, + { + "start": 9000.88, + "end": 9002.53, + "probability": 0.9987 + }, + { + "start": 9007.24, + "end": 9008.1, + "probability": 0.7951 + }, + { + "start": 9009.52, + "end": 9010.36, + "probability": 0.9443 + }, + { + "start": 9010.9, + "end": 9012.38, + "probability": 0.8797 + }, + { + "start": 9013.06, + "end": 9014.26, + "probability": 0.8883 + }, + { + "start": 9015.18, + "end": 9016.82, + "probability": 0.9934 + }, + { + "start": 9017.68, + "end": 9018.98, + "probability": 0.9938 + }, + { + "start": 9019.62, + "end": 9023.18, + "probability": 0.9451 + }, + { + "start": 9024.8, + "end": 9027.0, + "probability": 0.9844 + }, + { + "start": 9028.0, + "end": 9028.5, + "probability": 0.8008 + }, + { + "start": 9029.08, + "end": 9029.66, + "probability": 0.4816 + }, + { + "start": 9030.34, + "end": 9032.86, + "probability": 0.8898 + }, + { + "start": 9035.82, + "end": 9039.7, + "probability": 0.9874 + }, + { + "start": 9040.22, + "end": 9042.06, + "probability": 0.9872 + }, + { + "start": 9042.74, + "end": 9047.0, + "probability": 0.9803 + }, + { + "start": 9048.16, + "end": 9052.28, + "probability": 0.7484 + }, + { + "start": 9053.06, + "end": 9055.52, + "probability": 0.9862 + }, + { + "start": 9056.36, + "end": 9057.82, + "probability": 0.6229 + }, + { + "start": 9058.62, + "end": 9060.12, + "probability": 0.7781 + }, + { + "start": 9061.06, + "end": 9065.02, + "probability": 0.9881 + }, + { + "start": 9066.58, + "end": 9067.32, + "probability": 0.5541 + }, + { + "start": 9067.34, + "end": 9068.28, + "probability": 0.9341 + }, + { + "start": 9068.76, + "end": 9072.12, + "probability": 0.9889 + }, + { + "start": 9072.12, + "end": 9075.56, + "probability": 0.9988 + }, + { + "start": 9075.7, + "end": 9076.68, + "probability": 0.8392 + }, + { + "start": 9077.48, + "end": 9078.86, + "probability": 0.988 + }, + { + "start": 9079.88, + "end": 9083.06, + "probability": 0.9187 + }, + { + "start": 9083.74, + "end": 9084.34, + "probability": 0.8556 + }, + { + "start": 9084.4, + "end": 9085.44, + "probability": 0.9802 + }, + { + "start": 9085.86, + "end": 9087.42, + "probability": 0.9958 + }, + { + "start": 9087.9, + "end": 9092.78, + "probability": 0.9631 + }, + { + "start": 9092.84, + "end": 9093.36, + "probability": 0.8122 + }, + { + "start": 9093.52, + "end": 9094.4, + "probability": 0.8563 + }, + { + "start": 9095.02, + "end": 9097.6, + "probability": 0.8735 + }, + { + "start": 9100.53, + "end": 9103.42, + "probability": 0.9977 + }, + { + "start": 9103.66, + "end": 9104.84, + "probability": 0.847 + }, + { + "start": 9105.12, + "end": 9107.82, + "probability": 0.9083 + }, + { + "start": 9108.12, + "end": 9108.74, + "probability": 0.728 + }, + { + "start": 9108.78, + "end": 9109.36, + "probability": 0.842 + }, + { + "start": 9109.62, + "end": 9117.58, + "probability": 0.9598 + }, + { + "start": 9120.0, + "end": 9125.88, + "probability": 0.9768 + }, + { + "start": 9126.38, + "end": 9131.44, + "probability": 0.9961 + }, + { + "start": 9133.18, + "end": 9133.82, + "probability": 0.7432 + }, + { + "start": 9135.34, + "end": 9140.82, + "probability": 0.9932 + }, + { + "start": 9140.82, + "end": 9144.26, + "probability": 0.996 + }, + { + "start": 9144.26, + "end": 9150.38, + "probability": 0.9656 + }, + { + "start": 9151.12, + "end": 9152.24, + "probability": 0.7498 + }, + { + "start": 9152.92, + "end": 9161.2, + "probability": 0.9787 + }, + { + "start": 9161.38, + "end": 9162.26, + "probability": 0.6813 + }, + { + "start": 9162.36, + "end": 9164.5, + "probability": 0.9104 + }, + { + "start": 9165.22, + "end": 9166.22, + "probability": 0.912 + }, + { + "start": 9168.5, + "end": 9169.14, + "probability": 0.9276 + }, + { + "start": 9171.04, + "end": 9176.86, + "probability": 0.9873 + }, + { + "start": 9177.12, + "end": 9178.06, + "probability": 0.9837 + }, + { + "start": 9178.22, + "end": 9179.0, + "probability": 0.9345 + }, + { + "start": 9179.22, + "end": 9180.24, + "probability": 0.7223 + }, + { + "start": 9181.54, + "end": 9187.88, + "probability": 0.9768 + }, + { + "start": 9188.9, + "end": 9193.24, + "probability": 0.7582 + }, + { + "start": 9194.24, + "end": 9196.19, + "probability": 0.994 + }, + { + "start": 9197.72, + "end": 9200.62, + "probability": 0.9758 + }, + { + "start": 9201.68, + "end": 9203.46, + "probability": 0.9166 + }, + { + "start": 9204.48, + "end": 9205.14, + "probability": 0.8311 + }, + { + "start": 9207.5, + "end": 9210.58, + "probability": 0.9414 + }, + { + "start": 9214.18, + "end": 9214.84, + "probability": 0.9351 + }, + { + "start": 9215.26, + "end": 9216.8, + "probability": 0.7671 + }, + { + "start": 9217.16, + "end": 9217.86, + "probability": 0.9763 + }, + { + "start": 9218.16, + "end": 9220.66, + "probability": 0.9443 + }, + { + "start": 9220.98, + "end": 9221.5, + "probability": 0.4485 + }, + { + "start": 9221.58, + "end": 9222.4, + "probability": 0.8514 + }, + { + "start": 9222.48, + "end": 9223.4, + "probability": 0.9225 + }, + { + "start": 9223.44, + "end": 9226.56, + "probability": 0.9466 + }, + { + "start": 9226.66, + "end": 9229.25, + "probability": 0.968 + }, + { + "start": 9229.62, + "end": 9232.36, + "probability": 0.981 + }, + { + "start": 9232.7, + "end": 9234.4, + "probability": 0.9659 + }, + { + "start": 9235.3, + "end": 9239.63, + "probability": 0.8393 + }, + { + "start": 9242.24, + "end": 9244.44, + "probability": 0.9898 + }, + { + "start": 9252.8, + "end": 9256.06, + "probability": 0.9548 + }, + { + "start": 9257.14, + "end": 9261.36, + "probability": 0.9941 + }, + { + "start": 9261.36, + "end": 9265.32, + "probability": 0.979 + }, + { + "start": 9265.94, + "end": 9267.38, + "probability": 0.7541 + }, + { + "start": 9268.12, + "end": 9272.0, + "probability": 0.9951 + }, + { + "start": 9272.6, + "end": 9276.6, + "probability": 0.8497 + }, + { + "start": 9277.46, + "end": 9278.34, + "probability": 0.9445 + }, + { + "start": 9279.42, + "end": 9280.94, + "probability": 0.926 + }, + { + "start": 9281.66, + "end": 9284.2, + "probability": 0.8443 + }, + { + "start": 9284.7, + "end": 9285.36, + "probability": 0.7711 + }, + { + "start": 9285.58, + "end": 9287.16, + "probability": 0.9764 + }, + { + "start": 9287.58, + "end": 9289.46, + "probability": 0.9355 + }, + { + "start": 9290.92, + "end": 9292.0, + "probability": 0.7723 + }, + { + "start": 9292.14, + "end": 9292.7, + "probability": 0.6728 + }, + { + "start": 9292.8, + "end": 9293.86, + "probability": 0.9083 + }, + { + "start": 9294.36, + "end": 9298.36, + "probability": 0.9863 + }, + { + "start": 9299.08, + "end": 9302.24, + "probability": 0.9945 + }, + { + "start": 9303.32, + "end": 9304.92, + "probability": 0.8916 + }, + { + "start": 9305.2, + "end": 9306.38, + "probability": 0.9489 + }, + { + "start": 9306.56, + "end": 9308.34, + "probability": 0.8691 + }, + { + "start": 9308.46, + "end": 9310.18, + "probability": 0.9956 + }, + { + "start": 9310.28, + "end": 9311.52, + "probability": 0.9545 + }, + { + "start": 9311.9, + "end": 9315.28, + "probability": 0.8572 + }, + { + "start": 9317.52, + "end": 9318.22, + "probability": 0.8819 + }, + { + "start": 9319.58, + "end": 9322.0, + "probability": 0.9815 + }, + { + "start": 9322.16, + "end": 9323.12, + "probability": 0.9719 + }, + { + "start": 9323.32, + "end": 9324.46, + "probability": 0.8732 + }, + { + "start": 9324.64, + "end": 9325.14, + "probability": 0.5579 + }, + { + "start": 9325.32, + "end": 9326.68, + "probability": 0.7896 + }, + { + "start": 9327.58, + "end": 9328.46, + "probability": 0.9503 + }, + { + "start": 9328.66, + "end": 9329.28, + "probability": 0.6783 + }, + { + "start": 9329.36, + "end": 9331.98, + "probability": 0.9871 + }, + { + "start": 9332.04, + "end": 9333.5, + "probability": 0.9985 + }, + { + "start": 9335.56, + "end": 9336.28, + "probability": 0.4908 + }, + { + "start": 9337.1, + "end": 9337.88, + "probability": 0.6156 + }, + { + "start": 9339.56, + "end": 9339.88, + "probability": 0.4713 + }, + { + "start": 9339.92, + "end": 9341.54, + "probability": 0.7442 + }, + { + "start": 9342.0, + "end": 9343.32, + "probability": 0.9273 + }, + { + "start": 9343.44, + "end": 9345.92, + "probability": 0.9515 + }, + { + "start": 9348.02, + "end": 9349.61, + "probability": 0.8223 + }, + { + "start": 9350.44, + "end": 9354.94, + "probability": 0.835 + }, + { + "start": 9356.44, + "end": 9360.68, + "probability": 0.8631 + }, + { + "start": 9361.06, + "end": 9364.3, + "probability": 0.9503 + }, + { + "start": 9365.28, + "end": 9369.46, + "probability": 0.9716 + }, + { + "start": 9369.7, + "end": 9372.94, + "probability": 0.991 + }, + { + "start": 9373.44, + "end": 9376.04, + "probability": 0.7948 + }, + { + "start": 9376.54, + "end": 9377.28, + "probability": 0.7066 + }, + { + "start": 9377.9, + "end": 9382.1, + "probability": 0.9334 + }, + { + "start": 9382.7, + "end": 9387.5, + "probability": 0.9634 + }, + { + "start": 9392.76, + "end": 9398.4, + "probability": 0.9175 + }, + { + "start": 9398.92, + "end": 9399.74, + "probability": 0.8648 + }, + { + "start": 9401.64, + "end": 9402.22, + "probability": 0.9282 + }, + { + "start": 9403.06, + "end": 9403.41, + "probability": 0.6673 + }, + { + "start": 9404.45, + "end": 9406.46, + "probability": 0.9763 + }, + { + "start": 9407.32, + "end": 9410.56, + "probability": 0.9084 + }, + { + "start": 9411.12, + "end": 9413.14, + "probability": 0.8394 + }, + { + "start": 9413.86, + "end": 9416.12, + "probability": 0.9786 + }, + { + "start": 9416.22, + "end": 9416.86, + "probability": 0.8114 + }, + { + "start": 9416.96, + "end": 9418.0, + "probability": 0.7834 + }, + { + "start": 9418.5, + "end": 9419.72, + "probability": 0.7937 + }, + { + "start": 9420.3, + "end": 9421.84, + "probability": 0.8485 + }, + { + "start": 9423.68, + "end": 9428.64, + "probability": 0.6664 + }, + { + "start": 9428.8, + "end": 9429.62, + "probability": 0.8792 + }, + { + "start": 9430.1, + "end": 9430.72, + "probability": 0.2445 + }, + { + "start": 9431.4, + "end": 9432.58, + "probability": 0.9951 + }, + { + "start": 9433.1, + "end": 9435.34, + "probability": 0.5934 + }, + { + "start": 9435.9, + "end": 9436.95, + "probability": 0.9985 + }, + { + "start": 9437.68, + "end": 9438.4, + "probability": 0.4809 + }, + { + "start": 9441.54, + "end": 9446.78, + "probability": 0.9772 + }, + { + "start": 9448.3, + "end": 9453.86, + "probability": 0.9306 + }, + { + "start": 9454.84, + "end": 9456.1, + "probability": 0.9919 + }, + { + "start": 9456.76, + "end": 9462.58, + "probability": 0.9923 + }, + { + "start": 9463.32, + "end": 9465.66, + "probability": 0.8782 + }, + { + "start": 9466.12, + "end": 9466.9, + "probability": 0.6316 + }, + { + "start": 9467.4, + "end": 9472.94, + "probability": 0.99 + }, + { + "start": 9474.64, + "end": 9475.4, + "probability": 0.7926 + }, + { + "start": 9476.98, + "end": 9478.18, + "probability": 0.9706 + }, + { + "start": 9479.0, + "end": 9482.62, + "probability": 0.9878 + }, + { + "start": 9483.86, + "end": 9489.88, + "probability": 0.9781 + }, + { + "start": 9490.8, + "end": 9494.88, + "probability": 0.945 + }, + { + "start": 9496.86, + "end": 9500.24, + "probability": 0.9617 + }, + { + "start": 9501.32, + "end": 9505.04, + "probability": 0.9948 + }, + { + "start": 9505.04, + "end": 9510.66, + "probability": 0.9905 + }, + { + "start": 9511.9, + "end": 9515.59, + "probability": 0.9987 + }, + { + "start": 9517.04, + "end": 9519.66, + "probability": 0.9909 + }, + { + "start": 9520.7, + "end": 9521.74, + "probability": 0.3518 + }, + { + "start": 9522.22, + "end": 9523.99, + "probability": 0.9962 + }, + { + "start": 9524.32, + "end": 9525.52, + "probability": 0.8166 + }, + { + "start": 9525.88, + "end": 9529.56, + "probability": 0.9925 + }, + { + "start": 9530.06, + "end": 9530.98, + "probability": 0.9884 + }, + { + "start": 9531.4, + "end": 9533.26, + "probability": 0.9924 + }, + { + "start": 9533.62, + "end": 9536.9, + "probability": 0.9711 + }, + { + "start": 9537.82, + "end": 9540.28, + "probability": 0.8018 + }, + { + "start": 9540.86, + "end": 9546.8, + "probability": 0.9866 + }, + { + "start": 9548.06, + "end": 9554.38, + "probability": 0.9978 + }, + { + "start": 9554.38, + "end": 9560.2, + "probability": 0.9858 + }, + { + "start": 9560.28, + "end": 9563.82, + "probability": 0.9993 + }, + { + "start": 9563.9, + "end": 9569.36, + "probability": 0.9854 + }, + { + "start": 9570.74, + "end": 9574.6, + "probability": 0.9513 + }, + { + "start": 9574.7, + "end": 9575.82, + "probability": 0.9474 + }, + { + "start": 9575.96, + "end": 9577.14, + "probability": 0.9093 + }, + { + "start": 9577.66, + "end": 9579.76, + "probability": 0.9819 + }, + { + "start": 9579.88, + "end": 9579.88, + "probability": 0.2261 + }, + { + "start": 9579.88, + "end": 9579.88, + "probability": 0.3167 + }, + { + "start": 9579.88, + "end": 9580.9, + "probability": 0.6363 + }, + { + "start": 9580.92, + "end": 9581.58, + "probability": 0.651 + }, + { + "start": 9582.28, + "end": 9586.52, + "probability": 0.8598 + }, + { + "start": 9589.2, + "end": 9590.42, + "probability": 0.8082 + }, + { + "start": 9591.08, + "end": 9592.64, + "probability": 0.8408 + }, + { + "start": 9593.5, + "end": 9595.88, + "probability": 0.8761 + }, + { + "start": 9597.38, + "end": 9599.14, + "probability": 0.9441 + }, + { + "start": 9600.08, + "end": 9601.72, + "probability": 0.8157 + }, + { + "start": 9603.92, + "end": 9605.9, + "probability": 0.9031 + }, + { + "start": 9606.08, + "end": 9607.88, + "probability": 0.7669 + }, + { + "start": 9608.28, + "end": 9609.62, + "probability": 0.9844 + }, + { + "start": 9611.7, + "end": 9612.22, + "probability": 0.749 + }, + { + "start": 9612.74, + "end": 9613.14, + "probability": 0.938 + }, + { + "start": 9615.06, + "end": 9616.22, + "probability": 0.959 + }, + { + "start": 9617.64, + "end": 9619.48, + "probability": 0.9787 + }, + { + "start": 9619.92, + "end": 9622.8, + "probability": 0.7019 + }, + { + "start": 9623.84, + "end": 9625.84, + "probability": 0.5566 + }, + { + "start": 9627.16, + "end": 9628.4, + "probability": 0.804 + }, + { + "start": 9628.42, + "end": 9629.72, + "probability": 0.8042 + }, + { + "start": 9630.1, + "end": 9631.4, + "probability": 0.9929 + }, + { + "start": 9631.94, + "end": 9633.32, + "probability": 0.9451 + }, + { + "start": 9633.88, + "end": 9634.42, + "probability": 0.3467 + }, + { + "start": 9634.42, + "end": 9635.74, + "probability": 0.9556 + }, + { + "start": 9636.46, + "end": 9639.94, + "probability": 0.8732 + }, + { + "start": 9640.54, + "end": 9643.46, + "probability": 0.966 + }, + { + "start": 9643.9, + "end": 9647.66, + "probability": 0.9659 + }, + { + "start": 9648.32, + "end": 9649.74, + "probability": 0.9237 + }, + { + "start": 9649.88, + "end": 9652.48, + "probability": 0.9861 + }, + { + "start": 9652.48, + "end": 9656.24, + "probability": 0.9119 + }, + { + "start": 9656.8, + "end": 9660.34, + "probability": 0.9927 + }, + { + "start": 9661.08, + "end": 9663.36, + "probability": 0.9993 + }, + { + "start": 9665.9, + "end": 9671.28, + "probability": 0.9929 + }, + { + "start": 9672.18, + "end": 9678.02, + "probability": 0.9956 + }, + { + "start": 9678.72, + "end": 9680.14, + "probability": 0.9556 + }, + { + "start": 9680.98, + "end": 9683.54, + "probability": 0.9589 + }, + { + "start": 9684.46, + "end": 9684.78, + "probability": 0.7905 + }, + { + "start": 9685.82, + "end": 9686.2, + "probability": 0.5567 + }, + { + "start": 9686.24, + "end": 9688.5, + "probability": 0.7651 + }, + { + "start": 9688.76, + "end": 9691.54, + "probability": 0.8543 + }, + { + "start": 9691.66, + "end": 9692.38, + "probability": 0.5872 + }, + { + "start": 9700.0, + "end": 9704.04, + "probability": 0.0473 + }, + { + "start": 9717.8, + "end": 9719.32, + "probability": 0.0252 + }, + { + "start": 9721.38, + "end": 9723.08, + "probability": 0.19 + }, + { + "start": 9727.94, + "end": 9728.6, + "probability": 0.9495 + }, + { + "start": 9728.78, + "end": 9731.04, + "probability": 0.7534 + }, + { + "start": 9732.02, + "end": 9733.9, + "probability": 0.7921 + }, + { + "start": 9734.52, + "end": 9735.96, + "probability": 0.8708 + }, + { + "start": 9736.0, + "end": 9737.68, + "probability": 0.8145 + }, + { + "start": 9737.76, + "end": 9738.04, + "probability": 0.8418 + }, + { + "start": 9738.76, + "end": 9740.68, + "probability": 0.771 + }, + { + "start": 9741.16, + "end": 9742.48, + "probability": 0.7755 + }, + { + "start": 9744.26, + "end": 9746.88, + "probability": 0.8967 + }, + { + "start": 9748.02, + "end": 9752.96, + "probability": 0.9904 + }, + { + "start": 9754.24, + "end": 9757.36, + "probability": 0.9989 + }, + { + "start": 9757.36, + "end": 9761.94, + "probability": 0.998 + }, + { + "start": 9762.44, + "end": 9763.92, + "probability": 0.8087 + }, + { + "start": 9764.68, + "end": 9766.02, + "probability": 0.542 + }, + { + "start": 9766.12, + "end": 9768.16, + "probability": 0.9565 + }, + { + "start": 9768.76, + "end": 9771.14, + "probability": 0.6874 + }, + { + "start": 9772.14, + "end": 9773.31, + "probability": 0.9897 + }, + { + "start": 9773.56, + "end": 9775.6, + "probability": 0.8646 + }, + { + "start": 9775.9, + "end": 9778.16, + "probability": 0.9653 + }, + { + "start": 9778.3, + "end": 9779.28, + "probability": 0.8737 + }, + { + "start": 9780.08, + "end": 9781.36, + "probability": 0.9797 + }, + { + "start": 9781.38, + "end": 9783.58, + "probability": 0.9739 + }, + { + "start": 9783.68, + "end": 9784.94, + "probability": 0.9011 + }, + { + "start": 9785.48, + "end": 9789.22, + "probability": 0.9962 + }, + { + "start": 9789.66, + "end": 9791.81, + "probability": 0.773 + }, + { + "start": 9792.82, + "end": 9796.26, + "probability": 0.9916 + }, + { + "start": 9796.32, + "end": 9798.44, + "probability": 0.9891 + }, + { + "start": 9799.44, + "end": 9805.26, + "probability": 0.9952 + }, + { + "start": 9806.12, + "end": 9808.4, + "probability": 0.9992 + }, + { + "start": 9809.22, + "end": 9810.94, + "probability": 0.959 + }, + { + "start": 9811.08, + "end": 9814.58, + "probability": 0.9346 + }, + { + "start": 9814.58, + "end": 9818.7, + "probability": 0.6795 + }, + { + "start": 9818.88, + "end": 9819.4, + "probability": 0.3448 + }, + { + "start": 9820.08, + "end": 9823.04, + "probability": 0.9723 + }, + { + "start": 9823.04, + "end": 9824.86, + "probability": 0.9738 + }, + { + "start": 9825.48, + "end": 9825.92, + "probability": 0.6489 + }, + { + "start": 9827.32, + "end": 9827.68, + "probability": 0.3453 + }, + { + "start": 9827.68, + "end": 9829.42, + "probability": 0.8968 + }, + { + "start": 9829.86, + "end": 9832.0, + "probability": 0.9268 + }, + { + "start": 9832.36, + "end": 9834.63, + "probability": 0.9731 + }, + { + "start": 9836.52, + "end": 9837.24, + "probability": 0.4824 + }, + { + "start": 9837.48, + "end": 9837.94, + "probability": 0.7334 + }, + { + "start": 9838.1, + "end": 9839.5, + "probability": 0.9847 + }, + { + "start": 9839.62, + "end": 9840.62, + "probability": 0.6912 + }, + { + "start": 9840.78, + "end": 9842.82, + "probability": 0.9928 + }, + { + "start": 9843.4, + "end": 9845.02, + "probability": 0.9863 + }, + { + "start": 9845.1, + "end": 9847.88, + "probability": 0.9922 + }, + { + "start": 9848.3, + "end": 9852.56, + "probability": 0.9905 + }, + { + "start": 9853.08, + "end": 9856.92, + "probability": 0.9966 + }, + { + "start": 9857.42, + "end": 9860.39, + "probability": 0.9857 + }, + { + "start": 9860.76, + "end": 9863.18, + "probability": 0.8836 + }, + { + "start": 9864.14, + "end": 9867.8, + "probability": 0.9085 + }, + { + "start": 9868.74, + "end": 9871.52, + "probability": 0.9844 + }, + { + "start": 9871.9, + "end": 9873.02, + "probability": 0.9825 + }, + { + "start": 9873.06, + "end": 9873.84, + "probability": 0.9523 + }, + { + "start": 9874.28, + "end": 9876.0, + "probability": 0.9168 + }, + { + "start": 9876.82, + "end": 9879.7, + "probability": 0.9427 + }, + { + "start": 9880.3, + "end": 9883.32, + "probability": 0.9938 + }, + { + "start": 9884.24, + "end": 9886.06, + "probability": 0.9657 + }, + { + "start": 9886.14, + "end": 9890.44, + "probability": 0.9285 + }, + { + "start": 9890.96, + "end": 9892.78, + "probability": 0.9614 + }, + { + "start": 9892.96, + "end": 9894.7, + "probability": 0.9608 + }, + { + "start": 9895.5, + "end": 9895.76, + "probability": 0.4796 + }, + { + "start": 9895.88, + "end": 9898.72, + "probability": 0.9878 + }, + { + "start": 9898.78, + "end": 9900.68, + "probability": 0.9756 + }, + { + "start": 9901.14, + "end": 9905.18, + "probability": 0.9933 + }, + { + "start": 9905.18, + "end": 9910.85, + "probability": 0.9939 + }, + { + "start": 9911.7, + "end": 9915.16, + "probability": 0.9967 + }, + { + "start": 9915.24, + "end": 9920.44, + "probability": 0.9988 + }, + { + "start": 9920.54, + "end": 9925.4, + "probability": 0.9614 + }, + { + "start": 9925.48, + "end": 9926.46, + "probability": 0.7274 + }, + { + "start": 9927.08, + "end": 9928.28, + "probability": 0.9527 + }, + { + "start": 9928.5, + "end": 9930.04, + "probability": 0.988 + }, + { + "start": 9930.34, + "end": 9934.16, + "probability": 0.9728 + }, + { + "start": 9934.48, + "end": 9935.9, + "probability": 0.6017 + }, + { + "start": 9935.96, + "end": 9938.14, + "probability": 0.9474 + }, + { + "start": 9939.22, + "end": 9941.36, + "probability": 0.9946 + }, + { + "start": 9941.6, + "end": 9943.84, + "probability": 0.9375 + }, + { + "start": 9944.34, + "end": 9947.38, + "probability": 0.8735 + }, + { + "start": 9947.42, + "end": 9948.24, + "probability": 0.4673 + }, + { + "start": 9948.5, + "end": 9951.52, + "probability": 0.7143 + }, + { + "start": 9953.32, + "end": 9955.62, + "probability": 0.9419 + }, + { + "start": 9956.3, + "end": 9959.0, + "probability": 0.8813 + }, + { + "start": 9959.32, + "end": 9962.38, + "probability": 0.9832 + }, + { + "start": 9962.74, + "end": 9963.9, + "probability": 0.6007 + }, + { + "start": 9964.48, + "end": 9965.78, + "probability": 0.683 + }, + { + "start": 9966.3, + "end": 9969.88, + "probability": 0.9763 + }, + { + "start": 9969.88, + "end": 9973.72, + "probability": 0.9915 + }, + { + "start": 9973.92, + "end": 9975.1, + "probability": 0.6528 + }, + { + "start": 9975.18, + "end": 9975.78, + "probability": 0.631 + }, + { + "start": 9975.82, + "end": 9976.08, + "probability": 0.6153 + }, + { + "start": 9976.4, + "end": 9979.7, + "probability": 0.9984 + }, + { + "start": 9980.46, + "end": 9983.46, + "probability": 0.9849 + }, + { + "start": 9983.62, + "end": 9987.14, + "probability": 0.9726 + }, + { + "start": 9987.64, + "end": 9989.02, + "probability": 0.9346 + }, + { + "start": 9989.3, + "end": 9993.66, + "probability": 0.9984 + }, + { + "start": 9993.74, + "end": 9998.08, + "probability": 0.9929 + }, + { + "start": 9998.86, + "end": 10003.22, + "probability": 0.965 + }, + { + "start": 10003.44, + "end": 10005.22, + "probability": 0.8924 + }, + { + "start": 10005.38, + "end": 10009.76, + "probability": 0.9321 + }, + { + "start": 10010.3, + "end": 10011.48, + "probability": 0.4958 + }, + { + "start": 10011.64, + "end": 10011.88, + "probability": 0.8887 + }, + { + "start": 10011.98, + "end": 10014.34, + "probability": 0.9951 + }, + { + "start": 10014.7, + "end": 10018.2, + "probability": 0.9869 + }, + { + "start": 10018.82, + "end": 10021.66, + "probability": 0.9946 + }, + { + "start": 10021.74, + "end": 10023.3, + "probability": 0.9983 + }, + { + "start": 10023.74, + "end": 10027.1, + "probability": 0.9845 + }, + { + "start": 10027.2, + "end": 10029.02, + "probability": 0.9977 + }, + { + "start": 10029.6, + "end": 10030.18, + "probability": 0.5612 + }, + { + "start": 10030.38, + "end": 10031.4, + "probability": 0.9807 + }, + { + "start": 10031.76, + "end": 10033.2, + "probability": 0.8932 + }, + { + "start": 10033.32, + "end": 10034.34, + "probability": 0.9592 + }, + { + "start": 10034.82, + "end": 10036.32, + "probability": 0.9878 + }, + { + "start": 10036.36, + "end": 10041.2, + "probability": 0.9922 + }, + { + "start": 10041.52, + "end": 10043.1, + "probability": 0.9613 + }, + { + "start": 10044.02, + "end": 10046.18, + "probability": 0.9121 + }, + { + "start": 10046.86, + "end": 10047.76, + "probability": 0.617 + }, + { + "start": 10047.96, + "end": 10048.44, + "probability": 0.4977 + } + ], + "segments_count": 3021, + "words_count": 16125, + "avg_words_per_segment": 5.3376, + "avg_segment_duration": 2.3549, + "avg_words_per_minute": 93.779, + "plenum_id": "26569", + "duration": 10316.81, + "title": null, + "plenum_date": "2013-02-13" +} \ No newline at end of file